diff --git "a/27162/metadata.json" "b/27162/metadata.json" new file mode 100644--- /dev/null +++ "b/27162/metadata.json" @@ -0,0 +1,12952 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "27162", + "quality_score": 0.9463, + "per_segment_quality_scores": [ + { + "start": 149.0, + "end": 149.0, + "probability": 0.0 + }, + { + "start": 149.0, + "end": 149.0, + "probability": 0.0 + }, + { + "start": 149.0, + "end": 149.0, + "probability": 0.0 + }, + { + "start": 149.0, + "end": 149.0, + "probability": 0.0 + }, + { + "start": 150.1, + "end": 150.1, + "probability": 0.0112 + }, + { + "start": 150.1, + "end": 158.98, + "probability": 0.9699 + }, + { + "start": 159.98, + "end": 162.44, + "probability": 0.9989 + }, + { + "start": 162.96, + "end": 165.2, + "probability": 0.9674 + }, + { + "start": 166.42, + "end": 173.64, + "probability": 0.9903 + }, + { + "start": 173.64, + "end": 180.6, + "probability": 0.9174 + }, + { + "start": 180.6, + "end": 184.88, + "probability": 0.9946 + }, + { + "start": 186.0, + "end": 187.6, + "probability": 0.7461 + }, + { + "start": 189.02, + "end": 194.94, + "probability": 0.9972 + }, + { + "start": 195.96, + "end": 199.4, + "probability": 0.9876 + }, + { + "start": 200.92, + "end": 206.42, + "probability": 0.9864 + }, + { + "start": 206.42, + "end": 209.3, + "probability": 0.9946 + }, + { + "start": 210.06, + "end": 213.26, + "probability": 0.9934 + }, + { + "start": 214.44, + "end": 215.78, + "probability": 0.9699 + }, + { + "start": 216.56, + "end": 217.66, + "probability": 0.9633 + }, + { + "start": 218.14, + "end": 218.7, + "probability": 0.8808 + }, + { + "start": 219.08, + "end": 221.86, + "probability": 0.994 + }, + { + "start": 223.22, + "end": 226.66, + "probability": 0.9971 + }, + { + "start": 227.26, + "end": 229.86, + "probability": 0.9889 + }, + { + "start": 230.34, + "end": 234.2, + "probability": 0.9962 + }, + { + "start": 234.2, + "end": 239.98, + "probability": 0.8335 + }, + { + "start": 241.08, + "end": 248.92, + "probability": 0.9487 + }, + { + "start": 249.5, + "end": 250.52, + "probability": 0.9646 + }, + { + "start": 251.04, + "end": 253.42, + "probability": 0.9559 + }, + { + "start": 254.32, + "end": 260.44, + "probability": 0.9882 + }, + { + "start": 261.12, + "end": 263.84, + "probability": 0.985 + }, + { + "start": 264.78, + "end": 265.62, + "probability": 0.6471 + }, + { + "start": 265.84, + "end": 268.46, + "probability": 0.9719 + }, + { + "start": 268.64, + "end": 270.54, + "probability": 0.7259 + }, + { + "start": 271.04, + "end": 274.3, + "probability": 0.8955 + }, + { + "start": 274.43, + "end": 279.04, + "probability": 0.9974 + }, + { + "start": 279.78, + "end": 283.22, + "probability": 0.9898 + }, + { + "start": 284.02, + "end": 288.18, + "probability": 0.999 + }, + { + "start": 288.18, + "end": 291.56, + "probability": 0.9986 + }, + { + "start": 292.72, + "end": 295.9, + "probability": 0.9995 + }, + { + "start": 296.74, + "end": 300.28, + "probability": 0.9047 + }, + { + "start": 300.82, + "end": 304.16, + "probability": 0.8187 + }, + { + "start": 305.28, + "end": 314.3, + "probability": 0.9771 + }, + { + "start": 315.4, + "end": 321.6, + "probability": 0.9964 + }, + { + "start": 322.34, + "end": 323.22, + "probability": 0.5672 + }, + { + "start": 323.26, + "end": 331.56, + "probability": 0.9804 + }, + { + "start": 332.4, + "end": 335.8, + "probability": 0.9615 + }, + { + "start": 336.48, + "end": 340.54, + "probability": 0.9351 + }, + { + "start": 341.28, + "end": 346.34, + "probability": 0.9551 + }, + { + "start": 346.34, + "end": 352.02, + "probability": 0.999 + }, + { + "start": 353.3, + "end": 354.1, + "probability": 0.7611 + }, + { + "start": 354.44, + "end": 361.04, + "probability": 0.9863 + }, + { + "start": 361.12, + "end": 366.4, + "probability": 0.8989 + }, + { + "start": 367.3, + "end": 370.24, + "probability": 0.9919 + }, + { + "start": 370.84, + "end": 377.3, + "probability": 0.9977 + }, + { + "start": 377.3, + "end": 383.26, + "probability": 0.9979 + }, + { + "start": 383.36, + "end": 386.7, + "probability": 0.9507 + }, + { + "start": 387.88, + "end": 395.3, + "probability": 0.9766 + }, + { + "start": 395.9, + "end": 397.42, + "probability": 0.5714 + }, + { + "start": 397.42, + "end": 398.1, + "probability": 0.9027 + }, + { + "start": 421.34, + "end": 422.52, + "probability": 0.7425 + }, + { + "start": 425.38, + "end": 426.68, + "probability": 0.5641 + }, + { + "start": 429.46, + "end": 431.0, + "probability": 0.9583 + }, + { + "start": 434.7, + "end": 438.76, + "probability": 0.9531 + }, + { + "start": 440.42, + "end": 442.24, + "probability": 0.8735 + }, + { + "start": 446.46, + "end": 447.88, + "probability": 0.9419 + }, + { + "start": 448.8, + "end": 449.66, + "probability": 0.7779 + }, + { + "start": 449.78, + "end": 450.28, + "probability": 0.6104 + }, + { + "start": 450.42, + "end": 451.85, + "probability": 0.7268 + }, + { + "start": 452.22, + "end": 454.61, + "probability": 0.5527 + }, + { + "start": 456.88, + "end": 459.36, + "probability": 0.9583 + }, + { + "start": 461.88, + "end": 465.42, + "probability": 0.9453 + }, + { + "start": 466.76, + "end": 474.24, + "probability": 0.8225 + }, + { + "start": 475.74, + "end": 481.12, + "probability": 0.9307 + }, + { + "start": 481.12, + "end": 488.48, + "probability": 0.9671 + }, + { + "start": 489.56, + "end": 490.66, + "probability": 0.9927 + }, + { + "start": 492.32, + "end": 497.87, + "probability": 0.9695 + }, + { + "start": 499.44, + "end": 499.96, + "probability": 0.998 + }, + { + "start": 503.32, + "end": 510.94, + "probability": 0.9899 + }, + { + "start": 511.08, + "end": 511.89, + "probability": 0.9084 + }, + { + "start": 512.96, + "end": 518.18, + "probability": 0.9782 + }, + { + "start": 519.9, + "end": 520.78, + "probability": 0.9941 + }, + { + "start": 523.84, + "end": 530.28, + "probability": 0.9964 + }, + { + "start": 530.38, + "end": 536.98, + "probability": 0.9812 + }, + { + "start": 539.66, + "end": 542.26, + "probability": 0.9909 + }, + { + "start": 542.42, + "end": 543.58, + "probability": 0.7072 + }, + { + "start": 545.1, + "end": 548.72, + "probability": 0.9553 + }, + { + "start": 548.78, + "end": 558.36, + "probability": 0.9417 + }, + { + "start": 558.36, + "end": 562.5, + "probability": 0.9383 + }, + { + "start": 562.82, + "end": 568.0, + "probability": 0.6746 + }, + { + "start": 569.5, + "end": 577.9, + "probability": 0.9971 + }, + { + "start": 582.16, + "end": 584.04, + "probability": 0.999 + }, + { + "start": 584.04, + "end": 585.53, + "probability": 0.4927 + }, + { + "start": 585.8, + "end": 587.24, + "probability": 0.3078 + }, + { + "start": 587.8, + "end": 591.48, + "probability": 0.9097 + }, + { + "start": 593.54, + "end": 596.0, + "probability": 0.8983 + }, + { + "start": 598.48, + "end": 605.34, + "probability": 0.9565 + }, + { + "start": 607.02, + "end": 608.23, + "probability": 0.9761 + }, + { + "start": 608.54, + "end": 611.22, + "probability": 0.8117 + }, + { + "start": 611.3, + "end": 614.16, + "probability": 0.9348 + }, + { + "start": 614.38, + "end": 615.52, + "probability": 0.8104 + }, + { + "start": 616.66, + "end": 619.74, + "probability": 0.9177 + }, + { + "start": 621.16, + "end": 626.56, + "probability": 0.9699 + }, + { + "start": 627.14, + "end": 627.64, + "probability": 0.9542 + }, + { + "start": 628.86, + "end": 635.74, + "probability": 0.9711 + }, + { + "start": 636.89, + "end": 641.54, + "probability": 0.8396 + }, + { + "start": 642.76, + "end": 644.76, + "probability": 0.7551 + }, + { + "start": 645.66, + "end": 649.58, + "probability": 0.949 + }, + { + "start": 650.62, + "end": 656.22, + "probability": 0.9841 + }, + { + "start": 656.42, + "end": 656.86, + "probability": 0.9097 + }, + { + "start": 657.0, + "end": 661.48, + "probability": 0.4472 + }, + { + "start": 661.48, + "end": 666.66, + "probability": 0.973 + }, + { + "start": 666.94, + "end": 673.76, + "probability": 0.735 + }, + { + "start": 674.36, + "end": 676.58, + "probability": 0.9317 + }, + { + "start": 676.92, + "end": 679.04, + "probability": 0.9888 + }, + { + "start": 680.34, + "end": 681.24, + "probability": 0.0969 + }, + { + "start": 682.8, + "end": 686.34, + "probability": 0.983 + }, + { + "start": 686.44, + "end": 688.56, + "probability": 0.8761 + }, + { + "start": 688.98, + "end": 689.97, + "probability": 0.9912 + }, + { + "start": 691.04, + "end": 693.46, + "probability": 0.9645 + }, + { + "start": 694.5, + "end": 697.24, + "probability": 0.982 + }, + { + "start": 697.94, + "end": 699.02, + "probability": 0.9167 + }, + { + "start": 699.66, + "end": 700.82, + "probability": 0.746 + }, + { + "start": 701.8, + "end": 703.34, + "probability": 0.9607 + }, + { + "start": 703.78, + "end": 705.52, + "probability": 0.9966 + }, + { + "start": 706.36, + "end": 707.26, + "probability": 0.899 + }, + { + "start": 708.62, + "end": 711.16, + "probability": 0.9897 + }, + { + "start": 712.66, + "end": 714.68, + "probability": 0.9629 + }, + { + "start": 716.26, + "end": 719.72, + "probability": 0.6139 + }, + { + "start": 720.94, + "end": 722.1, + "probability": 0.8036 + }, + { + "start": 722.9, + "end": 724.96, + "probability": 0.9751 + }, + { + "start": 726.38, + "end": 734.06, + "probability": 0.9788 + }, + { + "start": 734.44, + "end": 737.24, + "probability": 0.991 + }, + { + "start": 737.92, + "end": 740.74, + "probability": 0.9768 + }, + { + "start": 741.32, + "end": 742.72, + "probability": 0.9773 + }, + { + "start": 743.5, + "end": 744.32, + "probability": 0.8267 + }, + { + "start": 744.98, + "end": 745.97, + "probability": 0.7782 + }, + { + "start": 748.26, + "end": 756.44, + "probability": 0.9831 + }, + { + "start": 757.26, + "end": 762.16, + "probability": 0.871 + }, + { + "start": 763.6, + "end": 770.82, + "probability": 0.8777 + }, + { + "start": 772.4, + "end": 774.12, + "probability": 0.9866 + }, + { + "start": 777.82, + "end": 780.4, + "probability": 0.9865 + }, + { + "start": 782.28, + "end": 784.78, + "probability": 0.8093 + }, + { + "start": 785.36, + "end": 792.0, + "probability": 0.8558 + }, + { + "start": 793.24, + "end": 795.98, + "probability": 0.7232 + }, + { + "start": 796.0, + "end": 796.32, + "probability": 0.8292 + }, + { + "start": 796.42, + "end": 797.52, + "probability": 0.9847 + }, + { + "start": 798.26, + "end": 800.18, + "probability": 0.9971 + }, + { + "start": 802.42, + "end": 803.54, + "probability": 0.5251 + }, + { + "start": 804.22, + "end": 812.54, + "probability": 0.5397 + }, + { + "start": 812.62, + "end": 813.14, + "probability": 0.5756 + }, + { + "start": 814.12, + "end": 817.38, + "probability": 0.8738 + }, + { + "start": 820.24, + "end": 823.66, + "probability": 0.9696 + }, + { + "start": 823.76, + "end": 826.18, + "probability": 0.8557 + }, + { + "start": 826.18, + "end": 829.82, + "probability": 0.9966 + }, + { + "start": 830.14, + "end": 833.4, + "probability": 0.9906 + }, + { + "start": 833.6, + "end": 837.18, + "probability": 0.9597 + }, + { + "start": 838.66, + "end": 841.34, + "probability": 0.9814 + }, + { + "start": 841.91, + "end": 844.84, + "probability": 0.7552 + }, + { + "start": 845.4, + "end": 851.14, + "probability": 0.9924 + }, + { + "start": 851.14, + "end": 856.56, + "probability": 0.9894 + }, + { + "start": 857.18, + "end": 859.3, + "probability": 0.8216 + }, + { + "start": 859.34, + "end": 860.28, + "probability": 0.8584 + }, + { + "start": 861.3, + "end": 869.78, + "probability": 0.974 + }, + { + "start": 869.92, + "end": 870.4, + "probability": 0.9819 + }, + { + "start": 870.42, + "end": 874.22, + "probability": 0.9912 + }, + { + "start": 874.52, + "end": 878.38, + "probability": 0.7603 + }, + { + "start": 879.54, + "end": 884.0, + "probability": 0.9238 + }, + { + "start": 885.82, + "end": 889.32, + "probability": 0.6885 + }, + { + "start": 890.9, + "end": 893.96, + "probability": 0.7013 + }, + { + "start": 894.58, + "end": 897.79, + "probability": 0.9829 + }, + { + "start": 898.58, + "end": 900.12, + "probability": 0.8214 + }, + { + "start": 900.82, + "end": 901.32, + "probability": 0.7178 + }, + { + "start": 902.78, + "end": 903.68, + "probability": 0.3723 + }, + { + "start": 903.72, + "end": 905.1, + "probability": 0.8508 + }, + { + "start": 905.3, + "end": 908.06, + "probability": 0.9969 + }, + { + "start": 909.82, + "end": 912.44, + "probability": 0.7136 + }, + { + "start": 912.98, + "end": 914.84, + "probability": 0.1702 + }, + { + "start": 915.62, + "end": 920.54, + "probability": 0.991 + }, + { + "start": 921.24, + "end": 924.16, + "probability": 0.7617 + }, + { + "start": 926.16, + "end": 928.02, + "probability": 0.9895 + }, + { + "start": 929.02, + "end": 931.54, + "probability": 0.947 + }, + { + "start": 932.28, + "end": 932.78, + "probability": 0.582 + }, + { + "start": 933.1, + "end": 938.58, + "probability": 0.9543 + }, + { + "start": 938.74, + "end": 940.44, + "probability": 0.7541 + }, + { + "start": 941.94, + "end": 945.98, + "probability": 0.7659 + }, + { + "start": 948.52, + "end": 951.2, + "probability": 0.9953 + }, + { + "start": 953.66, + "end": 955.16, + "probability": 0.735 + }, + { + "start": 956.44, + "end": 958.52, + "probability": 0.9402 + }, + { + "start": 959.04, + "end": 961.82, + "probability": 0.9787 + }, + { + "start": 962.84, + "end": 965.7, + "probability": 0.9826 + }, + { + "start": 967.98, + "end": 970.5, + "probability": 0.8185 + }, + { + "start": 971.32, + "end": 972.5, + "probability": 0.9963 + }, + { + "start": 974.68, + "end": 976.36, + "probability": 0.9934 + }, + { + "start": 976.44, + "end": 978.12, + "probability": 0.8865 + }, + { + "start": 978.56, + "end": 980.54, + "probability": 0.9333 + }, + { + "start": 981.48, + "end": 987.24, + "probability": 0.9906 + }, + { + "start": 987.74, + "end": 988.82, + "probability": 0.9623 + }, + { + "start": 991.18, + "end": 995.08, + "probability": 0.9007 + }, + { + "start": 996.72, + "end": 998.94, + "probability": 0.6726 + }, + { + "start": 999.32, + "end": 1002.8, + "probability": 0.8982 + }, + { + "start": 1003.04, + "end": 1003.46, + "probability": 0.6433 + }, + { + "start": 1003.64, + "end": 1004.22, + "probability": 0.8847 + }, + { + "start": 1004.3, + "end": 1006.96, + "probability": 0.987 + }, + { + "start": 1007.12, + "end": 1007.46, + "probability": 0.7851 + }, + { + "start": 1007.56, + "end": 1008.54, + "probability": 0.7739 + }, + { + "start": 1009.8, + "end": 1011.22, + "probability": 0.9491 + }, + { + "start": 1012.22, + "end": 1015.88, + "probability": 0.965 + }, + { + "start": 1017.28, + "end": 1020.52, + "probability": 0.9526 + }, + { + "start": 1020.62, + "end": 1025.56, + "probability": 0.9206 + }, + { + "start": 1025.56, + "end": 1033.26, + "probability": 0.9937 + }, + { + "start": 1036.94, + "end": 1036.94, + "probability": 0.1252 + }, + { + "start": 1039.8, + "end": 1041.12, + "probability": 0.742 + }, + { + "start": 1044.52, + "end": 1046.98, + "probability": 0.986 + }, + { + "start": 1048.82, + "end": 1055.52, + "probability": 0.9449 + }, + { + "start": 1056.18, + "end": 1058.26, + "probability": 0.8538 + }, + { + "start": 1059.72, + "end": 1060.02, + "probability": 0.9824 + }, + { + "start": 1063.02, + "end": 1066.82, + "probability": 0.9937 + }, + { + "start": 1068.86, + "end": 1070.56, + "probability": 0.9961 + }, + { + "start": 1072.54, + "end": 1074.2, + "probability": 0.9425 + }, + { + "start": 1076.04, + "end": 1079.22, + "probability": 0.9641 + }, + { + "start": 1079.3, + "end": 1083.52, + "probability": 0.9794 + }, + { + "start": 1084.74, + "end": 1087.28, + "probability": 0.9961 + }, + { + "start": 1087.28, + "end": 1089.54, + "probability": 0.9885 + }, + { + "start": 1089.62, + "end": 1091.1, + "probability": 0.8735 + }, + { + "start": 1091.3, + "end": 1092.34, + "probability": 0.6924 + }, + { + "start": 1092.94, + "end": 1098.88, + "probability": 0.9614 + }, + { + "start": 1099.62, + "end": 1100.52, + "probability": 0.8645 + }, + { + "start": 1101.12, + "end": 1102.86, + "probability": 0.5185 + }, + { + "start": 1103.44, + "end": 1107.07, + "probability": 0.9197 + }, + { + "start": 1109.9, + "end": 1117.04, + "probability": 0.8756 + }, + { + "start": 1118.0, + "end": 1124.65, + "probability": 0.994 + }, + { + "start": 1125.06, + "end": 1130.68, + "probability": 0.9959 + }, + { + "start": 1131.84, + "end": 1135.66, + "probability": 0.6976 + }, + { + "start": 1136.38, + "end": 1138.76, + "probability": 0.9731 + }, + { + "start": 1139.68, + "end": 1143.22, + "probability": 0.9948 + }, + { + "start": 1143.98, + "end": 1151.92, + "probability": 0.9941 + }, + { + "start": 1152.02, + "end": 1156.44, + "probability": 0.9671 + }, + { + "start": 1156.8, + "end": 1159.53, + "probability": 0.9378 + }, + { + "start": 1159.78, + "end": 1163.3, + "probability": 0.9108 + }, + { + "start": 1163.62, + "end": 1164.32, + "probability": 0.9749 + }, + { + "start": 1165.12, + "end": 1167.88, + "probability": 0.9478 + }, + { + "start": 1169.76, + "end": 1174.22, + "probability": 0.8957 + }, + { + "start": 1175.78, + "end": 1179.24, + "probability": 0.9517 + }, + { + "start": 1180.12, + "end": 1183.38, + "probability": 0.886 + }, + { + "start": 1183.82, + "end": 1185.46, + "probability": 0.8434 + }, + { + "start": 1185.64, + "end": 1187.1, + "probability": 0.9858 + }, + { + "start": 1189.2, + "end": 1194.08, + "probability": 0.9938 + }, + { + "start": 1195.6, + "end": 1199.0, + "probability": 0.8025 + }, + { + "start": 1199.66, + "end": 1202.1, + "probability": 0.9462 + }, + { + "start": 1202.86, + "end": 1204.02, + "probability": 0.822 + }, + { + "start": 1204.2, + "end": 1206.8, + "probability": 0.9619 + }, + { + "start": 1207.96, + "end": 1214.98, + "probability": 0.9261 + }, + { + "start": 1216.34, + "end": 1220.2, + "probability": 0.836 + }, + { + "start": 1222.44, + "end": 1228.68, + "probability": 0.972 + }, + { + "start": 1229.8, + "end": 1233.64, + "probability": 0.9849 + }, + { + "start": 1235.6, + "end": 1236.64, + "probability": 0.9437 + }, + { + "start": 1237.8, + "end": 1240.34, + "probability": 0.9294 + }, + { + "start": 1241.02, + "end": 1245.02, + "probability": 0.8803 + }, + { + "start": 1245.26, + "end": 1250.86, + "probability": 0.9598 + }, + { + "start": 1251.28, + "end": 1254.46, + "probability": 0.994 + }, + { + "start": 1255.6, + "end": 1259.92, + "probability": 0.9784 + }, + { + "start": 1260.92, + "end": 1261.32, + "probability": 0.3775 + }, + { + "start": 1261.38, + "end": 1261.72, + "probability": 0.8607 + }, + { + "start": 1261.84, + "end": 1266.88, + "probability": 0.9404 + }, + { + "start": 1268.16, + "end": 1272.88, + "probability": 0.9263 + }, + { + "start": 1273.4, + "end": 1274.7, + "probability": 0.3724 + }, + { + "start": 1274.78, + "end": 1282.46, + "probability": 0.9727 + }, + { + "start": 1283.68, + "end": 1285.2, + "probability": 0.8403 + }, + { + "start": 1286.82, + "end": 1290.2, + "probability": 0.9899 + }, + { + "start": 1290.84, + "end": 1296.72, + "probability": 0.993 + }, + { + "start": 1297.58, + "end": 1298.04, + "probability": 0.9561 + }, + { + "start": 1300.64, + "end": 1301.42, + "probability": 0.6401 + }, + { + "start": 1302.48, + "end": 1302.72, + "probability": 0.339 + }, + { + "start": 1302.92, + "end": 1304.96, + "probability": 0.501 + }, + { + "start": 1306.12, + "end": 1306.92, + "probability": 0.8944 + }, + { + "start": 1307.0, + "end": 1308.34, + "probability": 0.9646 + }, + { + "start": 1308.74, + "end": 1313.2, + "probability": 0.9792 + }, + { + "start": 1314.14, + "end": 1315.56, + "probability": 0.7398 + }, + { + "start": 1316.68, + "end": 1318.18, + "probability": 0.9516 + }, + { + "start": 1319.62, + "end": 1323.62, + "probability": 0.6701 + }, + { + "start": 1323.62, + "end": 1326.9, + "probability": 0.8483 + }, + { + "start": 1327.76, + "end": 1331.48, + "probability": 0.8314 + }, + { + "start": 1332.14, + "end": 1337.7, + "probability": 0.9256 + }, + { + "start": 1337.8, + "end": 1338.24, + "probability": 0.7565 + }, + { + "start": 1338.56, + "end": 1339.22, + "probability": 0.507 + }, + { + "start": 1339.62, + "end": 1340.77, + "probability": 0.9965 + }, + { + "start": 1341.66, + "end": 1343.98, + "probability": 0.968 + }, + { + "start": 1343.98, + "end": 1344.84, + "probability": 0.7932 + }, + { + "start": 1346.26, + "end": 1348.08, + "probability": 0.7172 + }, + { + "start": 1355.74, + "end": 1359.54, + "probability": 0.9675 + }, + { + "start": 1359.54, + "end": 1363.98, + "probability": 0.7994 + }, + { + "start": 1364.64, + "end": 1365.42, + "probability": 0.8663 + }, + { + "start": 1367.29, + "end": 1369.36, + "probability": 0.594 + }, + { + "start": 1370.34, + "end": 1371.46, + "probability": 0.9846 + }, + { + "start": 1371.56, + "end": 1372.06, + "probability": 0.6201 + }, + { + "start": 1372.08, + "end": 1372.54, + "probability": 0.5898 + }, + { + "start": 1372.66, + "end": 1373.7, + "probability": 0.8293 + }, + { + "start": 1374.64, + "end": 1375.64, + "probability": 0.9294 + }, + { + "start": 1376.68, + "end": 1379.75, + "probability": 0.6768 + }, + { + "start": 1380.6, + "end": 1384.68, + "probability": 0.945 + }, + { + "start": 1385.08, + "end": 1387.38, + "probability": 0.9873 + }, + { + "start": 1387.44, + "end": 1387.86, + "probability": 0.9323 + }, + { + "start": 1388.12, + "end": 1389.8, + "probability": 0.9218 + }, + { + "start": 1390.52, + "end": 1392.9, + "probability": 0.9618 + }, + { + "start": 1394.74, + "end": 1395.72, + "probability": 0.8053 + }, + { + "start": 1395.9, + "end": 1397.5, + "probability": 0.7886 + }, + { + "start": 1397.6, + "end": 1398.24, + "probability": 0.6581 + }, + { + "start": 1398.62, + "end": 1402.38, + "probability": 0.9507 + }, + { + "start": 1402.78, + "end": 1403.61, + "probability": 0.9792 + }, + { + "start": 1404.08, + "end": 1404.8, + "probability": 0.8707 + }, + { + "start": 1405.88, + "end": 1406.88, + "probability": 0.8571 + }, + { + "start": 1407.22, + "end": 1408.96, + "probability": 0.7886 + }, + { + "start": 1410.0, + "end": 1411.18, + "probability": 0.9915 + }, + { + "start": 1412.22, + "end": 1414.02, + "probability": 0.7864 + }, + { + "start": 1415.16, + "end": 1416.92, + "probability": 0.6428 + }, + { + "start": 1416.94, + "end": 1420.91, + "probability": 0.9895 + }, + { + "start": 1421.34, + "end": 1424.46, + "probability": 0.9806 + }, + { + "start": 1424.6, + "end": 1425.96, + "probability": 0.988 + }, + { + "start": 1426.82, + "end": 1427.22, + "probability": 0.671 + }, + { + "start": 1428.5, + "end": 1432.64, + "probability": 0.8359 + }, + { + "start": 1433.42, + "end": 1435.52, + "probability": 0.9947 + }, + { + "start": 1436.3, + "end": 1438.46, + "probability": 0.9533 + }, + { + "start": 1439.9, + "end": 1442.16, + "probability": 0.5823 + }, + { + "start": 1442.74, + "end": 1447.5, + "probability": 0.8564 + }, + { + "start": 1448.02, + "end": 1449.7, + "probability": 0.5045 + }, + { + "start": 1450.5, + "end": 1451.12, + "probability": 0.5052 + }, + { + "start": 1457.15, + "end": 1459.64, + "probability": 0.8387 + }, + { + "start": 1460.26, + "end": 1461.46, + "probability": 0.7292 + }, + { + "start": 1462.2, + "end": 1464.2, + "probability": 0.9521 + }, + { + "start": 1465.88, + "end": 1468.42, + "probability": 0.671 + }, + { + "start": 1469.24, + "end": 1472.22, + "probability": 0.9863 + }, + { + "start": 1473.74, + "end": 1475.32, + "probability": 0.6617 + }, + { + "start": 1475.9, + "end": 1479.82, + "probability": 0.9164 + }, + { + "start": 1480.4, + "end": 1481.72, + "probability": 0.9766 + }, + { + "start": 1481.76, + "end": 1486.04, + "probability": 0.9749 + }, + { + "start": 1486.38, + "end": 1487.06, + "probability": 0.5167 + }, + { + "start": 1487.78, + "end": 1491.52, + "probability": 0.718 + }, + { + "start": 1492.8, + "end": 1495.34, + "probability": 0.8176 + }, + { + "start": 1495.44, + "end": 1497.38, + "probability": 0.9792 + }, + { + "start": 1497.92, + "end": 1498.46, + "probability": 0.949 + }, + { + "start": 1498.54, + "end": 1501.0, + "probability": 0.9436 + }, + { + "start": 1501.44, + "end": 1504.28, + "probability": 0.9092 + }, + { + "start": 1505.14, + "end": 1505.78, + "probability": 0.7927 + }, + { + "start": 1506.06, + "end": 1506.58, + "probability": 0.9504 + }, + { + "start": 1506.62, + "end": 1507.81, + "probability": 0.9873 + }, + { + "start": 1508.6, + "end": 1509.52, + "probability": 0.932 + }, + { + "start": 1509.94, + "end": 1511.06, + "probability": 0.7792 + }, + { + "start": 1511.52, + "end": 1512.02, + "probability": 0.6675 + }, + { + "start": 1512.18, + "end": 1512.3, + "probability": 0.9631 + }, + { + "start": 1512.34, + "end": 1516.06, + "probability": 0.9783 + }, + { + "start": 1518.5, + "end": 1523.42, + "probability": 0.9528 + }, + { + "start": 1523.48, + "end": 1527.54, + "probability": 0.996 + }, + { + "start": 1528.12, + "end": 1528.42, + "probability": 0.6902 + }, + { + "start": 1528.5, + "end": 1530.58, + "probability": 0.9621 + }, + { + "start": 1530.68, + "end": 1531.88, + "probability": 0.8902 + }, + { + "start": 1532.9, + "end": 1534.44, + "probability": 0.9136 + }, + { + "start": 1534.9, + "end": 1537.46, + "probability": 0.962 + }, + { + "start": 1538.22, + "end": 1543.5, + "probability": 0.9456 + }, + { + "start": 1543.7, + "end": 1544.98, + "probability": 0.902 + }, + { + "start": 1545.44, + "end": 1546.7, + "probability": 0.9786 + }, + { + "start": 1546.8, + "end": 1548.74, + "probability": 0.9954 + }, + { + "start": 1548.82, + "end": 1551.88, + "probability": 0.9939 + }, + { + "start": 1552.04, + "end": 1554.4, + "probability": 0.9849 + }, + { + "start": 1555.26, + "end": 1556.87, + "probability": 0.9899 + }, + { + "start": 1557.84, + "end": 1558.91, + "probability": 0.9176 + }, + { + "start": 1559.26, + "end": 1559.8, + "probability": 0.9727 + }, + { + "start": 1560.0, + "end": 1560.9, + "probability": 0.7162 + }, + { + "start": 1561.14, + "end": 1561.46, + "probability": 0.6774 + }, + { + "start": 1562.12, + "end": 1563.82, + "probability": 0.9378 + }, + { + "start": 1564.94, + "end": 1565.9, + "probability": 0.9053 + }, + { + "start": 1566.5, + "end": 1567.44, + "probability": 0.9428 + }, + { + "start": 1567.94, + "end": 1569.54, + "probability": 0.9778 + }, + { + "start": 1569.62, + "end": 1571.16, + "probability": 0.8017 + }, + { + "start": 1571.26, + "end": 1572.1, + "probability": 0.9774 + }, + { + "start": 1572.1, + "end": 1572.58, + "probability": 0.8993 + }, + { + "start": 1572.82, + "end": 1573.38, + "probability": 0.9199 + }, + { + "start": 1574.1, + "end": 1579.56, + "probability": 0.922 + }, + { + "start": 1580.42, + "end": 1581.32, + "probability": 0.5722 + }, + { + "start": 1582.22, + "end": 1585.81, + "probability": 0.9301 + }, + { + "start": 1587.36, + "end": 1588.72, + "probability": 0.9814 + }, + { + "start": 1589.14, + "end": 1592.38, + "probability": 0.9766 + }, + { + "start": 1593.1, + "end": 1594.82, + "probability": 0.9703 + }, + { + "start": 1596.0, + "end": 1596.8, + "probability": 0.7616 + }, + { + "start": 1597.5, + "end": 1598.2, + "probability": 0.6167 + }, + { + "start": 1598.46, + "end": 1598.78, + "probability": 0.8605 + }, + { + "start": 1598.86, + "end": 1599.74, + "probability": 0.7539 + }, + { + "start": 1600.22, + "end": 1607.62, + "probability": 0.9844 + }, + { + "start": 1608.2, + "end": 1609.56, + "probability": 0.8322 + }, + { + "start": 1610.08, + "end": 1610.2, + "probability": 0.1096 + }, + { + "start": 1610.2, + "end": 1611.2, + "probability": 0.9742 + }, + { + "start": 1611.72, + "end": 1616.72, + "probability": 0.983 + }, + { + "start": 1617.06, + "end": 1617.44, + "probability": 0.9146 + }, + { + "start": 1617.58, + "end": 1618.54, + "probability": 0.9669 + }, + { + "start": 1619.22, + "end": 1620.36, + "probability": 0.8382 + }, + { + "start": 1621.06, + "end": 1622.84, + "probability": 0.7545 + }, + { + "start": 1624.14, + "end": 1625.84, + "probability": 0.8519 + }, + { + "start": 1626.14, + "end": 1626.91, + "probability": 0.8455 + }, + { + "start": 1628.16, + "end": 1628.5, + "probability": 0.5712 + }, + { + "start": 1628.62, + "end": 1631.62, + "probability": 0.9307 + }, + { + "start": 1632.14, + "end": 1634.38, + "probability": 0.974 + }, + { + "start": 1635.38, + "end": 1635.92, + "probability": 0.8989 + }, + { + "start": 1636.02, + "end": 1636.44, + "probability": 0.9114 + }, + { + "start": 1636.5, + "end": 1637.38, + "probability": 0.9021 + }, + { + "start": 1637.46, + "end": 1637.9, + "probability": 0.7452 + }, + { + "start": 1639.04, + "end": 1641.7, + "probability": 0.9819 + }, + { + "start": 1641.78, + "end": 1646.38, + "probability": 0.9973 + }, + { + "start": 1646.92, + "end": 1647.47, + "probability": 0.9736 + }, + { + "start": 1647.94, + "end": 1651.26, + "probability": 0.9711 + }, + { + "start": 1651.88, + "end": 1654.84, + "probability": 0.8968 + }, + { + "start": 1654.98, + "end": 1656.94, + "probability": 0.8298 + }, + { + "start": 1657.44, + "end": 1657.88, + "probability": 0.5092 + }, + { + "start": 1657.98, + "end": 1659.5, + "probability": 0.8298 + }, + { + "start": 1659.9, + "end": 1662.1, + "probability": 0.7492 + }, + { + "start": 1662.42, + "end": 1663.34, + "probability": 0.8654 + }, + { + "start": 1663.8, + "end": 1665.06, + "probability": 0.7256 + }, + { + "start": 1666.18, + "end": 1669.52, + "probability": 0.9504 + }, + { + "start": 1670.14, + "end": 1672.72, + "probability": 0.9902 + }, + { + "start": 1672.8, + "end": 1674.74, + "probability": 0.7276 + }, + { + "start": 1675.4, + "end": 1677.86, + "probability": 0.9827 + }, + { + "start": 1678.54, + "end": 1679.24, + "probability": 0.5529 + }, + { + "start": 1679.28, + "end": 1680.57, + "probability": 0.1926 + }, + { + "start": 1681.1, + "end": 1682.54, + "probability": 0.6035 + }, + { + "start": 1682.64, + "end": 1684.18, + "probability": 0.9602 + }, + { + "start": 1684.48, + "end": 1684.9, + "probability": 0.6428 + }, + { + "start": 1684.98, + "end": 1687.16, + "probability": 0.9883 + }, + { + "start": 1687.26, + "end": 1689.24, + "probability": 0.9175 + }, + { + "start": 1689.34, + "end": 1690.29, + "probability": 0.938 + }, + { + "start": 1690.66, + "end": 1691.46, + "probability": 0.5565 + }, + { + "start": 1691.76, + "end": 1692.84, + "probability": 0.6986 + }, + { + "start": 1693.32, + "end": 1694.9, + "probability": 0.911 + }, + { + "start": 1695.5, + "end": 1697.58, + "probability": 0.9558 + }, + { + "start": 1697.68, + "end": 1698.76, + "probability": 0.9849 + }, + { + "start": 1698.84, + "end": 1700.74, + "probability": 0.9122 + }, + { + "start": 1700.92, + "end": 1701.31, + "probability": 0.6038 + }, + { + "start": 1702.0, + "end": 1706.34, + "probability": 0.9966 + }, + { + "start": 1706.64, + "end": 1706.9, + "probability": 0.4627 + }, + { + "start": 1706.94, + "end": 1708.62, + "probability": 0.5229 + }, + { + "start": 1708.7, + "end": 1709.44, + "probability": 0.6307 + }, + { + "start": 1710.08, + "end": 1713.06, + "probability": 0.9036 + }, + { + "start": 1713.22, + "end": 1714.22, + "probability": 0.7839 + }, + { + "start": 1714.34, + "end": 1715.24, + "probability": 0.5654 + }, + { + "start": 1715.86, + "end": 1718.48, + "probability": 0.9771 + }, + { + "start": 1718.88, + "end": 1722.38, + "probability": 0.9569 + }, + { + "start": 1722.5, + "end": 1724.54, + "probability": 0.7838 + }, + { + "start": 1724.7, + "end": 1726.7, + "probability": 0.9686 + }, + { + "start": 1726.8, + "end": 1728.02, + "probability": 0.9866 + }, + { + "start": 1728.44, + "end": 1731.14, + "probability": 0.8329 + }, + { + "start": 1731.22, + "end": 1736.26, + "probability": 0.9455 + }, + { + "start": 1736.6, + "end": 1739.35, + "probability": 0.8149 + }, + { + "start": 1739.92, + "end": 1741.88, + "probability": 0.9831 + }, + { + "start": 1742.5, + "end": 1743.72, + "probability": 0.772 + }, + { + "start": 1744.72, + "end": 1746.3, + "probability": 0.9348 + }, + { + "start": 1746.58, + "end": 1747.16, + "probability": 0.8257 + }, + { + "start": 1747.24, + "end": 1749.22, + "probability": 0.9827 + }, + { + "start": 1749.84, + "end": 1751.6, + "probability": 0.9906 + }, + { + "start": 1752.3, + "end": 1752.78, + "probability": 0.8701 + }, + { + "start": 1752.84, + "end": 1753.93, + "probability": 0.8258 + }, + { + "start": 1754.16, + "end": 1756.02, + "probability": 0.9117 + }, + { + "start": 1756.18, + "end": 1758.52, + "probability": 0.1861 + }, + { + "start": 1758.66, + "end": 1759.42, + "probability": 0.7994 + }, + { + "start": 1759.52, + "end": 1760.44, + "probability": 0.9456 + }, + { + "start": 1760.48, + "end": 1762.86, + "probability": 0.9757 + }, + { + "start": 1762.92, + "end": 1764.04, + "probability": 0.9799 + }, + { + "start": 1764.36, + "end": 1765.78, + "probability": 0.9951 + }, + { + "start": 1765.86, + "end": 1768.44, + "probability": 0.8805 + }, + { + "start": 1768.74, + "end": 1769.06, + "probability": 0.748 + }, + { + "start": 1769.2, + "end": 1773.1, + "probability": 0.8897 + }, + { + "start": 1773.24, + "end": 1777.08, + "probability": 0.9298 + }, + { + "start": 1777.28, + "end": 1779.46, + "probability": 0.6559 + }, + { + "start": 1780.22, + "end": 1780.92, + "probability": 0.8892 + }, + { + "start": 1781.26, + "end": 1782.52, + "probability": 0.7748 + }, + { + "start": 1782.68, + "end": 1783.38, + "probability": 0.2902 + }, + { + "start": 1783.38, + "end": 1784.2, + "probability": 0.9063 + }, + { + "start": 1784.94, + "end": 1785.92, + "probability": 0.9135 + }, + { + "start": 1786.4, + "end": 1788.38, + "probability": 0.7592 + }, + { + "start": 1788.78, + "end": 1792.84, + "probability": 0.9562 + }, + { + "start": 1792.84, + "end": 1794.96, + "probability": 0.874 + }, + { + "start": 1795.5, + "end": 1796.16, + "probability": 0.9374 + }, + { + "start": 1797.24, + "end": 1802.36, + "probability": 0.7844 + }, + { + "start": 1802.82, + "end": 1803.4, + "probability": 0.5264 + }, + { + "start": 1803.52, + "end": 1805.82, + "probability": 0.9061 + }, + { + "start": 1805.98, + "end": 1806.34, + "probability": 0.7339 + }, + { + "start": 1808.04, + "end": 1808.66, + "probability": 0.8879 + }, + { + "start": 1808.78, + "end": 1812.02, + "probability": 0.5317 + }, + { + "start": 1812.2, + "end": 1813.44, + "probability": 0.0884 + }, + { + "start": 1813.44, + "end": 1814.8, + "probability": 0.7698 + }, + { + "start": 1814.84, + "end": 1815.92, + "probability": 0.6028 + }, + { + "start": 1816.1, + "end": 1818.56, + "probability": 0.9954 + }, + { + "start": 1818.56, + "end": 1822.04, + "probability": 0.722 + }, + { + "start": 1822.68, + "end": 1824.32, + "probability": 0.9507 + }, + { + "start": 1825.02, + "end": 1827.92, + "probability": 0.9727 + }, + { + "start": 1828.48, + "end": 1829.06, + "probability": 0.8175 + }, + { + "start": 1829.3, + "end": 1831.22, + "probability": 0.9048 + }, + { + "start": 1831.38, + "end": 1831.6, + "probability": 0.949 + }, + { + "start": 1831.68, + "end": 1833.46, + "probability": 0.9348 + }, + { + "start": 1833.6, + "end": 1834.14, + "probability": 0.977 + }, + { + "start": 1834.2, + "end": 1834.94, + "probability": 0.7248 + }, + { + "start": 1835.36, + "end": 1838.91, + "probability": 0.9153 + }, + { + "start": 1839.66, + "end": 1841.8, + "probability": 0.9162 + }, + { + "start": 1842.34, + "end": 1844.84, + "probability": 0.9535 + }, + { + "start": 1845.14, + "end": 1847.12, + "probability": 0.7631 + }, + { + "start": 1847.48, + "end": 1847.85, + "probability": 0.9521 + }, + { + "start": 1850.26, + "end": 1851.44, + "probability": 0.4655 + }, + { + "start": 1851.96, + "end": 1852.94, + "probability": 0.9707 + }, + { + "start": 1853.1, + "end": 1854.46, + "probability": 0.9854 + }, + { + "start": 1854.5, + "end": 1855.5, + "probability": 0.8892 + }, + { + "start": 1855.98, + "end": 1861.46, + "probability": 0.9639 + }, + { + "start": 1861.84, + "end": 1861.9, + "probability": 0.3679 + }, + { + "start": 1861.94, + "end": 1862.42, + "probability": 0.7407 + }, + { + "start": 1862.64, + "end": 1865.1, + "probability": 0.9972 + }, + { + "start": 1865.58, + "end": 1870.66, + "probability": 0.9923 + }, + { + "start": 1871.88, + "end": 1873.89, + "probability": 0.9961 + }, + { + "start": 1873.9, + "end": 1878.0, + "probability": 0.9688 + }, + { + "start": 1878.52, + "end": 1881.6, + "probability": 0.9984 + }, + { + "start": 1881.6, + "end": 1886.4, + "probability": 0.9913 + }, + { + "start": 1886.6, + "end": 1890.74, + "probability": 0.9943 + }, + { + "start": 1890.74, + "end": 1893.8, + "probability": 0.962 + }, + { + "start": 1894.04, + "end": 1895.77, + "probability": 0.6085 + }, + { + "start": 1896.62, + "end": 1898.38, + "probability": 0.6947 + }, + { + "start": 1898.74, + "end": 1900.11, + "probability": 0.8999 + }, + { + "start": 1900.36, + "end": 1901.19, + "probability": 0.9164 + }, + { + "start": 1901.48, + "end": 1902.78, + "probability": 0.9152 + }, + { + "start": 1903.08, + "end": 1905.32, + "probability": 0.9573 + }, + { + "start": 1905.82, + "end": 1906.42, + "probability": 0.8022 + }, + { + "start": 1906.44, + "end": 1907.52, + "probability": 0.5723 + }, + { + "start": 1908.32, + "end": 1909.82, + "probability": 0.7999 + }, + { + "start": 1909.88, + "end": 1910.22, + "probability": 0.3343 + }, + { + "start": 1910.26, + "end": 1913.08, + "probability": 0.9645 + }, + { + "start": 1922.58, + "end": 1927.34, + "probability": 0.4368 + }, + { + "start": 1928.12, + "end": 1930.24, + "probability": 0.2696 + }, + { + "start": 1931.24, + "end": 1931.82, + "probability": 0.4894 + }, + { + "start": 1932.28, + "end": 1933.34, + "probability": 0.6593 + }, + { + "start": 1933.66, + "end": 1934.26, + "probability": 0.8918 + }, + { + "start": 1940.84, + "end": 1943.76, + "probability": 0.86 + }, + { + "start": 1946.05, + "end": 1948.94, + "probability": 0.8719 + }, + { + "start": 1949.3, + "end": 1952.26, + "probability": 0.9709 + }, + { + "start": 1954.26, + "end": 1955.8, + "probability": 0.9331 + }, + { + "start": 1955.96, + "end": 1957.08, + "probability": 0.6641 + }, + { + "start": 1957.74, + "end": 1959.82, + "probability": 0.9837 + }, + { + "start": 1960.44, + "end": 1962.16, + "probability": 0.6581 + }, + { + "start": 1963.18, + "end": 1964.75, + "probability": 0.7579 + }, + { + "start": 1965.78, + "end": 1970.52, + "probability": 0.9427 + }, + { + "start": 1971.08, + "end": 1976.18, + "probability": 0.9888 + }, + { + "start": 1976.44, + "end": 1976.86, + "probability": 0.7577 + }, + { + "start": 1977.16, + "end": 1977.95, + "probability": 0.6899 + }, + { + "start": 1978.22, + "end": 1982.44, + "probability": 0.9635 + }, + { + "start": 1983.08, + "end": 1985.6, + "probability": 0.8447 + }, + { + "start": 1986.04, + "end": 1989.68, + "probability": 0.8472 + }, + { + "start": 1990.16, + "end": 1994.2, + "probability": 0.9304 + }, + { + "start": 1994.48, + "end": 1995.69, + "probability": 0.9427 + }, + { + "start": 1996.56, + "end": 1998.96, + "probability": 0.9347 + }, + { + "start": 1999.64, + "end": 2001.37, + "probability": 0.9985 + }, + { + "start": 2002.0, + "end": 2003.22, + "probability": 0.9933 + }, + { + "start": 2003.68, + "end": 2006.37, + "probability": 0.9536 + }, + { + "start": 2007.62, + "end": 2011.82, + "probability": 0.85 + }, + { + "start": 2011.92, + "end": 2015.14, + "probability": 0.8953 + }, + { + "start": 2015.88, + "end": 2019.36, + "probability": 0.986 + }, + { + "start": 2019.76, + "end": 2024.3, + "probability": 0.9672 + }, + { + "start": 2024.8, + "end": 2028.76, + "probability": 0.9407 + }, + { + "start": 2029.14, + "end": 2031.32, + "probability": 0.9541 + }, + { + "start": 2031.42, + "end": 2033.56, + "probability": 0.8792 + }, + { + "start": 2034.26, + "end": 2036.24, + "probability": 0.9692 + }, + { + "start": 2036.72, + "end": 2038.4, + "probability": 0.9961 + }, + { + "start": 2038.5, + "end": 2040.86, + "probability": 0.9731 + }, + { + "start": 2041.72, + "end": 2046.54, + "probability": 0.9926 + }, + { + "start": 2046.54, + "end": 2052.92, + "probability": 0.9745 + }, + { + "start": 2053.5, + "end": 2057.42, + "probability": 0.8108 + }, + { + "start": 2057.56, + "end": 2059.6, + "probability": 0.9489 + }, + { + "start": 2059.72, + "end": 2060.34, + "probability": 0.9421 + }, + { + "start": 2060.38, + "end": 2061.24, + "probability": 0.9657 + }, + { + "start": 2061.32, + "end": 2062.18, + "probability": 0.9741 + }, + { + "start": 2062.58, + "end": 2063.94, + "probability": 0.9651 + }, + { + "start": 2064.12, + "end": 2065.08, + "probability": 0.9689 + }, + { + "start": 2065.56, + "end": 2067.9, + "probability": 0.997 + }, + { + "start": 2068.12, + "end": 2070.36, + "probability": 0.8767 + }, + { + "start": 2070.36, + "end": 2072.86, + "probability": 0.8792 + }, + { + "start": 2073.08, + "end": 2075.08, + "probability": 0.911 + }, + { + "start": 2075.22, + "end": 2078.64, + "probability": 0.8414 + }, + { + "start": 2078.96, + "end": 2079.86, + "probability": 0.9037 + }, + { + "start": 2080.0, + "end": 2080.82, + "probability": 0.9714 + }, + { + "start": 2081.38, + "end": 2083.5, + "probability": 0.9921 + }, + { + "start": 2083.72, + "end": 2087.34, + "probability": 0.8647 + }, + { + "start": 2087.42, + "end": 2089.24, + "probability": 0.9722 + }, + { + "start": 2089.96, + "end": 2093.92, + "probability": 0.904 + }, + { + "start": 2094.28, + "end": 2097.74, + "probability": 0.9728 + }, + { + "start": 2097.8, + "end": 2098.8, + "probability": 0.7824 + }, + { + "start": 2099.16, + "end": 2100.19, + "probability": 0.981 + }, + { + "start": 2100.56, + "end": 2104.36, + "probability": 0.934 + }, + { + "start": 2104.84, + "end": 2107.27, + "probability": 0.9597 + }, + { + "start": 2108.18, + "end": 2109.48, + "probability": 0.9751 + }, + { + "start": 2110.34, + "end": 2112.68, + "probability": 0.9786 + }, + { + "start": 2112.82, + "end": 2115.06, + "probability": 0.9581 + }, + { + "start": 2116.06, + "end": 2116.82, + "probability": 0.789 + }, + { + "start": 2117.44, + "end": 2119.56, + "probability": 0.5422 + }, + { + "start": 2119.66, + "end": 2121.08, + "probability": 0.9832 + }, + { + "start": 2121.86, + "end": 2123.48, + "probability": 0.9724 + }, + { + "start": 2123.68, + "end": 2123.86, + "probability": 0.4712 + }, + { + "start": 2124.02, + "end": 2124.12, + "probability": 0.8298 + }, + { + "start": 2124.42, + "end": 2125.82, + "probability": 0.8244 + }, + { + "start": 2126.32, + "end": 2129.86, + "probability": 0.988 + }, + { + "start": 2129.96, + "end": 2131.39, + "probability": 0.9751 + }, + { + "start": 2131.62, + "end": 2133.5, + "probability": 0.8898 + }, + { + "start": 2134.2, + "end": 2139.76, + "probability": 0.0759 + }, + { + "start": 2140.48, + "end": 2141.34, + "probability": 0.0261 + }, + { + "start": 2145.26, + "end": 2147.98, + "probability": 0.0008 + }, + { + "start": 2148.57, + "end": 2152.01, + "probability": 0.0765 + }, + { + "start": 2153.38, + "end": 2156.4, + "probability": 0.0666 + }, + { + "start": 2156.97, + "end": 2159.9, + "probability": 0.0979 + }, + { + "start": 2161.22, + "end": 2163.26, + "probability": 0.0727 + }, + { + "start": 2165.24, + "end": 2166.0, + "probability": 0.1112 + }, + { + "start": 2166.1, + "end": 2167.01, + "probability": 0.0223 + }, + { + "start": 2168.57, + "end": 2170.04, + "probability": 0.1113 + }, + { + "start": 2170.42, + "end": 2171.86, + "probability": 0.1258 + }, + { + "start": 2184.7, + "end": 2188.04, + "probability": 0.1651 + }, + { + "start": 2190.82, + "end": 2196.8, + "probability": 0.23 + }, + { + "start": 2197.09, + "end": 2198.78, + "probability": 0.2074 + }, + { + "start": 2198.94, + "end": 2201.76, + "probability": 0.1798 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.0, + "end": 2206.0, + "probability": 0.0 + }, + { + "start": 2206.76, + "end": 2207.24, + "probability": 0.1121 + }, + { + "start": 2207.24, + "end": 2207.24, + "probability": 0.0496 + }, + { + "start": 2207.24, + "end": 2207.24, + "probability": 0.0538 + }, + { + "start": 2207.24, + "end": 2207.24, + "probability": 0.0982 + }, + { + "start": 2207.24, + "end": 2207.52, + "probability": 0.6238 + }, + { + "start": 2208.44, + "end": 2209.0, + "probability": 0.7016 + }, + { + "start": 2209.18, + "end": 2209.62, + "probability": 0.7867 + }, + { + "start": 2209.72, + "end": 2210.62, + "probability": 0.672 + }, + { + "start": 2211.14, + "end": 2212.57, + "probability": 0.7792 + }, + { + "start": 2212.88, + "end": 2213.04, + "probability": 0.696 + }, + { + "start": 2214.88, + "end": 2215.6, + "probability": 0.7913 + }, + { + "start": 2217.38, + "end": 2219.2, + "probability": 0.8958 + }, + { + "start": 2220.26, + "end": 2223.22, + "probability": 0.9207 + }, + { + "start": 2226.56, + "end": 2226.56, + "probability": 0.1041 + }, + { + "start": 2230.3, + "end": 2230.4, + "probability": 0.0194 + }, + { + "start": 2249.88, + "end": 2253.56, + "probability": 0.978 + }, + { + "start": 2254.6, + "end": 2255.78, + "probability": 0.7809 + }, + { + "start": 2255.96, + "end": 2260.74, + "probability": 0.9083 + }, + { + "start": 2261.86, + "end": 2265.22, + "probability": 0.9555 + }, + { + "start": 2265.22, + "end": 2269.78, + "probability": 0.9684 + }, + { + "start": 2269.94, + "end": 2270.84, + "probability": 0.7047 + }, + { + "start": 2271.82, + "end": 2273.0, + "probability": 0.3532 + }, + { + "start": 2273.0, + "end": 2273.72, + "probability": 0.2905 + }, + { + "start": 2273.9, + "end": 2276.72, + "probability": 0.8701 + }, + { + "start": 2278.02, + "end": 2283.18, + "probability": 0.9933 + }, + { + "start": 2283.42, + "end": 2285.98, + "probability": 0.6796 + }, + { + "start": 2286.64, + "end": 2287.38, + "probability": 0.5666 + }, + { + "start": 