diff --git "a/4608/metadata.json" "b/4608/metadata.json" new file mode 100644--- /dev/null +++ "b/4608/metadata.json" @@ -0,0 +1,34237 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "4608", + "quality_score": 0.7228, + "per_segment_quality_scores": [ + { + "start": 13.44, + "end": 13.66, + "probability": 0.1342 + }, + { + "start": 13.66, + "end": 13.66, + "probability": 0.1507 + }, + { + "start": 13.66, + "end": 13.76, + "probability": 0.0332 + }, + { + "start": 13.76, + "end": 13.76, + "probability": 0.0549 + }, + { + "start": 13.76, + "end": 14.06, + "probability": 0.0111 + }, + { + "start": 16.78, + "end": 16.78, + "probability": 0.4486 + }, + { + "start": 16.78, + "end": 19.96, + "probability": 0.075 + }, + { + "start": 47.56, + "end": 48.92, + "probability": 0.7942 + }, + { + "start": 49.8, + "end": 50.96, + "probability": 0.7905 + }, + { + "start": 50.98, + "end": 52.18, + "probability": 0.6203 + }, + { + "start": 52.26, + "end": 53.64, + "probability": 0.9412 + }, + { + "start": 53.84, + "end": 54.42, + "probability": 0.7443 + }, + { + "start": 54.46, + "end": 57.32, + "probability": 0.6891 + }, + { + "start": 57.4, + "end": 59.14, + "probability": 0.954 + }, + { + "start": 59.96, + "end": 60.96, + "probability": 0.0762 + }, + { + "start": 61.12, + "end": 63.7, + "probability": 0.2906 + }, + { + "start": 63.82, + "end": 65.7, + "probability": 0.9481 + }, + { + "start": 65.74, + "end": 68.9, + "probability": 0.5344 + }, + { + "start": 69.38, + "end": 69.76, + "probability": 0.4337 + }, + { + "start": 70.52, + "end": 71.92, + "probability": 0.9558 + }, + { + "start": 72.62, + "end": 75.72, + "probability": 0.7462 + }, + { + "start": 78.16, + "end": 78.68, + "probability": 0.7331 + }, + { + "start": 78.68, + "end": 79.94, + "probability": 0.6606 + }, + { + "start": 80.02, + "end": 81.72, + "probability": 0.8215 + }, + { + "start": 82.24, + "end": 85.38, + "probability": 0.0367 + }, + { + "start": 90.48, + "end": 91.76, + "probability": 0.0894 + }, + { + "start": 91.78, + "end": 95.59, + "probability": 0.0327 + }, + { + "start": 95.88, + "end": 96.78, + "probability": 0.0082 + }, + { + "start": 97.84, + "end": 100.44, + "probability": 0.0239 + }, + { + "start": 100.68, + "end": 104.19, + "probability": 0.0585 + }, + { + "start": 106.54, + "end": 110.11, + "probability": 0.0703 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 159.16, + "end": 160.58, + "probability": 0.357 + }, + { + "start": 161.24, + "end": 162.24, + "probability": 0.8219 + }, + { + "start": 162.26, + "end": 165.98, + "probability": 0.9906 + }, + { + "start": 166.74, + "end": 168.7, + "probability": 0.9504 + }, + { + "start": 168.84, + "end": 171.7, + "probability": 0.9889 + }, + { + "start": 172.18, + "end": 173.95, + "probability": 0.993 + }, + { + "start": 174.18, + "end": 174.52, + "probability": 0.7107 + }, + { + "start": 175.22, + "end": 175.8, + "probability": 0.6696 + }, + { + "start": 184.0, + "end": 187.76, + "probability": 0.8817 + }, + { + "start": 188.68, + "end": 193.1, + "probability": 0.9819 + }, + { + "start": 193.2, + "end": 194.42, + "probability": 0.8142 + }, + { + "start": 194.98, + "end": 197.46, + "probability": 0.9436 + }, + { + "start": 198.18, + "end": 204.26, + "probability": 0.9036 + }, + { + "start": 204.86, + "end": 208.28, + "probability": 0.7365 + }, + { + "start": 208.28, + "end": 210.36, + "probability": 0.8968 + }, + { + "start": 211.06, + "end": 214.32, + "probability": 0.8683 + }, + { + "start": 215.72, + "end": 216.38, + "probability": 0.7462 + }, + { + "start": 217.92, + "end": 222.4, + "probability": 0.7101 + }, + { + "start": 222.9, + "end": 223.36, + "probability": 0.3568 + }, + { + "start": 223.56, + "end": 224.06, + "probability": 0.8756 + }, + { + "start": 224.36, + "end": 226.04, + "probability": 0.9736 + }, + { + "start": 226.72, + "end": 230.68, + "probability": 0.9515 + }, + { + "start": 231.14, + "end": 234.37, + "probability": 0.8591 + }, + { + "start": 235.88, + "end": 236.76, + "probability": 0.5056 + }, + { + "start": 237.06, + "end": 242.9, + "probability": 0.9141 + }, + { + "start": 244.32, + "end": 245.3, + "probability": 0.0448 + }, + { + "start": 245.49, + "end": 247.98, + "probability": 0.5898 + }, + { + "start": 250.59, + "end": 253.26, + "probability": 0.9641 + }, + { + "start": 254.12, + "end": 255.02, + "probability": 0.9165 + }, + { + "start": 257.46, + "end": 262.1, + "probability": 0.9219 + }, + { + "start": 262.26, + "end": 262.81, + "probability": 0.5867 + }, + { + "start": 265.76, + "end": 266.11, + "probability": 0.0245 + }, + { + "start": 266.28, + "end": 270.08, + "probability": 0.7443 + }, + { + "start": 270.44, + "end": 270.82, + "probability": 0.7516 + }, + { + "start": 270.94, + "end": 271.52, + "probability": 0.6983 + }, + { + "start": 271.64, + "end": 272.34, + "probability": 0.9363 + }, + { + "start": 272.38, + "end": 274.16, + "probability": 0.8614 + }, + { + "start": 276.04, + "end": 276.22, + "probability": 0.0036 + }, + { + "start": 276.22, + "end": 276.71, + "probability": 0.1037 + }, + { + "start": 277.04, + "end": 278.76, + "probability": 0.9408 + }, + { + "start": 278.82, + "end": 279.48, + "probability": 0.9266 + }, + { + "start": 279.96, + "end": 281.86, + "probability": 0.7761 + }, + { + "start": 282.22, + "end": 283.44, + "probability": 0.4438 + }, + { + "start": 283.6, + "end": 284.92, + "probability": 0.6941 + }, + { + "start": 285.62, + "end": 286.48, + "probability": 0.9326 + }, + { + "start": 287.08, + "end": 290.5, + "probability": 0.9236 + }, + { + "start": 290.78, + "end": 292.4, + "probability": 0.1261 + }, + { + "start": 293.7, + "end": 294.62, + "probability": 0.959 + }, + { + "start": 294.74, + "end": 297.14, + "probability": 0.9756 + }, + { + "start": 297.28, + "end": 298.6, + "probability": 0.9906 + }, + { + "start": 299.92, + "end": 301.14, + "probability": 0.9456 + }, + { + "start": 302.32, + "end": 302.42, + "probability": 0.0463 + }, + { + "start": 303.06, + "end": 304.04, + "probability": 0.8968 + }, + { + "start": 304.2, + "end": 308.52, + "probability": 0.9473 + }, + { + "start": 308.76, + "end": 311.12, + "probability": 0.845 + }, + { + "start": 311.48, + "end": 314.9, + "probability": 0.897 + }, + { + "start": 315.66, + "end": 319.56, + "probability": 0.9133 + }, + { + "start": 319.86, + "end": 321.0, + "probability": 0.2666 + }, + { + "start": 322.38, + "end": 324.74, + "probability": 0.7894 + }, + { + "start": 325.36, + "end": 327.72, + "probability": 0.9832 + }, + { + "start": 328.26, + "end": 330.52, + "probability": 0.9919 + }, + { + "start": 331.42, + "end": 338.26, + "probability": 0.9677 + }, + { + "start": 339.56, + "end": 341.4, + "probability": 0.4411 + }, + { + "start": 344.0, + "end": 345.9, + "probability": 0.9272 + }, + { + "start": 345.9, + "end": 348.68, + "probability": 0.8472 + }, + { + "start": 348.78, + "end": 349.24, + "probability": 0.5675 + }, + { + "start": 349.34, + "end": 350.42, + "probability": 0.7975 + }, + { + "start": 350.44, + "end": 351.92, + "probability": 0.8986 + }, + { + "start": 352.06, + "end": 353.65, + "probability": 0.6346 + }, + { + "start": 353.98, + "end": 359.46, + "probability": 0.9607 + }, + { + "start": 360.2, + "end": 367.0, + "probability": 0.6656 + }, + { + "start": 368.3, + "end": 371.36, + "probability": 0.9919 + }, + { + "start": 372.46, + "end": 373.1, + "probability": 0.8292 + }, + { + "start": 373.88, + "end": 374.34, + "probability": 0.6943 + }, + { + "start": 374.56, + "end": 377.32, + "probability": 0.9953 + }, + { + "start": 377.36, + "end": 381.92, + "probability": 0.9129 + }, + { + "start": 387.28, + "end": 391.04, + "probability": 0.7816 + }, + { + "start": 391.2, + "end": 395.26, + "probability": 0.9472 + }, + { + "start": 396.52, + "end": 398.66, + "probability": 0.8844 + }, + { + "start": 398.86, + "end": 399.7, + "probability": 0.9912 + }, + { + "start": 400.32, + "end": 402.4, + "probability": 0.9648 + }, + { + "start": 405.84, + "end": 406.84, + "probability": 0.9788 + }, + { + "start": 407.74, + "end": 409.2, + "probability": 0.9867 + }, + { + "start": 413.49, + "end": 415.76, + "probability": 0.6438 + }, + { + "start": 417.42, + "end": 418.92, + "probability": 0.7945 + }, + { + "start": 421.76, + "end": 424.98, + "probability": 0.4446 + }, + { + "start": 426.3, + "end": 427.88, + "probability": 0.6749 + }, + { + "start": 428.84, + "end": 429.82, + "probability": 0.9502 + }, + { + "start": 430.58, + "end": 431.82, + "probability": 0.7066 + }, + { + "start": 432.32, + "end": 433.74, + "probability": 0.9834 + }, + { + "start": 434.54, + "end": 435.36, + "probability": 0.7726 + }, + { + "start": 435.98, + "end": 439.34, + "probability": 0.9912 + }, + { + "start": 441.8, + "end": 443.4, + "probability": 0.9956 + }, + { + "start": 444.34, + "end": 446.4, + "probability": 0.9375 + }, + { + "start": 446.48, + "end": 447.49, + "probability": 0.8022 + }, + { + "start": 447.7, + "end": 448.16, + "probability": 0.8547 + }, + { + "start": 449.12, + "end": 452.92, + "probability": 0.9891 + }, + { + "start": 453.66, + "end": 457.68, + "probability": 0.9986 + }, + { + "start": 457.68, + "end": 460.7, + "probability": 0.9984 + }, + { + "start": 461.94, + "end": 464.42, + "probability": 0.4633 + }, + { + "start": 464.54, + "end": 465.7, + "probability": 0.7308 + }, + { + "start": 465.84, + "end": 467.96, + "probability": 0.6531 + }, + { + "start": 469.22, + "end": 470.36, + "probability": 0.9857 + }, + { + "start": 470.9, + "end": 472.9, + "probability": 0.4315 + }, + { + "start": 476.1, + "end": 480.7, + "probability": 0.9859 + }, + { + "start": 481.88, + "end": 485.18, + "probability": 0.8415 + }, + { + "start": 485.28, + "end": 486.34, + "probability": 0.5392 + }, + { + "start": 486.96, + "end": 489.54, + "probability": 0.9231 + }, + { + "start": 489.98, + "end": 492.16, + "probability": 0.9953 + }, + { + "start": 492.2, + "end": 493.94, + "probability": 0.4916 + }, + { + "start": 495.08, + "end": 497.84, + "probability": 0.9966 + }, + { + "start": 497.84, + "end": 500.76, + "probability": 0.6748 + }, + { + "start": 502.74, + "end": 507.16, + "probability": 0.9672 + }, + { + "start": 508.72, + "end": 512.2, + "probability": 0.949 + }, + { + "start": 513.28, + "end": 516.82, + "probability": 0.6614 + }, + { + "start": 517.36, + "end": 519.23, + "probability": 0.8831 + }, + { + "start": 520.14, + "end": 521.02, + "probability": 0.9071 + }, + { + "start": 521.7, + "end": 525.68, + "probability": 0.9849 + }, + { + "start": 526.58, + "end": 529.03, + "probability": 0.9775 + }, + { + "start": 531.76, + "end": 535.46, + "probability": 0.9717 + }, + { + "start": 536.18, + "end": 536.92, + "probability": 0.224 + }, + { + "start": 537.36, + "end": 539.96, + "probability": 0.9919 + }, + { + "start": 540.46, + "end": 542.98, + "probability": 0.9724 + }, + { + "start": 543.9, + "end": 545.28, + "probability": 0.9598 + }, + { + "start": 545.88, + "end": 546.08, + "probability": 0.6358 + }, + { + "start": 546.1, + "end": 548.32, + "probability": 0.9788 + }, + { + "start": 548.9, + "end": 549.48, + "probability": 0.6327 + }, + { + "start": 549.64, + "end": 551.9, + "probability": 0.7763 + }, + { + "start": 552.06, + "end": 553.1, + "probability": 0.9415 + }, + { + "start": 553.8, + "end": 556.48, + "probability": 0.933 + }, + { + "start": 557.49, + "end": 560.28, + "probability": 0.9964 + }, + { + "start": 561.92, + "end": 565.5, + "probability": 0.3236 + }, + { + "start": 566.04, + "end": 567.28, + "probability": 0.9894 + }, + { + "start": 567.9, + "end": 569.44, + "probability": 0.6921 + }, + { + "start": 571.1, + "end": 574.48, + "probability": 0.749 + }, + { + "start": 575.02, + "end": 576.3, + "probability": 0.9583 + }, + { + "start": 577.3, + "end": 583.12, + "probability": 0.9342 + }, + { + "start": 584.5, + "end": 591.84, + "probability": 0.7985 + }, + { + "start": 591.92, + "end": 593.12, + "probability": 0.7946 + }, + { + "start": 593.68, + "end": 597.32, + "probability": 0.9877 + }, + { + "start": 597.94, + "end": 600.88, + "probability": 0.9458 + }, + { + "start": 600.88, + "end": 604.84, + "probability": 0.9976 + }, + { + "start": 604.96, + "end": 609.38, + "probability": 0.9507 + }, + { + "start": 611.22, + "end": 613.58, + "probability": 0.9739 + }, + { + "start": 614.16, + "end": 616.46, + "probability": 0.9885 + }, + { + "start": 617.28, + "end": 621.6, + "probability": 0.9971 + }, + { + "start": 621.64, + "end": 623.16, + "probability": 0.9971 + }, + { + "start": 623.78, + "end": 627.4, + "probability": 0.9988 + }, + { + "start": 627.82, + "end": 631.11, + "probability": 0.9917 + }, + { + "start": 631.34, + "end": 633.0, + "probability": 0.8884 + }, + { + "start": 633.94, + "end": 635.02, + "probability": 0.9014 + }, + { + "start": 636.1, + "end": 638.22, + "probability": 0.6373 + }, + { + "start": 638.72, + "end": 640.34, + "probability": 0.99 + }, + { + "start": 641.0, + "end": 642.36, + "probability": 0.9948 + }, + { + "start": 643.5, + "end": 645.94, + "probability": 0.9376 + }, + { + "start": 646.8, + "end": 649.18, + "probability": 0.885 + }, + { + "start": 649.26, + "end": 651.06, + "probability": 0.9473 + }, + { + "start": 652.36, + "end": 653.5, + "probability": 0.8428 + }, + { + "start": 654.26, + "end": 656.24, + "probability": 0.8976 + }, + { + "start": 656.8, + "end": 660.3, + "probability": 0.9566 + }, + { + "start": 661.0, + "end": 662.48, + "probability": 0.9996 + }, + { + "start": 663.14, + "end": 665.14, + "probability": 0.9961 + }, + { + "start": 666.6, + "end": 667.96, + "probability": 0.7375 + }, + { + "start": 668.44, + "end": 670.88, + "probability": 0.7979 + }, + { + "start": 672.32, + "end": 675.14, + "probability": 0.5025 + }, + { + "start": 676.18, + "end": 677.1, + "probability": 0.9029 + }, + { + "start": 677.3, + "end": 680.24, + "probability": 0.9736 + }, + { + "start": 680.82, + "end": 681.98, + "probability": 0.8854 + }, + { + "start": 683.16, + "end": 683.62, + "probability": 0.9149 + }, + { + "start": 684.06, + "end": 684.5, + "probability": 0.8139 + }, + { + "start": 685.26, + "end": 688.2, + "probability": 0.9851 + }, + { + "start": 689.55, + "end": 691.54, + "probability": 0.988 + }, + { + "start": 691.64, + "end": 692.88, + "probability": 0.9993 + }, + { + "start": 693.5, + "end": 697.1, + "probability": 0.7995 + }, + { + "start": 697.88, + "end": 699.36, + "probability": 0.9792 + }, + { + "start": 699.7, + "end": 700.64, + "probability": 0.8618 + }, + { + "start": 700.78, + "end": 703.62, + "probability": 0.994 + }, + { + "start": 703.74, + "end": 704.5, + "probability": 0.6828 + }, + { + "start": 704.94, + "end": 706.94, + "probability": 0.9068 + }, + { + "start": 707.16, + "end": 709.34, + "probability": 0.9638 + }, + { + "start": 710.16, + "end": 710.96, + "probability": 0.8908 + }, + { + "start": 711.5, + "end": 713.2, + "probability": 0.9825 + }, + { + "start": 713.42, + "end": 718.38, + "probability": 0.9894 + }, + { + "start": 719.28, + "end": 719.84, + "probability": 0.6742 + }, + { + "start": 721.0, + "end": 721.7, + "probability": 0.663 + }, + { + "start": 722.32, + "end": 723.22, + "probability": 0.8663 + }, + { + "start": 724.19, + "end": 725.62, + "probability": 0.845 + }, + { + "start": 726.24, + "end": 727.84, + "probability": 0.9568 + }, + { + "start": 728.44, + "end": 729.51, + "probability": 0.9934 + }, + { + "start": 729.88, + "end": 733.52, + "probability": 0.9939 + }, + { + "start": 734.08, + "end": 735.26, + "probability": 0.9952 + }, + { + "start": 735.8, + "end": 737.64, + "probability": 0.9459 + }, + { + "start": 737.74, + "end": 739.6, + "probability": 0.986 + }, + { + "start": 740.32, + "end": 740.92, + "probability": 0.6864 + }, + { + "start": 740.96, + "end": 742.58, + "probability": 0.6007 + }, + { + "start": 744.23, + "end": 746.2, + "probability": 0.9666 + }, + { + "start": 747.82, + "end": 748.46, + "probability": 0.8779 + }, + { + "start": 750.78, + "end": 751.44, + "probability": 0.9196 + }, + { + "start": 751.62, + "end": 753.58, + "probability": 0.9928 + }, + { + "start": 753.58, + "end": 757.4, + "probability": 0.9927 + }, + { + "start": 757.52, + "end": 759.1, + "probability": 0.77 + }, + { + "start": 761.91, + "end": 765.66, + "probability": 0.9929 + }, + { + "start": 766.48, + "end": 767.52, + "probability": 0.8272 + }, + { + "start": 768.34, + "end": 769.5, + "probability": 0.8981 + }, + { + "start": 770.52, + "end": 771.08, + "probability": 0.915 + }, + { + "start": 771.94, + "end": 777.16, + "probability": 0.913 + }, + { + "start": 777.84, + "end": 778.7, + "probability": 0.8149 + }, + { + "start": 779.28, + "end": 781.48, + "probability": 0.7775 + }, + { + "start": 783.1, + "end": 784.68, + "probability": 0.9426 + }, + { + "start": 785.44, + "end": 787.6, + "probability": 0.972 + }, + { + "start": 788.02, + "end": 788.82, + "probability": 0.9609 + }, + { + "start": 789.1, + "end": 793.36, + "probability": 0.9915 + }, + { + "start": 793.74, + "end": 796.46, + "probability": 0.995 + }, + { + "start": 796.88, + "end": 797.12, + "probability": 0.965 + }, + { + "start": 797.5, + "end": 799.22, + "probability": 0.5691 + }, + { + "start": 799.26, + "end": 799.9, + "probability": 0.9025 + }, + { + "start": 799.98, + "end": 800.62, + "probability": 0.9126 + }, + { + "start": 800.78, + "end": 802.34, + "probability": 0.9653 + }, + { + "start": 802.82, + "end": 803.9, + "probability": 0.8351 + }, + { + "start": 804.84, + "end": 805.0, + "probability": 0.0114 + }, + { + "start": 806.39, + "end": 808.9, + "probability": 0.9857 + }, + { + "start": 809.46, + "end": 810.2, + "probability": 0.8713 + }, + { + "start": 810.9, + "end": 814.06, + "probability": 0.892 + }, + { + "start": 815.0, + "end": 817.23, + "probability": 0.8933 + }, + { + "start": 818.06, + "end": 820.38, + "probability": 0.9351 + }, + { + "start": 820.64, + "end": 821.12, + "probability": 0.8848 + }, + { + "start": 821.84, + "end": 822.9, + "probability": 0.9788 + }, + { + "start": 823.3, + "end": 823.8, + "probability": 0.8294 + }, + { + "start": 823.94, + "end": 827.46, + "probability": 0.9904 + }, + { + "start": 827.6, + "end": 828.36, + "probability": 0.9894 + }, + { + "start": 829.2, + "end": 830.6, + "probability": 0.8962 + }, + { + "start": 831.18, + "end": 831.74, + "probability": 0.4964 + }, + { + "start": 831.88, + "end": 833.86, + "probability": 0.8789 + }, + { + "start": 834.5, + "end": 835.48, + "probability": 0.87 + }, + { + "start": 838.94, + "end": 839.04, + "probability": 0.0219 + }, + { + "start": 839.04, + "end": 839.04, + "probability": 0.1739 + }, + { + "start": 839.04, + "end": 841.28, + "probability": 0.2235 + }, + { + "start": 842.61, + "end": 845.82, + "probability": 0.985 + }, + { + "start": 847.2, + "end": 847.9, + "probability": 0.9574 + }, + { + "start": 848.14, + "end": 849.32, + "probability": 0.9675 + }, + { + "start": 849.4, + "end": 852.78, + "probability": 0.991 + }, + { + "start": 853.64, + "end": 855.44, + "probability": 0.9957 + }, + { + "start": 856.06, + "end": 860.04, + "probability": 0.9318 + }, + { + "start": 860.06, + "end": 862.08, + "probability": 0.9265 + }, + { + "start": 863.08, + "end": 865.88, + "probability": 0.9448 + }, + { + "start": 866.9, + "end": 867.56, + "probability": 0.2929 + }, + { + "start": 868.38, + "end": 868.86, + "probability": 0.8683 + }, + { + "start": 869.38, + "end": 870.56, + "probability": 0.9864 + }, + { + "start": 870.6, + "end": 872.34, + "probability": 0.9868 + }, + { + "start": 872.44, + "end": 873.18, + "probability": 0.7889 + }, + { + "start": 873.24, + "end": 873.98, + "probability": 0.8715 + }, + { + "start": 874.44, + "end": 875.1, + "probability": 0.8628 + }, + { + "start": 875.12, + "end": 878.16, + "probability": 0.9597 + }, + { + "start": 879.58, + "end": 880.38, + "probability": 0.6075 + }, + { + "start": 880.94, + "end": 881.5, + "probability": 0.5133 + }, + { + "start": 882.96, + "end": 885.82, + "probability": 0.4545 + }, + { + "start": 885.82, + "end": 887.4, + "probability": 0.6823 + }, + { + "start": 888.22, + "end": 890.06, + "probability": 0.9072 + }, + { + "start": 890.66, + "end": 891.32, + "probability": 0.8352 + }, + { + "start": 892.28, + "end": 892.56, + "probability": 0.7013 + }, + { + "start": 892.76, + "end": 894.36, + "probability": 0.9871 + }, + { + "start": 894.58, + "end": 895.58, + "probability": 0.9484 + }, + { + "start": 895.7, + "end": 898.72, + "probability": 0.8966 + }, + { + "start": 899.66, + "end": 899.72, + "probability": 0.0011 + }, + { + "start": 900.8, + "end": 903.18, + "probability": 0.7487 + }, + { + "start": 905.42, + "end": 906.4, + "probability": 0.7874 + }, + { + "start": 907.02, + "end": 910.22, + "probability": 0.954 + }, + { + "start": 910.36, + "end": 911.86, + "probability": 0.9598 + }, + { + "start": 912.76, + "end": 915.3, + "probability": 0.8196 + }, + { + "start": 916.38, + "end": 919.32, + "probability": 0.804 + }, + { + "start": 919.98, + "end": 921.4, + "probability": 0.8542 + }, + { + "start": 922.32, + "end": 923.22, + "probability": 0.7421 + }, + { + "start": 923.74, + "end": 926.4, + "probability": 0.9019 + }, + { + "start": 926.52, + "end": 928.06, + "probability": 0.9941 + }, + { + "start": 928.22, + "end": 929.54, + "probability": 0.9775 + }, + { + "start": 930.14, + "end": 933.54, + "probability": 0.9844 + }, + { + "start": 933.54, + "end": 935.54, + "probability": 0.9855 + }, + { + "start": 936.85, + "end": 939.08, + "probability": 0.8301 + }, + { + "start": 939.14, + "end": 939.8, + "probability": 0.9608 + }, + { + "start": 940.04, + "end": 941.46, + "probability": 0.9224 + }, + { + "start": 942.9, + "end": 943.22, + "probability": 0.7529 + }, + { + "start": 944.58, + "end": 945.82, + "probability": 0.7125 + }, + { + "start": 946.16, + "end": 947.66, + "probability": 0.7392 + }, + { + "start": 948.1, + "end": 948.76, + "probability": 0.7083 + }, + { + "start": 949.49, + "end": 953.92, + "probability": 0.9874 + }, + { + "start": 954.52, + "end": 955.34, + "probability": 0.9126 + }, + { + "start": 955.72, + "end": 958.04, + "probability": 0.9957 + }, + { + "start": 959.0, + "end": 962.12, + "probability": 0.7637 + }, + { + "start": 962.9, + "end": 964.22, + "probability": 0.9776 + }, + { + "start": 964.62, + "end": 968.22, + "probability": 0.9727 + }, + { + "start": 968.34, + "end": 969.1, + "probability": 0.8704 + }, + { + "start": 969.22, + "end": 970.08, + "probability": 0.7913 + }, + { + "start": 970.52, + "end": 973.08, + "probability": 0.9964 + }, + { + "start": 973.16, + "end": 975.28, + "probability": 0.8857 + }, + { + "start": 976.2, + "end": 978.5, + "probability": 0.9807 + }, + { + "start": 979.76, + "end": 980.18, + "probability": 0.957 + }, + { + "start": 981.36, + "end": 982.62, + "probability": 0.9645 + }, + { + "start": 983.62, + "end": 985.5, + "probability": 0.9658 + }, + { + "start": 985.66, + "end": 987.76, + "probability": 0.949 + }, + { + "start": 989.36, + "end": 989.46, + "probability": 0.5638 + }, + { + "start": 989.46, + "end": 990.06, + "probability": 0.7406 + }, + { + "start": 994.2, + "end": 994.22, + "probability": 0.2418 + }, + { + "start": 995.44, + "end": 999.4, + "probability": 0.5676 + }, + { + "start": 999.96, + "end": 1001.48, + "probability": 0.6961 + }, + { + "start": 1001.68, + "end": 1003.1, + "probability": 0.8141 + }, + { + "start": 1003.7, + "end": 1005.96, + "probability": 0.6286 + }, + { + "start": 1006.28, + "end": 1008.6, + "probability": 0.8772 + }, + { + "start": 1009.24, + "end": 1012.46, + "probability": 0.7476 + }, + { + "start": 1013.36, + "end": 1014.02, + "probability": 0.6452 + }, + { + "start": 1014.6, + "end": 1017.02, + "probability": 0.659 + }, + { + "start": 1017.06, + "end": 1020.64, + "probability": 0.7705 + }, + { + "start": 1021.14, + "end": 1022.58, + "probability": 0.9578 + }, + { + "start": 1023.5, + "end": 1026.9, + "probability": 0.9333 + }, + { + "start": 1027.88, + "end": 1028.9, + "probability": 0.4957 + }, + { + "start": 1030.0, + "end": 1031.94, + "probability": 0.9536 + }, + { + "start": 1032.54, + "end": 1035.44, + "probability": 0.9938 + }, + { + "start": 1036.1, + "end": 1038.24, + "probability": 0.9346 + }, + { + "start": 1038.68, + "end": 1040.08, + "probability": 0.8281 + }, + { + "start": 1040.62, + "end": 1041.94, + "probability": 0.989 + }, + { + "start": 1041.94, + "end": 1042.04, + "probability": 0.7222 + }, + { + "start": 1042.46, + "end": 1043.9, + "probability": 0.975 + }, + { + "start": 1044.8, + "end": 1045.58, + "probability": 0.9437 + }, + { + "start": 1045.86, + "end": 1047.8, + "probability": 0.7635 + }, + { + "start": 1047.96, + "end": 1048.73, + "probability": 0.9631 + }, + { + "start": 1049.65, + "end": 1052.32, + "probability": 0.9131 + }, + { + "start": 1052.76, + "end": 1054.36, + "probability": 0.984 + }, + { + "start": 1054.92, + "end": 1055.06, + "probability": 0.6731 + }, + { + "start": 1055.12, + "end": 1060.2, + "probability": 0.9849 + }, + { + "start": 1062.04, + "end": 1065.51, + "probability": 0.8406 + }, + { + "start": 1066.44, + "end": 1068.18, + "probability": 0.9952 + }, + { + "start": 1069.12, + "end": 1069.76, + "probability": 0.2313 + }, + { + "start": 1069.88, + "end": 1070.22, + "probability": 0.5732 + }, + { + "start": 1072.74, + "end": 1075.84, + "probability": 0.0133 + }, + { + "start": 1076.58, + "end": 1081.06, + "probability": 0.7604 + }, + { + "start": 1081.48, + "end": 1084.18, + "probability": 0.9907 + }, + { + "start": 1084.4, + "end": 1086.44, + "probability": 0.6036 + }, + { + "start": 1086.46, + "end": 1088.72, + "probability": 0.8895 + }, + { + "start": 1089.18, + "end": 1094.56, + "probability": 0.7276 + }, + { + "start": 1095.08, + "end": 1098.38, + "probability": 0.9836 + }, + { + "start": 1098.58, + "end": 1100.24, + "probability": 0.9973 + }, + { + "start": 1100.9, + "end": 1101.78, + "probability": 0.9961 + }, + { + "start": 1102.62, + "end": 1104.62, + "probability": 0.9409 + }, + { + "start": 1104.8, + "end": 1106.3, + "probability": 0.9944 + }, + { + "start": 1106.98, + "end": 1109.42, + "probability": 0.4365 + }, + { + "start": 1109.98, + "end": 1114.02, + "probability": 0.9513 + }, + { + "start": 1114.32, + "end": 1116.9, + "probability": 0.9927 + }, + { + "start": 1117.9, + "end": 1121.46, + "probability": 0.9932 + }, + { + "start": 1121.58, + "end": 1125.64, + "probability": 0.9879 + }, + { + "start": 1126.16, + "end": 1127.0, + "probability": 0.9863 + }, + { + "start": 1127.12, + "end": 1128.84, + "probability": 0.7553 + }, + { + "start": 1129.74, + "end": 1131.22, + "probability": 0.9946 + }, + { + "start": 1131.62, + "end": 1133.26, + "probability": 0.9736 + }, + { + "start": 1133.58, + "end": 1136.12, + "probability": 0.9596 + }, + { + "start": 1136.16, + "end": 1139.28, + "probability": 0.9871 + }, + { + "start": 1139.7, + "end": 1140.6, + "probability": 0.7424 + }, + { + "start": 1141.56, + "end": 1142.6, + "probability": 0.8947 + }, + { + "start": 1143.04, + "end": 1145.1, + "probability": 0.9906 + }, + { + "start": 1145.86, + "end": 1147.04, + "probability": 0.8465 + }, + { + "start": 1147.56, + "end": 1150.08, + "probability": 0.9644 + }, + { + "start": 1151.26, + "end": 1152.42, + "probability": 0.8623 + }, + { + "start": 1152.58, + "end": 1155.76, + "probability": 0.6606 + }, + { + "start": 1156.46, + "end": 1161.32, + "probability": 0.939 + }, + { + "start": 1161.38, + "end": 1161.74, + "probability": 0.6666 + }, + { + "start": 1162.08, + "end": 1164.08, + "probability": 0.9878 + }, + { + "start": 1164.56, + "end": 1166.94, + "probability": 0.9786 + }, + { + "start": 1167.62, + "end": 1168.52, + "probability": 0.9215 + }, + { + "start": 1169.06, + "end": 1171.18, + "probability": 0.9141 + }, + { + "start": 1171.76, + "end": 1175.65, + "probability": 0.9871 + }, + { + "start": 1176.73, + "end": 1178.2, + "probability": 0.466 + }, + { + "start": 1178.76, + "end": 1181.4, + "probability": 0.9404 + }, + { + "start": 1181.4, + "end": 1182.04, + "probability": 0.6455 + }, + { + "start": 1182.24, + "end": 1185.63, + "probability": 0.6753 + }, + { + "start": 1186.4, + "end": 1188.62, + "probability": 0.9138 + }, + { + "start": 1188.86, + "end": 1191.66, + "probability": 0.8931 + }, + { + "start": 1191.66, + "end": 1194.02, + "probability": 0.9431 + }, + { + "start": 1194.62, + "end": 1197.35, + "probability": 0.9407 + }, + { + "start": 1200.3, + "end": 1202.42, + "probability": 0.5221 + }, + { + "start": 1202.42, + "end": 1202.62, + "probability": 0.3375 + }, + { + "start": 1202.62, + "end": 1206.38, + "probability": 0.9223 + }, + { + "start": 1206.76, + "end": 1208.94, + "probability": 0.8802 + }, + { + "start": 1209.5, + "end": 1212.44, + "probability": 0.797 + }, + { + "start": 1213.0, + "end": 1214.54, + "probability": 0.4616 + }, + { + "start": 1215.3, + "end": 1217.94, + "probability": 0.5757 + }, + { + "start": 1218.38, + "end": 1218.64, + "probability": 0.4934 + }, + { + "start": 1218.64, + "end": 1219.86, + "probability": 0.8984 + }, + { + "start": 1219.98, + "end": 1221.4, + "probability": 0.9312 + }, + { + "start": 1221.86, + "end": 1225.42, + "probability": 0.8921 + }, + { + "start": 1226.06, + "end": 1229.18, + "probability": 0.9799 + }, + { + "start": 1229.3, + "end": 1232.66, + "probability": 0.9931 + }, + { + "start": 1232.8, + "end": 1234.68, + "probability": 0.9049 + }, + { + "start": 1235.78, + "end": 1237.7, + "probability": 0.8468 + }, + { + "start": 1238.06, + "end": 1239.05, + "probability": 0.9909 + }, + { + "start": 1239.32, + "end": 1240.16, + "probability": 0.9897 + }, + { + "start": 1240.22, + "end": 1241.02, + "probability": 0.9836 + }, + { + "start": 1241.54, + "end": 1242.38, + "probability": 0.9505 + }, + { + "start": 1242.6, + "end": 1243.02, + "probability": 0.8343 + }, + { + "start": 1243.42, + "end": 1244.08, + "probability": 0.5806 + }, + { + "start": 1244.4, + "end": 1246.38, + "probability": 0.9448 + }, + { + "start": 1246.96, + "end": 1248.36, + "probability": 0.9976 + }, + { + "start": 1249.26, + "end": 1250.3, + "probability": 0.7919 + }, + { + "start": 1250.88, + "end": 1252.2, + "probability": 0.9707 + }, + { + "start": 1252.6, + "end": 1255.22, + "probability": 0.355 + }, + { + "start": 1255.28, + "end": 1257.56, + "probability": 0.9782 + }, + { + "start": 1257.62, + "end": 1258.28, + "probability": 0.0874 + }, + { + "start": 1258.28, + "end": 1260.54, + "probability": 0.9891 + }, + { + "start": 1260.84, + "end": 1263.58, + "probability": 0.8435 + }, + { + "start": 1263.6, + "end": 1266.46, + "probability": 0.7988 + }, + { + "start": 1272.42, + "end": 1275.35, + "probability": 0.7247 + }, + { + "start": 1276.9, + "end": 1278.24, + "probability": 0.9943 + }, + { + "start": 1278.32, + "end": 1279.34, + "probability": 0.982 + }, + { + "start": 1279.58, + "end": 1280.62, + "probability": 0.9658 + }, + { + "start": 1281.28, + "end": 1282.42, + "probability": 0.9897 + }, + { + "start": 1283.0, + "end": 1283.42, + "probability": 0.7445 + }, + { + "start": 1287.36, + "end": 1289.66, + "probability": 0.9969 + }, + { + "start": 1289.84, + "end": 1290.38, + "probability": 0.895 + }, + { + "start": 1290.56, + "end": 1291.4, + "probability": 0.9415 + }, + { + "start": 1291.68, + "end": 1297.02, + "probability": 0.9484 + }, + { + "start": 1298.96, + "end": 1302.56, + "probability": 0.9902 + }, + { + "start": 1302.64, + "end": 1304.36, + "probability": 0.9172 + }, + { + "start": 1304.86, + "end": 1305.23, + "probability": 0.8504 + }, + { + "start": 1306.46, + "end": 1307.7, + "probability": 0.8456 + }, + { + "start": 1310.6, + "end": 1310.6, + "probability": 0.0298 + }, + { + "start": 1310.62, + "end": 1312.4, + "probability": 0.8369 + }, + { + "start": 1312.56, + "end": 1315.58, + "probability": 0.9581 + }, + { + "start": 1316.56, + "end": 1320.04, + "probability": 0.9688 + }, + { + "start": 1321.0, + "end": 1323.88, + "probability": 0.9131 + }, + { + "start": 1325.48, + "end": 1329.42, + "probability": 0.9262 + }, + { + "start": 1329.42, + "end": 1332.88, + "probability": 0.901 + }, + { + "start": 1333.68, + "end": 1335.0, + "probability": 0.8282 + }, + { + "start": 1335.94, + "end": 1338.52, + "probability": 0.8335 + }, + { + "start": 1339.68, + "end": 1342.36, + "probability": 0.9824 + }, + { + "start": 1342.36, + "end": 1345.8, + "probability": 0.9923 + }, + { + "start": 1346.86, + "end": 1347.2, + "probability": 0.5269 + }, + { + "start": 1347.54, + "end": 1348.26, + "probability": 0.8993 + }, + { + "start": 1348.32, + "end": 1348.86, + "probability": 0.4939 + }, + { + "start": 1349.04, + "end": 1349.16, + "probability": 0.2876 + }, + { + "start": 1349.16, + "end": 1351.86, + "probability": 0.1678 + }, + { + "start": 1351.94, + "end": 1352.42, + "probability": 0.0314 + }, + { + "start": 1352.44, + "end": 1355.88, + "probability": 0.7242 + }, + { + "start": 1356.66, + "end": 1358.74, + "probability": 0.5884 + }, + { + "start": 1358.86, + "end": 1360.02, + "probability": 0.5651 + }, + { + "start": 1360.54, + "end": 1361.64, + "probability": 0.5501 + }, + { + "start": 1361.98, + "end": 1362.14, + "probability": 0.3915 + }, + { + "start": 1362.18, + "end": 1362.26, + "probability": 0.6356 + }, + { + "start": 1362.26, + "end": 1364.3, + "probability": 0.9085 + }, + { + "start": 1364.42, + "end": 1365.52, + "probability": 0.7112 + }, + { + "start": 1367.82, + "end": 1368.94, + "probability": 0.1733 + }, + { + "start": 1369.5, + "end": 1369.66, + "probability": 0.5051 + }, + { + "start": 1369.66, + "end": 1371.64, + "probability": 0.9771 + }, + { + "start": 1371.64, + "end": 1373.64, + "probability": 0.8286 + }, + { + "start": 1374.2, + "end": 1378.22, + "probability": 0.9124 + }, + { + "start": 1378.44, + "end": 1382.46, + "probability": 0.9466 + }, + { + "start": 1383.44, + "end": 1383.74, + "probability": 0.8452 + }, + { + "start": 1384.58, + "end": 1386.98, + "probability": 0.7424 + }, + { + "start": 1387.66, + "end": 1387.98, + "probability": 0.583 + }, + { + "start": 1388.5, + "end": 1390.02, + "probability": 0.8908 + }, + { + "start": 1390.6, + "end": 1391.66, + "probability": 0.6952 + }, + { + "start": 1391.66, + "end": 1392.8, + "probability": 0.6315 + }, + { + "start": 1392.92, + "end": 1393.6, + "probability": 0.5926 + }, + { + "start": 1394.6, + "end": 1394.8, + "probability": 0.8608 + }, + { + "start": 1395.3, + "end": 1397.88, + "probability": 0.856 + }, + { + "start": 1398.2, + "end": 1400.14, + "probability": 0.5822 + }, + { + "start": 1400.38, + "end": 1401.66, + "probability": 0.5503 + }, + { + "start": 1402.08, + "end": 1403.7, + "probability": 0.2713 + }, + { + "start": 1404.62, + "end": 1404.96, + "probability": 0.4711 + }, + { + "start": 1405.92, + "end": 1407.84, + "probability": 0.1698 + }, + { + "start": 1407.84, + "end": 1408.12, + "probability": 0.2638 + }, + { + "start": 1408.34, + "end": 1412.44, + "probability": 0.1435 + }, + { + "start": 1413.1, + "end": 1414.32, + "probability": 0.2266 + }, + { + "start": 1414.34, + "end": 1418.6, + "probability": 0.1439 + }, + { + "start": 1418.68, + "end": 1419.74, + "probability": 0.1868 + }, + { + "start": 1419.84, + "end": 1420.46, + "probability": 0.0259 + }, + { + "start": 1422.18, + "end": 1422.9, + "probability": 0.0673 + }, + { + "start": 1423.72, + "end": 1423.94, + "probability": 0.3149 + }, + { + "start": 1424.18, + "end": 1424.4, + "probability": 0.0586 + }, + { + "start": 1424.42, + "end": 1424.44, + "probability": 0.3744 + }, + { + "start": 1424.44, + "end": 1425.36, + "probability": 0.2738 + }, + { + "start": 1425.5, + "end": 1426.44, + "probability": 0.4267 + }, + { + "start": 1426.46, + "end": 1426.62, + "probability": 0.0957 + }, + { + "start": 1426.72, + "end": 1431.22, + "probability": 0.9426 + }, + { + "start": 1431.94, + "end": 1437.34, + "probability": 0.9662 + }, + { + "start": 1437.34, + "end": 1442.44, + "probability": 0.951 + }, + { + "start": 1442.46, + "end": 1442.64, + "probability": 0.7942 + }, + { + "start": 1442.96, + "end": 1444.74, + "probability": 0.8519 + }, + { + "start": 1445.96, + "end": 1447.54, + "probability": 0.8194 + }, + { + "start": 1449.42, + "end": 1449.96, + "probability": 0.6015 + }, + { + "start": 1450.06, + "end": 1453.56, + "probability": 0.9614 + }, + { + "start": 1454.38, + "end": 1455.82, + "probability": 0.8827 + }, + { + "start": 1456.82, + "end": 1457.86, + "probability": 0.9826 + }, + { + "start": 1458.86, + "end": 1460.08, + "probability": 0.9879 + }, + { + "start": 1460.92, + "end": 1463.06, + "probability": 0.9868 + }, + { + "start": 1463.22, + "end": 1465.9, + "probability": 0.9894 + }, + { + "start": 1466.92, + "end": 1467.28, + "probability": 0.4538 + }, + { + "start": 1467.28, + "end": 1467.48, + "probability": 0.84 + }, + { + "start": 1467.56, + "end": 1469.9, + "probability": 0.9492 + }, + { + "start": 1469.92, + "end": 1470.82, + "probability": 0.4947 + }, + { + "start": 1471.28, + "end": 1471.56, + "probability": 0.8447 + }, + { + "start": 1473.9, + "end": 1475.48, + "probability": 0.7279 + }, + { + "start": 1475.54, + "end": 1478.46, + "probability": 0.9182 + }, + { + "start": 1478.68, + "end": 1479.02, + "probability": 0.0928 + }, + { + "start": 1479.02, + "end": 1479.66, + "probability": 0.0967 + }, + { + "start": 1480.1, + "end": 1482.34, + "probability": 0.81 + }, + { + "start": 1482.46, + "end": 1482.7, + "probability": 0.0293 + }, + { + "start": 1483.64, + "end": 1484.14, + "probability": 0.4064 + }, + { + "start": 1484.28, + "end": 1484.8, + "probability": 0.7522 + }, + { + "start": 1485.84, + "end": 1487.62, + "probability": 0.9276 + }, + { + "start": 1487.74, + "end": 1488.28, + "probability": 0.8106 + }, + { + "start": 1488.7, + "end": 1489.0, + "probability": 0.6388 + }, + { + "start": 1489.1, + "end": 1489.6, + "probability": 0.7245 + }, + { + "start": 1489.6, + "end": 1489.88, + "probability": 0.3701 + }, + { + "start": 1490.28, + "end": 1492.3, + "probability": 0.9417 + }, + { + "start": 1496.1, + "end": 1498.64, + "probability": 0.948 + }, + { + "start": 1499.24, + "end": 1502.56, + "probability": 0.8409 + }, + { + "start": 1503.28, + "end": 1507.54, + "probability": 0.9033 + }, + { + "start": 1510.09, + "end": 1510.68, + "probability": 0.1119 + }, + { + "start": 1510.68, + "end": 1513.24, + "probability": 0.2891 + }, + { + "start": 1513.26, + "end": 1513.26, + "probability": 0.0331 + }, + { + "start": 1513.26, + "end": 1514.34, + "probability": 0.9652 + }, + { + "start": 1514.94, + "end": 1515.9, + "probability": 0.7028 + }, + { + "start": 1516.48, + "end": 1518.5, + "probability": 0.6925 + }, + { + "start": 1519.08, + "end": 1524.86, + "probability": 0.9955 + }, + { + "start": 1524.94, + "end": 1527.5, + "probability": 0.9952 + }, + { + "start": 1527.8, + "end": 1528.82, + "probability": 0.782 + }, + { + "start": 1529.14, + "end": 1529.14, + "probability": 0.4971 + }, + { + "start": 1529.14, + "end": 1529.14, + "probability": 0.4815 + }, + { + "start": 1529.14, + "end": 1534.32, + "probability": 0.8279 + }, + { + "start": 1534.34, + "end": 1535.14, + "probability": 0.9482 + }, + { + "start": 1535.9, + "end": 1536.6, + "probability": 0.856 + }, + { + "start": 1536.86, + "end": 1537.18, + "probability": 0.9907 + }, + { + "start": 1537.88, + "end": 1538.24, + "probability": 0.6058 + }, + { + "start": 1539.14, + "end": 1540.3, + "probability": 0.8711 + }, + { + "start": 1540.64, + "end": 1541.94, + "probability": 0.7939 + }, + { + "start": 1542.22, + "end": 1543.86, + "probability": 0.533 + }, + { + "start": 1544.1, + "end": 1545.18, + "probability": 0.8306 + }, + { + "start": 1545.74, + "end": 1546.84, + "probability": 0.6448 + }, + { + "start": 1546.96, + "end": 1547.76, + "probability": 0.7617 + }, + { + "start": 1548.06, + "end": 1548.98, + "probability": 0.9415 + }, + { + "start": 1549.04, + "end": 1549.88, + "probability": 0.9531 + }, + { + "start": 1549.98, + "end": 1550.06, + "probability": 0.71 + }, + { + "start": 1550.12, + "end": 1550.66, + "probability": 0.5697 + }, + { + "start": 1550.96, + "end": 1551.76, + "probability": 0.9766 + }, + { + "start": 1552.12, + "end": 1555.62, + "probability": 0.9973 + }, + { + "start": 1555.98, + "end": 1559.0, + "probability": 0.9967 + }, + { + "start": 1559.0, + "end": 1562.28, + "probability": 0.9982 + }, + { + "start": 1562.94, + "end": 1564.64, + "probability": 0.9949 + }, + { + "start": 1564.76, + "end": 1565.62, + "probability": 0.6471 + }, + { + "start": 1565.96, + "end": 1567.94, + "probability": 0.9973 + }, + { + "start": 1568.62, + "end": 1570.92, + "probability": 0.8467 + }, + { + "start": 1571.7, + "end": 1576.76, + "probability": 0.9705 + }, + { + "start": 1576.9, + "end": 1578.5, + "probability": 0.9238 + }, + { + "start": 1579.42, + "end": 1581.86, + "probability": 0.9629 + }, + { + "start": 1582.88, + "end": 1584.88, + "probability": 0.9666 + }, + { + "start": 1585.68, + "end": 1588.06, + "probability": 0.8657 + }, + { + "start": 1588.52, + "end": 1589.42, + "probability": 0.0661 + }, + { + "start": 1590.04, + "end": 1590.94, + "probability": 0.7178 + }, + { + "start": 1591.16, + "end": 1591.46, + "probability": 0.1615 + }, + { + "start": 1591.64, + "end": 1593.68, + "probability": 0.9115 + }, + { + "start": 1593.82, + "end": 1594.2, + "probability": 0.8647 + }, + { + "start": 1595.22, + "end": 1597.58, + "probability": 0.6782 + }, + { + "start": 1598.04, + "end": 1598.2, + "probability": 0.6267 + }, + { + "start": 1598.2, + "end": 1598.44, + "probability": 0.2434 + }, + { + "start": 1598.44, + "end": 1600.94, + "probability": 0.8365 + }, + { + "start": 1601.14, + "end": 1601.14, + "probability": 0.4758 + }, + { + "start": 1601.14, + "end": 1604.34, + "probability": 0.7387 + }, + { + "start": 1605.16, + "end": 1605.56, + "probability": 0.081 + }, + { + "start": 1605.56, + "end": 1606.84, + "probability": 0.6655 + }, + { + "start": 1607.38, + "end": 1607.38, + "probability": 0.0228 + }, + { + "start": 1607.4, + "end": 1609.58, + "probability": 0.6502 + }, + { + "start": 1610.16, + "end": 1611.2, + "probability": 0.0425 + }, + { + "start": 1611.3, + "end": 1613.38, + "probability": 0.1082 + }, + { + "start": 1613.68, + "end": 1617.58, + "probability": 0.6054 + }, + { + "start": 1620.92, + "end": 1620.96, + "probability": 0.0072 + }, + { + "start": 1620.96, + "end": 1621.0, + "probability": 0.167 + }, + { + "start": 1621.0, + "end": 1621.74, + "probability": 0.3655 + }, + { + "start": 1621.74, + "end": 1623.54, + "probability": 0.7879 + }, + { + "start": 1623.9, + "end": 1624.34, + "probability": 0.8704 + }, + { + "start": 1624.94, + "end": 1627.27, + "probability": 0.7212 + }, + { + "start": 1627.76, + "end": 1629.32, + "probability": 0.5889 + }, + { + "start": 1629.94, + "end": 1631.02, + "probability": 0.9657 + }, + { + "start": 1631.64, + "end": 1633.72, + "probability": 0.8191 + }, + { + "start": 1633.84, + "end": 1634.94, + "probability": 0.9989 + }, + { + "start": 1635.76, + "end": 1637.38, + "probability": 0.9395 + }, + { + "start": 1637.84, + "end": 1640.78, + "probability": 0.9517 + }, + { + "start": 1641.32, + "end": 1642.44, + "probability": 0.8768 + }, + { + "start": 1643.2, + "end": 1643.98, + "probability": 0.0308 + }, + { + "start": 1644.76, + "end": 1645.42, + "probability": 0.1157 + }, + { + "start": 1645.7, + "end": 1648.6, + "probability": 0.693 + }, + { + "start": 1648.94, + "end": 1650.9, + "probability": 0.7649 + }, + { + "start": 1652.54, + "end": 1652.6, + "probability": 0.4235 + }, + { + "start": 1652.6, + "end": 1654.96, + "probability": 0.6333 + }, + { + "start": 1655.88, + "end": 1656.44, + "probability": 0.1583 + }, + { + "start": 1657.24, + "end": 1659.18, + "probability": 0.8151 + }, + { + "start": 1659.5, + "end": 1666.44, + "probability": 0.9169 + }, + { + "start": 1666.52, + "end": 1666.82, + "probability": 0.1219 + }, + { + "start": 1666.92, + "end": 1668.04, + "probability": 0.8521 + }, + { + "start": 1668.32, + "end": 1670.4, + "probability": 0.9927 + }, + { + "start": 1670.78, + "end": 1671.5, + "probability": 0.9707 + }, + { + "start": 1672.56, + "end": 1673.14, + "probability": 0.7417 + }, + { + "start": 1673.14, + "end": 1673.4, + "probability": 0.852 + }, + { + "start": 1673.58, + "end": 1679.7, + "probability": 0.8881 + }, + { + "start": 1679.96, + "end": 1683.2, + "probability": 0.7345 + }, + { + "start": 1683.62, + "end": 1685.38, + "probability": 0.9157 + }, + { + "start": 1685.94, + "end": 1686.98, + "probability": 0.824 + }, + { + "start": 1688.12, + "end": 1690.32, + "probability": 0.7453 + }, + { + "start": 1691.22, + "end": 1694.06, + "probability": 0.886 + }, + { + "start": 1696.7, + "end": 1697.4, + "probability": 0.0753 + }, + { + "start": 1697.4, + "end": 1698.24, + "probability": 0.243 + }, + { + "start": 1698.24, + "end": 1698.76, + "probability": 0.3104 + }, + { + "start": 1698.94, + "end": 1700.0, + "probability": 0.5067 + }, + { + "start": 1700.9, + "end": 1701.98, + "probability": 0.0836 + }, + { + "start": 1701.98, + "end": 1701.98, + "probability": 0.3543 + }, + { + "start": 1701.98, + "end": 1702.28, + "probability": 0.4283 + }, + { + "start": 1704.75, + "end": 1705.92, + "probability": 0.6641 + }, + { + "start": 1707.02, + "end": 1707.24, + "probability": 0.1523 + }, + { + "start": 1707.24, + "end": 1707.24, + "probability": 0.0492 + }, + { + "start": 1707.24, + "end": 1708.28, + "probability": 0.5123 + }, + { + "start": 1709.5, + "end": 1710.46, + "probability": 0.6508 + }, + { + "start": 1710.82, + "end": 1714.72, + "probability": 0.9849 + }, + { + "start": 1715.02, + "end": 1718.26, + "probability": 0.7989 + }, + { + "start": 1718.76, + "end": 1721.04, + "probability": 0.5589 + }, + { + "start": 1721.04, + "end": 1723.22, + "probability": 0.7573 + }, + { + "start": 1724.18, + "end": 1725.36, + "probability": 0.4463 + }, + { + "start": 1725.4, + "end": 1727.04, + "probability": 0.9438 + }, + { + "start": 1727.4, + "end": 1729.1, + "probability": 0.782 + }, + { + "start": 1729.46, + "end": 1732.06, + "probability": 0.9472 + }, + { + "start": 1734.04, + "end": 1736.92, + "probability": 0.8345 + }, + { + "start": 1737.5, + "end": 1738.56, + "probability": 0.6985 + }, + { + "start": 1740.62, + "end": 1741.75, + "probability": 0.7928 + }, + { + "start": 1741.94, + "end": 1742.48, + "probability": 0.7748 + }, + { + "start": 1743.02, + "end": 1746.56, + "probability": 0.9849 + }, + { + "start": 1747.52, + "end": 1748.26, + "probability": 0.7507 + }, + { + "start": 1748.7, + "end": 1752.84, + "probability": 0.907 + }, + { + "start": 1753.0, + "end": 1754.06, + "probability": 0.9033 + }, + { + "start": 1754.66, + "end": 1755.78, + "probability": 0.7717 + }, + { + "start": 1755.88, + "end": 1756.82, + "probability": 0.9645 + }, + { + "start": 1756.9, + "end": 1757.92, + "probability": 0.9319 + }, + { + "start": 1758.87, + "end": 1761.5, + "probability": 0.9035 + }, + { + "start": 1761.66, + "end": 1762.88, + "probability": 0.9521 + }, + { + "start": 1763.38, + "end": 1766.28, + "probability": 0.9614 + }, + { + "start": 1766.48, + "end": 1767.08, + "probability": 0.5451 + }, + { + "start": 1767.26, + "end": 1767.88, + "probability": 0.6281 + }, + { + "start": 1767.92, + "end": 1771.18, + "probability": 0.5854 + }, + { + "start": 1771.52, + "end": 1771.78, + "probability": 0.5877 + }, + { + "start": 1771.88, + "end": 1773.08, + "probability": 0.5528 + }, + { + "start": 1773.76, + "end": 1774.76, + "probability": 0.8306 + }, + { + "start": 1775.64, + "end": 1777.8, + "probability": 0.7944 + }, + { + "start": 1779.66, + "end": 1780.76, + "probability": 0.9841 + }, + { + "start": 1782.4, + "end": 1783.68, + "probability": 0.9322 + }, + { + "start": 1784.24, + "end": 1785.82, + "probability": 0.7784 + }, + { + "start": 1785.94, + "end": 1786.64, + "probability": 0.9291 + }, + { + "start": 1788.01, + "end": 1790.54, + "probability": 0.9576 + }, + { + "start": 1791.16, + "end": 1794.92, + "probability": 0.8049 + }, + { + "start": 1795.38, + "end": 1795.96, + "probability": 0.0295 + }, + { + "start": 1796.08, + "end": 1799.28, + "probability": 0.5186 + }, + { + "start": 1799.4, + "end": 1800.6, + "probability": 0.3649 + }, + { + "start": 1801.08, + "end": 1803.42, + "probability": 0.8855 + }, + { + "start": 1803.46, + "end": 1804.2, + "probability": 0.8406 + }, + { + "start": 1805.23, + "end": 1807.2, + "probability": 0.76 + }, + { + "start": 1807.26, + "end": 1808.28, + "probability": 0.8911 + }, + { + "start": 1808.82, + "end": 1809.28, + "probability": 0.5298 + }, + { + "start": 1809.82, + "end": 1811.08, + "probability": 0.8291 + }, + { + "start": 1811.36, + "end": 1811.94, + "probability": 0.5293 + }, + { + "start": 1811.94, + "end": 1813.02, + "probability": 0.5824 + }, + { + "start": 1813.54, + "end": 1814.68, + "probability": 0.9543 + }, + { + "start": 1815.52, + "end": 1816.46, + "probability": 0.8344 + }, + { + "start": 1816.56, + "end": 1818.48, + "probability": 0.8313 + }, + { + "start": 1820.21, + "end": 1822.78, + "probability": 0.9978 + }, + { + "start": 1823.34, + "end": 1824.05, + "probability": 0.9395 + }, + { + "start": 1824.66, + "end": 1825.9, + "probability": 0.9514 + }, + { + "start": 1826.34, + "end": 1827.52, + "probability": 0.3661 + }, + { + "start": 1827.82, + "end": 1830.61, + "probability": 0.8088 + }, + { + "start": 1832.08, + "end": 1832.14, + "probability": 0.0149 + }, + { + "start": 1832.14, + "end": 1833.54, + "probability": 0.8196 + }, + { + "start": 1834.38, + "end": 1838.1, + "probability": 0.9926 + }, + { + "start": 1838.44, + "end": 1839.1, + "probability": 0.5477 + }, + { + "start": 1839.41, + "end": 1841.54, + "probability": 0.7216 + }, + { + "start": 1841.6, + "end": 1841.86, + "probability": 0.4367 + }, + { + "start": 1841.88, + "end": 1844.06, + "probability": 0.9133 + }, + { + "start": 1845.04, + "end": 1848.2, + "probability": 0.9973 + }, + { + "start": 1848.2, + "end": 1849.08, + "probability": 0.5408 + }, + { + "start": 1849.94, + "end": 1854.42, + "probability": 0.8811 + }, + { + "start": 1855.5, + "end": 1858.44, + "probability": 0.9921 + }, + { + "start": 1858.54, + "end": 1859.64, + "probability": 0.641 + }, + { + "start": 1859.7, + "end": 1861.75, + "probability": 0.9829 + }, + { + "start": 1861.92, + "end": 1863.12, + "probability": 0.4652 + }, + { + "start": 1863.12, + "end": 1863.44, + "probability": 0.0154 + }, + { + "start": 1864.24, + "end": 1865.5, + "probability": 0.7484 + }, + { + "start": 1866.04, + "end": 1866.28, + "probability": 0.666 + }, + { + "start": 1866.6, + "end": 1867.04, + "probability": 0.8201 + }, + { + "start": 1867.74, + "end": 1868.14, + "probability": 0.8746 + }, + { + "start": 1868.54, + "end": 1870.53, + "probability": 0.9268 + }, + { + "start": 1871.16, + "end": 1873.14, + "probability": 0.5356 + }, + { + "start": 1873.82, + "end": 1873.82, + "probability": 0.4045 + }, + { + "start": 1873.86, + "end": 1874.9, + "probability": 0.8533 + }, + { + "start": 1875.22, + "end": 1876.0, + "probability": 0.8762 + }, + { + "start": 1876.36, + "end": 1877.69, + "probability": 0.0914 + }, + { + "start": 1878.38, + "end": 1879.62, + "probability": 0.7172 + }, + { + "start": 1879.74, + "end": 1880.22, + "probability": 0.8866 + }, + { + "start": 1880.32, + "end": 