diff --git "a/36215/metadata.json" "b/36215/metadata.json" new file mode 100644--- /dev/null +++ "b/36215/metadata.json" @@ -0,0 +1,37162 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "36215", + "quality_score": 0.9575, + "per_segment_quality_scores": [ + { + "start": 61.98, + "end": 63.64, + "probability": 0.6562 + }, + { + "start": 63.64, + "end": 65.26, + "probability": 0.8396 + }, + { + "start": 65.88, + "end": 68.46, + "probability": 0.69 + }, + { + "start": 68.48, + "end": 70.0, + "probability": 0.6137 + }, + { + "start": 70.44, + "end": 71.56, + "probability": 0.9584 + }, + { + "start": 71.66, + "end": 72.28, + "probability": 0.9098 + }, + { + "start": 72.88, + "end": 73.52, + "probability": 0.0595 + }, + { + "start": 75.91, + "end": 77.4, + "probability": 0.8162 + }, + { + "start": 78.22, + "end": 79.48, + "probability": 0.8002 + }, + { + "start": 79.64, + "end": 82.82, + "probability": 0.9352 + }, + { + "start": 82.82, + "end": 87.78, + "probability": 0.9845 + }, + { + "start": 88.36, + "end": 90.4, + "probability": 0.9843 + }, + { + "start": 90.68, + "end": 91.02, + "probability": 0.7156 + }, + { + "start": 91.52, + "end": 92.92, + "probability": 0.8499 + }, + { + "start": 92.98, + "end": 96.6, + "probability": 0.8863 + }, + { + "start": 97.2, + "end": 98.62, + "probability": 0.8383 + }, + { + "start": 98.82, + "end": 101.01, + "probability": 0.909 + }, + { + "start": 105.73, + "end": 108.16, + "probability": 0.9465 + }, + { + "start": 109.4, + "end": 109.74, + "probability": 0.6791 + }, + { + "start": 109.8, + "end": 110.4, + "probability": 0.447 + }, + { + "start": 110.48, + "end": 111.28, + "probability": 0.9893 + }, + { + "start": 111.86, + "end": 117.48, + "probability": 0.8198 + }, + { + "start": 118.62, + "end": 123.36, + "probability": 0.864 + }, + { + "start": 124.2, + "end": 129.18, + "probability": 0.8291 + }, + { + "start": 130.26, + "end": 134.3, + "probability": 0.8826 + }, + { + "start": 135.16, + "end": 137.74, + "probability": 0.9795 + }, + { + "start": 138.14, + "end": 143.36, + "probability": 0.9814 + }, + { + "start": 143.36, + "end": 149.12, + "probability": 0.9806 + }, + { + "start": 149.96, + "end": 153.4, + "probability": 0.9785 + }, + { + "start": 154.3, + "end": 157.32, + "probability": 0.9466 + }, + { + "start": 157.32, + "end": 159.99, + "probability": 0.9897 + }, + { + "start": 160.68, + "end": 161.24, + "probability": 0.7946 + }, + { + "start": 162.22, + "end": 165.76, + "probability": 0.9841 + }, + { + "start": 166.1, + "end": 167.24, + "probability": 0.7664 + }, + { + "start": 167.36, + "end": 168.06, + "probability": 0.7741 + }, + { + "start": 168.56, + "end": 169.0, + "probability": 0.9577 + }, + { + "start": 169.94, + "end": 172.32, + "probability": 0.9744 + }, + { + "start": 172.71, + "end": 175.6, + "probability": 0.9707 + }, + { + "start": 176.58, + "end": 178.8, + "probability": 0.8964 + }, + { + "start": 178.8, + "end": 181.74, + "probability": 0.9756 + }, + { + "start": 182.64, + "end": 185.19, + "probability": 0.8884 + }, + { + "start": 185.4, + "end": 185.9, + "probability": 0.7287 + }, + { + "start": 186.1, + "end": 188.02, + "probability": 0.9121 + }, + { + "start": 189.46, + "end": 192.36, + "probability": 0.7878 + }, + { + "start": 193.14, + "end": 194.22, + "probability": 0.658 + }, + { + "start": 194.4, + "end": 197.5, + "probability": 0.9865 + }, + { + "start": 197.5, + "end": 202.1, + "probability": 0.9934 + }, + { + "start": 202.86, + "end": 206.48, + "probability": 0.9462 + }, + { + "start": 206.48, + "end": 210.54, + "probability": 0.9494 + }, + { + "start": 211.76, + "end": 214.47, + "probability": 0.8251 + }, + { + "start": 214.86, + "end": 217.5, + "probability": 0.8986 + }, + { + "start": 217.94, + "end": 219.56, + "probability": 0.7161 + }, + { + "start": 219.56, + "end": 223.64, + "probability": 0.7308 + }, + { + "start": 224.32, + "end": 228.32, + "probability": 0.9055 + }, + { + "start": 228.32, + "end": 233.08, + "probability": 0.9867 + }, + { + "start": 233.72, + "end": 236.16, + "probability": 0.9455 + }, + { + "start": 236.16, + "end": 237.72, + "probability": 0.7533 + }, + { + "start": 237.8, + "end": 239.42, + "probability": 0.9901 + }, + { + "start": 240.32, + "end": 241.02, + "probability": 0.8411 + }, + { + "start": 241.46, + "end": 242.86, + "probability": 0.5849 + }, + { + "start": 243.22, + "end": 246.06, + "probability": 0.8843 + }, + { + "start": 246.44, + "end": 248.84, + "probability": 0.8352 + }, + { + "start": 248.84, + "end": 251.0, + "probability": 0.9634 + }, + { + "start": 252.16, + "end": 252.88, + "probability": 0.6676 + }, + { + "start": 253.0, + "end": 255.5, + "probability": 0.9408 + }, + { + "start": 255.88, + "end": 259.74, + "probability": 0.7094 + }, + { + "start": 260.92, + "end": 263.04, + "probability": 0.6262 + }, + { + "start": 263.58, + "end": 265.74, + "probability": 0.6391 + }, + { + "start": 266.28, + "end": 268.1, + "probability": 0.819 + }, + { + "start": 269.44, + "end": 271.31, + "probability": 0.9216 + }, + { + "start": 271.58, + "end": 276.74, + "probability": 0.9038 + }, + { + "start": 277.8, + "end": 281.9, + "probability": 0.7089 + }, + { + "start": 281.98, + "end": 282.38, + "probability": 0.5266 + }, + { + "start": 282.56, + "end": 283.74, + "probability": 0.9454 + }, + { + "start": 288.32, + "end": 291.08, + "probability": 0.7231 + }, + { + "start": 291.76, + "end": 294.6, + "probability": 0.7049 + }, + { + "start": 295.52, + "end": 297.2, + "probability": 0.7047 + }, + { + "start": 297.84, + "end": 298.88, + "probability": 0.7491 + }, + { + "start": 299.66, + "end": 302.94, + "probability": 0.9541 + }, + { + "start": 303.14, + "end": 304.76, + "probability": 0.9862 + }, + { + "start": 305.26, + "end": 306.05, + "probability": 0.8477 + }, + { + "start": 307.04, + "end": 310.0, + "probability": 0.8566 + }, + { + "start": 311.1, + "end": 313.1, + "probability": 0.9712 + }, + { + "start": 314.32, + "end": 318.92, + "probability": 0.8234 + }, + { + "start": 318.96, + "end": 319.96, + "probability": 0.9788 + }, + { + "start": 320.66, + "end": 322.98, + "probability": 0.8367 + }, + { + "start": 323.5, + "end": 325.62, + "probability": 0.9878 + }, + { + "start": 326.14, + "end": 327.88, + "probability": 0.9516 + }, + { + "start": 328.44, + "end": 329.8, + "probability": 0.8008 + }, + { + "start": 330.82, + "end": 334.84, + "probability": 0.9613 + }, + { + "start": 336.16, + "end": 339.88, + "probability": 0.999 + }, + { + "start": 339.88, + "end": 343.52, + "probability": 0.9864 + }, + { + "start": 344.26, + "end": 346.62, + "probability": 0.7518 + }, + { + "start": 348.22, + "end": 352.68, + "probability": 0.9756 + }, + { + "start": 353.3, + "end": 358.0, + "probability": 0.8448 + }, + { + "start": 358.54, + "end": 360.04, + "probability": 0.9704 + }, + { + "start": 360.82, + "end": 362.18, + "probability": 0.5682 + }, + { + "start": 362.5, + "end": 363.84, + "probability": 0.5872 + }, + { + "start": 363.9, + "end": 368.07, + "probability": 0.9658 + }, + { + "start": 368.5, + "end": 369.77, + "probability": 0.8027 + }, + { + "start": 370.26, + "end": 374.1, + "probability": 0.6657 + }, + { + "start": 378.3, + "end": 379.86, + "probability": 0.532 + }, + { + "start": 380.68, + "end": 383.62, + "probability": 0.7578 + }, + { + "start": 383.62, + "end": 388.08, + "probability": 0.692 + }, + { + "start": 388.58, + "end": 389.9, + "probability": 0.8181 + }, + { + "start": 390.42, + "end": 396.64, + "probability": 0.4639 + }, + { + "start": 397.36, + "end": 401.5, + "probability": 0.9946 + }, + { + "start": 401.58, + "end": 406.0, + "probability": 0.9479 + }, + { + "start": 406.42, + "end": 406.9, + "probability": 0.4908 + }, + { + "start": 406.96, + "end": 407.62, + "probability": 0.6539 + }, + { + "start": 407.7, + "end": 409.28, + "probability": 0.8678 + }, + { + "start": 409.88, + "end": 416.54, + "probability": 0.9338 + }, + { + "start": 416.78, + "end": 417.12, + "probability": 0.6965 + }, + { + "start": 417.48, + "end": 419.24, + "probability": 0.9673 + }, + { + "start": 419.36, + "end": 420.9, + "probability": 0.7411 + }, + { + "start": 421.0, + "end": 421.62, + "probability": 0.6223 + }, + { + "start": 421.78, + "end": 423.66, + "probability": 0.8898 + }, + { + "start": 428.08, + "end": 428.96, + "probability": 0.8609 + }, + { + "start": 429.1, + "end": 430.74, + "probability": 0.717 + }, + { + "start": 430.98, + "end": 434.98, + "probability": 0.9583 + }, + { + "start": 434.98, + "end": 439.66, + "probability": 0.9984 + }, + { + "start": 439.82, + "end": 445.4, + "probability": 0.9824 + }, + { + "start": 445.58, + "end": 448.56, + "probability": 0.9982 + }, + { + "start": 448.9, + "end": 452.13, + "probability": 0.6977 + }, + { + "start": 452.62, + "end": 453.88, + "probability": 0.8567 + }, + { + "start": 454.02, + "end": 455.22, + "probability": 0.7498 + }, + { + "start": 455.32, + "end": 456.84, + "probability": 0.5905 + }, + { + "start": 456.84, + "end": 459.22, + "probability": 0.9485 + }, + { + "start": 459.42, + "end": 461.22, + "probability": 0.9227 + }, + { + "start": 461.28, + "end": 462.0, + "probability": 0.8759 + }, + { + "start": 462.52, + "end": 464.17, + "probability": 0.5901 + }, + { + "start": 465.04, + "end": 465.46, + "probability": 0.924 + }, + { + "start": 466.06, + "end": 467.7, + "probability": 0.9861 + }, + { + "start": 467.72, + "end": 468.24, + "probability": 0.8546 + }, + { + "start": 468.62, + "end": 472.06, + "probability": 0.9824 + }, + { + "start": 472.56, + "end": 477.06, + "probability": 0.9868 + }, + { + "start": 477.24, + "end": 478.46, + "probability": 0.985 + }, + { + "start": 479.04, + "end": 483.3, + "probability": 0.9894 + }, + { + "start": 483.74, + "end": 485.16, + "probability": 0.9618 + }, + { + "start": 485.64, + "end": 486.24, + "probability": 0.6498 + }, + { + "start": 486.44, + "end": 488.48, + "probability": 0.9571 + }, + { + "start": 488.5, + "end": 488.94, + "probability": 0.95 + }, + { + "start": 489.04, + "end": 490.0, + "probability": 0.8695 + }, + { + "start": 490.26, + "end": 490.5, + "probability": 0.8078 + }, + { + "start": 491.26, + "end": 492.82, + "probability": 0.7642 + }, + { + "start": 493.82, + "end": 497.58, + "probability": 0.9576 + }, + { + "start": 497.76, + "end": 498.7, + "probability": 0.7033 + }, + { + "start": 499.34, + "end": 502.36, + "probability": 0.8588 + }, + { + "start": 502.5, + "end": 504.59, + "probability": 0.9026 + }, + { + "start": 505.16, + "end": 505.58, + "probability": 0.2516 + }, + { + "start": 506.08, + "end": 507.32, + "probability": 0.5457 + }, + { + "start": 507.98, + "end": 509.16, + "probability": 0.7162 + }, + { + "start": 509.36, + "end": 514.1, + "probability": 0.9889 + }, + { + "start": 514.52, + "end": 515.98, + "probability": 0.9554 + }, + { + "start": 516.76, + "end": 519.66, + "probability": 0.854 + }, + { + "start": 520.14, + "end": 523.16, + "probability": 0.9916 + }, + { + "start": 523.7, + "end": 526.32, + "probability": 0.995 + }, + { + "start": 526.78, + "end": 528.7, + "probability": 0.987 + }, + { + "start": 529.0, + "end": 530.92, + "probability": 0.9803 + }, + { + "start": 531.68, + "end": 534.56, + "probability": 0.8601 + }, + { + "start": 535.92, + "end": 542.82, + "probability": 0.9962 + }, + { + "start": 542.82, + "end": 546.14, + "probability": 0.997 + }, + { + "start": 546.54, + "end": 547.06, + "probability": 0.8688 + }, + { + "start": 547.18, + "end": 551.6, + "probability": 0.999 + }, + { + "start": 552.1, + "end": 555.38, + "probability": 0.9974 + }, + { + "start": 555.38, + "end": 560.18, + "probability": 0.9991 + }, + { + "start": 560.66, + "end": 567.06, + "probability": 0.9949 + }, + { + "start": 567.64, + "end": 573.04, + "probability": 0.981 + }, + { + "start": 573.4, + "end": 574.24, + "probability": 0.9061 + }, + { + "start": 574.44, + "end": 575.74, + "probability": 0.8406 + }, + { + "start": 576.04, + "end": 577.04, + "probability": 0.9186 + }, + { + "start": 577.18, + "end": 577.28, + "probability": 0.9487 + }, + { + "start": 578.52, + "end": 581.16, + "probability": 0.9844 + }, + { + "start": 581.66, + "end": 585.3, + "probability": 0.9923 + }, + { + "start": 585.4, + "end": 585.94, + "probability": 0.8356 + }, + { + "start": 586.06, + "end": 586.94, + "probability": 0.9699 + }, + { + "start": 587.3, + "end": 588.14, + "probability": 0.8141 + }, + { + "start": 588.24, + "end": 591.5, + "probability": 0.8828 + }, + { + "start": 591.76, + "end": 592.44, + "probability": 0.931 + }, + { + "start": 592.5, + "end": 593.38, + "probability": 0.8661 + }, + { + "start": 594.22, + "end": 595.04, + "probability": 0.8009 + }, + { + "start": 595.48, + "end": 597.18, + "probability": 0.9961 + }, + { + "start": 597.76, + "end": 601.76, + "probability": 0.865 + }, + { + "start": 601.76, + "end": 605.44, + "probability": 0.9976 + }, + { + "start": 605.58, + "end": 606.1, + "probability": 0.8171 + }, + { + "start": 606.68, + "end": 609.0, + "probability": 0.6149 + }, + { + "start": 609.16, + "end": 611.34, + "probability": 0.7255 + }, + { + "start": 616.7, + "end": 620.0, + "probability": 0.7149 + }, + { + "start": 620.98, + "end": 623.44, + "probability": 0.8693 + }, + { + "start": 623.98, + "end": 628.16, + "probability": 0.99 + }, + { + "start": 628.22, + "end": 629.42, + "probability": 0.9735 + }, + { + "start": 629.78, + "end": 630.88, + "probability": 0.8101 + }, + { + "start": 630.98, + "end": 634.54, + "probability": 0.9596 + }, + { + "start": 635.22, + "end": 636.06, + "probability": 0.8298 + }, + { + "start": 636.18, + "end": 638.74, + "probability": 0.6827 + }, + { + "start": 640.8, + "end": 643.8, + "probability": 0.7334 + }, + { + "start": 644.46, + "end": 645.52, + "probability": 0.9776 + }, + { + "start": 645.72, + "end": 650.24, + "probability": 0.782 + }, + { + "start": 650.98, + "end": 655.44, + "probability": 0.7358 + }, + { + "start": 656.52, + "end": 657.3, + "probability": 0.8959 + }, + { + "start": 657.92, + "end": 658.02, + "probability": 0.7301 + }, + { + "start": 659.04, + "end": 662.6, + "probability": 0.9901 + }, + { + "start": 663.2, + "end": 664.88, + "probability": 0.9467 + }, + { + "start": 666.06, + "end": 669.34, + "probability": 0.9683 + }, + { + "start": 669.72, + "end": 671.27, + "probability": 0.7609 + }, + { + "start": 671.6, + "end": 672.9, + "probability": 0.9323 + }, + { + "start": 673.26, + "end": 676.88, + "probability": 0.9872 + }, + { + "start": 677.58, + "end": 678.6, + "probability": 0.6875 + }, + { + "start": 679.28, + "end": 681.16, + "probability": 0.983 + }, + { + "start": 681.26, + "end": 684.06, + "probability": 0.9365 + }, + { + "start": 685.0, + "end": 687.96, + "probability": 0.9652 + }, + { + "start": 688.4, + "end": 690.88, + "probability": 0.7863 + }, + { + "start": 691.28, + "end": 695.2, + "probability": 0.9811 + }, + { + "start": 696.18, + "end": 699.2, + "probability": 0.8793 + }, + { + "start": 699.96, + "end": 700.7, + "probability": 0.6806 + }, + { + "start": 700.88, + "end": 704.76, + "probability": 0.7026 + }, + { + "start": 704.82, + "end": 705.18, + "probability": 0.6063 + }, + { + "start": 705.2, + "end": 705.66, + "probability": 0.8149 + }, + { + "start": 705.82, + "end": 706.84, + "probability": 0.9446 + }, + { + "start": 706.92, + "end": 711.42, + "probability": 0.936 + }, + { + "start": 711.96, + "end": 712.9, + "probability": 0.805 + }, + { + "start": 713.48, + "end": 714.46, + "probability": 0.88 + }, + { + "start": 714.94, + "end": 715.58, + "probability": 0.9414 + }, + { + "start": 715.94, + "end": 718.7, + "probability": 0.9946 + }, + { + "start": 718.76, + "end": 721.82, + "probability": 0.9894 + }, + { + "start": 721.9, + "end": 728.68, + "probability": 0.8722 + }, + { + "start": 729.28, + "end": 731.26, + "probability": 0.7676 + }, + { + "start": 732.22, + "end": 734.2, + "probability": 0.938 + }, + { + "start": 734.84, + "end": 736.69, + "probability": 0.9941 + }, + { + "start": 737.36, + "end": 742.06, + "probability": 0.7508 + }, + { + "start": 742.2, + "end": 745.88, + "probability": 0.9871 + }, + { + "start": 746.28, + "end": 747.38, + "probability": 0.5779 + }, + { + "start": 747.72, + "end": 749.94, + "probability": 0.9507 + }, + { + "start": 750.0, + "end": 752.8, + "probability": 0.9734 + }, + { + "start": 753.12, + "end": 757.66, + "probability": 0.8991 + }, + { + "start": 758.2, + "end": 758.66, + "probability": 0.7281 + }, + { + "start": 760.06, + "end": 762.66, + "probability": 0.9634 + }, + { + "start": 763.38, + "end": 765.28, + "probability": 0.9365 + }, + { + "start": 767.76, + "end": 770.66, + "probability": 0.964 + }, + { + "start": 770.8, + "end": 774.23, + "probability": 0.8529 + }, + { + "start": 774.38, + "end": 775.61, + "probability": 0.9976 + }, + { + "start": 780.86, + "end": 781.38, + "probability": 0.8019 + }, + { + "start": 783.08, + "end": 785.22, + "probability": 0.8388 + }, + { + "start": 785.3, + "end": 789.2, + "probability": 0.9308 + }, + { + "start": 789.28, + "end": 791.4, + "probability": 0.0949 + }, + { + "start": 791.8, + "end": 793.42, + "probability": 0.7913 + }, + { + "start": 793.88, + "end": 797.84, + "probability": 0.9836 + }, + { + "start": 797.84, + "end": 801.86, + "probability": 0.9876 + }, + { + "start": 802.26, + "end": 807.74, + "probability": 0.9975 + }, + { + "start": 808.02, + "end": 810.02, + "probability": 0.8348 + }, + { + "start": 813.95, + "end": 821.76, + "probability": 0.8221 + }, + { + "start": 822.12, + "end": 823.7, + "probability": 0.7781 + }, + { + "start": 824.28, + "end": 825.7, + "probability": 0.9027 + }, + { + "start": 825.84, + "end": 827.66, + "probability": 0.2939 + }, + { + "start": 827.76, + "end": 829.8, + "probability": 0.9285 + }, + { + "start": 830.56, + "end": 836.28, + "probability": 0.9847 + }, + { + "start": 836.52, + "end": 837.0, + "probability": 0.6463 + }, + { + "start": 837.56, + "end": 838.24, + "probability": 0.8688 + }, + { + "start": 839.1, + "end": 841.6, + "probability": 0.791 + }, + { + "start": 842.62, + "end": 847.8, + "probability": 0.861 + }, + { + "start": 848.72, + "end": 853.64, + "probability": 0.9974 + }, + { + "start": 853.76, + "end": 855.68, + "probability": 0.4327 + }, + { + "start": 856.28, + "end": 857.73, + "probability": 0.9673 + }, + { + "start": 858.26, + "end": 859.62, + "probability": 0.6396 + }, + { + "start": 859.92, + "end": 861.44, + "probability": 0.9663 + }, + { + "start": 863.04, + "end": 867.64, + "probability": 0.9718 + }, + { + "start": 867.74, + "end": 873.66, + "probability": 0.9722 + }, + { + "start": 874.72, + "end": 877.1, + "probability": 0.9465 + }, + { + "start": 877.34, + "end": 879.32, + "probability": 0.9841 + }, + { + "start": 879.8, + "end": 884.9, + "probability": 0.9961 + }, + { + "start": 885.84, + "end": 890.08, + "probability": 0.9922 + }, + { + "start": 891.22, + "end": 893.64, + "probability": 0.7335 + }, + { + "start": 893.7, + "end": 896.66, + "probability": 0.9166 + }, + { + "start": 897.64, + "end": 898.2, + "probability": 0.9162 + }, + { + "start": 898.36, + "end": 902.44, + "probability": 0.9937 + }, + { + "start": 902.44, + "end": 907.1, + "probability": 0.9952 + }, + { + "start": 907.22, + "end": 907.9, + "probability": 0.892 + }, + { + "start": 908.04, + "end": 910.8, + "probability": 0.9243 + }, + { + "start": 911.74, + "end": 912.06, + "probability": 0.6083 + }, + { + "start": 912.18, + "end": 916.28, + "probability": 0.9891 + }, + { + "start": 916.28, + "end": 921.14, + "probability": 0.9921 + }, + { + "start": 922.44, + "end": 926.68, + "probability": 0.8049 + }, + { + "start": 926.68, + "end": 931.28, + "probability": 0.9922 + }, + { + "start": 931.28, + "end": 935.1, + "probability": 0.9928 + }, + { + "start": 935.6, + "end": 940.76, + "probability": 0.9937 + }, + { + "start": 941.74, + "end": 946.08, + "probability": 0.9772 + }, + { + "start": 947.16, + "end": 953.32, + "probability": 0.9965 + }, + { + "start": 953.58, + "end": 955.48, + "probability": 0.943 + }, + { + "start": 956.56, + "end": 960.26, + "probability": 0.9434 + }, + { + "start": 960.94, + "end": 964.88, + "probability": 0.9901 + }, + { + "start": 964.88, + "end": 969.26, + "probability": 0.9987 + }, + { + "start": 969.78, + "end": 974.06, + "probability": 0.9933 + }, + { + "start": 974.64, + "end": 978.1, + "probability": 0.9871 + }, + { + "start": 978.1, + "end": 980.82, + "probability": 0.9989 + }, + { + "start": 982.04, + "end": 986.7, + "probability": 0.6967 + }, + { + "start": 987.52, + "end": 991.08, + "probability": 0.6838 + }, + { + "start": 991.62, + "end": 994.74, + "probability": 0.9762 + }, + { + "start": 994.74, + "end": 998.08, + "probability": 0.9764 + }, + { + "start": 998.82, + "end": 1000.86, + "probability": 0.9405 + }, + { + "start": 1001.36, + "end": 1004.56, + "probability": 0.9738 + }, + { + "start": 1005.04, + "end": 1011.86, + "probability": 0.8672 + }, + { + "start": 1011.86, + "end": 1015.72, + "probability": 0.7847 + }, + { + "start": 1016.42, + "end": 1019.06, + "probability": 0.9874 + }, + { + "start": 1020.14, + "end": 1020.16, + "probability": 0.1254 + }, + { + "start": 1020.16, + "end": 1022.1, + "probability": 0.9043 + }, + { + "start": 1022.56, + "end": 1022.9, + "probability": 0.6814 + }, + { + "start": 1023.04, + "end": 1025.12, + "probability": 0.9949 + }, + { + "start": 1025.6, + "end": 1028.98, + "probability": 0.9734 + }, + { + "start": 1030.08, + "end": 1033.02, + "probability": 0.9925 + }, + { + "start": 1033.46, + "end": 1035.66, + "probability": 0.9948 + }, + { + "start": 1035.8, + "end": 1038.6, + "probability": 0.9857 + }, + { + "start": 1039.42, + "end": 1042.22, + "probability": 0.9846 + }, + { + "start": 1042.76, + "end": 1044.46, + "probability": 0.8787 + }, + { + "start": 1045.04, + "end": 1045.88, + "probability": 0.8038 + }, + { + "start": 1046.34, + "end": 1051.74, + "probability": 0.9895 + }, + { + "start": 1051.74, + "end": 1056.36, + "probability": 0.9578 + }, + { + "start": 1057.9, + "end": 1060.18, + "probability": 0.5943 + }, + { + "start": 1061.38, + "end": 1065.08, + "probability": 0.9822 + }, + { + "start": 1065.22, + "end": 1068.26, + "probability": 0.8729 + }, + { + "start": 1070.0, + "end": 1074.26, + "probability": 0.9917 + }, + { + "start": 1074.42, + "end": 1075.72, + "probability": 0.7081 + }, + { + "start": 1076.17, + "end": 1077.02, + "probability": 0.9909 + }, + { + "start": 1077.58, + "end": 1079.06, + "probability": 0.9958 + }, + { + "start": 1079.9, + "end": 1080.28, + "probability": 0.8479 + }, + { + "start": 1080.34, + "end": 1084.46, + "probability": 0.9208 + }, + { + "start": 1085.14, + "end": 1085.82, + "probability": 0.6221 + }, + { + "start": 1086.18, + "end": 1090.96, + "probability": 0.9543 + }, + { + "start": 1091.62, + "end": 1094.12, + "probability": 0.9983 + }, + { + "start": 1094.2, + "end": 1094.86, + "probability": 0.7815 + }, + { + "start": 1095.3, + "end": 1096.52, + "probability": 0.8971 + }, + { + "start": 1098.3, + "end": 1099.48, + "probability": 0.8367 + }, + { + "start": 1099.56, + "end": 1100.82, + "probability": 0.6601 + }, + { + "start": 1100.92, + "end": 1102.24, + "probability": 0.749 + }, + { + "start": 1102.6, + "end": 1107.9, + "probability": 0.9461 + }, + { + "start": 1108.38, + "end": 1109.34, + "probability": 0.8236 + }, + { + "start": 1109.76, + "end": 1111.46, + "probability": 0.9889 + }, + { + "start": 1112.42, + "end": 1115.6, + "probability": 0.9792 + }, + { + "start": 1116.26, + "end": 1117.9, + "probability": 0.8968 + }, + { + "start": 1118.86, + "end": 1123.04, + "probability": 0.993 + }, + { + "start": 1123.98, + "end": 1126.9, + "probability": 0.9982 + }, + { + "start": 1126.9, + "end": 1132.52, + "probability": 0.9932 + }, + { + "start": 1133.82, + "end": 1136.28, + "probability": 0.9983 + }, + { + "start": 1136.28, + "end": 1140.08, + "probability": 0.9977 + }, + { + "start": 1140.94, + "end": 1144.16, + "probability": 0.9977 + }, + { + "start": 1145.04, + "end": 1146.46, + "probability": 0.9897 + }, + { + "start": 1146.84, + "end": 1150.26, + "probability": 0.9268 + }, + { + "start": 1150.26, + "end": 1154.46, + "probability": 0.9976 + }, + { + "start": 1154.92, + "end": 1159.92, + "probability": 0.9864 + }, + { + "start": 1161.18, + "end": 1161.76, + "probability": 0.7241 + }, + { + "start": 1161.82, + "end": 1163.32, + "probability": 0.7769 + }, + { + "start": 1163.7, + "end": 1166.24, + "probability": 0.981 + }, + { + "start": 1166.96, + "end": 1167.76, + "probability": 0.5214 + }, + { + "start": 1168.1, + "end": 1173.68, + "probability": 0.9912 + }, + { + "start": 1174.68, + "end": 1177.24, + "probability": 0.9935 + }, + { + "start": 1177.8, + "end": 1181.46, + "probability": 0.7867 + }, + { + "start": 1181.94, + "end": 1186.6, + "probability": 0.929 + }, + { + "start": 1187.72, + "end": 1193.65, + "probability": 0.9942 + }, + { + "start": 1193.84, + "end": 1200.44, + "probability": 0.9526 + }, + { + "start": 1200.92, + "end": 1202.08, + "probability": 0.7617 + }, + { + "start": 1202.2, + "end": 1203.36, + "probability": 0.784 + }, + { + "start": 1203.78, + "end": 1205.88, + "probability": 0.964 + }, + { + "start": 1206.64, + "end": 1209.04, + "probability": 0.945 + }, + { + "start": 1209.34, + "end": 1212.04, + "probability": 0.9722 + }, + { + "start": 1212.44, + "end": 1215.14, + "probability": 0.9873 + }, + { + "start": 1216.3, + "end": 1218.23, + "probability": 0.9855 + }, + { + "start": 1218.52, + "end": 1219.12, + "probability": 0.7773 + }, + { + "start": 1219.58, + "end": 1224.16, + "probability": 0.9969 + }, + { + "start": 1224.16, + "end": 1228.36, + "probability": 0.999 + }, + { + "start": 1228.9, + "end": 1233.36, + "probability": 0.9922 + }, + { + "start": 1233.78, + "end": 1236.0, + "probability": 0.8645 + }, + { + "start": 1236.54, + "end": 1240.98, + "probability": 0.9988 + }, + { + "start": 1241.66, + "end": 1243.46, + "probability": 0.5906 + }, + { + "start": 1244.2, + "end": 1248.28, + "probability": 0.9902 + }, + { + "start": 1249.96, + "end": 1252.62, + "probability": 0.9943 + }, + { + "start": 1252.62, + "end": 1254.86, + "probability": 0.998 + }, + { + "start": 1255.6, + "end": 1256.04, + "probability": 0.479 + }, + { + "start": 1256.08, + "end": 1258.9, + "probability": 0.7229 + }, + { + "start": 1259.7, + "end": 1263.58, + "probability": 0.9881 + }, + { + "start": 1263.58, + "end": 1268.78, + "probability": 0.9652 + }, + { + "start": 1269.88, + "end": 1272.68, + "probability": 0.9904 + }, + { + "start": 1273.2, + "end": 1277.76, + "probability": 0.9835 + }, + { + "start": 1278.52, + "end": 1281.6, + "probability": 0.9919 + }, + { + "start": 1282.04, + "end": 1283.0, + "probability": 0.908 + }, + { + "start": 1283.44, + "end": 1287.52, + "probability": 0.9248 + }, + { + "start": 1287.88, + "end": 1293.14, + "probability": 0.9873 + }, + { + "start": 1294.18, + "end": 1297.4, + "probability": 0.9974 + }, + { + "start": 1298.36, + "end": 1300.96, + "probability": 0.8925 + }, + { + "start": 1301.58, + "end": 1305.42, + "probability": 0.9436 + }, + { + "start": 1306.16, + "end": 1308.92, + "probability": 0.9746 + }, + { + "start": 1309.72, + "end": 1313.54, + "probability": 0.9618 + }, + { + "start": 1314.44, + "end": 1315.66, + "probability": 0.9639 + }, + { + "start": 1316.26, + "end": 1319.42, + "probability": 0.9541 + }, + { + "start": 1320.12, + "end": 1321.62, + "probability": 0.8543 + }, + { + "start": 1321.68, + "end": 1327.56, + "probability": 0.8623 + }, + { + "start": 1328.36, + "end": 1328.46, + "probability": 0.528 + }, + { + "start": 1328.58, + "end": 1330.76, + "probability": 0.9322 + }, + { + "start": 1331.06, + "end": 1332.62, + "probability": 0.9131 + }, + { + "start": 1333.0, + "end": 1334.16, + "probability": 0.5477 + }, + { + "start": 1334.44, + "end": 1335.64, + "probability": 0.869 + }, + { + "start": 1336.3, + "end": 1340.12, + "probability": 0.7864 + }, + { + "start": 1340.68, + "end": 1342.82, + "probability": 0.9223 + }, + { + "start": 1344.08, + "end": 1346.88, + "probability": 0.9972 + }, + { + "start": 1347.32, + "end": 1347.34, + "probability": 0.0029 + }, + { + "start": 1347.34, + "end": 1348.58, + "probability": 0.8785 + }, + { + "start": 1348.92, + "end": 1352.1, + "probability": 0.9281 + }, + { + "start": 1352.8, + "end": 1354.74, + "probability": 0.9933 + }, + { + "start": 1356.38, + "end": 1358.94, + "probability": 0.9563 + }, + { + "start": 1359.48, + "end": 1361.42, + "probability": 0.8036 + }, + { + "start": 1361.66, + "end": 1363.42, + "probability": 0.999 + }, + { + "start": 1363.68, + "end": 1365.58, + "probability": 0.915 + }, + { + "start": 1365.62, + "end": 1367.8, + "probability": 0.9949 + }, + { + "start": 1367.92, + "end": 1369.48, + "probability": 0.9631 + }, + { + "start": 1369.94, + "end": 1372.74, + "probability": 0.9795 + }, + { + "start": 1373.78, + "end": 1375.7, + "probability": 0.9889 + }, + { + "start": 1376.12, + "end": 1379.06, + "probability": 0.9967 + }, + { + "start": 1379.66, + "end": 1383.03, + "probability": 0.9705 + }, + { + "start": 1383.62, + "end": 1389.02, + "probability": 0.9767 + }, + { + "start": 1389.7, + "end": 1392.68, + "probability": 0.9901 + }, + { + "start": 1392.68, + "end": 1396.18, + "probability": 0.8414 + }, + { + "start": 1397.16, + "end": 1399.58, + "probability": 0.6203 + }, + { + "start": 1400.02, + "end": 1401.02, + "probability": 0.7015 + }, + { + "start": 1401.4, + "end": 1402.1, + "probability": 0.609 + }, + { + "start": 1403.14, + "end": 1405.66, + "probability": 0.9976 + }, + { + "start": 1405.66, + "end": 1408.9, + "probability": 0.97 + }, + { + "start": 1409.3, + "end": 1410.94, + "probability": 0.9607 + }, + { + "start": 1411.02, + "end": 1414.44, + "probability": 0.9574 + }, + { + "start": 1415.24, + "end": 1417.72, + "probability": 0.9786 + }, + { + "start": 1418.86, + "end": 1422.06, + "probability": 0.9606 + }, + { + "start": 1422.66, + "end": 1422.84, + "probability": 0.7373 + }, + { + "start": 1422.9, + "end": 1424.02, + "probability": 0.985 + }, + { + "start": 1424.42, + "end": 1428.46, + "probability": 0.9937 + }, + { + "start": 1429.82, + "end": 1430.32, + "probability": 0.4728 + }, + { + "start": 1430.46, + "end": 1433.04, + "probability": 0.9817 + }, + { + "start": 1433.48, + "end": 1436.14, + "probability": 0.9948 + }, + { + "start": 1436.48, + "end": 1438.06, + "probability": 0.9854 + }, + { + "start": 1438.38, + "end": 1441.14, + "probability": 0.9749 + }, + { + "start": 1441.86, + "end": 1446.46, + "probability": 0.9974 + }, + { + "start": 1447.32, + "end": 1451.78, + "probability": 0.9351 + }, + { + "start": 1452.3, + "end": 1452.78, + "probability": 0.5659 + }, + { + "start": 1453.1, + "end": 1458.02, + "probability": 0.9973 + }, + { + "start": 1458.68, + "end": 1463.02, + "probability": 0.9944 + }, + { + "start": 1463.72, + "end": 1467.16, + "probability": 0.7607 + }, + { + "start": 1467.52, + "end": 1470.48, + "probability": 0.9912 + }, + { + "start": 1471.1, + "end": 1473.44, + "probability": 0.9765 + }, + { + "start": 1474.1, + "end": 1475.68, + "probability": 0.9629 + }, + { + "start": 1476.14, + "end": 1478.35, + "probability": 0.9854 + }, + { + "start": 1478.98, + "end": 1481.14, + "probability": 0.9492 + }, + { + "start": 1481.22, + "end": 1484.16, + "probability": 0.9849 + }, + { + "start": 1484.56, + "end": 1486.36, + "probability": 0.9897 + }, + { + "start": 1487.24, + "end": 1491.38, + "probability": 0.9461 + }, + { + "start": 1492.86, + "end": 1494.8, + "probability": 0.9331 + }, + { + "start": 1496.14, + "end": 1498.84, + "probability": 0.9816 + }, + { + "start": 1498.84, + "end": 1501.42, + "probability": 0.984 + }, + { + "start": 1502.22, + "end": 1506.22, + "probability": 0.9915 + }, + { + "start": 1506.78, + "end": 1509.04, + "probability": 0.9929 + }, + { + "start": 1509.48, + "end": 1512.34, + "probability": 0.9935 + }, + { + "start": 1512.7, + "end": 1516.78, + "probability": 0.9408 + }, + { + "start": 1517.0, + "end": 1517.58, + "probability": 0.4129 + }, + { + "start": 1518.56, + "end": 1519.82, + "probability": 0.8344 + }, + { + "start": 1519.9, + "end": 1521.14, + "probability": 0.9683 + }, + { + "start": 1521.28, + "end": 1521.99, + "probability": 0.8501 + }, + { + "start": 1523.16, + "end": 1525.1, + "probability": 0.9279 + }, + { + "start": 1525.16, + "end": 1529.23, + "probability": 0.9893 + }, + { + "start": 1530.22, + "end": 1532.82, + "probability": 0.9981 + }, + { + "start": 1532.82, + "end": 1537.28, + "probability": 0.9924 + }, + { + "start": 1537.86, + "end": 1538.48, + "probability": 0.5421 + }, + { + "start": 1538.48, + "end": 1540.38, + "probability": 0.9613 + }, + { + "start": 1540.78, + "end": 1544.7, + "probability": 0.9846 + }, + { + "start": 1545.2, + "end": 1549.48, + "probability": 0.9761 + }, + { + "start": 1550.28, + "end": 1553.14, + "probability": 0.9691 + }, + { + "start": 1553.42, + "end": 1556.48, + "probability": 0.9877 + }, + { + "start": 1556.92, + "end": 1558.84, + "probability": 0.7158 + }, + { + "start": 1558.94, + "end": 1559.56, + "probability": 0.8656 + }, + { + "start": 1559.68, + "end": 1560.46, + "probability": 0.6335 + }, + { + "start": 1560.54, + "end": 1560.84, + "probability": 0.3725 + }, + { + "start": 1560.84, + "end": 1564.84, + "probability": 0.9768 + }, + { + "start": 1565.54, + "end": 1569.61, + "probability": 0.8729 + }, + { + "start": 1569.88, + "end": 1572.34, + "probability": 0.9943 + }, + { + "start": 1572.34, + "end": 1576.98, + "probability": 0.964 + }, + { + "start": 1577.86, + "end": 1582.78, + "probability": 0.9899 + }, + { + "start": 1582.78, + "end": 1587.72, + "probability": 0.9935 + }, + { + "start": 1588.3, + "end": 1591.78, + "probability": 0.9862 + }, + { + "start": 1593.46, + "end": 1596.62, + "probability": 0.9707 + }, + { + "start": 1596.62, + "end": 1600.1, + "probability": 0.9395 + }, + { + "start": 1600.68, + "end": 1602.88, + "probability": 0.999 + }, + { + "start": 1602.88, + "end": 1606.1, + "probability": 0.9993 + }, + { + "start": 1606.76, + "end": 1608.9, + "probability": 0.9995 + }, + { + "start": 1608.9, + "end": 1611.26, + "probability": 0.9926 + }, + { + "start": 1611.72, + "end": 1614.16, + "probability": 0.9469 + }, + { + "start": 1615.04, + "end": 1619.96, + "probability": 0.9893 + }, + { + "start": 1619.96, + "end": 1627.06, + "probability": 0.9956 + }, + { + "start": 1628.0, + "end": 1632.54, + "probability": 0.997 + }, + { + "start": 1632.54, + "end": 1636.9, + "probability": 0.9984 + }, + { + "start": 1637.96, + "end": 1641.22, + "probability": 0.9421 + }, + { + "start": 1641.22, + "end": 1645.02, + "probability": 0.9985 + }, + { + "start": 1645.9, + "end": 1648.14, + "probability": 0.9229 + }, + { + "start": 1648.48, + "end": 1650.38, + "probability": 0.9868 + }, + { + "start": 1650.7, + "end": 1654.3, + "probability": 0.9966 + }, + { + "start": 1654.88, + "end": 1656.72, + "probability": 0.9277 + }, + { + "start": 1656.78, + "end": 1659.72, + "probability": 0.9893 + }, + { + "start": 1660.0, + "end": 1660.52, + "probability": 0.7449 + }, + { + "start": 1662.1, + "end": 1665.0, + "probability": 0.9932 + }, + { + "start": 1665.0, + "end": 1667.6, + "probability": 0.9659 + }, + { + "start": 1668.18, + "end": 1668.5, + "probability": 0.4442 + }, + { + "start": 1668.6, + "end": 1671.3, + "probability": 0.9727 + }, + { + "start": 1671.84, + "end": 1677.12, + "probability": 0.9684 + }, + { + "start": 1677.22, + "end": 1679.48, + "probability": 0.8631 + }, + { + "start": 1679.94, + "end": 1682.68, + "probability": 0.9951 + }, + { + "start": 1684.02, + "end": 1687.14, + "probability": 0.9959 + }, + { + "start": 1687.56, + "end": 1693.68, + "probability": 0.924 + }, + { + "start": 1693.68, + "end": 1698.62, + "probability": 0.9972 + }, + { + "start": 1699.2, + "end": 1700.6, + "probability": 0.7066 + }, + { + "start": 1701.2, + "end": 1703.8, + "probability": 0.9527 + }, + { + "start": 1703.96, + "end": 1704.52, + "probability": 0.7857 + }, + { + "start": 1705.68, + "end": 1711.12, + "probability": 0.9678 + }, + { + "start": 1711.66, + "end": 1711.84, + "probability": 0.4591 + }, + { + "start": 1711.98, + "end": 1712.6, + "probability": 0.6705 + }, + { + "start": 1712.74, + "end": 1714.1, + "probability": 0.9047 + }, + { + "start": 1714.52, + "end": 1716.86, + "probability": 0.9978 + }, + { + "start": 1717.3, + "end": 1722.12, + "probability": 0.938 + }, + { + "start": 1723.92, + "end": 1728.54, + "probability": 0.9583 + }, + { + "start": 1728.54, + "end": 1732.7, + "probability": 0.9993 + }, + { + "start": 1733.04, + "end": 1739.28, + "probability": 0.9959 + }, + { + "start": 1740.1, + "end": 1746.8, + "probability": 0.9911 + }, + { + "start": 1746.98, + "end": 1748.66, + "probability": 0.9609 + }, + { + "start": 1749.6, + "end": 1751.04, + "probability": 0.9527 + }, + { + "start": 1751.58, + "end": 1754.56, + "probability": 0.9932 + }, + { + "start": 1754.56, + "end": 1760.86, + "probability": 0.9468 + }, + { + "start": 1761.16, + "end": 1764.44, + "probability": 0.9946 + }, + { + "start": 1764.44, + "end": 1770.24, + "probability": 0.9623 + }, + { + "start": 1770.74, + "end": 1774.16, + "probability": 0.8973 + }, + { + "start": 1774.16, + "end": 1777.91, + "probability": 0.9309 + }, + { + "start": 1780.58, + "end": 1783.86, + "probability": 0.9373 + }, + { + "start": 1783.86, + "end": 1786.96, + "probability": 0.9958 + }, + { + "start": 1788.22, + "end": 1791.31, + "probability": 0.998 + }, + { + "start": 1791.82, + "end": 1793.0, + "probability": 0.847 + }, + { + "start": 1793.74, + "end": 1795.4, + "probability": 0.988 + }, + { + "start": 1795.96, + "end": 1802.5, + "probability": 0.7063 + }, + { + "start": 1802.5, + "end": 1807.18, + "probability": 0.9871 + }, + { + "start": 1808.42, + "end": 1812.04, + "probability": 0.9336 + }, + { + "start": 1812.04, + "end": 1814.88, + "probability": 0.9844 + }, + { + "start": 1815.88, + "end": 1820.72, + "probability": 0.9829 + }, + { + "start": 1820.72, + "end": 1824.24, + "probability": 0.9784 + }, + { + "start": 1824.88, + "end": 1827.64, + "probability": 0.9913 + }, + { + "start": 1828.76, + "end": 1828.92, + "probability": 0.3383 + }, + { + "start": 1829.06, + "end": 1834.12, + "probability": 0.9575 + }, + { + "start": 1834.52, + "end": 1838.8, + "probability": 0.9967 + }, + { + "start": 1838.8, + "end": 1843.12, + "probability": 0.9981 + }, + { + "start": 1844.66, + "end": 1847.44, + "probability": 0.9453 + }, + { + "start": 1847.44, + "end": 1852.08, + "probability": 0.984 + }, + { + "start": 1853.06, + "end": 1853.4, + "probability": 0.4511 + }, + { + "start": 1853.42, + "end": 1854.7, + "probability": 0.6809 + }, + { + "start": 1854.78, + "end": 1855.84, + "probability": 0.943 + }, + { + "start": 1856.34, + "end": 1858.82, + "probability": 0.9804 + }, + { + "start": 1859.24, + "end": 1862.96, + "probability": 0.994 + }, + { + "start": 1863.58, + "end": 1865.46, + "probability": 0.8534 + }, + { + "start": 1866.1, + "end": 1869.78, + "probability": 0.924 + }, + { + "start": 1869.78, + "end": 1873.04, + "probability": 0.897 + }, + { + "start": 1873.46, + "end": 1877.52, + "probability": 0.9868 + }, + { + "start": 1878.7, + "end": 1879.2, + "probability": 0.8386 + }, + { + "start": 1879.68, + "end": 1882.32, + "probability": 0.9973 + }, + { + "start": 1882.68, + "end": 1888.04, + "probability": 0.9862 + }, + { + "start": 1888.04, + "end": 1891.22, + "probability": 0.9884 + }, + { + "start": 1891.86, + "end": 1891.86, + "probability": 0.1954 + }, + { + "start": 1891.86, + "end": 1896.36, + "probability": 0.9904 + }, + { + "start": 1896.88, + "end": 1903.34, + "probability": 0.9976 + }, + { + "start": 1904.44, + "end": 1905.02, + "probability": 0.428 + }, + { + "start": 1905.14, + "end": 1908.8, + "probability": 0.9952 + }, + { + "start": 1908.8, + "end": 1912.34, + "probability": 0.9986 + }, + { + "start": 1912.86, + "end": 1912.98, + "probability": 0.3169 + }, + { + "start": 1913.1, + "end": 1914.24, + "probability": 0.8439 + }, + { + "start": 1914.62, + "end": 1918.96, + "probability": 0.983 + }, + { + "start": 1919.0, + "end": 1923.08, + "probability": 0.991 + }, + { + "start": 1925.04, + "end": 1929.56, + "probability": 0.9934 + }, + { + "start": 1929.94, + "end": 1931.38, + "probability": 0.9858 + }, + { + "start": 1931.92, + "end": 1932.36, + "probability": 0.5875 + }, + { + "start": 1932.44, + "end": 1936.2, + "probability": 0.9785 + }, + { + "start": 1936.74, + "end": 1938.52, + "probability": 0.8143 + }, + { + "start": 1938.86, + "end": 1941.52, + "probability": 0.9965 + }, + { + "start": 1942.0, + "end": 1945.12, + "probability": 0.993 + }, + { + "start": 1946.26, + "end": 1949.3, + "probability": 0.9969 + }, + { + "start": 1949.3, + "end": 1952.98, + "probability": 0.9953 + }, + { + "start": 1953.38, + "end": 1958.4, + "probability": 0.9598 + }, + { + "start": 1959.32, + "end": 1962.96, + "probability": 0.9849 + }, + { + "start": 1963.4, + "end": 1965.54, + "probability": 0.9827 + }, + { + "start": 1966.18, + "end": 1972.78, + "probability": 0.88 + }, + { + "start": 1973.48, + "end": 1976.22, + "probability": 0.9963 + }, + { + "start": 1976.22, + "end": 1979.22, + "probability": 0.9714 + }, + { + "start": 1979.78, + "end": 1980.48, + "probability": 0.712 + }, + { + "start": 1980.62, + "end": 1985.44, + "probability": 0.933 + }, + { + "start": 1986.02, + "end": 1987.62, + "probability": 0.9771 + }, + { + "start": 1987.9, + "end": 1988.48, + "probability": 0.9268 + }, + { + "start": 1988.76, + "end": 1992.6, + "probability": 0.986 + }, + { + "start": 1993.34, + "end": 1996.36, + "probability": 0.9971 + }, + { + "start": 1997.42, + "end": 2000.08, + "probability": 0.9404 + }, + { + "start": 2000.08, + "end": 2003.38, + "probability": 0.9639 + }, + { + "start": 2003.8, + "end": 2007.72, + "probability": 0.9814 + }, + { + "start": 2007.72, + "end": 2011.78, + "probability": 0.915 + }, + { + "start": 2013.54, + "end": 2019.78, + "probability": 0.9766 + }, + { + "start": 2020.42, + "end": 2024.2, + "probability": 0.9822 + }, + { + "start": 2024.76, + "end": 2028.28, + "probability": 0.9224 + }, + { + "start": 2028.72, + "end": 2033.44, + "probability": 0.8586 + }, + { + "start": 2033.5, + "end": 2037.0, + "probability": 0.9798 + }, + { + "start": 2037.98, + "end": 2044.02, + "probability": 0.9886 + }, + { + "start": 2044.48, + "end": 2050.8, + "probability": 0.9824 + }, + { + "start": 2052.1, + "end": 2056.32, + "probability": 0.8753 + }, + { + "start": 2057.06, + "end": 2058.94, + "probability": 0.0062 + }, + { + "start": 2060.28, + "end": 2062.36, + "probability": 0.72 + }, + { + "start": 2062.96, + "end": 2065.7, + "probability": 0.83 + }, + { + "start": 2065.82, + "end": 2068.84, + "probability": 0.9697 + }, + { + "start": 2069.22, + "end": 2074.14, + "probability": 0.9944 + }, + { + "start": 2074.84, + "end": 2077.76, + "probability": 0.8792 + }, + { + "start": 2078.8, + "end": 2081.76, + "probability": 0.9927 + }, + { + "start": 2081.76, + "end": 2085.0, + "probability": 0.7912 + }, + { + "start": 2085.38, + "end": 2090.3, + "probability": 0.9937 + }, + { + "start": 2091.02, + "end": 2091.52, + "probability": 0.667 + }, + { + "start": 2091.58, + "end": 2096.22, + "probability": 0.9526 + }, + { + "start": 2096.7, + "end": 2100.78, + "probability": 0.9794 + }, + { + "start": 2102.76, + "end": 2106.74, + "probability": 0.9847 + }, + { + "start": 2107.14, + "end": 2113.44, + "probability": 0.9932 + }, + { + "start": 2113.86, + "end": 2116.34, + "probability": 0.9001 + }, + { + "start": 2117.18, + "end": 2117.76, + "probability": 0.7293 + }, + { + "start": 2118.34, + "end": 2120.88, + "probability": 0.8707 + }, + { + "start": 2121.96, + "end": 2124.54, + "probability": 0.991 + }, + { + "start": 2125.08, + "end": 2128.04, + "probability": 0.9409 + }, + { + "start": 2128.64, + "end": 2131.72, + "probability": 0.9854 + }, + { + "start": 2131.72, + "end": 2135.96, + "probability": 0.9976 + }, + { + "start": 2135.96, + "end": 2140.82, + "probability": 0.9992 + }, + { + "start": 2141.72, + "end": 2142.0, + "probability": 0.2813 + }, + { + "start": 2142.16, + "end": 2146.0, + "probability": 0.9757 + }, + { + "start": 2146.0, + "end": 2152.24, + "probability": 0.986 + }, + { + "start": 2153.42, + "end": 2155.02, + "probability": 0.9967 + }, + { + "start": 2155.46, + "end": 2157.0, + "probability": 0.8265 + }, + { + "start": 2158.82, + "end": 2162.22, + "probability": 0.998 + }, + { + "start": 2162.94, + "end": 2168.1, + "probability": 0.9951 + }, + { + "start": 2168.8, + "end": 2171.64, + "probability": 0.9817 + }, + { + "start": 2172.38, + "end": 2176.1, + "probability": 0.9779 + }, + { + "start": 2176.1, + "end": 2179.4, + "probability": 0.6724 + }, + { + "start": 2180.06, + "end": 2183.58, + "probability": 0.987 + }, + { + "start": 2184.38, + "end": 2186.5, + "probability": 0.9854 + }, + { + "start": 2186.5, + "end": 2190.3, + "probability": 0.9842 + }, + { + "start": 2191.0, + "end": 2196.92, + "probability": 0.9433 + }, + { + "start": 2197.36, + "end": 2198.4, + "probability": 0.9839 + }, + { + "start": 2199.82, + "end": 2203.56, + "probability": 0.9537 + }, + { + "start": 2204.18, + "end": 2206.82, + "probability": 0.8674 + }, + { + "start": 2206.82, + "end": 2210.62, + "probability": 0.9575 + }, + { + "start": 2211.76, + "end": 2213.48, + "probability": 0.8095 + }, + { + "start": 2214.08, + "end": 2219.94, + "probability": 0.9868 + }, + { + "start": 2219.94, + "end": 2225.26, + "probability": 0.9857 + }, + { + "start": 2225.64, + "end": 2228.4, + "probability": 0.9871 + }, + { + "start": 2229.28, + "end": 2231.6, + "probability": 0.9961 + }, + { + "start": 2231.6, + "end": 2234.2, + "probability": 0.9959 + }, + { + "start": 2235.96, + "end": 2236.58, + "probability": 0.9471 + }, + { + "start": 2236.76, + "end": 2242.0, + "probability": 0.9938 + }, + { + "start": 2242.0, + "end": 2246.3, + "probability": 0.9979 + }, + { + "start": 2246.68, + "end": 2249.54, + "probability": 0.9984 + }, + { + "start": 2249.96, + "end": 2252.6, + "probability": 0.9738 + }, + { + "start": 2253.3, + "end": 2254.95, + "probability": 0.6795 + }, + { + "start": 2255.46, + "end": 2257.08, + "probability": 0.4258 + }, + { + "start": 2258.2, + "end": 2261.68, + "probability": 0.9811 + }, + { + "start": 2262.14, + "end": 2265.72, + "probability": 0.9662 + }, + { + "start": 2265.72, + "end": 2268.14, + "probability": 0.9656 + }, + { + "start": 2268.7, + "end": 2271.8, + "probability": 0.9925 + }, + { + "start": 2271.8, + "end": 2275.08, + "probability": 0.999 + }, + { + "start": 2275.82, + "end": 2279.82, + "probability": 0.9969 + }, + { + "start": 2280.32, + "end": 2282.44, + "probability": 0.7767 + }, + { + "start": 2282.72, + "end": 2285.38, + "probability": 0.8965 + }, + { + "start": 2285.44, + "end": 2286.16, + "probability": 0.806 + }, + { + "start": 2286.6, + "end": 2290.66, + "probability": 0.9393 + }, + { + "start": 2290.82, + "end": 2293.52, + "probability": 0.8979 + }, + { + "start": 2293.52, + "end": 2295.68, + "probability": 0.9544 + }, + { + "start": 2296.1, + "end": 2296.88, + "probability": 0.4135 + }, + { + "start": 2297.12, + "end": 2298.14, + "probability": 0.7695 + }, + { + "start": 2298.26, + "end": 2300.2, + "probability": 0.7912 + }, + { + "start": 2300.32, + "end": 2303.98, + "probability": 0.9871 + }, + { + "start": 2305.9, + "end": 2308.3, + "probability": 0.9086 + }, + { + "start": 2308.36, + "end": 2309.72, + "probability": 0.7681 + }, + { + "start": 2310.7, + "end": 2313.68, + "probability": 0.6044 + }, + { + "start": 2314.28, + "end": 2317.95, + "probability": 0.9951 + }, + { + "start": 2317.96, + "end": 2321.08, + "probability": 0.9946 + }, + { + "start": 2321.98, + "end": 2324.94, + "probability": 0.9581 + }, + { + "start": 2325.46, + "end": 2327.68, + "probability": 0.748 + }, + { + "start": 2327.76, + "end": 2328.66, + "probability": 0.8758 + }, + { + "start": 2329.16, + "end": 2329.58, + "probability": 0.0851 + }, + { + "start": 2329.8, + "end": 2330.52, + "probability": 0.3984 + }, + { + "start": 2331.04, + "end": 2334.26, + "probability": 0.7466 + }, + { + "start": 2334.26, + "end": 2337.76, + "probability": 0.8561 + }, + { + "start": 2338.26, + "end": 2339.34, + "probability": 0.7333 + }, + { + "start": 2339.48, + "end": 2340.28, + "probability": 0.7225 + }, + { + "start": 2340.7, + "end": 2344.3, + "probability": 0.9821 + }, + { + "start": 2345.14, + "end": 2349.28, + "probability": 0.9959 + }, + { + "start": 2349.28, + "end": 2354.62, + "probability": 0.9941 + }, + { + "start": 2354.8, + "end": 2355.74, + "probability": 0.9409 + }, + { + "start": 2356.14, + "end": 2356.96, + "probability": 0.9906 + }, + { + "start": 2357.14, + "end": 2357.96, + "probability": 0.9843 + }, + { + "start": 2358.46, + "end": 2360.48, + "probability": 0.953 + }, + { + "start": 2361.54, + "end": 2363.68, + "probability": 0.9465 + }, + { + "start": 2364.04, + "end": 2367.48, + "probability": 0.9952 + }, + { + "start": 2367.98, + "end": 2369.18, + "probability": 0.7628 + }, + { + "start": 2369.28, + "end": 2371.42, + "probability": 0.7521 + }, + { + "start": 2371.94, + "end": 2374.62, + "probability": 0.979 + }, + { + "start": 2376.06, + "end": 2380.14, + "probability": 0.7386 + }, + { + "start": 2380.96, + "end": 2384.26, + "probability": 0.9973 + }, + { + "start": 2384.26, + "end": 2388.24, + "probability": 0.9974 + }, + { + "start": 2388.7, + "end": 2390.44, + "probability": 0.9901 + }, + { + "start": 2391.38, + "end": 2395.44, + "probability": 0.9875 + }, + { + "start": 2396.04, + "end": 2399.66, + "probability": 0.9898 + }, + { + "start": 2400.08, + "end": 2402.36, + "probability": 0.9544 + }, + { + "start": 2402.9, + "end": 2406.96, + "probability": 0.9819 + }, + { + "start": 2407.48, + "end": 2412.28, + "probability": 0.7569 + }, + { + "start": 2413.0, + "end": 2415.1, + "probability": 0.9897 + }, + { + "start": 2415.64, + "end": 2418.44, + "probability": 0.9919 + }, + { + "start": 2419.18, + "end": 2419.46, + "probability": 0.5908 + }, + { + "start": 2420.48, + "end": 2422.34, + "probability": 0.8963 + }, + { + "start": 2423.1, + "end": 2423.82, + "probability": 0.7354 + }, + { + "start": 2423.9, + "end": 2428.14, + "probability": 0.731 + }, + { + "start": 2428.14, + "end": 2431.8, + "probability": 0.9697 + }, + { + "start": 2431.84, + "end": 2433.24, + "probability": 0.8219 + }, + { + "start": 2433.82, + "end": 2438.46, + "probability": 0.7197 + }, + { + "start": 2438.68, + "end": 2441.22, + "probability": 0.7017 + }, + { + "start": 2442.14, + "end": 2443.54, + "probability": 0.6768 + }, + { + "start": 2443.8, + "end": 2446.3, + "probability": 0.787 + }, + { + "start": 2451.96, + "end": 2452.26, + "probability": 0.2675 + }, + { + "start": 2452.42, + "end": 2454.52, + "probability": 0.6022 + }, + { + "start": 2456.1, + "end": 2460.82, + "probability": 0.9732 + }, + { + "start": 2462.18, + "end": 2464.46, + "probability": 0.9148 + }, + { + "start": 2464.76, + "end": 2467.66, + "probability": 0.9924 + }, + { + "start": 2468.18, + "end": 2469.52, + "probability": 0.9315 + }, + { + "start": 2470.82, + "end": 2472.96, + "probability": 0.9971 + }, + { + "start": 2473.56, + "end": 2475.68, + "probability": 0.9892 + }, + { + "start": 2477.06, + "end": 2481.94, + "probability": 0.9801 + }, + { + "start": 2482.1, + "end": 2485.0, + "probability": 0.7707 + }, + { + "start": 2486.04, + "end": 2489.94, + "probability": 0.9965 + }, + { + "start": 2491.02, + "end": 2491.34, + "probability": 0.8523 + }, + { + "start": 2492.74, + "end": 2496.22, + "probability": 0.9924 + }, + { + "start": 2496.78, + "end": 2498.08, + "probability": 0.9675 + }, + { + "start": 2498.62, + "end": 2500.82, + "probability": 0.974 + }, + { + "start": 2501.92, + "end": 2504.88, + "probability": 0.9996 + }, + { + "start": 2504.88, + "end": 2508.44, + "probability": 0.933 + }, + { + "start": 2509.02, + "end": 2514.06, + "probability": 0.993 + }, + { + "start": 2514.7, + "end": 2517.76, + "probability": 0.9462 + }, + { + "start": 2517.76, + "end": 2521.22, + "probability": 0.9997 + }, + { + "start": 2521.9, + "end": 2527.0, + "probability": 0.9945 + }, + { + "start": 2527.74, + "end": 2529.72, + "probability": 0.9783 + }, + { + "start": 2530.48, + "end": 2532.1, + "probability": 0.8421 + }, + { + "start": 2532.14, + "end": 2532.68, + "probability": 0.8187 + }, + { + "start": 2532.76, + "end": 2533.46, + "probability": 0.8724 + }, + { + "start": 2533.98, + "end": 2541.44, + "probability": 0.9946 + }, + { + "start": 2541.44, + "end": 2547.08, + "probability": 0.9949 + }, + { + "start": 2547.64, + "end": 2549.58, + "probability": 0.9987 + }, + { + "start": 2550.08, + "end": 2550.92, + "probability": 0.6799 + }, + { + "start": 2551.34, + "end": 2553.3, + "probability": 0.9876 + }, + { + "start": 2554.12, + "end": 2555.16, + "probability": 0.895 + }, + { + "start": 2555.84, + "end": 2556.14, + "probability": 0.8664 + }, + { + "start": 2556.68, + "end": 2559.48, + "probability": 0.9969 + }, + { + "start": 2560.28, + "end": 2562.3, + "probability": 0.9267 + }, + { + "start": 2562.86, + "end": 2566.16, + "probability": 0.9858 + }, + { + "start": 2566.16, + "end": 2569.62, + "probability": 0.9775 + }, + { + "start": 2570.74, + "end": 2571.74, + "probability": 0.9479 + }, + { + "start": 2572.36, + "end": 2576.1, + "probability": 0.9873 + }, + { + "start": 2576.3, + "end": 2577.12, + "probability": 0.5381 + }, + { + "start": 2577.78, + "end": 2580.5, + "probability": 0.9261 + }, + { + "start": 2581.02, + "end": 2582.42, + "probability": 0.985 + }, + { + "start": 2583.16, + "end": 2587.62, + "probability": 0.9461 + }, + { + "start": 2588.42, + "end": 2591.37, + "probability": 0.9944 + }, + { + "start": 2591.38, + "end": 2595.32, + "probability": 0.998 + }, + { + "start": 2595.94, + "end": 2602.06, + "probability": 0.995 + }, + { + "start": 2602.48, + "end": 2605.18, + "probability": 0.9165 + }, + { + "start": 2606.14, + "end": 2607.66, + "probability": 0.9866 + }, + { + "start": 2608.32, + "end": 2611.78, + "probability": 0.9978 + }, + { + "start": 2612.48, + "end": 2617.7, + "probability": 0.9496 + }, + { + "start": 2618.14, + "end": 2622.24, + "probability": 0.9912 + }, + { + "start": 2623.78, + "end": 2627.86, + "probability": 0.9714 + }, + { + "start": 2628.36, + "end": 2631.96, + "probability": 0.9987 + }, + { + "start": 2632.86, + "end": 2635.8, + "probability": 0.9949 + }, + { + "start": 2635.8, + "end": 2638.72, + "probability": 0.9922 + }, + { + "start": 2639.44, + "end": 2642.3, + "probability": 0.6584 + }, + { + "start": 2642.5, + "end": 2643.48, + "probability": 0.9727 + }, + { + "start": 2643.96, + "end": 2644.3, + "probability": 0.4039 + }, + { + "start": 2644.82, + "end": 2651.68, + "probability": 0.8667 + }, + { + "start": 2652.18, + "end": 2655.68, + "probability": 0.9941 + }, + { + "start": 2656.2, + "end": 2658.26, + "probability": 0.8277 + }, + { + "start": 2659.36, + "end": 2662.68, + "probability": 0.8789 + }, + { + "start": 2663.0, + "end": 2663.44, + "probability": 0.407 + }, + { + "start": 2663.82, + "end": 2664.56, + "probability": 0.8465 + }, + { + "start": 2664.88, + "end": 2667.06, + "probability": 0.9897 + }, + { + "start": 2667.5, + "end": 2669.22, + "probability": 0.8023 + }, + { + "start": 2669.6, + "end": 2674.72, + "probability": 0.9965 + }, + { + "start": 2677.14, + "end": 2679.66, + "probability": 0.9968 + }, + { + "start": 2679.66, + "end": 2682.82, + "probability": 0.9206 + }, + { + "start": 2683.12, + "end": 2683.88, + "probability": 0.8127 + }, + { + "start": 2684.6, + "end": 2688.1, + "probability": 0.963 + }, + { + "start": 2688.56, + "end": 2689.46, + "probability": 0.9494 + }, + { + "start": 2689.86, + "end": 2690.6, + "probability": 0.8472 + }, + { + "start": 2691.24, + "end": 2694.52, + "probability": 0.9901 + }, + { + "start": 2694.96, + "end": 2700.36, + "probability": 0.9927 + }, + { + "start": 2700.88, + "end": 2702.92, + "probability": 0.9985 + }, + { + "start": 2703.56, + "end": 2704.34, + "probability": 0.6765 + }, + { + "start": 2704.76, + "end": 2707.52, + "probability": 0.993 + }, + { + "start": 2708.06, + "end": 2711.58, + "probability": 0.9904 + }, + { + "start": 2712.46, + "end": 2717.48, + "probability": 0.9915 + }, + { + "start": 2718.58, + "end": 2721.82, + "probability": 0.9285 + }, + { + "start": 2722.56, + "end": 2725.04, + "probability": 0.9414 + }, + { + "start": 2725.04, + "end": 2728.26, + "probability": 0.9988 + }, + { + "start": 2728.96, + "end": 2730.06, + "probability": 0.7548 + }, + { + "start": 2730.4, + "end": 2733.94, + "probability": 0.8752 + }, + { + "start": 2734.34, + "end": 2736.8, + "probability": 0.9547 + }, + { + "start": 2737.66, + "end": 2740.64, + "probability": 0.9638 + }, + { + "start": 2742.16, + "end": 2744.74, + "probability": 0.9827 + }, + { + "start": 2745.44, + "end": 2747.02, + "probability": 0.8266 + }, + { + "start": 2747.36, + "end": 2748.44, + "probability": 0.8457 + }, + { + "start": 2748.5, + "end": 2750.3, + "probability": 0.7283 + }, + { + "start": 2750.44, + "end": 2752.4, + "probability": 0.9648 + }, + { + "start": 2752.82, + "end": 2753.74, + "probability": 0.6509 + }, + { + "start": 2754.18, + "end": 2758.52, + "probability": 0.9609 + }, + { + "start": 2758.84, + "end": 2763.78, + "probability": 0.9946 + }, + { + "start": 2764.36, + "end": 2767.02, + "probability": 0.9964 + }, + { + "start": 2767.38, + "end": 2771.5, + "probability": 0.9963 + }, + { + "start": 2771.82, + "end": 2773.16, + "probability": 0.9725 + }, + { + "start": 2773.82, + "end": 2775.8, + "probability": 0.9338 + }, + { + "start": 2776.48, + "end": 2778.62, + "probability": 0.9956 + }, + { + "start": 2779.8, + "end": 2782.38, + "probability": 0.994 + }, + { + "start": 2783.24, + "end": 2785.56, + "probability": 0.9863 + }, + { + "start": 2786.12, + "end": 2786.82, + "probability": 0.7628 + }, + { + "start": 2787.56, + "end": 2791.04, + "probability": 0.9339 + }, + { + "start": 2791.58, + "end": 2796.76, + "probability": 0.9971 + }, + { + "start": 2797.42, + "end": 2799.88, + "probability": 0.999 + }, + { + "start": 2799.88, + "end": 2803.12, + "probability": 0.9958 + }, + { + "start": 2804.12, + "end": 2805.2, + "probability": 0.9834 + }, + { + "start": 2805.9, + "end": 2806.82, + "probability": 0.7349 + }, + { + "start": 2807.16, + "end": 2810.14, + "probability": 0.9883 + }, + { + "start": 2810.82, + "end": 2813.7, + "probability": 0.998 + }, + { + "start": 2813.7, + "end": 2818.2, + "probability": 0.9913 + }, + { + "start": 2819.26, + "end": 2822.94, + "probability": 0.9976 + }, + { + "start": 2823.94, + "end": 2826.04, + "probability": 0.9771 + }, + { + "start": 2826.62, + "end": 2827.5, + "probability": 0.8975 + }, + { + "start": 2827.68, + "end": 2831.62, + "probability": 0.9819 + }, + { + "start": 2832.44, + "end": 2834.58, + "probability": 0.9987 + }, + { + "start": 2834.58, + "end": 2838.02, + "probability": 0.9939 + }, + { + "start": 2838.48, + "end": 2840.46, + "probability": 0.8603 + }, + { + "start": 2841.22, + "end": 2842.1, + "probability": 0.9775 + }, + { + "start": 2843.64, + "end": 2845.46, + "probability": 0.986 + }, + { + "start": 2846.5, + "end": 2848.6, + "probability": 0.6673 + }, + { + "start": 2849.38, + "end": 2850.38, + "probability": 0.871 + }, + { + "start": 2851.12, + "end": 2854.44, + "probability": 0.9401 + }, + { + "start": 2854.44, + "end": 2860.06, + "probability": 0.8911 + }, + { + "start": 2860.74, + "end": 2863.63, + "probability": 0.9872 + }, + { + "start": 2864.14, + "end": 2866.72, + "probability": 0.9829 + }, + { + "start": 2867.32, + "end": 2869.78, + "probability": 0.8493 + }, + { + "start": 2870.5, + "end": 2874.02, + "probability": 0.9981 + }, + { + "start": 2874.02, + "end": 2877.9, + "probability": 0.9989 + }, + { + "start": 2878.56, + "end": 2881.6, + "probability": 0.9979 + }, + { + "start": 2881.6, + "end": 2884.72, + "probability": 0.9902 + }, + { + "start": 2886.48, + "end": 2887.24, + "probability": 0.5087 + }, + { + "start": 2887.98, + "end": 2890.16, + "probability": 0.6921 + }, + { + "start": 2890.5, + "end": 2895.44, + "probability": 0.9681 + }, + { + "start": 2896.42, + "end": 2899.99, + "probability": 0.9301 + }, + { + "start": 2901.06, + "end": 2902.88, + "probability": 0.7889 + }, + { + "start": 2903.32, + "end": 2904.82, + "probability": 0.9976 + }, + { + "start": 2905.38, + "end": 2909.98, + "probability": 0.9319 + }, + { + "start": 2910.86, + "end": 2912.48, + "probability": 0.951 + }, + { + "start": 2913.2, + "end": 2914.14, + "probability": 0.6149 + }, + { + "start": 2914.8, + "end": 2915.64, + "probability": 0.7806 + }, + { + "start": 2916.1, + "end": 2919.38, + "probability": 0.994 + }, + { + "start": 2920.22, + "end": 2921.48, + "probability": 0.8527 + }, + { + "start": 2922.3, + "end": 2923.58, + "probability": 0.9738 + }, + { + "start": 2924.1, + "end": 2925.08, + "probability": 0.9268 + }, + { + "start": 2925.64, + "end": 2926.9, + "probability": 0.9497 + }, + { + "start": 2928.32, + "end": 2930.98, + "probability": 0.9641 + }, + { + "start": 2931.34, + "end": 2933.7, + "probability": 0.9944 + }, + { + "start": 2934.46, + "end": 2936.11, + "probability": 0.9912 + }, + { + "start": 2936.94, + "end": 2939.42, + "probability": 0.9935 + }, + { + "start": 2939.5, + "end": 2941.5, + "probability": 0.9634 + }, + { + "start": 2942.74, + "end": 2943.92, + "probability": 0.7597 + }, + { + "start": 2944.08, + "end": 2945.06, + "probability": 0.59 + }, + { + "start": 2945.1, + "end": 2946.14, + "probability": 0.9764 + }, + { + "start": 2947.12, + "end": 2947.7, + "probability": 0.458 + }, + { + "start": 2947.78, + "end": 2950.88, + "probability": 0.9543 + }, + { + "start": 2951.22, + "end": 2953.86, + "probability": 0.8296 + }, + { + "start": 2954.36, + "end": 2956.16, + "probability": 0.9172 + }, + { + "start": 2956.98, + "end": 2957.48, + "probability": 0.9284 + }, + { + "start": 2957.7, + "end": 2961.94, + "probability": 0.9862 + }, + { + "start": 2962.12, + "end": 2964.7, + "probability": 0.9951 + }, + { + "start": 2964.7, + "end": 2967.02, + "probability": 0.9954 + }, + { + "start": 2968.0, + "end": 2969.88, + "probability": 0.5986 + }, + { + "start": 2970.5, + "end": 2971.72, + "probability": 0.8785 + }, + { + "start": 2972.62, + "end": 2973.16, + "probability": 0.6897 + }, + { + "start": 2973.94, + "end": 2977.8, + "probability": 0.9949 + }, + { + "start": 2978.7, + "end": 2983.7, + "probability": 0.9964 + }, + { + "start": 2984.34, + "end": 2985.54, + "probability": 0.9435 + }, + { + "start": 2986.26, + "end": 2988.22, + "probability": 0.9535 + }, + { + "start": 2989.16, + "end": 2992.88, + "probability": 0.9976 + }, + { + "start": 2993.96, + "end": 2995.82, + "probability": 0.7794 + }, + { + "start": 2996.5, + "end": 2996.89, + "probability": 0.9565 + }, + { + "start": 2997.6, + "end": 2997.9, + "probability": 0.7387 + }, + { + "start": 2998.44, + "end": 2998.64, + "probability": 0.991 + }, + { + "start": 2999.56, + "end": 3000.01, + "probability": 0.9397 + }, + { + "start": 3001.04, + "end": 3003.06, + "probability": 0.9964 + }, + { + "start": 3003.06, + "end": 3005.32, + "probability": 0.9947 + }, + { + "start": 3006.1, + "end": 3008.9, + "probability": 0.9784 + }, + { + "start": 3009.28, + "end": 3009.96, + "probability": 0.8382 + }, + { + "start": 3010.36, + "end": 3011.04, + "probability": 0.8361 + }, + { + "start": 3011.7, + "end": 3014.77, + "probability": 0.9854 + }, + { + "start": 3015.66, + "end": 3016.78, + "probability": 0.9575 + }, + { + "start": 3017.88, + "end": 3018.6, + "probability": 0.8027 + }, + { + "start": 3019.16, + "end": 3022.68, + "probability": 0.897 + }, + { + "start": 3023.2, + "end": 3025.74, + "probability": 