diff --git "a/12069/metadata.json" "b/12069/metadata.json" new file mode 100644--- /dev/null +++ "b/12069/metadata.json" @@ -0,0 +1,25252 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "12069", + "quality_score": 0.9167, + "per_segment_quality_scores": [ + { + "start": 99.96, + "end": 104.64, + "probability": 0.7549 + }, + { + "start": 105.12, + "end": 106.18, + "probability": 0.7595 + }, + { + "start": 106.32, + "end": 107.5, + "probability": 0.7344 + }, + { + "start": 107.58, + "end": 109.18, + "probability": 0.7072 + }, + { + "start": 109.7, + "end": 115.62, + "probability": 0.9669 + }, + { + "start": 115.62, + "end": 120.92, + "probability": 0.9806 + }, + { + "start": 121.16, + "end": 124.36, + "probability": 0.0619 + }, + { + "start": 124.98, + "end": 126.72, + "probability": 0.0933 + }, + { + "start": 127.28, + "end": 127.98, + "probability": 0.045 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.18, + "end": 131.84, + "probability": 0.8328 + }, + { + "start": 132.14, + "end": 133.96, + "probability": 0.7401 + }, + { + "start": 133.96, + "end": 135.46, + "probability": 0.05 + }, + { + "start": 135.48, + "end": 135.62, + "probability": 0.3445 + }, + { + "start": 136.04, + "end": 136.54, + "probability": 0.5207 + }, + { + "start": 136.54, + "end": 136.9, + "probability": 0.2672 + }, + { + "start": 136.96, + "end": 137.76, + "probability": 0.4984 + }, + { + "start": 137.88, + "end": 141.3, + "probability": 0.8749 + }, + { + "start": 142.0, + "end": 145.06, + "probability": 0.632 + }, + { + "start": 145.26, + "end": 146.3, + "probability": 0.7382 + }, + { + "start": 146.48, + "end": 147.52, + "probability": 0.9578 + }, + { + "start": 147.86, + "end": 150.6, + "probability": 0.9648 + }, + { + "start": 150.82, + "end": 151.42, + "probability": 0.4052 + }, + { + "start": 151.44, + "end": 152.26, + "probability": 0.8111 + }, + { + "start": 161.56, + "end": 162.6, + "probability": 0.651 + }, + { + "start": 162.68, + "end": 166.4, + "probability": 0.9868 + }, + { + "start": 166.54, + "end": 166.94, + "probability": 0.8312 + }, + { + "start": 168.78, + "end": 170.34, + "probability": 0.2578 + }, + { + "start": 174.92, + "end": 175.36, + "probability": 0.422 + }, + { + "start": 175.46, + "end": 176.24, + "probability": 0.7041 + }, + { + "start": 176.34, + "end": 176.78, + "probability": 0.555 + }, + { + "start": 176.8, + "end": 177.6, + "probability": 0.8403 + }, + { + "start": 177.64, + "end": 179.6, + "probability": 0.9692 + }, + { + "start": 180.58, + "end": 185.26, + "probability": 0.9574 + }, + { + "start": 185.56, + "end": 185.82, + "probability": 0.7527 + }, + { + "start": 185.88, + "end": 186.68, + "probability": 0.704 + }, + { + "start": 186.68, + "end": 187.1, + "probability": 0.7881 + }, + { + "start": 187.16, + "end": 188.92, + "probability": 0.9816 + }, + { + "start": 188.92, + "end": 191.05, + "probability": 0.9654 + }, + { + "start": 191.7, + "end": 194.24, + "probability": 0.9753 + }, + { + "start": 194.32, + "end": 195.88, + "probability": 0.8851 + }, + { + "start": 196.42, + "end": 200.78, + "probability": 0.9331 + }, + { + "start": 201.28, + "end": 202.62, + "probability": 0.8351 + }, + { + "start": 202.62, + "end": 204.4, + "probability": 0.5893 + }, + { + "start": 204.42, + "end": 205.2, + "probability": 0.4578 + }, + { + "start": 205.3, + "end": 208.1, + "probability": 0.9597 + }, + { + "start": 208.78, + "end": 209.57, + "probability": 0.9746 + }, + { + "start": 210.32, + "end": 211.44, + "probability": 0.9709 + }, + { + "start": 211.48, + "end": 213.56, + "probability": 0.7464 + }, + { + "start": 213.58, + "end": 214.94, + "probability": 0.8771 + }, + { + "start": 215.36, + "end": 217.34, + "probability": 0.9168 + }, + { + "start": 217.44, + "end": 218.68, + "probability": 0.9043 + }, + { + "start": 218.92, + "end": 223.18, + "probability": 0.9782 + }, + { + "start": 223.24, + "end": 224.22, + "probability": 0.6858 + }, + { + "start": 224.34, + "end": 225.5, + "probability": 0.8154 + }, + { + "start": 225.54, + "end": 227.1, + "probability": 0.8831 + }, + { + "start": 227.52, + "end": 230.12, + "probability": 0.7539 + }, + { + "start": 230.48, + "end": 232.86, + "probability": 0.6571 + }, + { + "start": 232.92, + "end": 234.06, + "probability": 0.8514 + }, + { + "start": 234.2, + "end": 235.58, + "probability": 0.9612 + }, + { + "start": 235.96, + "end": 237.58, + "probability": 0.9056 + }, + { + "start": 237.92, + "end": 239.02, + "probability": 0.7577 + }, + { + "start": 239.12, + "end": 242.98, + "probability": 0.9271 + }, + { + "start": 243.06, + "end": 245.14, + "probability": 0.7712 + }, + { + "start": 245.18, + "end": 245.96, + "probability": 0.9595 + }, + { + "start": 246.14, + "end": 246.98, + "probability": 0.6025 + }, + { + "start": 247.44, + "end": 250.04, + "probability": 0.937 + }, + { + "start": 253.3, + "end": 255.02, + "probability": 0.7056 + }, + { + "start": 255.74, + "end": 256.82, + "probability": 0.5028 + }, + { + "start": 257.38, + "end": 265.5, + "probability": 0.9265 + }, + { + "start": 266.12, + "end": 269.32, + "probability": 0.9716 + }, + { + "start": 269.52, + "end": 271.4, + "probability": 0.9873 + }, + { + "start": 272.38, + "end": 278.62, + "probability": 0.914 + }, + { + "start": 279.16, + "end": 280.3, + "probability": 0.9199 + }, + { + "start": 281.26, + "end": 285.9, + "probability": 0.9771 + }, + { + "start": 285.9, + "end": 289.84, + "probability": 0.53 + }, + { + "start": 291.0, + "end": 296.96, + "probability": 0.9739 + }, + { + "start": 296.96, + "end": 300.16, + "probability": 0.5627 + }, + { + "start": 300.38, + "end": 300.4, + "probability": 0.0876 + }, + { + "start": 300.4, + "end": 301.98, + "probability": 0.6575 + }, + { + "start": 302.48, + "end": 304.82, + "probability": 0.7948 + }, + { + "start": 305.8, + "end": 309.82, + "probability": 0.9866 + }, + { + "start": 310.3, + "end": 312.82, + "probability": 0.7626 + }, + { + "start": 313.72, + "end": 317.84, + "probability": 0.9543 + }, + { + "start": 318.44, + "end": 322.6, + "probability": 0.9576 + }, + { + "start": 322.78, + "end": 323.3, + "probability": 0.7687 + }, + { + "start": 324.18, + "end": 327.36, + "probability": 0.9561 + }, + { + "start": 327.98, + "end": 329.06, + "probability": 0.8064 + }, + { + "start": 329.36, + "end": 330.5, + "probability": 0.7559 + }, + { + "start": 331.08, + "end": 333.14, + "probability": 0.9312 + }, + { + "start": 333.62, + "end": 336.64, + "probability": 0.9928 + }, + { + "start": 336.98, + "end": 339.16, + "probability": 0.978 + }, + { + "start": 339.32, + "end": 339.68, + "probability": 0.5941 + }, + { + "start": 339.74, + "end": 340.46, + "probability": 0.664 + }, + { + "start": 340.96, + "end": 341.44, + "probability": 0.6214 + }, + { + "start": 341.44, + "end": 343.08, + "probability": 0.8708 + }, + { + "start": 343.74, + "end": 346.68, + "probability": 0.686 + }, + { + "start": 349.72, + "end": 350.34, + "probability": 0.5989 + }, + { + "start": 350.4, + "end": 351.52, + "probability": 0.7395 + }, + { + "start": 351.52, + "end": 354.4, + "probability": 0.8607 + }, + { + "start": 354.48, + "end": 356.62, + "probability": 0.7204 + }, + { + "start": 357.2, + "end": 358.71, + "probability": 0.7308 + }, + { + "start": 359.0, + "end": 359.6, + "probability": 0.8208 + }, + { + "start": 359.68, + "end": 360.36, + "probability": 0.604 + }, + { + "start": 360.36, + "end": 360.9, + "probability": 0.4199 + }, + { + "start": 361.16, + "end": 361.4, + "probability": 0.242 + }, + { + "start": 361.44, + "end": 362.18, + "probability": 0.6728 + }, + { + "start": 362.22, + "end": 362.72, + "probability": 0.9146 + }, + { + "start": 362.72, + "end": 364.3, + "probability": 0.9093 + }, + { + "start": 364.36, + "end": 365.42, + "probability": 0.8873 + }, + { + "start": 365.42, + "end": 366.22, + "probability": 0.7143 + }, + { + "start": 366.3, + "end": 367.34, + "probability": 0.6328 + }, + { + "start": 367.66, + "end": 369.0, + "probability": 0.3153 + }, + { + "start": 369.0, + "end": 370.77, + "probability": 0.9695 + }, + { + "start": 371.58, + "end": 372.3, + "probability": 0.1725 + }, + { + "start": 372.3, + "end": 372.3, + "probability": 0.0744 + }, + { + "start": 372.3, + "end": 373.16, + "probability": 0.4553 + }, + { + "start": 373.24, + "end": 375.08, + "probability": 0.0298 + }, + { + "start": 375.1, + "end": 376.18, + "probability": 0.1078 + }, + { + "start": 376.42, + "end": 376.42, + "probability": 0.0564 + }, + { + "start": 376.42, + "end": 377.56, + "probability": 0.2385 + }, + { + "start": 377.56, + "end": 380.36, + "probability": 0.1662 + }, + { + "start": 382.5, + "end": 384.74, + "probability": 0.0347 + }, + { + "start": 385.52, + "end": 389.34, + "probability": 0.1055 + }, + { + "start": 389.36, + "end": 391.57, + "probability": 0.1413 + }, + { + "start": 392.38, + "end": 392.52, + "probability": 0.3481 + }, + { + "start": 394.35, + "end": 395.24, + "probability": 0.0621 + }, + { + "start": 395.24, + "end": 395.66, + "probability": 0.2969 + }, + { + "start": 397.21, + "end": 398.56, + "probability": 0.9333 + }, + { + "start": 398.72, + "end": 399.02, + "probability": 0.0847 + }, + { + "start": 399.02, + "end": 399.34, + "probability": 0.0153 + }, + { + "start": 401.62, + "end": 402.2, + "probability": 0.1988 + }, + { + "start": 402.7, + "end": 403.54, + "probability": 0.0202 + }, + { + "start": 404.08, + "end": 405.64, + "probability": 0.0072 + }, + { + "start": 405.64, + "end": 409.58, + "probability": 0.0243 + }, + { + "start": 413.4, + "end": 415.1, + "probability": 0.1248 + }, + { + "start": 416.84, + "end": 417.8, + "probability": 0.3593 + }, + { + "start": 418.38, + "end": 418.98, + "probability": 0.0336 + }, + { + "start": 418.98, + "end": 418.98, + "probability": 0.0987 + }, + { + "start": 418.98, + "end": 423.04, + "probability": 0.4601 + }, + { + "start": 424.28, + "end": 425.08, + "probability": 0.0789 + }, + { + "start": 425.62, + "end": 430.94, + "probability": 0.7654 + }, + { + "start": 431.78, + "end": 434.96, + "probability": 0.9521 + }, + { + "start": 435.58, + "end": 436.58, + "probability": 0.9111 + }, + { + "start": 437.18, + "end": 439.18, + "probability": 0.9156 + }, + { + "start": 439.22, + "end": 439.96, + "probability": 0.6807 + }, + { + "start": 440.0, + "end": 441.02, + "probability": 0.7506 + }, + { + "start": 441.14, + "end": 444.94, + "probability": 0.9091 + }, + { + "start": 445.44, + "end": 447.8, + "probability": 0.9823 + }, + { + "start": 447.94, + "end": 449.48, + "probability": 0.9003 + }, + { + "start": 449.92, + "end": 453.48, + "probability": 0.9918 + }, + { + "start": 454.2, + "end": 456.46, + "probability": 0.8797 + }, + { + "start": 457.22, + "end": 461.2, + "probability": 0.8973 + }, + { + "start": 462.32, + "end": 469.42, + "probability": 0.9456 + }, + { + "start": 469.86, + "end": 473.52, + "probability": 0.978 + }, + { + "start": 474.16, + "end": 478.78, + "probability": 0.9971 + }, + { + "start": 478.78, + "end": 479.96, + "probability": 0.985 + }, + { + "start": 480.1, + "end": 480.52, + "probability": 0.3039 + }, + { + "start": 480.54, + "end": 481.92, + "probability": 0.8379 + }, + { + "start": 482.16, + "end": 484.36, + "probability": 0.5088 + }, + { + "start": 484.42, + "end": 486.36, + "probability": 0.9587 + }, + { + "start": 486.96, + "end": 489.42, + "probability": 0.8387 + }, + { + "start": 489.46, + "end": 491.04, + "probability": 0.9702 + }, + { + "start": 495.2, + "end": 495.2, + "probability": 0.0941 + }, + { + "start": 495.2, + "end": 498.7, + "probability": 0.6154 + }, + { + "start": 499.02, + "end": 499.76, + "probability": 0.7795 + }, + { + "start": 500.02, + "end": 500.12, + "probability": 0.7612 + }, + { + "start": 501.7, + "end": 502.26, + "probability": 0.8305 + }, + { + "start": 502.36, + "end": 503.36, + "probability": 0.9377 + }, + { + "start": 503.48, + "end": 506.06, + "probability": 0.9795 + }, + { + "start": 506.22, + "end": 507.22, + "probability": 0.8145 + }, + { + "start": 507.76, + "end": 510.18, + "probability": 0.8916 + }, + { + "start": 510.28, + "end": 512.64, + "probability": 0.9566 + }, + { + "start": 512.72, + "end": 514.32, + "probability": 0.6071 + }, + { + "start": 514.56, + "end": 515.58, + "probability": 0.799 + }, + { + "start": 515.74, + "end": 516.68, + "probability": 0.9365 + }, + { + "start": 517.04, + "end": 519.54, + "probability": 0.9029 + }, + { + "start": 519.82, + "end": 520.8, + "probability": 0.8457 + }, + { + "start": 520.86, + "end": 522.8, + "probability": 0.9757 + }, + { + "start": 522.86, + "end": 525.4, + "probability": 0.8774 + }, + { + "start": 525.62, + "end": 529.18, + "probability": 0.9801 + }, + { + "start": 529.32, + "end": 530.3, + "probability": 0.8744 + }, + { + "start": 530.48, + "end": 532.36, + "probability": 0.9761 + }, + { + "start": 532.78, + "end": 534.72, + "probability": 0.6011 + }, + { + "start": 535.02, + "end": 537.82, + "probability": 0.9692 + }, + { + "start": 538.04, + "end": 540.78, + "probability": 0.9637 + }, + { + "start": 540.82, + "end": 542.26, + "probability": 0.9537 + }, + { + "start": 542.58, + "end": 543.5, + "probability": 0.9813 + }, + { + "start": 543.62, + "end": 545.67, + "probability": 0.9897 + }, + { + "start": 546.02, + "end": 547.02, + "probability": 0.8519 + }, + { + "start": 547.16, + "end": 547.88, + "probability": 0.5563 + }, + { + "start": 548.02, + "end": 551.36, + "probability": 0.931 + }, + { + "start": 551.56, + "end": 552.86, + "probability": 0.9567 + }, + { + "start": 553.04, + "end": 555.44, + "probability": 0.9644 + }, + { + "start": 555.88, + "end": 557.96, + "probability": 0.9642 + }, + { + "start": 558.06, + "end": 560.42, + "probability": 0.7664 + }, + { + "start": 560.72, + "end": 563.18, + "probability": 0.952 + }, + { + "start": 563.26, + "end": 565.28, + "probability": 0.9146 + }, + { + "start": 565.34, + "end": 565.8, + "probability": 0.8669 + }, + { + "start": 566.42, + "end": 569.66, + "probability": 0.7187 + }, + { + "start": 569.66, + "end": 570.38, + "probability": 0.7799 + }, + { + "start": 570.48, + "end": 570.58, + "probability": 0.3762 + }, + { + "start": 570.58, + "end": 571.76, + "probability": 0.4662 + }, + { + "start": 572.26, + "end": 572.96, + "probability": 0.7792 + }, + { + "start": 572.98, + "end": 573.18, + "probability": 0.4086 + }, + { + "start": 573.18, + "end": 573.92, + "probability": 0.6648 + }, + { + "start": 574.3, + "end": 574.8, + "probability": 0.5005 + }, + { + "start": 574.98, + "end": 575.8, + "probability": 0.8984 + }, + { + "start": 576.34, + "end": 577.1, + "probability": 0.9297 + }, + { + "start": 577.28, + "end": 578.34, + "probability": 0.7991 + }, + { + "start": 578.64, + "end": 579.22, + "probability": 0.9187 + }, + { + "start": 579.3, + "end": 581.13, + "probability": 0.9302 + }, + { + "start": 581.48, + "end": 583.44, + "probability": 0.5847 + }, + { + "start": 583.84, + "end": 584.16, + "probability": 0.0208 + }, + { + "start": 584.16, + "end": 584.16, + "probability": 0.3118 + }, + { + "start": 584.16, + "end": 584.18, + "probability": 0.4492 + }, + { + "start": 584.36, + "end": 584.88, + "probability": 0.6088 + }, + { + "start": 585.18, + "end": 585.82, + "probability": 0.5069 + }, + { + "start": 585.84, + "end": 587.94, + "probability": 0.8356 + }, + { + "start": 589.48, + "end": 590.66, + "probability": 0.3928 + }, + { + "start": 591.68, + "end": 591.68, + "probability": 0.3469 + }, + { + "start": 591.68, + "end": 592.58, + "probability": 0.695 + }, + { + "start": 592.94, + "end": 596.48, + "probability": 0.9628 + }, + { + "start": 597.06, + "end": 601.32, + "probability": 0.8708 + }, + { + "start": 601.46, + "end": 606.0, + "probability": 0.6909 + }, + { + "start": 606.46, + "end": 610.9, + "probability": 0.858 + }, + { + "start": 611.34, + "end": 614.24, + "probability": 0.7351 + }, + { + "start": 614.86, + "end": 616.76, + "probability": 0.587 + }, + { + "start": 616.98, + "end": 618.24, + "probability": 0.404 + }, + { + "start": 618.44, + "end": 619.42, + "probability": 0.9198 + }, + { + "start": 619.8, + "end": 620.62, + "probability": 0.8476 + }, + { + "start": 620.88, + "end": 621.72, + "probability": 0.4441 + }, + { + "start": 621.8, + "end": 622.84, + "probability": 0.9702 + }, + { + "start": 623.14, + "end": 624.14, + "probability": 0.8884 + }, + { + "start": 624.68, + "end": 625.72, + "probability": 0.8279 + }, + { + "start": 625.88, + "end": 627.46, + "probability": 0.7045 + }, + { + "start": 627.82, + "end": 628.78, + "probability": 0.6719 + }, + { + "start": 629.0, + "end": 630.12, + "probability": 0.2114 + }, + { + "start": 630.44, + "end": 632.37, + "probability": 0.9135 + }, + { + "start": 632.7, + "end": 635.08, + "probability": 0.8778 + }, + { + "start": 635.62, + "end": 636.42, + "probability": 0.8524 + }, + { + "start": 639.32, + "end": 640.48, + "probability": 0.6566 + }, + { + "start": 641.3, + "end": 644.26, + "probability": 0.4913 + }, + { + "start": 644.8, + "end": 647.46, + "probability": 0.6204 + }, + { + "start": 647.82, + "end": 651.26, + "probability": 0.8144 + }, + { + "start": 651.72, + "end": 652.58, + "probability": 0.5624 + }, + { + "start": 653.0, + "end": 653.7, + "probability": 0.7178 + }, + { + "start": 654.1, + "end": 654.66, + "probability": 0.9402 + }, + { + "start": 655.26, + "end": 657.7, + "probability": 0.8667 + }, + { + "start": 657.96, + "end": 658.78, + "probability": 0.4843 + }, + { + "start": 658.84, + "end": 662.64, + "probability": 0.5356 + }, + { + "start": 663.06, + "end": 664.26, + "probability": 0.68 + }, + { + "start": 664.44, + "end": 665.38, + "probability": 0.7327 + }, + { + "start": 665.54, + "end": 673.74, + "probability": 0.9661 + }, + { + "start": 673.96, + "end": 676.86, + "probability": 0.957 + }, + { + "start": 676.86, + "end": 680.6, + "probability": 0.7354 + }, + { + "start": 680.64, + "end": 681.62, + "probability": 0.744 + }, + { + "start": 682.74, + "end": 688.06, + "probability": 0.9882 + }, + { + "start": 688.06, + "end": 693.76, + "probability": 0.7839 + }, + { + "start": 694.66, + "end": 697.72, + "probability": 0.4942 + }, + { + "start": 697.86, + "end": 701.26, + "probability": 0.4395 + }, + { + "start": 701.42, + "end": 702.8, + "probability": 0.7396 + }, + { + "start": 703.48, + "end": 710.12, + "probability": 0.925 + }, + { + "start": 710.62, + "end": 712.2, + "probability": 0.6033 + }, + { + "start": 712.6, + "end": 714.59, + "probability": 0.7531 + }, + { + "start": 714.78, + "end": 716.88, + "probability": 0.8449 + }, + { + "start": 717.46, + "end": 719.48, + "probability": 0.9617 + }, + { + "start": 719.54, + "end": 723.2, + "probability": 0.7617 + }, + { + "start": 723.34, + "end": 729.56, + "probability": 0.988 + }, + { + "start": 729.56, + "end": 734.96, + "probability": 0.9854 + }, + { + "start": 735.36, + "end": 736.87, + "probability": 0.819 + }, + { + "start": 737.5, + "end": 740.86, + "probability": 0.9533 + }, + { + "start": 740.86, + "end": 743.5, + "probability": 0.97 + }, + { + "start": 743.66, + "end": 744.2, + "probability": 0.3863 + }, + { + "start": 744.34, + "end": 745.04, + "probability": 0.5127 + }, + { + "start": 745.04, + "end": 749.76, + "probability": 0.9 + }, + { + "start": 753.36, + "end": 755.18, + "probability": 0.7101 + }, + { + "start": 755.32, + "end": 756.58, + "probability": 0.7288 + }, + { + "start": 756.98, + "end": 757.3, + "probability": 0.5221 + }, + { + "start": 757.4, + "end": 758.26, + "probability": 0.6626 + }, + { + "start": 758.48, + "end": 760.12, + "probability": 0.9466 + }, + { + "start": 760.68, + "end": 762.81, + "probability": 0.946 + }, + { + "start": 763.22, + "end": 769.34, + "probability": 0.6816 + }, + { + "start": 769.46, + "end": 770.26, + "probability": 0.8879 + }, + { + "start": 770.36, + "end": 771.6, + "probability": 0.7409 + }, + { + "start": 771.9, + "end": 779.16, + "probability": 0.7692 + }, + { + "start": 779.5, + "end": 781.08, + "probability": 0.9481 + }, + { + "start": 781.5, + "end": 785.48, + "probability": 0.7885 + }, + { + "start": 785.68, + "end": 790.3, + "probability": 0.8932 + }, + { + "start": 790.3, + "end": 794.1, + "probability": 0.9232 + }, + { + "start": 794.78, + "end": 798.66, + "probability": 0.9507 + }, + { + "start": 798.9, + "end": 800.94, + "probability": 0.6079 + }, + { + "start": 801.36, + "end": 801.9, + "probability": 0.1415 + }, + { + "start": 802.54, + "end": 804.71, + "probability": 0.9143 + }, + { + "start": 805.2, + "end": 806.38, + "probability": 0.7031 + }, + { + "start": 806.72, + "end": 808.72, + "probability": 0.5369 + }, + { + "start": 809.18, + "end": 811.66, + "probability": 0.8455 + }, + { + "start": 812.12, + "end": 814.01, + "probability": 0.973 + }, + { + "start": 814.52, + "end": 817.18, + "probability": 0.9635 + }, + { + "start": 817.56, + "end": 820.82, + "probability": 0.8845 + }, + { + "start": 821.0, + "end": 821.44, + "probability": 0.724 + }, + { + "start": 821.76, + "end": 824.6, + "probability": 0.9807 + }, + { + "start": 825.18, + "end": 828.44, + "probability": 0.878 + }, + { + "start": 828.6, + "end": 828.94, + "probability": 0.6184 + }, + { + "start": 829.64, + "end": 830.1, + "probability": 0.7582 + }, + { + "start": 831.02, + "end": 836.04, + "probability": 0.9797 + }, + { + "start": 836.46, + "end": 840.18, + "probability": 0.8359 + }, + { + "start": 840.72, + "end": 844.64, + "probability": 0.8828 + }, + { + "start": 847.67, + "end": 849.14, + "probability": 0.5509 + }, + { + "start": 850.1, + "end": 854.5, + "probability": 0.8259 + }, + { + "start": 855.7, + "end": 856.46, + "probability": 0.0458 + }, + { + "start": 857.02, + "end": 861.3, + "probability": 0.2603 + }, + { + "start": 863.36, + "end": 865.0, + "probability": 0.3677 + }, + { + "start": 866.62, + "end": 873.02, + "probability": 0.8076 + }, + { + "start": 873.46, + "end": 874.14, + "probability": 0.6552 + }, + { + "start": 874.48, + "end": 879.04, + "probability": 0.7451 + }, + { + "start": 880.52, + "end": 882.16, + "probability": 0.8365 + }, + { + "start": 882.56, + "end": 886.22, + "probability": 0.9399 + }, + { + "start": 886.3, + "end": 888.16, + "probability": 0.7683 + }, + { + "start": 888.28, + "end": 891.34, + "probability": 0.8392 + }, + { + "start": 892.0, + "end": 892.94, + "probability": 0.8719 + }, + { + "start": 893.14, + "end": 896.34, + "probability": 0.6706 + }, + { + "start": 896.4, + "end": 897.16, + "probability": 0.9579 + }, + { + "start": 897.18, + "end": 897.9, + "probability": 0.9844 + }, + { + "start": 897.98, + "end": 899.2, + "probability": 0.9633 + }, + { + "start": 900.66, + "end": 902.92, + "probability": 0.8003 + }, + { + "start": 903.56, + "end": 906.38, + "probability": 0.9793 + }, + { + "start": 907.0, + "end": 907.88, + "probability": 0.8558 + }, + { + "start": 907.98, + "end": 911.1, + "probability": 0.9238 + }, + { + "start": 911.18, + "end": 912.58, + "probability": 0.5342 + }, + { + "start": 912.74, + "end": 915.74, + "probability": 0.9666 + }, + { + "start": 916.12, + "end": 917.54, + "probability": 0.9253 + }, + { + "start": 918.02, + "end": 919.86, + "probability": 0.7064 + }, + { + "start": 920.38, + "end": 922.58, + "probability": 0.8952 + }, + { + "start": 922.92, + "end": 927.18, + "probability": 0.9934 + }, + { + "start": 927.28, + "end": 928.3, + "probability": 0.9686 + }, + { + "start": 929.68, + "end": 930.8, + "probability": 0.7044 + }, + { + "start": 930.8, + "end": 931.66, + "probability": 0.4807 + }, + { + "start": 931.72, + "end": 934.58, + "probability": 0.8166 + }, + { + "start": 934.58, + "end": 938.84, + "probability": 0.9722 + }, + { + "start": 939.0, + "end": 939.9, + "probability": 0.974 + }, + { + "start": 940.04, + "end": 942.28, + "probability": 0.6469 + }, + { + "start": 942.7, + "end": 945.22, + "probability": 0.9186 + }, + { + "start": 946.18, + "end": 947.08, + "probability": 0.5816 + }, + { + "start": 947.08, + "end": 947.88, + "probability": 0.813 + }, + { + "start": 948.04, + "end": 949.71, + "probability": 0.8344 + }, + { + "start": 950.02, + "end": 953.74, + "probability": 0.927 + }, + { + "start": 954.04, + "end": 955.34, + "probability": 0.5307 + }, + { + "start": 955.66, + "end": 956.7, + "probability": 0.6651 + }, + { + "start": 956.98, + "end": 957.62, + "probability": 0.7759 + }, + { + "start": 957.84, + "end": 962.64, + "probability": 0.9679 + }, + { + "start": 962.98, + "end": 964.92, + "probability": 0.7893 + }, + { + "start": 965.12, + "end": 966.74, + "probability": 0.9922 + }, + { + "start": 967.08, + "end": 971.58, + "probability": 0.7997 + }, + { + "start": 972.32, + "end": 973.74, + "probability": 0.785 + }, + { + "start": 973.76, + "end": 975.68, + "probability": 0.7272 + }, + { + "start": 975.68, + "end": 975.68, + "probability": 0.2056 + }, + { + "start": 976.4, + "end": 977.28, + "probability": 0.7102 + }, + { + "start": 978.26, + "end": 980.88, + "probability": 0.9769 + }, + { + "start": 982.38, + "end": 982.48, + "probability": 0.4084 + }, + { + "start": 983.96, + "end": 984.54, + "probability": 0.8865 + }, + { + "start": 985.58, + "end": 988.26, + "probability": 0.6225 + }, + { + "start": 988.52, + "end": 992.12, + "probability": 0.9921 + }, + { + "start": 992.12, + "end": 995.86, + "probability": 0.9993 + }, + { + "start": 996.72, + "end": 1000.32, + "probability": 0.6322 + }, + { + "start": 1001.54, + "end": 1006.38, + "probability": 0.8219 + }, + { + "start": 1007.12, + "end": 1009.46, + "probability": 0.9917 + }, + { + "start": 1009.62, + "end": 1012.16, + "probability": 0.9678 + }, + { + "start": 1012.28, + "end": 1013.96, + "probability": 0.7015 + }, + { + "start": 1014.96, + "end": 1016.14, + "probability": 0.6767 + }, + { + "start": 1016.44, + "end": 1019.28, + "probability": 0.9908 + }, + { + "start": 1019.38, + "end": 1022.14, + "probability": 0.9946 + }, + { + "start": 1023.38, + "end": 1025.1, + "probability": 0.958 + }, + { + "start": 1025.34, + "end": 1029.78, + "probability": 0.9349 + }, + { + "start": 1030.42, + "end": 1034.28, + "probability": 0.995 + }, + { + "start": 1035.0, + "end": 1040.06, + "probability": 0.9873 + }, + { + "start": 1040.06, + "end": 1046.76, + "probability": 0.996 + }, + { + "start": 1047.14, + "end": 1047.8, + "probability": 0.5572 + }, + { + "start": 1048.14, + "end": 1049.44, + "probability": 0.9071 + }, + { + "start": 1050.32, + "end": 1051.22, + "probability": 0.5324 + }, + { + "start": 1054.36, + "end": 1055.18, + "probability": 0.7774 + }, + { + "start": 1055.26, + "end": 1056.18, + "probability": 0.7874 + }, + { + "start": 1056.34, + "end": 1061.68, + "probability": 0.98 + }, + { + "start": 1061.78, + "end": 1068.98, + "probability": 0.8135 + }, + { + "start": 1069.98, + "end": 1071.02, + "probability": 0.7192 + }, + { + "start": 1071.12, + "end": 1073.01, + "probability": 0.9958 + }, + { + "start": 1073.66, + "end": 1075.28, + "probability": 0.7478 + }, + { + "start": 1075.8, + "end": 1079.04, + "probability": 0.927 + }, + { + "start": 1079.16, + "end": 1080.53, + "probability": 0.7714 + }, + { + "start": 1081.24, + "end": 1083.5, + "probability": 0.9945 + }, + { + "start": 1084.26, + "end": 1086.4, + "probability": 0.9937 + }, + { + "start": 1087.26, + "end": 1087.66, + "probability": 0.5868 + }, + { + "start": 1087.74, + "end": 1093.0, + "probability": 0.9342 + }, + { + "start": 1093.04, + "end": 1096.04, + "probability": 0.9729 + }, + { + "start": 1096.24, + "end": 1097.39, + "probability": 0.2693 + }, + { + "start": 1097.78, + "end": 1101.4, + "probability": 0.9294 + }, + { + "start": 1101.78, + "end": 1105.1, + "probability": 0.9977 + }, + { + "start": 1105.76, + "end": 1107.22, + "probability": 0.7771 + }, + { + "start": 1107.28, + "end": 1109.1, + "probability": 0.9001 + }, + { + "start": 1109.26, + "end": 1110.36, + "probability": 0.9277 + }, + { + "start": 1110.46, + "end": 1111.32, + "probability": 0.9183 + }, + { + "start": 1111.36, + "end": 1113.02, + "probability": 0.9327 + }, + { + "start": 1113.28, + "end": 1114.61, + "probability": 0.9973 + }, + { + "start": 1115.38, + "end": 1116.6, + "probability": 0.8652 + }, + { + "start": 1116.86, + "end": 1119.2, + "probability": 0.6836 + }, + { + "start": 1119.28, + "end": 1123.7, + "probability": 0.9984 + }, + { + "start": 1124.36, + "end": 1127.26, + "probability": 0.9985 + }, + { + "start": 1127.36, + "end": 1128.94, + "probability": 0.707 + }, + { + "start": 1129.24, + "end": 1132.48, + "probability": 0.98 + }, + { + "start": 1133.16, + "end": 1133.32, + "probability": 0.2717 + }, + { + "start": 1133.44, + "end": 1134.14, + "probability": 0.7609 + }, + { + "start": 1134.22, + "end": 1134.64, + "probability": 0.7782 + }, + { + "start": 1134.68, + "end": 1137.02, + "probability": 0.8336 + }, + { + "start": 1137.1, + "end": 1140.94, + "probability": 0.7297 + }, + { + "start": 1140.94, + "end": 1144.22, + "probability": 0.9941 + }, + { + "start": 1144.3, + "end": 1145.64, + "probability": 0.8615 + }, + { + "start": 1145.64, + "end": 1145.9, + "probability": 0.4292 + }, + { + "start": 1145.96, + "end": 1150.4, + "probability": 0.9356 + }, + { + "start": 1150.66, + "end": 1155.06, + "probability": 0.9978 + }, + { + "start": 1155.06, + "end": 1159.6, + "probability": 0.9868 + }, + { + "start": 1160.5, + "end": 1163.53, + "probability": 0.99 + }, + { + "start": 1164.78, + "end": 1168.66, + "probability": 0.9214 + }, + { + "start": 1168.88, + "end": 1171.6, + "probability": 0.9846 + }, + { + "start": 1172.7, + "end": 1181.64, + "probability": 0.8735 + }, + { + "start": 1182.22, + "end": 1186.18, + "probability": 0.7832 + }, + { + "start": 1186.72, + "end": 1187.64, + "probability": 0.94 + }, + { + "start": 1187.88, + "end": 1192.9, + "probability": 0.9845 + }, + { + "start": 1193.2, + "end": 1195.04, + "probability": 0.7612 + }, + { + "start": 1196.5, + "end": 1197.6, + "probability": 0.6586 + }, + { + "start": 1197.68, + "end": 1199.03, + "probability": 0.9783 + }, + { + "start": 1199.72, + "end": 1203.38, + "probability": 0.9987 + }, + { + "start": 1203.38, + "end": 1205.58, + "probability": 0.999 + }, + { + "start": 1206.24, + "end": 1209.82, + "probability": 0.9961 + }, + { + "start": 1209.82, + "end": 1212.64, + "probability": 0.9963 + }, + { + "start": 1213.14, + "end": 1214.36, + "probability": 0.8428 + }, + { + "start": 1214.62, + "end": 1215.18, + "probability": 0.4293 + }, + { + "start": 1215.32, + "end": 1218.48, + "probability": 0.8911 + }, + { + "start": 1218.5, + "end": 1219.24, + "probability": 0.793 + }, + { + "start": 1219.98, + "end": 1221.99, + "probability": 0.8379 + }, + { + "start": 1222.54, + "end": 1223.32, + "probability": 0.9442 + }, + { + "start": 1223.5, + "end": 1227.98, + "probability": 0.9927 + }, + { + "start": 1228.44, + "end": 1232.62, + "probability": 0.7588 + }, + { + "start": 1233.34, + "end": 1234.66, + "probability": 0.8169 + }, + { + "start": 1235.04, + "end": 1235.46, + "probability": 0.5111 + }, + { + "start": 1235.58, + "end": 1237.5, + "probability": 0.9028 + }, + { + "start": 1238.18, + "end": 1239.62, + "probability": 0.5282 + }, + { + "start": 1240.38, + "end": 1244.1, + "probability": 0.617 + }, + { + "start": 1245.8, + "end": 1248.12, + "probability": 0.2722 + }, + { + "start": 1248.96, + "end": 1252.2, + "probability": 0.7916 + }, + { + "start": 1252.36, + "end": 1252.68, + "probability": 0.8321 + }, + { + "start": 1253.04, + "end": 1253.74, + "probability": 0.7668 + }, + { + "start": 1254.0, + "end": 1255.02, + "probability": 0.6131 + }, + { + "start": 1255.16, + "end": 1260.74, + "probability": 0.9787 + }, + { + "start": 1261.62, + "end": 1264.78, + "probability": 0.9797 + }, + { + "start": 1265.02, + "end": 1273.46, + "probability": 0.887 + }, + { + "start": 1274.94, + "end": 1277.44, + "probability": 0.8572 + }, + { + "start": 1278.49, + "end": 1282.96, + "probability": 0.9663 + }, + { + "start": 1283.7, + "end": 1286.36, + "probability": 0.5852 + }, + { + "start": 1287.9, + "end": 1291.18, + "probability": 0.9571 + }, + { + "start": 1291.18, + "end": 1297.58, + "probability": 0.6988 + }, + { + "start": 1298.28, + "end": 1300.7, + "probability": 0.9819 + }, + { + "start": 1301.74, + "end": 1303.32, + "probability": 0.7683 + }, + { + "start": 1304.24, + "end": 1309.4, + "probability": 0.9963 + }, + { + "start": 1309.86, + "end": 1313.12, + "probability": 0.908 + }, + { + "start": 1314.02, + "end": 1319.92, + "probability": 0.906 + }, + { + "start": 1320.02, + "end": 1323.76, + "probability": 0.9273 + }, + { + "start": 1324.94, + "end": 1330.3, + "probability": 0.9963 + }, + { + "start": 1330.3, + "end": 1333.92, + "probability": 0.9992 + }, + { + "start": 1334.82, + "end": 1338.43, + "probability": 0.9451 + }, + { + "start": 1339.52, + "end": 1340.44, + "probability": 0.7731 + }, + { + "start": 1340.96, + "end": 1344.16, + "probability": 0.9966 + }, + { + "start": 1344.16, + "end": 1349.86, + "probability": 0.8811 + }, + { + "start": 1350.74, + "end": 1350.94, + "probability": 0.3388 + }, + { + "start": 1351.0, + "end": 1356.78, + "probability": 0.9855 + }, + { + "start": 1357.34, + "end": 1361.16, + "probability": 0.9879 + }, + { + "start": 1361.16, + "end": 1364.44, + "probability": 0.914 + }, + { + "start": 1364.54, + "end": 1364.84, + "probability": 0.6404 + }, + { + "start": 1364.86, + "end": 1365.34, + "probability": 0.588 + }, + { + "start": 1365.42, + "end": 1365.46, + "probability": 0.272 + }, + { + "start": 1365.46, + "end": 1366.6, + "probability": 0.7518 + }, + { + "start": 1366.7, + "end": 1368.28, + "probability": 0.7491 + }, + { + "start": 1368.38, + "end": 1369.68, + "probability": 0.985 + }, + { + "start": 1370.34, + "end": 1374.96, + "probability": 0.9116 + }, + { + "start": 1379.88, + "end": 1379.96, + "probability": 0.1304 + }, + { + "start": 1379.96, + "end": 1381.04, + "probability": 0.74 + }, + { + "start": 1381.44, + "end": 1383.28, + "probability": 0.9632 + }, + { + "start": 1383.34, + "end": 1384.58, + "probability": 0.7629 + }, + { + "start": 1386.26, + "end": 1387.16, + "probability": 0.0002 + }, + { + "start": 1387.16, + "end": 1388.86, + "probability": 0.5473 + }, + { + "start": 1390.4, + "end": 1393.22, + "probability": 0.3464 + }, + { + "start": 1395.48, + "end": 1399.46, + "probability": 0.7624 + }, + { + "start": 1400.02, + "end": 1402.8, + "probability": 0.9017 + }, + { + "start": 1403.22, + "end": 1405.9, + "probability": 0.9458 + }, + { + "start": 1406.72, + "end": 1409.61, + "probability": 0.6689 + }, + { + "start": 1410.32, + "end": 1413.36, + "probability": 0.7822 + }, + { + "start": 1413.74, + "end": 1417.32, + "probability": 0.8062 + }, + { + "start": 1417.74, + "end": 1418.82, + "probability": 0.9103 + }, + { + "start": 1419.06, + "end": 1421.94, + "probability": 0.8296 + }, + { + "start": 1422.52, + "end": 1423.2, + "probability": 0.488 + }, + { + "start": 1423.3, + "end": 1424.74, + "probability": 0.9476 + }, + { + "start": 1425.08, + "end": 1425.74, + "probability": 0.4487 + }, + { + "start": 1425.84, + "end": 1429.0, + "probability": 0.7827 + }, + { + "start": 1429.22, + "end": 1433.26, + "probability": 0.7641 + }, + { + "start": 1433.54, + "end": 1436.42, + "probability": 0.8605 + }, + { + "start": 1436.5, + "end": 1438.58, + "probability": 0.7402 + }, + { + "start": 1438.8, + "end": 1441.52, + "probability": 0.8388 + }, + { + "start": 1441.74, + "end": 1442.72, + "probability": 0.9379 + }, + { + "start": 1442.8, + "end": 1444.42, + "probability": 0.9827 + }, + { + "start": 1444.58, + "end": 1445.5, + "probability": 0.6602 + }, + { + "start": 1445.66, + "end": 1446.84, + "probability": 0.8451 + }, + { + "start": 1447.42, + "end": 1447.78, + "probability": 0.791 + }, + { + "start": 1448.8, + "end": 1452.84, + "probability": 0.9147 + }, + { + "start": 1453.26, + "end": 1456.44, + "probability": 0.9702 + }, + { + "start": 1456.66, + "end": 1458.28, + "probability": 0.7963 + }, + { + "start": 1458.4, + "end": 1459.48, + "probability": 0.7144 + }, + { + "start": 1459.86, + "end": 1462.76, + "probability": 0.9322 + }, + { + "start": 1463.0, + "end": 1465.0, + "probability": 0.8197 + }, + { + "start": 1465.28, + "end": 1469.52, + "probability": 0.8136 + }, + { + "start": 1469.7, + "end": 1470.7, + "probability": 0.9923 + }, + { + "start": 1471.18, + "end": 1472.28, + "probability": 0.9899 + }, + { + "start": 1472.62, + "end": 1475.46, + "probability": 0.9667 + }, + { + "start": 1475.74, + "end": 1478.98, + "probability": 0.9686 + }, + { + "start": 1479.58, + "end": 1481.68, + "probability": 0.891 + }, + { + "start": 1482.04, + "end": 1483.22, + "probability": 0.79 + }, + { + "start": 1483.26, + "end": 1485.36, + "probability": 0.5049 + }, + { + "start": 1486.02, + "end": 1486.9, + "probability": 0.8514 + }, + { + "start": 1487.04, + "end": 1488.34, + "probability": 0.9128 + }, + { + "start": 1489.14, + "end": 1489.82, + "probability": 0.9672 + }, + { + "start": 1489.92, + "end": 1493.48, + "probability": 0.9902 + }, + { + "start": 1494.14, + "end": 1497.34, + "probability": 0.9303 + }, + { + "start": 1497.72, + "end": 1499.16, + "probability": 0.6086 + }, + { + "start": 1499.66, + "end": 1502.58, + "probability": 0.9954 + }, + { + "start": 1503.22, + "end": 1506.18, + "probability": 0.9658 + }, + { + "start": 1506.92, + "end": 1510.02, + "probability": 0.9386 + }, + { + "start": 1510.58, + "end": 1515.62, + "probability": 0.9865 + }, + { + "start": 1515.96, + "end": 1519.78, + "probability": 0.9854 + }, + { + "start": 1519.86, + "end": 1520.9, + "probability": 0.5757 + }, + { + "start": 1521.42, + "end": 1528.42, + "probability": 0.9958 + }, + { + "start": 1528.78, + "end": 1531.04, + "probability": 0.8416 + }, + { + "start": 1532.62, + "end": 1538.22, + "probability": 0.9432 + }, + { + "start": 1538.44, + "end": 1542.58, + "probability": 0.9453 + }, + { + "start": 1543.78, + "end": 1544.92, + "probability": 0.7104 + }, + { + "start": 1545.04, + "end": 1550.94, + "probability": 0.8848 + }, + { + "start": 1551.26, + "end": 1556.38, + "probability": 0.9622 + }, + { + "start": 1556.72, + "end": 1562.16, + "probability": 0.7485 + }, + { + "start": 1562.24, + "end": 1568.76, + "probability": 0.8526 + }, + { + "start": 1568.78, + "end": 1569.18, + "probability": 0.6615 + }, + { + "start": 1569.56, + "end": 1570.14, + "probability": 0.5022 + }, + { + "start": 1570.44, + "end": 1571.88, + "probability": 0.5979 + }, + { + "start": 1572.22, + "end": 1573.18, + "probability": 0.2603 + }, + { + "start": 1574.62, + "end": 1575.94, + "probability": 0.8067 + }, + { + "start": 1576.92, + "end": 1578.98, + "probability": 0.707 + }, + { + "start": 1579.62, + "end": 1582.16, + "probability": 0.633 + }, + { + "start": 1582.74, + "end": 1586.8, + "probability": 0.9324 + }, + { + "start": 1587.34, + "end": 1587.7, + "probability": 0.4559 + }, + { + "start": 1587.76, + "end": 1588.56, + "probability": 0.841 + }, + { + "start": 1588.88, + "end": 1590.52, + "probability": 0.8815 + }, + { + "start": 1590.6, + "end": 1593.06, + "probability": 0.9839 + }, + { + "start": 1594.23, + "end": 1599.58, + "probability": 0.7698 + }, + { + "start": 1599.78, + "end": 1602.86, + "probability": 0.9031 + }, + { + "start": 1603.04, + "end": 1604.11, + "probability": 0.6284 + }, + { + "start": 1604.3, + "end": 1608.38, + "probability": 0.8978 + }, + { + "start": 1608.42, + "end": 1609.48, + "probability": 0.6967 + }, + { + "start": 1610.0, + "end": 1613.18, + "probability": 0.9461 + }, + { + "start": 1613.38, + "end": 1613.38, + "probability": 0.3484 + }, + { + "start": 1613.38, + "end": 1617.3, + "probability": 0.927 + }, + { + "start": 1617.58, + "end": 1622.26, + "probability": 0.97 + }, + { + "start": 1622.56, + "end": 1626.56, + "probability": 0.9756 + }, + { + "start": 1626.56, + "end": 1630.9, + "probability": 0.7988 + }, + { + "start": 1631.42, + "end": 1634.38, + "probability": 0.9368 + }, + { + "start": 1634.44, + "end": 1634.82, + "probability": 0.7658 + }, + { + "start": 1635.66, + "end": 1637.5, + "probability": 0.7078 + }, + { + "start": 1638.0, + "end": 1640.58, + "probability": 0.9941 + }, + { + "start": 1641.16, + "end": 1644.88, + "probability": 0.6629 + }, + { + "start": 1645.72, + "end": 1646.38, + "probability": 0.5632 + }, + { + "start": 1646.58, + "end": 1647.32, + "probability": 0.8661 + }, + { + "start": 1647.42, + "end": 1648.74, + "probability": 0.7707 + }, + { + "start": 1648.9, + "end": 1650.12, + "probability": 0.8427 + }, + { + "start": 1656.4, + "end": 1659.32, + "probability": 0.8202 + }, + { + "start": 1659.88, + "end": 1663.2, + "probability": 0.9161 + }, + { + "start": 1663.48, + "end": 1667.8, + "probability": 0.8043 + }, + { + "start": 1668.36, + "end": 1671.64, + "probability": 0.8623 + }, + { + "start": 1672.08, + "end": 1672.38, + "probability": 0.4838 + }, + { + "start": 1672.46, + "end": 1673.12, + "probability": 0.8351 + }, + { + "start": 1673.18, + "end": 1674.11, + "probability": 0.9891 + }, + { + "start": 1674.18, + "end": 1675.13, + "probability": 0.918 + }, + { + "start": 1676.1, + "end": 1680.06, + "probability": 0.9925 + }, + { + "start": 1680.34, + "end": 1686.62, + "probability": 0.7904 + }, + { + "start": 1686.7, + "end": 1687.42, + "probability": 0.5925 + }, + { + "start": 1687.78, + "end": 1689.22, + "probability": 0.9409 + }, + { + "start": 1689.84, + "end": 1694.0, + "probability": 0.9961 + }, + { + "start": 1694.1, + "end": 1696.7, + "probability": 0.9966 + }, + { + "start": 1696.82, + "end": 1698.06, + "probability": 0.8326 + }, + { + "start": 1698.24, + "end": 1699.72, + "probability": 0.9805 + }, + { + "start": 1699.86, + "end": 1700.86, + "probability": 0.5707 + }, + { + "start": 1701.32, + "end": 1701.81, + "probability": 0.2612 + }, + { + "start": 1701.96, + "end": 1702.92, + "probability": 0.83 + }, + { + "start": 1703.18, + "end": 1706.0, + "probability": 0.8611 + }, + { + "start": 1706.0, + "end": 1710.96, + "probability": 0.9577 + }, + { + "start": 1711.22, + "end": 1713.55, + "probability": 0.9163 + }, + { + "start": 1714.72, + "end": 1717.58, + "probability": 0.6001 + }, + { + "start": 1718.0, + "end": 1719.42, + "probability": 0.9252 + }, + { + "start": 1720.04, + "end": 1725.6, + "probability": 0.9702 + }, + { + "start": 1725.8, + "end": 1726.64, + "probability": 0.8057 + }, + { + "start": 1726.74, + "end": 1727.65, + "probability": 0.9826 + }, + { + "start": 1727.9, + "end": 1730.06, + "probability": 0.8198 + }, + { + "start": 1730.34, + "end": 1731.96, + "probability": 0.8614 + }, + { + "start": 1732.04, + "end": 1732.22, + "probability": 0.7346 + }, + { + "start": 1732.82, + "end": 1735.74, + "probability": 0.9468 + }, + { + "start": 1737.54, + "end": 1739.5, + "probability": 0.6455 + }, + { + "start": 1739.62, + "end": 1740.97, + "probability": 0.5156 + }, + { + "start": 1742.44, + "end": 1745.0, + "probability": 0.7368 + }, + { + "start": 1745.16, + "end": 1747.35, + "probability": 0.9774 + }, + { + "start": 1747.64, + "end": 1748.72, + "probability": 0.9224 + }, + { + "start": 1748.82, + "end": 1749.54, + "probability": 0.8109 + }, + { + "start": 1749.98, + "end": 1750.42, + "probability": 0.4294 + }, + { + "start": 1750.48, + "end": 1751.92, + "probability": 0.8281 + }, + { + "start": 1752.28, + "end": 1755.38, + "probability": 0.7876 + }, + { + "start": 1755.8, + "end": 1760.66, + "probability": 0.8953 + }, + { + "start": 1760.76, + "end": 1761.26, + "probability": 0.1372 + }, + { + "start": 1762.29, + "end": 1769.72, + "probability": 0.9429 + }, + { + "start": 1769.8, + "end": 1770.9, + "probability": 0.9205 + }, + { + "start": 1771.18, + "end": 1772.64, + "probability": 0.543 + }, + { + "start": 1772.9, + "end": 1774.02, + "probability": 0.4152 + }, + { + "start": 1775.96, + "end": 1782.0, + "probability": 0.9264 + }, + { + "start": 1782.4, + "end": 1786.22, + "probability": 0.9946 + }, + { + "start": 1786.78, + "end": 1793.86, + "probability": 0.3569 + }, + { + "start": 1794.26, + "end": 1795.2, + "probability": 0.4258 + }, + { + "start": 1795.48, + "end": 1795.62, + "probability": 0.564 + }, + { + "start": 1796.0, + "end": 1797.48, + "probability": 0.785 + }, + { + "start": 1797.78, + "end": 1799.66, + "probability": 0.3416 + }, + { + "start": 1800.08, + "end": 1801.18, + "probability": 0.2601 + }, + { + "start": 1801.38, + "end": 1803.06, + "probability": 0.3291 + }, + { + "start": 1803.06, + "end": 1804.66, + "probability": 0.2152 + }, + { + "start": 1804.66, + "end": 1806.94, + "probability": 0.9761 + }, + { + "start": 1807.24, + "end": 1808.86, + "probability": 0.4462 + }, + { + "start": 1809.28, + "end": 1811.66, + "probability": 0.958 + }, + { + "start": 1811.9, + "end": 1812.6, + "probability": 0.4893 + }, + { + "start": 1813.48, + "end": 1814.66, + "probability": 0.1069 + }, + { + "start": 1814.8, + "end": 1820.32, + "probability": 0.6748 + }, + { + "start": 1820.98, + "end": 1828.12, + "probability": 0.8496 + }, + { + "start": 1828.6, + "end": 1830.98, + "probability": 0.9966 + }, + { + "start": 1831.12, + "end": 1831.62, + "probability": 