1881.22, + "probability": 0.7884 + }, + { + "start": 1882.02, + "end": 1883.62, + "probability": 0.8911 + }, + { + "start": 1884.22, + "end": 1885.72, + "probability": 0.9897 + }, + { + "start": 1886.04, + "end": 1887.6, + "probability": 0.974 + }, + { + "start": 1889.08, + "end": 1892.18, + "probability": 0.9931 + }, + { + "start": 1892.94, + "end": 1894.3, + "probability": 0.8464 + }, + { + "start": 1895.36, + "end": 1896.6, + "probability": 0.7276 + }, + { + "start": 1896.68, + "end": 1897.9, + "probability": 0.7321 + }, + { + "start": 1898.36, + "end": 1900.2, + "probability": 0.9625 + }, + { + "start": 1900.36, + "end": 1901.56, + "probability": 0.8128 + }, + { + "start": 1901.88, + "end": 1904.78, + "probability": 0.972 + }, + { + "start": 1905.96, + "end": 1907.88, + "probability": 0.7223 + }, + { + "start": 1910.06, + "end": 1912.92, + "probability": 0.8296 + }, + { + "start": 1912.96, + "end": 1914.54, + "probability": 0.9692 + }, + { + "start": 1915.08, + "end": 1916.02, + "probability": 0.927 + }, + { + "start": 1916.08, + "end": 1916.34, + "probability": 0.8705 + }, + { + "start": 1916.68, + "end": 1916.85, + "probability": 0.1329 + }, + { + "start": 1919.42, + "end": 1922.78, + "probability": 0.9165 + }, + { + "start": 1923.58, + "end": 1925.68, + "probability": 0.9984 + }, + { + "start": 1926.46, + "end": 1927.52, + "probability": 0.6805 + }, + { + "start": 1928.1, + "end": 1930.28, + "probability": 0.8623 + }, + { + "start": 1930.94, + "end": 1933.1, + "probability": 0.6169 + }, + { + "start": 1934.22, + "end": 1936.62, + "probability": 0.71 + }, + { + "start": 1936.98, + "end": 1937.44, + "probability": 0.0687 + }, + { + "start": 1937.44, + "end": 1937.44, + "probability": 0.0724 + }, + { + "start": 1937.44, + "end": 1937.44, + "probability": 0.2651 + }, + { + "start": 1937.44, + "end": 1939.94, + "probability": 0.9289 + }, + { + "start": 1940.52, + "end": 1942.78, + "probability": 0.7919 + }, + { + "start": 1943.32, + "end": 1945.92, + "probability": 0.8631 + }, + { + "start": 1947.18, + "end": 1949.12, + "probability": 0.8742 + }, + { + "start": 1949.9, + "end": 1952.4, + "probability": 0.9906 + }, + { + "start": 1952.86, + "end": 1955.96, + "probability": 0.8539 + }, + { + "start": 1956.48, + "end": 1957.7, + "probability": 0.6551 + }, + { + "start": 1958.34, + "end": 1959.02, + "probability": 0.7318 + }, + { + "start": 1959.18, + "end": 1961.92, + "probability": 0.9875 + }, + { + "start": 1962.0, + "end": 1962.68, + "probability": 0.7408 + }, + { + "start": 1962.86, + "end": 1963.46, + "probability": 0.9014 + }, + { + "start": 1963.88, + "end": 1964.24, + "probability": 0.6586 + }, + { + "start": 1964.86, + "end": 1965.04, + "probability": 0.7542 + }, + { + "start": 1965.38, + "end": 1966.76, + "probability": 0.9645 + }, + { + "start": 1967.02, + "end": 1967.88, + "probability": 0.9346 + }, + { + "start": 1968.14, + "end": 1968.98, + "probability": 0.8099 + }, + { + "start": 1969.66, + "end": 1971.08, + "probability": 0.944 + }, + { + "start": 1971.84, + "end": 1974.94, + "probability": 0.9069 + }, + { + "start": 1975.78, + "end": 1977.16, + "probability": 0.7526 + }, + { + "start": 1978.62, + "end": 1980.16, + "probability": 0.9724 + }, + { + "start": 1982.98, + "end": 1983.68, + "probability": 0.2123 + }, + { + "start": 1983.86, + "end": 1985.38, + "probability": 0.7326 + }, + { + "start": 1987.87, + "end": 1989.44, + "probability": 0.601 + }, + { + "start": 1989.94, + "end": 1990.92, + "probability": 0.6955 + }, + { + "start": 1991.46, + "end": 1991.6, + "probability": 0.5809 + }, + { + "start": 1992.7, + "end": 1995.02, + "probability": 0.9688 + }, + { + "start": 1995.06, + "end": 1996.61, + "probability": 0.9595 + }, + { + "start": 1996.74, + "end": 1997.36, + "probability": 0.5338 + }, + { + "start": 1997.44, + "end": 1997.76, + "probability": 0.7646 + }, + { + "start": 1997.86, + "end": 1998.8, + "probability": 0.8027 + }, + { + "start": 1999.2, + "end": 2002.88, + "probability": 0.9641 + }, + { + "start": 2002.9, + "end": 2005.48, + "probability": 0.8773 + }, + { + "start": 2006.22, + "end": 2007.08, + "probability": 0.7915 + }, + { + "start": 2008.34, + "end": 2008.44, + "probability": 0.5667 + }, + { + "start": 2009.64, + "end": 2009.74, + "probability": 0.2061 + }, + { + "start": 2009.74, + "end": 2009.74, + "probability": 0.0103 + }, + { + "start": 2009.74, + "end": 2010.78, + "probability": 0.7267 + }, + { + "start": 2011.0, + "end": 2012.82, + "probability": 0.7622 + }, + { + "start": 2013.32, + "end": 2014.38, + "probability": 0.889 + }, + { + "start": 2014.56, + "end": 2019.08, + "probability": 0.8418 + }, + { + "start": 2019.74, + "end": 2020.64, + "probability": 0.7006 + }, + { + "start": 2021.58, + "end": 2022.46, + "probability": 0.1403 + }, + { + "start": 2022.5, + "end": 2024.16, + "probability": 0.1747 + }, + { + "start": 2024.5, + "end": 2024.64, + "probability": 0.2564 + }, + { + "start": 2025.2, + "end": 2026.82, + "probability": 0.8352 + }, + { + "start": 2027.36, + "end": 2029.4, + "probability": 0.652 + }, + { + "start": 2029.72, + "end": 2031.04, + "probability": 0.8652 + }, + { + "start": 2031.06, + "end": 2033.14, + "probability": 0.7408 + }, + { + "start": 2033.66, + "end": 2034.6, + "probability": 0.871 + }, + { + "start": 2034.74, + "end": 2035.64, + "probability": 0.8956 + }, + { + "start": 2036.15, + "end": 2038.78, + "probability": 0.7046 + }, + { + "start": 2039.24, + "end": 2042.36, + "probability": 0.9018 + }, + { + "start": 2042.44, + "end": 2044.52, + "probability": 0.979 + }, + { + "start": 2044.76, + "end": 2046.94, + "probability": 0.7716 + }, + { + "start": 2047.42, + "end": 2051.02, + "probability": 0.5113 + }, + { + "start": 2051.82, + "end": 2052.3, + "probability": 0.605 + }, + { + "start": 2052.64, + "end": 2054.6, + "probability": 0.0312 + }, + { + "start": 2054.6, + "end": 2054.6, + "probability": 0.147 + }, + { + "start": 2054.6, + "end": 2054.7, + "probability": 0.5675 + }, + { + "start": 2055.44, + "end": 2056.68, + "probability": 0.391 + }, + { + "start": 2057.44, + "end": 2058.38, + "probability": 0.9043 + }, + { + "start": 2061.06, + "end": 2061.16, + "probability": 0.0031 + }, + { + "start": 2061.16, + "end": 2061.76, + "probability": 0.6135 + }, + { + "start": 2061.76, + "end": 2062.32, + "probability": 0.8073 + }, + { + "start": 2064.36, + "end": 2068.82, + "probability": 0.7439 + }, + { + "start": 2069.26, + "end": 2069.88, + "probability": 0.4528 + }, + { + "start": 2070.58, + "end": 2071.68, + "probability": 0.8853 + }, + { + "start": 2072.12, + "end": 2074.16, + "probability": 0.9927 + }, + { + "start": 2074.4, + "end": 2075.66, + "probability": 0.6469 + }, + { + "start": 2076.08, + "end": 2076.43, + "probability": 0.5277 + }, + { + "start": 2076.7, + "end": 2077.72, + "probability": 0.9476 + }, + { + "start": 2078.84, + "end": 2080.7, + "probability": 0.7115 + }, + { + "start": 2081.38, + "end": 2081.76, + "probability": 0.9074 + }, + { + "start": 2082.42, + "end": 2084.9, + "probability": 0.7671 + }, + { + "start": 2085.02, + "end": 2085.22, + "probability": 0.6348 + }, + { + "start": 2088.98, + "end": 2092.52, + "probability": 0.3582 + }, + { + "start": 2094.2, + "end": 2094.62, + "probability": 0.489 + }, + { + "start": 2094.62, + "end": 2095.32, + "probability": 0.024 + }, + { + "start": 2095.42, + "end": 2096.12, + "probability": 0.6049 + }, + { + "start": 2096.3, + "end": 2096.79, + "probability": 0.5153 + }, + { + "start": 2097.08, + "end": 2098.16, + "probability": 0.8442 + }, + { + "start": 2098.64, + "end": 2100.42, + "probability": 0.7516 + }, + { + "start": 2101.18, + "end": 2103.06, + "probability": 0.9717 + }, + { + "start": 2103.66, + "end": 2105.78, + "probability": 0.7121 + }, + { + "start": 2107.5, + "end": 2107.9, + "probability": 0.7736 + }, + { + "start": 2108.24, + "end": 2110.94, + "probability": 0.7914 + }, + { + "start": 2111.6, + "end": 2113.02, + "probability": 0.6911 + }, + { + "start": 2114.2, + "end": 2114.96, + "probability": 0.5738 + }, + { + "start": 2115.06, + "end": 2116.26, + "probability": 0.9155 + }, + { + "start": 2116.38, + "end": 2120.08, + "probability": 0.9928 + }, + { + "start": 2120.84, + "end": 2123.34, + "probability": 0.9963 + }, + { + "start": 2123.54, + "end": 2125.3, + "probability": 0.9836 + }, + { + "start": 2125.98, + "end": 2126.4, + "probability": 0.8667 + }, + { + "start": 2126.46, + "end": 2127.2, + "probability": 0.8922 + }, + { + "start": 2127.38, + "end": 2127.84, + "probability": 0.9048 + }, + { + "start": 2128.1, + "end": 2129.96, + "probability": 0.9155 + }, + { + "start": 2130.28, + "end": 2131.8, + "probability": 0.4709 + }, + { + "start": 2131.82, + "end": 2132.32, + "probability": 0.0535 + }, + { + "start": 2132.9, + "end": 2133.88, + "probability": 0.1253 + }, + { + "start": 2133.88, + "end": 2137.16, + "probability": 0.8231 + }, + { + "start": 2137.62, + "end": 2138.89, + "probability": 0.9922 + }, + { + "start": 2139.42, + "end": 2142.18, + "probability": 0.8969 + }, + { + "start": 2142.66, + "end": 2143.76, + "probability": 0.9634 + }, + { + "start": 2143.86, + "end": 2145.34, + "probability": 0.9534 + }, + { + "start": 2145.64, + "end": 2146.78, + "probability": 0.9896 + }, + { + "start": 2146.86, + "end": 2147.96, + "probability": 0.909 + }, + { + "start": 2148.38, + "end": 2153.14, + "probability": 0.9504 + }, + { + "start": 2153.66, + "end": 2156.19, + "probability": 0.9404 + }, + { + "start": 2156.7, + "end": 2157.46, + "probability": 0.9792 + }, + { + "start": 2157.64, + "end": 2160.6, + "probability": 0.6843 + }, + { + "start": 2160.62, + "end": 2162.4, + "probability": 0.8464 + }, + { + "start": 2162.56, + "end": 2162.78, + "probability": 0.7918 + }, + { + "start": 2162.84, + "end": 2163.44, + "probability": 0.7757 + }, + { + "start": 2163.8, + "end": 2165.94, + "probability": 0.8011 + }, + { + "start": 2166.58, + "end": 2167.22, + "probability": 0.7173 + }, + { + "start": 2167.36, + "end": 2169.04, + "probability": 0.8857 + }, + { + "start": 2169.52, + "end": 2170.28, + "probability": 0.9685 + }, + { + "start": 2170.88, + "end": 2171.9, + "probability": 0.7435 + }, + { + "start": 2172.12, + "end": 2175.98, + "probability": 0.8872 + }, + { + "start": 2176.08, + "end": 2177.3, + "probability": 0.2855 + }, + { + "start": 2177.3, + "end": 2177.98, + "probability": 0.8538 + }, + { + "start": 2178.44, + "end": 2179.32, + "probability": 0.804 + }, + { + "start": 2180.4, + "end": 2183.44, + "probability": 0.5667 + }, + { + "start": 2184.36, + "end": 2187.16, + "probability": 0.967 + }, + { + "start": 2188.18, + "end": 2189.34, + "probability": 0.9539 + }, + { + "start": 2189.44, + "end": 2194.94, + "probability": 0.927 + }, + { + "start": 2195.02, + "end": 2197.18, + "probability": 0.7619 + }, + { + "start": 2197.92, + "end": 2200.36, + "probability": 0.7316 + }, + { + "start": 2200.88, + "end": 2201.96, + "probability": 0.5193 + }, + { + "start": 2202.52, + "end": 2206.2, + "probability": 0.9026 + }, + { + "start": 2206.62, + "end": 2215.2, + "probability": 0.9364 + }, + { + "start": 2215.24, + "end": 2218.62, + "probability": 0.8677 + }, + { + "start": 2218.96, + "end": 2220.86, + "probability": 0.9956 + }, + { + "start": 2220.86, + "end": 2224.82, + "probability": 0.8434 + }, + { + "start": 2225.4, + "end": 2226.32, + "probability": 0.6809 + }, + { + "start": 2226.44, + "end": 2227.0, + "probability": 0.6624 + }, + { + "start": 2227.0, + "end": 2228.56, + "probability": 0.5599 + }, + { + "start": 2228.68, + "end": 2231.77, + "probability": 0.654 + }, + { + "start": 2232.12, + "end": 2233.22, + "probability": 0.8312 + }, + { + "start": 2233.28, + "end": 2233.28, + "probability": 0.069 + }, + { + "start": 2233.28, + "end": 2233.54, + "probability": 0.4078 + }, + { + "start": 2233.62, + "end": 2234.2, + "probability": 0.8361 + }, + { + "start": 2234.28, + "end": 2235.96, + "probability": 0.9202 + }, + { + "start": 2236.2, + "end": 2236.4, + "probability": 0.5121 + }, + { + "start": 2236.4, + "end": 2236.62, + "probability": 0.6633 + }, + { + "start": 2236.88, + "end": 2238.84, + "probability": 0.9583 + }, + { + "start": 2239.32, + "end": 2243.08, + "probability": 0.9731 + }, + { + "start": 2243.86, + "end": 2244.94, + "probability": 0.0795 + }, + { + "start": 2245.18, + "end": 2246.36, + "probability": 0.3566 + }, + { + "start": 2246.44, + "end": 2246.68, + "probability": 0.3809 + }, + { + "start": 2246.78, + "end": 2251.1, + "probability": 0.5169 + }, + { + "start": 2251.62, + "end": 2251.62, + "probability": 0.3648 + }, + { + "start": 2251.62, + "end": 2251.62, + "probability": 0.1015 + }, + { + "start": 2251.62, + "end": 2253.74, + "probability": 0.5446 + }, + { + "start": 2254.52, + "end": 2254.74, + "probability": 0.4604 + }, + { + "start": 2255.94, + "end": 2260.92, + "probability": 0.8667 + }, + { + "start": 2261.28, + "end": 2261.9, + "probability": 0.8628 + }, + { + "start": 2262.1, + "end": 2266.32, + "probability": 0.9307 + }, + { + "start": 2266.72, + "end": 2268.38, + "probability": 0.7209 + }, + { + "start": 2268.96, + "end": 2269.18, + "probability": 0.6733 + }, + { + "start": 2270.32, + "end": 2272.8, + "probability": 0.2561 + }, + { + "start": 2272.8, + "end": 2273.24, + "probability": 0.3845 + }, + { + "start": 2273.38, + "end": 2273.54, + "probability": 0.2079 + }, + { + "start": 2275.22, + "end": 2277.14, + "probability": 0.1077 + }, + { + "start": 2277.66, + "end": 2277.82, + "probability": 0.0661 + }, + { + "start": 2277.82, + "end": 2279.8, + "probability": 0.1456 + }, + { + "start": 2281.0, + "end": 2281.06, + "probability": 0.01 + }, + { + "start": 2281.54, + "end": 2281.6, + "probability": 0.1932 + }, + { + "start": 2281.8, + "end": 2283.9, + "probability": 0.2768 + }, + { + "start": 2284.62, + "end": 2287.3, + "probability": 0.1327 + }, + { + "start": 2287.34, + "end": 2288.98, + "probability": 0.4443 + }, + { + "start": 2293.32, + "end": 2294.88, + "probability": 0.7863 + }, + { + "start": 2294.94, + "end": 2295.4, + "probability": 0.6633 + }, + { + "start": 2295.8, + "end": 2296.64, + "probability": 0.8323 + }, + { + "start": 2296.86, + "end": 2298.1, + "probability": 0.0597 + }, + { + "start": 2298.16, + "end": 2298.64, + "probability": 0.5681 + }, + { + "start": 2299.18, + "end": 2301.98, + "probability": 0.931 + }, + { + "start": 2302.04, + "end": 2302.44, + "probability": 0.6734 + }, + { + "start": 2303.74, + "end": 2304.86, + "probability": 0.0583 + }, + { + "start": 2305.02, + "end": 2307.54, + "probability": 0.9019 + }, + { + "start": 2308.44, + "end": 2311.4, + "probability": 0.9788 + }, + { + "start": 2312.2, + "end": 2313.42, + "probability": 0.0499 + }, + { + "start": 2314.06, + "end": 2314.84, + "probability": 0.4741 + }, + { + "start": 2316.06, + "end": 2318.62, + "probability": 0.6912 + }, + { + "start": 2319.1, + "end": 2319.16, + "probability": 0.0082 + }, + { + "start": 2319.16, + "end": 2319.9, + "probability": 0.4642 + }, + { + "start": 2320.12, + "end": 2322.32, + "probability": 0.6477 + }, + { + "start": 2322.8, + "end": 2324.48, + "probability": 0.9546 + }, + { + "start": 2326.2, + "end": 2326.2, + "probability": 0.1963 + }, + { + "start": 2326.3, + "end": 2327.64, + "probability": 0.8807 + }, + { + "start": 2327.96, + "end": 2329.76, + "probability": 0.7065 + }, + { + "start": 2330.42, + "end": 2331.02, + "probability": 0.5874 + }, + { + "start": 2331.04, + "end": 2333.5, + "probability": 0.9858 + }, + { + "start": 2333.86, + "end": 2334.66, + "probability": 0.8984 + }, + { + "start": 2335.2, + "end": 2336.74, + "probability": 0.9766 + }, + { + "start": 2336.96, + "end": 2338.8, + "probability": 0.8847 + }, + { + "start": 2338.8, + "end": 2339.46, + "probability": 0.7273 + }, + { + "start": 2339.92, + "end": 2342.34, + "probability": 0.9318 + }, + { + "start": 2342.34, + "end": 2344.5, + "probability": 0.9536 + }, + { + "start": 2345.22, + "end": 2348.2, + "probability": 0.9749 + }, + { + "start": 2348.66, + "end": 2349.62, + "probability": 0.5648 + }, + { + "start": 2350.2, + "end": 2352.02, + "probability": 0.8514 + }, + { + "start": 2352.62, + "end": 2354.62, + "probability": 0.6763 + }, + { + "start": 2354.82, + "end": 2355.58, + "probability": 0.6861 + }, + { + "start": 2355.64, + "end": 2356.18, + "probability": 0.4928 + }, + { + "start": 2356.22, + "end": 2356.82, + "probability": 0.7719 + }, + { + "start": 2364.23, + "end": 2365.3, + "probability": 0.0245 + }, + { + "start": 2366.4, + "end": 2368.6, + "probability": 0.3271 + }, + { + "start": 2372.84, + "end": 2376.46, + "probability": 0.669 + }, + { + "start": 2376.9, + "end": 2378.18, + "probability": 0.9868 + }, + { + "start": 2378.4, + "end": 2380.76, + "probability": 0.9329 + }, + { + "start": 2381.78, + "end": 2384.68, + "probability": 0.2642 + }, + { + "start": 2393.72, + "end": 2394.92, + "probability": 0.9725 + }, + { + "start": 2394.92, + "end": 2394.92, + "probability": 0.0207 + }, + { + "start": 2394.92, + "end": 2394.92, + "probability": 0.3264 + }, + { + "start": 2394.92, + "end": 2397.88, + "probability": 0.831 + }, + { + "start": 2398.26, + "end": 2401.82, + "probability": 0.711 + }, + { + "start": 2402.32, + "end": 2403.62, + "probability": 0.8148 + }, + { + "start": 2403.7, + "end": 2407.32, + "probability": 0.9974 + }, + { + "start": 2407.68, + "end": 2408.76, + "probability": 0.9695 + }, + { + "start": 2408.84, + "end": 2410.39, + "probability": 0.9517 + }, + { + "start": 2410.8, + "end": 2413.7, + "probability": 0.8672 + }, + { + "start": 2414.66, + "end": 2416.06, + "probability": 0.7682 + }, + { + "start": 2422.1, + "end": 2424.3, + "probability": 0.8861 + }, + { + "start": 2425.1, + "end": 2429.04, + "probability": 0.8903 + }, + { + "start": 2429.48, + "end": 2434.14, + "probability": 0.9719 + }, + { + "start": 2434.44, + "end": 2439.04, + "probability": 0.6154 + }, + { + "start": 2456.24, + "end": 2457.28, + "probability": 0.7573 + }, + { + "start": 2457.44, + "end": 2458.48, + "probability": 0.8758 + }, + { + "start": 2458.58, + "end": 2459.52, + "probability": 0.9728 + }, + { + "start": 2459.6, + "end": 2461.5, + "probability": 0.996 + }, + { + "start": 2461.66, + "end": 2464.16, + "probability": 0.9615 + }, + { + "start": 2464.22, + "end": 2469.44, + "probability": 0.9985 + }, + { + "start": 2469.5, + "end": 2473.28, + "probability": 0.9989 + }, + { + "start": 2475.14, + "end": 2478.22, + "probability": 0.9988 + }, + { + "start": 2479.36, + "end": 2481.02, + "probability": 0.9277 + }, + { + "start": 2482.2, + "end": 2484.5, + "probability": 0.7443 + }, + { + "start": 2485.06, + "end": 2485.9, + "probability": 0.838 + }, + { + "start": 2486.08, + "end": 2492.64, + "probability": 0.9979 + }, + { + "start": 2492.84, + "end": 2494.32, + "probability": 0.9978 + }, + { + "start": 2494.44, + "end": 2496.18, + "probability": 0.9939 + }, + { + "start": 2496.8, + "end": 2500.34, + "probability": 0.9419 + }, + { + "start": 2500.54, + "end": 2502.92, + "probability": 0.9891 + }, + { + "start": 2504.62, + "end": 2508.56, + "probability": 0.9841 + }, + { + "start": 2508.56, + "end": 2512.16, + "probability": 0.9929 + }, + { + "start": 2512.22, + "end": 2513.44, + "probability": 0.8096 + }, + { + "start": 2514.58, + "end": 2517.2, + "probability": 0.9981 + }, + { + "start": 2517.78, + "end": 2518.06, + "probability": 0.5884 + }, + { + "start": 2518.12, + "end": 2522.84, + "probability": 0.8918 + }, + { + "start": 2522.96, + "end": 2523.42, + "probability": 0.906 + }, + { + "start": 2523.5, + "end": 2523.82, + "probability": 0.984 + }, + { + "start": 2524.0, + "end": 2524.6, + "probability": 0.9455 + }, + { + "start": 2525.32, + "end": 2527.48, + "probability": 0.9432 + }, + { + "start": 2528.02, + "end": 2528.66, + "probability": 0.985 + }, + { + "start": 2530.58, + "end": 2532.98, + "probability": 0.9484 + }, + { + "start": 2534.6, + "end": 2537.6, + "probability": 0.5048 + }, + { + "start": 2539.66, + "end": 2540.2, + "probability": 0.7249 + }, + { + "start": 2540.96, + "end": 2544.54, + "probability": 0.9872 + }, + { + "start": 2545.82, + "end": 2547.8, + "probability": 0.9873 + }, + { + "start": 2548.2, + "end": 2551.2, + "probability": 0.9817 + }, + { + "start": 2551.26, + "end": 2555.92, + "probability": 0.9861 + }, + { + "start": 2557.06, + "end": 2564.26, + "probability": 0.9982 + }, + { + "start": 2564.44, + "end": 2564.78, + "probability": 0.765 + }, + { + "start": 2565.68, + "end": 2566.22, + "probability": 0.8561 + }, + { + "start": 2567.14, + "end": 2575.2, + "probability": 0.944 + }, + { + "start": 2576.36, + "end": 2578.12, + "probability": 0.5765 + }, + { + "start": 2578.8, + "end": 2583.4, + "probability": 0.9914 + }, + { + "start": 2583.96, + "end": 2589.02, + "probability": 0.9741 + }, + { + "start": 2590.18, + "end": 2593.4, + "probability": 0.9674 + }, + { + "start": 2593.6, + "end": 2593.92, + "probability": 0.745 + }, + { + "start": 2594.52, + "end": 2596.02, + "probability": 0.7889 + }, + { + "start": 2597.16, + "end": 2599.32, + "probability": 0.9742 + }, + { + "start": 2600.16, + "end": 2600.48, + "probability": 0.6351 + }, + { + "start": 2600.62, + "end": 2604.62, + "probability": 0.9654 + }, + { + "start": 2605.62, + "end": 2608.3, + "probability": 0.9936 + }, + { + "start": 2609.26, + "end": 2610.5, + "probability": 0.9162 + }, + { + "start": 2611.44, + "end": 2612.06, + "probability": 0.2365 + }, + { + "start": 2612.6, + "end": 2612.7, + "probability": 0.0529 + }, + { + "start": 2613.86, + "end": 2617.06, + "probability": 0.4025 + }, + { + "start": 2617.78, + "end": 2619.64, + "probability": 0.7487 + }, + { + "start": 2622.8, + "end": 2624.4, + "probability": 0.5383 + }, + { + "start": 2625.6, + "end": 2628.36, + "probability": 0.5104 + }, + { + "start": 2628.46, + "end": 2629.04, + "probability": 0.6575 + }, + { + "start": 2629.06, + "end": 2629.74, + "probability": 0.8206 + }, + { + "start": 2630.28, + "end": 2631.1, + "probability": 0.043 + }, + { + "start": 2633.78, + "end": 2634.74, + "probability": 0.0413 + }, + { + "start": 2645.72, + "end": 2648.32, + "probability": 0.5339 + }, + { + "start": 2648.86, + "end": 2653.54, + "probability": 0.7622 + }, + { + "start": 2654.94, + "end": 2655.38, + "probability": 0.3978 + }, + { + "start": 2656.14, + "end": 2657.26, + "probability": 0.8034 + }, + { + "start": 2657.84, + "end": 2660.36, + "probability": 0.8776 + }, + { + "start": 2660.88, + "end": 2661.36, + "probability": 0.718 + }, + { + "start": 2661.46, + "end": 2664.96, + "probability": 0.8601 + }, + { + "start": 2665.48, + "end": 2666.42, + "probability": 0.7492 + }, + { + "start": 2666.48, + "end": 2666.88, + "probability": 0.476 + }, + { + "start": 2667.02, + "end": 2667.46, + "probability": 0.6627 + }, + { + "start": 2667.6, + "end": 2668.02, + "probability": 0.8759 + }, + { + "start": 2674.27, + "end": 2677.84, + "probability": 0.1023 + }, + { + "start": 2678.36, + "end": 2679.16, + "probability": 0.1005 + }, + { + "start": 2681.38, + "end": 2682.5, + "probability": 0.5067 + }, + { + "start": 2683.06, + "end": 2684.46, + "probability": 0.7197 + }, + { + "start": 2684.58, + "end": 2688.7, + "probability": 0.5035 + }, + { + "start": 2689.28, + "end": 2690.94, + "probability": 0.6102 + }, + { + "start": 2691.28, + "end": 2694.0, + "probability": 0.9107 + }, + { + "start": 2694.52, + "end": 2697.02, + "probability": 0.9341 + }, + { + "start": 2697.58, + "end": 2698.7, + "probability": 0.9478 + }, + { + "start": 2699.22, + "end": 2700.22, + "probability": 0.764 + }, + { + "start": 2702.14, + "end": 2702.66, + "probability": 0.9576 + }, + { + "start": 2711.32, + "end": 2713.0, + "probability": 0.7402 + }, + { + "start": 2713.64, + "end": 2714.36, + "probability": 0.8561 + }, + { + "start": 2714.5, + "end": 2715.56, + "probability": 0.9816 + }, + { + "start": 2715.72, + "end": 2718.38, + "probability": 0.8619 + }, + { + "start": 2719.32, + "end": 2721.34, + "probability": 0.8996 + }, + { + "start": 2721.58, + "end": 2723.26, + "probability": 0.6645 + }, + { + "start": 2723.38, + "end": 2724.16, + "probability": 0.5501 + }, + { + "start": 2724.76, + "end": 2726.88, + "probability": 0.9937 + }, + { + "start": 2727.4, + "end": 2729.54, + "probability": 0.9431 + }, + { + "start": 2730.2, + "end": 2731.74, + "probability": 0.777 + }, + { + "start": 2732.1, + "end": 2735.92, + "probability": 0.9816 + }, + { + "start": 2736.68, + "end": 2742.12, + "probability": 0.3536 + }, + { + "start": 2742.82, + "end": 2746.92, + "probability": 0.98 + }, + { + "start": 2747.02, + "end": 2748.0, + "probability": 0.6559 + }, + { + "start": 2748.4, + "end": 2751.0, + "probability": 0.8965 + }, + { + "start": 2751.54, + "end": 2752.26, + "probability": 0.6128 + }, + { + "start": 2752.38, + "end": 2754.48, + "probability": 0.9536 + }, + { + "start": 2754.66, + "end": 2755.04, + "probability": 0.7517 + }, + { + "start": 2755.6, + "end": 2763.02, + "probability": 0.7129 + }, + { + "start": 2765.9, + "end": 2768.72, + "probability": 0.6273 + }, + { + "start": 2769.3, + "end": 2770.82, + "probability": 0.6713 + }, + { + "start": 2771.58, + "end": 2772.42, + "probability": 0.8114 + }, + { + "start": 2773.2, + "end": 2775.64, + "probability": 0.8848 + }, + { + "start": 2784.28, + "end": 2784.98, + "probability": 0.6175 + }, + { + "start": 2785.04, + "end": 2786.52, + "probability": 0.9708 + }, + { + "start": 2786.8, + "end": 2791.66, + "probability": 0.9891 + }, + { + "start": 2791.66, + "end": 2796.32, + "probability": 0.8692 + }, + { + "start": 2796.92, + "end": 2798.96, + "probability": 0.7199 + }, + { + "start": 2799.1, + "end": 2799.72, + "probability": 0.5938 + }, + { + "start": 2800.22, + "end": 2801.44, + "probability": 0.8108 + }, + { + "start": 2801.52, + "end": 2801.96, + "probability": 0.8537 + }, + { + "start": 2802.06, + "end": 2802.34, + "probability": 0.4974 + }, + { + "start": 2802.74, + "end": 2803.14, + "probability": 0.8626 + }, + { + "start": 2803.18, + "end": 2805.26, + "probability": 0.276 + }, + { + "start": 2805.26, + "end": 2805.26, + "probability": 0.1453 + }, + { + "start": 2805.26, + "end": 2805.78, + "probability": 0.3889 + }, + { + "start": 2805.98, + "end": 2806.8, + "probability": 0.658 + }, + { + "start": 2807.28, + "end": 2807.91, + "probability": 0.5455 + }, + { + "start": 2808.1, + "end": 2808.42, + "probability": 0.2624 + }, + { + "start": 2808.52, + "end": 2808.8, + "probability": 0.4803 + }, + { + "start": 2809.02, + "end": 2809.88, + "probability": 0.7524 + }, + { + "start": 2810.48, + "end": 2811.04, + "probability": 0.1108 + }, + { + "start": 2811.04, + "end": 2811.86, + "probability": 0.7185 + }, + { + "start": 2811.96, + "end": 2812.31, + "probability": 0.4047 + }, + { + "start": 2812.76, + "end": 2813.06, + "probability": 0.6922 + }, + { + "start": 2814.22, + "end": 2816.44, + "probability": 0.9381 + }, + { + "start": 2816.6, + "end": 2817.84, + "probability": 0.8203 + }, + { + "start": 2818.28, + "end": 2819.14, + "probability": 0.9521 + }, + { + "start": 2819.28, + "end": 2819.42, + "probability": 0.4341 + }, + { + "start": 2819.54, + "end": 2821.72, + "probability": 0.8953 + }, + { + "start": 2821.72, + "end": 2822.96, + "probability": 0.5367 + }, + { + "start": 2822.96, + "end": 2823.16, + "probability": 0.7366 + }, + { + "start": 2823.68, + "end": 2826.98, + "probability": 0.984 + }, + { + "start": 2827.64, + "end": 2830.75, + "probability": 0.906 + }, + { + "start": 2831.5, + "end": 2833.12, + "probability": 0.1567 + }, + { + "start": 2833.84, + "end": 2834.88, + "probability": 0.8555 + }, + { + "start": 2835.02, + "end": 2837.56, + "probability": 0.9498 + }, + { + "start": 2837.7, + "end": 2841.69, + "probability": 0.9553 + }, + { + "start": 2842.2, + "end": 2843.76, + "probability": 0.7483 + }, + { + "start": 2844.08, + "end": 2846.38, + "probability": 0.3966 + }, + { + "start": 2847.64, + "end": 2850.14, + "probability": 0.397 + }, + { + "start": 2850.28, + "end": 2853.36, + "probability": 0.9556 + }, + { + "start": 2853.92, + "end": 2855.5, + "probability": 0.9771 + }, + { + "start": 2856.06, + "end": 2857.98, + "probability": 0.9931 + }, + { + "start": 2857.98, + "end": 2860.3, + "probability": 0.9882 + }, + { + "start": 2860.84, + "end": 2863.12, + "probability": 0.9942 + }, + { + "start": 2863.4, + "end": 2865.5, + "probability": 0.9965 + }, + { + "start": 2866.0, + "end": 2867.0, + "probability": 0.9203 + }, + { + "start": 2867.1, + "end": 2869.98, + "probability": 0.994 + }, + { + "start": 2870.62, + "end": 2873.78, + "probability": 0.9715 + }, + { + "start": 2873.78, + "end": 2876.18, + "probability": 0.9906 + }, + { + "start": 2876.24, + "end": 2878.38, + "probability": 0.7802 + }, + { + "start": 2879.02, + "end": 2880.78, + "probability": 0.8977 + }, + { + "start": 2881.72, + "end": 2883.44, + "probability": 0.9834 + }, + { + "start": 2883.62, + "end": 2883.62, + "probability": 0.656 + }, + { + "start": 2883.82, + "end": 2884.96, + "probability": 0.8119 + }, + { + "start": 2886.34, + "end": 2887.64, + "probability": 0.4969 + }, + { + "start": 2888.38, + "end": 2890.34, + "probability": 0.685 + }, + { + "start": 2891.04, + "end": 2894.08, + "probability": 0.8305 + }, + { + "start": 2894.62, + "end": 2899.22, + "probability": 0.9944 + }, + { + "start": 2899.78, + "end": 2901.94, + "probability": 0.9958 + }, + { + "start": 2902.7, + "end": 2904.08, + "probability": 0.7829 + }, + { + "start": 2904.54, + "end": 2907.62, + "probability": 0.9902 + }, + { + "start": 2907.62, + "end": 2911.58, + "probability": 0.8885 + }, + { + "start": 2912.14, + "end": 2912.22, + "probability": 0.7544 + }, + { + "start": 2913.58, + "end": 2915.12, + "probability": 0.7253 + }, + { + "start": 2916.38, + "end": 2916.9, + "probability": 0.2058 + }, + { + "start": 2917.0, + "end": 2918.92, + "probability": 0.4942 + }, + { + "start": 2919.56, + "end": 2919.66, + "probability": 0.5007 + }, + { + "start": 2932.42, + "end": 2933.66, + "probability": 0.3682 + }, + { + "start": 2934.36, + "end": 2935.0, + "probability": 0.0578 + }, + { + "start": 2935.36, + "end": 2939.58, + "probability": 0.6566 + }, + { + "start": 2948.22, + "end": 2954.16, + "probability": 0.5097 + }, + { + "start": 2954.32, + "end": 2956.36, + "probability": 0.0708 + }, + { + "start": 2956.88, + "end": 2958.36, + "probability": 0.1163 + }, + { + "start": 2958.36, + "end": 2958.5, + "probability": 0.0772 + }, + { + "start": 2958.8, + "end": 2959.14, + "probability": 0.0631 + }, + { + "start": 2959.16, + "end": 2959.52, + "probability": 0.4899 + }, + { + "start": 2960.64, + "end": 2961.78, + "probability": 0.2107 + }, + { + "start": 2963.62, + "end": 2971.08, + "probability": 0.3597 + }, + { + "start": 2974.96, + "end": 2976.29, + "probability": 0.0423 + }, + { + "start": 2979.08, + "end": 2979.94, + "probability": 0.157 + }, + { + "start": 2982.06, + "end": 2982.8, + "probability": 0.0752 + }, + { + "start": 2982.8, + "end": 2982.98, + "probability": 0.042 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3032.0, + "end": 3032.0, + "probability": 0.0 + }, + { + "start": 3035.16, + "end": 3036.7, + "probability": 0.8406 + }, + { + "start": 3040.66, + "end": 3041.4, + "probability": 0.8774 + }, + { + "start": 3044.48, + "end": 3048.3, + "probability": 0.9741 + }, + { + "start": 3048.3, + "end": 3054.02, + "probability": 0.992 + }, + { + "start": 3054.14, + "end": 3055.44, + "probability": 0.9187 + }, + { + "start": 3056.24, + "end": 3058.86, + "probability": 0.7012 + }, + { + "start": 3060.78, + "end": 3068.4, + "probability": 0.9413 + }, + { + "start": 3068.4, + "end": 3073.7, + "probability": 0.9879 + }, + { + "start": 3074.22, + "end": 3078.58, + "probability": 0.9136 + }, + { + "start": 3079.86, + "end": 3085.36, + "probability": 0.7275 + }, + { + "start": 3085.96, + "end": 3088.7, + "probability": 0.9935 + }, + { + "start": 3088.7, + "end": 3092.56, + "probability": 0.9801 + }, + { + "start": 3093.84, + "end": 3097.0, + "probability": 0.9351 + }, + { + "start": 3097.0, + "end": 3100.68, + "probability": 0.9957 + }, + { + "start": 3101.96, + "end": 3108.08, + "probability": 0.9861 + }, + { + "start": 3108.96, + "end": 3114.78, + "probability": 0.9598 + }, + { + "start": 3115.68, + "end": 3119.64, + "probability": 0.7829 + }, + { + "start": 3119.64, + "end": 3123.38, + "probability": 0.9717 + }, + { + "start": 3124.2, + "end": 3130.02, + "probability": 0.9048 + }, + { + "start": 3130.12, + "end": 3132.92, + "probability": 0.8683 + }, + { + "start": 3133.82, + "end": 3134.32, + "probability": 0.7125 + }, + { + "start": 3134.96, + "end": 3138.72, + "probability": 0.9716 + }, + { + "start": 3139.86, + "end": 3142.94, + "probability": 0.8023 + }, + { + "start": 3143.26, + "end": 3146.48, + "probability": 0.9423 + }, + { + "start": 3147.08, + "end": 3147.72, + "probability": 0.9121 + }, + { + "start": 3147.74, + "end": 3152.08, + "probability": 0.9907 + }, + { + "start": 3152.6, + "end": 3156.32, + "probability": 0.7405 + }, + { + "start": 3157.34, + "end": 3160.99, + "probability": 0.965 + }, + { + "start": 3161.62, + "end": 3164.96, + "probability": 0.9777 + }, + { + "start": 3164.96, + "end": 3167.5, + "probability": 0.776 + }, + { + "start": 3168.32, + "end": 3168.64, + "probability": 0.6049 + }, + { + "start": 3168.74, + "end": 3172.86, + "probability": 0.953 + }, + { + "start": 3174.3, + "end": 3175.46, + "probability": 0.9992 + }, + { + "start": 3176.12, + "end": 3180.14, + "probability": 0.9876 + }, + { + "start": 3180.76, + "end": 3183.2, + "probability": 0.9605 + }, + { + "start": 3183.44, + "end": 3186.52, + "probability": 0.9409 + }, + { + "start": 3186.52, + "end": 3189.74, + "probability": 0.9877 + }, + { + "start": 3190.88, + "end": 3195.9, + "probability": 0.7281 + }, + { + "start": 3196.48, + "end": 3200.44, + "probability": 0.8762 + }, + { + "start": 3201.42, + "end": 3204.46, + "probability": 0.7749 + }, + { + "start": 3205.06, + "end": 3207.22, + "probability": 0.9952 + }, + { + "start": 3207.22, + "end": 3209.88, + "probability": 0.9024 + }, + { + "start": 3211.28, + "end": 3212.24, + "probability": 0.6006 + }, + { + "start": 3212.96, + "end": 3214.98, + "probability": 0.8864 + }, + { + "start": 3215.9, + "end": 3216.72, + "probability": 0.8035 + }, + { + "start": 3217.62, + "end": 3218.8, + "probability": 0.7426 + }, + { + "start": 3219.34, + "end": 3223.32, + "probability": 0.8887 + }, + { + "start": 3223.92, + "end": 3228.98, + "probability": 0.9956 + }, + { + "start": 3228.98, + "end": 3231.74, + "probability": 0.997 + }, + { + "start": 3232.64, + "end": 3233.16, + "probability": 0.79 + }, + { + "start": 3233.4, + "end": 3235.46, + "probability": 0.544 + }, + { + "start": 3236.28, + "end": 3239.38, + "probability": 0.6499 + }, + { + "start": 3240.08, + "end": 3240.32, + "probability": 0.4821 + }, + { + "start": 3240.54, + "end": 3242.14, + "probability": 0.8374 + }, + { + "start": 3243.06, + "end": 3246.04, + "probability": 0.8758 + }, + { + "start": 3246.82, + "end": 3247.36, + "probability": 0.511 + }, + { + "start": 3247.46, + "end": 3248.68, + "probability": 0.9606 + }, + { + "start": 3249.54, + "end": 3252.42, + "probability": 0.6608 + }, + { + "start": 3254.46, + "end": 3258.08, + "probability": 0.8243 + }, + { + "start": 3258.9, + "end": 3260.04, + "probability": 0.9878 + }, + { + "start": 3261.28, + "end": 3262.62, + "probability": 0.8859 + }, + { + "start": 3272.34, + "end": 3272.38, + "probability": 0.0688 + }, + { + "start": 3272.38, + "end": 3274.12, + "probability": 0.6696 + }, + { + "start": 3274.74, + "end": 3275.44, + "probability": 0.6769 + }, + { + "start": 3275.6, + "end": 3275.98, + "probability": 0.7858 + }, + { + "start": 3280.0, + "end": 3282.6, + "probability": 0.8923 + }, + { + "start": 3283.3, + "end": 3284.1, + "probability": 0.6656 + }, + { + "start": 3284.7, + "end": 3287.22, + "probability": 0.9217 + }, + { + "start": 3288.54, + "end": 3292.8, + "probability": 0.9171 + }, + { + "start": 3293.9, + "end": 3295.76, + "probability": 0.8253 + }, + { + "start": 3297.1, + "end": 3301.3, + "probability": 0.9714 + }, + { + "start": 3302.44, + "end": 3307.6, + "probability": 0.9165 + }, + { + "start": 3308.98, + "end": 3313.14, + "probability": 0.8643 + }, + { + "start": 3313.96, + "end": 3314.78, + "probability": 0.8189 + }, + { + "start": 3315.62, + "end": 3317.96, + "probability": 0.7321 + }, + { + "start": 3319.34, + "end": 3319.84, + "probability": 0.9321 + }, + { + "start": 3320.68, + "end": 3324.42, + "probability": 0.9869 + }, + { + "start": 3325.1, + "end": 3326.96, + "probability": 0.9207 + }, + { + "start": 3327.98, + "end": 3331.22, + "probability": 0.9775 + }, + { + "start": 3332.74, + "end": 3335.52, + "probability": 0.9788 + }, + { + "start": 3337.54, + "end": 3338.78, + "probability": 0.9904 + }, + { + "start": 3339.5, + "end": 3341.14, + "probability": 0.917 + }, + { + "start": 3341.34, + "end": 3342.76, + "probability": 0.9985 + }, + { + "start": 3343.56, + "end": 3344.64, + "probability": 0.9826 + }, + { + "start": 3345.4, + "end": 3346.36, + "probability": 0.5491 + }, + { + "start": 3347.6, + "end": 3349.46, + "probability": 0.8186 + }, + { + "start": 3349.62, + "end": 3352.06, + "probability": 0.9648 + }, + { + "start": 3352.76, + "end": 3354.36, + "probability": 0.9633 + }, + { + "start": 3355.32, + "end": 3358.56, + "probability": 0.8192 + }, + { + "start": 3359.4, + "end": 3361.94, + "probability": 0.995 + }, + { + "start": 3362.6, + "end": 3363.64, + "probability": 0.999 + }, + { + "start": 3364.9, + "end": 3365.6, + "probability": 0.5505 + }, + { + "start": 3367.52, + "end": 3370.48, + "probability": 0.7464 + }, + { + "start": 3370.6, + "end": 3372.28, + "probability": 0.9762 + }, + { + "start": 3372.62, + "end": 3372.86, + "probability": 0.739 + }, + { + "start": 3373.48, + "end": 3374.18, + "probability": 0.7034 + }, + { + "start": 3374.28, + "end": 3375.72, + "probability": 0.6793 + }, + { + "start": 3384.16, + "end": 3384.16, + "probability": 0.1697 + }, + { + "start": 3384.16, + "end": 3384.16, + "probability": 0.1563 + }, + { + "start": 3384.16, + "end": 3384.16, + "probability": 0.0179 + }, + { + "start": 3405.28, + "end": 3405.42, + "probability": 0.0 + }, + { + "start": 3414.5, + "end": 3417.56, + "probability": 0.5492 + }, + { + "start": 3418.74, + "end": 3420.5, + "probability": 0.6438 + }, + { + "start": 3421.08, + "end": 3427.7, + "probability": 0.9375 + }, + { + "start": 3427.7, + "end": 3432.14, + "probability": 0.9998 + }, + { + "start": 3432.26, + "end": 3433.32, + "probability": 0.9955 + }, + { + "start": 3434.08, + "end": 3435.4, + "probability": 0.9824 + }, + { + "start": 3436.3, + "end": 3439.14, + "probability": 0.9854 + }, + { + "start": 3439.14, + "end": 3442.06, + "probability": 0.8233 + }, + { + "start": 3442.54, + "end": 3444.9, + "probability": 0.9219 + }, + { + "start": 3445.62, + "end": 3448.18, + "probability": 0.9654 + }, + { + "start": 3448.36, + "end": 3449.46, + "probability": 0.4621 + }, + { + "start": 3450.02, + "end": 3452.86, + "probability": 0.8939 + }, + { + "start": 3453.48, + "end": 3457.16, + "probability": 0.9091 + }, + { + "start": 3458.28, + "end": 3459.52, + "probability": 0.9932 + }, + { + "start": 3460.06, + "end": 3462.1, + "probability": 0.996 + }, + { + "start": 3462.94, + "end": 3466.8, + "probability": 0.9954 + }, + { + "start": 3467.34, + "end": 3467.84, + "probability": 0.8248 + }, + { + "start": 3468.68, + "end": 3470.0, + "probability": 0.986 + }, + { + "start": 3470.7, + "end": 3474.18, + "probability": 0.9978 + }, + { + "start": 3474.28, + "end": 3476.16, + "probability": 0.9889 + }, + { + "start": 3476.22, + "end": 3479.06, + "probability": 0.9936 + }, + { + "start": 3479.76, + "end": 3480.38, + "probability": 0.9586 + }, + { + "start": 3480.46, + "end": 3482.32, + "probability": 0.6252 + }, + { + "start": 3482.62, + "end": 3485.38, + "probability": 0.9753 + }, + { + "start": 3486.02, + "end": 3487.9, + "probability": 0.9943 + }, + { + "start": 3489.0, + "end": 3490.34, + "probability": 0.6952 + }, + { + "start": 3491.74, + "end": 3494.0, + "probability": 0.9443 + }, + { + "start": 3494.2, + "end": 3494.82, + "probability": 0.998 + }, + { + "start": 3495.54, + "end": 3497.66, + "probability": 0.9046 + }, + { + "start": 3498.24, + "end": 3500.1, + "probability": 0.714 + }, + { + "start": 3500.19, + "end": 3503.22, + "probability": 0.9576 + }, + { + "start": 3503.34, + "end": 3506.5, + "probability": 0.9875 + }, + { + "start": 3507.36, + "end": 3509.52, + "probability": 0.8246 + }, + { + "start": 3509.56, + "end": 3511.68, + "probability": 0.7683 + }, + { + "start": 3512.28, + "end": 3513.14, + "probability": 0.7943 + }, + { + "start": 3513.92, + "end": 3516.27, + "probability": 0.9844 + }, + { + "start": 3517.28, + "end": 3519.26, + "probability": 0.5959 + }, + { + "start": 3519.46, + "end": 3522.4, + "probability": 0.9686 + }, + { + "start": 3522.62, + "end": 3523.68, + "probability": 0.9801 + }, + { + "start": 3525.3, + "end": 3527.94, + "probability": 0.9863 + }, + { + "start": 3528.08, + "end": 3529.3, + "probability": 0.9958 + }, + { + "start": 3529.3, + "end": 3531.86, + "probability": 0.8812 + }, + { + "start": 3532.82, + "end": 3537.74, + "probability": 0.9462 + }, + { + "start": 3539.52, + "end": 3540.56, + "probability": 0.9723 + }, + { + "start": 3541.44, + "end": 3544.02, + "probability": 0.9983 + }, + { + "start": 3545.92, + "end": 3548.9, + "probability": 0.8161 + }, + { + "start": 3549.04, + "end": 3549.94, + "probability": 0.7473 + }, + { + "start": 3551.58, + "end": 3552.96, + "probability": 0.9837 + }, + { + "start": 3554.14, + "end": 3555.92, + "probability": 0.9769 + }, + { + "start": 3556.5, + "end": 3558.44, + "probability": 0.9917 + }, + { + "start": 3558.64, + "end": 3559.0, + "probability": 0.9816 + }, + { + "start": 3559.58, + "end": 3561.8, + "probability": 0.943 + }, + { + "start": 3562.34, + "end": 3564.44, + "probability": 0.8182 + }, + { + "start": 3564.54, + "end": 3564.84, + "probability": 0.4802 + }, + { + "start": 3565.44, + "end": 3569.04, + "probability": 0.9422 + }, + { + "start": 3569.54, + "end": 3571.62, + "probability": 0.9818 + }, + { + "start": 3571.7, + "end": 3574.7, + "probability": 0.9634 + }, + { + "start": 3575.14, + "end": 3578.48, + "probability": 0.9899 + }, + { + "start": 3579.16, + "end": 3580.78, + "probability": 0.9478 + }, + { + "start": 3581.66, + "end": 3583.3, + "probability": 0.9581 + }, + { + "start": 3583.98, + "end": 3585.74, + "probability": 0.9026 + }, + { + "start": 3586.4, + "end": 3588.72, + "probability": 0.884 + }, + { + "start": 3589.58, + "end": 3591.76, + "probability": 0.78 + }, + { + "start": 3591.84, + "end": 3593.61, + "probability": 0.9932 + }, + { + "start": 3594.18, + "end": 3596.08, + "probability": 0.9683 + }, + { + "start": 3596.58, + "end": 3597.94, + "probability": 0.5679 + }, + { + "start": 3597.96, + "end": 3599.38, + "probability": 0.7539 + }, + { + "start": 3599.92, + "end": 3601.66, + "probability": 0.9111 + }, + { + "start": 3601.72, + "end": 3603.28, + "probability": 0.999 + }, + { + "start": 3604.54, + "end": 3606.7, + "probability": 0.95 + }, + { + "start": 3606.84, + "end": 3607.66, + "probability": 0.9016 + }, + { + "start": 3608.14, + "end": 3609.06, + "probability": 0.9142 + }, + { + "start": 3609.4, + "end": 3611.68, + "probability": 0.9927 + }, + { + "start": 3612.24, + "end": 3615.86, + "probability": 0.8106 + }, + { + "start": 3616.64, + "end": 3617.36, + "probability": 0.7344 + }, + { + "start": 3618.38, + "end": 3620.58, + "probability": 0.9967 + }, + { + "start": 3621.32, + "end": 3623.2, + "probability": 0.9725 + }, + { + "start": 3623.86, + "end": 3625.94, + "probability": 0.9619 + }, + { + "start": 3626.44, + "end": 3628.16, + "probability": 0.7253 + }, + { + "start": 3628.28, + "end": 3629.81, + "probability": 0.9134 + }, + { + "start": 3630.92, + "end": 3632.29, + "probability": 0.9786 + }, + { + "start": 3633.28, + "end": 3636.04, + "probability": 0.994 + }, + { + "start": 3636.62, + "end": 3639.58, + "probability": 0.9327 + }, + { + "start": 3639.72, + "end": 3640.56, + "probability": 0.7156 + }, + { + "start": 3641.38, + "end": 3643.2, + "probability": 0.9912 + }, + { + "start": 3643.3, + "end": 3644.08, + "probability": 0.6366 + }, + { + "start": 3644.58, + "end": 3645.2, + "probability": 0.7814 + }, + { + "start": 3645.68, + "end": 3646.82, + "probability": 0.9925 + }, + { + "start": 3647.3, + "end": 3650.1, + "probability": 0.9873 + }, + { + "start": 3650.18, + "end": 3650.62, + "probability": 0.8947 + }, + { + "start": 3651.88, + "end": 3653.3, + "probability": 0.7949 + }, + { + "start": 3653.4, + "end": 3655.34, + "probability": 0.9961 + }, + { + "start": 3656.56, + "end": 3656.92, + "probability": 0.4697 + }, + { + "start": 3660.9, + "end": 3661.38, + "probability": 0.5247 + }, + { + "start": 3662.18, + "end": 3663.46, + "probability": 0.6189 + }, + { + "start": 3664.4, + "end": 3666.92, + "probability": 0.7495 + }, + { + "start": 3670.56, + "end": 3673.36, + "probability": 0.8918 + }, + { + "start": 3674.22, + "end": 3676.8, + "probability": 0.7393 + }, + { + "start": 3678.52, + "end": 3680.32, + "probability": 0.9954 + }, + { + "start": 3681.0, + "end": 3685.2, + "probability": 0.9993 + }, + { + "start": 3685.82, + "end": 3686.64, + "probability": 0.7957 + }, + { + "start": 3687.22, + "end": 3689.12, + "probability": 0.6542 + }, + { + "start": 3689.16, + "end": 3691.56, + "probability": 0.2972 + }, + { + "start": 3691.66, + "end": 3692.62, + "probability": 0.9102 + }, + { + "start": 3692.68, + "end": 3693.02, + "probability": 0.301 + }, + { + "start": 3693.16, + "end": 3693.68, + "probability": 0.5576 + }, + { + "start": 3693.7, + "end": 3695.62, + "probability": 0.803 + }, + { + "start": 3696.14, + "end": 3700.16, + "probability": 0.9729 + }, + { + "start": 3701.18, + "end": 3702.54, + "probability": 0.6605 + }, + { + "start": 3702.68, + "end": 3704.64, + "probability": 0.9312 + }, + { + "start": 3705.6, + "end": 3708.9, + "probability": 0.9753 + }, + { + "start": 3709.34, + "end": 3709.8, + "probability": 0.5167 + }, + { + "start": 3709.82, + "end": 3712.17, + "probability": 0.5932 + }, + { + "start": 3713.06, + "end": 3714.54, + "probability": 0.7435 + }, + { + "start": 3715.54, + "end": 3719.8, + "probability": 0.9481 + }, + { + "start": 3719.86, + "end": 3722.2, + "probability": 0.9034 + }, + { + "start": 3722.42, + "end": 3724.48, + "probability": 0.7182 + }, + { + "start": 3724.82, + "end": 3726.84, + "probability": 0.8929 + }, + { + "start": 3727.38, + "end": 3733.62, + "probability": 0.9927 + }, + { + "start": 3733.98, + "end": 3735.34, + "probability": 0.8891 + }, + { + "start": 3735.38, + "end": 3738.7, + "probability": 0.9965 + }, + { + "start": 3738.7, + "end": 3742.68, + "probability": 0.9568 + }, + { + "start": 3743.2, + "end": 3746.56, + "probability": 0.998 + }, + { + "start": 3746.56, + "end": 3748.8, + "probability": 0.979 + }, + { + "start": 3749.62, + "end": 3751.1, + "probability": 0.7224 + }, + { + "start": 3751.6, + "end": 3752.56, + "probability": 0.9401 + }, + { + "start": 3753.18, + "end": 3753.52, + "probability": 0.7535 + }, + { + "start": 3774.3, + "end": 3775.24, + "probability": 0.6032 + }, + { + "start": 3775.4, + "end": 3776.44, + "probability": 0.6411 + }, + { + "start": 3776.86, + "end": 3781.22, + "probability": 0.9451 + }, + { + "start": 3781.8, + "end": 3783.66, + "probability": 0.8384 + }, + { + "start": 3784.4, + "end": 3791.52, + "probability": 0.9648 + }, + { + "start": 3792.04, + "end": 3792.88, + "probability": 0.8933 + }, + { + "start": 3793.02, + "end": 3794.7, + "probability": 0.8613 + }, + { + "start": 3794.78, + "end": 3799.88, + "probability": 0.8764 + }, + { + "start": 3800.08, + "end": 3801.92, + "probability": 0.9983 + }, + { + "start": 3802.5, + "end": 3804.34, + "probability": 0.9931 + }, + { + "start": 3804.92, + "end": 3806.88, + "probability": 0.9206 + }, + { + "start": 3807.48, + "end": 3811.04, + "probability": 0.8794 + }, + { + "start": 3811.04, + "end": 3812.3, + "probability": 0.4669 + }, + { + "start": 3812.48, + "end": 3813.0, + "probability": 0.7849 + }, + { + "start": 3813.12, + "end": 3814.28, + "probability": 0.9363 + }, + { + "start": 3814.78, + "end": 3816.82, + "probability": 0.9971 + }, + { + "start": 3817.86, + "end": 3823.86, + "probability": 0.9976 + }, + { + "start": 3824.72, + "end": 3827.64, + "probability": 0.9826 + }, + { + "start": 3828.36, + "end": 3831.86, + "probability": 0.9952 + }, + { + "start": 3832.2, + "end": 3835.08, + "probability": 0.9375 + }, + { + "start": 3836.08, + "end": 3843.06, + "probability": 0.8441 + }, + { + "start": 3843.78, + "end": 3848.9, + "probability": 0.9988 + }, + { + "start": 3849.42, + "end": 3852.14, + "probability": 0.9915 + }, + { + "start": 3853.56, + "end": 3856.56, + "probability": 0.6102 + }, + { + "start": 3857.56, + "end": 3859.46, + "probability": 0.8975 + }, + { + "start": 3860.88, + "end": 3862.9, + "probability": 0.9052 + }, + { + "start": 3864.0, + "end": 3866.38, + "probability": 0.9924 + }, + { + "start": 3867.06, + "end": 3868.72, + "probability": 0.9458 + }, + { + "start": 3868.86, + "end": 3871.3, + "probability": 0.9944 + }, + { + "start": 3871.84, + "end": 3875.56, + "probability": 0.9989 + }, + { + "start": 3876.1, + "end": 3881.64, + "probability": 0.9951 + }, + { + "start": 3881.84, + "end": 3882.26, + "probability": 0.7038 + }, + { + "start": 3882.88, + "end": 3889.38, + "probability": 0.9829 + }, + { + "start": 3889.6, + "end": 3891.6, + "probability": 0.9875 + }, + { + "start": 3892.24, + "end": 3894.04, + "probability": 0.995 + }, + { + "start": 3894.42, + "end": 3896.0, + "probability": 0.9866 + }, + { + "start": 3897.26, + "end": 3901.12, + "probability": 0.9954 + }, + { + "start": 3901.12, + "end": 3904.32, + "probability": 0.9929 + }, + { + "start": 3904.84, + "end": 3909.8, + "probability": 0.9972 + }, + { + "start": 3909.9, + "end": 3911.45, + "probability": 0.9458 + }, + { + "start": 3913.12, + "end": 3913.68, + "probability": 0.8836 + }, + { + "start": 3914.36, + "end": 3915.6, + "probability": 0.962 + }, + { + "start": 3916.74, + "end": 3919.16, + "probability": 0.8068 + }, + { + "start": 3919.5, + "end": 3920.9, + "probability": 0.9277 + }, + { + "start": 3920.96, + "end": 3924.92, + "probability": 0.9477 + }, + { + "start": 3925.36, + "end": 3926.74, + "probability": 0.9246 + }, + { + "start": 3926.92, + "end": 3928.54, + "probability": 0.9236 + }, + { + "start": 3928.96, + "end": 3929.58, + "probability": 0.832 + }, + { + "start": 3929.68, + "end": 3933.44, + "probability": 0.9921 + }, + { + "start": 3934.64, + "end": 3935.28, + "probability": 0.6738 + }, + { + "start": 3935.54, + "end": 3938.02, + "probability": 0.9347 + }, + { + "start": 3938.32, + "end": 3943.14, + "probability": 0.9813 + }, + { + "start": 3943.58, + "end": 3946.12, + "probability": 0.9697 + }, + { + "start": 3946.66, + "end": 3949.8, + "probability": 0.8906 + }, + { + "start": 3950.02, + "end": 3953.98, + "probability": 0.9761 + }, + { + "start": 3954.48, + "end": 3956.78, + "probability": 0.9963 + }, + { + "start": 3956.98, + "end": 