diff --git "a/123163/metadata.json" "b/123163/metadata.json" new file mode 100644--- /dev/null +++ "b/123163/metadata.json" @@ -0,0 +1,21197 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "123163", + "quality_score": 0.8989, + "per_segment_quality_scores": [ + { + "start": 41.06, + "end": 41.1, + "probability": 0.355 + }, + { + "start": 41.1, + "end": 41.1, + "probability": 0.0927 + }, + { + "start": 41.1, + "end": 41.82, + "probability": 0.2091 + }, + { + "start": 41.98, + "end": 43.82, + "probability": 0.9395 + }, + { + "start": 43.82, + "end": 46.48, + "probability": 0.9901 + }, + { + "start": 47.78, + "end": 47.9, + "probability": 0.3684 + }, + { + "start": 50.64, + "end": 53.1, + "probability": 0.6527 + }, + { + "start": 53.32, + "end": 55.18, + "probability": 0.1904 + }, + { + "start": 55.18, + "end": 55.18, + "probability": 0.0358 + }, + { + "start": 55.18, + "end": 55.28, + "probability": 0.4263 + }, + { + "start": 56.48, + "end": 57.5, + "probability": 0.8759 + }, + { + "start": 57.9, + "end": 59.28, + "probability": 0.7623 + }, + { + "start": 59.36, + "end": 60.94, + "probability": 0.897 + }, + { + "start": 61.84, + "end": 64.17, + "probability": 0.893 + }, + { + "start": 64.36, + "end": 69.96, + "probability": 0.9873 + }, + { + "start": 70.8, + "end": 73.82, + "probability": 0.9651 + }, + { + "start": 74.54, + "end": 76.02, + "probability": 0.9164 + }, + { + "start": 83.6, + "end": 87.24, + "probability": 0.9178 + }, + { + "start": 88.58, + "end": 89.83, + "probability": 0.5109 + }, + { + "start": 90.4, + "end": 91.34, + "probability": 0.8477 + }, + { + "start": 91.48, + "end": 92.58, + "probability": 0.8293 + }, + { + "start": 92.66, + "end": 93.98, + "probability": 0.9844 + }, + { + "start": 94.48, + "end": 96.06, + "probability": 0.9151 + }, + { + "start": 96.78, + "end": 100.4, + "probability": 0.9191 + }, + { + "start": 101.38, + "end": 104.34, + "probability": 0.9966 + }, + { + "start": 104.92, + "end": 108.44, + "probability": 0.9703 + }, + { + "start": 108.52, + "end": 111.4, + "probability": 0.9056 + }, + { + "start": 112.02, + "end": 119.5, + "probability": 0.9087 + }, + { + "start": 120.9, + "end": 121.52, + "probability": 0.5806 + }, + { + "start": 121.58, + "end": 122.42, + "probability": 0.5715 + }, + { + "start": 122.88, + "end": 122.98, + "probability": 0.1997 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 124.77, + "end": 124.82, + "probability": 0.3331 + }, + { + "start": 125.08, + "end": 127.32, + "probability": 0.7274 + }, + { + "start": 127.68, + "end": 128.47, + "probability": 0.6995 + }, + { + "start": 129.46, + "end": 137.76, + "probability": 0.8139 + }, + { + "start": 138.24, + "end": 140.76, + "probability": 0.853 + }, + { + "start": 141.36, + "end": 141.86, + "probability": 0.9902 + }, + { + "start": 142.78, + "end": 143.7, + "probability": 0.6128 + }, + { + "start": 143.8, + "end": 144.86, + "probability": 0.999 + }, + { + "start": 144.9, + "end": 146.98, + "probability": 0.6156 + }, + { + "start": 147.12, + "end": 151.18, + "probability": 0.9639 + }, + { + "start": 151.5, + "end": 152.72, + "probability": 0.9302 + }, + { + "start": 152.88, + "end": 154.2, + "probability": 0.9466 + }, + { + "start": 154.3, + "end": 156.18, + "probability": 0.8359 + }, + { + "start": 157.72, + "end": 158.82, + "probability": 0.8063 + }, + { + "start": 159.42, + "end": 160.55, + "probability": 0.8646 + }, + { + "start": 161.24, + "end": 162.52, + "probability": 0.9334 + }, + { + "start": 162.94, + "end": 165.48, + "probability": 0.9415 + }, + { + "start": 166.56, + "end": 168.94, + "probability": 0.958 + }, + { + "start": 169.66, + "end": 173.46, + "probability": 0.7749 + }, + { + "start": 173.54, + "end": 179.94, + "probability": 0.8098 + }, + { + "start": 180.28, + "end": 182.53, + "probability": 0.8814 + }, + { + "start": 184.24, + "end": 187.48, + "probability": 0.6741 + }, + { + "start": 188.04, + "end": 193.6, + "probability": 0.9494 + }, + { + "start": 193.72, + "end": 195.04, + "probability": 0.9963 + }, + { + "start": 195.64, + "end": 198.28, + "probability": 0.9652 + }, + { + "start": 198.46, + "end": 201.37, + "probability": 0.9634 + }, + { + "start": 202.24, + "end": 202.4, + "probability": 0.2681 + }, + { + "start": 202.4, + "end": 203.54, + "probability": 0.7276 + }, + { + "start": 204.08, + "end": 204.72, + "probability": 0.9397 + }, + { + "start": 205.26, + "end": 207.52, + "probability": 0.95 + }, + { + "start": 209.02, + "end": 214.8, + "probability": 0.9351 + }, + { + "start": 215.18, + "end": 216.4, + "probability": 0.9907 + }, + { + "start": 216.46, + "end": 219.14, + "probability": 0.8964 + }, + { + "start": 219.14, + "end": 222.04, + "probability": 0.9585 + }, + { + "start": 222.22, + "end": 224.46, + "probability": 0.9921 + }, + { + "start": 224.46, + "end": 228.56, + "probability": 0.921 + }, + { + "start": 229.06, + "end": 231.18, + "probability": 0.9929 + }, + { + "start": 231.74, + "end": 235.24, + "probability": 0.9935 + }, + { + "start": 235.66, + "end": 239.12, + "probability": 0.7629 + }, + { + "start": 239.22, + "end": 239.64, + "probability": 0.5158 + }, + { + "start": 240.06, + "end": 240.27, + "probability": 0.1525 + }, + { + "start": 240.8, + "end": 241.06, + "probability": 0.5767 + }, + { + "start": 241.62, + "end": 245.32, + "probability": 0.9734 + }, + { + "start": 245.6, + "end": 248.16, + "probability": 0.6422 + }, + { + "start": 248.28, + "end": 250.28, + "probability": 0.9051 + }, + { + "start": 250.36, + "end": 253.06, + "probability": 0.7371 + }, + { + "start": 253.6, + "end": 254.36, + "probability": 0.5337 + }, + { + "start": 255.16, + "end": 257.7, + "probability": 0.7702 + }, + { + "start": 258.4, + "end": 263.66, + "probability": 0.81 + }, + { + "start": 264.8, + "end": 268.0, + "probability": 0.971 + }, + { + "start": 268.0, + "end": 271.84, + "probability": 0.9888 + }, + { + "start": 273.1, + "end": 274.06, + "probability": 0.9977 + }, + { + "start": 274.16, + "end": 275.52, + "probability": 0.8505 + }, + { + "start": 275.72, + "end": 279.52, + "probability": 0.9826 + }, + { + "start": 279.56, + "end": 283.1, + "probability": 0.9971 + }, + { + "start": 283.82, + "end": 284.4, + "probability": 0.9811 + }, + { + "start": 285.0, + "end": 287.68, + "probability": 0.8128 + }, + { + "start": 288.32, + "end": 290.2, + "probability": 0.9804 + }, + { + "start": 290.74, + "end": 293.96, + "probability": 0.6698 + }, + { + "start": 294.08, + "end": 298.46, + "probability": 0.9196 + }, + { + "start": 298.7, + "end": 302.34, + "probability": 0.9753 + }, + { + "start": 302.98, + "end": 303.58, + "probability": 0.9825 + }, + { + "start": 304.28, + "end": 304.84, + "probability": 0.7646 + }, + { + "start": 304.98, + "end": 308.44, + "probability": 0.7281 + }, + { + "start": 308.44, + "end": 310.24, + "probability": 0.5383 + }, + { + "start": 310.34, + "end": 313.02, + "probability": 0.9141 + }, + { + "start": 313.56, + "end": 315.52, + "probability": 0.9611 + }, + { + "start": 316.54, + "end": 320.76, + "probability": 0.5629 + }, + { + "start": 320.92, + "end": 321.54, + "probability": 0.5531 + }, + { + "start": 321.56, + "end": 322.9, + "probability": 0.9465 + }, + { + "start": 323.46, + "end": 326.0, + "probability": 0.9293 + }, + { + "start": 326.34, + "end": 327.32, + "probability": 0.9965 + }, + { + "start": 328.02, + "end": 328.38, + "probability": 0.6896 + }, + { + "start": 330.08, + "end": 332.2, + "probability": 0.841 + }, + { + "start": 332.2, + "end": 335.52, + "probability": 0.8552 + }, + { + "start": 335.52, + "end": 339.44, + "probability": 0.9861 + }, + { + "start": 342.72, + "end": 343.44, + "probability": 0.8571 + }, + { + "start": 343.54, + "end": 345.12, + "probability": 0.0527 + }, + { + "start": 347.74, + "end": 351.38, + "probability": 0.5836 + }, + { + "start": 352.54, + "end": 354.68, + "probability": 0.8593 + }, + { + "start": 354.68, + "end": 357.0, + "probability": 0.7828 + }, + { + "start": 357.16, + "end": 362.52, + "probability": 0.4232 + }, + { + "start": 362.52, + "end": 364.56, + "probability": 0.677 + }, + { + "start": 365.88, + "end": 368.44, + "probability": 0.9857 + }, + { + "start": 368.44, + "end": 371.6, + "probability": 0.9985 + }, + { + "start": 371.7, + "end": 372.72, + "probability": 0.6151 + }, + { + "start": 373.42, + "end": 375.48, + "probability": 0.9988 + }, + { + "start": 375.48, + "end": 377.72, + "probability": 0.9925 + }, + { + "start": 378.3, + "end": 382.64, + "probability": 0.9946 + }, + { + "start": 382.64, + "end": 386.06, + "probability": 0.864 + }, + { + "start": 386.2, + "end": 387.32, + "probability": 0.8684 + }, + { + "start": 387.36, + "end": 388.1, + "probability": 0.8077 + }, + { + "start": 388.6, + "end": 390.52, + "probability": 0.9408 + }, + { + "start": 391.16, + "end": 394.78, + "probability": 0.6757 + }, + { + "start": 395.18, + "end": 396.64, + "probability": 0.958 + }, + { + "start": 397.04, + "end": 397.84, + "probability": 0.6998 + }, + { + "start": 397.94, + "end": 398.18, + "probability": 0.5848 + }, + { + "start": 398.3, + "end": 398.84, + "probability": 0.9709 + }, + { + "start": 399.54, + "end": 400.1, + "probability": 0.3016 + }, + { + "start": 400.14, + "end": 402.88, + "probability": 0.9421 + }, + { + "start": 402.98, + "end": 404.92, + "probability": 0.9497 + }, + { + "start": 406.42, + "end": 410.42, + "probability": 0.9854 + }, + { + "start": 411.12, + "end": 413.36, + "probability": 0.9291 + }, + { + "start": 413.88, + "end": 414.48, + "probability": 0.6921 + }, + { + "start": 414.56, + "end": 417.52, + "probability": 0.9684 + }, + { + "start": 418.2, + "end": 419.66, + "probability": 0.896 + }, + { + "start": 419.98, + "end": 420.96, + "probability": 0.9692 + }, + { + "start": 421.24, + "end": 424.38, + "probability": 0.7983 + }, + { + "start": 424.96, + "end": 430.14, + "probability": 0.9961 + }, + { + "start": 430.28, + "end": 431.78, + "probability": 0.8597 + }, + { + "start": 432.34, + "end": 437.1, + "probability": 0.9785 + }, + { + "start": 437.16, + "end": 439.22, + "probability": 0.7493 + }, + { + "start": 439.38, + "end": 440.6, + "probability": 0.6818 + }, + { + "start": 442.14, + "end": 444.36, + "probability": 0.971 + }, + { + "start": 444.36, + "end": 447.0, + "probability": 0.5267 + }, + { + "start": 447.14, + "end": 450.28, + "probability": 0.8465 + }, + { + "start": 450.92, + "end": 451.4, + "probability": 0.9781 + }, + { + "start": 452.14, + "end": 454.76, + "probability": 0.9982 + }, + { + "start": 455.9, + "end": 459.64, + "probability": 0.9225 + }, + { + "start": 460.22, + "end": 462.58, + "probability": 0.9987 + }, + { + "start": 462.58, + "end": 466.98, + "probability": 0.9589 + }, + { + "start": 467.6, + "end": 468.54, + "probability": 0.5852 + }, + { + "start": 468.7, + "end": 471.38, + "probability": 0.8462 + }, + { + "start": 471.94, + "end": 475.32, + "probability": 0.9737 + }, + { + "start": 475.76, + "end": 478.64, + "probability": 0.8037 + }, + { + "start": 478.9, + "end": 479.58, + "probability": 0.8323 + }, + { + "start": 480.18, + "end": 483.1, + "probability": 0.9718 + }, + { + "start": 483.28, + "end": 486.82, + "probability": 0.952 + }, + { + "start": 487.94, + "end": 490.16, + "probability": 0.9958 + }, + { + "start": 490.16, + "end": 492.36, + "probability": 0.9536 + }, + { + "start": 492.4, + "end": 493.5, + "probability": 0.8925 + }, + { + "start": 493.62, + "end": 495.72, + "probability": 0.8027 + }, + { + "start": 495.76, + "end": 497.86, + "probability": 0.9841 + }, + { + "start": 497.94, + "end": 500.12, + "probability": 0.8471 + }, + { + "start": 500.12, + "end": 503.48, + "probability": 0.9954 + }, + { + "start": 505.1, + "end": 506.14, + "probability": 0.3648 + }, + { + "start": 506.2, + "end": 506.2, + "probability": 0.1412 + }, + { + "start": 506.2, + "end": 506.64, + "probability": 0.6007 + }, + { + "start": 506.7, + "end": 507.76, + "probability": 0.8507 + }, + { + "start": 507.84, + "end": 510.2, + "probability": 0.9458 + }, + { + "start": 510.2, + "end": 512.14, + "probability": 0.866 + }, + { + "start": 512.84, + "end": 513.48, + "probability": 0.8323 + }, + { + "start": 513.58, + "end": 518.76, + "probability": 0.9674 + }, + { + "start": 521.7, + "end": 522.71, + "probability": 0.783 + }, + { + "start": 523.18, + "end": 528.1, + "probability": 0.9625 + }, + { + "start": 528.68, + "end": 530.22, + "probability": 0.3759 + }, + { + "start": 530.36, + "end": 535.16, + "probability": 0.938 + }, + { + "start": 535.6, + "end": 541.06, + "probability": 0.9492 + }, + { + "start": 541.72, + "end": 544.38, + "probability": 0.8382 + }, + { + "start": 544.5, + "end": 545.62, + "probability": 0.9721 + }, + { + "start": 545.94, + "end": 548.14, + "probability": 0.884 + }, + { + "start": 548.24, + "end": 553.58, + "probability": 0.9683 + }, + { + "start": 553.94, + "end": 557.0, + "probability": 0.981 + }, + { + "start": 557.92, + "end": 558.2, + "probability": 0.5788 + }, + { + "start": 558.42, + "end": 561.52, + "probability": 0.6338 + }, + { + "start": 562.56, + "end": 564.44, + "probability": 0.9844 + }, + { + "start": 564.9, + "end": 565.62, + "probability": 0.9109 + }, + { + "start": 569.28, + "end": 571.84, + "probability": 0.5835 + }, + { + "start": 572.46, + "end": 573.52, + "probability": 0.6049 + }, + { + "start": 573.52, + "end": 574.12, + "probability": 0.6302 + }, + { + "start": 576.56, + "end": 583.76, + "probability": 0.972 + }, + { + "start": 584.58, + "end": 584.82, + "probability": 0.8215 + }, + { + "start": 585.54, + "end": 586.08, + "probability": 0.4222 + }, + { + "start": 587.86, + "end": 591.36, + "probability": 0.9756 + }, + { + "start": 592.92, + "end": 593.12, + "probability": 0.0089 + }, + { + "start": 593.12, + "end": 598.08, + "probability": 0.9855 + }, + { + "start": 599.0, + "end": 599.7, + "probability": 0.9479 + }, + { + "start": 605.14, + "end": 606.72, + "probability": 0.4853 + }, + { + "start": 606.88, + "end": 608.6, + "probability": 0.8678 + }, + { + "start": 608.82, + "end": 614.92, + "probability": 0.8766 + }, + { + "start": 616.0, + "end": 620.14, + "probability": 0.9951 + }, + { + "start": 620.68, + "end": 623.0, + "probability": 0.8528 + }, + { + "start": 625.58, + "end": 627.38, + "probability": 0.7584 + }, + { + "start": 628.04, + "end": 629.34, + "probability": 0.9234 + }, + { + "start": 629.66, + "end": 631.62, + "probability": 0.9607 + }, + { + "start": 631.72, + "end": 633.62, + "probability": 0.924 + }, + { + "start": 633.8, + "end": 636.62, + "probability": 0.8707 + }, + { + "start": 637.18, + "end": 640.8, + "probability": 0.8972 + }, + { + "start": 640.88, + "end": 641.04, + "probability": 0.4901 + }, + { + "start": 641.12, + "end": 642.04, + "probability": 0.6597 + }, + { + "start": 642.14, + "end": 643.9, + "probability": 0.9045 + }, + { + "start": 645.02, + "end": 646.6, + "probability": 0.9204 + }, + { + "start": 647.24, + "end": 648.14, + "probability": 0.8941 + }, + { + "start": 649.68, + "end": 650.5, + "probability": 0.9681 + }, + { + "start": 651.08, + "end": 657.24, + "probability": 0.9771 + }, + { + "start": 658.48, + "end": 664.58, + "probability": 0.9967 + }, + { + "start": 664.6, + "end": 668.82, + "probability": 0.9888 + }, + { + "start": 669.04, + "end": 670.56, + "probability": 0.775 + }, + { + "start": 670.66, + "end": 672.42, + "probability": 0.9932 + }, + { + "start": 672.84, + "end": 674.2, + "probability": 0.9958 + }, + { + "start": 675.62, + "end": 678.94, + "probability": 0.9679 + }, + { + "start": 679.06, + "end": 680.56, + "probability": 0.7449 + }, + { + "start": 681.44, + "end": 681.46, + "probability": 0.8784 + }, + { + "start": 682.12, + "end": 686.58, + "probability": 0.991 + }, + { + "start": 686.98, + "end": 688.24, + "probability": 0.8989 + }, + { + "start": 688.86, + "end": 691.22, + "probability": 0.9662 + }, + { + "start": 691.32, + "end": 692.86, + "probability": 0.9924 + }, + { + "start": 692.94, + "end": 694.33, + "probability": 0.9773 + }, + { + "start": 694.46, + "end": 695.18, + "probability": 0.8787 + }, + { + "start": 696.1, + "end": 697.8, + "probability": 0.9885 + }, + { + "start": 698.34, + "end": 698.86, + "probability": 0.6364 + }, + { + "start": 698.98, + "end": 699.32, + "probability": 0.8905 + }, + { + "start": 699.38, + "end": 701.16, + "probability": 0.9307 + }, + { + "start": 701.92, + "end": 705.72, + "probability": 0.6122 + }, + { + "start": 706.26, + "end": 707.2, + "probability": 0.5276 + }, + { + "start": 708.56, + "end": 708.84, + "probability": 0.4218 + }, + { + "start": 709.34, + "end": 713.08, + "probability": 0.7695 + }, + { + "start": 713.56, + "end": 718.76, + "probability": 0.9457 + }, + { + "start": 719.98, + "end": 723.52, + "probability": 0.9916 + }, + { + "start": 724.08, + "end": 724.84, + "probability": 0.6729 + }, + { + "start": 725.54, + "end": 730.98, + "probability": 0.9582 + }, + { + "start": 731.78, + "end": 735.06, + "probability": 0.9858 + }, + { + "start": 735.66, + "end": 735.66, + "probability": 0.0707 + }, + { + "start": 735.66, + "end": 736.96, + "probability": 0.6771 + }, + { + "start": 738.5, + "end": 738.5, + "probability": 0.0087 + }, + { + "start": 739.46, + "end": 744.06, + "probability": 0.3885 + }, + { + "start": 744.2, + "end": 745.0, + "probability": 0.5253 + }, + { + "start": 745.08, + "end": 748.14, + "probability": 0.989 + }, + { + "start": 748.64, + "end": 749.58, + "probability": 0.9087 + }, + { + "start": 750.04, + "end": 752.44, + "probability": 0.9846 + }, + { + "start": 753.3, + "end": 754.76, + "probability": 0.9867 + }, + { + "start": 754.84, + "end": 757.04, + "probability": 0.6253 + }, + { + "start": 757.98, + "end": 759.96, + "probability": 0.9272 + }, + { + "start": 760.52, + "end": 764.64, + "probability": 0.9951 + }, + { + "start": 764.64, + "end": 768.12, + "probability": 0.9399 + }, + { + "start": 768.8, + "end": 771.98, + "probability": 0.991 + }, + { + "start": 773.2, + "end": 774.96, + "probability": 0.3598 + }, + { + "start": 775.12, + "end": 780.52, + "probability": 0.9933 + }, + { + "start": 782.38, + "end": 783.44, + "probability": 0.9276 + }, + { + "start": 784.26, + "end": 789.54, + "probability": 0.8994 + }, + { + "start": 790.6, + "end": 791.18, + "probability": 0.811 + }, + { + "start": 791.5, + "end": 795.38, + "probability": 0.9748 + }, + { + "start": 796.24, + "end": 799.12, + "probability": 0.9817 + }, + { + "start": 799.66, + "end": 806.84, + "probability": 0.7956 + }, + { + "start": 807.23, + "end": 811.84, + "probability": 0.9891 + }, + { + "start": 812.42, + "end": 815.78, + "probability": 0.9946 + }, + { + "start": 816.0, + "end": 821.14, + "probability": 0.9826 + }, + { + "start": 822.12, + "end": 825.98, + "probability": 0.9797 + }, + { + "start": 825.98, + "end": 829.2, + "probability": 0.9959 + }, + { + "start": 829.56, + "end": 830.38, + "probability": 0.6093 + }, + { + "start": 830.76, + "end": 832.14, + "probability": 0.8982 + }, + { + "start": 832.4, + "end": 834.34, + "probability": 0.9795 + }, + { + "start": 836.54, + "end": 838.5, + "probability": 0.5901 + }, + { + "start": 838.5, + "end": 839.12, + "probability": 0.1431 + }, + { + "start": 839.58, + "end": 841.12, + "probability": 0.8859 + }, + { + "start": 841.84, + "end": 843.9, + "probability": 0.9506 + }, + { + "start": 844.42, + "end": 847.3, + "probability": 0.9769 + }, + { + "start": 847.78, + "end": 849.98, + "probability": 0.9396 + }, + { + "start": 850.24, + "end": 851.62, + "probability": 0.9986 + }, + { + "start": 852.28, + "end": 857.6, + "probability": 0.9891 + }, + { + "start": 857.6, + "end": 862.58, + "probability": 0.9159 + }, + { + "start": 862.96, + "end": 865.64, + "probability": 0.9945 + }, + { + "start": 866.74, + "end": 869.4, + "probability": 0.9387 + }, + { + "start": 869.48, + "end": 870.06, + "probability": 0.9893 + }, + { + "start": 870.64, + "end": 873.8, + "probability": 0.8346 + }, + { + "start": 873.8, + "end": 877.56, + "probability": 0.9474 + }, + { + "start": 879.84, + "end": 886.39, + "probability": 0.9294 + }, + { + "start": 887.78, + "end": 893.78, + "probability": 0.9394 + }, + { + "start": 893.84, + "end": 894.48, + "probability": 0.9606 + }, + { + "start": 894.78, + "end": 896.26, + "probability": 0.9852 + }, + { + "start": 897.0, + "end": 899.36, + "probability": 0.9844 + }, + { + "start": 900.62, + "end": 901.95, + "probability": 0.9355 + }, + { + "start": 902.42, + "end": 903.54, + "probability": 0.7404 + }, + { + "start": 904.64, + "end": 908.58, + "probability": 0.9816 + }, + { + "start": 908.62, + "end": 912.32, + "probability": 0.9902 + }, + { + "start": 913.0, + "end": 914.94, + "probability": 0.7707 + }, + { + "start": 915.22, + "end": 919.02, + "probability": 0.5561 + }, + { + "start": 919.48, + "end": 923.5, + "probability": 0.9897 + }, + { + "start": 924.1, + "end": 925.72, + "probability": 0.8436 + }, + { + "start": 927.64, + "end": 928.12, + "probability": 0.3691 + }, + { + "start": 929.62, + "end": 930.9, + "probability": 0.8747 + }, + { + "start": 932.08, + "end": 934.4, + "probability": 0.6776 + }, + { + "start": 934.5, + "end": 936.16, + "probability": 0.9668 + }, + { + "start": 937.52, + "end": 939.19, + "probability": 0.9888 + }, + { + "start": 939.58, + "end": 941.56, + "probability": 0.9822 + }, + { + "start": 941.9, + "end": 945.08, + "probability": 0.8243 + }, + { + "start": 946.07, + "end": 947.96, + "probability": 0.6833 + }, + { + "start": 948.04, + "end": 956.12, + "probability": 0.9627 + }, + { + "start": 956.38, + "end": 958.88, + "probability": 0.8589 + }, + { + "start": 958.98, + "end": 963.78, + "probability": 0.9263 + }, + { + "start": 964.08, + "end": 964.64, + "probability": 0.8689 + }, + { + "start": 965.24, + "end": 967.12, + "probability": 0.9668 + }, + { + "start": 967.36, + "end": 968.62, + "probability": 0.5182 + }, + { + "start": 968.96, + "end": 971.84, + "probability": 0.9779 + }, + { + "start": 972.79, + "end": 978.48, + "probability": 0.9105 + }, + { + "start": 980.06, + "end": 984.4, + "probability": 0.5399 + }, + { + "start": 985.68, + "end": 988.42, + "probability": 0.9919 + }, + { + "start": 989.34, + "end": 992.88, + "probability": 0.8361 + }, + { + "start": 996.4, + "end": 1000.26, + "probability": 0.9714 + }, + { + "start": 1000.46, + "end": 1000.8, + "probability": 0.8618 + }, + { + "start": 1001.0, + "end": 1001.36, + "probability": 0.9089 + }, + { + "start": 1001.46, + "end": 1001.92, + "probability": 0.7411 + }, + { + "start": 1002.06, + "end": 1002.6, + "probability": 0.7338 + }, + { + "start": 1003.18, + "end": 1011.06, + "probability": 0.9839 + }, + { + "start": 1011.88, + "end": 1015.2, + "probability": 0.9937 + }, + { + "start": 1015.4, + "end": 1019.82, + "probability": 0.9774 + }, + { + "start": 1020.18, + "end": 1022.06, + "probability": 0.9825 + }, + { + "start": 1022.98, + "end": 1024.38, + "probability": 0.447 + }, + { + "start": 1026.46, + "end": 1030.26, + "probability": 0.9547 + }, + { + "start": 1030.38, + "end": 1032.16, + "probability": 0.7832 + }, + { + "start": 1032.18, + "end": 1032.84, + "probability": 0.9665 + }, + { + "start": 1033.72, + "end": 1037.32, + "probability": 0.9216 + }, + { + "start": 1038.05, + "end": 1040.62, + "probability": 0.5053 + }, + { + "start": 1040.76, + "end": 1042.94, + "probability": 0.9462 + }, + { + "start": 1043.36, + "end": 1043.6, + "probability": 0.7228 + }, + { + "start": 1043.86, + "end": 1044.72, + "probability": 0.8778 + }, + { + "start": 1046.81, + "end": 1050.32, + "probability": 0.9075 + }, + { + "start": 1050.66, + "end": 1054.16, + "probability": 0.7769 + }, + { + "start": 1054.42, + "end": 1059.36, + "probability": 0.9906 + }, + { + "start": 1059.36, + "end": 1061.84, + "probability": 0.9051 + }, + { + "start": 1063.4, + "end": 1067.84, + "probability": 0.9326 + }, + { + "start": 1069.8, + "end": 1072.1, + "probability": 0.717 + }, + { + "start": 1072.88, + "end": 1074.1, + "probability": 0.7641 + }, + { + "start": 1074.44, + "end": 1075.07, + "probability": 0.8719 + }, + { + "start": 1075.38, + "end": 1080.84, + "probability": 0.9714 + }, + { + "start": 1081.26, + "end": 1085.18, + "probability": 0.8872 + }, + { + "start": 1085.92, + "end": 1088.62, + "probability": 0.9775 + }, + { + "start": 1089.44, + "end": 1092.62, + "probability": 0.9791 + }, + { + "start": 1093.34, + "end": 1095.56, + "probability": 0.9917 + }, + { + "start": 1095.66, + "end": 1096.24, + "probability": 0.7319 + }, + { + "start": 1096.36, + "end": 1097.46, + "probability": 0.9269 + }, + { + "start": 1097.86, + "end": 1099.18, + "probability": 0.8042 + }, + { + "start": 1099.26, + "end": 1100.36, + "probability": 0.9385 + }, + { + "start": 1100.58, + "end": 1102.94, + "probability": 0.995 + }, + { + "start": 1102.94, + "end": 1105.2, + "probability": 0.967 + }, + { + "start": 1105.96, + "end": 1109.56, + "probability": 0.9889 + }, + { + "start": 1110.26, + "end": 1110.66, + "probability": 0.7528 + }, + { + "start": 1111.42, + "end": 1113.66, + "probability": 0.7047 + }, + { + "start": 1113.72, + "end": 1115.1, + "probability": 0.6166 + }, + { + "start": 1115.24, + "end": 1117.0, + "probability": 0.8342 + }, + { + "start": 1117.0, + "end": 1117.36, + "probability": 0.8901 + }, + { + "start": 1118.12, + "end": 1119.64, + "probability": 0.9659 + }, + { + "start": 1120.38, + "end": 1122.96, + "probability": 0.7483 + }, + { + "start": 1124.46, + "end": 1128.06, + "probability": 0.996 + }, + { + "start": 1128.3, + "end": 1128.4, + "probability": 0.1393 + }, + { + "start": 1128.4, + "end": 1128.4, + "probability": 0.1862 + }, + { + "start": 1128.4, + "end": 1130.26, + "probability": 0.61 + }, + { + "start": 1131.42, + "end": 1135.16, + "probability": 0.8369 + }, + { + "start": 1135.46, + "end": 1138.2, + "probability": 0.7042 + }, + { + "start": 1138.74, + "end": 1140.64, + "probability": 0.98 + }, + { + "start": 1140.7, + "end": 1142.56, + "probability": 0.8052 + }, + { + "start": 1142.64, + "end": 1143.67, + "probability": 0.598 + }, + { + "start": 1145.0, + "end": 1146.34, + "probability": 0.7839 + }, + { + "start": 1146.44, + "end": 1150.1, + "probability": 0.8431 + }, + { + "start": 1150.1, + "end": 1151.32, + "probability": 0.5099 + }, + { + "start": 1151.9, + "end": 1152.79, + "probability": 0.9961 + }, + { + "start": 1154.14, + "end": 1154.7, + "probability": 0.8578 + }, + { + "start": 1155.98, + "end": 1158.04, + "probability": 0.5063 + }, + { + "start": 1159.08, + "end": 1160.48, + "probability": 0.6222 + }, + { + "start": 1160.56, + "end": 1161.41, + "probability": 0.8412 + }, + { + "start": 1161.48, + "end": 1163.1, + "probability": 0.4749 + }, + { + "start": 1164.0, + "end": 1164.77, + "probability": 0.5585 + }, + { + "start": 1165.12, + "end": 1168.28, + "probability": 0.9988 + }, + { + "start": 1168.64, + "end": 1170.16, + "probability": 0.4917 + }, + { + "start": 1170.16, + "end": 1171.86, + "probability": 0.8296 + }, + { + "start": 1171.88, + "end": 1175.5, + "probability": 0.9283 + }, + { + "start": 1175.76, + "end": 1177.74, + "probability": 0.9277 + }, + { + "start": 1178.32, + "end": 1179.0, + "probability": 0.9197 + }, + { + "start": 1179.16, + "end": 1181.66, + "probability": 0.9862 + }, + { + "start": 1181.76, + "end": 1182.3, + "probability": 0.6871 + }, + { + "start": 1182.5, + "end": 1185.54, + "probability": 0.9595 + }, + { + "start": 1185.92, + "end": 1187.66, + "probability": 0.8901 + }, + { + "start": 1187.72, + "end": 1188.65, + "probability": 0.7439 + }, + { + "start": 1190.14, + "end": 1191.7, + "probability": 0.5453 + }, + { + "start": 1191.7, + "end": 1195.58, + "probability": 0.8448 + }, + { + "start": 1195.64, + "end": 1196.2, + "probability": 0.6415 + }, + { + "start": 1196.72, + "end": 1200.9, + "probability": 0.6372 + }, + { + "start": 1201.7, + "end": 1202.5, + "probability": 0.0069 + }, + { + "start": 1203.12, + "end": 1203.98, + "probability": 0.5138 + }, + { + "start": 1204.1, + "end": 1207.18, + "probability": 0.8131 + }, + { + "start": 1207.24, + "end": 1207.56, + "probability": 0.9286 + }, + { + "start": 1208.28, + "end": 1208.72, + "probability": 0.917 + }, + { + "start": 1209.52, + "end": 1211.42, + "probability": 0.9888 + }, + { + "start": 1211.98, + "end": 1212.96, + "probability": 0.9804 + }, + { + "start": 1213.74, + "end": 1214.58, + "probability": 0.9398 + }, + { + "start": 1214.6, + "end": 1215.24, + "probability": 0.8556 + }, + { + "start": 1215.28, + "end": 1216.1, + "probability": 0.5563 + }, + { + "start": 1216.58, + "end": 1219.75, + "probability": 0.9736 + }, + { + "start": 1221.8, + "end": 1223.38, + "probability": 0.967 + }, + { + "start": 1224.0, + "end": 1224.9, + "probability": 0.8853 + }, + { + "start": 1225.02, + "end": 1226.56, + "probability": 0.8115 + }, + { + "start": 1226.66, + "end": 1227.9, + "probability": 0.9463 + }, + { + "start": 1228.14, + "end": 1229.55, + "probability": 0.8 + }, + { + "start": 1230.56, + "end": 1233.62, + "probability": 0.6274 + }, + { + "start": 1233.98, + "end": 1235.66, + "probability": 0.5085 + }, + { + "start": 1237.52, + "end": 1239.08, + "probability": 0.9582 + }, + { + "start": 1240.42, + "end": 1241.7, + "probability": 0.9158 + }, + { + "start": 1242.1, + "end": 1243.34, + "probability": 0.9845 + }, + { + "start": 1243.82, + "end": 1246.64, + "probability": 0.9741 + }, + { + "start": 1248.34, + "end": 1250.42, + "probability": 0.9089 + }, + { + "start": 1250.48, + "end": 1251.18, + "probability": 0.8784 + }, + { + "start": 1251.44, + "end": 1251.9, + "probability": 0.965 + }, + { + "start": 1252.24, + "end": 1252.7, + "probability": 0.8979 + }, + { + "start": 1253.88, + "end": 1256.44, + "probability": 0.6662 + }, + { + "start": 1257.04, + "end": 1259.89, + "probability": 0.7777 + }, + { + "start": 1260.24, + "end": 1261.32, + "probability": 0.7986 + }, + { + "start": 1261.72, + "end": 1265.22, + "probability": 0.5029 + }, + { + "start": 1265.28, + "end": 1266.34, + "probability": 0.8901 + }, + { + "start": 1267.04, + "end": 1270.48, + "probability": 0.1471 + }, + { + "start": 1270.48, + "end": 1270.48, + "probability": 0.5427 + }, + { + "start": 1270.48, + "end": 1271.84, + "probability": 0.2177 + }, + { + "start": 1272.28, + "end": 1273.04, + "probability": 0.5264 + }, + { + "start": 1273.5, + "end": 1273.96, + "probability": 0.9807 + }, + { + "start": 1274.06, + "end": 1276.84, + "probability": 0.9979 + }, + { + "start": 1277.38, + "end": 1278.68, + "probability": 0.5936 + }, + { + "start": 1278.72, + "end": 1280.2, + "probability": 0.8267 + }, + { + "start": 1280.54, + "end": 1281.84, + "probability": 0.8406 + }, + { + "start": 1282.4, + "end": 1283.28, + "probability": 0.8403 + }, + { + "start": 1283.94, + "end": 1286.56, + "probability": 0.8191 + }, + { + "start": 1286.64, + "end": 1287.4, + "probability": 0.767 + }, + { + "start": 1287.58, + "end": 1291.4, + "probability": 0.9605 + }, + { + "start": 1291.4, + "end": 1294.32, + "probability": 0.998 + }, + { + "start": 1294.84, + "end": 1296.87, + "probability": 0.8393 + }, + { + "start": 1297.38, + "end": 1300.42, + "probability": 0.7595 + }, + { + "start": 1300.84, + "end": 1302.34, + "probability": 0.9521 + }, + { + "start": 1302.64, + "end": 1304.94, + "probability": 0.998 + }, + { + "start": 1304.94, + "end": 1307.94, + "probability": 0.9993 + }, + { + "start": 1308.34, + "end": 1311.74, + "probability": 0.7749 + }, + { + "start": 1311.82, + "end": 1314.08, + "probability": 0.6735 + }, + { + "start": 1314.08, + "end": 1314.92, + "probability": 0.473 + }, + { + "start": 1315.68, + "end": 1318.14, + "probability": 0.9132 + }, + { + "start": 1318.66, + "end": 1319.71, + "probability": 0.449 + }, + { + "start": 1319.88, + "end": 1321.34, + "probability": 0.9932 + }, + { + "start": 1322.14, + "end": 1324.17, + "probability": 0.3331 + }, + { + "start": 1324.92, + "end": 1325.82, + "probability": 0.582 + }, + { + "start": 1326.54, + "end": 1329.16, + "probability": 0.7396 + }, + { + "start": 1329.24, + "end": 1330.96, + "probability": 0.9932 + }, + { + "start": 1333.46, + "end": 1335.52, + "probability": 0.7437 + }, + { + "start": 1335.94, + "end": 1337.86, + "probability": 0.9814 + }, + { + "start": 1338.3, + "end": 1342.36, + "probability": 0.9977 + }, + { + "start": 1342.36, + "end": 1346.86, + "probability": 0.9565 + }, + { + "start": 1346.92, + "end": 1347.28, + "probability": 0.8214 + }, + { + "start": 1347.56, + "end": 1347.9, + "probability": 0.5 + }, + { + "start": 1348.0, + "end": 1351.07, + "probability": 0.9692 + }, + { + "start": 1351.38, + "end": 1352.18, + "probability": 0.7458 + }, + { + "start": 1352.48, + "end": 1354.54, + "probability": 0.9865 + }, + { + "start": 1355.46, + "end": 1357.8, + "probability": 0.8536 + }, + { + "start": 1358.02, + "end": 1361.66, + "probability": 0.9879 + }, + { + "start": 1362.48, + "end": 1364.88, + "probability": 0.9932 + }, + { + "start": 1364.94, + "end": 1365.9, + "probability": 0.6997 + }, + { + "start": 1366.52, + "end": 1369.5, + "probability": 0.9137 + }, + { + "start": 1370.04, + "end": 1371.32, + "probability": 0.8608 + }, + { + "start": 1371.98, + "end": 1375.3, + "probability": 0.9057 + }, + { + "start": 1387.94, + "end": 1389.78, + "probability": 0.9399 + }, + { + "start": 1390.18, + "end": 1391.34, + "probability": 0.8492 + }, + { + "start": 1391.96, + "end": 1392.58, + "probability": 0.677 + }, + { + "start": 1392.6, + "end": 1394.22, + "probability": 0.9253 + }, + { + "start": 1394.32, + "end": 1395.07, + "probability": 0.9325 + }, + { + "start": 1395.94, + "end": 1398.68, + "probability": 0.9981 + }, + { + "start": 1399.74, + "end": 1401.11, + "probability": 0.8848 + }, + { + "start": 1402.06, + "end": 1404.8, + "probability": 0.99 + }, + { + "start": 1404.8, + "end": 1406.04, + "probability": 0.9045 + }, + { + "start": 1407.4, + "end": 1408.7, + "probability": 0.8732 + }, + { + "start": 1409.38, + "end": 1412.02, + "probability": 0.982 + }, + { + "start": 1412.54, + "end": 1415.22, + "probability": 0.8137 + }, + { + "start": 