diff --git "a/105011/metadata.json" "b/105011/metadata.json" new file mode 100644--- /dev/null +++ "b/105011/metadata.json" @@ -0,0 +1,6502 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "105011", + "quality_score": 0.9428, + "per_segment_quality_scores": [ + { + "start": 119.8, + "end": 120.0, + "probability": 0.6913 + }, + { + "start": 120.5, + "end": 124.1, + "probability": 0.5107 + }, + { + "start": 124.48, + "end": 125.98, + "probability": 0.8612 + }, + { + "start": 128.84, + "end": 130.78, + "probability": 0.6469 + }, + { + "start": 136.68, + "end": 139.3, + "probability": 0.8878 + }, + { + "start": 146.12, + "end": 148.46, + "probability": 0.6476 + }, + { + "start": 149.72, + "end": 151.16, + "probability": 0.6702 + }, + { + "start": 151.64, + "end": 153.14, + "probability": 0.9937 + }, + { + "start": 154.36, + "end": 155.96, + "probability": 0.8852 + }, + { + "start": 157.76, + "end": 161.36, + "probability": 0.925 + }, + { + "start": 162.56, + "end": 165.32, + "probability": 0.9985 + }, + { + "start": 166.1, + "end": 168.54, + "probability": 0.8922 + }, + { + "start": 175.76, + "end": 178.12, + "probability": 0.996 + }, + { + "start": 179.3, + "end": 183.06, + "probability": 0.9912 + }, + { + "start": 184.2, + "end": 185.62, + "probability": 0.9667 + }, + { + "start": 187.08, + "end": 190.32, + "probability": 0.9955 + }, + { + "start": 190.36, + "end": 191.68, + "probability": 0.9209 + }, + { + "start": 192.76, + "end": 196.64, + "probability": 0.9866 + }, + { + "start": 198.12, + "end": 201.8, + "probability": 0.9451 + }, + { + "start": 202.34, + "end": 204.34, + "probability": 0.6774 + }, + { + "start": 206.22, + "end": 211.2, + "probability": 0.9234 + }, + { + "start": 212.0, + "end": 213.24, + "probability": 0.8857 + }, + { + "start": 213.9, + "end": 215.18, + "probability": 0.6754 + }, + { + "start": 215.94, + "end": 217.16, + "probability": 0.9531 + }, + { + "start": 219.42, + "end": 220.24, + "probability": 0.3468 + }, + { + "start": 220.9, + "end": 223.26, + "probability": 0.981 + }, + { + "start": 224.74, + "end": 225.96, + "probability": 0.9937 + }, + { + "start": 227.6, + "end": 232.14, + "probability": 0.9954 + }, + { + "start": 232.82, + "end": 234.7, + "probability": 0.9936 + }, + { + "start": 236.34, + "end": 239.88, + "probability": 0.8547 + }, + { + "start": 240.46, + "end": 243.65, + "probability": 0.995 + }, + { + "start": 244.32, + "end": 248.86, + "probability": 0.9871 + }, + { + "start": 249.58, + "end": 252.14, + "probability": 0.8399 + }, + { + "start": 252.68, + "end": 255.72, + "probability": 0.7319 + }, + { + "start": 255.78, + "end": 256.66, + "probability": 0.2921 + }, + { + "start": 257.52, + "end": 262.76, + "probability": 0.9771 + }, + { + "start": 262.98, + "end": 265.26, + "probability": 0.9912 + }, + { + "start": 266.48, + "end": 267.96, + "probability": 0.8994 + }, + { + "start": 268.8, + "end": 272.8, + "probability": 0.6616 + }, + { + "start": 273.38, + "end": 277.4, + "probability": 0.5169 + }, + { + "start": 278.2, + "end": 280.1, + "probability": 0.9707 + }, + { + "start": 280.64, + "end": 284.4, + "probability": 0.9643 + }, + { + "start": 285.46, + "end": 286.64, + "probability": 0.9869 + }, + { + "start": 286.92, + "end": 287.12, + "probability": 0.735 + }, + { + "start": 288.08, + "end": 288.66, + "probability": 0.5819 + }, + { + "start": 288.7, + "end": 290.42, + "probability": 0.8147 + }, + { + "start": 302.78, + "end": 305.38, + "probability": 0.8139 + }, + { + "start": 306.54, + "end": 311.84, + "probability": 0.9295 + }, + { + "start": 312.06, + "end": 313.82, + "probability": 0.9465 + }, + { + "start": 316.35, + "end": 318.44, + "probability": 0.9875 + }, + { + "start": 319.22, + "end": 324.64, + "probability": 0.9944 + }, + { + "start": 324.64, + "end": 329.72, + "probability": 0.9806 + }, + { + "start": 330.3, + "end": 333.26, + "probability": 0.9964 + }, + { + "start": 333.26, + "end": 336.28, + "probability": 0.9799 + }, + { + "start": 336.7, + "end": 338.52, + "probability": 0.8979 + }, + { + "start": 339.34, + "end": 341.1, + "probability": 0.6957 + }, + { + "start": 341.2, + "end": 345.26, + "probability": 0.965 + }, + { + "start": 345.42, + "end": 346.3, + "probability": 0.8646 + }, + { + "start": 346.38, + "end": 349.08, + "probability": 0.9912 + }, + { + "start": 349.82, + "end": 353.8, + "probability": 0.9607 + }, + { + "start": 354.5, + "end": 355.94, + "probability": 0.6438 + }, + { + "start": 356.12, + "end": 359.98, + "probability": 0.7274 + }, + { + "start": 360.06, + "end": 361.04, + "probability": 0.8781 + }, + { + "start": 361.24, + "end": 362.3, + "probability": 0.9341 + }, + { + "start": 362.38, + "end": 363.0, + "probability": 0.9839 + }, + { + "start": 363.06, + "end": 364.72, + "probability": 0.9329 + }, + { + "start": 365.34, + "end": 367.48, + "probability": 0.9458 + }, + { + "start": 367.98, + "end": 373.22, + "probability": 0.9855 + }, + { + "start": 373.22, + "end": 378.6, + "probability": 0.998 + }, + { + "start": 378.84, + "end": 382.84, + "probability": 0.5435 + }, + { + "start": 383.92, + "end": 386.1, + "probability": 0.9979 + }, + { + "start": 386.3, + "end": 388.6, + "probability": 0.9795 + }, + { + "start": 388.64, + "end": 391.88, + "probability": 0.984 + }, + { + "start": 393.54, + "end": 394.14, + "probability": 0.5327 + }, + { + "start": 394.26, + "end": 395.0, + "probability": 0.9404 + }, + { + "start": 395.78, + "end": 396.36, + "probability": 0.8721 + }, + { + "start": 404.38, + "end": 405.64, + "probability": 0.6043 + }, + { + "start": 406.22, + "end": 407.96, + "probability": 0.8204 + }, + { + "start": 408.14, + "end": 413.48, + "probability": 0.8169 + }, + { + "start": 414.08, + "end": 415.34, + "probability": 0.8063 + }, + { + "start": 415.94, + "end": 419.06, + "probability": 0.9389 + }, + { + "start": 419.92, + "end": 422.32, + "probability": 0.9723 + }, + { + "start": 423.44, + "end": 425.12, + "probability": 0.9877 + }, + { + "start": 425.86, + "end": 427.18, + "probability": 0.9658 + }, + { + "start": 427.74, + "end": 429.0, + "probability": 0.6239 + }, + { + "start": 429.08, + "end": 434.24, + "probability": 0.9636 + }, + { + "start": 434.92, + "end": 439.52, + "probability": 0.8861 + }, + { + "start": 439.58, + "end": 440.58, + "probability": 0.6846 + }, + { + "start": 440.9, + "end": 442.14, + "probability": 0.8993 + }, + { + "start": 442.46, + "end": 443.58, + "probability": 0.7365 + }, + { + "start": 444.06, + "end": 446.2, + "probability": 0.9438 + }, + { + "start": 446.8, + "end": 448.0, + "probability": 0.4555 + }, + { + "start": 448.04, + "end": 448.68, + "probability": 0.8988 + }, + { + "start": 448.82, + "end": 449.6, + "probability": 0.7249 + }, + { + "start": 449.6, + "end": 450.3, + "probability": 0.9411 + }, + { + "start": 450.86, + "end": 453.0, + "probability": 0.4042 + }, + { + "start": 453.66, + "end": 455.5, + "probability": 0.7916 + }, + { + "start": 456.14, + "end": 456.64, + "probability": 0.6003 + }, + { + "start": 457.24, + "end": 457.42, + "probability": 0.8542 + }, + { + "start": 459.76, + "end": 460.34, + "probability": 0.6369 + }, + { + "start": 460.38, + "end": 461.88, + "probability": 0.9643 + }, + { + "start": 468.52, + "end": 471.74, + "probability": 0.6363 + }, + { + "start": 472.8, + "end": 475.18, + "probability": 0.7674 + }, + { + "start": 476.62, + "end": 479.34, + "probability": 0.9705 + }, + { + "start": 480.56, + "end": 482.86, + "probability": 0.9359 + }, + { + "start": 483.46, + "end": 485.74, + "probability": 0.7771 + }, + { + "start": 487.61, + "end": 489.93, + "probability": 0.3719 + }, + { + "start": 490.74, + "end": 493.96, + "probability": 0.9773 + }, + { + "start": 494.66, + "end": 496.12, + "probability": 0.8615 + }, + { + "start": 496.94, + "end": 499.76, + "probability": 0.8992 + }, + { + "start": 500.28, + "end": 501.0, + "probability": 0.8708 + }, + { + "start": 501.68, + "end": 505.88, + "probability": 0.9402 + }, + { + "start": 506.7, + "end": 510.24, + "probability": 0.9448 + }, + { + "start": 510.24, + "end": 514.56, + "probability": 0.9712 + }, + { + "start": 516.14, + "end": 519.58, + "probability": 0.9253 + }, + { + "start": 520.46, + "end": 521.82, + "probability": 0.9694 + }, + { + "start": 522.32, + "end": 523.94, + "probability": 0.7986 + }, + { + "start": 524.06, + "end": 524.56, + "probability": 0.9606 + }, + { + "start": 524.72, + "end": 525.52, + "probability": 0.726 + }, + { + "start": 526.18, + "end": 530.86, + "probability": 0.9673 + }, + { + "start": 530.92, + "end": 534.0, + "probability": 0.9314 + }, + { + "start": 534.2, + "end": 534.48, + "probability": 0.6897 + }, + { + "start": 535.66, + "end": 536.16, + "probability": 0.7637 + }, + { + "start": 536.22, + "end": 537.8, + "probability": 0.9476 + }, + { + "start": 553.34, + "end": 554.3, + "probability": 0.5525 + }, + { + "start": 554.34, + "end": 555.02, + "probability": 0.8686 + }, + { + "start": 555.2, + "end": 559.4, + "probability": 0.9451 + }, + { + "start": 559.4, + "end": 563.12, + "probability": 0.9839 + }, + { + "start": 563.74, + "end": 566.36, + "probability": 0.9678 + }, + { + "start": 567.2, + "end": 573.28, + "probability": 0.9976 + }, + { + "start": 573.98, + "end": 575.36, + "probability": 0.9963 + }, + { + "start": 576.44, + "end": 577.84, + "probability": 0.9062 + }, + { + "start": 578.12, + "end": 580.1, + "probability": 0.9111 + }, + { + "start": 580.16, + "end": 581.38, + "probability": 0.9763 + }, + { + "start": 582.16, + "end": 586.72, + "probability": 0.9751 + }, + { + "start": 587.24, + "end": 588.54, + "probability": 0.6556 + }, + { + "start": 589.77, + "end": 592.7, + "probability": 0.9702 + }, + { + "start": 593.26, + "end": 596.36, + "probability": 0.9893 + }, + { + "start": 596.42, + "end": 598.36, + "probability": 0.9863 + }, + { + "start": 599.54, + "end": 601.0, + "probability": 0.9724 + }, + { + "start": 601.62, + "end": 602.4, + "probability": 0.9866 + }, + { + "start": 604.34, + "end": 610.44, + "probability": 0.9746 + }, + { + "start": 611.18, + "end": 614.02, + "probability": 0.8039 + }, + { + "start": 614.62, + "end": 617.2, + "probability": 0.978 + }, + { + "start": 618.1, + "end": 626.76, + "probability": 0.8219 + }, + { + "start": 626.86, + "end": 630.22, + "probability": 0.93 + }, + { + "start": 630.6, + "end": 634.38, + "probability": 0.9619 + }, + { + "start": 635.16, + "end": 637.92, + "probability": 0.9571 + }, + { + "start": 638.32, + "end": 640.76, + "probability": 0.9341 + }, + { + "start": 641.26, + "end": 646.48, + "probability": 0.9985 + }, + { + "start": 647.26, + "end": 649.34, + "probability": 0.9976 + }, + { + "start": 649.44, + "end": 651.62, + "probability": 0.9941 + }, + { + "start": 652.24, + "end": 656.16, + "probability": 0.8059 + }, + { + "start": 656.16, + "end": 659.58, + "probability": 0.9955 + }, + { + "start": 659.74, + "end": 662.18, + "probability": 0.9976 + }, + { + "start": 662.8, + "end": 664.5, + "probability": 0.9712 + }, + { + "start": 665.04, + "end": 668.58, + "probability": 0.9941 + }, + { + "start": 668.58, + "end": 671.84, + "probability": 0.9943 + }, + { + "start": 671.94, + "end": 672.2, + "probability": 0.7015 + }, + { + "start": 675.88, + "end": 677.12, + "probability": 0.7381 + }, + { + "start": 677.2, + "end": 677.88, + "probability": 0.6221 + }, + { + "start": 678.14, + "end": 679.88, + "probability": 0.8041 + }, + { + "start": 679.9, + "end": 680.56, + "probability": 0.9657 + }, + { + "start": 