3959.58, + "probability": 0.6445 + }, + { + "start": 3959.64, + "end": 3960.5, + "probability": 0.7061 + }, + { + "start": 3960.56, + "end": 3961.62, + "probability": 0.7105 + }, + { + "start": 3961.68, + "end": 3964.16, + "probability": 0.9543 + }, + { + "start": 3964.78, + "end": 3965.7, + "probability": 0.8857 + }, + { + "start": 3966.54, + "end": 3968.16, + "probability": 0.9658 + }, + { + "start": 3968.38, + "end": 3968.98, + "probability": 0.8002 + }, + { + "start": 3969.48, + "end": 3972.18, + "probability": 0.971 + }, + { + "start": 3973.08, + "end": 3974.2, + "probability": 0.8619 + }, + { + "start": 3974.36, + "end": 3974.88, + "probability": 0.8472 + }, + { + "start": 3975.3, + "end": 3977.4, + "probability": 0.7798 + }, + { + "start": 3977.54, + "end": 3980.12, + "probability": 0.977 + }, + { + "start": 3980.22, + "end": 3981.56, + "probability": 0.8972 + }, + { + "start": 3982.08, + "end": 3985.48, + "probability": 0.9674 + }, + { + "start": 3986.08, + "end": 3986.38, + "probability": 0.7137 + }, + { + "start": 3986.74, + "end": 3987.42, + "probability": 0.8977 + }, + { + "start": 3987.8, + "end": 3991.14, + "probability": 0.92 + }, + { + "start": 3991.48, + "end": 3992.48, + "probability": 0.8874 + }, + { + "start": 3993.08, + "end": 3996.84, + "probability": 0.9803 + }, + { + "start": 3997.04, + "end": 3997.36, + "probability": 0.8151 + }, + { + "start": 3998.32, + "end": 3998.98, + "probability": 0.6397 + }, + { + "start": 3999.04, + "end": 4001.14, + "probability": 0.9114 + }, + { + "start": 4003.1, + "end": 4010.84, + "probability": 0.9752 + }, + { + "start": 4011.18, + "end": 4014.12, + "probability": 0.8693 + }, + { + "start": 4014.42, + "end": 4014.82, + "probability": 0.0719 + }, + { + "start": 4015.08, + "end": 4020.08, + "probability": 0.9707 + }, + { + "start": 4020.72, + "end": 4021.44, + "probability": 0.7944 + }, + { + "start": 4021.6, + "end": 4023.96, + "probability": 0.8594 + }, + { + "start": 4024.58, + "end": 4028.42, + "probability": 0.9927 + }, + { + "start": 4028.6, + "end": 4030.64, + "probability": 0.6859 + }, + { + "start": 4031.34, + "end": 4033.76, + "probability": 0.9432 + }, + { + "start": 4034.86, + "end": 4035.98, + "probability": 0.8533 + }, + { + "start": 4036.76, + "end": 4038.5, + "probability": 0.8174 + }, + { + "start": 4039.3, + "end": 4040.78, + "probability": 0.7936 + }, + { + "start": 4041.6, + "end": 4043.58, + "probability": 0.421 + }, + { + "start": 4043.96, + "end": 4045.8, + "probability": 0.0026 + }, + { + "start": 4045.92, + "end": 4046.08, + "probability": 0.094 + }, + { + "start": 4046.08, + "end": 4049.04, + "probability": 0.8351 + }, + { + "start": 4049.66, + "end": 4055.88, + "probability": 0.9775 + }, + { + "start": 4056.28, + "end": 4058.16, + "probability": 0.8914 + }, + { + "start": 4058.34, + "end": 4060.98, + "probability": 0.8618 + }, + { + "start": 4061.28, + "end": 4061.64, + "probability": 0.2138 + }, + { + "start": 4061.8, + "end": 4064.14, + "probability": 0.5369 + }, + { + "start": 4064.14, + "end": 4066.36, + "probability": 0.559 + }, + { + "start": 4066.48, + "end": 4067.58, + "probability": 0.7252 + }, + { + "start": 4068.12, + "end": 4071.12, + "probability": 0.5523 + }, + { + "start": 4071.22, + "end": 4072.64, + "probability": 0.6809 + }, + { + "start": 4072.78, + "end": 4073.22, + "probability": 0.4978 + }, + { + "start": 4075.42, + "end": 4076.48, + "probability": 0.0793 + }, + { + "start": 4076.66, + "end": 4077.08, + "probability": 0.7237 + }, + { + "start": 4077.32, + "end": 4078.48, + "probability": 0.8646 + }, + { + "start": 4079.12, + "end": 4083.96, + "probability": 0.9053 + }, + { + "start": 4084.06, + "end": 4086.22, + "probability": 0.9947 + }, + { + "start": 4086.76, + "end": 4089.36, + "probability": 0.9244 + }, + { + "start": 4089.9, + "end": 4094.4, + "probability": 0.9608 + }, + { + "start": 4094.52, + "end": 4099.62, + "probability": 0.9611 + }, + { + "start": 4100.78, + "end": 4103.18, + "probability": 0.8845 + }, + { + "start": 4103.84, + "end": 4106.82, + "probability": 0.9949 + }, + { + "start": 4107.1, + "end": 4108.46, + "probability": 0.8682 + }, + { + "start": 4108.58, + "end": 4108.97, + "probability": 0.3323 + }, + { + "start": 4109.24, + "end": 4111.54, + "probability": 0.8902 + }, + { + "start": 4113.4, + "end": 4115.7, + "probability": 0.9202 + }, + { + "start": 4117.2, + "end": 4118.18, + "probability": 0.7455 + }, + { + "start": 4118.26, + "end": 4118.74, + "probability": 0.7291 + }, + { + "start": 4118.96, + "end": 4122.18, + "probability": 0.8193 + }, + { + "start": 4122.22, + "end": 4123.08, + "probability": 0.7224 + }, + { + "start": 4123.32, + "end": 4125.6, + "probability": 0.9883 + }, + { + "start": 4126.18, + "end": 4128.04, + "probability": 0.9194 + }, + { + "start": 4128.72, + "end": 4131.42, + "probability": 0.9883 + }, + { + "start": 4131.5, + "end": 4132.07, + "probability": 0.6832 + }, + { + "start": 4132.3, + "end": 4132.92, + "probability": 0.7359 + }, + { + "start": 4134.09, + "end": 4137.94, + "probability": 0.6906 + }, + { + "start": 4139.85, + "end": 4142.62, + "probability": 0.6787 + }, + { + "start": 4143.32, + "end": 4143.32, + "probability": 0.0468 + }, + { + "start": 4143.32, + "end": 4147.42, + "probability": 0.9326 + }, + { + "start": 4147.8, + "end": 4150.68, + "probability": 0.9797 + }, + { + "start": 4151.02, + "end": 4152.02, + "probability": 0.9029 + }, + { + "start": 4152.28, + "end": 4155.66, + "probability": 0.9578 + }, + { + "start": 4155.66, + "end": 4158.08, + "probability": 0.9814 + }, + { + "start": 4158.64, + "end": 4162.38, + "probability": 0.9126 + }, + { + "start": 4162.66, + "end": 4165.92, + "probability": 0.9891 + }, + { + "start": 4166.54, + "end": 4171.84, + "probability": 0.9896 + }, + { + "start": 4172.16, + "end": 4172.62, + "probability": 0.3855 + }, + { + "start": 4173.26, + "end": 4173.26, + "probability": 0.0478 + }, + { + "start": 4173.26, + "end": 4173.9, + "probability": 0.6793 + }, + { + "start": 4174.32, + "end": 4176.7, + "probability": 0.9762 + }, + { + "start": 4176.82, + "end": 4180.14, + "probability": 0.9648 + }, + { + "start": 4180.58, + "end": 4182.46, + "probability": 0.9145 + }, + { + "start": 4182.98, + "end": 4184.5, + "probability": 0.9559 + }, + { + "start": 4185.12, + "end": 4187.26, + "probability": 0.9517 + }, + { + "start": 4188.58, + "end": 4192.66, + "probability": 0.9421 + }, + { + "start": 4192.78, + "end": 4196.58, + "probability": 0.9958 + }, + { + "start": 4197.2, + "end": 4197.76, + "probability": 0.768 + }, + { + "start": 4198.28, + "end": 4198.84, + "probability": 0.733 + }, + { + "start": 4199.06, + "end": 4200.18, + "probability": 0.7714 + }, + { + "start": 4200.82, + "end": 4203.06, + "probability": 0.9845 + }, + { + "start": 4203.96, + "end": 4205.66, + "probability": 0.9927 + }, + { + "start": 4205.8, + "end": 4207.16, + "probability": 0.8981 + }, + { + "start": 4207.7, + "end": 4209.68, + "probability": 0.949 + }, + { + "start": 4213.5, + "end": 4216.08, + "probability": 0.9042 + }, + { + "start": 4220.1, + "end": 4220.84, + "probability": 0.4769 + }, + { + "start": 4220.96, + "end": 4221.44, + "probability": 0.4382 + }, + { + "start": 4221.52, + "end": 4225.64, + "probability": 0.8195 + }, + { + "start": 4225.8, + "end": 4225.8, + "probability": 0.0193 + }, + { + "start": 4226.56, + "end": 4228.7, + "probability": 0.5587 + }, + { + "start": 4230.34, + "end": 4232.38, + "probability": 0.8666 + }, + { + "start": 4233.36, + "end": 4236.36, + "probability": 0.7188 + }, + { + "start": 4237.7, + "end": 4240.46, + "probability": 0.9849 + }, + { + "start": 4241.32, + "end": 4245.6, + "probability": 0.9949 + }, + { + "start": 4247.1, + "end": 4248.88, + "probability": 0.7486 + }, + { + "start": 4250.2, + "end": 4251.96, + "probability": 0.9738 + }, + { + "start": 4252.84, + "end": 4258.74, + "probability": 0.9452 + }, + { + "start": 4259.36, + "end": 4260.27, + "probability": 0.8357 + }, + { + "start": 4261.92, + "end": 4269.1, + "probability": 0.9114 + }, + { + "start": 4269.6, + "end": 4270.64, + "probability": 0.9349 + }, + { + "start": 4271.38, + "end": 4276.46, + "probability": 0.9958 + }, + { + "start": 4277.34, + "end": 4279.1, + "probability": 0.9854 + }, + { + "start": 4279.14, + "end": 4282.36, + "probability": 0.897 + }, + { + "start": 4283.16, + "end": 4283.84, + "probability": 0.5116 + }, + { + "start": 4284.02, + "end": 4288.72, + "probability": 0.8188 + }, + { + "start": 4289.46, + "end": 4291.66, + "probability": 0.6025 + }, + { + "start": 4292.22, + "end": 4296.24, + "probability": 0.9638 + }, + { + "start": 4297.38, + "end": 4302.14, + "probability": 0.7732 + }, + { + "start": 4303.28, + "end": 4306.28, + "probability": 0.9814 + }, + { + "start": 4306.46, + "end": 4310.32, + "probability": 0.926 + }, + { + "start": 4311.48, + "end": 4313.64, + "probability": 0.9862 + }, + { + "start": 4314.36, + "end": 4316.76, + "probability": 0.922 + }, + { + "start": 4317.9, + "end": 4322.18, + "probability": 0.4994 + }, + { + "start": 4323.06, + "end": 4329.14, + "probability": 0.888 + }, + { + "start": 4330.38, + "end": 4334.38, + "probability": 0.844 + }, + { + "start": 4334.48, + "end": 4334.86, + "probability": 0.8522 + }, + { + "start": 4335.62, + "end": 4337.06, + "probability": 0.9928 + }, + { + "start": 4337.76, + "end": 4340.52, + "probability": 0.7986 + }, + { + "start": 4341.3, + "end": 4345.8, + "probability": 0.9802 + }, + { + "start": 4346.8, + "end": 4350.84, + "probability": 0.9455 + }, + { + "start": 4351.39, + "end": 4356.5, + "probability": 0.9932 + }, + { + "start": 4356.58, + "end": 4357.66, + "probability": 0.7939 + }, + { + "start": 4358.42, + "end": 4360.86, + "probability": 0.8173 + }, + { + "start": 4361.16, + "end": 4362.42, + "probability": 0.821 + }, + { + "start": 4363.18, + "end": 4367.72, + "probability": 0.9803 + }, + { + "start": 4367.94, + "end": 4371.92, + "probability": 0.9666 + }, + { + "start": 4374.16, + "end": 4375.56, + "probability": 0.8589 + }, + { + "start": 4375.7, + "end": 4378.24, + "probability": 0.8957 + }, + { + "start": 4380.11, + "end": 4382.35, + "probability": 0.6129 + }, + { + "start": 4383.24, + "end": 4383.64, + "probability": 0.9023 + }, + { + "start": 4383.78, + "end": 4386.96, + "probability": 0.9651 + }, + { + "start": 4388.11, + "end": 4390.68, + "probability": 0.7407 + }, + { + "start": 4390.98, + "end": 4391.24, + "probability": 0.0078 + }, + { + "start": 4392.32, + "end": 4393.06, + "probability": 0.4485 + }, + { + "start": 4393.16, + "end": 4396.38, + "probability": 0.9628 + }, + { + "start": 4396.38, + "end": 4399.46, + "probability": 0.8651 + }, + { + "start": 4400.14, + "end": 4403.56, + "probability": 0.9351 + }, + { + "start": 4403.7, + "end": 4405.12, + "probability": 0.6236 + }, + { + "start": 4405.72, + "end": 4407.32, + "probability": 0.8113 + }, + { + "start": 4407.32, + "end": 4408.46, + "probability": 0.9378 + }, + { + "start": 4408.54, + "end": 4409.48, + "probability": 0.9771 + }, + { + "start": 4409.96, + "end": 4410.72, + "probability": 0.744 + }, + { + "start": 4411.18, + "end": 4420.08, + "probability": 0.9847 + }, + { + "start": 4420.58, + "end": 4425.7, + "probability": 0.9916 + }, + { + "start": 4425.7, + "end": 4430.84, + "probability": 0.7087 + }, + { + "start": 4430.94, + "end": 4434.62, + "probability": 0.936 + }, + { + "start": 4434.62, + "end": 4435.5, + "probability": 0.6682 + }, + { + "start": 4436.42, + "end": 4442.54, + "probability": 0.9711 + }, + { + "start": 4442.54, + "end": 4447.32, + "probability": 0.8489 + }, + { + "start": 4447.96, + "end": 4455.74, + "probability": 0.9895 + }, + { + "start": 4456.2, + "end": 4459.42, + "probability": 0.9949 + }, + { + "start": 4460.08, + "end": 4463.06, + "probability": 0.9922 + }, + { + "start": 4463.12, + "end": 4463.8, + "probability": 0.549 + }, + { + "start": 4463.82, + "end": 4467.3, + "probability": 0.8989 + }, + { + "start": 4468.92, + "end": 4474.2, + "probability": 0.6504 + }, + { + "start": 4475.3, + "end": 4476.72, + "probability": 0.6917 + }, + { + "start": 4477.16, + "end": 4480.42, + "probability": 0.7998 + }, + { + "start": 4482.1, + "end": 4485.66, + "probability": 0.9816 + }, + { + "start": 4486.26, + "end": 4489.14, + "probability": 0.7999 + }, + { + "start": 4490.68, + "end": 4492.26, + "probability": 0.9495 + }, + { + "start": 4492.64, + "end": 4494.9, + "probability": 0.9351 + }, + { + "start": 4496.02, + "end": 4499.06, + "probability": 0.7246 + }, + { + "start": 4500.28, + "end": 4503.84, + "probability": 0.9923 + }, + { + "start": 4505.32, + "end": 4507.32, + "probability": 0.9792 + }, + { + "start": 4508.36, + "end": 4511.62, + "probability": 0.9861 + }, + { + "start": 4512.7, + "end": 4514.32, + "probability": 0.607 + }, + { + "start": 4515.18, + "end": 4517.68, + "probability": 0.9261 + }, + { + "start": 4518.2, + "end": 4519.9, + "probability": 0.9883 + }, + { + "start": 4520.74, + "end": 4526.32, + "probability": 0.9754 + }, + { + "start": 4527.4, + "end": 4528.92, + "probability": 0.8571 + }, + { + "start": 4529.36, + "end": 4534.58, + "probability": 0.992 + }, + { + "start": 4535.62, + "end": 4537.95, + "probability": 0.8332 + }, + { + "start": 4538.62, + "end": 4539.62, + "probability": 0.9047 + }, + { + "start": 4540.16, + "end": 4545.46, + "probability": 0.9855 + }, + { + "start": 4545.98, + "end": 4549.3, + "probability": 0.97 + }, + { + "start": 4549.84, + "end": 4555.62, + "probability": 0.9811 + }, + { + "start": 4555.94, + "end": 4556.56, + "probability": 0.9637 + }, + { + "start": 4557.04, + "end": 4558.58, + "probability": 0.9661 + }, + { + "start": 4559.3, + "end": 4564.28, + "probability": 0.8419 + }, + { + "start": 4564.66, + "end": 4570.06, + "probability": 0.8666 + }, + { + "start": 4570.32, + "end": 4575.0, + "probability": 0.9491 + }, + { + "start": 4575.56, + "end": 4576.56, + "probability": 0.25 + }, + { + "start": 4577.2, + "end": 4577.76, + "probability": 0.6964 + }, + { + "start": 4578.06, + "end": 4578.72, + "probability": 0.709 + }, + { + "start": 4578.72, + "end": 4579.32, + "probability": 0.9222 + }, + { + "start": 4579.38, + "end": 4580.14, + "probability": 0.6759 + }, + { + "start": 4580.34, + "end": 4582.02, + "probability": 0.1572 + }, + { + "start": 4597.98, + "end": 4603.5, + "probability": 0.6454 + }, + { + "start": 4603.7, + "end": 4606.82, + "probability": 0.9714 + }, + { + "start": 4607.52, + "end": 4608.98, + "probability": 0.1611 + }, + { + "start": 4609.8, + "end": 4613.62, + "probability": 0.3923 + }, + { + "start": 4621.68, + "end": 4625.43, + "probability": 0.0381 + }, + { + "start": 4625.86, + "end": 4627.96, + "probability": 0.6078 + }, + { + "start": 4628.5, + "end": 4630.28, + "probability": 0.1735 + }, + { + "start": 4630.28, + "end": 4630.28, + "probability": 0.0328 + }, + { + "start": 4630.28, + "end": 4630.28, + "probability": 0.1307 + }, + { + "start": 4630.28, + "end": 4632.28, + "probability": 0.4958 + }, + { + "start": 4636.48, + "end": 4637.6, + "probability": 0.3398 + }, + { + "start": 4649.86, + "end": 4650.42, + "probability": 0.0903 + }, + { + "start": 4651.94, + "end": 4658.2, + "probability": 0.0333 + }, + { + "start": 4664.01, + "end": 4664.55, + "probability": 0.0085 + }, + { + "start": 4665.37, + "end": 4665.83, + "probability": 0.0628 + }, + { + "start": 4667.37, + "end": 4668.67, + "probability": 0.1049 + }, + { + "start": 4669.35, + "end": 4672.53, + "probability": 0.1039 + }, + { + "start": 4674.25, + "end": 4677.05, + "probability": 0.1433 + }, + { + "start": 4677.8, + "end": 4680.73, + "probability": 0.5899 + }, + { + "start": 4680.73, + "end": 4680.73, + "probability": 0.1912 + }, + { + "start": 4683.49, + "end": 4683.7, + "probability": 0.1115 + }, + { + "start": 4687.99, + "end": 4689.79, + "probability": 0.564 + }, + { + "start": 4696.0, + "end": 4696.0, + "probability": 0.0 + }, + { + "start": 4696.0, + "end": 4696.0, + "probability": 0.0 + }, + { + "start": 4696.0, + "end": 4696.0, + "probability": 0.0 + }, + { + "start": 4696.0, + "end": 4696.0, + "probability": 0.0 + }, + { + "start": 4696.0, + "end": 4696.0, + "probability": 0.0 + }, + { + "start": 4696.0, + "end": 4696.0, + "probability": 0.0 + }, + { + "start": 4696.0, + "end": 4696.0, + "probability": 0.0 + }, + { + "start": 4696.18, + "end": 4696.18, + "probability": 0.147 + }, + { + "start": 4696.18, + "end": 4696.18, + "probability": 0.1162 + }, + { + "start": 4696.18, + "end": 4698.86, + "probability": 0.2397 + }, + { + "start": 4700.06, + "end": 4700.44, + "probability": 0.0203 + }, + { + "start": 4701.08, + "end": 4704.14, + "probability": 0.246 + }, + { + "start": 4706.99, + "end": 4713.12, + "probability": 0.1053 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.0, + "end": 4824.0, + "probability": 0.0 + }, + { + "start": 4824.2, + "end": 4826.0, + "probability": 0.0148 + }, + { + "start": 4826.82, + "end": 4830.2, + "probability": 0.0488 + }, + { + "start": 4831.14, + "end": 4835.68, + "probability": 0.0469 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.0, + "end": 4949.0, + "probability": 0.0 + }, + { + "start": 4949.16, + "end": 4949.72, + "probability": 0.0749 + }, + { + "start": 4950.42, + "end": 4953.34, + "probability": 0.9579 + }, + { + "start": 4953.94, + "end": 4956.86, + "probability": 0.9932 + }, + { + "start": 4958.0, + "end": 4959.52, + "probability": 0.7782 + }, + { + "start": 4960.74, + "end": 4961.86, + "probability": 0.3362 + }, + { + "start": 4962.78, + "end": 4965.88, + "probability": 0.7537 + }, + { + "start": 4967.1, + "end": 4970.48, + "probability": 0.9946 + }, + { + "start": 4971.72, + "end": 4974.72, + "probability": 0.8672 + }, + { + "start": 4974.86, + "end": 4976.42, + "probability": 0.736 + }, + { + "start": 4976.56, + "end": 4977.56, + "probability": 0.7332 + }, + { + "start": 4978.64, + "end": 4979.42, + "probability": 0.5097 + }, + { + "start": 4979.58, + "end": 4984.8, + "probability": 0.9786 + }, + { + "start": 4986.08, + "end": 4986.85, + "probability": 0.9106 + }, + { + "start": 4987.14, + "end": 4987.78, + "probability": 0.936 + }, + { + "start": 4989.08, + "end": 4991.86, + "probability": 0.7705 + }, + { + "start": 4991.96, + "end": 4992.52, + "probability": 0.8388 + }, + { + "start": 4993.12, + "end": 4995.78, + "probability": 0.9217 + }, + { + "start": 4998.5, + "end": 5002.3, + "probability": 0.9064 + }, + { + "start": 5002.56, + "end": 5003.08, + "probability": 0.7938 + }, + { + "start": 5004.48, + "end": 5005.22, + "probability": 0.5587 + }, + { + "start": 5005.42, + "end": 5010.98, + "probability": 0.8826 + }, + { + "start": 5011.6, + "end": 5013.69, + "probability": 0.8944 + }, + { + "start": 5014.5, + "end": 5016.62, + "probability": 0.5798 + }, + { + "start": 5017.56, + "end": 5019.94, + "probability": 0.6703 + }, + { + "start": 5020.88, + "end": 5022.82, + "probability": 0.7595 + }, + { + "start": 5023.5, + "end": 5026.26, + "probability": 0.8881 + }, + { + "start": 5027.8, + "end": 5028.66, + "probability": 0.5464 + }, + { + "start": 5028.78, + "end": 5030.5, + "probability": 0.3541 + }, + { + "start": 5030.96, + "end": 5033.76, + "probability": 0.5435 + }, + { + "start": 5035.3, + "end": 5037.1, + "probability": 0.9316 + }, + { + "start": 5037.16, + "end": 5037.28, + "probability": 0.9328 + }, + { + "start": 5037.36, + "end": 5040.94, + "probability": 0.9973 + }, + { + "start": 5041.54, + "end": 5044.28, + "probability": 0.9639 + }, + { + "start": 5044.98, + "end": 5045.76, + "probability": 0.2486 + }, + { + "start": 5046.36, + "end": 5047.66, + "probability": 0.9629 + }, + { + "start": 5048.12, + "end": 5048.82, + "probability": 0.9806 + }, + { + "start": 5050.04, + "end": 5052.56, + "probability": 0.9986 + }, + { + "start": 5052.64, + "end": 5053.62, + "probability": 0.7879 + }, + { + "start": 5054.84, + "end": 5055.94, + "probability": 0.9791 + }, + { + "start": 5056.56, + "end": 5057.46, + "probability": 0.8054 + }, + { + "start": 5059.28, + "end": 5061.12, + "probability": 0.8775 + }, + { + "start": 5061.66, + "end": 5063.4, + "probability": 0.6903 + }, + { + "start": 5065.2, + "end": 5066.22, + "probability": 0.4714 + }, + { + "start": 5066.72, + "end": 5068.3, + "probability": 0.9017 + }, + { + "start": 5068.32, + "end": 5070.58, + "probability": 0.8136 + }, + { + "start": 5071.04, + "end": 5072.56, + "probability": 0.929 + }, + { + "start": 5074.34, + "end": 5075.16, + "probability": 0.7043 + }, + { + "start": 5075.6, + "end": 5075.76, + "probability": 0.1339 + }, + { + "start": 5075.76, + "end": 5085.98, + "probability": 0.984 + }, + { + "start": 5087.04, + "end": 5091.06, + "probability": 0.9474 + }, + { + "start": 5091.22, + "end": 5091.56, + "probability": 0.6233 + }, + { + "start": 5091.68, + "end": 5092.8, + "probability": 0.9938 + }, + { + "start": 5093.7, + "end": 5094.96, + "probability": 0.46 + }, + { + "start": 5095.58, + "end": 5096.2, + "probability": 0.783 + }, + { + "start": 5096.74, + "end": 5099.06, + "probability": 0.9661 + }, + { + "start": 5099.14, + "end": 5100.38, + "probability": 0.9911 + }, + { + "start": 5100.58, + "end": 5100.68, + "probability": 0.6451 + }, + { + "start": 5102.38, + "end": 5106.3, + "probability": 0.9914 + }, + { + "start": 5107.24, + "end": 5108.22, + "probability": 0.7657 + }, + { + "start": 5109.14, + "end": 5110.06, + "probability": 0.8496 + }, + { + "start": 5110.6, + "end": 5112.07, + "probability": 0.9912 + }, + { + "start": 5113.2, + "end": 5116.24, + "probability": 0.9965 + }, + { + "start": 5116.24, + "end": 5120.56, + "probability": 0.8328 + }, + { + "start": 5121.12, + "end": 5122.22, + "probability": 0.9 + }, + { + "start": 5124.28, + "end": 5124.9, + "probability": 0.7499 + }, + { + "start": 5126.22, + "end": 5128.28, + "probability": 0.9827 + }, + { + "start": 5129.16, + "end": 5130.7, + "probability": 0.9492 + }, + { + "start": 5131.64, + "end": 5133.2, + "probability": 0.9972 + }, + { + "start": 5133.92, + "end": 5135.12, + "probability": 0.7554 + }, + { + "start": 5135.48, + "end": 5136.46, + "probability": 0.3956 + }, + { + "start": 5136.66, + "end": 5138.14, + "probability": 0.8886 + }, + { + "start": 5138.14, + "end": 5138.71, + "probability": 0.5315 + }, + { + "start": 5139.04, + "end": 5144.64, + "probability": 0.4982 + }, + { + "start": 5144.96, + "end": 5145.3, + "probability": 0.5449 + }, + { + "start": 5146.42, + "end": 5147.22, + "probability": 0.5871 + }, + { + "start": 5150.1, + "end": 5150.68, + "probability": 0.0537 + }, + { + "start": 5150.68, + "end": 5152.86, + "probability": 0.776 + }, + { + "start": 5153.44, + "end": 5156.76, + "probability": 0.9963 + }, + { + "start": 5158.12, + "end": 5160.12, + "probability": 0.9473 + }, + { + "start": 5160.9, + "end": 5163.86, + "probability": 0.4928 + }, + { + "start": 5164.16, + "end": 5166.38, + "probability": 0.9608 + }, + { + "start": 5167.1, + "end": 5168.12, + "probability": 0.5452 + }, + { + "start": 5170.22, + "end": 5172.94, + "probability": 0.7029 + }, + { + "start": 5173.8, + "end": 5179.74, + "probability": 0.9459 + }, + { + "start": 5180.82, + "end": 5183.88, + "probability": 0.9905 + }, + { + "start": 5184.0, + "end": 5185.46, + "probability": 0.634 + }, + { + "start": 5186.12, + "end": 5187.5, + "probability": 0.8601 + }, + { + "start": 5188.64, + "end": 5190.94, + "probability": 0.9805 + }, + { + "start": 5191.48, + "end": 5192.64, + "probability": 0.8185 + }, + { + "start": 5193.26, + "end": 5195.0, + "probability": 0.9128 + }, + { + "start": 5195.1, + "end": 5196.08, + "probability": 0.884 + }, + { + "start": 5196.7, + "end": 5199.08, + "probability": 0.6428 + }, + { + "start": 5199.1, + "end": 5201.64, + "probability": 0.8973 + }, + { + "start": 5202.12, + "end": 5203.84, + "probability": 0.8893 + }, + { + "start": 5204.16, + "end": 5204.86, + "probability": 0.557 + }, + { + "start": 5207.14, + "end": 5209.0, + "probability": 0.657 + }, + { + "start": 5210.0, + "end": 5211.26, + "probability": 0.9867 + }, + { + "start": 5211.38, + "end": 5213.58, + "probability": 0.9265 + }, + { + "start": 5213.82, + "end": 5218.52, + "probability": 0.835 + }, + { + "start": 5218.68, + "end": 5221.26, + "probability": 0.9846 + }, + { + "start": 5222.36, + "end": 5222.68, + "probability": 0.7115 + }, + { + "start": 5223.28, + "end": 5224.04, + "probability": 0.8594 + }, + { + "start": 5224.18, + "end": 5225.46, + "probability": 0.9495 + }, + { + "start": 5225.54, + "end": 5226.74, + "probability": 0.833 + }, + { + "start": 5227.74, + "end": 5229.9, + "probability": 0.9973 + }, + { + "start": 5230.88, + "end": 5233.31, + "probability": 0.999 + }, + { + "start": 5233.8, + "end": 5235.72, + "probability": 0.6547 + }, + { + "start": 5236.4, + "end": 5238.82, + "probability": 0.8287 + }, + { + "start": 5239.28, + "end": 5241.3, + "probability": 0.999 + }, + { + "start": 5242.2, + "end": 5242.96, + "probability": 0.8953 + }, + { + "start": 5243.92, + "end": 5248.34, + "probability": 0.9493 + }, + { + "start": 5248.44, + "end": 5252.45, + "probability": 0.9995 + }, + { + "start": 5253.88, + "end": 5256.88, + "probability": 0.9844 + }, + { + "start": 5257.62, + "end": 5258.0, + "probability": 0.702 + }, + { + "start": 5258.62, + "end": 5261.62, + "probability": 0.597 + }, + { + "start": 5262.06, + "end": 5263.16, + "probability": 0.6052 + }, + { + "start": 5266.28, + "end": 5268.44, + "probability": 0.8052 + }, + { + "start": 5269.74, + "end": 5271.1, + "probability": 0.8945 + }, + { + "start": 5278.1, + "end": 5278.62, + "probability": 0.1372 + }, + { + "start": 5286.8, + "end": 5288.62, + "probability": 0.8421 + }, + { + "start": 5290.68, + "end": 5296.08, + "probability": 0.9763 + }, + { + "start": 5296.18, + "end": 5298.5, + "probability": 0.9927 + }, + { + "start": 5299.08, + "end": 5300.46, + "probability": 0.8899 + }, + { + "start": 5301.36, + "end": 5303.46, + "probability": 0.9944 + }, + { + "start": 5304.52, + "end": 5307.54, + "probability": 0.9961 + }, + { + "start": 5309.5, + "end": 5310.26, + "probability": 0.4917 + }, + { + "start": 5311.74, + "end": 5314.84, + "probability": 0.8552 + }, + { + "start": 5316.98, + "end": 5319.26, + "probability": 0.9751 + }, + { + "start": 5320.3, + "end": 5322.06, + "probability": 0.9436 + }, + { + "start": 5323.0, + "end": 5326.92, + "probability": 0.2698 + }, + { + "start": 5328.18, + "end": 5328.92, + "probability": 0.897 + }, + { + "start": 5330.06, + "end": 5332.85, + "probability": 0.7191 + }, + { + "start": 5333.76, + "end": 5334.94, + "probability": 0.8609 + }, + { + "start": 5334.96, + "end": 5337.88, + "probability": 0.6654 + }, + { + "start": 5337.96, + "end": 5338.7, + "probability": 0.6696 + }, + { + "start": 5340.12, + "end": 5341.84, + "probability": 0.9927 + }, + { + "start": 5343.0, + "end": 5348.26, + "probability": 0.7414 + }, + { + "start": 5348.26, + "end": 5353.58, + "probability": 0.9075 + }, + { + "start": 5354.94, + "end": 5357.78, + "probability": 0.9949 + }, + { + "start": 5358.64, + "end": 5362.04, + "probability": 0.9517 + }, + { + "start": 5362.74, + "end": 5366.02, + "probability": 0.7865 + }, + { + "start": 5366.34, + "end": 5369.04, + "probability": 0.8447 + }, + { + "start": 5373.2, + "end": 5375.62, + "probability": 0.6416 + }, + { + "start": 5376.46, + "end": 5380.0, + "probability": 0.6877 + }, + { + "start": 5380.54, + "end": 5382.4, + "probability": 0.971 + }, + { + "start": 5382.78, + "end": 5384.42, + "probability": 0.7013 + }, + { + "start": 5385.38, + "end": 5386.5, + "probability": 0.7845 + }, + { + "start": 5388.66, + "end": 5393.22, + "probability": 0.8572 + }, + { + "start": 5394.04, + "end": 5395.94, + "probability": 0.829 + }, + { + "start": 5400.08, + "end": 5401.66, + "probability": 0.8651 + }, + { + "start": 5401.82, + "end": 5403.82, + "probability": 0.9953 + }, + { + "start": 5405.38, + "end": 5406.22, + "probability": 0.8913 + }, + { + "start": 5408.18, + "end": 5409.4, + "probability": 0.6345 + }, + { + "start": 5410.06, + "end": 5416.58, + "probability": 0.9702 + }, + { + "start": 5417.72, + "end": 5418.36, + "probability": 0.75 + }, + { + "start": 5419.04, + "end": 5422.46, + "probability": 0.9291 + }, + { + "start": 5424.28, + "end": 5427.58, + "probability": 0.7543 + }, + { + "start": 5427.84, + "end": 5430.28, + "probability": 0.7502 + }, + { + "start": 5431.58, + "end": 5434.32, + "probability": 0.8985 + }, + { + "start": 5434.9, + "end": 5436.3, + "probability": 0.9003 + }, + { + "start": 5436.36, + "end": 5437.68, + "probability": 0.9177 + }, + { + "start": 5437.8, + "end": 5438.96, + "probability": 0.9934 + }, + { + "start": 5439.24, + "end": 5440.32, + "probability": 0.5677 + }, + { + "start": 5447.28, + "end": 5447.28, + "probability": 0.0513 + }, + { + "start": 5447.56, + "end": 5452.18, + "probability": 0.8286 + }, + { + "start": 5452.44, + "end": 5454.98, + "probability": 0.9458 + }, + { + "start": 5456.38, + "end": 5459.66, + "probability": 0.9432 + }, + { + "start": 5461.22, + "end": 5464.54, + "probability": 0.9597 + }, + { + "start": 5464.66, + "end": 5465.04, + "probability": 0.8543 + }, + { + "start": 5465.9, + "end": 5469.06, + "probability": 0.5216 + }, + { + "start": 5469.66, + "end": 5472.18, + "probability": 0.9922 + }, + { + "start": 5472.78, + "end": 5473.52, + "probability": 0.6685 + }, + { + "start": 5475.3, + "end": 5476.44, + "probability": 0.9644 + }, + { + "start": 5477.3, + "end": 5478.36, + "probability": 0.5841 + }, + { + "start": 5478.6, + "end": 5480.14, + "probability": 0.925 + }, + { + "start": 5480.2, + "end": 5480.68, + "probability": 0.7357 + }, + { + "start": 5482.77, + "end": 5487.38, + "probability": 0.9606 + }, + { + "start": 5489.76, + "end": 5495.42, + "probability": 0.9824 + }, + { + "start": 5496.9, + "end": 5499.4, + "probability": 0.8677 + }, + { + "start": 5500.22, + "end": 5501.52, + "probability": 0.872 + }, + { + "start": 5502.88, + "end": 5505.64, + "probability": 0.7031 + }, + { + "start": 5506.46, + "end": 5511.28, + "probability": 0.91 + }, + { + "start": 5511.88, + "end": 5514.86, + "probability": 0.7943 + }, + { + "start": 5515.82, + "end": 5519.54, + "probability": 0.9749 + }, + { + "start": 5520.68, + "end": 5523.22, + "probability": 0.4728 + }, + { + "start": 5523.38, + "end": 5523.7, + "probability": 0.8043 + }, + { + "start": 5523.72, + "end": 5525.52, + "probability": 0.7602 + }, + { + "start": 5525.58, + "end": 5526.52, + "probability": 0.9484 + }, + { + "start": 5526.62, + "end": 5530.0, + "probability": 0.8247 + }, + { + "start": 5531.06, + "end": 5538.54, + "probability": 0.9937 + }, + { + "start": 5539.1, + "end": 5540.52, + "probability": 0.4286 + }, + { + "start": 5540.68, + "end": 5543.48, + "probability": 0.9022 + }, + { + "start": 5543.72, + "end": 5544.72, + "probability": 0.8032 + }, + { + "start": 5545.22, + "end": 5548.32, + "probability": 0.7102 + }, + { + "start": 5549.2, + "end": 5552.38, + "probability": 0.9595 + }, + { + "start": 5553.3, + "end": 5558.22, + "probability": 0.8286 + }, + { + "start": 5558.48, + "end": 5558.48, + "probability": 0.0355 + }, + { + "start": 5560.82, + "end": 5563.1, + "probability": 0.8662 + }, + { + "start": 5563.56, + "end": 5568.7, + "probability": 0.5504 + }, + { + "start": 5568.8, + "end": 5569.22, + "probability": 0.066 + }, + { + "start": 5569.28, + "end": 5570.0, + "probability": 0.3245 + }, + { + "start": 5571.06, + "end": 5573.72, + "probability": 0.5285 + }, + { + "start": 5573.92, + "end": 5579.6, + "probability": 0.5811 + }, + { + "start": 5579.64, + "end": 5580.32, + "probability": 0.7619 + }, + { + "start": 5580.86, + "end": 5584.42, + "probability": 0.6951 + }, + { + "start": 5584.48, + "end": 5585.76, + "probability": 0.9984 + }, + { + "start": 5587.12, + "end": 5588.96, + "probability": 0.9389 + }, + { + "start": 5589.78, + "end": 5596.8, + "probability": 0.724 + }, + { + "start": 5599.26, + "end": 5602.71, + "probability": 0.8051 + }, + { + "start": 5603.06, + "end": 5603.86, + "probability": 0.5282 + }, + { + "start": 5605.8, + "end": 5606.68, + "probability": 0.4588 + }, + { + "start": 5607.54, + "end": 5608.36, + "probability": 0.6539 + }, + { + "start": 5611.24, + "end": 5611.56, + "probability": 0.1788 + }, + { + "start": 5611.56, + "end": 5618.26, + "probability": 0.9309 + }, + { + "start": 5619.06, + "end": 5619.52, + "probability": 0.452 + }, + { + "start": 5619.56, + "end": 5620.04, + "probability": 0.808 + }, + { + "start": 5620.08, + "end": 5622.26, + "probability": 0.8221 + }, + { + "start": 5622.3, + "end": 5625.16, + "probability": 0.7451 + }, + { + "start": 5626.0, + "end": 5629.82, + "probability": 0.6749 + }, + { + "start": 5630.9, + "end": 5634.1, + "probability": 0.9198 + }, + { + "start": 5634.92, + "end": 5636.44, + "probability": 0.9954 + }, + { + "start": 5636.6, + "end": 5637.46, + "probability": 0.7727 + }, + { + "start": 5637.82, + "end": 5639.28, + "probability": 0.6887 + }, + { + "start": 5642.22, + "end": 5643.34, + "probability": 0.9751 + }, + { + "start": 5645.9, + "end": 5648.48, + "probability": 0.503 + }, + { + "start": 5649.22, + "end": 5651.62, + "probability": 0.5325 + }, + { + "start": 5652.72, + "end": 5652.98, + "probability": 0.1603 + }, + { + "start": 5652.98, + "end": 5654.52, + "probability": 0.716 + }, + { + "start": 5655.88, + "end": 5658.4, + "probability": 0.6967 + }, + { + "start": 5658.76, + "end": 5663.18, + "probability": 0.488 + }, + { + "start": 5665.4, + "end": 5667.1, + "probability": 0.9444 + }, + { + "start": 5668.34, + "end": 5671.32, + "probability": 0.9978 + }, + { + "start": 5671.54, + "end": 5675.9, + "probability": 0.7847 + }, + { + "start": 5676.08, + "end": 5678.18, + "probability": 0.9854 + }, + { + "start": 5678.38, + "end": 5681.98, + "probability": 0.8338 + }, + { + "start": 5682.44, + "end": 5684.54, + "probability": 0.9087 + }, + { + "start": 5684.86, + "end": 5686.62, + "probability": 0.9834 + }, + { + "start": 5687.14, + "end": 5689.16, + "probability": 0.8867 + }, + { + "start": 5689.38, + "end": 5691.62, + "probability": 0.8743 + }, + { + "start": 5692.2, + "end": 5696.04, + "probability": 0.9851 + }, + { + "start": 5696.18, + "end": 5696.74, + "probability": 0.6668 + }, + { + "start": 5698.12, + "end": 5698.38, + "probability": 0.394 + }, + { + "start": 5698.66, + "end": 5698.96, + "probability": 0.3364 + }, + { + "start": 5699.16, + "end": 5703.5, + "probability": 0.8273 + }, + { + "start": 5706.1, + "end": 5706.76, + "probability": 0.3839 + }, + { + "start": 5706.86, + "end": 5706.86, + "probability": 0.4769 + }, + { + "start": 5706.94, + "end": 5709.04, + "probability": 0.6114 + }, + { + "start": 5709.46, + "end": 5710.34, + "probability": 0.668 + }, + { + "start": 5710.66, + "end": 5711.38, + "probability": 0.5197 + }, + { + "start": 5711.78, + "end": 5714.4, + "probability": 0.8938 + }, + { + "start": 5716.46, + "end": 5718.28, + "probability": 0.4783 + }, + { + "start": 5719.29, + "end": 5721.84, + "probability": 0.9948 + }, + { + "start": 5722.14, + "end": 5725.98, + "probability": 0.5156 + }, + { + "start": 5727.08, + "end": 5728.9, + "probability": 0.9962 + }, + { + "start": 5730.44, + "end": 5732.04, + "probability": 0.4366 + }, + { + "start": 5734.54, + "end": 5735.04, + "probability": 0.5505 + }, + { + "start": 5736.24, + "end": 5742.22, + "probability": 0.9478 + }, + { + "start": 5743.04, + "end": 5744.98, + "probability": 0.7494 + }, + { + "start": 5745.66, + "end": 5750.12, + "probability": 0.9833 + }, + { + "start": 5751.02, + "end": 5751.63, + "probability": 0.8947 + }, + { + "start": 5751.94, + "end": 5752.37, + "probability": 0.6697 + }, + { + "start": 5752.92, + "end": 5756.5, + "probability": 0.9084 + }, + { + "start": 5757.14, + "end": 5760.3, + "probability": 0.9918 + }, + { + "start": 5760.32, + "end": 5762.06, + "probability": 0.9102 + }, + { + "start": 5762.6, + "end": 5763.65, + "probability": 0.9834 + }, + { + "start": 5764.56, + "end": 5765.68, + "probability": 0.9912 + }, + { + "start": 5765.88, + "end": 5767.56, + "probability": 0.9343 + }, + { + "start": 5768.12, + "end": 5769.62, + "probability": 0.8065 + }, + { + "start": 5770.12, + "end": 5770.74, + "probability": 0.9742 + }, + { + "start": 5771.26, + "end": 5772.94, + "probability": 0.9929 + }, + { + "start": 5773.02, + "end": 5773.66, + "probability": 0.7996 + }, + { + "start": 5774.2, + "end": 5778.22, + "probability": 0.9425 + }, + { + "start": 5778.74, + "end": 5779.18, + "probability": 0.9193 + }, + { + "start": 5779.62, + "end": 5781.36, + "probability": 0.4126 + }, + { + "start": 5781.54, + "end": 5785.96, + "probability": 0.8884 + }, + { + "start": 5786.22, + "end": 5788.62, + "probability": 0.8257 + }, + { + "start": 5789.49, + "end": 5791.32, + "probability": 0.9907 + }, + { + "start": 5791.88, + "end": 5793.9, + "probability": 0.9948 + }, + { + "start": 5794.08, + "end": 5797.9, + "probability": 0.9682 + }, + { + "start": 5798.44, + "end": 5799.4, + "probability": 0.9502 + }, + { + "start": 5799.5, + "end": 5802.67, + "probability": 0.9989 + }, + { + "start": 5803.66, + "end": 5804.88, + "probability": 0.9089 + }, + { + "start": 5804.98, + "end": 5807.3, + "probability": 0.9216 + }, + { + "start": 5807.78, + "end": 5808.14, + "probability": 0.8668 + }, + { + "start": 5808.68, + "end": 5809.72, + "probability": 0.855 + }, + { + "start": 5809.8, + "end": 5811.42, + "probability": 0.9951 + }, + { + "start": 5811.84, + "end": 5812.34, + "probability": 0.8517 + }, + { + "start": 5813.0, + "end": 5815.02, + "probability": 0.8042 + }, + { + "start": 5815.46, + "end": 5817.56, + "probability": 0.8331 + }, + { + "start": 5818.08, + "end": 5819.2, + "probability": 0.9883 + }, + { + "start": 5819.3, + "end": 5821.02, + "probability": 0.8777 + }, + { + "start": 5821.44, + "end": 5822.6, + "probability": 0.9622 + }, + { + "start": 5823.4, + "end": 5823.56, + "probability": 0.9653 + }, + { + "start": 5824.68, + "end": 5829.9, + "probability": 0.9084 + }, + { + "start": 5832.26, + "end": 5832.84, + "probability": 0.6418 + }, + { + "start": 5833.36, + "end": 5834.34, + "probability": 0.97 + }, + { + "start": 5834.62, + "end": 5835.32, + "probability": 0.6857 + }, + { + "start": 5835.9, + "end": 5837.92, + "probability": 0.9536 + }, + { + "start": 5838.16, + "end": 5842.12, + "probability": 0.9372 + }, + { + "start": 5842.58, + "end": 5843.42, + "probability": 0.9513 + }, + { + "start": 5843.94, + "end": 5845.04, + "probability": 0.8994 + }, + { + "start": 5845.06, + "end": 5847.52, + "probability": 0.9558 + }, + { + "start": 5847.52, + "end": 5850.36, + "probability": 0.7808 + }, + { + "start": 5851.18, + "end": 5856.1, + "probability": 0.9832 + }, + { + "start": 5856.52, + "end": 5858.26, + "probability": 0.8463 + }, + { + "start": 5858.74, + "end": 5860.14, + "probability": 0.7734 + }, + { + "start": 5860.98, + "end": 5863.42, + "probability": 0.8236 + }, + { + "start": 5863.56, + "end": 5864.98, + "probability": 0.7437 + }, + { + "start": 5865.46, + "end": 5868.58, + "probability": 0.9941 + }, + { + "start": 5869.2, + "end": 5872.3, + "probability": 0.8684 + }, + { + "start": 5872.3, + "end": 5875.06, + "probability": 0.9946 + }, + { + "start": 5875.64, + "end": 5877.68, + "probability": 0.9976 + }, + { + "start": 5878.08, + "end": 5879.64, + "probability": 0.807 + }, + { + "start": 5880.0, + "end": 5881.2, + "probability": 0.9326 + }, + { + "start": 5881.26, + "end": 5882.56, + "probability": 0.9891 + }, + { + "start": 5882.92, + "end": 5883.58, + "probability": 0.9322 + }, + { + "start": 5883.88, + "end": 5885.08, + "probability": 0.9951 + }, + { + "start": 5885.52, + "end": 5887.06, + "probability": 0.9675 + }, + { + "start": 5889.18, + "end": 5889.18, + "probability": 0.0586 + }, + { + "start": 5889.18, + "end": 5889.28, + "probability": 0.5177 + }, + { + "start": 5889.68, + "end": 5891.31, + "probability": 0.9062 + }, + { + "start": 5891.7, + "end": 5893.46, + "probability": 0.4514 + }, + { + "start": 5912.46, + "end": 5914.38, + "probability": 0.6614 + }, + { + "start": 5915.58, + "end": 5919.82, + "probability": 0.9299 + }, + { + "start": 5921.1, + "end": 5922.08, + "probability": 0.547 + }, + { + "start": 5922.2, + "end": 5922.9, + "probability": 0.8586 + }, + { + "start": 5923.02, + "end": 5925.66, + "probability": 0.7791 + }, + { + "start": 5925.82, + "end": 5931.7, + "probability": 0.9716 + }, + { + "start": 5931.76, + "end": 5932.52, + "probability": 0.7182 + }, + { + "start": 5932.6, + "end": 5937.18, + "probability": 0.9575 + }, + { + "start": 5937.98, + "end": 5938.5, + "probability": 0.6454 + }, + { + "start": 5940.02, + "end": 5942.1, + "probability": 0.8299 + }, + { + "start": 5942.76, + "end": 5943.37, + "probability": 0.8108 + }, + { + "start": 5944.5, + "end": 5947.16, + "probability": 0.9875 + }, + { + "start": 5947.82, + "end": 5950.66, + "probability": 0.9467 + }, + { + "start": 5951.36, + "end": 5955.06, + "probability": 0.8645 + }, + { + "start": 5955.58, + "end": 5957.36, + "probability": 0.9252 + }, + { + "start": 5959.18, + "end": 5963.78, + "probability": 0.8521 + }, + { + "start": 5964.4, + "end": 5964.86, + "probability": 0.822 + }, + { + "start": 5965.52, + "end": 5966.86, + "probability": 0.8218 + }, + { + "start": 5967.81, + "end": 5969.56, + "probability": 0.8756 + }, + { + "start": 5969.66, + "end": 5970.16, + "probability": 0.554 + }, + { + "start": 5970.68, + "end": 5970.68, + "probability": 0.0372 + }, + { + "start": 5970.68, + "end": 5973.1, + "probability": 0.6494 + }, + { + "start": 5975.58, + "end": 5975.8, + "probability": 0.8714 + }, + { + "start": 5976.34, + "end": 5976.99, + "probability": 0.7861 + }, + { + "start": 5978.9, + "end": 5980.22, + "probability": 0.913 + }, + { + "start": 5980.74, + "end": 5983.3, + "probability": 0.8693 + }, + { + "start": 5984.24, + "end": 5988.74, + "probability": 0.9667 + }, + { + "start": 5988.92, + "end": 5991.58, + "probability": 0.9561 + }, + { + "start": 5992.13, + "end": 5992.56, + "probability": 0.801 + }, + { + "start": 5992.6, + "end": 5993.88, + "probability": 0.9488 + }, + { + "start": 5993.96, + "end": 5994.56, + "probability": 0.9126 + }, + { + "start": 5994.9, + "end": 5997.48, + "probability": 0.8892 + }, + { + "start": 5998.02, + "end": 6001.62, + "probability": 0.6722 + }, + { + "start": 6002.2, + "end": 6004.68, + "probability": 0.9098 + }, + { + "start": 6005.24, + "end": 6005.92, + "probability": 0.9956 + }, + { + "start": 6009.34, + "end": 6012.6, + "probability": 0.7929 + }, + { + "start": 6012.82, + "end": 6012.82, + "probability": 0.9263 + }, + { + "start": 6012.82, + "end": 6014.31, + "probability": 0.3358 + }, + { + "start": 6015.56, + "end": 6017.8, + "probability": 0.858 + }, + { + "start": 6017.86, + "end": 6020.72, + "probability": 0.5454 + }, + { + "start": 6020.72, + "end": 6022.98, + "probability": 0.7836 + }, + { + "start": 6023.0, + "end": 6025.78, + "probability": 0.458 + }, + { + "start": 6026.06, + "end": 6027.6, + "probability": 0.9027 + }, + { + "start": 6028.42, + "end": 6030.68, + "probability": 0.9095 + }, + { + "start": 6031.22, + "end": 6035.34, + "probability": 0.7535 + }, + { + "start": 6036.0, + "end": 6038.54, + "probability": 0.7942 + }, + { + "start": 6039.84, + "end": 6042.1, + "probability": 0.5837 + }, + { + "start": 6043.22, + "end": 6053.08, + "probability": 0.9777 + }, + { + "start": 6053.6, + "end": 6057.18, + "probability": 0.7542 + }, + { + "start": 6057.9, + "end": 6061.44, + "probability": 0.6874 + }, + { + "start": 6061.52, + "end": 6066.6, + "probability": 0.9481 + }, + { + "start": 6069.32, + "end": 6072.0, + "probability": 0.8439 + }, + { + "start": 6072.82, + "end": 6074.06, + "probability": 0.9052 + }, + { + "start": 6074.94, + "end": 6078.32, + "probability": 0.5518 + }, + { + "start": 6079.12, + "end": 6080.24, + "probability": 0.7469 + }, + { + "start": 6080.96, + "end": 6087.66, + "probability": 0.6105 + }, + { + "start": 6088.08, + "end": 6088.91, + "probability": 0.7423 + }, + { + "start": 6090.26, + "end": 6091.32, + "probability": 0.3789 + }, + { + "start": 6091.42, + "end": 6094.62, + "probability": 0.9884 + }, + { + "start": 6095.38, + "end": 6096.58, + "probability": 0.374 + }, + { + "start": 6096.86, + "end": 6099.6, + "probability": 0.087 + }, + { + "start": 6099.72, + "end": 6104.76, + "probability": 0.7436 + }, + { + "start": 6104.86, + "end": 6109.96, + "probability": 0.7184 + }, + { + "start": 6110.52, + "end": 6111.18, + "probability": 0.3072 + }, + { + "start": 6111.8, + "end": 6113.58, + "probability": 0.8795 + }, + { + "start": 6113.68, + "end": 6116.46, + "probability": 0.9318 + }, + { + "start": 6117.1, + "end": 6122.0, + "probability": 0.7607 + }, + { + "start": 6122.82, + "end": 6123.92, + "probability": 0.6694 + }, + { + "start": 6124.8, + "end": 6125.9, + "probability": 0.4892 + }, + { + "start": 6126.08, + "end": 6129.16, + "probability": 0.8427 + }, + { + "start": 6129.58, + "end": 6130.12, + "probability": 0.7158 + }, + { + "start": 6130.66, + "end": 6131.32, + "probability": 0.6286 + }, + { + "start": 6131.85, + "end": 6132.78, + "probability": 0.7329 + }, + { + "start": 6133.46, + "end": 6135.52, + "probability": 0.8044 + }, + { + "start": 6135.6, + "end": 6136.42, + "probability": 0.9956 + }, + { + "start": 6137.1, + "end": 6138.48, + "probability": 0.964 + }, + { + "start": 6139.26, + "end": 6140.42, + "probability": 0.5743 + }, + { + "start": 6142.14, + "end": 6144.72, + "probability": 0.7032 + }, + { + "start": 6144.84, + "end": 6145.72, + "probability": 0.7818 + }, + { + "start": 6145.96, + "end": 6150.02, + "probability": 0.6606 + }, + { + "start": 6150.46, + "end": 6153.8, + "probability": 0.9136 + }, + { + "start": 6154.72, + "end": 6158.22, + "probability": 0.6819 + }, + { + "start": 6158.28, + "end": 6165.68, + "probability": 0.6652 + }, + { + "start": 6166.16, + "end": 6167.18, + "probability": 0.7369 + }, + { + "start": 6167.46, + "end": 6168.46, + "probability": 0.6721 + }, + { + "start": 6169.02, + "end": 6170.38, + "probability": 0.6631 + }, + { + "start": 6170.92, + "end": 6171.6, + "probability": 0.4419 + }, + { + "start": 6172.39, + "end": 6176.9, + "probability": 0.2482 + }, + { + "start": 6176.92, + "end": 6177.92, + "probability": 0.9297 + }, + { + "start": 6179.21, + "end": 6182.15, + "probability": 0.4968 + }, + { + "start": 6182.88, + "end": 6185.56, + "probability": 0.667 + }, + { + "start": 6185.64, + "end": 6188.62, + "probability": 0.8652 + }, + { + "start": 6188.98, + "end": 6192.54, + "probability": 0.7358 + }, + { + "start": 6192.54, + "end": 6194.9, + "probability": 0.7908 + }, + { + "start": 6195.2, + "end": 6197.86, + "probability": 0.3638 + }, + { + "start": 6197.96, + "end": 6198.22, + "probability": 0.1894 + }, + { + "start": 6198.22, + "end": 6198.5, + "probability": 0.2918 + }, + { + "start": 6198.58, + "end": 6204.88, + "probability": 0.7446 + }, + { + "start": 6204.88, + "end": 6209.2, + "probability": 0.9847 + }, + { + "start": 6209.52, + "end": 6211.12, + "probability": 0.6664 + }, + { + "start": 6211.5, + "end": 6216.06, + "probability": 0.6863 + }, + { + "start": 6216.56, + "end": 6217.62, + "probability": 0.9137 + }, + { + "start": 6217.68, + "end": 6220.28, + "probability": 0.9436 + }, + { + "start": 6220.66, + "end": 6224.74, + "probability": 0.8153 + }, + { + "start": 6225.1, + "end": 6226.86, + "probability": 0.9685 + }, + { + "start": 6226.86, + "end": 6228.84, + "probability": 0.7756 + }, + { + "start": 6229.78, + "end": 6234.11, + "probability": 0.7995 + }, + { + "start": 6234.98, + "end": 6239.62, + "probability": 0.8163 + }, + { + "start": 6240.16, + "end": 6242.22, + "probability": 0.9766 + }, + { + "start": 6242.76, + "end": 6244.12, + "probability": 0.8765 + }, + { + "start": 6244.68, + "end": 6245.82, + "probability": 0.5488 + }, + { + "start": 6246.2, + "end": 6250.56, + "probability": 0.0521 + }, + { + "start": 6250.56, + "end": 6252.1, + "probability": 0.4187 + }, + { + "start": 6252.54, + "end": 6252.99, + "probability": 0.769 + }, + { + "start": 6253.86, + "end": 6256.14, + "probability": 0.9702 + }, + { + "start": 6256.62, + "end": 6262.06, + "probability": 0.5001 + }, + { + "start": 6262.06, + "end": 6265.66, + "probability": 0.6692 + }, + { + "start": 6266.78, + "end": 6269.54, + "probability": 0.4798 + }, + { + "start": 6270.0, + "end": 6272.12, + "probability": 0.431 + }, + { + "start": 6272.76, + "end": 6276.76, + "probability": 0.6955 + }, + { + "start": 6277.38, + "end": 6281.04, + "probability": 0.916 + }, + { + "start": 6281.64, + "end": 6286.2, + "probability": 0.9746 + }, + { + "start": 6286.98, + "end": 6289.02, + "probability": 0.7153 + }, + { + "start": 6289.08, + "end": 6289.54, + "probability": 0.5468 + }, + { + "start": 6289.78, + "end": 6290.36, + "probability": 0.5152 + }, + { + "start": 6290.84, + "end": 6292.88, + "probability": 0.7896 + }, + { + "start": 6293.06, + "end": 6294.5, + "probability": 0.6857 + }, + { + "start": 6296.48, + "end": 6298.4, + "probability": 0.8684 + }, + { + "start": 6299.2, + "end": 6299.9, + "probability": 0.7421 + }, + { + "start": 6300.02, + "end": 6307.42, + "probability": 0.5962 + }, + { + "start": 6308.02, + "end": 6308.32, + "probability": 0.0413 + }, + { + "start": 6309.16, + "end": 6312.5, + "probability": 0.2619 + }, + { + "start": 6312.86, + "end": 6314.98, + "probability": 0.0873 + }, + { + "start": 6325.88, + "end": 6326.3, + "probability": 0.0102 + }, + { + "start": 6326.9, + "end": 6327.52, + "probability": 0.0002 + }, + { + "start": 6331.6, + "end": 6331.96, + "probability": 0.0 + }, + { + "start": 6332.92, + "end": 6335.18, + "probability": 0.04 + }, + { + "start": 6335.18, + "end": 6337.02, + "probability": 0.2052 + }, + { + "start": 6340.44, + "end": 6344.38, + "probability": 0.1305 + }, + { + "start": 6345.76, + "end": 6349.08, + "probability": 0.8058 + }, + { + "start": 6350.52, + "end": 6350.9, + "probability": 0.0692 + }, + { + "start": 6350.9, + "end": 6351.52, + "probability": 0.0413 + }, + { + "start": 6351.52, + "end": 6351.52, + "probability": 0.2381 + }, + { + "start": 6351.52, + "end": 6351.52, + "probability": 0.0931 + }, + { + "start": 6351.58, + "end": 6352.14, + "probability": 0.4882 + }, + { + "start": 6353.12, + "end": 6354.34, + "probability": 0.9517 + }, + { + "start": 6356.1, + "end": 6356.2, + "probability": 0.3131 + }, + { + "start": 6356.38, + "end": 6359.42, + "probability": 0.6274 + }, + { + "start": 6359.7, + "end": 6361.34, + "probability": 0.9943 + }, + { + "start": 6364.16, + "end": 6367.9, + "probability": 0.9966 + }, + { + "start": 6368.48, + "end": 6372.7, + "probability": 0.6434 + }, + { + "start": 6373.3, + "end": 6375.64, + "probability": 0.9604 + }, + { + "start": 6380.27, + "end": 6383.16, + "probability": 0.6136 + }, + { + "start": 6383.98, + "end": 6388.88, + "probability": 0.674 + }, + { + "start": 6390.7, + "end": 6391.32, + "probability": 0.0127 + }, + { + "start": 6391.8, + "end": 6392.42, + "probability": 0.2785 + }, + { + "start": 6392.84, + "end": 6397.62, + "probability": 0.9673 + }, + { + "start": 6398.42, + "end": 6401.64, + "probability": 0.9349 + }, + { + "start": 6403.7, + "end": 6404.92, + "probability": 0.942 + }, + { + "start": 6405.48, + "end": 6406.52, + "probability": 