diff --git "a/118867/metadata.json" "b/118867/metadata.json" new file mode 100644--- /dev/null +++ "b/118867/metadata.json" @@ -0,0 +1,57107 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "118867", + "quality_score": 0.9458, + "per_segment_quality_scores": [ + { + "start": 70.12, + "end": 73.42, + "probability": 0.5871 + }, + { + "start": 73.6, + "end": 78.42, + "probability": 0.7469 + }, + { + "start": 78.44, + "end": 78.9, + "probability": 0.867 + }, + { + "start": 79.0, + "end": 79.22, + "probability": 0.7944 + }, + { + "start": 80.08, + "end": 81.02, + "probability": 0.7778 + }, + { + "start": 81.12, + "end": 82.28, + "probability": 0.3178 + }, + { + "start": 82.32, + "end": 83.66, + "probability": 0.9498 + }, + { + "start": 84.32, + "end": 87.34, + "probability": 0.9559 + }, + { + "start": 87.92, + "end": 89.1, + "probability": 0.2526 + }, + { + "start": 89.24, + "end": 90.38, + "probability": 0.5988 + }, + { + "start": 90.48, + "end": 92.26, + "probability": 0.988 + }, + { + "start": 92.82, + "end": 95.6, + "probability": 0.9909 + }, + { + "start": 95.6, + "end": 100.3, + "probability": 0.9991 + }, + { + "start": 100.32, + "end": 102.8, + "probability": 0.9732 + }, + { + "start": 103.2, + "end": 106.36, + "probability": 0.9904 + }, + { + "start": 107.0, + "end": 108.54, + "probability": 0.9897 + }, + { + "start": 112.98, + "end": 114.98, + "probability": 0.6676 + }, + { + "start": 115.7, + "end": 116.32, + "probability": 0.8824 + }, + { + "start": 116.4, + "end": 117.76, + "probability": 0.4164 + }, + { + "start": 117.76, + "end": 117.76, + "probability": 0.0195 + }, + { + "start": 117.76, + "end": 117.86, + "probability": 0.2623 + }, + { + "start": 118.72, + "end": 120.44, + "probability": 0.9119 + }, + { + "start": 120.58, + "end": 121.12, + "probability": 0.7725 + }, + { + "start": 121.28, + "end": 124.52, + "probability": 0.872 + }, + { + "start": 125.28, + "end": 126.92, + "probability": 0.9927 + }, + { + "start": 127.6, + "end": 128.1, + "probability": 0.4567 + }, + { + "start": 130.28, + "end": 130.98, + "probability": 0.2429 + }, + { + "start": 132.24, + "end": 132.92, + "probability": 0.2121 + }, + { + "start": 133.04, + "end": 134.76, + "probability": 0.6011 + }, + { + "start": 135.7, + "end": 137.52, + "probability": 0.6748 + }, + { + "start": 138.42, + "end": 139.8, + "probability": 0.7853 + }, + { + "start": 148.3, + "end": 149.78, + "probability": 0.8062 + }, + { + "start": 149.84, + "end": 151.83, + "probability": 0.8743 + }, + { + "start": 151.98, + "end": 153.32, + "probability": 0.9896 + }, + { + "start": 153.38, + "end": 153.76, + "probability": 0.9221 + }, + { + "start": 154.02, + "end": 154.46, + "probability": 0.8991 + }, + { + "start": 155.42, + "end": 156.77, + "probability": 0.5571 + }, + { + "start": 158.02, + "end": 160.04, + "probability": 0.9048 + }, + { + "start": 162.77, + "end": 165.42, + "probability": 0.7604 + }, + { + "start": 165.48, + "end": 169.92, + "probability": 0.9793 + }, + { + "start": 169.92, + "end": 172.1, + "probability": 0.9875 + }, + { + "start": 172.48, + "end": 175.92, + "probability": 0.9341 + }, + { + "start": 178.6, + "end": 178.6, + "probability": 0.1534 + }, + { + "start": 178.6, + "end": 179.16, + "probability": 0.5742 + }, + { + "start": 180.14, + "end": 184.98, + "probability": 0.9609 + }, + { + "start": 185.72, + "end": 189.0, + "probability": 0.9971 + }, + { + "start": 189.84, + "end": 192.32, + "probability": 0.9896 + }, + { + "start": 192.32, + "end": 196.64, + "probability": 0.9971 + }, + { + "start": 196.64, + "end": 202.92, + "probability": 0.9692 + }, + { + "start": 203.12, + "end": 209.5, + "probability": 0.9604 + }, + { + "start": 211.3, + "end": 214.77, + "probability": 0.9685 + }, + { + "start": 215.6, + "end": 218.06, + "probability": 0.9934 + }, + { + "start": 218.28, + "end": 219.08, + "probability": 0.7521 + }, + { + "start": 219.6, + "end": 221.39, + "probability": 0.9976 + }, + { + "start": 222.04, + "end": 225.0, + "probability": 0.9925 + }, + { + "start": 226.22, + "end": 227.48, + "probability": 0.7167 + }, + { + "start": 228.04, + "end": 231.08, + "probability": 0.9338 + }, + { + "start": 231.7, + "end": 237.14, + "probability": 0.9146 + }, + { + "start": 237.96, + "end": 239.74, + "probability": 0.8299 + }, + { + "start": 239.92, + "end": 240.48, + "probability": 0.9285 + }, + { + "start": 240.96, + "end": 241.94, + "probability": 0.9646 + }, + { + "start": 242.04, + "end": 242.86, + "probability": 0.9653 + }, + { + "start": 243.26, + "end": 245.28, + "probability": 0.9776 + }, + { + "start": 246.22, + "end": 249.98, + "probability": 0.9489 + }, + { + "start": 249.98, + "end": 250.64, + "probability": 0.5935 + }, + { + "start": 251.26, + "end": 252.84, + "probability": 0.8685 + }, + { + "start": 253.84, + "end": 254.64, + "probability": 0.9648 + }, + { + "start": 254.8, + "end": 255.34, + "probability": 0.8969 + }, + { + "start": 255.68, + "end": 258.38, + "probability": 0.985 + }, + { + "start": 258.38, + "end": 261.5, + "probability": 0.9824 + }, + { + "start": 262.18, + "end": 265.88, + "probability": 0.9678 + }, + { + "start": 266.98, + "end": 267.5, + "probability": 0.7634 + }, + { + "start": 268.26, + "end": 268.92, + "probability": 0.3812 + }, + { + "start": 268.96, + "end": 272.4, + "probability": 0.9268 + }, + { + "start": 272.92, + "end": 273.54, + "probability": 0.9789 + }, + { + "start": 274.28, + "end": 275.52, + "probability": 0.9965 + }, + { + "start": 275.96, + "end": 276.47, + "probability": 0.9347 + }, + { + "start": 276.98, + "end": 280.08, + "probability": 0.9689 + }, + { + "start": 280.6, + "end": 284.48, + "probability": 0.7939 + }, + { + "start": 285.0, + "end": 285.53, + "probability": 0.9888 + }, + { + "start": 286.46, + "end": 287.7, + "probability": 0.9683 + }, + { + "start": 288.36, + "end": 290.3, + "probability": 0.9969 + }, + { + "start": 290.66, + "end": 291.1, + "probability": 0.6887 + }, + { + "start": 291.84, + "end": 292.92, + "probability": 0.5991 + }, + { + "start": 293.06, + "end": 295.14, + "probability": 0.9756 + }, + { + "start": 295.2, + "end": 295.94, + "probability": 0.7824 + }, + { + "start": 296.04, + "end": 297.98, + "probability": 0.8705 + }, + { + "start": 306.94, + "end": 308.8, + "probability": 0.594 + }, + { + "start": 309.68, + "end": 311.7, + "probability": 0.9933 + }, + { + "start": 312.58, + "end": 314.46, + "probability": 0.6836 + }, + { + "start": 315.76, + "end": 317.44, + "probability": 0.9083 + }, + { + "start": 317.92, + "end": 321.86, + "probability": 0.9902 + }, + { + "start": 323.34, + "end": 328.14, + "probability": 0.9814 + }, + { + "start": 329.9, + "end": 333.52, + "probability": 0.8669 + }, + { + "start": 334.28, + "end": 337.18, + "probability": 0.9229 + }, + { + "start": 337.88, + "end": 341.58, + "probability": 0.9763 + }, + { + "start": 344.06, + "end": 347.58, + "probability": 0.9881 + }, + { + "start": 347.58, + "end": 351.0, + "probability": 0.9698 + }, + { + "start": 352.5, + "end": 356.1, + "probability": 0.7688 + }, + { + "start": 356.68, + "end": 359.74, + "probability": 0.6593 + }, + { + "start": 360.92, + "end": 365.14, + "probability": 0.869 + }, + { + "start": 367.54, + "end": 369.24, + "probability": 0.8078 + }, + { + "start": 369.94, + "end": 373.52, + "probability": 0.7733 + }, + { + "start": 374.32, + "end": 377.48, + "probability": 0.9595 + }, + { + "start": 378.4, + "end": 380.16, + "probability": 0.9663 + }, + { + "start": 380.78, + "end": 388.64, + "probability": 0.863 + }, + { + "start": 389.84, + "end": 392.35, + "probability": 0.9652 + }, + { + "start": 394.0, + "end": 394.94, + "probability": 0.4323 + }, + { + "start": 395.72, + "end": 397.82, + "probability": 0.7699 + }, + { + "start": 398.94, + "end": 401.96, + "probability": 0.9565 + }, + { + "start": 402.72, + "end": 403.5, + "probability": 0.4672 + }, + { + "start": 404.46, + "end": 409.16, + "probability": 0.9192 + }, + { + "start": 410.38, + "end": 413.78, + "probability": 0.8213 + }, + { + "start": 414.58, + "end": 415.44, + "probability": 0.3572 + }, + { + "start": 416.1, + "end": 417.74, + "probability": 0.9169 + }, + { + "start": 419.56, + "end": 420.74, + "probability": 0.9626 + }, + { + "start": 422.54, + "end": 423.76, + "probability": 0.9668 + }, + { + "start": 424.38, + "end": 426.84, + "probability": 0.9629 + }, + { + "start": 427.76, + "end": 428.52, + "probability": 0.9883 + }, + { + "start": 429.3, + "end": 431.9, + "probability": 0.9902 + }, + { + "start": 432.44, + "end": 433.16, + "probability": 0.9484 + }, + { + "start": 434.32, + "end": 436.56, + "probability": 0.9694 + }, + { + "start": 436.78, + "end": 437.24, + "probability": 0.8211 + }, + { + "start": 437.5, + "end": 439.1, + "probability": 0.8085 + }, + { + "start": 439.38, + "end": 442.02, + "probability": 0.915 + }, + { + "start": 442.18, + "end": 444.94, + "probability": 0.908 + }, + { + "start": 450.54, + "end": 453.44, + "probability": 0.8013 + }, + { + "start": 454.24, + "end": 455.34, + "probability": 0.588 + }, + { + "start": 456.62, + "end": 464.32, + "probability": 0.9243 + }, + { + "start": 465.36, + "end": 466.44, + "probability": 0.7591 + }, + { + "start": 466.54, + "end": 468.5, + "probability": 0.9092 + }, + { + "start": 468.82, + "end": 470.1, + "probability": 0.9501 + }, + { + "start": 470.62, + "end": 471.32, + "probability": 0.8185 + }, + { + "start": 472.0, + "end": 475.88, + "probability": 0.7717 + }, + { + "start": 477.28, + "end": 481.22, + "probability": 0.9843 + }, + { + "start": 481.22, + "end": 485.46, + "probability": 0.9823 + }, + { + "start": 487.24, + "end": 490.9, + "probability": 0.9901 + }, + { + "start": 491.08, + "end": 493.72, + "probability": 0.5695 + }, + { + "start": 493.8, + "end": 495.64, + "probability": 0.6038 + }, + { + "start": 496.2, + "end": 497.62, + "probability": 0.608 + }, + { + "start": 498.26, + "end": 500.54, + "probability": 0.7016 + }, + { + "start": 500.66, + "end": 505.42, + "probability": 0.881 + }, + { + "start": 506.72, + "end": 513.1, + "probability": 0.9165 + }, + { + "start": 514.18, + "end": 516.62, + "probability": 0.9077 + }, + { + "start": 517.16, + "end": 521.48, + "probability": 0.8969 + }, + { + "start": 523.06, + "end": 526.48, + "probability": 0.8853 + }, + { + "start": 527.2, + "end": 530.28, + "probability": 0.9624 + }, + { + "start": 532.04, + "end": 533.4, + "probability": 0.7215 + }, + { + "start": 534.52, + "end": 535.98, + "probability": 0.4304 + }, + { + "start": 536.78, + "end": 541.52, + "probability": 0.9028 + }, + { + "start": 543.62, + "end": 547.66, + "probability": 0.9217 + }, + { + "start": 548.72, + "end": 551.08, + "probability": 0.8924 + }, + { + "start": 551.6, + "end": 552.36, + "probability": 0.874 + }, + { + "start": 553.16, + "end": 556.62, + "probability": 0.6468 + }, + { + "start": 557.74, + "end": 560.98, + "probability": 0.9449 + }, + { + "start": 562.54, + "end": 565.74, + "probability": 0.9927 + }, + { + "start": 566.5, + "end": 570.48, + "probability": 0.9817 + }, + { + "start": 571.24, + "end": 575.68, + "probability": 0.7415 + }, + { + "start": 577.34, + "end": 579.96, + "probability": 0.8184 + }, + { + "start": 580.86, + "end": 585.28, + "probability": 0.771 + }, + { + "start": 585.66, + "end": 587.96, + "probability": 0.8134 + }, + { + "start": 588.76, + "end": 592.04, + "probability": 0.9372 + }, + { + "start": 593.28, + "end": 594.64, + "probability": 0.5779 + }, + { + "start": 595.3, + "end": 598.14, + "probability": 0.9834 + }, + { + "start": 598.52, + "end": 599.54, + "probability": 0.4465 + }, + { + "start": 599.7, + "end": 602.28, + "probability": 0.8223 + }, + { + "start": 602.36, + "end": 602.9, + "probability": 0.5477 + }, + { + "start": 602.94, + "end": 604.98, + "probability": 0.903 + }, + { + "start": 606.26, + "end": 609.1, + "probability": 0.4402 + }, + { + "start": 609.16, + "end": 610.18, + "probability": 0.6 + }, + { + "start": 610.86, + "end": 613.34, + "probability": 0.5831 + }, + { + "start": 614.18, + "end": 615.48, + "probability": 0.9465 + }, + { + "start": 616.68, + "end": 620.16, + "probability": 0.9974 + }, + { + "start": 620.78, + "end": 622.16, + "probability": 0.9997 + }, + { + "start": 622.86, + "end": 624.7, + "probability": 0.9021 + }, + { + "start": 625.74, + "end": 626.38, + "probability": 0.6962 + }, + { + "start": 627.2, + "end": 628.98, + "probability": 0.6055 + }, + { + "start": 629.74, + "end": 630.52, + "probability": 0.765 + }, + { + "start": 631.2, + "end": 632.74, + "probability": 0.9958 + }, + { + "start": 634.36, + "end": 635.76, + "probability": 0.7859 + }, + { + "start": 636.34, + "end": 639.08, + "probability": 0.9932 + }, + { + "start": 639.76, + "end": 641.32, + "probability": 0.9426 + }, + { + "start": 641.98, + "end": 644.28, + "probability": 0.9637 + }, + { + "start": 644.9, + "end": 651.36, + "probability": 0.9358 + }, + { + "start": 652.04, + "end": 653.74, + "probability": 0.9955 + }, + { + "start": 654.36, + "end": 658.36, + "probability": 0.9785 + }, + { + "start": 659.82, + "end": 661.7, + "probability": 0.9553 + }, + { + "start": 662.52, + "end": 664.22, + "probability": 0.8528 + }, + { + "start": 665.16, + "end": 666.14, + "probability": 0.9819 + }, + { + "start": 666.28, + "end": 667.84, + "probability": 0.8202 + }, + { + "start": 667.96, + "end": 668.74, + "probability": 0.2872 + }, + { + "start": 669.32, + "end": 671.38, + "probability": 0.9007 + }, + { + "start": 671.84, + "end": 672.6, + "probability": 0.7858 + }, + { + "start": 672.62, + "end": 674.28, + "probability": 0.9927 + }, + { + "start": 674.86, + "end": 675.14, + "probability": 0.6593 + }, + { + "start": 675.22, + "end": 675.88, + "probability": 0.9813 + }, + { + "start": 675.98, + "end": 679.2, + "probability": 0.9948 + }, + { + "start": 680.04, + "end": 683.14, + "probability": 0.9892 + }, + { + "start": 683.9, + "end": 684.84, + "probability": 0.7489 + }, + { + "start": 685.4, + "end": 687.96, + "probability": 0.9907 + }, + { + "start": 687.96, + "end": 691.64, + "probability": 0.9946 + }, + { + "start": 692.44, + "end": 693.34, + "probability": 0.7836 + }, + { + "start": 693.86, + "end": 694.8, + "probability": 0.5963 + }, + { + "start": 695.78, + "end": 698.34, + "probability": 0.9702 + }, + { + "start": 698.68, + "end": 698.94, + "probability": 0.6999 + }, + { + "start": 700.12, + "end": 701.38, + "probability": 0.7109 + }, + { + "start": 701.56, + "end": 704.26, + "probability": 0.9048 + }, + { + "start": 704.26, + "end": 706.14, + "probability": 0.9543 + }, + { + "start": 708.22, + "end": 710.48, + "probability": 0.4932 + }, + { + "start": 710.56, + "end": 712.52, + "probability": 0.6136 + }, + { + "start": 712.52, + "end": 715.22, + "probability": 0.7427 + }, + { + "start": 715.36, + "end": 716.88, + "probability": 0.4364 + }, + { + "start": 717.94, + "end": 723.42, + "probability": 0.9204 + }, + { + "start": 724.14, + "end": 725.24, + "probability": 0.8688 + }, + { + "start": 728.98, + "end": 730.4, + "probability": 0.7824 + }, + { + "start": 731.04, + "end": 732.74, + "probability": 0.1685 + }, + { + "start": 732.74, + "end": 736.32, + "probability": 0.8447 + }, + { + "start": 736.32, + "end": 739.42, + "probability": 0.9023 + }, + { + "start": 740.9, + "end": 742.3, + "probability": 0.6411 + }, + { + "start": 743.32, + "end": 748.5, + "probability": 0.9834 + }, + { + "start": 748.5, + "end": 753.78, + "probability": 0.999 + }, + { + "start": 754.6, + "end": 760.0, + "probability": 0.9974 + }, + { + "start": 760.48, + "end": 766.9, + "probability": 0.9717 + }, + { + "start": 767.58, + "end": 769.54, + "probability": 0.8378 + }, + { + "start": 770.32, + "end": 771.14, + "probability": 0.7616 + }, + { + "start": 771.74, + "end": 774.1, + "probability": 0.9912 + }, + { + "start": 774.86, + "end": 777.16, + "probability": 0.9926 + }, + { + "start": 777.7, + "end": 779.3, + "probability": 0.9718 + }, + { + "start": 780.1, + "end": 783.92, + "probability": 0.6506 + }, + { + "start": 783.92, + "end": 787.86, + "probability": 0.9802 + }, + { + "start": 788.48, + "end": 789.1, + "probability": 0.9807 + }, + { + "start": 789.78, + "end": 790.5, + "probability": 0.7536 + }, + { + "start": 790.8, + "end": 792.64, + "probability": 0.7734 + }, + { + "start": 792.72, + "end": 795.14, + "probability": 0.9536 + }, + { + "start": 795.3, + "end": 798.28, + "probability": 0.9229 + }, + { + "start": 798.48, + "end": 799.64, + "probability": 0.8691 + }, + { + "start": 799.96, + "end": 805.76, + "probability": 0.9922 + }, + { + "start": 807.12, + "end": 812.9, + "probability": 0.9644 + }, + { + "start": 813.48, + "end": 816.74, + "probability": 0.6631 + }, + { + "start": 817.38, + "end": 819.24, + "probability": 0.4872 + }, + { + "start": 819.7, + "end": 822.6, + "probability": 0.5837 + }, + { + "start": 823.24, + "end": 825.14, + "probability": 0.8918 + }, + { + "start": 825.68, + "end": 827.98, + "probability": 0.6915 + }, + { + "start": 828.52, + "end": 830.82, + "probability": 0.8403 + }, + { + "start": 831.5, + "end": 834.1, + "probability": 0.7585 + }, + { + "start": 834.5, + "end": 837.1, + "probability": 0.6646 + }, + { + "start": 837.52, + "end": 838.8, + "probability": 0.627 + }, + { + "start": 838.9, + "end": 843.12, + "probability": 0.7845 + }, + { + "start": 843.62, + "end": 845.24, + "probability": 0.5509 + }, + { + "start": 846.02, + "end": 847.42, + "probability": 0.7575 + }, + { + "start": 847.86, + "end": 850.56, + "probability": 0.6796 + }, + { + "start": 851.1, + "end": 853.24, + "probability": 0.9206 + }, + { + "start": 853.7, + "end": 857.92, + "probability": 0.7384 + }, + { + "start": 858.58, + "end": 863.22, + "probability": 0.6473 + }, + { + "start": 863.76, + "end": 867.44, + "probability": 0.9595 + }, + { + "start": 867.84, + "end": 870.9, + "probability": 0.8859 + }, + { + "start": 871.32, + "end": 873.42, + "probability": 0.7738 + }, + { + "start": 874.1, + "end": 874.12, + "probability": 0.7087 + }, + { + "start": 874.26, + "end": 874.88, + "probability": 0.7011 + }, + { + "start": 874.94, + "end": 875.74, + "probability": 0.7885 + }, + { + "start": 875.82, + "end": 878.56, + "probability": 0.7527 + }, + { + "start": 879.46, + "end": 881.0, + "probability": 0.9948 + }, + { + "start": 884.38, + "end": 886.86, + "probability": 0.8525 + }, + { + "start": 889.22, + "end": 895.78, + "probability": 0.9862 + }, + { + "start": 896.84, + "end": 900.32, + "probability": 0.9981 + }, + { + "start": 900.32, + "end": 905.7, + "probability": 0.9908 + }, + { + "start": 906.84, + "end": 912.48, + "probability": 0.999 + }, + { + "start": 912.48, + "end": 916.1, + "probability": 0.9712 + }, + { + "start": 917.38, + "end": 920.68, + "probability": 0.9948 + }, + { + "start": 920.96, + "end": 923.72, + "probability": 0.9977 + }, + { + "start": 924.26, + "end": 927.46, + "probability": 0.9915 + }, + { + "start": 928.82, + "end": 931.5, + "probability": 0.8542 + }, + { + "start": 931.74, + "end": 934.08, + "probability": 0.7729 + }, + { + "start": 934.56, + "end": 935.48, + "probability": 0.7224 + }, + { + "start": 935.58, + "end": 936.76, + "probability": 0.9023 + }, + { + "start": 936.82, + "end": 939.5, + "probability": 0.9663 + }, + { + "start": 940.18, + "end": 943.24, + "probability": 0.9637 + }, + { + "start": 943.68, + "end": 946.48, + "probability": 0.8688 + }, + { + "start": 946.82, + "end": 950.22, + "probability": 0.9932 + }, + { + "start": 950.98, + "end": 954.06, + "probability": 0.9072 + }, + { + "start": 954.88, + "end": 957.46, + "probability": 0.9965 + }, + { + "start": 957.46, + "end": 961.22, + "probability": 0.9891 + }, + { + "start": 961.66, + "end": 965.06, + "probability": 0.99 + }, + { + "start": 965.6, + "end": 968.54, + "probability": 0.978 + }, + { + "start": 969.18, + "end": 974.02, + "probability": 0.9281 + }, + { + "start": 974.48, + "end": 976.52, + "probability": 0.9424 + }, + { + "start": 977.46, + "end": 980.82, + "probability": 0.9448 + }, + { + "start": 981.44, + "end": 985.52, + "probability": 0.8946 + }, + { + "start": 986.02, + "end": 989.36, + "probability": 0.9963 + }, + { + "start": 989.78, + "end": 991.02, + "probability": 0.9924 + }, + { + "start": 991.54, + "end": 994.18, + "probability": 0.9966 + }, + { + "start": 995.92, + "end": 997.28, + "probability": 0.8455 + }, + { + "start": 997.78, + "end": 1000.26, + "probability": 0.9983 + }, + { + "start": 1000.78, + "end": 1002.98, + "probability": 0.9974 + }, + { + "start": 1003.18, + "end": 1003.8, + "probability": 0.8099 + }, + { + "start": 1004.18, + "end": 1005.26, + "probability": 0.8264 + }, + { + "start": 1005.72, + "end": 1008.3, + "probability": 0.9826 + }, + { + "start": 1008.76, + "end": 1010.7, + "probability": 0.9961 + }, + { + "start": 1010.82, + "end": 1011.86, + "probability": 0.9492 + }, + { + "start": 1012.4, + "end": 1014.92, + "probability": 0.9716 + }, + { + "start": 1014.92, + "end": 1015.22, + "probability": 0.4535 + }, + { + "start": 1015.72, + "end": 1015.98, + "probability": 0.8416 + }, + { + "start": 1015.98, + "end": 1016.76, + "probability": 0.9553 + }, + { + "start": 1017.02, + "end": 1017.24, + "probability": 0.9155 + }, + { + "start": 1017.32, + "end": 1018.16, + "probability": 0.7639 + }, + { + "start": 1018.84, + "end": 1019.2, + "probability": 0.8159 + }, + { + "start": 1019.32, + "end": 1020.4, + "probability": 0.6824 + }, + { + "start": 1020.62, + "end": 1022.86, + "probability": 0.9877 + }, + { + "start": 1023.54, + "end": 1025.24, + "probability": 0.9853 + }, + { + "start": 1025.58, + "end": 1028.24, + "probability": 0.9916 + }, + { + "start": 1028.7, + "end": 1031.92, + "probability": 0.9565 + }, + { + "start": 1032.5, + "end": 1034.9, + "probability": 0.9917 + }, + { + "start": 1034.98, + "end": 1038.38, + "probability": 0.9928 + }, + { + "start": 1038.54, + "end": 1039.16, + "probability": 0.8984 + }, + { + "start": 1040.44, + "end": 1044.98, + "probability": 0.9914 + }, + { + "start": 1045.46, + "end": 1050.78, + "probability": 0.9113 + }, + { + "start": 1050.78, + "end": 1056.16, + "probability": 0.9982 + }, + { + "start": 1056.88, + "end": 1057.2, + "probability": 0.4294 + }, + { + "start": 1057.62, + "end": 1059.0, + "probability": 0.9704 + }, + { + "start": 1059.36, + "end": 1062.5, + "probability": 0.9805 + }, + { + "start": 1062.66, + "end": 1063.14, + "probability": 0.7671 + }, + { + "start": 1063.76, + "end": 1064.7, + "probability": 0.5282 + }, + { + "start": 1064.7, + "end": 1065.2, + "probability": 0.5931 + }, + { + "start": 1065.24, + "end": 1065.82, + "probability": 0.9152 + }, + { + "start": 1065.9, + "end": 1067.66, + "probability": 0.9583 + }, + { + "start": 1067.78, + "end": 1070.04, + "probability": 0.9827 + }, + { + "start": 1070.82, + "end": 1074.08, + "probability": 0.981 + }, + { + "start": 1074.2, + "end": 1074.96, + "probability": 0.58 + }, + { + "start": 1082.1, + "end": 1083.56, + "probability": 0.8212 + }, + { + "start": 1083.58, + "end": 1084.14, + "probability": 0.5778 + }, + { + "start": 1084.26, + "end": 1086.2, + "probability": 0.9197 + }, + { + "start": 1086.92, + "end": 1087.46, + "probability": 0.6765 + }, + { + "start": 1088.14, + "end": 1091.29, + "probability": 0.9734 + }, + { + "start": 1092.58, + "end": 1094.78, + "probability": 0.9863 + }, + { + "start": 1095.58, + "end": 1096.66, + "probability": 0.8418 + }, + { + "start": 1096.78, + "end": 1099.72, + "probability": 0.856 + }, + { + "start": 1100.28, + "end": 1101.7, + "probability": 0.8065 + }, + { + "start": 1102.32, + "end": 1104.36, + "probability": 0.9183 + }, + { + "start": 1104.38, + "end": 1106.92, + "probability": 0.977 + }, + { + "start": 1107.32, + "end": 1108.18, + "probability": 0.9836 + }, + { + "start": 1109.14, + "end": 1109.94, + "probability": 0.9672 + }, + { + "start": 1110.06, + "end": 1112.56, + "probability": 0.9991 + }, + { + "start": 1113.5, + "end": 1118.44, + "probability": 0.9963 + }, + { + "start": 1118.84, + "end": 1119.86, + "probability": 0.9986 + }, + { + "start": 1120.72, + "end": 1121.66, + "probability": 0.7416 + }, + { + "start": 1123.02, + "end": 1126.68, + "probability": 0.9975 + }, + { + "start": 1127.24, + "end": 1129.22, + "probability": 0.9954 + }, + { + "start": 1130.3, + "end": 1133.64, + "probability": 0.9984 + }, + { + "start": 1134.26, + "end": 1135.38, + "probability": 0.9922 + }, + { + "start": 1136.08, + "end": 1138.5, + "probability": 0.9933 + }, + { + "start": 1139.84, + "end": 1143.36, + "probability": 0.9766 + }, + { + "start": 1143.88, + "end": 1146.36, + "probability": 0.9751 + }, + { + "start": 1146.94, + "end": 1148.18, + "probability": 0.958 + }, + { + "start": 1149.04, + "end": 1155.5, + "probability": 0.9976 + }, + { + "start": 1156.52, + "end": 1158.54, + "probability": 0.9985 + }, + { + "start": 1159.34, + "end": 1162.72, + "probability": 0.9028 + }, + { + "start": 1162.72, + "end": 1165.86, + "probability": 0.998 + }, + { + "start": 1167.24, + "end": 1171.2, + "probability": 0.9884 + }, + { + "start": 1171.7, + "end": 1173.14, + "probability": 0.9577 + }, + { + "start": 1173.72, + "end": 1175.36, + "probability": 0.994 + }, + { + "start": 1175.5, + "end": 1180.72, + "probability": 0.9845 + }, + { + "start": 1180.72, + "end": 1184.78, + "probability": 0.9995 + }, + { + "start": 1185.82, + "end": 1186.66, + "probability": 0.9417 + }, + { + "start": 1186.8, + "end": 1187.24, + "probability": 0.835 + }, + { + "start": 1187.42, + "end": 1191.42, + "probability": 0.9984 + }, + { + "start": 1192.36, + "end": 1196.5, + "probability": 0.9984 + }, + { + "start": 1196.5, + "end": 1199.58, + "probability": 0.891 + }, + { + "start": 1200.14, + "end": 1201.68, + "probability": 0.9502 + }, + { + "start": 1203.0, + "end": 1203.7, + "probability": 0.6192 + }, + { + "start": 1204.12, + "end": 1204.12, + "probability": 0.6322 + }, + { + "start": 1204.36, + "end": 1206.98, + "probability": 0.9875 + }, + { + "start": 1207.04, + "end": 1208.12, + "probability": 0.9789 + }, + { + "start": 1208.44, + "end": 1209.48, + "probability": 0.9702 + }, + { + "start": 1209.52, + "end": 1214.28, + "probability": 0.9683 + }, + { + "start": 1216.26, + "end": 1219.9, + "probability": 0.9979 + }, + { + "start": 1219.9, + "end": 1224.46, + "probability": 0.999 + }, + { + "start": 1224.96, + "end": 1226.36, + "probability": 0.9768 + }, + { + "start": 1227.0, + "end": 1233.6, + "probability": 0.9556 + }, + { + "start": 1233.82, + "end": 1234.38, + "probability": 0.9725 + }, + { + "start": 1235.36, + "end": 1237.18, + "probability": 0.9954 + }, + { + "start": 1238.02, + "end": 1241.46, + "probability": 0.9947 + }, + { + "start": 1241.46, + "end": 1244.4, + "probability": 0.9989 + }, + { + "start": 1245.32, + "end": 1248.0, + "probability": 0.948 + }, + { + "start": 1249.34, + "end": 1253.46, + "probability": 0.9957 + }, + { + "start": 1253.48, + "end": 1254.1, + "probability": 0.5824 + }, + { + "start": 1254.9, + "end": 1256.58, + "probability": 0.9985 + }, + { + "start": 1257.26, + "end": 1261.18, + "probability": 0.9963 + }, + { + "start": 1263.06, + "end": 1267.2, + "probability": 0.9867 + }, + { + "start": 1268.6, + "end": 1274.12, + "probability": 0.8779 + }, + { + "start": 1274.52, + "end": 1275.12, + "probability": 0.9197 + }, + { + "start": 1275.56, + "end": 1278.44, + "probability": 0.9667 + }, + { + "start": 1279.06, + "end": 1281.76, + "probability": 0.7999 + }, + { + "start": 1282.26, + "end": 1285.1, + "probability": 0.9724 + }, + { + "start": 1285.54, + "end": 1287.7, + "probability": 0.9801 + }, + { + "start": 1299.06, + "end": 1299.3, + "probability": 0.1359 + }, + { + "start": 1299.3, + "end": 1299.32, + "probability": 0.1531 + }, + { + "start": 1299.32, + "end": 1299.8, + "probability": 0.11 + }, + { + "start": 1300.84, + "end": 1304.94, + "probability": 0.7978 + }, + { + "start": 1305.32, + "end": 1308.32, + "probability": 0.9751 + }, + { + "start": 1309.14, + "end": 1312.12, + "probability": 0.8623 + }, + { + "start": 1312.76, + "end": 1314.66, + "probability": 0.6714 + }, + { + "start": 1315.3, + "end": 1315.84, + "probability": 0.6188 + }, + { + "start": 1315.86, + "end": 1323.12, + "probability": 0.9275 + }, + { + "start": 1324.46, + "end": 1328.58, + "probability": 0.995 + }, + { + "start": 1329.38, + "end": 1330.22, + "probability": 0.7421 + }, + { + "start": 1330.64, + "end": 1333.18, + "probability": 0.9722 + }, + { + "start": 1333.24, + "end": 1333.34, + "probability": 0.5531 + }, + { + "start": 1334.2, + "end": 1335.24, + "probability": 0.9843 + }, + { + "start": 1335.74, + "end": 1339.02, + "probability": 0.9933 + }, + { + "start": 1339.74, + "end": 1340.7, + "probability": 0.8572 + }, + { + "start": 1341.54, + "end": 1344.46, + "probability": 0.9454 + }, + { + "start": 1345.38, + "end": 1347.38, + "probability": 0.9916 + }, + { + "start": 1348.22, + "end": 1352.28, + "probability": 0.995 + }, + { + "start": 1352.92, + "end": 1355.3, + "probability": 0.9464 + }, + { + "start": 1356.16, + "end": 1357.04, + "probability": 0.9575 + }, + { + "start": 1357.7, + "end": 1360.88, + "probability": 0.97 + }, + { + "start": 1361.34, + "end": 1363.82, + "probability": 0.7302 + }, + { + "start": 1364.48, + "end": 1366.44, + "probability": 0.5156 + }, + { + "start": 1367.17, + "end": 1369.08, + "probability": 0.953 + }, + { + "start": 1370.66, + "end": 1371.1, + "probability": 0.926 + }, + { + "start": 1371.62, + "end": 1371.82, + "probability": 0.7542 + }, + { + "start": 1372.62, + "end": 1373.28, + "probability": 0.9521 + }, + { + "start": 1374.8, + "end": 1376.44, + "probability": 0.9443 + }, + { + "start": 1377.48, + "end": 1378.94, + "probability": 0.7084 + }, + { + "start": 1379.84, + "end": 1380.88, + "probability": 0.9623 + }, + { + "start": 1382.08, + "end": 1382.54, + "probability": 0.8127 + }, + { + "start": 1382.64, + "end": 1384.12, + "probability": 0.9935 + }, + { + "start": 1384.4, + "end": 1385.56, + "probability": 0.8464 + }, + { + "start": 1386.38, + "end": 1388.46, + "probability": 0.9894 + }, + { + "start": 1389.22, + "end": 1390.2, + "probability": 0.8001 + }, + { + "start": 1390.86, + "end": 1391.78, + "probability": 0.9988 + }, + { + "start": 1393.44, + "end": 1397.88, + "probability": 0.9824 + }, + { + "start": 1398.22, + "end": 1398.62, + "probability": 0.8759 + }, + { + "start": 1398.84, + "end": 1400.68, + "probability": 0.9314 + }, + { + "start": 1400.76, + "end": 1401.32, + "probability": 0.8455 + }, + { + "start": 1401.42, + "end": 1402.02, + "probability": 0.9012 + }, + { + "start": 1402.38, + "end": 1404.1, + "probability": 0.9961 + }, + { + "start": 1404.56, + "end": 1407.98, + "probability": 0.9379 + }, + { + "start": 1409.0, + "end": 1409.56, + "probability": 0.707 + }, + { + "start": 1410.28, + "end": 1413.36, + "probability": 0.994 + }, + { + "start": 1414.12, + "end": 1420.54, + "probability": 0.9043 + }, + { + "start": 1421.38, + "end": 1422.12, + "probability": 0.7256 + }, + { + "start": 1422.52, + "end": 1423.68, + "probability": 0.9665 + }, + { + "start": 1424.06, + "end": 1426.54, + "probability": 0.9975 + }, + { + "start": 1426.66, + "end": 1429.24, + "probability": 0.9899 + }, + { + "start": 1429.72, + "end": 1435.4, + "probability": 0.9987 + }, + { + "start": 1435.78, + "end": 1439.34, + "probability": 0.9987 + }, + { + "start": 1439.5, + "end": 1439.9, + "probability": 0.7712 + }, + { + "start": 1440.58, + "end": 1442.5, + "probability": 0.9487 + }, + { + "start": 1442.5, + "end": 1445.79, + "probability": 0.9642 + }, + { + "start": 1446.9, + "end": 1448.98, + "probability": 0.9253 + }, + { + "start": 1450.34, + "end": 1451.66, + "probability": 0.0014 + }, + { + "start": 1466.34, + "end": 1469.44, + "probability": 0.3208 + }, + { + "start": 1471.4, + "end": 1471.68, + "probability": 0.0829 + }, + { + "start": 1475.12, + "end": 1476.66, + "probability": 0.4951 + }, + { + "start": 1476.86, + "end": 1478.56, + "probability": 0.7534 + }, + { + "start": 1478.66, + "end": 1479.5, + "probability": 0.9175 + }, + { + "start": 1480.76, + "end": 1482.96, + "probability": 0.9864 + }, + { + "start": 1483.62, + "end": 1484.94, + "probability": 0.9604 + }, + { + "start": 1486.02, + "end": 1489.0, + "probability": 0.9602 + }, + { + "start": 1489.1, + "end": 1490.76, + "probability": 0.8994 + }, + { + "start": 1493.12, + "end": 1498.68, + "probability": 0.9954 + }, + { + "start": 1499.4, + "end": 1501.04, + "probability": 0.8568 + }, + { + "start": 1502.84, + "end": 1506.36, + "probability": 0.9869 + }, + { + "start": 1506.64, + "end": 1511.04, + "probability": 0.9953 + }, + { + "start": 1511.34, + "end": 1512.14, + "probability": 0.6427 + }, + { + "start": 1514.02, + "end": 1517.88, + "probability": 0.972 + }, + { + "start": 1518.86, + "end": 1522.78, + "probability": 0.9983 + }, + { + "start": 1523.8, + "end": 1526.56, + "probability": 0.999 + }, + { + "start": 1527.68, + "end": 1530.04, + "probability": 0.9921 + }, + { + "start": 1532.0, + "end": 1532.4, + "probability": 0.8689 + }, + { + "start": 1532.72, + "end": 1536.92, + "probability": 0.9861 + }, + { + "start": 1537.84, + "end": 1544.54, + "probability": 0.998 + }, + { + "start": 1547.72, + "end": 1551.26, + "probability": 0.9986 + }, + { + "start": 1552.02, + "end": 1555.98, + "probability": 0.994 + }, + { + "start": 1557.62, + "end": 1558.18, + "probability": 0.744 + }, + { + "start": 1558.74, + "end": 1562.18, + "probability": 0.9799 + }, + { + "start": 1563.56, + "end": 1565.96, + "probability": 0.8426 + }, + { + "start": 1566.12, + "end": 1566.5, + "probability": 0.664 + }, + { + "start": 1566.86, + "end": 1570.06, + "probability": 0.8273 + }, + { + "start": 1570.36, + "end": 1570.6, + "probability": 0.8316 + }, + { + "start": 1571.12, + "end": 1571.76, + "probability": 0.734 + }, + { + "start": 1575.3, + "end": 1577.3, + "probability": 0.9398 + }, + { + "start": 1580.44, + "end": 1583.84, + "probability": 0.9258 + }, + { + "start": 1584.54, + "end": 1587.18, + "probability": 0.8887 + }, + { + "start": 1587.92, + "end": 1588.64, + "probability": 0.8142 + }, + { + "start": 1588.86, + "end": 1590.58, + "probability": 0.912 + }, + { + "start": 1590.72, + "end": 1591.89, + "probability": 0.4196 + }, + { + "start": 1592.76, + "end": 1595.18, + "probability": 0.7173 + }, + { + "start": 1596.22, + "end": 1597.0, + "probability": 0.3845 + }, + { + "start": 1597.0, + "end": 1599.54, + "probability": 0.969 + }, + { + "start": 1602.2, + "end": 1602.79, + "probability": 0.7247 + }, + { + "start": 1604.8, + "end": 1606.46, + "probability": 0.8027 + }, + { + "start": 1607.14, + "end": 1607.42, + "probability": 0.8452 + }, + { + "start": 1607.76, + "end": 1608.22, + "probability": 0.8227 + }, + { + "start": 1608.32, + "end": 1609.98, + "probability": 0.9359 + }, + { + "start": 1611.64, + "end": 1613.38, + "probability": 0.8727 + }, + { + "start": 1613.64, + "end": 1617.22, + "probability": 0.7802 + }, + { + "start": 1619.56, + "end": 1622.6, + "probability": 0.7565 + }, + { + "start": 1622.62, + "end": 1624.54, + "probability": 0.5453 + }, + { + "start": 1624.94, + "end": 1627.12, + "probability": 0.4828 + }, + { + "start": 1627.14, + "end": 1628.78, + "probability": 0.827 + }, + { + "start": 1656.82, + "end": 1656.92, + "probability": 0.3429 + }, + { + "start": 1660.64, + "end": 1663.12, + "probability": 0.5924 + }, + { + "start": 1664.42, + "end": 1665.36, + "probability": 0.8615 + }, + { + "start": 1667.08, + "end": 1669.34, + "probability": 0.8185 + }, + { + "start": 1670.52, + "end": 1671.82, + "probability": 0.7065 + }, + { + "start": 1673.67, + "end": 1676.82, + "probability": 0.9906 + }, + { + "start": 1678.32, + "end": 1682.14, + "probability": 0.987 + }, + { + "start": 1683.0, + "end": 1685.38, + "probability": 0.9827 + }, + { + "start": 1686.88, + "end": 1692.22, + "probability": 0.7051 + }, + { + "start": 1693.24, + "end": 1702.46, + "probability": 0.9689 + }, + { + "start": 1704.8, + "end": 1710.75, + "probability": 0.9927 + }, + { + "start": 1712.46, + "end": 1713.0, + "probability": 0.6849 + }, + { + "start": 1714.26, + "end": 1717.84, + "probability": 0.7102 + }, + { + "start": 1720.12, + "end": 1726.3, + "probability": 0.8389 + }, + { + "start": 1727.06, + "end": 1728.12, + "probability": 0.7931 + }, + { + "start": 1728.94, + "end": 1730.1, + "probability": 0.5493 + }, + { + "start": 1730.76, + "end": 1731.38, + "probability": 0.7269 + }, + { + "start": 1732.36, + "end": 1737.46, + "probability": 0.7571 + }, + { + "start": 1738.3, + "end": 1743.8, + "probability": 0.8664 + }, + { + "start": 1743.8, + "end": 1747.72, + "probability": 0.5093 + }, + { + "start": 1748.42, + "end": 1751.66, + "probability": 0.9641 + }, + { + "start": 1752.1, + "end": 1755.08, + "probability": 0.7334 + }, + { + "start": 1756.32, + "end": 1760.58, + "probability": 0.8754 + }, + { + "start": 1762.34, + "end": 1763.78, + "probability": 0.9819 + }, + { + "start": 1764.46, + "end": 1766.08, + "probability": 0.7881 + }, + { + "start": 1766.24, + "end": 1767.08, + "probability": 0.8202 + }, + { + "start": 1767.28, + "end": 1769.72, + "probability": 0.9583 + }, + { + "start": 1769.94, + "end": 1770.68, + "probability": 0.8612 + }, + { + "start": 1771.48, + "end": 1776.44, + "probability": 0.9719 + }, + { + "start": 1777.38, + "end": 1780.28, + "probability": 0.9971 + }, + { + "start": 1781.88, + "end": 1782.66, + "probability": 0.9923 + }, + { + "start": 1783.34, + "end": 1784.78, + "probability": 0.5231 + }, + { + "start": 1786.23, + "end": 1794.44, + "probability": 0.9946 + }, + { + "start": 1795.68, + "end": 1799.72, + "probability": 0.9059 + }, + { + "start": 1800.66, + "end": 1803.06, + "probability": 0.8904 + }, + { + "start": 1804.12, + "end": 1806.98, + "probability": 0.8346 + }, + { + "start": 1807.2, + "end": 1807.68, + "probability": 0.8563 + }, + { + "start": 1808.56, + "end": 1809.26, + "probability": 0.8169 + }, + { + "start": 1809.76, + "end": 1811.1, + "probability": 0.9334 + }, + { + "start": 1816.42, + "end": 1816.42, + "probability": 0.2978 + }, + { + "start": 1833.62, + "end": 1834.1, + "probability": 0.3764 + }, + { + "start": 1835.06, + "end": 1836.26, + "probability": 0.6705 + }, + { + "start": 1837.7, + "end": 1839.5, + "probability": 0.8887 + }, + { + "start": 1840.54, + "end": 1840.76, + "probability": 0.6042 + }, + { + "start": 1840.86, + "end": 1844.36, + "probability": 0.9799 + }, + { + "start": 1844.5, + "end": 1849.96, + "probability": 0.9886 + }, + { + "start": 1851.32, + "end": 1854.02, + "probability": 0.9961 + }, + { + "start": 1855.38, + "end": 1857.64, + "probability": 0.9739 + }, + { + "start": 1857.64, + "end": 1860.86, + "probability": 0.9831 + }, + { + "start": 1861.5, + "end": 1862.42, + "probability": 0.9849 + }, + { + "start": 1863.68, + "end": 1867.42, + "probability": 0.9788 + }, + { + "start": 1868.32, + "end": 1871.92, + "probability": 0.9928 + }, + { + "start": 1873.66, + "end": 1876.3, + "probability": 0.9297 + }, + { + "start": 1877.32, + "end": 1881.32, + "probability": 0.9791 + }, + { + "start": 1881.32, + "end": 1884.54, + "probability": 0.9949 + }, + { + "start": 1885.12, + "end": 1885.78, + "probability": 0.766 + }, + { + "start": 1886.52, + "end": 1889.3, + "probability": 0.9829 + }, + { + "start": 1889.56, + "end": 1891.6, + "probability": 0.9639 + }, + { + "start": 1892.42, + "end": 1893.92, + "probability": 0.9733 + }, + { + "start": 1894.44, + "end": 1897.28, + "probability": 0.9757 + }, + { + "start": 1898.54, + "end": 1904.54, + "probability": 0.9806 + }, + { + "start": 1905.1, + "end": 1908.74, + "probability": 0.9948 + }, + { + "start": 1909.22, + "end": 1911.12, + "probability": 0.9403 + }, + { + "start": 1911.18, + "end": 1914.0, + "probability": 0.9581 + }, + { + "start": 1914.86, + "end": 1916.58, + "probability": 0.9944 + }, + { + "start": 1917.26, + "end": 1921.62, + "probability": 0.9956 + }, + { + "start": 1921.62, + "end": 1925.74, + "probability": 0.9988 + }, + { + "start": 1926.5, + "end": 1930.94, + "probability": 0.9989 + }, + { + "start": 1930.94, + "end": 1934.86, + "probability": 0.9992 + }, + { + "start": 1935.52, + "end": 1941.54, + "probability": 0.9967 + }, + { + "start": 1942.14, + "end": 1943.78, + "probability": 0.9905 + }, + { + "start": 1944.7, + "end": 1949.64, + "probability": 0.9952 + }, + { + "start": 1949.64, + "end": 1955.58, + "probability": 0.9918 + }, + { + "start": 1956.28, + "end": 1956.78, + "probability": 0.6978 + }, + { + "start": 1956.84, + "end": 1961.54, + "probability": 0.9948 + }, + { + "start": 1961.62, + "end": 1966.48, + "probability": 0.9973 + }, + { + "start": 1967.82, + "end": 1970.1, + "probability": 0.9746 + }, + { + "start": 1970.88, + "end": 1974.66, + "probability": 0.9979 + }, + { + "start": 1974.66, + "end": 1979.14, + "probability": 0.9956 + }, + { + "start": 1979.14, + "end": 1983.58, + "probability": 0.9985 + }, + { + "start": 1984.24, + "end": 1986.36, + "probability": 0.8454 + }, + { + "start": 1987.18, + "end": 1992.68, + "probability": 0.9938 + }, + { + "start": 1992.68, + "end": 1998.62, + "probability": 0.9977 + }, + { + "start": 1999.24, + "end": 2001.08, + "probability": 0.8175 + }, + { + "start": 2001.7, + "end": 2006.04, + "probability": 0.9908 + }, + { + "start": 2006.04, + "end": 2011.52, + "probability": 0.998 + }, + { + "start": 2012.14, + "end": 2015.28, + "probability": 0.9968 + }, + { + "start": 2015.82, + "end": 2019.74, + "probability": 0.9949 + }, + { + "start": 2021.32, + "end": 2022.66, + "probability": 0.8535 + }, + { + "start": 2022.76, + "end": 2025.42, + "probability": 0.9946 + }, + { + "start": 2026.02, + "end": 2030.5, + "probability": 0.9258 + }, + { + "start": 2030.82, + "end": 2032.18, + "probability": 0.9918 + }, + { + "start": 2032.74, + "end": 2038.04, + "probability": 0.995 + }, + { + "start": 2038.04, + "end": 2044.08, + "probability": 0.9945 + }, + { + "start": 2044.76, + "end": 2047.98, + "probability": 0.9956 + }, + { + "start": 2048.16, + "end": 2051.66, + "probability": 0.9187 + }, + { + "start": 2052.1, + "end": 2054.86, + "probability": 0.9438 + }, + { + "start": 2055.64, + "end": 2058.84, + "probability": 0.9811 + }, + { + "start": 2058.84, + "end": 2064.38, + "probability": 0.9818 + }, + { + "start": 2064.92, + "end": 2066.32, + "probability": 0.9392 + }, + { + "start": 2066.9, + "end": 2071.3, + "probability": 0.9978 + }, + { + "start": 2071.82, + "end": 2073.9, + "probability": 0.9829 + }, + { + "start": 2074.6, + "end": 2079.56, + "probability": 0.9983 + }, + { + "start": 2080.1, + "end": 2085.1, + "probability": 0.9976 + }, + { + "start": 2085.18, + "end": 2086.02, + "probability": 0.8116 + }, + { + "start": 2086.64, + "end": 2088.78, + "probability": 0.962 + }, + { + "start": 2089.04, + "end": 2090.76, + "probability": 0.9548 + }, + { + "start": 2091.84, + "end": 2092.86, + "probability": 0.6716 + }, + { + "start": 2093.5, + "end": 2096.1, + "probability": 0.9976 + }, + { + "start": 2096.1, + "end": 2098.82, + "probability": 0.9986 + }, + { + "start": 2099.36, + "end": 2103.4, + "probability": 0.8098 + }, + { + "start": 2103.96, + "end": 2104.8, + "probability": 0.7629 + }, + { + "start": 2105.8, + "end": 2108.84, + "probability": 0.9874 + }, + { + "start": 2108.84, + "end": 2111.46, + "probability": 0.9985 + }, + { + "start": 2112.16, + "end": 2116.3, + "probability": 0.9982 + }, + { + "start": 2116.82, + "end": 2119.42, + "probability": 0.9213 + }, + { + "start": 2119.64, + "end": 2120.08, + "probability": 0.8147 + }, + { + "start": 2120.88, + "end": 2123.2, + "probability": 0.7849 + }, + { + "start": 2123.26, + "end": 2125.54, + "probability": 0.9902 + }, + { + "start": 2126.5, + "end": 2129.58, + "probability": 0.8206 + }, + { + "start": 2141.68, + "end": 2142.38, + "probability": 0.69 + }, + { + "start": 2149.4, + "end": 2150.49, + "probability": 0.7673 + }, + { + "start": 2150.76, + "end": 2151.72, + "probability": 0.7497 + }, + { + "start": 2152.18, + "end": 2152.78, + "probability": 0.7197 + }, + { + "start": 2152.8, + "end": 2153.48, + "probability": 0.7955 + }, + { + "start": 2154.04, + "end": 2155.12, + "probability": 0.7021 + }, + { + "start": 2156.4, + "end": 2158.32, + "probability": 0.9216 + }, + { + "start": 2158.96, + "end": 2160.06, + "probability": 0.9946 + }, + { + "start": 2160.12, + "end": 2163.16, + "probability": 0.6184 + }, + { + "start": 2163.16, + "end": 2166.74, + "probability": 0.9861 + }, + { + "start": 2167.28, + "end": 2169.36, + "probability": 0.9101 + }, + { + "start": 2170.08, + "end": 2171.14, + "probability": 0.9746 + }, + { + "start": 2171.68, + "end": 2172.44, + "probability": 0.8313 + }, + { + "start": 2173.32, + "end": 2173.82, + "probability": 0.7368 + }, + { + "start": 2173.88, + "end": 2176.58, + "probability": 0.9873 + }, + { + "start": 2177.72, + "end": 2179.8, + "probability": 0.9718 + }, + { + "start": 2180.52, + "end": 2182.86, + "probability": 0.965 + }, + { + "start": 2184.22, + "end": 2190.26, + "probability": 0.9905 + }, + { + "start": 2191.12, + "end": 2193.88, + "probability": 0.8914 + }, + { + "start": 2194.42, + "end": 2197.08, + "probability": 0.8882 + }, + { + "start": 2197.34, + "end": 2198.54, + "probability": 0.9673 + }, + { + "start": 2198.9, + "end": 2201.16, + "probability": 0.7822 + }, + { + "start": 2201.76, + "end": 2203.34, + "probability": 0.9863 + }, + { + "start": 2203.42, + "end": 2204.46, + "probability": 0.9175 + }, + { + "start": 2205.04, + "end": 2205.84, + "probability": 0.9233 + }, + { + "start": 2205.94, + "end": 2206.5, + "probability": 0.7221 + }, + { + "start": 2206.84, + "end": 2208.82, + "probability": 0.7572 + }, + { + "start": 2209.48, + "end": 2212.7, + "probability": 0.999 + }, + { + "start": 2213.06, + "end": 2216.32, + "probability": 0.8599 + }, + { + "start": 2216.8, + "end": 2221.22, + "probability": 0.9869 + }, + { + "start": 2221.22, + "end": 2223.76, + "probability": 0.7262 + }, + { + "start": 2225.44, + "end": 2228.34, + "probability": 0.9802 + }, + { + "start": 2228.4, + "end": 2231.24, + "probability": 0.9939 + }, + { + "start": 2231.38, + "end": 2232.28, + "probability": 0.8195 + }, + { + "start": 2232.4, + "end": 2234.86, + "probability": 0.998 + }, + { + "start": 2235.38, + "end": 2239.96, + "probability": 0.9585 + }, + { + "start": 2240.24, + "end": 2240.58, + "probability": 0.7004 + }, + { + "start": 2240.62, + "end": 2242.84, + "probability": 0.9818 + }, + { + "start": 2243.54, + "end": 2246.3, + "probability": 0.9966 + }, + { + "start": 2246.6, + "end": 2247.98, + "probability": 0.9964 + }, + { + "start": 2248.8, + "end": 2250.98, + "probability": 0.9954 + }, + { + "start": 2250.98, + "end": 2253.58, + "probability": 0.9504 + }, + { + "start": 2254.12, + "end": 2255.3, + "probability": 0.9984 + }, + { + "start": 2255.94, + "end": 2257.36, + "probability": 0.995 + }, + { + "start": 2257.36, + "end": 2261.64, + "probability": 0.9772 + }, + { + "start": 2262.28, + "end": 2262.96, + "probability": 0.9429 + }, + { + "start": 2263.72, + "end": 2266.22, + "probability": 0.9885 + }, + { + "start": 2266.76, + "end": 2268.1, + "probability": 0.9933 + }, + { + "start": 2268.22, + "end": 2269.52, + "probability": 0.9135 + }, + { + "start": 2269.76, + "end": 2272.7, + "probability": 0.749 + }, + { + "start": 2273.4, + "end": 2274.62, + "probability": 0.9422 + }, + { + "start": 2275.42, + "end": 2275.68, + "probability": 0.9253 + }, + { + "start": 2276.66, + "end": 2277.06, + "probability": 0.8643 + }, + { + "start": 2277.34, + "end": 2278.04, + "probability": 0.9182 + }, + { + "start": 2278.06, + "end": 2283.18, + "probability": 0.9772 + }, + { + "start": 2284.48, + "end": 2287.08, + "probability": 0.7973 + }, + { + "start": 2287.34, + "end": 2289.26, + "probability": 0.8933 + }, + { + "start": 2289.8, + "end": 2293.04, + "probability": 0.6498 + }, + { + "start": 2293.72, + "end": 2295.52, + "probability": 0.8374 + }, + { + "start": 2296.12, + "end": 2297.86, + "probability": 0.9979 + }, + { + "start": 2299.0, + "end": 2301.66, + "probability": 0.8619 + }, + { + "start": 2301.92, + "end": 2301.92, + "probability": 0.2979 + }, + { + "start": 2301.92, + "end": 2306.42, + "probability": 0.9799 + }, + { + "start": 2307.04, + "end": 2309.86, + "probability": 0.9734 + }, + { + "start": 2310.5, + "end": 2313.68, + "probability": 0.9966 + }, + { + "start": 2314.18, + "end": 2315.74, + "probability": 0.7803 + }, + { + "start": 2316.54, + "end": 2319.42, + "probability": 0.9235 + }, + { + "start": 2319.6, + "end": 2320.5, + "probability": 0.9785 + }, + { + "start": 2321.16, + "end": 2322.4, + "probability": 0.9575 + }, + { + "start": 2322.58, + "end": 2322.92, + "probability": 0.4973 + }, + { + "start": 2322.98, + "end": 2323.52, + "probability": 0.9583 + }, + { + "start": 2323.96, + "end": 2326.08, + "probability": 0.9969 + }, + { + "start": 2326.9, + "end": 2331.88, + "probability": 0.9924 + }, + { + "start": 2332.28, + "end": 2337.07, + "probability": 0.8784 + }, + { + "start": 2337.74, + "end": 2338.8, + "probability": 0.9293 + }, + { + "start": 2339.32, + "end": 2340.24, + "probability": 0.9731 + }, + { + "start": 2340.78, + "end": 2342.72, + "probability": 0.9189 + }, + { + "start": 2343.32, + "end": 2348.26, + "probability": 0.9926 + }, + { + "start": 2349.02, + "end": 2349.52, + "probability": 0.7638 + }, + { + "start": 2349.76, + "end": 2353.84, + "probability": 0.9722 + }, + { + "start": 2354.88, + "end": 2358.42, + "probability": 0.8705 + }, + { + "start": 2359.02, + "end": 2363.7, + "probability": 0.9954 + }, + { + "start": 2363.7, + "end": 2368.12, + "probability": 0.9858 + }, + { + "start": 2369.24, + "end": 2371.66, + "probability": 0.9773 + }, + { + "start": 2372.28, + "end": 2373.06, + "probability": 0.9998 + }, + { + "start": 2373.58, + "end": 2374.3, + "probability": 0.9916 + }, + { + "start": 2375.36, + "end": 2376.58, + "probability": 0.8487 + }, + { + "start": 2377.18, + "end": 2380.96, + "probability": 0.9702 + }, + { + "start": 2381.46, + "end": 2384.12, + "probability": 0.9882 + }, + { + "start": 2385.38, + "end": 2387.12, + "probability": 0.9316 + }, + { + "start": 2387.62, + "end": 2389.1, + "probability": 0.9692 + }, + { + "start": 2389.66, + "end": 2391.2, + "probability": 0.999 + }, + { + "start": 2391.36, + "end": 2391.92, + "probability": 0.8279 + }, + { + "start": 2392.36, + "end": 2393.9, + "probability": 0.9788 + }, + { + "start": 2394.46, + "end": 2395.64, + "probability": 0.7917 + }, + { + "start": 2396.22, + "end": 2398.16, + "probability": 0.9965 + }, + { + "start": 2398.38, + "end": 2399.46, + "probability": 0.9173 + }, + { + "start": 2400.14, + "end": 2403.6, + "probability": 0.981 + }, + { + "start": 2404.4, + "end": 2408.64, + "probability": 0.9993 + }, + { + "start": 2409.34, + "end": 2412.36, + "probability": 0.9679 + }, + { + "start": 2413.18, + "end": 2414.18, + "probability": 0.7958 + }, + { + "start": 2414.42, + "end": 2418.06, + "probability": 0.9152 + }, + { + "start": 2418.06, + "end": 2421.5, + "probability": 0.9948 + }, + { + "start": 2422.16, + "end": 2425.58, + "probability": 0.9652 + }, + { + "start": 2426.1, + "end": 2428.6, + "probability": 0.9744 + }, + { + "start": 2429.14, + "end": 2432.0, + "probability": 0.8382 + }, + { + "start": 2432.54, + "end": 2437.02, + "probability": 0.7522 + }, + { + "start": 2437.86, + "end": 2438.5, + "probability": 0.779 + }, + { + "start": 2438.6, + "end": 2442.5, + "probability": 0.9758 + }, + { + "start": 2443.04, + "end": 2444.14, + "probability": 0.9964 + }, + { + "start": 2444.62, + "end": 2447.28, + "probability": 0.9929 + }, + { + "start": 2447.38, + "end": 2449.64, + "probability": 0.9924 + }, + { + "start": 2450.26, + "end": 2452.36, + "probability": 0.9441 + }, + { + "start": 2453.38, + "end": 2456.56, + "probability": 0.6524 + }, + { + "start": 2457.24, + "end": 2461.58, + "probability": 0.9988 + }, + { + "start": 2461.58, + "end": 2466.74, + "probability": 0.9985 + }, + { + "start": 2467.32, + "end": 2469.5, + "probability": 0.9993 + }, + { + "start": 2470.12, + "end": 2473.2, + "probability": 0.9995 + }, + { + "start": 2473.76, + "end": 2475.17, + "probability": 0.943 + }, + { + "start": 2476.44, + "end": 2479.38, + "probability": 0.7962 + }, + { + "start": 2479.9, + "end": 2480.46, + "probability": 0.7778 + }, + { + "start": 2480.46, + "end": 2481.76, + "probability": 0.6952 + }, + { + "start": 2482.04, + "end": 2486.57, + "probability": 0.922 + }, + { + "start": 2487.86, + "end": 2489.42, + "probability": 0.1794 + }, + { + "start": 2489.56, + "end": 2490.0, + "probability": 0.7985 + }, + { + "start": 2516.92, + "end": 2517.18, + "probability": 0.5667 + }, + { + "start": 2519.04, + "end": 2523.22, + "probability": 0.5602 + }, + { + "start": 2523.22, + "end": 2525.66, + "probability": 0.3529 + }, + { + "start": 2525.92, + "end": 2526.06, + "probability": 0.625 + }, + { + "start": 2526.16, + "end": 2527.74, + "probability": 0.966 + }, + { + "start": 2527.98, + "end": 2528.44, + "probability": 0.3708 + }, + { + "start": 2528.56, + "end": 2533.38, + "probability": 0.9686 + }, + { + "start": 2533.54, + "end": 2533.8, + "probability": 0.5269 + }, + { + "start": 2534.24, + "end": 2535.08, + "probability": 0.9178 + }, + { + "start": 2535.12, + "end": 2535.9, + "probability": 0.5008 + }, + { + "start": 2536.02, + "end": 2536.24, + "probability": 0.9444 + }, + { + "start": 2536.28, + "end": 2537.8, + "probability": 0.9749 + }, + { + "start": 2540.06, + "end": 2542.72, + "probability": 0.6322 + }, + { + "start": 2543.94, + "end": 2544.58, + "probability": 0.3417 + }, + { + "start": 2544.58, + "end": 2545.34, + "probability": 0.6034 + }, + { + "start": 2545.48, + "end": 2546.16, + "probability": 0.461 + }, + { + "start": 2546.18, + "end": 2546.62, + "probability": 0.8668 + }, + { + "start": 2546.7, + "end": 2547.7, + "probability": 0.682 + }, + { + "start": 2547.78, + "end": 2548.08, + "probability": 0.8744 + }, + { + "start": 2548.6, + "end": 2552.04, + "probability": 0.9301 + }, + { + "start": 2552.16, + "end": 2553.32, + "probability": 0.9854 + }, + { + "start": 2554.24, + "end": 2555.5, + "probability": 0.8145 + }, + { + "start": 2556.16, + "end": 2559.29, + "probability": 0.9387 + }, + { + "start": 2559.82, + "end": 2561.34, + "probability": 0.9964 + }, + { + "start": 2561.88, + "end": 2565.62, + "probability": 0.6033 + }, + { + "start": 2565.64, + "end": 2568.09, + "probability": 0.5005 + }, + { + "start": 2568.38, + "end": 2572.06, + "probability": 0.3587 + }, + { + "start": 2572.06, + "end": 2572.84, + "probability": 0.4999 + }, + { + "start": 2573.64, + "end": 2574.2, + "probability": 0.6382 + }, + { + "start": 2574.36, + "end": 2575.9, + "probability": 0.874 + }, + { + "start": 2576.14, + "end": 2577.84, + "probability": 0.5673 + }, + { + "start": 2577.84, + "end": 2580.32, + "probability": 0.8544 + }, + { + "start": 2580.38, + "end": 2580.8, + "probability": 0.2235 + }, + { + "start": 2580.88, + "end": 2581.82, + "probability": 0.5568 + }, + { + "start": 2582.0, + "end": 2582.78, + "probability": 0.8341 + }, + { + "start": 2582.92, + "end": 2585.4, + "probability": 0.6008 + }, + { + "start": 2586.18, + "end": 2588.8, + "probability": 0.7791 + }, + { + "start": 2589.58, + "end": 2592.82, + "probability": 0.9695 + }, + { + "start": 2594.46, + "end": 2596.02, + "probability": 0.9744 + }, + { + "start": 2596.84, + "end": 2599.8, + "probability": 0.9962 + }, + { + "start": 2600.98, + "end": 2605.72, + "probability": 0.9271 + }, + { + "start": 2606.16, + "end": 2606.82, + "probability": 0.6419 + }, + { + "start": 2606.88, + "end": 2608.38, + "probability": 0.7574 + }, + { + "start": 2609.2, + "end": 2610.68, + "probability": 0.9262 + }, + { + "start": 2611.68, + "end": 2615.24, + "probability": 0.9478 + }, + { + "start": 2616.92, + "end": 2618.52, + "probability": 0.9357 + }, + { + "start": 2619.08, + "end": 2620.6, + "probability": 0.9347 + }, + { + "start": 2621.2, + "end": 2621.98, + "probability": 0.9921 + }, + { + "start": 2624.14, + "end": 2626.12, + "probability": 0.9689 + }, + { + "start": 2627.48, + "end": 2631.02, + "probability": 0.9326 + }, + { + "start": 2631.78, + "end": 2633.92, + "probability": 0.9722 + }, + { + "start": 2633.92, + "end": 2636.34, + "probability": 0.6811 + }, + { + "start": 2636.94, + "end": 2638.14, + "probability": 0.9982 + }, + { + "start": 2638.9, + "end": 2641.56, + "probability": 0.9919 + }, + { + "start": 2641.84, + "end": 2642.94, + "probability": 0.9792 + }, + { + "start": 2644.1, + "end": 2646.48, + "probability": 0.8773 + }, + { + "start": 2647.22, + "end": 2648.9, + "probability": 0.8966 + }, + { + "start": 2649.5, + "end": 2650.32, + "probability": 0.8538 + }, + { + "start": 2651.38, + "end": 2652.36, + "probability": 0.8298 + }, + { + "start": 2652.96, + "end": 2655.34, + "probability": 0.9739 + }, + { + "start": 2655.9, + "end": 2656.76, + "probability": 0.7502 + }, + { + "start": 2658.38, + "end": 2659.6, + "probability": 0.8107 + }, + { + "start": 2661.02, + "end": 2665.04, + "probability": 0.7407 + }, + { + "start": 2665.58, + "end": 2666.4, + "probability": 0.8394 + }, + { + "start": 2667.24, + "end": 2669.42, + "probability": 0.8046 + }, + { + "start": 2670.26, + "end": 2671.8, + "probability": 0.3969 + }, + { + "start": 2672.44, + "end": 2675.92, + "probability": 0.8882 + }, + { + "start": 2676.04, + "end": 2676.82, + "probability": 0.8479 + }, + { + "start": 2677.5, + "end": 2680.08, + "probability": 0.9424 + }, + { + "start": 2680.64, + "end": 2681.38, + "probability": 0.9493 + }, + { + "start": 2681.64, + "end": 2683.62, + "probability": 0.7508 + }, + { + "start": 2684.12, + "end": 2684.76, + "probability": 0.7337 + }, + { + "start": 2685.14, + "end": 2687.28, + "probability": 0.9844 + }, + { + "start": 2687.94, + "end": 2692.04, + "probability": 0.9463 + }, + { + "start": 2692.22, + "end": 2695.08, + "probability": 0.8761 + }, + { + "start": 2698.02, + "end": 2701.82, + "probability": 0.9272 + }, + { + "start": 2702.52, + "end": 2705.6, + "probability": 0.9828 + }, + { + "start": 2706.46, + "end": 2709.4, + "probability": 0.6788 + }, + { + "start": 2709.8, + "end": 2712.92, + "probability": 0.8431 + }, + { + "start": 2713.44, + "end": 2714.52, + "probability": 0.9982 + }, + { + "start": 2715.36, + "end": 2717.54, + "probability": 0.9977 + }, + { + "start": 2717.64, + "end": 2719.06, + "probability": 0.9538 + }, + { + "start": 2719.18, + "end": 2720.22, + "probability": 0.9319 + }, + { + "start": 2720.74, + "end": 2722.08, + "probability": 0.9897 + }, + { + "start": 2723.84, + "end": 2729.78, + "probability": 0.9471 + }, + { + "start": 2729.78, + "end": 2735.04, + "probability": 0.9942 + }, + { + "start": 2735.58, + "end": 2736.5, + "probability": 0.4322 + }, + { + "start": 2737.5, + "end": 2740.06, + "probability": 0.9885 + }, + { + "start": 2742.1, + "end": 2744.36, + "probability": 0.9839 + }, + { + "start": 2744.36, + "end": 2746.54, + "probability": 0.9936 + }, + { + "start": 2747.42, + "end": 2748.16, + "probability": 0.8882 + }, + { + "start": 2749.28, + "end": 2751.44, + "probability": 0.8121 + }, + { + "start": 2752.44, + "end": 2756.02, + "probability": 0.9352 + }, + { + "start": 2756.98, + "end": 2757.8, + "probability": 0.5498 + }, + { + "start": 2757.92, + "end": 2760.02, + "probability": 0.9181 + }, + { + "start": 2761.7, + "end": 2764.84, + "probability": 0.9969 + }, + { + "start": 2765.0, + "end": 2766.02, + "probability": 0.886 + }, + { + "start": 2766.78, + "end": 2767.36, + "probability": 0.9064 + }, + { + "start": 2767.42, + "end": 2768.09, + "probability": 0.9081 + }, + { + "start": 2768.26, + "end": 2769.2, + "probability": 0.9218 + }, + { + "start": 2769.68, + "end": 2770.38, + "probability": 0.8742 + }, + { + "start": 2771.08, + "end": 2773.48, + "probability": 0.988 + }, + { + "start": 2773.92, + "end": 2776.28, + "probability": 0.8557 + }, + { + "start": 2777.06, + "end": 2779.06, + "probability": 0.9827 + }, + { + "start": 2780.44, + "end": 2781.66, + "probability": 0.8966 + }, + { + "start": 2782.76, + "end": 2785.6, + "probability": 0.9932 + }, + { + "start": 2786.56, + "end": 2786.98, + "probability": 0.9612 + }, + { + "start": 2787.8, + "end": 2790.66, + "probability": 0.9728 + }, + { + "start": 2790.72, + "end": 2792.58, + "probability": 0.7449 + }, + { + "start": 2793.22, + "end": 2796.42, + "probability": 0.9944 + }, + { + "start": 2797.2, + "end": 2798.3, + "probability": 0.7991 + }, + { + "start": 2798.98, + "end": 2799.92, + "probability": 0.9944 + }, + { + "start": 2803.26, + "end": 2805.08, + "probability": 0.9414 + }, + { + "start": 2806.5, + "end": 2808.66, + "probability": 0.9858 + }, + { + "start": 2810.78, + "end": 2811.94, + "probability": 0.8653 + }, + { + "start": 2812.72, + "end": 2815.86, + "probability": 0.8848 + }, + { + "start": 2816.26, + "end": 2817.62, + "probability": 0.9314 + }, + { + "start": 2817.78, + "end": 2821.84, + "probability": 0.9795 + }, + { + "start": 2822.4, + "end": 2824.88, + "probability": 0.9794 + }, + { + "start": 2824.88, + "end": 2829.22, + "probability": 0.7909 + }, + { + "start": 2829.94, + "end": 2832.34, + "probability": 0.8383 + }, + { + "start": 2832.72, + "end": 2834.76, + "probability": 0.9165 + }, + { + "start": 2836.56, + "end": 2839.16, + "probability": 0.8695 + }, + { + "start": 2839.26, + "end": 2841.26, + "probability": 0.8996 + }, + { + "start": 2841.92, + "end": 2842.96, + "probability": 0.6936 + }, + { + "start": 2844.92, + "end": 2848.0, + "probability": 0.6959 + }, + { + "start": 2848.84, + "end": 2849.42, + "probability": 0.5346 + }, + { + "start": 2849.48, + "end": 2849.92, + "probability": 0.9354 + }, + { + "start": 2849.98, + "end": 2853.82, + "probability": 0.9822 + }, + { + "start": 2853.95, + "end": 2859.38, + "probability": 0.9976 + }, + { + "start": 2859.92, + "end": 2860.56, + "probability": 0.9954 + }, + { + "start": 2863.08, + "end": 2864.32, + "probability": 0.8306 + }, + { + "start": 2864.42, + "end": 2864.66, + "probability": 0.8312 + }, + { + "start": 2865.5, + "end": 2867.08, + "probability": 0.9927 + }, + { + "start": 2867.86, + "end": 2870.38, + "probability": 0.9739 + }, + { + "start": 2871.78, + "end": 2877.58, + "probability": 0.929 + }, + { + "start": 2877.68, + "end": 2877.98, + "probability": 0.7132 + }, + { + "start": 2878.1, + "end": 2881.97, + "probability": 0.9459 + }, + { + "start": 2883.16, + "end": 2884.5, + "probability": 0.8877 + }, + { + "start": 2884.88, + "end": 2886.01, + "probability": 0.998 + }, + { + "start": 2886.48, + "end": 2887.12, + "probability": 0.8047 + }, + { + "start": 2887.3, + "end": 2888.82, + "probability": 0.9703 + }, + { + "start": 2889.26, + "end": 2890.22, + "probability": 0.9546 + }, + { + "start": 2891.48, + "end": 2893.6, + "probability": 0.9692 + }, + { + "start": 2894.24, + "end": 2894.72, + "probability": 0.7863 + }, + { + "start": 2895.4, + "end": 2898.6, + "probability": 0.9777 + }, + { + "start": 2898.92, + "end": 2901.3, + "probability": 0.9565 + }, + { + "start": 2915.94, + "end": 2916.82, + "probability": 0.5967 + }, + { + "start": 2916.98, + "end": 2918.23, + "probability": 0.8807 + }, + { + "start": 2918.88, + "end": 2922.04, + "probability": 0.921 + }, + { + "start": 2922.34, + "end": 2922.66, + "probability": 0.7751 + }, + { + "start": 2923.56, + "end": 2925.08, + "probability": 0.7157 + }, + { + "start": 2925.18, + "end": 2929.68, + "probability": 0.9835 + }, + { + "start": 2929.68, + "end": 2934.52, + "probability": 0.9814 + }, + { + "start": 2935.8, + "end": 2937.24, + "probability": 0.6419 + }, + { + "start": 2938.72, + "end": 2943.06, + "probability": 0.9001 + }, + { + "start": 2943.8, + "end": 2948.5, + "probability": 0.9899 + }, + { + "start": 2948.62, + "end": 2952.64, + "probability": 0.9706 + }, + { + "start": 2953.68, + "end": 2956.96, + "probability": 0.8979 + }, + { + "start": 2957.4, + "end": 2960.18, + "probability": 0.9795 + }, + { + "start": 2960.18, + "end": 2963.78, + "probability": 0.9968 + }, + { + "start": 2964.58, + "end": 2970.46, + "probability": 0.9937 + }, + { + "start": 2970.48, + "end": 2974.0, + "probability": 0.9489 + }, + { + "start": 2975.74, + "end": 2976.68, + "probability": 0.8166 + }, + { + "start": 2977.02, + "end": 2979.48, + "probability": 0.9402 + }, + { + "start": 2979.64, + "end": 2982.1, + "probability": 0.9619 + }, + { + "start": 2982.68, + "end": 2983.12, + "probability": 0.9222 + }, + { + "start": 2983.76, + "end": 2986.92, + "probability": 0.9854 + }, + { + "start": 2987.58, + "end": 2991.94, + "probability": 0.9801 + }, + { + "start": 2991.94, + "end": 2994.66, + "probability": 0.9688 + }, + { + "start": 2995.52, + "end": 2999.34, + "probability": 0.9947 + }, + { + "start": 2999.6, + "end": 3000.86, + "probability": 0.8596 + }, + { + "start": 3001.62, + "end": 3003.56, + "probability": 0.9751 + }, + { + "start": 3004.04, + "end": 3006.46, + "probability": 0.9951 + }, + { + "start": 3007.52, + "end": 3010.44, + "probability": 0.9082 + }, + { + "start": 3010.94, + "end": 3016.48, + "probability": 0.9336 + }, + { + "start": 3017.08, + "end": 3024.36, + "probability": 0.9959 + }, + { + "start": 3026.02, + "end": 3027.56, + "probability": 0.9631 + }, + { + "start": 3027.92, + "end": 3029.6, + "probability": 0.8441 + }, + { + "start": 3029.84, + "end": 3033.52, + "probability": 0.9792 + }, + { + "start": 3033.52, + "end": 3036.64, + "probability": 0.9985 + }, + { + "start": 3037.72, + "end": 3039.98, + "probability": 0.8537 + }, + { + "start": 3040.54, + "end": 3044.02, + "probability": 0.9978 + }, + { + "start": 3045.08, + "end": 3046.22, + "probability": 0.959 + }, + { + "start": 3046.88, + "end": 3051.0, + "probability": 0.7855 + }, + { + "start": 3051.58, + "end": 3053.72, + "probability": 0.9875 + }, + { + "start": 3055.3, + "end": 3055.9, + "probability": 0.9697 + }, + { + "start": 3056.1, + "end": 3058.94, + "probability": 0.6614 + }, + { + "start": 3059.44, + "end": 3060.31, + "probability": 0.958 + }, + { + "start": 3061.04, + "end": 3064.22, + "probability": 0.9934 + }, + { + "start": 3064.22, + "end": 3067.78, + "probability": 0.8374 + }, + { + "start": 3068.48, + "end": 3070.46, + "probability": 0.9853 + }, + { + "start": 3070.92, + "end": 3072.28, + "probability": 0.9104 + }, + { + "start": 3073.6, + "end": 3079.36, + "probability": 0.9909 + }, + { + "start": 3079.94, + "end": 3084.64, + "probability": 0.9736 + }, + { + "start": 3085.86, + "end": 3089.02, + "probability": 0.8581 + }, + { + "start": 3089.4, + "end": 3091.1, + "probability": 0.8936 + }, + { + "start": 3091.2, + "end": 3091.8, + "probability": 0.8722 + }, + { + "start": 3091.86, + "end": 3093.92, + "probability": 0.905 + }, + { + "start": 3094.56, + "end": 3099.34, + "probability": 0.6908 + }, + { + "start": 3100.18, + "end": 3103.24, + "probability": 0.8476 + }, + { + "start": 3103.76, + "end": 3106.42, + "probability": 0.999 + }, + { + "start": 3106.72, + "end": 3107.8, + "probability": 0.6797 + }, + { + "start": 3108.86, + "end": 3110.32, + "probability": 0.8873 + }, + { + "start": 3110.86, + "end": 3112.5, + "probability": 0.9963 + }, + { + "start": 3112.84, + "end": 3114.06, + "probability": 0.9935 + }, + { + "start": 3115.92, + "end": 3119.5, + "probability": 0.9744 + }, + { + "start": 3119.6, + "end": 3120.84, + "probability": 0.9976 + }, + { + "start": 3121.78, + "end": 3129.9, + "probability": 0.9904 + }, + { + "start": 3130.66, + "end": 3134.7, + "probability": 0.9907 + }, + { + "start": 3135.34, + "end": 3138.82, + "probability": 0.9979 + }, + { + "start": 3139.88, + "end": 3145.1, + "probability": 0.9974 + }, + { + "start": 3145.92, + "end": 3149.82, + "probability": 0.9021 + }, + { + "start": 3150.34, + "end": 3153.74, + "probability": 0.9934 + }, + { + "start": 3154.68, + "end": 3159.1, + "probability": 0.9907 + }, + { + "start": 3159.4, + "end": 3161.12, + "probability": 0.9499 + }, + { + "start": 3161.78, + "end": 3165.5, + "probability": 0.9897 + }, + { + "start": 3166.28, + "end": 3176.06, + "probability": 0.9874 + }, + { + "start": 3176.8, + "end": 3181.86, + "probability": 0.9863 + }, + { + "start": 3181.9, + "end": 3182.38, + "probability": 0.7667 + }, + { + "start": 3183.8, + "end": 3185.08, + "probability": 0.813 + }, + { + "start": 3185.32, + "end": 3188.16, + "probability": 0.8718 + }, + { + "start": 3188.16, + "end": 3190.2, + "probability": 0.9978 + }, + { + "start": 3190.92, + "end": 3191.62, + "probability": 0.9359 + }, + { + "start": 3191.72, + "end": 3192.56, + "probability": 0.8237 + }, + { + "start": 3193.26, + "end": 3196.82, + "probability": 0.9935 + }, + { + "start": 3196.94, + "end": 3197.7, + "probability": 0.7304 + }, + { + "start": 3198.36, + "end": 3199.5, + "probability": 0.608 + }, + { + "start": 3200.58, + "end": 3203.78, + "probability": 0.9734 + }, + { + "start": 3204.84, + "end": 3209.48, + "probability": 0.9979 + }, + { + "start": 3209.66, + "end": 3209.92, + "probability": 0.8232 + }, + { + "start": 3210.64, + "end": 3212.26, + "probability": 0.9861 + }, + { + "start": 3212.38, + "end": 3213.36, + "probability": 0.9521 + }, + { + "start": 3213.52, + "end": 3214.48, + "probability": 0.8621 + }, + { + "start": 3214.9, + "end": 3216.96, + "probability": 0.9435 + }, + { + "start": 3217.54, + "end": 3220.66, + "probability": 0.9954 + }, + { + "start": 3220.66, + "end": 3223.51, + "probability": 0.9943 + }, + { + "start": 3224.54, + "end": 3227.44, + "probability": 0.9809 + }, + { + "start": 3227.68, + "end": 3228.3, + "probability": 0.968 + }, + { + "start": 3228.46, + "end": 3234.88, + "probability": 0.9301 + }, + { + "start": 3235.52, + "end": 3237.1, + "probability": 0.9971 + }, + { + "start": 3237.66, + "end": 3237.78, + "probability": 0.718 + }, + { + "start": 3238.92, + "end": 3239.6, + "probability": 0.8526 + }, + { + "start": 3240.0, + "end": 3240.44, + "probability": 0.8833 + }, + { + "start": 3240.76, + "end": 3241.3, + "probability": 0.8254 + }, + { + "start": 3241.48, + "end": 3241.74, + "probability": 0.4032 + }, + { + "start": 3241.8, + "end": 3243.22, + "probability": 0.5305 + }, + { + "start": 3243.9, + "end": 3245.52, + "probability": 0.9741 + }, + { + "start": 3246.42, + "end": 3246.84, + "probability": 0.5289 + }, + { + "start": 3247.5, + "end": 3249.94, + "probability": 0.9897 + }, + { + "start": 3250.68, + "end": 3251.32, + "probability": 0.7073 + }, + { + "start": 3251.98, + "end": 3253.44, + "probability": 0.7383 + }, + { + "start": 3253.58, + "end": 3255.06, + "probability": 0.89 + }, + { + "start": 3255.12, + "end": 3257.08, + "probability": 0.6731 + }, + { + "start": 3260.42, + "end": 3263.91, + "probability": 0.9668 + }, + { + "start": 3290.32, + "end": 3292.86, + "probability": 0.6621 + }, + { + "start": 3294.56, + "end": 3298.02, + "probability": 0.9916 + }, + { + "start": 3298.04, + "end": 3298.68, + "probability": 0.914 + }, + { + "start": 3298.9, + "end": 3299.44, + "probability": 0.8442 + }, + { + "start": 3299.78, + "end": 3303.01, + "probability": 0.9883 + }, + { + "start": 3304.2, + "end": 3307.22, + "probability": 0.9951 + }, + { + "start": 3307.32, + "end": 3307.92, + "probability": 0.5198 + }, + { + "start": 3309.06, + "end": 3311.43, + "probability": 0.9402 + }, + { + "start": 3312.28, + "end": 3318.42, + "probability": 0.9536 + }, + { + "start": 3318.54, + "end": 3319.28, + "probability": 0.8748 + }, + { + "start": 3319.38, + "end": 3320.28, + "probability": 0.8837 + }, + { + "start": 3320.84, + "end": 3323.44, + "probability": 0.9763 + }, + { + "start": 3324.32, + "end": 3325.44, + "probability": 0.7667 + }, + { + "start": 3327.24, + "end": 3327.24, + "probability": 0.4483 + }, + { + "start": 3327.24, + "end": 3335.1, + "probability": 0.7456 + }, + { + "start": 3336.82, + "end": 3338.24, + "probability": 0.5792 + }, + { + "start": 3338.44, + "end": 3339.7, + "probability": 0.9066 + }, + { + "start": 3339.9, + "end": 3342.28, + "probability": 0.9647 + }, + { + "start": 3343.4, + "end": 3345.46, + "probability": 0.6518 + }, + { + "start": 3346.18, + "end": 3346.62, + "probability": 0.7388 + }, + { + "start": 3349.1, + "end": 3352.48, + "probability": 0.9207 + }, + { + "start": 3353.2, + "end": 3354.86, + "probability": 0.6127 + }, + { + "start": 3355.08, + "end": 3360.84, + "probability": 0.9512 + }, + { + "start": 3361.24, + "end": 3364.92, + "probability": 0.8506 + }, + { + "start": 3365.66, + "end": 3368.4, + "probability": 0.8147 + }, + { + "start": 3369.2, + "end": 3370.72, + "probability": 0.7651 + }, + { + "start": 3371.3, + "end": 3372.78, + "probability": 0.8099 + }, + { + "start": 3372.98, + "end": 3373.42, + "probability": 0.8082 + }, + { + "start": 3373.48, + "end": 3374.54, + "probability": 0.952 + }, + { + "start": 3375.44, + "end": 3378.5, + "probability": 0.9954 + }, + { + "start": 3378.7, + "end": 3381.1, + "probability": 0.9894 + }, + { + "start": 3381.78, + "end": 3383.38, + "probability": 0.7133 + }, + { + "start": 3383.9, + "end": 3384.94, + "probability": 0.7655 + }, + { + "start": 3385.04, + "end": 3389.16, + "probability": 0.9941 + }, + { + "start": 3389.16, + "end": 3392.42, + "probability": 0.9782 + }, + { + "start": 3392.98, + "end": 3394.08, + "probability": 0.9197 + }, + { + "start": 3394.82, + "end": 3401.72, + "probability": 0.9883 + }, + { + "start": 3402.72, + "end": 3404.22, + "probability": 0.9824 + }, + { + "start": 3404.84, + "end": 3406.48, + "probability": 0.6661 + }, + { + "start": 3407.46, + "end": 3410.24, + "probability": 0.659 + }, + { + "start": 3411.36, + "end": 3414.26, + "probability": 0.9515 + }, + { + "start": 3414.42, + "end": 3417.36, + "probability": 0.7726 + }, + { + "start": 3417.64, + "end": 3419.46, + "probability": 0.9733 + }, + { + "start": 3420.1, + "end": 3422.02, + "probability": 0.889 + }, + { + "start": 3422.64, + "end": 3424.82, + "probability": 0.8146 + }, + { + "start": 3425.54, + "end": 3427.36, + "probability": 0.7257 + }, + { + "start": 3427.98, + "end": 3430.28, + "probability": 0.7883 + }, + { + "start": 3431.26, + "end": 3433.54, + "probability": 0.9185 + }, + { + "start": 3434.06, + "end": 3436.5, + "probability": 0.9855 + }, + { + "start": 3436.92, + "end": 3438.96, + "probability": 0.9646 + }, + { + "start": 3439.2, + "end": 3440.16, + "probability": 0.7023 + }, + { + "start": 3440.18, + "end": 3440.68, + "probability": 0.6544 + }, + { + "start": 3440.76, + "end": 3442.18, + "probability": 0.9298 + }, + { + "start": 3443.06, + "end": 3446.28, + "probability": 0.6697 + }, + { + "start": 3447.38, + "end": 3449.76, + "probability": 0.7722 + }, + { + "start": 3449.84, + "end": 3451.34, + "probability": 0.9853 + }, + { + "start": 3452.04, + "end": 3453.8, + "probability": 0.9572 + }, + { + "start": 3453.98, + "end": 3454.16, + "probability": 0.5452 + }, + { + "start": 3454.48, + "end": 3458.02, + "probability": 0.6409 + }, + { + "start": 3458.46, + "end": 3460.92, + "probability": 0.8158 + }, + { + "start": 3461.3, + "end": 3465.56, + "probability": 0.8298 + }, + { + "start": 3466.1, + "end": 3467.46, + "probability": 0.5139 + }, + { + "start": 3467.98, + "end": 3469.51, + "probability": 0.7457 + }, + { + "start": 3471.96, + "end": 3475.62, + "probability": 0.4443 + }, + { + "start": 3475.76, + "end": 3476.52, + "probability": 0.6687 + }, + { + "start": 3476.96, + "end": 3477.66, + "probability": 0.6829 + }, + { + "start": 3477.74, + "end": 3481.3, + "probability": 0.9785 + }, + { + "start": 3482.12, + "end": 3483.4, + "probability": 0.7363 + }, + { + "start": 3485.18, + "end": 3489.13, + "probability": 0.6553 + }, + { + "start": 3489.52, + "end": 3491.1, + "probability": 0.9432 + }, + { + "start": 3491.32, + "end": 3492.76, + "probability": 0.8145 + }, + { + "start": 3493.53, + "end": 3493.96, + "probability": 0.0526 + }, + { + "start": 3494.34, + "end": 3496.24, + "probability": 0.833 + }, + { + "start": 3497.8, + "end": 3501.18, + "probability": 0.8495 + }, + { + "start": 3501.3, + "end": 3504.24, + "probability": 0.8902 + }, + { + "start": 3504.7, + "end": 3507.22, + "probability": 0.9944 + }, + { + "start": 3507.22, + "end": 3510.08, + "probability": 0.999 + }, + { + "start": 3511.18, + "end": 3514.08, + "probability": 0.9753 + }, + { + "start": 3514.4, + "end": 3515.83, + "probability": 0.9938 + }, + { + "start": 3515.94, + "end": 3517.32, + "probability": 0.9505 + }, + { + "start": 3517.92, + "end": 3518.06, + "probability": 0.9575 + }, + { + "start": 3519.48, + "end": 3519.88, + "probability": 0.0603 + }, + { + "start": 3519.88, + "end": 3521.28, + "probability": 0.7034 + }, + { + "start": 3521.4, + "end": 3522.16, + "probability": 0.8469 + }, + { + "start": 3523.28, + "end": 3526.24, + "probability": 0.7931 + }, + { + "start": 3526.26, + "end": 3527.08, + "probability": 0.2185 + }, + { + "start": 3527.7, + "end": 3529.48, + "probability": 0.6248 + }, + { + "start": 3529.6, + "end": 3530.04, + "probability": 0.6796 + }, + { + "start": 3530.08, + "end": 3531.7, + "probability": 0.7941 + }, + { + "start": 3532.56, + "end": 3533.04, + "probability": 0.5845 + }, + { + "start": 3533.08, + "end": 3536.34, + "probability": 0.8454 + }, + { + "start": 3536.68, + "end": 3540.52, + "probability": 0.9395 + }, + { + "start": 3540.52, + "end": 3543.78, + "probability": 0.9705 + }, + { + "start": 3544.34, + "end": 3546.82, + "probability": 0.8359 + }, + { + "start": 3546.82, + "end": 3549.5, + "probability": 0.7891 + }, + { + "start": 3551.96, + "end": 3552.16, + "probability": 0.634 + }, + { + "start": 3552.36, + "end": 3552.94, + "probability": 0.6242 + }, + { + "start": 3553.1, + "end": 3555.7, + "probability": 0.974 + }, + { + "start": 3555.94, + "end": 3557.94, + "probability": 0.8835 + }, + { + "start": 3558.0, + "end": 3558.3, + "probability": 0.4911 + }, + { + "start": 3558.3, + "end": 3559.42, + "probability": 0.9214 + }, + { + "start": 3560.66, + "end": 3560.96, + "probability": 0.6829 + }, + { + "start": 3563.78, + "end": 3566.35, + "probability": 0.6047 + }, + { + "start": 3566.68, + "end": 3569.43, + "probability": 0.9344 + }, + { + "start": 3569.52, + "end": 3570.68, + "probability": 0.8673 + }, + { + "start": 3571.1, + "end": 3575.58, + "probability": 0.7046 + }, + { + "start": 3576.5, + "end": 3578.68, + "probability": 0.9277 + }, + { + "start": 3578.78, + "end": 3580.0, + "probability": 0.9834 + }, + { + "start": 3580.32, + "end": 3582.44, + "probability": 0.6244 + }, + { + "start": 3582.9, + "end": 3584.68, + "probability": 0.7945 + }, + { + "start": 3585.02, + "end": 3586.34, + "probability": 0.839 + }, + { + "start": 3586.8, + "end": 3587.82, + "probability": 0.9118 + }, + { + "start": 3587.9, + "end": 3588.1, + "probability": 0.9349 + }, + { + "start": 3588.22, + "end": 3589.44, + "probability": 0.8306 + }, + { + "start": 3589.48, + "end": 3590.0, + "probability": 0.7795 + }, + { + "start": 3590.08, + "end": 3590.66, + "probability": 0.9461 + }, + { + "start": 3591.02, + "end": 3595.62, + "probability": 0.9751 + }, + { + "start": 3596.36, + "end": 3598.02, + "probability": 0.7402 + }, + { + "start": 3598.18, + "end": 3598.82, + "probability": 0.9663 + }, + { + "start": 3599.64, + "end": 3603.06, + "probability": 0.9798 + }, + { + "start": 3603.78, + "end": 3605.76, + "probability": 0.5098 + }, + { + "start": 3605.88, + "end": 3609.6, + "probability": 0.9159 + }, + { + "start": 3610.12, + "end": 3613.14, + "probability": 0.7427 + }, + { + "start": 3613.22, + "end": 3615.17, + "probability": 0.6911 + }, + { + "start": 3615.58, + "end": 3617.19, + "probability": 0.63 + }, + { + "start": 3617.68, + "end": 3618.92, + "probability": 0.8844 + }, + { + "start": 3620.14, + "end": 3622.28, + "probability": 0.5335 + }, + { + "start": 3623.0, + "end": 3626.4, + "probability": 0.4844 + }, + { + "start": 3626.4, + "end": 3628.82, + "probability": 0.7091 + }, + { + "start": 3629.08, + "end": 3629.94, + "probability": 0.7457 + }, + { + "start": 3630.74, + "end": 3631.38, + "probability": 0.2288 + }, + { + "start": 3632.08, + "end": 3632.56, + "probability": 0.569 + }, + { + "start": 3632.66, + "end": 3635.06, + "probability": 0.7612 + }, + { + "start": 3635.66, + "end": 3639.02, + "probability": 0.8976 + }, + { + "start": 3639.68, + "end": 3642.96, + "probability": 0.9566 + }, + { + "start": 3643.26, + "end": 3646.58, + "probability": 0.9875 + }, + { + "start": 3646.58, + "end": 3651.3, + "probability": 0.9595 + }, + { + "start": 3651.3, + "end": 3652.24, + "probability": 0.5388 + }, + { + "start": 3652.28, + "end": 3656.92, + "probability": 0.7772 + }, + { + "start": 3656.92, + "end": 3659.26, + "probability": 0.9633 + }, + { + "start": 3659.56, + "end": 3662.52, + "probability": 0.8125 + }, + { + "start": 3662.6, + "end": 3664.76, + "probability": 0.7789 + }, + { + "start": 3665.38, + "end": 3666.06, + "probability": 0.6914 + }, + { + "start": 3666.22, + "end": 3669.52, + "probability": 0.9812 + }, + { + "start": 3670.1, + "end": 3671.66, + "probability": 0.6749 + }, + { + "start": 3673.3, + "end": 3676.96, + "probability": 0.8242 + }, + { + "start": 3677.06, + "end": 3680.0, + "probability": 0.9717 + }, + { + "start": 3680.1, + "end": 3680.26, + "probability": 0.685 + }, + { + "start": 3680.78, + "end": 3682.7, + "probability": 0.9707 + }, + { + "start": 3682.76, + "end": 3684.34, + "probability": 0.6444 + }, + { + "start": 3684.44, + "end": 3687.64, + "probability": 0.9972 + }, + { + "start": 3687.84, + "end": 3688.82, + "probability": 0.5872 + }, + { + "start": 3688.9, + "end": 3689.36, + "probability": 0.8911 + }, + { + "start": 3690.02, + "end": 3691.32, + "probability": 0.9872 + }, + { + "start": 3691.86, + "end": 3693.62, + "probability": 0.8306 + }, + { + "start": 3694.3, + "end": 3696.84, + "probability": 0.7163 + }, + { + "start": 3697.37, + "end": 3699.0, + "probability": 0.9658 + }, + { + "start": 3710.48, + "end": 3712.26, + "probability": 0.6609 + }, + { + "start": 3713.86, + "end": 3714.84, + "probability": 0.7087 + }, + { + "start": 3716.16, + "end": 3717.14, + "probability": 0.7761 + }, + { + "start": 3718.34, + "end": 3721.43, + "probability": 0.608 + }, + { + "start": 3721.84, + "end": 3722.46, + "probability": 0.8561 + }, + { + "start": 3725.56, + "end": 3726.88, + "probability": 0.2706 + }, + { + "start": 3727.76, + "end": 3728.54, + "probability": 0.5821 + }, + { + "start": 3733.14, + "end": 3735.82, + "probability": 0.7028 + }, + { + "start": 3736.06, + "end": 3738.53, + "probability": 0.9896 + }, + { + "start": 3738.66, + "end": 3742.44, + "probability": 0.8183 + }, + { + "start": 3742.5, + "end": 3743.14, + "probability": 0.7447 + }, + { + "start": 3743.82, + "end": 3746.74, + "probability": 0.9886 + }, + { + "start": 3746.74, + "end": 3749.58, + "probability": 0.9682 + }, + { + "start": 3751.06, + "end": 3754.12, + "probability": 0.7494 + }, + { + "start": 3754.16, + "end": 3754.7, + "probability": 0.8381 + }, + { + "start": 3754.78, + "end": 3757.24, + "probability": 0.92 + }, + { + "start": 3757.3, + "end": 3758.76, + "probability": 0.971 + }, + { + "start": 3758.96, + "end": 3760.88, + "probability": 0.9431 + }, + { + "start": 3761.26, + "end": 3761.62, + "probability": 0.9765 + }, + { + "start": 3762.4, + "end": 3763.3, + "probability": 0.6453 + }, + { + "start": 3764.38, + "end": 3769.58, + "probability": 0.9888 + }, + { + "start": 3769.76, + "end": 3770.72, + "probability": 0.626 + }, + { + "start": 3771.55, + "end": 3772.82, + "probability": 0.5986 + }, + { + "start": 3773.98, + "end": 3775.64, + "probability": 0.5132 + }, + { + "start": 3775.68, + "end": 3776.72, + "probability": 0.7547 + }, + { + "start": 3776.82, + "end": 3779.06, + "probability": 0.9506 + }, + { + "start": 3779.36, + "end": 3780.18, + "probability": 0.6719 + }, + { + "start": 3781.2, + "end": 3783.66, + "probability": 0.9653 + }, + { + "start": 3783.76, + "end": 3784.52, + "probability": 0.8223 + }, + { + "start": 3785.02, + "end": 3786.4, + "probability": 0.9917 + }, + { + "start": 3786.46, + "end": 3788.16, + "probability": 0.9314 + }, + { + "start": 3789.1, + "end": 3792.58, + "probability": 0.9617 + }, + { + "start": 3793.48, + "end": 3796.18, + "probability": 0.3654 + }, + { + "start": 3796.24, + "end": 3798.88, + "probability": 0.9953 + }, + { + "start": 3798.94, + "end": 3799.82, + "probability": 0.7007 + }, + { + "start": 3799.9, + "end": 3801.84, + "probability": 0.9642 + }, + { + "start": 3802.42, + "end": 3804.1, + "probability": 0.9974 + }, + { + "start": 3804.24, + "end": 3805.2, + "probability": 0.8516 + }, + { + "start": 3805.24, + "end": 3807.38, + "probability": 0.9561 + }, + { + "start": 3808.44, + "end": 3809.62, + "probability": 0.6358 + }, + { + "start": 3809.62, + "end": 3812.7, + "probability": 0.9897 + }, + { + "start": 3813.38, + "end": 3816.52, + "probability": 0.9974 + }, + { + "start": 3816.84, + "end": 3819.14, + "probability": 0.9868 + }, + { + "start": 3820.04, + "end": 3824.4, + "probability": 0.979 + }, + { + "start": 3824.7, + "end": 3826.54, + "probability": 0.8073 + }, + { + "start": 3826.64, + "end": 3827.42, + "probability": 0.9888 + }, + { + "start": 3828.02, + "end": 3830.18, + "probability": 0.9847 + }, + { + "start": 3830.7, + "end": 3831.7, + "probability": 0.961 + }, + { + "start": 3832.02, + "end": 3834.18, + "probability": 0.9023 + }, + { + "start": 3834.78, + "end": 3838.76, + "probability": 0.9926 + }, + { + "start": 3839.2, + "end": 3841.04, + "probability": 0.8737 + }, + { + "start": 3841.42, + "end": 3844.16, + "probability": 0.9583 + }, + { + "start": 3844.94, + "end": 3848.44, + "probability": 0.9897 + }, + { + "start": 3848.6, + "end": 3851.54, + "probability": 0.9966 + }, + { + "start": 3852.06, + "end": 3854.5, + "probability": 0.9863 + }, + { + "start": 3855.1, + "end": 3856.66, + "probability": 0.3081 + }, + { + "start": 3857.38, + "end": 3859.56, + "probability": 0.97 + }, + { + "start": 3859.56, + "end": 3863.1, + "probability": 0.4176 + }, + { + "start": 3863.2, + "end": 3864.88, + "probability": 0.8741 + }, + { + "start": 3865.4, + "end": 3865.92, + "probability": 0.403 + }, + { + "start": 3866.5, + "end": 3866.76, + "probability": 0.7461 + }, + { + "start": 3866.84, + "end": 3868.96, + "probability": 0.9492 + }, + { + "start": 3870.06, + "end": 3870.49, + "probability": 0.5198 + }, + { + "start": 3871.76, + "end": 3872.56, + "probability": 0.8323 + }, + { + "start": 3873.28, + "end": 3875.82, + "probability": 0.8545 + }, + { + "start": 3875.9, + "end": 3880.12, + "probability": 0.6431 + }, + { + "start": 3880.24, + "end": 3883.06, + "probability": 0.9723 + }, + { + "start": 3883.24, + "end": 3883.48, + "probability": 0.5843 + }, + { + "start": 3884.0, + "end": 3886.98, + "probability": 0.9551 + }, + { + "start": 3887.38, + "end": 3888.34, + "probability": 0.9158 + }, + { + "start": 3888.9, + "end": 3891.3, + "probability": 0.8516 + }, + { + "start": 3891.4, + "end": 3893.66, + "probability": 0.6916 + }, + { + "start": 3894.48, + "end": 3898.78, + "probability": 0.6246 + }, + { + "start": 3898.78, + "end": 3902.48, + "probability": 0.7592 + }, + { + "start": 3902.88, + "end": 3905.1, + "probability": 0.9723 + }, + { + "start": 3905.76, + "end": 3907.48, + "probability": 0.5988 + }, + { + "start": 3908.28, + "end": 3912.36, + "probability": 0.8909 + }, + { + "start": 3913.34, + "end": 3916.7, + "probability": 0.9294 + }, + { + "start": 3917.36, + "end": 3919.14, + "probability": 0.58 + }, + { + "start": 3919.84, + "end": 3921.34, + "probability": 0.9971 + }, + { + "start": 3921.86, + "end": 3922.94, + "probability": 0.9587 + }, + { + "start": 3923.56, + "end": 3928.6, + "probability": 0.6442 + }, + { + "start": 3929.36, + "end": 3934.09, + "probability": 0.9862 + }, + { + "start": 3935.16, + "end": 3938.8, + "probability": 0.9757 + }, + { + "start": 3938.86, + "end": 3942.02, + "probability": 0.7276 + }, + { + "start": 3942.72, + "end": 3943.38, + "probability": 0.6262 + }, + { + "start": 3944.0, + "end": 3945.42, + "probability": 0.9729 + }, + { + "start": 3946.18, + "end": 3946.9, + "probability": 0.5981 + }, + { + "start": 3947.04, + "end": 3948.0, + "probability": 0.7977 + }, + { + "start": 3949.34, + "end": 3952.1, + "probability": 0.8237 + }, + { + "start": 3952.64, + "end": 3953.58, + "probability": 0.6995 + }, + { + "start": 3953.68, + "end": 3956.24, + "probability": 0.619 + }, + { + "start": 3956.88, + "end": 3958.7, + "probability": 0.9187 + }, + { + "start": 3958.8, + "end": 3962.62, + "probability": 0.856 + }, + { + "start": 3965.32, + "end": 3967.8, + "probability": 0.9392 + }, + { + "start": 3968.38, + "end": 3969.2, + "probability": 0.6702 + }, + { + "start": 3969.24, + "end": 3969.72, + "probability": 0.889 + }, + { + "start": 3970.58, + "end": 3972.26, + "probability": 0.1471 + }, + { + "start": 3974.36, + "end": 3977.86, + "probability": 0.1609 + }, + { + "start": 3980.58, + "end": 3984.12, + "probability": 0.0665 + }, + { + "start": 3984.8, + "end": 3986.12, + "probability": 0.1032 + }, + { + "start": 3988.17, + "end": 3991.54, + "probability": 0.0771 + }, + { + "start": 4037.92, + "end": 4039.28, + "probability": 0.1941 + }, + { + "start": 4040.56, + "end": 4040.8, + "probability": 0.0149 + }, + { + "start": 4054.14, + "end": 4054.14, + "probability": 0.1156 + }, + { + "start": 4054.14, + "end": 4054.14, + "probability": 0.0293 + }, + { + "start": 4054.14, + "end": 4054.14, + "probability": 0.0721 + }, + { + "start": 4054.18, + "end": 4056.18, + "probability": 0.3972 + }, + { + "start": 4057.26, + "end": 4060.2, + "probability": 0.677 + }, + { + "start": 4061.38, + "end": 4064.42, + "probability": 0.9691 + }, + { + "start": 4065.7, + "end": 4068.74, + "probability": 0.9978 + }, + { + "start": 4069.74, + "end": 4072.88, + "probability": 0.9973 + }, + { + "start": 4073.5, + "end": 4076.58, + "probability": 0.849 + }, + { + "start": 4077.24, + "end": 4077.61, + "probability": 0.9565 + }, + { + "start": 4078.96, + "end": 4081.72, + "probability": 0.9976 + }, + { + "start": 4082.56, + "end": 4084.9, + "probability": 0.9841 + }, + { + "start": 4086.2, + "end": 4087.36, + "probability": 0.9478 + }, + { + "start": 4087.7, + "end": 4091.96, + "probability": 0.9884 + }, + { + "start": 4091.96, + "end": 4099.68, + "probability": 0.9199 + }, + { + "start": 4100.66, + "end": 4105.02, + "probability": 0.9987 + }, + { + "start": 4105.88, + "end": 4108.96, + "probability": 0.851 + }, + { + "start": 4110.16, + "end": 4116.86, + "probability": 0.9896 + }, + { + "start": 4117.56, + "end": 4120.02, + "probability": 0.9717 + }, + { + "start": 4121.08, + "end": 4126.74, + "probability": 0.964 + }, + { + "start": 4127.44, + "end": 4130.02, + "probability": 0.9885 + }, + { + "start": 4130.02, + "end": 4133.74, + "probability": 0.9928 + }, + { + "start": 4134.78, + "end": 4135.4, + "probability": 0.6818 + }, + { + "start": 4135.88, + "end": 4140.04, + "probability": 0.964 + }, + { + "start": 4140.18, + "end": 4140.72, + "probability": 0.5585 + }, + { + "start": 4141.56, + "end": 4145.46, + "probability": 0.9956 + }, + { + "start": 4146.08, + "end": 4147.84, + "probability": 0.9962 + }, + { + "start": 4149.3, + "end": 4151.46, + "probability": 0.9989 + }, + { + "start": 4152.28, + "end": 4153.8, + "probability": 0.6632 + }, + { + "start": 4154.6, + "end": 4158.06, + "probability": 0.9453 + }, + { + "start": 4158.64, + "end": 4160.96, + "probability": 0.9907 + }, + { + "start": 4161.84, + "end": 4166.06, + "probability": 0.9757 + }, + { + "start": 4167.36, + "end": 4172.72, + "probability": 0.9841 + }, + { + "start": 4173.52, + "end": 4178.88, + "probability": 0.9678 + }, + { + "start": 4179.08, + "end": 4183.26, + "probability": 0.9873 + }, + { + "start": 4184.24, + "end": 4191.28, + "probability": 0.9967 + }, + { + "start": 4191.9, + "end": 4194.76, + "probability": 0.9508 + }, + { + "start": 4196.58, + "end": 4199.14, + "probability": 0.7101 + }, + { + "start": 4199.8, + "end": 4202.18, + "probability": 0.9723 + }, + { + "start": 4202.7, + "end": 4205.8, + "probability": 0.9117 + }, + { + "start": 4206.4, + "end": 4208.7, + "probability": 0.9767 + }, + { + "start": 4209.16, + "end": 4212.32, + "probability": 0.9553 + }, + { + "start": 4213.0, + "end": 4216.94, + "probability": 0.9899 + }, + { + "start": 4217.6, + "end": 4219.52, + "probability": 0.8634 + }, + { + "start": 4220.24, + "end": 4223.0, + "probability": 0.984 + }, + { + "start": 4223.6, + "end": 4229.2, + "probability": 0.9754 + }, + { + "start": 4229.2, + "end": 4233.16, + "probability": 0.9878 + }, + { + "start": 4233.88, + "end": 4237.38, + "probability": 0.8848 + }, + { + "start": 4238.36, + "end": 4240.38, + "probability": 0.6343 + }, + { + "start": 4240.92, + "end": 4242.38, + "probability": 0.8066 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.1603 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.2974 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.1199 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0138 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.078 + }, + { + "start": 4280.44, + "end": 4281.2, + "probability": 0.0611 + }, + { + "start": 4282.34, + "end": 4285.72, + "probability": 0.9873 + }, + { + "start": 4286.32, + "end": 4286.94, + "probability": 0.9964 + }, + { + "start": 4288.14, + "end": 4291.06, + "probability": 0.9931 + }, + { + "start": 4291.7, + "end": 4292.27, + "probability": 0.9907 + }, + { + "start": 4293.64, + "end": 4294.66, + "probability": 0.9878 + }, + { + "start": 4296.28, + "end": 4297.38, + "probability": 0.9689 + }, + { + "start": 4297.7, + "end": 4300.5, + "probability": 0.6945 + }, + { + "start": 4301.06, + "end": 4302.02, + "probability": 0.9658 + }, + { + "start": 4303.4, + "end": 4304.15, + "probability": 0.9959 + }, + { + "start": 4305.02, + "end": 4307.96, + "probability": 0.9975 + }, + { + "start": 4308.82, + "end": 4310.5, + "probability": 0.9935 + }, + { + "start": 4311.4, + "end": 4313.34, + "probability": 0.9982 + }, + { + "start": 4314.48, + "end": 4315.24, + "probability": 0.8753 + }, + { + "start": 4316.56, + "end": 4319.78, + "probability": 0.9353 + }, + { + "start": 4320.7, + "end": 4322.4, + "probability": 0.9844 + }, + { + "start": 4323.46, + "end": 4324.92, + "probability": 0.9038 + }, + { + "start": 4325.9, + "end": 4330.9, + "probability": 0.9803 + }, + { + "start": 4332.42, + "end": 4337.22, + "probability": 0.9893 + }, + { + "start": 4337.98, + "end": 4339.14, + "probability": 0.9998 + }, + { + "start": 4339.94, + "end": 4343.3, + "probability": 0.9829 + }, + { + "start": 4344.38, + "end": 4348.32, + "probability": 0.9917 + }, + { + "start": 4349.52, + "end": 4354.36, + "probability": 0.9948 + }, + { + "start": 4355.88, + "end": 4356.69, + "probability": 0.9879 + }, + { + "start": 4357.54, + "end": 4358.22, + "probability": 0.8604 + }, + { + "start": 4358.42, + "end": 4358.98, + "probability": 0.9081 + }, + { + "start": 4359.34, + "end": 4360.14, + "probability": 0.9902 + }, + { + "start": 4360.26, + "end": 4360.98, + "probability": 0.9062 + }, + { + "start": 4361.56, + "end": 4362.62, + "probability": 0.7527 + }, + { + "start": 4363.64, + "end": 4365.56, + "probability": 0.9517 + }, + { + "start": 4366.36, + "end": 4366.92, + "probability": 0.9415 + }, + { + "start": 4367.86, + "end": 4370.54, + "probability": 0.9593 + }, + { + "start": 4372.02, + "end": 4373.8, + "probability": 0.9946 + }, + { + "start": 4374.62, + "end": 4376.18, + "probability": 0.9995 + }, + { + "start": 4376.72, + "end": 4379.92, + "probability": 0.9995 + }, + { + "start": 4379.92, + "end": 4383.46, + "probability": 0.9995 + }, + { + "start": 4384.7, + "end": 4389.18, + "probability": 0.9824 + }, + { + "start": 4389.18, + "end": 4393.92, + "probability": 0.9928 + }, + { + "start": 4395.92, + "end": 4397.24, + "probability": 0.9337 + }, + { + "start": 4397.96, + "end": 4400.14, + "probability": 0.9817 + }, + { + "start": 4401.8, + "end": 4406.87, + "probability": 0.9877 + }, + { + "start": 4407.6, + "end": 4411.16, + "probability": 0.7862 + }, + { + "start": 4411.7, + "end": 4413.49, + "probability": 0.8037 + }, + { + "start": 4414.8, + "end": 4419.46, + "probability": 0.7615 + }, + { + "start": 4420.04, + "end": 4421.84, + "probability": 0.965 + }, + { + "start": 4422.4, + "end": 4425.1, + "probability": 0.9626 + }, + { + "start": 4425.72, + "end": 4427.78, + "probability": 0.951 + }, + { + "start": 4428.54, + "end": 4430.62, + "probability": 0.8239 + }, + { + "start": 4431.66, + "end": 4432.46, + "probability": 0.7527 + }, + { + "start": 4433.85, + "end": 4435.16, + "probability": 0.9707 + }, + { + "start": 4435.94, + "end": 4437.14, + "probability": 0.9121 + }, + { + "start": 4437.74, + "end": 4441.06, + "probability": 0.9902 + }, + { + "start": 4441.58, + "end": 4442.42, + "probability": 0.9046 + }, + { + "start": 4443.7, + "end": 4447.2, + "probability": 0.9831 + }, + { + "start": 4448.12, + "end": 4449.52, + "probability": 0.9409 + }, + { + "start": 4451.86, + "end": 4455.74, + "probability": 0.933 + }, + { + "start": 4455.98, + "end": 4458.28, + "probability": 0.2712 + }, + { + "start": 4458.58, + "end": 4460.36, + "probability": 0.9982 + }, + { + "start": 4460.88, + "end": 4464.8, + "probability": 0.994 + }, + { + "start": 4466.42, + "end": 4468.36, + "probability": 0.9948 + }, + { + "start": 4469.64, + "end": 4471.48, + "probability": 0.9923 + }, + { + "start": 4472.48, + "end": 4474.6, + "probability": 0.9756 + }, + { + "start": 4475.14, + "end": 4478.82, + "probability": 0.995 + }, + { + "start": 4478.82, + "end": 4484.56, + "probability": 0.9934 + }, + { + "start": 4485.1, + "end": 4487.4, + "probability": 0.9927 + }, + { + "start": 4488.28, + "end": 4493.92, + "probability": 0.8967 + }, + { + "start": 4494.26, + "end": 4499.08, + "probability": 0.9921 + }, + { + "start": 4500.12, + "end": 4503.02, + "probability": 0.9371 + }, + { + "start": 4504.58, + "end": 4509.96, + "probability": 0.9973 + }, + { + "start": 4510.76, + "end": 4511.66, + "probability": 0.8576 + }, + { + "start": 4512.92, + "end": 4518.08, + "probability": 0.9901 + }, + { + "start": 4518.8, + "end": 4522.62, + "probability": 0.9988 + }, + { + "start": 4523.18, + "end": 4525.28, + "probability": 0.9824 + }, + { + "start": 4525.96, + "end": 4527.06, + "probability": 0.843 + }, + { + "start": 4528.08, + "end": 4529.06, + "probability": 0.7442 + }, + { + "start": 4529.62, + "end": 4530.86, + "probability": 0.8746 + }, + { + "start": 4531.54, + "end": 4535.02, + "probability": 0.9897 + }, + { + "start": 4535.92, + "end": 4540.16, + "probability": 0.9711 + }, + { + "start": 4540.78, + "end": 4543.3, + "probability": 0.9673 + }, + { + "start": 4544.34, + "end": 4547.86, + "probability": 0.9531 + }, + { + "start": 4548.5, + "end": 4551.46, + "probability": 0.9795 + }, + { + "start": 4552.22, + "end": 4554.16, + "probability": 0.9839 + }, + { + "start": 4554.74, + "end": 4556.72, + "probability": 0.9907 + }, + { + "start": 4557.42, + "end": 4561.52, + "probability": 0.9796 + }, + { + "start": 4561.62, + "end": 4564.9, + "probability": 0.9969 + }, + { + "start": 4566.12, + "end": 4566.66, + "probability": 0.8285 + }, + { + "start": 4567.3, + "end": 4570.58, + "probability": 0.984 + }, + { + "start": 4571.26, + "end": 4572.86, + "probability": 0.9898 + }, + { + "start": 4573.7, + "end": 4579.04, + "probability": 0.9534 + }, + { + "start": 4580.16, + "end": 4580.97, + "probability": 0.9772 + }, + { + "start": 4582.14, + "end": 4584.34, + "probability": 0.9858 + }, + { + "start": 4585.56, + "end": 4586.92, + "probability": 0.9048 + }, + { + "start": 4588.54, + "end": 4594.54, + "probability": 0.9256 + }, + { + "start": 4595.3, + "end": 4597.86, + "probability": 0.9878 + }, + { + "start": 4598.42, + "end": 4598.88, + "probability": 0.5802 + }, + { + "start": 4599.4, + "end": 4601.68, + "probability": 0.9176 + }, + { + "start": 4602.9, + "end": 4604.42, + "probability": 0.9683 + }, + { + "start": 4608.92, + "end": 4610.24, + "probability": 0.7612 + }, + { + "start": 4612.36, + "end": 4614.04, + "probability": 0.7893 + }, + { + "start": 4617.14, + "end": 4617.92, + "probability": 0.8659 + }, + { + "start": 4618.08, + "end": 4618.64, + "probability": 0.8221 + }, + { + "start": 4618.76, + "end": 4619.94, + "probability": 0.9256 + }, + { + "start": 4619.94, + "end": 4625.24, + "probability": 0.9972 + }, + { + "start": 4625.94, + "end": 4633.14, + "probability": 0.9813 + }, + { + "start": 4635.14, + "end": 4636.62, + "probability": 0.944 + }, + { + "start": 4637.1, + "end": 4639.18, + "probability": 0.9904 + }, + { + "start": 4639.5, + "end": 4641.92, + "probability": 0.9884 + }, + { + "start": 4643.02, + "end": 4645.62, + "probability": 0.9632 + }, + { + "start": 4645.62, + "end": 4648.06, + "probability": 0.9938 + }, + { + "start": 4648.82, + "end": 4649.38, + "probability": 0.7984 + }, + { + "start": 4649.92, + "end": 4652.24, + "probability": 0.9926 + }, + { + "start": 4653.08, + "end": 4656.12, + "probability": 0.9731 + }, + { + "start": 4656.12, + "end": 4659.92, + "probability": 0.9906 + }, + { + "start": 4661.0, + "end": 4665.74, + "probability": 0.976 + }, + { + "start": 4666.94, + "end": 4668.96, + "probability": 0.8508 + }, + { + "start": 4669.86, + "end": 4671.26, + "probability": 0.9141 + }, + { + "start": 4671.82, + "end": 4674.06, + "probability": 0.9385 + }, + { + "start": 4675.28, + "end": 4677.58, + "probability": 0.8615 + }, + { + "start": 4677.82, + "end": 4681.22, + "probability": 0.9929 + }, + { + "start": 4681.45, + "end": 4686.02, + "probability": 0.9797 + }, + { + "start": 4687.04, + "end": 4689.4, + "probability": 0.9212 + }, + { + "start": 4689.98, + "end": 4693.68, + "probability": 0.997 + }, + { + "start": 4694.24, + "end": 4695.16, + "probability": 0.9794 + }, + { + "start": 4696.1, + "end": 4700.02, + "probability": 0.9921 + }, + { + "start": 4700.02, + "end": 4703.74, + "probability": 0.9707 + }, + { + "start": 4704.26, + "end": 4706.98, + "probability": 0.9648 + }, + { + "start": 4707.56, + "end": 4710.94, + "probability": 0.876 + }, + { + "start": 4710.94, + "end": 4713.74, + "probability": 0.995 + }, + { + "start": 4714.64, + "end": 4722.02, + "probability": 0.8215 + }, + { + "start": 4722.28, + "end": 4723.86, + "probability": 0.9154 + }, + { + "start": 4724.54, + "end": 4727.86, + "probability": 0.8586 + }, + { + "start": 