1416.0, + "end": 1417.24, + "probability": 0.9683 + }, + { + "start": 1417.76, + "end": 1421.12, + "probability": 0.9787 + }, + { + "start": 1421.58, + "end": 1422.2, + "probability": 0.9018 + }, + { + "start": 1422.34, + "end": 1425.82, + "probability": 0.9941 + }, + { + "start": 1426.28, + "end": 1427.4, + "probability": 0.7515 + }, + { + "start": 1427.74, + "end": 1431.94, + "probability": 0.9547 + }, + { + "start": 1432.14, + "end": 1432.96, + "probability": 0.9419 + }, + { + "start": 1433.28, + "end": 1434.58, + "probability": 0.9888 + }, + { + "start": 1434.68, + "end": 1435.76, + "probability": 0.9438 + }, + { + "start": 1435.8, + "end": 1436.68, + "probability": 0.7658 + }, + { + "start": 1437.34, + "end": 1441.22, + "probability": 0.8533 + }, + { + "start": 1441.94, + "end": 1444.1, + "probability": 0.9927 + }, + { + "start": 1444.24, + "end": 1446.18, + "probability": 0.9448 + }, + { + "start": 1448.2, + "end": 1449.23, + "probability": 0.9883 + }, + { + "start": 1450.14, + "end": 1451.26, + "probability": 0.9419 + }, + { + "start": 1451.34, + "end": 1451.81, + "probability": 0.938 + }, + { + "start": 1452.06, + "end": 1456.74, + "probability": 0.9862 + }, + { + "start": 1457.82, + "end": 1458.64, + "probability": 0.9842 + }, + { + "start": 1459.22, + "end": 1461.32, + "probability": 0.9948 + }, + { + "start": 1461.86, + "end": 1465.68, + "probability": 0.9168 + }, + { + "start": 1465.82, + "end": 1466.16, + "probability": 0.4013 + }, + { + "start": 1466.24, + "end": 1466.64, + "probability": 0.8503 + }, + { + "start": 1466.8, + "end": 1468.2, + "probability": 0.7515 + }, + { + "start": 1468.86, + "end": 1470.96, + "probability": 0.9992 + }, + { + "start": 1471.58, + "end": 1473.36, + "probability": 0.998 + }, + { + "start": 1473.48, + "end": 1474.96, + "probability": 0.88 + }, + { + "start": 1475.36, + "end": 1476.48, + "probability": 0.9846 + }, + { + "start": 1476.72, + "end": 1477.36, + "probability": 0.9543 + }, + { + "start": 1477.98, + "end": 1479.0, + "probability": 0.9612 + }, + { + "start": 1479.1, + "end": 1480.66, + "probability": 0.9535 + }, + { + "start": 1481.2, + "end": 1483.4, + "probability": 0.6562 + }, + { + "start": 1483.64, + "end": 1484.98, + "probability": 0.9815 + }, + { + "start": 1485.82, + "end": 1490.04, + "probability": 0.9907 + }, + { + "start": 1490.62, + "end": 1493.3, + "probability": 0.8278 + }, + { + "start": 1493.36, + "end": 1493.92, + "probability": 0.8446 + }, + { + "start": 1494.42, + "end": 1498.0, + "probability": 0.9143 + }, + { + "start": 1498.76, + "end": 1500.8, + "probability": 0.8506 + }, + { + "start": 1502.26, + "end": 1503.0, + "probability": 0.9326 + }, + { + "start": 1504.04, + "end": 1505.66, + "probability": 0.9537 + }, + { + "start": 1506.22, + "end": 1509.94, + "probability": 0.948 + }, + { + "start": 1510.96, + "end": 1513.36, + "probability": 0.9934 + }, + { + "start": 1513.58, + "end": 1514.2, + "probability": 0.6879 + }, + { + "start": 1514.32, + "end": 1515.48, + "probability": 0.8872 + }, + { + "start": 1516.9, + "end": 1521.28, + "probability": 0.9279 + }, + { + "start": 1523.88, + "end": 1527.52, + "probability": 0.9698 + }, + { + "start": 1527.52, + "end": 1531.06, + "probability": 0.7867 + }, + { + "start": 1531.8, + "end": 1534.44, + "probability": 0.8478 + }, + { + "start": 1534.8, + "end": 1534.98, + "probability": 0.1988 + }, + { + "start": 1537.24, + "end": 1537.96, + "probability": 0.9099 + }, + { + "start": 1538.04, + "end": 1539.76, + "probability": 0.9718 + }, + { + "start": 1539.84, + "end": 1541.08, + "probability": 0.8797 + }, + { + "start": 1541.72, + "end": 1543.7, + "probability": 0.9947 + }, + { + "start": 1543.8, + "end": 1544.56, + "probability": 0.8765 + }, + { + "start": 1544.72, + "end": 1545.2, + "probability": 0.5056 + }, + { + "start": 1545.38, + "end": 1548.38, + "probability": 0.9675 + }, + { + "start": 1548.52, + "end": 1550.44, + "probability": 0.8919 + }, + { + "start": 1551.86, + "end": 1552.96, + "probability": 0.9116 + }, + { + "start": 1553.06, + "end": 1555.18, + "probability": 0.9897 + }, + { + "start": 1556.18, + "end": 1557.68, + "probability": 0.8838 + }, + { + "start": 1557.92, + "end": 1561.14, + "probability": 0.9987 + }, + { + "start": 1562.16, + "end": 1562.72, + "probability": 0.8714 + }, + { + "start": 1563.52, + "end": 1565.0, + "probability": 0.9817 + }, + { + "start": 1565.34, + "end": 1566.66, + "probability": 0.9971 + }, + { + "start": 1566.72, + "end": 1567.44, + "probability": 0.6649 + }, + { + "start": 1567.68, + "end": 1570.72, + "probability": 0.9539 + }, + { + "start": 1571.18, + "end": 1572.66, + "probability": 0.9774 + }, + { + "start": 1572.88, + "end": 1573.68, + "probability": 0.9531 + }, + { + "start": 1573.8, + "end": 1573.96, + "probability": 0.9588 + }, + { + "start": 1574.02, + "end": 1574.78, + "probability": 0.8576 + }, + { + "start": 1574.94, + "end": 1576.3, + "probability": 0.8169 + }, + { + "start": 1578.32, + "end": 1582.5, + "probability": 0.9087 + }, + { + "start": 1583.0, + "end": 1584.4, + "probability": 0.7579 + }, + { + "start": 1585.28, + "end": 1587.0, + "probability": 0.979 + }, + { + "start": 1587.4, + "end": 1589.58, + "probability": 0.9822 + }, + { + "start": 1590.12, + "end": 1590.96, + "probability": 0.9724 + }, + { + "start": 1591.5, + "end": 1592.46, + "probability": 0.5092 + }, + { + "start": 1592.64, + "end": 1593.54, + "probability": 0.9816 + }, + { + "start": 1594.06, + "end": 1598.86, + "probability": 0.9884 + }, + { + "start": 1599.46, + "end": 1600.04, + "probability": 0.7837 + }, + { + "start": 1600.4, + "end": 1601.28, + "probability": 0.8955 + }, + { + "start": 1601.34, + "end": 1604.22, + "probability": 0.992 + }, + { + "start": 1604.72, + "end": 1605.6, + "probability": 0.9889 + }, + { + "start": 1606.0, + "end": 1606.76, + "probability": 0.7455 + }, + { + "start": 1607.6, + "end": 1608.66, + "probability": 0.8126 + }, + { + "start": 1609.0, + "end": 1610.4, + "probability": 0.5171 + }, + { + "start": 1610.52, + "end": 1611.08, + "probability": 0.6004 + }, + { + "start": 1611.54, + "end": 1615.34, + "probability": 0.9877 + }, + { + "start": 1615.68, + "end": 1617.14, + "probability": 0.9788 + }, + { + "start": 1617.5, + "end": 1618.28, + "probability": 0.9448 + }, + { + "start": 1618.52, + "end": 1619.94, + "probability": 0.9553 + }, + { + "start": 1620.22, + "end": 1621.1, + "probability": 0.9434 + }, + { + "start": 1621.42, + "end": 1623.22, + "probability": 0.988 + }, + { + "start": 1623.58, + "end": 1625.18, + "probability": 0.981 + }, + { + "start": 1625.24, + "end": 1626.2, + "probability": 0.9771 + }, + { + "start": 1626.58, + "end": 1630.18, + "probability": 0.9976 + }, + { + "start": 1630.18, + "end": 1633.62, + "probability": 0.9956 + }, + { + "start": 1634.3, + "end": 1636.15, + "probability": 0.9189 + }, + { + "start": 1637.32, + "end": 1637.68, + "probability": 0.9138 + }, + { + "start": 1638.3, + "end": 1638.5, + "probability": 0.6327 + }, + { + "start": 1638.88, + "end": 1639.38, + "probability": 0.6202 + }, + { + "start": 1639.56, + "end": 1641.5, + "probability": 0.8615 + }, + { + "start": 1669.4, + "end": 1672.02, + "probability": 0.8037 + }, + { + "start": 1673.1, + "end": 1674.06, + "probability": 0.7955 + }, + { + "start": 1674.14, + "end": 1675.3, + "probability": 0.8801 + }, + { + "start": 1675.42, + "end": 1679.8, + "probability": 0.9893 + }, + { + "start": 1680.64, + "end": 1682.58, + "probability": 0.9623 + }, + { + "start": 1682.84, + "end": 1685.56, + "probability": 0.9886 + }, + { + "start": 1685.72, + "end": 1689.52, + "probability": 0.9702 + }, + { + "start": 1690.26, + "end": 1692.94, + "probability": 0.9692 + }, + { + "start": 1693.02, + "end": 1694.62, + "probability": 0.8138 + }, + { + "start": 1695.22, + "end": 1698.18, + "probability": 0.9669 + }, + { + "start": 1698.18, + "end": 1701.38, + "probability": 0.9771 + }, + { + "start": 1702.2, + "end": 1704.27, + "probability": 0.588 + }, + { + "start": 1705.72, + "end": 1707.24, + "probability": 0.9943 + }, + { + "start": 1707.88, + "end": 1708.86, + "probability": 0.7772 + }, + { + "start": 1709.2, + "end": 1713.86, + "probability": 0.8853 + }, + { + "start": 1714.34, + "end": 1717.32, + "probability": 0.9961 + }, + { + "start": 1717.32, + "end": 1720.28, + "probability": 0.9263 + }, + { + "start": 1721.0, + "end": 1723.18, + "probability": 0.6604 + }, + { + "start": 1723.8, + "end": 1727.58, + "probability": 0.9722 + }, + { + "start": 1728.36, + "end": 1728.6, + "probability": 0.9189 + }, + { + "start": 1728.7, + "end": 1730.16, + "probability": 0.9179 + }, + { + "start": 1730.24, + "end": 1734.24, + "probability": 0.9948 + }, + { + "start": 1734.24, + "end": 1740.3, + "probability": 0.9963 + }, + { + "start": 1740.78, + "end": 1745.26, + "probability": 0.9976 + }, + { + "start": 1745.38, + "end": 1747.48, + "probability": 0.9897 + }, + { + "start": 1747.96, + "end": 1748.62, + "probability": 0.7953 + }, + { + "start": 1748.92, + "end": 1749.99, + "probability": 0.7647 + }, + { + "start": 1750.02, + "end": 1752.72, + "probability": 0.9874 + }, + { + "start": 1753.7, + "end": 1755.3, + "probability": 0.9639 + }, + { + "start": 1755.46, + "end": 1756.28, + "probability": 0.799 + }, + { + "start": 1756.4, + "end": 1761.02, + "probability": 0.9922 + }, + { + "start": 1761.6, + "end": 1766.12, + "probability": 0.9967 + }, + { + "start": 1766.68, + "end": 1768.14, + "probability": 0.9922 + }, + { + "start": 1768.34, + "end": 1770.68, + "probability": 0.9627 + }, + { + "start": 1770.68, + "end": 1773.56, + "probability": 0.9603 + }, + { + "start": 1774.04, + "end": 1775.92, + "probability": 0.9985 + }, + { + "start": 1776.46, + "end": 1780.58, + "probability": 0.9974 + }, + { + "start": 1781.02, + "end": 1784.9, + "probability": 0.9936 + }, + { + "start": 1785.18, + "end": 1785.96, + "probability": 0.5119 + }, + { + "start": 1786.2, + "end": 1787.7, + "probability": 0.9867 + }, + { + "start": 1787.8, + "end": 1791.1, + "probability": 0.996 + }, + { + "start": 1791.1, + "end": 1794.92, + "probability": 0.9995 + }, + { + "start": 1795.44, + "end": 1796.98, + "probability": 0.939 + }, + { + "start": 1797.24, + "end": 1800.5, + "probability": 0.9882 + }, + { + "start": 1800.56, + "end": 1803.62, + "probability": 0.9784 + }, + { + "start": 1804.26, + "end": 1807.66, + "probability": 0.6674 + }, + { + "start": 1807.98, + "end": 1811.84, + "probability": 0.9916 + }, + { + "start": 1812.66, + "end": 1817.53, + "probability": 0.9559 + }, + { + "start": 1817.56, + "end": 1820.7, + "probability": 0.9884 + }, + { + "start": 1820.78, + "end": 1823.62, + "probability": 0.9907 + }, + { + "start": 1824.08, + "end": 1825.4, + "probability": 0.8876 + }, + { + "start": 1825.84, + "end": 1829.68, + "probability": 0.9756 + }, + { + "start": 1829.74, + "end": 1832.0, + "probability": 0.8733 + }, + { + "start": 1832.58, + "end": 1834.66, + "probability": 0.9874 + }, + { + "start": 1834.8, + "end": 1835.92, + "probability": 0.979 + }, + { + "start": 1836.02, + "end": 1838.78, + "probability": 0.9365 + }, + { + "start": 1838.78, + "end": 1842.0, + "probability": 0.9834 + }, + { + "start": 1842.42, + "end": 1844.22, + "probability": 0.9641 + }, + { + "start": 1844.7, + "end": 1847.18, + "probability": 0.8877 + }, + { + "start": 1847.18, + "end": 1849.84, + "probability": 0.9934 + }, + { + "start": 1850.32, + "end": 1852.74, + "probability": 0.901 + }, + { + "start": 1852.74, + "end": 1855.34, + "probability": 0.9956 + }, + { + "start": 1855.84, + "end": 1859.52, + "probability": 0.9909 + }, + { + "start": 1860.64, + "end": 1863.16, + "probability": 0.9588 + }, + { + "start": 1863.24, + "end": 1866.74, + "probability": 0.9938 + }, + { + "start": 1868.86, + "end": 1871.44, + "probability": 0.9927 + }, + { + "start": 1871.44, + "end": 1874.58, + "probability": 0.9854 + }, + { + "start": 1875.12, + "end": 1878.5, + "probability": 0.9967 + }, + { + "start": 1878.5, + "end": 1882.22, + "probability": 0.9979 + }, + { + "start": 1882.9, + "end": 1885.42, + "probability": 0.9986 + }, + { + "start": 1885.54, + "end": 1888.62, + "probability": 0.9963 + }, + { + "start": 1888.62, + "end": 1893.2, + "probability": 0.9977 + }, + { + "start": 1893.64, + "end": 1894.0, + "probability": 0.5829 + }, + { + "start": 1894.12, + "end": 1894.52, + "probability": 0.8097 + }, + { + "start": 1894.56, + "end": 1896.38, + "probability": 0.9924 + }, + { + "start": 1900.26, + "end": 1901.3, + "probability": 0.7544 + }, + { + "start": 1902.58, + "end": 1905.36, + "probability": 0.9979 + }, + { + "start": 1905.5, + "end": 1906.72, + "probability": 0.982 + }, + { + "start": 1906.88, + "end": 1910.6, + "probability": 0.9967 + }, + { + "start": 1911.06, + "end": 1915.08, + "probability": 0.9531 + }, + { + "start": 1915.2, + "end": 1915.8, + "probability": 0.7549 + }, + { + "start": 1916.62, + "end": 1918.5, + "probability": 0.8271 + }, + { + "start": 1918.54, + "end": 1922.1, + "probability": 0.9678 + }, + { + "start": 1922.14, + "end": 1922.88, + "probability": 0.5878 + }, + { + "start": 1923.98, + "end": 1924.54, + "probability": 0.8615 + }, + { + "start": 1924.62, + "end": 1926.52, + "probability": 0.9768 + }, + { + "start": 1947.86, + "end": 1949.3, + "probability": 0.7705 + }, + { + "start": 1950.36, + "end": 1953.34, + "probability": 0.8656 + }, + { + "start": 1954.16, + "end": 1956.34, + "probability": 0.9233 + }, + { + "start": 1957.56, + "end": 1963.5, + "probability": 0.9901 + }, + { + "start": 1963.58, + "end": 1964.7, + "probability": 0.9198 + }, + { + "start": 1965.4, + "end": 1967.44, + "probability": 0.9533 + }, + { + "start": 1968.42, + "end": 1969.7, + "probability": 0.7803 + }, + { + "start": 1970.44, + "end": 1971.74, + "probability": 0.9597 + }, + { + "start": 1972.38, + "end": 1974.14, + "probability": 0.9436 + }, + { + "start": 1974.82, + "end": 1977.2, + "probability": 0.9388 + }, + { + "start": 1977.84, + "end": 1981.32, + "probability": 0.9822 + }, + { + "start": 1981.38, + "end": 1987.48, + "probability": 0.9456 + }, + { + "start": 1987.68, + "end": 1989.45, + "probability": 0.9748 + }, + { + "start": 1990.46, + "end": 1992.16, + "probability": 0.9911 + }, + { + "start": 1992.32, + "end": 1993.82, + "probability": 0.9971 + }, + { + "start": 1995.06, + "end": 2000.14, + "probability": 0.9693 + }, + { + "start": 2000.42, + "end": 2000.96, + "probability": 0.9291 + }, + { + "start": 2001.08, + "end": 2003.8, + "probability": 0.9925 + }, + { + "start": 2004.46, + "end": 2006.79, + "probability": 0.7591 + }, + { + "start": 2007.12, + "end": 2008.42, + "probability": 0.7575 + }, + { + "start": 2010.02, + "end": 2014.04, + "probability": 0.9862 + }, + { + "start": 2015.04, + "end": 2018.06, + "probability": 0.9975 + }, + { + "start": 2018.14, + "end": 2019.34, + "probability": 0.9468 + }, + { + "start": 2019.78, + "end": 2022.24, + "probability": 0.9823 + }, + { + "start": 2022.68, + "end": 2023.98, + "probability": 0.9012 + }, + { + "start": 2024.7, + "end": 2027.28, + "probability": 0.998 + }, + { + "start": 2027.88, + "end": 2029.84, + "probability": 0.9937 + }, + { + "start": 2030.68, + "end": 2032.84, + "probability": 0.8333 + }, + { + "start": 2033.28, + "end": 2033.5, + "probability": 0.7131 + }, + { + "start": 2034.44, + "end": 2035.06, + "probability": 0.7509 + }, + { + "start": 2035.12, + "end": 2036.1, + "probability": 0.9696 + }, + { + "start": 2036.2, + "end": 2038.5, + "probability": 0.958 + }, + { + "start": 2039.1, + "end": 2039.82, + "probability": 0.628 + }, + { + "start": 2040.44, + "end": 2040.44, + "probability": 0.4297 + }, + { + "start": 2040.44, + "end": 2042.52, + "probability": 0.6534 + }, + { + "start": 2042.72, + "end": 2043.72, + "probability": 0.5644 + }, + { + "start": 2044.92, + "end": 2050.86, + "probability": 0.7704 + }, + { + "start": 2059.6, + "end": 2059.68, + "probability": 0.4632 + }, + { + "start": 2059.68, + "end": 2059.76, + "probability": 0.0593 + }, + { + "start": 2059.76, + "end": 2059.88, + "probability": 0.2275 + }, + { + "start": 2059.88, + "end": 2059.88, + "probability": 0.0663 + }, + { + "start": 2059.88, + "end": 2059.96, + "probability": 0.0515 + }, + { + "start": 2085.72, + "end": 2087.5, + "probability": 0.8479 + }, + { + "start": 2088.3, + "end": 2089.34, + "probability": 0.9985 + }, + { + "start": 2090.5, + "end": 2094.0, + "probability": 0.9737 + }, + { + "start": 2095.7, + "end": 2100.02, + "probability": 0.9004 + }, + { + "start": 2100.92, + "end": 2102.84, + "probability": 0.973 + }, + { + "start": 2103.48, + "end": 2105.3, + "probability": 0.9906 + }, + { + "start": 2106.14, + "end": 2111.18, + "probability": 0.994 + }, + { + "start": 2112.1, + "end": 2115.26, + "probability": 0.9604 + }, + { + "start": 2115.96, + "end": 2116.62, + "probability": 0.5814 + }, + { + "start": 2118.18, + "end": 2121.18, + "probability": 0.8638 + }, + { + "start": 2121.34, + "end": 2123.54, + "probability": 0.8202 + }, + { + "start": 2124.46, + "end": 2127.52, + "probability": 0.9866 + }, + { + "start": 2129.1, + "end": 2130.06, + "probability": 0.3621 + }, + { + "start": 2130.18, + "end": 2133.07, + "probability": 0.97 + }, + { + "start": 2134.04, + "end": 2138.04, + "probability": 0.936 + }, + { + "start": 2138.72, + "end": 2147.22, + "probability": 0.9661 + }, + { + "start": 2148.92, + "end": 2150.16, + "probability": 0.9793 + }, + { + "start": 2153.28, + "end": 2158.18, + "probability": 0.6684 + }, + { + "start": 2159.84, + "end": 2163.58, + "probability": 0.9916 + }, + { + "start": 2164.6, + "end": 2167.16, + "probability": 0.9326 + }, + { + "start": 2168.82, + "end": 2171.44, + "probability": 0.0475 + }, + { + "start": 2171.8, + "end": 2175.06, + "probability": 0.9984 + }, + { + "start": 2175.06, + "end": 2175.5, + "probability": 0.2899 + }, + { + "start": 2176.0, + "end": 2177.12, + "probability": 0.5794 + }, + { + "start": 2178.06, + "end": 2181.42, + "probability": 0.8934 + }, + { + "start": 2181.5, + "end": 2182.54, + "probability": 0.7386 + }, + { + "start": 2182.74, + "end": 2187.2, + "probability": 0.9943 + }, + { + "start": 2187.82, + "end": 2192.3, + "probability": 0.9862 + }, + { + "start": 2192.74, + "end": 2193.2, + "probability": 0.8103 + }, + { + "start": 2193.38, + "end": 2194.96, + "probability": 0.7523 + }, + { + "start": 2195.92, + "end": 2197.68, + "probability": 0.9897 + }, + { + "start": 2200.8, + "end": 2204.3, + "probability": 0.8901 + }, + { + "start": 2205.16, + "end": 2206.18, + "probability": 0.6629 + }, + { + "start": 2206.26, + "end": 2206.96, + "probability": 0.9685 + }, + { + "start": 2207.06, + "end": 2208.12, + "probability": 0.9635 + }, + { + "start": 2208.96, + "end": 2214.96, + "probability": 0.9785 + }, + { + "start": 2215.78, + "end": 2216.68, + "probability": 0.5047 + }, + { + "start": 2217.48, + "end": 2220.96, + "probability": 0.9962 + }, + { + "start": 2222.62, + "end": 2223.34, + "probability": 0.7314 + }, + { + "start": 2223.64, + "end": 2226.0, + "probability": 0.9771 + }, + { + "start": 2226.12, + "end": 2227.82, + "probability": 0.9918 + }, + { + "start": 2228.3, + "end": 2230.12, + "probability": 0.9969 + }, + { + "start": 2230.2, + "end": 2230.83, + "probability": 0.8882 + }, + { + "start": 2231.72, + "end": 2235.63, + "probability": 0.7686 + }, + { + "start": 2236.34, + "end": 2238.92, + "probability": 0.7522 + }, + { + "start": 2239.72, + "end": 2243.41, + "probability": 0.9897 + }, + { + "start": 2245.14, + "end": 2246.78, + "probability": 0.9827 + }, + { + "start": 2247.1, + "end": 2247.54, + "probability": 0.7017 + }, + { + "start": 2249.52, + "end": 2249.84, + "probability": 0.4909 + }, + { + "start": 2249.84, + "end": 2249.84, + "probability": 0.5804 + }, + { + "start": 2249.84, + "end": 2253.22, + "probability": 0.7727 + }, + { + "start": 2254.38, + "end": 2258.7, + "probability": 0.7756 + }, + { + "start": 2267.48, + "end": 2268.92, + "probability": 0.7734 + }, + { + "start": 2269.5, + "end": 2270.58, + "probability": 0.6912 + }, + { + "start": 2271.12, + "end": 2272.54, + "probability": 0.9536 + }, + { + "start": 2274.48, + "end": 2278.9, + "probability": 0.9706 + }, + { + "start": 2279.56, + "end": 2283.7, + "probability": 0.9597 + }, + { + "start": 2285.66, + "end": 2287.72, + "probability": 0.7325 + }, + { + "start": 2287.9, + "end": 2289.04, + "probability": 0.9812 + }, + { + "start": 2289.94, + "end": 2293.68, + "probability": 0.9985 + }, + { + "start": 2295.16, + "end": 2299.04, + "probability": 0.9479 + }, + { + "start": 2299.7, + "end": 2304.42, + "probability": 0.9959 + }, + { + "start": 2305.26, + "end": 2308.32, + "probability": 0.9951 + }, + { + "start": 2309.12, + "end": 2311.44, + "probability": 0.9796 + }, + { + "start": 2312.98, + "end": 2316.72, + "probability": 0.9956 + }, + { + "start": 2316.76, + "end": 2321.6, + "probability": 0.9196 + }, + { + "start": 2322.94, + "end": 2330.3, + "probability": 0.9781 + }, + { + "start": 2330.44, + "end": 2330.8, + "probability": 0.8273 + }, + { + "start": 2331.97, + "end": 2334.62, + "probability": 0.9922 + }, + { + "start": 2334.78, + "end": 2336.54, + "probability": 0.8829 + }, + { + "start": 2337.1, + "end": 2340.08, + "probability": 0.8398 + }, + { + "start": 2340.16, + "end": 2340.96, + "probability": 0.2852 + }, + { + "start": 2341.04, + "end": 2341.85, + "probability": 0.1285 + }, + { + "start": 2342.38, + "end": 2343.26, + "probability": 0.5009 + }, + { + "start": 2345.82, + "end": 2348.24, + "probability": 0.8461 + }, + { + "start": 2348.6, + "end": 2350.94, + "probability": 0.911 + }, + { + "start": 2351.22, + "end": 2354.12, + "probability": 0.9337 + }, + { + "start": 2354.93, + "end": 2358.46, + "probability": 0.8306 + }, + { + "start": 2358.54, + "end": 2362.58, + "probability": 0.998 + }, + { + "start": 2363.54, + "end": 2367.84, + "probability": 0.9692 + }, + { + "start": 2367.9, + "end": 2372.52, + "probability": 0.8643 + }, + { + "start": 2372.6, + "end": 2372.86, + "probability": 0.5774 + }, + { + "start": 2372.98, + "end": 2376.68, + "probability": 0.9812 + }, + { + "start": 2377.06, + "end": 2378.68, + "probability": 0.7728 + }, + { + "start": 2379.28, + "end": 2380.06, + "probability": 0.9231 + }, + { + "start": 2380.42, + "end": 2383.86, + "probability": 0.977 + }, + { + "start": 2384.58, + "end": 2389.22, + "probability": 0.9943 + }, + { + "start": 2389.28, + "end": 2392.32, + "probability": 0.9894 + }, + { + "start": 2393.98, + "end": 2396.0, + "probability": 0.9952 + }, + { + "start": 2396.26, + "end": 2397.24, + "probability": 0.8659 + }, + { + "start": 2397.28, + "end": 2399.98, + "probability": 0.9983 + }, + { + "start": 2399.98, + "end": 2404.54, + "probability": 0.9932 + }, + { + "start": 2406.8, + "end": 2407.06, + "probability": 0.8322 + }, + { + "start": 2407.34, + "end": 2407.88, + "probability": 0.6368 + }, + { + "start": 2408.02, + "end": 2409.96, + "probability": 0.9959 + }, + { + "start": 2410.28, + "end": 2411.76, + "probability": 0.993 + }, + { + "start": 2412.18, + "end": 2415.61, + "probability": 0.9813 + }, + { + "start": 2417.0, + "end": 2418.02, + "probability": 0.7129 + }, + { + "start": 2418.68, + "end": 2418.94, + "probability": 0.7119 + }, + { + "start": 2419.04, + "end": 2421.18, + "probability": 0.9922 + }, + { + "start": 2421.28, + "end": 2422.52, + "probability": 0.8712 + }, + { + "start": 2423.48, + "end": 2429.02, + "probability": 0.9889 + }, + { + "start": 2429.18, + "end": 2431.96, + "probability": 0.7139 + }, + { + "start": 2432.82, + "end": 2435.32, + "probability": 0.9943 + }, + { + "start": 2435.92, + "end": 2436.94, + "probability": 0.9914 + }, + { + "start": 2437.94, + "end": 2439.26, + "probability": 0.6366 + }, + { + "start": 2439.62, + "end": 2440.06, + "probability": 0.737 + }, + { + "start": 2440.1, + "end": 2442.88, + "probability": 0.9309 + }, + { + "start": 2442.92, + "end": 2444.54, + "probability": 0.9807 + }, + { + "start": 2445.66, + "end": 2450.73, + "probability": 0.9671 + }, + { + "start": 2451.98, + "end": 2452.0, + "probability": 0.0166 + }, + { + "start": 2452.0, + "end": 2454.36, + "probability": 0.9565 + }, + { + "start": 2454.54, + "end": 2456.69, + "probability": 0.7405 + }, + { + "start": 2457.56, + "end": 2459.78, + "probability": 0.9174 + }, + { + "start": 2460.14, + "end": 2462.68, + "probability": 0.9725 + }, + { + "start": 2463.62, + "end": 2465.08, + "probability": 0.9697 + }, + { + "start": 2465.12, + "end": 2467.36, + "probability": 0.9921 + }, + { + "start": 2467.5, + "end": 2469.52, + "probability": 0.9902 + }, + { + "start": 2469.58, + "end": 2471.42, + "probability": 0.8342 + }, + { + "start": 2472.24, + "end": 2474.58, + "probability": 0.9941 + }, + { + "start": 2475.44, + "end": 2477.98, + "probability": 0.8979 + }, + { + "start": 2478.14, + "end": 2479.4, + "probability": 0.9048 + }, + { + "start": 2479.64, + "end": 2480.58, + "probability": 0.9976 + }, + { + "start": 2481.16, + "end": 2483.2, + "probability": 0.9877 + }, + { + "start": 2483.28, + "end": 2486.66, + "probability": 0.9917 + }, + { + "start": 2486.72, + "end": 2488.26, + "probability": 0.9954 + }, + { + "start": 2489.1, + "end": 2491.02, + "probability": 0.9873 + }, + { + "start": 2491.74, + "end": 2494.68, + "probability": 0.3221 + }, + { + "start": 2495.26, + "end": 2495.72, + "probability": 0.409 + }, + { + "start": 2495.82, + "end": 2496.22, + "probability": 0.6054 + }, + { + "start": 2496.86, + "end": 2497.0, + "probability": 0.5751 + }, + { + "start": 2504.76, + "end": 2507.12, + "probability": 0.8484 + }, + { + "start": 2507.94, + "end": 2510.0, + "probability": 0.7238 + }, + { + "start": 2510.78, + "end": 2512.46, + "probability": 0.9952 + }, + { + "start": 2512.66, + "end": 2514.34, + "probability": 0.9682 + }, + { + "start": 2514.38, + "end": 2519.0, + "probability": 0.9412 + }, + { + "start": 2519.7, + "end": 2521.08, + "probability": 0.9937 + }, + { + "start": 2521.76, + "end": 2524.0, + "probability": 0.9932 + }, + { + "start": 2524.1, + "end": 2524.68, + "probability": 0.6611 + }, + { + "start": 2525.12, + "end": 2526.24, + "probability": 0.876 + }, + { + "start": 2526.92, + "end": 2528.84, + "probability": 0.978 + }, + { + "start": 2529.04, + "end": 2531.34, + "probability": 0.904 + }, + { + "start": 2531.62, + "end": 2533.12, + "probability": 0.8944 + }, + { + "start": 2533.2, + "end": 2535.52, + "probability": 0.8922 + }, + { + "start": 2535.62, + "end": 2536.84, + "probability": 0.8165 + }, + { + "start": 2536.94, + "end": 2537.4, + "probability": 0.7597 + }, + { + "start": 2537.48, + "end": 2537.62, + "probability": 0.7046 + }, + { + "start": 2538.18, + "end": 2538.86, + "probability": 0.9635 + }, + { + "start": 2539.12, + "end": 2541.98, + "probability": 0.9728 + }, + { + "start": 2542.24, + "end": 2543.26, + "probability": 0.7504 + }, + { + "start": 2543.62, + "end": 2544.8, + "probability": 0.9073 + }, + { + "start": 2545.12, + "end": 2545.82, + "probability": 0.9737 + }, + { + "start": 2546.24, + "end": 2547.24, + "probability": 0.9082 + }, + { + "start": 2547.56, + "end": 2549.16, + "probability": 0.9792 + }, + { + "start": 2549.36, + "end": 2550.3, + "probability": 0.8237 + }, + { + "start": 2550.84, + "end": 2553.64, + "probability": 0.9811 + }, + { + "start": 2553.84, + "end": 2554.12, + "probability": 0.9376 + }, + { + "start": 2554.18, + "end": 2555.29, + "probability": 0.5182 + }, + { + "start": 2555.44, + "end": 2556.14, + "probability": 0.9481 + }, + { + "start": 2556.22, + "end": 2557.14, + "probability": 0.8922 + }, + { + "start": 2557.3, + "end": 2557.38, + "probability": 0.1583 + }, + { + "start": 2557.38, + "end": 2560.94, + "probability": 0.8568 + }, + { + "start": 2560.98, + "end": 2562.0, + "probability": 0.5572 + }, + { + "start": 2562.44, + "end": 2563.58, + "probability": 0.965 + }, + { + "start": 2563.6, + "end": 2564.9, + "probability": 0.9932 + }, + { + "start": 2564.94, + "end": 2565.3, + "probability": 0.5892 + }, + { + "start": 2565.42, + "end": 2567.86, + "probability": 0.8001 + }, + { + "start": 2567.86, + "end": 2568.58, + "probability": 0.6728 + }, + { + "start": 2568.68, + "end": 2569.28, + "probability": 0.7771 + }, + { + "start": 2569.34, + "end": 2570.7, + "probability": 0.7205 + }, + { + "start": 2570.74, + "end": 2573.52, + "probability": 0.9639 + }, + { + "start": 2573.52, + "end": 2574.8, + "probability": 0.8867 + }, + { + "start": 2575.22, + "end": 2576.64, + "probability": 0.964 + }, + { + "start": 2576.74, + "end": 2577.6, + "probability": 0.809 + }, + { + "start": 2577.92, + "end": 2579.12, + "probability": 0.8895 + }, + { + "start": 2579.2, + "end": 2580.56, + "probability": 0.9545 + }, + { + "start": 2581.12, + "end": 2583.62, + "probability": 0.9839 + }, + { + "start": 2583.62, + "end": 2586.12, + "probability": 0.9819 + }, + { + "start": 2586.92, + "end": 2590.34, + "probability": 0.8404 + }, + { + "start": 2593.62, + "end": 2595.62, + "probability": 0.5078 + }, + { + "start": 2604.34, + "end": 2604.8, + "probability": 0.0411 + }, + { + "start": 2604.8, + "end": 2607.22, + "probability": 0.7303 + }, + { + "start": 2607.3, + "end": 2609.88, + "probability": 0.8942 + }, + { + "start": 2610.4, + "end": 2615.64, + "probability": 0.7431 + }, + { + "start": 2616.32, + "end": 2618.36, + "probability": 0.8535 + }, + { + "start": 2619.08, + "end": 2621.92, + "probability": 0.9912 + }, + { + "start": 2622.46, + "end": 2625.48, + "probability": 0.9044 + }, + { + "start": 2626.14, + "end": 2628.62, + "probability": 0.9449 + }, + { + "start": 2637.44, + "end": 2639.44, + "probability": 0.8457 + }, + { + "start": 2640.28, + "end": 2641.12, + "probability": 0.782 + }, + { + "start": 2641.28, + "end": 2642.82, + "probability": 0.7479 + }, + { + "start": 2643.16, + "end": 2644.24, + "probability": 0.7939 + }, + { + "start": 2644.36, + "end": 2646.96, + "probability": 0.9967 + }, + { + "start": 2647.36, + "end": 2650.72, + "probability": 0.9164 + }, + { + "start": 2651.74, + "end": 2658.72, + "probability": 0.9932 + }, + { + "start": 2659.36, + "end": 2661.7, + "probability": 0.8074 + }, + { + "start": 2662.75, + "end": 2667.0, + "probability": 0.9402 + }, + { + "start": 2668.78, + "end": 2671.82, + "probability": 0.9395 + }, + { + "start": 2671.82, + "end": 2676.32, + "probability": 0.6384 + }, + { + "start": 2677.28, + "end": 2679.64, + "probability": 0.8815 + }, + { + "start": 2679.76, + "end": 2683.48, + "probability": 0.916 + }, + { + "start": 2683.94, + "end": 2686.06, + "probability": 0.9448 + }, + { + "start": 2687.28, + "end": 2691.22, + "probability": 0.989 + }, + { + "start": 2691.22, + "end": 2695.22, + "probability": 0.9714 + }, + { + "start": 2695.34, + "end": 2697.8, + "probability": 0.9916 + }, + { + "start": 2698.22, + "end": 2700.86, + "probability": 0.7183 + }, + { + "start": 2701.84, + "end": 2705.8, + "probability": 0.9886 + }, + { + "start": 2706.54, + "end": 2710.8, + "probability": 0.9795 + }, + { + "start": 2711.66, + "end": 2712.4, + "probability": 0.6272 + }, + { + "start": 2712.96, + "end": 2718.34, + "probability": 0.9587 + }, + { + "start": 2719.32, + "end": 2723.32, + "probability": 0.9979 + }, + { + "start": 2723.74, + "end": 2724.1, + "probability": 0.7456 + }, + { + "start": 2724.18, + "end": 2727.24, + "probability": 0.9721 + }, + { + "start": 2727.24, + "end": 2730.88, + "probability": 0.9842 + }, + { + "start": 2731.32, + "end": 2735.86, + "probability": 0.976 + }, + { + "start": 2736.76, + "end": 2741.94, + "probability": 0.9933 + }, + { + "start": 2742.34, + "end": 2744.32, + "probability": 0.9928 + }, + { + "start": 2745.5, + "end": 2750.56, + "probability": 0.9796 + }, + { + "start": 2751.0, + "end": 2754.2, + "probability": 0.6316 + }, + { + "start": 2755.0, + "end": 2758.24, + "probability": 0.9902 + }, + { + "start": 2759.22, + "end": 2760.85, + "probability": 0.9551 + }, + { + "start": 2761.52, + "end": 2765.04, + "probability": 0.967 + }, + { + "start": 2765.68, + "end": 2769.12, + "probability": 0.9036 + }, + { + "start": 2769.84, + "end": 2777.34, + "probability": 0.8905 + }, + { + "start": 2777.52, + "end": 2780.4, + "probability": 0.9783 + }, + { + "start": 2781.24, + "end": 2783.42, + "probability": 0.5991 + }, + { + "start": 2784.24, + "end": 2787.58, + "probability": 0.9868 + }, + { + "start": 2787.58, + "end": 2791.32, + "probability": 0.995 + }, + { + "start": 2792.26, + "end": 2797.62, + "probability": 0.9049 + }, + { + "start": 2798.36, + "end": 2801.26, + "probability": 0.9879 + }, + { + "start": 2801.26, + "end": 2804.34, + "probability": 0.9367 + }, + { + "start": 2804.46, + "end": 2808.06, + "probability": 0.9924 + }, + { + "start": 2809.32, + "end": 2810.38, + "probability": 0.8842 + }, + { + "start": 2811.12, + "end": 2811.92, + "probability": 0.9417 + }, + { + "start": 2812.68, + "end": 2818.78, + "probability": 0.9701 + }, + { + "start": 2819.84, + "end": 2820.34, + "probability": 0.7268 + }, + { + "start": 2820.58, + "end": 2821.52, + "probability": 0.4721 + }, + { + "start": 2822.04, + "end": 2823.08, + "probability": 0.8331 + }, + { + "start": 2823.2, + "end": 2825.0, + "probability": 0.7884 + }, + { + "start": 2825.06, + "end": 2825.42, + "probability": 0.8644 + }, + { + "start": 2843.46, + "end": 2845.22, + "probability": 0.6561 + }, + { + "start": 2845.7, + "end": 2849.0, + "probability": 0.7919 + }, + { + "start": 2850.34, + "end": 2852.04, + "probability": 0.9583 + }, + { + "start": 2852.78, + "end": 2857.7, + "probability": 0.9525 + }, + { + "start": 2857.74, + "end": 2859.16, + "probability": 0.9768 + }, + { + "start": 2859.28, + "end": 2862.6, + "probability": 0.9659 + }, + { + "start": 2863.24, + "end": 2868.84, + "probability": 0.9956 + }, + { + "start": 2869.6, + "end": 2871.26, + "probability": 0.9972 + }, + { + "start": 2874.04, + "end": 2879.78, + "probability": 0.8517 + }, + { + "start": 2879.92, + "end": 2880.98, + "probability": 0.4384 + }, + { + "start": 2881.92, + "end": 2885.26, + "probability": 0.9946 + }, + { + "start": 2892.1, + "end": 2895.8, + "probability": 