0.8466 + }, + { + "start": 6408.08, + "end": 6411.54, + "probability": 0.9956 + }, + { + "start": 6412.24, + "end": 6416.54, + "probability": 0.4531 + }, + { + "start": 6423.36, + "end": 6424.64, + "probability": 0.7941 + }, + { + "start": 6425.12, + "end": 6425.62, + "probability": 0.4137 + }, + { + "start": 6425.8, + "end": 6429.44, + "probability": 0.8464 + }, + { + "start": 6429.98, + "end": 6430.86, + "probability": 0.7064 + }, + { + "start": 6431.64, + "end": 6432.38, + "probability": 0.9932 + }, + { + "start": 6434.74, + "end": 6441.0, + "probability": 0.711 + }, + { + "start": 6454.4, + "end": 6455.3, + "probability": 0.4365 + }, + { + "start": 6467.32, + "end": 6473.48, + "probability": 0.0181 + }, + { + "start": 6474.82, + "end": 6479.4, + "probability": 0.0314 + }, + { + "start": 6479.4, + "end": 6481.28, + "probability": 0.0408 + }, + { + "start": 6493.86, + "end": 6496.1, + "probability": 0.0659 + }, + { + "start": 6499.0, + "end": 6501.88, + "probability": 0.1716 + }, + { + "start": 6504.72, + "end": 6507.82, + "probability": 0.0269 + }, + { + "start": 6507.92, + "end": 6511.94, + "probability": 0.2309 + }, + { + "start": 6514.36, + "end": 6515.8, + "probability": 0.1032 + }, + { + "start": 6515.9, + "end": 6518.78, + "probability": 0.0639 + }, + { + "start": 6519.68, + "end": 6520.56, + "probability": 0.0425 + }, + { + "start": 6523.52, + "end": 6523.96, + "probability": 0.0082 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.0, + "end": 6524.0, + "probability": 0.0 + }, + { + "start": 6524.14, + "end": 6524.32, + "probability": 0.0008 + }, + { + "start": 6524.32, + "end": 6526.94, + "probability": 0.6406 + }, + { + "start": 6526.96, + "end": 6530.46, + "probability": 0.999 + }, + { + "start": 6531.42, + "end": 6531.56, + "probability": 0.1445 + }, + { + "start": 6531.78, + "end": 6535.72, + "probability": 0.9628 + }, + { + "start": 6535.8, + "end": 6536.14, + "probability": 0.5986 + }, + { + "start": 6537.0, + "end": 6539.64, + "probability": 0.7228 + }, + { + "start": 6539.64, + "end": 6542.74, + "probability": 0.9695 + }, + { + "start": 6543.98, + "end": 6544.64, + "probability": 0.8119 + }, + { + "start": 6546.92, + "end": 6546.92, + "probability": 0.0003 + }, + { + "start": 6547.8, + "end": 6548.06, + "probability": 0.0 + }, + { + "start": 6549.04, + "end": 6553.28, + "probability": 0.9589 + }, + { + "start": 6567.5, + "end": 6571.82, + "probability": 0.9958 + }, + { + "start": 6572.06, + "end": 6572.62, + "probability": 0.3331 + }, + { + "start": 6573.18, + "end": 6577.9, + "probability": 0.0774 + }, + { + "start": 6578.96, + "end": 6582.92, + "probability": 0.2972 + }, + { + "start": 6582.92, + "end": 6583.34, + "probability": 0.4451 + }, + { + "start": 6584.8, + "end": 6587.02, + "probability": 0.1464 + }, + { + "start": 6587.02, + "end": 6587.38, + "probability": 0.1723 + }, + { + "start": 6591.26, + "end": 6602.68, + "probability": 0.0362 + }, + { + "start": 6603.2, + "end": 6606.42, + "probability": 0.3115 + }, + { + "start": 6607.14, + "end": 6607.56, + "probability": 0.0124 + }, + { + "start": 6608.04, + "end": 6615.48, + "probability": 0.0432 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.0, + "end": 6663.0, + "probability": 0.0 + }, + { + "start": 6663.12, + "end": 6663.12, + "probability": 0.3151 + }, + { + "start": 6663.12, + "end": 6663.12, + "probability": 0.0533 + }, + { + "start": 6663.12, + "end": 6664.38, + "probability": 0.031 + }, + { + "start": 6664.5, + "end": 6664.78, + "probability": 0.035 + }, + { + "start": 6664.98, + "end": 6665.68, + "probability": 0.9586 + }, + { + "start": 6669.38, + "end": 6669.48, + "probability": 0.6954 + }, + { + "start": 6676.12, + "end": 6678.32, + "probability": 0.6383 + }, + { + "start": 6679.8, + "end": 6681.88, + "probability": 0.9352 + }, + { + "start": 6681.88, + "end": 6684.34, + "probability": 0.9992 + }, + { + "start": 6686.26, + "end": 6686.26, + "probability": 0.8975 + }, + { + "start": 6687.34, + "end": 6691.56, + "probability": 0.952 + }, + { + "start": 6691.7, + "end": 6692.6, + "probability": 0.5684 + }, + { + "start": 6692.88, + "end": 6695.74, + "probability": 0.685 + }, + { + "start": 6696.2, + "end": 6696.3, + "probability": 0.8702 + }, + { + "start": 6696.58, + "end": 6700.74, + "probability": 0.8866 + }, + { + "start": 6701.32, + "end": 6703.26, + "probability": 0.6746 + }, + { + "start": 6703.84, + "end": 6708.42, + "probability": 0.9701 + }, + { + "start": 6709.74, + "end": 6714.28, + "probability": 0.611 + }, + { + "start": 6715.68, + "end": 6718.09, + "probability": 0.8169 + }, + { + "start": 6722.48, + "end": 6723.78, + "probability": 0.9235 + }, + { + "start": 6724.56, + "end": 6725.42, + "probability": 0.8626 + }, + { + "start": 6726.22, + "end": 6730.06, + "probability": 0.9856 + }, + { + "start": 6730.56, + "end": 6732.83, + "probability": 0.9949 + }, + { + "start": 6734.04, + "end": 6734.86, + "probability": 0.9239 + }, + { + "start": 6735.42, + "end": 6738.71, + "probability": 0.9306 + }, + { + "start": 6739.64, + "end": 6741.74, + "probability": 0.827 + }, + { + "start": 6741.76, + "end": 6742.04, + "probability": 0.8454 + }, + { + "start": 6742.54, + "end": 6743.18, + "probability": 0.9835 + }, + { + "start": 6744.62, + "end": 6745.1, + "probability": 0.6803 + }, + { + "start": 6748.4, + "end": 6749.02, + "probability": 0.5916 + }, + { + "start": 6749.82, + "end": 6752.56, + "probability": 0.5552 + }, + { + "start": 6755.6, + "end": 6756.72, + "probability": 0.0066 + }, + { + "start": 6759.48, + "end": 6762.42, + "probability": 0.665 + }, + { + "start": 6762.96, + "end": 6764.8, + "probability": 0.8953 + }, + { + "start": 6765.3, + "end": 6766.14, + "probability": 0.0443 + }, + { + "start": 6767.87, + "end": 6775.33, + "probability": 0.0447 + }, + { + "start": 6777.04, + "end": 6778.78, + "probability": 0.0032 + }, + { + "start": 6783.6, + "end": 6788.98, + "probability": 0.0327 + }, + { + "start": 6788.98, + "end": 6791.2, + "probability": 0.0364 + }, + { + "start": 6791.78, + "end": 6792.3, + "probability": 0.0946 + }, + { + "start": 6793.91, + "end": 6794.76, + "probability": 0.0537 + }, + { + "start": 6796.9, + "end": 6797.58, + "probability": 0.4167 + }, + { + "start": 6798.8, + "end": 6803.62, + "probability": 0.0563 + }, + { + "start": 6807.88, + "end": 6808.54, + "probability": 0.031 + }, + { + "start": 6816.54, + "end": 6818.18, + "probability": 0.0802 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.0, + "end": 6829.0, + "probability": 0.0 + }, + { + "start": 6829.4, + "end": 6831.5, + "probability": 0.141 + }, + { + "start": 6832.88, + "end": 6835.36, + "probability": 0.847 + }, + { + "start": 6836.4, + "end": 6838.22, + "probability": 0.5367 + }, + { + "start": 6838.4, + "end": 6842.7, + "probability": 0.5299 + }, + { + "start": 6842.82, + "end": 6846.45, + "probability": 0.6798 + }, + { + "start": 6847.28, + "end": 6847.54, + "probability": 0.7802 + }, + { + "start": 6847.64, + "end": 6848.04, + "probability": 0.5634 + }, + { + "start": 6848.2, + "end": 6849.22, + "probability": 0.7782 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.0, + "end": 6960.0, + "probability": 0.0 + }, + { + "start": 6960.14, + "end": 6961.16, + "probability": 0.028 + }, + { + "start": 6962.2, + "end": 6965.04, + "probability": 0.0392 + }, + { + "start": 6966.34, + "end": 6966.46, + "probability": 0.1431 + }, + { + "start": 6975.02, + "end": 6975.46, + "probability": 0.0005 + }, + { + "start": 6976.84, + "end": 6978.46, + "probability": 0.0172 + }, + { + "start": 6979.66, + "end": 6984.08, + "probability": 0.0394 + }, + { + "start": 6984.08, + "end": 6987.48, + "probability": 0.0264 + }, + { + "start": 6988.47, + "end": 6990.5, + "probability": 0.1029 + }, + { + "start": 6992.38, + "end": 6995.3, + "probability": 0.0361 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7104.0, + "end": 7104.0, + "probability": 0.0 + }, + { + "start": 7105.6, + "end": 7108.64, + "probability": 0.0126 + }, + { + "start": 7108.64, + "end": 7109.14, + "probability": 0.0246 + }, + { + "start": 7111.12, + "end": 7111.82, + "probability": 0.0 + }, + { + "start": 7114.71, + "end": 7115.99, + "probability": 0.0304 + }, + { + "start": 7116.04, + "end": 7120.16, + "probability": 0.0333 + }, + { + "start": 7120.89, + "end": 7121.25, + "probability": 0.0307 + }, + { + "start": 7121.52, + "end": 7122.56, + "probability": 0.306 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.0, + "end": 7229.0, + "probability": 0.0 + }, + { + "start": 7229.42, + "end": 7231.46, + "probability": 0.0539 + }, + { + "start": 7231.46, + "end": 7231.52, + "probability": 0.0439 + }, + { + "start": 7231.52, + "end": 7232.06, + "probability": 0.0157 + }, + { + "start": 7233.28, + "end": 7233.8, + "probability": 0.0157 + }, + { + "start": 7237.48, + "end": 7239.48, + "probability": 0.0646 + }, + { + "start": 7239.5, + "end": 7240.44, + "probability": 0.0635 + }, + { + "start": 7240.46, + "end": 7244.52, + "probability": 0.0321 + }, + { + "start": 7244.52, + "end": 7244.52, + "probability": 0.0475 + }, + { + "start": 7244.52, + "end": 7244.52, + "probability": 0.0673 + }, + { + "start": 7246.44, + "end": 7250.5, + "probability": 0.3118 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7358.0, + "end": 7358.0, + "probability": 0.0 + }, + { + "start": 7367.5, + "end": 7369.62, + "probability": 0.562 + }, + { + "start": 7371.34, + "end": 7372.2, + "probability": 0.3637 + }, + { + "start": 7372.84, + "end": 7374.0, + "probability": 0.8276 + }, + { + "start": 7376.3, + "end": 7376.32, + "probability": 0.0171 + }, + { + "start": 7376.32, + "end": 7376.92, + "probability": 0.6275 + }, + { + "start": 7377.38, + "end": 7378.26, + "probability": 0.9497 + }, + { + "start": 7378.32, + "end": 7380.44, + "probability": 0.5396 + }, + { + "start": 7380.54, + "end": 7380.68, + "probability": 0.291 + }, + { + "start": 7380.78, + "end": 7381.4, + "probability": 0.4169 + }, + { + "start": 7381.48, + "end": 7381.98, + "probability": 0.5807 + }, + { + "start": 7382.5, + "end": 7383.12, + "probability": 0.7749 + }, + { + "start": 7384.32, + "end": 7385.2, + "probability": 0.7291 + }, + { + "start": 7385.88, + "end": 7388.72, + "probability": 0.8506 + }, + { + "start": 7390.16, + "end": 7393.18, + "probability": 0.6253 + }, + { + "start": 7394.42, + "end": 7396.48, + "probability": 0.7109 + }, + { + "start": 7401.58, + "end": 7406.4, + "probability": 0.0588 + }, + { + "start": 7407.5, + "end": 7413.16, + "probability": 0.0179 + }, + { + "start": 7421.04, + "end": 7424.38, + "probability": 0.1982 + }, + { + "start": 7425.22, + "end": 7428.98, + "probability": 0.0919 + }, + { + "start": 7430.5, + "end": 7431.12, + "probability": 0.0743 + }, + { + "start": 7434.18, + "end": 7436.96, + "probability": 0.1514 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.0, + "end": 7507.0, + "probability": 0.0 + }, + { + "start": 7507.18, + "end": 7507.18, + "probability": 0.138 + }, + { + "start": 7507.18, + "end": 7507.54, + "probability": 0.4381 + }, + { + "start": 7508.34, + "end": 7518.28, + "probability": 0.9161 + }, + { + "start": 7518.36, + "end": 7518.76, + "probability": 0.3929 + }, + { + "start": 7518.92, + "end": 7519.18, + "probability": 0.9309 + }, + { + "start": 7519.4, + "end": 7524.42, + "probability": 0.9846 + }, + { + "start": 7524.62, + "end": 7525.64, + "probability": 0.6739 + }, + { + "start": 7526.24, + "end": 7527.8, + "probability": 0.6672 + }, + { + "start": 7527.92, + "end": 7530.06, + "probability": 0.9883 + }, + { + "start": 7530.94, + "end": 7534.9, + "probability": 0.9514 + }, + { + "start": 7535.46, + "end": 7537.46, + "probability": 0.9775 + }, + { + "start": 7538.58, + "end": 7540.42, + "probability": 0.995 + }, + { + "start": 7541.3, + "end": 7541.6, + "probability": 0.6997 + }, + { + "start": 7541.68, + "end": 7546.38, + "probability": 0.821 + }, + { + "start": 7546.62, + "end": 7550.0, + "probability": 0.9836 + }, + { + "start": 7551.78, + "end": 7554.42, + "probability": 0.5364 + }, + { + "start": 7554.56, + "end": 7558.38, + "probability": 0.6584 + }, + { + "start": 7558.52, + "end": 7559.45, + "probability": 0.7633 + }, + { + "start": 7559.82, + "end": 7561.42, + "probability": 0.7328 + }, + { + "start": 7561.66, + "end": 7563.0, + "probability": 0.896 + }, + { + "start": 7563.04, + "end": 7564.04, + "probability": 0.8845 + }, + { + "start": 7564.04, + "end": 7565.26, + "probability": 0.5656 + }, + { + "start": 7565.4, + "end": 7567.26, + "probability": 0.6799 + }, + { + "start": 7567.64, + "end": 7567.78, + "probability": 0.7492 + }, + { + "start": 7568.88, + "end": 7573.14, + "probability": 0.7961 + }, + { + "start": 7573.74, + "end": 7575.24, + "probability": 0.9507 + }, + { + "start": 7575.9, + "end": 7576.32, + "probability": 0.4691 + }, + { + "start": 7576.34, + "end": 7577.48, + "probability": 0.7437 + }, + { + "start": 7587.44, + "end": 7588.64, + "probability": 0.0283 + }, + { + "start": 7588.64, + "end": 7589.44, + "probability": 0.006 + }, + { + "start": 7598.89, + "end": 7600.15, + "probability": 0.0179 + }, + { + "start": 7603.32, + "end": 7604.42, + "probability": 0.0257 + }, + { + "start": 7604.42, + "end": 7606.69, + "probability": 0.0498 + }, + { + "start": 7607.78, + "end": 7611.68, + "probability": 0.0873 + }, + { + "start": 7612.86, + "end": 7613.66, + "probability": 0.2169 + }, + { + "start": 7632.23, + "end": 7645.2, + "probability": 0.0443 + }, + { + "start": 7646.66, + "end": 7648.14, + "probability": 0.2473 + }, + { + "start": 7648.24, + "end": 7648.8, + "probability": 0.0918 + }, + { + "start": 7648.8, + "end": 7648.98, + "probability": 0.1276 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.0, + "end": 7649.0, + "probability": 0.0 + }, + { + "start": 7649.12, + "end": 7654.7, + "probability": 0.4898 + }, + { + "start": 7655.34, + "end": 7656.8, + "probability": 0.8076 + }, + { + "start": 7657.72, + "end": 7660.54, + "probability": 0.5587 + }, + { + "start": 7662.24, + "end": 7662.96, + "probability": 0.942 + }, + { + "start": 7663.8, + "end": 7664.36, + "probability": 0.9274 + }, + { + "start": 7665.22, + "end": 7665.32, + "probability": 0.1433 + }, + { + "start": 7668.2, + "end": 7668.58, + "probability": 0.3985 + }, + { + "start": 7669.99, + "end": 7672.44, + "probability": 0.7852 + }, + { + "start": 7673.04, + "end": 7673.52, + "probability": 0.0512 + }, + { + "start": 7673.58, + "end": 7673.58, + "probability": 0.4433 + }, + { + "start": 7673.8, + "end": 7674.56, + "probability": 0.807 + }, + { + "start": 7674.76, + "end": 7679.04, + "probability": 0.6453 + }, + { + "start": 7679.6, + "end": 7681.42, + "probability": 0.9473 + }, + { + "start": 7683.87, + "end": 7685.8, + "probability": 0.8585 + }, + { + "start": 7686.62, + "end": 7688.81, + "probability": 0.0134 + }, + { + "start": 7691.54, + "end": 7692.34, + "probability": 0.0044 + }, + { + "start": 7694.78, + "end": 7695.66, + "probability": 0.0 + }, + { + "start": 7702.06, + "end": 7705.16, + "probability": 0.0846 + }, + { + "start": 7705.42, + "end": 7710.42, + "probability": 0.0529 + }, + { + "start": 7710.74, + "end": 7712.54, + "probability": 0.15 + }, + { + "start": 7713.43, + "end": 7715.27, + "probability": 0.0268 + }, + { + "start": 7715.54, + "end": 7719.04, + "probability": 0.0317 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7783.0, + "end": 7783.0, + "probability": 0.0 + }, + { + "start": 7788.48, + "end": 7790.52, + "probability": 0.8065 + }, + { + "start": 7790.68, + "end": 7792.2, + "probability": 0.637 + }, + { + "start": 7793.26, + "end": 7800.9, + "probability": 0.9678 + }, + { + "start": 7801.1, + "end": 7801.28, + "probability": 0.4109 + }, + { + "start": 7801.38, + "end": 7803.28, + "probability": 0.875 + }, + { + "start": 7803.86, + "end": 7805.38, + "probability": 0.8309 + }, + { + "start": 7805.46, + "end": 7807.86, + "probability": 0.6155 + }, + { + "start": 7807.86, + "end": 7810.06, + "probability": 0.9218 + }, + { + "start": 7810.12, + "end": 7811.36, + "probability": 0.7877 + }, + { + "start": 7811.92, + "end": 7814.52, + "probability": 0.7701 + }, + { + "start": 7815.04, + "end": 7817.14, + "probability": 0.7721 + }, + { + "start": 7817.5, + "end": 7820.7, + "probability": 0.7533 + }, + { + "start": 7821.56, + "end": 7823.98, + "probability": 0.9657 + }, + { + "start": 7824.08, + "end": 7827.2, + "probability": 0.9707 + }, + { + "start": 7828.2, + "end": 7830.94, + "probability": 0.9006 + }, + { + "start": 7830.94, + "end": 7836.16, + "probability": 0.9348 + }, + { + "start": 7836.82, + "end": 7839.08, + "probability": 0.7743 + }, + { + "start": 7840.08, + "end": 7842.24, + "probability": 0.8184 + }, + { + "start": 7842.71, + "end": 7845.56, + "probability": 0.9557 + }, + { + "start": 7846.24, + "end": 7848.42, + "probability": 0.9252 + }, + { + "start": 7848.42, + "end": 7852.84, + "probability": 0.9965 + }, + { + "start": 7853.38, + "end": 7853.82, + "probability": 0.7725 + }, + { + "start": 7855.3, + "end": 7857.4, + "probability": 0.6165 + }, + { + "start": 7859.4, + "end": 7861.64, + "probability": 0.3631 + }, + { + "start": 7861.76, + "end": 7862.02, + "probability": 0.3031 + }, + { + "start": 7862.2, + "end": 7863.9, + "probability": 0.8394 + }, + { + "start": 7864.02, + "end": 7864.66, + "probability": 0.9851 + }, + { + "start": 7865.14, + "end": 7867.28, + "probability": 0.7892 + }, + { + "start": 7867.98, + "end": 7868.92, + "probability": 0.8796 + }, + { + "start": 7869.6, + "end": 7870.98, + "probability": 0.3434 + }, + { + "start": 7871.94, + "end": 7874.6, + "probability": 0.8559 + }, + { + "start": 7875.82, + "end": 7882.14, + "probability": 0.4928 + }, + { + "start": 7892.86, + "end": 7892.86, + "probability": 0.0594 + }, + { + "start": 7894.64, + "end": 7896.98, + "probability": 0.0129 + }, + { + "start": 7897.62, + "end": 7898.6, + "probability": 0.0134 + }, + { + "start": 7898.6, + "end": 7905.69, + "probability": 0.0717 + }, + { + "start": 7909.94, + "end": 7911.82, + "probability": 0.1473 + }, + { + "start": 7924.3, + "end": 7929.48, + "probability": 0.0647 + }, + { + "start": 7929.48, + "end": 7929.64, + "probability": 0.1887 + }, + { + "start": 7930.6, + "end": 7935.0, + "probability": 0.1096 + }, + { + "start": 7935.0, + "end": 7938.42, + "probability": 0.0485 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7959.0, + "end": 7959.0, + "probability": 0.0 + }, + { + "start": 7960.79, + "end": 7963.9, + "probability": 0.8989 + }, + { + "start": 7963.94, + "end": 7966.6, + "probability": 0.8123 + }, + { + "start": 7967.4, + "end": 7970.27, + "probability": 0.8511 + }, + { + "start": 7970.96, + "end": 7972.5, + "probability": 0.961 + }, + { + "start": 7973.5, + "end": 7975.88, + "probability": 0.8499 + }, + { + "start": 7979.46, + "end": 7980.6, + "probability": 0.0978 + }, + { + "start": 7980.68, + "end": 7981.2, + "probability": 0.8136 + }, + { + "start": 7988.82, + "end": 7989.48, + "probability": 0.6926 + }, + { + "start": 7990.58, + "end": 7991.46, + "probability": 0.6904 + }, + { + "start": 7992.78, + "end": 7994.9, + "probability": 0.5604 + }, + { + "start": 7995.74, + "end": 7999.88, + "probability": 0.8652 + }, + { + "start": 8000.88, + "end": 8003.38, + "probability": 0.9135 + }, + { + "start": 8004.22, + "end": 8007.28, + "probability": 0.8017 + }, + { + "start": 8007.3, + "end": 8009.5, + "probability": 0.8206 + }, + { + "start": 8010.62, + "end": 8012.5, + "probability": 0.9832 + }, + { + "start": 8013.48, + "end": 8015.34, + "probability": 0.7782 + }, + { + "start": 8015.34, + "end": 8016.22, + "probability": 0.4514 + }, + { + "start": 8016.34, + "end": 8018.54, + "probability": 0.5521 + }, + { + "start": 8018.6, + "end": 8021.14, + "probability": 0.7594 + }, + { + "start": 8022.2, + "end": 8024.0, + "probability": 0.8091 + }, + { + "start": 8025.04, + "end": 8025.14, + "probability": 0.2775 + }, + { + "start": 8025.66, + "end": 8028.16, + "probability": 0.9988 + }, + { + "start": 8028.16, + "end": 8033.32, + "probability": 0.9976 + }, + { + "start": 8033.84, + "end": 8037.72, + "probability": 0.833 + }, + { + "start": 8038.32, + "end": 8039.62, + "probability": 0.8686 + }, + { + "start": 8039.84, + "end": 8040.64, + "probability": 0.9182 + }, + { + "start": 8041.0, + "end": 8041.64, + "probability": 0.8954 + }, + { + "start": 8041.98, + "end": 8047.0, + "probability": 0.9911 + }, + { + "start": 8047.22, + "end": 8047.96, + "probability": 0.5534 + }, + { + "start": 8048.58, + "end": 8049.08, + "probability": 0.9319 + }, + { + "start": 8049.28, + "end": 8049.5, + "probability": 0.8859 + }, + { + "start": 8049.8, + "end": 8052.46, + "probability": 0.8408 + }, + { + "start": 8052.98, + "end": 8054.86, + "probability": 0.6797 + }, + { + "start": 8055.48, + "end": 8056.8, + "probability": 0.7862 + }, + { + "start": 8056.96, + "end": 8057.87, + "probability": 0.834 + }, + { + "start": 8058.46, + "end": 8061.28, + "probability": 0.9871 + }, + { + "start": 8061.88, + "end": 8062.52, + "probability": 0.9404 + }, + { + "start": 8063.42, + "end": 8066.22, + "probability": 0.9956 + }, + { + "start": 8066.62, + "end": 8066.9, + "probability": 0.8926 + }, + { + "start": 8066.94, + "end": 8067.58, + "probability": 0.7693 + }, + { + "start": 8067.7, + "end": 8070.84, + "probability": 0.5385 + }, + { + "start": 8071.86, + "end": 8073.82, + "probability": 0.0219 + }, + { + "start": 8074.34, + "end": 8077.74, + "probability": 0.9634 + }, + { + "start": 8077.92, + "end": 8078.78, + "probability": 0.8008 + }, + { + "start": 8089.22, + "end": 8091.9, + "probability": 0.3104 + }, + { + "start": 8092.12, + "end": 8092.22, + "probability": 0.1288 + }, + { + "start": 8093.76, + "end": 8094.42, + "probability": 0.6182 + }, + { + "start": 8095.1, + "end": 8096.14, + "probability": 0.8701 + }, + { + "start": 8096.36, + "end": 8096.76, + "probability": 0.4435 + }, + { + "start": 8096.76, + "end": 8099.06, + "probability": 0.906 + }, + { + "start": 8099.56, + "end": 8100.0, + "probability": 0.4197 + }, + { + "start": 8100.78, + "end": 8102.18, + "probability": 0.0415 + }, + { + "start": 8102.4, + "end": 8104.18, + "probability": 0.7568 + }, + { + "start": 8104.88, + "end": 8107.45, + "probability": 0.8003 + }, + { + "start": 8107.68, + "end": 8107.86, + "probability": 0.0139 + }, + { + "start": 8111.18, + "end": 8111.28, + "probability": 0.0013 + }, + { + "start": 8112.14, + "end": 8112.4, + "probability": 0.0052 + }, + { + "start": 8112.4, + "end": 8115.7, + "probability": 0.1327 + }, + { + "start": 8115.7, + "end": 8115.7, + "probability": 0.266 + }, + { + "start": 8115.7, + "end": 8115.7, + "probability": 0.2957 + }, + { + "start": 8115.7, + "end": 8115.7, + "probability": 0.4243 + }, + { + "start": 8115.7, + "end": 8115.7, + "probability": 0.457 + }, + { + "start": 8115.7, + "end": 8115.7, + "probability": 0.5022 + }, + { + "start": 8115.7, + "end": 8115.7, + "probability": 0.5401 + }, + { + "start": 8115.7, + "end": 8115.7, + "probability": 0.3454 + }, + { + "start": 8115.7, + "end": 8117.05, + "probability": 0.2788 + }, + { + "start": 8118.72, + "end": 8120.6, + "probability": 0.9092 + }, + { + "start": 8120.86, + "end": 8121.38, + "probability": 0.6662 + }, + { + "start": 8122.88, + "end": 8126.72, + "probability": 0.6862 + }, + { + "start": 8129.94, + "end": 8129.94, + "probability": 0.1504 + }, + { + "start": 8129.94, + "end": 8131.28, + "probability": 0.0963 + }, + { + "start": 8133.7, + "end": 8137.02, + "probability": 0.9381 + }, + { + "start": 8138.1, + "end": 8138.92, + "probability": 0.9982 + }, + { + "start": 8139.86, + "end": 8141.44, + "probability": 0.9722 + }, + { + "start": 8142.88, + "end": 8145.28, + "probability": 0.6805 + }, + { + "start": 8147.8, + "end": 8149.59, + "probability": 0.7521 + }, + { + "start": 8152.14, + "end": 8153.14, + "probability": 0.9787 + }, + { + "start": 8154.96, + "end": 8157.66, + "probability": 0.9828 + }, + { + "start": 8158.58, + "end": 8159.56, + "probability": 0.844 + }, + { + "start": 8162.24, + "end": 8163.74, + "probability": 0.9894 + }, + { + "start": 8164.7, + "end": 8167.78, + "probability": 0.8794 + }, + { + "start": 8167.96, + "end": 8168.8, + "probability": 0.9922 + }, + { + "start": 8171.68, + "end": 8171.72, + "probability": 0.0435 + }, + { + "start": 8171.72, + "end": 8174.12, + "probability": 0.9613 + }, + { + "start": 8174.46, + "end": 8176.65, + "probability": 0.1174 + }, + { + "start": 8177.34, + "end": 8177.94, + "probability": 0.5842 + }, + { + "start": 8178.52, + "end": 8179.4, + "probability": 0.5665 + }, + { + "start": 8184.08, + "end": 8184.26, + "probability": 0.0654 + }, + { + "start": 8186.66, + "end": 8188.82, + "probability": 0.7828 + }, + { + "start": 8189.52, + "end": 8190.76, + "probability": 0.9722 + }, + { + "start": 8191.74, + "end": 8192.04, + "probability": 0.6072 + }, + { + "start": 8192.16, + "end": 8192.82, + "probability": 0.5966 + }, + { + "start": 8193.14, + "end": 8194.34, + "probability": 0.3926 + }, + { + "start": 8194.52, + "end": 8195.58, + "probability": 0.3706 + }, + { + "start": 8195.76, + "end": 8196.74, + "probability": 0.8592 + }, + { + "start": 8196.9, + "end": 8197.4, + "probability": 0.9728 + }, + { + "start": 8200.26, + "end": 8203.08, + "probability": 0.9748 + }, + { + "start": 8203.68, + "end": 8209.0, + "probability": 0.9272 + }, + { + "start": 8210.0, + "end": 8211.8, + "probability": 0.9078 + }, + { + "start": 8213.66, + "end": 8217.08, + "probability": 0.9013 + }, + { + "start": 8217.38, + "end": 8218.72, + "probability": 0.957 + }, + { + "start": 8219.46, + "end": 8223.06, + "probability": 0.952 + }, + { + "start": 8223.34, + "end": 8225.04, + "probability": 0.8827 + }, + { + "start": 8225.2, + "end": 8227.22, + "probability": 0.9812 + }, + { + "start": 8228.14, + "end": 8232.62, + "probability": 0.938 + }, + { + "start": 8232.62, + "end": 8236.21, + "probability": 0.9553 + }, + { + "start": 8237.51, + "end": 8239.3, + "probability": 0.9932 + }, + { + "start": 8240.5, + "end": 8242.74, + "probability": 0.8863 + }, + { + "start": 8243.36, + "end": 8247.9, + "probability": 0.9535 + }, + { + "start": 8248.8, + "end": 8249.66, + "probability": 0.8572 + }, + { + "start": 8249.96, + "end": 8251.8, + "probability": 0.949 + }, + { + "start": 8252.0, + "end": 8253.3, + "probability": 0.971 + }, + { + "start": 8254.0, + "end": 8254.66, + "probability": 0.5503 + }, + { + "start": 8254.78, + "end": 8255.6, + "probability": 0.9731 + }, + { + "start": 8255.7, + "end": 8256.88, + "probability": 0.9908 + }, + { + "start": 8256.98, + "end": 8257.64, + "probability": 0.9456 + }, + { + "start": 8257.74, + "end": 8258.38, + "probability": 0.9219 + }, + { + "start": 8258.46, + "end": 8259.24, + "probability": 0.8469 + }, + { + "start": 8259.34, + "end": 8261.64, + "probability": 0.9893 + }, + { + "start": 8262.46, + "end": 8266.28, + "probability": 0.973 + }, + { + "start": 8266.4, + "end": 8267.32, + "probability": 0.9495 + }, + { + "start": 8267.52, + "end": 8270.76, + "probability": 0.9725 + }, + { + "start": 8270.8, + "end": 8272.21, + "probability": 0.998 + }, + { + "start": 8272.64, + "end": 8274.84, + "probability": 0.929 + }, + { + "start": 8275.62, + "end": 8277.32, + "probability": 0.7934 + }, + { + "start": 8278.5, + "end": 8279.56, + "probability": 0.2675 + }, + { + "start": 8279.74, + "end": 8280.72, + "probability": 0.8467 + }, + { + "start": 8280.8, + "end": 8281.5, + "probability": 0.8965 + }, + { + "start": 8281.58, + "end": 8282.1, + "probability": 0.9639 + }, + { + "start": 8282.2, + "end": 8282.71, + "probability": 0.8611 + }, + { + "start": 8282.94, + "end": 8289.46, + "probability": 0.9858 + }, + { + "start": 8290.54, + "end": 8297.12, + "probability": 0.9886 + }, + { + "start": 8297.68, + "end": 8298.52, + "probability": 0.9178 + }, + { + "start": 8300.69, + "end": 8302.9, + "probability": 0.8853 + }, + { + "start": 8303.06, + "end": 8305.48, + "probability": 0.7421 + }, + { + "start": 8305.48, + "end": 8307.68, + "probability": 0.9969 + }, + { + "start": 8308.6, + "end": 8310.3, + "probability": 0.9521 + }, + { + "start": 8311.1, + "end": 8312.56, + "probability": 0.9694 + }, + { + "start": 8312.78, + "end": 8314.37, + "probability": 0.9972 + }, + { + "start": 8315.12, + "end": 8318.1, + "probability": 0.9912 + }, + { + "start": 8318.48, + "end": 8318.78, + "probability": 0.4892 + }, + { + "start": 8318.96, + "end": 8321.82, + "probability": 0.9379 + }, + { + "start": 8321.92, + "end": 8325.2, + "probability": 0.9177 + }, + { + "start": 8325.54, + "end": 8326.18, + "probability": 0.942 + }, + { + "start": 8326.24, + "end": 8326.64, + "probability": 0.726 + }, + { + "start": 8326.72, + "end": 8327.82, + "probability": 0.949 + }, + { + "start": 8328.28, + "end": 8329.62, + "probability": 0.9714 + }, + { + "start": 8330.3, + "end": 8332.36, + "probability": 0.9893 + }, + { + "start": 8332.46, + "end": 8334.38, + "probability": 0.9627 + }, + { + "start": 8334.46, + "end": 8335.23, + "probability": 0.671 + }, + { + "start": 8335.32, + "end": 8335.7, + "probability": 0.7826 + }, + { + "start": 8335.78, + "end": 8336.3, + "probability": 0.8358 + }, + { + "start": 8336.38, + "end": 8339.98, + "probability": 0.9889 + }, + { + "start": 8340.1, + "end": 8341.1, + "probability": 0.7212 + }, + { + "start": 8341.2, + "end": 8341.7, + "probability": 0.9379 + }, + { + "start": 8341.76, + "end": 8343.96, + "probability": 0.9922 + }, + { + "start": 8343.96, + "end": 8346.9, + "probability": 0.7734 + }, + { + "start": 8346.96, + "end": 8347.76, + "probability": 0.6774 + }, + { + "start": 8348.88, + "end": 8349.12, + "probability": 0.0179 + }, + { + "start": 8349.12, + "end": 8350.64, + "probability": 0.7915 + }, + { + "start": 8350.7, + "end": 8350.72, + "probability": 0.3955 + }, + { + "start": 8350.72, + "end": 8351.12, + "probability": 0.7918 + }, + { + "start": 8351.14, + "end": 8352.06, + "probability": 0.7058 + }, + { + "start": 8352.12, + "end": 8355.38, + "probability": 0.894 + }, + { + "start": 8355.76, + "end": 8356.94, + "probability": 0.8643 + }, + { + "start": 8357.0, + "end": 8358.88, + "probability": 0.8451 + }, + { + "start": 8359.12, + "end": 8359.56, + "probability": 0.691 + }, + { + "start": 8359.6, + "end": 8361.58, + "probability": 0.9011 + }, + { + "start": 8361.7, + "end": 8363.34, + "probability": 0.9802 + }, + { + "start": 8364.46, + "end": 8365.34, + "probability": 0.9395 + }, + { + "start": 8365.42, + "end": 8366.12, + "probability": 0.8604 + }, + { + "start": 8366.2, + "end": 8368.9, + "probability": 0.9993 + }, + { + "start": 8369.54, + "end": 8370.08, + "probability": 0.9072 + }, + { + "start": 8371.16, + "end": 8373.38, + "probability": 0.5458 + }, + { + "start": 8373.5, + "end": 8373.84, + "probability": 0.79 + }, + { + "start": 8373.9, + "end": 8375.52, + "probability": 0.8771 + }, + { + "start": 8375.86, + "end": 8377.29, + "probability": 0.8384 + }, + { + "start": 8377.56, + "end": 8377.94, + "probability": 0.6901 + }, + { + "start": 8378.78, + "end": 8382.98, + "probability": 0.9227 + }, + { + "start": 8383.04, + "end": 8383.8, + "probability": 0.8936 + }, + { + "start": 8384.19, + "end": 8389.48, + "probability": 0.9976 + }, + { + "start": 8390.44, + "end": 8391.98, + "probability": 0.5781 + }, + { + "start": 8393.86, + "end": 8398.46, + "probability": 0.9933 + }, + { + "start": 8399.02, + "end": 8400.1, + "probability": 0.9834 + }, + { + "start": 8400.7, + "end": 8402.38, + "probability": 0.8805 + }, + { + "start": 8403.12, + "end": 8405.26, + "probability": 0.9791 + }, + { + "start": 8405.58, + "end": 8406.92, + "probability": 0.6795 + }, + { + "start": 8407.0, + "end": 8408.56, + "probability": 0.9758 + }, + { + "start": 8408.74, + "end": 8409.18, + "probability": 0.9041 + }, + { + "start": 8409.62, + "end": 8411.38, + "probability": 0.9634 + }, + { + "start": 8412.5, + "end": 8414.06, + "probability": 0.9781 + }, + { + "start": 8414.22, + "end": 8415.08, + "probability": 0.7561 + }, + { + "start": 8415.28, + "end": 8419.54, + "probability": 0.9717 + }, + { + "start": 8419.54, + "end": 8422.78, + "probability": 0.9995 + }, + { + "start": 8423.38, + "end": 8423.86, + "probability": 0.3906 + }, + { + "start": 8423.9, + "end": 8425.5, + "probability": 0.6074 + }, + { + "start": 8425.62, + "end": 8426.08, + "probability": 0.6431 + }, + { + "start": 8426.14, + "end": 8428.4, + "probability": 0.9204 + }, + { + "start": 8428.96, + "end": 8430.86, + "probability": 0.9339 + }, + { + "start": 8431.88, + "end": 8432.48, + "probability": 0.3144 + }, + { + "start": 8434.28, + "end": 8437.04, + "probability": 0.7785 + }, + { + "start": 8437.7, + "end": 8442.56, + "probability": 0.8343 + }, + { + "start": 8443.46, + "end": 8444.74, + "probability": 0.985 + }, + { + "start": 8445.74, + "end": 8452.4, + "probability": 0.9114 + }, + { + "start": 8454.88, + "end": 8456.46, + "probability": 0.7984 + }, + { + "start": 8457.0, + "end": 8463.68, + "probability": 0.9993 + }, + { + "start": 8463.94, + "end": 8464.96, + "probability": 0.9589 + }, + { + "start": 8465.8, + "end": 8468.74, + "probability": 0.7264 + }, + { + "start": 8469.92, + "end": 8471.84, + "probability": 0.9896 + }, + { + "start": 8472.14, + "end": 8476.82, + "probability": 0.9485 + }, + { + "start": 8477.28, + "end": 8477.88, + "probability": 0.9313 + }, + { + "start": 8478.44, + "end": 8480.26, + "probability": 0.6145 + }, + { + "start": 8480.98, + "end": 8483.02, + "probability": 0.9329 + }, + { + "start": 8483.9, + "end": 8484.78, + "probability": 0.9629 + }, + { + "start": 8485.94, + "end": 8488.64, + "probability": 0.8731 + }, + { + "start": 8489.18, + "end": 8489.44, + "probability": 0.7959 + }, + { + "start": 8490.04, + "end": 8492.62, + "probability": 0.98 + }, + { + "start": 8493.24, + "end": 8495.78, + "probability": 0.9978 + }, + { + "start": 8495.96, + "end": 8496.46, + "probability": 0.826 + }, + { + "start": 8496.66, + "end": 8498.78, + "probability": 0.9873 + }, + { + "start": 8499.18, + "end": 8501.32, + "probability": 0.9909 + }, + { + "start": 8501.86, + "end": 8503.1, + "probability": 0.9966 + }, + { + "start": 8503.96, + "end": 8506.34, + "probability": 0.9686 + }, + { + "start": 8506.58, + "end": 8508.26, + "probability": 0.9516 + }, + { + "start": 8508.6, + "end": 8510.1, + "probability": 0.7488 + }, + { + "start": 8512.44, + "end": 8513.8, + "probability": 0.5826 + }, + { + "start": 8513.82, + "end": 8513.82, + "probability": 0.7332 + }, + { + "start": 8513.98, + "end": 8515.68, + "probability": 0.8538 + }, + { + "start": 8515.76, + "end": 8517.24, + "probability": 0.9681 + }, + { + "start": 8517.32, + "end": 8518.18, + "probability": 0.9296 + }, + { + "start": 8518.18, + "end": 8518.72, + "probability": 0.7856 + }, + { + "start": 8518.78, + "end": 8518.9, + "probability": 0.5882 + }, + { + "start": 8519.46, + "end": 8521.2, + "probability": 0.7668 + }, + { + "start": 8521.46, + "end": 8522.44, + "probability": 0.967 + }, + { + "start": 8522.66, + "end": 8530.48, + "probability": 0.9336 + }, + { + "start": 8530.66, + "end": 8534.64, + "probability": 0.8416 + }, + { + "start": 8535.38, + "end": 8536.48, + "probability": 0.9891 + }, + { + "start": 8536.82, + "end": 8538.94, + "probability": 0.8471 + }, + { + "start": 8539.52, + "end": 8541.02, + "probability": 0.9445 + }, + { + "start": 8541.38, + "end": 8541.94, + "probability": 0.9088 + }, + { + "start": 8542.7, + "end": 8544.24, + "probability": 0.5788 + }, + { + "start": 8545.9, + "end": 8548.2, + "probability": 0.9964 + }, + { + "start": 8548.36, + "end": 8550.02, + "probability": 0.9802 + }, + { + "start": 8550.46, + "end": 8554.0, + "probability": 0.5492 + }, + { + "start": 8554.0, + "end": 8555.18, + "probability": 0.607 + }, + { + "start": 8555.56, + "end": 8558.98, + "probability": 0.9897 + }, + { + "start": 8559.08, + "end": 8559.88, + "probability": 0.8746 + }, + { + "start": 8560.2, + "end": 8561.58, + "probability": 0.9261 + }, + { + "start": 8562.12, + "end": 8563.24, + "probability": 0.9788 + }, + { + "start": 8563.7, + "end": 8565.04, + "probability": 0.9579 + }, + { + "start": 8567.38, + "end": 8569.08, + "probability": 0.9705 + }, + { + "start": 8569.22, + "end": 8571.4, + "probability": 0.9974 + }, + { + "start": 8572.18, + "end": 8574.34, + "probability": 0.9929 + }, + { + "start": 8574.74, + "end": 8576.68, + "probability": 0.9385 + }, + { + "start": 8577.36, + "end": 8579.58, + "probability": 0.738 + }, + { + "start": 8579.68, + "end": 8581.35, + "probability": 0.8575 + }, + { + "start": 8581.78, + "end": 8584.16, + "probability": 0.9437 + }, + { + "start": 8585.42, + "end": 8588.62, + "probability": 0.8818 + }, + { + "start": 8588.94, + "end": 8590.56, + "probability": 0.9961 + }, + { + "start": 8591.5, + "end": 8593.88, + "probability": 0.9956 + }, + { + "start": 8594.34, + "end": 8595.87, + "probability": 0.7496 + }, + { + "start": 8597.02, + "end": 8599.4, + "probability": 0.9951 + }, + { + "start": 8600.14, + "end": 8602.84, + "probability": 0.9917 + }, + { + "start": 8604.3, + "end": 8607.0, + "probability": 0.8526 + }, + { + "start": 8608.6, + "end": 8609.52, + "probability": 0.7997 + }, + { + "start": 8609.64, + "end": 8611.26, + "probability": 0.7632 + }, + { + "start": 8611.56, + "end": 8613.12, + "probability": 0.525 + }, + { + "start": 8614.76, + "end": 8614.96, + "probability": 0.4916 + }, + { + "start": 8615.14, + "end": 8618.48, + "probability": 0.9877 + }, + { + "start": 8619.16, + "end": 8620.28, + "probability": 0.9017 + }, + { + "start": 8623.5, + "end": 8625.38, + "probability": 0.6813 + }, + { + "start": 8625.4, + "end": 8626.36, + "probability": 0.958 + }, + { + "start": 8626.44, + "end": 8627.48, + "probability": 0.9402 + }, + { + "start": 8627.56, + "end": 8628.98, + "probability": 0.9535 + }, + { + "start": 8629.9, + "end": 8630.46, + "probability": 0.6873 + }, + { + "start": 8630.8, + "end": 8631.72, + "probability": 0.57 + }, + { + "start": 8631.86, + "end": 8633.96, + "probability": 0.8012 + }, + { + "start": 8634.06, + "end": 8634.84, + "probability": 0.8532 + }, + { + "start": 8634.96, + "end": 8635.08, + "probability": 0.957 + }, + { + "start": 8635.34, + "end": 8635.84, + "probability": 0.7947 + }, + { + "start": 8636.0, + "end": 8637.33, + "probability": 0.9048 + }, + { + "start": 8637.58, + "end": 8638.44, + "probability": 0.7978 + }, + { + "start": 8638.62, + "end": 8639.52, + "probability": 0.5981 + }, + { + "start": 8639.58, + "end": 8640.88, + "probability": 0.9893 + }, + { + "start": 8641.98, + "end": 8643.54, + "probability": 0.8677 + }, + { + "start": 8643.84, + "end": 8646.62, + "probability": 0.9883 + }, + { + "start": 8646.62, + "end": 8649.74, + "probability": 0.9666 + }, + { + "start": 8650.56, + "end": 8651.72, + "probability": 0.994 + }, + { + "start": 8651.92, + "end": 8653.72, + "probability": 0.8367 + }, + { + "start": 8654.34, + "end": 8655.68, + "probability": 0.9863 + }, + { + "start": 8655.78, + "end": 8656.34, + "probability": 0.9686 + }, + { + "start": 8657.3, + "end": 8659.0, + "probability": 0.9709 + }, + { + "start": 8659.52, + "end": 8660.82, + "probability": 0.5171 + }, + { + "start": 8660.82, + "end": 8662.6, + "probability": 0.9753 + }, + { + "start": 8663.22, + "end": 8664.66, + "probability": 0.9747 + }, + { + "start": 8666.0, + "end": 8667.52, + "probability": 0.9966 + }, + { + "start": 8667.62, + "end": 8669.42, + "probability": 0.9889 + }, + { + "start": 8671.74, + "end": 8673.98, + "probability": 0.9973 + }, + { + "start": 8674.72, + "end": 8676.32, + "probability": 0.9922 + }, + { + "start": 8678.4, + "end": 8680.14, + "probability": 0.9851 + }, + { + "start": 8680.68, + "end": 8681.9, + "probability": 0.8661 + }, + { + "start": 8682.66, + "end": 8685.54, + "probability": 0.9928 + }, + { + "start": 8686.54, + "end": 8690.3, + "probability": 0.9696 + }, + { + "start": 8691.26, + "end": 8691.75, + "probability": 0.3865 + }, + { + "start": 8692.68, + "end": 8695.96, + "probability": 0.9611 + }, + { + "start": 8697.2, + "end": 8699.36, + "probability": 0.992 + }, + { + "start": 8699.46, + "end": 8700.62, + "probability": 0.7817 + }, + { + "start": 8700.7, + "end": 8702.16, + "probability": 0.995 + }, + { + "start": 8703.04, + "end": 8704.56, + "probability": 0.8861 + }, + { + "start": 8705.66, + "end": 8708.48, + "probability": 0.9937 + }, + { + "start": 8709.58, + "end": 8711.8, + "probability": 0.5943 + }, + { + "start": 8712.12, + "end": 8715.3, + "probability": 0.9064 + }, + { + "start": 8716.3, + "end": 8718.31, + "probability": 0.9482 + }, + { + "start": 8718.98, + "end": 8722.2, + "probability": 0.9961 + }, + { + "start": 8723.14, + "end": 8726.16, + "probability": 0.9984 + }, + { + "start": 8726.28, + "end": 8727.68, + "probability": 0.637 + }, + { + "start": 8728.82, + "end": 8730.16, + "probability": 0.9932 + }, + { + "start": 8731.02, + "end": 8732.22, + "probability": 0.8763 + }, + { + "start": 8732.92, + "end": 8734.28, + "probability": 0.6484 + }, + { + "start": 8734.82, + "end": 8735.72, + "probability": 0.9146 + }, + { + "start": 8736.58, + "end": 8738.4, + "probability": 0.9953 + }, + { + "start": 8739.06, + "end": 8740.96, + "probability": 0.9049 + }, + { + "start": 8741.24, + "end": 8745.82, + "probability": 0.9429 + }, + { + "start": 8745.82, + "end": 8752.06, + "probability": 0.9983 + }, + { + "start": 8753.5, + "end": 8757.32, + "probability": 0.9865 + }, + { + "start": 8757.32, + "end": 8760.6, + "probability": 0.9986 + }, + { + "start": 8760.66, + "end": 8762.24, + "probability": 0.9876 + }, + { + "start": 8762.92, + "end": 8764.42, + "probability": 0.9917 + }, + { + "start": 8765.64, + "end": 8767.74, + "probability": 0.9399 + }, + { + "start": 8768.34, + "end": 8769.34, + "probability": 0.9722 + }, + { + "start": 8769.44, + "end": 8770.8, + "probability": 0.9864 + }, + { + "start": 8770.92, + "end": 8771.54, + "probability": 0.8532 + }, + { + "start": 8771.6, + "end": 8774.24, + "probability": 0.9937 + }, + { + "start": 8774.72, + "end": 8775.56, + "probability": 0.9016 + }, + { + "start": 8776.44, + "end": 8777.84, + "probability": 0.8974 + }, + { + "start": 8778.06, + "end": 8779.82, + "probability": 0.916 + }, + { + "start": 8780.06, + "end": 8783.38, + "probability": 0.9899 + }, + { + "start": 8783.38, + "end": 8785.7, + "probability": 0.9961 + }, + { + "start": 8786.26, + "end": 8786.6, + "probability": 0.8481 + }, + { + "start": 8787.16, + "end": 8787.78, + "probability": 0.6939 + }, + { + "start": 8788.42, + "end": 8788.91, + "probability": 0.5004 + }, + { + "start": 8789.22, + "end": 8789.62, + "probability": 0.5209 + }, + { + "start": 8790.32, + "end": 8792.82, + "probability": 0.9893 + }, + { + "start": 8794.6, + "end": 8794.82, + "probability": 0.8617 + }, + { + "start": 8795.66, + "end": 8798.28, + "probability": 0.9406 + }, + { + "start": 8800.16, + "end": 8801.83, + "probability": 0.9453 + }, + { + "start": 8802.02, + "end": 8804.86, + "probability": 0.5103 + }, + { + "start": 8805.36, + "end": 8805.36, + "probability": 0.1489 + }, + { + "start": 8805.36, + "end": 8805.98, + "probability": 0.8486 + }, + { + "start": 8806.7, + "end": 8808.02, + "probability": 0.6158 + }, + { + "start": 8808.02, + "end": 8808.12, + "probability": 0.851 + }, + { + "start": 8814.18, + "end": 8816.9, + "probability": 0.4642 + }, + { + "start": 8818.02, + "end": 8818.68, + "probability": 0.7415 + }, + { + "start": 8819.2, + "end": 8820.89, + "probability": 0.1642 + }, + { + "start": 8822.18, + "end": 8822.84, + "probability": 0.666 + }, + { + "start": 8822.92, + "end": 8823.46, + "probability": 0.8201 + }, + { + "start": 8823.64, + "end": 8825.6, + "probability": 0.8687 + }, + { + "start": 8826.9, + "end": 8829.4, + "probability": 0.8282 + }, + { + "start": 8829.54, + "end": 8830.62, + "probability": 0.7711 + }, + { + "start": 8830.94, + "end": 8832.2, + "probability": 0.9509 + }, + { + "start": 8832.56, + "end": 8834.38, + "probability": 0.26 + }, + { + "start": 8834.46, + "end": 8834.98, + "probability": 0.9624 + }, + { + "start": 8840.52, + "end": 8843.2, + "probability": 0.8787 + }, + { + "start": 8843.24, + "end": 8843.38, + "probability": 0.4857 + }, + { + "start": 8843.44, + "end": 8844.68, + "probability": 0.9069 + }, + { + "start": 8845.44, + "end": 8848.88, + "probability": 0.9854 + }, + { + "start": 8849.72, + "end": 8852.88, + "probability": 0.8594 + }, + { + "start": 8853.44, + "end": 8855.7, + "probability": 0.998 + }, + { + "start": 8855.8, + "end": 8858.52, + "probability": 0.9391 + }, + { + "start": 8859.2, + "end": 8861.2, + "probability": 0.9947 + }, + { + "start": 8861.54, + "end": 8861.92, + "probability": 0.8526 + }, + { + "start": 8861.94, + "end": 8862.18, + "probability": 0.7534 + }, + { + "start": 8864.06, + "end": 8864.86, + "probability": 0.9127 + }, + { + "start": 8865.26, + "end": 8866.16, + "probability": 0.8901 + }, + { + "start": 8866.3, + "end": 8867.11, + "probability": 0.6892 + }, + { + "start": 8868.22, + "end": 8870.38, + "probability": 0.916 + }, + { + "start": 8870.56, + "end": 8871.3, + "probability": 0.9311 + }, + { + "start": 8871.98, + "end": 8874.14, + "probability": 0.9613 + }, + { + "start": 8875.02, + "end": 8876.42, + "probability": 0.8912 + }, + { + "start": 8876.54, + "end": 8877.84, + "probability": 0.7632 + }, + { + "start": 8879.46, + "end": 8880.06, + "probability": 0.8508 + }, + { + "start": 8880.9, + "end": 8884.34, + "probability": 0.9868 + }, + { + "start": 8884.5, + "end": 8885.84, + "probability": 0.9925 + }, + { + "start": 8886.68, + "end": 8888.44, + "probability": 0.828 + }, + { + "start": 8889.2, + "end": 8892.24, + "probability": 0.937 + }, + { + "start": 8892.98, + "end": 8894.52, + "probability": 0.8518 + }, + { + "start": 8894.6, + "end": 8896.74, + "probability": 0.7661 + }, + { + "start": 8897.56, + "end": 8898.86, + "probability": 0.7343 + }, + { + "start": 8900.04, + "end": 8903.22, + "probability": 0.9572 + }, + { + "start": 8903.7, + "end": 8907.74, + "probability": 0.9836 + }, + { + "start": 8908.28, + "end": 8914.16, + "probability": 0.9974 + }, + { + "start": 8914.58, + "end": 8916.32, + "probability": 0.9792 + }, + { + "start": 8916.84, + "end": 8917.94, + "probability": 0.9849 + }, + { + "start": 8919.24, + "end": 8922.62, + "probability": 0.9165 + }, + { + "start": 8923.08, + "end": 8924.04, + "probability": 0.9962 + }, + { + "start": 8924.16, + "end": 8924.78, + "probability": 0.8114 + }, + { + "start": 8924.82, + "end": 8927.26, + "probability": 0.8982 + }, + { + "start": 8927.68, + "end": 8928.5, + "probability": 0.9403 + }, + { + "start": 8928.6, + "end": 8931.04, + "probability": 0.9585 + }, + { + "start": 8931.56, + "end": 8934.04, + "probability": 0.9905 + }, + { + "start": 8934.2, + "end": 8935.2, + "probability": 0.9305 + }, + { + "start": 8935.32, + "end": 8935.68, + "probability": 0.3899 + }, + { + "start": 8935.74, + "end": 8936.28, + "probability": 0.8635 + }, + { + "start": 8936.34, + "end": 8936.8, + "probability": 0.5403 + }, + { + "start": 8937.22, + "end": 8937.88, + "probability": 0.9153 + }, + { + "start": 8938.52, + "end": 8941.5, + "probability": 0.8107 + }, + { + "start": 8942.72, + "end": 8944.88, + "probability": 0.9976 + }, + { + "start": 8945.58, + "end": 8948.2, + "probability": 0.9839 + }, + { + "start": 8948.78, + "end": 8949.74, + "probability": 0.471 + }, + { + "start": 8949.78, + "end": 8950.44, + "probability": 0.5908 + }, + { + "start": 8951.74, + "end": 8952.34, + "probability": 0.948 + }, + { + "start": 8953.5, + "end": 8957.52, + "probability": 0.9843 + }, + { + "start": 8958.6, + "end": 8962.28, + "probability": 0.9739 + }, + { + "start": 8962.4, + "end": 8964.54, + "probability": 0.1663 + }, + { + "start": 8964.54, + "end": 8965.16, + "probability": 0.748 + }, + { + "start": 8966.02, + "end": 8967.92, + "probability": 0.8115 + }, + { + "start": 8968.14, + "end": 8969.14, + "probability": 0.3816 + }, + { + "start": 8969.52, + "end": 8971.08, + "probability": 0.9806 + }, + { + "start": 8971.2, + "end": 8973.24, + "probability": 0.8806 + }, + { + "start": 8973.86, + "end": 8977.2, + "probability": 0.9849 + }, + { + "start": 8977.86, + "end": 8980.76, + "probability": 0.9164 + }, + { + "start": 8981.54, + "end": 8983.96, + "probability": 0.9633 + }, + { + "start": 8984.64, + "end": 8987.72, + "probability": 0.8418 + }, + { + "start": 8988.18, + "end": 8990.3, + "probability": 0.979 + }, + { + "start": 8991.47, + "end": 8992.7, + "probability": 0.4569 + }, + { + "start": 8993.7, + "end": 8995.18, + "probability": 0.5722 + }, + { + "start": 8995.2, + "end": 8998.9, + "probability": 0.9891 + }, + { + "start": 9000.4, + "end": 9002.38, + "probability": 0.713 + }, + { + "start": 9002.48, + "end": 9002.56, + "probability": 0.7188 + }, + { + "start": 9002.56, + "end": 9004.51, + "probability": 0.6477 + }, + { + "start": 9004.9, + "end": 9007.08, + "probability": 0.7625 + }, + { + "start": 9007.3, + "end": 9008.18, + "probability": 0.8808 + }, + { + "start": 9008.28, + "end": 9010.02, + "probability": 0.8429 + }, + { + "start": 9010.08, + "end": 9011.76, + "probability": 0.8917 + }, + { + "start": 9011.88, + "end": 9012.44, + "probability": 0.8152 + }, + { + "start": 9013.4, + "end": 9015.72, + "probability": 0.8694 + }, + { + "start": 9016.1, + "end": 9020.74, + "probability": 0.8755 + }, + { + "start": 9021.02, + "end": 9021.48, + "probability": 0.8143 + }, + { + "start": 9021.52, + "end": 9023.3, + "probability": 0.9868 + }, + { + "start": 9024.18, + "end": 9026.92, + "probability": 0.9956 + }, + { + "start": 9027.52, + "end": 9028.42, + "probability": 0.761 + }, + { + "start": 9029.22, + "end": 9032.5, + "probability": 0.9639 + }, + { + "start": 9033.22, + "end": 9035.32, + "probability": 0.8505 + }, + { + "start": 9035.74, + "end": 9036.72, + "probability": 0.9758 + }, + { + "start": 9037.42, + "end": 9038.66, + "probability": 0.9635 + }, + { + "start": 9040.06, + "end": 9041.0, + "probability": 0.0457 + }, + { + "start": 9041.0, + "end": 9041.68, + "probability": 0.6608 + }, + { + "start": 9042.58, + "end": 9044.68, + "probability": 0.8266 + }, + { + "start": 9046.1, + "end": 9046.68, + "probability": 0.8209 + }, + { + "start": 9055.18, + "end": 9055.67, + "probability": 0.6658 + }, + { + "start": 9055.9, + "end": 9057.86, + "probability": 0.9909 + }, + { + "start": 9059.08, + "end": 9061.39, + "probability": 0.5958 + }, + { + "start": 9062.52, + "end": 9064.52, + "probability": 0.7178 + }, + { + "start": 9065.2, + "end": 9065.7, + "probability": 0.9565 + }, + { + "start": 9068.79, + "end": 9073.68, + "probability": 0.7241 + }, + { + "start": 9074.36, + "end": 9076.39, + "probability": 0.9626 + }, + { + "start": 9076.88, + "end": 9078.17, + "probability": 0.5197 + }, + { + "start": 9078.96, + "end": 9081.06, + "probability": 0.7188 + }, + { + "start": 9081.8, + "end": 9085.12, + "probability": 0.6936 + }, + { + "start": 9085.82, + "end": 9090.62, + "probability": 0.9544 + }, + { + "start": 9091.5, + "end": 9094.96, + "probability": 0.9954 + }, + { + "start": 9095.56, + "end": 9095.64, + "probability": 0.4628 + }, + { + "start": 9095.72, + "end": 9098.58, + "probability": 0.9929 + }, + { + "start": 9098.72, + "end": 