680.68, + "end": 684.77, + "probability": 0.9319 + }, + { + "start": 686.54, + "end": 686.54, + "probability": 0.1029 + }, + { + "start": 686.54, + "end": 689.0, + "probability": 0.4684 + }, + { + "start": 689.08, + "end": 689.72, + "probability": 0.7242 + }, + { + "start": 689.78, + "end": 691.46, + "probability": 0.8993 + }, + { + "start": 692.62, + "end": 693.26, + "probability": 0.0878 + }, + { + "start": 694.7, + "end": 699.0, + "probability": 0.5214 + }, + { + "start": 699.8, + "end": 704.74, + "probability": 0.96 + }, + { + "start": 710.38, + "end": 710.64, + "probability": 0.4086 + }, + { + "start": 710.64, + "end": 710.64, + "probability": 0.0286 + }, + { + "start": 710.64, + "end": 710.64, + "probability": 0.2888 + }, + { + "start": 710.64, + "end": 710.64, + "probability": 0.0207 + }, + { + "start": 710.64, + "end": 711.55, + "probability": 0.2917 + }, + { + "start": 712.84, + "end": 713.76, + "probability": 0.5857 + }, + { + "start": 714.86, + "end": 716.34, + "probability": 0.6793 + }, + { + "start": 717.92, + "end": 722.82, + "probability": 0.9729 + }, + { + "start": 724.12, + "end": 727.1, + "probability": 0.8646 + }, + { + "start": 728.3, + "end": 734.32, + "probability": 0.9902 + }, + { + "start": 734.32, + "end": 740.12, + "probability": 0.9945 + }, + { + "start": 740.86, + "end": 742.28, + "probability": 0.9863 + }, + { + "start": 743.32, + "end": 744.24, + "probability": 0.791 + }, + { + "start": 744.88, + "end": 745.54, + "probability": 0.8128 + }, + { + "start": 746.16, + "end": 748.64, + "probability": 0.9894 + }, + { + "start": 749.6, + "end": 759.68, + "probability": 0.9708 + }, + { + "start": 760.38, + "end": 763.2, + "probability": 0.9909 + }, + { + "start": 763.74, + "end": 766.44, + "probability": 0.8737 + }, + { + "start": 767.26, + "end": 771.92, + "probability": 0.9536 + }, + { + "start": 771.92, + "end": 777.12, + "probability": 0.997 + }, + { + "start": 777.58, + "end": 780.98, + "probability": 0.9963 + }, + { + "start": 782.0, + "end": 784.26, + "probability": 0.9661 + }, + { + "start": 784.96, + "end": 791.32, + "probability": 0.9973 + }, + { + "start": 791.32, + "end": 798.36, + "probability": 0.994 + }, + { + "start": 799.18, + "end": 801.64, + "probability": 0.9829 + }, + { + "start": 802.24, + "end": 806.6, + "probability": 0.9775 + }, + { + "start": 807.72, + "end": 811.12, + "probability": 0.9834 + }, + { + "start": 811.82, + "end": 812.76, + "probability": 0.7239 + }, + { + "start": 813.26, + "end": 814.0, + "probability": 0.9558 + }, + { + "start": 814.42, + "end": 818.56, + "probability": 0.9916 + }, + { + "start": 819.84, + "end": 824.02, + "probability": 0.9944 + }, + { + "start": 824.02, + "end": 830.58, + "probability": 0.9927 + }, + { + "start": 831.78, + "end": 832.88, + "probability": 0.8957 + }, + { + "start": 833.82, + "end": 837.14, + "probability": 0.984 + }, + { + "start": 837.14, + "end": 841.46, + "probability": 0.9804 + }, + { + "start": 842.38, + "end": 845.34, + "probability": 0.9969 + }, + { + "start": 845.34, + "end": 850.6, + "probability": 0.9873 + }, + { + "start": 851.64, + "end": 854.6, + "probability": 0.9414 + }, + { + "start": 855.12, + "end": 859.24, + "probability": 0.9917 + }, + { + "start": 859.24, + "end": 864.38, + "probability": 0.9854 + }, + { + "start": 865.28, + "end": 868.6, + "probability": 0.9988 + }, + { + "start": 869.12, + "end": 871.82, + "probability": 0.9987 + }, + { + "start": 872.4, + "end": 877.4, + "probability": 0.9935 + }, + { + "start": 878.2, + "end": 881.6, + "probability": 0.9982 + }, + { + "start": 882.14, + "end": 885.4, + "probability": 0.9944 + }, + { + "start": 890.3, + "end": 892.42, + "probability": 0.8614 + }, + { + "start": 922.52, + "end": 925.94, + "probability": 0.8392 + }, + { + "start": 927.78, + "end": 928.68, + "probability": 0.7278 + }, + { + "start": 931.3, + "end": 936.46, + "probability": 0.7867 + }, + { + "start": 936.54, + "end": 936.9, + "probability": 0.9877 + }, + { + "start": 937.0, + "end": 940.06, + "probability": 0.9917 + }, + { + "start": 942.04, + "end": 944.82, + "probability": 0.7781 + }, + { + "start": 946.24, + "end": 949.1, + "probability": 0.9924 + }, + { + "start": 950.32, + "end": 950.74, + "probability": 0.7984 + }, + { + "start": 951.86, + "end": 955.24, + "probability": 0.7323 + }, + { + "start": 955.88, + "end": 957.74, + "probability": 0.6682 + }, + { + "start": 958.76, + "end": 960.9, + "probability": 0.8821 + }, + { + "start": 962.38, + "end": 963.8, + "probability": 0.9346 + }, + { + "start": 965.1, + "end": 967.28, + "probability": 0.9397 + }, + { + "start": 968.46, + "end": 971.9, + "probability": 0.6901 + }, + { + "start": 973.0, + "end": 974.14, + "probability": 0.5082 + }, + { + "start": 975.02, + "end": 977.24, + "probability": 0.661 + }, + { + "start": 978.16, + "end": 980.44, + "probability": 0.9943 + }, + { + "start": 981.5, + "end": 985.76, + "probability": 0.8591 + }, + { + "start": 987.38, + "end": 994.82, + "probability": 0.9768 + }, + { + "start": 996.3, + "end": 998.02, + "probability": 0.9089 + }, + { + "start": 998.88, + "end": 1000.38, + "probability": 0.8722 + }, + { + "start": 1001.34, + "end": 1002.58, + "probability": 0.8227 + }, + { + "start": 1003.62, + "end": 1007.98, + "probability": 0.9922 + }, + { + "start": 1009.48, + "end": 1011.88, + "probability": 0.9417 + }, + { + "start": 1012.66, + "end": 1017.56, + "probability": 0.9792 + }, + { + "start": 1017.74, + "end": 1020.3, + "probability": 0.8086 + }, + { + "start": 1021.4, + "end": 1023.14, + "probability": 0.8086 + }, + { + "start": 1024.26, + "end": 1026.18, + "probability": 0.9946 + }, + { + "start": 1027.06, + "end": 1030.44, + "probability": 0.9915 + }, + { + "start": 1031.18, + "end": 1032.06, + "probability": 0.7045 + }, + { + "start": 1033.88, + "end": 1038.96, + "probability": 0.9733 + }, + { + "start": 1039.84, + "end": 1043.03, + "probability": 0.9968 + }, + { + "start": 1043.76, + "end": 1048.54, + "probability": 0.9976 + }, + { + "start": 1050.14, + "end": 1051.52, + "probability": 0.9699 + }, + { + "start": 1052.6, + "end": 1056.08, + "probability": 0.9089 + }, + { + "start": 1057.32, + "end": 1061.08, + "probability": 0.5133 + }, + { + "start": 1062.3, + "end": 1062.66, + "probability": 0.4021 + }, + { + "start": 1062.76, + "end": 1070.75, + "probability": 0.9542 + }, + { + "start": 1071.02, + "end": 1072.1, + "probability": 0.7845 + }, + { + "start": 1072.34, + "end": 1072.98, + "probability": 0.7772 + }, + { + "start": 1074.6, + "end": 1075.46, + "probability": 0.95 + }, + { + "start": 1076.24, + "end": 1079.24, + "probability": 0.9465 + }, + { + "start": 1079.96, + "end": 1082.2, + "probability": 0.9145 + }, + { + "start": 1082.88, + "end": 1083.84, + "probability": 0.8105 + }, + { + "start": 1084.82, + "end": 1088.56, + "probability": 0.9989 + }, + { + "start": 1089.7, + "end": 1092.82, + "probability": 0.793 + }, + { + "start": 1094.16, + "end": 1096.38, + "probability": 0.7123 + }, + { + "start": 1097.6, + "end": 1099.14, + "probability": 0.9984 + }, + { + "start": 1101.4, + "end": 1103.58, + "probability": 0.8974 + }, + { + "start": 1104.7, + "end": 1107.42, + "probability": 0.9608 + }, + { + "start": 1108.04, + "end": 1108.64, + "probability": 0.7368 + }, + { + "start": 1109.8, + "end": 1111.62, + "probability": 0.8298 + }, + { + "start": 1112.8, + "end": 1120.26, + "probability": 0.9744 + }, + { + "start": 1121.5, + "end": 1124.5, + "probability": 0.9972 + }, + { + "start": 1124.76, + "end": 1131.14, + "probability": 0.9838 + }, + { + "start": 1131.34, + "end": 1132.78, + "probability": 0.8244 + }, + { + "start": 1133.66, + "end": 1133.94, + "probability": 0.8407 + }, + { + "start": 1135.72, + "end": 1136.68, + "probability": 0.7783 + }, + { + "start": 1137.58, + "end": 1138.9, + "probability": 0.9722 + }, + { + "start": 1139.96, + "end": 1140.86, + "probability": 0.9809 + }, + { + "start": 1141.26, + "end": 1142.02, + "probability": 0.9787 + }, + { + "start": 1142.32, + "end": 1142.96, + "probability": 0.9847 + }, + { + "start": 1143.04, + "end": 1143.7, + "probability": 0.9883 + }, + { + "start": 1143.8, + "end": 1144.66, + "probability": 0.9766 + }, + { + "start": 1145.18, + "end": 1146.44, + "probability": 0.9927 + }, + { + "start": 1146.54, + "end": 1147.95, + "probability": 0.9766 + }, + { + "start": 1148.62, + "end": 1150.26, + "probability": 0.9768 + }, + { + "start": 1151.9, + "end": 1157.61, + "probability": 0.9837 + }, + { + "start": 1158.82, + "end": 1160.24, + "probability": 0.2374 + }, + { + "start": 1160.36, + "end": 1162.76, + "probability": 0.9945 + }, + { + "start": 1163.56, + "end": 1167.0, + "probability": 0.9697 + }, + { + "start": 1168.8, + "end": 1171.02, + "probability": 0.8148 + }, + { + "start": 1171.64, + "end": 1177.5, + "probability": 0.9868 + }, + { + "start": 1179.24, + "end": 1185.2, + "probability": 0.9979 + }, + { + "start": 1185.2, + "end": 1191.52, + "probability": 0.9956 + }, + { + "start": 1192.24, + "end": 1194.72, + "probability": 0.9435 + }, + { + "start": 1195.44, + "end": 1199.26, + "probability": 0.8828 + }, + { + "start": 1200.52, + "end": 1206.44, + "probability": 0.9534 + }, + { + "start": 1207.48, + "end": 1210.9, + "probability": 0.998 + }, + { + "start": 1211.7, + "end": 1213.54, + "probability": 0.9077 + }, + { + "start": 1214.4, + "end": 1220.06, + "probability": 0.9171 + }, + { + "start": 1220.9, + "end": 1226.2, + "probability": 0.9972 + }, + { + "start": 1226.9, + "end": 1227.96, + "probability": 0.9321 + }, + { + "start": 1229.24, + "end": 1231.0, + "probability": 0.8641 + }, + { + "start": 1232.36, + "end": 1235.12, + "probability": 0.8796 + }, + { + "start": 1236.0, + "end": 1237.66, + "probability": 0.7857 + }, + { + "start": 1238.36, + "end": 1239.24, + "probability": 0.9871 + }, + { + "start": 1240.8, + "end": 1243.34, + "probability": 0.9863 + }, + { + "start": 1243.92, + "end": 1245.84, + "probability": 0.9752 + }, + { + "start": 1247.14, + "end": 1250.6, + "probability": 0.9505 + }, + { + "start": 1251.32, + "end": 1252.58, + "probability": 0.9775 + }, + { + "start": 1253.56, + "end": 1255.68, + "probability": 0.9595 + }, + { + "start": 1257.02, + "end": 1257.74, + "probability": 0.7722 + }, + { + "start": 1258.38, + "end": 1265.56, + "probability": 0.97 + }, + { + "start": 1266.78, + "end": 1269.16, + "probability": 0.8217 + }, + { + "start": 1270.6, + "end": 1271.42, + "probability": 0.9744 + }, + { + "start": 1273.72, + "end": 1274.1, + "probability": 0.5985 + }, + { + "start": 1274.26, + "end": 1276.5, + "probability": 0.5761 + }, + { + "start": 1276.68, + "end": 1277.96, + "probability": 0.9877 + }, + { + "start": 1290.22, + "end": 1291.06, + "probability": 0.1603 + }, + { + "start": 1291.5, + "end": 1291.6, + "probability": 0.1219 + }, + { + "start": 1291.6, + "end": 1291.72, + "probability": 0.2105 + }, + { + "start": 1291.76, + "end": 1291.76, + "probability": 0.147 + }, + { + "start": 1291.76, + "end": 1291.76, + "probability": 0.035 + }, + { + "start": 1291.76, + "end": 1291.76, + "probability": 0.048 + }, + { + "start": 1291.76, + "end": 1291.76, + "probability": 0.0102 + }, + { + "start": 1291.76, + "end": 1291.76, + "probability": 0.0049 + }, + { + "start": 1298.96, + "end": 1300.58, + "probability": 0.1444 + }, + { + "start": 1312.18, + "end": 1314.76, + "probability": 0.2961 + }, + { + "start": 1315.86, + "end": 1315.93, + "probability": 0.1584 + }, + { + "start": 1317.22, + "end": 