0.4038 + }, + { + "start": 2896.72, + "end": 2905.58, + "probability": 0.925 + }, + { + "start": 2906.66, + "end": 2910.12, + "probability": 0.9971 + }, + { + "start": 2910.84, + "end": 2914.88, + "probability": 0.9983 + }, + { + "start": 2915.1, + "end": 2915.56, + "probability": 0.3601 + }, + { + "start": 2916.26, + "end": 2923.26, + "probability": 0.9806 + }, + { + "start": 2923.88, + "end": 2924.92, + "probability": 0.894 + }, + { + "start": 2925.1, + "end": 2928.52, + "probability": 0.9851 + }, + { + "start": 2929.36, + "end": 2930.14, + "probability": 0.5837 + }, + { + "start": 2930.22, + "end": 2934.58, + "probability": 0.95 + }, + { + "start": 2935.9, + "end": 2939.74, + "probability": 0.9884 + }, + { + "start": 2939.74, + "end": 2943.54, + "probability": 0.9924 + }, + { + "start": 2944.34, + "end": 2949.84, + "probability": 0.9936 + }, + { + "start": 2950.64, + "end": 2957.04, + "probability": 0.9918 + }, + { + "start": 2957.74, + "end": 2963.36, + "probability": 0.9697 + }, + { + "start": 2963.96, + "end": 2965.85, + "probability": 0.9212 + }, + { + "start": 2966.68, + "end": 2967.48, + "probability": 0.993 + }, + { + "start": 2968.7, + "end": 2969.86, + "probability": 0.8512 + }, + { + "start": 2970.62, + "end": 2971.76, + "probability": 0.8423 + }, + { + "start": 2972.94, + "end": 2976.07, + "probability": 0.8466 + }, + { + "start": 2977.02, + "end": 2982.62, + "probability": 0.9744 + }, + { + "start": 2983.22, + "end": 2988.24, + "probability": 0.927 + }, + { + "start": 2988.8, + "end": 2992.28, + "probability": 0.7068 + }, + { + "start": 2992.56, + "end": 2998.4, + "probability": 0.9975 + }, + { + "start": 2998.72, + "end": 3002.22, + "probability": 0.9855 + }, + { + "start": 3002.38, + "end": 3003.52, + "probability": 0.751 + }, + { + "start": 3004.24, + "end": 3005.84, + "probability": 0.6554 + }, + { + "start": 3006.18, + "end": 3011.26, + "probability": 0.8051 + }, + { + "start": 3011.66, + "end": 3014.22, + "probability": 0.9735 + }, + { + "start": 3014.82, + "end": 3015.58, + "probability": 0.9736 + }, + { + "start": 3016.28, + "end": 3019.8, + "probability": 0.8949 + }, + { + "start": 3020.18, + "end": 3020.56, + "probability": 0.9227 + }, + { + "start": 3021.34, + "end": 3021.48, + "probability": 0.5824 + }, + { + "start": 3022.4, + "end": 3024.96, + "probability": 0.9518 + }, + { + "start": 3045.56, + "end": 3047.28, + "probability": 0.9171 + }, + { + "start": 3047.76, + "end": 3050.16, + "probability": 0.8519 + }, + { + "start": 3051.5, + "end": 3052.62, + "probability": 0.8502 + }, + { + "start": 3053.66, + "end": 3054.64, + "probability": 0.9041 + }, + { + "start": 3056.26, + "end": 3057.46, + "probability": 0.9798 + }, + { + "start": 3058.42, + "end": 3059.64, + "probability": 0.9754 + }, + { + "start": 3060.62, + "end": 3064.52, + "probability": 0.8955 + }, + { + "start": 3065.0, + "end": 3068.58, + "probability": 0.9858 + }, + { + "start": 3068.68, + "end": 3072.42, + "probability": 0.5831 + }, + { + "start": 3072.42, + "end": 3075.52, + "probability": 0.7339 + }, + { + "start": 3078.12, + "end": 3081.26, + "probability": 0.9733 + }, + { + "start": 3082.74, + "end": 3083.4, + "probability": 0.9744 + }, + { + "start": 3084.78, + "end": 3086.12, + "probability": 0.9952 + }, + { + "start": 3087.79, + "end": 3090.96, + "probability": 0.7642 + }, + { + "start": 3091.9, + "end": 3097.98, + "probability": 0.9941 + }, + { + "start": 3099.36, + "end": 3101.49, + "probability": 0.998 + }, + { + "start": 3101.7, + "end": 3106.4, + "probability": 0.799 + }, + { + "start": 3106.92, + "end": 3107.8, + "probability": 0.8793 + }, + { + "start": 3108.28, + "end": 3110.94, + "probability": 0.8684 + }, + { + "start": 3111.02, + "end": 3113.18, + "probability": 0.6662 + }, + { + "start": 3113.28, + "end": 3114.04, + "probability": 0.971 + }, + { + "start": 3114.3, + "end": 3114.82, + "probability": 0.9504 + }, + { + "start": 3114.94, + "end": 3115.14, + "probability": 0.7108 + }, + { + "start": 3116.24, + "end": 3120.48, + "probability": 0.9929 + }, + { + "start": 3120.6, + "end": 3121.1, + "probability": 0.5237 + }, + { + "start": 3122.04, + "end": 3123.12, + "probability": 0.6261 + }, + { + "start": 3123.26, + "end": 3126.84, + "probability": 0.2786 + }, + { + "start": 3127.28, + "end": 3131.24, + "probability": 0.6164 + }, + { + "start": 3132.17, + "end": 3133.91, + "probability": 0.681 + }, + { + "start": 3134.36, + "end": 3137.94, + "probability": 0.9972 + }, + { + "start": 3138.44, + "end": 3139.6, + "probability": 0.9938 + }, + { + "start": 3139.98, + "end": 3141.38, + "probability": 0.9321 + }, + { + "start": 3141.8, + "end": 3142.08, + "probability": 0.8154 + }, + { + "start": 3142.18, + "end": 3142.8, + "probability": 0.6297 + }, + { + "start": 3143.88, + "end": 3145.08, + "probability": 0.667 + }, + { + "start": 3145.14, + "end": 3147.96, + "probability": 0.8778 + }, + { + "start": 3148.5, + "end": 3149.32, + "probability": 0.8221 + }, + { + "start": 3150.68, + "end": 3154.29, + "probability": 0.7665 + }, + { + "start": 3154.7, + "end": 3158.4, + "probability": 0.6068 + }, + { + "start": 3159.12, + "end": 3160.06, + "probability": 0.5747 + }, + { + "start": 3161.0, + "end": 3163.2, + "probability": 0.6921 + }, + { + "start": 3164.28, + "end": 3165.26, + "probability": 0.6984 + }, + { + "start": 3165.8, + "end": 3166.28, + "probability": 0.8639 + }, + { + "start": 3166.34, + "end": 3171.96, + "probability": 0.9619 + }, + { + "start": 3172.26, + "end": 3172.68, + "probability": 0.7571 + }, + { + "start": 3173.26, + "end": 3173.84, + "probability": 0.6653 + }, + { + "start": 3174.48, + "end": 3177.12, + "probability": 0.7803 + }, + { + "start": 3197.58, + "end": 3200.1, + "probability": 0.8277 + }, + { + "start": 3201.48, + "end": 3202.74, + "probability": 0.8333 + }, + { + "start": 3202.9, + "end": 3203.86, + "probability": 0.6679 + }, + { + "start": 3205.6, + "end": 3207.92, + "probability": 0.8385 + }, + { + "start": 3208.94, + "end": 3212.32, + "probability": 0.9837 + }, + { + "start": 3213.74, + "end": 3216.36, + "probability": 0.9165 + }, + { + "start": 3217.28, + "end": 3218.7, + "probability": 0.6364 + }, + { + "start": 3220.34, + "end": 3226.44, + "probability": 0.6668 + }, + { + "start": 3227.2, + "end": 3230.56, + "probability": 0.5132 + }, + { + "start": 3231.9, + "end": 3233.58, + "probability": 0.8748 + }, + { + "start": 3234.4, + "end": 3236.42, + "probability": 0.9484 + }, + { + "start": 3237.0, + "end": 3240.04, + "probability": 0.8709 + }, + { + "start": 3241.5, + "end": 3244.86, + "probability": 0.8627 + }, + { + "start": 3245.4, + "end": 3249.78, + "probability": 0.978 + }, + { + "start": 3250.6, + "end": 3259.06, + "probability": 0.8258 + }, + { + "start": 3259.78, + "end": 3268.24, + "probability": 0.5077 + }, + { + "start": 3268.5, + "end": 3271.46, + "probability": 0.7893 + }, + { + "start": 3272.12, + "end": 3276.24, + "probability": 0.9551 + }, + { + "start": 3276.86, + "end": 3283.72, + "probability": 0.908 + }, + { + "start": 3283.84, + "end": 3289.08, + "probability": 0.7992 + }, + { + "start": 3289.7, + "end": 3297.42, + "probability": 0.9783 + }, + { + "start": 3297.86, + "end": 3299.64, + "probability": 0.9119 + }, + { + "start": 3299.68, + "end": 3302.9, + "probability": 0.8702 + }, + { + "start": 3303.78, + "end": 3305.42, + "probability": 0.9948 + }, + { + "start": 3306.1, + "end": 3308.04, + "probability": 0.9442 + }, + { + "start": 3308.56, + "end": 3308.88, + "probability": 0.9258 + }, + { + "start": 3309.7, + "end": 3315.94, + "probability": 0.9707 + }, + { + "start": 3316.7, + "end": 3318.68, + "probability": 0.9632 + }, + { + "start": 3319.4, + "end": 3320.12, + "probability": 0.3781 + }, + { + "start": 3320.66, + "end": 3323.12, + "probability": 0.8979 + }, + { + "start": 3323.5, + "end": 3326.34, + "probability": 0.8571 + }, + { + "start": 3326.76, + "end": 3327.88, + "probability": 0.9253 + }, + { + "start": 3328.06, + "end": 3329.08, + "probability": 0.8461 + }, + { + "start": 3329.28, + "end": 3330.44, + "probability": 0.8101 + }, + { + "start": 3330.68, + "end": 3333.46, + "probability": 0.3431 + }, + { + "start": 3333.46, + "end": 3337.44, + "probability": 0.9879 + }, + { + "start": 3337.44, + "end": 3341.46, + "probability": 0.8335 + }, + { + "start": 3341.7, + "end": 3343.08, + "probability": 0.6746 + }, + { + "start": 3343.1, + "end": 3343.58, + "probability": 0.6748 + }, + { + "start": 3344.44, + "end": 3345.52, + "probability": 0.5872 + }, + { + "start": 3345.72, + "end": 3349.32, + "probability": 0.8722 + }, + { + "start": 3349.4, + "end": 3349.92, + "probability": 0.941 + }, + { + "start": 3361.68, + "end": 3362.74, + "probability": 0.6148 + }, + { + "start": 3363.54, + "end": 3364.68, + "probability": 0.6393 + }, + { + "start": 3367.24, + "end": 3368.81, + "probability": 0.9536 + }, + { + "start": 3369.7, + "end": 3373.78, + "probability": 0.9622 + }, + { + "start": 3374.32, + "end": 3374.78, + "probability": 0.9329 + }, + { + "start": 3375.8, + "end": 3376.72, + "probability": 0.962 + }, + { + "start": 3377.64, + "end": 3382.28, + "probability": 0.9978 + }, + { + "start": 3383.14, + "end": 3385.52, + "probability": 0.9979 + }, + { + "start": 3386.16, + "end": 3387.0, + "probability": 0.9972 + }, + { + "start": 3387.74, + "end": 3389.58, + "probability": 0.9832 + }, + { + "start": 3390.42, + "end": 3390.92, + "probability": 0.7441 + }, + { + "start": 3391.88, + "end": 3393.34, + "probability": 0.9728 + }, + { + "start": 3394.88, + "end": 3398.64, + "probability": 0.999 + }, + { + "start": 3399.54, + "end": 3400.94, + "probability": 0.9955 + }, + { + "start": 3402.4, + "end": 3405.88, + "probability": 0.9748 + }, + { + "start": 3405.88, + "end": 3407.82, + "probability": 0.9058 + }, + { + "start": 3408.88, + "end": 3409.94, + "probability": 0.5532 + }, + { + "start": 3410.48, + "end": 3412.9, + "probability": 0.9989 + }, + { + "start": 3413.52, + "end": 3414.62, + "probability": 0.9823 + }, + { + "start": 3415.9, + "end": 3416.39, + "probability": 0.9415 + }, + { + "start": 3417.68, + "end": 3419.46, + "probability": 0.9638 + }, + { + "start": 3420.38, + "end": 3423.6, + "probability": 0.9679 + }, + { + "start": 3424.5, + "end": 3429.54, + "probability": 0.9672 + }, + { + "start": 3430.18, + "end": 3431.66, + "probability": 0.8198 + }, + { + "start": 3432.2, + "end": 3432.74, + "probability": 0.9954 + }, + { + "start": 3433.3, + "end": 3434.2, + "probability": 0.745 + }, + { + "start": 3434.72, + "end": 3440.0, + "probability": 0.9746 + }, + { + "start": 3440.0, + "end": 3444.54, + "probability": 0.9941 + }, + { + "start": 3445.32, + "end": 3448.46, + "probability": 0.9259 + }, + { + "start": 3448.46, + "end": 3451.74, + "probability": 0.8369 + }, + { + "start": 3452.34, + "end": 3455.7, + "probability": 0.9969 + }, + { + "start": 3456.36, + "end": 3459.96, + "probability": 0.9977 + }, + { + "start": 3461.2, + "end": 3464.38, + "probability": 0.9935 + }, + { + "start": 3465.1, + "end": 3468.94, + "probability": 0.8702 + }, + { + "start": 3469.7, + "end": 3473.56, + "probability": 0.9559 + }, + { + "start": 3474.22, + "end": 3478.58, + "probability": 0.9929 + }, + { + "start": 3478.58, + "end": 3482.82, + "probability": 0.9941 + }, + { + "start": 3483.94, + "end": 3486.7, + "probability": 0.682 + }, + { + "start": 3487.26, + "end": 3494.46, + "probability": 0.9632 + }, + { + "start": 3495.0, + "end": 3497.82, + "probability": 0.9681 + }, + { + "start": 3498.9, + "end": 3500.44, + "probability": 0.8268 + }, + { + "start": 3501.46, + "end": 3502.28, + "probability": 0.7486 + }, + { + "start": 3503.12, + "end": 3510.0, + "probability": 0.9505 + }, + { + "start": 3510.56, + "end": 3514.52, + "probability": 0.9865 + }, + { + "start": 3514.58, + "end": 3518.68, + "probability": 0.9289 + }, + { + "start": 3519.56, + "end": 3521.52, + "probability": 0.998 + }, + { + "start": 3522.04, + "end": 3525.12, + "probability": 0.6782 + }, + { + "start": 3525.82, + "end": 3526.44, + "probability": 0.7764 + }, + { + "start": 3527.08, + "end": 3530.86, + "probability": 0.9937 + }, + { + "start": 3532.24, + "end": 3533.3, + "probability": 0.89 + }, + { + "start": 3533.98, + "end": 3535.74, + "probability": 0.9962 + }, + { + "start": 3536.36, + "end": 3538.2, + "probability": 0.9034 + }, + { + "start": 3539.02, + "end": 3543.32, + "probability": 0.9973 + }, + { + "start": 3544.1, + "end": 3545.0, + "probability": 0.8651 + }, + { + "start": 3545.88, + "end": 3549.22, + "probability": 0.9971 + }, + { + "start": 3549.9, + "end": 3551.78, + "probability": 0.9491 + }, + { + "start": 3552.66, + "end": 3553.82, + "probability": 0.8786 + }, + { + "start": 3554.62, + "end": 3559.66, + "probability": 0.9368 + }, + { + "start": 3560.86, + "end": 3562.64, + "probability": 0.9519 + }, + { + "start": 3563.36, + "end": 3563.78, + "probability": 0.8334 + }, + { + "start": 3564.78, + "end": 3565.5, + "probability": 0.9839 + }, + { + "start": 3566.12, + "end": 3567.12, + "probability": 0.9749 + }, + { + "start": 3567.9, + "end": 3571.1, + "probability": 0.9181 + }, + { + "start": 3571.54, + "end": 3573.78, + "probability": 0.4102 + }, + { + "start": 3573.78, + "end": 3578.38, + "probability": 0.9949 + }, + { + "start": 3579.1, + "end": 3580.06, + "probability": 0.7199 + }, + { + "start": 3580.58, + "end": 3582.2, + "probability": 0.9847 + }, + { + "start": 3583.78, + "end": 3584.52, + "probability": 0.7146 + }, + { + "start": 3584.64, + "end": 3589.0, + "probability": 0.9901 + }, + { + "start": 3589.42, + "end": 3591.4, + "probability": 0.9259 + }, + { + "start": 3592.0, + "end": 3593.02, + "probability": 0.7168 + }, + { + "start": 3593.86, + "end": 3594.58, + "probability": 0.9225 + }, + { + "start": 3595.36, + "end": 3595.9, + "probability": 0.8706 + }, + { + "start": 3596.38, + "end": 3599.32, + "probability": 0.9918 + }, + { + "start": 3599.32, + "end": 3602.12, + "probability": 0.9961 + }, + { + "start": 3602.92, + "end": 3606.78, + "probability": 0.8518 + }, + { + "start": 3607.52, + "end": 3609.88, + "probability": 0.9893 + }, + { + "start": 3610.78, + "end": 3615.04, + "probability": 0.8976 + }, + { + "start": 3615.04, + "end": 3619.68, + "probability": 0.9818 + }, + { + "start": 3619.9, + "end": 3624.0, + "probability": 0.9723 + }, + { + "start": 3624.62, + "end": 3626.34, + "probability": 0.9967 + }, + { + "start": 3627.26, + "end": 3628.46, + "probability": 0.9597 + }, + { + "start": 3629.54, + "end": 3635.04, + "probability": 0.978 + }, + { + "start": 3636.04, + "end": 3638.64, + "probability": 0.9654 + }, + { + "start": 3639.34, + "end": 3641.92, + "probability": 0.9493 + }, + { + "start": 3642.98, + "end": 3644.0, + "probability": 0.9958 + }, + { + "start": 3644.6, + "end": 3645.64, + "probability": 0.9548 + }, + { + "start": 3646.22, + "end": 3652.0, + "probability": 0.9954 + }, + { + "start": 3652.0, + "end": 3657.88, + "probability": 0.999 + }, + { + "start": 3658.54, + "end": 3659.2, + "probability": 0.6967 + }, + { + "start": 3660.04, + "end": 3661.48, + "probability": 0.9563 + }, + { + "start": 3662.38, + "end": 3665.8, + "probability": 0.9087 + }, + { + "start": 3666.32, + "end": 3668.52, + "probability": 0.9393 + }, + { + "start": 3669.18, + "end": 3670.2, + "probability": 0.9602 + }, + { + "start": 3670.7, + "end": 3673.34, + "probability": 0.9919 + }, + { + "start": 3676.97, + "end": 3678.32, + "probability": 0.0813 + }, + { + "start": 3678.32, + "end": 3679.0, + "probability": 0.0472 + }, + { + "start": 3679.02, + "end": 3681.8, + "probability": 0.8364 + }, + { + "start": 3682.46, + "end": 3683.6, + "probability": 0.9538 + }, + { + "start": 3684.22, + "end": 3687.2, + "probability": 0.9821 + }, + { + "start": 3687.82, + "end": 3689.56, + "probability": 0.9071 + }, + { + "start": 3690.0, + "end": 3690.44, + "probability": 0.8357 + }, + { + "start": 3690.6, + "end": 3690.9, + "probability": 0.9275 + }, + { + "start": 3691.1, + "end": 3691.46, + "probability": 0.8372 + }, + { + "start": 3692.56, + "end": 3695.68, + "probability": 0.9822 + }, + { + "start": 3696.52, + "end": 3697.2, + "probability": 0.7518 + }, + { + "start": 3698.02, + "end": 3699.68, + "probability": 0.9704 + }, + { + "start": 3700.4, + "end": 3703.94, + "probability": 0.9976 + }, + { + "start": 3704.62, + "end": 3705.22, + "probability": 0.4615 + }, + { + "start": 3705.88, + "end": 3706.8, + "probability": 0.9995 + }, + { + "start": 3707.46, + "end": 3708.96, + "probability": 0.9395 + }, + { + "start": 3709.84, + "end": 3713.98, + "probability": 0.8908 + }, + { + "start": 3714.86, + "end": 3718.38, + "probability": 0.9255 + }, + { + "start": 3719.08, + "end": 3724.48, + "probability": 0.9946 + }, + { + "start": 3724.62, + "end": 3726.86, + "probability": 0.6574 + }, + { + "start": 3727.46, + "end": 3730.76, + "probability": 0.9479 + }, + { + "start": 3731.38, + "end": 3731.86, + "probability": 0.9355 + }, + { + "start": 3732.52, + "end": 3734.94, + "probability": 0.9722 + }, + { + "start": 3735.48, + "end": 3736.76, + "probability": 0.9521 + }, + { + "start": 3737.74, + "end": 3742.78, + "probability": 0.8852 + }, + { + "start": 3743.4, + "end": 3747.48, + "probability": 0.8148 + }, + { + "start": 3748.16, + "end": 3749.02, + "probability": 0.9041 + }, + { + "start": 3749.82, + "end": 3754.72, + "probability": 0.9601 + }, + { + "start": 3755.34, + "end": 3757.8, + "probability": 0.7801 + }, + { + "start": 3758.34, + "end": 3761.04, + "probability": 0.9983 + }, + { + "start": 3761.1, + "end": 3761.62, + "probability": 0.8577 + }, + { + "start": 3762.02, + "end": 3763.28, + "probability": 0.6922 + }, + { + "start": 3763.34, + "end": 3767.44, + "probability": 0.9279 + }, + { + "start": 3767.8, + "end": 3768.74, + "probability": 0.9796 + }, + { + "start": 3768.92, + "end": 3769.38, + "probability": 0.7579 + }, + { + "start": 3770.08, + "end": 3771.56, + "probability": 0.9758 + }, + { + "start": 3772.92, + "end": 3774.74, + "probability": 0.5924 + }, + { + "start": 3777.36, + "end": 3778.02, + "probability": 0.6967 + }, + { + "start": 3782.8, + "end": 3784.08, + "probability": 0.8542 + }, + { + "start": 3785.58, + "end": 3787.2, + "probability": 0.7163 + }, + { + "start": 3787.26, + "end": 3787.44, + "probability": 0.5149 + }, + { + "start": 3787.44, + "end": 3788.71, + "probability": 0.6373 + }, + { + "start": 3789.22, + "end": 3790.28, + "probability": 0.4288 + }, + { + "start": 3791.12, + "end": 3791.12, + "probability": 0.0106 + }, + { + "start": 3792.02, + "end": 3792.7, + "probability": 0.2587 + }, + { + "start": 3792.72, + "end": 3794.92, + "probability": 0.9216 + }, + { + "start": 3795.32, + "end": 3796.04, + "probability": 0.493 + }, + { + "start": 3796.12, + "end": 3796.52, + "probability": 0.41 + }, + { + "start": 3796.52, + "end": 3798.75, + "probability": 0.6581 + }, + { + "start": 3799.44, + "end": 3799.46, + "probability": 0.0037 + }, + { + "start": 3799.46, + "end": 3799.46, + "probability": 0.1031 + }, + { + "start": 3799.46, + "end": 3802.54, + "probability": 0.46 + }, + { + "start": 3802.82, + "end": 3805.68, + "probability": 0.589 + }, + { + "start": 3806.78, + "end": 3806.82, + "probability": 0.2947 + }, + { + "start": 3806.82, + "end": 3809.08, + "probability": 0.8044 + }, + { + "start": 3809.26, + "end": 3810.14, + "probability": 0.7411 + }, + { + "start": 3810.16, + "end": 3810.46, + "probability": 0.8013 + }, + { + "start": 3811.02, + "end": 3811.02, + "probability": 0.1092 + }, + { + "start": 3811.02, + "end": 3813.02, + "probability": 0.516 + }, + { + "start": 3813.22, + "end": 3814.7, + "probability": 0.1173 + }, + { + "start": 3814.7, + "end": 3814.72, + "probability": 0.3919 + }, + { + "start": 3814.72, + "end": 3815.78, + "probability": 0.8407 + }, + { + "start": 3818.4, + "end": 3821.02, + "probability": 0.8229 + }, + { + "start": 3822.28, + "end": 3824.06, + "probability": 0.3141 + }, + { + "start": 3836.24, + "end": 3836.36, + "probability": 0.3419 + }, + { + "start": 3836.36, + "end": 3838.54, + "probability": 0.6108 + }, + { + "start": 3839.3, + "end": 3842.32, + "probability": 0.9701 + }, + { + "start": 3842.86, + "end": 3844.92, + "probability": 0.6816 + }, + { + "start": 3845.46, + "end": 3849.02, + "probability": 0.9864 + }, + { + "start": 3849.19, + "end": 3854.14, + "probability": 0.9842 + }, + { + "start": 3854.72, + "end": 3856.24, + "probability": 0.9921 + }, + { + "start": 3856.88, + "end": 3857.86, + "probability": 0.8478 + }, + { + "start": 3858.0, + "end": 3858.56, + "probability": 0.673 + }, + { + "start": 3858.64, + "end": 3859.54, + "probability": 0.7704 + }, + { + "start": 3859.88, + "end": 3860.62, + "probability": 0.6464 + }, + { + "start": 3860.64, + "end": 3861.24, + "probability": 0.7827 + }, + { + "start": 3861.28, + "end": 3863.04, + "probability": 0.9019 + }, + { + "start": 3863.6, + "end": 3867.94, + "probability": 0.8821 + }, + { + "start": 3868.36, + "end": 3869.12, + "probability": 0.7933 + }, + { + "start": 3869.88, + "end": 3871.5, + "probability": 0.9599 + }, + { + "start": 3884.18, + "end": 3884.82, + "probability": 0.2943 + }, + { + "start": 3884.92, + "end": 3885.34, + "probability": 0.6941 + }, + { + "start": 3885.44, + "end": 3887.14, + "probability": 0.6176 + }, + { + "start": 3887.24, + "end": 3887.56, + "probability": 0.4601 + }, + { + "start": 3887.82, + "end": 3887.98, + "probability": 0.4459 + }, + { + "start": 3887.98, + "end": 3888.16, + "probability": 0.2347 + }, + { + "start": 3888.16, + "end": 3888.68, + "probability": 0.0247 + }, + { + "start": 3889.84, + "end": 3890.44, + "probability": 0.5845 + }, + { + "start": 3890.46, + "end": 3891.04, + "probability": 0.5345 + }, + { + "start": 3891.18, + "end": 3892.16, + "probability": 0.8331 + }, + { + "start": 3892.38, + "end": 3892.76, + "probability": 0.6624 + }, + { + "start": 3892.8, + "end": 3895.12, + "probability": 0.7624 + }, + { + "start": 3896.2, + "end": 3900.42, + "probability": 0.8254 + }, + { + "start": 3901.0, + "end": 3903.0, + "probability": 0.9386 + }, + { + "start": 3904.08, + "end": 3907.34, + "probability": 0.9984 + }, + { + "start": 3908.34, + "end": 3908.9, + "probability": 0.3108 + }, + { + "start": 3909.42, + "end": 3912.78, + "probability": 0.9882 + }, + { + "start": 3913.78, + "end": 3918.08, + "probability": 0.998 + }, + { + "start": 3919.06, + "end": 3921.56, + "probability": 0.9714 + }, + { + "start": 3921.78, + "end": 3924.12, + "probability": 0.9671 + }, + { + "start": 3924.72, + "end": 3928.84, + "probability": 0.9714 + }, + { + "start": 3929.08, + "end": 3933.94, + "probability": 0.998 + }, + { + "start": 3934.72, + "end": 3936.84, + "probability": 0.9596 + }, + { + "start": 3937.34, + "end": 3938.98, + "probability": 0.9661 + }, + { + "start": 3939.6, + "end": 3942.33, + "probability": 0.9967 + }, + { + "start": 3942.92, + "end": 3944.64, + "probability": 0.9893 + }, + { + "start": 3945.62, + "end": 3945.94, + "probability": 0.8349 + }, + { + "start": 3946.02, + "end": 3948.6, + "probability": 0.9823 + }, + { + "start": 3948.6, + "end": 3951.52, + "probability": 0.9194 + }, + { + "start": 3951.94, + "end": 3953.26, + "probability": 0.9911 + }, + { + "start": 3953.86, + "end": 3956.46, + "probability": 0.9801 + }, + { + "start": 3956.54, + "end": 3957.74, + "probability": 0.9472 + }, + { + "start": 3958.36, + "end": 3960.56, + "probability": 0.9949 + }, + { + "start": 3960.56, + "end": 3962.76, + "probability": 0.9874 + }, + { + "start": 3963.44, + "end": 3964.16, + "probability": 0.9937 + }, + { + "start": 3964.94, + "end": 3966.88, + "probability": 0.9363 + }, + { + "start": 3967.32, + "end": 3970.22, + "probability": 0.9016 + }, + { + "start": 3971.08, + "end": 3972.76, + "probability": 0.9778 + }, + { + "start": 3972.78, + "end": 3976.12, + "probability": 0.9832 + }, + { + "start": 3976.48, + "end": 3978.62, + "probability": 0.9972 + }, + { + "start": 3979.18, + "end": 3981.44, + "probability": 0.9974 + }, + { + "start": 3981.44, + "end": 3983.68, + "probability": 0.9941 + }, + { + "start": 3984.58, + "end": 3987.1, + "probability": 0.9655 + }, + { + "start": 3987.1, + "end": 3990.66, + "probability": 0.9994 + }, + { + "start": 3991.74, + "end": 3993.08, + "probability": 0.9899 + }, + { + "start": 3993.2, + "end": 3993.9, + "probability": 0.7441 + }, + { + "start": 3994.36, + "end": 3995.3, + "probability": 0.644 + }, + { + "start": 3995.86, + "end": 3996.42, + "probability": 0.9963 + }, + { + "start": 3997.12, + "end": 3999.82, + "probability": 0.9598 + }, + { + "start": 3999.82, + "end": 4002.62, + "probability": 0.9984 + }, + { + "start": 4003.12, + "end": 4005.58, + "probability": 0.9871 + }, + { + "start": 4005.62, + "end": 4006.56, + "probability": 0.9898 + }, + { + "start": 4006.88, + "end": 4007.36, + "probability": 0.6361 + }, + { + "start": 4007.48, + "end": 4009.33, + "probability": 0.9377 + }, + { + "start": 4010.28, + "end": 4011.56, + "probability": 0.8963 + }, + { + "start": 4012.04, + "end": 4013.76, + "probability": 0.9791 + }, + { + "start": 4013.76, + "end": 4016.64, + "probability": 0.9902 + }, + { + "start": 4016.82, + "end": 4018.9, + "probability": 0.9913 + }, + { + "start": 4019.42, + "end": 4021.24, + "probability": 0.9916 + }, + { + "start": 4022.58, + "end": 4025.5, + "probability": 0.9631 + }, + { + "start": 4026.14, + "end": 4027.16, + "probability": 0.7712 + }, + { + "start": 4027.22, + "end": 4029.14, + "probability": 0.8035 + }, + { + "start": 4029.28, + "end": 4032.96, + "probability": 0.7882 + }, + { + "start": 4033.42, + "end": 4035.06, + "probability": 0.9675 + }, + { + "start": 4035.16, + "end": 4037.94, + "probability": 0.8483 + }, + { + "start": 4038.3, + "end": 4040.32, + "probability": 0.9728 + }, + { + "start": 4040.98, + "end": 4042.32, + "probability": 0.9829 + }, + { + "start": 4042.5, + "end": 4045.9, + "probability": 0.9937 + }, + { + "start": 4045.9, + "end": 4049.44, + "probability": 0.9982 + }, + { + "start": 4049.8, + "end": 4050.2, + "probability": 0.7477 + }, + { + "start": 4050.58, + "end": 4052.74, + "probability": 0.9318 + }, + { + "start": 4053.5, + "end": 4055.4, + "probability": 0.9124 + }, + { + "start": 4056.78, + "end": 4057.92, + "probability": 0.9592 + }, + { + "start": 4074.9, + "end": 4075.68, + "probability": 0.5072 + }, + { + "start": 4075.8, + "end": 4076.54, + "probability": 0.8363 + }, + { + "start": 4076.62, + "end": 4077.08, + "probability": 0.7859 + }, + { + "start": 4077.16, + "end": 4079.8, + "probability": 0.5073 + }, + { + "start": 4080.8, + "end": 4084.52, + "probability": 0.9913 + }, + { + "start": 4085.72, + "end": 4089.6, + "probability": 0.9814 + }, + { + "start": 4090.84, + "end": 4093.04, + "probability": 0.9988 + }, + { + "start": 4093.04, + "end": 4099.48, + "probability": 0.999 + }, + { + "start": 4100.08, + "end": 4100.92, + "probability": 0.836 + }, + { + "start": 4101.8, + "end": 4103.89, + "probability": 0.9919 + }, + { + "start": 4105.3, + "end": 4106.38, + "probability": 0.9954 + }, + { + "start": 4107.36, + "end": 4108.1, + "probability": 0.9833 + }, + { + "start": 4108.76, + "end": 4110.1, + "probability": 0.9968 + }, + { + "start": 4110.78, + "end": 4111.5, + "probability": 0.9151 + }, + { + "start": 4111.82, + "end": 4114.0, + "probability": 0.9986 + }, + { + "start": 4115.16, + "end": 4116.06, + "probability": 0.997 + }, + { + "start": 4116.18, + "end": 4119.62, + "probability": 0.9966 + }, + { + "start": 4120.1, + "end": 4122.12, + "probability": 0.9983 + }, + { + "start": 4122.52, + "end": 4122.88, + "probability": 0.5489 + }, + { + "start": 4122.92, + "end": 4124.64, + "probability": 0.9968 + }, + { + "start": 4124.68, + "end": 4127.88, + "probability": 0.9988 + }, + { + "start": 4129.92, + "end": 4131.04, + "probability": 0.9956 + }, + { + "start": 4131.32, + "end": 4134.7, + "probability": 0.9814 + }, + { + "start": 4135.08, + "end": 4139.94, + "probability": 0.9912 + }, + { + "start": 4141.7, + "end": 4144.56, + "probability": 0.7504 + }, + { + "start": 4144.96, + "end": 4148.68, + "probability": 0.9956 + }, + { + "start": 4149.72, + "end": 4155.24, + "probability": 0.9501 + }, + { + "start": 4156.3, + "end": 4158.22, + "probability": 0.9883 + }, + { + "start": 4159.14, + "end": 4160.5, + "probability": 0.8507 + }, + { + "start": 4161.2, + "end": 4163.02, + "probability": 0.8833 + }, + { + "start": 4164.18, + "end": 4164.84, + "probability": 0.7752 + }, + { + "start": 4165.04, + "end": 4166.02, + "probability": 0.9488 + }, + { + "start": 4167.08, + "end": 4167.42, + "probability": 0.8604 + }, + { + "start": 4167.98, + "end": 4170.0, + "probability": 0.9946 + }, + { + "start": 4170.06, + "end": 4170.6, + "probability": 0.3311 + }, + { + "start": 4170.68, + "end": 4171.34, + "probability": 0.5127 + }, + { + "start": 4171.42, + "end": 4173.48, + "probability": 0.9976 + }, + { + "start": 4173.94, + "end": 4174.7, + "probability": 0.7721 + }, + { + "start": 4174.96, + "end": 4178.7, + "probability": 0.9853 + }, + { + "start": 4178.96, + "end": 4179.68, + "probability": 0.8997 + }, + { + "start": 4179.74, + "end": 4180.14, + "probability": 0.9048 + }, + { + "start": 4180.16, + "end": 4180.82, + "probability": 0.9196 + }, + { + "start": 4181.7, + "end": 4184.48, + "probability": 0.9695 + }, + { + "start": 4184.98, + "end": 4187.76, + "probability": 0.9958 + }, + { + "start": 4188.24, + "end": 4191.0, + "probability": 0.9379 + }, + { + "start": 4191.72, + "end": 4193.84, + "probability": 0.9935 + }, + { + "start": 4194.84, + "end": 4196.4, + "probability": 0.9957 + }, + { + "start": 4196.44, + "end": 4197.02, + "probability": 0.6927 + }, + { + "start": 4197.98, + "end": 4198.66, + "probability": 0.837 + }, + { + "start": 4199.48, + "end": 4200.24, + "probability": 0.7426 + }, + { + "start": 4200.84, + "end": 4202.4, + "probability": 0.938 + }, + { + "start": 4203.24, + "end": 4203.84, + "probability": 0.6632 + }, + { + "start": 4204.66, + "end": 4205.5, + "probability": 0.9974 + }, + { + "start": 4206.44, + "end": 4208.0, + "probability": 0.9774 + }, + { + "start": 4209.24, + "end": 4215.72, + "probability": 0.9657 + }, + { + "start": 4217.2, + "end": 4222.56, + "probability": 0.9324 + }, + { + "start": 4223.9, + "end": 4224.5, + "probability": 0.7432 + }, + { + "start": 4224.58, + "end": 4226.04, + "probability": 0.9532 + }, + { + "start": 4226.16, + "end": 4228.62, + "probability": 0.7546 + }, + { + "start": 4228.64, + "end": 4229.48, + "probability": 0.654 + }, + { + "start": 4229.58, + "end": 4230.98, + "probability": 0.789 + }, + { + "start": 4231.56, + "end": 4232.66, + "probability": 0.7937 + }, + { + "start": 4232.78, + "end": 4236.48, + "probability": 0.8948 + }, + { + "start": 4237.66, + "end": 4240.62, + "probability": 0.9372 + }, + { + "start": 4241.38, + "end": 4244.68, + "probability": 0.9766 + }, + { + "start": 4246.98, + "end": 4248.88, + "probability": 0.9622 + }, + { + "start": 4249.72, + "end": 4250.82, + "probability": 0.9717 + }, + { + "start": 4251.32, + "end": 4252.56, + "probability": 0.9955 + }, + { + "start": 4253.64, + "end": 4254.3, + "probability": 0.9927 + }, + { + "start": 4255.14, + "end": 4257.98, + "probability": 0.9995 + }, + { + "start": 4258.86, + "end": 4260.42, + "probability": 0.9473 + }, + { + "start": 4260.98, + "end": 4261.94, + "probability": 0.9837 + }, + { + "start": 4261.94, + "end": 4262.9, + "probability": 0.9737 + }, + { + "start": 4263.16, + "end": 4265.68, + "probability": 0.6514 + }, + { + "start": 4265.7, + "end": 4266.86, + "probability": 0.971 + }, + { + "start": 4266.86, + "end": 4268.2, + "probability": 0.767 + }, + { + "start": 4268.2, + "end": 4269.46, + "probability": 0.4807 + }, + { + "start": 4269.48, + "end": 4269.68, + "probability": 0.6576 + }, + { + "start": 4269.82, + "end": 4270.14, + "probability": 0.7136 + }, + { + "start": 4270.38, + "end": 4271.04, + "probability": 0.6229 + }, + { + "start": 4271.14, + "end": 4272.14, + "probability": 0.8414 + }, + { + "start": 4272.22, + "end": 4273.28, + "probability": 0.9951 + }, + { + "start": 4273.54, + "end": 4275.6, + "probability": 0.9424 + }, + { + "start": 4275.78, + "end": 4277.41, + "probability": 0.8228 + }, + { + "start": 4277.56, + "end": 4278.66, + "probability": 0.9847 + }, + { + "start": 4279.16, + "end": 4281.34, + "probability": 0.9951 + }, + { + "start": 4282.7, + "end": 4283.76, + "probability": 0.6561 + }, + { + "start": 4283.94, + "end": 4286.12, + "probability": 0.8921 + }, + { + "start": 4286.16, + "end": 4287.58, + "probability": 0.9866 + }, + { + "start": 4288.68, + "end": 4291.38, + "probability": 0.9509 + }, + { + "start": 4291.46, + "end": 4292.24, + "probability": 0.8477 + }, + { + "start": 4292.7, + "end": 4294.86, + "probability": 0.9824 + }, + { + "start": 4294.94, + "end": 4295.34, + "probability": 0.7673 + }, + { + "start": 4295.4, + "end": 4296.46, + "probability": 0.9895 + }, + { + "start": 4296.6, + "end": 4297.72, + "probability": 0.9756 + }, + { + "start": 4297.78, + "end": 4298.36, + "probability": 0.7365 + }, + { + "start": 4298.88, + "end": 4299.76, + "probability": 0.6791 + }, + { + "start": 4300.64, + "end": 4301.48, + "probability": 0.99 + }, + { + "start": 4302.82, + "end": 4307.88, + "probability": 0.8318 + }, + { + "start": 4308.4, + "end": 4314.29, + "probability": 0.9822 + }, + { + "start": 4314.6, + "end": 4316.22, + "probability": 0.3572 + }, + { + "start": 4316.36, + "end": 4317.78, + "probability": 0.9985 + }, + { + "start": 4318.68, + "end": 4321.7, + "probability": 0.2154 + }, + { + "start": 4321.7, + "end": 4324.1, + "probability": 0.5567 + }, + { + "start": 4324.1, + "end": 4325.88, + "probability": 0.8755 + }, + { + "start": 4325.92, + "end": 4327.64, + "probability": 0.9728 + }, + { + "start": 4327.72, + "end": 4328.06, + "probability": 0.7962 + }, + { + "start": 4328.28, + "end": 4329.02, + "probability": 0.6222 + }, + { + "start": 4329.08, + "end": 4332.34, + "probability": 0.82 + }, + { + "start": 4334.44, + "end": 4336.2, + "probability": 0.9542 + }, + { + "start": 4337.04, + "end": 