9099.3, + "probability": 0.9429 + }, + { + "start": 9099.36, + "end": 9100.06, + "probability": 0.9532 + }, + { + "start": 9100.52, + "end": 9102.14, + "probability": 0.9894 + }, + { + "start": 9102.62, + "end": 9103.36, + "probability": 0.9171 + }, + { + "start": 9103.94, + "end": 9105.4, + "probability": 0.814 + }, + { + "start": 9105.46, + "end": 9106.59, + "probability": 0.9912 + }, + { + "start": 9107.22, + "end": 9108.28, + "probability": 0.6855 + }, + { + "start": 9108.42, + "end": 9109.21, + "probability": 0.9448 + }, + { + "start": 9109.3, + "end": 9111.28, + "probability": 0.9311 + }, + { + "start": 9111.72, + "end": 9112.62, + "probability": 0.6776 + }, + { + "start": 9112.9, + "end": 9114.62, + "probability": 0.9956 + }, + { + "start": 9115.46, + "end": 9118.1, + "probability": 0.9673 + }, + { + "start": 9118.84, + "end": 9120.7, + "probability": 0.9829 + }, + { + "start": 9120.7, + "end": 9123.4, + "probability": 0.9926 + }, + { + "start": 9123.48, + "end": 9127.14, + "probability": 0.9795 + }, + { + "start": 9128.1, + "end": 9128.96, + "probability": 0.4861 + }, + { + "start": 9129.12, + "end": 9133.36, + "probability": 0.9657 + }, + { + "start": 9133.98, + "end": 9138.36, + "probability": 0.9038 + }, + { + "start": 9138.88, + "end": 9141.86, + "probability": 0.7605 + }, + { + "start": 9141.86, + "end": 9143.8, + "probability": 0.8646 + }, + { + "start": 9144.42, + "end": 9150.46, + "probability": 0.7207 + }, + { + "start": 9151.04, + "end": 9151.52, + "probability": 0.77 + }, + { + "start": 9151.64, + "end": 9153.5, + "probability": 0.9029 + }, + { + "start": 9153.94, + "end": 9154.8, + "probability": 0.9624 + }, + { + "start": 9154.84, + "end": 9155.73, + "probability": 0.9775 + }, + { + "start": 9156.44, + "end": 9158.88, + "probability": 0.8501 + }, + { + "start": 9159.88, + "end": 9162.44, + "probability": 0.8998 + }, + { + "start": 9163.14, + "end": 9164.66, + "probability": 0.5787 + }, + { + "start": 9165.08, + "end": 9166.78, + "probability": 0.7497 + }, + { + "start": 9166.86, + "end": 9169.32, + "probability": 0.8232 + }, + { + "start": 9169.46, + "end": 9170.66, + "probability": 0.8043 + }, + { + "start": 9171.12, + "end": 9172.86, + "probability": 0.9663 + }, + { + "start": 9172.9, + "end": 9173.34, + "probability": 0.8641 + }, + { + "start": 9174.1, + "end": 9176.32, + "probability": 0.9514 + }, + { + "start": 9177.44, + "end": 9177.94, + "probability": 0.7978 + }, + { + "start": 9178.58, + "end": 9183.38, + "probability": 0.7822 + }, + { + "start": 9183.46, + "end": 9188.0, + "probability": 0.9781 + }, + { + "start": 9188.14, + "end": 9189.12, + "probability": 0.9726 + }, + { + "start": 9189.3, + "end": 9192.5, + "probability": 0.8277 + }, + { + "start": 9193.36, + "end": 9194.32, + "probability": 0.799 + }, + { + "start": 9194.4, + "end": 9195.18, + "probability": 0.8201 + }, + { + "start": 9195.28, + "end": 9198.12, + "probability": 0.8438 + }, + { + "start": 9199.02, + "end": 9201.56, + "probability": 0.7672 + }, + { + "start": 9202.1, + "end": 9206.5, + "probability": 0.926 + }, + { + "start": 9206.98, + "end": 9210.84, + "probability": 0.9954 + }, + { + "start": 9211.28, + "end": 9212.22, + "probability": 0.9705 + }, + { + "start": 9213.32, + "end": 9214.52, + "probability": 0.6654 + }, + { + "start": 9215.34, + "end": 9217.38, + "probability": 0.5898 + }, + { + "start": 9217.54, + "end": 9218.48, + "probability": 0.7591 + }, + { + "start": 9219.32, + "end": 9222.5, + "probability": 0.9071 + }, + { + "start": 9223.08, + "end": 9225.44, + "probability": 0.6181 + }, + { + "start": 9225.96, + "end": 9226.36, + "probability": 0.7689 + }, + { + "start": 9226.5, + "end": 9229.66, + "probability": 0.7953 + }, + { + "start": 9229.94, + "end": 9232.68, + "probability": 0.9452 + }, + { + "start": 9232.7, + "end": 9234.02, + "probability": 0.9697 + }, + { + "start": 9234.54, + "end": 9237.58, + "probability": 0.9084 + }, + { + "start": 9238.18, + "end": 9238.48, + "probability": 0.5922 + }, + { + "start": 9238.58, + "end": 9241.09, + "probability": 0.8787 + }, + { + "start": 9241.46, + "end": 9241.9, + "probability": 0.8662 + }, + { + "start": 9242.06, + "end": 9244.82, + "probability": 0.8091 + }, + { + "start": 9244.9, + "end": 9247.66, + "probability": 0.6685 + }, + { + "start": 9248.26, + "end": 9249.66, + "probability": 0.5974 + }, + { + "start": 9250.38, + "end": 9250.8, + "probability": 0.8167 + }, + { + "start": 9250.92, + "end": 9254.5, + "probability": 0.8487 + }, + { + "start": 9255.22, + "end": 9258.76, + "probability": 0.9374 + }, + { + "start": 9259.34, + "end": 9261.68, + "probability": 0.8908 + }, + { + "start": 9261.8, + "end": 9262.12, + "probability": 0.5807 + }, + { + "start": 9262.54, + "end": 9264.1, + "probability": 0.9674 + }, + { + "start": 9264.22, + "end": 9265.4, + "probability": 0.9893 + }, + { + "start": 9265.98, + "end": 9269.42, + "probability": 0.9365 + }, + { + "start": 9269.42, + "end": 9272.36, + "probability": 0.8764 + }, + { + "start": 9272.44, + "end": 9272.64, + "probability": 0.3095 + }, + { + "start": 9272.66, + "end": 9273.1, + "probability": 0.413 + }, + { + "start": 9274.02, + "end": 9276.44, + "probability": 0.843 + }, + { + "start": 9276.56, + "end": 9277.96, + "probability": 0.8721 + }, + { + "start": 9278.56, + "end": 9279.42, + "probability": 0.9811 + }, + { + "start": 9279.6, + "end": 9285.22, + "probability": 0.9751 + }, + { + "start": 9285.22, + "end": 9287.0, + "probability": 0.7362 + }, + { + "start": 9287.7, + "end": 9291.56, + "probability": 0.9717 + }, + { + "start": 9292.0, + "end": 9292.94, + "probability": 0.5801 + }, + { + "start": 9293.34, + "end": 9293.9, + "probability": 0.6535 + }, + { + "start": 9293.9, + "end": 9294.0, + "probability": 0.859 + }, + { + "start": 9294.02, + "end": 9294.56, + "probability": 0.8672 + }, + { + "start": 9294.58, + "end": 9297.16, + "probability": 0.9924 + }, + { + "start": 9297.82, + "end": 9299.5, + "probability": 0.9191 + }, + { + "start": 9300.4, + "end": 9302.75, + "probability": 0.9878 + }, + { + "start": 9303.3, + "end": 9304.06, + "probability": 0.7498 + }, + { + "start": 9304.1, + "end": 9304.8, + "probability": 0.969 + }, + { + "start": 9305.26, + "end": 9306.96, + "probability": 0.9678 + }, + { + "start": 9307.06, + "end": 9308.98, + "probability": 0.8076 + }, + { + "start": 9309.44, + "end": 9311.86, + "probability": 0.9971 + }, + { + "start": 9312.24, + "end": 9314.21, + "probability": 0.9917 + }, + { + "start": 9314.92, + "end": 9316.66, + "probability": 0.9844 + }, + { + "start": 9316.74, + "end": 9317.6, + "probability": 0.957 + }, + { + "start": 9318.26, + "end": 9320.36, + "probability": 0.9926 + }, + { + "start": 9321.22, + "end": 9323.82, + "probability": 0.823 + }, + { + "start": 9324.4, + "end": 9326.26, + "probability": 0.784 + }, + { + "start": 9326.4, + "end": 9327.2, + "probability": 0.9826 + }, + { + "start": 9327.98, + "end": 9330.56, + "probability": 0.953 + }, + { + "start": 9331.28, + "end": 9333.32, + "probability": 0.9947 + }, + { + "start": 9333.36, + "end": 9335.02, + "probability": 0.9803 + }, + { + "start": 9335.88, + "end": 9337.22, + "probability": 0.9271 + }, + { + "start": 9337.4, + "end": 9339.42, + "probability": 0.9946 + }, + { + "start": 9339.98, + "end": 9342.56, + "probability": 0.6251 + }, + { + "start": 9342.66, + "end": 9344.36, + "probability": 0.9293 + }, + { + "start": 9345.24, + "end": 9346.81, + "probability": 0.9195 + }, + { + "start": 9346.94, + "end": 9349.92, + "probability": 0.9194 + }, + { + "start": 9350.44, + "end": 9353.44, + "probability": 0.9796 + }, + { + "start": 9353.94, + "end": 9357.18, + "probability": 0.9867 + }, + { + "start": 9358.14, + "end": 9359.88, + "probability": 0.8354 + }, + { + "start": 9359.96, + "end": 9361.74, + "probability": 0.7968 + }, + { + "start": 9361.92, + "end": 9362.82, + "probability": 0.8713 + }, + { + "start": 9362.9, + "end": 9363.12, + "probability": 0.6342 + }, + { + "start": 9363.16, + "end": 9364.36, + "probability": 0.949 + }, + { + "start": 9364.68, + "end": 9367.14, + "probability": 0.8937 + }, + { + "start": 9367.74, + "end": 9369.74, + "probability": 0.5976 + }, + { + "start": 9369.8, + "end": 9371.7, + "probability": 0.7269 + }, + { + "start": 9372.42, + "end": 9373.48, + "probability": 0.8475 + }, + { + "start": 9373.56, + "end": 9374.82, + "probability": 0.644 + }, + { + "start": 9375.9, + "end": 9377.56, + "probability": 0.9611 + }, + { + "start": 9377.74, + "end": 9378.28, + "probability": 0.8411 + }, + { + "start": 9378.36, + "end": 9383.2, + "probability": 0.9658 + }, + { + "start": 9383.36, + "end": 9385.7, + "probability": 0.5946 + }, + { + "start": 9386.4, + "end": 9391.88, + "probability": 0.9938 + }, + { + "start": 9392.48, + "end": 9393.21, + "probability": 0.8557 + }, + { + "start": 9393.58, + "end": 9394.36, + "probability": 0.8541 + }, + { + "start": 9394.94, + "end": 9397.06, + "probability": 0.99 + }, + { + "start": 9397.96, + "end": 9399.28, + "probability": 0.8959 + }, + { + "start": 9399.32, + "end": 9399.8, + "probability": 0.788 + }, + { + "start": 9399.84, + "end": 9400.76, + "probability": 0.8548 + }, + { + "start": 9400.86, + "end": 9401.78, + "probability": 0.5619 + }, + { + "start": 9402.14, + "end": 9404.7, + "probability": 0.9922 + }, + { + "start": 9405.4, + "end": 9406.86, + "probability": 0.4712 + }, + { + "start": 9406.94, + "end": 9407.92, + "probability": 0.7491 + }, + { + "start": 9407.96, + "end": 9408.92, + "probability": 0.9351 + }, + { + "start": 9409.1, + "end": 9411.48, + "probability": 0.9793 + }, + { + "start": 9412.46, + "end": 9414.46, + "probability": 0.8708 + }, + { + "start": 9414.65, + "end": 9416.86, + "probability": 0.607 + }, + { + "start": 9416.86, + "end": 9417.24, + "probability": 0.1371 + }, + { + "start": 9417.28, + "end": 9417.89, + "probability": 0.8458 + }, + { + "start": 9418.96, + "end": 9419.08, + "probability": 0.3757 + }, + { + "start": 9419.14, + "end": 9419.68, + "probability": 0.8271 + }, + { + "start": 9420.0, + "end": 9420.58, + "probability": 0.876 + }, + { + "start": 9420.64, + "end": 9421.34, + "probability": 0.9768 + }, + { + "start": 9421.56, + "end": 9422.2, + "probability": 0.9824 + }, + { + "start": 9423.42, + "end": 9426.98, + "probability": 0.9897 + }, + { + "start": 9427.58, + "end": 9428.92, + "probability": 0.5068 + }, + { + "start": 9429.62, + "end": 9430.82, + "probability": 0.8291 + }, + { + "start": 9431.18, + "end": 9433.96, + "probability": 0.8427 + }, + { + "start": 9434.22, + "end": 9435.28, + "probability": 0.9193 + }, + { + "start": 9435.54, + "end": 9435.86, + "probability": 0.8658 + }, + { + "start": 9437.04, + "end": 9437.92, + "probability": 0.6659 + }, + { + "start": 9438.06, + "end": 9439.5, + "probability": 0.9255 + }, + { + "start": 9440.8, + "end": 9443.08, + "probability": 0.8258 + }, + { + "start": 9443.18, + "end": 9444.66, + "probability": 0.2281 + }, + { + "start": 9445.06, + "end": 9446.98, + "probability": 0.3848 + }, + { + "start": 9447.06, + "end": 9450.68, + "probability": 0.971 + }, + { + "start": 9451.32, + "end": 9453.24, + "probability": 0.8954 + }, + { + "start": 9453.32, + "end": 9453.54, + "probability": 0.9053 + }, + { + "start": 9464.78, + "end": 9466.54, + "probability": 0.6516 + }, + { + "start": 9467.68, + "end": 9471.33, + "probability": 0.9946 + }, + { + "start": 9472.98, + "end": 9476.86, + "probability": 0.9348 + }, + { + "start": 9477.78, + "end": 9478.46, + "probability": 0.9203 + }, + { + "start": 9478.6, + "end": 9481.78, + "probability": 0.7559 + }, + { + "start": 9481.78, + "end": 9488.4, + "probability": 0.9545 + }, + { + "start": 9489.8, + "end": 9493.0, + "probability": 0.8752 + }, + { + "start": 9494.22, + "end": 9494.7, + "probability": 0.7486 + }, + { + "start": 9494.86, + "end": 9499.46, + "probability": 0.9421 + }, + { + "start": 9499.62, + "end": 9501.56, + "probability": 0.546 + }, + { + "start": 9501.74, + "end": 9501.98, + "probability": 0.6063 + }, + { + "start": 9503.56, + "end": 9504.96, + "probability": 0.9937 + }, + { + "start": 9505.58, + "end": 9506.48, + "probability": 0.9804 + }, + { + "start": 9507.0, + "end": 9508.24, + "probability": 0.9822 + }, + { + "start": 9508.78, + "end": 9509.94, + "probability": 0.9241 + }, + { + "start": 9510.52, + "end": 9512.22, + "probability": 0.8157 + }, + { + "start": 9513.1, + "end": 9514.82, + "probability": 0.6574 + }, + { + "start": 9515.52, + "end": 9523.36, + "probability": 0.9749 + }, + { + "start": 9523.88, + "end": 9525.46, + "probability": 0.9849 + }, + { + "start": 9526.0, + "end": 9526.56, + "probability": 0.8782 + }, + { + "start": 9527.54, + "end": 9528.94, + "probability": 0.7931 + }, + { + "start": 9529.06, + "end": 9533.3, + "probability": 0.9962 + }, + { + "start": 9534.2, + "end": 9535.0, + "probability": 0.7063 + }, + { + "start": 9535.72, + "end": 9538.4, + "probability": 0.835 + }, + { + "start": 9539.36, + "end": 9541.62, + "probability": 0.9881 + }, + { + "start": 9542.16, + "end": 9544.32, + "probability": 0.995 + }, + { + "start": 9545.52, + "end": 9547.76, + "probability": 0.9984 + }, + { + "start": 9548.34, + "end": 9550.98, + "probability": 0.9229 + }, + { + "start": 9551.58, + "end": 9552.54, + "probability": 0.772 + }, + { + "start": 9552.56, + "end": 9555.8, + "probability": 0.9529 + }, + { + "start": 9556.36, + "end": 9558.5, + "probability": 0.8191 + }, + { + "start": 9558.88, + "end": 9559.36, + "probability": 0.5904 + }, + { + "start": 9559.5, + "end": 9562.94, + "probability": 0.6366 + }, + { + "start": 9563.46, + "end": 9565.46, + "probability": 0.9497 + }, + { + "start": 9566.38, + "end": 9568.16, + "probability": 0.93 + }, + { + "start": 9568.5, + "end": 9571.26, + "probability": 0.7303 + }, + { + "start": 9572.18, + "end": 9574.12, + "probability": 0.9932 + }, + { + "start": 9574.28, + "end": 9576.78, + "probability": 0.8019 + }, + { + "start": 9578.2, + "end": 9582.64, + "probability": 0.9848 + }, + { + "start": 9583.92, + "end": 9585.78, + "probability": 0.9258 + }, + { + "start": 9587.92, + "end": 9589.34, + "probability": 0.8841 + }, + { + "start": 9589.5, + "end": 9590.48, + "probability": 0.925 + }, + { + "start": 9591.14, + "end": 9593.2, + "probability": 0.3878 + }, + { + "start": 9593.58, + "end": 9597.54, + "probability": 0.7998 + }, + { + "start": 9598.36, + "end": 9601.38, + "probability": 0.8374 + }, + { + "start": 9602.52, + "end": 9604.96, + "probability": 0.7722 + }, + { + "start": 9605.0, + "end": 9606.8, + "probability": 0.9849 + }, + { + "start": 9607.84, + "end": 9614.04, + "probability": 0.9485 + }, + { + "start": 9615.28, + "end": 9617.59, + "probability": 0.6946 + }, + { + "start": 9618.5, + "end": 9621.0, + "probability": 0.7239 + }, + { + "start": 9621.66, + "end": 9624.22, + "probability": 0.779 + }, + { + "start": 9624.74, + "end": 9626.79, + "probability": 0.737 + }, + { + "start": 9627.72, + "end": 9628.8, + "probability": 0.9792 + }, + { + "start": 9629.08, + "end": 9629.86, + "probability": 0.9915 + }, + { + "start": 9630.1, + "end": 9630.96, + "probability": 0.862 + }, + { + "start": 9631.28, + "end": 9631.88, + "probability": 0.8607 + }, + { + "start": 9632.14, + "end": 9633.0, + "probability": 0.6923 + }, + { + "start": 9633.34, + "end": 9634.1, + "probability": 0.8015 + }, + { + "start": 9634.88, + "end": 9637.56, + "probability": 0.8882 + }, + { + "start": 9638.52, + "end": 9643.74, + "probability": 0.7559 + }, + { + "start": 9644.14, + "end": 9646.02, + "probability": 0.7096 + }, + { + "start": 9646.36, + "end": 9647.76, + "probability": 0.8566 + }, + { + "start": 9649.02, + "end": 9650.74, + "probability": 0.803 + }, + { + "start": 9651.64, + "end": 9652.34, + "probability": 0.7027 + }, + { + "start": 9653.26, + "end": 9656.06, + "probability": 0.5226 + }, + { + "start": 9656.94, + "end": 9657.52, + "probability": 0.7454 + }, + { + "start": 9659.24, + "end": 9660.76, + "probability": 0.9763 + }, + { + "start": 9661.34, + "end": 9663.14, + "probability": 0.9757 + }, + { + "start": 9663.66, + "end": 9664.94, + "probability": 0.9453 + }, + { + "start": 9665.82, + "end": 9669.44, + "probability": 0.7222 + }, + { + "start": 9670.04, + "end": 9671.98, + "probability": 0.8887 + }, + { + "start": 9673.08, + "end": 9682.64, + "probability": 0.9624 + }, + { + "start": 9682.74, + "end": 9683.76, + "probability": 0.8409 + }, + { + "start": 9684.34, + "end": 9684.94, + "probability": 0.8926 + }, + { + "start": 9686.52, + "end": 9687.86, + "probability": 0.9836 + }, + { + "start": 9688.64, + "end": 9690.46, + "probability": 0.7969 + }, + { + "start": 9690.7, + "end": 9691.7, + "probability": 0.7888 + }, + { + "start": 9692.08, + "end": 9696.28, + "probability": 0.8898 + }, + { + "start": 9696.28, + "end": 9699.0, + "probability": 0.7925 + }, + { + "start": 9699.84, + "end": 9700.68, + "probability": 0.9307 + }, + { + "start": 9700.76, + "end": 9701.64, + "probability": 0.7643 + }, + { + "start": 9702.42, + "end": 9706.74, + "probability": 0.7942 + }, + { + "start": 9707.58, + "end": 9709.66, + "probability": 0.8768 + }, + { + "start": 9711.8, + "end": 9713.46, + "probability": 0.799 + }, + { + "start": 9714.02, + "end": 9715.06, + "probability": 0.8973 + }, + { + "start": 9715.66, + "end": 9716.76, + "probability": 0.5884 + }, + { + "start": 9718.3, + "end": 9722.28, + "probability": 0.7096 + }, + { + "start": 9722.68, + "end": 9723.82, + "probability": 0.662 + }, + { + "start": 9724.44, + "end": 9725.28, + "probability": 0.9722 + }, + { + "start": 9725.86, + "end": 9726.56, + "probability": 0.3572 + }, + { + "start": 9726.62, + "end": 9727.5, + "probability": 0.7277 + }, + { + "start": 9728.18, + "end": 9729.08, + "probability": 0.741 + }, + { + "start": 9729.72, + "end": 9732.3, + "probability": 0.8828 + }, + { + "start": 9732.72, + "end": 9734.44, + "probability": 0.7401 + }, + { + "start": 9735.52, + "end": 9739.64, + "probability": 0.9926 + }, + { + "start": 9740.34, + "end": 9741.5, + "probability": 0.7206 + }, + { + "start": 9742.32, + "end": 9748.22, + "probability": 0.9416 + }, + { + "start": 9748.48, + "end": 9749.74, + "probability": 0.9704 + }, + { + "start": 9750.84, + "end": 9754.34, + "probability": 0.958 + }, + { + "start": 9754.72, + "end": 9756.36, + "probability": 0.9781 + }, + { + "start": 9756.5, + "end": 9759.48, + "probability": 0.8558 + }, + { + "start": 9760.98, + "end": 9763.06, + "probability": 0.9553 + }, + { + "start": 9763.56, + "end": 9767.06, + "probability": 0.8802 + }, + { + "start": 9767.6, + "end": 9771.74, + "probability": 0.948 + }, + { + "start": 9772.08, + "end": 9775.94, + "probability": 0.9985 + }, + { + "start": 9776.22, + "end": 9779.56, + "probability": 0.9612 + }, + { + "start": 9780.64, + "end": 9781.9, + "probability": 0.6786 + }, + { + "start": 9782.7, + "end": 9785.3, + "probability": 0.8164 + }, + { + "start": 9810.48, + "end": 9811.22, + "probability": 0.622 + }, + { + "start": 9813.1, + "end": 9815.9, + "probability": 0.8607 + }, + { + "start": 9820.0, + "end": 9823.86, + "probability": 0.6628 + }, + { + "start": 9824.18, + "end": 9825.5, + "probability": 0.7992 + }, + { + "start": 9827.34, + "end": 9828.02, + "probability": 0.5714 + }, + { + "start": 9829.8, + "end": 9830.9, + "probability": 0.6806 + }, + { + "start": 9831.0, + "end": 9832.94, + "probability": 0.8769 + }, + { + "start": 9835.06, + "end": 9839.98, + "probability": 0.9814 + }, + { + "start": 9841.2, + "end": 9848.8, + "probability": 0.9019 + }, + { + "start": 9850.58, + "end": 9852.62, + "probability": 0.9539 + }, + { + "start": 9853.78, + "end": 9856.74, + "probability": 0.971 + }, + { + "start": 9857.66, + "end": 9859.06, + "probability": 0.5481 + }, + { + "start": 9860.48, + "end": 9863.1, + "probability": 0.9989 + }, + { + "start": 9864.72, + "end": 9870.66, + "probability": 0.7642 + }, + { + "start": 9872.02, + "end": 9875.46, + "probability": 0.9913 + }, + { + "start": 9876.34, + "end": 9878.4, + "probability": 0.992 + }, + { + "start": 9879.16, + "end": 9884.6, + "probability": 0.9983 + }, + { + "start": 9886.02, + "end": 9886.68, + "probability": 0.9528 + }, + { + "start": 9888.38, + "end": 9889.5, + "probability": 0.7503 + }, + { + "start": 9890.64, + "end": 9893.02, + "probability": 0.8913 + }, + { + "start": 9893.16, + "end": 9894.34, + "probability": 0.9966 + }, + { + "start": 9895.8, + "end": 9896.62, + "probability": 0.7674 + }, + { + "start": 9896.76, + "end": 9902.96, + "probability": 0.9587 + }, + { + "start": 9903.06, + "end": 9905.24, + "probability": 0.9793 + }, + { + "start": 9906.04, + "end": 9907.88, + "probability": 0.9069 + }, + { + "start": 9908.48, + "end": 9913.58, + "probability": 0.6123 + }, + { + "start": 9915.88, + "end": 9919.6, + "probability": 0.873 + }, + { + "start": 9919.96, + "end": 9923.04, + "probability": 0.9608 + }, + { + "start": 9924.82, + "end": 9928.88, + "probability": 0.9409 + }, + { + "start": 9929.84, + "end": 9931.38, + "probability": 0.9929 + }, + { + "start": 9931.86, + "end": 9935.82, + "probability": 0.7352 + }, + { + "start": 9936.8, + "end": 9937.39, + "probability": 0.835 + }, + { + "start": 9938.54, + "end": 9939.44, + "probability": 0.9614 + }, + { + "start": 9940.36, + "end": 9941.52, + "probability": 0.9971 + }, + { + "start": 9942.52, + "end": 9944.04, + "probability": 0.7534 + }, + { + "start": 9945.54, + "end": 9948.58, + "probability": 0.9489 + }, + { + "start": 9949.82, + "end": 9955.46, + "probability": 0.909 + }, + { + "start": 9956.74, + "end": 9960.1, + "probability": 0.9929 + }, + { + "start": 9961.9, + "end": 9963.62, + "probability": 0.9668 + }, + { + "start": 9964.76, + "end": 9966.66, + "probability": 0.9662 + }, + { + "start": 9967.54, + "end": 9968.12, + "probability": 0.9058 + }, + { + "start": 9968.9, + "end": 9970.22, + "probability": 0.7398 + }, + { + "start": 9971.78, + "end": 9976.98, + "probability": 0.9194 + }, + { + "start": 9977.98, + "end": 9980.54, + "probability": 0.979 + }, + { + "start": 9981.36, + "end": 9983.64, + "probability": 0.9282 + }, + { + "start": 9984.4, + "end": 9985.18, + "probability": 0.9913 + }, + { + "start": 9985.98, + "end": 9989.3, + "probability": 0.8735 + }, + { + "start": 9989.86, + "end": 9991.3, + "probability": 0.9825 + }, + { + "start": 9993.08, + "end": 9995.56, + "probability": 0.8094 + }, + { + "start": 9996.86, + "end": 9998.42, + "probability": 0.9978 + }, + { + "start": 9999.52, + "end": 10000.75, + "probability": 0.9243 + }, + { + "start": 10001.52, + "end": 10002.66, + "probability": 0.9875 + }, + { + "start": 10003.56, + "end": 10004.74, + "probability": 0.9199 + }, + { + "start": 10005.28, + "end": 10008.1, + "probability": 0.9865 + }, + { + "start": 10009.2, + "end": 10010.58, + "probability": 0.7737 + }, + { + "start": 10011.42, + "end": 10013.34, + "probability": 0.8064 + }, + { + "start": 10019.34, + "end": 10019.8, + "probability": 0.1477 + }, + { + "start": 10020.68, + "end": 10023.68, + "probability": 0.169 + }, + { + "start": 10041.46, + "end": 10047.76, + "probability": 0.8259 + }, + { + "start": 10049.0, + "end": 10051.56, + "probability": 0.9022 + }, + { + "start": 10052.56, + "end": 10053.68, + "probability": 0.9321 + }, + { + "start": 10053.7, + "end": 10056.4, + "probability": 0.9925 + }, + { + "start": 10057.08, + "end": 10059.6, + "probability": 0.9483 + }, + { + "start": 10059.64, + "end": 10062.62, + "probability": 0.9606 + }, + { + "start": 10062.66, + "end": 10063.36, + "probability": 0.3058 + }, + { + "start": 10063.76, + "end": 10067.14, + "probability": 0.5434 + }, + { + "start": 10068.08, + "end": 10074.9, + "probability": 0.9816 + }, + { + "start": 10076.96, + "end": 10077.86, + "probability": 0.0195 + }, + { + "start": 10079.1, + "end": 10080.12, + "probability": 0.2231 + }, + { + "start": 10080.18, + "end": 10080.58, + "probability": 0.0529 + }, + { + "start": 10082.38, + "end": 10083.54, + "probability": 0.8333 + }, + { + "start": 10084.42, + "end": 10086.02, + "probability": 0.8062 + }, + { + "start": 10086.3, + "end": 10089.08, + "probability": 0.8547 + }, + { + "start": 10090.2, + "end": 10092.0, + "probability": 0.9609 + }, + { + "start": 10093.32, + "end": 10095.54, + "probability": 0.9953 + }, + { + "start": 10095.54, + "end": 10097.88, + "probability": 0.9954 + }, + { + "start": 10098.1, + "end": 10102.62, + "probability": 0.1952 + }, + { + "start": 10103.26, + "end": 10106.24, + "probability": 0.6735 + }, + { + "start": 10107.91, + "end": 10113.88, + "probability": 0.8816 + }, + { + "start": 10114.18, + "end": 10116.16, + "probability": 0.9954 + }, + { + "start": 10116.8, + "end": 10117.52, + "probability": 0.8446 + }, + { + "start": 10117.56, + "end": 10117.96, + "probability": 0.8896 + }, + { + "start": 10118.26, + "end": 10118.6, + "probability": 0.7713 + }, + { + "start": 10119.16, + "end": 10121.22, + "probability": 0.9085 + }, + { + "start": 10121.98, + "end": 10123.34, + "probability": 0.9468 + }, + { + "start": 10123.9, + "end": 10125.36, + "probability": 0.7036 + }, + { + "start": 10125.72, + "end": 10127.1, + "probability": 0.9418 + }, + { + "start": 10127.4, + "end": 10129.6, + "probability": 0.9763 + }, + { + "start": 10129.9, + "end": 10131.16, + "probability": 0.8494 + }, + { + "start": 10133.28, + "end": 10139.28, + "probability": 0.7668 + }, + { + "start": 10140.08, + "end": 10140.26, + "probability": 0.5196 + }, + { + "start": 10141.0, + "end": 10142.54, + "probability": 0.9604 + }, + { + "start": 10143.4, + "end": 10145.24, + "probability": 0.9806 + }, + { + "start": 10145.84, + "end": 10146.52, + "probability": 0.6535 + }, + { + "start": 10147.9, + "end": 10149.6, + "probability": 0.9497 + }, + { + "start": 10150.44, + "end": 10152.34, + "probability": 0.7758 + }, + { + "start": 10157.32, + "end": 10160.8, + "probability": 0.9611 + }, + { + "start": 10162.62, + "end": 10164.08, + "probability": 0.9077 + }, + { + "start": 10165.56, + "end": 10166.2, + "probability": 0.9084 + }, + { + "start": 10166.7, + "end": 10166.94, + "probability": 0.8098 + }, + { + "start": 10167.7, + "end": 10168.82, + "probability": 0.957 + }, + { + "start": 10169.98, + "end": 10170.76, + "probability": 0.7576 + }, + { + "start": 10171.56, + "end": 10177.08, + "probability": 0.9597 + }, + { + "start": 10178.64, + "end": 10180.94, + "probability": 0.9212 + }, + { + "start": 10181.62, + "end": 10184.5, + "probability": 0.9681 + }, + { + "start": 10185.48, + "end": 10186.06, + "probability": 0.8034 + }, + { + "start": 10196.34, + "end": 10200.36, + "probability": 0.8822 + }, + { + "start": 10201.72, + "end": 10203.6, + "probability": 0.6241 + }, + { + "start": 10204.36, + "end": 10208.47, + "probability": 0.9219 + }, + { + "start": 10209.9, + "end": 10211.04, + "probability": 0.9636 + }, + { + "start": 10211.56, + "end": 10213.06, + "probability": 0.4869 + }, + { + "start": 10213.42, + "end": 10215.78, + "probability": 0.9262 + }, + { + "start": 10216.08, + "end": 10217.28, + "probability": 0.9583 + }, + { + "start": 10217.7, + "end": 10218.28, + "probability": 0.6422 + }, + { + "start": 10219.44, + "end": 10221.48, + "probability": 0.9077 + }, + { + "start": 10221.92, + "end": 10222.84, + "probability": 0.8955 + }, + { + "start": 10223.32, + "end": 10224.44, + "probability": 0.6599 + }, + { + "start": 10224.54, + "end": 10225.58, + "probability": 0.9166 + }, + { + "start": 10226.0, + "end": 10228.68, + "probability": 0.9768 + }, + { + "start": 10229.12, + "end": 10230.46, + "probability": 0.969 + }, + { + "start": 10230.52, + "end": 10232.72, + "probability": 0.9349 + }, + { + "start": 10237.1, + "end": 10239.26, + "probability": 0.5797 + }, + { + "start": 10240.28, + "end": 10240.84, + "probability": 0.7601 + }, + { + "start": 10242.16, + "end": 10243.62, + "probability": 0.8785 + }, + { + "start": 10244.72, + "end": 10246.24, + "probability": 0.998 + }, + { + "start": 10246.58, + "end": 10248.24, + "probability": 0.9927 + }, + { + "start": 10249.66, + "end": 10249.98, + "probability": 0.6515 + }, + { + "start": 10250.02, + "end": 10256.98, + "probability": 0.8945 + }, + { + "start": 10257.64, + "end": 10258.92, + "probability": 0.9462 + }, + { + "start": 10259.56, + "end": 10261.54, + "probability": 0.9685 + }, + { + "start": 10263.12, + "end": 10264.5, + "probability": 0.9875 + }, + { + "start": 10265.8, + "end": 10266.16, + "probability": 0.3233 + }, + { + "start": 10266.26, + "end": 10268.82, + "probability": 0.9921 + }, + { + "start": 10269.24, + "end": 10270.48, + "probability": 0.894 + }, + { + "start": 10270.96, + "end": 10271.54, + "probability": 0.4407 + }, + { + "start": 10271.54, + "end": 10272.22, + "probability": 0.5181 + }, + { + "start": 10272.92, + "end": 10276.14, + "probability": 0.7827 + }, + { + "start": 10276.96, + "end": 10281.18, + "probability": 0.6357 + }, + { + "start": 10281.18, + "end": 10283.2, + "probability": 0.6641 + }, + { + "start": 10283.7, + "end": 10285.88, + "probability": 0.8306 + }, + { + "start": 10286.14, + "end": 10288.34, + "probability": 0.9523 + }, + { + "start": 10288.82, + "end": 10289.92, + "probability": 0.7212 + }, + { + "start": 10291.32, + "end": 10292.78, + "probability": 0.7861 + }, + { + "start": 10293.42, + "end": 10293.92, + "probability": 0.824 + }, + { + "start": 10299.64, + "end": 10299.74, + "probability": 0.2932 + }, + { + "start": 10311.5, + "end": 10311.6, + "probability": 0.6695 + }, + { + "start": 10316.26, + "end": 10316.82, + "probability": 0.8058 + }, + { + "start": 10317.34, + "end": 10317.7, + "probability": 0.927 + }, + { + "start": 10324.76, + "end": 10326.3, + "probability": 0.8499 + }, + { + "start": 10328.12, + "end": 10332.24, + "probability": 0.9708 + }, + { + "start": 10333.7, + "end": 10334.32, + "probability": 0.719 + }, + { + "start": 10334.6, + "end": 10337.76, + "probability": 0.9971 + }, + { + "start": 10339.82, + "end": 10342.44, + "probability": 0.7508 + }, + { + "start": 10343.49, + "end": 10347.04, + "probability": 0.978 + }, + { + "start": 10348.63, + "end": 10354.16, + "probability": 0.7274 + }, + { + "start": 10355.14, + "end": 10357.18, + "probability": 0.827 + }, + { + "start": 10358.38, + "end": 10360.92, + "probability": 0.9832 + }, + { + "start": 10362.38, + "end": 10363.28, + "probability": 0.9486 + }, + { + "start": 10364.9, + "end": 10369.7, + "probability": 0.894 + }, + { + "start": 10369.76, + "end": 10370.22, + "probability": 0.2597 + }, + { + "start": 10371.3, + "end": 10372.24, + "probability": 0.8134 + }, + { + "start": 10373.18, + "end": 10375.64, + "probability": 0.9669 + }, + { + "start": 10377.02, + "end": 10379.28, + "probability": 0.998 + }, + { + "start": 10379.28, + "end": 10381.94, + "probability": 0.9939 + }, + { + "start": 10383.02, + "end": 10385.12, + "probability": 0.8072 + }, + { + "start": 10386.72, + "end": 10388.44, + "probability": 0.9485 + }, + { + "start": 10388.66, + "end": 10390.87, + "probability": 0.953 + }, + { + "start": 10391.16, + "end": 10394.38, + "probability": 0.8085 + }, + { + "start": 10395.54, + "end": 10398.84, + "probability": 0.814 + }, + { + "start": 10398.84, + "end": 10403.72, + "probability": 0.9997 + }, + { + "start": 10405.1, + "end": 10407.2, + "probability": 0.4305 + }, + { + "start": 10408.06, + "end": 10411.26, + "probability": 0.969 + }, + { + "start": 10412.32, + "end": 10417.82, + "probability": 0.8164 + }, + { + "start": 10417.82, + "end": 10419.78, + "probability": 0.7059 + }, + { + "start": 10420.38, + "end": 10421.38, + "probability": 0.8605 + }, + { + "start": 10421.5, + "end": 10423.66, + "probability": 0.973 + }, + { + "start": 10426.02, + "end": 10427.5, + "probability": 0.4524 + }, + { + "start": 10428.5, + "end": 10429.38, + "probability": 0.0403 + }, + { + "start": 10431.92, + "end": 10435.28, + "probability": 0.1442 + }, + { + "start": 10435.28, + "end": 10435.28, + "probability": 0.1737 + }, + { + "start": 10435.28, + "end": 10435.66, + "probability": 0.0192 + }, + { + "start": 10436.66, + "end": 10436.82, + "probability": 0.1452 + }, + { + "start": 10436.82, + "end": 10438.96, + "probability": 0.4151 + }, + { + "start": 10439.08, + "end": 10440.66, + "probability": 0.5631 + }, + { + "start": 10441.7, + "end": 10442.24, + "probability": 0.6217 + }, + { + "start": 10443.6, + "end": 10447.64, + "probability": 0.8359 + }, + { + "start": 10447.86, + "end": 10451.52, + "probability": 0.994 + }, + { + "start": 10452.1, + "end": 10453.42, + "probability": 0.8933 + }, + { + "start": 10455.26, + "end": 10461.2, + "probability": 0.9932 + }, + { + "start": 10461.28, + "end": 10462.2, + "probability": 0.9576 + }, + { + "start": 10462.72, + "end": 10464.6, + "probability": 0.9971 + }, + { + "start": 10465.02, + "end": 10468.44, + "probability": 0.9871 + }, + { + "start": 10469.06, + "end": 10471.06, + "probability": 0.969 + }, + { + "start": 10472.82, + "end": 10474.38, + "probability": 0.6938 + }, + { + "start": 10474.38, + "end": 10475.77, + "probability": 0.3468 + }, + { + "start": 10476.72, + "end": 10478.8, + "probability": 0.6785 + }, + { + "start": 10479.34, + "end": 10480.74, + "probability": 0.9956 + }, + { + "start": 10480.96, + "end": 10482.2, + "probability": 0.9417 + }, + { + "start": 10482.5, + "end": 10485.32, + "probability": 0.9728 + }, + { + "start": 10485.84, + "end": 10488.32, + "probability": 0.8223 + }, + { + "start": 10489.46, + "end": 10490.92, + "probability": 0.8276 + }, + { + "start": 10491.04, + "end": 10493.94, + "probability": 0.9946 + }, + { + "start": 10494.8, + "end": 10499.2, + "probability": 0.8386 + }, + { + "start": 10500.38, + "end": 10503.06, + "probability": 0.8468 + }, + { + "start": 10504.02, + "end": 10504.96, + "probability": 0.8364 + }, + { + "start": 10505.54, + "end": 10505.76, + "probability": 0.2781 + }, + { + "start": 10505.86, + "end": 10509.84, + "probability": 0.9306 + }, + { + "start": 10510.14, + "end": 10511.24, + "probability": 0.9084 + }, + { + "start": 10511.26, + "end": 10513.7, + "probability": 0.9027 + }, + { + "start": 10515.34, + "end": 10517.58, + "probability": 0.8778 + }, + { + "start": 10517.72, + "end": 10518.88, + "probability": 0.4581 + }, + { + "start": 10519.4, + "end": 10524.12, + "probability": 0.9976 + }, + { + "start": 10524.4, + "end": 10525.2, + "probability": 0.8463 + }, + { + "start": 10526.28, + "end": 10530.36, + "probability": 0.7246 + }, + { + "start": 10530.46, + "end": 10532.0, + "probability": 0.648 + }, + { + "start": 10532.42, + "end": 10534.62, + "probability": 0.8728 + }, + { + "start": 10535.72, + "end": 10538.34, + "probability": 0.8516 + }, + { + "start": 10538.7, + "end": 10538.96, + "probability": 0.2592 + }, + { + "start": 10539.14, + "end": 10543.24, + "probability": 0.9937 + }, + { + "start": 10543.24, + "end": 10546.62, + "probability": 0.8763 + }, + { + "start": 10546.76, + "end": 10548.68, + "probability": 0.8677 + }, + { + "start": 10548.9, + "end": 10549.34, + "probability": 0.9654 + }, + { + "start": 10550.54, + "end": 10551.94, + "probability": 0.9675 + }, + { + "start": 10552.52, + "end": 10553.76, + "probability": 0.8535 + }, + { + "start": 10554.08, + "end": 10554.9, + "probability": 0.7628 + }, + { + "start": 10555.72, + "end": 10556.52, + "probability": 0.8778 + }, + { + "start": 10557.16, + "end": 10558.2, + "probability": 0.9897 + }, + { + "start": 10559.08, + "end": 10561.17, + "probability": 0.9734 + }, + { + "start": 10561.46, + "end": 10562.12, + "probability": 0.5233 + }, + { + "start": 10563.56, + "end": 10564.88, + "probability": 0.2062 + }, + { + "start": 10564.88, + "end": 10564.88, + "probability": 0.226 + }, + { + "start": 10564.88, + "end": 10565.4, + "probability": 0.4264 + }, + { + "start": 10565.4, + "end": 10567.26, + "probability": 0.7679 + }, + { + "start": 10567.86, + "end": 10571.66, + "probability": 0.9199 + }, + { + "start": 10573.14, + "end": 10574.0, + "probability": 0.4247 + }, + { + "start": 10574.22, + "end": 10574.46, + "probability": 0.177 + }, + { + "start": 10575.68, + "end": 10578.0, + "probability": 0.2819 + }, + { + "start": 10578.14, + "end": 10579.72, + "probability": 0.0692 + }, + { + "start": 10580.2, + "end": 10583.74, + "probability": 0.5524 + }, + { + "start": 10584.72, + "end": 10590.28, + "probability": 0.9686 + }, + { + "start": 10590.62, + "end": 10595.28, + "probability": 0.995 + }, + { + "start": 10596.3, + "end": 10600.02, + "probability": 0.9909 + }, + { + "start": 10600.12, + "end": 10601.54, + "probability": 0.8946 + }, + { + "start": 10602.52, + "end": 10604.68, + "probability": 0.9798 + }, + { + "start": 10606.56, + "end": 10611.56, + "probability": 0.8097 + }, + { + "start": 10612.18, + "end": 10612.88, + "probability": 0.9589 + }, + { + "start": 10613.58, + "end": 10618.7, + "probability": 0.9834 + }, + { + "start": 10619.54, + "end": 10620.62, + "probability": 0.7778 + }, + { + "start": 10621.58, + "end": 10627.06, + "probability": 0.9908 + }, + { + "start": 10628.26, + "end": 10632.06, + "probability": 0.9928 + }, + { + "start": 10633.88, + "end": 10638.14, + "probability": 0.9991 + }, + { + "start": 10638.84, + "end": 10641.22, + "probability": 0.8085 + }, + { + "start": 10642.8, + "end": 10648.76, + "probability": 0.9481 + }, + { + "start": 10649.6, + "end": 10652.88, + "probability": 0.9748 + }, + { + "start": 10654.06, + "end": 10657.48, + "probability": 0.9578 + }, + { + "start": 10657.48, + "end": 10661.24, + "probability": 0.9961 + }, + { + "start": 10662.14, + "end": 10663.06, + "probability": 0.6452 + }, + { + "start": 10663.52, + "end": 10665.22, + "probability": 0.9988 + }, + { + "start": 10665.98, + "end": 10666.9, + "probability": 0.857 + }, + { + "start": 10669.38, + "end": 10675.6, + "probability": 0.9541 + }, + { + "start": 10676.16, + "end": 10677.52, + "probability": 0.9972 + }, + { + "start": 10678.54, + "end": 10679.1, + "probability": 0.9902 + }, + { + "start": 10680.36, + "end": 10688.56, + "probability": 0.9951 + }, + { + "start": 10689.12, + "end": 10689.88, + "probability": 0.9573 + }, + { + "start": 10690.68, + "end": 10691.24, + "probability": 0.5458 + }, + { + "start": 10691.76, + "end": 10693.44, + "probability": 0.5693 + }, + { + "start": 10694.04, + "end": 10698.34, + "probability": 0.9561 + }, + { + "start": 10699.82, + "end": 10702.36, + "probability": 0.9992 + }, + { + "start": 10703.88, + "end": 10707.46, + "probability": 0.9836 + }, + { + "start": 10708.38, + "end": 10712.7, + "probability": 0.9874 + }, + { + "start": 10714.12, + "end": 10717.5, + "probability": 0.9966 + }, + { + "start": 10718.02, + "end": 10723.64, + "probability": 0.766 + }, + { + "start": 10724.1, + "end": 10724.8, + "probability": 0.6517 + }, + { + "start": 10725.9, + "end": 10727.06, + "probability": 0.7657 + }, + { + "start": 10728.52, + "end": 10730.36, + "probability": 0.9272 + }, + { + "start": 10731.44, + "end": 10738.12, + "probability": 0.9771 + }, + { + "start": 10738.48, + "end": 10743.08, + "probability": 0.6892 + }, + { + "start": 10743.88, + "end": 10744.98, + "probability": 0.9475 + }, + { + "start": 10745.9, + "end": 10752.68, + "probability": 0.9382 + }, + { + "start": 10752.68, + "end": 10756.46, + "probability": 0.9804 + }, + { + "start": 10757.48, + "end": 10762.74, + "probability": 0.9549 + }, + { + "start": 10763.98, + "end": 10768.74, + "probability": 0.9943 + }, + { + "start": 10769.3, + "end": 10770.3, + "probability": 0.994 + }, + { + "start": 10771.14, + "end": 10775.96, + "probability": 0.9982 + }, + { + "start": 10776.52, + "end": 10778.66, + "probability": 0.9919 + }, + { + "start": 10779.1, + "end": 10783.14, + "probability": 0.9751 + }, + { + "start": 10783.36, + "end": 10784.68, + "probability": 0.7487 + }, + { + "start": 10784.82, + "end": 10787.3, + "probability": 0.7516 + }, + { + "start": 10788.14, + "end": 10790.48, + "probability": 0.8512 + }, + { + "start": 10790.54, + "end": 10791.1, + "probability": 0.2684 + }, + { + "start": 10791.3, + "end": 10791.82, + "probability": 0.7464 + }, + { + "start": 10792.8, + "end": 10795.88, + "probability": 0.937 + }, + { + "start": 10796.26, + "end": 10798.7, + "probability": 0.7823 + }, + { + "start": 10800.18, + "end": 10801.14, + "probability": 0.7808 + }, + { + "start": 10805.03, + "end": 10807.8, + "probability": 0.306 + }, + { + "start": 10808.26, + "end": 10808.4, + "probability": 0.3764 + }, + { + "start": 10809.9, + "end": 10814.52, + "probability": 0.8804 + }, + { + "start": 10814.76, + "end": 10818.8, + "probability": 0.8677 + }, + { + "start": 10819.24, + "end": 10821.89, + "probability": 0.202 + }, + { + "start": 10825.36, + "end": 10828.2, + "probability": 0.609 + }, + { + "start": 10829.6, + "end": 10832.98, + "probability": 0.8789 + }, + { + "start": 10833.62, + "end": 10836.62, + "probability": 0.9763 + }, + { + "start": 10837.52, + "end": 10838.74, + "probability": 0.8687 + }, + { + "start": 10839.64, + "end": 10840.42, + "probability": 0.7188 + }, + { + "start": 10840.76, + "end": 10845.54, + "probability": 0.9447 + }, + { + "start": 10845.9, + "end": 10849.86, + "probability": 0.8732 + }, + { + "start": 10851.04, + "end": 10853.92, + "probability": 0.9175 + }, + { + "start": 10854.56, + "end": 10858.58, + "probability": 0.9847 + }, + { + "start": 10859.34, + "end": 10860.6, + "probability": 0.692 + }, + { + "start": 10860.92, + "end": 10861.84, + "probability": 0.4814 + }, + { + "start": 10862.3, + "end": 10863.62, + "probability": 0.6843 + }, + { + "start": 10864.62, + "end": 10865.18, + "probability": 0.3955 + }, + { + "start": 10865.7, + "end": 10869.32, + "probability": 0.9832 + }, + { + "start": 10870.1, + "end": 10874.7, + "probability": 0.9946 + }, + { + "start": 10875.74, + "end": 10876.94, + "probability": 0.7704 + }, + { + "start": 10877.84, + "end": 10881.12, + "probability": 0.9958 + }, + { + "start": 10882.0, + "end": 10884.86, + "probability": 0.8508 + }, + { + "start": 10886.9, + "end": 10888.88, + "probability": 0.8825 + }, + { + "start": 10889.54, + "end": 10890.34, + "probability": 0.8111 + }, + { + "start": 10891.92, + "end": 10895.86, + "probability": 0.6249 + }, + { + "start": 10896.5, + "end": 10900.56, + "probability": 0.9198 + }, + { + "start": 10901.36, + "end": 10903.9, + "probability": 0.9697 + }, + { + "start": 10904.32, + "end": 10905.06, + "probability": 0.645 + }, + { + "start": 10905.72, + "end": 10907.16, + "probability": 0.7341 + }, + { + "start": 10907.72, + "end": 10908.54, + "probability": 0.8708 + }, + { + "start": 10908.88, + "end": 10910.86, + "probability": 0.994 + }, + { + "start": 10911.12, + "end": 10912.78, + "probability": 0.9765 + }, + { + "start": 10913.48, + "end": 10915.24, + "probability": 0.6563 + }, + { + "start": 10916.34, + "end": 10920.62, + "probability": 0.9652 + }, + { + "start": 10921.2, + "end": 10925.24, + "probability": 0.9697 + }, + { + "start": 10926.04, + "end": 10931.42, + "probability": 0.8906 + }, + { + "start": 10932.06, + "end": 10935.08, + "probability": 0.7969 + }, + { + "start": 10935.08, + "end": 10936.69, + "probability": 0.6847 + }, + { + "start": 10936.78, + "end": 10938.56, + "probability": 0.6785 + }, + { + "start": 10939.2, + "end": 10942.64, + "probability": 0.8919 + }, + { + "start": 10943.22, + "end": 10945.4, + "probability": 0.9109 + }, + { + "start": 10946.04, + "end": 10947.96, + "probability": 0.8163 + }, + { + "start": 10948.76, + "end": 10950.62, + "probability": 0.8301 + }, + { + "start": 10953.32, + "end": 10956.8, + "probability": 0.9995 + }, + { + "start": 10956.98, + "end": 10958.38, + "probability": 0.9875 + }, + { + "start": 10958.9, + "end": 10964.36, + "probability": 0.7731 + }, + { + "start": 10964.98, + "end": 10968.8, + "probability": 0.7173 + }, + { + "start": 10969.14, + "end": 10969.96, + "probability": 0.8449 + }, + { + "start": 10970.42, + "end": 10975.8, + "probability": 0.6951 + }, + { + "start": 10976.38, + "end": 10978.26, + "probability": 0.9883 + }, + { + "start": 10978.96, + "end": 10981.56, + "probability": 0.9897 + }, + { + "start": 10983.2, + "end": 10986.16, + "probability": 0.9976 + }, + { + "start": 10987.14, + "end": 10992.72, + "probability": 0.9832 + }, + { + "start": 10993.92, + "end": 11001.16, + "probability": 0.9529 + }, + { + "start": 11001.44, + "end": 11003.0, + "probability": 0.9454 + }, + { + "start": 11003.78, + "end": 11006.22, + "probability": 0.9989 + }, + { + "start": 11006.72, + "end": 11009.52, + "probability": 0.499 + }, + { + "start": 11010.2, + "end": 11010.74, + "probability": 0.8342 + }, + { + "start": 11010.74, + "end": 11013.42, + "probability": 0.9825 + }, + { + "start": 11018.2, + "end": 11019.36, + "probability": 0.8296 + }, + { + "start": 11027.44, + "end": 11033.48, + "probability": 0.5733 + }, + { + "start": 11033.48, + "end": 11034.78, + "probability": 0.246 + }, + { + "start": 11034.86, + "end": 11036.36, + "probability": 0.0126 + }, + { + "start": 11038.06, + "end": 11041.66, + "probability": 0.8179 + }, + { + "start": 11042.7, + "end": 11046.46, + "probability": 0.7171 + }, + { + "start": 11046.46, + "end": 11049.36, + "probability": 0.7508 + }, + { + "start": 11050.52, + "end": 11052.26, + "probability": 0.9963 + }, + { + "start": 11052.42, + "end": 11053.14, + "probability": 0.9764 + }, + { + "start": 11053.5, + "end": 11054.78, + "probability": 0.9816 + }, + { + "start": 11055.32, + "end": 11058.28, + "probability": 0.9185 + }, + { + "start": 11058.64, + "end": 11060.18, + "probability": 0.924 + }, + { + "start": 11060.26, + "end": 11061.8, + "probability": 0.7681 + }, + { + "start": 11062.7, + "end": 11063.26, + "probability": 0.9828 + }, + { + "start": 11063.5, + "end": 11065.42, + "probability": 0.6217 + }, + { + "start": 11065.9, + "end": 11070.58, + "probability": 0.9716 + }, + { + "start": 11070.98, + "end": 11072.6, + "probability": 0.7961 + }, + { + "start": 11072.82, + "end": 11074.32, + "probability": 0.7799 + }, + { + "start": 11074.74, + "end": 11077.13, + "probability": 0.9197 + }, + { + "start": 11078.08, + "end": 11080.5, + "probability": 0.8255 + }, + { + "start": 11081.02, + "end": 11085.98, + "probability": 0.7258 + }, + { + "start": 11086.0, + "end": 11086.9, + "probability": 0.5135 + }, + { + "start": 11087.06, + "end": 11087.52, + "probability": 0.611 + }, + { + "start": 11087.74, + "end": 11088.42, + "probability": 0.9666 + }, + { + "start": 11088.8, + "end": 11089.28, + "probability": 0.9538 + }, + { + "start": 11089.44, + "end": 11092.7, + "probability": 0.9697 + }, + { + "start": 11093.52, + "end": 11096.12, + "probability": 0.9868 + }, + { + "start": 11096.68, + "end": 11097.58, + "probability": 0.9557 + }, + { + "start": 11097.74, + "end": 11101.88, + "probability": 0.9608 + }, + { + "start": 11102.6, + "end": 11104.66, + "probability": 0.9623 + }, + { + "start": 11105.18, + "end": 11108.52, + "probability": 0.8222 + }, + { + "start": 11109.04, + "end": 11110.3, + "probability": 0.9346 + }, + { + "start": 11111.04, + "end": 11113.18, + "probability": 0.842 + }, + { + "start": 11114.18, + "end": 11119.1, + "probability": 0.9654 + }, + { + "start": 11119.56, + "end": 11123.32, + "probability": 0.9116 + }, + { + "start": 11123.78, + "end": 11126.34, + "probability": 0.7598 + }, + { + "start": 11126.98, + "end": 11129.36, + "probability": 0.4294 + }, + { + "start": 11130.14, + "end": 11132.08, + "probability": 0.5338 + }, + { + "start": 11132.64, + "end": 11133.12, + "probability": 0.3745 + }, + { + "start": 11133.76, + "end": 11136.18, + "probability": 0.4135 + }, + { + "start": 11137.14, + "end": 11137.54, + "probability": 0.9703 + }, + { + "start": 11138.08, + "end": 11142.26, + "probability": 0.924 + }, + { + "start": 11142.26, + "end": 11146.0, + "probability": 0.6648 + }, + { + "start": 11147.2, + "end": 11150.92, + "probability": 0.8599 + }, + { + "start": 11151.2, + "end": 11155.02, + "probability": 0.8706 + }, + { + "start": 11155.02, + "end": 11157.98, + "probability": 0.9961 + }, + { + "start": 11159.46, + "end": 11159.76, + "probability": 0.5215 + }, + { + "start": 11160.7, + "end": 11161.86, + "probability": 0.6366 + }, + { + "start": 11162.62, + "end": 11165.22, + "probability": 0.6076 + }, + { + "start": 11165.92, + "end": 11169.38, + "probability": 0.9008 + }, + { + "start": 11170.06, + "end": 11170.64, + "probability": 0.8605 + }, + { + "start": 11171.46, + "end": 11173.0, + "probability": 0.8613 + }, + { + "start": 11173.7, + "end": 11179.22, + "probability": 0.9681 + }, + { + "start": 11180.06, + "end": 11182.86, + "probability": 0.6697 + }, + { + "start": 11183.52, + "end": 11186.0, + "probability": 0.7173 + }, + { + "start": 11186.62, + "end": 11189.48, + "probability": 0.9611 + }, + { + "start": 11189.8, + "end": 11191.4, + "probability": 0.6265 + }, + { + "start": 11191.92, + "end": 11194.0, + "probability": 0.9888 + }, + { + "start": 11194.54, + "end": 11198.28, + "probability": 0.9952 + }, + { + "start": 11198.68, + "end": 11201.38, + "probability": 0.9967 + }, + { + "start": 11202.06, + "end": 11202.66, + "probability": 0.8829 + }, + { + "start": 11202.98, + "end": 11205.72, + "probability": 0.9957 + }, + { + "start": 11206.08, + "end": 11209.24, + "probability": 0.8167 + }, + { + "start": 11209.46, + "end": 11212.22, + "probability": 0.8299 + }, + { + "start": 11213.18, + "end": 11214.46, + "probability": 0.9422 + }, + { + "start": 11215.1, + "end": 11215.78, + "probability": 0.9401 + }, + { + "start": 11216.36, + "end": 11217.06, + "probability": 0.7197 + }, + { + "start": 11217.58, + "end": 11219.14, + "probability": 0.9897 + }, + { + "start": 11219.86, + "end": 11220.36, + "probability": 0.4852 + }, + { + "start": 11220.42, + "end": 11222.74, + "probability": 0.9918 + }, + { + "start": 11223.16, + "end": 11224.8, + "probability": 0.956 + }, + { + "start": 11225.22, + "end": 11227.9, + "probability": 0.9708 + }, + { + "start": 11229.0, + "end": 11230.4, + "probability": 0.9273 + }, + { + "start": 11231.1, + "end": 11231.2, + "probability": 0.6045 + }, + { + "start": 11233.74, + "end": 11235.14, + "probability": 0.4952 + }, + { + "start": 11235.16, + "end": 11235.54, + "probability": 0.864 + }, + { + "start": 11235.78, + "end": 11239.18, + "probability": 0.9818 + }, + { + "start": 11240.02, + "end": 11242.34, + "probability": 0.9022 + }, + { + "start": 11242.88, + "end": 11247.34, + "probability": 0.9736 + }, + { + "start": 11247.94, + "end": 11248.96, + "probability": 0.7528 + }, + { + "start": 11249.64, + "end": 11253.64, + "probability": 0.9954 + }, + { + "start": 11254.3, + "end": 11259.14, + "probability": 0.9832 + }, + { + "start": 11259.74, + "end": 11260.94, + "probability": 0.904 + }, + { + "start": 11261.46, + "end": 11262.52, + "probability": 0.9259 + }, + { + "start": 11262.96, + "end": 11266.64, + "probability": 0.8907 + }, + { + "start": 11266.82, + "end": 11268.1, + "probability": 0.9813 + }, + { + "start": 11268.66, + "end": 11269.46, + "probability": 0.7698 + }, + { + "start": 11270.68, + "end": 11274.94, + "probability": 0.9197 + }, + { + "start": 11275.7, + "end": 11279.44, + "probability": 0.8903 + }, + { + "start": 11280.3, + "end": 11281.84, + "probability": 0.7393 + }, + { + "start": 11282.4, + "end": 11284.16, + "probability": 0.9538 + }, + { + "start": 11284.76, + "end": 11287.76, + "probability": 