1317.72, + "probability": 0.6925 + }, + { + "start": 1319.52, + "end": 1325.55, + "probability": 0.5714 + }, + { + "start": 1325.62, + "end": 1327.44, + "probability": 0.6298 + }, + { + "start": 1328.06, + "end": 1328.86, + "probability": 0.241 + }, + { + "start": 1329.5, + "end": 1331.34, + "probability": 0.7309 + }, + { + "start": 1332.02, + "end": 1333.24, + "probability": 0.4252 + }, + { + "start": 1334.1, + "end": 1335.2, + "probability": 0.7795 + }, + { + "start": 1335.89, + "end": 1337.58, + "probability": 0.9399 + }, + { + "start": 1339.62, + "end": 1342.34, + "probability": 0.6266 + }, + { + "start": 1343.5, + "end": 1344.02, + "probability": 0.478 + }, + { + "start": 1344.76, + "end": 1345.36, + "probability": 0.5264 + }, + { + "start": 1347.14, + "end": 1347.9, + "probability": 0.9713 + }, + { + "start": 1348.62, + "end": 1349.5, + "probability": 0.7205 + }, + { + "start": 1350.46, + "end": 1353.48, + "probability": 0.9446 + }, + { + "start": 1354.16, + "end": 1357.0, + "probability": 0.9226 + }, + { + "start": 1358.26, + "end": 1360.32, + "probability": 0.9539 + }, + { + "start": 1361.12, + "end": 1362.02, + "probability": 0.8847 + }, + { + "start": 1363.02, + "end": 1367.24, + "probability": 0.9522 + }, + { + "start": 1367.94, + "end": 1370.1, + "probability": 0.9588 + }, + { + "start": 1371.1, + "end": 1373.14, + "probability": 0.8184 + }, + { + "start": 1373.98, + "end": 1374.88, + "probability": 0.9755 + }, + { + "start": 1375.84, + "end": 1376.18, + "probability": 0.5599 + }, + { + "start": 1377.22, + "end": 1382.32, + "probability": 0.9407 + }, + { + "start": 1383.06, + "end": 1383.98, + "probability": 0.8412 + }, + { + "start": 1384.58, + "end": 1385.34, + "probability": 0.9847 + }, + { + "start": 1386.43, + "end": 1388.36, + "probability": 0.6963 + }, + { + "start": 1389.06, + "end": 1391.3, + "probability": 0.9135 + }, + { + "start": 1392.32, + "end": 1395.02, + "probability": 0.7562 + }, + { + "start": 1395.74, + "end": 1397.92, + "probability": 0.8265 + }, + { + "start": 1398.72, + "end": 1401.46, + "probability": 0.936 + }, + { + "start": 1402.36, + "end": 1405.84, + "probability": 0.9338 + }, + { + "start": 1407.06, + "end": 1408.91, + "probability": 0.9182 + }, + { + "start": 1409.7, + "end": 1413.38, + "probability": 0.9796 + }, + { + "start": 1413.92, + "end": 1414.9, + "probability": 0.7793 + }, + { + "start": 1415.48, + "end": 1417.78, + "probability": 0.9243 + }, + { + "start": 1417.88, + "end": 1423.56, + "probability": 0.9273 + }, + { + "start": 1424.46, + "end": 1427.92, + "probability": 0.8932 + }, + { + "start": 1428.58, + "end": 1429.92, + "probability": 0.7894 + }, + { + "start": 1430.84, + "end": 1434.84, + "probability": 0.9794 + }, + { + "start": 1435.6, + "end": 1436.94, + "probability": 0.8688 + }, + { + "start": 1437.54, + "end": 1441.14, + "probability": 0.9549 + }, + { + "start": 1442.4, + "end": 1443.4, + "probability": 0.709 + }, + { + "start": 1444.2, + "end": 1446.1, + "probability": 0.9716 + }, + { + "start": 1446.92, + "end": 1449.7, + "probability": 0.9985 + }, + { + "start": 1450.4, + "end": 1450.86, + "probability": 0.9609 + }, + { + "start": 1452.16, + "end": 1454.64, + "probability": 0.9197 + }, + { + "start": 1455.48, + "end": 1456.7, + "probability": 0.6696 + }, + { + "start": 1457.94, + "end": 1462.04, + "probability": 0.9843 + }, + { + "start": 1462.74, + "end": 1464.12, + "probability": 0.744 + }, + { + "start": 1464.74, + "end": 1466.98, + "probability": 0.7683 + }, + { + "start": 1467.5, + "end": 1468.68, + "probability": 0.9865 + }, + { + "start": 1469.56, + "end": 1470.76, + "probability": 0.9976 + }, + { + "start": 1471.64, + "end": 1474.5, + "probability": 0.9954 + }, + { + "start": 1475.72, + "end": 1477.6, + "probability": 0.9973 + }, + { + "start": 1478.52, + "end": 1481.64, + "probability": 0.9943 + }, + { + "start": 1482.5, + "end": 1484.88, + "probability": 0.9819 + }, + { + "start": 1486.04, + "end": 1486.84, + "probability": 0.9735 + }, + { + "start": 1487.84, + "end": 1488.76, + "probability": 0.8839 + }, + { + "start": 1489.56, + "end": 1490.12, + "probability": 0.7947 + }, + { + "start": 1490.8, + "end": 1491.14, + "probability": 0.9255 + }, + { + "start": 1492.48, + "end": 1492.68, + "probability": 0.9255 + }, + { + "start": 1493.48, + "end": 1495.0, + "probability": 0.8099 + }, + { + "start": 1495.88, + "end": 1496.9, + "probability": 0.909 + }, + { + "start": 1497.76, + "end": 1500.84, + "probability": 0.9147 + }, + { + "start": 1501.94, + "end": 1505.8, + "probability": 0.9857 + }, + { + "start": 1506.0, + "end": 1506.62, + "probability": 0.9675 + }, + { + "start": 1506.68, + "end": 1507.26, + "probability": 0.9699 + }, + { + "start": 1507.34, + "end": 1508.26, + "probability": 0.893 + }, + { + "start": 1509.24, + "end": 1511.72, + "probability": 0.9776 + }, + { + "start": 1512.74, + "end": 1514.04, + "probability": 0.9534 + }, + { + "start": 1514.9, + "end": 1515.32, + "probability": 0.5671 + }, + { + "start": 1515.38, + "end": 1516.04, + "probability": 0.8657 + }, + { + "start": 1516.88, + "end": 1518.68, + "probability": 0.8773 + }, + { + "start": 1539.02, + "end": 1540.14, + "probability": 0.6487 + }, + { + "start": 1541.86, + "end": 1544.0, + "probability": 0.9856 + }, + { + "start": 1546.14, + "end": 1547.22, + "probability": 0.7407 + }, + { + "start": 1548.82, + "end": 1551.76, + "probability": 0.9658 + }, + { + "start": 1552.86, + "end": 1556.62, + "probability": 0.9916 + }, + { + "start": 1558.86, + "end": 1560.08, + "probability": 0.9944 + }, + { + "start": 1561.34, + "end": 1565.0, + "probability": 0.8603 + }, + { + "start": 1565.8, + "end": 1565.92, + "probability": 0.8794 + }, + { + "start": 1569.52, + "end": 1571.38, + "probability": 0.5044 + }, + { + "start": 1572.64, + "end": 1576.36, + "probability": 0.7343 + }, + { + "start": 1577.7, + "end": 1581.62, + "probability": 0.986 + }, + { + "start": 1581.62, + "end": 1584.66, + "probability": 0.9808 + }, + { + "start": 1585.78, + "end": 1587.54, + "probability": 0.994 + }, + { + "start": 1587.78, + "end": 1589.64, + "probability": 0.9861 + }, + { + "start": 1590.72, + "end": 1592.56, + "probability": 0.7478 + }, + { + "start": 1593.24, + "end": 1594.56, + "probability": 0.9109 + }, + { + "start": 1595.24, + "end": 1597.44, + "probability": 0.8876 + }, + { + "start": 1598.48, + "end": 1599.8, + "probability": 0.9821 + }, + { + "start": 1601.52, + "end": 1605.26, + "probability": 0.9513 + }, + { + "start": 1606.1, + "end": 1607.82, + "probability": 0.997 + }, + { + "start": 1609.36, + "end": 1612.32, + "probability": 0.999 + }, + { + "start": 1613.9, + "end": 1618.36, + "probability": 0.9921 + }, + { + "start": 1619.54, + "end": 1627.04, + "probability": 0.9942 + }, + { + "start": 1627.56, + "end": 1628.28, + "probability": 0.7614 + }, + { + "start": 1630.02, + "end": 1632.48, + "probability": 0.8818 + }, + { + "start": 1634.22, + "end": 1637.64, + "probability": 0.9987 + }, + { + "start": 1639.48, + "end": 1641.16, + "probability": 0.8281 + }, + { + "start": 1642.3, + "end": 1643.9, + "probability": 0.9966 + }, + { + "start": 1645.1, + "end": 1645.6, + "probability": 0.7487 + }, + { + "start": 1647.54, + "end": 1648.74, + "probability": 0.9563 + }, + { + "start": 1649.88, + "end": 1651.86, + "probability": 0.9849 + }, + { + "start": 1652.84, + "end": 1653.34, + "probability": 0.9441 + }, + { + "start": 1655.28, + "end": 1656.62, + "probability": 0.9517 + }, + { + "start": 1657.24, + "end": 1657.74, + "probability": 0.9927 + }, + { + "start": 1658.9, + "end": 1662.91, + "probability": 0.9464 + }, + { + "start": 1664.1, + "end": 1666.58, + "probability": 0.7936 + }, + { + "start": 1667.78, + "end": 1674.1, + "probability": 0.9902 + }, + { + "start": 1675.26, + "end": 1679.86, + "probability": 0.7612 + }, + { + "start": 1680.92, + "end": 1681.58, + "probability": 0.9569 + }, + { + "start": 1682.78, + "end": 1683.32, + "probability": 0.9565 + }, + { + "start": 1685.2, + "end": 1690.56, + "probability": 0.9971 + }, + { + "start": 1691.26, + "end": 1692.58, + "probability": 0.8694 + }, + { + "start": 1694.26, + "end": 1694.9, + "probability": 0.7961 + }, + { + "start": 1696.4, + "end": 1702.52, + "probability": 0.989 + }, + { + "start": 1702.64, + "end": 1704.62, + "probability": 0.7959 + }, + { + "start": 1705.7, + "end": 1708.28, + "probability": 0.997 + }, + { + "start": 1710.02, + "end": 1710.88, + "probability": 0.9124 + }, + { + "start": 1711.08, + "end": 1715.83, + "probability": 0.9953 + }, + { + "start": 1717.86, + "end": 1718.94, + "probability": 0.8367 + }, + { + "start": 1719.74, + "end": 1724.88, + "probability": 0.9697 + }, + { + "start": 1725.66, + "end": 1729.6, + "probability": 0.9839 + }, + { + "start": 1731.06, + "end": 1733.78, + "probability": 0.9948 + }, + { + "start": 1734.1, + "end": 1737.84, + "probability": 0.9879 + }, + { + "start": 1739.28, + "end": 1740.7, + "probability": 0.9896 + }, + { + "start": 1741.56, + "end": 1743.02, + "probability": 0.9964 + }, + { + "start": 1743.84, + "end": 1744.98, + "probability": 0.9991 + }, + { + "start": 1745.7, + "end": 1748.46, + "probability": 0.9988 + }, + { + "start": 1749.78, + "end": 1750.26, + "probability": 0.9369 + }, + { + "start": 1751.0, + "end": 1752.58, + "probability": 0.9091 + }, + { + "start": 1753.5, + "end": 1754.32, + "probability": 0.9915 + }, + { + "start": 1755.62, + "end": 1756.3, + "probability": 0.9651 + }, + { + "start": 1757.1, + "end": 1759.78, + "probability": 0.9957 + }, + { + "start": 1760.33, + "end": 1764.26, + "probability": 0.9922 + }, + { + "start": 1764.98, + "end": 1768.42, + "probability": 0.9985 + }, + { + "start": 1769.44, + "end": 1770.28, + "probability": 0.8321 + }, + { + "start": 1771.12, + "end": 1774.08, + "probability": 0.8733 + }, + { + "start": 1775.5, + "end": 1778.24, + "probability": 0.9923 + }, + { + "start": 1779.3, + "end": 1782.8, + "probability": 0.9757 + }, + { + "start": 1783.6, + "end": 1787.16, + "probability": 0.9954 + }, + { + "start": 1788.74, + "end": 1790.1, + "probability": 0.896 + }, + { + "start": 1791.2, + "end": 1792.8, + "probability": 0.7825 + }, + { + "start": 1793.6, + "end": 1795.82, + "probability": 0.959 + }, + { + "start": 1795.82, + "end": 1798.66, + "probability": 0.9985 + }, + { + "start": 1799.1, + "end": 1801.63, + "probability": 0.9884 + }, + { + "start": 1803.32, + "end": 1806.04, + "probability": 0.9592 + }, + { + "start": 1806.78, + "end": 1810.06, + "probability": 0.993 + }, + { + "start": 1812.06, + "end": 1815.22, + "probability": 0.9983 + }, + { + "start": 1816.48, + "end": 1818.54, + "probability": 0.6905 + }, + { + "start": 1819.54, + "end": 1820.28, + "probability": 0.697 + }, + { + "start": 1821.0, + "end": 1822.54, + "probability": 0.9849 + }, + { + "start": 1823.1, + "end": 1826.92, + "probability": 0.9424 + }, + { + "start": 1828.0, + "end": 1831.7, + "probability": 0.9953 + }, + { + "start": 1832.54, + "end": 1833.86, + "probability": 0.922 + }, + { + "start": 1834.38, + "end": 1836.02, + "probability": 0.8408 + }, + { + "start": 1837.7, + "end": 1841.22, + "probability": 0.9849 + }, + { + "start": 1841.74, + "end": 1842.34, + "probability": 0.8218 + }, + { + "start": 1842.98, + "end": 1847.38, + "probability": 0.9948 + }, + { + "start": 1848.14, + "end": 1852.54, + "probability": 0.9814 + }, + { + "start": 1853.88, + "end": 1857.6, + "probability": 0.9867 + }, + { + "start": 1858.76, + "end": 1858.96, + "probability": 