4728.64, + "end": 4728.84, + "probability": 0.4882 + }, + { + "start": 4729.02, + "end": 4729.72, + "probability": 0.7691 + }, + { + "start": 4729.76, + "end": 4732.68, + "probability": 0.9821 + }, + { + "start": 4733.86, + "end": 4734.86, + "probability": 0.5357 + }, + { + "start": 4734.98, + "end": 4735.78, + "probability": 0.6407 + }, + { + "start": 4735.96, + "end": 4743.3, + "probability": 0.995 + }, + { + "start": 4744.16, + "end": 4746.88, + "probability": 0.9989 + }, + { + "start": 4747.76, + "end": 4751.44, + "probability": 0.9987 + }, + { + "start": 4752.74, + "end": 4755.9, + "probability": 0.9932 + }, + { + "start": 4756.56, + "end": 4759.2, + "probability": 0.9932 + }, + { + "start": 4760.84, + "end": 4765.46, + "probability": 0.9966 + }, + { + "start": 4766.68, + "end": 4770.6, + "probability": 0.9523 + }, + { + "start": 4771.62, + "end": 4775.2, + "probability": 0.998 + }, + { + "start": 4776.1, + "end": 4777.06, + "probability": 0.8296 + }, + { + "start": 4777.62, + "end": 4779.22, + "probability": 0.9312 + }, + { + "start": 4779.46, + "end": 4779.72, + "probability": 0.443 + }, + { + "start": 4780.18, + "end": 4780.62, + "probability": 0.7635 + }, + { + "start": 4782.2, + "end": 4782.62, + "probability": 0.2508 + }, + { + "start": 4782.62, + "end": 4783.41, + "probability": 0.735 + }, + { + "start": 4819.68, + "end": 4821.22, + "probability": 0.6764 + }, + { + "start": 4822.26, + "end": 4823.28, + "probability": 0.849 + }, + { + "start": 4825.56, + "end": 4827.8, + "probability": 0.9919 + }, + { + "start": 4828.26, + "end": 4829.86, + "probability": 0.968 + }, + { + "start": 4831.12, + "end": 4832.94, + "probability": 0.9967 + }, + { + "start": 4833.76, + "end": 4835.78, + "probability": 0.6069 + }, + { + "start": 4836.78, + "end": 4841.2, + "probability": 0.8568 + }, + { + "start": 4842.0, + "end": 4843.4, + "probability": 0.9904 + }, + { + "start": 4844.78, + "end": 4850.4, + "probability": 0.9728 + }, + { + "start": 4851.36, + "end": 4852.12, + "probability": 0.9084 + }, + { + "start": 4853.46, + "end": 4857.58, + "probability": 0.9529 + }, + { + "start": 4858.46, + "end": 4862.5, + "probability": 0.9891 + }, + { + "start": 4864.64, + "end": 4865.44, + "probability": 0.7194 + }, + { + "start": 4867.4, + "end": 4870.0, + "probability": 0.9157 + }, + { + "start": 4870.76, + "end": 4871.42, + "probability": 0.7884 + }, + { + "start": 4872.22, + "end": 4873.18, + "probability": 0.9056 + }, + { + "start": 4874.64, + "end": 4876.28, + "probability": 0.9886 + }, + { + "start": 4877.3, + "end": 4877.78, + "probability": 0.5137 + }, + { + "start": 4877.96, + "end": 4883.3, + "probability": 0.9691 + }, + { + "start": 4884.62, + "end": 4886.3, + "probability": 0.9183 + }, + { + "start": 4887.62, + "end": 4888.6, + "probability": 0.743 + }, + { + "start": 4889.56, + "end": 4892.18, + "probability": 0.9661 + }, + { + "start": 4893.06, + "end": 4896.14, + "probability": 0.9725 + }, + { + "start": 4897.28, + "end": 4899.58, + "probability": 0.9749 + }, + { + "start": 4901.32, + "end": 4907.34, + "probability": 0.9701 + }, + { + "start": 4908.14, + "end": 4910.1, + "probability": 0.9523 + }, + { + "start": 4911.52, + "end": 4914.02, + "probability": 0.9867 + }, + { + "start": 4914.94, + "end": 4918.18, + "probability": 0.9949 + }, + { + "start": 4919.0, + "end": 4921.14, + "probability": 0.9905 + }, + { + "start": 4921.98, + "end": 4923.4, + "probability": 0.7715 + }, + { + "start": 4924.54, + "end": 4925.96, + "probability": 0.9961 + }, + { + "start": 4926.8, + "end": 4929.24, + "probability": 0.9949 + }, + { + "start": 4930.66, + "end": 4931.7, + "probability": 0.6213 + }, + { + "start": 4932.76, + "end": 4934.0, + "probability": 0.5323 + }, + { + "start": 4935.42, + "end": 4937.1, + "probability": 0.6533 + }, + { + "start": 4938.72, + "end": 4942.0, + "probability": 0.8634 + }, + { + "start": 4942.6, + "end": 4944.3, + "probability": 0.9011 + }, + { + "start": 4945.88, + "end": 4946.5, + "probability": 0.7944 + }, + { + "start": 4947.68, + "end": 4948.68, + "probability": 0.9114 + }, + { + "start": 4949.72, + "end": 4953.28, + "probability": 0.9729 + }, + { + "start": 4954.58, + "end": 4957.92, + "probability": 0.9896 + }, + { + "start": 4958.68, + "end": 4960.48, + "probability": 0.9544 + }, + { + "start": 4962.8, + "end": 4966.12, + "probability": 0.9318 + }, + { + "start": 4966.48, + "end": 4967.52, + "probability": 0.5676 + }, + { + "start": 4968.9, + "end": 4972.86, + "probability": 0.9977 + }, + { + "start": 4973.16, + "end": 4975.18, + "probability": 0.9878 + }, + { + "start": 4976.5, + "end": 4981.86, + "probability": 0.9807 + }, + { + "start": 4982.74, + "end": 4984.86, + "probability": 0.9913 + }, + { + "start": 4987.14, + "end": 4990.4, + "probability": 0.9911 + }, + { + "start": 4991.08, + "end": 4992.1, + "probability": 0.7062 + }, + { + "start": 4993.08, + "end": 4997.32, + "probability": 0.9809 + }, + { + "start": 4997.84, + "end": 4998.92, + "probability": 0.9702 + }, + { + "start": 5000.4, + "end": 5003.42, + "probability": 0.9297 + }, + { + "start": 5004.3, + "end": 5006.82, + "probability": 0.9907 + }, + { + "start": 5007.42, + "end": 5009.14, + "probability": 0.8122 + }, + { + "start": 5009.7, + "end": 5012.84, + "probability": 0.9951 + }, + { + "start": 5015.14, + "end": 5020.6, + "probability": 0.8986 + }, + { + "start": 5021.6, + "end": 5023.4, + "probability": 0.9111 + }, + { + "start": 5024.0, + "end": 5024.62, + "probability": 0.6796 + }, + { + "start": 5025.42, + "end": 5030.98, + "probability": 0.9995 + }, + { + "start": 5032.12, + "end": 5033.8, + "probability": 0.7303 + }, + { + "start": 5034.62, + "end": 5039.18, + "probability": 0.9834 + }, + { + "start": 5041.3, + "end": 5043.04, + "probability": 0.9904 + }, + { + "start": 5043.56, + "end": 5045.22, + "probability": 0.9738 + }, + { + "start": 5045.9, + "end": 5048.0, + "probability": 0.9932 + }, + { + "start": 5049.18, + "end": 5052.76, + "probability": 0.995 + }, + { + "start": 5054.02, + "end": 5056.48, + "probability": 0.9295 + }, + { + "start": 5056.48, + "end": 5060.7, + "probability": 0.7763 + }, + { + "start": 5061.38, + "end": 5063.42, + "probability": 0.9969 + }, + { + "start": 5064.84, + "end": 5069.08, + "probability": 0.959 + }, + { + "start": 5070.38, + "end": 5074.66, + "probability": 0.999 + }, + { + "start": 5075.34, + "end": 5078.98, + "probability": 0.9843 + }, + { + "start": 5080.0, + "end": 5082.22, + "probability": 0.9922 + }, + { + "start": 5082.22, + "end": 5085.74, + "probability": 0.9953 + }, + { + "start": 5098.02, + "end": 5103.6, + "probability": 0.8631 + }, + { + "start": 5104.32, + "end": 5107.62, + "probability": 0.9622 + }, + { + "start": 5108.74, + "end": 5110.82, + "probability": 0.8386 + }, + { + "start": 5112.0, + "end": 5113.72, + "probability": 0.926 + }, + { + "start": 5114.66, + "end": 5116.24, + "probability": 0.9719 + }, + { + "start": 5117.04, + "end": 5118.78, + "probability": 0.6398 + }, + { + "start": 5119.78, + "end": 5120.6, + "probability": 0.7484 + }, + { + "start": 5121.44, + "end": 5125.02, + "probability": 0.9644 + }, + { + "start": 5125.7, + "end": 5127.58, + "probability": 0.9943 + }, + { + "start": 5128.24, + "end": 5128.68, + "probability": 0.8807 + }, + { + "start": 5129.48, + "end": 5131.04, + "probability": 0.6861 + }, + { + "start": 5132.18, + "end": 5133.52, + "probability": 0.9526 + }, + { + "start": 5135.06, + "end": 5135.54, + "probability": 0.8684 + }, + { + "start": 5151.4, + "end": 5153.42, + "probability": 0.7709 + }, + { + "start": 5154.58, + "end": 5158.0, + "probability": 0.8623 + }, + { + "start": 5161.38, + "end": 5168.36, + "probability": 0.9204 + }, + { + "start": 5169.08, + "end": 5173.6, + "probability": 0.9813 + }, + { + "start": 5174.78, + "end": 5179.44, + "probability": 0.9982 + }, + { + "start": 5181.08, + "end": 5184.48, + "probability": 0.9968 + }, + { + "start": 5185.18, + "end": 5187.54, + "probability": 0.9334 + }, + { + "start": 5188.54, + "end": 5190.76, + "probability": 0.9972 + }, + { + "start": 5191.4, + "end": 5193.56, + "probability": 0.9166 + }, + { + "start": 5194.48, + "end": 5198.3, + "probability": 0.9663 + }, + { + "start": 5199.46, + "end": 5203.4, + "probability": 0.9769 + }, + { + "start": 5204.1, + "end": 5209.46, + "probability": 0.9463 + }, + { + "start": 5210.3, + "end": 5212.46, + "probability": 0.9934 + }, + { + "start": 5213.9, + "end": 5216.04, + "probability": 0.9883 + }, + { + "start": 5216.6, + "end": 5219.4, + "probability": 0.9073 + }, + { + "start": 5220.0, + "end": 5222.2, + "probability": 0.8889 + }, + { + "start": 5223.06, + "end": 5226.04, + "probability": 0.9971 + }, + { + "start": 5226.04, + "end": 5229.2, + "probability": 0.9967 + }, + { + "start": 5230.14, + "end": 5231.08, + "probability": 0.9614 + }, + { + "start": 5231.24, + "end": 5237.22, + "probability": 0.9939 + }, + { + "start": 5237.5, + "end": 5238.08, + "probability": 0.5546 + }, + { + "start": 5238.94, + "end": 5245.36, + "probability": 0.991 + }, + { + "start": 5246.76, + "end": 5250.16, + "probability": 0.9877 + }, + { + "start": 5250.26, + "end": 5250.84, + "probability": 0.5308 + }, + { + "start": 5250.96, + "end": 5252.24, + "probability": 0.9803 + }, + { + "start": 5252.88, + "end": 5254.32, + "probability": 0.9911 + }, + { + "start": 5255.6, + "end": 5261.22, + "probability": 0.9151 + }, + { + "start": 5262.02, + "end": 5271.78, + "probability": 0.9765 + }, + { + "start": 5273.6, + "end": 5275.56, + "probability": 0.9343 + }, + { + "start": 5276.54, + "end": 5280.7, + "probability": 0.9882 + }, + { + "start": 5280.92, + "end": 5284.37, + "probability": 0.978 + }, + { + "start": 5284.64, + "end": 5286.62, + "probability": 0.9926 + }, + { + "start": 5289.94, + "end": 5292.52, + "probability": 0.2176 + }, + { + "start": 5293.06, + "end": 5294.4, + "probability": 0.815 + }, + { + "start": 5296.66, + "end": 5298.48, + "probability": 0.8469 + }, + { + "start": 5299.71, + "end": 5307.82, + "probability": 0.9924 + }, + { + "start": 5308.36, + "end": 5311.24, + "probability": 0.9156 + }, + { + "start": 5312.08, + "end": 5313.04, + "probability": 0.9708 + }, + { + "start": 5313.8, + "end": 5316.84, + "probability": 0.9126 + }, + { + "start": 5317.98, + "end": 5321.74, + "probability": 0.981 + }, + { + "start": 5324.54, + "end": 5334.1, + "probability": 0.9697 + }, + { + "start": 5334.4, + "end": 5336.52, + "probability": 0.7523 + }, + { + "start": 5336.52, + "end": 5342.06, + "probability": 0.9862 + }, + { + "start": 5342.76, + "end": 5344.68, + "probability": 0.8629 + }, + { + "start": 5345.46, + "end": 5349.86, + "probability": 0.998 + }, + { + "start": 5353.02, + "end": 5353.9, + "probability": 0.6907 + }, + { + "start": 5355.37, + "end": 5357.32, + "probability": 0.9552 + }, + { + "start": 5357.91, + "end": 5360.2, + "probability": 0.9109 + }, + { + "start": 5361.52, + "end": 5367.04, + "probability": 0.9951 + }, + { + "start": 5367.58, + "end": 5368.64, + "probability": 0.9863 + }, + { + "start": 5368.9, + "end": 5373.5, + "probability": 0.9867 + }, + { + "start": 5374.48, + "end": 5376.62, + "probability": 0.8008 + }, + { + "start": 5377.48, + "end": 5377.52, + "probability": 0.6865 + }, + { + "start": 5380.2, + "end": 5381.54, + "probability": 0.853 + }, + { + "start": 5382.76, + "end": 5385.64, + "probability": 0.9963 + }, + { + "start": 5385.78, + "end": 5386.56, + "probability": 0.8826 + }, + { + "start": 5387.3, + "end": 5390.02, + "probability": 0.9828 + }, + { + "start": 5391.44, + "end": 5392.52, + "probability": 0.7929 + }, + { + "start": 5394.3, + "end": 5395.06, + "probability": 0.9585 + }, + { + "start": 5395.38, + "end": 5398.06, + "probability": 0.9907 + }, + { + "start": 5399.62, + "end": 5400.46, + "probability": 0.8472 + }, + { + "start": 5401.78, + "end": 5402.52, + "probability": 0.8894 + }, + { + "start": 5403.32, + "end": 5408.0, + "probability": 0.9924 + }, + { + "start": 5408.2, + "end": 5413.32, + "probability": 0.9963 + }, + { + "start": 5414.0, + "end": 5415.42, + "probability": 0.898 + }, + { + "start": 5416.68, + "end": 5419.74, + "probability": 0.9833 + }, + { + "start": 5419.82, + "end": 5420.98, + "probability": 0.9734 + }, + { + "start": 5421.8, + "end": 5425.08, + "probability": 0.9755 + }, + { + "start": 5425.76, + "end": 5427.88, + "probability": 0.9879 + }, + { + "start": 5428.0, + "end": 5429.06, + "probability": 0.9692 + }, + { + "start": 5429.46, + "end": 5431.2, + "probability": 0.9738 + }, + { + "start": 5431.28, + "end": 5431.69, + "probability": 0.8245 + }, + { + "start": 5431.96, + "end": 5432.48, + "probability": 0.7451 + }, + { + "start": 5432.98, + "end": 5436.62, + "probability": 0.9965 + }, + { + "start": 5436.78, + "end": 5440.65, + "probability": 0.5067 + }, + { + "start": 5441.42, + "end": 5444.3, + "probability": 0.838 + }, + { + "start": 5444.5, + "end": 5447.74, + "probability": 0.9986 + }, + { + "start": 5448.22, + "end": 5451.26, + "probability": 0.9657 + }, + { + "start": 5451.94, + "end": 5456.68, + "probability": 0.8934 + }, + { + "start": 5457.44, + "end": 5462.98, + "probability": 0.9951 + }, + { + "start": 5463.16, + "end": 5468.62, + "probability": 0.9661 + }, + { + "start": 5468.62, + "end": 5472.8, + "probability": 0.9359 + }, + { + "start": 5473.16, + "end": 5475.74, + "probability": 0.9708 + }, + { + "start": 5476.34, + "end": 5477.78, + "probability": 0.869 + }, + { + "start": 5478.52, + "end": 5481.08, + "probability": 0.9899 + }, + { + "start": 5481.56, + "end": 5482.74, + "probability": 0.7873 + }, + { + "start": 5482.8, + "end": 5484.4, + "probability": 0.7345 + }, + { + "start": 5484.5, + "end": 5485.72, + "probability": 0.9016 + }, + { + "start": 5512.44, + "end": 5515.94, + "probability": 0.7924 + }, + { + "start": 5517.5, + "end": 5520.76, + "probability": 0.9752 + }, + { + "start": 5522.98, + "end": 5524.26, + "probability": 0.9499 + }, + { + "start": 5524.38, + "end": 5529.98, + "probability": 0.9777 + }, + { + "start": 5530.6, + "end": 5532.58, + "probability": 0.9802 + }, + { + "start": 5533.12, + "end": 5536.08, + "probability": 0.9921 + }, + { + "start": 5537.8, + "end": 5540.28, + "probability": 0.9218 + }, + { + "start": 5540.98, + "end": 5543.58, + "probability": 0.9405 + }, + { + "start": 5544.32, + "end": 5545.58, + "probability": 0.8903 + }, + { + "start": 5545.72, + "end": 5546.94, + "probability": 0.7537 + }, + { + "start": 5547.14, + "end": 5547.92, + "probability": 0.4874 + }, + { + "start": 5548.74, + "end": 5550.78, + "probability": 0.9812 + }, + { + "start": 5551.42, + "end": 5553.42, + "probability": 0.9681 + }, + { + "start": 5554.98, + "end": 5555.98, + "probability": 0.8235 + }, + { + "start": 5556.5, + "end": 5558.14, + "probability": 0.9919 + }, + { + "start": 5560.1, + "end": 5564.62, + "probability": 0.9695 + }, + { + "start": 5565.7, + "end": 5566.27, + "probability": 0.5872 + }, + { + "start": 5567.86, + "end": 5568.28, + "probability": 0.4313 + }, + { + "start": 5568.82, + "end": 5571.84, + "probability": 0.8115 + }, + { + "start": 5572.66, + "end": 5574.62, + "probability": 0.8226 + }, + { + "start": 5575.26, + "end": 5576.92, + "probability": 0.9569 + }, + { + "start": 5577.0, + "end": 5578.06, + "probability": 0.6147 + }, + { + "start": 5578.24, + "end": 5579.1, + "probability": 0.6383 + }, + { + "start": 5579.28, + "end": 5580.04, + "probability": 0.5395 + }, + { + "start": 5581.16, + "end": 5581.78, + "probability": 0.5898 + }, + { + "start": 5581.88, + "end": 5583.04, + "probability": 0.9601 + }, + { + "start": 5583.14, + "end": 5584.34, + "probability": 0.9219 + }, + { + "start": 5584.42, + "end": 5585.38, + "probability": 0.8514 + }, + { + "start": 5586.04, + "end": 5588.56, + "probability": 0.7964 + }, + { + "start": 5589.42, + "end": 5591.82, + "probability": 0.9852 + }, + { + "start": 5591.96, + "end": 5593.6, + "probability": 0.9492 + }, + { + "start": 5595.2, + "end": 5599.16, + "probability": 0.9953 + }, + { + "start": 5600.76, + "end": 5602.46, + "probability": 0.8477 + }, + { + "start": 5603.42, + "end": 5605.56, + "probability": 0.7994 + }, + { + "start": 5606.36, + "end": 5606.9, + "probability": 0.9006 + }, + { + "start": 5607.24, + "end": 5608.4, + "probability": 0.9124 + }, + { + "start": 5608.54, + "end": 5609.42, + "probability": 0.918 + }, + { + "start": 5609.66, + "end": 5610.5, + "probability": 0.8613 + }, + { + "start": 5611.34, + "end": 5614.34, + "probability": 0.9365 + }, + { + "start": 5615.32, + "end": 5617.14, + "probability": 0.9552 + }, + { + "start": 5617.66, + "end": 5620.66, + "probability": 0.9744 + }, + { + "start": 5621.56, + "end": 5623.1, + "probability": 0.9238 + }, + { + "start": 5623.16, + "end": 5625.0, + "probability": 0.9883 + }, + { + "start": 5625.12, + "end": 5626.18, + "probability": 0.8118 + }, + { + "start": 5626.98, + "end": 5627.62, + "probability": 0.8488 + }, + { + "start": 5629.88, + "end": 5633.82, + "probability": 0.8795 + }, + { + "start": 5634.7, + "end": 5636.29, + "probability": 0.745 + }, + { + "start": 5637.0, + "end": 5638.4, + "probability": 0.811 + }, + { + "start": 5638.78, + "end": 5645.22, + "probability": 0.9956 + }, + { + "start": 5646.0, + "end": 5647.28, + "probability": 0.8845 + }, + { + "start": 5648.28, + "end": 5651.32, + "probability": 0.7109 + }, + { + "start": 5651.92, + "end": 5653.1, + "probability": 0.772 + }, + { + "start": 5654.06, + "end": 5656.34, + "probability": 0.9695 + }, + { + "start": 5657.06, + "end": 5658.0, + "probability": 0.7657 + }, + { + "start": 5658.6, + "end": 5662.64, + "probability": 0.993 + }, + { + "start": 5662.64, + "end": 5666.68, + "probability": 0.9967 + }, + { + "start": 5667.62, + "end": 5669.7, + "probability": 0.9976 + }, + { + "start": 5670.56, + "end": 5673.36, + "probability": 0.9993 + }, + { + "start": 5674.34, + "end": 5678.6, + "probability": 0.9276 + }, + { + "start": 5679.44, + "end": 5682.92, + "probability": 0.5589 + }, + { + "start": 5683.88, + "end": 5685.62, + "probability": 0.5703 + }, + { + "start": 5686.26, + "end": 5687.26, + "probability": 0.9863 + }, + { + "start": 5687.86, + "end": 5689.0, + "probability": 0.9948 + }, + { + "start": 5689.76, + "end": 5691.84, + "probability": 0.971 + }, + { + "start": 5692.58, + "end": 5696.0, + "probability": 0.9962 + }, + { + "start": 5696.86, + "end": 5698.72, + "probability": 0.8604 + }, + { + "start": 5699.34, + "end": 5702.4, + "probability": 0.995 + }, + { + "start": 5703.12, + "end": 5705.04, + "probability": 0.992 + }, + { + "start": 5706.76, + "end": 5710.88, + "probability": 0.983 + }, + { + "start": 5712.34, + "end": 5716.88, + "probability": 0.9397 + }, + { + "start": 5717.38, + "end": 5717.86, + "probability": 0.9073 + }, + { + "start": 5718.06, + "end": 5718.52, + "probability": 0.4811 + }, + { + "start": 5719.22, + "end": 5721.84, + "probability": 0.9618 + }, + { + "start": 5722.76, + "end": 5724.68, + "probability": 0.8634 + }, + { + "start": 5725.38, + "end": 5728.2, + "probability": 0.9463 + }, + { + "start": 5729.02, + "end": 5730.56, + "probability": 0.9839 + }, + { + "start": 5731.3, + "end": 5731.72, + "probability": 0.8526 + }, + { + "start": 5732.46, + "end": 5736.48, + "probability": 0.9965 + }, + { + "start": 5737.58, + "end": 5738.74, + "probability": 0.6741 + }, + { + "start": 5739.7, + "end": 5741.34, + "probability": 0.9825 + }, + { + "start": 5742.28, + "end": 5744.04, + "probability": 0.9901 + }, + { + "start": 5745.02, + "end": 5747.34, + "probability": 0.9902 + }, + { + "start": 5748.12, + "end": 5749.3, + "probability": 0.7902 + }, + { + "start": 5749.92, + "end": 5751.14, + "probability": 0.6604 + }, + { + "start": 5751.66, + "end": 5754.8, + "probability": 0.9884 + }, + { + "start": 5754.8, + "end": 5758.0, + "probability": 0.9962 + }, + { + "start": 5758.74, + "end": 5760.02, + "probability": 0.793 + }, + { + "start": 5760.88, + "end": 5761.88, + "probability": 0.9576 + }, + { + "start": 5762.72, + "end": 5766.72, + "probability": 0.981 + }, + { + "start": 5766.88, + "end": 5767.36, + "probability": 0.8738 + }, + { + "start": 5769.54, + "end": 5772.36, + "probability": 0.7389 + }, + { + "start": 5772.7, + "end": 5775.68, + "probability": 0.9956 + }, + { + "start": 5775.86, + "end": 5778.4, + "probability": 0.9878 + }, + { + "start": 5779.34, + "end": 5781.28, + "probability": 0.9976 + }, + { + "start": 5798.06, + "end": 5800.62, + "probability": 0.6588 + }, + { + "start": 5801.2, + "end": 5803.13, + "probability": 0.929 + }, + { + "start": 5804.78, + "end": 5813.06, + "probability": 0.9769 + }, + { + "start": 5813.47, + "end": 5820.06, + "probability": 0.9979 + }, + { + "start": 5821.16, + "end": 5823.96, + "probability": 0.8888 + }, + { + "start": 5824.14, + "end": 5824.58, + "probability": 0.9404 + }, + { + "start": 5824.7, + "end": 5825.9, + "probability": 0.9951 + }, + { + "start": 5826.6, + "end": 5833.58, + "probability": 0.953 + }, + { + "start": 5833.7, + "end": 5834.22, + "probability": 0.646 + }, + { + "start": 5836.14, + "end": 5836.98, + "probability": 0.6088 + }, + { + "start": 5837.9, + "end": 5838.16, + "probability": 0.7606 + }, + { + "start": 5838.32, + "end": 5841.1, + "probability": 0.9929 + }, + { + "start": 5842.68, + "end": 5843.48, + "probability": 0.9354 + }, + { + "start": 5843.62, + "end": 5846.72, + "probability": 0.8918 + }, + { + "start": 5848.14, + "end": 5850.23, + "probability": 0.8824 + }, + { + "start": 5851.56, + "end": 5852.18, + "probability": 0.8381 + }, + { + "start": 5853.1, + "end": 5854.98, + "probability": 0.9741 + }, + { + "start": 5856.28, + "end": 5860.56, + "probability": 0.9571 + }, + { + "start": 5861.78, + "end": 5864.62, + "probability": 0.9675 + }, + { + "start": 5865.44, + "end": 5868.4, + "probability": 0.9897 + }, + { + "start": 5869.16, + "end": 5869.44, + "probability": 0.621 + }, + { + "start": 5870.8, + "end": 5872.64, + "probability": 0.8301 + }, + { + "start": 5873.52, + "end": 5876.66, + "probability": 0.7253 + }, + { + "start": 5877.9, + "end": 5880.02, + "probability": 0.9747 + }, + { + "start": 5880.5, + "end": 5885.38, + "probability": 0.9039 + }, + { + "start": 5890.44, + "end": 5890.96, + "probability": 0.7061 + }, + { + "start": 5891.84, + "end": 5895.36, + "probability": 0.9408 + }, + { + "start": 5896.1, + "end": 5898.46, + "probability": 0.8651 + }, + { + "start": 5899.26, + "end": 5902.62, + "probability": 0.7312 + }, + { + "start": 5904.24, + "end": 5905.58, + "probability": 0.9198 + }, + { + "start": 5905.7, + "end": 5909.64, + "probability": 0.7573 + }, + { + "start": 5910.74, + "end": 5913.4, + "probability": 0.8098 + }, + { + "start": 5913.48, + "end": 5914.62, + "probability": 0.9972 + }, + { + "start": 5914.62, + "end": 5916.84, + "probability": 0.9756 + }, + { + "start": 5917.78, + "end": 5919.24, + "probability": 0.9956 + }, + { + "start": 5919.46, + "end": 5921.62, + "probability": 0.9966 + }, + { + "start": 5922.46, + "end": 5925.04, + "probability": 0.8846 + }, + { + "start": 5925.7, + "end": 5926.82, + "probability": 0.9621 + }, + { + "start": 5927.86, + "end": 5929.55, + "probability": 0.8677 + }, + { + "start": 5932.04, + "end": 5936.92, + "probability": 0.9545 + }, + { + "start": 5938.66, + "end": 5939.1, + "probability": 0.8652 + }, + { + "start": 5939.54, + "end": 5940.36, + "probability": 0.5951 + }, + { + "start": 5940.5, + "end": 5943.29, + "probability": 0.673 + }, + { + "start": 5943.84, + "end": 5945.7, + "probability": 0.9458 + }, + { + "start": 5946.3, + "end": 5950.28, + "probability": 0.9847 + }, + { + "start": 5952.58, + "end": 5953.7, + "probability": 0.8027 + }, + { + "start": 5954.14, + "end": 5958.96, + "probability": 0.998 + }, + { + "start": 5959.74, + "end": 5964.0, + "probability": 0.9944 + }, + { + "start": 5965.7, + "end": 5966.64, + "probability": 0.9453 + }, + { + "start": 5967.52, + "end": 5971.14, + "probability": 0.9921 + }, + { + "start": 5971.98, + "end": 5972.9, + "probability": 0.9932 + }, + { + "start": 5974.22, + "end": 5977.3, + "probability": 0.9719 + }, + { + "start": 5978.22, + "end": 5982.6, + "probability": 0.9716 + }, + { + "start": 5984.0, + "end": 5984.46, + "probability": 0.8328 + }, + { + "start": 5985.58, + "end": 5988.1, + "probability": 0.9956 + }, + { + "start": 5988.12, + "end": 5990.6, + "probability": 0.887 + }, + { + "start": 5991.32, + "end": 5995.4, + "probability": 0.9316 + }, + { + "start": 5996.04, + "end": 6001.58, + "probability": 0.9846 + }, + { + "start": 6003.24, + "end": 6005.98, + "probability": 0.9457 + }, + { + "start": 6007.02, + "end": 6009.14, + "probability": 0.7883 + }, + { + "start": 6010.12, + "end": 6012.64, + "probability": 0.8648 + }, + { + "start": 6013.72, + "end": 6019.62, + "probability": 0.9983 + }, + { + "start": 6020.84, + "end": 6026.04, + "probability": 0.9799 + }, + { + "start": 6027.48, + "end": 6030.84, + "probability": 0.8579 + }, + { + "start": 6031.84, + "end": 6034.04, + "probability": 0.7363 + }, + { + "start": 6034.16, + "end": 6035.6, + "probability": 0.9919 + }, + { + "start": 6036.82, + "end": 6037.74, + "probability": 0.9883 + }, + { + "start": 6038.38, + "end": 6040.14, + "probability": 0.9949 + }, + { + "start": 6041.54, + "end": 6041.88, + "probability": 0.7026 + }, + { + "start": 6042.96, + "end": 6046.04, + "probability": 0.6752 + }, + { + "start": 6046.14, + "end": 6049.38, + "probability": 0.9956 + }, + { + "start": 6050.74, + "end": 6054.24, + "probability": 0.9945 + }, + { + "start": 6054.82, + "end": 6055.72, + "probability": 0.9252 + }, + { + "start": 6057.0, + "end": 6057.48, + "probability": 0.4575 + }, + { + "start": 6057.52, + "end": 6058.54, + "probability": 0.6773 + }, + { + "start": 6058.64, + "end": 6061.44, + "probability": 0.7648 + }, + { + "start": 6061.44, + "end": 6061.88, + "probability": 0.642 + }, + { + "start": 6061.98, + "end": 6065.34, + "probability": 0.7336 + }, + { + "start": 6065.5, + "end": 6067.98, + "probability": 0.9512 + }, + { + "start": 6068.9, + "end": 6070.08, + "probability": 0.5343 + }, + { + "start": 6070.86, + "end": 6071.74, + "probability": 0.56 + }, + { + "start": 6072.8, + "end": 6075.58, + "probability": 0.9697 + }, + { + "start": 6075.74, + "end": 6076.24, + "probability": 0.401 + }, + { + "start": 6077.8, + "end": 6079.22, + "probability": 0.7511 + }, + { + "start": 6081.34, + "end": 6081.46, + "probability": 0.5781 + }, + { + "start": 6081.9, + "end": 6083.52, + "probability": 0.8125 + }, + { + "start": 6083.62, + "end": 6084.19, + "probability": 0.5024 + }, + { + "start": 6095.46, + "end": 6099.86, + "probability": 0.7571 + }, + { + "start": 6101.54, + "end": 6105.96, + "probability": 0.7849 + }, + { + "start": 6106.7, + "end": 6109.96, + "probability": 0.9498 + }, + { + "start": 6110.56, + "end": 6114.42, + "probability": 0.9562 + }, + { + "start": 6115.88, + "end": 6119.54, + "probability": 0.9949 + }, + { + "start": 6120.02, + "end": 6124.84, + "probability": 0.9741 + }, + { + "start": 6126.52, + "end": 6127.4, + "probability": 0.7304 + }, + { + "start": 6127.92, + "end": 6131.18, + "probability": 0.9665 + }, + { + "start": 6131.22, + "end": 6135.38, + "probability": 0.9827 + }, + { + "start": 6136.18, + "end": 6138.44, + "probability": 0.7256 + }, + { + "start": 6138.54, + "end": 6140.12, + "probability": 0.937 + }, + { + "start": 6143.02, + "end": 6145.94, + "probability": 0.8827 + }, + { + "start": 6146.52, + "end": 6148.18, + "probability": 0.8155 + }, + { + "start": 6148.96, + "end": 6154.32, + "probability": 0.7473 + }, + { + "start": 6155.42, + "end": 6156.84, + "probability": 0.7623 + }, + { + "start": 6157.46, + "end": 6158.6, + "probability": 0.8686 + }, + { + "start": 6160.72, + "end": 6166.1, + "probability": 0.7764 + }, + { + "start": 6166.22, + "end": 6169.71, + "probability": 0.9937 + }, + { + "start": 6171.64, + "end": 6178.16, + "probability": 0.9534 + }, + { + "start": 6180.02, + "end": 6183.44, + "probability": 0.7305 + }, + { + "start": 6184.26, + "end": 6188.58, + "probability": 0.7409 + }, + { + "start": 6188.66, + "end": 6194.28, + "probability": 0.9515 + }, + { + "start": 6195.74, + "end": 6200.5, + "probability": 0.9783 + }, + { + "start": 6202.26, + "end": 6207.54, + "probability": 0.7897 + }, + { + "start": 6207.78, + "end": 6211.26, + "probability": 0.9915 + }, + { + "start": 6211.26, + "end": 6214.5, + "probability": 0.9937 + }, + { + "start": 6214.82, + "end": 6218.82, + "probability": 0.9282 + }, + { + "start": 6219.12, + "end": 6219.98, + "probability": 0.0401 + }, + { + "start": 6220.32, + "end": 6221.34, + "probability": 0.668 + }, + { + "start": 6221.52, + "end": 6223.3, + "probability": 0.7407 + }, + { + "start": 6223.96, + "end": 6225.38, + "probability": 0.8802 + }, + { + "start": 6226.86, + "end": 6229.58, + "probability": 0.976 + }, + { + "start": 6230.06, + "end": 6230.71, + "probability": 0.9563 + }, + { + "start": 6230.9, + "end": 6231.14, + "probability": 0.7384 + }, + { + "start": 6231.16, + "end": 6234.54, + "probability": 0.9282 + }, + { + "start": 6235.64, + "end": 6238.46, + "probability": 0.996 + }, + { + "start": 6238.84, + "end": 6240.56, + "probability": 0.6753 + }, + { + "start": 6241.66, + "end": 6246.23, + "probability": 0.9187 + }, + { + "start": 6247.68, + "end": 6250.1, + "probability": 0.7805 + }, + { + "start": 6251.0, + "end": 6255.46, + "probability": 0.8465 + }, + { + "start": 6256.2, + "end": 6257.8, + "probability": 0.9233 + }, + { + "start": 6258.26, + "end": 6259.5, + "probability": 0.6898 + }, + { + "start": 6260.2, + "end": 6261.92, + "probability": 0.819 + }, + { + "start": 6264.46, + "end": 6267.41, + "probability": 0.8943 + }, + { + "start": 6273.92, + "end": 6274.22, + "probability": 0.1795 + }, + { + "start": 6274.22, + "end": 6278.34, + "probability": 0.9905 + }, + { + "start": 6279.86, + "end": 6282.85, + "probability": 0.932 + }, + { + "start": 6283.2, + "end": 6283.92, + "probability": 0.6556 + }, + { + "start": 6285.22, + "end": 6289.14, + "probability": 0.9867 + }, + { + "start": 6289.14, + "end": 6293.52, + "probability": 0.9023 + }, + { + "start": 6294.32, + "end": 6296.58, + "probability": 0.9342 + }, + { + "start": 6296.86, + "end": 6300.44, + "probability": 0.9719 + }, + { + "start": 6301.46, + "end": 6306.16, + "probability": 0.996 + }, + { + "start": 6307.22, + "end": 6309.42, + "probability": 0.886 + }, + { + "start": 6310.24, + "end": 6313.46, + "probability": 0.8579 + }, + { + "start": 6315.76, + "end": 6319.64, + "probability": 0.9147 + }, + { + "start": 6320.5, + "end": 6322.78, + "probability": 0.6969 + }, + { + "start": 6323.36, + "end": 6327.06, + "probability": 0.9943 + }, + { + "start": 6328.02, + "end": 6332.62, + "probability": 0.9951 + }, + { + "start": 6332.62, + "end": 6337.68, + "probability": 0.9409 + }, + { + "start": 6338.26, + "end": 6342.26, + "probability": 0.991 + }, + { + "start": 6342.86, + "end": 6345.84, + "probability": 0.6875 + }, + { + "start": 6345.86, + "end": 6346.04, + "probability": 0.7519 + }, + { + "start": 6346.2, + "end": 6353.42, + "probability": 0.9689 + }, + { + "start": 6357.28, + "end": 6358.82, + "probability": 0.5916 + }, + { + "start": 6358.94, + "end": 6359.98, + "probability": 0.7109 + }, + { + "start": 6360.46, + "end": 6364.7, + "probability": 0.782 + }, + { + "start": 6364.78, + "end": 6368.08, + "probability": 0.8772 + }, + { + "start": 6368.78, + "end": 6371.66, + "probability": 0.9985 + }, + { + "start": 6371.96, + "end": 6374.76, + "probability": 0.9528 + }, + { + "start": 6374.86, + "end": 6377.32, + "probability": 0.855 + }, + { + "start": 6378.32, + "end": 6379.72, + "probability": 0.939 + }, + { + "start": 6380.02, + "end": 6381.08, + "probability": 0.8228 + }, + { + "start": 6381.7, + "end": 6384.35, + "probability": 0.6745 + }, + { + "start": 6384.64, + "end": 6385.86, + "probability": 0.549 + }, + { + "start": 6386.22, + "end": 6389.68, + "probability": 0.8899 + }, + { + "start": 6390.52, + "end": 6391.38, + "probability": 0.0774 + }, + { + "start": 6391.38, + "end": 6396.46, + "probability": 0.8681 + }, + { + "start": 6397.06, + "end": 6401.18, + "probability": 0.7823 + }, + { + "start": 6401.4, + "end": 6402.14, + "probability": 0.4798 + }, + { + "start": 6402.2, + "end": 6403.54, + "probability": 0.9665 + }, + { + "start": 6403.96, + "end": 6404.59, + "probability": 0.7184 + }, + { + "start": 6405.08, + "end": 6406.16, + "probability": 0.8004 + }, + { + "start": 6406.36, + "end": 6408.08, + "probability": 0.9964 + }, + { + "start": 6408.78, + "end": 6412.14, + "probability": 0.9677 + }, + { + "start": 6412.14, + "end": 6416.8, + "probability": 0.9829 + }, + { + "start": 6417.04, + "end": 6420.44, + "probability": 0.9956 + }, + { + "start": 6420.64, + "end": 6421.22, + "probability": 0.6002 + }, + { + "start": 6421.76, + "end": 6424.94, + "probability": 0.8508 + }, + { + "start": 6426.18, + "end": 6429.34, + "probability": 0.9826 + }, + { + "start": 6429.76, + "end": 6430.62, + "probability": 0.8809 + }, + { + "start": 6432.14, + "end": 6436.76, + "probability": 0.8358 + }, + { + "start": 6437.2, + "end": 6438.76, + "probability": 0.728 + }, + { + "start": 6438.92, + "end": 6440.4, + "probability": 0.7148 + }, + { + "start": 6440.52, + "end": 6443.12, + "probability": 0.7262 + }, + { + "start": 6443.44, + "end": 6444.24, + "probability": 0.7671 + }, + { + "start": 6444.38, + "end": 6446.18, + "probability": 0.9821 + }, + { + "start": 6446.28, + "end": 6449.66, + "probability": 0.8525 + }, + { + "start": 6450.06, + "end": 6454.78, + "probability": 0.9666 + }, + { + "start": 6454.78, + "end": 6459.26, + "probability": 0.9162 + }, + { + "start": 6459.64, + "end": 6462.1, + "probability": 0.9905 + }, + { + "start": 6463.54, + "end": 6464.5, + "probability": 0.5435 + }, + { + "start": 6464.88, + "end": 6465.76, + "probability": 0.6186 + }, + { + "start": 6465.86, + "end": 6467.54, + "probability": 0.3138 + }, + { + "start": 6467.6, + "end": 6468.76, + "probability": 0.9709 + }, + { + "start": 6469.72, + "end": 6472.4, + "probability": 0.9844 + }, + { + "start": 6472.5, + "end": 6476.36, + "probability": 0.9893 + }, + { + "start": 6476.68, + "end": 6477.88, + "probability": 0.9615 + }, + { + "start": 6478.48, + "end": 6479.74, + "probability": 0.717 + }, + { + "start": 6482.82, + "end": 6483.5, + "probability": 0.6708 + }, + { + "start": 6483.5, + "end": 6485.62, + "probability": 0.2827 + }, + { + "start": 6487.82, + "end": 6489.0, + "probability": 0.8902 + }, + { + "start": 6489.86, + "end": 6491.04, + "probability": 0.6576 + }, + { + "start": 6492.36, + "end": 6493.1, + "probability": 0.3377 + }, + { + "start": 6493.1, + "end": 6494.87, + "probability": 0.8262 + }, + { + "start": 6496.16, + "end": 6497.24, + "probability": 0.2858 + }, + { + "start": 6498.46, + "end": 6499.1, + "probability": 0.7428 + }, + { + "start": 6499.24, + "end": 6499.72, + "probability": 0.777 + }, + { + "start": 6503.62, + "end": 6506.18, + "probability": 0.6208 + }, + { + "start": 6507.08, + "end": 6511.18, + "probability": 0.9966 + }, + { + "start": 6512.38, + "end": 6517.84, + "probability": 0.9043 + }, + { + "start": 6518.62, + "end": 6520.08, + "probability": 0.9912 + }, + { + "start": 6520.82, + "end": 6524.6, + "probability": 0.8309 + }, + { + "start": 6525.18, + "end": 6529.8, + "probability": 0.6668 + }, + { + "start": 6530.3, + "end": 6532.44, + "probability": 0.8847 + }, + { + "start": 6533.08, + "end": 6538.22, + "probability": 0.9344 + }, + { + "start": 6538.22, + "end": 6544.38, + "probability": 0.9905 + }, + { + "start": 6544.58, + "end": 6548.46, + "probability": 0.9343 + }, + { + "start": 6548.84, + "end": 6553.62, + "probability": 0.999 + }, + { + "start": 6554.8, + "end": 6556.52, + "probability": 0.7065 + }, + { + "start": 6556.66, + "end": 6558.06, + "probability": 0.2971 + }, + { + "start": 6558.26, + "end": 6559.16, + "probability": 0.8726 + }, + { + "start": 6560.0, + "end": 6561.32, + "probability": 0.8903 + }, + { + "start": 6561.5, + "end": 6564.62, + "probability": 0.8012 + }, + { + "start": 6565.04, + "end": 6567.44, + "probability": 0.87 + }, + { + "start": 6567.9, + "end": 6570.06, + "probability": 0.9077 + }, + { + "start": 6570.7, + "end": 6576.28, + "probability": 0.973 + }, + { + "start": 6576.28, + "end": 6577.82, + "probability": 0.9548 + }, + { + "start": 6577.96, + "end": 6578.92, + "probability": 0.911 + }, + { + "start": 6579.34, + "end": 6579.92, + "probability": 0.8979 + }, + { + "start": 6580.02, + "end": 6580.4, + "probability": 0.8718 + }, + { + "start": 6580.6, + "end": 6581.22, + "probability": 0.8553 + }, + { + "start": 6581.32, + "end": 6582.32, + "probability": 0.7672 + }, + { + "start": 6582.4, + "end": 6585.06, + "probability": 0.6749 + }, + { + "start": 6585.58, + "end": 6587.76, + "probability": 0.9192 + }, + { + "start": 6588.32, + "end": 6588.98, + "probability": 0.7936 + }, + { + "start": 6589.5, + "end": 6592.72, + "probability": 0.8337 + }, + { + "start": 6592.86, + "end": 6594.9, + "probability": 0.9435 + }, + { + "start": 6595.6, + "end": 6596.36, + "probability": 0.9479 + }, + { + "start": 6596.62, + "end": 6597.46, + "probability": 0.5659 + }, + { + "start": 6597.6, + "end": 6600.3, + "probability": 0.9694 + }, + { + "start": 6600.4, + "end": 6605.0, + "probability": 0.7915 + }, + { + "start": 6605.18, + "end": 6612.04, + "probability": 0.9395 + }, + { + "start": 6612.8, + "end": 6616.3, + "probability": 0.941 + }, + { + "start": 6616.4, + "end": 6617.76, + "probability": 0.7546 + }, + { + "start": 6618.54, + "end": 6621.32, + "probability": 0.7333 + }, + { + "start": 6621.9, + "end": 6622.62, + "probability": 0.6681 + }, + { + "start": 6623.16, + "end": 6624.48, + "probability": 0.7819 + }, + { + "start": 6624.56, + "end": 6626.94, + "probability": 0.8845 + }, + { + "start": 6627.54, + "end": 6632.13, + "probability": 0.9265 + }, + { + "start": 6632.34, + "end": 6633.26, + "probability": 0.3121 + }, + { + "start": 6633.26, + "end": 6637.26, + "probability": 0.7563 + }, + { + "start": 6637.38, + "end": 6641.42, + "probability": 0.9507 + }, + { + "start": 6641.42, + "end": 6645.1, + "probability": 0.9655 + }, + { + "start": 6645.89, + "end": 6647.52, + "probability": 0.3091 + }, + { + "start": 6649.18, + "end": 6650.56, + "probability": 0.7051 + }, + { + "start": 6651.28, + "end": 6657.12, + "probability": 0.9507 + }, + { + "start": 6657.24, + "end": 6662.47, + "probability": 0.7183 + }, + { + "start": 6663.82, + "end": 6666.68, + "probability": 0.8094 + }, + { + "start": 6666.9, + "end": 6669.46, + "probability": 0.8306 + }, + { + "start": 6670.02, + "end": 6671.94, + "probability": 0.7039 + }, + { + "start": 6672.88, + "end": 6674.4, + "probability": 0.4805 + }, + { + "start": 6674.58, + "end": 6676.14, + "probability": 0.9117 + }, + { + "start": 6676.46, + "end": 6678.0, + "probability": 0.5688 + }, + { + "start": 6678.56, + "end": 6682.28, + "probability": 0.9411 + }, + { + "start": 6682.54, + "end": 6683.22, + "probability": 0.9971 + }, + { + "start": 6684.44, + "end": 6689.94, + "probability": 0.9174 + }, + { + "start": 6692.18, + "end": 6697.1, + "probability": 0.9945 + }, + { + "start": 6697.74, + "end": 6700.4, + "probability": 0.9779 + }, + { + "start": 6700.9, + "end": 6704.64, + "probability": 0.9958 + }, + { + "start": 6705.1, + "end": 6709.14, + "probability": 0.9619 + }, + { + "start": 6709.46, + "end": 6715.52, + "probability": 0.9852 + }, + { + "start": 6715.56, + "end": 6716.68, + "probability": 0.7405 + }, + { + "start": 6717.62, + "end": 6720.18, + "probability": 0.7266 + }, + { + "start": 6721.5, + "end": 6725.42, + "probability": 0.75 + }, + { + "start": 6725.74, + "end": 6726.64, + "probability": 0.9604 + }, + { + "start": 6726.74, + "end": 6727.37, + "probability": 0.8328 + }, + { + "start": 6727.62, + "end": 6730.84, + "probability": 0.6564 + }, + { + "start": 6731.88, + "end": 6736.86, + "probability": 0.7324 + }, + { + "start": 6738.56, + "end": 6742.54, + "probability": 0.9474 + }, + { + "start": 6742.54, + "end": 6744.55, + "probability": 0.8866 + }, + { + "start": 6745.18, + "end": 6746.04, + "probability": 0.8445 + }, + { + "start": 6746.48, + "end": 6747.68, + "probability": 0.9032 + }, + { + "start": 6748.04, + "end": 6749.02, + "probability": 0.9656 + }, + { + "start": 6749.04, + "end": 6750.24, + "probability": 0.57 + }, + { + "start": 6750.42, + "end": 6752.98, + "probability": 0.9478 + }, + { + "start": 6754.52, + "end": 6757.86, + "probability": 0.8412 + }, + { + "start": 6758.84, + "end": 6763.28, + "probability": 0.6251 + }, + { + "start": 6763.6, + "end": 6764.74, + "probability": 0.5699 + }, + { + "start": 6765.56, + "end": 6767.32, + "probability": 0.751 + }, + { + "start": 6769.0, + "end": 6771.62, + "probability": 0.6532 + }, + { + "start": 6771.74, + "end": 6777.96, + "probability": 0.9437 + }, + { + "start": 6778.06, + "end": 6780.14, + "probability": 0.7462 + }, + { + "start": 6780.58, + "end": 6782.56, + "probability": 0.5911 + }, + { + "start": 6783.22, + "end": 6786.93, + "probability": 0.8495 + }, + { + "start": 6789.22, + "end": 6790.42, + "probability": 0.5687 + }, + { + "start": 6790.94, + "end": 6791.78, + "probability": 0.9214 + }, + { + "start": 6791.9, + "end": 6796.26, + "probability": 0.4206 + }, + { + "start": 6796.4, + "end": 6797.6, + "probability": 0.8486 + }, + { + "start": 6797.94, + "end": 6801.42, + "probability": 0.9702 + }, + { + "start": 6801.42, + "end": 6804.52, + "probability": 0.9951 + }, + { + "start": 6805.1, + "end": 6807.86, + "probability": 0.9849 + }, + { + "start": 6808.4, + "end": 6810.2, + "probability": 0.7702 + }, + { + "start": 6812.58, + "end": 6817.1, + "probability": 0.9603 + }, + { + "start": 6817.78, + "end": 6823.52, + "probability": 0.8187 + }, + { + "start": 6825.22, + "end": 6825.88, + "probability": 0.7535 + }, + { + "start": 6826.16, + "end": 6827.02, + "probability": 0.5045 + }, + { + "start": 6827.06, + "end": 6828.74, + "probability": 0.7946 + }, + { + "start": 6828.84, + "end": 6833.84, + "probability": 0.9873 + }, + { + "start": 6833.92, + "end": 6835.26, + "probability": 0.7469 + }, + { + "start": 6835.42, + "end": 6838.58, + "probability": 0.7921 + }, + { + "start": 6838.6, + "end": 6840.68, + "probability": 0.9149 + }, + { + "start": 6840.78, + "end": 6842.86, + "probability": 0.9901 + }, + { + "start": 6843.62, + "end": 6847.3, + "probability": 0.9676 + }, + { + "start": 6847.84, + "end": 6851.96, + "probability": 0.842 + }, + { + "start": 6852.56, + "end": 6856.22, + "probability": 0.884 + }, + { + "start": 6856.22, + "end": 6858.74, + "probability": 0.9954 + }, + { + "start": 6858.86, + "end": 6860.34, + "probability": 0.9951 + }, + { + "start": 6860.54, + "end": 6861.64, + "probability": 0.8916 + }, + { + "start": 6862.72, + "end": 6863.24, + "probability": 0.8865 + }, + { + "start": 6863.28, + "end": 6865.79, + "probability": 0.9753 + }, + { + "start": 6866.0, + "end": 6867.52, + "probability": 0.8943 + }, + { + "start": 6868.22, + "end": 6869.38, + "probability": 0.5595 + }, + { + "start": 6870.16, + "end": 6872.72, + "probability": 0.7567 + }, + { + "start": 6873.38, + "end": 6877.4, + "probability": 0.7393 + }, + { + "start": 6878.32, + "end": 6883.0, + "probability": 0.9348 + }, + { + "start": 6883.76, + "end": 6885.04, + "probability": 0.9897 + }, + { + "start": 6885.56, + "end": 6889.36, + "probability": 0.7749 + }, + { + "start": 6889.9, + "end": 6894.84, + "probability": 0.8827 + }, + { + "start": 6895.02, + "end": 6896.84, + "probability": 0.1991 + }, + { + "start": 6896.98, + "end": 6898.2, + "probability": 0.7792 + }, + { + "start": 6899.08, + "end": 6900.4, + "probability": 0.8472 + }, + { + "start": 6900.44, + "end": 6902.3, + "probability": 0.7581 + }, + { + "start": 6902.44, + "end": 6902.85, + "probability": 0.1897 + }, + { + "start": 6903.18, + "end": 6904.02, + "probability": 0.3168 + }, + { + "start": 6904.24, + "end": 6909.28, + "probability": 0.7788 + }, + { + "start": 6910.56, + "end": 6912.28, + "probability": 0.8064 + }, + { + "start": 6913.12, + "end": 6917.6, + "probability": 0.9047 + }, + { + "start": 6918.14, + "end": 6919.56, + "probability": 0.8227 + }, + { + "start": 6920.2, + "end": 6923.94, + "probability": 0.9902 + }, + { + "start": 6924.26, + "end": 6927.02, + "probability": 0.8318 + }, + { + "start": 6928.22, + "end": 6928.78, + "probability": 0.6454 + }, + { + "start": 6929.18, + "end": 6930.7, + "probability": 0.4847 + }, + { + "start": 6930.78, + "end": 6934.24, + "probability": 0.8351 + }, + { + "start": 6935.02, + "end": 6938.34, + "probability": 0.4784 + }, + { + "start": 6938.4, + "end": 6939.6, + "probability": 0.8369 + }, + { + "start": 6939.66, + "end": 6943.54, + "probability": 0.5498 + }, + { + "start": 6943.72, + "end": 6946.3, + "probability": 0.3181 + }, + { + "start": 6946.4, + "end": 6948.0, + "probability": 0.814 + }, + { + "start": 6949.32, + "end": 6952.12, + "probability": 0.8749 + }, + { + "start": 6952.72, + "end": 6958.46, + "probability": 0.9781 + }, + { + "start": 6958.46, + "end": 6963.36, + "probability": 0.5098 + }, + { + "start": 6963.36, + "end": 6966.38, + "probability": 0.5097 + }, + { + "start": 6968.08, + "end": 6969.14, + "probability": 0.7188 + }, + { + "start": 6969.72, + "end": 6972.54, + "probability": 0.853 + }, + { + "start": 6973.42, + "end": 6978.38, + "probability": 0.7465 + }, + { + "start": 6978.48, + "end": 6979.52, + "probability": 0.8738 + }, + { + "start": 6979.58, + "end": 6983.28, + "probability": 0.9499 + }, + { + "start": 6983.64, + "end": 6988.62, + "probability": 0.8271 + }, + { + "start": 6991.02, + "end": 6993.62, + "probability": 0.5145 + }, + { + "start": 6993.64, + "end": 6996.92, + "probability": 0.6608 + }, + { + "start": 6997.1, + "end": 7001.36, + "probability": 0.8351 + }, + { + "start": 7001.92, + "end": 7008.4, + "probability": 0.7411 + }, + { + "start": 7011.66, + "end": 7014.06, + "probability": 0.1423 + }, + { + "start": 7014.06, + "end": 7014.06, + "probability": 0.032 + }, + { + "start": 7014.06, + "end": 7014.06, + "probability": 0.0772 + }, + { + "start": 7014.06, + "end": 7014.06, + "probability": 0.1435 + }, + { + "start": 7014.06, + "end": 7019.3, + "probability": 0.526 + }, + { + "start": 7019.6, + "end": 7021.08, + "probability": 0.821 + }, + { + "start": 7021.8, + "end": 7025.4, + "probability": 0.8289 + }, + { + "start": 7025.56, + "end": 7028.81, + "probability": 0.927 + }, + { + "start": 7029.34, + "end": 7030.3, + "probability": 0.8018 + }, + { + "start": 7031.24, + "end": 7033.34, + "probability": 0.4085 + }, + { + "start": 7033.48, + "end": 7034.93, + "probability": 0.9257 + }, + { + "start": 7036.87, + "end": 7039.94, + "probability": 0.9686 + }, + { + "start": 7040.38, + "end": 7041.54, + "probability": 0.5387 + }, + { + "start": 7041.58, + "end": 7042.77, + "probability": 0.8058 + }, + { + "start": 7042.92, + "end": 7044.5, + "probability": 0.3303 + }, + { + "start": 7044.98, + "end": 7046.11, + "probability": 0.7519 + }, + { + "start": 7046.64, + "end": 7047.7, + "probability": 0.95 + }, + { + "start": 7048.06, + "end": 7051.04, + "probability": 0.8647 + }, + { + "start": 7051.42, + "end": 7053.04, + "probability": 0.8242 + }, + { + "start": 7053.66, + "end": 7053.84, + "probability": 0.4527 + }, + { + "start": 7055.5, + "end": 7056.02, + "probability": 0.7788 + }, + { + "start": 7056.16, + "end": 7056.22, + "probability": 0.3854 + }, + { + "start": 7056.74, + "end": 7059.17, + "probability": 0.8868 + }, + { + "start": 7061.04, + "end": 7061.2, + "probability": 0.287 + }, + { + "start": 7069.42, + "end": 7069.96, + "probability": 0.7109 + }, + { + "start": 7070.08, + "end": 7071.5, + "probability": 0.9688 + }, + { + "start": 7072.04, + "end": 7074.12, + "probability": 0.8713 + }, + { + "start": 7074.12, + "end": 7074.7, + "probability": 0.6306 + }, + { + "start": 7074.8, + "end": 7075.62, + "probability": 0.6924 + }, + { + "start": 7075.72, + "end": 7077.06, + "probability": 0.7849 + }, + { + "start": 7077.06, + "end": 7077.24, + "probability": 0.3395 + }, + { + "start": 7077.72, + "end": 7079.32, + "probability": 0.7883 + }, + { + "start": 7080.12, + "end": 7083.4, + "probability": 0.9811 + }, + { + "start": 7083.4, + "end": 7087.22, + "probability": 0.9941 + }, + { + "start": 7088.08, + "end": 7089.26, + "probability": 0.7597 + }, + { + "start": 7089.36, + "end": 7092.14, + "probability": 0.9843 + }, + { + "start": 7092.14, + "end": 7094.9, + "probability": 0.993 + }, + { + "start": 7095.52, + "end": 7096.24, + "probability": 0.6584 + }, + { + "start": 7096.78, + "end": 7097.92, + "probability": 0.9637 + }, + { + "start": 7098.1, + "end": 7100.78, + "probability": 0.9925 + }, + { + "start": 7101.38, + "end": 7105.44, + "probability": 0.8445 + }, + { + "start": 7105.96, + "end": 7112.22, + "probability": 0.9744 + }, + { + "start": 7112.74, + "end": 7114.28, + "probability": 0.9882 + }, + { + "start": 7114.6, + "end": 7114.8, + "probability": 0.8982 + }, + { + "start": 7116.08, + "end": 7117.96, + "probability": 0.9922 + }, + { + "start": 7118.04, + "end": 7120.88, + "probability": 0.7026 + }, + { + "start": 7121.0, + "end": 7122.0, + "probability": 0.6705 + }, + { + "start": 7122.84, + "end": 7125.74, + "probability": 0.8751 + }, + { + "start": 7125.9, + "end": 7129.58, + "probability": 0.6938 + }, + { + "start": 7129.76, + "end": 7132.48, + "probability": 0.9875 + }, + { + "start": 7133.0, + "end": 7133.98, + "probability": 0.6671 + }, + { + "start": 7134.29, + "end": 7138.38, + "probability": 0.9463 + }, + { + "start": 7138.58, + "end": 7141.24, + "probability": 0.6022 + }, + { + "start": 7141.24, + "end": 7145.1, + "probability": 0.626 + }, + { + "start": 7145.18, + "end": 7145.8, + "probability": 0.9087 + }, + { + "start": 7146.62, + "end": 7150.16, + "probability": 0.7968 + }, + { + "start": 7150.16, + "end": 7153.5, + "probability": 0.7686 + }, + { + "start": 7153.84, + "end": 7155.92, + "probability": 0.7963 + }, + { + "start": 7156.8, + "end": 7158.0, + "probability": 0.9454 + }, + { + "start": 7158.2, + "end": 7161.66, + "probability": 0.9536 + }, + { + "start": 7162.63, + "end": 7163.54, + "probability": 0.0759 + }, + { + "start": 7163.54, + "end": 7165.72, + "probability": 0.9726 + }, + { + "start": 7166.0, + "end": 7169.0, + "probability": 0.8766 + }, + { + "start": 7169.44, + "end": 7175.22, + "probability": 0.888 + }, + { + "start": 7175.26, + "end": 7178.48, + "probability": 0.9424 + }, + { + "start": 7179.08, + "end": 7179.54, + "probability": 0.6526 + }, + { + "start": 7180.34, + "end": 7180.64, + "probability": 0.5066 + }, + { + "start": 7181.42, + "end": 7181.52, + "probability": 0.5704 + }, + { + "start": 7184.1, + "end": 7190.36, + "probability": 0.8078 + }, + { + "start": 7190.76, + "end": 7192.56, + "probability": 0.8436 + }, + { + "start": 7192.58, + "end": 7193.5, + "probability": 0.4505 + }, + { + "start": 7193.84, + "end": 7196.36, + "probability": 0.8343 + }, + { + "start": 7196.48, + "end": 7197.5, + "probability": 0.9676 + }, + { + "start": 7197.94, + "end": 7200.26, + "probability": 0.7938 + }, + { + "start": 7201.3, + "end": 7203.26, + "probability": 0.9251 + }, + { + "start": 7203.9, + "end": 7205.98, + "probability": 0.9656 + }, + { + "start": 7206.6, + "end": 7207.56, + "probability": 0.943 + }, + { + "start": 7208.1, + "end": 7211.34, + "probability": 0.8394 + }, + { + "start": 7211.9, + "end": 7213.52, + "probability": 0.7399 + }, + { + "start": 7213.78, + "end": 7215.58, + "probability": 0.0335 + }, + { + "start": 7215.64, + "end": 7216.76, + "probability": 0.7179 + }, + { + "start": 7216.76, + "end": 7217.64, + "probability": 0.9207 + }, + { + "start": 7217.76, + "end": 7218.91, + "probability": 0.8934 + }, + { + "start": 7219.12, + "end": 7220.68, + "probability": 0.7908 + }, + { + "start": 7220.8, + "end": 7222.1, + "probability": 0.8213 + }, + { + "start": 7222.2, + "end": 7224.84, + "probability": 0.9956 + }, + { + "start": 7226.1, + "end": 7227.54, + "probability": 0.7119 + }, + { + "start": 7227.96, + "end": 7228.78, + "probability": 0.991 + }, + { + "start": 7231.52, + "end": 7233.34, + "probability": 0.6624 + }, + { + "start": 7233.5, + "end": 7234.2, + "probability": 0.525 + }, + { + "start": 7234.4, + "end": 7235.78, + "probability": 0.5252 + }, + { + "start": 7236.22, + "end": 7237.14, + "probability": 0.704 + }, + { + "start": 7237.28, + "end": 7239.14, + "probability": 0.9883 + }, + { + "start": 7239.32, + "end": 7240.02, + "probability": 0.995 + }, + { + "start": 7240.38, + "end": 7241.45, + "probability": 0.998 + }, + { + "start": 7242.36, + "end": 7243.74, + "probability": 0.6288 + }, + { + "start": 7244.78, + "end": 7246.56, + "probability": 0.889 + }, + { + "start": 7246.76, + "end": 7247.88, + "probability": 0.9785 + }, + { + "start": 7247.98, + "end": 7249.2, + "probability": 0.9062 + }, + { + "start": 7249.3, + "end": 7250.14, + "probability": 0.9852 + }, + { + "start": 7250.84, + "end": 7255.38, + "probability": 0.8174 + }, + { + "start": 7255.66, + "end": 7256.98, + "probability": 0.6749 + }, + { + "start": 7257.12, + "end": 7259.66, + "probability": 0.7376 + }, + { + "start": 7260.02, + "end": 7260.42, + "probability": 0.4448 + }, + { + "start": 7260.8, + "end": 7261.58, + "probability": 0.4845 + }, + { + "start": 7261.58, + "end": 7265.1, + "probability": 0.9438 + }, + { + "start": 7265.1, + "end": 7270.28, + "probability": 0.9912 + }, + { + "start": 7270.28, + "end": 7273.16, + "probability": 0.9775 + }, + { + "start": 7273.16, + "end": 7275.62, + "probability": 0.9954 + }, + { + "start": 7277.22, + "end": 7278.82, + "probability": 0.9909 + }, + { + "start": 7285.58, + "end": 7285.7, + "probability": 0.5991 + }, + { + "start": 7286.76, + "end": 7287.34, + "probability": 0.8733 + }, + { + "start": 7287.66, + "end": 7293.86, + "probability": 0.9478 + }, + { + "start": 7293.94, + "end": 7296.48, + "probability": 0.9876 + }, + { + "start": 7296.68, + "end": 7301.6, + "probability": 0.9883 + }, + { + "start": 7302.2, + "end": 7304.32, + "probability": 0.9404 + }, + { + "start": 7304.76, + "end": 7308.2, + "probability": 0.9821 + }, + { + "start": 7308.84, + "end": 7311.3, + "probability": 0.9983 + }, + { + "start": 7311.64, + "end": 7312.84, + "probability": 0.9668 + }, + { + "start": 7315.3, + "end": 7315.92, + "probability": 0.572 + }, + { + "start": 7315.98, + "end": 7319.6, + "probability": 0.9661 + }, + { + "start": 7319.64, + "end": 7321.6, + "probability": 0.5452 + }, + { + "start": 7322.36, + "end": 7322.86, + "probability": 0.9673 + }, + { + "start": 7322.88, + "end": 7323.64, + "probability": 0.7253 + }, + { + "start": 7323.68, + "end": 7326.14, + "probability": 0.7791 + }, + { + "start": 7326.2, + "end": 7328.12, + "probability": 0.888 + }, + { + "start": 7328.24, + "end": 7329.1, + "probability": 0.9495 + }, + { + "start": 7329.56, + "end": 7331.28, + "probability": 0.9727 + }, + { + "start": 7331.5, + "end": 7337.06, + "probability": 0.9382 + }, + { + "start": 7337.1, + "end": 7339.38, + "probability": 0.9609 + }, + { + "start": 7340.02, + "end": 7341.84, + "probability": 0.8395 + }, + { + "start": 7342.36, + "end": 7344.4, + "probability": 0.9125 + }, + { + "start": 7344.56, + "end": 7345.2, + "probability": 0.9182 + }, + { + "start": 7345.58, + "end": 7346.32, + "probability": 0.9772 + }, + { + "start": 7346.46, + "end": 7348.75, + "probability": 0.49 + }, + { + "start": 7348.9, + "end": 7354.34, + "probability": 0.9941 + }, + { + "start": 7354.42, + "end": 7355.64, + "probability": 0.9377 + }, + { + "start": 7357.46, + "end": 7358.3, + "probability": 0.4424 + }, + { + "start": 7358.46, + "end": 7361.64, + "probability": 0.9202 + }, + { + "start": 7362.18, + "end": 7364.7, + "probability": 0.6601 + }, + { + "start": 7364.86, + "end": 7365.85, + "probability": 0.9203 + }, + { + "start": 7366.12, + "end": 7370.5, + "probability": 0.9459 + }, + { + "start": 7370.66, + "end": 7373.66, + "probability": 0.9585 + }, + { + "start": 7374.62, + "end": 7376.52, + "probability": 0.8983 + }, + { + "start": 7376.7, + "end": 7379.8, + "probability": 0.988 + }, + { + "start": 7379.92, + "end": 7380.88, + "probability": 0.8962 + }, + { + "start": 7381.06, + "end": 7382.12, + "probability": 0.9138 + }, + { + "start": 7382.36, + "end": 7385.54, + "probability": 0.8363 + }, + { + "start": 7385.86, + "end": 7387.32, + "probability": 0.8833 + }, + { + "start": 7387.44, + "end": 7388.13, + "probability": 0.8413 + }, + { + "start": 7388.32, + "end": 7392.12, + "probability": 0.9958 + }, + { + "start": 7392.14, + "end": 7392.56, + "probability": 0.4692 + }, + { + "start": 7393.0, + "end": 7394.16, + "probability": 0.9338 + }, + { + "start": 7394.34, + "end": 7395.14, + "probability": 0.6714 + }, + { + "start": 7395.46, + "end": 7395.98, + "probability": 0.6478 + }, + { + "start": 7396.32, + "end": 7396.88, + "probability": 0.6321 + }, + { + "start": 7397.24, + "end": 7398.82, + "probability": 0.831 + }, + { + "start": 7399.12, + "end": 7399.34, + "probability": 0.6878 + }, + { + "start": 7400.96, + "end": 7401.76, + "probability": 0.74 + }, + { + "start": 7401.84, + "end": 7404.34, + "probability": 0.8989 + }, + { + "start": 7407.44, + "end": 7410.14, + "probability": 0.9279 + }, + { + "start": 7416.76, + "end": 7418.62, + "probability": 0.6803 + }, + { + "start": 7419.42, + "end": 7419.78, + "probability": 0.4596 + }, + { + "start": 7419.92, + "end": 7422.09, + "probability": 0.8262 + }, + { + "start": 7422.32, + "end": 7423.06, + "probability": 0.7015 + }, + { + "start": 7424.0, + "end": 7424.5, + "probability": 0.752 + }, + { + "start": 7424.56, + "end": 7425.06, + "probability": 0.4748 + }, + { + "start": 7425.16, + "end": 7430.66, + "probability": 0.8102 + }, + { + "start": 7430.68, + "end": 7432.16, + "probability": 0.7629 + }, + { + "start": 7432.28, + "end": 7434.16, + "probability": 0.9875 + }, + { + "start": 7434.9, + "end": 7436.54, + "probability": 0.806 + }, + { + "start": 7436.68, + "end": 7437.86, + "probability": 0.7887 + }, + { + "start": 7438.4, + "end": 7440.54, + "probability": 0.7865 + }, + { + "start": 7440.54, + "end": 7441.6, + "probability": 0.6331 + }, + { + "start": 7441.62, + "end": 7445.02, + "probability": 0.8743 + }, + { + "start": 7457.8, + "end": 7458.18, + "probability": 0.3507 + }, + { + "start": 7459.5, + "end": 7462.08, + "probability": 0.1929 + }, + { + "start": 7472.66, + "end": 7476.82, + "probability": 0.1239 + }, + { + "start": 7476.82, + "end": 7479.14, + "probability": 0.1099 + }, + { + "start": 7479.16, + "end": 7479.72, + "probability": 0.4066 + }, + { + "start": 7481.66, + "end": 7482.92, + "probability": 0.0777 + }, + { + "start": 7482.92, + "end": 7484.14, + "probability": 0.0059 + }, + { + "start": 7484.24, + "end": 7486.42, + "probability": 0.0339 + }, + { + "start": 7487.14, + "end": 7488.94, + "probability": 0.069 + }, + { + "start": 7489.6, + "end": 7490.21, + "probability": 0.039 + }, + { + "start": 7490.46, + "end": 7490.5, + "probability": 0.0528 + }, + { + "start": 7490.5, + "end": 7490.5, + "probability": 0.1012 + }, + { + "start": 7490.5, + "end": 7492.46, + "probability": 0.0691 + }, + { + "start": 7495.92, + "end": 7497.34, + "probability": 0.0689 + }, + { + "start": 7498.27, + "end": 7500.78, + "probability": 0.0554 + }, + { + "start": 7501.52, + "end": 7502.64, + "probability": 0.0616 + }, + { + "start": 7502.74, + "end": 7504.57, + "probability": 0.1361 + }, + { + "start": 7510.62, + "end": 7511.5, + "probability": 0.014 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.0, + "end": 7520.0, + "probability": 0.0 + }, + { + "start": 7520.14, + "end": 7520.82, + "probability": 0.1339 + }, + { + "start": 7520.82, + "end": 7520.82, + "probability": 0.0446 + }, + { + "start": 7520.82, + "end": 7520.82, + "probability": 0.1381 + }, + { + "start": 7520.82, + "end": 7520.82, + "probability": 0.111 + }, + { + "start": 7520.82, + "end": 7522.46, + "probability": 0.1606 + }, + { + "start": 7523.14, + "end": 7524.36, + "probability": 0.8348 + }, + { + "start": 7526.42, + "end": 7528.12, + "probability": 0.5696 + }, + { + "start": 7528.7, + "end": 7530.9, + "probability": 0.6575 + }, + { + "start": 7531.72, + "end": 7532.36, + "probability": 0.502 + }, + { + "start": 7533.21, + "end": 7536.76, + "probability": 0.909 + }, + { + "start": 7537.22, + "end": 7538.71, + "probability": 0.7603 + }, + { + "start": 7539.52, + "end": 7541.44, + "probability": 0.9626 + }, + { + "start": 7542.22, + "end": 7543.18, + "probability": 0.7106 + }, + { + "start": 7543.26, + "end": 7544.95, + "probability": 0.9545 + }, + { + "start": 7547.34, + "end": 7552.82, + "probability": 0.979 + }, + { + "start": 7553.74, + "end": 7555.66, + "probability": 0.5706 + }, + { + "start": 7556.46, + "end": 7557.18, + "probability": 0.7657 + }, + { + "start": 7557.2, + "end": 7558.86, + "probability": 0.5551 + }, + { + "start": 7558.9, + "end": 7559.6, + "probability": 0.5197 + }, + { + "start": 7559.82, + "end": 7560.31, + "probability": 0.9189 + }, + { + "start": 7560.94, + "end": 7565.38, + "probability": 0.9224 + }, + { + "start": 7565.38, + "end": 7569.7, + "probability": 0.9597 + }, + { + "start": 7570.52, + "end": 7572.3, + "probability": 0.651 + }, + { + "start": 7572.4, + "end": 7572.78, + "probability": 0.5352 + }, + { + "start": 7572.78, + "end": 7576.78, + "probability": 0.7071 + }, + { + "start": 7576.92, + "end": 7577.48, + "probability": 0.9066 + }, + { + "start": 7577.56, + "end": 7580.2, + "probability": 0.1829 + }, + { + "start": 7580.3, + "end": 7580.72, + "probability": 0.3712 + }, + { + "start": 7581.76, + "end": 7582.08, + "probability": 0.8395 + }, + { + "start": 7582.48, + "end": 7583.68, + "probability": 0.9788 + }, + { + "start": 7584.22, + "end": 7584.78, + "probability": 0.9811 + }, + { + "start": 7584.9, + "end": 7585.9, + "probability": 0.9526 + }, + { + "start": 7586.3, + "end": 7589.36, + "probability": 0.6865 + }, + { + "start": 7589.54, + "end": 7590.76, + "probability": 0.3749 + }, + { + "start": 7592.0, + "end": 7592.51, + "probability": 0.3833 + }, + { + "start": 7593.24, + "end": 7595.16, + "probability": 0.4019 + }, + { + "start": 7595.32, + "end": 7596.04, + "probability": 0.6434 + }, + { + "start": 7596.24, + "end": 7599.84, + "probability": 0.8475 + }, + { + "start": 7600.2, + "end": 7600.38, + "probability": 0.2018 + }, + { + "start": 7600.38, + "end": 7603.44, + "probability": 0.5783 + }, + { + "start": 7603.56, + "end": 7604.0, + "probability": 0.8718 + }, + { + "start": 7604.12, + "end": 7604.48, + "probability": 0.9856 + }, + { + "start": 7604.78, + "end": 7605.34, + "probability": 0.7384 + }, + { + "start": 7605.44, + "end": 7606.36, + "probability": 0.605 + }, + { + "start": 7606.86, + "end": 7607.38, + "probability": 0.6825 + }, + { + "start": 7607.52, + "end": 7607.82, + "probability": 0.806 + }, + { + "start": 7607.92, + "end": 7610.32, + "probability": 0.8481 + }, + { + "start": 7610.78, + "end": 7611.56, + "probability": 0.7638 + }, + { + "start": 7612.12, + "end": 7617.42, + "probability": 0.8782 + }, + { + "start": 7617.6, + "end": 7619.58, + "probability": 0.6771 + }, + { + "start": 7619.66, + "end": 7622.68, + "probability": 0.9814 + }, + { + "start": 7622.94, + "end": 7624.7, + "probability": 0.1911 + }, + { + "start": 7624.94, + "end": 7625.46, + "probability": 0.1435 + }, + { + "start": 7625.46, + "end": 7625.46, + "probability": 0.2906 + }, + { + "start": 7625.46, + "end": 7626.92, + "probability": 0.3679 + }, + { + "start": 7626.92, + "end": 7627.86, + "probability": 0.1922 + }, + { + "start": 7628.03, + "end": 7629.44, + "probability": 0.9576 + }, + { + "start": 7629.52, + "end": 7630.8, + "probability": 0.9272 + }, + { + "start": 7631.5, + "end": 7634.6, + "probability": 0.7469 + }, + { + "start": 7634.72, + "end": 7636.78, + "probability": 0.9746 + }, + { + "start": 7636.84, + "end": 7637.24, + "probability": 0.8693 + }, + { + "start": 7637.92, + "end": 7639.66, + "probability": 0.8596 + }, + { + "start": 7639.76, + "end": 7640.4, + "probability": 0.6851 + }, + { + "start": 7640.82, + "end": 7644.08, + "probability": 0.8606 + }, + { + "start": 7645.2, + "end": 7646.58, + "probability": 0.3567 + }, + { + "start": 7646.72, + "end": 7648.64, + "probability": 0.9943 + }, + { + "start": 7649.22, + "end": 7652.54, + "probability": 0.8899 + }, + { + "start": 7652.56, + "end": 7653.12, + "probability": 0.5654 + }, + { + "start": 7653.24, + "end": 7654.03, + "probability": 0.6496 + }, + { + "start": 7654.58, + "end": 7657.2, + "probability": 0.8859 + }, + { + "start": 7657.38, + "end": 7659.66, + "probability": 0.7114 + }, + { + "start": 7659.72, + "end": 7661.3, + "probability": 0.7945 + }, + { + "start": 7661.44, + "end": 7662.06, + "probability": 0.8293 + }, + { + "start": 7662.34, + "end": 7663.78, + "probability": 0.5269 + }, + { + "start": 7664.68, + "end": 7665.98, + "probability": 0.6515 + }, + { + "start": 7666.16, + "end": 7670.56, + "probability": 0.7305 + }, + { + "start": 7671.18, + "end": 7671.78, + "probability": 0.5709 + }, + { + "start": 7672.38, + "end": 7674.42, + "probability": 0.7422 + }, + { + "start": 7675.16, + "end": 7677.88, + "probability": 0.9839 + }, + { + "start": 7678.02, + "end": 7680.46, + "probability": 0.936 + }, + { + "start": 7680.68, + "end": 7684.42, + "probability": 0.9509 + }, + { + "start": 7684.52, + "end": 7685.26, + "probability": 0.6672 + }, + { + "start": 7685.38, + "end": 7686.5, + "probability": 0.8856 + }, + { + "start": 7687.04, + "end": 7687.54, + "probability": 0.918 + }, + { + "start": 7688.08, + "end": 7691.22, + "probability": 0.6965 + }, + { + "start": 7692.02, + "end": 7693.86, + "probability": 0.6298 + }, + { + "start": 7694.36, + "end": 7696.15, + "probability": 0.77 + }, + { + "start": 7696.64, + "end": 7697.78, + "probability": 0.6958 + }, + { + "start": 7697.8, + "end": 7698.16, + "probability": 0.0336 + }, + { + "start": 7698.52, + "end": 7701.68, + "probability": 0.9598 + }, + { + "start": 7701.7, + "end": 7703.1, + "probability": 0.8513 + }, + { + "start": 7703.1, + "end": 7706.46, + "probability": 0.9489 + }, + { + "start": 7707.24, + "end": 7707.5, + "probability": 0.2452 + }, + { + "start": 7707.58, + "end": 7710.84, + "probability": 0.884 + }, + { + "start": 7710.92, + "end": 7711.48, + "probability": 0.3923 + }, + { + "start": 7711.58, + "end": 7712.36, + "probability": 0.8451 + }, + { + "start": 7712.44, + "end": 7713.32, + "probability": 0.5394 + }, + { + "start": 7713.74, + "end": 7716.6, + "probability": 0.7667 + }, + { + "start": 7716.72, + "end": 7718.3, + "probability": 0.9127 + }, + { + "start": 7719.06, + "end": 7720.0, + "probability": 0.8116 + }, + { + "start": 7720.14, + "end": 7721.18, + "probability": 0.6892 + }, + { + "start": 7721.34, + "end": 7723.37, + "probability": 0.7972 + }, + { + "start": 7723.78, + "end": 7726.88, + "probability": 0.694 + }, + { + "start": 7726.92, + "end": 7727.64, + "probability": 0.3918 + }, + { + "start": 7728.26, + "end": 7731.84, + "probability": 0.7825 + }, + { + "start": 7731.9, + "end": 7732.6, + "probability": 0.9727 + }, + { + "start": 7732.98, + "end": 7733.28, + "probability": 0.6594 + }, + { + "start": 7734.27, + "end": 7736.52, + "probability": 0.8182 + }, + { + "start": 7737.14, + "end": 7737.64, + "probability": 0.9652 + }, + { + "start": 7737.74, + "end": 7738.58, + "probability": 0.8102 + }, + { + "start": 7739.31, + "end": 7741.02, + "probability": 0.668 + }, + { + "start": 7741.22, + "end": 7742.76, + "probability": 0.5271 + }, + { + "start": 7742.84, + "end": 7743.68, + "probability": 0.635 + }, + { + "start": 7744.14, + "end": 7747.74, + "probability": 0.7351 + }, + { + "start": 7748.56, + "end": 7749.06, + "probability": 0.664 + }, + { + "start": 7749.26, + "end": 7750.46, + "probability": 0.8852 + }, + { + "start": 7750.68, + "end": 7751.64, + "probability": 0.4611 + }, + { + "start": 7752.26, + "end": 7755.66, + "probability": 0.9836 + }, + { + "start": 7756.68, + "end": 7757.52, + "probability": 0.7995 + }, + { + "start": 7758.1, + "end": 7759.02, + "probability": 0.9175 + }, + { + "start": 7759.1, + "end": 7760.48, + "probability": 0.877 + }, + { + "start": 7761.46, + "end": 7763.66, + "probability": 0.7388 + }, + { + "start": 7763.66, + "end": 7767.78, + "probability": 0.7781 + }, + { + "start": 7768.22, + "end": 7770.52, + "probability": 0.7407 + }, + { + "start": 7770.66, + "end": 7772.24, + "probability": 0.994 + }, + { + "start": 7772.3, + "end": 7775.82, + "probability": 0.8693 + }, + { + "start": 7776.26, + "end": 7777.06, + "probability": 0.8492 + }, + { + "start": 7777.14, + "end": 7777.58, + "probability": 0.5103 + }, + { + "start": 7777.7, + "end": 7778.18, + "probability": 0.6457 + }, + { + "start": 7778.32, + "end": 7784.18, + "probability": 0.8535 + }, + { + "start": 7784.3, + "end": 7785.62, + "probability": 0.9186 + }, + { + "start": 7786.56, + "end": 7787.18, + "probability": 0.7678 + }, + { + "start": 7787.72, + "end": 7789.6, + "probability": 0.8451 + }, + { + "start": 7790.18, + "end": 7793.62, + "probability": 0.578 + }, + { + "start": 7793.76, + "end": 7794.5, + "probability": 0.6721 + }, + { + "start": 7794.84, + "end": 7798.6, + "probability": 0.9829 + }, + { + "start": 7798.94, + "end": 7802.7, + "probability": 0.9824 + }, + { + "start": 7803.4, + "end": 7805.0, + "probability": 0.6059 + }, + { + "start": 7805.32, + "end": 7806.47, + "probability": 0.6396 + }, + { + "start": 7806.56, + "end": 7810.36, + "probability": 0.5821 + }, + { + "start": 7810.64, + "end": 7812.46, + "probability": 0.8277 + }, + { + "start": 7813.38, + "end": 7814.61, + "probability": 0.8344 + }, + { + "start": 7815.72, + "end": 7817.52, + "probability": 0.6145 + }, + { + "start": 7817.52, + "end": 7818.42, + "probability": 0.6864 + }, + { + "start": 7818.88, + "end": 7821.08, + "probability": 0.8936 + }, + { + "start": 7821.42, + "end": 7823.58, + "probability": 0.6217 + }, + { + "start": 7824.24, + "end": 7824.96, + "probability": 0.7495 + }, + { + "start": 7825.08, + "end": 7827.1, + "probability": 0.9344 + }, + { + "start": 7827.26, + "end": 7827.92, + "probability": 0.9307 + }, + { + "start": 7828.9, + "end": 7829.78, + "probability": 0.9252 + }, + { + "start": 7829.84, + "end": 7832.02, + "probability": 0.9072 + }, + { + "start": 7832.06, + "end": 7833.82, + "probability": 0.9353 + }, + { + "start": 7834.44, + "end": 7837.58, + "probability": 0.9497 + }, + { + "start": 7838.26, + "end": 7842.64, + "probability": 0.9279 + }, + { + "start": 7842.74, + "end": 7843.42, + "probability": 0.4915 + }, + { + "start": 7843.52, + "end": 7844.46, + "probability": 0.7262 + }, + { + "start": 7844.7, + "end": 7846.44, + "probability": 0.5108 + }, + { + "start": 7846.88, + "end": 7850.44, + "probability": 0.9614 + }, + { + "start": 7851.0, + "end": 7855.7, + "probability": 0.8531 + }, + { + "start": 7856.1, + "end": 7857.18, + "probability": 0.7983 + }, + { + "start": 7858.22, + "end": 7859.98, + "probability": 0.6846 + }, + { + "start": 7860.12, + "end": 7862.78, + "probability": 0.6786 + }, + { + "start": 7862.82, + "end": 7863.85, + "probability": 0.7383 + }, + { + "start": 7864.04, + "end": 7865.7, + "probability": 0.6522 + }, + { + "start": 7866.06, + "end": 7866.54, + "probability": 0.6004 + }, + { + "start": 7866.64, + "end": 7867.26, + "probability": 0.459 + }, + { + "start": 7867.34, + "end": 7870.04, + "probability": 0.9055 + }, + { + "start": 7870.38, + "end": 7871.38, + "probability": 0.3594 + }, + { + "start": 7872.06, + "end": 7873.64, + "probability": 0.9053 + }, + { + "start": 7873.68, + "end": 7874.09, + "probability": 0.7885 + }, + { + "start": 7874.84, + "end": 7878.2, + "probability": 0.8955 + }, + { + "start": 7878.3, + "end": 7880.4, + "probability": 0.825 + }, + { + "start": 7880.8, + "end": 7881.82, + "probability": 0.7003 + }, + { + "start": 7882.24, + "end": 7886.28, + "probability": 0.7666 + }, + { + "start": 7886.4, + "end": 7887.98, + "probability": 0.872 + }, + { + "start": 7888.74, + "end": 7893.0, + "probability": 0.8417 + }, + { + "start": 7893.06, + "end": 7893.52, + "probability": 0.5241 + }, + { + "start": 7895.55, + "end": 7896.55, + "probability": 0.9218 + }, + { + "start": 7896.96, + "end": 7898.32, + "probability": 0.9902 + }, + { + "start": 7898.6, + "end": 7900.36, + "probability": 0.5971 + }, + { + "start": 7900.36, + "end": 7902.06, + "probability": 0.1625 + }, + { + "start": 7902.14, + "end": 7903.04, + "probability": 0.8737 + }, + { + "start": 7903.18, + "end": 7903.64, + "probability": 0.5649 + }, + { + "start": 7903.66, + "end": 7904.0, + "probability": 0.9897 + }, + { + "start": 7904.42, + "end": 7905.88, + "probability": 0.6526 + }, + { + "start": 7906.3, + "end": 7910.0, + "probability": 0.799 + }, + { + "start": 7910.0, + "end": 7910.52, + "probability": 0.5886 + }, + { + "start": 7910.58, + "end": 7910.86, + "probability": 0.9174 + }, + { + "start": 7911.48, + "end": 7913.59, + "probability": 0.7996 + }, + { + "start": 7914.96, + "end": 7915.54, + "probability": 0.5643 + }, + { + "start": 7915.92, + "end": 7917.04, + "probability": 0.906 + }, + { + "start": 7917.56, + "end": 7921.18, + "probability": 0.9983 + }, + { + "start": 7921.34, + "end": 7923.52, + "probability": 0.9634 + }, + { + "start": 7923.62, + "end": 7925.58, + "probability": 0.2224 + }, + { + "start": 7926.22, + "end": 7926.86, + "probability": 0.4807 + }, + { + "start": 7927.08, + "end": 7927.75, + "probability": 0.9897 + }, + { + "start": 7928.1, + "end": 7928.77, + "probability": 0.9946 + }, + { + "start": 7928.92, + "end": 7930.3, + "probability": 0.7231 + }, + { + "start": 7930.92, + "end": 7934.56, + "probability": 0.8679 + }, + { + "start": 7934.76, + "end": 7937.48, + "probability": 0.9801 + }, + { + "start": 7938.08, + "end": 7938.52, + "probability": 0.5042 + }, + { + "start": 7938.74, + "end": 7942.76, + "probability": 0.971 + }, + { + "start": 7944.22, + "end": 7945.3, + "probability": 0.79 + }, + { + "start": 7945.8, + "end": 7946.82, + "probability": 0.9446 + }, + { + "start": 7947.28, + "end": 7952.12, + "probability": 0.688 + }, + { + "start": 7952.9, + "end": 7954.88, + "probability": 0.8172 + }, + { + "start": 7955.12, + "end": 7957.34, + "probability": 0.8647 + }, + { + "start": 7957.52, + "end": 7959.08, + "probability": 0.665 + }, + { + "start": 7959.2, + "end": 7960.14, + "probability": 0.9424 + }, + { + "start": 7960.22, + "end": 7962.36, + "probability": 0.8177 + }, + { + "start": 7962.96, + "end": 7963.62, + "probability": 0.5089 + }, + { + "start": 7963.62, + "end": 7966.12, + "probability": 0.5054 + }, + { + "start": 7966.82, + "end": 7967.64, + "probability": 0.856 + }, + { + "start": 7967.78, + "end": 7970.72, + "probability": 0.8861 + }, + { + "start": 7971.46, + "end": 7972.12, + "probability": 0.2934 + }, + { + "start": 7972.4, + "end": 7974.12, + "probability": 0.8564 + }, + { + "start": 7974.24, + "end": 7976.1, + "probability": 0.9197 + }, + { + "start": 7976.28, + "end": 7978.06, + "probability": 0.7522 + }, + { + "start": 7978.1, + "end": 7978.66, + "probability": 0.6749 + }, + { + "start": 7979.16, + "end": 7980.06, + "probability": 0.6973 + }, + { + "start": 7980.16, + "end": 7982.18, + "probability": 0.7188 + }, + { + "start": 7982.74, + "end": 7984.68, + "probability": 0.3796 + }, + { + "start": 7984.98, + "end": 7985.92, + "probability": 0.912 + }, + { + "start": 7986.06, + "end": 7987.04, + "probability": 0.5755 + }, + { + "start": 7987.12, + "end": 7989.8, + "probability": 0.8969 + }, + { + "start": 7990.26, + "end": 7992.82, + "probability": 0.3911 + }, + { + "start": 7993.06, + "end": 7994.68, + "probability": 0.5085 + }, + { + "start": 7994.82, + "end": 7996.13, + "probability": 0.7509 + }, + { + "start": 7996.62, + "end": 7997.82, + "probability": 0.5277 + }, + { + "start": 7998.08, + "end": 7999.9, + "probability": 0.6246 + }, + { + "start": 7999.98, + "end": 8001.0, + "probability": 0.9099 + }, + { + "start": 8001.42, + "end": 8003.4, + "probability": 0.9918 + }, + { + "start": 8003.96, + "end": 8008.78, + "probability": 0.9951 + }, + { + "start": 8009.16, + "end": 8010.46, + "probability": 0.9426 + }, + { + "start": 8010.52, + "end": 8014.86, + "probability": 0.7995 + }, + { + "start": 8015.24, + "end": 8016.1, + "probability": 0.9352 + }, + { + "start": 8016.2, + "end": 8020.02, + "probability": 0.7673 + }, + { + "start": 8020.56, + "end": 8022.16, + "probability": 0.9357 + }, + { + "start": 8022.8, + "end": 8024.92, + "probability": 0.604 + }, + { + "start": 8025.18, + "end": 8026.22, + "probability": 0.0951 + }, + { + "start": 8026.38, + "end": 8029.22, + "probability": 0.9248 + }, + { + "start": 8030.36, + "end": 8030.58, + "probability": 0.8593 + }, + { + "start": 8032.02, + "end": 8032.7, + "probability": 0.816 + }, + { + "start": 8033.84, + "end": 8037.94, + "probability": 0.9784 + }, + { + "start": 8042.36, + "end": 8043.96, + "probability": 0.6923 + }, + { + "start": 8044.52, + "end": 8045.88, + "probability": 0.8196 + }, + { + "start": 8045.96, + "end": 8046.98, + "probability": 0.9219 + }, + { + "start": 8047.22, + "end": 8048.68, + "probability": 0.907 + }, + { + "start": 8049.16, + "end": 8049.88, + "probability": 0.7248 + }, + { + "start": 8051.18, + "end": 8052.04, + "probability": 0.6809 + }, + { + "start": 8052.16, + "end": 8055.56, + "probability": 0.9845 + }, + { + "start": 8056.32, + "end": 8058.0, + "probability": 0.8724 + }, + { + "start": 8059.06, + "end": 8059.38, + "probability": 0.5213 + }, + { + "start": 8059.54, + "end": 8065.02, + "probability": 0.9775 + }, + { + "start": 8065.02, + "end": 8068.34, + "probability": 0.8542 + }, + { + "start": 8069.58, + "end": 8074.5, + "probability": 0.9575 + }, + { + "start": 8075.26, + "end": 8076.16, + "probability": 0.9372 + }, + { + "start": 8077.66, + "end": 8079.64, + "probability": 0.7036 + }, + { + "start": 8079.84, + "end": 8080.78, + "probability": 0.8574 + }, + { + "start": 8080.88, + "end": 8082.32, + "probability": 0.8092 + }, + { + "start": 8082.52, + "end": 8084.34, + "probability": 0.6075 + }, + { + "start": 8084.74, + "end": 8087.18, + "probability": 0.9418 + }, + { + "start": 8087.32, + "end": 8088.3, + "probability": 0.9822 + }, + { + "start": 8089.3, + "end": 8092.94, + "probability": 0.8856 + }, + { + "start": 8093.06, + "end": 8093.58, + "probability": 0.3694 + }, + { + "start": 8093.58, + "end": 8093.86, + "probability": 0.0693 + }, + { + "start": 8094.88, + "end": 8095.76, + "probability": 0.7637 + }, + { + "start": 8095.82, + "end": 8099.56, + "probability": 0.801 + }, + { + "start": 8099.72, + "end": 8101.94, + "probability": 0.7058 + }, + { + "start": 8102.42, + "end": 8104.48, + "probability": 0.7832 + }, + { + "start": 8104.72, + "end": 8105.32, + "probability": 0.6229 + }, + { + "start": 8106.24, + "end": 8106.86, + "probability": 0.4721 + }, + { + "start": 8107.88, + "end": 8111.68, + "probability": 0.8281 + }, + { + "start": 8111.8, + "end": 8112.14, + "probability": 0.2715 + }, + { + "start": 8112.42, + "end": 8116.86, + "probability": 0.8564 + }, + { + "start": 8117.02, + "end": 8118.16, + "probability": 0.9871 + }, + { + "start": 8118.32, + "end": 8120.18, + "probability": 0.4669 + }, + { + "start": 8120.9, + "end": 8129.32, + "probability": 0.9686 + }, + { + "start": 8129.46, + "end": 8130.26, + "probability": 0.5076 + }, + { + "start": 8130.78, + "end": 8136.2, + "probability": 0.9131 + }, + { + "start": 8136.34, + "end": 8137.4, + "probability": 0.9717 + }, + { + "start": 8137.66, + "end": 8138.26, + "probability": 0.7052 + }, + { + "start": 8138.72, + "end": 8139.86, + "probability": 0.965 + }, + { + "start": 8140.82, + "end": 8142.02, + "probability": 0.9067 + }, + { + "start": 8142.08, + "end": 8145.98, + "probability": 0.8634 + }, + { + "start": 8146.02, + "end": 8151.7, + "probability": 0.9912 + }, + { + "start": 8151.86, + "end": 8152.41, + "probability": 0.7152 + }, + { + "start": 8152.54, + "end": 8153.15, + "probability": 0.8105 + }, + { + "start": 8153.24, + "end": 8153.66, + "probability": 0.206 + }, + { + "start": 8153.78, + "end": 8154.53, + "probability": 0.5623 + }, + { + "start": 8155.64, + "end": 8156.56, + "probability": 0.8203 + }, + { + "start": 8156.66, + "end": 8159.54, + "probability": 0.9952 + }, + { + "start": 8160.0, + "end": 8163.34, + "probability": 0.6766 + }, + { + "start": 8163.84, + "end": 8167.34, + "probability": 0.9321 + }, + { + "start": 8167.54, + "end": 8168.98, + "probability": 0.9785 + }, + { + "start": 8169.04, + "end": 8170.32, + "probability": 0.9181 + }, + { + "start": 8170.4, + "end": 8171.66, + "probability": 0.8593 + }, + { + "start": 8172.23, + "end": 8174.9, + "probability": 0.8838 + }, + { + "start": 8175.48, + "end": 8178.38, + "probability": 0.9753 + }, + { + "start": 8178.74, + "end": 8182.24, + "probability": 0.9456 + }, + { + "start": 8182.62, + "end": 8187.78, + "probability": 0.9796 + }, + { + "start": 8187.88, + "end": 8192.18, + "probability": 0.8713 + }, + { + "start": 8192.34, + "end": 8194.04, + "probability": 0.7328 + }, + { + "start": 8194.6, + "end": 8197.98, + "probability": 0.9552 + }, + { + "start": 8198.66, + "end": 8200.7, + "probability": 0.9423 + }, + { + "start": 8201.26, + "end": 8202.12, + "probability": 0.9613 + }, + { + "start": 8202.32, + "end": 8204.12, + "probability": 0.9252 + }, + { + "start": 8204.16, + "end": 8207.62, + "probability": 0.8658 + }, + { + "start": 8208.2, + "end": 8208.7, + "probability": 0.4785 + }, + { + "start": 8208.76, + "end": 8209.14, + "probability": 0.5671 + }, + { + "start": 8209.26, + "end": 8210.28, + "probability": 0.7458 + }, + { + "start": 8210.46, + "end": 8211.24, + "probability": 0.8894 + }, + { + "start": 8211.34, + "end": 8216.1, + "probability": 0.5844 + }, + { + "start": 8216.22, + "end": 8217.08, + "probability": 0.7909 + }, + { + "start": 8217.78, + "end": 8218.92, + "probability": 0.4937 + }, + { + "start": 8220.0, + "end": 8220.39, + "probability": 0.5057 + }, + { + "start": 8220.98, + "end": 8224.48, + "probability": 0.9702 + }, + { + "start": 8224.64, + "end": 8226.27, + "probability": 0.9883 + }, + { + "start": 8226.62, + "end": 8227.65, + "probability": 0.9946 + }, + { + "start": 8228.4, + "end": 8234.38, + "probability": 0.9923 + }, + { + "start": 8234.66, + "end": 8235.2, + "probability": 0.5047 + }, + { + "start": 8236.02, + "end": 8237.88, + "probability": 0.9316 + }, + { + "start": 8238.42, + "end": 8239.52, + "probability": 0.8644 + }, + { + "start": 8239.62, + "end": 8240.94, + "probability": 0.9789 + }, + { + "start": 8241.32, + "end": 8242.92, + "probability": 0.8057 + }, + { + "start": 8243.14, + "end": 8243.8, + "probability": 0.9676 + }, + { + "start": 8243.9, + "end": 8244.99, + "probability": 0.7617 + }, + { + "start": 8245.36, + "end": 8246.62, + "probability": 0.4248 + }, + { + "start": 8247.62, + "end": 8255.5, + "probability": 0.9508 + }, + { + "start": 8255.8, + "end": 8258.6, + "probability": 0.9089 + }, + { + "start": 8259.2, + "end": 8264.72, + "probability": 0.8073 + }, + { + "start": 8265.24, + "end": 8268.6, + "probability": 0.8926 + }, + { + "start": 8268.7, + "end": 8269.6, + "probability": 0.7078 + }, + { + "start": 8269.68, + "end": 8271.26, + "probability": 0.797 + }, + { + "start": 8272.02, + "end": 8274.36, + "probability": 0.937 + }, + { + "start": 8275.14, + "end": 8277.34, + "probability": 0.7942 + }, + { + "start": 8277.78, + "end": 8278.68, + "probability": 0.96 + }, + { + "start": 8278.94, + "end": 8279.56, + "probability": 0.931 + }, + { + "start": 8279.62, + "end": 8281.84, + "probability": 0.7987 + }, + { + "start": 8281.98, + "end": 8282.54, + "probability": 0.8697 + }, + { + "start": 8282.66, + "end": 8283.01, + "probability": 0.3342 + }, + { + "start": 8283.74, + "end": 8285.35, + "probability": 0.845 + }, + { + "start": 8285.52, + "end": 8287.91, + "probability": 0.9702 + }, + { + "start": 8290.06, + "end": 8296.88, + "probability": 0.948 + }, + { + "start": 8296.88, + "end": 8299.66, + "probability": 0.8205 + }, + { + "start": 8299.7, + "end": 8301.16, + "probability": 0.6844 + }, + { + "start": 8301.28, + "end": 8301.62, + "probability": 0.9512 + }, + { + "start": 8303.0, + "end": 8306.24, + "probability": 0.7266 + }, + { + "start": 8306.5, + "end": 8307.16, + "probability": 0.6811 + }, + { + "start": 8308.02, + "end": 8309.94, + "probability": 0.9867 + }, + { + "start": 8310.12, + "end": 8310.84, + "probability": 0.9943 + }, + { + "start": 8311.32, + "end": 8312.0, + "probability": 0.746 + }, + { + "start": 8313.34, + "end": 8314.26, + "probability": 0.9432 + }, + { + "start": 8314.38, + "end": 8315.8, + "probability": 0.8375 + }, + { + "start": 8315.82, + "end": 8316.57, + "probability": 0.8423 + }, + { + "start": 8317.14, + "end": 8319.78, + "probability": 0.9301 + }, + { + "start": 8320.72, + "end": 8323.38, + "probability": 0.8044 + }, + { + "start": 8323.56, + "end": 8324.4, + "probability": 0.7504 + }, + { + "start": 8324.5, + "end": 8326.82, + "probability": 0.8601 + }, + { + "start": 8327.58, + "end": 8330.34, + "probability": 0.824 + }, + { + "start": 8332.02, + "end": 8332.66, + "probability": 0.6598 + }, + { + "start": 8332.94, + "end": 8338.46, + "probability": 0.9782 + }, + { + "start": 8338.74, + "end": 8339.23, + "probability": 0.0656 + }, + { + "start": 8340.04, + "end": 8341.66, + "probability": 0.9495 + }, + { + "start": 8342.2, + "end": 8344.76, + "probability": 0.9773 + }, + { + "start": 8347.18, + "end": 8350.1, + "probability": 0.9007 + }, + { + "start": 8350.7, + "end": 8351.88, + "probability": 0.3793 + }, + { + "start": 8351.96, + "end": 8353.18, + "probability": 0.9424 + }, + { + "start": 8353.46, + "end": 8356.5, + "probability": 0.8367 + }, + { + "start": 8357.2, + "end": 8357.88, + "probability": 0.9376 + }, + { + "start": 8358.06, + "end": 8360.16, + "probability": 0.9318 + }, + { + "start": 8360.24, + "end": 8364.1, + "probability": 0.7923 + }, + { + "start": 8365.67, + "end": 8368.96, + "probability": 0.9023 + }, + { + "start": 8369.62, + "end": 8375.04, + "probability": 0.8312 + }, + { + "start": 8375.64, + "end": 8376.7, + "probability": 0.9608 + }, + { + "start": 8377.54, + "end": 8379.53, + "probability": 0.9368 + }, + { + "start": 8381.46, + "end": 8387.58, + "probability": 0.7496 + }, + { + "start": 8388.1, + "end": 8388.92, + "probability": 0.1607 + }, + { + "start": 8389.64, + "end": 8391.54, + "probability": 0.9428 + }, + { + "start": 8392.48, + "end": 8393.2, + "probability": 0.8876 + }, + { + "start": 8394.24, + "end": 8395.9, + "probability": 0.6059 + }, + { + "start": 8395.98, + "end": 8396.39, + "probability": 0.9569 + }, + { + "start": 8396.66, + "end": 8397.82, + "probability": 0.9422 + }, + { + "start": 8397.92, + "end": 8398.24, + "probability": 0.6782 + }, + { + "start": 8398.4, + "end": 8402.5, + "probability": 0.6753 + }, + { + "start": 8402.58, + "end": 8403.99, + "probability": 0.3583 + }, + { + "start": 8406.84, + "end": 8409.14, + "probability": 0.9123 + }, + { + "start": 8409.4, + "end": 8410.44, + "probability": 0.7413 + }, + { + "start": 8410.54, + "end": 8411.7, + "probability": 0.7237 + }, + { + "start": 8412.18, + "end": 8414.26, + "probability": 0.7498 + }, + { + "start": 8414.72, + "end": 8416.16, + "probability": 0.4032 + }, + { + "start": 8416.78, + "end": 8422.18, + "probability": 0.6064 + }, + { + "start": 8422.9, + "end": 8427.62, + "probability": 0.6081 + }, + { + "start": 8428.16, + "end": 8431.44, + "probability": 0.6456 + }, + { + "start": 8431.54, + "end": 8434.04, + "probability": 0.7724 + }, + { + "start": 8434.12, + "end": 8436.26, + "probability": 0.0457 + }, + { + "start": 8436.36, + "end": 8438.18, + "probability": 0.6389 + }, + { + "start": 8438.6, + "end": 8439.92, + "probability": 0.7957 + }, + { + "start": 8440.04, + "end": 8443.9, + "probability": 0.9741 + }, + { + "start": 8444.16, + "end": 8444.79, + "probability": 0.7542 + }, + { + "start": 8445.3, + "end": 8445.81, + "probability": 0.132 + }, + { + "start": 8446.44, + "end": 8448.06, + "probability": 0.901 + }, + { + "start": 8449.84, + "end": 8452.3, + "probability": 0.6663 + }, + { + "start": 8453.02, + "end": 8455.5, + "probability": 0.7861 + }, + { + "start": 8456.46, + "end": 8461.56, + "probability": 0.967 + }, + { + "start": 8462.54, + "end": 8466.42, + "probability": 0.554 + }, + { + "start": 8467.24, + "end": 8467.84, + "probability": 0.6409 + }, + { + "start": 8468.02, + "end": 8469.14, + "probability": 0.9272 + }, + { + "start": 8469.28, + "end": 8473.6, + "probability": 0.9889 + }, + { + "start": 8474.12, + "end": 8479.86, + "probability": 0.987 + }, + { + "start": 8479.86, + "end": 8485.46, + "probability": 0.8018 + }, + { + "start": 8485.84, + "end": 8487.02, + "probability": 0.8973 + }, + { + "start": 8488.9, + "end": 8489.32, + "probability": 0.8925 + }, + { + "start": 8489.68, + "end": 8490.1, + "probability": 0.4225 + }, + { + "start": 8490.26, + "end": 8491.52, + "probability": 0.716 + }, + { + "start": 8496.76, + "end": 8497.54, + "probability": 0.541 + }, + { + "start": 8497.54, + "end": 8497.86, + "probability": 0.4097 + }, + { + "start": 8497.96, + "end": 8498.64, + "probability": 0.7811 + }, + { + "start": 8498.76, + "end": 8501.76, + "probability": 0.586 + }, + { + "start": 8501.84, + "end": 8505.08, + "probability": 0.7059 + }, + { + "start": 8505.56, + "end": 8508.2, + "probability": 0.9067 + }, + { + "start": 8508.42, + "end": 8509.78, + "probability": 0.8364 + }, + { + "start": 8510.32, + "end": 8510.96, + "probability": 0.6483 + }, + { + "start": 8511.24, + "end": 8513.96, + "probability": 0.5508 + }, + { + "start": 8514.3, + "end": 8514.82, + "probability": 0.6095 + }, + { + "start": 8515.88, + "end": 8518.16, + "probability": 0.8702 + }, + { + "start": 8518.6, + "end": 8519.18, + "probability": 0.9689 + }, + { + "start": 8519.7, + "end": 8521.96, + "probability": 0.9733 + }, + { + "start": 8522.64, + "end": 8523.32, + "probability": 0.683 + }, + { + "start": 8523.72, + "end": 8525.62, + "probability": 0.9758 + }, + { + "start": 8525.66, + "end": 8527.34, + "probability": 0.99 + }, + { + "start": 8527.4, + "end": 8531.36, + "probability": 0.9875 + }, + { + "start": 8531.86, + "end": 8532.44, + "probability": 0.6945 + }, + { + "start": 8532.78, + "end": 8536.78, + "probability": 0.9001 + }, + { + "start": 8537.02, + "end": 8537.86, + "probability": 0.7008 + }, + { + "start": 8537.88, + "end": 8538.32, + "probability": 0.9427 + }, + { + "start": 8539.9, + "end": 8541.4, + "probability": 0.5124 + }, + { + "start": 8542.18, + "end": 8542.88, + "probability": 0.9571 + }, + { + "start": 8543.74, + "end": 8545.2, + "probability": 0.6066 + }, + { + "start": 8545.96, + "end": 8549.04, + "probability": 0.94 + }, + { + "start": 8550.22, + "end": 8552.74, + "probability": 0.995 + }, + { + "start": 8552.9, + "end": 8556.76, + "probability": 0.9893 + }, + { + "start": 8557.64, + "end": 8561.1, + "probability": 0.7924 + }, + { + "start": 8561.1, + "end": 8565.58, + "probability": 0.8646 + }, + { + "start": 8568.16, + "end": 8568.7, + "probability": 0.7642 + }, + { + "start": 8568.86, + "end": 8570.72, + "probability": 0.7405 + }, + { + "start": 8571.66, + "end": 8576.18, + "probability": 0.938 + }, + { + "start": 8576.34, + "end": 8579.3, + "probability": 0.9814 + }, + { + "start": 8579.56, + "end": 8580.68, + "probability": 0.5681 + }, + { + "start": 8582.38, + "end": 8585.8, + "probability": 0.4571 + }, + { + "start": 8588.44, + "end": 8588.98, + "probability": 0.1607 + }, + { + "start": 8589.02, + "end": 8589.46, + "probability": 0.6905 + }, + { + "start": 8590.96, + "end": 8592.96, + "probability": 0.0105 + }, + { + "start": 8592.96, + "end": 8592.96, + "probability": 0.0837 + }, + { + "start": 8592.96, + "end": 8592.96, + "probability": 0.257 + }, + { + "start": 8592.96, + "end": 8592.96, + "probability": 0.0237 + }, + { + "start": 8592.96, + "end": 8594.04, + "probability": 0.332 + }, + { + "start": 8594.04, + "end": 8595.02, + "probability": 0.5007 + }, + { + "start": 8595.1, + "end": 8596.98, + "probability": 0.5975 + }, + { + "start": 8597.0, + "end": 8598.3, + "probability": 0.9951 + }, + { + "start": 8598.4, + "end": 8598.62, + "probability": 0.1654 + }, + { + "start": 8598.62, + "end": 8598.62, + "probability": 0.1837 + }, + { + "start": 8598.62, + "end": 8600.42, + "probability": 0.8378 + }, + { + "start": 8600.42, + "end": 8600.7, + "probability": 0.7699 + }, + { + "start": 8601.02, + "end": 8603.6, + "probability": 0.9667 + }, + { + "start": 8603.6, + "end": 8603.6, + "probability": 0.0027 + }, + { + "start": 8604.7, + "end": 8605.32, + "probability": 0.077 + }, + { + "start": 8605.4, + "end": 8608.12, + "probability": 0.0536 + }, + { + "start": 8608.16, + "end": 8608.82, + "probability": 0.59 + }, + { + "start": 8609.06, + "end": 8610.36, + "probability": 0.6781 + }, + { + "start": 8610.46, + "end": 8612.84, + "probability": 0.8186 + }, + { + "start": 8613.02, + "end": 8614.22, + "probability": 0.8148 + }, + { + "start": 8614.34, + "end": 8615.1, + "probability": 0.6575 + }, + { + "start": 8615.96, + "end": 8616.88, + "probability": 0.8882 + }, + { + "start": 8616.92, + "end": 8619.72, + "probability": 0.9849 + }, + { + "start": 8619.72, + "end": 8623.64, + "probability": 0.9958 + }, + { + "start": 8623.94, + "end": 8625.48, + "probability": 0.5676 + }, + { + "start": 8625.54, + "end": 8627.56, + "probability": 0.8815 + }, + { + "start": 8628.12, + "end": 8632.06, + "probability": 0.8896 + }, + { + "start": 8632.86, + "end": 8633.78, + "probability": 0.499 + }, + { + "start": 8633.92, + "end": 8636.64, + "probability": 0.9631 + }, + { + "start": 8636.66, + "end": 8637.9, + "probability": 0.6846 + }, + { + "start": 8637.98, + "end": 8639.53, + "probability": 0.8115 + }, + { + "start": 8639.72, + "end": 8641.28, + "probability": 0.587 + }, + { + "start": 8641.86, + "end": 8642.02, + "probability": 0.4773 + }, + { + "start": 8642.08, + "end": 8643.92, + "probability": 0.9873 + }, + { + "start": 8644.06, + "end": 8645.26, + "probability": 0.6238 + }, + { + "start": 8645.78, + "end": 8647.3, + "probability": 0.9814 + }, + { + "start": 8647.3, + "end": 8648.6, + "probability": 0.7494 + }, + { + "start": 8648.62, + "end": 8649.7, + "probability": 0.9902 + }, + { + "start": 8649.82, + "end": 8650.28, + "probability": 0.932 + }, + { + "start": 8650.4, + "end": 8652.5, + "probability": 0.959 + }, + { + "start": 8653.0, + "end": 8655.41, + "probability": 0.1616 + }, + { + "start": 8655.58, + "end": 8656.1, + "probability": 0.3859 + }, + { + "start": 8657.18, + "end": 8657.7, + "probability": 0.005 + }, + { + "start": 8657.7, + "end": 8657.72, + "probability": 0.4738 + }, + { + "start": 8658.14, + "end": 8658.69, + "probability": 0.1962 + }, + { + "start": 8659.0, + "end": 8659.7, + "probability": 0.046 + }, + { + "start": 8659.94, + "end": 8660.78, + "probability": 0.1957 + }, + { + "start": 8660.78, + "end": 8661.7, + "probability": 0.2882 + }, + { + "start": 8663.58, + "end": 8664.84, + "probability": 0.0392 + }, + { + "start": 8664.86, + "end": 8666.24, + "probability": 0.0197 + }, + { + "start": 8666.66, + "end": 8667.28, + "probability": 0.0144 + }, + { + "start": 8669.18, + "end": 8673.38, + "probability": 0.6247 + }, + { + "start": 8673.64, + "end": 8676.61, + "probability": 0.7224 + }, + { + "start": 8677.18, + "end": 8679.4, + "probability": 0.8811 + }, + { + "start": 8679.5, + "end": 8680.52, + "probability": 0.6116 + }, + { + "start": 8680.6, + "end": 8680.86, + "probability": 0.7974 + }, + { + "start": 8680.92, + "end": 8682.12, + "probability": 0.4857 + }, + { + "start": 8682.64, + "end": 8685.86, + "probability": 0.8633 + }, + { + "start": 8686.46, + "end": 8689.58, + "probability": 0.6696 + }, + { + "start": 8689.6, + "end": 8690.48, + "probability": 0.9839 + }, + { + "start": 8690.62, + "end": 8693.34, + "probability": 0.7602 + }, + { + "start": 8693.61, + "end": 8695.01, + "probability": 0.8496 + }, + { + "start": 8695.1, + "end": 8698.76, + "probability": 0.8847 + }, + { + "start": 8698.92, + "end": 8701.72, + "probability": 0.7767 + }, + { + "start": 8701.86, + "end": 8703.36, + "probability": 0.9836 + }, + { + "start": 8703.38, + "end": 8704.92, + "probability": 0.8883 + }, + { + "start": 8705.32, + "end": 8709.46, + "probability": 0.93 + }, + { + "start": 8709.66, + "end": 8710.9, + "probability": 0.9472 + }, + { + "start": 8711.3, + "end": 8714.62, + "probability": 0.9507 + }, + { + "start": 8715.22, + "end": 8715.54, + "probability": 0.9214 + }, + { + "start": 8715.62, + "end": 8715.82, + "probability": 0.5038 + }, + { + "start": 8715.92, + "end": 8716.9, + "probability": 0.4806 + }, + { + "start": 8717.53, + "end": 8720.32, + "probability": 0.1305 + }, + { + "start": 8720.5, + "end": 8721.88, + "probability": 0.1853 + }, + { + "start": 8722.54, + "end": 8723.94, + "probability": 0.6614 + }, + { + "start": 8724.18, + "end": 8725.38, + "probability": 0.6833 + }, + { + "start": 8725.38, + "end": 8726.1, + "probability": 0.8516 + }, + { + "start": 8726.18, + "end": 8727.83, + "probability": 0.8668 + }, + { + "start": 8729.01, + "end": 8732.74, + "probability": 0.8091 + }, + { + "start": 8732.8, + "end": 8733.54, + "probability": 0.8286 + }, + { + "start": 8734.26, + "end": 8739.12, + "probability": 0.9281 + }, + { + "start": 8739.26, + "end": 8740.06, + "probability": 0.9059 + }, + { + "start": 8741.42, + "end": 8742.6, + "probability": 0.6396 + }, + { + "start": 8742.7, + "end": 8743.46, + "probability": 0.592 + }, + { + "start": 8743.5, + "end": 8745.22, + "probability": 0.8755 + }, + { + "start": 8745.9, + "end": 8747.26, + "probability": 0.0319 + }, + { + "start": 8747.26, + "end": 8747.58, + "probability": 0.1175 + }, + { + "start": 8748.06, + "end": 8752.01, + "probability": 0.1913 + }, + { + "start": 8752.38, + "end": 8752.92, + "probability": 0.1699 + }, + { + "start": 8753.58, + "end": 8754.27, + "probability": 0.1835 + }, + { + "start": 8755.16, + "end": 8758.31, + "probability": 0.5403 + }, + { + "start": 8758.62, + "end": 8759.48, + "probability": 0.8784 + }, + { + "start": 8759.58, + "end": 8760.58, + "probability": 0.5848 + }, + { + "start": 8760.66, + "end": 8762.08, + "probability": 0.7316 + }, + { + "start": 8762.26, + "end": 8762.6, + "probability": 0.4904 + }, + { + "start": 8763.42, + "end": 8764.38, + "probability": 0.6707 + }, + { + "start": 8764.38, + "end": 8764.82, + "probability": 0.5766 + }, + { + "start": 8765.14, + "end": 8766.94, + "probability": 0.7227 + }, + { + "start": 8767.44, + "end": 8768.18, + "probability": 0.7563 + }, + { + "start": 8768.96, + "end": 8770.14, + "probability": 0.9559 + }, + { + "start": 8770.26, + "end": 8772.96, + "probability": 0.9827 + }, + { + "start": 8773.04, + "end": 8774.47, + "probability": 0.9932 + }, + { + "start": 8774.74, + "end": 8775.18, + "probability": 0.5092 + }, + { + "start": 8775.96, + "end": 8780.36, + "probability": 0.7993 + }, + { + "start": 8780.36, + "end": 8784.94, + "probability": 0.933 + }, + { + "start": 8785.14, + "end": 8787.52, + "probability": 0.9302 + }, + { + "start": 8788.12, + "end": 8788.76, + "probability": 0.985 + }, + { + "start": 8789.3, + "end": 8791.22, + "probability": 0.9197 + }, + { + "start": 8791.42, + "end": 8792.24, + "probability": 0.9666 + }, + { + "start": 8792.44, + "end": 8796.7, + "probability": 0.9093 + }, + { + "start": 8797.32, + "end": 8801.06, + "probability": 0.9443 + }, + { + "start": 8801.42, + "end": 8802.62, + "probability": 0.9445 + }, + { + "start": 8803.32, + "end": 8806.86, + "probability": 0.9764 + }, + { + "start": 8807.24, + "end": 8807.78, + "probability": 0.5885 + }, + { + "start": 8807.88, + "end": 8808.82, + "probability": 0.7531 + }, + { + "start": 8808.86, + "end": 8810.16, + "probability": 0.7479 + }, + { + "start": 8811.84, + "end": 8813.84, + "probability": 0.5284 + }, + { + "start": 8814.36, + "end": 8815.98, + "probability": 0.7448 + }, + { + "start": 8816.04, + "end": 8818.1, + "probability": 0.738 + }, + { + "start": 8818.54, + "end": 8819.66, + "probability": 0.7401 + }, + { + "start": 8820.96, + "end": 8822.26, + "probability": 0.9833 + }, + { + "start": 8822.44, + "end": 8824.06, + "probability": 0.8148 + }, + { + "start": 8824.38, + "end": 8824.52, + "probability": 0.0007 + }, + { + "start": 8826.68, + "end": 8827.58, + "probability": 0.0295 + }, + { + "start": 8828.22, + "end": 8828.6, + "probability": 0.0849 + }, + { + "start": 8828.6, + "end": 8828.9, + "probability": 0.1668 + }, + { + "start": 8828.95, + "end": 8831.16, + "probability": 0.225 + }, + { + "start": 8831.16, + "end": 8833.14, + "probability": 0.9377 + }, + { + "start": 8833.58, + "end": 8833.96, + "probability": 0.0355 + }, + { + "start": 8833.96, + "end": 8834.24, + "probability": 0.0628 + }, + { + "start": 8835.12, + "end": 8836.17, + "probability": 0.9202 + }, + { + "start": 8836.38, + "end": 8838.62, + "probability": 0.9629 + }, + { + "start": 8839.26, + "end": 8841.87, + "probability": 0.5464 + }, + { + "start": 8843.14, + "end": 8843.42, + "probability": 0.8599 + }, + { + "start": 8844.42, + "end": 8844.83, + "probability": 0.5168 + }, + { + "start": 8845.14, + "end": 8846.78, + "probability": 0.9666 + }, + { + "start": 8847.02, + "end": 8847.12, + "probability": 0.1249 + }, + { + "start": 8847.12, + "end": 8850.33, + "probability": 0.8789 + }, + { + "start": 8851.6, + "end": 8855.26, + "probability": 0.939 + }, + { + "start": 8856.18, + "end": 8856.64, + "probability": 0.1812 + }, + { + "start": 8858.54, + "end": 8858.84, + "probability": 0.0175 + }, + { + "start": 8858.84, + "end": 8860.26, + "probability": 0.1326 + }, + { + "start": 8860.84, + "end": 8862.0, + "probability": 0.2453 + }, + { + "start": 8863.76, + "end": 8869.08, + "probability": 0.1135 + }, + { + "start": 8869.08, + "end": 8869.1, + "probability": 0.167 + }, + { + "start": 8869.1, + "end": 8869.1, + "probability": 0.1709 + }, + { + "start": 8869.1, + "end": 8871.05, + "probability": 0.4965 + }, + { + "start": 8872.54, + "end": 8874.98, + "probability": 0.6611 + }, + { + "start": 8875.7, + "end": 8876.48, + "probability": 0.7388 + }, + { + "start": 8876.96, + "end": 8877.98, + "probability": 0.6543 + }, + { + "start": 8878.08, + "end": 