4337.82, + "probability": 0.4806 + }, + { + "start": 4338.08, + "end": 4338.8, + "probability": 0.48 + }, + { + "start": 4339.12, + "end": 4341.28, + "probability": 0.9495 + }, + { + "start": 4341.36, + "end": 4343.58, + "probability": 0.673 + }, + { + "start": 4351.74, + "end": 4351.74, + "probability": 0.0325 + }, + { + "start": 4351.74, + "end": 4352.34, + "probability": 0.5171 + }, + { + "start": 4352.88, + "end": 4353.24, + "probability": 0.7611 + }, + { + "start": 4354.7, + "end": 4356.66, + "probability": 0.7434 + }, + { + "start": 4357.58, + "end": 4360.56, + "probability": 0.4418 + }, + { + "start": 4361.88, + "end": 4364.6, + "probability": 0.8901 + }, + { + "start": 4365.42, + "end": 4369.1, + "probability": 0.8647 + }, + { + "start": 4369.88, + "end": 4374.26, + "probability": 0.9486 + }, + { + "start": 4374.32, + "end": 4376.08, + "probability": 0.9542 + }, + { + "start": 4376.18, + "end": 4380.26, + "probability": 0.5933 + }, + { + "start": 4381.4, + "end": 4383.62, + "probability": 0.4273 + }, + { + "start": 4392.94, + "end": 4394.9, + "probability": 0.8723 + }, + { + "start": 4396.02, + "end": 4398.68, + "probability": 0.0705 + }, + { + "start": 4398.68, + "end": 4398.68, + "probability": 0.0665 + }, + { + "start": 4398.68, + "end": 4398.68, + "probability": 0.042 + }, + { + "start": 4398.68, + "end": 4402.94, + "probability": 0.6791 + }, + { + "start": 4403.84, + "end": 4406.16, + "probability": 0.8319 + }, + { + "start": 4407.1, + "end": 4408.3, + "probability": 0.9927 + }, + { + "start": 4409.4, + "end": 4411.24, + "probability": 0.9939 + }, + { + "start": 4411.48, + "end": 4416.94, + "probability": 0.9365 + }, + { + "start": 4418.0, + "end": 4420.18, + "probability": 0.9984 + }, + { + "start": 4420.18, + "end": 4423.18, + "probability": 0.9114 + }, + { + "start": 4423.28, + "end": 4424.24, + "probability": 0.6751 + }, + { + "start": 4425.24, + "end": 4427.06, + "probability": 0.6368 + }, + { + "start": 4427.06, + "end": 4429.1, + "probability": 0.755 + }, + { + "start": 4429.46, + "end": 4435.74, + "probability": 0.8307 + }, + { + "start": 4435.76, + "end": 4440.96, + "probability": 0.9026 + }, + { + "start": 4440.96, + "end": 4444.52, + "probability": 0.9989 + }, + { + "start": 4445.18, + "end": 4448.42, + "probability": 0.9526 + }, + { + "start": 4448.68, + "end": 4452.06, + "probability": 0.8765 + }, + { + "start": 4452.52, + "end": 4454.1, + "probability": 0.768 + }, + { + "start": 4455.32, + "end": 4457.75, + "probability": 0.826 + }, + { + "start": 4459.26, + "end": 4461.46, + "probability": 0.8853 + }, + { + "start": 4461.76, + "end": 4463.58, + "probability": 0.996 + }, + { + "start": 4464.4, + "end": 4466.32, + "probability": 0.9976 + }, + { + "start": 4466.72, + "end": 4469.56, + "probability": 0.9801 + }, + { + "start": 4469.64, + "end": 4474.42, + "probability": 0.9953 + }, + { + "start": 4475.28, + "end": 4479.96, + "probability": 0.9885 + }, + { + "start": 4481.38, + "end": 4482.02, + "probability": 0.6465 + }, + { + "start": 4482.2, + "end": 4485.34, + "probability": 0.9825 + }, + { + "start": 4485.34, + "end": 4487.76, + "probability": 0.9966 + }, + { + "start": 4488.58, + "end": 4489.38, + "probability": 0.9836 + }, + { + "start": 4489.96, + "end": 4491.32, + "probability": 0.9924 + }, + { + "start": 4491.4, + "end": 4492.64, + "probability": 0.9805 + }, + { + "start": 4493.1, + "end": 4493.87, + "probability": 0.7375 + }, + { + "start": 4494.5, + "end": 4494.92, + "probability": 0.8448 + }, + { + "start": 4495.7, + "end": 4498.9, + "probability": 0.9764 + }, + { + "start": 4498.9, + "end": 4503.82, + "probability": 0.9799 + }, + { + "start": 4504.88, + "end": 4507.14, + "probability": 0.8994 + }, + { + "start": 4507.98, + "end": 4509.04, + "probability": 0.6328 + }, + { + "start": 4510.3, + "end": 4510.98, + "probability": 0.8195 + }, + { + "start": 4511.02, + "end": 4511.44, + "probability": 0.8058 + }, + { + "start": 4511.54, + "end": 4512.18, + "probability": 0.8558 + }, + { + "start": 4512.4, + "end": 4513.76, + "probability": 0.7707 + }, + { + "start": 4513.9, + "end": 4515.56, + "probability": 0.449 + }, + { + "start": 4516.34, + "end": 4516.9, + "probability": 0.3624 + }, + { + "start": 4516.9, + "end": 4518.3, + "probability": 0.6889 + }, + { + "start": 4518.34, + "end": 4520.62, + "probability": 0.8757 + }, + { + "start": 4520.68, + "end": 4523.44, + "probability": 0.9813 + }, + { + "start": 4523.5, + "end": 4526.24, + "probability": 0.8232 + }, + { + "start": 4526.38, + "end": 4529.12, + "probability": 0.9257 + }, + { + "start": 4529.64, + "end": 4530.54, + "probability": 0.8254 + }, + { + "start": 4531.42, + "end": 4532.76, + "probability": 0.6882 + }, + { + "start": 4532.98, + "end": 4533.26, + "probability": 0.887 + }, + { + "start": 4533.82, + "end": 4537.16, + "probability": 0.8423 + }, + { + "start": 4537.2, + "end": 4540.04, + "probability": 0.666 + }, + { + "start": 4540.62, + "end": 4543.44, + "probability": 0.9653 + }, + { + "start": 4543.56, + "end": 4546.06, + "probability": 0.9898 + }, + { + "start": 4546.06, + "end": 4549.58, + "probability": 0.9975 + }, + { + "start": 4550.18, + "end": 4551.6, + "probability": 0.89 + }, + { + "start": 4552.34, + "end": 4553.2, + "probability": 0.7724 + }, + { + "start": 4553.3, + "end": 4555.14, + "probability": 0.9517 + }, + { + "start": 4555.2, + "end": 4558.93, + "probability": 0.9688 + }, + { + "start": 4559.54, + "end": 4560.0, + "probability": 0.6477 + }, + { + "start": 4560.22, + "end": 4564.16, + "probability": 0.9567 + }, + { + "start": 4564.16, + "end": 4569.23, + "probability": 0.9933 + }, + { + "start": 4570.22, + "end": 4572.96, + "probability": 0.7017 + }, + { + "start": 4573.54, + "end": 4576.86, + "probability": 0.9678 + }, + { + "start": 4577.44, + "end": 4582.08, + "probability": 0.917 + }, + { + "start": 4582.34, + "end": 4583.42, + "probability": 0.8796 + }, + { + "start": 4583.6, + "end": 4583.6, + "probability": 0.0751 + }, + { + "start": 4583.6, + "end": 4583.78, + "probability": 0.7373 + }, + { + "start": 4583.9, + "end": 4587.52, + "probability": 0.9983 + }, + { + "start": 4587.7, + "end": 4588.16, + "probability": 0.804 + }, + { + "start": 4588.22, + "end": 4588.38, + "probability": 0.7054 + }, + { + "start": 4588.52, + "end": 4592.74, + "probability": 0.9442 + }, + { + "start": 4619.78, + "end": 4621.14, + "probability": 0.7638 + }, + { + "start": 4621.7, + "end": 4622.48, + "probability": 0.8919 + }, + { + "start": 4623.1, + "end": 4624.0, + "probability": 0.6452 + }, + { + "start": 4625.86, + "end": 4632.88, + "probability": 0.9689 + }, + { + "start": 4632.88, + "end": 4641.16, + "probability": 0.9498 + }, + { + "start": 4643.32, + "end": 4646.96, + "probability": 0.7978 + }, + { + "start": 4649.24, + "end": 4653.02, + "probability": 0.9611 + }, + { + "start": 4653.02, + "end": 4658.68, + "probability": 0.9968 + }, + { + "start": 4659.56, + "end": 4662.38, + "probability": 0.995 + }, + { + "start": 4665.04, + "end": 4667.6, + "probability": 0.6435 + }, + { + "start": 4668.2, + "end": 4670.2, + "probability": 0.7345 + }, + { + "start": 4670.82, + "end": 4673.49, + "probability": 0.1122 + }, + { + "start": 4674.6, + "end": 4678.66, + "probability": 0.1875 + }, + { + "start": 4679.28, + "end": 4682.0, + "probability": 0.5336 + }, + { + "start": 4684.12, + "end": 4688.38, + "probability": 0.993 + }, + { + "start": 4689.98, + "end": 4696.84, + "probability": 0.8636 + }, + { + "start": 4697.86, + "end": 4698.3, + "probability": 0.668 + }, + { + "start": 4698.9, + "end": 4702.86, + "probability": 0.9533 + }, + { + "start": 4703.82, + "end": 4705.06, + "probability": 0.9484 + }, + { + "start": 4705.94, + "end": 4708.58, + "probability": 0.8232 + }, + { + "start": 4709.54, + "end": 4712.86, + "probability": 0.7229 + }, + { + "start": 4713.08, + "end": 4718.1, + "probability": 0.9821 + }, + { + "start": 4719.6, + "end": 4721.5, + "probability": 0.9189 + }, + { + "start": 4722.1, + "end": 4726.28, + "probability": 0.8625 + }, + { + "start": 4727.5, + "end": 4733.16, + "probability": 0.9888 + }, + { + "start": 4733.16, + "end": 4739.02, + "probability": 0.9953 + }, + { + "start": 4752.26, + "end": 4753.98, + "probability": 0.641 + }, + { + "start": 4779.98, + "end": 4783.78, + "probability": 0.7086 + }, + { + "start": 4785.06, + "end": 4786.8, + "probability": 0.9083 + }, + { + "start": 4787.76, + "end": 4788.7, + "probability": 0.9688 + }, + { + "start": 4789.86, + "end": 4792.0, + "probability": 0.9904 + }, + { + "start": 4792.96, + "end": 4794.48, + "probability": 0.973 + }, + { + "start": 4795.36, + "end": 4796.48, + "probability": 0.9914 + }, + { + "start": 4797.28, + "end": 4797.88, + "probability": 0.7292 + }, + { + "start": 4798.52, + "end": 4801.7, + "probability": 0.9817 + }, + { + "start": 4802.34, + "end": 4803.2, + "probability": 0.9835 + }, + { + "start": 4804.32, + "end": 4807.16, + "probability": 0.9865 + }, + { + "start": 4807.96, + "end": 4809.68, + "probability": 0.9859 + }, + { + "start": 4810.3, + "end": 4813.16, + "probability": 0.8646 + }, + { + "start": 4813.9, + "end": 4815.78, + "probability": 0.8181 + }, + { + "start": 4816.38, + "end": 4818.3, + "probability": 0.9424 + }, + { + "start": 4818.8, + "end": 4822.92, + "probability": 0.9899 + }, + { + "start": 4823.88, + "end": 4826.72, + "probability": 0.948 + }, + { + "start": 4827.74, + "end": 4832.68, + "probability": 0.9928 + }, + { + "start": 4833.62, + "end": 4836.96, + "probability": 0.9981 + }, + { + "start": 4837.72, + "end": 4840.48, + "probability": 0.9976 + }, + { + "start": 4841.32, + "end": 4842.44, + "probability": 0.9988 + }, + { + "start": 4843.04, + "end": 4845.42, + "probability": 0.9951 + }, + { + "start": 4857.36, + "end": 4858.3, + "probability": 0.1085 + }, + { + "start": 4858.3, + "end": 4858.3, + "probability": 0.0759 + }, + { + "start": 4858.3, + "end": 4858.3, + "probability": 0.085 + }, + { + "start": 4858.3, + "end": 4859.16, + "probability": 0.31 + }, + { + "start": 4859.86, + "end": 4862.98, + "probability": 0.6575 + }, + { + "start": 4864.04, + "end": 4865.14, + "probability": 0.9817 + }, + { + "start": 4865.68, + "end": 4866.94, + "probability": 0.7627 + }, + { + "start": 4867.64, + "end": 4869.87, + "probability": 0.9674 + }, + { + "start": 4870.54, + "end": 4873.16, + "probability": 0.9932 + }, + { + "start": 4874.04, + "end": 4874.38, + "probability": 0.9582 + }, + { + "start": 4875.44, + "end": 4876.84, + "probability": 0.9017 + }, + { + "start": 4877.5, + "end": 4878.14, + "probability": 0.7619 + }, + { + "start": 4878.96, + "end": 4881.86, + "probability": 0.8872 + }, + { + "start": 4882.3, + "end": 4887.1, + "probability": 0.9157 + }, + { + "start": 4887.68, + "end": 4887.82, + "probability": 0.4476 + }, + { + "start": 4888.7, + "end": 4889.0, + "probability": 0.3527 + }, + { + "start": 4889.54, + "end": 4894.42, + "probability": 0.9801 + }, + { + "start": 4894.96, + "end": 4896.36, + "probability": 0.7226 + }, + { + "start": 4896.84, + "end": 4900.06, + "probability": 0.9604 + }, + { + "start": 4900.54, + "end": 4903.16, + "probability": 0.7664 + }, + { + "start": 4903.96, + "end": 4905.06, + "probability": 0.9723 + }, + { + "start": 4906.44, + "end": 4907.04, + "probability": 0.9188 + }, + { + "start": 4907.68, + "end": 4909.18, + "probability": 0.978 + }, + { + "start": 4909.72, + "end": 4912.44, + "probability": 0.9992 + }, + { + "start": 4912.44, + "end": 4915.64, + "probability": 0.9969 + }, + { + "start": 4916.18, + "end": 4917.02, + "probability": 0.9785 + }, + { + "start": 4918.18, + "end": 4920.7, + "probability": 0.9851 + }, + { + "start": 4921.28, + "end": 4922.6, + "probability": 0.9916 + }, + { + "start": 4923.12, + "end": 4924.58, + "probability": 0.7697 + }, + { + "start": 4925.44, + "end": 4926.32, + "probability": 0.9932 + }, + { + "start": 4927.04, + "end": 4927.5, + "probability": 0.9943 + }, + { + "start": 4928.02, + "end": 4930.58, + "probability": 0.9038 + }, + { + "start": 4931.28, + "end": 4932.86, + "probability": 0.941 + }, + { + "start": 4933.44, + "end": 4933.94, + "probability": 0.8921 + }, + { + "start": 4934.5, + "end": 4938.96, + "probability": 0.8651 + }, + { + "start": 4940.34, + "end": 4945.44, + "probability": 0.9241 + }, + { + "start": 4946.44, + "end": 4950.92, + "probability": 0.9724 + }, + { + "start": 4951.4, + "end": 4953.46, + "probability": 0.9427 + }, + { + "start": 4954.7, + "end": 4956.04, + "probability": 0.9839 + }, + { + "start": 4956.6, + "end": 4959.08, + "probability": 0.8476 + }, + { + "start": 4960.44, + "end": 4967.14, + "probability": 0.9665 + }, + { + "start": 4967.18, + "end": 4967.52, + "probability": 0.5312 + }, + { + "start": 4967.6, + "end": 4967.78, + "probability": 0.4003 + }, + { + "start": 4967.92, + "end": 4968.5, + "probability": 0.993 + }, + { + "start": 4969.74, + "end": 4975.2, + "probability": 0.9764 + }, + { + "start": 4975.32, + "end": 4976.44, + "probability": 0.991 + }, + { + "start": 4977.86, + "end": 4979.72, + "probability": 0.3139 + }, + { + "start": 4979.82, + "end": 4983.28, + "probability": 0.9895 + }, + { + "start": 4983.28, + "end": 4985.74, + "probability": 0.9415 + }, + { + "start": 4986.42, + "end": 4987.6, + "probability": 0.8456 + }, + { + "start": 4988.06, + "end": 4991.56, + "probability": 0.9837 + }, + { + "start": 4992.42, + "end": 4993.74, + "probability": 0.8857 + }, + { + "start": 4994.32, + "end": 4997.66, + "probability": 0.9827 + }, + { + "start": 4998.02, + "end": 4998.68, + "probability": 0.6778 + }, + { + "start": 4998.76, + "end": 4999.64, + "probability": 0.9222 + }, + { + "start": 5000.1, + "end": 5000.7, + "probability": 0.9756 + }, + { + "start": 5001.24, + "end": 5003.9, + "probability": 0.9991 + }, + { + "start": 5004.72, + "end": 5006.02, + "probability": 0.6142 + }, + { + "start": 5006.54, + "end": 5010.4, + "probability": 0.9871 + }, + { + "start": 5011.1, + "end": 5014.22, + "probability": 0.9838 + }, + { + "start": 5014.92, + "end": 5016.6, + "probability": 0.9526 + }, + { + "start": 5017.24, + "end": 5020.2, + "probability": 0.9919 + }, + { + "start": 5020.82, + "end": 5021.46, + "probability": 0.9464 + }, + { + "start": 5021.84, + "end": 5021.86, + "probability": 0.703 + }, + { + "start": 5021.94, + "end": 5022.14, + "probability": 0.8235 + }, + { + "start": 5023.72, + "end": 5025.52, + "probability": 0.9324 + }, + { + "start": 5033.3, + "end": 5034.66, + "probability": 0.5216 + }, + { + "start": 5035.68, + "end": 5038.34, + "probability": 0.8452 + }, + { + "start": 5039.58, + "end": 5044.44, + "probability": 0.973 + }, + { + "start": 5045.02, + "end": 5049.2, + "probability": 0.942 + }, + { + "start": 5050.16, + "end": 5054.96, + "probability": 0.9824 + }, + { + "start": 5055.64, + "end": 5058.86, + "probability": 0.9976 + }, + { + "start": 5059.56, + "end": 5060.2, + "probability": 0.9145 + }, + { + "start": 5061.44, + "end": 5063.36, + "probability": 0.9803 + }, + { + "start": 5064.32, + "end": 5067.11, + "probability": 0.9873 + }, + { + "start": 5067.6, + "end": 5070.64, + "probability": 0.9821 + }, + { + "start": 5071.62, + "end": 5074.92, + "probability": 0.9933 + }, + { + "start": 5074.96, + "end": 5075.7, + "probability": 0.8813 + }, + { + "start": 5076.06, + "end": 5076.52, + "probability": 0.7569 + }, + { + "start": 5076.62, + "end": 5078.18, + "probability": 0.8887 + }, + { + "start": 5079.02, + "end": 5080.12, + "probability": 0.9067 + }, + { + "start": 5080.94, + "end": 5084.94, + "probability": 0.981 + }, + { + "start": 5085.96, + "end": 5088.02, + "probability": 0.9731 + }, + { + "start": 5088.78, + "end": 5090.85, + "probability": 0.9663 + }, + { + "start": 5091.64, + "end": 5096.32, + "probability": 0.9883 + }, + { + "start": 5096.88, + "end": 5098.02, + "probability": 0.8691 + }, + { + "start": 5099.14, + "end": 5104.18, + "probability": 0.9176 + }, + { + "start": 5106.06, + "end": 5109.7, + "probability": 0.9506 + }, + { + "start": 5110.24, + "end": 5114.82, + "probability": 0.9912 + }, + { + "start": 5115.12, + "end": 5115.66, + "probability": 0.6039 + }, + { + "start": 5116.12, + "end": 5117.98, + "probability": 0.9881 + }, + { + "start": 5118.66, + "end": 5121.2, + "probability": 0.9728 + }, + { + "start": 5121.82, + "end": 5124.42, + "probability": 0.9958 + }, + { + "start": 5125.12, + "end": 5131.7, + "probability": 0.9203 + }, + { + "start": 5132.84, + "end": 5133.9, + "probability": 0.8143 + }, + { + "start": 5135.58, + "end": 5137.68, + "probability": 0.9883 + }, + { + "start": 5137.82, + "end": 5139.6, + "probability": 0.9126 + }, + { + "start": 5140.52, + "end": 5145.78, + "probability": 0.9788 + }, + { + "start": 5146.62, + "end": 5149.02, + "probability": 0.998 + }, + { + "start": 5149.94, + "end": 5153.58, + "probability": 0.9498 + }, + { + "start": 5155.0, + "end": 5156.35, + "probability": 0.9985 + }, + { + "start": 5157.52, + "end": 5159.14, + "probability": 0.9985 + }, + { + "start": 5159.28, + "end": 5164.04, + "probability": 0.9779 + }, + { + "start": 5165.3, + "end": 5168.46, + "probability": 0.9494 + }, + { + "start": 5169.52, + "end": 5175.1, + "probability": 0.9201 + }, + { + "start": 5176.06, + "end": 5181.26, + "probability": 0.9795 + }, + { + "start": 5181.26, + "end": 5185.84, + "probability": 0.9932 + }, + { + "start": 5186.8, + "end": 5191.04, + "probability": 0.9891 + }, + { + "start": 5191.56, + "end": 5192.18, + "probability": 0.6869 + }, + { + "start": 5192.22, + "end": 5194.96, + "probability": 0.861 + }, + { + "start": 5195.74, + "end": 5198.86, + "probability": 0.7985 + }, + { + "start": 5199.48, + "end": 5201.02, + "probability": 0.9692 + }, + { + "start": 5201.04, + "end": 5201.66, + "probability": 0.5813 + }, + { + "start": 5201.66, + "end": 5202.06, + "probability": 0.7614 + }, + { + "start": 5202.44, + "end": 5208.76, + "probability": 0.9865 + }, + { + "start": 5210.15, + "end": 5214.26, + "probability": 0.7723 + }, + { + "start": 5214.44, + "end": 5218.4, + "probability": 0.9889 + }, + { + "start": 5218.5, + "end": 5219.18, + "probability": 0.9323 + }, + { + "start": 5219.56, + "end": 5220.38, + "probability": 0.7343 + }, + { + "start": 5220.82, + "end": 5221.74, + "probability": 0.7604 + }, + { + "start": 5221.78, + "end": 5222.1, + "probability": 0.4801 + }, + { + "start": 5222.56, + "end": 5230.34, + "probability": 0.9744 + }, + { + "start": 5230.76, + "end": 5235.54, + "probability": 0.9819 + }, + { + "start": 5235.62, + "end": 5236.0, + "probability": 0.7549 + }, + { + "start": 5236.44, + "end": 5236.94, + "probability": 0.7849 + }, + { + "start": 5239.0, + "end": 5242.86, + "probability": 0.8342 + }, + { + "start": 5242.96, + "end": 5243.46, + "probability": 0.8928 + }, + { + "start": 5256.76, + "end": 5257.0, + "probability": 0.7396 + }, + { + "start": 5257.28, + "end": 5259.24, + "probability": 0.8278 + }, + { + "start": 5260.02, + "end": 5264.98, + "probability": 0.9622 + }, + { + "start": 5266.48, + "end": 5268.12, + "probability": 0.9213 + }, + { + "start": 5268.3, + "end": 5271.06, + "probability": 0.8222 + }, + { + "start": 5272.34, + "end": 5278.68, + "probability": 0.9848 + }, + { + "start": 5280.56, + "end": 5284.88, + "probability": 0.9976 + }, + { + "start": 5284.88, + "end": 5289.58, + "probability": 0.9858 + }, + { + "start": 5289.64, + "end": 5292.32, + "probability": 0.9966 + }, + { + "start": 5293.4, + "end": 5295.22, + "probability": 0.9108 + }, + { + "start": 5295.26, + "end": 5298.32, + "probability": 0.9832 + }, + { + "start": 5299.08, + "end": 5301.28, + "probability": 0.9406 + }, + { + "start": 5302.24, + "end": 5304.36, + "probability": 0.8776 + }, + { + "start": 5304.92, + "end": 5306.56, + "probability": 0.5883 + }, + { + "start": 5306.56, + "end": 5311.14, + "probability": 0.951 + }, + { + "start": 5312.42, + "end": 5314.36, + "probability": 0.6387 + }, + { + "start": 5314.46, + "end": 5317.06, + "probability": 0.9883 + }, + { + "start": 5317.28, + "end": 5319.94, + "probability": 0.8254 + }, + { + "start": 5320.92, + "end": 5321.66, + "probability": 0.671 + }, + { + "start": 5321.92, + "end": 5324.56, + "probability": 0.9443 + }, + { + "start": 5324.8, + "end": 5326.28, + "probability": 0.6657 + }, + { + "start": 5326.68, + "end": 5326.68, + "probability": 0.6427 + }, + { + "start": 5326.68, + "end": 5326.98, + "probability": 0.7353 + }, + { + "start": 5327.76, + "end": 5331.74, + "probability": 0.7354 + }, + { + "start": 5332.44, + "end": 5335.42, + "probability": 0.9904 + }, + { + "start": 5335.42, + "end": 5339.34, + "probability": 0.9875 + }, + { + "start": 5340.1, + "end": 5345.46, + "probability": 0.9946 + }, + { + "start": 5346.44, + "end": 5350.26, + "probability": 0.9911 + }, + { + "start": 5351.88, + "end": 5354.94, + "probability": 0.9868 + }, + { + "start": 5355.5, + "end": 5360.1, + "probability": 0.9857 + }, + { + "start": 5360.1, + "end": 5364.64, + "probability": 0.9979 + }, + { + "start": 5366.02, + "end": 5366.66, + "probability": 0.8128 + }, + { + "start": 5367.32, + "end": 5370.68, + "probability": 0.998 + }, + { + "start": 5371.22, + "end": 5375.52, + "probability": 0.9871 + }, + { + "start": 5375.52, + "end": 5380.92, + "probability": 0.9639 + }, + { + "start": 5381.68, + "end": 5384.06, + "probability": 0.8291 + }, + { + "start": 5384.06, + "end": 5387.54, + "probability": 0.9924 + }, + { + "start": 5388.06, + "end": 5388.82, + "probability": 0.9916 + }, + { + "start": 5388.94, + "end": 5389.82, + "probability": 0.9724 + }, + { + "start": 5389.92, + "end": 5391.5, + "probability": 0.9591 + }, + { + "start": 5391.58, + "end": 5395.14, + "probability": 0.9917 + }, + { + "start": 5396.36, + "end": 5399.1, + "probability": 0.9946 + }, + { + "start": 5399.76, + "end": 5402.14, + "probability": 0.9897 + }, + { + "start": 5402.14, + "end": 5403.76, + "probability": 0.991 + }, + { + "start": 5404.72, + "end": 5406.78, + "probability": 0.9922 + }, + { + "start": 5408.68, + "end": 5409.31, + "probability": 0.9802 + }, + { + "start": 5409.8, + "end": 5416.22, + "probability": 0.9473 + }, + { + "start": 5416.68, + "end": 5420.7, + "probability": 0.9173 + }, + { + "start": 5422.26, + "end": 5424.98, + "probability": 0.994 + }, + { + "start": 5425.2, + "end": 5429.13, + "probability": 0.8807 + }, + { + "start": 5429.46, + "end": 5430.9, + "probability": 0.9954 + }, + { + "start": 5431.88, + "end": 5436.58, + "probability": 0.9398 + }, + { + "start": 5437.58, + "end": 5437.86, + "probability": 0.8879 + }, + { + "start": 5438.82, + "end": 5444.18, + "probability": 0.9822 + }, + { + "start": 5445.12, + "end": 5448.88, + "probability": 0.9988 + }, + { + "start": 5449.98, + "end": 5453.26, + "probability": 0.947 + }, + { + "start": 5454.24, + "end": 5456.72, + "probability": 0.9847 + }, + { + "start": 5457.42, + "end": 5461.42, + "probability": 0.9556 + }, + { + "start": 5462.98, + "end": 5465.88, + "probability": 0.9508 + }, + { + "start": 5467.2, + "end": 5468.48, + "probability": 0.8466 + }, + { + "start": 5468.78, + "end": 5470.74, + "probability": 0.8501 + }, + { + "start": 5470.92, + "end": 5473.78, + "probability": 0.7784 + }, + { + "start": 5474.39, + "end": 5478.02, + "probability": 0.7972 + }, + { + "start": 5478.92, + "end": 5483.76, + "probability": 0.9855 + }, + { + "start": 5483.8, + "end": 5487.06, + "probability": 0.988 + }, + { + "start": 5489.44, + "end": 5489.74, + "probability": 0.5429 + }, + { + "start": 5489.84, + "end": 5490.8, + "probability": 0.7357 + }, + { + "start": 5492.12, + "end": 5495.64, + "probability": 0.9966 + }, + { + "start": 5496.24, + "end": 5498.04, + "probability": 0.9983 + }, + { + "start": 5498.12, + "end": 5499.14, + "probability": 0.9991 + }, + { + "start": 5499.78, + "end": 5503.14, + "probability": 0.9414 + }, + { + "start": 5503.94, + "end": 5506.08, + "probability": 0.4527 + }, + { + "start": 5507.38, + "end": 5510.96, + "probability": 0.9099 + }, + { + "start": 5511.84, + "end": 5515.66, + "probability": 0.9902 + }, + { + "start": 5516.22, + "end": 5518.84, + "probability": 0.9574 + }, + { + "start": 5520.1, + "end": 5522.88, + "probability": 0.9284 + }, + { + "start": 5523.66, + "end": 5524.76, + "probability": 0.9909 + }, + { + "start": 5525.0, + "end": 5526.3, + "probability": 0.9941 + }, + { + "start": 5526.42, + "end": 5527.44, + "probability": 0.7266 + }, + { + "start": 5527.54, + "end": 5531.02, + "probability": 0.9028 + }, + { + "start": 5532.5, + "end": 5534.66, + "probability": 0.8366 + }, + { + "start": 5536.5, + "end": 5537.84, + "probability": 0.9011 + }, + { + "start": 5538.28, + "end": 5538.62, + "probability": 0.2969 + }, + { + "start": 5539.22, + "end": 5540.25, + "probability": 0.7427 + }, + { + "start": 5540.86, + "end": 5543.38, + "probability": 0.8909 + }, + { + "start": 5544.54, + "end": 5549.47, + "probability": 0.6664 + }, + { + "start": 5549.64, + "end": 5550.26, + "probability": 0.7085 + }, + { + "start": 5550.5, + "end": 5551.24, + "probability": 0.8679 + }, + { + "start": 5551.28, + "end": 5551.9, + "probability": 0.8069 + }, + { + "start": 5552.16, + "end": 5555.04, + "probability": 0.9694 + }, + { + "start": 5555.24, + "end": 5556.78, + "probability": 0.9272 + }, + { + "start": 5558.18, + "end": 5561.24, + "probability": 0.757 + }, + { + "start": 5562.32, + "end": 5563.6, + "probability": 0.8132 + }, + { + "start": 5564.02, + "end": 5564.12, + "probability": 0.2339 + }, + { + "start": 5564.94, + "end": 5567.18, + "probability": 0.812 + }, + { + "start": 5568.14, + "end": 5570.68, + "probability": 0.9285 + }, + { + "start": 5570.94, + "end": 5573.46, + "probability": 0.9734 + }, + { + "start": 5573.58, + "end": 5574.14, + "probability": 0.6776 + }, + { + "start": 5574.62, + "end": 5576.88, + "probability": 0.7607 + }, + { + "start": 5577.6, + "end": 5579.3, + "probability": 0.8328 + }, + { + "start": 5579.56, + "end": 5583.04, + "probability": 0.9985 + }, + { + "start": 5583.04, + "end": 5586.06, + "probability": 0.991 + }, + { + "start": 5586.52, + "end": 5587.2, + "probability": 0.7511 + }, + { + "start": 5588.0, + "end": 5590.24, + "probability": 0.9164 + }, + { + "start": 5590.42, + "end": 5590.88, + "probability": 0.4563 + }, + { + "start": 5590.9, + "end": 5594.36, + "probability": 0.9915 + }, + { + "start": 5595.1, + "end": 5597.01, + "probability": 0.9463 + }, + { + "start": 5598.26, + "end": 5603.48, + "probability": 0.9927 + }, + { + "start": 5603.58, + "end": 5605.48, + "probability": 0.9775 + }, + { + "start": 5606.06, + "end": 5607.24, + "probability": 0.9314 + }, + { + "start": 5608.04, + "end": 5610.34, + "probability": 0.9952 + }, + { + "start": 5611.02, + "end": 5612.4, + "probability": 0.993 + }, + { + "start": 5612.46, + "end": 5614.08, + "probability": 0.9917 + }, + { + "start": 5616.34, + "end": 5617.06, + "probability": 0.9402 + }, + { + "start": 5619.66, + "end": 5620.1, + "probability": 0.9922 + }, + { + "start": 5621.22, + "end": 5622.6, + "probability": 0.9982 + }, + { + "start": 5622.82, + "end": 5623.66, + "probability": 0.8978 + }, + { + "start": 5623.76, + "end": 5625.2, + "probability": 0.6576 + }, + { + "start": 5626.5, + "end": 5628.65, + "probability": 0.9976 + }, + { + "start": 5629.42, + "end": 5631.04, + "probability": 0.8353 + }, + { + "start": 5631.66, + "end": 5633.74, + "probability": 0.9876 + }, + { + "start": 5635.14, + "end": 5636.3, + "probability": 0.9836 + }, + { + "start": 5636.9, + "end": 5638.34, + "probability": 0.9826 + }, + { + "start": 5638.98, + "end": 5641.88, + "probability": 0.9834 + }, + { + "start": 5642.86, + "end": 5647.3, + "probability": 0.9982 + }, + { + "start": 5648.66, + "end": 5651.5, + "probability": 0.9943 + }, + { + "start": 5652.62, + "end": 5654.04, + "probability": 0.9672 + }, + { + "start": 5654.78, + "end": 5655.32, + "probability": 0.8386 + }, + { + "start": 5655.44, + "end": 5659.86, + "probability": 0.8893 + }, + { + "start": 5660.28, + "end": 5661.72, + "probability": 0.9391 + }, + { + "start": 5662.72, + "end": 5663.7, + "probability": 0.9988 + }, + { + "start": 5664.58, + "end": 5667.8, + "probability": 0.9961 + }, + { + "start": 5668.58, + "end": 5672.04, + "probability": 0.3593 + }, + { + "start": 5672.04, + "end": 5673.28, + "probability": 0.287 + }, + { + "start": 5674.2, + "end": 5677.02, + "probability": 0.8169 + }, + { + "start": 5677.58, + "end": 5678.98, + "probability": 0.7462 + }, + { + "start": 5679.16, + "end": 5681.72, + "probability": 0.9091 + }, + { + "start": 5682.96, + "end": 5685.48, + "probability": 0.9417 + }, + { + "start": 5686.22, + "end": 5687.32, + "probability": 0.9971 + }, + { + "start": 5687.66, + "end": 5688.9, + "probability": 0.4618 + }, + { + "start": 5689.1, + "end": 5690.42, + "probability": 0.9597 + }, + { + "start": 5691.04, + "end": 5694.38, + "probability": 0.9697 + }, + { + "start": 5694.78, + "end": 5696.46, + "probability": 0.9285 + }, + { + "start": 5696.8, + "end": 5698.44, + "probability": 0.9419 + }, + { + "start": 5699.52, + "end": 5699.9, + "probability": 0.4066 + }, + { + "start": 5699.96, + "end": 5700.94, + "probability": 0.9948 + }, + { + "start": 5701.32, + "end": 5703.12, + "probability": 0.9702 + }, + { + "start": 5703.38, + "end": 5704.04, + "probability": 0.9294 + }, + { + "start": 5704.8, + "end": 5705.74, + "probability": 0.7705 + }, + { + "start": 5707.96, + "end": 5709.92, + "probability": 0.5484 + }, + { + "start": 5710.44, + "end": 5712.16, + "probability": 0.2669 + }, + { + "start": 5712.2, + "end": 5713.4, + "probability": 0.565 + }, + { + "start": 5716.33, + "end": 5720.12, + "probability": 0.8685 + }, + { + "start": 5720.32, + "end": 5720.92, + "probability": 0.6363 + }, + { + "start": 5721.64, + "end": 5723.44, + "probability": 0.1994 + }, + { + "start": 5726.52, + "end": 5729.66, + "probability": 0.6281 + }, + { + "start": 5730.22, + "end": 5734.84, + "probability": 0.0791 + }, + { + "start": 5745.22, + "end": 5745.32, + "probability": 0.3466 + }, + { + "start": 5745.32, + "end": 5746.02, + "probability": 0.5621 + }, + { + "start": 5748.48, + "end": 5751.28, + "probability": 0.9312 + }, + { + "start": 5751.98, + "end": 5752.42, + "probability": 0.605 + }, + { + "start": 5757.32, + "end": 5761.76, + "probability": 0.9567 + }, + { + "start": 5761.76, + "end": 5766.9, + "probability": 0.9836 + }, + { + "start": 5767.06, + "end": 5772.48, + "probability": 0.7424 + }, + { + "start": 5772.68, + "end": 5773.12, + "probability": 0.7532 + }, + { + "start": 5774.02, + "end": 5775.6, + "probability": 0.6683 + }, + { + "start": 5777.62, + "end": 5781.16, + "probability": 0.869 + }, + { + "start": 5781.4, + "end": 5782.3, + "probability": 0.6605 + }, + { + "start": 5782.9, + "end": 5788.24, + "probability": 0.6528 + }, + { + "start": 5788.38, + "end": 5789.94, + "probability": 0.3118 + }, + { + "start": 5795.1, + "end": 5797.98, + "probability": 0.3633 + }, + { + "start": 5800.28, + "end": 5801.58, + "probability": 0.9225 + }, + { + "start": 5802.12, + "end": 5802.74, + "probability": 0.7996 + }, + { + "start": 5805.08, + "end": 5809.08, + "probability": 0.1089 + }, + { + "start": 5809.08, + "end": 5809.28, + "probability": 0.0114 + }, + { + "start": 5810.86, + "end": 5810.96, + "probability": 0.0579 + }, + { + "start": 5829.14, + "end": 5830.52, + "probability": 0.5257 + }, + { + "start": 5831.5, + "end": 5835.36, + "probability": 0.3074 + }, + { + "start": 5835.36, + "end": 5836.34, + "probability": 0.0623 + }, + { + "start": 5837.35, + "end": 5839.8, + "probability": 0.0373 + }, + { + "start": 5849.82, + "end": 5854.62, + "probability": 0.9491 + }, + { + "start": 5855.1, + "end": 5858.96, + "probability": 0.9939 + }, + { + "start": 5859.9, + "end": 5863.02, + "probability": 0.9932 + }, + { + "start": 5863.02, + "end": 5865.84, + "probability": 0.8897 + }, + { + "start": 5866.4, + "end": 5868.98, + "probability": 0.9991 + }, + { + "start": 5869.88, + "end": 5873.24, + "probability": 0.9633 + }, + { + "start": 5874.68, + "end": 5879.28, + "probability": 0.9706 + }, + { + "start": 5880.02, + "end": 5880.92, + "probability": 0.7753 + }, + { + "start": 5881.1, + "end": 5885.56, + "probability": 0.9835 + }, + { + "start": 5885.64, + "end": 5886.92, + "probability": 0.8461 + }, + { + "start": 5887.0, + "end": 5887.42, + "probability": 0.7166 + }, + { + "start": 5887.92, + "end": 5890.43, + "probability": 0.9775 + }, + { + "start": 5893.2, + "end": 5896.18, + "probability": 0.9473 + }, + { + "start": 5896.18, + "end": 5901.98, + "probability": 0.9863 + }, + { + "start": 5902.1, + "end": 5903.86, + "probability": 0.9972 + }, + { + "start": 5904.5, + "end": 5906.22, + "probability": 0.975 + }, + { + "start": 5907.04, + "end": 5909.04, + "probability": 0.9818 + }, + { + "start": 5909.04, + "end": 5911.34, + "probability": 0.9333 + }, + { + "start": 5911.9, + "end": 5914.88, + "probability": 0.9846 + }, + { + "start": 5915.17, + "end": 5918.24, + "probability": 0.9883 + }, + { + "start": 5918.98, + "end": 5922.24, + "probability": 0.9814 + }, + { + "start": 5922.24, + "end": 5926.76, + "probability": 0.9966 + }, + { + "start": 5926.84, + "end": 5927.86, + "probability": 0.9326 + }, + { + "start": 5928.38, + "end": 5932.04, + "probability": 0.9742 + }, + { + "start": 5935.76, + "end": 5937.06, + "probability": 0.706 + }, + { + "start": 5937.8, + "end": 5939.2, + "probability": 0.8674 + }, + { + "start": 5939.94, + "end": 5941.2, + "probability": 0.9014 + }, + { + "start": 5944.18, + "end": 5945.54, + "probability": 0.9052 + }, + { + "start": 5957.88, + "end": 5958.98, + "probability": 0.6033 + }, + { + "start": 5959.56, + "end": 5960.62, + "probability": 0.8962 + }, + { + "start": 5960.64, + "end": 5961.83, + "probability": 0.6734 + }, + { + "start": 5964.04, + "end": 5965.1, + "probability": 0.9984 + }, + { + "start": 5967.52, + "end": 5972.32, + "probability": 0.9306 + }, + { + "start": 5973.64, + "end": 5980.3, + "probability": 0.9968 + }, + { + "start": 5982.04, + "end": 5984.46, + "probability": 0.9979 + }, + { + "start": 5984.46, + "end": 5988.06, + "probability": 0.9121 + }, + { + "start": 5988.78, + "end": 5990.8, + "probability": 0.9546 + }, + { + "start": 5992.7, + "end": 5995.0, + "probability": 0.9875 + }, + { + "start": 5996.42, + "end": 6001.7, + "probability": 0.9969 + }, + { + "start": 6002.66, + "end": 6003.7, + "probability": 0.9691 + }, + { + "start": 6004.34, + "end": 6006.66, + "probability": 0.9897 + }, + { + "start": 6007.56, + "end": 6008.4, + "probability": 0.8869 + }, + { + "start": 6009.04, + "end": 6012.14, + "probability": 0.6891 + }, + { + "start": 6013.08, + "end": 6016.84, + "probability": 0.9883 + }, + { + "start": 6016.88, + "end": 6019.08, + "probability": 0.9807 + }, + { + "start": 6020.84, + "end": 6023.56, + "probability": 0.9977 + }, + { + "start": 6024.18, + "end": 6027.58, + "probability": 0.9658 + }, + { + "start": 6028.46, + "end": 6031.92, + "probability": 0.9887 + }, + { + "start": 6033.78, + "end": 6037.9, + "probability": 0.9928 + }, + { + "start": 6039.16, + "end": 6041.44, + "probability": 0.9888 + }, + { + "start": 6042.54, + "end": 6046.26, + "probability": 0.9966 + }, + { + "start": 6046.92, + "end": 6049.54, + "probability": 0.8892 + }, + { + "start": 6051.04, + "end": 6053.6, + "probability": 0.9138 + }, + { + "start": 6056.2, + "end": 6058.16, + "probability": 0.9927 + }, + { + "start": 6059.34, + "end": 6060.56, + "probability": 0.9502 + }, + { + "start": 6061.74, + "end": 6065.44, + "probability": 0.9949 + }, + { + "start": 6066.3, + "end": 6067.4, + "probability": 0.9731 + }, + { + "start": 6069.28, + "end": 6073.78, + "probability": 0.9523 + }, + { + "start": 6074.6, + "end": 6079.34, + "probability": 0.7185 + }, + { + "start": 6079.38, + "end": 6080.4, + "probability": 0.8199 + }, + { + "start": 6081.56, + "end": 6083.6, + "probability": 0.9858 + }, + { + "start": 6084.9, + "end": 6085.9, + "probability": 0.9141 + }, + { + "start": 6086.22, + "end": 6089.64, + "probability": 0.9766 + }, + { + "start": 6090.14, + "end": 6093.54, + "probability": 0.9976 + }, + { + "start": 6093.54, + "end": 6097.14, + "probability": 0.999 + }, + { + "start": 6098.06, + "end": 6101.0, + "probability": 0.9643 + }, + { + "start": 6101.8, + "end": 6103.25, + "probability": 0.9791 + }, + { + "start": 6104.1, + "end": 6106.14, + "probability": 0.9556 + }, + { + "start": 6106.66, + "end": 6109.48, + "probability": 0.9981 + }, + { + "start": 6110.92, + "end": 6113.72, + "probability": 0.9564 + }, + { + "start": 6114.36, + "end": 6116.74, + "probability": 0.9796 + }, + { + "start": 6118.76, + "end": 6124.38, + "probability": 0.9508 + }, + { + "start": 6125.12, + "end": 6127.28, + "probability": 0.999 + }, + { + "start": 6127.96, + "end": 6130.04, + "probability": 0.9889 + }, + { + "start": 6130.2, + "end": 6136.6, + "probability": 0.9963 + }, + { + "start": 6137.16, + "end": 6137.42, + "probability": 0.734 + }, + { + "start": 6138.3, + "end": 6139.0, + "probability": 0.7026 + }, + { + "start": 6140.2, + "end": 6142.16, + "probability": 0.9583 + }, + { + "start": 6142.82, + "end": 6143.16, + "probability": 0.7757 + }, + { + "start": 6155.46, + "end": 6155.9, + "probability": 0.2892 + }, + { + "start": 6155.94, + "end": 6156.98, + "probability": 0.9023 + }, + { + "start": 6156.98, + "end": 6158.56, + "probability": 0.8045 + }, + { + "start": 6159.44, + "end": 6164.94, + "probability": 0.8748 + }, + { + "start": 6166.16, + "end": 6172.14, + "probability": 0.9512 + }, + { + "start": 6172.8, + "end": 6173.62, + "probability": 0.7016 + }, + { + "start": 6175.64, + "end": 6177.76, + "probability": 0.8605 + }, + { + "start": 6180.16, + "end": 6182.82, + "probability": 0.9128 + }, + { + "start": 6183.38, + "end": 6185.0, + "probability": 0.7713 + }, + { + "start": 6186.78, + "end": 6189.64, + "probability": 0.5855 + }, + { + "start": 6191.16, + "end": 6192.26, + "probability": 0.5542 + }, + { + "start": 6193.5, + "end": 6196.76, + "probability": 0.9958 + }, + { + "start": 6197.5, + "end": 6198.76, + "probability": 0.9163 + }, + { + "start": 6199.92, + "end": 6204.52, + "probability": 0.9951 + }, + { + "start": 6206.1, + "end": 6207.88, + "probability": 0.9352 + }, + { + "start": 6208.42, + "end": 6213.08, + "probability": 0.7384 + }, + { + "start": 6213.54, + "end": 6214.88, + "probability": 0.8627 + }, + { + "start": 6216.12, + "end": 6221.02, + "probability": 0.9338 + }, + { + "start": 6221.66, + "end": 6223.5, + "probability": 0.9818 + }, + { + "start": 6224.64, + "end": 6225.72, + "probability": 0.9166 + }, + { + "start": 6226.82, + "end": 6231.14, + "probability": 0.9955 + }, + { + "start": 6232.28, + "end": 6235.2, + "probability": 0.9987 + }, + { + "start": 6235.24, + "end": 6243.12, + "probability": 0.991 + }, + { + "start": 6244.16, + "end": 6247.1, + "probability": 0.9829 + }, + { + "start": 6247.78, + "end": 6248.72, + "probability": 0.5434 + }, + { + "start": 6249.24, + "end": 6250.33, + "probability": 0.9335 + }, + { + "start": 6251.3, + "end": 6253.38, + "probability": 0.8593 + }, + { + "start": 6254.62, + "end": 6258.76, + "probability": 0.9919 + }, + { + "start": 6260.5, + "end": 6261.7, + "probability": 0.9441 + }, + { + "start": 6262.2, + "end": 6266.74, + "probability": 0.9976 + }, + { + "start": 6267.46, + "end": 6269.06, + "probability": 0.9922 + }, + { + "start": 6269.86, + "end": 6273.7, + "probability": 0.9978 + }, + { + "start": 6274.48, + "end": 6276.22, + "probability": 0.9866 + }, + { + "start": 6277.12, + "end": 6281.08, + "probability": 0.9474 + }, + { + "start": 6281.78, + "end": 6284.96, + "probability": 0.9963 + }, + { + "start": 6284.96, + "end": 6288.86, + "probability": 0.9732 + }, + { + "start": 6290.02, + "end": 6291.74, + "probability": 0.8847 + }, + { + "start": 6292.42, + "end": 6294.62, + "probability": 0.9222 + }, + { + "start": 6295.22, + "end": 6295.34, + "probability": 0.7401 + }, + { + "start": 6295.94, + "end": 6296.48, + "probability": 0.4861 + }, + { + "start": 6296.52, + "end": 6296.94, + "probability": 0.8569 + }, + { + "start": 6297.34, + "end": 6297.76, + "probability": 0.9929 + }, + { + "start": 6297.86, + "end": 6299.3, + "probability": 0.9971 + }, + { + "start": 6299.8, + "end": 6301.66, + "probability": 0.8898 + }, + { + "start": 6301.9, + "end": 6302.72, + "probability": 0.9752 + }, + { + "start": 6303.64, + "end": 6305.28, + "probability": 0.8021 + }, + { + "start": 6305.52, + "end": 6310.02, + "probability": 0.9791 + }, + { + "start": 6310.94, + "end": 6313.48, + "probability": 0.8639 + }, + { + "start": 6314.22, + "end": 6316.78, + "probability": 0.9939 + }, + { + "start": 6316.78, + "end": 6320.08, + "probability": 0.9773 + }, + { + "start": 6321.28, + "end": 6322.8, + "probability": 0.8001 + }, + { + "start": 6323.1, + "end": 6327.0, + "probability": 0.9722 + }, + { + "start": 6327.14, + "end": 6328.06, + "probability": 0.6217 + }, + { + "start": 6328.28, + "end": 6332.26, + "probability": 0.9941 + }, + { + "start": 6333.78, + "end": 6335.3, + "probability": 0.9541 + }, + { + "start": 6335.68, + "end": 6339.52, + "probability": 0.9951 + }, + { + "start": 6340.08, + "end": 6340.08, + "probability": 0.1163 + }, + { + "start": 6340.08, + "end": 6340.84, + "probability": 0.6385 + }, + { + "start": 6341.24, + "end": 6343.82, + "probability": 0.884 + }, + { + "start": 6344.98, + "end": 6347.44, + "probability": 0.9903 + }, + { + "start": 6347.86, + "end": 6350.86, + "probability": 0.9976 + }, + { + "start": 6351.4, + "end": 6354.48, + "probability": 0.8722 + }, + { + "start": 6355.02, + "end": 6357.48, + "probability": 0.8635 + }, + { + "start": 6358.14, + "end": 6359.46, + "probability": 0.6085 + }, + { + "start": 6361.16, + "end": 6363.86, + "probability": 0.9552 + }, + { + "start": 6365.24, + "end": 6366.48, + "probability": 0.5269 + }, + { + "start": 6366.56, + "end": 6367.98, + "probability": 0.9232 + }, + { + "start": 6368.46, + "end": 6370.32, + "probability": 0.8972 + }, + { + "start": 6370.82, + "end": 6372.36, + "probability": 0.7275 + }, + { + "start": 6373.02, + "end": 6377.62, + "probability": 0.9589 + }, + { + "start": 6378.52, + "end": 6381.66, + "probability": 0.9874 + }, + { + "start": 6381.66, + "end": 6384.58, + "probability": 0.99 + }, + { + "start": 6385.42, + "end": 6387.66, + "probability": 0.9536 + }, + { + "start": 6388.36, + "end": 6389.06, + "probability": 0.9774 + }, + { + "start": 6389.72, + "end": 6392.18, + "probability": 0.9982 + }, + { + "start": 6392.96, + "end": 6393.8, + "probability": 0.5109 + }, + { + "start": 6394.62, + "end": 6397.66, + "probability": 0.9833 + }, + { + "start": 6398.36, + "end": 6399.28, + "probability": 0.6774 + }, + { + "start": 6401.1, + "end": 6403.89, + "probability": 0.9896 + }, + { + "start": 6404.16, + "end": 6406.92, + "probability": 0.9769 + }, + { + "start": 6407.58, + "end": 6412.32, + "probability": 0.9377 + }, + { + "start": 6412.78, + "end": 6415.5, + "probability": 0.9813 + }, + { + "start": 6415.7, + "end": 6415.88, + "probability": 0.3324 + }, + { + "start": 6415.88, + "end": 6416.28, + "probability": 0.7778 + }, + { + "start": 6418.5, + "end": 6420.72, + "probability": 0.7556 + }, + { + "start": 6421.54, + "end": 6421.98, + "probability": 0.6527 + }, + { + "start": 6422.3, + "end": 6423.62, + "probability": 0.1331 + }, + { + "start": 6426.76, + "end": 6427.96, + "probability": 0.4557 + }, + { + "start": 6447.3, + "end": 6449.56, + "probability": 0.9804 + }, + { + "start": 6452.12, + "end": 6453.2, + "probability": 0.9272 + }, + { + "start": 6455.72, + "end": 6456.44, + "probability": 0.6086 + }, + { + "start": 6457.98, + "end": 6460.94, + "probability": 0.9397 + }, + { + "start": 6461.76, + "end": 6463.62, + "probability": 0.8549 + }, + { + "start": 6465.14, + "end": 6471.3, + "probability": 0.9888 + }, + { + "start": 6472.18, + "end": 6477.62, + "probability": 0.9167 + }, + { + "start": 6480.0, + "end": 6484.7, + "probability": 0.8052 + }, + { + "start": 6485.66, + "end": 6486.96, + "probability": 0.8824 + }, + { + "start": 6488.74, + "end": 6490.74, + "probability": 0.979 + }, + { + "start": 6491.56, + "end": 6495.0, + "probability": 0.9928 + }, + { + "start": 6497.18, + "end": 6497.9, + "probability": 0.0263 + }, + { + "start": 6499.22, + "end": 6500.58, + "probability": 0.6845 + }, + { + "start": 6501.2, + "end": 6502.7, + "probability": 0.8941 + }, + { + "start": 6504.14, + "end": 6504.92, + "probability": 0.9974 + }, + { + "start": 6505.38, + "end": 6507.68, + "probability": 0.9712 + }, + { + "start": 6508.7, + "end": 6509.36, + "probability": 0.9962 + }, + { + "start": 6511.25, + "end": 6513.76, + "probability": 0.9011 + }, + { + "start": 6515.16, + "end": 6517.78, + "probability": 0.9645 + }, + { + "start": 6517.84, + "end": 6518.46, + "probability": 0.4054 + }, + { + "start": 6519.54, + "end": 6520.42, + "probability": 0.984 + }, + { + "start": 6521.38, + "end": 6522.46, + "probability": 0.9727 + }, + { + "start": 6523.66, + "end": 6525.14, + "probability": 0.945 + }, + { + "start": 6526.38, + "end": 6527.08, + "probability": 0.819 + }, + { + "start": 6528.2, + "end": 6531.54, + "probability": 0.9964 + }, + { + "start": 6532.86, + "end": 6534.38, + "probability": 0.9912 + }, + { + "start": 6535.18, + "end": 6536.72, + "probability": 0.9412 + }, + { + "start": 6537.8, + "end": 6541.36, + "probability": 0.9976 + }, + { + "start": 6541.38, + "end": 6544.6, + "probability": 0.9585 + }, + { + "start": 6545.08, + "end": 6545.62, + "probability": 0.6929 + }, + { + "start": 6546.18, + "end": 6546.64, + "probability": 0.754 + }, + { + "start": 6547.62, + "end": 6548.34, + "probability": 0.6728 + }, + { + "start": 6548.44, + "end": 6551.74, + "probability": 0.9936 + }, + { + "start": 6553.16, + "end": 6555.36, + "probability": 0.0199 + }, + { + "start": 6557.1, + "end": 6558.82, + "probability": 0.2097 + }, + { + "start": 6561.74, + "end": 6565.1, + "probability": 0.0323 + }, + { + "start": 6565.88, + "end": 6569.16, + "probability": 0.0329 + }, + { + "start": 6570.4, + "end": 6573.02, + "probability": 0.0728 + }, + { + "start": 6573.02, + "end": 6575.8, + "probability": 0.0137 + }, + { + "start": 6576.9, + "end": 6577.58, + "probability": 0.3931 + }, + { + "start": 6578.74, + "end": 6580.46, + "probability": 0.3713 + }, + { + "start": 6582.58, + "end": 6584.03, + "probability": 0.065 + }, + { + "start": 6585.22, + "end": 6585.82, + "probability": 0.0126 + }, + { + "start": 6588.18, + "end": 6589.54, + "probability": 0.121 + }, + { + "start": 6590.26, + "end": 6594.24, + "probability": 0.109 + }, + { + "start": 6596.38, + "end": 6597.12, + "probability": 0.2428 + }, + { + "start": 6597.86, + "end": 6600.74, + "probability": 0.0299 + }, + { + "start": 6600.78, + "end": 6604.6, + "probability": 0.0111 + }, + { + "start": 6606.72, + "end": 6608.36, + "probability": 0.0417 + }, + { + "start": 6609.28, + "end": 6612.14, + "probability": 0.0533 + }, + { + "start": 6613.44, + "end": 6614.86, + "probability": 0.0301 + }, + { + "start": 6616.32, + "end": 6616.92, + "probability": 0.0583 + }, + { + "start": 6619.08, + "end": 6620.26, + "probability": 0.1281 + }, + { + "start": 6621.26, + "end": 6621.42, + "probability": 0.0806 + }, + { + "start": 6661.0, + "end": 6661.0, + "probability": 0.0 + }, + { + "start": 6661.0, + "end": 6661.0, + "probability": 0.0 + }, + { + "start": 6661.0, + "end": 6661.0, + "probability": 0.0 + }, + { + "start": 6661.0, + "end": 6661.0, + "probability": 0.0 + }, + { + "start": 6661.0, + "end": 6661.0, + "probability": 0.0 + }, + { + "start": 6661.0, + "end": 6661.0, + "probability": 0.0 + }, + { + "start": 6661.0, + "end": 6661.0, + "probability": 0.0 + }, + { + "start": 6661.0, + "end": 6661.0, + "probability": 0.0 + }, + { + "start": 6661.0, + "end": 6661.0, + "probability": 0.0 + }, + { + "start": 6661.0, + "end": 6661.0, + "probability": 0.0 + }, + { + "start": 6661.52, + "end": 6664.34, + "probability": 0.7389 + }, + { + "start": 6665.06, + "end": 6665.62, + "probability": 0.4406 + }, + { + "start": 6666.24, + "end": 6666.64, + "probability": 0.4214 + }, + { + "start": 6666.82, + "end": 6667.24, + "probability": 0.4688 + }, + { + "start": 6671.18, + "end": 6672.32, + "probability": 0.5126 + }, + { + "start": 6673.06, + "end": 6673.68, + "probability": 0.4101 + }, + { + "start": 6674.44, + "end": 6676.8, + "probability": 0.8321 + }, + { + "start": 6678.08, + "end": 6679.16, + "probability": 0.5209 + }, + { + "start": 6679.52, + "end": 6680.26, + "probability": 0.7338 + }, + { + "start": 6680.8, + "end": 6683.28, + "probability": 0.8946 + }, + { + "start": 6683.28, + "end": 6688.9, + "probability": 0.9708 + }, + { + "start": 6689.84, + "end": 6689.84, + "probability": 0.7489 + }, + { + "start": 6689.84, + "end": 6692.18, + "probability": 0.9281 + }, + { + "start": 6693.36, + "end": 6694.58, + "probability": 0.6624 + }, + { + "start": 6695.16, + "end": 6696.66, + "probability": 0.9699 + }, + { + "start": 6697.26, + "end": 6698.5, + "probability": 0.7799 + }, + { + "start": 6699.24, + "end": 6699.78, + "probability": 0.9131 + }, + { + "start": 6701.14, + "end": 6703.12, + "probability": 0.9272 + }, + { + "start": 6704.02, + "end": 6707.9, + "probability": 0.9779 + }, + { + "start": 6708.66, + "end": 6709.5, + "probability": 0.7168 + }, + { + "start": 6710.46, + "end": 6711.25, + "probability": 0.8467 + }, + { + "start": 6711.38, + "end": 6714.26, + "probability": 0.9767 + }, + { + "start": 6714.68, + "end": 6715.62, + "probability": 0.9064 + }, + { + "start": 6717.36, + "end": 6718.58, + "probability": 0.7742 + }, + { + "start": 6719.14, + "end": 6721.42, + "probability": 0.9307 + }, + { + "start": 6722.96, + "end": 6726.34, + "probability": 0.9938 + }, + { + "start": 6726.52, + "end": 6729.9, + "probability": 0.9949 + }, + { + "start": 6730.34, + "end": 6732.1, + "probability": 0.9991 + }, + { + "start": 6732.82, + "end": 6734.04, + "probability": 0.9088 + }, + { + "start": 6735.26, + "end": 6740.06, + "probability": 0.8991 + }, + { + "start": 6741.28, + "end": 6743.2, + "probability": 0.9871 + }, + { + "start": 6743.72, + "end": 6744.38, + "probability": 0.698 + }, + { + "start": 6745.26, + "end": 6751.82, + "probability": 0.9465 + }, + { + "start": 6752.4, + "end": 6755.48, + "probability": 0.9713 + }, + { + "start": 6756.4, + "end": 6759.44, + "probability": 0.9849 + }, + { + "start": 6760.4, + "end": 6763.7, + "probability": 0.9975 + }, + { + "start": 6764.24, + "end": 6765.62, + "probability": 0.9365 + }, + { + "start": 6767.33, + "end": 6767.42, + "probability": 0.2794 + }, + { + "start": 6767.42, + "end": 6771.04, + "probability": 0.814 + }, + { + "start": 6772.16, + "end": 6775.64, + "probability": 0.9971 + }, + { + "start": 6776.64, + "end": 6777.76, + "probability": 0.8217 + }, + { + "start": 6777.9, + "end": 6778.38, + "probability": 0.654 + }, + { + "start": 6778.44, + "end": 6779.44, + "probability": 0.968 + }, + { + "start": 6780.72, + "end": 6781.56, + "probability": 0.7863 + }, + { + "start": 6782.2, + "end": 6786.76, + "probability": 0.9361 + }, + { + "start": 6787.44, + "end": 6791.24, + "probability": 0.9091 + }, + { + "start": 6792.2, + "end": 6797.54, + "probability": 0.9082 + }, + { + "start": 6798.44, + "end": 6799.24, + "probability": 0.9285 + }, + { + "start": 6799.44, + "end": 6800.12, + "probability": 0.6564 + }, + { + "start": 6800.46, + "end": 6801.82, + "probability": 0.9338 + }, + { + "start": 6802.88, + "end": 6803.42, + "probability": 0.8356 + }, + { + "start": 6804.22, + "end": 6804.98, + "probability": 0.9633 + }, + { + "start": 6805.56, + "end": 6807.84, + "probability": 0.9885 + }, + { + "start": 6808.4, + "end": 6812.48, + "probability": 0.9854 + }, + { + "start": 6813.94, + "end": 6816.38, + "probability": 0.9966 + }, + { + "start": 6816.92, + "end": 6818.14, + "probability": 0.856 + }, + { + "start": 6818.76, + "end": 6820.76, + "probability": 0.9966 + }, + { + "start": 6821.44, + "end": 6823.86, + "probability": 0.9814 + }, + { + "start": 6823.98, + "end": 6826.8, + "probability": 0.929 + }, + { + "start": 6827.64, + "end": 6830.28, + "probability": 0.9947 + }, + { + "start": 6830.64, + "end": 6831.66, + "probability": 0.984 + }, + { + "start": 6831.98, + "end": 6833.04, + "probability": 0.674 + }, + { + "start": 6833.34, + "end": 6834.76, + "probability": 0.852 + }, + { + "start": 6835.2, + "end": 6839.04, + "probability": 0.9772 + }, + { + "start": 6839.88, + "end": 6843.74, + "probability": 0.8307 + }, + { + "start": 6844.26, + "end": 6846.56, + "probability": 0.8854 + }, + { + "start": 6846.8, + "end": 6847.96, + "probability": 0.7882 + }, + { + "start": 6849.7, + "end": 6849.7, + "probability": 0.1967 + }, + { + "start": 6849.7, + "end": 6849.7, + "probability": 0.4047 + }, + { + "start": 6849.7, + "end": 6851.64, + "probability": 0.4609 + }, + { + "start": 6852.26, + "end": 6852.9, + "probability": 0.6343 + }, + { + "start": 6853.38, + "end": 6856.08, + "probability": 0.9052 + }, + { + "start": 6857.67, + "end": 6859.14, + "probability": 0.183 + }, + { + "start": 6859.48, + "end": 6862.8, + "probability": 0.8258 + }, + { + "start": 6864.64, + "end": 6867.26, + "probability": 0.7877 + }, + { + "start": 6870.2, + "end": 6872.44, + "probability": 0.7132 + }, + { + "start": 6872.7, + "end": 6873.96, + "probability": 0.7283 + }, + { + "start": 6874.88, + "end": 6875.78, + "probability": 0.8854 + }, + { + "start": 6877.06, + "end": 6881.08, + "probability": 0.9944 + }, + { + "start": 6882.24, + "end": 6882.98, + "probability": 0.9247 + }, + { + "start": 6885.48, + "end": 6885.92, + "probability": 0.8822 + }, + { + "start": 6886.12, + "end": 6888.98, + "probability": 0.9774 + }, + { + "start": 6889.84, + "end": 6893.3, + "probability": 0.8005 + }, + { + "start": 6893.94, + "end": 6898.22, + "probability": 0.896 + }, + { + "start": 6898.34, + "end": 6898.44, + "probability": 0.9351 + }, + { + "start": 6900.12, + "end": 6901.18, + "probability": 0.9417 + }, + { + "start": 6901.4, + "end": 6905.26, + "probability": 0.8277 + }, + { + "start": 6905.94, + "end": 6909.66, + "probability": 0.9967 + }, + { + "start": 6910.6, + "end": 6915.0, + "probability": 0.999 + }, + { + "start": 6915.88, + "end": 6921.34, + "probability": 0.9853 + }, + { + "start": 6921.94, + "end": 6923.12, + "probability": 0.9868 + }, + { + "start": 6923.9, + "end": 6926.26, + "probability": 0.9923 + }, + { + "start": 6931.52, + "end": 6934.94, + "probability": 0.9961 + }, + { + "start": 6935.96, + "end": 6939.04, + "probability": 0.9985 + }, + { + "start": 6940.04, + "end": 6940.71, + "probability": 0.8789 + }, + { + "start": 6941.56, + "end": 6945.28, + "probability": 0.9385 + }, + { + "start": 6945.28, + "end": 6949.98, + "probability": 0.991 + }, + { + "start": 6950.58, + "end": 6952.22, + "probability": 0.8579 + }, + { + "start": 6952.56, + "end": 6953.78, + "probability": 0.8156 + }, + { + "start": 6955.14, + "end": 6958.44, + "probability": 0.8617 + }, + { + "start": 6958.9, + "end": 6960.56, + "probability": 0.9015 + }, + { + "start": 6960.76, + "end": 6961.24, + "probability": 0.9634 + }, + { + "start": 6961.98, + "end": 6963.44, + "probability": 0.8364 + }, + { + "start": 6964.1, + "end": 6965.26, + "probability": 0.975 + }, + { + "start": 6965.74, + "end": 6965.98, + "probability": 0.7426 + }, + { + "start": 6968.1, + "end": 6971.16, + "probability": 0.8984 + }, + { + "start": 6972.22, + "end": 6974.2, + "probability": 0.9771 + }, + { + "start": 6974.74, + "end": 6976.86, + "probability": 0.9982 + }, + { + "start": 6978.06, + "end": 6978.56, + "probability": 0.7893 + }, + { + "start": 6981.44, + "end": 6984.36, + "probability": 0.8455 + }, + { + "start": 6986.24, + "end": 6987.06, + "probability": 0.8591 + }, + { + "start": 6987.86, + "end": 6989.06, + "probability": 0.9849 + }, + { + "start": 6989.9, + "end": 6991.02, + "probability": 0.8979 + }, + { + "start": 7015.56, + "end": 7017.54, + "probability": 0.7873 + }, + { + "start": 7019.22, + "end": 7019.92, + "probability": 0.7321 + }, + { + "start": 7019.98, + "end": 7020.9, + "probability": 0.7635 + }, + { + "start": 7021.02, + "end": 7022.14, + "probability": 0.8917 + }, + { + "start": 7022.16, + "end": 7025.0, + "probability": 0.889 + }, + { + "start": 7025.2, + "end": 7031.56, + "probability": 0.9752 + }, + { + "start": 7032.18, + "end": 7034.52, + "probability": 0.9995 + }, + { + "start": 7035.78, + "end": 7036.86, + "probability": 0.9912 + }, + { + "start": 7038.4, + "end": 7041.76, + "probability": 0.9942 + }, + { + "start": 7043.48, + "end": 7046.08, + "probability": 0.9797 + }, + { + "start": 7046.1, + "end": 7048.66, + "probability": 0.9683 + }, + { + "start": 7050.32, + "end": 7052.66, + "probability": 0.7731 + }, + { + "start": 7053.28, + "end": 7055.42, + "probability": 0.9727 + }, + { + "start": 7055.7, + "end": 7059.2, + "probability": 0.9915 + }, + { + "start": 7060.4, + "end": 7063.8, + "probability": 0.9836 + }, + { + "start": 7064.24, + "end": 7065.16, + "probability": 0.6093 + }, + { + "start": 7065.76, + "end": 7067.5, + "probability": 0.8196 + }, + { + "start": 7067.56, + "end": 7070.98, + "probability": 0.9818 + }, + { + "start": 7071.32, + "end": 7074.88, + "probability": 0.9321 + }, + { + "start": 7076.12, + "end": 7078.12, + "probability": 0.9888 + }, + { + "start": 7078.16, + "end": 7080.3, + "probability": 0.8571 + }, + { + "start": 7080.78, + "end": 7083.5, + "probability": 0.9471 + }, + { + "start": 7084.58, + "end": 7088.34, + "probability": 0.8836 + }, + { + "start": 7088.86, + "end": 7090.74, + "probability": 0.9963 + }, + { + "start": 7090.88, + "end": 7093.7, + "probability": 0.9384 + }, + { + "start": 7093.82, + "end": 7098.08, + "probability": 0.9845 + }, + { + "start": 7098.68, + "end": 7101.12, + "probability": 0.9574 + }, + { + "start": 7102.04, + "end": 7102.5, + "probability": 0.7482 + }, + { + "start": 7103.44, + "end": 7105.36, + "probability": 0.9927 + }, + { + "start": 7106.72, + "end": 7108.26, + "probability": 0.989 + }, + { + "start": 7108.34, + "end": 7112.92, + "probability": 0.9925 + }, + { + "start": 7114.62, + "end": 7117.46, + "probability": 0.9651 + }, + { + "start": 7118.22, + "end": 7120.96, + "probability": 0.9953 + }, + { + "start": 7121.96, + "end": 7124.2, + "probability": 0.9762 + }, + { + "start": 7125.04, + "end": 7127.46, + "probability": 0.9886 + }, + { + "start": 7128.28, + "end": 7130.48, + "probability": 0.9976 + }, + { + "start": 7133.68, + "end": 7134.5, + "probability": 0.8421 + }, + { + "start": 7135.16, + "end": 7138.16, + "probability": 0.7696 + }, + { + "start": 7139.22, + "end": 7140.72, + "probability": 0.9207 + }, + { + "start": 7140.76, + "end": 7146.96, + "probability": 0.8242 + }, + { + "start": 7148.28, + "end": 7151.5, + "probability": 0.99 + }, + { + "start": 7152.04, + "end": 7156.76, + "probability": 0.805 + }, + { + "start": 7157.3, + "end": 7157.9, + "probability": 0.624 + }, + { + "start": 7157.92, + "end": 7160.06, + "probability": 0.9957 + }, + { + "start": 7161.46, + "end": 7165.94, + "probability": 0.9964 + }, + { + "start": 7166.92, + "end": 7167.58, + "probability": 0.9565 + }, + { + "start": 7167.66, + "end": 7170.84, + "probability": 0.9912 + }, + { + "start": 7171.24, + "end": 7172.56, + "probability": 0.8251 + }, + { + "start": 7173.22, + "end": 7175.76, + "probability": 0.8201 + }, + { + "start": 7176.14, + "end": 7178.86, + "probability": 0.9885 + }, + { + "start": 7179.32, + "end": 7180.82, + "probability": 0.8688 + }, + { + "start": 7181.84, + "end": 7183.27, + "probability": 0.5455 + }, + { + "start": 7184.12, + "end": 7187.48, + "probability": 0.9754 + }, + { + "start": 7188.98, + "end": 7191.14, + "probability": 0.9026 + }, + { + "start": 7192.42, + "end": 7194.71, + "probability": 0.8401 + }, + { + "start": 7196.28, + "end": 7199.06, + "probability": 0.9767 + }, + { + "start": 7200.1, + "end": 7201.91, + "probability": 0.9489 + }, + { + "start": 7203.22, + "end": 7203.46, + "probability": 0.2488 + }, + { + "start": 7203.98, + "end": 7206.9, + "probability": 0.9849 + }, + { + "start": 7207.5, + "end": 7212.9, + "probability": 0.9049 + }, + { + "start": 7212.96, + "end": 7213.54, + "probability": 0.3987 + }, + { + "start": 7214.36, + "end": 7214.74, + "probability": 0.4514 + }, + { + "start": 7215.64, + "end": 7218.14, + "probability": 0.9825 + }, + { + "start": 7219.6, + "end": 7223.66, + "probability": 0.889 + }, + { + "start": 7224.54, + "end": 7228.0, + "probability": 0.9863 + }, + { + "start": 7228.0, + "end": 7231.3, + "probability": 0.9586 + }, + { + "start": 7233.32, + "end": 7236.16, + "probability": 0.9971 + }, + { + "start": 7236.32, + "end": 7238.08, + "probability": 0.8961 + }, + { + "start": 7238.54, + "end": 7239.26, + "probability": 0.6318 + }, + { + "start": 7239.4, + "end": 7241.1, + "probability": 0.9963 + }, + { + "start": 7241.78, + "end": 7244.02, + "probability": 0.7041 + }, + { + "start": 7244.5, + "end": 7248.04, + "probability": 0.9888 + }, + { + "start": 7248.18, + "end": 7248.74, + "probability": 0.6951 + }, + { + "start": 7249.16, + "end": 7250.38, + "probability": 0.9148 + }, + { + "start": 7250.5, + "end": 7255.8, + "probability": 0.9974 + }, + { + "start": 7255.98, + "end": 7256.4, + "probability": 0.5936 + }, + { + "start": 7256.44, + "end": 7256.88, + "probability": 0.9798 + }, + { + "start": 7257.12, + "end": 7258.5, + "probability": 0.856 + }, + { + "start": 7260.54, + "end": 7262.08, + "probability": 0.0191 + }, + { + "start": 7277.9, + "end": 7279.64, + "probability": 0.0795 + }, + { + "start": 7280.2, + "end": 7281.24, + "probability": 0.7032 + }, + { + "start": 7282.24, + "end": 7283.4, + "probability": 0.6758 + }, + { + "start": 7283.52, + "end": 7285.12, + "probability": 0.9463 + }, + { + "start": 7285.36, + "end": 7288.66, + "probability": 0.9554 + }, + { + "start": 7289.44, + "end": 7290.12, + "probability": 0.9454 + }, + { + "start": 7291.12, + "end": 7294.18, + "probability": 0.892 + }, + { + "start": 7296.7, + "end": 7297.94, + "probability": 0.9402 + }, + { + "start": 7299.42, + "end": 7302.54, + "probability": 0.9893 + }, + { + "start": 7304.1, + "end": 7304.96, + "probability": 0.8253 + }, + { + "start": 7305.6, + "end": 7309.54, + "probability": 0.9493 + }, + { + "start": 7310.7, + "end": 7312.32, + "probability": 0.9961 + }, + { + "start": 7313.58, + "end": 7314.84, + "probability": 0.7511 + }, + { + "start": 7318.48, + "end": 7320.62, + "probability": 0.9106 + }, + { + "start": 7322.62, + "end": 7324.9, + "probability": 0.7395 + }, + { + "start": 7325.86, + "end": 7330.24, + "probability": 0.9875 + }, + { + "start": 7331.3, + "end": 7331.7, + "probability": 0.2289 + }, + { + "start": 7334.5, + "end": 7336.6, + "probability": 0.892 + }, + { + "start": 7339.44, + "end": 7340.78, + "probability": 0.8163 + }, + { + "start": 7343.94, + "end": 7349.16, + "probability": 0.9801 + }, + { + "start": 7349.94, + "end": 7350.4, + "probability": 0.7396 + }, + { + "start": 7351.74, + "end": 7353.82, + "probability": 0.6943 + }, + { + "start": 7354.42, + "end": 7355.98, + "probability": 0.5981 + }, + { + "start": 7356.7, + "end": 7357.44, + "probability": 0.9563 + }, + { + "start": 7359.2, + "end": 7360.04, + "probability": 0.7622 + }, + { + "start": 7360.76, + "end": 7362.4, + "probability": 0.9847 + }, + { + "start": 7362.42, + "end": 7366.24, + "probability": 0.8901 + }, + { + "start": 7367.46, + "end": 7371.14, + "probability": 0.9362 + }, + { + "start": 7372.64, + "end": 7374.1, + "probability": 0.851 + }, + { + "start": 7374.88, + "end": 7376.04, + "probability": 0.7119 + }, + { + "start": 7376.08, + "end": 7376.18, + "probability": 0.5532 + }, + { + "start": 7376.68, + "end": 7378.52, + "probability": 0.7228 + }, + { + "start": 7378.64, + "end": 7379.62, + "probability": 0.797 + }, + { + "start": 7382.68, + "end": 7385.78, + "probability": 0.7813 + }, + { + "start": 7387.02, + "end": 7388.02, + "probability": 0.5347 + }, + { + "start": 7388.12, + "end": 7389.36, + "probability": 0.994 + }, + { + "start": 7390.5, + "end": 7393.9, + "probability": 0.9685 + }, + { + "start": 7394.54, + "end": 7396.6, + "probability": 0.8357 + }, + { + "start": 7399.04, + "end": 7402.24, + "probability": 0.5547 + }, + { + "start": 7403.64, + "end": 7405.51, + "probability": 0.9542 + }, + { + "start": 7407.28, + "end": 7410.64, + "probability": 0.6301 + }, + { + "start": 7411.22, + "end": 7411.7, + "probability": 0.7422 + }, + { + "start": 7412.7, + "end": 7415.06, + "probability": 0.6968 + }, + { + "start": 7416.74, + "end": 7418.8, + "probability": 0.8846 + }, + { + "start": 7419.32, + "end": 7422.54, + "probability": 0.9645 + }, + { + "start": 7423.54, + "end": 7425.22, + "probability": 0.9982 + }, + { + "start": 7426.6, + "end": 7429.5, + "probability": 0.9504 + }, + { + "start": 7431.16, + "end": 7432.38, + "probability": 0.8134 + }, + { + "start": 7432.48, + "end": 7432.8, + "probability": 0.7205 + }, + { + "start": 7433.86, + "end": 7438.02, + "probability": 0.9583 + }, + { + "start": 7438.72, + "end": 7441.34, + "probability": 0.9846 + }, + { + "start": 7441.4, + "end": 7443.11, + "probability": 0.4966 + }, + { + "start": 7443.38, + "end": 7448.58, + "probability": 0.9608 + }, + { + "start": 7450.26, + "end": 7455.22, + "probability": 0.9888 + }, + { + "start": 7456.1, + "end": 7456.5, + "probability": 0.8141 + }, + { + "start": 7458.94, + "end": 7459.48, + "probability": 0.8532 + }, + { + "start": 7461.7, + "end": 7462.84, + "probability": 0.7718 + }, + { + "start": 7463.56, + "end": 7465.06, + "probability": 0.4094 + }, + { + "start": 7466.2, + "end": 7467.0, + "probability": 0.8133 + }, + { + "start": 7467.76, + "end": 7470.4, + "probability": 0.7229 + }, + { + "start": 7482.82, + "end": 7484.22, + "probability": 0.5363 + }, + { + "start": 7487.54, + "end": 7489.02, + "probability": 0.6556 + }, + { + "start": 7489.18, + "end": 7490.08, + "probability": 0.6769 + }, + { + "start": 7491.0, + "end": 7493.62, + "probability": 0.9186 + }, + { + "start": 7493.78, + "end": 7498.08, + "probability": 0.9941 + }, + { + "start": 7498.96, + "end": 7503.28, + "probability": 0.9949 + }, + { + "start": 7503.38, + "end": 7509.72, + "probability": 0.9987 + }, + { + "start": 7511.02, + "end": 7514.36, + "probability": 0.8881 + }, + { + "start": 7514.62, + "end": 7514.98, + "probability": 0.1907 + }, + { + "start": 7514.98, + "end": 7516.12, + "probability": 0.0699 + }, + { + "start": 7516.94, + "end": 7517.54, + "probability": 0.6392 + }, + { + "start": 7517.72, + "end": 7519.1, + "probability": 0.9895 + }, + { + "start": 7519.8, + "end": 7522.24, + "probability": 0.9957 + }, + { + "start": 7523.08, + "end": 7525.22, + "probability": 0.9984 + }, + { + "start": 7525.3, + "end": 7530.61, + "probability": 0.9865 + }, + { + "start": 7532.3, + "end": 7533.04, + "probability": 0.8872 + }, + { + "start": 7533.06, + "end": 7534.6, + "probability": 0.9821 + }, + { + "start": 7534.68, + "end": 7536.22, + "probability": 0.7276 + }, + { + "start": 7536.64, + "end": 7538.34, + "probability": 0.6494 + }, + { + "start": 7539.04, + "end": 7541.78, + "probability": 0.87 + }, + { + "start": 7541.84, + "end": 7543.08, + "probability": 0.9958 + }, + { + "start": 7543.98, + "end": 7544.86, + "probability": 0.4393 + }, + { + "start": 7545.08, + "end": 7545.58, + "probability": 0.9636 + }, + { + "start": 7545.66, + "end": 7551.62, + "probability": 0.9843 + }, + { + "start": 7552.5, + "end": 7553.74, + "probability": 0.9662 + }, + { + "start": 7554.06, + "end": 7556.46, + "probability": 0.9948 + }, + { + "start": 7556.66, + "end": 7558.94, + "probability": 0.9738 + }, + { + "start": 7559.32, + "end": 7560.66, + "probability": 0.8745 + }, + { + "start": 7560.82, + "end": 7561.86, + "probability": 0.8678 + }, + { + "start": 7562.5, + "end": 7567.5, + "probability": 0.9961 + }, + { + "start": 7567.98, + "end": 7571.9, + "probability": 0.2552 + }, + { + "start": 7571.9, + "end": 7574.52, + "probability": 0.9716 + }, + { + "start": 7575.3, + "end": 7577.4, + "probability": 0.9947 + }, + { + "start": 7577.4, + "end": 7579.44, + "probability": 0.9932 + }, + { + "start": 