0.4221 + }, + { + "start": 1831.88, + "end": 1835.72, + "probability": 0.9927 + }, + { + "start": 1836.06, + "end": 1838.08, + "probability": 0.7909 + }, + { + "start": 1838.68, + "end": 1841.86, + "probability": 0.7267 + }, + { + "start": 1841.98, + "end": 1845.52, + "probability": 0.7505 + }, + { + "start": 1846.3, + "end": 1847.08, + "probability": 0.5895 + }, + { + "start": 1847.6, + "end": 1849.83, + "probability": 0.8901 + }, + { + "start": 1850.08, + "end": 1850.08, + "probability": 0.9423 + }, + { + "start": 1850.08, + "end": 1853.25, + "probability": 0.5967 + }, + { + "start": 1854.68, + "end": 1855.98, + "probability": 0.7839 + }, + { + "start": 1856.22, + "end": 1862.28, + "probability": 0.7562 + }, + { + "start": 1862.4, + "end": 1865.5, + "probability": 0.6502 + }, + { + "start": 1865.5, + "end": 1868.1, + "probability": 0.9911 + }, + { + "start": 1869.59, + "end": 1871.68, + "probability": 0.9899 + }, + { + "start": 1871.82, + "end": 1872.24, + "probability": 0.7749 + }, + { + "start": 1872.36, + "end": 1873.18, + "probability": 0.8363 + }, + { + "start": 1873.26, + "end": 1874.0, + "probability": 0.7126 + }, + { + "start": 1874.04, + "end": 1876.04, + "probability": 0.9017 + }, + { + "start": 1876.3, + "end": 1879.8, + "probability": 0.7838 + }, + { + "start": 1880.42, + "end": 1884.06, + "probability": 0.7604 + }, + { + "start": 1884.86, + "end": 1886.94, + "probability": 0.9937 + }, + { + "start": 1887.14, + "end": 1890.46, + "probability": 0.9936 + }, + { + "start": 1890.46, + "end": 1894.38, + "probability": 0.8118 + }, + { + "start": 1894.74, + "end": 1899.86, + "probability": 0.994 + }, + { + "start": 1900.18, + "end": 1904.74, + "probability": 0.849 + }, + { + "start": 1905.48, + "end": 1909.42, + "probability": 0.9712 + }, + { + "start": 1909.62, + "end": 1913.78, + "probability": 0.9673 + }, + { + "start": 1914.16, + "end": 1916.28, + "probability": 0.9829 + }, + { + "start": 1916.32, + "end": 1918.76, + "probability": 0.9854 + }, + { + "start": 1918.8, + "end": 1922.12, + "probability": 0.6503 + }, + { + "start": 1922.52, + "end": 1924.14, + "probability": 0.9097 + }, + { + "start": 1924.34, + "end": 1927.63, + "probability": 0.9813 + }, + { + "start": 1928.08, + "end": 1929.5, + "probability": 0.8896 + }, + { + "start": 1929.64, + "end": 1930.08, + "probability": 0.6439 + }, + { + "start": 1930.54, + "end": 1931.94, + "probability": 0.9922 + }, + { + "start": 1932.74, + "end": 1933.32, + "probability": 0.6726 + }, + { + "start": 1933.5, + "end": 1935.7, + "probability": 0.6421 + }, + { + "start": 1936.16, + "end": 1937.92, + "probability": 0.6013 + }, + { + "start": 1938.52, + "end": 1940.96, + "probability": 0.5967 + }, + { + "start": 1941.52, + "end": 1942.64, + "probability": 0.6969 + }, + { + "start": 1942.74, + "end": 1943.74, + "probability": 0.9484 + }, + { + "start": 1944.02, + "end": 1944.64, + "probability": 0.7976 + }, + { + "start": 1944.78, + "end": 1945.72, + "probability": 0.5437 + }, + { + "start": 1946.02, + "end": 1948.76, + "probability": 0.9402 + }, + { + "start": 1949.74, + "end": 1950.32, + "probability": 0.8487 + }, + { + "start": 1950.54, + "end": 1951.6, + "probability": 0.8382 + }, + { + "start": 1951.7, + "end": 1955.46, + "probability": 0.9941 + }, + { + "start": 1955.46, + "end": 1958.56, + "probability": 0.8613 + }, + { + "start": 1959.1, + "end": 1963.3, + "probability": 0.978 + }, + { + "start": 1963.3, + "end": 1967.32, + "probability": 0.9569 + }, + { + "start": 1967.52, + "end": 1972.12, + "probability": 0.9976 + }, + { + "start": 1972.22, + "end": 1972.6, + "probability": 0.6742 + }, + { + "start": 1972.68, + "end": 1974.2, + "probability": 0.9963 + }, + { + "start": 1974.26, + "end": 1976.48, + "probability": 0.806 + }, + { + "start": 1976.82, + "end": 1978.26, + "probability": 0.5732 + }, + { + "start": 1978.6, + "end": 1981.54, + "probability": 0.905 + }, + { + "start": 1981.82, + "end": 1985.84, + "probability": 0.9937 + }, + { + "start": 1986.06, + "end": 1988.58, + "probability": 0.9863 + }, + { + "start": 1988.64, + "end": 1992.26, + "probability": 0.8771 + }, + { + "start": 1992.4, + "end": 1992.88, + "probability": 0.3311 + }, + { + "start": 1993.28, + "end": 1996.72, + "probability": 0.9985 + }, + { + "start": 1996.72, + "end": 1999.72, + "probability": 0.9932 + }, + { + "start": 2000.1, + "end": 2002.66, + "probability": 0.9901 + }, + { + "start": 2002.88, + "end": 2004.12, + "probability": 0.9191 + }, + { + "start": 2004.34, + "end": 2005.36, + "probability": 0.762 + }, + { + "start": 2006.08, + "end": 2007.32, + "probability": 0.5026 + }, + { + "start": 2007.5, + "end": 2008.1, + "probability": 0.5226 + }, + { + "start": 2008.1, + "end": 2008.24, + "probability": 0.6589 + }, + { + "start": 2008.76, + "end": 2010.14, + "probability": 0.8701 + }, + { + "start": 2010.34, + "end": 2011.3, + "probability": 0.8347 + }, + { + "start": 2011.82, + "end": 2013.66, + "probability": 0.9326 + }, + { + "start": 2013.82, + "end": 2016.0, + "probability": 0.9936 + }, + { + "start": 2016.1, + "end": 2016.78, + "probability": 0.5545 + }, + { + "start": 2016.86, + "end": 2017.78, + "probability": 0.9409 + }, + { + "start": 2017.84, + "end": 2021.34, + "probability": 0.9789 + }, + { + "start": 2021.78, + "end": 2023.7, + "probability": 0.7863 + }, + { + "start": 2023.94, + "end": 2026.6, + "probability": 0.9966 + }, + { + "start": 2026.6, + "end": 2030.34, + "probability": 0.723 + }, + { + "start": 2030.66, + "end": 2032.24, + "probability": 0.8281 + }, + { + "start": 2032.42, + "end": 2033.54, + "probability": 0.9576 + }, + { + "start": 2033.8, + "end": 2034.38, + "probability": 0.7961 + }, + { + "start": 2034.62, + "end": 2035.3, + "probability": 0.618 + }, + { + "start": 2035.3, + "end": 2038.86, + "probability": 0.9631 + }, + { + "start": 2046.74, + "end": 2048.52, + "probability": 0.3505 + }, + { + "start": 2048.88, + "end": 2049.54, + "probability": 0.6365 + }, + { + "start": 2049.62, + "end": 2049.96, + "probability": 0.6221 + }, + { + "start": 2050.02, + "end": 2051.86, + "probability": 0.8472 + }, + { + "start": 2051.86, + "end": 2055.24, + "probability": 0.9992 + }, + { + "start": 2055.9, + "end": 2059.28, + "probability": 0.9828 + }, + { + "start": 2059.4, + "end": 2064.6, + "probability": 0.8926 + }, + { + "start": 2065.06, + "end": 2067.08, + "probability": 0.7632 + }, + { + "start": 2067.6, + "end": 2068.65, + "probability": 0.9944 + }, + { + "start": 2069.34, + "end": 2071.62, + "probability": 0.9558 + }, + { + "start": 2072.44, + "end": 2074.3, + "probability": 0.9443 + }, + { + "start": 2074.62, + "end": 2077.56, + "probability": 0.995 + }, + { + "start": 2078.38, + "end": 2083.66, + "probability": 0.9301 + }, + { + "start": 2084.32, + "end": 2087.82, + "probability": 0.9227 + }, + { + "start": 2088.26, + "end": 2089.41, + "probability": 0.5152 + }, + { + "start": 2090.48, + "end": 2091.68, + "probability": 0.9448 + }, + { + "start": 2092.76, + "end": 2094.94, + "probability": 0.8458 + }, + { + "start": 2094.98, + "end": 2097.84, + "probability": 0.9666 + }, + { + "start": 2098.46, + "end": 2100.84, + "probability": 0.9955 + }, + { + "start": 2100.98, + "end": 2101.84, + "probability": 0.9422 + }, + { + "start": 2102.02, + "end": 2105.36, + "probability": 0.8318 + }, + { + "start": 2106.24, + "end": 2108.2, + "probability": 0.8358 + }, + { + "start": 2108.82, + "end": 2110.87, + "probability": 0.9873 + }, + { + "start": 2111.78, + "end": 2114.04, + "probability": 0.9928 + }, + { + "start": 2114.42, + "end": 2115.46, + "probability": 0.7561 + }, + { + "start": 2115.84, + "end": 2117.04, + "probability": 0.814 + }, + { + "start": 2117.49, + "end": 2120.32, + "probability": 0.7261 + }, + { + "start": 2120.48, + "end": 2120.96, + "probability": 0.8708 + }, + { + "start": 2121.04, + "end": 2122.69, + "probability": 0.788 + }, + { + "start": 2123.28, + "end": 2125.18, + "probability": 0.771 + }, + { + "start": 2125.26, + "end": 2127.44, + "probability": 0.9144 + }, + { + "start": 2127.68, + "end": 2129.69, + "probability": 0.9851 + }, + { + "start": 2129.7, + "end": 2132.38, + "probability": 0.8042 + }, + { + "start": 2132.52, + "end": 2132.78, + "probability": 0.8672 + }, + { + "start": 2133.98, + "end": 2134.18, + "probability": 0.6936 + }, + { + "start": 2135.1, + "end": 2137.94, + "probability": 0.9601 + }, + { + "start": 2138.32, + "end": 2140.04, + "probability": 0.5218 + }, + { + "start": 2140.1, + "end": 2141.88, + "probability": 0.8551 + }, + { + "start": 2141.96, + "end": 2143.22, + "probability": 0.5293 + }, + { + "start": 2143.22, + "end": 2145.26, + "probability": 0.9426 + }, + { + "start": 2149.1, + "end": 2150.38, + "probability": 0.4221 + }, + { + "start": 2151.32, + "end": 2152.66, + "probability": 0.3536 + }, + { + "start": 2154.28, + "end": 2154.86, + "probability": 0.0075 + }, + { + "start": 2154.86, + "end": 2155.42, + "probability": 0.2122 + }, + { + "start": 2155.82, + "end": 2156.02, + "probability": 0.3016 + }, + { + "start": 2156.02, + "end": 2156.36, + "probability": 0.2012 + }, + { + "start": 2156.64, + "end": 2158.78, + "probability": 0.714 + }, + { + "start": 2160.74, + "end": 2161.51, + "probability": 0.8681 + }, + { + "start": 2161.98, + "end": 2162.4, + "probability": 0.1856 + }, + { + "start": 2162.42, + "end": 2163.66, + "probability": 0.6791 + }, + { + "start": 2164.0, + "end": 2168.32, + "probability": 0.6021 + }, + { + "start": 2168.32, + "end": 2171.58, + "probability": 0.88 + }, + { + "start": 2172.36, + "end": 2173.62, + "probability": 0.3521 + }, + { + "start": 2174.36, + "end": 2179.66, + "probability": 0.9518 + }, + { + "start": 2180.4, + "end": 2185.78, + "probability": 0.9678 + }, + { + "start": 2186.58, + "end": 2187.26, + "probability": 0.6056 + }, + { + "start": 2187.42, + "end": 2188.56, + "probability": 0.7027 + }, + { + "start": 2188.82, + "end": 2194.16, + "probability": 0.9318 + }, + { + "start": 2194.36, + "end": 2198.25, + "probability": 0.897 + }, + { + "start": 2198.86, + "end": 2200.71, + "probability": 0.8871 + }, + { + "start": 2201.2, + "end": 2201.6, + "probability": 0.4149 + }, + { + "start": 2201.76, + "end": 2202.86, + "probability": 0.6083 + }, + { + "start": 2203.12, + "end": 2211.29, + "probability": 0.418 + }, + { + "start": 2212.46, + "end": 2218.99, + "probability": 0.8477 + }, + { + "start": 2220.06, + "end": 2224.52, + "probability": 0.9907 + }, + { + "start": 2224.52, + "end": 2229.78, + "probability": 0.9607 + }, + { + "start": 2230.66, + "end": 2236.92, + "probability": 0.6776 + }, + { + "start": 2236.92, + "end": 2240.54, + "probability": 0.7298 + }, + { + "start": 2240.58, + "end": 2240.84, + "probability": 0.3275 + }, + { + "start": 2240.9, + "end": 2241.58, + "probability": 0.8118 + }, + { + "start": 2242.02, + "end": 2245.12, + "probability": 0.9614 + }, + { + "start": 2245.68, + "end": 2251.1, + "probability": 0.8841 + }, + { + "start": 2251.28, + "end": 2251.78, + "probability": 0.7638 + }, + { + "start": 2251.9, + "end": 2252.28, + "probability": 0.5925 + }, + { + "start": 2252.42, + "end": 2257.68, + "probability": 0.9871 + }, + { + "start": 2259.34, + "end": 2260.08, + "probability": 0.1795 + }, + { + "start": 2261.06, + "end": 2262.9, + "probability": 0.6746 + }, + { + "start": 2263.52, + "end": 2265.56, + "probability": 0.7315 + }, + { + "start": 2266.2, + "end": 2268.36, + "probability": 0.9934 + }, + { + "start": 2268.54, + "end": 2272.0, + "probability": 0.7784 + }, + { + "start": 2272.52, + "end": 2275.84, + "probability": 0.9985 + }, + { + "start": 2276.94, + "end": 2280.56, + "probability": 0.7524 + }, + { + "start": 2281.18, + "end": 2283.34, + "probability": 0.9854 + }, + { + "start": 2284.22, + "end": 2286.44, + "probability": 0.8553 + }, + { + "start": 2286.6, + "end": 2287.68, + "probability": 0.967 + }, + { + "start": 2288.64, + "end": 2289.3, + "probability": 0.4915 + }, + { + "start": 2289.4, + "end": 2290.78, + "probability": 0.8902 + }, + { + "start": 2292.89, + "end": 2295.06, + "probability": 0.5921 + }, + { + "start": 2295.7, + "end": 2296.6, + "probability": 0.6251 + }, + { + "start": 2296.6, + "end": 2296.98, + "probability": 0.2356 + }, + { + "start": 2296.98, + "end": 2297.96, + "probability": 0.8049 + }, + { + "start": 2298.46, + "end": 2299.46, + "probability": 0.8242 + }, + { + "start": 2299.6, + "end": 2299.98, + "probability": 0.9255 + }, + { + "start": 2300.06, + "end": 2301.98, + "probability": 0.4382 + }, + { + "start": 2302.16, + "end": 2303.44, + "probability": 0.9445 + }, + { + "start": 2303.66, + "end": 2303.88, + "probability": 0.8395 + }, + { + "start": 2304.0, + "end": 2304.58, + "probability": 0.9085 + }, + { + "start": 2304.58, + "end": 2305.36, + "probability": 0.9887 + }, + { + "start": 2305.56, + "end": 2305.9, + "probability": 0.8423 + }, + { + "start": 2306.04, + "end": 2307.24, + "probability": 0.6223 + }, + { + "start": 2307.76, + "end": 2310.34, + "probability": 0.8865 + }, + { + "start": 2310.66, + "end": 2312.7, + "probability": 0.9934 + }, + { + "start": 2312.74, + "end": 2316.56, + "probability": 0.801 + }, + { + "start": 2318.34, + "end": 2321.38, + "probability": 0.6497 + }, + { + "start": 2321.38, + "end": 2324.94, + "probability": 0.718 + }, + { + "start": 2325.54, + "end": 2330.18, + "probability": 0.9487 + }, + { + "start": 2330.6, + "end": 2331.8, + "probability": 0.5404 + }, + { + "start": 2331.88, + "end": 2335.12, + "probability": 0.9917 + }, + { + "start": 2335.22, + "end": 2338.92, + "probability": 0.9913 + }, + { + "start": 2339.36, + "end": 2340.62, + "probability": 0.4657 + }, + { + "start": 2341.16, + "end": 2342.66, + "probability": 0.9331 + }, + { + "start": 2342.82, + "end": 2343.99, + "probability": 0.9619 + }, + { + "start": 2344.92, + "end": 2345.52, + "probability": 0.4979 + }, + { + "start": 2345.86, + "end": 2350.66, + "probability": 0.942 + }, + { + "start": 2350.8, + "end": 2353.48, + "probability": 0.9965 + }, + { + "start": 2353.9, + "end": 2356.14, + "probability": 0.4978 + }, + { + "start": 2356.56, + "end": 2359.94, + "probability": 0.9692 + }, + { + "start": 2360.22, + "end": 2360.7, + "probability": 0.8369 + }, + { + "start": 2360.9, + "end": 2362.8, + "probability": 0.8623 + }, + { + "start": 2362.88, + "end": 2365.78, + "probability": 0.9937 + }, + { + "start": 2366.6, + "end": 2368.24, + "probability": 0.4156 + }, + { + "start": 2368.3, + "end": 2371.42, + "probability": 0.9975 + }, + { + "start": 2371.42, + "end": 2376.0, + "probability": 0.939 + }, + { + "start": 2376.38, + "end": 2376.72, + "probability": 0.3186 + }, + { + "start": 2376.82, + "end": 2377.48, + "probability": 0.7524 + }, + { + "start": 2377.6, + "end": 2379.32, + "probability": 0.5883 + }, + { + "start": 2379.72, + "end": 2381.65, + "probability": 0.9756 + }, + { + "start": 2381.86, + "end": 2383.02, + "probability": 0.2735 + }, + { + "start": 2383.02, + "end": 2389.96, + "probability": 0.8812 + }, + { + "start": 2390.14, + "end": 2392.02, + "probability": 0.8884 + }, + { + "start": 2392.14, + "end": 2393.3, + "probability": 0.7558 + }, + { + "start": 2393.4, + "end": 2395.9, + "probability": 0.858 + }, + { + "start": 2395.9, + "end": 2396.38, + "probability": 0.5093 + }, + { + "start": 2396.4, + "end": 2397.42, + "probability": 0.7487 + }, + { + "start": 2398.34, + "end": 2401.2, + "probability": 0.5301 + }, + { + "start": 2401.5, + "end": 2401.84, + "probability": 0.3041 + }, + { + "start": 2404.03, + "end": 2404.88, + "probability": 0.2557 + }, + { + "start": 2404.88, + "end": 2404.88, + "probability": 0.0225 + }, + { + "start": 2404.88, + "end": 2405.3, + "probability": 0.4869 + }, + { + "start": 2405.7, + "end": 2406.54, + "probability": 0.4714 + }, + { + "start": 2406.72, + "end": 2411.1, + "probability": 0.9795 + }, + { + "start": 2412.08, + "end": 2412.56, + "probability": 0.6639 + }, + { + "start": 2412.94, + "end": 2417.4, + "probability": 0.9163 + }, + { + "start": 2417.4, + "end": 2421.88, + "probability": 0.9937 + }, + { + "start": 2423.06, + "end": 2426.58, + "probability": 0.7906 + }, + { + "start": 2426.8, + "end": 2430.06, + "probability": 0.9915 + }, + { + "start": 2430.86, + "end": 2436.06, + "probability": 0.9849 + }, + { + "start": 2436.92, + "end": 2437.86, + "probability": 0.3899 + }, + { + "start": 2437.86, + "end": 2438.0, + "probability": 0.3576 + }, + { + "start": 2438.2, + "end": 2439.42, + "probability": 0.6542 + }, + { + "start": 2439.64, + "end": 2443.4, + "probability": 0.9648 + }, + { + "start": 2443.56, + "end": 2446.87, + "probability": 0.9769 + }, + { + "start": 2447.94, + "end": 2448.94, + "probability": 0.9956 + }, + { + "start": 2449.66, + "end": 2453.52, + "probability": 0.8381 + }, + { + "start": 2453.72, + "end": 2458.3, + "probability": 0.9855 + }, + { + "start": 2458.3, + "end": 2462.02, + "probability": 0.9955 + }, + { + "start": 2463.08, + "end": 2467.98, + "probability": 0.9597 + }, + { + "start": 2468.06, + "end": 2471.54, + "probability": 0.8428 + }, + { + "start": 2471.7, + "end": 2474.88, + "probability": 0.9891 + }, + { + "start": 2474.88, + "end": 2479.32, + "probability": 0.9985 + }, + { + "start": 2479.44, + "end": 2479.8, + "probability": 0.6428 + }, + { + "start": 2480.2, + "end": 2482.33, + "probability": 0.6357 + }, + { + "start": 2483.0, + "end": 2486.14, + "probability": 0.9935 + }, + { + "start": 2486.58, + "end": 2487.04, + "probability": 0.139 + }, + { + "start": 2487.1, + "end": 2488.3, + "probability": 0.8035 + }, + { + "start": 2488.92, + "end": 2489.32, + "probability": 0.8936 + }, + { + "start": 2490.26, + "end": 2491.52, + "probability": 0.7997 + }, + { + "start": 2491.62, + "end": 2495.14, + "probability": 0.992 + }, + { + "start": 2495.36, + "end": 2497.78, + "probability": 0.9417 + }, + { + "start": 2497.84, + "end": 2498.3, + "probability": 0.5614 + }, + { + "start": 2498.52, + "end": 2500.62, + "probability": 0.9302 + }, + { + "start": 2500.72, + "end": 2501.78, + "probability": 0.7923 + }, + { + "start": 2501.94, + "end": 2503.24, + "probability": 0.5028 + }, + { + "start": 2503.36, + "end": 2508.12, + "probability": 0.6405 + }, + { + "start": 2508.56, + "end": 2513.98, + "probability": 0.9858 + }, + { + "start": 2514.14, + "end": 2515.82, + "probability": 0.748 + }, + { + "start": 2516.14, + "end": 2519.22, + "probability": 0.7746 + }, + { + "start": 2519.74, + "end": 2520.88, + "probability": 0.9512 + }, + { + "start": 2521.0, + "end": 2521.74, + "probability": 0.7753 + }, + { + "start": 2521.76, + "end": 2524.3, + "probability": 0.8722 + }, + { + "start": 2524.66, + "end": 2526.48, + "probability": 0.958 + }, + { + "start": 2526.62, + "end": 2527.54, + "probability": 0.9 + }, + { + "start": 2527.76, + "end": 2530.38, + "probability": 0.9891 + }, + { + "start": 2530.38, + "end": 2533.98, + "probability": 0.9844 + }, + { + "start": 2534.18, + "end": 2534.4, + "probability": 0.3375 + }, + { + "start": 2534.48, + "end": 2536.96, + "probability": 0.9567 + }, + { + "start": 2537.26, + "end": 2538.58, + "probability": 0.9556 + }, + { + "start": 2538.78, + "end": 2539.82, + "probability": 0.7987 + }, + { + "start": 2540.04, + "end": 2541.9, + "probability": 0.8803 + }, + { + "start": 2542.12, + "end": 2544.74, + "probability": 0.8744 + }, + { + "start": 2544.88, + "end": 2545.06, + "probability": 0.4121 + }, + { + "start": 2545.12, + "end": 2546.02, + "probability": 0.8525 + }, + { + "start": 2546.18, + "end": 2547.09, + "probability": 0.935 + }, + { + "start": 2547.32, + "end": 2549.04, + "probability": 0.8947 + }, + { + "start": 2549.16, + "end": 2552.06, + "probability": 0.8727 + }, + { + "start": 2552.5, + "end": 2556.68, + "probability": 0.9455 + }, + { + "start": 2556.92, + "end": 2558.14, + "probability": 0.9937 + }, + { + "start": 2558.5, + "end": 2559.7, + "probability": 0.8082 + }, + { + "start": 2559.94, + "end": 2563.62, + "probability": 0.9867 + }, + { + "start": 2563.62, + "end": 2566.18, + "probability": 0.983 + }, + { + "start": 2566.8, + "end": 2568.9, + "probability": 0.9917 + }, + { + "start": 2569.52, + "end": 2572.34, + "probability": 0.855 + }, + { + "start": 2573.22, + "end": 2577.32, + "probability": 0.991 + }, + { + "start": 2577.88, + "end": 2580.04, + "probability": 0.819 + }, + { + "start": 2581.06, + "end": 2587.18, + "probability": 0.9354 + }, + { + "start": 2588.92, + "end": 2592.36, + "probability": 0.6607 + }, + { + "start": 2594.5, + "end": 2598.2, + "probability": 0.9749 + }, + { + "start": 2599.24, + "end": 2602.58, + "probability": 0.9989 + }, + { + "start": 2603.52, + "end": 2607.3, + "probability": 0.9717 + }, + { + "start": 2608.72, + "end": 2611.54, + "probability": 0.9323 + }, + { + "start": 2612.26, + "end": 2614.32, + "probability": 0.968 + }, + { + "start": 2615.2, + "end": 2616.74, + "probability": 0.7677 + }, + { + "start": 2617.92, + "end": 2623.61, + "probability": 0.9932 + }, + { + "start": 2624.47, + "end": 2628.64, + "probability": 0.9771 + }, + { + "start": 2630.02, + "end": 2633.66, + "probability": 0.9897 + }, + { + "start": 2635.23, + "end": 2635.3, + "probability": 0.0632 + }, + { + "start": 2635.3, + "end": 2639.88, + "probability": 0.8848 + }, + { + "start": 2640.96, + "end": 2645.67, + "probability": 0.8362 + }, + { + "start": 2647.16, + "end": 2649.64, + "probability": 0.8089 + }, + { + "start": 2650.78, + "end": 2651.36, + "probability": 0.3551 + }, + { + "start": 2652.5, + "end": 2656.82, + "probability": 0.9918 + }, + { + "start": 2657.62, + "end": 2660.4, + "probability": 0.9165 + }, + { + "start": 2661.18, + "end": 2666.58, + "probability": 0.7197 + }, + { + "start": 2667.52, + "end": 2668.08, + "probability": 0.7701 + }, + { + "start": 2668.32, + "end": 2676.46, + "probability": 0.9651 + }, + { + "start": 2677.32, + "end": 2679.82, + "probability": 0.8187 + }, + { + "start": 2679.86, + "end": 2680.14, + "probability": 0.0323 + }, + { + "start": 2680.14, + "end": 2680.16, + "probability": 0.2181 + }, + { + "start": 2680.32, + "end": 2683.32, + "probability": 0.7176 + }, + { + "start": 2683.36, + "end": 2683.9, + "probability": 0.8163 + }, + { + "start": 2684.12, + "end": 2687.4, + "probability": 0.6452 + }, + { + "start": 2687.9, + "end": 2688.84, + "probability": 0.8894 + }, + { + "start": 2689.02, + "end": 2689.65, + "probability": 0.8386 + }, + { + "start": 2690.08, + "end": 2692.96, + "probability": 0.9754 + }, + { + "start": 2693.48, + "end": 2694.88, + "probability": 0.532 + }, + { + "start": 2695.28, + "end": 2697.58, + "probability": 0.921 + }, + { + "start": 2697.82, + "end": 2698.08, + "probability": 0.2726 + }, + { + "start": 2698.72, + "end": 2698.72, + "probability": 0.1117 + }, + { + "start": 2698.72, + "end": 2699.36, + "probability": 0.7067 + }, + { + "start": 2699.5, + "end": 2701.58, + "probability": 0.7227 + }, + { + "start": 2703.37, + "end": 2707.14, + "probability": 0.2304 + }, + { + "start": 2707.32, + "end": 2709.58, + "probability": 0.8633 + }, + { + "start": 2709.96, + "end": 2713.24, + "probability": 0.9634 + }, + { + "start": 2713.68, + "end": 2718.84, + "probability": 0.9407 + }, + { + "start": 2719.28, + "end": 2720.08, + "probability": 0.223 + }, + { + "start": 2720.7, + "end": 2722.38, + "probability": 0.0366 + }, + { + "start": 2722.38, + "end": 2726.98, + "probability": 0.495 + }, + { + "start": 2727.1, + "end": 2728.63, + "probability": 0.1476 + }, + { + "start": 2728.66, + "end": 2729.18, + "probability": 0.1168 + }, + { + "start": 2729.18, + "end": 2730.24, + "probability": 0.2779 + }, + { + "start": 2731.62, + "end": 2732.4, + "probability": 0.5398 + }, + { + "start": 2732.82, + "end": 2733.32, + "probability": 0.6482 + }, + { + "start": 2733.42, + "end": 2737.7, + "probability": 0.9791 + }, + { + "start": 2738.2, + "end": 2739.0, + "probability": 0.8104 + }, + { + "start": 2739.46, + "end": 2743.14, + "probability": 0.8165 + }, + { + "start": 2744.08, + "end": 2750.68, + "probability": 0.0859 + }, + { + "start": 2752.58, + "end": 2753.84, + "probability": 0.2729 + }, + { + "start": 2755.1, + "end": 2756.4, + "probability": 0.1673 + }, + { + "start": 2758.14, + "end": 2758.8, + "probability": 0.019 + }, + { + "start": 2758.8, + "end": 2758.8, + "probability": 0.0703 + }, + { + "start": 2758.8, + "end": 2758.8, + "probability": 0.1536 + }, + { + "start": 2758.8, + "end": 2758.8, + "probability": 0.0801 + }, + { + "start": 2758.8, + "end": 2758.8, + "probability": 0.0874 + }, + { + "start": 2758.8, + "end": 2761.38, + "probability": 0.0532 + }, + { + "start": 2762.22, + "end": 2765.48, + "probability": 0.734 + }, + { + "start": 2766.96, + "end": 2769.9, + "probability": 0.9578 + }, + { + "start": 2770.48, + "end": 2771.86, + "probability": 0.9367 + }, + { + "start": 2772.52, + "end": 2774.28, + "probability": 0.9673 + }, + { + "start": 2775.12, + "end": 2778.36, + "probability": 0.981 + }, + { + "start": 2779.12, + "end": 2785.62, + "probability": 0.9917 + }, + { + "start": 2786.74, + "end": 2790.08, + "probability": 0.9881 + }, + { + "start": 2790.08, + "end": 2794.28, + "probability": 0.9985 + }, + { + "start": 2795.48, + "end": 2800.58, + "probability": 0.9976 + }, + { + "start": 2801.48, + "end": 2807.2, + "probability": 0.996 + }, + { + "start": 2808.08, + "end": 2811.2, + "probability": 0.9904 + }, + { + "start": 2813.3, + "end": 2818.62, + "probability": 0.9937 + }, + { + "start": 2819.86, + "end": 2827.44, + "probability": 0.9946 + }, + { + "start": 2828.46, + "end": 2831.6, + "probability": 0.9917 + }, + { + "start": 2831.6, + "end": 2834.82, + "probability": 0.9978 + }, + { + "start": 2835.58, + "end": 2838.96, + "probability": 0.7494 + }, + { + "start": 2839.56, + "end": 2840.94, + "probability": 0.869 + }, + { + "start": 2841.64, + "end": 2846.06, + "probability": 0.9734 + }, + { + "start": 2846.06, + "end": 2852.6, + "probability": 0.9993 + }, + { + "start": 2853.78, + "end": 2854.68, + "probability": 0.6622 + }, + { + "start": 2855.38, + "end": 2856.38, + "probability": 0.9319 + }, + { + "start": 2857.1, + "end": 2863.4, + "probability": 0.915 + }, + { + "start": 2864.26, + "end": 2866.88, + "probability": 0.9912 + }, + { + "start": 2867.7, + "end": 2869.72, + "probability": 0.9078 + }, + { + "start": 2870.82, + "end": 2877.36, + "probability": 0.9717 + }, + { + "start": 2878.14, + "end": 2879.34, + "probability": 0.9232 + }, + { + "start": 2880.24, + "end": 2881.44, + "probability": 0.8499 + }, + { + "start": 2882.48, + "end": 2883.66, + "probability": 0.8579 + }, + { + "start": 2884.9, + "end": 2890.82, + "probability": 0.8702 + }, + { + "start": 2890.9, + "end": 2893.08, + "probability": 0.9453 + }, + { + "start": 2893.86, + "end": 2895.14, + "probability": 0.8478 + }, + { + "start": 2895.96, + "end": 2896.0, + "probability": 0.2353 + }, + { + "start": 2896.0, + "end": 2898.76, + "probability": 0.994 + }, + { + "start": 2898.88, + "end": 2903.2, + "probability": 0.9067 + }, + { + "start": 2903.86, + "end": 2907.0, + "probability": 0.9871 + }, + { + "start": 2907.92, + "end": 2911.44, + "probability": 0.9993 + }, + { + "start": 2911.44, + "end": 2915.88, + "probability": 0.9873 + }, + { + "start": 2917.4, + "end": 2919.58, + "probability": 0.9967 + }, + { + "start": 2920.6, + "end": 2926.44, + "probability": 0.9924 + }, + { + "start": 2927.06, + "end": 2928.5, + "probability": 0.925 + }, + { + "start": 2929.36, + "end": 2934.61, + "probability": 0.9971 + }, + { + "start": 2935.42, + "end": 2936.58, + "probability": 0.8274 + }, + { + "start": 2937.6, + "end": 2941.38, + "probability": 0.9828 + }, + { + "start": 2941.38, + "end": 2945.66, + "probability": 0.9761 + }, + { + "start": 2946.78, + "end": 2949.54, + "probability": 0.9888 + }, + { + "start": 2950.42, + "end": 2954.76, + "probability": 0.958 + }, + { + "start": 2955.38, + "end": 2958.64, + "probability": 0.631 + }, + { + "start": 2959.64, + "end": 2960.82, + "probability": 0.5544 + }, + { + "start": 2963.1, + "end": 2967.24, + "probability": 0.6876 + }, + { + "start": 2967.64, + "end": 2969.7, + "probability": 0.9944 + }, + { + "start": 2970.16, + "end": 2972.86, + "probability": 0.8499 + }, + { + "start": 2973.64, + "end": 2974.46, + "probability": 0.995 + }, + { + "start": 2975.7, + "end": 2977.82, + "probability": 0.9909 + }, + { + "start": 2978.3, + "end": 2979.98, + "probability": 0.8605 + }, + { + "start": 2980.4, + "end": 2982.7, + "probability": 0.8446 + }, + { + "start": 2983.22, + "end": 2987.88, + "probability": 0.8509 + }, + { + "start": 2988.48, + "end": 2989.78, + "probability": 0.6476 + }, + { + "start": 2991.18, + "end": 2991.84, + "probability": 0.77 + }, + { + "start": 2991.96, + "end": 2992.12, + "probability": 0.9502 + }, + { + "start": 2995.94, + "end": 2996.82, + "probability": 0.1602 + }, + { + "start": 2996.9, + "end": 2997.56, + "probability": 0.3337 + }, + { + "start": 2997.8, + "end": 2998.94, + "probability": 0.7089 + }, + { + "start": 2999.3, + "end": 3001.16, + "probability": 0.9564 + }, + { + "start": 3001.7, + "end": 3003.02, + "probability": 0.9953 + }, + { + "start": 3003.36, + "end": 3004.66, + "probability": 0.9767 + }, + { + "start": 3010.0, + "end": 3012.04, + "probability": 0.7291 + }, + { + "start": 3012.62, + "end": 3016.54, + "probability": 0.7371 + }, + { + "start": 3016.54, + "end": 3017.08, + "probability": 0.5536 + }, + { + "start": 3017.22, + "end": 3020.16, + "probability": 0.8156 + }, + { + "start": 3021.22, + "end": 3022.5, + "probability": 0.9642 + }, + { + "start": 3022.52, + "end": 3024.82, + "probability": 0.9356 + }, + { + "start": 3024.92, + "end": 3027.1, + "probability": 0.9133 + }, + { + "start": 3028.02, + "end": 3030.88, + "probability": 0.8287 + }, + { + "start": 3031.54, + "end": 3033.72, + "probability": 0.9146 + }, + { + "start": 3033.86, + "end": 3037.16, + "probability": 0.9856 + }, + { + "start": 3038.22, + "end": 3043.18, + "probability": 0.9808 + }, + { + "start": 3043.28, + "end": 3044.7, + "probability": 0.8935 + }, + { + "start": 3045.4, + "end": 3053.78, + "probability": 0.9724 + }, + { + "start": 3054.36, + "end": 3059.88, + "probability": 0.9873 + }, + { + "start": 3060.0, + "end": 3063.38, + "probability": 0.6806 + }, + { + "start": 3063.9, + "end": 3065.68, + "probability": 0.4192 + }, + { + "start": 3067.1, + "end": 3073.2, + "probability": 0.981 + }, + { + "start": 3073.28, + "end": 3073.74, + "probability": 0.7045 + }, + { + "start": 3073.8, + "end": 3074.56, + "probability": 0.665 + }, + { + "start": 3074.64, + "end": 3076.56, + "probability": 0.8828 + }, + { + "start": 3077.42, + "end": 3077.82, + "probability": 0.6572 + }, + { + "start": 3077.9, + "end": 3081.14, + "probability": 0.5982 + }, + { + "start": 3082.66, + "end": 3084.46, + "probability": 0.8445 + }, + { + "start": 3085.26, + "end": 3086.22, + "probability": 0.922 + }, + { + "start": 3086.92, + "end": 3094.54, + "probability": 0.9561 + }, + { + "start": 3095.7, + "end": 3099.66, + "probability": 0.9251 + }, + { + "start": 3100.26, + "end": 3106.14, + "probability": 0.9813 + }, + { + "start": 3107.04, + "end": 3108.88, + "probability": 0.9934 + }, + { + "start": 3109.48, + "end": 3114.32, + "probability": 0.9936 + }, + { + "start": 3115.6, + "end": 3121.42, + "probability": 0.8091 + }, + { + "start": 3121.72, + "end": 3122.76, + "probability": 0.8756 + }, + { + "start": 3123.12, + "end": 3123.66, + "probability": 0.991 + }, + { + "start": 3124.24, + "end": 3127.0, + "probability": 0.9922 + }, + { + "start": 3127.38, + "end": 3132.72, + "probability": 0.9962 + }, + { + "start": 3134.02, + "end": 3136.8, + "probability": 0.9849 + }, + { + "start": 3137.42, + "end": 3142.94, + "probability": 0.9917 + }, + { + "start": 3143.98, + "end": 3149.4, + "probability": 0.9981 + }, + { + "start": 3150.58, + "end": 3152.44, + "probability": 0.9946 + }, + { + "start": 3153.56, + "end": 3158.84, + "probability": 0.9703 + }, + { + "start": 3159.46, + "end": 3161.22, + "probability": 0.98 + }, + { + "start": 3161.26, + "end": 3164.08, + "probability": 0.9359 + }, + { + "start": 3164.6, + "end": 3167.86, + "probability": 0.5126 + }, + { + "start": 3169.6, + "end": 3170.36, + "probability": 0.7444 + }, + { + "start": 3170.68, + "end": 3173.4, + "probability": 0.8962 + }, + { + "start": 3174.22, + "end": 3177.22, + "probability": 0.6617 + }, + { + "start": 3177.9, + "end": 3178.48, + "probability": 0.9437 + }, + { + "start": 3179.52, + "end": 3187.72, + "probability": 0.9946 + }, + { + "start": 3188.44, + "end": 3193.1, + "probability": 0.9979 + }, + { + "start": 3193.62, + "end": 3198.14, + "probability": 0.7378 + }, + { + "start": 3199.0, + "end": 3200.72, + "probability": 0.9946 + }, + { + "start": 3201.48, + "end": 3205.74, + "probability": 0.9974 + }, + { + "start": 3206.04, + "end": 3208.04, + "probability": 0.9821 + }, + { + "start": 3208.42, + "end": 3211.48, + "probability": 0.9509 + }, + { + "start": 3211.78, + "end": 3212.72, + "probability": 0.5117 + }, + { + "start": 3213.98, + "end": 3222.1, + "probability": 0.9713 + }, + { + "start": 3222.58, + "end": 3223.62, + "probability": 0.8756 + }, + { + "start": 3225.42, + "end": 3227.64, + "probability": 0.8254 + }, + { + "start": 3228.9, + "end": 3231.58, + "probability": 0.8033 + }, + { + "start": 3233.78, + "end": 3240.46, + "probability": 0.9941 + }, + { + "start": 3241.18, + "end": 3244.78, + "probability": 0.9634 + }, + { + "start": 3245.0, + "end": 3249.44, + "probability": 0.999 + }, + { + "start": 3249.56, + "end": 3255.27, + "probability": 0.9841 + }, + { + "start": 3258.6, + "end": 3260.16, + "probability": 0.9984 + }, + { + "start": 3261.56, + "end": 3263.1, + "probability": 0.9702 + }, + { + "start": 3264.22, + "end": 3265.02, + "probability": 0.8752 + }, + { + "start": 3265.96, + "end": 3266.5, + "probability": 0.9087 + }, + { + "start": 3266.6, + "end": 3267.7, + "probability": 0.9616 + }, + { + "start": 3267.86, + "end": 3269.2, + "probability": 0.8397 + }, + { + "start": 3269.34, + "end": 3270.42, + "probability": 0.9552 + }, + { + "start": 3271.66, + "end": 3275.98, + "probability": 0.9958 + }, + { + "start": 3277.22, + "end": 3279.86, + "probability": 0.9645 + }, + { + "start": 3281.9, + "end": 3284.88, + "probability": 0.8522 + }, + { + "start": 3286.24, + "end": 3290.88, + "probability": 0.9822 + }, + { + "start": 3293.32, + "end": 3296.04, + "probability": 0.8057 + }, + { + "start": 3297.12, + "end": 3300.32, + "probability": 0.9913 + }, + { + "start": 3301.02, + "end": 3304.02, + "probability": 0.9997 + }, + { + "start": 3304.02, + "end": 3307.94, + "probability": 0.9985 + }, + { + "start": 3308.68, + "end": 3312.94, + "probability": 0.9954 + }, + { + "start": 3312.94, + "end": 3316.24, + "probability": 0.9984 + }, + { + "start": 3317.4, + "end": 3319.04, + "probability": 0.8169 + }, + { + "start": 3319.16, + "end": 3320.0, + "probability": 0.8343 + }, + { + "start": 3320.06, + "end": 3324.46, + "probability": 0.9023 + }, + { + "start": 3324.68, + "end": 3325.88, + "probability": 0.78 + }, + { + "start": 3326.74, + "end": 3330.82, + "probability": 0.8799 + }, + { + "start": 3330.9, + "end": 3332.96, + "probability": 0.9775 + }, + { + "start": 3334.34, + "end": 3334.82, + "probability": 0.5006 + }, + { + "start": 3336.3, + "end": 3337.66, + "probability": 0.9891 + }, + { + "start": 3338.6, + "end": 3342.4, + "probability": 0.9747 + }, + { + "start": 3343.58, + "end": 3347.18, + "probability": 0.716 + }, + { + "start": 3347.32, + "end": 3348.14, + "probability": 0.3771 + }, + { + "start": 3348.96, + "end": 3351.2, + "probability": 0.8724 + }, + { + "start": 3351.44, + "end": 3354.82, + "probability": 0.7767 + }, + { + "start": 3355.18, + "end": 3356.09, + "probability": 0.8804 + }, + { + "start": 3356.68, + "end": 3356.82, + "probability": 0.8005 + }, + { + "start": 3358.9, + "end": 3361.36, + "probability": 0.7674 + }, + { + "start": 3361.76, + "end": 3365.5, + "probability": 0.9768 + }, + { + "start": 3366.24, + "end": 3371.34, + "probability": 0.9922 + }, + { + "start": 3372.24, + "end": 3374.58, + "probability": 0.9424 + }, + { + "start": 3377.1, + "end": 3377.1, + "probability": 0.0976 + }, + { + "start": 3377.1, + "end": 3381.08, + "probability": 0.9213 + }, + { + "start": 3381.76, + "end": 3383.56, + "probability": 0.9865 + }, + { + "start": 3384.22, + "end": 3386.72, + "probability": 0.6923 + }, + { + "start": 3387.42, + "end": 3389.26, + "probability": 0.944 + }, + { + "start": 3389.8, + "end": 3392.76, + "probability": 0.9453 + }, + { + "start": 3393.92, + "end": 3400.03, + "probability": 0.9563 + }, + { + "start": 3401.06, + "end": 3402.38, + "probability": 0.5001 + }, + { + "start": 3402.44, + "end": 3404.3, + "probability": 0.9852 + }, + { + "start": 3406.56, + "end": 3409.28, + "probability": 0.923 + }, + { + "start": 3410.4, + "end": 3412.92, + "probability": 0.9951 + }, + { + "start": 3413.92, + "end": 3414.74, + "probability": 0.5663 + }, + { + "start": 3414.86, + "end": 3417.08, + "probability": 0.6686 + }, + { + "start": 3417.2, + "end": 3419.04, + "probability": 0.9287 + }, + { + "start": 3419.16, + "end": 3420.44, + "probability": 0.8296 + }, + { + "start": 3420.48, + "end": 3421.56, + "probability": 0.9426 + }, + { + "start": 3421.72, + "end": 3422.64, + "probability": 0.9619 + }, + { + "start": 3423.12, + "end": 3424.2, + "probability": 0.7767 + }, + { + "start": 3425.62, + "end": 3428.62, + "probability": 0.9663 + }, + { + "start": 3429.78, + "end": 3435.96, + "probability": 0.8903 + }, + { + "start": 3436.5, + "end": 3437.1, + "probability": 0.4592 + }, + { + "start": 3438.06, + "end": 3442.56, + "probability": 0.9336 + }, + { + "start": 3443.0, + "end": 3444.66, + "probability": 0.9708 + }, + { + "start": 3445.66, + "end": 3447.35, + "probability": 0.9739 + }, + { + "start": 3448.92, + "end": 3451.08, + "probability": 0.7781 + }, + { + "start": 3452.18, + "end": 3454.9, + "probability": 0.9633 + }, + { + "start": 3454.98, + "end": 3457.02, + "probability": 0.7419 + }, + { + "start": 3458.28, + "end": 3461.18, + "probability": 0.9897 + }, + { + "start": 3462.04, + "end": 3463.28, + "probability": 0.9635 + }, + { + "start": 3464.7, + "end": 3467.04, + "probability": 0.8071 + }, + { + "start": 3467.04, + "end": 3469.82, + "probability": 0.8738 + }, + { + "start": 3470.88, + "end": 3473.66, + "probability": 0.9849 + }, + { + "start": 3474.18, + "end": 3479.32, + "probability": 0.9705 + }, + { + "start": 3479.76, + "end": 3484.2, + "probability": 0.9917 + }, + { + "start": 3485.28, + "end": 3489.5, + "probability": 0.9917 + }, + { + "start": 3490.82, + "end": 3491.68, + "probability": 0.8289 + }, + { + "start": 3493.26, + "end": 3496.88, + "probability": 0.7869 + }, + { + "start": 3497.58, + "end": 3498.88, + "probability": 0.9872 + }, + { + "start": 3501.4, + "end": 3502.5, + "probability": 0.6983 + }, + { + "start": 3502.7, + "end": 3505.24, + "probability": 0.8128 + }, + { + "start": 3506.28, + "end": 3507.5, + "probability": 0.935 + }, + { + "start": 3508.4, + "end": 3510.8, + "probability": 0.9534 + }, + { + "start": 3511.52, + "end": 3519.1, + "probability": 0.9828 + }, + { + "start": 3519.86, + "end": 3521.88, + "probability": 0.9743 + }, + { + "start": 3522.62, + "end": 3526.88, + "probability": 0.9045 + }, + { + "start": 3527.18, + "end": 3529.72, + "probability": 0.9893 + }, + { + "start": 3530.6, + "end": 3532.09, + "probability": 0.9894 + }, + { + "start": 3533.98, + "end": 3537.14, + "probability": 0.8818 + }, + { + "start": 3538.2, + "end": 3540.18, + "probability": 0.9257 + }, + { + "start": 3540.78, + "end": 3543.66, + "probability": 0.9912 + }, + { + "start": 3544.8, + "end": 3548.42, + "probability": 0.9878 + }, + { + "start": 3549.38, + "end": 3554.88, + "probability": 0.9949 + }, + { + "start": 3555.28, + "end": 3556.6, + "probability": 0.6642 + }, + { + "start": 3557.56, + "end": 3558.94, + "probability": 0.8985 + }, + { + "start": 3559.46, + "end": 3567.96, + "probability": 0.9897 + }, + { + "start": 3568.12, + "end": 3568.96, + "probability": 0.7348 + }, + { + "start": 3570.12, + "end": 3572.44, + "probability": 0.7541 + }, + { + "start": 3572.7, + "end": 3575.93, + "probability": 0.9822 + }, + { + "start": 3576.82, + "end": 3578.34, + "probability": 0.8234 + }, + { + "start": 3579.7, + "end": 3581.9, + "probability": 0.754 + }, + { + "start": 3583.58, + "end": 3587.42, + "probability": 0.9517 + }, + { + "start": 3588.26, + "end": 3590.75, + "probability": 0.9585 + }, + { + "start": 3592.04, + "end": 3594.24, + "probability": 0.667 + }, + { + "start": 3595.6, + "end": 3600.18, + "probability": 0.9663 + }, + { + "start": 3601.4, + "end": 3602.96, + "probability": 0.7019 + }, + { + "start": 3603.58, + "end": 3604.82, + "probability": 0.8308 + }, + { + "start": 3605.9, + "end": 3607.62, + "probability": 0.9055 + }, + { + "start": 3608.24, + "end": 3608.66, + "probability": 0.8711 + }, + { + "start": 3609.2, + "end": 3610.46, + "probability": 0.9513 + }, + { + "start": 3611.7, + "end": 3616.5, + "probability": 0.9902 + }, + { + "start": 3616.62, + "end": 3617.54, + "probability": 0.9117 + }, + { + "start": 3618.48, + "end": 3620.4, + "probability": 0.995 + }, + { + "start": 3620.88, + "end": 3625.78, + "probability": 0.994 + }, + { + "start": 3626.52, + "end": 3628.62, + "probability": 0.9521 + }, + { + "start": 3629.24, + "end": 3630.12, + "probability": 0.9021 + }, + { + "start": 3631.56, + "end": 3634.2, + "probability": 0.9912 + }, + { + "start": 3636.28, + "end": 3641.92, + "probability": 0.9912 + }, + { + "start": 3642.86, + "end": 3644.7, + "probability": 0.999 + }, + { + "start": 3645.22, + "end": 3647.86, + "probability": 0.7403 + }, + { + "start": 3648.56, + "end": 3650.12, + "probability": 0.9406 + }, + { + "start": 3650.38, + "end": 3650.86, + "probability": 0.4865 + }, + { + "start": 3651.46, + "end": 3653.16, + "probability": 0.864 + }, + { + "start": 3653.72, + "end": 3655.68, + "probability": 0.9819 + }, + { + "start": 3656.86, + "end": 3657.94, + "probability": 0.9304 + }, + { + "start": 3658.14, + "end": 3659.54, + "probability": 0.918 + }, + { + "start": 3667.4, + "end": 3667.68, + "probability": 0.1186 + }, + { + "start": 3667.7, + "end": 3670.24, + "probability": 0.8457 + }, + { + "start": 3676.36, + "end": 3677.26, + "probability": 0.5829 + }, + { + "start": 3677.5, + "end": 3677.5, + "probability": 0.256 + }, + { + "start": 3677.5, + "end": 3678.06, + "probability": 0.8323 + }, + { + "start": 3678.18, + "end": 3679.52, + "probability": 0.7968 + }, + { + "start": 3680.34, + "end": 3684.0, + "probability": 0.9741 + }, + { + "start": 3684.0, + "end": 3688.18, + "probability": 0.987 + }, + { + "start": 3689.7, + "end": 3693.68, + "probability": 0.9155 + }, + { + "start": 3694.18, + "end": 3695.54, + "probability": 0.8329 + }, + { + "start": 3695.64, + "end": 3696.2, + "probability": 0.565 + }, + { + "start": 3697.06, + "end": 3702.18, + "probability": 0.9136 + }, + { + "start": 3703.26, + "end": 3704.3, + "probability": 0.9686 + }, + { + "start": 3705.46, + "end": 3706.38, + "probability": 0.7147 + }, + { + "start": 3706.96, + "end": 3709.24, + "probability": 0.9138 + }, + { + "start": 3710.09, + "end": 3713.36, + "probability": 0.9881 + }, + { + "start": 3713.36, + "end": 3716.58, + "probability": 0.9647 + }, + { + "start": 3718.34, + "end": 3721.96, + "probability": 0.9661 + }, + { + "start": 3723.54, + "end": 3726.2, + "probability": 0.7393 + }, + { + "start": 3727.28, + "end": 3732.16, + "probability": 0.9751 + }, + { + "start": 3732.96, + "end": 3738.02, + "probability": 0.9894 + }, + { + "start": 3740.34, + "end": 3744.9, + "probability": 0.7032 + }, + { + "start": 3745.56, + "end": 3748.08, + "probability": 0.8171 + }, + { + "start": 3749.34, + "end": 3752.4, + "probability": 0.9746 + }, + { + "start": 3753.5, + "end": 3755.96, + "probability": 0.9895 + }, + { + "start": 3756.58, + "end": 3758.32, + "probability": 0.9153 + }, + { + "start": 3760.08, + "end": 3760.82, + "probability": 0.6663 + }, + { + "start": 3762.68, + "end": 3763.6, + "probability": 0.9911 + }, + { + "start": 3766.52, + "end": 3770.3, + "probability": 0.9602 + }, + { + "start": 3770.3, + "end": 3774.58, + "probability": 0.9989 + }, + { + "start": 3775.66, + "end": 3776.6, + "probability": 0.69 + }, + { + "start": 3776.74, + "end": 3778.0, + "probability": 0.7683 + }, + { + "start": 3778.42, + "end": 3780.8, + "probability": 0.888 + }, + { + "start": 3780.88, + "end": 3781.98, + "probability": 0.8111 + }, + { + "start": 3782.44, + "end": 3785.44, + "probability": 0.8045 + }, + { + "start": 3786.66, + "end": 3787.32, + "probability": 0.8846 + }, + { + "start": 3789.46, + "end": 3791.6, + "probability": 0.8947 + }, + { + "start": 3791.86, + "end": 3793.26, + "probability": 0.99 + }, + { + "start": 3793.28, + "end": 3797.2, + "probability": 0.8971 + }, + { + "start": 3797.28, + "end": 3800.06, + "probability": 0.9946 + }, + { + "start": 3800.18, + "end": 3801.6, + "probability": 0.9646 + }, + { + "start": 3802.42, + "end": 3803.5, + "probability": 0.8195 + }, + { + "start": 3805.3, + "end": 3809.98, + "probability": 0.9709 + }, + { + "start": 3811.5, + "end": 3817.36, + "probability": 0.9919 + }, + { + "start": 3818.86, + "end": 3825.4, + "probability": 0.9962 + }, + { + "start": 3826.14, + "end": 3829.88, + "probability": 0.9933 + }, + { + "start": 3829.88, + "end": 3835.68, + "probability": 0.9823 + }, + { + "start": 3836.9, + "end": 3840.5, + "probability": 0.992 + }, + { + "start": 3841.04, + "end": 3841.92, + "probability": 0.8987 + }, + { + "start": 3842.26, + "end": 3844.72, + "probability": 0.9987 + }, + { + "start": 3845.74, + "end": 3846.78, + "probability": 0.8921 + }, + { + "start": 3847.74, + "end": 3848.62, + "probability": 0.8186 + }, + { + "start": 3848.94, + "end": 3849.9, + "probability": 0.8073 + }, + { + "start": 3849.94, + "end": 3850.5, + "probability": 0.9473 + }, + { + "start": 3850.54, + "end": 3851.2, + "probability": 0.9596 + }, + { + "start": 3851.36, + "end": 3851.76, + "probability": 0.9654 + }, + { + "start": 3851.86, + "end": 3853.0, + "probability": 0.8628 + }, + { + "start": 3853.06, + "end": 3853.86, + "probability": 0.7758 + }, + { + "start": 3854.62, + "end": 3855.87, + "probability": 0.8577 + }, + { + "start": 3856.26, + "end": 3856.76, + "probability": 0.8633 + }, + { + "start": 3856.82, + "end": 3857.3, + "probability": 0.8992 + }, + { + "start": 3857.4, + "end": 3858.66, + "probability": 0.9722 + }, + { + "start": 3858.86, + "end": 3860.3, + "probability": 0.7806 + }, + { + "start": 3860.44, + "end": 3862.7, + "probability": 0.9479 + }, + { + "start": 3862.82, + "end": 3863.38, + "probability": 0.5815 + }, + { + "start": 3863.5, + "end": 3866.68, + "probability": 0.7333 + }, + { + "start": 3866.7, + "end": 3867.62, + "probability": 0.9834 + }, + { + "start": 3867.7, + "end": 3871.3, + "probability": 0.9624 + }, + { + "start": 3872.22, + "end": 3873.65, + "probability": 0.8053 + }, + { + "start": 3874.26, + "end": 3877.66, + "probability": 0.9918 + }, + { + "start": 3878.78, + "end": 3879.4, + "probability": 0.9615 + }, + { + "start": 3879.46, + "end": 3880.42, + "probability": 0.9852 + }, + { + "start": 3880.6, + "end": 3883.17, + "probability": 0.9917 + }, + { + "start": 3883.92, + "end": 3885.58, + "probability": 0.9648 + }, + { + "start": 3885.94, + "end": 3890.09, + "probability": 0.9493 + }, + { + "start": 3890.5, + "end": 3892.0, + "probability": 0.9958 + }, + { + "start": 3892.2, + "end": 3894.62, + "probability": 0.9495 + }, + { + "start": 3894.62, + "end": 3896.0, + "probability": 0.9463 + }, + { + "start": 3898.52, + "end": 3900.28, + "probability": 0.9893 + }, + { + "start": 3902.46, + "end": 3904.66, + "probability": 0.7142 + }, + { + "start": 3904.7, + "end": 3906.94, + "probability": 0.8541 + }, + { + "start": 3907.02, + "end": 3907.96, + "probability": 0.9265 + }, + { + "start": 3908.42, + "end": 3909.55, + "probability": 0.8192 + }, + { + "start": 3909.88, + "end": 3911.78, + "probability": 0.8128 + }, + { + "start": 3912.5, + "end": 3912.92, + "probability": 0.7877 + }, + { + "start": 3913.5, + "end": 3913.87, + "probability": 0.8257 + }, + { + "start": 3915.0, + "end": 3916.96, + "probability": 0.8542 + }, + { + "start": 3917.59, + "end": 3919.66, + "probability": 0.8348 + }, + { + "start": 3919.76, + "end": 3920.62, + "probability": 0.5251 + }, + { + "start": 3921.22, + "end": 3922.2, + "probability": 0.9457 + }, + { + "start": 3922.46, + "end": 3924.3, + "probability": 0.8262 + }, + { + "start": 3925.1, + "end": 3927.16, + "probability": 0.9777 + }, + { + "start": 3927.86, + "end": 3932.5, + "probability": 0.9722 + }, + { + "start": 3933.06, + "end": 3934.78, + "probability": 0.7029 + }, + { + "start": 3934.92, + "end": 3937.8, + "probability": 0.9839 + }, + { + "start": 3937.9, + "end": 3939.98, + "probability": 0.8695 + }, + { + "start": 3940.14, + "end": 3941.74, + "probability": 0.9966 + }, + { + "start": 3941.82, + "end": 3942.54, + "probability": 0.8936 + }, + { + "start": 3942.92, + "end": 3945.76, + "probability": 0.9482 + }, + { + "start": 3945.9, + "end": 3947.22, + "probability": 0.9727 + }, + { + "start": 3947.3, + "end": 3948.08, + "probability": 0.9817 + }, + { + "start": 3948.18, + "end": 3949.2, + "probability": 0.9819 + }, + { + "start": 3949.34, + "end": 3952.3, + "probability": 0.8479 + }, + { + "start": 3952.44, + "end": 3953.4, + "probability": 0.9513 + }, + { + "start": 3953.56, + "end": 3955.26, + "probability": 0.7091 + }, + { + "start": 3955.92, + "end": 3956.54, + "probability": 0.6994 + }, + { + "start": 3957.38, + "end": 3961.12, + "probability": 0.9546 + }, + { + "start": 3961.2, + "end": 3962.66, + "probability": 0.9946 + }, + { + "start": 3962.9, + "end": 3964.88, + "probability": 0.9863 + }, + { + "start": 3966.96, + "end": 3967.96, + "probability": 0.639 + }, + { + "start": 3968.0, + "end": 3972.78, + "probability": 0.9694 + }, + { + "start": 3973.3, + "end": 3974.88, + "probability": 0.7309 + }, + { + "start": 3975.62, + "end": 3976.54, + "probability": 0.6932 + }, + { + "start": 3976.62, + "end": 3978.06, + "probability": 0.6555 + }, + { + "start": 3978.42, + "end": 3982.0, + "probability": 0.991 + }, + { + "start": 3982.3, + "end": 3982.66, + "probability": 0.6948 + }, + { + "start": 3982.76, + "end": 3984.46, + "probability": 0.8067 + }, + { + "start": 3984.58, + "end": 3985.92, + "probability": 0.9821 + }, + { + "start": 3986.26, + "end": 3989.32, + "probability": 0.9253 + }, + { + "start": 3990.64, + "end": 3993.02, + "probability": 0.9929 + }, + { + "start": 3993.14, + "end": 3993.18, + "probability": 0.4475 + }, + { + "start": 3993.48, + "end": 3994.36, + "probability": 0.8137 + }, + { + "start": 3994.72, + "end": 3996.78, + "probability": 0.9751 + }, + { + "start": 3997.06, + "end": 3998.26, + "probability": 0.9863 + }, + { + "start": 3999.98, + "end": 4001.88, + "probability": 0.497 + }, + { + "start": 4002.26, + "end": 4006.88, + "probability": 0.8776 + }, + { + "start": 4006.88, + "end": 4009.48, + "probability": 0.9883 + }, + { + "start": 4009.92, + "end": 4011.42, + "probability": 0.7172 + }, + { + "start": 4011.56, + "end": 4012.69, + "probability": 0.981 + }, + { + "start": 4013.22, + "end": 4020.16, + "probability": 0.9695 + }, + { + "start": 4020.22, + "end": 4022.1, + "probability": 0.9989 + }, + { + "start": 4023.52, + "end": 4023.98, + "probability": 0.5313 + }, + { + "start": 4024.04, + "end": 4029.88, + "probability": 0.9913 + }, + { + "start": 4030.18, + "end": 4031.22, + "probability": 0.7593 + }, + { + "start": 4032.32, + "end": 4033.74, + "probability": 0.8932 + }, + { + "start": 4035.18, + "end": 4037.8, + "probability": 0.9933 + }, + { + "start": 4037.8, + "end": 4038.92, + "probability": 0.9489 + }, + { + "start": 4039.4, + "end": 4041.7, + "probability": 0.9927 + }, + { + "start": 4042.4, + "end": 4043.42, + "probability": 0.8763 + }, + { + "start": 4044.44, + "end": 4045.2, + "probability": 0.6833 + }, + { + "start": 4046.04, + "end": 4047.98, + "probability": 0.978 + }, + { + "start": 4048.24, + "end": 4050.17, + "probability": 0.9854 + }, + { + "start": 4050.84, + "end": 4054.74, + "probability": 0.9135 + }, + { + "start": 4055.82, + "end": 4060.2, + "probability": 0.9922 + }, + { + "start": 4060.4, + "end": 4062.4, + "probability": 0.9902 + }, + { + "start": 4062.86, + "end": 4064.46, + "probability": 0.9725 + }, + { + "start": 4065.04, + "end": 4067.7, + "probability": 0.9678 + }, + { + "start": 4067.92, + "end": 4070.22, + "probability": 0.9299 + }, + { + "start": 4070.46, + "end": 4074.1, + "probability": 0.97 + }, + { + "start": 4074.1, + "end": 4077.4, + "probability": 0.9923 + }, + { + "start": 4077.92, + "end": 4084.46, + "probability": 0.9951 + }, + { + "start": 4085.08, + "end": 4088.34, + "probability": 0.9961 + }, + { + "start": 4088.7, + "end": 4089.51, + "probability": 0.9546 + }, + { + "start": 4089.94, + "end": 4092.68, + "probability": 0.9292 + }, + { + "start": 4092.86, + "end": 4094.32, + "probability": 0.9861 + }, + { + "start": 4094.48, + "end": 4095.54, + "probability": 0.903 + }, + { + "start": 4095.68, + "end": 4097.68, + "probability": 0.9421 + }, + { + "start": 4098.14, + "end": 4101.54, + "probability": 0.9683 + }, + { + "start": 4102.6, + "end": 4108.78, + "probability": 0.999 + }, + { + "start": 4109.62, + "end": 4111.67, + "probability": 0.9893 + }, + { + "start": 4112.28, + "end": 4113.46, + "probability": 0.8865 + }, + { + "start": 4114.16, + "end": 4116.0, + "probability": 0.9109 + }, + { + "start": 4116.56, + "end": 4118.7, + "probability": 0.9821 + }, + { + "start": 4118.94, + "end": 4122.44, + "probability": 0.9634 + }, + { + "start": 4123.0, + "end": 4124.86, + "probability": 0.9576 + }, + { + "start": 4125.36, + "end": 4126.48, + "probability": 0.8673 + }, + { + "start": 4126.98, + "end": 4130.08, + "probability": 0.8828 + }, + { + "start": 4130.5, + "end": 4131.16, + "probability": 0.8013 + }, + { + "start": 4131.9, + "end": 4133.72, + "probability": 0.7736 + }, + { + "start": 4135.4, + "end": 4137.4, + "probability": 0.9187 + }, + { + "start": 4137.4, + "end": 4139.5, + "probability": 0.9824 + }, + { + "start": 4140.22, + "end": 4144.24, + "probability": 0.7527 + }, + { + "start": 4150.58, + "end": 4151.86, + "probability": 0.7325 + }, + { + "start": 4153.4, + "end": 4154.64, + "probability": 0.9613 + }, + { + "start": 4155.78, + "end": 4158.0, + "probability": 0.9162 + }, + { + "start": 4159.0, + "end": 4160.58, + "probability": 0.895 + }, + { + "start": 4161.82, + "end": 4166.26, + "probability": 0.7453 + }, + { + "start": 4167.34, + "end": 4169.26, + "probability": 0.6936 + }, + { + "start": 4172.02, + "end": 4172.02, + "probability": 0.0067 + }, + { + "start": 4172.02, + "end": 4172.02, + "probability": 0.0298 + }, + { + "start": 4172.02, + "end": 4173.8, + "probability": 0.9403 + }, + { + "start": 4174.88, + "end": 4175.82, + "probability": 0.1527 + }, + { + "start": 4175.9, + "end": 4176.96, + "probability": 0.7521 + }, + { + "start": 4177.44, + "end": 4181.84, + "probability": 0.9019 + }, + { + "start": 4181.94, + "end": 4183.94, + "probability": 0.9727 + }, + { + "start": 4184.06, + "end": 4186.86, + "probability": 0.7622 + }, + { + "start": 4186.96, + "end": 4190.62, + "probability": 0.9973 + }, + { + "start": 4191.06, + "end": 4194.74, + "probability": 0.8514 + }, + { + "start": 4194.94, + "end": 4196.74, + "probability": 0.696 + }, + { + "start": 4197.39, + "end": 4198.02, + "probability": 0.9773 + }, + { + "start": 4198.16, + "end": 4200.04, + "probability": 0.7778 + }, + { + "start": 4201.51, + "end": 4206.14, + "probability": 0.0578 + }, + { + "start": 4207.66, + "end": 4209.36, + "probability": 0.7606 + }, + { + "start": 4209.56, + "end": 4210.2, + "probability": 0.5812 + }, + { + "start": 4210.38, + "end": 4211.26, + "probability": 0.0967 + }, + { + "start": 4211.42, + "end": 4211.78, + "probability": 0.7952 + }, + { + "start": 4212.86, + "end": 4213.84, + "probability": 0.5743 + }, + { + "start": 4213.86, + "end": 4215.06, + "probability": 0.3941 + }, + { + "start": 4215.08, + "end": 4215.7, + "probability": 0.7297 + }, + { + "start": 4215.8, + "end": 4217.46, + "probability": 0.9182 + }, + { + "start": 4217.86, + "end": 4219.92, + "probability": 0.8326 + }, + { + "start": 4220.74, + "end": 4222.15, + "probability": 0.9731 + }, + { + "start": 4222.7, + "end": 4228.94, + "probability": 0.9912 + }, + { + "start": 4230.2, + "end": 4232.44, + "probability": 0.9246 + }, + { + "start": 4232.94, + "end": 4237.06, + "probability": 0.9311 + }, + { + "start": 4238.1, + "end": 4240.12, + "probability": 0.9976 + }, + { + "start": 4240.82, + "end": 4244.16, + "probability": 0.5427 + }, + { + "start": 4244.36, + "end": 4244.92, + "probability": 0.6565 + }, + { + "start": 4245.04, + "end": 4248.16, + "probability": 0.967 + }, + { + "start": 4248.42, + "end": 4251.44, + "probability": 0.9961 + }, + { + "start": 4251.52, + "end": 4252.22, + "probability": 0.7938 + }, + { + "start": 4252.42, + "end": 4253.76, + "probability": 0.6971 + }, + { + "start": 4253.98, + "end": 4255.0, + "probability": 0.6689 + }, + { + "start": 4255.56, + "end": 4263.32, + "probability": 0.7571 + }, + { + "start": 4263.58, + "end": 4264.56, + "probability": 0.7621 + }, + { + "start": 4264.64, + "end": 4268.66, + "probability": 0.9193 + }, + { + "start": 4269.0, + "end": 4269.86, + "probability": 0.9849 + }, + { + "start": 4269.96, + "end": 4272.74, + "probability": 0.9602 + }, + { + "start": 4273.12, + "end": 4279.54, + "probability": 0.9904 + }, + { + "start": 4280.2, + "end": 4281.78, + "probability": 0.7666 + }, + { + "start": 4281.88, + "end": 4282.85, + "probability": 0.9171 + }, + { + "start": 4283.16, + "end": 4285.82, + "probability": 0.9917 + }, + { + "start": 4286.06, + "end": 4288.78, + "probability": 0.9847 + }, + { + "start": 4289.68, + "end": 4296.04, + "probability": 0.8075 + }, + { + "start": 4296.54, + "end": 4301.56, + "probability": 0.9457 + }, + { + "start": 4301.56, + "end": 4307.58, + "probability": 0.931 + }, + { + "start": 4308.58, + "end": 4309.94, + "probability": 0.7956 + }, + { + "start": 4310.3, + "end": 4311.44, + "probability": 0.7588 + }, + { + "start": 4311.82, + "end": 4314.64, + "probability": 0.689 + }, + { + "start": 4314.9, + "end": 4318.16, + "probability": 0.9461 + }, + { + "start": 4318.3, + "end": 4320.12, + "probability": 0.7586 + }, + { + "start": 4321.52, + "end": 4325.82, + "probability": 0.8801 + }, + { + "start": 4327.24, + "end": 4328.62, + "probability": 0.5729 + }, + { + "start": 4328.76, + "end": 4331.46, + "probability": 0.8895 + }, + { + "start": 4331.86, + "end": 4333.02, + "probability": 0.8965 + }, + { + "start": 4333.4, + "end": 4335.16, + "probability": 0.9634 + }, + { + "start": 4335.7, + "end": 4337.46, + "probability": 0.9938 + }, + { + "start": 4338.8, + "end": 4342.5, + "probability": 0.9919 + }, + { + "start": 4343.4, + "end": 4346.86, + "probability": 0.9775 + }, + { + "start": 4347.34, + "end": 4350.31, + "probability": 0.8895 + }, + { + "start": 4352.28, + "end": 4354.82, + "probability": 0.8807 + }, + { + "start": 4355.5, + "end": 4359.42, + "probability": 0.8123 + }, + { + "start": 4359.88, + "end": 4363.72, + "probability": 0.7103 + }, + { + "start": 4363.8, + "end": 4368.16, + "probability": 0.9749 + }, + { + "start": 4370.28, + "end": 4371.18, + "probability": 0.6354 + }, + { + "start": 4371.58, + "end": 4373.9, + "probability": 0.9277 + }, + { + "start": 4374.38, + "end": 4376.9, + "probability": 0.9863 + }, + { + "start": 4376.96, + "end": 4378.66, + "probability": 0.9648 + }, + { + "start": 4380.24, + "end": 4386.88, + "probability": 0.9892 + }, + { + "start": 4387.2, + "end": 4390.0, + "probability": 0.4976 + }, + { + "start": 4391.72, + "end": 4394.26, + "probability": 0.8225 + }, + { + "start": 4394.4, + "end": 4395.42, + "probability": 0.8269 + }, + { + "start": 4395.46, + "end": 4395.88, + "probability": 0.9465 + }, + { + "start": 4395.98, + "end": 4397.38, + "probability": 0.9929 + }, + { + "start": 4398.04, + "end": 4399.38, + "probability": 0.9883 + }, + { + "start": 4400.08, + "end": 4401.56, + "probability": 0.9918 + }, + { + "start": 4401.9, + "end": 4402.78, + "probability": 0.9553 + }, + { + "start": 4404.74, + "end": 4404.74, + "probability": 0.067 + }, + { + "start": 4404.74, + "end": 4405.26, + "probability": 0.4335 + }, + { + "start": 4405.38, + "end": 4405.75, + "probability": 0.9905 + }, + { + "start": 4406.32, + "end": 4406.74, + "probability": 0.9443 + }, + { + "start": 4407.92, + "end": 4408.68, + "probability": 0.8276 + }, + { + "start": 4411.78, + "end": 4413.9, + "probability": 0.8486 + }, + { + "start": 4414.46, + "end": 4417.26, + "probability": 0.2315 + }, + { + "start": 4419.68, + "end": 4420.24, + "probability": 0.0799 + }, + { + "start": 4420.94, + "end": 4421.86, + "probability": 0.0467 + }, + { + "start": 4422.26, + "end": 4426.8, + "probability": 0.276 + }, + { + "start": 4427.58, + "end": 4430.0, + "probability": 0.9634 + }, + { + "start": 4430.22, + "end": 4431.44, + "probability": 0.8765 + }, + { + "start": 4431.66, + "end": 4434.74, + "probability": 0.9941 + }, + { + "start": 4435.22, + "end": 4437.96, + "probability": 0.2237 + }, + { + "start": 4438.48, + "end": 4438.66, + "probability": 0.0578 + }, + { + "start": 4438.66, + "end": 4438.66, + "probability": 0.2659 + }, + { + "start": 4438.66, + "end": 4438.66, + "probability": 0.1767 + }, + { + "start": 4438.66, + "end": 4438.66, + "probability": 0.1629 + }, + { + "start": 4438.66, + "end": 4439.91, + "probability": 0.6999 + }, + { + "start": 4440.18, + "end": 4440.96, + "probability": 0.6051 + }, + { + "start": 4441.16, + "end": 4442.98, + "probability": 0.8696 + }, + { + "start": 4443.06, + "end": 4444.12, + "probability": 0.9157 + }, + { + "start": 4444.76, + "end": 4446.86, + "probability": 0.8455 + }, + { + "start": 4447.12, + "end": 4449.74, + "probability": 0.6818 + }, + { + "start": 4450.46, + "end": 4454.32, + "probability": 0.9937 + }, + { + "start": 4454.68, + "end": 4457.42, + "probability": 0.7398 + }, + { + "start": 4458.06, + "end": 4459.5, + "probability": 0.938 + }, + { + "start": 4460.32, + "end": 4462.24, + "probability": 0.5863 + }, + { + "start": 4464.0, + "end": 4466.72, + "probability": 0.7963 + }, + { + "start": 4466.8, + "end": 4467.92, + "probability": 0.9052 + }, + { + "start": 4469.48, + "end": 4470.46, + "probability": 0.5692 + }, + { + "start": 4471.36, + "end": 4474.9, + "probability": 0.9783 + }, + { + "start": 4477.08, + "end": 4480.64, + "probability": 0.9302 + }, + { + "start": 4482.64, + "end": 4484.66, + "probability": 0.9979 + }, + { + "start": 4486.14, + "end": 4489.98, + "probability": 0.9915 + }, + { + "start": 4490.02, + "end": 4490.94, + "probability": 0.662 + }, + { + "start": 4492.54, + "end": 4501.36, + "probability": 0.967 + }, + { + "start": 4501.6, + "end": 4503.8, + "probability": 0.9863 + }, + { + "start": 4504.98, + "end": 4507.78, + "probability": 0.9839 + }, + { + "start": 4509.46, + "end": 4510.62, + "probability": 0.9729 + }, + { + "start": 4511.2, + "end": 4518.72, + "probability": 0.9806 + }, + { + "start": 4519.62, + "end": 4521.7, + "probability": 0.9932 + }, + { + "start": 4523.82, + "end": 4524.86, + "probability": 0.813 + }, + { + "start": 4526.98, + "end": 4530.72, + "probability": 0.9854 + }, + { + "start": 4532.32, + "end": 4534.07, + "probability": 0.9937 + }, + { + "start": 4536.12, + "end": 4538.46, + "probability": 0.9318 + }, + { + "start": 4541.54, + "end": 4544.38, + "probability": 0.6653 + }, + { + "start": 4544.9, + "end": 4546.0, + "probability": 0.6587 + }, + { + "start": 4546.7, + "end": 4547.77, + "probability": 0.781 + }, + { + "start": 4549.1, + "end": 4551.14, + "probability": 0.8042 + }, + { + "start": 4552.9, + "end": 4557.02, + "probability": 0.872 + }, + { + "start": 4557.12, + "end": 4558.54, + "probability": 0.9907 + }, + { + "start": 4558.54, + "end": 4560.92, + "probability": 0.9964 + }, + { + "start": 4561.0, + "end": 4562.06, + "probability": 0.9167 + }, + { + "start": 4562.38, + "end": 4563.34, + "probability": 0.8453 + }, + { + "start": 4564.1, + "end": 4568.58, + "probability": 0.7501 + }, + { + "start": 4569.9, + "end": 4573.75, + "probability": 0.9878 + }, + { + "start": 4575.56, + "end": 4576.4, + "probability": 0.5272 + }, + { + "start": 4577.32, + "end": 4578.1, + "probability": 0.8766 + }, + { + "start": 4578.34, + "end": 4578.87, + "probability": 0.5298 + }, + { + "start": 4579.32, + "end": 4581.29, + "probability": 0.8839 + }, + { + "start": 4581.54, + "end": 4581.84, + "probability": 0.594 + }, + { + "start": 4582.14, + "end": 4582.68, + "probability": 0.5497 + }, + { + "start": 4582.84, + "end": 4583.34, + "probability": 0.844 + }, + { + "start": 4583.38, + "end": 4585.76, + "probability": 0.9476 + }, + { + "start": 4587.32, + "end": 4588.52, + "probability": 0.9927 + }, + { + "start": 4589.9, + "end": 4591.64, + "probability": 0.8037 + }, + { + "start": 4592.32, + "end": 4593.28, + "probability": 0.9448 + }, + { + "start": 4595.3, + "end": 4601.5, + "probability": 0.998 + }, + { + "start": 4602.04, + "end": 4605.74, + "probability": 0.9869 + }, + { + "start": 4607.88, + "end": 4608.68, + "probability": 0.6571 + }, + { + "start": 4609.42, + "end": 4611.18, + "probability": 0.9971 + }, + { + "start": 4611.36, + "end": 4612.82, + "probability": 0.9518 + }, + { + "start": 4615.48, + "end": 4615.92, + "probability": 0.7005 + }, + { + "start": 4618.56, + "end": 4620.66, + "probability": 0.9705 + }, + { + "start": 4621.34, + "end": 4622.28, + "probability": 0.9963 + }, + { + "start": 4623.98, + "end": 4627.12, + "probability": 0.8881 + }, + { + "start": 4631.04, + "end": 4634.48, + "probability": 0.9896 + }, + { + "start": 4635.22, + "end": 4637.56, + "probability": 0.9938 + }, + { + "start": 4639.44, + "end": 4642.16, + "probability": 0.9781 + }, + { + "start": 4642.52, + "end": 4645.18, + "probability": 0.9768 + }, + { + "start": 4645.96, + "end": 4646.58, + "probability": 0.8952 + }, + { + "start": 4646.66, + "end": 4647.12, + "probability": 0.874 + }, + { + "start": 4647.2, + "end": 4647.74, + "probability": 0.8121 + }, + { + "start": 4647.78, + "end": 4648.56, + "probability": 0.9244 + }, + { + "start": 4648.64, + "end": 4649.48, + "probability": 0.8378 + }, + { + "start": 4651.56, + "end": 4653.2, + "probability": 0.956 + }, + { + "start": 4655.02, + "end": 4657.46, + "probability": 0.6339 + }, + { + "start": 4658.18, + "end": 4661.92, + "probability": 0.8893 + }, + { + "start": 4662.72, + "end": 4663.48, + "probability": 0.6567 + }, + { + "start": 4664.76, + "end": 4665.86, + "probability": 0.9602 + }, + { + "start": 4666.0, + "end": 4672.08, + "probability": 0.9972 + }, + { + "start": 4673.62, + "end": 4676.9, + "probability": 0.9956 + }, + { + "start": 4679.22, + "end": 4680.28, + "probability": 0.5506 + }, + { + "start": 4681.82, + "end": 4682.92, + "probability": 0.8943 + }, + { + "start": 4684.1, + "end": 4687.1, + "probability": 0.7443 + }, + { + "start": 4689.0, + "end": 4694.56, + "probability": 0.9726 + }, + { + "start": 4696.0, + "end": 4698.2, + "probability": 0.8458 + }, + { + "start": 4700.82, + "end": 4704.47, + "probability": 0.8599 + }, + { + "start": 4705.72, + "end": 4708.48, + "probability": 0.9943 + }, + { + "start": 4709.66, + "end": 4712.4, + "probability": 0.9796 + }, + { + "start": 4712.78, + "end": 4714.28, + "probability": 0.8644 + }, + { + "start": 4716.16, + "end": 4719.28, + "probability": 0.9427 + }, + { + "start": 4720.26, + "end": 4722.84, + "probability": 0.9933 + }, + { + "start": 4723.1, + "end": 4723.9, + "probability": 0.8408 + }, + { + "start": 4724.04, + "end": 4726.12, + "probability": 0.8337 + }, + { + "start": 4726.24, + "end": 4726.9, + "probability": 0.5856 + }, + { + "start": 4727.0, + "end": 4728.54, + "probability": 0.736 + }, + { + "start": 4728.64, + "end": 4729.1, + "probability": 0.8855 + }, + { + "start": 4730.06, + "end": 4732.34, + "probability": 0.9512 + }, + { + "start": 4733.0, + "end": 4735.68, + "probability": 0.9867 + }, + { + "start": 4738.67, + "end": 4744.16, + "probability": 0.7964 + }, + { + "start": 4744.16, + "end": 4745.46, + "probability": 0.7447 + }, + { + "start": 4745.68, + "end": 4747.22, + "probability": 0.4515 + }, + { + "start": 4747.3, + "end": 4748.26, + "probability": 0.9554 + }, + { + "start": 4748.44, + "end": 4749.44, + "probability": 0.7664 + }, + { + "start": 4749.7, + "end": 4755.18, + "probability": 0.3624 + }, + { + "start": 4755.52, + "end": 4757.42, + "probability": 0.9702 + }, + { + "start": 4757.52, + "end": 4758.4, + "probability": 0.5756 + }, + { + "start": 4758.4, + "end": 4758.98, + "probability": 0.7225 + }, + { + "start": 4759.86, + "end": 4762.98, + "probability": 0.6028 + }, + { + "start": 4763.06, + "end": 4763.64, + "probability": 0.7677 + }, + { + "start": 4763.72, + "end": 4765.92, + "probability": 0.8751 + }, + { + "start": 4765.92, + "end": 4769.7, + "probability": 0.8591 + }, + { + "start": 4770.18, + "end": 4774.44, + "probability": 0.9901 + }, + { + "start": 4774.44, + "end": 4778.94, + "probability": 0.9989 + }, + { + "start": 4779.34, + "end": 4779.84, + "probability": 0.6301 + }, + { + "start": 4780.18, + "end": 4783.48, + "probability": 0.9414 + }, + { + "start": 4783.64, + "end": 4787.76, + "probability": 0.9659 + }, + { + "start": 4787.76, + "end": 4792.42, + "probability": 0.9661 + }, + { + "start": 4792.5, + "end": 4793.56, + "probability": 0.3669 + }, + { + "start": 4793.96, + "end": 4794.72, + "probability": 0.7746 + }, + { + "start": 4794.88, + "end": 4797.7, + "probability": 0.9779 + }, + { + "start": 4798.34, + "end": 4800.24, + "probability": 0.9149 + }, + { + "start": 4800.46, + "end": 4801.58, + "probability": 0.981 + }, + { + "start": 4801.64, + "end": 4802.48, + "probability": 0.9524 + }, + { + "start": 4802.66, + "end": 4808.06, + "probability": 0.8867 + }, + { + "start": 4808.44, + "end": 4809.04, + "probability": 0.6277 + }, + { + "start": 4809.12, + "end": 4811.08, + "probability": 0.926 + }, + { + "start": 4811.16, + "end": 4814.66, + "probability": 0.5 + }, + { + "start": 4814.86, + "end": 4815.46, + "probability": 0.6632 + }, + { + "start": 4816.04, + "end": 4817.3, + "probability": 0.9631 + }, + { + "start": 4817.4, + "end": 4818.52, + "probability": 0.8435 + }, + { + "start": 4819.16, + "end": 4821.32, + "probability": 0.8295 + }, + { + "start": 4821.66, + "end": 4823.92, + "probability": 0.9713 + }, + { + "start": 4823.92, + "end": 4827.82, + "probability": 0.9974 + }, + { + "start": 4827.9, + "end": 4829.2, + "probability": 0.8022 + }, + { + "start": 4829.26, + "end": 4829.8, + "probability": 0.6083 + }, + { + "start": 4832.32, + "end": 4836.94, + "probability": 0.834 + }, + { + "start": 4837.1, + "end": 4842.62, + "probability": 0.9608 + }, + { + "start": 4842.8, + "end": 4847.08, + "probability": 0.7519 + }, + { + "start": 4847.2, + "end": 4848.54, + "probability": 0.8813 + }, + { + "start": 4849.58, + "end": 4851.6, + "probability": 0.7445 + }, + { + "start": 4851.7, + "end": 4854.94, + "probability": 0.5037 + }, + { + "start": 4855.62, + "end": 4856.22, + "probability": 0.6255 + }, + { + "start": 4857.0, + "end": 4859.07, + "probability": 0.9907 + }, + { + "start": 4859.94, + "end": 4861.78, + "probability": 0.8859 + }, + { + "start": 4861.8, + "end": 4864.08, + "probability": 0.872 + }, + { + "start": 4864.08, + "end": 4869.52, + "probability": 0.9102 + }, + { + "start": 4869.6, + "end": 4873.2, + "probability": 0.9976 + }, + { + "start": 4873.38, + "end": 4875.88, + "probability": 0.9806 + }, + { + "start": 4875.88, + "end": 4879.5, + "probability": 0.9927 + }, + { + "start": 4879.62, + "end": 4882.36, + "probability": 0.9909 + }, + { + "start": 4882.54, + "end": 4887.2, + "probability": 0.9898 + }, + { + "start": 4887.86, + "end": 4889.46, + "probability": 0.9836 + }, + { + "start": 4890.38, + "end": 4894.56, + "probability": 0.9595 + }, + { + "start": 4894.64, + "end": 4897.92, + "probability": 0.8802 + }, + { + "start": 4898.36, + "end": 4900.68, + "probability": 0.9774 + }, + { + "start": 4901.06, + "end": 4902.36, + "probability": 0.9287 + }, + { + "start": 4902.56, + "end": 4903.68, + "probability": 0.8473 + }, + { + "start": 4903.82, + "end": 4908.74, + "probability": 0.9891 + }, + { + "start": 4909.56, + "end": 4910.6, + "probability": 0.8951 + }, + { + "start": 4910.84, + "end": 4914.42, + "probability": 0.9806 + }, + { + "start": 4914.42, + "end": 4917.3, + "probability": 0.9907 + }, + { + "start": 4917.8, + "end": 4918.1, + "probability": 0.5194 + }, + { + "start": 4918.18, + "end": 4918.74, + "probability": 0.8503 + }, + { + "start": 4918.76, + "end": 4920.14, + "probability": 0.998 + }, + { + "start": 4920.24, + "end": 4920.66, + "probability": 0.9377 + }, + { + "start": 4920.78, + "end": 4921.82, + "probability": 0.8127 + }, + { + "start": 4921.92, + "end": 4923.58, + "probability": 0.9355 + }, + { + "start": 4923.72, + "end": 4927.18, + "probability": 0.9475 + }, + { + "start": 4927.32, + "end": 4928.22, + "probability": 0.6494 + }, + { + "start": 4928.92, + "end": 4931.78, + "probability": 0.9771 + }, + { + "start": 4931.94, + "end": 4933.04, + "probability": 0.7646 + }, + { + "start": 4933.66, + "end": 4938.9, + "probability": 0.9678 + }, + { + "start": 4939.34, + "end": 4940.1, + "probability": 0.8307 + }, + { + "start": 4940.14, + "end": 4944.82, + "probability": 0.9906 + }, + { + "start": 4945.68, + "end": 4951.76, + "probability": 0.9797 + }, + { + "start": 4951.9, + "end": 4952.53, + "probability": 0.9473 + }, + { + "start": 4953.18, + "end": 4954.2, + "probability": 0.578 + }, + { + "start": 4954.24, + "end": 4956.68, + "probability": 0.4813 + }, + { + "start": 4956.68, + "end": 4957.14, + "probability": 0.4497 + }, + { + "start": 4957.34, + "end": 4960.94, + "probability": 0.9128 + }, + { + "start": 4961.02, + "end": 4962.0, + "probability": 0.7392 + }, + { + "start": 4962.1, + "end": 4967.9, + "probability": 0.8749 + }, + { + "start": 4968.14, + "end": 4969.67, + "probability": 0.9917 + }, + { + "start": 4969.94, + "end": 4971.74, + "probability": 0.5095 + }, + { + "start": 4972.04, + "end": 4974.56, + "probability": 0.9814 + }, + { + "start": 4974.92, + "end": 4975.62, + "probability": 0.4269 + }, + { + "start": 4977.56, + "end": 4978.26, + "probability": 0.2198 + }, + { + "start": 4978.36, + "end": 4978.9, + "probability": 0.885 + }, + { + "start": 4979.56, + "end": 4980.24, + "probability": 0.8152 + }, + { + "start": 4980.38, + "end": 4981.26, + "probability": 0.5603 + }, + { + "start": 4981.3, + "end": 4983.78, + "probability": 0.8209 + }, + { + "start": 4983.96, + "end": 4984.26, + "probability": 0.1679 + }, + { + "start": 4984.32, + "end": 4985.32, + "probability": 0.9733 + }, + { + "start": 4985.36, + "end": 4988.28, + "probability": 0.8775 + }, + { + "start": 4988.44, + "end": 4991.36, + "probability": 0.8712 + }, + { + "start": 4991.68, + "end": 4994.08, + "probability": 0.7865 + }, + { + "start": 4994.78, + "end": 4997.64, + "probability": 0.999 + }, + { + "start": 4997.64, + "end": 5001.2, + "probability": 0.9935 + }, + { + "start": 5001.98, + "end": 5002.72, + "probability": 0.5815 + }, + { + "start": 5002.86, + "end": 5003.56, + "probability": 0.9405 + }, + { + "start": 5003.62, + "end": 5007.98, + "probability": 0.9686 + }, + { + "start": 5008.56, + "end": 5009.84, + "probability": 0.6662 + }, + { + "start": 5010.22, + "end": 5010.88, + "probability": 0.8951 + }, + { + "start": 5011.26, + "end": 5012.94, + "probability": 0.7606 + }, + { + "start": 5013.22, + "end": 5015.64, + "probability": 0.9849 + }, + { + "start": 5016.38, + "end": 5020.56, + "probability": 0.851 + }, + { + "start": 5020.72, + "end": 5023.2, + "probability": 0.9187 + }, + { + "start": 5023.32, + "end": 5023.32, + "probability": 0.4112 + }, + { + "start": 5023.58, + "end": 5024.34, + "probability": 0.7423 + }, + { + "start": 5024.72, + "end": 5027.94, + "probability": 0.9718 + }, + { + "start": 5029.24, + "end": 5037.14, + "probability": 0.9644 + }, + { + "start": 5037.82, + "end": 5038.14, + "probability": 0.7744 + }, + { + "start": 5038.14, + "end": 5042.88, + "probability": 0.9311 + }, + { + "start": 5043.44, + "end": 5044.5, + "probability": 0.6242 + }, + { + "start": 5045.4, + "end": 5048.86, + "probability": 0.9343 + }, + { + "start": 5049.0, + "end": 5050.04, + "probability": 0.9315 + }, + { + "start": 5050.22, + "end": 5050.9, + "probability": 0.8254 + }, + { + "start": 5050.9, + "end": 5052.12, + "probability": 0.7849 + }, + { + "start": 5052.28, + "end": 5055.84, + "probability": 0.9442 + }, + { + "start": 5056.78, + "end": 5059.72, + "probability": 0.9987 + }, + { + "start": 5059.72, + "end": 5061.8, + "probability": 0.9996 + }, + { + "start": 5062.18, + "end": 5063.16, + "probability": 0.5786 + }, + { + "start": 5063.22, + "end": 5063.22, + "probability": 0.5004 + }, + { + "start": 5063.22, + "end": 5066.8, + "probability": 0.9717 + }, + { + "start": 5067.16, + "end": 5068.4, + "probability": 0.9352 + }, + { + "start": 5068.56, + "end": 5069.74, + "probability": 0.7949 + }, + { + "start": 5069.82, + "end": 5070.78, + "probability": 0.9346 + }, + { + "start": 5070.96, + "end": 5073.8, + "probability": 0.9555 + }, + { + "start": 5074.14, + "end": 5077.64, + "probability": 0.994 + }, + { + "start": 5077.64, + "end": 5080.6, + "probability": 0.5679 + }, + { + "start": 5080.96, + "end": 5084.8, + "probability": 0.9967 + }, + { + "start": 5084.8, + "end": 5087.68, + "probability": 0.9384 + }, + { + "start": 5088.06, + "end": 5088.68, + "probability": 0.5024 + }, + { + "start": 5088.96, + "end": 5090.18, + "probability": 0.7168 + }, + { + "start": 5091.02, + "end": 5092.2, + "probability": 0.7415 + }, + { + "start": 5093.2, + "end": 5097.2, + "probability": 0.987 + }, + { + "start": 5098.08, + "end": 5101.86, + "probability": 0.8943 + }, + { + "start": 5102.52, + "end": 5104.88, + "probability": 0.9656 + }, + { + "start": 5105.58, + "end": 5108.68, + "probability": 0.8951 + }, + { + "start": 5108.8, + "end": 5111.06, + "probability": 0.8237 + }, + { + "start": 5111.24, + "end": 5113.2, + "probability": 0.9547 + }, + { + "start": 5114.34, + "end": 5116.96, + "probability": 0.9299 + }, + { + "start": 5121.1, + "end": 5121.94, + "probability": 0.2193 + }, + { + "start": 5122.96, + "end": 5123.1, + "probability": 0.1259 + }, + { + "start": 5123.1, + "end": 5123.1, + "probability": 0.2294 + }, + { + "start": 5123.1, + "end": 5123.1, + "probability": 0.1938 + }, + { + "start": 5123.1, + "end": 5123.1, + "probability": 0.3348 + }, + { + "start": 5123.1, + "end": 5124.8, + "probability": 0.6448 + }, + { + "start": 5126.26, + "end": 5127.08, + "probability": 0.9814 + }, + { + "start": 5127.8, + "end": 5129.98, + "probability": 0.9193 + }, + { + "start": 5130.1, + "end": 5133.14, + "probability": 0.7725 + }, + { + "start": 5135.56, + "end": 5137.88, + "probability": 0.1168 + }, + { + "start": 5142.76, + "end": 5143.19, + "probability": 0.4423 + }, + { + "start": 5147.32, + "end": 5148.4, + "probability": 0.6487 + }, + { + "start": 5157.98, + "end": 5161.34, + "probability": 0.7258 + }, + { + "start": 5163.78, + "end": 5167.62, + "probability": 0.9113 + }, + { + "start": 5168.62, + "end": 5173.48, + "probability": 0.9441 + }, + { + "start": 5174.8, + "end": 5178.12, + "probability": 0.9539 + }, + { + "start": 5179.6, + "end": 5183.3, + "probability": 0.8929 + }, + { + "start": 5184.04, + "end": 5186.8, + "probability": 0.812 + }, + { + "start": 5190.54, + "end": 5195.33, + "probability": 0.9809 + }, + { + "start": 5195.56, + "end": 5201.68, + "probability": 0.9072 + }, + { + "start": 5203.32, + "end": 5206.18, + "probability": 0.8454 + }, + { + "start": 5206.62, + "end": 5211.61, + "probability": 0.8856 + }, + { + "start": 5212.96, + "end": 5213.32, + "probability": 0.9264 + }, + { + "start": 5213.4, + "end": 5214.46, + "probability": 0.7701 + }, + { + "start": 5216.78, + "end": 5219.92, + "probability": 0.9948 + }, + { + "start": 5219.98, + "end": 5223.54, + "probability": 0.9968 + }, + { + "start": 5224.54, + "end": 5225.34, + "probability": 0.4897 + }, + { + "start": 5225.6, + "end": 5229.42, + "probability": 0.7915 + }, + { + "start": 5230.06, + "end": 5231.74, + "probability": 0.978 + }, + { + "start": 5233.14, + "end": 5236.7, + "probability": 0.9974 + }, + { + "start": 5237.76, + "end": 5242.96, + "probability": 0.973 + }, + { + "start": 5244.1, + "end": 5245.6, + "probability": 0.8886 + }, + { + "start": 5246.34, + "end": 5247.94, + "probability": 0.6509 + }, + { + "start": 5248.86, + "end": 5250.48, + "probability": 0.5711 + }, + { + "start": 5251.72, + "end": 5252.41, + "probability": 0.7803 + }, + { + "start": 5254.3, + "end": 5257.62, + "probability": 0.9728 + }, + { + "start": 5257.62, + "end": 5259.65, + "probability": 0.9868 + }, + { + "start": 5261.4, + "end": 5263.92, + "probability": 0.9982 + }, + { + "start": 5264.86, + "end": 5269.68, + "probability": 0.9861 + }, + { + "start": 5269.76, + "end": 5271.02, + "probability": 0.7683 + }, + { + "start": 5271.7, + "end": 5274.0, + "probability": 0.9517 + }, + { + "start": 5275.36, + "end": 5276.32, + "probability": 0.8092 + }, + { + "start": 5276.42, + "end": 5276.7, + "probability": 0.745 + }, + { + "start": 5276.78, + "end": 5280.96, + "probability": 0.9132 + }, + { + "start": 5281.86, + "end": 5282.64, + "probability": 0.7439 + }, + { + "start": 5282.78, + "end": 5283.12, + "probability": 0.961 + }, + { + "start": 5283.2, + "end": 5289.12, + "probability": 0.9481 + }, + { + "start": 5290.82, + "end": 5294.34, + "probability": 0.972 + }, + { + "start": 5295.44, + "end": 5296.88, + "probability": 0.7371 + }, + { + "start": 5296.96, + "end": 5297.22, + "probability": 0.4225 + }, + { + "start": 5297.26, + "end": 5297.94, + "probability": 0.8537 + }, + { + "start": 5297.98, + "end": 5299.66, + "probability": 0.9785 + }, + { + "start": 5300.1, + "end": 5301.88, + "probability": 0.9315 + }, + { + "start": 5303.88, + "end": 5305.22, + "probability": 0.7633 + }, + { + "start": 5305.3, + "end": 5305.96, + "probability": 0.7819 + }, + { + "start": 5307.52, + "end": 5309.46, + "probability": 0.3408 + }, + { + "start": 5310.68, + "end": 5313.22, + "probability": 0.8466 + }, + { + "start": 5314.2, + "end": 5315.94, + "probability": 0.7198 + }, + { + "start": 5315.96, + "end": 5321.06, + "probability": 0.8571 + }, + { + "start": 5321.82, + "end": 5327.44, + "probability": 0.7741 + }, + { + "start": 5328.02, + "end": 5329.34, + "probability": 0.8031 + }, + { + "start": 5329.84, + "end": 5331.16, + "probability": 0.6344 + }, + { + "start": 5331.26, + "end": 5332.24, + "probability": 0.9616 + }, + { + "start": 5333.76, + "end": 5334.62, + "probability": 0.6819 + }, + { + "start": 5334.72, + "end": 5335.62, + "probability": 0.7548 + }, + { + "start": 5336.64, + "end": 5339.61, + "probability": 0.7851 + }, + { + "start": 5341.18, + "end": 5343.56, + "probability": 0.9921 + }, + { + "start": 5344.04, + "end": 5348.0, + "probability": 0.9956 + }, + { + "start": 5350.9, + "end": 5351.94, + "probability": 0.9954 + }, + { + "start": 5352.08, + "end": 5352.36, + "probability": 0.8835 + }, + { + "start": 5352.5, + "end": 5354.48, + "probability": 0.8711 + }, + { + "start": 5354.76, + "end": 5356.48, + "probability": 0.9961 + }, + { + "start": 5356.48, + "end": 5361.04, + "probability": 0.9917 + }, + { + "start": 5361.4, + "end": 5361.46, + "probability": 0.3951 + }, + { + "start": 5361.54, + "end": 5362.1, + "probability": 0.7165 + }, + { + "start": 5362.16, + "end": 5365.9, + "probability": 0.9922 + }, + { + "start": 5365.9, + "end": 5372.5, + "probability": 0.9966 + }, + { + "start": 5373.5, + "end": 5375.68, + "probability": 0.8818 + }, + { + "start": 5377.3, + "end": 5380.02, + "probability": 0.5686 + }, + { + "start": 5380.42, + "end": 5382.58, + "probability": 0.1511 + }, + { + "start": 5382.58, + "end": 5383.72, + "probability": 0.1476 + }, + { + "start": 5384.4, + "end": 5385.33, + "probability": 0.6504 + }, + { + "start": 5385.62, + "end": 5389.44, + "probability": 0.9263 + }, + { + "start": 5390.2, + "end": 5393.52, + "probability": 0.9826 + }, + { + "start": 5393.7, + "end": 5396.14, + "probability": 0.8286 + }, + { + "start": 5396.86, + "end": 5401.76, + "probability": 0.9932 + }, + { + "start": 5401.8, + "end": 5402.34, + "probability": 0.8648 + }, + { + "start": 5402.44, + "end": 5403.48, + "probability": 0.9626 + }, + { + "start": 5403.54, + "end": 5404.66, + "probability": 0.9644 + }, + { + "start": 5404.82, + "end": 5406.58, + "probability": 0.8779 + }, + { + "start": 5407.3, + "end": 5411.04, + "probability": 0.9111 + }, + { + "start": 5412.22, + "end": 5417.42, + "probability": 0.9954 + }, + { + "start": 5417.94, + "end": 5418.86, + "probability": 0.4375 + }, + { + "start": 5420.2, + "end": 5425.0, + "probability": 0.983 + }, + { + "start": 5425.0, + "end": 5429.54, + "probability": 0.9941 + }, + { + "start": 5429.62, + "end": 5430.78, + "probability": 0.8882 + }, + { + "start": 5431.06, + "end": 5437.12, + "probability": 0.988 + }, + { + "start": 5437.4, + "end": 5440.03, + "probability": 0.7808 + }, + { + "start": 5440.76, + "end": 5443.56, + "probability": 0.9619 + }, + { + "start": 5444.56, + "end": 5445.8, + "probability": 0.9727 + }, + { + "start": 5445.92, + "end": 5449.03, + "probability": 0.9838 + }, + { + "start": 5450.18, + "end": 5450.58, + "probability": 0.6679 + }, + { + "start": 5450.68, + "end": 5453.58, + "probability": 0.6193 + }, + { + "start": 5455.6, + "end": 5459.58, + "probability": 0.9861 + }, + { + "start": 5459.7, + "end": 5462.24, + "probability": 0.9419 + }, + { + "start": 5462.74, + "end": 5465.21, + "probability": 0.9945 + }, + { + "start": 5465.9, + "end": 5467.92, + "probability": 0.9951 + }, + { + "start": 5469.14, + "end": 5471.32, + "probability": 0.9891 + }, + { + "start": 5471.46, + "end": 5476.36, + "probability": 0.9348 + }, + { + "start": 5476.36, + "end": 5478.78, + "probability": 0.7497 + }, + { + "start": 5479.64, + "end": 5482.58, + "probability": 0.9216 + }, + { + "start": 5483.86, + "end": 5484.36, + "probability": 0.3564 + }, + { + "start": 5484.4, + "end": 5488.14, + "probability": 0.7766 + }, + { + "start": 5488.28, + "end": 5490.92, + "probability": 0.9893 + }, + { + "start": 5491.04, + "end": 5492.42, + "probability": 0.7249 + }, + { + "start": 5493.1, + "end": 5495.18, + "probability": 0.967 + }, + { + "start": 5495.32, + "end": 5496.78, + "probability": 0.9417 + }, + { + "start": 5497.16, + "end": 5500.56, + "probability": 0.8976 + }, + { + "start": 5501.86, + "end": 5504.44, + "probability": 0.7325 + }, + { + "start": 5504.44, + "end": 5509.12, + "probability": 0.9284 + }, + { + "start": 5509.2, + "end": 5510.82, + "probability": 0.8548 + }, + { + "start": 5511.4, + "end": 5513.37, + "probability": 0.8491 + }, + { + "start": 5514.2, + "end": 5514.83, + "probability": 0.9351 + }, + { + "start": 5515.86, + "end": 5517.86, + "probability": 0.8228 + }, + { + "start": 5517.96, + "end": 5520.62, + "probability": 0.5524 + }, + { + "start": 5520.82, + "end": 5522.1, + "probability": 0.8791 + }, + { + "start": 5522.26, + "end": 5526.5, + "probability": 0.9742 + }, + { + "start": 5526.5, + "end": 5528.57, + "probability": 0.8843 + }, + { + "start": 5528.9, + "end": 5531.38, + "probability": 0.7896 + }, + { + "start": 5531.38, + "end": 5534.64, + "probability": 0.9788 + }, + { + "start": 5534.82, + "end": 5539.46, + "probability": 0.9423 + }, + { + "start": 5539.84, + "end": 5543.24, + "probability": 0.9937 + }, + { + "start": 5543.34, + "end": 5544.5, + "probability": 0.769 + }, + { + "start": 5545.0, + "end": 5551.08, + "probability": 0.9202 + }, + { + "start": 5551.26, + "end": 5552.52, + "probability": 0.6919 + }, + { + "start": 5552.62, + "end": 5557.4, + "probability": 0.9592 + }, + { + "start": 5557.86, + "end": 5562.56, + "probability": 0.8249 + }, + { + "start": 5563.2, + "end": 5564.32, + "probability": 0.9937 + }, + { + "start": 5564.4, + "end": 5568.74, + "probability": 0.9857 + }, + { + "start": 5569.36, + "end": 5572.82, + "probability": 0.9161 + }, + { + "start": 5573.48, + "end": 5578.36, + "probability": 0.9928 + }, + { + "start": 5578.76, + "end": 5579.98, + "probability": 0.6748 + }, + { + "start": 5580.5, + "end": 5584.56, + "probability": 0.8372 + }, + { + "start": 5584.62, + "end": 5586.02, + "probability": 0.7238 + }, + { + "start": 5586.3, + "end": 5591.06, + "probability": 0.8732 + }, + { + "start": 5591.4, + "end": 5594.82, + "probability": 0.9072 + }, + { + "start": 5595.08, + "end": 5598.01, + "probability": 0.9567 + }, + { + "start": 5598.88, + "end": 5599.86, + "probability": 0.5341 + }, + { + "start": 5600.48, + "end": 5601.06, + "probability": 0.9444 + }, + { + "start": 5601.22, + "end": 5605.33, + "probability": 0.9685 + }, + { + "start": 5607.24, + "end": 5609.34, + "probability": 0.9771 + }, + { + "start": 5609.36, + "end": 5611.48, + "probability": 0.9163 + }, + { + "start": 5611.56, + "end": 5612.46, + "probability": 0.7881 + }, + { + "start": 5612.6, + "end": 5613.14, + "probability": 0.2731 + }, + { + "start": 5613.28, + "end": 5613.8, + "probability": 0.4515 + }, + { + "start": 5613.82, + "end": 5614.56, + "probability": 0.5313 + }, + { + "start": 5614.66, + "end": 5617.63, + "probability": 0.8212 + }, + { + "start": 5617.9, + "end": 5620.56, + "probability": 0.9823 + }, + { + "start": 5620.92, + "end": 5625.22, + "probability": 0.9928 + }, + { + "start": 5625.22, + "end": 5630.22, + "probability": 0.9975 + }, + { + "start": 5630.68, + "end": 5632.64, + "probability": 0.9775 + }, + { + "start": 5633.06, + "end": 5635.4, + "probability": 0.9941 + }, + { + "start": 5635.48, + "end": 5637.14, + "probability": 0.7929 + }, + { + "start": 5637.68, + "end": 5640.46, + "probability": 0.9961 + }, + { + "start": 5640.88, + "end": 5642.48, + "probability": 0.9597 + }, + { + "start": 5642.94, + "end": 5646.9, + "probability": 