2288.16, + "end": 2290.18, + "probability": 0.9985 + }, + { + "start": 2290.92, + "end": 2297.12, + "probability": 0.9719 + }, + { + "start": 2297.12, + "end": 2302.44, + "probability": 0.8781 + }, + { + "start": 2303.12, + "end": 2305.96, + "probability": 0.8385 + }, + { + "start": 2305.96, + "end": 2309.82, + "probability": 0.8939 + }, + { + "start": 2310.38, + "end": 2313.78, + "probability": 0.931 + }, + { + "start": 2314.48, + "end": 2316.76, + "probability": 0.9454 + }, + { + "start": 2316.94, + "end": 2320.32, + "probability": 0.8711 + }, + { + "start": 2320.84, + "end": 2326.72, + "probability": 0.9912 + }, + { + "start": 2328.2, + "end": 2331.22, + "probability": 0.9771 + }, + { + "start": 2332.34, + "end": 2336.42, + "probability": 0.9694 + }, + { + "start": 2337.06, + "end": 2346.0, + "probability": 0.9878 + }, + { + "start": 2346.72, + "end": 2349.0, + "probability": 0.5924 + }, + { + "start": 2350.1, + "end": 2358.32, + "probability": 0.9855 + }, + { + "start": 2360.4, + "end": 2364.26, + "probability": 0.9091 + }, + { + "start": 2364.84, + "end": 2367.9, + "probability": 0.8325 + }, + { + "start": 2368.86, + "end": 2371.48, + "probability": 0.9834 + }, + { + "start": 2371.94, + "end": 2374.94, + "probability": 0.9567 + }, + { + "start": 2375.4, + "end": 2377.98, + "probability": 0.941 + }, + { + "start": 2378.92, + "end": 2383.76, + "probability": 0.9838 + }, + { + "start": 2383.92, + "end": 2386.64, + "probability": 0.7875 + }, + { + "start": 2387.16, + "end": 2388.86, + "probability": 0.989 + }, + { + "start": 2389.46, + "end": 2393.26, + "probability": 0.9923 + }, + { + "start": 2393.34, + "end": 2394.38, + "probability": 0.6545 + }, + { + "start": 2394.56, + "end": 2394.7, + "probability": 0.4267 + }, + { + "start": 2395.4, + "end": 2400.34, + "probability": 0.7602 + }, + { + "start": 2401.22, + "end": 2405.48, + "probability": 0.7725 + }, + { + "start": 2405.92, + "end": 2408.94, + "probability": 0.9821 + }, + { + "start": 2409.58, + "end": 2413.7, + "probability": 0.985 + }, + { + "start": 2414.3, + "end": 2418.24, + "probability": 0.997 + }, + { + "start": 2419.0, + "end": 2422.2, + "probability": 0.8855 + }, + { + "start": 2422.32, + "end": 2423.86, + "probability": 0.9287 + }, + { + "start": 2424.44, + "end": 2427.62, + "probability": 0.9945 + }, + { + "start": 2429.1, + "end": 2429.54, + "probability": 0.4204 + }, + { + "start": 2429.96, + "end": 2434.52, + "probability": 0.9054 + }, + { + "start": 2434.9, + "end": 2435.1, + "probability": 0.7473 + }, + { + "start": 2436.38, + "end": 2437.2, + "probability": 0.8888 + }, + { + "start": 2438.68, + "end": 2440.24, + "probability": 0.723 + }, + { + "start": 2441.06, + "end": 2442.26, + "probability": 0.7686 + }, + { + "start": 2442.66, + "end": 2443.82, + "probability": 0.2156 + }, + { + "start": 2443.82, + "end": 2445.78, + "probability": 0.5862 + }, + { + "start": 2446.1, + "end": 2447.02, + "probability": 0.6991 + }, + { + "start": 2447.7, + "end": 2448.06, + "probability": 0.9352 + }, + { + "start": 2448.44, + "end": 2450.58, + "probability": 0.9902 + }, + { + "start": 2450.68, + "end": 2451.56, + "probability": 0.9932 + }, + { + "start": 2472.4, + "end": 2474.54, + "probability": 0.7058 + }, + { + "start": 2476.38, + "end": 2478.86, + "probability": 0.9901 + }, + { + "start": 2479.08, + "end": 2479.64, + "probability": 0.913 + }, + { + "start": 2480.26, + "end": 2481.68, + "probability": 0.9346 + }, + { + "start": 2483.08, + "end": 2486.16, + "probability": 0.9308 + }, + { + "start": 2487.44, + "end": 2489.14, + "probability": 0.7045 + }, + { + "start": 2489.42, + "end": 2491.56, + "probability": 0.9863 + }, + { + "start": 2491.64, + "end": 2493.35, + "probability": 0.7653 + }, + { + "start": 2495.02, + "end": 2497.96, + "probability": 0.9705 + }, + { + "start": 2498.66, + "end": 2500.69, + "probability": 0.9558 + }, + { + "start": 2502.64, + "end": 2508.16, + "probability": 0.989 + }, + { + "start": 2508.3, + "end": 2512.08, + "probability": 0.9462 + }, + { + "start": 2512.38, + "end": 2515.7, + "probability": 0.9712 + }, + { + "start": 2516.58, + "end": 2517.5, + "probability": 0.7382 + }, + { + "start": 2518.04, + "end": 2518.24, + "probability": 0.4405 + }, + { + "start": 2520.1, + "end": 2522.54, + "probability": 0.9741 + }, + { + "start": 2522.7, + "end": 2523.5, + "probability": 0.6603 + }, + { + "start": 2524.76, + "end": 2528.32, + "probability": 0.9421 + }, + { + "start": 2528.5, + "end": 2532.56, + "probability": 0.9385 + }, + { + "start": 2532.76, + "end": 2533.94, + "probability": 0.8764 + }, + { + "start": 2534.56, + "end": 2538.7, + "probability": 0.9339 + }, + { + "start": 2539.72, + "end": 2544.3, + "probability": 0.9834 + }, + { + "start": 2545.06, + "end": 2554.42, + "probability": 0.9834 + }, + { + "start": 2555.14, + "end": 2557.4, + "probability": 0.9935 + }, + { + "start": 2557.48, + "end": 2558.6, + "probability": 0.6861 + }, + { + "start": 2559.18, + "end": 2561.48, + "probability": 0.9935 + }, + { + "start": 2561.54, + "end": 2563.14, + "probability": 0.979 + }, + { + "start": 2565.8, + "end": 2573.18, + "probability": 0.9874 + }, + { + "start": 2574.48, + "end": 2578.78, + "probability": 0.9435 + }, + { + "start": 2579.54, + "end": 2580.46, + "probability": 0.7062 + }, + { + "start": 2580.86, + "end": 2584.08, + "probability": 0.9973 + }, + { + "start": 2585.78, + "end": 2588.28, + "probability": 0.9923 + }, + { + "start": 2589.18, + "end": 2591.22, + "probability": 0.9455 + }, + { + "start": 2592.12, + "end": 2596.58, + "probability": 0.9906 + }, + { + "start": 2596.66, + "end": 2599.78, + "probability": 0.996 + }, + { + "start": 2599.78, + "end": 2602.28, + "probability": 0.9995 + }, + { + "start": 2603.6, + "end": 2606.52, + "probability": 0.9401 + }, + { + "start": 2607.44, + "end": 2614.34, + "probability": 0.9688 + }, + { + "start": 2614.96, + "end": 2616.62, + "probability": 0.9916 + }, + { + "start": 2617.3, + "end": 2620.6, + "probability": 0.9939 + }, + { + "start": 2621.48, + "end": 2623.6, + "probability": 0.9767 + }, + { + "start": 2624.38, + "end": 2626.82, + "probability": 0.9876 + }, + { + "start": 2626.9, + "end": 2628.34, + "probability": 0.9755 + }, + { + "start": 2628.84, + "end": 2630.36, + "probability": 0.7953 + }, + { + "start": 2631.46, + "end": 2640.28, + "probability": 0.9228 + }, + { + "start": 2641.2, + "end": 2646.26, + "probability": 0.9856 + }, + { + "start": 2647.62, + "end": 2648.88, + "probability": 0.9597 + }, + { + "start": 2649.08, + "end": 2650.54, + "probability": 0.9552 + }, + { + "start": 2650.64, + "end": 2654.4, + "probability": 0.9342 + }, + { + "start": 2654.94, + "end": 2663.34, + "probability": 0.9875 + }, + { + "start": 2664.04, + "end": 2665.86, + "probability": 0.9893 + }, + { + "start": 2666.02, + "end": 2667.44, + "probability": 0.9103 + }, + { + "start": 2667.58, + "end": 2669.82, + "probability": 0.9973 + }, + { + "start": 2670.98, + "end": 2675.02, + "probability": 0.829 + }, + { + "start": 2676.1, + "end": 2677.62, + "probability": 0.9274 + }, + { + "start": 2678.34, + "end": 2681.42, + "probability": 0.975 + }, + { + "start": 2681.96, + "end": 2684.28, + "probability": 0.8992 + }, + { + "start": 2685.36, + "end": 2692.14, + "probability": 0.9204 + }, + { + "start": 2692.76, + "end": 2696.8, + "probability": 0.9845 + }, + { + "start": 2697.9, + "end": 2699.28, + "probability": 0.7668 + }, + { + "start": 2700.08, + "end": 2702.52, + "probability": 0.9976 + }, + { + "start": 2703.28, + "end": 2705.54, + "probability": 0.8221 + }, + { + "start": 2705.9, + "end": 2706.96, + "probability": 0.9777 + }, + { + "start": 2707.66, + "end": 2709.56, + "probability": 0.9904 + }, + { + "start": 2710.16, + "end": 2713.1, + "probability": 0.8805 + }, + { + "start": 2713.64, + "end": 2716.5, + "probability": 0.9894 + }, + { + "start": 2717.3, + "end": 2719.88, + "probability": 0.9319 + }, + { + "start": 2721.76, + "end": 2724.62, + "probability": 0.9347 + }, + { + "start": 2725.22, + "end": 2727.94, + "probability": 0.9157 + }, + { + "start": 2728.68, + "end": 2729.66, + "probability": 0.7441 + }, + { + "start": 2729.8, + "end": 2735.94, + "probability": 0.9781 + }, + { + "start": 2736.76, + "end": 2740.82, + "probability": 0.9579 + }, + { + "start": 2741.5, + "end": 2746.62, + "probability": 0.9895 + }, + { + "start": 2746.72, + "end": 2748.2, + "probability": 0.8233 + }, + { + "start": 2748.5, + "end": 2749.76, + "probability": 0.8655 + }, + { + "start": 2750.32, + "end": 2753.04, + "probability": 0.6012 + }, + { + "start": 2753.6, + "end": 2754.4, + "probability": 0.8965 + }, + { + "start": 2754.54, + "end": 2759.04, + "probability": 0.9692 + }, + { + "start": 2759.62, + "end": 2761.59, + "probability": 0.9775 + }, + { + "start": 2762.14, + "end": 2763.92, + "probability": 0.8446 + }, + { + "start": 2764.6, + "end": 2767.02, + "probability": 0.9979 + }, + { + "start": 2767.6, + "end": 2768.84, + "probability": 0.7637 + }, + { + "start": 2769.32, + "end": 2770.22, + "probability": 0.9762 + }, + { + "start": 2770.28, + "end": 2771.18, + "probability": 0.9626 + }, + { + "start": 2771.26, + "end": 2771.86, + "probability": 0.9738 + }, + { + "start": 2771.92, + "end": 2773.04, + "probability": 0.8408 + }, + { + "start": 2773.7, + "end": 2775.6, + "probability": 0.9937 + }, + { + "start": 2775.72, + "end": 2779.18, + "probability": 0.9775 + }, + { + "start": 2779.26, + "end": 2779.7, + "probability": 0.749 + }, + { + "start": 2780.62, + "end": 2781.56, + "probability": 0.7222 + }, + { + "start": 2782.48, + "end": 2784.44, + "probability": 0.6194 + }, + { + "start": 2785.42, + "end": 2786.86, + "probability": 0.1492 + }, + { + "start": 2790.03, + "end": 2792.86, + "probability": 0.2207 + }, + { + "start": 2810.26, + "end": 2813.1, + "probability": 0.5977 + }, + { + "start": 2813.44, + "end": 2814.92, + "probability": 0.611 + }, + { + "start": 2815.58, + "end": 2818.0, + "probability": 0.6465 + }, + { + "start": 2818.96, + "end": 2819.64, + "probability": 0.5413 + }, + { + "start": 2820.82, + "end": 2823.24, + "probability": 0.9359 + }, + { + "start": 2824.34, + "end": 2824.88, + "probability": 0.6049 + }, + { + "start": 2826.02, + "end": 2828.42, + "probability": 0.9295 + }, + { + "start": 2828.56, + "end": 2830.54, + "probability": 0.6235 + }, + { + "start": 2830.76, + "end": 2831.98, + "probability": 0.9258 + }, + { + "start": 2833.0, + "end": 2834.12, + "probability": 0.9165 + }, + { + "start": 2834.16, + "end": 2840.68, + "probability": 0.9723 + }, + { + "start": 2843.06, + "end": 2849.34, + "probability": 0.8114 + }, + { + "start": 2849.9, + "end": 2853.36, + "probability": 0.9843 + }, + { + "start": 2853.88, + "end": 2854.94, + "probability": 0.7806 + }, + { + "start": 2855.3, + "end": 2859.06, + "probability": 0.9969 + }, + { + "start": 2860.14, + "end": 2865.54, + "probability": 0.967 + }, + { + "start": 2866.74, + "end": 2869.58, + "probability": 0.4051 + }, + { + "start": 2870.42, + "end": 2871.41, + "probability": 0.8608 + }, + { + "start": 2872.66, + "end": 2876.26, + "probability": 0.9648 + }, + { + "start": 2877.28, + "end": 2878.52, + "probability": 0.5813 + }, + { + "start": 2879.06, + "end": 2881.36, + "probability": 0.7969 + }, + { + "start": 2882.56, + "end": 2885.04, + "probability": 0.7556 + }, + { + "start": 2885.82, + "end": 2887.38, + "probability": 0.4646 + }, + { + "start": 2887.84, + "end": 2889.78, + "probability": 0.6033 + }, + { + "start": 2889.96, + "end": 2890.22, + "probability": 0.799 + }, + { + "start": 2890.26, + "end": 2891.48, + "probability": 0.9692 + }, + { + "start": 2892.34, + "end": 2898.0, + "probability": 0.8918 + }, + { + "start": 2898.64, + "end": 2900.86, + "probability": 0.9297 + }, + { + "start": 2902.14, + "end": 2903.66, + "probability": 0.8943 + }, + { + "start": 2904.14, + "end": 2904.62, + "probability": 0.8501 + }, + { + "start": 2904.84, + "end": 2905.82, + "probability": 0.9702 + }, + { + "start": 2906.0, + "end": 2906.7, + "probability": 0.9655 + }, + { + "start": 2906.76, + "end": 2907.7, + "probability": 0.976 + }, + { + "start": 2907.76, + "end": 2910.28, + "probability": 0.9272 + }, + { + "start": 2910.34, + "end": 2911.62, + "probability": 0.9204 + }, + { + "start": 2912.5, + "end": 2913.54, + "probability": 0.9827 + }, + { + "start": 2914.42, + "end": 2916.06, + "probability": 0.7875 + }, + { + "start": 2916.82, + "end": 2919.96, + "probability": 0.9748 + }, + { + "start": 2920.78, + "end": 2924.8, + "probability": 0.9691 + }, + { + "start": 2925.54, + "end": 2932.5, + "probability": 0.9346 + }, + { + "start": 2932.6, + "end": 2933.24, + "probability": 0.8329 + }, + { + "start": 2934.12, + "end": 2935.2, + "probability": 0.8898 + }, + { + "start": 2935.38, + "end": 2936.34, + "probability": 0.6699 + }, + { + "start": 2936.78, + "end": 2937.9, + "probability": 0.7854 + }, + { + "start": 2938.52, + "end": 2939.58, + "probability": 0.9037 + }, + { + "start": 2939.72, + "end": 2940.24, + "probability": 0.5233 + }, + { + "start": 2940.36, + "end": 2941.82, + "probability": 0.9694 + }, + { + "start": 2941.96, + "end": 2942.54, + "probability": 0.89 + }, + { + "start": 2942.72, + "end": 2945.08, + "probability": 0.874 + }, + { + "start": 2946.62, + "end": 2948.86, + "probability": 0.5259 + }, + { + "start": 2949.06, + "end": 2952.47, + "probability": 0.9524 + }, + { + "start": 2953.54, + "end": 2954.96, + "probability": 0.7699 + }, + { + "start": 2955.52, + "end": 2957.02, + "probability": 0.906 + }, + { + "start": 2957.56, + "end": 2959.34, + "probability": 0.9875 + }, + { + "start": 2959.78, + "end": 2963.44, + "probability": 0.9915 + }, + { + "start": 2963.9, + "end": 2964.34, + "probability": 0.7839 + }, + { + "start": 2965.46, + "end": 2966.63, + "probability": 0.8237 + }, + { + "start": 2967.34, + "end": 2971.58, + "probability": 0.5786 + }, + { + "start": 2972.78, + "end": 2975.8, + "probability": 0.8991 + }, + { + "start": 2976.36, + "end": 2976.5, + "probability": 0.8249 + }, + { + "start": 2977.46, + "end": 2978.58, + "probability": 0.9693 + }, + { + "start": 2979.86, + "end": 2981.64, + "probability": 0.9884 + }, + { + "start": 2995.76, + "end": 2997.2, + "probability": 0.6663 + }, + { + "start": 3003.8, + "end": 3004.56, + "probability": 0.7702 + }, + { + "start": 3008.08, + "end": 3010.68, + "probability": 0.9912 + }, + { + "start": 3011.78, + "end": 3014.26, + "probability": 0.9969 + }, + { + "start": 3015.34, + "end": 3018.74, + "probability": 0.9961 + }, + { + "start": 3021.0, + "end": 3022.98, + "probability": 0.6149 + }, + { + "start": 3023.92, + "end": 3024.58, + "probability": 0.8403 + }, + { + "start": 3025.5, + "end": 3027.4, + "probability": 0.8897 + }, + { + "start": 3030.12, + "end": 3032.8, + "probability": 0.6207 + }, + { + "start": 3036.82, + "end": 3039.16, + "probability": 0.965 + }, + { + "start": 3042.76, + "end": 3052.46, + "probability": 0.975 + }, + { + "start": 3056.58, + "end": 3058.24, + "probability": 0.8606 + }, + { + "start": 3058.38, + "end": 3064.82, + "probability": 0.9548 + }, + { + "start": 3065.88, + "end": 3069.04, + "probability": 0.994 + }, + { + "start": 3069.18, + "end": 3069.74, + "probability": 0.81 + }, + { + "start": 3069.82, + "end": 3070.92, + "probability": 0.8652 + }, + { + "start": 3071.34, + "end": 3072.1, + "probability": 0.9221 + }, + { + "start": 3072.84, + "end": 3075.22, + "probability": 0.9194 + }, + { + "start": 3076.58, + "end": 3079.24, + "probability": 0.8001 + }, + { + "start": 3080.4, + "end": 3082.08, + "probability": 0.9111 + }, + { + "start": 3082.54, + "end": 3083.1, + "probability": 0.9926 + }, + { + "start": 3084.82, + "end": 3087.2, + "probability": 0.998 + }, + { + "start": 3087.36, + "end": 3091.64, + "probability": 0.9748 + }, + { + "start": 3092.06, + "end": 3100.18, + "probability": 0.9719 + }, + { + "start": 3100.48, + "end": 3102.72, + "probability": 0.8412 + }, + { + "start": 3104.5, + "end": 3105.02, + "probability": 0.8187 + }, + { + "start": 3105.36, + "end": 3106.6, + "probability": 0.3832 + }, + { + "start": 3107.0, + "end": 3107.74, + "probability": 0.9795 + }, + { + "start": 3107.76, + "end": 3109.4, + "probability": 0.8228 + }, + { + "start": 3109.42, + "end": 3115.5, + "probability": 0.5641 + }, + { + "start": 3115.54, + "end": 3116.02, + "probability": 0.8444 + }, + { + "start": 3117.24, + "end": 3122.5, + "probability": 0.8306 + }, + { + "start": 3124.66, + "end": 3130.52, + "probability": 0.9194 + }, + { + "start": 3132.1, + "end": 3135.5, + "probability": 0.9101 + }, + { + "start": 3135.5, + "end": 3136.04, + "probability": 0.7945 + }, + { + "start": 3136.1, + "end": 3137.56, + "probability": 0.8748 + }, + { + "start": 3138.72, + "end": 3140.04, + "probability": 0.7182 + }, + { + "start": 3140.7, + "end": 3142.86, + "probability": 0.6154 + }, + { + "start": 3146.04, + "end": 3147.36, + "probability": 0.9777 + }, + { + "start": 3151.18, + "end": 3151.78, + "probability": 0.7433 + }, + { + "start": 3152.6, + "end": 3153.4, + "probability": 0.9991 + }, + { + "start": 3156.4, + "end": 3158.86, + "probability": 0.7961 + }, + { + "start": 3161.32, + "end": 3163.94, + "probability": 0.978 + }, + { + "start": 3165.0, + "end": 3166.66, + "probability": 0.8055 + }, + { + "start": 3168.22, + "end": 3171.44, + "probability": 0.9915 + }, + { + "start": 3172.4, + "end": 3177.84, + "probability": 0.9627 + }, + { + "start": 3178.18, + "end": 3179.2, + "probability": 0.7609 + }, + { + "start": 3179.28, + "end": 3180.24, + "probability": 0.7056 + }, + { + "start": 3180.92, + "end": 3181.48, + "probability": 0.9395 + }, + { + "start": 3182.36, + "end": 3187.96, + "probability": 0.9974 + }, + { + "start": 3190.4, + "end": 3191.46, + "probability": 0.8519 + }, + { + "start": 3194.88, + "end": 3197.96, + "probability": 0.9967 + }, + { + "start": 3198.64, + "end": 3200.38, + "probability": 0.9124 + }, + { + "start": 3201.6, + "end": 3202.34, + "probability": 0.9312 + }, + { + "start": 3203.06, + "end": 3208.12, + "probability": 0.9976 + }, + { + "start": 3209.12, + "end": 3209.82, + "probability": 0.4478 + }, + { + "start": 3209.94, + "end": 3211.88, + "probability": 0.6495 + }, + { + "start": 3212.78, + "end": 3213.94, + "probability": 0.8364 + }, + { + "start": 3215.46, + "end": 3220.78, + "probability": 0.6859 + }, + { + "start": 3222.74, + "end": 3224.8, + "probability": 0.9385 + }, + { + "start": 3224.92, + "end": 3225.98, + "probability": 0.9805 + }, + { + "start": 3227.34, + "end": 3229.22, + "probability": 0.9945 + }, + { + "start": 3231.66, + "end": 3233.02, + "probability": 0.9844 + }, + { + "start": 3237.8, + "end": 3238.98, + "probability": 0.9983 + }, + { + "start": 3239.8, + "end": 3241.88, + "probability": 0.7529 + }, + { + "start": 3242.4, + "end": 3247.2, + "probability": 0.9102 + }, + { + "start": 3248.14, + "end": 3251.78, + "probability": 0.981 + }, + { + "start": 3253.2, + "end": 3254.26, + "probability": 0.9406 + }, + { + "start": 3254.64, + "end": 3255.41, + "probability": 0.9287 + }, + { + "start": 3255.82, + "end": 3257.16, + "probability": 0.9697 + }, + { + "start": 3258.14, + "end": 3259.52, + "probability": 0.6454 + }, + { + "start": 3261.98, + "end": 3264.46, + "probability": 0.9969 + }, + { + "start": 3264.62, + "end": 3266.06, + "probability": 0.782 + }, + { + "start": 3267.16, + "end": 3268.78, + "probability": 0.8721 + }, + { + "start": 3270.06, + "end": 3274.78, + "probability": 0.9456 + }, + { + "start": 3274.96, + "end": 3278.28, + "probability": 0.9337 + }, + { + "start": 3280.68, + "end": 3282.68, + "probability": 0.889 + }, + { + "start": 3282.78, + "end": 3285.36, + "probability": 0.9837 + }, + { + "start": 3285.52, + "end": 3289.18, + "probability": 0.9478 + }, + { + "start": 3289.98, + "end": 3290.84, + "probability": 0.7252 + }, + { + "start": 3291.66, + "end": 3293.42, + "probability": 0.8212 + }, + { + "start": 3294.48, + "end": 3297.24, + "probability": 0.971 + }, + { + "start": 3297.8, + "end": 3304.94, + "probability": 0.9885 + }, + { + "start": 3307.44, + "end": 3311.44, + "probability": 0.9797 + }, + { + "start": 3312.82, + "end": 3316.3, + "probability": 0.8989 + }, + { + "start": 3316.92, + "end": 3317.9, + "probability": 0.9787 + }, + { + "start": 3318.4, + "end": 3321.1, + "probability": 0.7546 + }, + { + "start": 3321.66, + "end": 3325.72, + "probability": 0.9879 + }, + { + "start": 3326.7, + "end": 3327.42, + "probability": 0.8722 + }, + { + "start": 3328.0, + "end": 3329.34, + "probability": 0.8145 + }, + { + "start": 3329.8, + "end": 3333.1, + "probability": 0.9576 + }, + { + "start": 3333.28, + "end": 3337.56, + "probability": 0.8589 + }, + { + "start": 3339.14, + "end": 3340.64, + "probability": 0.7009 + }, + { + "start": 3341.64, + "end": 3343.34, + "probability": 0.7612 + }, + { + "start": 3344.26, + "end": 3349.6, + "probability": 0.6359 + }, + { + "start": 3350.34, + "end": 3356.55, + "probability": 0.9037 + }, + { + "start": 3358.26, + "end": 3361.22, + "probability": 0.9221 + }, + { + "start": 3362.12, + "end": 3366.34, + "probability": 0.9628 + }, + { + "start": 3366.54, + "end": 3366.99, + "probability": 0.894 + }, + { + "start": 3367.24, + "end": 3373.28, + "probability": 0.9854 + }, + { + "start": 3373.36, + "end": 3376.24, + "probability": 0.9592 + }, + { + "start": 3376.86, + "end": 3381.14, + "probability": 0.8519 + }, + { + "start": 3381.54, + "end": 3386.94, + "probability": 0.9965 + }, + { + "start": 3387.7, + "end": 3392.18, + "probability": 0.8759 + }, + { + "start": 3393.1, + "end": 3396.8, + "probability": 0.9354 + }, + { + "start": 3396.98, + "end": 3402.56, + "probability": 0.9848 + }, + { + "start": 3402.68, + "end": 3404.02, + "probability": 0.881 + }, + { + "start": 3404.42, + "end": 3405.66, + "probability": 0.8154 + }, + { + "start": 3407.32, + "end": 3410.54, + "probability": 0.6676 + }, + { + "start": 3426.78, + "end": 3428.32, + "probability": 0.8381 + }, + { + "start": 3429.18, + "end": 3430.32, + "probability": 0.7727 + }, + { + "start": 3431.3, + "end": 3433.14, + "probability": 0.675 + }, + { + "start": 3435.0, + "end": 3442.78, + "probability": 0.9978 + }, + { + "start": 3442.78, + "end": 3447.86, + "probability": 0.9977 + }, + { + "start": 3448.58, + "end": 3452.24, + "probability": 0.8526 + }, + { + "start": 3453.44, + "end": 3454.69, + "probability": 0.9788 + }, + { + "start": 3455.78, + "end": 3456.64, + "probability": 0.9498 + }, + { + "start": 3456.94, + "end": 3462.48, + "probability": 0.9515 + }, + { + "start": 3464.62, + "end": 3465.34, + "probability": 0.9671 + }, + { + "start": 3465.44, + "end": 3465.94, + "probability": 0.9493 + }, + { + "start": 3466.2, + "end": 3472.2, + "probability": 0.9213 + }, + { + "start": 3472.2, + "end": 3478.9, + "probability": 0.9493 + }, + { + "start": 