7580.16, + "end": 7583.26, + "probability": 0.8778 + }, + { + "start": 7584.22, + "end": 7584.74, + "probability": 0.7073 + }, + { + "start": 7585.14, + "end": 7585.62, + "probability": 0.9573 + }, + { + "start": 7586.1, + "end": 7586.7, + "probability": 0.9072 + }, + { + "start": 7587.08, + "end": 7587.8, + "probability": 0.6735 + }, + { + "start": 7588.14, + "end": 7589.6, + "probability": 0.8885 + }, + { + "start": 7591.02, + "end": 7593.66, + "probability": 0.9616 + }, + { + "start": 7593.78, + "end": 7595.4, + "probability": 0.9756 + }, + { + "start": 7596.14, + "end": 7600.08, + "probability": 0.7061 + }, + { + "start": 7600.12, + "end": 7601.86, + "probability": 0.9814 + }, + { + "start": 7602.36, + "end": 7605.46, + "probability": 0.9979 + }, + { + "start": 7606.4, + "end": 7611.78, + "probability": 0.6229 + }, + { + "start": 7611.9, + "end": 7612.4, + "probability": 0.682 + }, + { + "start": 7612.72, + "end": 7613.46, + "probability": 0.6246 + }, + { + "start": 7613.84, + "end": 7617.68, + "probability": 0.973 + }, + { + "start": 7617.98, + "end": 7619.08, + "probability": 0.8623 + }, + { + "start": 7619.58, + "end": 7622.08, + "probability": 0.9554 + }, + { + "start": 7622.5, + "end": 7624.02, + "probability": 0.9947 + }, + { + "start": 7624.96, + "end": 7626.6, + "probability": 0.75 + }, + { + "start": 7626.72, + "end": 7627.35, + "probability": 0.2459 + }, + { + "start": 7628.52, + "end": 7630.34, + "probability": 0.6352 + }, + { + "start": 7630.8, + "end": 7632.7, + "probability": 0.8788 + }, + { + "start": 7633.26, + "end": 7635.44, + "probability": 0.9826 + }, + { + "start": 7635.78, + "end": 7638.28, + "probability": 0.999 + }, + { + "start": 7639.0, + "end": 7640.86, + "probability": 0.9692 + }, + { + "start": 7642.22, + "end": 7644.58, + "probability": 0.9927 + }, + { + "start": 7644.94, + "end": 7646.6, + "probability": 0.8148 + }, + { + "start": 7646.98, + "end": 7648.56, + "probability": 0.9392 + }, + { + "start": 7649.2, + "end": 7651.7, + "probability": 0.9828 + }, + { + "start": 7652.38, + "end": 7655.26, + "probability": 0.99 + }, + { + "start": 7656.4, + "end": 7660.5, + "probability": 0.9877 + }, + { + "start": 7661.14, + "end": 7663.9, + "probability": 0.8766 + }, + { + "start": 7664.18, + "end": 7666.14, + "probability": 0.8552 + }, + { + "start": 7667.3, + "end": 7672.36, + "probability": 0.9929 + }, + { + "start": 7672.66, + "end": 7676.04, + "probability": 0.9993 + }, + { + "start": 7676.27, + "end": 7679.32, + "probability": 0.9927 + }, + { + "start": 7679.7, + "end": 7680.16, + "probability": 0.7719 + }, + { + "start": 7680.16, + "end": 7680.56, + "probability": 0.7198 + }, + { + "start": 7683.22, + "end": 7685.02, + "probability": 0.9354 + }, + { + "start": 7685.64, + "end": 7686.36, + "probability": 0.7704 + }, + { + "start": 7687.32, + "end": 7688.72, + "probability": 0.9801 + }, + { + "start": 7690.66, + "end": 7691.74, + "probability": 0.9872 + }, + { + "start": 7692.6, + "end": 7693.7, + "probability": 0.5783 + }, + { + "start": 7695.5, + "end": 7696.26, + "probability": 0.7714 + }, + { + "start": 7697.1, + "end": 7698.12, + "probability": 0.7951 + }, + { + "start": 7698.68, + "end": 7701.12, + "probability": 0.7566 + }, + { + "start": 7701.62, + "end": 7702.98, + "probability": 0.9469 + }, + { + "start": 7703.84, + "end": 7704.48, + "probability": 0.6575 + }, + { + "start": 7721.82, + "end": 7722.72, + "probability": 0.9797 + }, + { + "start": 7722.9, + "end": 7726.92, + "probability": 0.9846 + }, + { + "start": 7726.92, + "end": 7732.26, + "probability": 0.9181 + }, + { + "start": 7732.32, + "end": 7734.52, + "probability": 0.9982 + }, + { + "start": 7735.04, + "end": 7736.1, + "probability": 0.9357 + }, + { + "start": 7736.52, + "end": 7739.36, + "probability": 0.9834 + }, + { + "start": 7739.4, + "end": 7740.14, + "probability": 0.6734 + }, + { + "start": 7740.56, + "end": 7740.66, + "probability": 0.4943 + }, + { + "start": 7740.98, + "end": 7742.18, + "probability": 0.9357 + }, + { + "start": 7742.22, + "end": 7743.27, + "probability": 0.8255 + }, + { + "start": 7745.34, + "end": 7745.44, + "probability": 0.7637 + }, + { + "start": 7745.44, + "end": 7748.18, + "probability": 0.9642 + }, + { + "start": 7748.9, + "end": 7749.76, + "probability": 0.6285 + }, + { + "start": 7750.3, + "end": 7751.94, + "probability": 0.9717 + }, + { + "start": 7752.6, + "end": 7754.5, + "probability": 0.96 + }, + { + "start": 7755.34, + "end": 7758.44, + "probability": 0.9972 + }, + { + "start": 7759.12, + "end": 7759.58, + "probability": 0.9235 + }, + { + "start": 7760.1, + "end": 7761.98, + "probability": 0.9904 + }, + { + "start": 7762.68, + "end": 7764.54, + "probability": 0.932 + }, + { + "start": 7765.66, + "end": 7766.94, + "probability": 0.9912 + }, + { + "start": 7766.96, + "end": 7767.44, + "probability": 0.6724 + }, + { + "start": 7767.54, + "end": 7768.32, + "probability": 0.8168 + }, + { + "start": 7768.36, + "end": 7769.46, + "probability": 0.866 + }, + { + "start": 7769.54, + "end": 7770.82, + "probability": 0.9057 + }, + { + "start": 7774.04, + "end": 7778.12, + "probability": 0.8118 + }, + { + "start": 7778.28, + "end": 7779.92, + "probability": 0.8628 + }, + { + "start": 7780.26, + "end": 7782.06, + "probability": 0.9121 + }, + { + "start": 7782.6, + "end": 7787.3, + "probability": 0.7653 + }, + { + "start": 7788.54, + "end": 7792.06, + "probability": 0.662 + }, + { + "start": 7792.54, + "end": 7797.46, + "probability": 0.76 + }, + { + "start": 7797.92, + "end": 7799.78, + "probability": 0.6919 + }, + { + "start": 7800.26, + "end": 7801.06, + "probability": 0.9363 + }, + { + "start": 7801.12, + "end": 7802.1, + "probability": 0.9499 + }, + { + "start": 7802.16, + "end": 7803.62, + "probability": 0.9915 + }, + { + "start": 7803.72, + "end": 7805.34, + "probability": 0.9572 + }, + { + "start": 7806.14, + "end": 7809.52, + "probability": 0.9745 + }, + { + "start": 7810.12, + "end": 7810.88, + "probability": 0.9815 + }, + { + "start": 7811.54, + "end": 7813.46, + "probability": 0.9907 + }, + { + "start": 7813.9, + "end": 7817.32, + "probability": 0.9979 + }, + { + "start": 7818.12, + "end": 7821.94, + "probability": 0.9965 + }, + { + "start": 7822.58, + "end": 7823.12, + "probability": 0.8692 + }, + { + "start": 7824.12, + "end": 7824.72, + "probability": 0.6543 + }, + { + "start": 7825.3, + "end": 7826.05, + "probability": 0.7148 + }, + { + "start": 7827.34, + "end": 7829.08, + "probability": 0.5857 + }, + { + "start": 7829.12, + "end": 7829.18, + "probability": 0.4009 + }, + { + "start": 7829.26, + "end": 7829.94, + "probability": 0.848 + }, + { + "start": 7830.0, + "end": 7831.16, + "probability": 0.8269 + }, + { + "start": 7831.22, + "end": 7831.9, + "probability": 0.6182 + }, + { + "start": 7832.1, + "end": 7832.98, + "probability": 0.8643 + }, + { + "start": 7834.54, + "end": 7837.3, + "probability": 0.5976 + }, + { + "start": 7837.9, + "end": 7838.64, + "probability": 0.6307 + }, + { + "start": 7838.82, + "end": 7840.66, + "probability": 0.6859 + }, + { + "start": 7841.1, + "end": 7843.22, + "probability": 0.5435 + }, + { + "start": 7843.34, + "end": 7844.6, + "probability": 0.8324 + }, + { + "start": 7844.64, + "end": 7845.5, + "probability": 0.7138 + }, + { + "start": 7846.36, + "end": 7848.96, + "probability": 0.9019 + }, + { + "start": 7849.62, + "end": 7850.98, + "probability": 0.9896 + }, + { + "start": 7851.62, + "end": 7856.12, + "probability": 0.9699 + }, + { + "start": 7856.76, + "end": 7861.82, + "probability": 0.9874 + }, + { + "start": 7862.48, + "end": 7863.78, + "probability": 0.9723 + }, + { + "start": 7864.4, + "end": 7867.34, + "probability": 0.9849 + }, + { + "start": 7868.28, + "end": 7870.1, + "probability": 0.6443 + }, + { + "start": 7870.38, + "end": 7872.42, + "probability": 0.9152 + }, + { + "start": 7872.9, + "end": 7874.02, + "probability": 0.8654 + }, + { + "start": 7874.64, + "end": 7874.64, + "probability": 0.5295 + }, + { + "start": 7874.64, + "end": 7875.42, + "probability": 0.4709 + }, + { + "start": 7875.8, + "end": 7879.62, + "probability": 0.9094 + }, + { + "start": 7879.62, + "end": 7884.6, + "probability": 0.8824 + }, + { + "start": 7884.74, + "end": 7887.0, + "probability": 0.9075 + }, + { + "start": 7887.66, + "end": 7888.2, + "probability": 0.9329 + }, + { + "start": 7888.82, + "end": 7889.82, + "probability": 0.9277 + }, + { + "start": 7890.4, + "end": 7891.16, + "probability": 0.7866 + }, + { + "start": 7892.36, + "end": 7893.7, + "probability": 0.709 + }, + { + "start": 7894.26, + "end": 7898.52, + "probability": 0.9698 + }, + { + "start": 7898.62, + "end": 7900.44, + "probability": 0.9885 + }, + { + "start": 7901.04, + "end": 7903.0, + "probability": 0.9972 + }, + { + "start": 7903.26, + "end": 7905.18, + "probability": 0.9062 + }, + { + "start": 7905.32, + "end": 7908.22, + "probability": 0.8986 + }, + { + "start": 7908.8, + "end": 7909.4, + "probability": 0.8914 + }, + { + "start": 7909.46, + "end": 7910.5, + "probability": 0.9705 + }, + { + "start": 7911.86, + "end": 7912.24, + "probability": 0.8061 + }, + { + "start": 7912.42, + "end": 7912.98, + "probability": 0.7438 + }, + { + "start": 7913.06, + "end": 7914.66, + "probability": 0.5301 + }, + { + "start": 7915.74, + "end": 7917.84, + "probability": 0.9137 + }, + { + "start": 7917.84, + "end": 7920.26, + "probability": 0.9307 + }, + { + "start": 7920.86, + "end": 7923.36, + "probability": 0.7734 + }, + { + "start": 7924.02, + "end": 7925.46, + "probability": 0.7149 + }, + { + "start": 7925.96, + "end": 7928.44, + "probability": 0.998 + }, + { + "start": 7929.48, + "end": 7931.06, + "probability": 0.806 + }, + { + "start": 7931.22, + "end": 7931.54, + "probability": 0.7959 + }, + { + "start": 7931.7, + "end": 7932.14, + "probability": 0.7975 + }, + { + "start": 7932.72, + "end": 7934.44, + "probability": 0.935 + }, + { + "start": 7944.96, + "end": 7945.02, + "probability": 0.5405 + }, + { + "start": 7958.34, + "end": 7962.26, + "probability": 0.8041 + }, + { + "start": 7963.34, + "end": 7967.54, + "probability": 0.9948 + }, + { + "start": 7968.18, + "end": 7971.94, + "probability": 0.8625 + }, + { + "start": 7972.44, + "end": 7972.96, + "probability": 0.625 + }, + { + "start": 7973.02, + "end": 7973.58, + "probability": 0.8918 + }, + { + "start": 7973.74, + "end": 7975.26, + "probability": 0.7253 + }, + { + "start": 7975.3, + "end": 7978.28, + "probability": 0.6861 + }, + { + "start": 7979.04, + "end": 7981.76, + "probability": 0.994 + }, + { + "start": 7982.14, + "end": 7982.44, + "probability": 0.7076 + }, + { + "start": 7982.5, + "end": 7986.22, + "probability": 0.944 + }, + { + "start": 7986.26, + "end": 7986.96, + "probability": 0.9564 + }, + { + "start": 7987.0, + "end": 7988.08, + "probability": 0.742 + }, + { + "start": 7988.42, + "end": 7989.84, + "probability": 0.7187 + }, + { + "start": 7989.96, + "end": 7990.98, + "probability": 0.6489 + }, + { + "start": 7991.02, + "end": 7991.36, + "probability": 0.7433 + }, + { + "start": 7991.84, + "end": 7992.34, + "probability": 0.6011 + }, + { + "start": 7992.84, + "end": 7993.92, + "probability": 0.8676 + }, + { + "start": 7994.0, + "end": 7996.44, + "probability": 0.9751 + }, + { + "start": 7996.66, + "end": 7997.06, + "probability": 0.8419 + }, + { + "start": 7997.97, + "end": 8001.6, + "probability": 0.3104 + }, + { + "start": 8001.86, + "end": 8003.92, + "probability": 0.561 + }, + { + "start": 8004.72, + "end": 8006.9, + "probability": 0.7895 + }, + { + "start": 8008.32, + "end": 8012.02, + "probability": 0.9954 + }, + { + "start": 8012.52, + "end": 8018.32, + "probability": 0.9941 + }, + { + "start": 8019.36, + "end": 8024.54, + "probability": 0.9962 + }, + { + "start": 8024.96, + "end": 8026.46, + "probability": 0.7826 + }, + { + "start": 8027.6, + "end": 8029.62, + "probability": 0.4839 + }, + { + "start": 8030.98, + "end": 8036.94, + "probability": 0.9232 + }, + { + "start": 8037.94, + "end": 8040.18, + "probability": 0.9373 + }, + { + "start": 8040.9, + "end": 8044.94, + "probability": 0.9891 + }, + { + "start": 8044.94, + "end": 8047.94, + "probability": 0.9761 + }, + { + "start": 8047.98, + "end": 8048.87, + "probability": 0.7469 + }, + { + "start": 8049.1, + "end": 8049.64, + "probability": 0.994 + }, + { + "start": 8051.08, + "end": 8052.32, + "probability": 0.9805 + }, + { + "start": 8053.06, + "end": 8056.78, + "probability": 0.7803 + }, + { + "start": 8057.86, + "end": 8058.24, + "probability": 0.0295 + }, + { + "start": 8058.24, + "end": 8058.54, + "probability": 0.6157 + }, + { + "start": 8059.28, + "end": 8067.02, + "probability": 0.9908 + }, + { + "start": 8067.9, + "end": 8074.6, + "probability": 0.9969 + }, + { + "start": 8075.66, + "end": 8080.72, + "probability": 0.9965 + }, + { + "start": 8081.96, + "end": 8086.58, + "probability": 0.9359 + }, + { + "start": 8087.02, + "end": 8090.04, + "probability": 0.9901 + }, + { + "start": 8091.14, + "end": 8096.5, + "probability": 0.9946 + }, + { + "start": 8097.04, + "end": 8097.54, + "probability": 0.3491 + }, + { + "start": 8097.94, + "end": 8101.86, + "probability": 0.9951 + }, + { + "start": 8102.28, + "end": 8103.3, + "probability": 0.8385 + }, + { + "start": 8104.16, + "end": 8106.04, + "probability": 0.9756 + }, + { + "start": 8106.38, + "end": 8110.34, + "probability": 0.9561 + }, + { + "start": 8110.74, + "end": 8114.14, + "probability": 0.9918 + }, + { + "start": 8114.88, + "end": 8117.42, + "probability": 0.9469 + }, + { + "start": 8117.54, + "end": 8118.59, + "probability": 0.9341 + }, + { + "start": 8120.48, + "end": 8122.38, + "probability": 0.9823 + }, + { + "start": 8122.62, + "end": 8125.56, + "probability": 0.9692 + }, + { + "start": 8126.66, + "end": 8130.66, + "probability": 0.7495 + }, + { + "start": 8131.08, + "end": 8133.12, + "probability": 0.9084 + }, + { + "start": 8133.8, + "end": 8134.82, + "probability": 0.9485 + }, + { + "start": 8135.36, + "end": 8135.64, + "probability": 0.2933 + }, + { + "start": 8135.84, + "end": 8137.1, + "probability": 0.895 + }, + { + "start": 8137.48, + "end": 8141.44, + "probability": 0.9793 + }, + { + "start": 8141.84, + "end": 8142.84, + "probability": 0.9976 + }, + { + "start": 8143.54, + "end": 8147.82, + "probability": 0.9891 + }, + { + "start": 8148.18, + "end": 8148.4, + "probability": 0.752 + }, + { + "start": 8148.96, + "end": 8149.44, + "probability": 0.7456 + }, + { + "start": 8149.56, + "end": 8151.8, + "probability": 0.638 + }, + { + "start": 8152.64, + "end": 8153.08, + "probability": 0.1163 + }, + { + "start": 8153.18, + "end": 8153.96, + "probability": 0.8544 + }, + { + "start": 8154.64, + "end": 8155.68, + "probability": 0.529 + }, + { + "start": 8157.74, + "end": 8158.4, + "probability": 0.7647 + }, + { + "start": 8159.41, + "end": 8162.06, + "probability": 0.776 + }, + { + "start": 8183.18, + "end": 8183.74, + "probability": 0.3651 + }, + { + "start": 8183.74, + "end": 8184.0, + "probability": 0.52 + }, + { + "start": 8184.0, + "end": 8187.38, + "probability": 0.6823 + }, + { + "start": 8191.5, + "end": 8196.64, + "probability": 0.5804 + }, + { + "start": 8198.2, + "end": 8200.5, + "probability": 0.0376 + }, + { + "start": 8201.74, + "end": 8201.74, + "probability": 0.0147 + }, + { + "start": 8202.12, + "end": 8202.76, + "probability": 0.5005 + }, + { + "start": 8202.9, + "end": 8206.7, + "probability": 0.0464 + }, + { + "start": 8208.58, + "end": 8211.18, + "probability": 0.7825 + }, + { + "start": 8212.06, + "end": 8212.8, + "probability": 0.2543 + }, + { + "start": 8213.5, + "end": 8218.58, + "probability": 0.9981 + }, + { + "start": 8218.74, + "end": 8220.32, + "probability": 0.9079 + }, + { + "start": 8220.86, + "end": 8226.42, + "probability": 0.9465 + }, + { + "start": 8226.92, + "end": 8227.54, + "probability": 0.9849 + }, + { + "start": 8228.48, + "end": 8229.9, + "probability": 0.9854 + }, + { + "start": 8230.38, + "end": 8231.09, + "probability": 0.9912 + }, + { + "start": 8232.98, + "end": 8233.78, + "probability": 0.9941 + }, + { + "start": 8234.0, + "end": 8234.63, + "probability": 0.0708 + }, + { + "start": 8235.64, + "end": 8237.7, + "probability": 0.7676 + }, + { + "start": 8238.44, + "end": 8240.58, + "probability": 0.7325 + }, + { + "start": 8241.16, + "end": 8241.86, + "probability": 0.9371 + }, + { + "start": 8242.72, + "end": 8245.52, + "probability": 0.0238 + }, + { + "start": 8246.1, + "end": 8246.1, + "probability": 0.06 + }, + { + "start": 8246.64, + "end": 8249.36, + "probability": 0.2612 + }, + { + "start": 8250.24, + "end": 8251.15, + "probability": 0.014 + }, + { + "start": 8251.48, + "end": 8254.61, + "probability": 0.0769 + }, + { + "start": 8255.98, + "end": 8258.34, + "probability": 0.9817 + }, + { + "start": 8259.88, + "end": 8261.36, + "probability": 0.8488 + }, + { + "start": 8262.46, + "end": 8265.64, + "probability": 0.8403 + }, + { + "start": 8266.3, + "end": 8267.36, + "probability": 0.911 + }, + { + "start": 8268.98, + "end": 8269.5, + "probability": 0.7708 + }, + { + "start": 8270.6, + "end": 8271.54, + "probability": 0.6429 + }, + { + "start": 8272.3, + "end": 8276.12, + "probability": 0.5048 + }, + { + "start": 8276.94, + "end": 8277.98, + "probability": 0.8603 + }, + { + "start": 8279.56, + "end": 8283.22, + "probability": 0.8887 + }, + { + "start": 8283.98, + "end": 8285.78, + "probability": 0.9644 + }, + { + "start": 8286.5, + "end": 8287.58, + "probability": 0.7781 + }, + { + "start": 8288.32, + "end": 8290.78, + "probability": 0.7733 + }, + { + "start": 8291.46, + "end": 8292.14, + "probability": 0.7424 + }, + { + "start": 8292.82, + "end": 8294.8, + "probability": 0.8966 + }, + { + "start": 8296.06, + "end": 8296.78, + "probability": 0.972 + }, + { + "start": 8297.76, + "end": 8299.86, + "probability": 0.8774 + }, + { + "start": 8301.02, + "end": 8302.56, + "probability": 0.9268 + }, + { + "start": 8303.64, + "end": 8304.28, + "probability": 0.9181 + }, + { + "start": 8305.08, + "end": 8307.58, + "probability": 0.5927 + }, + { + "start": 8308.3, + "end": 8310.54, + "probability": 0.7857 + }, + { + "start": 8311.7, + "end": 8312.56, + "probability": 0.8022 + }, + { + "start": 8313.88, + "end": 8313.88, + "probability": 0.271 + }, + { + "start": 8313.88, + "end": 8314.34, + "probability": 0.4707 + }, + { + "start": 8316.22, + "end": 8318.0, + "probability": 0.5285 + }, + { + "start": 8318.8, + "end": 8324.56, + "probability": 0.9858 + }, + { + "start": 8325.08, + "end": 8326.56, + "probability": 0.9971 + }, + { + "start": 8327.12, + "end": 8328.42, + "probability": 0.9004 + }, + { + "start": 8328.96, + "end": 8331.4, + "probability": 0.9807 + }, + { + "start": 8331.96, + "end": 8336.74, + "probability": 0.9795 + }, + { + "start": 8337.3, + "end": 8339.82, + "probability": 0.9862 + }, + { + "start": 8339.96, + "end": 8340.5, + "probability": 0.7108 + }, + { + "start": 8340.62, + "end": 8341.02, + "probability": 0.8304 + }, + { + "start": 8341.18, + "end": 8341.84, + "probability": 0.9547 + }, + { + "start": 8342.32, + "end": 8343.98, + "probability": 0.9774 + }, + { + "start": 8344.6, + "end": 8346.66, + "probability": 0.9945 + }, + { + "start": 8347.22, + "end": 8351.34, + "probability": 0.7127 + }, + { + "start": 8351.9, + "end": 8357.51, + "probability": 0.6857 + }, + { + "start": 8358.5, + "end": 8359.96, + "probability": 0.8263 + }, + { + "start": 8360.74, + "end": 8363.54, + "probability": 0.3198 + }, + { + "start": 8363.54, + "end": 8365.34, + "probability": 0.0394 + }, + { + "start": 8365.84, + "end": 8366.2, + "probability": 0.5969 + }, + { + "start": 8366.66, + "end": 8368.64, + "probability": 0.8724 + }, + { + "start": 8368.72, + "end": 8374.62, + "probability": 0.9905 + }, + { + "start": 8375.64, + "end": 8377.67, + "probability": 0.688 + }, + { + "start": 8378.34, + "end": 8379.0, + "probability": 0.6571 + }, + { + "start": 8380.04, + "end": 8380.94, + "probability": 0.7317 + }, + { + "start": 8381.56, + "end": 8384.34, + "probability": 0.9184 + }, + { + "start": 8384.7, + "end": 8386.06, + "probability": 0.9946 + }, + { + "start": 8387.64, + "end": 8389.18, + "probability": 0.6395 + }, + { + "start": 8389.18, + "end": 8389.36, + "probability": 0.4203 + }, + { + "start": 8389.4, + "end": 8390.23, + "probability": 0.7397 + }, + { + "start": 8390.4, + "end": 8391.31, + "probability": 0.8889 + }, + { + "start": 8391.48, + "end": 8392.3, + "probability": 0.3511 + }, + { + "start": 8392.38, + "end": 8393.52, + "probability": 0.8314 + }, + { + "start": 8394.8, + "end": 8395.84, + "probability": 0.7688 + }, + { + "start": 8395.92, + "end": 8399.38, + "probability": 0.7902 + }, + { + "start": 8399.42, + "end": 8400.1, + "probability": 0.7686 + }, + { + "start": 8400.24, + "end": 8400.76, + "probability": 0.1176 + }, + { + "start": 8400.8, + "end": 8401.86, + "probability": 0.0977 + }, + { + "start": 8401.86, + "end": 8404.18, + "probability": 0.0401 + }, + { + "start": 8404.84, + "end": 8405.1, + "probability": 0.0625 + }, + { + "start": 8405.98, + "end": 8406.18, + "probability": 0.5718 + }, + { + "start": 8410.38, + "end": 8410.92, + "probability": 0.4151 + }, + { + "start": 8416.36, + "end": 8418.62, + "probability": 0.1265 + }, + { + "start": 8418.62, + "end": 8420.03, + "probability": 0.2196 + }, + { + "start": 8421.02, + "end": 8422.44, + "probability": 0.1335 + }, + { + "start": 8422.77, + "end": 8423.12, + "probability": 0.2339 + }, + { + "start": 8425.82, + "end": 8426.08, + "probability": 0.1443 + }, + { + "start": 8426.38, + "end": 8427.68, + "probability": 0.0107 + }, + { + "start": 8427.9, + "end": 8428.9, + "probability": 0.0699 + }, + { + "start": 8434.94, + "end": 8436.0, + "probability": 0.1736 + }, + { + "start": 8438.18, + "end": 8438.18, + "probability": 0.3074 + }, + { + "start": 8438.22, + "end": 8438.22, + "probability": 0.4147 + }, + { + "start": 8438.22, + "end": 8438.84, + "probability": 0.0823 + }, + { + "start": 8438.84, + "end": 8439.92, + "probability": 0.2998 + }, + { + "start": 8440.9, + "end": 8442.69, + "probability": 0.0189 + }, + { + "start": 8442.88, + "end": 8444.56, + "probability": 0.0593 + }, + { + "start": 8444.56, + "end": 8444.56, + "probability": 0.0197 + }, + { + "start": 8445.16, + "end": 8446.38, + "probability": 0.1056 + }, + { + "start": 8446.74, + "end": 8447.18, + "probability": 0.4028 + }, + { + "start": 8447.7, + "end": 8448.66, + "probability": 0.4378 + }, + { + "start": 8448.66, + "end": 8449.88, + "probability": 0.0091 + }, + { + "start": 8449.88, + "end": 8450.56, + "probability": 0.0164 + }, + { + "start": 8451.4, + "end": 8453.48, + "probability": 0.354 + }, + { + "start": 8453.54, + "end": 8456.24, + "probability": 0.2032 + }, + { + "start": 8457.06, + "end": 8459.2, + "probability": 0.1371 + }, + { + "start": 8459.74, + "end": 8460.16, + "probability": 0.1522 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8483.0, + "end": 8483.0, + "probability": 0.0 + }, + { + "start": 8484.87, + "end": 8485.8, + "probability": 0.1224 + }, + { + "start": 8485.86, + "end": 8486.04, + "probability": 0.2082 + }, + { + "start": 8486.2, + "end": 8487.34, + "probability": 0.9185 + }, + { + "start": 8487.52, + "end": 8489.13, + "probability": 0.6143 + }, + { + "start": 8489.18, + "end": 8490.64, + "probability": 0.6057 + }, + { + "start": 8490.74, + "end": 8493.02, + "probability": 0.442 + }, + { + "start": 8493.34, + "end": 8493.58, + "probability": 0.3038 + }, + { + "start": 8493.58, + "end": 8493.58, + "probability": 0.0631 + }, + { + "start": 8493.58, + "end": 8497.76, + "probability": 0.616 + }, + { + "start": 8497.8, + "end": 8498.84, + "probability": 0.9526 + }, + { + "start": 8498.84, + "end": 8499.88, + "probability": 0.3778 + }, + { + "start": 8500.82, + "end": 8502.89, + "probability": 0.257 + }, + { + "start": 8503.98, + "end": 8507.86, + "probability": 0.0116 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.0, + "end": 8605.0, + "probability": 0.0 + }, + { + "start": 8605.08, + "end": 8606.59, + "probability": 0.3566 + }, + { + "start": 8606.74, + "end": 8607.96, + "probability": 0.838 + }, + { + "start": 8608.0, + "end": 8608.92, + "probability": 0.4332 + }, + { + "start": 8609.48, + "end": 8612.14, + "probability": 0.1149 + }, + { + "start": 8612.18, + "end": 8620.09, + "probability": 0.2449 + }, + { + "start": 8622.54, + "end": 8622.54, + "probability": 0.0765 + }, + { + "start": 8622.66, + "end": 8625.82, + "probability": 0.5835 + }, + { + "start": 8625.82, + "end": 8628.16, + "probability": 0.7072 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.0, + "end": 8733.0, + "probability": 0.0 + }, + { + "start": 8733.66, + "end": 8733.78, + "probability": 0.0728 + }, + { + "start": 8733.78, + "end": 8735.56, + "probability": 0.2141 + }, + { + "start": 8736.22, + "end": 8738.24, + "probability": 0.9862 + }, + { + "start": 8738.54, + "end": 8741.44, + "probability": 0.9481 + }, + { + "start": 8741.8, + "end": 8745.22, + "probability": 0.9997 + }, + { + "start": 8745.22, + "end": 8748.18, + "probability": 0.9949 + }, + { + "start": 8748.28, + "end": 8750.38, + "probability": 0.9743 + }, + { + "start": 8751.2, + "end": 8754.36, + "probability": 0.9756 + }, + { + "start": 8754.72, + "end": 8756.26, + "probability": 0.87 + }, + { + "start": 8756.32, + "end": 8756.98, + "probability": 0.923 + }, + { + "start": 8757.02, + "end": 8757.72, + "probability": 0.7711 + }, + { + "start": 8758.42, + "end": 8758.56, + "probability": 0.7143 + }, + { + "start": 8758.58, + "end": 8759.94, + "probability": 0.8611 + }, + { + "start": 8760.22, + "end": 8764.54, + "probability": 0.9904 + }, + { + "start": 8764.94, + "end": 8766.08, + "probability": 0.8057 + }, + { + "start": 8766.16, + "end": 8769.22, + "probability": 0.9902 + }, + { + "start": 8769.22, + "end": 8771.14, + "probability": 0.9311 + }, + { + "start": 8771.5, + "end": 8772.88, + "probability": 0.8243 + }, + { + "start": 8773.44, + "end": 8774.54, + "probability": 0.9099 + }, + { + "start": 8774.82, + "end": 8775.06, + "probability": 0.8441 + }, + { + "start": 8775.06, + "end": 8775.4, + "probability": 0.7586 + }, + { + "start": 8776.56, + "end": 8778.94, + "probability": 0.9392 + }, + { + "start": 8779.02, + "end": 8781.44, + "probability": 0.991 + }, + { + "start": 8782.84, + "end": 8786.08, + "probability": 0.9966 + }, + { + "start": 8786.66, + "end": 8790.34, + "probability": 0.6913 + }, + { + "start": 8790.62, + "end": 8791.54, + "probability": 0.9949 + }, + { + "start": 8791.86, + "end": 8794.54, + "probability": 0.999 + }, + { + "start": 8795.06, + "end": 8799.1, + "probability": 0.9578 + }, + { + "start": 8800.62, + "end": 8801.12, + "probability": 0.4152 + }, + { + "start": 8802.1, + "end": 8802.66, + "probability": 0.9926 + }, + { + "start": 8803.12, + "end": 8804.4, + "probability": 0.7457 + }, + { + "start": 8804.48, + "end": 8805.24, + "probability": 0.7993 + }, + { + "start": 8805.3, + "end": 8807.02, + "probability": 0.9524 + }, + { + "start": 8807.54, + "end": 8808.48, + "probability": 0.9585 + }, + { + "start": 8808.54, + "end": 8809.26, + "probability": 0.7869 + }, + { + "start": 8809.76, + "end": 8812.42, + "probability": 0.9285 + }, + { + "start": 8812.64, + "end": 8814.38, + "probability": 0.337 + }, + { + "start": 8816.1, + "end": 8816.54, + "probability": 0.0111 + }, + { + "start": 8817.04, + "end": 8817.18, + "probability": 0.3996 + }, + { + "start": 8817.2, + "end": 8817.64, + "probability": 0.3859 + }, + { + "start": 8817.66, + "end": 8817.82, + "probability": 0.1747 + }, + { + "start": 8817.82, + "end": 8817.82, + "probability": 0.0231 + }, + { + "start": 8817.82, + "end": 8817.82, + "probability": 0.0314 + }, + { + "start": 8817.82, + "end": 8819.64, + "probability": 0.4465 + }, + { + "start": 8820.18, + "end": 8821.1, + "probability": 0.6441 + }, + { + "start": 8824.22, + "end": 8825.66, + "probability": 0.6581 + }, + { + "start": 8827.81, + "end": 8831.48, + "probability": 0.2446 + }, + { + "start": 8831.48, + "end": 8832.22, + "probability": 0.368 + }, + { + "start": 8832.56, + "end": 8833.4, + "probability": 0.6469 + }, + { + "start": 8833.6, + "end": 8834.02, + "probability": 0.0472 + }, + { + "start": 8834.02, + "end": 8834.02, + "probability": 0.0879 + }, + { + "start": 8834.02, + "end": 8834.98, + "probability": 0.3195 + }, + { + "start": 8835.32, + "end": 8840.46, + "probability": 0.5776 + }, + { + "start": 8840.64, + "end": 8841.44, + "probability": 0.5417 + }, + { + "start": 8841.5, + "end": 8843.14, + "probability": 0.991 + }, + { + "start": 8843.78, + "end": 8844.81, + "probability": 0.9548 + }, + { + "start": 8845.48, + "end": 8847.56, + "probability": 0.5279 + }, + { + "start": 8862.74, + "end": 8863.92, + "probability": 0.5353 + }, + { + "start": 8865.74, + "end": 8868.98, + "probability": 0.9931 + }, + { + "start": 8871.06, + "end": 8872.78, + "probability": 0.9758 + }, + { + "start": 8875.64, + "end": 8877.32, + "probability": 0.6711 + }, + { + "start": 8878.64, + "end": 8880.08, + "probability": 0.7844 + }, + { + "start": 8880.84, + "end": 8884.42, + "probability": 0.9238 + }, + { + "start": 8885.44, + "end": 8887.58, + "probability": 0.9824 + }, + { + "start": 8888.9, + "end": 8892.04, + "probability": 0.9842 + }, + { + "start": 8895.22, + "end": 8898.1, + "probability": 0.8501 + }, + { + "start": 8899.52, + "end": 8905.06, + "probability": 0.9636 + }, + { + "start": 8906.24, + "end": 8908.44, + "probability": 0.9917 + }, + { + "start": 8909.7, + "end": 8913.96, + "probability": 0.9846 + }, + { + "start": 8915.16, + "end": 8920.2, + "probability": 0.9764 + }, + { + "start": 8920.2, + "end": 8925.14, + "probability": 0.9621 + }, + { + "start": 8926.26, + "end": 8929.78, + "probability": 0.9731 + }, + { + "start": 8930.58, + "end": 8935.2, + "probability": 0.9972 + }, + { + "start": 8935.2, + "end": 8939.6, + "probability": 0.9534 + }, + { + "start": 8940.2, + "end": 8942.16, + "probability": 0.5877 + }, + { + "start": 8943.12, + "end": 8948.08, + "probability": 0.9722 + }, + { + "start": 8949.46, + "end": 8952.22, + "probability": 0.8056 + }, + { + "start": 8953.14, + "end": 8956.42, + "probability": 0.7256 + }, + { + "start": 8957.32, + "end": 8964.76, + "probability": 0.8476 + }, + { + "start": 8965.34, + "end": 8966.66, + "probability": 0.9688 + }, + { + "start": 8968.02, + "end": 8971.32, + "probability": 0.9955 + }, + { + "start": 8971.84, + "end": 8974.82, + "probability": 0.994 + }, + { + "start": 8975.32, + "end": 8976.08, + "probability": 0.4488 + }, + { + "start": 8976.32, + "end": 8978.44, + "probability": 0.7956 + }, + { + "start": 8979.4, + "end": 8983.42, + "probability": 0.9115 + }, + { + "start": 8984.46, + "end": 8989.98, + "probability": 0.97 + }, + { + "start": 8990.04, + "end": 8991.2, + "probability": 0.9269 + }, + { + "start": 8992.2, + "end": 8994.16, + "probability": 0.9065 + }, + { + "start": 8995.6, + "end": 9002.5, + "probability": 0.9798 + }, + { + "start": 9002.64, + "end": 9004.3, + "probability": 0.7942 + }, + { + "start": 9005.02, + "end": 9008.26, + "probability": 0.9854 + }, + { + "start": 9008.46, + "end": 9009.44, + "probability": 0.698 + }, + { + "start": 9010.24, + "end": 9019.52, + "probability": 0.919 + }, + { + "start": 9020.08, + "end": 9022.56, + "probability": 0.9863 + }, + { + "start": 9022.8, + "end": 9028.46, + "probability": 0.9294 + }, + { + "start": 9028.88, + "end": 9036.18, + "probability": 0.9375 + }, + { + "start": 9036.7, + "end": 9043.0, + "probability": 0.9955 + }, + { + "start": 9043.36, + "end": 9046.88, + "probability": 0.6719 + }, + { + "start": 9047.02, + "end": 9053.06, + "probability": 0.9908 + }, + { + "start": 9053.18, + "end": 9053.56, + "probability": 0.7005 + }, + { + "start": 9053.6, + "end": 9054.02, + "probability": 0.766 + }, + { + "start": 9055.02, + "end": 9059.54, + "probability": 0.9652 + }, + { + "start": 9067.54, + "end": 9067.54, + "probability": 0.2033 + }, + { + "start": 9067.54, + "end": 9067.54, + "probability": 0.1238 + }, + { + "start": 9067.54, + "end": 9067.54, + "probability": 0.171 + }, + { + "start": 9067.54, + "end": 9067.54, + "probability": 0.071 + }, + { + "start": 9067.54, + "end": 9067.54, + "probability": 0.0409 + }, + { + "start": 9067.54, + "end": 9067.64, + "probability": 0.2101 + }, + { + "start": 9088.71, + "end": 9091.04, + "probability": 0.7972 + }, + { + "start": 9092.08, + "end": 9093.74, + "probability": 0.9856 + }, + { + "start": 9094.32, + "end": 9095.62, + "probability": 0.5854 + }, + { + "start": 9096.16, + "end": 9098.32, + "probability": 0.806 + }, + { + "start": 9099.22, + "end": 9104.54, + "probability": 0.9606 + }, + { + "start": 9104.54, + "end": 9108.66, + "probability": 0.9874 + }, + { + "start": 9109.18, + "end": 9113.79, + "probability": 0.9816 + }, + { + "start": 9113.88, + "end": 9113.98, + "probability": 0.0626 + }, + { + "start": 9113.98, + "end": 9114.06, + "probability": 0.0297 + }, + { + "start": 9114.06, + "end": 9122.86, + "probability": 0.7834 + }, + { + "start": 9123.32, + "end": 9125.98, + "probability": 0.8701 + }, + { + "start": 9126.14, + "end": 9127.86, + "probability": 0.6606 + }, + { + "start": 9127.88, + "end": 9129.14, + "probability": 0.0303 + }, + { + "start": 9129.14, + "end": 9132.64, + "probability": 0.0354 + }, + { + "start": 9132.64, + "end": 9133.02, + "probability": 0.2865 + }, + { + "start": 9133.76, + "end": 9135.68, + "probability": 0.1318 + }, + { + "start": 9136.0, + "end": 9140.24, + "probability": 0.0191 + }, + { + "start": 9140.24, + "end": 9140.5, + "probability": 0.0595 + }, + { + "start": 9140.5, + "end": 9141.3, + "probability": 0.3626 + }, + { + "start": 9142.26, + "end": 9142.58, + "probability": 0.3796 + }, + { + "start": 9143.24, + "end": 9144.68, + "probability": 0.0727 + }, + { + "start": 9144.68, + "end": 9145.22, + "probability": 0.168 + }, + { + "start": 9145.3, + "end": 9146.48, + "probability": 0.3623 + }, + { + "start": 9146.48, + "end": 9146.48, + "probability": 0.0557 + }, + { + "start": 9146.48, + "end": 9147.28, + "probability": 