8881.16, + "probability": 0.9543 + }, + { + "start": 8881.7, + "end": 8884.49, + "probability": 0.7885 + }, + { + "start": 8884.62, + "end": 8885.28, + "probability": 0.4993 + }, + { + "start": 8885.3, + "end": 8885.54, + "probability": 0.6556 + }, + { + "start": 8885.58, + "end": 8886.34, + "probability": 0.5097 + }, + { + "start": 8887.0, + "end": 8889.28, + "probability": 0.7698 + }, + { + "start": 8889.4, + "end": 8893.35, + "probability": 0.5839 + }, + { + "start": 8893.66, + "end": 8894.56, + "probability": 0.7333 + }, + { + "start": 8895.0, + "end": 8895.85, + "probability": 0.6254 + }, + { + "start": 8896.0, + "end": 8896.0, + "probability": 0.3712 + }, + { + "start": 8896.0, + "end": 8896.62, + "probability": 0.4661 + }, + { + "start": 8896.62, + "end": 8896.66, + "probability": 0.153 + }, + { + "start": 8896.66, + "end": 8896.94, + "probability": 0.7465 + }, + { + "start": 8897.2, + "end": 8900.82, + "probability": 0.8983 + }, + { + "start": 8900.94, + "end": 8901.04, + "probability": 0.1183 + }, + { + "start": 8901.04, + "end": 8902.52, + "probability": 0.5173 + }, + { + "start": 8903.08, + "end": 8903.98, + "probability": 0.6678 + }, + { + "start": 8903.98, + "end": 8905.98, + "probability": 0.7049 + }, + { + "start": 8906.16, + "end": 8908.62, + "probability": 0.9789 + }, + { + "start": 8908.8, + "end": 8910.0, + "probability": 0.7019 + }, + { + "start": 8910.02, + "end": 8911.08, + "probability": 0.3118 + }, + { + "start": 8911.08, + "end": 8912.6, + "probability": 0.8113 + }, + { + "start": 8912.62, + "end": 8913.26, + "probability": 0.9771 + }, + { + "start": 8913.32, + "end": 8916.66, + "probability": 0.7101 + }, + { + "start": 8917.82, + "end": 8919.7, + "probability": 0.71 + }, + { + "start": 8919.82, + "end": 8922.36, + "probability": 0.9739 + }, + { + "start": 8922.54, + "end": 8923.1, + "probability": 0.9653 + }, + { + "start": 8924.52, + "end": 8928.04, + "probability": 0.5667 + }, + { + "start": 8928.36, + "end": 8929.5, + "probability": 0.2368 + }, + { + "start": 8930.77, + "end": 8932.24, + "probability": 0.8232 + }, + { + "start": 8932.32, + "end": 8933.87, + "probability": 0.8554 + }, + { + "start": 8934.94, + "end": 8936.26, + "probability": 0.6616 + }, + { + "start": 8936.32, + "end": 8939.62, + "probability": 0.9644 + }, + { + "start": 8940.28, + "end": 8944.82, + "probability": 0.4424 + }, + { + "start": 8944.82, + "end": 8944.98, + "probability": 0.3626 + }, + { + "start": 8945.04, + "end": 8945.32, + "probability": 0.7219 + }, + { + "start": 8945.7, + "end": 8946.5, + "probability": 0.9036 + }, + { + "start": 8946.56, + "end": 8947.54, + "probability": 0.8318 + }, + { + "start": 8947.68, + "end": 8948.36, + "probability": 0.4976 + }, + { + "start": 8948.46, + "end": 8948.68, + "probability": 0.7619 + }, + { + "start": 8948.7, + "end": 8950.32, + "probability": 0.8733 + }, + { + "start": 8950.72, + "end": 8952.34, + "probability": 0.7933 + }, + { + "start": 8952.48, + "end": 8954.12, + "probability": 0.85 + }, + { + "start": 8955.1, + "end": 8955.9, + "probability": 0.6245 + }, + { + "start": 8956.26, + "end": 8958.9, + "probability": 0.71 + }, + { + "start": 8960.68, + "end": 8962.82, + "probability": 0.8105 + }, + { + "start": 8963.32, + "end": 8964.78, + "probability": 0.9483 + }, + { + "start": 8965.56, + "end": 8968.18, + "probability": 0.9933 + }, + { + "start": 8968.62, + "end": 8970.6, + "probability": 0.9663 + }, + { + "start": 8970.68, + "end": 8971.32, + "probability": 0.5978 + }, + { + "start": 8971.36, + "end": 8972.05, + "probability": 0.2775 + }, + { + "start": 8972.28, + "end": 8975.68, + "probability": 0.7298 + }, + { + "start": 8976.06, + "end": 8977.24, + "probability": 0.2494 + }, + { + "start": 8979.94, + "end": 8980.82, + "probability": 0.841 + }, + { + "start": 8980.86, + "end": 8981.58, + "probability": 0.9482 + }, + { + "start": 8981.86, + "end": 8983.28, + "probability": 0.9396 + }, + { + "start": 8983.76, + "end": 8984.68, + "probability": 0.7042 + }, + { + "start": 8984.76, + "end": 8986.01, + "probability": 0.9985 + }, + { + "start": 8986.18, + "end": 8986.87, + "probability": 0.9688 + }, + { + "start": 8987.08, + "end": 8989.04, + "probability": 0.9946 + }, + { + "start": 8989.4, + "end": 8991.02, + "probability": 0.917 + }, + { + "start": 8991.1, + "end": 8991.86, + "probability": 0.4928 + }, + { + "start": 8991.96, + "end": 8993.02, + "probability": 0.1369 + }, + { + "start": 8993.12, + "end": 8995.23, + "probability": 0.8657 + }, + { + "start": 8996.42, + "end": 8999.36, + "probability": 0.8738 + }, + { + "start": 9000.59, + "end": 9002.36, + "probability": 0.9787 + }, + { + "start": 9003.24, + "end": 9003.87, + "probability": 0.4012 + }, + { + "start": 9005.08, + "end": 9007.88, + "probability": 0.8652 + }, + { + "start": 9007.94, + "end": 9009.36, + "probability": 0.8188 + }, + { + "start": 9009.92, + "end": 9012.48, + "probability": 0.7993 + }, + { + "start": 9012.48, + "end": 9012.58, + "probability": 0.1885 + }, + { + "start": 9012.58, + "end": 9013.14, + "probability": 0.5775 + }, + { + "start": 9013.46, + "end": 9017.7, + "probability": 0.3489 + }, + { + "start": 9017.8, + "end": 9020.35, + "probability": 0.8885 + }, + { + "start": 9022.04, + "end": 9023.66, + "probability": 0.8164 + }, + { + "start": 9024.34, + "end": 9024.88, + "probability": 0.8316 + }, + { + "start": 9025.02, + "end": 9026.22, + "probability": 0.5717 + }, + { + "start": 9027.04, + "end": 9030.36, + "probability": 0.6682 + }, + { + "start": 9030.44, + "end": 9031.7, + "probability": 0.5206 + }, + { + "start": 9032.38, + "end": 9035.34, + "probability": 0.9717 + }, + { + "start": 9035.5, + "end": 9041.05, + "probability": 0.7799 + }, + { + "start": 9041.86, + "end": 9043.26, + "probability": 0.7339 + }, + { + "start": 9043.8, + "end": 9045.7, + "probability": 0.7476 + }, + { + "start": 9045.86, + "end": 9048.6, + "probability": 0.5386 + }, + { + "start": 9049.04, + "end": 9050.96, + "probability": 0.8025 + }, + { + "start": 9050.96, + "end": 9053.58, + "probability": 0.8643 + }, + { + "start": 9054.9, + "end": 9056.96, + "probability": 0.7705 + }, + { + "start": 9057.66, + "end": 9058.46, + "probability": 0.7163 + }, + { + "start": 9059.26, + "end": 9060.52, + "probability": 0.8547 + }, + { + "start": 9061.19, + "end": 9063.08, + "probability": 0.7499 + }, + { + "start": 9063.76, + "end": 9065.94, + "probability": 0.7503 + }, + { + "start": 9066.1, + "end": 9067.04, + "probability": 0.8458 + }, + { + "start": 9067.66, + "end": 9070.06, + "probability": 0.8977 + }, + { + "start": 9070.22, + "end": 9073.2, + "probability": 0.9853 + }, + { + "start": 9073.2, + "end": 9076.5, + "probability": 0.6859 + }, + { + "start": 9076.94, + "end": 9079.12, + "probability": 0.9426 + }, + { + "start": 9080.02, + "end": 9084.22, + "probability": 0.9608 + }, + { + "start": 9084.4, + "end": 9085.18, + "probability": 0.9691 + }, + { + "start": 9085.56, + "end": 9087.84, + "probability": 0.9082 + }, + { + "start": 9089.54, + "end": 9089.56, + "probability": 0.0445 + }, + { + "start": 9089.56, + "end": 9089.56, + "probability": 0.1985 + }, + { + "start": 9089.56, + "end": 9092.16, + "probability": 0.6978 + }, + { + "start": 9093.06, + "end": 9093.8, + "probability": 0.7412 + }, + { + "start": 9093.86, + "end": 9095.56, + "probability": 0.7578 + }, + { + "start": 9095.96, + "end": 9098.92, + "probability": 0.8691 + }, + { + "start": 9098.98, + "end": 9100.63, + "probability": 0.8694 + }, + { + "start": 9101.16, + "end": 9103.02, + "probability": 0.5574 + }, + { + "start": 9103.18, + "end": 9104.12, + "probability": 0.9539 + }, + { + "start": 9104.62, + "end": 9105.7, + "probability": 0.9932 + }, + { + "start": 9105.72, + "end": 9106.48, + "probability": 0.8918 + }, + { + "start": 9106.6, + "end": 9107.92, + "probability": 0.9698 + }, + { + "start": 9108.24, + "end": 9111.62, + "probability": 0.9846 + }, + { + "start": 9111.68, + "end": 9113.6, + "probability": 0.9263 + }, + { + "start": 9113.64, + "end": 9114.4, + "probability": 0.6859 + }, + { + "start": 9114.56, + "end": 9115.18, + "probability": 0.8439 + }, + { + "start": 9115.44, + "end": 9119.64, + "probability": 0.8399 + }, + { + "start": 9120.56, + "end": 9122.36, + "probability": 0.9197 + }, + { + "start": 9123.84, + "end": 9128.72, + "probability": 0.6992 + }, + { + "start": 9128.94, + "end": 9131.06, + "probability": 0.2401 + }, + { + "start": 9132.7, + "end": 9135.82, + "probability": 0.6231 + }, + { + "start": 9135.86, + "end": 9137.48, + "probability": 0.8494 + }, + { + "start": 9138.06, + "end": 9138.54, + "probability": 0.7595 + }, + { + "start": 9138.62, + "end": 9142.22, + "probability": 0.6567 + }, + { + "start": 9142.22, + "end": 9145.79, + "probability": 0.4683 + }, + { + "start": 9147.88, + "end": 9147.88, + "probability": 0.1844 + }, + { + "start": 9147.88, + "end": 9150.82, + "probability": 0.8504 + }, + { + "start": 9150.94, + "end": 9151.84, + "probability": 0.9854 + }, + { + "start": 9153.26, + "end": 9155.66, + "probability": 0.5549 + }, + { + "start": 9155.68, + "end": 9156.32, + "probability": 0.8941 + }, + { + "start": 9156.4, + "end": 9157.38, + "probability": 0.4715 + }, + { + "start": 9157.71, + "end": 9160.16, + "probability": 0.6172 + }, + { + "start": 9160.88, + "end": 9162.0, + "probability": 0.0571 + }, + { + "start": 9163.06, + "end": 9164.96, + "probability": 0.901 + }, + { + "start": 9165.06, + "end": 9166.92, + "probability": 0.9651 + }, + { + "start": 9167.0, + "end": 9167.82, + "probability": 0.7194 + }, + { + "start": 9167.9, + "end": 9168.22, + "probability": 0.6839 + }, + { + "start": 9169.82, + "end": 9169.82, + "probability": 0.1148 + }, + { + "start": 9169.82, + "end": 9171.96, + "probability": 0.6673 + }, + { + "start": 9171.98, + "end": 9174.42, + "probability": 0.977 + }, + { + "start": 9174.7, + "end": 9176.92, + "probability": 0.9883 + }, + { + "start": 9177.16, + "end": 9182.8, + "probability": 0.2795 + }, + { + "start": 9182.84, + "end": 9183.12, + "probability": 0.0126 + }, + { + "start": 9183.12, + "end": 9183.12, + "probability": 0.1018 + }, + { + "start": 9183.12, + "end": 9185.63, + "probability": 0.3687 + }, + { + "start": 9186.7, + "end": 9187.75, + "probability": 0.9331 + }, + { + "start": 9188.24, + "end": 9190.58, + "probability": 0.7695 + }, + { + "start": 9190.66, + "end": 9191.76, + "probability": 0.3253 + }, + { + "start": 9191.94, + "end": 9194.09, + "probability": 0.9893 + }, + { + "start": 9194.36, + "end": 9195.12, + "probability": 0.8111 + }, + { + "start": 9195.4, + "end": 9195.84, + "probability": 0.5926 + }, + { + "start": 9196.08, + "end": 9196.82, + "probability": 0.6873 + }, + { + "start": 9196.9, + "end": 9198.2, + "probability": 0.5775 + }, + { + "start": 9198.24, + "end": 9202.84, + "probability": 0.9326 + }, + { + "start": 9203.18, + "end": 9203.84, + "probability": 0.4276 + }, + { + "start": 9204.38, + "end": 9207.58, + "probability": 0.6348 + }, + { + "start": 9207.8, + "end": 9209.2, + "probability": 0.4207 + }, + { + "start": 9209.49, + "end": 9210.36, + "probability": 0.8437 + }, + { + "start": 9210.46, + "end": 9214.32, + "probability": 0.7232 + }, + { + "start": 9214.76, + "end": 9217.94, + "probability": 0.7506 + }, + { + "start": 9218.04, + "end": 9222.64, + "probability": 0.7937 + }, + { + "start": 9222.88, + "end": 9224.02, + "probability": 0.701 + }, + { + "start": 9224.34, + "end": 9226.18, + "probability": 0.7256 + }, + { + "start": 9226.72, + "end": 9234.24, + "probability": 0.7401 + }, + { + "start": 9234.46, + "end": 9237.34, + "probability": 0.6674 + }, + { + "start": 9238.34, + "end": 9239.0, + "probability": 0.8789 + }, + { + "start": 9239.28, + "end": 9239.7, + "probability": 0.6543 + }, + { + "start": 9240.0, + "end": 9240.7, + "probability": 0.5966 + }, + { + "start": 9241.2, + "end": 9243.88, + "probability": 0.9277 + }, + { + "start": 9244.2, + "end": 9244.44, + "probability": 0.7365 + }, + { + "start": 9244.48, + "end": 9246.26, + "probability": 0.9653 + }, + { + "start": 9246.26, + "end": 9246.75, + "probability": 0.8368 + }, + { + "start": 9247.08, + "end": 9248.98, + "probability": 0.6665 + }, + { + "start": 9249.3, + "end": 9250.38, + "probability": 0.853 + }, + { + "start": 9250.74, + "end": 9253.16, + "probability": 0.912 + }, + { + "start": 9253.58, + "end": 9256.48, + "probability": 0.9644 + }, + { + "start": 9257.3, + "end": 9259.14, + "probability": 0.4886 + }, + { + "start": 9259.2, + "end": 9259.88, + "probability": 0.6701 + }, + { + "start": 9259.94, + "end": 9264.46, + "probability": 0.7714 + }, + { + "start": 9264.93, + "end": 9272.0, + "probability": 0.8464 + }, + { + "start": 9272.48, + "end": 9273.34, + "probability": 0.9311 + }, + { + "start": 9273.44, + "end": 9276.5, + "probability": 0.4049 + }, + { + "start": 9276.5, + "end": 9278.72, + "probability": 0.8307 + }, + { + "start": 9279.06, + "end": 9279.56, + "probability": 0.2734 + }, + { + "start": 9279.74, + "end": 9280.38, + "probability": 0.8116 + }, + { + "start": 9280.8, + "end": 9282.96, + "probability": 0.4915 + }, + { + "start": 9283.91, + "end": 9284.92, + "probability": 0.6873 + }, + { + "start": 9285.22, + "end": 9288.6, + "probability": 0.4859 + }, + { + "start": 9288.74, + "end": 9289.69, + "probability": 0.1298 + }, + { + "start": 9290.32, + "end": 9291.16, + "probability": 0.2785 + }, + { + "start": 9291.7, + "end": 9295.48, + "probability": 0.729 + }, + { + "start": 9295.6, + "end": 9299.08, + "probability": 0.605 + }, + { + "start": 9299.08, + "end": 9301.36, + "probability": 0.494 + }, + { + "start": 9301.36, + "end": 9303.56, + "probability": 0.7432 + }, + { + "start": 9303.88, + "end": 9304.96, + "probability": 0.6299 + }, + { + "start": 9305.06, + "end": 9305.96, + "probability": 0.3011 + }, + { + "start": 9306.12, + "end": 9307.32, + "probability": 0.8089 + }, + { + "start": 9308.22, + "end": 9311.24, + "probability": 0.6603 + }, + { + "start": 9311.88, + "end": 9313.72, + "probability": 0.7703 + }, + { + "start": 9313.86, + "end": 9317.02, + "probability": 0.8628 + }, + { + "start": 9317.52, + "end": 9320.0, + "probability": 0.8022 + }, + { + "start": 9320.14, + "end": 9322.92, + "probability": 0.9908 + }, + { + "start": 9323.12, + "end": 9325.28, + "probability": 0.8412 + }, + { + "start": 9325.3, + "end": 9327.72, + "probability": 0.921 + }, + { + "start": 9328.22, + "end": 9331.32, + "probability": 0.9386 + }, + { + "start": 9331.6, + "end": 9332.28, + "probability": 0.7981 + }, + { + "start": 9332.72, + "end": 9333.3, + "probability": 0.6557 + }, + { + "start": 9333.56, + "end": 9334.44, + "probability": 0.9205 + }, + { + "start": 9334.54, + "end": 9334.95, + "probability": 0.9686 + }, + { + "start": 9335.22, + "end": 9336.36, + "probability": 0.8801 + }, + { + "start": 9336.48, + "end": 9338.58, + "probability": 0.5413 + }, + { + "start": 9338.72, + "end": 9341.08, + "probability": 0.9433 + }, + { + "start": 9341.38, + "end": 9344.16, + "probability": 0.8931 + }, + { + "start": 9344.56, + "end": 9347.14, + "probability": 0.9875 + }, + { + "start": 9347.54, + "end": 9350.32, + "probability": 0.3735 + }, + { + "start": 9350.5, + "end": 9350.86, + "probability": 0.7071 + }, + { + "start": 9350.92, + "end": 9353.93, + "probability": 0.9775 + }, + { + "start": 9355.12, + "end": 9355.98, + "probability": 0.7501 + }, + { + "start": 9356.12, + "end": 9359.06, + "probability": 0.5161 + }, + { + "start": 9359.1, + "end": 9361.37, + "probability": 0.9114 + }, + { + "start": 9361.56, + "end": 9361.66, + "probability": 0.2693 + }, + { + "start": 9361.9, + "end": 9361.96, + "probability": 0.3107 + }, + { + "start": 9362.02, + "end": 9362.62, + "probability": 0.6812 + }, + { + "start": 9363.26, + "end": 9364.02, + "probability": 0.5151 + }, + { + "start": 9364.2, + "end": 9365.08, + "probability": 0.5083 + }, + { + "start": 9365.22, + "end": 9368.44, + "probability": 0.8822 + }, + { + "start": 9368.8, + "end": 9371.62, + "probability": 0.6509 + }, + { + "start": 9371.88, + "end": 9374.38, + "probability": 0.8198 + }, + { + "start": 9374.38, + "end": 9374.5, + "probability": 0.6753 + }, + { + "start": 9374.5, + "end": 9374.5, + "probability": 0.3539 + }, + { + "start": 9374.5, + "end": 9374.78, + "probability": 0.7842 + }, + { + "start": 9375.32, + "end": 9376.6, + "probability": 0.9854 + }, + { + "start": 9377.24, + "end": 9378.84, + "probability": 0.6514 + }, + { + "start": 9393.54, + "end": 9394.22, + "probability": 0.0341 + }, + { + "start": 9394.22, + "end": 9394.22, + "probability": 0.0591 + }, + { + "start": 9394.22, + "end": 9394.22, + "probability": 0.0451 + }, + { + "start": 9394.22, + "end": 9394.22, + "probability": 0.1845 + }, + { + "start": 9394.22, + "end": 9396.1, + "probability": 0.2579 + }, + { + "start": 9396.62, + "end": 9398.26, + "probability": 0.719 + }, + { + "start": 9398.82, + "end": 9400.34, + "probability": 0.9828 + }, + { + "start": 9400.44, + "end": 9402.53, + "probability": 0.8572 + }, + { + "start": 9402.72, + "end": 9404.46, + "probability": 0.6849 + }, + { + "start": 9405.02, + "end": 9406.94, + "probability": 0.9805 + }, + { + "start": 9407.5, + "end": 9409.98, + "probability": 0.98 + }, + { + "start": 9410.4, + "end": 9412.26, + "probability": 0.9728 + }, + { + "start": 9412.86, + "end": 9413.4, + "probability": 0.999 + }, + { + "start": 9413.94, + "end": 9414.32, + "probability": 0.2503 + }, + { + "start": 9414.44, + "end": 9415.52, + "probability": 0.6709 + }, + { + "start": 9415.68, + "end": 9416.14, + "probability": 0.3348 + }, + { + "start": 9416.48, + "end": 9417.32, + "probability": 0.5425 + }, + { + "start": 9417.5, + "end": 9418.32, + "probability": 0.3431 + }, + { + "start": 9419.02, + "end": 9423.26, + "probability": 0.4927 + }, + { + "start": 9423.26, + "end": 9423.82, + "probability": 0.8674 + }, + { + "start": 9423.9, + "end": 9424.26, + "probability": 0.813 + }, + { + "start": 9424.28, + "end": 9424.64, + "probability": 0.6468 + }, + { + "start": 9424.7, + "end": 9425.62, + "probability": 0.4354 + }, + { + "start": 9428.16, + "end": 9429.54, + "probability": 0.3889 + }, + { + "start": 9429.58, + "end": 9432.34, + "probability": 0.7069 + }, + { + "start": 9432.5, + "end": 9433.72, + "probability": 0.5763 + }, + { + "start": 9433.8, + "end": 9435.48, + "probability": 0.9566 + }, + { + "start": 9435.68, + "end": 9437.24, + "probability": 0.9684 + }, + { + "start": 9437.4, + "end": 9440.08, + "probability": 0.7715 + }, + { + "start": 9440.72, + "end": 9443.28, + "probability": 0.9549 + }, + { + "start": 9443.96, + "end": 9444.72, + "probability": 0.9516 + }, + { + "start": 9444.86, + "end": 9445.08, + "probability": 0.7873 + }, + { + "start": 9445.28, + "end": 9445.68, + "probability": 0.6657 + }, + { + "start": 9445.7, + "end": 9446.12, + "probability": 0.6267 + }, + { + "start": 9446.18, + "end": 9447.22, + "probability": 0.6505 + }, + { + "start": 9447.34, + "end": 9450.06, + "probability": 0.6045 + }, + { + "start": 9450.06, + "end": 9450.76, + "probability": 0.2026 + }, + { + "start": 9451.44, + "end": 9452.22, + "probability": 0.6611 + }, + { + "start": 9452.38, + "end": 9452.76, + "probability": 0.5663 + }, + { + "start": 9453.28, + "end": 9454.84, + "probability": 0.9862 + }, + { + "start": 9454.98, + "end": 9456.58, + "probability": 0.8705 + }, + { + "start": 9456.96, + "end": 9457.98, + "probability": 0.9019 + }, + { + "start": 9470.58, + "end": 9473.24, + "probability": 0.8159 + }, + { + "start": 9481.24, + "end": 9482.0, + "probability": 0.5032 + }, + { + "start": 9482.04, + "end": 9483.08, + "probability": 0.7639 + }, + { + "start": 9483.08, + "end": 9486.7, + "probability": 0.7133 + }, + { + "start": 9486.7, + "end": 9489.24, + "probability": 0.9492 + }, + { + "start": 9490.08, + "end": 9492.77, + "probability": 0.7303 + }, + { + "start": 9494.04, + "end": 9494.98, + "probability": 0.6988 + }, + { + "start": 9495.6, + "end": 9497.5, + "probability": 0.6689 + }, + { + "start": 9501.36, + "end": 9505.23, + "probability": 0.1757 + }, + { + "start": 9506.56, + "end": 9507.7, + "probability": 0.4794 + }, + { + "start": 9507.7, + "end": 9509.1, + "probability": 0.191 + }, + { + "start": 9509.12, + "end": 9510.04, + "probability": 0.1777 + }, + { + "start": 9510.16, + "end": 9514.06, + "probability": 0.782 + }, + { + "start": 9514.8, + "end": 9516.74, + "probability": 0.7242 + }, + { + "start": 9517.62, + "end": 9519.02, + "probability": 0.6087 + }, + { + "start": 9520.16, + "end": 9522.5, + "probability": 0.7648 + }, + { + "start": 9523.72, + "end": 9525.68, + "probability": 0.9491 + }, + { + "start": 9526.46, + "end": 9529.74, + "probability": 0.9078 + }, + { + "start": 9530.52, + "end": 9534.44, + "probability": 0.9795 + }, + { + "start": 9534.65, + "end": 9538.92, + "probability": 0.9833 + }, + { + "start": 9540.08, + "end": 9541.32, + "probability": 0.8545 + }, + { + "start": 9542.56, + "end": 9544.88, + "probability": 0.9955 + }, + { + "start": 9545.56, + "end": 9547.46, + "probability": 0.8049 + }, + { + "start": 9548.46, + "end": 9553.56, + "probability": 0.7412 + }, + { + "start": 9554.1, + "end": 9555.62, + "probability": 0.9916 + }, + { + "start": 9556.36, + "end": 9560.74, + "probability": 0.9717 + }, + { + "start": 9561.82, + "end": 9565.14, + "probability": 0.8835 + }, + { + "start": 9565.94, + "end": 9568.4, + "probability": 0.9156 + }, + { + "start": 9568.4, + "end": 9570.54, + "probability": 0.7529 + }, + { + "start": 9570.68, + "end": 9571.14, + "probability": 0.5022 + }, + { + "start": 9571.98, + "end": 9573.56, + "probability": 0.7745 + }, + { + "start": 9573.66, + "end": 9574.84, + "probability": 0.9473 + }, + { + "start": 9576.82, + "end": 9579.66, + "probability": 0.939 + }, + { + "start": 9579.8, + "end": 9582.06, + "probability": 0.9959 + }, + { + "start": 9583.2, + "end": 9586.12, + "probability": 0.8374 + }, + { + "start": 9586.94, + "end": 9589.78, + "probability": 0.9685 + }, + { + "start": 9590.52, + "end": 9592.02, + "probability": 0.8524 + }, + { + "start": 9593.56, + "end": 9594.7, + "probability": 0.9985 + }, + { + "start": 9596.22, + "end": 9599.0, + "probability": 0.8813 + }, + { + "start": 9601.83, + "end": 9606.42, + "probability": 0.939 + }, + { + "start": 9606.42, + "end": 9608.98, + "probability": 0.9936 + }, + { + "start": 9609.08, + "end": 9611.36, + "probability": 0.8406 + }, + { + "start": 9612.74, + "end": 9618.0, + "probability": 0.9544 + }, + { + "start": 9619.04, + "end": 9624.52, + "probability": 0.9942 + }, + { + "start": 9626.16, + "end": 9629.4, + "probability": 0.9976 + }, + { + "start": 9629.4, + "end": 9633.08, + "probability": 0.9846 + }, + { + "start": 9633.9, + "end": 9636.88, + "probability": 0.9795 + }, + { + "start": 9636.96, + "end": 9639.36, + "probability": 0.9731 + }, + { + "start": 9640.3, + "end": 9643.72, + "probability": 0.8273 + }, + { + "start": 9644.56, + "end": 9648.5, + "probability": 0.9941 + }, + { + "start": 9649.84, + "end": 9652.32, + "probability": 0.9727 + }, + { + "start": 9653.14, + "end": 9655.88, + "probability": 0.802 + }, + { + "start": 9657.28, + "end": 9658.54, + "probability": 0.9053 + }, + { + "start": 9659.72, + "end": 9662.48, + "probability": 0.9868 + }, + { + "start": 9662.56, + "end": 9666.0, + "probability": 0.9829 + }, + { + "start": 9666.0, + "end": 9668.88, + "probability": 0.9966 + }, + { + "start": 9668.96, + "end": 9669.4, + "probability": 0.8896 + }, + { + "start": 9671.56, + "end": 9675.26, + "probability": 0.7111 + }, + { + "start": 9675.72, + "end": 9678.32, + "probability": 0.9775 + }, + { + "start": 9679.2, + "end": 9680.6, + "probability": 0.8351 + }, + { + "start": 9683.46, + "end": 9684.56, + "probability": 0.779 + }, + { + "start": 9685.46, + "end": 9687.28, + "probability": 0.8743 + }, + { + "start": 9688.08, + "end": 9694.0, + "probability": 0.9952 + }, + { + "start": 9695.08, + "end": 9697.58, + "probability": 0.9956 + }, + { + "start": 9698.52, + "end": 9700.84, + "probability": 0.8889 + }, + { + "start": 9700.98, + "end": 9703.82, + "probability": 0.9985 + }, + { + "start": 9704.52, + "end": 9706.52, + "probability": 0.9934 + }, + { + "start": 9706.66, + "end": 9711.28, + "probability": 0.9615 + }, + { + "start": 9712.52, + "end": 9712.62, + "probability": 0.8506 + }, + { + "start": 9714.14, + "end": 9721.68, + "probability": 0.9775 + }, + { + "start": 9722.08, + "end": 9722.64, + "probability": 0.9055 + }, + { + "start": 9723.34, + "end": 9727.5, + "probability": 0.9915 + }, + { + "start": 9728.96, + "end": 9732.06, + "probability": 0.9971 + }, + { + "start": 9732.06, + "end": 9735.06, + "probability": 0.991 + }, + { + "start": 9736.66, + "end": 9738.62, + "probability": 0.9782 + }, + { + "start": 9739.28, + "end": 9742.5, + "probability": 0.992 + }, + { + "start": 9745.5, + "end": 9747.8, + "probability": 0.9843 + }, + { + "start": 9749.24, + "end": 9752.78, + "probability": 0.8301 + }, + { + "start": 9754.14, + "end": 9758.1, + "probability": 0.9282 + }, + { + "start": 9758.96, + "end": 9760.6, + "probability": 0.9983 + }, + { + "start": 9761.2, + "end": 9763.08, + "probability": 0.9953 + }, + { + "start": 9764.1, + "end": 9765.08, + "probability": 0.5226 + }, + { + "start": 9765.4, + "end": 9766.18, + "probability": 0.8655 + }, + { + "start": 9766.34, + "end": 9769.7, + "probability": 0.9906 + }, + { + "start": 9770.98, + "end": 9772.48, + "probability": 0.9938 + }, + { + "start": 9773.34, + "end": 9774.9, + "probability": 0.7 + }, + { + "start": 9775.02, + "end": 9776.16, + "probability": 0.8772 + }, + { + "start": 9776.66, + "end": 9777.6, + "probability": 0.8934 + }, + { + "start": 9778.76, + "end": 9781.36, + "probability": 0.9521 + }, + { + "start": 9782.78, + "end": 9784.84, + "probability": 0.9402 + }, + { + "start": 9785.42, + "end": 9788.6, + "probability": 0.9993 + }, + { + "start": 9789.38, + "end": 9791.24, + "probability": 0.9023 + }, + { + "start": 9791.32, + "end": 9792.13, + "probability": 0.8071 + }, + { + "start": 9793.08, + "end": 9795.58, + "probability": 0.9834 + }, + { + "start": 9796.14, + "end": 9797.9, + "probability": 0.9327 + }, + { + "start": 9798.6, + "end": 9799.64, + "probability": 0.9617 + }, + { + "start": 9800.92, + "end": 9805.53, + "probability": 0.9792 + }, + { + "start": 9807.4, + "end": 9809.32, + "probability": 0.9459 + }, + { + "start": 9809.92, + "end": 9818.44, + "probability": 0.993 + }, + { + "start": 9818.96, + "end": 9819.68, + "probability": 0.9894 + }, + { + "start": 9820.56, + "end": 9824.68, + "probability": 0.972 + }, + { + "start": 9825.28, + "end": 9826.44, + "probability": 0.9824 + }, + { + "start": 9828.56, + "end": 9830.36, + "probability": 0.6825 + }, + { + "start": 9831.0, + "end": 9833.16, + "probability": 0.9742 + }, + { + "start": 9833.78, + "end": 9835.3, + "probability": 0.9968 + }, + { + "start": 9836.08, + "end": 9836.74, + "probability": 0.669 + }, + { + "start": 9837.5, + "end": 9839.62, + "probability": 0.867 + }, + { + "start": 9841.68, + "end": 9844.28, + "probability": 0.6009 + }, + { + "start": 9845.12, + "end": 9846.48, + "probability": 0.1057 + }, + { + "start": 9847.96, + "end": 9850.88, + "probability": 0.9512 + }, + { + "start": 9851.3, + "end": 9853.54, + "probability": 0.8422 + }, + { + "start": 9853.68, + "end": 9854.02, + "probability": 0.9136 + }, + { + "start": 9854.62, + "end": 9859.12, + "probability": 0.922 + }, + { + "start": 9859.24, + "end": 9861.54, + "probability": 0.5425 + }, + { + "start": 9861.54, + "end": 9864.5, + "probability": 0.8248 + }, + { + "start": 9865.59, + "end": 9869.93, + "probability": 0.8885 + }, + { + "start": 9872.44, + "end": 9874.56, + "probability": 0.96 + }, + { + "start": 9875.16, + "end": 9878.7, + "probability": 0.9893 + }, + { + "start": 9879.04, + "end": 9879.96, + "probability": 0.6641 + }, + { + "start": 9880.94, + "end": 9884.3, + "probability": 0.9106 + }, + { + "start": 9884.52, + "end": 9887.7, + "probability": 0.7838 + }, + { + "start": 9888.96, + "end": 9890.12, + "probability": 0.8057 + }, + { + "start": 9890.76, + "end": 9892.98, + "probability": 0.9058 + }, + { + "start": 9893.02, + "end": 9893.54, + "probability": 0.9489 + }, + { + "start": 9909.18, + "end": 9910.26, + "probability": 0.7993 + }, + { + "start": 9910.62, + "end": 9914.96, + "probability": 0.9363 + }, + { + "start": 9916.48, + "end": 9917.94, + "probability": 0.2594 + }, + { + "start": 9918.26, + "end": 9920.0, + "probability": 0.7549 + }, + { + "start": 9920.58, + "end": 9922.8, + "probability": 0.3208 + }, + { + "start": 9922.8, + "end": 9923.76, + "probability": 0.7029 + }, + { + "start": 9924.44, + "end": 9927.36, + "probability": 0.9471 + }, + { + "start": 9928.18, + "end": 9929.26, + "probability": 0.9038 + }, + { + "start": 9930.96, + "end": 9936.54, + "probability": 0.9917 + }, + { + "start": 9937.98, + "end": 9940.44, + "probability": 0.9317 + }, + { + "start": 9942.48, + "end": 9943.48, + "probability": 0.9894 + }, + { + "start": 9944.48, + "end": 9945.22, + "probability": 0.9712 + }, + { + "start": 9945.96, + "end": 9947.06, + "probability": 0.8802 + }, + { + "start": 9948.92, + "end": 9949.64, + "probability": 0.9743 + }, + { + "start": 9955.4, + "end": 9956.64, + "probability": 0.7204 + }, + { + "start": 9957.48, + "end": 9958.0, + "probability": 0.8305 + }, + { + "start": 9958.84, + "end": 9959.42, + "probability": 0.7773 + }, + { + "start": 9960.12, + "end": 9960.96, + "probability": 0.5924 + }, + { + "start": 9960.96, + "end": 9968.46, + "probability": 0.9587 + }, + { + "start": 9971.84, + "end": 9975.2, + "probability": 0.9624 + }, + { + "start": 9978.68, + "end": 9981.95, + "probability": 0.9663 + }, + { + "start": 9982.76, + "end": 9984.7, + "probability": 0.8274 + }, + { + "start": 9985.62, + "end": 9991.62, + "probability": 0.9326 + }, + { + "start": 9994.68, + "end": 9995.94, + "probability": 0.993 + }, + { + "start": 9997.76, + "end": 9998.38, + "probability": 0.8379 + }, + { + "start": 9999.28, + "end": 10001.76, + "probability": 0.748 + }, + { + "start": 10003.24, + "end": 10006.26, + "probability": 0.9378 + }, + { + "start": 10007.0, + "end": 10007.6, + "probability": 0.8383 + }, + { + "start": 10008.38, + "end": 10011.26, + "probability": 0.8483 + }, + { + "start": 10013.24, + "end": 10016.18, + "probability": 0.6385 + }, + { + "start": 10017.28, + "end": 10018.5, + "probability": 0.9327 + }, + { + "start": 10019.16, + "end": 10022.88, + "probability": 0.9473 + }, + { + "start": 10023.72, + "end": 10027.34, + "probability": 0.9751 + }, + { + "start": 10028.76, + "end": 10030.84, + "probability": 0.9979 + }, + { + "start": 10032.1, + "end": 10032.82, + "probability": 0.9374 + }, + { + "start": 10037.14, + "end": 10040.36, + "probability": 0.96 + }, + { + "start": 10042.68, + "end": 10044.46, + "probability": 0.9514 + }, + { + "start": 10045.98, + "end": 10049.4, + "probability": 0.891 + }, + { + "start": 10050.28, + "end": 10052.28, + "probability": 0.99 + }, + { + "start": 10053.14, + "end": 10054.1, + "probability": 0.9788 + }, + { + "start": 10054.82, + "end": 10055.48, + "probability": 0.2362 + }, + { + "start": 10056.58, + "end": 10060.04, + "probability": 0.9284 + }, + { + "start": 10061.38, + "end": 10065.44, + "probability": 0.8531 + }, + { + "start": 10067.02, + "end": 10069.46, + "probability": 0.9247 + }, + { + "start": 10069.96, + "end": 10070.72, + "probability": 0.7811 + }, + { + "start": 10072.42, + "end": 10075.56, + "probability": 0.596 + }, + { + "start": 10075.58, + "end": 10076.4, + "probability": 0.794 + }, + { + "start": 10076.56, + "end": 10078.3, + "probability": 0.8466 + }, + { + "start": 10078.6, + "end": 10083.18, + "probability": 0.9976 + }, + { + "start": 10084.14, + "end": 10086.78, + "probability": 0.9466 + }, + { + "start": 10088.28, + "end": 10088.98, + "probability": 0.667 + }, + { + "start": 10090.5, + "end": 10091.88, + "probability": 0.9845 + }, + { + "start": 10094.34, + "end": 10095.12, + "probability": 0.8317 + }, + { + "start": 10095.88, + "end": 10097.82, + "probability": 0.8903 + }, + { + "start": 10099.9, + "end": 10101.1, + "probability": 0.7815 + }, + { + "start": 10102.34, + "end": 10104.86, + "probability": 0.9049 + }, + { + "start": 10106.18, + "end": 10107.38, + "probability": 0.438 + }, + { + "start": 10108.16, + "end": 10110.72, + "probability": 0.9968 + }, + { + "start": 10112.18, + "end": 10116.48, + "probability": 0.9807 + }, + { + "start": 10117.84, + "end": 10119.86, + "probability": 0.817 + }, + { + "start": 10120.56, + "end": 10121.66, + "probability": 0.6267 + }, + { + "start": 10123.52, + "end": 10125.52, + "probability": 0.9056 + }, + { + "start": 10126.86, + "end": 10127.68, + "probability": 0.9358 + }, + { + "start": 10128.94, + "end": 10130.02, + "probability": 0.6743 + }, + { + "start": 10130.66, + "end": 10134.94, + "probability": 0.8796 + }, + { + "start": 10135.88, + "end": 10136.51, + "probability": 0.7975 + }, + { + "start": 10137.98, + "end": 10139.0, + "probability": 0.651 + }, + { + "start": 10139.86, + "end": 10142.62, + "probability": 0.7215 + }, + { + "start": 10143.3, + "end": 10144.42, + "probability": 0.6599 + }, + { + "start": 10145.92, + "end": 10147.42, + "probability": 0.667 + }, + { + "start": 10148.22, + "end": 10152.54, + "probability": 0.5906 + }, + { + "start": 10154.26, + "end": 10156.72, + "probability": 0.9755 + }, + { + "start": 10157.6, + "end": 10158.64, + "probability": 0.5719 + }, + { + "start": 10159.6, + "end": 10161.92, + "probability": 0.7831 + }, + { + "start": 10162.8, + "end": 10164.04, + "probability": 0.9891 + }, + { + "start": 10165.58, + "end": 10168.22, + "probability": 0.9917 + }, + { + "start": 10168.8, + "end": 10170.02, + "probability": 0.9731 + }, + { + "start": 10170.54, + "end": 10175.0, + "probability": 0.9619 + }, + { + "start": 10175.08, + "end": 10176.4, + "probability": 0.9326 + }, + { + "start": 10177.7, + "end": 10179.84, + "probability": 0.9702 + }, + { + "start": 10179.84, + "end": 10184.28, + "probability": 0.9691 + }, + { + "start": 10184.74, + "end": 10185.84, + "probability": 0.8044 + }, + { + "start": 10186.34, + "end": 10188.1, + "probability": 0.8838 + }, + { + "start": 10188.12, + "end": 10188.76, + "probability": 0.7369 + }, + { + "start": 10188.88, + "end": 10189.98, + "probability": 0.9205 + }, + { + "start": 10190.76, + "end": 10191.9, + "probability": 0.9541 + }, + { + "start": 10193.38, + "end": 10195.56, + "probability": 0.9431 + }, + { + "start": 10196.84, + "end": 10198.68, + "probability": 0.954 + }, + { + "start": 10201.2, + "end": 10205.2, + "probability": 0.8879 + }, + { + "start": 10206.06, + "end": 10209.3, + "probability": 0.586 + }, + { + "start": 10209.74, + "end": 10212.64, + "probability": 0.8471 + }, + { + "start": 10213.58, + "end": 10216.13, + "probability": 0.6697 + }, + { + "start": 10217.84, + "end": 10221.38, + "probability": 0.9831 + }, + { + "start": 10222.82, + "end": 10225.98, + "probability": 0.9237 + }, + { + "start": 10227.28, + "end": 10229.82, + "probability": 0.5506 + }, + { + "start": 10230.54, + "end": 10234.86, + "probability": 0.8438 + }, + { + "start": 10237.5, + "end": 10238.18, + "probability": 0.7842 + }, + { + "start": 10239.22, + "end": 10241.96, + "probability": 0.9768 + }, + { + "start": 10242.66, + "end": 10245.9, + "probability": 0.955 + }, + { + "start": 10246.7, + "end": 10247.49, + "probability": 0.733 + }, + { + "start": 10248.08, + "end": 10249.14, + "probability": 0.9034 + }, + { + "start": 10249.98, + "end": 10251.48, + "probability": 0.9863 + }, + { + "start": 10253.3, + "end": 10253.88, + "probability": 0.7497 + }, + { + "start": 10254.52, + "end": 10255.34, + "probability": 0.9153 + }, + { + "start": 10256.94, + "end": 10257.74, + "probability": 0.9608 + }, + { + "start": 10259.64, + "end": 10263.28, + "probability": 0.8799 + }, + { + "start": 10264.42, + "end": 10265.6, + "probability": 0.7778 + }, + { + "start": 10268.3, + "end": 10272.48, + "probability": 0.9639 + }, + { + "start": 10273.38, + "end": 10276.4, + "probability": 0.7903 + }, + { + "start": 10279.52, + "end": 10282.46, + "probability": 0.8835 + }, + { + "start": 10283.18, + "end": 10285.48, + "probability": 0.8877 + }, + { + "start": 10286.2, + "end": 10288.04, + "probability": 0.9988 + }, + { + "start": 10289.1, + "end": 10290.9, + "probability": 0.9656 + }, + { + "start": 10292.48, + "end": 10295.87, + "probability": 0.9775 + }, + { + "start": 10296.72, + "end": 10298.66, + "probability": 0.8986 + }, + { + "start": 10298.72, + "end": 10300.14, + "probability": 0.9888 + }, + { + "start": 10301.82, + "end": 10303.5, + "probability": 0.9553 + }, + { + "start": 10304.6, + "end": 10306.18, + "probability": 0.9981 + }, + { + "start": 10307.18, + "end": 10308.42, + "probability": 0.9059 + }, + { + "start": 10309.76, + "end": 10311.58, + "probability": 0.8243 + }, + { + "start": 10312.5, + "end": 10313.34, + "probability": 0.6627 + }, + { + "start": 10314.86, + "end": 10315.38, + "probability": 0.8033 + }, + { + "start": 10316.18, + "end": 10316.64, + "probability": 0.0083 + }, + { + "start": 10318.3, + "end": 10320.2, + "probability": 0.7285 + }, + { + "start": 10320.64, + "end": 10322.38, + "probability": 0.9878 + }, + { + "start": 10322.44, + "end": 10323.78, + "probability": 0.9889 + }, + { + "start": 10324.54, + "end": 10325.96, + "probability": 0.984 + }, + { + "start": 10327.48, + "end": 10330.34, + "probability": 0.7682 + }, + { + "start": 10332.12, + "end": 10332.82, + "probability": 0.9129 + }, + { + "start": 10334.32, + "end": 10336.24, + "probability": 0.9626 + }, + { + "start": 10337.22, + "end": 10341.42, + "probability": 0.9741 + }, + { + "start": 10343.38, + "end": 10346.56, + "probability": 0.9082 + }, + { + "start": 10347.62, + "end": 10348.62, + "probability": 0.8595 + }, + { + "start": 10349.18, + "end": 10350.18, + "probability": 0.4911 + }, + { + "start": 10352.1, + "end": 10352.91, + "probability": 0.9875 + }, + { + "start": 10354.04, + "end": 10355.78, + "probability": 0.8706 + }, + { + "start": 10356.44, + "end": 10357.06, + "probability": 0.9683 + }, + { + "start": 10357.98, + "end": 10359.76, + "probability": 0.9802 + }, + { + "start": 10359.86, + "end": 10361.92, + "probability": 0.9946 + }, + { + "start": 10362.82, + "end": 10363.84, + "probability": 0.976 + }, + { + "start": 10364.76, + "end": 10365.52, + "probability": 0.9429 + }, + { + "start": 10366.16, + "end": 10367.66, + "probability": 0.9264 + }, + { + "start": 10367.86, + "end": 10369.14, + "probability": 0.7255 + }, + { + "start": 10369.72, + "end": 10370.38, + "probability": 0.903 + }, + { + "start": 10372.22, + "end": 10375.56, + "probability": 0.9814 + }, + { + "start": 10378.26, + "end": 10380.76, + "probability": 0.9656 + }, + { + "start": 10381.18, + "end": 10386.0, + "probability": 0.9915 + }, + { + "start": 10388.06, + "end": 10388.68, + "probability": 0.4457 + }, + { + "start": 10389.08, + "end": 10392.56, + "probability": 0.6325 + }, + { + "start": 10394.34, + "end": 10396.64, + "probability": 0.9438 + }, + { + "start": 10397.62, + "end": 10400.2, + "probability": 0.9917 + }, + { + "start": 10400.38, + "end": 10405.6, + "probability": 0.9897 + }, + { + "start": 10406.48, + "end": 10406.74, + "probability": 0.6423 + }, + { + "start": 10406.8, + "end": 10411.54, + "probability": 0.9963 + }, + { + "start": 10412.3, + "end": 10415.24, + "probability": 0.8754 + }, + { + "start": 10415.36, + "end": 10418.14, + "probability": 0.6406 + }, + { + "start": 10418.14, + "end": 10419.74, + "probability": 0.6085 + }, + { + "start": 10420.64, + "end": 10426.08, + "probability": 0.9019 + }, + { + "start": 10427.32, + "end": 10428.6, + "probability": 0.5874 + }, + { + "start": 10430.02, + "end": 10431.08, + "probability": 0.9639 + }, + { + "start": 10431.34, + "end": 10432.68, + "probability": 0.918 + }, + { + "start": 10434.1, + "end": 10437.41, + "probability": 0.8287 + }, + { + "start": 10437.86, + "end": 10441.3, + "probability": 0.8816 + }, + { + "start": 10443.24, + "end": 10447.26, + "probability": 0.9406 + }, + { + "start": 10448.06, + "end": 10450.28, + "probability": 0.9844 + }, + { + "start": 10451.88, + "end": 10453.84, + "probability": 0.719 + }, + { + "start": 10455.14, + "end": 10456.3, + "probability": 0.9544 + }, + { + "start": 10457.86, + "end": 10457.86, + "probability": 0.9731 + }, + { + "start": 10459.84, + "end": 10460.8, + "probability": 0.614 + }, + { + "start": 10460.86, + "end": 10462.38, + "probability": 0.7306 + }, + { + "start": 10462.42, + "end": 10464.88, + "probability": 0.8534 + }, + { + "start": 10466.22, + "end": 10468.0, + "probability": 0.8827 + }, + { + "start": 10468.64, + "end": 10470.52, + "probability": 0.938 + }, + { + "start": 10471.14, + "end": 10473.66, + "probability": 0.8975 + }, + { + "start": 10475.18, + "end": 10478.68, + "probability": 0.9805 + }, + { + "start": 10478.68, + "end": 10481.8, + "probability": 0.8915 + }, + { + "start": 10482.68, + "end": 10483.96, + "probability": 0.9602 + }, + { + "start": 10486.08, + "end": 10487.28, + "probability": 0.9091 + }, + { + "start": 10487.92, + "end": 10489.06, + "probability": 0.9057 + }, + { + "start": 10489.66, + "end": 10491.34, + "probability": 0.8081 + }, + { + "start": 10491.68, + "end": 10494.4, + "probability": 0.9788 + }, + { + "start": 10495.96, + "end": 10496.42, + "probability": 0.948 + }, + { + "start": 10498.72, + "end": 10499.28, + "probability": 0.8557 + }, + { + "start": 10500.38, + "end": 10501.96, + "probability": 0.9935 + }, + { + "start": 10502.7, + "end": 10505.06, + "probability": 0.9833 + }, + { + "start": 10505.76, + "end": 10509.76, + "probability": 0.9451 + }, + { + "start": 10511.02, + "end": 10512.82, + "probability": 0.9846 + }, + { + "start": 10513.68, + "end": 10515.22, + "probability": 0.8501 + }, + { + "start": 10515.66, + "end": 10516.58, + "probability": 0.6522 + }, + { + "start": 10517.04, + "end": 10518.92, + "probability": 0.5765 + }, + { + "start": 10519.06, + "end": 10520.94, + "probability": 0.785 + }, + { + "start": 10522.64, + "end": 10523.96, + "probability": 0.7463 + }, + { + "start": 10525.12, + "end": 10527.58, + "probability": 0.998 + }, + { + "start": 10529.1, + "end": 10530.64, + "probability": 0.8472 + }, + { + "start": 10531.38, + "end": 10536.46, + "probability": 0.9888 + }, + { + "start": 10537.2, + "end": 10538.02, + "probability": 0.5807 + }, + { + "start": 10538.7, + "end": 10543.92, + "probability": 0.9249 + }, + { + "start": 10544.42, + "end": 10544.88, + "probability": 0.6451 + }, + { + "start": 10545.7, + "end": 10547.04, + "probability": 0.8461 + }, + { + "start": 10547.8, + "end": 10549.18, + "probability": 0.7317 + }, + { + "start": 10549.38, + "end": 10550.2, + "probability": 0.8957 + }, + { + "start": 10550.28, + "end": 10551.98, + "probability": 0.9948 + }, + { + "start": 10552.02, + "end": 10552.38, + "probability": 0.1371 + }, + { + "start": 10552.4, + "end": 10553.88, + "probability": 0.4182 + }, + { + "start": 10553.88, + "end": 10556.26, + "probability": 0.9373 + }, + { + "start": 10556.68, + "end": 10557.86, + "probability": 0.8708 + }, + { + "start": 10558.44, + "end": 10560.62, + "probability": 0.8093 + }, + { + "start": 10561.12, + "end": 10564.92, + "probability": 0.9897 + }, + { + "start": 10565.3, + "end": 10565.84, + "probability": 0.4609 + }, + { + "start": 10566.22, + "end": 10568.18, + "probability": 0.7567 + }, + { + "start": 10570.24, + "end": 10572.7, + "probability": 0.8942 + }, + { + "start": 10572.82, + "end": 10573.4, + "probability": 0.6046 + }, + { + "start": 10573.4, + "end": 10574.44, + "probability": 0.9509 + }, + { + "start": 10574.66, + "end": 10575.6, + "probability": 0.8085 + }, + { + "start": 10575.82, + "end": 10578.84, + "probability": 0.9756 + }, + { + "start": 10579.02, + "end": 10579.86, + "probability": 0.9741 + }, + { + "start": 10580.8, + "end": 10581.4, + "probability": 0.134 + }, + { + "start": 10581.4, + "end": 10584.5, + "probability": 0.9924 + }, + { + "start": 10585.0, + "end": 10586.52, + "probability": 0.8992 + }, + { + "start": 10586.9, + "end": 10588.34, + "probability": 0.8962 + }, + { + "start": 10588.52, + "end": 10589.72, + "probability": 0.978 + }, + { + "start": 10590.12, + "end": 10590.5, + "probability": 0.8668 + }, + { + "start": 10592.32, + "end": 10593.1, + "probability": 0.4756 + }, + { + "start": 10594.06, + "end": 10595.96, + "probability": 0.5279 + }, + { + "start": 10596.62, + "end": 10600.08, + "probability": 0.8278 + }, + { + "start": 10600.72, + "end": 10601.35, + "probability": 0.5671 + }, + { + "start": 10602.38, + "end": 10604.28, + "probability": 0.8774 + }, + { + "start": 10605.04, + "end": 10607.3, + "probability": 0.9068 + }, + { + "start": 10608.2, + "end": 10612.82, + "probability": 0.9617 + }, + { + "start": 10612.88, + "end": 10613.84, + "probability": 0.3847 + }, + { + "start": 10614.34, + "end": 10616.44, + "probability": 0.9302 + }, + { + "start": 10617.18, + "end": 10618.56, + "probability": 0.8944 + }, + { + "start": 10619.12, + "end": 10621.64, + "probability": 0.9473 + }, + { + "start": 10622.3, + "end": 10624.8, + "probability": 0.9956 + }, + { + "start": 10625.48, + "end": 10627.5, + "probability": 0.9589 + }, + { + "start": 10627.58, + "end": 10632.42, + "probability": 0.9211 + }, + { + "start": 10632.62, + "end": 10632.98, + "probability": 0.051 + }, + { + "start": 10633.04, + "end": 10635.7, + "probability": 0.2558 + }, + { + "start": 10635.76, + "end": 10636.44, + "probability": 0.2111 + }, + { + "start": 10636.86, + "end": 10638.7, + "probability": 0.3957 + }, + { + "start": 10639.0, + "end": 10641.28, + "probability": 0.3095 + }, + { + "start": 10641.48, + "end": 10643.08, + "probability": 0.5526 + }, + { + "start": 10643.34, + "end": 10647.9, + "probability": 0.917 + }, + { + "start": 10648.08, + "end": 10651.38, + "probability": 0.3432 + }, + { + "start": 10651.82, + "end": 10652.28, + "probability": 0.6104 + }, + { + "start": 10652.28, + "end": 10655.56, + "probability": 0.2586 + }, + { + "start": 10655.56, + "end": 10656.78, + "probability": 0.0227 + }, + { + "start": 10657.18, + "end": 10661.08, + "probability": 0.5973 + }, + { + "start": 10662.24, + "end": 10667.2, + "probability": 0.7409 + }, + { + "start": 10667.44, + "end": 10668.1, + "probability": 0.0826 + }, + { + "start": 10668.36, + "end": 10668.85, + "probability": 0.1578 + }, + { + "start": 10668.86, + "end": 10669.26, + "probability": 0.3927 + }, + { + "start": 10669.38, + "end": 10670.14, + "probability": 0.1188 + }, + { + "start": 10670.4, + "end": 10672.68, + "probability": 0.436 + }, + { + "start": 10672.78, + "end": 10672.94, + "probability": 0.0852 + }, + { + "start": 10673.08, + "end": 10674.48, + "probability": 0.7432 + }, + { + "start": 10674.58, + "end": 10676.32, + "probability": 0.7191 + }, + { + "start": 10676.88, + "end": 10678.64, + "probability": 0.1828 + }, + { + "start": 10678.78, + "end": 10679.52, + "probability": 0.266 + }, + { + "start": 10679.54, + "end": 10680.54, + "probability": 0.8152 + }, + { + "start": 10680.96, + "end": 10681.78, + "probability": 0.4761 + }, + { + "start": 10682.0, + "end": 10686.32, + "probability": 0.6262 + }, + { + "start": 10686.4, + "end": 10686.64, + "probability": 0.7361 + }, + { + "start": 10686.66, + "end": 10688.32, + "probability": 0.6372 + }, + { + "start": 10688.4, + "end": 10689.42, + "probability": 0.9858 + }, + { + "start": 10689.94, + "end": 10690.64, + "probability": 0.9629 + }, + { + "start": 10691.04, + "end": 10691.83, + "probability": 0.8452 + }, + { + "start": 10691.98, + "end": 10694.38, + "probability": 0.9514 + }, + { + "start": 10694.62, + "end": 10695.36, + "probability": 0.0405 + }, + { + "start": 10695.66, + "end": 10697.37, + "probability": 0.7626 + }, + { + "start": 10697.58, + "end": 10698.56, + "probability": 0.3403 + }, + { + "start": 10698.76, + "end": 10699.54, + "probability": 0.5497 + }, + { + "start": 10699.82, + "end": 10702.04, + "probability": 0.1245 + }, + { + "start": 10702.16, + "end": 10704.18, + "probability": 0.4572 + }, + { + "start": 10704.18, + "end": 10708.32, + "probability": 0.7515 + }, + { + "start": 10708.92, + "end": 10709.76, + "probability": 0.9573 + }, + { + "start": 10709.88, + "end": 10711.48, + "probability": 0.9579 + }, + { + "start": 10713.21, + "end": 10717.24, + "probability": 0.8799 + }, + { + "start": 10717.4, + "end": 10718.48, + "probability": 0.9863 + }, + { + "start": 10718.78, + "end": 10719.9, + "probability": 0.9377 + }, + { + "start": 10720.3, + "end": 10723.18, + "probability": 0.9939 + }, + { + "start": 10723.78, + "end": 10724.14, + "probability": 0.9151 + }, + { + "start": 10724.2, + "end": 10725.1, + "probability": 0.99 + }, + { + "start": 10725.14, + "end": 10727.42, + "probability": 0.9927 + }, + { + "start": 10728.04, + "end": 10730.64, + "probability": 0.9528 + }, + { + "start": 10731.52, + "end": 10732.04, + "probability": 0.5002 + }, + { + "start": 10733.46, + "end": 10736.04, + "probability": 0.7287 + }, + { + "start": 10736.7, + "end": 10738.28, + "probability": 0.9271 + }, + { + "start": 10738.92, + "end": 10742.3, + "probability": 0.8995 + }, + { + "start": 10743.02, + "end": 10743.86, + "probability": 0.8632 + }, + { + "start": 10744.98, + "end": 10746.16, + "probability": 0.5033 + }, + { + "start": 10746.68, + "end": 10750.46, + "probability": 0.9338 + }, + { + "start": 10750.52, + "end": 10752.8, + "probability": 0.8549 + }, + { + "start": 10752.86, + "end": 10754.78, + "probability": 0.7789 + }, + { + "start": 10755.28, + "end": 10755.9, + "probability": 0.6179 + }, + { + "start": 10755.98, + "end": 10757.14, + "probability": 0.9852 + }, + { + "start": 10757.34, + "end": 10762.84, + "probability": 0.9031 + }, + { + "start": 10763.56, + "end": 10765.24, + "probability": 0.8992 + }, + { + "start": 10766.06, + "end": 10769.56, + "probability": 0.9376 + }, + { + "start": 10770.7, + "end": 10772.26, + "probability": 0.5972 + }, + { + "start": 10772.4, + "end": 10774.76, + "probability": 0.9431 + }, + { + "start": 10775.08, + "end": 10776.38, + "probability": 0.8235 + }, + { + "start": 10776.48, + "end": 10779.85, + "probability": 0.9849 + }, + { + "start": 10780.48, + "end": 10781.28, + "probability": 0.3981 + }, + { + "start": 10781.68, + "end": 10782.9, + "probability": 0.8354 + }, + { + "start": 10783.04, + "end": 10785.52, + "probability": 0.71 + }, + { + "start": 10785.94, + "end": 10789.62, + "probability": 0.7456 + }, + { + "start": 10789.69, + "end": 10792.8, + "probability": 0.7661 + }, + { + "start": 10793.46, + "end": 10795.66, + "probability": 0.84 + }, + { + "start": 10796.6, + "end": 10801.48, + "probability": 0.9456 + }, + { + "start": 10801.96, + "end": 10802.36, + "probability": 0.7273 + }, + { + "start": 10802.76, + "end": 10804.04, + "probability": 0.5521 + }, + { + "start": 10804.68, + "end": 10806.03, + "probability": 0.8662 + }, + { + "start": 10806.32, + "end": 10809.86, + "probability": 0.951 + }, + { + "start": 10809.98, + "end": 10812.04, + "probability": 0.7524 + }, + { + "start": 10812.54, + "end": 10814.76, + "probability": 0.8742 + }, + { + "start": 10814.85, + "end": 10819.86, + "probability": 0.899 + }, + { + "start": 10819.94, + "end": 10820.68, + "probability": 0.6015 + }, + { + "start": 10821.24, + "end": 10821.82, + "probability": 0.886 + }, + { + "start": 10822.1, + "end": 10822.66, + "probability": 0.531 + }, + { + "start": 10822.96, + "end": 10824.72, + "probability": 0.9827 + }, + { + "start": 10825.06, + "end": 10825.84, + "probability": 0.9473 + }, + { + "start": 10825.92, + "end": 10827.28, + "probability": 0.7011 + }, + { + "start": 10827.34, + "end": 10828.7, + "probability": 0.9579 + }, + { + "start": 10829.34, + "end": 10831.84, + "probability": 0.4998 + }, + { + "start": 10832.22, + "end": 10833.08, + "probability": 0.9351 + }, + { + "start": 10833.46, + "end": 10839.48, + "probability": 0.7766 + }, + { + "start": 10839.58, + "end": 10841.6, + "probability": 0.8682 + }, + { + "start": 10841.9, + "end": 10842.56, + "probability": 0.6584 + }, + { + "start": 10842.62, + "end": 10843.62, + "probability": 0.8188 + }, + { + "start": 10844.04, + "end": 10847.04, + "probability": 0.9003 + }, + { + "start": 10847.4, + "end": 10848.28, + "probability": 0.7656 + }, + { + "start": 10848.4, + "end": 10849.3, + "probability": 0.8672 + }, + { + "start": 10849.72, + "end": 10850.48, + "probability": 0.9387 + }, + { + "start": 10851.0, + "end": 10851.88, + "probability": 0.8789 + }, + { + "start": 10851.96, + "end": 10856.08, + "probability": 0.6622 + }, + { + "start": 10858.26, + "end": 10858.26, + "probability": 0.1619 + }, + { + "start": 10858.26, + "end": 10859.74, + "probability": 0.384 + }, + { + "start": 10863.96, + "end": 10866.26, + "probability": 0.1533 + }, + { + "start": 10894.58, + "end": 10894.86, + "probability": 0.0313 + }, + { + "start": 10896.54, + "end": 10899.68, + "probability": 0.3738 + }, + { + "start": 10902.58, + "end": 10908.28, + "probability": 0.9822 + }, + { + "start": 10909.08, + "end": 10910.36, + "probability": 0.7074 + }, + { + "start": 10912.04, + "end": 10912.66, + "probability": 0.779 + }, + { + "start": 10913.36, + "end": 10914.24, + "probability": 0.9371 + }, + { + "start": 10915.78, + "end": 10916.54, + "probability": 0.9762 + }, + { + "start": 10917.26, + "end": 10919.18, + "probability": 0.998 + }, + { + "start": 10919.9, + "end": 10922.24, + "probability": 0.9436 + }, + { + "start": 10922.86, + "end": 10924.54, + "probability": 0.8955 + }, + { + "start": 10925.04, + "end": 10926.66, + "probability": 0.9909 + }, + { + "start": 10927.1, + "end": 10929.6, + "probability": 0.9709 + }, + { + "start": 10930.14, + "end": 10935.0, + "probability": 0.9104 + }, + { + "start": 10935.54, + "end": 10936.9, + "probability": 0.9604 + }, + { + "start": 10937.12, + "end": 10938.3, + "probability": 0.8015 + }, + { + "start": 10938.9, + "end": 10942.98, + "probability": 0.9884 + }, + { + "start": 10943.56, + "end": 10948.4, + "probability": 0.9946 + }, + { + "start": 10949.64, + "end": 10952.5, + "probability": 0.9979 + }, + { + "start": 10953.14, + "end": 10954.86, + "probability": 0.9819 + }, + { + "start": 10955.02, + "end": 10960.74, + "probability": 0.9817 + }, + { + "start": 10961.04, + "end": 10961.8, + "probability": 0.7867 + }, + { + "start": 10962.36, + "end": 10963.28, + "probability": 0.8911 + }, + { + "start": 10963.98, + "end": 10965.1, + "probability": 0.9679 + }, + { + "start": 10965.4, + "end": 10975.0, + "probability": 0.9907 + }, + { + "start": 10975.62, + "end": 10976.08, + "probability": 0.6842 + }, + { + "start": 10977.08, + "end": 10977.68, + "probability": 0.6347 + }, + { + "start": 10978.62, + "end": 10979.8, + "probability": 0.9555 + }, + { + "start": 10980.06, + "end": 10981.01, + "probability": 0.9878 + }, + { + "start": 10981.82, + "end": 10982.84, + "probability": 0.9428 + }, + { + "start": 10983.04, + "end": 10986.28, + "probability": 0.969 + }, + { + "start": 10986.32, + "end": 10988.61, + "probability": 0.1206 + }, + { + "start": 10989.06, + "end": 10990.04, + "probability": 0.7129 + }, + { + "start": 10990.4, + "end": 10990.86, + "probability": 0.7865 + }, + { + "start": 10991.96, + "end": 10993.84, + "probability": 0.9932 + }, + { + "start": 10995.1, + "end": 10997.64, + "probability": 0.9946 + }, + { + "start": 10998.3, + "end": 10999.3, + "probability": 0.9929 + }, + { + "start": 10999.66, + "end": 11000.44, + "probability": 0.8765 + }, + { + "start": 11000.9, + "end": 11002.48, + "probability": 0.9928 + }, + { + "start": 11003.06, + "end": 11007.06, + "probability": 0.7032 + }, + { + "start": 11007.58, + "end": 11009.56, + "probability": 0.8678 + }, + { + "start": 11010.3, + "end": 11012.36, + "probability": 0.9878 + }, + { + "start": 11012.5, + "end": 11013.42, + "probability": 0.8036 + }, + { + "start": 11013.86, + "end": 11020.12, + "probability": 0.9963 + }, + { + "start": 11020.56, + "end": 11022.06, + "probability": 0.9927 + }, + { + "start": 11022.08, + "end": 11022.72, + "probability": 0.4932 + }, + { + "start": 11023.6, + "end": 11027.34, + "probability": 0.9712 + }, + { + "start": 11027.88, + "end": 11030.6, + "probability": 0.932 + }, + { + "start": 11031.3, + "end": 11033.02, + "probability": 0.7913 + }, + { + "start": 11033.18, + "end": 11033.28, + "probability": 0.1301 + }, + { + "start": 11034.46, + "end": 11038.66, + "probability": 0.9637 + }, + { + "start": 11039.46, + "end": 11042.34, + "probability": 0.9646 + }, + { + "start": 11042.9, + "end": 11047.46, + "probability": 0.9913 + }, + { + "start": 11047.46, + "end": 11051.72, + "probability": 0.8122 + }, + { + "start": 11051.72, + "end": 11058.16, + "probability": 0.9035 + }, + { + "start": 11058.24, + "end": 11060.94, + "probability": 0.9941 + }, + { + "start": 11061.9, + "end": 11063.26, + "probability": 0.8994 + }, + { + "start": 11063.86, + "end": 11064.62, + "probability": 0.7704 + }, + { + "start": 11064.76, + "end": 11065.35, + "probability": 0.9363 + }, + { + "start": 11066.46, + "end": 11067.8, + "probability": 0.9644 + }, + { + "start": 11068.16, + "end": 11069.26, + "probability": 0.8819 + }, + { + "start": 11070.36, + "end": 11070.72, + "probability": 0.766 + }, + { + "start": 11071.96, + "end": 11074.04, + "probability": 0.9277 + }, + { + "start": 11074.1, + "end": 11075.98, + "probability": 0.9935 + }, + { + "start": 11076.86, + "end": 11078.15, + "probability": 0.9854 + }, + { + "start": 11078.8, + "end": 11079.98, + "probability": 0.908 + }, + { + "start": 11080.08, + "end": 11082.46, + "probability": 0.9976 + }, + { + "start": 11083.74, + "end": 11085.62, + "probability": 0.6346 + }, + { + "start": 11086.12, + "end": 11088.62, + "probability": 0.7807 + }, + { + "start": 11089.52, + "end": 11093.34, + "probability": 0.9217 + }, + { + "start": 11093.78, + "end": 11094.87, + "probability": 0.9894 + }, + { + "start": 11095.36, + "end": 11096.15, + "probability": 0.9666 + }, + { + "start": 11096.96, + "end": 11099.96, + "probability": 0.9907 + }, + { + "start": 11100.64, + "end": 11102.82, + "probability": 0.9591 + }, + { + "start": 11103.44, + "end": 11106.16, + "probability": 0.99 + }, + { + "start": 11106.88, + "end": 11113.08, + "probability": 0.9918 + }, + { + "start": 11114.0, + "end": 11115.96, + "probability": 0.9981 + }, + { + "start": 11115.96, + "end": 11119.24, + "probability": 0.9971 + }, + { + "start": 11120.9, + "end": 11124.44, + "probability": 0.9987 + }, + { + "start": 11125.24, + "end": 11127.48, + "probability": 0.9163 + }, + { + "start": 11127.94, + "end": 11130.56, + "probability": 0.9971 + }, + { + "start": 11131.24, + "end": 11132.62, + "probability": 0.999 + }, + { + "start": 11132.68, + "end": 11133.58, + "probability": 0.8642 + }, + { + "start": 11133.66, + "end": 11134.4, + "probability": 0.984 + }, + { + "start": 11135.24, + "end": 11138.88, + "probability": 0.9074 + }, + { + "start": 11139.6, + "end": 11144.34, + "probability": 0.9598 + }, + { + "start": 11144.48, + "end": 11147.7, + "probability": 0.997 + }, + { + "start": 11148.48, + "end": 11150.3, + "probability": 0.8831 + }, + { + "start": 11151.06, + "end": 11157.56, + "probability": 0.9513 + }, + { + "start": 11158.18, + "end": 11162.14, + "probability": 0.8583 + }, + { + "start": 11162.68, + "end": 11166.02, + "probability": 0.9979 + }, + { + "start": 11167.16, + "end": 11171.76, + "probability": 0.9465 + }, + { + "start": 11172.3, + "end": 11173.32, + "probability": 0.8026 + }, + { + "start": 11174.04, + "end": 11176.58, + "probability": 0.9805 + }, + { + "start": 11177.02, + "end": 11177.66, + "probability": 0.8746 + }, + { + "start": 11178.04, + "end": 11181.26, + "probability": 0.9556 + }, + { + "start": 11182.8, + "end": 11187.98, + "probability": 0.9 + }, + { + "start": 11188.42, + "end": 11190.2, + "probability": 0.7504 + }, + { + "start": 11190.72, + "end": 11193.98, + "probability": 0.9955 + }, + { + "start": 11194.56, + "end": 11197.24, + "probability": 0.9987 + }, + { + "start": 11197.64, + "end": 11201.82, + "probability": 0.9987 + }, + { + "start": 11203.52, + "end": 11204.62, + "probability": 0.8807 + }, + { + "start": 11205.44, + "end": 11207.92, + "probability": 0.9667 + }, + { + "start": 11208.58, + "end": 11211.84, + "probability": 0.9971 + }, + { + "start": 11212.36, + "end": 11217.68, + "probability": 0.9984 + }, + { + "start": 11218.56, + "end": 11221.5, + "probability": 0.9983 + }, + { + "start": 11222.04, + "end": 11225.84, + "probability": 0.9627 + }, + { + "start": 11226.34, + "end": 11226.72, + "probability": 0.9899 + }, + { + "start": 11227.34, + "end": 11228.76, + "probability": 0.9225 + }, + { + "start": 11229.52, + "end": 11231.6, + "probability": 0.9291 + }, + { + "start": 11232.8, + "end": 11234.06, + "probability": 0.9714 + }, + { + "start": 11235.02, + "end": 11238.52, + "probability": 0.9958 + }, + { + "start": 11239.7, + "end": 11242.04, + "probability": 0.8582 + }, + { + "start": 11242.7, + "end": 11243.56, + "probability": 0.6791 + }, + { + "start": 11244.38, + "end": 11249.56, + "probability": 0.9972 + }, + { + "start": 11249.7, + "end": 11251.58, + "probability": 0.9755 + }, + { + "start": 11252.22, + "end": 11254.96, + "probability": 0.978 + }, + { + "start": 11255.44, + "end": 11257.28, + "probability": 0.9973 + }, + { + "start": 11257.48, + "end": 11259.62, + "probability": 0.9177 + }, + { + "start": 11260.14, + "end": 11263.58, + "probability": 0.9756 + }, + { + "start": 11264.12, + "end": 11264.94, + "probability": 0.7522 + }, + { + "start": 11265.02, + "end": 11265.88, + "probability": 0.8099 + }, + { + "start": 11265.94, + "end": 11266.68, + "probability": 0.9454 + }, + { + "start": 11266.72, + "end": 11266.94, + "probability": 0.566 + }, + { + "start": 11267.24, + "end": 11268.48, + "probability": 0.9813 + }, + { + "start": 11269.18, + "end": 11269.56, + "probability": 0.7339 + }, + { + "start": 11270.08, + "end": 11274.0, + "probability": 0.7346 + }, + { + "start": 11274.54, + "end": 11275.87, + "probability": 0.9121 + }, + { + "start": 11276.6, + "end": 11278.16, + "probability": 0.982 + }, + { + "start": 11278.64, + "end": 11280.67, + "probability": 0.897 + }, + { + "start": 11281.08, + "end": 11282.02, + "probability": 0.9462 + }, + { + "start": 11282.32, + "end": 11284.24, + "probability": 0.9977 + }, + { + "start": 11284.52, + "end": 11287.7, + "probability": 0.9929 + }, + { + "start": 11288.18, + "end": 11289.18, + "probability": 0.9624 + }, + { + "start": 11289.68, + "end": 11290.43, + "probability": 0.9746 + }, + { + "start": 11291.06, + "end": 11292.3, + "probability": 0.9924 + }, + { + "start": 11292.5, + "end": 11295.04, + "probability": 0.9819 + }, + { + "start": 11297.02, + "end": 11298.0, + "probability": 0.8451 + }, + { + "start": 11298.12, + "end": 11298.86, + "probability": 0.6127 + }, + { + "start": 11299.12, + "end": 11303.78, + "probability": 0.9733 + }, + { + "start": 11304.2, + "end": 11305.42, + "probability": 0.8919 + }, + { + "start": 11306.44, + "end": 11310.38, + "probability": 0.9321 + }, + { + "start": 11311.44, + "end": 11313.56, + "probability": 0.9668 + }, + { + "start": 11314.76, + "end": 11316.35, + "probability": 0.8628 + }, + { + "start": 11317.16, + "end": 11321.04, + "probability": 0.9351 + }, + { + "start": 11321.6, + "end": 11322.36, + "probability": 0.9207 + }, + { + "start": 11323.48, + "end": 11324.22, + "probability": 0.9545 + }, + { + "start": 11325.38, + "end": 11326.94, + "probability": 0.9819 + }, + { + "start": 11327.54, + "end": 11327.64, + "probability": 0.9526 + }, + { + "start": 11327.68, + "end": 11328.8, + "probability": 0.8911 + }, + { + "start": 11328.82, + "end": 11329.77, + "probability": 0.7344 + }, + { + "start": 11330.28, + "end": 11335.16, + "probability": 0.8525 + }, + { + "start": 11336.78, + "end": 11338.68, + "probability": 0.5089 + }, + { + "start": 11340.4, + "end": 11341.28, + "probability": 0.8296 + }, + { + "start": 11342.76, + "end": 11344.78, + "probability": 0.7053 + }, + { + "start": 11344.88, + "end": 11346.14, + "probability": 0.7275 + }, + { + "start": 11347.0, + "end": 11350.04, + "probability": 0.9663 + }, + { + "start": 11350.68, + "end": 11353.86, + "probability": 0.8323 + }, + { + "start": 11354.48, + "end": 11355.44, + "probability": 0.9837 + }, + { + "start": 11355.94, + "end": 11359.2, + "probability": 0.9842 + }, + { + "start": 11359.2, + "end": 11359.94, + "probability": 0.2131 + }, + { + "start": 11360.32, + "end": 11364.77, + "probability": 0.9619 + }, + { + "start": 11365.9, + "end": 11367.08, + "probability": 0.7483 + }, + { + "start": 11368.52, + "end": 11370.48, + "probability": 0.8846 + }, + { + "start": 11371.0, + "end": 11374.04, + "probability": 0.9646 + }, + { + "start": 11375.46, + "end": 11380.26, + "probability": 0.9977 + }, + { + "start": 11381.1, + "end": 11383.92, + "probability": 0.8027 + }, + { + "start": 11385.06, + "end": 11385.69, + "probability": 0.9866 + }, + { + "start": 11386.38, + "end": 11387.08, + "probability": 0.7699 + }, + { + "start": 11387.64, + "end": 11388.86, + "probability": 0.9888 + }, + { + "start": 11389.4, + "end": 11394.62, + "probability": 0.9953 + }, + { + "start": 11395.76, + "end": 11398.6, + "probability": 0.9938 + }, + { + "start": 11399.92, + "end": 11401.54, + "probability": 0.9346 + }, + { + "start": 11402.18, + "end": 11404.26, + "probability": 0.8653 + }, + { + "start": 11405.18, + "end": 11405.84, + "probability": 0.9869 + }, + { + "start": 11406.36, + "end": 11408.8, + "probability": 0.988 + }, + { + "start": 11409.2, + "end": 11410.33, + "probability": 0.9556 + }, + { + "start": 11411.06, + "end": 11411.48, + "probability": 0.212 + }, + { + "start": 11412.04, + "end": 11414.82, + "probability": 0.9209 + }, + { + "start": 11415.98, + "end": 11417.82, + "probability": 0.7794 + }, + { + "start": 11418.56, + "end": 11419.12, + "probability": 0.6663 + }, + { + "start": 11419.94, + "end": 11420.72, + "probability": 0.9053 + }, + { + "start": 11421.82, + "end": 11422.26, + "probability": 0.9322 + }, + { + "start": 11422.88, + "end": 11423.9, + "probability": 0.9946 + }, + { + "start": 11424.44, + "end": 11425.38, + "probability": 0.9389 + }, + { + "start": 11425.98, + "end": 11428.76, + "probability": 0.9557 + }, + { + "start": 11429.2, + "end": 11431.9, + "probability": 0.938 + }, + { + "start": 11432.88, + "end": 11436.66, + "probability": 0.9932 + }, + { + "start": 11437.3, + "end": 11438.38, + "probability": 0.9929 + }, + { + "start": 11439.24, + "end": 11439.84, + "probability": 0.8741 + }, + { + "start": 11440.56, + "end": 11442.16, + "probability": 0.9575 + }, + { + "start": 11442.84, + "end": 11443.52, + "probability": 0.5406 + }, + { + "start": 11444.62, + "end": 11446.1, + "probability": 0.9465 + }, + { + "start": 11447.14, + "end": 11450.54, + "probability": 0.9695 + }, + { + "start": 11451.06, + "end": 11451.55, + "probability": 0.8945 + }, + { + "start": 11452.2, + "end": 11452.78, + "probability": 0.575 + }, + { + "start": 11453.3, + "end": 11454.52, + "probability": 0.998 + }, + { + "start": 11455.06, + "end": 11456.3, + "probability": 0.9827 + }, + { + "start": 11456.68, + "end": 11461.16, + "probability": 0.8913 + }, + { + "start": 11461.72, + "end": 11461.94, + "probability": 0.914 + }, + { + "start": 11462.76, + "end": 11464.82, + "probability": 0.9867 + }, + { + "start": 11465.34, + "end": 11466.42, + "probability": 0.8405 + }, + { + "start": 11467.12, + "end": 11469.68, + "probability": 0.9917 + }, + { + "start": 11470.44, + "end": 11471.94, + "probability": 0.8131 + }, + { + "start": 11473.08, + "end": 11475.32, + "probability": 0.9659 + }, + { + "start": 11475.7, + "end": 11477.98, + "probability": 0.9272 + }, + { + "start": 11479.32, + "end": 11481.88, + "probability": 0.9848 + }, + { + "start": 11482.32, + "end": 11485.38, + "probability": 0.9502 + }, + { + "start": 11486.22, + "end": 11490.44, + "probability": 0.9985 + }, + { + "start": 11491.02, + "end": 11492.04, + "probability": 0.9871 + }, + { + "start": 11492.14, + "end": 11493.28, + "probability": 0.9887 + }, + { + "start": 11493.74, + "end": 11496.84, + "probability": 0.8521 + }, + { + "start": 11497.4, + "end": 11498.54, + "probability": 0.9766 + }, + { + "start": 11499.5, + "end": 11500.18, + "probability": 0.7901 + }, + { + "start": 11500.9, + "end": 11505.68, + "probability": 0.9966 + }, + { + "start": 11506.34, + "end": 11508.7, + "probability": 0.6213 + }, + { + "start": 11509.04, + "end": 11512.36, + "probability": 0.9788 + }, + { + "start": 11512.6, + "end": 11513.06, + "probability": 0.9364 + }, + { + "start": 11515.0, + "end": 11515.6, + "probability": 0.7916 + }, + { + "start": 11516.16, + "end": 11517.58, + "probability": 0.9811 + }, + { + "start": 11517.94, + "end": 11518.44, + "probability": 0.8134 + }, + { + "start": 11518.78, + "end": 11519.86, + "probability": 0.6227 + }, + { + "start": 11520.08, + "end": 11520.44, + "probability": 0.8479 + }, + { + "start": 11522.06, + "end": 11523.34, + "probability": 0.6838 + }, + { + "start": 11544.12, + "end": 11545.08, + "probability": 0.6621 + }, + { + "start": 11545.2, + "end": 11545.56, + "probability": 0.4443 + }, + { + "start": 11546.08, + "end": 11546.84, + "probability": 0.6478 + }, + { + "start": 11547.0, + "end": 11548.1, + "probability": 0.7787 + }, + { + "start": 11549.06, + "end": 11549.2, + "probability": 0.8325 + }, + { + "start": 11549.94, + "end": 11550.54, + "probability": 0.2837 + }, + { + "start": 11550.6, + "end": 11553.02, + "probability": 0.5244 + }, + { + "start": 11553.02, + "end": 11553.54, + "probability": 0.3224 + }, + { + "start": 11553.6, + "end": 11556.31, + "probability": 0.99 + }, + { + "start": 11556.58, + "end": 11556.88, + "probability": 0.1038 + }, + { + "start": 11557.12, + "end": 11557.72, + "probability": 0.8609 + }, + { + "start": 11558.06, + "end": 11559.74, + "probability": 0.5254 + }, + { + "start": 11559.82, + "end": 11560.28, + "probability": 0.8301 + }, + { + "start": 11562.0, + "end": 11563.68, + "probability": 0.6481 + }, + { + "start": 11564.46, + "end": 11565.48, + "probability": 0.5948 + }, + { + "start": 11572.74, + "end": 11575.82, + "probability": 0.9595 + }, + { + "start": 11577.18, + "end": 11578.12, + "probability": 0.6068 + }, + { + "start": 11583.18, + "end": 11584.56, + "probability": 0.7524 + }, + { + "start": 11585.52, + "end": 11588.2, + "probability": 0.9461 + }, + { + "start": 11590.4, + "end": 11597.2, + "probability": 0.9989 + }, + { + "start": 11598.76, + "end": 11598.78, + "probability": 0.0386 + }, + { + "start": 11600.08, + "end": 11601.06, + "probability": 0.6859 + }, + { + "start": 11601.98, + "end": 11603.06, + "probability": 0.5088 + }, + { + "start": 11609.26, + "end": 11612.36, + "probability": 0.8149 + }, + { + "start": 11613.1, + "end": 11617.94, + "probability": 0.8069 + }, + { + "start": 11619.08, + "end": 11619.46, + "probability": 0.8544 + }, + { + "start": 11620.4, + "end": 11623.34, + "probability": 0.8961 + }, + { + "start": 11625.12, + "end": 11631.88, + "probability": 0.9954 + }, + { + "start": 11632.88, + "end": 11633.58, + "probability": 0.6694 + }, + { + "start": 11634.22, + "end": 11635.64, + "probability": 0.9772 + }, + { + "start": 11636.68, + "end": 11640.56, + "probability": 0.9845 + }, + { + "start": 11641.48, + "end": 11643.42, + "probability": 0.8937 + }, + { + "start": 11643.5, + "end": 11644.12, + "probability": 0.8508 + }, + { + "start": 11644.18, + "end": 11647.64, + "probability": 0.979 + }, + { + "start": 11650.36, + "end": 11653.04, + "probability": 0.9995 + }, + { + "start": 11656.1, + "end": 11657.3, + "probability": 0.8304 + }, + { + "start": 11659.08, + "end": 11661.28, + "probability": 0.9461 + }, + { + "start": 11664.36, + "end": 11665.14, + "probability": 0.9884 + }, + { + "start": 11667.26, + "end": 11668.34, + "probability": 0.9771 + }, + { + "start": 11670.54, + "end": 11671.38, + "probability": 0.7881 + }, + { + "start": 11674.08, + "end": 11678.96, + "probability": 0.9667 + }, + { + "start": 11681.48, + "end": 11685.32, + "probability": 0.7519 + }, + { + "start": 11686.12, + "end": 11687.16, + "probability": 0.7774 + }, + { + "start": 11689.96, + "end": 11693.26, + "probability": 0.843 + }, + { + "start": 11695.82, + "end": 11698.0, + "probability": 0.9975 + }, + { + "start": 11700.68, + "end": 11702.34, + "probability": 0.7729 + }, + { + "start": 11702.74, + "end": 11704.18, + "probability": 0.9952 + }, + { + "start": 11705.56, + "end": 11707.32, + "probability": 0.3813 + }, + { + "start": 11709.14, + "end": 11711.68, + "probability": 0.9531 + }, + { + "start": 11712.52, + "end": 11717.44, + "probability": 0.9736 + }, + { + "start": 11720.94, + "end": 11722.24, + "probability": 0.5053 + }, + { + "start": 11723.82, + "end": 11726.06, + "probability": 0.3754 + }, + { + "start": 11726.76, + "end": 11728.48, + "probability": 0.9152 + }, + { + "start": 11730.92, + "end": 11731.48, + "probability": 0.9922 + }, + { + "start": 11733.24, + "end": 11739.8, + "probability": 0.9609 + }, + { + "start": 11742.66, + "end": 11749.16, + "probability": 0.9523 + }, + { + "start": 11749.66, + "end": 11754.58, + "probability": 0.7751 + }, + { + "start": 11756.3, + "end": 11757.12, + "probability": 0.9719 + }, + { + "start": 11758.12, + "end": 11758.62, + "probability": 0.9751 + }, + { + "start": 11759.82, + "end": 11761.94, + "probability": 0.9915 + }, + { + "start": 11764.08, + "end": 11768.56, + "probability": 0.9907 + }, + { + "start": 11770.74, + "end": 11772.04, + "probability": 0.9928 + }, + { + "start": 11773.58, + "end": 11774.56, + "probability": 0.936 + }, + { + "start": 11776.02, + "end": 11781.86, + "probability": 0.9756 + }, + { + "start": 11782.58, + "end": 11783.2, + "probability": 0.7811 + }, + { + "start": 11785.0, + "end": 11788.2, + "probability": 0.9056 + }, + { + "start": 11790.04, + "end": 11790.76, + "probability": 0.8705 + }, + { + "start": 11792.8, + "end": 11793.32, + "probability": 0.8388 + }, + { + "start": 11794.66, + "end": 11797.1, + "probability": 0.5858 + }, + { + "start": 11797.88, + "end": 11799.86, + "probability": 0.9167 + }, + { + "start": 11800.84, + "end": 11801.58, + "probability": 0.4166 + }, + { + "start": 11801.64, + "end": 11806.52, + "probability": 0.9928 + }, + { + "start": 11808.96, + "end": 11810.02, + "probability": 0.9436 + }, + { + "start": 11811.4, + "end": 11814.18, + "probability": 0.9058 + }, + { + "start": 11815.04, + "end": 11817.14, + "probability": 0.9438 + }, + { + "start": 11820.8, + "end": 11821.58, + "probability": 0.8061 + }, + { + "start": 11823.32, + "end": 11825.16, + "probability": 0.9146 + }, + { + "start": 11828.52, + "end": 11830.98, + "probability": 0.9793 + }, + { + "start": 11831.96, + "end": 11833.42, + "probability": 0.9961 + }, + { + "start": 11834.78, + "end": 11839.76, + "probability": 0.9374 + }, + { + "start": 11840.88, + "end": 11843.84, + "probability": 0.9226 + }, + { + "start": 11844.5, + "end": 11846.22, + "probability": 0.9814 + }, + { + "start": 11847.5, + "end": 11850.96, + "probability": 0.8434 + }, + { + "start": 11853.92, + "end": 11857.26, + "probability": 0.7521 + }, + { + "start": 11857.4, + "end": 11858.04, + "probability": 0.8711 + }, + { + "start": 11858.1, + "end": 11860.48, + "probability": 0.9802 + }, + { + "start": 11865.78, + "end": 11867.98, + "probability": 0.9756 + }, + { + "start": 11869.1, + "end": 11870.02, + "probability": 0.8308 + }, + { + "start": 11871.6, + "end": 11875.12, + "probability": 0.997 + }, + { + "start": 11876.1, + "end": 11877.26, + "probability": 0.8513 + }, + { + "start": 11878.46, + "end": 11879.3, + "probability": 0.9238 + }, + { + "start": 11880.0, + "end": 11886.02, + "probability": 0.9636 + }, + { + "start": 11886.58, + "end": 11888.16, + "probability": 0.9846 + }, + { + "start": 11889.2, + "end": 11889.46, + "probability": 0.6548 + }, + { + "start": 11889.88, + "end": 11890.56, + "probability": 0.6588 + }, + { + "start": 11891.06, + "end": 11893.0, + "probability": 0.9024 + }, + { + "start": 11895.28, + "end": 11896.82, + "probability": 0.8969 + }, + { + "start": 11898.7, + "end": 11898.7, + "probability": 0.0318 + }, + { + "start": 11906.9, + "end": 11906.9, + "probability": 0.078 + }, + { + "start": 11906.9, + "end": 11908.1, + "probability": 0.5533 + }, + { + "start": 11909.96, + "end": 11911.18, + "probability": 0.8896 + }, + { + "start": 11912.62, + "end": 11914.1, + "probability": 0.9296 + }, + { + "start": 11915.5, + "end": 11917.86, + "probability": 0.5087 + }, + { + "start": 11918.7, + "end": 11920.72, + "probability": 0.9728 + }, + { + "start": 11922.04, + "end": 11924.32, + "probability": 0.6662 + }, + { + "start": 11925.3, + "end": 11925.86, + "probability": 0.0351 + }, + { + "start": 11926.2, + "end": 11927.2, + "probability": 0.7499 + }, + { + "start": 11927.42, + "end": 11928.32, + "probability": 0.6305 + }, + { + "start": 11928.42, + "end": 11930.52, + "probability": 0.9977 + }, + { + "start": 11932.26, + "end": 11932.92, + "probability": 0.987 + }, + { + "start": 11933.36, + "end": 11934.28, + "probability": 0.8653 + }, + { + "start": 11935.22, + "end": 11938.12, + "probability": 0.9397 + }, + { + "start": 11938.32, + "end": 11940.0, + "probability": 0.9965 + }, + { + "start": 11940.62, + "end": 11944.12, + "probability": 0.9659 + }, + { + "start": 11945.68, + "end": 11948.78, + "probability": 0.9895 + }, + { + "start": 11950.42, + "end": 11952.76, + "probability": 0.9353 + }, + { + "start": 11954.04, + "end": 11954.48, + "probability": 0.8314 + }, + { + "start": 11955.6, + "end": 11956.74, + "probability": 0.7937 + }, + { + "start": 11957.54, + "end": 11959.48, + "probability": 0.8861 + }, + { + "start": 11961.5, + "end": 11963.28, + "probability": 0.7482 + }, + { + "start": 11963.56, + "end": 11966.54, + "probability": 0.9866 + }, + { + "start": 11967.72, + "end": 11970.48, + "probability": 0.9248 + }, + { + "start": 11973.16, + "end": 11975.02, + "probability": 0.7415 + }, + { + "start": 11976.02, + "end": 11977.76, + "probability": 0.9159 + }, + { + "start": 11978.04, + "end": 11979.92, + "probability": 0.7626 + }, + { + "start": 11979.98, + "end": 11980.9, + "probability": 0.9337 + }, + { + "start": 11982.26, + "end": 11984.12, + "probability": 0.9962 + }, + { + "start": 11985.3, + "end": 11986.06, + "probability": 0.7892 + }, + { + "start": 11987.4, + "end": 11992.38, + "probability": 0.9799 + }, + { + "start": 11993.34, + "end": 11997.36, + "probability": 0.8264 + }, + { + "start": 11999.06, + "end": 12001.44, + "probability": 0.9761 + }, + { + "start": 12001.66, + "end": 12004.7, + "probability": 0.9908 + }, + { + "start": 12005.96, + "end": 12010.72, + "probability": 0.9811 + }, + { + "start": 12011.8, + "end": 12014.28, + "probability": 0.6995 + }, + { + "start": 12015.98, + "end": 12017.86, + "probability": 0.9943 + }, + { + "start": 12017.92, + "end": 12025.8, + "probability": 0.9412 + }, + { + "start": 12026.46, + "end": 12027.32, + "probability": 0.8711 + }, + { + "start": 12028.5, + "end": 12029.02, + "probability": 0.5924 + }, + { + "start": 12030.24, + "end": 12034.22, + "probability": 0.9941 + }, + { + "start": 12037.16, + "end": 12038.2, + "probability": 0.9995 + }, + { + "start": 12039.2, + "end": 12040.42, + "probability": 0.8048 + }, + { + "start": 12041.1, + "end": 12043.98, + "probability": 0.9894 + }, + { + "start": 12045.44, + "end": 12050.7, + "probability": 0.9405 + }, + { + "start": 12051.54, + "end": 12056.1, + "probability": 0.9872 + }, + { + "start": 12060.98, + "end": 12062.58, + "probability": 0.9978 + }, + { + "start": 12064.72, + "end": 12066.22, + "probability": 0.974 + }, + { + "start": 12068.0, + "end": 12068.98, + "probability": 0.842 + }, + { + "start": 12070.48, + "end": 12072.4, + "probability": 0.7989 + }, + { + "start": 12073.12, + "end": 12078.48, + "probability": 0.9895 + }, + { + "start": 12079.22, + "end": 12080.36, + "probability": 0.9822 + }, + { + "start": 12081.5, + "end": 12082.64, + "probability": 0.9602 + }, + { + "start": 12083.6, + "end": 12087.08, + "probability": 0.9601 + }, + { + "start": 12088.24, + "end": 12090.66, + "probability": 0.9497 + }, + { + "start": 12092.5, + "end": 12092.84, + "probability": 0.4815 + }, + { + "start": 12093.0, + "end": 12097.52, + "probability": 0.9709 + }, + { + "start": 12099.1, + "end": 12101.28, + "probability": 0.9979 + }, + { + "start": 12101.9, + "end": 12103.82, + "probability": 0.999 + }, + { + "start": 12104.74, + "end": 12107.26, + "probability": 0.8964 + }, + { + "start": 12108.12, + "end": 12111.56, + "probability": 0.9852 + }, + { + "start": 12112.14, + "end": 12112.84, + "probability": 0.9771 + }, + { + "start": 12115.0, + "end": 12117.88, + "probability": 0.9912 + }, + { + "start": 12118.56, + "end": 12121.82, + "probability": 0.9232 + }, + { + "start": 12122.6, + "end": 12124.74, + "probability": 0.9979 + }, + { + "start": 12125.52, + "end": 12125.84, + "probability": 0.7737 + }, + { + "start": 12125.96, + "end": 12126.6, + "probability": 0.8715 + }, + { + "start": 12126.64, + "end": 12127.48, + "probability": 0.9578 + }, + { + "start": 12129.4, + "end": 12131.9, + "probability": 0.9663 + }, + { + "start": 12131.9, + "end": 12131.9, + "probability": 0.1346 + }, + { + "start": 12131.9, + "end": 12136.1, + "probability": 0.7575 + }, + { + "start": 12136.12, + "end": 12136.58, + "probability": 0.8606 + }, + { + "start": 12136.86, + "end": 12138.52, + "probability": 0.797 + }, + { + "start": 12139.1, + "end": 12142.32, + "probability": 0.9682 + }, + { + "start": 12144.82, + "end": 12146.4, + "probability": 0.7661 + }, + { + "start": 12147.76, + "end": 12150.8, + "probability": 0.9944 + }, + { + "start": 12151.5, + "end": 12154.42, + "probability": 0.9873 + }, + { + "start": 12154.42, + "end": 12156.54, + "probability": 0.7445 + }, + { + "start": 12157.46, + "end": 12157.56, + "probability": 0.8411 + }, + { + "start": 12158.24, + "end": 12160.82, + "probability": 0.9557 + }, + { + "start": 12160.96, + "end": 12162.56, + "probability": 0.9728 + }, + { + "start": 12164.07, + "end": 12164.69, + "probability": 0.556 + }, + { + "start": 12166.36, + "end": 12167.7, + "probability": 0.6975 + }, + { + "start": 12167.94, + "end": 12168.8, + "probability": 0.8885 + }, + { + "start": 12169.36, + "end": 12172.56, + "probability": 0.9793 + }, + { + "start": 12172.66, + "end": 12174.0, + "probability": 0.936 + }, + { + "start": 12174.24, + "end": 12174.26, + "probability": 0.325 + }, + { + "start": 12174.26, + "end": 12175.44, + "probability": 0.8623 + }, + { + "start": 12176.92, + "end": 12177.7, + "probability": 0.397 + }, + { + "start": 12178.41, + "end": 12180.58, + "probability": 0.5542 + }, + { + "start": 12181.02, + "end": 12181.5, + "probability": 0.3284 + }, + { + "start": 12181.62, + "end": 12182.44, + "probability": 0.585 + }, + { + "start": 12182.46, + "end": 12184.18, + "probability": 0.8745 + }, + { + "start": 12184.22, + "end": 12187.42, + "probability": 0.7629 + }, + { + "start": 12188.24, + "end": 12191.14, + "probability": 0.8754 + }, + { + "start": 12191.86, + "end": 12197.34, + "probability": 0.6795 + }, + { + "start": 12197.66, + "end": 12200.28, + "probability": 0.9645 + }, + { + "start": 12201.02, + "end": 12202.12, + "probability": 0.7647 + }, + { + "start": 12202.72, + "end": 12204.66, + "probability": 0.8439 + }, + { + "start": 12205.36, + "end": 12206.06, + "probability": 0.7502 + }, + { + "start": 12206.84, + "end": 12208.82, + "probability": 0.8917 + }, + { + "start": 12209.38, + "end": 12211.3, + "probability": 0.9971 + }, + { + "start": 12212.32, + "end": 12213.16, + "probability": 0.876 + }, + { + "start": 12215.06, + "end": 12216.88, + "probability": 0.978 + }, + { + "start": 12217.74, + "end": 12219.56, + "probability": 0.9839 + }, + { + "start": 12220.24, + "end": 12220.84, + "probability": 0.8334 + }, + { + "start": 12222.46, + "end": 12222.82, + "probability": 0.9226 + }, + { + "start": 12222.92, + "end": 12223.38, + "probability": 0.7656 + }, + { + "start": 12223.38, + "end": 12223.96, + "probability": 0.7242 + }, + { + "start": 12224.06, + "end": 12226.64, + "probability": 0.9653 + }, + { + "start": 12227.14, + "end": 12227.49, + "probability": 0.5106 + }, + { + "start": 12229.78, + "end": 12235.0, + "probability": 0.9829 + }, + { + "start": 12237.04, + "end": 12238.65, + "probability": 0.9399 + }, + { + "start": 12239.36, + "end": 12242.28, + "probability": 0.9758 + }, + { + "start": 12243.12, + "end": 12244.24, + "probability": 0.8077 + }, + { + "start": 12244.82, + "end": 12246.44, + "probability": 0.7399 + }, + { + "start": 12246.98, + "end": 12250.76, + "probability": 0.9271 + }, + { + "start": 12251.48, + "end": 12252.96, + "probability": 0.9957 + }, + { + "start": 12253.48, + "end": 12254.6, + "probability": 0.8792 + }, + { + "start": 12255.28, + "end": 12257.48, + "probability": 0.7153 + }, + { + "start": 12259.54, + "end": 12260.9, + "probability": 0.9419 + }, + { + "start": 12261.76, + "end": 12262.78, + "probability": 0.9961 + }, + { + "start": 12264.12, + "end": 12266.0, + "probability": 0.9956 + }, + { + "start": 12266.9, + "end": 12268.4, + "probability": 0.9763 + }, + { + "start": 12270.54, + "end": 12272.66, + "probability": 0.5854 + }, + { + "start": 12276.1, + "end": 12277.78, + "probability": 0.9565 + }, + { + "start": 12279.4, + "end": 12280.54, + "probability": 0.7035 + }, + { + "start": 12281.82, + "end": 12282.54, + "probability": 0.9355 + }, + { + "start": 12283.56, + "end": 12286.9, + "probability": 0.9014 + }, + { + "start": 12287.34, + "end": 12290.28, + "probability": 0.9889 + }, + { + "start": 12290.82, + "end": 12292.66, + "probability": 0.9161 + }, + { + "start": 12294.4, + "end": 12294.76, + "probability": 0.7594 + }, + { + "start": 12296.28, + "end": 12299.56, + "probability": 0.9957 + }, + { + "start": 12300.94, + "end": 12301.08, + "probability": 0.9139 + }, + { + "start": 12303.12, + "end": 12303.64, + "probability": 0.9232 + }, + { + "start": 12304.9, + "end": 12308.02, + "probability": 0.7438 + }, + { + "start": 12308.96, + "end": 12312.26, + "probability": 0.9739 + }, + { + "start": 12312.9, + "end": 12316.26, + "probability": 0.8453 + }, + { + "start": 12317.04, + "end": 12317.94, + "probability": 0.7339 + }, + { + "start": 12320.1, + "end": 12320.9, + "probability": 0.9149 + }, + { + "start": 12322.44, + "end": 12324.08, + "probability": 0.5404 + }, + { + "start": 12325.96, + "end": 12327.48, + "probability": 0.9971 + }, + { + "start": 12328.68, + "end": 12331.04, + "probability": 0.7517 + }, + { + "start": 12335.3, + "end": 12336.26, + "probability": 0.8835 + }, + { + "start": 12338.48, + "end": 12340.26, + "probability": 0.9276 + }, + { + "start": 12340.28, + "end": 12342.44, + "probability": 0.8295 + }, + { + "start": 12344.6, + "end": 12344.88, + "probability": 0.3793 + }, + { + "start": 12345.5, + "end": 12347.54, + "probability": 0.9822 + }, + { + "start": 12347.6, + "end": 12348.52, + "probability": 0.9347 + }, + { + "start": 12348.56, + "end": 12349.6, + "probability": 0.9019 + }, + { + "start": 12350.62, + "end": 12353.3, + "probability": 0.978 + }, + { + "start": 12355.74, + "end": 12359.38, + "probability": 0.9937 + }, + { + "start": 12359.38, + "end": 12363.02, + "probability": 0.9991 + }, + { + "start": 12363.18, + "end": 12364.86, + "probability": 0.9663 + }, + { + "start": 12366.1, + "end": 12366.58, + "probability": 0.9105 + }, + { + "start": 12367.3, + "end": 12369.4, + "probability": 0.8127 + }, + { + "start": 12369.62, + "end": 12370.48, + "probability": 0.7583 + }, + { + "start": 12372.38, + "end": 12372.86, + "probability": 0.6025 + }, + { + "start": 12373.9, + "end": 12374.18, + "probability": 0.9626 + }, + { + "start": 12375.92, + "end": 12378.74, + "probability": 0.9665 + }, + { + "start": 12380.24, + "end": 12383.04, + "probability": 0.9712 + }, + { + "start": 12383.2, + "end": 12383.92, + "probability": 0.3033 + }, + { + "start": 12384.42, + "end": 12385.5, + "probability": 0.9549 + }, + { + "start": 12387.86, + "end": 12390.04, + "probability": 0.8624 + }, + { + "start": 12390.16, + "end": 12395.24, + "probability": 0.9173 + }, + { + "start": 12397.06, + "end": 12401.08, + "probability": 0.9563 + }, + { + "start": 12402.08, + "end": 12403.52, + "probability": 0.8078 + }, + { + "start": 12404.08, + "end": 12405.84, + "probability": 0.9941 + }, + { + "start": 12406.92, + "end": 12412.98, + "probability": 0.9631 + }, + { + "start": 12414.7, + "end": 12416.2, + "probability": 0.9464 + }, + { + "start": 12417.06, + "end": 12418.82, + "probability": 0.9838 + }, + { + "start": 12421.32, + "end": 12422.74, + "probability": 0.9869 + }, + { + "start": 12422.86, + "end": 12425.34, + "probability": 0.9836 + }, + { + "start": 12426.16, + "end": 12429.36, + "probability": 0.979 + }, + { + "start": 12429.88, + "end": 12432.28, + "probability": 0.9062 + }, + { + "start": 12432.96, + "end": 12433.74, + "probability": 0.9866 + }, + { + "start": 12434.58, + "end": 12435.5, + "probability": 0.9629 + }, + { + "start": 12435.62, + "end": 12440.84, + "probability": 0.9611 + }, + { + "start": 12440.98, + "end": 12442.1, + "probability": 0.7427 + }, + { + "start": 12442.26, + "end": 12443.98, + "probability": 0.9318 + }, + { + "start": 12444.92, + "end": 12447.26, + "probability": 0.9407 + }, + { + "start": 12447.26, + "end": 12450.01, + "probability": 0.8988 + }, + { + "start": 12451.72, + "end": 12453.78, + "probability": 0.9508 + }, + { + "start": 12454.4, + "end": 12456.1, + "probability": 0.9895 + }, + { + "start": 12456.66, + "end": 12458.76, + "probability": 0.9572 + }, + { + "start": 12460.3, + "end": 12462.46, + "probability": 0.7896 + }, + { + "start": 12462.54, + "end": 12465.7, + "probability": 0.7759 + }, + { + "start": 12465.7, + "end": 12468.92, + "probability": 0.9901 + }, + { + "start": 12469.6, + "end": 12470.96, + "probability": 0.9897 + }, + { + "start": 12472.36, + "end": 12473.18, + "probability": 0.9829 + }, + { + "start": 12474.14, + "end": 12477.08, + "probability": 0.9155 + }, + { + "start": 12478.34, + "end": 12481.52, + "probability": 0.8429 + }, + { + "start": 12482.74, + "end": 12486.24, + "probability": 0.9915 + }, + { + "start": 12488.36, + "end": 12489.72, + "probability": 0.9533 + }, + { + "start": 12490.7, + "end": 12492.64, + "probability": 0.9836 + }, + { + "start": 12492.72, + "end": 12495.54, + "probability": 0.9983 + }, + { + "start": 12496.56, + "end": 12498.92, + "probability": 0.7939 + }, + { + "start": 12500.64, + "end": 12505.06, + "probability": 0.993 + }, + { + "start": 12505.06, + "end": 12510.08, + "probability": 0.9965 + }, + { + "start": 12510.36, + "end": 12512.6, + "probability": 0.5283 + }, + { + "start": 12512.6, + "end": 12513.26, + "probability": 0.4863 + }, + { + "start": 12513.54, + "end": 12515.74, + "probability": 0.8519 + }, + { + "start": 12519.56, + "end": 12519.68, + "probability": 0.7257 + }, + { + "start": 12519.78, + "end": 12523.34, + "probability": 0.8004 + }, + { + "start": 12524.1, + "end": 12527.26, + "probability": 0.8989 + }, + { + "start": 12527.36, + "end": 12528.6, + "probability": 0.9878 + }, + { + "start": 12532.36, + "end": 12535.42, + "probability": 0.4079 + }, + { + "start": 12537.96, + "end": 12538.54, + "probability": 0.6285 + }, + { + "start": 12539.6, + "end": 12540.58, + "probability": 0.5968 + }, + { + "start": 12542.0, + "end": 12543.12, + "probability": 0.827 + }, + { + "start": 12543.84, + "end": 12544.52, + "probability": 0.706 + }, + { + "start": 12546.08, + "end": 12549.32, + "probability": 0.9777 + }, + { + "start": 12549.98, + "end": 12550.86, + "probability": 0.9074 + }, + { + "start": 12553.02, + "end": 12554.42, + "probability": 0.8231 + }, + { + "start": 12554.48, + "end": 12557.98, + "probability": 0.7797 + }, + { + "start": 12558.12, + "end": 12562.48, + "probability": 0.9094 + }, + { + "start": 12565.14, + "end": 12565.66, + "probability": 0.5352 + }, + { + "start": 12567.06, + "end": 12573.04, + "probability": 0.9878 + }, + { + "start": 12575.8, + "end": 12576.9, + "probability": 0.7456 + }, + { + "start": 12577.04, + "end": 12578.12, + "probability": 0.631 + }, + { + "start": 12578.2, + "end": 12584.26, + "probability": 0.9953 + }, + { + "start": 12585.56, + "end": 12587.66, + "probability": 0.6704 + }, + { + "start": 12588.26, + "end": 12588.78, + "probability": 0.9001 + }, + { + "start": 12589.36, + "end": 12593.6, + "probability": 0.9681 + }, + { + "start": 12594.3, + "end": 12595.66, + "probability": 0.9876 + }, + { + "start": 12597.76, + "end": 12598.5, + "probability": 0.9654 + }, + { + "start": 12599.88, + "end": 12601.46, + "probability": 0.9593 + }, + { + "start": 12603.94, + "end": 12607.76, + "probability": 0.9651 + }, + { + "start": 12608.36, + "end": 12609.1, + "probability": 0.9319 + }, + { + "start": 12610.06, + "end": 12610.66, + "probability": 0.8582 + }, + { + "start": 12611.74, + "end": 12614.96, + "probability": 0.8624 + }, + { + "start": 12615.92, + "end": 12616.78, + "probability": 0.7518 + }, + { + "start": 12619.12, + "end": 12619.68, + "probability": 0.7308 + }, + { + "start": 12622.4, + "end": 12625.48, + "probability": 0.8226 + }, + { + "start": 12626.5, + "end": 12628.62, + "probability": 0.951 + }, + { + "start": 12629.22, + "end": 12630.74, + "probability": 0.6084 + }, + { + "start": 12632.5, + "end": 12634.94, + "probability": 0.9883 + }, + { + "start": 12635.04, + "end": 12636.6, + "probability": 0.99 + }, + { + "start": 12637.64, + "end": 12639.22, + "probability": 0.9463 + }, + { + "start": 12640.4, + "end": 12642.7, + "probability": 0.9592 + }, + { + "start": 12645.52, + "end": 12645.96, + "probability": 0.7455 + }, + { + "start": 12646.2, + "end": 12650.62, + "probability": 0.9526 + }, + { + "start": 12650.62, + "end": 12657.16, + "probability": 0.9153 + }, + { + "start": 12658.74, + "end": 12663.2, + "probability": 0.9814 + }, + { + "start": 12664.46, + "end": 12666.08, + "probability": 0.9976 + }, + { + "start": 12666.84, + "end": 12668.84, + "probability": 0.9137 + }, + { + "start": 12670.52, + "end": 12671.3, + "probability": 0.6518 + }, + { + "start": 12672.36, + "end": 12675.56, + "probability": 0.9707 + }, + { + "start": 12676.7, + "end": 12680.82, + "probability": 0.9922 + }, + { + "start": 12683.66, + "end": 12684.84, + "probability": 0.9471 + }, + { + "start": 12686.18, + "end": 12687.56, + "probability": 0.9944 + }, + { + "start": 12688.64, + "end": 12689.4, + "probability": 0.6126 + }, + { + "start": 12690.26, + "end": 12691.1, + "probability": 0.9943 + }, + { + "start": 12692.1, + "end": 12694.58, + "probability": 0.969 + }, + { + "start": 12695.96, + "end": 12698.62, + "probability": 0.7912 + }, + { + "start": 12699.92, + "end": 12701.3, + "probability": 0.9985 + }, + { + "start": 12703.72, + "end": 12707.02, + "probability": 0.9966 + }, + { + "start": 12708.76, + "end": 12709.74, + "probability": 0.8737 + }, + { + "start": 12713.86, + "end": 12714.52, + "probability": 0.78 + }, + { + "start": 12716.24, + "end": 12721.1, + "probability": 0.8302 + }, + { + "start": 12721.1, + "end": 12723.64, + "probability": 0.8462 + }, + { + "start": 12725.22, + "end": 12726.78, + "probability": 0.89 + }, + { + "start": 12726.96, + "end": 12728.5, + "probability": 0.9122 + }, + { + "start": 12729.66, + "end": 12732.78, + "probability": 0.9427 + }, + { + "start": 12734.52, + "end": 12735.18, + "probability": 0.7498 + }, + { + "start": 12735.46, + "end": 12739.36, + "probability": 0.8987 + }, + { + "start": 12739.46, + "end": 12744.0, + "probability": 0.9246 + }, + { + "start": 12745.8, + "end": 12749.8, + "probability": 0.9144 + }, + { + "start": 12751.3, + "end": 12753.48, + "probability": 0.7492 + }, + { + "start": 12754.22, + "end": 12755.76, + "probability": 0.7108 + }, + { + "start": 12757.7, + "end": 12760.48, + "probability": 0.9948 + }, + { + "start": 12761.04, + "end": 12763.82, + "probability": 0.9856 + }, + { + "start": 12764.36, + "end": 12767.42, + "probability": 0.9969 + }, + { + "start": 12768.3, + "end": 12772.14, + "probability": 0.9254 + }, + { + "start": 12772.64, + "end": 12776.94, + "probability": 0.997 + }, + { + "start": 12776.94, + "end": 12779.26, + "probability": 0.9614 + }, + { + "start": 12780.8, + "end": 12782.28, + "probability": 0.8132 + }, + { + "start": 12784.32, + "end": 12787.46, + "probability": 0.9984 + }, + { + "start": 12788.22, + "end": 12793.12, + "probability": 0.9897 + }, + { + "start": 12796.14, + "end": 12800.24, + "probability": 0.9696 + }, + { + "start": 12801.28, + "end": 12802.5, + "probability": 0.9725 + }, + { + "start": 12803.38, + "end": 12804.92, + "probability": 0.9537 + }, + { + "start": 12805.66, + "end": 12806.8, + "probability": 0.8826 + }, + { + "start": 12807.9, + "end": 12808.5, + "probability": 0.8918 + }, + { + "start": 12810.22, + "end": 12810.9, + "probability": 0.9406 + }, + { + "start": 12812.0, + "end": 12812.82, + "probability": 0.8755 + }, + { + "start": 12814.12, + "end": 12815.46, + "probability": 0.9136 + }, + { + "start": 12816.58, + "end": 12817.16, + "probability": 0.7974 + }, + { + "start": 12818.34, + "end": 12820.72, + "probability": 0.9582 + }, + { + "start": 12821.5, + "end": 12824.02, + "probability": 0.999 + }, + { + "start": 12825.14, + "end": 12828.08, + "probability": 0.6955 + }, + { + "start": 12829.24, + "end": 12831.24, + "probability": 0.9888 + }, + { + "start": 12832.58, + "end": 12837.66, + "probability": 0.9995 + }, + { + "start": 12838.44, + "end": 12839.88, + "probability": 0.9865 + }, + { + "start": 12840.9, + "end": 12844.82, + "probability": 0.7979 + }, + { + "start": 12845.5, + "end": 12848.9, + "probability": 0.9954 + }, + { + "start": 12849.54, + "end": 12850.68, + "probability": 0.8494 + }, + { + "start": 12852.64, + "end": 12855.0, + "probability": 0.7992 + }, + { + "start": 12855.32, + "end": 12855.7, + "probability": 0.7276 + }, + { + "start": 12855.88, + "end": 12857.14, + "probability": 0.9624 + }, + { + "start": 12857.3, + "end": 12857.6, + "probability": 0.5388 + }, + { + "start": 12857.74, + "end": 12859.62, + "probability": 0.7289 + }, + { + "start": 12860.72, + "end": 12864.78, + "probability": 0.635 + }, + { + "start": 12865.58, + "end": 12866.2, + "probability": 0.9053 + }, + { + "start": 12869.42, + "end": 12872.06, + "probability": 0.7607 + }, + { + "start": 12873.12, + "end": 12875.04, + "probability": 0.9788 + }, + { + "start": 12875.56, + "end": 12876.0, + "probability": 0.9775 + }, + { + "start": 12877.42, + "end": 12881.55, + "probability": 0.9939 + }, + { + "start": 12882.5, + "end": 12883.36, + "probability": 0.7246 + }, + { + "start": 12883.4, + "end": 12884.08, + "probability": 0.7248 + }, + { + "start": 12884.32, + "end": 12888.5, + "probability": 0.99 + }, + { + "start": 12889.4, + "end": 12889.72, + "probability": 0.97 + }, + { + "start": 12891.3, + "end": 12892.02, + "probability": 0.7083 + }, + { + "start": 12892.88, + "end": 12896.26, + "probability": 0.6565 + }, + { + "start": 12896.82, + "end": 12897.16, + "probability": 0.2243 + }, + { + "start": 12898.6, + "end": 12900.52, + "probability": 0.8702 + }, + { + "start": 12901.44, + "end": 12903.42, + "probability": 0.9877 + }, + { + "start": 12905.58, + "end": 12909.16, + "probability": 0.9646 + }, + { + "start": 12909.16, + "end": 12914.22, + "probability": 0.9774 + }, + { + "start": 12914.74, + "end": 12917.44, + "probability": 0.9971 + }, + { + "start": 12918.18, + "end": 12919.96, + "probability": 0.998 + }, + { + "start": 12920.5, + "end": 12921.4, + "probability": 0.9261 + }, + { + "start": 12924.52, + "end": 12924.86, + "probability": 0.7375 + }, + { + "start": 12926.12, + "end": 12932.0, + "probability": 0.9919 + }, + { + "start": 12932.52, + "end": 12939.88, + "probability": 0.9958 + }, + { + "start": 12940.6, + "end": 12942.28, + "probability": 0.8563 + }, + { + "start": 12944.08, + "end": 12945.52, + "probability": 0.671 + }, + { + "start": 12946.56, + "end": 12947.48, + "probability": 0.6911 + }, + { + "start": 12948.28, + "end": 12952.01, + "probability": 0.9893 + }, + { + "start": 12952.94, + "end": 12953.6, + "probability": 0.9929 + }, + { + "start": 12954.88, + "end": 12958.06, + "probability": 0.9955 + }, + { + "start": 12958.7, + "end": 12959.96, + "probability": 0.9937 + }, + { + "start": 12961.5, + "end": 12966.82, + "probability": 0.9894 + }, + { + "start": 12967.52, + "end": 12969.42, + "probability": 0.9479 + }, + { + "start": 12969.82, + "end": 12974.34, + "probability": 0.9879 + }, + { + "start": 12975.66, + "end": 12977.72, + "probability": 0.9827 + }, + { + "start": 12978.1, + "end": 12978.32, + "probability": 0.9478 + }, + { + "start": 12978.42, + "end": 12980.84, + "probability": 0.9946 + }, + { + "start": 12980.94, + "end": 12984.58, + "probability": 0.9904 + }, + { + "start": 12985.28, + "end": 12988.58, + "probability": 0.9184 + }, + { + "start": 12990.08, + "end": 12996.76, + "probability": 0.9673 + }, + { + "start": 12997.28, + "end": 12997.86, + "probability": 0.9792 + }, + { + "start": 12998.56, + "end": 13000.46, + "probability": 0.9969 + }, + { + "start": 13001.12, + "end": 13001.76, + "probability": 0.9907 + }, + { + "start": 13002.6, + "end": 13004.86, + "probability": 0.8224 + }, + { + "start": 13006.18, + "end": 13007.3, + "probability": 0.7634 + }, + { + "start": 13008.14, + "end": 13008.7, + "probability": 0.3399 + }, + { + "start": 13010.36, + "end": 13011.5, + "probability": 0.9136 + }, + { + "start": 13014.0, + "end": 13015.0, + "probability": 0.9328 + }, + { + "start": 13017.24, + "end": 13018.16, + "probability": 0.8365 + }, + { + "start": 13018.2, + "end": 13022.16, + "probability": 0.9656 + }, + { + "start": 13022.44, + "end": 13023.34, + "probability": 0.6301 + }, + { + "start": 13024.42, + "end": 13025.24, + "probability": 0.9995 + }, + { + "start": 13025.82, + "end": 13027.96, + "probability": 0.9222 + }, + { + "start": 13028.9, + "end": 13032.88, + "probability": 0.9744 + }, + { + "start": 13033.92, + "end": 13034.4, + "probability": 0.9717 + }, + { + "start": 13036.6, + "end": 13037.84, + "probability": 0.9528 + }, + { + "start": 13038.38, + "end": 13042.5, + "probability": 0.8971 + }, + { + "start": 13043.4, + "end": 