0.9905 + }, + { + "start": 5647.26, + "end": 5648.2, + "probability": 0.8876 + }, + { + "start": 5648.74, + "end": 5649.92, + "probability": 0.9579 + }, + { + "start": 5650.04, + "end": 5651.98, + "probability": 0.9004 + }, + { + "start": 5652.28, + "end": 5654.2, + "probability": 0.9165 + }, + { + "start": 5654.56, + "end": 5657.94, + "probability": 0.9949 + }, + { + "start": 5659.76, + "end": 5662.0, + "probability": 0.8371 + }, + { + "start": 5662.62, + "end": 5665.42, + "probability": 0.9736 + }, + { + "start": 5666.22, + "end": 5668.7, + "probability": 0.9521 + }, + { + "start": 5685.62, + "end": 5687.76, + "probability": 0.7184 + }, + { + "start": 5688.64, + "end": 5689.43, + "probability": 0.7067 + }, + { + "start": 5689.84, + "end": 5694.5, + "probability": 0.8745 + }, + { + "start": 5695.1, + "end": 5696.76, + "probability": 0.9552 + }, + { + "start": 5696.86, + "end": 5700.2, + "probability": 0.9846 + }, + { + "start": 5700.36, + "end": 5701.3, + "probability": 0.7967 + }, + { + "start": 5701.82, + "end": 5705.46, + "probability": 0.9907 + }, + { + "start": 5705.7, + "end": 5708.54, + "probability": 0.7974 + }, + { + "start": 5708.72, + "end": 5712.62, + "probability": 0.9634 + }, + { + "start": 5712.86, + "end": 5716.56, + "probability": 0.9971 + }, + { + "start": 5716.64, + "end": 5718.6, + "probability": 0.761 + }, + { + "start": 5719.06, + "end": 5720.16, + "probability": 0.8414 + }, + { + "start": 5720.46, + "end": 5726.76, + "probability": 0.8926 + }, + { + "start": 5726.92, + "end": 5727.4, + "probability": 0.6838 + }, + { + "start": 5727.46, + "end": 5727.98, + "probability": 0.6861 + }, + { + "start": 5728.32, + "end": 5730.4, + "probability": 0.9412 + }, + { + "start": 5730.44, + "end": 5732.78, + "probability": 0.998 + }, + { + "start": 5732.78, + "end": 5736.26, + "probability": 0.9985 + }, + { + "start": 5736.36, + "end": 5738.98, + "probability": 0.9824 + }, + { + "start": 5739.3, + "end": 5740.06, + "probability": 0.555 + }, + { + "start": 5740.94, + "end": 5745.58, + "probability": 0.9569 + }, + { + "start": 5745.58, + "end": 5749.7, + "probability": 0.9951 + }, + { + "start": 5749.84, + "end": 5750.68, + "probability": 0.7842 + }, + { + "start": 5751.48, + "end": 5755.42, + "probability": 0.9989 + }, + { + "start": 5755.6, + "end": 5759.48, + "probability": 0.6933 + }, + { + "start": 5759.58, + "end": 5759.9, + "probability": 0.755 + }, + { + "start": 5759.96, + "end": 5762.64, + "probability": 0.9966 + }, + { + "start": 5762.7, + "end": 5764.43, + "probability": 0.5146 + }, + { + "start": 5767.18, + "end": 5771.42, + "probability": 0.3533 + }, + { + "start": 5771.5, + "end": 5773.24, + "probability": 0.959 + }, + { + "start": 5773.3, + "end": 5773.54, + "probability": 0.901 + }, + { + "start": 5773.6, + "end": 5775.28, + "probability": 0.9848 + }, + { + "start": 5775.78, + "end": 5777.26, + "probability": 0.9758 + }, + { + "start": 5777.34, + "end": 5780.54, + "probability": 0.9955 + }, + { + "start": 5780.54, + "end": 5784.24, + "probability": 0.9948 + }, + { + "start": 5784.4, + "end": 5790.3, + "probability": 0.9713 + }, + { + "start": 5791.06, + "end": 5794.4, + "probability": 0.9933 + }, + { + "start": 5795.58, + "end": 5799.18, + "probability": 0.9939 + }, + { + "start": 5799.32, + "end": 5799.92, + "probability": 0.7604 + }, + { + "start": 5800.9, + "end": 5806.2, + "probability": 0.9615 + }, + { + "start": 5806.2, + "end": 5809.38, + "probability": 0.9924 + }, + { + "start": 5809.84, + "end": 5816.92, + "probability": 0.9453 + }, + { + "start": 5817.06, + "end": 5819.1, + "probability": 0.8603 + }, + { + "start": 5819.92, + "end": 5825.34, + "probability": 0.9882 + }, + { + "start": 5825.6, + "end": 5827.5, + "probability": 0.9967 + }, + { + "start": 5827.6, + "end": 5828.86, + "probability": 0.9437 + }, + { + "start": 5828.98, + "end": 5829.76, + "probability": 0.7279 + }, + { + "start": 5829.94, + "end": 5832.22, + "probability": 0.9963 + }, + { + "start": 5832.4, + "end": 5837.76, + "probability": 0.9902 + }, + { + "start": 5838.42, + "end": 5840.59, + "probability": 0.9819 + }, + { + "start": 5840.9, + "end": 5842.72, + "probability": 0.897 + }, + { + "start": 5842.76, + "end": 5844.82, + "probability": 0.8201 + }, + { + "start": 5845.16, + "end": 5845.9, + "probability": 0.5778 + }, + { + "start": 5846.32, + "end": 5849.64, + "probability": 0.9551 + }, + { + "start": 5850.36, + "end": 5854.66, + "probability": 0.9912 + }, + { + "start": 5854.76, + "end": 5855.2, + "probability": 0.7184 + }, + { + "start": 5855.58, + "end": 5856.59, + "probability": 0.8135 + }, + { + "start": 5857.42, + "end": 5860.76, + "probability": 0.9971 + }, + { + "start": 5860.86, + "end": 5863.59, + "probability": 0.9709 + }, + { + "start": 5864.1, + "end": 5868.06, + "probability": 0.9198 + }, + { + "start": 5868.62, + "end": 5869.64, + "probability": 0.887 + }, + { + "start": 5869.82, + "end": 5870.76, + "probability": 0.6958 + }, + { + "start": 5870.86, + "end": 5875.38, + "probability": 0.9938 + }, + { + "start": 5875.84, + "end": 5879.16, + "probability": 0.9502 + }, + { + "start": 5879.16, + "end": 5882.64, + "probability": 0.9956 + }, + { + "start": 5882.8, + "end": 5884.02, + "probability": 0.9971 + }, + { + "start": 5884.22, + "end": 5886.8, + "probability": 0.7754 + }, + { + "start": 5887.04, + "end": 5890.34, + "probability": 0.95 + }, + { + "start": 5890.34, + "end": 5892.88, + "probability": 0.9982 + }, + { + "start": 5894.08, + "end": 5898.88, + "probability": 0.9854 + }, + { + "start": 5899.6, + "end": 5900.68, + "probability": 0.7925 + }, + { + "start": 5900.8, + "end": 5904.64, + "probability": 0.9961 + }, + { + "start": 5905.18, + "end": 5906.86, + "probability": 0.9857 + }, + { + "start": 5907.14, + "end": 5908.7, + "probability": 0.4868 + }, + { + "start": 5909.28, + "end": 5912.76, + "probability": 0.9652 + }, + { + "start": 5913.8, + "end": 5916.18, + "probability": 0.9983 + }, + { + "start": 5916.82, + "end": 5920.2, + "probability": 0.8467 + }, + { + "start": 5920.24, + "end": 5920.86, + "probability": 0.6093 + }, + { + "start": 5920.9, + "end": 5921.74, + "probability": 0.6981 + }, + { + "start": 5921.88, + "end": 5925.4, + "probability": 0.9893 + }, + { + "start": 5925.72, + "end": 5928.04, + "probability": 0.9766 + }, + { + "start": 5928.78, + "end": 5930.86, + "probability": 0.9983 + }, + { + "start": 5930.9, + "end": 5933.74, + "probability": 0.98 + }, + { + "start": 5933.84, + "end": 5937.24, + "probability": 0.9915 + }, + { + "start": 5937.46, + "end": 5939.96, + "probability": 0.9963 + }, + { + "start": 5940.2, + "end": 5941.3, + "probability": 0.9894 + }, + { + "start": 5941.76, + "end": 5943.72, + "probability": 0.9473 + }, + { + "start": 5943.98, + "end": 5946.56, + "probability": 0.9856 + }, + { + "start": 5946.62, + "end": 5947.95, + "probability": 0.7508 + }, + { + "start": 5948.44, + "end": 5951.5, + "probability": 0.9946 + }, + { + "start": 5951.98, + "end": 5955.0, + "probability": 0.7804 + }, + { + "start": 5955.56, + "end": 5956.22, + "probability": 0.6683 + }, + { + "start": 5956.34, + "end": 5960.66, + "probability": 0.873 + }, + { + "start": 5960.96, + "end": 5961.96, + "probability": 0.908 + }, + { + "start": 5963.0, + "end": 5965.86, + "probability": 0.9949 + }, + { + "start": 5966.4, + "end": 5970.7, + "probability": 0.9661 + }, + { + "start": 5971.38, + "end": 5975.74, + "probability": 0.9934 + }, + { + "start": 5975.74, + "end": 5979.88, + "probability": 0.9989 + }, + { + "start": 5980.12, + "end": 5983.8, + "probability": 0.7949 + }, + { + "start": 5983.94, + "end": 5986.42, + "probability": 0.9956 + }, + { + "start": 5986.84, + "end": 5988.98, + "probability": 0.9971 + }, + { + "start": 5989.72, + "end": 5991.82, + "probability": 0.9956 + }, + { + "start": 5991.94, + "end": 5996.24, + "probability": 0.9985 + }, + { + "start": 5997.54, + "end": 5998.8, + "probability": 0.6873 + }, + { + "start": 5998.88, + "end": 6003.94, + "probability": 0.9738 + }, + { + "start": 6003.94, + "end": 6007.34, + "probability": 0.9979 + }, + { + "start": 6007.78, + "end": 6008.85, + "probability": 0.7079 + }, + { + "start": 6008.98, + "end": 6009.48, + "probability": 0.585 + }, + { + "start": 6009.52, + "end": 6011.56, + "probability": 0.9893 + }, + { + "start": 6011.58, + "end": 6012.24, + "probability": 0.6527 + }, + { + "start": 6012.72, + "end": 6014.14, + "probability": 0.9646 + }, + { + "start": 6014.34, + "end": 6017.45, + "probability": 0.7139 + }, + { + "start": 6017.96, + "end": 6019.74, + "probability": 0.7365 + }, + { + "start": 6019.82, + "end": 6020.12, + "probability": 0.8591 + }, + { + "start": 6020.18, + "end": 6020.55, + "probability": 0.8744 + }, + { + "start": 6020.74, + "end": 6022.9, + "probability": 0.8645 + }, + { + "start": 6023.08, + "end": 6023.36, + "probability": 0.7385 + }, + { + "start": 6023.94, + "end": 6024.08, + "probability": 0.5202 + }, + { + "start": 6024.1, + "end": 6026.36, + "probability": 0.599 + }, + { + "start": 6026.36, + "end": 6027.8, + "probability": 0.6622 + }, + { + "start": 6027.94, + "end": 6028.88, + "probability": 0.8808 + }, + { + "start": 6029.0, + "end": 6030.48, + "probability": 0.847 + }, + { + "start": 6030.62, + "end": 6032.04, + "probability": 0.9358 + }, + { + "start": 6032.38, + "end": 6032.58, + "probability": 0.2606 + }, + { + "start": 6032.64, + "end": 6037.06, + "probability": 0.993 + }, + { + "start": 6037.14, + "end": 6037.62, + "probability": 0.449 + }, + { + "start": 6037.62, + "end": 6037.97, + "probability": 0.0797 + }, + { + "start": 6038.26, + "end": 6041.06, + "probability": 0.6025 + }, + { + "start": 6042.5, + "end": 6042.62, + "probability": 0.0351 + }, + { + "start": 6042.62, + "end": 6042.86, + "probability": 0.1559 + }, + { + "start": 6043.16, + "end": 6044.86, + "probability": 0.9766 + }, + { + "start": 6046.5, + "end": 6048.42, + "probability": 0.1316 + }, + { + "start": 6048.84, + "end": 6049.68, + "probability": 0.8369 + }, + { + "start": 6050.28, + "end": 6051.19, + "probability": 0.7596 + }, + { + "start": 6051.94, + "end": 6054.98, + "probability": 0.3293 + }, + { + "start": 6056.96, + "end": 6057.56, + "probability": 0.293 + }, + { + "start": 6058.98, + "end": 6066.74, + "probability": 0.1006 + }, + { + "start": 6066.9, + "end": 6068.64, + "probability": 0.0219 + }, + { + "start": 6068.64, + "end": 6069.92, + "probability": 0.1144 + }, + { + "start": 6070.3, + "end": 6072.06, + "probability": 0.1368 + }, + { + "start": 6073.6, + "end": 6076.1, + "probability": 0.0452 + }, + { + "start": 6076.34, + "end": 6078.92, + "probability": 0.0557 + }, + { + "start": 6079.64, + "end": 6080.96, + "probability": 0.0797 + }, + { + "start": 6080.96, + "end": 6082.32, + "probability": 0.0743 + }, + { + "start": 6082.32, + "end": 6082.58, + "probability": 0.0069 + }, + { + "start": 6082.72, + "end": 6082.76, + "probability": 0.0373 + }, + { + "start": 6082.76, + "end": 6082.76, + "probability": 0.0794 + }, + { + "start": 6082.76, + "end": 6084.92, + "probability": 0.2526 + }, + { + "start": 6085.71, + "end": 6091.46, + "probability": 0.7563 + }, + { + "start": 6091.9, + "end": 6093.76, + "probability": 0.9357 + }, + { + "start": 6094.58, + "end": 6096.3, + "probability": 0.6832 + }, + { + "start": 6096.84, + "end": 6101.02, + "probability": 0.5414 + }, + { + "start": 6101.7, + "end": 6105.94, + "probability": 0.691 + }, + { + "start": 6107.08, + "end": 6108.72, + "probability": 0.601 + }, + { + "start": 6108.8, + "end": 6110.44, + "probability": 0.0835 + }, + { + "start": 6111.22, + "end": 6112.32, + "probability": 0.0712 + }, + { + "start": 6112.4, + "end": 6114.97, + "probability": 0.1627 + }, + { + "start": 6116.02, + "end": 6117.32, + "probability": 0.5603 + }, + { + "start": 6117.38, + "end": 6118.92, + "probability": 0.5096 + }, + { + "start": 6119.1, + "end": 6119.54, + "probability": 0.2659 + }, + { + "start": 6120.82, + "end": 6121.72, + "probability": 0.3068 + }, + { + "start": 6121.78, + "end": 6123.2, + "probability": 0.916 + }, + { + "start": 6123.34, + "end": 6125.5, + "probability": 0.6074 + }, + { + "start": 6126.68, + "end": 6128.14, + "probability": 0.5719 + }, + { + "start": 6128.14, + "end": 6129.42, + "probability": 0.2569 + }, + { + "start": 6129.5, + "end": 6131.58, + "probability": 0.8128 + }, + { + "start": 6131.7, + "end": 6133.06, + "probability": 0.8163 + }, + { + "start": 6133.26, + "end": 6134.15, + "probability": 0.4717 + }, + { + "start": 6134.66, + "end": 6137.38, + "probability": 0.4398 + }, + { + "start": 6137.38, + "end": 6139.24, + "probability": 0.2857 + }, + { + "start": 6139.24, + "end": 6140.0, + "probability": 0.0916 + }, + { + "start": 6140.68, + "end": 6141.92, + "probability": 0.8262 + }, + { + "start": 6142.02, + "end": 6144.07, + "probability": 0.4836 + }, + { + "start": 6144.26, + "end": 6145.52, + "probability": 0.5289 + }, + { + "start": 6145.62, + "end": 6147.96, + "probability": 0.5172 + }, + { + "start": 6148.54, + "end": 6151.14, + "probability": 0.9785 + }, + { + "start": 6151.28, + "end": 6152.74, + "probability": 0.9956 + }, + { + "start": 6152.76, + "end": 6157.46, + "probability": 0.9951 + }, + { + "start": 6158.02, + "end": 6158.02, + "probability": 0.0108 + }, + { + "start": 6158.02, + "end": 6160.46, + "probability": 0.9875 + }, + { + "start": 6160.5, + "end": 6164.68, + "probability": 0.9636 + }, + { + "start": 6164.78, + "end": 6165.32, + "probability": 0.1895 + }, + { + "start": 6165.32, + "end": 6166.3, + "probability": 0.8152 + }, + { + "start": 6166.3, + "end": 6170.06, + "probability": 0.9907 + }, + { + "start": 6170.5, + "end": 6173.26, + "probability": 0.9153 + }, + { + "start": 6173.4, + "end": 6176.42, + "probability": 0.99 + }, + { + "start": 6176.5, + "end": 6176.5, + "probability": 0.0971 + }, + { + "start": 6176.5, + "end": 6179.76, + "probability": 0.9825 + }, + { + "start": 6179.84, + "end": 6180.62, + "probability": 0.4928 + }, + { + "start": 6180.98, + "end": 6183.88, + "probability": 0.9983 + }, + { + "start": 6184.0, + "end": 6184.74, + "probability": 0.8345 + }, + { + "start": 6185.12, + "end": 6188.16, + "probability": 0.8385 + }, + { + "start": 6188.24, + "end": 6192.36, + "probability": 0.9459 + }, + { + "start": 6192.6, + "end": 6193.4, + "probability": 0.5306 + }, + { + "start": 6193.64, + "end": 6197.38, + "probability": 0.9173 + }, + { + "start": 6197.38, + "end": 6201.02, + "probability": 0.9965 + }, + { + "start": 6201.04, + "end": 6206.36, + "probability": 0.9896 + }, + { + "start": 6206.7, + "end": 6209.6, + "probability": 0.9966 + }, + { + "start": 6210.0, + "end": 6210.16, + "probability": 0.4692 + }, + { + "start": 6210.26, + "end": 6213.44, + "probability": 0.9717 + }, + { + "start": 6214.08, + "end": 6217.1, + "probability": 0.9963 + }, + { + "start": 6217.88, + "end": 6220.42, + "probability": 0.9717 + }, + { + "start": 6222.37, + "end": 6225.8, + "probability": 0.8269 + }, + { + "start": 6225.86, + "end": 6229.48, + "probability": 0.8442 + }, + { + "start": 6230.06, + "end": 6231.14, + "probability": 0.7262 + }, + { + "start": 6231.84, + "end": 6232.24, + "probability": 0.7432 + }, + { + "start": 6242.62, + "end": 6244.06, + "probability": 0.638 + }, + { + "start": 6244.24, + "end": 6244.64, + "probability": 0.4022 + }, + { + "start": 6244.64, + "end": 6245.3, + "probability": 0.4767 + }, + { + "start": 6245.34, + "end": 6249.2, + "probability": 0.8935 + }, + { + "start": 6249.2, + "end": 6253.5, + "probability": 0.882 + }, + { + "start": 6253.92, + "end": 6254.56, + "probability": 0.7721 + }, + { + "start": 6254.64, + "end": 6255.0, + "probability": 0.7951 + }, + { + "start": 6255.02, + "end": 6256.75, + "probability": 0.942 + }, + { + "start": 6257.5, + "end": 6259.13, + "probability": 0.9956 + }, + { + "start": 6259.22, + "end": 6260.32, + "probability": 0.7439 + }, + { + "start": 6260.82, + "end": 6261.12, + "probability": 0.8521 + }, + { + "start": 6261.14, + "end": 6262.16, + "probability": 0.9597 + }, + { + "start": 6262.44, + "end": 6265.98, + "probability": 0.9152 + }, + { + "start": 6266.04, + "end": 6268.48, + "probability": 0.8763 + }, + { + "start": 6268.62, + "end": 6273.44, + "probability": 0.9968 + }, + { + "start": 6274.42, + "end": 6277.12, + "probability": 0.842 + }, + { + "start": 6277.7, + "end": 6279.4, + "probability": 0.7964 + }, + { + "start": 6279.92, + "end": 6280.88, + "probability": 0.9419 + }, + { + "start": 6281.0, + "end": 6281.9, + "probability": 0.9664 + }, + { + "start": 6281.98, + "end": 6285.0, + "probability": 0.8982 + }, + { + "start": 6285.1, + "end": 6289.76, + "probability": 0.97 + }, + { + "start": 6290.34, + "end": 6296.26, + "probability": 0.9861 + }, + { + "start": 6297.32, + "end": 6299.9, + "probability": 0.956 + }, + { + "start": 6300.87, + "end": 6303.5, + "probability": 0.9971 + }, + { + "start": 6304.2, + "end": 6306.68, + "probability": 0.9961 + }, + { + "start": 6306.78, + "end": 6309.21, + "probability": 0.9951 + }, + { + "start": 6310.0, + "end": 6313.22, + "probability": 0.9048 + }, + { + "start": 6313.5, + "end": 6314.38, + "probability": 0.7592 + }, + { + "start": 6314.64, + "end": 6315.86, + "probability": 0.9458 + }, + { + "start": 6316.26, + "end": 6319.96, + "probability": 0.9366 + }, + { + "start": 6320.26, + "end": 6321.44, + "probability": 0.9319 + }, + { + "start": 6321.52, + "end": 6324.08, + "probability": 0.8868 + }, + { + "start": 6324.32, + "end": 6326.06, + "probability": 0.9946 + }, + { + "start": 6326.22, + "end": 6328.08, + "probability": 0.9648 + }, + { + "start": 6328.12, + "end": 6328.58, + "probability": 0.9029 + }, + { + "start": 6328.62, + "end": 6333.76, + "probability": 0.8258 + }, + { + "start": 6333.9, + "end": 6335.5, + "probability": 0.7141 + }, + { + "start": 6335.6, + "end": 6339.12, + "probability": 0.9355 + }, + { + "start": 6339.8, + "end": 6342.0, + "probability": 0.8853 + }, + { + "start": 6342.1, + "end": 6345.12, + "probability": 0.9266 + }, + { + "start": 6345.2, + "end": 6347.38, + "probability": 0.9362 + }, + { + "start": 6347.5, + "end": 6349.98, + "probability": 0.9227 + }, + { + "start": 6350.18, + "end": 6355.1, + "probability": 0.9985 + }, + { + "start": 6355.44, + "end": 6358.2, + "probability": 0.9966 + }, + { + "start": 6358.58, + "end": 6359.74, + "probability": 0.8775 + }, + { + "start": 6360.36, + "end": 6362.66, + "probability": 0.9562 + }, + { + "start": 6362.8, + "end": 6363.66, + "probability": 0.668 + }, + { + "start": 6363.88, + "end": 6364.44, + "probability": 0.4963 + }, + { + "start": 6364.6, + "end": 6366.3, + "probability": 0.9619 + }, + { + "start": 6366.42, + "end": 6377.48, + "probability": 0.7565 + }, + { + "start": 6377.92, + "end": 6380.8, + "probability": 0.8219 + }, + { + "start": 6381.38, + "end": 6387.12, + "probability": 0.8914 + }, + { + "start": 6387.44, + "end": 6388.32, + "probability": 0.7123 + }, + { + "start": 6388.82, + "end": 6391.48, + "probability": 0.9831 + }, + { + "start": 6391.94, + "end": 6392.94, + "probability": 0.7758 + }, + { + "start": 6393.12, + "end": 6393.9, + "probability": 0.8387 + }, + { + "start": 6394.34, + "end": 6395.28, + "probability": 0.7288 + }, + { + "start": 6395.64, + "end": 6396.3, + "probability": 0.9714 + }, + { + "start": 6396.34, + "end": 6396.96, + "probability": 0.9755 + }, + { + "start": 6397.0, + "end": 6397.7, + "probability": 0.9439 + }, + { + "start": 6397.76, + "end": 6398.24, + "probability": 0.9777 + }, + { + "start": 6398.24, + "end": 6399.36, + "probability": 0.9858 + }, + { + "start": 6399.58, + "end": 6402.88, + "probability": 0.9546 + }, + { + "start": 6403.78, + "end": 6405.64, + "probability": 0.862 + }, + { + "start": 6405.64, + "end": 6410.32, + "probability": 0.6659 + }, + { + "start": 6410.6, + "end": 6411.02, + "probability": 0.6611 + }, + { + "start": 6411.12, + "end": 6413.66, + "probability": 0.9929 + }, + { + "start": 6414.02, + "end": 6415.0, + "probability": 0.9481 + }, + { + "start": 6415.04, + "end": 6415.58, + "probability": 0.6206 + }, + { + "start": 6415.7, + "end": 6420.36, + "probability": 0.924 + }, + { + "start": 6420.44, + "end": 6422.0, + "probability": 0.6465 + }, + { + "start": 6422.16, + "end": 6422.28, + "probability": 0.4342 + }, + { + "start": 6422.38, + "end": 6423.32, + "probability": 0.8577 + }, + { + "start": 6424.98, + "end": 6428.94, + "probability": 0.8167 + }, + { + "start": 6429.24, + "end": 6429.85, + "probability": 0.7449 + }, + { + "start": 6430.38, + "end": 6431.96, + "probability": 0.9789 + }, + { + "start": 6432.32, + "end": 6435.02, + "probability": 0.9586 + }, + { + "start": 6435.32, + "end": 6437.4, + "probability": 0.8605 + }, + { + "start": 6437.4, + "end": 6437.6, + "probability": 0.9373 + }, + { + "start": 6440.44, + "end": 6442.74, + "probability": 0.9309 + }, + { + "start": 6442.98, + "end": 6444.34, + "probability": 0.9199 + }, + { + "start": 6444.74, + "end": 6445.9, + "probability": 0.5796 + }, + { + "start": 6445.94, + "end": 6447.26, + "probability": 0.8608 + }, + { + "start": 6447.48, + "end": 6449.3, + "probability": 0.9843 + }, + { + "start": 6449.36, + "end": 6450.82, + "probability": 0.8722 + }, + { + "start": 6450.88, + "end": 6454.3, + "probability": 0.6464 + }, + { + "start": 6454.62, + "end": 6459.94, + "probability": 0.9885 + }, + { + "start": 6460.48, + "end": 6466.66, + "probability": 0.9972 + }, + { + "start": 6466.9, + "end": 6467.86, + "probability": 0.6591 + }, + { + "start": 6468.0, + "end": 6469.42, + "probability": 0.6153 + }, + { + "start": 6469.54, + "end": 6471.94, + "probability": 0.9839 + }, + { + "start": 6472.12, + "end": 6473.4, + "probability": 0.7998 + }, + { + "start": 6473.72, + "end": 6474.16, + "probability": 0.8561 + }, + { + "start": 6474.22, + "end": 6477.08, + "probability": 0.6407 + }, + { + "start": 6477.22, + "end": 6478.44, + "probability": 0.944 + }, + { + "start": 6478.66, + "end": 6479.74, + "probability": 0.7381 + }, + { + "start": 6479.9, + "end": 6481.56, + "probability": 0.9849 + }, + { + "start": 6481.66, + "end": 6483.04, + "probability": 0.5171 + }, + { + "start": 6483.54, + "end": 6484.58, + "probability": 0.7584 + }, + { + "start": 6484.74, + "end": 6485.5, + "probability": 0.9346 + }, + { + "start": 6485.96, + "end": 6488.36, + "probability": 0.9624 + }, + { + "start": 6488.44, + "end": 6493.28, + "probability": 0.9818 + }, + { + "start": 6493.48, + "end": 6498.78, + "probability": 0.9816 + }, + { + "start": 6498.94, + "end": 6500.38, + "probability": 0.9028 + }, + { + "start": 6500.74, + "end": 6502.54, + "probability": 0.7856 + }, + { + "start": 6502.56, + "end": 6502.96, + "probability": 0.7506 + }, + { + "start": 6503.1, + "end": 6504.04, + "probability": 0.8849 + }, + { + "start": 6504.24, + "end": 6505.69, + "probability": 0.8812 + }, + { + "start": 6506.04, + "end": 6508.54, + "probability": 0.9579 + }, + { + "start": 6508.65, + "end": 6511.74, + "probability": 0.9405 + }, + { + "start": 6511.8, + "end": 6512.7, + "probability": 0.6123 + }, + { + "start": 6513.38, + "end": 6515.22, + "probability": 0.9985 + }, + { + "start": 6515.26, + "end": 6515.64, + "probability": 0.4259 + }, + { + "start": 6515.84, + "end": 6517.42, + "probability": 0.6799 + }, + { + "start": 6517.46, + "end": 6520.48, + "probability": 0.8187 + }, + { + "start": 6520.52, + "end": 6522.88, + "probability": 0.8911 + }, + { + "start": 6523.18, + "end": 6525.1, + "probability": 0.9484 + }, + { + "start": 6525.52, + "end": 6530.1, + "probability": 0.9973 + }, + { + "start": 6530.48, + "end": 6531.14, + "probability": 0.5277 + }, + { + "start": 6531.2, + "end": 6532.58, + "probability": 0.9474 + }, + { + "start": 6532.66, + "end": 6535.62, + "probability": 0.9681 + }, + { + "start": 6536.14, + "end": 6539.58, + "probability": 0.9904 + }, + { + "start": 6540.14, + "end": 6541.44, + "probability": 0.8824 + }, + { + "start": 6542.18, + "end": 6544.28, + "probability": 0.8687 + }, + { + "start": 6544.46, + "end": 6547.05, + "probability": 0.7252 + }, + { + "start": 6547.76, + "end": 6549.24, + "probability": 0.9417 + }, + { + "start": 6549.46, + "end": 6550.36, + "probability": 0.7856 + }, + { + "start": 6550.44, + "end": 6552.06, + "probability": 0.9838 + }, + { + "start": 6552.48, + "end": 6556.2, + "probability": 0.7749 + }, + { + "start": 6556.26, + "end": 6558.48, + "probability": 0.8436 + }, + { + "start": 6558.74, + "end": 6560.44, + "probability": 0.7108 + }, + { + "start": 6560.5, + "end": 6561.9, + "probability": 0.6838 + }, + { + "start": 6561.96, + "end": 6565.5, + "probability": 0.8297 + }, + { + "start": 6565.58, + "end": 6566.92, + "probability": 0.7455 + }, + { + "start": 6567.14, + "end": 6568.5, + "probability": 0.8627 + }, + { + "start": 6568.76, + "end": 6570.82, + "probability": 0.9181 + }, + { + "start": 6570.92, + "end": 6573.18, + "probability": 0.9897 + }, + { + "start": 6573.58, + "end": 6577.58, + "probability": 0.8003 + }, + { + "start": 6578.08, + "end": 6579.6, + "probability": 0.9796 + }, + { + "start": 6579.8, + "end": 6583.3, + "probability": 0.7781 + }, + { + "start": 6583.76, + "end": 6585.08, + "probability": 0.9474 + }, + { + "start": 6585.16, + "end": 6585.72, + "probability": 0.8594 + }, + { + "start": 6585.9, + "end": 6587.38, + "probability": 0.9946 + }, + { + "start": 6587.72, + "end": 6590.37, + "probability": 0.8511 + }, + { + "start": 6590.4, + "end": 6594.88, + "probability": 0.9033 + }, + { + "start": 6595.96, + "end": 6597.32, + "probability": 0.8629 + }, + { + "start": 6597.36, + "end": 6601.28, + "probability": 0.9745 + }, + { + "start": 6601.3, + "end": 6602.16, + "probability": 0.8504 + }, + { + "start": 6602.26, + "end": 6604.03, + "probability": 0.9839 + }, + { + "start": 6604.56, + "end": 6605.34, + "probability": 0.645 + }, + { + "start": 6605.56, + "end": 6608.84, + "probability": 0.9872 + }, + { + "start": 6609.0, + "end": 6610.82, + "probability": 0.9631 + }, + { + "start": 6610.9, + "end": 6616.56, + "probability": 0.9907 + }, + { + "start": 6616.9, + "end": 6619.68, + "probability": 0.9945 + }, + { + "start": 6619.68, + "end": 6624.58, + "probability": 0.99 + }, + { + "start": 6626.71, + "end": 6626.92, + "probability": 0.3087 + }, + { + "start": 6626.92, + "end": 6633.42, + "probability": 0.8819 + }, + { + "start": 6633.6, + "end": 6633.64, + "probability": 0.4551 + }, + { + "start": 6634.18, + "end": 6636.0, + "probability": 0.9915 + }, + { + "start": 6636.68, + "end": 6638.54, + "probability": 0.9119 + }, + { + "start": 6638.84, + "end": 6642.5, + "probability": 0.9291 + }, + { + "start": 6642.66, + "end": 6645.46, + "probability": 0.9985 + }, + { + "start": 6645.64, + "end": 6650.42, + "probability": 0.8317 + }, + { + "start": 6650.62, + "end": 6652.17, + "probability": 0.9935 + }, + { + "start": 6652.98, + "end": 6654.22, + "probability": 0.9784 + }, + { + "start": 6654.86, + "end": 6655.66, + "probability": 0.6126 + }, + { + "start": 6655.92, + "end": 6658.39, + "probability": 0.6207 + }, + { + "start": 6659.22, + "end": 6663.36, + "probability": 0.9535 + }, + { + "start": 6663.54, + "end": 6665.3, + "probability": 0.9641 + }, + { + "start": 6665.82, + "end": 6670.28, + "probability": 0.9564 + }, + { + "start": 6670.6, + "end": 6675.13, + "probability": 0.9958 + }, + { + "start": 6675.64, + "end": 6679.46, + "probability": 0.9775 + }, + { + "start": 6679.82, + "end": 6682.39, + "probability": 0.7831 + }, + { + "start": 6682.86, + "end": 6683.04, + "probability": 0.5917 + }, + { + "start": 6683.08, + "end": 6683.48, + "probability": 0.4848 + }, + { + "start": 6683.52, + "end": 6689.26, + "probability": 0.8093 + }, + { + "start": 6689.68, + "end": 6693.48, + "probability": 0.9835 + }, + { + "start": 6693.86, + "end": 6696.88, + "probability": 0.8322 + }, + { + "start": 6697.06, + "end": 6697.82, + "probability": 0.9215 + }, + { + "start": 6697.86, + "end": 6698.89, + "probability": 0.9871 + }, + { + "start": 6699.38, + "end": 6701.52, + "probability": 0.9066 + }, + { + "start": 6702.22, + "end": 6703.96, + "probability": 0.9947 + }, + { + "start": 6704.0, + "end": 6706.62, + "probability": 0.9731 + }, + { + "start": 6707.02, + "end": 6708.06, + "probability": 0.9941 + }, + { + "start": 6708.68, + "end": 6710.76, + "probability": 0.9978 + }, + { + "start": 6710.8, + "end": 6712.32, + "probability": 0.4935 + }, + { + "start": 6712.68, + "end": 6714.16, + "probability": 0.885 + }, + { + "start": 6714.44, + "end": 6715.94, + "probability": 0.9905 + }, + { + "start": 6716.06, + "end": 6716.84, + "probability": 0.9715 + }, + { + "start": 6717.0, + "end": 6717.66, + "probability": 0.9807 + }, + { + "start": 6717.74, + "end": 6719.53, + "probability": 0.9852 + }, + { + "start": 6719.92, + "end": 6721.02, + "probability": 0.9628 + }, + { + "start": 6721.12, + "end": 6722.24, + "probability": 0.8478 + }, + { + "start": 6722.3, + "end": 6723.58, + "probability": 0.8322 + }, + { + "start": 6723.62, + "end": 6724.56, + "probability": 0.9341 + }, + { + "start": 6724.6, + "end": 6726.78, + "probability": 0.9897 + }, + { + "start": 6727.02, + "end": 6730.42, + "probability": 0.8257 + }, + { + "start": 6730.88, + "end": 6731.3, + "probability": 0.7399 + }, + { + "start": 6731.36, + "end": 6734.44, + "probability": 0.9605 + }, + { + "start": 6734.84, + "end": 6735.8, + "probability": 0.8611 + }, + { + "start": 6736.14, + "end": 6738.0, + "probability": 0.9961 + }, + { + "start": 6738.06, + "end": 6741.86, + "probability": 0.9832 + }, + { + "start": 6742.3, + "end": 6742.64, + "probability": 0.36 + }, + { + "start": 6742.74, + "end": 6746.82, + "probability": 0.9589 + }, + { + "start": 6747.2, + "end": 6748.82, + "probability": 0.8384 + }, + { + "start": 6749.2, + "end": 6751.5, + "probability": 0.8036 + }, + { + "start": 6753.4, + "end": 6754.14, + "probability": 0.8043 + }, + { + "start": 6754.26, + "end": 6755.62, + "probability": 0.9315 + }, + { + "start": 6755.94, + "end": 6759.04, + "probability": 0.9907 + }, + { + "start": 6759.14, + "end": 6760.32, + "probability": 0.9462 + }, + { + "start": 6760.96, + "end": 6765.82, + "probability": 0.8608 + }, + { + "start": 6765.9, + "end": 6768.5, + "probability": 0.9331 + }, + { + "start": 6768.76, + "end": 6773.5, + "probability": 0.9718 + }, + { + "start": 6773.58, + "end": 6776.84, + "probability": 0.9938 + }, + { + "start": 6777.34, + "end": 6782.52, + "probability": 0.977 + }, + { + "start": 6782.98, + "end": 6787.6, + "probability": 0.954 + }, + { + "start": 6787.68, + "end": 6789.72, + "probability": 0.9753 + }, + { + "start": 6789.82, + "end": 6791.02, + "probability": 0.7635 + }, + { + "start": 6791.28, + "end": 6794.18, + "probability": 0.9543 + }, + { + "start": 6794.26, + "end": 6796.18, + "probability": 0.9952 + }, + { + "start": 6796.48, + "end": 6797.12, + "probability": 0.5916 + }, + { + "start": 6797.16, + "end": 6800.64, + "probability": 0.949 + }, + { + "start": 6800.78, + "end": 6802.22, + "probability": 0.9847 + }, + { + "start": 6802.3, + "end": 6803.18, + "probability": 0.9917 + }, + { + "start": 6803.36, + "end": 6805.18, + "probability": 0.9921 + }, + { + "start": 6805.48, + "end": 6807.04, + "probability": 0.9946 + }, + { + "start": 6807.4, + "end": 6808.7, + "probability": 0.8367 + }, + { + "start": 6808.92, + "end": 6812.84, + "probability": 0.9934 + }, + { + "start": 6812.84, + "end": 6815.82, + "probability": 0.9961 + }, + { + "start": 6815.94, + "end": 6821.78, + "probability": 0.9606 + }, + { + "start": 6822.16, + "end": 6825.68, + "probability": 0.9838 + }, + { + "start": 6825.92, + "end": 6828.9, + "probability": 0.7783 + }, + { + "start": 6829.16, + "end": 6830.6, + "probability": 0.8384 + }, + { + "start": 6830.88, + "end": 6833.7, + "probability": 0.8916 + }, + { + "start": 6833.7, + "end": 6837.82, + "probability": 0.9807 + }, + { + "start": 6838.1, + "end": 6839.38, + "probability": 0.6993 + }, + { + "start": 6839.68, + "end": 6846.96, + "probability": 0.9899 + }, + { + "start": 6847.36, + "end": 6848.58, + "probability": 0.6662 + }, + { + "start": 6848.68, + "end": 6849.6, + "probability": 0.7673 + }, + { + "start": 6849.68, + "end": 6852.56, + "probability": 0.9735 + }, + { + "start": 6852.86, + "end": 6855.2, + "probability": 0.9898 + }, + { + "start": 6855.94, + "end": 6860.24, + "probability": 0.9899 + }, + { + "start": 6860.68, + "end": 6861.12, + "probability": 0.2803 + }, + { + "start": 6861.32, + "end": 6864.92, + "probability": 0.9108 + }, + { + "start": 6865.3, + "end": 6867.18, + "probability": 0.6674 + }, + { + "start": 6867.24, + "end": 6870.52, + "probability": 0.8188 + }, + { + "start": 6870.86, + "end": 6876.16, + "probability": 0.9648 + }, + { + "start": 6876.28, + "end": 6877.26, + "probability": 0.8447 + }, + { + "start": 6877.4, + "end": 6885.44, + "probability": 0.9846 + }, + { + "start": 6885.68, + "end": 6888.46, + "probability": 0.9917 + }, + { + "start": 6888.74, + "end": 6893.08, + "probability": 0.9561 + }, + { + "start": 6893.38, + "end": 6895.66, + "probability": 0.9934 + }, + { + "start": 6895.98, + "end": 6896.64, + "probability": 0.8292 + }, + { + "start": 6896.66, + "end": 6897.3, + "probability": 0.6543 + }, + { + "start": 6897.95, + "end": 6899.2, + "probability": 0.4992 + }, + { + "start": 6899.32, + "end": 6900.12, + "probability": 0.9195 + }, + { + "start": 6900.5, + "end": 6901.04, + "probability": 0.8057 + }, + { + "start": 6901.42, + "end": 6903.48, + "probability": 0.8704 + }, + { + "start": 6903.96, + "end": 6906.36, + "probability": 0.9854 + }, + { + "start": 6907.23, + "end": 6908.92, + "probability": 0.9822 + }, + { + "start": 6918.92, + "end": 6920.94, + "probability": 0.7032 + }, + { + "start": 6924.96, + "end": 6926.72, + "probability": 0.8908 + }, + { + "start": 6928.26, + "end": 6929.54, + "probability": 0.9838 + }, + { + "start": 6932.72, + "end": 6935.1, + "probability": 0.6407 + }, + { + "start": 6935.66, + "end": 6937.58, + "probability": 0.9957 + }, + { + "start": 6938.44, + "end": 6939.32, + "probability": 0.9282 + }, + { + "start": 6941.2, + "end": 6942.7, + "probability": 0.6118 + }, + { + "start": 6943.36, + "end": 6945.3, + "probability": 0.7886 + }, + { + "start": 6947.62, + "end": 6949.52, + "probability": 0.9214 + }, + { + "start": 6950.76, + "end": 6957.82, + "probability": 0.9979 + }, + { + "start": 6961.36, + "end": 6965.16, + "probability": 0.9788 + }, + { + "start": 6966.5, + "end": 6967.48, + "probability": 0.6589 + }, + { + "start": 6967.56, + "end": 6971.38, + "probability": 0.8521 + }, + { + "start": 6973.97, + "end": 6974.42, + "probability": 0.3846 + }, + { + "start": 6974.42, + "end": 6977.54, + "probability": 0.7687 + }, + { + "start": 6978.8, + "end": 6982.96, + "probability": 0.9978 + }, + { + "start": 6984.72, + "end": 6988.0, + "probability": 0.9714 + }, + { + "start": 6988.96, + "end": 6990.3, + "probability": 0.7824 + }, + { + "start": 6990.86, + "end": 6998.1, + "probability": 0.9954 + }, + { + "start": 6998.1, + "end": 7003.0, + "probability": 0.9995 + }, + { + "start": 7003.06, + "end": 7008.18, + "probability": 0.9857 + }, + { + "start": 7009.84, + "end": 7010.54, + "probability": 0.9015 + }, + { + "start": 7011.78, + "end": 7017.12, + "probability": 0.9929 + }, + { + "start": 7018.14, + "end": 7020.48, + "probability": 0.9915 + }, + { + "start": 7021.3, + "end": 7028.64, + "probability": 0.9579 + }, + { + "start": 7030.56, + "end": 7034.16, + "probability": 0.9942 + }, + { + "start": 7035.24, + "end": 7036.54, + "probability": 0.9976 + }, + { + "start": 7036.88, + "end": 7040.72, + "probability": 0.9802 + }, + { + "start": 7042.24, + "end": 7042.92, + "probability": 0.6677 + }, + { + "start": 7043.24, + "end": 7049.06, + "probability": 0.8859 + }, + { + "start": 7049.74, + "end": 7051.33, + "probability": 0.9031 + }, + { + "start": 7052.78, + "end": 7058.5, + "probability": 0.9722 + }, + { + "start": 7059.24, + "end": 7060.08, + "probability": 0.9795 + }, + { + "start": 7060.34, + "end": 7064.08, + "probability": 0.8871 + }, + { + "start": 7064.14, + "end": 7064.84, + "probability": 0.5394 + }, + { + "start": 7065.02, + "end": 7065.42, + "probability": 0.6475 + }, + { + "start": 7065.8, + "end": 7067.1, + "probability": 0.9669 + }, + { + "start": 7068.28, + "end": 7069.54, + "probability": 0.983 + }, + { + "start": 7070.54, + "end": 7072.48, + "probability": 0.955 + }, + { + "start": 7075.3, + "end": 7076.76, + "probability": 0.7485 + }, + { + "start": 7077.82, + "end": 7081.06, + "probability": 0.957 + }, + { + "start": 7083.26, + "end": 7084.52, + "probability": 0.5622 + }, + { + "start": 7085.34, + "end": 7088.52, + "probability": 0.8587 + }, + { + "start": 7088.68, + "end": 7090.73, + "probability": 0.7907 + }, + { + "start": 7091.88, + "end": 7094.98, + "probability": 0.9736 + }, + { + "start": 7095.6, + "end": 7096.66, + "probability": 0.5837 + }, + { + "start": 7097.16, + "end": 7099.7, + "probability": 0.9774 + }, + { + "start": 7099.82, + "end": 7102.22, + "probability": 0.9549 + }, + { + "start": 7103.38, + "end": 7106.52, + "probability": 0.9658 + }, + { + "start": 7106.78, + "end": 7111.01, + "probability": 0.5613 + }, + { + "start": 7111.84, + "end": 7117.56, + "probability": 0.8757 + }, + { + "start": 7117.74, + "end": 7120.08, + "probability": 0.9928 + }, + { + "start": 7120.38, + "end": 7121.72, + "probability": 0.7425 + }, + { + "start": 7122.18, + "end": 7126.8, + "probability": 0.9917 + }, + { + "start": 7127.96, + "end": 7131.02, + "probability": 0.8965 + }, + { + "start": 7131.32, + "end": 7134.66, + "probability": 0.9876 + }, + { + "start": 7135.92, + "end": 7139.04, + "probability": 0.9455 + }, + { + "start": 7139.26, + "end": 7140.72, + "probability": 0.9912 + }, + { + "start": 7141.96, + "end": 7144.46, + "probability": 0.994 + }, + { + "start": 7145.42, + "end": 7148.6, + "probability": 0.9821 + }, + { + "start": 7148.86, + "end": 7150.84, + "probability": 0.9692 + }, + { + "start": 7151.0, + "end": 7153.04, + "probability": 0.7269 + }, + { + "start": 7153.16, + "end": 7155.06, + "probability": 0.7961 + }, + { + "start": 7155.08, + "end": 7155.44, + "probability": 0.5165 + }, + { + "start": 7155.44, + "end": 7155.48, + "probability": 0.5677 + }, + { + "start": 7155.5, + "end": 7156.96, + "probability": 0.4926 + }, + { + "start": 7157.06, + "end": 7159.44, + "probability": 0.792 + }, + { + "start": 7159.6, + "end": 7160.64, + "probability": 0.5549 + }, + { + "start": 7160.68, + "end": 7162.09, + "probability": 0.6616 + }, + { + "start": 7162.37, + "end": 7164.76, + "probability": 0.8068 + }, + { + "start": 7166.98, + "end": 7168.34, + "probability": 0.2968 + }, + { + "start": 7168.34, + "end": 7176.06, + "probability": 0.5815 + }, + { + "start": 7176.88, + "end": 7180.68, + "probability": 0.6459 + }, + { + "start": 7181.34, + "end": 7185.4, + "probability": 0.9589 + }, + { + "start": 7185.76, + "end": 7187.64, + "probability": 0.5098 + }, + { + "start": 7188.18, + "end": 7189.64, + "probability": 0.9897 + }, + { + "start": 7189.76, + "end": 7190.6, + "probability": 0.4588 + }, + { + "start": 7190.78, + "end": 7195.38, + "probability": 0.6454 + }, + { + "start": 7196.15, + "end": 7199.56, + "probability": 0.8264 + }, + { + "start": 7199.96, + "end": 7200.59, + "probability": 0.9433 + }, + { + "start": 7201.62, + "end": 7203.84, + "probability": 0.9053 + }, + { + "start": 7204.32, + "end": 7205.8, + "probability": 0.2973 + }, + { + "start": 7206.28, + "end": 7209.44, + "probability": 0.6924 + }, + { + "start": 7209.88, + "end": 7215.58, + "probability": 0.6582 + }, + { + "start": 7215.64, + "end": 7216.21, + "probability": 0.3456 + }, + { + "start": 7216.42, + "end": 7216.94, + "probability": 0.3455 + }, + { + "start": 7217.88, + "end": 7219.12, + "probability": 0.8539 + }, + { + "start": 7219.5, + "end": 7227.62, + "probability": 0.2108 + }, + { + "start": 7228.28, + "end": 7229.92, + "probability": 0.3439 + }, + { + "start": 7230.08, + "end": 7230.72, + "probability": 0.2357 + }, + { + "start": 7231.11, + "end": 7232.42, + "probability": 0.042 + }, + { + "start": 7232.42, + "end": 7234.47, + "probability": 0.0747 + }, + { + "start": 7241.4, + "end": 7246.18, + "probability": 0.4561 + }, + { + "start": 7246.3, + "end": 7251.38, + "probability": 0.7196 + }, + { + "start": 7251.5, + "end": 7251.74, + "probability": 0.1293 + }, + { + "start": 7251.74, + "end": 7253.46, + "probability": 0.7249 + }, + { + "start": 7254.44, + "end": 7256.76, + "probability": 0.43 + }, + { + "start": 7256.76, + "end": 7259.56, + "probability": 0.6339 + }, + { + "start": 7259.62, + "end": 7265.58, + "probability": 0.9741 + }, + { + "start": 7266.1, + "end": 7270.44, + "probability": 0.9801 + }, + { + "start": 7270.86, + "end": 7272.08, + "probability": 0.9352 + }, + { + "start": 7272.22, + "end": 7274.62, + "probability": 0.5305 + }, + { + "start": 7274.7, + "end": 7278.96, + "probability": 0.9778 + }, + { + "start": 7279.06, + "end": 7280.64, + "probability": 0.624 + }, + { + "start": 7280.64, + "end": 7281.7, + "probability": 0.6369 + }, + { + "start": 7282.22, + "end": 7285.68, + "probability": 0.5787 + }, + { + "start": 7286.12, + "end": 7292.22, + "probability": 0.9429 + }, + { + "start": 7292.92, + "end": 7295.6, + "probability": 0.9653 + }, + { + "start": 7296.32, + "end": 7298.82, + "probability": 0.917 + }, + { + "start": 7299.68, + "end": 7301.24, + "probability": 0.5029 + }, + { + "start": 7301.84, + "end": 7304.04, + "probability": 0.8584 + }, + { + "start": 7304.94, + "end": 7309.12, + "probability": 0.8718 + }, + { + "start": 7310.0, + "end": 7311.3, + "probability": 0.8966 + }, + { + "start": 7311.98, + "end": 7313.41, + "probability": 0.9741 + }, + { + "start": 7315.29, + "end": 7320.34, + "probability": 0.9978 + }, + { + "start": 7320.38, + "end": 7324.52, + "probability": 0.978 + }, + { + "start": 7325.06, + "end": 7332.88, + "probability": 0.8911 + }, + { + "start": 7334.56, + "end": 7336.02, + "probability": 0.856 + }, + { + "start": 7336.76, + "end": 7339.72, + "probability": 0.9597 + }, + { + "start": 7340.84, + "end": 7343.76, + "probability": 0.9224 + }, + { + "start": 7343.84, + "end": 7349.3, + "probability": 0.9785 + }, + { + "start": 7350.36, + "end": 7351.76, + "probability": 0.9794 + }, + { + "start": 7351.86, + "end": 7353.9, + "probability": 0.9954 + }, + { + "start": 7356.86, + "end": 7357.56, + "probability": 0.5899 + }, + { + "start": 7358.53, + "end": 7362.14, + "probability": 0.9746 + }, + { + "start": 7362.3, + "end": 7365.4, + "probability": 0.9929 + }, + { + "start": 7366.7, + "end": 7372.06, + "probability": 0.9809 + }, + { + "start": 7373.02, + "end": 7374.7, + "probability": 0.978 + }, + { + "start": 7375.42, + "end": 7377.11, + "probability": 0.9224 + }, + { + "start": 7378.68, + "end": 7381.28, + "probability": 0.8539 + }, + { + "start": 7381.94, + "end": 7383.6, + "probability": 0.6161 + }, + { + "start": 7385.54, + "end": 7391.04, + "probability": 0.8784 + }, + { + "start": 7393.36, + "end": 7399.16, + "probability": 0.9716 + }, + { + "start": 7401.2, + "end": 7405.06, + "probability": 0.9927 + }, + { + "start": 7409.36, + "end": 7413.46, + "probability": 0.9956 + }, + { + "start": 7414.58, + "end": 7415.72, + "probability": 0.7675 + }, + { + "start": 7419.16, + "end": 7420.96, + "probability": 0.9956 + }, + { + "start": 7421.46, + "end": 7423.86, + "probability": 0.9924 + }, + { + "start": 7425.24, + "end": 7428.66, + "probability": 0.9849 + }, + { + "start": 7429.84, + "end": 7431.94, + "probability": 0.9956 + }, + { + "start": 7432.9, + "end": 7435.16, + "probability": 0.9771 + }, + { + "start": 7437.14, + "end": 7439.3, + "probability": 0.9841 + }, + { + "start": 7442.1, + "end": 7445.72, + "probability": 0.991 + }, + { + "start": 7449.82, + "end": 7453.88, + "probability": 0.9484 + }, + { + "start": 7455.04, + "end": 7460.52, + "probability": 0.9937 + }, + { + "start": 7464.08, + "end": 7467.1, + "probability": 0.9064 + }, + { + "start": 7467.1, + "end": 7467.68, + "probability": 0.6794 + }, + { + "start": 7468.2, + "end": 7469.84, + "probability": 0.4496 + }, + { + "start": 7470.5, + "end": 7473.42, + "probability": 0.9698 + }, + { + "start": 7473.42, + "end": 7478.24, + "probability": 0.9963 + }, + { + "start": 7478.68, + "end": 7479.72, + "probability": 0.8154 + }, + { + "start": 7480.56, + "end": 7484.42, + "probability": 0.9764 + }, + { + "start": 7486.18, + "end": 7487.04, + "probability": 0.8837 + }, + { + "start": 7487.56, + "end": 7488.74, + "probability": 0.788 + }, + { + "start": 7490.22, + "end": 7493.98, + "probability": 0.9956 + }, + { + "start": 7494.94, + "end": 7499.1, + "probability": 0.9966 + }, + { + "start": 7499.1, + "end": 7503.4, + "probability": 0.9932 + }, + { + "start": 7503.88, + "end": 7504.58, + "probability": 0.5741 + }, + { + "start": 7505.34, + "end": 7506.84, + "probability": 0.8647 + }, + { + "start": 7507.56, + "end": 7512.74, + "probability": 0.9897 + }, + { + "start": 7513.6, + "end": 7516.72, + "probability": 0.9395 + }, + { + "start": 