0.3175 + }, + { + "start": 9147.28, + "end": 9147.65, + "probability": 0.1946 + }, + { + "start": 9149.52, + "end": 9150.59, + "probability": 0.4788 + }, + { + "start": 9151.22, + "end": 9151.5, + "probability": 0.0797 + }, + { + "start": 9152.32, + "end": 9152.8, + "probability": 0.1512 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9179.0, + "probability": 0.0 + }, + { + "start": 9179.0, + "end": 9180.16, + "probability": 0.7113 + }, + { + "start": 9180.68, + "end": 9181.96, + "probability": 0.7747 + }, + { + "start": 9182.56, + "end": 9184.88, + "probability": 0.7934 + }, + { + "start": 9184.98, + "end": 9186.64, + "probability": 0.9217 + }, + { + "start": 9186.9, + "end": 9189.84, + "probability": 0.9952 + }, + { + "start": 9190.54, + "end": 9195.86, + "probability": 0.9903 + }, + { + "start": 9195.86, + "end": 9202.22, + "probability": 0.996 + }, + { + "start": 9203.0, + "end": 9204.68, + "probability": 0.8342 + }, + { + "start": 9204.78, + "end": 9207.26, + "probability": 0.958 + }, + { + "start": 9207.7, + "end": 9210.68, + "probability": 0.9773 + }, + { + "start": 9211.18, + "end": 9214.1, + "probability": 0.9883 + }, + { + "start": 9214.18, + "end": 9220.04, + "probability": 0.9971 + }, + { + "start": 9220.38, + "end": 9222.04, + "probability": 0.8026 + }, + { + "start": 9222.76, + "end": 9225.24, + "probability": 0.8401 + }, + { + "start": 9225.38, + "end": 9225.56, + "probability": 0.8151 + }, + { + "start": 9225.68, + "end": 9226.14, + "probability": 0.7349 + }, + { + "start": 9226.14, + "end": 9226.76, + "probability": 0.9424 + }, + { + "start": 9226.78, + "end": 9229.74, + "probability": 0.9689 + }, + { + "start": 9235.88, + "end": 9236.12, + "probability": 0.1727 + }, + { + "start": 9236.26, + "end": 9236.95, + "probability": 0.5394 + }, + { + "start": 9237.88, + "end": 9239.02, + "probability": 0.1576 + }, + { + "start": 9242.48, + "end": 9243.52, + "probability": 0.6293 + }, + { + "start": 9245.0, + "end": 9245.14, + "probability": 0.161 + }, + { + "start": 9245.14, + "end": 9245.16, + "probability": 0.2549 + }, + { + "start": 9245.16, + "end": 9245.16, + "probability": 0.3392 + }, + { + "start": 9245.16, + "end": 9246.46, + "probability": 0.0654 + }, + { + "start": 9246.5, + "end": 9247.34, + "probability": 0.5735 + }, + { + "start": 9248.08, + "end": 9249.6, + "probability": 0.3543 + }, + { + "start": 9250.14, + "end": 9253.92, + "probability": 0.5226 + }, + { + "start": 9255.0, + "end": 9255.86, + "probability": 0.7041 + }, + { + "start": 9256.72, + "end": 9258.16, + "probability": 0.6771 + }, + { + "start": 9259.58, + "end": 9260.08, + "probability": 0.6422 + }, + { + "start": 9266.06, + "end": 9268.29, + "probability": 0.1808 + }, + { + "start": 9270.02, + "end": 9270.34, + "probability": 0.0047 + }, + { + "start": 9273.03, + "end": 9274.98, + "probability": 0.0148 + }, + { + "start": 9278.96, + "end": 9280.32, + "probability": 0.2843 + }, + { + "start": 9282.98, + "end": 9283.24, + "probability": 0.025 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.0, + "end": 9351.0, + "probability": 0.0 + }, + { + "start": 9351.3, + "end": 9351.3, + "probability": 0.4939 + }, + { + "start": 9351.3, + "end": 9353.0, + "probability": 0.6345 + }, + { + "start": 9353.78, + "end": 9356.0, + "probability": 0.4002 + }, + { + "start": 9357.98, + "end": 9361.14, + "probability": 0.7843 + }, + { + "start": 9370.16, + "end": 9370.88, + "probability": 0.5014 + }, + { + "start": 9375.16, + "end": 9376.44, + "probability": 0.6211 + }, + { + "start": 9376.9, + "end": 9380.58, + "probability": 0.9906 + }, + { + "start": 9382.06, + "end": 9388.24, + "probability": 0.8111 + }, + { + "start": 9389.22, + "end": 9390.74, + "probability": 0.9159 + }, + { + "start": 9391.76, + "end": 9400.2, + "probability": 0.9587 + }, + { + "start": 9400.84, + "end": 9405.34, + "probability": 0.9601 + }, + { + "start": 9406.12, + "end": 9408.22, + "probability": 0.9763 + }, + { + "start": 9408.86, + "end": 9410.34, + "probability": 0.4981 + }, + { + "start": 9411.08, + "end": 9417.44, + "probability": 0.9434 + }, + { + "start": 9418.0, + "end": 9419.8, + "probability": 0.6186 + }, + { + "start": 9420.12, + "end": 9421.2, + "probability": 0.5801 + }, + { + "start": 9421.32, + "end": 9421.6, + "probability": 0.3501 + }, + { + "start": 9421.6, + "end": 9422.12, + "probability": 0.5439 + }, + { + "start": 9422.24, + "end": 9422.34, + "probability": 0.7921 + }, + { + "start": 9422.84, + "end": 9423.18, + "probability": 0.6171 + }, + { + "start": 9423.18, + "end": 9423.66, + "probability": 0.9576 + }, + { + "start": 9423.74, + "end": 9424.92, + "probability": 0.6331 + }, + { + "start": 9425.04, + "end": 9425.76, + "probability": 0.237 + }, + { + "start": 9425.82, + "end": 9426.82, + "probability": 0.5552 + }, + { + "start": 9427.18, + "end": 9427.3, + "probability": 0.5098 + }, + { + "start": 9427.46, + "end": 9429.58, + "probability": 0.9839 + }, + { + "start": 9430.06, + "end": 9431.5, + "probability": 0.5852 + }, + { + "start": 9431.58, + "end": 9432.72, + "probability": 0.8521 + }, + { + "start": 9432.72, + "end": 9432.74, + "probability": 0.7329 + }, + { + "start": 9432.74, + "end": 9436.14, + "probability": 0.8994 + }, + { + "start": 9436.14, + "end": 9437.02, + "probability": 0.5087 + }, + { + "start": 9437.04, + "end": 9437.22, + "probability": 0.5322 + }, + { + "start": 9437.22, + "end": 9441.14, + "probability": 0.9858 + }, + { + "start": 9441.14, + "end": 9441.28, + "probability": 0.2067 + }, + { + "start": 9441.42, + "end": 9442.88, + "probability": 0.1792 + }, + { + "start": 9442.88, + "end": 9444.48, + "probability": 0.7113 + }, + { + "start": 9445.08, + "end": 9447.43, + "probability": 0.9446 + }, + { + "start": 9447.8, + "end": 9449.3, + "probability": 0.788 + }, + { + "start": 9449.82, + "end": 9451.7, + "probability": 0.9951 + }, + { + "start": 9452.36, + "end": 9453.7, + "probability": 0.7591 + }, + { + "start": 9453.86, + "end": 9455.48, + "probability": 0.9199 + }, + { + "start": 9455.88, + "end": 9461.46, + "probability": 0.8787 + }, + { + "start": 9464.18, + "end": 9466.06, + "probability": 0.8994 + }, + { + "start": 9466.28, + "end": 9467.07, + "probability": 0.9553 + }, + { + "start": 9467.96, + "end": 9470.18, + "probability": 0.9341 + }, + { + "start": 9470.68, + "end": 9473.82, + "probability": 0.9629 + }, + { + "start": 9474.04, + "end": 9475.46, + "probability": 0.7644 + }, + { + "start": 9479.36, + "end": 9482.36, + "probability": 0.099 + }, + { + "start": 9482.96, + "end": 9482.96, + "probability": 0.1627 + }, + { + "start": 9484.75, + "end": 9488.04, + "probability": 0.3577 + }, + { + "start": 9491.02, + "end": 9493.12, + "probability": 0.3573 + }, + { + "start": 9494.26, + "end": 9496.88, + "probability": 0.0849 + }, + { + "start": 9496.88, + "end": 9497.32, + "probability": 0.0327 + }, + { + "start": 9499.56, + "end": 9501.6, + "probability": 0.1385 + }, + { + "start": 9506.16, + "end": 9507.52, + "probability": 0.0082 + }, + { + "start": 9508.92, + "end": 9513.78, + "probability": 0.1686 + }, + { + "start": 9513.78, + "end": 9513.78, + "probability": 0.1668 + }, + { + "start": 9513.78, + "end": 9513.78, + "probability": 0.0839 + }, + { + "start": 9513.78, + "end": 9514.34, + "probability": 0.0505 + }, + { + "start": 9515.1, + "end": 9516.0, + "probability": 0.4145 + }, + { + "start": 9516.18, + "end": 9517.54, + "probability": 0.2313 + }, + { + "start": 9520.02, + "end": 9521.1, + "probability": 0.027 + }, + { + "start": 9521.62, + "end": 9522.82, + "probability": 0.0568 + }, + { + "start": 9522.82, + "end": 9522.94, + "probability": 0.3917 + }, + { + "start": 9522.94, + "end": 9524.34, + "probability": 0.3463 + }, + { + "start": 9524.34, + "end": 9524.88, + "probability": 0.1369 + }, + { + "start": 9524.88, + "end": 9525.44, + "probability": 0.0554 + }, + { + "start": 9525.62, + "end": 9526.02, + "probability": 0.2044 + }, + { + "start": 9526.26, + "end": 9529.44, + "probability": 0.0442 + }, + { + "start": 9530.5, + "end": 9531.7, + "probability": 0.0879 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9552.0, + "end": 9552.0, + "probability": 0.0 + }, + { + "start": 9560.42, + "end": 9561.66, + "probability": 0.7733 + }, + { + "start": 9561.66, + "end": 9562.25, + "probability": 0.0417 + }, + { + "start": 9562.48, + "end": 9563.06, + "probability": 0.2507 + }, + { + "start": 9563.06, + "end": 9563.78, + "probability": 0.173 + }, + { + "start": 9564.34, + "end": 9564.8, + "probability": 0.0411 + }, + { + "start": 9565.76, + "end": 9568.12, + "probability": 0.1289 + }, + { + "start": 9568.36, + "end": 9571.8, + "probability": 0.0118 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9672.0, + "end": 9672.0, + "probability": 0.0 + }, + { + "start": 9676.46, + "end": 9678.34, + "probability": 0.2371 + }, + { + "start": 9678.78, + "end": 9680.26, + "probability": 0.3423 + }, + { + "start": 9680.26, + "end": 9680.99, + "probability": 0.0711 + }, + { + "start": 9681.7, + "end": 9681.7, + "probability": 0.3672 + }, + { + "start": 9681.7, + "end": 9684.22, + "probability": 0.127 + }, + { + "start": 9684.56, + "end": 9685.54, + "probability": 0.0757 + }, + { + "start": 9685.54, + "end": 9686.37, + "probability": 0.2952 + }, + { + "start": 9687.42, + "end": 9687.84, + "probability": 0.3523 + }, + { + "start": 9687.84, + "end": 9689.6, + "probability": 0.0292 + }, + { + "start": 9689.6, + "end": 9689.67, + "probability": 0.1559 + }, + { + "start": 9690.4, + "end": 9691.02, + "probability": 0.3052 + }, + { + "start": 9693.19, + "end": 9694.6, + "probability": 0.1014 + }, + { + "start": 9694.96, + "end": 9699.16, + "probability": 0.1305 + }, + { + "start": 9703.34, + "end": 9706.24, + "probability": 0.0968 + }, + { + "start": 9708.42, + "end": 9709.94, + "probability": 0.0819 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.0, + "end": 9792.0, + "probability": 0.0 + }, + { + "start": 9792.16, + "end": 9792.28, + "probability": 0.0804 + }, + { + "start": 9793.18, + "end": 9796.44, + "probability": 0.8534 + }, + { + "start": 9796.98, + "end": 9797.76, + "probability": 0.4946 + }, + { + "start": 9797.8, + "end": 9798.14, + "probability": 0.7869 + }, + { + "start": 9798.22, + "end": 9800.02, + "probability": 0.9738 + }, + { + "start": 9800.46, + "end": 9803.54, + "probability": 0.9912 + }, + { + "start": 9804.16, + "end": 9806.56, + "probability": 0.9249 + }, + { + "start": 9807.34, + "end": 9807.92, + "probability": 0.7711 + }, + { + "start": 9808.96, + "end": 9810.46, + "probability": 0.9976 + }, + { + "start": 9811.34, + "end": 9812.28, + "probability": 0.7417 + }, + { + "start": 9812.92, + "end": 9813.72, + "probability": 0.9639 + }, + { + "start": 9814.28, + "end": 9815.96, + "probability": 0.8983 + }, + { + "start": 9816.9, + "end": 9818.94, + "probability": 0.9786 + }, + { + "start": 9819.54, + "end": 9820.36, + "probability": 0.9834 + }, + { + "start": 9824.64, + "end": 9825.18, + "probability": 0.5071 + }, + { + "start": 9825.9, + "end": 9829.56, + "probability": 0.8706 + }, + { + "start": 9830.02, + "end": 9831.26, + "probability": 0.9844 + }, + { + "start": 9831.34, + "end": 9832.76, + "probability": 0.9783 + }, + { + "start": 9832.8, + "end": 9834.1, + "probability": 0.7952 + }, + { + "start": 9835.36, + "end": 9837.54, + "probability": 0.6349 + }, + { + "start": 9837.64, + "end": 9840.85, + "probability": 0.9944 + }, + { + "start": 9840.9, + "end": 9842.32, + "probability": 0.9015 + }, + { + "start": 9843.14, + "end": 9846.24, + "probability": 0.9915 + }, + { + "start": 9846.78, + "end": 9848.98, + "probability": 0.9968 + }, + { + "start": 9849.8, + "end": 9852.26, + "probability": 0.9613 + }, + { + "start": 9852.84, + "end": 9855.16, + "probability": 0.9634 + }, + { + "start": 9855.82, + "end": 9858.66, + "probability": 0.9778 + }, + { + "start": 9858.94, + "end": 9859.16, + "probability": 0.3878 + }, + { + "start": 9859.24, + "end": 9862.82, + "probability": 0.8276 + }, + { + "start": 9862.92, + "end": 9863.44, + "probability": 0.5673 + }, + { + "start": 9863.94, + "end": 9867.14, + "probability": 0.9751 + }, + { + "start": 9867.54, + "end": 9869.06, + "probability": 0.9342 + }, + { + "start": 9869.08, + "end": 9871.4, + "probability": 0.9854 + }, + { + "start": 9871.74, + "end": 9873.9, + "probability": 0.98 + }, + { + "start": 9874.88, + "end": 9879.08, + "probability": 0.9665 + }, + { + "start": 9879.22, + "end": 9881.44, + "probability": 0.995 + }, + { + "start": 9881.44, + "end": 9884.26, + "probability": 0.9981 + }, + { + "start": 9884.74, + "end": 9886.02, + "probability": 0.9187 + }, + { + "start": 9886.12, + "end": 9889.48, + "probability": 0.9526 + }, + { + "start": 9890.02, + "end": 9893.48, + "probability": 0.9971 + }, + { + "start": 9893.94, + "end": 9896.34, + "probability": 0.9808 + }, + { + "start": 9896.38, + "end": 9897.44, + "probability": 0.7517 + }, + { + "start": 9898.1, + "end": 9898.72, + "probability": 0.988 + }, + { + "start": 9899.28, + "end": 9900.94, + "probability": 0.7274 + }, + { + "start": 9901.94, + "end": 9903.3, + "probability": 0.8138 + }, + { + "start": 9903.84, + "end": 9904.66, + "probability": 0.9437 + }, + { + "start": 9905.26, + "end": 9908.48, + "probability": 0.6418 + }, + { + "start": 9908.56, + "end": 9909.76, + "probability": 0.5909 + }, + { + "start": 9910.42, + "end": 9912.37, + "probability": 0.7793 + }, + { + "start": 9913.2, + "end": 9916.72, + "probability": 0.9643 + }, + { + "start": 9917.5, + "end": 9919.66, + "probability": 0.7341 + }, + { + "start": 9919.72, + "end": 9925.58, + "probability": 0.9386 + }, + { + "start": 9926.74, + "end": 9929.36, + "probability": 0.6943 + }, + { + "start": 9929.84, + "end": 9933.8, + "probability": 0.9841 + }, + { + "start": 9933.8, + "end": 9938.04, + "probability": 0.9991 + }, + { + "start": 9938.58, + "end": 9940.34, + "probability": 0.9995 + }, + { + "start": 9940.52, + "end": 9942.94, + "probability": 0.9792 + }, + { + "start": 9943.9, + "end": 9948.36, + "probability": 0.9938 + }, + { + "start": 9948.84, + "end": 9951.98, + "probability": 0.6871 + }, + { + "start": 9952.02, + "end": 9953.82, + "probability": 0.8302 + }, + { + "start": 9954.1, + "end": 9956.54, + "probability": 0.9635 + }, + { + "start": 9957.16, + "end": 9957.88, + "probability": 0.9318 + }, + { + "start": 9958.16, + "end": 9959.4, + "probability": 0.9657 + }, + { + "start": 9959.82, + "end": 9962.64, + "probability": 0.9652 + }, + { + "start": 9963.08, + "end": 9964.26, + "probability": 0.9155 + }, + { + "start": 9964.34, + "end": 9965.22, + "probability": 0.9103 + }, + { + "start": 9965.8, + "end": 9966.98, + "probability": 0.7983 + }, + { + "start": 9967.8, + "end": 9969.68, + "probability": 0.9678 + }, + { + "start": 9970.12, + "end": 9973.1, + "probability": 0.9949 + }, + { + "start": 9973.6, + "end": 9974.98, + "probability": 0.9196 + }, + { + "start": 9975.04, + "end": 9976.2, + "probability": 0.9864 + }, + { + "start": 9976.92, + "end": 9980.28, + "probability": 0.5626 + }, + { + "start": 9980.46, + "end": 9980.6, + "probability": 0.4171 + }, + { + "start": 9980.74, + "end": 9985.58, + "probability": 0.8196 + }, + { + "start": 9986.42, + "end": 9990.26, + "probability": 0.9946 + }, + { + "start": 9990.36, + "end": 9991.99, + "probability": 0.9905 + }, + { + "start": 9992.74, + "end": 9993.52, + "probability": 0.8089 + }, + { + "start": 9994.06, + "end": 9995.78, + "probability": 0.9907 + }, + { + "start": 9995.96, + "end": 9996.7, + "probability": 0.6895 + }, + { + "start": 9997.28, + "end": 9998.34, + "probability": 0.9456 + }, + { + "start": 9998.68, + "end": 9999.24, + "probability": 0.9358 + }, + { + "start": 9999.56, + "end": 10001.8, + "probability": 0.5849 + }, + { + "start": 10001.9, + "end": 10003.96, + "probability": 0.7276 + }, + { + "start": 10004.32, + "end": 10008.0, + "probability": 0.9795 + }, + { + "start": 10008.36, + "end": 10010.82, + "probability": 0.9806 + }, + { + "start": 10010.92, + "end": 10011.32, + "probability": 0.8257 + }, + { + "start": 10012.86, + "end": 10013.26, + "probability": 0.6863 + }, + { + "start": 10013.38, + "end": 10014.32, + "probability": 0.9039 + }, + { + "start": 10014.46, + "end": 10017.2, + "probability": 0.9845 + }, + { + "start": 10018.24, + "end": 10023.56, + "probability": 0.7707 + }, + { + "start": 10023.76, + "end": 10025.7, + "probability": 0.8684 + }, + { + "start": 10026.26, + "end": 10028.24, + "probability": 0.7946 + }, + { + "start": 10029.62, + "end": 10030.28, + "probability": 0.4708 + }, + { + "start": 10031.04, + "end": 10031.3, + "probability": 0.786 + }, + { + "start": 10031.9, + "end": 10032.53, + "probability": 0.541 + }, + { + "start": 10033.24, + "end": 10036.32, + "probability": 0.7358 + }, + { + "start": 10038.14, + "end": 10038.82, + "probability": 0.8384 + }, + { + "start": 10039.46, + "end": 10040.58, + "probability": 0.9655 + }, + { + "start": 10052.28, + "end": 10053.94, + "probability": 0.7626 + }, + { + "start": 10055.56, + "end": 10057.4, + "probability": 0.6767 + }, + { + "start": 10058.86, + "end": 10060.7, + "probability": 0.5952 + }, + { + "start": 10062.46, + "end": 10067.68, + "probability": 0.994 + }, + { + "start": 10068.76, + "end": 10073.08, + "probability": 0.9725 + }, + { + "start": 10073.68, + "end": 10077.3, + "probability": 0.9984 + }, + { + "start": 10077.82, + "end": 10079.66, + "probability": 0.989 + }, + { + "start": 10079.78, + "end": 10080.98, + "probability": 0.9445 + }, + { + "start": 10081.06, + "end": 10081.9, + "probability": 0.9911 + }, + { + "start": 10082.02, + "end": 10086.16, + "probability": 0.9426 + }, + { + "start": 10086.96, + "end": 10092.64, + "probability": 0.8548 + }, + { + "start": 10093.06, + "end": 10093.92, + "probability": 0.217 + }, + { + "start": 10093.92, + "end": 10093.92, + "probability": 0.0547 + }, + { + "start": 10093.92, + "end": 10095.46, + "probability": 0.4742 + }, + { + "start": 10095.92, + "end": 10099.44, + "probability": 0.9502 + }, + { + "start": 10099.96, + "end": 10099.96, + "probability": 0.0187 + }, + { + "start": 10100.66, + "end": 10101.36, + "probability": 0.0409 + }, + { + "start": 10101.36, + "end": 10101.52, + "probability": 0.1418 + }, + { + "start": 10102.44, + "end": 10103.84, + "probability": 0.9429 + }, + { + "start": 10104.4, + "end": 10106.32, + "probability": 0.7445 + }, + { + "start": 10107.24, + "end": 10111.38, + "probability": 0.9854 + }, + { + "start": 10111.52, + "end": 10112.92, + "probability": 0.9745 + }, + { + "start": 10113.06, + "end": 10113.7, + "probability": 0.8633 + }, + { + "start": 10114.28, + "end": 10115.98, + "probability": 0.9774 + }, + { + "start": 10116.84, + "end": 10121.36, + "probability": 0.9098 + }, + { + "start": 10121.54, + "end": 10123.62, + "probability": 0.7907 + }, + { + "start": 10124.62, + "end": 10124.86, + "probability": 0.4938 + }, + { + "start": 10125.78, + "end": 10127.16, + "probability": 0.8923 + }, + { + "start": 10127.24, + "end": 10128.04, + "probability": 0.9277 + }, + { + "start": 10128.24, + "end": 10130.72, + "probability": 0.9922 + }, + { + "start": 10131.3, + "end": 10131.76, + "probability": 0.5094 + }, + { + "start": 10132.42, + "end": 10135.06, + "probability": 0.9954 + }, + { + "start": 10135.26, + "end": 10137.02, + "probability": 0.7577 + }, + { + "start": 10137.12, + "end": 10140.46, + "probability": 0.9893 + }, + { + "start": 10140.88, + "end": 10141.6, + "probability": 0.696 + }, + { + "start": 10142.34, + "end": 10143.52, + "probability": 0.9756 + }, + { + "start": 10143.74, + "end": 10145.14, + "probability": 0.9867 + }, + { + "start": 10146.42, + "end": 10149.56, + "probability": 0.7453 + }, + { + "start": 10149.76, + "end": 10156.66, + "probability": 0.9512 + }, + { + "start": 10157.56, + "end": 10161.65, + "probability": 0.9927 + }, + { + "start": 10161.96, + "end": 10166.58, + "probability": 0.99 + }, + { + "start": 10167.12, + "end": 10171.08, + "probability": 0.9973 + }, + { + "start": 10172.16, + "end": 10175.92, + "probability": 0.9542 + }, + { + "start": 10175.92, + "end": 10181.2, + "probability": 0.9768 + }, + { + "start": 10181.66, + "end": 10183.96, + "probability": 0.8342 + }, + { + "start": 10184.6, + "end": 10191.22, + "probability": 0.9673 + }, + { + "start": 10191.78, + "end": 10195.66, + "probability": 0.9569 + }, + { + "start": 10196.2, + "end": 10201.06, + "probability": 0.89 + }, + { + "start": 10202.54, + "end": 10202.92, + "probability": 0.9937 + }, + { + "start": 10203.68, + "end": 10205.56, + "probability": 0.9452 + }, + { + "start": 10206.52, + "end": 10208.32, + "probability": 0.9442 + }, + { + "start": 10208.88, + "end": 10211.08, + "probability": 0.9832 + }, + { + "start": 10212.0, + "end": 10215.26, + "probability": 0.8792 + }, + { + "start": 10216.1, + "end": 10216.5, + "probability": 0.4159 + }, + { + "start": 10217.2, + "end": 10217.82, + "probability": 0.3969 + }, + { + "start": 10218.76, + "end": 10222.0, + "probability": 0.9574 + }, + { + "start": 10223.08, + "end": 10225.96, + "probability": 0.7852 + }, + { + "start": 10227.18, + "end": 10230.28, + "probability": 0.9728 + }, + { + "start": 10230.94, + "end": 10236.4, + "probability": 0.988 + }, + { + "start": 10237.04, + "end": 10238.34, + "probability": 0.9973 + }, + { + "start": 10238.34, + "end": 10239.4, + "probability": 0.7239 + }, + { + "start": 10240.28, + "end": 10240.64, + "probability": 0.7374 + }, + { + "start": 10240.78, + "end": 10242.8, + "probability": 0.7088 + }, + { + "start": 10243.42, + "end": 10245.82, + "probability": 0.9985 + }, + { + "start": 10246.18, + "end": 10248.6, + "probability": 0.9952 + }, + { + "start": 10249.12, + "end": 10250.32, + "probability": 0.98 + }, + { + "start": 10250.74, + "end": 10252.7, + "probability": 0.9741 + }, + { + "start": 10253.12, + "end": 10258.02, + "probability": 0.9877 + }, + { + "start": 10258.54, + "end": 10260.94, + "probability": 0.9839 + }, + { + "start": 10261.24, + "end": 10261.82, + "probability": 0.8122 + }, + { + "start": 10264.7, + "end": 10266.08, + "probability": 0.7583 + }, + { + "start": 10267.5, + "end": 10268.3, + "probability": 0.7996 + }, + { + "start": 10269.0, + "end": 10270.5, + "probability": 0.8706 + }, + { + "start": 10287.88, + "end": 10287.88, + "probability": 0.4961 + }, + { + "start": 10287.88, + "end": 10288.26, + "probability": 0.6663 + }, + { + "start": 10288.54, + "end": 10291.32, + "probability": 0.7615 + }, + { + "start": 10292.08, + "end": 10293.5, + "probability": 0.9946 + }, + { + "start": 10294.1, + "end": 10296.9, + "probability": 0.9836 + }, + { + "start": 10296.9, + "end": 10303.04, + "probability": 0.6378 + }, + { + "start": 10303.06, + "end": 10305.53, + "probability": 0.6889 + }, + { + "start": 10306.38, + "end": 10307.84, + "probability": 0.9504 + }, + { + "start": 10308.54, + "end": 10310.54, + "probability": 0.9284 + }, + { + "start": 10311.08, + "end": 10311.64, + "probability": 0.6335 + }, + { + "start": 10312.24, + "end": 10315.78, + "probability": 0.9376 + }, + { + "start": 10315.9, + "end": 10319.6, + "probability": 0.8882 + }, + { + "start": 10319.6, + "end": 10322.84, + "probability": 0.9879 + }, + { + "start": 10322.86, + "end": 10328.48, + "probability": 0.8643 + }, + { + "start": 10329.06, + "end": 10332.86, + "probability": 0.7638 + }, + { + "start": 10333.86, + "end": 10335.98, + "probability": 0.9279 + }, + { + "start": 10336.5, + "end": 10338.66, + "probability": 0.9961 + }, + { + "start": 10339.24, + "end": 10343.66, + "probability": 0.8962 + }, + { + "start": 10344.24, + "end": 10348.1, + "probability": 0.993 + }, + { + "start": 10348.6, + "end": 10351.94, + "probability": 0.9483 + }, + { + "start": 10352.04, + "end": 10357.2, + "probability": 0.9625 + }, + { + "start": 10357.5, + "end": 10358.98, + "probability": 0.9622 + }, + { + "start": 10359.1, + "end": 10364.86, + "probability": 0.8943 + }, + { + "start": 10366.4, + "end": 10366.6, + "probability": 0.1247 + }, + { + "start": 10366.6, + "end": 10366.96, + "probability": 0.2182 + }, + { + "start": 10367.62, + "end": 10368.86, + "probability": 0.7484 + }, + { + "start": 10369.02, + "end": 10369.64, + "probability": 0.463 + }, + { + "start": 10369.94, + "end": 10371.74, + "probability": 0.8145 + }, + { + "start": 10372.04, + "end": 10374.62, + "probability": 0.7716 + }, + { + "start": 10374.94, + "end": 10375.94, + "probability": 0.8804 + }, + { + "start": 10375.98, + "end": 10377.56, + "probability": 0.6248 + }, + { + "start": 10377.68, + "end": 10378.56, + "probability": 0.5304 + }, + { + "start": 10378.88, + "end": 10380.62, + "probability": 0.8424 + }, + { + "start": 10381.32, + "end": 10382.74, + "probability": 0.9333 + }, + { + "start": 10383.2, + "end": 10384.9, + "probability": 0.862 + }, + { + "start": 10385.62, + "end": 10387.98, + "probability": 0.9532 + }, + { + "start": 10388.9, + "end": 10389.7, + "probability": 0.8685 + }, + { + "start": 10389.8, + "end": 10391.42, + "probability": 0.762 + }, + { + "start": 10392.02, + "end": 10392.24, + "probability": 0.0488 + }, + { + "start": 10392.24, + "end": 10392.74, + "probability": 0.8893 + }, + { + "start": 10392.8, + "end": 10397.12, + "probability": 0.7878 + }, + { + "start": 10397.12, + "end": 10401.34, + "probability": 0.8928 + }, + { + "start": 10401.86, + "end": 10404.12, + "probability": 0.3963 + }, + { + "start": 10404.26, + "end": 10405.12, + "probability": 0.4697 + }, + { + "start": 10405.16, + "end": 10405.96, + "probability": 0.7661 + }, + { + "start": 10406.16, + "end": 10408.76, + "probability": 0.865 + }, + { + "start": 10408.76, + "end": 10410.02, + "probability": 0.6442 + }, + { + "start": 10410.02, + "end": 10410.78, + "probability": 0.4756 + }, + { + "start": 10410.94, + "end": 10411.36, + "probability": 0.476 + }, + { + "start": 10411.36, + "end": 10414.38, + "probability": 0.6637 + }, + { + "start": 10414.38, + "end": 10415.36, + "probability": 0.6936 + }, + { + "start": 10415.44, + "end": 10415.9, + "probability": 0.8519 + }, + { + "start": 10416.06, + "end": 10416.6, + "probability": 0.4265 + }, + { + "start": 10416.66, + "end": 10417.12, + "probability": 0.5054 + }, + { + "start": 10417.12, + "end": 10419.54, + "probability": 0.8107 + }, + { + "start": 10420.76, + "end": 10421.96, + "probability": 0.6772 + }, + { + "start": 10422.36, + "end": 10426.96, + "probability": 0.9404 + }, + { + "start": 10427.24, + "end": 10429.74, + "probability": 0.7689 + }, + { + "start": 10430.6, + "end": 10431.78, + "probability": 0.7987 + }, + { + "start": 10432.12, + "end": 10432.68, + "probability": 0.5095 + }, + { + "start": 10433.08, + "end": 10436.98, + "probability": 0.6329 + }, + { + "start": 10437.06, + "end": 10440.84, + "probability": 0.6653 + }, + { + "start": 10441.38, + "end": 10447.82, + "probability": 0.998 + }, + { + "start": 10448.72, + "end": 10452.42, + "probability": 0.5731 + }, + { + "start": 10454.2, + "end": 10456.38, + "probability": 0.7476 + }, + { + "start": 10457.02, + "end": 10460.6, + "probability": 0.6489 + }, + { + "start": 10461.12, + "end": 10465.14, + "probability": 0.9039 + }, + { + "start": 10465.28, + "end": 10465.8, + "probability": 0.7912 + }, + { + "start": 10467.24, + "end": 10472.46, + "probability": 0.8917 + }, + { + "start": 10472.72, + "end": 10473.98, + "probability": 0.73 + }, + { + "start": 10474.62, + "end": 10476.12, + "probability": 0.9736 + }, + { + "start": 10477.12, + "end": 10478.34, + "probability": 0.6427 + }, + { + "start": 10478.62, + "end": 10479.92, + "probability": 0.9046 + }, + { + "start": 10479.98, + "end": 10482.06, + "probability": 0.9867 + }, + { + "start": 10482.64, + "end": 10485.08, + "probability": 0.8633 + }, + { + "start": 10485.96, + "end": 10488.22, + "probability": 0.96 + }, + { + "start": 10488.42, + "end": 10488.92, + "probability": 0.7651 + }, + { + "start": 10489.02, + "end": 10492.2, + "probability": 0.9826 + }, + { + "start": 10492.9, + "end": 10493.84, + "probability": 0.1184 + }, + { + "start": 10494.96, + "end": 10499.78, + "probability": 0.9088 + }, + { + "start": 10499.88, + "end": 10501.46, + "probability": 0.9987 + }, + { + "start": 10501.96, + "end": 10503.72, + "probability": 0.9978 + }, + { + "start": 10504.94, + "end": 10508.04, + "probability": 0.966 + }, + { + "start": 10508.04, + "end": 10511.28, + "probability": 0.9959 + }, + { + "start": 10512.74, + "end": 10518.78, + "probability": 0.9708 + }, + { + "start": 10518.86, + "end": 10522.0, + "probability": 0.9971 + }, + { + "start": 10522.06, + "end": 10524.34, + "probability": 0.9796 + }, + { + "start": 10524.52, + "end": 10525.92, + "probability": 0.968 + }, + { + "start": 10526.4, + "end": 10528.78, + "probability": 0.9634 + }, + { + "start": 10528.84, + "end": 10529.0, + "probability": 0.4787 + }, + { + "start": 10529.06, + "end": 10529.44, + "probability": 0.8012 + }, + { + "start": 10530.7, + "end": 10532.14, + "probability": 0.909 + }, + { + "start": 10532.86, + "end": 10533.56, + "probability": 0.8568 + }, + { + "start": 10534.78, + "end": 10537.76, + "probability": 0.6369 + }, + { + "start": 10538.64, + "end": 10540.26, + "probability": 0.9447 + }, + { + "start": 10554.2, + "end": 10554.98, + "probability": 0.6924 + }, + { + "start": 10555.02, + "end": 10556.18, + "probability": 0.8687 + }, + { + "start": 10557.04, + "end": 10563.22, + "probability": 0.9847 + }, + { + "start": 10564.0, + "end": 10566.94, + "probability": 0.8984 + }, + { + "start": 10567.28, + "end": 10568.82, + "probability": 0.9956 + }, + { + "start": 10569.44, + "end": 10570.88, + "probability": 0.9373 + }, + { + "start": 10571.86, + "end": 10575.52, + "probability": 0.6751 + }, + { + "start": 10575.8, + "end": 10576.08, + "probability": 0.0544 + }, + { + "start": 10576.08, + "end": 10577.2, + "probability": 0.9868 + }, + { + "start": 10578.22, + "end": 10584.42, + "probability": 0.9631 + }, + { + "start": 10586.02, + "end": 10586.38, + "probability": 0.9321 + }, + { + "start": 10586.46, + "end": 10588.56, + "probability": 0.9888 + }, + { + "start": 10588.62, + "end": 10591.3, + "probability": 0.891 + }, + { + "start": 10591.3, + "end": 10592.7, + "probability": 0.8665 + }, + { + "start": 10592.7, + "end": 10594.84, + "probability": 0.3343 + }, + { + "start": 10595.64, + "end": 10596.7, + "probability": 0.1713 + }, + { + "start": 10597.22, + "end": 10598.98, + "probability": 0.7798 + }, + { + "start": 10599.98, + "end": 10602.52, + "probability": 0.1613 + }, + { + "start": 10602.74, + "end": 10602.74, + "probability": 0.0191 + }, + { + "start": 10603.48, + "end": 10603.88, + "probability": 0.0605 + }, + { + "start": 10603.88, + "end": 10603.88, + "probability": 0.2358 + }, + { + "start": 10603.88, + "end": 10603.88, + "probability": 0.0758 + }, + { + "start": 10603.88, + "end": 10603.88, + "probability": 0.0703 + }, + { + "start": 10603.88, + "end": 10604.44, + "probability": 0.2483 + }, + { + "start": 10604.56, + "end": 10605.18, + "probability": 0.4311 + }, + { + "start": 10605.88, + "end": 10607.88, + "probability": 0.5746 + }, + { + "start": 10608.64, + "end": 10608.98, + "probability": 0.0977 + }, + { + "start": 10609.3, + "end": 10609.38, + "probability": 0.1535 + }, + { + "start": 10609.38, + "end": 10614.84, + "probability": 0.47 + }, + { + "start": 10615.02, + "end": 10615.68, + "probability": 0.6289 + }, + { + "start": 10616.94, + "end": 10617.94, + "probability": 0.314 + }, + { + "start": 10617.94, + "end": 10620.32, + "probability": 0.8218 + }, + { + "start": 10620.4, + "end": 10622.22, + "probability": 0.4523 + }, + { + "start": 10622.62, + "end": 10624.26, + "probability": 0.2055 + }, + { + "start": 10624.26, + "end": 10626.78, + "probability": 0.7916 + }, + { + "start": 10627.58, + "end": 10631.26, + "probability": 0.9951 + }, + { + "start": 10631.68, + "end": 10632.34, + "probability": 0.6647 + }, + { + "start": 10632.8, + "end": 10633.02, + "probability": 0.2642 + }, + { + "start": 10633.02, + "end": 10639.26, + "probability": 0.9714 + }, + { + "start": 10639.76, + "end": 10640.52, + "probability": 0.9663 + }, + { + "start": 10640.88, + "end": 10645.22, + "probability": 0.9483 + }, + { + "start": 10645.88, + "end": 10647.62, + "probability": 0.8955 + }, + { + "start": 10647.8, + "end": 10649.46, + "probability": 0.9917 + }, + { + "start": 10649.76, + "end": 10650.4, + "probability": 0.208 + }, + { + "start": 10650.4, + "end": 10650.96, + "probability": 0.0789 + }, + { + "start": 10650.96, + "end": 10651.54, + "probability": 0.5361 + }, + { + "start": 10651.8, + "end": 10652.71, + "probability": 0.0855 + }, + { + "start": 10656.96, + "end": 10657.95, + "probability": 0.0792 + }, + { + "start": 10658.38, + "end": 10659.56, + "probability": 0.1987 + }, + { + "start": 10659.56, + "end": 10659.56, + "probability": 0.1209 + }, + { + "start": 10659.56, + "end": 10659.56, + "probability": 0.2227 + }, + { + "start": 10659.56, + "end": 10659.6, + "probability": 0.2805 + }, + { + "start": 10659.64, + "end": 10660.14, + "probability": 0.3304 + }, + { + "start": 10660.14, + "end": 10660.97, + "probability": 0.0604 + }, + { + "start": 10662.2, + "end": 10663.66, + "probability": 0.213 + }, + { + "start": 10663.96, + "end": 10666.78, + "probability": 0.6791 + }, + { + "start": 10667.08, + "end": 10667.36, + "probability": 0.5782 + }, + { + "start": 10667.7, + "end": 10667.7, + "probability": 0.3744 + }, + { + "start": 10667.7, + "end": 10668.0, + "probability": 0.0122 + }, + { + "start": 10668.0, + "end": 10670.26, + "probability": 0.7454 + }, + { + "start": 10670.66, + "end": 10673.48, + "probability": 0.8005 + }, + { + "start": 10673.84, + "end": 10677.79, + "probability": 0.7052 + }, + { + "start": 10678.24, + "end": 10679.88, + "probability": 0.1728 + }, + { + "start": 10680.2, + "end": 10683.0, + "probability": 0.2443 + }, + { + "start": 10683.0, + "end": 10683.0, + "probability": 0.0256 + }, + { + "start": 10683.0, + "end": 10683.0, + "probability": 0.0399 + }, + { + "start": 10683.0, + "end": 10685.76, + "probability": 0.4732 + }, + { + "start": 