0.7455 + }, + { + "start": 3026.14, + "end": 3031.7, + "probability": 0.7601 + }, + { + "start": 3032.16, + "end": 3033.8, + "probability": 0.9628 + }, + { + "start": 3033.88, + "end": 3034.38, + "probability": 0.8415 + }, + { + "start": 3035.2, + "end": 3038.92, + "probability": 0.7904 + }, + { + "start": 3039.5, + "end": 3044.86, + "probability": 0.9627 + }, + { + "start": 3044.86, + "end": 3049.22, + "probability": 0.9033 + }, + { + "start": 3049.74, + "end": 3052.48, + "probability": 0.9979 + }, + { + "start": 3052.48, + "end": 3055.72, + "probability": 0.983 + }, + { + "start": 3056.26, + "end": 3058.04, + "probability": 0.8978 + }, + { + "start": 3058.8, + "end": 3060.72, + "probability": 0.9827 + }, + { + "start": 3061.16, + "end": 3064.94, + "probability": 0.9794 + }, + { + "start": 3065.54, + "end": 3067.07, + "probability": 0.9299 + }, + { + "start": 3067.5, + "end": 3071.7, + "probability": 0.9803 + }, + { + "start": 3071.7, + "end": 3075.22, + "probability": 0.9966 + }, + { + "start": 3076.1, + "end": 3077.42, + "probability": 0.9336 + }, + { + "start": 3077.88, + "end": 3079.66, + "probability": 0.9619 + }, + { + "start": 3079.98, + "end": 3082.46, + "probability": 0.993 + }, + { + "start": 3082.46, + "end": 3085.3, + "probability": 0.999 + }, + { + "start": 3087.3, + "end": 3089.88, + "probability": 0.9922 + }, + { + "start": 3090.66, + "end": 3092.76, + "probability": 0.8887 + }, + { + "start": 3093.56, + "end": 3097.38, + "probability": 0.9902 + }, + { + "start": 3097.38, + "end": 3101.54, + "probability": 0.9939 + }, + { + "start": 3101.54, + "end": 3105.84, + "probability": 0.9946 + }, + { + "start": 3106.66, + "end": 3108.42, + "probability": 0.9934 + }, + { + "start": 3108.42, + "end": 3111.36, + "probability": 0.9993 + }, + { + "start": 3111.92, + "end": 3114.88, + "probability": 0.9971 + }, + { + "start": 3114.88, + "end": 3118.8, + "probability": 0.7341 + }, + { + "start": 3119.26, + "end": 3120.15, + "probability": 0.577 + }, + { + "start": 3122.68, + "end": 3124.74, + "probability": 0.9916 + }, + { + "start": 3125.6, + "end": 3128.68, + "probability": 0.8473 + }, + { + "start": 3130.8, + "end": 3136.6, + "probability": 0.9864 + }, + { + "start": 3137.18, + "end": 3137.54, + "probability": 0.4179 + }, + { + "start": 3138.08, + "end": 3142.24, + "probability": 0.977 + }, + { + "start": 3142.94, + "end": 3145.4, + "probability": 0.9935 + }, + { + "start": 3145.4, + "end": 3149.02, + "probability": 0.9926 + }, + { + "start": 3149.8, + "end": 3150.36, + "probability": 0.5975 + }, + { + "start": 3150.8, + "end": 3155.82, + "probability": 0.973 + }, + { + "start": 3155.82, + "end": 3161.52, + "probability": 0.9612 + }, + { + "start": 3163.08, + "end": 3164.62, + "probability": 0.9983 + }, + { + "start": 3165.26, + "end": 3166.0, + "probability": 0.9471 + }, + { + "start": 3166.84, + "end": 3172.06, + "probability": 0.9954 + }, + { + "start": 3172.64, + "end": 3175.96, + "probability": 0.9939 + }, + { + "start": 3176.64, + "end": 3177.94, + "probability": 0.9053 + }, + { + "start": 3178.6, + "end": 3182.34, + "probability": 0.9844 + }, + { + "start": 3182.34, + "end": 3185.04, + "probability": 0.8657 + }, + { + "start": 3185.78, + "end": 3189.18, + "probability": 0.9957 + }, + { + "start": 3189.78, + "end": 3193.5, + "probability": 0.916 + }, + { + "start": 3194.04, + "end": 3199.58, + "probability": 0.9847 + }, + { + "start": 3200.78, + "end": 3204.84, + "probability": 0.9974 + }, + { + "start": 3205.58, + "end": 3208.12, + "probability": 0.9912 + }, + { + "start": 3208.64, + "end": 3211.72, + "probability": 0.9986 + }, + { + "start": 3212.6, + "end": 3213.08, + "probability": 0.9051 + }, + { + "start": 3213.36, + "end": 3214.42, + "probability": 0.8118 + }, + { + "start": 3214.92, + "end": 3219.06, + "probability": 0.9847 + }, + { + "start": 3219.8, + "end": 3220.3, + "probability": 0.8564 + }, + { + "start": 3220.32, + "end": 3222.84, + "probability": 0.9834 + }, + { + "start": 3223.32, + "end": 3224.47, + "probability": 0.991 + }, + { + "start": 3224.94, + "end": 3225.74, + "probability": 0.9139 + }, + { + "start": 3226.1, + "end": 3229.2, + "probability": 0.9765 + }, + { + "start": 3229.84, + "end": 3230.42, + "probability": 0.9863 + }, + { + "start": 3231.28, + "end": 3231.44, + "probability": 0.4354 + }, + { + "start": 3231.52, + "end": 3232.1, + "probability": 0.9518 + }, + { + "start": 3232.28, + "end": 3234.12, + "probability": 0.9722 + }, + { + "start": 3234.6, + "end": 3235.0, + "probability": 0.8579 + }, + { + "start": 3235.98, + "end": 3239.4, + "probability": 0.876 + }, + { + "start": 3240.48, + "end": 3242.78, + "probability": 0.8871 + }, + { + "start": 3243.4, + "end": 3244.28, + "probability": 0.9958 + }, + { + "start": 3244.62, + "end": 3245.76, + "probability": 0.9778 + }, + { + "start": 3246.2, + "end": 3250.44, + "probability": 0.9758 + }, + { + "start": 3251.14, + "end": 3252.84, + "probability": 0.9745 + }, + { + "start": 3253.87, + "end": 3256.42, + "probability": 0.9221 + }, + { + "start": 3257.3, + "end": 3260.24, + "probability": 0.9907 + }, + { + "start": 3260.58, + "end": 3264.76, + "probability": 0.9939 + }, + { + "start": 3265.4, + "end": 3267.66, + "probability": 0.8611 + }, + { + "start": 3268.18, + "end": 3272.58, + "probability": 0.9932 + }, + { + "start": 3273.58, + "end": 3275.6, + "probability": 0.8318 + }, + { + "start": 3275.98, + "end": 3278.4, + "probability": 0.9983 + }, + { + "start": 3278.4, + "end": 3281.98, + "probability": 0.9777 + }, + { + "start": 3282.74, + "end": 3286.04, + "probability": 0.998 + }, + { + "start": 3286.6, + "end": 3289.94, + "probability": 0.9482 + }, + { + "start": 3290.6, + "end": 3294.42, + "probability": 0.9949 + }, + { + "start": 3295.16, + "end": 3295.42, + "probability": 0.7246 + }, + { + "start": 3296.56, + "end": 3298.51, + "probability": 0.8339 + }, + { + "start": 3299.48, + "end": 3301.28, + "probability": 0.9369 + }, + { + "start": 3301.36, + "end": 3301.94, + "probability": 0.7762 + }, + { + "start": 3302.04, + "end": 3302.48, + "probability": 0.4814 + }, + { + "start": 3302.52, + "end": 3303.52, + "probability": 0.931 + }, + { + "start": 3303.52, + "end": 3304.31, + "probability": 0.9548 + }, + { + "start": 3313.24, + "end": 3313.52, + "probability": 0.7275 + }, + { + "start": 3316.6, + "end": 3318.86, + "probability": 0.7778 + }, + { + "start": 3320.26, + "end": 3322.86, + "probability": 0.9914 + }, + { + "start": 3323.6, + "end": 3327.74, + "probability": 0.7148 + }, + { + "start": 3329.38, + "end": 3331.06, + "probability": 0.9932 + }, + { + "start": 3333.92, + "end": 3335.52, + "probability": 0.7798 + }, + { + "start": 3336.9, + "end": 3341.38, + "probability": 0.9406 + }, + { + "start": 3342.0, + "end": 3343.32, + "probability": 0.7087 + }, + { + "start": 3344.06, + "end": 3347.38, + "probability": 0.9122 + }, + { + "start": 3348.16, + "end": 3349.54, + "probability": 0.7832 + }, + { + "start": 3352.1, + "end": 3358.68, + "probability": 0.9188 + }, + { + "start": 3359.68, + "end": 3361.76, + "probability": 0.7526 + }, + { + "start": 3362.2, + "end": 3363.38, + "probability": 0.959 + }, + { + "start": 3365.74, + "end": 3368.98, + "probability": 0.9028 + }, + { + "start": 3370.12, + "end": 3374.7, + "probability": 0.9836 + }, + { + "start": 3375.86, + "end": 3377.54, + "probability": 0.9709 + }, + { + "start": 3378.9, + "end": 3382.74, + "probability": 0.809 + }, + { + "start": 3383.32, + "end": 3387.37, + "probability": 0.9738 + }, + { + "start": 3391.24, + "end": 3392.44, + "probability": 0.7034 + }, + { + "start": 3394.86, + "end": 3400.64, + "probability": 0.9966 + }, + { + "start": 3401.9, + "end": 3405.44, + "probability": 0.9707 + }, + { + "start": 3408.22, + "end": 3409.12, + "probability": 0.5014 + }, + { + "start": 3410.1, + "end": 3411.2, + "probability": 0.7769 + }, + { + "start": 3413.62, + "end": 3418.22, + "probability": 0.9279 + }, + { + "start": 3419.76, + "end": 3421.32, + "probability": 0.9263 + }, + { + "start": 3422.02, + "end": 3425.22, + "probability": 0.9958 + }, + { + "start": 3425.22, + "end": 3428.86, + "probability": 0.9965 + }, + { + "start": 3429.94, + "end": 3434.2, + "probability": 0.9882 + }, + { + "start": 3434.9, + "end": 3439.36, + "probability": 0.998 + }, + { + "start": 3441.78, + "end": 3442.98, + "probability": 0.9137 + }, + { + "start": 3444.66, + "end": 3446.5, + "probability": 0.9608 + }, + { + "start": 3448.52, + "end": 3450.34, + "probability": 0.9554 + }, + { + "start": 3451.06, + "end": 3451.98, + "probability": 0.9938 + }, + { + "start": 3453.14, + "end": 3456.56, + "probability": 0.9834 + }, + { + "start": 3457.64, + "end": 3459.34, + "probability": 0.9366 + }, + { + "start": 3460.3, + "end": 3461.36, + "probability": 0.7944 + }, + { + "start": 3465.08, + "end": 3466.1, + "probability": 0.9507 + }, + { + "start": 3467.76, + "end": 3469.5, + "probability": 0.778 + }, + { + "start": 3470.16, + "end": 3471.32, + "probability": 0.9874 + }, + { + "start": 3472.94, + "end": 3474.3, + "probability": 0.9585 + }, + { + "start": 3474.94, + "end": 3483.66, + "probability": 0.9657 + }, + { + "start": 3483.9, + "end": 3488.74, + "probability": 0.9916 + }, + { + "start": 3489.74, + "end": 3494.88, + "probability": 0.8803 + }, + { + "start": 3495.56, + "end": 3497.42, + "probability": 0.6069 + }, + { + "start": 3498.54, + "end": 3503.38, + "probability": 0.9935 + }, + { + "start": 3505.6, + "end": 3506.6, + "probability": 0.7427 + }, + { + "start": 3510.14, + "end": 3513.46, + "probability": 0.9567 + }, + { + "start": 3514.2, + "end": 3515.9, + "probability": 0.9922 + }, + { + "start": 3516.7, + "end": 3518.04, + "probability": 0.818 + }, + { + "start": 3518.8, + "end": 3525.32, + "probability": 0.9963 + }, + { + "start": 3526.32, + "end": 3527.62, + "probability": 0.7183 + }, + { + "start": 3528.14, + "end": 3529.52, + "probability": 0.8319 + }, + { + "start": 3529.98, + "end": 3535.32, + "probability": 0.9865 + }, + { + "start": 3535.4, + "end": 3536.16, + "probability": 0.9479 + }, + { + "start": 3536.34, + "end": 3536.92, + "probability": 0.8371 + }, + { + "start": 3536.96, + "end": 3538.08, + "probability": 0.9266 + }, + { + "start": 3539.0, + "end": 3541.4, + "probability": 0.8445 + }, + { + "start": 3541.96, + "end": 3547.42, + "probability": 0.9928 + }, + { + "start": 3547.72, + "end": 3548.46, + "probability": 0.7998 + }, + { + "start": 3549.36, + "end": 3552.16, + "probability": 0.7236 + }, + { + "start": 3552.36, + "end": 3553.34, + "probability": 0.7798 + }, + { + "start": 3553.82, + "end": 3556.06, + "probability": 0.9829 + }, + { + "start": 3556.18, + "end": 3558.54, + "probability": 0.9941 + }, + { + "start": 3559.24, + "end": 3559.96, + "probability": 0.9586 + }, + { + "start": 3560.36, + "end": 3565.82, + "probability": 0.9867 + }, + { + "start": 3566.18, + "end": 3566.96, + "probability": 0.7826 + }, + { + "start": 3567.24, + "end": 3570.76, + "probability": 0.8599 + }, + { + "start": 3571.16, + "end": 3576.68, + "probability": 0.9808 + }, + { + "start": 3577.22, + "end": 3579.74, + "probability": 0.9983 + }, + { + "start": 3580.9, + "end": 3586.24, + "probability": 0.9823 + }, + { + "start": 3586.52, + "end": 3587.88, + "probability": 0.7978 + }, + { + "start": 3588.22, + "end": 3592.12, + "probability": 0.962 + }, + { + "start": 3593.1, + "end": 3594.78, + "probability": 0.7825 + }, + { + "start": 3595.4, + "end": 3595.86, + "probability": 0.5709 + }, + { + "start": 3596.02, + "end": 3596.42, + "probability": 0.7568 + }, + { + "start": 3596.52, + "end": 3597.08, + "probability": 0.6766 + }, + { + "start": 3597.4, + "end": 3598.06, + "probability": 0.9311 + }, + { + "start": 3598.12, + "end": 3600.96, + "probability": 0.9167 + }, + { + "start": 3602.22, + "end": 3605.51, + "probability": 0.8247 + }, + { + "start": 3606.44, + "end": 3607.54, + "probability": 0.8302 + }, + { + "start": 3608.16, + "end": 3609.22, + "probability": 0.9976 + }, + { + "start": 3610.4, + "end": 3612.7, + "probability": 0.9885 + }, + { + "start": 3613.3, + "end": 3613.86, + "probability": 0.9967 + }, + { + "start": 3615.54, + "end": 3620.54, + "probability": 0.9971 + }, + { + "start": 3621.22, + "end": 3623.56, + "probability": 0.998 + }, + { + "start": 3626.92, + "end": 3628.08, + "probability": 0.9684 + }, + { + "start": 3628.5, + "end": 3628.86, + "probability": 0.8406 + }, + { + "start": 3630.4, + "end": 3633.3, + "probability": 0.9833 + }, + { + "start": 3634.22, + "end": 3636.02, + "probability": 0.9288 + }, + { + "start": 3637.1, + "end": 3640.26, + "probability": 0.7918 + }, + { + "start": 3640.88, + "end": 3643.6, + "probability": 0.5804 + }, + { + "start": 3644.12, + "end": 3646.5, + "probability": 0.8457 + }, + { + "start": 3657.6, + "end": 3659.74, + "probability": 0.4718 + }, + { + "start": 3662.68, + "end": 3664.42, + "probability": 0.9595 + }, + { + "start": 3670.06, + "end": 3672.56, + "probability": 0.9115 + }, + { + "start": 3673.82, + "end": 3680.02, + "probability": 0.8833 + }, + { + "start": 3684.8, + "end": 3685.62, + "probability": 0.9673 + }, + { + "start": 3688.8, + "end": 3689.88, + "probability": 0.9709 + }, + { + "start": 3691.02, + "end": 3692.88, + "probability": 0.9982 + }, + { + "start": 3694.6, + "end": 3697.7, + "probability": 0.9976 + }, + { + "start": 3699.02, + "end": 3699.62, + "probability": 0.6431 + }, + { + "start": 3701.26, + "end": 3704.16, + "probability": 0.7095 + }, + { + "start": 3705.18, + "end": 3710.54, + "probability": 0.7907 + }, + { + "start": 3712.56, + "end": 3715.6, + "probability": 0.6902 + }, + { + "start": 3716.84, + "end": 3720.26, + "probability": 0.8052 + }, + { + "start": 3721.2, + "end": 3724.42, + "probability": 0.9917 + }, + { + "start": 3724.76, + "end": 3726.24, + "probability": 0.8977 + }, + { + "start": 3728.32, + "end": 3730.8, + "probability": 0.9883 + }, + { + "start": 3732.82, + "end": 3736.34, + "probability": 0.8659 + }, + { + "start": 3738.24, + "end": 3740.02, + "probability": 0.9966 + }, + { + "start": 3742.62, + "end": 3744.36, + "probability": 0.7981 + }, + { + "start": 3744.58, + "end": 3751.64, + "probability": 0.961 + }, + { + "start": 3752.38, + "end": 3754.98, + "probability": 0.9489 + }, + { + "start": 3756.26, + "end": 3759.8, + "probability": 0.9795 + }, + { + "start": 3762.22, + "end": 3764.6, + "probability": 0.988 + }, + { + "start": 3766.2, + "end": 3767.66, + "probability": 0.9939 + }, + { + "start": 3768.7, + "end": 3769.88, + "probability": 0.829 + }, + { + "start": 3770.8, + "end": 3772.2, + "probability": 0.8799 + }, + { + "start": 3772.98, + "end": 3774.82, + "probability": 0.9878 + }, + { + "start": 3775.52, + "end": 3776.32, + "probability": 0.9167 + }, + { + "start": 3777.7, + "end": 3779.16, + "probability": 0.9957 + }, + { + "start": 3780.56, + "end": 3784.35, + "probability": 0.9956 + }, + { + "start": 3785.26, + "end": 3790.88, + "probability": 0.9913 + }, + { + "start": 3792.44, + "end": 3793.04, + "probability": 0.9608 + }, + { + "start": 3795.04, + "end": 3797.76, + "probability": 0.9448 + }, + { + "start": 3798.48, + "end": 3799.14, + "probability": 0.8683 + }, + { + "start": 3800.32, + "end": 3803.84, + "probability": 0.9793 + }, + { + "start": 3803.88, + "end": 3805.86, + "probability": 0.9639 + }, + { + "start": 3806.08, + "end": 3806.44, + "probability": 0.8772 + }, + { + "start": 3807.48, + "end": 3808.0, + "probability": 0.9287 + }, + { + "start": 3809.32, + "end": 3810.62, + "probability": 0.9714 + }, + { + "start": 3812.4, + "end": 3815.46, + "probability": 0.9805 + }, + { + "start": 3815.62, + "end": 3817.1, + "probability": 0.8499 + }, + { + "start": 3817.1, + "end": 3817.96, + "probability": 0.6636 + }, + { + "start": 3819.26, + "end": 3822.5, + "probability": 0.9692 + }, + { + "start": 3822.6, + "end": 3825.44, + "probability": 0.9748 + }, + { + "start": 3825.54, + "end": 3827.66, + "probability": 0.9115 + }, + { + "start": 3828.48, + "end": 3829.0, + "probability": 0.9199 + }, + { + "start": 3832.28, + "end": 3835.64, + "probability": 0.9434 + }, + { + "start": 3836.92, + "end": 3840.11, + "probability": 0.9951 + }, + { + "start": 3841.42, + "end": 3843.46, + "probability": 0.8786 + }, + { + "start": 3843.9, + "end": 3845.52, + "probability": 0.8844 + }, + { + "start": 3845.92, + "end": 3848.96, + "probability": 0.8753 + }, + { + "start": 3849.72, + "end": 3850.3, + "probability": 0.2338 + }, + { + "start": 3850.41, + "end": 3852.46, + "probability": 0.3146 + }, + { + "start": 3852.64, + "end": 3854.24, + "probability": 0.9496 + }, + { + "start": 3855.32, + "end": 3856.98, + "probability": 0.9786 + }, + { + "start": 3858.52, + "end": 3860.78, + "probability": 0.9099 + }, + { + "start": 3861.72, + "end": 3863.42, + "probability": 0.9573 + }, + { + "start": 3864.8, + "end": 3865.44, + "probability": 0.664 + }, + { + "start": 3867.36, + "end": 3870.1, + "probability": 0.9965 + }, + { + "start": 3870.26, + "end": 3870.48, + "probability": 0.3403 + }, + { + "start": 3870.52, + "end": 3872.42, + "probability": 0.7383 + }, + { + "start": 3872.64, + "end": 3873.82, + "probability": 0.8635 + }, + { + "start": 3873.98, + "end": 3874.56, + "probability": 0.7076 + }, + { + "start": 3874.72, + "end": 3876.8, + "probability": 0.8238 + }, + { + "start": 3877.0, + "end": 3878.06, + "probability": 0.8266 + }, + { + "start": 3879.28, + "end": 3881.7, + "probability": 0.9932 + }, + { + "start": 3881.7, + "end": 3884.94, + "probability": 0.9919 + }, + { + "start": 3886.68, + "end": 3888.76, + "probability": 0.9939 + }, + { + "start": 3889.92, + "end": 3893.64, + "probability": 0.8967 + }, + { + "start": 3894.84, + "end": 3898.22, + "probability": 0.9985 + }, + { + "start": 3898.22, + "end": 3901.36, + "probability": 0.9976 + }, + { + "start": 3903.38, + "end": 3907.5, + "probability": 0.998 + }, + { + "start": 3907.8, + "end": 3910.8, + "probability": 0.9869 + }, + { + "start": 3912.86, + "end": 3916.01, + "probability": 0.8969 + }, + { + "start": 3917.1, + "end": 3922.56, + "probability": 0.9917 + }, + { + "start": 3922.82, + "end": 3925.76, + "probability": 0.9942 + }, + { + "start": 3926.92, + "end": 3927.86, + "probability": 0.9014 + }, + { + "start": 3928.04, + "end": 3930.66, + "probability": 0.9858 + }, + { + "start": 3930.82, + "end": 3932.78, + "probability": 0.8623 + }, + { + "start": 3934.42, + "end": 3939.14, + "probability": 0.9835 + }, + { + "start": 3939.26, + "end": 3940.58, + "probability": 0.5967 + }, + { + "start": 3942.46, + "end": 3945.08, + "probability": 0.9741 + }, + { + "start": 3945.1, + "end": 3945.98, + "probability": 0.4875 + }, + { + "start": 3946.42, + "end": 3948.18, + "probability": 0.9939 + }, + { + "start": 3949.1, + "end": 3952.0, + "probability": 0.5107 + }, + { + "start": 3954.34, + "end": 3958.62, + "probability": 0.8051 + }, + { + "start": 3958.62, + "end": 3961.88, + "probability": 0.9946 + }, + { + "start": 3961.9, + "end": 3965.04, + "probability": 0.9675 + }, + { + "start": 3966.14, + "end": 3967.12, + "probability": 0.8044 + }, + { + "start": 3968.74, + "end": 3972.62, + "probability": 0.9893 + }, + { + "start": 3973.96, + "end": 3975.38, + "probability": 0.9808 + }, + { + "start": 3976.38, + "end": 3978.22, + "probability": 0.9868 + }, + { + "start": 3978.94, + "end": 3979.34, + "probability": 0.9871 + }, + { + "start": 3980.22, + "end": 3981.81, + "probability": 0.9939 + }, + { + "start": 3982.5, + "end": 3985.6, + "probability": 0.8545 + }, + { + "start": 3988.32, + "end": 3989.94, + "probability": 0.4654 + }, + { + "start": 3990.96, + "end": 3992.6, + "probability": 0.7511 + }, + { + "start": 3992.64, + "end": 3994.06, + "probability": 0.6829 + }, + { + "start": 3994.16, + "end": 3994.9, + "probability": 0.8096 + }, + { + "start": 3994.94, + "end": 3997.22, + "probability": 0.8263 + }, + { + "start": 3998.06, + "end": 4004.38, + "probability": 0.9933 + }, + { + "start": 4006.38, + "end": 4010.64, + "probability": 0.9879 + }, + { + "start": 4011.9, + "end": 4012.14, + "probability": 0.8097 + }, + { + "start": 4013.87, + "end": 4014.46, + "probability": 0.6303 + }, + { + "start": 4016.52, + "end": 4018.7, + "probability": 0.912 + }, + { + "start": 4019.92, + "end": 4021.46, + "probability": 0.996 + }, + { + "start": 4021.98, + "end": 4022.44, + "probability": 0.9772 + }, + { + "start": 4023.08, + "end": 4023.96, + "probability": 0.8906 + }, + { + "start": 4024.52, + "end": 4028.08, + "probability": 0.9712 + }, + { + "start": 4029.04, + "end": 4034.52, + "probability": 0.9326 + }, + { + "start": 4035.3, + "end": 4037.86, + "probability": 0.6864 + }, + { + "start": 4039.5, + "end": 4042.4, + "probability": 0.7949 + }, + { + "start": 4042.4, + "end": 4047.3, + "probability": 0.9766 + }, + { + "start": 4047.4, + "end": 4047.6, + "probability": 0.7935 + }, + { + "start": 4049.64, + "end": 4050.88, + "probability": 0.9816 + }, + { + "start": 4051.94, + "end": 4055.04, + "probability": 0.9847 + }, + { + "start": 4056.26, + "end": 4059.78, + "probability": 0.9932 + }, + { + "start": 4061.04, + "end": 4062.14, + "probability": 0.9568 + }, + { + "start": 4064.1, + "end": 4065.98, + "probability": 0.9921 + }, + { + "start": 4067.68, + "end": 4070.12, + "probability": 0.995 + }, + { + "start": 4071.34, + "end": 4072.49, + "probability": 0.8149 + }, + { + "start": 4073.66, + "end": 4076.36, + "probability": 0.7406 + }, + { + "start": 4077.9, + "end": 4081.56, + "probability": 0.9035 + }, + { + "start": 4082.56, + "end": 4083.32, + "probability": 0.9805 + }, + { + "start": 4084.52, + "end": 4085.82, + "probability": 0.978 + }, + { + "start": 4087.48, + "end": 4090.8, + "probability": 0.9976 + }, + { + "start": 4090.94, + "end": 4091.9, + "probability": 0.8433 + }, + { + "start": 4092.2, + "end": 4096.14, + "probability": 0.9969 + }, + { + "start": 4097.98, + "end": 4101.3, + "probability": 0.9788 + }, + { + "start": 4102.46, + "end": 4103.6, + "probability": 0.9254 + }, + { + "start": 4105.12, + "end": 4107.58, + "probability": 0.9966 + }, + { + "start": 4109.24, + "end": 4110.8, + "probability": 0.969 + }, + { + "start": 4110.96, + "end": 4112.06, + "probability": 0.9626 + }, + { + "start": 4112.64, + "end": 4115.6, + "probability": 0.9441 + }, + { + "start": 4116.54, + "end": 4124.32, + "probability": 0.9016 + }, + { + "start": 4125.32, + "end": 4129.12, + "probability": 0.9984 + }, + { + "start": 4129.34, + "end": 4131.26, + "probability": 0.9484 + }, + { + "start": 4131.5, + "end": 4135.06, + "probability": 0.9907 + }, + { + "start": 4135.96, + "end": 4138.22, + "probability": 0.991 + }, + { + "start": 4140.44, + "end": 4142.54, + "probability": 0.9948 + }, + { + "start": 4144.64, + "end": 4144.9, + "probability": 0.937 + }, + { + "start": 4145.66, + "end": 4146.52, + "probability": 0.9922 + }, + { + "start": 4147.5, + "end": 4149.38, + "probability": 0.8267 + }, + { + "start": 4150.44, + "end": 4151.72, + "probability": 0.8075 + }, + { + "start": 4153.4, + "end": 4158.4, + "probability": 0.9793 + }, + { + "start": 4158.46, + "end": 4160.9, + "probability": 0.9775 + }, + { + "start": 4162.52, + "end": 4164.88, + "probability": 0.9868 + }, + { + "start": 4166.78, + "end": 4172.64, + "probability": 0.9821 + }, + { + "start": 4176.9, + "end": 4178.72, + "probability": 0.9508 + }, + { + "start": 4180.0, + "end": 4180.51, + "probability": 0.6589 + }, + { + "start": 4181.8, + "end": 4186.0, + "probability": 0.9961 + }, + { + "start": 4187.8, + "end": 4188.94, + "probability": 0.9258 + }, + { + "start": 4191.12, + "end": 4191.76, + "probability": 0.5311 + }, + { + "start": 4192.82, + "end": 4195.62, + "probability": 0.9519 + }, + { + "start": 4197.32, + "end": 4198.38, + "probability": 0.995 + }, + { + "start": 4199.4, + "end": 4200.26, + "probability": 0.7693 + }, + { + "start": 4201.4, + "end": 4205.38, + "probability": 0.9932 + }, + { + "start": 4205.52, + "end": 4206.29, + "probability": 0.8744 + }, + { + "start": 4208.1, + "end": 4209.4, + "probability": 0.998 + }, + { + "start": 4211.54, + "end": 4212.36, + "probability": 0.5788 + }, + { + "start": 4213.18, + "end": 4215.79, + "probability": 0.9702 + }, + { + "start": 4218.54, + "end": 4220.98, + "probability": 0.9956 + }, + { + "start": 4221.18, + "end": 4221.78, + "probability": 0.9275 + }, + { + "start": 4221.92, + "end": 4224.18, + "probability": 0.7894 + }, + { + "start": 4226.02, + "end": 4227.84, + "probability": 0.834 + }, + { + "start": 4228.9, + "end": 4231.56, + "probability": 0.9312 + }, + { + "start": 4232.56, + "end": 4234.22, + "probability": 0.9978 + }, + { + "start": 4236.22, + "end": 4240.46, + "probability": 0.989 + }, + { + "start": 4241.46, + "end": 4243.84, + "probability": 0.9819 + }, + { + "start": 4245.72, + "end": 4247.28, + "probability": 0.9805 + }, + { + "start": 4248.76, + "end": 4252.02, + "probability": 0.8323 + }, + { + "start": 4253.0, + "end": 4256.2, + "probability": 0.9925 + }, + { + "start": 4258.46, + "end": 4265.6, + "probability": 0.9458 + }, + { + "start": 4266.78, + "end": 4268.68, + "probability": 0.9468 + }, + { + "start": 4270.84, + "end": 4271.52, + "probability": 0.4525 + }, + { + "start": 4273.54, + "end": 4275.48, + "probability": 0.6339 + }, + { + "start": 4277.62, + "end": 4281.5, + "probability": 0.8359 + }, + { + "start": 4282.58, + "end": 4284.7, + "probability": 0.9961 + }, + { + "start": 4285.38, + "end": 4289.68, + "probability": 0.7691 + }, + { + "start": 4290.24, + "end": 4292.28, + "probability": 0.9387 + }, + { + "start": 4293.58, + "end": 4296.04, + "probability": 0.9906 + }, + { + "start": 4297.0, + "end": 4299.7, + "probability": 0.997 + }, + { + "start": 4300.92, + "end": 4301.94, + "probability": 0.8527 + }, + { + "start": 4303.02, + "end": 4304.3, + "probability": 0.9693 + }, + { + "start": 4306.42, + "end": 4307.5, + "probability": 0.6209 + }, + { + "start": 4309.14, + "end": 4310.5, + "probability": 0.9534 + }, + { + "start": 4311.24, + "end": 4313.0, + "probability": 0.8534 + }, + { + "start": 4313.92, + "end": 4315.34, + "probability": 0.9238 + }, + { + "start": 4316.2, + "end": 4319.36, + "probability": 0.9528 + }, + { + "start": 4320.18, + "end": 4322.36, + "probability": 0.7562 + }, + { + "start": 4322.38, + "end": 4324.2, + "probability": 0.9253 + }, + { + "start": 4324.3, + "end": 4325.94, + "probability": 0.9816 + }, + { + "start": 4326.96, + "end": 4328.0, + "probability": 0.6746 + }, + { + "start": 4329.22, + "end": 4330.06, + "probability": 0.916 + }, + { + "start": 4331.1, + "end": 4332.3, + "probability": 0.9976 + }, + { + "start": 4334.16, + "end": 4336.66, + "probability": 0.8825 + }, + { + "start": 4337.3, + "end": 4339.08, + "probability": 0.9949 + }, + { + "start": 4341.52, + "end": 4342.36, + "probability": 0.9404 + }, + { + "start": 4344.14, + "end": 4346.68, + "probability": 0.7832 + }, + { + "start": 4348.06, + "end": 4349.4, + "probability": 0.9526 + }, + { + "start": 4351.34, + "end": 4355.34, + "probability": 0.999 + }, + { + "start": 4356.52, + "end": 4360.4, + "probability": 0.9979 + }, + { + "start": 4360.54, + "end": 4361.5, + "probability": 0.8027 + }, + { + "start": 4362.6, + "end": 4363.35, + "probability": 0.9839 + }, + { + "start": 4365.06, + "end": 4369.2, + "probability": 0.9952 + }, + { + "start": 4370.72, + "end": 4372.32, + "probability": 0.6379 + }, + { + "start": 4373.98, + "end": 4380.34, + "probability": 0.9009 + }, + { + "start": 4380.54, + "end": 4382.6, + "probability": 0.8687 + }, + { + "start": 4382.74, + "end": 4385.2, + "probability": 0.6222 + }, + { + "start": 4385.2, + "end": 4386.5, + "probability": 0.889 + }, + { + "start": 4387.9, + "end": 4388.62, + "probability": 0.9207 + }, + { + "start": 4389.98, + "end": 4394.66, + "probability": 0.8895 + }, + { + "start": 4396.78, + "end": 4403.36, + "probability": 0.9795 + }, + { + "start": 4404.04, + "end": 4405.9, + "probability": 0.8405 + }, + { + "start": 4408.84, + "end": 4410.7, + "probability": 0.7411 + }, + { + "start": 4411.38, + "end": 4412.12, + "probability": 0.9552 + }, + { + "start": 4413.96, + "end": 4414.58, + "probability": 0.8301 + }, + { + "start": 4415.1, + "end": 4417.72, + "probability": 0.9576 + }, + { + "start": 4418.74, + "end": 4419.56, + "probability": 0.7788 + }, + { + "start": 4420.72, + "end": 4423.12, + "probability": 0.9822 + }, + { + "start": 4423.96, + "end": 4426.16, + "probability": 0.9812 + }, + { + "start": 4426.42, + "end": 4430.18, + "probability": 0.6346 + }, + { + "start": 4430.46, + "end": 4431.38, + "probability": 0.7092 + }, + { + "start": 4432.88, + "end": 4433.68, + "probability": 0.9341 + }, + { + "start": 4433.8, + "end": 4435.4, + "probability": 0.9614 + }, + { + "start": 4436.54, + "end": 4438.42, + "probability": 0.9627 + }, + { + "start": 4440.34, + "end": 4440.62, + "probability": 0.8171 + }, + { + "start": 4441.86, + "end": 4445.18, + "probability": 0.7934 + }, + { + "start": 4445.86, + "end": 4447.72, + "probability": 0.687 + }, + { + "start": 4448.56, + "end": 4450.54, + "probability": 0.939 + }, + { + "start": 4453.14, + "end": 4455.38, + "probability": 0.4373 + }, + { + "start": 4456.22, + "end": 4456.98, + "probability": 0.9988 + }, + { + "start": 4457.52, + "end": 4458.4, + "probability": 0.6836 + }, + { + "start": 4458.44, + "end": 4460.96, + "probability": 0.9697 + }, + { + "start": 4461.0, + "end": 4461.58, + "probability": 0.9404 + }, + { + "start": 4461.64, + "end": 4462.42, + "probability": 0.7697 + }, + { + "start": 4462.46, + "end": 4463.32, + "probability": 0.7523 + }, + { + "start": 4463.42, + "end": 4464.96, + "probability": 0.7776 + }, + { + "start": 4466.62, + "end": 4470.32, + "probability": 0.9309 + }, + { + "start": 4470.48, + "end": 4471.02, + "probability": 0.759 + }, + { + "start": 4472.5, + "end": 4477.9, + "probability": 0.8013 + }, + { + "start": 4478.42, + "end": 4479.28, + "probability": 0.7243 + }, + { + "start": 4481.24, + "end": 4482.36, + "probability": 0.8429 + }, + { + "start": 4484.66, + "end": 4488.44, + "probability": 0.9139 + }, + { + "start": 4490.02, + "end": 4492.16, + "probability": 0.7936 + }, + { + "start": 4492.92, + "end": 4495.56, + "probability": 0.8259 + }, + { + "start": 4497.14, + "end": 4499.5, + "probability": 0.9952 + }, + { + "start": 4500.66, + "end": 4503.44, + "probability": 0.9337 + }, + { + "start": 4503.82, + "end": 4504.26, + "probability": 0.9114 + }, + { + "start": 4505.74, + "end": 4508.56, + "probability": 0.7992 + }, + { + "start": 4509.4, + "end": 4512.12, + "probability": 0.9932 + }, + { + "start": 4513.52, + "end": 4517.25, + "probability": 0.9281 + }, + { + "start": 4517.6, + "end": 4521.16, + "probability": 0.994 + }, + { + "start": 4521.3, + "end": 4522.4, + "probability": 0.6287 + }, + { + "start": 4522.56, + "end": 4523.92, + "probability": 0.9927 + }, + { + "start": 4524.28, + "end": 4524.94, + "probability": 0.6386 + }, + { + "start": 4526.46, + "end": 4527.24, + "probability": 0.711 + }, + { + "start": 4527.38, + "end": 4527.84, + "probability": 0.3689 + }, + { + "start": 4527.94, + "end": 4528.98, + "probability": 0.9243 + }, + { + "start": 4530.12, + "end": 4531.56, + "probability": 0.8291 + }, + { + "start": 4531.66, + "end": 4533.34, + "probability": 0.9641 + }, + { + "start": 4533.42, + "end": 4534.38, + "probability": 0.9839 + }, + { + "start": 4535.28, + "end": 4536.42, + "probability": 0.9777 + }, + { + "start": 4536.48, + "end": 4538.76, + "probability": 0.9674 + }, + { + "start": 4538.84, + "end": 4540.88, + "probability": 0.7306 + }, + { + "start": 4541.46, + "end": 4544.24, + "probability": 0.9328 + }, + { + "start": 4544.28, + "end": 4545.54, + "probability": 0.9883 + }, + { + "start": 4546.94, + "end": 4548.06, + "probability": 0.9009 + }, + { + "start": 4550.16, + "end": 4552.4, + "probability": 0.969 + }, + { + "start": 4552.96, + "end": 4557.46, + "probability": 0.8917 + }, + { + "start": 4558.76, + "end": 4559.4, + "probability": 0.809 + }, + { + "start": 4559.5, + "end": 4563.06, + "probability": 0.9932 + }, + { + "start": 4563.06, + "end": 4566.4, + "probability": 0.9737 + }, + { + "start": 4567.82, + "end": 4569.6, + "probability": 0.9616 + }, + { + "start": 4571.48, + "end": 4573.04, + "probability": 0.5767 + }, + { + "start": 4574.4, + "end": 4576.94, + "probability": 0.9727 + }, + { + "start": 4578.42, + "end": 4579.0, + "probability": 0.9875 + }, + { + "start": 4581.72, + "end": 4582.96, + "probability": 0.9972 + }, + { + "start": 4584.04, + "end": 4588.98, + "probability": 0.8214 + }, + { + "start": 4589.62, + "end": 4591.02, + "probability": 0.4712 + }, + { + "start": 4591.86, + "end": 4595.28, + "probability": 0.9106 + }, + { + "start": 4595.28, + "end": 4595.38, + "probability": 0.0667 + }, + { + "start": 4596.4, + "end": 4598.22, + "probability": 0.9374 + }, + { + "start": 4598.34, + "end": 4602.18, + "probability": 0.8015 + }, + { + "start": 4603.1, + "end": 4603.76, + "probability": 0.5444 + }, + { + "start": 4604.34, + "end": 4605.0, + "probability": 0.9367 + }, + { + "start": 4605.94, + "end": 4606.92, + "probability": 0.6156 + }, + { + "start": 4608.18, + "end": 4612.32, + "probability": 0.9995 + }, + { + "start": 4614.5, + "end": 4615.42, + "probability": 0.9963 + }, + { + "start": 4615.52, + "end": 4617.76, + "probability": 0.8625 + }, + { + "start": 4618.7, + "end": 4619.38, + "probability": 0.8552 + }, + { + "start": 4619.92, + "end": 4624.18, + "probability": 0.9893 + }, + { + "start": 4624.18, + "end": 4627.9, + "probability": 0.7846 + }, + { + "start": 4628.58, + "end": 4630.86, + "probability": 0.9082 + }, + { + "start": 4631.58, + "end": 4633.5, + "probability": 0.9492 + }, + { + "start": 4634.82, + "end": 4636.44, + "probability": 0.8306 + }, + { + "start": 4637.62, + "end": 4639.88, + "probability": 0.8992 + }, + { + "start": 4640.12, + "end": 4641.8, + "probability": 0.9868 + }, + { + "start": 4642.54, + "end": 4644.9, + "probability": 0.9949 + }, + { + "start": 4646.24, + "end": 4647.29, + "probability": 0.6815 + }, + { + "start": 4648.22, + "end": 4652.5, + "probability": 0.9154 + }, + { + "start": 4652.68, + "end": 4655.6, + "probability": 0.9721 + }, + { + "start": 4655.66, + "end": 4656.32, + "probability": 0.7081 + }, + { + "start": 4657.44, + "end": 4660.84, + "probability": 0.9538 + }, + { + "start": 4661.9, + "end": 4662.4, + "probability": 0.8694 + }, + { + "start": 4663.92, + "end": 4670.1, + "probability": 0.9575 + }, + { + "start": 4671.12, + "end": 4672.33, + "probability": 0.9976 + }, + { + "start": 4674.14, + "end": 4675.01, + "probability": 0.9922 + }, + { + "start": 4676.1, + "end": 4677.34, + "probability": 0.5751 + }, + { + "start": 4678.16, + "end": 4682.82, + "probability": 0.9932 + }, + { + "start": 4683.6, + "end": 4684.65, + "probability": 0.9948 + }, + { + "start": 4686.44, + "end": 4687.52, + "probability": 0.9885 + }, + { + "start": 4687.82, + "end": 4691.22, + "probability": 0.9412 + }, + { + "start": 4692.72, + "end": 4693.86, + "probability": 0.9757 + }, + { + "start": 4695.02, + "end": 4695.76, + "probability": 0.4951 + }, + { + "start": 4697.06, + "end": 4698.64, + "probability": 0.7426 + }, + { + "start": 4699.94, + "end": 4703.78, + "probability": 0.9487 + }, + { + "start": 4705.32, + "end": 4706.9, + "probability": 0.9683 + }, + { + "start": 4708.0, + "end": 4709.8, + "probability": 0.9449 + }, + { + "start": 4709.88, + "end": 4711.56, + "probability": 0.9851 + }, + { + "start": 4712.66, + "end": 4716.36, + "probability": 0.9958 + }, + { + "start": 4718.26, + "end": 4720.64, + "probability": 0.9525 + }, + { + "start": 4720.86, + "end": 4722.96, + "probability": 0.9718 + }, + { + "start": 4723.6, + "end": 4727.54, + "probability": 0.9675 + }, + { + "start": 4728.48, + "end": 4731.38, + "probability": 0.9487 + }, + { + "start": 4732.08, + "end": 4733.1, + "probability": 0.8853 + }, + { + "start": 4734.12, + "end": 4736.46, + "probability": 0.9988 + }, + { + "start": 4738.02, + "end": 4741.04, + "probability": 0.3903 + }, + { + "start": 4741.06, + "end": 4742.06, + "probability": 0.777 + }, + { + "start": 4742.68, + "end": 4743.06, + "probability": 0.8958 + }, + { + "start": 4743.1, + "end": 4744.12, + "probability": 0.9633 + }, + { + "start": 4744.98, + "end": 4746.08, + "probability": 0.9888 + }, + { + "start": 4747.46, + "end": 4751.16, + "probability": 0.9732 + }, + { + "start": 4752.32, + "end": 4753.72, + "probability": 0.9896 + }, + { + "start": 4754.32, + "end": 4755.72, + "probability": 0.9592 + }, + { + "start": 4757.64, + "end": 4758.98, + "probability": 0.8225 + }, + { + "start": 4759.8, + "end": 4763.12, + "probability": 0.8286 + }, + { + "start": 4765.0, + "end": 4766.32, + "probability": 0.986 + }, + { + "start": 4767.28, + "end": 4768.18, + "probability": 0.6812 + }, + { + "start": 4768.32, + "end": 4770.1, + "probability": 0.9967 + }, + { + "start": 4770.2, + "end": 4771.34, + "probability": 0.9106 + }, + { + "start": 4772.86, + "end": 4774.96, + "probability": 0.9858 + }, + { + "start": 4776.52, + "end": 4777.86, + "probability": 0.9667 + }, + { + "start": 4779.52, + "end": 4781.84, + "probability": 0.982 + }, + { + "start": 4781.92, + "end": 4783.12, + "probability": 0.8867 + }, + { + "start": 4783.4, + "end": 4784.58, + "probability": 0.7343 + }, + { + "start": 4787.06, + "end": 4789.8, + "probability": 0.9692 + }, + { + "start": 4791.28, + "end": 4793.94, + "probability": 0.9872 + }, + { + "start": 4795.72, + "end": 4797.88, + "probability": 0.9956 + }, + { + "start": 4798.44, + "end": 4801.58, + "probability": 0.7892 + }, + { + "start": 4803.22, + "end": 4807.5, + "probability": 0.8332 + }, + { + "start": 4807.68, + "end": 4808.54, + "probability": 0.8456 + }, + { + "start": 4809.54, + "end": 4810.5, + "probability": 0.9785 + }, + { + "start": 4810.58, + "end": 4811.76, + "probability": 0.9467 + }, + { + "start": 4813.18, + "end": 4817.04, + "probability": 0.9502 + }, + { + "start": 4818.18, + "end": 4822.94, + "probability": 0.6865 + }, + { + "start": 4823.16, + "end": 4824.2, + "probability": 0.8453 + }, + { + "start": 4825.68, + "end": 4826.3, + "probability": 0.8755 + }, + { + "start": 4826.46, + "end": 4827.18, + "probability": 0.6413 + }, + { + "start": 4828.96, + "end": 4830.06, + "probability": 0.9575 + }, + { + "start": 4830.14, + "end": 4832.59, + "probability": 0.9755 + }, + { + "start": 4833.82, + "end": 4838.08, + "probability": 0.9827 + }, + { + "start": 4838.96, + "end": 4840.18, + "probability": 0.9302 + }, + { + "start": 4841.02, + "end": 4842.76, + "probability": 0.9946 + }, + { + "start": 4844.04, + "end": 4845.89, + "probability": 0.9941 + }, + { + "start": 4846.76, + "end": 4849.06, + "probability": 0.9922 + }, + { + "start": 4849.56, + "end": 4852.4, + "probability": 0.9989 + }, + { + "start": 4853.82, + "end": 4856.5, + "probability": 0.8689 + }, + { + "start": 4857.68, + "end": 4858.3, + "probability": 0.7812 + }, + { + "start": 4860.24, + "end": 4863.52, + "probability": 0.97 + }, + { + "start": 4864.9, + "end": 4867.72, + "probability": 0.8709 + }, + { + "start": 4868.0, + "end": 4868.76, + "probability": 0.9476 + }, + { + "start": 4869.04, + "end": 4869.92, + "probability": 0.9456 + }, + { + "start": 4870.0, + "end": 4870.62, + "probability": 0.9697 + }, + { + "start": 4871.8, + "end": 4874.82, + "probability": 0.8939 + }, + { + "start": 4876.14, + "end": 4878.2, + "probability": 0.8743 + }, + { + "start": 4878.34, + "end": 4878.74, + "probability": 0.5624 + }, + { + "start": 4878.86, + "end": 4879.42, + "probability": 0.9131 + }, + { + "start": 4879.46, + "end": 4879.84, + "probability": 0.8452 + }, + { + "start": 4879.9, + "end": 4880.66, + "probability": 0.9425 + }, + { + "start": 4881.62, + "end": 4883.06, + "probability": 0.8765 + }, + { + "start": 4883.16, + "end": 4884.94, + "probability": 0.655 + }, + { + "start": 4885.4, + "end": 4886.16, + "probability": 0.7284 + }, + { + "start": 4886.32, + "end": 4887.54, + "probability": 0.912 + }, + { + "start": 4888.18, + "end": 4889.4, + "probability": 0.9045 + }, + { + "start": 4890.22, + "end": 4894.88, + "probability": 0.9919 + }, + { + "start": 4895.02, + "end": 4895.52, + "probability": 0.7063 + }, + { + "start": 4897.78, + "end": 4899.5, + "probability": 0.8422 + }, + { + "start": 4901.86, + "end": 4903.88, + "probability": 0.9194 + }, + { + "start": 4904.6, + "end": 4905.54, + "probability": 0.727 + }, + { + "start": 4906.24, + "end": 4906.24, + "probability": 0.3571 + }, + { + "start": 4906.38, + "end": 4908.1, + "probability": 0.7756 + }, + { + "start": 4908.28, + "end": 4909.9, + "probability": 0.9361 + }, + { + "start": 4910.48, + "end": 4911.12, + "probability": 0.7391 + }, + { + "start": 4911.22, + "end": 4912.16, + "probability": 0.8945 + }, + { + "start": 4912.3, + "end": 4914.12, + "probability": 0.912 + }, + { + "start": 4915.42, + "end": 4916.58, + "probability": 0.9193 + }, + { + "start": 4918.8, + "end": 4920.08, + "probability": 0.6404 + }, + { + "start": 4920.22, + "end": 4921.82, + "probability": 0.7446 + }, + { + "start": 4922.72, + "end": 4927.2, + "probability": 0.8877 + }, + { + "start": 4928.22, + "end": 4929.4, + "probability": 0.8055 + }, + { + "start": 4930.36, + "end": 4931.3, + "probability": 0.691 + }, + { + "start": 4931.56, + "end": 4933.68, + "probability": 0.9331 + }, + { + "start": 4934.84, + "end": 4937.6, + "probability": 0.9773 + }, + { + "start": 4938.32, + "end": 4939.6, + "probability": 0.8973 + }, + { + "start": 4940.22, + "end": 4942.2, + "probability": 0.9927 + }, + { + "start": 4944.3, + "end": 4947.48, + "probability": 0.988 + }, + { + "start": 4947.64, + "end": 4948.44, + "probability": 0.8813 + }, + { + "start": 4948.5, + "end": 4948.94, + "probability": 0.8445 + }, + { + "start": 4950.58, + "end": 4953.42, + "probability": 0.9717 + }, + { + "start": 4954.76, + "end": 4955.6, + "probability": 0.9229 + }, + { + "start": 4957.22, + "end": 4958.04, + "probability": 0.9854 + }, + { + "start": 4959.3, + "end": 4962.54, + "probability": 0.9589 + }, + { + "start": 4963.58, + "end": 4965.64, + "probability": 0.7067 + }, + { + "start": 4968.26, + "end": 4968.94, + "probability": 0.6302 + }, + { + "start": 4969.72, + "end": 4971.3, + "probability": 0.9087 + }, + { + "start": 4972.18, + "end": 4973.0, + "probability": 0.7665 + }, + { + "start": 4974.86, + "end": 4977.05, + "probability": 0.9824 + }, + { + "start": 4978.28, + "end": 4978.64, + "probability": 0.6202 + }, + { + "start": 4978.76, + "end": 4980.28, + "probability": 0.7699 + }, + { + "start": 4980.36, + "end": 4980.92, + "probability": 0.6092 + }, + { + "start": 4981.88, + "end": 4983.32, + "probability": 0.9657 + }, + { + "start": 4984.92, + "end": 4988.46, + "probability": 0.9396 + }, + { + "start": 4991.02, + "end": 4992.44, + "probability": 0.9749 + }, + { + "start": 4993.64, + "end": 4998.8, + "probability": 0.9521 + }, + { + "start": 4999.98, + "end": 5001.36, + "probability": 0.71 + }, + { + "start": 5002.16, + "end": 5003.17, + "probability": 0.1975 + }, + { + "start": 5004.84, + "end": 5008.48, + "probability": 0.9943 + }, + { + "start": 5008.58, + "end": 5010.68, + "probability": 0.9841 + }, + { + "start": 5010.68, + "end": 5011.84, + "probability": 0.1392 + }, + { + "start": 5011.92, + "end": 5015.96, + "probability": 0.7013 + }, + { + "start": 5017.06, + "end": 5017.68, + "probability": 0.5559 + }, + { + "start": 5017.86, + "end": 5018.34, + "probability": 0.8517 + }, + { + "start": 5019.88, + "end": 5020.86, + "probability": 0.9811 + }, + { + "start": 5022.26, + "end": 5023.22, + "probability": 0.9631 + }, + { + "start": 5025.26, + "end": 5027.58, + "probability": 0.9946 + }, + { + "start": 5027.76, + "end": 5028.86, + "probability": 0.8213 + }, + { + "start": 5029.62, + "end": 5031.36, + "probability": 0.9811 + }, + { + "start": 5031.48, + "end": 5033.32, + "probability": 0.9932 + }, + { + "start": 5034.24, + "end": 5034.88, + "probability": 0.3972 + }, + { + "start": 5035.0, + "end": 5037.3, + "probability": 0.6605 + }, + { + "start": 5037.36, + "end": 5039.9, + "probability": 0.7957 + }, + { + "start": 5040.86, + "end": 5042.86, + "probability": 0.9539 + }, + { + "start": 5045.5, + "end": 5046.74, + "probability": 0.9845 + }, + { + "start": 5047.3, + "end": 5048.6, + "probability": 0.9554 + }, + { + "start": 5049.14, + "end": 5052.18, + "probability": 0.8481 + }, + { + "start": 5053.66, + "end": 5055.3, + "probability": 0.8814 + }, + { + "start": 5057.08, + "end": 5061.14, + "probability": 0.9154 + }, + { + "start": 5062.9, + "end": 5066.92, + "probability": 0.9977 + }, + { + "start": 5068.08, + "end": 5070.08, + "probability": 0.9976 + }, + { + "start": 5070.92, + "end": 5071.54, + "probability": 0.5286 + }, + { + "start": 5071.68, + "end": 5072.38, + "probability": 0.7519 + }, + { + "start": 5072.52, + "end": 5073.49, + "probability": 0.7267 + }, + { + "start": 5073.68, + "end": 5074.76, + "probability": 0.863 + }, + { + "start": 5076.3, + "end": 5079.12, + "probability": 0.9071 + }, + { + "start": 5079.44, + "end": 5080.14, + "probability": 0.9907 + }, + { + "start": 5081.92, + "end": 5082.94, + "probability": 0.5247 + }, + { + "start": 5085.16, + "end": 5086.62, + "probability": 0.9712 + }, + { + "start": 5090.04, + "end": 5091.14, + "probability": 0.9829 + }, + { + "start": 5093.24, + "end": 5095.11, + "probability": 0.886 + }, + { + "start": 5096.34, + "end": 5097.98, + "probability": 0.8288 + }, + { + "start": 5098.94, + "end": 5101.42, + "probability": 0.8201 + }, + { + "start": 5102.36, + "end": 5108.06, + "probability": 0.9925 + }, + { + "start": 5109.32, + "end": 5112.72, + "probability": 0.9576 + }, + { + "start": 5114.94, + "end": 5116.0, + "probability": 0.9895 + }, + { + "start": 5118.22, + "end": 5120.82, + "probability": 0.897 + }, + { + "start": 5128.38, + "end": 5128.82, + "probability": 0.4755 + }, + { + "start": 5130.82, + "end": 5132.36, + "probability": 0.8765 + }, + { + "start": 5133.38, + "end": 5134.82, + "probability": 0.962 + }, + { + "start": 5136.68, + "end": 5138.2, + "probability": 0.9861 + }, + { + "start": 5138.46, + "end": 5141.36, + "probability": 0.9714 + }, + { + "start": 5141.82, + "end": 5142.04, + "probability": 0.9084 + }, + { + "start": 5142.6, + "end": 5144.48, + "probability": 0.7731 + }, + { + "start": 5144.64, + "end": 5146.04, + "probability": 0.9361 + }, + { + "start": 5146.18, + "end": 5147.44, + "probability": 0.4419 + }, + { + "start": 5147.5, + "end": 5149.3, + "probability": 0.8218 + }, + { + "start": 5164.48, + "end": 5164.56, + "probability": 0.2562 + }, + { + "start": 5164.58, + "end": 5165.16, + "probability": 0.4176 + }, + { + "start": 5165.16, + "end": 5167.2, + "probability": 0.3747 + }, + { + "start": 5167.28, + "end": 5168.9, + "probability": 0.7058 + }, + { + "start": 5169.54, + "end": 5173.98, + "probability": 0.5905 + }, + { + "start": 5175.06, + "end": 5176.84, + "probability": 0.9449 + }, + { + "start": 5176.98, + "end": 5178.44, + "probability": 0.8999 + }, + { + "start": 5178.86, + "end": 5184.56, + "probability": 0.9356 + }, + { + "start": 5184.56, + "end": 5189.74, + "probability": 0.8976 + }, + { + "start": 5189.82, + "end": 5190.74, + "probability": 0.7404 + }, + { + "start": 5191.42, + "end": 5196.88, + "probability": 0.8772 + }, + { + "start": 5197.08, + "end": 5198.6, + "probability": 0.8585 + }, + { + "start": 5198.96, + "end": 5200.21, + "probability": 0.9706 + }, + { + "start": 5200.32, + "end": 5202.7, + "probability": 0.8891 + }, + { + "start": 5203.2, + "end": 5204.88, + "probability": 0.8812 + }, + { + "start": 5205.54, + "end": 5210.96, + "probability": 0.9723 + }, + { + "start": 5211.8, + "end": 5212.98, + "probability": 0.7843 + }, + { + "start": 5213.78, + "end": 5218.66, + "probability": 0.983 + }, + { + "start": 5218.66, + "end": 5223.08, + "probability": 0.9825 + }, + { + "start": 5223.32, + "end": 5224.36, + "probability": 0.8926 + }, + { + "start": 5224.88, + "end": 5226.84, + "probability": 0.7203 + }, + { + "start": 5227.48, + "end": 5229.16, + "probability": 0.6664 + }, + { + "start": 5229.24, + "end": 5236.32, + "probability": 0.9609 + }, + { + "start": 5236.8, + "end": 5240.84, + "probability": 0.9869 + }, + { + "start": 5240.84, + "end": 5243.92, + "probability": 0.9914 + }, + { + "start": 5244.06, + "end": 5246.12, + "probability": 0.9197 + }, + { + "start": 5246.24, + "end": 5249.22, + "probability": 0.9834 + }, + { + "start": 5249.9, + "end": 5253.9, + "probability": 0.9759 + }, + { + "start": 5254.42, + "end": 5257.06, + "probability": 0.981 + }, + { + "start": 5257.18, + "end": 5257.52, + "probability": 0.8163 + }, + { + "start": 5257.82, + "end": 5261.72, + "probability": 0.9857 + }, + { + "start": 5261.92, + "end": 5263.6, + "probability": 0.7087 + }, + { + "start": 5263.66, + "end": 5268.8, + "probability": 0.9827 + }, + { + "start": 5269.38, + "end": 5272.04, + "probability": 0.9976 + }, + { + "start": 5272.52, + "end": 5281.1, + "probability": 0.9926 + }, + { + "start": 5281.22, + "end": 5282.37, + "probability": 0.9755 + }, + { + "start": 5282.54, + "end": 5286.66, + "probability": 0.9861 + }, + { + "start": 5287.24, + "end": 5289.08, + "probability": 0.8855 + }, + { + "start": 5289.48, + "end": 5292.12, + "probability": 0.9666 + }, + { + "start": 5292.74, + "end": 5295.33, + "probability": 0.9722 + }, + { + "start": 5296.02, + "end": 5298.94, + "probability": 0.9863 + }, + { + "start": 5299.32, + "end": 5303.48, + "probability": 0.8643 + }, + { + "start": 5304.12, + "end": 5305.22, + "probability": 0.9416 + }, + { + "start": 5305.6, + "end": 5306.6, + "probability": 0.9878 + }, + { + "start": 5306.68, + "end": 5309.0, + "probability": 0.9746 + }, + { + "start": 5309.1, + "end": 5313.36, + "probability": 0.9825 + }, + { + "start": 5313.94, + "end": 5317.68, + "probability": 0.8549 + }, + { + "start": 5318.46, + "end": 5319.6, + "probability": 0.7639 + }, + { + "start": 5320.62, + "end": 5321.34, + "probability": 0.9688 + }, + { + "start": 5321.96, + "end": 5322.5, + "probability": 0.5596 + }, + { + "start": 5323.64, + "end": 5324.04, + "probability": 0.3349 + }, + { + "start": 5325.04, + "end": 5327.36, + "probability": 0.9772 + }, + { + "start": 5327.52, + "end": 5328.78, + "probability": 0.9272 + }, + { + "start": 5329.26, + "end": 5332.58, + "probability": 0.9927 + }, + { + "start": 5332.62, + "end": 5334.04, + "probability": 0.9902 + }, + { + "start": 5334.74, + "end": 5336.92, + "probability": 0.9985 + }, + { + "start": 5336.92, + "end": 5341.58, + "probability": 0.9738 + }, + { + "start": 5341.74, + "end": 5342.42, + "probability": 0.5507 + }, + { + "start": 5343.18, + "end": 5345.98, + "probability": 0.9875 + }, + { + "start": 5345.98, + "end": 5349.04, + "probability": 0.9745 + }, + { + "start": 5349.62, + "end": 5350.0, + "probability": 0.8889 + }, + { + "start": 5350.14, + "end": 5356.82, + "probability": 0.9943 + }, + { + "start": 5356.9, + "end": 5357.66, + "probability": 0.719 + }, + { + "start": 5357.74, + "end": 5358.4, + "probability": 0.7681 + }, + { + "start": 5358.5, + "end": 5359.2, + "probability": 0.8002 + }, + { + "start": 5359.48, + "end": 5361.74, + "probability": 0.9022 + }, + { + "start": 5362.18, + "end": 5362.52, + "probability": 0.908 + }, + { + "start": 5362.58, + "end": 5363.2, + "probability": 0.6325 + }, + { + "start": 5363.44, + "end": 5370.01, + "probability": 0.972 + }, + { + "start": 5370.2, + "end": 5376.42, + "probability": 0.9968 + }, + { + "start": 5376.98, + "end": 5377.42, + "probability": 0.6216 + }, + { + "start": 5377.52, + "end": 5378.9, + "probability": 0.8071 + }, + { + "start": 5379.0, + "end": 5380.02, + "probability": 0.6666 + }, + { + "start": 5380.18, + "end": 5380.41, + "probability": 0.5265 + }, + { + "start": 5381.32, + "end": 5384.54, + "probability": 0.9337 + }, + { + "start": 5384.62, + "end": 5385.88, + "probability": 0.563 + }, + { + "start": 5385.92, + "end": 5387.66, + "probability": 0.7972 + }, + { + "start": 5387.98, + "end": 5392.6, + "probability": 0.877 + }, + { + "start": 5392.92, + "end": 5393.38, + "probability": 0.7584 + }, + { + "start": 5393.62, + "end": 5394.48, + "probability": 0.7502 + }, + { + "start": 5394.58, + "end": 5398.34, + "probability": 0.9819 + }, + { + "start": 5399.14, + "end": 5401.9, + "probability": 0.949 + }, + { + "start": 5402.02, + "end": 5402.96, + "probability": 0.9055 + }, + { + "start": 5403.38, + "end": 5404.36, + "probability": 0.8351 + }, + { + "start": 5404.7, + "end": 5406.72, + "probability": 0.9634 + }, + { + "start": 5407.46, + "end": 5409.36, + "probability": 0.891 + }, + { + "start": 5409.56, + "end": 5412.46, + "probability": 0.9382 + }, + { + "start": 5412.7, + "end": 5415.72, + "probability": 0.9772 + }, + { + "start": 5416.02, + "end": 5419.86, + "probability": 0.9878 + }, + { + "start": 5419.86, + "end": 5425.72, + "probability": 0.9963 + }, + { + "start": 5426.56, + "end": 5428.74, + "probability": 0.7542 + }, + { + "start": 5428.96, + "end": 5431.32, + "probability": 0.9611 + }, + { + "start": 5431.58, + "end": 5433.28, + "probability": 0.9944 + }, + { + "start": 5433.3, + "end": 5434.16, + "probability": 0.7185 + }, + { + "start": 5434.24, + "end": 5435.22, + "probability": 0.8934 + }, + { + "start": 5435.58, + "end": 5438.32, + "probability": 0.8298 + }, + { + "start": 5438.42, + "end": 5439.34, + "probability": 0.7989 + }, + { + "start": 5439.72, + "end": 5440.8, + "probability": 0.9516 + }, + { + "start": 5441.04, + "end": 5442.04, + "probability": 0.9954 + }, + { + "start": 5442.16, + "end": 5443.62, + "probability": 0.9901 + }, + { + "start": 5443.82, + "end": 5444.8, + "probability": 0.6382 + }, + { + "start": 5444.9, + "end": 5449.2, + "probability": 0.9546 + }, + { + "start": 5449.34, + "end": 5451.28, + "probability": 0.9879 + }, + { + "start": 5451.5, + "end": 5454.87, + "probability": 0.9648 + }, + { + "start": 5455.56, + "end": 5456.02, + "probability": 0.8488 + }, + { + "start": 5456.44, + "end": 5460.97, + "probability": 0.9815 + }, + { + "start": 5462.14, + "end": 5462.62, + "probability": 0.9646 + }, + { + "start": 5462.94, + "end": 5464.98, + "probability": 0.9838 + }, + { + "start": 5465.26, + "end": 5466.39, + "probability": 0.8715 + }, + { + "start": 5467.1, + "end": 5472.8, + "probability": 0.8039 + }, + { + "start": 5472.96, + "end": 5476.3, + "probability": 0.9932 + }, + { + "start": 5476.44, + "end": 5477.38, + "probability": 0.9482 + }, + { + "start": 5477.48, + "end": 5478.48, + "probability": 0.9837 + }, + { + "start": 5478.52, + "end": 5483.88, + "probability": 0.9982 + }, + { + "start": 5483.98, + "end": 5484.3, + "probability": 0.8733 + }, + { + "start": 5484.34, + "end": 5485.03, + "probability": 0.8818 + }, + { + "start": 5485.54, + "end": 5490.58, + "probability": 0.9906 + }, + { + "start": 5491.24, + "end": 5494.18, + "probability": 0.9943 + }, + { + "start": 5494.3, + "end": 5495.14, + "probability": 0.8676 + }, + { + "start": 5495.8, + "end": 5497.38, + "probability": 0.9115 + }, + { + "start": 5497.64, + "end": 5501.38, + "probability": 0.9935 + }, + { + "start": 5501.38, + "end": 5504.86, + "probability": 0.9847 + }, + { + "start": 5504.94, + "end": 5508.48, + "probability": 0.6978 + }, + { + "start": 5508.5, + "end": 5513.66, + "probability": 0.948 + }, + { + "start": 5514.04, + "end": 5514.62, + "probability": 0.8923 + }, + { + "start": 5515.08, + "end": 5520.12, + "probability": 0.9011 + }, + { + "start": 5520.12, + "end": 5523.06, + "probability": 0.9942 + }, + { + "start": 5523.2, + "end": 5530.24, + "probability": 0.9966 + }, + { + "start": 5530.24, + "end": 5535.44, + "probability": 0.9497 + }, + { + "start": 5535.52, + "end": 5536.94, + "probability": 0.9989 + }, + { + "start": 5536.96, + "end": 5538.32, + "probability": 0.9587 + }, + { + "start": 5538.34, + "end": 5540.08, + "probability": 0.8454 + }, + { + "start": 5540.08, + "end": 5542.88, + "probability": 0.76 + }, + { + "start": 5542.98, + "end": 5543.44, + "probability": 0.6962 + }, + { + "start": 5543.58, + "end": 5546.98, + "probability": 0.9355 + }, + { + "start": 5547.4, + "end": 5548.6, + "probability": 0.7358 + }, + { + "start": 5548.7, + "end": 5551.24, + "probability": 0.8551 + }, + { + "start": 5551.4, + "end": 5552.36, + "probability": 0.9388 + }, + { + "start": 5552.94, + "end": 5553.5, + "probability": 0.5982 + }, + { + "start": 5554.06, + "end": 5556.46, + "probability": 0.9146 + }, + { + "start": 5556.76, + "end": 5559.04, + "probability": 0.867 + }, + { + "start": 5559.16, + "end": 5559.76, + "probability": 0.9409 + }, + { + "start": 5560.04, + "end": 5562.44, + "probability": 0.9751 + }, + { + "start": 5563.14, + "end": 5566.22, + "probability": 0.8757 + }, + { + "start": 5567.28, + "end": 5568.84, + "probability": 0.7568 + }, + { + "start": 5569.68, + "end": 5574.04, + "probability": 0.9893 + }, + { + "start": 5574.14, + "end": 5576.64, + "probability": 0.9304 + }, + { + "start": 5577.2, + "end": 5582.7, + "probability": 0.9814 + }, + { + "start": 5583.06, + "end": 5588.22, + "probability": 0.9975 + }, + { + "start": 5588.38, + "end": 5589.62, + "probability": 0.7214 + }, + { + "start": 5589.86, + "end": 5592.8, + "probability": 0.9795 + }, + { + "start": 5593.42, + "end": 5593.68, + "probability": 0.8331 + }, + { + "start": 5593.98, + "end": 5598.14, + "probability": 0.9465 + }, + { + "start": 5598.14, + "end": 5602.08, + "probability": 0.9626 + }, + { + "start": 5602.7, + "end": 5605.64, + "probability": 0.969 + }, + { + "start": 5605.64, + "end": 5609.56, + "probability": 0.9991 + }, + { + "start": 5609.8, + "end": 5611.14, + "probability": 0.9115 + }, + { + "start": 5611.66, + "end": 5613.34, + "probability": 0.9661 + }, + { + "start": 5613.98, + "end": 5616.08, + "probability": 0.9956 + }, + { + "start": 5617.1, + "end": 5618.52, + "probability": 0.8875 + }, + { + "start": 5618.74, + "end": 5621.48, + "probability": 0.8635 + }, + { + "start": 5622.93, + "end": 5623.52, + "probability": 0.1387 + }, + { + "start": 5624.44, + "end": 5624.96, + "probability": 0.8903 + }, + { + "start": 5625.1, + "end": 5627.53, + "probability": 0.9908 + }, + { + "start": 5627.62, + "end": 5632.72, + "probability": 0.8447 + }, + { + "start": 5633.3, + "end": 5634.6, + "probability": 0.8626 + }, + { + "start": 5634.66, + "end": 5639.94, + "probability": 0.9152 + }, + { + "start": 5640.22, + "end": 5644.56, + "probability": 0.5794 + }, + { + "start": 5644.68, + "end": 5647.24, + "probability": 0.9842 + }, + { + "start": 5647.74, + "end": 5651.87, + "probability": 0.8536 + }, + { + "start": 5652.82, + "end": 5653.32, + "probability": 0.8052 + }, + { + "start": 5654.44, + "end": 5657.22, + "probability": 0.7798 + }, + { + "start": 5657.24, + "end": 5660.74, + "probability": 0.7583 + }, + { + "start": 5660.82, + "end": 5664.22, + "probability": 0.9751 + }, + { + "start": 5664.22, + "end": 5665.2, + "probability": 0.7262 + }, + { + "start": 5665.38, + "end": 5665.76, + "probability": 0.5878 + }, + { + "start": 5666.18, + "end": 5670.2, + "probability": 0.9718 + }, + { + "start": 5670.5, + "end": 5676.54, + "probability": 0.9103 + }, + { + "start": 5677.82, + "end": 5682.28, + "probability": 0.9767 + }, + { + "start": 5682.6, + "end": 5683.46, + "probability": 0.8404 + }, + { + "start": 5683.78, + "end": 5686.76, + "probability": 0.9885 + }, + { + "start": 5687.82, + "end": 5691.38, + "probability": 0.6602 + }, + { + "start": 5691.38, + "end": 5695.88, + "probability": 0.988 + }, + { + "start": 5696.86, + "end": 5702.02, + "probability": 0.9854 + }, + { + "start": 5702.56, + "end": 5704.5, + "probability": 0.9723 + }, + { + "start": 5705.0, + "end": 5706.7, + "probability": 0.9293 + }, + { + "start": 5707.02, + "end": 5709.86, + "probability": 0.6923 + }, + { + "start": 5710.18, + "end": 5713.24, + "probability": 0.9813 + }, + { + "start": 5713.24, + "end": 5716.2, + "probability": 0.9727 + }, + { + "start": 5716.3, + "end": 5718.38, + "probability": 0.9768 + }, + { + "start": 5719.16, + "end": 5720.2, + "probability": 0.892 + }, + { + "start": 5720.36, + "end": 5722.32, + "probability": 0.797 + }, + { + "start": 5722.78, + "end": 5724.26, + "probability": 0.9797 + }, + { + "start": 5725.68, + "end": 5727.72, + "probability": 0.9697 + }, + { + "start": 5728.35, + "end": 5728.93, + "probability": 0.0832 + }, + { + "start": 5729.64, + "end": 5735.5, + "probability": 0.9837 + }, + { + "start": 5735.62, + "end": 5736.86, + "probability": 0.9704 + }, + { + "start": 5737.48, + "end": 5739.62, + "probability": 0.8789 + }, + { + "start": 5740.22, + "end": 5741.24, + "probability": 0.6347 + }, + { + "start": 5741.28, + "end": 5742.18, + "probability": 0.9194 + }, + { + "start": 5742.24, + "end": 5743.88, + "probability": 0.9668 + }, + { + "start": 5743.88, + "end": 5747.1, + "probability": 0.9619 + }, + { + "start": 5747.48, + "end": 5752.16, + "probability": 0.8325 + }, + { + "start": 5752.34, + "end": 5753.22, + "probability": 0.7195 + }, + { + "start": 5753.58, + "end": 5759.66, + "probability": 0.9593 + }, + { + "start": 5760.22, + "end": 5761.37, + "probability": 0.8965 + }, + { + "start": 5761.48, + "end": 5762.82, + "probability": 0.8698 + }, + { + "start": 5763.24, + "end": 5763.78, + "probability": 0.8482 + }, + { + "start": 5763.82, + "end": 5764.02, + "probability": 0.8565 + }, + { + "start": 5764.1, + "end": 5766.0, + "probability": 0.9827 + }, + { + "start": 5766.4, + "end": 5767.37, + "probability": 0.9807 + }, + { + "start": 5767.48, + "end": 5768.16, + "probability": 0.708 + }, + { + "start": 5768.32, + "end": 5768.94, + "probability": 0.8253 + }, + { + "start": 5769.1, + "end": 5769.82, + "probability": 0.7238 + }, + { + "start": 5770.24, + "end": 5775.86, + "probability": 0.9933 + }, + { + "start": 5776.14, + "end": 5779.76, + "probability": 0.9797 + }, + { + "start": 5780.2, + "end": 5786.56, + "probability": 0.9917 + }, + { + "start": 5786.6, + "end": 5788.1, + "probability": 0.5607 + }, + { + "start": 5788.5, + "end": 5790.48, + "probability": 0.6669 + }, + { + "start": 5790.62, + "end": 5790.98, + "probability": 0.8271 + }, + { + "start": 5791.04, + "end": 5792.56, + "probability": 0.8231 + }, + { + "start": 5792.66, + "end": 5794.12, + "probability": 0.965 + }, + { + "start": 5794.42, + "end": 5796.33, + "probability": 0.9873 + }, + { + "start": 5796.34, + "end": 5798.54, + "probability": 0.9835 + }, + { + "start": 5799.22, + "end": 5802.88, + "probability": 0.9802 + }, + { + "start": 5802.88, + "end": 5807.08, + "probability": 0.9989 + }, + { + "start": 5807.52, + "end": 5808.38, + "probability": 0.7425 + }, + { + "start": 5808.5, + "end": 5810.02, + "probability": 0.7717 + }, + { + "start": 5810.44, + "end": 5812.74, + "probability": 0.9639 + }, + { + "start": 5813.22, + "end": 5815.06, + "probability": 0.9865 + }, + { + "start": 5815.2, + "end": 5816.96, + "probability": 0.91 + }, + { + "start": 5817.14, + "end": 5817.6, + "probability": 0.744 + }, + { + "start": 5818.0, + "end": 5818.78, + "probability": 0.6406 + }, + { + "start": 5818.8, + "end": 5822.2, + "probability": 0.8525 + }, + { + "start": 5822.2, + "end": 5823.24, + "probability": 0.7242 + }, + { + "start": 5823.34, + "end": 5824.3, + "probability": 0.621 + }, + { + "start": 5825.1, + "end": 5825.52, + "probability": 0.9507 + }, + { + "start": 5826.22, + "end": 5826.7, + "probability": 0.7324 + }, + { + "start": 5826.74, + "end": 5829.25, + "probability": 0.9912 + }, + { + "start": 5829.38, + "end": 5834.18, + "probability": 0.9897 + }, + { + "start": 5834.34, + "end": 5836.98, + "probability": 0.9414 + }, + { + "start": 5837.96, + "end": 5842.84, + "probability": 0.8407 + }, + { + "start": 5843.06, + "end": 5848.9, + "probability": 0.9926 + }, + { + "start": 5849.48, + "end": 5852.86, + "probability": 0.6848 + }, + { + "start": 5853.02, + "end": 5853.54, + "probability": 0.7838 + }, + { + "start": 5853.62, + "end": 5856.44, + "probability": 0.9668 + }, + { + "start": 5856.58, + "end": 5860.06, + "probability": 0.9639 + }, + { + "start": 5860.06, + "end": 5860.26, + "probability": 0.3148 + }, + { + "start": 5860.26, + "end": 5860.64, + "probability": 0.866 + }, + { + "start": 5860.74, + "end": 5861.34, + "probability": 0.7709 + }, + { + "start": 5862.52, + "end": 5866.82, + "probability": 0.9976 + }, + { + "start": 5866.88, + "end": 5869.28, + "probability": 0.9802 + }, + { + "start": 5870.18, + "end": 5873.48, + "probability": 0.9897 + }, + { + "start": 5873.62, + "end": 5874.74, + "probability": 0.9578 + }, + { + "start": 5874.86, + "end": 5875.88, + "probability": 0.9642 + }, + { + "start": 5876.18, + "end": 5877.86, + "probability": 0.9956 + }, + { + "start": 5878.0, + "end": 5881.66, + "probability": 0.891 + }, + { + "start": 5881.74, + "end": 5882.84, + "probability": 0.8076 + }, + { + "start": 5883.2, + "end": 5884.22, + "probability": 0.4792 + }, + { + "start": 5884.5, + "end": 5885.26, + "probability": 0.8003 + }, + { + "start": 5885.4, + "end": 5887.3, + "probability": 0.9824 + }, + { + "start": 5890.08, + "end": 5898.0, + "probability": 0.9946 + }, + { + "start": 5898.5, + "end": 5898.74, + "probability": 0.38 + }, + { + "start": 5898.84, + "end": 5899.22, + "probability": 0.7032 + }, + { + "start": 5899.38, + "end": 5908.22, + "probability": 0.8872 + }, + { + "start": 5908.38, + "end": 5912.88, + "probability": 0.9924 + }, + { + "start": 5913.04, + "end": 5913.88, + "probability": 0.3034 + }, + { + "start": 5913.98, + "end": 5914.6, + "probability": 0.8489 + }, + { + "start": 5915.16, + "end": 5918.76, + "probability": 0.9794 + }, + { + "start": 5918.94, + "end": 5923.12, + "probability": 0.9287 + }, + { + "start": 5923.22, + "end": 5924.34, + "probability": 0.9685 + }, + { + "start": 5924.74, + "end": 5925.62, + "probability": 0.8344 + }, + { + "start": 5925.7, + "end": 5926.86, + "probability": 0.9635 + }, + { + "start": 5927.22, + "end": 5929.9, + "probability": 0.9694 + }, + { + "start": 5930.2, + "end": 5930.8, + "probability": 0.6414 + }, + { + "start": 5931.36, + "end": 5939.28, + "probability": 0.8678 + }, + { + "start": 5939.66, + "end": 5942.5, + "probability": 0.6101 + }, + { + "start": 5942.58, + "end": 5943.46, + "probability": 0.714 + }, + { + "start": 5943.56, + "end": 5945.24, + "probability": 0.9508 + }, + { + "start": 5945.4, + "end": 5945.89, + "probability": 0.621 + }, + { + "start": 5945.98, + "end": 5948.86, + "probability": 0.9443 + }, + { + "start": 5949.28, + "end": 5950.05, + "probability": 0.8696 + }, + { + "start": 5950.56, + "end": 5952.48, + "probability": 0.9673 + }, + { + "start": 5952.86, + "end": 5955.0, + "probability": 0.9922 + }, + { + "start": 5955.62, + "end": 5955.94, + "probability": 0.8623 + }, + { + "start": 5955.94, + "end": 5957.76, + "probability": 0.9473 + }, + { + "start": 5958.14, + "end": 5960.6, + "probability": 0.9865 + }, + { + "start": 5960.96, + "end": 5961.88, + "probability": 0.5589 + }, + { + "start": 5962.24, + "end": 5963.48, + "probability": 0.6886 + }, + { + "start": 5963.76, + "end": 5967.25, + "probability": 0.7481 + }, + { + "start": 5968.86, + "end": 5971.14, + "probability": 0.6666 + }, + { + "start": 5972.16, + "end": 5973.96, + "probability": 0.8803 + }, + { + "start": 5973.98, + "end": 5975.84, + "probability": 0.9739 + }, + { + "start": 5975.96, + "end": 5977.45, + "probability": 0.7846 + }, + { + "start": 5977.88, + "end": 5980.06, + "probability": 0.8995 + }, + { + "start": 5980.1, + "end": 5980.96, + "probability": 0.7835 + }, + { + "start": 5981.3, + "end": 5982.22, + "probability": 0.9497 + }, + { + "start": 5982.78, + "end": 5982.94, + "probability": 0.5672 + }, + { + "start": 5983.5, + "end": 5984.24, + "probability": 0.8666 + }, + { + "start": 5984.34, + "end": 5984.68, + "probability": 0.7591 + }, + { + "start": 5985.16, + "end": 5986.18, + "probability": 0.5732 + }, + { + "start": 5986.26, + "end": 5990.52, + "probability": 0.8145 + }, + { + "start": 5990.64, + "end": 5991.74, + "probability": 0.7292 + }, + { + "start": 5992.22, + "end": 5994.9, + "probability": 0.9303 + }, + { + "start": 5995.38, + "end": 5998.86, + "probability": 0.9948 + }, + { + "start": 5998.86, + "end": 6002.56, + "probability": 0.6723 + }, + { + "start": 6002.56, + "end": 6003.84, + "probability": 0.6252 + }, + { + "start": 6004.08, + "end": 6006.84, + "probability": 0.6937 + }, + { + "start": 6007.38, + "end": 6010.76, + "probability": 0.8778 + }, + { + "start": 6011.18, + "end": 6011.46, + "probability": 0.8239 + }, + { + "start": 6011.96, + "end": 6012.48, + "probability": 0.6786 + }, + { + "start": 6012.78, + "end": 6014.54, + "probability": 0.6074 + }, + { + "start": 6014.72, + "end": 6016.56, + "probability": 0.9447 + }, + { + "start": 6017.2, + "end": 6018.88, + "probability": 0.9744 + }, + { + "start": 6020.66, + "end": 6021.66, + "probability": 0.9489 + }, + { + "start": 6034.62, + "end": 6037.38, + "probability": 0.7822 + }, + { + "start": 6039.3, + "end": 6042.24, + "probability": 0.9795 + }, + { + "start": 6043.54, + "end": 6044.3, + "probability": 0.9594 + }, + { + "start": 6045.14, + "end": 6045.82, + "probability": 0.755 + }, + { + "start": 6047.46, + "end": 6048.38, + "probability": 0.8198 + }, + { + "start": 6049.08, + "end": 6050.06, + "probability": 0.854 + }, + { + "start": 6053.2, + "end": 6055.0, + "probability": 0.9608 + }, + { + "start": 6056.4, + "end": 6058.82, + "probability": 0.7324 + }, + { + "start": 6059.76, + "end": 6065.46, + "probability": 0.8683 + }, + { + "start": 6066.32, + "end": 6071.66, + "probability": 0.8998 + }, + { + "start": 6072.7, + "end": 6074.12, + "probability": 0.9242 + }, + { + "start": 6076.22, + "end": 6078.08, + "probability": 0.8271 + }, + { + "start": 6079.24, + "end": 6080.72, + "probability": 0.9849 + }, + { + "start": 6082.1, + "end": 6085.48, + "probability": 0.9497 + }, + { + "start": 6085.72, + "end": 6086.3, + "probability": 0.6227 + }, + { + "start": 6088.8, + "end": 6090.88, + "probability": 0.7417 + }, + { + "start": 6092.8, + "end": 6094.28, + "probability": 0.6608 + }, + { + "start": 6094.68, + "end": 6095.77, + "probability": 0.8408 + }, + { + "start": 6096.64, + "end": 6097.62, + "probability": 0.3256 + }, + { + "start": 6098.7, + "end": 6100.56, + "probability": 0.8902 + }, + { + "start": 6101.7, + "end": 6104.78, + "probability": 0.9707 + }, + { + "start": 6105.78, + "end": 6109.34, + "probability": 0.9324 + }, + { + "start": 6110.08, + "end": 6112.5, + "probability": 0.9731 + }, + { + "start": 6112.8, + "end": 6113.95, + "probability": 0.8135 + }, + { + "start": 6115.26, + "end": 6118.06, + "probability": 0.9744 + }, + { + "start": 6118.54, + "end": 6120.84, + "probability": 0.948 + }, + { + "start": 6122.58, + "end": 6123.32, + "probability": 0.7671 + }, + { + "start": 6124.1, + "end": 6125.5, + "probability": 0.6318 + }, + { + "start": 6125.76, + "end": 6128.52, + "probability": 0.8822 + }, + { + "start": 6129.3, + "end": 6131.96, + "probability": 0.9964 + }, + { + "start": 6131.96, + "end": 6135.88, + "probability": 0.9844 + }, + { + "start": 6137.48, + "end": 6142.1, + "probability": 0.9968 + }, + { + "start": 6142.54, + "end": 6143.98, + "probability": 0.6579 + }, + { + "start": 6145.02, + "end": 6146.38, + "probability": 0.9668 + }, + { + "start": 6147.9, + "end": 6149.78, + "probability": 0.9759 + }, + { + "start": 6150.64, + "end": 6156.34, + "probability": 0.9951 + }, + { + "start": 6157.6, + "end": 6160.1, + "probability": 0.9969 + }, + { + "start": 6160.86, + "end": 6162.1, + "probability": 0.8687 + }, + { + "start": 6164.64, + "end": 6166.68, + "probability": 0.9814 + }, + { + "start": 6166.96, + "end": 6170.22, + "probability": 0.9624 + }, + { + "start": 6170.48, + "end": 6172.02, + "probability": 0.8616 + }, + { + "start": 6173.3, + "end": 6176.52, + "probability": 0.9854 + }, + { + "start": 6177.48, + "end": 6178.7, + "probability": 0.8599 + }, + { + "start": 6178.88, + "end": 6179.4, + "probability": 0.5222 + }, + { + "start": 6179.6, + "end": 6180.33, + "probability": 0.0722 + }, + { + "start": 6180.82, + "end": 6182.32, + "probability": 0.7917 + }, + { + "start": 6182.78, + "end": 6187.02, + "probability": 0.5876 + }, + { + "start": 6187.16, + "end": 6188.4, + "probability": 0.8811 + }, + { + "start": 6189.96, + "end": 6190.64, + "probability": 0.3668 + }, + { + "start": 6191.74, + "end": 6192.62, + "probability": 0.9802 + }, + { + "start": 6193.5, + "end": 6194.76, + "probability": 0.769 + }, + { + "start": 6196.2, + "end": 6197.66, + "probability": 0.9049 + }, + { + "start": 6197.68, + "end": 6200.32, + "probability": 0.9946 + }, + { + "start": 6200.96, + "end": 6202.28, + "probability": 0.7031 + }, + { + "start": 6205.1, + "end": 6209.76, + "probability": 0.7637 + }, + { + "start": 6210.76, + "end": 6212.74, + "probability": 0.4572 + }, + { + "start": 6212.8, + "end": 6215.48, + "probability": 0.9907 + }, + { + "start": 6215.52, + "end": 6216.9, + "probability": 0.9784 + }, + { + "start": 6218.58, + "end": 6219.74, + "probability": 0.8292 + }, + { + "start": 6221.22, + "end": 6225.62, + "probability": 0.901 + }, + { + "start": 6225.62, + "end": 6229.98, + "probability": 0.9962 + }, + { + "start": 6230.26, + "end": 6233.18, + "probability": 0.9781 + }, + { + "start": 6234.86, + "end": 6236.06, + "probability": 0.5834 + }, + { + "start": 6236.72, + "end": 6238.34, + "probability": 0.9025 + }, + { + "start": 6238.94, + "end": 6240.2, + "probability": 0.6848 + }, + { + "start": 6242.04, + "end": 6243.12, + "probability": 0.7896 + }, + { + "start": 6243.84, + "end": 6244.66, + "probability": 0.7504 + }, + { + "start": 6245.26, + "end": 6247.88, + "probability": 0.9275 + }, + { + "start": 6248.7, + "end": 6252.92, + "probability": 0.9628 + }, + { + "start": 6253.2, + "end": 6253.38, + "probability": 0.5559 + }, + { + "start": 6253.44, + "end": 6254.28, + "probability": 0.8877 + }, + { + "start": 6254.34, + "end": 6256.16, + "probability": 0.9888 + }, + { + "start": 6259.56, + "end": 6260.56, + "probability": 0.998 + }, + { + "start": 6263.16, + "end": 6267.02, + "probability": 0.8462 + }, + { + "start": 6267.22, + "end": 6268.62, + "probability": 0.9031 + }, + { + "start": 6269.56, + "end": 6272.98, + "probability": 0.9907 + }, + { + "start": 6274.38, + "end": 6276.66, + "probability": 0.8379 + }, + { + "start": 6277.24, + "end": 6279.99, + "probability": 0.9928 + }, + { + "start": 6280.8, + "end": 6281.44, + "probability": 0.4596 + }, + { + "start": 6282.22, + "end": 6283.72, + "probability": 0.9299 + }, + { + "start": 6284.02, + "end": 6285.14, + "probability": 0.9376 + }, + { + "start": 6285.24, + "end": 6285.72, + "probability": 0.1911 + }, + { + "start": 6286.14, + "end": 6287.64, + "probability": 0.9619 + }, + { + "start": 6288.16, + "end": 6293.33, + "probability": 0.9629 + }, + { + "start": 6294.02, + "end": 6295.06, + "probability": 0.9104 + }, + { + "start": 6296.22, + "end": 6299.4, + "probability": 0.9855 + }, + { + "start": 6301.38, + "end": 6301.68, + "probability": 0.1631 + }, + { + "start": 6301.82, + "end": 6302.9, + "probability": 0.6751 + }, + { + "start": 6303.06, + "end": 6303.54, + "probability": 0.5628 + }, + { + "start": 6303.6, + "end": 6304.78, + "probability": 0.9781 + }, + { + "start": 6306.06, + "end": 6306.93, + "probability": 0.9521 + }, + { + "start": 6308.32, + "end": 6310.48, + "probability": 0.8369 + }, + { + "start": 6310.82, + "end": 6311.94, + "probability": 0.811 + }, + { + "start": 6312.86, + "end": 6315.0, + "probability": 0.8905 + }, + { + "start": 6315.0, + "end": 6318.06, + "probability": 0.7833 + }, + { + "start": 6318.2, + "end": 6320.12, + "probability": 0.6995 + }, + { + "start": 6320.88, + "end": 6322.94, + "probability": 0.9775 + }, + { + "start": 6324.04, + "end": 6324.58, + "probability": 0.83 + }, + { + "start": 6324.76, + "end": 6325.22, + "probability": 0.7738 + }, + { + "start": 6325.32, + "end": 6326.74, + "probability": 0.9378 + }, + { + "start": 6327.0, + "end": 6328.58, + "probability": 0.9314 + }, + { + "start": 6328.98, + "end": 6330.34, + "probability": 0.9814 + }, + { + "start": 6331.04, + "end": 6334.68, + "probability": 0.9961 + }, + { + "start": 6335.12, + "end": 6335.84, + "probability": 0.8103 + }, + { + "start": 6335.96, + "end": 6336.5, + "probability": 0.8905 + }, + { + "start": 6336.64, + "end": 6337.74, + "probability": 0.7231 + }, + { + "start": 6338.18, + "end": 6338.83, + "probability": 0.9252 + }, + { + "start": 6339.34, + "end": 6341.78, + "probability": 0.9927 + }, + { + "start": 6341.84, + "end": 6344.94, + "probability": 0.9988 + }, + { + "start": 6344.94, + "end": 6345.44, + "probability": 0.2359 + }, + { + "start": 6347.38, + "end": 6348.34, + "probability": 0.7551 + }, + { + "start": 6348.48, + "end": 6349.64, + "probability": 0.869 + }, + { + "start": 6350.04, + "end": 6352.12, + "probability": 0.8867 + }, + { + "start": 6352.18, + "end": 6352.57, + "probability": 0.876 + }, + { + "start": 6353.74, + "end": 6357.86, + "probability": 0.9685 + }, + { + "start": 6357.96, + "end": 6361.78, + "probability": 0.9194 + }, + { + "start": 6362.36, + "end": 6364.76, + "probability": 0.8687 + }, + { + "start": 6364.84, + "end": 6370.88, + "probability": 0.9226 + }, + { + "start": 6371.0, + "end": 6372.62, + "probability": 0.9839 + }, + { + "start": 6373.4, + "end": 6374.8, + "probability": 0.9277 + }, + { + "start": 6376.36, + "end": 6376.54, + "probability": 0.934 + }, + { + "start": 6376.68, + "end": 6379.32, + "probability": 0.9912 + }, + { + "start": 6379.42, + "end": 6380.74, + "probability": 0.9911 + }, + { + "start": 6381.96, + "end": 6384.14, + "probability": 0.9764 + }, + { + "start": 6384.44, + "end": 6387.68, + "probability": 0.998 + }, + { + "start": 6389.36, + "end": 6391.3, + "probability": 0.8904 + }, + { + "start": 6392.9, + "end": 6394.76, + "probability": 0.9407 + }, + { + "start": 6395.28, + "end": 6397.2, + "probability": 0.9648 + }, + { + "start": 6397.66, + "end": 6399.58, + "probability": 0.915 + }, + { + "start": 6399.94, + "end": 6403.72, + "probability": 0.9961 + }, + { + "start": 6405.3, + "end": 6406.3, + "probability": 0.7395 + }, + { + "start": 6406.8, + "end": 6407.28, + "probability": 0.706 + }, + { + "start": 6407.86, + "end": 6410.5, + "probability": 0.9079 + }, + { + "start": 6411.84, + "end": 6414.72, + "probability": 0.7937 + }, + { + "start": 6415.66, + "end": 6416.42, + "probability": 0.741 + }, + { + "start": 6418.08, + "end": 6420.42, + "probability": 0.9855 + }, + { + "start": 6421.1, + "end": 6424.0, + "probability": 0.9751 + }, + { + "start": 6424.0, + "end": 6426.4, + "probability": 0.9792 + }, + { + "start": 6426.82, + "end": 6428.98, + "probability": 0.7821 + }, + { + "start": 6429.02, + "end": 6429.38, + "probability": 0.413 + }, + { + "start": 6429.44, + "end": 6430.08, + "probability": 0.849 + }, + { + "start": 6430.44, + "end": 6430.58, + "probability": 0.4186 + }, + { + "start": 6431.18, + "end": 6433.02, + "probability": 0.8777 + }, + { + "start": 6434.18, + "end": 6438.2, + "probability": 0.9399 + }, + { + "start": 6438.78, + "end": 6439.6, + "probability": 0.9666 + }, + { + "start": 6439.8, + "end": 6442.42, + "probability": 0.9929 + }, + { + "start": 6443.24, + "end": 6445.76, + "probability": 0.811 + }, + { + "start": 6446.04, + "end": 6450.08, + "probability": 0.7485 + }, + { + "start": 6450.12, + "end": 6451.26, + "probability": 0.8508 + }, + { + "start": 6451.3, + "end": 6453.98, + "probability": 0.8791 + }, + { + "start": 6455.56, + "end": 6459.54, + "probability": 0.7722 + }, + { + "start": 6460.9, + "end": 6462.64, + "probability": 0.7717 + }, + { + "start": 6464.06, + "end": 6465.42, + "probability": 0.6886 + }, + { + "start": 6465.84, + "end": 6469.04, + "probability": 0.9722 + }, + { + "start": 6469.82, + "end": 6471.2, + "probability": 0.7659 + }, + { + "start": 6472.1, + "end": 6474.5, + "probability": 0.9622 + }, + { + "start": 6474.56, + "end": 6476.36, + "probability": 0.7484 + }, + { + "start": 6476.36, + "end": 6477.46, + "probability": 0.6698 + }, + { + "start": 6477.92, + "end": 6479.04, + "probability": 0.6032 + }, + { + "start": 6479.16, + "end": 6479.9, + "probability": 0.8038 + }, + { + "start": 6482.94, + "end": 6483.92, + "probability": 0.7817 + }, + { + "start": 6485.28, + "end": 6488.12, + "probability": 0.988 + }, + { + "start": 6488.68, + "end": 6489.04, + "probability": 0.0 + }, + { + "start": 6491.14, + "end": 6491.32, + "probability": 0.1142 + }, + { + "start": 6491.32, + "end": 6491.32, + "probability": 0.0936 + }, + { + "start": 6491.32, + "end": 6491.32, + "probability": 0.0223 + }, + { + "start": 6491.32, + "end": 6493.22, + "probability": 0.2462 + }, + { + "start": 6494.4, + "end": 6495.95, + "probability": 0.8692 + }, + { + "start": 6497.64, + "end": 6499.07, + "probability": 0.6958 + }, + { + "start": 6500.36, + "end": 6501.76, + "probability": 0.8055 + }, + { + "start": 6502.76, + "end": 6504.7, + "probability": 0.9787 + }, + { + "start": 6505.5, + "end": 6506.88, + "probability": 0.4733 + }, + { + "start": 6507.26, + "end": 6507.86, + "probability": 0.5081 + }, + { + "start": 6508.3, + "end": 6508.82, + "probability": 0.7952 + }, + { + "start": 6508.94, + "end": 6509.34, + "probability": 0.7316 + }, + { + "start": 6510.3, + "end": 6511.42, + "probability": 0.8749 + }, + { + "start": 6512.86, + "end": 6514.14, + "probability": 0.8014 + }, + { + "start": 6514.34, + "end": 6516.22, + "probability": 0.7719 + }, + { + "start": 6516.3, + "end": 6517.52, + "probability": 0.9161 + }, + { + "start": 6518.42, + "end": 6520.34, + "probability": 0.5991 + }, + { + "start": 6521.06, + "end": 6521.56, + "probability": 0.4174 + }, + { + "start": 6522.48, + "end": 6523.96, + "probability": 0.545 + }, + { + "start": 6525.08, + "end": 6525.7, + "probability": 0.7957 + }, + { + "start": 6526.46, + "end": 6527.34, + "probability": 0.6162 + }, + { + "start": 6527.92, + "end": 6528.66, + "probability": 0.7552 + }, + { + "start": 6530.9, + "end": 6531.28, + "probability": 0.8508 + }, + { + "start": 6534.88, + "end": 6535.58, + "probability": 0.9236 + }, + { + "start": 6535.66, + "end": 6536.7, + "probability": 0.9146 + }, + { + "start": 6536.86, + "end": 6537.5, + "probability": 0.5534 + }, + { + "start": 6537.56, + "end": 6538.16, + "probability": 0.9805 + }, + { + "start": 6539.3, + "end": 6541.94, + "probability": 0.9551 + }, + { + "start": 6542.82, + "end": 6543.92, + "probability": 0.8564 + }, + { + "start": 6544.02, + "end": 6544.6, + "probability": 0.5045 + }, + { + "start": 6544.76, + "end": 6545.42, + "probability": 0.9595 + }, + { + "start": 6546.32, + "end": 6547.88, + "probability": 0.9338 + }, + { + "start": 6549.08, + "end": 6550.02, + "probability": 0.8844 + }, + { + "start": 6550.4, + "end": 6551.02, + "probability": 0.8555 + }, + { + "start": 6551.06, + "end": 6552.18, + "probability": 0.9506 + }, + { + "start": 6552.34, + "end": 6553.14, + "probability": 0.8253 + }, + { + "start": 6553.22, + "end": 6554.58, + "probability": 0.5337 + }, + { + "start": 6554.66, + "end": 6555.24, + "probability": 0.7921 + }, + { + "start": 6556.26, + "end": 6557.24, + "probability": 0.9915 + }, + { + "start": 6557.94, + "end": 6559.02, + "probability": 0.7828 + }, + { + "start": 6559.12, + "end": 6559.54, + "probability": 0.2871 + }, + { + "start": 6559.64, + "end": 6560.06, + "probability": 0.1261 + }, + { + "start": 6560.4, + "end": 6560.7, + "probability": 0.8099 + }, + { + "start": 6560.82, + "end": 6562.12, + "probability": 0.949 + }, + { + "start": 6563.26, + "end": 6564.76, + "probability": 0.9302 + }, + { + "start": 6565.84, + "end": 6567.42, + "probability": 0.9333 + }, + { + "start": 6567.86, + "end": 6570.44, + "probability": 0.9158 + }, + { + "start": 6571.62, + "end": 6573.44, + "probability": 0.7796 + }, + { + "start": 6574.72, + "end": 6577.92, + "probability": 0.6708 + }, + { + "start": 6578.6, + "end": 6579.82, + "probability": 0.8608 + }, + { + "start": 6579.86, + "end": 6581.18, + "probability": 0.8 + }, + { + "start": 6582.2, + "end": 6585.82, + "probability": 0.9204 + }, + { + "start": 6587.26, + "end": 6589.42, + "probability": 0.9385 + }, + { + "start": 6589.46, + "end": 6589.95, + "probability": 0.7578 + }, + { + "start": 6590.16, + "end": 6591.66, + "probability": 0.7513 + }, + { + "start": 6592.38, + "end": 6593.46, + "probability": 0.9949 + }, + { + "start": 6593.5, + "end": 6594.48, + "probability": 0.8862 + }, + { + "start": 6594.56, + "end": 6594.68, + "probability": 0.12 + }, + { + "start": 6594.74, + "end": 6595.54, + "probability": 0.7149 + }, + { + "start": 6597.24, + "end": 6599.1, + "probability": 0.9703 + }, + { + "start": 6600.12, + "end": 6601.28, + "probability": 0.9888 + }, + { + "start": 6601.34, + "end": 6601.98, + "probability": 0.7018 + }, + { + "start": 6602.02, + "end": 6603.78, + "probability": 0.9844 + }, + { + "start": 6604.4, + "end": 6607.78, + "probability": 0.9295 + }, + { + "start": 6608.14, + "end": 6611.96, + "probability": 0.9917 + }, + { + "start": 6612.56, + "end": 6614.54, + "probability": 0.9387 + }, + { + "start": 6615.94, + "end": 6618.2, + "probability": 0.9812 + }, + { + "start": 6618.94, + "end": 6622.74, + "probability": 0.9946 + }, + { + "start": 6623.78, + "end": 6624.26, + "probability": 0.8428 + }, + { + "start": 6624.32, + "end": 6626.12, + "probability": 0.9966 + }, + { + "start": 6626.22, + "end": 6627.24, + "probability": 0.8213 + }, + { + "start": 6627.86, + "end": 6628.74, + "probability": 0.7273 + }, + { + "start": 6629.74, + "end": 6632.24, + "probability": 0.9836 + }, + { + "start": 6633.96, + "end": 6636.78, + "probability": 0.9417 + }, + { + "start": 6636.82, + "end": 6639.5, + "probability": 0.9935 + }, + { + "start": 6640.24, + "end": 6642.32, + "probability": 0.8772 + }, + { + "start": 6642.96, + "end": 6644.64, + "probability": 0.7275 + }, + { + "start": 6645.54, + "end": 6648.48, + "probability": 0.7348 + }, + { + "start": 6649.88, + "end": 6652.7, + "probability": 0.634 + }, + { + "start": 6652.72, + "end": 6653.58, + "probability": 0.8567 + }, + { + "start": 6654.86, + "end": 6657.74, + "probability": 0.9717 + }, + { + "start": 6657.74, + "end": 6660.1, + "probability": 0.9744 + }, + { + "start": 6661.1, + "end": 6665.04, + "probability": 0.9662 + }, + { + "start": 6665.58, + "end": 6666.46, + "probability": 0.4716 + }, + { + "start": 6668.3, + "end": 6670.84, + "probability": 0.8044 + }, + { + "start": 6670.86, + "end": 6671.6, + "probability": 0.9343 + }, + { + "start": 6671.86, + "end": 6674.58, + "probability": 0.9702 + }, + { + "start": 6675.04, + "end": 6676.75, + "probability": 0.5468 + }, + { + "start": 6678.1, + "end": 6680.18, + "probability": 0.7407 + }, + { + "start": 6680.8, + "end": 6683.2, + "probability": 0.7891 + }, + { + "start": 6684.3, + "end": 6690.02, + "probability": 0.9737 + }, + { + "start": 6690.16, + "end": 6690.84, + "probability": 0.6164 + }, + { + "start": 6690.92, + "end": 6691.58, + "probability": 0.795 + }, + { + "start": 6691.7, + "end": 6692.28, + "probability": 0.8903 + }, + { + "start": 6692.68, + "end": 6693.55, + "probability": 0.6644 + }, + { + "start": 6693.96, + "end": 6695.7, + "probability": 0.9875 + }, + { + "start": 6696.68, + "end": 6699.0, + "probability": 0.6184 + }, + { + "start": 6701.06, + "end": 6705.02, + "probability": 0.9858 + }, + { + "start": 6706.14, + "end": 6706.24, + "probability": 0.6422 + }, + { + "start": 6706.58, + "end": 6709.72, + "probability": 0.9169 + }, + { + "start": 6710.26, + "end": 6712.71, + "probability": 0.8851 + }, + { + "start": 6713.84, + "end": 6717.38, + "probability": 0.946 + }, + { + "start": 6718.08, + "end": 6721.8, + "probability": 0.9899 + }, + { + "start": 6722.1, + "end": 6724.12, + "probability": 0.725 + }, + { + "start": 6724.74, + "end": 6726.73, + "probability": 0.9206 + }, + { + "start": 6729.1, + "end": 6733.4, + "probability": 0.9794 + }, + { + "start": 6734.26, + "end": 6736.48, + "probability": 0.9373 + }, + { + "start": 6736.62, + "end": 6737.78, + "probability": 0.6497 + }, + { + "start": 6737.84, + "end": 6741.08, + "probability": 0.9963 + }, + { + "start": 6741.2, + "end": 6742.32, + "probability": 0.9067 + }, + { + "start": 6743.66, + "end": 6745.24, + "probability": 0.9143 + }, + { + "start": 6746.1, + "end": 6747.98, + "probability": 0.9141 + }, + { + "start": 6748.7, + "end": 6751.5, + "probability": 0.9433 + }, + { + "start": 6752.04, + "end": 6754.26, + "probability": 0.6409 + }, + { + "start": 6754.4, + "end": 6758.74, + "probability": 0.9519 + }, + { + "start": 6760.76, + "end": 6762.7, + "probability": 0.9406 + }, + { + "start": 6765.24, + "end": 6770.32, + "probability": 0.8871 + }, + { + "start": 6770.32, + "end": 6774.1, + "probability": 0.9932 + }, + { + "start": 6775.28, + "end": 6777.86, + "probability": 0.999 + }, + { + "start": 6778.06, + "end": 6781.6, + "probability": 0.9951 + }, + { + "start": 6783.42, + "end": 6783.68, + "probability": 0.8264 + }, + { + "start": 6783.74, + "end": 6784.72, + "probability": 0.9132 + }, + { + "start": 6784.82, + "end": 6785.18, + "probability": 0.4825 + }, + { + "start": 6785.22, + "end": 6785.58, + "probability": 0.8796 + }, + { + "start": 6785.62, + "end": 6788.86, + "probability": 0.9824 + }, + { + "start": 6789.1, + "end": 6790.62, + "probability": 0.4561 + }, + { + "start": 6790.76, + "end": 6794.06, + "probability": 0.9851 + }, + { + "start": 6794.2, + "end": 6796.22, + "probability": 0.4679 + }, + { + "start": 6796.3, + "end": 6797.24, + "probability": 0.8783 + }, + { + "start": 6797.32, + "end": 6803.24, + "probability": 0.974 + }, + { + "start": 6805.88, + "end": 6806.66, + "probability": 0.3069 + }, + { + "start": 6806.66, + "end": 6807.72, + "probability": 0.2902 + }, + { + "start": 6808.12, + "end": 6808.2, + "probability": 0.1522 + }, + { + "start": 6808.2, + "end": 6810.7, + "probability": 0.9344 + }, + { + "start": 6810.7, + "end": 6810.77, + "probability": 0.3501 + }, + { + "start": 6812.02, + "end": 6815.5, + "probability": 0.4341 + }, + { + "start": 6817.42, + "end": 6818.02, + "probability": 0.024 + }, + { + "start": 6818.02, + "end": 6818.16, + "probability": 0.0478 + }, + { + "start": 6818.16, + "end": 6818.16, + "probability": 0.2085 + }, + { + "start": 6818.16, + "end": 6818.16, + "probability": 0.0805 + }, + { + "start": 6818.16, + "end": 6818.88, + "probability": 0.4603 + }, + { + "start": 6819.0, + "end": 6820.58, + "probability": 0.82 + }, + { + "start": 6820.66, + "end": 6823.16, + "probability": 0.9707 + }, + { + "start": 6826.52, + "end": 6826.54, + "probability": 0.0591 + }, + { + "start": 6826.54, + "end": 6827.02, + "probability": 0.3522 + }, + { + "start": 6827.2, + "end": 6828.26, + "probability": 0.4048 + }, + { + "start": 6828.84, + "end": 6830.83, + "probability": 0.6374 + }, + { + "start": 6831.52, + "end": 6832.12, + "probability": 0.2756 + }, + { + "start": 6832.28, + "end": 6834.36, + "probability": 0.0554 + }, + { + "start": 6835.32, + "end": 6836.14, + "probability": 0.08 + }, + { + "start": 6836.14, + "end": 6836.14, + "probability": 0.1793 + }, + { + "start": 6836.14, + "end": 6836.14, + "probability": 0.0135 + }, + { + "start": 6836.14, + "end": 6836.14, + "probability": 0.121 + }, + { + "start": 6836.14, + "end": 6836.14, + "probability": 0.1544 + }, + { + "start": 6836.14, + "end": 6836.14, + "probability": 0.3029 + }, + { + "start": 6836.14, + "end": 6838.16, + "probability": 0.5595 + }, + { + "start": 6838.46, + "end": 6841.86, + "probability": 0.501 + }, + { + "start": 6842.06, + "end": 6846.4, + "probability": 0.8406 + }, + { + "start": 6847.7, + "end": 6848.8, + "probability": 0.9092 + }, + { + "start": 6848.92, + "end": 6849.92, + "probability": 0.665 + }, + { + "start": 6849.94, + "end": 6852.9, + "probability": 0.9727 + }, + { + "start": 6853.16, + "end": 6854.36, + "probability": 0.8231 + }, + { + "start": 6855.06, + "end": 6859.7, + "probability": 0.0999 + }, + { + "start": 6864.8, + "end": 6867.16, + "probability": 0.4345 + }, + { + "start": 6868.24, + "end": 6869.34, + "probability": 0.0516 + }, + { + "start": 6869.34, + "end": 6870.08, + "probability": 0.0738 + }, + { + "start": 6870.7, + "end": 6871.72, + "probability": 0.0493 + }, + { + "start": 6872.32, + "end": 6873.24, + "probability": 0.2002 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6900.0, + "end": 6900.0, + "probability": 0.0 + }, + { + "start": 6907.68, + "end": 6910.98, + "probability": 0.0246 + }, + { + "start": 6911.42, + "end": 6913.36, + "probability": 0.1099 + }, + { + "start": 6913.5, + "end": 6914.72, + "probability": 0.1445 + }, + { + "start": 6914.72, + "end": 6914.72, + "probability": 0.0717 + }, + { + "start": 6914.72, + "end": 6915.84, + "probability": 0.1318 + }, + { + "start": 6917.64, + "end": 6919.16, + "probability": 0.152 + }, + { + "start": 6929.68, + "end": 6935.04, + "probability": 0.3016 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.0, + "end": 7032.0, + "probability": 0.0 + }, + { + "start": 7032.38, + "end": 7032.38, + "probability": 0.0511 + }, + { + "start": 7032.38, + "end": 7032.38, + "probability": 0.0688 + }, + { + "start": 7032.38, + "end": 7032.38, + "probability": 0.088 + }, + { + "start": 7032.38, + "end": 7035.3, + "probability": 0.4727 + }, + { + "start": 7035.3, + "end": 7037.97, + "probability": 0.7036 + }, + { + "start": 7038.5, + "end": 7042.6, + "probability": 0.6041 + }, + { + "start": 7043.78, + "end": 7046.26, + "probability": 0.9815 + }, + { + "start": 7046.36, + "end": 7047.14, + "probability": 0.9629 + }, + { + "start": 7047.36, + "end": 7048.22, + "probability": 0.9835 + }, + { + "start": 7048.84, + "end": 7050.76, + "probability": 0.9611 + }, + { + "start": 7051.68, + "end": 7054.56, + "probability": 0.9406 + }, + { + "start": 7055.2, + "end": 7057.22, + "probability": 0.8819 + }, + { + "start": 7057.76, + "end": 7063.77, + "probability": 0.9854 + }, + { + "start": 7063.88, + "end": 7065.98, + "probability": 0.3043 + }, + { + "start": 7065.98, + "end": 7066.66, + "probability": 0.6015 + }, + { + "start": 7066.78, + "end": 7072.26, + "probability": 0.3209 + }, + { + "start": 7073.28, + "end": 7076.44, + "probability": 0.9797 + }, + { + "start": 7077.36, + "end": 7079.66, + "probability": 0.9238 + }, + { + "start": 7079.72, + "end": 7083.84, + "probability": 0.7148 + }, + { + "start": 7084.54, + "end": 7085.64, + "probability": 0.7129 + }, + { + "start": 7086.18, + "end": 7088.96, + "probability": 0.9169 + }, + { + "start": 7090.12, + "end": 7091.0, + "probability": 0.7485 + }, + { + "start": 7091.06, + "end": 7092.68, + "probability": 0.991 + }, + { + "start": 7092.82, + "end": 7093.92, + "probability": 0.8716 + }, + { + "start": 7095.57, + "end": 7097.52, + "probability": 0.9946 + }, + { + "start": 7098.18, + "end": 7100.28, + "probability": 0.9213 + }, + { + "start": 7100.28, + "end": 7103.92, + "probability": 0.7487 + }, + { + "start": 7104.28, + "end": 7108.7, + "probability": 0.6326 + }, + { + "start": 7108.78, + "end": 7109.26, + "probability": 0.7604 + }, + { + "start": 7110.42, + "end": 7114.66, + "probability": 0.98 + }, + { + "start": 7114.76, + "end": 7117.38, + "probability": 0.9949 + }, + { + "start": 7117.72, + "end": 7118.82, + "probability": 0.7695 + }, + { + "start": 7120.08, + "end": 7120.56, + "probability": 0.9861 + }, + { + "start": 7121.42, + "end": 7124.42, + "probability": 0.9103 + }, + { + "start": 7125.04, + "end": 7127.15, + "probability": 0.9985 + }, + { + "start": 7128.08, + "end": 7132.96, + "probability": 0.9907 + }, + { + "start": 7133.66, + "end": 7135.02, + "probability": 0.6402 + }, + { + "start": 7135.44, + "end": 7138.86, + "probability": 0.9692 + }, + { + "start": 7139.04, + "end": 7141.68, + "probability": 0.9606 + }, + { + "start": 7141.72, + "end": 7142.06, + "probability": 0.4827 + }, + { + "start": 7142.08, + "end": 7143.4, + "probability": 0.9559 + }, + { + "start": 7143.68, + "end": 7146.46, + "probability": 0.9905 + }, + { + "start": 7146.92, + "end": 7152.42, + "probability": 0.972 + }, + { + "start": 7153.5, + "end": 7154.71, + "probability": 0.9961 + }, + { + "start": 7155.74, + "end": 7157.4, + "probability": 0.7221 + }, + { + "start": 7157.5, + "end": 7163.48, + "probability": 0.8651 + }, + { + "start": 7163.78, + "end": 7167.18, + "probability": 0.6686 + }, + { + "start": 7167.53, + "end": 7175.56, + "probability": 0.9217 + }, + { + "start": 7176.14, + "end": 7180.28, + "probability": 0.9873 + }, + { + "start": 7181.78, + "end": 7184.16, + "probability": 0.773 + }, + { + "start": 7184.7, + "end": 7185.72, + "probability": 0.7891 + }, + { + "start": 7186.16, + "end": 7189.12, + "probability": 0.937 + }, + { + "start": 7190.21, + "end": 7192.72, + "probability": 0.8806 + }, + { + "start": 7193.02, + "end": 7193.34, + "probability": 0.5699 + }, + { + "start": 7193.46, + "end": 7194.24, + "probability": 0.7504 + }, + { + "start": 7194.9, + "end": 7202.32, + "probability": 0.9229 + }, + { + "start": 7204.7, + "end": 7207.24, + "probability": 0.9289 + }, + { + "start": 7207.5, + "end": 7210.28, + "probability": 0.9005 + }, + { + "start": 7211.0, + "end": 7212.13, + "probability": 0.9678 + }, + { + "start": 7212.52, + "end": 7213.66, + "probability": 0.502 + }, + { + "start": 7214.44, + "end": 7219.48, + "probability": 0.99 + }, + { + "start": 7220.2, + "end": 7221.36, + "probability": 0.5672 + }, + { + "start": 7221.98, + "end": 7229.42, + "probability": 0.9302 + }, + { + "start": 7229.94, + "end": 7235.44, + "probability": 0.992 + }, + { + "start": 7235.84, + "end": 7236.72, + "probability": 0.6744 + }, + { + "start": 7237.42, + "end": 7238.26, + "probability": 0.9832 + }, + { + "start": 7238.72, + "end": 7238.94, + "probability": 0.7694 + }, + { + "start": 7239.02, + "end": 7248.54, + "probability": 0.9725 + }, + { + "start": 7249.34, + "end": 7251.98, + "probability": 0.6813 + }, + { + "start": 7257.23, + "end": 7258.86, + "probability": 0.3518 + }, + { + "start": 7258.9, + "end": 7261.74, + "probability": 0.9949 + }, + { + "start": 7262.2, + "end": 7265.26, + "probability": 0.9592 + }, + { + "start": 7265.32, + "end": 7268.42, + "probability": 0.9855 + }, + { + "start": 7268.68, + "end": 7269.58, + "probability": 0.7934 + }, + { + "start": 7269.64, + "end": 7270.58, + "probability": 0.818 + }, + { + "start": 7270.86, + "end": 7271.42, + "probability": 0.8078 + }, + { + "start": 7272.5, + "end": 7276.42, + "probability": 0.8682 + }, + { + "start": 7277.12, + "end": 7278.34, + "probability": 0.3986 + }, + { + "start": 7279.94, + "end": 7280.8, + "probability": 0.5896 + }, + { + "start": 7280.96, + "end": 7281.44, + "probability": 0.7983 + }, + { + "start": 7281.52, + "end": 7282.12, + "probability": 0.391 + }, + { + "start": 7282.18, + "end": 7283.52, + "probability": 0.8319 + }, + { + "start": 7283.6, + "end": 7284.13, + "probability": 0.9675 + }, + { + "start": 7284.84, + "end": 7288.12, + "probability": 0.9963 + }, + { + "start": 7288.6, + "end": 7289.3, + "probability": 0.9181 + }, + { + "start": 7289.88, + "end": 7291.14, + "probability": 0.9828 + }, + { + "start": 7291.84, + "end": 7293.76, + "probability": 0.974 + }, + { + "start": 7294.88, + "end": 7295.34, + "probability": 0.6709 + }, + { + "start": 7295.38, + "end": 7297.73, + "probability": 0.9285 + }, + { + "start": 7298.46, + "end": 7302.92, + "probability": 0.8979 + }, + { + "start": 7303.46, + "end": 7303.86, + "probability": 0.2552 + }, + { + "start": 7303.86, + "end": 7304.78, + "probability": 0.8163 + }, + { + "start": 7304.88, + "end": 7305.16, + "probability": 0.4638 + }, + { + "start": 7305.24, + "end": 7308.54, + "probability": 0.9932 + }, + { + "start": 7309.0, + "end": 7309.38, + "probability": 0.5572 + }, + { + "start": 7309.44, + "end": 7312.52, + "probability": 0.8873 + }, + { + "start": 7312.92, + "end": 7313.94, + "probability": 0.937 + }, + { + "start": 7315.14, + "end": 7318.34, + "probability": 0.9491 + }, + { + "start": 7319.06, + "end": 7324.06, + "probability": 0.4912 + }, + { + "start": 7324.82, + "end": 7327.68, + "probability": 0.978 + }, + { + "start": 7328.12, + "end": 7330.66, + "probability": 0.6775 + }, + { + "start": 7331.52, + "end": 7332.22, + "probability": 0.7157 + }, + { + "start": 7332.54, + "end": 7337.9, + "probability": 0.9642 + }, + { + "start": 7338.94, + "end": 7340.82, + "probability": 0.5518 + }, + { + "start": 7341.68, + "end": 7344.72, + "probability": 0.9027 + }, + { + "start": 7344.82, + "end": 7346.82, + "probability": 0.9951 + }, + { + "start": 7347.42, + "end": 7348.8, + "probability": 0.8604 + }, + { + "start": 7348.88, + "end": 7350.68, + "probability": 0.9847 + }, + { + "start": 7351.14, + "end": 7352.4, + "probability": 0.8522 + }, + { + "start": 7353.08, + "end": 7356.72, + "probability": 0.9841 + }, + { + "start": 7357.42, + "end": 7360.84, + "probability": 0.8509 + }, + { + "start": 7360.84, + "end": 7362.68, + "probability": 0.9847 + }, + { + "start": 7362.94, + "end": 7366.42, + "probability": 0.9928 + }, + { + "start": 7366.66, + "end": 7369.18, + "probability": 0.964 + }, + { + "start": 7369.18, + "end": 7371.62, + "probability": 0.9985 + }, + { + "start": 7372.62, + "end": 7376.08, + "probability": 0.8144 + }, + { + "start": 7376.78, + "end": 7378.86, + "probability": 0.9052 + }, + { + "start": 7379.44, + "end": 7380.22, + "probability": 0.979 + }, + { + "start": 7380.26, + "end": 7385.02, + "probability": 0.9385 + }, + { + "start": 7385.12, + "end": 7386.12, + "probability": 0.5825 + }, + { + "start": 7386.46, + "end": 7389.76, + "probability": 0.9927 + }, + { + "start": 7390.28, + "end": 7392.9, + "probability": 0.8674 + }, + { + "start": 7392.98, + "end": 7395.46, + "probability": 0.6478 + }, + { + "start": 7395.52, + "end": 7395.8, + "probability": 0.8843 + }, + { + "start": 7396.38, + "end": 7397.26, + "probability": 0.8894 + }, + { + "start": 7397.78, + "end": 7399.28, + "probability": 0.8722 + }, + { + "start": 7400.02, + "end": 7400.48, + "probability": 0.9131 + }, + { + "start": 7400.54, + "end": 7402.94, + "probability": 0.9671 + }, + { + "start": 7403.52, + "end": 7403.64, + "probability": 0.8391 + }, + { + "start": 7403.68, + "end": 7404.48, + "probability": 0.9252 + }, + { + "start": 7406.82, + "end": 7407.06, + "probability": 0.2555 + }, + { + "start": 7407.06, + "end": 7407.96, + "probability": 0.49 + }, + { + "start": 7408.2, + "end": 7412.38, + "probability": 0.8965 + }, + { + "start": 7412.42, + "end": 7413.74, + "probability": 0.4405 + }, + { + "start": 7414.84, + "end": 7417.18, + "probability": 0.9237 + }, + { + "start": 7417.44, + "end": 7418.68, + "probability": 0.9108 + }, + { + "start": 7419.38, + "end": 7421.2, + "probability": 0.9096 + }, + { + "start": 7422.76, + "end": 7430.44, + "probability": 0.9526 + }, + { + "start": 7430.44, + "end": 7436.22, + "probability": 0.8011 + }, + { + "start": 7436.98, + "end": 7438.32, + "probability": 0.9941 + }, + { + "start": 7438.86, + "end": 7443.6, + "probability": 0.8823 + }, + { + "start": 7443.98, + "end": 7445.61, + "probability": 0.9922 + }, + { + "start": 7448.78, + "end": 7450.16, + "probability": 0.8038 + }, + { + "start": 7450.82, + "end": 7451.2, + "probability": 0.5683 + }, + { + "start": 7451.2, + "end": 7451.74, + "probability": 0.9678 + }, + { + "start": 7451.8, + "end": 7453.3, + "probability": 0.9907 + }, + { + "start": 7453.38, + "end": 7454.46, + "probability": 0.9783 + }, + { + "start": 7454.88, + "end": 7456.88, + "probability": 0.7596 + }, + { + "start": 7457.52, + "end": 7459.18, + "probability": 0.9786 + }, + { + "start": 7459.3, + "end": 7460.06, + "probability": 0.9454 + }, + { + "start": 7460.06, + "end": 7462.2, + "probability": 0.6974 + }, + { + "start": 7462.42, + "end": 7464.28, + "probability": 0.5309 + }, + { + "start": 7464.72, + "end": 7467.44, + "probability": 0.7852 + }, + { + "start": 7467.84, + "end": 7473.34, + "probability": 0.978 + }, + { + "start": 7473.38, + "end": 7474.97, + "probability": 0.4805 + }, + { + "start": 7475.26, + "end": 7476.1, + "probability": 0.9312 + }, + { + "start": 7476.2, + "end": 7476.28, + "probability": 0.4769 + }, + { + "start": 7477.72, + "end": 7478.4, + "probability": 0.1478 + }, + { + "start": 7478.44, + "end": 7479.12, + "probability": 0.9216 + }, + { + "start": 7479.6, + "end": 7480.72, + "probability": 0.2595 + }, + { + "start": 7480.86, + "end": 7483.56, + "probability": 0.9825 + }, + { + "start": 7483.66, + "end": 7485.02, + "probability": 0.9682 + }, + { + "start": 7485.94, + "end": 7491.44, + "probability": 0.9955 + }, + { + "start": 7491.44, + "end": 7495.9, + "probability": 0.8301 + }, + { + "start": 7496.46, + "end": 7496.56, + "probability": 0.3194 + }, + { + "start": 7496.66, + "end": 7499.88, + "probability": 0.9709 + }, + { + "start": 7500.0, + "end": 7500.34, + "probability": 0.6012 + }, + { + "start": 7500.4, + "end": 7501.84, + "probability": 0.7925 + }, + { + "start": 7501.92, + "end": 7504.56, + "probability": 0.7557 + }, + { + "start": 7504.6, + "end": 7509.04, + "probability": 0.9765 + }, + { + "start": 7509.66, + "end": 7515.2, + "probability": 0.8339 + }, + { + "start": 7515.28, + "end": 7515.8, + "probability": 0.9045 + }, + { + "start": 7519.36, + "end": 7521.48, + "probability": 0.9833 + }, + { + "start": 7521.92, + "end": 7524.1, + "probability": 0.4306 + }, + { + "start": 7524.24, + "end": 7525.24, + "probability": 0.902 + }, + { + "start": 7525.36, + "end": 7528.11, + "probability": 0.9014 + }, + { + "start": 7528.8, + "end": 7531.28, + "probability": 0.9573 + }, + { + "start": 7531.36, + "end": 7535.3, + "probability": 0.933 + }, + { + "start": 7535.62, + "end": 7541.48, + "probability": 0.8149 + }, + { + "start": 7541.54, + "end": 7546.66, + "probability": 0.8325 + }, + { + "start": 7547.24, + "end": 7552.68, + "probability": 0.9608 + }, + { + "start": 7553.06, + "end": 7554.9, + "probability": 0.9036 + }, + { + "start": 7555.3, + "end": 7559.86, + "probability": 0.9194 + }, + { + "start": 7560.42, + "end": 7563.16, + "probability": 0.9644 + }, + { + "start": 7563.61, + "end": 7565.74, + "probability": 0.8974 + }, + { + "start": 7565.84, + "end": 7567.34, + "probability": 0.9369 + }, + { + "start": 7568.1, + "end": 7570.82, + "probability": 0.4902 + }, + { + "start": 7571.42, + "end": 7573.06, + "probability": 0.8091 + }, + { + "start": 7573.1, + "end": 7575.76, + "probability": 0.9596 + }, + { + "start": 7576.28, + "end": 7577.26, + "probability": 0.847 + }, + { + "start": 7577.62, + "end": 7581.92, + "probability": 0.8457 + }, + { + "start": 7582.06, + "end": 7583.4, + "probability": 0.9822 + }, + { + "start": 7584.36, + "end": 7588.16, + "probability": 0.9287 + }, + { + "start": 7588.64, + "end": 7592.54, + "probability": 0.9852 + }, + { + "start": 7593.32, + "end": 7595.19, + "probability": 0.9966 + }, + { + "start": 7595.46, + "end": 7599.58, + "probability": 0.7661 + }, + { + "start": 7599.82, + "end": 7600.68, + "probability": 0.9604 + }, + { + "start": 7601.26, + "end": 7605.18, + "probability": 0.9705 + }, + { + "start": 7605.22, + "end": 7607.4, + "probability": 0.9866 + }, + { + "start": 7608.56, + "end": 7610.54, + "probability": 0.9653 + }, + { + "start": 7611.08, + "end": 7611.87, + "probability": 0.8759 + }, + { + "start": 7612.98, + "end": 7613.46, + "probability": 0.4219 + }, + { + "start": 7614.52, + "end": 7619.13, + "probability": 0.981 + }, + { + "start": 7619.78, + "end": 7621.42, + "probability": 0.5554 + }, + { + "start": 7622.3, + "end": 7626.26, + "probability": 0.9877 + }, + { + "start": 7627.22, + "end": 7628.8, + "probability": 0.993 + }, + { + "start": 7629.22, + "end": 7630.98, + "probability": 0.9886 + }, + { + "start": 7633.14, + "end": 7633.86, + "probability": 0.6223 + }, + { + "start": 7634.42, + "end": 7634.74, + "probability": 0.7208 + }, + { + "start": 7635.4, + "end": 7636.11, + "probability": 0.8752 + }, + { + "start": 7636.6, + "end": 7640.66, + "probability": 0.754 + }, + { + "start": 7641.52, + "end": 7645.2, + "probability": 0.8695 + }, + { + "start": 7645.96, + "end": 7646.36, + "probability": 0.4575 + }, + { + "start": 7647.4, + "end": 7649.6, + "probability": 0.817 + }, + { + "start": 7649.72, + "end": 7652.46, + "probability": 0.8558 + }, + { + "start": 7653.34, + "end": 7656.0, + "probability": 0.973 + }, + { + "start": 7656.64, + "end": 7658.0, + "probability": 0.5341 + }, + { + "start": 7658.92, + "end": 7662.02, + "probability": 0.8946 + }, + { + "start": 7663.16, + "end": 7666.1, + "probability": 0.9412 + }, + { + "start": 7666.2, + "end": 7669.42, + "probability": 0.9916 + }, + { + "start": 7669.96, + "end": 7673.64, + "probability": 0.9199 + }, + { + "start": 7674.56, + "end": 7675.28, + "probability": 0.9409 + }, + { + "start": 7676.0, + "end": 7677.88, + "probability": 0.9971 + }, + { + "start": 7678.52, + "end": 7679.42, + "probability": 0.7008 + }, + { + "start": 7679.46, + "end": 7681.0, + "probability": 0.9195 + }, + { + "start": 7681.4, + "end": 7682.54, + "probability": 0.348 + }, + { + "start": 7682.64, + "end": 7684.92, + "probability": 0.8863 + }, + { + "start": 7686.3, + "end": 7689.46, + "probability": 0.8467 + }, + { + "start": 7690.16, + "end": 7694.5, + "probability": 0.9213 + }, + { + "start": 7694.5, + "end": 7698.96, + "probability": 0.9802 + }, + { + "start": 7699.46, + "end": 7701.22, + "probability": 0.8955 + }, + { + "start": 7701.78, + "end": 7707.72, + "probability": 0.8916 + }, + { + "start": 7708.46, + "end": 7709.96, + "probability": 0.6551 + }, + { + "start": 7710.34, + "end": 7712.32, + "probability": 0.9131 + }, + { + "start": 7713.22, + "end": 7714.64, + "probability": 0.9807 + }, + { + "start": 7714.66, + "end": 7716.98, + "probability": 0.9634 + }, + { + "start": 7718.08, + "end": 7718.32, + "probability": 0.4869 + }, + { + "start": 7721.02, + "end": 7722.46, + "probability": 0.6124 + }, + { + "start": 7723.7, + "end": 7724.94, + "probability": 0.8141 + }, + { + "start": 7741.34, + "end": 7741.5, + "probability": 0.2502 + }, + { + "start": 7741.64, + "end": 7742.52, + "probability": 0.8428 + }, + { + "start": 7744.6, + "end": 7745.62, + "probability": 0.7991 + }, + { + "start": 7746.2, + "end": 7747.06, + "probability": 0.8898 + }, + { + "start": 7747.6, + "end": 7748.58, + "probability": 0.637 + }, + { + "start": 7749.32, + "end": 7750.36, + "probability": 0.9745 + }, + { + "start": 7751.68, + "end": 7756.58, + "probability": 0.8942 + }, + { + "start": 7756.58, + "end": 7761.52, + "probability": 0.932 + }, + { + "start": 7763.04, + "end": 7765.04, + "probability": 0.8746 + }, + { + "start": 7766.14, + "end": 7768.34, + "probability": 0.9227 + }, + { + "start": 7768.34, + "end": 7772.12, + "probability": 0.9945 + }, + { + "start": 7772.86, + "end": 7777.7, + "probability": 0.9489 + }, + { + "start": 7778.56, + "end": 7781.9, + "probability": 0.9727 + }, + { + "start": 7782.72, + "end": 7786.26, + "probability": 0.8298 + }, + { + "start": 7786.96, + "end": 7788.06, + "probability": 0.6759 + }, + { + "start": 7789.12, + "end": 7790.6, + "probability": 0.9341 + }, + { + "start": 7790.6, + "end": 7794.82, + "probability": 0.9624 + }, + { + "start": 7795.36, + "end": 7795.56, + "probability": 0.4394 + }, + { + "start": 7795.74, + "end": 7799.88, + "probability": 0.9647 + }, + { + "start": 7800.52, + "end": 7804.04, + "probability": 0.9945 + }, + { + "start": 7805.16, + "end": 7805.6, + "probability": 0.8966 + }, + { + "start": 7805.6, + "end": 7810.32, + "probability": 0.9383 + }, + { + "start": 7810.36, + "end": 7814.26, + "probability": 0.9819 + }, + { + "start": 7815.92, + "end": 7821.36, + "probability": 0.8838 + }, + { + "start": 7822.56, + "end": 7825.82, + "probability": 0.9968 + }, + { + "start": 7826.64, + "end": 7830.84, + "probability": 0.9807 + }, + { + "start": 7831.2, + "end": 7831.88, + "probability": 0.859 + }, + { + "start": 7832.38, + "end": 7836.72, + "probability": 0.9783 + }, + { + "start": 7837.38, + "end": 7839.96, + "probability": 0.7805 + }, + { + "start": 7839.96, + "end": 7844.16, + "probability": 0.6768 + }, + { + "start": 7845.45, + "end": 7849.84, + "probability": 0.9618 + }, + { + "start": 7850.06, + "end": 7851.32, + "probability": 0.6146 + }, + { + "start": 7852.24, + "end": 7856.16, + "probability": 0.9966 + }, + { + "start": 7857.02, + "end": 7862.8, + "probability": 0.6826 + }, + { + "start": 7864.76, + "end": 7866.52, + "probability": 0.795 + }, + { + "start": 7866.64, + "end": 7867.2, + "probability": 0.5172 + }, + { + "start": 7867.2, + "end": 7867.9, + "probability": 0.9011 + }, + { + "start": 7868.16, + "end": 7871.06, + "probability": 0.8085 + }, + { + "start": 7871.86, + "end": 7876.74, + "probability": 0.8898 + }, + { + "start": 7877.56, + "end": 7883.55, + "probability": 0.9638 + }, + { + "start": 7884.28, + "end": 7887.02, + "probability": 0.8748 + }, + { + "start": 7887.78, + "end": 7889.42, + "probability": 0.8184 + }, + { + "start": 7890.18, + "end": 7892.4, + "probability": 0.8032 + }, + { + "start": 7894.98, + "end": 7897.48, + "probability": 0.856 + }, + { + "start": 7897.52, + "end": 7898.9, + "probability": 0.9761 + }, + { + "start": 7899.08, + "end": 7904.09, + "probability": 0.9858 + }, + { + "start": 7904.72, + "end": 7909.02, + "probability": 0.9893 + }, + { + "start": 7909.5, + "end": 7913.42, + "probability": 0.9929 + }, + { + "start": 7914.0, + "end": 7915.64, + "probability": 0.9471 + }, + { + "start": 7915.76, + "end": 7917.89, + "probability": 0.9396 + }, + { + "start": 7918.46, + "end": 7920.29, + "probability": 0.5081 + }, + { + "start": 7920.54, + "end": 7922.64, + "probability": 0.9863 + }, + { + "start": 7923.6, + "end": 7925.06, + "probability": 0.9987 + }, + { + "start": 7925.9, + "end": 7930.72, + "probability": 0.6602 + }, + { + "start": 7930.98, + "end": 7932.1, + "probability": 0.5767 + }, + { + "start": 7932.2, + "end": 7935.68, + "probability": 0.9915 + }, + { + "start": 7936.26, + "end": 7936.64, + "probability": 0.6074 + }, + { + "start": 7937.26, + "end": 7937.91, + "probability": 0.9566 + }, + { + "start": 7938.45, + "end": 7942.03, + "probability": 0.9725 + }, + { + "start": 7942.12, + "end": 7943.1, + "probability": 0.7437 + }, + { + "start": 7943.48, + "end": 7944.62, + "probability": 0.6816 + }, + { + "start": 7944.92, + "end": 7947.5, + "probability": 0.979 + }, + { + "start": 7947.6, + "end": 7948.37, + "probability": 0.8673 + }, + { + "start": 7948.86, + "end": 7949.55, + "probability": 0.5258 + }, + { + "start": 7950.0, + "end": 7950.7, + "probability": 0.6124 + }, + { + "start": 7951.14, + "end": 7952.74, + "probability": 0.9953 + }, + { + "start": 7953.24, + "end": 7954.02, + "probability": 0.8142 + }, + { + "start": 7954.12, + "end": 7955.32, + "probability": 0.9139 + }, + { + "start": 7955.88, + "end": 7959.8, + "probability": 0.8531 + }, + { + "start": 7959.9, + "end": 7961.32, + "probability": 0.8616 + }, + { + "start": 7962.42, + "end": 7963.9, + "probability": 0.989 + }, + { + "start": 7964.64, + "end": 7966.28, + "probability": 0.9805 + }, + { + "start": 7968.66, + "end": 7973.32, + "probability": 0.9233 + }, + { + "start": 7974.0, + "end": 7977.66, + "probability": 0.9578 + }, + { + "start": 7977.7, + "end": 7978.82, + "probability": 0.9839 + }, + { + "start": 7979.78, + "end": 7983.48, + "probability": 0.9783 + }, + { + "start": 7983.6, + "end": 7985.74, + "probability": 0.9939 + }, + { + "start": 7986.6, + "end": 7988.54, + "probability": 0.7292 + }, + { + "start": 7989.08, + "end": 7992.2, + "probability": 0.8765 + }, + { + "start": 7992.52, + "end": 7994.18, + "probability": 0.6745 + }, + { + "start": 7998.78, + "end": 7999.98, + "probability": 0.4849 + }, + { + "start": 8000.14, + "end": 8000.6, + "probability": 0.5375 + }, + { + "start": 8000.82, + "end": 8004.85, + "probability": 0.9811 + }, + { + "start": 8005.14, + "end": 8009.04, + "probability": 0.9854 + }, + { + "start": 8010.08, + "end": 8010.82, + "probability": 0.6062 + }, + { + "start": 8010.84, + "end": 8016.96, + "probability": 0.9066 + }, + { + "start": 8018.1, + "end": 8019.84, + "probability": 0.7512 + }, + { + "start": 8020.48, + "end": 8021.92, + "probability": 0.8884 + }, + { + "start": 8023.54, + "end": 8027.78, + "probability": 0.548 + }, + { + "start": 8028.42, + "end": 8031.21, + "probability": 0.8097 + }, + { + "start": 8032.28, + "end": 8034.34, + "probability": 0.6112 + }, + { + "start": 8034.76, + "end": 8038.62, + "probability": 0.9839 + }, + { + "start": 8039.64, + "end": 8043.9, + "probability": 0.9966 + }, + { + "start": 8045.1, + "end": 8046.46, + "probability": 0.9977 + }, + { + "start": 8046.82, + "end": 8048.72, + "probability": 0.9026 + }, + { + "start": 8049.98, + "end": 8053.04, + "probability": 0.992 + }, + { + "start": 8053.04, + "end": 8055.84, + "probability": 0.9035 + }, + { + "start": 8057.76, + "end": 8060.54, + "probability": 0.9867 + }, + { + "start": 8060.62, + "end": 8061.86, + "probability": 0.8926 + }, + { + "start": 8062.78, + "end": 8064.38, + "probability": 0.804 + }, + { + "start": 8064.58, + "end": 8065.04, + "probability": 0.93 + }, + { + "start": 8065.58, + "end": 8069.08, + "probability": 0.7976 + }, + { + "start": 8069.7, + "end": 8072.88, + "probability": 0.9807 + }, + { + "start": 8072.92, + "end": 8076.46, + "probability": 0.9241 + }, + { + "start": 8076.54, + "end": 8078.22, + "probability": 0.8218 + }, + { + "start": 8078.54, + "end": 8079.84, + "probability": 0.992 + }, + { + "start": 8080.22, + "end": 8081.82, + "probability": 0.9967 + }, + { + "start": 8081.98, + "end": 8082.5, + "probability": 0.4523 + }, + { + "start": 8082.52, + "end": 8083.5, + "probability": 0.6966 + }, + { + "start": 8083.68, + "end": 8084.72, + "probability": 0.5045 + }, + { + "start": 8084.78, + "end": 8085.26, + "probability": 0.9174 + }, + { + "start": 8086.44, + "end": 8090.94, + "probability": 0.9941 + }, + { + "start": 8091.14, + "end": 8091.58, + "probability": 0.9899 + }, + { + "start": 8093.7, + "end": 8097.0, + "probability": 0.9251 + }, + { + "start": 8097.06, + "end": 8099.44, + "probability": 0.9601 + }, + { + "start": 8099.96, + "end": 8101.82, + "probability": 0.9964 + }, + { + "start": 8102.48, + "end": 8103.04, + "probability": 0.6947 + }, + { + "start": 8103.58, + "end": 8106.52, + "probability": 0.9951 + }, + { + "start": 8107.02, + "end": 8107.72, + "probability": 0.7565 + }, + { + "start": 8108.14, + "end": 8109.4, + "probability": 0.7585 + }, + { + "start": 8110.12, + "end": 8117.26, + "probability": 0.9532 + }, + { + "start": 8117.6, + "end": 8118.6, + "probability": 0.9359 + }, + { + "start": 8121.8, + "end": 8123.2, + "probability": 0.4582 + }, + { + "start": 8123.2, + "end": 8123.3, + "probability": 0.7281 + }, + { + "start": 8123.72, + "end": 8125.92, + "probability": 0.934 + }, + { + "start": 8125.92, + "end": 8128.12, + "probability": 0.9937 + }, + { + "start": 8128.64, + "end": 8133.5, + "probability": 0.9731 + }, + { + "start": 8134.76, + "end": 8138.32, + "probability": 0.983 + }, + { + "start": 8138.32, + "end": 8142.16, + "probability": 0.9824 + }, + { + "start": 8143.28, + "end": 8144.82, + "probability": 0.6473 + }, + { + "start": 8145.9, + "end": 8149.5, + "probability": 0.6455 + }, + { + "start": 8150.04, + "end": 8152.9, + "probability": 0.8755 + }, + { + "start": 8153.02, + "end": 8153.68, + "probability": 0.8585 + }, + { + "start": 8154.48, + "end": 8156.26, + "probability": 0.8455 + }, + { + "start": 8158.78, + "end": 8159.36, + "probability": 0.1738 + }, + { + "start": 8159.36, + "end": 8159.84, + "probability": 0.3434 + }, + { + "start": 8159.86, + "end": 8160.18, + "probability": 0.6007 + }, + { + "start": 8160.42, + "end": 8162.22, + "probability": 0.6865 + }, + { + "start": 8162.26, + "end": 8163.98, + "probability": 0.8571 + }, + { + "start": 8166.78, + "end": 8167.92, + "probability": 0.7997 + }, + { + "start": 8170.4, + "end": 8176.6, + "probability": 0.9746 + }, + { + "start": 8176.94, + "end": 8179.24, + "probability": 0.9961 + }, + { + "start": 8179.74, + "end": 8180.32, + "probability": 0.9302 + }, + { + "start": 8180.82, + "end": 8181.84, + "probability": 0.8227 + }, + { + "start": 8181.9, + "end": 8186.66, + "probability": 0.9798 + }, + { + "start": 8186.78, + "end": 8188.22, + "probability": 0.9188 + }, + { + "start": 8189.1, + "end": 8193.12, + "probability": 0.9685 + }, + { + "start": 8193.62, + "end": 8198.2, + "probability": 0.9971 + }, + { + "start": 8199.14, + "end": 8201.92, + "probability": 0.7989 + }, + { + "start": 8204.42, + "end": 8206.26, + "probability": 0.9453 + }, + { + "start": 8207.32, + "end": 8207.84, + "probability": 0.6828 + }, + { + "start": 8207.92, + "end": 8209.0, + "probability": 0.6667 + }, + { + "start": 8209.3, + "end": 8211.06, + "probability": 0.9876 + }, + { + "start": 8211.76, + "end": 8214.27, + "probability": 0.9688 + }, + { + "start": 8214.76, + "end": 8219.38, + "probability": 0.9899 + }, + { + "start": 8219.8, + "end": 8220.0, + "probability": 0.5608 + }, + { + "start": 8220.5, + "end": 8221.16, + "probability": 0.7971 + }, + { + "start": 8222.6, + "end": 8224.42, + "probability": 0.8381 + }, + { + "start": 8228.34, + "end": 8232.32, + "probability": 0.9834 + }, + { + "start": 8235.3, + "end": 8236.46, + "probability": 0.9358 + }, + { + "start": 8236.56, + "end": 8237.7, + "probability": 0.4595 + }, + { + "start": 8237.78, + "end": 8239.16, + "probability": 0.7012 + }, + { + "start": 8239.32, + "end": 8240.22, + "probability": 0.9309 + }, + { + "start": 8240.76, + "end": 8245.14, + "probability": 0.8382 + }, + { + "start": 8245.36, + "end": 8247.16, + "probability": 0.1816 + }, + { + "start": 8247.65, + "end": 8248.32, + "probability": 0.9505 + }, + { + "start": 8248.68, + "end": 8248.84, + "probability": 0.8259 + }, + { + "start": 8249.88, + "end": 8250.34, + "probability": 0.4957 + }, + { + "start": 8250.42, + "end": 8251.82, + "probability": 0.8481 + }, + { + "start": 8253.02, + "end": 8253.7, + "probability": 0.6016 + }, + { + "start": 8254.64, + "end": 8255.48, + "probability": 0.6246 + }, + { + "start": 8257.42, + "end": 8263.36, + "probability": 0.9065 + }, + { + "start": 8264.54, + "end": 8265.5, + "probability": 0.9619 + }, + { + "start": 8266.16, + "end": 8273.9, + "probability": 0.9808 + }, + { + "start": 8275.1, + "end": 8279.44, + "probability": 0.8802 + }, + { + "start": 8280.1, + "end": 8282.64, + "probability": 0.7474 + }, + { + "start": 8285.52, + "end": 8286.76, + "probability": 0.8177 + }, + { + "start": 8288.16, + "end": 8294.55, + "probability": 0.9621 + }, + { + "start": 8296.69, + "end": 8298.68, + "probability": 0.9104 + }, + { + "start": 8300.1, + "end": 8304.56, + "probability": 0.9892 + }, + { + "start": 8305.86, + "end": 8315.06, + "probability": 0.9814 + }, + { + "start": 8315.3, + "end": 8316.26, + "probability": 0.8507 + }, + { + "start": 8317.8, + "end": 8320.36, + "probability": 0.9922 + }, + { + "start": 8322.48, + "end": 8323.54, + "probability": 0.9828 + }, + { + "start": 8326.32, + "end": 8327.02, + "probability": 0.262 + }, + { + "start": 8327.66, + "end": 8328.64, + "probability": 0.7882 + }, + { + "start": 8329.48, + "end": 8332.56, + "probability": 0.9922 + }, + { + "start": 8333.06, + "end": 8335.94, + "probability": 0.9732 + }, + { + "start": 8337.96, + "end": 8339.8, + "probability": 0.9695 + }, + { + "start": 8341.1, + "end": 8342.3, + "probability": 0.9932 + }, + { + "start": 8343.94, + "end": 8345.58, + "probability": 0.8282 + }, + { + "start": 8346.6, + "end": 8347.48, + "probability": 0.9359 + }, + { + "start": 8348.1, + "end": 8349.84, + "probability": 0.938 + }, + { + "start": 8351.06, + "end": 8353.58, + "probability": 0.5016 + }, + { + "start": 8354.4, + "end": 8355.64, + "probability": 0.975 + }, + { + "start": 8356.92, + "end": 8358.56, + "probability": 0.9857 + }, + { + "start": 8359.7, + "end": 8362.78, + "probability": 0.9874 + }, + { + "start": 8365.02, + "end": 8369.44, + "probability": 0.9883 + }, + { + "start": 8371.04, + "end": 8372.6, + "probability": 0.7983 + }, + { + "start": 8373.74, + "end": 8375.26, + "probability": 0.981 + }, + { + "start": 8376.12, + "end": 8376.34, + "probability": 0.6234 + }, + { + "start": 8376.48, + "end": 8380.5, + "probability": 0.9951 + }, + { + "start": 8381.2, + "end": 8384.34, + "probability": 0.9615 + }, + { + "start": 8384.9, + "end": 8385.88, + "probability": 0.9696 + }, + { + "start": 8386.74, + "end": 8395.48, + "probability": 0.9843 + }, + { + "start": 8399.1, + "end": 8402.42, + "probability": 0.9365 + }, + { + "start": 8403.3, + "end": 8406.1, + "probability": 0.8735 + }, + { + "start": 8407.68, + "end": 8409.64, + "probability": 0.6487 + }, + { + "start": 8409.72, + "end": 8411.62, + "probability": 0.9971 + }, + { + "start": 8412.46, + "end": 8413.48, + "probability": 0.9728 + }, + { + "start": 8414.46, + "end": 8416.34, + "probability": 0.9404 + }, + { + "start": 8417.26, + "end": 8418.34, + "probability": 0.9141 + }, + { + "start": 8418.64, + "end": 8422.32, + "probability": 0.9702 + }, + { + "start": 8422.7, + "end": 8423.98, + "probability": 0.8442 + }, + { + "start": 8425.26, + "end": 8427.78, + "probability": 0.6978 + }, + { + "start": 8428.14, + "end": 8430.76, + "probability": 0.8439 + }, + { + "start": 8431.4, + "end": 8432.06, + "probability": 0.6804 + }, + { + "start": 8433.34, + "end": 8434.54, + "probability": 0.8215 + }, + { + "start": 8436.3, + "end": 8441.86, + "probability": 0.9985 + }, + { + "start": 8442.46, + "end": 8443.44, + "probability": 0.9883 + }, + { + "start": 8444.62, + "end": 8445.36, + "probability": 0.9742 + }, + { + "start": 8446.24, + "end": 8448.62, + "probability": 0.7959 + }, + { + "start": 8450.14, + "end": 8453.68, + "probability": 0.9948 + }, + { + "start": 8454.4, + "end": 8455.78, + "probability": 0.5878 + }, + { + "start": 8456.6, + "end": 8460.42, + "probability": 0.7751 + }, + { + "start": 8461.88, + "end": 8464.02, + "probability": 0.4584 + }, + { + "start": 8464.58, + "end": 8466.1, + "probability": 0.939 + }, + { + "start": 8467.2, + "end": 8468.8, + "probability": 0.7317 + }, + { + "start": 8469.5, + "end": 8470.78, + "probability": 0.7592 + }, + { + "start": 8471.16, + "end": 8475.2, + "probability": 0.864 + }, + { + "start": 8475.64, + "end": 8475.96, + "probability": 0.378 + }, + { + "start": 8476.04, + "end": 8476.46, + "probability": 0.6312 + }, + { + "start": 8476.72, + "end": 8477.94, + "probability": 0.74 + }, + { + "start": 8478.8, + "end": 8480.1, + "probability": 0.9941 + }, + { + "start": 8480.96, + "end": 8482.38, + "probability": 0.7922 + }, + { + "start": 8482.82, + "end": 8483.52, + "probability": 0.6511 + }, + { + "start": 8483.98, + "end": 8485.62, + "probability": 0.8534 + }, + { + "start": 8486.74, + "end": 8488.58, + "probability": 0.7827 + }, + { + "start": 8488.8, + "end": 8491.16, + "probability": 0.8412 + }, + { + "start": 8491.22, + "end": 8493.04, + "probability": 0.7671 + }, + { + "start": 8493.88, + "end": 8494.4, + "probability": 0.8102 + }, + { + "start": 8495.64, + "end": 8498.82, + "probability": 0.95 + }, + { + "start": 8499.2, + "end": 8501.64, + "probability": 0.8199 + }, + { + "start": 8501.7, + "end": 8502.04, + "probability": 0.4176 + }, + { + "start": 8502.56, + "end": 8503.08, + "probability": 0.9092 + }, + { + "start": 8504.74, + "end": 8505.16, + "probability": 0.6209 + }, + { + "start": 8505.2, + "end": 8505.98, + "probability": 0.7314 + }, + { + "start": 8506.46, + "end": 8506.72, + "probability": 0.7512 + }, + { + "start": 8507.14, + "end": 8509.96, + "probability": 0.9822 + }, + { + "start": 8511.14, + "end": 8511.58, + "probability": 0.7272 + }, + { + "start": 8512.32, + "end": 8519.22, + "probability": 0.9898 + }, + { + "start": 