13047.66, + "probability": 0.8413 + }, + { + "start": 13049.08, + "end": 13049.7, + "probability": 0.9385 + }, + { + "start": 13051.24, + "end": 13054.08, + "probability": 0.9707 + }, + { + "start": 13055.56, + "end": 13061.34, + "probability": 0.9878 + }, + { + "start": 13062.72, + "end": 13063.4, + "probability": 0.994 + }, + { + "start": 13065.2, + "end": 13065.98, + "probability": 0.9788 + }, + { + "start": 13067.46, + "end": 13069.92, + "probability": 0.7378 + }, + { + "start": 13071.3, + "end": 13075.06, + "probability": 0.9494 + }, + { + "start": 13076.18, + "end": 13076.78, + "probability": 0.8946 + }, + { + "start": 13077.9, + "end": 13080.2, + "probability": 0.8004 + }, + { + "start": 13081.78, + "end": 13087.08, + "probability": 0.9823 + }, + { + "start": 13087.56, + "end": 13088.0, + "probability": 0.7689 + }, + { + "start": 13088.7, + "end": 13089.76, + "probability": 0.8431 + }, + { + "start": 13090.38, + "end": 13091.74, + "probability": 0.9841 + }, + { + "start": 13092.68, + "end": 13093.54, + "probability": 0.8827 + }, + { + "start": 13094.32, + "end": 13095.08, + "probability": 0.9995 + }, + { + "start": 13096.02, + "end": 13099.76, + "probability": 0.8584 + }, + { + "start": 13100.76, + "end": 13106.58, + "probability": 0.9976 + }, + { + "start": 13107.44, + "end": 13111.14, + "probability": 0.8976 + }, + { + "start": 13112.26, + "end": 13114.84, + "probability": 0.9941 + }, + { + "start": 13115.36, + "end": 13116.76, + "probability": 0.8331 + }, + { + "start": 13118.02, + "end": 13120.16, + "probability": 0.9802 + }, + { + "start": 13121.84, + "end": 13124.82, + "probability": 0.9976 + }, + { + "start": 13124.94, + "end": 13125.82, + "probability": 0.9951 + }, + { + "start": 13126.64, + "end": 13127.04, + "probability": 0.9719 + }, + { + "start": 13128.1, + "end": 13130.78, + "probability": 0.8364 + }, + { + "start": 13131.82, + "end": 13134.8, + "probability": 0.9942 + }, + { + "start": 13137.64, + "end": 13143.38, + "probability": 0.9915 + }, + { + "start": 13144.66, + "end": 13145.58, + "probability": 0.5328 + }, + { + "start": 13147.28, + "end": 13148.12, + "probability": 0.6833 + }, + { + "start": 13149.6, + "end": 13152.26, + "probability": 0.7316 + }, + { + "start": 13153.5, + "end": 13154.0, + "probability": 0.7549 + }, + { + "start": 13154.22, + "end": 13159.68, + "probability": 0.9918 + }, + { + "start": 13161.98, + "end": 13162.68, + "probability": 0.7749 + }, + { + "start": 13162.76, + "end": 13162.96, + "probability": 0.955 + }, + { + "start": 13163.12, + "end": 13166.6, + "probability": 0.962 + }, + { + "start": 13166.86, + "end": 13169.34, + "probability": 0.9941 + }, + { + "start": 13170.0, + "end": 13171.42, + "probability": 0.6945 + }, + { + "start": 13172.4, + "end": 13173.98, + "probability": 0.9552 + }, + { + "start": 13174.82, + "end": 13176.12, + "probability": 0.972 + }, + { + "start": 13177.78, + "end": 13178.22, + "probability": 0.8997 + }, + { + "start": 13178.28, + "end": 13184.02, + "probability": 0.912 + }, + { + "start": 13184.28, + "end": 13184.88, + "probability": 0.9591 + }, + { + "start": 13185.18, + "end": 13185.96, + "probability": 0.7722 + }, + { + "start": 13187.8, + "end": 13190.5, + "probability": 0.9927 + }, + { + "start": 13191.88, + "end": 13195.66, + "probability": 0.9139 + }, + { + "start": 13198.08, + "end": 13200.08, + "probability": 0.7472 + }, + { + "start": 13200.52, + "end": 13202.86, + "probability": 0.772 + }, + { + "start": 13204.06, + "end": 13206.02, + "probability": 0.9136 + }, + { + "start": 13207.58, + "end": 13209.66, + "probability": 0.9872 + }, + { + "start": 13209.98, + "end": 13211.08, + "probability": 0.8967 + }, + { + "start": 13212.06, + "end": 13213.12, + "probability": 0.8516 + }, + { + "start": 13213.56, + "end": 13216.12, + "probability": 0.9325 + }, + { + "start": 13216.6, + "end": 13217.84, + "probability": 0.8162 + }, + { + "start": 13219.55, + "end": 13222.02, + "probability": 0.8455 + }, + { + "start": 13222.98, + "end": 13224.74, + "probability": 0.6779 + }, + { + "start": 13226.0, + "end": 13226.54, + "probability": 0.7871 + }, + { + "start": 13226.78, + "end": 13227.62, + "probability": 0.5907 + }, + { + "start": 13227.76, + "end": 13228.66, + "probability": 0.3499 + }, + { + "start": 13229.08, + "end": 13233.36, + "probability": 0.6296 + }, + { + "start": 13233.48, + "end": 13234.46, + "probability": 0.8707 + }, + { + "start": 13235.64, + "end": 13238.92, + "probability": 0.7998 + }, + { + "start": 13239.44, + "end": 13241.06, + "probability": 0.0326 + }, + { + "start": 13241.32, + "end": 13242.04, + "probability": 0.4084 + }, + { + "start": 13242.82, + "end": 13243.94, + "probability": 0.8012 + }, + { + "start": 13244.08, + "end": 13244.8, + "probability": 0.8579 + }, + { + "start": 13245.24, + "end": 13248.92, + "probability": 0.8516 + }, + { + "start": 13251.36, + "end": 13254.12, + "probability": 0.6414 + }, + { + "start": 13254.68, + "end": 13256.26, + "probability": 0.5797 + }, + { + "start": 13257.14, + "end": 13261.28, + "probability": 0.9778 + }, + { + "start": 13261.3, + "end": 13268.3, + "probability": 0.9909 + }, + { + "start": 13270.78, + "end": 13273.03, + "probability": 0.978 + }, + { + "start": 13275.43, + "end": 13280.16, + "probability": 0.7935 + }, + { + "start": 13281.26, + "end": 13281.84, + "probability": 0.8876 + }, + { + "start": 13283.52, + "end": 13284.76, + "probability": 0.9884 + }, + { + "start": 13289.5, + "end": 13292.92, + "probability": 0.9971 + }, + { + "start": 13294.18, + "end": 13294.64, + "probability": 0.6447 + }, + { + "start": 13294.74, + "end": 13298.02, + "probability": 0.9246 + }, + { + "start": 13299.3, + "end": 13301.54, + "probability": 0.9263 + }, + { + "start": 13302.26, + "end": 13304.26, + "probability": 0.8836 + }, + { + "start": 13306.9, + "end": 13307.98, + "probability": 0.7958 + }, + { + "start": 13309.46, + "end": 13310.52, + "probability": 0.9293 + }, + { + "start": 13311.92, + "end": 13312.54, + "probability": 0.528 + }, + { + "start": 13313.16, + "end": 13313.94, + "probability": 0.9547 + }, + { + "start": 13314.74, + "end": 13316.98, + "probability": 0.5651 + }, + { + "start": 13317.14, + "end": 13320.3, + "probability": 0.9848 + }, + { + "start": 13321.64, + "end": 13325.66, + "probability": 0.8697 + }, + { + "start": 13327.0, + "end": 13330.44, + "probability": 0.9688 + }, + { + "start": 13331.48, + "end": 13335.82, + "probability": 0.6619 + }, + { + "start": 13337.24, + "end": 13339.76, + "probability": 0.9664 + }, + { + "start": 13340.36, + "end": 13342.24, + "probability": 0.6625 + }, + { + "start": 13343.04, + "end": 13348.86, + "probability": 0.9766 + }, + { + "start": 13349.18, + "end": 13352.8, + "probability": 0.9258 + }, + { + "start": 13354.84, + "end": 13358.6, + "probability": 0.9813 + }, + { + "start": 13359.18, + "end": 13360.54, + "probability": 0.9581 + }, + { + "start": 13362.08, + "end": 13363.78, + "probability": 0.9813 + }, + { + "start": 13364.78, + "end": 13365.64, + "probability": 0.8731 + }, + { + "start": 13366.84, + "end": 13367.88, + "probability": 0.9761 + }, + { + "start": 13369.0, + "end": 13373.48, + "probability": 0.7372 + }, + { + "start": 13374.06, + "end": 13376.1, + "probability": 0.9895 + }, + { + "start": 13376.62, + "end": 13381.14, + "probability": 0.978 + }, + { + "start": 13382.4, + "end": 13383.26, + "probability": 0.712 + }, + { + "start": 13384.4, + "end": 13385.16, + "probability": 0.9775 + }, + { + "start": 13386.18, + "end": 13386.82, + "probability": 0.9857 + }, + { + "start": 13389.62, + "end": 13390.18, + "probability": 0.5012 + }, + { + "start": 13390.84, + "end": 13390.94, + "probability": 0.9921 + }, + { + "start": 13392.9, + "end": 13395.16, + "probability": 0.9827 + }, + { + "start": 13395.86, + "end": 13396.8, + "probability": 0.9553 + }, + { + "start": 13397.8, + "end": 13398.68, + "probability": 0.8337 + }, + { + "start": 13398.88, + "end": 13399.2, + "probability": 0.9182 + }, + { + "start": 13399.72, + "end": 13401.78, + "probability": 0.994 + }, + { + "start": 13402.56, + "end": 13404.6, + "probability": 0.984 + }, + { + "start": 13406.1, + "end": 13409.58, + "probability": 0.8933 + }, + { + "start": 13411.18, + "end": 13412.5, + "probability": 0.7612 + }, + { + "start": 13413.34, + "end": 13415.14, + "probability": 0.4335 + }, + { + "start": 13415.9, + "end": 13416.54, + "probability": 0.3494 + }, + { + "start": 13417.8, + "end": 13417.9, + "probability": 0.6587 + }, + { + "start": 13418.5, + "end": 13418.94, + "probability": 0.774 + }, + { + "start": 13419.64, + "end": 13423.12, + "probability": 0.7616 + }, + { + "start": 13424.34, + "end": 13424.94, + "probability": 0.9051 + }, + { + "start": 13426.44, + "end": 13427.76, + "probability": 0.9766 + }, + { + "start": 13430.82, + "end": 13431.82, + "probability": 0.9488 + }, + { + "start": 13432.86, + "end": 13435.36, + "probability": 0.9949 + }, + { + "start": 13438.1, + "end": 13438.1, + "probability": 0.3572 + }, + { + "start": 13438.68, + "end": 13442.16, + "probability": 0.9913 + }, + { + "start": 13442.24, + "end": 13446.6, + "probability": 0.709 + }, + { + "start": 13447.02, + "end": 13447.4, + "probability": 0.705 + }, + { + "start": 13447.48, + "end": 13448.16, + "probability": 0.8869 + }, + { + "start": 13452.9, + "end": 13453.54, + "probability": 0.6683 + }, + { + "start": 13456.04, + "end": 13457.14, + "probability": 0.9427 + }, + { + "start": 13459.14, + "end": 13460.82, + "probability": 0.999 + }, + { + "start": 13461.58, + "end": 13467.6, + "probability": 0.9902 + }, + { + "start": 13468.28, + "end": 13469.5, + "probability": 0.9546 + }, + { + "start": 13471.2, + "end": 13473.42, + "probability": 0.992 + }, + { + "start": 13474.76, + "end": 13478.68, + "probability": 0.9966 + }, + { + "start": 13479.98, + "end": 13480.72, + "probability": 0.8063 + }, + { + "start": 13481.56, + "end": 13487.28, + "probability": 0.6849 + }, + { + "start": 13488.26, + "end": 13489.28, + "probability": 0.2754 + }, + { + "start": 13489.28, + "end": 13492.46, + "probability": 0.9924 + }, + { + "start": 13493.16, + "end": 13493.9, + "probability": 0.9135 + }, + { + "start": 13495.14, + "end": 13495.78, + "probability": 0.9641 + }, + { + "start": 13496.9, + "end": 13497.78, + "probability": 0.974 + }, + { + "start": 13498.4, + "end": 13499.94, + "probability": 0.7914 + }, + { + "start": 13500.72, + "end": 13503.8, + "probability": 0.9079 + }, + { + "start": 13504.74, + "end": 13509.3, + "probability": 0.9893 + }, + { + "start": 13510.6, + "end": 13511.22, + "probability": 0.8171 + }, + { + "start": 13512.26, + "end": 13513.72, + "probability": 0.9782 + }, + { + "start": 13514.9, + "end": 13516.44, + "probability": 0.8532 + }, + { + "start": 13517.8, + "end": 13518.3, + "probability": 0.8208 + }, + { + "start": 13518.5, + "end": 13518.64, + "probability": 0.2909 + }, + { + "start": 13519.86, + "end": 13522.46, + "probability": 0.9993 + }, + { + "start": 13524.38, + "end": 13525.56, + "probability": 0.7669 + }, + { + "start": 13526.96, + "end": 13527.78, + "probability": 0.9502 + }, + { + "start": 13529.9, + "end": 13531.78, + "probability": 0.6729 + }, + { + "start": 13532.94, + "end": 13534.4, + "probability": 0.7324 + }, + { + "start": 13534.94, + "end": 13535.3, + "probability": 0.7326 + }, + { + "start": 13537.13, + "end": 13537.98, + "probability": 0.9438 + }, + { + "start": 13539.88, + "end": 13543.66, + "probability": 0.7921 + }, + { + "start": 13544.48, + "end": 13548.54, + "probability": 0.9551 + }, + { + "start": 13549.12, + "end": 13550.9, + "probability": 0.9845 + }, + { + "start": 13551.58, + "end": 13557.74, + "probability": 0.9746 + }, + { + "start": 13557.88, + "end": 13558.56, + "probability": 0.9738 + }, + { + "start": 13559.06, + "end": 13564.96, + "probability": 0.9886 + }, + { + "start": 13566.84, + "end": 13569.84, + "probability": 0.9699 + }, + { + "start": 13571.12, + "end": 13571.9, + "probability": 0.9902 + }, + { + "start": 13571.94, + "end": 13574.56, + "probability": 0.9604 + }, + { + "start": 13575.44, + "end": 13580.36, + "probability": 0.9865 + }, + { + "start": 13582.34, + "end": 13584.3, + "probability": 0.7191 + }, + { + "start": 13586.02, + "end": 13590.42, + "probability": 0.9792 + }, + { + "start": 13591.26, + "end": 13593.19, + "probability": 0.9684 + }, + { + "start": 13596.84, + "end": 13602.48, + "probability": 0.8983 + }, + { + "start": 13603.96, + "end": 13606.92, + "probability": 0.793 + }, + { + "start": 13607.84, + "end": 13609.94, + "probability": 0.9852 + }, + { + "start": 13610.88, + "end": 13611.44, + "probability": 0.9604 + }, + { + "start": 13612.84, + "end": 13614.14, + "probability": 0.9305 + }, + { + "start": 13615.62, + "end": 13616.44, + "probability": 0.7534 + }, + { + "start": 13618.44, + "end": 13619.68, + "probability": 0.8765 + }, + { + "start": 13620.18, + "end": 13623.08, + "probability": 0.8179 + }, + { + "start": 13624.38, + "end": 13625.9, + "probability": 0.5579 + }, + { + "start": 13626.88, + "end": 13629.58, + "probability": 0.9069 + }, + { + "start": 13629.72, + "end": 13632.56, + "probability": 0.8975 + }, + { + "start": 13633.6, + "end": 13637.66, + "probability": 0.9661 + }, + { + "start": 13638.26, + "end": 13641.58, + "probability": 0.9702 + }, + { + "start": 13642.7, + "end": 13645.38, + "probability": 0.7206 + }, + { + "start": 13646.18, + "end": 13650.0, + "probability": 0.8503 + }, + { + "start": 13650.54, + "end": 13651.71, + "probability": 0.9961 + }, + { + "start": 13652.94, + "end": 13654.48, + "probability": 0.9525 + }, + { + "start": 13655.6, + "end": 13659.22, + "probability": 0.9111 + }, + { + "start": 13659.4, + "end": 13660.78, + "probability": 0.9844 + }, + { + "start": 13660.98, + "end": 13663.02, + "probability": 0.9988 + }, + { + "start": 13663.88, + "end": 13665.44, + "probability": 0.9689 + }, + { + "start": 13665.76, + "end": 13668.42, + "probability": 0.9854 + }, + { + "start": 13668.92, + "end": 13673.98, + "probability": 0.8264 + }, + { + "start": 13675.44, + "end": 13678.45, + "probability": 0.9251 + }, + { + "start": 13680.56, + "end": 13682.96, + "probability": 0.9718 + }, + { + "start": 13683.38, + "end": 13685.24, + "probability": 0.8001 + }, + { + "start": 13685.74, + "end": 13687.44, + "probability": 0.9237 + }, + { + "start": 13688.06, + "end": 13689.02, + "probability": 0.9263 + }, + { + "start": 13689.94, + "end": 13690.16, + "probability": 0.611 + }, + { + "start": 13690.96, + "end": 13697.96, + "probability": 0.9813 + }, + { + "start": 13699.58, + "end": 13699.72, + "probability": 0.7163 + }, + { + "start": 13699.8, + "end": 13701.76, + "probability": 0.9229 + }, + { + "start": 13701.98, + "end": 13703.36, + "probability": 0.7745 + }, + { + "start": 13703.5, + "end": 13703.64, + "probability": 0.8778 + }, + { + "start": 13704.24, + "end": 13705.74, + "probability": 0.7955 + }, + { + "start": 13706.28, + "end": 13707.18, + "probability": 0.8599 + }, + { + "start": 13708.0, + "end": 13709.58, + "probability": 0.9822 + }, + { + "start": 13710.94, + "end": 13712.32, + "probability": 0.802 + }, + { + "start": 13712.94, + "end": 13715.41, + "probability": 0.944 + }, + { + "start": 13716.2, + "end": 13717.82, + "probability": 0.8666 + }, + { + "start": 13719.6, + "end": 13720.94, + "probability": 0.6139 + }, + { + "start": 13722.42, + "end": 13725.88, + "probability": 0.7752 + }, + { + "start": 13727.26, + "end": 13728.72, + "probability": 0.8888 + }, + { + "start": 13730.3, + "end": 13732.3, + "probability": 0.9858 + }, + { + "start": 13732.98, + "end": 13735.08, + "probability": 0.8548 + }, + { + "start": 13735.78, + "end": 13741.34, + "probability": 0.9695 + }, + { + "start": 13742.88, + "end": 13747.48, + "probability": 0.9984 + }, + { + "start": 13749.08, + "end": 13750.74, + "probability": 0.991 + }, + { + "start": 13751.92, + "end": 13752.64, + "probability": 0.9142 + }, + { + "start": 13753.84, + "end": 13754.6, + "probability": 0.9688 + }, + { + "start": 13755.92, + "end": 13757.18, + "probability": 0.9697 + }, + { + "start": 13759.58, + "end": 13763.08, + "probability": 0.8597 + }, + { + "start": 13764.28, + "end": 13767.48, + "probability": 0.8327 + }, + { + "start": 13767.64, + "end": 13768.96, + "probability": 0.7364 + }, + { + "start": 13770.06, + "end": 13773.46, + "probability": 0.9795 + }, + { + "start": 13776.06, + "end": 13779.68, + "probability": 0.8828 + }, + { + "start": 13781.38, + "end": 13785.12, + "probability": 0.9521 + }, + { + "start": 13785.86, + "end": 13786.12, + "probability": 0.9902 + }, + { + "start": 13786.88, + "end": 13787.6, + "probability": 0.419 + }, + { + "start": 13789.96, + "end": 13791.6, + "probability": 0.9658 + }, + { + "start": 13794.04, + "end": 13796.84, + "probability": 0.8884 + }, + { + "start": 13797.5, + "end": 13798.12, + "probability": 0.8826 + }, + { + "start": 13799.54, + "end": 13800.3, + "probability": 0.9344 + }, + { + "start": 13801.4, + "end": 13803.64, + "probability": 0.9567 + }, + { + "start": 13804.32, + "end": 13806.18, + "probability": 0.9494 + }, + { + "start": 13807.78, + "end": 13811.78, + "probability": 0.9763 + }, + { + "start": 13812.34, + "end": 13813.02, + "probability": 0.7455 + }, + { + "start": 13814.22, + "end": 13817.04, + "probability": 0.9803 + }, + { + "start": 13819.36, + "end": 13822.8, + "probability": 0.9489 + }, + { + "start": 13823.5, + "end": 13826.56, + "probability": 0.9561 + }, + { + "start": 13828.8, + "end": 13831.34, + "probability": 0.9391 + }, + { + "start": 13831.48, + "end": 13833.24, + "probability": 0.9786 + }, + { + "start": 13834.44, + "end": 13838.96, + "probability": 0.8993 + }, + { + "start": 13839.3, + "end": 13843.58, + "probability": 0.6265 + }, + { + "start": 13845.34, + "end": 13848.78, + "probability": 0.8448 + }, + { + "start": 13850.2, + "end": 13852.22, + "probability": 0.8657 + }, + { + "start": 13852.76, + "end": 13857.15, + "probability": 0.8137 + }, + { + "start": 13858.86, + "end": 13860.3, + "probability": 0.5065 + }, + { + "start": 13860.94, + "end": 13864.0, + "probability": 0.7326 + }, + { + "start": 13865.38, + "end": 13867.52, + "probability": 0.965 + }, + { + "start": 13868.86, + "end": 13870.8, + "probability": 0.9854 + }, + { + "start": 13870.8, + "end": 13874.92, + "probability": 0.9934 + }, + { + "start": 13875.46, + "end": 13878.94, + "probability": 0.9985 + }, + { + "start": 13880.68, + "end": 13883.48, + "probability": 0.9954 + }, + { + "start": 13885.84, + "end": 13888.42, + "probability": 0.8866 + }, + { + "start": 13889.24, + "end": 13890.14, + "probability": 0.7522 + }, + { + "start": 13891.42, + "end": 13892.1, + "probability": 0.9888 + }, + { + "start": 13893.3, + "end": 13895.42, + "probability": 0.9384 + }, + { + "start": 13897.58, + "end": 13898.22, + "probability": 0.8848 + }, + { + "start": 13899.18, + "end": 13899.76, + "probability": 0.9941 + }, + { + "start": 13900.84, + "end": 13902.86, + "probability": 0.8314 + }, + { + "start": 13906.38, + "end": 13907.44, + "probability": 0.8544 + }, + { + "start": 13907.98, + "end": 13908.7, + "probability": 0.7179 + }, + { + "start": 13909.52, + "end": 13911.9, + "probability": 0.992 + }, + { + "start": 13913.0, + "end": 13915.5, + "probability": 0.981 + }, + { + "start": 13916.6, + "end": 13918.62, + "probability": 0.9211 + }, + { + "start": 13920.82, + "end": 13926.18, + "probability": 0.9594 + }, + { + "start": 13927.3, + "end": 13930.4, + "probability": 0.9971 + }, + { + "start": 13931.32, + "end": 13932.88, + "probability": 0.9047 + }, + { + "start": 13934.04, + "end": 13935.28, + "probability": 0.6554 + }, + { + "start": 13938.06, + "end": 13941.24, + "probability": 0.9686 + }, + { + "start": 13943.06, + "end": 13944.5, + "probability": 0.8882 + }, + { + "start": 13946.04, + "end": 13947.3, + "probability": 0.5342 + }, + { + "start": 13949.4, + "end": 13950.54, + "probability": 0.6785 + }, + { + "start": 13952.12, + "end": 13952.9, + "probability": 0.6256 + }, + { + "start": 13953.42, + "end": 13956.98, + "probability": 0.7716 + }, + { + "start": 13957.94, + "end": 13959.84, + "probability": 0.6199 + }, + { + "start": 13960.62, + "end": 13964.72, + "probability": 0.9386 + }, + { + "start": 13965.52, + "end": 13965.94, + "probability": 0.7072 + }, + { + "start": 13967.14, + "end": 13970.56, + "probability": 0.9695 + }, + { + "start": 13970.6, + "end": 13970.92, + "probability": 0.8803 + }, + { + "start": 13972.34, + "end": 13973.9, + "probability": 0.6956 + }, + { + "start": 13974.58, + "end": 13975.22, + "probability": 0.729 + }, + { + "start": 13976.34, + "end": 13979.54, + "probability": 0.8913 + }, + { + "start": 13980.7, + "end": 13981.94, + "probability": 0.8421 + }, + { + "start": 13982.48, + "end": 13983.3, + "probability": 0.9016 + }, + { + "start": 13983.94, + "end": 13985.96, + "probability": 0.9858 + }, + { + "start": 13987.0, + "end": 13987.36, + "probability": 0.7409 + }, + { + "start": 13988.82, + "end": 13991.28, + "probability": 0.9271 + }, + { + "start": 13991.4, + "end": 13996.6, + "probability": 0.9143 + }, + { + "start": 13997.56, + "end": 13998.88, + "probability": 0.9065 + }, + { + "start": 13999.64, + "end": 14004.56, + "probability": 0.9038 + }, + { + "start": 14006.42, + "end": 14007.54, + "probability": 0.9679 + }, + { + "start": 14008.48, + "end": 14009.46, + "probability": 0.8799 + }, + { + "start": 14011.86, + "end": 14015.58, + "probability": 0.8377 + }, + { + "start": 14017.08, + "end": 14023.14, + "probability": 0.8911 + }, + { + "start": 14023.9, + "end": 14025.96, + "probability": 0.8352 + }, + { + "start": 14026.58, + "end": 14030.14, + "probability": 0.8855 + }, + { + "start": 14031.04, + "end": 14032.86, + "probability": 0.9454 + }, + { + "start": 14033.42, + "end": 14034.68, + "probability": 0.8752 + }, + { + "start": 14035.32, + "end": 14035.86, + "probability": 0.5517 + }, + { + "start": 14037.88, + "end": 14042.96, + "probability": 0.9787 + }, + { + "start": 14043.86, + "end": 14045.08, + "probability": 0.9611 + }, + { + "start": 14047.06, + "end": 14048.94, + "probability": 0.9946 + }, + { + "start": 14050.42, + "end": 14055.98, + "probability": 0.9917 + }, + { + "start": 14056.3, + "end": 14061.96, + "probability": 0.8456 + }, + { + "start": 14062.16, + "end": 14066.38, + "probability": 0.9675 + }, + { + "start": 14067.66, + "end": 14072.48, + "probability": 0.9532 + }, + { + "start": 14073.32, + "end": 14075.0, + "probability": 0.9987 + }, + { + "start": 14076.36, + "end": 14079.65, + "probability": 0.8525 + }, + { + "start": 14081.06, + "end": 14082.52, + "probability": 0.978 + }, + { + "start": 14083.72, + "end": 14084.28, + "probability": 0.8717 + }, + { + "start": 14086.22, + "end": 14088.3, + "probability": 0.8682 + }, + { + "start": 14089.32, + "end": 14092.94, + "probability": 0.9429 + }, + { + "start": 14094.3, + "end": 14095.5, + "probability": 0.9795 + }, + { + "start": 14096.76, + "end": 14101.18, + "probability": 0.9559 + }, + { + "start": 14102.42, + "end": 14104.14, + "probability": 0.905 + }, + { + "start": 14105.12, + "end": 14106.24, + "probability": 0.8795 + }, + { + "start": 14106.78, + "end": 14109.33, + "probability": 0.9951 + }, + { + "start": 14110.18, + "end": 14112.66, + "probability": 0.9887 + }, + { + "start": 14113.34, + "end": 14113.64, + "probability": 0.4695 + }, + { + "start": 14114.46, + "end": 14115.56, + "probability": 0.9773 + }, + { + "start": 14116.6, + "end": 14119.65, + "probability": 0.9071 + }, + { + "start": 14121.86, + "end": 14123.1, + "probability": 0.9055 + }, + { + "start": 14124.1, + "end": 14125.84, + "probability": 0.6674 + }, + { + "start": 14125.92, + "end": 14126.17, + "probability": 0.7896 + }, + { + "start": 14126.54, + "end": 14126.98, + "probability": 0.8261 + }, + { + "start": 14128.6, + "end": 14132.28, + "probability": 0.9744 + }, + { + "start": 14136.42, + "end": 14136.42, + "probability": 0.0049 + }, + { + "start": 14138.22, + "end": 14139.44, + "probability": 0.971 + }, + { + "start": 14140.7, + "end": 14141.06, + "probability": 0.544 + }, + { + "start": 14142.31, + "end": 14144.94, + "probability": 0.9684 + }, + { + "start": 14145.32, + "end": 14149.48, + "probability": 0.9899 + }, + { + "start": 14150.62, + "end": 14152.14, + "probability": 0.7678 + }, + { + "start": 14153.48, + "end": 14155.22, + "probability": 0.9927 + }, + { + "start": 14156.02, + "end": 14157.56, + "probability": 0.9476 + }, + { + "start": 14159.0, + "end": 14165.18, + "probability": 0.9223 + }, + { + "start": 14166.08, + "end": 14166.78, + "probability": 0.9882 + }, + { + "start": 14167.62, + "end": 14168.66, + "probability": 0.9968 + }, + { + "start": 14170.54, + "end": 14173.16, + "probability": 0.7096 + }, + { + "start": 14173.86, + "end": 14174.22, + "probability": 0.425 + }, + { + "start": 14174.8, + "end": 14179.9, + "probability": 0.9862 + }, + { + "start": 14180.42, + "end": 14180.86, + "probability": 0.455 + }, + { + "start": 14182.08, + "end": 14185.24, + "probability": 0.9653 + }, + { + "start": 14186.26, + "end": 14186.9, + "probability": 0.9575 + }, + { + "start": 14189.42, + "end": 14191.98, + "probability": 0.9927 + }, + { + "start": 14192.86, + "end": 14194.8, + "probability": 0.9766 + }, + { + "start": 14195.44, + "end": 14196.08, + "probability": 0.9834 + }, + { + "start": 14197.28, + "end": 14198.74, + "probability": 0.8786 + }, + { + "start": 14199.82, + "end": 14200.94, + "probability": 0.974 + }, + { + "start": 14201.92, + "end": 14202.78, + "probability": 0.8066 + }, + { + "start": 14203.92, + "end": 14204.42, + "probability": 0.9396 + }, + { + "start": 14204.96, + "end": 14205.9, + "probability": 0.8858 + }, + { + "start": 14206.66, + "end": 14209.32, + "probability": 0.7478 + }, + { + "start": 14212.3, + "end": 14212.78, + "probability": 0.9083 + }, + { + "start": 14214.02, + "end": 14217.38, + "probability": 0.9968 + }, + { + "start": 14218.18, + "end": 14218.34, + "probability": 0.2207 + }, + { + "start": 14219.4, + "end": 14222.58, + "probability": 0.9973 + }, + { + "start": 14223.58, + "end": 14226.34, + "probability": 0.8287 + }, + { + "start": 14228.7, + "end": 14230.3, + "probability": 0.9961 + }, + { + "start": 14232.44, + "end": 14234.14, + "probability": 0.9889 + }, + { + "start": 14235.88, + "end": 14239.27, + "probability": 0.9943 + }, + { + "start": 14241.16, + "end": 14243.06, + "probability": 0.9735 + }, + { + "start": 14244.56, + "end": 14245.92, + "probability": 0.9511 + }, + { + "start": 14247.56, + "end": 14248.1, + "probability": 0.9846 + }, + { + "start": 14252.2, + "end": 14252.82, + "probability": 0.8974 + }, + { + "start": 14255.32, + "end": 14256.64, + "probability": 0.9415 + }, + { + "start": 14257.56, + "end": 14260.68, + "probability": 0.9839 + }, + { + "start": 14261.5, + "end": 14262.58, + "probability": 0.9312 + }, + { + "start": 14264.18, + "end": 14269.3, + "probability": 0.9953 + }, + { + "start": 14270.16, + "end": 14271.62, + "probability": 0.986 + }, + { + "start": 14272.66, + "end": 14275.44, + "probability": 0.9448 + }, + { + "start": 14277.71, + "end": 14280.77, + "probability": 0.8357 + }, + { + "start": 14280.8, + "end": 14283.23, + "probability": 0.9988 + }, + { + "start": 14285.16, + "end": 14287.96, + "probability": 0.9761 + }, + { + "start": 14289.18, + "end": 14290.0, + "probability": 0.9579 + }, + { + "start": 14290.6, + "end": 14291.32, + "probability": 0.902 + }, + { + "start": 14292.28, + "end": 14293.5, + "probability": 0.9386 + }, + { + "start": 14295.86, + "end": 14296.4, + "probability": 0.5511 + }, + { + "start": 14297.42, + "end": 14299.82, + "probability": 0.5991 + }, + { + "start": 14300.74, + "end": 14300.88, + "probability": 0.666 + }, + { + "start": 14300.88, + "end": 14304.06, + "probability": 0.9537 + }, + { + "start": 14304.22, + "end": 14305.06, + "probability": 0.8027 + }, + { + "start": 14305.14, + "end": 14306.16, + "probability": 0.999 + }, + { + "start": 14307.56, + "end": 14308.5, + "probability": 0.998 + }, + { + "start": 14311.44, + "end": 14313.54, + "probability": 0.7847 + }, + { + "start": 14314.44, + "end": 14317.12, + "probability": 0.9972 + }, + { + "start": 14317.12, + "end": 14320.12, + "probability": 0.9973 + }, + { + "start": 14321.42, + "end": 14322.4, + "probability": 0.7846 + }, + { + "start": 14323.28, + "end": 14325.66, + "probability": 0.9907 + }, + { + "start": 14327.62, + "end": 14329.3, + "probability": 0.8588 + }, + { + "start": 14329.98, + "end": 14331.04, + "probability": 0.6136 + }, + { + "start": 14331.22, + "end": 14333.14, + "probability": 0.8395 + }, + { + "start": 14334.2, + "end": 14338.5, + "probability": 0.8228 + }, + { + "start": 14338.56, + "end": 14339.12, + "probability": 0.752 + }, + { + "start": 14340.82, + "end": 14341.9, + "probability": 0.8939 + }, + { + "start": 14342.84, + "end": 14343.46, + "probability": 0.5095 + }, + { + "start": 14344.02, + "end": 14347.14, + "probability": 0.9873 + }, + { + "start": 14347.28, + "end": 14348.1, + "probability": 0.9803 + }, + { + "start": 14349.54, + "end": 14352.94, + "probability": 0.9755 + }, + { + "start": 14352.94, + "end": 14355.44, + "probability": 0.9308 + }, + { + "start": 14355.58, + "end": 14356.52, + "probability": 0.9382 + }, + { + "start": 14358.94, + "end": 14362.76, + "probability": 0.9732 + }, + { + "start": 14365.04, + "end": 14367.12, + "probability": 0.9635 + }, + { + "start": 14367.68, + "end": 14370.02, + "probability": 0.8616 + }, + { + "start": 14370.56, + "end": 14371.5, + "probability": 0.7067 + }, + { + "start": 14372.52, + "end": 14373.52, + "probability": 0.8304 + }, + { + "start": 14374.82, + "end": 14377.2, + "probability": 0.9833 + }, + { + "start": 14378.27, + "end": 14380.26, + "probability": 0.9569 + }, + { + "start": 14380.4, + "end": 14381.19, + "probability": 0.9946 + }, + { + "start": 14382.78, + "end": 14384.32, + "probability": 0.9077 + }, + { + "start": 14385.26, + "end": 14385.92, + "probability": 0.7121 + }, + { + "start": 14387.56, + "end": 14388.32, + "probability": 0.8922 + }, + { + "start": 14390.9, + "end": 14396.3, + "probability": 0.8929 + }, + { + "start": 14397.44, + "end": 14400.44, + "probability": 0.9245 + }, + { + "start": 14401.56, + "end": 14403.24, + "probability": 0.9175 + }, + { + "start": 14403.98, + "end": 14405.1, + "probability": 0.8382 + }, + { + "start": 14406.28, + "end": 14407.2, + "probability": 0.9644 + }, + { + "start": 14408.92, + "end": 14411.72, + "probability": 0.9865 + }, + { + "start": 14412.68, + "end": 14415.5, + "probability": 0.9817 + }, + { + "start": 14416.48, + "end": 14417.86, + "probability": 0.727 + }, + { + "start": 14418.2, + "end": 14418.82, + "probability": 0.3435 + }, + { + "start": 14420.26, + "end": 14422.12, + "probability": 0.9858 + }, + { + "start": 14422.18, + "end": 14425.5, + "probability": 0.9315 + }, + { + "start": 14426.26, + "end": 14427.08, + "probability": 0.7868 + }, + { + "start": 14428.76, + "end": 14430.16, + "probability": 0.6931 + }, + { + "start": 14430.86, + "end": 14431.36, + "probability": 0.7401 + }, + { + "start": 14433.6, + "end": 14439.4, + "probability": 0.9364 + }, + { + "start": 14441.26, + "end": 14442.24, + "probability": 0.6707 + }, + { + "start": 14442.78, + "end": 14443.5, + "probability": 0.633 + }, + { + "start": 14444.08, + "end": 14445.68, + "probability": 0.8583 + }, + { + "start": 14447.04, + "end": 14448.02, + "probability": 0.8337 + }, + { + "start": 14449.58, + "end": 14453.66, + "probability": 0.9388 + }, + { + "start": 14455.06, + "end": 14459.12, + "probability": 0.8966 + }, + { + "start": 14460.72, + "end": 14461.7, + "probability": 0.5707 + }, + { + "start": 14462.72, + "end": 14463.18, + "probability": 0.4269 + }, + { + "start": 14464.1, + "end": 14464.86, + "probability": 0.6081 + }, + { + "start": 14470.82, + "end": 14471.25, + "probability": 0.7651 + }, + { + "start": 14472.36, + "end": 14474.86, + "probability": 0.98 + }, + { + "start": 14476.06, + "end": 14477.68, + "probability": 0.9468 + }, + { + "start": 14479.52, + "end": 14483.77, + "probability": 0.8242 + }, + { + "start": 14485.46, + "end": 14488.08, + "probability": 0.8768 + }, + { + "start": 14488.92, + "end": 14492.12, + "probability": 0.9718 + }, + { + "start": 14492.86, + "end": 14497.78, + "probability": 0.9216 + }, + { + "start": 14498.76, + "end": 14501.96, + "probability": 0.98 + }, + { + "start": 14502.66, + "end": 14503.26, + "probability": 0.8269 + }, + { + "start": 14504.46, + "end": 14506.16, + "probability": 0.9339 + }, + { + "start": 14507.04, + "end": 14508.12, + "probability": 0.9539 + }, + { + "start": 14509.04, + "end": 14512.56, + "probability": 0.8051 + }, + { + "start": 14512.96, + "end": 14515.22, + "probability": 0.8876 + }, + { + "start": 14515.78, + "end": 14516.14, + "probability": 0.9493 + }, + { + "start": 14516.62, + "end": 14518.22, + "probability": 0.8365 + }, + { + "start": 14519.0, + "end": 14520.22, + "probability": 0.9854 + }, + { + "start": 14521.98, + "end": 14523.14, + "probability": 0.9838 + }, + { + "start": 14524.42, + "end": 14525.46, + "probability": 0.9352 + }, + { + "start": 14526.7, + "end": 14527.64, + "probability": 0.897 + }, + { + "start": 14528.24, + "end": 14531.88, + "probability": 0.8295 + }, + { + "start": 14531.9, + "end": 14532.32, + "probability": 0.9705 + }, + { + "start": 14533.2, + "end": 14537.05, + "probability": 0.9238 + }, + { + "start": 14538.48, + "end": 14539.68, + "probability": 0.7107 + }, + { + "start": 14540.48, + "end": 14541.88, + "probability": 0.9713 + }, + { + "start": 14542.96, + "end": 14544.92, + "probability": 0.8989 + }, + { + "start": 14545.44, + "end": 14547.32, + "probability": 0.9929 + }, + { + "start": 14548.0, + "end": 14549.92, + "probability": 0.5087 + }, + { + "start": 14550.0, + "end": 14551.5, + "probability": 0.9385 + }, + { + "start": 14551.56, + "end": 14553.18, + "probability": 0.9782 + }, + { + "start": 14554.46, + "end": 14555.1, + "probability": 0.9737 + }, + { + "start": 14556.6, + "end": 14563.38, + "probability": 0.988 + }, + { + "start": 14564.4, + "end": 14567.7, + "probability": 0.767 + }, + { + "start": 14568.82, + "end": 14569.66, + "probability": 0.8919 + }, + { + "start": 14569.94, + "end": 14570.82, + "probability": 0.4213 + }, + { + "start": 14570.94, + "end": 14576.0, + "probability": 0.9513 + }, + { + "start": 14578.78, + "end": 14583.02, + "probability": 0.7364 + }, + { + "start": 14583.66, + "end": 14584.3, + "probability": 0.507 + }, + { + "start": 14585.38, + "end": 14586.8, + "probability": 0.6698 + }, + { + "start": 14587.12, + "end": 14595.53, + "probability": 0.7966 + }, + { + "start": 14597.08, + "end": 14597.44, + "probability": 0.8288 + }, + { + "start": 14598.46, + "end": 14601.24, + "probability": 0.8365 + }, + { + "start": 14601.24, + "end": 14604.42, + "probability": 0.9917 + }, + { + "start": 14606.7, + "end": 14609.3, + "probability": 0.9398 + }, + { + "start": 14610.54, + "end": 14612.5, + "probability": 0.982 + }, + { + "start": 14616.93, + "end": 14619.2, + "probability": 0.659 + }, + { + "start": 14624.2, + "end": 14624.92, + "probability": 0.117 + }, + { + "start": 14625.4, + "end": 14625.92, + "probability": 0.3922 + }, + { + "start": 14627.36, + "end": 14630.96, + "probability": 0.9167 + }, + { + "start": 14632.78, + "end": 14634.62, + "probability": 0.7948 + }, + { + "start": 14635.76, + "end": 14636.48, + "probability": 0.924 + }, + { + "start": 14637.1, + "end": 14639.05, + "probability": 0.7195 + }, + { + "start": 14641.18, + "end": 14643.29, + "probability": 0.9941 + }, + { + "start": 14643.48, + "end": 14646.28, + "probability": 0.9885 + }, + { + "start": 14646.32, + "end": 14650.28, + "probability": 0.9486 + }, + { + "start": 14651.94, + "end": 14652.64, + "probability": 0.913 + }, + { + "start": 14653.38, + "end": 14653.82, + "probability": 0.9873 + }, + { + "start": 14654.4, + "end": 14657.94, + "probability": 0.8601 + }, + { + "start": 14658.74, + "end": 14659.66, + "probability": 0.7573 + }, + { + "start": 14661.12, + "end": 14666.58, + "probability": 0.9979 + }, + { + "start": 14667.42, + "end": 14668.06, + "probability": 0.9485 + }, + { + "start": 14668.62, + "end": 14669.44, + "probability": 0.6838 + }, + { + "start": 14669.86, + "end": 14672.04, + "probability": 0.2867 + }, + { + "start": 14672.56, + "end": 14673.84, + "probability": 0.929 + }, + { + "start": 14674.58, + "end": 14675.92, + "probability": 0.8916 + }, + { + "start": 14677.86, + "end": 14680.06, + "probability": 0.957 + }, + { + "start": 14680.58, + "end": 14682.4, + "probability": 0.9839 + }, + { + "start": 14683.69, + "end": 14690.66, + "probability": 0.9588 + }, + { + "start": 14690.74, + "end": 14691.4, + "probability": 0.6442 + }, + { + "start": 14692.1, + "end": 14694.08, + "probability": 0.9904 + }, + { + "start": 14694.9, + "end": 14697.52, + "probability": 0.7901 + }, + { + "start": 14698.92, + "end": 14699.84, + "probability": 0.7926 + }, + { + "start": 14701.24, + "end": 14703.78, + "probability": 0.8608 + }, + { + "start": 14704.34, + "end": 14707.68, + "probability": 0.9525 + }, + { + "start": 14709.58, + "end": 14710.46, + "probability": 0.4976 + }, + { + "start": 14710.76, + "end": 14711.78, + "probability": 0.9283 + }, + { + "start": 14712.0, + "end": 14712.8, + "probability": 0.6737 + }, + { + "start": 14712.92, + "end": 14713.38, + "probability": 0.9255 + }, + { + "start": 14714.16, + "end": 14717.02, + "probability": 0.9572 + }, + { + "start": 14717.2, + "end": 14719.96, + "probability": 0.8398 + }, + { + "start": 14721.66, + "end": 14726.84, + "probability": 0.9097 + }, + { + "start": 14727.6, + "end": 14730.7, + "probability": 0.7612 + }, + { + "start": 14731.04, + "end": 14732.68, + "probability": 0.9138 + }, + { + "start": 14735.1, + "end": 14735.66, + "probability": 0.3773 + }, + { + "start": 14735.98, + "end": 14737.9, + "probability": 0.903 + }, + { + "start": 14739.14, + "end": 14742.9, + "probability": 0.9967 + }, + { + "start": 14743.22, + "end": 14746.22, + "probability": 0.9634 + }, + { + "start": 14746.76, + "end": 14747.4, + "probability": 0.7332 + }, + { + "start": 14748.72, + "end": 14749.98, + "probability": 0.7146 + }, + { + "start": 14751.1, + "end": 14754.08, + "probability": 0.6139 + }, + { + "start": 14756.06, + "end": 14756.56, + "probability": 0.6761 + }, + { + "start": 14757.2, + "end": 14758.86, + "probability": 0.6692 + }, + { + "start": 14759.42, + "end": 14760.64, + "probability": 0.9016 + }, + { + "start": 14761.24, + "end": 14765.62, + "probability": 0.8813 + }, + { + "start": 14766.32, + "end": 14767.38, + "probability": 0.8255 + }, + { + "start": 14768.18, + "end": 14769.0, + "probability": 0.9012 + }, + { + "start": 14771.62, + "end": 14773.71, + "probability": 0.9131 + }, + { + "start": 14775.1, + "end": 14776.42, + "probability": 0.9937 + }, + { + "start": 14777.34, + "end": 14780.54, + "probability": 0.9756 + }, + { + "start": 14781.1, + "end": 14782.42, + "probability": 0.9704 + }, + { + "start": 14785.0, + "end": 14786.62, + "probability": 0.7623 + }, + { + "start": 14787.18, + "end": 14788.04, + "probability": 0.867 + }, + { + "start": 14789.94, + "end": 14794.64, + "probability": 0.9792 + }, + { + "start": 14795.74, + "end": 14797.92, + "probability": 0.9609 + }, + { + "start": 14798.58, + "end": 14799.26, + "probability": 0.7133 + }, + { + "start": 14799.94, + "end": 14802.4, + "probability": 0.9757 + }, + { + "start": 14803.24, + "end": 14804.34, + "probability": 0.912 + }, + { + "start": 14805.14, + "end": 14808.5, + "probability": 0.9359 + }, + { + "start": 14808.68, + "end": 14814.78, + "probability": 0.9796 + }, + { + "start": 14816.06, + "end": 14817.5, + "probability": 0.7073 + }, + { + "start": 14819.24, + "end": 14820.14, + "probability": 0.9872 + }, + { + "start": 14821.8, + "end": 14823.98, + "probability": 0.5519 + }, + { + "start": 14824.26, + "end": 14828.56, + "probability": 0.9823 + }, + { + "start": 14829.96, + "end": 14831.56, + "probability": 0.987 + }, + { + "start": 14833.28, + "end": 14833.92, + "probability": 0.5491 + }, + { + "start": 14834.66, + "end": 14836.02, + "probability": 0.9978 + }, + { + "start": 14838.16, + "end": 14839.48, + "probability": 0.8449 + }, + { + "start": 14839.54, + "end": 14842.22, + "probability": 0.3391 + }, + { + "start": 14842.22, + "end": 14842.64, + "probability": 0.4006 + }, + { + "start": 14843.18, + "end": 14844.14, + "probability": 0.96 + }, + { + "start": 14844.72, + "end": 14848.38, + "probability": 0.9961 + }, + { + "start": 14849.16, + "end": 14851.88, + "probability": 0.9961 + }, + { + "start": 14851.96, + "end": 14856.08, + "probability": 0.9209 + }, + { + "start": 14856.72, + "end": 14861.62, + "probability": 0.863 + }, + { + "start": 14861.7, + "end": 14862.24, + "probability": 0.998 + }, + { + "start": 14863.16, + "end": 14865.08, + "probability": 0.9013 + }, + { + "start": 14865.16, + "end": 14868.01, + "probability": 0.9925 + }, + { + "start": 14869.22, + "end": 14872.06, + "probability": 0.9678 + }, + { + "start": 14872.1, + "end": 14872.64, + "probability": 0.4785 + }, + { + "start": 14873.36, + "end": 14874.34, + "probability": 0.8735 + }, + { + "start": 14875.1, + "end": 14876.32, + "probability": 0.8896 + }, + { + "start": 14878.16, + "end": 14880.1, + "probability": 0.78 + }, + { + "start": 14881.36, + "end": 14883.3, + "probability": 0.9155 + }, + { + "start": 14884.84, + "end": 14886.26, + "probability": 0.9453 + }, + { + "start": 14887.08, + "end": 14887.64, + "probability": 0.9892 + }, + { + "start": 14888.26, + "end": 14891.56, + "probability": 0.8691 + }, + { + "start": 14892.38, + "end": 14895.83, + "probability": 0.9961 + }, + { + "start": 14897.7, + "end": 14898.58, + "probability": 0.8511 + }, + { + "start": 14899.36, + "end": 14900.22, + "probability": 0.8433 + }, + { + "start": 14900.76, + "end": 14902.44, + "probability": 0.8603 + }, + { + "start": 14903.94, + "end": 14909.1, + "probability": 0.9893 + }, + { + "start": 14909.24, + "end": 14911.16, + "probability": 0.9504 + }, + { + "start": 14913.02, + "end": 14913.6, + "probability": 0.9888 + }, + { + "start": 14914.5, + "end": 14916.44, + "probability": 0.9176 + }, + { + "start": 14917.34, + "end": 14924.06, + "probability": 0.9862 + }, + { + "start": 14924.84, + "end": 14927.54, + "probability": 0.8354 + }, + { + "start": 14928.34, + "end": 14929.36, + "probability": 0.8804 + }, + { + "start": 14931.14, + "end": 14934.54, + "probability": 0.9656 + }, + { + "start": 14936.26, + "end": 14937.44, + "probability": 0.8254 + }, + { + "start": 14937.96, + "end": 14939.82, + "probability": 0.9626 + }, + { + "start": 14941.16, + "end": 14941.78, + "probability": 0.8753 + }, + { + "start": 14941.82, + "end": 14942.12, + "probability": 0.7154 + }, + { + "start": 14943.16, + "end": 14945.36, + "probability": 0.7356 + }, + { + "start": 14945.54, + "end": 14948.48, + "probability": 0.7523 + }, + { + "start": 14952.68, + "end": 14953.24, + "probability": 0.22 + }, + { + "start": 14979.5, + "end": 14980.8, + "probability": 0.2115 + }, + { + "start": 14982.34, + "end": 14983.68, + "probability": 0.5172 + }, + { + "start": 14985.06, + "end": 14993.82, + "probability": 0.9978 + }, + { + "start": 14993.82, + "end": 15002.3, + "probability": 0.9988 + }, + { + "start": 15004.4, + "end": 15005.94, + "probability": 0.917 + }, + { + "start": 15007.96, + "end": 15011.34, + "probability": 0.9528 + }, + { + "start": 15013.8, + "end": 15018.18, + "probability": 0.9974 + }, + { + "start": 15018.98, + "end": 15021.02, + "probability": 0.9108 + }, + { + "start": 15022.68, + "end": 15029.44, + "probability": 0.9897 + }, + { + "start": 15029.84, + "end": 15033.16, + "probability": 0.975 + }, + { + "start": 15034.18, + "end": 15037.02, + "probability": 0.9945 + }, + { + "start": 15037.12, + "end": 15041.66, + "probability": 0.9805 + }, + { + "start": 15041.72, + "end": 15042.92, + "probability": 0.9829 + }, + { + "start": 15043.24, + "end": 15044.33, + "probability": 0.988 + }, + { + "start": 15048.32, + "end": 15052.7, + "probability": 0.8396 + }, + { + "start": 15053.24, + "end": 15054.28, + "probability": 0.8905 + }, + { + "start": 15054.28, + "end": 15056.9, + "probability": 0.9082 + }, + { + "start": 15057.24, + "end": 15058.1, + "probability": 0.9374 + }, + { + "start": 15058.56, + "end": 15059.36, + "probability": 0.9924 + }, + { + "start": 15060.0, + "end": 15066.0, + "probability": 0.98 + }, + { + "start": 15066.42, + "end": 15068.44, + "probability": 0.7393 + }, + { + "start": 15068.96, + "end": 15069.42, + "probability": 0.5842 + }, + { + "start": 15069.68, + "end": 15070.86, + "probability": 0.9708 + }, + { + "start": 15071.34, + "end": 15072.42, + "probability": 0.4846 + }, + { + "start": 15073.6, + "end": 15074.38, + "probability": 0.8137 + }, + { + "start": 15076.3, + "end": 15078.2, + "probability": 0.7601 + }, + { + "start": 15078.2, + "end": 15078.62, + "probability": 0.7042 + }, + { + "start": 15078.62, + "end": 15080.48, + "probability": 0.6704 + }, + { + "start": 15081.42, + "end": 15087.44, + "probability": 0.8931 + }, + { + "start": 15089.02, + "end": 15091.94, + "probability": 0.9323 + }, + { + "start": 15092.9, + "end": 15094.11, + "probability": 0.9197 + }, + { + "start": 15094.46, + "end": 15097.53, + "probability": 0.964 + }, + { + "start": 15098.1, + "end": 15101.28, + "probability": 0.9826 + }, + { + "start": 15102.86, + "end": 15107.2, + "probability": 0.8726 + }, + { + "start": 15107.42, + "end": 15107.66, + "probability": 0.5036 + }, + { + "start": 15108.59, + "end": 15112.16, + "probability": 0.9802 + }, + { + "start": 15115.84, + "end": 15117.66, + "probability": 0.9725 + }, + { + "start": 15117.74, + "end": 15120.04, + "probability": 0.9459 + }, + { + "start": 15120.08, + "end": 15123.28, + "probability": 0.9933 + }, + { + "start": 15123.68, + "end": 15126.02, + "probability": 0.9971 + }, + { + "start": 15128.44, + "end": 15130.21, + "probability": 0.966 + }, + { + "start": 15130.98, + "end": 15132.24, + "probability": 0.7122 + }, + { + "start": 15132.32, + "end": 15133.2, + "probability": 0.7834 + }, + { + "start": 15133.28, + "end": 15134.4, + "probability": 0.9746 + }, + { + "start": 15134.48, + "end": 15135.66, + "probability": 0.9431 + }, + { + "start": 15137.14, + "end": 15138.68, + "probability": 0.5742 + }, + { + "start": 15138.82, + "end": 15139.36, + "probability": 0.2002 + }, + { + "start": 15139.68, + "end": 15139.74, + "probability": 0.4996 + }, + { + "start": 15139.74, + "end": 15141.98, + "probability": 0.9951 + }, + { + "start": 15142.64, + "end": 15144.02, + "probability": 0.8943 + }, + { + "start": 15144.82, + "end": 15149.38, + "probability": 0.9767 + }, + { + "start": 15150.08, + "end": 15152.68, + "probability": 0.996 + }, + { + "start": 15152.8, + "end": 15154.6, + "probability": 0.6651 + }, + { + "start": 15154.6, + "end": 15155.48, + "probability": 0.8408 + }, + { + "start": 15155.54, + "end": 15156.3, + "probability": 0.9361 + }, + { + "start": 15156.58, + "end": 15157.8, + "probability": 0.7418 + }, + { + "start": 15158.54, + "end": 15160.0, + "probability": 0.7008 + }, + { + "start": 15160.4, + "end": 15162.15, + "probability": 0.9717 + }, + { + "start": 15163.06, + "end": 15164.64, + "probability": 0.8882 + }, + { + "start": 15164.76, + "end": 15165.38, + "probability": 0.9575 + }, + { + "start": 15165.8, + "end": 15169.22, + "probability": 0.8492 + }, + { + "start": 15169.58, + "end": 15171.06, + "probability": 0.995 + }, + { + "start": 15171.16, + "end": 15171.78, + "probability": 0.9893 + }, + { + "start": 15171.86, + "end": 15173.28, + "probability": 0.9352 + }, + { + "start": 15174.06, + "end": 15176.18, + "probability": 0.8516 + }, + { + "start": 15176.7, + "end": 15179.9, + "probability": 0.9973 + }, + { + "start": 15180.4, + "end": 15180.8, + "probability": 0.5051 + }, + { + "start": 15181.64, + "end": 15182.76, + "probability": 0.9871 + }, + { + "start": 15183.84, + "end": 15187.24, + "probability": 0.9995 + }, + { + "start": 15188.24, + "end": 15191.66, + "probability": 0.8439 + }, + { + "start": 15192.16, + "end": 15194.46, + "probability": 0.9224 + }, + { + "start": 15195.1, + "end": 15196.0, + "probability": 0.9854 + }, + { + "start": 15196.52, + "end": 15198.74, + "probability": 0.8894 + }, + { + "start": 15200.16, + "end": 15203.46, + "probability": 0.9012 + }, + { + "start": 15203.46, + "end": 15206.1, + "probability": 0.7492 + }, + { + "start": 15207.14, + "end": 15208.16, + "probability": 0.9639 + }, + { + "start": 15208.38, + "end": 15209.92, + "probability": 0.7805 + }, + { + "start": 15209.96, + "end": 15212.9, + "probability": 0.9343 + }, + { + "start": 15213.68, + "end": 15214.96, + "probability": 0.4735 + }, + { + "start": 15215.66, + "end": 15216.56, + "probability": 0.9972 + }, + { + "start": 15217.52, + "end": 15220.68, + "probability": 0.9767 + }, + { + "start": 15221.4, + "end": 15221.4, + "probability": 0.0149 + }, + { + "start": 15221.98, + "end": 15226.02, + "probability": 0.9835 + }, + { + "start": 15226.54, + "end": 15227.56, + "probability": 0.8037 + }, + { + "start": 15228.08, + "end": 15229.26, + "probability": 0.8063 + }, + { + "start": 15229.74, + "end": 15233.14, + "probability": 0.9905 + }, + { + "start": 15235.12, + "end": 15238.44, + "probability": 0.9784 + }, + { + "start": 15239.5, + "end": 15241.92, + "probability": 0.7294 + }, + { + "start": 15242.42, + "end": 15244.52, + "probability": 0.9971 + }, + { + "start": 15245.08, + "end": 15245.34, + "probability": 0.9177 + }, + { + "start": 15245.48, + "end": 15251.1, + "probability": 0.9803 + }, + { + "start": 15252.01, + "end": 15254.39, + "probability": 0.9678 + }, + { + "start": 15255.68, + "end": 15262.81, + "probability": 0.986 + }, + { + "start": 15263.12, + "end": 15264.32, + "probability": 0.7218 + }, + { + "start": 15265.04, + "end": 15266.84, + "probability": 0.9686 + }, + { + "start": 15271.5, + "end": 15275.1, + "probability": 0.9542 + }, + { + "start": 15275.44, + "end": 15279.18, + "probability": 0.9753 + }, + { + "start": 15279.28, + "end": 15279.35, + "probability": 0.0812 + }, + { + "start": 15279.68, + "end": 15280.45, + "probability": 0.5774 + }, + { + "start": 15280.94, + "end": 15284.38, + "probability": 0.9976 + }, + { + "start": 15289.0, + "end": 15291.74, + "probability": 0.9966 + }, + { + "start": 15291.84, + "end": 15294.1, + "probability": 0.9897 + }, + { + "start": 15294.44, + "end": 15297.86, + "probability": 0.9388 + }, + { + "start": 15298.58, + "end": 15304.32, + "probability": 0.9618 + }, + { + "start": 15307.52, + "end": 15309.22, + "probability": 0.6276 + }, + { + "start": 15309.42, + "end": 15315.52, + "probability": 0.9864 + }, + { + "start": 15315.6, + "end": 15322.06, + "probability": 0.9733 + }, + { + "start": 15324.06, + "end": 15325.18, + "probability": 0.9821 + }, + { + "start": 15325.48, + "end": 15326.14, + "probability": 0.7632 + }, + { + "start": 15326.18, + "end": 15326.48, + "probability": 0.9586 + }, + { + "start": 15326.62, + "end": 15330.02, + "probability": 0.9492 + }, + { + "start": 15330.86, + "end": 15334.36, + "probability": 0.991 + }, + { + "start": 15335.18, + "end": 15336.76, + "probability": 0.9768 + }, + { + "start": 15337.14, + "end": 15342.62, + "probability": 0.8411 + }, + { + "start": 15343.37, + "end": 15346.36, + "probability": 0.8367 + }, + { + "start": 15346.76, + "end": 15348.48, + "probability": 0.9773 + }, + { + "start": 15348.9, + "end": 15350.57, + "probability": 0.9559 + }, + { + "start": 15351.96, + "end": 15354.38, + "probability": 0.6714 + }, + { + "start": 15355.18, + "end": 15355.62, + "probability": 0.8936 + }, + { + "start": 15355.84, + "end": 15359.24, + "probability": 0.9863 + }, + { + "start": 15359.24, + "end": 15363.36, + "probability": 0.9984 + }, + { + "start": 15363.74, + "end": 15368.14, + "probability": 0.8677 + }, + { + "start": 15368.64, + "end": 15371.04, + "probability": 0.932 + }, + { + "start": 15371.74, + "end": 15373.82, + "probability": 0.936 + }, + { + "start": 15379.56, + "end": 15385.62, + "probability": 0.8098 + }, + { + "start": 15386.1, + "end": 15386.92, + "probability": 0.5041 + }, + { + "start": 15387.08, + "end": 15389.78, + "probability": 0.9182 + }, + { + "start": 15390.22, + "end": 15393.94, + "probability": 0.9729 + }, + { + "start": 15394.9, + "end": 15397.78, + "probability": 0.8917 + }, + { + "start": 15398.44, + "end": 15399.06, + "probability": 0.9291 + }, + { + "start": 15399.78, + "end": 15400.94, + "probability": 0.9907 + }, + { + "start": 15401.04, + "end": 15403.38, + "probability": 0.9924 + }, + { + "start": 15403.7, + "end": 15408.14, + "probability": 0.9299 + }, + { + "start": 15408.22, + "end": 15409.88, + "probability": 0.6062 + }, + { + "start": 15410.2, + "end": 15411.06, + "probability": 0.8345 + }, + { + "start": 15411.12, + "end": 15416.41, + "probability": 0.9507 + }, + { + "start": 15418.24, + "end": 15418.42, + "probability": 0.7477 + }, + { + "start": 15419.3, + "end": 15422.43, + "probability": 0.8229 + }, + { + "start": 15423.18, + "end": 15423.18, + "probability": 0.0012 + }, + { + "start": 15425.58, + "end": 15427.22, + "probability": 0.9868 + }, + { + "start": 15427.74, + "end": 15428.6, + "probability": 0.885 + }, + { + "start": 15430.68, + "end": 15435.92, + "probability": 0.9873 + }, + { + "start": 15436.9, + "end": 15442.08, + "probability": 0.9706 + }, + { + "start": 15442.18, + "end": 15443.56, + "probability": 0.9829 + }, + { + "start": 15444.06, + "end": 15445.08, + "probability": 0.8854 + }, + { + "start": 15446.3, + "end": 15448.64, + "probability": 0.72 + }, + { + "start": 15449.28, + "end": 15450.64, + "probability": 0.4084 + }, + { + "start": 15452.42, + "end": 15455.52, + "probability": 0.7226 + }, + { + "start": 15456.2, + "end": 15456.34, + "probability": 0.7011 + }, + { + "start": 15456.34, + "end": 15459.58, + "probability": 0.9364 + }, + { + "start": 15460.26, + "end": 15461.88, + "probability": 0.9608 + }, + { + "start": 15462.6, + "end": 15468.34, + "probability": 0.9051 + }, + { + "start": 15468.84, + "end": 15470.04, + "probability": 0.9897 + }, + { + "start": 15470.54, + "end": 15473.86, + "probability": 0.9451 + }, + { + "start": 15474.4, + "end": 15476.84, + "probability": 0.9858 + }, + { + "start": 15477.26, + "end": 15478.08, + "probability": 0.9665 + }, + { + "start": 15478.92, + "end": 15481.96, + "probability": 0.9016 + }, + { + "start": 15484.02, + "end": 15485.08, + "probability": 0.8997 + }, + { + "start": 15485.12, + "end": 15488.34, + "probability": 0.9594 + }, + { + "start": 15488.52, + "end": 15488.84, + "probability": 0.8344 + }, + { + "start": 15489.1, + "end": 15490.68, + "probability": 0.9834 + }, + { + "start": 15492.1, + "end": 15494.02, + "probability": 0.9079 + }, + { + "start": 15494.58, + "end": 15496.56, + "probability": 0.8677 + }, + { + "start": 15497.06, + "end": 15498.38, + "probability": 0.6848 + }, + { + "start": 15498.46, + "end": 15500.1, + "probability": 0.9222 + }, + { + "start": 15500.4, + "end": 15501.5, + "probability": 0.8976 + }, + { + "start": 15501.58, + "end": 15503.1, + "probability": 0.9734 + }, + { + "start": 15503.38, + "end": 15505.62, + "probability": 0.9858 + }, + { + "start": 15506.64, + "end": 15510.02, + "probability": 0.972 + }, + { + "start": 15510.14, + "end": 15510.82, + "probability": 0.9614 + }, + { + "start": 15511.38, + "end": 15512.32, + "probability": 0.7357 + }, + { + "start": 15512.62, + "end": 15513.3, + "probability": 0.7056 + }, + { + "start": 15513.96, + "end": 15514.64, + "probability": 0.6817 + }, + { + "start": 15514.72, + "end": 15518.12, + "probability": 0.9646 + }, + { + "start": 15518.84, + "end": 15521.44, + "probability": 0.9671 + }, + { + "start": 15521.96, + "end": 15524.4, + "probability": 0.7653 + }, + { + "start": 15524.86, + "end": 15529.1, + "probability": 0.9977 + }, + { + "start": 15529.56, + "end": 15529.66, + "probability": 0.496 + }, + { + "start": 15529.88, + "end": 15532.46, + "probability": 0.9954 + }, + { + "start": 15533.06, + "end": 15536.04, + "probability": 0.9933 + }, + { + "start": 15537.58, + "end": 15540.64, + "probability": 0.8468 + }, + { + "start": 15542.27, + "end": 15544.61, + "probability": 0.9001 + }, + { + "start": 15544.74, + "end": 15544.98, + "probability": 0.9194 + }, + { + "start": 15548.16, + "end": 15550.18, + "probability": 0.9641 + }, + { + "start": 15550.9, + "end": 15551.6, + "probability": 0.9055 + }, + { + "start": 15551.66, + "end": 15553.68, + "probability": 0.9801 + }, + { + "start": 15554.12, + "end": 15555.08, + "probability": 0.8889 + }, + { + "start": 15555.38, + "end": 15556.5, + "probability": 0.7875 + }, + { + "start": 15556.6, + "end": 15557.92, + "probability": 0.8652 + }, + { + "start": 15558.46, + "end": 15559.72, + "probability": 0.9197 + }, + { + "start": 15561.52, + "end": 15563.04, + "probability": 0.9978 + }, + { + "start": 15563.68, + "end": 15564.6, + "probability": 0.9719 + }, + { + "start": 15566.08, + "end": 15569.26, + "probability": 0.7939 + }, + { + "start": 15570.06, + "end": 15572.98, + "probability": 0.5818 + }, + { + "start": 15574.5, + "end": 15578.18, + "probability": 0.7988 + }, + { + "start": 15579.86, + "end": 15582.7, + "probability": 0.9559 + }, + { + "start": 15582.88, + "end": 15586.22, + "probability": 0.9907 + }, + { + "start": 15587.18, + "end": 15589.48, + "probability": 0.7439 + }, + { + "start": 15590.04, + "end": 15591.2, + "probability": 0.2907 + }, + { + "start": 15591.2, + "end": 15592.48, + "probability": 0.7632 + }, + { + "start": 15593.28, + "end": 15595.84, + "probability": 0.9529 + }, + { + "start": 15596.6, + "end": 15600.02, + "probability": 0.8202 + }, + { + "start": 15600.16, + "end": 15601.3, + "probability": 0.8328 + }, + { + "start": 15602.04, + "end": 15603.8, + "probability": 0.9117 + }, + { + "start": 15604.38, + "end": 15606.76, + "probability": 0.7947 + }, + { + "start": 15608.39, + "end": 15610.6, + "probability": 0.9436 + }, + { + "start": 15610.74, + "end": 15611.4, + "probability": 0.8993 + }, + { + "start": 15611.7, + "end": 15612.96, + "probability": 0.6821 + }, + { + "start": 15613.44, + "end": 15613.94, + "probability": 0.2988 + }, + { + "start": 15614.2, + "end": 15614.92, + "probability": 0.7936 + }, + { + "start": 15615.36, + "end": 15619.16, + "probability": 0.9373 + }, + { + "start": 15620.44, + "end": 15623.94, + "probability": 0.7616 + }, + { + "start": 15624.96, + "end": 15627.46, + "probability": 0.9945 + }, + { + "start": 15628.6, + "end": 15631.72, + "probability": 0.9867 + }, + { + "start": 15632.84, + "end": 15635.78, + "probability": 0.9376 + }, + { + "start": 15636.22, + "end": 15637.78, + "probability": 0.9971 + }, + { + "start": 15638.4, + "end": 15641.14, + "probability": 0.8573 + }, + { + "start": 15641.28, + "end": 15642.98, + "probability": 0.8576 + }, + { + "start": 15643.34, + "end": 15647.5, + "probability": 0.9966 + }, + { + "start": 15647.76, + "end": 15651.18, + "probability": 0.8028 + }, + { + "start": 15652.22, + "end": 15656.06, + "probability": 0.2202 + }, + { + "start": 15656.78, + "end": 15659.12, + "probability": 0.7325 + }, + { + "start": 15659.98, + "end": 15663.3, + "probability": 0.8599 + }, + { + "start": 15664.28, + "end": 15668.56, + "probability": 0.7821 + }, + { + "start": 15669.68, + "end": 15670.8, + "probability": 0.9658 + }, + { + "start": 15671.32, + "end": 15674.9, + "probability": 0.786 + }, + { + "start": 15675.2, + "end": 15677.78, + "probability": 0.8355 + }, + { + "start": 15678.0, + "end": 15679.92, + "probability": 0.98 + }, + { + "start": 15680.36, + "end": 15687.06, + "probability": 0.9837 + }, + { + "start": 15687.22, + "end": 15687.8, + "probability": 0.97 + }, + { + "start": 15687.98, + "end": 15688.48, + "probability": 0.4408 + }, + { + "start": 15688.64, + "end": 15693.2, + "probability": 0.9092 + }, + { + "start": 15693.8, + "end": 15696.0, + "probability": 0.9865 + }, + { + "start": 15696.4, + "end": 15697.2, + "probability": 0.0923 + }, + { + "start": 15698.08, + "end": 15699.66, + "probability": 0.8016 + }, + { + "start": 15699.98, + "end": 15704.3, + "probability": 0.845 + }, + { + "start": 15704.4, + "end": 15705.37, + "probability": 0.9677 + }, + { + "start": 15706.04, + "end": 15706.74, + "probability": 0.9715 + }, + { + "start": 15707.06, + "end": 15711.2, + "probability": 0.9214 + }, + { + "start": 15712.1, + "end": 15712.78, + "probability": 0.851 + }, + { + "start": 15712.82, + "end": 15714.5, + "probability": 0.977 + }, + { + "start": 15715.22, + "end": 15720.24, + "probability": 0.9944 + }, + { + "start": 15721.44, + "end": 15723.18, + "probability": 0.9753 + }, + { + "start": 15724.22, + "end": 15725.38, + "probability": 0.6042 + }, + { + "start": 15726.76, + "end": 15728.16, + "probability": 0.5535 + }, + { + "start": 15729.22, + "end": 15732.84, + "probability": 0.9725 + }, + { + "start": 15733.18, + "end": 15734.62, + "probability": 0.8926 + }, + { + "start": 15734.94, + "end": 15736.3, + "probability": 0.8777 + }, + { + "start": 15737.78, + "end": 15740.3, + "probability": 0.9041 + }, + { + "start": 15740.68, + "end": 15741.52, + "probability": 0.9139 + }, + { + "start": 15742.16, + "end": 15743.6, + "probability": 0.7232 + }, + { + "start": 15744.2, + "end": 15746.68, + "probability": 0.96 + }, + { + "start": 15747.02, + "end": 15748.66, + "probability": 0.5341 + }, + { + "start": 15749.3, + "end": 15750.02, + "probability": 0.4129 + }, + { + "start": 15750.7, + "end": 15750.74, + "probability": 0.3949 + }, + { + "start": 15750.74, + "end": 15751.32, + "probability": 0.5404 + }, + { + "start": 15752.5, + "end": 15755.36, + "probability": 0.9823 + }, + { + "start": 15755.36, + "end": 15757.85, + "probability": 0.9962 + }, + { + "start": 15758.2, + "end": 15759.04, + "probability": 0.972 + }, + { + "start": 15760.16, + "end": 15766.1, + "probability": 0.6359 + }, + { + "start": 15766.32, + "end": 15769.8, + "probability": 0.9744 + }, + { + "start": 15770.62, + "end": 15771.34, + "probability": 0.6094 + }, + { + "start": 15771.62, + "end": 15775.02, + "probability": 0.922 + }, + { + "start": 15775.98, + "end": 15782.0, + "probability": 0.9625 + }, + { + "start": 15784.18, + "end": 15784.72, + "probability": 0.9666 + }, + { + "start": 15785.02, + "end": 15786.94, + "probability": 0.9959 + }, + { + "start": 15786.98, + "end": 15790.46, + "probability": 0.9868 + }, + { + "start": 15790.92, + "end": 15792.04, + "probability": 0.6607 + }, + { + "start": 15792.84, + "end": 15793.46, + "probability": 0.4882 + }, + { + "start": 15793.84, + "end": 15794.46, + "probability": 0.7609 + }, + { + "start": 15794.82, + "end": 15795.28, + "probability": 0.5638 + }, + { + "start": 15795.62, + "end": 15800.04, + "probability": 0.9801 + }, + { + "start": 15801.84, + "end": 15805.96, + "probability": 0.9131 + }, + { + "start": 15805.96, + "end": 15810.24, + "probability": 0.8816 + }, + { + "start": 15810.68, + "end": 15814.96, + "probability": 0.9696 + }, + { + "start": 15815.5, + "end": 15817.1, + "probability": 0.9916 + }, + { + "start": 15817.48, + "end": 15820.66, + "probability": 0.9927 + }, + { + "start": 15821.6, + "end": 15827.44, + "probability": 0.9854 + }, + { + "start": 15827.9, + "end": 15831.26, + "probability": 0.8501 + }, + { + "start": 15832.92, + "end": 15838.38, + "probability": 0.9968 + }, + { + "start": 15839.28, + "end": 15844.14, + "probability": 0.9478 + }, + { + "start": 15844.65, + "end": 15847.04, + "probability": 0.8967 + }, + { + "start": 15847.06, + "end": 15848.24, + "probability": 0.9742 + }, + { + "start": 15849.38, + "end": 15854.18, + "probability": 0.9859 + }, + { + "start": 15854.18, + "end": 15860.28, + "probability": 0.9967 + }, + { + "start": 15860.74, + "end": 15861.46, + "probability": 0.8339 + }, + { + "start": 15862.0, + "end": 15863.26, + "probability": 0.9912 + }, + { + "start": 15863.4, + "end": 15864.22, + "probability": 0.8418 + }, + { + "start": 15864.3, + "end": 15865.3, + "probability": 0.9248 + }, + { + "start": 15865.78, + "end": 15867.5, + "probability": 0.9834 + }, + { + "start": 15869.25, + "end": 15872.32, + "probability": 0.2754 + }, + { + "start": 15872.62, + "end": 15876.45, + "probability": 0.2234 + }, + { + "start": 15876.68, + "end": 15879.88, + "probability": 0.705 + }, + { + "start": 15879.88, + "end": 15883.98, + "probability": 0.9993 + }, + { + "start": 15884.24, + "end": 15888.62, + "probability": 0.832 + }, + { + "start": 15888.64, + "end": 15888.72, + "probability": 0.6084 + }, + { + "start": 15888.88, + "end": 15893.22, + "probability": 0.9971 + }, + { + "start": 15893.74, + "end": 15897.16, + "probability": 0.9805 + }, + { + "start": 15898.02, + "end": 15900.66, + "probability": 0.9985 + }, + { + "start": 15901.02, + "end": 15902.28, + "probability": 0.9825 + }, + { + "start": 15902.62, + "end": 15907.82, + "probability": 0.9819 + }, + { + "start": 15908.48, + "end": 15910.14, + "probability": 0.951 + }, + { + "start": 15910.22, + "end": 15911.5, + "probability": 0.8367 + }, + { + "start": 15911.9, + "end": 15914.96, + "probability": 0.9747 + }, + { + "start": 15915.46, + "end": 15917.76, + "probability": 0.9985 + }, + { + "start": 15918.3, + "end": 15919.14, + "probability": 0.9873 + }, + { + "start": 15919.96, + "end": 15921.14, + "probability": 0.8117 + }, + { + "start": 15921.48, + "end": 15924.06, + "probability": 0.985 + }, + { + "start": 15924.54, + "end": 15927.94, + "probability": 0.9922 + }, + { + "start": 15927.94, + "end": 15928.78, + "probability": 0.9746 + }, + { + "start": 15930.12, + "end": 15930.58, + "probability": 0.0549 + }, + { + "start": 15930.58, + "end": 15930.88, + "probability": 0.3062 + }, + { + "start": 15931.08, + "end": 15932.82, + "probability": 0.438 + }, + { + "start": 15932.95, + "end": 15936.54, + "probability": 0.9761 + }, + { + "start": 15936.7, + "end": 15939.68, + "probability": 0.9648 + }, + { + "start": 15940.08, + "end": 15942.64, + "probability": 0.9971 + }, + { + "start": 15942.64, + "end": 15945.54, + "probability": 0.9989 + }, + { + "start": 15945.64, + "end": 15946.94, + "probability": 0.7821 + }, + { + "start": 15947.14, + "end": 15949.7, + "probability": 0.8563 + }, + { + "start": 15949.84, + "end": 15951.26, + "probability": 0.947 + }, + { + "start": 15951.78, + "end": 15952.9, + "probability": 0.8752 + }, + { + "start": 15953.0, + "end": 15953.82, + "probability": 0.973 + }, + { + "start": 15953.98, + "end": 15954.72, + "probability": 0.7486 + }, + { + "start": 15955.16, + "end": 15955.52, + "probability": 0.1721 + }, + { + "start": 15955.78, + "end": 15957.96, + "probability": 0.7567 + }, + { + "start": 15958.28, + "end": 15959.06, + "probability": 0.0629 + }, + { + "start": 15959.24, + "end": 15962.24, + "probability": 0.8467 + }, + { + "start": 15965.74, + "end": 15970.62, + "probability": 0.4453 + }, + { + "start": 15970.74, + "end": 15979.1, + "probability": 0.85 + }, + { + "start": 15979.22, + "end": 15980.6, + "probability": 0.992 + }, + { + "start": 15981.62, + "end": 15984.24, + "probability": 0.6407 + }, + { + "start": 15984.58, + "end": 15985.58, + "probability": 0.8359 + }, + { + "start": 15986.22, + "end": 15987.94, + "probability": 0.7472 + }, + { + "start": 15988.64, + "end": 15989.74, + "probability": 0.8645 + }, + { + "start": 15990.78, + "end": 15994.36, + "probability": 0.9871 + }, + { + "start": 15994.9, + "end": 15996.24, + "probability": 0.9548 + }, + { + "start": 15997.32, + "end": 15999.88, + "probability": 0.8656 + }, + { + "start": 16000.34, + "end": 16006.08, + "probability": 0.9069 + }, + { + "start": 16006.56, + "end": 16008.38, + "probability": 0.9966 + }, + { + "start": 16008.94, + "end": 16009.66, + "probability": 0.2314 + }, + { + "start": 16010.16, + "end": 16010.92, + "probability": 0.6037 + }, + { + "start": 16011.42, + "end": 16013.24, + "probability": 0.9883 + }, + { + "start": 16013.6, + "end": 16014.38, + "probability": 0.6761 + }, + { + "start": 16014.7, + "end": 16019.85, + "probability": 0.9505 + }, + { + "start": 16020.6, + "end": 16022.06, + "probability": 0.9994 + }, + { + "start": 16022.6, + "end": 16025.14, + "probability": 0.7906 + }, + { + "start": 16025.78, + "end": 16026.72, + "probability": 0.9793 + }, + { + "start": 16027.38, + "end": 16027.86, + "probability": 0.7267 + }, + { + "start": 16027.94, + "end": 16030.56, + "probability": 0.9784 + }, + { + "start": 16031.04, + "end": 16031.48, + "probability": 0.567 + }, + { + "start": 16031.58, + "end": 16033.06, + "probability": 0.9487 + }, + { + "start": 16033.4, + "end": 16034.04, + "probability": 0.9476 + }, + { + "start": 16034.76, + "end": 16036.26, + "probability": 0.8732 + }, + { + "start": 16036.96, + "end": 16038.7, + "probability": 0.9886 + }, + { + "start": 16038.72, + "end": 16039.46, + "probability": 0.452 + }, + { + "start": 16039.5, + "end": 16040.82, + "probability": 0.9608 + }, + { + "start": 16041.1, + "end": 16042.88, + "probability": 0.8373 + }, + { + "start": 16043.06, + "end": 16044.06, + "probability": 0.9719 + }, + { + "start": 16044.54, + "end": 16045.78, + "probability": 0.5691 + }, + { + "start": 16046.44, + "end": 16051.42, + "probability": 0.9668 + }, + { + "start": 16051.42, + "end": 16056.18, + "probability": 0.8748 + }, + { + "start": 16057.04, + "end": 16058.28, + "probability": 0.3826 + }, + { + "start": 16063.52, + "end": 16065.94, + "probability": 0.3243 + }, + { + "start": 16066.68, + "end": 16067.72, + "probability": 0.2861 + }, + { + "start": 16067.76, + "end": 16067.76, + "probability": 0.1871 + }, + { + "start": 16067.76, + "end": 16070.92, + "probability": 0.8529 + }, + { + "start": 16070.92, + "end": 16073.74, + "probability": 0.9575 + }, + { + "start": 16074.26, + "end": 16075.22, + "probability": 0.961 + }, + { + "start": 16075.36, + "end": 16076.8, + "probability": 0.9678 + }, + { + "start": 16077.14, + "end": 16078.98, + "probability": 0.744 + }, + { + "start": 16079.2, + "end": 16080.78, + "probability": 0.8905 + }, + { + "start": 16081.16, + "end": 16083.5, + "probability": 0.9406 + }, + { + "start": 16083.72, + "end": 16085.14, + "probability": 0.9792 + }, + { + "start": 16085.44, + "end": 16086.83, + "probability": 0.9757 + }, + { + "start": 16087.48, + "end": 16092.04, + "probability": 0.2878 + }, + { + "start": 16092.22, + "end": 16092.98, + "probability": 0.5963 + }, + { + "start": 16093.76, + "end": 16095.86, + "probability": 0.0298 + }, + { + "start": 16096.18, + "end": 16096.74, + "probability": 0.0797 + }, + { + "start": 16096.74, + "end": 16099.84, + "probability": 0.6926 + }, + { + "start": 16100.78, + "end": 16105.64, + "probability": 0.7657 + }, + { + "start": 16106.0, + "end": 16108.32, + "probability": 0.9422 + }, + { + "start": 16108.72, + "end": 16109.14, + "probability": 0.2785 + }, + { + "start": 16109.16, + "end": 16109.38, + "probability": 0.7733 + }, + { + "start": 16109.44, + "end": 16110.04, + "probability": 0.7876 + }, + { + "start": 16110.62, + "end": 16114.38, + "probability": 0.9683 + }, + { + "start": 16115.9, + "end": 16118.2, + "probability": 0.9618 + }, + { + "start": 16118.44, + "end": 16119.68, + "probability": 0.7501 + }, + { + "start": 16121.32, + "end": 16126.6, + "probability": 0.898 + }, + { + "start": 16126.72, + "end": 16128.74, + "probability": 0.6333 + }, + { + "start": 16128.78, + "end": 16129.78, + "probability": 0.9916 + }, + { + "start": 16130.32, + "end": 16132.24, + "probability": 0.6354 + }, + { + "start": 16132.92, + "end": 16137.48, + "probability": 0.5977 + }, + { + "start": 16137.64, + "end": 16139.22, + "probability": 0.6914 + }, + { + "start": 16140.04, + "end": 16142.44, + "probability": 0.7748 + }, + { + "start": 16148.56, + "end": 16150.6, + "probability": 0.9814 + }, + { + "start": 16150.8, + "end": 16151.57, + "probability": 0.9894 + }, + { + "start": 16151.74, + "end": 16158.98, + "probability": 0.8105 + }, + { + "start": 16159.38, + "end": 16160.66, + "probability": 0.8463 + }, + { + "start": 16160.68, + "end": 16162.38, + "probability": 0.8307 + }, + { + "start": 16162.86, + "end": 16169.96, + "probability": 0.9906 + }, + { + "start": 16170.66, + "end": 16171.6, + "probability": 0.9009 + }, + { + "start": 16171.6, + "end": 16172.88, + "probability": 0.5959 + }, + { + "start": 16173.22, + "end": 16173.92, + "probability": 0.8164 + }, + { + "start": 16174.0, + "end": 16175.16, + "probability": 0.9291 + }, + { + "start": 16175.18, + "end": 16176.38, + "probability": 0.8241 + }, + { + "start": 16176.84, + "end": 16179.18, + "probability": 0.9946 + }, + { + "start": 16179.46, + "end": 16182.56, + "probability": 0.96 + }, + { + "start": 16182.7, + "end": 16183.98, + "probability": 0.9866 + }, + { + "start": 16184.68, + "end": 16187.86, + "probability": 0.8905 + }, + { + "start": 16188.2, + "end": 16188.66, + "probability": 0.8405 + }, + { + "start": 16189.42, + "end": 16193.68, + "probability": 0.9808 + }, + { + "start": 16195.25, + "end": 16196.78, + "probability": 0.9744 + }, + { + "start": 16196.8, + "end": 16197.3, + "probability": 0.9683 + }, + { + "start": 16197.76, + "end": 16202.0, + "probability": 0.9951 + }, + { + "start": 16202.18, + "end": 16203.1, + "probability": 0.9505 + }, + { + "start": 16203.68, + "end": 16209.94, + "probability": 0.9318 + }, + { + "start": 16210.78, + "end": 16212.64, + "probability": 0.8962 + }, + { + "start": 16213.2, + "end": 16215.9, + "probability": 0.9409 + }, + { + "start": 16217.54, + "end": 16218.18, + "probability": 0.8616 + }, + { + "start": 16218.46, + "end": 16219.82, + "probability": 0.9683 + }, + { + "start": 16220.1, + "end": 16224.06, + "probability": 0.9503 + }, + { + "start": 16225.76, + "end": 16228.2, + "probability": 0.795 + }, + { + "start": 16228.82, + "end": 16229.86, + "probability": 0.902 + }, + { + "start": 16232.32, + "end": 16235.04, + "probability": 0.855 + }, + { + "start": 16235.04, + "end": 16235.26, + "probability": 0.8027 + }, + { + "start": 16235.42, + "end": 16238.82, + "probability": 0.9377 + }, + { + "start": 16238.82, + "end": 16240.98, + "probability": 0.9813 + }, + { + "start": 16241.56, + "end": 16243.96, + "probability": 0.999 + }, + { + "start": 16243.96, + "end": 16247.18, + "probability": 0.9905 + }, + { + "start": 16247.56, + "end": 16248.46, + "probability": 0.9105 + }, + { + "start": 16248.54, + "end": 16249.24, + "probability": 0.9839 + }, + { + "start": 16249.42, + "end": 16249.82, + "probability": 0.6617 + }, + { + "start": 16250.58, + "end": 16255.0, + "probability": 0.9782 + }, + { + "start": 16255.0, + "end": 16258.4, + "probability": 0.9959 + }, + { + "start": 16258.9, + "end": 16260.1, + "probability": 0.9922 + }, + { + "start": 16260.32, + "end": 16262.94, + "probability": 0.8594 + }, + { + "start": 16263.02, + "end": 16264.31, + "probability": 0.8383 + }, + { + "start": 16264.68, + "end": 16265.98, + "probability": 0.9309 + }, + { + "start": 16267.48, + "end": 16268.14, + "probability": 0.7843 + }, + { + "start": 16268.84, + "end": 16272.0, + "probability": 0.8618 + }, + { + "start": 16272.52, + "end": 16273.38, + "probability": 0.7046 + }, + { + "start": 16273.5, + "end": 16274.72, + "probability": 0.8959 + }, + { + "start": 16275.12, + "end": 16275.86, + "probability": 0.8241 + }, + { + "start": 16275.96, + "end": 16278.0, + "probability": 0.9841 + }, + { + "start": 16278.46, + "end": 16279.58, + "probability": 0.884 + }, + { + "start": 16280.14, + "end": 16281.44, + "probability": 0.7447 + }, + { + "start": 16281.96, + "end": 16283.1, + "probability": 0.874 + }, + { + "start": 16283.18, + "end": 16284.3, + "probability": 0.9361 + }, + { + "start": 16284.8, + "end": 16287.1, + "probability": 0.9426 + }, + { + "start": 16287.4, + "end": 16289.54, + "probability": 0.8214 + }, + { + "start": 16290.04, + "end": 16292.12, + "probability": 0.822 + }, + { + "start": 16292.7, + "end": 16295.51, + "probability": 0.403 + }, + { + "start": 16297.71, + "end": 16301.34, + "probability": 0.9912 + }, + { + "start": 16301.86, + "end": 16304.89, + "probability": 0.9794 + }, + { + "start": 16305.62, + "end": 16308.86, + "probability": 0.8787 + }, + { + "start": 16308.9, + "end": 16312.86, + "probability": 0.9917 + }, + { + "start": 16313.62, + "end": 16318.28, + "probability": 0.9919 + }, + { + "start": 16318.38, + "end": 16319.64, + "probability": 0.796 + }, + { + "start": 16319.78, + "end": 16323.44, + "probability": 0.9714 + }, + { + "start": 16324.1, + "end": 16327.3, + "probability": 0.9539 + }, + { + "start": 16327.44, + "end": 16329.02, + "probability": 0.9326 + }, + { + "start": 16329.1, + "end": 16329.2, + "probability": 0.2868 + }, + { + "start": 16329.24, + "end": 16330.3, + "probability": 0.9489 + }, + { + "start": 16333.36, + "end": 16336.76, + "probability": 0.9465 + }, + { + "start": 16336.94, + "end": 16340.78, + "probability": 0.9566 + }, + { + "start": 16340.86, + "end": 16344.11, + "probability": 0.8156 + }, + { + "start": 16344.7, + "end": 16348.02, + "probability": 0.8432 + }, + { + "start": 16348.6, + "end": 16353.4, + "probability": 0.8546 + }, + { + "start": 16354.26, + "end": 16356.94, + "probability": 0.9001 + }, + { + "start": 16357.3, + "end": 16357.52, + "probability": 0.8752 + }, + { + "start": 16357.6, + "end": 16359.7, + "probability": 0.9924 + }, + { + "start": 16361.12, + "end": 16366.18, + "probability": 0.9737 + }, + { + "start": 16367.1, + "end": 16368.84, + "probability": 0.8577 + }, + { + "start": 16369.86, + "end": 16372.52, + "probability": 0.9617 + }, + { + "start": 16372.8, + "end": 16377.62, + "probability": 0.8442 + }, + { + "start": 16378.16, + "end": 16382.28, + "probability": 0.6693 + }, + { + "start": 16382.86, + "end": 16387.36, + "probability": 0.9817 + }, + { + "start": 16388.96, + "end": 16394.38, + "probability": 0.9961 + }, + { + "start": 16394.38, + "end": 16398.12, + "probability": 0.9915 + }, + { + "start": 16399.12, + "end": 16401.08, + "probability": 0.7162 + }, + { + "start": 16402.1, + "end": 16403.52, + "probability": 0.9818 + }, + { + "start": 16403.98, + "end": 16407.67, + "probability": 0.9917 + }, + { + "start": 16410.54, + "end": 16414.44, + "probability": 0.9988 + }, + { + "start": 16414.46, + "end": 16417.32, + "probability": 0.7699 + }, + { + "start": 16418.0, + "end": 16420.78, + "probability": 0.9883 + }, + { + "start": 16421.3, + "end": 16422.58, + "probability": 0.8197 + }, + { + "start": 16423.1, + "end": 16424.08, + "probability": 0.738 + }, + { + "start": 16424.76, + "end": 16427.02, + "probability": 0.7161 + }, + { + "start": 16427.64, + "end": 16429.84, + "probability": 0.907 + }, + { + "start": 16430.92, + "end": 16433.18, + "probability": 0.6012 + }, + { + "start": 16433.92, + "end": 16435.98, + "probability": 0.8117 + }, + { + "start": 16437.15, + "end": 16441.86, + "probability": 0.8321 + }, + { + "start": 16442.34, + "end": 16443.8, + "probability": 0.9971 + }, + { + "start": 16444.06, + "end": 16444.94, + "probability": 0.9966 + }, + { + "start": 16445.7, + "end": 16449.42, + "probability": 0.9668 + }, + { + "start": 16450.4, + "end": 16450.62, + "probability": 0.5256 + }, + { + "start": 16450.74, + "end": 16454.86, + "probability": 0.9927 + }, + { + "start": 16455.52, + "end": 16456.48, + "probability": 0.9895 + }, + { + "start": 16456.56, + "end": 16458.86, + "probability": 0.8831 + }, + { + "start": 16458.96, + "end": 16460.54, + "probability": 0.9415 + }, + { + "start": 16460.98, + "end": 16462.92, + "probability": 0.9963 + }, + { + "start": 16463.02, + "end": 16464.46, + "probability": 0.8888 + }, + { + "start": 16465.62, + "end": 16467.68, + "probability": 0.9971 + }, + { + "start": 16467.82, + "end": 16469.88, + "probability": 0.9032 + }, + { + "start": 16469.94, + "end": 16470.64, + "probability": 0.4274 + }, + { + "start": 16470.66, + "end": 16471.22, + "probability": 0.5116 + }, + { + "start": 16471.5, + "end": 16473.18, + "probability": 0.7298 + }, + { + "start": 16473.24, + "end": 16473.54, + "probability": 0.6661 + }, + { + "start": 16473.66, + "end": 16475.82, + "probability": 0.9312 + }, + { + "start": 16482.24, + "end": 16482.74, + "probability": 0.209 + }, + { + "start": 16483.62, + "end": 16487.42, + "probability": 0.2795 + }, + { + "start": 16487.58, + "end": 16488.78, + "probability": 0.9504 + }, + { + "start": 16490.5, + "end": 16493.64, + "probability": 0.9816 + }, + { + "start": 16494.16, + "end": 16495.04, + "probability": 0.8014 + }, + { + "start": 16495.34, + "end": 16498.42, + "probability": 0.9197 + }, + { + "start": 16498.96, + "end": 16501.22, + "probability": 0.9849 + }, + { + "start": 16501.62, + "end": 16503.24, + "probability": 0.7995 + }, + { + "start": 16503.54, + "end": 16508.0, + "probability": 0.882 + }, + { + "start": 16508.2, + "end": 16509.15, + "probability": 0.9709 + }, + { + "start": 16509.44, + "end": 16509.52, + "probability": 0.4016 + }, + { + "start": 16509.58, + "end": 16512.0, + "probability": 0.9961 + }, + { + "start": 16512.48, + "end": 16513.46, + "probability": 0.9051 + }, + { + "start": 16513.56, + "end": 16514.04, + "probability": 0.9875 + }, + { + "start": 16514.58, + "end": 16515.98, + "probability": 0.6139 + }, + { + "start": 16516.24, + "end": 16522.7, + "probability": 0.9854 + }, + { + "start": 16523.84, + "end": 16525.98, + "probability": 0.9668 + }, + { + "start": 16526.0, + "end": 16530.84, + "probability": 0.9924 + }, + { + "start": 16531.32, + "end": 16533.22, + "probability": 0.9609 + }, + { + "start": 16533.86, + "end": 16537.24, + "probability": 0.984 + }, + { + "start": 16539.0, + "end": 16541.74, + "probability": 0.3718 + }, + { + "start": 16544.5, + "end": 16544.72, + "probability": 0.6681 + }, + { + "start": 16545.0, + "end": 16546.6, + "probability": 0.8768 + }, + { + "start": 16547.04, + "end": 16547.3, + "probability": 0.393 + }, + { + "start": 16547.96, + "end": 16550.33, + "probability": 0.9364 + }, + { + "start": 16551.98, + "end": 16556.12, + "probability": 0.9813 + }, + { + "start": 16558.75, + "end": 16561.82, + "probability": 0.0343 + }, + { + "start": 16561.82, + "end": 16561.9, + "probability": 0.0881 + }, + { + "start": 16562.28, + "end": 16567.72, + "probability": 0.9303 + }, + { + "start": 16567.72, + "end": 16571.32, + "probability": 0.9851 + }, + { + "start": 16571.68, + "end": 16572.48, + "probability": 0.8365 + }, + { + "start": 16572.76, + "end": 16573.58, + "probability": 0.6488 + }, + { + "start": 16575.0, + "end": 16576.88, + "probability": 0.8776 + }, + { + "start": 16594.2, + "end": 16595.48, + "probability": 0.6595 + }, + { + "start": 16596.66, + "end": 16598.02, + "probability": 0.8618 + }, + { + "start": 16599.14, + "end": 16600.1, + "probability": 0.7088 + }, + { + "start": 16600.6, + "end": 16603.7, + "probability": 0.9688 + }, + { + "start": 16606.26, + "end": 16608.46, + "probability": 0.999 + }, + { + "start": 16609.0, + "end": 16610.78, + "probability": 0.9805 + }, + { + "start": 16610.86, + "end": 16612.46, + "probability": 0.9978 + }, + { + "start": 16613.12, + "end": 16615.62, + "probability": 0.9919 + }, + { + "start": 16615.96, + "end": 16619.8, + "probability": 0.8252 + }, + { + "start": 16620.74, + "end": 16622.44, + "probability": 0.5406 + }, + { + "start": 16623.0, + "end": 16626.24, + "probability": 0.7431 + }, + { + "start": 16627.62, + "end": 16627.94, + "probability": 0.1651 + }, + { + "start": 16628.18, + "end": 16629.06, + "probability": 0.6465 + }, + { + "start": 16629.06, + "end": 16629.76, + "probability": 0.7451 + }, + { + "start": 16631.72, + "end": 16632.64, + "probability": 0.9548 + }, + { + "start": 16632.76, + "end": 16635.0, + "probability": 0.9353 + }, + { + "start": 16635.44, + "end": 16635.68, + "probability": 0.8232 + }, + { + "start": 16635.86, + "end": 16638.6, + "probability": 0.9206 + }, + { + "start": 16638.64, + "end": 16639.41, + "probability": 0.9895 + }, + { + "start": 16639.72, + "end": 16641.66, + "probability": 0.9678 + }, + { + "start": 16641.66, + "end": 16645.08, + "probability": 0.9609 + }, + { + "start": 16645.26, + "end": 16645.58, + "probability": 0.7457 + }, + { + "start": 16647.46, + "end": 16648.36, + "probability": 0.6016 + }, + { + "start": 16649.76, + "end": 16649.8, + "probability": 0.0603 + }, + { + "start": 16649.8, + "end": 16654.12, + "probability": 0.9542 + }, + { + "start": 16654.64, + "end": 16655.02, + "probability": 0.7135 + }, + { + "start": 16655.12, + "end": 16661.14, + "probability": 0.97 + }, + { + "start": 16661.64, + "end": 16662.36, + "probability": 0.9807 + }, + { + "start": 16662.42, + "end": 16673.04, + "probability": 0.9407 + }, + { + "start": 16673.14, + "end": 16677.76, + "probability": 0.9939 + }, + { + "start": 16677.98, + "end": 16679.78, + "probability": 0.9834 + }, + { + "start": 16680.2, + "end": 16680.48, + "probability": 0.4537 + }, + { + "start": 16681.16, + "end": 16686.06, + "probability": 0.988 + }, + { + "start": 16687.2, + "end": 16688.26, + "probability": 0.9713 + }, + { + "start": 16688.6, + "end": 16688.84, + "probability": 0.5007 + }, + { + "start": 16688.88, + "end": 16691.68, + "probability": 0.8758 + }, + { + "start": 16692.04, + "end": 16695.16, + "probability": 0.7288 + }, + { + "start": 16695.26, + "end": 16696.7, + "probability": 0.9704 + }, + { + "start": 16697.58, + "end": 16697.92, + "probability": 0.7429 + }, + { + "start": 16698.48, + "end": 16699.3, + "probability": 0.7844 + }, + { + "start": 16699.82, + "end": 16703.08, + "probability": 0.9081 + }, + { + "start": 16703.98, + "end": 16705.66, + "probability": 0.501 + }, + { + "start": 16706.72, + "end": 16708.88, + "probability": 0.6693 + }, + { + "start": 16710.08, + "end": 16712.16, + "probability": 0.9333 + }, + { + "start": 16712.8, + "end": 16717.14, + "probability": 0.9291 + }, + { + "start": 16717.66, + "end": 16719.62, + "probability": 0.9971 + }, + { + "start": 16720.42, + "end": 16727.22, + "probability": 0.9566 + }, + { + "start": 16727.88, + "end": 16728.56, + "probability": 0.7165 + }, + { + "start": 16728.72, + "end": 16730.88, + "probability": 0.9971 + }, + { + "start": 16732.14, + "end": 16735.66, + "probability": 0.8915 + }, + { + "start": 16737.36, + "end": 16739.82, + "probability": 0.979 + }, + { + "start": 16740.02, + "end": 16742.54, + "probability": 0.8083 + }, + { + "start": 16742.88, + "end": 16743.38, + "probability": 0.946 + }, + { + "start": 16744.28, + "end": 16745.2, + "probability": 0.4842 + }, + { + "start": 16745.54, + "end": 16746.53, + "probability": 0.5849 + }, + { + "start": 16746.92, + "end": 16747.49, + "probability": 0.9718 + }, + { + "start": 16747.98, + "end": 16747.98, + "probability": 0.519 + }, + { + "start": 16747.98, + "end": 16749.7, + "probability": 0.9226 + }, + { + "start": 16749.78, + "end": 16750.5, + "probability": 0.8501 + }, + { + "start": 16750.52, + "end": 16751.48, + "probability": 0.97 + }, + { + "start": 16751.52, + "end": 16756.42, + "probability": 0.9965 + }, + { + "start": 16757.34, + "end": 16761.8, + "probability": 0.9771 + }, + { + "start": 16762.5, + "end": 16762.86, + "probability": 0.823 + }, + { + "start": 16763.4, + "end": 16765.8, + "probability": 0.9929 + }, + { + "start": 16766.5, + "end": 16768.04, + "probability": 0.7004 + }, + { + "start": 16768.24, + "end": 16770.3, + "probability": 0.999 + }, + { + "start": 16770.3, + "end": 16772.42, + "probability": 0.9966 + }, + { + "start": 16772.48, + "end": 16773.34, + "probability": 0.8378 + }, + { + "start": 16773.96, + "end": 16775.2, + "probability": 0.9867 + }, + { + "start": 16776.02, + "end": 16779.08, + "probability": 0.9678 + }, + { + "start": 16779.4, + "end": 16781.62, + "probability": 0.9953 + }, + { + "start": 16782.62, + "end": 16785.14, + "probability": 0.9967 + }, + { + "start": 16786.22, + "end": 16788.84, + "probability": 0.9961 + }, + { + "start": 16789.88, + "end": 16792.96, + "probability": 0.9902 + }, + { + "start": 16793.7, + "end": 16796.0, + "probability": 0.8555 + }, + { + "start": 16796.12, + "end": 16798.12, + "probability": 0.958 + }, + { + "start": 16798.48, + "end": 16799.82, + "probability": 0.998 + }, + { + "start": 16800.44, + "end": 16801.62, + "probability": 0.9476 + }, + { + "start": 16802.74, + "end": 16808.86, + "probability": 0.9897 + }, + { + "start": 16809.86, + "end": 16811.0, + "probability": 0.5265 + }, + { + "start": 16811.9, + "end": 16815.44, + "probability": 0.9502 + }, + { + "start": 16815.58, + "end": 16816.44, + "probability": 0.582 + }, + { + "start": 16817.9, + "end": 16820.2, + "probability": 0.6514 + }, + { + "start": 16820.86, + "end": 16823.66, + "probability": 0.9934 + }, + { + "start": 16825.62, + "end": 16828.9, + "probability": 0.8848 + }, + { + "start": 16829.5, + "end": 16835.16, + "probability": 0.9875 + }, + { + "start": 16835.46, + "end": 16837.04, + "probability": 0.9917 + }, + { + "start": 16837.28, + "end": 16837.7, + "probability": 0.7559 + }, + { + "start": 16837.74, + "end": 16839.18, + "probability": 0.7852 + }, + { + "start": 16840.16, + "end": 16845.54, + "probability": 0.9933 + }, + { + "start": 16846.44, + "end": 16849.54, + "probability": 0.9586 + }, + { + "start": 16849.6, + "end": 16850.2, + "probability": 0.7497 + }, + { + "start": 16850.34, + "end": 16851.12, + "probability": 0.8923 + }, + { + "start": 16851.54, + "end": 16851.76, + "probability": 0.7063 + }, + { + "start": 16852.46, + "end": 16857.78, + "probability": 0.9608 + }, + { + "start": 16859.1, + "end": 16861.7, + "probability": 0.9266 + }, + { + "start": 16862.42, + "end": 16866.74, + "probability": 0.9616 + }, + { + "start": 16867.34, + "end": 16871.0, + "probability": 0.4883 + }, + { + "start": 16871.5, + "end": 16875.58, + "probability": 0.9755 + }, + { + "start": 16876.2, + "end": 16878.28, + "probability": 0.8174 + }, + { + "start": 16879.08, + "end": 16880.88, + "probability": 0.9348 + }, + { + "start": 16882.14, + "end": 16889.54, + "probability": 0.9861 + }, + { + "start": 16890.14, + "end": 16891.08, + "probability": 0.6573 + }, + { + "start": 16891.1, + "end": 16894.92, + "probability": 0.9933 + }, + { + "start": 16894.92, + "end": 16895.02, + "probability": 0.6255 + }, + { + "start": 16895.48, + "end": 16895.84, + "probability": 0.91 + }, + { + "start": 16896.1, + "end": 16896.96, + "probability": 0.9634 + }, + { + "start": 16897.72, + "end": 16898.58, + "probability": 0.9937 + }, + { + "start": 16898.7, + "end": 16900.08, + "probability": 0.9949 + }, + { + "start": 16900.1, + "end": 16901.84, + "probability": 0.7288 + }, + { + "start": 16901.9, + "end": 16904.06, + "probability": 0.4893 + }, + { + "start": 16904.08, + "end": 16906.8, + "probability": 0.957 + }, + { + "start": 16907.85, + "end": 16908.86, + "probability": 0.4782 + }, + { + "start": 16908.86, + "end": 16911.78, + "probability": 0.7069 + }, + { + "start": 16911.88, + "end": 16914.32, + "probability": 0.7883 + }, + { + "start": 16915.2, + "end": 16916.36, + "probability": 0.6783 + }, + { + "start": 16916.62, + "end": 16917.14, + "probability": 0.4916 + }, + { + "start": 16917.18, + "end": 16920.66, + "probability": 0.98 + }, + { + "start": 16921.18, + "end": 16923.16, + "probability": 0.8573 + }, + { + "start": 16923.68, + "end": 16928.4, + "probability": 0.9003 + }, + { + "start": 16928.76, + "end": 16930.02, + "probability": 0.9774 + }, + { + "start": 16930.44, + "end": 16930.74, + "probability": 0.4081 + }, + { + "start": 16931.84, + "end": 16933.14, + "probability": 0.7713 + }, + { + "start": 16933.26, + "end": 16938.48, + "probability": 0.9453 + }, + { + "start": 16939.26, + "end": 16945.78, + "probability": 0.9436 + }, + { + "start": 16946.02, + "end": 16946.92, + "probability": 0.8672 + }, + { + "start": 16947.14, + "end": 16950.44, + "probability": 0.9902 + }, + { + "start": 16951.3, + "end": 16956.62, + "probability": 0.7928 + }, + { + "start": 16957.5, + "end": 16963.32, + "probability": 0.9943 + }, + { + "start": 16964.44, + "end": 16969.7, + "probability": 0.9941 + }, + { + "start": 16970.92, + "end": 16971.44, + "probability": 0.9771 + }, + { + "start": 16972.34, + "end": 16974.76, + "probability": 0.9547 + }, + { + "start": 16974.82, + "end": 16975.08, + "probability": 0.7474 + }, + { + "start": 16975.18, + "end": 16976.64, + "probability": 0.902 + }, + { + "start": 16977.08, + "end": 16979.8, + "probability": 0.9779 + }, + { + "start": 16979.94, + "end": 16982.04, + "probability": 0.8716 + }, + { + "start": 16984.24, + "end": 16984.65, + "probability": 0.1443 + }, + { + "start": 16987.24, + "end": 16987.72, + "probability": 0.1019 + }, + { + "start": 16987.76, + "end": 16991.42, + "probability": 0.969 + }, + { + "start": 16992.22, + "end": 16994.88, + "probability": 0.9533 + }, + { + "start": 16995.42, + "end": 16997.36, + "probability": 0.9169 + }, + { + "start": 16998.5, + "end": 17000.08, + "probability": 0.8275 + }, + { + "start": 17000.96, + "end": 17006.09, + "probability": 0.679 + }, + { + "start": 17008.16, + "end": 17009.98, + "probability": 0.8911 + }, + { + "start": 17010.48, + "end": 17013.44, + "probability": 0.9701 + }, + { + "start": 17013.52, + "end": 17015.1, + "probability": 0.9748 + }, + { + "start": 17015.98, + "end": 17017.0, + "probability": 0.7505 + }, + { + "start": 17017.36, + "end": 17019.22, + "probability": 0.7218 + }, + { + "start": 17019.54, + "end": 17020.52, + "probability": 0.9421 + }, + { + "start": 17021.06, + "end": 17021.78, + "probability": 0.5298 + }, + { + "start": 17022.28, + "end": 17023.3, + "probability": 0.9264 + }, + { + "start": 17024.4, + "end": 17029.92, + "probability": 0.9919 + }, + { + "start": 17030.82, + "end": 17033.08, + "probability": 0.9958 + }, + { + "start": 17033.08, + "end": 17036.22, + "probability": 0.9949 + }, + { + "start": 17037.26, + "end": 17040.65, + "probability": 0.9524 + }, + { + "start": 17041.38, + "end": 17042.98, + "probability": 0.8181 + }, + { + "start": 17043.94, + "end": 17046.46, + "probability": 0.9888 + }, + { + "start": 17047.16, + "end": 17052.24, + "probability": 0.9951 + }, + { + "start": 17053.3, + "end": 17055.26, + "probability": 0.9133 + }, + { + "start": 17055.88, + "end": 17057.56, + "probability": 0.8696 + }, + { + "start": 17058.04, + "end": 17061.44, + "probability": 0.9864 + }, + { + "start": 17061.64, + "end": 17062.12, + "probability": 0.8701 + }, + { + "start": 17062.38, + "end": 17065.24, + "probability": 0.9868 + }, + { + "start": 17065.32, + "end": 17066.2, + "probability": 0.9278 + }, + { + "start": 17066.88, + "end": 17068.48, + "probability": 0.9751 + }, + { + "start": 17068.98, + "end": 17073.34, + "probability": 0.9937 + }, + { + "start": 17073.72, + "end": 17076.2, + "probability": 0.9075 + }, + { + "start": 17076.24, + "end": 17081.86, + "probability": 0.9347 + }, + { + "start": 17082.52, + "end": 17085.66, + "probability": 0.973 + }, + { + "start": 17086.08, + "end": 17087.56, + "probability": 0.5603 + }, + { + "start": 17088.06, + "end": 17093.22, + "probability": 0.8172 + }, + { + "start": 17093.9, + "end": 17099.1, + "probability": 0.9528 + }, + { + "start": 17100.04, + "end": 17105.98, + "probability": 0.9738 + }, + { + "start": 17107.42, + "end": 17111.68, + "probability": 0.908 + }, + { + "start": 17113.3, + "end": 17114.0, + "probability": 0.6955 + }, + { + "start": 17114.44, + "end": 17117.72, + "probability": 0.9993 + }, + { + "start": 17118.24, + "end": 17123.62, + "probability": 0.9985 + }, + { + "start": 17124.62, + "end": 17127.1, + "probability": 0.7662 + }, + { + "start": 17128.16, + "end": 17129.6, + "probability": 0.9681 + }, + { + "start": 17130.06, + "end": 17131.54, + "probability": 0.9861 + }, + { + "start": 17132.18, + "end": 17135.32, + "probability": 0.9803 + }, + { + "start": 17136.38, + "end": 17140.84, + "probability": 0.9866 + }, + { + "start": 17141.42, + "end": 17144.96, + "probability": 0.9834 + }, + { + "start": 17146.6, + "end": 17149.4, + "probability": 0.5891 + }, + { + "start": 17150.66, + "end": 17151.46, + "probability": 0.5016 + }, + { + "start": 17152.02, + "end": 17152.62, + "probability": 0.8643 + }, + { + "start": 17153.9, + "end": 17154.02, + "probability": 0.8555 + }, + { + "start": 17157.29, + "end": 17160.77, + "probability": 0.9976 + }, + { + "start": 17161.54, + "end": 17163.92, + "probability": 0.9872 + }, + { + "start": 17164.84, + "end": 17169.82, + "probability": 0.8967 + }, + { + "start": 17169.82, + "end": 17175.98, + "probability": 0.9732 + }, + { + "start": 17176.54, + "end": 17178.8, + "probability": 0.9966 + }, + { + "start": 17179.7, + "end": 17180.16, + "probability": 0.7638 + }, + { + "start": 17181.48, + "end": 17186.36, + "probability": 0.8586 + }, + { + "start": 17187.14, + "end": 17191.04, + "probability": 0.9572 + }, + { + "start": 17191.24, + "end": 17192.76, + "probability": 0.8517 + }, + { + "start": 17193.5, + "end": 17195.76, + "probability": 0.9921 + }, + { + "start": 17196.0, + "end": 17197.68, + "probability": 0.979 + }, + { + "start": 17198.12, + "end": 17199.68, + "probability": 0.972 + }, + { + "start": 17200.54, + "end": 17201.96, + "probability": 0.9976 + }, + { + "start": 17202.5, + "end": 17203.1, + "probability": 0.9142 + }, + { + "start": 17203.62, + "end": 17204.1, + "probability": 0.8428 + }, + { + "start": 17205.28, + "end": 17206.06, + "probability": 0.778 + }, + { + "start": 17206.42, + "end": 17210.48, + "probability": 0.9644 + }, + { + "start": 17211.16, + "end": 17216.5, + "probability": 0.983 + }, + { + "start": 17217.3, + "end": 17224.74, + "probability": 0.9961 + }, + { + "start": 17226.2, + "end": 17232.32, + "probability": 0.9971 + }, + { + "start": 17233.54, + "end": 17235.9, + "probability": 0.9976 + }, + { + "start": 17236.38, + "end": 17237.62, + "probability": 0.9589 + }, + { + "start": 17237.78, + "end": 17239.19, + "probability": 0.9696 + }, + { + "start": 17240.86, + "end": 17241.86, + "probability": 0.7238 + }, + { + "start": 17242.46, + "end": 17247.3, + "probability": 0.9785 + }, + { + "start": 17247.82, + "end": 17255.34, + "probability": 0.9958 + }, + { + "start": 17256.12, + "end": 17258.92, + "probability": 0.9828 + }, + { + "start": 17259.44, + "end": 17259.96, + "probability": 0.6795 + }, + { + "start": 17261.08, + "end": 17265.42, + "probability": 0.9816 + }, + { + "start": 17266.22, + "end": 17271.04, + "probability": 0.999 + }, + { + "start": 17271.48, + "end": 17272.14, + "probability": 0.8923 + }, + { + "start": 17272.28, + "end": 17273.18, + "probability": 0.7603 + }, + { + "start": 17273.2, + "end": 17273.88, + "probability": 0.8541 + }, + { + "start": 17274.14, + "end": 17274.85, + "probability": 0.6757 + }, + { + "start": 17275.1, + "end": 17276.4, + "probability": 0.936 + }, + { + "start": 17277.06, + "end": 17278.08, + "probability": 0.7839 + }, + { + "start": 17278.34, + "end": 17278.6, + "probability": 0.9664 + }, + { + "start": 17279.74, + "end": 17281.6, + "probability": 0.6834 + }, + { + "start": 17281.6, + "end": 17282.34, + "probability": 0.9265 + }, + { + "start": 17283.28, + "end": 17283.88, + "probability": 0.8302 + }, + { + "start": 17284.16, + "end": 17286.88, + "probability": 0.9948 + }, + { + "start": 17287.24, + "end": 17288.3, + "probability": 0.9937 + }, + { + "start": 17288.34, + "end": 17289.48, + "probability": 0.7084 + }, + { + "start": 17289.86, + "end": 17290.88, + "probability": 0.957 + }, + { + "start": 17291.42, + "end": 17294.42, + "probability": 0.8536 + }, + { + "start": 17294.98, + "end": 17296.06, + "probability": 0.8553 + }, + { + "start": 17296.56, + "end": 17297.1, + "probability": 0.8999 + }, + { + "start": 17298.58, + "end": 17300.28, + "probability": 0.7962 + }, + { + "start": 17300.78, + "end": 17301.22, + "probability": 0.876 + }, + { + "start": 17301.22, + "end": 17301.6, + "probability": 0.9409 + }, + { + "start": 17301.92, + "end": 17302.84, + "probability": 0.8915 + }, + { + "start": 17302.86, + "end": 17303.8, + "probability": 0.9771 + }, + { + "start": 17304.94, + "end": 17307.8, + "probability": 0.8079 + }, + { + "start": 17308.36, + "end": 17309.48, + "probability": 0.616 + }, + { + "start": 17309.94, + "end": 17309.96, + "probability": 0.1671 + }, + { + "start": 17309.96, + "end": 17310.38, + "probability": 0.5194 + }, + { + "start": 17310.46, + "end": 17311.18, + "probability": 0.9209 + }, + { + "start": 17312.08, + "end": 17314.48, + "probability": 0.8686 + }, + { + "start": 17314.48, + "end": 17315.18, + "probability": 0.9882 + }, + { + "start": 17316.04, + "end": 17317.06, + "probability": 0.7076 + }, + { + "start": 17317.9, + "end": 17318.48, + "probability": 0.821 + }, + { + "start": 17320.41, + "end": 17325.66, + "probability": 0.9966 + }, + { + "start": 17326.44, + "end": 17328.6, + "probability": 0.9941 + }, + { + "start": 17328.72, + "end": 17331.06, + "probability": 0.8902 + }, + { + "start": 17331.22, + "end": 17333.2, + "probability": 0.9617 + }, + { + "start": 17333.24, + "end": 17336.5, + "probability": 0.8495 + }, + { + "start": 17338.4, + "end": 17342.28, + "probability": 0.9623 + }, + { + "start": 17342.92, + "end": 17346.9, + "probability": 0.9924 + }, + { + "start": 17347.54, + "end": 17352.82, + "probability": 0.9799 + }, + { + "start": 17353.46, + "end": 17355.16, + "probability": 0.7103 + }, + { + "start": 17355.74, + "end": 17358.38, + "probability": 0.994 + }, + { + "start": 17358.96, + "end": 17360.9, + "probability": 0.8978 + }, + { + "start": 17362.1, + "end": 17366.1, + "probability": 0.9897 + }, + { + "start": 17367.06, + "end": 17368.6, + "probability": 0.9185 + }, + { + "start": 17369.48, + "end": 17374.96, + "probability": 0.9889 + }, + { + "start": 17375.82, + "end": 17377.98, + "probability": 0.9801 + }, + { + "start": 17378.9, + "end": 17381.08, + "probability": 0.9856 + }, + { + "start": 17381.62, + "end": 17384.16, + "probability": 0.9867 + }, + { + "start": 17384.74, + "end": 17388.68, + "probability": 0.9727 + }, + { + "start": 17389.52, + "end": 17395.88, + "probability": 0.9498 + }, + { + "start": 17396.88, + "end": 17397.86, + "probability": 0.7058 + }, + { + "start": 17398.22, + "end": 17401.9, + "probability": 0.9935 + }, + { + "start": 17402.4, + "end": 17404.44, + "probability": 0.9111 + }, + { + "start": 17405.16, + "end": 17406.34, + "probability": 0.9434 + }, + { + "start": 17406.92, + "end": 17409.7, + "probability": 0.8747 + }, + { + "start": 17410.1, + "end": 17414.2, + "probability": 0.99 + }, + { + "start": 17415.2, + "end": 17420.58, + "probability": 0.8002 + }, + { + "start": 17421.74, + "end": 17423.14, + "probability": 0.6472 + }, + { + "start": 17423.4, + "end": 17424.3, + "probability": 0.9932 + }, + { + "start": 17425.56, + "end": 17425.56, + "probability": 0.1394 + }, + { + "start": 17425.56, + "end": 17426.04, + "probability": 0.3553 + }, + { + "start": 17426.18, + "end": 17426.88, + "probability": 0.8756 + }, + { + "start": 17427.08, + "end": 17429.08, + "probability": 0.4958 + }, + { + "start": 17429.2, + "end": 17429.68, + "probability": 0.741 + }, + { + "start": 17431.3, + "end": 17433.38, + "probability": 0.0229 + }, + { + "start": 17435.7, + "end": 17438.64, + "probability": 0.9315 + }, + { + "start": 17439.48, + "end": 17441.33, + "probability": 0.9646 + }, + { + "start": 17442.5, + "end": 17443.54, + "probability": 0.2247 + }, + { + "start": 17443.72, + "end": 17446.34, + "probability": 0.6626 + }, + { + "start": 17446.38, + "end": 17448.24, + "probability": 0.673 + }, + { + "start": 17449.0, + "end": 17452.52, + "probability": 0.9816 + }, + { + "start": 17452.52, + "end": 17457.7, + "probability": 0.6597 + }, + { + "start": 17457.72, + "end": 17457.72, + "probability": 0.6643 + }, + { + "start": 17457.72, + "end": 17458.26, + "probability": 0.3567 + }, + { + "start": 17458.26, + "end": 17458.26, + "probability": 0.1005 + }, + { + "start": 17458.84, + "end": 17461.48, + "probability": 0.9937 + }, + { + "start": 17462.02, + "end": 17464.7, + "probability": 0.939 + }, + { + "start": 17465.24, + "end": 17468.08, + "probability": 0.9751 + }, + { + "start": 17468.66, + "end": 17471.76, + "probability": 0.9003 + }, + { + "start": 17472.36, + "end": 17474.33, + "probability": 0.9651 + }, + { + "start": 17475.04, + "end": 17476.04, + "probability": 0.965 + }, + { + "start": 17476.08, + "end": 17478.6, + "probability": 0.7089 + }, + { + "start": 17478.6, + "end": 17481.82, + "probability": 0.9982 + }, + { + "start": 17482.02, + "end": 17482.12, + "probability": 0.4308 + }, + { + "start": 17482.14, + "end": 17483.54, + "probability": 0.985 + }, + { + "start": 17484.04, + "end": 17485.28, + "probability": 0.9244 + }, + { + "start": 17486.24, + "end": 17489.2, + "probability": 0.9248 + }, + { + "start": 17489.34, + "end": 17491.56, + "probability": 0.9369 + }, + { + "start": 17492.48, + "end": 17494.96, + "probability": 0.707 + }, + { + "start": 17495.44, + "end": 17495.9, + "probability": 0.412 + }, + { + "start": 17496.02, + "end": 17496.64, + "probability": 0.8304 + }, + { + "start": 17497.14, + "end": 17499.66, + "probability": 0.8414 + }, + { + "start": 17500.56, + "end": 17501.76, + "probability": 0.072 + }, + { + "start": 17502.56, + "end": 17502.86, + "probability": 0.1294 + }, + { + "start": 17503.16, + "end": 17503.7, + "probability": 0.6301 + }, + { + "start": 17503.74, + "end": 17508.94, + "probability": 0.6642 + }, + { + "start": 17509.74, + "end": 17512.6, + "probability": 0.9338 + }, + { + "start": 17513.46, + "end": 17519.14, + "probability": 0.9943 + }, + { + "start": 17520.56, + "end": 17523.7, + "probability": 0.8197 + }, + { + "start": 17525.0, + "end": 17527.56, + "probability": 0.996 + }, + { + "start": 17528.7, + "end": 17529.76, + "probability": 0.9995 + }, + { + "start": 17530.36, + "end": 17531.82, + "probability": 0.9861 + }, + { + "start": 17532.54, + "end": 17535.6, + "probability": 0.9958 + }, + { + "start": 17536.52, + "end": 17539.36, + "probability": 0.9858 + }, + { + "start": 17540.32, + "end": 17542.82, + "probability": 0.9909 + }, + { + "start": 17543.7, + "end": 17547.72, + "probability": 0.9412 + }, + { + "start": 17548.82, + "end": 17550.84, + "probability": 0.8899 + }, + { + "start": 17550.86, + "end": 17552.1, + "probability": 0.5047 + }, + { + "start": 17552.5, + "end": 17553.14, + "probability": 0.5593 + }, + { + "start": 17553.9, + "end": 17557.22, + "probability": 0.9009 + }, + { + "start": 17557.36, + "end": 17558.6, + "probability": 0.804 + }, + { + "start": 17560.18, + "end": 17564.0, + "probability": 0.5888 + }, + { + "start": 17564.0, + "end": 17565.14, + "probability": 0.9269 + }, + { + "start": 17565.84, + "end": 17567.3, + "probability": 0.9106 + }, + { + "start": 17567.58, + "end": 17568.85, + "probability": 0.9412 + }, + { + "start": 17569.54, + "end": 17569.84, + "probability": 0.9817 + }, + { + "start": 17570.18, + "end": 17574.13, + "probability": 0.9041 + }, + { + "start": 17574.64, + "end": 17574.7, + "probability": 0.5754 + }, + { + "start": 17574.7, + "end": 17576.31, + "probability": 0.9061 + }, + { + "start": 17579.66, + "end": 17582.88, + "probability": 0.8038 + }, + { + "start": 17583.52, + "end": 17585.52, + "probability": 0.8993 + }, + { + "start": 17586.26, + "end": 17589.02, + "probability": 0.9579 + }, + { + "start": 17589.78, + "end": 17591.94, + "probability": 0.9565 + }, + { + "start": 17591.94, + "end": 17596.72, + "probability": 0.9495 + }, + { + "start": 17597.44, + "end": 17598.7, + "probability": 0.9966 + }, + { + "start": 17599.26, + "end": 17600.22, + "probability": 0.6869 + }, + { + "start": 17600.72, + "end": 17601.78, + "probability": 0.8547 + }, + { + "start": 17602.48, + "end": 17604.2, + "probability": 0.7886 + }, + { + "start": 17605.12, + "end": 17607.56, + "probability": 0.9517 + }, + { + "start": 17607.72, + "end": 17608.44, + "probability": 0.7913 + }, + { + "start": 17609.06, + "end": 17610.52, + "probability": 0.8369 + }, + { + "start": 17610.76, + "end": 17612.32, + "probability": 0.9814 + }, + { + "start": 17613.38, + "end": 17616.84, + "probability": 0.6857 + }, + { + "start": 17617.5, + "end": 17619.42, + "probability": 0.9023 + }, + { + "start": 17619.88, + "end": 17621.42, + "probability": 0.9333 + }, + { + "start": 17621.58, + "end": 17621.96, + "probability": 0.4202 + }, + { + "start": 17622.04, + "end": 17623.12, + "probability": 0.9387 + }, + { + "start": 17623.26, + "end": 17623.7, + "probability": 0.5053 + }, + { + "start": 17623.76, + "end": 17624.26, + "probability": 0.9206 + }, + { + "start": 17624.88, + "end": 17626.54, + "probability": 0.9535 + }, + { + "start": 17627.34, + "end": 17627.64, + "probability": 0.48 + }, + { + "start": 17627.72, + "end": 17631.86, + "probability": 0.8565 + }, + { + "start": 17632.44, + "end": 17634.82, + "probability": 0.9639 + }, + { + "start": 17635.0, + "end": 17636.6, + "probability": 0.988 + }, + { + "start": 17636.84, + "end": 17642.7, + "probability": 0.9531 + }, + { + "start": 17642.94, + "end": 17643.58, + "probability": 0.6711 + }, + { + "start": 17643.58, + "end": 17644.94, + "probability": 0.8678 + }, + { + "start": 17645.02, + "end": 17646.22, + "probability": 0.6449 + }, + { + "start": 17646.76, + "end": 17648.28, + "probability": 0.6826 + }, + { + "start": 17648.72, + "end": 17648.72, + "probability": 0.1626 + }, + { + "start": 17648.78, + "end": 17651.76, + "probability": 0.9926 + }, + { + "start": 17653.24, + "end": 17654.35, + "probability": 0.7061 + }, + { + "start": 17654.94, + "end": 17660.68, + "probability": 0.9817 + }, + { + "start": 17661.14, + "end": 17665.0, + "probability": 0.9627 + }, + { + "start": 17665.74, + "end": 17669.3, + "probability": 0.928 + }, + { + "start": 17669.7, + "end": 17670.28, + "probability": 0.5004 + }, + { + "start": 17670.44, + "end": 17671.92, + "probability": 0.8945 + }, + { + "start": 17672.04, + "end": 17673.92, + "probability": 0.8542 + }, + { + "start": 17674.24, + "end": 17676.63, + "probability": 0.2583 + }, + { + "start": 17677.42, + "end": 17681.88, + "probability": 0.2921 + }, + { + "start": 17682.0, + "end": 17687.72, + "probability": 0.5776 + }, + { + "start": 17687.78, + "end": 17687.78, + "probability": 0.0294 + }, + { + "start": 17687.78, + "end": 17688.92, + "probability": 0.0142 + }, + { + "start": 17689.22, + "end": 17689.84, + "probability": 0.7037 + }, + { + "start": 17689.9, + "end": 17692.56, + "probability": 0.8236 + }, + { + "start": 17692.96, + "end": 17698.18, + "probability": 0.9316 + }, + { + "start": 17698.2, + "end": 17702.46, + "probability": 0.597 + }, + { + "start": 17703.02, + "end": 17705.46, + "probability": 0.9877 + }, + { + "start": 17705.66, + "end": 17710.64, + "probability": 0.9872 + }, + { + "start": 17711.66, + "end": 17713.04, + "probability": 0.9534 + }, + { + "start": 17713.32, + "end": 17714.1, + "probability": 0.667 + }, + { + "start": 17714.46, + "end": 17715.98, + "probability": 0.999 + }, + { + "start": 17716.2, + "end": 17716.52, + "probability": 0.3601 + }, + { + "start": 17716.76, + "end": 17719.48, + "probability": 0.9246 + }, + { + "start": 17719.68, + "end": 17722.4, + "probability": 0.8817 + }, + { + "start": 17723.1, + "end": 17727.28, + "probability": 0.9843 + }, + { + "start": 17727.74, + "end": 17728.28, + "probability": 0.2922 + }, + { + "start": 17728.52, + "end": 17729.64, + "probability": 0.9997 + }, + { + "start": 17730.16, + "end": 17735.0, + "probability": 0.9971 + }, + { + "start": 17735.52, + "end": 17737.5, + "probability": 0.9812 + }, + { + "start": 17737.62, + "end": 17738.68, + "probability": 0.5677 + }, + { + "start": 17739.84, + "end": 17741.38, + "probability": 0.8537 + }, + { + "start": 17741.82, + "end": 17742.9, + "probability": 0.4254 + }, + { + "start": 17743.14, + "end": 17743.9, + "probability": 0.6996 + }, + { + "start": 17743.96, + "end": 17746.06, + "probability": 0.9894 + }, + { + "start": 17746.34, + "end": 17747.9, + "probability": 0.9959 + }, + { + "start": 17748.76, + "end": 17749.7, + "probability": 0.7488 + }, + { + "start": 17749.78, + "end": 17752.0, + "probability": 0.9814 + }, + { + "start": 17752.58, + "end": 17753.26, + "probability": 0.9908 + }, + { + "start": 17754.84, + "end": 17757.5, + "probability": 0.723 + }, + { + "start": 17757.64, + "end": 17758.8, + "probability": 0.9279 + }, + { + "start": 17759.42, + "end": 17763.28, + "probability": 0.8524 + }, + { + "start": 17764.7, + "end": 17768.78, + "probability": 0.9201 + }, + { + "start": 17770.14, + "end": 17775.94, + "probability": 0.9421 + }, + { + "start": 17776.86, + "end": 17777.88, + "probability": 0.9555 + }, + { + "start": 17778.96, + "end": 17782.24, + "probability": 0.9862 + }, + { + "start": 17782.66, + "end": 17784.9, + "probability": 0.9873 + }, + { + "start": 17785.76, + "end": 17788.56, + "probability": 0.9445 + }, + { + "start": 17789.42, + "end": 17792.02, + "probability": 0.9937 + }, + { + "start": 17792.54, + "end": 17796.86, + "probability": 0.9976 + }, + { + "start": 17797.74, + "end": 17802.98, + "probability": 0.9983 + }, + { + "start": 17803.62, + "end": 17805.98, + "probability": 0.995 + }, + { + "start": 17806.42, + "end": 17810.26, + "probability": 0.9986 + }, + { + "start": 17810.48, + "end": 17813.0, + "probability": 0.8372 + }, + { + "start": 17813.8, + "end": 17817.86, + "probability": 0.9873 + }, + { + "start": 17818.3, + "end": 17821.76, + "probability": 0.9629 + }, + { + "start": 17822.22, + "end": 17825.78, + "probability": 0.9695 + }, + { + "start": 17827.22, + "end": 17829.5, + "probability": 0.8999 + }, + { + "start": 17830.82, + "end": 17833.38, + "probability": 0.0884 + }, + { + "start": 17833.92, + "end": 17835.12, + "probability": 0.8881 + }, + { + "start": 17835.5, + "end": 17836.78, + "probability": 0.0972 + }, + { + "start": 17836.9, + "end": 17838.42, + "probability": 0.8022 + }, + { + "start": 17838.66, + "end": 17840.2, + "probability": 0.3269 + }, + { + "start": 17840.5, + "end": 17842.74, + "probability": 0.9693 + }, + { + "start": 17843.42, + "end": 17845.77, + "probability": 0.8652 + }, + { + "start": 17846.3, + "end": 17847.71, + "probability": 0.9922 + }, + { + "start": 17848.02, + "end": 17851.08, + "probability": 0.8298 + }, + { + "start": 17851.8, + "end": 17853.8, + "probability": 0.8655 + }, + { + "start": 17853.92, + "end": 17854.98, + "probability": 0.9663 + }, + { + "start": 17855.38, + "end": 17857.84, + "probability": 0.9731 + }, + { + "start": 17858.54, + "end": 17863.26, + "probability": 0.999 + }, + { + "start": 17863.76, + "end": 17865.7, + "probability": 0.9878 + }, + { + "start": 17865.88, + "end": 17866.94, + "probability": 0.9049 + }, + { + "start": 17868.36, + "end": 17871.0, + "probability": 0.7931 + }, + { + "start": 17871.6, + "end": 17872.72, + "probability": 0.9932 + }, + { + "start": 17872.84, + "end": 17876.54, + "probability": 0.9954 + }, + { + "start": 17876.56, + "end": 17876.58, + "probability": 0.0619 + }, + { + "start": 17876.58, + "end": 17880.36, + "probability": 0.9783 + }, + { + "start": 17881.32, + "end": 17882.34, + "probability": 0.9607 + }, + { + "start": 17882.86, + "end": 17883.4, + "probability": 0.4248 + }, + { + "start": 17883.78, + "end": 17885.32, + "probability": 0.9713 + }, + { + "start": 17885.44, + "end": 17888.08, + "probability": 0.9746 + }, + { + "start": 17888.1, + "end": 17888.1, + "probability": 0.3754 + }, + { + "start": 17888.14, + "end": 17888.7, + "probability": 0.9045 + }, + { + "start": 17889.18, + "end": 17892.58, + "probability": 0.981 + }, + { + "start": 17893.56, + "end": 17894.0, + "probability": 0.1365 + }, + { + "start": 17894.2, + "end": 17894.6, + "probability": 0.1191 + }, + { + "start": 17895.1, + "end": 17896.38, + "probability": 0.9804 + }, + { + "start": 17897.54, + "end": 17899.16, + "probability": 0.5668 + }, + { + "start": 17899.98, + "end": 17901.68, + "probability": 0.9932 + }, + { + "start": 17902.86, + "end": 17905.6, + "probability": 0.9854 + }, + { + "start": 17905.94, + "end": 17906.48, + "probability": 0.6033 + }, + { + "start": 17909.13, + "end": 17911.88, + "probability": 0.9803 + }, + { + "start": 17912.1, + "end": 17913.58, + "probability": 0.9995 + }, + { + "start": 17913.7, + "end": 17915.25, + "probability": 0.9666 + }, + { + "start": 17915.92, + "end": 17917.74, + "probability": 0.9855 + }, + { + "start": 17917.94, + "end": 17919.12, + "probability": 0.9412 + }, + { + "start": 17920.8, + "end": 17927.48, + "probability": 0.9849 + }, + { + "start": 17927.92, + "end": 17929.42, + "probability": 0.9613 + }, + { + "start": 17930.2, + "end": 17935.82, + "probability": 0.9832 + }, + { + "start": 17936.32, + "end": 17937.82, + "probability": 0.9928 + }, + { + "start": 17938.64, + "end": 17941.4, + "probability": 0.9666 + }, + { + "start": 17942.02, + "end": 17945.92, + "probability": 0.9924 + }, + { + "start": 17946.12, + "end": 17948.22, + "probability": 0.8713 + }, + { + "start": 17949.18, + "end": 17950.4, + "probability": 0.9206 + }, + { + "start": 17951.12, + "end": 17951.75, + "probability": 0.9297 + }, + { + "start": 17952.76, + "end": 17954.2, + "probability": 0.9925 + }, + { + "start": 17954.64, + "end": 17960.68, + "probability": 0.9836 + }, + { + "start": 17961.46, + "end": 17962.68, + "probability": 0.9551 + }, + { + "start": 17963.14, + "end": 17963.72, + "probability": 0.6355 + }, + { + "start": 17964.1, + "end": 17968.56, + "probability": 0.9937 + }, + { + "start": 17969.42, + "end": 17970.24, + "probability": 0.9846 + }, + { + "start": 17972.08, + "end": 17973.74, + "probability": 0.9983 + }, + { + "start": 17974.08, + "end": 17975.1, + "probability": 0.9911 + }, + { + "start": 17975.7, + "end": 17976.72, + "probability": 0.9897 + }, + { + "start": 17976.76, + "end": 17979.02, + "probability": 0.9832 + }, + { + "start": 17982.4, + "end": 17986.08, + "probability": 0.9129 + }, + { + "start": 17987.7, + "end": 17989.7, + "probability": 0.9914 + }, + { + "start": 17989.7, + "end": 17992.24, + "probability": 0.985 + }, + { + "start": 17992.32, + "end": 17995.82, + "probability": 0.9946 + }, + { + "start": 17996.14, + "end": 17996.84, + "probability": 0.8678 + }, + { + "start": 17996.98, + "end": 17997.22, + "probability": 0.4903 + }, + { + "start": 17998.08, + "end": 18001.54, + "probability": 0.832 + }, + { + "start": 18002.3, + "end": 18003.9, + "probability": 0.9333 + }, + { + "start": 18005.88, + "end": 18010.56, + "probability": 0.9878 + }, + { + "start": 18011.32, + "end": 18015.38, + "probability": 0.9976 + }, + { + "start": 18016.04, + "end": 18017.92, + "probability": 0.9561 + }, + { + "start": 18018.44, + "end": 18022.96, + "probability": 0.9985 + }, + { + "start": 18022.96, + "end": 18027.96, + "probability": 0.9959 + }, + { + "start": 18028.76, + "end": 18030.4, + "probability": 0.9437 + }, + { + "start": 18031.44, + "end": 18036.44, + "probability": 0.9976 + }, + { + "start": 18036.44, + "end": 18040.88, + "probability": 0.996 + }, + { + "start": 18042.28, + "end": 18046.18, + "probability": 0.9612 + }, + { + "start": 18046.64, + "end": 18049.72, + "probability": 0.9985 + }, + { + "start": 18050.38, + "end": 18055.54, + "probability": 0.9156 + }, + { + "start": 18056.28, + "end": 18057.48, + "probability": 0.6841 + }, + { + "start": 18059.08, + "end": 18061.0, + "probability": 0.9081 + }, + { + "start": 18061.52, + "end": 18062.24, + "probability": 0.9754 + }, + { + "start": 18064.38, + "end": 18069.68, + "probability": 0.9827 + }, + { + "start": 18070.9, + "end": 18073.04, + "probability": 0.965 + }, + { + "start": 18073.62, + "end": 18075.7, + "probability": 0.9839 + }, + { + "start": 18076.34, + "end": 18079.26, + "probability": 0.9983 + }, + { + "start": 18080.0, + "end": 18082.82, + "probability": 0.7198 + }, + { + "start": 18083.42, + "end": 18087.78, + "probability": 0.9436 + }, + { + "start": 18088.56, + "end": 18089.56, + "probability": 0.7369 + }, + { + "start": 18090.12, + "end": 18094.14, + "probability": 0.9717 + }, + { + "start": 18095.16, + "end": 18098.8, + "probability": 0.9541 + }, + { + "start": 18099.42, + "end": 18101.04, + "probability": 0.8792 + }, + { + "start": 18101.2, + "end": 18104.2, + "probability": 0.9771 + }, + { + "start": 18104.82, + "end": 18107.22, + "probability": 0.9989 + }, + { + "start": 18107.74, + "end": 18109.86, + "probability": 0.98 + }, + { + "start": 18110.88, + "end": 18116.54, + "probability": 0.9348 + }, + { + "start": 18116.94, + "end": 18121.6, + "probability": 0.9933 + }, + { + "start": 18121.98, + "end": 18123.22, + "probability": 0.9045 + }, + { + "start": 18123.84, + "end": 18125.84, + "probability": 0.9587 + }, + { + "start": 18126.44, + "end": 18129.46, + "probability": 0.9822 + }, + { + "start": 18129.46, + "end": 18133.04, + "probability": 0.99 + }, + { + "start": 18134.16, + "end": 18135.42, + "probability": 0.8214 + }, + { + "start": 18135.98, + "end": 18138.02, + "probability": 0.9805 + }, + { + "start": 18138.2, + "end": 18139.85, + "probability": 0.9971 + }, + { + "start": 18141.42, + "end": 18145.08, + "probability": 0.999 + }, + { + "start": 18145.16, + "end": 18149.38, + "probability": 0.9113 + }, + { + "start": 18149.38, + "end": 18152.58, + "probability": 0.9965 + }, + { + "start": 18154.22, + "end": 18156.53, + "probability": 0.9985 + }, + { + "start": 18156.8, + "end": 18158.08, + "probability": 0.9955 + }, + { + "start": 18158.6, + "end": 18160.04, + "probability": 0.998 + }, + { + "start": 18160.8, + "end": 18163.46, + "probability": 0.7812 + }, + { + "start": 18165.38, + "end": 18168.98, + "probability": 0.9707 + }, + { + "start": 18169.94, + "end": 18174.3, + "probability": 0.9954 + }, + { + "start": 18174.84, + "end": 18179.42, + "probability": 0.9641 + }, + { + "start": 18181.58, + "end": 18188.38, + "probability": 0.9267 + }, + { + "start": 18189.12, + "end": 18192.22, + "probability": 0.979 + }, + { + "start": 18192.26, + "end": 18192.76, + "probability": 0.6548 + }, + { + "start": 18193.28, + "end": 18193.9, + "probability": 0.7312 + }, + { + "start": 18194.48, + "end": 18198.42, + "probability": 0.9932 + }, + { + "start": 18198.92, + "end": 18201.16, + "probability": 0.9568 + }, + { + "start": 18201.26, + "end": 18201.82, + "probability": 0.8906 + }, + { + "start": 18201.9, + "end": 18203.44, + "probability": 0.6565 + }, + { + "start": 18203.76, + "end": 18204.85, + "probability": 0.8479 + }, + { + "start": 18205.36, + "end": 18206.36, + "probability": 0.9414 + }, + { + "start": 18208.18, + "end": 18211.68, + "probability": 0.9959 + }, + { + "start": 18211.86, + "end": 18214.92, + "probability": 0.9919 + }, + { + "start": 18215.34, + "end": 18218.26, + "probability": 0.9914 + }, + { + "start": 18218.46, + "end": 18220.24, + "probability": 0.9512 + }, + { + "start": 18220.76, + "end": 18221.85, + "probability": 0.9431 + }, + { + "start": 18222.9, + "end": 18223.22, + "probability": 0.6757 + }, + { + "start": 18223.36, + "end": 18227.92, + "probability": 0.9903 + }, + { + "start": 18228.72, + "end": 18232.12, + "probability": 0.9953 + }, + { + "start": 18232.12, + "end": 18236.78, + "probability": 0.9958 + }, + { + "start": 18237.62, + "end": 18239.98, + "probability": 0.9471 + }, + { + "start": 18240.74, + "end": 18243.72, + "probability": 0.9994 + }, + { + "start": 18244.2, + "end": 18246.38, + "probability": 0.9556 + }, + { + "start": 18247.14, + "end": 18250.84, + "probability": 0.9871 + }, + { + "start": 18251.42, + "end": 18255.56, + "probability": 0.9899 + }, + { + "start": 18256.14, + "end": 18258.32, + "probability": 0.9947 + }, + { + "start": 18258.78, + "end": 18260.37, + "probability": 0.9879 + }, + { + "start": 18261.12, + "end": 18264.14, + "probability": 0.9963 + }, + { + "start": 18264.92, + "end": 18268.0, + "probability": 0.9427 + }, + { + "start": 18268.94, + "end": 18272.94, + "probability": 0.9805 + }, + { + "start": 18272.94, + "end": 18275.98, + "probability": 0.9979 + }, + { + "start": 18276.28, + "end": 18277.2, + "probability": 0.6719 + }, + { + "start": 18277.7, + "end": 18278.18, + "probability": 0.9668 + }, + { + "start": 18278.88, + "end": 18282.0, + "probability": 0.9943 + }, + { + "start": 18282.8, + "end": 18285.68, + "probability": 0.9987 + }, + { + "start": 18285.68, + "end": 18289.92, + "probability": 0.9998 + }, + { + "start": 18291.48, + "end": 18296.76, + "probability": 0.9988 + }, + { + "start": 18297.88, + "end": 18298.16, + "probability": 0.6471 + }, + { + "start": 18298.22, + "end": 18302.56, + "probability": 0.8582 + }, + { + "start": 18303.34, + "end": 18308.34, + "probability": 0.9978 + }, + { + "start": 18308.96, + "end": 18309.77, + "probability": 0.8383 + }, + { + "start": 18310.9, + "end": 18315.62, + "probability": 0.9924 + }, + { + "start": 18315.62, + "end": 18320.8, + "probability": 0.9114 + }, + { + "start": 18321.28, + "end": 18323.56, + "probability": 0.9912 + }, + { + "start": 18325.6, + "end": 18329.42, + "probability": 0.9963 + }, + { + "start": 18329.96, + "end": 18332.22, + "probability": 0.9976 + }, + { + "start": 18332.64, + "end": 18336.54, + "probability": 0.9297 + }, + { + "start": 18337.02, + "end": 18340.14, + "probability": 0.9897 + }, + { + "start": 18340.54, + "end": 18343.58, + "probability": 0.9954 + }, + { + "start": 18343.58, + "end": 18346.7, + "probability": 0.9939 + }, + { + "start": 18347.9, + "end": 18350.98, + "probability": 0.8052 + }, + { + "start": 18352.68, + "end": 18354.04, + "probability": 0.6796 + }, + { + "start": 18354.26, + "end": 18354.8, + "probability": 0.8415 + }, + { + "start": 18355.22, + "end": 18358.22, + "probability": 0.9114 + }, + { + "start": 18358.71, + "end": 18362.06, + "probability": 0.9209 + }, + { + "start": 18362.48, + "end": 18365.92, + "probability": 0.9873 + }, + { + "start": 18366.64, + "end": 18368.72, + "probability": 0.8972 + }, + { + "start": 18368.92, + "end": 18370.98, + "probability": 0.9827 + }, + { + "start": 18371.54, + "end": 18372.04, + "probability": 0.5449 + }, + { + "start": 18372.84, + "end": 18374.48, + "probability": 0.8244 + }, + { + "start": 18375.16, + "end": 18377.78, + "probability": 0.9712 + }, + { + "start": 18378.6, + "end": 18379.26, + "probability": 0.928 + }, + { + "start": 18379.54, + "end": 18380.02, + "probability": 0.7647 + }, + { + "start": 18380.36, + "end": 18381.04, + "probability": 0.9749 + }, + { + "start": 18381.3, + "end": 18382.1, + "probability": 0.9917 + }, + { + "start": 18382.22, + "end": 18383.02, + "probability": 0.971 + }, + { + "start": 18385.28, + "end": 18387.84, + "probability": 0.9966 + }, + { + "start": 18388.2, + "end": 18394.7, + "probability": 0.9465 + }, + { + "start": 18395.38, + "end": 18399.92, + "probability": 0.9899 + }, + { + "start": 18400.92, + "end": 18403.59, + "probability": 0.9395 + }, + { + "start": 18404.1, + "end": 18405.04, + "probability": 0.8151 + }, + { + "start": 18405.12, + "end": 18406.56, + "probability": 0.8411 + }, + { + "start": 18407.1, + "end": 18409.22, + "probability": 0.9659 + }, + { + "start": 18409.86, + "end": 18411.9, + "probability": 0.9661 + }, + { + "start": 18412.42, + "end": 18417.88, + "probability": 0.9397 + }, + { + "start": 18418.46, + "end": 18419.88, + "probability": 0.8217 + }, + { + "start": 18420.24, + "end": 18421.0, + "probability": 0.7438 + }, + { + "start": 18421.16, + "end": 18423.38, + "probability": 0.9878 + }, + { + "start": 18424.02, + "end": 18428.02, + "probability": 0.9787 + }, + { + "start": 18428.62, + "end": 18431.16, + "probability": 0.9022 + }, + { + "start": 18431.72, + "end": 18434.92, + "probability": 0.8914 + }, + { + "start": 18434.98, + "end": 18437.88, + "probability": 0.9416 + }, + { + "start": 18439.06, + "end": 18443.06, + "probability": 0.9837 + }, + { + "start": 18443.1, + "end": 18445.75, + "probability": 0.8036 + }, + { + "start": 18447.82, + "end": 18452.78, + "probability": 0.98 + }, + { + "start": 18452.78, + "end": 18456.24, + "probability": 0.991 + }, + { + "start": 18456.74, + "end": 18458.65, + "probability": 0.991 + }, + { + "start": 18459.52, + "end": 18464.72, + "probability": 0.9273 + }, + { + "start": 18465.18, + "end": 18467.58, + "probability": 0.9356 + }, + { + "start": 18468.3, + "end": 18472.2, + "probability": 0.9976 + }, + { + "start": 18472.2, + "end": 18477.72, + "probability": 0.9978 + }, + { + "start": 18478.22, + "end": 18482.28, + "probability": 0.9937 + }, + { + "start": 18482.28, + "end": 18487.16, + "probability": 0.9899 + }, + { + "start": 18489.0, + "end": 18489.36, + "probability": 0.6494 + }, + { + "start": 18489.96, + "end": 18492.14, + "probability": 0.9972 + }, + { + "start": 18492.58, + "end": 18495.12, + "probability": 0.9862 + }, + { + "start": 18495.88, + "end": 18499.88, + "probability": 0.8888 + }, + { + "start": 18500.42, + "end": 18503.24, + "probability": 0.7605 + }, + { + "start": 18503.56, + "end": 18506.11, + "probability": 0.8815 + }, + { + "start": 18507.78, + "end": 18513.9, + "probability": 0.9715 + }, + { + "start": 18514.14, + "end": 18518.02, + "probability": 0.9795 + }, + { + "start": 18518.52, + "end": 18520.6, + "probability": 0.9616 + }, + { + "start": 18521.2, + "end": 18524.9, + "probability": 0.9906 + }, + { + "start": 18525.36, + "end": 18525.48, + "probability": 0.8086 + }, + { + "start": 18525.58, + "end": 18529.06, + "probability": 0.9873 + }, + { + "start": 18529.42, + "end": 18532.64, + "probability": 0.9713 + }, + { + "start": 18533.08, + "end": 18534.5, + "probability": 0.9914 + }, + { + "start": 18534.8, + "end": 18535.72, + "probability": 0.9921 + }, + { + "start": 18536.0, + "end": 18536.8, + "probability": 0.9804 + }, + { + "start": 18537.14, + "end": 18538.2, + "probability": 0.9507 + }, + { + "start": 18538.82, + "end": 18541.91, + "probability": 0.9142 + }, + { + "start": 18542.32, + "end": 18549.04, + "probability": 0.9923 + }, + { + "start": 18549.66, + "end": 18550.86, + "probability": 0.8905 + }, + { + "start": 18552.48, + "end": 18552.62, + "probability": 0.4401 + }, + { + "start": 18553.12, + "end": 18557.02, + "probability": 0.9864 + }, + { + "start": 18558.26, + "end": 18559.46, + "probability": 0.5043 + }, + { + "start": 18560.6, + "end": 18564.68, + "probability": 0.9042 + }, + { + "start": 18566.04, + "end": 18570.18, + "probability": 0.9915 + }, + { + "start": 18573.68, + "end": 18581.2, + "probability": 0.9026 + }, + { + "start": 18581.86, + "end": 18584.3, + "probability": 0.9956 + }, + { + "start": 18584.3, + "end": 18587.58, + "probability": 0.9962 + }, + { + "start": 18588.26, + "end": 18591.66, + "probability": 0.959 + }, + { + "start": 18592.34, + "end": 18596.16, + "probability": 0.9929 + }, + { + "start": 18596.64, + "end": 18600.98, + "probability": 0.9189 + }, + { + "start": 18601.48, + "end": 18603.62, + "probability": 0.7967 + }, + { + "start": 18604.06, + "end": 18605.02, + "probability": 0.9023 + }, + { + "start": 18605.3, + "end": 18606.36, + "probability": 0.938 + }, + { + "start": 18606.88, + "end": 18607.72, + "probability": 0.8058 + }, + { + "start": 18607.98, + "end": 18611.3, + "probability": 0.9854 + }, + { + "start": 18611.8, + "end": 18612.26, + "probability": 0.7867 + }, + { + "start": 18613.44, + "end": 18614.1, + "probability": 0.9115 + }, + { + "start": 18614.7, + "end": 18616.36, + "probability": 0.9216 + }, + { + "start": 18616.96, + "end": 18619.74, + "probability": 0.9813 + }, + { + "start": 18620.2, + "end": 18623.02, + "probability": 0.9858 + }, + { + "start": 18623.26, + "end": 18624.06, + "probability": 0.2417 + }, + { + "start": 18624.28, + "end": 18624.66, + "probability": 0.4694 + }, + { + "start": 18625.26, + "end": 18625.98, + "probability": 0.4923 + }, + { + "start": 18626.06, + "end": 18626.64, + "probability": 0.9451 + }, + { + "start": 18628.28, + "end": 18629.6, + "probability": 0.3596 + }, + { + "start": 18629.62, + "end": 18633.12, + "probability": 0.9266 + }, + { + "start": 18633.2, + "end": 18635.44, + "probability": 0.9719 + }, + { + "start": 18636.34, + "end": 18639.64, + "probability": 0.7523 + }, + { + "start": 18640.06, + "end": 18641.06, + "probability": 0.9495 + }, + { + "start": 18641.18, + "end": 18641.5, + "probability": 0.4077 + }, + { + "start": 18642.46, + "end": 18643.04, + "probability": 0.9038 + }, + { + "start": 18644.14, + "end": 18644.73, + "probability": 0.5598 + }, + { + "start": 18646.1, + "end": 18647.04, + "probability": 0.8476 + }, + { + "start": 18647.06, + "end": 18651.56, + "probability": 0.6256 + }, + { + "start": 18659.18, + "end": 18659.82, + "probability": 0.6351 + }, + { + "start": 18663.92, + "end": 18666.26, + "probability": 0.721 + }, + { + "start": 18667.43, + "end": 18668.24, + "probability": 0.9387 + }, + { + "start": 18668.62, + "end": 18668.62, + "probability": 0.2532 + }, + { + "start": 18668.62, + "end": 18669.12, + "probability": 0.3918 + }, + { + "start": 18669.62, + "end": 18670.04, + "probability": 0.0386 + }, + { + "start": 18670.18, + "end": 18671.06, + "probability": 0.0556 + }, + { + "start": 18672.28, + "end": 18673.26, + "probability": 0.0222 + }, + { + "start": 18673.98, + "end": 18674.84, + "probability": 0.0643 + }, + { + "start": 18675.34, + "end": 18675.92, + "probability": 0.2321 + }, + { + "start": 18675.96, + "end": 18679.5, + "probability": 0.0454 + }, + { + "start": 18679.58, + "end": 18679.68, + "probability": 0.2274 + }, + { + "start": 18681.4, + "end": 18681.82, + "probability": 0.1768 + }, + { + "start": 18681.85, + "end": 18682.26, + "probability": 0.3548 + }, + { + "start": 18683.84, + "end": 18684.6, + "probability": 0.0681 + }, + { + "start": 18686.2, + "end": 18689.11, + "probability": 0.07 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18762.0, + "end": 18762.0, + "probability": 0.0 + }, + { + "start": 18763.53, + "end": 18763.8, + "probability": 0.0025 + }, + { + "start": 18764.22, + "end": 18765.66, + "probability": 0.9822 + }, + { + "start": 18767.1, + "end": 18768.02, + "probability": 0.9382 + }, + { + "start": 18768.34, + "end": 18770.68, + "probability": 0.9099 + }, + { + "start": 18771.4, + "end": 18773.72, + "probability": 0.795 + }, + { + "start": 18774.8, + "end": 18775.8, + "probability": 0.9832 + }, + { + "start": 18776.74, + "end": 18777.28, + "probability": 0.9154 + }, + { + "start": 18778.62, + "end": 18779.36, + "probability": 0.897 + }, + { + "start": 18780.88, + "end": 18785.56, + "probability": 0.9014 + }, + { + "start": 18787.3, + "end": 18787.88, + "probability": 0.8503 + }, + { + "start": 18787.94, + "end": 18788.88, + "probability": 0.7418 + }, + { + "start": 18788.88, + "end": 18791.66, + "probability": 0.9751 + }, + { + "start": 18791.66, + "end": 18792.2, + "probability": 0.7661 + }, + { + "start": 18793.84, + "end": 18795.84, + "probability": 0.2315 + }, + { + "start": 18795.84, + "end": 18795.94, + "probability": 0.1386 + }, + { + "start": 18796.6, + "end": 18797.12, + "probability": 0.7931 + }, + { + "start": 18798.08, + "end": 18798.68, + "probability": 0.6436 + }, + { + "start": 18798.94, + "end": 18799.52, + "probability": 0.9322 + }, + { + "start": 18800.64, + "end": 18802.5, + "probability": 0.9897 + }, + { + "start": 18803.26, + "end": 18804.0, + "probability": 0.811 + }, + { + "start": 18805.5, + "end": 18806.94, + "probability": 0.9273 + }, + { + "start": 18807.76, + "end": 18811.66, + "probability": 0.9921 + }, + { + "start": 18812.62, + "end": 18816.26, + "probability": 0.9626 + }, + { + "start": 18816.96, + "end": 18821.76, + "probability": 0.8887 + }, + { + "start": 18824.16, + "end": 18825.16, + "probability": 0.6462 + }, + { + "start": 18825.5, + "end": 18827.2, + "probability": 0.6874 + }, + { + "start": 18827.8, + "end": 18831.26, + "probability": 0.8596 + }, + { + "start": 18832.1, + "end": 18834.46, + "probability": 0.9895 + }, + { + "start": 18835.02, + "end": 18838.64, + "probability": 0.9043 + }, + { + "start": 18839.46, + "end": 18840.78, + "probability": 0.9284 + }, + { + "start": 18841.44, + "end": 18842.98, + "probability": 0.9329 + }, + { + "start": 18843.42, + "end": 18845.66, + "probability": 0.9377 + }, + { + "start": 18846.34, + "end": 18847.24, + "probability": 0.9443 + }, + { + "start": 18847.8, + "end": 18848.52, + "probability": 0.838 + }, + { + "start": 18849.46, + "end": 18850.66, + "probability": 0.9932 + }, + { + "start": 18851.22, + "end": 18853.16, + "probability": 0.9404 + }, + { + "start": 18854.16, + "end": 18856.2, + "probability": 0.7339 + }, + { + "start": 18857.12, + "end": 18859.34, + "probability": 0.9763 + }, + { + "start": 18860.65, + "end": 18862.56, + "probability": 0.7554 + }, + { + "start": 18863.14, + "end": 18864.58, + "probability": 0.9752 + }, + { + "start": 18864.72, + "end": 18869.12, + "probability": 0.9033 + }, + { + "start": 18869.64, + "end": 18871.82, + "probability": 0.9653 + }, + { + "start": 18873.16, + "end": 18874.1, + "probability": 0.9423 + }, + { + "start": 18874.84, + "end": 18877.86, + "probability": 0.9399 + }, + { + "start": 18878.42, + "end": 18879.18, + "probability": 0.9211 + }, + { + "start": 18879.8, + "end": 18883.9, + "probability": 0.938 + }, + { + "start": 18884.06, + "end": 18884.54, + "probability": 0.8103 + }, + { + "start": 18885.0, + "end": 18886.1, + "probability": 0.9988 + }, + { + "start": 18886.66, + "end": 18888.58, + "probability": 0.9615 + }, + { + "start": 18889.14, + "end": 18891.8, + "probability": 0.9589 + }, + { + "start": 18891.84, + "end": 18896.0, + "probability": 0.9897 + }, + { + "start": 18896.1, + "end": 18899.1, + "probability": 0.7965 + }, + { + "start": 18899.9, + "end": 18901.54, + "probability": 0.9365 + }, + { + "start": 18902.0, + "end": 18902.96, + "probability": 0.9978 + }, + { + "start": 18903.02, + "end": 18903.49, + "probability": 0.988 + }, + { + "start": 18904.66, + "end": 18904.94, + "probability": 0.9777 + }, + { + "start": 18906.32, + "end": 18908.24, + "probability": 0.9926 + }, + { + "start": 18910.22, + "end": 18911.36, + "probability": 0.9873 + }, + { + "start": 18912.28, + "end": 18913.04, + "probability": 0.9029 + }, + { + "start": 18914.18, + "end": 18916.88, + "probability": 0.9232 + }, + { + "start": 18916.98, + "end": 18921.86, + "probability": 0.9869 + }, + { + "start": 18922.2, + "end": 18923.76, + "probability": 0.9624 + }, + { + "start": 18924.64, + "end": 18926.36, + "probability": 0.9941 + }, + { + "start": 18927.26, + "end": 18929.38, + "probability": 0.9448 + }, + { + "start": 18929.54, + "end": 18930.34, + "probability": 0.9946 + }, + { + "start": 18930.92, + "end": 18932.9, + "probability": 0.9793 + }, + { + "start": 18933.26, + "end": 18934.26, + "probability": 0.8451 + }, + { + "start": 18934.72, + "end": 18936.32, + "probability": 0.9805 + }, + { + "start": 18936.82, + "end": 18938.58, + "probability": 0.9632 + }, + { + "start": 18938.7, + "end": 18942.78, + "probability": 0.9944 + }, + { + "start": 18943.96, + "end": 18944.92, + "probability": 0.5609 + }, + { + "start": 18945.82, + "end": 18947.04, + "probability": 0.9854 + }, + { + "start": 18947.64, + "end": 18950.54, + "probability": 0.7898 + }, + { + "start": 18950.82, + "end": 18951.98, + "probability": 0.9932 + }, + { + "start": 18952.88, + "end": 18953.42, + "probability": 0.9715 + }, + { + "start": 18953.8, + "end": 18954.72, + "probability": 0.9619 + }, + { + "start": 18954.82, + "end": 18956.2, + "probability": 0.9711 + }, + { + "start": 18956.64, + "end": 18957.46, + "probability": 0.9355 + }, + { + "start": 18957.56, + "end": 18958.34, + "probability": 0.8878 + }, + { + "start": 18959.36, + "end": 18960.56, + "probability": 0.8391 + }, + { + "start": 18961.4, + "end": 18962.72, + "probability": 0.96 + }, + { + "start": 18963.68, + "end": 18966.08, + "probability": 0.9824 + }, + { + "start": 18966.24, + "end": 18966.75, + "probability": 0.9744 + }, + { + "start": 18967.42, + "end": 18967.72, + "probability": 0.7791 + }, + { + "start": 18967.8, + "end": 18968.58, + "probability": 0.732 + }, + { + "start": 18968.66, + "end": 18972.06, + "probability": 0.8753 + }, + { + "start": 18972.4, + "end": 18972.8, + "probability": 0.292 + }, + { + "start": 18972.82, + "end": 18974.26, + "probability": 0.5669 + }, + { + "start": 18974.5, + "end": 18975.02, + "probability": 0.3972 + }, + { + "start": 18975.02, + "end": 18975.76, + "probability": 0.5303 + }, + { + "start": 18976.34, + "end": 18979.72, + "probability": 0.8161 + }, + { + "start": 18980.28, + "end": 18983.0, + "probability": 0.9286 + }, + { + "start": 18983.9, + "end": 18986.24, + "probability": 0.9831 + }, + { + "start": 18986.84, + "end": 18988.74, + "probability": 0.8983 + }, + { + "start": 18989.8, + "end": 18991.0, + "probability": 0.9883 + }, + { + "start": 18991.1, + "end": 18993.76, + "probability": 0.9575 + }, + { + "start": 18995.08, + "end": 18995.82, + "probability": 0.9889 + }, + { + "start": 18996.08, + "end": 18996.65, + "probability": 0.9394 + }, + { + "start": 18997.68, + "end": 18999.02, + "probability": 0.9455 + }, + { + "start": 18999.48, + "end": 19002.72, + "probability": 0.9983 + }, + { + "start": 19003.58, + "end": 19008.04, + "probability": 0.9971 + }, + { + "start": 19008.76, + "end": 19009.82, + "probability": 0.9941 + }, + { + "start": 19010.68, + "end": 19011.84, + "probability": 0.9966 + }, + { + "start": 19014.18, + "end": 19015.26, + "probability": 0.9084 + }, + { + "start": 19015.78, + "end": 19016.12, + "probability": 0.8726 + }, + { + "start": 19016.12, + "end": 19016.3, + "probability": 0.8089 + }, + { + "start": 19016.5, + "end": 19019.22, + "probability": 0.9974 + }, + { + "start": 19019.22, + "end": 19021.6, + "probability": 0.8865 + }, + { + "start": 19022.36, + "end": 19024.0, + "probability": 0.8774 + }, + { + "start": 19024.96, + "end": 19025.38, + "probability": 0.8999 + }, + { + "start": 19025.66, + "end": 19026.44, + "probability": 0.9329 + }, + { + "start": 19027.52, + "end": 19028.34, + "probability": 0.412 + }, + { + "start": 19028.7, + "end": 19028.7, + "probability": 0.201 + }, + { + "start": 19028.7, + "end": 19029.59, + "probability": 0.9869 + }, + { + "start": 19030.4, + "end": 19035.88, + "probability": 0.9922 + }, + { + "start": 19036.46, + "end": 19038.44, + "probability": 0.9945 + }, + { + "start": 19039.02, + "end": 19042.72, + "probability": 0.9552 + }, + { + "start": 19043.72, + "end": 19049.4, + "probability": 0.9634 + }, + { + "start": 19050.18, + "end": 19051.72, + "probability": 0.788 + }, + { + "start": 19052.92, + "end": 19053.48, + "probability": 0.815 + }, + { + "start": 19055.5, + "end": 19057.7, + "probability": 0.9979 + }, + { + "start": 19058.52, + "end": 19060.22, + "probability": 0.9025 + }, + { + "start": 19061.04, + "end": 19061.82, + "probability": 0.946 + }, + { + "start": 19062.14, + "end": 19066.64, + "probability": 0.9829 + }, + { + "start": 19067.34, + "end": 19069.44, + "probability": 0.85 + }, + { + "start": 19069.52, + "end": 19070.12, + "probability": 0.9502 + }, + { + "start": 19070.96, + "end": 19073.32, + "probability": 0.9943 + }, + { + "start": 19075.89, + "end": 19076.38, + "probability": 0.1092 + }, + { + "start": 19076.38, + "end": 19077.58, + "probability": 0.5663 + }, + { + "start": 19078.46, + "end": 19081.92, + "probability": 0.9976 + }, + { + "start": 19082.3, + "end": 19083.32, + "probability": 0.9924 + }, + { + "start": 19083.72, + "end": 19084.6, + "probability": 0.6579 + }, + { + "start": 19085.06, + "end": 19088.1, + "probability": 0.9777 + }, + { + "start": 19090.64, + "end": 19091.26, + "probability": 0.4145 + }, + { + "start": 19092.1, + "end": 19093.42, + "probability": 0.8137 + }, + { + "start": 19093.52, + "end": 19093.9, + "probability": 0.5671 + }, + { + "start": 19093.94, + "end": 19094.6, + "probability": 0.9363 + }, + { + "start": 19094.64, + "end": 19095.08, + "probability": 0.7413 + }, + { + "start": 19095.2, + "end": 19095.7, + "probability": 0.9868 + }, + { + "start": 19096.66, + "end": 19097.5, + "probability": 0.9929 + }, + { + "start": 19098.28, + "end": 19099.34, + "probability": 0.9644 + }, + { + "start": 19102.34, + "end": 19104.42, + "probability": 0.9285 + }, + { + "start": 19105.78, + "end": 19107.76, + "probability": 0.9968 + }, + { + "start": 19108.5, + "end": 19109.54, + "probability": 0.8651 + }, + { + "start": 19110.08, + "end": 19111.6, + "probability": 0.9554 + }, + { + "start": 19113.22, + "end": 19115.7, + "probability": 0.988 + }, + { + "start": 19116.86, + "end": 19117.8, + "probability": 0.9457 + }, + { + "start": 19117.82, + "end": 19118.34, + "probability": 0.7501 + }, + { + "start": 19118.46, + "end": 19120.32, + "probability": 0.9888 + }, + { + "start": 19121.54, + "end": 19125.6, + "probability": 0.998 + }, + { + "start": 19126.2, + "end": 19126.9, + "probability": 0.912 + }, + { + "start": 19127.6, + "end": 19131.92, + "probability": 0.9985 + }, + { + "start": 19133.2, + "end": 19135.12, + "probability": 0.996 + }, + { + "start": 19135.38, + "end": 19137.13, + "probability": 0.9609 + }, + { + "start": 19137.84, + "end": 19139.06, + "probability": 0.5381 + }, + { + "start": 19139.18, + "end": 19140.16, + "probability": 0.9854 + }, + { + "start": 19142.26, + "end": 19143.6, + "probability": 0.9917 + }, + { + "start": 19143.74, + "end": 19145.56, + "probability": 0.7452 + }, + { + "start": 19145.56, + "end": 19147.64, + "probability": 0.9047 + }, + { + "start": 19148.92, + "end": 19150.7, + "probability": 0.8476 + }, + { + "start": 19151.02, + "end": 19155.76, + "probability": 0.9904 + }, + { + "start": 19156.98, + "end": 19158.74, + "probability": 0.9326 + }, + { + "start": 19159.68, + "end": 19161.66, + "probability": 0.998 + }, + { + "start": 19162.44, + "end": 19165.22, + "probability": 0.9919 + }, + { + "start": 19166.16, + "end": 19169.96, + "probability": 0.9743 + }, + { + "start": 19170.46, + "end": 19170.92, + "probability": 0.8417 + }, + { + "start": 19171.06, + "end": 19172.78, + "probability": 0.8802 + }, + { + "start": 19174.28, + "end": 19174.9, + "probability": 0.9773 + }, + { + "start": 19176.74, + "end": 19179.86, + "probability": 0.99 + }, + { + "start": 19180.12, + "end": 19180.73, + "probability": 0.6997 + }, + { + "start": 19181.06, + "end": 19184.36, + "probability": 0.8719 + }, + { + "start": 19185.08, + "end": 19186.02, + "probability": 0.8042 + }, + { + "start": 19186.52, + "end": 19187.18, + "probability": 0.5305 + }, + { + "start": 19187.36, + "end": 19188.46, + "probability": 0.5214 + }, + { + "start": 19188.52, + "end": 19190.72, + "probability": 0.9392 + }, + { + "start": 19191.16, + "end": 19191.38, + "probability": 0.4521 + }, + { + "start": 19191.48, + "end": 19191.76, + "probability": 0.4717 + }, + { + "start": 19192.58, + "end": 19193.35, + "probability": 0.9399 + }, + { + "start": 19195.22, + "end": 19195.76, + "probability": 0.3718 + }, + { + "start": 19196.14, + "end": 19196.72, + "probability": 0.529 + }, + { + "start": 19197.24, + "end": 19201.86, + "probability": 0.9438 + }, + { + "start": 19202.42, + "end": 19203.12, + "probability": 0.8576 + }, + { + "start": 19203.9, + "end": 19204.46, + "probability": 0.8918 + }, + { + "start": 19205.04, + "end": 19205.66, + "probability": 0.9272 + }, + { + "start": 19206.46, + "end": 19206.8, + "probability": 0.8732 + }, + { + "start": 19207.56, + "end": 19209.04, + "probability": 0.991 + }, + { + "start": 19209.58, + "end": 19212.2, + "probability": 0.9319 + }, + { + "start": 19212.68, + "end": 19215.54, + "probability": 0.9971 + }, + { + "start": 19215.68, + "end": 19215.97, + "probability": 0.9467 + }, + { + "start": 19216.62, + "end": 19218.46, + "probability": 0.6945 + }, + { + "start": 19218.46, + "end": 19221.11, + "probability": 0.9157 + }, + { + "start": 19221.5, + "end": 19223.1, + "probability": 0.8585 + }, + { + "start": 19223.2, + "end": 19223.9, + "probability": 0.7038 + }, + { + "start": 19223.9, + "end": 19224.54, + "probability": 0.5789 + }, + { + "start": 19225.08, + "end": 19226.44, + "probability": 0.9813 + }, + { + "start": 19226.54, + "end": 19227.57, + "probability": 0.8102 + }, + { + "start": 19227.64, + "end": 19230.44, + "probability": 0.7518 + }, + { + "start": 19230.78, + "end": 19231.4, + "probability": 0.5299 + }, + { + "start": 19232.02, + "end": 19232.94, + "probability": 0.9713 + }, + { + "start": 19233.0, + "end": 19233.66, + "probability": 0.9913 + }, + { + "start": 19234.14, + "end": 19235.54, + "probability": 0.895 + }, + { + "start": 19235.64, + "end": 19236.54, + "probability": 0.821 + }, + { + "start": 19236.94, + "end": 19238.72, + "probability": 0.9301 + }, + { + "start": 19238.82, + "end": 19239.4, + "probability": 0.7321 + }, + { + "start": 19239.48, + "end": 19240.02, + "probability": 0.4943 + }, + { + "start": 19240.16, + "end": 19242.44, + "probability": 0.9951 + }, + { + "start": 19242.88, + "end": 19243.24, + "probability": 0.6463 + }, + { + "start": 19243.32, + "end": 19245.7, + "probability": 0.378 + }, + { + "start": 19245.7, + "end": 19247.25, + "probability": 0.9711 + }, + { + "start": 19249.33, + "end": 19251.28, + "probability": 0.8193 + }, + { + "start": 19251.76, + "end": 19253.36, + "probability": 0.442 + }, + { + "start": 19254.06, + "end": 19256.0, + "probability": 0.9346 + }, + { + "start": 19256.12, + "end": 19258.32, + "probability": 0.9536 + }, + { + "start": 19258.46, + "end": 19258.92, + "probability": 0.7548 + }, + { + "start": 19258.92, + "end": 19259.88, + "probability": 0.6909 + }, + { + "start": 19259.96, + "end": 19260.44, + "probability": 0.8209 + }, + { + "start": 19260.76, + "end": 19263.32, + "probability": 0.9903 + }, + { + "start": 19264.26, + "end": 19267.98, + "probability": 0.9579 + }, + { + "start": 19269.04, + "end": 19270.74, + "probability": 0.6852 + }, + { + "start": 19271.58, + "end": 19272.72, + "probability": 0.8611 + }, + { + "start": 19273.38, + "end": 19276.08, + "probability": 0.9925 + }, + { + "start": 19276.82, + "end": 19282.04, + "probability": 0.9766 + }, + { + "start": 19282.88, + "end": 19285.34, + "probability": 0.9969 + }, + { + "start": 19286.04, + "end": 19287.16, + "probability": 0.9927 + }, + { + "start": 19288.14, + "end": 19288.84, + "probability": 0.9763 + }, + { + "start": 19289.98, + "end": 19292.4, + "probability": 0.9855 + }, + { + "start": 19293.0, + "end": 19293.68, + "probability": 0.9529 + }, + { + "start": 19294.7, + "end": 19295.58, + "probability": 0.8322 + }, + { + "start": 19296.5, + "end": 19297.7, + "probability": 0.9502 + }, + { + "start": 19300.08, + "end": 19300.96, + "probability": 0.8699 + }, + { + "start": 19301.38, + "end": 19306.16, + "probability": 0.981 + }, + { + "start": 19306.78, + "end": 19307.38, + "probability": 0.9945 + }, + { + "start": 19308.54, + "end": 19311.88, + "probability": 0.9941 + }, + { + "start": 19313.42, + "end": 19315.88, + "probability": 0.7102 + }, + { + "start": 19316.74, + "end": 19318.02, + "probability": 0.8434 + }, + { + "start": 19320.34, + "end": 19322.7, + "probability": 0.8713 + }, + { + "start": 19323.94, + "end": 19326.42, + "probability": 0.9921 + }, + { + "start": 19327.44, + "end": 19329.0, + "probability": 0.983 + }, + { + "start": 19329.94, + "end": 19331.76, + "probability": 0.9941 + }, + { + "start": 19332.66, + "end": 19335.16, + "probability": 0.9984 + }, + { + "start": 19335.24, + "end": 19335.84, + "probability": 0.6808 + }, + { + "start": 19336.42, + "end": 19337.82, + "probability": 0.9507 + }, + { + "start": 19338.5, + "end": 19340.76, + "probability": 0.9934 + }, + { + "start": 19341.04, + "end": 19341.81, + "probability": 0.9249 + }, + { + "start": 19342.86, + "end": 19344.66, + "probability": 0.9915 + }, + { + "start": 19345.52, + "end": 19347.54, + "probability": 0.6722 + }, + { + "start": 19348.2, + "end": 19349.72, + "probability": 0.9799 + }, + { + "start": 19351.1, + "end": 19351.72, + "probability": 0.6852 + }, + { + "start": 19352.46, + "end": 19356.18, + "probability": 0.9929 + }, + { + "start": 19356.6, + "end": 19357.76, + "probability": 0.7488 + }, + { + "start": 19357.86, + "end": 19358.88, + "probability": 0.9297 + }, + { + "start": 19362.3, + "end": 19364.94, + "probability": 0.3896 + }, + { + "start": 19364.98, + "end": 19366.36, + "probability": 0.2543 + }, + { + "start": 19367.08, + "end": 19368.68, + "probability": 0.6553 + }, + { + "start": 19368.68, + "end": 19370.0, + "probability": 0.3535 + }, + { + "start": 19370.98, + "end": 19375.68, + "probability": 0.856 + }, + { + "start": 19376.34, + "end": 19377.48, + "probability": 0.3307 + }, + { + "start": 19377.54, + "end": 19379.26, + "probability": 0.8799 + }, + { + "start": 19379.36, + "end": 19380.59, + "probability": 0.9736 + }, + { + "start": 19381.0, + "end": 19382.44, + "probability": 0.9814 + }, + { + "start": 19382.76, + "end": 19385.6, + "probability": 0.8006 + }, + { + "start": 19387.22, + "end": 19388.12, + "probability": 0.962 + }, + { + "start": 19389.88, + "end": 19391.12, + "probability": 0.9995 + }, + { + "start": 19392.04, + "end": 19393.14, + "probability": 0.9104 + }, + { + "start": 19393.46, + "end": 19394.92, + "probability": 0.862 + }, + { + "start": 19395.12, + "end": 19397.46, + "probability": 0.8373 + }, + { + "start": 19398.24, + "end": 19402.6, + "probability": 0.9884 + }, + { + "start": 19403.24, + "end": 19404.72, + "probability": 0.9828 + }, + { + "start": 19405.64, + "end": 19406.0, + "probability": 0.9511 + }, + { + "start": 19406.14, + "end": 19408.54, + "probability": 0.9983 + }, + { + "start": 19410.59, + "end": 19413.12, + "probability": 0.9977 + }, + { + "start": 19415.52, + "end": 19419.64, + "probability": 0.9895 + }, + { + "start": 19420.28, + "end": 19424.44, + "probability": 0.9985 + }, + { + "start": 19425.02, + "end": 19425.75, + "probability": 0.975 + }, + { + "start": 19426.8, + "end": 19428.84, + "probability": 0.9989 + }, + { + "start": 19430.28, + "end": 19433.38, + "probability": 0.9512 + }, + { + "start": 19433.38, + "end": 19435.34, + "probability": 0.2507 + }, + { + "start": 19435.34, + "end": 19435.7, + "probability": 0.6921 + }, + { + "start": 19435.78, + "end": 19436.8, + "probability": 0.7772 + }, + { + "start": 19436.92, + "end": 19441.4, + "probability": 0.8816 + }, + { + "start": 19442.36, + "end": 19443.32, + "probability": 0.8804 + }, + { + "start": 19443.54, + "end": 19444.54, + "probability": 0.9927 + }, + { + "start": 19446.06, + "end": 19447.44, + "probability": 0.9976 + }, + { + "start": 19448.28, + "end": 19451.78, + "probability": 0.874 + }, + { + "start": 19452.3, + "end": 19453.64, + "probability": 0.6412 + }, + { + "start": 19453.68, + "end": 19455.34, + "probability": 0.9815 + }, + { + "start": 19455.8, + "end": 19456.18, + "probability": 0.8804 + }, + { + "start": 19456.26, + "end": 19456.56, + "probability": 0.9071 + }, + { + "start": 19456.9, + "end": 19457.4, + "probability": 0.9849 + }, + { + "start": 19458.84, + "end": 19461.46, + "probability": 0.993 + }, + { + "start": 19462.04, + "end": 19464.32, + "probability": 0.9861 + }, + { + "start": 19464.94, + "end": 19466.74, + "probability": 0.9429 + }, + { + "start": 19467.58, + "end": 19470.42, + "probability": 0.9979 + }, + { + "start": 19471.42, + "end": 19473.12, + "probability": 0.8545 + }, + { + "start": 19473.56, + "end": 19474.8, + "probability": 0.9875 + }, + { + "start": 19475.22, + "end": 19476.63, + "probability": 0.7949 + }, + { + "start": 19477.06, + "end": 19478.78, + "probability": 0.7302 + }, + { + "start": 19479.28, + "end": 19481.44, + "probability": 0.0106 + }, + { + "start": 19481.44, + "end": 19481.8, + "probability": 0.0103 + }, + { + "start": 19481.8, + "end": 19482.46, + "probability": 0.3991 + }, + { + "start": 19482.74, + "end": 19485.98, + "probability": 0.8962 + }, + { + "start": 19486.04, + "end": 19487.58, + "probability": 0.9951 + }, + { + "start": 19487.76, + "end": 19490.1, + "probability": 0.9045 + }, + { + "start": 19490.26, + "end": 19492.04, + "probability": 0.9944 + }, + { + "start": 19492.16, + "end": 19492.54, + "probability": 0.7414 + }, + { + "start": 19494.21, + "end": 19496.56, + "probability": 0.5324 + }, + { + "start": 19496.72, + "end": 19499.62, + "probability": 0.9344 + }, + { + "start": 19499.9, + "end": 19501.86, + "probability": 0.9718 + }, + { + "start": 19502.4, + "end": 19503.26, + "probability": 0.8011 + }, + { + "start": 19503.34, + "end": 19504.1, + "probability": 0.5084 + }, + { + "start": 19504.16, + "end": 19504.6, + "probability": 0.9026 + }, + { + "start": 19504.66, + "end": 19505.06, + "probability": 0.7758 + }, + { + "start": 19505.46, + "end": 19505.48, + "probability": 0.1968 + }, + { + "start": 19505.48, + "end": 19505.48, + "probability": 0.2522 + }, + { + "start": 19505.48, + "end": 19505.76, + "probability": 0.584 + }, + { + "start": 19506.12, + "end": 19509.14, + "probability": 0.9987 + }, + { + "start": 19509.66, + "end": 19512.56, + "probability": 0.9512 + }, + { + "start": 19512.98, + "end": 19515.06, + "probability": 0.9456 + }, + { + "start": 19515.84, + "end": 19518.36, + "probability": 0.9831 + }, + { + "start": 19519.52, + "end": 19519.54, + "probability": 0.7944 + }, + { + "start": 19520.36, + "end": 19521.1, + "probability": 0.7354 + }, + { + "start": 19521.44, + "end": 19525.78, + "probability": 0.9819 + }, + { + "start": 19526.84, + "end": 19527.84, + "probability": 0.9492 + }, + { + "start": 19528.98, + "end": 19530.78, + "probability": 0.9857 + }, + { + "start": 19531.0, + "end": 19531.94, + "probability": 0.846 + }, + { + "start": 19532.04, + "end": 19532.44, + "probability": 0.6215 + }, + { + "start": 19532.58, + "end": 19533.06, + "probability": 0.8176 + }, + { + "start": 19533.72, + "end": 19534.33, + "probability": 0.7896 + }, + { + "start": 19534.94, + "end": 19536.46, + "probability": 0.991 + }, + { + "start": 19537.56, + "end": 19540.78, + "probability": 0.9056 + }, + { + "start": 19541.48, + "end": 19542.94, + "probability": 0.988 + }, + { + "start": 19545.22, + "end": 19546.96, + "probability": 0.9935 + }, + { + "start": 19547.24, + "end": 19552.06, + "probability": 0.9989 + }, + { + "start": 19555.52, + "end": 19558.48, + "probability": 0.9651 + }, + { + "start": 19560.0, + "end": 19562.82, + "probability": 0.8472 + }, + { + "start": 19563.44, + "end": 19564.84, + "probability": 0.9734 + }, + { + "start": 19566.19, + "end": 19567.82, + "probability": 0.9234 + }, + { + "start": 19567.92, + "end": 19569.32, + "probability": 0.9698 + }, + { + "start": 19569.34, + "end": 19570.22, + "probability": 0.9371 + }, + { + "start": 19571.32, + "end": 19572.5, + "probability": 0.9853 + }, + { + "start": 19573.62, + "end": 19575.32, + "probability": 0.8981 + }, + { + "start": 19575.86, + "end": 19577.08, + "probability": 0.9395 + }, + { + "start": 19578.46, + "end": 19583.98, + "probability": 0.889 + }, + { + "start": 19586.74, + "end": 19589.14, + "probability": 0.7307 + }, + { + "start": 19589.24, + "end": 19591.12, + "probability": 0.6786 + }, + { + "start": 19591.8, + "end": 19597.82, + "probability": 0.9597 + }, + { + "start": 19598.62, + "end": 19601.02, + "probability": 0.9821 + }, + { + "start": 19601.4, + "end": 19602.32, + "probability": 0.9785 + }, + { + "start": 19603.16, + "end": 19607.52, + "probability": 0.9894 + }, + { + "start": 19608.84, + "end": 19612.28, + "probability": 0.8859 + }, + { + "start": 19612.96, + "end": 19618.52, + "probability": 0.8799 + }, + { + "start": 19619.38, + "end": 19621.54, + "probability": 0.6339 + }, + { + "start": 19622.06, + "end": 19622.82, + "probability": 0.9952 + }, + { + "start": 19624.76, + "end": 19626.52, + "probability": 0.998 + }, + { + "start": 19627.56, + "end": 19628.18, + "probability": 0.982 + }, + { + "start": 19628.8, + "end": 19629.9, + "probability": 0.9785 + }, + { + "start": 19630.48, + "end": 19632.54, + "probability": 0.9759 + }, + { + "start": 19633.06, + "end": 19635.3, + "probability": 0.7824 + }, + { + "start": 19635.78, + "end": 19636.22, + "probability": 0.8802 + }, + { + "start": 19637.24, + "end": 19640.94, + "probability": 0.8285 + }, + { + "start": 19642.34, + "end": 19643.16, + "probability": 0.4246 + }, + { + "start": 19643.7, + "end": 19644.81, + "probability": 0.9504 + }, + { + "start": 19645.32, + "end": 19646.48, + "probability": 0.9701 + }, + { + "start": 19647.0, + "end": 19647.86, + "probability": 0.8958 + }, + { + "start": 19648.4, + "end": 19649.54, + "probability": 0.979 + }, + { + "start": 19650.34, + "end": 19653.02, + "probability": 0.655 + }, + { + "start": 19653.02, + "end": 19655.98, + "probability": 0.5485 + }, + { + "start": 19656.46, + "end": 19658.7, + "probability": 0.8894 + }, + { + "start": 19658.82, + "end": 19660.6, + "probability": 0.9886 + }, + { + "start": 19660.98, + "end": 19664.88, + "probability": 0.9914 + }, + { + "start": 19665.8, + "end": 19666.78, + "probability": 0.7344 + }, + { + "start": 19667.16, + "end": 19667.94, + "probability": 0.9539 + }, + { + "start": 19668.3, + "end": 19669.11, + "probability": 0.8446 + }, + { + "start": 19669.4, + "end": 19669.94, + "probability": 0.9707 + }, + { + "start": 19670.2, + "end": 19670.6, + "probability": 0.3539 + }, + { + "start": 19671.04, + "end": 19673.08, + "probability": 0.7177 + }, + { + "start": 19673.68, + "end": 19675.1, + "probability": 0.7839 + }, + { + "start": 19675.1, + "end": 19677.14, + "probability": 0.71 + }, + { + "start": 19678.36, + "end": 19679.44, + "probability": 0.9538 + }, + { + "start": 19680.2, + "end": 19682.08, + "probability": 0.9531 + }, + { + "start": 19683.48, + "end": 19684.62, + "probability": 0.121 + }, + { + "start": 19685.02, + "end": 19686.0, + "probability": 0.4408 + }, + { + "start": 19690.3, + "end": 19691.16, + "probability": 0.9314 + }, + { + "start": 19691.28, + "end": 19694.02, + "probability": 0.9292 + }, + { + "start": 19704.34, + "end": 19705.78, + "probability": 0.401 + }, + { + "start": 19705.82, + "end": 19708.12, + "probability": 0.572 + }, + { + "start": 19708.22, + "end": 19713.88, + "probability": 0.9907 + }, + { + "start": 19713.88, + "end": 19718.94, + "probability": 0.9894 + }, + { + "start": 19719.34, + "end": 19721.78, + "probability": 0.9547 + }, + { + "start": 19722.98, + "end": 19726.0, + "probability": 0.9696 + }, + { + "start": 19726.72, + "end": 19731.52, + "probability": 0.9977 + }, + { + "start": 19732.9, + "end": 19735.6, + "probability": 0.9927 + }, + { + "start": 19736.26, + "end": 19740.32, + "probability": 0.9816 + }, + { + "start": 19741.04, + "end": 19743.8, + "probability": 0.9921 + }, + { + "start": 19744.56, + "end": 19746.36, + "probability": 0.9447 + }, + { + "start": 19747.18, + "end": 19752.2, + "probability": 0.9714 + }, + { + "start": 19752.46, + "end": 19757.72, + "probability": 0.9981 + }, + { + "start": 19759.2, + "end": 19761.26, + "probability": 0.9904 + }, + { + "start": 19761.96, + "end": 19767.46, + "probability": 0.9734 + }, + { + "start": 19767.94, + "end": 19769.56, + "probability": 0.9458 + }, + { + "start": 19770.2, + "end": 19771.4, + "probability": 0.7892 + }, + { + "start": 19771.58, + "end": 19774.82, + "probability": 0.9963 + }, + { + "start": 19774.96, + "end": 19777.82, + "probability": 0.8875 + }, + { + "start": 19778.94, + "end": 19780.48, + "probability": 0.9567 + }, + { + "start": 19780.94, + "end": 19782.56, + "probability": 0.9241 + }, + { + "start": 19783.52, + "end": 19785.46, + "probability": 0.9756 + }, + { + "start": 19785.78, + "end": 19788.16, + "probability": 0.9906 + }, + { + "start": 19788.94, + "end": 19793.12, + "probability": 0.9892 + }, + { + "start": 19793.12, + "end": 19798.08, + "probability": 0.98 + }, + { + "start": 19798.16, + "end": 19798.78, + "probability": 0.8685 + }, + { + "start": 19799.58, + "end": 19801.92, + "probability": 0.9983 + }, + { + "start": 19801.92, + "end": 19806.28, + "probability": 0.9949 + }, + { + "start": 19806.84, + "end": 19807.86, + "probability": 0.8656 + }, + { + "start": 19808.6, + "end": 19813.48, + "probability": 0.98 + }, + { + "start": 19813.56, + "end": 19819.08, + "probability": 0.9931 + }, + { + "start": 19819.78, + "end": 19823.96, + "probability": 0.9543 + }, + { + "start": 19824.68, + "end": 19826.62, + "probability": 0.8663 + }, + { + "start": 19826.8, + "end": 19829.48, + "probability": 0.7437 + }, + { + "start": 19830.04, + "end": 19831.08, + "probability": 0.8638 + }, + { + "start": 19831.44, + "end": 19832.24, + "probability": 0.9336 + }, + { + "start": 19833.34, + "end": 19834.1, + "probability": 0.9125 + }, + { + "start": 19835.5, + "end": 19839.12, + "probability": 0.8273 + }, + { + "start": 19839.12, + "end": 19841.52, + "probability": 0.9983 + }, + { + "start": 19842.12, + "end": 19842.44, + "probability": 0.8509 + }, + { + "start": 19842.9, + "end": 19845.3, + "probability": 0.9951 + }, + { + "start": 19845.86, + "end": 19848.9, + "probability": 0.9904 + }, + { + "start": 19849.44, + "end": 19852.86, + "probability": 0.9951 + }, + { + "start": 19853.54, + "end": 19855.54, + "probability": 0.9805 + }, + { + "start": 19855.76, + "end": 19861.64, + "probability": 0.9275 + }, + { + "start": 19862.52, + "end": 19865.75, + "probability": 0.992 + }, + { + "start": 19866.2, + "end": 19867.04, + "probability": 0.999 + }, + { + "start": 19868.14, + "end": 19872.44, + "probability": 0.9972 + }, + { + "start": 19873.36, + "end": 19873.84, + "probability": 0.9729 + }, + { + "start": 19874.54, + "end": 19879.44, + "probability": 0.9829 + }, + { + "start": 19880.14, + "end": 19881.52, + "probability": 0.8483 + }, + { + "start": 19881.6, + "end": 19882.62, + "probability": 0.8594 + }, + { + "start": 19883.0, + "end": 19883.66, + "probability": 0.9788 + }, + { + "start": 19883.7, + "end": 19884.48, + "probability": 0.951 + }, + { + "start": 19884.52, + "end": 19885.28, + "probability": 0.9934 + }, + { + "start": 19885.46, + "end": 19885.74, + "probability": 0.9012 + }, + { + "start": 19885.86, + "end": 19886.42, + "probability": 0.8019 + }, + { + "start": 19886.44, + "end": 19887.39, + "probability": 0.9823 + }, + { + "start": 19887.78, + "end": 19891.3, + "probability": 0.8501 + }, + { + "start": 19891.86, + "end": 19893.66, + "probability": 0.985 + }, + { + "start": 19894.96, + "end": 19896.74, + "probability": 0.9128 + }, + { + "start": 19896.86, + "end": 19899.96, + "probability": 0.9829 + }, + { + "start": 19900.54, + "end": 19902.14, + "probability": 0.9843 + }, + { + "start": 19902.56, + "end": 19905.88, + "probability": 0.9937 + }, + { + "start": 19906.44, + "end": 19913.78, + "probability": 0.9779 + }, + { + "start": 19915.02, + "end": 19918.28, + "probability": 0.9283 + }, + { + "start": 19918.8, + "end": 19920.2, + "probability": 0.9976 + }, + { + "start": 19921.32, + "end": 19924.16, + "probability": 0.9714 + }, + { + "start": 19925.9, + "end": 19926.71, + "probability": 0.8359 + }, + { + "start": 19927.84, + "end": 19932.2, + "probability": 0.9786 + }, + { + "start": 19933.42, + "end": 19938.28, + "probability": 0.7675 + }, + { + "start": 19939.0, + "end": 19940.8, + "probability": 0.9597 + }, + { + "start": 19941.38, + "end": 19944.32, + "probability": 0.9612 + }, + { + "start": 19944.42, + "end": 19946.46, + "probability": 0.8922 + }, + { + "start": 19947.16, + "end": 19947.7, + "probability": 0.8339 + }, + { + "start": 19947.84, + "end": 19948.56, + "probability": 0.4066 + }, + { + "start": 19948.58, + "end": 19949.0, + "probability": 0.573 + }, + { + "start": 19949.42, + "end": 19949.76, + "probability": 0.375 + }, + { + "start": 19949.88, + "end": 19951.84, + "probability": 0.9163 + }, + { + "start": 19952.52, + "end": 19954.74, + "probability": 0.8089 + }, + { + "start": 19957.12, + "end": 19959.5, + "probability": 0.9402 + }, + { + "start": 19959.62, + "end": 19966.18, + "probability": 0.9804 + }, + { + "start": 19966.92, + "end": 19968.14, + "probability": 0.5649 + }, + { + "start": 19968.94, + "end": 19972.48, + "probability": 0.9315 + }, + { + "start": 19972.74, + "end": 19973.25, + "probability": 0.7207 + }, + { + "start": 19974.0, + "end": 19974.78, + "probability": 0.8907 + }, + { + "start": 19975.82, + "end": 19977.64, + "probability": 0.9858 + }, + { + "start": 19979.54, + "end": 19980.32, + "probability": 0.7959 + }, + { + "start": 19980.9, + "end": 19983.48, + "probability": 0.9934 + }, + { + "start": 19984.2, + "end": 19986.03, + "probability": 0.99 + }, + { + "start": 19986.42, + "end": 19990.56, + "probability": 0.9766 + }, + { + "start": 19991.38, + "end": 19996.16, + "probability": 0.9951 + }, + { + "start": 19996.16, + "end": 20000.54, + "probability": 0.9961 + }, + { + "start": 20001.48, + "end": 20005.2, + "probability": 0.9988 + }, + { + "start": 20005.42, + "end": 20006.6, + "probability": 0.7615 + }, + { + "start": 20006.7, + "end": 20008.26, + "probability": 0.9142 + }, + { + "start": 20009.2, + "end": 20010.62, + "probability": 0.8948 + }, + { + "start": 20011.1, + "end": 20012.48, + "probability": 0.9624 + }, + { + "start": 20012.88, + "end": 20014.58, + "probability": 0.913 + }, + { + "start": 20015.72, + "end": 20017.18, + "probability": 0.9822 + }, + { + "start": 20018.64, + "end": 20020.22, + "probability": 0.9543 + }, + { + "start": 20021.2, + "end": 20024.72, + "probability": 0.9713 + }, + { + "start": 20025.54, + "end": 20030.72, + "probability": 0.9956 + }, + { + "start": 20032.44, + "end": 20033.44, + "probability": 0.7158 + }, + { + "start": 20034.66, + "end": 20036.04, + "probability": 0.9661 + }, + { + "start": 20036.56, + "end": 20042.14, + "probability": 0.9857 + }, + { + "start": 20042.64, + "end": 20043.84, + "probability": 0.991 + }, + { + "start": 20044.9, + "end": 20048.0, + "probability": 0.9981 + }, + { + "start": 20051.0, + "end": 20051.71, + "probability": 0.9678 + }, + { + "start": 20051.88, + "end": 20054.82, + "probability": 0.9949 + }, + { + "start": 20054.82, + "end": 20057.96, + "probability": 0.9243 + }, + { + "start": 20058.44, + "end": 20060.37, + "probability": 0.939 + }, + { + "start": 20061.46, + "end": 20062.5, + "probability": 0.772 + }, + { + "start": 20064.8, + "end": 20068.32, + "probability": 0.9956 + }, + { + "start": 20069.58, + "end": 20073.78, + "probability": 0.9429 + }, + { + "start": 20074.34, + "end": 20079.32, + "probability": 0.9842 + }, + { + "start": 20080.22, + "end": 20085.56, + "probability": 0.9971 + }, + { + "start": 20087.26, + "end": 20091.0, + "probability": 0.9201 + }, + { + "start": 20092.0, + "end": 20095.76, + "probability": 0.993 + }, + { + "start": 20096.22, + "end": 20098.66, + "probability": 0.9979 + }, + { + "start": 20099.2, + "end": 20102.52, + "probability": 0.9883 + }, + { + "start": 20103.44, + "end": 20104.32, + "probability": 0.5497 + }, + { + "start": 20105.3, + "end": 20109.08, + "probability": 0.8035 + }, + { + "start": 20109.74, + "end": 20111.0, + "probability": 0.9471 + }, + { + "start": 20111.6, + "end": 20113.46, + "probability": 0.9766 + }, + { + "start": 20114.64, + "end": 20119.24, + "probability": 0.9811 + }, + { + "start": 20120.66, + "end": 20121.68, + "probability": 0.9749 + }, + { + "start": 20121.86, + "end": 20124.72, + "probability": 0.9881 + }, + { + "start": 20125.26, + "end": 20125.91, + "probability": 0.8649 + }, + { + "start": 20127.1, + "end": 20130.36, + "probability": 0.9856 + }, + { + "start": 20131.5, + "end": 20136.06, + "probability": 0.9961 + }, + { + "start": 20136.76, + "end": 20139.08, + "probability": 0.9885 + }, + { + "start": 20139.14, + "end": 20142.24, + "probability": 0.9953 + }, + { + "start": 20143.98, + "end": 20145.5, + "probability": 0.9598 + }, + { + "start": 20146.16, + "end": 20150.66, + "probability": 0.9983 + }, + { + "start": 20151.36, + "end": 20153.7, + "probability": 0.994 + }, + { + "start": 20154.6, + "end": 20155.3, + "probability": 0.858 + }, + { + "start": 20156.2, + "end": 20158.24, + "probability": 0.9951 + }, + { + "start": 20158.76, + "end": 20162.2, + "probability": 0.9975 + }, + { + "start": 20163.76, + "end": 20166.16, + "probability": 0.9722 + }, + { + "start": 20169.44, + "end": 20169.9, + "probability": 0.9334 + }, + { + "start": 20170.02, + "end": 20173.88, + "probability": 0.9966 + }, + { + "start": 20174.0, + "end": 20174.28, + "probability": 0.5121 + }, + { + "start": 20174.4, + "end": 20175.14, + "probability": 0.7928 + }, + { + "start": 20175.68, + "end": 20176.04, + "probability": 0.8608 + }, + { + "start": 20177.62, + "end": 20178.6, + "probability": 0.5292 + }, + { + "start": 20179.68, + "end": 20182.1, + "probability": 0.9367 + }, + { + "start": 20182.68, + "end": 20184.47, + "probability": 0.9937 + }, + { + "start": 20185.36, + "end": 20187.58, + "probability": 0.9589 + }, + { + "start": 20188.08, + "end": 20189.42, + "probability": 0.9564 + }, + { + "start": 20189.7, + "end": 20191.57, + "probability": 0.9714 + }, + { + "start": 20191.8, + "end": 20194.88, + "probability": 0.9741 + }, + { + "start": 20194.88, + "end": 20197.16, + "probability": 0.9961 + }, + { + "start": 20197.56, + "end": 20198.8, + "probability": 0.7581 + }, + { + "start": 20199.3, + "end": 20202.12, + "probability": 0.9663 + }, + { + "start": 20202.8, + "end": 20207.27, + "probability": 0.8888 + }, + { + "start": 20207.36, + "end": 20208.36, + "probability": 0.9753 + }, + { + "start": 20209.06, + "end": 20210.5, + "probability": 0.9056 + }, + { + "start": 20211.26, + "end": 20212.46, + "probability": 0.9141 + }, + { + "start": 20213.02, + "end": 20216.2, + "probability": 0.8532 + }, + { + "start": 20217.02, + "end": 20218.94, + "probability": 0.7185 + }, + { + "start": 20219.62, + "end": 20221.26, + "probability": 0.8542 + }, + { + "start": 20221.98, + "end": 20225.13, + "probability": 0.9131 + }, + { + "start": 20225.52, + "end": 20226.1, + "probability": 0.8884 + }, + { + "start": 20226.56, + "end": 20227.86, + "probability": 0.9792 + }, + { + "start": 20227.9, + "end": 20229.86, + "probability": 0.9889 + }, + { + "start": 20230.24, + "end": 20232.24, + "probability": 0.9825 + }, + { + "start": 20232.4, + "end": 20232.76, + "probability": 0.7803 + }, + { + "start": 20233.0, + "end": 20235.34, + "probability": 0.9791 + }, + { + "start": 20236.62, + "end": 20238.68, + "probability": 0.9855 + }, + { + "start": 20239.82, + "end": 20242.78, + "probability": 0.9823 + }, + { + "start": 20243.18, + "end": 20244.68, + "probability": 0.8639 + }, + { + "start": 20245.14, + "end": 20249.96, + "probability": 0.9799 + }, + { + "start": 20250.28, + "end": 20250.82, + "probability": 0.7675 + }, + { + "start": 20250.86, + "end": 20252.14, + "probability": 0.9814 + }, + { + "start": 20252.22, + "end": 20253.42, + "probability": 0.8921 + }, + { + "start": 20253.54, + "end": 20254.66, + "probability": 0.8167 + }, + { + "start": 20255.48, + "end": 20256.12, + "probability": 0.6648 + }, + { + "start": 20256.16, + "end": 20257.88, + "probability": 0.9199 + }, + { + "start": 20257.9, + "end": 20261.06, + "probability": 0.9877 + }, + { + "start": 20261.62, + "end": 20264.72, + "probability": 0.979 + }, + { + "start": 20266.38, + "end": 20268.64, + "probability": 0.9644 + }, + { + "start": 20269.36, + "end": 20270.54, + "probability": 0.842 + }, + { + "start": 20271.12, + "end": 20272.24, + "probability": 0.8071 + }, + { + "start": 20272.96, + "end": 20276.9, + "probability": 0.9837 + }, + { + "start": 20277.76, + "end": 20279.9, + "probability": 0.8764 + }, + { + "start": 20279.96, + "end": 20281.08, + "probability": 0.9062 + }, + { + "start": 20281.52, + "end": 20284.36, + "probability": 0.9351 + }, + { + "start": 20285.26, + "end": 20285.92, + "probability": 0.8314 + }, + { + "start": 20286.62, + "end": 20288.46, + "probability": 0.9902 + }, + { + "start": 20289.48, + "end": 20290.92, + "probability": 0.9989 + }, + { + "start": 20291.04, + "end": 20293.68, + "probability": 0.9937 + }, + { + "start": 20293.8, + "end": 20295.48, + "probability": 0.9307 + }, + { + "start": 20296.46, + "end": 20301.66, + "probability": 0.9933 + }, + { + "start": 20301.82, + "end": 20303.82, + "probability": 0.9969 + }, + { + "start": 20305.2, + "end": 20305.48, + "probability": 0.9689 + }, + { + "start": 20306.4, + "end": 20308.26, + "probability": 0.8913 + }, + { + "start": 20308.4, + "end": 20310.42, + "probability": 0.96 + }, + { + "start": 20312.26, + "end": 20313.58, + "probability": 0.9646 + }, + { + "start": 20314.14, + "end": 20318.36, + "probability": 0.708 + }, + { + "start": 20318.46, + "end": 20318.46, + "probability": 0.2188 + }, + { + "start": 20318.46, + "end": 20319.66, + "probability": 0.6626 + }, + { + "start": 20320.56, + "end": 20323.36, + "probability": 0.9865 + }, + { + "start": 20323.36, + "end": 20325.74, + "probability": 0.9962 + }, + { + "start": 20326.62, + "end": 20328.66, + "probability": 0.9939 + }, + { + "start": 20328.84, + "end": 20330.9, + "probability": 0.9457 + }, + { + "start": 20332.22, + "end": 20337.76, + "probability": 0.994 + }, + { + "start": 20337.76, + "end": 20341.78, + "probability": 0.9995 + }, + { + "start": 20342.48, + "end": 20343.2, + "probability": 0.7642 + }, + { + "start": 20344.2, + "end": 20349.56, + "probability": 0.9904 + }, + { + "start": 20350.02, + "end": 20351.76, + "probability": 0.8381 + }, + { + "start": 20351.86, + "end": 20352.64, + "probability": 0.9951 + }, + { + "start": 20352.96, + "end": 20353.56, + "probability": 0.6006 + }, + { + "start": 20354.84, + "end": 20359.15, + "probability": 0.9006 + }, + { + "start": 20359.28, + "end": 20362.66, + "probability": 0.981 + }, + { + "start": 20362.9, + "end": 20364.84, + "probability": 0.9918 + }, + { + "start": 20365.38, + "end": 20368.7, + "probability": 0.9488 + }, + { + "start": 20369.14, + "end": 20371.36, + "probability": 0.9899 + }, + { + "start": 20371.48, + "end": 20374.78, + "probability": 0.986 + }, + { + "start": 20376.16, + "end": 20379.7, + "probability": 0.9121 + }, + { + "start": 20379.76, + "end": 20382.34, + "probability": 0.9582 + }, + { + "start": 20382.54, + "end": 20383.46, + "probability": 0.8545 + }, + { + "start": 20383.7, + "end": 20384.98, + "probability": 0.9232 + }, + { + "start": 20385.82, + "end": 20387.04, + "probability": 0.9924 + }, + { + "start": 20387.12, + "end": 20389.76, + "probability": 0.9891 + }, + { + "start": 20389.86, + "end": 20391.0, + "probability": 0.7889 + }, + { + "start": 20391.5, + "end": 20393.5, + "probability": 0.9954 + }, + { + "start": 20394.2, + "end": 20396.62, + "probability": 0.9442 + }, + { + "start": 20397.3, + "end": 20399.27, + "probability": 0.9976 + }, + { + "start": 20399.84, + "end": 20403.16, + "probability": 0.9771 + }, + { + "start": 20404.16, + "end": 20406.86, + "probability": 0.9522 + }, + { + "start": 20407.62, + "end": 20409.24, + "probability": 0.99 + }, + { + "start": 20410.04, + "end": 20413.48, + "probability": 0.9882 + }, + { + "start": 20413.66, + "end": 20414.8, + "probability": 0.9901 + }, + { + "start": 20416.3, + "end": 20416.5, + "probability": 0.9041 + }, + { + "start": 20416.64, + "end": 20418.08, + "probability": 0.9425 + }, + { + "start": 20418.28, + "end": 20420.94, + "probability": 0.9807 + }, + { + "start": 20422.1, + "end": 20425.18, + "probability": 0.6776 + }, + { + "start": 20425.28, + "end": 20428.04, + "probability": 0.9868 + }, + { + "start": 20428.7, + "end": 20430.22, + "probability": 0.9856 + }, + { + "start": 20431.28, + "end": 20432.52, + "probability": 0.9492 + }, + { + "start": 20432.88, + "end": 20433.74, + "probability": 0.9304 + }, + { + "start": 20434.3, + "end": 20436.8, + "probability": 0.9826 + }, + { + "start": 20436.94, + "end": 20440.94, + "probability": 0.9839 + }, + { + "start": 20441.54, + "end": 20443.24, + "probability": 0.9106 + }, + { + "start": 20443.3, + "end": 20443.5, + "probability": 0.6733 + }, + { + "start": 20443.72, + "end": 20445.88, + "probability": 0.9827 + }, + { + "start": 20446.8, + "end": 20447.59, + "probability": 0.9275 + }, + { + "start": 20447.86, + "end": 20449.82, + "probability": 0.9877 + }, + { + "start": 20450.2, + "end": 20452.39, + "probability": 0.9338 + }, + { + "start": 20453.52, + "end": 20457.0, + "probability": 0.9759 + }, + { + "start": 20457.72, + "end": 20461.98, + "probability": 0.9883 + }, + { + "start": 20462.08, + "end": 20463.58, + "probability": 0.9985 + }, + { + "start": 20464.28, + "end": 20464.9, + "probability": 0.8612 + }, + { + "start": 20465.42, + "end": 20468.34, + "probability": 0.9963 + }, + { + "start": 20468.34, + "end": 20472.88, + "probability": 0.9748 + }, + { + "start": 20474.0, + "end": 20474.74, + "probability": 0.5728 + }, + { + "start": 20475.16, + "end": 20476.3, + "probability": 0.8445 + }, + { + "start": 20476.5, + "end": 20478.76, + "probability": 0.9838 + }, + { + "start": 20478.84, + "end": 20481.16, + "probability": 0.9941 + }, + { + "start": 20481.7, + "end": 20484.7, + "probability": 0.9253 + }, + { + "start": 20497.86, + "end": 20498.4, + "probability": 0.993 + }, + { + "start": 20499.96, + "end": 20501.04, + "probability": 0.0471 + }, + { + "start": 20501.54, + "end": 20502.06, + "probability": 0.1151 + }, + { + "start": 20502.08, + "end": 20502.34, + "probability": 0.0352 + }, + { + "start": 20502.34, + "end": 20503.34, + "probability": 0.0625 + }, + { + "start": 20503.36, + "end": 20503.88, + "probability": 0.0696 + }, + { + "start": 20503.88, + "end": 20503.88, + "probability": 0.1124 + }, + { + "start": 20503.88, + "end": 20504.3, + "probability": 0.2886 + }, + { + "start": 20505.4, + "end": 20508.22, + "probability": 0.8589 + }, + { + "start": 20509.24, + "end": 20511.76, + "probability": 0.9175 + }, + { + "start": 20511.82, + "end": 20512.96, + "probability": 0.8626 + }, + { + "start": 20513.36, + "end": 20516.26, + "probability": 0.7822 + }, + { + "start": 20516.9, + "end": 20522.76, + "probability": 0.9955 + }, + { + "start": 20522.8, + "end": 20524.68, + "probability": 0.9828 + }, + { + "start": 20525.82, + "end": 20528.04, + "probability": 0.9734 + }, + { + "start": 20528.14, + "end": 20529.86, + "probability": 0.9846 + }, + { + "start": 20529.96, + "end": 20531.82, + "probability": 0.9842 + }, + { + "start": 20532.3, + "end": 20533.12, + "probability": 0.8505 + }, + { + "start": 20533.18, + "end": 20534.18, + "probability": 0.8056 + }, + { + "start": 20534.74, + "end": 20537.24, + "probability": 0.9818 + }, + { + "start": 20537.7, + "end": 20538.86, + "probability": 0.9957 + }, + { + "start": 20538.98, + "end": 20540.58, + "probability": 0.9832 + }, + { + "start": 20541.04, + "end": 20543.26, + "probability": 0.985 + }, + { + "start": 20543.44, + "end": 20546.68, + "probability": 0.9837 + }, + { + "start": 20547.2, + "end": 20548.36, + "probability": 0.9196 + }, + { + "start": 20548.54, + "end": 20549.26, + "probability": 0.9166 + }, + { + "start": 20549.38, + "end": 20551.96, + "probability": 0.9214 + }, + { + "start": 20553.12, + "end": 20553.32, + "probability": 0.4547 + }, + { + "start": 20553.34, + "end": 20556.63, + "probability": 0.9961 + }, + { + "start": 20557.3, + "end": 20559.2, + "probability": 0.2444 + }, + { + "start": 20559.2, + "end": 20562.78, + "probability": 0.9841 + }, + { + "start": 20564.02, + "end": 20566.8, + "probability": 0.9216 + }, + { + "start": 20567.5, + "end": 20568.64, + "probability": 0.8716 + }, + { + "start": 20569.46, + "end": 20569.84, + "probability": 0.2533 + }, + { + "start": 20570.0, + "end": 20573.26, + "probability": 0.9672 + }, + { + "start": 20573.48, + "end": 20574.04, + "probability": 0.6944 + }, + { + "start": 20574.62, + "end": 20576.01, + "probability": 0.9934 + }, + { + "start": 20576.98, + "end": 20578.2, + "probability": 0.9279 + }, + { + "start": 20578.76, + "end": 20579.64, + "probability": 0.665 + }, + { + "start": 20579.76, + "end": 20580.95, + "probability": 0.8861 + }, + { + "start": 20581.32, + "end": 20583.52, + "probability": 0.9967 + }, + { + "start": 20584.56, + "end": 20589.82, + "probability": 0.9972 + }, + { + "start": 20590.34, + "end": 20591.64, + "probability": 0.999 + }, + { + "start": 20592.88, + "end": 20595.62, + "probability": 0.999 + }, + { + "start": 20596.9, + "end": 20598.66, + "probability": 0.6074 + }, + { + "start": 20599.2, + "end": 20600.84, + "probability": 0.9333 + }, + { + "start": 20601.46, + "end": 20602.5, + "probability": 0.7805 + }, + { + "start": 20603.28, + "end": 20605.54, + "probability": 0.9257 + }, + { + "start": 20605.82, + "end": 20607.6, + "probability": 0.95 + }, + { + "start": 20607.74, + "end": 20610.54, + "probability": 0.9928 + }, + { + "start": 20610.94, + "end": 20612.06, + "probability": 0.9046 + }, + { + "start": 20612.72, + "end": 20614.9, + "probability": 0.997 + }, + { + "start": 20615.4, + "end": 20616.98, + "probability": 0.9753 + }, + { + "start": 20617.58, + "end": 20621.04, + "probability": 0.9767 + }, + { + "start": 20621.6, + "end": 20623.76, + "probability": 0.9822 + }, + { + "start": 20624.7, + "end": 20625.2, + "probability": 0.8803 + }, + { + "start": 20626.92, + "end": 20630.14, + "probability": 0.9402 + }, + { + "start": 20630.18, + "end": 20633.4, + "probability": 0.9857 + }, + { + "start": 20633.44, + "end": 20635.28, + "probability": 0.829 + }, + { + "start": 20635.78, + "end": 20639.32, + "probability": 0.9891 + }, + { + "start": 20641.76, + "end": 20643.92, + "probability": 0.8402 + }, + { + "start": 20645.34, + "end": 20648.8, + "probability": 0.9144 + }, + { + "start": 20650.28, + "end": 20655.46, + "probability": 0.9927 + }, + { + "start": 20656.54, + "end": 20659.1, + "probability": 0.9915 + }, + { + "start": 20660.3, + "end": 20663.46, + "probability": 0.8675 + }, + { + "start": 20664.34, + "end": 20667.64, + "probability": 0.9972 + }, + { + "start": 20667.72, + "end": 20674.3, + "probability": 0.9868 + }, + { + "start": 20675.06, + "end": 20677.36, + "probability": 0.9651 + }, + { + "start": 20677.54, + "end": 20679.36, + "probability": 0.7311 + }, + { + "start": 20679.42, + "end": 20681.76, + "probability": 0.9922 + }, + { + "start": 20682.66, + "end": 20684.64, + "probability": 0.9995 + }, + { + "start": 20685.24, + "end": 20687.72, + "probability": 0.9937 + }, + { + "start": 20688.4, + "end": 20689.18, + "probability": 0.8583 + }, + { + "start": 20689.28, + "end": 20691.64, + "probability": 0.9966 + }, + { + "start": 20691.64, + "end": 20694.58, + "probability": 0.9971 + }, + { + "start": 20694.58, + "end": 20697.38, + "probability": 0.9956 + }, + { + "start": 20698.28, + "end": 20699.48, + "probability": 0.8428 + }, + { + "start": 20700.76, + "end": 20701.3, + "probability": 0.9884 + }, + { + "start": 20704.76, + "end": 20706.64, + "probability": 0.9924 + }, + { + "start": 20708.28, + "end": 20710.26, + "probability": 0.9546 + }, + { + "start": 20712.66, + "end": 20713.98, + "probability": 0.9934 + }, + { + "start": 20715.38, + "end": 20718.64, + "probability": 0.9387 + }, + { + "start": 20719.98, + "end": 20723.22, + "probability": 0.9956 + }, + { + "start": 20724.44, + "end": 20725.12, + "probability": 0.2062 + }, + { + "start": 20726.68, + "end": 20727.74, + "probability": 0.6239 + }, + { + "start": 20728.52, + "end": 20731.92, + "probability": 0.9893 + }, + { + "start": 20733.12, + "end": 20734.1, + "probability": 0.9748 + }, + { + "start": 20735.18, + "end": 20737.02, + "probability": 0.9388 + }, + { + "start": 20738.42, + "end": 20740.08, + "probability": 0.9983 + }, + { + "start": 20741.14, + "end": 20742.16, + "probability": 0.998 + }, + { + "start": 20743.26, + "end": 20745.44, + "probability": 0.9998 + }, + { + "start": 20749.16, + "end": 20751.54, + "probability": 0.9991 + }, + { + "start": 20752.82, + "end": 20755.84, + "probability": 0.9626 + }, + { + "start": 20756.68, + "end": 20758.28, + "probability": 0.8967 + }, + { + "start": 20758.68, + "end": 20762.36, + "probability": 0.9941 + }, + { + "start": 20762.86, + "end": 20763.18, + "probability": 0.4745 + }, + { + "start": 20763.36, + "end": 20764.72, + "probability": 0.9252 + }, + { + "start": 20765.02, + "end": 20768.2, + "probability": 0.9634 + }, + { + "start": 20768.36, + "end": 20768.74, + "probability": 0.9862 + }, + { + "start": 20769.72, + "end": 20772.44, + "probability": 0.9712 + }, + { + "start": 20773.06, + "end": 20774.88, + "probability": 0.9986 + }, + { + "start": 20775.94, + "end": 20782.16, + "probability": 0.9908 + }, + { + "start": 20783.2, + "end": 20786.02, + "probability": 0.9499 + }, + { + "start": 20786.22, + "end": 20788.92, + "probability": 0.9901 + }, + { + "start": 20789.04, + "end": 20791.12, + "probability": 0.9857 + }, + { + "start": 20792.78, + "end": 20796.24, + "probability": 0.9983 + }, + { + "start": 20796.34, + "end": 20797.66, + "probability": 0.9775 + }, + { + "start": 20798.38, + "end": 20802.78, + "probability": 0.9708 + }, + { + "start": 20804.0, + "end": 20807.48, + "probability": 0.8635 + }, + { + "start": 20807.58, + "end": 20811.1, + "probability": 0.9307 + }, + { + "start": 20811.14, + "end": 20812.56, + "probability": 0.9429 + }, + { + "start": 20813.54, + "end": 20815.0, + "probability": 0.9887 + }, + { + "start": 20815.7, + "end": 20818.1, + "probability": 0.9464 + }, + { + "start": 20818.16, + "end": 20820.34, + "probability": 0.969 + }, + { + "start": 20821.02, + "end": 20825.9, + "probability": 0.9949 + }, + { + "start": 20827.18, + "end": 20827.18, + "probability": 0.7026 + }, + { + "start": 20829.02, + "end": 20830.04, + "probability": 0.9998 + }, + { + "start": 20830.86, + "end": 20831.9, + "probability": 0.9869 + }, + { + "start": 20833.4, + "end": 20839.22, + "probability": 0.9977 + }, + { + "start": 20839.98, + "end": 20843.7, + "probability": 0.8255 + }, + { + "start": 20846.78, + "end": 20850.92, + "probability": 0.9762 + }, + { + "start": 20850.92, + "end": 20854.22, + "probability": 0.9907 + }, + { + "start": 20854.42, + "end": 20855.56, + "probability": 0.981 + }, + { + "start": 20856.2, + "end": 20859.14, + "probability": 0.8304 + }, + { + "start": 20859.92, + "end": 20861.48, + "probability": 0.9884 + }, + { + "start": 20862.58, + "end": 20866.38, + "probability": 0.9686 + }, + { + "start": 20867.46, + "end": 20870.56, + "probability": 0.9982 + }, + { + "start": 20871.42, + "end": 20874.46, + "probability": 0.9966 + }, + { + "start": 20874.6, + "end": 20876.52, + "probability": 0.9993 + }, + { + "start": 20877.18, + "end": 20878.78, + "probability": 0.9333 + }, + { + "start": 20878.94, + "end": 20881.1, + "probability": 0.858 + }, + { + "start": 20881.16, + "end": 20883.52, + "probability": 0.9215 + }, + { + "start": 20883.68, + "end": 20887.82, + "probability": 0.9007 + }, + { + "start": 20888.06, + "end": 20892.24, + "probability": 0.9954 + }, + { + "start": 20893.18, + "end": 20894.3, + "probability": 0.9679 + }, + { + "start": 20894.88, + "end": 20900.0, + "probability": 0.7753 + }, + { + "start": 20900.76, + "end": 20901.14, + "probability": 0.385 + }, + { + "start": 20901.14, + "end": 20902.96, + "probability": 0.9644 + }, + { + "start": 20903.18, + "end": 20906.24, + "probability": 0.9633 + }, + { + "start": 20906.24, + "end": 20909.12, + "probability": 0.9958 + }, + { + "start": 20909.28, + "end": 20910.25, + "probability": 0.9932 + }, + { + "start": 20910.8, + "end": 20913.5, + "probability": 0.9132 + }, + { + "start": 20914.42, + "end": 20919.36, + "probability": 0.9862 + }, + { + "start": 20919.92, + "end": 20924.54, + "probability": 0.9961 + }, + { + "start": 20925.56, + "end": 20926.04, + "probability": 0.7406 + }, + { + "start": 20926.2, + "end": 20926.96, + "probability": 0.5819 + }, + { + "start": 20928.02, + "end": 20929.96, + "probability": 0.8868 + }, + { + "start": 20946.72, + "end": 20947.58, + "probability": 0.5392 + }, + { + "start": 20948.08, + "end": 20949.02, + "probability": 0.9785 + }, + { + "start": 20949.5, + "end": 20950.0, + "probability": 0.4749 + }, + { + "start": 20950.42, + "end": 20954.22, + "probability": 0.4992 + }, + { + "start": 20962.84, + "end": 20964.32, + "probability": 0.0199 + }, + { + "start": 20967.34, + "end": 20970.92, + "probability": 0.8794 + }, + { + "start": 20972.22, + "end": 20973.64, + "probability": 0.8379 + }, + { + "start": 20974.78, + "end": 20976.5, + "probability": 0.8784 + }, + { + "start": 20977.1, + "end": 20981.36, + "probability": 0.7752 + }, + { + "start": 20981.52, + "end": 20982.12, + "probability": 0.7255 + }, + { + "start": 20982.2, + "end": 20983.26, + "probability": 0.6426 + }, + { + "start": 20987.25, + "end": 20989.98, + "probability": 0.6716 + }, + { + "start": 20990.48, + "end": 20993.34, + "probability": 0.8025 + }, + { + "start": 20993.46, + "end": 20994.68, + "probability": 0.8979 + }, + { + "start": 20994.98, + "end": 20996.76, + "probability": 0.9138 + }, + { + "start": 20997.5, + "end": 21000.16, + "probability": 0.9841 + }, + { + "start": 21001.48, + "end": 21002.78, + "probability": 0.922 + }, + { + "start": 21004.26, + "end": 21010.36, + "probability": 0.9825 + }, + { + "start": 21010.94, + "end": 21013.62, + "probability": 0.8883 + }, + { + "start": 21014.56, + "end": 21018.1, + "probability": 0.9692 + }, + { + "start": 21019.98, + "end": 21021.34, + "probability": 0.863 + }, + { + "start": 21022.22, + "end": 21027.38, + "probability": 0.989 + }, + { + "start": 21028.2, + "end": 21029.46, + "probability": 0.8786 + }, + { + "start": 21030.68, + "end": 21033.98, + "probability": 0.8585 + }, + { + "start": 21034.64, + "end": 21037.08, + "probability": 0.9115 + }, + { + "start": 21037.8, + "end": 21039.18, + "probability": 0.9504 + }, + { + "start": 21040.22, + "end": 21042.0, + "probability": 0.9907 + }, + { + "start": 21042.8, + "end": 21044.68, + "probability": 0.9457 + }, + { + "start": 21045.26, + "end": 21045.54, + "probability": 0.5529 + }, + { + "start": 21045.74, + "end": 21051.84, + "probability": 0.8104 + }, + { + "start": 21052.36, + "end": 21054.84, + "probability": 0.9108 + }, + { + "start": 21055.48, + "end": 21058.74, + "probability": 0.9774 + }, + { + "start": 21061.2, + "end": 21063.12, + "probability": 0.8978 + }, + { + "start": 21063.86, + "end": 21064.28, + "probability": 0.7644 + }, + { + "start": 21064.54, + "end": 21066.41, + "probability": 0.9919 + }, + { + "start": 21066.64, + "end": 21067.61, + "probability": 0.981 + }, + { + "start": 21068.06, + "end": 21069.14, + "probability": 0.4468 + }, + { + "start": 21069.7, + "end": 21071.14, + "probability": 0.8837 + }, + { + "start": 21071.88, + "end": 21073.08, + "probability": 0.7795 + }, + { + "start": 21073.88, + "end": 21079.98, + "probability": 0.9492 + }, + { + "start": 21081.18, + "end": 21081.94, + "probability": 0.9569 + }, + { + "start": 21082.06, + "end": 21085.52, + "probability": 0.9356 + }, + { + "start": 21088.08, + "end": 21088.84, + "probability": 0.768 + }, + { + "start": 21089.44, + "end": 21091.78, + "probability": 0.9878 + }, + { + "start": 21092.28, + "end": 21094.24, + "probability": 0.8845 + }, + { + "start": 21094.68, + "end": 21096.54, + "probability": 0.9817 + }, + { + "start": 21097.74, + "end": 21100.46, + "probability": 0.971 + }, + { + "start": 21101.52, + "end": 21103.16, + "probability": 0.9924 + }, + { + "start": 21103.92, + "end": 21104.72, + "probability": 0.7425 + }, + { + "start": 21104.9, + "end": 21107.44, + "probability": 0.9476 + }, + { + "start": 21108.5, + "end": 21108.76, + "probability": 0.6646 + }, + { + "start": 21108.9, + "end": 21111.61, + "probability": 0.989 + }, + { + "start": 21113.3, + "end": 21114.84, + "probability": 0.993 + }, + { + "start": 21115.56, + "end": 21118.9, + "probability": 0.9616 + }, + { + "start": 21119.88, + "end": 21121.96, + "probability": 0.8896 + }, + { + "start": 21122.8, + "end": 21125.63, + "probability": 0.8976 + }, + { + "start": 21126.38, + "end": 21128.7, + "probability": 0.9499 + }, + { + "start": 21129.18, + "end": 21131.76, + "probability": 0.9821 + }, + { + "start": 21132.66, + "end": 21134.98, + "probability": 0.9712 + }, + { + "start": 21136.68, + "end": 21137.28, + "probability": 0.9072 + }, + { + "start": 21137.46, + "end": 21139.7, + "probability": 0.9707 + }, + { + "start": 21140.06, + "end": 21140.72, + "probability": 0.7785 + }, + { + "start": 21141.28, + "end": 21142.63, + "probability": 0.9967 + }, + { + "start": 21143.58, + "end": 21145.84, + "probability": 0.979 + }, + { + "start": 21145.84, + "end": 21149.0, + "probability": 0.9808 + }, + { + "start": 21149.68, + "end": 21151.24, + "probability": 0.991 + }, + { + "start": 21151.92, + "end": 21156.12, + "probability": 0.9602 + }, + { + "start": 21157.12, + "end": 21158.42, + "probability": 0.9978 + }, + { + "start": 21158.56, + "end": 21161.0, + "probability": 0.6255 + }, + { + "start": 21163.56, + "end": 21164.02, + "probability": 0.4406 + }, + { + "start": 21164.54, + "end": 21168.28, + "probability": 0.8797 + }, + { + "start": 21168.94, + "end": 21171.88, + "probability": 0.9703 + }, + { + "start": 21172.21, + "end": 21175.48, + "probability": 0.9874 + }, + { + "start": 21176.28, + "end": 21180.34, + "probability": 0.9692 + }, + { + "start": 21180.98, + "end": 21183.5, + "probability": 0.9856 + }, + { + "start": 21185.44, + "end": 21186.42, + "probability": 0.9619 + }, + { + "start": 21186.6, + "end": 21190.92, + "probability": 0.9736 + }, + { + "start": 21191.9, + "end": 21194.18, + "probability": 0.6987 + }, + { + "start": 21195.32, + "end": 21196.14, + "probability": 0.4985 + }, + { + "start": 21196.78, + "end": 21202.3, + "probability": 0.9661 + }, + { + "start": 21203.46, + "end": 21206.7, + "probability": 0.9989 + }, + { + "start": 21208.54, + "end": 21210.8, + "probability": 0.2831 + }, + { + "start": 21210.86, + "end": 21214.64, + "probability": 0.9883 + }, + { + "start": 21215.22, + "end": 21217.02, + "probability": 0.6127 + }, + { + "start": 21217.58, + "end": 21218.36, + "probability": 0.7235 + }, + { + "start": 21219.36, + "end": 21222.06, + "probability": 0.9934 + }, + { + "start": 21222.84, + "end": 21225.08, + "probability": 0.9522 + }, + { + "start": 21225.94, + "end": 21231.06, + "probability": 0.5001 + }, + { + "start": 21232.48, + "end": 21232.99, + "probability": 0.9438 + }, + { + "start": 21233.44, + "end": 21234.2, + "probability": 0.7623 + }, + { + "start": 21236.06, + "end": 21239.16, + "probability": 0.991 + }, + { + "start": 21239.26, + "end": 21240.04, + "probability": 0.8811 + }, + { + "start": 21240.16, + "end": 21241.65, + "probability": 0.7793 + }, + { + "start": 21242.36, + "end": 21243.42, + "probability": 0.9773 + }, + { + "start": 21244.52, + "end": 21246.72, + "probability": 0.9942 + }, + { + "start": 21247.56, + "end": 21249.28, + "probability": 0.8764 + }, + { + "start": 21249.52, + "end": 21252.24, + "probability": 0.9396 + }, + { + "start": 21253.06, + "end": 21253.98, + "probability": 0.9618 + }, + { + "start": 21255.76, + "end": 21259.1, + "probability": 0.9761 + }, + { + "start": 21260.5, + "end": 21261.04, + "probability": 0.7128 + }, + { + "start": 21261.52, + "end": 21261.98, + "probability": 0.9659 + }, + { + "start": 21262.08, + "end": 21265.54, + "probability": 0.8918 + }, + { + "start": 21266.34, + "end": 21268.48, + "probability": 0.9858 + }, + { + "start": 21269.52, + "end": 21269.98, + "probability": 0.9304 + }, + { + "start": 21270.08, + "end": 21273.25, + "probability": 0.9973 + }, + { + "start": 21274.14, + "end": 21277.03, + "probability": 0.9834 + }, + { + "start": 21277.64, + "end": 21279.72, + "probability": 0.931 + }, + { + "start": 21280.54, + "end": 21281.62, + "probability": 0.9641 + }, + { + "start": 21281.82, + "end": 21284.04, + "probability": 0.9781 + }, + { + "start": 21284.62, + "end": 21285.46, + "probability": 0.9973 + }, + { + "start": 21286.42, + "end": 21287.22, + "probability": 0.9971 + }, + { + "start": 21290.66, + "end": 21294.2, + "probability": 0.7478 + }, + { + "start": 21294.34, + "end": 21295.1, + "probability": 0.936 + }, + { + "start": 21295.38, + "end": 21295.82, + "probability": 0.4188 + }, + { + "start": 21295.92, + "end": 21296.2, + "probability": 0.1096 + }, + { + "start": 21296.2, + "end": 21300.88, + "probability": 0.3161 + }, + { + "start": 21301.12, + "end": 21302.43, + "probability": 0.3706 + }, + { + "start": 21303.01, + "end": 21306.34, + "probability": 0.5517 + }, + { + "start": 21306.34, + "end": 21309.14, + "probability": 0.9165 + }, + { + "start": 21309.26, + "end": 21310.2, + "probability": 0.7227 + }, + { + "start": 21311.08, + "end": 21312.56, + "probability": 0.7279 + }, + { + "start": 21312.56, + "end": 21315.76, + "probability": 0.9833 + }, + { + "start": 21316.48, + "end": 21321.14, + "probability": 0.996 + }, + { + "start": 21321.72, + "end": 21323.0, + "probability": 0.9562 + }, + { + "start": 21323.48, + "end": 21326.0, + "probability": 0.9941 + }, + { + "start": 21326.88, + "end": 21330.62, + "probability": 0.8219 + }, + { + "start": 21331.24, + "end": 21333.7, + "probability": 0.9954 + }, + { + "start": 21334.84, + "end": 21336.06, + "probability": 0.9369 + }, + { + "start": 21336.82, + "end": 21339.36, + "probability": 0.9578 + }, + { + "start": 21340.08, + "end": 21340.56, + "probability": 0.9046 + }, + { + "start": 21341.3, + "end": 21344.6, + "probability": 0.8419 + }, + { + "start": 21345.08, + "end": 21346.16, + "probability": 0.9587 + }, + { + "start": 21346.5, + "end": 21348.62, + "probability": 0.7806 + }, + { + "start": 21349.58, + "end": 21350.14, + "probability": 0.8923 + }, + { + "start": 21353.84, + "end": 21356.26, + "probability": 0.8763 + }, + { + "start": 21357.42, + "end": 21358.86, + "probability": 0.7811 + }, + { + "start": 21359.88, + "end": 21361.56, + "probability": 0.9797 + }, + { + "start": 21362.16, + "end": 21365.6, + "probability": 0.8292 + }, + { + "start": 21366.18, + "end": 21371.06, + "probability": 0.7694 + }, + { + "start": 21373.0, + "end": 21374.92, + "probability": 0.7542 + }, + { + "start": 21374.96, + "end": 21378.94, + "probability": 0.8061 + }, + { + "start": 21379.6, + "end": 21381.02, + "probability": 0.7852 + }, + { + "start": 21382.02, + "end": 21383.56, + "probability": 0.9342 + }, + { + "start": 21384.22, + "end": 21385.42, + "probability": 0.9579 + }, + { + "start": 21386.38, + "end": 21390.96, + "probability": 0.9941 + }, + { + "start": 21392.18, + "end": 21394.72, + "probability": 0.9358 + }, + { + "start": 21395.24, + "end": 21395.56, + "probability": 0.9319 + }, + { + "start": 21396.14, + "end": 21396.62, + "probability": 0.5328 + }, + { + "start": 21396.92, + "end": 21400.12, + "probability": 0.8638 + }, + { + "start": 21400.24, + "end": 21402.3, + "probability": 0.9922 + }, + { + "start": 21405.86, + "end": 21406.77, + "probability": 0.969 + }, + { + "start": 21409.18, + "end": 21409.18, + "probability": 0.8223 + }, + { + "start": 21411.56, + "end": 21412.16, + "probability": 0.7196 + }, + { + "start": 21414.24, + "end": 21418.66, + "probability": 0.9934 + }, + { + "start": 21419.04, + "end": 21420.14, + "probability": 0.9515 + }, + { + "start": 21421.64, + "end": 21424.06, + "probability": 0.9424 + }, + { + "start": 21424.58, + "end": 21425.66, + "probability": 0.9236 + }, + { + "start": 21426.56, + "end": 21428.58, + "probability": 0.7755 + }, + { + "start": 21430.0, + "end": 21437.2, + "probability": 0.887 + }, + { + "start": 21438.3, + "end": 21442.2, + "probability": 0.6605 + }, + { + "start": 21442.5, + "end": 21443.84, + "probability": 0.8659 + }, + { + "start": 21444.56, + "end": 21450.34, + "probability": 0.9974 + }, + { + "start": 21451.12, + "end": 21453.34, + "probability": 0.9351 + }, + { + "start": 21453.52, + "end": 21458.34, + "probability": 0.95 + }, + { + "start": 21458.96, + "end": 21463.68, + "probability": 0.9674 + }, + { + "start": 21464.74, + "end": 21466.58, + "probability": 0.9777 + }, + { + "start": 21466.74, + "end": 21469.58, + "probability": 0.993 + }, + { + "start": 21470.56, + "end": 21474.2, + "probability": 0.9949 + }, + { + "start": 21474.28, + "end": 21475.06, + "probability": 0.9801 + }, + { + "start": 21476.06, + "end": 21477.88, + "probability": 0.8591 + }, + { + "start": 21478.54, + "end": 21479.54, + "probability": 0.8575 + }, + { + "start": 21480.16, + "end": 21481.1, + "probability": 0.9182 + }, + { + "start": 21481.32, + "end": 21484.18, + "probability": 0.9896 + }, + { + "start": 21486.36, + "end": 21490.62, + "probability": 0.9948 + }, + { + "start": 21490.76, + "end": 21491.42, + "probability": 0.4919 + }, + { + "start": 21492.16, + "end": 21494.84, + "probability": 0.4172 + }, + { + "start": 21498.08, + "end": 21499.77, + "probability": 0.9922 + }, + { + "start": 21500.62, + "end": 21504.56, + "probability": 0.9922 + }, + { + "start": 21505.36, + "end": 21514.16, + "probability": 0.9906 + }, + { + "start": 21514.4, + "end": 21515.4, + "probability": 0.8396 + }, + { + "start": 21516.02, + "end": 21521.34, + "probability": 0.9558 + }, + { + "start": 21522.12, + "end": 21522.48, + "probability": 0.5902 + }, + { + "start": 21522.54, + "end": 21527.72, + "probability": 