7517.04, + "end": 7517.56, + "probability": 0.8736 + }, + { + "start": 7518.02, + "end": 7519.98, + "probability": 0.7003 + }, + { + "start": 7520.18, + "end": 7522.55, + "probability": 0.996 + }, + { + "start": 7523.18, + "end": 7526.42, + "probability": 0.7095 + }, + { + "start": 7529.52, + "end": 7531.62, + "probability": 0.9005 + }, + { + "start": 7532.26, + "end": 7536.24, + "probability": 0.9822 + }, + { + "start": 7536.42, + "end": 7537.72, + "probability": 0.8687 + }, + { + "start": 7537.98, + "end": 7539.12, + "probability": 0.7901 + }, + { + "start": 7539.64, + "end": 7544.38, + "probability": 0.9099 + }, + { + "start": 7544.68, + "end": 7545.5, + "probability": 0.8626 + }, + { + "start": 7549.68, + "end": 7551.23, + "probability": 0.454 + }, + { + "start": 7553.0, + "end": 7555.38, + "probability": 0.9869 + }, + { + "start": 7558.4, + "end": 7561.9, + "probability": 0.9868 + }, + { + "start": 7562.02, + "end": 7564.66, + "probability": 0.7392 + }, + { + "start": 7565.76, + "end": 7567.58, + "probability": 0.9215 + }, + { + "start": 7568.42, + "end": 7569.86, + "probability": 0.6078 + }, + { + "start": 7570.26, + "end": 7570.78, + "probability": 0.8423 + }, + { + "start": 7571.86, + "end": 7572.4, + "probability": 0.6182 + }, + { + "start": 7572.52, + "end": 7574.68, + "probability": 0.9434 + }, + { + "start": 7574.78, + "end": 7576.96, + "probability": 0.9572 + }, + { + "start": 7579.72, + "end": 7580.02, + "probability": 0.2706 + }, + { + "start": 7580.02, + "end": 7581.34, + "probability": 0.9116 + }, + { + "start": 7581.48, + "end": 7582.04, + "probability": 0.3306 + }, + { + "start": 7582.24, + "end": 7583.9, + "probability": 0.8342 + }, + { + "start": 7583.94, + "end": 7587.48, + "probability": 0.9902 + }, + { + "start": 7587.81, + "end": 7590.94, + "probability": 0.6246 + }, + { + "start": 7590.94, + "end": 7590.94, + "probability": 0.1576 + }, + { + "start": 7590.94, + "end": 7591.58, + "probability": 0.0955 + }, + { + "start": 7591.68, + "end": 7592.1, + "probability": 0.3847 + }, + { + "start": 7592.32, + "end": 7593.52, + "probability": 0.57 + }, + { + "start": 7594.36, + "end": 7595.1, + "probability": 0.7401 + }, + { + "start": 7595.82, + "end": 7597.86, + "probability": 0.8619 + }, + { + "start": 7598.78, + "end": 7601.2, + "probability": 0.7827 + }, + { + "start": 7601.34, + "end": 7601.94, + "probability": 0.9553 + }, + { + "start": 7602.54, + "end": 7606.32, + "probability": 0.9849 + }, + { + "start": 7607.62, + "end": 7612.74, + "probability": 0.9802 + }, + { + "start": 7613.72, + "end": 7614.41, + "probability": 0.7599 + }, + { + "start": 7614.64, + "end": 7616.74, + "probability": 0.9255 + }, + { + "start": 7617.1, + "end": 7618.78, + "probability": 0.9554 + }, + { + "start": 7620.02, + "end": 7622.72, + "probability": 0.9395 + }, + { + "start": 7624.08, + "end": 7628.44, + "probability": 0.9975 + }, + { + "start": 7629.56, + "end": 7631.64, + "probability": 0.9433 + }, + { + "start": 7632.84, + "end": 7636.3, + "probability": 0.9065 + }, + { + "start": 7637.72, + "end": 7642.42, + "probability": 0.8643 + }, + { + "start": 7642.86, + "end": 7644.86, + "probability": 0.9869 + }, + { + "start": 7645.1, + "end": 7651.16, + "probability": 0.9854 + }, + { + "start": 7651.9, + "end": 7652.62, + "probability": 0.902 + }, + { + "start": 7652.96, + "end": 7653.86, + "probability": 0.9863 + }, + { + "start": 7654.08, + "end": 7654.78, + "probability": 0.8413 + }, + { + "start": 7654.9, + "end": 7655.84, + "probability": 0.8516 + }, + { + "start": 7656.3, + "end": 7658.38, + "probability": 0.9948 + }, + { + "start": 7659.14, + "end": 7660.08, + "probability": 0.9579 + }, + { + "start": 7661.12, + "end": 7661.87, + "probability": 0.934 + }, + { + "start": 7663.1, + "end": 7668.02, + "probability": 0.9697 + }, + { + "start": 7669.08, + "end": 7670.61, + "probability": 0.9454 + }, + { + "start": 7671.52, + "end": 7676.24, + "probability": 0.748 + }, + { + "start": 7676.82, + "end": 7682.4, + "probability": 0.9277 + }, + { + "start": 7684.0, + "end": 7688.08, + "probability": 0.9956 + }, + { + "start": 7689.26, + "end": 7691.08, + "probability": 0.9985 + }, + { + "start": 7691.08, + "end": 7693.95, + "probability": 0.9863 + }, + { + "start": 7694.72, + "end": 7695.0, + "probability": 0.3754 + }, + { + "start": 7695.02, + "end": 7696.72, + "probability": 0.9242 + }, + { + "start": 7696.8, + "end": 7697.81, + "probability": 0.6448 + }, + { + "start": 7698.28, + "end": 7701.24, + "probability": 0.8768 + }, + { + "start": 7702.36, + "end": 7702.94, + "probability": 0.6827 + }, + { + "start": 7702.98, + "end": 7708.74, + "probability": 0.9742 + }, + { + "start": 7708.89, + "end": 7712.92, + "probability": 0.4345 + }, + { + "start": 7713.36, + "end": 7715.23, + "probability": 0.4409 + }, + { + "start": 7716.28, + "end": 7719.8, + "probability": 0.5787 + }, + { + "start": 7720.94, + "end": 7722.64, + "probability": 0.7171 + }, + { + "start": 7723.58, + "end": 7724.52, + "probability": 0.9548 + }, + { + "start": 7725.22, + "end": 7726.22, + "probability": 0.7115 + }, + { + "start": 7726.44, + "end": 7727.98, + "probability": 0.8413 + }, + { + "start": 7728.02, + "end": 7728.59, + "probability": 0.6543 + }, + { + "start": 7729.42, + "end": 7730.24, + "probability": 0.7199 + }, + { + "start": 7730.34, + "end": 7731.64, + "probability": 0.7146 + }, + { + "start": 7731.94, + "end": 7734.72, + "probability": 0.9531 + }, + { + "start": 7735.84, + "end": 7739.01, + "probability": 0.8255 + }, + { + "start": 7739.72, + "end": 7741.9, + "probability": 0.7196 + }, + { + "start": 7742.68, + "end": 7743.4, + "probability": 0.758 + }, + { + "start": 7744.22, + "end": 7745.82, + "probability": 0.6261 + }, + { + "start": 7745.86, + "end": 7749.3, + "probability": 0.8992 + }, + { + "start": 7750.42, + "end": 7751.94, + "probability": 0.9482 + }, + { + "start": 7752.04, + "end": 7753.46, + "probability": 0.7439 + }, + { + "start": 7753.66, + "end": 7754.34, + "probability": 0.5916 + }, + { + "start": 7755.14, + "end": 7756.48, + "probability": 0.9024 + }, + { + "start": 7756.74, + "end": 7759.72, + "probability": 0.9787 + }, + { + "start": 7759.82, + "end": 7760.6, + "probability": 0.8432 + }, + { + "start": 7760.64, + "end": 7762.32, + "probability": 0.7176 + }, + { + "start": 7762.48, + "end": 7763.0, + "probability": 0.689 + }, + { + "start": 7763.12, + "end": 7764.64, + "probability": 0.8496 + }, + { + "start": 7764.72, + "end": 7765.92, + "probability": 0.6061 + }, + { + "start": 7766.04, + "end": 7767.32, + "probability": 0.5813 + }, + { + "start": 7767.88, + "end": 7768.98, + "probability": 0.7843 + }, + { + "start": 7769.68, + "end": 7770.86, + "probability": 0.8902 + }, + { + "start": 7771.06, + "end": 7772.38, + "probability": 0.89 + }, + { + "start": 7772.42, + "end": 7776.28, + "probability": 0.8057 + }, + { + "start": 7776.72, + "end": 7778.7, + "probability": 0.9839 + }, + { + "start": 7779.32, + "end": 7780.62, + "probability": 0.1395 + }, + { + "start": 7781.52, + "end": 7782.06, + "probability": 0.7063 + }, + { + "start": 7782.3, + "end": 7783.38, + "probability": 0.7183 + }, + { + "start": 7783.86, + "end": 7785.52, + "probability": 0.1421 + }, + { + "start": 7785.52, + "end": 7787.84, + "probability": 0.4522 + }, + { + "start": 7787.88, + "end": 7789.04, + "probability": 0.6491 + }, + { + "start": 7791.67, + "end": 7794.92, + "probability": 0.9874 + }, + { + "start": 7794.92, + "end": 7798.94, + "probability": 0.9714 + }, + { + "start": 7799.92, + "end": 7803.4, + "probability": 0.8523 + }, + { + "start": 7804.06, + "end": 7804.52, + "probability": 0.6838 + }, + { + "start": 7804.66, + "end": 7805.48, + "probability": 0.928 + }, + { + "start": 7805.62, + "end": 7808.16, + "probability": 0.9272 + }, + { + "start": 7808.24, + "end": 7810.8, + "probability": 0.9578 + }, + { + "start": 7810.8, + "end": 7813.46, + "probability": 0.9487 + }, + { + "start": 7813.8, + "end": 7816.6, + "probability": 0.9484 + }, + { + "start": 7819.36, + "end": 7819.36, + "probability": 0.0466 + }, + { + "start": 7819.36, + "end": 7820.0, + "probability": 0.2838 + }, + { + "start": 7820.32, + "end": 7821.54, + "probability": 0.6184 + }, + { + "start": 7821.82, + "end": 7822.88, + "probability": 0.7118 + }, + { + "start": 7823.06, + "end": 7825.36, + "probability": 0.775 + }, + { + "start": 7825.48, + "end": 7826.26, + "probability": 0.5077 + }, + { + "start": 7827.96, + "end": 7828.17, + "probability": 0.3707 + }, + { + "start": 7829.22, + "end": 7831.52, + "probability": 0.6598 + }, + { + "start": 7831.92, + "end": 7834.76, + "probability": 0.1813 + }, + { + "start": 7834.76, + "end": 7835.34, + "probability": 0.3408 + }, + { + "start": 7835.4, + "end": 7838.48, + "probability": 0.8015 + }, + { + "start": 7839.78, + "end": 7843.21, + "probability": 0.9802 + }, + { + "start": 7843.48, + "end": 7846.28, + "probability": 0.9763 + }, + { + "start": 7847.06, + "end": 7847.72, + "probability": 0.0032 + }, + { + "start": 7847.74, + "end": 7849.18, + "probability": 0.727 + }, + { + "start": 7849.8, + "end": 7852.72, + "probability": 0.4268 + }, + { + "start": 7852.72, + "end": 7853.6, + "probability": 0.7854 + }, + { + "start": 7854.32, + "end": 7856.14, + "probability": 0.8256 + }, + { + "start": 7856.36, + "end": 7858.14, + "probability": 0.6857 + }, + { + "start": 7858.2, + "end": 7859.36, + "probability": 0.5015 + }, + { + "start": 7859.4, + "end": 7859.54, + "probability": 0.3612 + }, + { + "start": 7859.68, + "end": 7862.5, + "probability": 0.7529 + }, + { + "start": 7862.62, + "end": 7864.48, + "probability": 0.6775 + }, + { + "start": 7864.96, + "end": 7866.0, + "probability": 0.9609 + }, + { + "start": 7866.16, + "end": 7867.2, + "probability": 0.6194 + }, + { + "start": 7867.28, + "end": 7868.66, + "probability": 0.332 + }, + { + "start": 7868.7, + "end": 7869.76, + "probability": 0.6177 + }, + { + "start": 7870.02, + "end": 7872.48, + "probability": 0.209 + }, + { + "start": 7872.66, + "end": 7875.36, + "probability": 0.4052 + }, + { + "start": 7875.36, + "end": 7876.86, + "probability": 0.0746 + }, + { + "start": 7877.51, + "end": 7881.16, + "probability": 0.0558 + }, + { + "start": 7881.26, + "end": 7881.26, + "probability": 0.482 + }, + { + "start": 7881.26, + "end": 7881.26, + "probability": 0.1469 + }, + { + "start": 7881.26, + "end": 7881.26, + "probability": 0.5185 + }, + { + "start": 7881.26, + "end": 7889.04, + "probability": 0.5543 + }, + { + "start": 7890.06, + "end": 7891.26, + "probability": 0.836 + }, + { + "start": 7891.4, + "end": 7892.03, + "probability": 0.0023 + }, + { + "start": 7894.22, + "end": 7895.28, + "probability": 0.1986 + }, + { + "start": 7895.28, + "end": 7895.9, + "probability": 0.6753 + }, + { + "start": 7897.2, + "end": 7900.48, + "probability": 0.5094 + }, + { + "start": 7900.82, + "end": 7901.96, + "probability": 0.373 + }, + { + "start": 7902.1, + "end": 7903.38, + "probability": 0.7432 + }, + { + "start": 7903.68, + "end": 7905.56, + "probability": 0.3413 + }, + { + "start": 7905.94, + "end": 7907.0, + "probability": 0.3609 + }, + { + "start": 7907.94, + "end": 7912.4, + "probability": 0.9811 + }, + { + "start": 7912.54, + "end": 7914.33, + "probability": 0.676 + }, + { + "start": 7915.18, + "end": 7916.28, + "probability": 0.8125 + }, + { + "start": 7916.48, + "end": 7916.98, + "probability": 0.5642 + }, + { + "start": 7918.0, + "end": 7918.53, + "probability": 0.6711 + }, + { + "start": 7919.36, + "end": 7921.3, + "probability": 0.9978 + }, + { + "start": 7922.0, + "end": 7927.78, + "probability": 0.9714 + }, + { + "start": 7928.9, + "end": 7930.74, + "probability": 0.9866 + }, + { + "start": 7930.74, + "end": 7933.48, + "probability": 0.9233 + }, + { + "start": 7933.96, + "end": 7936.46, + "probability": 0.6877 + }, + { + "start": 7937.26, + "end": 7941.12, + "probability": 0.9613 + }, + { + "start": 7941.78, + "end": 7945.77, + "probability": 0.724 + }, + { + "start": 7947.94, + "end": 7950.3, + "probability": 0.9589 + }, + { + "start": 7950.42, + "end": 7952.68, + "probability": 0.9518 + }, + { + "start": 7953.28, + "end": 7953.92, + "probability": 0.9664 + }, + { + "start": 7954.96, + "end": 7961.84, + "probability": 0.9856 + }, + { + "start": 7963.26, + "end": 7967.58, + "probability": 0.9917 + }, + { + "start": 7968.28, + "end": 7969.98, + "probability": 0.8137 + }, + { + "start": 7970.58, + "end": 7973.6, + "probability": 0.9868 + }, + { + "start": 7974.02, + "end": 7975.64, + "probability": 0.7451 + }, + { + "start": 7975.72, + "end": 7976.72, + "probability": 0.5684 + }, + { + "start": 7976.86, + "end": 7977.73, + "probability": 0.585 + }, + { + "start": 7978.78, + "end": 7980.36, + "probability": 0.8944 + }, + { + "start": 7980.62, + "end": 7983.74, + "probability": 0.9746 + }, + { + "start": 7983.92, + "end": 7986.34, + "probability": 0.9255 + }, + { + "start": 7986.34, + "end": 7990.26, + "probability": 0.9709 + }, + { + "start": 7990.88, + "end": 7993.84, + "probability": 0.9684 + }, + { + "start": 7994.56, + "end": 7996.55, + "probability": 0.9873 + }, + { + "start": 7997.22, + "end": 8001.3, + "probability": 0.9265 + }, + { + "start": 8002.26, + "end": 8004.62, + "probability": 0.812 + }, + { + "start": 8005.58, + "end": 8011.08, + "probability": 0.8977 + }, + { + "start": 8011.44, + "end": 8011.52, + "probability": 0.0099 + }, + { + "start": 8012.28, + "end": 8012.98, + "probability": 0.0452 + }, + { + "start": 8012.98, + "end": 8012.98, + "probability": 0.1121 + }, + { + "start": 8012.98, + "end": 8014.0, + "probability": 0.313 + }, + { + "start": 8014.79, + "end": 8018.82, + "probability": 0.8565 + }, + { + "start": 8019.68, + "end": 8022.02, + "probability": 0.5045 + }, + { + "start": 8022.92, + "end": 8025.42, + "probability": 0.5037 + }, + { + "start": 8025.92, + "end": 8031.38, + "probability": 0.3051 + }, + { + "start": 8031.52, + "end": 8033.1, + "probability": 0.4191 + }, + { + "start": 8033.24, + "end": 8033.98, + "probability": 0.5028 + }, + { + "start": 8034.98, + "end": 8036.64, + "probability": 0.927 + }, + { + "start": 8036.68, + "end": 8037.74, + "probability": 0.7419 + }, + { + "start": 8037.9, + "end": 8039.02, + "probability": 0.9395 + }, + { + "start": 8040.8, + "end": 8042.03, + "probability": 0.189 + }, + { + "start": 8042.18, + "end": 8045.07, + "probability": 0.5459 + }, + { + "start": 8046.26, + "end": 8048.12, + "probability": 0.5881 + }, + { + "start": 8049.58, + "end": 8050.38, + "probability": 0.5424 + }, + { + "start": 8051.88, + "end": 8052.12, + "probability": 0.0781 + }, + { + "start": 8052.12, + "end": 8054.54, + "probability": 0.6777 + }, + { + "start": 8055.96, + "end": 8058.22, + "probability": 0.7902 + }, + { + "start": 8058.32, + "end": 8059.7, + "probability": 0.8612 + }, + { + "start": 8060.28, + "end": 8062.9, + "probability": 0.8544 + }, + { + "start": 8063.66, + "end": 8064.33, + "probability": 0.3411 + }, + { + "start": 8064.7, + "end": 8066.5, + "probability": 0.8287 + }, + { + "start": 8067.2, + "end": 8070.06, + "probability": 0.8433 + }, + { + "start": 8074.02, + "end": 8076.64, + "probability": 0.7176 + }, + { + "start": 8076.66, + "end": 8076.66, + "probability": 0.2199 + }, + { + "start": 8076.66, + "end": 8076.66, + "probability": 0.1831 + }, + { + "start": 8076.66, + "end": 8077.78, + "probability": 0.6476 + }, + { + "start": 8078.46, + "end": 8079.18, + "probability": 0.5536 + }, + { + "start": 8079.28, + "end": 8080.15, + "probability": 0.5021 + }, + { + "start": 8080.56, + "end": 8081.38, + "probability": 0.3665 + }, + { + "start": 8082.06, + "end": 8083.46, + "probability": 0.721 + }, + { + "start": 8084.38, + "end": 8085.48, + "probability": 0.7744 + }, + { + "start": 8088.3, + "end": 8090.28, + "probability": 0.292 + }, + { + "start": 8090.28, + "end": 8090.28, + "probability": 0.4777 + }, + { + "start": 8090.28, + "end": 8090.8, + "probability": 0.793 + }, + { + "start": 8090.82, + "end": 8091.62, + "probability": 0.5983 + }, + { + "start": 8091.66, + "end": 8097.44, + "probability": 0.9976 + }, + { + "start": 8098.14, + "end": 8098.87, + "probability": 0.8486 + }, + { + "start": 8100.22, + "end": 8102.26, + "probability": 0.9733 + }, + { + "start": 8102.36, + "end": 8102.82, + "probability": 0.9203 + }, + { + "start": 8103.62, + "end": 8104.18, + "probability": 0.9095 + }, + { + "start": 8105.02, + "end": 8108.36, + "probability": 0.91 + }, + { + "start": 8110.5, + "end": 8111.52, + "probability": 0.9657 + }, + { + "start": 8111.6, + "end": 8112.32, + "probability": 0.7988 + }, + { + "start": 8112.4, + "end": 8112.98, + "probability": 0.83 + }, + { + "start": 8113.02, + "end": 8113.48, + "probability": 0.7019 + }, + { + "start": 8113.56, + "end": 8114.48, + "probability": 0.9458 + }, + { + "start": 8115.38, + "end": 8118.1, + "probability": 0.801 + }, + { + "start": 8119.16, + "end": 8120.96, + "probability": 0.9935 + }, + { + "start": 8121.94, + "end": 8122.9, + "probability": 0.6127 + }, + { + "start": 8123.8, + "end": 8126.64, + "probability": 0.7105 + }, + { + "start": 8127.46, + "end": 8129.2, + "probability": 0.978 + }, + { + "start": 8129.9, + "end": 8132.98, + "probability": 0.927 + }, + { + "start": 8133.8, + "end": 8135.49, + "probability": 0.7941 + }, + { + "start": 8136.32, + "end": 8138.6, + "probability": 0.809 + }, + { + "start": 8139.26, + "end": 8141.1, + "probability": 0.9927 + }, + { + "start": 8142.26, + "end": 8144.06, + "probability": 0.6528 + }, + { + "start": 8144.66, + "end": 8144.92, + "probability": 0.1297 + }, + { + "start": 8144.92, + "end": 8148.86, + "probability": 0.8872 + }, + { + "start": 8150.2, + "end": 8152.96, + "probability": 0.9556 + }, + { + "start": 8153.12, + "end": 8154.7, + "probability": 0.8795 + }, + { + "start": 8155.44, + "end": 8160.6, + "probability": 0.978 + }, + { + "start": 8160.6, + "end": 8163.86, + "probability": 0.9961 + }, + { + "start": 8163.92, + "end": 8164.54, + "probability": 0.7281 + }, + { + "start": 8165.72, + "end": 8167.8, + "probability": 0.8976 + }, + { + "start": 8168.1, + "end": 8169.86, + "probability": 0.9736 + }, + { + "start": 8170.9, + "end": 8171.26, + "probability": 0.5039 + }, + { + "start": 8171.3, + "end": 8171.86, + "probability": 0.886 + }, + { + "start": 8172.02, + "end": 8172.56, + "probability": 0.968 + }, + { + "start": 8172.62, + "end": 8176.34, + "probability": 0.8734 + }, + { + "start": 8176.36, + "end": 8176.76, + "probability": 0.7608 + }, + { + "start": 8177.68, + "end": 8179.1, + "probability": 0.9961 + }, + { + "start": 8179.66, + "end": 8180.98, + "probability": 0.9883 + }, + { + "start": 8182.02, + "end": 8185.26, + "probability": 0.9784 + }, + { + "start": 8186.04, + "end": 8187.1, + "probability": 0.8457 + }, + { + "start": 8187.22, + "end": 8192.44, + "probability": 0.9905 + }, + { + "start": 8192.72, + "end": 8196.54, + "probability": 0.998 + }, + { + "start": 8196.54, + "end": 8201.14, + "probability": 0.9985 + }, + { + "start": 8201.18, + "end": 8202.48, + "probability": 0.95 + }, + { + "start": 8202.8, + "end": 8207.28, + "probability": 0.9959 + }, + { + "start": 8207.74, + "end": 8209.85, + "probability": 0.8901 + }, + { + "start": 8209.86, + "end": 8212.56, + "probability": 0.9927 + }, + { + "start": 8213.66, + "end": 8216.04, + "probability": 0.6749 + }, + { + "start": 8216.82, + "end": 8218.19, + "probability": 0.7464 + }, + { + "start": 8218.48, + "end": 8220.24, + "probability": 0.991 + }, + { + "start": 8221.04, + "end": 8222.86, + "probability": 0.9285 + }, + { + "start": 8223.58, + "end": 8224.9, + "probability": 0.5465 + }, + { + "start": 8225.48, + "end": 8229.8, + "probability": 0.8645 + }, + { + "start": 8229.8, + "end": 8231.16, + "probability": 0.5938 + }, + { + "start": 8231.52, + "end": 8234.56, + "probability": 0.8841 + }, + { + "start": 8234.64, + "end": 8235.9, + "probability": 0.8642 + }, + { + "start": 8236.2, + "end": 8238.72, + "probability": 0.7632 + }, + { + "start": 8238.8, + "end": 8239.76, + "probability": 0.7123 + }, + { + "start": 8240.59, + "end": 8242.45, + "probability": 0.8525 + }, + { + "start": 8243.5, + "end": 8246.56, + "probability": 0.7426 + }, + { + "start": 8246.68, + "end": 8248.06, + "probability": 0.9396 + }, + { + "start": 8248.72, + "end": 8249.51, + "probability": 0.9941 + }, + { + "start": 8250.22, + "end": 8251.06, + "probability": 0.7512 + }, + { + "start": 8251.1, + "end": 8251.72, + "probability": 0.7929 + }, + { + "start": 8251.82, + "end": 8253.06, + "probability": 0.8935 + }, + { + "start": 8253.12, + "end": 8254.14, + "probability": 0.8317 + }, + { + "start": 8255.34, + "end": 8257.28, + "probability": 0.8853 + }, + { + "start": 8257.7, + "end": 8259.35, + "probability": 0.3689 + }, + { + "start": 8262.24, + "end": 8262.54, + "probability": 0.0434 + }, + { + "start": 8262.54, + "end": 8262.54, + "probability": 0.0172 + }, + { + "start": 8262.54, + "end": 8263.73, + "probability": 0.4475 + }, + { + "start": 8263.94, + "end": 8265.06, + "probability": 0.6672 + }, + { + "start": 8265.72, + "end": 8267.52, + "probability": 0.988 + }, + { + "start": 8267.64, + "end": 8269.28, + "probability": 0.9615 + }, + { + "start": 8269.38, + "end": 8269.98, + "probability": 0.3253 + }, + { + "start": 8270.96, + "end": 8271.44, + "probability": 0.9326 + }, + { + "start": 8272.44, + "end": 8275.27, + "probability": 0.9359 + }, + { + "start": 8275.56, + "end": 8276.74, + "probability": 0.6027 + }, + { + "start": 8277.34, + "end": 8280.82, + "probability": 0.9786 + }, + { + "start": 8281.22, + "end": 8285.92, + "probability": 0.8182 + }, + { + "start": 8286.94, + "end": 8288.76, + "probability": 0.4781 + }, + { + "start": 8288.82, + "end": 8289.82, + "probability": 0.3365 + }, + { + "start": 8290.44, + "end": 8292.98, + "probability": 0.5035 + }, + { + "start": 8293.2, + "end": 8293.36, + "probability": 0.0114 + }, + { + "start": 8293.36, + "end": 8295.05, + "probability": 0.7845 + }, + { + "start": 8295.4, + "end": 8298.24, + "probability": 0.8558 + }, + { + "start": 8298.4, + "end": 8300.16, + "probability": 0.7596 + }, + { + "start": 8300.48, + "end": 8301.75, + "probability": 0.9897 + }, + { + "start": 8302.02, + "end": 8303.58, + "probability": 0.958 + }, + { + "start": 8304.22, + "end": 8306.9, + "probability": 0.5878 + }, + { + "start": 8307.84, + "end": 8310.36, + "probability": 0.9501 + }, + { + "start": 8311.66, + "end": 8315.34, + "probability": 0.9408 + }, + { + "start": 8315.46, + "end": 8317.52, + "probability": 0.8098 + }, + { + "start": 8317.88, + "end": 8319.06, + "probability": 0.9431 + }, + { + "start": 8320.02, + "end": 8322.7, + "probability": 0.9891 + }, + { + "start": 8323.88, + "end": 8327.76, + "probability": 0.812 + }, + { + "start": 8328.06, + "end": 8328.7, + "probability": 0.978 + }, + { + "start": 8329.4, + "end": 8333.72, + "probability": 0.8402 + }, + { + "start": 8333.88, + "end": 8334.3, + "probability": 0.8335 + }, + { + "start": 8334.32, + "end": 8335.58, + "probability": 0.9648 + }, + { + "start": 8336.1, + "end": 8337.98, + "probability": 0.9948 + }, + { + "start": 8338.12, + "end": 8339.24, + "probability": 0.934 + }, + { + "start": 8339.62, + "end": 8342.38, + "probability": 0.9656 + }, + { + "start": 8342.64, + "end": 8344.12, + "probability": 0.9496 + }, + { + "start": 8345.3, + "end": 8346.62, + "probability": 0.7759 + }, + { + "start": 8347.16, + "end": 8347.32, + "probability": 0.3796 + }, + { + "start": 8347.32, + "end": 8348.14, + "probability": 0.8984 + }, + { + "start": 8348.28, + "end": 8348.64, + "probability": 0.8295 + }, + { + "start": 8348.72, + "end": 8349.46, + "probability": 0.8067 + }, + { + "start": 8349.5, + "end": 8351.8, + "probability": 0.9412 + }, + { + "start": 8351.8, + "end": 8355.18, + "probability": 0.6069 + }, + { + "start": 8355.4, + "end": 8357.78, + "probability": 0.9334 + }, + { + "start": 8358.6, + "end": 8362.28, + "probability": 0.7556 + }, + { + "start": 8362.4, + "end": 8363.1, + "probability": 0.6471 + }, + { + "start": 8363.16, + "end": 8364.42, + "probability": 0.7618 + }, + { + "start": 8364.82, + "end": 8365.35, + "probability": 0.7787 + }, + { + "start": 8365.74, + "end": 8365.94, + "probability": 0.6794 + }, + { + "start": 8366.02, + "end": 8366.46, + "probability": 0.7604 + }, + { + "start": 8367.88, + "end": 8368.96, + "probability": 0.8788 + }, + { + "start": 8369.14, + "end": 8370.64, + "probability": 0.728 + }, + { + "start": 8371.06, + "end": 8372.08, + "probability": 0.6563 + }, + { + "start": 8372.22, + "end": 8374.18, + "probability": 0.7068 + }, + { + "start": 8374.52, + "end": 8375.46, + "probability": 0.7202 + }, + { + "start": 8375.52, + "end": 8376.14, + "probability": 0.6222 + }, + { + "start": 8376.16, + "end": 8378.08, + "probability": 0.8276 + }, + { + "start": 8378.5, + "end": 8379.27, + "probability": 0.7546 + }, + { + "start": 8379.58, + "end": 8380.98, + "probability": 0.7708 + }, + { + "start": 8381.1, + "end": 8382.4, + "probability": 0.5301 + }, + { + "start": 8382.5, + "end": 8383.52, + "probability": 0.9728 + }, + { + "start": 8384.1, + "end": 8385.16, + "probability": 0.6115 + }, + { + "start": 8385.68, + "end": 8388.7, + "probability": 0.8421 + }, + { + "start": 8391.11, + "end": 8391.34, + "probability": 0.0566 + }, + { + "start": 8391.34, + "end": 8392.36, + "probability": 0.2776 + }, + { + "start": 8392.44, + "end": 8394.2, + "probability": 0.8761 + }, + { + "start": 8394.36, + "end": 8396.3, + "probability": 0.6882 + }, + { + "start": 8396.8, + "end": 8397.0, + "probability": 0.3576 + }, + { + "start": 8397.04, + "end": 8398.24, + "probability": 0.9607 + }, + { + "start": 8398.78, + "end": 8399.94, + "probability": 0.9583 + }, + { + "start": 8400.6, + "end": 8401.09, + "probability": 0.6348 + }, + { + "start": 8401.7, + "end": 8403.58, + "probability": 0.9956 + }, + { + "start": 8403.7, + "end": 8406.26, + "probability": 0.9331 + }, + { + "start": 8406.34, + "end": 8406.8, + "probability": 0.8642 + }, + { + "start": 8406.82, + "end": 8410.84, + "probability": 0.9705 + }, + { + "start": 8411.06, + "end": 8411.48, + "probability": 0.8763 + }, + { + "start": 8411.52, + "end": 8412.74, + "probability": 0.986 + }, + { + "start": 8412.96, + "end": 8413.86, + "probability": 0.9516 + }, + { + "start": 8413.96, + "end": 8414.58, + "probability": 0.6553 + }, + { + "start": 8414.86, + "end": 8417.16, + "probability": 0.9072 + }, + { + "start": 8417.52, + "end": 8418.56, + "probability": 0.6413 + }, + { + "start": 8418.76, + "end": 8420.64, + "probability": 0.8595 + }, + { + "start": 8420.96, + "end": 8423.36, + "probability": 0.9465 + }, + { + "start": 8423.68, + "end": 8426.22, + "probability": 0.9971 + }, + { + "start": 8426.64, + "end": 8427.3, + "probability": 0.6444 + }, + { + "start": 8427.38, + "end": 8427.76, + "probability": 0.8645 + }, + { + "start": 8427.82, + "end": 8428.62, + "probability": 0.9087 + }, + { + "start": 8428.7, + "end": 8429.62, + "probability": 0.8762 + }, + { + "start": 8429.8, + "end": 8430.22, + "probability": 0.5646 + }, + { + "start": 8430.28, + "end": 8432.76, + "probability": 0.7733 + }, + { + "start": 8433.6, + "end": 8436.22, + "probability": 0.8264 + }, + { + "start": 8437.16, + "end": 8437.93, + "probability": 0.1933 + }, + { + "start": 8438.96, + "end": 8440.12, + "probability": 0.9104 + }, + { + "start": 8440.12, + "end": 8440.62, + "probability": 0.9165 + }, + { + "start": 8441.44, + "end": 8443.1, + "probability": 0.8785 + }, + { + "start": 8443.6, + "end": 8447.2, + "probability": 0.9951 + }, + { + "start": 8447.24, + "end": 8448.08, + "probability": 0.9658 + }, + { + "start": 8448.18, + "end": 8448.92, + "probability": 0.4388 + }, + { + "start": 8449.02, + "end": 8449.78, + "probability": 0.6467 + }, + { + "start": 8450.6, + "end": 8451.78, + "probability": 0.6547 + }, + { + "start": 8452.48, + "end": 8454.1, + "probability": 0.8103 + }, + { + "start": 8454.4, + "end": 8455.37, + "probability": 0.8669 + }, + { + "start": 8455.66, + "end": 8460.06, + "probability": 0.9497 + }, + { + "start": 8460.06, + "end": 8464.0, + "probability": 0.974 + }, + { + "start": 8464.52, + "end": 8465.7, + "probability": 0.6608 + }, + { + "start": 8465.84, + "end": 8466.44, + "probability": 0.5796 + }, + { + "start": 8466.52, + "end": 8467.01, + "probability": 0.7256 + }, + { + "start": 8467.48, + "end": 8467.96, + "probability": 0.7644 + }, + { + "start": 8468.08, + "end": 8468.88, + "probability": 0.6796 + }, + { + "start": 8469.32, + "end": 8470.08, + "probability": 0.7898 + }, + { + "start": 8470.14, + "end": 8470.42, + "probability": 0.5934 + }, + { + "start": 8470.88, + "end": 8472.31, + "probability": 0.9561 + }, + { + "start": 8472.42, + "end": 8473.32, + "probability": 0.8674 + }, + { + "start": 8474.18, + "end": 8474.64, + "probability": 0.435 + }, + { + "start": 8474.7, + "end": 8476.01, + "probability": 0.8947 + }, + { + "start": 8476.42, + "end": 8476.92, + "probability": 0.7734 + }, + { + "start": 8477.0, + "end": 8477.59, + "probability": 0.8102 + }, + { + "start": 8478.54, + "end": 8479.76, + "probability": 0.6629 + }, + { + "start": 8480.68, + "end": 8481.4, + "probability": 0.3553 + }, + { + "start": 8481.44, + "end": 8482.16, + "probability": 0.7177 + }, + { + "start": 8482.64, + "end": 8482.99, + "probability": 0.4027 + }, + { + "start": 8483.4, + "end": 8483.86, + "probability": 0.7267 + }, + { + "start": 8484.54, + "end": 8484.98, + "probability": 0.682 + }, + { + "start": 8485.04, + "end": 8485.18, + "probability": 0.8622 + }, + { + "start": 8485.26, + "end": 8486.59, + "probability": 0.7861 + }, + { + "start": 8487.02, + "end": 8488.62, + "probability": 0.7363 + }, + { + "start": 8488.68, + "end": 8491.94, + "probability": 0.7949 + }, + { + "start": 8492.1, + "end": 8492.78, + "probability": 0.3775 + }, + { + "start": 8492.88, + "end": 8493.63, + "probability": 0.7777 + }, + { + "start": 8494.28, + "end": 8496.46, + "probability": 0.476 + }, + { + "start": 8496.58, + "end": 8496.72, + "probability": 0.4396 + }, + { + "start": 8496.76, + "end": 8498.2, + "probability": 0.5123 + }, + { + "start": 8498.54, + "end": 8499.8, + "probability": 0.8763 + }, + { + "start": 8500.46, + "end": 8502.36, + "probability": 0.5038 + }, + { + "start": 8503.62, + "end": 8507.88, + "probability": 0.6476 + }, + { + "start": 8508.38, + "end": 8509.32, + "probability": 0.5266 + }, + { + "start": 8509.36, + "end": 8510.11, + "probability": 0.6748 + }, + { + "start": 8510.18, + "end": 8510.56, + "probability": 0.6809 + }, + { + "start": 8510.56, + "end": 8511.36, + "probability": 0.8199 + }, + { + "start": 8511.66, + "end": 8512.94, + "probability": 0.754 + }, + { + "start": 8513.0, + "end": 8514.76, + "probability": 0.9658 + }, + { + "start": 8514.82, + "end": 8515.16, + "probability": 0.8022 + }, + { + "start": 8515.2, + "end": 8515.66, + "probability": 0.894 + }, + { + "start": 8515.74, + "end": 8516.42, + "probability": 0.9429 + }, + { + "start": 8516.68, + "end": 8517.34, + "probability": 0.7087 + }, + { + "start": 8517.68, + "end": 8518.88, + "probability": 0.9683 + }, + { + "start": 8518.96, + "end": 8520.78, + "probability": 0.8256 + }, + { + "start": 8520.86, + "end": 8522.5, + "probability": 0.5996 + }, + { + "start": 8523.5, + "end": 8528.16, + "probability": 0.9673 + }, + { + "start": 8528.24, + "end": 8529.24, + "probability": 0.0243 + }, + { + "start": 8529.24, + "end": 8529.24, + "probability": 0.121 + }, + { + "start": 8529.24, + "end": 8533.14, + "probability": 0.972 + }, + { + "start": 8533.48, + "end": 8534.72, + "probability": 0.8961 + }, + { + "start": 8534.92, + "end": 8535.16, + "probability": 0.8422 + }, + { + "start": 8535.62, + "end": 8539.8, + "probability": 0.2578 + }, + { + "start": 8541.78, + "end": 8542.58, + "probability": 0.0969 + }, + { + "start": 8542.58, + "end": 8543.98, + "probability": 0.1517 + }, + { + "start": 8544.04, + "end": 8545.54, + "probability": 0.6626 + }, + { + "start": 8545.56, + "end": 8553.24, + "probability": 0.7546 + }, + { + "start": 8553.54, + "end": 8554.32, + "probability": 0.7229 + }, + { + "start": 8555.34, + "end": 8556.06, + "probability": 0.8473 + }, + { + "start": 8556.24, + "end": 8556.82, + "probability": 0.7503 + }, + { + "start": 8556.88, + "end": 8560.88, + "probability": 0.8799 + }, + { + "start": 8561.78, + "end": 8563.4, + "probability": 0.9466 + }, + { + "start": 8563.84, + "end": 8566.9, + "probability": 0.9941 + }, + { + "start": 8567.42, + "end": 8569.94, + "probability": 0.9565 + }, + { + "start": 8570.58, + "end": 8571.92, + "probability": 0.7925 + }, + { + "start": 8572.78, + "end": 8574.02, + "probability": 0.6147 + }, + { + "start": 8574.92, + "end": 8575.18, + "probability": 0.844 + }, + { + "start": 8575.4, + "end": 8576.98, + "probability": 0.7005 + }, + { + "start": 8577.04, + "end": 8580.37, + "probability": 0.8719 + }, + { + "start": 8581.3, + "end": 8584.4, + "probability": 0.9246 + }, + { + "start": 8585.08, + "end": 8586.66, + "probability": 0.8962 + }, + { + "start": 8587.78, + "end": 8590.04, + "probability": 0.986 + }, + { + "start": 8590.22, + "end": 8590.94, + "probability": 0.4598 + }, + { + "start": 8591.18, + "end": 8591.4, + "probability": 0.4808 + }, + { + "start": 8591.62, + "end": 8596.94, + "probability": 0.949 + }, + { + "start": 8597.66, + "end": 8600.24, + "probability": 0.7154 + }, + { + "start": 8601.06, + "end": 8602.56, + "probability": 0.7486 + }, + { + "start": 8604.08, + "end": 8608.04, + "probability": 0.776 + }, + { + "start": 8608.2, + "end": 8610.38, + "probability": 0.9897 + }, + { + "start": 8610.62, + "end": 8612.12, + "probability": 0.9951 + }, + { + "start": 8612.76, + "end": 8615.64, + "probability": 0.9941 + }, + { + "start": 8616.42, + "end": 8618.3, + "probability": 0.9883 + }, + { + "start": 8620.46, + "end": 8622.08, + "probability": 0.9896 + }, + { + "start": 8622.72, + "end": 8624.86, + "probability": 0.9229 + }, + { + "start": 8625.38, + "end": 8626.44, + "probability": 0.7608 + }, + { + "start": 8627.7, + "end": 8630.0, + "probability": 0.9702 + }, + { + "start": 8631.04, + "end": 8633.24, + "probability": 0.9265 + }, + { + "start": 8633.44, + "end": 8634.44, + "probability": 0.8643 + }, + { + "start": 8634.56, + "end": 8640.34, + "probability": 0.9935 + }, + { + "start": 8642.0, + "end": 8644.12, + "probability": 0.9709 + }, + { + "start": 8645.02, + "end": 8648.36, + "probability": 0.981 + }, + { + "start": 8649.46, + "end": 8651.04, + "probability": 0.7523 + }, + { + "start": 8652.62, + "end": 8655.5, + "probability": 0.6957 + }, + { + "start": 8657.2, + "end": 8658.2, + "probability": 0.9241 + }, + { + "start": 8658.34, + "end": 8660.88, + "probability": 0.7401 + }, + { + "start": 8661.5, + "end": 8661.98, + "probability": 0.9338 + }, + { + "start": 8662.6, + "end": 8664.2, + "probability": 0.9556 + }, + { + "start": 8665.62, + "end": 8666.9, + "probability": 0.6177 + }, + { + "start": 8667.5, + "end": 8668.22, + "probability": 0.8782 + }, + { + "start": 8668.9, + "end": 8669.32, + "probability": 0.7557 + }, + { + "start": 8669.46, + "end": 8672.02, + "probability": 0.8503 + }, + { + "start": 8672.22, + "end": 8674.18, + "probability": 0.9799 + }, + { + "start": 8674.34, + "end": 8675.0, + "probability": 0.8517 + }, + { + "start": 8675.06, + "end": 8675.64, + "probability": 0.9342 + }, + { + "start": 8675.68, + "end": 8676.4, + "probability": 0.9411 + }, + { + "start": 8676.52, + "end": 8677.14, + "probability": 0.989 + }, + { + "start": 8677.78, + "end": 8679.96, + "probability": 0.2095 + }, + { + "start": 8682.41, + "end": 8684.1, + "probability": 0.145 + }, + { + "start": 8684.36, + "end": 8684.84, + "probability": 0.3679 + }, + { + "start": 8685.46, + "end": 8685.46, + "probability": 0.425 + }, + { + "start": 8685.46, + "end": 8688.62, + "probability": 0.9333 + }, + { + "start": 8688.74, + "end": 8689.64, + "probability": 0.0331 + }, + { + "start": 8689.82, + "end": 8691.22, + "probability": 0.4127 + }, + { + "start": 8691.28, + "end": 8692.18, + "probability": 0.6056 + }, + { + "start": 8692.3, + "end": 8692.98, + "probability": 0.7773 + }, + { + "start": 8693.88, + "end": 8696.42, + "probability": 0.904 + }, + { + "start": 8697.36, + "end": 8697.9, + "probability": 0.989 + }, + { + "start": 8698.94, + "end": 8701.08, + "probability": 0.6929 + }, + { + "start": 8701.46, + "end": 8703.08, + "probability": 0.9911 + }, + { + "start": 8703.7, + "end": 8703.82, + "probability": 0.3044 + }, + { + "start": 8703.94, + "end": 8704.52, + "probability": 0.2322 + }, + { + "start": 8704.56, + "end": 8707.18, + "probability": 0.9688 + }, + { + "start": 8707.3, + "end": 8708.42, + "probability": 0.7651 + }, + { + "start": 8708.56, + "end": 8708.72, + "probability": 0.6152 + }, + { + "start": 8708.86, + "end": 8710.9, + "probability": 0.6123 + }, + { + "start": 8711.04, + "end": 8712.91, + "probability": 0.4773 + }, + { + "start": 8713.28, + "end": 8717.08, + "probability": 0.7468 + }, + { + "start": 8717.6, + "end": 8720.62, + "probability": 0.8393 + }, + { + "start": 8720.66, + "end": 8723.18, + "probability": 0.7965 + }, + { + "start": 8723.86, + "end": 8725.66, + "probability": 0.6515 + }, + { + "start": 8726.24, + "end": 8727.04, + "probability": 0.894 + }, + { + "start": 8727.2, + "end": 8727.99, + "probability": 0.971 + }, + { + "start": 8728.14, + "end": 8728.61, + "probability": 0.8928 + }, + { + "start": 8728.94, + "end": 8729.72, + "probability": 0.6637 + }, + { + "start": 8729.76, + "end": 8730.48, + "probability": 0.6887 + }, + { + "start": 8730.76, + "end": 8736.3, + "probability": 0.9401 + }, + { + "start": 8736.74, + "end": 8740.78, + "probability": 0.9946 + }, + { + "start": 8740.78, + "end": 8745.88, + "probability": 0.9991 + }, + { + "start": 8746.94, + "end": 8748.18, + "probability": 0.9377 + }, + { + "start": 8748.72, + "end": 8751.9, + "probability": 0.9382 + }, + { + "start": 8751.9, + "end": 8755.2, + "probability": 0.9976 + }, + { + "start": 8755.42, + "end": 8757.96, + "probability": 0.9268 + }, + { + "start": 8758.62, + "end": 8761.6, + "probability": 0.935 + }, + { + "start": 8762.6, + "end": 8763.94, + "probability": 0.976 + }, + { + "start": 8764.92, + "end": 8765.62, + "probability": 0.725 + }, + { + "start": 8766.4, + "end": 8768.3, + "probability": 0.9834 + }, + { + "start": 8768.36, + "end": 8770.92, + "probability": 0.9286 + }, + { + "start": 8771.4, + "end": 8772.92, + "probability": 0.8575 + }, + { + "start": 8773.32, + "end": 8774.48, + "probability": 0.9438 + }, + { + "start": 8775.32, + "end": 8776.88, + "probability": 0.9967 + }, + { + "start": 8776.94, + "end": 8777.74, + "probability": 0.9105 + }, + { + "start": 8778.76, + "end": 8781.53, + "probability": 0.9893 + }, + { + "start": 8781.92, + "end": 8785.08, + "probability": 0.998 + }, + { + "start": 8786.44, + "end": 8787.2, + "probability": 0.8537 + }, + { + "start": 8787.72, + "end": 8788.38, + "probability": 0.841 + }, + { + "start": 8788.44, + "end": 8789.39, + "probability": 0.9961 + }, + { + "start": 8789.56, + "end": 8790.44, + "probability": 0.9917 + }, + { + "start": 8790.56, + "end": 8792.04, + "probability": 0.7464 + }, + { + "start": 8792.36, + "end": 8793.58, + "probability": 0.86 + }, + { + "start": 8793.7, + "end": 8793.98, + "probability": 0.6811 + }, + { + "start": 8794.12, + "end": 8795.54, + "probability": 0.8091 + }, + { + "start": 8795.82, + "end": 8796.34, + "probability": 0.9653 + }, + { + "start": 8796.62, + "end": 8797.55, + "probability": 0.9854 + }, + { + "start": 8799.18, + "end": 8800.02, + "probability": 0.9788 + }, + { + "start": 8800.76, + "end": 8802.56, + "probability": 0.9933 + }, + { + "start": 8803.28, + "end": 8806.02, + "probability": 0.7426 + }, + { + "start": 8806.42, + "end": 8810.06, + "probability": 0.9114 + }, + { + "start": 8811.22, + "end": 8813.06, + "probability": 0.9728 + }, + { + "start": 8813.2, + "end": 8813.9, + "probability": 0.9285 + }, + { + "start": 8814.28, + "end": 8815.9, + "probability": 0.8474 + }, + { + "start": 8816.4, + "end": 8817.39, + "probability": 0.858 + }, + { + "start": 8817.54, + "end": 8818.16, + "probability": 0.8427 + }, + { + "start": 8819.18, + "end": 8820.3, + "probability": 0.9036 + }, + { + "start": 8820.68, + "end": 8823.7, + "probability": 0.8533 + }, + { + "start": 8823.98, + "end": 8825.54, + "probability": 0.9669 + }, + { + "start": 8826.7, + "end": 8828.36, + "probability": 0.9792 + }, + { + "start": 8828.92, + "end": 8830.08, + "probability": 0.9062 + }, + { + "start": 8830.38, + "end": 8831.3, + "probability": 0.9747 + }, + { + "start": 8831.48, + "end": 8832.77, + "probability": 0.9622 + }, + { + "start": 8832.98, + "end": 8833.46, + "probability": 0.8193 + }, + { + "start": 8835.02, + "end": 8837.0, + "probability": 0.5615 + }, + { + "start": 8837.56, + "end": 8839.78, + "probability": 0.9917 + }, + { + "start": 8840.28, + "end": 8841.88, + "probability": 0.9432 + }, + { + "start": 8842.16, + "end": 8843.36, + "probability": 0.6752 + }, + { + "start": 8844.16, + "end": 8848.38, + "probability": 0.9758 + }, + { + "start": 8848.98, + "end": 8852.78, + "probability": 0.9897 + }, + { + "start": 8852.88, + "end": 8856.27, + "probability": 0.7104 + }, + { + "start": 8857.04, + "end": 8857.7, + "probability": 0.9577 + }, + { + "start": 8858.26, + "end": 8858.72, + "probability": 0.8161 + }, + { + "start": 8862.9, + "end": 8866.34, + "probability": 0.998 + }, + { + "start": 8868.4, + "end": 8869.8, + "probability": 0.758 + }, + { + "start": 8870.7, + "end": 8876.18, + "probability": 0.9761 + }, + { + "start": 8877.28, + "end": 8879.53, + "probability": 0.9985 + }, + { + "start": 8880.85, + "end": 8883.78, + "probability": 0.5412 + }, + { + "start": 8884.16, + "end": 8886.62, + "probability": 0.8197 + }, + { + "start": 8886.86, + "end": 8888.94, + "probability": 0.9648 + }, + { + "start": 8890.28, + "end": 8890.94, + "probability": 0.9265 + }, + { + "start": 8891.1, + "end": 8892.9, + "probability": 0.996 + }, + { + "start": 8892.94, + "end": 8894.67, + "probability": 0.9795 + }, + { + "start": 8895.34, + "end": 8896.24, + "probability": 0.9369 + }, + { + "start": 8896.54, + "end": 8897.14, + "probability": 0.4594 + }, + { + "start": 8898.06, + "end": 8901.36, + "probability": 0.9195 + }, + { + "start": 8901.86, + "end": 8903.68, + "probability": 0.99 + }, + { + "start": 8904.64, + "end": 8908.12, + "probability": 0.8341 + }, + { + "start": 8908.18, + "end": 8908.73, + "probability": 0.9141 + }, + { + "start": 8909.42, + "end": 8910.06, + "probability": 0.8716 + }, + { + "start": 8910.08, + "end": 8913.84, + "probability": 0.5952 + }, + { + "start": 8913.84, + "end": 8913.84, + "probability": 0.0531 + }, + { + "start": 8913.84, + "end": 8913.84, + "probability": 0.2054 + }, + { + "start": 8913.84, + "end": 8914.36, + "probability": 0.6232 + }, + { + "start": 8914.7, + "end": 8914.96, + "probability": 0.4364 + }, + { + "start": 8915.1, + "end": 8919.32, + "probability": 0.7294 + }, + { + "start": 8920.32, + "end": 8922.92, + "probability": 0.4236 + }, + { + "start": 8922.98, + "end": 8923.66, + "probability": 0.9445 + }, + { + "start": 8925.02, + "end": 8926.04, + "probability": 0.941 + }, + { + "start": 8926.46, + "end": 8927.84, + "probability": 0.753 + }, + { + "start": 8927.98, + "end": 8929.32, + "probability": 0.5768 + }, + { + "start": 8929.8, + "end": 8930.86, + "probability": 0.8844 + }, + { + "start": 8931.08, + "end": 8932.49, + "probability": 0.9415 + }, + { + "start": 8932.8, + "end": 8933.8, + "probability": 0.8322 + }, + { + "start": 8933.94, + "end": 8935.78, + "probability": 0.9832 + }, + { + "start": 8936.46, + "end": 8938.8, + "probability": 0.9541 + }, + { + "start": 8939.48, + "end": 8941.72, + "probability": 0.9302 + }, + { + "start": 8942.56, + "end": 8943.5, + "probability": 0.9915 + }, + { + "start": 8944.14, + "end": 8944.86, + "probability": 0.8929 + }, + { + "start": 8944.88, + "end": 8945.9, + "probability": 0.9583 + }, + { + "start": 8946.02, + "end": 8946.94, + "probability": 0.9242 + }, + { + "start": 8947.16, + "end": 8947.4, + "probability": 0.2795 + }, + { + "start": 8949.26, + "end": 8952.68, + "probability": 0.5623 + }, + { + "start": 8952.88, + "end": 8957.01, + "probability": 0.5062 + }, + { + "start": 8958.08, + "end": 8959.2, + "probability": 0.2601 + }, + { + "start": 8959.54, + "end": 8960.94, + "probability": 0.8354 + }, + { + "start": 8961.26, + "end": 8963.2, + "probability": 0.8588 + }, + { + "start": 8963.54, + "end": 8969.34, + "probability": 0.9582 + }, + { + "start": 8970.94, + "end": 8971.88, + "probability": 0.1299 + }, + { + "start": 8971.88, + "end": 8975.0, + "probability": 0.0325 + }, + { + "start": 8975.14, + "end": 8976.03, + "probability": 0.5636 + }, + { + "start": 8976.2, + "end": 8976.52, + "probability": 0.5369 + }, + { + "start": 8976.64, + "end": 8977.48, + "probability": 0.791 + }, + { + "start": 8977.56, + "end": 8977.86, + "probability": 0.9668 + }, + { + "start": 8977.98, + "end": 8979.62, + "probability": 