8519.94, + "end": 8522.92, + "probability": 0.8654 + }, + { + "start": 8524.74, + "end": 8526.18, + "probability": 0.9708 + }, + { + "start": 8527.02, + "end": 8527.4, + "probability": 0.4961 + }, + { + "start": 8527.46, + "end": 8531.92, + "probability": 0.9969 + }, + { + "start": 8532.67, + "end": 8537.42, + "probability": 0.9979 + }, + { + "start": 8537.92, + "end": 8538.66, + "probability": 0.7085 + }, + { + "start": 8539.32, + "end": 8539.94, + "probability": 0.9525 + }, + { + "start": 8540.06, + "end": 8540.61, + "probability": 0.98 + }, + { + "start": 8541.38, + "end": 8541.82, + "probability": 0.9769 + }, + { + "start": 8542.74, + "end": 8544.3, + "probability": 0.9827 + }, + { + "start": 8547.1, + "end": 8551.2, + "probability": 0.9258 + }, + { + "start": 8553.4, + "end": 8557.68, + "probability": 0.9702 + }, + { + "start": 8558.12, + "end": 8561.28, + "probability": 0.9978 + }, + { + "start": 8562.32, + "end": 8564.26, + "probability": 0.9038 + }, + { + "start": 8564.3, + "end": 8565.44, + "probability": 0.8901 + }, + { + "start": 8565.8, + "end": 8568.08, + "probability": 0.8475 + }, + { + "start": 8568.92, + "end": 8573.15, + "probability": 0.9604 + }, + { + "start": 8574.3, + "end": 8578.24, + "probability": 0.9424 + }, + { + "start": 8579.12, + "end": 8582.22, + "probability": 0.8953 + }, + { + "start": 8583.18, + "end": 8585.08, + "probability": 0.9932 + }, + { + "start": 8585.24, + "end": 8589.62, + "probability": 0.9843 + }, + { + "start": 8591.26, + "end": 8593.38, + "probability": 0.9387 + }, + { + "start": 8595.04, + "end": 8597.12, + "probability": 0.9587 + }, + { + "start": 8597.9, + "end": 8600.12, + "probability": 0.9796 + }, + { + "start": 8601.44, + "end": 8606.6, + "probability": 0.98 + }, + { + "start": 8608.08, + "end": 8610.32, + "probability": 0.9839 + }, + { + "start": 8611.1, + "end": 8613.24, + "probability": 0.9638 + }, + { + "start": 8613.38, + "end": 8616.14, + "probability": 0.939 + }, + { + "start": 8617.04, + "end": 8618.76, + "probability": 0.9872 + }, + { + "start": 8620.24, + "end": 8622.44, + "probability": 0.9738 + }, + { + "start": 8622.96, + "end": 8624.81, + "probability": 0.9402 + }, + { + "start": 8625.9, + "end": 8626.96, + "probability": 0.5856 + }, + { + "start": 8627.6, + "end": 8632.74, + "probability": 0.988 + }, + { + "start": 8633.14, + "end": 8636.62, + "probability": 0.9344 + }, + { + "start": 8636.7, + "end": 8639.4, + "probability": 0.9465 + }, + { + "start": 8640.06, + "end": 8644.3, + "probability": 0.9463 + }, + { + "start": 8644.66, + "end": 8647.26, + "probability": 0.9979 + }, + { + "start": 8647.98, + "end": 8653.52, + "probability": 0.9766 + }, + { + "start": 8653.54, + "end": 8654.26, + "probability": 0.8525 + }, + { + "start": 8654.74, + "end": 8655.3, + "probability": 0.8394 + }, + { + "start": 8656.12, + "end": 8660.0, + "probability": 0.6578 + }, + { + "start": 8660.56, + "end": 8661.18, + "probability": 0.8914 + }, + { + "start": 8663.86, + "end": 8670.16, + "probability": 0.9993 + }, + { + "start": 8670.68, + "end": 8674.84, + "probability": 0.8646 + }, + { + "start": 8675.26, + "end": 8676.38, + "probability": 0.8472 + }, + { + "start": 8676.9, + "end": 8681.42, + "probability": 0.984 + }, + { + "start": 8683.62, + "end": 8684.26, + "probability": 0.801 + }, + { + "start": 8684.4, + "end": 8684.82, + "probability": 0.7949 + }, + { + "start": 8684.86, + "end": 8686.82, + "probability": 0.9491 + }, + { + "start": 8686.88, + "end": 8687.88, + "probability": 0.7685 + }, + { + "start": 8688.34, + "end": 8689.84, + "probability": 0.9492 + }, + { + "start": 8690.56, + "end": 8691.5, + "probability": 0.892 + }, + { + "start": 8692.12, + "end": 8693.08, + "probability": 0.6822 + }, + { + "start": 8693.6, + "end": 8694.62, + "probability": 0.9896 + }, + { + "start": 8696.98, + "end": 8702.02, + "probability": 0.9892 + }, + { + "start": 8702.62, + "end": 8704.18, + "probability": 0.993 + }, + { + "start": 8704.7, + "end": 8707.74, + "probability": 0.9703 + }, + { + "start": 8708.98, + "end": 8713.78, + "probability": 0.998 + }, + { + "start": 8713.78, + "end": 8719.7, + "probability": 0.7792 + }, + { + "start": 8720.92, + "end": 8723.44, + "probability": 0.963 + }, + { + "start": 8723.5, + "end": 8724.82, + "probability": 0.8625 + }, + { + "start": 8724.96, + "end": 8726.0, + "probability": 0.9875 + }, + { + "start": 8726.52, + "end": 8729.32, + "probability": 0.9944 + }, + { + "start": 8730.44, + "end": 8731.5, + "probability": 0.8388 + }, + { + "start": 8732.54, + "end": 8734.28, + "probability": 0.7817 + }, + { + "start": 8735.16, + "end": 8738.48, + "probability": 0.9497 + }, + { + "start": 8739.74, + "end": 8742.0, + "probability": 0.9575 + }, + { + "start": 8742.54, + "end": 8747.66, + "probability": 0.8843 + }, + { + "start": 8747.94, + "end": 8749.85, + "probability": 0.9875 + }, + { + "start": 8750.9, + "end": 8754.48, + "probability": 0.7711 + }, + { + "start": 8754.66, + "end": 8759.0, + "probability": 0.9887 + }, + { + "start": 8759.56, + "end": 8763.36, + "probability": 0.9358 + }, + { + "start": 8763.96, + "end": 8764.88, + "probability": 0.8943 + }, + { + "start": 8765.74, + "end": 8769.66, + "probability": 0.9729 + }, + { + "start": 8770.72, + "end": 8773.34, + "probability": 0.9822 + }, + { + "start": 8773.9, + "end": 8777.32, + "probability": 0.9082 + }, + { + "start": 8778.18, + "end": 8779.78, + "probability": 0.9812 + }, + { + "start": 8780.34, + "end": 8781.46, + "probability": 0.6763 + }, + { + "start": 8781.8, + "end": 8784.74, + "probability": 0.9683 + }, + { + "start": 8785.44, + "end": 8789.24, + "probability": 0.9918 + }, + { + "start": 8790.28, + "end": 8793.0, + "probability": 0.9875 + }, + { + "start": 8794.59, + "end": 8798.54, + "probability": 0.8204 + }, + { + "start": 8799.98, + "end": 8801.44, + "probability": 0.5003 + }, + { + "start": 8801.96, + "end": 8802.34, + "probability": 0.7201 + }, + { + "start": 8802.88, + "end": 8803.18, + "probability": 0.0793 + }, + { + "start": 8804.7, + "end": 8806.0, + "probability": 0.8417 + }, + { + "start": 8806.98, + "end": 8810.82, + "probability": 0.9748 + }, + { + "start": 8811.62, + "end": 8813.82, + "probability": 0.995 + }, + { + "start": 8814.72, + "end": 8816.98, + "probability": 0.9841 + }, + { + "start": 8817.7, + "end": 8818.47, + "probability": 0.9503 + }, + { + "start": 8818.64, + "end": 8822.64, + "probability": 0.8398 + }, + { + "start": 8822.74, + "end": 8824.62, + "probability": 0.5899 + }, + { + "start": 8824.78, + "end": 8825.1, + "probability": 0.4368 + }, + { + "start": 8826.12, + "end": 8828.08, + "probability": 0.9723 + }, + { + "start": 8828.8, + "end": 8831.46, + "probability": 0.7488 + }, + { + "start": 8833.1, + "end": 8838.22, + "probability": 0.945 + }, + { + "start": 8838.94, + "end": 8843.02, + "probability": 0.791 + }, + { + "start": 8844.3, + "end": 8848.5, + "probability": 0.966 + }, + { + "start": 8848.6, + "end": 8849.38, + "probability": 0.8611 + }, + { + "start": 8850.28, + "end": 8851.88, + "probability": 0.7811 + }, + { + "start": 8852.62, + "end": 8854.16, + "probability": 0.8627 + }, + { + "start": 8855.26, + "end": 8857.28, + "probability": 0.9166 + }, + { + "start": 8857.8, + "end": 8858.38, + "probability": 0.7782 + }, + { + "start": 8859.42, + "end": 8860.32, + "probability": 0.4139 + }, + { + "start": 8863.3, + "end": 8864.86, + "probability": 0.9878 + }, + { + "start": 8865.84, + "end": 8867.82, + "probability": 0.9851 + }, + { + "start": 8869.7, + "end": 8871.94, + "probability": 0.9846 + }, + { + "start": 8873.02, + "end": 8877.92, + "probability": 0.9951 + }, + { + "start": 8878.36, + "end": 8882.56, + "probability": 0.9711 + }, + { + "start": 8883.28, + "end": 8883.48, + "probability": 0.6943 + }, + { + "start": 8883.56, + "end": 8889.26, + "probability": 0.9979 + }, + { + "start": 8889.76, + "end": 8893.56, + "probability": 0.9982 + }, + { + "start": 8894.26, + "end": 8897.68, + "probability": 0.9928 + }, + { + "start": 8898.16, + "end": 8901.46, + "probability": 0.9073 + }, + { + "start": 8901.96, + "end": 8907.46, + "probability": 0.9876 + }, + { + "start": 8908.6, + "end": 8912.36, + "probability": 0.9796 + }, + { + "start": 8912.88, + "end": 8914.24, + "probability": 0.7699 + }, + { + "start": 8914.9, + "end": 8915.88, + "probability": 0.8905 + }, + { + "start": 8916.44, + "end": 8918.94, + "probability": 0.9492 + }, + { + "start": 8920.13, + "end": 8924.78, + "probability": 0.9622 + }, + { + "start": 8926.0, + "end": 8927.68, + "probability": 0.8989 + }, + { + "start": 8928.48, + "end": 8933.18, + "probability": 0.99 + }, + { + "start": 8934.3, + "end": 8937.32, + "probability": 0.4715 + }, + { + "start": 8937.32, + "end": 8937.58, + "probability": 0.3354 + }, + { + "start": 8961.43, + "end": 8963.18, + "probability": 0.8514 + }, + { + "start": 8963.36, + "end": 8963.7, + "probability": 0.7859 + }, + { + "start": 8968.72, + "end": 8970.8, + "probability": 0.743 + }, + { + "start": 8972.16, + "end": 8978.42, + "probability": 0.9849 + }, + { + "start": 8978.42, + "end": 8979.14, + "probability": 0.9413 + }, + { + "start": 8980.5, + "end": 8981.74, + "probability": 0.9781 + }, + { + "start": 8982.46, + "end": 8986.26, + "probability": 0.985 + }, + { + "start": 8987.76, + "end": 8989.62, + "probability": 0.6292 + }, + { + "start": 8990.16, + "end": 9000.7, + "probability": 0.9829 + }, + { + "start": 9001.48, + "end": 9003.46, + "probability": 0.8818 + }, + { + "start": 9004.08, + "end": 9007.52, + "probability": 0.9876 + }, + { + "start": 9007.52, + "end": 9012.5, + "probability": 0.9772 + }, + { + "start": 9012.64, + "end": 9015.2, + "probability": 0.7105 + }, + { + "start": 9019.34, + "end": 9022.6, + "probability": 0.6132 + }, + { + "start": 9023.16, + "end": 9029.46, + "probability": 0.9969 + }, + { + "start": 9030.26, + "end": 9037.6, + "probability": 0.6891 + }, + { + "start": 9037.6, + "end": 9041.3, + "probability": 0.9073 + }, + { + "start": 9041.8, + "end": 9042.74, + "probability": 0.8563 + }, + { + "start": 9043.32, + "end": 9045.82, + "probability": 0.9301 + }, + { + "start": 9046.76, + "end": 9048.84, + "probability": 0.6101 + }, + { + "start": 9049.38, + "end": 9050.0, + "probability": 0.9178 + }, + { + "start": 9050.64, + "end": 9055.32, + "probability": 0.798 + }, + { + "start": 9055.88, + "end": 9060.72, + "probability": 0.7869 + }, + { + "start": 9061.08, + "end": 9063.24, + "probability": 0.9309 + }, + { + "start": 9063.66, + "end": 9066.08, + "probability": 0.6166 + }, + { + "start": 9066.6, + "end": 9069.36, + "probability": 0.9774 + }, + { + "start": 9069.44, + "end": 9072.86, + "probability": 0.8662 + }, + { + "start": 9073.42, + "end": 9077.76, + "probability": 0.9329 + }, + { + "start": 9077.82, + "end": 9080.24, + "probability": 0.936 + }, + { + "start": 9080.58, + "end": 9082.28, + "probability": 0.6681 + }, + { + "start": 9082.52, + "end": 9085.02, + "probability": 0.7711 + }, + { + "start": 9085.54, + "end": 9090.8, + "probability": 0.9644 + }, + { + "start": 9091.6, + "end": 9098.54, + "probability": 0.7448 + }, + { + "start": 9099.2, + "end": 9105.88, + "probability": 0.9963 + }, + { + "start": 9106.1, + "end": 9114.66, + "probability": 0.7681 + }, + { + "start": 9116.12, + "end": 9121.68, + "probability": 0.9765 + }, + { + "start": 9121.68, + "end": 9125.62, + "probability": 0.9001 + }, + { + "start": 9126.34, + "end": 9132.46, + "probability": 0.7385 + }, + { + "start": 9132.96, + "end": 9136.04, + "probability": 0.7625 + }, + { + "start": 9137.28, + "end": 9142.7, + "probability": 0.9875 + }, + { + "start": 9143.08, + "end": 9147.74, + "probability": 0.9914 + }, + { + "start": 9148.04, + "end": 9152.86, + "probability": 0.9708 + }, + { + "start": 9153.42, + "end": 9156.36, + "probability": 0.989 + }, + { + "start": 9158.16, + "end": 9160.6, + "probability": 0.9936 + }, + { + "start": 9161.84, + "end": 9165.74, + "probability": 0.674 + }, + { + "start": 9166.36, + "end": 9171.54, + "probability": 0.9377 + }, + { + "start": 9171.54, + "end": 9175.6, + "probability": 0.9266 + }, + { + "start": 9177.6, + "end": 9183.6, + "probability": 0.9189 + }, + { + "start": 9184.02, + "end": 9185.56, + "probability": 0.9585 + }, + { + "start": 9186.04, + "end": 9188.22, + "probability": 0.7265 + }, + { + "start": 9188.64, + "end": 9192.92, + "probability": 0.9776 + }, + { + "start": 9193.44, + "end": 9195.92, + "probability": 0.9109 + }, + { + "start": 9196.46, + "end": 9203.24, + "probability": 0.9683 + }, + { + "start": 9205.2, + "end": 9208.78, + "probability": 0.7832 + }, + { + "start": 9209.5, + "end": 9211.84, + "probability": 0.8513 + }, + { + "start": 9212.4, + "end": 9214.74, + "probability": 0.8551 + }, + { + "start": 9215.62, + "end": 9219.62, + "probability": 0.9769 + }, + { + "start": 9219.62, + "end": 9225.72, + "probability": 0.8417 + }, + { + "start": 9226.04, + "end": 9226.3, + "probability": 0.3009 + }, + { + "start": 9226.74, + "end": 9229.42, + "probability": 0.9578 + }, + { + "start": 9230.16, + "end": 9235.34, + "probability": 0.9663 + }, + { + "start": 9235.78, + "end": 9238.1, + "probability": 0.7493 + }, + { + "start": 9238.46, + "end": 9245.98, + "probability": 0.992 + }, + { + "start": 9246.24, + "end": 9249.18, + "probability": 0.981 + }, + { + "start": 9249.5, + "end": 9251.04, + "probability": 0.9938 + }, + { + "start": 9251.56, + "end": 9254.2, + "probability": 0.3811 + }, + { + "start": 9254.34, + "end": 9254.54, + "probability": 0.6605 + }, + { + "start": 9255.14, + "end": 9256.78, + "probability": 0.5591 + }, + { + "start": 9258.08, + "end": 9260.1, + "probability": 0.9064 + }, + { + "start": 9267.95, + "end": 9270.42, + "probability": 0.9022 + }, + { + "start": 9270.66, + "end": 9270.94, + "probability": 0.8453 + }, + { + "start": 9272.1, + "end": 9272.82, + "probability": 0.7706 + }, + { + "start": 9273.62, + "end": 9274.64, + "probability": 0.9209 + }, + { + "start": 9275.6, + "end": 9276.88, + "probability": 0.625 + }, + { + "start": 9279.7, + "end": 9282.4, + "probability": 0.7289 + }, + { + "start": 9283.18, + "end": 9284.3, + "probability": 0.9393 + }, + { + "start": 9285.16, + "end": 9285.98, + "probability": 0.9321 + }, + { + "start": 9286.26, + "end": 9288.92, + "probability": 0.9683 + }, + { + "start": 9289.74, + "end": 9291.1, + "probability": 0.9752 + }, + { + "start": 9291.24, + "end": 9293.88, + "probability": 0.9853 + }, + { + "start": 9294.08, + "end": 9297.18, + "probability": 0.7447 + }, + { + "start": 9298.04, + "end": 9299.67, + "probability": 0.9305 + }, + { + "start": 9300.36, + "end": 9301.28, + "probability": 0.6604 + }, + { + "start": 9301.32, + "end": 9301.7, + "probability": 0.486 + }, + { + "start": 9301.74, + "end": 9305.51, + "probability": 0.9937 + }, + { + "start": 9307.06, + "end": 9310.26, + "probability": 0.9941 + }, + { + "start": 9311.22, + "end": 9311.4, + "probability": 0.8167 + }, + { + "start": 9311.5, + "end": 9312.04, + "probability": 0.8254 + }, + { + "start": 9312.2, + "end": 9313.12, + "probability": 0.9587 + }, + { + "start": 9313.22, + "end": 9313.99, + "probability": 0.8706 + }, + { + "start": 9314.5, + "end": 9315.04, + "probability": 0.8149 + }, + { + "start": 9315.1, + "end": 9315.65, + "probability": 0.8351 + }, + { + "start": 9316.74, + "end": 9319.1, + "probability": 0.9729 + }, + { + "start": 9319.78, + "end": 9323.04, + "probability": 0.9288 + }, + { + "start": 9323.74, + "end": 9326.48, + "probability": 0.6697 + }, + { + "start": 9326.5, + "end": 9330.44, + "probability": 0.986 + }, + { + "start": 9331.84, + "end": 9334.38, + "probability": 0.8424 + }, + { + "start": 9335.02, + "end": 9336.52, + "probability": 0.7727 + }, + { + "start": 9337.05, + "end": 9338.58, + "probability": 0.9961 + }, + { + "start": 9338.62, + "end": 9342.96, + "probability": 0.9738 + }, + { + "start": 9343.86, + "end": 9344.86, + "probability": 0.9036 + }, + { + "start": 9345.06, + "end": 9346.78, + "probability": 0.9332 + }, + { + "start": 9346.86, + "end": 9349.76, + "probability": 0.5123 + }, + { + "start": 9350.32, + "end": 9355.74, + "probability": 0.9836 + }, + { + "start": 9357.76, + "end": 9364.26, + "probability": 0.9251 + }, + { + "start": 9364.49, + "end": 9366.04, + "probability": 0.988 + }, + { + "start": 9366.66, + "end": 9369.92, + "probability": 0.9266 + }, + { + "start": 9371.23, + "end": 9376.8, + "probability": 0.914 + }, + { + "start": 9378.14, + "end": 9379.16, + "probability": 0.9268 + }, + { + "start": 9379.66, + "end": 9380.32, + "probability": 0.9133 + }, + { + "start": 9380.42, + "end": 9383.56, + "probability": 0.804 + }, + { + "start": 9383.62, + "end": 9384.2, + "probability": 0.449 + }, + { + "start": 9385.46, + "end": 9391.76, + "probability": 0.6659 + }, + { + "start": 9392.66, + "end": 9393.34, + "probability": 0.3124 + }, + { + "start": 9393.34, + "end": 9396.12, + "probability": 0.9912 + }, + { + "start": 9396.34, + "end": 9401.3, + "probability": 0.946 + }, + { + "start": 9401.5, + "end": 9407.68, + "probability": 0.962 + }, + { + "start": 9408.54, + "end": 9410.5, + "probability": 0.9485 + }, + { + "start": 9411.88, + "end": 9414.08, + "probability": 0.9967 + }, + { + "start": 9415.04, + "end": 9417.52, + "probability": 0.9306 + }, + { + "start": 9418.08, + "end": 9420.18, + "probability": 0.9529 + }, + { + "start": 9421.22, + "end": 9423.74, + "probability": 0.9908 + }, + { + "start": 9424.34, + "end": 9430.16, + "probability": 0.995 + }, + { + "start": 9431.18, + "end": 9433.7, + "probability": 0.9827 + }, + { + "start": 9434.38, + "end": 9435.08, + "probability": 0.9662 + }, + { + "start": 9436.34, + "end": 9436.68, + "probability": 0.9223 + }, + { + "start": 9437.56, + "end": 9442.48, + "probability": 0.9691 + }, + { + "start": 9442.48, + "end": 9445.26, + "probability": 0.9914 + }, + { + "start": 9446.64, + "end": 9451.0, + "probability": 0.998 + }, + { + "start": 9451.1, + "end": 9452.52, + "probability": 0.993 + }, + { + "start": 9452.92, + "end": 9454.12, + "probability": 0.6541 + }, + { + "start": 9454.84, + "end": 9457.26, + "probability": 0.8777 + }, + { + "start": 9457.86, + "end": 9459.06, + "probability": 0.7763 + }, + { + "start": 9459.24, + "end": 9460.34, + "probability": 0.8857 + }, + { + "start": 9460.92, + "end": 9462.1, + "probability": 0.994 + }, + { + "start": 9463.74, + "end": 9465.84, + "probability": 0.9714 + }, + { + "start": 9465.84, + "end": 9469.22, + "probability": 0.9952 + }, + { + "start": 9470.4, + "end": 9474.14, + "probability": 0.9851 + }, + { + "start": 9474.2, + "end": 9477.9, + "probability": 0.5363 + }, + { + "start": 9478.48, + "end": 9481.44, + "probability": 0.989 + }, + { + "start": 9481.44, + "end": 9485.34, + "probability": 0.9964 + }, + { + "start": 9486.28, + "end": 9487.28, + "probability": 0.7691 + }, + { + "start": 9487.38, + "end": 9488.78, + "probability": 0.932 + }, + { + "start": 9488.92, + "end": 9490.2, + "probability": 0.806 + }, + { + "start": 9490.6, + "end": 9491.72, + "probability": 0.9802 + }, + { + "start": 9493.02, + "end": 9497.7, + "probability": 0.9717 + }, + { + "start": 9498.2, + "end": 9499.24, + "probability": 0.9586 + }, + { + "start": 9499.82, + "end": 9503.06, + "probability": 0.9888 + }, + { + "start": 9503.16, + "end": 9504.48, + "probability": 0.8711 + }, + { + "start": 9505.48, + "end": 9507.52, + "probability": 0.8069 + }, + { + "start": 9508.26, + "end": 9509.36, + "probability": 0.7535 + }, + { + "start": 9509.44, + "end": 9511.56, + "probability": 0.928 + }, + { + "start": 9512.1, + "end": 9513.56, + "probability": 0.8079 + }, + { + "start": 9514.56, + "end": 9517.52, + "probability": 0.9358 + }, + { + "start": 9518.24, + "end": 9522.06, + "probability": 0.9756 + }, + { + "start": 9523.74, + "end": 9524.22, + "probability": 0.8953 + }, + { + "start": 9524.38, + "end": 9525.38, + "probability": 0.7012 + }, + { + "start": 9525.4, + "end": 9527.36, + "probability": 0.8829 + }, + { + "start": 9528.2, + "end": 9531.94, + "probability": 0.9968 + }, + { + "start": 9531.94, + "end": 9535.62, + "probability": 0.9318 + }, + { + "start": 9536.22, + "end": 9538.74, + "probability": 0.9907 + }, + { + "start": 9539.98, + "end": 9543.22, + "probability": 0.9905 + }, + { + "start": 9544.26, + "end": 9548.34, + "probability": 0.9984 + }, + { + "start": 9549.12, + "end": 9552.76, + "probability": 0.9944 + }, + { + "start": 9553.9, + "end": 9557.56, + "probability": 0.9087 + }, + { + "start": 9557.94, + "end": 9559.65, + "probability": 0.8306 + }, + { + "start": 9560.76, + "end": 9564.5, + "probability": 0.9927 + }, + { + "start": 9564.5, + "end": 9568.56, + "probability": 0.9949 + }, + { + "start": 9569.92, + "end": 9572.64, + "probability": 0.9968 + }, + { + "start": 9573.34, + "end": 9574.06, + "probability": 0.644 + }, + { + "start": 9575.28, + "end": 9576.96, + "probability": 0.8938 + }, + { + "start": 9577.86, + "end": 9580.68, + "probability": 0.9628 + }, + { + "start": 9581.18, + "end": 9582.78, + "probability": 0.9927 + }, + { + "start": 9583.22, + "end": 9585.12, + "probability": 0.7902 + }, + { + "start": 9585.2, + "end": 9586.64, + "probability": 0.9819 + }, + { + "start": 9587.54, + "end": 9588.44, + "probability": 0.5313 + }, + { + "start": 9589.14, + "end": 9590.7, + "probability": 0.9285 + }, + { + "start": 9592.4, + "end": 9594.7, + "probability": 0.9369 + }, + { + "start": 9595.4, + "end": 9596.78, + "probability": 0.8237 + }, + { + "start": 9597.5, + "end": 9598.26, + "probability": 0.7334 + }, + { + "start": 9598.32, + "end": 9599.56, + "probability": 0.777 + }, + { + "start": 9600.06, + "end": 9601.97, + "probability": 0.9834 + }, + { + "start": 9602.58, + "end": 9603.32, + "probability": 0.9094 + }, + { + "start": 9603.46, + "end": 9605.98, + "probability": 0.9435 + }, + { + "start": 9606.84, + "end": 9609.84, + "probability": 0.9621 + }, + { + "start": 9609.84, + "end": 9613.18, + "probability": 0.9908 + }, + { + "start": 9614.3, + "end": 9618.56, + "probability": 0.8314 + }, + { + "start": 9618.56, + "end": 9623.42, + "probability": 0.9722 + }, + { + "start": 9624.92, + "end": 9625.46, + "probability": 0.7505 + }, + { + "start": 9625.7, + "end": 9628.86, + "probability": 0.9962 + }, + { + "start": 9628.86, + "end": 9631.64, + "probability": 0.999 + }, + { + "start": 9632.54, + "end": 9633.6, + "probability": 0.6244 + }, + { + "start": 9634.64, + "end": 9635.68, + "probability": 0.67 + }, + { + "start": 9636.24, + "end": 9638.2, + "probability": 0.95 + }, + { + "start": 9638.92, + "end": 9641.4, + "probability": 0.9906 + }, + { + "start": 9642.42, + "end": 9645.32, + "probability": 0.9723 + }, + { + "start": 9646.3, + "end": 9647.98, + "probability": 0.9102 + }, + { + "start": 9648.82, + "end": 9653.41, + "probability": 0.7911 + }, + { + "start": 9653.56, + "end": 9657.64, + "probability": 0.9886 + }, + { + "start": 9658.22, + "end": 9658.66, + "probability": 0.7587 + }, + { + "start": 9661.98, + "end": 9663.82, + "probability": 0.7544 + }, + { + "start": 9664.96, + "end": 9666.52, + "probability": 0.843 + }, + { + "start": 9690.38, + "end": 9691.42, + "probability": 0.7255 + }, + { + "start": 9692.0, + "end": 9693.12, + "probability": 0.8818 + }, + { + "start": 9693.8, + "end": 9694.78, + "probability": 0.8797 + }, + { + "start": 9695.98, + "end": 9697.72, + "probability": 0.6991 + }, + { + "start": 9700.08, + "end": 9701.32, + "probability": 0.5117 + }, + { + "start": 9701.36, + "end": 9704.24, + "probability": 0.9896 + }, + { + "start": 9704.36, + "end": 9704.64, + "probability": 0.5089 + }, + { + "start": 9704.98, + "end": 9706.88, + "probability": 0.738 + }, + { + "start": 9708.24, + "end": 9713.84, + "probability": 0.8824 + }, + { + "start": 9714.58, + "end": 9715.8, + "probability": 0.8532 + }, + { + "start": 9716.02, + "end": 9719.34, + "probability": 0.9136 + }, + { + "start": 9721.12, + "end": 9723.14, + "probability": 0.9951 + }, + { + "start": 9723.22, + "end": 9724.64, + "probability": 0.9504 + }, + { + "start": 9727.32, + "end": 9729.48, + "probability": 0.8538 + }, + { + "start": 9730.18, + "end": 9732.56, + "probability": 0.9937 + }, + { + "start": 9734.46, + "end": 9735.38, + "probability": 0.8033 + }, + { + "start": 9736.06, + "end": 9738.0, + "probability": 0.98 + }, + { + "start": 9740.94, + "end": 9746.12, + "probability": 0.9973 + }, + { + "start": 9749.3, + "end": 9752.12, + "probability": 0.9456 + }, + { + "start": 9753.04, + "end": 9756.12, + "probability": 0.985 + }, + { + "start": 9757.38, + "end": 9759.52, + "probability": 0.8718 + }, + { + "start": 9761.12, + "end": 9762.58, + "probability": 0.9789 + }, + { + "start": 9764.38, + "end": 9766.54, + "probability": 0.9917 + }, + { + "start": 9768.5, + "end": 9769.86, + "probability": 0.9828 + }, + { + "start": 9770.06, + "end": 9770.72, + "probability": 0.7477 + }, + { + "start": 9770.8, + "end": 9772.04, + "probability": 0.9716 + }, + { + "start": 9772.5, + "end": 9776.72, + "probability": 0.915 + }, + { + "start": 9777.76, + "end": 9779.44, + "probability": 0.9939 + }, + { + "start": 9780.98, + "end": 9783.11, + "probability": 0.7206 + }, + { + "start": 9784.42, + "end": 9787.98, + "probability": 0.965 + }, + { + "start": 9788.86, + "end": 9795.16, + "probability": 0.9935 + }, + { + "start": 9795.2, + "end": 9795.9, + "probability": 0.9629 + }, + { + "start": 9797.7, + "end": 9801.78, + "probability": 0.9995 + }, + { + "start": 9802.8, + "end": 9807.96, + "probability": 0.9988 + }, + { + "start": 9808.64, + "end": 9809.6, + "probability": 0.9757 + }, + { + "start": 9810.16, + "end": 9811.51, + "probability": 0.9922 + }, + { + "start": 9812.22, + "end": 9815.2, + "probability": 0.7354 + }, + { + "start": 9816.42, + "end": 9817.8, + "probability": 0.8629 + }, + { + "start": 9819.22, + "end": 9822.66, + "probability": 0.9762 + }, + { + "start": 9824.94, + "end": 9827.41, + "probability": 0.9988 + }, + { + "start": 9828.48, + "end": 9830.0, + "probability": 0.6907 + }, + { + "start": 9830.82, + "end": 9833.08, + "probability": 0.9794 + }, + { + "start": 9833.24, + "end": 9833.88, + "probability": 0.7427 + }, + { + "start": 9834.56, + "end": 9835.22, + "probability": 0.7462 + }, + { + "start": 9835.3, + "end": 9836.68, + "probability": 0.8628 + }, + { + "start": 9838.06, + "end": 9841.44, + "probability": 0.9902 + }, + { + "start": 9841.56, + "end": 9842.15, + "probability": 0.9563 + }, + { + "start": 9846.2, + "end": 9847.54, + "probability": 0.9544 + }, + { + "start": 9848.68, + "end": 9850.22, + "probability": 0.7562 + }, + { + "start": 9850.9, + "end": 9852.88, + "probability": 0.989 + }, + { + "start": 9853.66, + "end": 9854.96, + "probability": 0.9907 + }, + { + "start": 9856.92, + "end": 9857.22, + "probability": 0.9042 + }, + { + "start": 9858.3, + "end": 9859.18, + "probability": 0.9327 + }, + { + "start": 9860.6, + "end": 9861.22, + "probability": 0.9919 + }, + { + "start": 9861.92, + "end": 9863.8, + "probability": 0.9855 + }, + { + "start": 9865.94, + "end": 9870.3, + "probability": 0.9915 + }, + { + "start": 9871.9, + "end": 9876.32, + "probability": 0.9652 + }, + { + "start": 9876.88, + "end": 9877.33, + "probability": 0.9888 + }, + { + "start": 9878.58, + "end": 9879.68, + "probability": 0.9741 + }, + { + "start": 9881.22, + "end": 9882.62, + "probability": 0.9493 + }, + { + "start": 9883.18, + "end": 9885.58, + "probability": 0.987 + }, + { + "start": 9885.66, + "end": 9886.97, + "probability": 0.9727 + }, + { + "start": 9887.62, + "end": 9889.52, + "probability": 0.897 + }, + { + "start": 9889.64, + "end": 9893.84, + "probability": 0.9927 + }, + { + "start": 9895.54, + "end": 9897.44, + "probability": 0.8227 + }, + { + "start": 9898.34, + "end": 9901.58, + "probability": 0.9583 + }, + { + "start": 9902.06, + "end": 9903.44, + "probability": 0.9963 + }, + { + "start": 9904.56, + "end": 9907.7, + "probability": 0.676 + }, + { + "start": 9908.28, + "end": 9909.34, + "probability": 0.7772 + }, + { + "start": 9909.8, + "end": 9910.64, + "probability": 0.8484 + }, + { + "start": 9910.74, + "end": 9912.52, + "probability": 0.8428 + }, + { + "start": 9913.94, + "end": 9915.62, + "probability": 0.997 + }, + { + "start": 9915.7, + "end": 9917.88, + "probability": 0.9518 + }, + { + "start": 9918.48, + "end": 9920.38, + "probability": 0.9739 + }, + { + "start": 9920.58, + "end": 9921.86, + "probability": 0.578 + }, + { + "start": 9921.9, + "end": 9923.92, + "probability": 0.8401 + }, + { + "start": 9924.6, + "end": 9925.36, + "probability": 0.7663 + }, + { + "start": 9926.68, + "end": 9930.76, + "probability": 0.962 + }, + { + "start": 9931.4, + "end": 9931.78, + "probability": 0.4572 + }, + { + "start": 9931.84, + "end": 9935.26, + "probability": 0.9681 + }, + { + "start": 9935.86, + "end": 9938.38, + "probability": 0.9958 + }, + { + "start": 9939.12, + "end": 9941.24, + "probability": 0.9971 + }, + { + "start": 9941.84, + "end": 9943.52, + "probability": 0.8453 + }, + { + "start": 9944.44, + "end": 9949.16, + "probability": 0.9955 + }, + { + "start": 9950.66, + "end": 9951.88, + "probability": 0.9416 + }, + { + "start": 9951.92, + "end": 9953.78, + "probability": 0.7871 + }, + { + "start": 9954.54, + "end": 9958.18, + "probability": 0.8215 + }, + { + "start": 9959.38, + "end": 9962.04, + "probability": 0.8064 + }, + { + "start": 9963.02, + "end": 9964.3, + "probability": 0.9971 + }, + { + "start": 9965.32, + "end": 9966.68, + "probability": 0.9935 + }, + { + "start": 9969.24, + "end": 9971.38, + "probability": 0.8448 + }, + { + "start": 9972.78, + "end": 9974.6, + "probability": 0.9896 + }, + { + "start": 9975.82, + "end": 9978.6, + "probability": 0.5844 + }, + { + "start": 9979.1, + "end": 9981.46, + "probability": 0.9613 + }, + { + "start": 9981.5, + "end": 9982.7, + "probability": 0.958 + }, + { + "start": 9983.64, + "end": 9986.26, + "probability": 0.9744 + }, + { + "start": 9987.06, + "end": 9988.06, + "probability": 0.978 + }, + { + "start": 9988.52, + "end": 9989.62, + "probability": 0.9857 + }, + { + "start": 9989.68, + "end": 9989.98, + "probability": 0.9827 + }, + { + "start": 9990.1, + "end": 9993.08, + "probability": 0.9678 + }, + { + "start": 9993.62, + "end": 9994.18, + "probability": 0.8538 + }, + { + "start": 9994.96, + "end": 9997.84, + "probability": 0.8057 + }, + { + "start": 9998.04, + "end": 9999.96, + "probability": 0.7431 + }, + { + "start": 10004.76, + "end": 10005.04, + "probability": 0.5445 + }, + { + "start": 10005.24, + "end": 10006.93, + "probability": 0.7664 + }, + { + "start": 10007.24, + "end": 10008.02, + "probability": 0.9748 + }, + { + "start": 10008.06, + "end": 10009.96, + "probability": 0.9856 + }, + { + "start": 10009.96, + "end": 10011.66, + "probability": 0.8945 + }, + { + "start": 10012.2, + "end": 10013.42, + "probability": 0.8993 + }, + { + "start": 10014.12, + "end": 10015.14, + "probability": 0.7048 + }, + { + "start": 10015.86, + "end": 10017.74, + "probability": 0.9268 + }, + { + "start": 10019.9, + "end": 10020.58, + "probability": 0.9084 + }, + { + "start": 10020.6, + "end": 10020.98, + "probability": 0.6486 + }, + { + "start": 10021.96, + "end": 10023.8, + "probability": 0.9958 + }, + { + "start": 10024.54, + "end": 10028.98, + "probability": 0.8643 + }, + { + "start": 10029.1, + "end": 10029.54, + "probability": 0.772 + }, + { + "start": 10030.48, + "end": 10031.08, + "probability": 0.9159 + }, + { + "start": 10031.14, + "end": 10032.52, + "probability": 0.9918 + }, + { + "start": 10032.7, + "end": 10033.48, + "probability": 0.8224 + }, + { + "start": 10034.24, + "end": 10036.81, + "probability": 0.9691 + }, + { + "start": 10037.12, + "end": 10037.68, + "probability": 0.9215 + }, + { + "start": 10038.02, + "end": 10039.54, + "probability": 0.9922 + }, + { + "start": 10040.02, + "end": 10040.6, + "probability": 0.9575 + }, + { + "start": 10040.84, + "end": 10041.44, + "probability": 0.9676 + }, + { + "start": 10041.74, + "end": 10043.76, + "probability": 0.9768 + }, + { + "start": 10056.38, + "end": 10057.42, + "probability": 0.5647 + }, + { + "start": 10057.42, + "end": 10057.42, + "probability": 0.0204 + }, + { + "start": 10057.42, + "end": 10057.42, + "probability": 0.0455 + }, + { + "start": 10057.42, + "end": 10057.76, + "probability": 0.0771 + }, + { + "start": 10057.92, + "end": 10058.68, + "probability": 0.7659 + }, + { + "start": 10058.88, + "end": 10059.84, + "probability": 0.7975 + }, + { + "start": 10059.86, + "end": 10060.78, + "probability": 0.4827 + }, + { + "start": 10060.94, + "end": 10062.1, + "probability": 0.8905 + }, + { + "start": 10063.82, + "end": 10065.1, + "probability": 0.8221 + }, + { + "start": 10065.86, + "end": 10068.13, + "probability": 0.9618 + }, + { + "start": 10068.34, + "end": 10069.96, + "probability": 0.9824 + }, + { + "start": 10070.32, + "end": 10070.78, + "probability": 0.6993 + }, + { + "start": 10071.08, + "end": 10072.0, + "probability": 0.9646 + }, + { + "start": 10072.1, + "end": 10075.6, + "probability": 0.991 + }, + { + "start": 10075.66, + "end": 10076.8, + "probability": 0.7919 + }, + { + "start": 10077.58, + "end": 10079.5, + "probability": 0.9658 + }, + { + "start": 10079.6, + "end": 10081.58, + "probability": 0.759 + }, + { + "start": 10081.96, + "end": 10082.46, + "probability": 0.9723 + }, + { + "start": 10083.5, + "end": 10085.9, + "probability": 0.9572 + }, + { + "start": 10085.9, + "end": 10089.08, + "probability": 0.9873 + }, + { + "start": 10090.28, + "end": 10090.98, + "probability": 0.7287 + }, + { + "start": 10091.64, + "end": 10093.54, + "probability": 0.9199 + }, + { + "start": 10093.94, + "end": 10095.72, + "probability": 0.9464 + }, + { + "start": 10095.82, + "end": 10096.38, + "probability": 0.768 + }, + { + "start": 10096.98, + "end": 10098.6, + "probability": 0.9774 + }, + { + "start": 10099.3, + "end": 10100.58, + "probability": 0.6913 + }, + { + "start": 10101.6, + "end": 10104.16, + "probability": 0.9241 + }, + { + "start": 10104.74, + "end": 10106.7, + "probability": 0.9568 + }, + { + "start": 10106.78, + "end": 10107.68, + "probability": 0.9511 + }, + { + "start": 10108.14, + "end": 10109.1, + "probability": 0.9272 + }, + { + "start": 10110.9, + "end": 10114.94, + "probability": 0.9966 + }, + { + "start": 10114.94, + "end": 10119.28, + "probability": 0.9608 + }, + { + "start": 10120.34, + "end": 10121.63, + "probability": 0.7056 + }, + { + "start": 10122.78, + "end": 10124.18, + "probability": 0.7191 + }, + { + "start": 10124.34, + "end": 10125.97, + "probability": 0.8813 + }, + { + "start": 10126.98, + "end": 10127.98, + "probability": 0.9141 + }, + { + "start": 10128.98, + "end": 10131.52, + "probability": 0.9822 + }, + { + "start": 10133.08, + "end": 10134.2, + "probability": 0.7798 + }, + { + "start": 10134.42, + "end": 10138.02, + "probability": 0.9861 + }, + { + "start": 10138.08, + "end": 10138.85, + "probability": 0.8588 + }, + { + "start": 10139.64, + "end": 10142.66, + "probability": 0.9768 + }, + { + "start": 10144.08, + "end": 10146.26, + "probability": 0.6766 + }, + { + "start": 10148.16, + "end": 10150.12, + "probability": 0.9924 + }, + { + "start": 10150.28, + "end": 10150.65, + "probability": 0.6746 + }, + { + "start": 10151.66, + "end": 10152.88, + "probability": 0.9653 + }, + { + "start": 10153.34, + "end": 10156.44, + "probability": 0.7167 + }, + { + "start": 10156.72, + "end": 10158.02, + "probability": 0.8184 + }, + { + "start": 10158.66, + "end": 10161.62, + "probability": 0.8591 + }, + { + "start": 10162.3, + "end": 10165.87, + "probability": 0.9946 + }, + { + "start": 10166.58, + "end": 10168.6, + "probability": 0.9944 + }, + { + "start": 10169.44, + "end": 10172.36, + "probability": 0.9772 + }, + { + "start": 10172.48, + "end": 10175.36, + "probability": 0.9894 + }, + { + "start": 10177.12, + "end": 10180.6, + "probability": 0.7726 + }, + { + "start": 10183.7, + "end": 10187.52, + "probability": 0.7728 + }, + { + "start": 10188.02, + "end": 10189.12, + "probability": 0.9932 + }, + { + "start": 10189.76, + "end": 10191.9, + "probability": 0.971 + }, + { + "start": 10192.56, + "end": 10193.94, + "probability": 0.852 + }, + { + "start": 10194.16, + "end": 10196.44, + "probability": 0.861 + }, + { + "start": 10197.2, + "end": 10198.32, + "probability": 0.8662 + }, + { + "start": 10199.0, + "end": 10200.88, + "probability": 0.7366 + }, + { + "start": 10201.66, + "end": 10202.26, + "probability": 0.8701 + }, + { + "start": 10203.3, + "end": 10204.02, + "probability": 0.7872 + }, + { + "start": 10204.86, + "end": 10208.26, + "probability": 0.9766 + }, + { + "start": 10208.86, + "end": 10212.3, + "probability": 0.9531 + }, + { + "start": 10213.52, + "end": 10214.4, + "probability": 0.9136 + }, + { + "start": 10215.9, + "end": 10217.62, + "probability": 0.8354 + }, + { + "start": 10217.96, + "end": 10218.4, + "probability": 0.7723 + }, + { + "start": 10218.48, + "end": 10219.9, + "probability": 0.8616 + }, + { + "start": 10221.64, + "end": 10221.88, + "probability": 0.5336 + }, + { + "start": 10222.0, + "end": 10222.9, + "probability": 0.9337 + }, + { + "start": 10222.98, + "end": 10225.26, + "probability": 0.9142 + }, + { + "start": 10226.3, + "end": 10227.52, + "probability": 0.8681 + }, + { + "start": 10227.64, + "end": 10228.48, + "probability": 0.8923 + }, + { + "start": 10228.96, + "end": 10229.39, + "probability": 0.8174 + }, + { + "start": 10230.0, + "end": 10230.57, + "probability": 0.8771 + }, + { + "start": 10231.1, + "end": 10233.14, + "probability": 0.3348 + }, + { + "start": 10233.72, + "end": 10237.4, + "probability": 0.993 + }, + { + "start": 10238.2, + "end": 10242.76, + "probability": 0.9255 + }, + { + "start": 10243.0, + "end": 10243.76, + "probability": 0.7185 + }, + { + "start": 10244.46, + "end": 10245.15, + "probability": 0.8857 + }, + { + "start": 10245.3, + "end": 10250.28, + "probability": 0.9761 + }, + { + "start": 10250.38, + "end": 10250.94, + "probability": 0.8578 + }, + { + "start": 10251.22, + "end": 10255.7, + "probability": 0.7224 + }, + { + "start": 10255.78, + "end": 10259.68, + "probability": 0.9549 + }, + { + "start": 10260.6, + "end": 10261.37, + "probability": 0.6309 + }, + { + "start": 10261.7, + "end": 10262.04, + "probability": 0.4441 + }, + { + "start": 10262.08, + "end": 10264.46, + "probability": 0.9323 + }, + { + "start": 10264.46, + "end": 10267.36, + "probability": 0.9945 + }, + { + "start": 10268.56, + "end": 10271.0, + "probability": 0.8452 + }, + { + "start": 10271.72, + "end": 10272.18, + "probability": 0.8802 + }, + { + "start": 10273.38, + "end": 10273.74, + "probability": 0.5536 + }, + { + "start": 10273.88, + "end": 10275.38, + "probability": 0.9541 + }, + { + "start": 10279.1, + "end": 10280.26, + "probability": 0.721 + }, + { + "start": 10280.36, + "end": 10281.42, + "probability": 0.6197 + }, + { + "start": 10281.5, + "end": 10282.98, + "probability": 0.7982 + }, + { + "start": 10283.12, + "end": 10284.38, + "probability": 0.9727 + }, + { + "start": 10285.06, + "end": 10287.76, + "probability": 0.79 + }, + { + "start": 10287.86, + "end": 10288.44, + "probability": 0.5145 + }, + { + "start": 10288.92, + "end": 10290.68, + "probability": 0.344 + }, + { + "start": 10290.74, + "end": 10291.6, + "probability": 0.8493 + }, + { + "start": 10291.74, + "end": 10292.5, + "probability": 0.7826 + }, + { + "start": 10293.72, + "end": 10297.12, + "probability": 0.9862 + }, + { + "start": 10297.52, + "end": 10299.28, + "probability": 0.8821 + }, + { + "start": 10299.66, + "end": 10303.28, + "probability": 0.935 + }, + { + "start": 10303.72, + "end": 10305.76, + "probability": 0.1791 + }, + { + "start": 10306.46, + "end": 10307.12, + "probability": 0.7397 + }, + { + "start": 10308.44, + "end": 10310.06, + "probability": 0.9386 + }, + { + "start": 10311.64, + "end": 10312.64, + "probability": 0.433 + }, + { + "start": 10316.06, + "end": 10316.92, + "probability": 0.9644 + }, + { + "start": 10340.3, + "end": 10340.9, + "probability": 0.5302 + }, + { + "start": 10343.12, + "end": 10343.86, + "probability": 0.6294 + }, + { + "start": 10345.14, + "end": 10346.76, + "probability": 0.9345 + }, + { + "start": 10347.54, + "end": 10348.86, + "probability": 0.5968 + }, + { + "start": 10349.92, + "end": 10351.04, + "probability": 0.266 + }, + { + "start": 10353.51, + "end": 10355.58, + "probability": 0.7075 + }, + { + "start": 10356.74, + "end": 10356.96, + "probability": 0.8712 + }, + { + "start": 10357.36, + "end": 10359.52, + "probability": 0.8959 + }, + { + "start": 10360.68, + "end": 10362.62, + "probability": 0.983 + }, + { + "start": 10364.24, + "end": 10368.92, + "probability": 0.9321 + }, + { + "start": 10370.08, + "end": 10371.32, + "probability": 0.8257 + }, + { + "start": 10372.2, + "end": 10373.92, + "probability": 0.9047 + }, + { + "start": 10374.62, + "end": 10376.72, + "probability": 0.8526 + }, + { + "start": 10377.8, + "end": 10381.27, + "probability": 0.7905 + }, + { + "start": 10383.84, + "end": 10386.64, + "probability": 0.9893 + }, + { + "start": 10387.16, + "end": 10390.48, + "probability": 0.9119 + }, + { + "start": 10391.68, + "end": 10394.04, + "probability": 0.744 + }, + { + "start": 10394.94, + "end": 10397.92, + "probability": 0.9835 + }, + { + "start": 10398.88, + "end": 10400.8, + "probability": 0.9135 + }, + { + "start": 10401.82, + "end": 10404.57, + "probability": 0.9944 + }, + { + "start": 10404.62, + "end": 10407.74, + "probability": 0.9994 + }, + { + "start": 10407.84, + "end": 10409.38, + "probability": 0.7121 + }, + { + "start": 10410.06, + "end": 10411.26, + "probability": 0.8057 + }, + { + "start": 10412.16, + "end": 10417.1, + "probability": 0.9819 + }, + { + "start": 10417.66, + "end": 10418.68, + "probability": 0.9753 + }, + { + "start": 10418.78, + "end": 10419.52, + "probability": 0.8799 + }, + { + "start": 10419.54, + "end": 10423.0, + "probability": 0.9781 + }, + { + "start": 10424.28, + "end": 10425.4, + "probability": 0.9528 + }, + { + "start": 10426.34, + "end": 10429.22, + "probability": 0.9972 + }, + { + "start": 10430.1, + "end": 10435.32, + "probability": 0.9805 + }, + { + "start": 10436.18, + "end": 10436.74, + "probability": 0.4527 + }, + { + "start": 10438.18, + "end": 10439.7, + "probability": 0.9944 + }, + { + "start": 10441.14, + "end": 10450.64, + "probability": 0.9148 + }, + { + "start": 10450.86, + "end": 10451.38, + "probability": 0.9176 + }, + { + "start": 10452.62, + "end": 10454.74, + "probability": 0.9974 + }, + { + "start": 10455.16, + "end": 10456.92, + "probability": 0.5122 + }, + { + "start": 10457.8, + "end": 10459.28, + "probability": 0.9963 + }, + { + "start": 10460.04, + "end": 10462.46, + "probability": 0.9919 + }, + { + "start": 10464.4, + "end": 10467.37, + "probability": 0.8922 + }, + { + "start": 10468.28, + "end": 10468.7, + "probability": 0.5034 + }, + { + "start": 10468.78, + "end": 10471.84, + "probability": 0.996 + }, + { + "start": 10472.48, + "end": 10474.96, + "probability": 0.7771 + }, + { + "start": 10476.12, + "end": 10477.18, + "probability": 0.9712 + }, + { + "start": 10477.94, + "end": 10479.05, + "probability": 0.9893 + }, + { + "start": 10479.3, + "end": 10483.46, + "probability": 0.9554 + }, + { + "start": 10484.78, + "end": 10489.48, + "probability": 0.988 + }, + { + "start": 10490.44, + "end": 10492.86, + "probability": 0.9477 + }, + { + "start": 10494.38, + "end": 10495.66, + "probability": 0.9765 + }, + { + "start": 10495.7, + "end": 10496.62, + "probability": 0.789 + }, + { + "start": 10496.98, + "end": 10498.14, + "probability": 0.9137 + }, + { + "start": 10498.5, + "end": 10504.28, + "probability": 0.9889 + }, + { + "start": 10504.3, + "end": 10505.02, + "probability": 0.9825 + }, + { + "start": 10506.46, + "end": 10509.28, + "probability": 0.9641 + }, + { + "start": 10511.02, + "end": 10513.74, + "probability": 0.9976 + }, + { + "start": 10514.4, + "end": 10518.02, + "probability": 0.9988 + }, + { + "start": 10518.02, + "end": 10522.72, + "probability": 0.9987 + }, + { + "start": 10524.04, + "end": 10527.18, + "probability": 0.7988 + }, + { + "start": 10528.66, + "end": 10530.7, + "probability": 0.9414 + }, + { + "start": 10531.52, + "end": 10534.78, + "probability": 0.9921 + }, + { + "start": 10535.94, + "end": 10539.4, + "probability": 0.7919 + }, + { + "start": 10540.08, + "end": 10540.66, + "probability": 0.9748 + }, + { + "start": 10541.08, + "end": 10541.74, + "probability": 0.7952 + }, + { + "start": 10542.22, + "end": 10543.96, + "probability": 0.9915 + }, + { + "start": 10544.0, + "end": 10547.86, + "probability": 0.9959 + }, + { + "start": 10549.0, + "end": 10551.0, + "probability": 0.9565 + }, + { + "start": 10552.28, + "end": 10554.78, + "probability": 0.9983 + }, + { + "start": 10555.98, + "end": 10558.26, + "probability": 0.9985 + }, + { + "start": 10558.4, + "end": 10560.06, + "probability": 0.9871 + }, + { + "start": 10561.7, + "end": 10563.12, + "probability": 0.9839 + }, + { + "start": 10564.8, + "end": 10565.08, + "probability": 0.4943 + }, + { + "start": 10565.16, + "end": 10566.02, + "probability": 0.8308 + }, + { + "start": 10566.14, + "end": 10568.02, + "probability": 0.9967 + }, + { + "start": 10568.98, + "end": 10572.02, + "probability": 0.9818 + }, + { + "start": 10572.12, + "end": 10573.52, + "probability": 0.9399 + }, + { + "start": 10573.88, + "end": 10576.97, + "probability": 0.9771 + }, + { + "start": 10577.04, + "end": 10580.36, + "probability": 0.9815 + }, + { + "start": 10581.86, + "end": 10584.26, + "probability": 0.9926 + }, + { + "start": 10584.92, + "end": 10588.12, + "probability": 0.9897 + }, + { + "start": 10588.12, + "end": 10592.62, + "probability": 0.8606 + }, + { + "start": 10593.06, + "end": 10598.04, + "probability": 0.9369 + }, + { + "start": 10598.04, + "end": 10603.04, + "probability": 0.9502 + }, + { + "start": 10604.02, + "end": 10606.92, + "probability": 0.9876 + }, + { + "start": 10607.14, + "end": 10608.6, + "probability": 0.947 + }, + { + "start": 10610.1, + "end": 10612.04, + "probability": 0.8022 + }, + { + "start": 10613.78, + "end": 10616.22, + "probability": 0.9077 + }, + { + "start": 10616.34, + "end": 10619.04, + "probability": 0.9365 + }, + { + "start": 10619.04, + "end": 10622.56, + "probability": 0.9944 + }, + { + "start": 10622.98, + "end": 10626.0, + "probability": 0.9544 + }, + { + "start": 10626.0, + "end": 10628.38, + "probability": 0.9949 + }, + { + "start": 10628.48, + "end": 10630.76, + "probability": 0.9816 + }, + { + "start": 10631.9, + "end": 10633.62, + "probability": 0.9872 + }, + { + "start": 10633.88, + "end": 10636.24, + "probability": 0.9893 + }, + { + "start": 10637.38, + "end": 10639.12, + "probability": 0.9523 + }, + { + "start": 10640.06, + "end": 10642.54, + "probability": 0.9648 + }, + { + "start": 10642.82, + "end": 10646.25, + "probability": 0.9814 + }, + { + "start": 10646.34, + "end": 10652.15, + "probability": 0.9979 + }, + { + "start": 10652.58, + "end": 10654.3, + "probability": 0.7184 + }, + { + "start": 10654.38, + "end": 10655.62, + "probability": 0.7559 + }, + { + "start": 10656.4, + "end": 10657.66, + "probability": 0.736 + }, + { + "start": 10658.66, + "end": 10659.46, + "probability": 0.8174 + }, + { + "start": 10660.78, + "end": 10664.22, + "probability": 0.9501 + }, + { + "start": 10665.14, + "end": 10666.28, + "probability": 0.9842 + }, + { + "start": 10668.0, + "end": 10669.32, + "probability": 0.9605 + }, + { + "start": 10670.14, + "end": 10671.94, + "probability": 0.8766 + }, + { + "start": 10672.28, + "end": 10673.72, + "probability": 0.9661 + }, + { + "start": 10674.06, + "end": 10675.9, + "probability": 0.659 + }, + { + "start": 10676.46, + "end": 10678.58, + "probability": 0.9459 + }, + { + "start": 10679.12, + "end": 10684.56, + "probability": 0.9536 + }, + { + "start": 10685.38, + "end": 10688.78, + "probability": 0.9258 + }, + { + "start": 10689.0, + "end": 10693.72, + "probability": 0.9263 + }, + { + "start": 10694.32, + "end": 10697.86, + "probability": 0.9918 + }, + { + "start": 10698.64, + "end": 10702.4, + "probability": 0.8354 + }, + { + "start": 10704.8, + "end": 10707.94, + "probability": 0.9276 + }, + { + "start": 10709.44, + "end": 10712.18, + "probability": 0.9757 + }, + { + "start": 10712.18, + "end": 10717.96, + "probability": 0.9662 + }, + { + "start": 10719.18, + "end": 10723.3, + "probability": 0.9951 + }, + { + "start": 10723.4, + "end": 10724.04, + "probability": 0.5075 + }, + { + "start": 10724.46, + "end": 10726.6, + "probability": 0.9898 + }, + { + "start": 10727.02, + "end": 10728.98, + "probability": 0.9349 + }, + { + "start": 10731.06, + "end": 10736.06, + "probability": 0.8929 + }, + { + "start": 10736.92, + "end": 10738.82, + "probability": 0.9958 + }, + { + "start": 10739.84, + "end": 10741.4, + "probability": 0.8472 + }, + { + "start": 10741.98, + "end": 10743.44, + "probability": 0.7723 + }, + { + "start": 10743.96, + "end": 10745.2, + "probability": 0.9765 + }, + { + "start": 10745.72, + "end": 10749.38, + "probability": 0.9857 + }, + { + "start": 10750.44, + "end": 10753.98, + "probability": 0.9922 + }, + { + "start": 10754.2, + "end": 10754.74, + "probability": 0.8688 + }, + { + "start": 10755.22, + "end": 10759.94, + "probability": 0.9939 + }, + { + "start": 10761.0, + "end": 10763.08, + "probability": 0.9983 + }, + { + "start": 10763.16, + "end": 10767.2, + "probability": 0.9834 + }, + { + "start": 10769.14, + "end": 10769.64, + "probability": 0.9261 + }, + { + "start": 10769.72, + "end": 10770.78, + "probability": 0.9395 + }, + { + "start": 10771.02, + "end": 10773.56, + "probability": 0.667 + }, + { + "start": 10774.26, + "end": 10774.8, + "probability": 0.7231 + }, + { + "start": 10774.94, + "end": 10781.14, + "probability": 0.9892 + }, + { + "start": 10781.86, + "end": 10783.86, + "probability": 0.994 + }, + { + "start": 10783.98, + "end": 10785.04, + "probability": 0.6544 + }, + { + "start": 10785.84, + "end": 10786.75, + "probability": 0.7885 + }, + { + "start": 10787.58, + "end": 10788.52, + "probability": 0.9149 + }, + { + "start": 10788.6, + "end": 10789.5, + "probability": 0.8897 + }, + { + "start": 10790.0, + "end": 10792.54, + "probability": 0.9755 + }, + { + "start": 10792.6, + "end": 10793.8, + "probability": 0.9922 + }, + { + "start": 10794.94, + "end": 10795.98, + "probability": 0.9917 + }, + { + "start": 10797.66, + "end": 10803.6, + "probability": 0.9856 + }, + { + "start": 10804.02, + "end": 10806.88, + "probability": 0.8356 + }, + { + "start": 10807.58, + "end": 10809.82, + "probability": 0.943 + }, + { + "start": 10810.5, + "end": 10811.32, + "probability": 0.9515 + }, + { + "start": 10812.16, + "end": 10812.58, + "probability": 0.9726 + }, + { + "start": 10812.76, + "end": 10813.68, + "probability": 0.838 + }, + { + "start": 10813.74, + "end": 10814.5, + "probability": 0.8969 + }, + { + "start": 10814.58, + "end": 10815.34, + "probability": 0.81 + }, + { + "start": 10815.52, + "end": 10816.4, + "probability": 0.9426 + }, + { + "start": 10816.44, + "end": 10817.06, + "probability": 0.9299 + }, + { + "start": 10817.36, + "end": 10818.5, + "probability": 0.8101 + }, + { + "start": 10820.64, + "end": 10825.34, + "probability": 0.9799 + }, + { + "start": 10825.54, + "end": 10827.6, + "probability": 0.8254 + }, + { + "start": 10828.32, + "end": 10830.12, + "probability": 0.8954 + }, + { + "start": 10830.24, + "end": 10833.5, + "probability": 0.5557 + }, + { + "start": 10833.5, + "end": 10833.94, + "probability": 0.0276 + }, + { + "start": 10834.58, + "end": 10835.58, + "probability": 0.6674 + }, + { + "start": 10835.78, + "end": 10837.26, + "probability": 0.9569 + }, + { + "start": 10837.58, + "end": 10840.94, + "probability": 0.9841 + }, + { + "start": 10841.4, + "end": 10844.46, + "probability": 0.9574 + }, + { + "start": 10845.32, + "end": 10846.12, + "probability": 0.9329 + }, + { + "start": 10846.8, + "end": 10849.58, + "probability": 0.9663 + }, + { + "start": 10850.32, + "end": 10852.92, + "probability": 0.9814 + }, + { + "start": 10854.08, + "end": 10859.06, + "probability": 0.9478 + }, + { + "start": 10859.6, + "end": 10864.7, + "probability": 0.9503 + }, + { + "start": 10864.86, + "end": 10866.14, + "probability": 0.9328 + }, + { + "start": 10866.46, + "end": 10867.56, + "probability": 0.9799 + }, + { + "start": 10868.5, + "end": 10870.02, + "probability": 0.7498 + }, + { + "start": 10870.76, + "end": 10875.22, + "probability": 0.9663 + }, + { + "start": 10875.42, + "end": 10876.18, + "probability": 0.8927 + }, + { + "start": 10876.68, + "end": 10877.28, + "probability": 0.9646 + }, + { + "start": 10879.76, + "end": 10883.18, + "probability": 0.9673 + }, + { + "start": 10883.34, + "end": 10885.12, + "probability": 0.9971 + }, + { + "start": 10886.62, + "end": 10887.7, + "probability": 0.6256 + }, + { + "start": 10888.6, + "end": 10892.14, + "probability": 0.9841 + }, + { + "start": 10892.82, + "end": 10894.92, + "probability": 0.9724 + }, + { + "start": 10895.5, + "end": 10896.36, + "probability": 0.9799 + }, + { + "start": 10896.94, + "end": 10899.16, + "probability": 0.9797 + }, + { + "start": 10899.4, + "end": 10899.94, + "probability": 0.6132 + }, + { + "start": 10900.48, + "end": 10900.92, + "probability": 0.7262 + }, + { + "start": 10901.44, + "end": 10902.88, + "probability": 0.9953 + }, + { + "start": 10902.92, + "end": 10904.38, + "probability": 0.9926 + }, + { + "start": 10904.74, + "end": 10905.46, + "probability": 0.9316 + }, + { + "start": 10905.94, + "end": 10906.24, + "probability": 0.9349 + }, + { + "start": 10906.88, + "end": 10909.68, + "probability": 0.9543 + }, + { + "start": 10909.68, + "end": 10912.58, + "probability": 0.9863 + }, + { + "start": 10914.7, + "end": 10917.0, + "probability": 0.9962 + }, + { + "start": 10917.0, + "end": 10920.2, + "probability": 0.9862 + }, + { + "start": 10921.0, + "end": 10925.0, + "probability": 0.9952 + }, + { + "start": 10925.0, + "end": 10928.48, + "probability": 0.9902 + }, + { + "start": 10929.58, + "end": 10930.58, + "probability": 0.785 + }, + { + "start": 10932.1, + "end": 10935.2, + "probability": 0.8269 + }, + { + "start": 10936.28, + "end": 10939.26, + "probability": 0.9862 + }, + { + "start": 10940.18, + "end": 10941.5, + "probability": 0.6655 + }, + { + "start": 10941.68, + "end": 10942.6, + "probability": 0.9619 + }, + { + "start": 10942.9, + "end": 10944.02, + "probability": 0.9263 + }, + { + "start": 10944.66, + "end": 10946.78, + "probability": 0.9848 + }, + { + "start": 10947.04, + "end": 10949.3, + "probability": 0.9792 + }, + { + "start": 10949.58, + "end": 10950.58, + "probability": 0.9194 + }, + { + "start": 10951.32, + "end": 10952.9, + "probability": 0.8679 + }, + { + "start": 10953.62, + "end": 10955.58, + "probability": 0.9878 + }, + { + "start": 10956.1, + "end": 10957.86, + "probability": 0.9427 + }, + { + "start": 10958.3, + "end": 10959.68, + "probability": 0.9467 + }, + { + "start": 10960.0, + "end": 10963.5, + "probability": 0.9952 + }, + { + "start": 10963.72, + "end": 10964.66, + "probability": 0.8186 + }, + { + "start": 10964.92, + "end": 10965.4, + "probability": 0.8465 + }, + { + "start": 10965.84, + "end": 10966.2, + "probability": 0.7834 + }, + { + "start": 10966.94, + "end": 10968.58, + "probability": 0.8326 + }, + { + "start": 10968.68, + "end": 10969.36, + "probability": 0.965 + }, + { + "start": 10969.9, + "end": 10971.36, + "probability": 0.5986 + }, + { + "start": 10972.1, + "end": 10973.6, + "probability": 0.6833 + }, + { + "start": 10989.78, + "end": 10990.48, + "probability": 0.843 + }, + { + "start": 10992.06, + "end": 10992.66, + "probability": 0.5908 + }, + { + "start": 10992.84, + "end": 10994.06, + "probability": 0.7821 + }, + { + "start": 10995.56, + "end": 10997.49, + "probability": 0.6056 + }, + { + "start": 10998.6, + "end": 11000.38, + "probability": 0.9783 + }, + { + "start": 11001.26, + "end": 11002.68, + "probability": 0.8562 + }, + { + "start": 11002.7, + "end": 11003.46, + "probability": 0.7713 + }, + { + "start": 11003.58, + "end": 11004.46, + "probability": 0.6292 + }, + { + "start": 11006.08, + "end": 11009.52, + "probability": 0.8986 + }, + { + "start": 11010.78, + "end": 11015.48, + "probability": 0.9733 + }, + { + "start": 11016.54, + "end": 11020.1, + "probability": 0.9893 + }, + { + "start": 11021.22, + "end": 11023.0, + "probability": 0.9924 + }, + { + "start": 11024.42, + "end": 11025.24, + "probability": 0.5303 + }, + { + "start": 11025.24, + "end": 11027.98, + "probability": 0.9556 + }, + { + "start": 11029.52, + "end": 11032.38, + "probability": 0.7506 + }, + { + "start": 11033.28, + "end": 11036.58, + "probability": 0.9031 + }, + { + "start": 11036.62, + "end": 11039.74, + "probability": 0.9646 + }, + { + "start": 11039.8, + "end": 11041.06, + "probability": 0.9698 + }, + { + "start": 11041.64, + "end": 11042.84, + "probability": 0.9954 + }, + { + "start": 11043.82, + "end": 11044.32, + "probability": 0.0052 + }, + { + "start": 11044.38, + "end": 11047.52, + "probability": 0.8341 + }, + { + "start": 11047.52, + "end": 11054.04, + "probability": 0.8081 + }, + { + "start": 11054.1, + "end": 11054.85, + "probability": 0.9727 + }, + { + "start": 11055.74, + "end": 11058.06, + "probability": 0.9111 + }, + { + "start": 11058.64, + "end": 11063.24, + "probability": 0.9888 + }, + { + "start": 11063.36, + "end": 11065.18, + "probability": 0.9586 + }, + { + "start": 11066.2, + "end": 11069.18, + "probability": 0.8743 + }, + { + "start": 11069.32, + "end": 11069.94, + "probability": 0.8956 + }, + { + "start": 11072.16, + "end": 11073.64, + "probability": 0.9418 + }, + { + "start": 11075.94, + "end": 11081.02, + "probability": 0.9727 + }, + { + "start": 11082.38, + "end": 11084.25, + "probability": 0.9395 + }, + { + "start": 11085.3, + "end": 11087.3, + "probability": 0.9072 + }, + { + "start": 11088.1, + "end": 11092.3, + "probability": 0.9529 + }, + { + "start": 11093.2, + "end": 11096.02, + "probability": 0.9961 + }, + { + "start": 11096.6, + "end": 11100.99, + "probability": 0.9932 + }, + { + "start": 11101.38, + "end": 11103.64, + "probability": 0.9915 + }, + { + "start": 11104.94, + "end": 11108.44, + "probability": 0.8717 + }, + { + "start": 11109.48, + "end": 11112.1, + "probability": 0.8796 + }, + { + "start": 11113.6, + "end": 11117.76, + "probability": 0.9712 + }, + { + "start": 11118.48, + "end": 11120.2, + "probability": 0.917 + }, + { + "start": 11121.3, + "end": 11125.58, + "probability": 0.8695 + }, + { + "start": 11126.14, + "end": 11128.94, + "probability": 0.9977 + }, + { + "start": 11129.72, + "end": 11132.66, + "probability": 0.9934 + }, + { + "start": 11133.32, + "end": 11136.36, + "probability": 0.9891 + }, + { + "start": 11136.94, + "end": 11138.92, + "probability": 0.8713 + }, + { + "start": 11139.36, + "end": 11141.44, + "probability": 0.9434 + }, + { + "start": 11143.1, + "end": 11146.44, + "probability": 0.9677 + }, + { + "start": 11147.56, + "end": 11149.16, + "probability": 0.9736 + }, + { + "start": 11150.2, + "end": 11154.86, + "probability": 0.9312 + }, + { + "start": 11155.48, + "end": 11156.06, + "probability": 0.9096 + }, + { + "start": 11156.58, + "end": 11159.54, + "probability": 0.7733 + }, + { + "start": 11159.6, + "end": 11160.86, + "probability": 0.8192 + }, + { + "start": 11161.3, + "end": 11164.8, + "probability": 0.9653 + }, + { + "start": 11165.36, + "end": 11166.9, + "probability": 0.9927 + }, + { + "start": 11167.2, + "end": 11169.74, + "probability": 0.9882 + }, + { + "start": 11170.88, + "end": 11172.32, + "probability": 0.9455 + }, + { + "start": 11173.02, + "end": 11174.16, + "probability": 0.8743 + }, + { + "start": 11174.84, + "end": 11177.72, + "probability": 0.9686 + }, + { + "start": 11178.44, + "end": 11181.0, + "probability": 0.996 + }, + { + "start": 11182.08, + "end": 11182.76, + "probability": 0.6331 + }, + { + "start": 11183.38, + "end": 11185.48, + "probability": 0.9344 + }, + { + "start": 11185.54, + "end": 11187.14, + "probability": 0.9173 + }, + { + "start": 11188.48, + "end": 11189.24, + "probability": 0.496 + }, + { + "start": 11189.98, + "end": 11190.94, + "probability": 0.9915 + }, + { + "start": 11191.0, + "end": 11192.01, + "probability": 0.9717 + }, + { + "start": 11192.24, + "end": 11193.24, + "probability": 0.9914 + }, + { + "start": 11194.1, + "end": 11195.42, + "probability": 0.8221 + }, + { + "start": 11196.54, + "end": 11199.2, + "probability": 0.7477 + }, + { + "start": 11199.88, + "end": 11202.5, + "probability": 0.995 + }, + { + "start": 11202.92, + "end": 11203.74, + "probability": 0.9947 + }, + { + "start": 11203.74, + "end": 11207.4, + "probability": 0.9679 + }, + { + "start": 11209.2, + "end": 11211.78, + "probability": 0.9006 + }, + { + "start": 11212.26, + "end": 11213.78, + "probability": 0.9874 + }, + { + "start": 11214.1, + "end": 11215.5, + "probability": 0.991 + }, + { + "start": 11215.88, + "end": 11217.86, + "probability": 0.9801 + }, + { + "start": 11218.72, + "end": 11222.28, + "probability": 0.8922 + }, + { + "start": 11222.76, + "end": 11223.82, + "probability": 0.58 + }, + { + "start": 11224.3, + "end": 11227.6, + "probability": 0.9399 + }, + { + "start": 11227.94, + "end": 11229.26, + "probability": 0.8991 + }, + { + "start": 11230.94, + "end": 11234.66, + "probability": 0.9987 + }, + { + "start": 11234.78, + "end": 11235.62, + "probability": 0.6651 + }, + { + "start": 11237.14, + "end": 11238.18, + "probability": 0.6567 + }, + { + "start": 11238.3, + "end": 11242.44, + "probability": 0.8625 + }, + { + "start": 11242.92, + "end": 11244.42, + "probability": 0.5129 + }, + { + "start": 11244.94, + "end": 11249.58, + "probability": 0.7643 + }, + { + "start": 11262.96, + "end": 11264.38, + "probability": 0.0881 + }, + { + "start": 11264.38, + "end": 11264.38, + "probability": 0.08 + }, + { + "start": 11264.38, + "end": 11264.38, + "probability": 0.0442 + }, + { + "start": 11264.38, + "end": 11264.38, + "probability": 0.0922 + }, + { + "start": 11264.38, + "end": 11264.92, + "probability": 0.12 + }, + { + "start": 11265.29, + "end": 11270.16, + "probability": 0.5508 + }, + { + "start": 11271.62, + "end": 11274.66, + "probability": 0.8232 + }, + { + "start": 11276.0, + "end": 11281.92, + "probability": 0.9209 + }, + { + "start": 11282.5, + "end": 11283.86, + "probability": 0.8618 + }, + { + "start": 11285.24, + "end": 11287.76, + "probability": 0.9911 + }, + { + "start": 11289.6, + "end": 11290.18, + "probability": 0.7772 + }, + { + "start": 11291.84, + "end": 11294.74, + "probability": 0.9271 + }, + { + "start": 11295.34, + "end": 11298.3, + "probability": 0.7268 + }, + { + "start": 11298.82, + "end": 11299.84, + "probability": 0.9742 + }, + { + "start": 11300.38, + "end": 11302.12, + "probability": 0.9908 + }, + { + "start": 11303.18, + "end": 11307.78, + "probability": 0.9829 + }, + { + "start": 11308.42, + "end": 11309.48, + "probability": 0.979 + }, + { + "start": 11309.8, + "end": 11311.12, + "probability": 0.8864 + }, + { + "start": 11312.5, + "end": 11313.18, + "probability": 0.8908 + }, + { + "start": 11313.8, + "end": 11315.4, + "probability": 0.9705 + }, + { + "start": 11316.2, + "end": 11318.3, + "probability": 0.9469 + }, + { + "start": 11319.06, + "end": 11323.09, + "probability": 0.9895 + }, + { + "start": 11323.88, + "end": 11326.22, + "probability": 0.8706 + }, + { + "start": 11327.76, + "end": 11329.8, + "probability": 0.9982 + }, + { + "start": 11330.62, + "end": 11333.24, + "probability": 0.9591 + }, + { + "start": 11334.02, + "end": 11334.38, + "probability": 0.6639 + }, + { + "start": 11334.52, + "end": 11335.64, + "probability": 0.8758 + }, + { + "start": 11336.1, + "end": 11338.79, + "probability": 0.9983 + }, + { + "start": 11339.38, + "end": 11340.5, + "probability": 0.9884 + }, + { + "start": 11341.64, + "end": 