3479.92, + "end": 3485.14, + "probability": 0.96 + }, + { + "start": 3485.14, + "end": 3490.68, + "probability": 0.9028 + }, + { + "start": 3491.66, + "end": 3496.28, + "probability": 0.9734 + }, + { + "start": 3497.76, + "end": 3498.92, + "probability": 0.765 + }, + { + "start": 3499.98, + "end": 3505.14, + "probability": 0.8482 + }, + { + "start": 3506.4, + "end": 3510.36, + "probability": 0.9735 + }, + { + "start": 3510.36, + "end": 3514.86, + "probability": 0.9965 + }, + { + "start": 3515.72, + "end": 3520.04, + "probability": 0.6747 + }, + { + "start": 3520.86, + "end": 3525.98, + "probability": 0.9828 + }, + { + "start": 3527.7, + "end": 3533.54, + "probability": 0.9637 + }, + { + "start": 3534.68, + "end": 3539.26, + "probability": 0.9839 + }, + { + "start": 3539.84, + "end": 3541.5, + "probability": 0.9937 + }, + { + "start": 3542.08, + "end": 3543.82, + "probability": 0.9816 + }, + { + "start": 3544.98, + "end": 3555.48, + "probability": 0.9866 + }, + { + "start": 3555.48, + "end": 3561.28, + "probability": 0.8194 + }, + { + "start": 3562.04, + "end": 3568.66, + "probability": 0.9973 + }, + { + "start": 3568.66, + "end": 3573.06, + "probability": 0.9989 + }, + { + "start": 3574.12, + "end": 3577.0, + "probability": 0.7901 + }, + { + "start": 3578.44, + "end": 3581.56, + "probability": 0.9978 + }, + { + "start": 3582.24, + "end": 3587.64, + "probability": 0.9914 + }, + { + "start": 3588.28, + "end": 3590.18, + "probability": 0.9458 + }, + { + "start": 3591.0, + "end": 3593.96, + "probability": 0.8691 + }, + { + "start": 3594.92, + "end": 3598.0, + "probability": 0.9642 + }, + { + "start": 3598.58, + "end": 3599.48, + "probability": 0.9482 + }, + { + "start": 3600.36, + "end": 3603.06, + "probability": 0.9823 + }, + { + "start": 3604.22, + "end": 3606.48, + "probability": 0.9966 + }, + { + "start": 3607.84, + "end": 3608.94, + "probability": 0.7793 + }, + { + "start": 3609.16, + "end": 3610.08, + "probability": 0.6668 + }, + { + "start": 3610.24, + "end": 3612.12, + "probability": 0.9498 + }, + { + "start": 3612.52, + "end": 3614.69, + "probability": 0.9973 + }, + { + "start": 3615.84, + "end": 3617.36, + "probability": 0.9643 + }, + { + "start": 3617.88, + "end": 3620.3, + "probability": 0.992 + }, + { + "start": 3620.41, + "end": 3625.3, + "probability": 0.5529 + }, + { + "start": 3626.02, + "end": 3627.8, + "probability": 0.6688 + }, + { + "start": 3628.4, + "end": 3632.28, + "probability": 0.9858 + }, + { + "start": 3633.08, + "end": 3633.56, + "probability": 0.7949 + }, + { + "start": 3634.48, + "end": 3634.98, + "probability": 0.4996 + }, + { + "start": 3635.22, + "end": 3638.98, + "probability": 0.9789 + }, + { + "start": 3639.56, + "end": 3642.18, + "probability": 0.9869 + }, + { + "start": 3642.7, + "end": 3646.16, + "probability": 0.8733 + }, + { + "start": 3646.22, + "end": 3646.92, + "probability": 0.7345 + }, + { + "start": 3647.66, + "end": 3651.14, + "probability": 0.989 + }, + { + "start": 3652.48, + "end": 3659.22, + "probability": 0.9108 + }, + { + "start": 3659.88, + "end": 3664.76, + "probability": 0.9976 + }, + { + "start": 3664.98, + "end": 3667.2, + "probability": 0.4161 + }, + { + "start": 3667.26, + "end": 3668.1, + "probability": 0.8978 + }, + { + "start": 3668.34, + "end": 3669.02, + "probability": 0.8318 + }, + { + "start": 3669.32, + "end": 3671.3, + "probability": 0.8066 + }, + { + "start": 3672.14, + "end": 3675.06, + "probability": 0.7533 + }, + { + "start": 3675.8, + "end": 3678.54, + "probability": 0.9569 + }, + { + "start": 3679.08, + "end": 3682.4, + "probability": 0.8806 + }, + { + "start": 3682.98, + "end": 3686.94, + "probability": 0.9875 + }, + { + "start": 3687.44, + "end": 3691.36, + "probability": 0.9944 + }, + { + "start": 3691.36, + "end": 3694.8, + "probability": 0.9963 + }, + { + "start": 3695.44, + "end": 3701.1, + "probability": 0.9946 + }, + { + "start": 3701.1, + "end": 3706.3, + "probability": 0.9939 + }, + { + "start": 3706.98, + "end": 3712.04, + "probability": 0.9808 + }, + { + "start": 3712.14, + "end": 3713.7, + "probability": 0.8777 + }, + { + "start": 3713.92, + "end": 3714.62, + "probability": 0.6631 + }, + { + "start": 3715.04, + "end": 3717.08, + "probability": 0.7958 + }, + { + "start": 3717.58, + "end": 3719.46, + "probability": 0.4273 + }, + { + "start": 3720.18, + "end": 3722.86, + "probability": 0.9742 + }, + { + "start": 3723.16, + "end": 3724.3, + "probability": 0.8563 + }, + { + "start": 3724.66, + "end": 3725.98, + "probability": 0.9793 + }, + { + "start": 3726.32, + "end": 3729.88, + "probability": 0.9904 + }, + { + "start": 3730.64, + "end": 3735.42, + "probability": 0.9085 + }, + { + "start": 3735.92, + "end": 3739.66, + "probability": 0.9951 + }, + { + "start": 3740.12, + "end": 3743.12, + "probability": 0.7969 + }, + { + "start": 3743.6, + "end": 3747.42, + "probability": 0.9857 + }, + { + "start": 3747.74, + "end": 3748.72, + "probability": 0.7728 + }, + { + "start": 3749.14, + "end": 3752.32, + "probability": 0.9897 + }, + { + "start": 3752.84, + "end": 3753.26, + "probability": 0.6361 + }, + { + "start": 3753.72, + "end": 3754.4, + "probability": 0.5239 + }, + { + "start": 3756.1, + "end": 3758.52, + "probability": 0.9312 + }, + { + "start": 3758.52, + "end": 3759.56, + "probability": 0.3916 + }, + { + "start": 3759.68, + "end": 3761.69, + "probability": 0.9595 + }, + { + "start": 3774.9, + "end": 3777.38, + "probability": 0.6501 + }, + { + "start": 3778.02, + "end": 3782.36, + "probability": 0.8585 + }, + { + "start": 3782.94, + "end": 3784.54, + "probability": 0.921 + }, + { + "start": 3785.8, + "end": 3794.48, + "probability": 0.9878 + }, + { + "start": 3795.04, + "end": 3802.38, + "probability": 0.9989 + }, + { + "start": 3803.1, + "end": 3803.92, + "probability": 0.73 + }, + { + "start": 3804.42, + "end": 3806.16, + "probability": 0.9205 + }, + { + "start": 3806.44, + "end": 3807.58, + "probability": 0.9174 + }, + { + "start": 3808.04, + "end": 3808.86, + "probability": 0.9224 + }, + { + "start": 3809.58, + "end": 3811.4, + "probability": 0.9349 + }, + { + "start": 3811.66, + "end": 3814.6, + "probability": 0.6757 + }, + { + "start": 3814.66, + "end": 3820.56, + "probability": 0.999 + }, + { + "start": 3820.66, + "end": 3823.2, + "probability": 0.9958 + }, + { + "start": 3823.32, + "end": 3825.71, + "probability": 0.9745 + }, + { + "start": 3826.18, + "end": 3829.05, + "probability": 0.9881 + }, + { + "start": 3829.98, + "end": 3833.96, + "probability": 0.9375 + }, + { + "start": 3833.96, + "end": 3838.58, + "probability": 0.9996 + }, + { + "start": 3838.66, + "end": 3842.76, + "probability": 0.9921 + }, + { + "start": 3842.76, + "end": 3846.18, + "probability": 0.9956 + }, + { + "start": 3846.54, + "end": 3847.6, + "probability": 0.8596 + }, + { + "start": 3848.02, + "end": 3849.1, + "probability": 0.9497 + }, + { + "start": 3849.38, + "end": 3850.38, + "probability": 0.9235 + }, + { + "start": 3850.52, + "end": 3851.36, + "probability": 0.9043 + }, + { + "start": 3851.4, + "end": 3855.66, + "probability": 0.9846 + }, + { + "start": 3856.22, + "end": 3857.34, + "probability": 0.8491 + }, + { + "start": 3857.34, + "end": 3859.5, + "probability": 0.8716 + }, + { + "start": 3859.66, + "end": 3860.12, + "probability": 0.3091 + }, + { + "start": 3860.36, + "end": 3861.16, + "probability": 0.8445 + }, + { + "start": 3861.54, + "end": 3862.76, + "probability": 0.9309 + }, + { + "start": 3862.82, + "end": 3867.86, + "probability": 0.9591 + }, + { + "start": 3868.14, + "end": 3870.64, + "probability": 0.9728 + }, + { + "start": 3870.78, + "end": 3872.72, + "probability": 0.8417 + }, + { + "start": 3872.96, + "end": 3875.98, + "probability": 0.9985 + }, + { + "start": 3876.04, + "end": 3878.6, + "probability": 0.9827 + }, + { + "start": 3879.28, + "end": 3880.06, + "probability": 0.9055 + }, + { + "start": 3880.48, + "end": 3886.8, + "probability": 0.993 + }, + { + "start": 3886.88, + "end": 3888.9, + "probability": 0.8731 + }, + { + "start": 3889.22, + "end": 3893.08, + "probability": 0.9891 + }, + { + "start": 3893.38, + "end": 3895.0, + "probability": 0.9773 + }, + { + "start": 3895.08, + "end": 3896.26, + "probability": 0.9865 + }, + { + "start": 3896.42, + "end": 3899.3, + "probability": 0.998 + }, + { + "start": 3899.52, + "end": 3900.22, + "probability": 0.897 + }, + { + "start": 3900.58, + "end": 3901.06, + "probability": 0.8759 + }, + { + "start": 3901.18, + "end": 3903.56, + "probability": 0.9747 + }, + { + "start": 3904.06, + "end": 3904.4, + "probability": 0.6672 + }, + { + "start": 3904.5, + "end": 3905.4, + "probability": 0.7667 + }, + { + "start": 3905.5, + "end": 3908.92, + "probability": 0.9941 + }, + { + "start": 3909.0, + "end": 3913.66, + "probability": 0.9917 + }, + { + "start": 3914.1, + "end": 3915.56, + "probability": 0.9974 + }, + { + "start": 3916.34, + "end": 3916.94, + "probability": 0.6441 + }, + { + "start": 3917.04, + "end": 3917.68, + "probability": 0.7994 + }, + { + "start": 3917.74, + "end": 3921.66, + "probability": 0.548 + }, + { + "start": 3921.78, + "end": 3925.66, + "probability": 0.9969 + }, + { + "start": 3925.82, + "end": 3926.36, + "probability": 0.5305 + }, + { + "start": 3926.68, + "end": 3927.0, + "probability": 0.7712 + }, + { + "start": 3927.04, + "end": 3928.14, + "probability": 0.981 + }, + { + "start": 3928.52, + "end": 3929.98, + "probability": 0.9074 + }, + { + "start": 3931.02, + "end": 3935.5, + "probability": 0.9943 + }, + { + "start": 3935.86, + "end": 3939.88, + "probability": 0.9826 + }, + { + "start": 3940.64, + "end": 3940.98, + "probability": 0.8496 + }, + { + "start": 3941.08, + "end": 3946.21, + "probability": 0.9934 + }, + { + "start": 3947.32, + "end": 3951.66, + "probability": 0.9972 + }, + { + "start": 3952.18, + "end": 3953.82, + "probability": 0.7328 + }, + { + "start": 3953.92, + "end": 3957.59, + "probability": 0.8913 + }, + { + "start": 3957.82, + "end": 3958.6, + "probability": 0.7611 + }, + { + "start": 3958.68, + "end": 3961.84, + "probability": 0.9868 + }, + { + "start": 3962.0, + "end": 3964.02, + "probability": 0.9448 + }, + { + "start": 3964.1, + "end": 3964.86, + "probability": 0.6647 + }, + { + "start": 3965.02, + "end": 3966.16, + "probability": 0.7007 + }, + { + "start": 3966.2, + "end": 3968.7, + "probability": 0.9401 + }, + { + "start": 3968.74, + "end": 3969.2, + "probability": 0.7889 + }, + { + "start": 3969.64, + "end": 3971.78, + "probability": 0.7946 + }, + { + "start": 3972.08, + "end": 3977.5, + "probability": 0.9 + }, + { + "start": 3977.54, + "end": 3977.82, + "probability": 0.8828 + }, + { + "start": 3977.98, + "end": 3984.34, + "probability": 0.9724 + }, + { + "start": 3984.46, + "end": 3988.08, + "probability": 0.9896 + }, + { + "start": 3988.14, + "end": 3990.74, + "probability": 0.9956 + }, + { + "start": 3992.0, + "end": 3996.7, + "probability": 0.9873 + }, + { + "start": 3997.18, + "end": 3999.98, + "probability": 0.9922 + }, + { + "start": 4000.9, + "end": 4005.5, + "probability": 0.9923 + }, + { + "start": 4005.66, + "end": 4007.1, + "probability": 0.6893 + }, + { + "start": 4007.38, + "end": 4007.72, + "probability": 0.4091 + }, + { + "start": 4007.72, + "end": 4008.78, + "probability": 0.3868 + }, + { + "start": 4009.18, + "end": 4009.84, + "probability": 0.8642 + }, + { + "start": 4009.9, + "end": 4011.98, + "probability": 0.854 + }, + { + "start": 4012.04, + "end": 4014.58, + "probability": 0.9868 + }, + { + "start": 4015.02, + "end": 4016.6, + "probability": 0.9805 + }, + { + "start": 4016.78, + "end": 4017.3, + "probability": 0.9949 + }, + { + "start": 4017.42, + "end": 4018.28, + "probability": 0.8382 + }, + { + "start": 4018.8, + "end": 4020.98, + "probability": 0.7632 + }, + { + "start": 4021.4, + "end": 4023.46, + "probability": 0.8944 + }, + { + "start": 4023.52, + "end": 4023.9, + "probability": 0.9648 + }, + { + "start": 4023.96, + "end": 4026.94, + "probability": 0.9978 + }, + { + "start": 4027.16, + "end": 4029.04, + "probability": 0.9492 + }, + { + "start": 4029.18, + "end": 4029.68, + "probability": 0.1895 + }, + { + "start": 4029.84, + "end": 4037.52, + "probability": 0.959 + }, + { + "start": 4037.62, + "end": 4040.66, + "probability": 0.9133 + }, + { + "start": 4041.16, + "end": 4042.1, + "probability": 0.7833 + }, + { + "start": 4042.26, + "end": 4047.4, + "probability": 0.9949 + }, + { + "start": 4048.28, + "end": 4049.82, + "probability": 0.9224 + }, + { + "start": 4050.26, + "end": 4052.94, + "probability": 0.9339 + }, + { + "start": 4053.0, + "end": 4055.92, + "probability": 0.9916 + }, + { + "start": 4056.26, + "end": 4058.06, + "probability": 0.992 + }, + { + "start": 4058.14, + "end": 4060.26, + "probability": 0.9925 + }, + { + "start": 4061.6, + "end": 4063.58, + "probability": 0.9577 + }, + { + "start": 4063.6, + "end": 4064.64, + "probability": 0.8839 + }, + { + "start": 4065.02, + "end": 4066.12, + "probability": 0.977 + }, + { + "start": 4066.64, + "end": 4069.84, + "probability": 0.9299 + }, + { + "start": 4069.96, + "end": 4073.48, + "probability": 0.9802 + }, + { + "start": 4073.52, + "end": 4076.58, + "probability": 0.9606 + }, + { + "start": 4076.9, + "end": 4078.44, + "probability": 0.998 + }, + { + "start": 4078.78, + "end": 4080.22, + "probability": 0.9926 + }, + { + "start": 4080.98, + "end": 4085.28, + "probability": 0.9636 + }, + { + "start": 4085.32, + "end": 4088.72, + "probability": 0.9901 + }, + { + "start": 4088.84, + "end": 4089.94, + "probability": 0.954 + }, + { + "start": 4090.28, + "end": 4092.62, + "probability": 0.9219 + }, + { + "start": 4093.06, + "end": 4094.16, + "probability": 0.8024 + }, + { + "start": 4094.2, + "end": 4094.86, + "probability": 0.8986 + }, + { + "start": 4094.98, + "end": 4097.12, + "probability": 0.9926 + }, + { + "start": 4097.52, + "end": 4098.58, + "probability": 0.9827 + }, + { + "start": 4098.96, + "end": 4101.96, + "probability": 0.997 + }, + { + "start": 4101.96, + "end": 4105.68, + "probability": 0.848 + }, + { + "start": 4106.26, + "end": 4106.58, + "probability": 0.373 + }, + { + "start": 4106.7, + "end": 4108.16, + "probability": 0.9347 + }, + { + "start": 4108.56, + "end": 4112.36, + "probability": 0.9519 + }, + { + "start": 4112.98, + "end": 4118.04, + "probability": 0.9694 + }, + { + "start": 4118.54, + "end": 4120.72, + "probability": 0.9948 + }, + { + "start": 4120.82, + "end": 4127.88, + "probability": 0.9891 + }, + { + "start": 4128.2, + "end": 4134.34, + "probability": 0.9931 + }, + { + "start": 4134.66, + "end": 4137.18, + "probability": 0.988 + }, + { + "start": 4137.5, + "end": 4137.8, + "probability": 0.7954 + }, + { + "start": 4138.58, + "end": 4139.46, + "probability": 0.5541 + }, + { + "start": 4140.56, + "end": 4143.08, + "probability": 0.664 + }, + { + "start": 4144.52, + "end": 4145.42, + "probability": 0.5147 + }, + { + "start": 4146.14, + "end": 4147.68, + "probability": 0.959 + }, + { + "start": 4162.18, + "end": 4163.36, + "probability": 0.6047 + }, + { + "start": 4164.22, + "end": 4165.36, + "probability": 0.8482 + }, + { + "start": 4167.2, + "end": 4170.22, + "probability": 0.7727 + }, + { + "start": 4171.68, + "end": 4176.0, + "probability": 0.9883 + }, + { + "start": 4178.28, + "end": 4184.4, + "probability": 0.9443 + }, + { + "start": 4185.26, + "end": 4190.24, + "probability": 0.9871 + }, + { + "start": 4192.18, + "end": 4192.56, + "probability": 0.7837 + }, + { + "start": 4194.2, + "end": 4197.78, + "probability": 0.9621 + }, + { + "start": 4200.02, + "end": 4202.24, + "probability": 0.8212 + }, + { + "start": 4203.45, + "end": 4206.1, + "probability": 0.7544 + }, + { + "start": 4207.6, + "end": 4209.77, + "probability": 0.5006 + }, + { + "start": 4210.46, + "end": 4211.84, + "probability": 0.6995 + }, + { + "start": 4212.75, + "end": 4213.2, + "probability": 0.0936 + }, + { + "start": 4213.92, + "end": 4215.08, + "probability": 0.0698 + }, + { + "start": 4215.22, + "end": 4216.08, + "probability": 0.664 + }, + { + "start": 4216.2, + "end": 4217.14, + "probability": 0.6284 + }, + { + "start": 4217.72, + "end": 4219.7, + "probability": 0.8697 + }, + { + "start": 4220.12, + "end": 4227.86, + "probability": 0.9236 + }, + { + "start": 4229.82, + "end": 4233.32, + "probability": 0.9831 + }, + { + "start": 4234.32, + "end": 4236.72, + "probability": 0.5857 + }, + { + "start": 4237.04, + "end": 4242.94, + "probability": 0.9001 + }, + { + "start": 4244.76, + "end": 4249.3, + "probability": 0.9883 + }, + { + "start": 4249.74, + "end": 4250.54, + "probability": 0.823 + }, + { + "start": 4250.74, + "end": 4251.2, + "probability": 0.7141 + }, + { + "start": 4251.34, + "end": 4253.9, + "probability": 0.8813 + }, + { + "start": 4255.44, + "end": 4257.72, + "probability": 0.9948 + }, + { + "start": 4257.74, + "end": 4263.18, + "probability": 0.9456 + }, + { + "start": 4264.44, + "end": 4267.32, + "probability": 0.9649 + }, + { + "start": 4270.42, + "end": 4276.16, + "probability": 0.9873 + }, + { + "start": 4277.2, + "end": 4281.26, + "probability": 0.814 + }, + { + "start": 4282.4, + "end": 4283.88, + "probability": 0.7673 + }, + { + "start": 4284.12, + "end": 4287.52, + "probability": 0.969 + }, + { + "start": 4287.74, + "end": 4288.5, + "probability": 0.5949 + }, + { + "start": 4289.28, + "end": 4291.46, + "probability": 0.8214 + }, + { + "start": 4293.16, + "end": 4295.62, + "probability": 0.9219 + }, + { + "start": 4296.76, + "end": 4299.58, + "probability": 0.9965 + }, + { + "start": 4300.72, + "end": 4304.06, + "probability": 0.9688 + }, + { + "start": 4306.16, + "end": 4311.38, + "probability": 0.973 + }, + { + "start": 4312.56, + "end": 4318.66, + "probability": 0.9665 + }, + { + "start": 4319.0, + "end": 4321.26, + "probability": 0.7745 + }, + { + "start": 4321.26, + "end": 4324.14, + "probability": 0.2861 + }, + { + "start": 4324.14, + "end": 4325.38, + "probability": 0.1909 + }, + { + "start": 4325.54, + "end": 4328.04, + "probability": 0.7492 + }, + { + "start": 4328.82, + "end": 4330.78, + "probability": 0.7538 + }, + { + "start": 4330.88, + "end": 4333.03, + "probability": 0.9816 + }, + { + "start": 4334.86, + "end": 4337.4, + "probability": 0.9878 + }, + { + "start": 4338.02, + "end": 4340.64, + "probability": 0.9296 + }, + { + "start": 4342.6, + "end": 4345.66, + "probability": 0.9651 + }, + { + "start": 4347.6, + "end": 4350.46, + "probability": 0.9349 + }, + { + "start": 4351.06, + "end": 4352.74, + "probability": 0.9837 + }, + { + "start": 4352.84, + "end": 4353.64, + "probability": 0.8293 + }, + { + "start": 4353.68, + "end": 4357.06, + "probability": 0.6787 + }, + { + "start": 4358.38, + "end": 4359.22, + "probability": 0.8783 + }, + { + "start": 4359.74, + "end": 4361.28, + "probability": 0.996 + }, + { + "start": 4361.8, + "end": 4363.5, + "probability": 0.9598 + }, + { + "start": 4366.92, + "end": 4367.24, + "probability": 0.7957 + }, + { + "start": 4367.64, + "end": 4370.48, + "probability": 0.2374 + }, + { + "start": 4370.48, + "end": 4371.28, + "probability": 0.478 + }, + { + "start": 4371.62, + "end": 4372.88, + "probability": 0.6413 + }, + { + "start": 4373.14, + "end": 4374.66, + "probability": 0.745 + }, + { + "start": 4376.0, + "end": 4381.16, + "probability": 0.7518 + }, + { + "start": 4381.22, + "end": 4384.04, + "probability": 0.8609 + }, + { + "start": 4386.18, + "end": 4386.62, + "probability": 0.2583 + }, + { + "start": 4388.16, + "end": 4390.86, + "probability": 0.6618 + }, + { + "start": 4391.74, + "end": 4396.66, + "probability": 0.7993 + }, + { + "start": 4398.62, + "end": 4409.32, + "probability": 0.825 + }, + { + "start": 4410.96, + "end": 4415.0, + "probability": 0.9758 + }, + { + "start": 4415.56, + "end": 4419.6, + "probability": 0.7769 + }, + { + "start": 4420.16, + "end": 4424.02, + "probability": 0.8891 + }, + { + "start": 4424.04, + "end": 4425.66, + "probability": 0.8715 + }, + { + "start": 4425.72, + "end": 4426.36, + "probability": 0.724 + }, + { + "start": 4428.48, + "end": 4430.54, + "probability": 0.9438 + }, + { + "start": 4430.74, + "end": 4434.68, + "probability": 0.9942 + }, + { + "start": 4435.78, + "end": 4438.78, + "probability": 0.8021 + }, + { + "start": 4438.92, + "end": 4441.9, + "probability": 0.8493 + }, + { + "start": 4445.22, + "end": 4449.68, + "probability": 0.826 + }, + { + "start": 4452.3, + "end": 4458.04, + "probability": 0.7768 + }, + { + "start": 4458.1, + "end": 4459.64, + "probability": 0.6856 + }, + { + "start": 4459.8, + "end": 4461.94, + "probability": 0.7198 + }, + { + "start": 4463.26, + "end": 4464.22, + "probability": 0.9124 + }, + { + "start": 4464.34, + "end": 4468.24, + "probability": 0.9877 + }, + { + "start": 4469.8, + "end": 4472.9, + "probability": 0.8293 + }, + { + "start": 4474.16, + "end": 4477.32, + "probability": 0.9871 + }, + { + "start": 4479.64, + "end": 4482.02, + "probability": 0.9504 + }, + { + "start": 4483.34, + "end": 4485.0, + "probability": 0.9736 + }, + { + "start": 4486.74, + "end": 4489.2, + "probability": 0.9985 + }, + { + "start": 4489.4, + "end": 4490.42, + "probability": 0.5803 + }, + { + "start": 4491.12, + "end": 4497.3, + "probability": 0.7313 + }, + { + "start": 4499.24, + "end": 4500.84, + "probability": 0.9329 + }, + { + "start": 4502.52, + "end": 4504.58, + "probability": 0.6037 + }, + { + "start": 4505.86, + "end": 4507.76, + "probability": 0.9443 + }, + { + "start": 4508.6, + "end": 4512.54, + "probability": 0.9232 + }, + { + "start": 4512.78, + "end": 4514.58, + "probability": 0.9928 + }, + { + "start": 4517.08, + "end": 4519.38, + "probability": 0.7704 + }, + { + "start": 4520.74, + "end": 4523.7, + "probability": 0.8812 + }, + { + "start": 4524.42, + "end": 4526.84, + "probability": 0.872 + }, + { + "start": 4526.88, + "end": 4528.9, + "probability": 0.948 + }, + { + "start": 4529.06, + "end": 4531.04, + "probability": 0.9961 + }, + { + "start": 4531.06, + "end": 4531.72, + "probability": 0.8692 + }, + { + "start": 4531.92, + "end": 4532.84, + "probability": 0.7569 + }, + { + "start": 4532.94, + "end": 4533.56, + "probability": 0.697 + }, + { + "start": 4534.16, + "end": 4537.08, + "probability": 0.673 + }, + { + "start": 4537.72, + "end": 4539.46, + "probability": 0.8797 + }, + { + "start": 4539.74, + "end": 4540.4, + "probability": 0.939 + }, + { + "start": 4540.54, + "end": 4541.24, + "probability": 0.773 + }, + { + "start": 4542.08, + "end": 4543.16, + "probability": 0.4891 + }, + { + "start": 4544.74, + "end": 4548.41, + "probability": 0.7815 + }, + { + "start": 4548.96, + "end": 4549.74, + "probability": 0.6949 + }, + { + "start": 4550.24, + "end": 4550.7, + "probability": 0.7407 + }, + { + "start": 4550.8, + "end": 4552.3, + "probability": 0.3675 + }, + { + "start": 4552.46, + "end": 4553.48, + "probability": 