0.8394 + }, + { + "start": 21527.78, + "end": 21531.82, + "probability": 0.9964 + }, + { + "start": 21531.82, + "end": 21535.6, + "probability": 0.9941 + }, + { + "start": 21536.3, + "end": 21540.44, + "probability": 0.9236 + }, + { + "start": 21541.16, + "end": 21542.34, + "probability": 0.8896 + }, + { + "start": 21543.12, + "end": 21544.66, + "probability": 0.9212 + }, + { + "start": 21545.32, + "end": 21546.62, + "probability": 0.9788 + }, + { + "start": 21546.7, + "end": 21546.98, + "probability": 0.6753 + }, + { + "start": 21547.1, + "end": 21548.26, + "probability": 0.8792 + }, + { + "start": 21548.72, + "end": 21551.26, + "probability": 0.9921 + }, + { + "start": 21551.82, + "end": 21553.12, + "probability": 0.5377 + }, + { + "start": 21553.96, + "end": 21557.52, + "probability": 0.99 + }, + { + "start": 21557.9, + "end": 21559.66, + "probability": 0.8665 + }, + { + "start": 21561.7, + "end": 21563.82, + "probability": 0.349 + }, + { + "start": 21564.56, + "end": 21566.61, + "probability": 0.9904 + }, + { + "start": 21566.68, + "end": 21567.92, + "probability": 0.9165 + }, + { + "start": 21568.7, + "end": 21570.14, + "probability": 0.8059 + }, + { + "start": 21570.42, + "end": 21574.24, + "probability": 0.9893 + }, + { + "start": 21574.46, + "end": 21577.54, + "probability": 0.9823 + }, + { + "start": 21577.84, + "end": 21578.34, + "probability": 0.8415 + }, + { + "start": 21579.3, + "end": 21580.08, + "probability": 0.5847 + }, + { + "start": 21580.4, + "end": 21582.56, + "probability": 0.8845 + }, + { + "start": 21598.68, + "end": 21600.42, + "probability": 0.7675 + }, + { + "start": 21608.86, + "end": 21609.82, + "probability": 0.5867 + }, + { + "start": 21610.84, + "end": 21612.44, + "probability": 0.8153 + }, + { + "start": 21613.38, + "end": 21619.0, + "probability": 0.9703 + }, + { + "start": 21619.82, + "end": 21622.14, + "probability": 0.9764 + }, + { + "start": 21623.26, + "end": 21624.88, + "probability": 0.9662 + }, + { + "start": 21625.94, + "end": 21626.34, + "probability": 0.8302 + }, + { + "start": 21628.02, + "end": 21628.36, + "probability": 0.9528 + }, + { + "start": 21629.88, + "end": 21630.4, + "probability": 0.9049 + }, + { + "start": 21630.96, + "end": 21631.84, + "probability": 0.5715 + }, + { + "start": 21632.74, + "end": 21634.54, + "probability": 0.653 + }, + { + "start": 21634.8, + "end": 21642.36, + "probability": 0.9899 + }, + { + "start": 21643.6, + "end": 21646.18, + "probability": 0.7588 + }, + { + "start": 21647.38, + "end": 21651.16, + "probability": 0.7343 + }, + { + "start": 21651.3, + "end": 21652.92, + "probability": 0.4934 + }, + { + "start": 21653.04, + "end": 21653.66, + "probability": 0.7639 + }, + { + "start": 21653.78, + "end": 21656.99, + "probability": 0.7725 + }, + { + "start": 21657.14, + "end": 21659.12, + "probability": 0.9493 + }, + { + "start": 21659.22, + "end": 21659.52, + "probability": 0.5724 + }, + { + "start": 21660.4, + "end": 21663.04, + "probability": 0.9134 + }, + { + "start": 21663.14, + "end": 21667.22, + "probability": 0.9885 + }, + { + "start": 21667.82, + "end": 21672.48, + "probability": 0.922 + }, + { + "start": 21673.24, + "end": 21675.32, + "probability": 0.9976 + }, + { + "start": 21676.16, + "end": 21677.64, + "probability": 0.9354 + }, + { + "start": 21678.68, + "end": 21681.5, + "probability": 0.9844 + }, + { + "start": 21682.54, + "end": 21685.58, + "probability": 0.9348 + }, + { + "start": 21686.52, + "end": 21687.58, + "probability": 0.9971 + }, + { + "start": 21688.62, + "end": 21689.62, + "probability": 0.9771 + }, + { + "start": 21690.68, + "end": 21692.8, + "probability": 0.6202 + }, + { + "start": 21693.24, + "end": 21694.24, + "probability": 0.6644 + }, + { + "start": 21694.36, + "end": 21695.75, + "probability": 0.8981 + }, + { + "start": 21696.66, + "end": 21697.76, + "probability": 0.8491 + }, + { + "start": 21698.52, + "end": 21699.62, + "probability": 0.9885 + }, + { + "start": 21699.8, + "end": 21701.1, + "probability": 0.9733 + }, + { + "start": 21702.3, + "end": 21708.76, + "probability": 0.9817 + }, + { + "start": 21708.96, + "end": 21709.76, + "probability": 0.9377 + }, + { + "start": 21710.32, + "end": 21714.24, + "probability": 0.9302 + }, + { + "start": 21715.08, + "end": 21717.38, + "probability": 0.9618 + }, + { + "start": 21718.46, + "end": 21723.26, + "probability": 0.9935 + }, + { + "start": 21723.26, + "end": 21730.12, + "probability": 0.9966 + }, + { + "start": 21731.1, + "end": 21734.06, + "probability": 0.8367 + }, + { + "start": 21734.18, + "end": 21735.64, + "probability": 0.8025 + }, + { + "start": 21736.56, + "end": 21740.38, + "probability": 0.9974 + }, + { + "start": 21741.14, + "end": 21742.2, + "probability": 0.9922 + }, + { + "start": 21743.34, + "end": 21746.12, + "probability": 0.9929 + }, + { + "start": 21746.76, + "end": 21752.1, + "probability": 0.9539 + }, + { + "start": 21753.02, + "end": 21755.4, + "probability": 0.9301 + }, + { + "start": 21756.54, + "end": 21759.44, + "probability": 0.9908 + }, + { + "start": 21759.98, + "end": 21760.78, + "probability": 0.9973 + }, + { + "start": 21761.68, + "end": 21762.64, + "probability": 0.8731 + }, + { + "start": 21764.36, + "end": 21766.0, + "probability": 0.9868 + }, + { + "start": 21766.48, + "end": 21766.97, + "probability": 0.882 + }, + { + "start": 21767.22, + "end": 21767.66, + "probability": 0.9966 + }, + { + "start": 21768.76, + "end": 21770.34, + "probability": 0.8997 + }, + { + "start": 21771.22, + "end": 21772.28, + "probability": 0.9995 + }, + { + "start": 21773.22, + "end": 21774.16, + "probability": 0.7798 + }, + { + "start": 21775.0, + "end": 21776.42, + "probability": 0.9013 + }, + { + "start": 21777.96, + "end": 21782.78, + "probability": 0.9938 + }, + { + "start": 21784.18, + "end": 21786.08, + "probability": 0.7184 + }, + { + "start": 21786.24, + "end": 21787.8, + "probability": 0.933 + }, + { + "start": 21788.5, + "end": 21790.6, + "probability": 0.9707 + }, + { + "start": 21792.12, + "end": 21793.8, + "probability": 0.965 + }, + { + "start": 21794.76, + "end": 21797.4, + "probability": 0.9849 + }, + { + "start": 21798.44, + "end": 21801.82, + "probability": 0.9979 + }, + { + "start": 21802.96, + "end": 21803.44, + "probability": 0.9067 + }, + { + "start": 21803.54, + "end": 21804.68, + "probability": 0.898 + }, + { + "start": 21804.76, + "end": 21806.0, + "probability": 0.9756 + }, + { + "start": 21807.08, + "end": 21808.82, + "probability": 0.8355 + }, + { + "start": 21811.52, + "end": 21814.2, + "probability": 0.9939 + }, + { + "start": 21815.29, + "end": 21816.16, + "probability": 0.5792 + }, + { + "start": 21816.86, + "end": 21817.87, + "probability": 0.9133 + }, + { + "start": 21818.52, + "end": 21822.46, + "probability": 0.9209 + }, + { + "start": 21822.64, + "end": 21824.3, + "probability": 0.886 + }, + { + "start": 21824.3, + "end": 21826.62, + "probability": 0.8273 + }, + { + "start": 21826.78, + "end": 21827.04, + "probability": 0.5961 + }, + { + "start": 21827.16, + "end": 21830.46, + "probability": 0.838 + }, + { + "start": 21830.68, + "end": 21830.94, + "probability": 0.6683 + }, + { + "start": 21831.04, + "end": 21832.52, + "probability": 0.9111 + }, + { + "start": 21832.96, + "end": 21835.4, + "probability": 0.7126 + }, + { + "start": 21836.86, + "end": 21837.4, + "probability": 0.8637 + }, + { + "start": 21837.52, + "end": 21842.22, + "probability": 0.9702 + }, + { + "start": 21843.18, + "end": 21844.28, + "probability": 0.9768 + }, + { + "start": 21844.34, + "end": 21845.86, + "probability": 0.8762 + }, + { + "start": 21847.28, + "end": 21848.0, + "probability": 0.9 + }, + { + "start": 21848.66, + "end": 21849.42, + "probability": 0.9648 + }, + { + "start": 21850.4, + "end": 21851.22, + "probability": 0.9102 + }, + { + "start": 21852.1, + "end": 21856.42, + "probability": 0.998 + }, + { + "start": 21857.52, + "end": 21861.3, + "probability": 0.8497 + }, + { + "start": 21861.9, + "end": 21862.36, + "probability": 0.9355 + }, + { + "start": 21862.62, + "end": 21863.5, + "probability": 0.924 + }, + { + "start": 21864.02, + "end": 21865.06, + "probability": 0.9399 + }, + { + "start": 21866.34, + "end": 21867.22, + "probability": 0.8126 + }, + { + "start": 21867.32, + "end": 21870.97, + "probability": 0.9966 + }, + { + "start": 21871.74, + "end": 21873.88, + "probability": 0.9698 + }, + { + "start": 21877.0, + "end": 21879.16, + "probability": 0.8985 + }, + { + "start": 21879.84, + "end": 21883.74, + "probability": 0.9808 + }, + { + "start": 21883.74, + "end": 21886.92, + "probability": 0.962 + }, + { + "start": 21887.44, + "end": 21889.72, + "probability": 0.9711 + }, + { + "start": 21890.92, + "end": 21893.62, + "probability": 0.9211 + }, + { + "start": 21893.88, + "end": 21897.48, + "probability": 0.9902 + }, + { + "start": 21897.64, + "end": 21902.0, + "probability": 0.9889 + }, + { + "start": 21902.12, + "end": 21903.18, + "probability": 0.8948 + }, + { + "start": 21904.02, + "end": 21905.0, + "probability": 0.9858 + }, + { + "start": 21905.6, + "end": 21908.8, + "probability": 0.991 + }, + { + "start": 21910.66, + "end": 21910.82, + "probability": 0.626 + }, + { + "start": 21910.92, + "end": 21911.4, + "probability": 0.7939 + }, + { + "start": 21911.48, + "end": 21912.32, + "probability": 0.9087 + }, + { + "start": 21912.44, + "end": 21914.66, + "probability": 0.9692 + }, + { + "start": 21915.04, + "end": 21918.8, + "probability": 0.9848 + }, + { + "start": 21919.6, + "end": 21925.72, + "probability": 0.9402 + }, + { + "start": 21926.0, + "end": 21926.76, + "probability": 0.9707 + }, + { + "start": 21927.02, + "end": 21928.17, + "probability": 0.9915 + }, + { + "start": 21929.28, + "end": 21934.51, + "probability": 0.9928 + }, + { + "start": 21934.76, + "end": 21935.2, + "probability": 0.3823 + }, + { + "start": 21935.76, + "end": 21937.58, + "probability": 0.9946 + }, + { + "start": 21937.74, + "end": 21941.86, + "probability": 0.9988 + }, + { + "start": 21942.02, + "end": 21942.88, + "probability": 0.6686 + }, + { + "start": 21943.48, + "end": 21945.92, + "probability": 0.9966 + }, + { + "start": 21946.0, + "end": 21946.98, + "probability": 0.7012 + }, + { + "start": 21948.26, + "end": 21949.46, + "probability": 0.9067 + }, + { + "start": 21950.2, + "end": 21950.78, + "probability": 0.9774 + }, + { + "start": 21951.0, + "end": 21957.16, + "probability": 0.9807 + }, + { + "start": 21958.48, + "end": 21963.38, + "probability": 0.6422 + }, + { + "start": 21964.02, + "end": 21966.58, + "probability": 0.931 + }, + { + "start": 21967.16, + "end": 21968.86, + "probability": 0.9283 + }, + { + "start": 21969.84, + "end": 21972.11, + "probability": 0.9948 + }, + { + "start": 21972.64, + "end": 21975.58, + "probability": 0.9943 + }, + { + "start": 21977.44, + "end": 21979.66, + "probability": 0.9323 + }, + { + "start": 21980.48, + "end": 21983.16, + "probability": 0.999 + }, + { + "start": 21984.24, + "end": 21985.04, + "probability": 0.9915 + }, + { + "start": 21986.28, + "end": 21987.98, + "probability": 0.5331 + }, + { + "start": 21989.96, + "end": 21993.58, + "probability": 0.9465 + }, + { + "start": 21993.74, + "end": 21994.2, + "probability": 0.8454 + }, + { + "start": 21994.32, + "end": 21995.4, + "probability": 0.7712 + }, + { + "start": 21995.94, + "end": 21998.54, + "probability": 0.943 + }, + { + "start": 22000.32, + "end": 22002.92, + "probability": 0.9951 + }, + { + "start": 22003.94, + "end": 22004.5, + "probability": 0.7329 + }, + { + "start": 22005.02, + "end": 22006.84, + "probability": 0.7908 + }, + { + "start": 22008.34, + "end": 22013.92, + "probability": 0.9849 + }, + { + "start": 22015.24, + "end": 22018.08, + "probability": 0.5466 + }, + { + "start": 22019.84, + "end": 22024.02, + "probability": 0.96 + }, + { + "start": 22024.35, + "end": 22027.74, + "probability": 0.9941 + }, + { + "start": 22028.68, + "end": 22031.2, + "probability": 0.9861 + }, + { + "start": 22032.42, + "end": 22038.62, + "probability": 0.9962 + }, + { + "start": 22038.66, + "end": 22044.42, + "probability": 0.7993 + }, + { + "start": 22045.6, + "end": 22049.4, + "probability": 0.9906 + }, + { + "start": 22050.43, + "end": 22052.54, + "probability": 0.9499 + }, + { + "start": 22054.02, + "end": 22056.2, + "probability": 0.9997 + }, + { + "start": 22057.32, + "end": 22058.64, + "probability": 0.9993 + }, + { + "start": 22059.72, + "end": 22060.68, + "probability": 0.9724 + }, + { + "start": 22061.42, + "end": 22063.83, + "probability": 0.8063 + }, + { + "start": 22065.34, + "end": 22067.05, + "probability": 0.9709 + }, + { + "start": 22068.52, + "end": 22069.42, + "probability": 0.9714 + }, + { + "start": 22070.56, + "end": 22075.9, + "probability": 0.8741 + }, + { + "start": 22075.94, + "end": 22076.96, + "probability": 0.8644 + }, + { + "start": 22080.04, + "end": 22080.98, + "probability": 0.5955 + }, + { + "start": 22081.02, + "end": 22082.96, + "probability": 0.5313 + }, + { + "start": 22083.76, + "end": 22085.24, + "probability": 0.9617 + }, + { + "start": 22086.48, + "end": 22093.72, + "probability": 0.7403 + }, + { + "start": 22093.84, + "end": 22094.59, + "probability": 0.9097 + }, + { + "start": 22095.92, + "end": 22102.82, + "probability": 0.9395 + }, + { + "start": 22103.66, + "end": 22104.14, + "probability": 0.9897 + }, + { + "start": 22105.02, + "end": 22106.92, + "probability": 0.9971 + }, + { + "start": 22107.68, + "end": 22109.12, + "probability": 0.845 + }, + { + "start": 22110.62, + "end": 22114.98, + "probability": 0.9387 + }, + { + "start": 22115.6, + "end": 22117.35, + "probability": 0.9824 + }, + { + "start": 22118.22, + "end": 22118.6, + "probability": 0.9824 + }, + { + "start": 22119.34, + "end": 22124.68, + "probability": 0.7859 + }, + { + "start": 22125.64, + "end": 22129.46, + "probability": 0.9784 + }, + { + "start": 22130.34, + "end": 22131.12, + "probability": 0.7151 + }, + { + "start": 22131.8, + "end": 22134.12, + "probability": 0.6587 + }, + { + "start": 22134.56, + "end": 22136.28, + "probability": 0.9861 + }, + { + "start": 22136.9, + "end": 22138.02, + "probability": 0.9549 + }, + { + "start": 22139.52, + "end": 22140.88, + "probability": 0.9635 + }, + { + "start": 22141.64, + "end": 22143.82, + "probability": 0.9668 + }, + { + "start": 22143.92, + "end": 22144.36, + "probability": 0.9297 + }, + { + "start": 22144.42, + "end": 22149.26, + "probability": 0.9819 + }, + { + "start": 22150.04, + "end": 22150.52, + "probability": 0.8051 + }, + { + "start": 22151.14, + "end": 22154.42, + "probability": 0.9683 + }, + { + "start": 22155.38, + "end": 22156.84, + "probability": 0.9034 + }, + { + "start": 22157.94, + "end": 22162.0, + "probability": 0.9821 + }, + { + "start": 22162.82, + "end": 22163.54, + "probability": 0.9246 + }, + { + "start": 22164.84, + "end": 22168.68, + "probability": 0.9978 + }, + { + "start": 22169.72, + "end": 22170.44, + "probability": 0.7603 + }, + { + "start": 22170.64, + "end": 22172.2, + "probability": 0.9075 + }, + { + "start": 22172.4, + "end": 22173.1, + "probability": 0.9667 + }, + { + "start": 22173.82, + "end": 22174.76, + "probability": 0.8139 + }, + { + "start": 22175.4, + "end": 22178.82, + "probability": 0.9893 + }, + { + "start": 22179.68, + "end": 22182.78, + "probability": 0.778 + }, + { + "start": 22183.54, + "end": 22186.8, + "probability": 0.9925 + }, + { + "start": 22186.88, + "end": 22193.18, + "probability": 0.9445 + }, + { + "start": 22193.76, + "end": 22194.78, + "probability": 0.7323 + }, + { + "start": 22195.56, + "end": 22196.0, + "probability": 0.9292 + }, + { + "start": 22196.04, + "end": 22198.62, + "probability": 0.9909 + }, + { + "start": 22198.7, + "end": 22199.24, + "probability": 0.2209 + }, + { + "start": 22199.34, + "end": 22204.44, + "probability": 0.687 + }, + { + "start": 22204.44, + "end": 22205.02, + "probability": 0.6622 + }, + { + "start": 22205.16, + "end": 22205.76, + "probability": 0.697 + }, + { + "start": 22205.82, + "end": 22207.84, + "probability": 0.9328 + }, + { + "start": 22208.66, + "end": 22209.5, + "probability": 0.8671 + }, + { + "start": 22210.27, + "end": 22213.36, + "probability": 0.0999 + }, + { + "start": 22213.36, + "end": 22213.36, + "probability": 0.2779 + }, + { + "start": 22213.36, + "end": 22214.34, + "probability": 0.0471 + }, + { + "start": 22215.22, + "end": 22216.64, + "probability": 0.8857 + }, + { + "start": 22218.88, + "end": 22220.64, + "probability": 0.9313 + }, + { + "start": 22221.48, + "end": 22223.8, + "probability": 0.6265 + }, + { + "start": 22224.88, + "end": 22227.26, + "probability": 0.5699 + }, + { + "start": 22227.38, + "end": 22228.64, + "probability": 0.7491 + }, + { + "start": 22228.8, + "end": 22231.54, + "probability": 0.9282 + }, + { + "start": 22232.3, + "end": 22235.84, + "probability": 0.9746 + }, + { + "start": 22238.42, + "end": 22243.0, + "probability": 0.702 + }, + { + "start": 22243.58, + "end": 22245.58, + "probability": 0.8368 + }, + { + "start": 22245.68, + "end": 22248.86, + "probability": 0.9961 + }, + { + "start": 22248.94, + "end": 22249.4, + "probability": 0.801 + }, + { + "start": 22249.5, + "end": 22253.84, + "probability": 0.8623 + }, + { + "start": 22255.49, + "end": 22258.58, + "probability": 0.7456 + }, + { + "start": 22259.28, + "end": 22263.76, + "probability": 0.9421 + }, + { + "start": 22264.04, + "end": 22264.2, + "probability": 0.5652 + }, + { + "start": 22264.4, + "end": 22271.68, + "probability": 0.9859 + }, + { + "start": 22271.78, + "end": 22272.82, + "probability": 0.981 + }, + { + "start": 22272.96, + "end": 22276.1, + "probability": 0.9952 + }, + { + "start": 22276.42, + "end": 22279.16, + "probability": 0.9065 + }, + { + "start": 22279.36, + "end": 22279.7, + "probability": 0.5899 + }, + { + "start": 22280.4, + "end": 22282.1, + "probability": 0.8175 + }, + { + "start": 22283.02, + "end": 22284.92, + "probability": 0.991 + }, + { + "start": 22285.6, + "end": 22288.74, + "probability": 0.9883 + }, + { + "start": 22289.8, + "end": 22291.42, + "probability": 0.9984 + }, + { + "start": 22291.42, + "end": 22293.56, + "probability": 0.9987 + }, + { + "start": 22294.86, + "end": 22296.54, + "probability": 0.9883 + }, + { + "start": 22297.14, + "end": 22299.18, + "probability": 0.9084 + }, + { + "start": 22300.66, + "end": 22302.44, + "probability": 0.9849 + }, + { + "start": 22303.56, + "end": 22303.82, + "probability": 0.765 + }, + { + "start": 22304.38, + "end": 22305.28, + "probability": 0.9751 + }, + { + "start": 22305.4, + "end": 22306.06, + "probability": 0.6172 + }, + { + "start": 22307.6, + "end": 22308.3, + "probability": 0.7054 + }, + { + "start": 22308.42, + "end": 22312.86, + "probability": 0.9429 + }, + { + "start": 22313.0, + "end": 22313.1, + "probability": 0.4733 + }, + { + "start": 22313.34, + "end": 22313.76, + "probability": 0.7032 + }, + { + "start": 22314.52, + "end": 22316.0, + "probability": 0.8828 + }, + { + "start": 22316.52, + "end": 22320.8, + "probability": 0.9884 + }, + { + "start": 22322.0, + "end": 22324.26, + "probability": 0.9806 + }, + { + "start": 22324.68, + "end": 22327.86, + "probability": 0.9606 + }, + { + "start": 22328.28, + "end": 22330.62, + "probability": 0.9844 + }, + { + "start": 22331.4, + "end": 22332.2, + "probability": 0.9143 + }, + { + "start": 22335.58, + "end": 22337.84, + "probability": 0.999 + }, + { + "start": 22338.76, + "end": 22338.88, + "probability": 0.2927 + }, + { + "start": 22340.1, + "end": 22340.94, + "probability": 0.779 + }, + { + "start": 22341.34, + "end": 22343.14, + "probability": 0.9795 + }, + { + "start": 22343.52, + "end": 22344.92, + "probability": 0.9788 + }, + { + "start": 22345.26, + "end": 22349.58, + "probability": 0.9985 + }, + { + "start": 22349.58, + "end": 22351.18, + "probability": 0.8931 + }, + { + "start": 22351.2, + "end": 22353.58, + "probability": 0.6038 + }, + { + "start": 22353.86, + "end": 22357.6, + "probability": 0.9121 + }, + { + "start": 22358.18, + "end": 22360.54, + "probability": 0.9454 + }, + { + "start": 22361.66, + "end": 22362.15, + "probability": 0.8594 + }, + { + "start": 22364.05, + "end": 22366.66, + "probability": 0.9307 + }, + { + "start": 22366.78, + "end": 22367.46, + "probability": 0.6287 + }, + { + "start": 22367.46, + "end": 22369.5, + "probability": 0.7644 + }, + { + "start": 22370.36, + "end": 22372.06, + "probability": 0.9424 + }, + { + "start": 22373.38, + "end": 22374.08, + "probability": 0.69 + }, + { + "start": 22375.5, + "end": 22376.18, + "probability": 0.4748 + }, + { + "start": 22376.3, + "end": 22378.0, + "probability": 0.9752 + }, + { + "start": 22378.08, + "end": 22378.34, + "probability": 0.9233 + }, + { + "start": 22379.2, + "end": 22380.58, + "probability": 0.4022 + }, + { + "start": 22383.79, + "end": 22386.34, + "probability": 0.9679 + }, + { + "start": 22386.76, + "end": 22386.98, + "probability": 0.8369 + }, + { + "start": 22386.98, + "end": 22387.94, + "probability": 0.7744 + }, + { + "start": 22388.4, + "end": 22392.08, + "probability": 0.9832 + }, + { + "start": 22392.42, + "end": 22394.16, + "probability": 0.8435 + }, + { + "start": 22395.14, + "end": 22396.08, + "probability": 0.3339 + }, + { + "start": 22396.64, + "end": 22396.76, + "probability": 0.1459 + }, + { + "start": 22398.34, + "end": 22398.68, + "probability": 0.0274 + }, + { + "start": 22398.68, + "end": 22398.68, + "probability": 0.06 + }, + { + "start": 22398.68, + "end": 22402.96, + "probability": 0.5006 + }, + { + "start": 22403.44, + "end": 22406.92, + "probability": 0.985 + }, + { + "start": 22407.56, + "end": 22408.52, + "probability": 0.9836 + }, + { + "start": 22409.42, + "end": 22411.8, + "probability": 0.9038 + }, + { + "start": 22413.74, + "end": 22414.52, + "probability": 0.6366 + }, + { + "start": 22414.94, + "end": 22416.06, + "probability": 0.4082 + }, + { + "start": 22416.16, + "end": 22420.18, + "probability": 0.8507 + }, + { + "start": 22420.8, + "end": 22422.88, + "probability": 0.7092 + }, + { + "start": 22424.42, + "end": 22426.66, + "probability": 0.5935 + }, + { + "start": 22427.38, + "end": 22429.64, + "probability": 0.9835 + }, + { + "start": 22430.9, + "end": 22433.96, + "probability": 0.4717 + }, + { + "start": 22433.96, + "end": 22435.52, + "probability": 0.4315 + }, + { + "start": 22435.7, + "end": 22437.64, + "probability": 0.3675 + }, + { + "start": 22437.7, + "end": 22438.7, + "probability": 0.6627 + }, + { + "start": 22438.8, + "end": 22443.54, + "probability": 0.8491 + }, + { + "start": 22444.1, + "end": 22445.82, + "probability": 0.3547 + }, + { + "start": 22446.8, + "end": 22448.1, + "probability": 0.6626 + }, + { + "start": 22449.72, + "end": 22451.44, + "probability": 0.06 + }, + { + "start": 22451.7, + "end": 22454.72, + "probability": 0.5323 + }, + { + "start": 22454.74, + "end": 22460.66, + "probability": 0.8243 + }, + { + "start": 22461.14, + "end": 22462.46, + "probability": 0.2523 + }, + { + "start": 22462.46, + "end": 22464.2, + "probability": 0.8337 + }, + { + "start": 22464.3, + "end": 22465.86, + "probability": 0.7969 + }, + { + "start": 22466.04, + "end": 22466.41, + "probability": 0.9346 + }, + { + "start": 22467.32, + "end": 22469.2, + "probability": 0.8791 + }, + { + "start": 22469.22, + "end": 22469.88, + "probability": 0.3433 + }, + { + "start": 22471.3, + "end": 22471.65, + "probability": 0.6771 + }, + { + "start": 22471.86, + "end": 22474.87, + "probability": 0.7939 + }, + { + "start": 22475.36, + "end": 22476.66, + "probability": 0.3207 + }, + { + "start": 22476.72, + "end": 22478.82, + "probability": 0.6161 + }, + { + "start": 22478.98, + "end": 22482.28, + "probability": 0.9968 + }, + { + "start": 22482.34, + "end": 22482.9, + "probability": 0.3481 + }, + { + "start": 22482.9, + "end": 22488.12, + "probability": 0.655 + }, + { + "start": 22488.32, + "end": 22490.54, + "probability": 0.4567 + }, + { + "start": 22490.6, + "end": 22493.42, + "probability": 0.8975 + }, + { + "start": 22493.66, + "end": 22494.76, + "probability": 0.5665 + }, + { + "start": 22494.76, + "end": 22496.32, + "probability": 0.4358 + }, + { + "start": 22496.42, + "end": 22497.0, + "probability": 0.5532 + }, + { + "start": 22497.16, + "end": 22501.32, + "probability": 0.9944 + }, + { + "start": 22501.42, + "end": 22502.56, + "probability": 0.9019 + }, + { + "start": 22502.94, + "end": 22507.98, + "probability": 0.9924 + }, + { + "start": 22508.46, + "end": 22508.92, + "probability": 0.8853 + }, + { + "start": 22509.2, + "end": 22509.58, + "probability": 0.7275 + }, + { + "start": 22509.92, + "end": 22512.74, + "probability": 0.9173 + }, + { + "start": 22513.52, + "end": 22517.36, + "probability": 0.951 + }, + { + "start": 22518.1, + "end": 22519.3, + "probability": 0.9017 + }, + { + "start": 22520.04, + "end": 22523.4, + "probability": 0.4347 + }, + { + "start": 22523.4, + "end": 22524.98, + "probability": 0.5097 + }, + { + "start": 22525.04, + "end": 22528.32, + "probability": 0.4583 + }, + { + "start": 22528.88, + "end": 22533.22, + "probability": 0.8239 + }, + { + "start": 22533.42, + "end": 22536.12, + "probability": 0.0503 + }, + { + "start": 22536.12, + "end": 22537.2, + "probability": 0.0545 + }, + { + "start": 22537.76, + "end": 22538.82, + "probability": 0.4928 + }, + { + "start": 22539.18, + "end": 22542.12, + "probability": 0.1575 + }, + { + "start": 22542.12, + "end": 22544.54, + "probability": 0.3015 + }, + { + "start": 22544.8, + "end": 22547.27, + "probability": 0.5895 + }, + { + "start": 22547.64, + "end": 22549.82, + "probability": 0.8962 + }, + { + "start": 22550.22, + "end": 22550.72, + "probability": 0.6301 + }, + { + "start": 22550.8, + "end": 22554.68, + "probability": 0.9806 + }, + { + "start": 22554.74, + "end": 22555.6, + "probability": 0.9985 + }, + { + "start": 22556.1, + "end": 22556.56, + "probability": 0.6472 + }, + { + "start": 22556.86, + "end": 22557.73, + "probability": 0.9823 + }, + { + "start": 22557.82, + "end": 22561.48, + "probability": 0.7341 + }, + { + "start": 22561.48, + "end": 22563.34, + "probability": 0.4389 + }, + { + "start": 22564.22, + "end": 22564.4, + "probability": 0.0387 + }, + { + "start": 22564.4, + "end": 22564.4, + "probability": 0.0196 + }, + { + "start": 22564.4, + "end": 22565.56, + "probability": 0.1238 + }, + { + "start": 22566.06, + "end": 22567.44, + "probability": 0.1578 + }, + { + "start": 22567.72, + "end": 22569.1, + "probability": 0.8289 + }, + { + "start": 22569.5, + "end": 22569.9, + "probability": 0.8671 + }, + { + "start": 22571.44, + "end": 22577.28, + "probability": 0.7552 + }, + { + "start": 22577.52, + "end": 22580.7, + "probability": 0.9811 + }, + { + "start": 22580.88, + "end": 22582.1, + "probability": 0.9147 + }, + { + "start": 22582.48, + "end": 22584.67, + "probability": 0.6382 + }, + { + "start": 22584.94, + "end": 22587.28, + "probability": 0.681 + }, + { + "start": 22587.46, + "end": 22587.88, + "probability": 0.6926 + }, + { + "start": 22588.1, + "end": 22589.18, + "probability": 0.5991 + }, + { + "start": 22589.46, + "end": 22591.88, + "probability": 0.1032 + }, + { + "start": 22591.88, + "end": 22593.42, + "probability": 0.6694 + }, + { + "start": 22593.74, + "end": 22596.56, + "probability": 0.5069 + }, + { + "start": 22596.6, + "end": 22598.52, + "probability": 0.9598 + }, + { + "start": 22598.52, + "end": 22602.51, + "probability": 0.953 + }, + { + "start": 22602.64, + "end": 22604.11, + "probability": 0.594 + }, + { + "start": 22604.52, + "end": 22604.8, + "probability": 0.7345 + }, + { + "start": 22604.9, + "end": 22606.23, + "probability": 0.8279 + }, + { + "start": 22606.72, + "end": 22607.68, + "probability": 0.7743 + }, + { + "start": 22607.68, + "end": 22608.96, + "probability": 0.9342 + }, + { + "start": 22609.1, + "end": 22611.02, + "probability": 0.9324 + }, + { + "start": 22611.22, + "end": 22612.08, + "probability": 0.9665 + }, + { + "start": 22612.48, + "end": 22614.32, + "probability": 0.96 + }, + { + "start": 22614.96, + "end": 22616.0, + "probability": 0.1046 + }, + { + "start": 22616.06, + "end": 22616.5, + "probability": 0.0748 + }, + { + "start": 22616.5, + "end": 22620.72, + "probability": 0.5891 + }, + { + "start": 22621.88, + "end": 22626.12, + "probability": 0.6846 + }, + { + "start": 22627.24, + "end": 22627.78, + "probability": 0.6648 + }, + { + "start": 22627.88, + "end": 22629.96, + "probability": 0.8024 + }, + { + "start": 22630.08, + "end": 22631.48, + "probability": 0.895 + }, + { + "start": 22631.58, + "end": 22633.1, + "probability": 0.939 + }, + { + "start": 22633.44, + "end": 22636.38, + "probability": 0.9375 + }, + { + "start": 22637.12, + "end": 22640.1, + "probability": 0.9434 + }, + { + "start": 22640.24, + "end": 22641.48, + "probability": 0.9932 + }, + { + "start": 22641.5, + "end": 22642.88, + "probability": 0.9897 + }, + { + "start": 22643.78, + "end": 22644.08, + "probability": 0.8737 + }, + { + "start": 22644.18, + "end": 22645.36, + "probability": 0.5587 + }, + { + "start": 22645.4, + "end": 22645.86, + "probability": 0.749 + }, + { + "start": 22645.96, + "end": 22648.94, + "probability": 0.9912 + }, + { + "start": 22650.77, + "end": 22653.8, + "probability": 0.7808 + }, + { + "start": 22654.4, + "end": 22657.5, + "probability": 0.9929 + }, + { + "start": 22658.16, + "end": 22662.06, + "probability": 0.9877 + }, + { + "start": 22664.2, + "end": 22668.32, + "probability": 0.9867 + }, + { + "start": 22668.6, + "end": 22669.58, + "probability": 0.8088 + }, + { + "start": 22669.66, + "end": 22669.98, + "probability": 0.8289 + }, + { + "start": 22670.04, + "end": 22670.44, + "probability": 0.7381 + }, + { + "start": 22671.06, + "end": 22671.82, + "probability": 0.9363 + }, + { + "start": 22672.58, + "end": 22672.8, + "probability": 0.9255 + }, + { + "start": 22672.8, + "end": 22674.32, + "probability": 0.9961 + }, + { + "start": 22674.8, + "end": 22679.37, + "probability": 0.8622 + }, + { + "start": 22680.18, + "end": 22681.26, + "probability": 0.721 + }, + { + "start": 22681.64, + "end": 22683.36, + "probability": 0.8225 + }, + { + "start": 22684.22, + "end": 22686.8, + "probability": 0.9592 + }, + { + "start": 22687.58, + "end": 22690.1, + "probability": 0.973 + }, + { + "start": 22691.06, + "end": 22691.98, + "probability": 0.8892 + }, + { + "start": 22693.42, + "end": 22696.24, + "probability": 0.9945 + }, + { + "start": 22697.21, + "end": 22700.94, + "probability": 0.9961 + }, + { + "start": 22701.08, + "end": 22705.28, + "probability": 0.9985 + }, + { + "start": 22705.32, + "end": 22706.12, + "probability": 0.8106 + }, + { + "start": 22706.66, + "end": 22707.84, + "probability": 0.8668 + }, + { + "start": 22708.22, + "end": 22711.66, + "probability": 0.9534 + }, + { + "start": 22712.42, + "end": 22713.4, + "probability": 0.9966 + }, + { + "start": 22713.52, + "end": 22716.04, + "probability": 0.9374 + }, + { + "start": 22716.18, + "end": 22718.4, + "probability": 0.9918 + }, + { + "start": 22718.48, + "end": 22720.38, + "probability": 0.875 + }, + { + "start": 22720.42, + "end": 22723.92, + "probability": 0.9946 + }, + { + "start": 22724.24, + "end": 22726.84, + "probability": 0.8706 + }, + { + "start": 22727.82, + "end": 22730.25, + "probability": 0.9006 + }, + { + "start": 22731.32, + "end": 22732.86, + "probability": 0.9601 + }, + { + "start": 22734.0, + "end": 22735.0, + "probability": 0.9962 + }, + { + "start": 22735.72, + "end": 22736.56, + "probability": 0.9951 + }, + { + "start": 22740.58, + "end": 22741.26, + "probability": 0.7004 + }, + { + "start": 22742.18, + "end": 22745.08, + "probability": 0.847 + }, + { + "start": 22745.12, + "end": 22745.46, + "probability": 0.6521 + }, + { + "start": 22745.5, + "end": 22748.1, + "probability": 0.9951 + }, + { + "start": 22748.74, + "end": 22751.32, + "probability": 0.973 + }, + { + "start": 22751.4, + "end": 22756.16, + "probability": 0.9904 + }, + { + "start": 22756.8, + "end": 22758.1, + "probability": 0.9449 + }, + { + "start": 22758.98, + "end": 22761.2, + "probability": 0.9725 + }, + { + "start": 22761.32, + "end": 22762.28, + "probability": 0.887 + }, + { + "start": 22762.48, + "end": 22763.92, + "probability": 0.8946 + }, + { + "start": 22764.1, + "end": 22764.7, + "probability": 0.8177 + }, + { + "start": 22766.58, + "end": 22769.38, + "probability": 0.9641 + }, + { + "start": 22771.14, + "end": 22772.98, + "probability": 0.9531 + }, + { + "start": 22773.06, + "end": 22774.84, + "probability": 0.9774 + }, + { + "start": 22775.64, + "end": 22776.64, + "probability": 0.7221 + }, + { + "start": 22777.72, + "end": 22780.14, + "probability": 0.8368 + }, + { + "start": 22780.94, + "end": 22783.3, + "probability": 0.8971 + }, + { + "start": 22783.96, + "end": 22785.6, + "probability": 0.9814 + }, + { + "start": 22786.76, + "end": 22788.84, + "probability": 0.9985 + }, + { + "start": 22789.5, + "end": 22790.24, + "probability": 0.643 + }, + { + "start": 22791.12, + "end": 22792.32, + "probability": 0.9163 + }, + { + "start": 22793.68, + "end": 22794.76, + "probability": 0.8454 + }, + { + "start": 22795.58, + "end": 22799.82, + "probability": 0.9884 + }, + { + "start": 22799.96, + "end": 22802.36, + "probability": 0.9861 + }, + { + "start": 22803.34, + "end": 22803.96, + "probability": 0.892 + }, + { + "start": 22804.54, + "end": 22807.2, + "probability": 0.973 + }, + { + "start": 22808.08, + "end": 22810.62, + "probability": 0.9577 + }, + { + "start": 22811.6, + "end": 22814.8, + "probability": 0.9624 + }, + { + "start": 22815.56, + "end": 22816.78, + "probability": 0.7943 + }, + { + "start": 22816.96, + "end": 22818.68, + "probability": 0.9624 + }, + { + "start": 22819.12, + "end": 22820.46, + "probability": 0.9736 + }, + { + "start": 22820.58, + "end": 22821.68, + "probability": 0.8582 + }, + { + "start": 22822.64, + "end": 22823.92, + "probability": 0.6672 + }, + { + "start": 22825.68, + "end": 22828.94, + "probability": 0.9635 + }, + { + "start": 22830.16, + "end": 22832.74, + "probability": 0.9641 + }, + { + "start": 22833.38, + "end": 22838.54, + "probability": 0.9473 + }, + { + "start": 22841.62, + "end": 22843.18, + "probability": 0.9837 + }, + { + "start": 22844.48, + "end": 22847.9, + "probability": 0.9991 + }, + { + "start": 22847.9, + "end": 22851.28, + "probability": 0.988 + }, + { + "start": 22852.18, + "end": 22853.54, + "probability": 0.915 + }, + { + "start": 22853.88, + "end": 22854.88, + "probability": 0.823 + }, + { + "start": 22854.98, + "end": 22855.6, + "probability": 0.7226 + }, + { + "start": 22856.38, + "end": 22859.16, + "probability": 0.9912 + }, + { + "start": 22860.34, + "end": 22864.9, + "probability": 0.9746 + }, + { + "start": 22865.86, + "end": 22866.5, + "probability": 0.9492 + }, + { + "start": 22866.74, + "end": 22867.58, + "probability": 0.97 + }, + { + "start": 22867.8, + "end": 22869.17, + "probability": 0.8804 + }, + { + "start": 22869.42, + "end": 22874.36, + "probability": 0.9918 + }, + { + "start": 22874.4, + "end": 22875.44, + "probability": 0.7589 + }, + { + "start": 22875.58, + "end": 22876.52, + "probability": 0.7744 + }, + { + "start": 22876.9, + "end": 22879.08, + "probability": 0.991 + }, + { + "start": 22879.08, + "end": 22882.92, + "probability": 0.9701 + }, + { + "start": 22883.46, + "end": 22886.2, + "probability": 0.9856 + }, + { + "start": 22886.32, + "end": 22888.0, + "probability": 0.7665 + }, + { + "start": 22888.82, + "end": 22893.52, + "probability": 0.9083 + }, + { + "start": 22896.53, + "end": 22898.22, + "probability": 0.9152 + }, + { + "start": 22899.3, + "end": 22903.04, + "probability": 0.9715 + }, + { + "start": 22903.12, + "end": 22908.18, + "probability": 0.9819 + }, + { + "start": 22909.12, + "end": 22910.78, + "probability": 0.9996 + }, + { + "start": 22911.54, + "end": 22913.2, + "probability": 0.9919 + }, + { + "start": 22914.76, + "end": 22917.48, + "probability": 0.9976 + }, + { + "start": 22918.54, + "end": 22919.08, + "probability": 0.972 + }, + { + "start": 22920.2, + "end": 22920.88, + "probability": 0.7611 + }, + { + "start": 22921.94, + "end": 22923.9, + "probability": 0.9977 + }, + { + "start": 22925.18, + "end": 22926.44, + "probability": 0.7997 + }, + { + "start": 22927.6, + "end": 22930.86, + "probability": 0.9637 + }, + { + "start": 22931.72, + "end": 22932.48, + "probability": 0.462 + }, + { + "start": 22933.24, + "end": 22938.56, + "probability": 0.8093 + }, + { + "start": 22939.62, + "end": 22941.62, + "probability": 0.8389 + }, + { + "start": 22942.46, + "end": 22944.55, + "probability": 0.9961 + }, + { + "start": 22944.56, + "end": 22947.22, + "probability": 0.9651 + }, + { + "start": 22948.74, + "end": 22950.3, + "probability": 0.9492 + }, + { + "start": 22950.58, + "end": 22951.94, + "probability": 0.8879 + }, + { + "start": 22953.2, + "end": 22957.68, + "probability": 0.9852 + }, + { + "start": 22957.68, + "end": 22960.36, + "probability": 0.8458 + }, + { + "start": 22961.8, + "end": 22963.18, + "probability": 0.9808 + }, + { + "start": 22964.2, + "end": 22965.26, + "probability": 0.8726 + }, + { + "start": 22965.8, + "end": 22967.02, + "probability": 0.7227 + }, + { + "start": 22968.08, + "end": 22972.32, + "probability": 0.819 + }, + { + "start": 22972.6, + "end": 22979.8, + "probability": 0.9912 + }, + { + "start": 22980.02, + "end": 22980.68, + "probability": 0.6566 + }, + { + "start": 22980.76, + "end": 22981.44, + "probability": 0.8527 + }, + { + "start": 22982.59, + "end": 22986.02, + "probability": 0.9894 + }, + { + "start": 22988.08, + "end": 22989.5, + "probability": 0.9658 + }, + { + "start": 22990.44, + "end": 22993.22, + "probability": 0.7787 + }, + { + "start": 22993.76, + "end": 22995.6, + "probability": 0.9582 + }, + { + "start": 22996.02, + "end": 22996.88, + "probability": 0.9774 + }, + { + "start": 22997.62, + "end": 23001.84, + "probability": 0.9748 + }, + { + "start": 23002.54, + "end": 23004.04, + "probability": 0.9774 + }, + { + "start": 23004.98, + "end": 23005.82, + "probability": 0.8166 + }, + { + "start": 23006.42, + "end": 23007.26, + "probability": 0.6959 + }, + { + "start": 23008.26, + "end": 23009.78, + "probability": 0.8428 + }, + { + "start": 23009.86, + "end": 23011.02, + "probability": 0.9292 + }, + { + "start": 23011.22, + "end": 23013.26, + "probability": 0.9897 + }, + { + "start": 23013.9, + "end": 23016.14, + "probability": 0.9771 + }, + { + "start": 23018.3, + "end": 23018.7, + "probability": 0.9716 + }, + { + "start": 23018.78, + "end": 23020.36, + "probability": 0.7199 + }, + { + "start": 23020.44, + "end": 23021.66, + "probability": 0.953 + }, + { + "start": 23022.62, + "end": 23024.3, + "probability": 0.9622 + }, + { + "start": 23024.8, + "end": 23029.1, + "probability": 0.948 + }, + { + "start": 23029.26, + "end": 23029.86, + "probability": 0.8808 + }, + { + "start": 23030.02, + "end": 23036.8, + "probability": 0.9961 + }, + { + "start": 23037.92, + "end": 23042.06, + "probability": 0.9966 + }, + { + "start": 23042.18, + "end": 23046.84, + "probability": 0.9624 + }, + { + "start": 23047.5, + "end": 23049.12, + "probability": 0.8594 + }, + { + "start": 23050.3, + "end": 23051.8, + "probability": 0.8572 + }, + { + "start": 23051.92, + "end": 23052.76, + "probability": 0.9804 + }, + { + "start": 23052.82, + "end": 23054.72, + "probability": 0.8672 + }, + { + "start": 23054.9, + "end": 23058.54, + "probability": 0.9645 + }, + { + "start": 23058.78, + "end": 23060.02, + "probability": 0.7646 + }, + { + "start": 23060.14, + "end": 23068.7, + "probability": 0.9446 + }, + { + "start": 23069.7, + "end": 23070.58, + "probability": 0.8516 + }, + { + "start": 23071.5, + "end": 23074.98, + "probability": 0.9982 + }, + { + "start": 23076.64, + "end": 23082.06, + "probability": 0.9817 + }, + { + "start": 23082.06, + "end": 23084.82, + "probability": 0.9972 + }, + { + "start": 23084.82, + "end": 23087.88, + "probability": 0.9976 + }, + { + "start": 23090.9, + "end": 23091.18, + "probability": 0.8264 + }, + { + "start": 23096.78, + "end": 23097.36, + "probability": 0.9743 + }, + { + "start": 23098.28, + "end": 23101.86, + "probability": 0.9066 + }, + { + "start": 23102.22, + "end": 23102.5, + "probability": 0.6944 + }, + { + "start": 23102.66, + "end": 23108.2, + "probability": 0.9917 + }, + { + "start": 23108.4, + "end": 23108.76, + "probability": 0.9451 + }, + { + "start": 23109.34, + "end": 23112.86, + "probability": 0.8586 + }, + { + "start": 23113.7, + "end": 23115.92, + "probability": 0.9076 + }, + { + "start": 23116.9, + "end": 23118.53, + "probability": 0.9776 + }, + { + "start": 23119.26, + "end": 23122.05, + "probability": 0.9617 + }, + { + "start": 23122.82, + "end": 23125.46, + "probability": 0.9824 + }, + { + "start": 23126.04, + "end": 23131.2, + "probability": 0.995 + }, + { + "start": 23131.2, + "end": 23136.46, + "probability": 0.9756 + }, + { + "start": 23136.78, + "end": 23138.76, + "probability": 0.9929 + }, + { + "start": 23139.4, + "end": 23143.04, + "probability": 0.9979 + }, + { + "start": 23143.04, + "end": 23147.11, + "probability": 0.9923 + }, + { + "start": 23148.94, + "end": 23149.74, + "probability": 0.929 + }, + { + "start": 23150.88, + "end": 23152.28, + "probability": 0.9648 + }, + { + "start": 23153.54, + "end": 23156.02, + "probability": 0.9788 + }, + { + "start": 23156.4, + "end": 23158.04, + "probability": 0.989 + }, + { + "start": 23158.14, + "end": 23159.47, + "probability": 0.8469 + }, + { + "start": 23160.66, + "end": 23160.66, + "probability": 0.2708 + }, + { + "start": 23161.88, + "end": 23164.18, + "probability": 0.9752 + }, + { + "start": 23164.88, + "end": 23167.34, + "probability": 0.9422 + }, + { + "start": 23167.44, + "end": 23168.38, + "probability": 0.9872 + }, + { + "start": 23168.46, + "end": 23169.24, + "probability": 0.9226 + }, + { + "start": 23170.58, + "end": 23171.66, + "probability": 0.9553 + }, + { + "start": 23173.04, + "end": 23177.46, + "probability": 0.8757 + }, + { + "start": 23178.04, + "end": 23180.9, + "probability": 0.9636 + }, + { + "start": 23182.68, + "end": 23185.82, + "probability": 0.9785 + }, + { + "start": 23187.08, + "end": 23188.38, + "probability": 0.4822 + }, + { + "start": 23188.58, + "end": 23189.16, + "probability": 0.6755 + }, + { + "start": 23189.18, + "end": 23189.94, + "probability": 0.9416 + }, + { + "start": 23190.16, + "end": 23194.32, + "probability": 0.944 + }, + { + "start": 23194.4, + "end": 23195.38, + "probability": 0.7488 + }, + { + "start": 23195.54, + "end": 23197.38, + "probability": 0.8007 + }, + { + "start": 23198.02, + "end": 23198.88, + "probability": 0.9679 + }, + { + "start": 23199.8, + "end": 23200.3, + "probability": 0.4854 + }, + { + "start": 23201.2, + "end": 23203.28, + "probability": 0.7224 + }, + { + "start": 23203.42, + "end": 23205.98, + "probability": 0.9878 + }, + { + "start": 23206.06, + "end": 23206.66, + "probability": 0.9845 + }, + { + "start": 23206.68, + "end": 23209.52, + "probability": 0.9634 + }, + { + "start": 23210.0, + "end": 23213.16, + "probability": 0.9966 + }, + { + "start": 23214.02, + "end": 23215.18, + "probability": 0.9082 + }, + { + "start": 23215.86, + "end": 23219.4, + "probability": 0.9875 + }, + { + "start": 23219.98, + "end": 23221.24, + "probability": 0.9542 + }, + { + "start": 23221.86, + "end": 23222.78, + "probability": 0.9326 + }, + { + "start": 23222.84, + "end": 23223.96, + "probability": 0.8846 + }, + { + "start": 23224.08, + "end": 23225.04, + "probability": 0.9932 + }, + { + "start": 23225.46, + "end": 23226.54, + "probability": 0.8483 + }, + { + "start": 23227.08, + "end": 23230.84, + "probability": 0.8901 + }, + { + "start": 23235.46, + "end": 23236.68, + "probability": 0.8705 + }, + { + "start": 23236.8, + "end": 23237.22, + "probability": 0.5564 + }, + { + "start": 23237.3, + "end": 23241.2, + "probability": 0.9618 + }, + { + "start": 23241.22, + "end": 23241.9, + "probability": 0.7287 + }, + { + "start": 23242.46, + "end": 23243.67, + "probability": 0.9915 + }, + { + "start": 23244.46, + "end": 23250.34, + "probability": 0.8873 + }, + { + "start": 23251.22, + "end": 23252.74, + "probability": 0.9741 + }, + { + "start": 23253.28, + "end": 23255.14, + "probability": 0.8986 + }, + { + "start": 23257.86, + "end": 23260.88, + "probability": 0.9982 + }, + { + "start": 23261.84, + "end": 23264.48, + "probability": 0.9904 + }, + { + "start": 23265.64, + "end": 23267.36, + "probability": 0.9895 + }, + { + "start": 23267.96, + "end": 23271.0, + "probability": 0.9973 + }, + { + "start": 23271.06, + "end": 23274.36, + "probability": 0.7846 + }, + { + "start": 23275.26, + "end": 23278.06, + "probability": 0.9861 + }, + { + "start": 23280.64, + "end": 23282.32, + "probability": 0.8217 + }, + { + "start": 23283.08, + "end": 23286.02, + "probability": 0.9937 + }, + { + "start": 23286.24, + "end": 23287.7, + "probability": 0.8911 + }, + { + "start": 23289.04, + "end": 23289.64, + "probability": 0.694 + }, + { + "start": 23290.74, + "end": 23298.14, + "probability": 0.9912 + }, + { + "start": 23299.1, + "end": 23300.1, + "probability": 0.9749 + }, + { + "start": 23300.74, + "end": 23303.5, + "probability": 0.9927 + }, + { + "start": 23304.28, + "end": 23305.64, + "probability": 0.979 + }, + { + "start": 23306.06, + "end": 23307.4, + "probability": 0.9949 + }, + { + "start": 23307.98, + "end": 23311.8, + "probability": 0.7403 + }, + { + "start": 23312.6, + "end": 23313.34, + "probability": 0.8472 + }, + { + "start": 23314.6, + "end": 23315.98, + "probability": 0.9766 + }, + { + "start": 23316.86, + "end": 23317.93, + "probability": 0.9956 + }, + { + "start": 23319.0, + "end": 23320.76, + "probability": 0.9846 + }, + { + "start": 23321.22, + "end": 23322.7, + "probability": 0.9048 + }, + { + "start": 23324.02, + "end": 23328.04, + "probability": 0.9995 + }, + { + "start": 23328.04, + "end": 23332.0, + "probability": 0.9985 + }, + { + "start": 23332.82, + "end": 23334.16, + "probability": 0.7283 + }, + { + "start": 23334.28, + "end": 23336.66, + "probability": 0.9941 + }, + { + "start": 23337.42, + "end": 23338.7, + "probability": 0.9203 + }, + { + "start": 23338.74, + "end": 23342.2, + "probability": 0.9982 + }, + { + "start": 23343.02, + "end": 23345.66, + "probability": 0.9375 + }, + { + "start": 23346.92, + "end": 23350.74, + "probability": 0.9338 + }, + { + "start": 23351.5, + "end": 23355.64, + "probability": 0.9639 + }, + { + "start": 23355.74, + "end": 23356.0, + "probability": 0.8921 + }, + { + "start": 23356.06, + "end": 23356.4, + "probability": 0.7193 + }, + { + "start": 23356.46, + "end": 23359.44, + "probability": 0.9985 + }, + { + "start": 23360.98, + "end": 23364.12, + "probability": 0.986 + }, + { + "start": 23364.48, + "end": 23364.86, + "probability": 0.9364 + }, + { + "start": 23366.38, + "end": 23367.94, + "probability": 0.773 + }, + { + "start": 23368.94, + "end": 23371.08, + "probability": 0.9736 + }, + { + "start": 23371.66, + "end": 23373.52, + "probability": 0.7773 + }, + { + "start": 23374.1, + "end": 23376.02, + "probability": 0.7436 + }, + { + "start": 23376.22, + "end": 23377.68, + "probability": 0.877 + }, + { + "start": 23378.02, + "end": 23379.6, + "probability": 0.9659 + }, + { + "start": 23381.88, + "end": 23384.4, + "probability": 0.9811 + }, + { + "start": 23385.54, + "end": 23386.84, + "probability": 0.9646 + }, + { + "start": 23387.36, + "end": 23390.0, + "probability": 0.7887 + }, + { + "start": 23391.18, + "end": 23393.72, + "probability": 0.9614 + }, + { + "start": 23393.86, + "end": 23399.83, + "probability": 0.9937 + }, + { + "start": 23401.58, + "end": 23407.42, + "probability": 0.9976 + }, + { + "start": 23408.48, + "end": 23411.7, + "probability": 0.9979 + }, + { + "start": 23411.7, + "end": 23413.92, + "probability": 0.9995 + }, + { + "start": 23414.52, + "end": 23416.52, + "probability": 0.9458 + }, + { + "start": 23417.42, + "end": 23418.74, + "probability": 0.7861 + }, + { + "start": 23418.86, + "end": 23420.46, + "probability": 0.8967 + }, + { + "start": 23420.52, + "end": 23422.2, + "probability": 0.8034 + }, + { + "start": 23422.46, + "end": 23422.87, + "probability": 0.8467 + }, + { + "start": 23423.14, + "end": 23423.32, + "probability": 0.535 + }, + { + "start": 23423.86, + "end": 23424.62, + "probability": 0.7682 + }, + { + "start": 23425.82, + "end": 23428.48, + "probability": 0.9894 + }, + { + "start": 23428.56, + "end": 23431.14, + "probability": 0.9913 + }, + { + "start": 23431.68, + "end": 23434.84, + "probability": 0.9955 + }, + { + "start": 23436.5, + "end": 23438.46, + "probability": 0.8878 + }, + { + "start": 23440.28, + "end": 23445.82, + "probability": 0.9385 + }, + { + "start": 23447.46, + "end": 23448.04, + "probability": 0.9836 + }, + { + "start": 23450.68, + "end": 23451.14, + "probability": 0.254 + }, + { + "start": 23452.28, + "end": 23452.56, + "probability": 0.6311 + }, + { + "start": 23452.64, + "end": 23453.73, + "probability": 0.8383 + }, + { + "start": 23453.92, + "end": 23456.5, + "probability": 0.9438 + }, + { + "start": 23456.58, + "end": 23457.22, + "probability": 0.7855 + }, + { + "start": 23457.92, + "end": 23460.7, + "probability": 0.9497 + }, + { + "start": 23461.28, + "end": 23464.04, + "probability": 0.9229 + }, + { + "start": 23464.54, + "end": 23467.32, + "probability": 0.9419 + }, + { + "start": 23468.26, + "end": 23468.48, + "probability": 0.5124 + }, + { + "start": 23469.64, + "end": 23472.9, + "probability": 0.867 + }, + { + "start": 23473.4, + "end": 23474.58, + "probability": 0.9941 + }, + { + "start": 23474.88, + "end": 23476.96, + "probability": 0.953 + }, + { + "start": 23477.56, + "end": 23479.7, + "probability": 0.9331 + }, + { + "start": 23480.38, + "end": 23481.98, + "probability": 0.8542 + }, + { + "start": 23482.96, + "end": 23486.52, + "probability": 0.9919 + }, + { + "start": 23487.4, + "end": 23487.96, + "probability": 0.8309 + }, + { + "start": 23488.0, + "end": 23488.42, + "probability": 0.7305 + }, + { + "start": 23488.6, + "end": 23492.8, + "probability": 0.5649 + }, + { + "start": 23493.56, + "end": 23494.08, + "probability": 0.9583 + }, + { + "start": 23494.8, + "end": 23498.58, + "probability": 0.9942 + }, + { + "start": 23499.86, + "end": 23500.78, + "probability": 0.6375 + }, + { + "start": 23501.78, + "end": 23503.38, + "probability": 0.6968 + }, + { + "start": 23503.96, + "end": 23504.8, + "probability": 0.9674 + }, + { + "start": 23506.5, + "end": 23507.0, + "probability": 0.8702 + }, + { + "start": 23507.74, + "end": 23508.32, + "probability": 0.9973 + }, + { + "start": 23509.6, + "end": 23511.84, + "probability": 0.9875 + }, + { + "start": 23512.42, + "end": 23513.48, + "probability": 0.7966 + }, + { + "start": 23514.48, + "end": 23517.24, + "probability": 0.5883 + }, + { + "start": 23519.08, + "end": 23521.18, + "probability": 0.9456 + }, + { + "start": 23522.52, + "end": 23525.84, + "probability": 0.9902 + }, + { + "start": 23526.54, + "end": 23529.4, + "probability": 0.7603 + }, + { + "start": 23530.06, + "end": 23531.18, + "probability": 0.9067 + }, + { + "start": 23531.84, + "end": 23533.46, + "probability": 0.9362 + }, + { + "start": 23534.74, + "end": 23541.14, + "probability": 0.9849 + }, + { + "start": 23541.34, + "end": 23544.14, + "probability": 0.5631 + }, + { + "start": 23546.54, + "end": 23547.38, + "probability": 0.7876 + }, + { + "start": 23547.92, + "end": 23548.66, + "probability": 0.8946 + }, + { + "start": 23549.82, + "end": 23552.0, + "probability": 0.9789 + }, + { + "start": 23552.1, + "end": 23552.48, + "probability": 0.8477 + }, + { + "start": 23554.22, + "end": 23555.1, + "probability": 0.9681 + }, + { + "start": 23556.06, + "end": 23557.28, + "probability": 0.9944 + }, + { + "start": 23558.1, + "end": 23565.2, + "probability": 0.9849 + }, + { + "start": 23566.86, + "end": 23568.28, + "probability": 0.9802 + }, + { + "start": 23568.4, + "end": 23570.74, + "probability": 0.8277 + }, + { + "start": 23571.46, + "end": 23573.42, + "probability": 0.9963 + }, + { + "start": 23573.9, + "end": 23574.44, + "probability": 0.9047 + }, + { + "start": 23575.9, + "end": 23582.52, + "probability": 0.9599 + }, + { + "start": 23583.52, + "end": 23585.04, + "probability": 0.9883 + }, + { + "start": 23586.34, + "end": 23591.54, + "probability": 0.8973 + }, + { + "start": 23593.02, + "end": 23594.24, + "probability": 0.9966 + }, + { + "start": 23595.16, + "end": 23595.6, + "probability": 0.897 + }, + { + "start": 23595.72, + "end": 23596.82, + "probability": 0.739 + }, + { + "start": 23597.7, + "end": 23598.88, + "probability": 0.9383 + }, + { + "start": 23600.28, + "end": 23601.26, + "probability": 0.972 + }, + { + "start": 23602.4, + "end": 23607.3, + "probability": 0.9867 + }, + { + "start": 23608.54, + "end": 23611.56, + "probability": 0.9451 + }, + { + "start": 23613.16, + "end": 23616.22, + "probability": 0.842 + }, + { + "start": 23617.24, + "end": 23619.06, + "probability": 0.7596 + }, + { + "start": 23619.62, + "end": 23621.66, + "probability": 0.9702 + }, + { + "start": 23622.38, + "end": 23629.4, + "probability": 0.9983 + }, + { + "start": 23630.76, + "end": 23631.28, + "probability": 0.9036 + }, + { + "start": 23632.04, + "end": 23632.72, + "probability": 0.9843 + }, + { + "start": 23633.86, + "end": 23634.7, + "probability": 0.5752 + }, + { + "start": 23636.0, + "end": 23637.5, + "probability": 0.9747 + }, + { + "start": 23638.72, + "end": 23640.34, + "probability": 0.9937 + }, + { + "start": 23640.58, + "end": 23641.16, + "probability": 0.9088 + }, + { + "start": 23641.46, + "end": 23646.18, + "probability": 0.9976 + }, + { + "start": 23647.66, + "end": 23653.56, + "probability": 0.8462 + }, + { + "start": 23654.52, + "end": 23655.54, + "probability": 0.989 + }, + { + "start": 23657.36, + "end": 23661.58, + "probability": 0.9688 + }, + { + "start": 23661.92, + "end": 23668.46, + "probability": 0.8847 + }, + { + "start": 23668.46, + "end": 23672.6, + "probability": 0.9555 + }, + { + "start": 23673.9, + "end": 23674.82, + "probability": 0.8334 + }, + { + "start": 23677.86, + "end": 23682.34, + "probability": 0.999 + }, + { + "start": 23683.54, + "end": 23686.68, + "probability": 0.9829 + }, + { + "start": 23687.46, + "end": 23688.52, + "probability": 0.6292 + }, + { + "start": 23689.08, + "end": 23691.26, + "probability": 0.9658 + }, + { + "start": 23692.1, + "end": 23696.14, + "probability": 0.914 + }, + { + "start": 23698.94, + "end": 23701.5, + "probability": 0.9954 + }, + { + "start": 23703.24, + "end": 23705.76, + "probability": 0.9941 + }, + { + "start": 23706.44, + "end": 23706.86, + "probability": 0.9405 + }, + { + "start": 23707.58, + "end": 23711.95, + "probability": 0.995 + }, + { + "start": 23712.14, + "end": 23718.7, + "probability": 0.9963 + }, + { + "start": 23719.54, + "end": 23720.34, + "probability": 0.9689 + }, + { + "start": 23724.38, + "end": 23728.84, + "probability": 0.9829 + }, + { + "start": 23728.94, + "end": 23731.46, + "probability": 0.9731 + }, + { + "start": 23731.56, + "end": 23732.1, + "probability": 0.9736 + }, + { + "start": 23733.64, + "end": 23735.48, + "probability": 0.9927 + }, + { + "start": 23736.98, + "end": 23738.92, + "probability": 0.8792 + }, + { + "start": 23739.92, + "end": 23741.28, + "probability": 0.9884 + }, + { + "start": 23742.4, + "end": 23745.16, + "probability": 0.999 + }, + { + "start": 23745.66, + "end": 23747.98, + "probability": 0.9983 + }, + { + "start": 23748.76, + "end": 23749.48, + "probability": 0.992 + }, + { + "start": 23750.66, + "end": 23752.4, + "probability": 0.9844 + }, + { + "start": 23753.56, + "end": 23755.02, + "probability": 0.9971 + }, + { + "start": 23755.88, + "end": 23758.5, + "probability": 0.5042 + }, + { + "start": 23758.72, + "end": 23760.04, + "probability": 0.9482 + }, + { + "start": 23761.2, + "end": 23763.1, + "probability": 0.9236 + }, + { + "start": 23765.3, + "end": 23766.0, + "probability": 0.8548 + }, + { + "start": 23767.0, + "end": 23769.0, + "probability": 0.9902 + }, + { + "start": 23769.0, + "end": 23771.8, + "probability": 0.984 + }, + { + "start": 23773.94, + "end": 23775.54, + "probability": 0.5336 + }, + { + "start": 23777.18, + "end": 23778.54, + "probability": 0.9904 + }, + { + "start": 23778.6, + "end": 23779.58, + "probability": 0.9656 + }, + { + "start": 23780.84, + "end": 23786.0, + "probability": 0.9913 + }, + { + "start": 23787.1, + "end": 23789.7, + "probability": 0.9879 + }, + { + "start": 23790.4, + "end": 23791.12, + "probability": 0.7894 + }, + { + "start": 23793.22, + "end": 23795.43, + "probability": 0.9922 + }, + { + "start": 23796.52, + "end": 23799.06, + "probability": 0.5971 + }, + { + "start": 23800.06, + "end": 23800.6, + "probability": 0.9913 + }, + { + "start": 23801.44, + "end": 23804.88, + "probability": 0.9899 + }, + { + "start": 23809.46, + "end": 23811.04, + "probability": 0.9995 + }, + { + "start": 23811.98, + "end": 23812.9, + "probability": 0.9946 + }, + { + "start": 23813.6, + "end": 23814.6, + "probability": 0.9833 + }, + { + "start": 23816.26, + "end": 23819.92, + "probability": 0.9964 + }, + { + "start": 23820.58, + "end": 23820.8, + "probability": 0.4664 + }, + { + "start": 23820.92, + "end": 23823.62, + "probability": 0.9995 + }, + { + "start": 23824.08, + "end": 23824.9, + "probability": 0.6693 + }, + { + "start": 23825.06, + "end": 23827.02, + "probability": 0.7685 + }, + { + "start": 23827.06, + "end": 23827.88, + "probability": 0.9181 + }, + { + "start": 23830.52, + "end": 23833.72, + "probability": 0.9178 + }, + { + "start": 23833.78, + "end": 23835.04, + "probability": 0.8478 + }, + { + "start": 23836.64, + "end": 23839.22, + "probability": 0.9979 + }, + { + "start": 23839.92, + "end": 23844.24, + "probability": 0.7548 + }, + { + "start": 23845.64, + "end": 23848.12, + "probability": 0.9242 + }, + { + "start": 23850.28, + "end": 23852.73, + "probability": 0.8207 + }, + { + "start": 23853.6, + "end": 23857.62, + "probability": 0.5681 + }, + { + "start": 23860.14, + "end": 23861.98, + "probability": 0.9709 + }, + { + "start": 23863.1, + "end": 23865.28, + "probability": 0.7652 + }, + { + "start": 23867.06, + "end": 23869.06, + "probability": 0.9055 + }, + { + "start": 23869.9, + "end": 23870.32, + "probability": 0.9406 + }, + { + "start": 23871.36, + "end": 23873.8, + "probability": 0.8316 + }, + { + "start": 23875.76, + "end": 23878.06, + "probability": 0.7451 + }, + { + "start": 23879.42, + "end": 23881.02, + "probability": 0.8998 + }, + { + "start": 23885.98, + "end": 23887.92, + "probability": 0.978 + }, + { + "start": 23890.5, + "end": 23891.86, + "probability": 0.9294 + }, + { + "start": 23893.68, + "end": 23894.4, + "probability": 0.7948 + }, + { + "start": 23894.52, + "end": 23896.88, + "probability": 0.9904 + }, + { + "start": 23897.96, + "end": 23898.74, + "probability": 0.8107 + }, + { + "start": 23898.86, + "end": 23902.1, + "probability": 0.9253 + }, + { + "start": 23902.66, + "end": 23903.86, + "probability": 0.5851 + }, + { + "start": 23906.16, + "end": 23907.58, + "probability": 0.9055 + }, + { + "start": 23908.48, + "end": 23913.52, + "probability": 0.8828 + }, + { + "start": 23913.72, + "end": 23914.86, + "probability": 0.7743 + }, + { + "start": 23915.76, + "end": 23917.76, + "probability": 0.9342 + }, + { + "start": 23918.3, + "end": 23919.66, + "probability": 0.9961 + }, + { + "start": 23920.7, + "end": 23922.18, + "probability": 0.883 + }, + { + "start": 23922.94, + "end": 23923.4, + "probability": 0.7487 + }, + { + "start": 23923.98, + "end": 23926.34, + "probability": 0.9824 + }, + { + "start": 23927.42, + "end": 23929.2, + "probability": 0.8501 + }, + { + "start": 23930.02, + "end": 23931.38, + "probability": 0.9634 + }, + { + "start": 23932.52, + "end": 23933.68, + "probability": 0.627 + }, + { + "start": 23933.78, + "end": 23935.58, + "probability": 0.8383 + }, + { + "start": 23935.96, + "end": 23938.3, + "probability": 0.844 + }, + { + "start": 23938.94, + "end": 23939.72, + "probability": 0.7728 + }, + { + "start": 23940.0, + "end": 23940.18, + "probability": 0.853 + }, + { + "start": 23940.4, + "end": 23943.52, + "probability": 0.9622 + }, + { + "start": 23945.24, + "end": 23947.68, + "probability": 0.9632 + }, + { + "start": 23948.92, + "end": 23949.86, + "probability": 0.6818 + }, + { + "start": 23950.2, + "end": 23951.04, + "probability": 0.8807 + }, + { + "start": 23951.2, + "end": 23952.06, + "probability": 0.8326 + }, + { + "start": 23952.1, + "end": 23952.64, + "probability": 0.8293 + }, + { + "start": 23953.58, + "end": 23955.18, + "probability": 0.985 + }, + { + "start": 23957.2, + "end": 23959.4, + "probability": 0.8973 + }, + { + "start": 23959.44, + "end": 23959.88, + "probability": 0.8488 + }, + { + "start": 23960.0, + "end": 23960.5, + "probability": 0.6009 + }, + { + "start": 23961.38, + "end": 23965.8, + "probability": 0.9964 + }, + { + "start": 23966.18, + "end": 23966.79, + "probability": 0.6298 + }, + { + "start": 23966.86, + "end": 23968.96, + "probability": 0.6791 + }, + { + "start": 23970.92, + "end": 23973.36, + "probability": 0.9861 + }, + { + "start": 23975.12, + "end": 23977.74, + "probability": 0.9104 + }, + { + "start": 23977.86, + "end": 23979.98, + "probability": 0.5909 + }, + { + "start": 23980.72, + "end": 23982.9, + "probability": 0.886 + }, + { + "start": 23983.92, + "end": 23984.56, + "probability": 0.966 + }, + { + "start": 23985.56, + "end": 23987.54, + "probability": 0.8876 + }, + { + "start": 23987.84, + "end": 23989.74, + "probability": 0.8823 + }, + { + "start": 23989.92, + "end": 23990.6, + "probability": 0.8566 + }, + { + "start": 23990.68, + "end": 23992.16, + "probability": 0.9234 + }, + { + "start": 23994.4, + "end": 23994.52, + "probability": 0.6859 + }, + { + "start": 23994.52, + "end": 23996.41, + "probability": 0.6677 + }, + { + "start": 23998.62, + "end": 24001.7, + "probability": 0.8152 + }, + { + "start": 24002.02, + "end": 24005.08, + "probability": 0.9813 + }, + { + "start": 24005.28, + "end": 24005.64, + "probability": 0.8241 + }, + { + "start": 24006.64, + "end": 24007.52, + "probability": 0.5497 + }, + { + "start": 24007.98, + "end": 24010.04, + "probability": 0.9089 + }, + { + "start": 24032.92, + "end": 24032.92, + "probability": 0.6745 + }, + { + "start": 24032.92, + "end": 24032.92, + "probability": 0.9468 + }, + { + "start": 24032.92, + "end": 24033.14, + "probability": 0.4671 + }, + { + "start": 24033.28, + "end": 24034.04, + "probability": 0.5931 + }, + { + "start": 24034.22, + "end": 24036.84, + "probability": 0.8162 + }, + { + "start": 24037.0, + "end": 24037.56, + "probability": 0.5226 + }, + { + "start": 24037.56, + "end": 24038.12, + "probability": 0.0293 + }, + { + "start": 24039.39, + "end": 24044.6, + "probability": 0.998 + }, + { + "start": 24045.1, + "end": 24046.0, + "probability": 0.7891 + }, + { + "start": 24046.24, + "end": 24047.0, + "probability": 0.7582 + }, + { + "start": 24047.76, + "end": 24048.34, + "probability": 0.4426 + }, + { + "start": 24048.48, + "end": 24051.55, + "probability": 0.8969 + }, + { + "start": 24053.16, + "end": 24059.08, + "probability": 0.9946 + }, + { + "start": 24061.04, + "end": 24061.88, + "probability": 0.0235 + }, + { + "start": 24061.88, + "end": 24064.92, + "probability": 0.8336 + }, + { + "start": 24066.8, + "end": 24069.22, + "probability": 0.6184 + }, + { + "start": 24070.96, + "end": 24073.06, + "probability": 0.903 + }, + { + "start": 24074.74, + "end": 24075.6, + "probability": 0.803 + }, + { + "start": 24075.84, + "end": 24078.24, + "probability": 0.9032 + }, + { + "start": 24078.24, + "end": 24079.5, + "probability": 0.7472 + }, + { + "start": 24079.54, + "end": 24082.56, + "probability": 0.8455 + }, + { + "start": 24083.04, + "end": 24088.24, + "probability": 0.9379 + }, + { + "start": 24089.28, + "end": 24094.72, + "probability": 0.8063 + }, + { + "start": 24094.78, + "end": 24096.68, + "probability": 0.76 + }, + { + "start": 24097.34, + "end": 24099.16, + "probability": 0.9822 + }, + { + "start": 24100.32, + "end": 24103.28, + "probability": 0.9947 + }, + { + "start": 24103.48, + "end": 24105.96, + "probability": 0.835 + }, + { + "start": 24107.86, + "end": 24108.2, + "probability": 0.8394 + }, + { + "start": 24108.56, + "end": 24110.68, + "probability": 0.6298 + }, + { + "start": 24110.94, + "end": 24114.52, + "probability": 0.9929 + }, + { + "start": 24114.52, + "end": 24120.94, + "probability": 0.995 + }, + { + "start": 24120.94, + "end": 24121.52, + "probability": 0.8613 + }, + { + "start": 24121.62, + "end": 24122.9, + "probability": 0.8784 + }, + { + "start": 24123.12, + "end": 24123.56, + "probability": 0.9531 + }, + { + "start": 24123.76, + "end": 24124.52, + "probability": 0.7535 + }, + { + "start": 24124.82, + "end": 24125.62, + "probability": 0.9535 + }, + { + "start": 24126.56, + "end": 24127.6, + "probability": 0.9531 + }, + { + "start": 24127.66, + "end": 24132.6, + "probability": 0.985 + }, + { + "start": 24132.72, + "end": 24134.4, + "probability": 0.9946 + }, + { + "start": 24135.44, + "end": 24136.19, + "probability": 0.9877 + }, + { + "start": 24136.28, + "end": 24138.42, + "probability": 0.9764 + }, + { + "start": 24138.52, + "end": 24139.02, + "probability": 0.8802 + }, + { + "start": 24139.08, + "end": 24139.9, + "probability": 0.9852 + }, + { + "start": 24139.98, + "end": 24141.86, + "probability": 0.4734 + }, + { + "start": 24141.96, + "end": 24145.9, + "probability": 0.9955 + }, + { + "start": 24147.0, + "end": 24147.66, + "probability": 0.9446 + }, + { + "start": 24149.78, + "end": 24152.18, + "probability": 0.895 + }, + { + "start": 24153.02, + "end": 24158.02, + "probability": 0.9836 + }, + { + "start": 24160.56, + "end": 24162.06, + "probability": 0.9166 + }, + { + "start": 24162.64, + "end": 24162.92, + "probability": 0.8118 + }, + { + "start": 24163.76, + "end": 24163.76, + "probability": 0.3495 + }, + { + "start": 24163.76, + "end": 24165.72, + "probability": 0.8979 + }, + { + "start": 24166.28, + "end": 24167.56, + "probability": 0.5283 + }, + { + "start": 24168.82, + "end": 24169.84, + "probability": 0.6234 + }, + { + "start": 24169.96, + "end": 24171.44, + "probability": 0.9838 + }, + { + "start": 24171.56, + "end": 24173.06, + "probability": 0.9922 + }, + { + "start": 24173.46, + "end": 24175.56, + "probability": 0.8994 + }, + { + "start": 24176.6, + "end": 24177.98, + "probability": 0.9915 + }, + { + "start": 24178.74, + "end": 24180.98, + "probability": 0.9554 + }, + { + "start": 24182.54, + "end": 24185.64, + "probability": 0.9811 + }, + { + "start": 24186.26, + "end": 24187.44, + "probability": 0.4121 + }, + { + "start": 24187.58, + "end": 24191.02, + "probability": 0.9177 + }, + { + "start": 24191.6, + "end": 24194.16, + "probability": 0.9934 + }, + { + "start": 24197.22, + "end": 24198.32, + "probability": 0.9993 + }, + { + "start": 24198.54, + "end": 24200.34, + "probability": 0.9902 + }, + { + "start": 24200.6, + "end": 24202.5, + "probability": 0.9902 + }, + { + "start": 24202.58, + "end": 24203.9, + "probability": 0.9888 + }, + { + "start": 24204.8, + "end": 24210.9, + "probability": 0.9764 + }, + { + "start": 24211.32, + "end": 24212.9, + "probability": 0.8138 + }, + { + "start": 24213.12, + "end": 24215.78, + "probability": 0.9668 + }, + { + "start": 24215.94, + "end": 24217.54, + "probability": 0.8638 + }, + { + "start": 24217.66, + "end": 24220.0, + "probability": 0.936 + }, + { + "start": 24220.06, + "end": 24220.92, + "probability": 0.9634 + }, + { + "start": 24221.12, + "end": 24221.66, + "probability": 0.8112 + }, + { + "start": 24221.72, + "end": 24222.26, + "probability": 0.8764 + }, + { + "start": 24222.42, + "end": 24224.76, + "probability": 0.9727 + }, + { + "start": 24225.2, + "end": 24225.79, + "probability": 0.9686 + }, + { + "start": 24226.54, + "end": 24227.4, + "probability": 0.9049 + }, + { + "start": 24229.15, + "end": 24231.62, + "probability": 0.9863 + }, + { + "start": 24231.62, + "end": 24232.18, + "probability": 0.6205 + }, + { + "start": 24232.66, + "end": 24236.36, + "probability": 0.6641 + }, + { + "start": 24237.54, + "end": 24240.48, + "probability": 0.8994 + }, + { + "start": 24240.98, + "end": 24243.84, + "probability": 0.9811 + }, + { + "start": 24243.9, + "end": 24244.48, + "probability": 0.8313 + }, + { + "start": 24245.0, + "end": 24246.58, + "probability": 0.9422 + }, + { + "start": 24247.76, + "end": 24250.7, + "probability": 0.8857 + }, + { + "start": 24251.4, + "end": 24252.88, + "probability": 0.9441 + }, + { + "start": 24253.74, + "end": 24256.8, + "probability": 0.9165 + }, + { + "start": 24257.58, + "end": 24261.38, + "probability": 0.9759 + }, + { + "start": 24262.1, + "end": 24263.32, + "probability": 0.7891 + }, + { + "start": 24263.88, + "end": 24266.98, + "probability": 0.9766 + }, + { + "start": 24266.98, + "end": 24270.94, + "probability": 0.9902 + }, + { + "start": 24271.32, + "end": 24271.76, + "probability": 0.4567 + }, + { + "start": 24271.94, + "end": 24278.32, + "probability": 0.9895 + }, + { + "start": 24278.32, + "end": 24282.34, + "probability": 0.999 + }, + { + "start": 24282.52, + "end": 24283.58, + "probability": 0.5813 + }, + { + "start": 24283.74, + "end": 24285.98, + "probability": 0.9976 + }, + { + "start": 24285.98, + "end": 24288.56, + "probability": 0.9896 + }, + { + "start": 24289.08, + "end": 24294.64, + "probability": 0.995 + }, + { + "start": 24294.64, + "end": 24297.94, + "probability": 0.9403 + }, + { + "start": 24298.9, + "end": 24303.0, + "probability": 0.8684 + }, + { + "start": 24303.14, + "end": 24308.0, + "probability": 0.9919 + }, + { + "start": 24309.02, + "end": 24310.48, + "probability": 0.8925 + }, + { + "start": 24312.48, + "end": 24314.22, + "probability": 0.9945 + }, + { + "start": 24315.68, + "end": 24317.56, + "probability": 0.7587 + }, + { + "start": 24318.56, + "end": 24320.72, + "probability": 0.8971 + }, + { + "start": 24321.92, + "end": 24325.28, + "probability": 0.9763 + }, + { + "start": 24326.56, + "end": 24327.78, + "probability": 0.859 + }, + { + "start": 24327.84, + "end": 24329.18, + "probability": 0.9591 + }, + { + "start": 24329.26, + "end": 24330.08, + "probability": 0.9777 + }, + { + "start": 24330.18, + "end": 24331.42, + "probability": 0.909 + }, + { + "start": 24331.84, + "end": 24340.5, + "probability": 0.9864 + }, + { + "start": 24343.46, + "end": 24346.42, + "probability": 0.9868 + }, + { + "start": 24346.52, + "end": 24348.4, + "probability": 0.9735 + }, + { + "start": 24348.44, + "end": 24348.54, + "probability": 0.7418 + }, + { + "start": 24348.98, + "end": 24350.06, + "probability": 0.8954 + }, + { + "start": 24350.58, + "end": 24352.68, + "probability": 0.995 + }, + { + "start": 24354.42, + "end": 24357.82, + "probability": 0.9108 + }, + { + "start": 24358.42, + "end": 24359.98, + "probability": 0.8978 + }, + { + "start": 24360.46, + "end": 24360.7, + "probability": 0.9661 + }, + { + "start": 24361.98, + "end": 24364.86, + "probability": 0.9971 + }, + { + "start": 24365.68, + "end": 24366.44, + "probability": 0.8709 + }, + { + "start": 24367.06, + "end": 24369.2, + "probability": 0.7693 + }, + { + "start": 24369.82, + "end": 24370.18, + "probability": 0.7256 + }, + { + "start": 24370.2, + "end": 24370.86, + "probability": 0.9045 + }, + { + "start": 24370.9, + "end": 24372.42, + "probability": 0.9792 + }, + { + "start": 24372.82, + "end": 24373.08, + "probability": 0.8696 + }, + { + "start": 24373.52, + "end": 24374.52, + "probability": 0.6781 + }, + { + "start": 24375.64, + "end": 24379.55, + "probability": 0.9686 + }, + { + "start": 24379.66, + "end": 24380.94, + "probability": 0.9824 + }, + { + "start": 24381.02, + "end": 24382.82, + "probability": 0.9284 + }, + { + "start": 24384.3, + "end": 24386.1, + "probability": 0.8748 + }, + { + "start": 24387.9, + "end": 24389.38, + "probability": 0.9115 + }, + { + "start": 24389.42, + "end": 24391.24, + "probability": 0.9932 + }, + { + "start": 24393.06, + "end": 24395.76, + "probability": 0.9689 + }, + { + "start": 24395.76, + "end": 24398.58, + "probability": 0.9995 + }, + { + "start": 24399.96, + "end": 24402.02, + "probability": 0.8242 + }, + { + "start": 24403.21, + "end": 24405.37, + "probability": 0.7938 + }, + { + "start": 24405.56, + "end": 24406.32, + "probability": 0.4351 + }, + { + "start": 24406.32, + "end": 24408.22, + "probability": 0.724 + }, + { + "start": 24408.34, + "end": 24410.08, + "probability": 0.9301 + }, + { + "start": 24410.18, + "end": 24410.82, + "probability": 0.5226 + }, + { + "start": 24410.88, + "end": 24411.12, + "probability": 0.5112 + }, + { + "start": 24411.9, + "end": 24412.4, + "probability": 0.9395 + }, + { + "start": 24412.48, + "end": 24413.52, + "probability": 0.5365 + }, + { + "start": 24413.8, + "end": 24415.22, + "probability": 0.9857 + }, + { + "start": 24416.02, + "end": 24416.58, + "probability": 0.7543 + }, + { + "start": 24416.7, + "end": 24416.98, + "probability": 0.946 + }, + { + "start": 24418.86, + "end": 24421.58, + "probability": 0.9949 + }, + { + "start": 24422.1, + "end": 24424.66, + "probability": 0.6201 + }, + { + "start": 24424.84, + "end": 24426.86, + "probability": 0.8477 + }, + { + "start": 24426.98, + "end": 24428.08, + "probability": 0.8957 + }, + { + "start": 24428.8, + "end": 24429.92, + "probability": 0.971 + }, + { + "start": 24430.69, + "end": 24432.09, + "probability": 0.6704 + }, + { + "start": 24432.3, + "end": 24434.62, + "probability": 0.8799 + }, + { + "start": 24434.7, + "end": 24434.8, + "probability": 0.939 + }, + { + "start": 24434.86, + "end": 24437.3, + "probability": 0.8963 + }, + { + "start": 24437.46, + "end": 24439.04, + "probability": 0.6532 + }, + { + "start": 24440.16, + "end": 24441.76, + "probability": 0.9966 + }, + { + "start": 24442.62, + "end": 24445.26, + "probability": 0.88 + }, + { + "start": 24446.36, + "end": 24448.24, + "probability": 0.8669 + }, + { + "start": 24448.24, + "end": 24452.18, + "probability": 0.9917 + }, + { + "start": 24452.24, + "end": 24452.94, + "probability": 0.9941 + }, + { + "start": 24454.08, + "end": 24455.72, + "probability": 0.7533 + }, + { + "start": 24456.38, + "end": 24457.86, + "probability": 0.9504 + }, + { + "start": 24457.94, + "end": 24458.84, + "probability": 0.6711 + }, + { + "start": 24458.86, + "end": 24460.62, + "probability": 0.5406 + }, + { + "start": 24460.8, + "end": 24465.24, + "probability": 0.998 + }, + { + "start": 24465.26, + "end": 24467.14, + "probability": 0.9687 + }, + { + "start": 24467.66, + "end": 24468.45, + "probability": 0.7505 + }, + { + "start": 24468.56, + "end": 24469.06, + "probability": 0.9207 + }, + { + "start": 24471.2, + "end": 24474.78, + "probability": 0.9747 + }, + { + "start": 24476.46, + "end": 24478.49, + "probability": 0.9324 + }, + { + "start": 24478.76, + "end": 24480.94, + "probability": 0.9812 + }, + { + "start": 24482.0, + "end": 24485.27, + "probability": 0.969 + }, + { + "start": 24486.38, + "end": 24488.4, + "probability": 0.9819 + }, + { + "start": 24489.98, + "end": 24490.52, + "probability": 0.9349 + }, + { + "start": 24492.62, + "end": 24493.18, + "probability": 0.7608 + }, + { + "start": 24493.18, + "end": 24494.68, + "probability": 0.9544 + }, + { + "start": 24495.4, + "end": 24498.16, + "probability": 0.9979 + }, + { + "start": 24498.66, + "end": 24503.34, + "probability": 0.9429 + }, + { + "start": 24504.4, + "end": 24506.38, + "probability": 0.9542 + }, + { + "start": 24506.76, + "end": 24508.04, + "probability": 0.8469 + }, + { + "start": 24508.98, + "end": 24513.57, + "probability": 0.9959 + }, + { + "start": 24516.2, + "end": 24518.42, + "probability": 0.8859 + }, + { + "start": 24518.94, + "end": 24521.3, + "probability": 0.865 + }, + { + "start": 24521.36, + "end": 24522.32, + "probability": 0.9073 + }, + { + "start": 24523.0, + "end": 24525.36, + "probability": 0.9867 + }, + { + "start": 24526.32, + "end": 24527.88, + "probability": 0.4931 + }, + { + "start": 24527.94, + "end": 24528.48, + "probability": 0.5723 + }, + { + "start": 24528.6, + "end": 24530.5, + "probability": 0.9626 + }, + { + "start": 24532.12, + "end": 24533.54, + "probability": 0.9243 + }, + { + "start": 24533.66, + "end": 24534.24, + "probability": 0.625 + }, + { + "start": 24534.46, + "end": 24534.98, + "probability": 0.7055 + }, + { + "start": 24535.34, + "end": 24538.4, + "probability": 0.6304 + }, + { + "start": 24538.52, + "end": 24539.65, + "probability": 0.9617 + }, + { + "start": 24540.68, + "end": 24543.16, + "probability": 0.9691 + }, + { + "start": 24543.54, + "end": 24546.18, + "probability": 0.9779 + }, + { + "start": 24546.32, + "end": 24552.24, + "probability": 0.8872 + }, + { + "start": 24552.26, + "end": 24555.32, + "probability": 0.929 + }, + { + "start": 24555.84, + "end": 24559.26, + "probability": 0.9722 + }, + { + "start": 24565.36, + "end": 24565.86, + "probability": 0.2706 + }, + { + "start": 24566.66, + "end": 24567.62, + "probability": 0.0464 + }, + { + "start": 24567.62, + "end": 24569.12, + "probability": 0.4308 + }, + { + "start": 24569.22, + "end": 24574.42, + "probability": 0.5208 + }, + { + "start": 24574.6, + "end": 24575.83, + "probability": 0.7531 + }, + { + "start": 24576.12, + "end": 24576.74, + "probability": 0.0569 + }, + { + "start": 24577.06, + "end": 24577.16, + "probability": 0.1556 + }, + { + "start": 24577.16, + "end": 24578.98, + "probability": 0.4277 + }, + { + "start": 24578.98, + "end": 24579.76, + "probability": 0.9004 + }, + { + "start": 24579.84, + "end": 24580.66, + "probability": 0.461 + }, + { + "start": 24581.03, + "end": 24583.42, + "probability": 0.0994 + }, + { + "start": 24583.42, + "end": 24583.42, + "probability": 0.221 + }, + { + "start": 24583.42, + "end": 24583.42, + "probability": 0.0413 + }, + { + "start": 24583.42, + "end": 24586.42, + "probability": 0.8662 + }, + { + "start": 24586.72, + "end": 24587.38, + "probability": 0.586 + }, + { + "start": 24587.86, + "end": 24589.0, + "probability": 0.943 + }, + { + "start": 24589.08, + "end": 24592.28, + "probability": 0.9992 + }, + { + "start": 24592.28, + "end": 24597.46, + "probability": 0.974 + }, + { + "start": 24598.0, + "end": 24600.14, + "probability": 0.8408 + }, + { + "start": 24600.38, + "end": 24604.68, + "probability": 0.9947 + }, + { + "start": 24604.68, + "end": 24611.42, + "probability": 0.9785 + }, + { + "start": 24611.46, + "end": 24612.36, + "probability": 0.8548 + }, + { + "start": 24613.23, + "end": 24614.4, + "probability": 0.9707 + }, + { + "start": 24614.42, + "end": 24615.68, + "probability": 0.8634 + }, + { + "start": 24615.8, + "end": 24616.49, + "probability": 0.6218 + }, + { + "start": 24616.96, + "end": 24619.0, + "probability": 0.9868 + }, + { + "start": 24620.0, + "end": 24620.9, + "probability": 0.9911 + }, + { + "start": 24622.38, + "end": 24627.5, + "probability": 0.9134 + }, + { + "start": 24628.14, + "end": 24629.36, + "probability": 0.9542 + }, + { + "start": 24629.52, + "end": 24631.48, + "probability": 0.8571 + }, + { + "start": 24631.6, + "end": 24634.66, + "probability": 0.9959 + }, + { + "start": 24635.26, + "end": 24636.16, + "probability": 0.6943 + }, + { + "start": 24638.24, + "end": 24639.18, + "probability": 0.9746 + }, + { + "start": 24640.34, + "end": 24642.12, + "probability": 0.8563 + }, + { + "start": 24642.24, + "end": 24643.44, + "probability": 0.9422 + }, + { + "start": 24643.52, + "end": 24644.84, + "probability": 0.9579 + }, + { + "start": 24646.68, + "end": 24648.68, + "probability": 0.9968 + }, + { + "start": 24649.38, + "end": 24652.7, + "probability": 0.9826 + }, + { + "start": 24653.26, + "end": 24655.28, + "probability": 0.9822 + }, + { + "start": 24656.32, + "end": 24657.44, + "probability": 0.7488 + }, + { + "start": 24658.22, + "end": 24660.56, + "probability": 0.9594 + }, + { + "start": 24661.1, + "end": 24664.76, + "probability": 0.9914 + }, + { + "start": 24664.94, + "end": 24667.78, + "probability": 0.7559 + }, + { + "start": 24668.2, + "end": 24670.36, + "probability": 0.9536 + }, + { + "start": 24670.52, + "end": 24671.68, + "probability": 0.6301 + }, + { + "start": 24672.28, + "end": 24673.08, + "probability": 0.6071 + }, + { + "start": 24673.16, + "end": 24674.76, + "probability": 0.9766 + }, + { + "start": 24675.58, + "end": 24677.52, + "probability": 0.9698 + }, + { + "start": 24677.94, + "end": 24679.36, + "probability": 0.9934 + }, + { + "start": 24680.04, + "end": 24680.5, + "probability": 0.2091 + }, + { + "start": 24680.62, + "end": 24681.84, + "probability": 0.9551 + }, + { + "start": 24682.28, + "end": 24683.7, + "probability": 0.9756 + }, + { + "start": 24683.78, + "end": 24684.76, + "probability": 0.9966 + }, + { + "start": 24685.44, + "end": 24686.78, + "probability": 0.9077 + }, + { + "start": 24686.84, + "end": 24688.74, + "probability": 0.8423 + }, + { + "start": 24688.98, + "end": 24692.12, + "probability": 0.8676 + }, + { + "start": 24693.18, + "end": 24696.9, + "probability": 0.268 + }, + { + "start": 24697.02, + "end": 24697.52, + "probability": 0.7644 + }, + { + "start": 24697.6, + "end": 24700.1, + "probability": 0.8267 + }, + { + "start": 24700.8, + "end": 24701.38, + "probability": 0.8365 + }, + { + "start": 24701.44, + "end": 24702.84, + "probability": 0.9579 + }, + { + "start": 24702.92, + "end": 24704.4, + "probability": 0.9929 + }, + { + "start": 24704.56, + "end": 24705.86, + "probability": 0.9261 + }, + { + "start": 24706.22, + "end": 24707.43, + "probability": 0.9429 + }, + { + "start": 24708.44, + "end": 24710.62, + "probability": 0.8696 + }, + { + "start": 24710.82, + "end": 24712.78, + "probability": 0.97 + }, + { + "start": 24713.56, + "end": 24716.04, + "probability": 0.9927 + }, + { + "start": 24716.1, + "end": 24716.6, + "probability": 0.5521 + }, + { + "start": 24716.66, + "end": 24717.08, + "probability": 0.963 + }, + { + "start": 24719.76, + "end": 24721.92, + "probability": 0.9954 + }, + { + "start": 24722.76, + "end": 24726.15, + "probability": 0.9769 + }, + { + "start": 24726.56, + "end": 24727.02, + "probability": 0.5983 + }, + { + "start": 24727.54, + "end": 24731.24, + "probability": 0.9947 + }, + { + "start": 24731.49, + "end": 24733.24, + "probability": 0.9966 + }, + { + "start": 24734.28, + "end": 24736.6, + "probability": 0.9306 + }, + { + "start": 24738.18, + "end": 24739.3, + "probability": 0.9464 + }, + { + "start": 24739.86, + "end": 24740.46, + "probability": 0.7983 + }, + { + "start": 24741.18, + "end": 24742.0, + "probability": 0.8802 + }, + { + "start": 24743.2, + "end": 24745.86, + "probability": 0.8817 + }, + { + "start": 24746.62, + "end": 24750.1, + "probability": 0.7588 + }, + { + "start": 24750.14, + "end": 24750.82, + "probability": 0.6877 + }, + { + "start": 24750.88, + "end": 24752.44, + "probability": 0.9943 + }, + { + "start": 24753.02, + "end": 24755.04, + "probability": 0.8211 + }, + { + "start": 24755.06, + "end": 24755.92, + "probability": 0.9068 + }, + { + "start": 24756.12, + "end": 24757.56, + "probability": 0.8766 + }, + { + "start": 24758.38, + "end": 24758.66, + "probability": 0.5134 + }, + { + "start": 24758.78, + "end": 24760.16, + "probability": 0.8501 + }, + { + "start": 24760.3, + "end": 24760.78, + "probability": 0.9009 + }, + { + "start": 24760.84, + "end": 24762.08, + "probability": 0.9578 + }, + { + "start": 24762.86, + "end": 24763.26, + "probability": 0.9647 + }, + { + "start": 24763.46, + "end": 24769.9, + "probability": 0.9813 + }, + { + "start": 24770.0, + "end": 24773.32, + "probability": 0.98 + }, + { + "start": 24773.74, + "end": 24774.22, + "probability": 0.5151 + }, + { + "start": 24774.47, + "end": 24776.18, + "probability": 0.9801 + }, + { + "start": 24776.28, + "end": 24782.7, + "probability": 0.8741 + }, + { + "start": 24785.2, + "end": 24786.84, + "probability": 0.8485 + }, + { + "start": 24788.32, + "end": 24792.44, + "probability": 0.9907 + }, + { + "start": 24793.9, + "end": 24799.4, + "probability": 0.998 + }, + { + "start": 24800.0, + "end": 24801.16, + "probability": 0.8292 + }, + { + "start": 24802.28, + "end": 24805.2, + "probability": 0.9452 + }, + { + "start": 24806.02, + "end": 24807.62, + "probability": 0.9966 + }, + { + "start": 24808.12, + "end": 24808.84, + "probability": 0.7031 + }, + { + "start": 24809.18, + "end": 24809.66, + "probability": 0.5904 + }, + { + "start": 24810.16, + "end": 24810.88, + "probability": 0.8043 + }, + { + "start": 24811.42, + "end": 24811.62, + "probability": 0.9141 + }, + { + "start": 24811.78, + "end": 24814.42, + "probability": 0.9715 + }, + { + "start": 24814.5, + "end": 24816.64, + "probability": 0.9908 + }, + { + "start": 24816.72, + "end": 24817.76, + "probability": 0.8782 + }, + { + "start": 24817.92, + "end": 24819.62, + "probability": 0.9697 + }, + { + "start": 24820.84, + "end": 24826.3, + "probability": 0.8749 + }, + { + "start": 24826.84, + "end": 24828.18, + "probability": 0.7636 + }, + { + "start": 24829.22, + "end": 24830.54, + "probability": 0.8149 + }, + { + "start": 24830.64, + "end": 24832.28, + "probability": 0.941 + }, + { + "start": 24832.86, + "end": 24834.84, + "probability": 0.6647 + }, + { + "start": 24835.02, + "end": 24836.0, + "probability": 0.9943 + }, + { + "start": 24836.72, + "end": 24838.62, + "probability": 0.7985 + }, + { + "start": 24839.86, + "end": 24841.92, + "probability": 0.249 + }, + { + "start": 24841.92, + "end": 24841.92, + "probability": 0.3461 + }, + { + "start": 24841.92, + "end": 24843.98, + "probability": 0.8181 + }, + { + "start": 24844.18, + "end": 24845.14, + "probability": 0.9847 + }, + { + "start": 24845.92, + "end": 24848.11, + "probability": 0.9858 + }, + { + "start": 24848.74, + "end": 24850.77, + "probability": 0.995 + }, + { + "start": 24851.66, + "end": 24855.6, + "probability": 0.7409 + }, + { + "start": 24855.98, + "end": 24859.12, + "probability": 0.939 + }, + { + "start": 24860.42, + "end": 24862.48, + "probability": 0.9012 + }, + { + "start": 24862.86, + "end": 24865.28, + "probability": 0.8457 + }, + { + "start": 24865.64, + "end": 24868.28, + "probability": 0.9296 + }, + { + "start": 24868.38, + "end": 24869.06, + "probability": 0.7194 + }, + { + "start": 24869.24, + "end": 24869.64, + "probability": 0.6448 + }, + { + "start": 24870.06, + "end": 24873.78, + "probability": 0.9879 + }, + { + "start": 24874.7, + "end": 24876.18, + "probability": 0.8601 + }, + { + "start": 24876.56, + "end": 24877.3, + "probability": 0.6881 + }, + { + "start": 24877.66, + "end": 24879.64, + "probability": 0.7101 + }, + { + "start": 24880.48, + "end": 24882.36, + "probability": 0.9975 + }, + { + "start": 24883.28, + "end": 24883.6, + "probability": 0.8061 + }, + { + "start": 24883.82, + "end": 24885.52, + "probability": 0.9425 + }, + { + "start": 24885.64, + "end": 24888.66, + "probability": 0.9897 + }, + { + "start": 24888.66, + "end": 24892.22, + "probability": 0.9918 + }, + { + "start": 24892.74, + "end": 24896.38, + "probability": 0.9958 + }, + { + "start": 24896.46, + "end": 24898.12, + "probability": 0.9841 + }, + { + "start": 24898.3, + "end": 24900.1, + "probability": 0.9927 + }, + { + "start": 24900.4, + "end": 24900.76, + "probability": 0.8466 + }, + { + "start": 24901.42, + "end": 24906.47, + "probability": 0.9663 + }, + { + "start": 24906.78, + "end": 24907.54, + "probability": 0.9185 + }, + { + "start": 24910.08, + "end": 24915.12, + "probability": 0.9822 + }, + { + "start": 24916.28, + "end": 24916.46, + "probability": 0.8243 + }, + { + "start": 24917.42, + "end": 24921.06, + "probability": 0.9819 + }, + { + "start": 24921.1, + "end": 24921.1, + "probability": 0.5751 + }, + { + "start": 24921.1, + "end": 24921.84, + "probability": 0.7304 + }, + { + "start": 24922.24, + "end": 24924.82, + "probability": 0.7727 + }, + { + "start": 24925.5, + "end": 24928.58, + "probability": 0.7152 + }, + { + "start": 24928.66, + "end": 24931.46, + "probability": 0.9747 + }, + { + "start": 24931.5, + "end": 24932.12, + "probability": 0.5288 + }, + { + "start": 24933.0, + "end": 24938.54, + "probability": 0.9749 + }, + { + "start": 24939.34, + "end": 24942.08, + "probability": 0.9941 + }, + { + "start": 24942.08, + "end": 24944.02, + "probability": 0.9288 + }, + { + "start": 24944.48, + "end": 24944.78, + "probability": 0.7066 + }, + { + "start": 24944.88, + "end": 24945.16, + "probability": 0.6935 + }, + { + "start": 24945.18, + "end": 24946.78, + "probability": 0.8749 + }, + { + "start": 24947.32, + "end": 24948.92, + "probability": 0.9639 + }, + { + "start": 24948.98, + "end": 24950.6, + "probability": 0.9526 + }, + { + "start": 24951.04, + "end": 24954.52, + "probability": 0.9583 + }, + { + "start": 24955.04, + "end": 24958.16, + "probability": 0.9757 + }, + { + "start": 24958.38, + "end": 24959.26, + "probability": 0.4035 + }, + { + "start": 24959.4, + "end": 24964.98, + "probability": 0.9485 + }, + { + "start": 24965.1, + "end": 24966.81, + "probability": 0.9983 + }, + { + "start": 24968.68, + "end": 24970.76, + "probability": 0.9632 + }, + { + "start": 24970.9, + "end": 24972.74, + "probability": 0.9972 + }, + { + "start": 24975.98, + "end": 24979.02, + "probability": 0.9631 + }, + { + "start": 24979.08, + "end": 24979.78, + "probability": 0.9878 + }, + { + "start": 24979.86, + "end": 24981.41, + "probability": 0.9347 + }, + { + "start": 24982.32, + "end": 24983.85, + "probability": 0.9966 + }, + { + "start": 24984.46, + "end": 24987.1, + "probability": 0.9558 + }, + { + "start": 24987.52, + "end": 24988.7, + "probability": 0.7969 + }, + { + "start": 24989.14, + "end": 24989.84, + "probability": 0.4952 + }, + { + "start": 24990.02, + "end": 24990.78, + "probability": 0.9067 + }, + { + "start": 24991.16, + "end": 24993.22, + "probability": 0.75 + }, + { + "start": 24993.38, + "end": 24995.16, + "probability": 0.7659 + }, + { + "start": 24996.48, + "end": 24997.08, + "probability": 0.7556 + }, + { + "start": 24997.26, + "end": 24999.74, + "probability": 0.8944 + }, + { + "start": 25000.2, + "end": 25002.6, + "probability": 0.9235 + }, + { + "start": 25002.64, + "end": 25006.12, + "probability": 0.9571 + }, + { + "start": 25007.56, + "end": 25008.2, + "probability": 0.7356 + }, + { + "start": 25008.82, + "end": 25009.06, + "probability": 0.9515 + }, + { + "start": 25009.86, + "end": 25011.4, + "probability": 0.8748 + }, + { + "start": 25012.42, + "end": 25013.36, + "probability": 0.9215 + }, + { + "start": 25013.58, + "end": 25014.56, + "probability": 0.9922 + }, + { + "start": 25015.22, + "end": 25017.76, + "probability": 0.9909 + }, + { + "start": 25018.38, + "end": 25019.38, + "probability": 0.9341 + }, + { + "start": 25019.46, + "end": 25020.38, + "probability": 0.6374 + }, + { + "start": 25020.86, + "end": 25025.32, + "probability": 0.9949 + }, + { + "start": 25026.22, + "end": 25027.54, + "probability": 0.8943 + }, + { + "start": 25027.96, + "end": 25028.4, + "probability": 0.7593 + }, + { + "start": 25028.5, + "end": 25028.86, + "probability": 0.7609 + }, + { + "start": 25029.06, + "end": 25030.44, + "probability": 0.9729 + }, + { + "start": 25030.74, + "end": 25031.58, + "probability": 0.8933 + }, + { + "start": 25031.68, + "end": 25033.78, + "probability": 0.4509 + }, + { + "start": 25033.78, + "end": 25034.46, + "probability": 0.9399 + }, + { + "start": 25035.0, + "end": 25036.6, + "probability": 0.7312 + }, + { + "start": 25036.66, + "end": 25037.72, + "probability": 0.1983 + }, + { + "start": 25038.04, + "end": 25039.94, + "probability": 0.9958 + }, + { + "start": 25039.94, + "end": 25041.56, + "probability": 0.728 + }, + { + "start": 25041.88, + "end": 25045.16, + "probability": 0.9274 + }, + { + "start": 25045.28, + "end": 25046.98, + "probability": 0.9895 + }, + { + "start": 25047.42, + "end": 25050.66, + "probability": 0.9429 + }, + { + "start": 25051.58, + "end": 25054.62, + "probability": 0.9683 + }, + { + "start": 25057.81, + "end": 25059.28, + "probability": 0.8267 + }, + { + "start": 25059.36, + "end": 25059.98, + "probability": 0.8319 + }, + { + "start": 25060.0, + "end": 25060.7, + "probability": 0.8321 + }, + { + "start": 25061.12, + "end": 25068.62, + "probability": 0.7724 + }, + { + "start": 25069.62, + "end": 25069.68, + "probability": 0.0289 + }, + { + "start": 25069.68, + "end": 25073.36, + "probability": 0.894 + }, + { + "start": 25074.02, + "end": 25075.06, + "probability": 0.889 + }, + { + "start": 25075.18, + "end": 25078.16, + "probability": 0.9888 + }, + { + "start": 25078.96, + "end": 25079.48, + "probability": 0.9666 + }, + { + "start": 25080.3, + "end": 25082.59, + "probability": 0.842 + }, + { + "start": 25083.9, + "end": 25087.16, + "probability": 0.9677 + }, + { + "start": 25087.48, + "end": 25089.94, + "probability": 0.9329 + }, + { + "start": 25091.22, + "end": 25092.38, + "probability": 0.7748 + }, + { + "start": 25092.48, + "end": 25096.18, + "probability": 0.9979 + }, + { + "start": 25096.46, + "end": 25097.12, + "probability": 0.7253 + }, + { + "start": 25100.54, + "end": 25103.64, + "probability": 0.9523 + }, + { + "start": 25104.0, + "end": 25105.24, + "probability": 0.6766 + }, + { + "start": 25106.74, + "end": 25108.18, + "probability": 0.9584 + }, + { + "start": 25108.34, + "end": 25111.12, + "probability": 0.9702 + }, + { + "start": 25111.32, + "end": 25113.36, + "probability": 0.8113 + }, + { + "start": 25114.76, + "end": 25116.56, + "probability": 0.6887 + }, + { + "start": 25116.64, + "end": 25118.1, + "probability": 0.761 + }, + { + "start": 25118.66, + "end": 25120.62, + "probability": 0.9839 + }, + { + "start": 25120.7, + "end": 25121.54, + "probability": 0.8849 + }, + { + "start": 25122.92, + "end": 25125.92, + "probability": 0.8949 + }, + { + "start": 25126.06, + "end": 25127.28, + "probability": 0.9705 + }, + { + "start": 25128.3, + "end": 25129.0, + "probability": 0.9688 + }, + { + "start": 25129.3, + "end": 25132.84, + "probability": 0.1448 + }, + { + "start": 25132.84, + "end": 25132.84, + "probability": 0.0802 + }, + { + "start": 25132.84, + "end": 25134.04, + "probability": 0.4553 + }, + { + "start": 25134.5, + "end": 25135.86, + "probability": 0.9269 + }, + { + "start": 25136.38, + "end": 25138.75, + "probability": 0.9814 + }, + { + "start": 25139.3, + "end": 25139.64, + "probability": 0.8764 + }, + { + "start": 25140.38, + "end": 25142.68, + "probability": 0.9927 + }, + { + "start": 25142.68, + "end": 25148.04, + "probability": 0.9495 + }, + { + "start": 25149.22, + "end": 25150.34, + "probability": 0.3931 + }, + { + "start": 25151.1, + "end": 25154.98, + "probability": 0.6633 + }, + { + "start": 25155.48, + "end": 25158.14, + "probability": 0.9221 + }, + { + "start": 25158.18, + "end": 25160.57, + "probability": 0.9167 + }, + { + "start": 25160.98, + "end": 25161.32, + "probability": 0.9426 + }, + { + "start": 25162.06, + "end": 25163.44, + "probability": 0.9792 + }, + { + "start": 25164.24, + "end": 25164.56, + "probability": 0.4154 + }, + { + "start": 25164.68, + "end": 25166.28, + "probability": 0.9017 + }, + { + "start": 25166.98, + "end": 25168.41, + "probability": 0.7549 + }, + { + "start": 25169.38, + "end": 25171.3, + "probability": 0.7884 + }, + { + "start": 25171.8, + "end": 25172.46, + "probability": 0.58 + }, + { + "start": 25174.0, + "end": 25176.7, + "probability": 0.7584 + }, + { + "start": 25176.7, + "end": 25181.56, + "probability": 0.9961 + }, + { + "start": 25182.42, + "end": 25187.88, + "probability": 0.9844 + }, + { + "start": 25189.34, + "end": 25191.86, + "probability": 0.6211 + }, + { + "start": 25192.02, + "end": 25194.28, + "probability": 0.8578 + }, + { + "start": 25197.16, + "end": 25200.36, + "probability": 0.7773 + }, + { + "start": 25201.28, + "end": 25203.02, + "probability": 0.7991 + }, + { + "start": 25203.24, + "end": 25204.42, + "probability": 0.9328 + }, + { + "start": 25204.54, + "end": 25204.7, + "probability": 0.3892 + }, + { + "start": 25204.82, + "end": 25206.04, + "probability": 0.894 + }, + { + "start": 25206.16, + "end": 25208.86, + "probability": 0.9846 + }, + { + "start": 25209.86, + "end": 25211.14, + "probability": 0.8862 + }, + { + "start": 25211.7, + "end": 25214.04, + "probability": 0.7544 + }, + { + "start": 25214.4, + "end": 25217.14, + "probability": 0.9885 + }, + { + "start": 25217.68, + "end": 25218.8, + "probability": 0.4317 + }, + { + "start": 25218.92, + "end": 25220.62, + "probability": 0.9729 + }, + { + "start": 25220.86, + "end": 25222.92, + "probability": 0.8939 + }, + { + "start": 25222.96, + "end": 25223.52, + "probability": 0.7708 + }, + { + "start": 25223.98, + "end": 25225.88, + "probability": 0.9762 + }, + { + "start": 25226.62, + "end": 25231.72, + "probability": 0.9064 + }, + { + "start": 25232.08, + "end": 25234.42, + "probability": 0.9988 + }, + { + "start": 25234.94, + "end": 25238.04, + "probability": 0.7027 + }, + { + "start": 25238.18, + "end": 25244.93, + "probability": 0.8563 + }, + { + "start": 25245.28, + "end": 25248.06, + "probability": 0.9973 + }, + { + "start": 25249.3, + "end": 25250.44, + "probability": 0.97 + }, + { + "start": 25251.02, + "end": 25253.64, + "probability": 0.9955 + }, + { + "start": 25254.2, + "end": 25254.66, + "probability": 0.7704 + }, + { + "start": 25255.2, + "end": 25256.08, + "probability": 0.5992 + }, + { + "start": 25256.42, + "end": 25259.1, + "probability": 0.6988 + }, + { + "start": 25277.1, + "end": 25278.36, + "probability": 0.6766 + }, + { + "start": 25278.94, + "end": 25280.84, + "probability": 0.7029 + }, + { + "start": 25281.76, + "end": 25286.83, + "probability": 0.939 + }, + { + "start": 25287.04, + "end": 25291.28, + "probability": 0.9956 + }, + { + "start": 25293.12, + "end": 25294.84, + "probability": 0.9797 + }, + { + "start": 25296.0, + "end": 25304.0, + "probability": 0.9974 + }, + { + "start": 25305.2, + "end": 25307.64, + "probability": 0.9943 + }, + { + "start": 25309.44, + "end": 25311.8, + "probability": 0.9595 + }, + { + "start": 25313.0, + "end": 25314.59, + "probability": 0.9375 + }, + { + "start": 25314.84, + "end": 25317.23, + "probability": 0.9966 + }, + { + "start": 25318.18, + "end": 25318.76, + "probability": 0.8547 + }, + { + "start": 25318.84, + "end": 25322.12, + "probability": 0.9103 + }, + { + "start": 25322.96, + "end": 25326.54, + "probability": 0.9929 + }, + { + "start": 25327.9, + "end": 25331.74, + "probability": 0.9992 + }, + { + "start": 25332.66, + "end": 25335.58, + "probability": 0.9912 + }, + { + "start": 25337.46, + "end": 25341.8, + "probability": 0.9915 + }, + { + "start": 25342.06, + "end": 25344.48, + "probability": 0.9777 + }, + { + "start": 25345.06, + "end": 25345.86, + "probability": 0.9725 + }, + { + "start": 25347.56, + "end": 25352.94, + "probability": 0.9673 + }, + { + "start": 25353.66, + "end": 25356.02, + "probability": 0.9932 + }, + { + "start": 25356.4, + "end": 25358.64, + "probability": 0.8707 + }, + { + "start": 25359.36, + "end": 25359.64, + "probability": 0.7821 + }, + { + "start": 25360.86, + "end": 25363.5, + "probability": 0.9679 + }, + { + "start": 25364.54, + "end": 25364.74, + "probability": 0.9804 + }, + { + "start": 25365.76, + "end": 25367.02, + "probability": 0.9736 + }, + { + "start": 25367.14, + "end": 25368.18, + "probability": 0.9775 + }, + { + "start": 25368.64, + "end": 25372.3, + "probability": 0.9807 + }, + { + "start": 25373.72, + "end": 25375.34, + "probability": 0.7649 + }, + { + "start": 25376.16, + "end": 25377.2, + "probability": 0.8234 + }, + { + "start": 25377.34, + "end": 25378.7, + "probability": 0.9937 + }, + { + "start": 25379.32, + "end": 25382.68, + "probability": 0.9695 + }, + { + "start": 25384.96, + "end": 25388.58, + "probability": 0.9939 + }, + { + "start": 25390.2, + "end": 25393.2, + "probability": 0.946 + }, + { + "start": 25393.62, + "end": 25394.47, + "probability": 0.9055 + }, + { + "start": 25394.58, + "end": 25394.64, + "probability": 0.6359 + }, + { + "start": 25394.78, + "end": 25399.02, + "probability": 0.9686 + }, + { + "start": 25399.96, + "end": 25404.9, + "probability": 0.9912 + }, + { + "start": 25405.42, + "end": 25408.78, + "probability": 0.9728 + }, + { + "start": 25410.06, + "end": 25411.34, + "probability": 0.8037 + }, + { + "start": 25411.5, + "end": 25415.68, + "probability": 0.8353 + }, + { + "start": 25416.46, + "end": 25422.68, + "probability": 0.9849 + }, + { + "start": 25423.26, + "end": 25426.16, + "probability": 0.9933 + }, + { + "start": 25426.44, + "end": 25428.56, + "probability": 0.8052 + }, + { + "start": 25430.16, + "end": 25434.42, + "probability": 0.994 + }, + { + "start": 25434.98, + "end": 25435.92, + "probability": 0.4898 + }, + { + "start": 25438.1, + "end": 25439.08, + "probability": 0.8133 + }, + { + "start": 25439.6, + "end": 25442.09, + "probability": 0.5627 + }, + { + "start": 25443.08, + "end": 25447.72, + "probability": 0.9155 + }, + { + "start": 25448.7, + "end": 25452.34, + "probability": 0.9587 + }, + { + "start": 25452.58, + "end": 25457.02, + "probability": 0.968 + }, + { + "start": 25457.82, + "end": 25458.68, + "probability": 0.9648 + }, + { + "start": 25460.46, + "end": 25465.98, + "probability": 0.9861 + }, + { + "start": 25467.16, + "end": 25467.68, + "probability": 0.5688 + }, + { + "start": 25468.22, + "end": 25470.18, + "probability": 0.7969 + }, + { + "start": 25471.64, + "end": 25473.84, + "probability": 0.9622 + }, + { + "start": 25474.38, + "end": 25477.88, + "probability": 0.9973 + }, + { + "start": 25478.4, + "end": 25481.02, + "probability": 0.9955 + }, + { + "start": 25481.88, + "end": 25484.8, + "probability": 0.9895 + }, + { + "start": 25484.88, + "end": 25485.58, + "probability": 0.6986 + }, + { + "start": 25487.06, + "end": 25488.76, + "probability": 0.9938 + }, + { + "start": 25489.94, + "end": 25494.28, + "probability": 0.9938 + }, + { + "start": 25494.82, + "end": 25496.54, + "probability": 0.9219 + }, + { + "start": 25497.5, + "end": 25501.2, + "probability": 0.9877 + }, + { + "start": 25502.12, + "end": 25506.88, + "probability": 0.9922 + }, + { + "start": 25508.34, + "end": 25509.28, + "probability": 0.7671 + }, + { + "start": 25510.92, + "end": 25511.62, + "probability": 0.946 + }, + { + "start": 25514.4, + "end": 25516.26, + "probability": 0.9813 + }, + { + "start": 25516.9, + "end": 25518.88, + "probability": 0.9531 + }, + { + "start": 