0.8762 + }, + { + "start": 11288.2, + "end": 11291.56, + "probability": 0.9109 + }, + { + "start": 11291.96, + "end": 11292.76, + "probability": 0.6215 + }, + { + "start": 11293.8, + "end": 11293.94, + "probability": 0.218 + }, + { + "start": 11293.94, + "end": 11297.68, + "probability": 0.8944 + }, + { + "start": 11298.18, + "end": 11299.74, + "probability": 0.643 + }, + { + "start": 11300.16, + "end": 11301.08, + "probability": 0.492 + }, + { + "start": 11301.92, + "end": 11305.22, + "probability": 0.9678 + }, + { + "start": 11306.26, + "end": 11311.54, + "probability": 0.664 + }, + { + "start": 11311.78, + "end": 11312.24, + "probability": 0.7297 + }, + { + "start": 11312.62, + "end": 11313.12, + "probability": 0.3837 + }, + { + "start": 11314.2, + "end": 11314.74, + "probability": 0.9194 + }, + { + "start": 11315.26, + "end": 11315.9, + "probability": 0.5413 + }, + { + "start": 11316.46, + "end": 11319.14, + "probability": 0.8837 + }, + { + "start": 11319.68, + "end": 11320.48, + "probability": 0.9301 + }, + { + "start": 11321.08, + "end": 11325.34, + "probability": 0.9874 + }, + { + "start": 11325.68, + "end": 11329.0, + "probability": 0.8238 + }, + { + "start": 11330.5, + "end": 11331.0, + "probability": 0.3434 + }, + { + "start": 11331.06, + "end": 11331.82, + "probability": 0.4626 + }, + { + "start": 11337.32, + "end": 11341.38, + "probability": 0.3443 + }, + { + "start": 11344.06, + "end": 11345.5, + "probability": 0.5934 + }, + { + "start": 11345.84, + "end": 11347.46, + "probability": 0.0155 + }, + { + "start": 11347.46, + "end": 11348.4, + "probability": 0.2606 + }, + { + "start": 11351.62, + "end": 11353.74, + "probability": 0.769 + }, + { + "start": 11355.66, + "end": 11356.7, + "probability": 0.8109 + }, + { + "start": 11359.26, + "end": 11360.55, + "probability": 0.8552 + }, + { + "start": 11363.34, + "end": 11364.88, + "probability": 0.6668 + }, + { + "start": 11366.14, + "end": 11367.6, + "probability": 0.8308 + }, + { + "start": 11368.74, + "end": 11373.68, + "probability": 0.5874 + }, + { + "start": 11375.14, + "end": 11380.42, + "probability": 0.9915 + }, + { + "start": 11380.98, + "end": 11382.96, + "probability": 0.9868 + }, + { + "start": 11383.5, + "end": 11385.64, + "probability": 0.6991 + }, + { + "start": 11387.12, + "end": 11388.2, + "probability": 0.2376 + }, + { + "start": 11389.46, + "end": 11391.58, + "probability": 0.7417 + }, + { + "start": 11393.3, + "end": 11395.52, + "probability": 0.9955 + }, + { + "start": 11395.68, + "end": 11397.3, + "probability": 0.8685 + }, + { + "start": 11398.84, + "end": 11399.1, + "probability": 0.0597 + }, + { + "start": 11399.64, + "end": 11402.86, + "probability": 0.9775 + }, + { + "start": 11403.86, + "end": 11404.96, + "probability": 0.9413 + }, + { + "start": 11406.34, + "end": 11406.88, + "probability": 0.9473 + }, + { + "start": 11408.66, + "end": 11409.8, + "probability": 0.0714 + }, + { + "start": 11412.38, + "end": 11416.2, + "probability": 0.9806 + }, + { + "start": 11418.4, + "end": 11419.58, + "probability": 0.7123 + }, + { + "start": 11421.6, + "end": 11423.5, + "probability": 0.9309 + }, + { + "start": 11423.88, + "end": 11424.94, + "probability": 0.9878 + }, + { + "start": 11426.54, + "end": 11430.08, + "probability": 0.9353 + }, + { + "start": 11431.26, + "end": 11432.4, + "probability": 0.6697 + }, + { + "start": 11433.86, + "end": 11434.9, + "probability": 0.8372 + }, + { + "start": 11434.9, + "end": 11435.08, + "probability": 0.7165 + }, + { + "start": 11435.24, + "end": 11436.6, + "probability": 0.785 + }, + { + "start": 11437.88, + "end": 11439.34, + "probability": 0.7642 + }, + { + "start": 11439.66, + "end": 11440.26, + "probability": 0.7629 + }, + { + "start": 11440.7, + "end": 11441.82, + "probability": 0.9926 + }, + { + "start": 11442.38, + "end": 11442.86, + "probability": 0.8553 + }, + { + "start": 11444.86, + "end": 11447.02, + "probability": 0.9276 + }, + { + "start": 11447.66, + "end": 11449.29, + "probability": 0.7393 + }, + { + "start": 11450.88, + "end": 11452.0, + "probability": 0.5425 + }, + { + "start": 11452.62, + "end": 11454.9, + "probability": 0.9786 + }, + { + "start": 11455.34, + "end": 11456.1, + "probability": 0.9062 + }, + { + "start": 11458.2, + "end": 11459.26, + "probability": 0.9758 + }, + { + "start": 11462.06, + "end": 11462.42, + "probability": 0.5439 + }, + { + "start": 11463.28, + "end": 11465.34, + "probability": 0.5504 + }, + { + "start": 11465.48, + "end": 11466.1, + "probability": 0.7324 + }, + { + "start": 11467.82, + "end": 11468.76, + "probability": 0.8516 + }, + { + "start": 11469.8, + "end": 11471.6, + "probability": 0.7442 + }, + { + "start": 11474.22, + "end": 11475.24, + "probability": 0.8093 + }, + { + "start": 11475.8, + "end": 11477.04, + "probability": 0.9167 + }, + { + "start": 11478.82, + "end": 11481.5, + "probability": 0.8106 + }, + { + "start": 11482.26, + "end": 11483.58, + "probability": 0.7499 + }, + { + "start": 11484.62, + "end": 11485.86, + "probability": 0.9763 + }, + { + "start": 11486.78, + "end": 11488.54, + "probability": 0.9967 + }, + { + "start": 11488.54, + "end": 11490.84, + "probability": 0.9017 + }, + { + "start": 11491.62, + "end": 11492.06, + "probability": 0.5506 + }, + { + "start": 11492.64, + "end": 11493.04, + "probability": 0.5254 + }, + { + "start": 11493.58, + "end": 11494.74, + "probability": 0.825 + }, + { + "start": 11497.14, + "end": 11497.96, + "probability": 0.9607 + }, + { + "start": 11498.24, + "end": 11498.58, + "probability": 0.5746 + }, + { + "start": 11499.06, + "end": 11500.88, + "probability": 0.6683 + }, + { + "start": 11501.66, + "end": 11503.11, + "probability": 0.9502 + }, + { + "start": 11503.46, + "end": 11503.92, + "probability": 0.9359 + }, + { + "start": 11504.06, + "end": 11504.66, + "probability": 0.4932 + }, + { + "start": 11505.98, + "end": 11507.92, + "probability": 0.6865 + }, + { + "start": 11509.26, + "end": 11510.24, + "probability": 0.7564 + }, + { + "start": 11511.74, + "end": 11512.94, + "probability": 0.9265 + }, + { + "start": 11516.22, + "end": 11516.28, + "probability": 0.2281 + }, + { + "start": 11517.12, + "end": 11518.74, + "probability": 0.6956 + }, + { + "start": 11519.68, + "end": 11519.86, + "probability": 0.8088 + }, + { + "start": 11520.88, + "end": 11522.09, + "probability": 0.7062 + }, + { + "start": 11522.96, + "end": 11524.4, + "probability": 0.9624 + }, + { + "start": 11524.92, + "end": 11526.6, + "probability": 0.8708 + }, + { + "start": 11527.46, + "end": 11528.28, + "probability": 0.8377 + }, + { + "start": 11529.42, + "end": 11530.4, + "probability": 0.9917 + }, + { + "start": 11531.06, + "end": 11531.86, + "probability": 0.8939 + }, + { + "start": 11532.56, + "end": 11536.02, + "probability": 0.8094 + }, + { + "start": 11536.78, + "end": 11538.98, + "probability": 0.8245 + }, + { + "start": 11540.84, + "end": 11546.1, + "probability": 0.9239 + }, + { + "start": 11546.84, + "end": 11549.04, + "probability": 0.705 + }, + { + "start": 11549.62, + "end": 11552.04, + "probability": 0.6732 + }, + { + "start": 11554.14, + "end": 11555.86, + "probability": 0.6357 + }, + { + "start": 11556.06, + "end": 11557.78, + "probability": 0.8243 + }, + { + "start": 11558.24, + "end": 11560.44, + "probability": 0.8607 + }, + { + "start": 11560.78, + "end": 11562.5, + "probability": 0.9438 + }, + { + "start": 11563.78, + "end": 11564.64, + "probability": 0.9429 + }, + { + "start": 11565.4, + "end": 11568.18, + "probability": 0.7544 + }, + { + "start": 11568.28, + "end": 11568.98, + "probability": 0.8764 + }, + { + "start": 11569.1, + "end": 11570.48, + "probability": 0.9085 + }, + { + "start": 11570.56, + "end": 11572.06, + "probability": 0.9948 + }, + { + "start": 11572.6, + "end": 11573.28, + "probability": 0.685 + }, + { + "start": 11576.56, + "end": 11578.3, + "probability": 0.8237 + }, + { + "start": 11579.38, + "end": 11580.6, + "probability": 0.9867 + }, + { + "start": 11581.24, + "end": 11581.82, + "probability": 0.967 + }, + { + "start": 11582.96, + "end": 11583.94, + "probability": 0.7597 + }, + { + "start": 11584.04, + "end": 11584.38, + "probability": 0.6567 + }, + { + "start": 11584.9, + "end": 11587.18, + "probability": 0.8412 + }, + { + "start": 11587.54, + "end": 11588.46, + "probability": 0.8302 + }, + { + "start": 11588.8, + "end": 11590.81, + "probability": 0.6305 + }, + { + "start": 11591.74, + "end": 11592.84, + "probability": 0.7877 + }, + { + "start": 11593.64, + "end": 11595.08, + "probability": 0.8355 + }, + { + "start": 11595.8, + "end": 11596.68, + "probability": 0.9714 + }, + { + "start": 11597.42, + "end": 11599.38, + "probability": 0.9784 + }, + { + "start": 11600.2, + "end": 11600.38, + "probability": 0.6668 + }, + { + "start": 11601.14, + "end": 11601.26, + "probability": 0.9358 + }, + { + "start": 11602.4, + "end": 11603.76, + "probability": 0.8043 + }, + { + "start": 11604.94, + "end": 11606.14, + "probability": 0.3552 + }, + { + "start": 11607.16, + "end": 11608.18, + "probability": 0.9587 + }, + { + "start": 11609.82, + "end": 11611.86, + "probability": 0.7393 + }, + { + "start": 11612.2, + "end": 11613.32, + "probability": 0.7704 + }, + { + "start": 11614.2, + "end": 11619.12, + "probability": 0.7405 + }, + { + "start": 11621.1, + "end": 11624.1, + "probability": 0.7864 + }, + { + "start": 11624.86, + "end": 11625.54, + "probability": 0.9314 + }, + { + "start": 11626.16, + "end": 11627.2, + "probability": 0.6224 + }, + { + "start": 11628.54, + "end": 11630.03, + "probability": 0.8765 + }, + { + "start": 11634.12, + "end": 11636.96, + "probability": 0.6859 + }, + { + "start": 11637.1, + "end": 11638.56, + "probability": 0.8228 + }, + { + "start": 11639.94, + "end": 11642.56, + "probability": 0.9883 + }, + { + "start": 11643.12, + "end": 11644.16, + "probability": 0.9769 + }, + { + "start": 11645.06, + "end": 11645.94, + "probability": 0.5829 + }, + { + "start": 11647.86, + "end": 11649.08, + "probability": 0.5088 + }, + { + "start": 11650.12, + "end": 11650.92, + "probability": 0.8115 + }, + { + "start": 11651.46, + "end": 11651.62, + "probability": 0.9045 + }, + { + "start": 11651.7, + "end": 11652.96, + "probability": 0.677 + }, + { + "start": 11654.46, + "end": 11655.48, + "probability": 0.8771 + }, + { + "start": 11656.32, + "end": 11657.16, + "probability": 0.8537 + }, + { + "start": 11657.74, + "end": 11658.72, + "probability": 0.8823 + }, + { + "start": 11659.36, + "end": 11659.99, + "probability": 0.9236 + }, + { + "start": 11661.08, + "end": 11662.24, + "probability": 0.9585 + }, + { + "start": 11663.12, + "end": 11665.3, + "probability": 0.8508 + }, + { + "start": 11666.86, + "end": 11667.68, + "probability": 0.0004 + }, + { + "start": 11669.5, + "end": 11671.52, + "probability": 0.4458 + }, + { + "start": 11672.1, + "end": 11675.04, + "probability": 0.4265 + }, + { + "start": 11675.98, + "end": 11677.2, + "probability": 0.7312 + }, + { + "start": 11677.34, + "end": 11679.32, + "probability": 0.7849 + }, + { + "start": 11679.48, + "end": 11681.08, + "probability": 0.88 + }, + { + "start": 11681.48, + "end": 11681.76, + "probability": 0.7013 + }, + { + "start": 11685.68, + "end": 11687.78, + "probability": 0.8285 + }, + { + "start": 11688.99, + "end": 11693.82, + "probability": 0.5831 + }, + { + "start": 11694.98, + "end": 11697.34, + "probability": 0.4491 + }, + { + "start": 11697.72, + "end": 11698.08, + "probability": 0.3591 + }, + { + "start": 11698.58, + "end": 11704.38, + "probability": 0.4008 + }, + { + "start": 11704.4, + "end": 11705.74, + "probability": 0.5137 + }, + { + "start": 11706.56, + "end": 11708.74, + "probability": 0.9117 + }, + { + "start": 11709.74, + "end": 11710.64, + "probability": 0.7238 + }, + { + "start": 11711.32, + "end": 11711.72, + "probability": 0.5147 + }, + { + "start": 11712.64, + "end": 11713.52, + "probability": 0.492 + }, + { + "start": 11713.6, + "end": 11714.2, + "probability": 0.8268 + }, + { + "start": 11714.98, + "end": 11716.02, + "probability": 0.8123 + }, + { + "start": 11716.6, + "end": 11718.3, + "probability": 0.739 + }, + { + "start": 11719.16, + "end": 11721.1, + "probability": 0.8511 + }, + { + "start": 11721.7, + "end": 11723.88, + "probability": 0.6971 + }, + { + "start": 11723.94, + "end": 11724.74, + "probability": 0.689 + }, + { + "start": 11725.72, + "end": 11726.18, + "probability": 0.7359 + }, + { + "start": 11726.2, + "end": 11727.32, + "probability": 0.9141 + }, + { + "start": 11727.46, + "end": 11727.96, + "probability": 0.8494 + }, + { + "start": 11729.08, + "end": 11730.0, + "probability": 0.9553 + }, + { + "start": 11730.08, + "end": 11730.56, + "probability": 0.9395 + }, + { + "start": 11731.36, + "end": 11732.78, + "probability": 0.9684 + }, + { + "start": 11733.34, + "end": 11733.87, + "probability": 0.9736 + }, + { + "start": 11734.36, + "end": 11736.44, + "probability": 0.6603 + }, + { + "start": 11737.3, + "end": 11741.36, + "probability": 0.5802 + }, + { + "start": 11741.84, + "end": 11743.18, + "probability": 0.9493 + }, + { + "start": 11744.44, + "end": 11745.8, + "probability": 0.7446 + }, + { + "start": 11745.8, + "end": 11746.38, + "probability": 0.2811 + }, + { + "start": 11746.68, + "end": 11748.34, + "probability": 0.7668 + }, + { + "start": 11749.5, + "end": 11753.0, + "probability": 0.7285 + }, + { + "start": 11753.88, + "end": 11754.86, + "probability": 0.8241 + }, + { + "start": 11755.0, + "end": 11759.66, + "probability": 0.9016 + }, + { + "start": 11760.2, + "end": 11760.92, + "probability": 0.0196 + }, + { + "start": 11761.37, + "end": 11765.8, + "probability": 0.8005 + }, + { + "start": 11765.92, + "end": 11767.44, + "probability": 0.4689 + }, + { + "start": 11767.62, + "end": 11768.72, + "probability": 0.4301 + }, + { + "start": 11768.86, + "end": 11769.1, + "probability": 0.1382 + }, + { + "start": 11770.76, + "end": 11772.48, + "probability": 0.7225 + }, + { + "start": 11772.6, + "end": 11774.63, + "probability": 0.5319 + }, + { + "start": 11777.44, + "end": 11778.32, + "probability": 0.2469 + }, + { + "start": 11778.72, + "end": 11781.2, + "probability": 0.3813 + }, + { + "start": 11782.7, + "end": 11786.48, + "probability": 0.1617 + }, + { + "start": 11790.4, + "end": 11791.1, + "probability": 0.1184 + }, + { + "start": 11791.28, + "end": 11791.7, + "probability": 0.3191 + }, + { + "start": 11791.82, + "end": 11793.2, + "probability": 0.4413 + }, + { + "start": 11793.8, + "end": 11796.1, + "probability": 0.3212 + }, + { + "start": 11796.46, + "end": 11800.22, + "probability": 0.7635 + }, + { + "start": 11800.82, + "end": 11802.36, + "probability": 0.85 + }, + { + "start": 11803.12, + "end": 11804.04, + "probability": 0.8426 + }, + { + "start": 11807.54, + "end": 11814.08, + "probability": 0.667 + }, + { + "start": 11814.78, + "end": 11818.06, + "probability": 0.8022 + }, + { + "start": 11818.88, + "end": 11819.76, + "probability": 0.9224 + }, + { + "start": 11819.9, + "end": 11821.08, + "probability": 0.9906 + }, + { + "start": 11822.34, + "end": 11823.1, + "probability": 0.6112 + }, + { + "start": 11824.68, + "end": 11826.82, + "probability": 0.9709 + }, + { + "start": 11827.46, + "end": 11828.5, + "probability": 0.9635 + }, + { + "start": 11829.98, + "end": 11830.45, + "probability": 0.7582 + }, + { + "start": 11831.28, + "end": 11833.2, + "probability": 0.8894 + }, + { + "start": 11833.7, + "end": 11834.6, + "probability": 0.9631 + }, + { + "start": 11835.52, + "end": 11836.22, + "probability": 0.8893 + }, + { + "start": 11837.3, + "end": 11840.04, + "probability": 0.8608 + }, + { + "start": 11840.6, + "end": 11841.56, + "probability": 0.9264 + }, + { + "start": 11842.2, + "end": 11843.56, + "probability": 0.9336 + }, + { + "start": 11844.74, + "end": 11845.98, + "probability": 0.896 + }, + { + "start": 11846.68, + "end": 11848.38, + "probability": 0.9126 + }, + { + "start": 11849.26, + "end": 11850.76, + "probability": 0.4581 + }, + { + "start": 11851.94, + "end": 11853.58, + "probability": 0.6107 + }, + { + "start": 11854.76, + "end": 11856.18, + "probability": 0.9202 + }, + { + "start": 11856.24, + "end": 11856.4, + "probability": 0.6711 + }, + { + "start": 11856.44, + "end": 11857.7, + "probability": 0.5043 + }, + { + "start": 11858.34, + "end": 11859.67, + "probability": 0.9283 + }, + { + "start": 11861.26, + "end": 11861.71, + "probability": 0.5004 + }, + { + "start": 11862.76, + "end": 11865.94, + "probability": 0.7158 + }, + { + "start": 11866.9, + "end": 11867.8, + "probability": 0.8243 + }, + { + "start": 11868.64, + "end": 11869.18, + "probability": 0.6892 + }, + { + "start": 11872.38, + "end": 11873.12, + "probability": 0.5104 + }, + { + "start": 11873.84, + "end": 11877.92, + "probability": 0.8019 + }, + { + "start": 11878.16, + "end": 11879.72, + "probability": 0.0765 + }, + { + "start": 11879.8, + "end": 11882.56, + "probability": 0.5916 + }, + { + "start": 11882.66, + "end": 11884.34, + "probability": 0.6549 + }, + { + "start": 11884.5, + "end": 11884.76, + "probability": 0.5502 + }, + { + "start": 11885.2, + "end": 11887.1, + "probability": 0.792 + }, + { + "start": 11887.22, + "end": 11887.82, + "probability": 0.0425 + }, + { + "start": 11888.0, + "end": 11893.6, + "probability": 0.4902 + }, + { + "start": 11894.2, + "end": 11897.48, + "probability": 0.9961 + }, + { + "start": 11898.5, + "end": 11899.9, + "probability": 0.7196 + }, + { + "start": 11900.0, + "end": 11901.14, + "probability": 0.6464 + }, + { + "start": 11901.34, + "end": 11901.84, + "probability": 0.5851 + }, + { + "start": 11902.3, + "end": 11903.09, + "probability": 0.2332 + }, + { + "start": 11903.48, + "end": 11903.74, + "probability": 0.5622 + }, + { + "start": 11903.82, + "end": 11904.3, + "probability": 0.679 + }, + { + "start": 11905.32, + "end": 11907.16, + "probability": 0.7891 + }, + { + "start": 11907.62, + "end": 11909.96, + "probability": 0.9678 + }, + { + "start": 11910.46, + "end": 11910.56, + "probability": 0.5624 + }, + { + "start": 11910.6, + "end": 11911.31, + "probability": 0.2067 + }, + { + "start": 11911.82, + "end": 11912.3, + "probability": 0.1992 + }, + { + "start": 11913.48, + "end": 11915.14, + "probability": 0.8574 + }, + { + "start": 11915.4, + "end": 11918.74, + "probability": 0.9089 + }, + { + "start": 11918.86, + "end": 11919.41, + "probability": 0.4952 + }, + { + "start": 11921.02, + "end": 11921.52, + "probability": 0.838 + }, + { + "start": 11922.65, + "end": 11924.82, + "probability": 0.6931 + }, + { + "start": 11924.96, + "end": 11925.64, + "probability": 0.7231 + }, + { + "start": 11925.7, + "end": 11925.76, + "probability": 0.3866 + }, + { + "start": 11925.88, + "end": 11926.8, + "probability": 0.8102 + }, + { + "start": 11927.26, + "end": 11928.28, + "probability": 0.6979 + }, + { + "start": 11928.96, + "end": 11929.57, + "probability": 0.9824 + }, + { + "start": 11931.48, + "end": 11933.8, + "probability": 0.9039 + }, + { + "start": 11934.32, + "end": 11935.66, + "probability": 0.6261 + }, + { + "start": 11936.26, + "end": 11937.58, + "probability": 0.868 + }, + { + "start": 11938.3, + "end": 11940.72, + "probability": 0.8148 + }, + { + "start": 11941.32, + "end": 11943.6, + "probability": 0.9898 + }, + { + "start": 11944.2, + "end": 11946.9, + "probability": 0.864 + }, + { + "start": 11948.1, + "end": 11951.7, + "probability": 0.9238 + }, + { + "start": 11952.2, + "end": 11953.9, + "probability": 0.6087 + }, + { + "start": 11954.0, + "end": 11955.22, + "probability": 0.8767 + }, + { + "start": 11955.36, + "end": 11956.42, + "probability": 0.7409 + }, + { + "start": 11956.64, + "end": 11957.35, + "probability": 0.9216 + }, + { + "start": 11957.74, + "end": 11958.62, + "probability": 0.5133 + }, + { + "start": 11958.82, + "end": 11959.2, + "probability": 0.2792 + }, + { + "start": 11961.72, + "end": 11963.62, + "probability": 0.6221 + }, + { + "start": 11963.96, + "end": 11966.3, + "probability": 0.7812 + }, + { + "start": 11966.76, + "end": 11969.24, + "probability": 0.9544 + }, + { + "start": 11970.04, + "end": 11972.22, + "probability": 0.8166 + }, + { + "start": 11972.92, + "end": 11974.02, + "probability": 0.7113 + }, + { + "start": 11974.14, + "end": 11975.16, + "probability": 0.9468 + }, + { + "start": 11975.58, + "end": 11976.7, + "probability": 0.5163 + }, + { + "start": 11976.78, + "end": 11977.04, + "probability": 0.6459 + }, + { + "start": 11977.1, + "end": 11978.68, + "probability": 0.9129 + }, + { + "start": 11979.06, + "end": 11979.28, + "probability": 0.3789 + }, + { + "start": 11979.36, + "end": 11979.92, + "probability": 0.7227 + }, + { + "start": 11980.26, + "end": 11981.86, + "probability": 0.9737 + }, + { + "start": 11982.92, + "end": 11983.52, + "probability": 0.7977 + }, + { + "start": 11983.96, + "end": 11988.18, + "probability": 0.9492 + }, + { + "start": 11988.18, + "end": 11990.74, + "probability": 0.997 + }, + { + "start": 11990.78, + "end": 11991.7, + "probability": 0.9544 + }, + { + "start": 11992.72, + "end": 11996.06, + "probability": 0.9976 + }, + { + "start": 11996.32, + "end": 12000.18, + "probability": 0.9766 + }, + { + "start": 12000.18, + "end": 12005.34, + "probability": 0.9751 + }, + { + "start": 12006.08, + "end": 12006.2, + "probability": 0.1766 + }, + { + "start": 12006.2, + "end": 12011.92, + "probability": 0.8121 + }, + { + "start": 12012.3, + "end": 12012.75, + "probability": 0.999 + }, + { + "start": 12013.88, + "end": 12015.82, + "probability": 0.7913 + }, + { + "start": 12017.88, + "end": 12018.34, + "probability": 0.7767 + }, + { + "start": 12018.92, + "end": 12019.12, + "probability": 0.9075 + }, + { + "start": 12019.72, + "end": 12021.2, + "probability": 0.9414 + }, + { + "start": 12021.32, + "end": 12021.94, + "probability": 0.7383 + }, + { + "start": 12023.14, + "end": 12024.56, + "probability": 0.7227 + }, + { + "start": 12025.72, + "end": 12026.44, + "probability": 0.4964 + }, + { + "start": 12027.68, + "end": 12033.44, + "probability": 0.797 + }, + { + "start": 12034.88, + "end": 12035.8, + "probability": 0.7026 + }, + { + "start": 12038.14, + "end": 12040.28, + "probability": 0.766 + }, + { + "start": 12041.72, + "end": 12044.08, + "probability": 0.7715 + }, + { + "start": 12044.96, + "end": 12048.28, + "probability": 0.9717 + }, + { + "start": 12049.08, + "end": 12052.62, + "probability": 0.7536 + }, + { + "start": 12052.86, + "end": 12054.9, + "probability": 0.6809 + }, + { + "start": 12055.88, + "end": 12056.52, + "probability": 0.7203 + }, + { + "start": 12057.42, + "end": 12058.64, + "probability": 0.9795 + }, + { + "start": 12060.36, + "end": 12061.27, + "probability": 0.9927 + }, + { + "start": 12061.74, + "end": 12063.19, + "probability": 0.835 + }, + { + "start": 12064.4, + "end": 12066.14, + "probability": 0.5529 + }, + { + "start": 12067.18, + "end": 12069.98, + "probability": 0.9954 + }, + { + "start": 12070.22, + "end": 12070.68, + "probability": 0.5278 + }, + { + "start": 12071.92, + "end": 12072.36, + "probability": 0.0022 + }, + { + "start": 12074.7, + "end": 12077.5, + "probability": 0.8594 + }, + { + "start": 12077.58, + "end": 12078.0, + "probability": 0.7336 + }, + { + "start": 12079.16, + "end": 12079.84, + "probability": 0.8899 + }, + { + "start": 12080.56, + "end": 12080.76, + "probability": 0.69 + }, + { + "start": 12081.66, + "end": 12082.0, + "probability": 0.9368 + }, + { + "start": 12083.24, + "end": 12084.12, + "probability": 0.9128 + }, + { + "start": 12084.76, + "end": 12086.1, + "probability": 0.7722 + }, + { + "start": 12086.84, + "end": 12089.72, + "probability": 0.9136 + }, + { + "start": 12090.34, + "end": 12094.44, + "probability": 0.6242 + }, + { + "start": 12095.98, + "end": 12096.94, + "probability": 0.981 + }, + { + "start": 12097.46, + "end": 12099.22, + "probability": 0.9884 + }, + { + "start": 12100.1, + "end": 12102.06, + "probability": 0.6518 + }, + { + "start": 12103.64, + "end": 12105.78, + "probability": 0.7873 + }, + { + "start": 12106.24, + "end": 12108.52, + "probability": 0.66 + }, + { + "start": 12109.02, + "end": 12110.54, + "probability": 0.847 + }, + { + "start": 12112.44, + "end": 12115.08, + "probability": 0.7386 + }, + { + "start": 12116.56, + "end": 12118.03, + "probability": 0.3606 + }, + { + "start": 12118.42, + "end": 12118.64, + "probability": 0.2042 + }, + { + "start": 12120.06, + "end": 12121.76, + "probability": 0.7399 + }, + { + "start": 12122.9, + "end": 12124.8, + "probability": 0.5181 + }, + { + "start": 12126.1, + "end": 12126.76, + "probability": 0.0679 + }, + { + "start": 12126.76, + "end": 12128.38, + "probability": 0.4721 + }, + { + "start": 12128.94, + "end": 12129.34, + "probability": 0.5372 + }, + { + "start": 12131.56, + "end": 12135.48, + "probability": 0.9543 + }, + { + "start": 12137.32, + "end": 12139.02, + "probability": 0.964 + }, + { + "start": 12140.92, + "end": 12142.16, + "probability": 0.9561 + }, + { + "start": 12142.16, + "end": 12144.24, + "probability": 0.8506 + }, + { + "start": 12144.88, + "end": 12145.78, + "probability": 0.7009 + }, + { + "start": 12146.46, + "end": 12148.08, + "probability": 0.7895 + }, + { + "start": 12148.38, + "end": 12148.96, + "probability": 0.6736 + }, + { + "start": 12150.06, + "end": 12151.78, + "probability": 0.8235 + }, + { + "start": 12152.7, + "end": 12153.46, + "probability": 0.7493 + }, + { + "start": 12154.0, + "end": 12155.8, + "probability": 0.6652 + }, + { + "start": 12156.64, + "end": 12157.66, + "probability": 0.7506 + }, + { + "start": 12158.14, + "end": 12159.38, + "probability": 0.5476 + }, + { + "start": 12159.56, + "end": 12159.96, + "probability": 0.8826 + }, + { + "start": 12160.6, + "end": 12162.98, + "probability": 0.7814 + }, + { + "start": 12163.68, + "end": 12165.82, + "probability": 0.9238 + }, + { + "start": 12166.08, + "end": 12166.78, + "probability": 0.8504 + }, + { + "start": 12167.0, + "end": 12170.3, + "probability": 0.5097 + }, + { + "start": 12171.08, + "end": 12173.82, + "probability": 0.6128 + }, + { + "start": 12174.64, + "end": 12174.84, + "probability": 0.3369 + }, + { + "start": 12174.94, + "end": 12175.16, + "probability": 0.3 + }, + { + "start": 12175.18, + "end": 12179.01, + "probability": 0.7711 + }, + { + "start": 12181.16, + "end": 12182.58, + "probability": 0.9831 + }, + { + "start": 12182.68, + "end": 12182.98, + "probability": 0.6801 + }, + { + "start": 12183.88, + "end": 12188.33, + "probability": 0.7231 + }, + { + "start": 12189.54, + "end": 12191.32, + "probability": 0.5088 + }, + { + "start": 12192.06, + "end": 12192.93, + "probability": 0.9504 + }, + { + "start": 12193.68, + "end": 12194.28, + "probability": 0.6201 + }, + { + "start": 12194.78, + "end": 12196.5, + "probability": 0.9478 + }, + { + "start": 12197.66, + "end": 12198.86, + "probability": 0.9502 + }, + { + "start": 12199.44, + "end": 12200.08, + "probability": 0.9817 + }, + { + "start": 12200.9, + "end": 12201.9, + "probability": 0.8748 + }, + { + "start": 12202.76, + "end": 12207.84, + "probability": 0.6082 + }, + { + "start": 12208.76, + "end": 12209.76, + "probability": 0.0564 + }, + { + "start": 12209.76, + "end": 12210.26, + "probability": 0.5444 + }, + { + "start": 12210.62, + "end": 12211.08, + "probability": 0.3095 + }, + { + "start": 12212.62, + "end": 12213.56, + "probability": 0.579 + }, + { + "start": 12214.32, + "end": 12216.02, + "probability": 0.282 + }, + { + "start": 12216.9, + "end": 12217.42, + "probability": 0.2687 + }, + { + "start": 12221.52, + "end": 12222.34, + "probability": 0.2755 + }, + { + "start": 12225.3, + "end": 12227.98, + "probability": 0.6703 + }, + { + "start": 12228.88, + "end": 12229.45, + "probability": 0.3908 + }, + { + "start": 12229.58, + "end": 12231.58, + "probability": 0.3532 + }, + { + "start": 12231.96, + "end": 12232.68, + "probability": 0.6042 + }, + { + "start": 12233.7, + "end": 12236.08, + "probability": 0.7832 + }, + { + "start": 12236.1, + "end": 12237.72, + "probability": 0.5943 + }, + { + "start": 12237.84, + "end": 12240.38, + "probability": 0.4451 + }, + { + "start": 12240.64, + "end": 12241.12, + "probability": 0.0844 + }, + { + "start": 12241.76, + "end": 12242.12, + "probability": 0.1676 + }, + { + "start": 12242.52, + "end": 12243.08, + "probability": 0.5663 + }, + { + "start": 12243.28, + "end": 12246.08, + "probability": 0.7235 + }, + { + "start": 12247.52, + "end": 12248.82, + "probability": 0.9107 + }, + { + "start": 12249.48, + "end": 12251.84, + "probability": 0.74 + }, + { + "start": 12252.1, + "end": 12253.22, + "probability": 0.9331 + }, + { + "start": 12253.62, + "end": 12255.66, + "probability": 0.9458 + }, + { + "start": 12256.36, + "end": 12258.06, + "probability": 0.8264 + }, + { + "start": 12258.54, + "end": 12259.48, + "probability": 0.8142 + }, + { + "start": 12260.44, + "end": 12260.95, + "probability": 0.5625 + }, + { + "start": 12261.74, + "end": 12263.52, + "probability": 0.898 + }, + { + "start": 12264.24, + "end": 12265.16, + "probability": 0.9103 + }, + { + "start": 12265.68, + "end": 12267.47, + "probability": 0.6547 + }, + { + "start": 12268.16, + "end": 12269.7, + "probability": 0.9174 + }, + { + "start": 12270.46, + "end": 12270.98, + "probability": 0.8773 + }, + { + "start": 12271.38, + "end": 12271.6, + "probability": 0.4644 + }, + { + "start": 12272.6, + "end": 12275.5, + "probability": 0.9419 + }, + { + "start": 12277.58, + "end": 12278.94, + "probability": 0.7266 + }, + { + "start": 12279.66, + "end": 12282.62, + "probability": 0.9243 + }, + { + "start": 12284.3, + "end": 12287.8, + "probability": 0.5676 + }, + { + "start": 12288.64, + "end": 12289.12, + "probability": 0.5721 + }, + { + "start": 12289.58, + "end": 12290.02, + "probability": 0.6423 + }, + { + "start": 12290.76, + "end": 12291.2, + "probability": 0.5901 + }, + { + "start": 12292.68, + "end": 12293.5, + "probability": 0.8053 + }, + { + "start": 12293.98, + "end": 12295.8, + "probability": 0.5883 + }, + { + "start": 12298.3, + "end": 12301.04, + "probability": 0.8169 + }, + { + "start": 12301.96, + "end": 12302.8, + "probability": 0.8777 + }, + { + "start": 12303.58, + "end": 12304.68, + "probability": 0.6997 + }, + { + "start": 12305.7, + "end": 12307.14, + "probability": 0.7431 + }, + { + "start": 12307.86, + "end": 12308.44, + "probability": 0.3543 + }, + { + "start": 12309.0, + "end": 12311.2, + "probability": 0.9897 + }, + { + "start": 12311.78, + "end": 12312.7, + "probability": 0.6994 + }, + { + "start": 12313.26, + "end": 12314.02, + "probability": 0.2918 + }, + { + "start": 12314.88, + "end": 12315.24, + "probability": 0.5711 + }, + { + "start": 12316.26, + "end": 12317.82, + "probability": 0.9194 + }, + { + "start": 12318.98, + "end": 12321.72, + "probability": 0.5036 + }, + { + "start": 12322.12, + "end": 12323.78, + "probability": 0.6872 + }, + { + "start": 12324.6, + "end": 12330.3, + "probability": 0.94 + }, + { + "start": 12330.74, + "end": 12333.96, + "probability": 0.5249 + }, + { + "start": 12334.5, + "end": 12335.14, + "probability": 0.6965 + }, + { + "start": 12335.46, + "end": 12337.85, + "probability": 0.6651 + }, + { + "start": 12337.96, + "end": 12342.22, + "probability": 0.3488 + }, + { + "start": 12342.64, + "end": 12343.54, + "probability": 0.9252 + }, + { + "start": 12344.16, + "end": 12346.28, + "probability": 0.7327 + }, + { + "start": 12347.02, + "end": 12349.22, + "probability": 0.7134 + }, + { + "start": 12350.34, + "end": 12351.98, + "probability": 0.9926 + }, + { + "start": 12352.9, + "end": 12354.72, + "probability": 0.5714 + }, + { + "start": 12355.12, + "end": 12357.34, + "probability": 0.8565 + }, + { + "start": 12362.36, + "end": 12365.2, + "probability": 0.9779 + }, + { + "start": 12365.8, + "end": 12369.24, + "probability": 0.5468 + }, + { + "start": 12369.92, + "end": 12370.7, + "probability": 0.1697 + }, + { + "start": 12371.42, + "end": 12373.06, + "probability": 0.6382 + }, + { + "start": 12373.74, + "end": 12374.58, + "probability": 0.8289 + }, + { + "start": 12375.68, + "end": 12375.98, + "probability": 0.1373 + }, + { + "start": 12377.04, + "end": 12377.59, + "probability": 0.1009 + }, + { + "start": 12378.1, + "end": 12378.48, + "probability": 0.4422 + }, + { + "start": 12378.52, + "end": 12379.2, + "probability": 0.5531 + }, + { + "start": 12379.36, + "end": 12382.14, + "probability": 0.3565 + }, + { + "start": 12382.26, + "end": 12382.88, + "probability": 0.9316 + }, + { + "start": 12384.2, + "end": 12385.4, + "probability": 0.2207 + }, + { + "start": 12385.6, + "end": 12386.73, + "probability": 0.9578 + }, + { + "start": 12387.36, + "end": 12388.0, + "probability": 0.5774 + }, + { + "start": 12392.16, + "end": 12393.46, + "probability": 0.7522 + }, + { + "start": 12396.28, + "end": 12398.72, + "probability": 0.9756 + }, + { + "start": 12399.26, + "end": 12402.94, + "probability": 0.2157 + }, + { + "start": 12405.26, + "end": 12405.26, + "probability": 0.1182 + }, + { + "start": 12405.26, + "end": 12406.12, + "probability": 0.5454 + }, + { + "start": 12407.12, + "end": 12407.84, + "probability": 0.9841 + }, + { + "start": 12408.54, + "end": 12411.04, + "probability": 0.9713 + }, + { + "start": 12412.48, + "end": 12415.48, + "probability": 0.5253 + }, + { + "start": 12415.88, + "end": 12416.54, + "probability": 0.9233 + }, + { + "start": 12416.74, + "end": 12417.34, + "probability": 0.4525 + }, + { + "start": 12417.52, + "end": 12418.96, + "probability": 0.6122 + }, + { + "start": 12419.86, + "end": 12421.86, + "probability": 0.9583 + }, + { + "start": 12422.52, + "end": 12423.72, + "probability": 0.8004 + }, + { + "start": 12424.44, + "end": 12428.54, + "probability": 0.8998 + }, + { + "start": 12429.18, + "end": 12429.42, + "probability": 0.5238 + }, + { + "start": 12430.22, + "end": 12430.56, + "probability": 0.3828 + }, + { + "start": 12431.2, + "end": 12431.86, + "probability": 0.9734 + }, + { + "start": 12433.42, + "end": 12433.72, + "probability": 0.9769 + }, + { + "start": 12434.02, + "end": 12436.6, + "probability": 0.4876 + }, + { + "start": 12437.84, + "end": 12439.36, + "probability": 0.9098 + }, + { + "start": 12440.14, + "end": 12441.18, + "probability": 0.515 + }, + { + "start": 12441.84, + "end": 12443.44, + "probability": 0.5726 + }, + { + "start": 12444.38, + "end": 12444.76, + "probability": 0.8615 + }, + { + "start": 12446.44, + "end": 12446.96, + "probability": 0.8 + }, + { + "start": 12447.22, + "end": 12447.94, + "probability": 0.5268 + }, + { + "start": 12448.12, + "end": 12448.72, + "probability": 0.9338 + }, + { + "start": 12448.76, + "end": 12449.5, + "probability": 0.9834 + }, + { + "start": 12449.78, + "end": 12450.2, + "probability": 0.8384 + }, + { + "start": 12450.84, + "end": 12452.32, + "probability": 0.7607 + }, + { + "start": 12452.36, + "end": 12454.72, + "probability": 0.5204 + }, + { + "start": 12455.72, + "end": 12457.74, + "probability": 0.9292 + }, + { + "start": 12458.0, + "end": 12459.3, + "probability": 0.8716 + }, + { + "start": 12459.9, + "end": 12461.5, + "probability": 0.9886 + }, + { + "start": 12462.4, + "end": 12463.42, + "probability": 0.6754 + }, + { + "start": 12464.0, + "end": 12468.2, + "probability": 0.9369 + }, + { + "start": 12468.52, + "end": 12469.62, + "probability": 0.8018 + }, + { + "start": 12470.58, + "end": 12471.5, + "probability": 0.3649 + }, + { + "start": 12471.52, + "end": 12472.4, + "probability": 0.7659 + }, + { + "start": 12472.7, + "end": 12474.4, + "probability": 0.5724 + }, + { + "start": 12475.18, + "end": 12476.92, + "probability": 0.692 + }, + { + "start": 12477.24, + "end": 12479.78, + "probability": 0.4894 + }, + { + "start": 12480.4, + "end": 12480.8, + "probability": 0.6975 + }, + { + "start": 12481.68, + "end": 12482.16, + "probability": 0.8385 + }, + { + "start": 12484.2, + "end": 12490.08, + "probability": 0.7334 + }, + { + "start": 12490.5, + "end": 12491.52, + "probability": 0.6553 + }, + { + "start": 12492.63, + "end": 12493.75, + "probability": 0.37 + }, + { + "start": 12497.62, + "end": 12497.62, + "probability": 0.013 + }, + { + "start": 12497.78, + "end": 12497.78, + "probability": 0.0382 + }, + { + "start": 12497.78, + "end": 12497.78, + "probability": 0.1541 + }, + { + "start": 12497.78, + "end": 12498.82, + "probability": 0.4035 + }, + { + "start": 12500.12, + "end": 12501.06, + "probability": 0.9243 + }, + { + "start": 12501.56, + "end": 12504.66, + "probability": 0.5786 + }, + { + "start": 12505.16, + "end": 12506.06, + "probability": 0.6881 + }, + { + "start": 12506.58, + "end": 12507.06, + "probability": 0.9395 + }, + { + "start": 12507.12, + "end": 12507.34, + "probability": 0.3085 + }, + { + "start": 12507.82, + "end": 12508.5, + "probability": 0.7628 + }, + { + "start": 12508.92, + "end": 12512.16, + "probability": 0.8039 + }, + { + "start": 12513.16, + "end": 12515.32, + "probability": 0.4737 + }, + { + "start": 12515.66, + "end": 12516.42, + "probability": 0.5048 + }, + { + "start": 12516.98, + "end": 12519.66, + "probability": 0.9312 + }, + { + "start": 12520.26, + "end": 12522.3, + "probability": 0.7351 + }, + { + "start": 12522.96, + "end": 12524.8, + "probability": 0.5571 + }, + { + "start": 12526.0, + "end": 12527.14, + "probability": 0.3238 + }, + { + "start": 12527.22, + "end": 12528.26, + "probability": 0.7244 + }, + { + "start": 12528.76, + "end": 12532.8, + "probability": 0.9672 + }, + { + "start": 12533.14, + "end": 12533.62, + "probability": 0.6521 + }, + { + "start": 12534.74, + "end": 12536.84, + "probability": 0.8993 + }, + { + "start": 12537.04, + "end": 12538.3, + "probability": 0.9681 + }, + { + "start": 12539.14, + "end": 12540.08, + "probability": 0.905 + }, + { + "start": 12540.96, + "end": 12541.48, + "probability": 0.9392 + }, + { + "start": 12542.04, + "end": 12544.22, + "probability": 0.7974 + }, + { + "start": 12544.88, + "end": 12549.66, + "probability": 0.619 + }, + { + "start": 12549.94, + "end": 12551.92, + "probability": 0.675 + }, + { + "start": 12552.18, + "end": 12552.48, + "probability": 0.856 + }, + { + "start": 12553.34, + "end": 12554.42, + "probability": 0.691 + }, + { + "start": 12554.96, + "end": 12555.2, + "probability": 0.3625 + }, + { + "start": 12556.62, + "end": 12559.0, + "probability": 0.4254 + }, + { + "start": 12560.22, + "end": 12561.41, + "probability": 0.3724 + }, + { + "start": 12562.62, + "end": 12567.38, + "probability": 0.9747 + }, + { + "start": 12567.38, + "end": 12570.92, + "probability": 0.9498 + }, + { + "start": 12571.48, + "end": 12572.96, + "probability": 0.8462 + }, + { + "start": 12573.7, + "end": 12574.36, + "probability": 0.4357 + }, + { + "start": 12574.62, + "end": 12575.06, + "probability": 0.7478 + }, + { + "start": 12575.5, + "end": 12578.18, + "probability": 0.8006 + }, + { + "start": 12578.8, + "end": 12580.06, + "probability": 0.8817 + }, + { + "start": 12580.88, + "end": 12582.52, + "probability": 0.9717 + }, + { + "start": 12582.86, + "end": 12583.52, + "probability": 0.7651 + }, + { + "start": 12583.81, + "end": 12585.2, + "probability": 0.9299 + }, + { + "start": 12585.78, + "end": 12587.04, + "probability": 0.3039 + }, + { + "start": 12587.5, + "end": 12590.48, + "probability": 0.4961 + }, + { + "start": 12590.8, + "end": 12591.58, + "probability": 0.3501 + }, + { + "start": 12593.74, + "end": 12594.88, + "probability": 0.8828 + }, + { + "start": 12594.98, + "end": 12596.32, + "probability": 0.7358 + }, + { + "start": 12596.36, + "end": 12601.0, + "probability": 0.967 + }, + { + "start": 12601.55, + "end": 12605.41, + "probability": 0.8071 + }, + { + "start": 12605.88, + "end": 12607.44, + "probability": 0.6324 + }, + { + "start": 12607.62, + "end": 12610.48, + "probability": 0.5742 + }, + { + "start": 12611.32, + "end": 12614.93, + "probability": 0.5031 + }, + { + "start": 12616.98, + "end": 12620.08, + "probability": 0.354 + }, + { + "start": 12620.08, + "end": 12620.86, + "probability": 0.2552 + }, + { + "start": 12621.6, + "end": 12625.12, + "probability": 0.8203 + }, + { + "start": 12625.5, + "end": 12628.26, + "probability": 0.9901 + }, + { + "start": 12628.26, + "end": 12632.14, + "probability": 0.6772 + }, + { + "start": 12632.32, + "end": 12633.79, + "probability": 0.7875 + }, + { + "start": 12634.6, + "end": 12635.5, + "probability": 0.5978 + }, + { + "start": 12636.14, + "end": 12637.72, + "probability": 0.3956 + }, + { + "start": 12638.96, + "end": 12639.94, + "probability": 0.5796 + }, + { + "start": 12640.12, + "end": 12641.8, + "probability": 0.2408 + }, + { + "start": 12642.12, + "end": 12643.09, + "probability": 0.7694 + }, + { + "start": 12645.26, + "end": 12647.7, + "probability": 0.555 + }, + { + "start": 12648.12, + "end": 12649.82, + "probability": 0.9627 + }, + { + "start": 12650.66, + "end": 12653.32, + "probability": 0.8315 + }, + { + "start": 12653.96, + "end": 12658.52, + "probability": 0.8642 + }, + { + "start": 12659.18, + "end": 12661.36, + "probability": 0.8501 + }, + { + "start": 12663.0, + "end": 12664.28, + "probability": 0.6657 + }, + { + "start": 12664.72, + "end": 12667.82, + "probability": 0.9031 + }, + { + "start": 12668.2, + "end": 12671.48, + "probability": 0.7606 + }, + { + "start": 12671.62, + "end": 12673.83, + "probability": 0.9763 + }, + { + "start": 12674.58, + "end": 12675.32, + "probability": 0.8838 + }, + { + "start": 12675.44, + "end": 12676.21, + "probability": 0.8292 + }, + { + "start": 12676.94, + "end": 12681.04, + "probability": 0.9816 + }, + { + "start": 12681.48, + "end": 12681.94, + "probability": 0.5264 + }, + { + "start": 12682.46, + "end": 12683.52, + "probability": 0.766 + }, + { + "start": 12684.1, + "end": 12686.8, + "probability": 0.6144 + }, + { + "start": 12686.9, + "end": 12687.58, + "probability": 0.8879 + }, + { + "start": 12688.14, + "end": 12690.48, + "probability": 0.7771 + }, + { + "start": 12694.2, + "end": 12698.45, + "probability": 0.8528 + }, + { + "start": 12709.38, + "end": 12709.38, + "probability": 0.2879 + }, + { + "start": 12709.38, + "end": 12711.24, + "probability": 0.59 + }, + { + "start": 12712.56, + "end": 12713.08, + "probability": 0.8019 + }, + { + "start": 12713.14, + "end": 12713.68, + "probability": 0.929 + }, + { + "start": 12713.74, + "end": 12716.22, + "probability": 0.946 + }, + { + "start": 12716.94, + "end": 12719.08, + "probability": 0.9814 + }, + { + "start": 12720.3, + "end": 12721.72, + "probability": 0.8716 + }, + { + "start": 12725.64, + "end": 12729.32, + "probability": 0.9993 + }, + { + "start": 12730.12, + "end": 12731.74, + "probability": 0.9747 + }, + { + "start": 12733.22, + "end": 12735.32, + "probability": 0.9868 + }, + { + "start": 12736.02, + "end": 12739.02, + "probability": 0.9949 + }, + { + "start": 12739.02, + "end": 12741.74, + "probability": 0.9995 + }, + { + "start": 12742.22, + "end": 12743.22, + "probability": 0.8941 + }, + { + "start": 12744.04, + "end": 12746.0, + "probability": 0.9846 + }, + { + "start": 12746.1, + "end": 12747.2, + "probability": 0.6873 + }, + { + "start": 12748.04, + "end": 12749.34, + "probability": 0.8807 + }, + { + "start": 12750.06, + "end": 12751.94, + "probability": 0.9932 + }, + { + "start": 12752.32, + "end": 12753.78, + "probability": 0.9854 + }, + { + "start": 12754.16, + "end": 12756.26, + "probability": 0.9917 + }, + { + "start": 12756.84, + "end": 12758.62, + "probability": 0.988 + }, + { + "start": 12760.54, + "end": 12762.62, + "probability": 0.9395 + }, + { + "start": 12764.04, + "end": 12764.82, + "probability": 0.6634 + }, + { + "start": 12765.16, + "end": 12768.54, + "probability": 0.873 + }, + { + "start": 12769.0, + "end": 12770.32, + "probability": 0.9909 + }, + { + "start": 12772.66, + "end": 12773.02, + "probability": 0.695 + }, + { + "start": 12773.14, + "end": 12775.68, + "probability": 0.9507 + }, + { + "start": 12775.78, + "end": 12776.86, + "probability": 0.9276 + }, + { + "start": 12779.5, + "end": 12780.28, + "probability": 0.0925 + }, + { + "start": 12791.6, + "end": 12794.92, + "probability": 0.6821 + }, + { + "start": 12796.14, + "end": 12797.74, + "probability": 0.4935 + }, + { + "start": 12797.8, + "end": 12799.4, + "probability": 0.7326 + }, + { + "start": 12800.1, + "end": 12800.9, + "probability": 0.668 + }, + { + "start": 12802.44, + "end": 12803.5, + "probability": 0.2511 + }, + { + "start": 12804.44, + "end": 12807.32, + "probability": 0.558 + }, + { + "start": 12808.12, + "end": 12808.74, + "probability": 0.6903 + }, + { + "start": 12809.66, + "end": 12811.98, + "probability": 0.9792 + }, + { + "start": 12812.66, + "end": 12815.32, + "probability": 0.9966 + }, + { + "start": 12816.1, + "end": 12816.85, + "probability": 0.9893 + }, + { + "start": 12817.04, + "end": 12817.7, + "probability": 0.9922 + }, + { + "start": 12817.98, + "end": 12822.82, + "probability": 0.9909 + }, + { + "start": 12823.48, + "end": 12825.28, + "probability": 0.7988 + }, + { + "start": 12825.78, + "end": 12826.44, + "probability": 0.3828 + }, + { + "start": 12827.48, + "end": 12829.56, + "probability": 0.8228 + }, + { + "start": 12829.7, + "end": 12832.86, + "probability": 0.9624 + }, + { + "start": 12833.82, + "end": 12837.32, + "probability": 0.9819 + }, + { + "start": 12838.18, + "end": 12840.18, + "probability": 0.562 + }, + { + "start": 12840.94, + "end": 12844.3, + "probability": 0.9868 + }, + { + "start": 12844.72, + "end": 12846.31, + "probability": 0.9849 + }, + { + "start": 12847.04, + "end": 12849.06, + "probability": 0.9922 + }, + { + "start": 12849.58, + "end": 12853.0, + "probability": 0.9934 + }, + { + "start": 12853.08, + "end": 12854.4, + "probability": 0.9121 + }, + { + "start": 12854.54, + "end": 12854.78, + "probability": 0.6971 + }, + { + "start": 12856.14, + "end": 12856.64, + "probability": 0.6333 + }, + { + "start": 12856.72, + "end": 12857.7, + "probability": 0.8506 + }, + { + "start": 12867.29, + "end": 12871.56, + "probability": 0.978 + }, + { + "start": 12872.52, + "end": 12874.16, + "probability": 0.8568 + }, + { + "start": 12874.7, + "end": 12877.36, + "probability": 0.9794 + }, + { + "start": 12878.32, + "end": 12882.48, + "probability": 0.2995 + }, + { + "start": 12883.06, + "end": 12883.76, + "probability": 0.8144 + }, + { + "start": 12884.82, + "end": 12886.3, + "probability": 0.708 + }, + { + "start": 12887.59, + "end": 12889.72, + "probability": 0.6847 + }, + { + "start": 12890.44, + "end": 12892.14, + "probability": 0.2534 + }, + { + "start": 12892.26, + "end": 12895.46, + "probability": 0.9434 + }, + { + "start": 12896.67, + "end": 12901.52, + "probability": 0.9094 + }, + { + "start": 12902.12, + "end": 12905.78, + "probability": 0.9845 + }, + { + "start": 12906.16, + "end": 12910.56, + "probability": 0.6189 + }, + { + "start": 12911.4, + "end": 12913.98, + "probability": 0.902 + }, + { + "start": 12914.78, + "end": 12916.66, + "probability": 0.7336 + }, + { + "start": 12918.28, + "end": 12919.14, + "probability": 0.9429 + }, + { + "start": 12919.84, + "end": 12920.14, + "probability": 0.5268 + }, + { + "start": 12924.22, + "end": 12932.14, + "probability": 0.7957 + }, + { + "start": 12933.08, + "end": 12936.3, + "probability": 0.9369 + }, + { + "start": 12937.22, + "end": 12941.32, + "probability": 0.993 + }, + { + "start": 12942.28, + "end": 12945.58, + "probability": 0.9544 + }, + { + "start": 12948.3, + "end": 12949.84, + "probability": 0.6911 + }, + { + "start": 12950.96, + "end": 12955.76, + "probability": 0.9854 + }, + { + "start": 12956.42, + "end": 12962.33, + "probability": 0.9954 + }, + { + "start": 12963.14, + "end": 12965.48, + "probability": 0.7406 + }, + { + "start": 12965.96, + "end": 12969.6, + "probability": 0.5391 + }, + { + "start": 12970.78, + "end": 12971.68, + "probability": 0.9399 + }, + { + "start": 12971.72, + "end": 12978.22, + "probability": 0.9938 + }, + { + "start": 12978.22, + "end": 12980.14, + "probability": 0.5421 + }, + { + "start": 12980.28, + "end": 12981.08, + "probability": 0.7578 + }, + { + "start": 12981.14, + "end": 12981.8, + "probability": 0.745 + }, + { + "start": 12982.14, + "end": 12984.34, + "probability": 0.9905 + }, + { + "start": 12984.64, + "end": 12985.52, + "probability": 0.8879 + }, + { + "start": 12986.42, + "end": 12986.74, + "probability": 0.6812 + }, + { + "start": 12986.96, + "end": 12988.32, + "probability": 0.7573 + }, + { + "start": 12991.7, + "end": 12993.28, + "probability": 0.1437 + }, + { + "start": 12993.28, + "end": 12994.68, + "probability": 0.0991 + }, + { + "start": 12995.08, + "end": 12995.26, + "probability": 0.025 + }, + { + "start": 12995.26, + "end": 12995.26, + "probability": 0.0876 + }, + { + "start": 12995.26, + "end": 12995.47, + "probability": 0.0672 + }, + { + "start": 12996.32, + "end": 12996.88, + "probability": 0.0443 + }, + { + "start": 12996.88, + "end": 12996.88, + "probability": 0.2793 + }, + { + "start": 12996.88, + "end": 12997.92, + "probability": 0.4211 + }, + { + "start": 12999.62, + "end": 13002.44, + "probability": 0.1728 + }, + { + "start": 13004.24, + "end": 13005.0, + "probability": 0.5759 + }, + { + "start": 13005.69, + "end": 13009.26, + "probability": 0.7158 + }, + { + "start": 13010.4, + "end": 13011.24, + "probability": 0.877 + }, + { + "start": 13012.3, + "end": 13013.0, + "probability": 0.9132 + }, + { + "start": 13015.66, + "end": 13016.48, + "probability": 0.819 + }, + { + "start": 13018.24, + "end": 13019.32, + "probability": 0.9383 + }, + { + "start": 13019.82, + "end": 13022.63, + "probability": 0.6495 + }, + { + "start": 13024.62, + "end": 13025.38, + "probability": 0.7726 + }, + { + "start": 13025.42, + "end": 13026.07, + "probability": 0.9663 + }, + { + "start": 13026.76, + "end": 13027.8, + "probability": 0.6784 + }, + { + "start": 13028.84, + "end": 13030.32, + "probability": 0.7201 + }, + { + "start": 13031.0, + "end": 13032.54, + "probability": 0.8477 + }, + { + "start": 13033.42, + "end": 13037.14, + "probability": 0.9923 + }, + { + "start": 13037.96, + "end": 13038.38, + "probability": 0.83 + }, + { + "start": 13039.32, + "end": 13042.16, + "probability": 0.864 + }, + { + "start": 13043.0, + "end": 13044.68, + "probability": 0.7563 + }, + { + "start": 13046.6, + "end": 13050.16, + "probability": 0.6157 + }, + { + "start": 13050.16, + "end": 13054.2, + "probability": 0.7133 + }, + { + "start": 13054.88, + "end": 13057.96, + "probability": 0.8641 + }, + { + "start": 13058.78, + "end": 13060.54, + "probability": 0.9517 + }, + { + "start": 13060.7, + "end": 13061.92, + "probability": 0.7904 + }, + { + "start": 13062.64, + "end": 13064.44, + "probability": 0.9603 + }, + { + "start": 13065.58, + "end": 13066.82, + "probability": 0.7026 + }, + { + "start": 13067.82, + "end": 13069.4, + "probability": 0.5599 + }, + { + "start": 13070.85, + "end": 13072.08, + "probability": 0.4088 + }, + { + "start": 13073.08, + "end": 13076.17, + "probability": 0.9668 + }, + { + "start": 13076.28, + "end": 13079.08, + "probability": 0.9147 + }, + { + "start": 13079.78, + "end": 13081.1, + "probability": 0.8055 + }, + { + "start": 13082.18, + "end": 13083.72, + "probability": 0.943 + }, + { + "start": 13084.9, + "end": 13085.96, + "probability": 0.0638 + }, + { + "start": 13089.56, + "end": 13091.62, + "probability": 0.1056 + }, + { + "start": 13092.52, + "end": 