0.5023 + }, + { + "start": 1859.0, + "end": 1859.94, + "probability": 0.9812 + }, + { + "start": 1860.0, + "end": 1863.88, + "probability": 0.9888 + }, + { + "start": 1864.14, + "end": 1866.84, + "probability": 0.8941 + }, + { + "start": 1867.68, + "end": 1870.92, + "probability": 0.9949 + }, + { + "start": 1871.56, + "end": 1876.06, + "probability": 0.9948 + }, + { + "start": 1876.2, + "end": 1877.74, + "probability": 0.9391 + }, + { + "start": 1879.4, + "end": 1883.88, + "probability": 0.987 + }, + { + "start": 1885.26, + "end": 1891.66, + "probability": 0.7466 + }, + { + "start": 1891.66, + "end": 1894.38, + "probability": 0.9971 + }, + { + "start": 1895.0, + "end": 1898.44, + "probability": 0.992 + }, + { + "start": 1899.24, + "end": 1900.99, + "probability": 0.9976 + }, + { + "start": 1901.84, + "end": 1902.08, + "probability": 0.5782 + }, + { + "start": 1903.16, + "end": 1905.28, + "probability": 0.5477 + }, + { + "start": 1906.52, + "end": 1906.82, + "probability": 0.8458 + }, + { + "start": 1908.5, + "end": 1911.6, + "probability": 0.9692 + }, + { + "start": 1912.12, + "end": 1914.16, + "probability": 0.667 + }, + { + "start": 1914.74, + "end": 1919.42, + "probability": 0.9614 + }, + { + "start": 1920.72, + "end": 1926.1, + "probability": 0.9725 + }, + { + "start": 1926.64, + "end": 1928.1, + "probability": 0.9691 + }, + { + "start": 1928.5, + "end": 1934.12, + "probability": 0.9917 + }, + { + "start": 1935.8, + "end": 1937.02, + "probability": 0.8873 + }, + { + "start": 1938.1, + "end": 1940.74, + "probability": 0.9511 + }, + { + "start": 1941.66, + "end": 1945.68, + "probability": 0.8728 + }, + { + "start": 1946.54, + "end": 1949.14, + "probability": 0.8276 + }, + { + "start": 1949.78, + "end": 1950.76, + "probability": 0.8413 + }, + { + "start": 1951.12, + "end": 1952.84, + "probability": 0.9303 + }, + { + "start": 1952.94, + "end": 1954.05, + "probability": 0.9971 + }, + { + "start": 1954.42, + "end": 1955.94, + "probability": 0.865 + }, + { + "start": 1957.3, + "end": 1957.32, + "probability": 0.1509 + }, + { + "start": 1957.48, + "end": 1957.76, + "probability": 0.8621 + }, + { + "start": 1957.76, + "end": 1959.68, + "probability": 0.86 + }, + { + "start": 1960.76, + "end": 1964.14, + "probability": 0.9946 + }, + { + "start": 1964.78, + "end": 1967.74, + "probability": 0.9807 + }, + { + "start": 1968.1, + "end": 1971.42, + "probability": 0.979 + }, + { + "start": 1972.2, + "end": 1975.06, + "probability": 0.9879 + }, + { + "start": 1975.84, + "end": 1977.26, + "probability": 0.9083 + }, + { + "start": 1978.64, + "end": 1979.72, + "probability": 0.6833 + }, + { + "start": 1980.68, + "end": 1985.26, + "probability": 0.9969 + }, + { + "start": 1985.88, + "end": 1987.6, + "probability": 0.9636 + }, + { + "start": 1989.36, + "end": 1990.42, + "probability": 0.7317 + }, + { + "start": 1991.74, + "end": 1995.94, + "probability": 0.9617 + }, + { + "start": 1996.74, + "end": 1998.44, + "probability": 0.5186 + }, + { + "start": 1999.78, + "end": 2002.04, + "probability": 0.994 + }, + { + "start": 2002.8, + "end": 2006.1, + "probability": 0.9682 + }, + { + "start": 2006.62, + "end": 2008.0, + "probability": 0.8236 + }, + { + "start": 2008.14, + "end": 2012.46, + "probability": 0.9925 + }, + { + "start": 2012.82, + "end": 2016.46, + "probability": 0.9957 + }, + { + "start": 2016.96, + "end": 2019.12, + "probability": 0.9932 + }, + { + "start": 2019.76, + "end": 2020.6, + "probability": 0.9256 + }, + { + "start": 2021.52, + "end": 2024.94, + "probability": 0.9888 + }, + { + "start": 2025.56, + "end": 2031.78, + "probability": 0.9618 + }, + { + "start": 2033.24, + "end": 2035.12, + "probability": 0.9819 + }, + { + "start": 2035.86, + "end": 2036.3, + "probability": 0.9539 + }, + { + "start": 2036.98, + "end": 2038.49, + "probability": 0.8304 + }, + { + "start": 2039.58, + "end": 2042.44, + "probability": 0.9988 + }, + { + "start": 2043.02, + "end": 2045.4, + "probability": 0.9973 + }, + { + "start": 2046.04, + "end": 2048.36, + "probability": 0.9625 + }, + { + "start": 2049.3, + "end": 2054.7, + "probability": 0.963 + }, + { + "start": 2055.44, + "end": 2058.62, + "probability": 0.9823 + }, + { + "start": 2059.12, + "end": 2062.66, + "probability": 0.9936 + }, + { + "start": 2063.64, + "end": 2065.08, + "probability": 0.8375 + }, + { + "start": 2066.14, + "end": 2069.94, + "probability": 0.9923 + }, + { + "start": 2070.7, + "end": 2073.22, + "probability": 0.907 + }, + { + "start": 2073.84, + "end": 2077.96, + "probability": 0.9709 + }, + { + "start": 2079.6, + "end": 2082.82, + "probability": 0.7247 + }, + { + "start": 2083.46, + "end": 2084.74, + "probability": 0.6852 + }, + { + "start": 2084.86, + "end": 2085.84, + "probability": 0.6952 + }, + { + "start": 2085.94, + "end": 2086.82, + "probability": 0.6702 + }, + { + "start": 2087.74, + "end": 2089.82, + "probability": 0.9646 + }, + { + "start": 2090.26, + "end": 2090.86, + "probability": 0.6612 + }, + { + "start": 2090.98, + "end": 2092.98, + "probability": 0.8399 + }, + { + "start": 2093.96, + "end": 2098.74, + "probability": 0.9816 + }, + { + "start": 2099.96, + "end": 2100.32, + "probability": 0.7765 + }, + { + "start": 2100.46, + "end": 2102.42, + "probability": 0.9537 + }, + { + "start": 2102.52, + "end": 2105.21, + "probability": 0.9097 + }, + { + "start": 2105.92, + "end": 2106.46, + "probability": 0.7272 + }, + { + "start": 2107.08, + "end": 2108.58, + "probability": 0.9579 + }, + { + "start": 2109.26, + "end": 2111.0, + "probability": 0.9995 + }, + { + "start": 2111.6, + "end": 2115.66, + "probability": 0.9749 + }, + { + "start": 2116.68, + "end": 2117.09, + "probability": 0.8536 + }, + { + "start": 2118.26, + "end": 2119.34, + "probability": 0.9868 + }, + { + "start": 2120.32, + "end": 2120.8, + "probability": 0.9349 + }, + { + "start": 2122.28, + "end": 2126.8, + "probability": 0.9978 + }, + { + "start": 2126.8, + "end": 2132.26, + "probability": 0.9992 + }, + { + "start": 2133.82, + "end": 2134.3, + "probability": 0.8161 + }, + { + "start": 2135.68, + "end": 2136.84, + "probability": 0.8681 + }, + { + "start": 2138.44, + "end": 2143.88, + "probability": 0.9961 + }, + { + "start": 2144.78, + "end": 2148.94, + "probability": 0.6636 + }, + { + "start": 2150.08, + "end": 2151.86, + "probability": 0.9871 + }, + { + "start": 2152.24, + "end": 2154.42, + "probability": 0.9967 + }, + { + "start": 2155.26, + "end": 2156.84, + "probability": 0.9475 + }, + { + "start": 2157.82, + "end": 2158.68, + "probability": 0.9457 + }, + { + "start": 2159.5, + "end": 2161.56, + "probability": 0.8401 + }, + { + "start": 2162.52, + "end": 2163.92, + "probability": 0.6309 + }, + { + "start": 2165.24, + "end": 2166.88, + "probability": 0.9569 + }, + { + "start": 2167.08, + "end": 2170.56, + "probability": 0.988 + }, + { + "start": 2172.44, + "end": 2176.12, + "probability": 0.9821 + }, + { + "start": 2176.32, + "end": 2179.5, + "probability": 0.9383 + }, + { + "start": 2180.3, + "end": 2181.22, + "probability": 0.9756 + }, + { + "start": 2181.98, + "end": 2183.04, + "probability": 0.9368 + }, + { + "start": 2183.98, + "end": 2185.64, + "probability": 0.933 + }, + { + "start": 2186.98, + "end": 2188.06, + "probability": 0.9834 + }, + { + "start": 2189.38, + "end": 2190.22, + "probability": 0.975 + }, + { + "start": 2190.86, + "end": 2191.9, + "probability": 0.7932 + }, + { + "start": 2192.62, + "end": 2193.92, + "probability": 0.9847 + }, + { + "start": 2194.6, + "end": 2196.1, + "probability": 0.9671 + }, + { + "start": 2196.76, + "end": 2201.86, + "probability": 0.8208 + }, + { + "start": 2202.7, + "end": 2203.38, + "probability": 0.5582 + }, + { + "start": 2204.26, + "end": 2210.08, + "probability": 0.9907 + }, + { + "start": 2210.72, + "end": 2214.82, + "probability": 0.9537 + }, + { + "start": 2215.66, + "end": 2221.18, + "probability": 0.9589 + }, + { + "start": 2221.66, + "end": 2223.12, + "probability": 0.6485 + }, + { + "start": 2224.2, + "end": 2225.36, + "probability": 0.8513 + }, + { + "start": 2226.7, + "end": 2227.48, + "probability": 0.788 + }, + { + "start": 2228.36, + "end": 2230.52, + "probability": 0.8507 + }, + { + "start": 2231.22, + "end": 2233.32, + "probability": 0.998 + }, + { + "start": 2233.94, + "end": 2238.5, + "probability": 0.989 + }, + { + "start": 2240.46, + "end": 2241.62, + "probability": 0.8327 + }, + { + "start": 2242.68, + "end": 2245.02, + "probability": 0.7689 + }, + { + "start": 2245.76, + "end": 2247.52, + "probability": 0.7775 + }, + { + "start": 2248.68, + "end": 2249.84, + "probability": 0.9263 + }, + { + "start": 2250.84, + "end": 2251.7, + "probability": 0.7467 + }, + { + "start": 2252.66, + "end": 2253.34, + "probability": 0.877 + }, + { + "start": 2254.5, + "end": 2255.14, + "probability": 0.8735 + }, + { + "start": 2256.44, + "end": 2258.76, + "probability": 0.9961 + }, + { + "start": 2259.46, + "end": 2261.0, + "probability": 0.9651 + }, + { + "start": 2262.18, + "end": 2262.76, + "probability": 0.8958 + }, + { + "start": 2263.9, + "end": 2264.74, + "probability": 0.7242 + }, + { + "start": 2267.42, + "end": 2267.88, + "probability": 0.5366 + }, + { + "start": 2267.92, + "end": 2268.36, + "probability": 0.4988 + }, + { + "start": 2268.64, + "end": 2269.82, + "probability": 0.7545 + }, + { + "start": 2279.6, + "end": 2280.2, + "probability": 0.5024 + }, + { + "start": 2280.22, + "end": 2281.26, + "probability": 0.1013 + }, + { + "start": 2314.32, + "end": 2315.02, + "probability": 0.678 + }, + { + "start": 2316.48, + "end": 2318.52, + "probability": 0.6822 + }, + { + "start": 2320.04, + "end": 2321.42, + "probability": 0.9129 + }, + { + "start": 2322.58, + "end": 2324.96, + "probability": 0.9401 + }, + { + "start": 2326.22, + "end": 2327.92, + "probability": 0.968 + }, + { + "start": 2329.18, + "end": 2329.96, + "probability": 0.7239 + }, + { + "start": 2331.88, + "end": 2333.82, + "probability": 0.8697 + }, + { + "start": 2334.78, + "end": 2338.3, + "probability": 0.9932 + }, + { + "start": 2339.82, + "end": 2342.74, + "probability": 0.9778 + }, + { + "start": 2343.58, + "end": 2345.58, + "probability": 0.849 + }, + { + "start": 2347.02, + "end": 2352.46, + "probability": 0.9805 + }, + { + "start": 2353.42, + "end": 2357.34, + "probability": 0.9246 + }, + { + "start": 2359.42, + "end": 2364.94, + "probability": 0.9942 + }, + { + "start": 2365.58, + "end": 2366.86, + "probability": 0.882 + }, + { + "start": 2368.22, + "end": 2369.76, + "probability": 0.8529 + }, + { + "start": 2370.68, + "end": 2376.34, + "probability": 0.9876 + }, + { + "start": 2378.06, + "end": 2378.96, + "probability": 0.8866 + }, + { + "start": 2380.38, + "end": 2384.28, + "probability": 0.918 + }, + { + "start": 2385.36, + "end": 2386.78, + "probability": 0.6915 + }, + { + "start": 2387.76, + "end": 2389.56, + "probability": 0.9612 + }, + { + "start": 2390.58, + "end": 2393.98, + "probability": 0.8921 + }, + { + "start": 2394.8, + "end": 2395.66, + "probability": 0.9789 + }, + { + "start": 2396.96, + "end": 2397.84, + "probability": 0.8891 + }, + { + "start": 2399.04, + "end": 2401.3, + "probability": 0.9929 + }, + { + "start": 2403.14, + "end": 2407.88, + "probability": 0.9941 + }, + { + "start": 2410.56, + "end": 2415.68, + "probability": 0.9653 + }, + { + "start": 2417.04, + "end": 2421.98, + "probability": 0.9567 + }, + { + "start": 2423.28, + "end": 2426.66, + "probability": 0.7733 + }, + { + "start": 2428.18, + "end": 2428.52, + "probability": 0.3542 + }, + { + "start": 2428.9, + "end": 2429.32, + "probability": 0.4646 + }, + { + "start": 2430.58, + "end": 2432.42, + "probability": 0.9861 + }, + { + "start": 2433.0, + "end": 2436.54, + "probability": 0.9734 + }, + { + "start": 2437.76, + "end": 2438.92, + "probability": 0.8998 + }, + { + "start": 2439.54, + "end": 2442.2, + "probability": 0.9906 + }, + { + "start": 2443.16, + "end": 2444.16, + "probability": 0.9594 + }, + { + "start": 2446.08, + "end": 2451.3, + "probability": 0.6451 + }, + { + "start": 2452.24, + "end": 2457.6, + "probability": 0.9869 + }, + { + "start": 2459.02, + "end": 2460.0, + "probability": 0.9723 + }, + { + "start": 2461.64, + "end": 2466.62, + "probability": 0.9827 + }, + { + "start": 2467.6, + "end": 2471.98, + "probability": 0.995 + }, + { + "start": 2472.62, + "end": 2474.26, + "probability": 0.941 + }, + { + "start": 2477.12, + "end": 2482.02, + "probability": 0.9644 + }, + { + "start": 2485.28, + "end": 2488.86, + "probability": 0.989 + }, + { + "start": 2490.2, + "end": 2491.44, + "probability": 0.9453 + }, + { + "start": 2494.1, + "end": 2498.86, + "probability": 0.9937 + }, + { + "start": 2499.76, + "end": 2500.6, + "probability": 0.9689 + }, + { + "start": 2501.42, + "end": 2501.86, + "probability": 0.474 + }, + { + "start": 2502.06, + "end": 2506.93, + "probability": 0.9764 + }, + { + "start": 2508.86, + "end": 2513.82, + "probability": 0.9897 + }, + { + "start": 2515.86, + "end": 2518.16, + "probability": 0.9591 + }, + { + "start": 2519.2, + "end": 2521.7, + "probability": 0.834 + }, + { + "start": 2523.04, + "end": 2525.94, + "probability": 0.9747 + }, + { + "start": 2526.68, + "end": 2527.76, + "probability": 0.9294 + }, + { + "start": 2528.58, + "end": 2529.96, + "probability": 0.9099 + }, + { + "start": 2531.6, + "end": 2533.34, + "probability": 0.8756 + }, + { + "start": 2534.44, + "end": 2537.94, + "probability": 0.5667 + }, + { + "start": 2538.52, + "end": 2541.28, + "probability": 0.9787 + }, + { + "start": 2542.22, + "end": 2544.98, + "probability": 0.9722 + }, + { + "start": 2546.74, + "end": 2548.92, + "probability": 0.6479 + }, + { + "start": 2549.5, + "end": 2551.74, + "probability": 0.9624 + }, + { + "start": 2552.64, + "end": 2558.34, + "probability": 0.9409 + }, + { + "start": 2559.56, + "end": 2565.16, + "probability": 0.9639 + }, + { + "start": 2565.96, + "end": 2568.98, + "probability": 0.7839 + }, + { + "start": 2569.66, + "end": 2572.5, + "probability": 0.7758 + }, + { + "start": 2574.2, + "end": 2576.58, + "probability": 0.7906 + }, + { + "start": 2577.4, + "end": 2579.46, + "probability": 0.9688 + }, + { + "start": 2580.26, + "end": 2586.88, + "probability": 0.9751 + }, + { + "start": 2587.78, + "end": 2595.44, + "probability": 0.9228 + }, + { + "start": 2596.26, + "end": 2601.3, + "probability": 0.7477 + }, + { + "start": 2602.54, + "end": 2602.96, + "probability": 0.7783 + }, + { + "start": 2604.9, + "end": 2605.9, + "probability": 0.6658 + }, + { + "start": 2607.86, + "end": 2609.62, + "probability": 0.7426 + }, + { + "start": 2609.8, + "end": 2616.18, + "probability": 0.82 + }, + { + "start": 2635.94, + "end": 2638.12, + "probability": 0.9668 + }, + { + "start": 2639.12, + "end": 2639.82, + "probability": 0.8398 + }, + { + "start": 2640.74, + "end": 2641.24, + "probability": 0.7434 + }, + { + "start": 2643.18, + "end": 2646.14, + "probability": 0.9775 + }, + { + "start": 2646.94, + "end": 2652.66, + "probability": 0.975 + }, + { + "start": 2655.08, + "end": 2658.52, + "probability": 0.9909 + }, + { + "start": 2659.5, + "end": 2664.6, + "probability": 0.9673 + }, + { + "start": 2665.36, + "end": 2666.08, + "probability": 0.97 + }, + { + "start": 2666.72, + "end": 2670.92, + "probability": 0.9863 + }, + { + "start": 2672.16, + "end": 2674.3, + "probability": 0.962 + }, + { + "start": 2675.18, + "end": 2680.42, + "probability": 0.8981 + }, + { + "start": 2680.42, + "end": 2684.72, + "probability": 0.9919 + }, + { + "start": 2685.38, + "end": 2688.44, + "probability": 0.9833 + }, + { + "start": 2689.22, + "end": 2694.6, + "probability": 0.9961 + }, + { + "start": 2695.2, + "end": 2695.44, + "probability": 0.4967 + }, + { + "start": 2695.58, + "end": 2701.42, + "probability": 0.9658 + }, + { + "start": 2701.42, + "end": 2706.12, + "probability": 0.9435 + }, + { + "start": 2707.9, + "end": 2708.34, + "probability": 0.7881 + }, + { + "start": 2708.84, + "end": 2710.0, + "probability": 0.7661 + }, + { + "start": 2710.16, + "end": 2712.3, + "probability": 0.9285 + }, + { + "start": 2712.72, + "end": 2715.76, + "probability": 0.9435 + }, + { + "start": 2716.18, + "end": 2718.54, + "probability": 0.9512 + }, + { + "start": 2719.38, + "end": 2721.86, + "probability": 0.977 + }, + { + "start": 2722.12, + "end": 2723.3, + "probability": 0.5176 + }, + { + "start": 2723.94, + "end": 2724.5, + "probability": 0.4512 + }, + { + "start": 2724.92, + "end": 2725.74, + "probability": 0.5041 + }, + { + "start": 2725.84, + "end": 2729.14, + "probability": 0.7726 + }, + { + "start": 2730.2, + "end": 2731.98, + "probability": 0.9641 + }, + { + "start": 2732.34, + "end": 2735.92, + "probability": 0.9895 + }, + { + "start": 2736.44, + "end": 2736.9, + "probability": 0.9573 + }, + { + "start": 2737.86, + "end": 2739.96, + "probability": 0.9874 + }, + { + "start": 2741.14, + "end": 2742.64, + "probability": 0.8172 + }, + { + "start": 2742.72, + "end": 2744.9, + "probability": 0.9528 + }, + { + "start": 2745.02, + "end": 2745.52, + "probability": 0.5416 + }, + { + "start": 2745.92, + "end": 2746.84, + "probability": 0.9015 + }, + { + "start": 2746.92, + "end": 2752.48, + "probability": 0.96 + }, + { + "start": 2753.32, + "end": 2755.84, + "probability": 0.9401 + }, + { + "start": 2756.32, + "end": 2760.2, + "probability": 0.986 + }, + { + "start": 2760.62, + "end": 2766.24, + "probability": 0.9648 + }, + { + "start": 2766.42, + "end": 2766.72, + "probability": 0.733 + }, + { + "start": 2766.78, + "end": 2767.16, + "probability": 0.6361 + }, + { + "start": 2768.18, + "end": 2769.04, + "probability": 0.2872 + }, + { + "start": 2769.26, + "end": 2769.7, + "probability": 0.7038 + }, + { + "start": 2770.0, + "end": 2771.02, + "probability": 0.3442 + }, + { + "start": 2771.06, + "end": 2771.62, + "probability": 0.7852 + }, + { + "start": 2772.0, + "end": 2772.36, + "probability": 0.4903 + }, + { + "start": 2773.74, + "end": 2777.73, + "probability": 0.9541 + }, + { + "start": 2778.9, + "end": 2780.76, + "probability": 0.7395 + }, + { + "start": 2781.7, + "end": 2785.46, + "probability": 0.854 + }, + { + "start": 2786.46, + "end": 2790.82, + "probability": 0.7599 + }, + { + "start": 2791.4, + "end": 2795.68, + "probability": 0.9937 + }, + { + "start": 2796.22, + "end": 2801.32, + "probability": 0.9971 + }, + { + "start": 2802.16, + "end": 2804.44, + "probability": 0.8656 + }, + { + "start": 2804.82, + "end": 2807.78, + "probability": 0.9968 + }, + { + "start": 2808.1, + "end": 2812.06, + "probability": 0.9812 + }, + { + "start": 2814.04, + "end": 2818.42, + "probability": 0.9941 + }, + { + "start": 2818.5, + "end": 2821.14, + "probability": 0.9842 + }, + { + "start": 2821.72, + "end": 2824.46, + "probability": 0.9896 + }, + { + "start": 2825.14, + "end": 2829.48, + "probability": 0.9844 + }, + { + "start": 2829.48, + "end": 2833.74, + "probability": 0.9959 + }, + { + "start": 2833.84, + "end": 2836.84, + "probability": 0.9963 + }, + { + "start": 2837.82, + "end": 2840.88, + "probability": 0.9927 + }, + { + "start": 2841.42, + "end": 2841.78, + "probability": 0.8726 + }, + { + "start": 2842.34, + "end": 2843.94, + "probability": 0.9887 + }, + { + "start": 2844.86, + "end": 2846.22, + "probability": 0.8612 + }, + { + "start": 2846.76, + "end": 2847.66, + "probability": 0.8869 + }, + { + "start": 2848.54, + "end": 2848.92, + "probability": 0.9431 + }, + { + "start": 2850.74, + "end": 2856.18, + "probability": 0.9893 + }, + { + "start": 2856.8, + "end": 2857.2, + "probability": 0.8743 + }, + { + "start": 2858.36, + "end": 2861.94, + "probability": 0.9907 + }, + { + "start": 2861.94, + "end": 2868.12, + "probability": 0.9944 + }, + { + "start": 2868.74, + "end": 2869.92, + "probability": 0.9819 + }, + { + "start": 2873.58, + "end": 2873.82, + "probability": 0.2542 + }, + { + "start": 2873.82, + "end": 2875.34, + "probability": 0.5623 + }, + { + "start": 2875.8, + "end": 2877.48, + "probability": 0.9758 + }, + { + "start": 2877.64, + "end": 2883.5, + "probability": 0.9454 + }, + { + "start": 2884.06, + "end": 2885.94, + "probability": 0.9333 + }, + { + "start": 2886.4, + "end": 2886.6, + "probability": 0.9275 + }, + { + "start": 2887.22, + "end": 2887.52, + "probability": 0.9717 + }, + { + "start": 2888.26, + "end": 2888.58, + "probability": 0.9598 + }, + { + "start": 2893.38, + "end": 2894.56, + "probability": 0.7952 + }, + { + "start": 2895.24, + "end": 2897.69, + "probability": 0.7435 + }, + { + "start": 2899.0, + "end": 2900.96, + "probability": 0.825 + }, + { + "start": 2901.08, + "end": 2904.64, + "probability": 0.8239 + }, + { + "start": 2905.08, + "end": 2924.44, + "probability": 0.853 + }, + { + "start": 2924.44, + "end": 2924.44, + "probability": 0.1732 + }, + { + "start": 2924.44, + "end": 2926.18, + "probability": 0.5828 + }, + { + "start": 2927.06, + "end": 2930.18, + "probability": 0.6963 + }, + { + "start": 2945.34, + "end": 2945.4, + "probability": 0.0408 + }, + { + "start": 2945.4, + "end": 2946.6, + "probability": 0.9193 + }, + { + "start": 2966.14, + "end": 2969.08, + "probability": 0.7231 + }, + { + "start": 2969.78, + "end": 2970.64, + "probability": 0.6787 + }, + { + "start": 2970.7, + "end": 2970.82, + "probability": 0.6672 + }, + { + "start": 2970.98, + "end": 2973.22, + "probability": 0.994 + }, + { + "start": 2973.42, + "end": 2976.34, + "probability": 0.9346 + }, + { + "start": 2977.1, + "end": 2980.2, + "probability": 0.9971 + }, + { + "start": 2980.26, + "end": 2982.98, + "probability": 0.8417 + }, + { + "start": 2983.4, + "end": 2984.94, + "probability": 0.8977 + }, + { + "start": 2985.04, + "end": 2986.02, + "probability": 0.8659 + }, + { + "start": 2987.42, + "end": 2991.26, + "probability": 0.6844 + }, + { + "start": 2996.54, + "end": 3001.24, + "probability": 0.6508 + }, + { + "start": 3001.48, + "end": 3005.28, + "probability": 0.9955 + }, + { + "start": 3006.14, + "end": 3006.34, + "probability": 0.9674 + }, + { + "start": 3007.32, + "end": 3010.5, + "probability": 0.99 + }, + { + "start": 3011.22, + "end": 3014.08, + "probability": 0.9968 + }, + { + "start": 3014.64, + "end": 3017.68, + "probability": 0.9113 + }, + { + "start": 3018.5, + "end": 3023.88, + "probability": 0.9893 + }, + { + "start": 3024.32, + "end": 3024.56, + "probability": 0.8186 + }, + { + "start": 3027.96, + "end": 3029.26, + "probability": 0.7151 + }, + { + "start": 3029.72, + "end": 3030.58, + "probability": 0.6331 + }, + { + "start": 3030.78, + "end": 3032.16, + "probability": 0.8853 + }, + { + "start": 3032.92, + "end": 3035.78, + "probability": 0.5225 + }, + { + "start": 3036.26, + "end": 3038.8, + "probability": 0.9453 + }, + { + "start": 3039.56, + "end": 3040.7, + "probability": 0.6237 + }, + { + "start": 3040.88, + "end": 3043.1, + "probability": 0.8701 + }, + { + "start": 3044.3, + "end": 3050.11, + "probability": 0.9946 + }, + { + "start": 3050.88, + "end": 3053.02, + "probability": 0.8391 + }, + { + "start": 3054.42, + "end": 3056.62, + "probability": 0.7972 + }, + { + "start": 