25520.34, + "end": 25521.03, + "probability": 0.6652 + }, + { + "start": 25522.68, + "end": 25523.74, + "probability": 0.8428 + }, + { + "start": 25524.88, + "end": 25526.18, + "probability": 0.8427 + }, + { + "start": 25527.08, + "end": 25530.72, + "probability": 0.9971 + }, + { + "start": 25531.34, + "end": 25535.5, + "probability": 0.9958 + }, + { + "start": 25535.58, + "end": 25537.35, + "probability": 0.9995 + }, + { + "start": 25537.92, + "end": 25539.34, + "probability": 0.9969 + }, + { + "start": 25539.42, + "end": 25541.42, + "probability": 0.9995 + }, + { + "start": 25541.98, + "end": 25543.84, + "probability": 0.9995 + }, + { + "start": 25544.86, + "end": 25547.16, + "probability": 0.8041 + }, + { + "start": 25548.68, + "end": 25550.16, + "probability": 0.8645 + }, + { + "start": 25551.88, + "end": 25552.96, + "probability": 0.6624 + }, + { + "start": 25553.72, + "end": 25555.42, + "probability": 0.7824 + }, + { + "start": 25556.66, + "end": 25558.8, + "probability": 0.944 + }, + { + "start": 25560.12, + "end": 25563.8, + "probability": 0.9748 + }, + { + "start": 25565.36, + "end": 25571.52, + "probability": 0.9421 + }, + { + "start": 25572.7, + "end": 25574.42, + "probability": 0.5462 + }, + { + "start": 25574.44, + "end": 25578.72, + "probability": 0.9935 + }, + { + "start": 25578.82, + "end": 25583.68, + "probability": 0.9985 + }, + { + "start": 25585.9, + "end": 25586.72, + "probability": 0.9707 + }, + { + "start": 25587.48, + "end": 25590.06, + "probability": 0.8293 + }, + { + "start": 25590.92, + "end": 25592.38, + "probability": 0.9919 + }, + { + "start": 25592.98, + "end": 25593.1, + "probability": 0.8311 + }, + { + "start": 25593.78, + "end": 25598.2, + "probability": 0.9897 + }, + { + "start": 25598.66, + "end": 25599.36, + "probability": 0.9546 + }, + { + "start": 25600.22, + "end": 25603.18, + "probability": 0.9609 + }, + { + "start": 25603.82, + "end": 25605.24, + "probability": 0.9603 + }, + { + "start": 25607.9, + "end": 25611.22, + "probability": 0.9858 + }, + { + "start": 25611.32, + "end": 25613.28, + "probability": 0.9828 + }, + { + "start": 25614.7, + "end": 25618.46, + "probability": 0.9983 + }, + { + "start": 25619.44, + "end": 25619.84, + "probability": 0.8337 + }, + { + "start": 25621.0, + "end": 25622.42, + "probability": 0.887 + }, + { + "start": 25622.46, + "end": 25625.8, + "probability": 0.9191 + }, + { + "start": 25626.5, + "end": 25629.6, + "probability": 0.9979 + }, + { + "start": 25629.68, + "end": 25630.82, + "probability": 0.9854 + }, + { + "start": 25630.96, + "end": 25632.22, + "probability": 0.9895 + }, + { + "start": 25632.54, + "end": 25634.04, + "probability": 0.9972 + }, + { + "start": 25634.08, + "end": 25635.18, + "probability": 0.9941 + }, + { + "start": 25635.34, + "end": 25635.9, + "probability": 0.957 + }, + { + "start": 25637.24, + "end": 25639.36, + "probability": 0.7718 + }, + { + "start": 25639.82, + "end": 25640.64, + "probability": 0.9203 + }, + { + "start": 25640.82, + "end": 25641.68, + "probability": 0.9701 + }, + { + "start": 25641.92, + "end": 25642.55, + "probability": 0.9785 + }, + { + "start": 25642.86, + "end": 25643.31, + "probability": 0.978 + }, + { + "start": 25643.58, + "end": 25644.24, + "probability": 0.9501 + }, + { + "start": 25644.3, + "end": 25645.04, + "probability": 0.984 + }, + { + "start": 25645.22, + "end": 25645.58, + "probability": 0.7457 + }, + { + "start": 25645.62, + "end": 25646.06, + "probability": 0.4145 + }, + { + "start": 25646.32, + "end": 25647.82, + "probability": 0.5305 + }, + { + "start": 25648.42, + "end": 25649.66, + "probability": 0.6217 + }, + { + "start": 25650.78, + "end": 25652.2, + "probability": 0.9849 + }, + { + "start": 25654.34, + "end": 25654.76, + "probability": 0.5301 + }, + { + "start": 25656.68, + "end": 25663.98, + "probability": 0.9976 + }, + { + "start": 25663.98, + "end": 25670.02, + "probability": 0.9985 + }, + { + "start": 25671.66, + "end": 25672.36, + "probability": 0.8815 + }, + { + "start": 25674.16, + "end": 25675.98, + "probability": 0.788 + }, + { + "start": 25676.78, + "end": 25679.32, + "probability": 0.9647 + }, + { + "start": 25682.36, + "end": 25682.6, + "probability": 0.8591 + }, + { + "start": 25683.96, + "end": 25684.62, + "probability": 0.8658 + }, + { + "start": 25685.36, + "end": 25689.88, + "probability": 0.9952 + }, + { + "start": 25691.12, + "end": 25692.04, + "probability": 0.9835 + }, + { + "start": 25694.22, + "end": 25695.28, + "probability": 0.902 + }, + { + "start": 25696.56, + "end": 25697.4, + "probability": 0.8481 + }, + { + "start": 25697.66, + "end": 25697.88, + "probability": 0.8094 + }, + { + "start": 25697.92, + "end": 25699.44, + "probability": 0.9658 + }, + { + "start": 25699.56, + "end": 25701.96, + "probability": 0.9548 + }, + { + "start": 25702.26, + "end": 25703.92, + "probability": 0.9333 + }, + { + "start": 25705.22, + "end": 25706.64, + "probability": 0.9379 + }, + { + "start": 25707.3, + "end": 25707.94, + "probability": 0.6988 + }, + { + "start": 25709.16, + "end": 25711.6, + "probability": 0.9733 + }, + { + "start": 25712.22, + "end": 25715.34, + "probability": 0.9924 + }, + { + "start": 25716.2, + "end": 25716.9, + "probability": 0.9622 + }, + { + "start": 25717.42, + "end": 25718.64, + "probability": 0.9798 + }, + { + "start": 25719.18, + "end": 25722.1, + "probability": 0.966 + }, + { + "start": 25722.37, + "end": 25722.96, + "probability": 0.5104 + }, + { + "start": 25723.84, + "end": 25724.16, + "probability": 0.8784 + }, + { + "start": 25725.2, + "end": 25730.24, + "probability": 0.9729 + }, + { + "start": 25730.24, + "end": 25733.12, + "probability": 0.9902 + }, + { + "start": 25733.22, + "end": 25735.84, + "probability": 0.9962 + }, + { + "start": 25736.46, + "end": 25738.08, + "probability": 0.7422 + }, + { + "start": 25738.9, + "end": 25742.64, + "probability": 0.9962 + }, + { + "start": 25744.42, + "end": 25745.82, + "probability": 0.781 + }, + { + "start": 25746.76, + "end": 25750.94, + "probability": 0.9474 + }, + { + "start": 25751.96, + "end": 25753.96, + "probability": 0.8547 + }, + { + "start": 25754.62, + "end": 25759.38, + "probability": 0.9978 + }, + { + "start": 25759.38, + "end": 25761.84, + "probability": 0.9607 + }, + { + "start": 25765.36, + "end": 25771.18, + "probability": 0.9988 + }, + { + "start": 25771.84, + "end": 25774.54, + "probability": 0.9796 + }, + { + "start": 25775.36, + "end": 25777.51, + "probability": 0.818 + }, + { + "start": 25778.78, + "end": 25781.34, + "probability": 0.9915 + }, + { + "start": 25783.54, + "end": 25787.1, + "probability": 0.9832 + }, + { + "start": 25788.18, + "end": 25789.82, + "probability": 0.9968 + }, + { + "start": 25789.92, + "end": 25793.76, + "probability": 0.9939 + }, + { + "start": 25793.8, + "end": 25799.2, + "probability": 0.9949 + }, + { + "start": 25799.94, + "end": 25801.38, + "probability": 0.6827 + }, + { + "start": 25802.9, + "end": 25803.28, + "probability": 0.8011 + }, + { + "start": 25803.5, + "end": 25804.1, + "probability": 0.9771 + }, + { + "start": 25804.36, + "end": 25805.14, + "probability": 0.9043 + }, + { + "start": 25806.54, + "end": 25807.5, + "probability": 0.8855 + }, + { + "start": 25808.96, + "end": 25811.22, + "probability": 0.737 + }, + { + "start": 25811.26, + "end": 25813.3, + "probability": 0.9627 + }, + { + "start": 25813.36, + "end": 25816.96, + "probability": 0.998 + }, + { + "start": 25818.34, + "end": 25819.84, + "probability": 0.7936 + }, + { + "start": 25819.98, + "end": 25821.36, + "probability": 0.9712 + }, + { + "start": 25821.4, + "end": 25822.98, + "probability": 0.8437 + }, + { + "start": 25823.14, + "end": 25823.8, + "probability": 0.7036 + }, + { + "start": 25824.92, + "end": 25829.28, + "probability": 0.9909 + }, + { + "start": 25830.52, + "end": 25832.34, + "probability": 0.9064 + }, + { + "start": 25833.16, + "end": 25835.68, + "probability": 0.7236 + }, + { + "start": 25836.18, + "end": 25837.66, + "probability": 0.665 + }, + { + "start": 25837.78, + "end": 25839.2, + "probability": 0.8968 + }, + { + "start": 25839.36, + "end": 25840.7, + "probability": 0.9366 + }, + { + "start": 25840.82, + "end": 25841.78, + "probability": 0.9377 + }, + { + "start": 25842.52, + "end": 25843.1, + "probability": 0.539 + }, + { + "start": 25843.1, + "end": 25843.38, + "probability": 0.8386 + }, + { + "start": 25843.96, + "end": 25845.86, + "probability": 0.9685 + }, + { + "start": 25847.66, + "end": 25849.92, + "probability": 0.8972 + }, + { + "start": 25850.06, + "end": 25852.1, + "probability": 0.9299 + }, + { + "start": 25852.1, + "end": 25854.68, + "probability": 0.9944 + }, + { + "start": 25855.98, + "end": 25858.4, + "probability": 0.7663 + }, + { + "start": 25858.94, + "end": 25860.98, + "probability": 0.9966 + }, + { + "start": 25862.72, + "end": 25863.66, + "probability": 0.9718 + }, + { + "start": 25864.86, + "end": 25865.72, + "probability": 0.7191 + }, + { + "start": 25865.94, + "end": 25868.4, + "probability": 0.6917 + }, + { + "start": 25869.3, + "end": 25873.12, + "probability": 0.9696 + }, + { + "start": 25873.56, + "end": 25875.34, + "probability": 0.9721 + }, + { + "start": 25875.9, + "end": 25877.4, + "probability": 0.99 + }, + { + "start": 25877.42, + "end": 25879.02, + "probability": 0.998 + }, + { + "start": 25879.98, + "end": 25882.14, + "probability": 0.974 + }, + { + "start": 25882.28, + "end": 25885.4, + "probability": 0.9985 + }, + { + "start": 25885.54, + "end": 25886.02, + "probability": 0.8638 + }, + { + "start": 25886.94, + "end": 25889.32, + "probability": 0.9966 + }, + { + "start": 25889.36, + "end": 25889.46, + "probability": 0.9521 + }, + { + "start": 25889.54, + "end": 25890.61, + "probability": 0.8892 + }, + { + "start": 25891.3, + "end": 25896.22, + "probability": 0.9904 + }, + { + "start": 25896.96, + "end": 25900.6, + "probability": 0.9991 + }, + { + "start": 25901.22, + "end": 25903.43, + "probability": 0.9961 + }, + { + "start": 25903.96, + "end": 25905.28, + "probability": 0.271 + }, + { + "start": 25905.36, + "end": 25906.0, + "probability": 0.877 + }, + { + "start": 25906.06, + "end": 25909.7, + "probability": 0.9763 + }, + { + "start": 25911.06, + "end": 25911.64, + "probability": 0.669 + }, + { + "start": 25913.06, + "end": 25916.62, + "probability": 0.9904 + }, + { + "start": 25917.24, + "end": 25917.74, + "probability": 0.7109 + }, + { + "start": 25918.52, + "end": 25918.62, + "probability": 0.9167 + }, + { + "start": 25919.68, + "end": 25922.16, + "probability": 0.811 + }, + { + "start": 25922.36, + "end": 25923.74, + "probability": 0.9951 + }, + { + "start": 25923.78, + "end": 25924.76, + "probability": 0.98 + }, + { + "start": 25925.66, + "end": 25927.14, + "probability": 0.9781 + }, + { + "start": 25928.28, + "end": 25929.38, + "probability": 0.8768 + }, + { + "start": 25930.18, + "end": 25933.96, + "probability": 0.9814 + }, + { + "start": 25934.08, + "end": 25936.08, + "probability": 0.6722 + }, + { + "start": 25936.6, + "end": 25936.8, + "probability": 0.5883 + }, + { + "start": 25937.36, + "end": 25938.74, + "probability": 0.9906 + }, + { + "start": 25939.66, + "end": 25939.98, + "probability": 0.5056 + }, + { + "start": 25940.04, + "end": 25940.95, + "probability": 0.9688 + }, + { + "start": 25941.36, + "end": 25945.0, + "probability": 0.992 + }, + { + "start": 25945.0, + "end": 25948.7, + "probability": 0.9962 + }, + { + "start": 25949.34, + "end": 25950.74, + "probability": 0.7206 + }, + { + "start": 25951.1, + "end": 25952.1, + "probability": 0.8966 + }, + { + "start": 25952.36, + "end": 25956.9, + "probability": 0.9289 + }, + { + "start": 25957.92, + "end": 25959.5, + "probability": 0.9834 + }, + { + "start": 25959.6, + "end": 25960.16, + "probability": 0.986 + }, + { + "start": 25961.04, + "end": 25961.84, + "probability": 0.7446 + }, + { + "start": 25965.16, + "end": 25965.16, + "probability": 0.2189 + }, + { + "start": 25965.16, + "end": 25965.16, + "probability": 0.2608 + }, + { + "start": 25965.16, + "end": 25967.77, + "probability": 0.9353 + }, + { + "start": 25967.9, + "end": 25971.28, + "probability": 0.9782 + }, + { + "start": 25972.7, + "end": 25974.47, + "probability": 0.9941 + }, + { + "start": 25975.2, + "end": 25982.94, + "probability": 0.9907 + }, + { + "start": 25983.64, + "end": 25984.85, + "probability": 0.9697 + }, + { + "start": 25985.74, + "end": 25988.54, + "probability": 0.9795 + }, + { + "start": 25988.62, + "end": 25993.0, + "probability": 0.9964 + }, + { + "start": 25994.92, + "end": 25995.62, + "probability": 0.9971 + }, + { + "start": 25996.16, + "end": 25997.18, + "probability": 0.858 + }, + { + "start": 25997.26, + "end": 26000.82, + "probability": 0.9958 + }, + { + "start": 26000.82, + "end": 26005.84, + "probability": 0.9917 + }, + { + "start": 26009.0, + "end": 26014.94, + "probability": 0.8342 + }, + { + "start": 26015.04, + "end": 26015.16, + "probability": 0.8847 + }, + { + "start": 26016.36, + "end": 26018.18, + "probability": 0.9207 + }, + { + "start": 26018.3, + "end": 26019.72, + "probability": 0.8237 + }, + { + "start": 26019.94, + "end": 26020.12, + "probability": 0.8256 + }, + { + "start": 26020.22, + "end": 26020.72, + "probability": 0.8589 + }, + { + "start": 26020.78, + "end": 26023.72, + "probability": 0.9966 + }, + { + "start": 26024.28, + "end": 26026.7, + "probability": 0.9921 + }, + { + "start": 26026.7, + "end": 26029.58, + "probability": 0.1676 + }, + { + "start": 26029.58, + "end": 26031.76, + "probability": 0.2771 + }, + { + "start": 26032.26, + "end": 26032.8, + "probability": 0.6097 + }, + { + "start": 26032.9, + "end": 26035.72, + "probability": 0.974 + }, + { + "start": 26035.88, + "end": 26037.2, + "probability": 0.9526 + }, + { + "start": 26037.28, + "end": 26038.66, + "probability": 0.9979 + }, + { + "start": 26041.2, + "end": 26042.14, + "probability": 0.7995 + }, + { + "start": 26043.7, + "end": 26048.84, + "probability": 0.9118 + }, + { + "start": 26050.08, + "end": 26050.74, + "probability": 0.6896 + }, + { + "start": 26051.04, + "end": 26052.16, + "probability": 0.9604 + }, + { + "start": 26052.22, + "end": 26053.18, + "probability": 0.8447 + }, + { + "start": 26053.38, + "end": 26054.52, + "probability": 0.8115 + }, + { + "start": 26054.66, + "end": 26056.54, + "probability": 0.9974 + }, + { + "start": 26057.18, + "end": 26060.1, + "probability": 0.9582 + }, + { + "start": 26061.14, + "end": 26063.69, + "probability": 0.8004 + }, + { + "start": 26063.94, + "end": 26068.36, + "probability": 0.9963 + }, + { + "start": 26068.48, + "end": 26069.24, + "probability": 0.7613 + }, + { + "start": 26069.32, + "end": 26069.52, + "probability": 0.2696 + }, + { + "start": 26069.6, + "end": 26070.54, + "probability": 0.9603 + }, + { + "start": 26070.66, + "end": 26072.22, + "probability": 0.9946 + }, + { + "start": 26072.3, + "end": 26072.6, + "probability": 0.5081 + }, + { + "start": 26073.64, + "end": 26075.68, + "probability": 0.9568 + }, + { + "start": 26075.84, + "end": 26078.44, + "probability": 0.9675 + }, + { + "start": 26078.5, + "end": 26081.76, + "probability": 0.9896 + }, + { + "start": 26082.32, + "end": 26083.4, + "probability": 0.9263 + }, + { + "start": 26083.4, + "end": 26085.28, + "probability": 0.984 + }, + { + "start": 26085.36, + "end": 26086.32, + "probability": 0.999 + }, + { + "start": 26087.04, + "end": 26090.1, + "probability": 0.9684 + }, + { + "start": 26091.36, + "end": 26093.12, + "probability": 0.9778 + }, + { + "start": 26094.04, + "end": 26097.6, + "probability": 0.9816 + }, + { + "start": 26099.16, + "end": 26100.09, + "probability": 0.86 + }, + { + "start": 26100.22, + "end": 26103.34, + "probability": 0.9434 + }, + { + "start": 26103.48, + "end": 26104.28, + "probability": 0.8617 + }, + { + "start": 26104.56, + "end": 26105.5, + "probability": 0.9586 + }, + { + "start": 26106.28, + "end": 26109.34, + "probability": 0.9656 + }, + { + "start": 26110.12, + "end": 26113.2, + "probability": 0.9971 + }, + { + "start": 26114.26, + "end": 26115.3, + "probability": 0.887 + }, + { + "start": 26115.44, + "end": 26118.05, + "probability": 0.9531 + }, + { + "start": 26118.76, + "end": 26118.88, + "probability": 0.8866 + }, + { + "start": 26119.62, + "end": 26123.96, + "probability": 0.9655 + }, + { + "start": 26124.48, + "end": 26127.06, + "probability": 0.9923 + }, + { + "start": 26127.86, + "end": 26128.9, + "probability": 0.9712 + }, + { + "start": 26130.16, + "end": 26133.98, + "probability": 0.9129 + }, + { + "start": 26135.44, + "end": 26137.69, + "probability": 0.9893 + }, + { + "start": 26138.91, + "end": 26140.96, + "probability": 0.9679 + }, + { + "start": 26141.0, + "end": 26142.27, + "probability": 0.7759 + }, + { + "start": 26142.5, + "end": 26146.06, + "probability": 0.7467 + }, + { + "start": 26146.62, + "end": 26150.74, + "probability": 0.9839 + }, + { + "start": 26151.38, + "end": 26154.48, + "probability": 0.9932 + }, + { + "start": 26154.62, + "end": 26158.34, + "probability": 0.996 + }, + { + "start": 26159.52, + "end": 26160.66, + "probability": 0.7996 + }, + { + "start": 26161.28, + "end": 26162.84, + "probability": 0.8923 + }, + { + "start": 26163.96, + "end": 26167.26, + "probability": 0.9937 + }, + { + "start": 26168.0, + "end": 26169.98, + "probability": 0.9716 + }, + { + "start": 26170.98, + "end": 26172.0, + "probability": 0.8474 + }, + { + "start": 26172.56, + "end": 26174.52, + "probability": 0.9866 + }, + { + "start": 26175.44, + "end": 26176.16, + "probability": 0.8383 + }, + { + "start": 26177.02, + "end": 26179.12, + "probability": 0.6389 + }, + { + "start": 26179.9, + "end": 26181.42, + "probability": 0.539 + }, + { + "start": 26182.02, + "end": 26185.8, + "probability": 0.9324 + }, + { + "start": 26186.6, + "end": 26189.2, + "probability": 0.9604 + }, + { + "start": 26189.9, + "end": 26193.74, + "probability": 0.9984 + }, + { + "start": 26194.7, + "end": 26197.73, + "probability": 0.9893 + }, + { + "start": 26198.6, + "end": 26202.32, + "probability": 0.9956 + }, + { + "start": 26203.0, + "end": 26203.56, + "probability": 0.4086 + }, + { + "start": 26204.22, + "end": 26207.76, + "probability": 0.9851 + }, + { + "start": 26208.94, + "end": 26209.56, + "probability": 0.7336 + }, + { + "start": 26210.38, + "end": 26212.6, + "probability": 0.9722 + }, + { + "start": 26213.18, + "end": 26215.62, + "probability": 0.9868 + }, + { + "start": 26216.18, + "end": 26220.08, + "probability": 0.979 + }, + { + "start": 26220.78, + "end": 26223.52, + "probability": 0.9891 + }, + { + "start": 26224.34, + "end": 26226.88, + "probability": 0.9972 + }, + { + "start": 26227.64, + "end": 26230.62, + "probability": 0.9961 + }, + { + "start": 26231.48, + "end": 26233.08, + "probability": 0.9935 + }, + { + "start": 26233.58, + "end": 26235.32, + "probability": 0.9942 + }, + { + "start": 26235.72, + "end": 26237.22, + "probability": 0.9935 + }, + { + "start": 26237.4, + "end": 26237.99, + "probability": 0.9525 + }, + { + "start": 26238.5, + "end": 26238.86, + "probability": 0.6768 + }, + { + "start": 26238.92, + "end": 26240.2, + "probability": 0.8887 + }, + { + "start": 26240.58, + "end": 26244.61, + "probability": 0.9263 + }, + { + "start": 26245.8, + "end": 26251.74, + "probability": 0.9949 + }, + { + "start": 26252.66, + "end": 26253.84, + "probability": 0.8519 + }, + { + "start": 26254.7, + "end": 26256.28, + "probability": 0.9576 + }, + { + "start": 26256.9, + "end": 26260.02, + "probability": 0.8337 + }, + { + "start": 26260.58, + "end": 26263.0, + "probability": 0.9956 + }, + { + "start": 26263.1, + "end": 26265.2, + "probability": 0.9853 + }, + { + "start": 26267.42, + "end": 26272.68, + "probability": 0.9022 + }, + { + "start": 26273.44, + "end": 26274.12, + "probability": 0.9385 + }, + { + "start": 26274.6, + "end": 26275.3, + "probability": 0.9178 + }, + { + "start": 26275.42, + "end": 26276.68, + "probability": 0.9694 + }, + { + "start": 26277.68, + "end": 26281.0, + "probability": 0.9949 + }, + { + "start": 26281.94, + "end": 26283.0, + "probability": 0.6493 + }, + { + "start": 26286.27, + "end": 26286.84, + "probability": 0.4749 + }, + { + "start": 26286.92, + "end": 26288.12, + "probability": 0.651 + }, + { + "start": 26288.68, + "end": 26288.86, + "probability": 0.8468 + }, + { + "start": 26289.32, + "end": 26291.7, + "probability": 0.7834 + }, + { + "start": 26291.98, + "end": 26293.85, + "probability": 0.9882 + }, + { + "start": 26294.12, + "end": 26294.51, + "probability": 0.8721 + }, + { + "start": 26295.06, + "end": 26295.2, + "probability": 0.8237 + }, + { + "start": 26295.28, + "end": 26295.44, + "probability": 0.5134 + }, + { + "start": 26295.54, + "end": 26298.36, + "probability": 0.9561 + }, + { + "start": 26298.5, + "end": 26298.68, + "probability": 0.2459 + }, + { + "start": 26298.84, + "end": 26299.52, + "probability": 0.7414 + }, + { + "start": 26299.66, + "end": 26300.48, + "probability": 0.8165 + }, + { + "start": 26300.62, + "end": 26301.28, + "probability": 0.8816 + }, + { + "start": 26301.7, + "end": 26304.6, + "probability": 0.9707 + }, + { + "start": 26304.94, + "end": 26306.6, + "probability": 0.9954 + }, + { + "start": 26307.34, + "end": 26307.92, + "probability": 0.96 + }, + { + "start": 26308.48, + "end": 26310.2, + "probability": 0.9232 + }, + { + "start": 26310.54, + "end": 26313.86, + "probability": 0.9972 + }, + { + "start": 26314.26, + "end": 26315.1, + "probability": 0.8505 + }, + { + "start": 26315.2, + "end": 26316.06, + "probability": 0.8569 + }, + { + "start": 26316.78, + "end": 26318.74, + "probability": 0.9628 + }, + { + "start": 26318.84, + "end": 26321.6, + "probability": 0.9039 + }, + { + "start": 26322.08, + "end": 26323.5, + "probability": 0.9876 + }, + { + "start": 26324.82, + "end": 26329.76, + "probability": 0.9972 + }, + { + "start": 26331.12, + "end": 26333.18, + "probability": 0.9945 + }, + { + "start": 26333.9, + "end": 26335.46, + "probability": 0.7623 + }, + { + "start": 26336.98, + "end": 26340.08, + "probability": 0.9569 + }, + { + "start": 26341.12, + "end": 26346.2, + "probability": 0.9673 + }, + { + "start": 26346.44, + "end": 26347.06, + "probability": 0.8074 + }, + { + "start": 26347.3, + "end": 26351.42, + "probability": 0.9896 + }, + { + "start": 26351.68, + "end": 26352.62, + "probability": 0.8269 + }, + { + "start": 26353.24, + "end": 26354.0, + "probability": 0.9305 + }, + { + "start": 26354.16, + "end": 26358.13, + "probability": 0.9185 + }, + { + "start": 26361.2, + "end": 26361.4, + "probability": 0.0601 + }, + { + "start": 26361.4, + "end": 26362.4, + "probability": 0.3376 + }, + { + "start": 26362.56, + "end": 26367.16, + "probability": 0.8241 + }, + { + "start": 26367.24, + "end": 26368.09, + "probability": 0.6742 + }, + { + "start": 26369.2, + "end": 26369.2, + "probability": 0.0787 + }, + { + "start": 26369.2, + "end": 26369.2, + "probability": 0.1123 + }, + { + "start": 26369.2, + "end": 26369.42, + "probability": 0.3613 + }, + { + "start": 26369.68, + "end": 26372.12, + "probability": 0.9519 + }, + { + "start": 26372.42, + "end": 26374.6, + "probability": 0.992 + }, + { + "start": 26374.72, + "end": 26377.74, + "probability": 0.9808 + }, + { + "start": 26378.08, + "end": 26378.9, + "probability": 0.4694 + }, + { + "start": 26379.04, + "end": 26382.24, + "probability": 0.9925 + }, + { + "start": 26382.8, + "end": 26384.2, + "probability": 0.9225 + }, + { + "start": 26385.12, + "end": 26385.12, + "probability": 0.0418 + }, + { + "start": 26385.12, + "end": 26386.4, + "probability": 0.9658 + }, + { + "start": 26386.46, + "end": 26388.28, + "probability": 0.9099 + }, + { + "start": 26388.74, + "end": 26389.9, + "probability": 0.0265 + }, + { + "start": 26389.9, + "end": 26389.9, + "probability": 0.0523 + }, + { + "start": 26389.9, + "end": 26389.9, + "probability": 0.17 + }, + { + "start": 26389.9, + "end": 26391.82, + "probability": 0.397 + }, + { + "start": 26391.94, + "end": 26394.23, + "probability": 0.7501 + }, + { + "start": 26395.08, + "end": 26397.4, + "probability": 0.8174 + }, + { + "start": 26397.72, + "end": 26398.06, + "probability": 0.2863 + }, + { + "start": 26398.26, + "end": 26400.48, + "probability": 0.9683 + }, + { + "start": 26400.84, + "end": 26402.84, + "probability": 0.6259 + }, + { + "start": 26402.94, + "end": 26403.38, + "probability": 0.9387 + }, + { + "start": 26404.22, + "end": 26404.65, + "probability": 0.9648 + }, + { + "start": 26405.62, + "end": 26410.18, + "probability": 0.0678 + }, + { + "start": 26410.18, + "end": 26410.92, + "probability": 0.0885 + }, + { + "start": 26413.14, + "end": 26416.94, + "probability": 0.0169 + }, + { + "start": 26417.74, + "end": 26418.28, + "probability": 0.0128 + }, + { + "start": 26418.28, + "end": 26423.94, + "probability": 0.1487 + }, + { + "start": 26424.89, + "end": 26428.4, + "probability": 0.0902 + }, + { + "start": 26428.54, + "end": 26428.68, + "probability": 0.3515 + }, + { + "start": 26431.2, + "end": 26432.28, + "probability": 0.0862 + }, + { + "start": 26432.28, + "end": 26433.72, + "probability": 0.019 + }, + { + "start": 26435.78, + "end": 26435.78, + "probability": 0.0581 + }, + { + "start": 26437.35, + "end": 26438.56, + "probability": 0.1121 + }, + { + "start": 26438.56, + "end": 26438.56, + "probability": 0.04 + }, + { + "start": 26438.56, + "end": 26439.4, + "probability": 0.2441 + }, + { + "start": 26439.6, + "end": 26439.6, + "probability": 0.3264 + }, + { + "start": 26441.26, + "end": 26442.06, + "probability": 0.059 + }, + { + "start": 26444.9, + "end": 26448.0, + "probability": 0.0543 + }, + { + "start": 26448.02, + "end": 26450.24, + "probability": 0.0199 + }, + { + "start": 26450.36, + "end": 26451.5, + "probability": 0.2522 + }, + { + "start": 26451.62, + "end": 26451.98, + "probability": 0.1397 + }, + { + "start": 26452.0, + "end": 26452.0, + "probability": 0.0 + }, + { + "start": 26452.0, + "end": 26452.0, + "probability": 0.0 + }, + { + "start": 26452.0, + "end": 26452.0, + "probability": 0.0 + }, + { + "start": 26452.0, + "end": 26452.0, + "probability": 0.0 + }, + { + "start": 26452.0, + "end": 26452.0, + "probability": 0.0 + }, + { + "start": 26452.0, + "end": 26452.0, + "probability": 0.0 + }, + { + "start": 26452.0, + "end": 26452.0, + "probability": 0.0 + }, + { + "start": 26452.0, + "end": 26452.0, + "probability": 0.0 + }, + { + "start": 26452.2, + "end": 26452.24, + "probability": 0.025 + }, + { + "start": 26452.24, + "end": 26454.62, + "probability": 0.1379 + }, + { + "start": 26454.68, + "end": 26455.34, + "probability": 0.4984 + }, + { + "start": 26455.6, + "end": 26456.58, + "probability": 0.8032 + }, + { + "start": 26457.24, + "end": 26458.28, + "probability": 0.9717 + }, + { + "start": 26458.64, + "end": 26459.88, + "probability": 0.8017 + }, + { + "start": 26459.92, + "end": 26461.58, + "probability": 0.969 + }, + { + "start": 26462.16, + "end": 26462.78, + "probability": 0.9316 + }, + { + "start": 26462.92, + "end": 26464.85, + "probability": 0.9487 + }, + { + "start": 26465.46, + "end": 26468.3, + "probability": 0.8071 + }, + { + "start": 26468.88, + "end": 26473.12, + "probability": 0.9386 + }, + { + "start": 26473.12, + "end": 26477.4, + "probability": 0.7595 + }, + { + "start": 26477.84, + "end": 26477.94, + "probability": 0.6101 + }, + { + "start": 26478.0, + "end": 26478.64, + "probability": 0.5768 + }, + { + "start": 26478.86, + "end": 26481.08, + "probability": 0.9165 + }, + { + "start": 26481.84, + "end": 26483.52, + "probability": 0.5016 + }, + { + "start": 26483.8, + "end": 26486.44, + "probability": 0.7292 + }, + { + "start": 26486.68, + "end": 26489.56, + "probability": 0.9234 + }, + { + "start": 26489.94, + "end": 26492.4, + "probability": 0.9653 + }, + { + "start": 26492.88, + "end": 26493.88, + "probability": 0.9262 + }, + { + "start": 26494.16, + "end": 26495.04, + "probability": 0.4329 + }, + { + "start": 26495.4, + "end": 26498.04, + "probability": 0.9976 + }, + { + "start": 26498.08, + "end": 26501.14, + "probability": 0.8042 + }, + { + "start": 26504.52, + "end": 26506.02, + "probability": 0.8695 + }, + { + "start": 26506.16, + "end": 26507.88, + "probability": 0.7412 + }, + { + "start": 26508.26, + "end": 26508.96, + "probability": 0.8558 + }, + { + "start": 26509.0, + "end": 26510.88, + "probability": 0.9924 + }, + { + "start": 26511.08, + "end": 26515.12, + "probability": 0.9416 + }, + { + "start": 26515.8, + "end": 26517.52, + "probability": 0.9934 + }, + { + "start": 26517.94, + "end": 26518.44, + "probability": 0.9818 + }, + { + "start": 26518.68, + "end": 26519.24, + "probability": 0.6011 + }, + { + "start": 26519.62, + "end": 26520.28, + "probability": 0.9494 + }, + { + "start": 26520.66, + "end": 26521.26, + "probability": 0.9694 + }, + { + "start": 26521.5, + "end": 26522.26, + "probability": 0.9046 + }, + { + "start": 26522.88, + "end": 26523.66, + "probability": 0.9849 + }, + { + "start": 26524.08, + "end": 26525.54, + "probability": 0.8596 + }, + { + "start": 26526.26, + "end": 26527.22, + "probability": 0.9631 + }, + { + "start": 26527.94, + "end": 26528.92, + "probability": 0.7174 + }, + { + "start": 26529.88, + "end": 26532.74, + "probability": 0.9824 + }, + { + "start": 26533.28, + "end": 26533.98, + "probability": 0.3112 + }, + { + "start": 26534.8, + "end": 26535.4, + "probability": 0.2343 + }, + { + "start": 26535.4, + "end": 26537.74, + "probability": 0.9472 + }, + { + "start": 26539.96, + "end": 26541.2, + "probability": 0.4659 + }, + { + "start": 26542.7, + "end": 26544.62, + "probability": 0.9426 + }, + { + "start": 26544.64, + "end": 26545.98, + "probability": 0.5287 + }, + { + "start": 26546.52, + "end": 26547.16, + "probability": 0.6877 + }, + { + "start": 26547.64, + "end": 26548.1, + "probability": 0.9795 + }, + { + "start": 26548.9, + "end": 26551.84, + "probability": 0.9956 + }, + { + "start": 26552.22, + "end": 26552.92, + "probability": 0.8058 + }, + { + "start": 26553.5, + "end": 26555.76, + "probability": 0.881 + }, + { + "start": 26555.98, + "end": 26556.56, + "probability": 0.9191 + }, + { + "start": 26557.42, + "end": 26558.06, + "probability": 0.9015 + }, + { + "start": 26558.88, + "end": 26560.0, + "probability": 0.8928 + }, + { + "start": 26560.58, + "end": 26561.88, + "probability": 0.4864 + }, + { + "start": 26561.94, + "end": 26562.56, + "probability": 0.9897 + }, + { + "start": 26562.74, + "end": 26563.08, + "probability": 0.8375 + }, + { + "start": 26563.8, + "end": 26565.46, + "probability": 0.9871 + }, + { + "start": 26565.5, + "end": 26568.34, + "probability": 0.8842 + }, + { + "start": 26569.26, + "end": 26571.82, + "probability": 0.9865 + }, + { + "start": 26572.72, + "end": 26574.76, + "probability": 0.9955 + }, + { + "start": 26575.16, + "end": 26580.94, + "probability": 0.9896 + }, + { + "start": 26581.26, + "end": 26584.84, + "probability": 0.9988 + }, + { + "start": 26585.0, + "end": 26586.68, + "probability": 0.8847 + }, + { + "start": 26586.86, + "end": 26588.06, + "probability": 0.9849 + }, + { + "start": 26588.14, + "end": 26588.74, + "probability": 0.685 + }, + { + "start": 26589.14, + "end": 26589.65, + "probability": 0.9004 + }, + { + "start": 26590.3, + "end": 26593.36, + "probability": 0.9598 + }, + { + "start": 26594.0, + "end": 26594.88, + "probability": 0.9935 + }, + { + "start": 26595.02, + "end": 26595.94, + "probability": 0.9434 + }, + { + "start": 26596.78, + "end": 26598.14, + "probability": 0.5916 + }, + { + "start": 26598.38, + "end": 26600.68, + "probability": 0.9573 + }, + { + "start": 26601.22, + "end": 26603.24, + "probability": 0.8742 + }, + { + "start": 26603.3, + "end": 26604.74, + "probability": 0.9092 + }, + { + "start": 26604.88, + "end": 26606.08, + "probability": 0.8175 + }, + { + "start": 26606.54, + "end": 26610.68, + "probability": 0.7848 + }, + { + "start": 26612.24, + "end": 26614.62, + "probability": 0.9407 + }, + { + "start": 26614.76, + "end": 26615.39, + "probability": 0.9779 + }, + { + "start": 26615.66, + "end": 26616.55, + "probability": 0.9913 + }, + { + "start": 26616.64, + "end": 26617.68, + "probability": 0.9719 + }, + { + "start": 26617.98, + "end": 26619.22, + "probability": 0.8848 + }, + { + "start": 26620.0, + "end": 26620.8, + "probability": 0.8201 + }, + { + "start": 26621.46, + "end": 26622.5, + "probability": 0.7694 + }, + { + "start": 26622.8, + "end": 26624.52, + "probability": 0.9916 + }, + { + "start": 26625.42, + "end": 26629.24, + "probability": 0.9946 + }, + { + "start": 26629.26, + "end": 26630.28, + "probability": 0.9117 + }, + { + "start": 26631.3, + "end": 26633.94, + "probability": 0.89 + }, + { + "start": 26634.26, + "end": 26636.14, + "probability": 0.8491 + }, + { + "start": 26637.5, + "end": 26638.02, + "probability": 0.8687 + }, + { + "start": 26638.42, + "end": 26640.32, + "probability": 0.9845 + }, + { + "start": 26643.42, + "end": 26644.2, + "probability": 0.1095 + }, + { + "start": 26644.2, + "end": 26645.15, + "probability": 0.9091 + }, + { + "start": 26645.36, + "end": 26646.7, + "probability": 0.9736 + }, + { + "start": 26647.62, + "end": 26649.6, + "probability": 0.8111 + }, + { + "start": 26650.12, + "end": 26653.96, + "probability": 0.9131 + }, + { + "start": 26654.48, + "end": 26654.58, + "probability": 0.8771 + }, + { + "start": 26655.22, + "end": 26657.22, + "probability": 0.5008 + }, + { + "start": 26657.88, + "end": 26658.48, + "probability": 0.8891 + }, + { + "start": 26658.68, + "end": 26660.36, + "probability": 0.9421 + }, + { + "start": 26660.44, + "end": 26663.38, + "probability": 0.9688 + }, + { + "start": 26663.64, + "end": 26663.98, + "probability": 0.7424 + }, + { + "start": 26664.72, + "end": 26666.1, + "probability": 0.9648 + }, + { + "start": 26666.7, + "end": 26667.52, + "probability": 0.9666 + }, + { + "start": 26669.84, + "end": 26670.16, + "probability": 0.5757 + }, + { + "start": 26670.16, + "end": 26670.72, + "probability": 0.7926 + }, + { + "start": 26671.62, + "end": 26673.38, + "probability": 0.7087 + }, + { + "start": 26673.52, + "end": 26673.95, + "probability": 0.9189 + }, + { + "start": 26674.8, + "end": 26676.06, + "probability": 0.9926 + }, + { + "start": 26676.4, + "end": 26677.46, + "probability": 0.9699 + }, + { + "start": 26680.68, + "end": 26681.48, + "probability": 0.3114 + }, + { + "start": 26683.7, + "end": 26686.06, + "probability": 0.9621 + }, + { + "start": 26686.3, + "end": 26687.38, + "probability": 0.9837 + }, + { + "start": 26689.22, + "end": 26693.1, + "probability": 0.9813 + }, + { + "start": 26693.64, + "end": 26694.74, + "probability": 0.987 + }, + { + "start": 26695.68, + "end": 26699.26, + "probability": 0.9336 + }, + { + "start": 26699.42, + "end": 26701.28, + "probability": 0.7888 + }, + { + "start": 26702.0, + "end": 26703.06, + "probability": 0.9054 + }, + { + "start": 26703.14, + "end": 26704.14, + "probability": 0.982 + }, + { + "start": 26704.24, + "end": 26705.46, + "probability": 0.9709 + }, + { + "start": 26705.54, + "end": 26707.1, + "probability": 0.8784 + }, + { + "start": 26707.88, + "end": 26711.66, + "probability": 0.9693 + }, + { + "start": 26713.02, + "end": 26715.64, + "probability": 0.7216 + }, + { + "start": 26716.04, + "end": 26716.88, + "probability": 0.8173 + }, + { + "start": 26717.6, + "end": 26718.64, + "probability": 0.9647 + }, + { + "start": 26719.84, + "end": 26720.4, + "probability": 0.9746 + }, + { + "start": 26720.6, + "end": 26722.18, + "probability": 0.9766 + }, + { + "start": 26722.42, + "end": 26724.32, + "probability": 0.9873 + }, + { + "start": 26725.36, + "end": 26727.02, + "probability": 0.6771 + }, + { + "start": 26727.24, + "end": 26728.4, + "probability": 0.9926 + }, + { + "start": 26728.72, + "end": 26729.74, + "probability": 0.7391 + }, + { + "start": 26730.18, + "end": 26732.62, + "probability": 0.995 + }, + { + "start": 26733.26, + "end": 26735.38, + "probability": 0.9782 + }, + { + "start": 26735.72, + "end": 26737.76, + "probability": 0.9645 + }, + { + "start": 26737.82, + "end": 26739.66, + "probability": 0.9973 + }, + { + "start": 26741.12, + "end": 26741.82, + "probability": 0.8994 + }, + { + "start": 26742.46, + "end": 26743.12, + "probability": 0.9575 + }, + { + "start": 26743.96, + "end": 26747.78, + "probability": 0.9783 + }, + { + "start": 26749.02, + "end": 26753.52, + "probability": 0.9988 + }, + { + "start": 26753.94, + "end": 26755.54, + "probability": 0.7332 + }, + { + "start": 26756.42, + "end": 26758.46, + "probability": 0.9836 + }, + { + "start": 26759.4, + "end": 26760.78, + "probability": 0.9305 + }, + { + "start": 26761.62, + "end": 26764.0, + "probability": 0.9863 + }, + { + "start": 26765.04, + "end": 26766.68, + "probability": 0.9582 + }, + { + "start": 26767.46, + "end": 26770.04, + "probability": 0.9954 + }, + { + "start": 26770.08, + "end": 26771.88, + "probability": 0.8504 + }, + { + "start": 26771.96, + "end": 26773.26, + "probability": 0.9694 + }, + { + "start": 26773.64, + "end": 26773.88, + "probability": 0.6167 + }, + { + "start": 26773.92, + "end": 26775.82, + "probability": 0.9976 + }, + { + "start": 26775.94, + "end": 26776.94, + "probability": 0.9863 + }, + { + "start": 26777.24, + "end": 26777.64, + "probability": 0.3629 + }, + { + "start": 26777.68, + "end": 26779.36, + "probability": 0.6 + }, + { + "start": 26779.46, + "end": 26780.54, + "probability": 0.994 + }, + { + "start": 26780.9, + "end": 26781.74, + "probability": 0.9946 + }, + { + "start": 26781.92, + "end": 26784.04, + "probability": 0.9856 + }, + { + "start": 26784.1, + "end": 26786.78, + "probability": 0.9555 + }, + { + "start": 26787.32, + "end": 26787.62, + "probability": 0.4311 + }, + { + "start": 26788.24, + "end": 26790.26, + "probability": 0.5577 + }, + { + "start": 26790.26, + "end": 26791.24, + "probability": 0.623 + }, + { + "start": 26791.84, + "end": 26792.38, + "probability": 0.8849 + }, + { + "start": 26792.7, + "end": 26793.66, + "probability": 0.8558 + }, + { + "start": 26793.68, + "end": 26796.5, + "probability": 0.9736 + }, + { + "start": 26796.62, + "end": 26798.34, + "probability": 0.8478 + }, + { + "start": 26798.4, + "end": 26800.48, + "probability": 0.6376 + }, + { + "start": 26800.52, + "end": 26801.28, + "probability": 0.9854 + }, + { + "start": 26802.04, + "end": 26804.5, + "probability": 0.998 + }, + { + "start": 26805.32, + "end": 26805.94, + "probability": 0.9077 + }, + { + "start": 26806.38, + "end": 26808.2, + "probability": 0.9943 + }, + { + "start": 26808.56, + "end": 26809.66, + "probability": 0.9953 + }, + { + "start": 26809.72, + "end": 26811.22, + "probability": 0.9072 + }, + { + "start": 26812.12, + "end": 26812.54, + "probability": 0.6232 + }, + { + "start": 26813.04, + "end": 26813.68, + "probability": 0.9946 + }, + { + "start": 26814.64, + "end": 26817.38, + "probability": 0.9328 + }, + { + "start": 26817.96, + "end": 26818.66, + "probability": 0.9561 + }, + { + "start": 26818.96, + "end": 26818.96, + "probability": 0.7567 + }, + { + "start": 26819.14, + "end": 26821.06, + "probability": 0.7692 + }, + { + "start": 26821.42, + "end": 26822.1, + "probability": 0.9656 + }, + { + "start": 26822.16, + "end": 26824.32, + "probability": 0.9954 + }, + { + "start": 26824.64, + "end": 26826.68, + "probability": 0.9003 + }, + { + "start": 26827.0, + "end": 26829.72, + "probability": 0.9119 + }, + { + "start": 26829.84, + "end": 26831.06, + "probability": 0.9626 + }, + { + "start": 26831.6, + "end": 26837.96, + "probability": 0.9858 + }, + { + "start": 26838.48, + "end": 26839.1, + "probability": 0.9651 + }, + { + "start": 26840.06, + "end": 26841.4, + "probability": 0.9435 + }, + { + "start": 26843.26, + "end": 26844.02, + "probability": 0.5577 + }, + { + "start": 26845.34, + "end": 26847.16, + "probability": 0.9456 + }, + { + "start": 26847.24, + "end": 26849.09, + "probability": 0.9583 + }, + { + "start": 26849.34, + "end": 26853.24, + "probability": 0.9535 + }, + { + "start": 26853.3, + "end": 26854.38, + "probability": 0.7845 + }, + { + "start": 26855.42, + "end": 26856.3, + "probability": 0.9161 + }, + { + "start": 26857.78, + "end": 26858.72, + "probability": 0.7675 + }, + { + "start": 26859.32, + "end": 26861.98, + "probability": 0.9192 + }, + { + "start": 26862.6, + "end": 26863.06, + "probability": 0.7935 + }, + { + "start": 26863.74, + "end": 26866.0, + "probability": 0.9593 + }, + { + "start": 26866.84, + "end": 26867.18, + "probability": 0.8584 + }, + { + "start": 26868.88, + "end": 26869.36, + "probability": 0.9495 + }, + { + "start": 26870.32, + "end": 26872.75, + "probability": 0.7329 + }, + { + "start": 26873.96, + "end": 26874.74, + "probability": 0.8411 + }, + { + "start": 26876.0, + "end": 26876.68, + "probability": 0.4418 + }, + { + "start": 26878.32, + "end": 26879.34, + "probability": 0.9948 + }, + { + "start": 26880.68, + "end": 26881.54, + "probability": 0.8264 + }, + { + "start": 26882.28, + "end": 26883.02, + "probability": 0.8278 + }, + { + "start": 26883.74, + "end": 26884.28, + "probability": 0.9288 + }, + { + "start": 26884.86, + "end": 26889.16, + "probability": 0.9647 + }, + { + "start": 26889.7, + "end": 26895.78, + "probability": 0.9932 + }, + { + "start": 26896.52, + "end": 26898.44, + "probability": 0.9975 + }, + { + "start": 26899.4, + "end": 26904.22, + "probability": 0.9987 + }, + { + "start": 26904.6, + "end": 26908.1, + "probability": 0.9802 + }, + { + "start": 26908.36, + "end": 26912.4, + "probability": 0.9944 + }, + { + "start": 26912.46, + "end": 26918.22, + "probability": 0.9966 + }, + { + "start": 26920.3, + "end": 26921.0, + "probability": 0.9534 + }, + { + "start": 26921.18, + "end": 26922.36, + "probability": 0.7885 + }, + { + "start": 26924.72, + "end": 26925.46, + "probability": 0.564 + }, + { + "start": 26926.24, + "end": 26927.08, + "probability": 0.982 + }, + { + "start": 26927.8, + "end": 26929.74, + "probability": 0.8284 + }, + { + "start": 26930.58, + "end": 26932.48, + "probability": 0.9867 + }, + { + "start": 26933.7, + "end": 26935.58, + "probability": 0.9866 + }, + { + "start": 26937.14, + "end": 26939.38, + "probability": 0.9524 + }, + { + "start": 26940.32, + "end": 26942.82, + "probability": 0.9811 + }, + { + "start": 26943.14, + "end": 26943.78, + "probability": 0.46 + }, + { + "start": 26944.54, + "end": 26944.98, + "probability": 0.4292 + }, + { + "start": 26946.22, + "end": 26946.68, + "probability": 0.5522 + }, + { + "start": 26947.68, + "end": 26950.2, + "probability": 0.8855 + }, + { + "start": 26951.24, + "end": 26952.84, + "probability": 0.9849 + }, + { + "start": 26954.24, + "end": 26959.3, + "probability": 0.8905 + }, + { + "start": 26959.44, + "end": 26962.46, + "probability": 0.9937 + }, + { + "start": 26962.52, + "end": 26965.8, + "probability": 0.9926 + }, + { + "start": 26965.88, + "end": 26966.6, + "probability": 0.8688 + }, + { + "start": 26966.68, + "end": 26967.16, + "probability": 0.9428 + }, + { + "start": 26967.86, + "end": 26972.76, + "probability": 0.993 + }, + { + "start": 26973.22, + "end": 26977.24, + "probability": 0.9969 + }, + { + "start": 26977.7, + "end": 26978.56, + "probability": 0.8193 + }, + { + "start": 26978.62, + "end": 26981.22, + "probability": 0.9811 + }, + { + "start": 26981.6, + "end": 26983.44, + "probability": 0.984 + }, + { + "start": 26983.82, + "end": 26986.56, + "probability": 0.9943 + }, + { + "start": 26986.92, + "end": 26989.51, + "probability": 0.9906 + }, + { + "start": 26990.48, + "end": 26993.14, + "probability": 0.9837 + }, + { + "start": 26994.2, + "end": 26997.12, + "probability": 0.9888 + }, + { + "start": 26999.02, + "end": 27001.9, + "probability": 0.9928 + }, + { + "start": 27001.9, + "end": 27007.22, + "probability": 0.9951 + }, + { + "start": 27008.16, + "end": 27012.68, + "probability": 0.4878 + }, + { + "start": 27013.46, + "end": 27013.8, + "probability": 0.7373 + }, + { + "start": 27014.56, + "end": 27018.7, + "probability": 0.9719 + }, + { + "start": 27019.36, + "end": 27022.96, + "probability": 0.941 + }, + { + "start": 27023.52, + "end": 27025.08, + "probability": 0.8678 + }, + { + "start": 27025.86, + "end": 27027.48, + "probability": 0.9072 + }, + { + "start": 27027.7, + "end": 27028.04, + "probability": 0.819 + }, + { + "start": 27029.32, + "end": 27030.16, + "probability": 0.9937 + }, + { + "start": 27031.44, + "end": 27035.2, + "probability": 0.9992 + }, + { + "start": 27035.2, + "end": 27037.92, + "probability": 0.9952 + }, + { + "start": 27038.68, + "end": 27038.78, + "probability": 0.2839 + }, + { + "start": 27038.84, + "end": 27040.92, + "probability": 0.9532 + }, + { + "start": 27041.52, + "end": 27042.54, + "probability": 0.7158 + }, + { + "start": 27042.54, + "end": 27044.98, + "probability": 0.9907 + }, + { + "start": 27046.82, + "end": 27047.94, + "probability": 0.2203 + }, + { + "start": 27048.28, + "end": 27048.82, + "probability": 0.8142 + }, + { + "start": 27048.9, + "end": 27050.36, + "probability": 0.979 + }, + { + "start": 27050.72, + "end": 27055.3, + "probability": 0.9409 + }, + { + "start": 27056.0, + "end": 27057.32, + "probability": 0.9544 + }, + { + "start": 27058.2, + "end": 27060.44, + "probability": 0.7589 + }, + { + "start": 27061.04, + "end": 27061.54, + "probability": 0.696 + }, + { + "start": 27061.86, + "end": 27063.76, + "probability": 0.991 + }, + { + "start": 27064.24, + "end": 27067.74, + "probability": 0.9578 + }, + { + "start": 27068.22, + "end": 27070.7, + "probability": 0.9778 + }, + { + "start": 27071.68, + "end": 27072.88, + "probability": 0.917 + }, + { + "start": 27072.96, + "end": 27076.92, + "probability": 0.8911 + }, + { + "start": 27077.0, + "end": 27077.16, + "probability": 0.7817 + }, + { + "start": 27084.16, + "end": 27086.82, + "probability": 0.6534 + }, + { + "start": 27088.02, + "end": 27088.9, + "probability": 0.3858 + }, + { + "start": 27089.92, + "end": 27091.58, + "probability": 0.4254 + }, + { + "start": 27120.9, + "end": 27122.54, + "probability": 0.6623 + }, + { + "start": 27123.02, + "end": 27124.02, + "probability": 0.6798 + }, + { + "start": 27125.08, + "end": 27128.46, + "probability": 0.9591 + }, + { + "start": 27129.56, + "end": 27136.82, + "probability": 0.9988 + }, + { + "start": 27137.6, + "end": 27145.98, + "probability": 0.8848 + }, + { + "start": 27146.58, + "end": 27149.36, + "probability": 0.9899 + }, + { + "start": 27150.46, + "end": 27153.62, + "probability": 0.9982 + }, + { + "start": 27153.86, + "end": 27155.7, + "probability": 0.9977 + }, + { + "start": 27156.48, + "end": 27158.9, + "probability": 0.9646 + }, + { + "start": 27160.24, + "end": 27164.1, + "probability": 0.9021 + }, + { + "start": 27165.49, + "end": 27166.01, + "probability": 0.3124 + }, + { + "start": 27167.9, + "end": 27169.02, + "probability": 0.7853 + }, + { + "start": 27169.62, + "end": 27170.74, + "probability": 0.7489 + }, + { + "start": 27171.36, + "end": 27173.7, + "probability": 0.7539 + }, + { + "start": 27174.72, + "end": 27177.2, + "probability": 0.6734 + }, + { + "start": 27177.74, + "end": 27180.44, + "probability": 0.9611 + }, + { + "start": 27181.14, + "end": 27184.58, + "probability": 0.9886 + }, + { + "start": 27184.8, + "end": 27185.64, + "probability": 0.8455 + }, + { + "start": 27186.22, + "end": 27189.1, + "probability": 0.9818 + }, + { + "start": 27189.64, + "end": 27191.94, + "probability": 0.9769 + }, + { + "start": 27193.3, + "end": 27196.2, + "probability": 0.9893 + }, + { + "start": 27196.48, + "end": 27198.54, + "probability": 0.9572 + }, + { + "start": 27199.14, + "end": 27202.12, + "probability": 0.9989 + }, + { + "start": 27203.18, + "end": 27203.5, + "probability": 0.9524 + }, + { + "start": 27204.52, + "end": 27210.84, + "probability": 0.9923 + }, + { + "start": 27211.48, + "end": 27212.68, + "probability": 0.9296 + }, + { + "start": 27215.59, + "end": 27219.68, + "probability": 0.9872 + }, + { + "start": 27220.64, + "end": 27223.84, + "probability": 0.8633 + }, + { + "start": 27224.92, + "end": 27226.1, + "probability": 0.9077 + }, + { + "start": 27226.9, + "end": 27228.84, + "probability": 0.9873 + }, + { + "start": 27229.92, + "end": 27232.1, + "probability": 0.7917 + }, + { + "start": 27233.34, + "end": 27234.26, + "probability": 0.7668 + }, + { + "start": 27235.04, + "end": 27239.74, + "probability": 0.9894 + }, + { + "start": 27239.82, + "end": 27240.58, + "probability": 0.8467 + }, + { + "start": 27240.6, + "end": 27241.02, + "probability": 0.4986 + }, + { + "start": 27241.08, + "end": 27243.2, + "probability": 0.7865 + }, + { + "start": 27244.08, + "end": 27245.26, + "probability": 0.9861 + }, + { + "start": 27245.36, + "end": 27247.56, + "probability": 0.9271 + }, + { + "start": 27248.32, + "end": 27250.4, + "probability": 0.9499 + }, + { + "start": 27251.66, + "end": 27254.21, + "probability": 0.9945 + }, + { + "start": 27254.9, + "end": 27256.76, + "probability": 0.9824 + }, + { + "start": 27256.9, + "end": 27259.02, + "probability": 0.9943 + }, + { + "start": 27259.18, + "end": 27264.66, + "probability": 0.9888 + }, + { + "start": 27265.38, + "end": 27266.52, + "probability": 0.7866 + }, + { + "start": 27267.5, + "end": 27269.56, + "probability": 0.7877 + }, + { + "start": 27270.24, + "end": 27273.86, + "probability": 0.9756 + }, + { + "start": 27274.0, + "end": 27275.79, + "probability": 0.7225 + }, + { + "start": 27277.24, + "end": 27278.18, + "probability": 0.8909 + }, + { + "start": 27278.88, + "end": 27279.9, + "probability": 0.8827 + }, + { + "start": 27279.98, + "end": 27281.44, + "probability": 0.9937 + }, + { + "start": 27282.44, + "end": 27285.96, + "probability": 0.813 + }, + { + "start": 27286.84, + "end": 27288.48, + "probability": 0.9594 + }, + { + "start": 27289.7, + "end": 27293.56, + "probability": 0.9692 + }, + { + "start": 27293.56, + "end": 27297.08, + "probability": 0.999 + }, + { + "start": 27297.6, + "end": 27299.68, + "probability": 0.9683 + }, + { + "start": 27300.56, + "end": 27304.68, + "probability": 0.9634 + }, + { + "start": 27305.66, + "end": 27308.24, + "probability": 0.715 + }, + { + "start": 27308.78, + "end": 27310.38, + "probability": 0.974 + }, + { + "start": 27310.92, + "end": 27313.08, + "probability": 0.8294 + }, + { + "start": 27313.14, + "end": 27315.34, + "probability": 0.778 + }, + { + "start": 27316.7, + "end": 27318.16, + "probability": 0.9304 + }, + { + "start": 27319.34, + "end": 27320.24, + "probability": 0.8545 + }, + { + "start": 27320.72, + "end": 27322.0, + "probability": 0.9746 + }, + { + "start": 27322.52, + "end": 27326.16, + "probability": 0.9919 + }, + { + "start": 27328.16, + "end": 27330.7, + "probability": 0.9971 + }, + { + "start": 27332.74, + "end": 27333.2, + "probability": 0.9574 + }, + { + "start": 27335.32, + "end": 27335.92, + "probability": 0.7628 + }, + { + "start": 27337.02, + "end": 27339.8, + "probability": 0.986 + }, + { + "start": 27340.34, + "end": 27342.26, + "probability": 0.9592 + }, + { + "start": 27342.32, + "end": 27343.44, + "probability": 0.9762 + }, + { + "start": 27344.18, + "end": 27345.78, + "probability": 0.9818 + }, + { + "start": 27346.74, + "end": 27351.64, + "probability": 0.9985 + }, + { + "start": 27352.16, + "end": 27354.72, + "probability": 0.9976 + }, + { + "start": 27355.16, + "end": 27355.86, + "probability": 0.5659 + }, + { + "start": 27356.32, + "end": 27357.86, + "probability": 0.9907 + }, + { + "start": 27358.76, + "end": 27361.78, + "probability": 0.9908 + }, + { + "start": 27361.84, + "end": 27363.49, + "probability": 0.9863 + }, + { + "start": 27364.62, + "end": 27366.44, + "probability": 0.9976 + }, + { + "start": 27367.22, + "end": 27369.32, + "probability": 0.9922 + }, + { + "start": 27369.36, + "end": 27371.38, + "probability": 0.9777 + }, + { + "start": 27371.42, + "end": 27375.2, + "probability": 0.996 + }, + { + "start": 27375.74, + "end": 27376.24, + "probability": 0.8504 + }, + { + "start": 27377.62, + "end": 27378.46, + "probability": 0.8909 + }, + { + "start": 27378.92, + "end": 27380.26, + "probability": 0.9358 + }, + { + "start": 27380.78, + "end": 27382.08, + "probability": 0.5814 + }, + { + "start": 27382.14, + "end": 27382.54, + "probability": 0.4223 + }, + { + "start": 27382.58, + "end": 27384.48, + "probability": 0.8788 + }, + { + "start": 27385.5, + "end": 27386.41, + "probability": 0.9328 + }, + { + "start": 27386.86, + "end": 27387.34, + "probability": 0.9751 + }, + { + "start": 27388.16, + "end": 27389.51, + "probability": 0.9978 + }, + { + "start": 27390.54, + "end": 27391.54, + "probability": 0.9662 + }, + { + "start": 27392.42, + "end": 27393.86, + "probability": 0.9945 + }, + { + "start": 27393.98, + "end": 27397.92, + "probability": 0.9854 + }, + { + "start": 27398.42, + "end": 27398.92, + "probability": 0.5685 + }, + { + "start": 27399.94, + "end": 27400.52, + "probability": 0.6146 + }, + { + "start": 27401.04, + "end": 27403.58, + "probability": 0.9823 + }, + { + "start": 27404.2, + "end": 27405.18, + "probability": 0.7065 + }, + { + "start": 27405.84, + "end": 27407.08, + "probability": 0.991 + }, + { + "start": 27407.12, + "end": 27409.3, + "probability": 0.9863 + }, + { + "start": 27410.02, + "end": 27410.38, + "probability": 0.9659 + }, + { + "start": 27410.86, + "end": 27413.66, + "probability": 0.9399 + }, + { + "start": 27414.16, + "end": 27416.38, + "probability": 0.9905 + }, + { + "start": 27416.46, + "end": 27417.56, + "probability": 0.8471 + }, + { + "start": 27418.14, + "end": 27419.02, + "probability": 0.7234 + }, + { + "start": 27419.42, + "end": 27420.42, + "probability": 0.9857 + }, + { + "start": 27420.76, + "end": 27421.6, + "probability": 0.8936 + }, + { + "start": 27421.62, + "end": 27424.68, + "probability": 0.9878 + }, + { + "start": 27426.12, + "end": 27428.74, + "probability": 0.9951 + }, + { + "start": 27429.12, + "end": 27429.78, + "probability": 0.739 + }, + { + "start": 27431.19, + "end": 27432.32, + "probability": 0.5306 + }, + { + "start": 27432.32, + "end": 27432.32, + "probability": 0.1672 + }, + { + "start": 27432.32, + "end": 27434.46, + "probability": 0.6895 + }, + { + "start": 27434.8, + "end": 27437.32, + "probability": 0.7116 + }, + { + "start": 27437.4, + "end": 27438.44, + "probability": 0.7095 + }, + { + "start": 27439.78, + "end": 27442.56, + "probability": 0.9688 + }, + { + "start": 27443.24, + "end": 27443.64, + "probability": 0.9629 + }, + { + "start": 27444.32, + "end": 27450.82, + "probability": 0.9946 + }, + { + "start": 27450.82, + "end": 27455.88, + "probability": 0.998 + }, + { + "start": 27456.64, + "end": 27460.72, + "probability": 0.9727 + }, + { + "start": 27461.0, + "end": 27462.22, + "probability": 0.7987 + }, + { + "start": 27462.64, + "end": 27465.92, + "probability": 0.9673 + }, + { + "start": 27468.32, + "end": 27470.14, + "probability": 0.9967 + }, + { + "start": 27470.98, + "end": 27472.96, + "probability": 0.9971 + }, + { + "start": 27474.52, + "end": 27478.0, + "probability": 0.99 + }, + { + "start": 27478.06, + "end": 27480.2, + "probability": 0.9146 + }, + { + "start": 27481.08, + "end": 27483.38, + "probability": 0.9722 + }, + { + "start": 27484.46, + "end": 27485.26, + "probability": 0.4886 + }, + { + "start": 27488.61, + "end": 27491.44, + "probability": 0.9664 + }, + { + "start": 27491.44, + "end": 27492.12, + "probability": 0.6828 + }, + { + "start": 27492.76, + "end": 27493.55, + "probability": 0.5873 + }, + { + "start": 27493.62, + "end": 27495.2, + "probability": 0.9978 + }, + { + "start": 27495.72, + "end": 27498.68, + "probability": 0.9271 + }, + { + "start": 27498.86, + "end": 27500.94, + "probability": 0.9581 + }, + { + "start": 27501.92, + "end": 27504.36, + "probability": 0.9894 + }, + { + "start": 27504.46, + "end": 27505.54, + "probability": 0.9844 + }, + { + "start": 27505.64, + "end": 27506.7, + "probability": 0.7482 + }, + { + "start": 27507.38, + "end": 27508.67, + "probability": 0.9197 + }, + { + "start": 27509.36, + "end": 27515.24, + "probability": 0.998 + }, + { + "start": 27516.3, + "end": 27519.11, + "probability": 0.6057 + }, + { + "start": 27519.82, + "end": 27520.26, + "probability": 0.9437 + }, + { + "start": 27521.58, + "end": 27523.84, + "probability": 0.9854 + }, + { + "start": 27524.9, + "end": 27526.46, + "probability": 0.8959 + }, + { + "start": 27527.24, + "end": 27527.94, + "probability": 0.9906 + }, + { + "start": 27528.24, + "end": 27529.98, + "probability": 0.9673 + }, + { + "start": 27530.72, + "end": 27532.56, + "probability": 0.9802 + }, + { + "start": 27532.94, + "end": 27534.68, + "probability": 0.9817 + }, + { + "start": 27535.34, + "end": 27536.68, + "probability": 0.9225 + }, + { + "start": 27537.86, + "end": 27540.77, + "probability": 0.99 + }, + { + "start": 27541.54, + "end": 27543.98, + "probability": 0.9959 + }, + { + "start": 27546.6, + "end": 27550.62, + "probability": 0.6615 + }, + { + "start": 27551.96, + "end": 27553.42, + "probability": 0.8522 + }, + { + "start": 27554.7, + "end": 27556.68, + "probability": 0.9275 + }, + { + "start": 27557.54, + "end": 27558.52, + "probability": 0.9435 + }, + { + "start": 27559.46, + "end": 27562.28, + "probability": 0.7883 + }, + { + "start": 27563.1, + "end": 27564.8, + "probability": 0.9814 + }, + { + "start": 27565.46, + "end": 27568.18, + "probability": 0.9833 + }, + { + "start": 27570.34, + "end": 27572.92, + "probability": 0.884 + }, + { + "start": 27574.22, + "end": 27575.56, + "probability": 0.8707 + }, + { + "start": 27577.06, + "end": 27579.04, + "probability": 0.9994 + }, + { + "start": 27579.44, + "end": 27584.92, + "probability": 0.9883 + }, + { + "start": 27586.22, + "end": 27588.44, + "probability": 0.9207 + }, + { + "start": 27588.82, + "end": 27589.4, + "probability": 0.7329 + }, + { + "start": 27590.4, + "end": 27593.24, + "probability": 0.9921 + }, + { + "start": 27594.5, + "end": 27596.24, + "probability": 0.9238 + }, + { + "start": 27596.78, + "end": 27598.02, + "probability": 0.9856 + }, + { + "start": 27598.08, + "end": 27599.6, + "probability": 0.9944 + }, + { + "start": 27599.66, + "end": 27600.82, + "probability": 0.9377 + }, + { + "start": 27602.28, + "end": 27603.65, + "probability": 0.8967 + }, + { + "start": 27605.88, + "end": 27606.88, + "probability": 0.8468 + }, + { + "start": 27607.52, + "end": 27608.38, + "probability": 0.9741 + }, + { + "start": 27610.38, + "end": 27611.4, + "probability": 0.9756 + }, + { + "start": 27612.54, + "end": 27618.58, + "probability": 0.9859 + }, + { + "start": 27619.38, + "end": 27620.52, + "probability": 0.9688 + }, + { + "start": 27621.04, + "end": 27623.0, + "probability": 0.9922 + }, + { + "start": 27624.08, + "end": 27625.4, + "probability": 0.8721 + }, + { + "start": 27626.42, + "end": 27627.98, + "probability": 0.9619 + }, + { + "start": 27628.5, + "end": 27629.78, + "probability": 0.9422 + }, + { + "start": 27629.96, + "end": 27630.92, + "probability": 0.9568 + }, + { + "start": 27631.3, + "end": 27631.78, + "probability": 0.3662 + }, + { + "start": 27631.92, + "end": 27633.8, + "probability": 0.9351 + }, + { + "start": 27633.94, + "end": 27635.46, + "probability": 0.8683 + }, + { + "start": 27636.18, + "end": 27637.54, + "probability": 0.916 + }, + { + "start": 27637.64, + "end": 27638.42, + "probability": 0.917 + }, + { + "start": 27639.98, + "end": 27640.94, + "probability": 0.8473 + }, + { + "start": 27641.04, + "end": 27641.72, + "probability": 0.9332 + }, + { + "start": 27641.78, + "end": 27645.16, + "probability": 0.9944 + }, + { + "start": 27645.3, + "end": 27645.76, + "probability": 0.7183 + }, + { + "start": 27646.38, + "end": 27648.2, + "probability": 0.9811 + }, + { + "start": 27648.76, + "end": 27650.5, + "probability": 0.977 + }, + { + "start": 27651.3, + "end": 27654.28, + "probability": 0.9631 + }, + { + "start": 27654.98, + "end": 27655.71, + "probability": 0.997 + }, + { + "start": 27656.88, + "end": 27660.24, + "probability": 0.9767 + }, + { + "start": 27660.6, + "end": 27661.8, + "probability": 0.9412 + }, + { + "start": 27664.32, + "end": 27666.12, + "probability": 0.9463 + }, + { + "start": 27666.74, + "end": 27671.42, + "probability": 0.9959 + }, + { + "start": 27673.02, + "end": 27675.98, + "probability": 0.958 + }, + { + "start": 27676.72, + "end": 27681.56, + "probability": 0.9923 + }, + { + "start": 27684.26, + "end": 27691.96, + "probability": 0.9987 + }, + { + "start": 27692.46, + "end": 27693.7, + "probability": 0.9919 + }, + { + "start": 27694.68, + "end": 27697.34, + "probability": 0.9956 + }, + { + "start": 27698.3, + "end": 27700.66, + "probability": 0.8853 + }, + { + "start": 27701.8, + "end": 27705.46, + "probability": 0.96 + }, + { + "start": 27705.46, + "end": 27710.14, + "probability": 0.9838 + }, + { + "start": 27710.96, + "end": 27712.46, + "probability": 0.9673 + }, + { + "start": 27713.4, + "end": 27716.5, + "probability": 0.9639 + }, + { + "start": 27716.58, + "end": 27718.48, + "probability": 0.9347 + }, + { + "start": 27719.16, + "end": 27721.98, + "probability": 0.9257 + }, + { + "start": 27722.08, + "end": 27724.12, + "probability": 0.9635 + }, + { + "start": 27724.52, + "end": 27727.3, + "probability": 0.995 + }, + { + "start": 27727.86, + "end": 27730.56, + "probability": 0.9257 + }, + { + "start": 27732.24, + "end": 27735.28, + "probability": 0.9984 + }, + { + "start": 27735.28, + "end": 27740.6, + "probability": 0.997 + }, + { + "start": 27741.08, + "end": 27743.92, + "probability": 0.9164 + }, + { + "start": 27745.06, + "end": 27749.0, + "probability": 0.9402 + }, + { + "start": 27749.96, + "end": 27753.04, + "probability": 0.981 + }, + { + "start": 27753.52, + "end": 27757.88, + "probability": 0.9821 + }, + { + "start": 27758.48, + "end": 27762.2, + "probability": 0.9531 + }, + { + "start": 27764.64, + "end": 27768.26, + "probability": 0.9943 + }, + { + "start": 27768.58, + "end": 27772.98, + "probability": 0.9821 + }, + { + "start": 27773.44, + "end": 27779.4, + "probability": 0.9813 + }, + { + "start": 27779.4, + "end": 27786.26, + "probability": 0.999 + }, + { + "start": 27787.04, + "end": 27790.4, + "probability": 0.9578 + }, + { + "start": 27790.46, + "end": 27791.7, + "probability": 0.8362 + }, + { + "start": 27791.9, + "end": 27793.96, + "probability": 0.9744 + }, + { + "start": 27794.48, + "end": 27797.72, + "probability": 0.9995 + }, + { + "start": 27797.74, + "end": 27802.08, + "probability": 0.9958 + }, + { + "start": 27803.84, + "end": 27808.9, + "probability": 0.9972 + }, + { + "start": 27808.9, + "end": 27812.6, + "probability": 0.9968 + }, + { + "start": 27812.68, + "end": 27814.38, + "probability": 0.6537 + }, + { + "start": 27815.18, + "end": 27817.28, + "probability": 0.9858 + }, + { + "start": 27817.28, + "end": 27821.72, + "probability": 0.9983 + }, + { + "start": 27821.84, + "end": 27822.66, + "probability": 0.7948 + }, + { + "start": 27822.86, + "end": 27823.4, + "probability": 0.9099 + }, + { + "start": 27825.58, + "end": 27826.16, + "probability": 0.9237 + }, + { + "start": 27826.32, + "end": 27832.14, + "probability": 0.8604 + }, + { + "start": 27832.24, + "end": 27833.28, + "probability": 0.8741 + }, + { + "start": 27834.3, + "end": 27835.5, + "probability": 0.8325 + }, + { + "start": 27836.36, + "end": 27839.96, + "probability": 0.9963 + }, + { + "start": 27840.46, + "end": 27844.62, + "probability": 0.9373 + }, + { + "start": 27845.18, + "end": 27848.02, + "probability": 0.9733 + }, + { + "start": 27849.44, + "end": 27849.92, + "probability": 0.5686 + }, + { + "start": 27850.0, + "end": 27854.18, + "probability": 0.9615 + }, + { + "start": 27855.18, + "end": 27859.48, + "probability": 0.9004 + }, + { + "start": 27860.38, + "end": 27863.4, + "probability": 0.925 + }, + { + "start": 27864.26, + "end": 27868.28, + "probability": 0.9951 + }, + { + "start": 27868.82, + "end": 27871.02, + "probability": 0.8968 + }, + { + "start": 27871.12, + "end": 27871.64, + "probability": 0.8967 + }, + { + "start": 27871.82, + "end": 27872.3, + "probability": 0.9452 + }, + { + "start": 27872.32, + "end": 27873.56, + "probability": 0.8426 + }, + { + "start": 27874.3, + "end": 27878.48, + "probability": 0.9593 + }, + { + "start": 27878.48, + "end": 27882.48, + "probability": 0.9996 + }, + { + "start": 27883.04, + "end": 27886.24, + "probability": 0.9827 + }, + { + "start": 27886.72, + "end": 27890.92, + "probability": 0.9517 + }, + { + "start": 27891.64, + "end": 27895.54, + "probability": 0.9948 + }, + { + "start": 27896.0, + "end": 27900.06, + "probability": 0.9787 + }, + { + "start": 27901.28, + "end": 27906.3, + "probability": 0.9939 + }, + { + "start": 27906.3, + "end": 27911.86, + "probability": 0.998 + }, + { + "start": 27912.36, + "end": 27913.48, + "probability": 0.8651 + }, + { + "start": 27913.72, + "end": 27918.82, + "probability": 0.9845 + }, + { + "start": 27919.92, + "end": 27923.92, + "probability": 0.9757 + }, + { + "start": 27924.48, + "end": 27929.12, + "probability": 0.9983 + }, + { + "start": 27929.64, + "end": 27931.7, + "probability": 0.9447 + }, + { + "start": 27931.78, + "end": 27935.42, + "probability": 0.8895 + }, + { + "start": 27936.12, + "end": 27938.8, + "probability": 0.8316 + }, + { + "start": 27939.22, + "end": 27943.24, + "probability": 0.961 + }, + { + "start": 27943.9, + "end": 27950.54, + "probability": 0.8054 + }, + { + "start": 27951.12, + "end": 27953.34, + "probability": 0.9788 + }, + { + "start": 27953.86, + "end": 27957.46, + "probability": 0.9804 + }, + { + "start": 27957.46, + "end": 27961.62, + "probability": 0.9771 + }, + { + "start": 27963.2, + "end": 27965.76, + "probability": 0.9846 + }, + { + "start": 27965.84, + "end": 27967.78, + "probability": 0.7979 + }, + { + "start": 27968.44, + "end": 27972.62, + "probability": 0.952 + }, + { + "start": 27973.32, + "end": 27979.02, + "probability": 0.977 + }, + { + "start": 27979.54, + "end": 27981.26, + "probability": 0.8996 + }, + { + "start": 27981.4, + "end": 27986.08, + "probability": 0.9732 + }, + { + "start": 27986.6, + "end": 27990.02, + "probability": 0.9501 + }, + { + "start": 27990.6, + "end": 27993.52, + "probability": 0.9551 + }, + { + "start": 27994.1, + "end": 27999.48, + "probability": 0.9883 + }, + { + "start": 28000.16, + "end": 28003.82, + "probability": 0.9146 + }, + { + "start": 28003.82, + "end": 28008.46, + "probability": 0.9978 + }, + { + "start": 28010.36, + "end": 28013.48, + "probability": 0.9944 + }, + { + "start": 28013.9, + "end": 28015.44, + "probability": 0.9922 + }, + { + "start": 28017.34, + "end": 28020.88, + "probability": 0.986 + }, + { + "start": 28021.04, + "end": 28023.06, + "probability": 0.9006 + }, + { + "start": 28023.24, + "end": 28024.8, + "probability": 0.9554 + }, + { + "start": 28025.26, + "end": 28027.76, + "probability": 0.9974 + }, + { + "start": 28027.9, + "end": 28030.16, + "probability": 0.9835 + }, + { + "start": 28030.68, + "end": 28034.16, + "probability": 0.7897 + }, + { + "start": 28035.02, + "end": 28039.82, + "probability": 0.9398 + }, + { + "start": 28040.4, + "end": 28045.02, + "probability": 0.959 + }, + { + "start": 28045.3, + "end": 28048.02, + "probability": 0.9965 + }, + { + "start": 28048.68, + "end": 28053.02, + "probability": 0.987 + }, + { + "start": 28053.56, + "end": 28056.36, + "probability": 0.9641 + }, + { + "start": 28056.6, + "end": 28059.12, + "probability": 0.9766 + }, + { + "start": 28059.76, + "end": 28060.62, + "probability": 0.9609 + }, + { + "start": 28061.84, + "end": 28065.0, + "probability": 0.9961 + }, + { + "start": 28065.66, + "end": 28067.5, + "probability": 0.9531 + }, + { + "start": 28067.9, + "end": 28071.64, + "probability": 0.9922 + }, + { + "start": 28071.64, + "end": 28075.22, + "probability": 0.9984 + }, + { + "start": 28075.64, + "end": 28080.52, + "probability": 0.9778 + }, + { + "start": 28080.52, + "end": 28087.14, + "probability": 0.9948 + }, + { + "start": 28087.78, + "end": 28089.62, + "probability": 0.9854 + }, + { + "start": 28090.46, + "end": 28092.42, + "probability": 0.989 + }, + { + "start": 28093.24, + "end": 28096.94, + "probability": 0.9945 + }, + { + "start": 28097.44, + "end": 28100.44, + "probability": 0.964 + }, + { + "start": 28100.68, + "end": 28105.86, + "probability": 0.9689 + }, + { + "start": 28106.48, + "end": 28109.36, + "probability": 0.9932 + }, + { + "start": 28110.94, + "end": 28113.22, + "probability": 0.9806 + }, + { + "start": 28114.16, + "end": 28116.16, + "probability": 0.9284 + }, + { + "start": 28116.88, + "end": 28120.52, + "probability": 0.994 + }, + { + "start": 28120.84, + "end": 28121.5, + "probability": 0.7389 + }, + { + "start": 28121.66, + "end": 28123.5, + "probability": 0.701 + }, + { + "start": 28124.18, + "end": 28128.96, + "probability": 0.9832 + }, + { + "start": 28129.54, + "end": 28132.32, + "probability": 0.9736 + }, + { + "start": 28132.62, + "end": 28137.32, + "probability": 0.993 + }, + { + "start": 28138.16, + "end": 28140.92, + "probability": 0.9618 + }, + { + "start": 28140.92, + "end": 28144.56, + "probability": 0.9657 + }, + { + "start": 28144.94, + "end": 28148.62, + "probability": 0.9928 + }, + { + "start": 28148.62, + "end": 28152.4, + "probability": 0.9971 + }, + { + "start": 28153.0, + "end": 28154.22, + "probability": 0.8339 + }, + { + "start": 28155.42, + "end": 28160.42, + "probability": 0.9863 + }, + { + "start": 28160.82, + "end": 28162.74, + "probability": 0.9342 + }, + { + "start": 28163.12, + "end": 28165.46, + "probability": 0.8076 + }, + { + "start": 28166.08, + "end": 28170.1, + "probability": 0.9976 + }, + { + "start": 28170.52, + "end": 28174.18, + "probability": 0.9942 + }, + { + "start": 28174.18, + "end": 28177.36, + "probability": 0.9983 + }, + { + "start": 28178.22, + "end": 28180.78, + "probability": 0.9877 + }, + { + "start": 28180.78, + "end": 28184.04, + "probability": 0.9993 + }, + { + "start": 28184.68, + "end": 28185.6, + "probability": 0.7576 + }, + { + "start": 28186.12, + "end": 28189.96, + "probability": 0.9957 + }, + { + "start": 28191.78, + "end": 28193.58, + "probability": 0.9045 + }, + { + "start": 28193.72, + "end": 28195.8, + "probability": 0.9288 + }, + { + "start": 28195.88, + "end": 28199.72, + "probability": 0.9884 + }, + { + "start": 28200.18, + "end": 28203.66, + "probability": 0.978 + }, + { + "start": 28203.66, + "end": 28206.92, + "probability": 0.9925 + }, + { + "start": 28207.76, + "end": 28212.0, + "probability": 0.9945 + }, + { + "start": 28212.48, + "end": 28216.48, + "probability": 0.8354 + }, + { + "start": 28217.16, + "end": 28219.78, + "probability": 0.986 + }, + { + "start": 28220.6, + "end": 28222.66, + "probability": 0.9875 + }, + { + "start": 28223.22, + "end": 28228.4, + "probability": 0.947 + }, + { + "start": 28229.16, + "end": 28229.34, + "probability": 0.5479 + }, + { + "start": 28229.46, + "end": 28229.84, + "probability": 0.9002 + }, + { + "start": 28230.04, + "end": 28233.96, + "probability": 0.9976 + }, + { + "start": 28234.4, + "end": 28237.42, + "probability": 0.979 + }, + { + "start": 28238.38, + "end": 28242.78, + "probability": 0.9931 + }, + { + "start": 28243.66, + "end": 28246.72, + "probability": 0.9452 + }, + { + "start": 28247.16, + "end": 28250.62, + "probability": 0.9956 + }, + { + "start": 28250.62, + "end": 28254.06, + "probability": 0.9963 + }, + { + "start": 28255.58, + "end": 28260.34, + "probability": 0.9943 + }, + { + "start": 28260.8, + "end": 28266.48, + "probability": 0.9971 + }, + { + "start": 28266.48, + "end": 28271.0, + "probability": 0.9989 + }, + { + "start": 28271.8, + "end": 28275.1, + "probability": 0.9985 + }, + { + "start": 28275.1, + "end": 28278.18, + "probability": 0.9969 + }, + { + "start": 28282.8, + "end": 28285.78, + "probability": 0.927 + }, + { + "start": 28285.86, + "end": 28289.92, + "probability": 0.9561 + }, + { + "start": 28290.38, + "end": 28291.82, + "probability": 0.8405 + }, + { + "start": 28291.9, + "end": 28296.32, + "probability": 0.9742 + }, + { + "start": 28297.08, + "end": 28299.56, + "probability": 0.9205 + }, + { + "start": 28300.32, + "end": 28303.58, + "probability": 0.9924 + }, + { + "start": 28303.62, + "end": 28307.8, + "probability": 0.9966 + }, + { + "start": 28308.76, + "end": 28310.9, + "probability": 0.9668 + }, + { + "start": 28311.12, + "end": 28313.74, + "probability": 0.9951 + }, + { + "start": 28314.68, + "end": 28318.0, + "probability": 0.8413 + }, + { + "start": 28318.54, + "end": 28320.82, + "probability": 0.9743 + }, + { + "start": 28323.02, + "end": 28328.5, + "probability": 0.9884 + }, + { + "start": 28328.5, + "end": 28333.2, + "probability": 0.964 + }, + { + "start": 28333.62, + "end": 28336.26, + "probability": 0.9814 + }, + { + "start": 28336.26, + "end": 28341.02, + "probability": 0.9995 + }, + { + "start": 28342.08, + "end": 28345.5, + "probability": 0.9974 + }, + { + "start": 28346.08, + "end": 28348.66, + "probability": 0.9973 + }, + { + "start": 28348.72, + "end": 28354.14, + "probability": 0.9802 + }, + { + "start": 28354.14, + "end": 28359.52, + "probability": 0.9994 + }, + { + "start": 28360.2, + "end": 28363.14, + "probability": 0.8879 + }, + { + "start": 28363.92, + "end": 28367.28, + "probability": 0.867 + }, + { + "start": 28367.8, + "end": 28373.5, + "probability": 0.9866 + }, + { + "start": 28373.94, + "end": 28378.08, + "probability": 0.9705 + }, + { + "start": 28378.48, + "end": 28381.36, + "probability": 0.9944 + }, + { + "start": 28381.78, + "end": 28386.96, + "probability": 0.9989 + }, + { + "start": 28387.62, + "end": 28391.72, + "probability": 0.9943 + }, + { + "start": 28391.74, + "end": 28394.3, + "probability": 0.9963 + }, + { + "start": 28395.0, + "end": 28395.46, + "probability": 0.4067 + }, + { + "start": 28395.64, + "end": 28397.6, + "probability": 0.9191 + }, + { + "start": 28398.1, + "end": 28398.62, + "probability": 0.4975 + }, + { + "start": 28399.12, + "end": 28401.24, + "probability": 0.9402 + }, + { + "start": 28401.42, + "end": 28407.2, + "probability": 0.9859 + }, + { + "start": 28407.68, + "end": 28410.48, + "probability": 0.9848 + }, + { + "start": 28410.6, + "end": 28412.1, + "probability": 0.8624 + }, + { + "start": 28412.86, + "end": 28415.44, + "probability": 0.9085 + }, + { + "start": 28415.58, + "end": 28416.7, + "probability": 0.429 + }, + { + "start": 28416.82, + "end": 28417.18, + "probability": 0.5983 + }, + { + "start": 28417.32, + "end": 28422.32, + "probability": 0.981 + }, + { + "start": 28422.82, + "end": 28427.78, + "probability": 0.967 + }, + { + "start": 28429.16, + "end": 28432.62, + "probability": 0.9915 + }, + { + "start": 28433.94, + "end": 28438.5, + "probability": 0.9763 + }, + { + "start": 28439.1, + "end": 28441.9, + "probability": 0.8428 + }, + { + "start": 28442.8, + "end": 28446.46, + "probability": 0.9855 + }, + { + "start": 28447.14, + "end": 28448.14, + "probability": 0.8604 + }, + { + "start": 28448.2, + "end": 28453.58, + "probability": 0.9971 + }, + { + "start": 28454.72, + "end": 28459.76, + "probability": 0.9987 + }, + { + "start": 28460.52, + "end": 28461.98, + "probability": 0.7217 + }, + { + "start": 28462.28, + "end": 28464.92, + "probability": 0.8539 + }, + { + "start": 28465.46, + "end": 28467.0, + "probability": 0.9779 + }, + { + "start": 28467.2, + "end": 28471.72, + "probability": 0.9944 + }, + { + "start": 28480.3, + "end": 28485.48, + "probability": 0.8716 + }, + { + "start": 28487.18, + "end": 28488.06, + "probability": 0.5183 + }, + { + "start": 28489.36, + "end": 28492.3, + "probability": 0.9966 + }, + { + "start": 28492.68, + "end": 28494.12, + "probability": 0.9934 + }, + { + "start": 28494.6, + "end": 28496.72, + "probability": 0.9928 + }, + { + "start": 28496.72, + "end": 28500.12, + "probability": 0.8762 + }, + { + "start": 28500.88, + "end": 28503.06, + "probability": 0.9993 + }, + { + "start": 28503.74, + "end": 28505.68, + "probability": 0.8541 + }, + { + "start": 28506.14, + "end": 28508.18, + "probability": 0.9949 + }, + { + "start": 28508.86, + "end": 28514.06, + "probability": 0.9918 + }, + { + "start": 28514.84, + "end": 28517.6, + "probability": 0.9976 + }, + { + "start": 28517.6, + "end": 28521.9, + "probability": 0.9921 + }, + { + "start": 28522.36, + "end": 28522.66, + "probability": 0.8713 + }, + { + "start": 28523.22, + "end": 28525.26, + "probability": 0.9938 + }, + { + "start": 28526.7, + "end": 28530.06, + "probability": 0.9863 + }, + { + "start": 28531.38, + "end": 28533.6, + "probability": 0.9907 + }, + { + "start": 28533.66, + "end": 28535.52, + "probability": 0.9688 + }, + { + "start": 28536.1, + "end": 28539.72, + "probability": 0.9918 + }, + { + "start": 28539.72, + "end": 28544.32, + "probability": 0.9017 + }, + { + "start": 28544.84, + "end": 28547.34, + "probability": 0.8147 + }, + { + "start": 28547.96, + "end": 28548.86, + "probability": 0.96 + }, + { + "start": 28549.5, + "end": 28550.46, + "probability": 0.9828 + }, + { + "start": 28551.36, + "end": 28557.0, + "probability": 0.994 + }, + { + "start": 28557.66, + "end": 28559.64, + "probability": 0.9963 + }, + { + "start": 28559.86, + "end": 28562.06, + "probability": 0.9315 + }, + { + "start": 28562.78, + "end": 28568.48, + "probability": 0.9889 + }, + { + "start": 28569.14, + "end": 28569.96, + "probability": 0.7787 + }, + { + "start": 28570.16, + "end": 28570.68, + "probability": 0.9217 + }, + { + "start": 28571.02, + "end": 28574.74, + "probability": 0.9295 + }, + { + "start": 28575.16, + "end": 28577.72, + "probability": 0.9957 + }, + { + "start": 28578.58, + "end": 28581.7, + "probability": 0.9836 + }, + { + "start": 28581.7, + "end": 28584.94, + "probability": 0.999 + }, + { + "start": 28585.76, + "end": 28586.3, + "probability": 0.8643 + }, + { + "start": 28586.52, + "end": 28587.12, + "probability": 0.9529 + }, + { + "start": 28587.48, + "end": 28589.9, + "probability": 0.9816 + }, + { + "start": 28589.92, + "end": 28592.64, + "probability": 0.8521 + }, + { + "start": 28593.44, + "end": 28595.36, + "probability": 0.9724 + }, + { + "start": 28595.94, + "end": 28598.68, + "probability": 0.9919 + }, + { + "start": 28598.74, + "end": 28599.86, + "probability": 0.776 + }, + { + "start": 28600.34, + "end": 28605.52, + "probability": 0.995 + }, + { + "start": 28606.92, + "end": 28607.74, + "probability": 0.7566 + }, + { + "start": 28608.06, + "end": 28609.4, + "probability": 0.9726 + }, + { + "start": 28609.54, + "end": 28613.36, + "probability": 0.9851 + }, + { + "start": 28614.1, + "end": 28617.5, + "probability": 0.9408 + }, + { + "start": 28617.92, + "end": 28619.22, + "probability": 0.9341 + }, + { + "start": 28619.66, + "end": 28621.84, + "probability": 0.9782 + }, + { + "start": 28622.54, + "end": 28623.12, + "probability": 0.9221 + }, + { + "start": 28623.48, + "end": 28628.8, + "probability": 0.9282 + }, + { + "start": 28629.42, + "end": 28630.06, + "probability": 0.8159 + }, + { + "start": 28630.58, + "end": 28633.04, + "probability": 0.9313 + }, + { + "start": 28634.16, + "end": 28635.5, + "probability": 0.9717 + }, + { + "start": 28636.1, + "end": 28640.68, + "probability": 0.9937 + }, + { + "start": 28641.0, + "end": 28642.58, + "probability": 0.9935 + }, + { + "start": 28643.0, + "end": 28644.24, + "probability": 0.9816 + }, + { + "start": 28644.28, + "end": 28649.92, + "probability": 0.9922 + }, + { + "start": 28650.84, + "end": 28652.56, + "probability": 0.7255 + }, + { + "start": 28653.3, + "end": 28654.68, + "probability": 0.9045 + }, + { + "start": 28654.74, + "end": 28655.66, + "probability": 0.9844 + }, + { + "start": 28655.72, + "end": 28659.34, + "probability": 0.9611 + }, + { + "start": 28659.5, + "end": 28664.4, + "probability": 0.995 + }, + { + "start": 28665.26, + "end": 28665.8, + "probability": 0.5534 + }, + { + "start": 28666.1, + "end": 28667.3, + "probability": 0.8481 + }, + { + "start": 28667.38, + "end": 28669.3, + "probability": 0.9961 + }, + { + "start": 28669.96, + "end": 28672.48, + "probability": 0.971 + }, + { + "start": 28672.9, + "end": 28674.74, + "probability": 0.9976 + }, + { + "start": 28675.84, + "end": 28682.04, + "probability": 0.9744 + }, + { + "start": 28683.34, + "end": 28687.22, + "probability": 0.9838 + }, + { + "start": 28687.9, + "end": 28690.54, + "probability": 0.9761 + }, + { + "start": 28691.24, + "end": 28694.36, + "probability": 0.9892 + }, + { + "start": 28694.8, + "end": 28698.4, + "probability": 0.9172 + }, + { + "start": 28698.9, + "end": 28704.06, + "probability": 0.9406 + }, + { + "start": 28704.92, + "end": 28706.88, + "probability": 0.9976 + }, + { + "start": 28707.4, + "end": 28711.44, + "probability": 0.9854 + }, + { + "start": 28711.96, + "end": 28714.48, + "probability": 0.9754 + }, + { + "start": 28715.12, + "end": 28716.06, + "probability": 0.9355 + }, + { + "start": 28716.72, + "end": 28719.8, + "probability": 0.9987 + }, + { + "start": 28720.38, + "end": 28721.28, + "probability": 0.4941 + }, + { + "start": 28721.72, + "end": 28722.72, + "probability": 0.9129 + }, + { + "start": 28723.1, + "end": 28726.44, + "probability": 0.9891 + }, + { + "start": 28726.94, + "end": 28727.84, + "probability": 0.6396 + }, + { + "start": 28728.22, + "end": 28728.54, + "probability": 0.9629 + }, + { + "start": 28730.72, + "end": 28735.04, + "probability": 0.991 + }, + { + "start": 28735.62, + "end": 28737.02, + "probability": 0.7846 + }, + { + "start": 28737.24, + "end": 28739.0, + "probability": 0.8382 + }, + { + "start": 28739.46, + "end": 28743.96, + "probability": 0.9788 + }, + { + "start": 28744.86, + "end": 28745.92, + "probability": 0.8812 + }, + { + "start": 28746.1, + "end": 28746.66, + "probability": 0.7729 + }, + { + "start": 28746.78, + "end": 28747.26, + "probability": 0.4735 + }, + { + "start": 28747.36, + "end": 28749.44, + "probability": 0.9977 + }, + { + "start": 28750.18, + "end": 28752.37, + "probability": 0.9963 + }, + { + "start": 28753.82, + "end": 28756.06, + "probability": 0.8537 + }, + { + "start": 28756.7, + "end": 28758.52, + "probability": 0.9427 + }, + { + "start": 28759.16, + "end": 28765.4, + "probability": 0.8884 + }, + { + "start": 28766.16, + "end": 28769.84, + "probability": 0.9771 + }, + { + "start": 28771.74, + "end": 28774.34, + "probability": 0.9888 + }, + { + "start": 28774.46, + "end": 28774.82, + "probability": 0.5843 + }, + { + "start": 28775.0, + "end": 28777.84, + "probability": 0.9836 + }, + { + "start": 28778.5, + "end": 28780.52, + "probability": 0.9941 + }, + { + "start": 28781.16, + "end": 28783.14, + "probability": 0.6303 + }, + { + "start": 28783.68, + "end": 28789.16, + "probability": 0.9079 + }, + { + "start": 28789.66, + "end": 28792.0, + "probability": 0.9985 + }, + { + "start": 28792.22, + "end": 28794.64, + "probability": 0.9323 + }, + { + "start": 28795.14, + "end": 28797.1, + "probability": 0.8784 + }, + { + "start": 28797.72, + "end": 28799.94, + "probability": 0.9929 + }, + { + "start": 28800.58, + "end": 28805.68, + "probability": 0.9465 + }, + { + "start": 28806.16, + "end": 28807.04, + "probability": 0.9591 + }, + { + "start": 28807.44, + "end": 28810.58, + "probability": 0.9933 + }, + { + "start": 28811.22, + "end": 28815.14, + "probability": 0.9945 + }, + { + "start": 28816.74, + "end": 28820.08, + "probability": 0.9922 + }, + { + "start": 28820.72, + "end": 28821.58, + "probability": 0.97 + }, + { + "start": 28822.04, + "end": 28824.0, + "probability": 0.999 + }, + { + "start": 28824.46, + "end": 28826.98, + "probability": 0.9971 + }, + { + "start": 28827.78, + "end": 28832.58, + "probability": 0.901 + }, + { + "start": 28833.0, + "end": 28837.98, + "probability": 0.9914 + }, + { + "start": 28838.44, + "end": 28843.08, + "probability": 0.9943 + }, + { + "start": 28843.08, + "end": 28848.92, + "probability": 0.9955 + }, + { + "start": 28849.6, + "end": 28853.1, + "probability": 0.9683 + }, + { + "start": 28854.58, + "end": 28857.26, + "probability": 0.9976 + }, + { + "start": 28857.72, + "end": 28860.62, + "probability": 0.9852 + }, + { + "start": 28860.66, + "end": 28861.38, + "probability": 0.7094 + }, + { + "start": 28862.26, + "end": 28863.74, + "probability": 0.6449 + }, + { + "start": 28864.34, + "end": 28866.96, + "probability": 0.9083 + }, + { + "start": 28867.14, + "end": 28868.44, + "probability": 0.9656 + }, + { + "start": 28869.0, + "end": 28871.02, + "probability": 0.9675 + }, + { + "start": 28871.8, + "end": 28875.4, + "probability": 0.9916 + }, + { + "start": 28875.52, + "end": 28878.81, + "probability": 0.9414 + }, + { + "start": 28879.86, + "end": 28881.02, + "probability": 0.9639 + }, + { + "start": 28881.56, + "end": 28884.14, + "probability": 0.9894 + }, + { + "start": 28884.98, + "end": 28887.64, + "probability": 0.9629 + }, + { + "start": 28887.64, + "end": 28891.66, + "probability": 0.9865 + }, + { + "start": 28892.36, + "end": 28895.96, + "probability": 0.9968 + }, + { + "start": 28896.34, + "end": 28900.4, + "probability": 0.9911 + }, + { + "start": 28900.98, + "end": 28901.48, + "probability": 0.8986 + }, + { + "start": 28902.04, + "end": 28904.26, + "probability": 0.9807 + }, + { + "start": 28905.26, + "end": 28905.36, + "probability": 0.4679 + }, + { + "start": 28905.5, + "end": 28908.77, + "probability": 0.9854 + }, + { + "start": 28909.18, + "end": 28911.38, + "probability": 0.9889 + }, + { + "start": 28911.86, + "end": 28913.84, + "probability": 0.9299 + }, + { + "start": 28914.22, + "end": 28917.04, + "probability": 0.8679 + }, + { + "start": 28917.44, + "end": 28920.07, + "probability": 0.9795 + }, + { + "start": 28920.56, + "end": 28922.38, + "probability": 0.9668 + }, + { + "start": 28922.78, + "end": 28924.76, + "probability": 0.9075 + }, + { + "start": 28925.2, + "end": 28925.36, + "probability": 0.624 + }, + { + "start": 28925.44, + "end": 28925.98, + "probability": 0.5357 + }, + { + "start": 28926.48, + "end": 28927.18, + "probability": 0.9224 + }, + { + "start": 28927.68, + "end": 28929.64, + "probability": 0.7849 + }, + { + "start": 28930.36, + "end": 28931.66, + "probability": 0.9729 + }, + { + "start": 28932.26, + "end": 28933.52, + "probability": 0.9068 + }, + { + "start": 28934.22, + "end": 28935.18, + "probability": 0.9824 + }, + { + "start": 28937.98, + "end": 28941.57, + "probability": 0.849 + }, + { + "start": 28955.22, + "end": 28955.22, + "probability": 0.0659 + }, + { + "start": 28955.22, + "end": 28956.69, + "probability": 0.9843 + }, + { + "start": 28960.5, + "end": 28963.28, + "probability": 0.7682 + }, + { + "start": 28963.58, + "end": 28966.22, + "probability": 0.955 + }, + { + "start": 28966.32, + "end": 28969.94, + "probability": 0.9905 + }, + { + "start": 28970.76, + "end": 28973.26, + "probability": 0.9928 + }, + { + "start": 28973.92, + "end": 28977.12, + "probability": 0.9475 + }, + { + "start": 28977.24, + "end": 28978.46, + "probability": 0.998 + }, + { + "start": 28978.56, + "end": 28979.62, + "probability": 0.9429 + }, + { + "start": 28980.06, + "end": 28982.22, + "probability": 0.9914 + }, + { + "start": 28983.66, + "end": 28985.2, + "probability": 0.9115 + }, + { + "start": 28985.44, + "end": 28986.7, + "probability": 0.9839 + }, + { + "start": 28986.94, + "end": 28988.88, + "probability": 0.9883 + }, + { + "start": 28989.52, + "end": 28991.43, + "probability": 0.9902 + }, + { + "start": 28991.52, + "end": 28997.78, + "probability": 0.9733 + }, + { + "start": 28998.44, + "end": 29000.76, + "probability": 0.9439 + }, + { + "start": 29001.4, + "end": 29002.88, + "probability": 0.9922 + }, + { + "start": 29003.02, + "end": 29004.09, + "probability": 0.8343 + }, + { + "start": 29004.76, + "end": 29005.7, + "probability": 0.9349 + }, + { + "start": 29005.8, + "end": 29007.02, + "probability": 0.8857 + }, + { + "start": 29007.44, + "end": 29008.9, + "probability": 0.835 + }, + { + "start": 29009.52, + "end": 29013.72, + "probability": 0.9928 + }, + { + "start": 29014.18, + "end": 29015.34, + "probability": 0.9636 + }, + { + "start": 29015.76, + "end": 29017.46, + "probability": 0.9976 + }, + { + "start": 29017.96, + "end": 29019.3, + "probability": 0.9702 + }, + { + "start": 29020.08, + "end": 29023.16, + "probability": 0.9111 + }, + { + "start": 29023.7, + "end": 29026.64, + "probability": 0.9496 + }, + { + "start": 29027.36, + "end": 29031.18, + "probability": 0.9532 + }, + { + "start": 29031.76, + "end": 29032.82, + "probability": 0.7089 + }, + { + "start": 29032.9, + "end": 29034.28, + "probability": 0.957 + }, + { + "start": 29034.42, + "end": 29038.94, + "probability": 0.9503 + }, + { + "start": 29039.44, + "end": 29041.29, + "probability": 0.9965 + }, + { + "start": 29041.94, + "end": 29044.61, + "probability": 0.9851 + }, + { + "start": 29045.84, + "end": 29046.96, + "probability": 0.9458 + }, + { + "start": 29047.04, + "end": 29050.76, + "probability": 0.9976 + }, + { + "start": 29051.42, + "end": 29052.5, + "probability": 0.9862 + }, + { + "start": 29052.86, + "end": 29053.72, + "probability": 0.9012 + }, + { + "start": 29054.14, + "end": 29055.56, + "probability": 0.9937 + }, + { + "start": 29056.14, + "end": 29057.26, + "probability": 0.6649 + }, + { + "start": 29057.52, + "end": 29060.34, + "probability": 0.9968 + }, + { + "start": 29060.92, + "end": 29064.94, + "probability": 0.9919 + }, + { + "start": 29064.94, + "end": 29069.16, + "probability": 0.9994 + }, + { + "start": 29069.74, + "end": 29072.92, + "probability": 0.9515 + }, + { + "start": 29072.92, + "end": 29076.9, + "probability": 0.9759 + }, + { + "start": 29077.5, + "end": 29078.9, + "probability": 0.9863 + }, + { + "start": 29079.6, + "end": 29082.86, + "probability": 0.9863 + }, + { + "start": 29083.0, + "end": 29084.6, + "probability": 0.9891 + }, + { + "start": 29085.24, + "end": 29088.58, + "probability": 0.948 + }, + { + "start": 29089.1, + "end": 29090.34, + "probability": 0.9292 + }, + { + "start": 29090.54, + "end": 29093.28, + "probability": 0.9939 + }, + { + "start": 29094.16, + "end": 29098.14, + "probability": 0.9985 + }, + { + "start": 29098.66, + "end": 29100.72, + "probability": 0.8178 + }, + { + "start": 29101.58, + "end": 29103.24, + "probability": 0.9496 + }, + { + "start": 29103.42, + "end": 29105.38, + "probability": 0.9781 + }, + { + "start": 29105.52, + "end": 29107.12, + "probability": 0.9984 + }, + { + "start": 29108.06, + "end": 29109.96, + "probability": 0.9663 + }, + { + "start": 29110.18, + "end": 29113.4, + "probability": 0.9792 + }, + { + "start": 29114.1, + "end": 29119.72, + "probability": 0.9766 + }, + { + "start": 29120.68, + "end": 29124.14, + "probability": 0.6892 + }, + { + "start": 29126.04, + "end": 29126.66, + "probability": 0.8907 + }, + { + "start": 29126.88, + "end": 29128.06, + "probability": 0.976 + }, + { + "start": 29128.26, + "end": 29130.12, + "probability": 0.9928 + }, + { + "start": 29131.1, + "end": 29131.98, + "probability": 0.7804 + }, + { + "start": 29133.58, + "end": 29136.0, + "probability": 0.9954 + }, + { + "start": 29136.58, + "end": 29137.73, + "probability": 0.9688 + }, + { + "start": 29137.96, + "end": 29141.64, + "probability": 0.9967 + }, + { + "start": 29141.9, + "end": 29146.0, + "probability": 0.9907 + }, + { + "start": 29146.0, + "end": 29150.42, + "probability": 0.9968 + }, + { + "start": 29150.94, + "end": 29152.34, + "probability": 0.9323 + }, + { + "start": 29153.06, + "end": 29153.48, + "probability": 0.874 + }, + { + "start": 29153.96, + "end": 29154.82, + "probability": 0.8207 + }, + { + "start": 29155.38, + "end": 29158.48, + "probability": 0.9938 + }, + { + "start": 29159.12, + "end": 29161.14, + "probability": 0.9793 + }, + { + "start": 29161.86, + "end": 29163.68, + "probability": 0.8625 + }, + { + "start": 29163.82, + "end": 29166.54, + "probability": 0.9808 + }, + { + "start": 29167.12, + "end": 29169.28, + "probability": 0.9994 + }, + { + "start": 29169.42, + "end": 29170.72, + "probability": 0.98 + }, + { + "start": 29170.9, + "end": 29172.14, + "probability": 0.9246 + }, + { + "start": 29173.2, + "end": 29175.74, + "probability": 0.9845 + }, + { + "start": 29176.38, + "end": 29179.2, + "probability": 0.9507 + }, + { + "start": 29179.66, + "end": 29180.8, + "probability": 0.8286 + }, + { + "start": 29181.04, + "end": 29182.16, + "probability": 0.9903 + }, + { + "start": 29182.92, + "end": 29185.68, + "probability": 0.9729 + }, + { + "start": 29185.86, + "end": 29187.56, + "probability": 0.9771 + }, + { + "start": 29187.98, + "end": 29190.24, + "probability": 0.9944 + }, + { + "start": 29191.78, + "end": 29195.8, + "probability": 0.9788 + }, + { + "start": 29196.28, + "end": 29198.36, + "probability": 0.9879 + }, + { + "start": 29199.24, + "end": 29203.7, + "probability": 0.9976 + }, + { + "start": 29204.64, + "end": 29206.56, + "probability": 0.941 + }, + { + "start": 29206.62, + "end": 29207.54, + "probability": 0.9826 + }, + { + "start": 29207.68, + "end": 29209.06, + "probability": 0.855 + }, + { + "start": 29209.6, + "end": 29211.7, + "probability": 0.8184 + }, + { + "start": 29212.28, + "end": 29217.12, + "probability": 0.9865 + }, + { + "start": 29217.22, + "end": 29219.42, + "probability": 0.9937 + }, + { + "start": 29219.62, + "end": 29221.84, + "probability": 0.9984 + }, + { + "start": 29222.32, + "end": 29222.98, + "probability": 0.9009 + }, + { + "start": 29223.6, + "end": 29225.7, + "probability": 0.9905 + }, + { + "start": 29226.2, + "end": 29230.02, + "probability": 0.9985 + }, + { + "start": 29230.52, + "end": 29233.12, + "probability": 0.9375 + }, + { + "start": 29233.9, + "end": 29234.48, + "probability": 0.9099 + }, + { + "start": 29236.4, + "end": 29240.18, + "probability": 0.9742 + }, + { + "start": 29240.4, + "end": 29242.76, + "probability": 0.9762 + }, + { + "start": 29243.34, + "end": 29245.58, + "probability": 0.9766 + }, + { + "start": 29246.32, + "end": 29247.6, + "probability": 0.9247 + }, + { + "start": 29249.58, + "end": 29250.32, + "probability": 0.9769 + }, + { + "start": 29251.26, + "end": 29253.5, + "probability": 0.8051 + }, + { + "start": 29255.64, + "end": 29256.2, + "probability": 0.9567 + }, + { + "start": 29256.32, + "end": 29258.98, + "probability": 0.9701 + }, + { + "start": 29259.08, + "end": 29259.8, + "probability": 0.9081 + }, + { + "start": 29260.38, + "end": 29263.06, + "probability": 0.9442 + }, + { + "start": 29264.26, + "end": 29266.64, + "probability": 0.8845 + }, + { + "start": 29267.94, + "end": 29268.96, + "probability": 0.5862 + }, + { + "start": 29269.74, + "end": 29271.6, + "probability": 0.9775 + }, + { + "start": 29271.9, + "end": 29273.26, + "probability": 0.9126 + }, + { + "start": 29274.94, + "end": 29278.04, + "probability": 0.0766 + }, + { + "start": 29278.7, + "end": 29281.56, + "probability": 0.938 + }, + { + "start": 29282.4, + "end": 29282.66, + "probability": 0.0292 + }, + { + "start": 29282.66, + "end": 29283.58, + "probability": 0.9966 + }, + { + "start": 29283.68, + "end": 29285.52, + "probability": 0.9409 + }, + { + "start": 29285.84, + "end": 29287.54, + "probability": 0.8105 + }, + { + "start": 29288.12, + "end": 29291.5, + "probability": 0.9048 + }, + { + "start": 29293.28, + "end": 29293.54, + "probability": 0.4474 + }, + { + "start": 29293.7, + "end": 29294.12, + "probability": 0.9419 + }, + { + "start": 29294.18, + "end": 29297.32, + "probability": 0.989 + }, + { + "start": 29298.2, + "end": 29298.58, + "probability": 0.8914 + }, + { + "start": 29298.86, + "end": 29302.48, + "probability": 0.9854 + }, + { + "start": 29302.58, + "end": 29303.73, + "probability": 0.9897 + }, + { + "start": 29304.86, + "end": 29307.08, + "probability": 0.4532 + }, + { + "start": 29307.3, + "end": 29309.84, + "probability": 0.9544 + }, + { + "start": 29310.1, + "end": 29311.07, + "probability": 0.9875 + }, + { + "start": 29311.52, + "end": 29312.6, + "probability": 0.9722 + }, + { + "start": 29312.6, + "end": 29320.1, + "probability": 0.978 + }, + { + "start": 29320.42, + "end": 29322.06, + "probability": 0.9206 + }, + { + "start": 29322.48, + "end": 29323.08, + "probability": 0.7341 + }, + { + "start": 29323.26, + "end": 29323.52, + "probability": 0.6952 + }, + { + "start": 29323.62, + "end": 29323.96, + "probability": 0.7871 + }, + { + "start": 29323.98, + "end": 29325.73, + "probability": 0.9878 + }, + { + "start": 29325.82, + "end": 29326.7, + "probability": 0.8193 + }, + { + "start": 29326.78, + "end": 29328.64, + "probability": 0.9891 + }, + { + "start": 29329.16, + "end": 29333.02, + "probability": 0.9749 + }, + { + "start": 29333.76, + "end": 29333.76, + "probability": 0.2055 + }, + { + "start": 29333.76, + "end": 29335.7, + "probability": 0.9038 + }, + { + "start": 29335.84, + "end": 29336.12, + "probability": 0.7396 + }, + { + "start": 29336.22, + "end": 29338.42, + "probability": 0.9966 + }, + { + "start": 29338.72, + "end": 29343.24, + "probability": 0.3592 + }, + { + "start": 29345.4, + "end": 29345.58, + "probability": 0.1546 + }, + { + "start": 29345.58, + "end": 29347.38, + "probability": 0.7442 + }, + { + "start": 29347.98, + "end": 29349.92, + "probability": 0.9975 + }, + { + "start": 29350.0, + "end": 29351.72, + "probability": 0.97 + }, + { + "start": 29352.26, + "end": 29354.66, + "probability": 0.9974 + }, + { + "start": 29354.86, + "end": 29356.32, + "probability": 0.9084 + }, + { + "start": 29356.38, + "end": 29357.18, + "probability": 0.9663 + }, + { + "start": 29357.7, + "end": 29361.16, + "probability": 0.9954 + }, + { + "start": 29361.64, + "end": 29368.44, + "probability": 0.9907 + }, + { + "start": 29368.58, + "end": 29371.1, + "probability": 0.0377 + }, + { + "start": 29371.1, + "end": 29371.1, + "probability": 0.0382 + }, + { + "start": 29371.1, + "end": 29372.42, + "probability": 0.4055 + }, + { + "start": 29372.54, + "end": 29373.96, + "probability": 0.6834 + }, + { + "start": 29374.1, + "end": 29375.26, + "probability": 0.8564 + }, + { + "start": 29375.34, + "end": 29376.66, + "probability": 0.8295 + }, + { + "start": 29377.06, + "end": 29377.52, + "probability": 0.7397 + }, + { + "start": 29377.64, + "end": 29379.64, + "probability": 0.9614 + }, + { + "start": 29379.74, + "end": 29380.08, + "probability": 0.8128 + }, + { + "start": 29380.18, + "end": 29380.86, + "probability": 0.6154 + }, + { + "start": 29381.5, + "end": 29381.82, + "probability": 0.1482 + }, + { + "start": 29381.82, + "end": 29381.82, + "probability": 0.255 + }, + { + "start": 29381.82, + "end": 29382.48, + "probability": 0.5531 + }, + { + "start": 29383.24, + "end": 29384.18, + "probability": 0.9885 + }, + { + "start": 29384.5, + "end": 29388.5, + "probability": 0.9917 + }, + { + "start": 29388.6, + "end": 29391.4, + "probability": 0.9946 + }, + { + "start": 29401.64, + "end": 29407.96, + "probability": 0.9993 + }, + { + "start": 29408.62, + "end": 29410.23, + "probability": 0.9922 + }, + { + "start": 29411.02, + "end": 29412.18, + "probability": 0.8729 + }, + { + "start": 29412.74, + "end": 29417.82, + "probability": 0.9924 + }, + { + "start": 29418.38, + "end": 29422.76, + "probability": 0.9924 + }, + { + "start": 29423.78, + "end": 29426.58, + "probability": 0.9966 + }, + { + "start": 29427.04, + "end": 29431.0, + "probability": 0.9777 + }, + { + "start": 29431.98, + "end": 29436.84, + "probability": 0.9972 + }, + { + "start": 29437.28, + "end": 29440.08, + "probability": 0.9795 + }, + { + "start": 29440.78, + "end": 29441.74, + "probability": 0.5979 + }, + { + "start": 29442.0, + "end": 29444.4, + "probability": 0.9645 + }, + { + "start": 29444.62, + "end": 29445.08, + "probability": 0.8536 + }, + { + "start": 29445.52, + "end": 29446.1, + "probability": 0.9349 + }, + { + "start": 29447.2, + "end": 29447.68, + "probability": 0.6998 + }, + { + "start": 29447.76, + "end": 29449.32, + "probability": 0.9897 + }, + { + "start": 29449.56, + "end": 29450.06, + "probability": 0.9377 + }, + { + "start": 29450.16, + "end": 29450.9, + "probability": 0.9869 + }, + { + "start": 29451.02, + "end": 29451.84, + "probability": 0.8553 + }, + { + "start": 29452.66, + "end": 29455.48, + "probability": 0.9568 + }, + { + "start": 29455.66, + "end": 29456.61, + "probability": 0.9888 + }, + { + "start": 29457.1, + "end": 29458.52, + "probability": 0.9922 + }, + { + "start": 29458.68, + "end": 29459.3, + "probability": 0.9487 + }, + { + "start": 29460.08, + "end": 29463.86, + "probability": 0.9814 + }, + { + "start": 29464.84, + "end": 29467.8, + "probability": 0.9708 + }, + { + "start": 29468.64, + "end": 29470.72, + "probability": 0.9765 + }, + { + "start": 29471.32, + "end": 29474.38, + "probability": 0.9978 + }, + { + "start": 29475.0, + "end": 29477.32, + "probability": 0.9688 + }, + { + "start": 29477.64, + "end": 29480.4, + "probability": 0.9967 + }, + { + "start": 29481.04, + "end": 29481.67, + "probability": 0.8174 + }, + { + "start": 29482.42, + "end": 29484.8, + "probability": 0.9928 + }, + { + "start": 29485.68, + "end": 29489.16, + "probability": 0.8587 + }, + { + "start": 29489.18, + "end": 29494.28, + "probability": 0.9925 + }, + { + "start": 29494.96, + "end": 29497.36, + "probability": 0.9904 + }, + { + "start": 29497.54, + "end": 29501.12, + "probability": 0.9969 + }, + { + "start": 29501.52, + "end": 29504.58, + "probability": 0.996 + }, + { + "start": 29505.46, + "end": 29509.72, + "probability": 0.9983 + }, + { + "start": 29510.04, + "end": 29514.22, + "probability": 0.8656 + }, + { + "start": 29514.86, + "end": 29516.66, + "probability": 0.9946 + }, + { + "start": 29517.46, + "end": 29519.34, + "probability": 0.8948 + }, + { + "start": 29519.96, + "end": 29522.84, + "probability": 0.9342 + }, + { + "start": 29523.5, + "end": 29525.08, + "probability": 0.9931 + }, + { + "start": 29525.84, + "end": 29527.9, + "probability": 0.9572 + }, + { + "start": 29528.0, + "end": 29530.6, + "probability": 0.9963 + }, + { + "start": 29530.6, + "end": 29534.12, + "probability": 0.9993 + }, + { + "start": 29534.9, + "end": 29536.18, + "probability": 0.9873 + }, + { + "start": 29536.3, + "end": 29537.82, + "probability": 0.9856 + }, + { + "start": 29537.88, + "end": 29539.32, + "probability": 0.9872 + }, + { + "start": 29540.72, + "end": 29543.98, + "probability": 0.9665 + }, + { + "start": 29544.56, + "end": 29549.44, + "probability": 0.9764 + }, + { + "start": 29550.08, + "end": 29552.44, + "probability": 0.9982 + }, + { + "start": 29552.5, + "end": 29554.19, + "probability": 0.9816 + }, + { + "start": 