11342.4, + "probability": 0.6761 + }, + { + "start": 11343.36, + "end": 11347.9, + "probability": 0.9934 + }, + { + "start": 11348.64, + "end": 11351.77, + "probability": 0.9946 + }, + { + "start": 11352.56, + "end": 11353.32, + "probability": 0.659 + }, + { + "start": 11354.16, + "end": 11354.96, + "probability": 0.6514 + }, + { + "start": 11355.82, + "end": 11361.36, + "probability": 0.995 + }, + { + "start": 11362.4, + "end": 11363.92, + "probability": 0.9666 + }, + { + "start": 11364.66, + "end": 11367.0, + "probability": 0.9828 + }, + { + "start": 11367.58, + "end": 11369.5, + "probability": 0.9484 + }, + { + "start": 11370.66, + "end": 11373.62, + "probability": 0.996 + }, + { + "start": 11373.82, + "end": 11374.84, + "probability": 0.9744 + }, + { + "start": 11375.42, + "end": 11379.62, + "probability": 0.8389 + }, + { + "start": 11380.24, + "end": 11383.44, + "probability": 0.9775 + }, + { + "start": 11384.5, + "end": 11390.94, + "probability": 0.9318 + }, + { + "start": 11391.84, + "end": 11394.08, + "probability": 0.7806 + }, + { + "start": 11395.08, + "end": 11399.88, + "probability": 0.9174 + }, + { + "start": 11400.64, + "end": 11403.04, + "probability": 0.8941 + }, + { + "start": 11404.64, + "end": 11406.22, + "probability": 0.9956 + }, + { + "start": 11407.04, + "end": 11409.18, + "probability": 0.987 + }, + { + "start": 11409.18, + "end": 11412.28, + "probability": 0.9491 + }, + { + "start": 11413.4, + "end": 11416.2, + "probability": 0.9662 + }, + { + "start": 11416.98, + "end": 11418.1, + "probability": 0.9244 + }, + { + "start": 11418.94, + "end": 11420.24, + "probability": 0.998 + }, + { + "start": 11421.0, + "end": 11421.94, + "probability": 0.7999 + }, + { + "start": 11422.6, + "end": 11427.07, + "probability": 0.985 + }, + { + "start": 11427.58, + "end": 11428.06, + "probability": 0.886 + }, + { + "start": 11428.14, + "end": 11428.96, + "probability": 0.7466 + }, + { + "start": 11429.86, + "end": 11431.5, + "probability": 0.7264 + }, + { + "start": 11432.2, + "end": 11434.5, + "probability": 0.9427 + }, + { + "start": 11435.24, + "end": 11438.84, + "probability": 0.9922 + }, + { + "start": 11440.08, + "end": 11443.44, + "probability": 0.9502 + }, + { + "start": 11444.52, + "end": 11445.88, + "probability": 0.9978 + }, + { + "start": 11446.74, + "end": 11449.6, + "probability": 0.8487 + }, + { + "start": 11451.2, + "end": 11454.9, + "probability": 0.9225 + }, + { + "start": 11456.46, + "end": 11457.32, + "probability": 0.8176 + }, + { + "start": 11457.4, + "end": 11458.16, + "probability": 0.8823 + }, + { + "start": 11458.3, + "end": 11459.02, + "probability": 0.7196 + }, + { + "start": 11459.5, + "end": 11460.62, + "probability": 0.9353 + }, + { + "start": 11461.32, + "end": 11463.04, + "probability": 0.9594 + }, + { + "start": 11463.96, + "end": 11465.52, + "probability": 0.8555 + }, + { + "start": 11466.48, + "end": 11471.92, + "probability": 0.9874 + }, + { + "start": 11472.84, + "end": 11475.02, + "probability": 0.999 + }, + { + "start": 11475.6, + "end": 11477.02, + "probability": 0.9598 + }, + { + "start": 11477.7, + "end": 11477.94, + "probability": 0.4778 + }, + { + "start": 11478.06, + "end": 11480.7, + "probability": 0.9636 + }, + { + "start": 11480.7, + "end": 11484.26, + "probability": 0.6943 + }, + { + "start": 11484.72, + "end": 11485.88, + "probability": 0.6665 + }, + { + "start": 11486.42, + "end": 11487.36, + "probability": 0.3003 + }, + { + "start": 11487.92, + "end": 11491.84, + "probability": 0.999 + }, + { + "start": 11492.46, + "end": 11497.0, + "probability": 0.8318 + }, + { + "start": 11497.94, + "end": 11499.54, + "probability": 0.9857 + }, + { + "start": 11500.26, + "end": 11501.9, + "probability": 0.8065 + }, + { + "start": 11502.54, + "end": 11503.1, + "probability": 0.8063 + }, + { + "start": 11503.72, + "end": 11505.96, + "probability": 0.9961 + }, + { + "start": 11506.48, + "end": 11507.42, + "probability": 0.9157 + }, + { + "start": 11508.14, + "end": 11510.48, + "probability": 0.9877 + }, + { + "start": 11511.12, + "end": 11512.54, + "probability": 0.9836 + }, + { + "start": 11513.38, + "end": 11514.64, + "probability": 0.993 + }, + { + "start": 11515.78, + "end": 11516.9, + "probability": 0.6818 + }, + { + "start": 11517.42, + "end": 11521.36, + "probability": 0.967 + }, + { + "start": 11522.06, + "end": 11525.76, + "probability": 0.9932 + }, + { + "start": 11526.46, + "end": 11527.32, + "probability": 0.7533 + }, + { + "start": 11527.96, + "end": 11529.44, + "probability": 0.9757 + }, + { + "start": 11530.78, + "end": 11534.04, + "probability": 0.7508 + }, + { + "start": 11534.84, + "end": 11536.06, + "probability": 0.4572 + }, + { + "start": 11537.02, + "end": 11539.72, + "probability": 0.9844 + }, + { + "start": 11540.58, + "end": 11543.89, + "probability": 0.9713 + }, + { + "start": 11544.46, + "end": 11546.28, + "probability": 0.9471 + }, + { + "start": 11546.94, + "end": 11549.02, + "probability": 0.9346 + }, + { + "start": 11549.82, + "end": 11551.86, + "probability": 0.856 + }, + { + "start": 11552.5, + "end": 11554.44, + "probability": 0.9893 + }, + { + "start": 11555.04, + "end": 11558.7, + "probability": 0.9957 + }, + { + "start": 11559.48, + "end": 11560.42, + "probability": 0.7372 + }, + { + "start": 11561.04, + "end": 11563.72, + "probability": 0.9083 + }, + { + "start": 11564.26, + "end": 11566.84, + "probability": 0.936 + }, + { + "start": 11567.56, + "end": 11568.98, + "probability": 0.9785 + }, + { + "start": 11569.2, + "end": 11569.62, + "probability": 0.8865 + }, + { + "start": 11571.6, + "end": 11575.99, + "probability": 0.8131 + }, + { + "start": 11578.1, + "end": 11579.72, + "probability": 0.8805 + }, + { + "start": 11581.17, + "end": 11583.32, + "probability": 0.8034 + }, + { + "start": 11586.14, + "end": 11586.62, + "probability": 0.6952 + }, + { + "start": 11586.64, + "end": 11587.42, + "probability": 0.995 + }, + { + "start": 11588.84, + "end": 11590.05, + "probability": 0.8647 + }, + { + "start": 11591.5, + "end": 11592.42, + "probability": 0.7311 + }, + { + "start": 11592.5, + "end": 11593.06, + "probability": 0.959 + }, + { + "start": 11600.8, + "end": 11602.04, + "probability": 0.4907 + }, + { + "start": 11605.26, + "end": 11606.52, + "probability": 0.2827 + }, + { + "start": 11606.78, + "end": 11607.96, + "probability": 0.787 + }, + { + "start": 11612.48, + "end": 11616.14, + "probability": 0.7254 + }, + { + "start": 11616.68, + "end": 11619.18, + "probability": 0.9442 + }, + { + "start": 11621.53, + "end": 11625.62, + "probability": 0.9932 + }, + { + "start": 11626.56, + "end": 11629.04, + "probability": 0.9696 + }, + { + "start": 11630.28, + "end": 11631.08, + "probability": 0.9657 + }, + { + "start": 11632.12, + "end": 11633.18, + "probability": 0.8772 + }, + { + "start": 11634.1, + "end": 11637.5, + "probability": 0.9887 + }, + { + "start": 11638.38, + "end": 11641.78, + "probability": 0.9311 + }, + { + "start": 11642.28, + "end": 11645.1, + "probability": 0.9111 + }, + { + "start": 11645.74, + "end": 11648.94, + "probability": 0.9971 + }, + { + "start": 11650.3, + "end": 11650.92, + "probability": 0.3777 + }, + { + "start": 11650.96, + "end": 11653.2, + "probability": 0.9048 + }, + { + "start": 11653.54, + "end": 11654.41, + "probability": 0.9897 + }, + { + "start": 11655.52, + "end": 11658.1, + "probability": 0.9612 + }, + { + "start": 11658.9, + "end": 11660.96, + "probability": 0.9316 + }, + { + "start": 11661.3, + "end": 11662.5, + "probability": 0.7338 + }, + { + "start": 11662.98, + "end": 11667.32, + "probability": 0.9836 + }, + { + "start": 11667.8, + "end": 11669.66, + "probability": 0.6964 + }, + { + "start": 11670.24, + "end": 11672.82, + "probability": 0.9459 + }, + { + "start": 11674.02, + "end": 11676.58, + "probability": 0.9598 + }, + { + "start": 11677.04, + "end": 11678.24, + "probability": 0.9653 + }, + { + "start": 11679.0, + "end": 11681.04, + "probability": 0.9437 + }, + { + "start": 11681.5, + "end": 11682.54, + "probability": 0.8244 + }, + { + "start": 11682.66, + "end": 11684.3, + "probability": 0.9856 + }, + { + "start": 11685.7, + "end": 11691.8, + "probability": 0.9949 + }, + { + "start": 11691.92, + "end": 11693.08, + "probability": 0.8792 + }, + { + "start": 11694.3, + "end": 11697.04, + "probability": 0.9781 + }, + { + "start": 11697.3, + "end": 11698.74, + "probability": 0.5965 + }, + { + "start": 11698.88, + "end": 11699.5, + "probability": 0.9822 + }, + { + "start": 11699.76, + "end": 11700.56, + "probability": 0.9487 + }, + { + "start": 11700.92, + "end": 11702.72, + "probability": 0.9976 + }, + { + "start": 11702.74, + "end": 11704.26, + "probability": 0.773 + }, + { + "start": 11704.92, + "end": 11709.54, + "probability": 0.9702 + }, + { + "start": 11709.74, + "end": 11710.72, + "probability": 0.7603 + }, + { + "start": 11710.86, + "end": 11711.38, + "probability": 0.9764 + }, + { + "start": 11711.42, + "end": 11712.08, + "probability": 0.9427 + }, + { + "start": 11712.5, + "end": 11713.62, + "probability": 0.9893 + }, + { + "start": 11713.78, + "end": 11714.34, + "probability": 0.7937 + }, + { + "start": 11714.68, + "end": 11719.46, + "probability": 0.9764 + }, + { + "start": 11719.46, + "end": 11724.68, + "probability": 0.9983 + }, + { + "start": 11725.14, + "end": 11727.48, + "probability": 0.9959 + }, + { + "start": 11727.56, + "end": 11728.16, + "probability": 0.8495 + }, + { + "start": 11728.22, + "end": 11728.7, + "probability": 0.7631 + }, + { + "start": 11729.18, + "end": 11731.38, + "probability": 0.9561 + }, + { + "start": 11732.7, + "end": 11733.62, + "probability": 0.9979 + }, + { + "start": 11734.16, + "end": 11735.94, + "probability": 0.7397 + }, + { + "start": 11736.4, + "end": 11737.88, + "probability": 0.9905 + }, + { + "start": 11738.24, + "end": 11739.26, + "probability": 0.712 + }, + { + "start": 11739.86, + "end": 11743.04, + "probability": 0.9533 + }, + { + "start": 11744.2, + "end": 11746.96, + "probability": 0.9583 + }, + { + "start": 11747.74, + "end": 11750.28, + "probability": 0.9764 + }, + { + "start": 11750.92, + "end": 11752.02, + "probability": 0.7953 + }, + { + "start": 11752.14, + "end": 11755.44, + "probability": 0.989 + }, + { + "start": 11756.08, + "end": 11759.82, + "probability": 0.9106 + }, + { + "start": 11760.44, + "end": 11763.28, + "probability": 0.8789 + }, + { + "start": 11763.86, + "end": 11764.84, + "probability": 0.8731 + }, + { + "start": 11764.96, + "end": 11766.96, + "probability": 0.7319 + }, + { + "start": 11767.52, + "end": 11768.76, + "probability": 0.9684 + }, + { + "start": 11769.64, + "end": 11771.46, + "probability": 0.949 + }, + { + "start": 11772.64, + "end": 11776.2, + "probability": 0.7834 + }, + { + "start": 11776.84, + "end": 11781.82, + "probability": 0.9888 + }, + { + "start": 11782.7, + "end": 11783.55, + "probability": 0.9495 + }, + { + "start": 11783.72, + "end": 11784.34, + "probability": 0.9088 + }, + { + "start": 11784.9, + "end": 11788.76, + "probability": 0.9854 + }, + { + "start": 11788.76, + "end": 11792.52, + "probability": 0.8879 + }, + { + "start": 11793.18, + "end": 11795.26, + "probability": 0.9941 + }, + { + "start": 11797.72, + "end": 11802.02, + "probability": 0.8431 + }, + { + "start": 11802.5, + "end": 11804.38, + "probability": 0.9239 + }, + { + "start": 11804.76, + "end": 11805.92, + "probability": 0.933 + }, + { + "start": 11806.78, + "end": 11806.96, + "probability": 0.7783 + }, + { + "start": 11806.98, + "end": 11808.34, + "probability": 0.9279 + }, + { + "start": 11808.54, + "end": 11808.6, + "probability": 0.345 + }, + { + "start": 11808.62, + "end": 11809.66, + "probability": 0.9657 + }, + { + "start": 11810.2, + "end": 11814.22, + "probability": 0.8684 + }, + { + "start": 11814.78, + "end": 11818.8, + "probability": 0.9675 + }, + { + "start": 11819.68, + "end": 11821.23, + "probability": 0.9958 + }, + { + "start": 11821.64, + "end": 11822.6, + "probability": 0.993 + }, + { + "start": 11822.7, + "end": 11823.52, + "probability": 0.917 + }, + { + "start": 11823.82, + "end": 11824.42, + "probability": 0.8171 + }, + { + "start": 11824.92, + "end": 11826.38, + "probability": 0.9052 + }, + { + "start": 11826.56, + "end": 11827.38, + "probability": 0.9503 + }, + { + "start": 11827.74, + "end": 11829.34, + "probability": 0.8669 + }, + { + "start": 11831.66, + "end": 11833.42, + "probability": 0.9197 + }, + { + "start": 11834.36, + "end": 11838.28, + "probability": 0.9944 + }, + { + "start": 11838.78, + "end": 11842.02, + "probability": 0.9844 + }, + { + "start": 11842.8, + "end": 11845.52, + "probability": 0.9954 + }, + { + "start": 11846.78, + "end": 11848.76, + "probability": 0.9904 + }, + { + "start": 11848.8, + "end": 11852.94, + "probability": 0.998 + }, + { + "start": 11853.82, + "end": 11855.98, + "probability": 0.9968 + }, + { + "start": 11855.98, + "end": 11858.82, + "probability": 0.6659 + }, + { + "start": 11859.2, + "end": 11865.48, + "probability": 0.8812 + }, + { + "start": 11865.62, + "end": 11866.76, + "probability": 0.9541 + }, + { + "start": 11866.84, + "end": 11867.5, + "probability": 0.7434 + }, + { + "start": 11867.96, + "end": 11869.69, + "probability": 0.9956 + }, + { + "start": 11870.32, + "end": 11873.06, + "probability": 0.8999 + }, + { + "start": 11873.24, + "end": 11874.9, + "probability": 0.9484 + }, + { + "start": 11875.46, + "end": 11878.06, + "probability": 0.9939 + }, + { + "start": 11878.58, + "end": 11884.2, + "probability": 0.9487 + }, + { + "start": 11884.68, + "end": 11887.71, + "probability": 0.9638 + }, + { + "start": 11888.28, + "end": 11890.06, + "probability": 0.9778 + }, + { + "start": 11890.44, + "end": 11892.76, + "probability": 0.9712 + }, + { + "start": 11893.54, + "end": 11895.36, + "probability": 0.8452 + }, + { + "start": 11895.72, + "end": 11899.24, + "probability": 0.9644 + }, + { + "start": 11899.78, + "end": 11901.92, + "probability": 0.9927 + }, + { + "start": 11901.94, + "end": 11904.56, + "probability": 0.9368 + }, + { + "start": 11904.82, + "end": 11906.12, + "probability": 0.9624 + }, + { + "start": 11908.14, + "end": 11909.46, + "probability": 0.9936 + }, + { + "start": 11909.82, + "end": 11911.26, + "probability": 0.9821 + }, + { + "start": 11911.82, + "end": 11913.16, + "probability": 0.855 + }, + { + "start": 11913.74, + "end": 11916.96, + "probability": 0.9547 + }, + { + "start": 11917.54, + "end": 11919.86, + "probability": 0.9797 + }, + { + "start": 11920.16, + "end": 11922.66, + "probability": 0.9725 + }, + { + "start": 11923.04, + "end": 11924.1, + "probability": 0.9774 + }, + { + "start": 11924.18, + "end": 11925.82, + "probability": 0.9982 + }, + { + "start": 11926.38, + "end": 11928.22, + "probability": 0.923 + }, + { + "start": 11928.36, + "end": 11929.9, + "probability": 0.7979 + }, + { + "start": 11930.44, + "end": 11931.56, + "probability": 0.9726 + }, + { + "start": 11932.26, + "end": 11933.34, + "probability": 0.8511 + }, + { + "start": 11933.64, + "end": 11934.12, + "probability": 0.4728 + }, + { + "start": 11934.96, + "end": 11935.6, + "probability": 0.4729 + }, + { + "start": 11935.72, + "end": 11938.7, + "probability": 0.9706 + }, + { + "start": 11938.7, + "end": 11941.54, + "probability": 0.9946 + }, + { + "start": 11942.12, + "end": 11943.38, + "probability": 0.8343 + }, + { + "start": 11943.96, + "end": 11944.87, + "probability": 0.9795 + }, + { + "start": 11945.04, + "end": 11945.94, + "probability": 0.9745 + }, + { + "start": 11946.02, + "end": 11947.18, + "probability": 0.7313 + }, + { + "start": 11947.64, + "end": 11948.78, + "probability": 0.9373 + }, + { + "start": 11949.0, + "end": 11950.0, + "probability": 0.8337 + }, + { + "start": 11950.74, + "end": 11953.66, + "probability": 0.8646 + }, + { + "start": 11954.52, + "end": 11958.92, + "probability": 0.9419 + }, + { + "start": 11959.08, + "end": 11960.72, + "probability": 0.7934 + }, + { + "start": 11962.14, + "end": 11968.3, + "probability": 0.9904 + }, + { + "start": 11968.52, + "end": 11969.44, + "probability": 0.9902 + }, + { + "start": 11969.78, + "end": 11971.36, + "probability": 0.86 + }, + { + "start": 11972.14, + "end": 11975.28, + "probability": 0.9871 + }, + { + "start": 11975.8, + "end": 11977.86, + "probability": 0.9971 + }, + { + "start": 11978.54, + "end": 11982.72, + "probability": 0.9966 + }, + { + "start": 11983.72, + "end": 11986.34, + "probability": 0.9939 + }, + { + "start": 11987.24, + "end": 11987.4, + "probability": 0.4469 + }, + { + "start": 11987.5, + "end": 11989.4, + "probability": 0.9454 + }, + { + "start": 11989.54, + "end": 11992.72, + "probability": 0.7626 + }, + { + "start": 11992.72, + "end": 11994.8, + "probability": 0.9984 + }, + { + "start": 11995.24, + "end": 12000.34, + "probability": 0.9479 + }, + { + "start": 12000.7, + "end": 12003.92, + "probability": 0.987 + }, + { + "start": 12004.08, + "end": 12006.76, + "probability": 0.9496 + }, + { + "start": 12007.48, + "end": 12008.66, + "probability": 0.9796 + }, + { + "start": 12008.7, + "end": 12009.96, + "probability": 0.9859 + }, + { + "start": 12010.34, + "end": 12011.66, + "probability": 0.9568 + }, + { + "start": 12012.24, + "end": 12013.28, + "probability": 0.9595 + }, + { + "start": 12014.22, + "end": 12015.48, + "probability": 0.9641 + }, + { + "start": 12016.1, + "end": 12016.92, + "probability": 0.9401 + }, + { + "start": 12017.24, + "end": 12018.42, + "probability": 0.993 + }, + { + "start": 12018.58, + "end": 12019.38, + "probability": 0.9897 + }, + { + "start": 12019.42, + "end": 12020.06, + "probability": 0.8623 + }, + { + "start": 12020.14, + "end": 12021.04, + "probability": 0.9137 + }, + { + "start": 12021.78, + "end": 12024.24, + "probability": 0.9494 + }, + { + "start": 12027.02, + "end": 12031.9, + "probability": 0.9902 + }, + { + "start": 12033.24, + "end": 12036.84, + "probability": 0.8872 + }, + { + "start": 12036.84, + "end": 12041.9, + "probability": 0.9894 + }, + { + "start": 12043.88, + "end": 12046.14, + "probability": 0.6779 + }, + { + "start": 12046.66, + "end": 12047.92, + "probability": 0.7371 + }, + { + "start": 12047.98, + "end": 12052.56, + "probability": 0.9964 + }, + { + "start": 12053.68, + "end": 12055.04, + "probability": 0.9719 + }, + { + "start": 12055.16, + "end": 12056.48, + "probability": 0.9849 + }, + { + "start": 12056.7, + "end": 12058.38, + "probability": 0.9406 + }, + { + "start": 12059.04, + "end": 12062.76, + "probability": 0.8858 + }, + { + "start": 12063.26, + "end": 12065.28, + "probability": 0.9838 + }, + { + "start": 12065.78, + "end": 12067.78, + "probability": 0.9518 + }, + { + "start": 12068.24, + "end": 12069.2, + "probability": 0.9194 + }, + { + "start": 12069.26, + "end": 12070.54, + "probability": 0.9912 + }, + { + "start": 12071.44, + "end": 12072.7, + "probability": 0.6312 + }, + { + "start": 12073.38, + "end": 12074.88, + "probability": 0.642 + }, + { + "start": 12075.58, + "end": 12075.72, + "probability": 0.4639 + }, + { + "start": 12075.72, + "end": 12076.06, + "probability": 0.7704 + }, + { + "start": 12076.18, + "end": 12076.94, + "probability": 0.8754 + }, + { + "start": 12077.14, + "end": 12079.42, + "probability": 0.9902 + }, + { + "start": 12079.78, + "end": 12080.0, + "probability": 0.9067 + }, + { + "start": 12080.5, + "end": 12081.84, + "probability": 0.7869 + }, + { + "start": 12083.12, + "end": 12084.94, + "probability": 0.7881 + }, + { + "start": 12097.1, + "end": 12097.86, + "probability": 0.534 + }, + { + "start": 12099.68, + "end": 12100.5, + "probability": 0.6289 + }, + { + "start": 12104.08, + "end": 12105.46, + "probability": 0.7607 + }, + { + "start": 12106.62, + "end": 12110.3, + "probability": 0.9961 + }, + { + "start": 12110.34, + "end": 12111.86, + "probability": 0.9966 + }, + { + "start": 12112.7, + "end": 12117.12, + "probability": 0.9823 + }, + { + "start": 12117.22, + "end": 12121.76, + "probability": 0.9942 + }, + { + "start": 12122.2, + "end": 12123.29, + "probability": 0.9971 + }, + { + "start": 12124.34, + "end": 12125.02, + "probability": 0.9932 + }, + { + "start": 12126.26, + "end": 12127.78, + "probability": 0.9937 + }, + { + "start": 12128.48, + "end": 12130.6, + "probability": 0.9883 + }, + { + "start": 12131.2, + "end": 12131.82, + "probability": 0.8858 + }, + { + "start": 12133.12, + "end": 12135.5, + "probability": 0.997 + }, + { + "start": 12135.5, + "end": 12138.92, + "probability": 0.9976 + }, + { + "start": 12139.46, + "end": 12141.42, + "probability": 0.9979 + }, + { + "start": 12142.56, + "end": 12145.58, + "probability": 0.6719 + }, + { + "start": 12146.22, + "end": 12148.72, + "probability": 0.9936 + }, + { + "start": 12148.72, + "end": 12152.26, + "probability": 0.9976 + }, + { + "start": 12153.16, + "end": 12155.62, + "probability": 0.9966 + }, + { + "start": 12156.24, + "end": 12159.48, + "probability": 0.9993 + }, + { + "start": 12160.1, + "end": 12165.2, + "probability": 0.9725 + }, + { + "start": 12165.78, + "end": 12166.84, + "probability": 0.9751 + }, + { + "start": 12167.0, + "end": 12170.06, + "probability": 0.999 + }, + { + "start": 12170.5, + "end": 12171.96, + "probability": 0.9288 + }, + { + "start": 12172.6, + "end": 12173.02, + "probability": 0.5954 + }, + { + "start": 12174.3, + "end": 12175.9, + "probability": 0.9956 + }, + { + "start": 12176.32, + "end": 12178.32, + "probability": 0.9927 + }, + { + "start": 12178.7, + "end": 12180.38, + "probability": 0.9937 + }, + { + "start": 12180.62, + "end": 12184.76, + "probability": 0.8986 + }, + { + "start": 12186.62, + "end": 12187.3, + "probability": 0.7756 + }, + { + "start": 12188.06, + "end": 12190.48, + "probability": 0.9419 + }, + { + "start": 12191.68, + "end": 12193.42, + "probability": 0.7531 + }, + { + "start": 12193.82, + "end": 12196.76, + "probability": 0.9907 + }, + { + "start": 12197.48, + "end": 12198.42, + "probability": 0.8155 + }, + { + "start": 12199.06, + "end": 12205.16, + "probability": 0.9468 + }, + { + "start": 12205.44, + "end": 12206.26, + "probability": 0.6083 + }, + { + "start": 12206.4, + "end": 12206.84, + "probability": 0.8926 + }, + { + "start": 12207.6, + "end": 12210.18, + "probability": 0.2298 + }, + { + "start": 12210.18, + "end": 12212.88, + "probability": 0.9351 + }, + { + "start": 12213.28, + "end": 12214.66, + "probability": 0.9814 + }, + { + "start": 12214.96, + "end": 12217.62, + "probability": 0.9666 + }, + { + "start": 12218.44, + "end": 12218.87, + "probability": 0.9369 + }, + { + "start": 12220.06, + "end": 12220.68, + "probability": 0.981 + }, + { + "start": 12221.88, + "end": 12223.88, + "probability": 0.991 + }, + { + "start": 12224.76, + "end": 12226.84, + "probability": 0.7148 + }, + { + "start": 12227.72, + "end": 12230.68, + "probability": 0.9912 + }, + { + "start": 12230.8, + "end": 12231.56, + "probability": 0.9776 + }, + { + "start": 12231.66, + "end": 12232.36, + "probability": 0.9668 + }, + { + "start": 12233.2, + "end": 12238.2, + "probability": 0.9976 + }, + { + "start": 12238.98, + "end": 12241.9, + "probability": 0.9951 + }, + { + "start": 12241.9, + "end": 12245.7, + "probability": 0.9988 + }, + { + "start": 12245.74, + "end": 12246.88, + "probability": 0.7741 + }, + { + "start": 12247.24, + "end": 12248.32, + "probability": 0.981 + }, + { + "start": 12248.8, + "end": 12251.72, + "probability": 0.9902 + }, + { + "start": 12252.2, + "end": 12253.12, + "probability": 0.6391 + }, + { + "start": 12254.16, + "end": 12260.48, + "probability": 0.9941 + }, + { + "start": 12261.2, + "end": 12264.14, + "probability": 0.9951 + }, + { + "start": 12265.26, + "end": 12268.22, + "probability": 0.9932 + }, + { + "start": 12268.34, + "end": 12272.86, + "probability": 0.9995 + }, + { + "start": 12272.96, + "end": 12275.54, + "probability": 0.9769 + }, + { + "start": 12275.98, + "end": 12278.42, + "probability": 0.9336 + }, + { + "start": 12278.62, + "end": 12282.24, + "probability": 0.9943 + }, + { + "start": 12282.6, + "end": 12284.14, + "probability": 0.9398 + }, + { + "start": 12285.26, + "end": 12289.48, + "probability": 0.9806 + }, + { + "start": 12289.92, + "end": 12291.4, + "probability": 0.9637 + }, + { + "start": 12292.2, + "end": 12293.6, + "probability": 0.9899 + }, + { + "start": 12294.14, + "end": 12294.6, + "probability": 0.9668 + }, + { + "start": 12295.86, + "end": 12297.29, + "probability": 0.9564 + }, + { + "start": 12298.58, + "end": 12299.46, + "probability": 0.8545 + }, + { + "start": 12300.28, + "end": 12300.84, + "probability": 0.5367 + }, + { + "start": 12302.46, + "end": 12305.4, + "probability": 0.821 + }, + { + "start": 12305.8, + "end": 12307.68, + "probability": 0.8354 + }, + { + "start": 12313.42, + "end": 12314.52, + "probability": 0.189 + }, + { + "start": 12317.12, + "end": 12318.34, + "probability": 0.0919 + }, + { + "start": 12318.52, + "end": 12318.7, + "probability": 0.0594 + }, + { + "start": 12318.7, + "end": 12320.06, + "probability": 0.1834 + }, + { + "start": 12321.96, + "end": 12323.56, + "probability": 0.8361 + }, + { + "start": 12325.12, + "end": 12327.74, + "probability": 0.9652 + }, + { + "start": 12328.26, + "end": 12332.3, + "probability": 0.8562 + }, + { + "start": 12332.84, + "end": 12332.9, + "probability": 0.4048 + }, + { + "start": 12332.9, + "end": 12335.24, + "probability": 0.8556 + }, + { + "start": 12336.52, + "end": 12336.52, + "probability": 0.1817 + }, + { + "start": 12336.52, + "end": 12336.52, + "probability": 0.0406 + }, + { + "start": 12336.52, + "end": 12336.52, + "probability": 0.3268 + }, + { + "start": 12336.52, + "end": 12336.52, + "probability": 0.0214 + }, + { + "start": 12336.52, + "end": 12339.1, + "probability": 0.5272 + }, + { + "start": 12339.76, + "end": 12342.0, + "probability": 0.5803 + }, + { + "start": 12343.14, + "end": 12346.64, + "probability": 0.9647 + }, + { + "start": 12347.28, + "end": 12350.42, + "probability": 0.9937 + }, + { + "start": 12351.16, + "end": 12356.12, + "probability": 0.9982 + }, + { + "start": 12356.6, + "end": 12357.71, + "probability": 0.9691 + }, + { + "start": 12358.36, + "end": 12362.08, + "probability": 0.9797 + }, + { + "start": 12362.76, + "end": 12369.62, + "probability": 0.9954 + }, + { + "start": 12370.32, + "end": 12372.45, + "probability": 0.9983 + }, + { + "start": 12373.56, + "end": 12375.1, + "probability": 0.9074 + }, + { + "start": 12376.0, + "end": 12379.32, + "probability": 0.9883 + }, + { + "start": 12380.16, + "end": 12380.64, + "probability": 0.7159 + }, + { + "start": 12380.66, + "end": 12383.02, + "probability": 0.9818 + }, + { + "start": 12383.36, + "end": 12385.66, + "probability": 0.5674 + }, + { + "start": 12385.66, + "end": 12386.16, + "probability": 0.0795 + }, + { + "start": 12386.62, + "end": 12387.28, + "probability": 0.4918 + }, + { + "start": 12387.68, + "end": 12389.58, + "probability": 0.9891 + }, + { + "start": 12390.32, + "end": 12396.5, + "probability": 0.9055 + }, + { + "start": 12398.2, + "end": 12399.6, + "probability": 0.6741 + }, + { + "start": 12400.7, + "end": 12403.16, + "probability": 0.9223 + }, + { + "start": 12403.46, + "end": 12404.12, + "probability": 0.6939 + }, + { + "start": 12404.68, + "end": 12410.4, + "probability": 0.654 + }, + { + "start": 12410.88, + "end": 12411.56, + "probability": 0.8546 + }, + { + "start": 12411.98, + "end": 12413.0, + "probability": 0.9632 + }, + { + "start": 12413.74, + "end": 12415.4, + "probability": 0.7715 + }, + { + "start": 12415.96, + "end": 12417.9, + "probability": 0.924 + }, + { + "start": 12418.14, + "end": 12422.06, + "probability": 0.9853 + }, + { + "start": 12422.88, + "end": 12425.62, + "probability": 0.7717 + }, + { + "start": 12426.32, + "end": 12428.98, + "probability": 0.8351 + }, + { + "start": 12429.82, + "end": 12432.28, + "probability": 0.8442 + }, + { + "start": 12432.82, + "end": 12436.12, + "probability": 0.9956 + }, + { + "start": 12436.42, + "end": 12436.86, + "probability": 0.912 + }, + { + "start": 12437.0, + "end": 12440.54, + "probability": 0.9544 + }, + { + "start": 12441.0, + "end": 12445.3, + "probability": 0.9659 + }, + { + "start": 12445.66, + "end": 12450.68, + "probability": 0.9827 + }, + { + "start": 12451.92, + "end": 12453.36, + "probability": 0.6585 + }, + { + "start": 12454.42, + "end": 12456.38, + "probability": 0.4896 + }, + { + "start": 12456.54, + "end": 12457.74, + "probability": 0.9333 + }, + { + "start": 12458.24, + "end": 12464.18, + "probability": 0.7927 + }, + { + "start": 12464.66, + "end": 12465.42, + "probability": 0.8448 + }, + { + "start": 12466.42, + "end": 12469.52, + "probability": 0.9302 + }, + { + "start": 12470.56, + "end": 12473.52, + "probability": 0.9294 + }, + { + "start": 12475.32, + "end": 12476.42, + "probability": 0.66 + }, + { + "start": 12477.22, + "end": 12479.42, + "probability": 0.757 + }, + { + "start": 12479.94, + "end": 12482.74, + "probability": 0.6472 + }, + { + "start": 12483.54, + "end": 12485.42, + "probability": 0.9839 + }, + { + "start": 12486.04, + "end": 12489.68, + "probability": 0.9939 + }, + { + "start": 12490.16, + "end": 12491.16, + "probability": 0.8198 + }, + { + "start": 12491.94, + "end": 12494.94, + "probability": 0.9752 + }, + { + "start": 12494.94, + "end": 12498.94, + "probability": 0.9541 + }, + { + "start": 12499.52, + "end": 12502.16, + "probability": 0.9934 + }, + { + "start": 12502.76, + "end": 12505.28, + "probability": 0.6962 + }, + { + "start": 12506.06, + "end": 12509.42, + "probability": 0.9108 + }, + { + "start": 12509.54, + "end": 12510.02, + "probability": 0.4116 + }, + { + "start": 12510.78, + "end": 12516.39, + "probability": 0.9343 + }, + { + "start": 12517.64, + "end": 12518.82, + "probability": 0.6465 + }, + { + "start": 12519.52, + "end": 12523.64, + "probability": 0.8124 + }, + { + "start": 12525.46, + "end": 12530.97, + "probability": 0.8589 + }, + { + "start": 12532.56, + "end": 12533.78, + "probability": 0.6945 + }, + { + "start": 12534.28, + "end": 12538.94, + "probability": 0.9984 + }, + { + "start": 12539.84, + "end": 12544.0, + "probability": 0.9922 + }, + { + "start": 12546.52, + "end": 12548.74, + "probability": 0.9772 + }, + { + "start": 12549.56, + "end": 12553.86, + "probability": 0.9867 + }, + { + "start": 12554.9, + "end": 12557.4, + "probability": 0.998 + }, + { + "start": 12558.22, + "end": 12560.94, + "probability": 0.9761 + }, + { + "start": 12561.56, + "end": 12565.8, + "probability": 0.9722 + }, + { + "start": 12565.8, + "end": 12568.48, + "probability": 0.8334 + }, + { + "start": 12569.94, + "end": 12571.42, + "probability": 0.8562 + }, + { + "start": 12572.76, + "end": 12574.28, + "probability": 0.9846 + }, + { + "start": 12575.74, + "end": 12579.24, + "probability": 0.9935 + }, + { + "start": 12579.56, + "end": 12580.64, + "probability": 0.8272 + }, + { + "start": 12581.74, + "end": 12582.84, + "probability": 0.5931 + }, + { + "start": 12583.02, + "end": 12584.6, + "probability": 0.7299 + }, + { + "start": 12585.1, + "end": 12586.42, + "probability": 0.9629 + }, + { + "start": 12586.96, + "end": 12591.86, + "probability": 0.9941 + }, + { + "start": 12591.86, + "end": 12595.84, + "probability": 0.9992 + }, + { + "start": 12596.88, + "end": 12600.04, + "probability": 0.9976 + }, + { + "start": 12600.76, + "end": 12602.2, + "probability": 0.9866 + }, + { + "start": 12602.44, + "end": 12602.44, + "probability": 0.5274 + }, + { + "start": 12602.44, + "end": 12602.44, + "probability": 0.7304 + }, + { + "start": 12602.44, + "end": 12604.38, + "probability": 0.9131 + }, + { + "start": 12609.0, + "end": 12613.88, + "probability": 0.9963 + }, + { + "start": 12614.46, + "end": 12616.28, + "probability": 0.9125 + }, + { + "start": 12616.4, + "end": 12618.82, + "probability": 0.9312 + }, + { + "start": 12619.68, + "end": 12623.6, + "probability": 0.9912 + }, + { + "start": 12624.18, + "end": 12625.04, + "probability": 0.9195 + }, + { + "start": 12625.66, + "end": 12627.24, + "probability": 0.8118 + }, + { + "start": 12629.38, + "end": 12633.7, + "probability": 0.981 + }, + { + "start": 12635.72, + "end": 12637.2, + "probability": 0.8218 + }, + { + "start": 12637.44, + "end": 12640.78, + "probability": 0.998 + }, + { + "start": 12641.9, + "end": 12646.46, + "probability": 0.9935 + }, + { + "start": 12647.44, + "end": 12650.08, + "probability": 0.9036 + }, + { + "start": 12650.84, + "end": 12652.7, + "probability": 0.9046 + }, + { + "start": 12653.22, + "end": 12657.82, + "probability": 0.9836 + }, + { + "start": 12658.68, + "end": 12661.38, + "probability": 0.681 + }, + { + "start": 12662.82, + "end": 12667.66, + "probability": 0.9767 + }, + { + "start": 12668.54, + "end": 12669.22, + "probability": 0.858 + }, + { + "start": 12669.8, + "end": 12674.82, + "probability": 0.9528 + }, + { + "start": 12675.76, + "end": 12676.24, + "probability": 0.6681 + }, + { + "start": 12677.02, + "end": 12680.3, + "probability": 0.929 + }, + { + "start": 12680.96, + "end": 12683.6, + "probability": 0.9833 + }, + { + "start": 12683.6, + "end": 12687.02, + "probability": 0.9657 + }, + { + "start": 12687.44, + "end": 12688.46, + "probability": 0.6775 + }, + { + "start": 12689.24, + "end": 12689.44, + "probability": 0.74 + }, + { + "start": 12689.52, + "end": 12691.08, + "probability": 0.98 + }, + { + "start": 12691.12, + "end": 12692.82, + "probability": 0.9242 + }, + { + "start": 12694.0, + "end": 12695.26, + "probability": 0.6653 + }, + { + "start": 12696.26, + "end": 12697.74, + "probability": 0.9356 + }, + { + "start": 12698.56, + "end": 12699.88, + "probability": 0.9951 + }, + { + "start": 12699.92, + "end": 12704.94, + "probability": 0.8616 + }, + { + "start": 12705.0, + "end": 12705.86, + "probability": 0.7965 + }, + { + "start": 12706.28, + "end": 12707.42, + "probability": 0.9497 + }, + { + "start": 12708.36, + "end": 12709.56, + "probability": 0.7949 + }, + { + "start": 12710.12, + "end": 12714.06, + "probability": 0.9868 + }, + { + "start": 12714.06, + "end": 12717.38, + "probability": 0.9556 + }, + { + "start": 12718.12, + "end": 12723.28, + "probability": 0.7695 + }, + { + "start": 12723.98, + "end": 12725.64, + "probability": 0.9603 + }, + { + "start": 12726.42, + "end": 12732.66, + "probability": 0.9968 + }, + { + "start": 12733.28, + "end": 12737.16, + "probability": 0.996 + }, + { + "start": 12737.16, + "end": 12740.62, + "probability": 0.9993 + }, + { + "start": 12743.16, + "end": 12743.16, + "probability": 0.1842 + }, + { + "start": 12743.16, + "end": 12747.92, + "probability": 0.9426 + }, + { + "start": 12750.22, + "end": 12751.12, + "probability": 0.4972 + }, + { + "start": 12752.52, + "end": 12755.82, + "probability": 0.9874 + }, + { + "start": 12756.64, + "end": 12759.86, + "probability": 0.9985 + }, + { + "start": 12759.86, + "end": 12762.58, + "probability": 0.9883 + }, + { + "start": 12764.0, + "end": 12767.48, + "probability": 0.9861 + }, + { + "start": 12770.1, + "end": 12772.76, + "probability": 0.5512 + }, + { + "start": 12773.52, + "end": 12775.0, + "probability": 0.9771 + }, + { + "start": 12775.52, + "end": 12776.08, + "probability": 0.6871 + }, + { + "start": 12776.2, + "end": 12777.46, + "probability": 0.6714 + }, + { + "start": 12777.6, + "end": 12782.94, + "probability": 0.9938 + }, + { + "start": 12782.94, + "end": 12787.96, + "probability": 0.9963 + }, + { + "start": 12788.16, + "end": 12788.7, + "probability": 0.7325 + }, + { + "start": 12789.72, + "end": 12791.85, + "probability": 0.9666 + }, + { + "start": 12792.24, + "end": 12793.86, + "probability": 0.8704 + }, + { + "start": 12794.58, + "end": 12795.96, + "probability": 0.6884 + }, + { + "start": 12796.38, + "end": 12798.58, + "probability": 0.8919 + }, + { + "start": 12820.4, + "end": 12821.66, + "probability": 0.6884 + }, + { + "start": 12822.34, + "end": 12824.32, + "probability": 0.8414 + }, + { + "start": 12826.02, + "end": 12829.09, + "probability": 0.9977 + }, + { + "start": 12830.12, + "end": 12831.2, + "probability": 0.6161 + }, + { + "start": 12831.96, + "end": 12835.46, + "probability": 0.9668 + }, + { + "start": 12836.98, + "end": 12839.2, + "probability": 0.9986 + }, + { + "start": 12840.84, + "end": 12841.52, + "probability": 0.8134 + }, + { + "start": 12842.18, + "end": 12846.04, + "probability": 0.8737 + }, + { + "start": 12847.26, + "end": 12849.62, + "probability": 0.9852 + }, + { + "start": 12850.54, + "end": 12852.12, + "probability": 0.8559 + }, + { + "start": 12852.46, + "end": 12854.28, + "probability": 0.753 + }, + { + "start": 12854.58, + "end": 12861.56, + "probability": 0.9943 + }, + { + "start": 12862.38, + "end": 12863.4, + "probability": 0.6831 + }, + { + "start": 12863.98, + "end": 12866.12, + "probability": 0.9681 + }, + { + "start": 12866.82, + "end": 12874.46, + "probability": 0.8354 + }, + { + "start": 12874.98, + "end": 12878.42, + "probability": 0.9856 + }, + { + "start": 12879.88, + "end": 12882.36, + "probability": 0.9419 + }, + { + "start": 12883.0, + "end": 12884.26, + "probability": 0.9487 + }, + { + "start": 12884.5, + "end": 12884.88, + "probability": 0.396 + }, + { + "start": 12884.96, + "end": 12886.3, + "probability": 0.7164 + }, + { + "start": 12886.5, + "end": 12890.76, + "probability": 0.9796 + }, + { + "start": 12892.3, + "end": 12893.08, + "probability": 0.3728 + }, + { + "start": 12893.64, + "end": 12897.1, + "probability": 0.9852 + }, + { + "start": 12897.54, + "end": 12903.54, + "probability": 0.9927 + }, + { + "start": 12904.3, + "end": 12910.74, + "probability": 0.8447 + }, + { + "start": 12912.46, + "end": 12917.26, + "probability": 0.999 + }, + { + "start": 12917.26, + "end": 12921.56, + "probability": 0.9979 + }, + { + "start": 12923.96, + "end": 12924.8, + "probability": 0.6614 + }, + { + "start": 12927.06, + "end": 12929.44, + "probability": 0.4083 + }, + { + "start": 12929.44, + "end": 12930.46, + "probability": 0.2743 + }, + { + "start": 12931.58, + "end": 12935.37, + "probability": 0.6548 + }, + { + "start": 12939.52, + "end": 12945.66, + "probability": 0.7884 + }, + { + "start": 12946.94, + "end": 12953.28, + "probability": 0.8239 + }, + { + "start": 12953.36, + "end": 12955.02, + "probability": 0.7245 + }, + { + "start": 12955.66, + "end": 12961.78, + "probability": 0.9851 + }, + { + "start": 12962.08, + "end": 12964.32, + "probability": 0.9158 + }, + { + "start": 12964.9, + "end": 12969.06, + "probability": 0.7995 + }, + { + "start": 12969.58, + "end": 12972.02, + "probability": 0.9878 + }, + { + "start": 12973.02, + "end": 12976.56, + "probability": 0.9619 + }, + { + "start": 12977.28, + "end": 12980.96, + "probability": 0.6483 + }, + { + "start": 12982.5, + "end": 12986.62, + "probability": 0.6317 + }, + { + "start": 12986.62, + "end": 12990.9, + "probability": 0.4868 + }, + { + "start": 12990.9, + "end": 12993.4, + "probability": 0.9276 + }, + { + "start": 12994.78, + "end": 12996.49, + "probability": 0.5318 + }, + { + "start": 12997.42, + "end": 13000.6, + "probability": 0.9575 + }, + { + "start": 13001.4, + "end": 13002.04, + "probability": 0.957 + }, + { + "start": 13002.56, + "end": 13002.76, + "probability": 0.8075 + }, + { + "start": 13004.16, + "end": 13005.49, + "probability": 0.9747 + }, + { + "start": 13006.32, + "end": 13009.78, + "probability": 0.9668 + }, + { + "start": 13009.9, + "end": 13013.28, + "probability": 0.9215 + }, + { + "start": 13014.0, + "end": 13015.8, + "probability": 0.9506 + }, + { + "start": 13016.4, + "end": 13019.12, + "probability": 0.9673 + }, + { + "start": 13019.76, + "end": 13021.5, + "probability": 0.9557 + }, + { + "start": 13022.34, + "end": 13026.9, + "probability": 0.9849 + }, + { + "start": 13027.54, + "end": 13030.49, + "probability": 0.5067 + }, + { + "start": 13032.12, + "end": 13035.54, + "probability": 0.7976 + }, + { + "start": 13035.88, + "end": 13041.66, + "probability": 0.976 + }, + { + "start": 13042.92, + "end": 13051.5, + "probability": 0.9772 + }, + { + "start": 13051.5, + "end": 13052.34, + "probability": 0.1307 + }, + { + "start": 13053.26, + "end": 13054.76, + "probability": 0.8426 + }, + { + "start": 13055.78, + "end": 13057.56, + "probability": 0.9474 + }, + { + "start": 13058.6, + "end": 13062.64, + "probability": 0.8226 + }, + { + "start": 13063.06, + "end": 13066.5, + "probability": 0.9934 + }, + { + "start": 13067.12, + "end": 13068.8, + "probability": 0.757 + }, + { + "start": 13069.4, + "end": 13070.82, + "probability": 0.6713 + }, + { + "start": 13071.96, + "end": 13073.2, + "probability": 0.7815 + }, + { + "start": 13074.52, + "end": 13075.72, + "probability": 0.8723 + }, + { + "start": 13075.86, + "end": 13077.84, + "probability": 0.9935 + }, + { + "start": 13078.46, + "end": 13082.06, + "probability": 0.9792 + }, + { + "start": 13082.98, + "end": 13084.94, + "probability": 0.9907 + }, + { + "start": 13085.24, + "end": 13088.88, + "probability": 0.5334 + }, + { + "start": 13089.74, + "end": 13091.54, + "probability": 0.9442 + }, + { + "start": 13091.86, + "end": 13094.04, + "probability": 0.9896 + }, + { + "start": 13094.2, + "end": 13100.32, + "probability": 0.9817 + }, + { + "start": 13101.56, + "end": 13103.26, + "probability": 0.6506 + }, + { + "start": 13104.08, + "end": 13106.1, + "probability": 0.8932 + }, + { + "start": 13107.16, + "end": 13110.12, + "probability": 0.9329 + }, + { + "start": 13111.08, + "end": 13114.94, + "probability": 0.8818 + }, + { + "start": 13115.76, + "end": 13121.44, + "probability": 0.8892 + }, + { + "start": 13122.16, + "end": 13124.22, + "probability": 0.9434 + }, + { + "start": 13125.26, + "end": 13128.16, + "probability": 0.7624 + }, + { + "start": 13128.48, + "end": 13129.72, + "probability": 0.8397 + }, + { + "start": 13130.04, + "end": 13131.0, + "probability": 0.6364 + }, + { + "start": 13131.38, + "end": 13132.52, + "probability": 0.9287 + }, + { + "start": 13133.26, + "end": 13135.24, + "probability": 0.9312 + }, + { + "start": 13135.84, + "end": 13137.76, + "probability": 0.7253 + }, + { + "start": 13138.52, + "end": 13142.54, + "probability": 0.978 + }, + { + "start": 13143.14, + "end": 13146.53, + "probability": 0.9941 + }, + { + "start": 13147.24, + "end": 13148.36, + "probability": 0.6443 + }, + { + "start": 13149.02, + "end": 13151.08, + "probability": 0.774 + }, + { + "start": 13151.6, + "end": 13155.02, + "probability": 0.9343 + }, + { + "start": 13156.38, + "end": 13156.76, + "probability": 0.9271 + }, + { + "start": 13157.6, + "end": 13158.98, + "probability": 0.9563 + }, + { + "start": 13159.1, + "end": 13160.8, + "probability": 0.984 + }, + { + "start": 13161.54, + "end": 13164.28, + "probability": 0.6877 + }, + { + "start": 13164.84, + "end": 13166.3, + "probability": 0.9982 + }, + { + "start": 13167.66, + "end": 13168.82, + "probability": 0.9717 + }, + { + "start": 13169.44, + "end": 13170.2, + "probability": 0.4868 + }, + { + "start": 13170.3, + "end": 13171.26, + "probability": 0.7447 + }, + { + "start": 13171.56, + "end": 13173.6, + "probability": 0.983 + }, + { + "start": 13174.54, + "end": 13176.07, + "probability": 0.9561 + }, + { + "start": 13176.88, + "end": 13177.8, + "probability": 0.8047 + }, + { + "start": 13177.86, + "end": 13185.8, + "probability": 0.9858 + }, + { + "start": 13186.62, + "end": 13187.15, + "probability": 0.834 + }, + { + "start": 13187.6, + "end": 13188.04, + "probability": 0.5485 + }, + { + "start": 13188.14, + "end": 13192.41, + "probability": 0.9774 + }, + { + "start": 13194.19, + "end": 13197.56, + "probability": 0.937 + }, + { + "start": 13199.02, + "end": 13200.32, + "probability": 0.9429 + }, + { + "start": 13201.32, + "end": 13204.18, + "probability": 0.6705 + }, + { + "start": 13206.36, + "end": 13207.62, + "probability": 0.6958 + }, + { + "start": 13208.28, + "end": 13210.28, + "probability": 0.8174 + }, + { + "start": 13213.16, + "end": 13217.48, + "probability": 0.736 + }, + { + "start": 13218.1, + "end": 13220.35, + "probability": 0.9775 + }, + { + "start": 13221.18, + "end": 13222.98, + "probability": 0.9893 + }, + { + "start": 13223.54, + "end": 13224.46, + "probability": 0.8258 + }, + { + "start": 13226.02, + "end": 13226.86, + "probability": 0.9661 + }, + { + "start": 13227.7, + "end": 13230.9, + "probability": 0.9614 + }, + { + "start": 13231.8, + "end": 13234.52, + "probability": 0.7474 + }, + { + "start": 13235.28, + "end": 13239.02, + "probability": 0.7074 + }, + { + "start": 13239.1, + "end": 13241.0, + "probability": 0.9276 + }, + { + "start": 13242.0, + "end": 13245.5, + "probability": 0.7776 + }, + { + "start": 13245.54, + "end": 13249.62, + "probability": 0.9765 + }, + { + "start": 13250.04, + "end": 13252.62, + "probability": 0.9942 + }, + { + "start": 13254.76, + "end": 13257.04, + "probability": 0.9966 + }, + { + "start": 13257.94, + "end": 13261.74, + "probability": 0.6634 + }, + { + "start": 13262.32, + "end": 13264.7, + "probability": 0.9868 + }, + { + "start": 13265.72, + "end": 13269.18, + "probability": 0.7213 + }, + { + "start": 13270.34, + "end": 13271.38, + "probability": 0.5844 + }, + { + "start": 13272.6, + "end": 13274.1, + "probability": 0.9421 + }, + { + "start": 13275.94, + "end": 13277.42, + "probability": 0.9687 + }, + { + "start": 13278.28, + "end": 13285.66, + "probability": 0.9271 + }, + { + "start": 13286.16, + "end": 13287.3, + "probability": 0.9614 + }, + { + "start": 13288.08, + "end": 13289.36, + "probability": 0.8553 + }, + { + "start": 13289.72, + "end": 13290.98, + "probability": 0.692 + }, + { + "start": 13291.48, + "end": 13292.9, + "probability": 0.8976 + }, + { + "start": 13293.02, + "end": 13294.9, + "probability": 0.9895 + }, + { + "start": 13295.46, + "end": 13296.42, + "probability": 0.9702 + }, + { + "start": 13297.26, + "end": 13299.36, + "probability": 0.9885 + }, + { + "start": 13300.56, + "end": 13301.36, + "probability": 0.7239 + }, + { + "start": 13301.72, + "end": 13302.14, + "probability": 0.499 + }, + { + "start": 13303.16, + "end": 13304.1, + "probability": 0.9637 + }, + { + "start": 13304.8, + "end": 13305.42, + "probability": 0.4621 + }, + { + "start": 13305.98, + "end": 13307.26, + "probability": 0.7231 + }, + { + "start": 13307.96, + "end": 13308.84, + "probability": 0.8965 + }, + { + "start": 13309.42, + "end": 13312.06, + "probability": 0.9788 + }, + { + "start": 13312.6, + "end": 13314.56, + "probability": 0.8894 + }, + { + "start": 13315.26, + "end": 13316.66, + "probability": 0.9766 + }, + { + "start": 13318.42, + "end": 13318.98, + "probability": 0.9152 + }, + { + "start": 13319.48, + "end": 13320.44, + "probability": 0.9731 + }, + { + "start": 13320.48, + "end": 13325.28, + "probability": 0.7343 + }, + { + "start": 13325.46, + "end": 13325.94, + "probability": 0.6038 + }, + { + "start": 13326.56, + "end": 13330.2, + "probability": 0.9343 + }, + { + "start": 13330.64, + "end": 13332.08, + "probability": 0.8612 + }, + { + "start": 13332.44, + "end": 13334.16, + "probability": 0.8195 + }, + { + "start": 13334.82, + "end": 13339.42, + "probability": 0.9919 + }, + { + "start": 13339.42, + "end": 13344.5, + "probability": 0.9614 + }, + { + "start": 13345.32, + "end": 13347.48, + "probability": 0.9863 + }, + { + "start": 13348.42, + "end": 13349.8, + "probability": 0.9549 + }, + { + "start": 13350.54, + "end": 13354.22, + "probability": 0.9637 + }, + { + "start": 13355.12, + "end": 13356.48, + "probability": 0.638 + }, + { + "start": 13357.88, + "end": 13361.56, + "probability": 0.979 + }, + { + "start": 13361.7, + "end": 13368.76, + "probability": 0.9929 + }, + { + "start": 13369.6, + "end": 13372.18, + "probability": 0.8498 + }, + { + "start": 13373.22, + "end": 13374.56, + "probability": 0.8704 + }, + { + "start": 13375.16, + "end": 13377.88, + "probability": 0.9883 + }, + { + "start": 13378.54, + "end": 13381.66, + "probability": 0.8935 + }, + { + "start": 13382.9, + "end": 13385.04, + "probability": 0.9259 + }, + { + "start": 13385.64, + "end": 13387.79, + "probability": 0.9807 + }, + { + "start": 13389.18, + "end": 13390.22, + "probability": 0.8763 + }, + { + "start": 13390.44, + "end": 13391.86, + "probability": 0.6418 + }, + { + "start": 13392.28, + "end": 13393.14, + "probability": 0.9144 + }, + { + "start": 13393.22, + "end": 13394.22, + "probability": 0.8869 + }, + { + "start": 13395.52, + "end": 13396.16, + "probability": 0.9513 + }, + { + "start": 13396.84, + "end": 13397.46, + "probability": 0.9131 + }, + { + "start": 13397.98, + "end": 13399.97, + "probability": 0.4718 + }, + { + "start": 13401.6, + "end": 13404.96, + "probability": 0.7366 + }, + { + "start": 13406.28, + "end": 13407.56, + "probability": 0.8067 + }, + { + "start": 13408.46, + "end": 13415.38, + "probability": 0.9887 + }, + { + "start": 13416.22, + "end": 13416.58, + "probability": 0.6729 + }, + { + "start": 13417.22, + "end": 13417.82, + "probability": 0.9843 + }, + { + "start": 13419.42, + "end": 13421.92, + "probability": 0.8906 + }, + { + "start": 13422.7, + "end": 13425.96, + "probability": 0.9919 + }, + { + "start": 13427.22, + "end": 13429.92, + "probability": 0.9199 + }, + { + "start": 13430.84, + "end": 13432.76, + "probability": 0.8606 + }, + { + "start": 13433.28, + "end": 13435.68, + "probability": 0.7427 + }, + { + "start": 13436.8, + "end": 13442.78, + "probability": 0.8951 + }, + { + "start": 13443.48, + "end": 13447.4, + "probability": 0.9833 + }, + { + "start": 13448.06, + "end": 13450.9, + "probability": 0.998 + }, + { + "start": 13451.66, + "end": 13456.08, + "probability": 0.9069 + }, + { + "start": 13456.44, + "end": 13459.56, + "probability": 0.9942 + }, + { + "start": 13459.88, + "end": 13460.14, + "probability": 0.842 + }, + { + "start": 13462.76, + "end": 13464.4, + "probability": 0.6641 + }, + { + "start": 13464.8, + "end": 13466.0, + "probability": 0.5133 + }, + { + "start": 13468.22, + "end": 13468.86, + "probability": 0.5849 + }, + { + "start": 13469.9, + "end": 13471.38, + "probability": 0.8568 + }, + { + "start": 13475.0, + "end": 13475.22, + "probability": 0.7191 + }, + { + "start": 13476.16, + "end": 13492.54, + "probability": 0.6078 + }, + { + "start": 13493.76, + "end": 13494.74, + "probability": 0.7386 + }, + { + "start": 13495.66, + "end": 13497.84, + "probability": 0.8931 + }, + { + "start": 13498.44, + "end": 13499.76, + "probability": 0.9821 + }, + { + "start": 13500.94, + "end": 13501.7, + "probability": 0.5249 + }, + { + "start": 13501.74, + "end": 13502.16, + "probability": 0.7971 + }, + { + "start": 13502.64, + "end": 13503.96, + "probability": 0.9703 + }, + { + "start": 13504.04, + "end": 13507.16, + "probability": 0.6117 + }, + { + "start": 13507.84, + "end": 13508.5, + "probability": 0.8007 + }, + { + "start": 13510.16, + "end": 13512.66, + "probability": 0.9893 + }, + { + "start": 13513.32, + "end": 13515.02, + "probability": 0.998 + }, + { + "start": 13516.2, + "end": 13521.9, + "probability": 0.894 + }, + { + "start": 13522.38, + "end": 13524.14, + "probability": 0.991 + }, + { + "start": 13525.1, + "end": 13528.22, + "probability": 0.9644 + }, + { + "start": 13528.68, + "end": 13531.0, + "probability": 0.9966 + }, + { + "start": 13531.54, + "end": 13532.34, + "probability": 0.9971 + }, + { + "start": 13532.4, + "end": 13534.16, + "probability": 0.9915 + }, + { + "start": 13534.68, + "end": 13538.3, + "probability": 0.9643 + }, + { + "start": 13539.2, + "end": 13539.72, + "probability": 0.5266 + }, + { + "start": 13539.98, + "end": 13540.56, + "probability": 0.9909 + }, + { + "start": 13542.18, + "end": 13542.9, + "probability": 0.8114 + }, + { + "start": 13543.06, + "end": 13546.0, + "probability": 0.7616 + }, + { + "start": 13546.3, + "end": 13550.56, + "probability": 0.9923 + }, + { + "start": 13551.36, + "end": 13555.48, + "probability": 0.9915 + }, + { + "start": 13555.96, + "end": 13557.4, + "probability": 0.6692 + }, + { + "start": 13558.28, + "end": 13560.34, + "probability": 0.9435 + }, + { + "start": 13560.86, + "end": 13561.92, + "probability": 0.803 + }, + { + "start": 13562.76, + "end": 13563.8, + "probability": 0.7466 + }, + { + "start": 13563.88, + "end": 13567.18, + "probability": 0.9759 + }, + { + "start": 13568.9, + "end": 13569.78, + "probability": 0.4996 + }, + { + "start": 13570.04, + "end": 13572.0, + "probability": 0.9963 + }, + { + "start": 13572.54, + "end": 13573.62, + "probability": 0.851 + }, + { + "start": 13573.72, + "end": 13574.92, + "probability": 0.8893 + }, + { + "start": 13575.36, + "end": 13577.46, + "probability": 0.9921 + }, + { + "start": 13577.98, + "end": 13582.44, + "probability": 0.981 + }, + { + "start": 13583.06, + "end": 13585.98, + "probability": 0.58 + }, + { + "start": 13586.72, + "end": 13588.6, + "probability": 0.9882 + }, + { + "start": 13589.46, + "end": 13593.7, + "probability": 0.9865 + }, + { + "start": 13594.22, + "end": 13596.86, + "probability": 0.9917 + }, + { + "start": 13597.42, + "end": 13598.8, + "probability": 0.9563 + }, + { + "start": 13599.34, + "end": 13600.32, + "probability": 0.837 + }, + { + "start": 13600.92, + "end": 13602.52, + "probability": 0.9932 + }, + { + "start": 13603.22, + "end": 13605.32, + "probability": 0.9979 + }, + { + "start": 13605.7, + "end": 13607.42, + "probability": 0.9744 + }, + { + "start": 13607.52, + "end": 13608.66, + "probability": 0.981 + }, + { + "start": 13609.96, + "end": 13612.77, + "probability": 0.9956 + }, + { + "start": 13613.62, + "end": 13616.28, + "probability": 0.8806 + }, + { + "start": 13617.18, + "end": 13617.54, + "probability": 0.9341 + }, + { + "start": 13618.24, + "end": 13618.76, + "probability": 0.6537 + }, + { + "start": 13619.0, + "end": 13621.82, + "probability": 0.9777 + }, + { + "start": 13621.92, + "end": 13624.54, + "probability": 0.895 + }, + { + "start": 13624.72, + "end": 13626.18, + "probability": 0.9595 + }, + { + "start": 13626.5, + "end": 13629.38, + "probability": 0.9862 + }, + { + "start": 13629.82, + "end": 13631.26, + "probability": 0.7006 + }, + { + "start": 13631.9, + "end": 13634.08, + "probability": 0.9635 + }, + { + "start": 13634.84, + "end": 13635.86, + "probability": 0.9141 + }, + { + "start": 13636.62, + "end": 13640.27, + "probability": 0.9814 + }, + { + "start": 13641.12, + "end": 13645.5, + "probability": 0.944 + }, + { + "start": 13647.42, + "end": 13649.78, + "probability": 0.9725 + }, + { + "start": 13649.78, + "end": 13653.54, + "probability": 0.7953 + }, + { + "start": 13654.3, + "end": 13657.5, + "probability": 0.9956 + }, + { + "start": 13657.66, + "end": 13660.3, + "probability": 0.9344 + }, + { + "start": 13661.1, + "end": 13661.7, + "probability": 0.9567 + }, + { + "start": 13661.94, + "end": 13663.44, + "probability": 0.7696 + }, + { + "start": 13663.94, + "end": 13666.34, + "probability": 0.9971 + }, + { + "start": 13666.9, + "end": 13671.14, + "probability": 0.9976 + }, + { + "start": 13671.14, + "end": 13675.12, + "probability": 0.9987 + }, + { + "start": 13676.12, + "end": 13678.6, + "probability": 0.9916 + }, + { + "start": 13678.6, + "end": 13682.42, + "probability": 0.9987 + }, + { + "start": 13683.24, + "end": 13687.44, + "probability": 0.9972 + }, + { + "start": 13687.66, + "end": 13693.42, + "probability": 0.998 + }, + { + "start": 13694.48, + "end": 13696.72, + "probability": 0.9911 + }, + { + "start": 13697.36, + "end": 13699.08, + "probability": 0.8934 + }, + { + "start": 13699.46, + "end": 13701.96, + "probability": 0.9902 + }, + { + "start": 13702.48, + "end": 13705.02, + "probability": 0.9761 + }, + { + "start": 13705.5, + "end": 13708.52, + "probability": 0.9491 + }, + { + "start": 13709.26, + "end": 13710.62, + "probability": 0.9826 + }, + { + "start": 13711.26, + "end": 13712.2, + "probability": 0.623 + }, + { + "start": 13712.32, + "end": 13712.94, + "probability": 0.7007 + }, + { + "start": 13713.38, + "end": 13717.88, + "probability": 0.9876 + }, + { + "start": 13717.88, + "end": 13721.46, + "probability": 0.9723 + }, + { + "start": 13722.26, + "end": 13724.74, + "probability": 0.9908 + }, + { + "start": 13726.06, + "end": 13730.58, + "probability": 0.9989 + }, + { + "start": 13730.78, + "end": 13731.98, + "probability": 0.7317 + }, + { + "start": 13732.48, + "end": 13734.6, + "probability": 0.725 + }, + { + "start": 13735.22, + "end": 13736.8, + "probability": 0.9195 + }, + { + "start": 13737.66, + "end": 13739.08, + "probability": 0.9418 + }, + { + "start": 13740.1, + "end": 13743.3, + "probability": 0.9941 + }, + { + "start": 13744.34, + "end": 13746.34, + "probability": 0.9429 + }, + { + "start": 13747.28, + "end": 13749.4, + "probability": 0.8551 + }, + { + "start": 13750.16, + "end": 13751.04, + "probability": 0.9824 + }, + { + "start": 13751.26, + "end": 13751.54, + "probability": 0.714 + }, + { + "start": 13752.16, + "end": 13753.1, + "probability": 0.9554 + }, + { + "start": 13753.68, + "end": 13755.9, + "probability": 0.9537 + }, + { + "start": 13756.44, + "end": 13757.49, + "probability": 0.9313 + }, + { + "start": 13758.42, + "end": 13763.1, + "probability": 0.9878 + }, + { + "start": 13763.98, + "end": 13766.72, + "probability": 0.9211 + }, + { + "start": 13767.6, + "end": 13770.54, + "probability": 0.9956 + }, + { + "start": 13771.3, + "end": 13775.32, + "probability": 0.9956 + }, + { + "start": 13775.52, + "end": 13776.34, + "probability": 0.9295 + }, + { + "start": 13777.52, + "end": 13783.62, + "probability": 0.9778 + }, + { + "start": 13783.8, + "end": 13786.22, + "probability": 0.9917 + }, + { + "start": 13786.22, + "end": 13790.36, + "probability": 0.9796 + }, + { + "start": 13790.82, + "end": 13791.26, + "probability": 0.7488 + }, + { + "start": 13791.8, + "end": 13793.42, + "probability": 0.9941 + }, + { + "start": 13793.72, + "end": 13795.2, + "probability": 0.7751 + }, + { + "start": 13795.26, + "end": 13795.78, + "probability": 0.629 + }, + { + "start": 13795.82, + "end": 13796.81, + "probability": 0.8396 + }, + { + "start": 13797.88, + "end": 13801.62, + "probability": 0.9953 + }, + { + "start": 13801.62, + "end": 13805.98, + "probability": 0.994 + }, + { + "start": 13806.06, + "end": 13807.38, + "probability": 0.844 + }, + { + "start": 13807.76, + "end": 13808.84, + "probability": 0.9822 + }, + { + "start": 13809.36, + "end": 13811.86, + "probability": 0.9906 + }, + { + "start": 13812.54, + "end": 13814.94, + "probability": 0.472 + }, + { + "start": 13817.36, + "end": 13818.56, + "probability": 0.8509 + }, + { + "start": 13818.58, + "end": 13820.5, + "probability": 0.8405 + }, + { + "start": 13820.62, + "end": 13821.24, + "probability": 0.8928 + }, + { + "start": 13821.74, + "end": 13826.4, + "probability": 0.982 + }, + { + "start": 13826.46, + "end": 13827.44, + "probability": 0.8799 + }, + { + "start": 13828.24, + "end": 13830.66, + "probability": 0.8182 + }, + { + "start": 13830.74, + "end": 13832.87, + "probability": 0.9758 + }, + { + "start": 13833.26, + "end": 13834.22, + "probability": 0.7552 + }, + { + "start": 13834.82, + "end": 13836.74, + "probability": 0.9087 + }, + { + "start": 13837.08, + "end": 13837.72, + "probability": 0.8791 + }, + { + "start": 13838.22, + "end": 13839.19, + "probability": 0.9949 + }, + { + "start": 13840.6, + "end": 13845.31, + "probability": 0.8608 + }, + { + "start": 13845.64, + "end": 13848.68, + "probability": 0.9677 + }, + { + "start": 13848.72, + "end": 13850.02, + "probability": 0.8387 + }, + { + "start": 13850.42, + "end": 13853.08, + "probability": 0.7499 + }, + { + "start": 13853.72, + "end": 13854.98, + "probability": 0.9631 + }, + { + "start": 13855.06, + "end": 13858.0, + "probability": 0.9105 + }, + { + "start": 13858.14, + "end": 13859.12, + "probability": 0.9797 + }, + { + "start": 13859.5, + "end": 13860.92, + "probability": 0.8534 + }, + { + "start": 13861.86, + "end": 13865.32, + "probability": 0.9855 + }, + { + "start": 13865.84, + "end": 13868.34, + "probability": 0.9851 + }, + { + "start": 13868.72, + "end": 13871.65, + "probability": 0.8394 + }, + { + "start": 13873.0, + "end": 13876.32, + "probability": 0.9497 + }, + { + "start": 13877.04, + "end": 13881.1, + "probability": 0.8981 + }, + { + "start": 13881.64, + "end": 13885.18, + "probability": 0.9844 + }, + { + "start": 13885.3, + "end": 13888.84, + "probability": 0.998 + }, + { + "start": 13889.94, + "end": 13895.64, + "probability": 0.9988 + }, + { + "start": 13897.34, + "end": 13899.08, + "probability": 0.7618 + }, + { + "start": 13899.3, + "end": 13901.86, + "probability": 0.9325 + }, + { + "start": 13903.16, + "end": 13905.66, + "probability": 0.9175 + }, + { + "start": 13906.24, + "end": 13907.38, + "probability": 0.9535 + }, + { + "start": 13907.48, + "end": 13909.04, + "probability": 0.7959 + }, + { + "start": 13909.52, + "end": 13910.46, + "probability": 0.8721 + }, + { + "start": 13911.54, + "end": 13916.54, + "probability": 0.91 + }, + { + "start": 13917.52, + "end": 13921.54, + "probability": 0.9961 + }, + { + "start": 13922.46, + "end": 13923.96, + "probability": 0.4226 + }, + { + "start": 13924.62, + "end": 13929.74, + "probability": 0.9763 + }, + { + "start": 13929.74, + "end": 13932.26, + "probability": 0.9988 + }, + { + "start": 13932.82, + "end": 13934.92, + "probability": 0.9919 + }, + { + "start": 13935.8, + "end": 13938.06, + "probability": 0.9736 + }, + { + "start": 13938.06, + "end": 13940.3, + "probability": 0.8958 + }, + { + "start": 13940.34, + "end": 13941.1, + "probability": 0.8757 + }, + { + "start": 13941.54, + "end": 13942.2, + "probability": 0.9061 + }, + { + "start": 13942.7, + "end": 13945.1, + "probability": 0.8137 + }, + { + "start": 13945.48, + "end": 13947.18, + "probability": 0.9126 + }, + { + "start": 13948.12, + "end": 13948.8, + "probability": 0.7761 + }, + { + "start": 13948.84, + "end": 13952.14, + "probability": 0.8549 + }, + { + "start": 13952.52, + "end": 13955.26, + "probability": 0.8893 + }, + { + "start": 13956.58, + "end": 13959.88, + "probability": 0.9961 + }, + { + "start": 13959.88, + "end": 13964.84, + "probability": 0.9814 + }, + { + "start": 13965.32, + "end": 13966.36, + "probability": 0.9724 + }, + { + "start": 13967.72, + "end": 13970.32, + "probability": 0.9935 + }, + { + "start": 13970.32, + "end": 13974.26, + "probability": 0.9916 + }, + { + "start": 13974.26, + "end": 13977.86, + "probability": 0.9991 + }, + { + "start": 13978.28, + "end": 13982.4, + "probability": 0.9966 + }, + { + "start": 13982.4, + "end": 13987.8, + "probability": 0.9986 + }, + { + "start": 13988.38, + "end": 13992.54, + "probability": 0.8973 + }, + { + "start": 13993.12, + "end": 13996.06, + "probability": 0.8565 + }, + { + "start": 13997.22, + "end": 14003.26, + "probability": 0.9572 + }, + { + "start": 14003.78, + "end": 14005.09, + "probability": 0.9476 + }, + { + "start": 14005.26, + "end": 14007.0, + "probability": 0.9522 + }, + { + "start": 14007.48, + "end": 14010.06, + "probability": 0.9834 + }, + { + "start": 14010.7, + "end": 14010.92, + "probability": 0.6931 + }, + { + "start": 14013.84, + "end": 14015.74, + "probability": 0.773 + }, + { + "start": 14016.18, + "end": 14017.14, + "probability": 0.9651 + }, + { + "start": 14017.82, + "end": 14019.1, + "probability": 0.7626 + }, + { + "start": 14020.44, + "end": 14022.3, + "probability": 0.5079 + }, + { + "start": 14034.32, + "end": 14035.26, + "probability": 0.652 + }, + { + "start": 14036.34, + "end": 14042.36, + "probability": 0.8724 + }, + { + "start": 14043.68, + "end": 14044.54, + "probability": 0.7782 + }, + { + "start": 14044.62, + "end": 14046.72, + "probability": 0.9517 + }, + { + "start": 14046.74, + "end": 14047.78, + "probability": 0.9328 + }, + { + "start": 14047.82, + "end": 14048.48, + "probability": 0.8162 + }, + { + "start": 14048.48, + "end": 14050.02, + "probability": 0.9266 + }, + { + "start": 14050.06, + "end": 14050.56, + "probability": 0.9822 + }, + { + "start": 14052.16, + "end": 14057.33, + "probability": 0.9158 + }, + { + "start": 14058.46, + "end": 14059.24, + "probability": 