13095.12, + "probability": 0.4895 + }, + { + "start": 13095.12, + "end": 13098.0, + "probability": 0.5685 + }, + { + "start": 13101.22, + "end": 13101.9, + "probability": 0.1653 + }, + { + "start": 13102.0, + "end": 13103.08, + "probability": 0.4533 + }, + { + "start": 13103.66, + "end": 13106.12, + "probability": 0.7791 + }, + { + "start": 13106.74, + "end": 13108.34, + "probability": 0.3723 + }, + { + "start": 13108.86, + "end": 13111.42, + "probability": 0.705 + }, + { + "start": 13111.84, + "end": 13114.0, + "probability": 0.8932 + }, + { + "start": 13114.52, + "end": 13116.42, + "probability": 0.6778 + }, + { + "start": 13116.96, + "end": 13117.24, + "probability": 0.6181 + }, + { + "start": 13118.26, + "end": 13118.82, + "probability": 0.468 + }, + { + "start": 13119.4, + "end": 13120.4, + "probability": 0.3497 + }, + { + "start": 13121.1, + "end": 13122.36, + "probability": 0.6648 + }, + { + "start": 13123.16, + "end": 13125.0, + "probability": 0.7224 + }, + { + "start": 13126.67, + "end": 13129.5, + "probability": 0.7675 + }, + { + "start": 13130.6, + "end": 13130.96, + "probability": 0.6573 + }, + { + "start": 13131.12, + "end": 13131.74, + "probability": 0.8432 + }, + { + "start": 13131.82, + "end": 13134.68, + "probability": 0.9771 + }, + { + "start": 13136.04, + "end": 13139.82, + "probability": 0.4389 + }, + { + "start": 13141.36, + "end": 13142.18, + "probability": 0.5717 + }, + { + "start": 13143.16, + "end": 13146.08, + "probability": 0.911 + }, + { + "start": 13147.04, + "end": 13148.9, + "probability": 0.6846 + }, + { + "start": 13152.91, + "end": 13156.18, + "probability": 0.5432 + }, + { + "start": 13158.16, + "end": 13162.75, + "probability": 0.4079 + }, + { + "start": 13163.35, + "end": 13166.55, + "probability": 0.8242 + }, + { + "start": 13170.48, + "end": 13173.55, + "probability": 0.8665 + }, + { + "start": 13173.65, + "end": 13174.45, + "probability": 0.8182 + }, + { + "start": 13174.75, + "end": 13175.4, + "probability": 0.7622 + }, + { + "start": 13175.67, + "end": 13176.19, + "probability": 0.4324 + }, + { + "start": 13176.19, + "end": 13178.01, + "probability": 0.676 + }, + { + "start": 13178.41, + "end": 13179.99, + "probability": 0.8486 + }, + { + "start": 13179.99, + "end": 13182.0, + "probability": 0.7466 + }, + { + "start": 13182.27, + "end": 13182.45, + "probability": 0.064 + }, + { + "start": 13182.45, + "end": 13183.39, + "probability": 0.5668 + }, + { + "start": 13183.89, + "end": 13184.71, + "probability": 0.6027 + }, + { + "start": 13185.59, + "end": 13187.23, + "probability": 0.8752 + }, + { + "start": 13188.59, + "end": 13188.59, + "probability": 0.2805 + }, + { + "start": 13188.65, + "end": 13190.71, + "probability": 0.5249 + }, + { + "start": 13190.87, + "end": 13192.13, + "probability": 0.4824 + }, + { + "start": 13194.51, + "end": 13196.59, + "probability": 0.3641 + }, + { + "start": 13198.79, + "end": 13199.63, + "probability": 0.6837 + }, + { + "start": 13200.44, + "end": 13202.77, + "probability": 0.1094 + }, + { + "start": 13205.05, + "end": 13206.21, + "probability": 0.2285 + }, + { + "start": 13206.31, + "end": 13206.39, + "probability": 0.0819 + }, + { + "start": 13206.91, + "end": 13207.31, + "probability": 0.1571 + }, + { + "start": 13207.33, + "end": 13208.03, + "probability": 0.4703 + }, + { + "start": 13208.11, + "end": 13209.73, + "probability": 0.9066 + }, + { + "start": 13210.07, + "end": 13211.41, + "probability": 0.3322 + }, + { + "start": 13211.93, + "end": 13213.31, + "probability": 0.0438 + }, + { + "start": 13213.31, + "end": 13215.95, + "probability": 0.7153 + }, + { + "start": 13216.61, + "end": 13218.61, + "probability": 0.0994 + }, + { + "start": 13220.35, + "end": 13223.87, + "probability": 0.2297 + }, + { + "start": 13226.33, + "end": 13230.37, + "probability": 0.6771 + }, + { + "start": 13235.57, + "end": 13238.01, + "probability": 0.0555 + }, + { + "start": 13239.01, + "end": 13240.27, + "probability": 0.3677 + }, + { + "start": 13245.41, + "end": 13247.35, + "probability": 0.9691 + }, + { + "start": 13249.33, + "end": 13251.41, + "probability": 0.9257 + }, + { + "start": 13251.51, + "end": 13253.05, + "probability": 0.0025 + }, + { + "start": 13253.05, + "end": 13253.21, + "probability": 0.2332 + }, + { + "start": 13253.23, + "end": 13253.33, + "probability": 0.3481 + }, + { + "start": 13253.43, + "end": 13254.03, + "probability": 0.008 + }, + { + "start": 13254.05, + "end": 13254.05, + "probability": 0.1569 + }, + { + "start": 13255.31, + "end": 13256.91, + "probability": 0.7392 + }, + { + "start": 13257.25, + "end": 13260.36, + "probability": 0.6886 + }, + { + "start": 13260.75, + "end": 13261.61, + "probability": 0.7961 + }, + { + "start": 13262.09, + "end": 13265.43, + "probability": 0.6519 + }, + { + "start": 13266.07, + "end": 13266.65, + "probability": 0.4565 + }, + { + "start": 13266.73, + "end": 13270.65, + "probability": 0.8855 + }, + { + "start": 13272.05, + "end": 13275.13, + "probability": 0.9622 + }, + { + "start": 13275.43, + "end": 13277.81, + "probability": 0.9708 + }, + { + "start": 13280.11, + "end": 13281.53, + "probability": 0.9769 + }, + { + "start": 13285.29, + "end": 13286.59, + "probability": 0.9912 + }, + { + "start": 13287.65, + "end": 13290.81, + "probability": 0.9565 + }, + { + "start": 13291.65, + "end": 13292.41, + "probability": 0.9648 + }, + { + "start": 13294.55, + "end": 13294.89, + "probability": 0.2844 + }, + { + "start": 13294.95, + "end": 13297.81, + "probability": 0.9967 + }, + { + "start": 13298.87, + "end": 13300.33, + "probability": 0.954 + }, + { + "start": 13300.87, + "end": 13301.81, + "probability": 0.9122 + }, + { + "start": 13303.11, + "end": 13305.33, + "probability": 0.7321 + }, + { + "start": 13306.89, + "end": 13315.29, + "probability": 0.7096 + }, + { + "start": 13315.55, + "end": 13316.11, + "probability": 0.8512 + }, + { + "start": 13316.57, + "end": 13317.19, + "probability": 0.8816 + }, + { + "start": 13318.87, + "end": 13320.55, + "probability": 0.951 + }, + { + "start": 13321.01, + "end": 13322.27, + "probability": 0.8319 + }, + { + "start": 13322.71, + "end": 13323.65, + "probability": 0.8453 + }, + { + "start": 13324.39, + "end": 13325.69, + "probability": 0.5744 + }, + { + "start": 13325.87, + "end": 13328.19, + "probability": 0.9651 + }, + { + "start": 13329.43, + "end": 13332.19, + "probability": 0.9531 + }, + { + "start": 13334.47, + "end": 13336.33, + "probability": 0.9958 + }, + { + "start": 13337.37, + "end": 13340.45, + "probability": 0.8753 + }, + { + "start": 13341.29, + "end": 13341.97, + "probability": 0.7579 + }, + { + "start": 13342.53, + "end": 13344.35, + "probability": 0.6662 + }, + { + "start": 13345.43, + "end": 13347.99, + "probability": 0.8759 + }, + { + "start": 13349.13, + "end": 13351.05, + "probability": 0.9628 + }, + { + "start": 13351.69, + "end": 13352.55, + "probability": 0.9683 + }, + { + "start": 13353.23, + "end": 13354.71, + "probability": 0.9448 + }, + { + "start": 13355.73, + "end": 13356.33, + "probability": 0.9496 + }, + { + "start": 13358.93, + "end": 13360.68, + "probability": 0.7927 + }, + { + "start": 13362.59, + "end": 13363.13, + "probability": 0.6889 + }, + { + "start": 13363.83, + "end": 13365.6, + "probability": 0.5415 + }, + { + "start": 13367.01, + "end": 13370.01, + "probability": 0.6665 + }, + { + "start": 13370.83, + "end": 13374.2, + "probability": 0.9691 + }, + { + "start": 13375.56, + "end": 13377.33, + "probability": 0.7297 + }, + { + "start": 13377.85, + "end": 13379.05, + "probability": 0.9503 + }, + { + "start": 13380.29, + "end": 13383.01, + "probability": 0.9945 + }, + { + "start": 13383.81, + "end": 13385.75, + "probability": 0.9907 + }, + { + "start": 13386.65, + "end": 13388.57, + "probability": 0.9519 + }, + { + "start": 13390.05, + "end": 13390.57, + "probability": 0.8752 + }, + { + "start": 13391.61, + "end": 13394.07, + "probability": 0.7152 + }, + { + "start": 13394.91, + "end": 13395.53, + "probability": 0.6536 + }, + { + "start": 13396.19, + "end": 13396.78, + "probability": 0.9724 + }, + { + "start": 13397.99, + "end": 13399.81, + "probability": 0.9019 + }, + { + "start": 13400.65, + "end": 13401.71, + "probability": 0.999 + }, + { + "start": 13402.57, + "end": 13404.55, + "probability": 0.8783 + }, + { + "start": 13405.57, + "end": 13406.23, + "probability": 0.5618 + }, + { + "start": 13407.13, + "end": 13409.03, + "probability": 0.9132 + }, + { + "start": 13409.05, + "end": 13409.65, + "probability": 0.9325 + }, + { + "start": 13410.09, + "end": 13411.11, + "probability": 0.9194 + }, + { + "start": 13412.09, + "end": 13415.45, + "probability": 0.9905 + }, + { + "start": 13416.41, + "end": 13421.23, + "probability": 0.9758 + }, + { + "start": 13421.43, + "end": 13422.03, + "probability": 0.9101 + }, + { + "start": 13423.35, + "end": 13425.89, + "probability": 0.3011 + }, + { + "start": 13427.07, + "end": 13428.07, + "probability": 0.886 + }, + { + "start": 13428.61, + "end": 13431.81, + "probability": 0.8402 + }, + { + "start": 13432.45, + "end": 13433.77, + "probability": 0.9956 + }, + { + "start": 13434.45, + "end": 13434.87, + "probability": 0.86 + }, + { + "start": 13436.03, + "end": 13439.63, + "probability": 0.9805 + }, + { + "start": 13440.73, + "end": 13441.55, + "probability": 0.7213 + }, + { + "start": 13442.45, + "end": 13444.21, + "probability": 0.8229 + }, + { + "start": 13444.73, + "end": 13450.17, + "probability": 0.9489 + }, + { + "start": 13450.77, + "end": 13451.17, + "probability": 0.8147 + }, + { + "start": 13451.43, + "end": 13451.73, + "probability": 0.9438 + }, + { + "start": 13452.57, + "end": 13453.27, + "probability": 0.6335 + }, + { + "start": 13453.41, + "end": 13454.29, + "probability": 0.9814 + }, + { + "start": 13473.07, + "end": 13473.75, + "probability": 0.3689 + }, + { + "start": 13475.03, + "end": 13475.61, + "probability": 0.833 + }, + { + "start": 13475.75, + "end": 13478.79, + "probability": 0.9613 + }, + { + "start": 13481.29, + "end": 13483.33, + "probability": 0.7069 + }, + { + "start": 13484.05, + "end": 13485.27, + "probability": 0.9003 + }, + { + "start": 13486.03, + "end": 13487.83, + "probability": 0.8686 + }, + { + "start": 13488.53, + "end": 13490.49, + "probability": 0.8247 + }, + { + "start": 13491.51, + "end": 13495.25, + "probability": 0.9467 + }, + { + "start": 13497.21, + "end": 13502.39, + "probability": 0.9224 + }, + { + "start": 13502.45, + "end": 13503.5, + "probability": 0.9717 + }, + { + "start": 13504.55, + "end": 13505.35, + "probability": 0.7134 + }, + { + "start": 13506.59, + "end": 13506.63, + "probability": 0.0196 + }, + { + "start": 13506.63, + "end": 13510.85, + "probability": 0.8825 + }, + { + "start": 13511.83, + "end": 13513.61, + "probability": 0.9595 + }, + { + "start": 13514.27, + "end": 13516.61, + "probability": 0.9883 + }, + { + "start": 13517.59, + "end": 13521.27, + "probability": 0.9639 + }, + { + "start": 13522.13, + "end": 13526.77, + "probability": 0.9168 + }, + { + "start": 13527.47, + "end": 13531.79, + "probability": 0.9181 + }, + { + "start": 13532.65, + "end": 13534.97, + "probability": 0.9922 + }, + { + "start": 13535.63, + "end": 13536.71, + "probability": 0.9079 + }, + { + "start": 13537.35, + "end": 13538.11, + "probability": 0.944 + }, + { + "start": 13538.63, + "end": 13541.03, + "probability": 0.974 + }, + { + "start": 13541.63, + "end": 13543.67, + "probability": 0.7944 + }, + { + "start": 13544.21, + "end": 13551.19, + "probability": 0.9941 + }, + { + "start": 13551.29, + "end": 13555.63, + "probability": 0.9949 + }, + { + "start": 13556.05, + "end": 13558.83, + "probability": 0.7619 + }, + { + "start": 13559.33, + "end": 13562.73, + "probability": 0.9175 + }, + { + "start": 13563.37, + "end": 13566.17, + "probability": 0.853 + }, + { + "start": 13566.73, + "end": 13569.05, + "probability": 0.9495 + }, + { + "start": 13572.83, + "end": 13573.29, + "probability": 0.986 + }, + { + "start": 13576.39, + "end": 13577.31, + "probability": 0.4953 + }, + { + "start": 13577.41, + "end": 13577.89, + "probability": 0.7031 + }, + { + "start": 13577.99, + "end": 13582.91, + "probability": 0.9915 + }, + { + "start": 13583.53, + "end": 13584.65, + "probability": 0.6623 + }, + { + "start": 13585.33, + "end": 13588.37, + "probability": 0.9811 + }, + { + "start": 13589.81, + "end": 13591.41, + "probability": 0.9503 + }, + { + "start": 13592.03, + "end": 13596.62, + "probability": 0.9899 + }, + { + "start": 13597.25, + "end": 13599.45, + "probability": 0.9322 + }, + { + "start": 13600.11, + "end": 13602.67, + "probability": 0.9774 + }, + { + "start": 13603.03, + "end": 13604.63, + "probability": 0.6221 + }, + { + "start": 13604.73, + "end": 13607.15, + "probability": 0.9479 + }, + { + "start": 13607.25, + "end": 13609.93, + "probability": 0.9776 + }, + { + "start": 13610.79, + "end": 13612.41, + "probability": 0.8064 + }, + { + "start": 13613.43, + "end": 13616.01, + "probability": 0.9704 + }, + { + "start": 13616.07, + "end": 13619.05, + "probability": 0.99 + }, + { + "start": 13619.67, + "end": 13620.35, + "probability": 0.9167 + }, + { + "start": 13620.43, + "end": 13622.23, + "probability": 0.9102 + }, + { + "start": 13622.27, + "end": 13624.52, + "probability": 0.9975 + }, + { + "start": 13625.03, + "end": 13628.87, + "probability": 0.9581 + }, + { + "start": 13628.87, + "end": 13631.91, + "probability": 0.955 + }, + { + "start": 13632.69, + "end": 13635.49, + "probability": 0.9292 + }, + { + "start": 13635.55, + "end": 13637.13, + "probability": 0.959 + }, + { + "start": 13637.73, + "end": 13640.99, + "probability": 0.9784 + }, + { + "start": 13641.55, + "end": 13645.05, + "probability": 0.7515 + }, + { + "start": 13645.25, + "end": 13646.63, + "probability": 0.5579 + }, + { + "start": 13647.37, + "end": 13651.09, + "probability": 0.9413 + }, + { + "start": 13651.09, + "end": 13654.25, + "probability": 0.8941 + }, + { + "start": 13654.41, + "end": 13657.71, + "probability": 0.9299 + }, + { + "start": 13658.09, + "end": 13663.29, + "probability": 0.9957 + }, + { + "start": 13663.69, + "end": 13665.17, + "probability": 0.9413 + }, + { + "start": 13665.61, + "end": 13666.67, + "probability": 0.9025 + }, + { + "start": 13666.73, + "end": 13668.71, + "probability": 0.9962 + }, + { + "start": 13669.17, + "end": 13670.34, + "probability": 0.9692 + }, + { + "start": 13670.89, + "end": 13675.93, + "probability": 0.9755 + }, + { + "start": 13676.39, + "end": 13679.35, + "probability": 0.8774 + }, + { + "start": 13679.45, + "end": 13679.85, + "probability": 0.8273 + }, + { + "start": 13680.55, + "end": 13681.01, + "probability": 0.7257 + }, + { + "start": 13682.43, + "end": 13683.05, + "probability": 0.5428 + }, + { + "start": 13686.33, + "end": 13688.39, + "probability": 0.6481 + }, + { + "start": 13689.28, + "end": 13692.41, + "probability": 0.6552 + }, + { + "start": 13692.81, + "end": 13693.54, + "probability": 0.9264 + }, + { + "start": 13695.25, + "end": 13695.87, + "probability": 0.0833 + }, + { + "start": 13696.55, + "end": 13698.69, + "probability": 0.8711 + }, + { + "start": 13700.45, + "end": 13701.29, + "probability": 0.0673 + }, + { + "start": 13702.99, + "end": 13703.59, + "probability": 0.0037 + }, + { + "start": 13703.89, + "end": 13705.81, + "probability": 0.3244 + }, + { + "start": 13705.99, + "end": 13707.55, + "probability": 0.9132 + }, + { + "start": 13708.15, + "end": 13713.11, + "probability": 0.8737 + }, + { + "start": 13713.83, + "end": 13714.79, + "probability": 0.9596 + }, + { + "start": 13715.69, + "end": 13719.71, + "probability": 0.865 + }, + { + "start": 13720.31, + "end": 13723.79, + "probability": 0.943 + }, + { + "start": 13723.91, + "end": 13724.34, + "probability": 0.7703 + }, + { + "start": 13725.13, + "end": 13726.43, + "probability": 0.9391 + }, + { + "start": 13727.41, + "end": 13729.95, + "probability": 0.8972 + }, + { + "start": 13729.95, + "end": 13733.99, + "probability": 0.9082 + }, + { + "start": 13734.11, + "end": 13734.61, + "probability": 0.201 + }, + { + "start": 13734.89, + "end": 13735.17, + "probability": 0.8123 + }, + { + "start": 13736.39, + "end": 13737.05, + "probability": 0.4929 + }, + { + "start": 13737.23, + "end": 13737.99, + "probability": 0.9496 + }, + { + "start": 13738.05, + "end": 13738.65, + "probability": 0.8905 + }, + { + "start": 13739.47, + "end": 13740.63, + "probability": 0.9932 + }, + { + "start": 13741.31, + "end": 13743.59, + "probability": 0.6828 + }, + { + "start": 13745.27, + "end": 13746.77, + "probability": 0.7601 + }, + { + "start": 13748.43, + "end": 13750.03, + "probability": 0.9855 + }, + { + "start": 13750.11, + "end": 13750.56, + "probability": 0.6518 + }, + { + "start": 13750.71, + "end": 13751.75, + "probability": 0.9369 + }, + { + "start": 13751.79, + "end": 13755.27, + "probability": 0.9847 + }, + { + "start": 13755.93, + "end": 13757.01, + "probability": 0.9408 + }, + { + "start": 13757.83, + "end": 13761.53, + "probability": 0.6107 + }, + { + "start": 13761.53, + "end": 13761.93, + "probability": 0.6733 + }, + { + "start": 13762.55, + "end": 13763.29, + "probability": 0.9187 + }, + { + "start": 13764.15, + "end": 13766.09, + "probability": 0.7823 + }, + { + "start": 13766.65, + "end": 13770.09, + "probability": 0.8448 + }, + { + "start": 13770.87, + "end": 13772.53, + "probability": 0.6204 + }, + { + "start": 13773.03, + "end": 13773.57, + "probability": 0.815 + }, + { + "start": 13774.97, + "end": 13775.79, + "probability": 0.7655 + }, + { + "start": 13775.91, + "end": 13779.47, + "probability": 0.6119 + }, + { + "start": 13780.09, + "end": 13780.57, + "probability": 0.652 + }, + { + "start": 13780.69, + "end": 13782.97, + "probability": 0.9081 + }, + { + "start": 13783.53, + "end": 13785.85, + "probability": 0.9665 + }, + { + "start": 13787.03, + "end": 13787.87, + "probability": 0.8314 + }, + { + "start": 13787.95, + "end": 13788.89, + "probability": 0.8382 + }, + { + "start": 13788.93, + "end": 13789.52, + "probability": 0.8019 + }, + { + "start": 13790.65, + "end": 13794.47, + "probability": 0.6869 + }, + { + "start": 13794.85, + "end": 13797.69, + "probability": 0.9585 + }, + { + "start": 13798.35, + "end": 13799.18, + "probability": 0.7 + }, + { + "start": 13799.83, + "end": 13802.25, + "probability": 0.8634 + }, + { + "start": 13802.79, + "end": 13804.05, + "probability": 0.8731 + }, + { + "start": 13804.71, + "end": 13806.19, + "probability": 0.577 + }, + { + "start": 13806.57, + "end": 13808.77, + "probability": 0.3641 + }, + { + "start": 13809.67, + "end": 13813.23, + "probability": 0.9654 + }, + { + "start": 13813.81, + "end": 13816.57, + "probability": 0.9987 + }, + { + "start": 13816.95, + "end": 13817.65, + "probability": 0.6417 + }, + { + "start": 13817.99, + "end": 13818.73, + "probability": 0.8558 + }, + { + "start": 13819.15, + "end": 13819.69, + "probability": 0.9097 + }, + { + "start": 13820.01, + "end": 13822.17, + "probability": 0.7898 + }, + { + "start": 13822.55, + "end": 13824.21, + "probability": 0.9525 + }, + { + "start": 13824.63, + "end": 13826.85, + "probability": 0.6734 + }, + { + "start": 13827.37, + "end": 13830.85, + "probability": 0.8643 + }, + { + "start": 13831.33, + "end": 13832.65, + "probability": 0.9622 + }, + { + "start": 13834.03, + "end": 13835.69, + "probability": 0.9064 + }, + { + "start": 13836.21, + "end": 13837.23, + "probability": 0.8401 + }, + { + "start": 13837.39, + "end": 13838.09, + "probability": 0.9309 + }, + { + "start": 13838.53, + "end": 13839.87, + "probability": 0.8067 + }, + { + "start": 13840.43, + "end": 13844.55, + "probability": 0.9963 + }, + { + "start": 13845.57, + "end": 13845.73, + "probability": 0.214 + }, + { + "start": 13845.83, + "end": 13846.17, + "probability": 0.8445 + }, + { + "start": 13846.21, + "end": 13846.69, + "probability": 0.6286 + }, + { + "start": 13847.35, + "end": 13848.09, + "probability": 0.6631 + }, + { + "start": 13848.39, + "end": 13849.83, + "probability": 0.9177 + }, + { + "start": 13850.33, + "end": 13850.69, + "probability": 0.7814 + }, + { + "start": 13850.89, + "end": 13851.19, + "probability": 0.8474 + }, + { + "start": 13851.33, + "end": 13853.19, + "probability": 0.9885 + }, + { + "start": 13853.23, + "end": 13853.82, + "probability": 0.6037 + }, + { + "start": 13854.33, + "end": 13855.45, + "probability": 0.7234 + }, + { + "start": 13855.53, + "end": 13857.83, + "probability": 0.7945 + }, + { + "start": 13860.55, + "end": 13860.55, + "probability": 0.1158 + }, + { + "start": 13860.55, + "end": 13860.55, + "probability": 0.0903 + }, + { + "start": 13860.55, + "end": 13860.55, + "probability": 0.1167 + }, + { + "start": 13860.55, + "end": 13860.95, + "probability": 0.4889 + }, + { + "start": 13861.03, + "end": 13862.01, + "probability": 0.47 + }, + { + "start": 13863.81, + "end": 13863.91, + "probability": 0.4575 + }, + { + "start": 13865.01, + "end": 13865.87, + "probability": 0.3598 + }, + { + "start": 13866.27, + "end": 13866.73, + "probability": 0.6285 + }, + { + "start": 13866.87, + "end": 13871.65, + "probability": 0.8887 + }, + { + "start": 13872.39, + "end": 13872.95, + "probability": 0.9545 + }, + { + "start": 13873.65, + "end": 13876.15, + "probability": 0.7078 + }, + { + "start": 13877.63, + "end": 13878.59, + "probability": 0.7646 + }, + { + "start": 13878.95, + "end": 13883.77, + "probability": 0.9445 + }, + { + "start": 13884.19, + "end": 13887.81, + "probability": 0.7025 + }, + { + "start": 13887.95, + "end": 13888.79, + "probability": 0.8184 + }, + { + "start": 13889.31, + "end": 13893.41, + "probability": 0.8239 + }, + { + "start": 13893.53, + "end": 13894.54, + "probability": 0.8963 + }, + { + "start": 13895.27, + "end": 13895.87, + "probability": 0.5501 + }, + { + "start": 13896.93, + "end": 13898.05, + "probability": 0.907 + }, + { + "start": 13898.47, + "end": 13899.51, + "probability": 0.976 + }, + { + "start": 13900.01, + "end": 13900.63, + "probability": 0.502 + }, + { + "start": 13900.71, + "end": 13901.45, + "probability": 0.8367 + }, + { + "start": 13902.23, + "end": 13904.86, + "probability": 0.7412 + }, + { + "start": 13905.57, + "end": 13908.43, + "probability": 0.8242 + }, + { + "start": 13909.23, + "end": 13909.81, + "probability": 0.9161 + }, + { + "start": 13911.27, + "end": 13913.29, + "probability": 0.9481 + }, + { + "start": 13913.97, + "end": 13916.25, + "probability": 0.8745 + }, + { + "start": 13917.11, + "end": 13919.99, + "probability": 0.9186 + }, + { + "start": 13920.51, + "end": 13921.01, + "probability": 0.7645 + }, + { + "start": 13922.13, + "end": 13923.93, + "probability": 0.5029 + }, + { + "start": 13924.43, + "end": 13927.09, + "probability": 0.9946 + }, + { + "start": 13927.37, + "end": 13929.09, + "probability": 0.9926 + }, + { + "start": 13929.17, + "end": 13930.2, + "probability": 0.7047 + }, + { + "start": 13930.89, + "end": 13934.59, + "probability": 0.9474 + }, + { + "start": 13934.59, + "end": 13938.21, + "probability": 0.6852 + }, + { + "start": 13938.93, + "end": 13940.57, + "probability": 0.9916 + }, + { + "start": 13940.97, + "end": 13942.81, + "probability": 0.7722 + }, + { + "start": 13943.19, + "end": 13945.61, + "probability": 0.9695 + }, + { + "start": 13946.13, + "end": 13946.91, + "probability": 0.3482 + }, + { + "start": 13950.79, + "end": 13954.09, + "probability": 0.6327 + }, + { + "start": 13955.01, + "end": 13956.87, + "probability": 0.9867 + }, + { + "start": 13957.19, + "end": 13958.01, + "probability": 0.4643 + }, + { + "start": 13958.23, + "end": 13958.43, + "probability": 0.7681 + }, + { + "start": 13958.45, + "end": 13959.63, + "probability": 0.7659 + }, + { + "start": 13959.63, + "end": 13960.39, + "probability": 0.5298 + }, + { + "start": 13960.39, + "end": 13961.15, + "probability": 0.9789 + }, + { + "start": 13961.59, + "end": 13962.09, + "probability": 0.2626 + }, + { + "start": 13962.29, + "end": 13963.57, + "probability": 0.7766 + }, + { + "start": 13964.31, + "end": 13965.41, + "probability": 0.6435 + }, + { + "start": 13965.77, + "end": 13966.72, + "probability": 0.149 + }, + { + "start": 13967.29, + "end": 13967.29, + "probability": 0.484 + }, + { + "start": 13967.39, + "end": 13968.61, + "probability": 0.8014 + }, + { + "start": 13971.85, + "end": 13974.97, + "probability": 0.9928 + }, + { + "start": 13975.05, + "end": 13978.43, + "probability": 0.853 + }, + { + "start": 13978.85, + "end": 13984.03, + "probability": 0.9897 + }, + { + "start": 13985.61, + "end": 13988.01, + "probability": 0.879 + }, + { + "start": 13988.89, + "end": 13989.61, + "probability": 0.9098 + }, + { + "start": 13990.85, + "end": 13992.59, + "probability": 0.8973 + }, + { + "start": 13992.75, + "end": 13993.39, + "probability": 0.7634 + }, + { + "start": 13993.51, + "end": 13994.27, + "probability": 0.3596 + }, + { + "start": 13994.41, + "end": 13996.17, + "probability": 0.9133 + }, + { + "start": 13997.35, + "end": 14000.45, + "probability": 0.9744 + }, + { + "start": 14001.23, + "end": 14005.91, + "probability": 0.7945 + }, + { + "start": 14006.55, + "end": 14008.73, + "probability": 0.9431 + }, + { + "start": 14009.63, + "end": 14011.25, + "probability": 0.9995 + }, + { + "start": 14011.83, + "end": 14015.61, + "probability": 0.997 + }, + { + "start": 14016.53, + "end": 14017.57, + "probability": 0.9044 + }, + { + "start": 14018.11, + "end": 14020.45, + "probability": 0.8143 + }, + { + "start": 14020.67, + "end": 14024.33, + "probability": 0.9587 + }, + { + "start": 14024.79, + "end": 14025.39, + "probability": 0.7048 + }, + { + "start": 14025.87, + "end": 14029.63, + "probability": 0.9764 + }, + { + "start": 14030.31, + "end": 14036.95, + "probability": 0.9302 + }, + { + "start": 14037.03, + "end": 14039.49, + "probability": 0.8688 + }, + { + "start": 14039.77, + "end": 14040.73, + "probability": 0.9543 + }, + { + "start": 14041.45, + "end": 14044.85, + "probability": 0.8901 + }, + { + "start": 14045.89, + "end": 14046.21, + "probability": 0.4786 + }, + { + "start": 14046.21, + "end": 14046.37, + "probability": 0.6342 + }, + { + "start": 14048.05, + "end": 14048.89, + "probability": 0.908 + }, + { + "start": 14051.97, + "end": 14052.89, + "probability": 0.6092 + }, + { + "start": 14053.17, + "end": 14055.55, + "probability": 0.9253 + }, + { + "start": 14056.27, + "end": 14058.43, + "probability": 0.7296 + }, + { + "start": 14058.49, + "end": 14058.91, + "probability": 0.5333 + }, + { + "start": 14059.17, + "end": 14061.15, + "probability": 0.3218 + }, + { + "start": 14061.35, + "end": 14062.97, + "probability": 0.3822 + }, + { + "start": 14063.15, + "end": 14063.39, + "probability": 0.5036 + }, + { + "start": 14063.47, + "end": 14067.13, + "probability": 0.686 + }, + { + "start": 14067.65, + "end": 14068.79, + "probability": 0.4727 + }, + { + "start": 14068.81, + "end": 14069.37, + "probability": 0.4098 + }, + { + "start": 14072.19, + "end": 14072.39, + "probability": 0.8024 + }, + { + "start": 14073.13, + "end": 14073.75, + "probability": 0.722 + }, + { + "start": 14074.47, + "end": 14076.59, + "probability": 0.484 + }, + { + "start": 14076.59, + "end": 14078.59, + "probability": 0.4911 + }, + { + "start": 14079.21, + "end": 14082.57, + "probability": 0.9738 + }, + { + "start": 14083.67, + "end": 14085.03, + "probability": 0.5324 + }, + { + "start": 14085.09, + "end": 14085.27, + "probability": 0.0724 + }, + { + "start": 14085.77, + "end": 14087.71, + "probability": 0.4033 + }, + { + "start": 14088.99, + "end": 14090.11, + "probability": 0.804 + }, + { + "start": 14090.53, + "end": 14090.53, + "probability": 0.1908 + }, + { + "start": 14091.07, + "end": 14093.55, + "probability": 0.5302 + }, + { + "start": 14094.67, + "end": 14095.81, + "probability": 0.0263 + }, + { + "start": 14095.85, + "end": 14099.05, + "probability": 0.8879 + }, + { + "start": 14099.07, + "end": 14099.99, + "probability": 0.8037 + }, + { + "start": 14101.45, + "end": 14102.05, + "probability": 0.2698 + }, + { + "start": 14102.99, + "end": 14104.17, + "probability": 0.7745 + }, + { + "start": 14104.17, + "end": 14104.79, + "probability": 0.7499 + }, + { + "start": 14104.83, + "end": 14105.93, + "probability": 0.9512 + }, + { + "start": 14105.93, + "end": 14107.17, + "probability": 0.0844 + }, + { + "start": 14107.81, + "end": 14107.95, + "probability": 0.0926 + }, + { + "start": 14108.59, + "end": 14116.07, + "probability": 0.4446 + }, + { + "start": 14124.01, + "end": 14126.65, + "probability": 0.5078 + }, + { + "start": 14126.71, + "end": 14130.71, + "probability": 0.95 + }, + { + "start": 14134.59, + "end": 14135.81, + "probability": 0.5504 + }, + { + "start": 14136.99, + "end": 14139.25, + "probability": 0.963 + }, + { + "start": 14140.21, + "end": 14141.37, + "probability": 0.7031 + }, + { + "start": 14144.69, + "end": 14151.33, + "probability": 0.9907 + }, + { + "start": 14151.51, + "end": 14152.53, + "probability": 0.801 + }, + { + "start": 14154.27, + "end": 14156.03, + "probability": 0.9979 + }, + { + "start": 14157.85, + "end": 14158.33, + "probability": 0.5301 + }, + { + "start": 14161.51, + "end": 14163.17, + "probability": 0.6661 + }, + { + "start": 14164.71, + "end": 14164.73, + "probability": 0.0873 + }, + { + "start": 14164.85, + "end": 14165.27, + "probability": 0.869 + }, + { + "start": 14165.49, + "end": 14169.91, + "probability": 0.972 + }, + { + "start": 14171.65, + "end": 14172.71, + "probability": 0.9378 + }, + { + "start": 14173.61, + "end": 14176.79, + "probability": 0.9958 + }, + { + "start": 14176.93, + "end": 14178.25, + "probability": 0.9963 + }, + { + "start": 14180.75, + "end": 14182.03, + "probability": 0.7789 + }, + { + "start": 14182.11, + "end": 14185.25, + "probability": 0.9871 + }, + { + "start": 14186.95, + "end": 14188.63, + "probability": 0.8282 + }, + { + "start": 14189.05, + "end": 14191.91, + "probability": 0.7709 + }, + { + "start": 14192.05, + "end": 14195.03, + "probability": 0.8463 + }, + { + "start": 14196.87, + "end": 14202.89, + "probability": 0.8568 + }, + { + "start": 14205.71, + "end": 14208.99, + "probability": 0.978 + }, + { + "start": 14212.23, + "end": 14217.79, + "probability": 0.8818 + }, + { + "start": 14219.61, + "end": 14223.81, + "probability": 0.9061 + }, + { + "start": 14226.71, + "end": 14229.43, + "probability": 0.9946 + }, + { + "start": 14229.53, + "end": 14230.89, + "probability": 0.5919 + }, + { + "start": 14231.73, + "end": 14232.25, + "probability": 0.9664 + }, + { + "start": 14233.57, + "end": 14234.23, + "probability": 0.8097 + }, + { + "start": 14235.85, + "end": 14237.13, + "probability": 0.9735 + }, + { + "start": 14237.89, + "end": 14238.59, + "probability": 0.9839 + }, + { + "start": 14240.43, + "end": 14241.29, + "probability": 0.94 + }, + { + "start": 14242.83, + "end": 14246.85, + "probability": 0.9148 + }, + { + "start": 14248.01, + "end": 14250.66, + "probability": 0.7152 + }, + { + "start": 14252.99, + "end": 14253.67, + "probability": 0.7836 + }, + { + "start": 14254.65, + "end": 14255.47, + "probability": 0.6539 + }, + { + "start": 14256.73, + "end": 14261.11, + "probability": 0.8921 + }, + { + "start": 14262.21, + "end": 14265.33, + "probability": 0.9858 + }, + { + "start": 14265.41, + "end": 14267.57, + "probability": 0.8319 + }, + { + "start": 14268.45, + "end": 14271.01, + "probability": 0.9167 + }, + { + "start": 14272.79, + "end": 14274.79, + "probability": 0.8583 + }, + { + "start": 14274.97, + "end": 14277.09, + "probability": 0.6245 + }, + { + "start": 14277.87, + "end": 14279.29, + "probability": 0.6765 + }, + { + "start": 14279.83, + "end": 14281.01, + "probability": 0.5943 + }, + { + "start": 14282.89, + "end": 14286.45, + "probability": 0.8498 + }, + { + "start": 14287.75, + "end": 14288.95, + "probability": 0.4197 + }, + { + "start": 14289.21, + "end": 14290.67, + "probability": 0.6652 + }, + { + "start": 14292.03, + "end": 14298.31, + "probability": 0.7048 + }, + { + "start": 14300.11, + "end": 14301.75, + "probability": 0.9951 + }, + { + "start": 14302.31, + "end": 14304.1, + "probability": 0.9117 + }, + { + "start": 14305.13, + "end": 14306.01, + "probability": 0.8784 + }, + { + "start": 14306.43, + "end": 14308.83, + "probability": 0.7686 + }, + { + "start": 14309.49, + "end": 14310.47, + "probability": 0.9292 + }, + { + "start": 14311.05, + "end": 14313.17, + "probability": 0.6582 + }, + { + "start": 14314.51, + "end": 14315.95, + "probability": 0.7906 + }, + { + "start": 14316.77, + "end": 14319.91, + "probability": 0.9805 + }, + { + "start": 14320.45, + "end": 14324.39, + "probability": 0.9355 + }, + { + "start": 14324.51, + "end": 14326.71, + "probability": 0.8988 + }, + { + "start": 14328.03, + "end": 14329.35, + "probability": 0.7383 + }, + { + "start": 14330.23, + "end": 14334.61, + "probability": 0.9431 + }, + { + "start": 14335.63, + "end": 14336.37, + "probability": 0.9648 + }, + { + "start": 14336.81, + "end": 14338.37, + "probability": 0.985 + }, + { + "start": 14339.07, + "end": 14340.67, + "probability": 0.9699 + }, + { + "start": 14341.45, + "end": 14343.25, + "probability": 0.9049 + }, + { + "start": 14344.17, + "end": 14347.03, + "probability": 0.9631 + }, + { + "start": 14348.25, + "end": 14348.74, + "probability": 0.9033 + }, + { + "start": 14348.83, + "end": 14350.13, + "probability": 0.8017 + }, + { + "start": 14350.57, + "end": 14351.74, + "probability": 0.9549 + }, + { + "start": 14352.53, + "end": 14355.13, + "probability": 0.7668 + }, + { + "start": 14355.91, + "end": 14358.15, + "probability": 0.5581 + }, + { + "start": 14358.25, + "end": 14358.81, + "probability": 0.9208 + }, + { + "start": 14358.97, + "end": 14359.97, + "probability": 0.8958 + }, + { + "start": 14360.43, + "end": 14361.92, + "probability": 0.7767 + }, + { + "start": 14362.45, + "end": 14367.55, + "probability": 0.9897 + }, + { + "start": 14368.29, + "end": 14369.67, + "probability": 0.9608 + }, + { + "start": 14369.79, + "end": 14371.59, + "probability": 0.9072 + }, + { + "start": 14371.91, + "end": 14372.47, + "probability": 0.9327 + }, + { + "start": 14373.71, + "end": 14377.15, + "probability": 0.8512 + }, + { + "start": 14377.53, + "end": 14378.7, + "probability": 0.5338 + }, + { + "start": 14379.51, + "end": 14380.65, + "probability": 0.4394 + }, + { + "start": 14380.65, + "end": 14382.55, + "probability": 0.7327 + }, + { + "start": 14382.81, + "end": 14383.71, + "probability": 0.8818 + }, + { + "start": 14384.41, + "end": 14387.59, + "probability": 0.8815 + }, + { + "start": 14387.97, + "end": 14388.37, + "probability": 0.9231 + }, + { + "start": 14388.39, + "end": 14392.93, + "probability": 0.9287 + }, + { + "start": 14394.03, + "end": 14397.93, + "probability": 0.9845 + }, + { + "start": 14398.83, + "end": 14400.51, + "probability": 0.8915 + }, + { + "start": 14400.51, + "end": 14400.61, + "probability": 0.2877 + }, + { + "start": 14401.61, + "end": 14402.11, + "probability": 0.9509 + }, + { + "start": 14403.05, + "end": 14403.65, + "probability": 0.641 + }, + { + "start": 14403.69, + "end": 14405.21, + "probability": 0.981 + }, + { + "start": 14405.55, + "end": 14407.71, + "probability": 0.8423 + }, + { + "start": 14408.25, + "end": 14409.95, + "probability": 0.8633 + }, + { + "start": 14409.95, + "end": 14412.35, + "probability": 0.8812 + }, + { + "start": 14413.07, + "end": 14415.77, + "probability": 0.931 + }, + { + "start": 14416.53, + "end": 14419.81, + "probability": 0.8976 + }, + { + "start": 14420.19, + "end": 14421.83, + "probability": 0.8247 + }, + { + "start": 14422.27, + "end": 14425.37, + "probability": 0.9843 + }, + { + "start": 14426.19, + "end": 14426.63, + "probability": 0.5235 + }, + { + "start": 14426.63, + "end": 14427.39, + "probability": 0.6302 + }, + { + "start": 14437.89, + "end": 14438.49, + "probability": 0.5044 + }, + { + "start": 14439.05, + "end": 14441.99, + "probability": 0.6604 + }, + { + "start": 14444.47, + "end": 14449.71, + "probability": 0.9454 + }, + { + "start": 14449.71, + "end": 14453.47, + "probability": 0.9982 + }, + { + "start": 14453.77, + "end": 14459.37, + "probability": 0.9907 + }, + { + "start": 14460.13, + "end": 14462.75, + "probability": 0.8728 + }, + { + "start": 14463.23, + "end": 14466.11, + "probability": 0.9549 + }, + { + "start": 14467.73, + "end": 14468.93, + "probability": 0.9276 + }, + { + "start": 14469.09, + "end": 14471.15, + "probability": 0.9941 + }, + { + "start": 14472.01, + "end": 14475.27, + "probability": 0.8457 + }, + { + "start": 14475.43, + "end": 14475.95, + "probability": 0.6778 + }, + { + "start": 14476.15, + "end": 14477.23, + "probability": 0.6862 + }, + { + "start": 14477.31, + "end": 14479.39, + "probability": 0.9595 + }, + { + "start": 14480.11, + "end": 14482.45, + "probability": 0.8262 + }, + { + "start": 14482.59, + "end": 14482.77, + "probability": 0.7253 + }, + { + "start": 14482.93, + "end": 14484.33, + "probability": 0.9338 + }, + { + "start": 14484.58, + "end": 14487.21, + "probability": 0.9893 + }, + { + "start": 14488.32, + "end": 14490.35, + "probability": 0.7792 + }, + { + "start": 14490.43, + "end": 14492.05, + "probability": 0.9563 + }, + { + "start": 14492.35, + "end": 14495.69, + "probability": 0.991 + }, + { + "start": 14496.53, + "end": 14499.23, + "probability": 0.96 + }, + { + "start": 14499.81, + "end": 14500.73, + "probability": 0.9422 + }, + { + "start": 14500.85, + "end": 14504.11, + "probability": 0.9926 + }, + { + "start": 14504.97, + "end": 14507.71, + "probability": 0.9927 + }, + { + "start": 14508.09, + "end": 14510.39, + "probability": 0.9965 + }, + { + "start": 14510.81, + "end": 14512.05, + "probability": 0.8655 + }, + { + "start": 14512.05, + "end": 14513.73, + "probability": 0.9422 + }, + { + "start": 14514.37, + "end": 14516.37, + "probability": 0.9692 + }, + { + "start": 14517.01, + "end": 14520.37, + "probability": 0.998 + }, + { + "start": 14521.21, + "end": 14521.37, + "probability": 0.6709 + }, + { + "start": 14522.21, + "end": 14524.45, + "probability": 0.934 + }, + { + "start": 14524.91, + "end": 14528.07, + "probability": 0.9744 + }, + { + "start": 14528.47, + "end": 14531.39, + "probability": 0.8304 + }, + { + "start": 14532.05, + "end": 14540.15, + "probability": 0.9739 + }, + { + "start": 14540.53, + "end": 14543.36, + "probability": 0.9966 + }, + { + "start": 14543.83, + "end": 14545.89, + "probability": 0.9748 + }, + { + "start": 14546.25, + "end": 14547.11, + "probability": 0.8638 + }, + { + "start": 14547.59, + "end": 14550.49, + "probability": 0.9526 + }, + { + "start": 14550.95, + "end": 14556.31, + "probability": 0.9578 + }, + { + "start": 14557.25, + "end": 14563.59, + "probability": 0.937 + }, + { + "start": 14563.65, + "end": 14565.08, + "probability": 0.8681 + }, + { + "start": 14565.65, + "end": 14567.47, + "probability": 0.9753 + }, + { + "start": 14567.87, + "end": 14568.27, + "probability": 0.8154 + }, + { + "start": 14568.35, + "end": 14569.87, + "probability": 0.892 + }, + { + "start": 14570.49, + "end": 14574.27, + "probability": 0.9703 + }, + { + "start": 14574.75, + "end": 14578.39, + "probability": 0.7905 + }, + { + "start": 14578.59, + "end": 14579.33, + "probability": 0.658 + }, + { + "start": 14579.39, + "end": 14581.13, + "probability": 0.6323 + }, + { + "start": 14581.27, + "end": 14583.41, + "probability": 0.9535 + }, + { + "start": 14583.55, + "end": 14586.09, + "probability": 0.9393 + }, + { + "start": 14586.49, + "end": 14589.31, + "probability": 0.9032 + }, + { + "start": 14589.73, + "end": 14592.01, + "probability": 0.7556 + }, + { + "start": 14592.39, + "end": 14594.69, + "probability": 0.9825 + }, + { + "start": 14594.85, + "end": 14597.11, + "probability": 0.8332 + }, + { + "start": 14597.61, + "end": 14599.89, + "probability": 0.9771 + }, + { + "start": 14599.93, + "end": 14600.95, + "probability": 0.957 + }, + { + "start": 14601.25, + "end": 14602.13, + "probability": 0.9885 + }, + { + "start": 14602.23, + "end": 14603.19, + "probability": 0.5246 + }, + { + "start": 14603.25, + "end": 14603.85, + "probability": 0.8829 + }, + { + "start": 14603.89, + "end": 14604.15, + "probability": 0.8444 + }, + { + "start": 14604.73, + "end": 14607.25, + "probability": 0.9921 + }, + { + "start": 14607.63, + "end": 14608.77, + "probability": 0.6877 + }, + { + "start": 14608.93, + "end": 14611.09, + "probability": 0.5261 + }, + { + "start": 14611.23, + "end": 14612.95, + "probability": 0.8154 + }, + { + "start": 14613.33, + "end": 14614.45, + "probability": 0.7485 + }, + { + "start": 14614.51, + "end": 14615.97, + "probability": 0.9782 + }, + { + "start": 14616.31, + "end": 14617.55, + "probability": 0.9509 + }, + { + "start": 14618.11, + "end": 14621.95, + "probability": 0.8938 + }, + { + "start": 14621.99, + "end": 14624.61, + "probability": 0.9899 + }, + { + "start": 14625.01, + "end": 14627.99, + "probability": 0.979 + }, + { + "start": 14628.47, + "end": 14630.43, + "probability": 0.9764 + }, + { + "start": 14630.43, + "end": 14633.25, + "probability": 0.9988 + }, + { + "start": 14634.17, + "end": 14635.87, + "probability": 0.874 + }, + { + "start": 14635.93, + "end": 14637.73, + "probability": 0.9816 + }, + { + "start": 14638.01, + "end": 14640.03, + "probability": 0.9922 + }, + { + "start": 14642.75, + "end": 14643.67, + "probability": 0.6794 + }, + { + "start": 14643.87, + "end": 14645.67, + "probability": 0.8046 + }, + { + "start": 14646.47, + "end": 14647.37, + "probability": 0.5559 + }, + { + "start": 14648.05, + "end": 14650.63, + "probability": 0.8898 + }, + { + "start": 14651.03, + "end": 14651.63, + "probability": 0.8567 + }, + { + "start": 14651.71, + "end": 14653.2, + "probability": 0.9937 + }, + { + "start": 14653.97, + "end": 14656.33, + "probability": 0.9748 + }, + { + "start": 14656.65, + "end": 14659.19, + "probability": 0.9576 + }, + { + "start": 14659.67, + "end": 14662.57, + "probability": 0.8938 + }, + { + "start": 14663.13, + "end": 14665.45, + "probability": 0.8711 + }, + { + "start": 14665.59, + "end": 14666.71, + "probability": 0.9359 + }, + { + "start": 14666.91, + "end": 14668.07, + "probability": 0.8986 + }, + { + "start": 14668.63, + "end": 14672.27, + "probability": 0.9554 + }, + { + "start": 14672.67, + "end": 14674.99, + "probability": 0.9559 + }, + { + "start": 14675.17, + "end": 14676.45, + "probability": 0.7049 + }, + { + "start": 14676.91, + "end": 14678.05, + "probability": 0.7939 + }, + { + "start": 14678.49, + "end": 14680.77, + "probability": 0.9915 + }, + { + "start": 14681.17, + "end": 14684.39, + "probability": 0.9831 + }, + { + "start": 14684.57, + "end": 14685.39, + "probability": 0.8372 + }, + { + "start": 14685.77, + "end": 14688.09, + "probability": 0.9913 + }, + { + "start": 14688.59, + "end": 14691.35, + "probability": 0.9021 + }, + { + "start": 14691.43, + "end": 14694.25, + "probability": 0.9049 + }, + { + "start": 14694.37, + "end": 14698.47, + "probability": 0.978 + }, + { + "start": 14700.55, + "end": 14702.65, + "probability": 0.9929 + }, + { + "start": 14702.73, + "end": 14705.99, + "probability": 0.9297 + }, + { + "start": 14706.11, + "end": 14706.95, + "probability": 0.9536 + }, + { + "start": 14707.45, + "end": 14710.65, + "probability": 0.9866 + }, + { + "start": 14711.15, + "end": 14711.61, + "probability": 0.8527 + }, + { + "start": 14712.05, + "end": 14712.45, + "probability": 0.6443 + }, + { + "start": 14712.45, + "end": 14712.93, + "probability": 0.8955 + }, + { + "start": 14724.31, + "end": 14724.41, + "probability": 0.0149 + }, + { + "start": 14724.41, + "end": 14724.41, + "probability": 0.1023 + }, + { + "start": 14724.41, + "end": 14730.43, + "probability": 0.6045 + }, + { + "start": 14731.17, + "end": 14733.08, + "probability": 0.9082 + }, + { + "start": 14734.15, + "end": 14734.67, + "probability": 0.7643 + }, + { + "start": 14734.75, + "end": 14738.02, + "probability": 0.6641 + }, + { + "start": 14739.51, + "end": 14742.65, + "probability": 0.8662 + }, + { + "start": 14746.69, + "end": 14747.61, + "probability": 0.6195 + }, + { + "start": 14748.47, + "end": 14750.79, + "probability": 0.8503 + }, + { + "start": 14750.89, + "end": 14755.21, + "probability": 0.8017 + }, + { + "start": 14756.51, + "end": 14762.41, + "probability": 0.7976 + }, + { + "start": 14763.49, + "end": 14766.63, + "probability": 0.7977 + }, + { + "start": 14767.37, + "end": 14767.37, + "probability": 0.177 + }, + { + "start": 14767.37, + "end": 14768.36, + "probability": 0.7163 + }, + { + "start": 14769.11, + "end": 14770.71, + "probability": 0.9535 + }, + { + "start": 14771.37, + "end": 14774.63, + "probability": 0.934 + }, + { + "start": 14775.63, + "end": 14775.83, + "probability": 0.952 + }, + { + "start": 14776.71, + "end": 14780.95, + "probability": 0.7714 + }, + { + "start": 14781.85, + "end": 14783.33, + "probability": 0.9096 + }, + { + "start": 14783.89, + "end": 14786.11, + "probability": 0.9301 + }, + { + "start": 14786.89, + "end": 14787.85, + "probability": 0.7399 + }, + { + "start": 14788.15, + "end": 14793.0, + "probability": 0.9271 + }, + { + "start": 14794.35, + "end": 14795.45, + "probability": 0.9235 + }, + { + "start": 14799.29, + "end": 14803.07, + "probability": 0.6775 + }, + { + "start": 14803.93, + "end": 14806.09, + "probability": 0.7133 + }, + { + "start": 14806.83, + "end": 14808.75, + "probability": 0.6581 + }, + { + "start": 14809.71, + "end": 14810.55, + "probability": 0.6932 + }, + { + "start": 14810.77, + "end": 14811.5, + "probability": 0.1714 + }, + { + "start": 14811.61, + "end": 14812.58, + "probability": 0.753 + }, + { + "start": 14813.41, + "end": 14813.67, + "probability": 0.5533 + }, + { + "start": 14814.67, + "end": 14816.33, + "probability": 0.6684 + }, + { + "start": 14817.23, + "end": 14820.43, + "probability": 0.9226 + }, + { + "start": 14821.39, + "end": 14823.49, + "probability": 0.8452 + }, + { + "start": 14823.61, + "end": 14826.77, + "probability": 0.7764 + }, + { + "start": 14828.15, + "end": 14829.16, + "probability": 0.7952 + }, + { + "start": 14829.83, + "end": 14831.29, + "probability": 0.9136 + }, + { + "start": 14831.91, + "end": 14836.77, + "probability": 0.9183 + }, + { + "start": 14836.89, + "end": 14837.99, + "probability": 0.7263 + }, + { + "start": 14839.29, + "end": 14842.13, + "probability": 0.7928 + }, + { + "start": 14843.47, + "end": 14844.8, + "probability": 0.6779 + }, + { + "start": 14844.97, + "end": 14846.07, + "probability": 0.7294 + }, + { + "start": 14846.31, + "end": 14847.62, + "probability": 0.593 + }, + { + "start": 14848.05, + "end": 14848.91, + "probability": 0.8051 + }, + { + "start": 14849.41, + "end": 14850.61, + "probability": 0.9284 + }, + { + "start": 14851.13, + "end": 14852.27, + "probability": 0.9872 + }, + { + "start": 14853.03, + "end": 14854.27, + "probability": 0.9863 + }, + { + "start": 14854.91, + "end": 14855.47, + "probability": 0.9258 + }, + { + "start": 14855.89, + "end": 14856.49, + "probability": 0.349 + }, + { + "start": 14856.95, + "end": 14857.53, + "probability": 0.606 + }, + { + "start": 14857.97, + "end": 14858.41, + "probability": 0.9259 + }, + { + "start": 14858.87, + "end": 14859.75, + "probability": 0.9751 + }, + { + "start": 14860.33, + "end": 14860.83, + "probability": 0.5469 + }, + { + "start": 14861.65, + "end": 14862.59, + "probability": 0.8645 + }, + { + "start": 14863.09, + "end": 14864.21, + "probability": 0.8607 + }, + { + "start": 14864.91, + "end": 14867.79, + "probability": 0.7792 + }, + { + "start": 14868.37, + "end": 14870.59, + "probability": 0.726 + }, + { + "start": 14871.47, + "end": 14872.69, + "probability": 0.5693 + }, + { + "start": 14874.39, + "end": 14876.37, + "probability": 0.7621 + }, + { + "start": 14876.97, + "end": 14880.75, + "probability": 0.9126 + }, + { + "start": 14882.35, + "end": 14883.39, + "probability": 0.7932 + }, + { + "start": 14886.27, + "end": 14888.7, + "probability": 0.9832 + }, + { + "start": 14890.77, + "end": 14892.39, + "probability": 0.9963 + }, + { + "start": 14893.53, + "end": 14894.79, + "probability": 0.7683 + }, + { + "start": 14895.95, + "end": 14898.01, + "probability": 0.7875 + }, + { + "start": 14898.65, + "end": 14900.35, + "probability": 0.5917 + }, + { + "start": 14901.63, + "end": 14902.55, + "probability": 0.9552 + }, + { + "start": 14902.67, + "end": 14905.47, + "probability": 0.9106 + }, + { + "start": 14905.49, + "end": 14905.95, + "probability": 0.7877 + }, + { + "start": 14906.45, + "end": 14909.59, + "probability": 0.9292 + }, + { + "start": 14909.75, + "end": 14911.53, + "probability": 0.9888 + }, + { + "start": 14912.31, + "end": 14913.25, + "probability": 0.8475 + }, + { + "start": 14913.27, + "end": 14917.33, + "probability": 0.9131 + }, + { + "start": 14918.68, + "end": 14920.81, + "probability": 0.5967 + }, + { + "start": 14921.39, + "end": 14921.39, + "probability": 0.0204 + }, + { + "start": 14922.41, + "end": 14923.45, + "probability": 0.3498 + }, + { + "start": 14923.45, + "end": 14924.39, + "probability": 0.2697 + }, + { + "start": 14924.95, + "end": 14926.77, + "probability": 0.7531 + }, + { + "start": 14927.31, + "end": 14928.07, + "probability": 0.4082 + }, + { + "start": 14929.23, + "end": 14929.89, + "probability": 0.6409 + }, + { + "start": 14930.37, + "end": 14932.61, + "probability": 0.949 + }, + { + "start": 14933.53, + "end": 14935.93, + "probability": 0.9888 + }, + { + "start": 14935.93, + "end": 14939.45, + "probability": 0.9867 + }, + { + "start": 14940.07, + "end": 14941.61, + "probability": 0.8633 + }, + { + "start": 14941.77, + "end": 14942.5, + "probability": 0.9744 + }, + { + "start": 14943.27, + "end": 14943.7, + "probability": 0.8083 + }, + { + "start": 14945.27, + "end": 14949.07, + "probability": 0.8846 + }, + { + "start": 14950.45, + "end": 14951.25, + "probability": 0.7285 + }, + { + "start": 14951.91, + "end": 14953.15, + "probability": 0.4977 + }, + { + "start": 14954.65, + "end": 14956.45, + "probability": 0.9337 + }, + { + "start": 14956.75, + "end": 14958.23, + "probability": 0.9604 + }, + { + "start": 14958.77, + "end": 14960.03, + "probability": 0.954 + }, + { + "start": 14960.61, + "end": 14962.07, + "probability": 0.9709 + }, + { + "start": 14962.85, + "end": 14965.47, + "probability": 0.9961 + }, + { + "start": 14965.55, + "end": 14965.89, + "probability": 0.7275 + }, + { + "start": 14967.63, + "end": 14968.89, + "probability": 0.8376 + }, + { + "start": 14969.57, + "end": 14970.75, + "probability": 0.9086 + }, + { + "start": 14971.53, + "end": 14972.58, + "probability": 0.7917 + }, + { + "start": 14973.05, + "end": 14975.07, + "probability": 0.5034 + }, + { + "start": 14976.39, + "end": 14977.11, + "probability": 0.7531 + }, + { + "start": 14977.85, + "end": 14978.71, + "probability": 0.7509 + }, + { + "start": 14978.91, + "end": 14979.07, + "probability": 0.8918 + }, + { + "start": 14979.15, + "end": 14980.93, + "probability": 0.8495 + }, + { + "start": 14980.97, + "end": 14982.69, + "probability": 0.7432 + }, + { + "start": 14982.77, + "end": 14983.63, + "probability": 0.6862 + }, + { + "start": 14983.87, + "end": 14985.65, + "probability": 0.812 + }, + { + "start": 14986.87, + "end": 14988.55, + "probability": 0.7614 + }, + { + "start": 14989.65, + "end": 