0.9736 + }, + { + "start": 8980.36, + "end": 8980.74, + "probability": 0.9875 + }, + { + "start": 8982.72, + "end": 8984.16, + "probability": 0.3752 + }, + { + "start": 8984.98, + "end": 8990.56, + "probability": 0.8151 + }, + { + "start": 8991.16, + "end": 8991.56, + "probability": 0.6056 + }, + { + "start": 8991.72, + "end": 8992.78, + "probability": 0.7775 + }, + { + "start": 8992.82, + "end": 8995.2, + "probability": 0.9592 + }, + { + "start": 8995.52, + "end": 8995.84, + "probability": 0.4815 + }, + { + "start": 8995.92, + "end": 8996.64, + "probability": 0.909 + }, + { + "start": 8996.88, + "end": 8998.48, + "probability": 0.812 + }, + { + "start": 8999.0, + "end": 8999.14, + "probability": 0.0695 + }, + { + "start": 8999.26, + "end": 8999.82, + "probability": 0.9305 + }, + { + "start": 8999.92, + "end": 9000.84, + "probability": 0.7083 + }, + { + "start": 9000.96, + "end": 9002.6, + "probability": 0.9468 + }, + { + "start": 9002.92, + "end": 9005.48, + "probability": 0.7379 + }, + { + "start": 9005.52, + "end": 9007.16, + "probability": 0.8476 + }, + { + "start": 9007.4, + "end": 9008.54, + "probability": 0.9813 + }, + { + "start": 9009.28, + "end": 9011.58, + "probability": 0.7898 + }, + { + "start": 9013.0, + "end": 9013.86, + "probability": 0.7195 + }, + { + "start": 9014.18, + "end": 9016.46, + "probability": 0.7153 + }, + { + "start": 9016.7, + "end": 9018.22, + "probability": 0.2878 + }, + { + "start": 9018.22, + "end": 9019.0, + "probability": 0.6914 + }, + { + "start": 9019.0, + "end": 9019.35, + "probability": 0.0356 + }, + { + "start": 9020.54, + "end": 9022.36, + "probability": 0.553 + }, + { + "start": 9022.36, + "end": 9023.45, + "probability": 0.0609 + }, + { + "start": 9023.68, + "end": 9031.32, + "probability": 0.5457 + }, + { + "start": 9031.44, + "end": 9032.32, + "probability": 0.6606 + }, + { + "start": 9032.52, + "end": 9033.26, + "probability": 0.97 + }, + { + "start": 9033.28, + "end": 9034.78, + "probability": 0.6414 + }, + { + "start": 9034.78, + "end": 9036.28, + "probability": 0.9435 + }, + { + "start": 9036.36, + "end": 9037.3, + "probability": 0.9585 + }, + { + "start": 9037.5, + "end": 9038.04, + "probability": 0.6917 + }, + { + "start": 9038.6, + "end": 9042.58, + "probability": 0.9661 + }, + { + "start": 9043.1, + "end": 9045.06, + "probability": 0.9948 + }, + { + "start": 9045.76, + "end": 9047.66, + "probability": 0.9915 + }, + { + "start": 9047.72, + "end": 9050.1, + "probability": 0.7502 + }, + { + "start": 9050.82, + "end": 9052.7, + "probability": 0.8792 + }, + { + "start": 9052.78, + "end": 9053.34, + "probability": 0.5804 + }, + { + "start": 9053.38, + "end": 9054.12, + "probability": 0.9538 + }, + { + "start": 9054.4, + "end": 9055.22, + "probability": 0.5973 + }, + { + "start": 9055.42, + "end": 9056.47, + "probability": 0.8562 + }, + { + "start": 9058.5, + "end": 9059.7, + "probability": 0.6376 + }, + { + "start": 9059.76, + "end": 9060.64, + "probability": 0.7587 + }, + { + "start": 9060.7, + "end": 9065.68, + "probability": 0.981 + }, + { + "start": 9065.68, + "end": 9068.62, + "probability": 0.9796 + }, + { + "start": 9068.62, + "end": 9073.62, + "probability": 0.9457 + }, + { + "start": 9074.06, + "end": 9074.94, + "probability": 0.7808 + }, + { + "start": 9075.4, + "end": 9076.96, + "probability": 0.9233 + }, + { + "start": 9078.24, + "end": 9080.54, + "probability": 0.9393 + }, + { + "start": 9081.33, + "end": 9084.92, + "probability": 0.8528 + }, + { + "start": 9089.08, + "end": 9091.14, + "probability": 0.6933 + }, + { + "start": 9103.14, + "end": 9103.88, + "probability": 0.3053 + }, + { + "start": 9103.88, + "end": 9104.6, + "probability": 0.6901 + }, + { + "start": 9104.84, + "end": 9105.16, + "probability": 0.4838 + }, + { + "start": 9105.16, + "end": 9106.52, + "probability": 0.8088 + }, + { + "start": 9106.66, + "end": 9108.0, + "probability": 0.8703 + }, + { + "start": 9108.76, + "end": 9109.04, + "probability": 0.0335 + }, + { + "start": 9114.1, + "end": 9117.2, + "probability": 0.7986 + }, + { + "start": 9117.3, + "end": 9118.38, + "probability": 0.8255 + }, + { + "start": 9118.7, + "end": 9122.62, + "probability": 0.8614 + }, + { + "start": 9122.9, + "end": 9128.9, + "probability": 0.9888 + }, + { + "start": 9129.36, + "end": 9130.34, + "probability": 0.8062 + }, + { + "start": 9130.52, + "end": 9131.24, + "probability": 0.6802 + }, + { + "start": 9131.42, + "end": 9136.59, + "probability": 0.9448 + }, + { + "start": 9137.42, + "end": 9138.0, + "probability": 0.3378 + }, + { + "start": 9138.0, + "end": 9143.4, + "probability": 0.5467 + }, + { + "start": 9143.92, + "end": 9143.94, + "probability": 0.0031 + }, + { + "start": 9143.94, + "end": 9145.7, + "probability": 0.842 + }, + { + "start": 9145.78, + "end": 9147.75, + "probability": 0.804 + }, + { + "start": 9149.38, + "end": 9150.94, + "probability": 0.8931 + }, + { + "start": 9151.1, + "end": 9155.02, + "probability": 0.892 + }, + { + "start": 9155.06, + "end": 9156.84, + "probability": 0.9345 + }, + { + "start": 9157.2, + "end": 9157.9, + "probability": 0.7463 + }, + { + "start": 9159.36, + "end": 9160.88, + "probability": 0.9908 + }, + { + "start": 9160.96, + "end": 9161.66, + "probability": 0.9148 + }, + { + "start": 9161.8, + "end": 9165.12, + "probability": 0.9794 + }, + { + "start": 9165.7, + "end": 9169.62, + "probability": 0.9746 + }, + { + "start": 9169.76, + "end": 9170.38, + "probability": 0.8213 + }, + { + "start": 9170.9, + "end": 9173.68, + "probability": 0.6411 + }, + { + "start": 9173.76, + "end": 9176.52, + "probability": 0.9497 + }, + { + "start": 9176.52, + "end": 9179.0, + "probability": 0.9761 + }, + { + "start": 9179.1, + "end": 9180.38, + "probability": 0.7815 + }, + { + "start": 9181.24, + "end": 9186.72, + "probability": 0.8936 + }, + { + "start": 9186.86, + "end": 9187.78, + "probability": 0.9971 + }, + { + "start": 9188.4, + "end": 9190.7, + "probability": 0.9517 + }, + { + "start": 9191.12, + "end": 9197.0, + "probability": 0.9333 + }, + { + "start": 9198.96, + "end": 9201.48, + "probability": 0.9852 + }, + { + "start": 9201.76, + "end": 9203.32, + "probability": 0.4037 + }, + { + "start": 9203.4, + "end": 9209.3, + "probability": 0.9773 + }, + { + "start": 9210.02, + "end": 9210.9, + "probability": 0.9632 + }, + { + "start": 9210.98, + "end": 9214.86, + "probability": 0.904 + }, + { + "start": 9215.6, + "end": 9218.16, + "probability": 0.9863 + }, + { + "start": 9218.16, + "end": 9221.32, + "probability": 0.7476 + }, + { + "start": 9221.46, + "end": 9222.52, + "probability": 0.9257 + }, + { + "start": 9223.1, + "end": 9225.92, + "probability": 0.9902 + }, + { + "start": 9226.44, + "end": 9229.88, + "probability": 0.9871 + }, + { + "start": 9230.56, + "end": 9232.9, + "probability": 0.9496 + }, + { + "start": 9235.02, + "end": 9239.04, + "probability": 0.9434 + }, + { + "start": 9239.64, + "end": 9242.62, + "probability": 0.0665 + }, + { + "start": 9242.62, + "end": 9243.78, + "probability": 0.5341 + }, + { + "start": 9243.86, + "end": 9244.8, + "probability": 0.6092 + }, + { + "start": 9245.52, + "end": 9251.16, + "probability": 0.6974 + }, + { + "start": 9252.12, + "end": 9255.14, + "probability": 0.6496 + }, + { + "start": 9255.86, + "end": 9261.02, + "probability": 0.9355 + }, + { + "start": 9261.28, + "end": 9263.3, + "probability": 0.61 + }, + { + "start": 9264.14, + "end": 9266.26, + "probability": 0.9954 + }, + { + "start": 9266.82, + "end": 9267.04, + "probability": 0.6229 + }, + { + "start": 9267.42, + "end": 9268.12, + "probability": 0.6694 + }, + { + "start": 9268.12, + "end": 9270.3, + "probability": 0.9889 + }, + { + "start": 9271.24, + "end": 9274.18, + "probability": 0.7943 + }, + { + "start": 9274.42, + "end": 9276.9, + "probability": 0.9442 + }, + { + "start": 9277.5, + "end": 9283.98, + "probability": 0.871 + }, + { + "start": 9285.58, + "end": 9291.44, + "probability": 0.9871 + }, + { + "start": 9291.9, + "end": 9295.64, + "probability": 0.9949 + }, + { + "start": 9296.32, + "end": 9298.82, + "probability": 0.888 + }, + { + "start": 9300.78, + "end": 9306.84, + "probability": 0.5064 + }, + { + "start": 9306.84, + "end": 9310.04, + "probability": 0.9881 + }, + { + "start": 9310.14, + "end": 9310.8, + "probability": 0.5061 + }, + { + "start": 9310.9, + "end": 9313.64, + "probability": 0.9531 + }, + { + "start": 9313.9, + "end": 9314.3, + "probability": 0.076 + }, + { + "start": 9314.74, + "end": 9315.52, + "probability": 0.0679 + }, + { + "start": 9315.6, + "end": 9315.94, + "probability": 0.7566 + }, + { + "start": 9316.08, + "end": 9319.1, + "probability": 0.9136 + }, + { + "start": 9319.24, + "end": 9320.32, + "probability": 0.6986 + }, + { + "start": 9320.94, + "end": 9323.5, + "probability": 0.9714 + }, + { + "start": 9323.96, + "end": 9328.28, + "probability": 0.9078 + }, + { + "start": 9328.38, + "end": 9330.0, + "probability": 0.8541 + }, + { + "start": 9330.76, + "end": 9337.0, + "probability": 0.9445 + }, + { + "start": 9338.03, + "end": 9340.48, + "probability": 0.8194 + }, + { + "start": 9340.48, + "end": 9341.28, + "probability": 0.887 + }, + { + "start": 9341.62, + "end": 9345.84, + "probability": 0.9163 + }, + { + "start": 9346.26, + "end": 9350.4, + "probability": 0.9688 + }, + { + "start": 9350.64, + "end": 9352.4, + "probability": 0.9945 + }, + { + "start": 9352.68, + "end": 9358.07, + "probability": 0.8629 + }, + { + "start": 9359.02, + "end": 9364.9, + "probability": 0.7565 + }, + { + "start": 9365.48, + "end": 9368.4, + "probability": 0.9209 + }, + { + "start": 9368.94, + "end": 9370.38, + "probability": 0.6994 + }, + { + "start": 9370.52, + "end": 9371.4, + "probability": 0.7699 + }, + { + "start": 9371.6, + "end": 9372.36, + "probability": 0.6703 + }, + { + "start": 9372.7, + "end": 9374.52, + "probability": 0.6815 + }, + { + "start": 9374.86, + "end": 9374.86, + "probability": 0.5156 + }, + { + "start": 9374.86, + "end": 9376.7, + "probability": 0.938 + }, + { + "start": 9377.1, + "end": 9378.6, + "probability": 0.9702 + }, + { + "start": 9379.7, + "end": 9382.44, + "probability": 0.9124 + }, + { + "start": 9382.6, + "end": 9383.58, + "probability": 0.7908 + }, + { + "start": 9383.58, + "end": 9387.58, + "probability": 0.9834 + }, + { + "start": 9387.7, + "end": 9391.24, + "probability": 0.9377 + }, + { + "start": 9392.34, + "end": 9396.72, + "probability": 0.922 + }, + { + "start": 9398.44, + "end": 9399.04, + "probability": 0.5547 + }, + { + "start": 9399.04, + "end": 9402.76, + "probability": 0.8128 + }, + { + "start": 9402.86, + "end": 9404.16, + "probability": 0.7584 + }, + { + "start": 9404.3, + "end": 9404.94, + "probability": 0.8048 + }, + { + "start": 9405.42, + "end": 9407.72, + "probability": 0.864 + }, + { + "start": 9407.86, + "end": 9412.66, + "probability": 0.7556 + }, + { + "start": 9413.24, + "end": 9416.66, + "probability": 0.8957 + }, + { + "start": 9416.7, + "end": 9417.78, + "probability": 0.7668 + }, + { + "start": 9418.14, + "end": 9419.78, + "probability": 0.8235 + }, + { + "start": 9420.12, + "end": 9421.36, + "probability": 0.6851 + }, + { + "start": 9421.76, + "end": 9423.74, + "probability": 0.9075 + }, + { + "start": 9424.86, + "end": 9425.36, + "probability": 0.5178 + }, + { + "start": 9425.81, + "end": 9428.1, + "probability": 0.9884 + }, + { + "start": 9428.34, + "end": 9430.28, + "probability": 0.8212 + }, + { + "start": 9430.36, + "end": 9436.32, + "probability": 0.9951 + }, + { + "start": 9437.26, + "end": 9438.77, + "probability": 0.1552 + }, + { + "start": 9440.72, + "end": 9444.66, + "probability": 0.9951 + }, + { + "start": 9445.22, + "end": 9450.5, + "probability": 0.9995 + }, + { + "start": 9450.5, + "end": 9454.74, + "probability": 0.9977 + }, + { + "start": 9455.2, + "end": 9458.92, + "probability": 0.9933 + }, + { + "start": 9459.48, + "end": 9460.42, + "probability": 0.5243 + }, + { + "start": 9460.9, + "end": 9461.58, + "probability": 0.7671 + }, + { + "start": 9461.68, + "end": 9462.68, + "probability": 0.7425 + }, + { + "start": 9462.72, + "end": 9463.78, + "probability": 0.9823 + }, + { + "start": 9464.28, + "end": 9466.04, + "probability": 0.9707 + }, + { + "start": 9466.34, + "end": 9467.18, + "probability": 0.7319 + }, + { + "start": 9467.32, + "end": 9473.36, + "probability": 0.9883 + }, + { + "start": 9474.42, + "end": 9475.9, + "probability": 0.9399 + }, + { + "start": 9476.02, + "end": 9476.86, + "probability": 0.8901 + }, + { + "start": 9476.98, + "end": 9478.32, + "probability": 0.8396 + }, + { + "start": 9478.4, + "end": 9481.8, + "probability": 0.8973 + }, + { + "start": 9482.38, + "end": 9483.74, + "probability": 0.5236 + }, + { + "start": 9484.06, + "end": 9487.02, + "probability": 0.8661 + }, + { + "start": 9487.14, + "end": 9488.26, + "probability": 0.9602 + }, + { + "start": 9488.58, + "end": 9490.44, + "probability": 0.9477 + }, + { + "start": 9490.98, + "end": 9492.62, + "probability": 0.9097 + }, + { + "start": 9492.96, + "end": 9495.44, + "probability": 0.8332 + }, + { + "start": 9495.88, + "end": 9498.3, + "probability": 0.9889 + }, + { + "start": 9498.4, + "end": 9498.84, + "probability": 0.885 + }, + { + "start": 9498.88, + "end": 9499.54, + "probability": 0.8629 + }, + { + "start": 9499.58, + "end": 9500.4, + "probability": 0.9502 + }, + { + "start": 9500.74, + "end": 9506.48, + "probability": 0.9829 + }, + { + "start": 9506.78, + "end": 9507.92, + "probability": 0.9565 + }, + { + "start": 9508.14, + "end": 9508.8, + "probability": 0.703 + }, + { + "start": 9509.36, + "end": 9511.84, + "probability": 0.9771 + }, + { + "start": 9512.08, + "end": 9512.16, + "probability": 0.4302 + }, + { + "start": 9512.22, + "end": 9512.92, + "probability": 0.7303 + }, + { + "start": 9513.32, + "end": 9517.08, + "probability": 0.907 + }, + { + "start": 9518.0, + "end": 9519.84, + "probability": 0.9053 + }, + { + "start": 9520.44, + "end": 9525.0, + "probability": 0.9932 + }, + { + "start": 9525.18, + "end": 9526.82, + "probability": 0.7235 + }, + { + "start": 9527.52, + "end": 9528.74, + "probability": 0.7981 + }, + { + "start": 9528.84, + "end": 9530.68, + "probability": 0.8264 + }, + { + "start": 9531.06, + "end": 9532.98, + "probability": 0.9956 + }, + { + "start": 9532.98, + "end": 9535.56, + "probability": 0.9739 + }, + { + "start": 9536.96, + "end": 9543.0, + "probability": 0.9725 + }, + { + "start": 9543.12, + "end": 9545.69, + "probability": 0.9278 + }, + { + "start": 9546.16, + "end": 9547.14, + "probability": 0.8512 + }, + { + "start": 9547.68, + "end": 9548.62, + "probability": 0.8822 + }, + { + "start": 9549.1, + "end": 9549.84, + "probability": 0.9615 + }, + { + "start": 9550.02, + "end": 9556.84, + "probability": 0.8944 + }, + { + "start": 9557.04, + "end": 9557.76, + "probability": 0.8228 + }, + { + "start": 9557.84, + "end": 9558.84, + "probability": 0.8368 + }, + { + "start": 9558.98, + "end": 9559.53, + "probability": 0.8013 + }, + { + "start": 9559.9, + "end": 9560.32, + "probability": 0.7598 + }, + { + "start": 9560.34, + "end": 9560.92, + "probability": 0.7696 + }, + { + "start": 9562.1, + "end": 9565.12, + "probability": 0.9569 + }, + { + "start": 9565.24, + "end": 9568.18, + "probability": 0.8833 + }, + { + "start": 9568.94, + "end": 9571.42, + "probability": 0.9954 + }, + { + "start": 9572.44, + "end": 9578.44, + "probability": 0.9939 + }, + { + "start": 9578.44, + "end": 9581.46, + "probability": 0.9995 + }, + { + "start": 9581.88, + "end": 9582.04, + "probability": 0.3454 + }, + { + "start": 9582.12, + "end": 9583.2, + "probability": 0.8966 + }, + { + "start": 9583.8, + "end": 9586.74, + "probability": 0.9916 + }, + { + "start": 9586.92, + "end": 9588.58, + "probability": 0.92 + }, + { + "start": 9588.6, + "end": 9590.1, + "probability": 0.8604 + }, + { + "start": 9590.52, + "end": 9593.92, + "probability": 0.9663 + }, + { + "start": 9594.22, + "end": 9598.08, + "probability": 0.9148 + }, + { + "start": 9598.44, + "end": 9599.23, + "probability": 0.9136 + }, + { + "start": 9600.02, + "end": 9604.58, + "probability": 0.991 + }, + { + "start": 9605.7, + "end": 9606.86, + "probability": 0.7002 + }, + { + "start": 9607.48, + "end": 9608.78, + "probability": 0.5172 + }, + { + "start": 9609.74, + "end": 9611.88, + "probability": 0.989 + }, + { + "start": 9612.68, + "end": 9616.44, + "probability": 0.6929 + }, + { + "start": 9616.7, + "end": 9618.92, + "probability": 0.8774 + }, + { + "start": 9619.22, + "end": 9619.68, + "probability": 0.8683 + }, + { + "start": 9619.78, + "end": 9620.94, + "probability": 0.8933 + }, + { + "start": 9621.92, + "end": 9624.14, + "probability": 0.9927 + }, + { + "start": 9624.5, + "end": 9625.78, + "probability": 0.9951 + }, + { + "start": 9626.58, + "end": 9630.74, + "probability": 0.9792 + }, + { + "start": 9631.34, + "end": 9631.8, + "probability": 0.7346 + }, + { + "start": 9631.86, + "end": 9633.6, + "probability": 0.9521 + }, + { + "start": 9633.64, + "end": 9637.5, + "probability": 0.9919 + }, + { + "start": 9638.12, + "end": 9640.6, + "probability": 0.8835 + }, + { + "start": 9640.8, + "end": 9641.64, + "probability": 0.821 + }, + { + "start": 9641.7, + "end": 9642.1, + "probability": 0.7409 + }, + { + "start": 9642.74, + "end": 9643.74, + "probability": 0.9595 + }, + { + "start": 9644.4, + "end": 9647.58, + "probability": 0.9986 + }, + { + "start": 9647.94, + "end": 9648.42, + "probability": 0.9365 + }, + { + "start": 9649.58, + "end": 9652.06, + "probability": 0.9205 + }, + { + "start": 9652.9, + "end": 9653.34, + "probability": 0.5958 + }, + { + "start": 9653.58, + "end": 9657.2, + "probability": 0.9785 + }, + { + "start": 9657.34, + "end": 9659.04, + "probability": 0.9792 + }, + { + "start": 9659.6, + "end": 9662.12, + "probability": 0.9917 + }, + { + "start": 9663.54, + "end": 9668.84, + "probability": 0.9912 + }, + { + "start": 9668.86, + "end": 9671.33, + "probability": 0.8291 + }, + { + "start": 9673.2, + "end": 9676.78, + "probability": 0.9926 + }, + { + "start": 9676.96, + "end": 9678.46, + "probability": 0.9569 + }, + { + "start": 9678.6, + "end": 9679.83, + "probability": 0.9692 + }, + { + "start": 9680.68, + "end": 9681.88, + "probability": 0.8838 + }, + { + "start": 9682.5, + "end": 9684.32, + "probability": 0.9391 + }, + { + "start": 9684.62, + "end": 9686.3, + "probability": 0.6818 + }, + { + "start": 9686.84, + "end": 9687.54, + "probability": 0.7566 + }, + { + "start": 9687.88, + "end": 9690.16, + "probability": 0.961 + }, + { + "start": 9690.74, + "end": 9692.56, + "probability": 0.8796 + }, + { + "start": 9692.68, + "end": 9694.74, + "probability": 0.9858 + }, + { + "start": 9695.44, + "end": 9695.9, + "probability": 0.6509 + }, + { + "start": 9697.54, + "end": 9699.64, + "probability": 0.9636 + }, + { + "start": 9699.96, + "end": 9700.72, + "probability": 0.9496 + }, + { + "start": 9700.84, + "end": 9701.45, + "probability": 0.9292 + }, + { + "start": 9702.72, + "end": 9706.08, + "probability": 0.8245 + }, + { + "start": 9707.56, + "end": 9708.46, + "probability": 0.9732 + }, + { + "start": 9708.58, + "end": 9710.4, + "probability": 0.9561 + }, + { + "start": 9710.86, + "end": 9712.72, + "probability": 0.9868 + }, + { + "start": 9713.52, + "end": 9718.14, + "probability": 0.8577 + }, + { + "start": 9718.16, + "end": 9718.9, + "probability": 0.7688 + }, + { + "start": 9718.98, + "end": 9720.6, + "probability": 0.9933 + }, + { + "start": 9720.68, + "end": 9721.38, + "probability": 0.8444 + }, + { + "start": 9722.24, + "end": 9724.55, + "probability": 0.9618 + }, + { + "start": 9724.78, + "end": 9725.77, + "probability": 0.8776 + }, + { + "start": 9726.92, + "end": 9728.96, + "probability": 0.9961 + }, + { + "start": 9729.42, + "end": 9730.1, + "probability": 0.624 + }, + { + "start": 9730.16, + "end": 9733.66, + "probability": 0.8855 + }, + { + "start": 9735.32, + "end": 9740.9, + "probability": 0.9912 + }, + { + "start": 9742.04, + "end": 9742.96, + "probability": 0.9375 + }, + { + "start": 9743.5, + "end": 9744.92, + "probability": 0.9697 + }, + { + "start": 9745.26, + "end": 9746.71, + "probability": 0.8994 + }, + { + "start": 9746.86, + "end": 9748.56, + "probability": 0.8324 + }, + { + "start": 9748.9, + "end": 9750.7, + "probability": 0.838 + }, + { + "start": 9752.5, + "end": 9754.74, + "probability": 0.9478 + }, + { + "start": 9754.9, + "end": 9756.02, + "probability": 0.8486 + }, + { + "start": 9756.26, + "end": 9757.16, + "probability": 0.9604 + }, + { + "start": 9758.02, + "end": 9759.62, + "probability": 0.8857 + }, + { + "start": 9760.14, + "end": 9763.12, + "probability": 0.9951 + }, + { + "start": 9763.56, + "end": 9766.24, + "probability": 0.8621 + }, + { + "start": 9767.54, + "end": 9768.56, + "probability": 0.8008 + }, + { + "start": 9768.64, + "end": 9770.08, + "probability": 0.9678 + }, + { + "start": 9770.26, + "end": 9771.48, + "probability": 0.9216 + }, + { + "start": 9771.58, + "end": 9772.96, + "probability": 0.8418 + }, + { + "start": 9773.36, + "end": 9773.82, + "probability": 0.9478 + }, + { + "start": 9773.94, + "end": 9776.58, + "probability": 0.9756 + }, + { + "start": 9776.58, + "end": 9779.4, + "probability": 0.9966 + }, + { + "start": 9779.54, + "end": 9780.12, + "probability": 0.5622 + }, + { + "start": 9780.74, + "end": 9782.3, + "probability": 0.7559 + }, + { + "start": 9782.66, + "end": 9786.02, + "probability": 0.9697 + }, + { + "start": 9786.44, + "end": 9788.6, + "probability": 0.9532 + }, + { + "start": 9789.08, + "end": 9791.3, + "probability": 0.8044 + }, + { + "start": 9791.9, + "end": 9792.74, + "probability": 0.8689 + }, + { + "start": 9792.86, + "end": 9796.66, + "probability": 0.9663 + }, + { + "start": 9797.56, + "end": 9798.78, + "probability": 0.7954 + }, + { + "start": 9799.48, + "end": 9802.98, + "probability": 0.6964 + }, + { + "start": 9803.82, + "end": 9804.62, + "probability": 0.6614 + }, + { + "start": 9806.18, + "end": 9808.7, + "probability": 0.5925 + }, + { + "start": 9809.04, + "end": 9809.96, + "probability": 0.8114 + }, + { + "start": 9810.04, + "end": 9814.46, + "probability": 0.8176 + }, + { + "start": 9814.82, + "end": 9816.18, + "probability": 0.9825 + }, + { + "start": 9816.92, + "end": 9821.24, + "probability": 0.945 + }, + { + "start": 9821.26, + "end": 9822.78, + "probability": 0.9238 + }, + { + "start": 9822.9, + "end": 9823.86, + "probability": 0.7919 + }, + { + "start": 9824.12, + "end": 9825.31, + "probability": 0.7099 + }, + { + "start": 9826.58, + "end": 9829.28, + "probability": 0.9984 + }, + { + "start": 9829.86, + "end": 9831.22, + "probability": 0.8603 + }, + { + "start": 9831.68, + "end": 9833.72, + "probability": 0.99 + }, + { + "start": 9833.76, + "end": 9836.48, + "probability": 0.9453 + }, + { + "start": 9836.76, + "end": 9840.42, + "probability": 0.9956 + }, + { + "start": 9841.02, + "end": 9842.39, + "probability": 0.8933 + }, + { + "start": 9843.46, + "end": 9844.7, + "probability": 0.9697 + }, + { + "start": 9844.82, + "end": 9845.54, + "probability": 0.8804 + }, + { + "start": 9845.94, + "end": 9847.74, + "probability": 0.9939 + }, + { + "start": 9848.3, + "end": 9848.96, + "probability": 0.7039 + }, + { + "start": 9850.06, + "end": 9850.5, + "probability": 0.5251 + }, + { + "start": 9851.06, + "end": 9851.76, + "probability": 0.5285 + }, + { + "start": 9852.28, + "end": 9853.22, + "probability": 0.978 + }, + { + "start": 9853.32, + "end": 9854.28, + "probability": 0.9281 + }, + { + "start": 9854.68, + "end": 9860.2, + "probability": 0.9735 + }, + { + "start": 9860.46, + "end": 9866.76, + "probability": 0.9805 + }, + { + "start": 9867.56, + "end": 9868.98, + "probability": 0.7856 + }, + { + "start": 9869.1, + "end": 9870.16, + "probability": 0.519 + }, + { + "start": 9870.54, + "end": 9872.66, + "probability": 0.9637 + }, + { + "start": 9872.74, + "end": 9875.09, + "probability": 0.9873 + }, + { + "start": 9875.82, + "end": 9876.84, + "probability": 0.5176 + }, + { + "start": 9876.96, + "end": 9879.58, + "probability": 0.9657 + }, + { + "start": 9879.72, + "end": 9880.1, + "probability": 0.2341 + }, + { + "start": 9880.1, + "end": 9880.12, + "probability": 0.0134 + }, + { + "start": 9880.12, + "end": 9880.22, + "probability": 0.0266 + }, + { + "start": 9880.22, + "end": 9880.68, + "probability": 0.0605 + }, + { + "start": 9880.68, + "end": 9885.48, + "probability": 0.8287 + }, + { + "start": 9885.76, + "end": 9887.64, + "probability": 0.9591 + }, + { + "start": 9887.96, + "end": 9889.54, + "probability": 0.8489 + }, + { + "start": 9889.64, + "end": 9889.88, + "probability": 0.7162 + }, + { + "start": 9889.98, + "end": 9890.18, + "probability": 0.3344 + }, + { + "start": 9890.18, + "end": 9891.61, + "probability": 0.5965 + }, + { + "start": 9891.7, + "end": 9893.36, + "probability": 0.6206 + }, + { + "start": 9893.6, + "end": 9896.3, + "probability": 0.9128 + }, + { + "start": 9896.58, + "end": 9897.56, + "probability": 0.2809 + }, + { + "start": 9898.36, + "end": 9898.78, + "probability": 0.004 + }, + { + "start": 9902.87, + "end": 9904.48, + "probability": 0.2838 + }, + { + "start": 9904.86, + "end": 9905.12, + "probability": 0.5179 + }, + { + "start": 9905.14, + "end": 9909.14, + "probability": 0.7748 + }, + { + "start": 9910.22, + "end": 9914.98, + "probability": 0.769 + }, + { + "start": 9915.56, + "end": 9917.15, + "probability": 0.665 + }, + { + "start": 9918.1, + "end": 9921.24, + "probability": 0.8343 + }, + { + "start": 9921.34, + "end": 9922.12, + "probability": 0.5279 + }, + { + "start": 9922.54, + "end": 9924.28, + "probability": 0.9779 + }, + { + "start": 9927.36, + "end": 9930.54, + "probability": 0.8906 + }, + { + "start": 9931.34, + "end": 9932.6, + "probability": 0.7605 + }, + { + "start": 9932.84, + "end": 9937.2, + "probability": 0.9712 + }, + { + "start": 9937.82, + "end": 9942.8, + "probability": 0.9797 + }, + { + "start": 9943.08, + "end": 9943.62, + "probability": 0.2707 + }, + { + "start": 9943.8, + "end": 9944.78, + "probability": 0.9501 + }, + { + "start": 9945.18, + "end": 9946.74, + "probability": 0.8511 + }, + { + "start": 9947.22, + "end": 9949.44, + "probability": 0.9509 + }, + { + "start": 9950.0, + "end": 9955.16, + "probability": 0.9703 + }, + { + "start": 9955.48, + "end": 9957.24, + "probability": 0.7694 + }, + { + "start": 9957.88, + "end": 9962.76, + "probability": 0.922 + }, + { + "start": 9963.24, + "end": 9965.78, + "probability": 0.7128 + }, + { + "start": 9966.04, + "end": 9969.1, + "probability": 0.8712 + }, + { + "start": 9970.08, + "end": 9972.86, + "probability": 0.8677 + }, + { + "start": 9973.08, + "end": 9976.35, + "probability": 0.8501 + }, + { + "start": 9977.16, + "end": 9981.66, + "probability": 0.9155 + }, + { + "start": 9981.92, + "end": 9986.66, + "probability": 0.5723 + }, + { + "start": 9986.94, + "end": 9988.12, + "probability": 0.7314 + }, + { + "start": 9988.22, + "end": 9989.92, + "probability": 0.9075 + }, + { + "start": 9990.3, + "end": 9993.88, + "probability": 0.9854 + }, + { + "start": 9994.7, + "end": 9998.81, + "probability": 0.9841 + }, + { + "start": 9999.24, + "end": 10001.01, + "probability": 0.7136 + }, + { + "start": 10001.5, + "end": 10004.58, + "probability": 0.9862 + }, + { + "start": 10005.0, + "end": 10007.38, + "probability": 0.9878 + }, + { + "start": 10007.9, + "end": 10011.22, + "probability": 0.9746 + }, + { + "start": 10011.8, + "end": 10016.78, + "probability": 0.9822 + }, + { + "start": 10016.94, + "end": 10018.82, + "probability": 0.9915 + }, + { + "start": 10019.12, + "end": 10020.93, + "probability": 0.889 + }, + { + "start": 10021.18, + "end": 10024.74, + "probability": 0.9828 + }, + { + "start": 10024.8, + "end": 10025.48, + "probability": 0.7286 + }, + { + "start": 10025.8, + "end": 10027.68, + "probability": 0.9954 + }, + { + "start": 10027.96, + "end": 10031.65, + "probability": 0.6505 + }, + { + "start": 10033.08, + "end": 10036.42, + "probability": 0.9609 + }, + { + "start": 10036.42, + "end": 10040.62, + "probability": 0.9781 + }, + { + "start": 10040.94, + "end": 10044.03, + "probability": 0.8234 + }, + { + "start": 10044.52, + "end": 10046.42, + "probability": 0.9639 + }, + { + "start": 10046.52, + "end": 10050.64, + "probability": 0.9422 + }, + { + "start": 10051.0, + "end": 10052.18, + "probability": 0.7095 + }, + { + "start": 10052.96, + "end": 10054.94, + "probability": 0.8588 + }, + { + "start": 10055.42, + "end": 10055.64, + "probability": 0.2682 + }, + { + "start": 10055.76, + "end": 10058.66, + "probability": 0.9218 + }, + { + "start": 10059.02, + "end": 10061.64, + "probability": 0.9399 + }, + { + "start": 10061.76, + "end": 10062.32, + "probability": 0.8796 + }, + { + "start": 10062.44, + "end": 10062.88, + "probability": 0.5759 + }, + { + "start": 10062.92, + "end": 10064.02, + "probability": 0.8305 + }, + { + "start": 10064.04, + "end": 10068.78, + "probability": 0.8626 + }, + { + "start": 10069.32, + "end": 10075.34, + "probability": 0.7958 + }, + { + "start": 10075.4, + "end": 10076.48, + "probability": 0.7953 + }, + { + "start": 10076.58, + "end": 10077.64, + "probability": 0.8232 + }, + { + "start": 10078.02, + "end": 10079.56, + "probability": 0.9878 + }, + { + "start": 10079.84, + "end": 10081.8, + "probability": 0.9852 + }, + { + "start": 10081.84, + "end": 10088.76, + "probability": 0.9985 + }, + { + "start": 10088.86, + "end": 10090.48, + "probability": 0.7186 + }, + { + "start": 10090.82, + "end": 10092.88, + "probability": 0.9795 + }, + { + "start": 10093.36, + "end": 10095.56, + "probability": 0.9929 + }, + { + "start": 10095.94, + "end": 10099.42, + "probability": 0.996 + }, + { + "start": 10100.12, + "end": 10100.72, + "probability": 0.7762 + }, + { + "start": 10100.84, + "end": 10102.2, + "probability": 0.8301 + }, + { + "start": 10106.56, + "end": 10106.76, + "probability": 0.0839 + }, + { + "start": 10108.64, + "end": 10108.84, + "probability": 0.1011 + }, + { + "start": 10108.84, + "end": 10109.58, + "probability": 0.4493 + }, + { + "start": 10109.8, + "end": 10113.01, + "probability": 0.893 + }, + { + "start": 10114.24, + "end": 10115.92, + "probability": 0.9736 + }, + { + "start": 10116.24, + "end": 10117.78, + "probability": 0.9729 + }, + { + "start": 10118.26, + "end": 10119.3, + "probability": 0.5963 + }, + { + "start": 10119.4, + "end": 10123.98, + "probability": 0.9873 + }, + { + "start": 10124.0, + "end": 10124.56, + "probability": 0.8851 + }, + { + "start": 10124.64, + "end": 10128.08, + "probability": 0.9741 + }, + { + "start": 10128.34, + "end": 10131.12, + "probability": 0.9908 + }, + { + "start": 10131.48, + "end": 10136.54, + "probability": 0.9866 + }, + { + "start": 10137.0, + "end": 10141.18, + "probability": 0.8557 + }, + { + "start": 10141.26, + "end": 10142.92, + "probability": 0.6939 + }, + { + "start": 10143.34, + "end": 10146.22, + "probability": 0.9717 + }, + { + "start": 10146.34, + "end": 10152.7, + "probability": 0.5416 + }, + { + "start": 10153.28, + "end": 10158.22, + "probability": 0.8904 + }, + { + "start": 10158.48, + "end": 10160.86, + "probability": 0.9915 + }, + { + "start": 10161.0, + "end": 10164.66, + "probability": 0.9575 + }, + { + "start": 10164.94, + "end": 10166.6, + "probability": 0.8054 + }, + { + "start": 10166.98, + "end": 10170.44, + "probability": 0.9408 + }, + { + "start": 10170.62, + "end": 10171.68, + "probability": 0.8904 + }, + { + "start": 10171.82, + "end": 10172.76, + "probability": 0.814 + }, + { + "start": 10173.02, + "end": 10176.22, + "probability": 0.9919 + }, + { + "start": 10176.56, + "end": 10176.92, + "probability": 0.8837 + }, + { + "start": 10177.2, + "end": 10180.48, + "probability": 0.9786 + }, + { + "start": 10180.68, + "end": 10182.96, + "probability": 0.9961 + }, + { + "start": 10183.32, + "end": 10188.26, + "probability": 0.8577 + }, + { + "start": 10188.64, + "end": 10190.94, + "probability": 0.8403 + }, + { + "start": 10191.24, + "end": 10193.68, + "probability": 0.962 + }, + { + "start": 10193.74, + "end": 10195.16, + "probability": 0.9539 + }, + { + "start": 10195.34, + "end": 10197.84, + "probability": 0.8267 + }, + { + "start": 10198.26, + "end": 10199.73, + "probability": 0.9575 + }, + { + "start": 10199.94, + "end": 10204.06, + "probability": 0.9521 + }, + { + "start": 10204.4, + "end": 10204.89, + "probability": 0.9798 + }, + { + "start": 10205.36, + "end": 10207.56, + "probability": 0.9006 + }, + { + "start": 10207.64, + "end": 10208.2, + "probability": 0.7005 + }, + { + "start": 10208.42, + "end": 10211.76, + "probability": 0.6726 + }, + { + "start": 10212.04, + "end": 10213.78, + "probability": 0.5444 + }, + { + "start": 10214.36, + "end": 10220.75, + "probability": 0.5072 + }, + { + "start": 10221.94, + "end": 10223.02, + "probability": 0.3315 + }, + { + "start": 10223.22, + "end": 10229.12, + "probability": 0.8085 + }, + { + "start": 10229.12, + "end": 10232.36, + "probability": 0.9641 + }, + { + "start": 10232.84, + "end": 10238.02, + "probability": 0.9419 + }, + { + "start": 10238.46, + "end": 10242.34, + "probability": 0.7039 + }, + { + "start": 10242.88, + "end": 10246.34, + "probability": 0.943 + }, + { + "start": 10246.74, + "end": 10250.49, + "probability": 0.8093 + }, + { + "start": 10252.12, + "end": 10257.54, + "probability": 0.9808 + }, + { + "start": 10257.64, + "end": 10259.36, + "probability": 0.7429 + }, + { + "start": 10260.32, + "end": 10262.22, + "probability": 0.897 + }, + { + "start": 10263.5, + "end": 10264.22, + "probability": 0.6675 + }, + { + "start": 10264.72, + "end": 10267.44, + "probability": 0.8016 + }, + { + "start": 10268.08, + "end": 10271.76, + "probability": 0.9379 + }, + { + "start": 10271.78, + "end": 10273.0, + "probability": 0.7841 + }, + { + "start": 10274.1, + "end": 10276.58, + "probability": 0.9617 + }, + { + "start": 10277.72, + "end": 10281.98, + "probability": 0.8784 + }, + { + "start": 10282.24, + "end": 10283.94, + "probability": 0.8335 + }, + { + "start": 10284.54, + "end": 10286.08, + "probability": 0.9189 + }, + { + "start": 10286.56, + "end": 10288.86, + "probability": 0.5014 + }, + { + "start": 10289.8, + "end": 10292.92, + "probability": 0.8689 + }, + { + "start": 10293.9, + "end": 10295.6, + "probability": 0.8512 + }, + { + "start": 10296.46, + "end": 10298.34, + "probability": 0.9791 + }, + { + "start": 10298.88, + "end": 10305.32, + "probability": 0.8708 + }, + { + "start": 10306.06, + "end": 10310.54, + "probability": 0.4223 + }, + { + "start": 10310.54, + "end": 10313.56, + "probability": 0.9189 + }, + { + "start": 10314.36, + "end": 10316.17, + "probability": 0.771 + }, + { + "start": 10317.06, + "end": 10319.98, + "probability": 0.9962 + }, + { + "start": 10320.12, + "end": 10320.76, + "probability": 0.8248 + }, + { + "start": 10320.8, + "end": 10322.24, + "probability": 0.8061 + }, + { + "start": 10322.72, + "end": 10327.24, + "probability": 0.9434 + }, + { + "start": 10327.9, + "end": 10334.64, + "probability": 0.9043 + }, + { + "start": 10334.96, + "end": 10337.48, + "probability": 0.702 + }, + { + "start": 10337.98, + "end": 10340.8, + "probability": 0.8516 + }, + { + "start": 10341.3, + "end": 10344.96, + "probability": 0.9946 + }, + { + "start": 10345.16, + "end": 10346.72, + "probability": 0.3323 + }, + { + "start": 10347.14, + "end": 10347.46, + "probability": 0.8274 + }, + { + "start": 10347.56, + "end": 10348.38, + "probability": 0.9641 + }, + { + "start": 10348.74, + "end": 10353.18, + "probability": 0.7769 + }, + { + "start": 10354.5, + "end": 10358.75, + "probability": 0.9781 + }, + { + "start": 10359.52, + "end": 10360.22, + "probability": 0.9218 + }, + { + "start": 10360.86, + "end": 10364.3, + "probability": 0.6784 + }, + { + "start": 10364.52, + "end": 10365.94, + "probability": 0.8975 + }, + { + "start": 10366.52, + "end": 10368.36, + "probability": 0.8743 + }, + { + "start": 10368.94, + "end": 10370.6, + "probability": 0.984 + }, + { + "start": 10371.2, + "end": 10375.32, + "probability": 0.6604 + }, + { + "start": 10377.46, + "end": 10377.48, + "probability": 0.067 + }, + { + "start": 10377.48, + "end": 10380.8, + "probability": 0.6051 + }, + { + "start": 10381.0, + "end": 10381.7, + "probability": 0.7754 + }, + { + "start": 10382.26, + "end": 10384.34, + "probability": 0.7458 + }, + { + "start": 10384.92, + "end": 10386.64, + "probability": 0.922 + }, + { + "start": 10387.86, + "end": 10390.46, + "probability": 0.3272 + }, + { + "start": 10391.1, + "end": 10391.1, + "probability": 0.3375 + }, + { + "start": 10391.1, + "end": 10391.6, + "probability": 0.1539 + }, + { + "start": 10391.74, + "end": 10393.47, + "probability": 0.7383 + }, + { + "start": 10393.94, + "end": 10397.5, + "probability": 0.985 + }, + { + "start": 10397.54, + "end": 10397.84, + "probability": 0.8549 + }, + { + "start": 10398.44, + "end": 10398.74, + "probability": 0.7903 + }, + { + "start": 10399.38, + "end": 10401.12, + "probability": 0.7603 + }, + { + "start": 10401.64, + "end": 10402.68, + "probability": 0.581 + }, + { + "start": 10402.76, + "end": 10403.08, + "probability": 0.2941 + }, + { + "start": 10403.44, + "end": 10404.94, + "probability": 0.19 + }, + { + "start": 10404.98, + "end": 10408.84, + "probability": 0.9976 + }, + { + "start": 10408.87, + "end": 10413.76, + "probability": 0.876 + }, + { + "start": 10413.88, + "end": 10415.32, + "probability": 0.7983 + }, + { + "start": 10415.86, + "end": 10418.34, + "probability": 0.9976 + }, + { + "start": 10418.88, + "end": 10419.22, + "probability": 0.652 + }, + { + "start": 10419.48, + "end": 10420.14, + "probability": 0.7916 + }, + { + "start": 10421.4, + "end": 10421.72, + "probability": 0.8866 + }, + { + "start": 10421.82, + "end": 10422.28, + "probability": 0.3887 + }, + { + "start": 10422.38, + "end": 10422.72, + "probability": 0.9515 + }, + { + "start": 10422.74, + "end": 10423.68, + "probability": 0.8099 + }, + { + "start": 10423.8, + "end": 10423.88, + "probability": 0.1553 + }, + { + "start": 10423.96, + "end": 10424.76, + "probability": 0.8697 + }, + { + "start": 10424.86, + "end": 10425.36, + "probability": 0.6435 + }, + { + "start": 10425.52, + "end": 10425.82, + "probability": 0.1153 + }, + { + "start": 10426.72, + "end": 10430.58, + "probability": 0.1336 + }, + { + "start": 10431.48, + "end": 10434.58, + "probability": 0.6891 + }, + { + "start": 10434.62, + "end": 10437.44, + "probability": 0.9521 + }, + { + "start": 10437.44, + "end": 10437.96, + "probability": 0.25 + }, + { + "start": 10438.2, + "end": 10438.76, + "probability": 0.2391 + }, + { + "start": 10439.72, + "end": 10440.42, + "probability": 0.7295 + }, + { + "start": 10440.46, + "end": 10441.0, + "probability": 0.9197 + }, + { + "start": 10441.12, + "end": 10443.22, + "probability": 0.6481 + }, + { + "start": 10443.5, + "end": 10446.86, + "probability": 0.9971 + }, + { + "start": 10447.52, + "end": 10451.52, + "probability": 0.9104 + }, + { + "start": 10451.52, + "end": 10453.98, + "probability": 0.9546 + }, + { + "start": 10454.6, + "end": 10459.02, + "probability": 0.9822 + }, + { + "start": 10459.9, + "end": 10464.52, + "probability": 0.9906 + }, + { + "start": 10465.1, + "end": 10469.82, + "probability": 0.9986 + }, + { + "start": 10469.82, + "end": 10474.6, + "probability": 0.9976 + }, + { + "start": 10475.14, + "end": 10476.52, + "probability": 0.4788 + }, + { + "start": 10477.16, + "end": 10479.36, + "probability": 0.7687 + }, + { + "start": 10479.36, + "end": 10482.84, + "probability": 0.9415 + }, + { + "start": 10483.4, + "end": 10485.5, + "probability": 0.9967 + }, + { + "start": 10486.0, + "end": 10489.8, + "probability": 0.7171 + }, + { + "start": 10489.96, + "end": 10494.68, + "probability": 0.9588 + }, + { + "start": 10495.44, + "end": 10496.64, + "probability": 0.8648 + }, + { + "start": 10496.78, + "end": 10501.18, + "probability": 0.9753 + }, + { + "start": 10501.32, + "end": 10502.26, + "probability": 0.7061 + }, + { + "start": 10502.58, + "end": 10505.36, + "probability": 0.9679 + }, + { + "start": 10505.52, + "end": 10506.34, + "probability": 0.7188 + }, + { + "start": 10507.74, + "end": 10510.94, + "probability": 0.7398 + }, + { + "start": 10511.3, + "end": 10512.48, + "probability": 0.8057 + }, + { + "start": 10513.88, + "end": 10514.04, + "probability": 0.0778 + }, + { + "start": 10514.04, + "end": 10514.76, + "probability": 0.0959 + }, + { + "start": 10515.2, + "end": 10516.26, + "probability": 0.6922 + }, + { + "start": 10517.32, + "end": 10517.9, + "probability": 0.5912 + }, + { + "start": 10517.9, + "end": 10519.86, + "probability": 0.6568 + }, + { + "start": 10519.88, + "end": 10521.26, + "probability": 0.9377 + }, + { + "start": 10521.34, + "end": 10524.92, + "probability": 0.7669 + }, + { + "start": 10524.92, + "end": 10527.8, + "probability": 0.6795 + }, + { + "start": 10527.84, + "end": 10529.8, + "probability": 0.9429 + }, + { + "start": 10530.58, + "end": 10531.24, + "probability": 0.7989 + }, + { + "start": 10531.32, + "end": 10532.5, + "probability": 0.7843 + }, + { + "start": 10533.5, + "end": 10537.22, + "probability": 0.918 + }, + { + "start": 10537.42, + "end": 10541.1, + "probability": 0.8751 + }, + { + "start": 10541.26, + "end": 10542.47, + "probability": 0.6555 + }, + { + "start": 10544.28, + "end": 10544.36, + "probability": 0.7612 + }, + { + "start": 10544.36, + "end": 10552.08, + "probability": 0.8238 + }, + { + "start": 10552.2, + "end": 10553.4, + "probability": 0.6278 + }, + { + "start": 10553.82, + "end": 10557.22, + "probability": 0.8939 + }, + { + "start": 10557.7, + "end": 10557.98, + "probability": 0.9702 + }, + { + "start": 10561.12, + "end": 10563.82, + "probability": 0.989 + }, + { + "start": 10563.96, + "end": 10566.98, + "probability": 0.9912 + }, + { + "start": 10566.98, + "end": 10570.04, + "probability": 0.8884 + }, + { + "start": 10570.4, + "end": 10574.1, + "probability": 0.8658 + }, + { + "start": 10574.66, + "end": 10579.52, + "probability": 0.9857 + }, + { + "start": 10580.0, + "end": 10581.16, + "probability": 0.8409 + }, + { + "start": 10581.2, + "end": 10583.52, + "probability": 0.9426 + }, + { + "start": 10583.64, + "end": 10587.94, + "probability": 0.9858 + }, + { + "start": 10588.26, + "end": 10589.74, + "probability": 0.8994 + }, + { + "start": 10589.84, + "end": 10593.22, + "probability": 0.8352 + }, + { + "start": 10593.72, + "end": 10596.82, + "probability": 0.9686 + }, + { + "start": 10596.94, + "end": 10598.04, + "probability": 0.7861 + }, + { + "start": 10598.1, + "end": 10598.58, + "probability": 0.6594 + }, + { + "start": 10599.71, + "end": 10603.2, + "probability": 0.9636 + }, + { + "start": 10603.3, + "end": 10605.62, + "probability": 0.9775 + }, + { + "start": 10605.78, + "end": 10606.64, + "probability": 0.7786 + }, + { + "start": 10606.82, + "end": 10607.3, + "probability": 0.5087 + }, + { + "start": 10607.38, + "end": 10609.84, + "probability": 0.8627 + }, + { + "start": 10609.92, + "end": 10611.26, + "probability": 0.8109 + }, + { + "start": 10611.82, + "end": 10613.52, + "probability": 0.8917 + }, + { + "start": 10613.7, + "end": 10616.74, + "probability": 0.9565 + }, + { + "start": 10617.36, + "end": 10620.3, + "probability": 0.9697 + }, + { + "start": 10621.24, + "end": 10626.42, + "probability": 0.8812 + }, + { + "start": 10626.48, + "end": 10630.54, + "probability": 0.9243 + }, + { + "start": 10630.72, + "end": 10631.28, + "probability": 0.921 + }, + { + "start": 10631.94, + "end": 10634.06, + "probability": 0.998 + }, + { + "start": 10634.16, + "end": 10636.84, + "probability": 0.9927 + }, + { + "start": 10637.98, + "end": 10640.58, + "probability": 0.9772 + }, + { + "start": 10640.82, + "end": 10645.8, + "probability": 0.9847 + }, + { + "start": 10646.1, + "end": 10646.14, + "probability": 0.3622 + }, + { + "start": 10646.26, + "end": 10646.76, + "probability": 0.8218 + }, + { + "start": 10646.8, + "end": 10650.64, + "probability": 0.9735 + }, + { + "start": 10650.82, + "end": 10653.28, + "probability": 0.6289 + }, + { + "start": 10654.38, + "end": 10655.42, + "probability": 0.3719 + }, + { + "start": 10656.56, + "end": 10661.54, + "probability": 0.9403 + }, + { + "start": 10662.0, + "end": 10663.04, + "probability": 0.8797 + }, + { + "start": 10663.1, + "end": 10667.1, + "probability": 0.9725 + }, + { + "start": 10667.2, + "end": 10668.5, + "probability": 0.9418 + }, + { + "start": 10668.62, + "end": 10668.94, + "probability": 0.6282 + }, + { + "start": 10669.12, + "end": 10669.66, + "probability": 0.8207 + }, + { + "start": 10670.1, + "end": 10670.4, + "probability": 0.5223 + }, + { + "start": 10670.4, + "end": 10671.06, + "probability": 0.8339 + }, + { + "start": 10671.18, + "end": 10671.86, + "probability": 0.6946 + }, + { + "start": 10671.86, + "end": 10674.96, + "probability": 0.9599 + }, + { + "start": 10675.7, + "end": 10677.78, + "probability": 0.9763 + }, + { + "start": 10677.88, + "end": 10678.78, + "probability": 0.6741 + }, + { + "start": 10678.82, + "end": 10679.9, + "probability": 0.872 + }, + { + "start": 10680.64, + "end": 