29555.02, + "end": 29555.26, + "probability": 0.6859 + }, + { + "start": 29555.74, + "end": 29557.16, + "probability": 0.9269 + }, + { + "start": 29557.28, + "end": 29557.72, + "probability": 0.7407 + }, + { + "start": 29557.78, + "end": 29559.1, + "probability": 0.9695 + }, + { + "start": 29559.88, + "end": 29560.9, + "probability": 0.8805 + }, + { + "start": 29561.36, + "end": 29563.1, + "probability": 0.9909 + }, + { + "start": 29563.48, + "end": 29566.48, + "probability": 0.9377 + }, + { + "start": 29566.94, + "end": 29569.5, + "probability": 0.9971 + }, + { + "start": 29570.32, + "end": 29574.34, + "probability": 0.9625 + }, + { + "start": 29574.5, + "end": 29575.24, + "probability": 0.9639 + }, + { + "start": 29576.12, + "end": 29578.06, + "probability": 0.9871 + }, + { + "start": 29578.78, + "end": 29583.52, + "probability": 0.9932 + }, + { + "start": 29584.64, + "end": 29585.94, + "probability": 0.7419 + }, + { + "start": 29586.28, + "end": 29589.66, + "probability": 0.9766 + }, + { + "start": 29590.3, + "end": 29592.76, + "probability": 0.9354 + }, + { + "start": 29593.56, + "end": 29595.7, + "probability": 0.9951 + }, + { + "start": 29595.96, + "end": 29597.7, + "probability": 0.9563 + }, + { + "start": 29598.3, + "end": 29602.1, + "probability": 0.9871 + }, + { + "start": 29602.76, + "end": 29604.45, + "probability": 0.9976 + }, + { + "start": 29605.0, + "end": 29605.96, + "probability": 0.8499 + }, + { + "start": 29606.06, + "end": 29608.7, + "probability": 0.9874 + }, + { + "start": 29609.2, + "end": 29612.28, + "probability": 0.7565 + }, + { + "start": 29612.9, + "end": 29614.28, + "probability": 0.9238 + }, + { + "start": 29614.98, + "end": 29617.52, + "probability": 0.9565 + }, + { + "start": 29617.62, + "end": 29621.3, + "probability": 0.988 + }, + { + "start": 29622.62, + "end": 29624.36, + "probability": 0.9246 + }, + { + "start": 29625.06, + "end": 29628.42, + "probability": 0.9976 + }, + { + "start": 29629.18, + "end": 29631.84, + "probability": 0.9639 + }, + { + "start": 29632.38, + "end": 29636.58, + "probability": 0.9902 + }, + { + "start": 29637.18, + "end": 29640.06, + "probability": 0.9985 + }, + { + "start": 29640.6, + "end": 29642.98, + "probability": 0.9956 + }, + { + "start": 29642.98, + "end": 29646.56, + "probability": 0.9982 + }, + { + "start": 29647.58, + "end": 29649.1, + "probability": 0.9987 + }, + { + "start": 29650.28, + "end": 29654.06, + "probability": 0.9982 + }, + { + "start": 29654.64, + "end": 29657.38, + "probability": 0.9931 + }, + { + "start": 29657.86, + "end": 29659.06, + "probability": 0.8454 + }, + { + "start": 29659.26, + "end": 29661.86, + "probability": 0.993 + }, + { + "start": 29663.66, + "end": 29666.7, + "probability": 0.9877 + }, + { + "start": 29666.88, + "end": 29667.96, + "probability": 0.9536 + }, + { + "start": 29668.5, + "end": 29670.92, + "probability": 0.997 + }, + { + "start": 29671.44, + "end": 29673.56, + "probability": 0.9941 + }, + { + "start": 29673.7, + "end": 29675.04, + "probability": 0.9938 + }, + { + "start": 29675.86, + "end": 29679.9, + "probability": 0.997 + }, + { + "start": 29680.36, + "end": 29684.82, + "probability": 0.9945 + }, + { + "start": 29685.52, + "end": 29688.04, + "probability": 0.9961 + }, + { + "start": 29688.82, + "end": 29689.42, + "probability": 0.8323 + }, + { + "start": 29689.56, + "end": 29691.86, + "probability": 0.9776 + }, + { + "start": 29692.34, + "end": 29694.22, + "probability": 0.7529 + }, + { + "start": 29694.9, + "end": 29696.96, + "probability": 0.9946 + }, + { + "start": 29697.02, + "end": 29698.58, + "probability": 0.9901 + }, + { + "start": 29699.36, + "end": 29700.82, + "probability": 0.9943 + }, + { + "start": 29700.92, + "end": 29701.4, + "probability": 0.958 + }, + { + "start": 29701.68, + "end": 29703.46, + "probability": 0.9691 + }, + { + "start": 29703.88, + "end": 29705.28, + "probability": 0.8992 + }, + { + "start": 29705.82, + "end": 29707.98, + "probability": 0.9799 + }, + { + "start": 29708.48, + "end": 29712.46, + "probability": 0.993 + }, + { + "start": 29712.62, + "end": 29715.02, + "probability": 0.9913 + }, + { + "start": 29715.84, + "end": 29720.18, + "probability": 0.9979 + }, + { + "start": 29720.94, + "end": 29724.12, + "probability": 0.9785 + }, + { + "start": 29725.38, + "end": 29725.78, + "probability": 0.8449 + }, + { + "start": 29726.3, + "end": 29730.1, + "probability": 0.9933 + }, + { + "start": 29730.88, + "end": 29733.2, + "probability": 0.9915 + }, + { + "start": 29733.64, + "end": 29736.34, + "probability": 0.9912 + }, + { + "start": 29737.28, + "end": 29739.32, + "probability": 0.8503 + }, + { + "start": 29740.38, + "end": 29743.58, + "probability": 0.8852 + }, + { + "start": 29743.68, + "end": 29746.78, + "probability": 0.9963 + }, + { + "start": 29747.46, + "end": 29750.08, + "probability": 0.999 + }, + { + "start": 29750.84, + "end": 29753.2, + "probability": 0.988 + }, + { + "start": 29754.04, + "end": 29756.2, + "probability": 0.9883 + }, + { + "start": 29756.36, + "end": 29757.66, + "probability": 0.9578 + }, + { + "start": 29758.08, + "end": 29760.46, + "probability": 0.9763 + }, + { + "start": 29760.46, + "end": 29762.82, + "probability": 0.9932 + }, + { + "start": 29763.04, + "end": 29764.44, + "probability": 0.7959 + }, + { + "start": 29764.92, + "end": 29767.56, + "probability": 0.9905 + }, + { + "start": 29768.26, + "end": 29771.84, + "probability": 0.9845 + }, + { + "start": 29772.44, + "end": 29774.8, + "probability": 0.9949 + }, + { + "start": 29775.52, + "end": 29779.14, + "probability": 0.9941 + }, + { + "start": 29779.32, + "end": 29782.49, + "probability": 0.9707 + }, + { + "start": 29783.1, + "end": 29785.44, + "probability": 0.9111 + }, + { + "start": 29785.52, + "end": 29786.56, + "probability": 0.9759 + }, + { + "start": 29786.76, + "end": 29788.41, + "probability": 0.9498 + }, + { + "start": 29788.52, + "end": 29789.68, + "probability": 0.9497 + }, + { + "start": 29790.34, + "end": 29793.62, + "probability": 0.981 + }, + { + "start": 29794.2, + "end": 29795.22, + "probability": 0.923 + }, + { + "start": 29795.44, + "end": 29799.34, + "probability": 0.9893 + }, + { + "start": 29799.46, + "end": 29801.02, + "probability": 0.9986 + }, + { + "start": 29801.52, + "end": 29802.14, + "probability": 0.8672 + }, + { + "start": 29802.4, + "end": 29804.4, + "probability": 0.9976 + }, + { + "start": 29804.4, + "end": 29806.98, + "probability": 0.9851 + }, + { + "start": 29807.46, + "end": 29810.66, + "probability": 0.9934 + }, + { + "start": 29811.22, + "end": 29812.5, + "probability": 0.9767 + }, + { + "start": 29812.84, + "end": 29814.72, + "probability": 0.9922 + }, + { + "start": 29815.6, + "end": 29818.48, + "probability": 0.8708 + }, + { + "start": 29819.0, + "end": 29820.42, + "probability": 0.9655 + }, + { + "start": 29821.96, + "end": 29825.42, + "probability": 0.9843 + }, + { + "start": 29825.48, + "end": 29828.2, + "probability": 0.9896 + }, + { + "start": 29828.88, + "end": 29830.8, + "probability": 0.8755 + }, + { + "start": 29830.84, + "end": 29833.4, + "probability": 0.9966 + }, + { + "start": 29836.3, + "end": 29840.3, + "probability": 0.9984 + }, + { + "start": 29840.52, + "end": 29842.0, + "probability": 0.9995 + }, + { + "start": 29843.06, + "end": 29846.16, + "probability": 0.9907 + }, + { + "start": 29846.28, + "end": 29848.1, + "probability": 0.9957 + }, + { + "start": 29848.82, + "end": 29854.24, + "probability": 0.9937 + }, + { + "start": 29854.72, + "end": 29856.24, + "probability": 0.9972 + }, + { + "start": 29856.76, + "end": 29858.72, + "probability": 0.9973 + }, + { + "start": 29859.16, + "end": 29860.56, + "probability": 0.5051 + }, + { + "start": 29860.96, + "end": 29863.98, + "probability": 0.9985 + }, + { + "start": 29864.8, + "end": 29867.7, + "probability": 0.999 + }, + { + "start": 29867.7, + "end": 29872.0, + "probability": 0.9975 + }, + { + "start": 29872.7, + "end": 29875.22, + "probability": 0.9991 + }, + { + "start": 29875.22, + "end": 29878.18, + "probability": 0.9985 + }, + { + "start": 29878.6, + "end": 29883.86, + "probability": 0.9983 + }, + { + "start": 29884.6, + "end": 29887.16, + "probability": 0.9976 + }, + { + "start": 29887.48, + "end": 29891.3, + "probability": 0.9973 + }, + { + "start": 29891.3, + "end": 29894.24, + "probability": 0.9989 + }, + { + "start": 29894.68, + "end": 29897.66, + "probability": 0.9547 + }, + { + "start": 29897.92, + "end": 29900.74, + "probability": 0.99 + }, + { + "start": 29900.84, + "end": 29904.6, + "probability": 0.9727 + }, + { + "start": 29905.08, + "end": 29906.96, + "probability": 0.9741 + }, + { + "start": 29907.68, + "end": 29910.98, + "probability": 0.9974 + }, + { + "start": 29910.98, + "end": 29913.96, + "probability": 0.9954 + }, + { + "start": 29914.7, + "end": 29916.78, + "probability": 0.9936 + }, + { + "start": 29918.28, + "end": 29920.82, + "probability": 0.957 + }, + { + "start": 29920.9, + "end": 29924.06, + "probability": 0.9908 + }, + { + "start": 29924.74, + "end": 29929.24, + "probability": 0.9943 + }, + { + "start": 29929.92, + "end": 29932.48, + "probability": 0.9415 + }, + { + "start": 29933.02, + "end": 29936.56, + "probability": 0.9927 + }, + { + "start": 29937.26, + "end": 29938.06, + "probability": 0.7836 + }, + { + "start": 29938.12, + "end": 29940.36, + "probability": 0.995 + }, + { + "start": 29940.52, + "end": 29942.66, + "probability": 0.9879 + }, + { + "start": 29943.38, + "end": 29943.88, + "probability": 0.9066 + }, + { + "start": 29944.68, + "end": 29947.14, + "probability": 0.9382 + }, + { + "start": 29947.44, + "end": 29951.82, + "probability": 0.9863 + }, + { + "start": 29952.46, + "end": 29953.46, + "probability": 0.929 + }, + { + "start": 29953.62, + "end": 29955.02, + "probability": 0.9907 + }, + { + "start": 29955.48, + "end": 29956.86, + "probability": 0.9784 + }, + { + "start": 29957.12, + "end": 29960.68, + "probability": 0.9941 + }, + { + "start": 29961.2, + "end": 29964.74, + "probability": 0.9962 + }, + { + "start": 29965.36, + "end": 29966.78, + "probability": 0.9852 + }, + { + "start": 29967.74, + "end": 29970.28, + "probability": 0.9318 + }, + { + "start": 29970.74, + "end": 29973.68, + "probability": 0.8612 + }, + { + "start": 29974.28, + "end": 29974.83, + "probability": 0.5959 + }, + { + "start": 29975.06, + "end": 29975.48, + "probability": 0.3391 + }, + { + "start": 29975.6, + "end": 29977.12, + "probability": 0.8072 + }, + { + "start": 29977.88, + "end": 29979.52, + "probability": 0.9985 + }, + { + "start": 29979.76, + "end": 29982.74, + "probability": 0.9957 + }, + { + "start": 29982.76, + "end": 29986.61, + "probability": 0.9708 + }, + { + "start": 29987.38, + "end": 29987.84, + "probability": 0.7056 + }, + { + "start": 29987.98, + "end": 29988.54, + "probability": 0.8373 + }, + { + "start": 29989.1, + "end": 29989.68, + "probability": 0.7597 + }, + { + "start": 29989.82, + "end": 29991.36, + "probability": 0.9045 + }, + { + "start": 29991.44, + "end": 29992.76, + "probability": 0.95 + }, + { + "start": 29993.86, + "end": 29998.34, + "probability": 0.994 + }, + { + "start": 29998.65, + "end": 30004.76, + "probability": 0.9497 + }, + { + "start": 30005.4, + "end": 30007.96, + "probability": 0.9985 + }, + { + "start": 30007.96, + "end": 30011.08, + "probability": 0.9984 + }, + { + "start": 30012.52, + "end": 30015.5, + "probability": 0.9165 + }, + { + "start": 30016.12, + "end": 30019.44, + "probability": 0.9971 + }, + { + "start": 30019.86, + "end": 30021.5, + "probability": 0.9487 + }, + { + "start": 30021.92, + "end": 30025.68, + "probability": 0.9708 + }, + { + "start": 30026.28, + "end": 30027.96, + "probability": 0.9976 + }, + { + "start": 30028.58, + "end": 30030.34, + "probability": 0.9529 + }, + { + "start": 30031.3, + "end": 30032.89, + "probability": 0.978 + }, + { + "start": 30033.94, + "end": 30037.64, + "probability": 0.8817 + }, + { + "start": 30038.66, + "end": 30039.64, + "probability": 0.9049 + }, + { + "start": 30040.1, + "end": 30040.66, + "probability": 0.8876 + }, + { + "start": 30042.3, + "end": 30046.68, + "probability": 0.9894 + }, + { + "start": 30046.84, + "end": 30047.62, + "probability": 0.9314 + }, + { + "start": 30047.74, + "end": 30049.2, + "probability": 0.9868 + }, + { + "start": 30050.1, + "end": 30054.28, + "probability": 0.9934 + }, + { + "start": 30054.92, + "end": 30057.02, + "probability": 0.9708 + }, + { + "start": 30058.16, + "end": 30062.6, + "probability": 0.9958 + }, + { + "start": 30063.02, + "end": 30065.24, + "probability": 0.9966 + }, + { + "start": 30065.24, + "end": 30068.08, + "probability": 0.9946 + }, + { + "start": 30068.12, + "end": 30068.6, + "probability": 0.8746 + }, + { + "start": 30068.74, + "end": 30071.7, + "probability": 0.9709 + }, + { + "start": 30072.58, + "end": 30074.16, + "probability": 0.9964 + }, + { + "start": 30074.22, + "end": 30075.5, + "probability": 0.9709 + }, + { + "start": 30076.18, + "end": 30076.58, + "probability": 0.8493 + }, + { + "start": 30077.1, + "end": 30079.78, + "probability": 0.9945 + }, + { + "start": 30080.2, + "end": 30082.22, + "probability": 0.9802 + }, + { + "start": 30083.06, + "end": 30084.82, + "probability": 0.97 + }, + { + "start": 30085.16, + "end": 30087.96, + "probability": 0.9788 + }, + { + "start": 30088.36, + "end": 30091.28, + "probability": 0.9915 + }, + { + "start": 30091.46, + "end": 30092.24, + "probability": 0.8139 + }, + { + "start": 30092.86, + "end": 30098.18, + "probability": 0.948 + }, + { + "start": 30098.6, + "end": 30101.2, + "probability": 0.9927 + }, + { + "start": 30102.04, + "end": 30104.08, + "probability": 0.9956 + }, + { + "start": 30104.08, + "end": 30107.6, + "probability": 0.9982 + }, + { + "start": 30109.04, + "end": 30112.24, + "probability": 0.9958 + }, + { + "start": 30112.28, + "end": 30114.52, + "probability": 0.8988 + }, + { + "start": 30115.0, + "end": 30118.17, + "probability": 0.9932 + }, + { + "start": 30118.62, + "end": 30122.1, + "probability": 0.9802 + }, + { + "start": 30122.54, + "end": 30123.52, + "probability": 0.6382 + }, + { + "start": 30124.02, + "end": 30125.98, + "probability": 0.9469 + }, + { + "start": 30126.5, + "end": 30127.22, + "probability": 0.926 + }, + { + "start": 30127.7, + "end": 30129.26, + "probability": 0.99 + }, + { + "start": 30129.28, + "end": 30131.04, + "probability": 0.9889 + }, + { + "start": 30131.14, + "end": 30133.42, + "probability": 0.9907 + }, + { + "start": 30133.9, + "end": 30135.16, + "probability": 0.9946 + }, + { + "start": 30135.2, + "end": 30137.12, + "probability": 0.989 + }, + { + "start": 30138.9, + "end": 30140.06, + "probability": 0.936 + }, + { + "start": 30140.4, + "end": 30142.36, + "probability": 0.98 + }, + { + "start": 30142.5, + "end": 30143.84, + "probability": 0.8256 + }, + { + "start": 30143.94, + "end": 30145.58, + "probability": 0.9785 + }, + { + "start": 30145.66, + "end": 30147.44, + "probability": 0.9968 + }, + { + "start": 30147.86, + "end": 30149.28, + "probability": 0.9644 + }, + { + "start": 30149.82, + "end": 30152.48, + "probability": 0.991 + }, + { + "start": 30152.6, + "end": 30155.58, + "probability": 0.9945 + }, + { + "start": 30156.12, + "end": 30159.02, + "probability": 0.9963 + }, + { + "start": 30159.64, + "end": 30161.32, + "probability": 0.9653 + }, + { + "start": 30161.5, + "end": 30163.46, + "probability": 0.7665 + }, + { + "start": 30163.98, + "end": 30166.02, + "probability": 0.8985 + }, + { + "start": 30166.36, + "end": 30167.74, + "probability": 0.8272 + }, + { + "start": 30167.88, + "end": 30169.26, + "probability": 0.7753 + }, + { + "start": 30169.34, + "end": 30171.4, + "probability": 0.91 + }, + { + "start": 30171.5, + "end": 30172.96, + "probability": 0.9664 + }, + { + "start": 30173.5, + "end": 30176.54, + "probability": 0.9926 + }, + { + "start": 30177.56, + "end": 30178.42, + "probability": 0.6042 + }, + { + "start": 30178.54, + "end": 30179.52, + "probability": 0.9248 + }, + { + "start": 30179.58, + "end": 30182.2, + "probability": 0.9958 + }, + { + "start": 30182.34, + "end": 30183.52, + "probability": 0.6449 + }, + { + "start": 30184.38, + "end": 30187.08, + "probability": 0.9539 + }, + { + "start": 30187.22, + "end": 30190.04, + "probability": 0.9956 + }, + { + "start": 30190.7, + "end": 30194.66, + "probability": 0.9433 + }, + { + "start": 30195.9, + "end": 30197.38, + "probability": 0.7579 + }, + { + "start": 30197.54, + "end": 30198.18, + "probability": 0.8785 + }, + { + "start": 30198.3, + "end": 30200.54, + "probability": 0.9867 + }, + { + "start": 30201.12, + "end": 30201.96, + "probability": 0.8677 + }, + { + "start": 30202.08, + "end": 30205.14, + "probability": 0.9444 + }, + { + "start": 30205.16, + "end": 30205.94, + "probability": 0.7641 + }, + { + "start": 30206.18, + "end": 30208.72, + "probability": 0.9146 + }, + { + "start": 30208.72, + "end": 30211.06, + "probability": 0.9924 + }, + { + "start": 30211.62, + "end": 30213.99, + "probability": 0.9937 + }, + { + "start": 30214.66, + "end": 30216.18, + "probability": 0.9941 + }, + { + "start": 30216.3, + "end": 30217.2, + "probability": 0.519 + }, + { + "start": 30217.34, + "end": 30218.26, + "probability": 0.6061 + }, + { + "start": 30219.38, + "end": 30220.94, + "probability": 0.9951 + }, + { + "start": 30221.28, + "end": 30222.22, + "probability": 0.9978 + }, + { + "start": 30222.74, + "end": 30224.14, + "probability": 0.9977 + }, + { + "start": 30224.5, + "end": 30226.37, + "probability": 0.9971 + }, + { + "start": 30226.98, + "end": 30228.27, + "probability": 0.999 + }, + { + "start": 30228.56, + "end": 30232.06, + "probability": 0.8482 + }, + { + "start": 30232.22, + "end": 30233.48, + "probability": 0.9805 + }, + { + "start": 30233.7, + "end": 30234.62, + "probability": 0.5157 + }, + { + "start": 30234.64, + "end": 30235.52, + "probability": 0.9424 + }, + { + "start": 30236.34, + "end": 30237.94, + "probability": 0.9917 + }, + { + "start": 30238.02, + "end": 30239.46, + "probability": 0.9521 + }, + { + "start": 30239.52, + "end": 30240.88, + "probability": 0.9404 + }, + { + "start": 30241.8, + "end": 30244.38, + "probability": 0.9987 + }, + { + "start": 30244.78, + "end": 30246.08, + "probability": 0.8424 + }, + { + "start": 30246.18, + "end": 30246.6, + "probability": 0.4801 + }, + { + "start": 30246.86, + "end": 30247.88, + "probability": 0.9622 + }, + { + "start": 30248.06, + "end": 30248.67, + "probability": 0.9653 + }, + { + "start": 30249.36, + "end": 30251.96, + "probability": 0.9424 + }, + { + "start": 30252.66, + "end": 30252.82, + "probability": 0.2051 + }, + { + "start": 30252.82, + "end": 30253.76, + "probability": 0.8893 + }, + { + "start": 30254.0, + "end": 30255.1, + "probability": 0.6045 + }, + { + "start": 30255.6, + "end": 30257.66, + "probability": 0.9206 + }, + { + "start": 30258.18, + "end": 30258.96, + "probability": 0.9579 + }, + { + "start": 30259.72, + "end": 30262.66, + "probability": 0.9673 + }, + { + "start": 30262.86, + "end": 30266.12, + "probability": 0.9912 + }, + { + "start": 30266.7, + "end": 30268.84, + "probability": 0.8112 + }, + { + "start": 30268.94, + "end": 30271.0, + "probability": 0.9008 + }, + { + "start": 30271.72, + "end": 30274.22, + "probability": 0.9226 + }, + { + "start": 30274.84, + "end": 30276.08, + "probability": 0.9167 + }, + { + "start": 30276.74, + "end": 30277.1, + "probability": 0.7562 + }, + { + "start": 30277.14, + "end": 30280.4, + "probability": 0.9988 + }, + { + "start": 30280.52, + "end": 30281.02, + "probability": 0.4479 + }, + { + "start": 30281.12, + "end": 30282.3, + "probability": 0.9985 + }, + { + "start": 30282.74, + "end": 30283.42, + "probability": 0.8942 + }, + { + "start": 30283.5, + "end": 30284.42, + "probability": 0.9229 + }, + { + "start": 30284.56, + "end": 30285.54, + "probability": 0.9204 + }, + { + "start": 30285.74, + "end": 30287.06, + "probability": 0.9473 + }, + { + "start": 30287.72, + "end": 30289.12, + "probability": 0.9517 + }, + { + "start": 30289.28, + "end": 30291.58, + "probability": 0.9011 + }, + { + "start": 30293.08, + "end": 30295.22, + "probability": 0.9834 + }, + { + "start": 30295.32, + "end": 30296.2, + "probability": 0.9971 + }, + { + "start": 30296.32, + "end": 30297.06, + "probability": 0.8789 + }, + { + "start": 30297.26, + "end": 30300.6, + "probability": 0.9828 + }, + { + "start": 30301.1, + "end": 30303.08, + "probability": 0.0621 + }, + { + "start": 30303.08, + "end": 30305.06, + "probability": 0.9782 + }, + { + "start": 30305.16, + "end": 30306.47, + "probability": 0.9924 + }, + { + "start": 30307.34, + "end": 30308.9, + "probability": 0.9677 + }, + { + "start": 30308.96, + "end": 30310.22, + "probability": 0.7559 + }, + { + "start": 30310.3, + "end": 30311.1, + "probability": 0.9277 + }, + { + "start": 30311.62, + "end": 30313.14, + "probability": 0.6651 + }, + { + "start": 30313.2, + "end": 30315.18, + "probability": 0.9692 + }, + { + "start": 30315.86, + "end": 30317.84, + "probability": 0.9009 + }, + { + "start": 30318.38, + "end": 30321.84, + "probability": 0.9854 + }, + { + "start": 30322.06, + "end": 30322.68, + "probability": 0.8739 + }, + { + "start": 30322.86, + "end": 30325.1, + "probability": 0.9614 + }, + { + "start": 30325.76, + "end": 30326.96, + "probability": 0.8408 + }, + { + "start": 30327.02, + "end": 30328.28, + "probability": 0.9164 + }, + { + "start": 30328.34, + "end": 30329.52, + "probability": 0.9213 + }, + { + "start": 30330.14, + "end": 30331.06, + "probability": 0.8513 + }, + { + "start": 30331.08, + "end": 30333.9, + "probability": 0.9941 + }, + { + "start": 30335.52, + "end": 30339.94, + "probability": 0.9954 + }, + { + "start": 30340.46, + "end": 30344.0, + "probability": 0.9976 + }, + { + "start": 30344.08, + "end": 30346.36, + "probability": 0.9906 + }, + { + "start": 30346.92, + "end": 30348.38, + "probability": 0.833 + }, + { + "start": 30348.78, + "end": 30350.98, + "probability": 0.9615 + }, + { + "start": 30351.08, + "end": 30352.86, + "probability": 0.993 + }, + { + "start": 30353.42, + "end": 30356.54, + "probability": 0.9546 + }, + { + "start": 30356.64, + "end": 30357.34, + "probability": 0.7453 + }, + { + "start": 30357.86, + "end": 30359.14, + "probability": 0.9733 + }, + { + "start": 30359.24, + "end": 30360.86, + "probability": 0.7238 + }, + { + "start": 30361.56, + "end": 30362.06, + "probability": 0.648 + }, + { + "start": 30362.8, + "end": 30365.86, + "probability": 0.8927 + }, + { + "start": 30365.94, + "end": 30368.92, + "probability": 0.9415 + }, + { + "start": 30369.02, + "end": 30369.84, + "probability": 0.8647 + }, + { + "start": 30370.2, + "end": 30371.6, + "probability": 0.9529 + }, + { + "start": 30372.04, + "end": 30373.92, + "probability": 0.9313 + }, + { + "start": 30374.4, + "end": 30375.4, + "probability": 0.6008 + }, + { + "start": 30375.5, + "end": 30376.28, + "probability": 0.7207 + }, + { + "start": 30376.4, + "end": 30378.55, + "probability": 0.9932 + }, + { + "start": 30379.48, + "end": 30381.4, + "probability": 0.8252 + }, + { + "start": 30381.56, + "end": 30382.22, + "probability": 0.9568 + }, + { + "start": 30382.32, + "end": 30383.19, + "probability": 0.9915 + }, + { + "start": 30383.5, + "end": 30385.92, + "probability": 0.9926 + }, + { + "start": 30386.64, + "end": 30387.62, + "probability": 0.9976 + }, + { + "start": 30389.02, + "end": 30392.36, + "probability": 0.9556 + }, + { + "start": 30392.48, + "end": 30392.74, + "probability": 0.7543 + }, + { + "start": 30392.78, + "end": 30393.34, + "probability": 0.9641 + }, + { + "start": 30393.92, + "end": 30394.32, + "probability": 0.8564 + }, + { + "start": 30395.72, + "end": 30395.72, + "probability": 0.2615 + }, + { + "start": 30395.72, + "end": 30397.16, + "probability": 0.6879 + }, + { + "start": 30397.2, + "end": 30398.6, + "probability": 0.9951 + }, + { + "start": 30398.72, + "end": 30399.14, + "probability": 0.8022 + }, + { + "start": 30399.76, + "end": 30401.02, + "probability": 0.9784 + }, + { + "start": 30401.58, + "end": 30402.48, + "probability": 0.7975 + }, + { + "start": 30402.8, + "end": 30403.6, + "probability": 0.8369 + }, + { + "start": 30403.62, + "end": 30407.6, + "probability": 0.827 + }, + { + "start": 30408.14, + "end": 30411.38, + "probability": 0.997 + }, + { + "start": 30411.9, + "end": 30415.88, + "probability": 0.8896 + }, + { + "start": 30416.4, + "end": 30417.02, + "probability": 0.9707 + }, + { + "start": 30417.12, + "end": 30417.52, + "probability": 0.8714 + }, + { + "start": 30417.74, + "end": 30418.38, + "probability": 0.9638 + }, + { + "start": 30418.48, + "end": 30419.22, + "probability": 0.9587 + }, + { + "start": 30419.38, + "end": 30420.42, + "probability": 0.9744 + }, + { + "start": 30421.88, + "end": 30423.02, + "probability": 0.8162 + }, + { + "start": 30423.18, + "end": 30426.14, + "probability": 0.9968 + }, + { + "start": 30426.2, + "end": 30427.45, + "probability": 0.9984 + }, + { + "start": 30428.04, + "end": 30429.9, + "probability": 0.9893 + }, + { + "start": 30430.64, + "end": 30430.76, + "probability": 0.8657 + }, + { + "start": 30431.86, + "end": 30433.85, + "probability": 0.9855 + }, + { + "start": 30434.1, + "end": 30435.96, + "probability": 0.8771 + }, + { + "start": 30436.22, + "end": 30438.04, + "probability": 0.9989 + }, + { + "start": 30438.5, + "end": 30439.44, + "probability": 0.9829 + }, + { + "start": 30439.86, + "end": 30440.78, + "probability": 0.9897 + }, + { + "start": 30440.88, + "end": 30441.72, + "probability": 0.8202 + }, + { + "start": 30442.2, + "end": 30443.0, + "probability": 0.917 + }, + { + "start": 30443.12, + "end": 30444.62, + "probability": 0.9915 + }, + { + "start": 30444.7, + "end": 30446.72, + "probability": 0.9854 + }, + { + "start": 30447.1, + "end": 30448.88, + "probability": 0.9225 + }, + { + "start": 30448.94, + "end": 30450.75, + "probability": 0.9954 + }, + { + "start": 30450.94, + "end": 30453.18, + "probability": 0.9891 + }, + { + "start": 30453.84, + "end": 30455.98, + "probability": 0.8891 + }, + { + "start": 30455.98, + "end": 30457.54, + "probability": 0.9802 + }, + { + "start": 30458.18, + "end": 30458.68, + "probability": 0.6989 + }, + { + "start": 30458.76, + "end": 30459.76, + "probability": 0.9693 + }, + { + "start": 30459.8, + "end": 30461.5, + "probability": 0.9858 + }, + { + "start": 30461.88, + "end": 30463.24, + "probability": 0.95 + }, + { + "start": 30463.52, + "end": 30464.6, + "probability": 0.9916 + }, + { + "start": 30464.7, + "end": 30465.94, + "probability": 0.978 + }, + { + "start": 30466.04, + "end": 30467.32, + "probability": 0.6138 + }, + { + "start": 30467.92, + "end": 30468.34, + "probability": 0.5335 + }, + { + "start": 30468.48, + "end": 30469.0, + "probability": 0.4483 + }, + { + "start": 30469.06, + "end": 30469.78, + "probability": 0.8534 + }, + { + "start": 30469.86, + "end": 30472.32, + "probability": 0.9762 + }, + { + "start": 30472.86, + "end": 30473.84, + "probability": 0.6756 + }, + { + "start": 30473.92, + "end": 30474.28, + "probability": 0.8392 + }, + { + "start": 30474.34, + "end": 30474.66, + "probability": 0.9637 + }, + { + "start": 30474.68, + "end": 30475.42, + "probability": 0.9902 + }, + { + "start": 30475.76, + "end": 30476.64, + "probability": 0.784 + }, + { + "start": 30477.34, + "end": 30478.2, + "probability": 0.5707 + }, + { + "start": 30478.38, + "end": 30479.62, + "probability": 0.8948 + }, + { + "start": 30479.76, + "end": 30482.96, + "probability": 0.6722 + }, + { + "start": 30483.38, + "end": 30484.9, + "probability": 0.9989 + }, + { + "start": 30485.44, + "end": 30486.68, + "probability": 0.9833 + }, + { + "start": 30486.76, + "end": 30488.2, + "probability": 0.9653 + }, + { + "start": 30488.26, + "end": 30490.5, + "probability": 0.9948 + }, + { + "start": 30491.82, + "end": 30493.44, + "probability": 0.9639 + }, + { + "start": 30493.78, + "end": 30496.22, + "probability": 0.9983 + }, + { + "start": 30496.22, + "end": 30498.58, + "probability": 0.9639 + }, + { + "start": 30499.22, + "end": 30501.46, + "probability": 0.9905 + }, + { + "start": 30501.46, + "end": 30504.12, + "probability": 0.966 + }, + { + "start": 30504.2, + "end": 30505.58, + "probability": 0.9853 + }, + { + "start": 30506.24, + "end": 30509.38, + "probability": 0.9921 + }, + { + "start": 30509.9, + "end": 30512.7, + "probability": 0.9254 + }, + { + "start": 30513.22, + "end": 30515.0, + "probability": 0.9592 + }, + { + "start": 30515.18, + "end": 30516.16, + "probability": 0.9461 + }, + { + "start": 30517.54, + "end": 30520.38, + "probability": 0.9853 + }, + { + "start": 30521.02, + "end": 30524.1, + "probability": 0.9924 + }, + { + "start": 30524.42, + "end": 30526.0, + "probability": 0.9447 + }, + { + "start": 30526.12, + "end": 30526.9, + "probability": 0.9218 + }, + { + "start": 30527.08, + "end": 30527.72, + "probability": 0.8849 + }, + { + "start": 30528.16, + "end": 30530.8, + "probability": 0.9873 + }, + { + "start": 30530.8, + "end": 30534.26, + "probability": 0.8904 + }, + { + "start": 30534.38, + "end": 30537.36, + "probability": 0.9963 + }, + { + "start": 30538.24, + "end": 30540.04, + "probability": 0.9948 + }, + { + "start": 30540.04, + "end": 30542.42, + "probability": 0.9761 + }, + { + "start": 30543.5, + "end": 30544.56, + "probability": 0.9721 + }, + { + "start": 30544.76, + "end": 30545.7, + "probability": 0.9315 + }, + { + "start": 30546.16, + "end": 30547.39, + "probability": 0.9604 + }, + { + "start": 30548.3, + "end": 30551.94, + "probability": 0.9956 + }, + { + "start": 30552.76, + "end": 30553.94, + "probability": 0.6169 + }, + { + "start": 30554.1, + "end": 30554.54, + "probability": 0.51 + }, + { + "start": 30555.04, + "end": 30555.84, + "probability": 0.933 + }, + { + "start": 30556.0, + "end": 30558.02, + "probability": 0.9969 + }, + { + "start": 30558.9, + "end": 30560.74, + "probability": 0.988 + }, + { + "start": 30561.4, + "end": 30567.18, + "probability": 0.8049 + }, + { + "start": 30567.26, + "end": 30568.28, + "probability": 0.7086 + }, + { + "start": 30568.3, + "end": 30570.28, + "probability": 0.9978 + }, + { + "start": 30570.8, + "end": 30574.28, + "probability": 0.986 + }, + { + "start": 30575.04, + "end": 30576.54, + "probability": 0.9967 + }, + { + "start": 30576.7, + "end": 30577.62, + "probability": 0.9376 + }, + { + "start": 30577.74, + "end": 30580.92, + "probability": 0.9849 + }, + { + "start": 30582.16, + "end": 30583.52, + "probability": 0.8004 + }, + { + "start": 30583.6, + "end": 30584.74, + "probability": 0.9343 + }, + { + "start": 30584.82, + "end": 30585.54, + "probability": 0.9795 + }, + { + "start": 30586.54, + "end": 30587.64, + "probability": 0.7528 + }, + { + "start": 30587.72, + "end": 30588.74, + "probability": 0.9895 + }, + { + "start": 30589.2, + "end": 30590.56, + "probability": 0.9745 + }, + { + "start": 30590.58, + "end": 30592.32, + "probability": 0.993 + }, + { + "start": 30592.42, + "end": 30594.44, + "probability": 0.927 + }, + { + "start": 30595.2, + "end": 30595.82, + "probability": 0.9863 + }, + { + "start": 30596.68, + "end": 30598.2, + "probability": 0.9492 + }, + { + "start": 30598.32, + "end": 30599.26, + "probability": 0.7548 + }, + { + "start": 30599.34, + "end": 30599.96, + "probability": 0.9235 + }, + { + "start": 30600.16, + "end": 30602.46, + "probability": 0.9882 + }, + { + "start": 30602.96, + "end": 30606.22, + "probability": 0.9889 + }, + { + "start": 30606.34, + "end": 30609.82, + "probability": 0.9881 + }, + { + "start": 30610.32, + "end": 30611.4, + "probability": 0.7671 + }, + { + "start": 30611.66, + "end": 30614.12, + "probability": 0.9915 + }, + { + "start": 30615.46, + "end": 30618.28, + "probability": 0.9964 + }, + { + "start": 30618.56, + "end": 30618.96, + "probability": 0.7497 + }, + { + "start": 30619.5, + "end": 30620.66, + "probability": 0.9771 + }, + { + "start": 30620.78, + "end": 30623.16, + "probability": 0.9785 + }, + { + "start": 30624.04, + "end": 30626.48, + "probability": 0.9984 + }, + { + "start": 30626.66, + "end": 30627.69, + "probability": 0.9392 + }, + { + "start": 30628.34, + "end": 30629.68, + "probability": 0.9877 + }, + { + "start": 30632.67, + "end": 30636.68, + "probability": 0.9747 + }, + { + "start": 30636.9, + "end": 30640.28, + "probability": 0.9953 + }, + { + "start": 30640.82, + "end": 30643.22, + "probability": 0.8932 + }, + { + "start": 30643.92, + "end": 30646.68, + "probability": 0.9891 + }, + { + "start": 30646.84, + "end": 30650.58, + "probability": 0.9905 + }, + { + "start": 30651.14, + "end": 30653.58, + "probability": 0.9885 + }, + { + "start": 30653.76, + "end": 30657.42, + "probability": 0.9962 + }, + { + "start": 30658.02, + "end": 30660.22, + "probability": 0.9843 + }, + { + "start": 30660.38, + "end": 30660.82, + "probability": 0.877 + }, + { + "start": 30661.74, + "end": 30664.26, + "probability": 0.9985 + }, + { + "start": 30664.26, + "end": 30667.64, + "probability": 0.998 + }, + { + "start": 30668.34, + "end": 30669.46, + "probability": 0.9922 + }, + { + "start": 30670.34, + "end": 30672.64, + "probability": 0.895 + }, + { + "start": 30672.88, + "end": 30674.58, + "probability": 0.8513 + }, + { + "start": 30675.88, + "end": 30679.32, + "probability": 0.4756 + }, + { + "start": 30680.46, + "end": 30682.36, + "probability": 0.9919 + }, + { + "start": 30682.6, + "end": 30685.37, + "probability": 0.9912 + }, + { + "start": 30685.54, + "end": 30687.86, + "probability": 0.9926 + }, + { + "start": 30687.86, + "end": 30691.36, + "probability": 0.979 + }, + { + "start": 30691.82, + "end": 30692.52, + "probability": 0.9819 + }, + { + "start": 30693.12, + "end": 30697.54, + "probability": 0.9976 + }, + { + "start": 30697.54, + "end": 30701.24, + "probability": 0.998 + }, + { + "start": 30701.24, + "end": 30704.5, + "probability": 0.9961 + }, + { + "start": 30705.18, + "end": 30708.2, + "probability": 0.987 + }, + { + "start": 30708.3, + "end": 30708.7, + "probability": 0.8833 + }, + { + "start": 30709.02, + "end": 30709.86, + "probability": 0.748 + }, + { + "start": 30709.92, + "end": 30711.86, + "probability": 0.998 + }, + { + "start": 30712.38, + "end": 30712.96, + "probability": 0.9946 + }, + { + "start": 30713.72, + "end": 30720.34, + "probability": 0.9991 + }, + { + "start": 30720.5, + "end": 30723.18, + "probability": 0.9977 + }, + { + "start": 30723.18, + "end": 30726.5, + "probability": 0.9893 + }, + { + "start": 30727.36, + "end": 30728.5, + "probability": 0.8111 + }, + { + "start": 30728.92, + "end": 30734.28, + "probability": 0.9624 + }, + { + "start": 30734.32, + "end": 30739.08, + "probability": 0.9741 + }, + { + "start": 30739.68, + "end": 30742.22, + "probability": 0.9906 + }, + { + "start": 30742.22, + "end": 30744.82, + "probability": 0.9956 + }, + { + "start": 30745.62, + "end": 30746.08, + "probability": 0.2252 + }, + { + "start": 30746.5, + "end": 30748.36, + "probability": 0.9355 + }, + { + "start": 30748.58, + "end": 30751.92, + "probability": 0.9971 + }, + { + "start": 30752.58, + "end": 30754.82, + "probability": 0.9006 + }, + { + "start": 30755.3, + "end": 30758.64, + "probability": 0.9624 + }, + { + "start": 30758.7, + "end": 30759.78, + "probability": 0.7437 + }, + { + "start": 30760.26, + "end": 30766.32, + "probability": 0.9903 + }, + { + "start": 30766.88, + "end": 30770.32, + "probability": 0.9913 + }, + { + "start": 30770.32, + "end": 30772.94, + "probability": 0.9982 + }, + { + "start": 30773.58, + "end": 30776.84, + "probability": 0.9966 + }, + { + "start": 30776.94, + "end": 30780.2, + "probability": 0.9739 + }, + { + "start": 30780.78, + "end": 30783.98, + "probability": 0.9941 + }, + { + "start": 30783.98, + "end": 30787.22, + "probability": 0.9973 + }, + { + "start": 30792.5, + "end": 30793.6, + "probability": 0.6862 + }, + { + "start": 30793.96, + "end": 30796.64, + "probability": 0.7656 + }, + { + "start": 30796.74, + "end": 30800.36, + "probability": 0.9457 + }, + { + "start": 30801.02, + "end": 30803.52, + "probability": 0.8643 + }, + { + "start": 30804.38, + "end": 30805.25, + "probability": 0.7357 + }, + { + "start": 30805.82, + "end": 30807.66, + "probability": 0.8458 + }, + { + "start": 30808.08, + "end": 30811.82, + "probability": 0.9824 + }, + { + "start": 30811.94, + "end": 30814.9, + "probability": 0.996 + }, + { + "start": 30815.78, + "end": 30817.74, + "probability": 0.9966 + }, + { + "start": 30818.26, + "end": 30820.34, + "probability": 0.967 + }, + { + "start": 30821.02, + "end": 30823.76, + "probability": 0.9977 + }, + { + "start": 30824.3, + "end": 30828.28, + "probability": 0.9963 + }, + { + "start": 30828.28, + "end": 30832.12, + "probability": 0.9865 + }, + { + "start": 30832.9, + "end": 30835.22, + "probability": 0.9832 + }, + { + "start": 30835.64, + "end": 30836.1, + "probability": 0.5928 + }, + { + "start": 30836.22, + "end": 30839.9, + "probability": 0.9683 + }, + { + "start": 30839.9, + "end": 30843.28, + "probability": 0.9922 + }, + { + "start": 30844.22, + "end": 30846.38, + "probability": 0.7343 + }, + { + "start": 30846.52, + "end": 30846.86, + "probability": 0.5236 + }, + { + "start": 30846.96, + "end": 30848.26, + "probability": 0.829 + }, + { + "start": 30848.38, + "end": 30850.94, + "probability": 0.9786 + }, + { + "start": 30851.66, + "end": 30855.14, + "probability": 0.9965 + }, + { + "start": 30855.3, + "end": 30856.74, + "probability": 0.9935 + }, + { + "start": 30857.44, + "end": 30861.5, + "probability": 0.9968 + }, + { + "start": 30862.02, + "end": 30866.58, + "probability": 0.9636 + }, + { + "start": 30868.02, + "end": 30869.54, + "probability": 0.8119 + }, + { + "start": 30869.6, + "end": 30873.36, + "probability": 0.9886 + }, + { + "start": 30873.46, + "end": 30874.0, + "probability": 0.8179 + }, + { + "start": 30874.88, + "end": 30875.36, + "probability": 0.8206 + }, + { + "start": 30875.46, + "end": 30875.72, + "probability": 0.9902 + }, + { + "start": 30876.7, + "end": 30879.9, + "probability": 0.8714 + }, + { + "start": 30880.08, + "end": 30880.08, + "probability": 0.0812 + }, + { + "start": 30880.08, + "end": 30881.4, + "probability": 0.8932 + }, + { + "start": 30881.7, + "end": 30882.34, + "probability": 0.8011 + }, + { + "start": 30882.44, + "end": 30886.38, + "probability": 0.9211 + }, + { + "start": 30886.4, + "end": 30888.74, + "probability": 0.9969 + }, + { + "start": 30888.88, + "end": 30890.8, + "probability": 0.6692 + }, + { + "start": 30891.56, + "end": 30891.64, + "probability": 0.5074 + }, + { + "start": 30891.68, + "end": 30891.94, + "probability": 0.1228 + }, + { + "start": 30892.22, + "end": 30892.86, + "probability": 0.4697 + }, + { + "start": 30892.96, + "end": 30894.41, + "probability": 0.9895 + }, + { + "start": 30895.92, + "end": 30896.64, + "probability": 0.7689 + }, + { + "start": 30897.72, + "end": 30899.5, + "probability": 0.731 + }, + { + "start": 30899.5, + "end": 30899.58, + "probability": 0.7973 + }, + { + "start": 30899.58, + "end": 30900.02, + "probability": 0.667 + }, + { + "start": 30900.48, + "end": 30903.74, + "probability": 0.9968 + }, + { + "start": 30904.5, + "end": 30905.16, + "probability": 0.9076 + }, + { + "start": 30905.18, + "end": 30908.76, + "probability": 0.9583 + }, + { + "start": 30909.7, + "end": 30909.88, + "probability": 0.1188 + }, + { + "start": 30909.88, + "end": 30911.14, + "probability": 0.2111 + }, + { + "start": 30913.98, + "end": 30914.68, + "probability": 0.7324 + }, + { + "start": 30915.14, + "end": 30917.38, + "probability": 0.9556 + }, + { + "start": 30919.44, + "end": 30921.96, + "probability": 0.669 + }, + { + "start": 30922.8, + "end": 30925.84, + "probability": 0.7692 + }, + { + "start": 30927.12, + "end": 30928.14, + "probability": 0.3988 + }, + { + "start": 30928.18, + "end": 30929.34, + "probability": 0.1178 + }, + { + "start": 30929.98, + "end": 30932.06, + "probability": 0.487 + }, + { + "start": 30932.7, + "end": 30933.78, + "probability": 0.8155 + }, + { + "start": 30933.82, + "end": 30935.98, + "probability": 0.9894 + }, + { + "start": 30936.14, + "end": 30937.31, + "probability": 0.7786 + }, + { + "start": 30938.2, + "end": 30940.48, + "probability": 0.9227 + }, + { + "start": 30940.86, + "end": 30944.05, + "probability": 0.9641 + }, + { + "start": 30946.02, + "end": 30946.14, + "probability": 0.3057 + }, + { + "start": 30947.08, + "end": 30948.04, + "probability": 0.1912 + }, + { + "start": 30948.1, + "end": 30949.52, + "probability": 0.8538 + }, + { + "start": 30950.08, + "end": 30950.58, + "probability": 0.8986 + }, + { + "start": 30951.56, + "end": 30952.68, + "probability": 0.9531 + }, + { + "start": 30953.84, + "end": 30955.09, + "probability": 0.9871 + }, + { + "start": 30957.94, + "end": 30959.1, + "probability": 0.7395 + }, + { + "start": 30960.46, + "end": 30962.24, + "probability": 0.8302 + }, + { + "start": 30964.16, + "end": 30966.4, + "probability": 0.9978 + }, + { + "start": 30967.46, + "end": 30969.0, + "probability": 0.7695 + }, + { + "start": 30969.64, + "end": 30978.48, + "probability": 0.9619 + }, + { + "start": 30979.88, + "end": 30981.12, + "probability": 0.9757 + }, + { + "start": 30982.34, + "end": 30984.36, + "probability": 0.9043 + }, + { + "start": 30985.24, + "end": 30989.62, + "probability": 0.9941 + }, + { + "start": 30990.18, + "end": 30993.23, + "probability": 0.7149 + }, + { + "start": 30995.46, + "end": 30996.78, + "probability": 0.8717 + }, + { + "start": 30997.86, + "end": 31003.44, + "probability": 0.982 + }, + { + "start": 31004.44, + "end": 31007.82, + "probability": 0.6887 + }, + { + "start": 31008.96, + "end": 31012.07, + "probability": 0.96 + }, + { + "start": 31012.92, + "end": 31014.74, + "probability": 0.856 + }, + { + "start": 31015.68, + "end": 31018.2, + "probability": 0.872 + }, + { + "start": 31018.28, + "end": 31019.66, + "probability": 0.7944 + }, + { + "start": 31019.78, + "end": 31022.44, + "probability": 0.9037 + }, + { + "start": 31023.46, + "end": 31025.62, + "probability": 0.9871 + }, + { + "start": 31026.5, + "end": 31033.82, + "probability": 0.9941 + }, + { + "start": 31034.54, + "end": 31036.06, + "probability": 0.9886 + }, + { + "start": 31037.26, + "end": 31042.7, + "probability": 0.9874 + }, + { + "start": 31043.84, + "end": 31044.74, + "probability": 0.9785 + }, + { + "start": 31045.38, + "end": 31052.52, + "probability": 0.9959 + }, + { + "start": 31052.58, + "end": 31055.84, + "probability": 0.9917 + }, + { + "start": 31057.34, + "end": 31059.5, + "probability": 0.6493 + }, + { + "start": 31061.66, + "end": 31063.12, + "probability": 0.9634 + }, + { + "start": 31064.12, + "end": 31065.9, + "probability": 0.9326 + }, + { + "start": 31067.64, + "end": 31072.3, + "probability": 0.9166 + }, + { + "start": 31073.44, + "end": 31078.68, + "probability": 0.9624 + }, + { + "start": 31079.24, + "end": 31082.5, + "probability": 0.9512 + }, + { + "start": 31083.32, + "end": 31084.0, + "probability": 0.293 + }, + { + "start": 31085.8, + "end": 31088.86, + "probability": 0.8387 + }, + { + "start": 31089.32, + "end": 31091.28, + "probability": 0.9871 + }, + { + "start": 31092.72, + "end": 31095.88, + "probability": 0.9284 + }, + { + "start": 31096.42, + "end": 31100.38, + "probability": 0.6389 + }, + { + "start": 31101.14, + "end": 31102.5, + "probability": 0.9439 + }, + { + "start": 31103.54, + "end": 31106.4, + "probability": 0.9901 + }, + { + "start": 31108.02, + "end": 31110.78, + "probability": 0.9916 + }, + { + "start": 31111.68, + "end": 31117.02, + "probability": 0.9801 + }, + { + "start": 31118.18, + "end": 31120.76, + "probability": 0.9136 + }, + { + "start": 31121.6, + "end": 31123.84, + "probability": 0.9216 + }, + { + "start": 31124.7, + "end": 31126.54, + "probability": 0.6236 + }, + { + "start": 31127.3, + "end": 31129.44, + "probability": 0.672 + }, + { + "start": 31130.16, + "end": 31131.16, + "probability": 0.7666 + }, + { + "start": 31133.36, + "end": 31138.84, + "probability": 0.999 + }, + { + "start": 31139.88, + "end": 31141.98, + "probability": 0.8717 + }, + { + "start": 31142.82, + "end": 31145.68, + "probability": 0.9893 + }, + { + "start": 31146.54, + "end": 31151.74, + "probability": 0.9993 + }, + { + "start": 31151.88, + "end": 31156.86, + "probability": 0.9728 + }, + { + "start": 31157.74, + "end": 31165.04, + "probability": 0.9554 + }, + { + "start": 31166.9, + "end": 31169.12, + "probability": 0.9938 + }, + { + "start": 31170.5, + "end": 31172.16, + "probability": 0.9994 + }, + { + "start": 31173.0, + "end": 31174.46, + "probability": 0.9971 + }, + { + "start": 31175.56, + "end": 31181.2, + "probability": 0.9939 + }, + { + "start": 31182.84, + "end": 31187.36, + "probability": 0.9388 + }, + { + "start": 31188.1, + "end": 31190.9, + "probability": 0.9906 + }, + { + "start": 31192.58, + "end": 31195.04, + "probability": 0.9919 + }, + { + "start": 31195.76, + "end": 31198.1, + "probability": 0.829 + }, + { + "start": 31199.36, + "end": 31201.34, + "probability": 0.9866 + }, + { + "start": 31202.46, + "end": 31208.7, + "probability": 0.9958 + }, + { + "start": 31208.7, + "end": 31214.78, + "probability": 0.995 + }, + { + "start": 31215.96, + "end": 31217.24, + "probability": 0.793 + }, + { + "start": 31217.76, + "end": 31219.2, + "probability": 0.9972 + }, + { + "start": 31220.5, + "end": 31222.84, + "probability": 0.8203 + }, + { + "start": 31224.08, + "end": 31224.58, + "probability": 0.7753 + }, + { + "start": 31225.14, + "end": 31226.8, + "probability": 0.9963 + }, + { + "start": 31227.5, + "end": 31232.54, + "probability": 0.9971 + }, + { + "start": 31233.6, + "end": 31235.66, + "probability": 0.9994 + }, + { + "start": 31236.4, + "end": 31238.4, + "probability": 0.9848 + }, + { + "start": 31239.44, + "end": 31242.96, + "probability": 0.9717 + }, + { + "start": 31244.36, + "end": 31250.32, + "probability": 0.8296 + }, + { + "start": 31251.18, + "end": 31257.5, + "probability": 0.9976 + }, + { + "start": 31258.34, + "end": 31265.2, + "probability": 0.9932 + }, + { + "start": 31265.72, + "end": 31267.98, + "probability": 0.9777 + }, + { + "start": 31269.14, + "end": 31273.52, + "probability": 0.998 + }, + { + "start": 31273.84, + "end": 31277.88, + "probability": 0.9733 + }, + { + "start": 31278.8, + "end": 31282.34, + "probability": 0.999 + }, + { + "start": 31283.4, + "end": 31285.98, + "probability": 0.809 + }, + { + "start": 31287.02, + "end": 31292.38, + "probability": 0.9849 + }, + { + "start": 31293.46, + "end": 31295.3, + "probability": 0.5747 + }, + { + "start": 31296.12, + "end": 31300.44, + "probability": 0.9139 + }, + { + "start": 31301.7, + "end": 31308.86, + "probability": 0.9829 + }, + { + "start": 31309.52, + "end": 31311.56, + "probability": 0.9697 + }, + { + "start": 31312.5, + "end": 31313.98, + "probability": 0.9385 + }, + { + "start": 31314.68, + "end": 31317.9, + "probability": 0.9902 + }, + { + "start": 31319.16, + "end": 31322.18, + "probability": 0.7997 + }, + { + "start": 31323.94, + "end": 31325.46, + "probability": 0.7438 + }, + { + "start": 31326.1, + "end": 31326.84, + "probability": 0.7616 + }, + { + "start": 31327.74, + "end": 31331.1, + "probability": 0.9724 + }, + { + "start": 31331.64, + "end": 31334.16, + "probability": 0.9813 + }, + { + "start": 31334.8, + "end": 31336.42, + "probability": 0.9718 + }, + { + "start": 31337.12, + "end": 31339.22, + "probability": 0.9932 + }, + { + "start": 31340.3, + "end": 31342.28, + "probability": 0.9146 + }, + { + "start": 31343.2, + "end": 31345.2, + "probability": 0.8029 + }, + { + "start": 31345.8, + "end": 31346.82, + "probability": 0.6414 + }, + { + "start": 31347.76, + "end": 31350.92, + "probability": 0.9792 + }, + { + "start": 31351.68, + "end": 31353.74, + "probability": 0.9512 + }, + { + "start": 31354.9, + "end": 31360.3, + "probability": 0.9312 + }, + { + "start": 31361.2, + "end": 31364.2, + "probability": 0.9843 + }, + { + "start": 31364.88, + "end": 31367.76, + "probability": 0.9651 + }, + { + "start": 31368.66, + "end": 31371.92, + "probability": 0.9949 + }, + { + "start": 31372.9, + "end": 31376.04, + "probability": 0.9583 + }, + { + "start": 31377.0, + "end": 31380.6, + "probability": 0.9351 + }, + { + "start": 31381.54, + "end": 31383.96, + "probability": 0.9175 + }, + { + "start": 31385.38, + "end": 31386.76, + "probability": 0.9541 + }, + { + "start": 31387.38, + "end": 31390.98, + "probability": 0.998 + }, + { + "start": 31391.88, + "end": 31393.5, + "probability": 0.8696 + }, + { + "start": 31394.1, + "end": 31396.44, + "probability": 0.7124 + }, + { + "start": 31396.96, + "end": 31398.22, + "probability": 0.9153 + }, + { + "start": 31399.06, + "end": 31402.2, + "probability": 0.9559 + }, + { + "start": 31402.48, + "end": 31408.14, + "probability": 0.8894 + }, + { + "start": 31408.88, + "end": 31410.18, + "probability": 0.7681 + }, + { + "start": 31410.32, + "end": 31411.54, + "probability": 0.6784 + }, + { + "start": 31412.82, + "end": 31415.3, + "probability": 0.9917 + }, + { + "start": 31416.4, + "end": 31424.16, + "probability": 0.9773 + }, + { + "start": 31425.16, + "end": 31430.86, + "probability": 0.972 + }, + { + "start": 31431.3, + "end": 31432.65, + "probability": 0.7213 + }, + { + "start": 31433.38, + "end": 31433.96, + "probability": 0.4289 + }, + { + "start": 31435.1, + "end": 31435.6, + "probability": 0.7674 + }, + { + "start": 31436.9, + "end": 31437.62, + "probability": 0.6684 + }, + { + "start": 31438.74, + "end": 31440.28, + "probability": 0.8062 + }, + { + "start": 31441.08, + "end": 31449.16, + "probability": 0.9837 + }, + { + "start": 31450.28, + "end": 31456.82, + "probability": 0.9695 + }, + { + "start": 31458.4, + "end": 31463.64, + "probability": 0.9976 + }, + { + "start": 31464.1, + "end": 31464.72, + "probability": 0.6682 + }, + { + "start": 31465.3, + "end": 31468.04, + "probability": 0.8925 + }, + { + "start": 31470.14, + "end": 31472.3, + "probability": 0.7889 + }, + { + "start": 31472.74, + "end": 31473.7, + "probability": 0.8932 + }, + { + "start": 31473.92, + "end": 31474.7, + "probability": 0.5718 + }, + { + "start": 31474.74, + "end": 31474.94, + "probability": 0.9253 + }, + { + "start": 31475.94, + "end": 31477.9, + "probability": 0.9168 + }, + { + "start": 31478.1, + "end": 31480.4, + "probability": 0.7743 + }, + { + "start": 31480.64, + "end": 31482.04, + "probability": 0.9268 + }, + { + "start": 31482.14, + "end": 31483.54, + "probability": 0.9647 + }, + { + "start": 31484.3, + "end": 31486.94, + "probability": 0.9408 + }, + { + "start": 31487.72, + "end": 31490.66, + "probability": 0.9355 + }, + { + "start": 31492.1, + "end": 31494.9, + "probability": 0.8683 + }, + { + "start": 31496.31, + "end": 31499.48, + "probability": 0.5431 + }, + { + "start": 31499.74, + "end": 31506.04, + "probability": 0.9385 + }, + { + "start": 31507.44, + "end": 31508.62, + "probability": 0.9833 + }, + { + "start": 31509.22, + "end": 31509.64, + "probability": 0.8774 + }, + { + "start": 31511.46, + "end": 31512.9, + "probability": 0.9686 + }, + { + "start": 31513.98, + "end": 31519.4, + "probability": 0.9268 + }, + { + "start": 31520.76, + "end": 31526.06, + "probability": 0.9712 + }, + { + "start": 31527.36, + "end": 31531.76, + "probability": 0.7982 + }, + { + "start": 31533.66, + "end": 31535.78, + "probability": 0.9327 + }, + { + "start": 31536.74, + "end": 31542.92, + "probability": 0.9757 + }, + { + "start": 31542.96, + "end": 31548.08, + "probability": 0.9962 + }, + { + "start": 31549.96, + "end": 31550.66, + "probability": 0.546 + }, + { + "start": 31551.72, + "end": 31553.0, + "probability": 0.8053 + }, + { + "start": 31553.6, + "end": 31557.98, + "probability": 0.9396 + }, + { + "start": 31559.38, + "end": 31561.76, + "probability": 0.9313 + }, + { + "start": 31562.66, + "end": 31563.2, + "probability": 0.5952 + }, + { + "start": 31564.24, + "end": 31564.92, + "probability": 0.4865 + }, + { + "start": 31566.24, + "end": 31572.06, + "probability": 0.9353 + }, + { + "start": 31573.28, + "end": 31574.8, + "probability": 0.9302 + }, + { + "start": 31576.38, + "end": 31578.84, + "probability": 0.9273 + }, + { + "start": 31578.94, + "end": 31583.5, + "probability": 0.9491 + }, + { + "start": 31584.3, + "end": 31588.18, + "probability": 0.9907 + }, + { + "start": 31589.3, + "end": 31597.4, + "probability": 0.9562 + }, + { + "start": 31598.56, + "end": 31600.38, + "probability": 0.9875 + }, + { + "start": 31600.92, + "end": 31601.66, + "probability": 0.6532 + }, + { + "start": 31602.6, + "end": 31604.26, + "probability": 0.9988 + }, + { + "start": 31605.06, + "end": 31608.98, + "probability": 0.9968 + }, + { + "start": 31609.66, + "end": 31614.14, + "probability": 0.9928 + }, + { + "start": 31615.16, + "end": 31615.58, + "probability": 0.6854 + }, + { + "start": 31616.54, + "end": 31620.72, + "probability": 0.9966 + }, + { + "start": 31621.12, + "end": 31624.26, + "probability": 0.998 + }, + { + "start": 31624.88, + "end": 31627.6, + "probability": 0.7363 + }, + { + "start": 31628.16, + "end": 31632.8, + "probability": 0.6896 + }, + { + "start": 31634.78, + "end": 31642.7, + "probability": 0.9137 + }, + { + "start": 31643.56, + "end": 31646.6, + "probability": 0.9674 + }, + { + "start": 31647.12, + "end": 31651.68, + "probability": 0.8693 + }, + { + "start": 31652.46, + "end": 31658.62, + "probability": 0.8338 + }, + { + "start": 31659.8, + "end": 31665.18, + "probability": 0.9159 + }, + { + "start": 31666.2, + "end": 31670.3, + "probability": 0.9913 + }, + { + "start": 31670.74, + "end": 31678.24, + "probability": 0.9813 + }, + { + "start": 31678.32, + "end": 31679.58, + "probability": 0.7397 + }, + { + "start": 31680.68, + "end": 31685.22, + "probability": 0.9763 + }, + { + "start": 31686.32, + "end": 31691.22, + "probability": 0.9975 + }, + { + "start": 31691.74, + "end": 31693.82, + "probability": 0.996 + }, + { + "start": 31694.64, + "end": 31695.46, + "probability": 0.935 + }, + { + "start": 31696.04, + "end": 31698.06, + "probability": 0.9944 + }, + { + "start": 31699.64, + "end": 31705.66, + "probability": 0.9509 + }, + { + "start": 31706.62, + "end": 31707.06, + "probability": 0.1608 + }, + { + "start": 31707.16, + "end": 31710.3, + "probability": 0.4975 + }, + { + "start": 31710.34, + "end": 31710.52, + "probability": 0.7738 + }, + { + "start": 31713.56, + "end": 31714.24, + "probability": 0.6353 + }, + { + "start": 31715.44, + "end": 31717.7, + "probability": 0.7944 + }, + { + "start": 31719.66, + "end": 31720.38, + "probability": 0.3403 + }, + { + "start": 31720.9, + "end": 31721.48, + "probability": 0.0042 + }, + { + "start": 31722.36, + "end": 31722.46, + "probability": 0.1403 + }, + { + "start": 31722.46, + "end": 31722.46, + "probability": 0.3324 + }, + { + "start": 31722.46, + "end": 31727.74, + "probability": 0.8488 + }, + { + "start": 31728.44, + "end": 31729.82, + "probability": 0.7198 + }, + { + "start": 31730.36, + "end": 31732.38, + "probability": 0.9648 + }, + { + "start": 31733.0, + "end": 31733.63, + "probability": 0.6183 + }, + { + "start": 31734.32, + "end": 31741.22, + "probability": 0.9976 + }, + { + "start": 31741.84, + "end": 31746.32, + "probability": 0.9771 + }, + { + "start": 31746.32, + "end": 31749.98, + "probability": 0.9953 + }, + { + "start": 31750.34, + "end": 31751.66, + "probability": 0.9945 + }, + { + "start": 31751.78, + "end": 31752.32, + "probability": 0.4363 + }, + { + "start": 31753.54, + "end": 31754.8, + "probability": 0.9896 + }, + { + "start": 31756.52, + "end": 31760.56, + "probability": 0.8964 + }, + { + "start": 31761.2, + "end": 31766.08, + "probability": 0.9806 + }, + { + "start": 31766.28, + "end": 31770.78, + "probability": 0.9935 + }, + { + "start": 31772.14, + "end": 31774.2, + "probability": 0.9992 + }, + { + "start": 31775.26, + "end": 31781.06, + "probability": 0.962 + }, + { + "start": 31781.06, + "end": 31787.5, + "probability": 0.9877 + }, + { + "start": 31790.06, + "end": 31794.46, + "probability": 0.9886 + }, + { + "start": 31796.02, + "end": 31798.0, + "probability": 0.9496 + }, + { + "start": 31799.84, + "end": 31806.16, + "probability": 0.9931 + }, + { + "start": 31806.36, + "end": 31807.32, + "probability": 0.949 + }, + { + "start": 31808.4, + "end": 31814.2, + "probability": 0.991 + }, + { + "start": 31815.76, + "end": 31820.2, + "probability": 0.9951 + }, + { + "start": 31820.2, + "end": 31823.56, + "probability": 0.9976 + }, + { + "start": 31823.94, + "end": 31826.38, + "probability": 0.9954 + }, + { + "start": 31826.42, + "end": 31830.32, + "probability": 0.7885 + }, + { + "start": 31830.68, + "end": 31832.3, + "probability": 0.9649 + }, + { + "start": 31833.52, + "end": 31835.42, + "probability": 0.9551 + }, + { + "start": 31836.7, + "end": 31841.22, + "probability": 0.9971 + }, + { + "start": 31843.32, + "end": 31846.08, + "probability": 0.9916 + }, + { + "start": 31846.52, + "end": 31852.44, + "probability": 0.9704 + }, + { + "start": 31852.9, + "end": 31853.32, + "probability": 0.6667 + }, + { + "start": 31853.88, + "end": 31857.68, + "probability": 0.8997 + }, + { + "start": 31858.92, + "end": 31859.96, + "probability": 0.9751 + }, + { + "start": 31861.0, + "end": 31864.26, + "probability": 0.9985 + }, + { + "start": 31864.86, + "end": 31866.18, + "probability": 0.9819 + }, + { + "start": 31868.1, + "end": 31869.44, + "probability": 0.9512 + }, + { + "start": 31870.26, + "end": 31871.48, + "probability": 0.8704 + }, + { + "start": 31873.54, + "end": 31877.2, + "probability": 0.931 + }, + { + "start": 31877.26, + "end": 31878.36, + "probability": 0.9688 + }, + { + "start": 31879.58, + "end": 31882.88, + "probability": 0.9977 + }, + { + "start": 31884.14, + "end": 31886.1, + "probability": 0.9446 + }, + { + "start": 31886.22, + "end": 31886.58, + "probability": 0.5052 + }, + { + "start": 31887.48, + "end": 31888.64, + "probability": 0.7135 + }, + { + "start": 31888.72, + "end": 31889.86, + "probability": 0.9331 + }, + { + "start": 31890.58, + "end": 31892.34, + "probability": 0.874 + }, + { + "start": 31893.36, + "end": 31899.56, + "probability": 0.9888 + }, + { + "start": 31900.72, + "end": 31903.18, + "probability": 0.828 + }, + { + "start": 31904.02, + "end": 31906.22, + "probability": 0.9082 + }, + { + "start": 31907.26, + "end": 31907.98, + "probability": 0.9465 + }, + { + "start": 31908.88, + "end": 31911.74, + "probability": 0.9824 + }, + { + "start": 31912.52, + "end": 31913.44, + "probability": 0.9058 + }, + { + "start": 31914.56, + "end": 31916.2, + "probability": 0.8003 + }, + { + "start": 31916.82, + "end": 31920.8, + "probability": 0.916 + }, + { + "start": 31920.8, + "end": 31925.62, + "probability": 0.9836 + }, + { + "start": 31926.02, + "end": 31929.66, + "probability": 0.9211 + }, + { + "start": 31933.24, + "end": 31934.8, + "probability": 0.7364 + }, + { + "start": 31935.08, + "end": 31939.3, + "probability": 0.409 + }, + { + "start": 31941.26, + "end": 31941.26, + "probability": 0.2482 + }, + { + "start": 31941.26, + "end": 31942.12, + "probability": 0.3739 + }, + { + "start": 31943.14, + "end": 31943.84, + "probability": 0.6935 + }, + { + "start": 31944.6, + "end": 31946.3, + "probability": 0.1718 + }, + { + "start": 31946.78, + "end": 31950.62, + "probability": 0.584 + }, + { + "start": 31951.52, + "end": 31954.48, + "probability": 0.3433 + }, + { + "start": 31954.82, + "end": 31956.88, + "probability": 0.8589 + }, + { + "start": 31957.52, + "end": 31959.48, + "probability": 0.1903 + }, + { + "start": 31959.52, + "end": 31959.54, + "probability": 0.2832 + }, + { + "start": 31959.54, + "end": 31959.54, + "probability": 0.314 + }, + { + "start": 31959.54, + "end": 31960.02, + "probability": 0.3999 + }, + { + "start": 31960.34, + "end": 31961.1, + "probability": 0.9725 + }, + { + "start": 31961.78, + "end": 31963.52, + "probability": 0.9908 + }, + { + "start": 31964.04, + "end": 31966.98, + "probability": 0.4416 + }, + { + "start": 31967.3, + "end": 31968.86, + "probability": 0.576 + }, + { + "start": 31968.92, + "end": 31969.92, + "probability": 0.7981 + }, + { + "start": 31970.04, + "end": 31970.26, + "probability": 0.818 + }, + { + "start": 31970.72, + "end": 31972.26, + "probability": 0.4274 + }, + { + "start": 31972.28, + "end": 31972.9, + "probability": 0.7367 + }, + { + "start": 31973.2, + "end": 31973.82, + "probability": 0.7788 + }, + { + "start": 31973.94, + "end": 31974.34, + "probability": 0.1268 + }, + { + "start": 31975.18, + "end": 31976.24, + "probability": 0.9332 + }, + { + "start": 31976.28, + "end": 31977.18, + "probability": 0.7431 + }, + { + "start": 31977.84, + "end": 31978.71, + "probability": 0.6591 + }, + { + "start": 31979.7, + "end": 31982.52, + "probability": 0.653 + }, + { + "start": 31983.2, + "end": 31985.06, + "probability": 0.0517 + }, + { + "start": 31985.08, + "end": 31989.04, + "probability": 0.8105 + }, + { + "start": 31989.26, + "end": 31989.72, + "probability": 0.5949 + }, + { + "start": 31989.78, + "end": 31990.56, + "probability": 0.6358 + }, + { + "start": 31990.92, + "end": 31992.04, + "probability": 0.127 + }, + { + "start": 31992.92, + "end": 31993.9, + "probability": 0.0378 + }, + { + "start": 31994.36, + "end": 31994.7, + "probability": 0.1892 + }, + { + "start": 31994.8, + "end": 31999.06, + "probability": 0.0546 + }, + { + "start": 32000.5, + "end": 32001.96, + "probability": 0.5541 + }, + { + "start": 32002.04, + "end": 32002.98, + "probability": 0.8133 + }, + { + "start": 32003.04, + "end": 32005.5, + "probability": 0.9116 + }, + { + "start": 32005.54, + "end": 32007.02, + "probability": 0.8648 + }, + { + "start": 32007.2, + "end": 32008.04, + "probability": 0.7633 + }, + { + "start": 32008.86, + "end": 32010.44, + "probability": 0.6583 + }, + { + "start": 32010.5, + "end": 32014.18, + "probability": 0.9893 + }, + { + "start": 32017.52, + "end": 32018.52, + "probability": 0.8767 + }, + { + "start": 32019.6, + "end": 32020.58, + "probability": 0.681 + }, + { + "start": 32020.6, + "end": 32021.14, + "probability": 0.9302 + }, + { + "start": 32021.38, + "end": 32022.2, + "probability": 0.9819 + }, + { + "start": 32022.4, + "end": 32022.86, + "probability": 0.8411 + }, + { + "start": 32023.54, + "end": 32024.18, + "probability": 0.8903 + }, + { + "start": 32024.36, + "end": 32024.66, + "probability": 0.3251 + }, + { + "start": 32024.66, + "end": 32025.52, + "probability": 0.8741 + }, + { + "start": 32025.9, + "end": 32027.32, + "probability": 0.7917 + }, + { + "start": 32027.74, + "end": 32028.24, + "probability": 0.4247 + }, + { + "start": 32028.26, + "end": 32030.56, + "probability": 0.9809 + }, + { + "start": 32030.56, + "end": 32033.1, + "probability": 0.8994 + }, + { + "start": 32036.72, + "end": 32038.12, + "probability": 0.7492 + }, + { + "start": 32038.12, + "end": 32038.81, + "probability": 0.9348 + }, + { + "start": 32039.64, + "end": 32040.14, + "probability": 0.5082 + }, + { + "start": 32041.58, + "end": 32044.16, + "probability": 0.6011 + }, + { + "start": 32044.16, + "end": 32044.44, + "probability": 0.2676 + }, + { + "start": 32044.44, + "end": 32045.36, + "probability": 0.3648 + }, + { + "start": 32046.1, + "end": 32046.58, + "probability": 0.9124 + }, + { + "start": 32046.6, + "end": 32050.74, + "probability": 0.7124 + }, + { + "start": 32051.78, + "end": 32052.86, + "probability": 0.8417 + }, + { + "start": 32052.9, + "end": 32053.86, + "probability": 0.5875 + }, + { + "start": 32054.58, + "end": 32055.62, + "probability": 0.6999 + }, + { + "start": 32055.82, + "end": 32056.56, + "probability": 0.8382 + }, + { + "start": 32056.56, + "end": 32057.14, + "probability": 0.4214 + }, + { + "start": 32057.26, + "end": 32058.93, + "probability": 0.72 + }, + { + "start": 32059.46, + "end": 32062.9, + "probability": 0.9648 + }, + { + "start": 32063.32, + "end": 32063.64, + "probability": 0.4911 + }, + { + "start": 32063.84, + "end": 32068.1, + "probability": 0.9622 + }, + { + "start": 32068.8, + "end": 32069.18, + "probability": 0.9633 + }, + { + "start": 32069.72, + "end": 32071.57, + "probability": 0.9743 + }, + { + "start": 32073.66, + "end": 32074.38, + "probability": 0.8394 + }, + { + "start": 32074.42, + "end": 32077.72, + "probability": 0.9854 + }, + { + "start": 32078.24, + "end": 32078.76, + "probability": 0.8658 + }, + { + "start": 32079.08, + "end": 32085.58, + "probability": 0.9938 + }, + { + "start": 32086.38, + "end": 32089.16, + "probability": 0.9938 + }, + { + "start": 32089.38, + "end": 32094.64, + "probability": 0.988 + }, + { + "start": 32094.8, + "end": 32097.22, + "probability": 0.7603 + }, + { + "start": 32097.62, + "end": 32099.0, + "probability": 0.9988 + }, + { + "start": 32099.64, + "end": 32100.98, + "probability": 0.9966 + }, + { + "start": 32101.58, + "end": 32102.76, + "probability": 0.9651 + }, + { + "start": 32102.84, + "end": 32106.04, + "probability": 0.9506 + }, + { + "start": 32106.72, + "end": 32110.54, + "probability": 0.9831 + }, + { + "start": 32111.21, + "end": 32115.26, + "probability": 0.9895 + }, + { + "start": 32115.84, + "end": 32119.54, + "probability": 0.8342 + }, + { + "start": 32119.88, + "end": 32122.78, + "probability": 0.9971 + }, + { + "start": 32122.78, + "end": 32126.26, + "probability": 0.997 + }, + { + "start": 32126.58, + "end": 32128.64, + "probability": 0.7914 + }, + { + "start": 32129.3, + "end": 32130.48, + "probability": 0.7652 + }, + { + "start": 32130.88, + "end": 32133.54, + "probability": 0.9688 + }, + { + "start": 32133.72, + "end": 32136.54, + "probability": 0.9969 + }, + { + "start": 32136.54, + "end": 32139.32, + "probability": 0.9968 + }, + { + "start": 32139.74, + "end": 32142.22, + "probability": 0.9915 + }, + { + "start": 32142.62, + "end": 32143.62, + "probability": 0.7188 + }, + { + "start": 32144.04, + "end": 32145.0, + "probability": 0.9868 + }, + { + "start": 32145.52, + "end": 32146.46, + "probability": 0.9246 + }, + { + "start": 32146.98, + "end": 32149.82, + "probability": 0.9922 + }, + { + "start": 32150.22, + "end": 32152.18, + "probability": 0.8896 + }, + { + "start": 32152.24, + "end": 32155.02, + "probability": 0.9528 + }, + { + "start": 32155.02, + "end": 32158.2, + "probability": 0.9964 + }, + { + "start": 32158.64, + "end": 32160.58, + "probability": 0.9754 + }, + { + "start": 32160.7, + "end": 32164.4, + "probability": 0.9731 + }, + { + "start": 32164.4, + "end": 32168.44, + "probability": 0.9917 + }, + { + "start": 32168.88, + "end": 32170.3, + "probability": 0.9988 + }, + { + "start": 32171.14, + "end": 32176.68, + "probability": 0.999 + }, + { + "start": 32177.26, + "end": 32178.92, + "probability": 0.976 + }, + { + "start": 32179.52, + "end": 32183.08, + "probability": 0.9801 + }, + { + "start": 32183.44, + "end": 32185.06, + "probability": 0.9826 + }, + { + "start": 32185.52, + "end": 32188.96, + "probability": 0.9935 + }, + { + "start": 32189.42, + "end": 32191.22, + "probability": 0.994 + }, + { + "start": 32191.54, + "end": 32197.34, + "probability": 0.9898 + }, + { + "start": 32198.0, + "end": 32199.32, + "probability": 0.8585 + }, + { + "start": 32199.38, + "end": 32203.02, + "probability": 0.9898 + }, + { + "start": 32203.3, + "end": 32205.62, + "probability": 0.7236 + }, + { + "start": 32206.48, + "end": 32211.18, + "probability": 0.9259 + }, + { + "start": 32211.54, + "end": 32213.74, + "probability": 0.7804 + }, + { + "start": 32214.22, + "end": 32216.28, + "probability": 0.9309 + }, + { + "start": 32216.86, + "end": 32219.76, + "probability": 0.8594 + }, + { + "start": 32220.3, + "end": 32224.06, + "probability": 0.9854 + }, + { + "start": 32224.06, + "end": 32227.74, + "probability": 0.9985 + }, + { + "start": 32228.26, + "end": 32229.48, + "probability": 0.9668 + }, + { + "start": 32229.66, + "end": 32230.22, + "probability": 0.9684 + }, + { + "start": 32230.86, + "end": 32231.36, + "probability": 0.9479 + }, + { + "start": 32231.42, + "end": 32234.42, + "probability": 0.9683 + }, + { + "start": 32234.98, + "end": 32238.24, + "probability": 0.9985 + }, + { + "start": 32238.56, + "end": 32241.56, + "probability": 0.9964 + }, + { + "start": 32241.62, + "end": 32242.5, + "probability": 0.8385 + }, + { + "start": 32242.86, + "end": 32243.26, + "probability": 0.7755 + }, + { + "start": 32243.5, + "end": 32245.36, + "probability": 0.8656 + }, + { + "start": 32245.74, + "end": 32247.14, + "probability": 0.8993 + }, + { + "start": 32247.22, + "end": 32248.04, + "probability": 0.7529 + }, + { + "start": 32248.22, + "end": 32252.96, + "probability": 0.9963 + }, + { + "start": 32253.26, + "end": 32257.56, + "probability": 0.9908 + }, + { + "start": 32257.86, + "end": 32261.28, + "probability": 0.9985 + }, + { + "start": 32261.28, + "end": 32264.28, + "probability": 0.9899 + }, + { + "start": 32264.4, + "end": 32265.22, + "probability": 0.5782 + }, + { + "start": 32265.5, + "end": 32267.18, + "probability": 0.8867 + }, + { + "start": 32267.56, + "end": 32271.14, + "probability": 0.9375 + }, + { + "start": 32271.78, + "end": 32275.0, + "probability": 0.9199 + }, + { + "start": 32275.24, + "end": 32276.99, + "probability": 0.9016 + }, + { + "start": 32277.54, + "end": 32278.27, + "probability": 0.9807 + }, + { + "start": 32278.92, + "end": 32280.54, + "probability": 0.9052 + }, + { + "start": 32280.84, + "end": 32282.1, + "probability": 0.9749 + }, + { + "start": 32282.18, + "end": 32282.66, + "probability": 0.8422 + }, + { + "start": 32283.4, + "end": 32283.9, + "probability": 0.8138 + }, + { + "start": 32285.16, + "end": 32286.9, + "probability": 0.9232 + }, + { + "start": 32291.9, + "end": 32292.56, + "probability": 0.8506 + }, + { + "start": 32292.68, + "end": 32294.06, + "probability": 0.9034 + }, + { + "start": 32294.2, + "end": 32295.1, + "probability": 0.9948 + }, + { + "start": 32296.22, + "end": 32299.5, + "probability": 0.8714 + }, + { + "start": 32299.66, + "end": 32299.98, + "probability": 0.0691 + }, + { + "start": 32300.82, + "end": 32302.38, + "probability": 0.4556 + }, + { + "start": 32303.6, + "end": 32304.76, + "probability": 0.7905 + }, + { + "start": 32304.96, + "end": 32306.73, + "probability": 0.9881 + }, + { + "start": 32306.96, + "end": 32307.54, + "probability": 0.9816 + }, + { + "start": 32307.66, + "end": 32307.88, + "probability": 0.4227 + }, + { + "start": 32307.94, + "end": 32309.08, + "probability": 0.085 + }, + { + "start": 32320.34, + "end": 32322.28, + "probability": 0.7575 + }, + { + "start": 32323.7, + "end": 32326.7, + "probability": 0.9699 + }, + { + "start": 32326.86, + "end": 32328.42, + "probability": 0.5864 + }, + { + "start": 32328.6, + "end": 32331.52, + "probability": 0.9313 + }, + { + "start": 32331.52, + "end": 32338.8, + "probability": 0.9737 + }, + { + "start": 32341.74, + "end": 32342.68, + "probability": 0.6432 + }, + { + "start": 32343.52, + "end": 32346.6, + "probability": 0.865 + }, + { + "start": 32347.02, + "end": 32348.32, + "probability": 0.9956 + }, + { + "start": 32348.86, + "end": 32353.12, + "probability": 0.9821 + }, + { + "start": 32356.56, + "end": 32361.8, + "probability": 0.9775 + }, + { + "start": 32362.82, + "end": 32369.34, + "probability": 0.9666 + }, + { + "start": 32370.22, + "end": 32374.62, + "probability": 0.9978 + }, + { + "start": 32375.62, + "end": 32375.94, + "probability": 0.4905 + }, + { + "start": 32376.04, + "end": 32383.23, + "probability": 0.9902 + }, + { + "start": 32384.04, + "end": 32387.2, + "probability": 0.988 + }, + { + "start": 32387.76, + "end": 32392.36, + "probability": 0.9792 + }, + { + "start": 32392.88, + "end": 32394.26, + "probability": 0.8969 + }, + { + "start": 32394.48, + "end": 32394.48, + "probability": 0.2865 + }, + { + "start": 32395.08, + "end": 32395.2, + "probability": 0.594 + }, + { + "start": 32395.36, + "end": 32400.06, + "probability": 0.9788 + }, + { + "start": 32400.06, + "end": 32405.84, + "probability": 0.9921 + }, + { + "start": 32407.02, + "end": 32407.6, + "probability": 0.9221 + }, + { + "start": 32408.7, + "end": 32410.06, + "probability": 0.9819 + }, + { + "start": 32411.82, + "end": 32413.18, + "probability": 0.9149 + }, + { + "start": 32414.58, + "end": 32417.9, + "probability": 0.9955 + }, + { + "start": 32418.56, + "end": 32420.62, + "probability": 0.7355 + }, + { + "start": 32420.66, + "end": 32425.84, + "probability": 0.864 + }, + { + "start": 32427.62, + "end": 32432.58, + "probability": 0.9976 + }, + { + "start": 32434.3, + "end": 32438.94, + "probability": 0.9945 + }, + { + "start": 32439.38, + "end": 32440.5, + "probability": 0.8135 + }, + { + "start": 32441.06, + "end": 32443.92, + "probability": 0.9334 + }, + { + "start": 32445.34, + "end": 32451.24, + "probability": 0.912 + }, + { + "start": 32452.8, + "end": 32459.26, + "probability": 0.9031 + }, + { + "start": 32459.72, + "end": 32463.98, + "probability": 0.7926 + }, + { + "start": 32464.24, + "end": 32465.08, + "probability": 0.4749 + }, + { + "start": 32465.74, + "end": 32471.38, + "probability": 0.9897 + }, + { + "start": 32471.52, + "end": 32472.62, + "probability": 0.9198 + }, + { + "start": 32472.68, + "end": 32476.12, + "probability": 0.9942 + }, + { + "start": 32476.9, + "end": 32478.52, + "probability": 0.9701 + }, + { + "start": 32478.58, + "end": 32481.8, + "probability": 0.9495 + }, + { + "start": 32482.3, + "end": 32486.38, + "probability": 0.9952 + }, + { + "start": 32487.62, + "end": 32489.48, + "probability": 0.9984 + }, + { + "start": 32490.1, + "end": 32493.72, + "probability": 0.9903 + }, + { + "start": 32493.72, + "end": 32497.28, + "probability": 0.9888 + }, + { + "start": 32498.44, + "end": 32500.98, + "probability": 0.8918 + }, + { + "start": 32501.38, + "end": 32503.5, + "probability": 0.9813 + }, + { + "start": 32504.5, + "end": 32507.56, + "probability": 0.98 + }, + { + "start": 32510.28, + "end": 32511.86, + "probability": 0.9462 + }, + { + "start": 32511.98, + "end": 32516.72, + "probability": 0.9897 + }, + { + "start": 32517.1, + "end": 32517.96, + "probability": 0.9902 + }, + { + "start": 32517.96, + "end": 32520.62, + "probability": 0.9976 + }, + { + "start": 32521.12, + "end": 32526.12, + "probability": 0.9743 + }, + { + "start": 32534.32, + "end": 32537.9, + "probability": 0.6374 + }, + { + "start": 32538.8, + "end": 32541.1, + "probability": 0.8055 + }, + { + "start": 32541.74, + "end": 32542.32, + "probability": 0.7249 + }, + { + "start": 32543.28, + "end": 32545.72, + "probability": 0.9529 + }, + { + "start": 32545.76, + "end": 32547.6, + "probability": 0.6088 + }, + { + "start": 32549.1, + "end": 32549.72, + "probability": 0.5769 + }, + { + "start": 32549.8, + "end": 32551.36, + "probability": 0.4557 + }, + { + "start": 32551.5, + "end": 32553.0, + "probability": 0.4516 + }, + { + "start": 32553.12, + "end": 32555.5, + "probability": 0.5261 + }, + { + "start": 32556.36, + "end": 32557.92, + "probability": 0.8955 + }, + { + "start": 32558.0, + "end": 32560.8, + "probability": 0.6252 + }, + { + "start": 32561.66, + "end": 32564.12, + "probability": 0.7066 + }, + { + "start": 32564.32, + "end": 32566.03, + "probability": 0.953 + }, + { + "start": 32566.34, + "end": 32568.3, + "probability": 0.5737 + }, + { + "start": 32568.92, + "end": 32569.86, + "probability": 0.7209 + }, + { + "start": 32570.24, + "end": 32572.16, + "probability": 0.6976 + }, + { + "start": 32572.2, + "end": 32574.14, + "probability": 0.9463 + }, + { + "start": 32574.26, + "end": 32575.1, + "probability": 0.9113 + }, + { + "start": 32575.7, + "end": 32576.82, + "probability": 0.8436 + }, + { + "start": 32576.96, + "end": 32578.3, + "probability": 0.866 + }, + { + "start": 32578.3, + "end": 32583.0, + "probability": 0.9963 + }, + { + "start": 32583.9, + "end": 32586.3, + "probability": 0.9828 + }, + { + "start": 32587.5, + "end": 32589.6, + "probability": 0.8998 + }, + { + "start": 32590.26, + "end": 32591.28, + "probability": 0.7369 + }, + { + "start": 32591.82, + "end": 32594.9, + "probability": 0.9934 + }, + { + "start": 32595.88, + "end": 32595.88, + "probability": 0.0854 + }, + { + "start": 32595.88, + "end": 32595.88, + "probability": 0.0537 + }, + { + "start": 32595.88, + "end": 32595.88, + "probability": 0.1137 + }, + { + "start": 32595.88, + "end": 32604.42, + "probability": 0.6679 + }, + { + "start": 32604.74, + "end": 32606.06, + "probability": 0.9805 + }, + { + "start": 32608.3, + "end": 32613.18, + "probability": 0.9741 + }, + { + "start": 32616.44, + "end": 32619.3, + "probability": 0.0954 + }, + { + "start": 32620.16, + "end": 32620.28, + "probability": 0.0503 + }, + { + "start": 32620.28, + "end": 32621.95, + "probability": 0.3607 + }, + { + "start": 32623.66, + "end": 32624.34, + "probability": 0.7886 + }, + { + "start": 32624.5, + "end": 32630.88, + "probability": 0.9857 + }, + { + "start": 32631.82, + "end": 32636.04, + "probability": 0.1384 + }, + { + "start": 32636.04, + "end": 32636.04, + "probability": 0.142 + }, + { + "start": 32636.04, + "end": 32636.86, + "probability": 0.0726 + }, + { + "start": 32637.38, + "end": 32640.58, + "probability": 0.7936 + }, + { + "start": 32641.2, + "end": 32642.52, + "probability": 0.769 + }, + { + "start": 32642.62, + "end": 32648.34, + "probability": 0.9762 + }, + { + "start": 32649.06, + "end": 32651.2, + "probability": 0.9631 + }, + { + "start": 32651.62, + "end": 32657.98, + "probability": 0.9987 + }, + { + "start": 32657.98, + "end": 32662.82, + "probability": 0.9775 + }, + { + "start": 32664.02, + "end": 32664.76, + "probability": 0.9176 + }, + { + "start": 32664.84, + "end": 32668.9, + "probability": 0.9878 + }, + { + "start": 32668.9, + "end": 32674.2, + "probability": 0.9762 + }, + { + "start": 32675.74, + "end": 32677.2, + "probability": 0.9924 + }, + { + "start": 32677.76, + "end": 32680.92, + "probability": 0.9667 + }, + { + "start": 32681.46, + "end": 32684.06, + "probability": 0.955 + }, + { + "start": 32684.52, + "end": 32686.34, + "probability": 0.9917 + }, + { + "start": 32687.0, + "end": 32691.44, + "probability": 0.9929 + }, + { + "start": 32692.18, + "end": 32696.57, + "probability": 0.3147 + }, + { + "start": 32697.66, + "end": 32702.48, + "probability": 0.4569 + }, + { + "start": 32702.48, + "end": 32705.52, + "probability": 0.6063 + }, + { + "start": 32705.52, + "end": 32707.62, + "probability": 0.6022 + }, + { + "start": 32707.8, + "end": 32709.02, + "probability": 0.6964 + }, + { + "start": 32709.22, + "end": 32709.74, + "probability": 0.6727 + }, + { + "start": 32710.04, + "end": 32712.02, + "probability": 0.892 + }, + { + "start": 32712.22, + "end": 32715.6, + "probability": 0.4576 + }, + { + "start": 32715.98, + "end": 32718.24, + "probability": 0.8093 + }, + { + "start": 32718.4, + "end": 32719.62, + "probability": 0.1171 + }, + { + "start": 32720.34, + "end": 32724.4, + "probability": 0.8999 + }, + { + "start": 32724.9, + "end": 32725.9, + "probability": 0.8687 + }, + { + "start": 32726.38, + "end": 32728.78, + "probability": 0.9713 + }, + { + "start": 32729.16, + "end": 32731.8, + "probability": 0.8674 + }, + { + "start": 32733.46, + "end": 32734.44, + "probability": 0.9607 + }, + { + "start": 32734.56, + "end": 32738.66, + "probability": 0.9669 + }, + { + "start": 32738.76, + "end": 32739.06, + "probability": 0.8491 + }, + { + "start": 32740.26, + "end": 32741.2, + "probability": 0.4558 + }, + { + "start": 32741.4, + "end": 32743.74, + "probability": 0.7864 + }, + { + "start": 32743.88, + "end": 32750.3, + "probability": 0.9895 + }, + { + "start": 32751.9, + "end": 32754.24, + "probability": 0.9971 + }, + { + "start": 32755.14, + "end": 32760.04, + "probability": 0.9455 + }, + { + "start": 32761.02, + "end": 32764.87, + "probability": 0.9944 + }, + { + "start": 32765.42, + "end": 32767.0, + "probability": 0.7975 + }, + { + "start": 32767.5, + "end": 32769.76, + "probability": 0.863 + }, + { + "start": 32770.14, + "end": 32772.58, + "probability": 0.8272 + }, + { + "start": 32773.08, + "end": 32774.24, + "probability": 0.8696 + }, + { + "start": 32774.53, + "end": 32779.28, + "probability": 0.9009 + }, + { + "start": 32780.64, + "end": 32781.78, + "probability": 0.9561 + }, + { + "start": 32782.98, + "end": 32785.76, + "probability": 0.4962 + }, + { + "start": 32785.96, + "end": 32791.08, + "probability": 0.897 + }, + { + "start": 32799.14, + "end": 32800.12, + "probability": 0.2663 + }, + { + "start": 32800.16, + "end": 32801.4, + "probability": 0.9453 + }, + { + "start": 32801.62, + "end": 32802.86, + "probability": 0.9404 + }, + { + "start": 32802.92, + "end": 32803.2, + "probability": 0.312 + }, + { + "start": 32803.68, + "end": 32805.25, + "probability": 0.982 + }, + { + "start": 32806.02, + "end": 32807.04, + "probability": 0.0639 + }, + { + "start": 32807.04, + "end": 32807.68, + "probability": 0.6424 + }, + { + "start": 32808.0, + "end": 32811.02, + "probability": 0.9836 + }, + { + "start": 32811.34, + "end": 32812.78, + "probability": 0.6055 + }, + { + "start": 32812.84, + "end": 32813.4, + "probability": 0.4856 + }, + { + "start": 32813.58, + "end": 32815.18, + "probability": 0.285 + }, + { + "start": 32816.14, + "end": 32816.74, + "probability": 0.0688 + }, + { + "start": 32817.0, + "end": 32817.02, + "probability": 0.0428 + }, + { + "start": 32817.02, + "end": 32817.02, + "probability": 0.0988 + }, + { + "start": 32817.02, + "end": 32818.82, + "probability": 0.7989 + }, + { + "start": 32819.7, + "end": 32822.0, + "probability": 0.9551 + }, + { + "start": 32822.38, + "end": 32824.3, + "probability": 0.9756 + }, + { + "start": 32824.68, + "end": 32826.9, + "probability": 0.8409 + }, + { + "start": 32827.16, + "end": 32829.36, + "probability": 0.8562 + }, + { + "start": 32830.5, + "end": 32830.5, + "probability": 0.0267 + }, + { + "start": 32830.5, + "end": 32830.5, + "probability": 0.4751 + }, + { + "start": 32830.5, + "end": 32831.12, + "probability": 0.5091 + }, + { + "start": 32831.44, + "end": 32834.5, + "probability": 0.7142 + }, + { + "start": 32834.5, + "end": 32836.32, + "probability": 0.683 + }, + { + "start": 32836.76, + "end": 32838.24, + "probability": 0.102 + }, + { + "start": 32838.24, + "end": 32838.24, + "probability": 0.0448 + }, + { + "start": 32838.24, + "end": 32838.24, + "probability": 0.154 + }, + { + "start": 32838.24, + "end": 32844.02, + "probability": 0.5353 + }, + { + "start": 32844.6, + "end": 32845.0, + "probability": 0.1767 + }, + { + "start": 32845.0, + "end": 32849.64, + "probability": 0.7471 + }, + { + "start": 32850.58, + "end": 32851.32, + "probability": 0.263 + }, + { + "start": 32851.4, + "end": 32858.64, + "probability": 0.9565 + }, + { + "start": 32858.9, + "end": 32865.0, + "probability": 0.6513 + }, + { + "start": 32865.08, + "end": 32866.1, + "probability": 0.9082 + }, + { + "start": 32871.54, + "end": 32873.08, + "probability": 0.3118 + }, + { + "start": 32873.18, + "end": 32875.74, + "probability": 0.5907 + }, + { + "start": 32875.76, + "end": 32879.08, + "probability": 0.9775 + }, + { + "start": 32879.72, + "end": 32881.51, + "probability": 0.9769 + }, + { + "start": 32882.5, + "end": 32886.28, + "probability": 0.9894 + }, + { + "start": 32886.28, + "end": 32889.16, + "probability": 0.9087 + }, + { + "start": 32889.32, + "end": 32890.24, + "probability": 0.3336 + }, + { + "start": 32891.0, + "end": 32892.48, + "probability": 0.6495 + }, + { + "start": 32893.06, + "end": 32894.32, + "probability": 0.078 + }, + { + "start": 32894.36, + "end": 32894.68, + "probability": 0.5568 + }, + { + "start": 32894.7, + "end": 32897.46, + "probability": 0.645 + }, + { + "start": 32897.9, + "end": 32899.44, + "probability": 0.8569 + }, + { + "start": 32899.54, + "end": 32900.41, + "probability": 0.9617 + }, + { + "start": 32900.48, + "end": 32902.34, + "probability": 0.9849 + }, + { + "start": 32909.24, + "end": 32913.16, + "probability": 0.862 + }, + { + "start": 32914.48, + "end": 32916.82, + "probability": 0.6439 + }, + { + "start": 32916.92, + "end": 32917.82, + "probability": 0.036 + }, + { + "start": 32917.94, + "end": 32917.94, + "probability": 0.0522 + }, + { + "start": 32917.94, + "end": 32918.8, + "probability": 0.0733 + }, + { + "start": 32918.96, + "end": 32920.06, + "probability": 0.0098 + }, + { + "start": 32922.86, + "end": 32923.62, + "probability": 0.0497 + }, + { + "start": 32923.62, + "end": 32925.3, + "probability": 0.1214 + }, + { + "start": 32925.3, + "end": 32927.0, + "probability": 0.0468 + }, + { + "start": 32927.0, + "end": 32927.0, + "probability": 0.0334 + }, + { + "start": 32927.0, + "end": 32927.23, + "probability": 0.0648 + }, + { + "start": 32927.7, + "end": 32928.7, + "probability": 0.0945 + }, + { + "start": 32936.54, + "end": 32937.8, + "probability": 0.3562 + }, + { + "start": 32937.8, + "end": 32939.18, + "probability": 0.0257 + }, + { + "start": 32939.28, + "end": 32939.6, + "probability": 0.0232 + }, + { + "start": 32940.04, + "end": 32940.72, + "probability": 0.0219 + }, + { + "start": 32941.5, + "end": 32948.06, + "probability": 0.0394 + }, + { + "start": 32954.8, + "end": 32961.62, + "probability": 0.0714 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32982.0, + "end": 32982.0, + "probability": 0.0 + }, + { + "start": 32989.32, + "end": 32991.32, + "probability": 0.5861 + }, + { + "start": 32991.46, + "end": 32992.64, + "probability": 0.711 + }, + { + "start": 32993.1, + "end": 32997.98, + "probability": 0.7674 + }, + { + "start": 32998.12, + "end": 32998.7, + "probability": 0.7594 + }, + { + "start": 32998.72, + "end": 32999.28, + "probability": 0.6837 + }, + { + "start": 32999.28, + "end": 33000.06, + "probability": 0.9405 + }, + { + "start": 33013.94, + "end": 33014.56, + "probability": 0.0486 + }, + { + "start": 33014.56, + "end": 33016.2, + "probability": 0.6605 + }, + { + "start": 33016.2, + "end": 33017.34, + "probability": 0.8321 + }, + { + "start": 33018.32, + "end": 33020.22, + "probability": 0.8661 + }, + { + "start": 33022.18, + "end": 33024.0, + "probability": 0.6544 + }, + { + "start": 33024.02, + "end": 33024.52, + "probability": 0.6927 + }, + { + "start": 33024.52, + "end": 33025.18, + "probability": 0.9628 + }, + { + "start": 33025.82, + "end": 33027.6, + "probability": 0.2217 + }, + { + "start": 33027.92, + "end": 33029.24, + "probability": 0.0004 + }, + { + "start": 33039.88, + "end": 33041.54, + "probability": 0.4417 + }, + { + "start": 33041.7, + "end": 33042.8, + "probability": 0.7717 + }, + { + "start": 33043.46, + "end": 33045.52, + "probability": 0.7418 + }, + { + "start": 33050.42, + "end": 33051.12, + "probability": 0.6968 + }, + { + "start": 33051.12, + "end": 33051.84, + "probability": 0.7265 + }, + { + "start": 33055.88, + "end": 33061.86, + "probability": 0.0036 + }, + { + "start": 33065.22, + "end": 33066.02, + "probability": 0.5513 + }, + { + "start": 33066.54, + "end": 33067.9, + "probability": 0.6905 + }, + { + "start": 33067.9, + "end": 33069.0, + "probability": 0.7658 + }, + { + "start": 33069.48, + "end": 33071.33, + "probability": 0.8775 + }, + { + "start": 33072.88, + "end": 33074.8, + "probability": 0.6434 + }, + { + "start": 33074.8, + "end": 33075.98, + "probability": 0.8842 + }, + { + "start": 33076.7, + "end": 33079.38, + "probability": 0.563 + }, + { + "start": 33085.3, + "end": 33086.34, + "probability": 0.0028 + }, + { + "start": 33087.7, + "end": 33088.76, + "probability": 0.6025 + }, + { + "start": 33089.3, + "end": 33090.42, + "probability": 0.6754 + }, + { + "start": 33090.82, + "end": 33091.88, + "probability": 0.757 + }, + { + "start": 33092.34, + "end": 33094.94, + "probability": 0.5146 + }, + { + "start": 33095.0, + "end": 33095.64, + "probability": 0.6395 + }, + { + "start": 33095.7, + "end": 33096.26, + "probability": 0.6949 + }, + { + "start": 33096.26, + "end": 33096.82, + "probability": 0.8274 + }, + { + "start": 33098.94, + "end": 33101.88, + "probability": 0.0239 + }, + { + "start": 33111.46, + "end": 33115.06, + "probability": 0.5966 + }, + { + "start": 33115.06, + "end": 33116.08, + "probability": 0.7016 + }, + { + "start": 33116.6, + "end": 33121.32, + "probability": 0.5874 + }, + { + "start": 33121.34, + "end": 33122.06, + "probability": 0.7018 + }, + { + "start": 33122.1, + "end": 33123.42, + "probability": 0.8832 + }, + { + "start": 33125.92, + "end": 33127.58, + "probability": 0.1231 + }, + { + "start": 33128.22, + "end": 33131.84, + "probability": 0.0128 + }, + { + "start": 33133.74, + "end": 33137.2, + "probability": 0.77 + }, + { + "start": 33137.2, + "end": 33138.48, + "probability": 0.981 + }, + { + "start": 33139.02, + "end": 33143.44, + "probability": 0.5366 + }, + { + "start": 33143.46, + "end": 33144.0, + "probability": 0.685 + }, + { + "start": 33144.02, + "end": 33144.74, + "probability": 0.8031 + }, + { + "start": 33145.22, + "end": 33147.16, + "probability": 0.06 + }, + { + "start": 33156.98, + "end": 33159.02, + "probability": 0.6519 + }, + { + "start": 33159.02, + "end": 33160.22, + "probability": 0.8492 + }, + { + "start": 33160.78, + "end": 33164.52, + "probability": 0.9623 + }, + { + "start": 33164.54, + "end": 33165.12, + "probability": 0.698 + }, + { + "start": 33165.22, + "end": 33165.7, + "probability": 0.416 + }, + { + "start": 33166.3, + "end": 33169.84, + "probability": 0.3438 + }, + { + "start": 33172.12, + "end": 33172.18, + "probability": 0.0003 + }, + { + "start": 33173.92, + "end": 33175.56, + "probability": 0.0569 + }, + { + "start": 33177.86, + "end": 33180.3, + "probability": 0.726 + }, + { + "start": 33180.7, + "end": 33181.86, + "probability": 0.664 + }, + { + "start": 33181.94, + "end": 33188.08, + "probability": 0.5891 + }, + { + "start": 33188.12, + "end": 33188.64, + "probability": 0.6688 + }, + { + "start": 33188.64, + "end": 33189.28, + "probability": 0.8624 + }, + { + "start": 33192.48, + "end": 33193.78, + "probability": 0.0401 + }, + { + "start": 33201.7, + "end": 33205.2, + "probability": 0.3689 + }, + { + "start": 33205.84, + "end": 33207.72, + "probability": 0.9407 + }, + { + "start": 33208.02, + "end": 33209.18, + "probability": 0.8686 + }, + { + "start": 33209.66, + "end": 33212.86, + "probability": 0.8647 + }, + { + "start": 33213.28, + "end": 33213.98, + "probability": 0.6582 + }, + { + "start": 33214.62, + "end": 33216.06, + "probability": 0.5284 + }, + { + "start": 33216.1, + "end": 33216.62, + "probability": 0.6672 + }, + { + "start": 33216.64, + "end": 33217.18, + "probability": 0.7704 + }, + { + "start": 33219.68, + "end": 33220.44, + "probability": 0.0011 + }, + { + "start": 33228.98, + "end": 33229.7, + "probability": 0.081 + }, + { + "start": 33229.94, + "end": 33233.42, + "probability": 0.5739 + }, + { + "start": 33233.54, + "end": 33234.54, + "probability": 0.7719 + }, + { + "start": 33235.0, + "end": 33237.84, + "probability": 0.9933 + }, + { + "start": 33238.4, + "end": 33243.6, + "probability": 0.9829 + }, + { + "start": 33243.86, + "end": 33245.38, + "probability": 0.5589 + }, + { + "start": 33245.44, + "end": 33246.06, + "probability": 0.7397 + }, + { + "start": 33246.06, + "end": 33249.22, + "probability": 0.2933 + }, + { + "start": 33250.52, + "end": 33254.44, + "probability": 0.2264 + }, + { + "start": 33256.64, + "end": 33257.06, + "probability": 0.2342 + }, + { + "start": 33257.9, + "end": 33260.8, + "probability": 0.4298 + }, + { + "start": 33261.5, + "end": 33264.54, + "probability": 0.7531 + }, + { + "start": 33265.1, + "end": 33269.4, + "probability": 0.8379 + }, + { + "start": 33269.94, + "end": 33271.86, + "probability": 0.6879 + }, + { + "start": 33272.0, + "end": 33272.1, + "probability": 0.1914 + }, + { + "start": 33286.7, + "end": 33287.86, + "probability": 0.3056 + }, + { + "start": 33288.38, + "end": 33290.14, + "probability": 0.4508 + }, + { + "start": 33290.28, + "end": 33293.32, + "probability": 0.9905 + }, + { + "start": 33293.84, + "end": 33295.92, + "probability": 0.8784 + }, + { + "start": 33295.94, + "end": 33296.5, + "probability": 0.6188 + }, + { + "start": 33296.5, + "end": 33297.5, + "probability": 0.7674 + }, + { + "start": 33300.44, + "end": 33304.22, + "probability": 0.0007 + }, + { + "start": 33305.38, + "end": 33306.88, + "probability": 0.0985 + }, + { + "start": 33309.1, + "end": 33311.62, + "probability": 0.7336 + }, + { + "start": 33312.04, + "end": 33313.34, + "probability": 0.8234 + }, + { + "start": 33313.36, + "end": 33324.1, + "probability": 0.6595 + }, + { + "start": 33324.14, + "end": 33324.62, + "probability": 0.6763 + }, + { + "start": 33324.62, + "end": 33325.3, + "probability": 0.9168 + }, + { + "start": 33325.88, + "end": 33331.68, + "probability": 0.1283 + }, + { + "start": 33333.14, + "end": 33334.22, + "probability": 0.0007 + }, + { + "start": 33335.4, + "end": 33336.42, + "probability": 0.2705 + }, + { + "start": 33340.06, + "end": 33340.74, + "probability": 0.5446 + }, + { + "start": 33340.86, + "end": 33344.66, + "probability": 0.9695 + }, + { + "start": 33345.04, + "end": 33348.86, + "probability": 0.9929 + }, + { + "start": 33349.42, + "end": 33350.12, + "probability": 0.6281 + }, + { + "start": 33350.14, + "end": 33350.96, + "probability": 0.6891 + }, + { + "start": 33350.96, + "end": 33352.14, + "probability": 0.7749 + }, + { + "start": 33353.22, + "end": 33356.62, + "probability": 0.3148 + }, + { + "start": 33357.5, + "end": 33361.24, + "probability": 0.1663 + }, + { + "start": 33362.64, + "end": 33363.1, + "probability": 0.149 + }, + { + "start": 33363.1, + "end": 33365.2, + "probability": 0.3839 + }, + { + "start": 33365.64, + "end": 33369.68, + "probability": 0.7129 + }, + { + "start": 33370.24, + "end": 33371.44, + "probability": 0.3757 + }, + { + "start": 33372.52, + "end": 33374.68, + "probability": 0.8168 + }, + { + "start": 33377.08, + "end": 33383.78, + "probability": 0.3298 + }, + { + "start": 33383.92, + "end": 33384.72, + "probability": 0.6876 + }, + { + "start": 33384.96, + "end": 33385.82, + "probability": 0.7054 + }, + { + "start": 33385.88, + "end": 33386.5, + "probability": 0.6359 + }, + { + "start": 33386.96, + "end": 33388.18, + "probability": 0.8401 + }, + { + "start": 33391.75, + "end": 33392.96, + "probability": 0.0026 + }, + { + "start": 33393.56, + "end": 33394.68, + "probability": 0.089 + }, + { + "start": 33396.84, + "end": 33402.0, + "probability": 0.6352 + }, + { + "start": 33402.16, + "end": 33403.44, + "probability": 0.6669 + }, + { + "start": 33403.72, + "end": 33408.52, + "probability": 0.8121 + }, + { + "start": 33408.58, + "end": 33409.28, + "probability": 0.7621 + }, + { + "start": 33409.32, + "end": 33409.84, + "probability": 0.6106 + }, + { + "start": 33410.58, + "end": 33419.66, + "probability": 0.0194 + }, + { + "start": 33426.6, + "end": 33428.78, + "probability": 0.7007 + }, + { + "start": 33429.02, + "end": 33429.92, + "probability": 0.651 + }, + { + "start": 33429.94, + "end": 33432.78, + "probability": 0.9248 + }, + { + "start": 33433.54, + "end": 33435.48, + "probability": 0.7478 + }, + { + "start": 33435.52, + "end": 33436.08, + "probability": 0.71 + }, + { + "start": 33436.08, + "end": 33436.74, + "probability": 0.6367 + }, + { + "start": 33442.14, + "end": 33442.72, + "probability": 0.0122 + }, + { + "start": 33445.98, + "end": 33446.96, + "probability": 0.0537 + }, + { + "start": 33447.04, + "end": 33452.0, + "probability": 0.7438 + }, + { + "start": 33452.08, + "end": 33453.22, + "probability": 0.6152 + }, + { + "start": 33453.3, + "end": 33457.98, + "probability": 0.5872 + }, + { + "start": 33458.04, + "end": 33458.56, + "probability": 0.7058 + }, + { + "start": 33458.58, + "end": 33459.06, + "probability": 0.731 + }, + { + "start": 33459.62, + "end": 33464.36, + "probability": 0.4678 + }, + { + "start": 33464.82, + "end": 33466.68, + "probability": 0.5836 + }, + { + "start": 33467.94, + "end": 33470.94, + "probability": 0.4456 + }, + { + "start": 33477.5, + "end": 33480.32, + "probability": 0.7868 + }, + { + "start": 33481.02, + "end": 33482.58, + "probability": 0.3544 + }, + { + "start": 33482.64, + "end": 33483.28, + "probability": 0.6973 + }, + { + "start": 33483.3, + "end": 33484.38, + "probability": 0.7271 + }, + { + "start": 33484.74, + "end": 33487.68, + "probability": 0.0003 + }, + { + "start": 33495.32, + "end": 33495.88, + "probability": 0.05 + }, + { + "start": 33498.08, + "end": 33504.02, + "probability": 0.6669 + }, + { + "start": 33504.04, + "end": 33505.3, + "probability": 0.6596 + }, + { + "start": 33506.89, + "end": 33509.02, + "probability": 0.5974 + }, + { + "start": 33509.86, + "end": 33509.94, + "probability": 0.6675 + }, + { + "start": 33510.04, + "end": 33510.16, + "probability": 0.1482 + }, + { + "start": 33510.18, + "end": 33510.62, + "probability": 0.574 + }, + { + "start": 33510.78, + "end": 33513.52, + "probability": 0.7593 + }, + { + "start": 33513.58, + "end": 33518.26, + "probability": 0.9462 + }, + { + "start": 33518.64, + "end": 33519.32, + "probability": 0.5848 + }, + { + "start": 33519.42, + "end": 33520.1, + "probability": 0.8185 + }, + { + "start": 33520.5, + "end": 33521.06, + "probability": 0.8312 + }, + { + "start": 33523.58, + "end": 33526.18, + "probability": 0.0635 + }, + { + "start": 33528.06, + "end": 33530.2, + "probability": 0.1735 + }, + { + "start": 33535.9, + "end": 33539.24, + "probability": 0.6958 + }, + { + "start": 33539.76, + "end": 33544.3, + "probability": 0.5971 + }, + { + "start": 33544.92, + "end": 33545.64, + "probability": 0.1997 + }, + { + "start": 33545.64, + "end": 33546.9, + "probability": 0.4961 + }, + { + "start": 33549.08, + "end": 33552.44, + "probability": 0.6129 + }, + { + "start": 33552.62, + "end": 33553.26, + "probability": 0.6355 + }, + { + "start": 33553.28, + "end": 33553.88, + "probability": 0.3342 + }, + { + "start": 33554.0, + "end": 33558.18, + "probability": 0.5092 + }, + { + "start": 33559.22, + "end": 33560.5, + "probability": 0.0326 + }, + { + "start": 33569.2, + "end": 33571.18, + "probability": 0.5501 + }, + { + "start": 33571.24, + "end": 33572.12, + "probability": 0.6334 + }, + { + "start": 33572.32, + "end": 33573.62, + "probability": 0.487 + }, + { + "start": 33574.2, + "end": 33576.34, + "probability": 0.5368 + }, + { + "start": 33576.38, + "end": 33576.9, + "probability": 0.6831 + }, + { + "start": 33576.92, + "end": 33577.52, + "probability": 0.7227 + }, + { + "start": 33578.58, + "end": 33579.49, + "probability": 0.1945 + }, + { + "start": 33580.08, + "end": 33581.72, + "probability": 0.1626 + }, + { + "start": 33581.98, + "end": 33583.48, + "probability": 0.7853 + }, + { + "start": 33584.68, + "end": 33585.24, + "probability": 0.0567 + }, + { + "start": 33585.24, + "end": 33587.64, + "probability": 0.6233 + }, + { + "start": 33588.66, + "end": 33591.2, + "probability": 0.6777 + }, + { + "start": 33592.06, + "end": 33597.6, + "probability": 0.5605 + }, + { + "start": 33598.5, + "end": 33602.18, + "probability": 0.6102 + }, + { + "start": 33602.26, + "end": 33602.96, + "probability": 0.6857 + }, + { + "start": 33602.96, + "end": 33604.08, + "probability": 0.8947 + }, + { + "start": 33608.14, + "end": 33608.82, + "probability": 0.0213 + }, + { + "start": 33615.08, + "end": 33619.78, + "probability": 0.5064 + }, + { + "start": 33619.88, + "end": 33621.06, + "probability": 0.6974 + }, + { + "start": 33621.86, + "end": 33622.54, + "probability": 0.2567 + }, + { + "start": 33622.84, + "end": 33624.0, + "probability": 0.4278 + }, + { + "start": 33624.08, + "end": 33624.98, + "probability": 0.9554 + }, + { + "start": 33625.04, + "end": 33626.82, + "probability": 0.6466 + }, + { + "start": 33626.94, + "end": 33630.72, + "probability": 0.8582 + }, + { + "start": 33631.02, + "end": 33631.6, + "probability": 0.3942 + }, + { + "start": 33631.62, + "end": 33632.14, + "probability": 0.661 + }, + { + "start": 33635.44, + "end": 33636.82, + "probability": 0.1901 + }, + { + "start": 33637.66, + "end": 33639.76, + "probability": 0.021 + }, + { + "start": 33645.84, + "end": 33648.48, + "probability": 0.6904 + }, + { + "start": 33648.52, + "end": 33650.06, + "probability": 0.7689 + }, + { + "start": 33650.45, + "end": 33655.28, + "probability": 0.775 + }, + { + "start": 33655.76, + "end": 33658.58, + "probability": 0.5349 + }, + { + "start": 33659.52, + "end": 33661.6, + "probability": 0.331 + }, + { + "start": 33661.68, + "end": 33662.94, + "probability": 0.8784 + }, + { + "start": 33663.06, + "end": 33666.46, + "probability": 0.5678 + }, + { + "start": 33667.01, + "end": 33669.04, + "probability": 0.5931 + }, + { + "start": 33680.56, + "end": 33684.14, + "probability": 0.4669 + }, + { + "start": 33684.18, + "end": 33684.68, + "probability": 0.3729 + }, + { + "start": 33684.72, + "end": 33685.42, + "probability": 0.551 + }, + { + "start": 33688.78, + "end": 33692.04, + "probability": 0.0255 + }, + { + "start": 33693.24, + "end": 33693.44, + "probability": 0.471 + }, + { + "start": 33693.44, + "end": 33700.22, + "probability": 0.0399 + }, + { + "start": 33706.44, + "end": 33708.52, + "probability": 0.4963 + }, + { + "start": 33709.2, + "end": 33710.96, + "probability": 0.9254 + }, + { + "start": 33712.28, + "end": 33715.66, + "probability": 0.9181 + }, + { + "start": 33716.48, + "end": 33718.12, + "probability": 0.6445 + }, + { + "start": 33718.14, + "end": 33719.04, + "probability": 0.8115 + }, + { + "start": 33720.43, + "end": 33723.68, + "probability": 0.0494 + }, + { + "start": 33723.74, + "end": 33725.8, + "probability": 0.044 + }, + { + "start": 33729.58, + "end": 33731.32, + "probability": 0.092 + }, + { + "start": 33731.32, + "end": 33733.46, + "probability": 0.7844 + }, + { + "start": 33734.0, + "end": 33739.58, + "probability": 0.939 + }, + { + "start": 33739.66, + "end": 33741.12, + "probability": 0.135 + }, + { + "start": 33747.18, + "end": 33748.92, + "probability": 0.5982 + }, + { + "start": 33748.92, + "end": 33750.92, + "probability": 0.9775 + }, + { + "start": 33751.3, + "end": 33755.2, + "probability": 0.9573 + }, + { + "start": 33755.26, + "end": 33757.0, + "probability": 0.8623 + }, + { + "start": 33757.58, + "end": 33759.18, + "probability": 0.5896 + } + ], + "segments_count": 11418, + "words_count": 58753, + "avg_words_per_segment": 5.1456, + "avg_segment_duration": 2.1706, + "avg_words_per_minute": 104.2613, + "plenum_id": "118867", + "duration": 33811.01, + "title": null, + "plenum_date": "2023-07-04" +} \ No newline at end of file