3056.7, + "end": 3060.18, + "probability": 0.9792 + }, + { + "start": 3061.16, + "end": 3062.96, + "probability": 0.7821 + }, + { + "start": 3063.06, + "end": 3064.59, + "probability": 0.9861 + }, + { + "start": 3066.36, + "end": 3067.96, + "probability": 0.3854 + }, + { + "start": 3068.58, + "end": 3072.7, + "probability": 0.9624 + }, + { + "start": 3073.08, + "end": 3074.32, + "probability": 0.8056 + }, + { + "start": 3075.08, + "end": 3075.56, + "probability": 0.6832 + }, + { + "start": 3076.08, + "end": 3077.4, + "probability": 0.9935 + }, + { + "start": 3078.04, + "end": 3078.7, + "probability": 0.8283 + }, + { + "start": 3079.34, + "end": 3082.6, + "probability": 0.9212 + }, + { + "start": 3082.6, + "end": 3086.98, + "probability": 0.9972 + }, + { + "start": 3087.92, + "end": 3091.0, + "probability": 0.873 + }, + { + "start": 3091.0, + "end": 3093.88, + "probability": 0.8086 + }, + { + "start": 3095.72, + "end": 3097.64, + "probability": 0.5637 + }, + { + "start": 3098.63, + "end": 3102.82, + "probability": 0.9768 + }, + { + "start": 3103.68, + "end": 3106.86, + "probability": 0.844 + }, + { + "start": 3107.06, + "end": 3109.76, + "probability": 0.988 + }, + { + "start": 3110.2, + "end": 3113.08, + "probability": 0.9455 + }, + { + "start": 3114.84, + "end": 3116.08, + "probability": 0.8725 + }, + { + "start": 3116.44, + "end": 3119.54, + "probability": 0.9834 + }, + { + "start": 3120.36, + "end": 3128.68, + "probability": 0.9851 + }, + { + "start": 3129.04, + "end": 3130.56, + "probability": 0.5092 + }, + { + "start": 3132.98, + "end": 3136.86, + "probability": 0.8869 + }, + { + "start": 3137.52, + "end": 3140.56, + "probability": 0.7806 + }, + { + "start": 3141.28, + "end": 3145.16, + "probability": 0.7825 + }, + { + "start": 3145.8, + "end": 3146.85, + "probability": 0.7817 + }, + { + "start": 3148.6, + "end": 3151.78, + "probability": 0.9797 + }, + { + "start": 3152.48, + "end": 3154.52, + "probability": 0.7484 + }, + { + "start": 3154.7, + "end": 3160.16, + "probability": 0.7504 + }, + { + "start": 3160.28, + "end": 3161.22, + "probability": 0.9915 + }, + { + "start": 3161.36, + "end": 3163.09, + "probability": 0.9911 + }, + { + "start": 3164.0, + "end": 3165.02, + "probability": 0.9971 + }, + { + "start": 3165.36, + "end": 3167.58, + "probability": 0.8761 + }, + { + "start": 3168.18, + "end": 3170.68, + "probability": 0.699 + }, + { + "start": 3170.74, + "end": 3173.46, + "probability": 0.8546 + }, + { + "start": 3173.84, + "end": 3177.8, + "probability": 0.9825 + }, + { + "start": 3178.32, + "end": 3179.5, + "probability": 0.9985 + }, + { + "start": 3180.54, + "end": 3184.76, + "probability": 0.9456 + }, + { + "start": 3185.46, + "end": 3186.66, + "probability": 0.8657 + }, + { + "start": 3186.78, + "end": 3188.38, + "probability": 0.975 + }, + { + "start": 3188.78, + "end": 3190.04, + "probability": 0.9828 + }, + { + "start": 3190.36, + "end": 3191.8, + "probability": 0.9201 + }, + { + "start": 3193.2, + "end": 3194.22, + "probability": 0.9302 + }, + { + "start": 3194.34, + "end": 3196.18, + "probability": 0.7351 + }, + { + "start": 3196.26, + "end": 3197.94, + "probability": 0.9781 + }, + { + "start": 3198.42, + "end": 3199.76, + "probability": 0.9976 + }, + { + "start": 3199.92, + "end": 3201.1, + "probability": 0.9746 + }, + { + "start": 3201.66, + "end": 3203.38, + "probability": 0.8729 + }, + { + "start": 3203.94, + "end": 3206.92, + "probability": 0.9526 + }, + { + "start": 3207.56, + "end": 3210.48, + "probability": 0.9858 + }, + { + "start": 3210.56, + "end": 3211.66, + "probability": 0.9893 + }, + { + "start": 3212.4, + "end": 3213.24, + "probability": 0.9313 + }, + { + "start": 3214.34, + "end": 3215.48, + "probability": 0.5688 + }, + { + "start": 3215.58, + "end": 3217.26, + "probability": 0.8546 + }, + { + "start": 3218.14, + "end": 3219.43, + "probability": 0.9871 + }, + { + "start": 3221.42, + "end": 3222.34, + "probability": 0.6113 + }, + { + "start": 3222.58, + "end": 3225.18, + "probability": 0.7342 + }, + { + "start": 3226.08, + "end": 3229.34, + "probability": 0.9025 + }, + { + "start": 3229.66, + "end": 3233.62, + "probability": 0.8854 + }, + { + "start": 3233.74, + "end": 3234.24, + "probability": 0.9314 + }, + { + "start": 3243.34, + "end": 3245.54, + "probability": 0.6829 + }, + { + "start": 3245.68, + "end": 3247.41, + "probability": 0.7511 + }, + { + "start": 3248.46, + "end": 3251.16, + "probability": 0.9757 + }, + { + "start": 3251.16, + "end": 3255.14, + "probability": 0.7406 + }, + { + "start": 3255.74, + "end": 3259.58, + "probability": 0.9212 + }, + { + "start": 3260.5, + "end": 3263.08, + "probability": 0.9299 + }, + { + "start": 3264.66, + "end": 3265.98, + "probability": 0.6653 + }, + { + "start": 3267.28, + "end": 3269.46, + "probability": 0.8276 + }, + { + "start": 3269.7, + "end": 3270.86, + "probability": 0.4282 + }, + { + "start": 3271.18, + "end": 3272.96, + "probability": 0.8511 + }, + { + "start": 3273.86, + "end": 3277.23, + "probability": 0.9968 + }, + { + "start": 3277.8, + "end": 3278.52, + "probability": 0.734 + }, + { + "start": 3278.6, + "end": 3279.71, + "probability": 0.9941 + }, + { + "start": 3280.84, + "end": 3281.46, + "probability": 0.9495 + }, + { + "start": 3282.54, + "end": 3283.38, + "probability": 0.8813 + }, + { + "start": 3285.2, + "end": 3288.78, + "probability": 0.9357 + }, + { + "start": 3290.6, + "end": 3295.36, + "probability": 0.9189 + }, + { + "start": 3295.4, + "end": 3300.34, + "probability": 0.9761 + }, + { + "start": 3301.54, + "end": 3303.7, + "probability": 0.9915 + }, + { + "start": 3303.7, + "end": 3306.8, + "probability": 0.6635 + }, + { + "start": 3307.24, + "end": 3310.61, + "probability": 0.6571 + }, + { + "start": 3312.6, + "end": 3315.58, + "probability": 0.8471 + }, + { + "start": 3317.32, + "end": 3317.96, + "probability": 0.2702 + }, + { + "start": 3317.96, + "end": 3318.06, + "probability": 0.454 + }, + { + "start": 3319.42, + "end": 3321.04, + "probability": 0.7992 + }, + { + "start": 3321.08, + "end": 3324.0, + "probability": 0.7857 + }, + { + "start": 3324.0, + "end": 3324.1, + "probability": 0.6659 + }, + { + "start": 3324.82, + "end": 3326.26, + "probability": 0.5525 + }, + { + "start": 3326.92, + "end": 3328.28, + "probability": 0.9575 + }, + { + "start": 3328.88, + "end": 3332.1, + "probability": 0.9043 + }, + { + "start": 3332.1, + "end": 3335.76, + "probability": 0.8618 + }, + { + "start": 3335.76, + "end": 3339.12, + "probability": 0.9213 + }, + { + "start": 3340.0, + "end": 3344.74, + "probability": 0.9291 + }, + { + "start": 3345.5, + "end": 3348.9, + "probability": 0.968 + }, + { + "start": 3348.9, + "end": 3353.54, + "probability": 0.9811 + }, + { + "start": 3353.86, + "end": 3356.0, + "probability": 0.5346 + }, + { + "start": 3356.32, + "end": 3358.5, + "probability": 0.924 + }, + { + "start": 3359.18, + "end": 3359.56, + "probability": 0.6919 + }, + { + "start": 3360.16, + "end": 3363.6, + "probability": 0.7152 + }, + { + "start": 3363.6, + "end": 3366.82, + "probability": 0.8373 + }, + { + "start": 3366.9, + "end": 3369.12, + "probability": 0.9718 + }, + { + "start": 3370.0, + "end": 3370.76, + "probability": 0.9268 + }, + { + "start": 3370.82, + "end": 3371.46, + "probability": 0.8604 + }, + { + "start": 3371.76, + "end": 3372.86, + "probability": 0.9191 + }, + { + "start": 3372.92, + "end": 3374.66, + "probability": 0.8303 + }, + { + "start": 3374.8, + "end": 3376.46, + "probability": 0.5969 + }, + { + "start": 3376.8, + "end": 3377.84, + "probability": 0.4627 + }, + { + "start": 3380.04, + "end": 3380.58, + "probability": 0.5218 + }, + { + "start": 3381.82, + "end": 3384.22, + "probability": 0.6111 + }, + { + "start": 3384.4, + "end": 3387.86, + "probability": 0.955 + }, + { + "start": 3387.88, + "end": 3389.42, + "probability": 0.9616 + }, + { + "start": 3390.18, + "end": 3393.94, + "probability": 0.9295 + }, + { + "start": 3394.16, + "end": 3398.8, + "probability": 0.9912 + }, + { + "start": 3399.38, + "end": 3401.4, + "probability": 0.8853 + }, + { + "start": 3401.64, + "end": 3403.84, + "probability": 0.9213 + }, + { + "start": 3404.34, + "end": 3407.8, + "probability": 0.9622 + }, + { + "start": 3408.4, + "end": 3409.14, + "probability": 0.8643 + }, + { + "start": 3410.76, + "end": 3414.72, + "probability": 0.998 + }, + { + "start": 3414.72, + "end": 3420.28, + "probability": 0.999 + }, + { + "start": 3420.48, + "end": 3422.92, + "probability": 0.9685 + }, + { + "start": 3423.42, + "end": 3426.8, + "probability": 0.9939 + }, + { + "start": 3426.92, + "end": 3429.08, + "probability": 0.9968 + }, + { + "start": 3429.12, + "end": 3430.64, + "probability": 0.8946 + }, + { + "start": 3431.46, + "end": 3434.02, + "probability": 0.9966 + }, + { + "start": 3434.22, + "end": 3437.8, + "probability": 0.9039 + }, + { + "start": 3437.9, + "end": 3440.8, + "probability": 0.9961 + }, + { + "start": 3441.24, + "end": 3444.98, + "probability": 0.9929 + }, + { + "start": 3445.08, + "end": 3448.52, + "probability": 0.9441 + }, + { + "start": 3449.56, + "end": 3450.4, + "probability": 0.6814 + }, + { + "start": 3450.5, + "end": 3451.2, + "probability": 0.8642 + }, + { + "start": 3451.3, + "end": 3457.34, + "probability": 0.9914 + }, + { + "start": 3457.34, + "end": 3463.26, + "probability": 0.9966 + }, + { + "start": 3463.66, + "end": 3465.58, + "probability": 0.9586 + }, + { + "start": 3465.78, + "end": 3467.32, + "probability": 0.9896 + }, + { + "start": 3467.36, + "end": 3469.18, + "probability": 0.9966 + }, + { + "start": 3469.66, + "end": 3472.9, + "probability": 0.933 + }, + { + "start": 3473.3, + "end": 3476.52, + "probability": 0.8643 + }, + { + "start": 3479.54, + "end": 3479.54, + "probability": 0.0604 + }, + { + "start": 3479.54, + "end": 3480.64, + "probability": 0.8237 + }, + { + "start": 3480.86, + "end": 3485.68, + "probability": 0.9684 + }, + { + "start": 3486.22, + "end": 3489.88, + "probability": 0.5718 + }, + { + "start": 3490.56, + "end": 3492.98, + "probability": 0.6888 + }, + { + "start": 3493.28, + "end": 3493.98, + "probability": 0.8274 + }, + { + "start": 3494.44, + "end": 3497.84, + "probability": 0.8516 + }, + { + "start": 3498.24, + "end": 3498.62, + "probability": 0.3148 + }, + { + "start": 3498.66, + "end": 3502.06, + "probability": 0.6548 + }, + { + "start": 3502.56, + "end": 3504.16, + "probability": 0.191 + }, + { + "start": 3505.0, + "end": 3507.84, + "probability": 0.9673 + }, + { + "start": 3508.1, + "end": 3510.86, + "probability": 0.9222 + }, + { + "start": 3511.1, + "end": 3513.58, + "probability": 0.9326 + }, + { + "start": 3515.08, + "end": 3517.48, + "probability": 0.9977 + }, + { + "start": 3518.34, + "end": 3519.82, + "probability": 0.9282 + }, + { + "start": 3519.96, + "end": 3523.0, + "probability": 0.957 + }, + { + "start": 3523.08, + "end": 3526.08, + "probability": 0.9476 + }, + { + "start": 3526.48, + "end": 3529.78, + "probability": 0.9956 + }, + { + "start": 3530.38, + "end": 3532.68, + "probability": 0.9971 + }, + { + "start": 3533.4, + "end": 3538.02, + "probability": 0.9668 + }, + { + "start": 3538.96, + "end": 3544.11, + "probability": 0.9917 + }, + { + "start": 3544.58, + "end": 3551.36, + "probability": 0.9971 + }, + { + "start": 3551.74, + "end": 3554.48, + "probability": 0.9498 + }, + { + "start": 3554.48, + "end": 3557.56, + "probability": 0.7816 + }, + { + "start": 3558.1, + "end": 3561.0, + "probability": 0.6453 + }, + { + "start": 3561.56, + "end": 