0.5017 + }, + { + "start": 14059.28, + "end": 14059.88, + "probability": 0.912 + }, + { + "start": 14059.96, + "end": 14062.32, + "probability": 0.5675 + }, + { + "start": 14062.34, + "end": 14065.62, + "probability": 0.8667 + }, + { + "start": 14066.34, + "end": 14070.02, + "probability": 0.9943 + }, + { + "start": 14071.74, + "end": 14076.06, + "probability": 0.9826 + }, + { + "start": 14077.1, + "end": 14079.72, + "probability": 0.9471 + }, + { + "start": 14081.28, + "end": 14084.98, + "probability": 0.861 + }, + { + "start": 14085.78, + "end": 14088.58, + "probability": 0.9751 + }, + { + "start": 14089.64, + "end": 14091.36, + "probability": 0.6799 + }, + { + "start": 14091.36, + "end": 14094.12, + "probability": 0.9672 + }, + { + "start": 14094.78, + "end": 14096.2, + "probability": 0.9878 + }, + { + "start": 14096.3, + "end": 14099.68, + "probability": 0.722 + }, + { + "start": 14099.76, + "end": 14106.44, + "probability": 0.9907 + }, + { + "start": 14107.18, + "end": 14109.94, + "probability": 0.758 + }, + { + "start": 14110.32, + "end": 14113.78, + "probability": 0.9536 + }, + { + "start": 14114.38, + "end": 14117.56, + "probability": 0.9985 + }, + { + "start": 14117.96, + "end": 14121.16, + "probability": 0.9773 + }, + { + "start": 14123.1, + "end": 14126.04, + "probability": 0.9883 + }, + { + "start": 14126.04, + "end": 14128.82, + "probability": 0.9355 + }, + { + "start": 14129.36, + "end": 14133.5, + "probability": 0.9848 + }, + { + "start": 14135.16, + "end": 14146.9, + "probability": 0.945 + }, + { + "start": 14147.6, + "end": 14149.46, + "probability": 0.9944 + }, + { + "start": 14150.0, + "end": 14153.66, + "probability": 0.9971 + }, + { + "start": 14153.66, + "end": 14158.68, + "probability": 0.8986 + }, + { + "start": 14159.28, + "end": 14162.7, + "probability": 0.7156 + }, + { + "start": 14162.74, + "end": 14167.4, + "probability": 0.8913 + }, + { + "start": 14169.7, + "end": 14173.38, + "probability": 0.9908 + }, + { + "start": 14173.84, + "end": 14177.28, + "probability": 0.8657 + }, + { + "start": 14177.82, + "end": 14178.94, + "probability": 0.9863 + }, + { + "start": 14179.74, + "end": 14182.44, + "probability": 0.9902 + }, + { + "start": 14182.96, + "end": 14183.94, + "probability": 0.5343 + }, + { + "start": 14184.54, + "end": 14189.42, + "probability": 0.7256 + }, + { + "start": 14189.92, + "end": 14194.38, + "probability": 0.9943 + }, + { + "start": 14195.0, + "end": 14198.78, + "probability": 0.9961 + }, + { + "start": 14199.3, + "end": 14209.56, + "probability": 0.99 + }, + { + "start": 14210.36, + "end": 14214.98, + "probability": 0.9892 + }, + { + "start": 14215.88, + "end": 14219.34, + "probability": 0.9844 + }, + { + "start": 14219.34, + "end": 14223.1, + "probability": 0.6191 + }, + { + "start": 14224.6, + "end": 14228.54, + "probability": 0.9563 + }, + { + "start": 14228.86, + "end": 14229.5, + "probability": 0.5789 + }, + { + "start": 14229.56, + "end": 14229.96, + "probability": 0.9388 + }, + { + "start": 14230.94, + "end": 14235.28, + "probability": 0.8752 + }, + { + "start": 14235.28, + "end": 14239.6, + "probability": 0.9559 + }, + { + "start": 14240.1, + "end": 14242.28, + "probability": 0.9218 + }, + { + "start": 14243.06, + "end": 14245.02, + "probability": 0.9906 + }, + { + "start": 14245.64, + "end": 14247.58, + "probability": 0.9829 + }, + { + "start": 14247.96, + "end": 14249.82, + "probability": 0.9702 + }, + { + "start": 14250.4, + "end": 14253.82, + "probability": 0.8094 + }, + { + "start": 14254.34, + "end": 14259.78, + "probability": 0.9893 + }, + { + "start": 14260.98, + "end": 14265.32, + "probability": 0.8382 + }, + { + "start": 14265.38, + "end": 14268.56, + "probability": 0.9922 + }, + { + "start": 14269.0, + "end": 14271.74, + "probability": 0.9911 + }, + { + "start": 14272.34, + "end": 14274.8, + "probability": 0.7559 + }, + { + "start": 14275.98, + "end": 14278.54, + "probability": 0.9937 + }, + { + "start": 14278.54, + "end": 14281.72, + "probability": 0.9716 + }, + { + "start": 14282.2, + "end": 14283.86, + "probability": 0.6898 + }, + { + "start": 14284.76, + "end": 14287.5, + "probability": 0.9963 + }, + { + "start": 14287.5, + "end": 14290.66, + "probability": 0.8564 + }, + { + "start": 14291.28, + "end": 14295.86, + "probability": 0.9382 + }, + { + "start": 14295.96, + "end": 14296.86, + "probability": 0.9486 + }, + { + "start": 14297.36, + "end": 14299.86, + "probability": 0.9939 + }, + { + "start": 14300.0, + "end": 14300.48, + "probability": 0.4515 + }, + { + "start": 14301.62, + "end": 14305.76, + "probability": 0.9141 + }, + { + "start": 14306.46, + "end": 14312.1, + "probability": 0.9787 + }, + { + "start": 14312.6, + "end": 14314.84, + "probability": 0.735 + }, + { + "start": 14315.52, + "end": 14317.94, + "probability": 0.6477 + }, + { + "start": 14318.64, + "end": 14321.32, + "probability": 0.8186 + }, + { + "start": 14322.42, + "end": 14325.44, + "probability": 0.6794 + }, + { + "start": 14325.56, + "end": 14326.34, + "probability": 0.9373 + }, + { + "start": 14326.42, + "end": 14327.46, + "probability": 0.7467 + }, + { + "start": 14328.4, + "end": 14332.06, + "probability": 0.9785 + }, + { + "start": 14332.06, + "end": 14336.1, + "probability": 0.9917 + }, + { + "start": 14336.6, + "end": 14339.2, + "probability": 0.7732 + }, + { + "start": 14339.72, + "end": 14343.68, + "probability": 0.947 + }, + { + "start": 14344.84, + "end": 14347.12, + "probability": 0.9619 + }, + { + "start": 14347.86, + "end": 14349.5, + "probability": 0.7507 + }, + { + "start": 14350.14, + "end": 14357.32, + "probability": 0.9882 + }, + { + "start": 14357.56, + "end": 14358.22, + "probability": 0.8927 + }, + { + "start": 14358.3, + "end": 14360.68, + "probability": 0.6188 + }, + { + "start": 14360.8, + "end": 14363.64, + "probability": 0.9604 + }, + { + "start": 14364.0, + "end": 14364.7, + "probability": 0.5383 + }, + { + "start": 14364.84, + "end": 14365.58, + "probability": 0.6386 + }, + { + "start": 14366.24, + "end": 14367.84, + "probability": 0.8483 + }, + { + "start": 14368.62, + "end": 14371.84, + "probability": 0.9709 + }, + { + "start": 14372.3, + "end": 14375.4, + "probability": 0.9375 + }, + { + "start": 14375.96, + "end": 14379.62, + "probability": 0.831 + }, + { + "start": 14380.02, + "end": 14380.58, + "probability": 0.9442 + }, + { + "start": 14381.38, + "end": 14382.62, + "probability": 0.9665 + }, + { + "start": 14383.06, + "end": 14384.5, + "probability": 0.9736 + }, + { + "start": 14385.7, + "end": 14386.9, + "probability": 0.9531 + }, + { + "start": 14388.4, + "end": 14392.16, + "probability": 0.8498 + }, + { + "start": 14393.08, + "end": 14399.54, + "probability": 0.8876 + }, + { + "start": 14400.04, + "end": 14404.98, + "probability": 0.995 + }, + { + "start": 14405.22, + "end": 14406.02, + "probability": 0.7644 + }, + { + "start": 14406.44, + "end": 14407.24, + "probability": 0.6705 + }, + { + "start": 14407.34, + "end": 14407.56, + "probability": 0.208 + }, + { + "start": 14409.7, + "end": 14412.9, + "probability": 0.9288 + }, + { + "start": 14413.7, + "end": 14415.26, + "probability": 0.9963 + }, + { + "start": 14415.32, + "end": 14420.68, + "probability": 0.9877 + }, + { + "start": 14421.76, + "end": 14422.94, + "probability": 0.8829 + }, + { + "start": 14423.92, + "end": 14427.56, + "probability": 0.9941 + }, + { + "start": 14428.88, + "end": 14430.82, + "probability": 0.9426 + }, + { + "start": 14431.4, + "end": 14435.3, + "probability": 0.972 + }, + { + "start": 14435.8, + "end": 14437.64, + "probability": 0.998 + }, + { + "start": 14438.68, + "end": 14440.3, + "probability": 0.9976 + }, + { + "start": 14441.12, + "end": 14443.74, + "probability": 0.9952 + }, + { + "start": 14444.94, + "end": 14446.44, + "probability": 0.6731 + }, + { + "start": 14447.0, + "end": 14450.64, + "probability": 0.9944 + }, + { + "start": 14451.08, + "end": 14455.4, + "probability": 0.9649 + }, + { + "start": 14456.16, + "end": 14464.16, + "probability": 0.9908 + }, + { + "start": 14465.08, + "end": 14466.38, + "probability": 0.4446 + }, + { + "start": 14466.46, + "end": 14468.32, + "probability": 0.947 + }, + { + "start": 14468.8, + "end": 14473.08, + "probability": 0.9103 + }, + { + "start": 14473.26, + "end": 14476.18, + "probability": 0.8609 + }, + { + "start": 14476.9, + "end": 14480.06, + "probability": 0.6909 + }, + { + "start": 14480.88, + "end": 14481.36, + "probability": 0.4088 + }, + { + "start": 14482.14, + "end": 14483.2, + "probability": 0.7894 + }, + { + "start": 14484.02, + "end": 14486.76, + "probability": 0.9754 + }, + { + "start": 14486.76, + "end": 14490.68, + "probability": 0.9928 + }, + { + "start": 14491.26, + "end": 14493.96, + "probability": 0.9806 + }, + { + "start": 14495.08, + "end": 14497.32, + "probability": 0.7518 + }, + { + "start": 14497.9, + "end": 14500.48, + "probability": 0.8888 + }, + { + "start": 14501.36, + "end": 14502.68, + "probability": 0.6225 + }, + { + "start": 14503.14, + "end": 14504.34, + "probability": 0.9204 + }, + { + "start": 14504.52, + "end": 14506.78, + "probability": 0.8562 + }, + { + "start": 14507.96, + "end": 14513.6, + "probability": 0.9755 + }, + { + "start": 14514.08, + "end": 14516.1, + "probability": 0.9175 + }, + { + "start": 14516.76, + "end": 14519.42, + "probability": 0.8259 + }, + { + "start": 14520.18, + "end": 14525.54, + "probability": 0.9796 + }, + { + "start": 14527.78, + "end": 14530.32, + "probability": 0.6503 + }, + { + "start": 14530.92, + "end": 14536.42, + "probability": 0.9979 + }, + { + "start": 14536.42, + "end": 14540.04, + "probability": 0.991 + }, + { + "start": 14541.72, + "end": 14545.19, + "probability": 0.8374 + }, + { + "start": 14545.88, + "end": 14549.44, + "probability": 0.8591 + }, + { + "start": 14550.18, + "end": 14551.06, + "probability": 0.9801 + }, + { + "start": 14551.24, + "end": 14551.7, + "probability": 0.7256 + }, + { + "start": 14552.12, + "end": 14552.98, + "probability": 0.605 + }, + { + "start": 14553.46, + "end": 14555.22, + "probability": 0.7588 + }, + { + "start": 14555.3, + "end": 14558.66, + "probability": 0.7249 + }, + { + "start": 14558.98, + "end": 14563.58, + "probability": 0.9889 + }, + { + "start": 14563.66, + "end": 14565.58, + "probability": 0.9867 + }, + { + "start": 14566.22, + "end": 14567.52, + "probability": 0.9211 + }, + { + "start": 14568.38, + "end": 14570.16, + "probability": 0.9814 + }, + { + "start": 14572.0, + "end": 14574.74, + "probability": 0.9681 + }, + { + "start": 14575.9, + "end": 14576.42, + "probability": 0.8796 + }, + { + "start": 14577.42, + "end": 14580.64, + "probability": 0.9558 + }, + { + "start": 14581.22, + "end": 14585.54, + "probability": 0.9534 + }, + { + "start": 14586.12, + "end": 14587.78, + "probability": 0.8341 + }, + { + "start": 14589.16, + "end": 14594.64, + "probability": 0.9445 + }, + { + "start": 14595.1, + "end": 14599.06, + "probability": 0.9897 + }, + { + "start": 14599.82, + "end": 14604.74, + "probability": 0.7916 + }, + { + "start": 14605.42, + "end": 14606.28, + "probability": 0.4467 + }, + { + "start": 14607.36, + "end": 14609.1, + "probability": 0.8682 + }, + { + "start": 14609.9, + "end": 14610.36, + "probability": 0.9079 + }, + { + "start": 14611.24, + "end": 14614.4, + "probability": 0.9301 + }, + { + "start": 14615.18, + "end": 14619.98, + "probability": 0.9282 + }, + { + "start": 14620.7, + "end": 14621.7, + "probability": 0.9824 + }, + { + "start": 14621.76, + "end": 14622.82, + "probability": 0.9811 + }, + { + "start": 14623.42, + "end": 14625.72, + "probability": 0.9585 + }, + { + "start": 14626.72, + "end": 14627.58, + "probability": 0.8934 + }, + { + "start": 14627.72, + "end": 14628.12, + "probability": 0.8427 + }, + { + "start": 14628.2, + "end": 14628.8, + "probability": 0.9013 + }, + { + "start": 14629.16, + "end": 14629.66, + "probability": 0.9669 + }, + { + "start": 14630.28, + "end": 14630.76, + "probability": 0.9658 + }, + { + "start": 14631.5, + "end": 14634.64, + "probability": 0.9937 + }, + { + "start": 14634.94, + "end": 14636.0, + "probability": 0.989 + }, + { + "start": 14636.06, + "end": 14636.56, + "probability": 0.8759 + }, + { + "start": 14637.14, + "end": 14638.6, + "probability": 0.6517 + }, + { + "start": 14639.0, + "end": 14644.3, + "probability": 0.9194 + }, + { + "start": 14644.86, + "end": 14647.1, + "probability": 0.8946 + }, + { + "start": 14647.88, + "end": 14650.7, + "probability": 0.9451 + }, + { + "start": 14651.12, + "end": 14653.62, + "probability": 0.9791 + }, + { + "start": 14654.2, + "end": 14654.9, + "probability": 0.6026 + }, + { + "start": 14655.1, + "end": 14656.56, + "probability": 0.8833 + }, + { + "start": 14657.16, + "end": 14659.88, + "probability": 0.9354 + }, + { + "start": 14661.24, + "end": 14669.13, + "probability": 0.9896 + }, + { + "start": 14669.2, + "end": 14676.96, + "probability": 0.9008 + }, + { + "start": 14677.5, + "end": 14679.04, + "probability": 0.3475 + }, + { + "start": 14679.88, + "end": 14680.9, + "probability": 0.8336 + }, + { + "start": 14681.74, + "end": 14683.62, + "probability": 0.9497 + }, + { + "start": 14683.76, + "end": 14689.12, + "probability": 0.9194 + }, + { + "start": 14689.86, + "end": 14692.86, + "probability": 0.9353 + }, + { + "start": 14693.44, + "end": 14695.72, + "probability": 0.8714 + }, + { + "start": 14696.3, + "end": 14698.22, + "probability": 0.9469 + }, + { + "start": 14698.86, + "end": 14699.22, + "probability": 0.5445 + }, + { + "start": 14699.38, + "end": 14700.86, + "probability": 0.7871 + }, + { + "start": 14700.92, + "end": 14702.74, + "probability": 0.8445 + }, + { + "start": 14703.48, + "end": 14704.68, + "probability": 0.2376 + }, + { + "start": 14705.12, + "end": 14706.38, + "probability": 0.7504 + }, + { + "start": 14706.44, + "end": 14708.04, + "probability": 0.813 + }, + { + "start": 14708.44, + "end": 14710.58, + "probability": 0.8792 + }, + { + "start": 14710.92, + "end": 14716.48, + "probability": 0.99 + }, + { + "start": 14717.12, + "end": 14719.96, + "probability": 0.9827 + }, + { + "start": 14720.22, + "end": 14721.52, + "probability": 0.8569 + }, + { + "start": 14721.94, + "end": 14724.86, + "probability": 0.9827 + }, + { + "start": 14725.56, + "end": 14729.5, + "probability": 0.9949 + }, + { + "start": 14729.86, + "end": 14731.36, + "probability": 0.9626 + }, + { + "start": 14731.98, + "end": 14733.32, + "probability": 0.5255 + }, + { + "start": 14733.88, + "end": 14737.24, + "probability": 0.9896 + }, + { + "start": 14737.24, + "end": 14741.28, + "probability": 0.9993 + }, + { + "start": 14741.7, + "end": 14742.96, + "probability": 0.9385 + }, + { + "start": 14743.34, + "end": 14744.08, + "probability": 0.9456 + }, + { + "start": 14744.48, + "end": 14745.14, + "probability": 0.9553 + }, + { + "start": 14745.56, + "end": 14746.22, + "probability": 0.938 + }, + { + "start": 14746.32, + "end": 14747.0, + "probability": 0.7404 + }, + { + "start": 14747.38, + "end": 14748.16, + "probability": 0.9976 + }, + { + "start": 14749.26, + "end": 14750.7, + "probability": 0.9416 + }, + { + "start": 14750.86, + "end": 14751.38, + "probability": 0.7618 + }, + { + "start": 14751.88, + "end": 14752.64, + "probability": 0.7435 + }, + { + "start": 14754.34, + "end": 14756.68, + "probability": 0.9358 + }, + { + "start": 14780.66, + "end": 14780.78, + "probability": 0.0387 + }, + { + "start": 14781.3, + "end": 14782.96, + "probability": 0.7519 + }, + { + "start": 14784.08, + "end": 14787.38, + "probability": 0.9062 + }, + { + "start": 14788.6, + "end": 14789.46, + "probability": 0.9566 + }, + { + "start": 14789.56, + "end": 14791.2, + "probability": 0.8982 + }, + { + "start": 14791.46, + "end": 14791.88, + "probability": 0.8423 + }, + { + "start": 14793.06, + "end": 14794.9, + "probability": 0.979 + }, + { + "start": 14797.78, + "end": 14801.84, + "probability": 0.9382 + }, + { + "start": 14802.78, + "end": 14804.94, + "probability": 0.9865 + }, + { + "start": 14807.72, + "end": 14810.06, + "probability": 0.9995 + }, + { + "start": 14810.06, + "end": 14814.1, + "probability": 0.9698 + }, + { + "start": 14814.84, + "end": 14819.7, + "probability": 0.9926 + }, + { + "start": 14822.0, + "end": 14822.56, + "probability": 0.5901 + }, + { + "start": 14823.28, + "end": 14827.54, + "probability": 0.9954 + }, + { + "start": 14828.82, + "end": 14837.86, + "probability": 0.9922 + }, + { + "start": 14837.86, + "end": 14844.2, + "probability": 0.9974 + }, + { + "start": 14844.28, + "end": 14849.06, + "probability": 0.9559 + }, + { + "start": 14849.46, + "end": 14853.14, + "probability": 0.9883 + }, + { + "start": 14853.2, + "end": 14860.18, + "probability": 0.9956 + }, + { + "start": 14861.0, + "end": 14862.75, + "probability": 0.9976 + }, + { + "start": 14863.62, + "end": 14869.38, + "probability": 0.9941 + }, + { + "start": 14869.4, + "end": 14874.2, + "probability": 0.9989 + }, + { + "start": 14874.52, + "end": 14878.01, + "probability": 0.995 + }, + { + "start": 14879.4, + "end": 14882.48, + "probability": 0.9972 + }, + { + "start": 14883.06, + "end": 14885.72, + "probability": 0.8035 + }, + { + "start": 14886.68, + "end": 14891.5, + "probability": 0.9836 + }, + { + "start": 14892.7, + "end": 14895.86, + "probability": 0.9589 + }, + { + "start": 14895.86, + "end": 14899.58, + "probability": 0.9934 + }, + { + "start": 14900.54, + "end": 14903.62, + "probability": 0.9912 + }, + { + "start": 14904.5, + "end": 14905.72, + "probability": 0.9887 + }, + { + "start": 14906.7, + "end": 14907.42, + "probability": 0.9718 + }, + { + "start": 14908.08, + "end": 14911.6, + "probability": 0.9362 + }, + { + "start": 14912.54, + "end": 14914.02, + "probability": 0.9477 + }, + { + "start": 14915.68, + "end": 14919.96, + "probability": 0.9941 + }, + { + "start": 14920.1, + "end": 14921.62, + "probability": 0.97 + }, + { + "start": 14922.44, + "end": 14922.68, + "probability": 0.8638 + }, + { + "start": 14923.9, + "end": 14924.82, + "probability": 0.7637 + }, + { + "start": 14925.36, + "end": 14929.54, + "probability": 0.9771 + }, + { + "start": 14930.52, + "end": 14936.82, + "probability": 0.9922 + }, + { + "start": 14937.78, + "end": 14941.26, + "probability": 0.9976 + }, + { + "start": 14941.88, + "end": 14946.17, + "probability": 0.9658 + }, + { + "start": 14947.12, + "end": 14948.82, + "probability": 0.9051 + }, + { + "start": 14949.48, + "end": 14951.42, + "probability": 0.9212 + }, + { + "start": 14952.38, + "end": 14955.68, + "probability": 0.9987 + }, + { + "start": 14955.68, + "end": 14958.32, + "probability": 0.9186 + }, + { + "start": 14959.4, + "end": 14963.0, + "probability": 0.9968 + }, + { + "start": 14963.54, + "end": 14964.56, + "probability": 0.9587 + }, + { + "start": 14966.0, + "end": 14968.1, + "probability": 0.7212 + }, + { + "start": 14969.02, + "end": 14973.18, + "probability": 0.9891 + }, + { + "start": 14974.64, + "end": 14977.5, + "probability": 0.9241 + }, + { + "start": 14978.14, + "end": 14983.2, + "probability": 0.997 + }, + { + "start": 14983.82, + "end": 14985.88, + "probability": 0.9854 + }, + { + "start": 14986.6, + "end": 14988.18, + "probability": 0.8641 + }, + { + "start": 14988.96, + "end": 14990.12, + "probability": 0.9139 + }, + { + "start": 14990.86, + "end": 14992.34, + "probability": 0.7656 + }, + { + "start": 14992.84, + "end": 14997.76, + "probability": 0.9878 + }, + { + "start": 14998.14, + "end": 14999.18, + "probability": 0.9842 + }, + { + "start": 15000.34, + "end": 15002.66, + "probability": 0.991 + }, + { + "start": 15003.9, + "end": 15004.02, + "probability": 0.6597 + }, + { + "start": 15004.2, + "end": 15009.36, + "probability": 0.9942 + }, + { + "start": 15010.04, + "end": 15012.68, + "probability": 0.9254 + }, + { + "start": 15013.54, + "end": 15017.52, + "probability": 0.9792 + }, + { + "start": 15018.42, + "end": 15020.94, + "probability": 0.9849 + }, + { + "start": 15021.68, + "end": 15022.48, + "probability": 0.2339 + }, + { + "start": 15023.44, + "end": 15026.38, + "probability": 0.9804 + }, + { + "start": 15027.4, + "end": 15030.8, + "probability": 0.9847 + }, + { + "start": 15030.9, + "end": 15032.36, + "probability": 0.988 + }, + { + "start": 15033.08, + "end": 15035.22, + "probability": 0.9889 + }, + { + "start": 15035.78, + "end": 15036.38, + "probability": 0.9751 + }, + { + "start": 15037.36, + "end": 15039.16, + "probability": 0.9771 + }, + { + "start": 15040.2, + "end": 15041.38, + "probability": 0.6613 + }, + { + "start": 15042.78, + "end": 15047.6, + "probability": 0.9589 + }, + { + "start": 15048.54, + "end": 15052.98, + "probability": 0.9774 + }, + { + "start": 15053.62, + "end": 15057.08, + "probability": 0.9683 + }, + { + "start": 15058.26, + "end": 15060.9, + "probability": 0.9518 + }, + { + "start": 15060.9, + "end": 15064.68, + "probability": 0.9995 + }, + { + "start": 15065.4, + "end": 15066.66, + "probability": 0.9512 + }, + { + "start": 15067.54, + "end": 15069.1, + "probability": 0.7358 + }, + { + "start": 15070.7, + "end": 15071.56, + "probability": 0.8473 + }, + { + "start": 15072.02, + "end": 15074.12, + "probability": 0.922 + }, + { + "start": 15074.58, + "end": 15076.34, + "probability": 0.9831 + }, + { + "start": 15076.94, + "end": 15078.4, + "probability": 0.7887 + }, + { + "start": 15079.14, + "end": 15081.02, + "probability": 0.6558 + }, + { + "start": 15081.64, + "end": 15083.9, + "probability": 0.9359 + }, + { + "start": 15084.48, + "end": 15085.04, + "probability": 0.7472 + }, + { + "start": 15085.6, + "end": 15088.28, + "probability": 0.891 + }, + { + "start": 15089.12, + "end": 15091.16, + "probability": 0.9866 + }, + { + "start": 15091.7, + "end": 15095.68, + "probability": 0.9415 + }, + { + "start": 15096.26, + "end": 15100.52, + "probability": 0.9951 + }, + { + "start": 15101.84, + "end": 15103.92, + "probability": 0.9873 + }, + { + "start": 15104.78, + "end": 15107.12, + "probability": 0.9497 + }, + { + "start": 15107.96, + "end": 15109.16, + "probability": 0.9961 + }, + { + "start": 15109.26, + "end": 15110.12, + "probability": 0.9856 + }, + { + "start": 15110.56, + "end": 15115.44, + "probability": 0.9857 + }, + { + "start": 15116.1, + "end": 15119.27, + "probability": 0.9959 + }, + { + "start": 15120.39, + "end": 15125.1, + "probability": 0.9309 + }, + { + "start": 15125.44, + "end": 15127.26, + "probability": 0.9955 + }, + { + "start": 15128.46, + "end": 15131.54, + "probability": 0.9816 + }, + { + "start": 15134.1, + "end": 15138.38, + "probability": 0.9679 + }, + { + "start": 15139.3, + "end": 15141.82, + "probability": 0.9766 + }, + { + "start": 15141.82, + "end": 15147.94, + "probability": 0.84 + }, + { + "start": 15148.06, + "end": 15150.2, + "probability": 0.9886 + }, + { + "start": 15150.2, + "end": 15154.58, + "probability": 0.9929 + }, + { + "start": 15154.62, + "end": 15155.28, + "probability": 0.3878 + }, + { + "start": 15155.86, + "end": 15157.33, + "probability": 0.9897 + }, + { + "start": 15157.52, + "end": 15161.1, + "probability": 0.8594 + }, + { + "start": 15161.88, + "end": 15165.16, + "probability": 0.9993 + }, + { + "start": 15165.26, + "end": 15166.54, + "probability": 0.9936 + }, + { + "start": 15168.52, + "end": 15171.16, + "probability": 0.9826 + }, + { + "start": 15172.18, + "end": 15175.0, + "probability": 0.9984 + }, + { + "start": 15175.66, + "end": 15179.0, + "probability": 0.9099 + }, + { + "start": 15179.68, + "end": 15182.22, + "probability": 0.9648 + }, + { + "start": 15182.86, + "end": 15185.31, + "probability": 0.9948 + }, + { + "start": 15186.28, + "end": 15189.39, + "probability": 0.9812 + }, + { + "start": 15190.04, + "end": 15191.26, + "probability": 0.9624 + }, + { + "start": 15191.52, + "end": 15196.5, + "probability": 0.9893 + }, + { + "start": 15197.76, + "end": 15198.3, + "probability": 0.7369 + }, + { + "start": 15200.1, + "end": 15204.02, + "probability": 0.9717 + }, + { + "start": 15204.72, + "end": 15207.66, + "probability": 0.9887 + }, + { + "start": 15207.76, + "end": 15212.04, + "probability": 0.9885 + }, + { + "start": 15212.16, + "end": 15218.02, + "probability": 0.9929 + }, + { + "start": 15220.38, + "end": 15221.46, + "probability": 0.7482 + }, + { + "start": 15222.62, + "end": 15225.34, + "probability": 0.9359 + }, + { + "start": 15225.98, + "end": 15228.7, + "probability": 0.9824 + }, + { + "start": 15229.52, + "end": 15231.14, + "probability": 0.8853 + }, + { + "start": 15231.82, + "end": 15235.5, + "probability": 0.97 + }, + { + "start": 15236.26, + "end": 15237.98, + "probability": 0.7611 + }, + { + "start": 15238.46, + "end": 15240.68, + "probability": 0.7503 + }, + { + "start": 15241.04, + "end": 15243.1, + "probability": 0.9789 + }, + { + "start": 15243.52, + "end": 15248.38, + "probability": 0.7951 + }, + { + "start": 15249.96, + "end": 15253.66, + "probability": 0.9902 + }, + { + "start": 15254.6, + "end": 15256.4, + "probability": 0.9524 + }, + { + "start": 15256.6, + "end": 15256.8, + "probability": 0.7595 + }, + { + "start": 15257.34, + "end": 15259.76, + "probability": 0.8151 + }, + { + "start": 15260.28, + "end": 15265.14, + "probability": 0.8 + }, + { + "start": 15266.16, + "end": 15266.88, + "probability": 0.7272 + }, + { + "start": 15267.4, + "end": 15268.18, + "probability": 0.871 + }, + { + "start": 15268.28, + "end": 15271.92, + "probability": 0.8374 + }, + { + "start": 15272.1, + "end": 15272.76, + "probability": 0.9932 + }, + { + "start": 15273.66, + "end": 15276.42, + "probability": 0.9978 + }, + { + "start": 15277.1, + "end": 15279.5, + "probability": 0.9458 + }, + { + "start": 15280.08, + "end": 15283.42, + "probability": 0.7875 + }, + { + "start": 15284.36, + "end": 15289.96, + "probability": 0.6578 + }, + { + "start": 15290.68, + "end": 15292.38, + "probability": 0.7147 + }, + { + "start": 15292.64, + "end": 15297.82, + "probability": 0.7696 + }, + { + "start": 15298.7, + "end": 15303.72, + "probability": 0.9526 + }, + { + "start": 15303.82, + "end": 15306.84, + "probability": 0.8961 + }, + { + "start": 15307.72, + "end": 15309.7, + "probability": 0.9629 + }, + { + "start": 15310.1, + "end": 15312.12, + "probability": 0.9629 + }, + { + "start": 15312.62, + "end": 15314.04, + "probability": 0.8082 + }, + { + "start": 15314.12, + "end": 15317.54, + "probability": 0.5589 + }, + { + "start": 15318.64, + "end": 15319.7, + "probability": 0.8574 + }, + { + "start": 15320.5, + "end": 15323.54, + "probability": 0.5012 + }, + { + "start": 15325.26, + "end": 15327.99, + "probability": 0.8481 + }, + { + "start": 15329.44, + "end": 15333.2, + "probability": 0.7395 + }, + { + "start": 15333.76, + "end": 15335.76, + "probability": 0.8458 + }, + { + "start": 15336.42, + "end": 15338.76, + "probability": 0.9907 + }, + { + "start": 15341.06, + "end": 15345.18, + "probability": 0.9107 + }, + { + "start": 15346.2, + "end": 15348.62, + "probability": 0.875 + }, + { + "start": 15349.44, + "end": 15351.46, + "probability": 0.9966 + }, + { + "start": 15353.94, + "end": 15358.86, + "probability": 0.8295 + }, + { + "start": 15358.94, + "end": 15359.64, + "probability": 0.9677 + }, + { + "start": 15359.86, + "end": 15363.92, + "probability": 0.9729 + }, + { + "start": 15364.1, + "end": 15364.86, + "probability": 0.7945 + }, + { + "start": 15365.68, + "end": 15366.48, + "probability": 0.9736 + }, + { + "start": 15367.5, + "end": 15370.18, + "probability": 0.9539 + }, + { + "start": 15370.96, + "end": 15374.5, + "probability": 0.9905 + }, + { + "start": 15374.6, + "end": 15377.82, + "probability": 0.9888 + }, + { + "start": 15378.66, + "end": 15380.3, + "probability": 0.9914 + }, + { + "start": 15381.56, + "end": 15383.23, + "probability": 0.8614 + }, + { + "start": 15385.0, + "end": 15387.2, + "probability": 0.7955 + }, + { + "start": 15388.12, + "end": 15390.11, + "probability": 0.9858 + }, + { + "start": 15391.9, + "end": 15394.18, + "probability": 0.9433 + }, + { + "start": 15394.94, + "end": 15398.48, + "probability": 0.9823 + }, + { + "start": 15398.66, + "end": 15399.4, + "probability": 0.1036 + }, + { + "start": 15399.46, + "end": 15399.92, + "probability": 0.569 + }, + { + "start": 15400.86, + "end": 15402.78, + "probability": 0.7325 + }, + { + "start": 15403.34, + "end": 15408.16, + "probability": 0.793 + }, + { + "start": 15408.78, + "end": 15410.72, + "probability": 0.9785 + }, + { + "start": 15411.36, + "end": 15413.66, + "probability": 0.7896 + }, + { + "start": 15414.42, + "end": 15418.7, + "probability": 0.9951 + }, + { + "start": 15418.7, + "end": 15421.96, + "probability": 0.9946 + }, + { + "start": 15422.7, + "end": 15427.22, + "probability": 0.9897 + }, + { + "start": 15427.56, + "end": 15432.24, + "probability": 0.9977 + }, + { + "start": 15432.24, + "end": 15438.32, + "probability": 0.9888 + }, + { + "start": 15438.96, + "end": 15442.16, + "probability": 0.9939 + }, + { + "start": 15442.32, + "end": 15444.66, + "probability": 0.9896 + }, + { + "start": 15444.72, + "end": 15445.3, + "probability": 0.8179 + }, + { + "start": 15445.36, + "end": 15445.8, + "probability": 0.8608 + }, + { + "start": 15446.04, + "end": 15451.44, + "probability": 0.9639 + }, + { + "start": 15451.9, + "end": 15454.74, + "probability": 0.7035 + }, + { + "start": 15455.46, + "end": 15459.02, + "probability": 0.943 + }, + { + "start": 15459.6, + "end": 15463.01, + "probability": 0.9886 + }, + { + "start": 15463.92, + "end": 15469.6, + "probability": 0.9858 + }, + { + "start": 15469.92, + "end": 15475.3, + "probability": 0.9946 + }, + { + "start": 15475.3, + "end": 15481.92, + "probability": 0.9993 + }, + { + "start": 15482.38, + "end": 15488.12, + "probability": 0.9825 + }, + { + "start": 15488.86, + "end": 15492.32, + "probability": 0.936 + }, + { + "start": 15492.94, + "end": 15494.86, + "probability": 0.9932 + }, + { + "start": 15495.2, + "end": 15495.34, + "probability": 0.7644 + }, + { + "start": 15495.46, + "end": 15502.14, + "probability": 0.9814 + }, + { + "start": 15502.52, + "end": 15504.62, + "probability": 0.9808 + }, + { + "start": 15504.86, + "end": 15508.36, + "probability": 0.9486 + }, + { + "start": 15509.32, + "end": 15514.18, + "probability": 0.9858 + }, + { + "start": 15514.3, + "end": 15519.98, + "probability": 0.9919 + }, + { + "start": 15520.96, + "end": 15524.16, + "probability": 0.9798 + }, + { + "start": 15524.92, + "end": 15526.66, + "probability": 0.6028 + }, + { + "start": 15528.04, + "end": 15529.16, + "probability": 0.6726 + }, + { + "start": 15545.06, + "end": 15545.83, + "probability": 0.5192 + }, + { + "start": 15546.2, + "end": 15546.54, + "probability": 0.8225 + }, + { + "start": 15552.22, + "end": 15553.16, + "probability": 0.582 + }, + { + "start": 15553.2, + "end": 15555.12, + "probability": 0.8752 + }, + { + "start": 15555.3, + "end": 15557.6, + "probability": 0.9719 + }, + { + "start": 15558.5, + "end": 15561.16, + "probability": 0.7964 + }, + { + "start": 15564.56, + "end": 15565.22, + "probability": 0.9673 + }, + { + "start": 15567.54, + "end": 15572.4, + "probability": 0.9892 + }, + { + "start": 15572.6, + "end": 15573.18, + "probability": 0.7953 + }, + { + "start": 15573.3, + "end": 15574.68, + "probability": 0.8745 + }, + { + "start": 15575.14, + "end": 15576.66, + "probability": 0.9083 + }, + { + "start": 15577.46, + "end": 15578.79, + "probability": 0.9468 + }, + { + "start": 15580.04, + "end": 15583.76, + "probability": 0.9198 + }, + { + "start": 15586.28, + "end": 15588.08, + "probability": 0.9167 + }, + { + "start": 15591.22, + "end": 15599.66, + "probability": 0.9775 + }, + { + "start": 15602.22, + "end": 15603.3, + "probability": 0.9933 + }, + { + "start": 15604.04, + "end": 15607.68, + "probability": 0.9802 + }, + { + "start": 15610.22, + "end": 15611.92, + "probability": 0.8076 + }, + { + "start": 15612.56, + "end": 15616.5, + "probability": 0.9917 + }, + { + "start": 15616.62, + "end": 15617.89, + "probability": 0.9913 + }, + { + "start": 15618.06, + "end": 15618.9, + "probability": 0.826 + }, + { + "start": 15619.32, + "end": 15620.78, + "probability": 0.9683 + }, + { + "start": 15622.82, + "end": 15624.4, + "probability": 0.8984 + }, + { + "start": 15626.86, + "end": 15627.87, + "probability": 0.9812 + }, + { + "start": 15630.28, + "end": 15631.52, + "probability": 0.9133 + }, + { + "start": 15632.94, + "end": 15635.58, + "probability": 0.8072 + }, + { + "start": 15636.8, + "end": 15638.32, + "probability": 0.9861 + }, + { + "start": 15639.0, + "end": 15644.1, + "probability": 0.968 + }, + { + "start": 15644.92, + "end": 15645.69, + "probability": 0.9482 + }, + { + "start": 15646.38, + "end": 15650.2, + "probability": 0.9237 + }, + { + "start": 15652.4, + "end": 15653.78, + "probability": 0.9268 + }, + { + "start": 15654.88, + "end": 15656.68, + "probability": 0.9963 + }, + { + "start": 15657.88, + "end": 15659.16, + "probability": 0.9476 + }, + { + "start": 15659.32, + "end": 15660.5, + "probability": 0.9921 + }, + { + "start": 15660.86, + "end": 15661.39, + "probability": 0.9923 + }, + { + "start": 15661.68, + "end": 15662.81, + "probability": 0.9941 + }, + { + "start": 15662.9, + "end": 15663.86, + "probability": 0.9891 + }, + { + "start": 15664.02, + "end": 15665.21, + "probability": 0.9875 + }, + { + "start": 15665.34, + "end": 15667.44, + "probability": 0.993 + }, + { + "start": 15667.68, + "end": 15670.6, + "probability": 0.999 + }, + { + "start": 15670.6, + "end": 15673.4, + "probability": 0.9863 + }, + { + "start": 15673.84, + "end": 15673.94, + "probability": 0.7588 + }, + { + "start": 15674.1, + "end": 15674.85, + "probability": 0.6193 + }, + { + "start": 15675.64, + "end": 15676.66, + "probability": 0.828 + }, + { + "start": 15676.84, + "end": 15677.6, + "probability": 0.7819 + }, + { + "start": 15677.96, + "end": 15678.82, + "probability": 0.7361 + }, + { + "start": 15678.88, + "end": 15679.84, + "probability": 0.7323 + }, + { + "start": 15680.14, + "end": 15686.38, + "probability": 0.8761 + }, + { + "start": 15686.5, + "end": 15687.08, + "probability": 0.9043 + }, + { + "start": 15687.32, + "end": 15692.48, + "probability": 0.9888 + }, + { + "start": 15692.71, + "end": 15698.36, + "probability": 0.9563 + }, + { + "start": 15699.58, + "end": 15701.02, + "probability": 0.8503 + }, + { + "start": 15701.54, + "end": 15703.72, + "probability": 0.9961 + }, + { + "start": 15704.04, + "end": 15706.96, + "probability": 0.9661 + }, + { + "start": 15709.16, + "end": 15710.26, + "probability": 0.8168 + }, + { + "start": 15710.34, + "end": 15711.12, + "probability": 0.9596 + }, + { + "start": 15711.24, + "end": 15715.18, + "probability": 0.9977 + }, + { + "start": 15715.32, + "end": 15717.34, + "probability": 0.9985 + }, + { + "start": 15717.58, + "end": 15719.8, + "probability": 0.8433 + }, + { + "start": 15719.86, + "end": 15722.25, + "probability": 0.9883 + }, + { + "start": 15722.64, + "end": 15725.3, + "probability": 0.9914 + }, + { + "start": 15726.95, + "end": 15728.8, + "probability": 0.2611 + }, + { + "start": 15728.8, + "end": 15729.8, + "probability": 0.1772 + }, + { + "start": 15729.9, + "end": 15736.06, + "probability": 0.9954 + }, + { + "start": 15736.3, + "end": 15737.1, + "probability": 0.6151 + }, + { + "start": 15737.5, + "end": 15738.18, + "probability": 0.7065 + }, + { + "start": 15738.3, + "end": 15738.74, + "probability": 0.6987 + }, + { + "start": 15738.74, + "end": 15740.48, + "probability": 0.7871 + }, + { + "start": 15740.54, + "end": 15743.28, + "probability": 0.9512 + }, + { + "start": 15743.8, + "end": 15749.86, + "probability": 0.9917 + }, + { + "start": 15750.84, + "end": 15753.52, + "probability": 0.8949 + }, + { + "start": 15754.42, + "end": 15756.08, + "probability": 0.9854 + }, + { + "start": 15756.32, + "end": 15757.26, + "probability": 0.9661 + }, + { + "start": 15757.42, + "end": 15759.06, + "probability": 0.3838 + }, + { + "start": 15759.06, + "end": 15761.9, + "probability": 0.9199 + }, + { + "start": 15762.38, + "end": 15765.88, + "probability": 0.9878 + }, + { + "start": 15766.7, + "end": 15767.6, + "probability": 0.8556 + }, + { + "start": 15767.66, + "end": 15770.78, + "probability": 0.9886 + }, + { + "start": 15771.16, + "end": 15773.58, + "probability": 0.9973 + }, + { + "start": 15773.62, + "end": 15776.12, + "probability": 0.9836 + }, + { + "start": 15776.24, + "end": 15777.08, + "probability": 0.6805 + }, + { + "start": 15777.14, + "end": 15778.32, + "probability": 0.9369 + }, + { + "start": 15778.5, + "end": 15779.36, + "probability": 0.66 + }, + { + "start": 15779.82, + "end": 15781.33, + "probability": 0.9881 + }, + { + "start": 15783.36, + "end": 15784.48, + "probability": 0.964 + }, + { + "start": 15785.4, + "end": 15785.72, + "probability": 0.99 + }, + { + "start": 15789.36, + "end": 15790.56, + "probability": 0.5548 + }, + { + "start": 15791.14, + "end": 15792.12, + "probability": 0.9873 + }, + { + "start": 15792.26, + "end": 15795.32, + "probability": 0.972 + }, + { + "start": 15795.42, + "end": 15796.4, + "probability": 0.8843 + }, + { + "start": 15796.6, + "end": 15797.4, + "probability": 0.8295 + }, + { + "start": 15799.02, + "end": 15800.2, + "probability": 0.776 + }, + { + "start": 15801.34, + "end": 15804.06, + "probability": 0.9025 + }, + { + "start": 15805.22, + "end": 15805.54, + "probability": 0.64 + }, + { + "start": 15805.6, + "end": 15807.68, + "probability": 0.9792 + }, + { + "start": 15808.48, + "end": 15811.52, + "probability": 0.938 + }, + { + "start": 15811.52, + "end": 15814.48, + "probability": 0.8691 + }, + { + "start": 15815.24, + "end": 15818.04, + "probability": 0.9645 + }, + { + "start": 15818.32, + "end": 15820.18, + "probability": 0.8376 + }, + { + "start": 15820.26, + "end": 15820.78, + "probability": 0.8896 + }, + { + "start": 15820.86, + "end": 15821.36, + "probability": 0.9315 + }, + { + "start": 15821.42, + "end": 15821.84, + "probability": 0.9333 + }, + { + "start": 15821.94, + "end": 15822.42, + "probability": 0.8577 + }, + { + "start": 15822.56, + "end": 15822.72, + "probability": 0.29 + }, + { + "start": 15823.12, + "end": 15823.78, + "probability": 0.9216 + }, + { + "start": 15824.7, + "end": 15827.06, + "probability": 0.9424 + }, + { + "start": 15827.28, + "end": 15828.26, + "probability": 0.9547 + }, + { + "start": 15828.54, + "end": 15829.8, + "probability": 0.7986 + }, + { + "start": 15830.14, + "end": 15831.22, + "probability": 0.8647 + }, + { + "start": 15831.24, + "end": 15831.92, + "probability": 0.8213 + }, + { + "start": 15832.02, + "end": 15833.46, + "probability": 0.9251 + }, + { + "start": 15834.16, + "end": 15836.95, + "probability": 0.8864 + }, + { + "start": 15837.8, + "end": 15840.06, + "probability": 0.9648 + }, + { + "start": 15840.1, + "end": 15843.08, + "probability": 0.498 + }, + { + "start": 15843.46, + "end": 15845.2, + "probability": 0.9644 + }, + { + "start": 15845.92, + "end": 15846.2, + "probability": 0.7517 + }, + { + "start": 15847.82, + "end": 15848.5, + "probability": 0.8458 + }, + { + "start": 15849.76, + "end": 15851.93, + "probability": 0.9257 + }, + { + "start": 15852.16, + "end": 15853.78, + "probability": 0.7335 + }, + { + "start": 15855.0, + "end": 15856.12, + "probability": 0.7612 + }, + { + "start": 15857.1, + "end": 15859.68, + "probability": 0.5873 + }, + { + "start": 15860.32, + "end": 15864.46, + "probability": 0.7966 + }, + { + "start": 15866.82, + "end": 15869.76, + "probability": 0.9757 + }, + { + "start": 15869.84, + "end": 15870.76, + "probability": 0.6433 + }, + { + "start": 15870.86, + "end": 15872.0, + "probability": 0.7218 + }, + { + "start": 15872.06, + "end": 15873.26, + "probability": 0.6746 + }, + { + "start": 15873.72, + "end": 15874.62, + "probability": 0.8421 + }, + { + "start": 15874.8, + "end": 15877.12, + "probability": 0.7057 + }, + { + "start": 15877.24, + "end": 15878.54, + "probability": 0.9685 + }, + { + "start": 15879.14, + "end": 15881.06, + "probability": 0.8106 + }, + { + "start": 15881.18, + "end": 15881.4, + "probability": 0.632 + }, + { + "start": 15881.5, + "end": 15882.71, + "probability": 0.9961 + }, + { + "start": 15883.38, + "end": 15884.47, + "probability": 0.8165 + }, + { + "start": 15884.9, + "end": 15885.76, + "probability": 0.9419 + }, + { + "start": 15886.28, + "end": 15887.52, + "probability": 0.7412 + }, + { + "start": 15887.78, + "end": 15889.19, + "probability": 0.5762 + }, + { + "start": 15889.6, + "end": 15894.58, + "probability": 0.9559 + }, + { + "start": 15894.68, + "end": 15895.24, + "probability": 0.4449 + }, + { + "start": 15895.28, + "end": 15897.08, + "probability": 0.565 + }, + { + "start": 15897.16, + "end": 15897.88, + "probability": 0.6819 + }, + { + "start": 15898.0, + "end": 15898.86, + "probability": 0.9546 + }, + { + "start": 15898.94, + "end": 15900.82, + "probability": 0.45 + }, + { + "start": 15901.42, + "end": 15902.5, + "probability": 0.9595 + }, + { + "start": 15902.94, + "end": 15905.84, + "probability": 0.9448 + }, + { + "start": 15906.94, + "end": 15908.74, + "probability": 0.9599 + }, + { + "start": 15909.34, + "end": 15910.94, + "probability": 0.8007 + }, + { + "start": 15911.7, + "end": 15915.61, + "probability": 0.9889 + }, + { + "start": 15916.58, + "end": 15922.02, + "probability": 0.8512 + }, + { + "start": 15922.12, + "end": 15923.54, + "probability": 0.6215 + }, + { + "start": 15923.92, + "end": 15926.43, + "probability": 0.9468 + }, + { + "start": 15927.18, + "end": 15928.27, + "probability": 0.9917 + }, + { + "start": 15928.92, + "end": 15931.18, + "probability": 0.9951 + }, + { + "start": 15931.18, + "end": 15933.9, + "probability": 0.9779 + }, + { + "start": 15934.1, + "end": 15934.26, + "probability": 0.4549 + }, + { + "start": 15934.26, + "end": 15934.36, + "probability": 0.6597 + }, + { + "start": 15934.48, + "end": 15934.58, + "probability": 0.7424 + }, + { + "start": 15934.76, + "end": 15935.46, + "probability": 0.9084 + }, + { + "start": 15935.58, + "end": 15936.91, + "probability": 0.8968 + }, + { + "start": 15937.4, + "end": 15941.76, + "probability": 0.9707 + }, + { + "start": 15941.76, + "end": 15942.99, + "probability": 0.5691 + }, + { + "start": 15943.22, + "end": 15944.76, + "probability": 0.9647 + }, + { + "start": 15945.0, + "end": 15947.08, + "probability": 0.9838 + }, + { + "start": 15947.16, + "end": 15949.64, + "probability": 0.8604 + }, + { + "start": 15950.26, + "end": 15953.82, + "probability": 0.9173 + }, + { + "start": 15953.94, + "end": 15954.16, + "probability": 0.5769 + }, + { + "start": 15955.18, + "end": 15956.16, + "probability": 0.8347 + }, + { + "start": 15956.7, + "end": 15956.9, + "probability": 0.0434 + }, + { + "start": 15957.04, + "end": 15957.66, + "probability": 0.9569 + }, + { + "start": 15958.32, + "end": 15959.0, + "probability": 0.8477 + }, + { + "start": 15959.5, + "end": 15961.6, + "probability": 0.9019 + }, + { + "start": 15961.6, + "end": 15962.82, + "probability": 0.8505 + }, + { + "start": 15964.66, + "end": 15965.06, + "probability": 0.8548 + }, + { + "start": 15966.18, + "end": 15967.66, + "probability": 0.9781 + }, + { + "start": 15967.82, + "end": 15969.18, + "probability": 0.8049 + }, + { + "start": 15969.22, + "end": 15970.0, + "probability": 0.8848 + }, + { + "start": 15970.08, + "end": 15971.72, + "probability": 0.988 + }, + { + "start": 15972.06, + "end": 15972.74, + "probability": 0.7117 + }, + { + "start": 15973.0, + "end": 15975.62, + "probability": 0.9137 + }, + { + "start": 15975.94, + "end": 15977.0, + "probability": 0.8528 + }, + { + "start": 15977.34, + "end": 15981.82, + "probability": 0.9712 + }, + { + "start": 15982.94, + "end": 15984.76, + "probability": 0.7493 + }, + { + "start": 15986.8, + "end": 15988.54, + "probability": 0.9984 + }, + { + "start": 15988.74, + "end": 15991.86, + "probability": 0.7445 + }, + { + "start": 15992.1, + "end": 15993.82, + "probability": 0.8302 + }, + { + "start": 15994.16, + "end": 15996.3, + "probability": 0.9176 + }, + { + "start": 15996.6, + "end": 15998.1, + "probability": 0.8263 + }, + { + "start": 15999.24, + "end": 16001.68, + "probability": 0.9168 + }, + { + "start": 16002.94, + "end": 16003.9, + "probability": 0.6794 + }, + { + "start": 16004.92, + "end": 16007.02, + "probability": 0.9969 + }, + { + "start": 16008.12, + "end": 16009.14, + "probability": 0.8276 + }, + { + "start": 16009.24, + "end": 16010.48, + "probability": 0.9087 + }, + { + "start": 16011.1, + "end": 16012.26, + "probability": 0.9878 + }, + { + "start": 16013.86, + "end": 16016.0, + "probability": 0.9977 + }, + { + "start": 16016.9, + "end": 16019.68, + "probability": 0.9906 + }, + { + "start": 16020.58, + "end": 16022.92, + "probability": 0.9888 + }, + { + "start": 16023.38, + "end": 16025.18, + "probability": 0.9971 + }, + { + "start": 16025.48, + "end": 16026.48, + "probability": 0.8291 + }, + { + "start": 16027.38, + "end": 16031.68, + "probability": 0.8913 + }, + { + "start": 16031.74, + "end": 16035.18, + "probability": 0.994 + }, + { + "start": 16035.54, + "end": 16037.56, + "probability": 0.9979 + }, + { + "start": 16037.56, + "end": 16040.84, + "probability": 0.9846 + }, + { + "start": 16041.44, + "end": 16044.42, + "probability": 0.9854 + }, + { + "start": 16045.1, + "end": 16047.94, + "probability": 0.94 + }, + { + "start": 16047.94, + "end": 16049.54, + "probability": 0.1734 + }, + { + "start": 16049.56, + "end": 16050.38, + "probability": 0.9714 + }, + { + "start": 16051.26, + "end": 16052.84, + "probability": 0.9897 + }, + { + "start": 16053.74, + "end": 16055.5, + "probability": 0.9868 + }, + { + "start": 16056.46, + "end": 16057.46, + "probability": 0.6611 + }, + { + "start": 16058.58, + "end": 16058.92, + "probability": 0.8715 + }, + { + "start": 16059.42, + "end": 16060.04, + "probability": 0.6485 + }, + { + "start": 16062.36, + "end": 16064.38, + "probability": 0.6359 + }, + { + "start": 16065.74, + "end": 16067.96, + "probability": 0.9444 + }, + { + "start": 16076.22, + "end": 16077.18, + "probability": 0.2779 + }, + { + "start": 16077.34, + "end": 16077.72, + "probability": 0.8773 + }, + { + "start": 16080.07, + "end": 16083.0, + "probability": 0.7197 + }, + { + "start": 16083.56, + "end": 16084.82, + "probability": 0.89 + }, + { + "start": 16086.04, + "end": 16087.8, + "probability": 0.9013 + }, + { + "start": 16091.28, + "end": 16094.5, + "probability": 0.9965 + }, + { + "start": 16094.5, + "end": 16097.68, + "probability": 0.9992 + }, + { + "start": 16098.76, + "end": 16100.38, + "probability": 0.783 + }, + { + "start": 16100.64, + "end": 16103.46, + "probability": 0.953 + }, + { + "start": 16103.6, + "end": 16105.56, + "probability": 0.9915 + }, + { + "start": 16106.98, + "end": 16107.78, + "probability": 0.7488 + }, + { + "start": 16107.98, + "end": 16111.56, + "probability": 0.8929 + }, + { + "start": 16112.36, + "end": 16113.66, + "probability": 0.712 + }, + { + "start": 16114.1, + "end": 16116.82, + "probability": 0.8353 + }, + { + "start": 16118.8, + "end": 16122.18, + "probability": 0.7982 + }, + { + "start": 16123.26, + "end": 16128.3, + "probability": 0.991 + }, + { + "start": 16129.02, + "end": 16133.04, + "probability": 0.969 + }, + { + "start": 16133.58, + "end": 16135.22, + "probability": 0.9393 + }, + { + "start": 16135.54, + "end": 16138.5, + "probability": 0.9936 + }, + { + "start": 16139.62, + "end": 16141.88, + "probability": 0.8265 + }, + { + "start": 16142.1, + "end": 16143.02, + "probability": 0.557 + }, + { + "start": 16143.16, + "end": 16144.18, + "probability": 0.9446 + }, + { + "start": 16144.28, + "end": 16144.82, + "probability": 0.6409 + }, + { + "start": 16146.18, + "end": 16147.62, + "probability": 0.9386 + }, + { + "start": 16148.24, + "end": 16151.98, + "probability": 0.9867 + }, + { + "start": 16151.98, + "end": 16156.28, + "probability": 0.9985 + }, + { + "start": 16158.5, + "end": 16163.52, + "probability": 0.9689 + }, + { + "start": 16164.06, + "end": 16166.68, + "probability": 0.786 + }, + { + "start": 16167.54, + "end": 16168.36, + "probability": 0.6086 + }, + { + "start": 16168.48, + "end": 16170.02, + "probability": 0.9447 + }, + { + "start": 16170.08, + "end": 16171.22, + "probability": 0.8075 + }, + { + "start": 16172.14, + "end": 16174.08, + "probability": 0.9676 + }, + { + "start": 16174.68, + "end": 16176.58, + "probability": 0.9902 + }, + { + "start": 16177.18, + "end": 16178.48, + "probability": 0.849 + }, + { + "start": 16180.56, + "end": 16181.72, + "probability": 0.945 + }, + { + "start": 16182.6, + "end": 16183.06, + "probability": 0.9893 + }, + { + "start": 16183.3, + "end": 16183.88, + "probability": 0.6819 + }, + { + "start": 16183.88, + "end": 16184.6, + "probability": 0.8285 + }, + { + "start": 16184.66, + "end": 16186.54, + "probability": 0.9338 + }, + { + "start": 16187.06, + "end": 16188.98, + "probability": 0.994 + }, + { + "start": 16190.46, + "end": 16191.24, + "probability": 0.9323 + }, + { + "start": 16191.82, + "end": 16193.94, + "probability": 0.9381 + }, + { + "start": 16194.0, + "end": 16195.82, + "probability": 0.9785 + }, + { + "start": 16196.66, + "end": 16199.88, + "probability": 0.6608 + }, + { + "start": 16200.48, + "end": 16202.7, + "probability": 0.8039 + }, + { + "start": 16203.76, + "end": 16204.44, + "probability": 0.8242 + }, + { + "start": 16204.56, + "end": 16207.34, + "probability": 0.9915 + }, + { + "start": 16208.36, + "end": 16209.78, + "probability": 0.9884 + }, + { + "start": 16211.28, + "end": 16213.04, + "probability": 0.9149 + }, + { + "start": 16213.26, + "end": 16216.84, + "probability": 0.9547 + }, + { + "start": 16217.76, + "end": 16221.9, + "probability": 0.9885 + }, + { + "start": 16223.16, + "end": 16226.9, + "probability": 0.9948 + }, + { + "start": 16227.52, + "end": 16229.54, + "probability": 0.932 + }, + { + "start": 16230.28, + "end": 16232.64, + "probability": 0.9417 + }, + { + "start": 16233.38, + "end": 16236.06, + "probability": 0.9901 + }, + { + "start": 16237.26, + "end": 16239.01, + "probability": 0.9512 + }, + { + "start": 16240.22, + "end": 16241.29, + "probability": 0.8689 + }, + { + "start": 16242.12, + "end": 16244.88, + "probability": 0.9921 + }, + { + "start": 16246.4, + "end": 16248.1, + "probability": 0.9455 + }, + { + "start": 16248.52, + "end": 16250.1, + "probability": 0.998 + }, + { + "start": 16250.24, + "end": 16252.1, + "probability": 0.8677 + }, + { + "start": 16252.42, + "end": 16253.05, + "probability": 0.6969 + }, + { + "start": 16253.58, + "end": 16256.74, + "probability": 0.885 + }, + { + "start": 16257.84, + "end": 16259.82, + "probability": 0.9596 + }, + { + "start": 16261.06, + "end": 16264.56, + "probability": 0.9554 + }, + { + "start": 16265.14, + "end": 16267.4, + "probability": 0.9887 + }, + { + "start": 16268.12, + "end": 16268.9, + "probability": 0.6771 + }, + { + "start": 16269.1, + "end": 16272.3, + "probability": 0.9878 + }, + { + "start": 16273.34, + "end": 16275.08, + "probability": 0.8307 + }, + { + "start": 16275.58, + "end": 16279.44, + "probability": 0.8683 + }, + { + "start": 16279.48, + "end": 16280.7, + "probability": 0.8563 + }, + { + "start": 16281.54, + "end": 16284.78, + "probability": 0.9962 + }, + { + "start": 16285.64, + "end": 16287.12, + "probability": 0.9252 + }, + { + "start": 16287.84, + "end": 16289.82, + "probability": 0.9644 + }, + { + "start": 16289.94, + "end": 16292.88, + "probability": 0.9876 + }, + { + "start": 16293.66, + "end": 16298.52, + "probability": 0.9595 + }, + { + "start": 16299.64, + "end": 16302.6, + "probability": 0.8367 + }, + { + "start": 16302.6, + "end": 16306.02, + "probability": 0.9762 + }, + { + "start": 16306.48, + "end": 16308.96, + "probability": 0.7997 + }, + { + "start": 16309.82, + "end": 16311.12, + "probability": 0.9006 + }, + { + "start": 16311.36, + "end": 16317.68, + "probability": 0.9748 + }, + { + "start": 16318.52, + "end": 16320.66, + "probability": 0.8395 + }, + { + "start": 16321.28, + "end": 16324.1, + "probability": 0.8991 + }, + { + "start": 16324.94, + "end": 16327.11, + "probability": 0.9448 + }, + { + "start": 16328.72, + "end": 16330.66, + "probability": 0.9963 + }, + { + "start": 16330.8, + "end": 16334.62, + "probability": 0.988 + }, + { + "start": 16335.18, + "end": 16336.88, + "probability": 0.9985 + }, + { + "start": 16336.94, + "end": 16338.15, + "probability": 0.9508 + }, + { + "start": 16339.44, + "end": 16340.9, + "probability": 0.7331 + }, + { + "start": 16341.34, + "end": 16344.08, + "probability": 0.9016 + }, + { + "start": 16344.9, + "end": 16348.58, + "probability": 0.9209 + }, + { + "start": 16349.46, + "end": 16350.72, + "probability": 0.7526 + }, + { + "start": 16351.44, + "end": 16352.82, + "probability": 0.9761 + }, + { + "start": 16354.2, + "end": 16358.06, + "probability": 0.983 + }, + { + "start": 16358.36, + "end": 16359.92, + "probability": 0.9934 + }, + { + "start": 16360.58, + "end": 16362.46, + "probability": 0.8488 + }, + { + "start": 16363.1, + "end": 16365.72, + "probability": 0.9985 + }, + { + "start": 16366.28, + "end": 16367.26, + "probability": 0.9713 + }, + { + "start": 16368.24, + "end": 16371.14, + "probability": 0.976 + }, + { + "start": 16371.72, + "end": 16373.7, + "probability": 0.9971 + }, + { + "start": 16374.28, + "end": 16377.76, + "probability": 0.907 + }, + { + "start": 16378.38, + "end": 16381.96, + "probability": 0.9247 + }, + { + "start": 16382.98, + "end": 16387.3, + "probability": 0.9902 + }, + { + "start": 16388.02, + "end": 16390.32, + "probability": 0.9314 + }, + { + "start": 16391.04, + "end": 16393.9, + "probability": 0.9645 + }, + { + "start": 16395.46, + "end": 16399.44, + "probability": 0.9652 + }, + { + "start": 16399.56, + "end": 16401.58, + "probability": 0.9959 + }, + { + "start": 16402.54, + "end": 16405.76, + "probability": 0.8604 + }, + { + "start": 16406.92, + "end": 16410.46, + "probability": 0.982 + }, + { + "start": 16411.84, + "end": 16415.7, + "probability": 0.9898 + }, + { + "start": 16416.3, + "end": 16420.38, + "probability": 0.9663 + }, + { + "start": 16421.72, + "end": 16422.54, + "probability": 0.3728 + }, + { + "start": 16423.8, + "end": 16424.04, + "probability": 0.4001 + }, + { + "start": 16424.08, + "end": 16427.06, + "probability": 0.9526 + }, + { + "start": 16427.12, + "end": 16428.36, + "probability": 0.9514 + }, + { + "start": 16428.9, + "end": 16430.4, + "probability": 0.7179 + }, + { + "start": 16431.24, + "end": 16432.06, + "probability": 0.8705 + }, + { + "start": 16433.22, + "end": 16433.88, + "probability": 0.4362 + }, + { + "start": 16434.46, + "end": 16436.32, + "probability": 0.9642 + }, + { + "start": 16438.0, + "end": 16440.44, + "probability": 0.9483 + }, + { + "start": 16440.98, + "end": 16443.66, + "probability": 0.9814 + }, + { + "start": 16445.74, + "end": 16446.58, + "probability": 0.7128 + }, + { + "start": 16447.3, + "end": 16450.54, + "probability": 0.8275 + }, + { + "start": 16451.06, + "end": 16454.48, + "probability": 0.9863 + }, + { + "start": 16455.8, + "end": 16456.52, + "probability": 0.9956 + }, + { + "start": 16458.06, + "end": 16460.08, + "probability": 0.9646 + }, + { + "start": 16460.8, + "end": 16463.34, + "probability": 0.6716 + }, + { + "start": 16463.74, + "end": 16464.54, + "probability": 0.8079 + }, + { + "start": 16465.26, + "end": 16466.99, + "probability": 0.9565 + }, + { + "start": 16467.24, + "end": 16469.66, + "probability": 0.9453 + }, + { + "start": 16470.22, + "end": 16473.02, + "probability": 0.9722 + }, + { + "start": 16473.66, + "end": 16475.06, + "probability": 0.7976 + }, + { + "start": 16476.18, + "end": 16477.96, + "probability": 0.9225 + }, + { + "start": 16477.96, + "end": 16480.26, + "probability": 0.9836 + }, + { + "start": 16481.0, + "end": 16482.54, + "probability": 0.9373 + }, + { + "start": 16482.82, + "end": 16483.6, + "probability": 0.9619 + }, + { + "start": 16483.76, + "end": 16484.39, + "probability": 0.4508 + }, + { + "start": 16484.76, + "end": 16485.28, + "probability": 0.9361 + }, + { + "start": 16485.96, + "end": 16488.94, + "probability": 0.9543 + }, + { + "start": 16490.38, + "end": 16493.5, + "probability": 0.9979 + }, + { + "start": 16494.5, + "end": 16496.96, + "probability": 0.7729 + }, + { + "start": 16497.6, + "end": 16501.16, + "probability": 0.9697 + }, + { + "start": 16501.44, + "end": 16502.6, + "probability": 0.9131 + }, + { + "start": 16503.44, + "end": 16506.46, + "probability": 0.9524 + }, + { + "start": 16506.84, + "end": 16507.4, + "probability": 0.8602 + }, + { + "start": 16507.74, + "end": 16508.54, + "probability": 0.9408 + }, + { + "start": 16509.62, + "end": 16512.56, + "probability": 0.4968 + }, + { + "start": 16516.42, + "end": 16519.96, + "probability": 0.8542 + }, + { + "start": 16522.44, + "end": 16526.2, + "probability": 0.794 + }, + { + "start": 16526.2, + "end": 16530.58, + "probability": 0.9154 + }, + { + "start": 16530.58, + "end": 16534.12, + "probability": 0.9283 + }, + { + "start": 16535.6, + "end": 16538.54, + "probability": 0.9812 + }, + { + "start": 16539.24, + "end": 16541.46, + "probability": 0.9822 + }, + { + "start": 16541.94, + "end": 16543.6, + "probability": 0.9943 + }, + { + "start": 16544.48, + "end": 16545.66, + "probability": 0.7524 + }, + { + "start": 16545.74, + "end": 16546.2, + "probability": 0.7874 + }, + { + "start": 16546.4, + "end": 16548.72, + "probability": 0.9666 + }, + { + "start": 16548.72, + "end": 16551.12, + "probability": 0.9571 + }, + { + "start": 16551.88, + "end": 16553.9, + "probability": 0.99 + }, + { + "start": 16554.42, + "end": 16555.86, + "probability": 0.9116 + }, + { + "start": 16555.86, + "end": 16559.62, + "probability": 0.9995 + }, + { + "start": 16560.88, + "end": 16562.44, + "probability": 0.8719 + }, + { + "start": 16563.36, + "end": 16564.96, + "probability": 0.8332 + }, + { + "start": 16565.56, + "end": 16568.3, + "probability": 0.9333 + }, + { + "start": 16568.76, + "end": 16572.0, + "probability": 0.9152 + }, + { + "start": 16572.82, + "end": 16574.04, + "probability": 0.8788 + }, + { + "start": 16574.38, + "end": 16574.86, + "probability": 0.854 + }, + { + "start": 16574.96, + "end": 16575.54, + "probability": 0.9833 + }, + { + "start": 16575.68, + "end": 16578.62, + "probability": 0.9617 + }, + { + "start": 16579.48, + "end": 16580.56, + "probability": 0.7239 + }, + { + "start": 16581.52, + "end": 16583.58, + "probability": 0.9712 + }, + { + "start": 16583.58, + "end": 16585.5, + "probability": 0.9791 + }, + { + "start": 16586.16, + "end": 16589.98, + "probability": 0.9969 + }, + { + "start": 16591.62, + "end": 16592.78, + "probability": 0.8372 + }, + { + "start": 16593.4, + "end": 16594.3, + "probability": 0.9647 + }, + { + "start": 16595.68, + "end": 16599.5, + "probability": 0.9946 + }, + { + "start": 16600.26, + "end": 16600.26, + "probability": 0.0582 + }, + { + "start": 16600.26, + "end": 16602.26, + "probability": 0.5808 + }, + { + "start": 16602.56, + "end": 16604.38, + "probability": 0.9938 + }, + { + "start": 16605.04, + "end": 16606.28, + "probability": 0.7296 + }, + { + "start": 16606.64, + "end": 16608.56, + "probability": 0.975 + }, + { + "start": 16609.64, + "end": 16610.8, + "probability": 0.6576 + }, + { + "start": 16611.34, + "end": 16613.9, + "probability": 0.9814 + }, + { + "start": 16613.9, + "end": 16616.62, + "probability": 0.6637 + }, + { + "start": 16616.7, + "end": 16621.48, + "probability": 0.9205 + }, + { + "start": 16621.52, + "end": 16624.58, + "probability": 0.8884 + }, + { + "start": 16625.18, + "end": 16628.8, + "probability": 0.9635 + }, + { + "start": 16629.34, + "end": 16630.66, + "probability": 0.8486 + }, + { + "start": 16631.26, + "end": 16634.5, + "probability": 0.9897 + }, + { + "start": 16636.78, + "end": 16638.9, + "probability": 0.8496 + }, + { + "start": 16640.52, + "end": 16643.18, + "probability": 0.9923 + }, + { + "start": 16644.1, + "end": 16646.6, + "probability": 0.9769 + }, + { + "start": 16646.74, + "end": 16647.76, + "probability": 0.8393 + }, + { + "start": 16647.86, + "end": 16649.14, + "probability": 0.8756 + }, + { + "start": 16649.28, + "end": 16653.58, + "probability": 0.9971 + }, + { + "start": 16654.3, + "end": 16654.52, + "probability": 0.4736 + }, + { + "start": 16654.62, + "end": 16655.4, + "probability": 0.9028 + }, + { + "start": 16655.6, + "end": 16659.36, + "probability": 0.9578 + }, + { + "start": 16659.58, + "end": 16663.76, + "probability": 0.9955 + }, + { + "start": 16664.76, + "end": 16666.9, + "probability": 0.9989 + }, + { + "start": 16667.56, + "end": 16669.72, + "probability": 0.9641 + }, + { + "start": 16670.22, + "end": 16673.6, + "probability": 0.6903 + }, + { + "start": 16674.42, + "end": 16677.04, + "probability": 0.9292 + }, + { + "start": 16678.16, + "end": 16681.52, + "probability": 0.9122 + }, + { + "start": 16682.16, + "end": 16683.52, + "probability": 0.954 + }, + { + "start": 16684.5, + "end": 16688.32, + "probability": 0.9971 + }, + { + "start": 16688.32, + "end": 16691.86, + "probability": 0.9539 + }, + { + "start": 16692.44, + "end": 16695.74, + "probability": 0.8163 + }, + { + "start": 16696.54, + "end": 16698.22, + "probability": 0.799 + }, + { + "start": 16699.2, + "end": 16699.96, + "probability": 0.7862 + }, + { + "start": 16700.72, + "end": 16701.97, + "probability": 0.9746 + }, + { + "start": 16702.9, + "end": 16704.18, + "probability": 0.9968 + }, + { + "start": 16704.72, + "end": 16705.5, + "probability": 0.731 + }, + { + "start": 16705.9, + "end": 16708.1, + "probability": 0.9938 + }, + { + "start": 16708.86, + "end": 16710.08, + "probability": 0.8522 + }, + { + "start": 16710.14, + "end": 16714.33, + "probability": 0.9794 + }, + { + "start": 16715.14, + "end": 16717.48, + "probability": 0.8542 + }, + { + "start": 16718.8, + "end": 16720.63, + "probability": 0.9832 + }, + { + "start": 16721.44, + "end": 16724.1, + "probability": 0.9936 + }, + { + "start": 16724.78, + "end": 16728.42, + "probability": 0.9917 + }, + { + "start": 16729.1, + "end": 16729.3, + "probability": 0.6553 + }, + { + "start": 16730.5, + "end": 16731.18, + "probability": 0.7659 + }, + { + "start": 16731.76, + "end": 16732.3, + "probability": 0.0639 + }, + { + "start": 16734.88, + "end": 16735.98, + "probability": 0.9013 + }, + { + "start": 16757.16, + "end": 16758.68, + "probability": 0.7051 + }, + { + "start": 16758.98, + "end": 16758.98, + "probability": 0.5061 + }, + { + "start": 16759.02, + "end": 16759.46, + "probability": 0.6088 + }, + { + "start": 16759.6, + "end": 16760.7, + "probability": 0.5918 + }, + { + "start": 16761.8, + "end": 16763.32, + "probability": 0.9451 + }, + { + "start": 16763.46, + "end": 16766.14, + "probability": 0.9951 + }, + { + "start": 16766.14, + "end": 16770.78, + "probability": 0.9894 + }, + { + "start": 16771.62, + "end": 16777.14, + "probability": 0.5466 + }, + { + "start": 16777.36, + "end": 16782.44, + "probability": 0.9597 + }, + { + "start": 16783.14, + "end": 16788.04, + "probability": 0.9597 + }, + { + "start": 16789.12, + "end": 16790.0, + "probability": 0.8459 + }, + { + "start": 16790.12, + "end": 16791.36, + "probability": 0.7401 + }, + { + "start": 16791.36, + "end": 16798.32, + "probability": 0.9751 + }, + { + "start": 16798.32, + "end": 16802.36, + "probability": 0.9904 + }, + { + "start": 16802.46, + "end": 16805.6, + "probability": 0.9682 + }, + { + "start": 16805.72, + "end": 16806.12, + "probability": 0.7229 + }, + { + "start": 16806.16, + "end": 16807.88, + "probability": 0.992 + }, + { + "start": 16809.36, + "end": 16814.62, + "probability": 0.9873 + }, + { + "start": 16814.8, + "end": 16816.18, + "probability": 0.5067 + }, + { + "start": 16816.32, + "end": 16821.36, + "probability": 0.9829 + }, + { + "start": 16821.36, + "end": 16825.92, + "probability": 0.9881 + }, + { + "start": 16825.92, + "end": 16829.86, + "probability": 0.9821 + }, + { + "start": 