0.6044 + }, + { + "start": 4553.74, + "end": 4554.72, + "probability": 0.9411 + }, + { + "start": 4554.74, + "end": 4555.64, + "probability": 0.8535 + }, + { + "start": 4556.4, + "end": 4558.24, + "probability": 0.8489 + }, + { + "start": 4559.64, + "end": 4564.56, + "probability": 0.9382 + }, + { + "start": 4565.18, + "end": 4569.2, + "probability": 0.9954 + }, + { + "start": 4570.48, + "end": 4572.96, + "probability": 0.9124 + }, + { + "start": 4573.64, + "end": 4574.76, + "probability": 0.7414 + }, + { + "start": 4576.86, + "end": 4579.62, + "probability": 0.6007 + }, + { + "start": 4580.84, + "end": 4582.46, + "probability": 0.9649 + }, + { + "start": 4583.3, + "end": 4588.42, + "probability": 0.9838 + }, + { + "start": 4589.16, + "end": 4590.48, + "probability": 0.9222 + }, + { + "start": 4590.7, + "end": 4595.08, + "probability": 0.9665 + }, + { + "start": 4595.08, + "end": 4598.1, + "probability": 0.997 + }, + { + "start": 4600.86, + "end": 4602.1, + "probability": 0.98 + }, + { + "start": 4602.18, + "end": 4605.66, + "probability": 0.8327 + }, + { + "start": 4606.28, + "end": 4610.38, + "probability": 0.9762 + }, + { + "start": 4611.06, + "end": 4612.42, + "probability": 0.8322 + }, + { + "start": 4612.46, + "end": 4612.84, + "probability": 0.9035 + }, + { + "start": 4616.58, + "end": 4617.3, + "probability": 0.6986 + }, + { + "start": 4618.9, + "end": 4622.36, + "probability": 0.9485 + }, + { + "start": 4648.96, + "end": 4651.2, + "probability": 0.7808 + }, + { + "start": 4652.96, + "end": 4658.9, + "probability": 0.9229 + }, + { + "start": 4661.42, + "end": 4664.2, + "probability": 0.9901 + }, + { + "start": 4664.36, + "end": 4671.16, + "probability": 0.968 + }, + { + "start": 4672.32, + "end": 4676.02, + "probability": 0.9972 + }, + { + "start": 4677.06, + "end": 4678.39, + "probability": 0.6111 + }, + { + "start": 4679.78, + "end": 4682.14, + "probability": 0.9783 + }, + { + "start": 4682.5, + "end": 4684.2, + "probability": 0.7548 + }, + { + "start": 4684.84, + "end": 4688.44, + "probability": 0.8244 + }, + { + "start": 4688.48, + "end": 4694.22, + "probability": 0.9907 + }, + { + "start": 4694.92, + "end": 4698.32, + "probability": 0.9499 + }, + { + "start": 4698.98, + "end": 4700.32, + "probability": 0.826 + }, + { + "start": 4700.54, + "end": 4711.1, + "probability": 0.9807 + }, + { + "start": 4711.44, + "end": 4712.92, + "probability": 0.8664 + }, + { + "start": 4713.86, + "end": 4720.62, + "probability": 0.9935 + }, + { + "start": 4720.7, + "end": 4721.34, + "probability": 0.8924 + }, + { + "start": 4721.98, + "end": 4723.66, + "probability": 0.9762 + }, + { + "start": 4723.76, + "end": 4724.34, + "probability": 0.944 + }, + { + "start": 4724.52, + "end": 4725.22, + "probability": 0.9622 + }, + { + "start": 4725.24, + "end": 4725.98, + "probability": 0.9874 + }, + { + "start": 4726.14, + "end": 4733.04, + "probability": 0.9166 + }, + { + "start": 4733.04, + "end": 4738.38, + "probability": 0.9989 + }, + { + "start": 4739.22, + "end": 4745.52, + "probability": 0.9833 + }, + { + "start": 4745.52, + "end": 4749.78, + "probability": 0.9933 + }, + { + "start": 4750.76, + "end": 4759.06, + "probability": 0.9922 + }, + { + "start": 4759.14, + "end": 4764.16, + "probability": 0.9805 + }, + { + "start": 4764.16, + "end": 4770.68, + "probability": 0.9946 + }, + { + "start": 4772.66, + "end": 4782.5, + "probability": 0.9963 + }, + { + "start": 4782.88, + "end": 4788.52, + "probability": 0.9742 + }, + { + "start": 4789.28, + "end": 4794.54, + "probability": 0.9763 + }, + { + "start": 4794.54, + "end": 4799.34, + "probability": 0.981 + }, + { + "start": 4799.5, + "end": 4800.78, + "probability": 0.8551 + }, + { + "start": 4801.6, + "end": 4802.48, + "probability": 0.7111 + }, + { + "start": 4803.0, + "end": 4805.14, + "probability": 0.9883 + }, + { + "start": 4806.02, + "end": 4809.38, + "probability": 0.9922 + }, + { + "start": 4809.62, + "end": 4811.5, + "probability": 0.7598 + }, + { + "start": 4812.08, + "end": 4816.98, + "probability": 0.9077 + }, + { + "start": 4817.98, + "end": 4818.36, + "probability": 0.8393 + }, + { + "start": 4818.48, + "end": 4820.12, + "probability": 0.9827 + }, + { + "start": 4820.5, + "end": 4821.44, + "probability": 0.9384 + }, + { + "start": 4821.88, + "end": 4822.46, + "probability": 0.9637 + }, + { + "start": 4822.54, + "end": 4823.68, + "probability": 0.99 + }, + { + "start": 4823.76, + "end": 4825.42, + "probability": 0.9561 + }, + { + "start": 4825.94, + "end": 4830.0, + "probability": 0.9769 + }, + { + "start": 4830.52, + "end": 4831.2, + "probability": 0.9213 + }, + { + "start": 4831.8, + "end": 4837.38, + "probability": 0.9886 + }, + { + "start": 4838.4, + "end": 4839.78, + "probability": 0.9594 + }, + { + "start": 4840.26, + "end": 4844.6, + "probability": 0.9776 + }, + { + "start": 4845.08, + "end": 4852.16, + "probability": 0.9933 + }, + { + "start": 4852.68, + "end": 4855.48, + "probability": 0.9307 + }, + { + "start": 4858.2, + "end": 4858.92, + "probability": 0.8123 + }, + { + "start": 4859.46, + "end": 4865.7, + "probability": 0.9929 + }, + { + "start": 4866.88, + "end": 4868.08, + "probability": 0.9377 + }, + { + "start": 4868.2, + "end": 4871.42, + "probability": 0.9852 + }, + { + "start": 4872.0, + "end": 4877.65, + "probability": 0.9983 + }, + { + "start": 4878.1, + "end": 4882.86, + "probability": 0.985 + }, + { + "start": 4884.18, + "end": 4888.98, + "probability": 0.9875 + }, + { + "start": 4889.56, + "end": 4889.8, + "probability": 0.1989 + }, + { + "start": 4890.52, + "end": 4893.46, + "probability": 0.9912 + }, + { + "start": 4895.1, + "end": 4900.74, + "probability": 0.9909 + }, + { + "start": 4900.8, + "end": 4902.14, + "probability": 0.947 + }, + { + "start": 4902.62, + "end": 4904.1, + "probability": 0.754 + }, + { + "start": 4904.6, + "end": 4909.06, + "probability": 0.9836 + }, + { + "start": 4909.24, + "end": 4910.0, + "probability": 0.8422 + }, + { + "start": 4910.52, + "end": 4912.6, + "probability": 0.8765 + }, + { + "start": 4913.24, + "end": 4916.4, + "probability": 0.8013 + }, + { + "start": 4917.3, + "end": 4920.32, + "probability": 0.994 + }, + { + "start": 4920.88, + "end": 4924.5, + "probability": 0.9985 + }, + { + "start": 4925.76, + "end": 4926.24, + "probability": 0.9982 + }, + { + "start": 4927.18, + "end": 4929.78, + "probability": 0.9969 + }, + { + "start": 4930.5, + "end": 4935.33, + "probability": 0.9983 + }, + { + "start": 4936.0, + "end": 4937.22, + "probability": 0.5523 + }, + { + "start": 4938.86, + "end": 4941.98, + "probability": 0.9487 + }, + { + "start": 4942.5, + "end": 4946.76, + "probability": 0.9946 + }, + { + "start": 4947.28, + "end": 4950.98, + "probability": 0.9824 + }, + { + "start": 4951.22, + "end": 4953.96, + "probability": 0.8259 + }, + { + "start": 4954.58, + "end": 4957.34, + "probability": 0.9937 + }, + { + "start": 4957.94, + "end": 4959.74, + "probability": 0.9827 + }, + { + "start": 4960.28, + "end": 4964.94, + "probability": 0.9337 + }, + { + "start": 4964.94, + "end": 4971.2, + "probability": 0.9894 + }, + { + "start": 4972.08, + "end": 4977.9, + "probability": 0.7864 + }, + { + "start": 4978.72, + "end": 4981.38, + "probability": 0.9991 + }, + { + "start": 4982.38, + "end": 4990.64, + "probability": 0.9856 + }, + { + "start": 4991.12, + "end": 4995.52, + "probability": 0.9874 + }, + { + "start": 4995.88, + "end": 4999.86, + "probability": 0.9959 + }, + { + "start": 5000.02, + "end": 5000.34, + "probability": 0.6439 + }, + { + "start": 5001.42, + "end": 5002.54, + "probability": 0.519 + }, + { + "start": 5002.86, + "end": 5006.0, + "probability": 0.7787 + }, + { + "start": 5020.34, + "end": 5022.58, + "probability": 0.6429 + }, + { + "start": 5023.96, + "end": 5026.18, + "probability": 0.2251 + }, + { + "start": 5027.02, + "end": 5027.02, + "probability": 0.1463 + }, + { + "start": 5027.6, + "end": 5027.66, + "probability": 0.0362 + }, + { + "start": 5027.66, + "end": 5028.96, + "probability": 0.0929 + }, + { + "start": 5036.02, + "end": 5038.48, + "probability": 0.0977 + }, + { + "start": 5042.64, + "end": 5045.18, + "probability": 0.3331 + }, + { + "start": 5046.58, + "end": 5047.2, + "probability": 0.0179 + }, + { + "start": 5049.57, + "end": 5053.84, + "probability": 0.0144 + }, + { + "start": 5053.84, + "end": 5055.96, + "probability": 0.0746 + }, + { + "start": 5069.16, + "end": 5072.44, + "probability": 0.7517 + }, + { + "start": 5074.72, + "end": 5078.74, + "probability": 0.9392 + }, + { + "start": 5079.96, + "end": 5080.36, + "probability": 0.8732 + }, + { + "start": 5080.46, + "end": 5084.76, + "probability": 0.7954 + }, + { + "start": 5085.26, + "end": 5088.31, + "probability": 0.9688 + }, + { + "start": 5091.32, + "end": 5091.6, + "probability": 0.3337 + }, + { + "start": 5091.6, + "end": 5093.86, + "probability": 0.7051 + }, + { + "start": 5094.28, + "end": 5096.46, + "probability": 0.9578 + }, + { + "start": 5096.56, + "end": 5096.98, + "probability": 0.6626 + }, + { + "start": 5097.8, + "end": 5101.24, + "probability": 0.959 + }, + { + "start": 5101.24, + "end": 5105.22, + "probability": 0.9214 + }, + { + "start": 5105.92, + "end": 5108.16, + "probability": 0.9943 + }, + { + "start": 5108.16, + "end": 5110.46, + "probability": 0.969 + }, + { + "start": 5111.62, + "end": 5115.46, + "probability": 0.9214 + }, + { + "start": 5115.84, + "end": 5120.44, + "probability": 0.9922 + }, + { + "start": 5120.46, + "end": 5122.44, + "probability": 0.9741 + }, + { + "start": 5123.36, + "end": 5127.5, + "probability": 0.8104 + }, + { + "start": 5127.58, + "end": 5132.72, + "probability": 0.8037 + }, + { + "start": 5132.72, + "end": 5137.08, + "probability": 0.9838 + }, + { + "start": 5137.58, + "end": 5139.7, + "probability": 0.9585 + }, + { + "start": 5140.48, + "end": 5145.54, + "probability": 0.9891 + }, + { + "start": 5145.54, + "end": 5146.6, + "probability": 0.7744 + }, + { + "start": 5147.0, + "end": 5147.78, + "probability": 0.903 + }, + { + "start": 5148.14, + "end": 5149.96, + "probability": 0.9659 + }, + { + "start": 5150.58, + "end": 5152.76, + "probability": 0.9592 + }, + { + "start": 5152.88, + "end": 5154.34, + "probability": 0.8548 + }, + { + "start": 5154.66, + "end": 5156.08, + "probability": 0.9296 + }, + { + "start": 5156.74, + "end": 5157.95, + "probability": 0.9359 + }, + { + "start": 5158.24, + "end": 5161.76, + "probability": 0.9761 + }, + { + "start": 5161.76, + "end": 5164.74, + "probability": 0.997 + }, + { + "start": 5164.94, + "end": 5168.46, + "probability": 0.9075 + }, + { + "start": 5169.22, + "end": 5170.06, + "probability": 0.8271 + }, + { + "start": 5170.48, + "end": 5174.8, + "probability": 0.9762 + }, + { + "start": 5174.8, + "end": 5178.68, + "probability": 0.9873 + }, + { + "start": 5179.02, + "end": 5180.82, + "probability": 0.8169 + }, + { + "start": 5182.14, + "end": 5185.08, + "probability": 0.7474 + }, + { + "start": 5185.72, + "end": 5187.46, + "probability": 0.866 + }, + { + "start": 5188.0, + "end": 5188.98, + "probability": 0.9709 + }, + { + "start": 5189.16, + "end": 5189.9, + "probability": 0.7191 + }, + { + "start": 5190.3, + "end": 5197.02, + "probability": 0.9955 + }, + { + "start": 5198.66, + "end": 5199.76, + "probability": 0.9888 + }, + { + "start": 5200.08, + "end": 5201.06, + "probability": 0.9565 + }, + { + "start": 5201.16, + "end": 5202.6, + "probability": 0.7013 + }, + { + "start": 5203.78, + "end": 5205.42, + "probability": 0.9941 + }, + { + "start": 5205.58, + "end": 5206.24, + "probability": 0.8102 + }, + { + "start": 5206.24, + "end": 5211.7, + "probability": 0.9828 + }, + { + "start": 5213.94, + "end": 5220.04, + "probability": 0.9962 + }, + { + "start": 5220.16, + "end": 5220.48, + "probability": 0.7529 + }, + { + "start": 5220.64, + "end": 5222.12, + "probability": 0.818 + }, + { + "start": 5222.66, + "end": 5224.86, + "probability": 0.9097 + }, + { + "start": 5225.44, + "end": 5227.58, + "probability": 0.9893 + }, + { + "start": 5227.92, + "end": 5231.86, + "probability": 0.9775 + }, + { + "start": 5231.86, + "end": 5235.9, + "probability": 0.9748 + }, + { + "start": 5236.56, + "end": 5237.68, + "probability": 0.6777 + }, + { + "start": 5238.34, + "end": 5238.98, + "probability": 0.998 + }, + { + "start": 5239.56, + "end": 5241.98, + "probability": 0.9481 + }, + { + "start": 5242.7, + "end": 5244.13, + "probability": 0.8477 + }, + { + "start": 5244.94, + "end": 5246.62, + "probability": 0.9556 + }, + { + "start": 5246.84, + "end": 5252.32, + "probability": 0.9752 + }, + { + "start": 5252.66, + "end": 5254.0, + "probability": 0.98 + }, + { + "start": 5254.3, + "end": 5256.18, + "probability": 0.9937 + }, + { + "start": 5256.22, + "end": 5258.86, + "probability": 0.988 + }, + { + "start": 5259.28, + "end": 5261.44, + "probability": 0.9976 + }, + { + "start": 5262.06, + "end": 5265.37, + "probability": 0.9289 + }, + { + "start": 5266.6, + "end": 5268.14, + "probability": 0.8477 + }, + { + "start": 5268.3, + "end": 5270.44, + "probability": 0.9639 + }, + { + "start": 5271.84, + "end": 5272.92, + "probability": 0.8331 + }, + { + "start": 5273.06, + "end": 5277.56, + "probability": 0.9937 + }, + { + "start": 5277.94, + "end": 5279.06, + "probability": 0.9551 + }, + { + "start": 5279.16, + "end": 5279.66, + "probability": 0.5363 + }, + { + "start": 5280.02, + "end": 5284.6, + "probability": 0.9911 + }, + { + "start": 5285.32, + "end": 5287.62, + "probability": 0.9937 + }, + { + "start": 5288.22, + "end": 5291.44, + "probability": 0.98 + }, + { + "start": 5291.98, + "end": 5292.26, + "probability": 0.6393 + }, + { + "start": 5292.56, + "end": 5295.5, + "probability": 0.9573 + }, + { + "start": 5295.52, + "end": 5295.88, + "probability": 0.3969 + }, + { + "start": 5295.92, + "end": 5296.78, + "probability": 0.9775 + }, + { + "start": 5298.32, + "end": 5298.68, + "probability": 0.7906 + }, + { + "start": 5298.78, + "end": 5299.38, + "probability": 0.6714 + }, + { + "start": 5299.5, + "end": 5300.4, + "probability": 0.8315 + }, + { + "start": 5300.9, + "end": 5303.62, + "probability": 0.7897 + }, + { + "start": 5304.56, + "end": 5305.46, + "probability": 0.7746 + }, + { + "start": 5306.06, + "end": 5308.38, + "probability": 0.9733 + }, + { + "start": 5308.94, + "end": 5310.3, + "probability": 0.8743 + }, + { + "start": 5310.44, + "end": 5312.92, + "probability": 0.8424 + }, + { + "start": 5312.92, + "end": 5315.74, + "probability": 0.6358 + }, + { + "start": 5315.98, + "end": 5316.48, + "probability": 0.4215 + }, + { + "start": 5316.86, + "end": 5320.68, + "probability": 0.9771 + }, + { + "start": 5322.04, + "end": 5324.1, + "probability": 0.5669 + }, + { + "start": 5324.26, + "end": 5326.32, + "probability": 0.7648 + }, + { + "start": 5327.16, + "end": 5331.48, + "probability": 0.9826 + }, + { + "start": 5331.56, + "end": 5333.32, + "probability": 0.8462 + }, + { + "start": 5333.46, + "end": 5335.08, + "probability": 0.792 + }, + { + "start": 5335.22, + "end": 5337.08, + "probability": 0.9443 + }, + { + "start": 5337.76, + "end": 5338.74, + "probability": 0.9079 + }, + { + "start": 5339.44, + "end": 5341.9, + "probability": 0.8913 + }, + { + "start": 5342.14, + "end": 5342.98, + "probability": 0.9857 + }, + { + "start": 5343.08, + "end": 5344.93, + "probability": 0.7159 + }, + { + "start": 5346.28, + "end": 5347.96, + "probability": 0.994 + }, + { + "start": 5348.32, + "end": 5350.2, + "probability": 0.9862 + }, + { + "start": 5350.9, + "end": 5352.62, + "probability": 0.5554 + }, + { + "start": 5352.76, + "end": 5353.54, + "probability": 0.819 + }, + { + "start": 5354.5, + "end": 5356.14, + "probability": 0.8324 + }, + { + "start": 5356.3, + "end": 5358.34, + "probability": 0.7896 + }, + { + "start": 5358.78, + "end": 5361.26, + "probability": 0.9933 + }, + { + "start": 5361.68, + "end": 5365.5, + "probability": 0.9893 + }, + { + "start": 5365.7, + "end": 5366.64, + "probability": 0.6686 + }, + { + "start": 5367.22, + "end": 5369.92, + "probability": 0.8375 + }, + { + "start": 5370.56, + "end": 5373.14, + "probability": 0.9849 + }, + { + "start": 5373.24, + "end": 5374.08, + "probability": 0.8898 + }, + { + "start": 5374.16, + "end": 5374.9, + "probability": 0.8192 + }, + { + "start": 5376.06, + "end": 5377.86, + "probability": 0.9404 + }, + { + "start": 5378.64, + "end": 5383.04, + "probability": 0.9845 + }, + { + "start": 5383.66, + "end": 5385.26, + "probability": 0.9805 + }, + { + "start": 5386.54, + "end": 5387.78, + "probability": 0.8934 + }, + { + "start": 5388.24, + "end": 5391.48, + "probability": 0.9609 + }, + { + "start": 5391.84, + "end": 5395.0, + "probability": 0.889 + }, + { + "start": 5396.12, + "end": 5396.84, + "probability": 0.4281 + }, + { + "start": 5397.96, + "end": 5400.2, + "probability": 0.7563 + }, + { + "start": 5400.8, + "end": 5406.02, + "probability": 0.9673 + }, + { + "start": 5406.1, + "end": 5407.38, + "probability": 0.9647 + }, + { + "start": 5407.72, + "end": 5408.6, + "probability": 0.8228 + }, + { + "start": 5409.08, + "end": 5412.48, + "probability": 0.8643 + }, + { + "start": 5412.54, + "end": 5416.14, + "probability": 0.9951 + }, + { + "start": 5416.34, + "end": 5417.82, + "probability": 0.9775 + }, + { + "start": 5417.88, + "end": 5418.65, + "probability": 0.9653 + }, + { + "start": 5419.0, + "end": 5420.16, + "probability": 0.9662 + }, + { + "start": 5421.58, + "end": 5426.08, + "probability": 0.9574 + }, + { + "start": 5426.3, + "end": 5427.22, + "probability": 0.9788 + }, + { + "start": 5427.26, + "end": 5428.38, + "probability": 0.8132 + }, + { + "start": 5428.48, + "end": 5428.82, + "probability": 0.7365 + }, + { + "start": 5429.14, + "end": 5432.32, + "probability": 0.9862 + }, + { + "start": 5432.82, + "end": 5433.98, + "probability": 0.7564 + }, + { + "start": 5434.24, + "end": 5435.6, + "probability": 0.7646 + }, + { + "start": 5435.64, + "end": 5436.43, + "probability": 0.9858 + }, + { + "start": 5436.98, + "end": 5438.98, + "probability": 0.9564 + }, + { + "start": 5439.18, + "end": 5440.1, + "probability": 0.9697 + }, + { + "start": 5440.18, + "end": 5443.39, + "probability": 0.8692 + }, + { + "start": 5444.6, + "end": 5447.54, + "probability": 0.9264 + }, + { + "start": 5449.1, + "end": 5450.76, + "probability": 0.9707 + }, + { + "start": 5450.9, + "end": 5451.42, + "probability": 0.8907 + }, + { + "start": 5451.48, + "end": 5451.68, + "probability": 0.6872 + }, + { + "start": 5452.22, + "end": 5452.78, + "probability": 0.9627 + }, + { + "start": 5453.5, + "end": 5454.92, + "probability": 0.7097 + }, + { + "start": 5455.78, + "end": 5460.84, + "probability": 0.9873 + }, + { + "start": 5461.02, + "end": 5463.02, + "probability": 0.9219 + }, + { + "start": 5463.26, + "end": 5464.17, + "probability": 0.9387 + }, + { + "start": 5464.9, + "end": 5467.76, + "probability": 0.8463 + }, + { + "start": 5468.2, + "end": 5469.58, + "probability": 0.3864 + }, + { + "start": 5469.66, + "end": 5470.76, + "probability": 0.5619 + }, + { + "start": 5471.24, + "end": 5473.06, + "probability": 0.9645 + }, + { + "start": 5473.24, + "end": 5473.92, + "probability": 0.8684 + }, + { + "start": 5474.08, + "end": 5475.14, + "probability": 0.9834 + }, + { + "start": 5475.52, + "end": 5478.36, + "probability": 0.9915 + }, + { + "start": 5479.04, + "end": 5482.68, + "probability": 0.7993 + }, + { + "start": 5482.82, + "end": 5486.36, + "probability": 0.9139 + }, + { + "start": 5487.34, + "end": 5488.44, + "probability": 0.8531 + }, + { + "start": 5488.62, + "end": 5491.16, + "probability": 0.5278 + }, + { + "start": 5491.22, + "end": 5493.66, + "probability": 0.6362 + }, + { + "start": 5493.68, + "end": 5494.32, + "probability": 0.3735 + }, + { + "start": 5494.6, + "end": 5496.16, + "probability": 0.4758 + }, + { + "start": 5496.54, + "end": 5496.54, + "probability": 0.1084 + }, + { + "start": 5496.54, + "end": 5501.14, + "probability": 0.6119 + }, + { + "start": 5501.52, + "end": 5502.12, + "probability": 0.3769 + }, + { + "start": 5502.12, + "end": 5502.6, + "probability": 0.5637 + }, + { + "start": 5502.76, + "end": 5504.26, + "probability": 0.5195 + }, + { + "start": 5504.6, + "end": 5505.58, + "probability": 0.6676 + }, + { + "start": 5505.6, + "end": 5507.82, + "probability": 0.9434 + }, + { + "start": 5508.06, + "end": 5508.14, + "probability": 0.4715 + }, + { + "start": 5508.26, + "end": 5509.5, + "probability": 0.9967 + }, + { + "start": 5510.28, + "end": 5511.21, + "probability": 0.9739 + }, + { + "start": 5511.38, + "end": 5512.53, + "probability": 0.8052 + }, + { + "start": 5513.2, + "end": 5516.2, + "probability": 0.9845 + }, + { + "start": 5516.38, + "end": 5520.54, + "probability": 0.8785 + }, + { + "start": 5520.92, + "end": 5523.45, + "probability": 0.9041 + }, + { + "start": 5524.31, + "end": 5526.69, + "probability": 0.9677 + }, + { + "start": 5527.08, + "end": 5528.4, + "probability": 0.9644 + }, + { + "start": 5528.8, + "end": 5529.9, + "probability": 0.936 + }, + { + "start": 5530.4, + "end": 5532.36, + "probability": 0.7573 + }, + { + "start": 5532.38, + "end": 5533.72, + "probability": 0.5927 + }, + { + "start": 5533.86, + "end": 5535.3, + "probability": 0.7937 + }, + { + "start": 5535.4, + "end": 5536.18, + "probability": 0.7834 + }, + { + "start": 5536.28, + "end": 5537.24, + "probability": 0.3105 + }, + { + "start": 5537.24, + "end": 5538.22, + "probability": 0.5065 + }, + { + "start": 5538.64, + "end": 5540.06, + "probability": 0.0233 + }, + { + "start": 5540.1, + "end": 5540.74, + "probability": 0.0497 + }, + { + "start": 5541.48, + "end": 5544.16, + "probability": 0.1181 + }, + { + "start": 5544.84, + "end": 5547.16, + "probability": 0.4297 + }, + { + "start": 5547.72, + "end": 5547.9, + "probability": 0.0118 + }, + { + "start": 5548.48, + "end": 5548.48, + "probability": 0.0004 + }, + { + "start": 5548.48, + "end": 5548.48, + "probability": 0.1038 + }, + { + "start": 5548.48, + "end": 5548.48, + "probability": 0.0704 + }, + { + "start": 5548.48, + "end": 5549.06, + "probability": 0.0161 + }, + { + "start": 5549.06, + "end": 5550.08, + "probability": 0.925 + }, + { + "start": 5550.72, + "end": 5552.12, + "probability": 0.504 + }, + { + "start": 5552.14, + "end": 5552.81, + "probability": 0.6622 + }, + { + "start": 5553.3, + "end": 5554.42, + "probability": 0.4312 + }, + { + "start": 5554.42, + "end": 5554.44, + "probability": 0.4315 + }, + { + "start": 5554.44, + "end": 5555.51, + "probability": 0.8104 + }, + { + "start": 5555.96, + "end": 5556.62, + "probability": 0.174 + }, + { + "start": 5556.78, + "end": 5557.2, + "probability": 0.6443 + }, + { + "start": 5557.8, + "end": 5559.82, + "probability": 0.9841 + }, + { + "start": 5560.22, + "end": 5561.2, + "probability": 0.8694 + }, + { + "start": 5561.26, + "end": 