3564.2, + "probability": 0.5371 + }, + { + "start": 3564.7, + "end": 3566.3, + "probability": 0.6263 + }, + { + "start": 3566.3, + "end": 3567.48, + "probability": 0.9917 + }, + { + "start": 3567.6, + "end": 3568.42, + "probability": 0.5987 + }, + { + "start": 3568.5, + "end": 3569.18, + "probability": 0.4793 + }, + { + "start": 3569.4, + "end": 3571.7, + "probability": 0.9835 + }, + { + "start": 3571.8, + "end": 3572.88, + "probability": 0.7316 + }, + { + "start": 3573.1, + "end": 3573.74, + "probability": 0.502 + }, + { + "start": 3574.22, + "end": 3574.6, + "probability": 0.7974 + }, + { + "start": 3574.8, + "end": 3578.3, + "probability": 0.8296 + }, + { + "start": 3578.38, + "end": 3579.89, + "probability": 0.9115 + }, + { + "start": 3580.88, + "end": 3585.4, + "probability": 0.7877 + }, + { + "start": 3586.02, + "end": 3587.64, + "probability": 0.8683 + }, + { + "start": 3588.16, + "end": 3592.54, + "probability": 0.9894 + }, + { + "start": 3593.2, + "end": 3593.56, + "probability": 0.5909 + }, + { + "start": 3594.08, + "end": 3595.18, + "probability": 0.8005 + }, + { + "start": 3595.22, + "end": 3599.32, + "probability": 0.9969 + }, + { + "start": 3599.32, + "end": 3604.22, + "probability": 0.9482 + }, + { + "start": 3604.64, + "end": 3606.28, + "probability": 0.953 + }, + { + "start": 3606.66, + "end": 3610.12, + "probability": 0.7091 + }, + { + "start": 3610.66, + "end": 3612.0, + "probability": 0.5053 + }, + { + "start": 3612.0, + "end": 3615.56, + "probability": 0.988 + }, + { + "start": 3616.7, + "end": 3618.68, + "probability": 0.8396 + }, + { + "start": 3618.76, + "end": 3621.26, + "probability": 0.9341 + }, + { + "start": 3621.9, + "end": 3622.3, + "probability": 0.5691 + }, + { + "start": 3622.84, + "end": 3625.52, + "probability": 0.9839 + }, + { + "start": 3625.56, + "end": 3626.26, + "probability": 0.6556 + }, + { + "start": 3626.38, + "end": 3627.2, + "probability": 0.7256 + }, + { + "start": 3627.44, + "end": 3628.76, + "probability": 0.5363 + }, + { + "start": 3629.2, + "end": 3629.72, + "probability": 0.5437 + }, + { + "start": 3629.8, + "end": 3630.88, + "probability": 0.8079 + }, + { + "start": 3631.1, + "end": 3632.54, + "probability": 0.9105 + }, + { + "start": 3633.12, + "end": 3634.04, + "probability": 0.5564 + }, + { + "start": 3634.38, + "end": 3635.56, + "probability": 0.2492 + }, + { + "start": 3635.56, + "end": 3637.08, + "probability": 0.5055 + }, + { + "start": 3637.16, + "end": 3638.7, + "probability": 0.7608 + }, + { + "start": 3638.7, + "end": 3639.28, + "probability": 0.1055 + }, + { + "start": 3639.28, + "end": 3639.86, + "probability": 0.0116 + }, + { + "start": 3639.86, + "end": 3639.96, + "probability": 0.527 + }, + { + "start": 3640.08, + "end": 3641.32, + "probability": 0.8099 + }, + { + "start": 3641.4, + "end": 3643.6, + "probability": 0.5352 + }, + { + "start": 3643.74, + "end": 3644.66, + "probability": 0.6155 + }, + { + "start": 3645.16, + "end": 3646.78, + "probability": 0.793 + }, + { + "start": 3649.32, + "end": 3653.4, + "probability": 0.9424 + }, + { + "start": 3653.7, + "end": 3654.92, + "probability": 0.9071 + }, + { + "start": 3655.92, + "end": 3656.2, + "probability": 0.855 + }, + { + "start": 3657.22, + "end": 3659.9, + "probability": 0.8981 + }, + { + "start": 3660.4, + "end": 3664.02, + "probability": 0.957 + }, + { + "start": 3664.54, + "end": 3666.62, + "probability": 0.9102 + }, + { + "start": 3668.0, + "end": 3669.48, + "probability": 0.9439 + }, + { + "start": 3669.96, + "end": 3670.7, + "probability": 0.6991 + }, + { + "start": 3671.4, + "end": 3673.82, + "probability": 0.9937 + }, + { + "start": 3674.34, + "end": 3678.82, + "probability": 0.9524 + }, + { + "start": 3679.68, + "end": 3680.0, + "probability": 0.5464 + }, + { + "start": 3681.08, + "end": 3682.29, + "probability": 0.8616 + }, + { + "start": 3683.24, + "end": 3684.26, + "probability": 0.8082 + }, + { + "start": 3684.86, + "end": 3688.26, + "probability": 0.9762 + }, + { + "start": 3688.88, + "end": 3691.58, + "probability": 0.7466 + }, + { + "start": 3692.46, + "end": 3693.06, + "probability": 0.7554 + }, + { + "start": 3693.58, + "end": 3694.56, + "probability": 0.8976 + }, + { + "start": 3694.96, + "end": 3698.12, + "probability": 0.9664 + }, + { + "start": 3699.42, + "end": 3702.62, + "probability": 0.9827 + }, + { + "start": 3703.2, + "end": 3705.72, + "probability": 0.9985 + }, + { + "start": 3706.86, + "end": 3711.06, + "probability": 0.9465 + }, + { + "start": 3711.06, + "end": 3717.74, + "probability": 0.9974 + }, + { + "start": 3721.84, + "end": 3722.14, + "probability": 0.6572 + }, + { + "start": 3722.88, + "end": 3723.34, + "probability": 0.7467 + }, + { + "start": 3727.42, + "end": 3732.66, + "probability": 0.9759 + }, + { + "start": 3732.66, + "end": 3739.28, + "probability": 0.9824 + }, + { + "start": 3740.56, + "end": 3743.36, + "probability": 0.7432 + }, + { + "start": 3743.48, + "end": 3747.42, + "probability": 0.6376 + }, + { + "start": 3747.66, + "end": 3751.94, + "probability": 0.9453 + }, + { + "start": 3753.14, + "end": 3756.2, + "probability": 0.8667 + }, + { + "start": 3756.26, + "end": 3756.96, + "probability": 0.4712 + }, + { + "start": 3757.2, + "end": 3757.84, + "probability": 0.4354 + }, + { + "start": 3758.06, + "end": 3761.4, + "probability": 0.7724 + }, + { + "start": 3761.74, + "end": 3765.74, + "probability": 0.7113 + }, + { + "start": 3765.86, + "end": 3766.42, + "probability": 0.5869 + }, + { + "start": 3766.48, + "end": 3767.36, + "probability": 0.6538 + }, + { + "start": 3767.4, + "end": 3773.8, + "probability": 0.8808 + }, + { + "start": 3774.4, + "end": 3777.48, + "probability": 0.9892 + }, + { + "start": 3777.92, + "end": 3778.86, + "probability": 0.8574 + }, + { + "start": 3779.08, + "end": 3783.44, + "probability": 0.9266 + }, + { + "start": 3783.84, + "end": 3786.82, + "probability": 0.9539 + }, + { + "start": 3788.46, + "end": 3789.0, + "probability": 0.5985 + }, + { + "start": 3789.26, + "end": 3791.7, + "probability": 0.6585 + }, + { + "start": 3791.8, + "end": 3793.18, + "probability": 0.8888 + }, + { + "start": 3793.64, + "end": 3794.9, + "probability": 0.3589 + }, + { + "start": 3795.04, + "end": 3795.48, + "probability": 0.892 + }, + { + "start": 3800.74, + "end": 3801.83, + "probability": 0.5326 + }, + { + "start": 3802.32, + "end": 3807.9, + "probability": 0.9445 + }, + { + "start": 3808.5, + "end": 3816.0, + "probability": 0.9393 + }, + { + "start": 3816.6, + "end": 3822.04, + "probability": 0.8737 + }, + { + "start": 3823.3, + "end": 3827.28, + "probability": 0.7129 + }, + { + "start": 3827.74, + "end": 3830.34, + "probability": 0.9173 + }, + { + "start": 3830.86, + "end": 3833.08, + "probability": 0.9932 + }, + { + "start": 3833.74, + "end": 3836.66, + "probability": 0.9182 + }, + { + "start": 3837.4, + "end": 3838.38, + "probability": 0.6626 + }, + { + "start": 3839.14, + "end": 3840.32, + "probability": 0.8057 + }, + { + "start": 3840.46, + "end": 3841.63, + "probability": 0.7369 + }, + { + "start": 3842.88, + "end": 3847.74, + "probability": 0.971 + }, + { + "start": 3848.82, + "end": 3851.52, + "probability": 0.852 + }, + { + "start": 3852.54, + "end": 3853.9, + "probability": 0.6684 + }, + { + "start": 3853.96, + "end": 3854.52, + "probability": 0.7559 + }, + { + "start": 3854.74, + "end": 3858.38, + "probability": 0.9356 + }, + { + "start": 3859.06, + "end": 3864.42, + "probability": 0.7518 + }, + { + "start": 3864.56, + "end": 3868.04, + "probability": 0.6258 + }, + { + "start": 3869.38, + "end": 3871.06, + "probability": 0.9695 + }, + { + "start": 3871.2, + "end": 3874.32, + "probability": 0.8565 + }, + { + "start": 3874.54, + "end": 3877.28, + "probability": 0.9412 + }, + { + "start": 3878.24, + "end": 3879.04, + "probability": 0.9202 + }, + { + "start": 3879.68, + "end": 3880.24, + "probability": 0.9639 + }, + { + "start": 3880.36, + "end": 3882.84, + "probability": 0.9424 + }, + { + "start": 3883.84, + "end": 3884.44, + "probability": 0.6277 + }, + { + "start": 3885.22, + "end": 3886.26, + "probability": 0.9744 + }, + { + "start": 3886.52, + "end": 3888.42, + "probability": 0.9791 + }, + { + "start": 3889.42, + "end": 3891.6, + "probability": 0.9483 + }, + { + "start": 3892.72, + "end": 3892.93, + "probability": 0.4994 + }, + { + "start": 3894.5, + "end": 3895.7, + "probability": 0.7809 + }, + { + "start": 3898.26, + "end": 3901.94, + "probability": 0.856 + }, + { + "start": 3902.12, + "end": 3904.44, + "probability": 0.8701 + }, + { + "start": 3907.74, + "end": 3910.0, + "probability": 0.7174 + }, + { + "start": 3911.85, + "end": 3915.02, + "probability": 0.7759 + }, + { + "start": 3916.0, + "end": 3919.78, + "probability": 0.7293 + }, + { + "start": 3919.98, + "end": 3923.18, + "probability": 0.1532 + }, + { + "start": 3924.06, + "end": 3927.6, + "probability": 0.9816 + }, + { + "start": 3927.6, + "end": 3931.54, + "probability": 0.9569 + }, + { + "start": 3932.48, + "end": 3933.35, + "probability": 0.9885 + }, + { + "start": 3934.02, + "end": 3937.2, + "probability": 0.9569 + }, + { + "start": 3937.92, + "end": 3943.78, + "probability": 0.7013 + }, + { + "start": 3944.72, + "end": 3947.22, + "probability": 0.9056 + }, + { + "start": 3950.2, + "end": 3950.56, + "probability": 0.5775 + }, + { + "start": 3950.68, + "end": 3955.64, + "probability": 0.7336 + }, + { + "start": 3956.1, + "end": 3961.84, + "probability": 0.0174 + }, + { + "start": 3962.0, + "end": 3962.28, + "probability": 0.9354 + }, + { + "start": 3962.34, + "end": 3965.22, + "probability": 0.9896 + }, + { + "start": 3965.22, + "end": 3969.34, + "probability": 0.9996 + }, + { + "start": 3970.86, + "end": 3971.5, + "probability": 0.6407 + }, + { + "start": 3971.7, + "end": 3972.32, + "probability": 0.7284 + }, + { + "start": 3973.32, + "end": 3978.76, + "probability": 0.95 + }, + { + "start": 3979.24, + "end": 3980.24, + "probability": 0.8729 + }, + { + "start": 3981.14, + "end": 3983.34, + "probability": 0.7958 + }, + { + "start": 3984.72, + "end": 3991.82, + "probability": 0.8704 + }, + { + "start": 3992.12, + "end": 3996.22, + "probability": 0.9235 + }, + { + "start": 3996.68, + "end": 3997.62, + "probability": 0.9471 + }, + { + "start": 3998.38, + "end": 4002.68, + "probability": 0.9485 + }, + { + "start": 4003.64, + "end": 4004.28, + "probability": 0.6336 + }, + { + "start": 4004.62, + "end": 4004.86, + "probability": 0.6638 + }, + { + "start": 4004.94, + "end": 4008.74, + "probability": 0.9352 + }, + { + "start": 4008.74, + "end": 4010.94, + "probability": 0.9746 + }, + { + "start": 4011.38, + "end": 4011.82, + "probability": 0.9081 + }, + { + "start": 4011.92, + "end": 4016.12, + "probability": 0.9683 + }, + { + "start": 4016.56, + "end": 4016.6, + "probability": 0.0333 + }, + { + "start": 4016.6, + "end": 4021.48, + "probability": 0.9859 + }, + { + "start": 4021.82, + "end": 4025.68, + "probability": 0.9599 + }, + { + "start": 4026.1, + "end": 4027.8, + "probability": 0.7584 + }, + { + "start": 4030.56, + "end": 4030.92, + "probability": 0.0245 + }, + { + "start": 4030.92, + "end": 4036.72, + "probability": 0.3313 + }, + { + "start": 4037.26, + "end": 4039.86, + "probability": 0.609 + }, + { + "start": 4040.78, + "end": 4040.88, + "probability": 0.1397 + }, + { + "start": 4041.52, + "end": 4045.5, + "probability": 0.5112 + }, + { + "start": 4046.28, + "end": 4047.1, + "probability": 0.0009 + }, + { + "start": 4049.42, + "end": 4053.28, + "probability": 