10684.24, + "probability": 0.9937 + }, + { + "start": 10685.74, + "end": 10690.42, + "probability": 0.9717 + }, + { + "start": 10690.7, + "end": 10692.08, + "probability": 0.8207 + }, + { + "start": 10692.22, + "end": 10693.88, + "probability": 0.8844 + }, + { + "start": 10694.1, + "end": 10696.72, + "probability": 0.9983 + }, + { + "start": 10696.84, + "end": 10700.46, + "probability": 0.9727 + }, + { + "start": 10700.56, + "end": 10701.06, + "probability": 0.8347 + }, + { + "start": 10702.18, + "end": 10704.18, + "probability": 0.9862 + }, + { + "start": 10704.36, + "end": 10705.92, + "probability": 0.9894 + }, + { + "start": 10706.02, + "end": 10708.12, + "probability": 0.9199 + }, + { + "start": 10709.44, + "end": 10715.64, + "probability": 0.9937 + }, + { + "start": 10715.8, + "end": 10719.28, + "probability": 0.7427 + }, + { + "start": 10720.06, + "end": 10724.44, + "probability": 0.9535 + }, + { + "start": 10724.58, + "end": 10725.66, + "probability": 0.7467 + }, + { + "start": 10725.84, + "end": 10726.52, + "probability": 0.8534 + }, + { + "start": 10726.6, + "end": 10727.34, + "probability": 0.8932 + }, + { + "start": 10727.78, + "end": 10733.72, + "probability": 0.9058 + }, + { + "start": 10733.72, + "end": 10735.82, + "probability": 0.7183 + }, + { + "start": 10735.9, + "end": 10736.88, + "probability": 0.9783 + }, + { + "start": 10736.94, + "end": 10739.18, + "probability": 0.9826 + }, + { + "start": 10739.3, + "end": 10744.5, + "probability": 0.9935 + }, + { + "start": 10745.2, + "end": 10747.76, + "probability": 0.4593 + }, + { + "start": 10749.88, + "end": 10749.96, + "probability": 0.1549 + }, + { + "start": 10749.96, + "end": 10749.96, + "probability": 0.167 + }, + { + "start": 10749.96, + "end": 10749.96, + "probability": 0.2403 + }, + { + "start": 10749.96, + "end": 10752.0, + "probability": 0.448 + }, + { + "start": 10752.08, + "end": 10755.05, + "probability": 0.9482 + }, + { + "start": 10755.58, + "end": 10756.94, + "probability": 0.8569 + }, + { + "start": 10757.06, + "end": 10759.46, + "probability": 0.7638 + }, + { + "start": 10759.52, + "end": 10761.46, + "probability": 0.955 + }, + { + "start": 10761.6, + "end": 10762.84, + "probability": 0.644 + }, + { + "start": 10762.88, + "end": 10763.52, + "probability": 0.8174 + }, + { + "start": 10763.96, + "end": 10765.92, + "probability": 0.9956 + }, + { + "start": 10766.0, + "end": 10767.22, + "probability": 0.9519 + }, + { + "start": 10767.26, + "end": 10770.2, + "probability": 0.939 + }, + { + "start": 10770.6, + "end": 10771.98, + "probability": 0.8809 + }, + { + "start": 10772.18, + "end": 10775.1, + "probability": 0.9925 + }, + { + "start": 10775.98, + "end": 10782.12, + "probability": 0.9823 + }, + { + "start": 10782.52, + "end": 10786.34, + "probability": 0.9199 + }, + { + "start": 10787.26, + "end": 10789.52, + "probability": 0.8213 + }, + { + "start": 10789.64, + "end": 10793.76, + "probability": 0.9279 + }, + { + "start": 10794.0, + "end": 10799.16, + "probability": 0.8445 + }, + { + "start": 10799.66, + "end": 10800.14, + "probability": 0.4611 + }, + { + "start": 10800.2, + "end": 10801.0, + "probability": 0.8813 + }, + { + "start": 10801.18, + "end": 10801.64, + "probability": 0.6405 + }, + { + "start": 10802.78, + "end": 10803.68, + "probability": 0.8036 + }, + { + "start": 10803.7, + "end": 10804.77, + "probability": 0.8946 + }, + { + "start": 10804.86, + "end": 10807.16, + "probability": 0.9172 + }, + { + "start": 10807.66, + "end": 10808.4, + "probability": 0.6762 + }, + { + "start": 10808.46, + "end": 10811.96, + "probability": 0.8892 + }, + { + "start": 10811.96, + "end": 10816.2, + "probability": 0.9939 + }, + { + "start": 10816.2, + "end": 10820.68, + "probability": 0.8801 + }, + { + "start": 10821.18, + "end": 10824.66, + "probability": 0.9614 + }, + { + "start": 10824.74, + "end": 10825.34, + "probability": 0.7192 + }, + { + "start": 10825.58, + "end": 10830.12, + "probability": 0.9764 + }, + { + "start": 10831.26, + "end": 10835.38, + "probability": 0.9533 + }, + { + "start": 10836.48, + "end": 10838.4, + "probability": 0.2715 + }, + { + "start": 10838.68, + "end": 10838.74, + "probability": 0.0012 + }, + { + "start": 10838.74, + "end": 10838.82, + "probability": 0.071 + }, + { + "start": 10839.26, + "end": 10840.26, + "probability": 0.5286 + }, + { + "start": 10840.32, + "end": 10842.2, + "probability": 0.467 + }, + { + "start": 10842.74, + "end": 10842.74, + "probability": 0.0481 + }, + { + "start": 10842.74, + "end": 10843.12, + "probability": 0.318 + }, + { + "start": 10843.14, + "end": 10844.58, + "probability": 0.3976 + }, + { + "start": 10844.74, + "end": 10845.4, + "probability": 0.4974 + }, + { + "start": 10845.48, + "end": 10846.96, + "probability": 0.9253 + }, + { + "start": 10847.08, + "end": 10849.14, + "probability": 0.9293 + }, + { + "start": 10850.18, + "end": 10851.66, + "probability": 0.8679 + }, + { + "start": 10852.48, + "end": 10853.52, + "probability": 0.6507 + }, + { + "start": 10853.62, + "end": 10856.24, + "probability": 0.9851 + }, + { + "start": 10856.88, + "end": 10865.48, + "probability": 0.8075 + }, + { + "start": 10866.94, + "end": 10869.82, + "probability": 0.953 + }, + { + "start": 10870.7, + "end": 10873.6, + "probability": 0.7012 + }, + { + "start": 10873.68, + "end": 10877.8, + "probability": 0.9492 + }, + { + "start": 10878.42, + "end": 10880.04, + "probability": 0.8375 + }, + { + "start": 10881.07, + "end": 10888.28, + "probability": 0.958 + }, + { + "start": 10888.94, + "end": 10893.18, + "probability": 0.9984 + }, + { + "start": 10894.28, + "end": 10894.86, + "probability": 0.7444 + }, + { + "start": 10895.1, + "end": 10896.0, + "probability": 0.9515 + }, + { + "start": 10896.18, + "end": 10896.6, + "probability": 0.6943 + }, + { + "start": 10896.7, + "end": 10897.24, + "probability": 0.7597 + }, + { + "start": 10897.28, + "end": 10900.48, + "probability": 0.9695 + }, + { + "start": 10901.64, + "end": 10903.0, + "probability": 0.6754 + }, + { + "start": 10904.1, + "end": 10906.59, + "probability": 0.7025 + }, + { + "start": 10908.06, + "end": 10910.1, + "probability": 0.9393 + }, + { + "start": 10911.3, + "end": 10916.12, + "probability": 0.9714 + }, + { + "start": 10916.18, + "end": 10916.66, + "probability": 0.7288 + }, + { + "start": 10916.78, + "end": 10919.9, + "probability": 0.8402 + }, + { + "start": 10920.6, + "end": 10921.2, + "probability": 0.7639 + }, + { + "start": 10921.44, + "end": 10923.7, + "probability": 0.9855 + }, + { + "start": 10924.5, + "end": 10929.18, + "probability": 0.8892 + }, + { + "start": 10929.32, + "end": 10931.02, + "probability": 0.9951 + }, + { + "start": 10931.32, + "end": 10932.14, + "probability": 0.7686 + }, + { + "start": 10932.6, + "end": 10933.22, + "probability": 0.8976 + }, + { + "start": 10933.34, + "end": 10933.94, + "probability": 0.6326 + }, + { + "start": 10934.0, + "end": 10936.0, + "probability": 0.9575 + }, + { + "start": 10936.12, + "end": 10938.36, + "probability": 0.7566 + }, + { + "start": 10939.02, + "end": 10939.88, + "probability": 0.9316 + }, + { + "start": 10940.08, + "end": 10940.64, + "probability": 0.491 + }, + { + "start": 10940.72, + "end": 10943.06, + "probability": 0.9925 + }, + { + "start": 10943.76, + "end": 10945.3, + "probability": 0.6934 + }, + { + "start": 10946.58, + "end": 10947.12, + "probability": 0.0058 + }, + { + "start": 10949.06, + "end": 10950.4, + "probability": 0.0754 + }, + { + "start": 10951.4, + "end": 10951.84, + "probability": 0.0312 + }, + { + "start": 10951.84, + "end": 10951.92, + "probability": 0.0031 + }, + { + "start": 10951.92, + "end": 10951.92, + "probability": 0.0573 + }, + { + "start": 10951.92, + "end": 10951.92, + "probability": 0.0356 + }, + { + "start": 10951.92, + "end": 10952.38, + "probability": 0.0222 + }, + { + "start": 10953.0, + "end": 10958.0, + "probability": 0.1672 + }, + { + "start": 10958.62, + "end": 10961.82, + "probability": 0.9077 + }, + { + "start": 10961.85, + "end": 10967.16, + "probability": 0.9526 + }, + { + "start": 10969.28, + "end": 10970.4, + "probability": 0.8772 + }, + { + "start": 10970.66, + "end": 10971.36, + "probability": 0.8534 + }, + { + "start": 10971.78, + "end": 10972.22, + "probability": 0.859 + }, + { + "start": 10972.32, + "end": 10974.92, + "probability": 0.9816 + }, + { + "start": 10975.42, + "end": 10976.74, + "probability": 0.8694 + }, + { + "start": 10976.92, + "end": 10977.22, + "probability": 0.8055 + }, + { + "start": 10977.34, + "end": 10980.04, + "probability": 0.9813 + }, + { + "start": 10982.6, + "end": 10987.02, + "probability": 0.998 + }, + { + "start": 10987.08, + "end": 10987.8, + "probability": 0.6258 + }, + { + "start": 10987.86, + "end": 10991.46, + "probability": 0.9849 + }, + { + "start": 10991.64, + "end": 10995.18, + "probability": 0.6892 + }, + { + "start": 10995.36, + "end": 10997.32, + "probability": 0.6687 + }, + { + "start": 10997.68, + "end": 10998.54, + "probability": 0.6782 + }, + { + "start": 10998.72, + "end": 11000.52, + "probability": 0.9893 + }, + { + "start": 11001.42, + "end": 11003.04, + "probability": 0.9614 + }, + { + "start": 11004.44, + "end": 11008.56, + "probability": 0.9347 + }, + { + "start": 11009.34, + "end": 11012.22, + "probability": 0.5512 + }, + { + "start": 11012.32, + "end": 11012.78, + "probability": 0.3417 + }, + { + "start": 11012.96, + "end": 11019.12, + "probability": 0.9723 + }, + { + "start": 11019.94, + "end": 11024.7, + "probability": 0.9824 + }, + { + "start": 11025.04, + "end": 11026.84, + "probability": 0.9788 + }, + { + "start": 11026.92, + "end": 11028.6, + "probability": 0.9941 + }, + { + "start": 11029.92, + "end": 11031.44, + "probability": 0.8348 + }, + { + "start": 11032.2, + "end": 11032.82, + "probability": 0.064 + }, + { + "start": 11034.22, + "end": 11037.62, + "probability": 0.9609 + }, + { + "start": 11037.76, + "end": 11040.56, + "probability": 0.9927 + }, + { + "start": 11040.66, + "end": 11041.78, + "probability": 0.6989 + }, + { + "start": 11041.82, + "end": 11042.54, + "probability": 0.845 + }, + { + "start": 11042.6, + "end": 11044.86, + "probability": 0.8374 + }, + { + "start": 11045.56, + "end": 11050.04, + "probability": 0.9808 + }, + { + "start": 11050.14, + "end": 11056.2, + "probability": 0.9956 + }, + { + "start": 11056.2, + "end": 11062.62, + "probability": 0.9914 + }, + { + "start": 11062.68, + "end": 11063.1, + "probability": 0.5433 + }, + { + "start": 11063.34, + "end": 11064.04, + "probability": 0.7131 + }, + { + "start": 11064.7, + "end": 11065.04, + "probability": 0.4009 + }, + { + "start": 11065.22, + "end": 11068.06, + "probability": 0.807 + }, + { + "start": 11068.16, + "end": 11069.76, + "probability": 0.8011 + }, + { + "start": 11069.9, + "end": 11071.16, + "probability": 0.8309 + }, + { + "start": 11071.6, + "end": 11076.04, + "probability": 0.9487 + }, + { + "start": 11076.62, + "end": 11077.72, + "probability": 0.6972 + }, + { + "start": 11077.76, + "end": 11081.8, + "probability": 0.8859 + }, + { + "start": 11082.44, + "end": 11085.16, + "probability": 0.9932 + }, + { + "start": 11089.52, + "end": 11094.86, + "probability": 0.9583 + }, + { + "start": 11095.56, + "end": 11095.88, + "probability": 0.4005 + }, + { + "start": 11095.88, + "end": 11097.04, + "probability": 0.9443 + }, + { + "start": 11097.2, + "end": 11098.98, + "probability": 0.9788 + }, + { + "start": 11099.34, + "end": 11100.9, + "probability": 0.9753 + }, + { + "start": 11101.82, + "end": 11102.12, + "probability": 0.9205 + }, + { + "start": 11105.22, + "end": 11106.96, + "probability": 0.6976 + }, + { + "start": 11107.04, + "end": 11110.1, + "probability": 0.9171 + }, + { + "start": 11110.67, + "end": 11113.08, + "probability": 0.998 + }, + { + "start": 11113.22, + "end": 11113.71, + "probability": 0.5505 + }, + { + "start": 11114.8, + "end": 11115.84, + "probability": 0.957 + }, + { + "start": 11115.94, + "end": 11118.78, + "probability": 0.9902 + }, + { + "start": 11119.32, + "end": 11120.1, + "probability": 0.9417 + }, + { + "start": 11120.76, + "end": 11122.74, + "probability": 0.9821 + }, + { + "start": 11123.18, + "end": 11124.46, + "probability": 0.9963 + }, + { + "start": 11125.18, + "end": 11128.18, + "probability": 0.9673 + }, + { + "start": 11128.55, + "end": 11131.06, + "probability": 0.9951 + }, + { + "start": 11131.16, + "end": 11132.8, + "probability": 0.9922 + }, + { + "start": 11133.46, + "end": 11135.4, + "probability": 0.9961 + }, + { + "start": 11136.64, + "end": 11139.5, + "probability": 0.9717 + }, + { + "start": 11140.18, + "end": 11141.28, + "probability": 0.5434 + }, + { + "start": 11141.42, + "end": 11144.02, + "probability": 0.9603 + }, + { + "start": 11144.34, + "end": 11147.8, + "probability": 0.8833 + }, + { + "start": 11147.86, + "end": 11149.52, + "probability": 0.9805 + }, + { + "start": 11150.18, + "end": 11152.04, + "probability": 0.8844 + }, + { + "start": 11153.96, + "end": 11157.28, + "probability": 0.9082 + }, + { + "start": 11159.01, + "end": 11163.64, + "probability": 0.9653 + }, + { + "start": 11163.8, + "end": 11169.62, + "probability": 0.8977 + }, + { + "start": 11170.06, + "end": 11170.74, + "probability": 0.4186 + }, + { + "start": 11170.74, + "end": 11172.52, + "probability": 0.5279 + }, + { + "start": 11172.62, + "end": 11176.06, + "probability": 0.8959 + }, + { + "start": 11176.32, + "end": 11179.34, + "probability": 0.6112 + }, + { + "start": 11180.1, + "end": 11182.06, + "probability": 0.745 + }, + { + "start": 11182.24, + "end": 11186.06, + "probability": 0.9688 + }, + { + "start": 11187.12, + "end": 11188.33, + "probability": 0.9512 + }, + { + "start": 11188.92, + "end": 11192.14, + "probability": 0.9443 + }, + { + "start": 11192.46, + "end": 11193.52, + "probability": 0.943 + }, + { + "start": 11193.64, + "end": 11196.3, + "probability": 0.8703 + }, + { + "start": 11196.98, + "end": 11199.18, + "probability": 0.7822 + }, + { + "start": 11199.24, + "end": 11200.16, + "probability": 0.9917 + }, + { + "start": 11201.52, + "end": 11205.98, + "probability": 0.9876 + }, + { + "start": 11205.98, + "end": 11208.52, + "probability": 0.9926 + }, + { + "start": 11209.74, + "end": 11212.8, + "probability": 0.7269 + }, + { + "start": 11214.1, + "end": 11218.9, + "probability": 0.9544 + }, + { + "start": 11219.2, + "end": 11221.2, + "probability": 0.993 + }, + { + "start": 11221.88, + "end": 11222.66, + "probability": 0.8917 + }, + { + "start": 11223.1, + "end": 11227.84, + "probability": 0.9512 + }, + { + "start": 11228.22, + "end": 11231.48, + "probability": 0.9526 + }, + { + "start": 11234.03, + "end": 11238.42, + "probability": 0.7996 + }, + { + "start": 11238.82, + "end": 11245.44, + "probability": 0.9445 + }, + { + "start": 11245.58, + "end": 11248.16, + "probability": 0.9373 + }, + { + "start": 11248.36, + "end": 11248.68, + "probability": 0.8083 + }, + { + "start": 11249.54, + "end": 11250.82, + "probability": 0.6588 + }, + { + "start": 11250.98, + "end": 11254.17, + "probability": 0.9917 + }, + { + "start": 11258.54, + "end": 11259.0, + "probability": 0.6823 + }, + { + "start": 11259.08, + "end": 11262.28, + "probability": 0.9883 + }, + { + "start": 11262.28, + "end": 11265.78, + "probability": 0.7697 + }, + { + "start": 11266.18, + "end": 11268.94, + "probability": 0.8676 + }, + { + "start": 11269.46, + "end": 11271.24, + "probability": 0.7909 + }, + { + "start": 11271.36, + "end": 11275.56, + "probability": 0.9821 + }, + { + "start": 11275.64, + "end": 11279.02, + "probability": 0.8917 + }, + { + "start": 11279.46, + "end": 11282.3, + "probability": 0.9875 + }, + { + "start": 11283.12, + "end": 11286.2, + "probability": 0.99 + }, + { + "start": 11286.32, + "end": 11288.12, + "probability": 0.983 + }, + { + "start": 11288.26, + "end": 11288.98, + "probability": 0.7526 + }, + { + "start": 11289.62, + "end": 11293.5, + "probability": 0.9639 + }, + { + "start": 11293.86, + "end": 11299.18, + "probability": 0.9744 + }, + { + "start": 11299.18, + "end": 11305.28, + "probability": 0.9202 + }, + { + "start": 11305.62, + "end": 11307.6, + "probability": 0.8452 + }, + { + "start": 11308.1, + "end": 11313.22, + "probability": 0.9128 + }, + { + "start": 11313.36, + "end": 11314.72, + "probability": 0.92 + }, + { + "start": 11315.12, + "end": 11316.24, + "probability": 0.8434 + }, + { + "start": 11316.42, + "end": 11319.2, + "probability": 0.9357 + }, + { + "start": 11319.64, + "end": 11324.08, + "probability": 0.873 + }, + { + "start": 11324.52, + "end": 11326.45, + "probability": 0.7672 + }, + { + "start": 11326.58, + "end": 11330.36, + "probability": 0.786 + }, + { + "start": 11330.5, + "end": 11333.54, + "probability": 0.9182 + }, + { + "start": 11333.54, + "end": 11337.94, + "probability": 0.9561 + }, + { + "start": 11339.68, + "end": 11340.24, + "probability": 0.3248 + }, + { + "start": 11340.32, + "end": 11341.14, + "probability": 0.6384 + }, + { + "start": 11341.16, + "end": 11342.18, + "probability": 0.7652 + }, + { + "start": 11342.18, + "end": 11346.4, + "probability": 0.9067 + }, + { + "start": 11347.33, + "end": 11352.74, + "probability": 0.8013 + }, + { + "start": 11353.62, + "end": 11360.96, + "probability": 0.9826 + }, + { + "start": 11361.68, + "end": 11362.68, + "probability": 0.4199 + }, + { + "start": 11362.7, + "end": 11363.42, + "probability": 0.9403 + }, + { + "start": 11363.44, + "end": 11364.36, + "probability": 0.7398 + }, + { + "start": 11365.28, + "end": 11368.24, + "probability": 0.9508 + }, + { + "start": 11368.94, + "end": 11373.64, + "probability": 0.9423 + }, + { + "start": 11373.9, + "end": 11377.16, + "probability": 0.9916 + }, + { + "start": 11377.36, + "end": 11378.15, + "probability": 0.8483 + }, + { + "start": 11379.88, + "end": 11387.86, + "probability": 0.9061 + }, + { + "start": 11388.54, + "end": 11394.6, + "probability": 0.9894 + }, + { + "start": 11395.74, + "end": 11398.02, + "probability": 0.7349 + }, + { + "start": 11398.14, + "end": 11401.84, + "probability": 0.7717 + }, + { + "start": 11402.7, + "end": 11404.96, + "probability": 0.8895 + }, + { + "start": 11405.32, + "end": 11406.88, + "probability": 0.7532 + }, + { + "start": 11407.04, + "end": 11413.24, + "probability": 0.8823 + }, + { + "start": 11413.3, + "end": 11422.46, + "probability": 0.9893 + }, + { + "start": 11422.46, + "end": 11426.86, + "probability": 0.969 + }, + { + "start": 11427.24, + "end": 11433.0, + "probability": 0.8672 + }, + { + "start": 11433.8, + "end": 11436.74, + "probability": 0.9469 + }, + { + "start": 11436.9, + "end": 11439.38, + "probability": 0.8053 + }, + { + "start": 11439.54, + "end": 11443.96, + "probability": 0.7637 + }, + { + "start": 11444.12, + "end": 11445.04, + "probability": 0.8733 + }, + { + "start": 11446.0, + "end": 11451.46, + "probability": 0.8777 + }, + { + "start": 11451.54, + "end": 11452.48, + "probability": 0.7987 + }, + { + "start": 11453.04, + "end": 11455.78, + "probability": 0.9729 + }, + { + "start": 11456.2, + "end": 11457.38, + "probability": 0.9209 + }, + { + "start": 11457.86, + "end": 11460.58, + "probability": 0.9722 + }, + { + "start": 11462.0, + "end": 11465.96, + "probability": 0.9928 + }, + { + "start": 11466.08, + "end": 11466.82, + "probability": 0.7529 + }, + { + "start": 11467.12, + "end": 11468.58, + "probability": 0.5708 + }, + { + "start": 11468.66, + "end": 11470.14, + "probability": 0.9927 + }, + { + "start": 11470.76, + "end": 11474.42, + "probability": 0.9308 + }, + { + "start": 11475.34, + "end": 11478.04, + "probability": 0.9926 + }, + { + "start": 11478.24, + "end": 11479.8, + "probability": 0.9363 + }, + { + "start": 11480.82, + "end": 11481.8, + "probability": 0.8136 + }, + { + "start": 11483.0, + "end": 11485.74, + "probability": 0.9893 + }, + { + "start": 11485.74, + "end": 11488.42, + "probability": 0.9894 + }, + { + "start": 11488.48, + "end": 11491.06, + "probability": 0.7463 + }, + { + "start": 11491.16, + "end": 11492.24, + "probability": 0.9152 + }, + { + "start": 11493.12, + "end": 11495.36, + "probability": 0.9941 + }, + { + "start": 11496.28, + "end": 11497.68, + "probability": 0.5318 + }, + { + "start": 11497.72, + "end": 11499.56, + "probability": 0.8333 + }, + { + "start": 11499.64, + "end": 11502.2, + "probability": 0.8457 + }, + { + "start": 11502.44, + "end": 11503.56, + "probability": 0.4658 + }, + { + "start": 11504.02, + "end": 11507.35, + "probability": 0.9525 + }, + { + "start": 11507.74, + "end": 11510.98, + "probability": 0.704 + }, + { + "start": 11510.98, + "end": 11513.88, + "probability": 0.9941 + }, + { + "start": 11513.98, + "end": 11514.24, + "probability": 0.6191 + }, + { + "start": 11514.28, + "end": 11514.6, + "probability": 0.429 + }, + { + "start": 11514.66, + "end": 11517.02, + "probability": 0.9714 + }, + { + "start": 11517.1, + "end": 11520.08, + "probability": 0.9342 + }, + { + "start": 11520.5, + "end": 11521.2, + "probability": 0.3007 + }, + { + "start": 11521.54, + "end": 11524.64, + "probability": 0.9786 + }, + { + "start": 11524.64, + "end": 11526.02, + "probability": 0.8681 + }, + { + "start": 11527.25, + "end": 11529.98, + "probability": 0.9596 + }, + { + "start": 11530.76, + "end": 11531.66, + "probability": 0.5155 + }, + { + "start": 11531.84, + "end": 11534.96, + "probability": 0.9662 + }, + { + "start": 11535.68, + "end": 11537.74, + "probability": 0.8425 + }, + { + "start": 11538.74, + "end": 11541.98, + "probability": 0.7981 + }, + { + "start": 11541.98, + "end": 11542.46, + "probability": 0.9005 + }, + { + "start": 11542.56, + "end": 11544.34, + "probability": 0.9793 + }, + { + "start": 11544.44, + "end": 11545.08, + "probability": 0.6586 + }, + { + "start": 11545.14, + "end": 11546.84, + "probability": 0.9451 + }, + { + "start": 11546.98, + "end": 11550.42, + "probability": 0.9739 + }, + { + "start": 11550.54, + "end": 11551.68, + "probability": 0.7299 + }, + { + "start": 11552.52, + "end": 11555.74, + "probability": 0.9817 + }, + { + "start": 11555.88, + "end": 11557.54, + "probability": 0.9308 + }, + { + "start": 11558.1, + "end": 11559.4, + "probability": 0.99 + }, + { + "start": 11560.16, + "end": 11562.94, + "probability": 0.8918 + }, + { + "start": 11563.6, + "end": 11564.96, + "probability": 0.7366 + }, + { + "start": 11565.34, + "end": 11567.46, + "probability": 0.949 + }, + { + "start": 11567.52, + "end": 11572.02, + "probability": 0.9819 + }, + { + "start": 11572.04, + "end": 11573.38, + "probability": 0.9302 + }, + { + "start": 11573.52, + "end": 11575.14, + "probability": 0.8834 + }, + { + "start": 11575.44, + "end": 11579.13, + "probability": 0.9878 + }, + { + "start": 11579.54, + "end": 11583.5, + "probability": 0.993 + }, + { + "start": 11583.72, + "end": 11585.4, + "probability": 0.8826 + }, + { + "start": 11585.48, + "end": 11587.82, + "probability": 0.8778 + }, + { + "start": 11587.86, + "end": 11590.04, + "probability": 0.8507 + }, + { + "start": 11590.32, + "end": 11591.8, + "probability": 0.9562 + }, + { + "start": 11592.28, + "end": 11595.24, + "probability": 0.496 + }, + { + "start": 11595.3, + "end": 11596.22, + "probability": 0.9006 + }, + { + "start": 11596.78, + "end": 11600.1, + "probability": 0.9946 + }, + { + "start": 11600.34, + "end": 11604.52, + "probability": 0.9639 + }, + { + "start": 11604.62, + "end": 11605.7, + "probability": 0.9352 + }, + { + "start": 11605.94, + "end": 11607.14, + "probability": 0.812 + }, + { + "start": 11607.24, + "end": 11609.96, + "probability": 0.4517 + }, + { + "start": 11610.08, + "end": 11613.44, + "probability": 0.7691 + }, + { + "start": 11613.64, + "end": 11614.14, + "probability": 0.912 + }, + { + "start": 11615.46, + "end": 11616.84, + "probability": 0.8066 + }, + { + "start": 11617.46, + "end": 11618.48, + "probability": 0.5244 + }, + { + "start": 11618.58, + "end": 11619.04, + "probability": 0.9746 + }, + { + "start": 11619.1, + "end": 11620.12, + "probability": 0.9527 + }, + { + "start": 11620.32, + "end": 11621.94, + "probability": 0.9979 + }, + { + "start": 11622.5, + "end": 11623.16, + "probability": 0.4845 + }, + { + "start": 11623.16, + "end": 11624.1, + "probability": 0.3342 + }, + { + "start": 11624.86, + "end": 11626.96, + "probability": 0.9402 + }, + { + "start": 11627.06, + "end": 11628.86, + "probability": 0.9453 + }, + { + "start": 11628.98, + "end": 11629.34, + "probability": 0.6106 + }, + { + "start": 11629.88, + "end": 11630.46, + "probability": 0.174 + }, + { + "start": 11630.46, + "end": 11633.06, + "probability": 0.6018 + }, + { + "start": 11634.08, + "end": 11634.26, + "probability": 0.2556 + }, + { + "start": 11634.38, + "end": 11635.72, + "probability": 0.7253 + }, + { + "start": 11636.38, + "end": 11637.82, + "probability": 0.7627 + }, + { + "start": 11638.7, + "end": 11644.54, + "probability": 0.8419 + }, + { + "start": 11645.96, + "end": 11650.48, + "probability": 0.4948 + }, + { + "start": 11651.72, + "end": 11655.18, + "probability": 0.8338 + }, + { + "start": 11655.7, + "end": 11655.74, + "probability": 0.2475 + }, + { + "start": 11655.74, + "end": 11659.24, + "probability": 0.97 + }, + { + "start": 11659.34, + "end": 11660.38, + "probability": 0.7247 + }, + { + "start": 11660.5, + "end": 11660.7, + "probability": 0.673 + }, + { + "start": 11662.0, + "end": 11662.86, + "probability": 0.7609 + }, + { + "start": 11666.78, + "end": 11668.94, + "probability": 0.1821 + }, + { + "start": 11685.78, + "end": 11688.18, + "probability": 0.7171 + }, + { + "start": 11692.66, + "end": 11695.74, + "probability": 0.8586 + }, + { + "start": 11698.96, + "end": 11701.32, + "probability": 0.7931 + }, + { + "start": 11701.42, + "end": 11705.02, + "probability": 0.9761 + }, + { + "start": 11705.06, + "end": 11705.54, + "probability": 0.9129 + }, + { + "start": 11705.76, + "end": 11706.36, + "probability": 0.659 + }, + { + "start": 11707.02, + "end": 11707.44, + "probability": 0.8769 + }, + { + "start": 11707.64, + "end": 11708.28, + "probability": 0.8007 + }, + { + "start": 11708.48, + "end": 11708.94, + "probability": 0.903 + }, + { + "start": 11709.22, + "end": 11709.74, + "probability": 0.9831 + }, + { + "start": 11709.8, + "end": 11710.14, + "probability": 0.949 + }, + { + "start": 11710.26, + "end": 11710.8, + "probability": 0.9771 + }, + { + "start": 11711.28, + "end": 11711.92, + "probability": 0.8279 + }, + { + "start": 11712.04, + "end": 11712.44, + "probability": 0.8218 + }, + { + "start": 11712.86, + "end": 11713.28, + "probability": 0.7911 + }, + { + "start": 11713.86, + "end": 11715.08, + "probability": 0.8631 + }, + { + "start": 11716.06, + "end": 11719.2, + "probability": 0.8553 + }, + { + "start": 11719.78, + "end": 11722.8, + "probability": 0.867 + }, + { + "start": 11724.0, + "end": 11725.16, + "probability": 0.8083 + }, + { + "start": 11727.08, + "end": 11731.62, + "probability": 0.9776 + }, + { + "start": 11731.62, + "end": 11734.72, + "probability": 0.9985 + }, + { + "start": 11734.72, + "end": 11739.02, + "probability": 0.938 + }, + { + "start": 11740.74, + "end": 11742.26, + "probability": 0.8856 + }, + { + "start": 11742.38, + "end": 11745.86, + "probability": 0.9941 + }, + { + "start": 11745.94, + "end": 11750.76, + "probability": 0.9919 + }, + { + "start": 11750.76, + "end": 11754.48, + "probability": 0.9438 + }, + { + "start": 11755.52, + "end": 11756.8, + "probability": 0.6947 + }, + { + "start": 11757.44, + "end": 11761.32, + "probability": 0.9928 + }, + { + "start": 11761.32, + "end": 11766.2, + "probability": 0.9465 + }, + { + "start": 11767.86, + "end": 11772.98, + "probability": 0.9245 + }, + { + "start": 11775.08, + "end": 11777.2, + "probability": 0.7933 + }, + { + "start": 11778.14, + "end": 11780.62, + "probability": 0.9596 + }, + { + "start": 11781.76, + "end": 11786.6, + "probability": 0.9847 + }, + { + "start": 11787.44, + "end": 11789.7, + "probability": 0.977 + }, + { + "start": 11789.7, + "end": 11792.9, + "probability": 0.9981 + }, + { + "start": 11793.04, + "end": 11794.98, + "probability": 0.9925 + }, + { + "start": 11795.68, + "end": 11801.34, + "probability": 0.9957 + }, + { + "start": 11801.88, + "end": 11802.7, + "probability": 0.7961 + }, + { + "start": 11803.34, + "end": 11806.94, + "probability": 0.7505 + }, + { + "start": 11807.62, + "end": 11808.76, + "probability": 0.7474 + }, + { + "start": 11808.82, + "end": 11813.22, + "probability": 0.9621 + }, + { + "start": 11813.94, + "end": 11816.7, + "probability": 0.9821 + }, + { + "start": 11816.84, + "end": 11817.74, + "probability": 0.6665 + }, + { + "start": 11818.32, + "end": 11820.62, + "probability": 0.8447 + }, + { + "start": 11821.28, + "end": 11823.66, + "probability": 0.8821 + }, + { + "start": 11824.22, + "end": 11827.34, + "probability": 0.8926 + }, + { + "start": 11828.08, + "end": 11831.7, + "probability": 0.9491 + }, + { + "start": 11833.5, + "end": 11835.24, + "probability": 0.7172 + }, + { + "start": 11837.32, + "end": 11839.4, + "probability": 0.2219 + }, + { + "start": 11840.68, + "end": 11841.94, + "probability": 0.6542 + }, + { + "start": 11842.02, + "end": 11844.15, + "probability": 0.2615 + }, + { + "start": 11846.24, + "end": 11848.86, + "probability": 0.7021 + }, + { + "start": 11852.3, + "end": 11853.38, + "probability": 0.8075 + }, + { + "start": 11853.92, + "end": 11855.54, + "probability": 0.6225 + }, + { + "start": 11856.58, + "end": 11862.58, + "probability": 0.9292 + }, + { + "start": 11864.44, + "end": 11867.72, + "probability": 0.8857 + }, + { + "start": 11868.28, + "end": 11871.26, + "probability": 0.9847 + }, + { + "start": 11873.38, + "end": 11875.62, + "probability": 0.8381 + }, + { + "start": 11876.98, + "end": 11878.6, + "probability": 0.5055 + }, + { + "start": 11881.9, + "end": 11884.52, + "probability": 0.9979 + }, + { + "start": 11885.9, + "end": 11888.84, + "probability": 0.9939 + }, + { + "start": 11890.82, + "end": 11891.44, + "probability": 0.4715 + }, + { + "start": 11892.12, + "end": 11894.2, + "probability": 0.8107 + }, + { + "start": 11895.12, + "end": 11898.89, + "probability": 0.9958 + }, + { + "start": 11900.36, + "end": 11908.04, + "probability": 0.6852 + }, + { + "start": 11910.74, + "end": 11917.7, + "probability": 0.9949 + }, + { + "start": 11917.8, + "end": 11918.58, + "probability": 0.7142 + }, + { + "start": 11919.98, + "end": 11923.22, + "probability": 0.998 + }, + { + "start": 11924.36, + "end": 11926.72, + "probability": 0.9961 + }, + { + "start": 11926.72, + "end": 11929.02, + "probability": 0.999 + }, + { + "start": 11929.3, + "end": 11932.14, + "probability": 0.9904 + }, + { + "start": 11934.04, + "end": 11936.2, + "probability": 0.9822 + }, + { + "start": 11937.48, + "end": 11940.44, + "probability": 0.9866 + }, + { + "start": 11941.78, + "end": 11943.56, + "probability": 0.9947 + }, + { + "start": 11943.76, + "end": 11944.64, + "probability": 0.9219 + }, + { + "start": 11946.48, + "end": 11948.36, + "probability": 0.9839 + }, + { + "start": 11948.36, + "end": 11951.04, + "probability": 0.9958 + }, + { + "start": 11952.46, + "end": 11953.72, + "probability": 0.9365 + }, + { + "start": 11955.26, + "end": 11960.14, + "probability": 0.691 + }, + { + "start": 11962.0, + "end": 11962.78, + "probability": 0.9922 + }, + { + "start": 11962.88, + "end": 11966.48, + "probability": 0.9764 + }, + { + "start": 11967.48, + "end": 11969.94, + "probability": 0.9845 + }, + { + "start": 11972.0, + "end": 11973.02, + "probability": 0.873 + }, + { + "start": 11973.14, + "end": 11974.04, + "probability": 0.695 + }, + { + "start": 11974.18, + "end": 11975.6, + "probability": 0.7384 + }, + { + "start": 11976.02, + "end": 11978.87, + "probability": 0.9893 + }, + { + "start": 11982.3, + "end": 11986.22, + "probability": 0.8031 + }, + { + "start": 11986.8, + "end": 11988.7, + "probability": 0.8694 + }, + { + "start": 11989.4, + "end": 11991.89, + "probability": 0.964 + }, + { + "start": 11993.44, + "end": 11994.5, + "probability": 0.7833 + }, + { + "start": 11995.38, + "end": 11996.76, + "probability": 0.8402 + }, + { + "start": 11997.62, + "end": 12004.06, + "probability": 0.9425 + }, + { + "start": 12005.12, + "end": 12006.61, + "probability": 0.9985 + }, + { + "start": 12010.38, + "end": 12011.67, + "probability": 0.9939 + }, + { + "start": 12014.64, + "end": 12016.98, + "probability": 0.9663 + }, + { + "start": 12017.06, + "end": 12024.96, + "probability": 0.9456 + }, + { + "start": 12025.86, + "end": 12027.67, + "probability": 0.9724 + }, + { + "start": 12028.5, + "end": 12029.97, + "probability": 0.9946 + }, + { + "start": 12031.38, + "end": 12033.98, + "probability": 0.9926 + }, + { + "start": 12034.26, + "end": 12037.1, + "probability": 0.9854 + }, + { + "start": 12037.1, + "end": 12037.34, + "probability": 0.149 + }, + { + "start": 12037.62, + "end": 12039.04, + "probability": 0.2458 + }, + { + "start": 12039.84, + "end": 12043.75, + "probability": 0.9968 + }, + { + "start": 12043.96, + "end": 12045.12, + "probability": 0.5969 + }, + { + "start": 12046.44, + "end": 12048.06, + "probability": 0.9643 + }, + { + "start": 12048.84, + "end": 12050.1, + "probability": 0.6575 + }, + { + "start": 12051.0, + "end": 12052.1, + "probability": 0.9296 + }, + { + "start": 12052.8, + "end": 12054.12, + "probability": 0.8633 + }, + { + "start": 12054.5, + "end": 12058.9, + "probability": 0.974 + }, + { + "start": 12058.98, + "end": 12059.46, + "probability": 0.9387 + }, + { + "start": 12060.0, + "end": 12062.16, + "probability": 0.8052 + }, + { + "start": 12063.72, + "end": 12064.9, + "probability": 0.5893 + }, + { + "start": 12090.92, + "end": 12093.12, + "probability": 0.6596 + }, + { + "start": 12094.82, + "end": 12097.04, + "probability": 0.9768 + }, + { + "start": 12098.48, + "end": 12100.46, + "probability": 0.6988 + }, + { + "start": 12101.92, + "end": 12103.42, + "probability": 0.7838 + }, + { + "start": 12104.02, + "end": 12104.48, + "probability": 0.5922 + }, + { + "start": 12105.72, + "end": 12106.7, + "probability": 0.9736 + }, + { + "start": 12108.02, + "end": 12110.98, + "probability": 0.9797 + }, + { + "start": 12112.44, + "end": 12119.86, + "probability": 0.9617 + }, + { + "start": 12120.02, + "end": 12120.64, + "probability": 0.7176 + }, + { + "start": 12120.8, + "end": 12121.86, + "probability": 0.7583 + }, + { + "start": 12122.94, + "end": 12124.58, + "probability": 0.8333 + }, + { + "start": 12124.62, + "end": 12126.08, + "probability": 0.9871 + }, + { + "start": 12126.76, + "end": 12132.7, + "probability": 0.8649 + }, + { + "start": 12132.98, + "end": 12135.32, + "probability": 0.6847 + }, + { + "start": 12135.42, + "end": 12135.85, + "probability": 0.548 + }, + { + "start": 12136.04, + "end": 12136.48, + "probability": 0.891 + }, + { + "start": 12136.54, + "end": 12137.34, + "probability": 0.7979 + }, + { + "start": 12137.88, + "end": 12139.42, + "probability": 0.9692 + }, + { + "start": 12139.78, + "end": 12143.42, + "probability": 0.7883 + }, + { + "start": 12143.88, + "end": 12144.58, + "probability": 0.9277 + }, + { + "start": 12145.1, + "end": 12149.78, + "probability": 0.9505 + }, + { + "start": 12150.46, + "end": 12157.42, + "probability": 0.9973 + }, + { + "start": 12158.9, + "end": 12159.96, + "probability": 0.6553 + }, + { + "start": 12161.44, + "end": 12162.0, + "probability": 0.6212 + }, + { + "start": 12162.14, + "end": 12162.5, + "probability": 0.7847 + }, + { + "start": 12162.62, + "end": 12165.98, + "probability": 0.9657 + }, + { + "start": 12166.08, + "end": 12169.62, + "probability": 0.9885 + }, + { + "start": 12169.68, + "end": 12171.76, + "probability": 0.9819 + }, + { + "start": 12173.2, + "end": 12177.46, + "probability": 0.982 + }, + { + "start": 12177.84, + "end": 12179.04, + "probability": 0.6976 + }, + { + "start": 12179.12, + "end": 12180.22, + "probability": 0.7988 + }, + { + "start": 12180.64, + "end": 12187.8, + "probability": 0.9925 + }, + { + "start": 12188.24, + "end": 12191.08, + "probability": 0.7083 + }, + { + "start": 12191.16, + "end": 12198.66, + "probability": 0.9561 + }, + { + "start": 12199.46, + "end": 12203.72, + "probability": 0.9908 + }, + { + "start": 12204.64, + "end": 12208.32, + "probability": 0.9782 + }, + { + "start": 12208.83, + "end": 12210.72, + "probability": 0.7017 + }, + { + "start": 12211.36, + "end": 12215.22, + "probability": 0.9696 + }, + { + "start": 12215.54, + "end": 12220.44, + "probability": 0.9926 + }, + { + "start": 12220.48, + "end": 12223.4, + "probability": 0.9943 + }, + { + "start": 12224.1, + "end": 12226.66, + "probability": 0.7419 + }, + { + "start": 12227.5, + "end": 12229.62, + "probability": 0.99 + }, + { + "start": 12229.62, + "end": 12232.64, + "probability": 0.9761 + }, + { + "start": 12232.98, + "end": 12233.96, + "probability": 0.7163 + }, + { + "start": 12234.08, + "end": 12236.38, + "probability": 0.9863 + }, + { + "start": 12237.4, + "end": 12238.92, + "probability": 0.8362 + }, + { + "start": 12239.08, + "end": 12242.66, + "probability": 0.7809 + }, + { + "start": 12242.88, + "end": 12248.5, + "probability": 0.9846 + }, + { + "start": 12249.08, + "end": 12253.14, + "probability": 0.9755 + }, + { + "start": 12253.64, + "end": 12255.34, + "probability": 0.6865 + }, + { + "start": 12255.52, + "end": 12261.62, + "probability": 0.9889 + }, + { + "start": 12262.0, + "end": 12263.76, + "probability": 0.9229 + }, + { + "start": 12264.7, + "end": 12266.36, + "probability": 0.8373 + }, + { + "start": 12266.46, + "end": 12266.88, + "probability": 0.4747 + }, + { + "start": 12267.34, + "end": 12271.28, + "probability": 0.9507 + }, + { + "start": 12271.46, + "end": 12274.12, + "probability": 0.9826 + }, + { + "start": 12274.24, + "end": 12277.8, + "probability": 0.9883 + }, + { + "start": 12277.9, + "end": 12278.24, + "probability": 0.492 + }, + { + "start": 12278.24, + "end": 12282.06, + "probability": 0.8398 + }, + { + "start": 12282.28, + "end": 12288.9, + "probability": 0.9825 + }, + { + "start": 12289.36, + "end": 12290.52, + "probability": 0.863 + }, + { + "start": 12290.64, + "end": 12291.76, + "probability": 0.9071 + }, + { + "start": 12291.94, + "end": 12292.91, + "probability": 0.9707 + }, + { + "start": 12293.18, + "end": 12293.78, + "probability": 0.6997 + }, + { + "start": 12293.86, + "end": 12294.5, + "probability": 0.8732 + }, + { + "start": 12295.04, + "end": 12297.5, + "probability": 0.9082 + }, + { + "start": 12297.9, + "end": 12299.32, + "probability": 0.9 + }, + { + "start": 12319.2, + "end": 12320.94, + "probability": 0.6553 + }, + { + "start": 12321.6, + "end": 12323.98, + "probability": 0.9574 + }, + { + "start": 12324.2, + "end": 12329.34, + "probability": 0.8801 + }, + { + "start": 12331.23, + "end": 12332.59, + "probability": 0.889 + }, + { + "start": 12333.9, + "end": 12341.21, + "probability": 0.8727 + }, + { + "start": 12341.9, + "end": 12345.26, + "probability": 0.8931 + }, + { + "start": 12345.4, + "end": 12347.68, + "probability": 0.9926 + }, + { + "start": 12348.56, + "end": 12350.4, + "probability": 0.99 + }, + { + "start": 12350.58, + "end": 12353.68, + "probability": 0.943 + }, + { + "start": 12354.8, + "end": 12357.2, + "probability": 0.931 + }, + { + "start": 12357.36, + "end": 12358.2, + "probability": 0.7528 + }, + { + "start": 12358.88, + "end": 12359.84, + "probability": 0.7955 + }, + { + "start": 12360.04, + "end": 12364.0, + "probability": 0.9657 + }, + { + "start": 12364.14, + "end": 12364.9, + "probability": 0.9436 + }, + { + "start": 12365.88, + "end": 12368.52, + "probability": 0.994 + }, + { + "start": 12368.92, + "end": 12373.48, + "probability": 0.9863 + }, + { + "start": 12374.0, + "end": 12375.5, + "probability": 0.9918 + }, + { + "start": 12375.58, + "end": 12377.07, + "probability": 0.9312 + }, + { + "start": 12377.3, + "end": 12378.18, + "probability": 0.8988 + }, + { + "start": 12378.42, + "end": 12380.08, + "probability": 0.5406 + }, + { + "start": 12380.98, + "end": 12383.82, + "probability": 0.6281 + }, + { + "start": 12384.72, + "end": 12385.1, + "probability": 0.2747 + }, + { + "start": 12385.22, + "end": 12385.56, + "probability": 0.6786 + }, + { + "start": 12385.7, + "end": 12389.38, + "probability": 0.9657 + }, + { + "start": 12390.06, + "end": 12395.32, + "probability": 0.8341 + }, + { + "start": 12395.88, + "end": 12398.96, + "probability": 0.9847 + }, + { + "start": 12399.06, + "end": 12400.56, + "probability": 0.5656 + }, + { + "start": 12400.78, + "end": 12403.2, + "probability": 0.787 + }, + { + "start": 12404.04, + "end": 12408.06, + "probability": 0.9699 + }, + { + "start": 12408.14, + "end": 12408.4, + "probability": 0.4909 + }, + { + "start": 12408.67, + "end": 12411.4, + "probability": 0.8688 + }, + { + "start": 12412.02, + "end": 12413.38, + "probability": 0.9102 + }, + { + "start": 12413.62, + "end": 12417.54, + "probability": 0.998 + }, + { + "start": 12418.14, + "end": 12419.12, + "probability": 0.7013 + }, + { + "start": 12419.2, + "end": 12420.28, + "probability": 0.9204 + }, + { + "start": 12420.64, + "end": 12423.84, + "probability": 0.9915 + }, + { + "start": 12425.16, + "end": 12427.96, + "probability": 0.9976 + }, + { + "start": 12427.96, + "end": 12432.44, + "probability": 0.8129 + }, + { + "start": 12433.0, + "end": 12438.68, + "probability": 0.9716 + }, + { + "start": 12439.22, + "end": 12442.22, + "probability": 0.9728 + }, + { + "start": 12442.78, + "end": 12444.96, + "probability": 0.9587 + }, + { + "start": 12445.44, + "end": 12449.1, + "probability": 0.9385 + }, + { + "start": 12449.1, + "end": 12454.1, + "probability": 0.8952 + }, + { + "start": 12455.14, + "end": 12455.68, + "probability": 0.7864 + }, + { + "start": 12455.78, + "end": 12456.66, + "probability": 0.8614 + }, + { + "start": 12457.14, + "end": 12458.19, + "probability": 0.9393 + }, + { + "start": 12458.42, + "end": 12458.96, + "probability": 0.918 + }, + { + "start": 12459.1, + "end": 12461.48, + "probability": 0.6137 + }, + { + "start": 12461.66, + "end": 12464.76, + "probability": 0.9429 + }, + { + "start": 12465.0, + "end": 12470.1, + "probability": 0.959 + }, + { + "start": 12470.46, + "end": 12471.92, + "probability": 0.5087 + }, + { + "start": 12472.58, + "end": 12475.2, + "probability": 0.946 + }, + { + "start": 12475.9, + "end": 12480.94, + "probability": 0.9452 + }, + { + "start": 12481.1, + "end": 12482.18, + "probability": 0.7465 + }, + { + "start": 12482.62, + "end": 12484.74, + "probability": 0.9873 + }, + { + "start": 12485.24, + "end": 12488.66, + "probability": 0.9809 + }, + { + "start": 12489.3, + "end": 12494.34, + "probability": 0.9668 + }, + { + "start": 12495.56, + "end": 12495.56, + "probability": 0.0385 + }, + { + "start": 12495.56, + "end": 12496.89, + "probability": 0.6823 + }, + { + "start": 12497.44, + "end": 12504.96, + "probability": 0.9937 + }, + { + "start": 12505.66, + "end": 12513.78, + "probability": 0.9617 + }, + { + "start": 12514.4, + "end": 12516.14, + "probability": 0.6591 + }, + { + "start": 12517.18, + "end": 12518.78, + "probability": 0.999 + }, + { + "start": 12519.58, + "end": 12521.82, + "probability": 0.6366 + }, + { + "start": 12522.8, + "end": 12524.44, + "probability": 0.9066 + }, + { + "start": 12536.74, + "end": 12537.44, + "probability": 0.5852 + }, + { + "start": 12537.92, + "end": 12538.28, + "probability": 0.3648 + }, + { + "start": 12538.34, + "end": 12539.28, + "probability": 0.6244 + }, + { + "start": 12539.4, + "end": 12540.14, + "probability": 0.8917 + }, + { + "start": 12540.22, + "end": 12542.12, + "probability": 0.8486 + }, + { + "start": 12542.6, + "end": 12547.98, + "probability": 0.9959 + }, + { + "start": 12547.98, + "end": 12552.92, + "probability": 0.9461 + }, + { + "start": 12554.26, + "end": 12554.82, + "probability": 0.4063 + }, + { + "start": 12554.82, + "end": 12557.96, + "probability": 0.6524 + }, + { + "start": 12558.38, + "end": 12560.28, + "probability": 0.6231 + }, + { + "start": 12561.1, + "end": 12567.16, + "probability": 0.9805 + }, + { + "start": 12567.5, + "end": 12567.94, + "probability": 0.9518 + }, + { + "start": 12568.82, + "end": 12572.84, + "probability": 0.6827 + }, + { + "start": 12573.16, + "end": 12578.44, + "probability": 0.8068 + }, + { + "start": 12578.76, + "end": 12578.9, + "probability": 0.0417 + }, + { + "start": 12578.92, + "end": 12579.76, + "probability": 0.9399 + }, + { + "start": 12580.16, + "end": 12583.58, + "probability": 0.9805 + }, + { + "start": 12583.88, + "end": 12588.88, + "probability": 0.9854 + }, + { + "start": 12589.0, + "end": 12593.2, + "probability": 0.8931 + }, + { + "start": 12594.0, + "end": 12597.76, + "probability": 0.9839 + }, + { + "start": 12598.02, + "end": 12601.1, + "probability": 0.9363 + }, + { + "start": 12601.28, + "end": 12602.12, + "probability": 0.9146 + }, + { + "start": 12602.24, + "end": 12604.6, + "probability": 0.7498 + }, + { + "start": 12605.04, + "end": 12606.36, + "probability": 0.9675 + }, + { + "start": 12606.46, + "end": 12608.34, + "probability": 0.9161 + }, + { + "start": 12609.14, + "end": 