16830.9, + "end": 16832.82, + "probability": 0.7081 + }, + { + "start": 16833.76, + "end": 16834.46, + "probability": 0.8879 + }, + { + "start": 16837.54, + "end": 16844.32, + "probability": 0.9811 + }, + { + "start": 16844.68, + "end": 16847.4, + "probability": 0.9519 + }, + { + "start": 16848.14, + "end": 16855.76, + "probability": 0.9921 + }, + { + "start": 16855.88, + "end": 16859.24, + "probability": 0.9937 + }, + { + "start": 16860.28, + "end": 16865.36, + "probability": 0.986 + }, + { + "start": 16865.36, + "end": 16870.52, + "probability": 0.991 + }, + { + "start": 16870.62, + "end": 16874.3, + "probability": 0.9707 + }, + { + "start": 16875.16, + "end": 16880.14, + "probability": 0.9927 + }, + { + "start": 16880.78, + "end": 16886.94, + "probability": 0.983 + }, + { + "start": 16886.94, + "end": 16892.42, + "probability": 0.9521 + }, + { + "start": 16893.68, + "end": 16895.52, + "probability": 0.4999 + }, + { + "start": 16895.74, + "end": 16899.64, + "probability": 0.9938 + }, + { + "start": 16900.78, + "end": 16901.78, + "probability": 0.9327 + }, + { + "start": 16901.92, + "end": 16903.1, + "probability": 0.9866 + }, + { + "start": 16903.22, + "end": 16911.68, + "probability": 0.9887 + }, + { + "start": 16911.68, + "end": 16916.26, + "probability": 0.9981 + }, + { + "start": 16917.1, + "end": 16917.52, + "probability": 0.833 + }, + { + "start": 16917.58, + "end": 16924.24, + "probability": 0.9771 + }, + { + "start": 16924.24, + "end": 16930.98, + "probability": 0.992 + }, + { + "start": 16932.18, + "end": 16937.4, + "probability": 0.9771 + }, + { + "start": 16937.64, + "end": 16939.88, + "probability": 0.7773 + }, + { + "start": 16940.58, + "end": 16942.52, + "probability": 0.9669 + }, + { + "start": 16942.72, + "end": 16945.08, + "probability": 0.9531 + }, + { + "start": 16946.64, + "end": 16949.2, + "probability": 0.9769 + }, + { + "start": 16950.3, + "end": 16954.78, + "probability": 0.9782 + }, + { + "start": 16954.78, + "end": 16957.48, + "probability": 0.9695 + }, + { + "start": 16958.44, + "end": 16961.62, + "probability": 0.9888 + }, + { + "start": 16962.5, + "end": 16966.22, + "probability": 0.9492 + }, + { + "start": 16966.62, + "end": 16973.4, + "probability": 0.9966 + }, + { + "start": 16974.14, + "end": 16975.64, + "probability": 0.997 + }, + { + "start": 16976.22, + "end": 16977.96, + "probability": 0.7731 + }, + { + "start": 16978.2, + "end": 16979.78, + "probability": 0.9379 + }, + { + "start": 16980.18, + "end": 16982.5, + "probability": 0.9995 + }, + { + "start": 16982.5, + "end": 16985.82, + "probability": 0.9912 + }, + { + "start": 16986.9, + "end": 16987.9, + "probability": 0.9829 + }, + { + "start": 16988.2, + "end": 16990.22, + "probability": 0.9922 + }, + { + "start": 16990.5, + "end": 16991.02, + "probability": 0.9242 + }, + { + "start": 16991.06, + "end": 16992.08, + "probability": 0.9289 + }, + { + "start": 16992.98, + "end": 16995.72, + "probability": 0.9401 + }, + { + "start": 16996.08, + "end": 16996.6, + "probability": 0.845 + }, + { + "start": 16996.6, + "end": 16998.26, + "probability": 0.9985 + }, + { + "start": 16998.36, + "end": 17002.52, + "probability": 0.9469 + }, + { + "start": 17003.08, + "end": 17008.06, + "probability": 0.9884 + }, + { + "start": 17008.18, + "end": 17012.58, + "probability": 0.9961 + }, + { + "start": 17014.14, + "end": 17015.82, + "probability": 0.9952 + }, + { + "start": 17015.88, + "end": 17019.02, + "probability": 0.9975 + }, + { + "start": 17020.26, + "end": 17022.24, + "probability": 0.9053 + }, + { + "start": 17023.08, + "end": 17030.74, + "probability": 0.9869 + }, + { + "start": 17030.74, + "end": 17035.58, + "probability": 0.998 + }, + { + "start": 17036.08, + "end": 17038.98, + "probability": 0.9659 + }, + { + "start": 17039.08, + "end": 17039.82, + "probability": 0.4396 + }, + { + "start": 17040.06, + "end": 17045.4, + "probability": 0.9878 + }, + { + "start": 17045.5, + "end": 17047.12, + "probability": 0.9979 + }, + { + "start": 17048.28, + "end": 17052.34, + "probability": 0.5931 + }, + { + "start": 17052.7, + "end": 17053.82, + "probability": 0.8596 + }, + { + "start": 17054.42, + "end": 17056.5, + "probability": 0.999 + }, + { + "start": 17057.44, + "end": 17061.26, + "probability": 0.9746 + }, + { + "start": 17061.4, + "end": 17064.42, + "probability": 0.9951 + }, + { + "start": 17064.42, + "end": 17066.7, + "probability": 0.9976 + }, + { + "start": 17067.32, + "end": 17073.5, + "probability": 0.9951 + }, + { + "start": 17074.5, + "end": 17075.36, + "probability": 0.8571 + }, + { + "start": 17075.5, + "end": 17082.96, + "probability": 0.9938 + }, + { + "start": 17084.88, + "end": 17087.2, + "probability": 0.8938 + }, + { + "start": 17087.34, + "end": 17088.22, + "probability": 0.6874 + }, + { + "start": 17088.6, + "end": 17090.04, + "probability": 0.7463 + }, + { + "start": 17090.84, + "end": 17096.08, + "probability": 0.9512 + }, + { + "start": 17096.08, + "end": 17101.4, + "probability": 0.9983 + }, + { + "start": 17101.44, + "end": 17102.12, + "probability": 0.8798 + }, + { + "start": 17103.68, + "end": 17108.32, + "probability": 0.9943 + }, + { + "start": 17108.32, + "end": 17111.38, + "probability": 0.9979 + }, + { + "start": 17111.6, + "end": 17111.94, + "probability": 0.2691 + }, + { + "start": 17112.06, + "end": 17113.04, + "probability": 0.9445 + }, + { + "start": 17113.46, + "end": 17116.88, + "probability": 0.9963 + }, + { + "start": 17116.88, + "end": 17120.88, + "probability": 0.9976 + }, + { + "start": 17121.08, + "end": 17125.34, + "probability": 0.9941 + }, + { + "start": 17126.44, + "end": 17131.74, + "probability": 0.9956 + }, + { + "start": 17132.62, + "end": 17134.98, + "probability": 0.9343 + }, + { + "start": 17135.32, + "end": 17137.96, + "probability": 0.9914 + }, + { + "start": 17137.96, + "end": 17140.34, + "probability": 0.9985 + }, + { + "start": 17140.96, + "end": 17143.1, + "probability": 0.8663 + }, + { + "start": 17143.28, + "end": 17143.7, + "probability": 0.1646 + }, + { + "start": 17143.98, + "end": 17144.5, + "probability": 0.9179 + }, + { + "start": 17144.7, + "end": 17146.93, + "probability": 0.9893 + }, + { + "start": 17147.32, + "end": 17148.84, + "probability": 0.9948 + }, + { + "start": 17149.5, + "end": 17154.96, + "probability": 0.9773 + }, + { + "start": 17155.2, + "end": 17161.14, + "probability": 0.9964 + }, + { + "start": 17161.72, + "end": 17164.02, + "probability": 0.998 + }, + { + "start": 17164.58, + "end": 17165.2, + "probability": 0.2772 + }, + { + "start": 17165.32, + "end": 17166.18, + "probability": 0.893 + }, + { + "start": 17166.76, + "end": 17172.32, + "probability": 0.9628 + }, + { + "start": 17172.5, + "end": 17173.08, + "probability": 0.9398 + }, + { + "start": 17173.16, + "end": 17176.2, + "probability": 0.9272 + }, + { + "start": 17176.48, + "end": 17177.9, + "probability": 0.9674 + }, + { + "start": 17177.96, + "end": 17179.08, + "probability": 0.9805 + }, + { + "start": 17182.3, + "end": 17187.48, + "probability": 0.9692 + }, + { + "start": 17187.68, + "end": 17190.6, + "probability": 0.9993 + }, + { + "start": 17191.76, + "end": 17192.36, + "probability": 0.7422 + }, + { + "start": 17192.46, + "end": 17195.02, + "probability": 0.9973 + }, + { + "start": 17195.1, + "end": 17197.94, + "probability": 0.9864 + }, + { + "start": 17197.94, + "end": 17200.88, + "probability": 0.9507 + }, + { + "start": 17201.64, + "end": 17203.48, + "probability": 0.9832 + }, + { + "start": 17203.58, + "end": 17205.01, + "probability": 0.7386 + }, + { + "start": 17205.6, + "end": 17207.34, + "probability": 0.9515 + }, + { + "start": 17207.56, + "end": 17209.28, + "probability": 0.9966 + }, + { + "start": 17209.58, + "end": 17212.56, + "probability": 0.9824 + }, + { + "start": 17213.18, + "end": 17214.3, + "probability": 0.8596 + }, + { + "start": 17214.52, + "end": 17217.04, + "probability": 0.9952 + }, + { + "start": 17217.2, + "end": 17218.58, + "probability": 0.9192 + }, + { + "start": 17218.96, + "end": 17220.28, + "probability": 0.9075 + }, + { + "start": 17220.76, + "end": 17223.22, + "probability": 0.9793 + }, + { + "start": 17223.56, + "end": 17225.68, + "probability": 0.9995 + }, + { + "start": 17225.78, + "end": 17226.12, + "probability": 0.8512 + }, + { + "start": 17226.22, + "end": 17226.68, + "probability": 0.9082 + }, + { + "start": 17227.6, + "end": 17233.29, + "probability": 0.9923 + }, + { + "start": 17234.72, + "end": 17237.76, + "probability": 0.9566 + }, + { + "start": 17238.2, + "end": 17239.66, + "probability": 0.9941 + }, + { + "start": 17239.82, + "end": 17242.72, + "probability": 0.9814 + }, + { + "start": 17242.86, + "end": 17244.86, + "probability": 0.998 + }, + { + "start": 17244.86, + "end": 17247.98, + "probability": 0.9927 + }, + { + "start": 17248.16, + "end": 17251.08, + "probability": 0.9351 + }, + { + "start": 17251.08, + "end": 17256.36, + "probability": 0.9956 + }, + { + "start": 17256.74, + "end": 17262.82, + "probability": 0.981 + }, + { + "start": 17263.04, + "end": 17268.54, + "probability": 0.9944 + }, + { + "start": 17268.62, + "end": 17273.56, + "probability": 0.9966 + }, + { + "start": 17274.32, + "end": 17277.66, + "probability": 0.995 + }, + { + "start": 17277.8, + "end": 17280.48, + "probability": 0.9891 + }, + { + "start": 17281.02, + "end": 17286.44, + "probability": 0.989 + }, + { + "start": 17286.54, + "end": 17287.4, + "probability": 0.3671 + }, + { + "start": 17287.6, + "end": 17294.08, + "probability": 0.9242 + }, + { + "start": 17294.2, + "end": 17296.41, + "probability": 0.9097 + }, + { + "start": 17296.74, + "end": 17297.66, + "probability": 0.735 + }, + { + "start": 17297.76, + "end": 17299.64, + "probability": 0.8444 + }, + { + "start": 17300.68, + "end": 17306.16, + "probability": 0.6118 + }, + { + "start": 17306.8, + "end": 17309.14, + "probability": 0.2527 + }, + { + "start": 17310.7, + "end": 17313.36, + "probability": 0.3402 + }, + { + "start": 17313.98, + "end": 17316.98, + "probability": 0.4874 + }, + { + "start": 17318.06, + "end": 17318.7, + "probability": 0.5261 + }, + { + "start": 17318.84, + "end": 17319.12, + "probability": 0.3913 + }, + { + "start": 17319.26, + "end": 17320.44, + "probability": 0.7981 + }, + { + "start": 17321.06, + "end": 17323.52, + "probability": 0.9966 + }, + { + "start": 17323.68, + "end": 17328.58, + "probability": 0.9982 + }, + { + "start": 17329.3, + "end": 17329.7, + "probability": 0.1229 + }, + { + "start": 17329.7, + "end": 17330.66, + "probability": 0.4797 + }, + { + "start": 17330.94, + "end": 17331.98, + "probability": 0.6751 + }, + { + "start": 17332.08, + "end": 17333.24, + "probability": 0.7198 + }, + { + "start": 17334.02, + "end": 17336.12, + "probability": 0.9951 + }, + { + "start": 17336.12, + "end": 17338.86, + "probability": 0.9971 + }, + { + "start": 17339.02, + "end": 17339.58, + "probability": 0.9529 + }, + { + "start": 17339.78, + "end": 17340.9, + "probability": 0.9675 + }, + { + "start": 17341.22, + "end": 17345.2, + "probability": 0.9909 + }, + { + "start": 17345.2, + "end": 17349.29, + "probability": 0.9552 + }, + { + "start": 17349.8, + "end": 17351.08, + "probability": 0.8719 + }, + { + "start": 17351.18, + "end": 17353.1, + "probability": 0.991 + }, + { + "start": 17353.3, + "end": 17355.54, + "probability": 0.9636 + }, + { + "start": 17355.54, + "end": 17358.7, + "probability": 0.9846 + }, + { + "start": 17358.84, + "end": 17361.04, + "probability": 0.9737 + }, + { + "start": 17361.16, + "end": 17363.26, + "probability": 0.9945 + }, + { + "start": 17363.7, + "end": 17364.46, + "probability": 0.9844 + }, + { + "start": 17364.56, + "end": 17365.6, + "probability": 0.6751 + }, + { + "start": 17365.66, + "end": 17368.68, + "probability": 0.9259 + }, + { + "start": 17368.68, + "end": 17371.66, + "probability": 0.9982 + }, + { + "start": 17372.22, + "end": 17375.12, + "probability": 0.9949 + }, + { + "start": 17375.12, + "end": 17378.12, + "probability": 0.995 + }, + { + "start": 17378.66, + "end": 17378.9, + "probability": 0.9678 + }, + { + "start": 17379.48, + "end": 17383.72, + "probability": 0.9707 + }, + { + "start": 17384.44, + "end": 17389.88, + "probability": 0.9949 + }, + { + "start": 17390.74, + "end": 17392.9, + "probability": 0.9943 + }, + { + "start": 17393.5, + "end": 17397.92, + "probability": 0.9945 + }, + { + "start": 17397.98, + "end": 17400.52, + "probability": 0.999 + }, + { + "start": 17400.98, + "end": 17402.88, + "probability": 0.9952 + }, + { + "start": 17403.04, + "end": 17404.22, + "probability": 0.9485 + }, + { + "start": 17404.9, + "end": 17409.86, + "probability": 0.9968 + }, + { + "start": 17409.86, + "end": 17415.9, + "probability": 0.9992 + }, + { + "start": 17416.68, + "end": 17418.48, + "probability": 0.9975 + }, + { + "start": 17419.46, + "end": 17422.1, + "probability": 0.9653 + }, + { + "start": 17422.6, + "end": 17424.3, + "probability": 0.9816 + }, + { + "start": 17424.6, + "end": 17424.86, + "probability": 0.7494 + }, + { + "start": 17425.1, + "end": 17426.64, + "probability": 0.8136 + }, + { + "start": 17428.18, + "end": 17429.68, + "probability": 0.9594 + }, + { + "start": 17438.5, + "end": 17438.92, + "probability": 0.5158 + }, + { + "start": 17439.26, + "end": 17439.98, + "probability": 0.8391 + }, + { + "start": 17440.52, + "end": 17440.9, + "probability": 0.3332 + }, + { + "start": 17440.96, + "end": 17441.68, + "probability": 0.5596 + }, + { + "start": 17441.76, + "end": 17442.72, + "probability": 0.709 + }, + { + "start": 17442.82, + "end": 17443.56, + "probability": 0.9023 + }, + { + "start": 17445.72, + "end": 17450.16, + "probability": 0.8488 + }, + { + "start": 17450.94, + "end": 17453.26, + "probability": 0.951 + }, + { + "start": 17453.82, + "end": 17455.46, + "probability": 0.9888 + }, + { + "start": 17456.8, + "end": 17461.16, + "probability": 0.9972 + }, + { + "start": 17462.32, + "end": 17464.72, + "probability": 0.9918 + }, + { + "start": 17464.92, + "end": 17466.88, + "probability": 0.8733 + }, + { + "start": 17467.44, + "end": 17469.12, + "probability": 0.9992 + }, + { + "start": 17469.74, + "end": 17472.1, + "probability": 0.9981 + }, + { + "start": 17473.42, + "end": 17474.12, + "probability": 0.7526 + }, + { + "start": 17474.44, + "end": 17477.64, + "probability": 0.9816 + }, + { + "start": 17477.64, + "end": 17480.08, + "probability": 0.998 + }, + { + "start": 17481.48, + "end": 17482.5, + "probability": 0.9396 + }, + { + "start": 17482.78, + "end": 17483.48, + "probability": 0.7611 + }, + { + "start": 17483.58, + "end": 17486.44, + "probability": 0.9637 + }, + { + "start": 17487.1, + "end": 17489.9, + "probability": 0.9731 + }, + { + "start": 17490.94, + "end": 17494.34, + "probability": 0.9788 + }, + { + "start": 17494.74, + "end": 17498.06, + "probability": 0.9956 + }, + { + "start": 17499.84, + "end": 17503.3, + "probability": 0.9907 + }, + { + "start": 17503.3, + "end": 17506.2, + "probability": 0.9991 + }, + { + "start": 17507.22, + "end": 17510.26, + "probability": 0.9875 + }, + { + "start": 17510.32, + "end": 17510.92, + "probability": 0.9254 + }, + { + "start": 17511.02, + "end": 17512.18, + "probability": 0.9774 + }, + { + "start": 17512.74, + "end": 17515.9, + "probability": 0.999 + }, + { + "start": 17517.62, + "end": 17518.96, + "probability": 0.9929 + }, + { + "start": 17519.66, + "end": 17522.36, + "probability": 0.9811 + }, + { + "start": 17523.64, + "end": 17524.74, + "probability": 0.961 + }, + { + "start": 17525.22, + "end": 17527.74, + "probability": 0.9577 + }, + { + "start": 17528.24, + "end": 17528.6, + "probability": 0.7761 + }, + { + "start": 17528.74, + "end": 17529.5, + "probability": 0.7069 + }, + { + "start": 17529.6, + "end": 17532.62, + "probability": 0.9709 + }, + { + "start": 17533.4, + "end": 17536.46, + "probability": 0.998 + }, + { + "start": 17537.76, + "end": 17538.84, + "probability": 0.6302 + }, + { + "start": 17539.3, + "end": 17544.8, + "probability": 0.9794 + }, + { + "start": 17545.36, + "end": 17549.16, + "probability": 0.9994 + }, + { + "start": 17549.16, + "end": 17552.02, + "probability": 0.9996 + }, + { + "start": 17552.86, + "end": 17555.78, + "probability": 0.9549 + }, + { + "start": 17556.44, + "end": 17561.38, + "probability": 0.9974 + }, + { + "start": 17561.91, + "end": 17565.36, + "probability": 0.9973 + }, + { + "start": 17567.24, + "end": 17570.82, + "probability": 0.9959 + }, + { + "start": 17571.16, + "end": 17572.3, + "probability": 0.5635 + }, + { + "start": 17572.78, + "end": 17573.66, + "probability": 0.9496 + }, + { + "start": 17574.36, + "end": 17576.98, + "probability": 0.9889 + }, + { + "start": 17576.98, + "end": 17579.8, + "probability": 0.999 + }, + { + "start": 17581.3, + "end": 17582.84, + "probability": 0.8254 + }, + { + "start": 17583.02, + "end": 17586.88, + "probability": 0.8909 + }, + { + "start": 17587.54, + "end": 17588.46, + "probability": 0.8543 + }, + { + "start": 17589.7, + "end": 17594.14, + "probability": 0.9958 + }, + { + "start": 17595.58, + "end": 17597.08, + "probability": 0.7877 + }, + { + "start": 17597.26, + "end": 17600.92, + "probability": 0.9841 + }, + { + "start": 17601.78, + "end": 17603.94, + "probability": 0.998 + }, + { + "start": 17603.94, + "end": 17606.4, + "probability": 0.998 + }, + { + "start": 17608.0, + "end": 17613.46, + "probability": 0.9976 + }, + { + "start": 17613.9, + "end": 17619.92, + "probability": 0.9963 + }, + { + "start": 17621.34, + "end": 17624.99, + "probability": 0.9816 + }, + { + "start": 17625.62, + "end": 17628.86, + "probability": 0.9688 + }, + { + "start": 17629.62, + "end": 17632.78, + "probability": 0.9949 + }, + { + "start": 17633.34, + "end": 17636.86, + "probability": 0.9814 + }, + { + "start": 17637.84, + "end": 17638.66, + "probability": 0.9762 + }, + { + "start": 17639.34, + "end": 17640.68, + "probability": 0.9226 + }, + { + "start": 17640.72, + "end": 17643.44, + "probability": 0.9905 + }, + { + "start": 17644.82, + "end": 17645.44, + "probability": 0.8204 + }, + { + "start": 17645.54, + "end": 17646.3, + "probability": 0.7023 + }, + { + "start": 17646.42, + "end": 17648.5, + "probability": 0.9919 + }, + { + "start": 17649.06, + "end": 17653.0, + "probability": 0.9845 + }, + { + "start": 17654.56, + "end": 17654.82, + "probability": 0.5463 + }, + { + "start": 17654.94, + "end": 17655.62, + "probability": 0.9814 + }, + { + "start": 17655.7, + "end": 17656.8, + "probability": 0.9597 + }, + { + "start": 17656.92, + "end": 17659.22, + "probability": 0.9925 + }, + { + "start": 17660.0, + "end": 17662.32, + "probability": 0.9712 + }, + { + "start": 17663.44, + "end": 17666.1, + "probability": 0.8864 + }, + { + "start": 17666.18, + "end": 17667.95, + "probability": 0.7438 + }, + { + "start": 17668.74, + "end": 17671.72, + "probability": 0.8321 + }, + { + "start": 17672.58, + "end": 17673.26, + "probability": 0.9805 + }, + { + "start": 17674.52, + "end": 17678.78, + "probability": 0.975 + }, + { + "start": 17679.74, + "end": 17683.16, + "probability": 0.9714 + }, + { + "start": 17683.26, + "end": 17685.8, + "probability": 0.8591 + }, + { + "start": 17686.32, + "end": 17689.18, + "probability": 0.8861 + }, + { + "start": 17689.9, + "end": 17691.94, + "probability": 0.9648 + }, + { + "start": 17692.02, + "end": 17694.52, + "probability": 0.9855 + }, + { + "start": 17696.24, + "end": 17696.82, + "probability": 0.8092 + }, + { + "start": 17696.88, + "end": 17697.72, + "probability": 0.8879 + }, + { + "start": 17697.8, + "end": 17700.2, + "probability": 0.9966 + }, + { + "start": 17700.28, + "end": 17702.84, + "probability": 0.9935 + }, + { + "start": 17703.32, + "end": 17703.86, + "probability": 0.9819 + }, + { + "start": 17704.64, + "end": 17706.76, + "probability": 0.9974 + }, + { + "start": 17707.32, + "end": 17710.94, + "probability": 0.9956 + }, + { + "start": 17711.48, + "end": 17715.28, + "probability": 0.9507 + }, + { + "start": 17716.44, + "end": 17718.34, + "probability": 0.9951 + }, + { + "start": 17718.34, + "end": 17720.94, + "probability": 0.9802 + }, + { + "start": 17721.4, + "end": 17721.6, + "probability": 0.4142 + }, + { + "start": 17721.78, + "end": 17725.1, + "probability": 0.9888 + }, + { + "start": 17725.88, + "end": 17731.42, + "probability": 0.9658 + }, + { + "start": 17731.74, + "end": 17731.74, + "probability": 0.7451 + }, + { + "start": 17732.4, + "end": 17733.67, + "probability": 0.8121 + }, + { + "start": 17734.7, + "end": 17738.3, + "probability": 0.9878 + }, + { + "start": 17738.42, + "end": 17738.74, + "probability": 0.8378 + }, + { + "start": 17740.32, + "end": 17743.16, + "probability": 0.9954 + }, + { + "start": 17743.62, + "end": 17746.7, + "probability": 0.9946 + }, + { + "start": 17747.8, + "end": 17749.37, + "probability": 0.9966 + }, + { + "start": 17750.16, + "end": 17751.58, + "probability": 0.8989 + }, + { + "start": 17752.12, + "end": 17753.75, + "probability": 0.9674 + }, + { + "start": 17754.64, + "end": 17758.48, + "probability": 0.9961 + }, + { + "start": 17759.76, + "end": 17762.96, + "probability": 0.9823 + }, + { + "start": 17763.48, + "end": 17767.38, + "probability": 0.9973 + }, + { + "start": 17769.12, + "end": 17772.18, + "probability": 0.9985 + }, + { + "start": 17772.18, + "end": 17775.66, + "probability": 0.9986 + }, + { + "start": 17775.86, + "end": 17777.24, + "probability": 0.8445 + }, + { + "start": 17777.98, + "end": 17781.12, + "probability": 0.9971 + }, + { + "start": 17781.82, + "end": 17786.3, + "probability": 0.9904 + }, + { + "start": 17787.4, + "end": 17789.52, + "probability": 0.9961 + }, + { + "start": 17789.62, + "end": 17790.32, + "probability": 0.689 + }, + { + "start": 17790.44, + "end": 17791.68, + "probability": 0.9952 + }, + { + "start": 17792.26, + "end": 17792.78, + "probability": 0.9712 + }, + { + "start": 17793.44, + "end": 17794.76, + "probability": 0.9435 + }, + { + "start": 17796.0, + "end": 17798.42, + "probability": 0.9666 + }, + { + "start": 17799.26, + "end": 17804.22, + "probability": 0.9985 + }, + { + "start": 17804.88, + "end": 17806.58, + "probability": 0.9993 + }, + { + "start": 17806.72, + "end": 17807.02, + "probability": 0.7577 + }, + { + "start": 17809.76, + "end": 17811.46, + "probability": 0.6779 + }, + { + "start": 17813.94, + "end": 17814.04, + "probability": 0.0818 + }, + { + "start": 17814.04, + "end": 17815.46, + "probability": 0.6913 + }, + { + "start": 17816.6, + "end": 17817.58, + "probability": 0.4305 + }, + { + "start": 17817.58, + "end": 17818.84, + "probability": 0.2511 + }, + { + "start": 17839.76, + "end": 17840.98, + "probability": 0.3682 + }, + { + "start": 17843.36, + "end": 17844.16, + "probability": 0.535 + }, + { + "start": 17844.68, + "end": 17845.46, + "probability": 0.606 + }, + { + "start": 17846.44, + "end": 17847.3, + "probability": 0.7731 + }, + { + "start": 17848.58, + "end": 17854.6, + "probability": 0.955 + }, + { + "start": 17855.7, + "end": 17857.52, + "probability": 0.9791 + }, + { + "start": 17858.56, + "end": 17862.58, + "probability": 0.9268 + }, + { + "start": 17863.28, + "end": 17865.16, + "probability": 0.9857 + }, + { + "start": 17865.92, + "end": 17866.92, + "probability": 0.9404 + }, + { + "start": 17867.64, + "end": 17870.84, + "probability": 0.9869 + }, + { + "start": 17871.76, + "end": 17873.32, + "probability": 0.6584 + }, + { + "start": 17874.28, + "end": 17876.88, + "probability": 0.8664 + }, + { + "start": 17877.76, + "end": 17883.52, + "probability": 0.9922 + }, + { + "start": 17884.44, + "end": 17885.06, + "probability": 0.8291 + }, + { + "start": 17886.3, + "end": 17888.9, + "probability": 0.5651 + }, + { + "start": 17890.38, + "end": 17893.68, + "probability": 0.7767 + }, + { + "start": 17894.76, + "end": 17896.24, + "probability": 0.825 + }, + { + "start": 17896.94, + "end": 17900.36, + "probability": 0.9805 + }, + { + "start": 17901.42, + "end": 17902.62, + "probability": 0.9637 + }, + { + "start": 17903.14, + "end": 17907.62, + "probability": 0.9532 + }, + { + "start": 17908.78, + "end": 17911.82, + "probability": 0.8563 + }, + { + "start": 17912.88, + "end": 17914.48, + "probability": 0.6557 + }, + { + "start": 17915.4, + "end": 17916.54, + "probability": 0.9475 + }, + { + "start": 17917.3, + "end": 17919.98, + "probability": 0.8574 + }, + { + "start": 17920.7, + "end": 17923.14, + "probability": 0.9952 + }, + { + "start": 17924.2, + "end": 17925.4, + "probability": 0.9897 + }, + { + "start": 17926.58, + "end": 17930.0, + "probability": 0.3042 + }, + { + "start": 17930.68, + "end": 17931.52, + "probability": 0.8301 + }, + { + "start": 17932.38, + "end": 17933.36, + "probability": 0.9001 + }, + { + "start": 17934.26, + "end": 17934.68, + "probability": 0.588 + }, + { + "start": 17935.72, + "end": 17936.98, + "probability": 0.7864 + }, + { + "start": 17937.26, + "end": 17938.78, + "probability": 0.9712 + }, + { + "start": 17939.56, + "end": 17940.52, + "probability": 0.9773 + }, + { + "start": 17941.74, + "end": 17943.94, + "probability": 0.7106 + }, + { + "start": 17945.24, + "end": 17950.16, + "probability": 0.6974 + }, + { + "start": 17951.2, + "end": 17954.8, + "probability": 0.6154 + }, + { + "start": 17955.94, + "end": 17960.74, + "probability": 0.9604 + }, + { + "start": 17961.26, + "end": 17962.3, + "probability": 0.9087 + }, + { + "start": 17963.08, + "end": 17966.82, + "probability": 0.9824 + }, + { + "start": 17967.64, + "end": 17968.78, + "probability": 0.7905 + }, + { + "start": 17969.76, + "end": 17972.66, + "probability": 0.4682 + }, + { + "start": 17972.76, + "end": 17974.56, + "probability": 0.8005 + }, + { + "start": 17974.64, + "end": 17977.18, + "probability": 0.8888 + }, + { + "start": 17978.86, + "end": 17983.24, + "probability": 0.9132 + }, + { + "start": 17984.76, + "end": 17987.76, + "probability": 0.9879 + }, + { + "start": 17987.86, + "end": 17990.36, + "probability": 0.9257 + }, + { + "start": 17991.52, + "end": 17995.74, + "probability": 0.9845 + }, + { + "start": 17996.3, + "end": 17998.92, + "probability": 0.998 + }, + { + "start": 18000.2, + "end": 18004.14, + "probability": 0.8479 + }, + { + "start": 18004.92, + "end": 18005.74, + "probability": 0.6398 + }, + { + "start": 18006.4, + "end": 18008.68, + "probability": 0.9269 + }, + { + "start": 18009.26, + "end": 18011.9, + "probability": 0.9604 + }, + { + "start": 18012.54, + "end": 18014.94, + "probability": 0.895 + }, + { + "start": 18015.32, + "end": 18018.6, + "probability": 0.9785 + }, + { + "start": 18018.76, + "end": 18020.57, + "probability": 0.9832 + }, + { + "start": 18022.5, + "end": 18024.04, + "probability": 0.855 + }, + { + "start": 18024.9, + "end": 18025.6, + "probability": 0.8422 + }, + { + "start": 18026.38, + "end": 18028.54, + "probability": 0.7169 + }, + { + "start": 18029.16, + "end": 18031.5, + "probability": 0.9611 + }, + { + "start": 18031.92, + "end": 18032.24, + "probability": 0.9796 + }, + { + "start": 18032.8, + "end": 18037.2, + "probability": 0.9822 + }, + { + "start": 18037.44, + "end": 18038.48, + "probability": 0.9966 + }, + { + "start": 18038.56, + "end": 18040.78, + "probability": 0.9907 + }, + { + "start": 18041.64, + "end": 18043.18, + "probability": 0.6267 + }, + { + "start": 18043.94, + "end": 18045.24, + "probability": 0.9508 + }, + { + "start": 18046.68, + "end": 18048.96, + "probability": 0.9854 + }, + { + "start": 18049.54, + "end": 18052.8, + "probability": 0.6868 + }, + { + "start": 18053.38, + "end": 18056.6, + "probability": 0.9871 + }, + { + "start": 18056.8, + "end": 18058.7, + "probability": 0.9067 + }, + { + "start": 18059.26, + "end": 18061.06, + "probability": 0.8629 + }, + { + "start": 18061.94, + "end": 18064.02, + "probability": 0.751 + }, + { + "start": 18064.72, + "end": 18071.8, + "probability": 0.9705 + }, + { + "start": 18071.8, + "end": 18080.06, + "probability": 0.8705 + }, + { + "start": 18081.16, + "end": 18082.36, + "probability": 0.5341 + }, + { + "start": 18082.94, + "end": 18084.88, + "probability": 0.926 + }, + { + "start": 18085.16, + "end": 18086.14, + "probability": 0.8317 + }, + { + "start": 18087.02, + "end": 18088.48, + "probability": 0.9188 + }, + { + "start": 18089.74, + "end": 18093.54, + "probability": 0.9316 + }, + { + "start": 18094.16, + "end": 18094.48, + "probability": 0.7566 + }, + { + "start": 18094.92, + "end": 18102.06, + "probability": 0.9732 + }, + { + "start": 18102.44, + "end": 18104.64, + "probability": 0.7148 + }, + { + "start": 18105.94, + "end": 18107.16, + "probability": 0.9977 + }, + { + "start": 18107.74, + "end": 18109.52, + "probability": 0.9102 + }, + { + "start": 18110.44, + "end": 18114.2, + "probability": 0.7905 + }, + { + "start": 18114.88, + "end": 18118.98, + "probability": 0.9632 + }, + { + "start": 18119.3, + "end": 18121.58, + "probability": 0.9895 + }, + { + "start": 18122.34, + "end": 18124.86, + "probability": 0.7468 + }, + { + "start": 18125.46, + "end": 18129.02, + "probability": 0.9854 + }, + { + "start": 18129.14, + "end": 18130.76, + "probability": 0.9489 + }, + { + "start": 18131.38, + "end": 18132.14, + "probability": 0.8837 + }, + { + "start": 18134.36, + "end": 18137.56, + "probability": 0.7986 + }, + { + "start": 18138.02, + "end": 18141.42, + "probability": 0.9843 + }, + { + "start": 18141.9, + "end": 18143.12, + "probability": 0.7358 + }, + { + "start": 18143.26, + "end": 18143.92, + "probability": 0.3477 + }, + { + "start": 18144.52, + "end": 18145.24, + "probability": 0.4774 + }, + { + "start": 18145.98, + "end": 18150.66, + "probability": 0.8927 + }, + { + "start": 18151.1, + "end": 18156.28, + "probability": 0.9272 + }, + { + "start": 18156.84, + "end": 18159.98, + "probability": 0.9865 + }, + { + "start": 18160.16, + "end": 18162.16, + "probability": 0.9919 + }, + { + "start": 18162.72, + "end": 18164.38, + "probability": 0.7289 + }, + { + "start": 18165.08, + "end": 18172.28, + "probability": 0.969 + }, + { + "start": 18173.06, + "end": 18175.76, + "probability": 0.9263 + }, + { + "start": 18176.58, + "end": 18178.29, + "probability": 0.9658 + }, + { + "start": 18178.8, + "end": 18179.28, + "probability": 0.7644 + }, + { + "start": 18179.84, + "end": 18181.04, + "probability": 0.9663 + }, + { + "start": 18181.84, + "end": 18186.86, + "probability": 0.9812 + }, + { + "start": 18187.7, + "end": 18189.1, + "probability": 0.7968 + }, + { + "start": 18190.32, + "end": 18192.02, + "probability": 0.939 + }, + { + "start": 18192.9, + "end": 18194.56, + "probability": 0.3804 + }, + { + "start": 18195.92, + "end": 18197.94, + "probability": 0.758 + }, + { + "start": 18198.8, + "end": 18202.68, + "probability": 0.9658 + }, + { + "start": 18203.5, + "end": 18204.84, + "probability": 0.9971 + }, + { + "start": 18206.38, + "end": 18207.66, + "probability": 0.7928 + }, + { + "start": 18208.42, + "end": 18211.58, + "probability": 0.9521 + }, + { + "start": 18211.76, + "end": 18217.86, + "probability": 0.8774 + }, + { + "start": 18218.14, + "end": 18219.28, + "probability": 0.9985 + }, + { + "start": 18221.36, + "end": 18226.34, + "probability": 0.9958 + }, + { + "start": 18226.56, + "end": 18226.96, + "probability": 0.7059 + }, + { + "start": 18227.64, + "end": 18228.26, + "probability": 0.5854 + }, + { + "start": 18228.9, + "end": 18230.44, + "probability": 0.9086 + }, + { + "start": 18230.72, + "end": 18233.84, + "probability": 0.648 + }, + { + "start": 18234.44, + "end": 18235.78, + "probability": 0.7701 + }, + { + "start": 18236.5, + "end": 18237.14, + "probability": 0.8007 + }, + { + "start": 18237.58, + "end": 18238.84, + "probability": 0.7244 + }, + { + "start": 18239.12, + "end": 18240.04, + "probability": 0.9398 + }, + { + "start": 18240.3, + "end": 18240.8, + "probability": 0.4797 + }, + { + "start": 18240.96, + "end": 18244.92, + "probability": 0.9795 + }, + { + "start": 18245.12, + "end": 18247.57, + "probability": 0.4681 + }, + { + "start": 18248.6, + "end": 18251.18, + "probability": 0.9087 + }, + { + "start": 18251.84, + "end": 18253.7, + "probability": 0.9203 + }, + { + "start": 18253.78, + "end": 18255.82, + "probability": 0.9889 + }, + { + "start": 18256.54, + "end": 18258.92, + "probability": 0.7837 + }, + { + "start": 18259.7, + "end": 18261.56, + "probability": 0.98 + }, + { + "start": 18262.22, + "end": 18266.68, + "probability": 0.8134 + }, + { + "start": 18267.4, + "end": 18268.46, + "probability": 0.9426 + }, + { + "start": 18269.24, + "end": 18271.06, + "probability": 0.9917 + }, + { + "start": 18271.66, + "end": 18272.12, + "probability": 0.9422 + }, + { + "start": 18272.28, + "end": 18279.38, + "probability": 0.9735 + }, + { + "start": 18280.3, + "end": 18284.48, + "probability": 0.9574 + }, + { + "start": 18285.24, + "end": 18289.1, + "probability": 0.9377 + }, + { + "start": 18290.16, + "end": 18291.64, + "probability": 0.9386 + }, + { + "start": 18291.72, + "end": 18292.64, + "probability": 0.7593 + }, + { + "start": 18293.22, + "end": 18294.36, + "probability": 0.7474 + }, + { + "start": 18298.46, + "end": 18299.14, + "probability": 0.3456 + }, + { + "start": 18299.7, + "end": 18302.66, + "probability": 0.6256 + }, + { + "start": 18303.26, + "end": 18303.82, + "probability": 0.7651 + }, + { + "start": 18304.48, + "end": 18305.58, + "probability": 0.7129 + }, + { + "start": 18306.46, + "end": 18308.7, + "probability": 0.7675 + }, + { + "start": 18308.7, + "end": 18310.68, + "probability": 0.7276 + }, + { + "start": 18311.54, + "end": 18312.6, + "probability": 0.8696 + }, + { + "start": 18313.36, + "end": 18316.1, + "probability": 0.7038 + }, + { + "start": 18316.6, + "end": 18317.16, + "probability": 0.4494 + }, + { + "start": 18317.76, + "end": 18318.16, + "probability": 0.7442 + }, + { + "start": 18318.48, + "end": 18319.66, + "probability": 0.8235 + }, + { + "start": 18320.08, + "end": 18322.8, + "probability": 0.9938 + }, + { + "start": 18323.38, + "end": 18326.34, + "probability": 0.9775 + }, + { + "start": 18327.12, + "end": 18330.88, + "probability": 0.8672 + }, + { + "start": 18331.66, + "end": 18332.82, + "probability": 0.8005 + }, + { + "start": 18332.84, + "end": 18336.86, + "probability": 0.6708 + }, + { + "start": 18337.68, + "end": 18342.86, + "probability": 0.8888 + }, + { + "start": 18342.86, + "end": 18346.48, + "probability": 0.9565 + }, + { + "start": 18347.08, + "end": 18350.76, + "probability": 0.524 + }, + { + "start": 18351.68, + "end": 18354.48, + "probability": 0.9749 + }, + { + "start": 18355.02, + "end": 18357.92, + "probability": 0.8352 + }, + { + "start": 18358.8, + "end": 18359.36, + "probability": 0.7777 + }, + { + "start": 18359.8, + "end": 18363.52, + "probability": 0.8562 + }, + { + "start": 18364.6, + "end": 18367.56, + "probability": 0.9915 + }, + { + "start": 18367.58, + "end": 18368.2, + "probability": 0.6961 + }, + { + "start": 18368.9, + "end": 18370.36, + "probability": 0.9525 + }, + { + "start": 18370.96, + "end": 18373.5, + "probability": 0.9661 + }, + { + "start": 18373.8, + "end": 18376.46, + "probability": 0.937 + }, + { + "start": 18376.46, + "end": 18379.96, + "probability": 0.9906 + }, + { + "start": 18380.66, + "end": 18382.88, + "probability": 0.9824 + }, + { + "start": 18383.64, + "end": 18384.36, + "probability": 0.7695 + }, + { + "start": 18385.06, + "end": 18388.68, + "probability": 0.937 + }, + { + "start": 18389.22, + "end": 18391.3, + "probability": 0.9229 + }, + { + "start": 18391.58, + "end": 18392.9, + "probability": 0.9771 + }, + { + "start": 18393.22, + "end": 18396.1, + "probability": 0.991 + }, + { + "start": 18396.72, + "end": 18397.4, + "probability": 0.7384 + }, + { + "start": 18398.24, + "end": 18399.97, + "probability": 0.7096 + }, + { + "start": 18400.6, + "end": 18403.22, + "probability": 0.884 + }, + { + "start": 18404.6, + "end": 18407.56, + "probability": 0.9416 + }, + { + "start": 18408.86, + "end": 18411.96, + "probability": 0.9681 + }, + { + "start": 18413.68, + "end": 18417.52, + "probability": 0.9941 + }, + { + "start": 18417.7, + "end": 18419.06, + "probability": 0.87 + }, + { + "start": 18419.42, + "end": 18421.44, + "probability": 0.9124 + }, + { + "start": 18422.0, + "end": 18424.62, + "probability": 0.9687 + }, + { + "start": 18424.7, + "end": 18427.68, + "probability": 0.9767 + }, + { + "start": 18427.82, + "end": 18432.22, + "probability": 0.9759 + }, + { + "start": 18432.52, + "end": 18434.94, + "probability": 0.9927 + }, + { + "start": 18435.58, + "end": 18436.78, + "probability": 0.9744 + }, + { + "start": 18437.48, + "end": 18440.24, + "probability": 0.9845 + }, + { + "start": 18440.26, + "end": 18441.21, + "probability": 0.8903 + }, + { + "start": 18441.38, + "end": 18443.9, + "probability": 0.9492 + }, + { + "start": 18444.42, + "end": 18447.36, + "probability": 0.9487 + }, + { + "start": 18447.8, + "end": 18448.94, + "probability": 0.9384 + }, + { + "start": 18448.98, + "end": 18453.68, + "probability": 0.7869 + }, + { + "start": 18454.52, + "end": 18460.24, + "probability": 0.9339 + }, + { + "start": 18461.82, + "end": 18463.66, + "probability": 0.7623 + }, + { + "start": 18464.2, + "end": 18466.32, + "probability": 0.8389 + }, + { + "start": 18466.48, + "end": 18469.0, + "probability": 0.9865 + }, + { + "start": 18469.78, + "end": 18470.56, + "probability": 0.874 + }, + { + "start": 18471.26, + "end": 18472.58, + "probability": 0.9819 + }, + { + "start": 18473.66, + "end": 18474.48, + "probability": 0.7109 + }, + { + "start": 18475.2, + "end": 18481.22, + "probability": 0.9957 + }, + { + "start": 18481.22, + "end": 18485.44, + "probability": 0.9916 + }, + { + "start": 18486.22, + "end": 18486.66, + "probability": 0.7941 + }, + { + "start": 18487.44, + "end": 18490.38, + "probability": 0.9389 + }, + { + "start": 18491.08, + "end": 18492.28, + "probability": 0.6685 + }, + { + "start": 18492.96, + "end": 18496.6, + "probability": 0.9529 + }, + { + "start": 18497.14, + "end": 18499.74, + "probability": 0.9299 + }, + { + "start": 18500.62, + "end": 18503.02, + "probability": 0.9581 + }, + { + "start": 18503.74, + "end": 18506.02, + "probability": 0.9495 + }, + { + "start": 18506.96, + "end": 18509.44, + "probability": 0.9504 + }, + { + "start": 18510.1, + "end": 18512.24, + "probability": 0.8077 + }, + { + "start": 18514.0, + "end": 18515.96, + "probability": 0.7386 + }, + { + "start": 18516.6, + "end": 18517.76, + "probability": 0.7598 + }, + { + "start": 18519.86, + "end": 18522.94, + "probability": 0.6645 + }, + { + "start": 18523.82, + "end": 18527.04, + "probability": 0.9211 + }, + { + "start": 18527.86, + "end": 18529.06, + "probability": 0.9122 + }, + { + "start": 18529.86, + "end": 18534.28, + "probability": 0.9236 + }, + { + "start": 18535.74, + "end": 18539.24, + "probability": 0.5778 + }, + { + "start": 18540.06, + "end": 18541.1, + "probability": 0.7935 + }, + { + "start": 18541.66, + "end": 18547.72, + "probability": 0.7935 + }, + { + "start": 18548.24, + "end": 18549.54, + "probability": 0.7159 + }, + { + "start": 18550.16, + "end": 18551.46, + "probability": 0.959 + }, + { + "start": 18552.04, + "end": 18552.64, + "probability": 0.7606 + }, + { + "start": 18553.34, + "end": 18553.68, + "probability": 0.9059 + }, + { + "start": 18557.08, + "end": 18559.48, + "probability": 0.8308 + }, + { + "start": 18561.26, + "end": 18562.42, + "probability": 0.7991 + }, + { + "start": 18594.48, + "end": 18595.38, + "probability": 0.645 + }, + { + "start": 18596.3, + "end": 18597.1, + "probability": 0.6679 + }, + { + "start": 18599.56, + "end": 18602.26, + "probability": 0.6147 + }, + { + "start": 18603.76, + "end": 18604.44, + "probability": 0.9305 + }, + { + "start": 18605.34, + "end": 18608.48, + "probability": 0.9972 + }, + { + "start": 18609.48, + "end": 18611.86, + "probability": 0.9863 + }, + { + "start": 18612.92, + "end": 18613.9, + "probability": 0.9354 + }, + { + "start": 18615.08, + "end": 18617.32, + "probability": 0.5405 + }, + { + "start": 18618.62, + "end": 18620.76, + "probability": 0.998 + }, + { + "start": 18621.92, + "end": 18623.3, + "probability": 0.9377 + }, + { + "start": 18624.3, + "end": 18628.46, + "probability": 0.8837 + }, + { + "start": 18630.12, + "end": 18630.22, + "probability": 0.9038 + }, + { + "start": 18631.1, + "end": 18632.0, + "probability": 0.7949 + }, + { + "start": 18632.82, + "end": 18634.02, + "probability": 0.9274 + }, + { + "start": 18634.68, + "end": 18636.5, + "probability": 0.7204 + }, + { + "start": 18637.2, + "end": 18638.24, + "probability": 0.7436 + }, + { + "start": 18639.08, + "end": 18639.56, + "probability": 0.8491 + }, + { + "start": 18640.0, + "end": 18644.16, + "probability": 0.9423 + }, + { + "start": 18645.36, + "end": 18646.57, + "probability": 0.6184 + }, + { + "start": 18648.4, + "end": 18648.68, + "probability": 0.4953 + }, + { + "start": 18649.32, + "end": 18651.08, + "probability": 0.89 + }, + { + "start": 18651.7, + "end": 18653.58, + "probability": 0.9744 + }, + { + "start": 18654.24, + "end": 18656.14, + "probability": 0.8988 + }, + { + "start": 18657.26, + "end": 18659.32, + "probability": 0.9347 + }, + { + "start": 18660.54, + "end": 18661.76, + "probability": 0.8779 + }, + { + "start": 18662.6, + "end": 18665.42, + "probability": 0.9983 + }, + { + "start": 18667.48, + "end": 18667.84, + "probability": 0.6434 + }, + { + "start": 18668.44, + "end": 18670.66, + "probability": 0.9659 + }, + { + "start": 18671.18, + "end": 18673.42, + "probability": 0.7354 + }, + { + "start": 18674.92, + "end": 18675.46, + "probability": 0.7238 + }, + { + "start": 18677.28, + "end": 18679.4, + "probability": 0.9129 + }, + { + "start": 18681.22, + "end": 18682.14, + "probability": 0.8431 + }, + { + "start": 18683.06, + "end": 18684.8, + "probability": 0.9394 + }, + { + "start": 18685.78, + "end": 18687.22, + "probability": 0.9979 + }, + { + "start": 18688.0, + "end": 18691.58, + "probability": 0.9985 + }, + { + "start": 18692.34, + "end": 18692.88, + "probability": 0.8364 + }, + { + "start": 18694.46, + "end": 18695.82, + "probability": 0.9445 + }, + { + "start": 18696.46, + "end": 18697.58, + "probability": 0.9696 + }, + { + "start": 18698.42, + "end": 18700.42, + "probability": 0.9611 + }, + { + "start": 18701.24, + "end": 18702.68, + "probability": 0.8579 + }, + { + "start": 18704.88, + "end": 18708.62, + "probability": 0.9769 + }, + { + "start": 18710.12, + "end": 18713.32, + "probability": 0.9781 + }, + { + "start": 18714.24, + "end": 18716.04, + "probability": 0.9967 + }, + { + "start": 18717.62, + "end": 18719.54, + "probability": 0.9064 + }, + { + "start": 18720.12, + "end": 18720.66, + "probability": 0.3788 + }, + { + "start": 18722.3, + "end": 18723.64, + "probability": 0.9556 + }, + { + "start": 18724.84, + "end": 18726.34, + "probability": 0.9839 + }, + { + "start": 18727.44, + "end": 18729.7, + "probability": 0.9766 + }, + { + "start": 18731.7, + "end": 18732.56, + "probability": 0.7258 + }, + { + "start": 18733.68, + "end": 18734.94, + "probability": 0.9095 + }, + { + "start": 18735.54, + "end": 18736.66, + "probability": 0.9983 + }, + { + "start": 18737.36, + "end": 18742.58, + "probability": 0.9928 + }, + { + "start": 18744.0, + "end": 18745.54, + "probability": 0.996 + }, + { + "start": 18746.24, + "end": 18747.67, + "probability": 0.9839 + }, + { + "start": 18748.28, + "end": 18750.74, + "probability": 0.9491 + }, + { + "start": 18750.84, + "end": 18751.74, + "probability": 0.9696 + }, + { + "start": 18752.18, + "end": 18753.66, + "probability": 0.8982 + }, + { + "start": 18754.96, + "end": 18755.82, + "probability": 0.9577 + }, + { + "start": 18756.64, + "end": 18757.22, + "probability": 0.9581 + }, + { + "start": 18758.1, + "end": 18758.98, + "probability": 0.9992 + }, + { + "start": 18759.94, + "end": 18764.14, + "probability": 0.8926 + }, + { + "start": 18764.14, + "end": 18767.32, + "probability": 0.9971 + }, + { + "start": 18768.82, + "end": 18772.6, + "probability": 0.9655 + }, + { + "start": 18774.26, + "end": 18777.12, + "probability": 0.8135 + }, + { + "start": 18779.42, + "end": 18782.1, + "probability": 0.8821 + }, + { + "start": 18782.1, + "end": 18784.34, + "probability": 0.9832 + }, + { + "start": 18785.5, + "end": 18787.08, + "probability": 0.9852 + }, + { + "start": 18787.72, + "end": 18791.0, + "probability": 0.8828 + }, + { + "start": 18791.98, + "end": 18793.58, + "probability": 0.781 + }, + { + "start": 18794.92, + "end": 18797.82, + "probability": 0.9592 + }, + { + "start": 18799.18, + "end": 18801.28, + "probability": 0.9937 + }, + { + "start": 18803.32, + "end": 18804.2, + "probability": 0.5526 + }, + { + "start": 18804.34, + "end": 18806.78, + "probability": 0.9872 + }, + { + "start": 18807.8, + "end": 18809.96, + "probability": 0.9883 + }, + { + "start": 18810.88, + "end": 18813.06, + "probability": 0.9785 + }, + { + "start": 18814.26, + "end": 18817.16, + "probability": 0.9705 + }, + { + "start": 18818.26, + "end": 18819.88, + "probability": 0.9845 + }, + { + "start": 18820.78, + "end": 18822.9, + "probability": 0.934 + }, + { + "start": 18823.88, + "end": 18824.88, + "probability": 0.9118 + }, + { + "start": 18826.8, + "end": 18828.58, + "probability": 0.8934 + }, + { + "start": 18830.1, + "end": 18833.88, + "probability": 0.9873 + }, + { + "start": 18835.02, + "end": 18836.9, + "probability": 0.7132 + }, + { + "start": 18838.42, + "end": 18838.94, + "probability": 0.8378 + }, + { + "start": 18839.74, + "end": 18843.94, + "probability": 0.9866 + }, + { + "start": 18845.44, + "end": 18852.4, + "probability": 0.9954 + }, + { + "start": 18853.42, + "end": 18854.8, + "probability": 0.9937 + }, + { + "start": 18856.34, + "end": 18860.02, + "probability": 0.9558 + }, + { + "start": 18861.2, + "end": 18862.54, + "probability": 0.9996 + }, + { + "start": 18863.24, + "end": 18864.86, + "probability": 0.5808 + }, + { + "start": 18865.5, + "end": 18867.26, + "probability": 0.9364 + }, + { + "start": 18868.08, + "end": 18868.86, + "probability": 0.999 + }, + { + "start": 18870.1, + "end": 18872.48, + "probability": 0.9592 + }, + { + "start": 18873.38, + "end": 18876.24, + "probability": 0.8668 + }, + { + "start": 18877.82, + "end": 18881.0, + "probability": 0.9941 + }, + { + "start": 18881.9, + "end": 18883.68, + "probability": 0.9882 + }, + { + "start": 18884.14, + "end": 18885.65, + "probability": 0.9312 + }, + { + "start": 18886.04, + "end": 18886.62, + "probability": 0.5633 + }, + { + "start": 18886.72, + "end": 18887.76, + "probability": 0.8019 + }, + { + "start": 18889.18, + "end": 18890.5, + "probability": 0.5517 + }, + { + "start": 18891.68, + "end": 18894.52, + "probability": 0.9964 + }, + { + "start": 18895.28, + "end": 18898.86, + "probability": 0.9774 + }, + { + "start": 18899.78, + "end": 18900.65, + "probability": 0.8337 + }, + { + "start": 18902.12, + "end": 18902.62, + "probability": 0.7431 + }, + { + "start": 18903.74, + "end": 18907.12, + "probability": 0.8903 + }, + { + "start": 18907.14, + "end": 18908.48, + "probability": 0.98 + }, + { + "start": 18908.7, + "end": 18912.66, + "probability": 0.9248 + }, + { + "start": 18912.66, + "end": 18915.96, + "probability": 0.9019 + }, + { + "start": 18916.7, + "end": 18917.1, + "probability": 0.7826 + }, + { + "start": 18918.06, + "end": 18920.14, + "probability": 0.7524 + }, + { + "start": 18921.14, + "end": 18923.86, + "probability": 0.6415 + }, + { + "start": 18924.46, + "end": 18925.66, + "probability": 0.9571 + }, + { + "start": 18926.88, + "end": 18927.54, + "probability": 0.6699 + }, + { + "start": 18928.5, + "end": 18929.76, + "probability": 0.9702 + }, + { + "start": 18931.12, + "end": 18934.72, + "probability": 0.7363 + }, + { + "start": 18935.44, + "end": 18938.76, + "probability": 0.8007 + }, + { + "start": 18940.18, + "end": 18941.36, + "probability": 0.9301 + }, + { + "start": 18941.88, + "end": 18945.94, + "probability": 0.807 + }, + { + "start": 18946.22, + "end": 18946.54, + "probability": 0.9521 + }, + { + "start": 18947.96, + "end": 18951.78, + "probability": 0.9954 + }, + { + "start": 18952.32, + "end": 18953.66, + "probability": 0.9985 + }, + { + "start": 18954.2, + "end": 18955.06, + "probability": 0.824 + }, + { + "start": 18956.62, + "end": 18958.5, + "probability": 0.7579 + }, + { + "start": 18959.4, + "end": 18960.7, + "probability": 0.9587 + }, + { + "start": 18961.52, + "end": 18962.96, + "probability": 0.9537 + }, + { + "start": 18963.74, + "end": 18966.98, + "probability": 0.9487 + }, + { + "start": 18968.68, + "end": 18972.88, + "probability": 0.9702 + }, + { + "start": 18973.7, + "end": 18975.96, + "probability": 0.9574 + }, + { + "start": 18976.5, + "end": 18979.5, + "probability": 0.9373 + }, + { + "start": 18980.6, + "end": 18981.14, + "probability": 0.8613 + }, + { + "start": 18981.98, + "end": 18982.98, + "probability": 0.9143 + }, + { + "start": 18983.9, + "end": 18985.44, + "probability": 0.9763 + }, + { + "start": 18986.34, + "end": 18988.1, + "probability": 0.8306 + }, + { + "start": 18990.48, + "end": 18991.74, + "probability": 0.5742 + }, + { + "start": 18991.86, + "end": 18992.42, + "probability": 0.5733 + }, + { + "start": 18992.5, + "end": 18994.34, + "probability": 0.7456 + }, + { + "start": 18995.56, + "end": 18999.16, + "probability": 0.9589 + }, + { + "start": 18999.68, + "end": 19000.34, + "probability": 0.9407 + }, + { + "start": 19004.44, + "end": 19006.33, + "probability": 0.8805 + }, + { + "start": 19007.42, + "end": 19007.9, + "probability": 0.9885 + }, + { + "start": 19009.02, + "end": 19010.52, + "probability": 0.5997 + }, + { + "start": 19011.86, + "end": 19016.14, + "probability": 0.9922 + }, + { + "start": 19017.66, + "end": 19020.72, + "probability": 0.9907 + }, + { + "start": 19021.86, + "end": 19022.86, + "probability": 0.9824 + }, + { + "start": 19023.5, + "end": 19025.1, + "probability": 0.8268 + }, + { + "start": 19025.62, + "end": 19028.2, + "probability": 0.5326 + }, + { + "start": 19028.84, + "end": 19029.38, + "probability": 0.8088 + }, + { + "start": 19030.24, + "end": 19035.52, + "probability": 0.9185 + }, + { + "start": 19036.26, + "end": 19040.68, + "probability": 0.9966 + }, + { + "start": 19041.38, + "end": 19043.26, + "probability": 0.9524 + }, + { + "start": 19043.5, + "end": 19045.24, + "probability": 0.7946 + }, + { + "start": 19045.36, + "end": 19046.08, + "probability": 0.9315 + }, + { + "start": 19047.84, + "end": 19049.12, + "probability": 0.9117 + }, + { + "start": 19049.18, + "end": 19050.54, + "probability": 0.8559 + }, + { + "start": 19050.64, + "end": 19053.92, + "probability": 0.8844 + }, + { + "start": 19054.2, + "end": 19055.42, + "probability": 0.4289 + }, + { + "start": 19056.04, + "end": 19056.9, + "probability": 0.8361 + }, + { + "start": 19057.48, + "end": 19057.96, + "probability": 0.9723 + }, + { + "start": 19058.62, + "end": 19059.56, + "probability": 0.9907 + }, + { + "start": 19060.78, + "end": 19061.62, + "probability": 0.5719 + }, + { + "start": 19062.58, + "end": 19065.8, + "probability": 0.9932 + }, + { + "start": 19066.3, + "end": 19068.44, + "probability": 0.8791 + }, + { + "start": 19069.24, + "end": 19072.12, + "probability": 0.6507 + }, + { + "start": 19073.34, + "end": 19076.02, + "probability": 0.8996 + }, + { + "start": 19077.12, + "end": 19080.16, + "probability": 0.8355 + }, + { + "start": 19081.12, + "end": 19082.62, + "probability": 0.8994 + }, + { + "start": 19083.52, + "end": 19084.24, + "probability": 0.8472 + }, + { + "start": 19084.94, + "end": 19085.78, + "probability": 0.5095 + }, + { + "start": 19086.42, + "end": 19087.94, + "probability": 0.9438 + }, + { + "start": 19088.68, + "end": 19089.68, + "probability": 0.9503 + }, + { + "start": 19089.86, + "end": 19091.36, + "probability": 0.5205 + }, + { + "start": 19092.16, + "end": 19094.06, + "probability": 0.9167 + }, + { + "start": 19095.28, + "end": 19096.8, + "probability": 0.9834 + }, + { + "start": 19098.04, + "end": 19100.32, + "probability": 0.8194 + }, + { + "start": 19101.36, + "end": 19103.4, + "probability": 0.991 + }, + { + "start": 19104.72, + "end": 19105.4, + "probability": 0.7982 + }, + { + "start": 19105.94, + "end": 19106.88, + "probability": 0.8892 + }, + { + "start": 19108.2, + "end": 19109.3, + "probability": 0.7897 + }, + { + "start": 19109.94, + "end": 19111.94, + "probability": 0.9896 + }, + { + "start": 19112.62, + "end": 19118.33, + "probability": 0.9788 + }, + { + "start": 19119.12, + "end": 19120.1, + "probability": 0.7153 + }, + { + "start": 19121.1, + "end": 19126.56, + "probability": 0.9688 + }, + { + "start": 19127.36, + "end": 19128.3, + "probability": 0.9852 + }, + { + "start": 19129.08, + "end": 19130.3, + "probability": 0.9985 + }, + { + "start": 19130.9, + "end": 19132.74, + "probability": 0.9978 + }, + { + "start": 19133.34, + "end": 19135.5, + "probability": 0.8621 + }, + { + "start": 19135.92, + "end": 19136.44, + "probability": 0.6308 + }, + { + "start": 19137.85, + "end": 19140.26, + "probability": 0.8228 + }, + { + "start": 19141.54, + "end": 19142.98, + "probability": 0.7564 + }, + { + "start": 19152.34, + "end": 19153.6, + "probability": 0.6205 + }, + { + "start": 19159.36, + "end": 19163.62, + "probability": 0.9702 + }, + { + "start": 19165.26, + "end": 19166.72, + "probability": 0.9668 + }, + { + "start": 19166.96, + "end": 19171.3, + "probability": 0.7191 + }, + { + "start": 19171.84, + "end": 19173.84, + "probability": 0.9386 + }, + { + "start": 19175.54, + "end": 19178.7, + "probability": 0.8888 + }, + { + "start": 19178.87, + "end": 19181.58, + "probability": 0.9632 + }, + { + "start": 19183.52, + "end": 19184.28, + "probability": 0.7852 + }, + { + "start": 19184.88, + "end": 19186.12, + "probability": 0.255 + }, + { + "start": 19186.24, + "end": 19189.14, + "probability": 0.9598 + }, + { + "start": 19189.18, + "end": 19189.46, + "probability": 0.4128 + }, + { + "start": 19189.54, + "end": 19192.54, + "probability": 0.9533 + }, + { + "start": 19193.24, + "end": 19195.34, + "probability": 0.7927 + }, + { + "start": 19195.64, + "end": 19196.4, + "probability": 0.9788 + }, + { + "start": 19196.58, + "end": 19198.8, + "probability": 0.9781 + }, + { + "start": 19198.86, + "end": 19201.58, + "probability": 0.9487 + }, + { + "start": 19202.3, + "end": 19205.52, + "probability": 0.97 + }, + { + "start": 19205.52, + "end": 19209.38, + "probability": 0.9964 + }, + { + "start": 19210.58, + "end": 19210.86, + "probability": 0.7146 + }, + { + "start": 19211.04, + "end": 19217.18, + "probability": 0.9868 + }, + { + "start": 19218.04, + "end": 19218.58, + "probability": 0.7522 + }, + { + "start": 19218.76, + "end": 19223.34, + "probability": 0.9977 + }, + { + "start": 19223.64, + "end": 19226.46, + "probability": 0.9974 + }, + { + "start": 19228.08, + "end": 19230.44, + "probability": 0.704 + }, + { + "start": 19230.98, + "end": 19231.5, + "probability": 0.3775 + }, + { + "start": 19232.48, + "end": 19235.26, + "probability": 0.9102 + }, + { + "start": 19235.84, + "end": 19237.34, + "probability": 0.7724 + }, + { + "start": 19237.52, + "end": 19240.22, + "probability": 0.951 + }, + { + "start": 19241.1, + "end": 19241.84, + "probability": 0.9965 + }, + { + "start": 19243.14, + "end": 19246.98, + "probability": 0.996 + }, + { + "start": 19247.16, + "end": 19248.61, + "probability": 0.9971 + }, + { + "start": 19249.92, + "end": 19250.36, + "probability": 0.7427 + }, + { + "start": 19250.68, + "end": 19251.72, + "probability": 0.9907 + }, + { + "start": 19251.8, + "end": 19253.74, + "probability": 0.9575 + }, + { + "start": 19254.88, + "end": 19257.5, + "probability": 0.9829 + }, + { + "start": 19257.5, + "end": 19260.34, + "probability": 0.9993 + }, + { + "start": 19260.9, + "end": 19261.28, + "probability": 0.6719 + }, + { + "start": 19262.18, + "end": 19266.29, + "probability": 0.9984 + }, + { + "start": 19266.34, + "end": 19271.32, + "probability": 0.9777 + }, + { + "start": 19271.98, + "end": 19273.82, + "probability": 0.9922 + }, + { + "start": 19274.66, + "end": 19276.66, + "probability": 0.9287 + }, + { + "start": 19277.0, + "end": 19280.68, + "probability": 0.9193 + }, + { + "start": 19281.26, + "end": 19283.84, + "probability": 0.9951 + }, + { + "start": 19284.68, + "end": 19285.44, + "probability": 0.9331 + }, + { + "start": 19285.96, + "end": 19287.48, + "probability": 0.8889 + }, + { + "start": 19289.24, + "end": 19292.0, + "probability": 0.9863 + }, + { + "start": 19293.16, + "end": 19296.12, + "probability": 0.9048 + }, + { + "start": 19297.24, + "end": 19301.76, + "probability": 0.9849 + }, + { + "start": 19301.88, + "end": 19305.2, + "probability": 0.8993 + }, + { + "start": 19305.36, + "end": 19306.0, + "probability": 0.8129 + }, + { + "start": 19306.9, + "end": 19308.84, + "probability": 0.994 + }, + { + "start": 19309.36, + "end": 19311.64, + "probability": 0.9494 + }, + { + "start": 19312.0, + "end": 19313.24, + "probability": 0.6765 + }, + { + "start": 19313.58, + "end": 19314.68, + "probability": 0.9885 + }, + { + "start": 19315.66, + "end": 19318.7, + "probability": 0.8811 + }, + { + "start": 19319.8, + "end": 19325.08, + "probability": 0.9932 + }, + { + "start": 19325.58, + "end": 19326.78, + "probability": 0.9282 + }, + { + "start": 19328.36, + "end": 19330.24, + "probability": 0.9944 + }, + { + "start": 19331.88, + "end": 19332.44, + "probability": 0.5861 + }, + { + "start": 19332.5, + "end": 19334.8, + "probability": 0.991 + }, + { + "start": 19334.9, + "end": 19338.02, + "probability": 0.9951 + }, + { + "start": 19338.3, + "end": 19339.26, + "probability": 0.9844 + }, + { + "start": 19339.84, + "end": 19342.76, + "probability": 0.9932 + }, + { + "start": 19344.18, + "end": 19348.7, + "probability": 0.9851 + }, + { + "start": 19349.2, + "end": 19352.46, + "probability": 0.9897 + }, + { + "start": 19352.78, + "end": 19355.7, + "probability": 0.9908 + }, + { + "start": 19356.16, + "end": 19360.26, + "probability": 0.9975 + }, + { + "start": 19360.26, + "end": 19364.46, + "probability": 0.9993 + }, + { + "start": 19364.8, + "end": 19366.14, + "probability": 0.9822 + }, + { + "start": 19367.3, + "end": 19367.64, + "probability": 0.5482 + }, + { + "start": 19368.02, + "end": 19370.34, + "probability": 0.8749 + }, + { + "start": 19371.44, + "end": 19374.9, + "probability": 0.9688 + }, + { + "start": 19375.3, + "end": 19376.16, + "probability": 0.759 + }, + { + "start": 19376.4, + "end": 19377.36, + "probability": 0.88 + }, + { + "start": 19377.58, + "end": 19380.28, + "probability": 0.9927 + }, + { + "start": 19383.14, + "end": 19384.9, + "probability": 0.9694 + }, + { + "start": 19385.52, + "end": 19388.78, + "probability": 0.9956 + }, + { + "start": 19388.88, + "end": 19389.26, + "probability": 0.7241 + }, + { + "start": 19389.3, + "end": 19390.04, + "probability": 0.9172 + }, + { + "start": 19390.1, + "end": 19391.34, + "probability": 0.8365 + }, + { + "start": 19391.68, + "end": 19395.1, + "probability": 0.9961 + }, + { + "start": 19395.18, + "end": 19399.7, + "probability": 0.9548 + }, + { + "start": 19400.2, + "end": 19400.98, + "probability": 0.7662 + }, + { + "start": 19401.32, + "end": 19402.78, + "probability": 0.9861 + }, + { + "start": 19404.48, + "end": 19408.14, + "probability": 0.9548 + }, + { + "start": 19410.12, + "end": 19413.34, + "probability": 0.9967 + }, + { + "start": 19414.76, + "end": 19416.64, + "probability": 0.9767 + }, + { + "start": 19417.2, + "end": 19421.5, + "probability": 0.9434 + }, + { + "start": 19422.06, + "end": 19425.5, + "probability": 0.9714 + }, + { + "start": 19425.66, + "end": 19426.56, + "probability": 0.9765 + }, + { + "start": 19426.76, + "end": 19427.24, + "probability": 0.8765 + }, + { + "start": 19427.38, + "end": 19428.18, + "probability": 0.9038 + }, + { + "start": 19428.52, + "end": 19429.22, + "probability": 0.8409 + }, + { + "start": 19429.28, + "end": 19432.24, + "probability": 0.8292 + }, + { + "start": 19433.76, + "end": 19434.22, + "probability": 0.9734 + }, + { + "start": 19434.32, + "end": 19436.8, + "probability": 0.8501 + }, + { + "start": 19437.82, + "end": 19440.86, + "probability": 0.9409 + }, + { + "start": 19440.9, + "end": 19441.77, + "probability": 0.9106 + }, + { + "start": 19442.26, + "end": 19443.46, + "probability": 0.9004 + }, + { + "start": 19443.86, + "end": 19444.7, + "probability": 0.8583 + }, + { + "start": 19445.38, + "end": 19447.8, + "probability": 0.9821 + }, + { + "start": 19449.88, + "end": 19451.14, + "probability": 0.7628 + }, + { + "start": 19451.8, + "end": 19452.2, + "probability": 0.5628 + }, + { + "start": 19453.04, + "end": 19454.68, + "probability": 0.938 + }, + { + "start": 19455.22, + "end": 19457.26, + "probability": 0.8621 + }, + { + "start": 19457.9, + "end": 19458.62, + "probability": 0.6897 + }, + { + "start": 19459.52, + "end": 19460.22, + "probability": 0.9634 + }, + { + "start": 19461.7, + "end": 19464.84, + "probability": 0.9717 + }, + { + "start": 19465.52, + "end": 19469.74, + "probability": 0.8638 + }, + { + "start": 19470.62, + "end": 19472.84, + "probability": 0.9873 + }, + { + "start": 19472.9, + "end": 19475.02, + "probability": 0.492 + }, + { + "start": 19475.38, + "end": 19478.04, + "probability": 0.7508 + }, + { + "start": 19479.92, + "end": 19481.9, + "probability": 0.9527 + }, + { + "start": 19484.5, + "end": 19484.78, + "probability": 0.8424 + }, + { + "start": 19485.1, + "end": 19489.58, + "probability": 0.9123 + }, + { + "start": 19489.98, + "end": 19493.54, + "probability": 0.7498 + }, + { + "start": 19494.04, + "end": 19497.6, + "probability": 0.9945 + }, + { + "start": 19498.28, + "end": 19503.66, + "probability": 0.9922 + }, + { + "start": 19503.66, + "end": 19506.56, + "probability": 0.834 + }, + { + "start": 19507.52, + "end": 19510.36, + "probability": 0.9941 + }, + { + "start": 19510.36, + "end": 19512.8, + "probability": 0.9985 + }, + { + "start": 19512.88, + "end": 19514.84, + "probability": 0.9865 + }, + { + "start": 19515.4, + "end": 19518.3, + "probability": 0.9902 + }, + { + "start": 19518.3, + "end": 19521.34, + "probability": 0.998 + }, + { + "start": 19522.1, + "end": 19524.48, + "probability": 0.8945 + }, + { + "start": 19527.16, + "end": 19531.26, + "probability": 0.9325 + }, + { + "start": 19531.8, + "end": 19532.8, + "probability": 0.9877 + }, + { + "start": 19533.58, + "end": 19535.12, + "probability": 0.9078 + }, + { + "start": 19535.64, + "end": 19537.52, + "probability": 0.9367 + }, + { + "start": 19539.06, + "end": 19539.28, + "probability": 0.6318 + }, + { + "start": 19539.34, + "end": 19541.86, + "probability": 0.8046 + }, + { + "start": 19541.98, + "end": 19544.19, + "probability": 0.9927 + }, + { + "start": 19544.28, + "end": 19549.6, + "probability": 0.9224 + }, + { + "start": 19549.94, + "end": 19552.21, + "probability": 0.8982 + }, + { + "start": 19554.08, + "end": 19555.42, + "probability": 0.9664 + }, + { + "start": 19557.27, + "end": 19559.88, + "probability": 0.8658 + }, + { + "start": 19560.4, + "end": 19563.11, + "probability": 0.9757 + }, + { + "start": 19563.92, + "end": 19566.1, + "probability": 0.9759 + }, + { + "start": 19566.32, + "end": 19567.66, + "probability": 0.9729 + }, + { + "start": 19568.3, + "end": 19569.6, + "probability": 0.9976 + }, + { + "start": 19570.26, + "end": 19570.48, + "probability": 0.4343 + }, + { + "start": 19570.48, + "end": 19573.4, + "probability": 0.9445 + }, + { + "start": 19573.98, + "end": 19577.36, + "probability": 0.9854 + }, + { + "start": 19578.88, + "end": 19580.38, + "probability": 0.995 + }, + { + "start": 19580.6, + "end": 19583.74, + "probability": 0.998 + }, + { + "start": 19584.84, + "end": 19586.46, + "probability": 0.9944 + }, + { + "start": 19588.1, + "end": 19589.7, + "probability": 0.9958 + }, + { + "start": 19590.22, + "end": 19590.88, + "probability": 0.9722 + }, + { + "start": 19591.52, + "end": 