0.8875 + }, + { + "start": 4053.74, + "end": 4057.38, + "probability": 0.7689 + }, + { + "start": 4058.06, + "end": 4058.66, + "probability": 0.5863 + }, + { + "start": 4058.82, + "end": 4063.76, + "probability": 0.973 + }, + { + "start": 4063.9, + "end": 4064.74, + "probability": 0.9526 + }, + { + "start": 4069.6, + "end": 4072.26, + "probability": 0.9686 + }, + { + "start": 4072.4, + "end": 4074.52, + "probability": 0.8864 + }, + { + "start": 4075.04, + "end": 4076.24, + "probability": 0.8591 + }, + { + "start": 4076.6, + "end": 4079.14, + "probability": 0.7973 + }, + { + "start": 4080.26, + "end": 4084.96, + "probability": 0.99 + }, + { + "start": 4085.34, + "end": 4088.92, + "probability": 0.7235 + }, + { + "start": 4088.98, + "end": 4090.56, + "probability": 0.9644 + }, + { + "start": 4090.62, + "end": 4090.88, + "probability": 0.3854 + }, + { + "start": 4090.88, + "end": 4093.38, + "probability": 0.9834 + }, + { + "start": 4093.42, + "end": 4094.23, + "probability": 0.5506 + }, + { + "start": 4094.54, + "end": 4097.1, + "probability": 0.9637 + }, + { + "start": 4097.78, + "end": 4100.09, + "probability": 0.8516 + }, + { + "start": 4101.02, + "end": 4103.31, + "probability": 0.995 + }, + { + "start": 4103.52, + "end": 4106.55, + "probability": 0.9844 + }, + { + "start": 4107.2, + "end": 4112.34, + "probability": 0.6 + }, + { + "start": 4112.84, + "end": 4115.6, + "probability": 0.9915 + }, + { + "start": 4115.88, + "end": 4116.72, + "probability": 0.4914 + }, + { + "start": 4117.68, + "end": 4118.44, + "probability": 0.7845 + }, + { + "start": 4119.24, + "end": 4121.72, + "probability": 0.8579 + }, + { + "start": 4122.02, + "end": 4125.82, + "probability": 0.9835 + }, + { + "start": 4126.56, + "end": 4127.08, + "probability": 0.3851 + }, + { + "start": 4127.68, + "end": 4127.92, + "probability": 0.6461 + }, + { + "start": 4128.94, + "end": 4134.18, + "probability": 0.7476 + }, + { + "start": 4134.76, + "end": 4138.66, + "probability": 0.9363 + }, + { + "start": 4138.7, + "end": 4145.04, + "probability": 0.9623 + }, + { + "start": 4146.74, + "end": 4152.28, + "probability": 0.8522 + }, + { + "start": 4152.28, + "end": 4156.92, + "probability": 0.9985 + }, + { + "start": 4157.94, + "end": 4159.68, + "probability": 0.9976 + }, + { + "start": 4159.88, + "end": 4162.0, + "probability": 0.9961 + }, + { + "start": 4163.28, + "end": 4165.74, + "probability": 0.9963 + }, + { + "start": 4168.76, + "end": 4169.14, + "probability": 0.9382 + }, + { + "start": 4169.78, + "end": 4171.76, + "probability": 0.6552 + }, + { + "start": 4172.02, + "end": 4174.26, + "probability": 0.967 + }, + { + "start": 4174.26, + "end": 4177.82, + "probability": 0.9897 + }, + { + "start": 4178.26, + "end": 4180.7, + "probability": 0.9097 + }, + { + "start": 4182.0, + "end": 4186.76, + "probability": 0.8215 + }, + { + "start": 4187.12, + "end": 4192.86, + "probability": 0.9769 + }, + { + "start": 4193.52, + "end": 4198.76, + "probability": 0.9468 + }, + { + "start": 4201.32, + "end": 4201.32, + "probability": 0.0994 + }, + { + "start": 4201.32, + "end": 4202.08, + "probability": 0.6703 + }, + { + "start": 4202.64, + "end": 4203.06, + "probability": 0.8205 + }, + { + "start": 4203.06, + "end": 4209.84, + "probability": 0.9941 + }, + { + "start": 4210.26, + "end": 4213.08, + "probability": 0.992 + }, + { + "start": 4213.24, + "end": 4217.06, + "probability": 0.8614 + }, + { + "start": 4217.3, + "end": 4217.72, + "probability": 0.5339 + }, + { + "start": 4217.72, + "end": 4222.76, + "probability": 0.8026 + }, + { + "start": 4223.26, + "end": 4224.3, + "probability": 0.8711 + }, + { + "start": 4225.48, + "end": 4226.16, + "probability": 0.7134 + }, + { + "start": 4226.48, + "end": 4227.14, + "probability": 0.7823 + }, + { + "start": 4227.18, + "end": 4227.91, + "probability": 0.7993 + }, + { + "start": 4230.46, + "end": 4230.76, + "probability": 0.0015 + }, + { + "start": 4232.8, + "end": 4233.24, + "probability": 0.4623 + }, + { + "start": 4233.24, + "end": 4234.62, + "probability": 0.458 + }, + { + "start": 4234.7, + "end": 4237.68, + "probability": 0.9429 + }, + { + "start": 4237.68, + "end": 4242.16, + "probability": 0.9434 + }, + { + "start": 4242.5, + "end": 4245.82, + "probability": 0.8909 + }, + { + "start": 4246.16, + "end": 4248.4, + "probability": 0.8589 + }, + { + "start": 4248.54, + "end": 4250.7, + "probability": 0.9567 + }, + { + "start": 4251.02, + "end": 4253.56, + "probability": 0.9591 + }, + { + "start": 4253.82, + "end": 4258.11, + "probability": 0.991 + }, + { + "start": 4259.6, + "end": 4260.28, + "probability": 0.565 + }, + { + "start": 4260.66, + "end": 4264.32, + "probability": 0.8805 + }, + { + "start": 4265.38, + "end": 4267.5, + "probability": 0.4407 + }, + { + "start": 4267.82, + "end": 4268.14, + "probability": 0.9766 + }, + { + "start": 4270.32, + "end": 4271.32, + "probability": 0.5868 + }, + { + "start": 4271.44, + "end": 4272.38, + "probability": 0.6839 + }, + { + "start": 4272.94, + "end": 4275.2, + "probability": 0.7082 + }, + { + "start": 4275.5, + "end": 4277.44, + "probability": 0.701 + }, + { + "start": 4278.46, + "end": 4279.98, + "probability": 0.7591 + }, + { + "start": 4280.16, + "end": 4283.34, + "probability": 0.9898 + }, + { + "start": 4283.46, + "end": 4288.34, + "probability": 0.8757 + }, + { + "start": 4289.4, + "end": 4292.36, + "probability": 0.9246 + }, + { + "start": 4296.26, + "end": 4301.46, + "probability": 0.9193 + }, + { + "start": 4301.46, + "end": 4304.9, + "probability": 0.9649 + }, + { + "start": 4305.46, + "end": 4306.04, + "probability": 0.7078 + }, + { + "start": 4306.18, + "end": 4308.66, + "probability": 0.142 + }, + { + "start": 4308.82, + "end": 4311.54, + "probability": 0.9242 + }, + { + "start": 4312.02, + "end": 4312.8, + "probability": 0.6938 + }, + { + "start": 4313.02, + "end": 4313.22, + "probability": 0.3399 + }, + { + "start": 4313.74, + "end": 4314.09, + "probability": 0.0156 + }, + { + "start": 4314.94, + "end": 4318.6, + "probability": 0.8069 + }, + { + "start": 4319.94, + "end": 4323.16, + "probability": 0.8335 + }, + { + "start": 4323.7, + "end": 4325.2, + "probability": 0.8451 + }, + { + "start": 4328.46, + "end": 4330.06, + "probability": 0.9935 + }, + { + "start": 4332.44, + "end": 4334.8, + "probability": 0.8008 + }, + { + "start": 4336.03, + "end": 4338.72, + "probability": 0.9951 + }, + { + "start": 4338.72, + "end": 4341.38, + "probability": 0.9912 + }, + { + "start": 4342.04, + "end": 4346.18, + "probability": 0.9108 + }, + { + "start": 4346.82, + "end": 4349.88, + "probability": 0.9794 + }, + { + "start": 4350.02, + "end": 4350.84, + "probability": 0.6787 + }, + { + "start": 4351.42, + "end": 4353.94, + "probability": 0.974 + }, + { + "start": 4353.94, + "end": 4356.64, + "probability": 0.9974 + }, + { + "start": 4358.56, + "end": 4359.52, + "probability": 0.7597 + }, + { + "start": 4360.08, + "end": 4362.68, + "probability": 0.9723 + }, + { + "start": 4362.86, + "end": 4363.46, + "probability": 0.6045 + }, + { + "start": 4368.04, + "end": 4370.8, + "probability": 0.9493 + }, + { + "start": 4371.04, + "end": 4373.3, + "probability": 0.8794 + }, + { + "start": 4373.3, + "end": 4376.82, + "probability": 0.9725 + }, + { + "start": 4376.86, + "end": 4377.4, + "probability": 0.3266 + }, + { + "start": 4377.8, + "end": 4378.68, + "probability": 0.8358 + }, + { + "start": 4379.46, + "end": 4380.82, + "probability": 0.9504 + }, + { + "start": 4380.96, + "end": 4384.62, + "probability": 0.9843 + }, + { + "start": 4384.98, + "end": 4388.0, + "probability": 0.9912 + }, + { + "start": 4390.6, + "end": 4391.74, + "probability": 0.5942 + }, + { + "start": 4392.42, + "end": 4392.7, + "probability": 0.6716 + }, + { + "start": 4392.94, + "end": 4393.94, + "probability": 0.0166 + }, + { + "start": 4394.0, + "end": 4394.6, + "probability": 0.7826 + }, + { + "start": 4395.24, + "end": 4397.34, + "probability": 0.6877 + }, + { + "start": 4399.08, + "end": 4402.76, + "probability": 0.7591 + }, + { + "start": 4406.4, + "end": 4408.46, + "probability": 0.7447 + }, + { + "start": 4408.72, + "end": 4410.32, + "probability": 0.7319 + }, + { + "start": 4410.92, + "end": 4411.86, + "probability": 0.7283 + }, + { + "start": 4414.02, + "end": 4415.94, + "probability": 0.9863 + }, + { + "start": 4416.06, + "end": 4420.76, + "probability": 0.5273 + }, + { + "start": 4421.28, + "end": 4424.74, + "probability": 0.6381 + }, + { + "start": 4425.46, + "end": 4427.3, + "probability": 0.8334 + }, + { + "start": 4427.88, + "end": 4433.78, + "probability": 0.9394 + }, + { + "start": 4434.34, + "end": 4439.7, + "probability": 0.9255 + }, + { + "start": 4440.66, + "end": 4444.34, + "probability": 0.797 + }, + { + "start": 4445.36, + "end": 4445.9, + "probability": 0.5807 + }, + { + "start": 4445.94, + "end": 4446.7, + "probability": 0.8198 + }, + { + "start": 4446.78, + "end": 4447.58, + "probability": 0.9363 + }, + { + "start": 4447.8, + "end": 4450.68, + "probability": 0.9754 + }, + { + "start": 4450.68, + "end": 4454.6, + "probability": 0.5824 + }, + { + "start": 4455.06, + "end": 4457.04, + "probability": 0.5042 + }, + { + "start": 4457.16, + "end": 4461.2, + "probability": 0.9821 + }, + { + "start": 4461.7, + "end": 4466.98, + "probability": 0.9938 + }, + { + "start": 4470.54, + "end": 4473.3, + "probability": 0.4985 + }, + { + "start": 4473.7, + "end": 4474.51, + "probability": 0.8542 + }, + { + "start": 4474.96, + "end": 4475.9, + "probability": 0.8251 + }, + { + "start": 4475.98, + "end": 4476.78, + "probability": 0.6778 + }, + { + "start": 4477.84, + "end": 4479.5, + "probability": 0.7766 + }, + { + "start": 4480.12, + "end": 4480.38, + "probability": 0.0215 + }, + { + "start": 4480.4, + "end": 4483.52, + "probability": 0.8428 + }, + { + "start": 4483.54, + "end": 4489.36, + "probability": 0.6218 + }, + { + "start": 4489.94, + "end": 4490.38, + "probability": 0.0933 + }, + { + "start": 4490.38, + "end": 4490.38, + "probability": 0.0241 + }, + { + "start": 4490.38, + "end": 4490.76, + "probability": 0.4904 + }, + { + "start": 4490.86, + "end": 4492.2, + "probability": 0.9868 + }, + { + "start": 4492.2, + "end": 4493.68, + "probability": 0.6061 + }, + { + "start": 4494.92, + "end": 4498.22, + "probability": 0.9891 + }, + { + "start": 4498.28, + "end": 4499.46, + "probability": 0.8708 + }, + { + "start": 4499.94, + "end": 4500.78, + "probability": 0.9509 + }, + { + "start": 4501.18, + "end": 4502.84, + "probability": 0.7646 + }, + { + "start": 4503.06, + "end": 4504.14, + "probability": 0.8345 + }, + { + "start": 4504.14, + "end": 4506.92, + "probability": 0.8518 + }, + { + "start": 4506.98, + "end": 4508.06, + "probability": 0.9223 + }, + { + "start": 4508.14, + "end": 4508.14, + "probability": 0.6052 + }, + { + "start": 4508.34, + "end": 4511.67, + "probability": 0.9021 + }, + { + "start": 4512.22, + "end": 4513.8, + "probability": 0.5983 + }, + { + "start": 4513.86, + "end": 4515.54, + "probability": 0.9438 + }, + { + "start": 4516.04, + "end": 4516.68, + "probability": 0.7007 + }, + { + "start": 4516.82, + "end": 4519.76, + "probability": 0.4853 + }, + { + "start": 4520.44, + "end": 4524.26, + "probability": 0.7806 + } + ], + "segments_count": 1297, + "words_count": 6682, + "avg_words_per_segment": 5.1519, + "avg_segment_duration": 2.4305, + "avg_words_per_minute": 83.5856, + "plenum_id": "105011", + "duration": 4796.52, + "title": null, + "plenum_date": "2022-02-01" +} \ No newline at end of file