14991.93, + "probability": 0.5741 + }, + { + "start": 14992.89, + "end": 14994.39, + "probability": 0.6899 + }, + { + "start": 14995.97, + "end": 14997.29, + "probability": 0.9514 + }, + { + "start": 14997.87, + "end": 14998.85, + "probability": 0.9519 + }, + { + "start": 14999.49, + "end": 15000.15, + "probability": 0.2302 + }, + { + "start": 15000.29, + "end": 15002.07, + "probability": 0.7159 + }, + { + "start": 15003.19, + "end": 15004.36, + "probability": 0.7896 + }, + { + "start": 15005.15, + "end": 15006.29, + "probability": 0.805 + }, + { + "start": 15007.09, + "end": 15008.87, + "probability": 0.6129 + }, + { + "start": 15009.59, + "end": 15009.95, + "probability": 0.7832 + }, + { + "start": 15010.59, + "end": 15010.95, + "probability": 0.5505 + }, + { + "start": 15011.67, + "end": 15014.11, + "probability": 0.6829 + }, + { + "start": 15015.61, + "end": 15017.27, + "probability": 0.9294 + }, + { + "start": 15018.44, + "end": 15019.37, + "probability": 0.8781 + }, + { + "start": 15020.71, + "end": 15021.71, + "probability": 0.9979 + }, + { + "start": 15025.27, + "end": 15025.77, + "probability": 0.9307 + }, + { + "start": 15026.47, + "end": 15026.73, + "probability": 0.9216 + }, + { + "start": 15028.01, + "end": 15028.87, + "probability": 0.8488 + }, + { + "start": 15029.99, + "end": 15031.05, + "probability": 0.0765 + }, + { + "start": 15032.63, + "end": 15035.93, + "probability": 0.8958 + }, + { + "start": 15036.49, + "end": 15036.79, + "probability": 0.9881 + }, + { + "start": 15037.63, + "end": 15038.91, + "probability": 0.8199 + }, + { + "start": 15039.19, + "end": 15039.39, + "probability": 0.4489 + }, + { + "start": 15039.45, + "end": 15040.71, + "probability": 0.8928 + }, + { + "start": 15042.19, + "end": 15043.39, + "probability": 0.9282 + }, + { + "start": 15044.27, + "end": 15044.63, + "probability": 0.7063 + }, + { + "start": 15044.71, + "end": 15045.21, + "probability": 0.2065 + }, + { + "start": 15045.31, + "end": 15046.57, + "probability": 0.9279 + }, + { + "start": 15047.63, + "end": 15048.75, + "probability": 0.9681 + }, + { + "start": 15049.37, + "end": 15050.79, + "probability": 0.989 + }, + { + "start": 15053.95, + "end": 15055.21, + "probability": 0.404 + }, + { + "start": 15055.21, + "end": 15056.63, + "probability": 0.7103 + }, + { + "start": 15057.57, + "end": 15059.61, + "probability": 0.9065 + }, + { + "start": 15060.95, + "end": 15062.56, + "probability": 0.7938 + }, + { + "start": 15062.99, + "end": 15064.39, + "probability": 0.834 + }, + { + "start": 15065.89, + "end": 15068.65, + "probability": 0.9148 + }, + { + "start": 15069.11, + "end": 15069.69, + "probability": 0.8782 + }, + { + "start": 15070.57, + "end": 15072.07, + "probability": 0.9806 + }, + { + "start": 15072.91, + "end": 15073.92, + "probability": 0.9775 + }, + { + "start": 15075.03, + "end": 15076.55, + "probability": 0.687 + }, + { + "start": 15077.07, + "end": 15078.23, + "probability": 0.8882 + }, + { + "start": 15079.39, + "end": 15079.96, + "probability": 0.3832 + }, + { + "start": 15080.03, + "end": 15080.73, + "probability": 0.838 + }, + { + "start": 15081.73, + "end": 15082.39, + "probability": 0.8931 + }, + { + "start": 15082.61, + "end": 15082.71, + "probability": 0.7595 + }, + { + "start": 15083.55, + "end": 15084.05, + "probability": 0.318 + }, + { + "start": 15084.67, + "end": 15085.23, + "probability": 0.5196 + }, + { + "start": 15085.63, + "end": 15087.81, + "probability": 0.8587 + }, + { + "start": 15087.91, + "end": 15090.27, + "probability": 0.717 + }, + { + "start": 15090.59, + "end": 15091.73, + "probability": 0.6709 + }, + { + "start": 15091.93, + "end": 15092.37, + "probability": 0.6409 + }, + { + "start": 15093.21, + "end": 15093.93, + "probability": 0.8876 + }, + { + "start": 15095.17, + "end": 15099.57, + "probability": 0.9492 + }, + { + "start": 15100.66, + "end": 15101.89, + "probability": 0.0245 + }, + { + "start": 15101.89, + "end": 15103.27, + "probability": 0.4645 + }, + { + "start": 15103.27, + "end": 15105.03, + "probability": 0.2943 + }, + { + "start": 15105.55, + "end": 15108.87, + "probability": 0.79 + }, + { + "start": 15109.77, + "end": 15110.95, + "probability": 0.851 + }, + { + "start": 15111.03, + "end": 15112.48, + "probability": 0.698 + }, + { + "start": 15113.15, + "end": 15113.55, + "probability": 0.6454 + }, + { + "start": 15114.33, + "end": 15115.73, + "probability": 0.6852 + }, + { + "start": 15116.79, + "end": 15117.95, + "probability": 0.8857 + }, + { + "start": 15118.05, + "end": 15119.57, + "probability": 0.7404 + }, + { + "start": 15119.81, + "end": 15121.49, + "probability": 0.5843 + }, + { + "start": 15121.85, + "end": 15122.98, + "probability": 0.4949 + }, + { + "start": 15123.59, + "end": 15126.07, + "probability": 0.7578 + }, + { + "start": 15126.17, + "end": 15127.47, + "probability": 0.8733 + }, + { + "start": 15127.59, + "end": 15127.89, + "probability": 0.4844 + }, + { + "start": 15128.19, + "end": 15128.89, + "probability": 0.372 + }, + { + "start": 15128.99, + "end": 15129.83, + "probability": 0.7048 + }, + { + "start": 15130.27, + "end": 15132.37, + "probability": 0.9521 + }, + { + "start": 15132.69, + "end": 15133.65, + "probability": 0.9224 + }, + { + "start": 15134.13, + "end": 15136.26, + "probability": 0.9472 + }, + { + "start": 15136.87, + "end": 15138.07, + "probability": 0.2095 + }, + { + "start": 15138.53, + "end": 15140.87, + "probability": 0.9255 + }, + { + "start": 15141.57, + "end": 15143.02, + "probability": 0.8925 + }, + { + "start": 15143.59, + "end": 15144.51, + "probability": 0.9249 + }, + { + "start": 15144.69, + "end": 15145.53, + "probability": 0.8879 + }, + { + "start": 15145.99, + "end": 15147.49, + "probability": 0.832 + }, + { + "start": 15147.57, + "end": 15148.27, + "probability": 0.685 + }, + { + "start": 15148.53, + "end": 15148.87, + "probability": 0.8563 + }, + { + "start": 15149.23, + "end": 15149.97, + "probability": 0.9189 + }, + { + "start": 15150.25, + "end": 15150.83, + "probability": 0.6829 + }, + { + "start": 15151.11, + "end": 15152.09, + "probability": 0.5655 + }, + { + "start": 15152.31, + "end": 15152.85, + "probability": 0.8411 + }, + { + "start": 15153.07, + "end": 15153.95, + "probability": 0.8085 + }, + { + "start": 15154.65, + "end": 15156.47, + "probability": 0.913 + }, + { + "start": 15159.69, + "end": 15160.33, + "probability": 0.9792 + }, + { + "start": 15161.25, + "end": 15162.07, + "probability": 0.8609 + }, + { + "start": 15163.07, + "end": 15163.57, + "probability": 0.8301 + }, + { + "start": 15164.31, + "end": 15166.59, + "probability": 0.7345 + }, + { + "start": 15167.63, + "end": 15171.77, + "probability": 0.7641 + }, + { + "start": 15171.97, + "end": 15173.11, + "probability": 0.9738 + }, + { + "start": 15173.75, + "end": 15174.05, + "probability": 0.8901 + }, + { + "start": 15174.73, + "end": 15175.75, + "probability": 0.7729 + }, + { + "start": 15176.73, + "end": 15177.99, + "probability": 0.9778 + }, + { + "start": 15179.01, + "end": 15181.89, + "probability": 0.9219 + }, + { + "start": 15182.33, + "end": 15185.07, + "probability": 0.9395 + }, + { + "start": 15185.85, + "end": 15189.23, + "probability": 0.9844 + }, + { + "start": 15189.77, + "end": 15190.41, + "probability": 0.4874 + }, + { + "start": 15190.69, + "end": 15191.99, + "probability": 0.9888 + }, + { + "start": 15191.99, + "end": 15192.95, + "probability": 0.9619 + }, + { + "start": 15193.23, + "end": 15194.63, + "probability": 0.6941 + }, + { + "start": 15194.97, + "end": 15195.51, + "probability": 0.9032 + }, + { + "start": 15195.79, + "end": 15196.43, + "probability": 0.9148 + }, + { + "start": 15196.63, + "end": 15197.23, + "probability": 0.8403 + }, + { + "start": 15197.43, + "end": 15198.39, + "probability": 0.9845 + }, + { + "start": 15199.41, + "end": 15200.31, + "probability": 0.8845 + }, + { + "start": 15200.63, + "end": 15201.53, + "probability": 0.5208 + }, + { + "start": 15201.67, + "end": 15202.7, + "probability": 0.9697 + }, + { + "start": 15202.91, + "end": 15203.95, + "probability": 0.9606 + }, + { + "start": 15204.25, + "end": 15204.63, + "probability": 0.7702 + }, + { + "start": 15205.79, + "end": 15207.09, + "probability": 0.9346 + }, + { + "start": 15207.95, + "end": 15209.01, + "probability": 0.8843 + }, + { + "start": 15209.27, + "end": 15210.45, + "probability": 0.9813 + }, + { + "start": 15211.17, + "end": 15211.55, + "probability": 0.8565 + }, + { + "start": 15212.21, + "end": 15212.61, + "probability": 0.5531 + }, + { + "start": 15215.25, + "end": 15216.41, + "probability": 0.5117 + }, + { + "start": 15217.97, + "end": 15219.41, + "probability": 0.7004 + }, + { + "start": 15219.41, + "end": 15219.71, + "probability": 0.312 + }, + { + "start": 15219.73, + "end": 15220.63, + "probability": 0.0678 + }, + { + "start": 15220.63, + "end": 15222.35, + "probability": 0.1866 + }, + { + "start": 15222.41, + "end": 15223.21, + "probability": 0.8331 + }, + { + "start": 15223.47, + "end": 15223.95, + "probability": 0.384 + }, + { + "start": 15224.13, + "end": 15227.73, + "probability": 0.7476 + }, + { + "start": 15227.83, + "end": 15229.97, + "probability": 0.8433 + }, + { + "start": 15230.05, + "end": 15232.47, + "probability": 0.7348 + }, + { + "start": 15233.05, + "end": 15234.75, + "probability": 0.9429 + }, + { + "start": 15235.11, + "end": 15237.03, + "probability": 0.8785 + }, + { + "start": 15237.11, + "end": 15237.93, + "probability": 0.7718 + }, + { + "start": 15238.31, + "end": 15239.39, + "probability": 0.7786 + }, + { + "start": 15239.87, + "end": 15240.69, + "probability": 0.9097 + }, + { + "start": 15241.03, + "end": 15241.37, + "probability": 0.8477 + }, + { + "start": 15241.69, + "end": 15244.84, + "probability": 0.8355 + }, + { + "start": 15245.15, + "end": 15245.87, + "probability": 0.8715 + }, + { + "start": 15246.51, + "end": 15248.15, + "probability": 0.9213 + }, + { + "start": 15248.89, + "end": 15250.41, + "probability": 0.036 + }, + { + "start": 15250.65, + "end": 15250.81, + "probability": 0.0316 + }, + { + "start": 15250.81, + "end": 15251.45, + "probability": 0.5982 + }, + { + "start": 15252.04, + "end": 15254.15, + "probability": 0.8645 + }, + { + "start": 15254.47, + "end": 15256.15, + "probability": 0.7186 + }, + { + "start": 15256.71, + "end": 15258.59, + "probability": 0.2678 + }, + { + "start": 15259.13, + "end": 15259.95, + "probability": 0.5014 + }, + { + "start": 15260.01, + "end": 15260.79, + "probability": 0.5912 + }, + { + "start": 15260.87, + "end": 15261.53, + "probability": 0.4191 + }, + { + "start": 15261.83, + "end": 15262.69, + "probability": 0.8346 + }, + { + "start": 15263.37, + "end": 15264.81, + "probability": 0.9311 + }, + { + "start": 15265.01, + "end": 15265.61, + "probability": 0.7608 + }, + { + "start": 15265.65, + "end": 15266.55, + "probability": 0.608 + }, + { + "start": 15267.23, + "end": 15270.45, + "probability": 0.8773 + }, + { + "start": 15270.89, + "end": 15271.69, + "probability": 0.6178 + }, + { + "start": 15271.83, + "end": 15274.83, + "probability": 0.9575 + }, + { + "start": 15275.39, + "end": 15277.51, + "probability": 0.9642 + }, + { + "start": 15278.05, + "end": 15279.85, + "probability": 0.8379 + }, + { + "start": 15280.23, + "end": 15281.35, + "probability": 0.8647 + }, + { + "start": 15282.07, + "end": 15284.65, + "probability": 0.9981 + }, + { + "start": 15284.75, + "end": 15285.21, + "probability": 0.8826 + }, + { + "start": 15285.69, + "end": 15286.45, + "probability": 0.9492 + }, + { + "start": 15286.93, + "end": 15288.61, + "probability": 0.8474 + }, + { + "start": 15289.13, + "end": 15289.83, + "probability": 0.4364 + }, + { + "start": 15291.09, + "end": 15292.09, + "probability": 0.1125 + }, + { + "start": 15293.37, + "end": 15295.53, + "probability": 0.5735 + }, + { + "start": 15295.65, + "end": 15297.27, + "probability": 0.5022 + }, + { + "start": 15297.45, + "end": 15300.63, + "probability": 0.6718 + }, + { + "start": 15300.99, + "end": 15302.49, + "probability": 0.2691 + }, + { + "start": 15303.51, + "end": 15305.37, + "probability": 0.5526 + }, + { + "start": 15306.43, + "end": 15307.74, + "probability": 0.4768 + }, + { + "start": 15308.41, + "end": 15309.87, + "probability": 0.5402 + }, + { + "start": 15310.03, + "end": 15311.2, + "probability": 0.6593 + }, + { + "start": 15311.23, + "end": 15311.81, + "probability": 0.2996 + }, + { + "start": 15312.01, + "end": 15315.74, + "probability": 0.7684 + }, + { + "start": 15316.85, + "end": 15319.23, + "probability": 0.4105 + }, + { + "start": 15319.35, + "end": 15321.45, + "probability": 0.5179 + }, + { + "start": 15322.11, + "end": 15325.63, + "probability": 0.1683 + }, + { + "start": 15325.73, + "end": 15325.99, + "probability": 0.8321 + }, + { + "start": 15326.11, + "end": 15327.11, + "probability": 0.7681 + }, + { + "start": 15327.25, + "end": 15328.73, + "probability": 0.6029 + }, + { + "start": 15328.83, + "end": 15332.96, + "probability": 0.9961 + }, + { + "start": 15333.33, + "end": 15334.41, + "probability": 0.4218 + }, + { + "start": 15334.47, + "end": 15334.61, + "probability": 0.7026 + }, + { + "start": 15336.01, + "end": 15338.13, + "probability": 0.7425 + }, + { + "start": 15339.03, + "end": 15340.03, + "probability": 0.8965 + }, + { + "start": 15340.85, + "end": 15342.21, + "probability": 0.8525 + }, + { + "start": 15344.11, + "end": 15345.47, + "probability": 0.6958 + }, + { + "start": 15346.13, + "end": 15346.55, + "probability": 0.8537 + }, + { + "start": 15346.63, + "end": 15349.95, + "probability": 0.9086 + }, + { + "start": 15351.55, + "end": 15352.49, + "probability": 0.6306 + }, + { + "start": 15353.01, + "end": 15354.19, + "probability": 0.8566 + }, + { + "start": 15354.71, + "end": 15357.36, + "probability": 0.9412 + }, + { + "start": 15357.67, + "end": 15359.2, + "probability": 0.1633 + }, + { + "start": 15359.69, + "end": 15360.85, + "probability": 0.6775 + }, + { + "start": 15360.91, + "end": 15361.35, + "probability": 0.5548 + }, + { + "start": 15361.47, + "end": 15364.57, + "probability": 0.9759 + }, + { + "start": 15364.72, + "end": 15366.19, + "probability": 0.9907 + }, + { + "start": 15366.93, + "end": 15368.49, + "probability": 0.3581 + }, + { + "start": 15369.21, + "end": 15370.45, + "probability": 0.5128 + }, + { + "start": 15371.19, + "end": 15372.55, + "probability": 0.9209 + }, + { + "start": 15372.99, + "end": 15374.38, + "probability": 0.7001 + }, + { + "start": 15375.25, + "end": 15375.75, + "probability": 0.9727 + }, + { + "start": 15376.39, + "end": 15379.01, + "probability": 0.0487 + }, + { + "start": 15379.01, + "end": 15379.01, + "probability": 0.2627 + }, + { + "start": 15379.01, + "end": 15379.01, + "probability": 0.1755 + }, + { + "start": 15379.01, + "end": 15380.15, + "probability": 0.5071 + }, + { + "start": 15380.23, + "end": 15382.97, + "probability": 0.9683 + }, + { + "start": 15383.11, + "end": 15384.67, + "probability": 0.7627 + }, + { + "start": 15384.87, + "end": 15385.93, + "probability": 0.8361 + }, + { + "start": 15386.07, + "end": 15387.03, + "probability": 0.6411 + }, + { + "start": 15387.41, + "end": 15389.0, + "probability": 0.8945 + }, + { + "start": 15389.69, + "end": 15391.45, + "probability": 0.9835 + }, + { + "start": 15391.79, + "end": 15394.63, + "probability": 0.0541 + }, + { + "start": 15394.63, + "end": 15395.77, + "probability": 0.2082 + }, + { + "start": 15395.77, + "end": 15395.95, + "probability": 0.2074 + }, + { + "start": 15396.17, + "end": 15397.69, + "probability": 0.9766 + }, + { + "start": 15397.81, + "end": 15398.91, + "probability": 0.7887 + }, + { + "start": 15399.01, + "end": 15399.98, + "probability": 0.8319 + }, + { + "start": 15400.51, + "end": 15402.17, + "probability": 0.7603 + }, + { + "start": 15402.91, + "end": 15403.85, + "probability": 0.9513 + }, + { + "start": 15403.89, + "end": 15405.91, + "probability": 0.8421 + }, + { + "start": 15406.03, + "end": 15406.65, + "probability": 0.5615 + }, + { + "start": 15406.77, + "end": 15407.91, + "probability": 0.4778 + }, + { + "start": 15408.29, + "end": 15409.69, + "probability": 0.8735 + }, + { + "start": 15410.27, + "end": 15411.47, + "probability": 0.8303 + }, + { + "start": 15412.01, + "end": 15413.85, + "probability": 0.7093 + }, + { + "start": 15414.39, + "end": 15415.43, + "probability": 0.7386 + }, + { + "start": 15416.01, + "end": 15416.79, + "probability": 0.874 + }, + { + "start": 15417.31, + "end": 15419.17, + "probability": 0.5425 + }, + { + "start": 15419.73, + "end": 15420.49, + "probability": 0.8174 + }, + { + "start": 15420.65, + "end": 15421.11, + "probability": 0.5732 + }, + { + "start": 15421.21, + "end": 15421.25, + "probability": 0.0312 + }, + { + "start": 15421.25, + "end": 15421.83, + "probability": 0.6889 + }, + { + "start": 15422.17, + "end": 15423.19, + "probability": 0.8328 + }, + { + "start": 15423.39, + "end": 15425.15, + "probability": 0.7314 + }, + { + "start": 15425.65, + "end": 15427.68, + "probability": 0.9946 + }, + { + "start": 15428.15, + "end": 15429.29, + "probability": 0.9366 + }, + { + "start": 15430.41, + "end": 15432.23, + "probability": 0.8655 + }, + { + "start": 15433.11, + "end": 15433.33, + "probability": 0.9989 + }, + { + "start": 15434.67, + "end": 15436.41, + "probability": 0.8234 + }, + { + "start": 15436.81, + "end": 15437.79, + "probability": 0.7502 + }, + { + "start": 15438.05, + "end": 15439.18, + "probability": 0.7145 + }, + { + "start": 15439.49, + "end": 15439.77, + "probability": 0.9457 + }, + { + "start": 15440.41, + "end": 15443.17, + "probability": 0.8584 + }, + { + "start": 15443.71, + "end": 15445.6, + "probability": 0.8409 + }, + { + "start": 15446.07, + "end": 15447.24, + "probability": 0.8367 + }, + { + "start": 15448.23, + "end": 15450.15, + "probability": 0.932 + }, + { + "start": 15450.75, + "end": 15451.65, + "probability": 0.9275 + }, + { + "start": 15452.07, + "end": 15453.97, + "probability": 0.6394 + }, + { + "start": 15454.71, + "end": 15455.29, + "probability": 0.3756 + }, + { + "start": 15455.71, + "end": 15456.15, + "probability": 0.6176 + }, + { + "start": 15456.23, + "end": 15457.27, + "probability": 0.5117 + }, + { + "start": 15459.55, + "end": 15460.08, + "probability": 0.8114 + }, + { + "start": 15460.43, + "end": 15460.85, + "probability": 0.9695 + }, + { + "start": 15461.35, + "end": 15461.89, + "probability": 0.5331 + }, + { + "start": 15461.89, + "end": 15462.29, + "probability": 0.5358 + }, + { + "start": 15462.35, + "end": 15462.45, + "probability": 0.1522 + }, + { + "start": 15462.77, + "end": 15463.67, + "probability": 0.843 + }, + { + "start": 15464.15, + "end": 15465.1, + "probability": 0.717 + }, + { + "start": 15465.65, + "end": 15466.11, + "probability": 0.4853 + }, + { + "start": 15466.39, + "end": 15467.93, + "probability": 0.8798 + }, + { + "start": 15468.37, + "end": 15469.61, + "probability": 0.9806 + }, + { + "start": 15470.01, + "end": 15472.45, + "probability": 0.901 + }, + { + "start": 15472.79, + "end": 15473.59, + "probability": 0.8866 + }, + { + "start": 15474.17, + "end": 15474.89, + "probability": 0.6988 + }, + { + "start": 15475.31, + "end": 15476.53, + "probability": 0.9688 + }, + { + "start": 15476.65, + "end": 15478.81, + "probability": 0.7757 + }, + { + "start": 15479.31, + "end": 15480.37, + "probability": 0.5864 + }, + { + "start": 15480.73, + "end": 15481.27, + "probability": 0.6753 + }, + { + "start": 15481.49, + "end": 15484.35, + "probability": 0.9543 + }, + { + "start": 15484.37, + "end": 15486.85, + "probability": 0.5934 + }, + { + "start": 15487.43, + "end": 15490.73, + "probability": 0.7881 + }, + { + "start": 15491.27, + "end": 15491.81, + "probability": 0.7024 + }, + { + "start": 15492.09, + "end": 15492.81, + "probability": 0.8914 + }, + { + "start": 15493.19, + "end": 15495.35, + "probability": 0.9592 + }, + { + "start": 15495.85, + "end": 15497.07, + "probability": 0.8409 + }, + { + "start": 15497.15, + "end": 15497.99, + "probability": 0.719 + }, + { + "start": 15498.29, + "end": 15498.97, + "probability": 0.6277 + }, + { + "start": 15499.25, + "end": 15502.13, + "probability": 0.7775 + }, + { + "start": 15502.47, + "end": 15503.41, + "probability": 0.2391 + }, + { + "start": 15503.45, + "end": 15504.13, + "probability": 0.6246 + }, + { + "start": 15504.45, + "end": 15504.85, + "probability": 0.8325 + }, + { + "start": 15505.21, + "end": 15507.31, + "probability": 0.9355 + }, + { + "start": 15507.75, + "end": 15509.09, + "probability": 0.9565 + }, + { + "start": 15509.91, + "end": 15514.09, + "probability": 0.8328 + }, + { + "start": 15514.79, + "end": 15518.67, + "probability": 0.7231 + }, + { + "start": 15518.67, + "end": 15521.51, + "probability": 0.8853 + }, + { + "start": 15521.71, + "end": 15522.34, + "probability": 0.8372 + }, + { + "start": 15523.59, + "end": 15525.03, + "probability": 0.7712 + }, + { + "start": 15525.23, + "end": 15525.61, + "probability": 0.6273 + }, + { + "start": 15525.73, + "end": 15529.45, + "probability": 0.6667 + }, + { + "start": 15529.63, + "end": 15533.17, + "probability": 0.4127 + }, + { + "start": 15533.25, + "end": 15534.55, + "probability": 0.4701 + }, + { + "start": 15535.45, + "end": 15536.55, + "probability": 0.357 + }, + { + "start": 15537.17, + "end": 15537.41, + "probability": 0.6456 + }, + { + "start": 15537.91, + "end": 15538.31, + "probability": 0.8085 + }, + { + "start": 15539.53, + "end": 15540.25, + "probability": 0.8639 + }, + { + "start": 15541.05, + "end": 15542.05, + "probability": 0.7726 + }, + { + "start": 15542.53, + "end": 15544.57, + "probability": 0.8813 + }, + { + "start": 15545.29, + "end": 15547.25, + "probability": 0.7643 + }, + { + "start": 15547.81, + "end": 15548.26, + "probability": 0.967 + }, + { + "start": 15549.01, + "end": 15552.23, + "probability": 0.9896 + }, + { + "start": 15553.15, + "end": 15555.51, + "probability": 0.9695 + }, + { + "start": 15556.07, + "end": 15557.93, + "probability": 0.9464 + }, + { + "start": 15559.21, + "end": 15560.25, + "probability": 0.8187 + }, + { + "start": 15561.13, + "end": 15561.75, + "probability": 0.8315 + }, + { + "start": 15562.35, + "end": 15566.29, + "probability": 0.7092 + }, + { + "start": 15567.07, + "end": 15568.39, + "probability": 0.755 + }, + { + "start": 15568.87, + "end": 15571.51, + "probability": 0.8896 + }, + { + "start": 15571.89, + "end": 15573.35, + "probability": 0.9951 + }, + { + "start": 15574.79, + "end": 15576.17, + "probability": 0.6238 + }, + { + "start": 15577.17, + "end": 15578.83, + "probability": 0.7381 + }, + { + "start": 15579.67, + "end": 15582.15, + "probability": 0.9541 + }, + { + "start": 15582.69, + "end": 15584.57, + "probability": 0.8881 + }, + { + "start": 15585.09, + "end": 15587.07, + "probability": 0.9375 + }, + { + "start": 15587.63, + "end": 15590.17, + "probability": 0.9868 + }, + { + "start": 15590.57, + "end": 15591.75, + "probability": 0.6815 + }, + { + "start": 15592.45, + "end": 15594.53, + "probability": 0.9891 + }, + { + "start": 15595.31, + "end": 15597.01, + "probability": 0.876 + }, + { + "start": 15597.47, + "end": 15598.31, + "probability": 0.8297 + }, + { + "start": 15599.15, + "end": 15601.59, + "probability": 0.9632 + }, + { + "start": 15601.59, + "end": 15603.63, + "probability": 0.9176 + }, + { + "start": 15603.81, + "end": 15604.39, + "probability": 0.7654 + }, + { + "start": 15604.95, + "end": 15605.25, + "probability": 0.496 + }, + { + "start": 15605.37, + "end": 15607.03, + "probability": 0.6791 + }, + { + "start": 15609.11, + "end": 15610.28, + "probability": 0.9565 + }, + { + "start": 15610.97, + "end": 15612.05, + "probability": 0.3393 + }, + { + "start": 15612.05, + "end": 15613.09, + "probability": 0.6581 + }, + { + "start": 15613.81, + "end": 15616.41, + "probability": 0.787 + }, + { + "start": 15620.35, + "end": 15623.99, + "probability": 0.9375 + }, + { + "start": 15624.07, + "end": 15626.39, + "probability": 0.9791 + }, + { + "start": 15627.03, + "end": 15627.83, + "probability": 0.8824 + }, + { + "start": 15628.05, + "end": 15629.17, + "probability": 0.6224 + }, + { + "start": 15629.63, + "end": 15633.43, + "probability": 0.8331 + }, + { + "start": 15634.21, + "end": 15635.14, + "probability": 0.2947 + }, + { + "start": 15635.57, + "end": 15638.57, + "probability": 0.3233 + }, + { + "start": 15638.99, + "end": 15641.51, + "probability": 0.1318 + }, + { + "start": 15641.69, + "end": 15642.11, + "probability": 0.2221 + }, + { + "start": 15642.59, + "end": 15644.55, + "probability": 0.959 + }, + { + "start": 15644.67, + "end": 15646.33, + "probability": 0.917 + }, + { + "start": 15646.49, + "end": 15648.23, + "probability": 0.9819 + }, + { + "start": 15648.35, + "end": 15650.53, + "probability": 0.75 + }, + { + "start": 15650.75, + "end": 15651.01, + "probability": 0.7238 + }, + { + "start": 15651.63, + "end": 15653.53, + "probability": 0.7689 + }, + { + "start": 15653.73, + "end": 15657.93, + "probability": 0.8081 + }, + { + "start": 15658.95, + "end": 15660.39, + "probability": 0.9707 + }, + { + "start": 15662.57, + "end": 15664.25, + "probability": 0.7838 + }, + { + "start": 15665.09, + "end": 15667.59, + "probability": 0.8896 + }, + { + "start": 15668.91, + "end": 15674.83, + "probability": 0.9781 + }, + { + "start": 15674.93, + "end": 15676.23, + "probability": 0.8161 + }, + { + "start": 15676.33, + "end": 15677.37, + "probability": 0.9908 + }, + { + "start": 15678.39, + "end": 15682.17, + "probability": 0.9012 + }, + { + "start": 15683.35, + "end": 15686.05, + "probability": 0.7056 + }, + { + "start": 15686.25, + "end": 15686.51, + "probability": 0.2972 + }, + { + "start": 15686.73, + "end": 15690.75, + "probability": 0.9041 + }, + { + "start": 15691.15, + "end": 15693.07, + "probability": 0.9769 + }, + { + "start": 15693.15, + "end": 15695.01, + "probability": 0.9719 + }, + { + "start": 15695.97, + "end": 15697.47, + "probability": 0.9648 + }, + { + "start": 15698.31, + "end": 15699.57, + "probability": 0.9738 + }, + { + "start": 15700.25, + "end": 15701.75, + "probability": 0.9852 + }, + { + "start": 15702.55, + "end": 15704.41, + "probability": 0.8045 + }, + { + "start": 15705.15, + "end": 15708.69, + "probability": 0.9849 + }, + { + "start": 15709.27, + "end": 15711.37, + "probability": 0.9272 + }, + { + "start": 15712.61, + "end": 15713.19, + "probability": 0.7753 + }, + { + "start": 15713.31, + "end": 15713.99, + "probability": 0.5138 + }, + { + "start": 15714.75, + "end": 15719.25, + "probability": 0.9742 + }, + { + "start": 15720.65, + "end": 15721.29, + "probability": 0.7652 + }, + { + "start": 15722.51, + "end": 15724.39, + "probability": 0.8245 + }, + { + "start": 15726.63, + "end": 15728.79, + "probability": 0.9627 + }, + { + "start": 15729.81, + "end": 15731.17, + "probability": 0.9326 + }, + { + "start": 15731.91, + "end": 15737.37, + "probability": 0.8107 + }, + { + "start": 15738.33, + "end": 15740.45, + "probability": 0.9884 + }, + { + "start": 15741.11, + "end": 15743.05, + "probability": 0.9928 + }, + { + "start": 15744.25, + "end": 15746.39, + "probability": 0.9969 + }, + { + "start": 15746.85, + "end": 15751.01, + "probability": 0.9844 + }, + { + "start": 15751.47, + "end": 15754.99, + "probability": 0.8208 + }, + { + "start": 15755.19, + "end": 15755.45, + "probability": 0.583 + }, + { + "start": 15755.69, + "end": 15756.15, + "probability": 0.4066 + }, + { + "start": 15758.43, + "end": 15759.97, + "probability": 0.5998 + }, + { + "start": 15762.01, + "end": 15766.85, + "probability": 0.9178 + }, + { + "start": 15766.89, + "end": 15767.91, + "probability": 0.8952 + }, + { + "start": 15768.33, + "end": 15768.67, + "probability": 0.4642 + }, + { + "start": 15768.75, + "end": 15771.52, + "probability": 0.5999 + }, + { + "start": 15781.03, + "end": 15783.43, + "probability": 0.8512 + }, + { + "start": 15785.19, + "end": 15788.75, + "probability": 0.9536 + }, + { + "start": 15788.93, + "end": 15790.81, + "probability": 0.9966 + }, + { + "start": 15791.57, + "end": 15793.43, + "probability": 0.977 + }, + { + "start": 15793.59, + "end": 15795.37, + "probability": 0.9954 + }, + { + "start": 15796.45, + "end": 15798.61, + "probability": 0.9892 + }, + { + "start": 15799.87, + "end": 15802.07, + "probability": 0.4885 + }, + { + "start": 15802.87, + "end": 15804.95, + "probability": 0.9763 + }, + { + "start": 15805.79, + "end": 15808.07, + "probability": 0.9648 + }, + { + "start": 15809.21, + "end": 15810.87, + "probability": 0.9346 + }, + { + "start": 15810.95, + "end": 15814.17, + "probability": 0.9784 + }, + { + "start": 15814.87, + "end": 15816.47, + "probability": 0.7329 + }, + { + "start": 15817.17, + "end": 15819.65, + "probability": 0.9799 + }, + { + "start": 15820.47, + "end": 15821.53, + "probability": 0.3522 + }, + { + "start": 15822.19, + "end": 15823.15, + "probability": 0.8354 + }, + { + "start": 15824.13, + "end": 15825.99, + "probability": 0.9537 + }, + { + "start": 15826.09, + "end": 15826.55, + "probability": 0.6286 + }, + { + "start": 15826.57, + "end": 15827.59, + "probability": 0.991 + }, + { + "start": 15838.31, + "end": 15840.81, + "probability": 0.0465 + }, + { + "start": 15840.97, + "end": 15841.85, + "probability": 0.2249 + }, + { + "start": 15841.85, + "end": 15844.25, + "probability": 0.8467 + }, + { + "start": 15845.09, + "end": 15846.19, + "probability": 0.1795 + }, + { + "start": 15846.97, + "end": 15849.91, + "probability": 0.8025 + }, + { + "start": 15850.19, + "end": 15851.31, + "probability": 0.61 + }, + { + "start": 15852.85, + "end": 15853.49, + "probability": 0.019 + }, + { + "start": 15855.09, + "end": 15861.01, + "probability": 0.8162 + }, + { + "start": 15861.35, + "end": 15864.21, + "probability": 0.5664 + }, + { + "start": 15864.35, + "end": 15864.99, + "probability": 0.2897 + }, + { + "start": 15865.03, + "end": 15867.75, + "probability": 0.9006 + }, + { + "start": 15868.69, + "end": 15870.25, + "probability": 0.9587 + }, + { + "start": 15870.62, + "end": 15871.95, + "probability": 0.862 + }, + { + "start": 15872.71, + "end": 15872.71, + "probability": 0.479 + }, + { + "start": 15872.85, + "end": 15875.21, + "probability": 0.7978 + }, + { + "start": 15875.79, + "end": 15879.31, + "probability": 0.8632 + }, + { + "start": 15879.43, + "end": 15880.81, + "probability": 0.7186 + }, + { + "start": 15881.49, + "end": 15884.8, + "probability": 0.8062 + }, + { + "start": 15886.49, + "end": 15887.54, + "probability": 0.9297 + }, + { + "start": 15888.33, + "end": 15888.83, + "probability": 0.3544 + }, + { + "start": 15889.29, + "end": 15889.74, + "probability": 0.9136 + }, + { + "start": 15889.92, + "end": 15891.84, + "probability": 0.7629 + }, + { + "start": 15892.36, + "end": 15893.64, + "probability": 0.5891 + }, + { + "start": 15893.78, + "end": 15898.16, + "probability": 0.9025 + }, + { + "start": 15898.72, + "end": 15900.99, + "probability": 0.5369 + }, + { + "start": 15901.46, + "end": 15904.4, + "probability": 0.9385 + }, + { + "start": 15904.56, + "end": 15905.24, + "probability": 0.4755 + }, + { + "start": 15905.92, + "end": 15908.44, + "probability": 0.8686 + }, + { + "start": 15910.32, + "end": 15913.42, + "probability": 0.9157 + }, + { + "start": 15914.22, + "end": 15914.93, + "probability": 0.6321 + }, + { + "start": 15915.16, + "end": 15915.84, + "probability": 0.8292 + }, + { + "start": 15916.5, + "end": 15918.76, + "probability": 0.9304 + }, + { + "start": 15919.44, + "end": 15920.54, + "probability": 0.9235 + }, + { + "start": 15921.7, + "end": 15922.64, + "probability": 0.6093 + }, + { + "start": 15922.9, + "end": 15922.98, + "probability": 0.235 + }, + { + "start": 15923.02, + "end": 15923.96, + "probability": 0.7313 + }, + { + "start": 15924.46, + "end": 15926.14, + "probability": 0.5723 + }, + { + "start": 15926.2, + "end": 15927.5, + "probability": 0.9791 + }, + { + "start": 15928.0, + "end": 15928.54, + "probability": 0.9258 + }, + { + "start": 15931.52, + "end": 15933.8, + "probability": 0.0875 + }, + { + "start": 15933.84, + "end": 15933.94, + "probability": 0.1343 + }, + { + "start": 15934.78, + "end": 15937.26, + "probability": 0.9937 + }, + { + "start": 15937.78, + "end": 15938.84, + "probability": 0.9808 + }, + { + "start": 15938.94, + "end": 15939.04, + "probability": 0.4937 + }, + { + "start": 15939.22, + "end": 15940.73, + "probability": 0.9606 + }, + { + "start": 15941.2, + "end": 15942.36, + "probability": 0.8694 + }, + { + "start": 15943.64, + "end": 15943.9, + "probability": 0.3631 + }, + { + "start": 15944.51, + "end": 15945.2, + "probability": 0.2573 + }, + { + "start": 15945.2, + "end": 15947.1, + "probability": 0.2338 + }, + { + "start": 15947.1, + "end": 15950.36, + "probability": 0.8375 + }, + { + "start": 15967.22, + "end": 15968.84, + "probability": 0.1464 + }, + { + "start": 15968.96, + "end": 15970.28, + "probability": 0.8132 + }, + { + "start": 15970.34, + "end": 15970.62, + "probability": 0.4348 + }, + { + "start": 15970.74, + "end": 15972.76, + "probability": 0.7918 + }, + { + "start": 15981.56, + "end": 15982.78, + "probability": 0.2693 + }, + { + "start": 15983.12, + "end": 15984.82, + "probability": 0.8607 + }, + { + "start": 15984.88, + "end": 15985.84, + "probability": 0.7107 + }, + { + "start": 15986.9, + "end": 15989.8, + "probability": 0.0586 + }, + { + "start": 15992.96, + "end": 15993.08, + "probability": 0.005 + }, + { + "start": 15993.62, + "end": 15995.74, + "probability": 0.0134 + }, + { + "start": 15999.05, + "end": 16003.32, + "probability": 0.0387 + }, + { + "start": 16003.32, + "end": 16009.48, + "probability": 0.0186 + }, + { + "start": 16009.48, + "end": 16010.98, + "probability": 0.1033 + }, + { + "start": 16011.32, + "end": 16011.52, + "probability": 0.2005 + }, + { + "start": 16011.9, + "end": 16016.24, + "probability": 0.0215 + }, + { + "start": 16016.24, + "end": 16016.32, + "probability": 0.016 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16042.0, + "end": 16042.0, + "probability": 0.0 + }, + { + "start": 16045.44, + "end": 16045.9, + "probability": 0.7958 + }, + { + "start": 16045.94, + "end": 16046.8, + "probability": 0.9271 + }, + { + "start": 16046.92, + "end": 16050.76, + "probability": 0.7859 + }, + { + "start": 16051.6, + "end": 16053.16, + "probability": 0.7312 + }, + { + "start": 16053.9, + "end": 16058.62, + "probability": 0.6611 + }, + { + "start": 16059.32, + "end": 16061.6, + "probability": 0.7284 + }, + { + "start": 16062.04, + "end": 16066.36, + "probability": 0.8495 + }, + { + "start": 16066.9, + "end": 16070.3, + "probability": 0.9683 + }, + { + "start": 16070.6, + "end": 16074.56, + "probability": 0.9495 + }, + { + "start": 16075.22, + "end": 16077.16, + "probability": 0.707 + }, + { + "start": 16077.92, + "end": 16078.24, + "probability": 0.7797 + }, + { + "start": 16078.32, + "end": 16079.36, + "probability": 0.9625 + }, + { + "start": 16079.54, + "end": 16080.82, + "probability": 0.9648 + }, + { + "start": 16080.92, + "end": 16082.36, + "probability": 0.9049 + }, + { + "start": 16082.8, + "end": 16083.18, + "probability": 0.728 + }, + { + "start": 16083.22, + "end": 16083.89, + "probability": 0.9368 + }, + { + "start": 16085.06, + "end": 16085.64, + "probability": 0.7405 + }, + { + "start": 16085.72, + "end": 16086.37, + "probability": 0.4311 + }, + { + "start": 16086.4, + "end": 16091.08, + "probability": 0.503 + }, + { + "start": 16093.08, + "end": 16094.5, + "probability": 0.8391 + }, + { + "start": 16094.74, + "end": 16095.99, + "probability": 0.6931 + }, + { + "start": 16096.2, + "end": 16099.94, + "probability": 0.7146 + }, + { + "start": 16100.02, + "end": 16100.92, + "probability": 0.4652 + }, + { + "start": 16101.62, + "end": 16103.1, + "probability": 0.94 + }, + { + "start": 16105.64, + "end": 16107.66, + "probability": 0.9436 + }, + { + "start": 16108.36, + "end": 16108.56, + "probability": 0.3263 + }, + { + "start": 16108.72, + "end": 16110.66, + "probability": 0.8768 + }, + { + "start": 16111.16, + "end": 16111.7, + "probability": 0.4899 + }, + { + "start": 16112.42, + "end": 16112.92, + "probability": 0.4091 + }, + { + "start": 16113.26, + "end": 16116.09, + "probability": 0.8563 + }, + { + "start": 16118.22, + "end": 16119.06, + "probability": 0.322 + }, + { + "start": 16122.64, + "end": 16128.28, + "probability": 0.0199 + }, + { + "start": 16128.28, + "end": 16131.44, + "probability": 0.0498 + }, + { + "start": 16132.56, + "end": 16132.96, + "probability": 0.0006 + }, + { + "start": 16138.44, + "end": 16141.0, + "probability": 0.0566 + }, + { + "start": 16141.38, + "end": 16142.88, + "probability": 0.0729 + }, + { + "start": 16143.26, + "end": 16145.1, + "probability": 0.0218 + }, + { + "start": 16145.1, + "end": 16149.26, + "probability": 0.0902 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.0, + "probability": 0.0 + }, + { + "start": 16195.0, + "end": 16195.1, + "probability": 0.1694 + }, + { + "start": 16195.79, + "end": 16199.06, + "probability": 0.6522 + }, + { + "start": 16202.16, + "end": 16204.16, + "probability": 0.0328 + }, + { + "start": 16204.16, + "end": 16207.86, + "probability": 0.012 + }, + { + "start": 16210.86, + "end": 16212.5, + "probability": 0.4357 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.0, + "end": 16320.0, + "probability": 0.0 + }, + { + "start": 16320.74, + "end": 16329.18, + "probability": 0.7244 + }, + { + "start": 16329.64, + "end": 16330.57, + "probability": 0.8824 + }, + { + "start": 16331.44, + "end": 16331.9, + "probability": 0.7649 + }, + { + "start": 16332.12, + "end": 16333.92, + "probability": 0.8656 + }, + { + "start": 16346.54, + "end": 16349.46, + "probability": 0.8038 + }, + { + "start": 16350.36, + "end": 16354.18, + "probability": 0.9735 + }, + { + "start": 16355.2, + "end": 16360.2, + "probability": 0.9985 + }, + { + "start": 16360.94, + "end": 16363.48, + "probability": 0.9716 + }, + { + "start": 16364.26, + "end": 16368.96, + "probability": 0.9835 + }, + { + "start": 16369.76, + "end": 16372.26, + "probability": 0.8708 + }, + { + "start": 16372.74, + "end": 16375.08, + "probability": 0.7603 + }, + { + "start": 16375.9, + "end": 16378.06, + "probability": 0.8505 + }, + { + "start": 16378.66, + "end": 16380.56, + "probability": 0.9945 + }, + { + "start": 16381.06, + "end": 16383.0, + "probability": 0.8228 + }, + { + "start": 16383.52, + "end": 16384.26, + "probability": 0.5679 + }, + { + "start": 16384.32, + "end": 16387.01, + "probability": 0.8613 + }, + { + "start": 16387.16, + "end": 16390.68, + "probability": 0.7486 + }, + { + "start": 16390.78, + "end": 16393.6, + "probability": 0.9326 + }, + { + "start": 16394.36, + "end": 16400.0, + "probability": 0.9436 + }, + { + "start": 16401.58, + "end": 16413.72, + "probability": 0.5057 + }, + { + "start": 16413.9, + "end": 16414.5, + "probability": 0.5993 + }, + { + "start": 16414.72, + "end": 16416.12, + "probability": 0.3052 + }, + { + "start": 16416.24, + "end": 16417.68, + "probability": 0.8206 + }, + { + "start": 16417.76, + "end": 16418.18, + "probability": 0.6742 + }, + { + "start": 16418.4, + "end": 16419.02, + "probability": 0.7784 + }, + { + "start": 16419.68, + "end": 16422.32, + "probability": 0.2251 + }, + { + "start": 16424.54, + "end": 16425.94, + "probability": 0.0149 + }, + { + "start": 16428.57, + "end": 16429.29, + "probability": 0.079 + }, + { + "start": 16430.08, + "end": 16432.22, + "probability": 0.0886 + }, + { + "start": 16433.68, + "end": 16434.86, + "probability": 0.0117 + }, + { + "start": 16438.56, + "end": 16440.32, + "probability": 0.0464 + }, + { + "start": 16440.44, + "end": 16442.42, + "probability": 0.0211 + }, + { + "start": 16442.42, + "end": 16443.38, + "probability": 0.1287 + }, + { + "start": 16449.9, + "end": 16450.4, + "probability": 0.2707 + }, + { + "start": 16452.88, + "end": 16454.32, + "probability": 0.1092 + }, + { + "start": 16455.72, + "end": 16465.4, + "probability": 0.185 + }, + { + "start": 16466.1, + "end": 16467.02, + "probability": 0.011 + }, + { + "start": 16467.02, + "end": 16468.06, + "probability": 0.0494 + }, + { + "start": 16468.08, + "end": 16469.07, + "probability": 0.0158 + }, + { + "start": 16478.36, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.0, + "end": 16489.0, + "probability": 0.0 + }, + { + "start": 16489.26, + "end": 16490.1, + "probability": 0.0623 + }, + { + "start": 16490.1, + "end": 16492.16, + "probability": 0.8179 + }, + { + "start": 16492.36, + "end": 16494.12, + "probability": 0.9871 + }, + { + "start": 16494.14, + "end": 16496.86, + "probability": 0.8419 + }, + { + "start": 16497.22, + "end": 16497.44, + "probability": 0.8647 + }, + { + "start": 16498.92, + "end": 16500.32, + "probability": 0.7319 + }, + { + "start": 16500.84, + "end": 16501.68, + "probability": 0.9694 + }, + { + "start": 16502.68, + "end": 16505.17, + "probability": 0.6042 + }, + { + "start": 16505.22, + "end": 16506.87, + "probability": 0.9111 + }, + { + "start": 16507.04, + "end": 16512.18, + "probability": 0.6855 + }, + { + "start": 16512.74, + "end": 16514.56, + "probability": 0.9636 + }, + { + "start": 16514.7, + "end": 16515.64, + "probability": 0.9365 + }, + { + "start": 16516.32, + "end": 16518.6, + "probability": 0.0287 + }, + { + "start": 16518.6, + "end": 16518.7, + "probability": 0.0162 + }, + { + "start": 16519.5, + "end": 16520.1, + "probability": 0.3382 + }, + { + "start": 16521.06, + "end": 16521.96, + "probability": 0.6071 + }, + { + "start": 16521.96, + "end": 16523.24, + "probability": 0.4822 + }, + { + "start": 16523.6, + "end": 16524.92, + "probability": 0.844 + }, + { + "start": 16525.12, + "end": 16525.52, + "probability": 0.2582 + }, + { + "start": 16525.66, + "end": 16526.34, + "probability": 0.8422 + }, + { + "start": 16526.92, + "end": 16532.8, + "probability": 0.0147 + }, + { + "start": 16536.32, + "end": 16537.7, + "probability": 0.0 + }, + { + "start": 16539.08, + "end": 16539.5, + "probability": 0.1853 + }, + { + "start": 16540.64, + "end": 16545.2, + "probability": 0.0451 + }, + { + "start": 16547.06, + "end": 16550.03, + "probability": 0.032 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.0, + "end": 16612.0, + "probability": 0.0 + }, + { + "start": 16612.18, + "end": 16618.16, + "probability": 0.7074 + }, + { + "start": 16618.7, + "end": 16619.78, + "probability": 0.6561 + }, + { + "start": 16620.42, + "end": 16624.5, + "probability": 0.7106 + }, + { + "start": 16624.58, + "end": 16625.9, + "probability": 0.737 + }, + { + "start": 16626.74, + "end": 16627.96, + "probability": 0.5498 + }, + { + "start": 16628.68, + "end": 16629.86, + "probability": 0.1926 + }, + { + "start": 16631.8, + "end": 16632.72, + "probability": 0.79 + }, + { + "start": 16633.94, + "end": 16636.66, + "probability": 0.7015 + }, + { + "start": 16637.28, + "end": 16639.76, + "probability": 0.5114 + }, + { + "start": 16640.28, + "end": 16642.76, + "probability": 0.814 + }, + { + "start": 16643.68, + "end": 16644.5, + "probability": 0.7476 + }, + { + "start": 16645.1, + "end": 16648.02, + "probability": 0.9768 + }, + { + "start": 16651.26, + "end": 16651.5, + "probability": 0.7105 + }, + { + "start": 16653.16, + "end": 16654.58, + "probability": 0.1567 + }, + { + "start": 16655.08, + "end": 16656.3, + "probability": 0.8704 + }, + { + "start": 16656.32, + "end": 16656.52, + "probability": 0.5785 + }, + { + "start": 16657.04, + "end": 16657.72, + "probability": 0.8106 + }, + { + "start": 16657.94, + "end": 16660.36, + "probability": 0.4044 + }, + { + "start": 16672.0, + "end": 16677.32, + "probability": 0.02 + }, + { + "start": 16683.32, + "end": 16687.66, + "probability": 0.0235 + }, + { + "start": 16687.88, + "end": 16691.34, + "probability": 0.0098 + }, + { + "start": 16692.18, + "end": 16694.08, + "probability": 0.0286 + }, + { + "start": 16694.78, + "end": 16697.5, + "probability": 0.0472 + }, + { + "start": 16698.22, + "end": 16700.56, + "probability": 0.2848 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.0, + "end": 16747.0, + "probability": 0.0 + }, + { + "start": 16747.26, + "end": 16747.26, + "probability": 0.0162 + }, + { + "start": 16747.26, + "end": 16747.36, + "probability": 0.3706 + }, + { + "start": 16748.98, + "end": 16753.38, + "probability": 0.9064 + }, + { + "start": 16754.29, + "end": 16756.6, + "probability": 0.6495 + }, + { + "start": 16757.85, + "end": 16759.18, + "probability": 0.665 + }, + { + "start": 16759.18, + "end": 16764.87, + "probability": 0.5332 + }, + { + "start": 16765.22, + "end": 16765.96, + "probability": 0.1488 + }, + { + "start": 16766.94, + "end": 16768.1, + "probability": 0.8216 + }, + { + "start": 16768.48, + "end": 16771.18, + "probability": 0.9491 + }, + { + "start": 16771.7, + "end": 16772.38, + "probability": 0.7622 + }, + { + "start": 16773.44, + "end": 16776.52, + "probability": 0.4386 + }, + { + "start": 16789.8, + "end": 16790.68, + "probability": 0.3902 + }, + { + "start": 16790.84, + "end": 16792.6, + "probability": 0.0087 + }, + { + "start": 16793.18, + "end": 16793.56, + "probability": 0.0581 + }, + { + "start": 16803.22, + "end": 16806.84, + "probability": 0.0194 + }, + { + "start": 16806.84, + "end": 16807.4, + "probability": 0.1761 + }, + { + "start": 16808.24, + "end": 16811.48, + "probability": 0.0543 + }, + { + "start": 16812.94, + "end": 16814.86, + "probability": 0.0684 + }, + { + "start": 16816.54, + "end": 16818.42, + "probability": 0.1127 + }, + { + "start": 16821.5, + "end": 16831.14, + "probability": 0.0196 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.0, + "end": 16867.0, + "probability": 0.0 + }, + { + "start": 16867.16, + "end": 16869.4, + "probability": 0.0223 + }, + { + "start": 16869.4, + "end": 16871.62, + "probability": 0.5819 + }, + { + "start": 16872.96, + "end": 16873.58, + "probability": 0.6118 + }, + { + "start": 16873.58, + "end": 16875.92, + "probability": 0.8534 + }, + { + "start": 16876.28, + "end": 16877.98, + "probability": 0.5596 + }, + { + "start": 16878.12, + "end": 16878.82, + "probability": 0.6337 + }, + { + "start": 16879.94, + "end": 16881.36, + "probability": 0.9512 + }, + { + "start": 16882.28, + "end": 16885.24, + "probability": 0.7335 + }, + { + "start": 16885.52, + "end": 16887.56, + "probability": 0.8564 + }, + { + "start": 16888.74, + "end": 16894.94, + "probability": 0.9946 + }, + { + "start": 16895.88, + "end": 16896.58, + "probability": 0.7933 + }, + { + "start": 16902.32, + "end": 16903.12, + "probability": 0.5005 + }, + { + "start": 16903.8, + "end": 16904.78, + "probability": 0.2867 + }, + { + "start": 16904.9, + "end": 16907.38, + "probability": 0.8219 + }, + { + "start": 16909.72, + "end": 16911.76, + "probability": 0.567 + }, + { + "start": 16913.76, + "end": 16916.86, + "probability": 0.0063 + }, + { + "start": 16917.5, + "end": 16917.94, + "probability": 0.0483 + }, + { + "start": 16920.32, + "end": 16920.42, + "probability": 0.0 + }, + { + "start": 16923.34, + "end": 16927.98, + "probability": 0.1158 + }, + { + "start": 16928.98, + "end": 16932.68, + "probability": 0.0676 + }, + { + "start": 16932.74, + "end": 16935.14, + "probability": 0.0325 + }, + { + "start": 16938.52, + "end": 16946.16, + "probability": 0.112 + }, + { + "start": 16947.32, + "end": 16949.3, + "probability": 0.0303 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.2, + "end": 16990.2, + "probability": 0.0001 + }, + { + "start": 16990.26, + "end": 16990.74, + "probability": 0.0503 + }, + { + "start": 16990.74, + "end": 16990.74, + "probability": 0.0345 + }, + { + "start": 16990.74, + "end": 16994.14, + "probability": 0.3063 + }, + { + "start": 16994.5, + "end": 16997.21, + "probability": 0.8125 + }, + { + "start": 16998.52, + "end": 17000.68, + "probability": 0.5773 + }, + { + "start": 17001.74, + "end": 17002.04, + "probability": 0.7474 + }, + { + "start": 17004.64, + "end": 17006.0, + "probability": 0.7476 + }, + { + "start": 17010.22, + "end": 17012.52, + "probability": 0.6894 + }, + { + "start": 17013.44, + "end": 17016.46, + "probability": 0.7375 + }, + { + "start": 17017.98, + "end": 17018.76, + "probability": 0.5942 + }, + { + "start": 17019.74, + "end": 17021.28, + "probability": 0.8245 + }, + { + "start": 17021.92, + "end": 17024.18, + "probability": 0.8833 + }, + { + "start": 17024.24, + "end": 17025.28, + "probability": 0.7436 + }, + { + "start": 17025.38, + "end": 17033.84, + "probability": 0.9313 + }, + { + "start": 17034.12, + "end": 17034.92, + "probability": 0.8037 + }, + { + "start": 17035.34, + "end": 17036.4, + "probability": 0.9194 + }, + { + "start": 17036.86, + "end": 17041.84, + "probability": 0.9025 + }, + { + "start": 17042.21, + "end": 17042.64, + "probability": 0.7875 + }, + { + "start": 17043.3, + "end": 17044.88, + "probability": 0.937 + }, + { + "start": 17045.48, + "end": 17046.81, + "probability": 0.8241 + }, + { + "start": 17047.5, + "end": 17048.6, + "probability": 0.9375 + }, + { + "start": 17049.32, + "end": 17053.67, + "probability": 0.416 + }, + { + "start": 17055.1, + "end": 17057.06, + "probability": 0.9695 + }, + { + "start": 17058.2, + "end": 17061.26, + "probability": 0.9832 + }, + { + "start": 17062.02, + "end": 17062.04, + "probability": 0.5576 + }, + { + "start": 17063.24, + "end": 17064.76, + "probability": 0.651 + }, + { + "start": 17065.28, + "end": 17065.8, + "probability": 0.8211 + }, + { + "start": 17066.0, + "end": 17066.42, + "probability": 0.5712 + }, + { + "start": 17067.66, + "end": 17071.7, + "probability": 0.5663 + }, + { + "start": 17071.74, + "end": 17072.06, + "probability": 0.71 + }, + { + "start": 17072.12, + "end": 17074.6, + "probability": 0.5803 + }, + { + "start": 17075.56, + "end": 17076.01, + "probability": 0.9463 + }, + { + "start": 17077.84, + "end": 17078.74, + "probability": 0.9664 + }, + { + "start": 17079.5, + "end": 17082.58, + "probability": 0.8388 + }, + { + "start": 17082.76, + "end": 17086.02, + "probability": 0.9342 + }, + { + "start": 17087.26, + "end": 17088.14, + "probability": 0.3926 + }, + { + "start": 17088.56, + "end": 17090.92, + "probability": 0.7018 + }, + { + "start": 17091.46, + "end": 17092.84, + "probability": 0.9478 + }, + { + "start": 17092.9, + "end": 17093.2, + "probability": 0.808 + }, + { + "start": 17093.22, + "end": 17093.46, + "probability": 0.7324 + }, + { + "start": 17093.9, + "end": 17096.96, + "probability": 0.8986 + }, + { + "start": 17097.94, + "end": 17098.94, + "probability": 0.9248 + }, + { + "start": 17100.46, + "end": 17100.84, + "probability": 0.5414 + }, + { + "start": 17100.92, + "end": 17102.02, + "probability": 0.7299 + }, + { + "start": 17102.36, + "end": 17103.24, + "probability": 0.5085 + }, + { + "start": 17103.24, + "end": 17106.6, + "probability": 0.8756 + }, + { + "start": 17107.26, + "end": 17109.02, + "probability": 0.9083 + }, + { + "start": 17151.04, + "end": 17155.154, + "probability": 0.0 + }, + { + "start": 17155.154, + "end": 17155.154, + "probability": 0.0 + } + ], + "segments_count": 6844, + "words_count": 35463, + "avg_words_per_segment": 5.1816, + "avg_segment_duration": 1.6133, + "avg_words_per_minute": 124.0317, + "plenum_id": "4608", + "duration": 17155.13, + "title": null, + "plenum_date": "2009-11-09" +} \ No newline at end of file