10686.86, + "end": 10687.66, + "probability": 0.1035 + }, + { + "start": 10687.66, + "end": 10687.66, + "probability": 0.191 + }, + { + "start": 10687.66, + "end": 10688.48, + "probability": 0.09 + }, + { + "start": 10689.62, + "end": 10692.38, + "probability": 0.2647 + }, + { + "start": 10692.46, + "end": 10697.34, + "probability": 0.9645 + }, + { + "start": 10697.92, + "end": 10700.44, + "probability": 0.7482 + }, + { + "start": 10701.32, + "end": 10705.94, + "probability": 0.6913 + }, + { + "start": 10706.3, + "end": 10707.8, + "probability": 0.9895 + }, + { + "start": 10708.62, + "end": 10710.03, + "probability": 0.9775 + }, + { + "start": 10710.84, + "end": 10716.08, + "probability": 0.7715 + }, + { + "start": 10716.8, + "end": 10719.32, + "probability": 0.9961 + }, + { + "start": 10721.06, + "end": 10721.8, + "probability": 0.8723 + }, + { + "start": 10722.12, + "end": 10724.32, + "probability": 0.9246 + }, + { + "start": 10725.2, + "end": 10728.6, + "probability": 0.6095 + }, + { + "start": 10728.82, + "end": 10732.5, + "probability": 0.6968 + }, + { + "start": 10732.74, + "end": 10733.06, + "probability": 0.2485 + }, + { + "start": 10733.22, + "end": 10734.06, + "probability": 0.1845 + }, + { + "start": 10734.06, + "end": 10734.66, + "probability": 0.7416 + }, + { + "start": 10734.7, + "end": 10735.94, + "probability": 0.991 + }, + { + "start": 10736.44, + "end": 10737.14, + "probability": 0.9567 + }, + { + "start": 10737.92, + "end": 10739.16, + "probability": 0.6839 + }, + { + "start": 10740.04, + "end": 10740.7, + "probability": 0.6932 + }, + { + "start": 10741.8, + "end": 10744.46, + "probability": 0.9064 + }, + { + "start": 10745.38, + "end": 10748.76, + "probability": 0.9451 + }, + { + "start": 10768.38, + "end": 10769.96, + "probability": 0.6441 + }, + { + "start": 10770.6, + "end": 10772.64, + "probability": 0.9248 + }, + { + "start": 10773.2, + "end": 10774.36, + "probability": 0.749 + }, + { + "start": 10774.52, + "end": 10775.39, + "probability": 0.6534 + }, + { + "start": 10775.68, + "end": 10776.38, + "probability": 0.9631 + }, + { + "start": 10776.38, + "end": 10778.6, + "probability": 0.9965 + }, + { + "start": 10779.34, + "end": 10780.42, + "probability": 0.6776 + }, + { + "start": 10780.96, + "end": 10781.74, + "probability": 0.7822 + }, + { + "start": 10781.82, + "end": 10782.5, + "probability": 0.7885 + }, + { + "start": 10783.14, + "end": 10785.08, + "probability": 0.9686 + }, + { + "start": 10785.14, + "end": 10785.5, + "probability": 0.5777 + }, + { + "start": 10785.56, + "end": 10787.38, + "probability": 0.9913 + }, + { + "start": 10787.98, + "end": 10788.78, + "probability": 0.9095 + }, + { + "start": 10789.14, + "end": 10792.32, + "probability": 0.8765 + }, + { + "start": 10792.91, + "end": 10797.04, + "probability": 0.9893 + }, + { + "start": 10797.08, + "end": 10797.7, + "probability": 0.4901 + }, + { + "start": 10797.9, + "end": 10798.1, + "probability": 0.329 + }, + { + "start": 10798.18, + "end": 10801.12, + "probability": 0.9619 + }, + { + "start": 10801.24, + "end": 10802.42, + "probability": 0.9524 + }, + { + "start": 10802.92, + "end": 10804.66, + "probability": 0.9001 + }, + { + "start": 10804.72, + "end": 10806.18, + "probability": 0.9788 + }, + { + "start": 10806.72, + "end": 10810.12, + "probability": 0.991 + }, + { + "start": 10810.36, + "end": 10810.81, + "probability": 0.9906 + }, + { + "start": 10811.5, + "end": 10812.16, + "probability": 0.9832 + }, + { + "start": 10812.22, + "end": 10812.8, + "probability": 0.6864 + }, + { + "start": 10812.86, + "end": 10814.36, + "probability": 0.9088 + }, + { + "start": 10814.42, + "end": 10814.92, + "probability": 0.8792 + }, + { + "start": 10814.98, + "end": 10815.42, + "probability": 0.7204 + }, + { + "start": 10816.1, + "end": 10818.24, + "probability": 0.9928 + }, + { + "start": 10818.64, + "end": 10822.3, + "probability": 0.9902 + }, + { + "start": 10822.86, + "end": 10823.7, + "probability": 0.8097 + }, + { + "start": 10824.26, + "end": 10824.94, + "probability": 0.9711 + }, + { + "start": 10825.04, + "end": 10825.56, + "probability": 0.8736 + }, + { + "start": 10825.72, + "end": 10827.78, + "probability": 0.9897 + }, + { + "start": 10827.94, + "end": 10833.1, + "probability": 0.9887 + }, + { + "start": 10834.16, + "end": 10838.02, + "probability": 0.9985 + }, + { + "start": 10838.12, + "end": 10841.26, + "probability": 0.9961 + }, + { + "start": 10841.32, + "end": 10844.54, + "probability": 0.9881 + }, + { + "start": 10844.9, + "end": 10846.72, + "probability": 0.9953 + }, + { + "start": 10846.84, + "end": 10851.46, + "probability": 0.9153 + }, + { + "start": 10851.98, + "end": 10853.92, + "probability": 0.9701 + }, + { + "start": 10854.12, + "end": 10855.86, + "probability": 0.9779 + }, + { + "start": 10855.96, + "end": 10857.64, + "probability": 0.962 + }, + { + "start": 10858.14, + "end": 10859.22, + "probability": 0.8195 + }, + { + "start": 10859.3, + "end": 10860.7, + "probability": 0.9272 + }, + { + "start": 10861.22, + "end": 10863.16, + "probability": 0.9985 + }, + { + "start": 10863.44, + "end": 10865.78, + "probability": 0.998 + }, + { + "start": 10866.42, + "end": 10867.68, + "probability": 0.9803 + }, + { + "start": 10867.82, + "end": 10870.06, + "probability": 0.8896 + }, + { + "start": 10870.28, + "end": 10872.62, + "probability": 0.9608 + }, + { + "start": 10873.56, + "end": 10873.94, + "probability": 0.7432 + }, + { + "start": 10874.08, + "end": 10874.8, + "probability": 0.8983 + }, + { + "start": 10874.92, + "end": 10876.72, + "probability": 0.9943 + }, + { + "start": 10877.12, + "end": 10878.38, + "probability": 0.9483 + }, + { + "start": 10878.52, + "end": 10879.5, + "probability": 0.9171 + }, + { + "start": 10879.62, + "end": 10880.64, + "probability": 0.9582 + }, + { + "start": 10880.92, + "end": 10882.04, + "probability": 0.9971 + }, + { + "start": 10882.28, + "end": 10883.8, + "probability": 0.9846 + }, + { + "start": 10884.22, + "end": 10886.86, + "probability": 0.9863 + }, + { + "start": 10887.44, + "end": 10889.56, + "probability": 0.9924 + }, + { + "start": 10889.66, + "end": 10890.22, + "probability": 0.6489 + }, + { + "start": 10890.3, + "end": 10891.58, + "probability": 0.9944 + }, + { + "start": 10891.62, + "end": 10892.16, + "probability": 0.8827 + }, + { + "start": 10892.5, + "end": 10892.78, + "probability": 0.8123 + }, + { + "start": 10894.5, + "end": 10895.2, + "probability": 0.8622 + }, + { + "start": 10895.46, + "end": 10897.18, + "probability": 0.8831 + }, + { + "start": 10910.8, + "end": 10912.14, + "probability": 0.2918 + }, + { + "start": 10912.8, + "end": 10913.9, + "probability": 0.9502 + }, + { + "start": 10914.38, + "end": 10915.76, + "probability": 0.9949 + }, + { + "start": 10915.82, + "end": 10916.82, + "probability": 0.978 + }, + { + "start": 10917.68, + "end": 10918.92, + "probability": 0.8833 + }, + { + "start": 10919.74, + "end": 10923.42, + "probability": 0.9971 + }, + { + "start": 10924.14, + "end": 10926.32, + "probability": 0.7442 + }, + { + "start": 10926.9, + "end": 10931.78, + "probability": 0.963 + }, + { + "start": 10932.0, + "end": 10934.82, + "probability": 0.9891 + }, + { + "start": 10935.2, + "end": 10936.78, + "probability": 0.4246 + }, + { + "start": 10937.72, + "end": 10939.9, + "probability": 0.8693 + }, + { + "start": 10939.96, + "end": 10940.88, + "probability": 0.7199 + }, + { + "start": 10940.98, + "end": 10941.14, + "probability": 0.8527 + }, + { + "start": 10941.56, + "end": 10943.08, + "probability": 0.7463 + }, + { + "start": 10943.28, + "end": 10944.0, + "probability": 0.9441 + }, + { + "start": 10944.04, + "end": 10948.74, + "probability": 0.9914 + }, + { + "start": 10949.56, + "end": 10951.0, + "probability": 0.9142 + }, + { + "start": 10951.72, + "end": 10953.84, + "probability": 0.9825 + }, + { + "start": 10954.02, + "end": 10955.44, + "probability": 0.7019 + }, + { + "start": 10955.48, + "end": 10956.68, + "probability": 0.9139 + }, + { + "start": 10957.14, + "end": 10958.68, + "probability": 0.9744 + }, + { + "start": 10959.06, + "end": 10960.34, + "probability": 0.9911 + }, + { + "start": 10960.7, + "end": 10961.86, + "probability": 0.9631 + }, + { + "start": 10962.08, + "end": 10963.76, + "probability": 0.9408 + }, + { + "start": 10964.1, + "end": 10965.56, + "probability": 0.8914 + }, + { + "start": 10965.62, + "end": 10968.58, + "probability": 0.9911 + }, + { + "start": 10968.82, + "end": 10974.26, + "probability": 0.989 + }, + { + "start": 10974.27, + "end": 10980.04, + "probability": 0.9511 + }, + { + "start": 10980.44, + "end": 10982.82, + "probability": 0.9993 + }, + { + "start": 10983.14, + "end": 10985.54, + "probability": 0.6322 + }, + { + "start": 10986.0, + "end": 10990.56, + "probability": 0.9877 + }, + { + "start": 10990.66, + "end": 10991.84, + "probability": 0.9982 + }, + { + "start": 10992.12, + "end": 10996.56, + "probability": 0.9122 + }, + { + "start": 10996.7, + "end": 10999.1, + "probability": 0.9964 + }, + { + "start": 10999.38, + "end": 10999.72, + "probability": 0.7512 + }, + { + "start": 10999.8, + "end": 11000.6, + "probability": 0.472 + }, + { + "start": 11000.72, + "end": 11001.04, + "probability": 0.7808 + }, + { + "start": 11001.42, + "end": 11003.16, + "probability": 0.9895 + }, + { + "start": 11003.58, + "end": 11005.41, + "probability": 0.9933 + }, + { + "start": 11005.78, + "end": 11008.88, + "probability": 0.98 + }, + { + "start": 11009.14, + "end": 11010.5, + "probability": 0.8766 + }, + { + "start": 11011.16, + "end": 11014.02, + "probability": 0.9791 + }, + { + "start": 11014.5, + "end": 11016.24, + "probability": 0.9971 + }, + { + "start": 11016.6, + "end": 11018.28, + "probability": 0.9971 + }, + { + "start": 11018.62, + "end": 11020.22, + "probability": 0.9328 + }, + { + "start": 11020.26, + "end": 11021.26, + "probability": 0.936 + }, + { + "start": 11021.62, + "end": 11023.16, + "probability": 0.885 + }, + { + "start": 11023.38, + "end": 11025.1, + "probability": 0.9847 + }, + { + "start": 11025.7, + "end": 11026.98, + "probability": 0.647 + }, + { + "start": 11027.32, + "end": 11029.18, + "probability": 0.8999 + }, + { + "start": 11029.3, + "end": 11030.06, + "probability": 0.6648 + }, + { + "start": 11030.66, + "end": 11033.24, + "probability": 0.673 + }, + { + "start": 11033.64, + "end": 11035.27, + "probability": 0.9277 + }, + { + "start": 11035.62, + "end": 11038.7, + "probability": 0.991 + }, + { + "start": 11039.06, + "end": 11040.9, + "probability": 0.9417 + }, + { + "start": 11041.04, + "end": 11041.88, + "probability": 0.7106 + }, + { + "start": 11042.22, + "end": 11043.22, + "probability": 0.8916 + }, + { + "start": 11043.6, + "end": 11046.76, + "probability": 0.9973 + }, + { + "start": 11047.38, + "end": 11050.36, + "probability": 0.969 + }, + { + "start": 11050.88, + "end": 11051.74, + "probability": 0.9185 + }, + { + "start": 11051.94, + "end": 11055.2, + "probability": 0.9951 + }, + { + "start": 11055.56, + "end": 11058.1, + "probability": 0.9121 + }, + { + "start": 11058.62, + "end": 11062.28, + "probability": 0.6615 + }, + { + "start": 11062.54, + "end": 11063.57, + "probability": 0.5948 + }, + { + "start": 11064.36, + "end": 11065.36, + "probability": 0.7936 + }, + { + "start": 11066.24, + "end": 11069.9, + "probability": 0.8995 + }, + { + "start": 11070.54, + "end": 11072.94, + "probability": 0.9863 + }, + { + "start": 11073.38, + "end": 11074.44, + "probability": 0.707 + }, + { + "start": 11075.0, + "end": 11078.58, + "probability": 0.9797 + }, + { + "start": 11079.06, + "end": 11080.24, + "probability": 0.9885 + }, + { + "start": 11080.36, + "end": 11081.2, + "probability": 0.609 + }, + { + "start": 11081.54, + "end": 11082.32, + "probability": 0.9157 + }, + { + "start": 11082.88, + "end": 11085.02, + "probability": 0.9981 + }, + { + "start": 11085.4, + "end": 11090.88, + "probability": 0.999 + }, + { + "start": 11091.52, + "end": 11094.94, + "probability": 0.9873 + }, + { + "start": 11095.28, + "end": 11098.84, + "probability": 0.715 + }, + { + "start": 11098.84, + "end": 11103.46, + "probability": 0.9263 + }, + { + "start": 11103.46, + "end": 11108.46, + "probability": 0.994 + }, + { + "start": 11108.96, + "end": 11111.22, + "probability": 0.825 + }, + { + "start": 11111.36, + "end": 11114.62, + "probability": 0.9781 + }, + { + "start": 11114.72, + "end": 11114.72, + "probability": 0.6076 + }, + { + "start": 11114.72, + "end": 11114.78, + "probability": 0.5467 + }, + { + "start": 11114.78, + "end": 11117.28, + "probability": 0.9343 + }, + { + "start": 11117.32, + "end": 11118.3, + "probability": 0.7642 + }, + { + "start": 11118.5, + "end": 11119.08, + "probability": 0.7909 + }, + { + "start": 11119.6, + "end": 11121.86, + "probability": 0.8323 + }, + { + "start": 11124.0, + "end": 11124.56, + "probability": 0.9928 + }, + { + "start": 11131.72, + "end": 11132.74, + "probability": 0.1023 + }, + { + "start": 11136.34, + "end": 11137.8, + "probability": 0.786 + }, + { + "start": 11141.96, + "end": 11144.54, + "probability": 0.4612 + }, + { + "start": 11148.1, + "end": 11149.06, + "probability": 0.403 + }, + { + "start": 11149.16, + "end": 11149.86, + "probability": 0.6737 + }, + { + "start": 11149.98, + "end": 11156.64, + "probability": 0.9929 + }, + { + "start": 11158.06, + "end": 11161.14, + "probability": 0.9978 + }, + { + "start": 11162.22, + "end": 11165.12, + "probability": 0.9904 + }, + { + "start": 11165.84, + "end": 11166.82, + "probability": 0.9243 + }, + { + "start": 11167.5, + "end": 11169.62, + "probability": 0.5001 + }, + { + "start": 11170.76, + "end": 11171.62, + "probability": 0.6185 + }, + { + "start": 11172.34, + "end": 11174.22, + "probability": 0.9706 + }, + { + "start": 11174.78, + "end": 11176.74, + "probability": 0.9838 + }, + { + "start": 11177.68, + "end": 11179.8, + "probability": 0.9927 + }, + { + "start": 11181.11, + "end": 11184.7, + "probability": 0.811 + }, + { + "start": 11184.72, + "end": 11185.82, + "probability": 0.9946 + }, + { + "start": 11186.32, + "end": 11192.14, + "probability": 0.9972 + }, + { + "start": 11192.82, + "end": 11194.08, + "probability": 0.9954 + }, + { + "start": 11195.2, + "end": 11199.04, + "probability": 0.9944 + }, + { + "start": 11199.9, + "end": 11202.5, + "probability": 0.8543 + }, + { + "start": 11203.6, + "end": 11207.56, + "probability": 0.9879 + }, + { + "start": 11208.34, + "end": 11210.6, + "probability": 0.9565 + }, + { + "start": 11210.66, + "end": 11215.36, + "probability": 0.9762 + }, + { + "start": 11216.5, + "end": 11217.82, + "probability": 0.9845 + }, + { + "start": 11218.56, + "end": 11222.24, + "probability": 0.9897 + }, + { + "start": 11222.82, + "end": 11223.66, + "probability": 0.9872 + }, + { + "start": 11224.8, + "end": 11228.38, + "probability": 0.9565 + }, + { + "start": 11229.8, + "end": 11233.02, + "probability": 0.998 + }, + { + "start": 11233.68, + "end": 11234.68, + "probability": 0.9973 + }, + { + "start": 11234.98, + "end": 11235.84, + "probability": 0.9744 + }, + { + "start": 11235.92, + "end": 11236.64, + "probability": 0.9001 + }, + { + "start": 11238.28, + "end": 11243.08, + "probability": 0.9995 + }, + { + "start": 11243.62, + "end": 11244.58, + "probability": 0.8069 + }, + { + "start": 11246.08, + "end": 11247.26, + "probability": 0.4998 + }, + { + "start": 11247.84, + "end": 11249.02, + "probability": 0.9983 + }, + { + "start": 11250.42, + "end": 11252.14, + "probability": 0.8479 + }, + { + "start": 11253.1, + "end": 11254.14, + "probability": 0.9814 + }, + { + "start": 11254.44, + "end": 11255.74, + "probability": 0.9968 + }, + { + "start": 11256.54, + "end": 11258.18, + "probability": 0.9778 + }, + { + "start": 11259.02, + "end": 11260.4, + "probability": 0.9886 + }, + { + "start": 11261.28, + "end": 11264.64, + "probability": 0.9951 + }, + { + "start": 11266.34, + "end": 11267.52, + "probability": 0.9985 + }, + { + "start": 11268.9, + "end": 11270.04, + "probability": 0.9987 + }, + { + "start": 11270.2, + "end": 11271.6, + "probability": 0.9985 + }, + { + "start": 11271.6, + "end": 11275.66, + "probability": 0.9979 + }, + { + "start": 11275.76, + "end": 11279.16, + "probability": 0.9974 + }, + { + "start": 11279.76, + "end": 11282.48, + "probability": 0.8765 + }, + { + "start": 11283.44, + "end": 11286.74, + "probability": 0.9961 + }, + { + "start": 11289.3, + "end": 11291.18, + "probability": 0.8872 + }, + { + "start": 11292.86, + "end": 11294.5, + "probability": 0.9708 + }, + { + "start": 11294.83, + "end": 11296.96, + "probability": 0.9666 + }, + { + "start": 11297.94, + "end": 11299.24, + "probability": 0.7941 + }, + { + "start": 11299.42, + "end": 11300.0, + "probability": 0.3969 + }, + { + "start": 11300.02, + "end": 11301.08, + "probability": 0.7016 + }, + { + "start": 11302.2, + "end": 11302.92, + "probability": 0.8965 + }, + { + "start": 11303.8, + "end": 11306.09, + "probability": 0.6948 + }, + { + "start": 11306.76, + "end": 11307.6, + "probability": 0.8933 + }, + { + "start": 11308.7, + "end": 11310.08, + "probability": 0.8165 + }, + { + "start": 11310.88, + "end": 11313.16, + "probability": 0.8741 + }, + { + "start": 11314.86, + "end": 11315.77, + "probability": 0.9759 + }, + { + "start": 11316.3, + "end": 11317.18, + "probability": 0.9471 + }, + { + "start": 11317.66, + "end": 11320.84, + "probability": 0.9785 + }, + { + "start": 11320.92, + "end": 11324.0, + "probability": 0.9538 + }, + { + "start": 11324.66, + "end": 11326.04, + "probability": 0.916 + }, + { + "start": 11326.74, + "end": 11327.48, + "probability": 0.7518 + }, + { + "start": 11328.4, + "end": 11331.28, + "probability": 0.9142 + }, + { + "start": 11331.94, + "end": 11332.3, + "probability": 0.6673 + }, + { + "start": 11333.36, + "end": 11336.98, + "probability": 0.997 + }, + { + "start": 11337.72, + "end": 11338.22, + "probability": 0.9568 + }, + { + "start": 11338.58, + "end": 11340.62, + "probability": 0.9938 + }, + { + "start": 11341.12, + "end": 11344.14, + "probability": 0.9982 + }, + { + "start": 11344.54, + "end": 11347.86, + "probability": 0.9619 + }, + { + "start": 11348.4, + "end": 11351.96, + "probability": 0.9622 + }, + { + "start": 11352.52, + "end": 11354.68, + "probability": 0.9972 + }, + { + "start": 11354.72, + "end": 11355.1, + "probability": 0.6508 + }, + { + "start": 11355.14, + "end": 11355.92, + "probability": 0.9938 + }, + { + "start": 11356.12, + "end": 11356.38, + "probability": 0.5812 + }, + { + "start": 11357.32, + "end": 11358.71, + "probability": 0.5867 + }, + { + "start": 11358.8, + "end": 11359.9, + "probability": 0.6642 + }, + { + "start": 11360.44, + "end": 11361.34, + "probability": 0.9348 + }, + { + "start": 11361.74, + "end": 11363.32, + "probability": 0.9636 + }, + { + "start": 11363.36, + "end": 11364.56, + "probability": 0.9744 + }, + { + "start": 11364.78, + "end": 11365.52, + "probability": 0.8615 + }, + { + "start": 11365.7, + "end": 11366.42, + "probability": 0.4201 + }, + { + "start": 11366.58, + "end": 11367.34, + "probability": 0.0363 + }, + { + "start": 11367.94, + "end": 11368.36, + "probability": 0.7488 + }, + { + "start": 11369.02, + "end": 11371.12, + "probability": 0.7751 + }, + { + "start": 11373.3, + "end": 11373.98, + "probability": 0.571 + }, + { + "start": 11375.48, + "end": 11376.66, + "probability": 0.6594 + }, + { + "start": 11390.94, + "end": 11391.34, + "probability": 0.3775 + }, + { + "start": 11391.56, + "end": 11392.42, + "probability": 0.5574 + }, + { + "start": 11392.76, + "end": 11393.92, + "probability": 0.4685 + }, + { + "start": 11394.68, + "end": 11397.38, + "probability": 0.9969 + }, + { + "start": 11398.28, + "end": 11402.32, + "probability": 0.988 + }, + { + "start": 11403.24, + "end": 11406.14, + "probability": 0.9856 + }, + { + "start": 11408.18, + "end": 11409.24, + "probability": 0.9775 + }, + { + "start": 11411.1, + "end": 11415.34, + "probability": 0.9951 + }, + { + "start": 11415.34, + "end": 11421.44, + "probability": 0.9959 + }, + { + "start": 11423.32, + "end": 11427.01, + "probability": 0.9876 + }, + { + "start": 11427.2, + "end": 11430.14, + "probability": 0.9453 + }, + { + "start": 11432.55, + "end": 11438.78, + "probability": 0.9828 + }, + { + "start": 11440.06, + "end": 11442.42, + "probability": 0.6972 + }, + { + "start": 11443.32, + "end": 11446.36, + "probability": 0.9213 + }, + { + "start": 11446.5, + "end": 11447.28, + "probability": 0.7621 + }, + { + "start": 11447.5, + "end": 11448.9, + "probability": 0.9257 + }, + { + "start": 11449.78, + "end": 11451.44, + "probability": 0.8539 + }, + { + "start": 11451.5, + "end": 11452.32, + "probability": 0.2617 + }, + { + "start": 11452.32, + "end": 11453.6, + "probability": 0.9141 + }, + { + "start": 11454.12, + "end": 11460.02, + "probability": 0.991 + }, + { + "start": 11460.56, + "end": 11461.61, + "probability": 0.6912 + }, + { + "start": 11462.44, + "end": 11463.8, + "probability": 0.8207 + }, + { + "start": 11465.22, + "end": 11466.94, + "probability": 0.9888 + }, + { + "start": 11467.7, + "end": 11468.24, + "probability": 0.4748 + }, + { + "start": 11470.62, + "end": 11473.36, + "probability": 0.9979 + }, + { + "start": 11473.36, + "end": 11477.6, + "probability": 0.8767 + }, + { + "start": 11478.72, + "end": 11480.06, + "probability": 0.9854 + }, + { + "start": 11481.46, + "end": 11485.84, + "probability": 0.4527 + }, + { + "start": 11485.9, + "end": 11486.28, + "probability": 0.4719 + }, + { + "start": 11486.64, + "end": 11486.68, + "probability": 0.7422 + }, + { + "start": 11486.68, + "end": 11486.68, + "probability": 0.4485 + }, + { + "start": 11486.68, + "end": 11487.78, + "probability": 0.7534 + }, + { + "start": 11488.04, + "end": 11489.54, + "probability": 0.9315 + }, + { + "start": 11489.68, + "end": 11490.7, + "probability": 0.8146 + }, + { + "start": 11490.96, + "end": 11491.98, + "probability": 0.7883 + }, + { + "start": 11491.98, + "end": 11494.4, + "probability": 0.9602 + }, + { + "start": 11494.86, + "end": 11496.18, + "probability": 0.9538 + }, + { + "start": 11496.22, + "end": 11496.9, + "probability": 0.8811 + }, + { + "start": 11497.16, + "end": 11498.32, + "probability": 0.9499 + }, + { + "start": 11498.4, + "end": 11499.64, + "probability": 0.9922 + }, + { + "start": 11501.04, + "end": 11503.84, + "probability": 0.9196 + }, + { + "start": 11506.21, + "end": 11508.66, + "probability": 0.2485 + }, + { + "start": 11510.36, + "end": 11512.22, + "probability": 0.8759 + }, + { + "start": 11513.52, + "end": 11514.66, + "probability": 0.994 + }, + { + "start": 11516.18, + "end": 11518.88, + "probability": 0.7958 + }, + { + "start": 11519.6, + "end": 11520.24, + "probability": 0.8118 + }, + { + "start": 11520.34, + "end": 11526.22, + "probability": 0.9594 + }, + { + "start": 11528.72, + "end": 11532.44, + "probability": 0.9946 + }, + { + "start": 11534.18, + "end": 11536.98, + "probability": 0.9939 + }, + { + "start": 11537.58, + "end": 11539.0, + "probability": 0.9661 + }, + { + "start": 11539.52, + "end": 11542.28, + "probability": 0.9952 + }, + { + "start": 11543.1, + "end": 11543.82, + "probability": 0.7699 + }, + { + "start": 11545.54, + "end": 11547.9, + "probability": 0.996 + }, + { + "start": 11549.16, + "end": 11552.74, + "probability": 0.9958 + }, + { + "start": 11553.4, + "end": 11558.06, + "probability": 0.9853 + }, + { + "start": 11558.5, + "end": 11563.2, + "probability": 0.9526 + }, + { + "start": 11564.3, + "end": 11565.28, + "probability": 0.7274 + }, + { + "start": 11568.54, + "end": 11569.38, + "probability": 0.556 + }, + { + "start": 11571.44, + "end": 11573.2, + "probability": 0.0549 + }, + { + "start": 11573.4, + "end": 11574.14, + "probability": 0.2334 + }, + { + "start": 11574.52, + "end": 11574.94, + "probability": 0.3172 + }, + { + "start": 11574.94, + "end": 11575.28, + "probability": 0.1288 + }, + { + "start": 11575.28, + "end": 11575.82, + "probability": 0.5716 + }, + { + "start": 11576.04, + "end": 11577.88, + "probability": 0.3109 + }, + { + "start": 11578.46, + "end": 11580.44, + "probability": 0.7535 + }, + { + "start": 11581.1, + "end": 11583.38, + "probability": 0.7637 + }, + { + "start": 11583.5, + "end": 11584.98, + "probability": 0.3937 + }, + { + "start": 11585.62, + "end": 11588.46, + "probability": 0.3403 + }, + { + "start": 11589.2, + "end": 11589.22, + "probability": 0.175 + }, + { + "start": 11589.22, + "end": 11592.56, + "probability": 0.2075 + }, + { + "start": 11593.1, + "end": 11594.42, + "probability": 0.9029 + }, + { + "start": 11595.02, + "end": 11596.98, + "probability": 0.9663 + }, + { + "start": 11597.38, + "end": 11598.12, + "probability": 0.9934 + }, + { + "start": 11598.72, + "end": 11602.14, + "probability": 0.8197 + }, + { + "start": 11602.5, + "end": 11606.94, + "probability": 0.957 + }, + { + "start": 11607.02, + "end": 11607.02, + "probability": 0.6602 + }, + { + "start": 11607.04, + "end": 11607.06, + "probability": 0.056 + }, + { + "start": 11607.06, + "end": 11607.5, + "probability": 0.4071 + }, + { + "start": 11607.6, + "end": 11608.02, + "probability": 0.3851 + }, + { + "start": 11608.02, + "end": 11608.36, + "probability": 0.036 + }, + { + "start": 11608.54, + "end": 11609.74, + "probability": 0.322 + }, + { + "start": 11610.56, + "end": 11612.64, + "probability": 0.6857 + }, + { + "start": 11613.4, + "end": 11615.66, + "probability": 0.9478 + }, + { + "start": 11615.66, + "end": 11616.64, + "probability": 0.5195 + }, + { + "start": 11616.76, + "end": 11617.3, + "probability": 0.6929 + }, + { + "start": 11617.32, + "end": 11617.88, + "probability": 0.6615 + }, + { + "start": 11618.86, + "end": 11619.94, + "probability": 0.7028 + }, + { + "start": 11620.82, + "end": 11624.65, + "probability": 0.8838 + }, + { + "start": 11624.92, + "end": 11625.08, + "probability": 0.0054 + }, + { + "start": 11625.08, + "end": 11625.52, + "probability": 0.5592 + }, + { + "start": 11625.52, + "end": 11625.88, + "probability": 0.2458 + }, + { + "start": 11626.12, + "end": 11626.14, + "probability": 0.5135 + }, + { + "start": 11626.2, + "end": 11627.64, + "probability": 0.6672 + }, + { + "start": 11630.4, + "end": 11632.3, + "probability": 0.8059 + }, + { + "start": 11632.3, + "end": 11632.74, + "probability": 0.4711 + }, + { + "start": 11633.4, + "end": 11634.32, + "probability": 0.1306 + }, + { + "start": 11662.1, + "end": 11664.44, + "probability": 0.7275 + }, + { + "start": 11665.8, + "end": 11667.28, + "probability": 0.3078 + }, + { + "start": 11667.68, + "end": 11671.26, + "probability": 0.9867 + }, + { + "start": 11671.76, + "end": 11673.18, + "probability": 0.9257 + }, + { + "start": 11674.12, + "end": 11679.18, + "probability": 0.962 + }, + { + "start": 11679.18, + "end": 11682.46, + "probability": 0.9775 + }, + { + "start": 11683.6, + "end": 11687.28, + "probability": 0.9949 + }, + { + "start": 11687.9, + "end": 11691.76, + "probability": 0.9935 + }, + { + "start": 11692.54, + "end": 11695.08, + "probability": 0.9971 + }, + { + "start": 11696.1, + "end": 11699.74, + "probability": 0.8503 + }, + { + "start": 11700.3, + "end": 11703.58, + "probability": 0.8212 + }, + { + "start": 11704.68, + "end": 11706.4, + "probability": 0.8721 + }, + { + "start": 11706.8, + "end": 11711.08, + "probability": 0.9844 + }, + { + "start": 11711.44, + "end": 11712.8, + "probability": 0.9737 + }, + { + "start": 11713.14, + "end": 11714.16, + "probability": 0.7218 + }, + { + "start": 11714.88, + "end": 11719.7, + "probability": 0.9548 + }, + { + "start": 11721.08, + "end": 11723.36, + "probability": 0.9789 + }, + { + "start": 11723.98, + "end": 11729.14, + "probability": 0.9725 + }, + { + "start": 11729.56, + "end": 11731.2, + "probability": 0.9636 + }, + { + "start": 11731.48, + "end": 11732.62, + "probability": 0.9658 + }, + { + "start": 11734.44, + "end": 11738.56, + "probability": 0.9989 + }, + { + "start": 11738.56, + "end": 11743.82, + "probability": 0.9981 + }, + { + "start": 11745.14, + "end": 11750.72, + "probability": 0.9921 + }, + { + "start": 11751.76, + "end": 11755.58, + "probability": 0.9996 + }, + { + "start": 11755.58, + "end": 11759.4, + "probability": 0.9754 + }, + { + "start": 11759.9, + "end": 11761.26, + "probability": 0.9953 + }, + { + "start": 11761.92, + "end": 11765.9, + "probability": 0.9848 + }, + { + "start": 11766.44, + "end": 11767.36, + "probability": 0.9751 + }, + { + "start": 11768.12, + "end": 11771.18, + "probability": 0.7855 + }, + { + "start": 11773.28, + "end": 11774.94, + "probability": 0.8649 + }, + { + "start": 11776.88, + "end": 11777.98, + "probability": 0.6524 + }, + { + "start": 11778.52, + "end": 11780.6, + "probability": 0.8062 + }, + { + "start": 11782.02, + "end": 11782.94, + "probability": 0.8309 + }, + { + "start": 11784.66, + "end": 11785.3, + "probability": 0.7698 + }, + { + "start": 11787.8, + "end": 11791.56, + "probability": 0.9651 + }, + { + "start": 11791.68, + "end": 11792.1, + "probability": 0.8341 + }, + { + "start": 11809.48, + "end": 11810.46, + "probability": 0.5987 + }, + { + "start": 11811.42, + "end": 11813.61, + "probability": 0.9826 + }, + { + "start": 11814.94, + "end": 11819.18, + "probability": 0.9932 + }, + { + "start": 11819.18, + "end": 11822.96, + "probability": 0.9987 + }, + { + "start": 11823.4, + "end": 11823.44, + "probability": 0.873 + }, + { + "start": 11825.58, + "end": 11828.14, + "probability": 0.806 + }, + { + "start": 11828.14, + "end": 11829.76, + "probability": 0.9541 + }, + { + "start": 11830.44, + "end": 11831.3, + "probability": 0.9884 + }, + { + "start": 11831.9, + "end": 11832.82, + "probability": 0.9993 + }, + { + "start": 11837.96, + "end": 11839.64, + "probability": 0.7755 + }, + { + "start": 11840.92, + "end": 11842.32, + "probability": 0.9889 + }, + { + "start": 11843.62, + "end": 11844.74, + "probability": 0.8663 + }, + { + "start": 11845.4, + "end": 11852.16, + "probability": 0.9882 + }, + { + "start": 11852.36, + "end": 11858.18, + "probability": 0.9934 + }, + { + "start": 11858.92, + "end": 11860.1, + "probability": 0.9983 + }, + { + "start": 11860.82, + "end": 11866.76, + "probability": 0.9792 + }, + { + "start": 11867.42, + "end": 11871.06, + "probability": 0.8427 + }, + { + "start": 11871.52, + "end": 11874.86, + "probability": 0.9779 + }, + { + "start": 11875.98, + "end": 11880.0, + "probability": 0.9976 + }, + { + "start": 11880.58, + "end": 11884.66, + "probability": 0.9948 + }, + { + "start": 11885.16, + "end": 11889.2, + "probability": 0.9899 + }, + { + "start": 11889.82, + "end": 11891.3, + "probability": 0.6934 + }, + { + "start": 11893.04, + "end": 11898.12, + "probability": 0.9977 + }, + { + "start": 11898.12, + "end": 11902.16, + "probability": 0.9825 + }, + { + "start": 11903.54, + "end": 11905.68, + "probability": 0.8805 + }, + { + "start": 11906.38, + "end": 11908.4, + "probability": 0.9981 + }, + { + "start": 11909.06, + "end": 11913.34, + "probability": 0.9882 + }, + { + "start": 11914.62, + "end": 11919.34, + "probability": 0.7302 + }, + { + "start": 11920.16, + "end": 11924.12, + "probability": 0.9948 + }, + { + "start": 11925.34, + "end": 11927.26, + "probability": 0.8877 + }, + { + "start": 11928.08, + "end": 11929.66, + "probability": 0.9269 + }, + { + "start": 11930.52, + "end": 11934.72, + "probability": 0.9666 + }, + { + "start": 11935.7, + "end": 11938.46, + "probability": 0.9089 + }, + { + "start": 11939.22, + "end": 11944.66, + "probability": 0.9979 + }, + { + "start": 11946.04, + "end": 11949.04, + "probability": 0.8587 + }, + { + "start": 11951.86, + "end": 11952.7, + "probability": 0.327 + }, + { + "start": 11953.44, + "end": 11956.38, + "probability": 0.9926 + }, + { + "start": 11957.12, + "end": 11958.3, + "probability": 0.7622 + }, + { + "start": 11958.58, + "end": 11966.78, + "probability": 0.9708 + }, + { + "start": 11966.9, + "end": 11967.56, + "probability": 0.7915 + }, + { + "start": 11968.76, + "end": 11970.86, + "probability": 0.592 + }, + { + "start": 11971.78, + "end": 11973.54, + "probability": 0.6909 + }, + { + "start": 11974.6, + "end": 11975.36, + "probability": 0.7427 + }, + { + "start": 11980.78, + "end": 11984.78, + "probability": 0.8761 + }, + { + "start": 11984.78, + "end": 11988.06, + "probability": 0.4928 + }, + { + "start": 11988.7, + "end": 11992.94, + "probability": 0.7534 + }, + { + "start": 11995.98, + "end": 11996.42, + "probability": 0.6156 + }, + { + "start": 12015.33, + "end": 12019.52, + "probability": 0.2 + }, + { + "start": 12019.52, + "end": 12021.82, + "probability": 0.4512 + }, + { + "start": 12022.3, + "end": 12024.28, + "probability": 0.3697 + }, + { + "start": 12025.2, + "end": 12029.02, + "probability": 0.2968 + }, + { + "start": 12035.22, + "end": 12036.62, + "probability": 0.0461 + }, + { + "start": 12039.6, + "end": 12042.48, + "probability": 0.1432 + }, + { + "start": 12044.24, + "end": 12047.94, + "probability": 0.0131 + }, + { + "start": 12101.36, + "end": 12101.94, + "probability": 0.2538 + }, + { + "start": 12102.52, + "end": 12103.24, + "probability": 0.022 + }, + { + "start": 12103.28, + "end": 12103.58, + "probability": 0.0813 + }, + { + "start": 12104.2, + "end": 12104.2, + "probability": 0.0529 + }, + { + "start": 12104.2, + "end": 12104.94, + "probability": 0.3563 + }, + { + "start": 12105.04, + "end": 12106.56, + "probability": 0.0495 + }, + { + "start": 12107.56, + "end": 12111.48, + "probability": 0.0419 + }, + { + "start": 12111.86, + "end": 12112.32, + "probability": 0.0513 + }, + { + "start": 12681.77, + "end": 12681.77, + "probability": 0.0 + }, + { + "start": 12681.77, + "end": 12681.77, + "probability": 0.0 + }, + { + "start": 12681.77, + "end": 12681.77, + "probability": 0.0 + }, + { + "start": 12681.77, + "end": 12681.77, + "probability": 0.0 + } + ], + "segments_count": 4236, + "words_count": 21160, + "avg_words_per_segment": 4.9953, + "avg_segment_duration": 1.9437, + "avg_words_per_minute": 100.1122, + "plenum_id": "123163", + "duration": 12681.77, + "title": null, + "plenum_date": "2024-01-10" +} \ No newline at end of file