5563.76, + "probability": 0.9868 + }, + { + "start": 5564.22, + "end": 5565.08, + "probability": 0.9836 + }, + { + "start": 5565.94, + "end": 5567.65, + "probability": 0.9834 + }, + { + "start": 5567.92, + "end": 5572.32, + "probability": 0.9214 + }, + { + "start": 5572.38, + "end": 5576.1, + "probability": 0.9645 + }, + { + "start": 5576.68, + "end": 5579.58, + "probability": 0.9928 + }, + { + "start": 5580.0, + "end": 5581.72, + "probability": 0.9756 + }, + { + "start": 5582.08, + "end": 5586.82, + "probability": 0.9751 + }, + { + "start": 5586.9, + "end": 5587.34, + "probability": 0.5412 + }, + { + "start": 5587.48, + "end": 5590.34, + "probability": 0.9639 + }, + { + "start": 5590.68, + "end": 5592.32, + "probability": 0.7365 + }, + { + "start": 5592.94, + "end": 5595.08, + "probability": 0.6407 + }, + { + "start": 5595.6, + "end": 5597.22, + "probability": 0.9688 + }, + { + "start": 5597.78, + "end": 5599.74, + "probability": 0.8115 + }, + { + "start": 5600.24, + "end": 5603.35, + "probability": 0.9183 + }, + { + "start": 5604.16, + "end": 5604.86, + "probability": 0.5059 + }, + { + "start": 5604.92, + "end": 5605.76, + "probability": 0.7764 + }, + { + "start": 5606.06, + "end": 5608.2, + "probability": 0.9039 + }, + { + "start": 5608.36, + "end": 5610.58, + "probability": 0.9294 + }, + { + "start": 5610.58, + "end": 5613.46, + "probability": 0.511 + }, + { + "start": 5613.78, + "end": 5616.84, + "probability": 0.7039 + }, + { + "start": 5617.02, + "end": 5617.22, + "probability": 0.7243 + }, + { + "start": 5617.34, + "end": 5618.34, + "probability": 0.5842 + }, + { + "start": 5618.5, + "end": 5619.4, + "probability": 0.8082 + }, + { + "start": 5619.8, + "end": 5620.74, + "probability": 0.8184 + }, + { + "start": 5620.86, + "end": 5625.38, + "probability": 0.6031 + }, + { + "start": 5625.56, + "end": 5630.2, + "probability": 0.8063 + }, + { + "start": 5630.36, + "end": 5630.74, + "probability": 0.616 + }, + { + "start": 5630.84, + "end": 5631.6, + "probability": 0.74 + }, + { + "start": 5632.48, + "end": 5632.72, + "probability": 0.6106 + }, + { + "start": 5632.84, + "end": 5639.62, + "probability": 0.6567 + }, + { + "start": 5640.46, + "end": 5643.7, + "probability": 0.753 + }, + { + "start": 5645.28, + "end": 5646.22, + "probability": 0.8628 + }, + { + "start": 5646.78, + "end": 5648.12, + "probability": 0.9213 + }, + { + "start": 5650.5, + "end": 5654.4, + "probability": 0.9241 + }, + { + "start": 5655.16, + "end": 5656.3, + "probability": 0.9519 + }, + { + "start": 5672.08, + "end": 5672.08, + "probability": 0.1317 + }, + { + "start": 5672.08, + "end": 5672.42, + "probability": 0.4528 + }, + { + "start": 5672.46, + "end": 5674.0, + "probability": 0.6808 + }, + { + "start": 5674.12, + "end": 5675.98, + "probability": 0.9923 + }, + { + "start": 5676.88, + "end": 5677.84, + "probability": 0.4043 + }, + { + "start": 5681.28, + "end": 5682.42, + "probability": 0.8255 + }, + { + "start": 5683.14, + "end": 5684.0, + "probability": 0.7152 + }, + { + "start": 5685.24, + "end": 5687.84, + "probability": 0.561 + }, + { + "start": 5688.5, + "end": 5689.62, + "probability": 0.9302 + }, + { + "start": 5691.06, + "end": 5692.42, + "probability": 0.8745 + }, + { + "start": 5693.7, + "end": 5695.14, + "probability": 0.998 + }, + { + "start": 5695.2, + "end": 5700.7, + "probability": 0.9458 + }, + { + "start": 5701.18, + "end": 5704.8, + "probability": 0.0933 + }, + { + "start": 5706.64, + "end": 5708.76, + "probability": 0.9801 + }, + { + "start": 5708.8, + "end": 5711.47, + "probability": 0.9774 + }, + { + "start": 5712.36, + "end": 5719.0, + "probability": 0.7249 + }, + { + "start": 5720.14, + "end": 5724.52, + "probability": 0.9966 + }, + { + "start": 5725.6, + "end": 5726.46, + "probability": 0.6443 + }, + { + "start": 5726.5, + "end": 5727.26, + "probability": 0.526 + }, + { + "start": 5727.34, + "end": 5730.76, + "probability": 0.9518 + }, + { + "start": 5731.36, + "end": 5735.46, + "probability": 0.996 + }, + { + "start": 5735.46, + "end": 5741.12, + "probability": 0.9932 + }, + { + "start": 5741.72, + "end": 5742.82, + "probability": 0.773 + }, + { + "start": 5743.96, + "end": 5745.38, + "probability": 0.9873 + }, + { + "start": 5745.5, + "end": 5746.92, + "probability": 0.7582 + }, + { + "start": 5747.68, + "end": 5748.44, + "probability": 0.903 + }, + { + "start": 5749.04, + "end": 5749.54, + "probability": 0.5698 + }, + { + "start": 5750.5, + "end": 5751.18, + "probability": 0.9869 + }, + { + "start": 5751.78, + "end": 5753.64, + "probability": 0.9966 + }, + { + "start": 5755.6, + "end": 5759.06, + "probability": 0.9908 + }, + { + "start": 5759.06, + "end": 5762.46, + "probability": 0.9897 + }, + { + "start": 5764.18, + "end": 5766.5, + "probability": 0.9868 + }, + { + "start": 5766.9, + "end": 5767.62, + "probability": 0.9648 + }, + { + "start": 5767.74, + "end": 5768.64, + "probability": 0.9791 + }, + { + "start": 5768.82, + "end": 5769.74, + "probability": 0.9653 + }, + { + "start": 5771.16, + "end": 5772.8, + "probability": 0.9951 + }, + { + "start": 5774.26, + "end": 5777.22, + "probability": 0.963 + }, + { + "start": 5777.22, + "end": 5780.38, + "probability": 0.9954 + }, + { + "start": 5780.64, + "end": 5782.82, + "probability": 0.9945 + }, + { + "start": 5784.76, + "end": 5785.68, + "probability": 0.8403 + }, + { + "start": 5786.26, + "end": 5788.38, + "probability": 0.9675 + }, + { + "start": 5789.34, + "end": 5791.12, + "probability": 0.9235 + }, + { + "start": 5791.36, + "end": 5794.34, + "probability": 0.9126 + }, + { + "start": 5794.6, + "end": 5799.68, + "probability": 0.9886 + }, + { + "start": 5800.42, + "end": 5804.14, + "probability": 0.8683 + }, + { + "start": 5807.86, + "end": 5808.32, + "probability": 0.461 + }, + { + "start": 5808.4, + "end": 5811.98, + "probability": 0.9155 + }, + { + "start": 5812.96, + "end": 5815.92, + "probability": 0.9923 + }, + { + "start": 5815.94, + "end": 5818.72, + "probability": 0.9896 + }, + { + "start": 5820.34, + "end": 5823.28, + "probability": 0.9264 + }, + { + "start": 5824.04, + "end": 5826.26, + "probability": 0.9941 + }, + { + "start": 5826.98, + "end": 5830.0, + "probability": 0.9921 + }, + { + "start": 5830.44, + "end": 5834.52, + "probability": 0.9886 + }, + { + "start": 5835.76, + "end": 5839.94, + "probability": 0.9893 + }, + { + "start": 5840.06, + "end": 5842.1, + "probability": 0.9966 + }, + { + "start": 5843.74, + "end": 5846.7, + "probability": 0.9947 + }, + { + "start": 5846.82, + "end": 5850.72, + "probability": 0.859 + }, + { + "start": 5850.72, + "end": 5854.32, + "probability": 0.9922 + }, + { + "start": 5855.3, + "end": 5860.1, + "probability": 0.9456 + }, + { + "start": 5861.08, + "end": 5863.76, + "probability": 0.8548 + }, + { + "start": 5864.66, + "end": 5866.64, + "probability": 0.9154 + }, + { + "start": 5867.38, + "end": 5869.38, + "probability": 0.9554 + }, + { + "start": 5870.58, + "end": 5875.12, + "probability": 0.9604 + }, + { + "start": 5875.7, + "end": 5877.82, + "probability": 0.9748 + }, + { + "start": 5878.46, + "end": 5884.4, + "probability": 0.9777 + }, + { + "start": 5886.12, + "end": 5888.36, + "probability": 0.9417 + }, + { + "start": 5888.66, + "end": 5891.9, + "probability": 0.9511 + }, + { + "start": 5892.62, + "end": 5895.28, + "probability": 0.9941 + }, + { + "start": 5895.96, + "end": 5896.74, + "probability": 0.7892 + }, + { + "start": 5896.9, + "end": 5898.02, + "probability": 0.6748 + }, + { + "start": 5899.68, + "end": 5902.84, + "probability": 0.9784 + }, + { + "start": 5904.08, + "end": 5908.68, + "probability": 0.856 + }, + { + "start": 5911.2, + "end": 5911.2, + "probability": 0.006 + }, + { + "start": 5912.08, + "end": 5916.62, + "probability": 0.1095 + }, + { + "start": 5917.38, + "end": 5918.02, + "probability": 0.1859 + }, + { + "start": 5918.14, + "end": 5918.28, + "probability": 0.1055 + }, + { + "start": 5918.54, + "end": 5919.94, + "probability": 0.1527 + }, + { + "start": 5920.34, + "end": 5920.86, + "probability": 0.4124 + }, + { + "start": 5923.0, + "end": 5926.44, + "probability": 0.6552 + }, + { + "start": 5926.86, + "end": 5928.82, + "probability": 0.651 + }, + { + "start": 5930.7, + "end": 5932.56, + "probability": 0.7448 + }, + { + "start": 5932.66, + "end": 5933.88, + "probability": 0.9434 + }, + { + "start": 5933.96, + "end": 5937.42, + "probability": 0.9042 + }, + { + "start": 5937.42, + "end": 5938.52, + "probability": 0.4865 + }, + { + "start": 5939.22, + "end": 5940.1, + "probability": 0.2279 + }, + { + "start": 5940.76, + "end": 5940.9, + "probability": 0.0282 + }, + { + "start": 5940.9, + "end": 5941.87, + "probability": 0.9922 + }, + { + "start": 5941.94, + "end": 5944.54, + "probability": 0.7823 + }, + { + "start": 5945.32, + "end": 5946.41, + "probability": 0.8948 + }, + { + "start": 5946.54, + "end": 5948.88, + "probability": 0.9468 + }, + { + "start": 5949.32, + "end": 5950.02, + "probability": 0.6277 + }, + { + "start": 5950.06, + "end": 5951.66, + "probability": 0.7102 + }, + { + "start": 5951.86, + "end": 5951.96, + "probability": 0.7234 + }, + { + "start": 5952.1, + "end": 5952.2, + "probability": 0.9074 + }, + { + "start": 5952.28, + "end": 5953.62, + "probability": 0.9928 + }, + { + "start": 5953.78, + "end": 5956.05, + "probability": 0.9724 + }, + { + "start": 5957.1, + "end": 5957.74, + "probability": 0.0069 + }, + { + "start": 5958.74, + "end": 5961.5, + "probability": 0.7869 + }, + { + "start": 5961.96, + "end": 5963.32, + "probability": 0.9978 + }, + { + "start": 5963.46, + "end": 5966.44, + "probability": 0.8081 + }, + { + "start": 5966.74, + "end": 5967.84, + "probability": 0.6014 + }, + { + "start": 5968.4, + "end": 5969.68, + "probability": 0.9361 + }, + { + "start": 5969.8, + "end": 5971.44, + "probability": 0.8405 + }, + { + "start": 5971.5, + "end": 5976.02, + "probability": 0.9368 + }, + { + "start": 5976.8, + "end": 5978.23, + "probability": 0.9927 + }, + { + "start": 5979.16, + "end": 5982.01, + "probability": 0.627 + }, + { + "start": 5983.56, + "end": 5987.5, + "probability": 0.9878 + }, + { + "start": 5988.04, + "end": 5989.32, + "probability": 0.7866 + }, + { + "start": 5990.08, + "end": 5992.28, + "probability": 0.9816 + }, + { + "start": 5992.28, + "end": 5995.12, + "probability": 0.9842 + }, + { + "start": 5996.08, + "end": 5999.14, + "probability": 0.9995 + }, + { + "start": 6000.12, + "end": 6002.74, + "probability": 0.9056 + }, + { + "start": 6002.8, + "end": 6003.66, + "probability": 0.7914 + }, + { + "start": 6003.84, + "end": 6008.02, + "probability": 0.7807 + }, + { + "start": 6008.58, + "end": 6010.92, + "probability": 0.9409 + }, + { + "start": 6011.02, + "end": 6013.46, + "probability": 0.8711 + }, + { + "start": 6014.0, + "end": 6015.36, + "probability": 0.9971 + }, + { + "start": 6015.44, + "end": 6017.54, + "probability": 0.9748 + }, + { + "start": 6018.44, + "end": 6019.2, + "probability": 0.8733 + }, + { + "start": 6020.8, + "end": 6021.52, + "probability": 0.9083 + }, + { + "start": 6022.32, + "end": 6024.15, + "probability": 0.8159 + }, + { + "start": 6025.4, + "end": 6027.76, + "probability": 0.8848 + }, + { + "start": 6029.5, + "end": 6030.92, + "probability": 0.9506 + }, + { + "start": 6031.92, + "end": 6032.16, + "probability": 0.64 + }, + { + "start": 6033.22, + "end": 6035.3, + "probability": 0.972 + }, + { + "start": 6036.4, + "end": 6037.38, + "probability": 0.8354 + }, + { + "start": 6037.8, + "end": 6038.52, + "probability": 0.9233 + }, + { + "start": 6038.6, + "end": 6040.02, + "probability": 0.9218 + }, + { + "start": 6040.46, + "end": 6040.96, + "probability": 0.4089 + }, + { + "start": 6041.9, + "end": 6043.02, + "probability": 0.99 + }, + { + "start": 6044.52, + "end": 6045.82, + "probability": 0.9185 + }, + { + "start": 6046.3, + "end": 6047.18, + "probability": 0.9528 + }, + { + "start": 6047.22, + "end": 6048.9, + "probability": 0.9505 + }, + { + "start": 6049.66, + "end": 6054.58, + "probability": 0.8593 + }, + { + "start": 6055.74, + "end": 6058.52, + "probability": 0.9417 + }, + { + "start": 6059.26, + "end": 6060.4, + "probability": 0.635 + }, + { + "start": 6060.94, + "end": 6061.57, + "probability": 0.6383 + }, + { + "start": 6062.54, + "end": 6064.52, + "probability": 0.9478 + }, + { + "start": 6064.98, + "end": 6066.96, + "probability": 0.9192 + }, + { + "start": 6068.28, + "end": 6069.78, + "probability": 0.5629 + }, + { + "start": 6069.92, + "end": 6072.72, + "probability": 0.9819 + }, + { + "start": 6073.16, + "end": 6077.38, + "probability": 0.993 + }, + { + "start": 6078.94, + "end": 6080.84, + "probability": 0.9091 + }, + { + "start": 6080.9, + "end": 6083.43, + "probability": 0.9924 + }, + { + "start": 6084.18, + "end": 6086.9, + "probability": 0.9919 + }, + { + "start": 6086.9, + "end": 6090.66, + "probability": 0.9935 + }, + { + "start": 6091.46, + "end": 6094.34, + "probability": 0.9233 + }, + { + "start": 6095.08, + "end": 6097.52, + "probability": 0.7878 + }, + { + "start": 6099.86, + "end": 6105.78, + "probability": 0.9811 + }, + { + "start": 6105.98, + "end": 6107.54, + "probability": 0.9814 + }, + { + "start": 6108.08, + "end": 6111.08, + "probability": 0.9917 + }, + { + "start": 6111.82, + "end": 6112.56, + "probability": 0.8833 + }, + { + "start": 6112.82, + "end": 6115.66, + "probability": 0.8289 + }, + { + "start": 6116.0, + "end": 6116.3, + "probability": 0.4998 + }, + { + "start": 6116.4, + "end": 6117.16, + "probability": 0.9258 + }, + { + "start": 6118.04, + "end": 6120.81, + "probability": 0.9451 + }, + { + "start": 6121.88, + "end": 6122.66, + "probability": 0.8011 + }, + { + "start": 6122.68, + "end": 6124.24, + "probability": 0.9791 + }, + { + "start": 6124.42, + "end": 6125.06, + "probability": 0.9851 + }, + { + "start": 6126.72, + "end": 6127.88, + "probability": 0.4394 + }, + { + "start": 6128.54, + "end": 6130.88, + "probability": 0.8267 + }, + { + "start": 6132.44, + "end": 6134.58, + "probability": 0.9388 + }, + { + "start": 6134.7, + "end": 6136.52, + "probability": 0.9212 + }, + { + "start": 6136.64, + "end": 6139.92, + "probability": 0.9838 + }, + { + "start": 6140.3, + "end": 6141.68, + "probability": 0.6929 + }, + { + "start": 6142.32, + "end": 6144.94, + "probability": 0.9795 + }, + { + "start": 6145.08, + "end": 6146.22, + "probability": 0.9609 + }, + { + "start": 6146.56, + "end": 6150.28, + "probability": 0.9814 + }, + { + "start": 6150.68, + "end": 6152.32, + "probability": 0.9929 + }, + { + "start": 6153.68, + "end": 6157.0, + "probability": 0.9927 + }, + { + "start": 6157.84, + "end": 6162.12, + "probability": 0.8885 + }, + { + "start": 6162.5, + "end": 6164.18, + "probability": 0.702 + }, + { + "start": 6164.72, + "end": 6168.56, + "probability": 0.9915 + }, + { + "start": 6169.38, + "end": 6172.16, + "probability": 0.7711 + }, + { + "start": 6174.24, + "end": 6176.51, + "probability": 0.998 + }, + { + "start": 6177.02, + "end": 6178.86, + "probability": 0.9778 + }, + { + "start": 6180.12, + "end": 6181.26, + "probability": 0.9458 + }, + { + "start": 6181.64, + "end": 6185.0, + "probability": 0.9716 + }, + { + "start": 6185.96, + "end": 6189.46, + "probability": 0.9865 + }, + { + "start": 6189.78, + "end": 6191.82, + "probability": 0.9917 + }, + { + "start": 6192.14, + "end": 6192.7, + "probability": 0.1873 + }, + { + "start": 6194.24, + "end": 6197.01, + "probability": 0.726 + }, + { + "start": 6197.74, + "end": 6197.74, + "probability": 0.1087 + }, + { + "start": 6197.74, + "end": 6200.28, + "probability": 0.7167 + }, + { + "start": 6200.68, + "end": 6201.32, + "probability": 0.6779 + }, + { + "start": 6201.4, + "end": 6204.84, + "probability": 0.9642 + }, + { + "start": 6205.42, + "end": 6207.94, + "probability": 0.2187 + }, + { + "start": 6208.0, + "end": 6209.38, + "probability": 0.8798 + }, + { + "start": 6209.64, + "end": 6210.77, + "probability": 0.9844 + }, + { + "start": 6211.46, + "end": 6211.9, + "probability": 0.6801 + }, + { + "start": 6212.54, + "end": 6215.08, + "probability": 0.8745 + }, + { + "start": 6215.44, + "end": 6216.64, + "probability": 0.9803 + }, + { + "start": 6216.72, + "end": 6218.34, + "probability": 0.9731 + }, + { + "start": 6218.44, + "end": 6219.44, + "probability": 0.9142 + }, + { + "start": 6219.66, + "end": 6220.14, + "probability": 0.7745 + }, + { + "start": 6220.28, + "end": 6222.48, + "probability": 0.9846 + }, + { + "start": 6223.74, + "end": 6226.3, + "probability": 0.5169 + }, + { + "start": 6226.92, + "end": 6227.98, + "probability": 0.9517 + }, + { + "start": 6228.62, + "end": 6230.78, + "probability": 0.9774 + }, + { + "start": 6230.9, + "end": 6232.38, + "probability": 0.6107 + }, + { + "start": 6232.56, + "end": 6233.24, + "probability": 0.9646 + }, + { + "start": 6233.92, + "end": 6239.1, + "probability": 0.9886 + }, + { + "start": 6239.26, + "end": 6240.22, + "probability": 0.9845 + }, + { + "start": 6242.77, + "end": 6244.22, + "probability": 0.6118 + }, + { + "start": 6244.22, + "end": 6248.7, + "probability": 0.9051 + }, + { + "start": 6249.02, + "end": 6249.72, + "probability": 0.7953 + }, + { + "start": 6249.9, + "end": 6253.28, + "probability": 0.5003 + }, + { + "start": 6253.9, + "end": 6254.36, + "probability": 0.9168 + }, + { + "start": 6254.54, + "end": 6254.8, + "probability": 0.7635 + }, + { + "start": 6254.88, + "end": 6255.74, + "probability": 0.6421 + }, + { + "start": 6255.86, + "end": 6258.2, + "probability": 0.9954 + }, + { + "start": 6258.24, + "end": 6260.0, + "probability": 0.988 + }, + { + "start": 6260.18, + "end": 6260.74, + "probability": 0.8294 + }, + { + "start": 6261.08, + "end": 6261.91, + "probability": 0.9802 + }, + { + "start": 6262.2, + "end": 6265.64, + "probability": 0.9578 + }, + { + "start": 6266.14, + "end": 6266.42, + "probability": 0.5256 + }, + { + "start": 6266.84, + "end": 6267.58, + "probability": 0.7299 + }, + { + "start": 6269.1, + "end": 6272.88, + "probability": 0.8316 + }, + { + "start": 6273.8, + "end": 6276.52, + "probability": 0.769 + }, + { + "start": 6287.44, + "end": 6288.54, + "probability": 0.7394 + }, + { + "start": 6289.12, + "end": 6290.72, + "probability": 0.5933 + }, + { + "start": 6291.94, + "end": 6293.94, + "probability": 0.8458 + }, + { + "start": 6294.5, + "end": 6299.38, + "probability": 0.9059 + }, + { + "start": 6299.5, + "end": 6302.4, + "probability": 0.9775 + }, + { + "start": 6303.12, + "end": 6307.1, + "probability": 0.9942 + }, + { + "start": 6308.0, + "end": 6312.72, + "probability": 0.998 + }, + { + "start": 6314.26, + "end": 6316.94, + "probability": 0.9713 + }, + { + "start": 6316.94, + "end": 6319.58, + "probability": 0.9754 + }, + { + "start": 6321.42, + "end": 6323.22, + "probability": 0.9703 + }, + { + "start": 6323.46, + "end": 6325.12, + "probability": 0.5328 + }, + { + "start": 6326.18, + "end": 6327.26, + "probability": 0.7964 + }, + { + "start": 6327.76, + "end": 6331.3, + "probability": 0.9967 + }, + { + "start": 6333.5, + "end": 6335.16, + "probability": 0.9023 + }, + { + "start": 6335.58, + "end": 6339.1, + "probability": 0.744 + }, + { + "start": 6339.14, + "end": 6339.84, + "probability": 0.9874 + }, + { + "start": 6340.5, + "end": 6345.44, + "probability": 0.9718 + }, + { + "start": 6345.46, + "end": 6347.16, + "probability": 0.9943 + }, + { + "start": 6348.4, + "end": 6350.62, + "probability": 0.7733 + }, + { + "start": 6351.76, + "end": 6351.84, + "probability": 0.3517 + }, + { + "start": 6351.94, + "end": 6355.54, + "probability": 0.9915 + }, + { + "start": 6355.54, + "end": 6360.44, + "probability": 0.9984 + }, + { + "start": 6360.84, + "end": 6361.86, + "probability": 0.9739 + }, + { + "start": 6362.0, + "end": 6363.64, + "probability": 0.9642 + }, + { + "start": 6365.22, + "end": 6368.68, + "probability": 0.9017 + }, + { + "start": 6368.76, + "end": 6371.46, + "probability": 0.9918 + }, + { + "start": 6371.46, + "end": 6375.02, + "probability": 0.9963 + }, + { + "start": 6375.56, + "end": 6378.4, + "probability": 0.9553 + }, + { + "start": 6379.22, + "end": 6381.1, + "probability": 0.837 + }, + { + "start": 6381.54, + "end": 6382.7, + "probability": 0.9424 + }, + { + "start": 6382.84, + "end": 6384.78, + "probability": 0.9654 + }, + { + "start": 6384.84, + "end": 6385.8, + "probability": 0.5673 + }, + { + "start": 6386.26, + "end": 6387.28, + "probability": 0.9321 + }, + { + "start": 6387.4, + "end": 6388.18, + "probability": 0.8203 + }, + { + "start": 6388.18, + "end": 6388.38, + "probability": 0.6987 + }, + { + "start": 6388.38, + "end": 6388.5, + "probability": 0.6471 + }, + { + "start": 6388.58, + "end": 6389.36, + "probability": 0.9177 + }, + { + "start": 6390.84, + "end": 6391.94, + "probability": 0.6786 + }, + { + "start": 6392.14, + "end": 6397.88, + "probability": 0.9554 + }, + { + "start": 6398.32, + "end": 6400.6, + "probability": 0.7629 + }, + { + "start": 6400.74, + "end": 6401.02, + "probability": 0.8647 + }, + { + "start": 6401.18, + "end": 6401.88, + "probability": 0.9185 + }, + { + "start": 6402.56, + "end": 6404.8, + "probability": 0.9539 + }, + { + "start": 6405.52, + "end": 6406.84, + "probability": 0.8933 + }, + { + "start": 6406.92, + "end": 6411.32, + "probability": 0.978 + }, + { + "start": 6411.38, + "end": 6412.22, + "probability": 0.4747 + }, + { + "start": 6412.28, + "end": 6412.8, + "probability": 0.5841 + }, + { + "start": 6414.18, + "end": 6414.28, + "probability": 0.9011 + }, + { + "start": 6414.38, + "end": 6414.62, + "probability": 0.7321 + }, + { + "start": 6414.76, + "end": 6415.26, + "probability": 0.9668 + }, + { + "start": 6415.34, + "end": 6415.68, + "probability": 0.7345 + }, + { + "start": 6415.84, + "end": 6417.22, + "probability": 0.9759 + }, + { + "start": 6418.05, + "end": 6421.17, + "probability": 0.8917 + }, + { + "start": 6423.98, + "end": 6425.86, + "probability": 0.9874 + }, + { + "start": 6426.72, + "end": 6431.5, + "probability": 0.9961 + }, + { + "start": 6432.4, + "end": 6432.7, + "probability": 0.8926 + }, + { + "start": 6432.82, + "end": 6434.28, + "probability": 0.8769 + }, + { + "start": 6434.62, + "end": 6439.0, + "probability": 0.9904 + }, + { + "start": 6439.04, + "end": 6440.5, + "probability": 0.7285 + }, + { + "start": 6441.88, + "end": 6445.74, + "probability": 0.9937 + }, + { + "start": 6447.38, + "end": 6449.92, + "probability": 0.9976 + }, + { + "start": 6453.06, + "end": 6455.14, + "probability": 0.7032 + }, + { + "start": 6455.8, + "end": 6457.8, + "probability": 0.7369 + }, + { + "start": 6458.2, + "end": 6458.32, + "probability": 0.613 + }, + { + "start": 6458.42, + "end": 6460.46, + "probability": 0.9775 + }, + { + "start": 6460.46, + "end": 6463.8, + "probability": 0.9275 + }, + { + "start": 6464.86, + "end": 6465.44, + "probability": 0.8842 + }, + { + "start": 