12612.5, + "probability": 0.7987 + }, + { + "start": 12613.34, + "end": 12615.0, + "probability": 0.9027 + }, + { + "start": 12615.58, + "end": 12619.74, + "probability": 0.9567 + }, + { + "start": 12620.34, + "end": 12627.68, + "probability": 0.9491 + }, + { + "start": 12628.38, + "end": 12632.68, + "probability": 0.9573 + }, + { + "start": 12633.6, + "end": 12641.46, + "probability": 0.9489 + }, + { + "start": 12642.4, + "end": 12648.1, + "probability": 0.9517 + }, + { + "start": 12648.68, + "end": 12652.06, + "probability": 0.7357 + }, + { + "start": 12652.72, + "end": 12658.14, + "probability": 0.9634 + }, + { + "start": 12658.14, + "end": 12662.48, + "probability": 0.981 + }, + { + "start": 12663.34, + "end": 12667.64, + "probability": 0.9535 + }, + { + "start": 12668.12, + "end": 12672.34, + "probability": 0.9835 + }, + { + "start": 12672.9, + "end": 12677.43, + "probability": 0.9642 + }, + { + "start": 12678.08, + "end": 12682.38, + "probability": 0.9897 + }, + { + "start": 12682.86, + "end": 12687.14, + "probability": 0.9735 + }, + { + "start": 12687.14, + "end": 12688.24, + "probability": 0.8064 + }, + { + "start": 12688.58, + "end": 12689.16, + "probability": 0.4758 + }, + { + "start": 12689.36, + "end": 12690.16, + "probability": 0.3041 + }, + { + "start": 12690.8, + "end": 12691.82, + "probability": 0.0164 + }, + { + "start": 12691.82, + "end": 12693.83, + "probability": 0.3647 + }, + { + "start": 12694.42, + "end": 12696.5, + "probability": 0.9156 + }, + { + "start": 12696.62, + "end": 12701.68, + "probability": 0.9587 + }, + { + "start": 12702.92, + "end": 12709.44, + "probability": 0.9906 + }, + { + "start": 12709.82, + "end": 12711.62, + "probability": 0.8175 + }, + { + "start": 12711.9, + "end": 12712.82, + "probability": 0.5784 + }, + { + "start": 12713.38, + "end": 12713.94, + "probability": 0.536 + }, + { + "start": 12714.04, + "end": 12715.1, + "probability": 0.6414 + }, + { + "start": 12715.48, + "end": 12718.42, + "probability": 0.9371 + }, + { + "start": 12718.48, + "end": 12719.74, + "probability": 0.9453 + }, + { + "start": 12720.28, + "end": 12721.98, + "probability": 0.6411 + }, + { + "start": 12722.18, + "end": 12723.8, + "probability": 0.8295 + }, + { + "start": 12724.16, + "end": 12728.94, + "probability": 0.8784 + }, + { + "start": 12728.94, + "end": 12733.18, + "probability": 0.9738 + }, + { + "start": 12733.48, + "end": 12738.64, + "probability": 0.8817 + }, + { + "start": 12738.64, + "end": 12744.24, + "probability": 0.868 + }, + { + "start": 12744.76, + "end": 12747.82, + "probability": 0.9731 + }, + { + "start": 12749.4, + "end": 12750.7, + "probability": 0.7399 + }, + { + "start": 12751.46, + "end": 12753.6, + "probability": 0.8203 + }, + { + "start": 12754.2, + "end": 12755.5, + "probability": 0.6422 + }, + { + "start": 12756.86, + "end": 12759.08, + "probability": 0.9761 + }, + { + "start": 12759.66, + "end": 12764.24, + "probability": 0.5962 + }, + { + "start": 12765.24, + "end": 12766.86, + "probability": 0.7602 + }, + { + "start": 12767.58, + "end": 12768.1, + "probability": 0.2401 + }, + { + "start": 12770.04, + "end": 12770.94, + "probability": 0.9655 + }, + { + "start": 12785.1, + "end": 12786.18, + "probability": 0.2283 + }, + { + "start": 12786.7, + "end": 12790.17, + "probability": 0.0985 + }, + { + "start": 12790.76, + "end": 12793.16, + "probability": 0.0174 + }, + { + "start": 12793.78, + "end": 12794.58, + "probability": 0.0064 + }, + { + "start": 12796.52, + "end": 12796.72, + "probability": 0.3164 + }, + { + "start": 12796.72, + "end": 12796.72, + "probability": 0.1115 + }, + { + "start": 12796.72, + "end": 12796.98, + "probability": 0.228 + }, + { + "start": 12797.16, + "end": 12799.9, + "probability": 0.9887 + }, + { + "start": 12799.9, + "end": 12806.04, + "probability": 0.9716 + }, + { + "start": 12806.88, + "end": 12808.08, + "probability": 0.924 + }, + { + "start": 12809.04, + "end": 12813.88, + "probability": 0.7992 + }, + { + "start": 12814.0, + "end": 12816.07, + "probability": 0.6173 + }, + { + "start": 12817.62, + "end": 12821.24, + "probability": 0.8153 + }, + { + "start": 12822.56, + "end": 12824.06, + "probability": 0.8188 + }, + { + "start": 12826.38, + "end": 12830.52, + "probability": 0.5047 + }, + { + "start": 12830.62, + "end": 12831.78, + "probability": 0.9959 + }, + { + "start": 12834.84, + "end": 12835.8, + "probability": 0.8058 + }, + { + "start": 12838.78, + "end": 12840.32, + "probability": 0.4352 + }, + { + "start": 12840.4, + "end": 12842.72, + "probability": 0.8895 + }, + { + "start": 12850.12, + "end": 12850.74, + "probability": 0.7874 + }, + { + "start": 12862.62, + "end": 12864.36, + "probability": 0.6235 + }, + { + "start": 12864.98, + "end": 12866.98, + "probability": 0.7082 + }, + { + "start": 12867.96, + "end": 12870.52, + "probability": 0.98 + }, + { + "start": 12870.52, + "end": 12873.44, + "probability": 0.939 + }, + { + "start": 12874.34, + "end": 12879.02, + "probability": 0.9914 + }, + { + "start": 12879.02, + "end": 12883.3, + "probability": 0.9624 + }, + { + "start": 12884.5, + "end": 12885.52, + "probability": 0.6661 + }, + { + "start": 12885.66, + "end": 12886.72, + "probability": 0.6142 + }, + { + "start": 12887.06, + "end": 12890.4, + "probability": 0.9956 + }, + { + "start": 12891.24, + "end": 12894.5, + "probability": 0.9817 + }, + { + "start": 12895.16, + "end": 12901.2, + "probability": 0.9774 + }, + { + "start": 12901.26, + "end": 12905.36, + "probability": 0.9595 + }, + { + "start": 12906.5, + "end": 12912.34, + "probability": 0.9772 + }, + { + "start": 12912.96, + "end": 12920.02, + "probability": 0.99 + }, + { + "start": 12920.68, + "end": 12923.74, + "probability": 0.9924 + }, + { + "start": 12923.98, + "end": 12929.7, + "probability": 0.9785 + }, + { + "start": 12930.64, + "end": 12932.46, + "probability": 0.8621 + }, + { + "start": 12933.88, + "end": 12938.42, + "probability": 0.953 + }, + { + "start": 12939.08, + "end": 12941.24, + "probability": 0.7743 + }, + { + "start": 12941.3, + "end": 12944.24, + "probability": 0.931 + }, + { + "start": 12944.76, + "end": 12954.48, + "probability": 0.9708 + }, + { + "start": 12955.14, + "end": 12958.72, + "probability": 0.978 + }, + { + "start": 12958.8, + "end": 12959.98, + "probability": 0.4998 + }, + { + "start": 12960.04, + "end": 12967.42, + "probability": 0.9643 + }, + { + "start": 12971.36, + "end": 12971.44, + "probability": 0.6135 + }, + { + "start": 12971.44, + "end": 12973.76, + "probability": 0.7767 + }, + { + "start": 12973.88, + "end": 12977.64, + "probability": 0.9862 + }, + { + "start": 12977.74, + "end": 12978.96, + "probability": 0.9651 + }, + { + "start": 12979.8, + "end": 12988.54, + "probability": 0.9944 + }, + { + "start": 12988.54, + "end": 12995.32, + "probability": 0.9925 + }, + { + "start": 12996.16, + "end": 12998.94, + "probability": 0.9888 + }, + { + "start": 12998.94, + "end": 13002.14, + "probability": 0.9978 + }, + { + "start": 13002.9, + "end": 13009.04, + "probability": 0.9257 + }, + { + "start": 13009.62, + "end": 13013.92, + "probability": 0.9975 + }, + { + "start": 13013.92, + "end": 13019.25, + "probability": 0.9979 + }, + { + "start": 13020.52, + "end": 13021.2, + "probability": 0.5342 + }, + { + "start": 13021.34, + "end": 13028.14, + "probability": 0.9927 + }, + { + "start": 13028.76, + "end": 13036.7, + "probability": 0.9932 + }, + { + "start": 13037.64, + "end": 13042.26, + "probability": 0.6729 + }, + { + "start": 13042.84, + "end": 13047.16, + "probability": 0.9951 + }, + { + "start": 13048.98, + "end": 13055.44, + "probability": 0.9221 + }, + { + "start": 13057.12, + "end": 13065.24, + "probability": 0.9853 + }, + { + "start": 13066.14, + "end": 13069.76, + "probability": 0.8401 + }, + { + "start": 13069.98, + "end": 13070.48, + "probability": 0.9001 + }, + { + "start": 13070.58, + "end": 13071.3, + "probability": 0.895 + }, + { + "start": 13071.48, + "end": 13072.76, + "probability": 0.7104 + }, + { + "start": 13073.84, + "end": 13076.42, + "probability": 0.976 + }, + { + "start": 13077.0, + "end": 13081.1, + "probability": 0.931 + }, + { + "start": 13081.4, + "end": 13085.76, + "probability": 0.9917 + }, + { + "start": 13086.54, + "end": 13091.62, + "probability": 0.9957 + }, + { + "start": 13092.02, + "end": 13097.8, + "probability": 0.9941 + }, + { + "start": 13097.8, + "end": 13102.08, + "probability": 0.9964 + }, + { + "start": 13102.88, + "end": 13104.48, + "probability": 0.7217 + }, + { + "start": 13104.84, + "end": 13110.94, + "probability": 0.993 + }, + { + "start": 13112.36, + "end": 13114.47, + "probability": 0.9253 + }, + { + "start": 13114.82, + "end": 13115.4, + "probability": 0.8474 + }, + { + "start": 13115.98, + "end": 13121.04, + "probability": 0.9894 + }, + { + "start": 13121.6, + "end": 13123.72, + "probability": 0.979 + }, + { + "start": 13124.2, + "end": 13128.74, + "probability": 0.9914 + }, + { + "start": 13129.2, + "end": 13135.36, + "probability": 0.9916 + }, + { + "start": 13136.24, + "end": 13136.98, + "probability": 0.8131 + }, + { + "start": 13137.52, + "end": 13143.0, + "probability": 0.9963 + }, + { + "start": 13143.0, + "end": 13147.98, + "probability": 0.9995 + }, + { + "start": 13149.16, + "end": 13149.64, + "probability": 0.6887 + }, + { + "start": 13150.68, + "end": 13152.8, + "probability": 0.8027 + }, + { + "start": 13153.24, + "end": 13160.16, + "probability": 0.9973 + }, + { + "start": 13161.26, + "end": 13161.92, + "probability": 0.7435 + }, + { + "start": 13162.72, + "end": 13168.26, + "probability": 0.9964 + }, + { + "start": 13168.58, + "end": 13170.92, + "probability": 0.9648 + }, + { + "start": 13171.4, + "end": 13177.86, + "probability": 0.9849 + }, + { + "start": 13179.08, + "end": 13179.64, + "probability": 0.6667 + }, + { + "start": 13180.46, + "end": 13182.0, + "probability": 0.8208 + }, + { + "start": 13182.44, + "end": 13185.62, + "probability": 0.9502 + }, + { + "start": 13185.78, + "end": 13188.36, + "probability": 0.9855 + }, + { + "start": 13188.92, + "end": 13192.0, + "probability": 0.9971 + }, + { + "start": 13192.0, + "end": 13196.1, + "probability": 0.9544 + }, + { + "start": 13197.02, + "end": 13197.66, + "probability": 0.6525 + }, + { + "start": 13198.56, + "end": 13203.22, + "probability": 0.995 + }, + { + "start": 13203.22, + "end": 13209.04, + "probability": 0.9916 + }, + { + "start": 13209.04, + "end": 13214.92, + "probability": 0.9844 + }, + { + "start": 13215.72, + "end": 13217.16, + "probability": 0.6825 + }, + { + "start": 13217.3, + "end": 13223.02, + "probability": 0.9896 + }, + { + "start": 13223.02, + "end": 13227.74, + "probability": 0.9979 + }, + { + "start": 13228.64, + "end": 13233.72, + "probability": 0.9539 + }, + { + "start": 13233.72, + "end": 13237.42, + "probability": 0.9955 + }, + { + "start": 13238.08, + "end": 13239.1, + "probability": 0.6358 + }, + { + "start": 13239.66, + "end": 13248.16, + "probability": 0.9945 + }, + { + "start": 13248.8, + "end": 13250.5, + "probability": 0.6958 + }, + { + "start": 13250.56, + "end": 13253.94, + "probability": 0.9423 + }, + { + "start": 13254.88, + "end": 13257.96, + "probability": 0.4429 + }, + { + "start": 13259.18, + "end": 13263.4, + "probability": 0.9854 + }, + { + "start": 13265.2, + "end": 13270.66, + "probability": 0.9441 + }, + { + "start": 13273.06, + "end": 13278.52, + "probability": 0.9922 + }, + { + "start": 13278.62, + "end": 13279.92, + "probability": 0.6092 + }, + { + "start": 13281.18, + "end": 13281.88, + "probability": 0.6737 + }, + { + "start": 13282.34, + "end": 13291.62, + "probability": 0.9814 + }, + { + "start": 13291.66, + "end": 13292.4, + "probability": 0.4425 + }, + { + "start": 13292.56, + "end": 13298.76, + "probability": 0.9543 + }, + { + "start": 13299.46, + "end": 13302.88, + "probability": 0.8763 + }, + { + "start": 13303.94, + "end": 13307.0, + "probability": 0.7636 + }, + { + "start": 13307.1, + "end": 13308.94, + "probability": 0.9126 + }, + { + "start": 13309.1, + "end": 13311.07, + "probability": 0.9557 + }, + { + "start": 13311.61, + "end": 13319.2, + "probability": 0.8376 + }, + { + "start": 13319.64, + "end": 13321.62, + "probability": 0.988 + }, + { + "start": 13322.12, + "end": 13327.2, + "probability": 0.9899 + }, + { + "start": 13327.2, + "end": 13334.62, + "probability": 0.9937 + }, + { + "start": 13334.86, + "end": 13336.38, + "probability": 0.656 + }, + { + "start": 13337.32, + "end": 13338.82, + "probability": 0.8442 + }, + { + "start": 13338.9, + "end": 13343.22, + "probability": 0.9957 + }, + { + "start": 13343.22, + "end": 13347.46, + "probability": 0.9983 + }, + { + "start": 13348.34, + "end": 13348.7, + "probability": 0.8386 + }, + { + "start": 13348.8, + "end": 13349.94, + "probability": 0.6909 + }, + { + "start": 13349.94, + "end": 13357.62, + "probability": 0.99 + }, + { + "start": 13357.72, + "end": 13364.22, + "probability": 0.9529 + }, + { + "start": 13364.76, + "end": 13367.06, + "probability": 0.9228 + }, + { + "start": 13367.1, + "end": 13368.78, + "probability": 0.5267 + }, + { + "start": 13368.98, + "end": 13370.88, + "probability": 0.8474 + }, + { + "start": 13371.36, + "end": 13374.74, + "probability": 0.9893 + }, + { + "start": 13374.74, + "end": 13379.62, + "probability": 0.9794 + }, + { + "start": 13379.98, + "end": 13380.72, + "probability": 0.615 + }, + { + "start": 13381.24, + "end": 13384.62, + "probability": 0.9639 + }, + { + "start": 13384.9, + "end": 13385.4, + "probability": 0.708 + }, + { + "start": 13385.56, + "end": 13387.26, + "probability": 0.804 + }, + { + "start": 13387.74, + "end": 13391.44, + "probability": 0.8857 + }, + { + "start": 13393.2, + "end": 13394.24, + "probability": 0.505 + }, + { + "start": 13395.38, + "end": 13396.84, + "probability": 0.2137 + }, + { + "start": 13396.96, + "end": 13399.12, + "probability": 0.854 + }, + { + "start": 13402.16, + "end": 13403.74, + "probability": 0.2644 + }, + { + "start": 13404.66, + "end": 13405.64, + "probability": 0.5201 + }, + { + "start": 13405.86, + "end": 13406.92, + "probability": 0.4189 + }, + { + "start": 13407.5, + "end": 13409.1, + "probability": 0.6612 + }, + { + "start": 13409.22, + "end": 13410.54, + "probability": 0.7334 + }, + { + "start": 13410.8, + "end": 13418.98, + "probability": 0.9976 + }, + { + "start": 13418.98, + "end": 13424.28, + "probability": 0.9946 + }, + { + "start": 13424.88, + "end": 13429.52, + "probability": 0.7961 + }, + { + "start": 13430.14, + "end": 13435.32, + "probability": 0.9813 + }, + { + "start": 13435.32, + "end": 13441.32, + "probability": 0.9363 + }, + { + "start": 13441.68, + "end": 13445.22, + "probability": 0.991 + }, + { + "start": 13445.66, + "end": 13446.94, + "probability": 0.7557 + }, + { + "start": 13447.1, + "end": 13451.34, + "probability": 0.815 + }, + { + "start": 13451.78, + "end": 13454.58, + "probability": 0.8131 + }, + { + "start": 13458.38, + "end": 13459.3, + "probability": 0.3834 + }, + { + "start": 13459.36, + "end": 13463.62, + "probability": 0.9942 + }, + { + "start": 13463.8, + "end": 13466.82, + "probability": 0.9983 + }, + { + "start": 13467.36, + "end": 13473.18, + "probability": 0.8464 + }, + { + "start": 13473.18, + "end": 13477.84, + "probability": 0.975 + }, + { + "start": 13478.68, + "end": 13479.87, + "probability": 0.9927 + }, + { + "start": 13480.88, + "end": 13482.06, + "probability": 0.6693 + }, + { + "start": 13482.48, + "end": 13483.9, + "probability": 0.8022 + }, + { + "start": 13484.0, + "end": 13487.48, + "probability": 0.8561 + }, + { + "start": 13487.7, + "end": 13492.62, + "probability": 0.9297 + }, + { + "start": 13493.1, + "end": 13497.6, + "probability": 0.993 + }, + { + "start": 13498.1, + "end": 13499.68, + "probability": 0.899 + }, + { + "start": 13500.1, + "end": 13501.98, + "probability": 0.7633 + }, + { + "start": 13502.32, + "end": 13505.68, + "probability": 0.8965 + }, + { + "start": 13505.94, + "end": 13510.64, + "probability": 0.9673 + }, + { + "start": 13510.68, + "end": 13516.18, + "probability": 0.8704 + }, + { + "start": 13516.62, + "end": 13519.1, + "probability": 0.9812 + }, + { + "start": 13519.18, + "end": 13522.66, + "probability": 0.9909 + }, + { + "start": 13522.72, + "end": 13525.32, + "probability": 0.9974 + }, + { + "start": 13526.64, + "end": 13527.58, + "probability": 0.6891 + }, + { + "start": 13527.68, + "end": 13532.74, + "probability": 0.9769 + }, + { + "start": 13533.28, + "end": 13535.38, + "probability": 0.7652 + }, + { + "start": 13535.78, + "end": 13537.64, + "probability": 0.9964 + }, + { + "start": 13537.86, + "end": 13538.54, + "probability": 0.8754 + }, + { + "start": 13538.62, + "end": 13539.66, + "probability": 0.8202 + }, + { + "start": 13540.14, + "end": 13544.56, + "probability": 0.993 + }, + { + "start": 13544.88, + "end": 13547.98, + "probability": 0.9764 + }, + { + "start": 13548.2, + "end": 13549.74, + "probability": 0.7031 + }, + { + "start": 13549.84, + "end": 13554.52, + "probability": 0.9584 + }, + { + "start": 13554.52, + "end": 13559.06, + "probability": 0.9888 + }, + { + "start": 13560.02, + "end": 13564.34, + "probability": 0.6742 + }, + { + "start": 13564.94, + "end": 13568.07, + "probability": 0.6678 + }, + { + "start": 13568.36, + "end": 13570.08, + "probability": 0.7021 + }, + { + "start": 13570.48, + "end": 13573.9, + "probability": 0.9866 + }, + { + "start": 13574.3, + "end": 13577.82, + "probability": 0.9485 + }, + { + "start": 13577.86, + "end": 13580.28, + "probability": 0.7953 + }, + { + "start": 13580.72, + "end": 13583.14, + "probability": 0.9975 + }, + { + "start": 13583.76, + "end": 13585.3, + "probability": 0.9539 + }, + { + "start": 13585.54, + "end": 13586.34, + "probability": 0.9474 + }, + { + "start": 13586.4, + "end": 13587.42, + "probability": 0.9898 + }, + { + "start": 13587.7, + "end": 13588.62, + "probability": 0.9416 + }, + { + "start": 13588.78, + "end": 13592.54, + "probability": 0.9803 + }, + { + "start": 13592.54, + "end": 13597.42, + "probability": 0.9834 + }, + { + "start": 13597.5, + "end": 13601.1, + "probability": 0.8925 + }, + { + "start": 13601.62, + "end": 13604.28, + "probability": 0.9479 + }, + { + "start": 13604.34, + "end": 13607.77, + "probability": 0.9935 + }, + { + "start": 13608.24, + "end": 13612.76, + "probability": 0.9182 + }, + { + "start": 13612.84, + "end": 13616.54, + "probability": 0.9907 + }, + { + "start": 13616.54, + "end": 13621.82, + "probability": 0.9909 + }, + { + "start": 13621.94, + "end": 13627.3, + "probability": 0.9941 + }, + { + "start": 13627.3, + "end": 13631.66, + "probability": 0.9954 + }, + { + "start": 13632.16, + "end": 13634.46, + "probability": 0.9095 + }, + { + "start": 13634.88, + "end": 13637.24, + "probability": 0.9309 + }, + { + "start": 13638.04, + "end": 13640.52, + "probability": 0.8337 + }, + { + "start": 13640.74, + "end": 13642.52, + "probability": 0.8862 + }, + { + "start": 13642.94, + "end": 13645.8, + "probability": 0.9941 + }, + { + "start": 13646.14, + "end": 13647.34, + "probability": 0.6937 + }, + { + "start": 13647.42, + "end": 13651.1, + "probability": 0.991 + }, + { + "start": 13651.16, + "end": 13654.98, + "probability": 0.9551 + }, + { + "start": 13655.24, + "end": 13659.98, + "probability": 0.8963 + }, + { + "start": 13660.18, + "end": 13660.82, + "probability": 0.9383 + }, + { + "start": 13660.98, + "end": 13661.72, + "probability": 0.8678 + }, + { + "start": 13662.08, + "end": 13663.12, + "probability": 0.7481 + }, + { + "start": 13663.52, + "end": 13667.74, + "probability": 0.9856 + }, + { + "start": 13667.88, + "end": 13668.84, + "probability": 0.5028 + }, + { + "start": 13669.58, + "end": 13670.36, + "probability": 0.7624 + }, + { + "start": 13670.6, + "end": 13675.76, + "probability": 0.9481 + }, + { + "start": 13676.08, + "end": 13676.4, + "probability": 0.8452 + }, + { + "start": 13676.5, + "end": 13683.12, + "probability": 0.986 + }, + { + "start": 13683.82, + "end": 13684.18, + "probability": 0.9702 + }, + { + "start": 13685.1, + "end": 13685.5, + "probability": 0.5115 + }, + { + "start": 13685.5, + "end": 13688.52, + "probability": 0.8014 + }, + { + "start": 13688.58, + "end": 13689.38, + "probability": 0.6817 + }, + { + "start": 13690.02, + "end": 13690.32, + "probability": 0.5381 + }, + { + "start": 13690.44, + "end": 13695.42, + "probability": 0.81 + }, + { + "start": 13695.42, + "end": 13698.88, + "probability": 0.9932 + }, + { + "start": 13699.46, + "end": 13701.16, + "probability": 0.6666 + }, + { + "start": 13701.46, + "end": 13703.4, + "probability": 0.962 + }, + { + "start": 13703.56, + "end": 13705.66, + "probability": 0.7217 + }, + { + "start": 13705.82, + "end": 13706.7, + "probability": 0.6252 + }, + { + "start": 13707.48, + "end": 13708.84, + "probability": 0.6001 + }, + { + "start": 13708.9, + "end": 13712.38, + "probability": 0.9297 + }, + { + "start": 13712.56, + "end": 13713.66, + "probability": 0.9531 + }, + { + "start": 13713.7, + "end": 13714.86, + "probability": 0.9439 + }, + { + "start": 13715.06, + "end": 13716.12, + "probability": 0.9846 + }, + { + "start": 13716.12, + "end": 13718.68, + "probability": 0.7785 + }, + { + "start": 13719.06, + "end": 13722.08, + "probability": 0.8287 + }, + { + "start": 13722.3, + "end": 13722.72, + "probability": 0.6772 + }, + { + "start": 13722.82, + "end": 13726.04, + "probability": 0.9287 + }, + { + "start": 13726.14, + "end": 13729.88, + "probability": 0.9958 + }, + { + "start": 13730.06, + "end": 13730.8, + "probability": 0.6264 + }, + { + "start": 13732.86, + "end": 13733.56, + "probability": 0.1255 + }, + { + "start": 13733.56, + "end": 13739.08, + "probability": 0.9337 + }, + { + "start": 13739.62, + "end": 13743.56, + "probability": 0.8138 + }, + { + "start": 13743.88, + "end": 13745.6, + "probability": 0.7497 + }, + { + "start": 13746.26, + "end": 13749.44, + "probability": 0.7614 + }, + { + "start": 13750.12, + "end": 13754.82, + "probability": 0.8619 + }, + { + "start": 13755.0, + "end": 13756.74, + "probability": 0.5366 + }, + { + "start": 13758.04, + "end": 13760.38, + "probability": 0.5897 + }, + { + "start": 13761.68, + "end": 13764.0, + "probability": 0.7811 + }, + { + "start": 13764.46, + "end": 13766.06, + "probability": 0.6415 + }, + { + "start": 13766.59, + "end": 13768.9, + "probability": 0.5769 + }, + { + "start": 13783.72, + "end": 13785.08, + "probability": 0.1006 + }, + { + "start": 13790.12, + "end": 13791.2, + "probability": 0.7209 + }, + { + "start": 13791.26, + "end": 13794.1, + "probability": 0.991 + }, + { + "start": 13795.34, + "end": 13795.42, + "probability": 0.2131 + }, + { + "start": 13795.42, + "end": 13795.74, + "probability": 0.4813 + }, + { + "start": 13797.22, + "end": 13803.32, + "probability": 0.9857 + }, + { + "start": 13804.1, + "end": 13805.74, + "probability": 0.7534 + }, + { + "start": 13805.94, + "end": 13810.76, + "probability": 0.5679 + }, + { + "start": 13810.76, + "end": 13811.42, + "probability": 0.1543 + }, + { + "start": 13811.7, + "end": 13812.3, + "probability": 0.8612 + }, + { + "start": 13812.56, + "end": 13816.14, + "probability": 0.8713 + }, + { + "start": 13816.18, + "end": 13818.2, + "probability": 0.9147 + }, + { + "start": 13820.04, + "end": 13823.9, + "probability": 0.8183 + }, + { + "start": 13824.48, + "end": 13826.12, + "probability": 0.7132 + }, + { + "start": 13826.66, + "end": 13832.66, + "probability": 0.931 + }, + { + "start": 13833.18, + "end": 13834.28, + "probability": 0.7733 + }, + { + "start": 13835.1, + "end": 13839.61, + "probability": 0.9854 + }, + { + "start": 13840.38, + "end": 13846.28, + "probability": 0.9876 + }, + { + "start": 13846.36, + "end": 13849.06, + "probability": 0.5679 + }, + { + "start": 13850.26, + "end": 13851.34, + "probability": 0.7278 + }, + { + "start": 13851.54, + "end": 13855.26, + "probability": 0.8701 + }, + { + "start": 13855.9, + "end": 13858.12, + "probability": 0.9795 + }, + { + "start": 13858.52, + "end": 13867.88, + "probability": 0.9756 + }, + { + "start": 13868.42, + "end": 13872.5, + "probability": 0.923 + }, + { + "start": 13872.68, + "end": 13874.46, + "probability": 0.6778 + }, + { + "start": 13874.7, + "end": 13877.0, + "probability": 0.7238 + }, + { + "start": 13877.06, + "end": 13882.61, + "probability": 0.96 + }, + { + "start": 13884.12, + "end": 13890.88, + "probability": 0.8679 + }, + { + "start": 13891.62, + "end": 13897.32, + "probability": 0.853 + }, + { + "start": 13898.32, + "end": 13900.98, + "probability": 0.8778 + }, + { + "start": 13901.28, + "end": 13903.2, + "probability": 0.5502 + }, + { + "start": 13903.7, + "end": 13904.16, + "probability": 0.4558 + }, + { + "start": 13904.18, + "end": 13908.78, + "probability": 0.9561 + }, + { + "start": 13909.36, + "end": 13915.54, + "probability": 0.9597 + }, + { + "start": 13915.64, + "end": 13916.2, + "probability": 0.6076 + }, + { + "start": 13916.68, + "end": 13924.74, + "probability": 0.7642 + }, + { + "start": 13925.18, + "end": 13927.48, + "probability": 0.9393 + }, + { + "start": 13927.98, + "end": 13930.45, + "probability": 0.9044 + }, + { + "start": 13931.34, + "end": 13932.2, + "probability": 0.6715 + }, + { + "start": 13932.92, + "end": 13941.7, + "probability": 0.8846 + }, + { + "start": 13941.7, + "end": 13949.02, + "probability": 0.9415 + }, + { + "start": 13949.6, + "end": 13950.96, + "probability": 0.4559 + }, + { + "start": 13951.0, + "end": 13955.3, + "probability": 0.9241 + }, + { + "start": 13955.3, + "end": 13960.16, + "probability": 0.6234 + }, + { + "start": 13960.58, + "end": 13962.2, + "probability": 0.9888 + }, + { + "start": 13962.92, + "end": 13967.78, + "probability": 0.7489 + }, + { + "start": 13968.28, + "end": 13970.12, + "probability": 0.701 + }, + { + "start": 13970.62, + "end": 13973.28, + "probability": 0.9871 + }, + { + "start": 13974.58, + "end": 13977.12, + "probability": 0.7483 + }, + { + "start": 13984.52, + "end": 13986.74, + "probability": 0.6391 + }, + { + "start": 13987.36, + "end": 13992.9, + "probability": 0.9966 + }, + { + "start": 13993.64, + "end": 13997.36, + "probability": 0.9009 + }, + { + "start": 13998.58, + "end": 14001.22, + "probability": 0.9524 + }, + { + "start": 14002.3, + "end": 14007.16, + "probability": 0.9897 + }, + { + "start": 14008.1, + "end": 14014.38, + "probability": 0.9974 + }, + { + "start": 14016.08, + "end": 14019.46, + "probability": 0.7994 + }, + { + "start": 14019.62, + "end": 14026.14, + "probability": 0.9883 + }, + { + "start": 14026.34, + "end": 14028.05, + "probability": 0.9956 + }, + { + "start": 14028.62, + "end": 14029.98, + "probability": 0.8829 + }, + { + "start": 14030.92, + "end": 14034.88, + "probability": 0.9792 + }, + { + "start": 14035.02, + "end": 14040.54, + "probability": 0.947 + }, + { + "start": 14040.74, + "end": 14041.54, + "probability": 0.9873 + }, + { + "start": 14041.8, + "end": 14044.88, + "probability": 0.9912 + }, + { + "start": 14045.14, + "end": 14050.66, + "probability": 0.9907 + }, + { + "start": 14050.66, + "end": 14054.56, + "probability": 0.9937 + }, + { + "start": 14054.8, + "end": 14059.7, + "probability": 0.9929 + }, + { + "start": 14059.7, + "end": 14065.4, + "probability": 0.9973 + }, + { + "start": 14065.84, + "end": 14066.58, + "probability": 0.7832 + }, + { + "start": 14067.12, + "end": 14073.54, + "probability": 0.8759 + }, + { + "start": 14073.74, + "end": 14074.72, + "probability": 0.9819 + }, + { + "start": 14074.8, + "end": 14076.38, + "probability": 0.9836 + }, + { + "start": 14076.48, + "end": 14081.8, + "probability": 0.8635 + }, + { + "start": 14082.26, + "end": 14086.76, + "probability": 0.8875 + }, + { + "start": 14086.76, + "end": 14091.16, + "probability": 0.9788 + }, + { + "start": 14091.48, + "end": 14095.48, + "probability": 0.9795 + }, + { + "start": 14096.18, + "end": 14099.08, + "probability": 0.9939 + }, + { + "start": 14099.8, + "end": 14102.16, + "probability": 0.92 + }, + { + "start": 14102.25, + "end": 14104.76, + "probability": 0.8842 + }, + { + "start": 14104.8, + "end": 14109.6, + "probability": 0.8 + }, + { + "start": 14109.72, + "end": 14110.83, + "probability": 0.8774 + }, + { + "start": 14111.46, + "end": 14116.18, + "probability": 0.9247 + }, + { + "start": 14116.64, + "end": 14117.39, + "probability": 0.522 + }, + { + "start": 14118.62, + "end": 14119.61, + "probability": 0.574 + }, + { + "start": 14121.22, + "end": 14125.66, + "probability": 0.9146 + }, + { + "start": 14126.06, + "end": 14129.72, + "probability": 0.995 + }, + { + "start": 14129.72, + "end": 14134.08, + "probability": 0.9766 + }, + { + "start": 14134.5, + "end": 14136.22, + "probability": 0.9918 + }, + { + "start": 14136.78, + "end": 14140.38, + "probability": 0.96 + }, + { + "start": 14140.82, + "end": 14143.81, + "probability": 0.9635 + }, + { + "start": 14144.16, + "end": 14144.88, + "probability": 0.8926 + }, + { + "start": 14145.74, + "end": 14146.71, + "probability": 0.9341 + }, + { + "start": 14148.24, + "end": 14149.38, + "probability": 0.9644 + }, + { + "start": 14149.72, + "end": 14150.4, + "probability": 0.9025 + }, + { + "start": 14150.44, + "end": 14155.62, + "probability": 0.9844 + }, + { + "start": 14156.02, + "end": 14157.84, + "probability": 0.301 + }, + { + "start": 14157.86, + "end": 14158.96, + "probability": 0.6996 + }, + { + "start": 14159.12, + "end": 14159.48, + "probability": 0.6799 + }, + { + "start": 14159.54, + "end": 14162.8, + "probability": 0.9912 + }, + { + "start": 14163.06, + "end": 14164.4, + "probability": 0.613 + }, + { + "start": 14165.7, + "end": 14167.08, + "probability": 0.071 + }, + { + "start": 14167.4, + "end": 14170.24, + "probability": 0.8995 + }, + { + "start": 14170.32, + "end": 14173.28, + "probability": 0.915 + }, + { + "start": 14173.36, + "end": 14175.36, + "probability": 0.9277 + }, + { + "start": 14175.48, + "end": 14177.16, + "probability": 0.8296 + }, + { + "start": 14177.24, + "end": 14179.88, + "probability": 0.9216 + }, + { + "start": 14180.44, + "end": 14186.08, + "probability": 0.8676 + }, + { + "start": 14186.36, + "end": 14190.46, + "probability": 0.9821 + }, + { + "start": 14190.66, + "end": 14192.5, + "probability": 0.9954 + }, + { + "start": 14192.86, + "end": 14193.38, + "probability": 0.7955 + }, + { + "start": 14194.18, + "end": 14196.68, + "probability": 0.7925 + }, + { + "start": 14197.42, + "end": 14199.08, + "probability": 0.8803 + }, + { + "start": 14200.0, + "end": 14204.08, + "probability": 0.8497 + }, + { + "start": 14205.22, + "end": 14208.04, + "probability": 0.7195 + }, + { + "start": 14209.38, + "end": 14216.34, + "probability": 0.5959 + }, + { + "start": 14217.14, + "end": 14220.32, + "probability": 0.9382 + }, + { + "start": 14221.02, + "end": 14227.04, + "probability": 0.5458 + }, + { + "start": 14227.54, + "end": 14228.6, + "probability": 0.9718 + }, + { + "start": 14229.94, + "end": 14231.8, + "probability": 0.1637 + }, + { + "start": 14233.5, + "end": 14235.5, + "probability": 0.0363 + }, + { + "start": 14243.66, + "end": 14246.26, + "probability": 0.0114 + }, + { + "start": 14250.42, + "end": 14250.42, + "probability": 0.0416 + }, + { + "start": 14250.6, + "end": 14250.6, + "probability": 0.0128 + }, + { + "start": 14250.6, + "end": 14250.6, + "probability": 0.15 + }, + { + "start": 14250.6, + "end": 14253.5, + "probability": 0.5402 + }, + { + "start": 14253.64, + "end": 14257.88, + "probability": 0.5003 + }, + { + "start": 14258.92, + "end": 14262.58, + "probability": 0.7542 + }, + { + "start": 14263.16, + "end": 14270.72, + "probability": 0.7816 + }, + { + "start": 14272.06, + "end": 14273.3, + "probability": 0.7822 + }, + { + "start": 14274.28, + "end": 14278.22, + "probability": 0.9844 + }, + { + "start": 14279.42, + "end": 14282.64, + "probability": 0.5023 + }, + { + "start": 14283.06, + "end": 14287.26, + "probability": 0.9325 + }, + { + "start": 14287.96, + "end": 14289.08, + "probability": 0.8805 + }, + { + "start": 14289.94, + "end": 14293.58, + "probability": 0.499 + }, + { + "start": 14293.76, + "end": 14294.49, + "probability": 0.351 + }, + { + "start": 14295.8, + "end": 14299.39, + "probability": 0.8521 + }, + { + "start": 14300.2, + "end": 14303.12, + "probability": 0.7799 + }, + { + "start": 14303.98, + "end": 14306.97, + "probability": 0.9348 + }, + { + "start": 14307.76, + "end": 14309.93, + "probability": 0.8834 + }, + { + "start": 14311.02, + "end": 14313.62, + "probability": 0.9825 + }, + { + "start": 14314.96, + "end": 14317.12, + "probability": 0.7396 + }, + { + "start": 14319.0, + "end": 14322.0, + "probability": 0.8582 + }, + { + "start": 14324.18, + "end": 14326.16, + "probability": 0.2657 + }, + { + "start": 14326.38, + "end": 14328.22, + "probability": 0.9884 + }, + { + "start": 14328.28, + "end": 14329.32, + "probability": 0.7686 + }, + { + "start": 14330.26, + "end": 14332.84, + "probability": 0.9813 + }, + { + "start": 14333.44, + "end": 14337.02, + "probability": 0.3682 + }, + { + "start": 14337.1, + "end": 14341.9, + "probability": 0.6592 + }, + { + "start": 14342.58, + "end": 14344.88, + "probability": 0.7988 + }, + { + "start": 14345.8, + "end": 14348.1, + "probability": 0.7176 + }, + { + "start": 14348.62, + "end": 14349.3, + "probability": 0.6329 + }, + { + "start": 14351.7, + "end": 14352.77, + "probability": 0.333 + }, + { + "start": 14352.82, + "end": 14356.4, + "probability": 0.5554 + }, + { + "start": 14356.82, + "end": 14357.7, + "probability": 0.6211 + }, + { + "start": 14358.14, + "end": 14360.42, + "probability": 0.8721 + }, + { + "start": 14360.7, + "end": 14362.16, + "probability": 0.6318 + }, + { + "start": 14362.32, + "end": 14365.16, + "probability": 0.9484 + }, + { + "start": 14365.84, + "end": 14370.76, + "probability": 0.9658 + }, + { + "start": 14371.12, + "end": 14375.8, + "probability": 0.9759 + }, + { + "start": 14375.98, + "end": 14380.06, + "probability": 0.5982 + }, + { + "start": 14381.14, + "end": 14381.98, + "probability": 0.695 + }, + { + "start": 14383.9, + "end": 14385.9, + "probability": 0.1363 + }, + { + "start": 14385.9, + "end": 14388.08, + "probability": 0.7396 + }, + { + "start": 14388.46, + "end": 14388.74, + "probability": 0.7823 + }, + { + "start": 14389.81, + "end": 14390.78, + "probability": 0.7278 + }, + { + "start": 14391.06, + "end": 14393.46, + "probability": 0.8583 + }, + { + "start": 14394.36, + "end": 14395.96, + "probability": 0.9807 + }, + { + "start": 14396.76, + "end": 14399.02, + "probability": 0.3423 + }, + { + "start": 14399.66, + "end": 14407.66, + "probability": 0.9977 + }, + { + "start": 14408.26, + "end": 14409.7, + "probability": 0.7016 + }, + { + "start": 14410.52, + "end": 14413.72, + "probability": 0.9126 + }, + { + "start": 14414.52, + "end": 14419.62, + "probability": 0.9846 + }, + { + "start": 14420.48, + "end": 14423.18, + "probability": 0.7545 + }, + { + "start": 14423.8, + "end": 14427.06, + "probability": 0.8774 + }, + { + "start": 14427.64, + "end": 14430.24, + "probability": 0.9929 + }, + { + "start": 14430.88, + "end": 14433.96, + "probability": 0.7437 + }, + { + "start": 14434.64, + "end": 14438.24, + "probability": 0.9673 + }, + { + "start": 14438.44, + "end": 14442.34, + "probability": 0.8995 + }, + { + "start": 14443.1, + "end": 14448.46, + "probability": 0.9872 + }, + { + "start": 14448.96, + "end": 14451.8, + "probability": 0.9982 + }, + { + "start": 14451.8, + "end": 14455.76, + "probability": 0.9806 + }, + { + "start": 14456.82, + "end": 14461.1, + "probability": 0.9349 + }, + { + "start": 14462.54, + "end": 14465.1, + "probability": 0.94 + }, + { + "start": 14469.58, + "end": 14470.54, + "probability": 0.6489 + }, + { + "start": 14470.62, + "end": 14471.98, + "probability": 0.9504 + }, + { + "start": 14472.18, + "end": 14473.52, + "probability": 0.9341 + }, + { + "start": 14473.66, + "end": 14474.24, + "probability": 0.6074 + }, + { + "start": 14474.7, + "end": 14476.02, + "probability": 0.7491 + }, + { + "start": 14476.74, + "end": 14484.78, + "probability": 0.847 + }, + { + "start": 14485.38, + "end": 14490.04, + "probability": 0.9864 + }, + { + "start": 14490.2, + "end": 14491.98, + "probability": 0.6158 + }, + { + "start": 14493.12, + "end": 14493.52, + "probability": 0.7622 + }, + { + "start": 14493.56, + "end": 14499.46, + "probability": 0.7899 + }, + { + "start": 14500.0, + "end": 14502.3, + "probability": 0.8065 + }, + { + "start": 14502.5, + "end": 14504.84, + "probability": 0.9496 + }, + { + "start": 14505.08, + "end": 14508.56, + "probability": 0.9689 + }, + { + "start": 14508.56, + "end": 14512.0, + "probability": 0.8647 + }, + { + "start": 14512.08, + "end": 14516.32, + "probability": 0.9862 + }, + { + "start": 14517.24, + "end": 14517.98, + "probability": 0.4927 + }, + { + "start": 14518.06, + "end": 14523.08, + "probability": 0.7302 + }, + { + "start": 14523.36, + "end": 14524.84, + "probability": 0.777 + }, + { + "start": 14525.56, + "end": 14527.06, + "probability": 0.9827 + }, + { + "start": 14527.24, + "end": 14527.66, + "probability": 0.5172 + }, + { + "start": 14527.76, + "end": 14528.38, + "probability": 0.7426 + }, + { + "start": 14528.72, + "end": 14530.36, + "probability": 0.988 + }, + { + "start": 14530.6, + "end": 14534.0, + "probability": 0.9012 + }, + { + "start": 14534.04, + "end": 14537.09, + "probability": 0.9597 + }, + { + "start": 14537.58, + "end": 14543.1, + "probability": 0.6021 + }, + { + "start": 14543.72, + "end": 14545.96, + "probability": 0.6781 + }, + { + "start": 14546.1, + "end": 14547.66, + "probability": 0.6369 + }, + { + "start": 14548.1, + "end": 14549.0, + "probability": 0.7118 + }, + { + "start": 14549.18, + "end": 14549.76, + "probability": 0.3579 + }, + { + "start": 14549.88, + "end": 14553.02, + "probability": 0.8402 + }, + { + "start": 14553.07, + "end": 14554.94, + "probability": 0.9564 + }, + { + "start": 14555.06, + "end": 14556.7, + "probability": 0.5848 + }, + { + "start": 14557.88, + "end": 14559.04, + "probability": 0.7031 + }, + { + "start": 14559.14, + "end": 14562.12, + "probability": 0.534 + }, + { + "start": 14562.8, + "end": 14565.02, + "probability": 0.6505 + }, + { + "start": 14567.94, + "end": 14568.28, + "probability": 0.3199 + }, + { + "start": 14568.36, + "end": 14568.88, + "probability": 0.2638 + }, + { + "start": 14569.48, + "end": 14572.1, + "probability": 0.7662 + }, + { + "start": 14572.54, + "end": 14575.44, + "probability": 0.6462 + }, + { + "start": 14576.66, + "end": 14576.66, + "probability": 0.3693 + }, + { + "start": 14576.66, + "end": 14577.48, + "probability": 0.6312 + }, + { + "start": 14578.18, + "end": 14580.44, + "probability": 0.7668 + }, + { + "start": 14581.52, + "end": 14585.22, + "probability": 0.9796 + }, + { + "start": 14587.14, + "end": 14593.82, + "probability": 0.9237 + }, + { + "start": 14594.78, + "end": 14602.5, + "probability": 0.9705 + }, + { + "start": 14603.72, + "end": 14606.48, + "probability": 0.9941 + }, + { + "start": 14607.98, + "end": 14608.46, + "probability": 0.7094 + }, + { + "start": 14609.18, + "end": 14611.02, + "probability": 0.994 + }, + { + "start": 14611.18, + "end": 14614.6, + "probability": 0.9941 + }, + { + "start": 14615.3, + "end": 14615.52, + "probability": 0.3686 + }, + { + "start": 14615.72, + "end": 14616.66, + "probability": 0.9012 + }, + { + "start": 14616.78, + "end": 14618.3, + "probability": 0.9589 + }, + { + "start": 14618.72, + "end": 14619.38, + "probability": 0.7086 + }, + { + "start": 14619.52, + "end": 14620.06, + "probability": 0.7486 + }, + { + "start": 14620.22, + "end": 14624.84, + "probability": 0.7913 + }, + { + "start": 14625.84, + "end": 14629.3, + "probability": 0.5583 + }, + { + "start": 14630.08, + "end": 14630.94, + "probability": 0.6609 + }, + { + "start": 14631.06, + "end": 14635.34, + "probability": 0.8781 + }, + { + "start": 14635.92, + "end": 14636.84, + "probability": 0.9783 + }, + { + "start": 14637.62, + "end": 14641.93, + "probability": 0.9504 + }, + { + "start": 14642.52, + "end": 14643.04, + "probability": 0.6234 + }, + { + "start": 14643.04, + "end": 14643.53, + "probability": 0.6295 + }, + { + "start": 14643.84, + "end": 14644.72, + "probability": 0.2955 + }, + { + "start": 14644.72, + "end": 14645.86, + "probability": 0.4496 + }, + { + "start": 14645.9, + "end": 14646.68, + "probability": 0.2321 + }, + { + "start": 14646.68, + "end": 14648.19, + "probability": 0.8223 + }, + { + "start": 14648.52, + "end": 14648.6, + "probability": 0.5248 + }, + { + "start": 14648.74, + "end": 14648.98, + "probability": 0.4193 + }, + { + "start": 14649.16, + "end": 14649.38, + "probability": 0.2723 + }, + { + "start": 14649.52, + "end": 14650.9, + "probability": 0.3086 + }, + { + "start": 14654.58, + "end": 14660.4, + "probability": 0.128 + }, + { + "start": 14661.16, + "end": 14663.82, + "probability": 0.3093 + }, + { + "start": 14663.92, + "end": 14665.52, + "probability": 0.8886 + }, + { + "start": 14666.22, + "end": 14668.83, + "probability": 0.7021 + }, + { + "start": 14669.7, + "end": 14672.06, + "probability": 0.9629 + }, + { + "start": 14672.78, + "end": 14675.62, + "probability": 0.9569 + }, + { + "start": 14675.84, + "end": 14677.56, + "probability": 0.9583 + }, + { + "start": 14678.42, + "end": 14679.66, + "probability": 0.1682 + }, + { + "start": 14682.81, + "end": 14687.74, + "probability": 0.9641 + }, + { + "start": 14687.78, + "end": 14688.22, + "probability": 0.8624 + }, + { + "start": 14688.7, + "end": 14690.16, + "probability": 0.5747 + }, + { + "start": 14690.52, + "end": 14690.52, + "probability": 0.3634 + }, + { + "start": 14690.52, + "end": 14691.38, + "probability": 0.71 + }, + { + "start": 14691.88, + "end": 14697.42, + "probability": 0.8799 + }, + { + "start": 14697.42, + "end": 14702.76, + "probability": 0.9783 + }, + { + "start": 14703.34, + "end": 14708.6, + "probability": 0.9684 + }, + { + "start": 14709.2, + "end": 14712.68, + "probability": 0.8201 + }, + { + "start": 14713.6, + "end": 14717.5, + "probability": 0.8749 + }, + { + "start": 14718.28, + "end": 14724.48, + "probability": 0.9855 + }, + { + "start": 14724.76, + "end": 14725.18, + "probability": 0.8583 + }, + { + "start": 14726.42, + "end": 14728.72, + "probability": 0.7774 + }, + { + "start": 14729.28, + "end": 14732.68, + "probability": 0.7573 + }, + { + "start": 14733.0, + "end": 14735.2, + "probability": 0.7559 + }, + { + "start": 14735.26, + "end": 14740.74, + "probability": 0.9714 + }, + { + "start": 14741.32, + "end": 14743.5, + "probability": 0.944 + }, + { + "start": 14744.52, + "end": 14745.74, + "probability": 0.7474 + }, + { + "start": 14745.98, + "end": 14751.34, + "probability": 0.9408 + }, + { + "start": 14752.12, + "end": 14756.24, + "probability": 0.7641 + }, + { + "start": 14756.46, + "end": 14762.26, + "probability": 0.9626 + }, + { + "start": 14762.88, + "end": 14768.34, + "probability": 0.9707 + }, + { + "start": 14769.32, + "end": 14772.82, + "probability": 0.9935 + }, + { + "start": 14772.82, + "end": 14776.94, + "probability": 0.915 + }, + { + "start": 14778.02, + "end": 14783.48, + "probability": 0.9917 + }, + { + "start": 14784.12, + "end": 14788.36, + "probability": 0.995 + }, + { + "start": 14788.9, + "end": 14790.02, + "probability": 0.8484 + }, + { + "start": 14790.1, + "end": 14794.52, + "probability": 0.9972 + }, + { + "start": 14795.84, + "end": 14797.28, + "probability": 0.63 + }, + { + "start": 14797.44, + "end": 14799.58, + "probability": 0.9844 + }, + { + "start": 14800.44, + "end": 14801.6, + "probability": 0.6903 + }, + { + "start": 14801.76, + "end": 14806.62, + "probability": 0.9893 + }, + { + "start": 14806.96, + "end": 14809.1, + "probability": 0.8979 + }, + { + "start": 14809.6, + "end": 14814.76, + "probability": 0.9267 + }, + { + "start": 14815.16, + "end": 14816.18, + "probability": 0.6693 + }, + { + "start": 14817.32, + "end": 14819.24, + "probability": 0.7571 + }, + { + "start": 14819.5, + "end": 14820.66, + "probability": 0.9961 + }, + { + "start": 14822.54, + "end": 14822.64, + "probability": 0.7314 + }, + { + "start": 14824.35, + "end": 14827.64, + "probability": 0.995 + }, + { + "start": 14827.86, + "end": 14829.2, + "probability": 0.9294 + }, + { + "start": 14830.27, + "end": 14836.42, + "probability": 0.4236 + }, + { + "start": 14836.54, + "end": 14837.58, + "probability": 0.4502 + }, + { + "start": 14837.66, + "end": 14839.42, + "probability": 0.6441 + }, + { + "start": 14840.22, + "end": 14841.36, + "probability": 0.5018 + }, + { + "start": 14841.96, + "end": 14845.44, + "probability": 0.9767 + }, + { + "start": 14845.92, + "end": 14848.44, + "probability": 0.3904 + }, + { + "start": 14850.06, + "end": 14853.6, + "probability": 0.7392 + }, + { + "start": 14854.48, + "end": 14858.04, + "probability": 0.4709 + } + ], + "segments_count": 5047, + "words_count": 26083, + "avg_words_per_segment": 5.168, + "avg_segment_duration": 2.3462, + "avg_words_per_minute": 105.3065, + "plenum_id": "12069", + "duration": 14861.19, + "title": null, + "plenum_date": "2011-02-08" +} \ No newline at end of file