6465.54, + "end": 6466.42, + "probability": 0.6654 + }, + { + "start": 6466.44, + "end": 6467.42, + "probability": 0.9924 + }, + { + "start": 6467.5, + "end": 6474.02, + "probability": 0.9593 + }, + { + "start": 6474.28, + "end": 6475.6, + "probability": 0.9296 + }, + { + "start": 6475.76, + "end": 6476.36, + "probability": 0.7548 + }, + { + "start": 6477.74, + "end": 6481.0, + "probability": 0.9351 + }, + { + "start": 6481.8, + "end": 6486.06, + "probability": 0.9958 + }, + { + "start": 6486.52, + "end": 6487.7, + "probability": 0.7676 + }, + { + "start": 6488.7, + "end": 6489.82, + "probability": 0.9409 + }, + { + "start": 6490.44, + "end": 6494.18, + "probability": 0.9918 + }, + { + "start": 6494.28, + "end": 6499.38, + "probability": 0.9971 + }, + { + "start": 6500.48, + "end": 6501.82, + "probability": 0.9761 + }, + { + "start": 6502.18, + "end": 6506.12, + "probability": 0.9873 + }, + { + "start": 6507.2, + "end": 6508.3, + "probability": 0.9469 + }, + { + "start": 6508.66, + "end": 6509.3, + "probability": 0.5916 + }, + { + "start": 6509.48, + "end": 6513.64, + "probability": 0.9738 + }, + { + "start": 6514.74, + "end": 6518.24, + "probability": 0.9844 + }, + { + "start": 6518.24, + "end": 6522.78, + "probability": 0.9827 + }, + { + "start": 6524.3, + "end": 6524.88, + "probability": 0.6921 + }, + { + "start": 6525.04, + "end": 6525.7, + "probability": 0.9022 + }, + { + "start": 6525.8, + "end": 6531.47, + "probability": 0.885 + }, + { + "start": 6531.56, + "end": 6536.14, + "probability": 0.9985 + }, + { + "start": 6536.14, + "end": 6541.7, + "probability": 0.9989 + }, + { + "start": 6542.52, + "end": 6542.94, + "probability": 0.7363 + }, + { + "start": 6543.32, + "end": 6544.16, + "probability": 0.8636 + }, + { + "start": 6545.78, + "end": 6548.76, + "probability": 0.6243 + }, + { + "start": 6549.54, + "end": 6551.36, + "probability": 0.7199 + }, + { + "start": 6551.36, + "end": 6552.28, + "probability": 0.6188 + }, + { + "start": 6560.36, + "end": 6561.0, + "probability": 0.6485 + }, + { + "start": 6561.68, + "end": 6562.11, + "probability": 0.3666 + }, + { + "start": 6563.64, + "end": 6567.7, + "probability": 0.998 + }, + { + "start": 6568.44, + "end": 6574.96, + "probability": 0.998 + }, + { + "start": 6575.78, + "end": 6581.1, + "probability": 0.9996 + }, + { + "start": 6582.7, + "end": 6585.22, + "probability": 0.4883 + }, + { + "start": 6586.04, + "end": 6586.82, + "probability": 0.8722 + }, + { + "start": 6587.68, + "end": 6596.4, + "probability": 0.9937 + }, + { + "start": 6597.28, + "end": 6598.21, + "probability": 0.9307 + }, + { + "start": 6599.32, + "end": 6603.52, + "probability": 0.9992 + }, + { + "start": 6603.52, + "end": 6608.92, + "probability": 0.9904 + }, + { + "start": 6610.26, + "end": 6614.38, + "probability": 0.9769 + }, + { + "start": 6614.7, + "end": 6617.14, + "probability": 0.993 + }, + { + "start": 6618.36, + "end": 6623.12, + "probability": 0.9932 + }, + { + "start": 6623.12, + "end": 6630.62, + "probability": 0.9683 + }, + { + "start": 6632.86, + "end": 6634.8, + "probability": 0.8919 + }, + { + "start": 6635.9, + "end": 6636.0, + "probability": 0.4891 + }, + { + "start": 6636.64, + "end": 6638.7, + "probability": 0.96 + }, + { + "start": 6639.68, + "end": 6641.2, + "probability": 0.9879 + }, + { + "start": 6641.28, + "end": 6643.0, + "probability": 0.9956 + }, + { + "start": 6644.38, + "end": 6648.54, + "probability": 0.9731 + }, + { + "start": 6649.7, + "end": 6651.96, + "probability": 0.9859 + }, + { + "start": 6652.1, + "end": 6653.03, + "probability": 0.155 + }, + { + "start": 6653.46, + "end": 6656.1, + "probability": 0.9883 + }, + { + "start": 6656.26, + "end": 6658.14, + "probability": 0.9985 + }, + { + "start": 6659.64, + "end": 6662.44, + "probability": 0.9901 + }, + { + "start": 6663.18, + "end": 6664.86, + "probability": 0.9969 + }, + { + "start": 6665.42, + "end": 6667.02, + "probability": 0.9987 + }, + { + "start": 6668.8, + "end": 6672.88, + "probability": 0.9579 + }, + { + "start": 6673.74, + "end": 6680.72, + "probability": 0.9401 + }, + { + "start": 6681.36, + "end": 6681.56, + "probability": 0.0966 + }, + { + "start": 6682.7, + "end": 6684.26, + "probability": 0.8681 + }, + { + "start": 6684.92, + "end": 6688.22, + "probability": 0.9879 + }, + { + "start": 6689.92, + "end": 6693.74, + "probability": 0.9793 + }, + { + "start": 6694.32, + "end": 6695.42, + "probability": 0.7653 + }, + { + "start": 6695.72, + "end": 6697.24, + "probability": 0.9938 + }, + { + "start": 6697.9, + "end": 6699.68, + "probability": 0.9766 + }, + { + "start": 6700.78, + "end": 6703.5, + "probability": 0.8495 + }, + { + "start": 6705.44, + "end": 6709.4, + "probability": 0.9987 + }, + { + "start": 6710.04, + "end": 6711.0, + "probability": 0.8635 + }, + { + "start": 6711.52, + "end": 6712.36, + "probability": 0.8124 + }, + { + "start": 6713.36, + "end": 6714.28, + "probability": 0.8759 + }, + { + "start": 6715.56, + "end": 6716.3, + "probability": 0.9376 + }, + { + "start": 6717.14, + "end": 6718.72, + "probability": 0.9641 + }, + { + "start": 6719.16, + "end": 6721.14, + "probability": 0.9078 + }, + { + "start": 6722.56, + "end": 6723.54, + "probability": 0.9801 + }, + { + "start": 6723.64, + "end": 6723.99, + "probability": 0.9333 + }, + { + "start": 6724.22, + "end": 6726.12, + "probability": 0.9645 + }, + { + "start": 6728.25, + "end": 6730.86, + "probability": 0.9854 + }, + { + "start": 6731.38, + "end": 6737.54, + "probability": 0.9386 + }, + { + "start": 6738.06, + "end": 6743.52, + "probability": 0.9849 + }, + { + "start": 6744.22, + "end": 6744.86, + "probability": 0.4154 + }, + { + "start": 6745.72, + "end": 6746.28, + "probability": 0.7514 + }, + { + "start": 6748.08, + "end": 6752.5, + "probability": 0.9899 + }, + { + "start": 6753.18, + "end": 6754.06, + "probability": 0.9417 + }, + { + "start": 6754.5, + "end": 6762.42, + "probability": 0.9888 + }, + { + "start": 6763.98, + "end": 6769.56, + "probability": 0.976 + }, + { + "start": 6771.96, + "end": 6773.64, + "probability": 0.9392 + }, + { + "start": 6773.78, + "end": 6777.96, + "probability": 0.9508 + }, + { + "start": 6779.26, + "end": 6785.82, + "probability": 0.9949 + }, + { + "start": 6785.82, + "end": 6791.84, + "probability": 0.9845 + }, + { + "start": 6792.8, + "end": 6797.0, + "probability": 0.9674 + }, + { + "start": 6797.06, + "end": 6798.88, + "probability": 0.9712 + }, + { + "start": 6800.64, + "end": 6802.64, + "probability": 0.8658 + }, + { + "start": 6803.36, + "end": 6807.24, + "probability": 0.9598 + }, + { + "start": 6808.46, + "end": 6812.16, + "probability": 0.8706 + }, + { + "start": 6812.32, + "end": 6816.62, + "probability": 0.9829 + }, + { + "start": 6818.32, + "end": 6818.7, + "probability": 0.5973 + }, + { + "start": 6818.82, + "end": 6823.9, + "probability": 0.9557 + }, + { + "start": 6825.04, + "end": 6827.3, + "probability": 0.79 + }, + { + "start": 6828.82, + "end": 6831.76, + "probability": 0.8411 + }, + { + "start": 6832.78, + "end": 6835.24, + "probability": 0.9984 + }, + { + "start": 6836.55, + "end": 6839.12, + "probability": 0.9196 + }, + { + "start": 6840.26, + "end": 6841.6, + "probability": 0.7563 + }, + { + "start": 6842.62, + "end": 6845.32, + "probability": 0.8572 + }, + { + "start": 6845.92, + "end": 6849.84, + "probability": 0.9896 + }, + { + "start": 6849.84, + "end": 6853.28, + "probability": 0.9976 + }, + { + "start": 6853.7, + "end": 6858.41, + "probability": 0.9976 + }, + { + "start": 6860.44, + "end": 6862.22, + "probability": 0.9473 + }, + { + "start": 6864.6, + "end": 6871.86, + "probability": 0.9948 + }, + { + "start": 6872.44, + "end": 6873.46, + "probability": 0.4921 + }, + { + "start": 6874.76, + "end": 6875.56, + "probability": 0.8149 + }, + { + "start": 6876.8, + "end": 6881.0, + "probability": 0.9921 + }, + { + "start": 6881.68, + "end": 6883.44, + "probability": 0.9905 + }, + { + "start": 6884.28, + "end": 6886.72, + "probability": 0.9205 + }, + { + "start": 6888.24, + "end": 6889.9, + "probability": 0.9694 + }, + { + "start": 6890.08, + "end": 6891.76, + "probability": 0.599 + }, + { + "start": 6892.16, + "end": 6896.6, + "probability": 0.998 + }, + { + "start": 6897.18, + "end": 6899.92, + "probability": 0.9735 + }, + { + "start": 6901.04, + "end": 6902.74, + "probability": 0.9336 + }, + { + "start": 6903.94, + "end": 6905.58, + "probability": 0.969 + }, + { + "start": 6906.3, + "end": 6908.5, + "probability": 0.9995 + }, + { + "start": 6909.24, + "end": 6911.14, + "probability": 0.7551 + }, + { + "start": 6911.52, + "end": 6916.04, + "probability": 0.9971 + }, + { + "start": 6916.3, + "end": 6918.99, + "probability": 0.9687 + }, + { + "start": 6920.54, + "end": 6922.98, + "probability": 0.9988 + }, + { + "start": 6923.52, + "end": 6924.58, + "probability": 0.9943 + }, + { + "start": 6926.1, + "end": 6928.6, + "probability": 0.911 + }, + { + "start": 6929.48, + "end": 6931.54, + "probability": 0.9939 + }, + { + "start": 6932.82, + "end": 6936.04, + "probability": 0.9678 + }, + { + "start": 6937.66, + "end": 6940.72, + "probability": 0.9119 + }, + { + "start": 6941.5, + "end": 6943.6, + "probability": 0.9932 + }, + { + "start": 6944.46, + "end": 6946.68, + "probability": 0.8113 + }, + { + "start": 6946.86, + "end": 6950.74, + "probability": 0.993 + }, + { + "start": 6951.26, + "end": 6955.71, + "probability": 0.9767 + }, + { + "start": 6956.36, + "end": 6958.58, + "probability": 0.9616 + }, + { + "start": 6959.3, + "end": 6961.83, + "probability": 0.9969 + }, + { + "start": 6962.08, + "end": 6968.72, + "probability": 0.9802 + }, + { + "start": 6969.96, + "end": 6971.62, + "probability": 0.9656 + }, + { + "start": 6972.48, + "end": 6972.55, + "probability": 0.7075 + }, + { + "start": 6974.12, + "end": 6975.76, + "probability": 0.979 + }, + { + "start": 6977.02, + "end": 6978.92, + "probability": 0.9784 + }, + { + "start": 6979.92, + "end": 6982.72, + "probability": 0.9468 + }, + { + "start": 6983.3, + "end": 6986.64, + "probability": 0.987 + }, + { + "start": 6986.64, + "end": 6990.56, + "probability": 0.9987 + }, + { + "start": 6991.16, + "end": 6993.88, + "probability": 0.8611 + }, + { + "start": 6994.12, + "end": 6994.22, + "probability": 0.6928 + }, + { + "start": 6994.7, + "end": 6995.68, + "probability": 0.9004 + }, + { + "start": 6997.46, + "end": 6999.98, + "probability": 0.9269 + }, + { + "start": 7000.14, + "end": 7000.58, + "probability": 0.6506 + }, + { + "start": 7001.46, + "end": 7003.36, + "probability": 0.9608 + }, + { + "start": 7012.94, + "end": 7013.94, + "probability": 0.702 + }, + { + "start": 7015.22, + "end": 7021.4, + "probability": 0.7282 + }, + { + "start": 7021.44, + "end": 7022.54, + "probability": 0.6684 + }, + { + "start": 7023.16, + "end": 7024.37, + "probability": 0.9845 + }, + { + "start": 7024.88, + "end": 7026.98, + "probability": 0.9807 + }, + { + "start": 7027.14, + "end": 7029.42, + "probability": 0.9811 + }, + { + "start": 7029.86, + "end": 7031.56, + "probability": 0.6541 + }, + { + "start": 7032.82, + "end": 7038.62, + "probability": 0.9697 + }, + { + "start": 7039.46, + "end": 7041.9, + "probability": 0.9803 + }, + { + "start": 7042.48, + "end": 7043.84, + "probability": 0.9834 + }, + { + "start": 7045.1, + "end": 7046.72, + "probability": 0.9034 + }, + { + "start": 7047.24, + "end": 7050.42, + "probability": 0.8789 + }, + { + "start": 7051.02, + "end": 7054.08, + "probability": 0.9467 + }, + { + "start": 7054.56, + "end": 7055.82, + "probability": 0.9236 + }, + { + "start": 7057.6, + "end": 7058.8, + "probability": 0.6099 + }, + { + "start": 7058.92, + "end": 7063.3, + "probability": 0.7542 + }, + { + "start": 7063.3, + "end": 7067.54, + "probability": 0.587 + }, + { + "start": 7068.06, + "end": 7070.46, + "probability": 0.5568 + }, + { + "start": 7070.64, + "end": 7072.12, + "probability": 0.5847 + }, + { + "start": 7073.0, + "end": 7073.96, + "probability": 0.7643 + }, + { + "start": 7074.64, + "end": 7080.0, + "probability": 0.9905 + }, + { + "start": 7081.06, + "end": 7081.6, + "probability": 0.5975 + }, + { + "start": 7082.2, + "end": 7086.46, + "probability": 0.9271 + }, + { + "start": 7087.1, + "end": 7089.7, + "probability": 0.9144 + }, + { + "start": 7090.86, + "end": 7096.62, + "probability": 0.7574 + }, + { + "start": 7097.6, + "end": 7100.46, + "probability": 0.8823 + }, + { + "start": 7101.02, + "end": 7105.26, + "probability": 0.9763 + }, + { + "start": 7105.26, + "end": 7109.14, + "probability": 0.9124 + }, + { + "start": 7109.28, + "end": 7110.88, + "probability": 0.709 + }, + { + "start": 7111.3, + "end": 7116.92, + "probability": 0.9816 + }, + { + "start": 7117.02, + "end": 7118.0, + "probability": 0.9799 + }, + { + "start": 7118.26, + "end": 7119.32, + "probability": 0.9215 + }, + { + "start": 7120.32, + "end": 7125.36, + "probability": 0.9743 + }, + { + "start": 7125.36, + "end": 7131.82, + "probability": 0.9296 + }, + { + "start": 7131.82, + "end": 7136.92, + "probability": 0.9582 + }, + { + "start": 7137.14, + "end": 7139.18, + "probability": 0.8472 + }, + { + "start": 7139.78, + "end": 7143.02, + "probability": 0.9614 + }, + { + "start": 7143.1, + "end": 7143.94, + "probability": 0.7794 + }, + { + "start": 7144.46, + "end": 7145.36, + "probability": 0.6938 + }, + { + "start": 7146.8, + "end": 7149.84, + "probability": 0.9066 + }, + { + "start": 7150.76, + "end": 7153.6, + "probability": 0.6284 + }, + { + "start": 7168.14, + "end": 7169.18, + "probability": 0.7614 + }, + { + "start": 7172.44, + "end": 7173.66, + "probability": 0.7304 + }, + { + "start": 7175.16, + "end": 7175.62, + "probability": 0.9821 + }, + { + "start": 7176.34, + "end": 7178.3, + "probability": 0.9216 + }, + { + "start": 7182.4, + "end": 7186.08, + "probability": 0.9054 + }, + { + "start": 7187.0, + "end": 7188.24, + "probability": 0.9801 + }, + { + "start": 7189.3, + "end": 7197.72, + "probability": 0.9883 + }, + { + "start": 7197.94, + "end": 7198.74, + "probability": 0.7415 + }, + { + "start": 7201.26, + "end": 7202.56, + "probability": 0.7499 + }, + { + "start": 7203.79, + "end": 7206.51, + "probability": 0.8356 + }, + { + "start": 7206.62, + "end": 7212.12, + "probability": 0.9205 + }, + { + "start": 7213.98, + "end": 7219.18, + "probability": 0.9982 + }, + { + "start": 7220.34, + "end": 7223.28, + "probability": 0.9867 + }, + { + "start": 7225.3, + "end": 7228.7, + "probability": 0.7236 + }, + { + "start": 7229.06, + "end": 7230.94, + "probability": 0.5803 + }, + { + "start": 7231.16, + "end": 7232.0, + "probability": 0.6709 + }, + { + "start": 7232.38, + "end": 7233.15, + "probability": 0.9338 + }, + { + "start": 7233.86, + "end": 7236.48, + "probability": 0.9299 + }, + { + "start": 7237.08, + "end": 7239.12, + "probability": 0.9927 + }, + { + "start": 7239.98, + "end": 7242.86, + "probability": 0.9797 + }, + { + "start": 7244.04, + "end": 7244.53, + "probability": 0.8796 + }, + { + "start": 7246.18, + "end": 7247.14, + "probability": 0.9524 + }, + { + "start": 7247.42, + "end": 7248.4, + "probability": 0.9925 + }, + { + "start": 7248.48, + "end": 7249.7, + "probability": 0.772 + }, + { + "start": 7249.76, + "end": 7250.67, + "probability": 0.9595 + }, + { + "start": 7250.92, + "end": 7251.9, + "probability": 0.7634 + }, + { + "start": 7252.12, + "end": 7256.36, + "probability": 0.9197 + }, + { + "start": 7257.8, + "end": 7260.9, + "probability": 0.9487 + }, + { + "start": 7261.98, + "end": 7263.54, + "probability": 0.9949 + }, + { + "start": 7265.76, + "end": 7265.98, + "probability": 0.4502 + }, + { + "start": 7271.74, + "end": 7272.92, + "probability": 0.5105 + }, + { + "start": 7277.78, + "end": 7279.62, + "probability": 0.2489 + }, + { + "start": 7281.32, + "end": 7282.98, + "probability": 0.8387 + }, + { + "start": 7283.38, + "end": 7285.14, + "probability": 0.7415 + }, + { + "start": 7285.44, + "end": 7286.68, + "probability": 0.9354 + }, + { + "start": 7286.82, + "end": 7287.7, + "probability": 0.9207 + }, + { + "start": 7288.36, + "end": 7290.66, + "probability": 0.9124 + }, + { + "start": 7290.72, + "end": 7292.64, + "probability": 0.968 + }, + { + "start": 7294.44, + "end": 7297.58, + "probability": 0.7957 + }, + { + "start": 7298.44, + "end": 7303.3, + "probability": 0.8024 + }, + { + "start": 7304.38, + "end": 7305.15, + "probability": 0.9268 + }, + { + "start": 7306.34, + "end": 7308.86, + "probability": 0.822 + }, + { + "start": 7309.8, + "end": 7313.66, + "probability": 0.9544 + }, + { + "start": 7314.56, + "end": 7320.22, + "probability": 0.9976 + }, + { + "start": 7320.94, + "end": 7324.36, + "probability": 0.5396 + }, + { + "start": 7324.52, + "end": 7329.98, + "probability": 0.9806 + }, + { + "start": 7330.12, + "end": 7335.4, + "probability": 0.7138 + }, + { + "start": 7337.4, + "end": 7338.34, + "probability": 0.0143 + }, + { + "start": 7338.76, + "end": 7340.24, + "probability": 0.8428 + }, + { + "start": 7340.34, + "end": 7342.38, + "probability": 0.7994 + }, + { + "start": 7342.84, + "end": 7345.22, + "probability": 0.6009 + }, + { + "start": 7345.6, + "end": 7350.18, + "probability": 0.8883 + }, + { + "start": 7350.68, + "end": 7351.74, + "probability": 0.5259 + }, + { + "start": 7352.5, + "end": 7353.0, + "probability": 0.0378 + }, + { + "start": 7353.1, + "end": 7355.54, + "probability": 0.39 + }, + { + "start": 7355.84, + "end": 7356.42, + "probability": 0.6474 + }, + { + "start": 7356.52, + "end": 7360.09, + "probability": 0.1698 + }, + { + "start": 7360.9, + "end": 7362.83, + "probability": 0.1319 + }, + { + "start": 7363.88, + "end": 7367.44, + "probability": 0.6438 + }, + { + "start": 7369.26, + "end": 7372.44, + "probability": 0.7604 + }, + { + "start": 7373.02, + "end": 7376.38, + "probability": 0.7124 + }, + { + "start": 7377.3, + "end": 7377.88, + "probability": 0.9727 + }, + { + "start": 7379.3, + "end": 7382.4, + "probability": 0.8242 + }, + { + "start": 7383.16, + "end": 7383.98, + "probability": 0.9261 + }, + { + "start": 7384.1, + "end": 7385.8, + "probability": 0.8984 + }, + { + "start": 7385.84, + "end": 7389.58, + "probability": 0.7864 + }, + { + "start": 7389.9, + "end": 7391.98, + "probability": 0.7842 + }, + { + "start": 7393.4, + "end": 7393.96, + "probability": 0.802 + }, + { + "start": 7397.51, + "end": 7400.02, + "probability": 0.9729 + }, + { + "start": 7400.97, + "end": 7403.0, + "probability": 0.9398 + }, + { + "start": 7405.13, + "end": 7406.25, + "probability": 0.9897 + }, + { + "start": 7406.87, + "end": 7412.1, + "probability": 0.9978 + }, + { + "start": 7412.31, + "end": 7413.28, + "probability": 0.628 + }, + { + "start": 7414.45, + "end": 7415.71, + "probability": 0.9865 + }, + { + "start": 7417.77, + "end": 7421.24, + "probability": 0.9378 + }, + { + "start": 7423.51, + "end": 7427.35, + "probability": 0.8704 + }, + { + "start": 7427.85, + "end": 7428.11, + "probability": 0.5031 + }, + { + "start": 7428.29, + "end": 7431.17, + "probability": 0.9634 + }, + { + "start": 7431.29, + "end": 7432.83, + "probability": 0.999 + }, + { + "start": 7433.89, + "end": 7437.53, + "probability": 0.9829 + }, + { + "start": 7437.53, + "end": 7440.47, + "probability": 0.8613 + }, + { + "start": 7441.01, + "end": 7444.63, + "probability": 0.9715 + }, + { + "start": 7445.55, + "end": 7447.51, + "probability": 0.7946 + }, + { + "start": 7447.71, + "end": 7452.89, + "probability": 0.9985 + }, + { + "start": 7453.57, + "end": 7454.55, + "probability": 0.9366 + }, + { + "start": 7455.37, + "end": 7456.75, + "probability": 0.8915 + }, + { + "start": 7458.95, + "end": 7459.87, + "probability": 0.7445 + }, + { + "start": 7469.03, + "end": 7469.85, + "probability": 0.7185 + }, + { + "start": 7470.37, + "end": 7470.57, + "probability": 0.126 + }, + { + "start": 7470.87, + "end": 7473.69, + "probability": 0.7899 + }, + { + "start": 7474.45, + "end": 7478.37, + "probability": 0.8363 + }, + { + "start": 7480.41, + "end": 7485.79, + "probability": 0.9618 + }, + { + "start": 7486.67, + "end": 7489.97, + "probability": 0.874 + }, + { + "start": 7490.39, + "end": 7497.82, + "probability": 0.9778 + }, + { + "start": 7498.91, + "end": 7499.09, + "probability": 0.0279 + }, + { + "start": 7499.09, + "end": 7500.31, + "probability": 0.0852 + }, + { + "start": 7500.57, + "end": 7503.01, + "probability": 0.4518 + }, + { + "start": 7503.17, + "end": 7503.39, + "probability": 0.1508 + }, + { + "start": 7503.41, + "end": 7504.28, + "probability": 0.1418 + }, + { + "start": 7504.65, + "end": 7505.27, + "probability": 0.6298 + }, + { + "start": 7505.41, + "end": 7506.81, + "probability": 0.8267 + }, + { + "start": 7506.87, + "end": 7510.51, + "probability": 0.4002 + }, + { + "start": 7510.59, + "end": 7513.23, + "probability": 0.872 + }, + { + "start": 7513.51, + "end": 7517.79, + "probability": 0.9202 + }, + { + "start": 7520.61, + "end": 7520.61, + "probability": 0.2908 + }, + { + "start": 7520.61, + "end": 7526.05, + "probability": 0.974 + }, + { + "start": 7526.09, + "end": 7528.03, + "probability": 0.9111 + }, + { + "start": 7529.69, + "end": 7530.23, + "probability": 0.7876 + }, + { + "start": 7531.15, + "end": 7532.25, + "probability": 0.6839 + }, + { + "start": 7532.87, + "end": 7537.91, + "probability": 0.9946 + }, + { + "start": 7538.31, + "end": 7541.47, + "probability": 0.807 + }, + { + "start": 7542.07, + "end": 7545.69, + "probability": 0.79 + }, + { + "start": 7546.21, + "end": 7546.75, + "probability": 0.7023 + }, + { + "start": 7546.89, + "end": 7550.95, + "probability": 0.8723 + }, + { + "start": 7551.73, + "end": 7553.39, + "probability": 0.971 + }, + { + "start": 7553.95, + "end": 7555.51, + "probability": 0.8926 + }, + { + "start": 7555.59, + "end": 7556.31, + "probability": 0.75 + }, + { + "start": 7556.31, + "end": 7559.37, + "probability": 0.4143 + }, + { + "start": 7559.43, + "end": 7560.87, + "probability": 0.617 + }, + { + "start": 7561.73, + "end": 7563.97, + "probability": 0.9759 + }, + { + "start": 7565.13, + "end": 7565.85, + "probability": 0.8106 + }, + { + "start": 7566.45, + "end": 7567.27, + "probability": 0.9524 + }, + { + "start": 7567.49, + "end": 7568.35, + "probability": 0.8968 + }, + { + "start": 7568.51, + "end": 7571.47, + "probability": 0.9917 + }, + { + "start": 7572.69, + "end": 7575.18, + "probability": 0.943 + }, + { + "start": 7575.93, + "end": 7576.93, + "probability": 0.8384 + }, + { + "start": 7576.93, + "end": 7578.79, + "probability": 0.7246 + }, + { + "start": 7578.91, + "end": 7579.79, + "probability": 0.7515 + }, + { + "start": 7579.95, + "end": 7580.63, + "probability": 0.46 + }, + { + "start": 7582.09, + "end": 7582.93, + "probability": 0.6972 + }, + { + "start": 7583.15, + "end": 7586.63, + "probability": 0.9284 + }, + { + "start": 7587.47, + "end": 7590.41, + "probability": 0.9932 + }, + { + "start": 7591.05, + "end": 7592.17, + "probability": 0.9161 + }, + { + "start": 7593.59, + "end": 7595.95, + "probability": 0.9639 + }, + { + "start": 7598.69, + "end": 7600.83, + "probability": 0.9937 + }, + { + "start": 7601.15, + "end": 7601.49, + "probability": 0.805 + }, + { + "start": 7601.69, + "end": 7602.65, + "probability": 0.7974 + }, + { + "start": 7602.77, + "end": 7604.23, + "probability": 0.9235 + }, + { + "start": 7604.89, + "end": 7606.53, + "probability": 0.9954 + }, + { + "start": 7607.79, + "end": 7609.51, + "probability": 0.7532 + }, + { + "start": 7610.05, + "end": 7612.67, + "probability": 0.8562 + }, + { + "start": 7614.31, + "end": 7617.15, + "probability": 0.9268 + }, + { + "start": 7618.99, + "end": 7622.39, + "probability": 0.9893 + }, + { + "start": 7623.55, + "end": 7625.11, + "probability": 0.8657 + }, + { + "start": 7626.31, + "end": 7631.49, + "probability": 0.7807 + }, + { + "start": 7631.71, + "end": 7633.97, + "probability": 0.9009 + }, + { + "start": 7634.55, + "end": 7638.77, + "probability": 0.958 + }, + { + "start": 7640.09, + "end": 7640.57, + "probability": 0.9908 + }, + { + "start": 7641.51, + "end": 7642.09, + "probability": 0.9236 + }, + { + "start": 7642.89, + "end": 7645.07, + "probability": 0.7717 + }, + { + "start": 7645.87, + "end": 7646.73, + "probability": 0.4579 + }, + { + "start": 7647.21, + "end": 7648.51, + "probability": 0.7449 + }, + { + "start": 7649.05, + "end": 7652.55, + "probability": 0.8175 + }, + { + "start": 7653.47, + "end": 7655.77, + "probability": 0.9281 + }, + { + "start": 7656.85, + "end": 7660.27, + "probability": 0.6831 + }, + { + "start": 7660.93, + "end": 7663.23, + "probability": 0.5151 + }, + { + "start": 7665.21, + "end": 7667.27, + "probability": 0.965 + }, + { + "start": 7667.39, + "end": 7671.65, + "probability": 0.8639 + }, + { + "start": 7671.65, + "end": 7676.07, + "probability": 0.9243 + }, + { + "start": 7677.21, + "end": 7678.19, + "probability": 0.7666 + }, + { + "start": 7678.39, + "end": 7678.97, + "probability": 0.5409 + }, + { + "start": 7679.11, + "end": 7679.25, + "probability": 0.4639 + }, + { + "start": 7679.35, + "end": 7679.95, + "probability": 0.7945 + }, + { + "start": 7681.59, + "end": 7682.21, + "probability": 0.9313 + }, + { + "start": 7683.25, + "end": 7685.41, + "probability": 0.9329 + }, + { + "start": 7686.15, + "end": 7688.93, + "probability": 0.9902 + }, + { + "start": 7689.93, + "end": 7693.39, + "probability": 0.7881 + }, + { + "start": 7693.99, + "end": 7696.55, + "probability": 0.6684 + }, + { + "start": 7697.37, + "end": 7698.79, + "probability": 0.5319 + }, + { + "start": 7699.09, + "end": 7700.03, + "probability": 0.6546 + }, + { + "start": 7700.27, + "end": 7701.45, + "probability": 0.9038 + }, + { + "start": 7701.93, + "end": 7704.25, + "probability": 0.99 + }, + { + "start": 7704.65, + "end": 7708.23, + "probability": 0.9779 + }, + { + "start": 7708.41, + "end": 7709.21, + "probability": 0.8141 + }, + { + "start": 7709.61, + "end": 7710.57, + "probability": 0.6407 + }, + { + "start": 7711.75, + "end": 7717.35, + "probability": 0.983 + }, + { + "start": 7717.35, + "end": 7719.83, + "probability": 0.6377 + }, + { + "start": 7721.45, + "end": 7724.53, + "probability": 0.8795 + }, + { + "start": 7724.63, + "end": 7726.11, + "probability": 0.8693 + }, + { + "start": 7726.79, + "end": 7728.63, + "probability": 0.989 + }, + { + "start": 7729.39, + "end": 7730.49, + "probability": 0.9686 + }, + { + "start": 7731.29, + "end": 7735.43, + "probability": 0.9677 + }, + { + "start": 7735.43, + "end": 7735.97, + "probability": 0.7273 + }, + { + "start": 7747.39, + "end": 7748.59, + "probability": 0.7397 + }, + { + "start": 7750.53, + "end": 7753.07, + "probability": 0.8831 + }, + { + "start": 7754.77, + "end": 7756.49, + "probability": 0.7437 + }, + { + "start": 7758.17, + "end": 7761.59, + "probability": 0.7702 + }, + { + "start": 7762.35, + "end": 7764.99, + "probability": 0.9839 + }, + { + "start": 7766.71, + "end": 7768.97, + "probability": 0.9959 + }, + { + "start": 7768.97, + "end": 7771.77, + "probability": 0.9921 + }, + { + "start": 7773.07, + "end": 7775.05, + "probability": 0.9387 + }, + { + "start": 7775.67, + "end": 7779.02, + "probability": 0.9879 + }, + { + "start": 7780.41, + "end": 7782.53, + "probability": 0.962 + }, + { + "start": 7783.43, + "end": 7784.65, + "probability": 0.9729 + }, + { + "start": 7785.19, + "end": 7786.99, + "probability": 0.8988 + }, + { + "start": 7788.01, + "end": 7789.45, + "probability": 0.9932 + }, + { + "start": 7790.47, + "end": 7791.55, + "probability": 0.8629 + }, + { + "start": 7792.93, + "end": 7793.45, + "probability": 0.8861 + }, + { + "start": 7794.15, + "end": 7796.15, + "probability": 0.9844 + }, + { + "start": 7796.75, + "end": 7798.03, + "probability": 0.8337 + }, + { + "start": 7798.95, + "end": 7802.76, + "probability": 0.9915 + }, + { + "start": 7804.47, + "end": 7813.93, + "probability": 0.9846 + }, + { + "start": 7815.21, + "end": 7816.43, + "probability": 0.862 + }, + { + "start": 7816.95, + "end": 7818.53, + "probability": 0.9817 + }, + { + "start": 7819.09, + "end": 7821.29, + "probability": 0.9234 + }, + { + "start": 7821.43, + "end": 7825.75, + "probability": 0.9867 + }, + { + "start": 7826.57, + "end": 7827.05, + "probability": 0.8452 + }, + { + "start": 7828.05, + "end": 7829.65, + "probability": 0.9196 + }, + { + "start": 7829.67, + "end": 7832.63, + "probability": 0.9875 + }, + { + "start": 7833.37, + "end": 7836.77, + "probability": 0.979 + }, + { + "start": 7837.35, + "end": 7839.63, + "probability": 0.9651 + }, + { + "start": 7840.57, + "end": 7845.33, + "probability": 0.9326 + }, + { + "start": 7845.89, + "end": 7848.65, + "probability": 0.9536 + }, + { + "start": 7850.47, + "end": 7850.91, + "probability": 0.4342 + }, + { + "start": 7851.67, + "end": 7853.27, + "probability": 0.7337 + }, + { + "start": 7854.15, + "end": 7855.25, + "probability": 0.991 + }, + { + "start": 7856.13, + "end": 7856.8, + "probability": 0.9258 + }, + { + "start": 7856.95, + "end": 7857.33, + "probability": 0.9572 + }, + { + "start": 7858.59, + "end": 7862.07, + "probability": 0.9194 + }, + { + "start": 7864.01, + "end": 7865.85, + "probability": 0.9463 + }, + { + "start": 7866.51, + "end": 7868.87, + "probability": 0.9396 + }, + { + "start": 7869.75, + "end": 7871.63, + "probability": 0.9878 + }, + { + "start": 7872.65, + "end": 7875.31, + "probability": 0.9985 + }, + { + "start": 7875.43, + "end": 7876.01, + "probability": 0.9928 + }, + { + "start": 7876.05, + "end": 7876.73, + "probability": 0.9829 + }, + { + "start": 7876.93, + "end": 7877.97, + "probability": 0.7658 + }, + { + "start": 7879.61, + "end": 7885.65, + "probability": 0.9902 + }, + { + "start": 7886.19, + "end": 7888.93, + "probability": 0.9857 + }, + { + "start": 7890.47, + "end": 7892.69, + "probability": 0.8652 + }, + { + "start": 7894.27, + "end": 7898.97, + "probability": 0.8974 + }, + { + "start": 7899.71, + "end": 7899.93, + "probability": 0.2224 + }, + { + "start": 7900.07, + "end": 7903.97, + "probability": 0.9687 + }, + { + "start": 7904.09, + "end": 7904.51, + "probability": 0.5795 + }, + { + "start": 7904.67, + "end": 7906.51, + "probability": 0.9485 + }, + { + "start": 7908.13, + "end": 7908.99, + "probability": 0.9752 + }, + { + "start": 7909.27, + "end": 7910.25, + "probability": 0.9327 + }, + { + "start": 7910.47, + "end": 7911.51, + "probability": 0.6353 + }, + { + "start": 7911.59, + "end": 7913.51, + "probability": 0.9707 + }, + { + "start": 7913.93, + "end": 7918.77, + "probability": 0.9342 + }, + { + "start": 7920.09, + "end": 7922.97, + "probability": 0.9976 + }, + { + "start": 7923.29, + "end": 7924.39, + "probability": 0.9979 + }, + { + "start": 7925.07, + "end": 7926.49, + "probability": 0.9255 + }, + { + "start": 7927.25, + "end": 7927.81, + "probability": 0.9715 + }, + { + "start": 7929.37, + "end": 7934.77, + "probability": 0.85 + }, + { + "start": 7934.85, + "end": 7935.55, + "probability": 0.642 + }, + { + "start": 7936.77, + "end": 7937.57, + "probability": 0.8424 + }, + { + "start": 7938.59, + "end": 7939.74, + "probability": 0.9392 + }, + { + "start": 7941.17, + "end": 7943.91, + "probability": 0.9106 + }, + { + "start": 7943.95, + "end": 7946.06, + "probability": 0.9894 + }, + { + "start": 7946.53, + "end": 7950.75, + "probability": 0.996 + }, + { + "start": 7951.51, + "end": 7954.93, + "probability": 0.8343 + }, + { + "start": 7955.75, + "end": 7959.45, + "probability": 0.8184 + }, + { + "start": 7960.15, + "end": 7961.91, + "probability": 0.9785 + }, + { + "start": 7962.69, + "end": 7963.73, + "probability": 0.8076 + }, + { + "start": 7964.97, + "end": 7967.19, + "probability": 0.9565 + }, + { + "start": 7968.19, + "end": 7971.13, + "probability": 0.9357 + }, + { + "start": 7971.67, + "end": 7972.73, + "probability": 0.832 + }, + { + "start": 7973.95, + "end": 7974.87, + "probability": 0.96 + }, + { + "start": 7975.15, + "end": 7978.51, + "probability": 0.6675 + }, + { + "start": 7978.59, + "end": 7981.33, + "probability": 0.9589 + }, + { + "start": 7982.69, + "end": 7984.25, + "probability": 0.8716 + }, + { + "start": 7984.85, + "end": 7986.03, + "probability": 0.9609 + }, + { + "start": 7986.19, + "end": 7987.99, + "probability": 0.9302 + }, + { + "start": 7988.03, + "end": 7989.45, + "probability": 0.8624 + }, + { + "start": 7990.09, + "end": 7993.15, + "probability": 0.8888 + }, + { + "start": 7993.87, + "end": 7994.41, + "probability": 0.8975 + }, + { + "start": 7995.53, + "end": 7998.93, + "probability": 0.8369 + }, + { + "start": 7999.05, + "end": 7999.57, + "probability": 0.8332 + }, + { + "start": 8000.01, + "end": 8001.31, + "probability": 0.8889 + }, + { + "start": 8001.67, + "end": 8006.85, + "probability": 0.9583 + }, + { + "start": 8008.15, + "end": 8013.21, + "probability": 0.9832 + }, + { + "start": 8014.11, + "end": 8016.67, + "probability": 0.8133 + }, + { + "start": 8016.77, + "end": 8019.65, + "probability": 0.9937 + }, + { + "start": 8020.89, + "end": 8022.3, + "probability": 0.8987 + }, + { + "start": 8022.47, + "end": 8023.07, + "probability": 0.9199 + }, + { + "start": 8023.15, + "end": 8023.6, + "probability": 0.5685 + }, + { + "start": 8024.83, + "end": 8027.49, + "probability": 0.9961 + }, + { + "start": 8028.19, + "end": 8031.29, + "probability": 0.9202 + }, + { + "start": 8031.49, + "end": 8035.17, + "probability": 0.9599 + }, + { + "start": 8036.21, + "end": 8039.15, + "probability": 0.8536 + }, + { + "start": 8039.87, + "end": 8040.5, + "probability": 0.7473 + }, + { + "start": 8041.49, + "end": 8043.15, + "probability": 0.9739 + }, + { + "start": 8043.41, + "end": 8045.71, + "probability": 0.7116 + }, + { + "start": 8045.71, + "end": 8046.73, + "probability": 0.6332 + }, + { + "start": 8047.63, + "end": 8049.99, + "probability": 0.9788 + }, + { + "start": 8050.71, + "end": 8052.15, + "probability": 0.517 + }, + { + "start": 8053.05, + "end": 8055.77, + "probability": 0.8918 + }, + { + "start": 8056.33, + "end": 8057.81, + "probability": 0.6435 + }, + { + "start": 8058.55, + "end": 8060.95, + "probability": 0.9525 + }, + { + "start": 8062.33, + "end": 8063.63, + "probability": 0.979 + }, + { + "start": 8064.17, + "end": 8065.61, + "probability": 0.984 + }, + { + "start": 8066.47, + "end": 8070.35, + "probability": 0.978 + }, + { + "start": 8071.05, + "end": 8071.45, + "probability": 0.9883 + }, + { + "start": 8072.53, + "end": 8073.53, + "probability": 0.9794 + }, + { + "start": 8074.39, + "end": 8077.77, + "probability": 0.9824 + }, + { + "start": 8078.79, + "end": 8082.55, + "probability": 0.9934 + }, + { + "start": 8083.31, + "end": 8085.41, + "probability": 0.8949 + }, + { + "start": 8086.73, + "end": 8088.91, + "probability": 0.978 + }, + { + "start": 8090.19, + "end": 8090.79, + "probability": 0.5099 + }, + { + "start": 8091.17, + "end": 8093.3, + "probability": 0.6454 + }, + { + "start": 8094.21, + "end": 8096.89, + "probability": 0.8786 + }, + { + "start": 8097.17, + "end": 8097.99, + "probability": 0.8578 + }, + { + "start": 8098.15, + "end": 8102.63, + "probability": 0.9661 + }, + { + "start": 8104.53, + "end": 8107.77, + "probability": 0.9954 + }, + { + "start": 8107.77, + "end": 8111.67, + "probability": 0.9993 + }, + { + "start": 8112.83, + "end": 8114.39, + "probability": 0.961 + }, + { + "start": 8114.91, + "end": 8116.49, + "probability": 0.9238 + }, + { + "start": 8117.13, + "end": 8117.8, + "probability": 0.9359 + }, + { + "start": 8118.81, + "end": 8120.21, + "probability": 0.9937 + }, + { + "start": 8120.31, + "end": 8121.97, + "probability": 0.9668 + }, + { + "start": 8122.65, + "end": 8124.53, + "probability": 0.7712 + }, + { + "start": 8125.17, + "end": 8127.71, + "probability": 0.9384 + }, + { + "start": 8128.29, + "end": 8132.61, + "probability": 0.8464 + }, + { + "start": 8132.61, + "end": 8137.17, + "probability": 0.9918 + }, + { + "start": 8137.67, + "end": 8139.33, + "probability": 0.9925 + }, + { + "start": 8140.09, + "end": 8144.49, + "probability": 0.9992 + }, + { + "start": 8144.49, + "end": 8147.71, + "probability": 0.9981 + }, + { + "start": 8147.86, + "end": 8150.19, + "probability": 0.8677 + }, + { + "start": 8150.51, + "end": 8152.11, + "probability": 0.9271 + }, + { + "start": 8152.71, + "end": 8155.91, + "probability": 0.8203 + }, + { + "start": 8156.67, + "end": 8159.19, + "probability": 0.9611 + }, + { + "start": 8159.77, + "end": 8162.77, + "probability": 0.8647 + }, + { + "start": 8163.45, + "end": 8164.35, + "probability": 0.5721 + }, + { + "start": 8164.45, + "end": 8166.53, + "probability": 0.9846 + }, + { + "start": 8167.03, + "end": 8168.45, + "probability": 0.9849 + }, + { + "start": 8170.79, + "end": 8171.57, + "probability": 0.1417 + }, + { + "start": 8171.57, + "end": 8172.52, + "probability": 0.4071 + }, + { + "start": 8173.53, + "end": 8174.21, + "probability": 0.0219 + }, + { + "start": 8174.79, + "end": 8178.51, + "probability": 0.9098 + }, + { + "start": 8178.85, + "end": 8179.07, + "probability": 0.7878 + }, + { + "start": 8180.03, + "end": 8180.93, + "probability": 0.7587 + }, + { + "start": 8182.49, + "end": 8185.39, + "probability": 0.8171 + }, + { + "start": 8186.31, + "end": 8187.39, + "probability": 0.7515 + }, + { + "start": 8205.57, + "end": 8207.45, + "probability": 0.6175 + }, + { + "start": 8210.81, + "end": 8213.39, + "probability": 0.9741 + }, + { + "start": 8217.11, + "end": 8218.71, + "probability": 0.6628 + }, + { + "start": 8218.77, + "end": 8223.37, + "probability": 0.9835 + }, + { + "start": 8224.41, + "end": 8228.53, + "probability": 0.9827 + }, + { + "start": 8229.51, + "end": 8229.85, + "probability": 0.6779 + }, + { + "start": 8230.43, + "end": 8236.11, + "probability": 0.8292 + }, + { + "start": 8238.07, + "end": 8241.43, + "probability": 0.9819 + }, + { + "start": 8241.53, + "end": 8242.09, + "probability": 0.8124 + }, + { + "start": 8242.17, + "end": 8247.45, + "probability": 0.9781 + }, + { + "start": 8249.05, + "end": 8251.45, + "probability": 0.7293 + }, + { + "start": 8251.73, + "end": 8253.65, + "probability": 0.9554 + }, + { + "start": 8253.91, + "end": 8255.47, + "probability": 0.7733 + }, + { + "start": 8256.41, + "end": 8258.4, + "probability": 0.6725 + }, + { + "start": 8260.13, + "end": 8266.91, + "probability": 0.8316 + }, + { + "start": 8268.13, + "end": 8272.39, + "probability": 0.713 + }, + { + "start": 8273.27, + "end": 8275.25, + "probability": 0.9787 + }, + { + "start": 8275.93, + "end": 8278.15, + "probability": 0.9556 + }, + { + "start": 8279.71, + "end": 8280.73, + "probability": 0.2818 + }, + { + "start": 8281.47, + "end": 8283.17, + "probability": 0.8113 + }, + { + "start": 8284.49, + "end": 8291.11, + "probability": 0.9941 + }, + { + "start": 8291.11, + "end": 8297.03, + "probability": 0.9996 + }, + { + "start": 8297.65, + "end": 8301.01, + "probability": 0.8497 + }, + { + "start": 8301.81, + "end": 8304.11, + "probability": 0.6938 + }, + { + "start": 8304.31, + "end": 8305.93, + "probability": 0.9885 + }, + { + "start": 8307.51, + "end": 8308.85, + "probability": 0.7399 + }, + { + "start": 8309.53, + "end": 8312.33, + "probability": 0.9189 + }, + { + "start": 8313.41, + "end": 8315.83, + "probability": 0.9871 + }, + { + "start": 8315.83, + "end": 8319.75, + "probability": 0.9927 + }, + { + "start": 8320.99, + "end": 8325.77, + "probability": 0.9087 + }, + { + "start": 8325.77, + "end": 8330.93, + "probability": 0.9971 + }, + { + "start": 8331.27, + "end": 8335.75, + "probability": 0.98 + }, + { + "start": 8336.45, + "end": 8340.99, + "probability": 0.9922 + }, + { + "start": 8342.77, + "end": 8346.15, + "probability": 0.9926 + }, + { + "start": 8346.31, + "end": 8346.67, + "probability": 0.7523 + }, + { + "start": 8346.75, + "end": 8348.49, + "probability": 0.9941 + }, + { + "start": 8348.83, + "end": 8350.25, + "probability": 0.5937 + }, + { + "start": 8350.85, + "end": 8352.19, + "probability": 0.9561 + }, + { + "start": 8352.95, + "end": 8355.71, + "probability": 0.9802 + }, + { + "start": 8356.45, + "end": 8359.57, + "probability": 0.9805 + }, + { + "start": 8360.21, + "end": 8364.11, + "probability": 0.969 + }, + { + "start": 8364.31, + "end": 8365.63, + "probability": 0.9049 + }, + { + "start": 8366.87, + "end": 8368.09, + "probability": 0.8119 + }, + { + "start": 8368.73, + "end": 8374.25, + "probability": 0.8285 + }, + { + "start": 8375.13, + "end": 8380.59, + "probability": 0.9819 + }, + { + "start": 8380.89, + "end": 8383.11, + "probability": 0.9741 + }, + { + "start": 8383.25, + "end": 8385.65, + "probability": 0.9942 + }, + { + "start": 8386.61, + "end": 8389.69, + "probability": 0.9939 + }, + { + "start": 8389.83, + "end": 8393.77, + "probability": 0.9762 + }, + { + "start": 8393.97, + "end": 8395.89, + "probability": 0.9676 + }, + { + "start": 8396.71, + "end": 8398.31, + "probability": 0.9955 + }, + { + "start": 8399.67, + "end": 8402.6, + "probability": 0.7101 + }, + { + "start": 8403.55, + "end": 8405.67, + "probability": 0.9916 + }, + { + "start": 8405.77, + "end": 8409.93, + "probability": 0.9985 + }, + { + "start": 8411.23, + "end": 8414.31, + "probability": 0.8652 + }, + { + "start": 8414.99, + "end": 8419.75, + "probability": 0.9774 + }, + { + "start": 8419.93, + "end": 8421.19, + "probability": 0.5382 + }, + { + "start": 8421.37, + "end": 8422.73, + "probability": 0.2074 + }, + { + "start": 8422.85, + "end": 8423.31, + "probability": 0.7077 + }, + { + "start": 8424.49, + "end": 8426.6, + "probability": 0.3081 + }, + { + "start": 8426.97, + "end": 8428.65, + "probability": 0.8469 + }, + { + "start": 8429.67, + "end": 8430.37, + "probability": 0.8851 + }, + { + "start": 8430.49, + "end": 8431.8, + "probability": 0.9965 + }, + { + "start": 8432.55, + "end": 8433.99, + "probability": 0.9794 + }, + { + "start": 8434.25, + "end": 8434.96, + "probability": 0.8447 + }, + { + "start": 8435.79, + "end": 8436.57, + "probability": 0.8714 + }, + { + "start": 8437.59, + "end": 8440.71, + "probability": 0.9932 + }, + { + "start": 8440.77, + "end": 8445.95, + "probability": 0.9911 + }, + { + "start": 8446.85, + "end": 8451.67, + "probability": 0.9947 + }, + { + "start": 8452.17, + "end": 8453.85, + "probability": 0.9525 + }, + { + "start": 8454.97, + "end": 8457.61, + "probability": 0.9536 + }, + { + "start": 8457.61, + "end": 8459.99, + "probability": 0.8298 + }, + { + "start": 8460.11, + "end": 8461.69, + "probability": 0.8238 + }, + { + "start": 8462.31, + "end": 8462.81, + "probability": 0.5358 + }, + { + "start": 8464.22, + "end": 8466.58, + "probability": 0.9884 + }, + { + "start": 8467.51, + "end": 8467.75, + "probability": 0.9155 + }, + { + "start": 8467.95, + "end": 8470.43, + "probability": 0.8594 + }, + { + "start": 8470.57, + "end": 8472.61, + "probability": 0.9884 + }, + { + "start": 8473.53, + "end": 8474.09, + "probability": 0.6914 + }, + { + "start": 8475.23, + "end": 8480.0, + "probability": 0.9856 + }, + { + "start": 8481.05, + "end": 8484.07, + "probability": 0.9122 + }, + { + "start": 8484.49, + "end": 8485.27, + "probability": 0.5181 + }, + { + "start": 8485.73, + "end": 8489.03, + "probability": 0.9367 + }, + { + "start": 8489.15, + "end": 8490.25, + "probability": 0.9622 + }, + { + "start": 8490.45, + "end": 8490.79, + "probability": 0.4074 + }, + { + "start": 8490.97, + "end": 8491.25, + "probability": 0.7164 + }, + { + "start": 8491.49, + "end": 8493.44, + "probability": 0.9183 + }, + { + "start": 8496.13, + "end": 8497.4, + "probability": 0.9786 + }, + { + "start": 8498.35, + "end": 8500.65, + "probability": 0.9683 + }, + { + "start": 8500.69, + "end": 8500.87, + "probability": 0.795 + }, + { + "start": 8500.87, + "end": 8502.17, + "probability": 0.9908 + }, + { + "start": 8502.27, + "end": 8505.19, + "probability": 0.954 + }, + { + "start": 8505.87, + "end": 8507.35, + "probability": 0.9816 + }, + { + "start": 8507.47, + "end": 8508.09, + "probability": 0.9802 + }, + { + "start": 8508.47, + "end": 8513.03, + "probability": 0.9899 + }, + { + "start": 8513.67, + "end": 8514.61, + "probability": 0.9867 + }, + { + "start": 8514.87, + "end": 8517.16, + "probability": 0.9746 + }, + { + "start": 8518.97, + "end": 8523.83, + "probability": 0.9915 + }, + { + "start": 8523.93, + "end": 8526.57, + "probability": 0.9904 + }, + { + "start": 8527.28, + "end": 8530.23, + "probability": 0.9966 + }, + { + "start": 8530.61, + "end": 8536.03, + "probability": 0.9912 + }, + { + "start": 8536.35, + "end": 8538.53, + "probability": 0.9756 + }, + { + "start": 8538.99, + "end": 8541.71, + "probability": 0.9717 + }, + { + "start": 8542.45, + "end": 8544.19, + "probability": 0.9396 + }, + { + "start": 8544.25, + "end": 8549.01, + "probability": 0.9951 + }, + { + "start": 8549.17, + "end": 8552.19, + "probability": 0.9385 + }, + { + "start": 8552.61, + "end": 8555.88, + "probability": 0.9656 + }, + { + "start": 8557.33, + "end": 8559.35, + "probability": 0.9835 + }, + { + "start": 8559.41, + "end": 8561.71, + "probability": 0.9854 + }, + { + "start": 8562.25, + "end": 8563.73, + "probability": 0.9954 + }, + { + "start": 8563.85, + "end": 8564.41, + "probability": 0.428 + }, + { + "start": 8564.49, + "end": 8567.93, + "probability": 0.8201 + }, + { + "start": 8568.45, + "end": 8575.42, + "probability": 0.9899 + }, + { + "start": 8575.83, + "end": 8576.03, + "probability": 0.8366 + }, + { + "start": 8576.67, + "end": 8576.69, + "probability": 0.0109 + } + ], + "segments_count": 2587, + "words_count": 13093, + "avg_words_per_segment": 5.0611, + "avg_segment_duration": 2.4359, + "avg_words_per_minute": 90.8738, + "plenum_id": "27162", + "duration": 8644.74, + "title": null, + "plenum_date": "2013-03-11" +} \ No newline at end of file