19592.83, + "probability": 0.8945 + }, + { + "start": 19593.2, + "end": 19594.88, + "probability": 0.9609 + }, + { + "start": 19595.0, + "end": 19597.0, + "probability": 0.9985 + }, + { + "start": 19597.06, + "end": 19597.86, + "probability": 0.9369 + }, + { + "start": 19598.76, + "end": 19600.78, + "probability": 0.9822 + }, + { + "start": 19601.14, + "end": 19602.14, + "probability": 0.9289 + }, + { + "start": 19602.18, + "end": 19604.24, + "probability": 0.9753 + }, + { + "start": 19604.28, + "end": 19604.86, + "probability": 0.8475 + }, + { + "start": 19605.74, + "end": 19609.68, + "probability": 0.9926 + }, + { + "start": 19610.06, + "end": 19611.21, + "probability": 0.9966 + }, + { + "start": 19611.62, + "end": 19614.58, + "probability": 0.9823 + }, + { + "start": 19614.62, + "end": 19616.06, + "probability": 0.9878 + }, + { + "start": 19616.36, + "end": 19619.22, + "probability": 0.9873 + }, + { + "start": 19619.22, + "end": 19622.32, + "probability": 0.9822 + }, + { + "start": 19623.64, + "end": 19625.36, + "probability": 0.9397 + }, + { + "start": 19626.0, + "end": 19626.94, + "probability": 0.9172 + }, + { + "start": 19627.9, + "end": 19629.61, + "probability": 0.9957 + }, + { + "start": 19630.78, + "end": 19634.06, + "probability": 0.999 + }, + { + "start": 19634.14, + "end": 19635.94, + "probability": 0.984 + }, + { + "start": 19637.62, + "end": 19638.3, + "probability": 0.7647 + }, + { + "start": 19638.5, + "end": 19639.9, + "probability": 0.9076 + }, + { + "start": 19640.04, + "end": 19640.64, + "probability": 0.9315 + }, + { + "start": 19640.72, + "end": 19641.36, + "probability": 0.7235 + }, + { + "start": 19641.68, + "end": 19643.18, + "probability": 0.8682 + }, + { + "start": 19643.52, + "end": 19650.64, + "probability": 0.9993 + }, + { + "start": 19650.64, + "end": 19655.58, + "probability": 0.9881 + }, + { + "start": 19656.2, + "end": 19657.36, + "probability": 0.735 + }, + { + "start": 19657.38, + "end": 19657.82, + "probability": 0.9047 + }, + { + "start": 19658.0, + "end": 19660.88, + "probability": 0.9007 + }, + { + "start": 19661.46, + "end": 19661.86, + "probability": 0.856 + }, + { + "start": 19662.22, + "end": 19662.58, + "probability": 0.8551 + }, + { + "start": 19663.04, + "end": 19665.3, + "probability": 0.7259 + }, + { + "start": 19665.36, + "end": 19668.74, + "probability": 0.9901 + }, + { + "start": 19669.12, + "end": 19671.4, + "probability": 0.9626 + }, + { + "start": 19671.86, + "end": 19675.4, + "probability": 0.9964 + }, + { + "start": 19675.46, + "end": 19678.88, + "probability": 0.9902 + }, + { + "start": 19679.58, + "end": 19681.18, + "probability": 0.9967 + }, + { + "start": 19681.24, + "end": 19683.62, + "probability": 0.9772 + }, + { + "start": 19683.62, + "end": 19686.5, + "probability": 0.983 + }, + { + "start": 19686.7, + "end": 19687.44, + "probability": 0.1749 + }, + { + "start": 19687.72, + "end": 19688.06, + "probability": 0.3785 + }, + { + "start": 19688.2, + "end": 19688.72, + "probability": 0.8986 + }, + { + "start": 19688.88, + "end": 19689.3, + "probability": 0.6776 + }, + { + "start": 19689.34, + "end": 19690.2, + "probability": 0.7903 + }, + { + "start": 19690.22, + "end": 19694.64, + "probability": 0.9766 + }, + { + "start": 19695.2, + "end": 19696.28, + "probability": 0.5936 + }, + { + "start": 19697.1, + "end": 19699.34, + "probability": 0.9736 + }, + { + "start": 19700.42, + "end": 19700.66, + "probability": 0.5182 + }, + { + "start": 19701.9, + "end": 19707.42, + "probability": 0.8899 + }, + { + "start": 19708.7, + "end": 19709.44, + "probability": 0.655 + }, + { + "start": 19709.54, + "end": 19710.48, + "probability": 0.5882 + }, + { + "start": 19710.6, + "end": 19714.16, + "probability": 0.9958 + }, + { + "start": 19715.9, + "end": 19718.06, + "probability": 0.8288 + }, + { + "start": 19718.16, + "end": 19719.0, + "probability": 0.8992 + }, + { + "start": 19719.08, + "end": 19719.84, + "probability": 0.6678 + }, + { + "start": 19720.14, + "end": 19722.26, + "probability": 0.9934 + }, + { + "start": 19722.56, + "end": 19724.94, + "probability": 0.9199 + }, + { + "start": 19724.94, + "end": 19728.22, + "probability": 0.9987 + }, + { + "start": 19728.76, + "end": 19733.74, + "probability": 0.9966 + }, + { + "start": 19733.8, + "end": 19738.02, + "probability": 0.9953 + }, + { + "start": 19739.32, + "end": 19740.06, + "probability": 0.8475 + }, + { + "start": 19740.12, + "end": 19742.42, + "probability": 0.7955 + }, + { + "start": 19742.5, + "end": 19745.87, + "probability": 0.9995 + }, + { + "start": 19747.46, + "end": 19750.22, + "probability": 0.9946 + }, + { + "start": 19751.24, + "end": 19755.52, + "probability": 0.9973 + }, + { + "start": 19755.52, + "end": 19759.46, + "probability": 0.664 + }, + { + "start": 19760.44, + "end": 19762.78, + "probability": 0.7369 + }, + { + "start": 19762.98, + "end": 19763.91, + "probability": 0.8828 + }, + { + "start": 19764.34, + "end": 19765.3, + "probability": 0.9209 + }, + { + "start": 19765.4, + "end": 19766.0, + "probability": 0.951 + }, + { + "start": 19766.08, + "end": 19768.08, + "probability": 0.8647 + }, + { + "start": 19768.4, + "end": 19769.68, + "probability": 0.9715 + }, + { + "start": 19770.32, + "end": 19773.96, + "probability": 0.9973 + }, + { + "start": 19773.96, + "end": 19777.3, + "probability": 0.998 + }, + { + "start": 19777.6, + "end": 19778.26, + "probability": 0.9112 + }, + { + "start": 19778.44, + "end": 19780.1, + "probability": 0.9648 + }, + { + "start": 19780.84, + "end": 19786.34, + "probability": 0.9741 + }, + { + "start": 19786.7, + "end": 19788.22, + "probability": 0.9485 + }, + { + "start": 19788.74, + "end": 19790.54, + "probability": 0.9891 + }, + { + "start": 19790.84, + "end": 19792.22, + "probability": 0.9958 + }, + { + "start": 19792.28, + "end": 19794.3, + "probability": 0.9346 + }, + { + "start": 19795.24, + "end": 19798.02, + "probability": 0.9985 + }, + { + "start": 19798.62, + "end": 19802.9, + "probability": 0.9976 + }, + { + "start": 19803.68, + "end": 19805.2, + "probability": 0.9396 + }, + { + "start": 19805.24, + "end": 19810.26, + "probability": 0.9653 + }, + { + "start": 19810.4, + "end": 19811.96, + "probability": 0.9961 + }, + { + "start": 19812.36, + "end": 19815.68, + "probability": 0.9839 + }, + { + "start": 19815.68, + "end": 19818.2, + "probability": 0.9995 + }, + { + "start": 19819.1, + "end": 19823.9, + "probability": 0.7723 + }, + { + "start": 19824.0, + "end": 19825.52, + "probability": 0.9644 + }, + { + "start": 19826.14, + "end": 19827.88, + "probability": 0.9801 + }, + { + "start": 19828.5, + "end": 19830.8, + "probability": 0.8282 + }, + { + "start": 19831.04, + "end": 19831.38, + "probability": 0.9811 + }, + { + "start": 19832.4, + "end": 19833.6, + "probability": 0.7082 + }, + { + "start": 19834.32, + "end": 19837.84, + "probability": 0.9951 + }, + { + "start": 19837.98, + "end": 19840.12, + "probability": 0.9475 + }, + { + "start": 19840.18, + "end": 19844.12, + "probability": 0.9837 + }, + { + "start": 19844.54, + "end": 19846.0, + "probability": 0.905 + }, + { + "start": 19846.14, + "end": 19848.32, + "probability": 0.9947 + }, + { + "start": 19848.64, + "end": 19849.7, + "probability": 0.9948 + }, + { + "start": 19850.0, + "end": 19851.0, + "probability": 0.9933 + }, + { + "start": 19851.1, + "end": 19853.16, + "probability": 0.9819 + }, + { + "start": 19853.52, + "end": 19856.9, + "probability": 0.9902 + }, + { + "start": 19857.38, + "end": 19859.62, + "probability": 0.9873 + }, + { + "start": 19859.88, + "end": 19860.16, + "probability": 0.8382 + }, + { + "start": 19861.56, + "end": 19863.32, + "probability": 0.8137 + }, + { + "start": 19864.86, + "end": 19866.81, + "probability": 0.9751 + }, + { + "start": 19867.48, + "end": 19871.48, + "probability": 0.6353 + }, + { + "start": 19872.08, + "end": 19880.02, + "probability": 0.4277 + }, + { + "start": 75701.0, + "end": 75701.0, + "probability": 0.0 + }, + { + "start": 75701.0, + "end": 75701.0, + "probability": 0.0 + }, + { + "start": 75701.0, + "end": 75701.0, + "probability": 0.0 + }, + { + "start": 75701.0, + "end": 75701.0, + "probability": 0.0 + }, + { + "start": 75701.0, + "end": 75701.0, + "probability": 0.0 + }, + { + "start": 75701.0, + "end": 75701.0, + "probability": 0.0 + }, + { + "start": 75701.14, + "end": 75701.64, + "probability": 0.1377 + }, + { + "start": 75702.1, + "end": 75702.1, + "probability": 0.1419 + }, + { + "start": 75702.1, + "end": 75702.1, + "probability": 0.0468 + }, + { + "start": 75702.1, + "end": 75706.1, + "probability": 0.838 + }, + { + "start": 75706.1, + "end": 75711.08, + "probability": 0.7211 + }, + { + "start": 75711.28, + "end": 75713.26, + "probability": 0.8068 + }, + { + "start": 75714.56, + "end": 75716.0, + "probability": 0.9369 + }, + { + "start": 75716.12, + "end": 75717.02, + "probability": 0.8301 + }, + { + "start": 75717.98, + "end": 75719.3, + "probability": 0.9316 + }, + { + "start": 75719.48, + "end": 75722.38, + "probability": 0.8683 + }, + { + "start": 75722.38, + "end": 75727.84, + "probability": 0.9081 + }, + { + "start": 75728.6, + "end": 75728.64, + "probability": 0.0021 + }, + { + "start": 75728.9, + "end": 75730.32, + "probability": 0.1378 + }, + { + "start": 75730.48, + "end": 75733.94, + "probability": 0.887 + }, + { + "start": 75734.74, + "end": 75736.9, + "probability": 0.9767 + }, + { + "start": 75737.08, + "end": 75739.44, + "probability": 0.6211 + }, + { + "start": 75739.52, + "end": 75740.94, + "probability": 0.9703 + }, + { + "start": 75741.12, + "end": 75743.9, + "probability": 0.895 + }, + { + "start": 75744.14, + "end": 75748.32, + "probability": 0.98 + }, + { + "start": 75748.92, + "end": 75753.84, + "probability": 0.8909 + }, + { + "start": 75754.04, + "end": 75756.88, + "probability": 0.9909 + }, + { + "start": 75757.4, + "end": 75761.04, + "probability": 0.9801 + }, + { + "start": 75763.18, + "end": 75765.52, + "probability": 0.9088 + }, + { + "start": 75766.92, + "end": 75769.46, + "probability": 0.4767 + }, + { + "start": 75769.68, + "end": 75769.96, + "probability": 0.698 + }, + { + "start": 75775.26, + "end": 75775.84, + "probability": 0.7086 + }, + { + "start": 75783.14, + "end": 75783.92, + "probability": 0.5585 + }, + { + "start": 75784.16, + "end": 75786.3, + "probability": 0.9966 + }, + { + "start": 75787.08, + "end": 75791.06, + "probability": 0.7161 + }, + { + "start": 75792.32, + "end": 75794.52, + "probability": 0.9263 + }, + { + "start": 75794.58, + "end": 75800.1, + "probability": 0.9378 + }, + { + "start": 75800.9, + "end": 75803.58, + "probability": 0.7492 + }, + { + "start": 75804.26, + "end": 75805.78, + "probability": 0.5378 + }, + { + "start": 75806.5, + "end": 75811.36, + "probability": 0.9107 + }, + { + "start": 75812.5, + "end": 75820.4, + "probability": 0.9497 + }, + { + "start": 75821.18, + "end": 75825.96, + "probability": 0.9858 + }, + { + "start": 75826.78, + "end": 75828.92, + "probability": 0.992 + }, + { + "start": 75830.0, + "end": 75838.6, + "probability": 0.9604 + }, + { + "start": 75839.54, + "end": 75847.68, + "probability": 0.9956 + }, + { + "start": 75847.88, + "end": 75850.76, + "probability": 0.9024 + }, + { + "start": 75851.88, + "end": 75853.78, + "probability": 0.8448 + }, + { + "start": 75854.48, + "end": 75860.86, + "probability": 0.997 + }, + { + "start": 75861.76, + "end": 75862.14, + "probability": 0.4999 + }, + { + "start": 75862.24, + "end": 75865.8, + "probability": 0.9806 + }, + { + "start": 75865.8, + "end": 75869.44, + "probability": 0.9826 + }, + { + "start": 75870.26, + "end": 75873.28, + "probability": 0.9505 + }, + { + "start": 75874.2, + "end": 75880.42, + "probability": 0.8693 + }, + { + "start": 75881.86, + "end": 75887.18, + "probability": 0.986 + }, + { + "start": 75887.9, + "end": 75895.02, + "probability": 0.9886 + }, + { + "start": 75895.78, + "end": 75899.28, + "probability": 0.9384 + }, + { + "start": 75900.02, + "end": 75903.84, + "probability": 0.9409 + }, + { + "start": 75904.48, + "end": 75907.9, + "probability": 0.9764 + }, + { + "start": 75909.32, + "end": 75910.32, + "probability": 0.7268 + }, + { + "start": 75912.06, + "end": 75916.52, + "probability": 0.9592 + }, + { + "start": 75916.52, + "end": 75921.24, + "probability": 0.9998 + }, + { + "start": 75921.92, + "end": 75928.02, + "probability": 0.9984 + }, + { + "start": 75929.6, + "end": 75931.3, + "probability": 0.8475 + }, + { + "start": 75932.58, + "end": 75933.84, + "probability": 0.9068 + }, + { + "start": 75933.92, + "end": 75938.66, + "probability": 0.9314 + }, + { + "start": 75939.1, + "end": 75940.78, + "probability": 0.9964 + }, + { + "start": 75941.32, + "end": 75944.64, + "probability": 0.8501 + }, + { + "start": 75945.16, + "end": 75947.02, + "probability": 0.9899 + }, + { + "start": 75947.72, + "end": 75950.56, + "probability": 0.9824 + }, + { + "start": 75951.58, + "end": 75955.78, + "probability": 0.8625 + }, + { + "start": 75956.8, + "end": 75957.6, + "probability": 0.791 + }, + { + "start": 75958.36, + "end": 75959.67, + "probability": 0.8402 + }, + { + "start": 75959.96, + "end": 75964.84, + "probability": 0.9863 + }, + { + "start": 75965.38, + "end": 75968.3, + "probability": 0.7158 + }, + { + "start": 75968.92, + "end": 75969.28, + "probability": 0.7781 + }, + { + "start": 75969.44, + "end": 75974.38, + "probability": 0.9727 + }, + { + "start": 75974.38, + "end": 75981.14, + "probability": 0.9971 + }, + { + "start": 75981.5, + "end": 75982.08, + "probability": 0.8328 + }, + { + "start": 75982.14, + "end": 75983.36, + "probability": 0.7027 + }, + { + "start": 75983.96, + "end": 75985.02, + "probability": 0.8072 + }, + { + "start": 75986.02, + "end": 75989.55, + "probability": 0.9697 + }, + { + "start": 75990.84, + "end": 75994.18, + "probability": 0.9881 + }, + { + "start": 75995.06, + "end": 75998.86, + "probability": 0.7318 + }, + { + "start": 75999.5, + "end": 76006.24, + "probability": 0.9483 + }, + { + "start": 76007.9, + "end": 76010.5, + "probability": 0.8793 + }, + { + "start": 76011.14, + "end": 76013.58, + "probability": 0.9788 + }, + { + "start": 76014.66, + "end": 76019.32, + "probability": 0.9935 + }, + { + "start": 76019.94, + "end": 76021.42, + "probability": 0.4914 + }, + { + "start": 76021.42, + "end": 76021.64, + "probability": 0.7527 + }, + { + "start": 76021.8, + "end": 76023.86, + "probability": 0.922 + }, + { + "start": 76024.66, + "end": 76027.24, + "probability": 0.8505 + }, + { + "start": 76027.38, + "end": 76029.56, + "probability": 0.9866 + }, + { + "start": 76030.5, + "end": 76033.4, + "probability": 0.6694 + }, + { + "start": 76034.6, + "end": 76035.6, + "probability": 0.5913 + }, + { + "start": 76036.34, + "end": 76038.62, + "probability": 0.4691 + }, + { + "start": 76038.7, + "end": 76039.34, + "probability": 0.8836 + }, + { + "start": 76039.8, + "end": 76043.26, + "probability": 0.8384 + }, + { + "start": 76043.26, + "end": 76046.9, + "probability": 0.9091 + }, + { + "start": 76047.36, + "end": 76050.74, + "probability": 0.2948 + }, + { + "start": 76051.56, + "end": 76055.12, + "probability": 0.926 + }, + { + "start": 76055.62, + "end": 76056.94, + "probability": 0.3673 + }, + { + "start": 76057.06, + "end": 76058.62, + "probability": 0.894 + }, + { + "start": 76059.0, + "end": 76059.14, + "probability": 0.4319 + }, + { + "start": 76059.14, + "end": 76059.56, + "probability": 0.8387 + }, + { + "start": 76059.7, + "end": 76062.14, + "probability": 0.9447 + }, + { + "start": 76062.6, + "end": 76065.32, + "probability": 0.9244 + }, + { + "start": 76065.74, + "end": 76069.6, + "probability": 0.666 + }, + { + "start": 76070.34, + "end": 76071.16, + "probability": 0.6616 + }, + { + "start": 76071.2, + "end": 76076.4, + "probability": 0.9538 + }, + { + "start": 76077.12, + "end": 76079.4, + "probability": 0.9858 + }, + { + "start": 76079.82, + "end": 76081.31, + "probability": 0.9912 + }, + { + "start": 76083.04, + "end": 76085.78, + "probability": 0.9672 + }, + { + "start": 76087.26, + "end": 76094.3, + "probability": 0.9585 + }, + { + "start": 76094.58, + "end": 76094.74, + "probability": 0.2548 + }, + { + "start": 76094.74, + "end": 76095.12, + "probability": 0.8595 + }, + { + "start": 76095.22, + "end": 76098.22, + "probability": 0.9285 + }, + { + "start": 76099.28, + "end": 76100.76, + "probability": 0.9785 + }, + { + "start": 76101.54, + "end": 76103.7, + "probability": 0.9543 + }, + { + "start": 76104.28, + "end": 76106.0, + "probability": 0.7547 + }, + { + "start": 76106.92, + "end": 76108.8, + "probability": 0.9653 + }, + { + "start": 76109.46, + "end": 76112.18, + "probability": 0.9179 + }, + { + "start": 76113.32, + "end": 76114.34, + "probability": 0.7756 + }, + { + "start": 76114.86, + "end": 76119.08, + "probability": 0.929 + }, + { + "start": 76120.48, + "end": 76125.12, + "probability": 0.989 + }, + { + "start": 76125.8, + "end": 76131.26, + "probability": 0.9692 + }, + { + "start": 76131.96, + "end": 76135.56, + "probability": 0.9734 + }, + { + "start": 76136.26, + "end": 76137.9, + "probability": 0.8361 + }, + { + "start": 76138.26, + "end": 76140.36, + "probability": 0.9939 + }, + { + "start": 76141.2, + "end": 76145.5, + "probability": 0.8854 + }, + { + "start": 76145.5, + "end": 76149.36, + "probability": 0.9929 + }, + { + "start": 76150.02, + "end": 76155.26, + "probability": 0.998 + }, + { + "start": 76155.88, + "end": 76160.66, + "probability": 0.9987 + }, + { + "start": 76160.98, + "end": 76162.06, + "probability": 0.9508 + }, + { + "start": 76162.44, + "end": 76164.82, + "probability": 0.9862 + }, + { + "start": 76165.5, + "end": 76170.1, + "probability": 0.9516 + }, + { + "start": 76170.76, + "end": 76176.36, + "probability": 0.998 + }, + { + "start": 76176.36, + "end": 76181.42, + "probability": 0.9995 + }, + { + "start": 76182.0, + "end": 76184.52, + "probability": 0.9998 + }, + { + "start": 76186.02, + "end": 76193.26, + "probability": 0.9824 + }, + { + "start": 76193.82, + "end": 76195.38, + "probability": 0.2816 + }, + { + "start": 76196.44, + "end": 76201.02, + "probability": 0.9179 + }, + { + "start": 76201.62, + "end": 76205.62, + "probability": 0.9692 + }, + { + "start": 76205.62, + "end": 76210.42, + "probability": 0.9968 + }, + { + "start": 76211.04, + "end": 76215.28, + "probability": 0.9871 + }, + { + "start": 76215.4, + "end": 76217.88, + "probability": 0.9868 + }, + { + "start": 76217.88, + "end": 76222.44, + "probability": 0.9347 + }, + { + "start": 76222.98, + "end": 76229.48, + "probability": 0.9204 + }, + { + "start": 76230.02, + "end": 76231.94, + "probability": 0.9375 + }, + { + "start": 76232.48, + "end": 76237.82, + "probability": 0.6929 + }, + { + "start": 76238.44, + "end": 76241.0, + "probability": 0.975 + }, + { + "start": 76241.52, + "end": 76244.3, + "probability": 0.9864 + }, + { + "start": 76244.8, + "end": 76248.66, + "probability": 0.9971 + }, + { + "start": 76249.28, + "end": 76253.36, + "probability": 0.8984 + }, + { + "start": 76253.94, + "end": 76257.54, + "probability": 0.8196 + }, + { + "start": 76258.42, + "end": 76261.62, + "probability": 0.9761 + }, + { + "start": 76263.68, + "end": 76272.84, + "probability": 0.9102 + }, + { + "start": 76274.16, + "end": 76276.3, + "probability": 0.9899 + }, + { + "start": 76277.3, + "end": 76278.28, + "probability": 0.9287 + }, + { + "start": 76278.58, + "end": 76279.56, + "probability": 0.8431 + }, + { + "start": 76279.86, + "end": 76281.12, + "probability": 0.539 + }, + { + "start": 76281.58, + "end": 76282.96, + "probability": 0.9937 + }, + { + "start": 76284.14, + "end": 76286.58, + "probability": 0.9346 + }, + { + "start": 76287.2, + "end": 76289.84, + "probability": 0.8504 + }, + { + "start": 76290.18, + "end": 76294.44, + "probability": 0.9692 + }, + { + "start": 76294.96, + "end": 76296.22, + "probability": 0.8843 + }, + { + "start": 76296.28, + "end": 76297.0, + "probability": 0.924 + }, + { + "start": 76297.42, + "end": 76299.48, + "probability": 0.9922 + }, + { + "start": 76300.2, + "end": 76306.04, + "probability": 0.9872 + }, + { + "start": 76306.66, + "end": 76309.74, + "probability": 0.8915 + }, + { + "start": 76310.5, + "end": 76312.7, + "probability": 0.9875 + }, + { + "start": 76314.1, + "end": 76322.64, + "probability": 0.9591 + }, + { + "start": 76323.42, + "end": 76335.34, + "probability": 0.9819 + }, + { + "start": 76336.42, + "end": 76345.14, + "probability": 0.9971 + }, + { + "start": 76346.12, + "end": 76347.08, + "probability": 0.7939 + }, + { + "start": 76347.36, + "end": 76350.1, + "probability": 0.9153 + }, + { + "start": 76350.1, + "end": 76350.8, + "probability": 0.5242 + }, + { + "start": 76350.84, + "end": 76353.74, + "probability": 0.9838 + }, + { + "start": 76354.4, + "end": 76358.22, + "probability": 0.7589 + }, + { + "start": 76359.28, + "end": 76362.0, + "probability": 0.888 + }, + { + "start": 76363.6, + "end": 76368.8, + "probability": 0.9887 + }, + { + "start": 76368.8, + "end": 76373.74, + "probability": 0.9964 + }, + { + "start": 76374.44, + "end": 76378.62, + "probability": 0.9982 + }, + { + "start": 76379.34, + "end": 76382.12, + "probability": 0.9989 + }, + { + "start": 76382.9, + "end": 76385.02, + "probability": 0.8514 + }, + { + "start": 76387.38, + "end": 76390.7, + "probability": 0.9854 + }, + { + "start": 76391.26, + "end": 76396.26, + "probability": 0.9915 + }, + { + "start": 76397.02, + "end": 76399.1, + "probability": 0.7284 + }, + { + "start": 76400.66, + "end": 76404.98, + "probability": 0.9717 + }, + { + "start": 76405.56, + "end": 76407.62, + "probability": 0.7683 + }, + { + "start": 76408.34, + "end": 76411.9, + "probability": 0.9891 + }, + { + "start": 76412.44, + "end": 76415.2, + "probability": 0.7198 + }, + { + "start": 76415.72, + "end": 76417.78, + "probability": 0.6892 + }, + { + "start": 76418.44, + "end": 76424.32, + "probability": 0.9929 + }, + { + "start": 76425.18, + "end": 76426.84, + "probability": 0.9705 + }, + { + "start": 76427.42, + "end": 76428.6, + "probability": 0.8894 + }, + { + "start": 76429.32, + "end": 76436.26, + "probability": 0.9762 + }, + { + "start": 76436.72, + "end": 76442.66, + "probability": 0.9937 + }, + { + "start": 76443.38, + "end": 76445.32, + "probability": 0.9788 + }, + { + "start": 76446.86, + "end": 76448.6, + "probability": 0.9983 + }, + { + "start": 76449.2, + "end": 76453.92, + "probability": 0.9902 + }, + { + "start": 76454.62, + "end": 76459.02, + "probability": 0.9917 + }, + { + "start": 76459.86, + "end": 76467.6, + "probability": 0.9794 + }, + { + "start": 76468.2, + "end": 76472.94, + "probability": 0.9773 + }, + { + "start": 76472.94, + "end": 76476.46, + "probability": 0.9924 + }, + { + "start": 76477.68, + "end": 76481.3, + "probability": 0.9954 + }, + { + "start": 76481.96, + "end": 76482.76, + "probability": 0.5229 + }, + { + "start": 76483.2, + "end": 76484.41, + "probability": 0.9946 + }, + { + "start": 76486.03, + "end": 76488.26, + "probability": 0.7827 + }, + { + "start": 76488.26, + "end": 76489.16, + "probability": 0.0595 + }, + { + "start": 76489.74, + "end": 76491.74, + "probability": 0.7365 + }, + { + "start": 76492.38, + "end": 76497.72, + "probability": 0.9707 + }, + { + "start": 76498.34, + "end": 76499.6, + "probability": 0.7329 + }, + { + "start": 76500.5, + "end": 76502.2, + "probability": 0.9448 + }, + { + "start": 76502.46, + "end": 76506.32, + "probability": 0.9966 + }, + { + "start": 76506.94, + "end": 76510.7, + "probability": 0.9703 + }, + { + "start": 76511.2, + "end": 76517.52, + "probability": 0.9921 + }, + { + "start": 76519.6, + "end": 76521.02, + "probability": 0.8854 + }, + { + "start": 76521.56, + "end": 76523.12, + "probability": 0.696 + }, + { + "start": 76523.24, + "end": 76528.2, + "probability": 0.9905 + }, + { + "start": 76528.98, + "end": 76530.6, + "probability": 0.9922 + }, + { + "start": 76531.28, + "end": 76534.34, + "probability": 0.9958 + }, + { + "start": 76535.02, + "end": 76537.14, + "probability": 0.9672 + }, + { + "start": 76538.52, + "end": 76542.36, + "probability": 0.9622 + }, + { + "start": 76543.34, + "end": 76544.92, + "probability": 0.8115 + }, + { + "start": 76545.82, + "end": 76549.1, + "probability": 0.9757 + }, + { + "start": 76549.72, + "end": 76552.72, + "probability": 0.9967 + }, + { + "start": 76553.12, + "end": 76554.86, + "probability": 0.99 + }, + { + "start": 76555.82, + "end": 76557.98, + "probability": 0.7146 + }, + { + "start": 76558.5, + "end": 76559.48, + "probability": 0.5101 + }, + { + "start": 76560.12, + "end": 76562.78, + "probability": 0.9126 + }, + { + "start": 76563.3, + "end": 76565.56, + "probability": 0.9951 + }, + { + "start": 76566.24, + "end": 76569.34, + "probability": 0.8721 + }, + { + "start": 76570.08, + "end": 76571.46, + "probability": 0.4889 + }, + { + "start": 76572.42, + "end": 76573.88, + "probability": 0.7466 + }, + { + "start": 76574.4, + "end": 76580.96, + "probability": 0.9836 + }, + { + "start": 76582.0, + "end": 76584.56, + "probability": 0.7899 + }, + { + "start": 76585.26, + "end": 76588.0, + "probability": 0.9912 + }, + { + "start": 76588.62, + "end": 76599.7, + "probability": 0.9674 + }, + { + "start": 76600.34, + "end": 76607.64, + "probability": 0.9945 + }, + { + "start": 76607.94, + "end": 76609.18, + "probability": 0.8333 + }, + { + "start": 76609.26, + "end": 76610.26, + "probability": 0.7408 + }, + { + "start": 76611.32, + "end": 76612.81, + "probability": 0.8237 + }, + { + "start": 76613.34, + "end": 76617.42, + "probability": 0.9436 + }, + { + "start": 76618.14, + "end": 76619.64, + "probability": 0.9158 + }, + { + "start": 76620.26, + "end": 76621.4, + "probability": 0.8494 + }, + { + "start": 76622.2, + "end": 76629.52, + "probability": 0.895 + }, + { + "start": 76630.04, + "end": 76636.02, + "probability": 0.9202 + }, + { + "start": 76636.66, + "end": 76640.52, + "probability": 0.9517 + }, + { + "start": 76641.06, + "end": 76643.88, + "probability": 0.6456 + }, + { + "start": 76644.96, + "end": 76647.06, + "probability": 0.9601 + }, + { + "start": 76647.68, + "end": 76653.52, + "probability": 0.9883 + }, + { + "start": 76654.48, + "end": 76654.82, + "probability": 0.752 + }, + { + "start": 76654.88, + "end": 76655.32, + "probability": 0.9421 + }, + { + "start": 76655.48, + "end": 76656.44, + "probability": 0.9885 + }, + { + "start": 76656.6, + "end": 76658.67, + "probability": 0.9841 + }, + { + "start": 76658.8, + "end": 76661.52, + "probability": 0.9952 + }, + { + "start": 76662.44, + "end": 76665.34, + "probability": 0.9771 + }, + { + "start": 76665.44, + "end": 76666.4, + "probability": 0.7743 + }, + { + "start": 76667.04, + "end": 76668.4, + "probability": 0.941 + }, + { + "start": 76669.18, + "end": 76674.02, + "probability": 0.9375 + }, + { + "start": 76674.46, + "end": 76676.36, + "probability": 0.8582 + }, + { + "start": 76676.84, + "end": 76677.88, + "probability": 0.8255 + }, + { + "start": 76678.98, + "end": 76683.36, + "probability": 0.9837 + }, + { + "start": 76684.18, + "end": 76689.18, + "probability": 0.9843 + }, + { + "start": 76689.18, + "end": 76693.44, + "probability": 0.9917 + }, + { + "start": 76694.02, + "end": 76696.5, + "probability": 0.7577 + }, + { + "start": 76697.28, + "end": 76698.3, + "probability": 0.8856 + }, + { + "start": 76698.5, + "end": 76698.98, + "probability": 0.7807 + }, + { + "start": 76699.08, + "end": 76702.52, + "probability": 0.9891 + }, + { + "start": 76702.52, + "end": 76707.06, + "probability": 0.9882 + }, + { + "start": 76708.48, + "end": 76711.06, + "probability": 0.9868 + }, + { + "start": 76711.42, + "end": 76712.76, + "probability": 0.8777 + }, + { + "start": 76713.08, + "end": 76715.16, + "probability": 0.9915 + }, + { + "start": 76715.26, + "end": 76721.16, + "probability": 0.9346 + }, + { + "start": 76722.32, + "end": 76726.58, + "probability": 0.9958 + }, + { + "start": 76726.94, + "end": 76728.21, + "probability": 0.9849 + }, + { + "start": 76729.46, + "end": 76733.7, + "probability": 0.8536 + }, + { + "start": 76734.4, + "end": 76737.48, + "probability": 0.9849 + }, + { + "start": 76738.6, + "end": 76740.98, + "probability": 0.9785 + }, + { + "start": 76741.88, + "end": 76744.64, + "probability": 0.9927 + }, + { + "start": 76745.34, + "end": 76746.04, + "probability": 0.8184 + }, + { + "start": 76746.1, + "end": 76749.53, + "probability": 0.9575 + }, + { + "start": 76749.8, + "end": 76751.02, + "probability": 0.6105 + }, + { + "start": 76751.84, + "end": 76754.1, + "probability": 0.9751 + }, + { + "start": 76755.28, + "end": 76760.34, + "probability": 0.9539 + }, + { + "start": 76761.06, + "end": 76766.92, + "probability": 0.9837 + }, + { + "start": 76767.38, + "end": 76776.46, + "probability": 0.9766 + }, + { + "start": 76776.64, + "end": 76777.76, + "probability": 0.9993 + }, + { + "start": 76779.54, + "end": 76786.46, + "probability": 0.9956 + }, + { + "start": 76787.28, + "end": 76790.7, + "probability": 0.9642 + }, + { + "start": 76792.08, + "end": 76795.4, + "probability": 0.9143 + }, + { + "start": 76795.4, + "end": 76800.72, + "probability": 0.9845 + }, + { + "start": 76801.16, + "end": 76802.66, + "probability": 0.843 + }, + { + "start": 76803.58, + "end": 76807.76, + "probability": 0.9967 + }, + { + "start": 76808.42, + "end": 76813.58, + "probability": 0.941 + }, + { + "start": 76813.68, + "end": 76814.44, + "probability": 0.8375 + }, + { + "start": 76814.98, + "end": 76815.62, + "probability": 0.5231 + }, + { + "start": 76815.76, + "end": 76818.64, + "probability": 0.8104 + }, + { + "start": 76819.24, + "end": 76828.12, + "probability": 0.999 + }, + { + "start": 76829.22, + "end": 76833.12, + "probability": 0.9951 + }, + { + "start": 76833.21, + "end": 76837.62, + "probability": 0.9971 + }, + { + "start": 76838.68, + "end": 76842.18, + "probability": 0.8804 + }, + { + "start": 76842.96, + "end": 76846.06, + "probability": 0.9927 + }, + { + "start": 76846.82, + "end": 76847.8, + "probability": 0.7693 + }, + { + "start": 76848.24, + "end": 76848.8, + "probability": 0.8545 + }, + { + "start": 76849.28, + "end": 76852.1, + "probability": 0.998 + }, + { + "start": 76852.76, + "end": 76855.7, + "probability": 0.8834 + }, + { + "start": 76856.14, + "end": 76857.34, + "probability": 0.902 + }, + { + "start": 76857.58, + "end": 76858.16, + "probability": 0.9234 + }, + { + "start": 76858.22, + "end": 76858.6, + "probability": 0.3765 + }, + { + "start": 76859.12, + "end": 76860.66, + "probability": 0.8566 + }, + { + "start": 76861.1, + "end": 76864.4, + "probability": 0.9711 + }, + { + "start": 76865.8, + "end": 76870.38, + "probability": 0.9775 + }, + { + "start": 76871.12, + "end": 76872.5, + "probability": 0.9383 + }, + { + "start": 76873.76, + "end": 76876.22, + "probability": 0.9834 + }, + { + "start": 76876.92, + "end": 76880.28, + "probability": 0.9943 + }, + { + "start": 76880.42, + "end": 76882.56, + "probability": 0.9331 + }, + { + "start": 76883.04, + "end": 76886.26, + "probability": 0.9312 + }, + { + "start": 76886.26, + "end": 76890.56, + "probability": 0.7381 + }, + { + "start": 76891.28, + "end": 76895.78, + "probability": 0.9932 + }, + { + "start": 76896.56, + "end": 76896.86, + "probability": 0.9497 + }, + { + "start": 76899.56, + "end": 76906.42, + "probability": 0.9309 + }, + { + "start": 76908.02, + "end": 76913.76, + "probability": 0.9973 + }, + { + "start": 76914.4, + "end": 76919.72, + "probability": 0.9871 + }, + { + "start": 76920.42, + "end": 76921.9, + "probability": 0.8932 + }, + { + "start": 76922.52, + "end": 76923.5, + "probability": 0.9382 + }, + { + "start": 76924.9, + "end": 76927.82, + "probability": 0.9778 + }, + { + "start": 76928.6, + "end": 76933.28, + "probability": 0.9792 + }, + { + "start": 76933.96, + "end": 76935.78, + "probability": 0.8951 + }, + { + "start": 76936.54, + "end": 76944.98, + "probability": 0.9834 + }, + { + "start": 76945.7, + "end": 76953.06, + "probability": 0.9787 + }, + { + "start": 76954.0, + "end": 76960.21, + "probability": 0.9415 + }, + { + "start": 76960.32, + "end": 76961.42, + "probability": 0.9715 + }, + { + "start": 76962.04, + "end": 76963.24, + "probability": 0.8443 + }, + { + "start": 76963.92, + "end": 76965.8, + "probability": 0.798 + }, + { + "start": 76966.38, + "end": 76969.05, + "probability": 0.6346 + }, + { + "start": 76969.84, + "end": 76975.7, + "probability": 0.9947 + }, + { + "start": 76976.46, + "end": 76981.24, + "probability": 0.9926 + }, + { + "start": 76981.84, + "end": 76984.42, + "probability": 0.9433 + }, + { + "start": 76986.12, + "end": 76987.7, + "probability": 0.9614 + }, + { + "start": 76988.32, + "end": 76990.14, + "probability": 0.8074 + }, + { + "start": 76990.24, + "end": 76990.8, + "probability": 0.9542 + }, + { + "start": 76990.92, + "end": 76991.78, + "probability": 0.7686 + }, + { + "start": 76992.48, + "end": 76996.34, + "probability": 0.8774 + }, + { + "start": 76996.5, + "end": 76997.34, + "probability": 0.8677 + }, + { + "start": 76997.94, + "end": 77000.62, + "probability": 0.9757 + }, + { + "start": 77000.72, + "end": 77001.76, + "probability": 0.6941 + }, + { + "start": 77002.5, + "end": 77005.62, + "probability": 0.8807 + }, + { + "start": 77006.32, + "end": 77007.9, + "probability": 0.7746 + }, + { + "start": 77008.0, + "end": 77008.8, + "probability": 0.9565 + }, + { + "start": 77009.44, + "end": 77011.88, + "probability": 0.9891 + }, + { + "start": 77012.46, + "end": 77016.4, + "probability": 0.9576 + }, + { + "start": 77016.54, + "end": 77020.14, + "probability": 0.9976 + }, + { + "start": 77020.78, + "end": 77023.68, + "probability": 0.917 + }, + { + "start": 77024.78, + "end": 77026.44, + "probability": 0.7253 + }, + { + "start": 77027.34, + "end": 77031.96, + "probability": 0.9951 + }, + { + "start": 77031.96, + "end": 77039.44, + "probability": 0.9875 + }, + { + "start": 77040.2, + "end": 77045.52, + "probability": 0.9974 + }, + { + "start": 77046.98, + "end": 77048.82, + "probability": 0.6689 + }, + { + "start": 77049.68, + "end": 77052.06, + "probability": 0.9892 + }, + { + "start": 77052.06, + "end": 77055.8, + "probability": 0.9938 + }, + { + "start": 77056.52, + "end": 77058.44, + "probability": 0.851 + }, + { + "start": 77059.08, + "end": 77059.64, + "probability": 0.6602 + }, + { + "start": 77060.58, + "end": 77068.66, + "probability": 0.9946 + }, + { + "start": 77069.46, + "end": 77076.04, + "probability": 0.9712 + }, + { + "start": 77076.94, + "end": 77085.1, + "probability": 0.9636 + }, + { + "start": 77086.48, + "end": 77087.66, + "probability": 0.8287 + }, + { + "start": 77087.76, + "end": 77089.84, + "probability": 0.9939 + }, + { + "start": 77090.66, + "end": 77095.86, + "probability": 0.9984 + }, + { + "start": 77096.76, + "end": 77098.16, + "probability": 0.9548 + }, + { + "start": 77099.14, + "end": 77100.6, + "probability": 0.9128 + }, + { + "start": 77101.14, + "end": 77102.74, + "probability": 0.9873 + }, + { + "start": 77103.3, + "end": 77108.66, + "probability": 0.9913 + }, + { + "start": 77109.32, + "end": 77111.8, + "probability": 0.9851 + }, + { + "start": 77112.46, + "end": 77119.64, + "probability": 0.9819 + }, + { + "start": 77120.24, + "end": 77122.36, + "probability": 0.904 + }, + { + "start": 77122.9, + "end": 77123.8, + "probability": 0.8966 + }, + { + "start": 77124.0, + "end": 77125.14, + "probability": 0.9328 + }, + { + "start": 77125.58, + "end": 77126.14, + "probability": 0.9216 + }, + { + "start": 77126.56, + "end": 77130.78, + "probability": 0.9948 + }, + { + "start": 77131.44, + "end": 77132.62, + "probability": 0.9888 + }, + { + "start": 77133.8, + "end": 77136.62, + "probability": 0.9946 + }, + { + "start": 77137.18, + "end": 77139.48, + "probability": 0.7816 + }, + { + "start": 77140.02, + "end": 77141.96, + "probability": 0.8839 + }, + { + "start": 77142.64, + "end": 77147.02, + "probability": 0.8832 + }, + { + "start": 77147.4, + "end": 77150.94, + "probability": 0.9517 + }, + { + "start": 77151.68, + "end": 77153.3, + "probability": 0.9549 + }, + { + "start": 77153.5, + "end": 77156.94, + "probability": 0.8752 + }, + { + "start": 77157.78, + "end": 77164.24, + "probability": 0.7824 + }, + { + "start": 77164.32, + "end": 77164.44, + "probability": 0.2851 + }, + { + "start": 77164.52, + "end": 77168.6, + "probability": 0.899 + }, + { + "start": 77168.98, + "end": 77171.5, + "probability": 0.8585 + }, + { + "start": 77171.7, + "end": 77174.22, + "probability": 0.907 + }, + { + "start": 77174.5, + "end": 77175.86, + "probability": 0.8988 + }, + { + "start": 77175.88, + "end": 77179.46, + "probability": 0.7842 + }, + { + "start": 77179.62, + "end": 77180.8, + "probability": 0.9182 + }, + { + "start": 77180.88, + "end": 77182.32, + "probability": 0.9531 + }, + { + "start": 77182.56, + "end": 77183.56, + "probability": 0.5385 + }, + { + "start": 77184.0, + "end": 77185.12, + "probability": 0.7979 + }, + { + "start": 77185.38, + "end": 77187.26, + "probability": 0.8998 + }, + { + "start": 77187.72, + "end": 77191.46, + "probability": 0.8679 + }, + { + "start": 77191.68, + "end": 77193.42, + "probability": 0.5138 + }, + { + "start": 77193.44, + "end": 77195.68, + "probability": 0.5465 + }, + { + "start": 77195.96, + "end": 77199.74, + "probability": 0.9584 + }, + { + "start": 77200.04, + "end": 77201.84, + "probability": 0.7158 + }, + { + "start": 77201.94, + "end": 77203.12, + "probability": 0.9491 + }, + { + "start": 77203.46, + "end": 77203.82, + "probability": 0.9569 + }, + { + "start": 77203.92, + "end": 77206.38, + "probability": 0.9843 + }, + { + "start": 77206.9, + "end": 77208.7, + "probability": 0.6877 + }, + { + "start": 77208.72, + "end": 77212.52, + "probability": 0.9904 + }, + { + "start": 77212.62, + "end": 77214.56, + "probability": 0.79 + }, + { + "start": 77215.18, + "end": 77217.28, + "probability": 0.812 + }, + { + "start": 77217.38, + "end": 77218.8, + "probability": 0.9709 + }, + { + "start": 77218.92, + "end": 77219.62, + "probability": 0.0038 + }, + { + "start": 77220.0, + "end": 77220.7, + "probability": 0.9695 + }, + { + "start": 77221.31, + "end": 77223.04, + "probability": 0.8223 + }, + { + "start": 77223.16, + "end": 77223.16, + "probability": 0.0979 + }, + { + "start": 77223.16, + "end": 77223.62, + "probability": 0.4642 + }, + { + "start": 77224.02, + "end": 77227.08, + "probability": 0.9379 + }, + { + "start": 77227.92, + "end": 77234.36, + "probability": 0.979 + }, + { + "start": 77234.36, + "end": 77241.18, + "probability": 0.9974 + }, + { + "start": 77241.68, + "end": 77244.4, + "probability": 0.9096 + }, + { + "start": 77244.82, + "end": 77247.7, + "probability": 0.882 + }, + { + "start": 77248.08, + "end": 77250.6, + "probability": 0.8804 + }, + { + "start": 77251.26, + "end": 77254.92, + "probability": 0.9118 + }, + { + "start": 77255.42, + "end": 77258.24, + "probability": 0.993 + }, + { + "start": 77258.76, + "end": 77260.14, + "probability": 0.9911 + }, + { + "start": 77261.12, + "end": 77261.88, + "probability": 0.0021 + }, + { + "start": 77262.98, + "end": 77267.08, + "probability": 0.9777 + }, + { + "start": 77267.42, + "end": 77268.22, + "probability": 0.6332 + }, + { + "start": 77268.4, + "end": 77274.4, + "probability": 0.9586 + }, + { + "start": 77275.0, + "end": 77276.24, + "probability": 0.8664 + }, + { + "start": 77276.9, + "end": 77281.1, + "probability": 0.9646 + }, + { + "start": 77283.06, + "end": 77283.46, + "probability": 0.6528 + }, + { + "start": 77283.52, + "end": 77291.52, + "probability": 0.9551 + }, + { + "start": 77291.52, + "end": 77296.9, + "probability": 0.9092 + }, + { + "start": 77297.44, + "end": 77298.7, + "probability": 0.9749 + }, + { + "start": 77299.54, + "end": 77303.04, + "probability": 0.9834 + }, + { + "start": 77304.0, + "end": 77304.56, + "probability": 0.4949 + }, + { + "start": 77304.66, + "end": 77308.7, + "probability": 0.7349 + }, + { + "start": 77308.7, + "end": 77310.64, + "probability": 0.8487 + }, + { + "start": 77311.32, + "end": 77314.16, + "probability": 0.7874 + }, + { + "start": 77315.52, + "end": 77318.32, + "probability": 0.9255 + }, + { + "start": 77318.76, + "end": 77319.38, + "probability": 0.8224 + }, + { + "start": 77319.48, + "end": 77320.38, + "probability": 0.9228 + }, + { + "start": 77320.54, + "end": 77321.4, + "probability": 0.8228 + }, + { + "start": 77321.9, + "end": 77329.12, + "probability": 0.9531 + }, + { + "start": 77329.88, + "end": 77330.93, + "probability": 0.7699 + }, + { + "start": 77331.4, + "end": 77334.14, + "probability": 0.978 + }, + { + "start": 77334.88, + "end": 77339.58, + "probability": 0.9884 + }, + { + "start": 77340.1, + "end": 77347.26, + "probability": 0.9949 + }, + { + "start": 77347.96, + "end": 77348.2, + "probability": 0.3018 + }, + { + "start": 77348.58, + "end": 77350.24, + "probability": 0.7372 + }, + { + "start": 77350.36, + "end": 77352.62, + "probability": 0.8993 + }, + { + "start": 77353.08, + "end": 77355.54, + "probability": 0.8012 + }, + { + "start": 77356.38, + "end": 77364.48, + "probability": 0.8696 + }, + { + "start": 77364.68, + "end": 77365.3, + "probability": 0.6276 + }, + { + "start": 77365.82, + "end": 77369.06, + "probability": 0.9617 + }, + { + "start": 77369.6, + "end": 77370.56, + "probability": 0.7583 + }, + { + "start": 77371.2, + "end": 77374.34, + "probability": 0.887 + }, + { + "start": 77374.34, + "end": 77377.78, + "probability": 0.831 + }, + { + "start": 77378.38, + "end": 77382.78, + "probability": 0.8812 + }, + { + "start": 77383.5, + "end": 77386.82, + "probability": 0.7954 + }, + { + "start": 77386.82, + "end": 77393.0, + "probability": 0.9967 + }, + { + "start": 77394.38, + "end": 77394.88, + "probability": 0.7996 + }, + { + "start": 77394.92, + "end": 77399.38, + "probability": 0.9277 + }, + { + "start": 77399.38, + "end": 77405.08, + "probability": 0.8815 + }, + { + "start": 77405.56, + "end": 77411.1, + "probability": 0.9541 + }, + { + "start": 77411.7, + "end": 77415.52, + "probability": 0.9967 + }, + { + "start": 77417.62, + "end": 77423.54, + "probability": 0.9264 + }, + { + "start": 77424.12, + "end": 77430.96, + "probability": 0.8136 + }, + { + "start": 77431.34, + "end": 77436.62, + "probability": 0.9988 + }, + { + "start": 77437.1, + "end": 77440.98, + "probability": 0.9932 + }, + { + "start": 77441.56, + "end": 77444.22, + "probability": 0.7867 + }, + { + "start": 77444.76, + "end": 77446.4, + "probability": 0.9454 + }, + { + "start": 77447.08, + "end": 77451.12, + "probability": 0.891 + }, + { + "start": 77451.12, + "end": 77455.22, + "probability": 0.976 + }, + { + "start": 77456.02, + "end": 77460.72, + "probability": 0.8916 + }, + { + "start": 77462.16, + "end": 77463.22, + "probability": 0.8621 + }, + { + "start": 77463.5, + "end": 77466.18, + "probability": 0.9871 + }, + { + "start": 77466.74, + "end": 77469.66, + "probability": 0.9578 + }, + { + "start": 77470.32, + "end": 77471.73, + "probability": 0.8159 + }, + { + "start": 77473.82, + "end": 77474.76, + "probability": 0.8928 + }, + { + "start": 77475.44, + "end": 77480.18, + "probability": 0.8399 + }, + { + "start": 77480.88, + "end": 77488.13, + "probability": 0.9738 + }, + { + "start": 77488.22, + "end": 77493.44, + "probability": 0.9799 + }, + { + "start": 77494.26, + "end": 77495.09, + "probability": 0.9295 + }, + { + "start": 77495.74, + "end": 77504.78, + "probability": 0.9003 + }, + { + "start": 77507.5, + "end": 77511.56, + "probability": 0.9656 + }, + { + "start": 77512.66, + "end": 77517.2, + "probability": 0.995 + }, + { + "start": 77517.2, + "end": 77521.42, + "probability": 0.9922 + }, + { + "start": 77522.62, + "end": 77530.61, + "probability": 0.9883 + }, + { + "start": 77530.94, + "end": 77532.16, + "probability": 0.5249 + }, + { + "start": 77532.3, + "end": 77541.54, + "probability": 0.986 + }, + { + "start": 77542.18, + "end": 77542.56, + "probability": 0.5083 + }, + { + "start": 77542.62, + "end": 77543.34, + "probability": 0.9345 + }, + { + "start": 77543.42, + "end": 77549.46, + "probability": 0.9724 + }, + { + "start": 77549.92, + "end": 77551.24, + "probability": 0.7859 + }, + { + "start": 77551.88, + "end": 77559.52, + "probability": 0.9883 + }, + { + "start": 77559.52, + "end": 77566.2, + "probability": 0.9982 + }, + { + "start": 77566.84, + "end": 77572.42, + "probability": 0.9897 + }, + { + "start": 77573.72, + "end": 77578.28, + "probability": 0.8464 + }, + { + "start": 77578.74, + "end": 77579.4, + "probability": 0.5064 + }, + { + "start": 77580.36, + "end": 77584.14, + "probability": 0.9987 + }, + { + "start": 77585.12, + "end": 77587.44, + "probability": 0.9075 + }, + { + "start": 77588.14, + "end": 77594.44, + "probability": 0.9861 + }, + { + "start": 77595.32, + "end": 77600.16, + "probability": 0.9845 + }, + { + "start": 77600.94, + "end": 77605.44, + "probability": 0.9987 + }, + { + "start": 77606.5, + "end": 77610.12, + "probability": 0.9314 + }, + { + "start": 77610.38, + "end": 77616.18, + "probability": 0.9944 + }, + { + "start": 77616.92, + "end": 77618.75, + "probability": 0.9756 + }, + { + "start": 77619.6, + "end": 77623.74, + "probability": 0.9891 + }, + { + "start": 77624.58, + "end": 77626.92, + "probability": 0.8067 + }, + { + "start": 77627.8, + "end": 77628.24, + "probability": 0.5067 + }, + { + "start": 77628.4, + "end": 77633.02, + "probability": 0.72 + }, + { + "start": 77633.02, + "end": 77638.5, + "probability": 0.9282 + }, + { + "start": 77638.6, + "end": 77642.66, + "probability": 0.9867 + }, + { + "start": 77643.22, + "end": 77643.84, + "probability": 0.8879 + }, + { + "start": 77645.1, + "end": 77647.8, + "probability": 0.9456 + }, + { + "start": 77649.2, + "end": 77654.42, + "probability": 0.9792 + }, + { + "start": 77654.48, + "end": 77655.44, + "probability": 0.5833 + }, + { + "start": 77655.98, + "end": 77658.94, + "probability": 0.975 + }, + { + "start": 77659.0, + "end": 77662.32, + "probability": 0.9819 + }, + { + "start": 77663.46, + "end": 77664.4, + "probability": 0.7382 + }, + { + "start": 77664.6, + "end": 77667.5, + "probability": 0.7324 + }, + { + "start": 77667.5, + "end": 77673.08, + "probability": 0.9488 + }, + { + "start": 77674.24, + "end": 77675.1, + "probability": 0.8108 + }, + { + "start": 77675.6, + "end": 77676.28, + "probability": 0.6569 + }, + { + "start": 77676.28, + "end": 77677.04, + "probability": 0.6989 + }, + { + "start": 77677.1, + "end": 77678.7, + "probability": 0.799 + }, + { + "start": 77679.78, + "end": 77680.72, + "probability": 0.482 + }, + { + "start": 77680.72, + "end": 77682.7, + "probability": 0.936 + }, + { + "start": 77682.86, + "end": 77686.66, + "probability": 0.8497 + }, + { + "start": 77686.74, + "end": 77692.4, + "probability": 0.9125 + }, + { + "start": 77693.29, + "end": 77695.94, + "probability": 0.9709 + }, + { + "start": 77696.84, + "end": 77699.84, + "probability": 0.995 + }, + { + "start": 77699.84, + "end": 77704.4, + "probability": 0.989 + }, + { + "start": 77704.4, + "end": 77709.5, + "probability": 0.9937 + }, + { + "start": 77709.7, + "end": 77713.0, + "probability": 0.9095 + }, + { + "start": 77714.57, + "end": 77719.92, + "probability": 0.8499 + }, + { + "start": 77719.92, + "end": 77723.52, + "probability": 0.9888 + }, + { + "start": 77724.06, + "end": 77730.84, + "probability": 0.9895 + }, + { + "start": 77730.96, + "end": 77734.9, + "probability": 0.9757 + }, + { + "start": 77736.04, + "end": 77739.06, + "probability": 0.9937 + }, + { + "start": 77739.32, + "end": 77740.84, + "probability": 0.9845 + }, + { + "start": 77741.96, + "end": 77746.08, + "probability": 0.9691 + }, + { + "start": 77746.08, + "end": 77749.4, + "probability": 0.9984 + }, + { + "start": 77749.4, + "end": 77753.82, + "probability": 0.9661 + }, + { + "start": 77754.44, + "end": 77757.66, + "probability": 0.911 + }, + { + "start": 77758.24, + "end": 77760.8, + "probability": 0.897 + }, + { + "start": 77761.42, + "end": 77762.68, + "probability": 0.9819 + }, + { + "start": 77762.88, + "end": 77767.8, + "probability": 0.9049 + }, + { + "start": 77767.8, + "end": 77773.0, + "probability": 0.9922 + }, + { + "start": 77774.18, + "end": 77776.82, + "probability": 0.719 + }, + { + "start": 77777.58, + "end": 77779.22, + "probability": 0.9155 + }, + { + "start": 77779.88, + "end": 77781.3, + "probability": 0.9055 + }, + { + "start": 77781.72, + "end": 77783.07, + "probability": 0.9261 + }, + { + "start": 77783.48, + "end": 77785.2, + "probability": 0.9155 + }, + { + "start": 77785.7, + "end": 77789.0, + "probability": 0.9631 + }, + { + "start": 77789.72, + "end": 77790.84, + "probability": 0.9443 + }, + { + "start": 77791.7, + "end": 77794.04, + "probability": 0.8037 + }, + { + "start": 77794.82, + "end": 77798.6, + "probability": 0.997 + }, + { + "start": 77798.6, + "end": 77803.46, + "probability": 0.9966 + }, + { + "start": 77804.24, + "end": 77805.12, + "probability": 0.4109 + }, + { + "start": 77805.26, + "end": 77810.38, + "probability": 0.9946 + }, + { + "start": 77810.38, + "end": 77814.4, + "probability": 0.9899 + }, + { + "start": 77815.46, + "end": 77818.24, + "probability": 0.7444 + }, + { + "start": 77818.36, + "end": 77818.9, + "probability": 0.5297 + }, + { + "start": 77819.06, + "end": 77820.22, + "probability": 0.9596 + }, + { + "start": 77820.92, + "end": 77823.36, + "probability": 0.5779 + }, + { + "start": 77824.46, + "end": 77828.26, + "probability": 0.9631 + }, + { + "start": 77829.08, + "end": 77831.78, + "probability": 0.9413 + }, + { + "start": 77832.56, + "end": 77834.7, + "probability": 0.978 + }, + { + "start": 77835.46, + "end": 77838.52, + "probability": 0.9965 + }, + { + "start": 77838.82, + "end": 77840.02, + "probability": 0.9517 + }, + { + "start": 77840.52, + "end": 77841.7, + "probability": 0.9435 + }, + { + "start": 77842.32, + "end": 77845.96, + "probability": 0.998 + }, + { + "start": 77846.94, + "end": 77847.5, + "probability": 0.6366 + }, + { + "start": 77848.28, + "end": 77854.46, + "probability": 0.9292 + }, + { + "start": 77854.46, + "end": 77860.4, + "probability": 0.9953 + }, + { + "start": 77861.08, + "end": 77863.48, + "probability": 0.9907 + }, + { + "start": 77863.84, + "end": 77864.94, + "probability": 0.8241 + }, + { + "start": 77865.38, + "end": 77867.28, + "probability": 0.9901 + }, + { + "start": 77867.28, + "end": 77870.48, + "probability": 0.9781 + }, + { + "start": 77871.08, + "end": 77873.34, + "probability": 0.9727 + }, + { + "start": 77874.12, + "end": 77877.36, + "probability": 0.906 + }, + { + "start": 77878.38, + "end": 77879.78, + "probability": 0.9871 + }, + { + "start": 77880.54, + "end": 77883.48, + "probability": 0.9614 + }, + { + "start": 77884.16, + "end": 77887.6, + "probability": 0.989 + }, + { + "start": 77888.36, + "end": 77890.74, + "probability": 0.9879 + }, + { + "start": 77891.9, + "end": 77894.02, + "probability": 0.7849 + }, + { + "start": 77894.76, + "end": 77898.84, + "probability": 0.9618 + }, + { + "start": 77899.74, + "end": 77900.2, + "probability": 0.8885 + }, + { + "start": 77900.7, + "end": 77903.52, + "probability": 0.9907 + }, + { + "start": 77904.16, + "end": 77906.76, + "probability": 0.8996 + }, + { + "start": 77907.32, + "end": 77909.72, + "probability": 0.9961 + }, + { + "start": 77910.2, + "end": 77912.9, + "probability": 0.9814 + }, + { + "start": 77913.6, + "end": 77918.04, + "probability": 0.9982 + }, + { + "start": 77918.5, + "end": 77919.22, + "probability": 0.7854 + }, + { + "start": 77920.02, + "end": 77923.58, + "probability": 0.9795 + }, + { + "start": 77924.54, + "end": 77925.76, + "probability": 0.865 + }, + { + "start": 77926.16, + "end": 77929.04, + "probability": 0.9715 + }, + { + "start": 77929.58, + "end": 77931.26, + "probability": 0.9001 + }, + { + "start": 77931.7, + "end": 77933.1, + "probability": 0.9677 + }, + { + "start": 77933.52, + "end": 77935.0, + "probability": 0.9903 + }, + { + "start": 77935.54, + "end": 77938.36, + "probability": 0.9489 + }, + { + "start": 77939.0, + "end": 77941.5, + "probability": 0.8297 + }, + { + "start": 77942.48, + "end": 77947.82, + "probability": 0.9386 + }, + { + "start": 77948.68, + "end": 77952.08, + "probability": 0.9858 + }, + { + "start": 77952.54, + "end": 77954.03, + "probability": 0.7783 + }, + { + "start": 77954.16, + "end": 77955.33, + "probability": 0.7014 + }, + { + "start": 77956.18, + "end": 77957.75, + "probability": 0.8448 + }, + { + "start": 77958.36, + "end": 77962.74, + "probability": 0.9899 + }, + { + "start": 77963.14, + "end": 77964.82, + "probability": 0.6387 + }, + { + "start": 77965.34, + "end": 77968.78, + "probability": 0.7929 + }, + { + "start": 77969.98, + "end": 77970.62, + "probability": 0.7266 + }, + { + "start": 77971.34, + "end": 77978.98, + "probability": 0.8445 + }, + { + "start": 77979.88, + "end": 77980.48, + "probability": 0.7732 + }, + { + "start": 77981.04, + "end": 77983.56, + "probability": 0.8967 + }, + { + "start": 77984.34, + "end": 77988.72, + "probability": 0.9937 + }, + { + "start": 77989.58, + "end": 77990.36, + "probability": 0.8113 + }, + { + "start": 77990.94, + "end": 77992.66, + "probability": 0.7046 + }, + { + "start": 77993.42, + "end": 77995.6, + "probability": 0.9683 + }, + { + "start": 77996.24, + "end": 77998.64, + "probability": 0.9828 + }, + { + "start": 77999.48, + "end": 78003.7, + "probability": 0.9944 + }, + { + "start": 78004.42, + "end": 78005.32, + "probability": 0.4688 + }, + { + "start": 78005.32, + "end": 78009.16, + "probability": 0.9961 + }, + { + "start": 78009.88, + "end": 78010.48, + "probability": 0.4488 + }, + { + "start": 78011.6, + "end": 78012.72, + "probability": 0.7053 + }, + { + "start": 78013.32, + "end": 78014.52, + "probability": 0.9599 + }, + { + "start": 78015.5, + "end": 78019.56, + "probability": 0.909 + }, + { + "start": 78020.62, + "end": 78021.66, + "probability": 0.9001 + }, + { + "start": 78022.38, + "end": 78023.16, + "probability": 0.9594 + }, + { + "start": 78024.18, + "end": 78027.92, + "probability": 0.9976 + }, + { + "start": 78028.98, + "end": 78030.22, + "probability": 0.4235 + }, + { + "start": 78030.94, + "end": 78033.2, + "probability": 0.9124 + }, + { + "start": 78033.86, + "end": 78035.24, + "probability": 0.9595 + }, + { + "start": 78036.68, + "end": 78041.28, + "probability": 0.9485 + }, + { + "start": 78041.82, + "end": 78045.62, + "probability": 0.9901 + }, + { + "start": 78046.4, + "end": 78047.92, + "probability": 0.8548 + }, + { + "start": 78048.44, + "end": 78050.14, + "probability": 0.9937 + }, + { + "start": 78050.76, + "end": 78054.7, + "probability": 0.9628 + }, + { + "start": 78055.24, + "end": 78056.34, + "probability": 0.9626 + }, + { + "start": 78056.92, + "end": 78058.92, + "probability": 0.9556 + }, + { + "start": 78059.4, + "end": 78060.84, + "probability": 0.9683 + }, + { + "start": 78061.68, + "end": 78064.92, + "probability": 0.8413 + }, + { + "start": 78065.36, + "end": 78067.08, + "probability": 0.6778 + }, + { + "start": 78067.66, + "end": 78070.14, + "probability": 0.9989 + }, + { + "start": 78070.14, + "end": 78073.0, + "probability": 0.9916 + }, + { + "start": 78073.68, + "end": 78076.52, + "probability": 0.9534 + }, + { + "start": 78077.06, + "end": 78078.0, + "probability": 0.9763 + }, + { + "start": 78078.7, + "end": 78081.94, + "probability": 0.9886 + }, + { + "start": 78082.78, + "end": 78084.74, + "probability": 0.8882 + }, + { + "start": 78085.24, + "end": 78086.74, + "probability": 0.9941 + }, + { + "start": 78087.42, + "end": 78088.06, + "probability": 0.6577 + }, + { + "start": 78088.6, + "end": 78089.26, + "probability": 0.8381 + }, + { + "start": 78090.14, + "end": 78094.98, + "probability": 0.9916 + }, + { + "start": 78096.0, + "end": 78097.96, + "probability": 0.9457 + }, + { + "start": 78098.04, + "end": 78098.48, + "probability": 0.9623 + }, + { + "start": 78098.58, + "end": 78101.48, + "probability": 0.9471 + }, + { + "start": 78102.9, + "end": 78107.38, + "probability": 0.9788 + }, + { + "start": 78108.24, + "end": 78112.0, + "probability": 0.9924 + }, + { + "start": 78112.6, + "end": 78115.24, + "probability": 0.981 + }, + { + "start": 78116.26, + "end": 78117.8, + "probability": 0.9718 + }, + { + "start": 78118.86, + "end": 78120.76, + "probability": 0.9855 + }, + { + "start": 78121.78, + "end": 78124.8, + "probability": 0.9954 + }, + { + "start": 78125.46, + "end": 78130.48, + "probability": 0.984 + }, + { + "start": 78131.26, + "end": 78133.34, + "probability": 0.9967 + }, + { + "start": 78133.96, + "end": 78137.1, + "probability": 0.9125 + }, + { + "start": 78137.72, + "end": 78141.72, + "probability": 0.8779 + }, + { + "start": 78142.16, + "end": 78147.24, + "probability": 0.9829 + }, + { + "start": 78147.82, + "end": 78149.68, + "probability": 0.8166 + }, + { + "start": 78150.2, + "end": 78152.54, + "probability": 0.8988 + }, + { + "start": 78153.08, + "end": 78154.44, + "probability": 0.9949 + }, + { + "start": 78154.98, + "end": 78156.56, + "probability": 0.8321 + }, + { + "start": 78157.38, + "end": 78162.24, + "probability": 0.9816 + }, + { + "start": 78162.82, + "end": 78166.58, + "probability": 0.9832 + }, + { + "start": 78167.28, + "end": 78169.84, + "probability": 0.994 + }, + { + "start": 78170.56, + "end": 78174.66, + "probability": 0.9153 + }, + { + "start": 78175.32, + "end": 78177.76, + "probability": 0.9912 + }, + { + "start": 78178.32, + "end": 78182.96, + "probability": 0.9293 + }, + { + "start": 78183.02, + "end": 78183.7, + "probability": 0.6133 + }, + { + "start": 78184.48, + "end": 78188.34, + "probability": 0.9745 + }, + { + "start": 78188.34, + "end": 78191.94, + "probability": 0.9725 + }, + { + "start": 78192.8, + "end": 78196.48, + "probability": 0.9929 + }, + { + "start": 78196.92, + "end": 78197.78, + "probability": 0.5811 + }, + { + "start": 78198.2, + "end": 78200.34, + "probability": 0.9673 + }, + { + "start": 78200.84, + "end": 78203.04, + "probability": 0.7065 + }, + { + "start": 78203.44, + "end": 78205.34, + "probability": 0.9847 + }, + { + "start": 78206.24, + "end": 78209.46, + "probability": 0.893 + }, + { + "start": 78209.46, + "end": 78212.7, + "probability": 0.9982 + }, + { + "start": 78213.32, + "end": 78213.92, + "probability": 0.663 + }, + { + "start": 78214.34, + "end": 78219.12, + "probability": 0.9222 + }, + { + "start": 78219.6, + "end": 78222.54, + "probability": 0.98 + }, + { + "start": 78222.54, + "end": 78225.48, + "probability": 0.9966 + }, + { + "start": 78226.0, + "end": 78227.46, + "probability": 0.9545 + }, + { + "start": 78229.14, + "end": 78229.66, + "probability": 0.8171 + }, + { + "start": 78230.62, + "end": 78231.56, + "probability": 0.9855 + }, + { + "start": 78232.18, + "end": 78234.84, + "probability": 0.9291 + }, + { + "start": 78235.82, + "end": 78236.9, + "probability": 0.471 + }, + { + "start": 78237.5, + "end": 78238.8, + "probability": 0.8839 + }, + { + "start": 78239.4, + "end": 78242.08, + "probability": 0.7437 + }, + { + "start": 78242.92, + "end": 78248.4, + "probability": 0.9032 + }, + { + "start": 78249.08, + "end": 78252.92, + "probability": 0.9868 + }, + { + "start": 78252.92, + "end": 78256.56, + "probability": 0.8955 + }, + { + "start": 78257.14, + "end": 78261.52, + "probability": 0.9957 + }, + { + "start": 78262.48, + "end": 78264.89, + "probability": 0.7409 + }, + { + "start": 78265.92, + "end": 78269.22, + "probability": 0.9878 + }, + { + "start": 78270.1, + "end": 78274.32, + "probability": 0.9883 + }, + { + "start": 78274.32, + "end": 78277.1, + "probability": 0.9993 + }, + { + "start": 78277.7, + "end": 78279.78, + "probability": 0.9591 + }, + { + "start": 78280.62, + "end": 78281.96, + "probability": 0.9258 + }, + { + "start": 78282.86, + "end": 78284.28, + "probability": 0.9438 + }, + { + "start": 78285.06, + "end": 78287.68, + "probability": 0.9534 + }, + { + "start": 78288.62, + "end": 78289.02, + "probability": 0.6509 + }, + { + "start": 78289.88, + "end": 78294.06, + "probability": 0.8647 + }, + { + "start": 78294.92, + "end": 78301.18, + "probability": 0.9588 + }, + { + "start": 78306.64, + "end": 78307.74, + "probability": 0.5458 + }, + { + "start": 78309.01, + "end": 78309.5, + "probability": 0.7947 + }, + { + "start": 78309.5, + "end": 78310.9, + "probability": 0.8859 + }, + { + "start": 78311.0, + "end": 78312.1, + "probability": 0.9387 + }, + { + "start": 78312.22, + "end": 78312.88, + "probability": 0.954 + }, + { + "start": 78313.56, + "end": 78317.0, + "probability": 0.7784 + }, + { + "start": 78317.72, + "end": 78320.34, + "probability": 0.9849 + }, + { + "start": 78320.94, + "end": 78322.1, + "probability": 0.7877 + }, + { + "start": 78322.86, + "end": 78326.72, + "probability": 0.9671 + }, + { + "start": 78327.3, + "end": 78329.44, + "probability": 0.9982 + }, + { + "start": 78330.02, + "end": 78332.84, + "probability": 0.9901 + }, + { + "start": 78333.4, + "end": 78334.96, + "probability": 0.9488 + }, + { + "start": 78335.86, + "end": 78339.66, + "probability": 0.9165 + }, + { + "start": 78340.48, + "end": 78342.08, + "probability": 0.9721 + }, + { + "start": 78342.48, + "end": 78343.2, + "probability": 0.9301 + }, + { + "start": 78343.62, + "end": 78345.36, + "probability": 0.9683 + }, + { + "start": 78346.74, + "end": 78351.56, + "probability": 0.9464 + }, + { + "start": 78352.04, + "end": 78354.46, + "probability": 0.952 + }, + { + "start": 78355.12, + "end": 78355.89, + "probability": 0.6138 + }, + { + "start": 78356.74, + "end": 78359.86, + "probability": 0.8936 + }, + { + "start": 78360.24, + "end": 78361.62, + "probability": 0.8894 + }, + { + "start": 78362.5, + "end": 78364.3, + "probability": 0.9795 + }, + { + "start": 78364.82, + "end": 78366.82, + "probability": 0.9226 + }, + { + "start": 78367.22, + "end": 78368.74, + "probability": 0.9968 + }, + { + "start": 78369.34, + "end": 78373.0, + "probability": 0.9943 + }, + { + "start": 78373.62, + "end": 78377.06, + "probability": 0.9798 + }, + { + "start": 78378.0, + "end": 78383.02, + "probability": 0.9756 + }, + { + "start": 78383.8, + "end": 78384.88, + "probability": 0.7209 + }, + { + "start": 78385.46, + "end": 78385.96, + "probability": 0.8783 + }, + { + "start": 78386.56, + "end": 78388.22, + "probability": 0.8624 + }, + { + "start": 78389.04, + "end": 78389.58, + "probability": 0.9344 + }, + { + "start": 78390.64, + "end": 78392.94, + "probability": 0.9557 + }, + { + "start": 78393.5, + "end": 78394.4, + "probability": 0.9613 + }, + { + "start": 78394.46, + "end": 78397.64, + "probability": 0.9773 + }, + { + "start": 78398.08, + "end": 78399.54, + "probability": 0.9897 + }, + { + "start": 78400.08, + "end": 78401.46, + "probability": 0.9215 + }, + { + "start": 78401.86, + "end": 78404.74, + "probability": 0.9958 + }, + { + "start": 78405.44, + "end": 78412.28, + "probability": 0.9933 + }, + { + "start": 78412.74, + "end": 78413.9, + "probability": 0.9059 + }, + { + "start": 78414.94, + "end": 78420.48, + "probability": 0.9959 + }, + { + "start": 78421.1, + "end": 78421.94, + "probability": 0.7068 + }, + { + "start": 78422.6, + "end": 78425.82, + "probability": 0.9971 + }, + { + "start": 78426.56, + "end": 78432.06, + "probability": 0.9817 + }, + { + "start": 78433.3, + "end": 78435.82, + "probability": 0.9722 + }, + { + "start": 78436.4, + "end": 78437.66, + "probability": 0.9915 + }, + { + "start": 78438.32, + "end": 78440.84, + "probability": 0.9932 + }, + { + "start": 78441.6, + "end": 78445.2, + "probability": 0.9305 + }, + { + "start": 78445.9, + "end": 78446.74, + "probability": 0.9971 + }, + { + "start": 78447.38, + "end": 78451.46, + "probability": 0.9653 + }, + { + "start": 78452.36, + "end": 78452.88, + "probability": 0.8004 + }, + { + "start": 78453.44, + "end": 78454.7, + "probability": 0.8289 + }, + { + "start": 78455.56, + "end": 78458.72, + "probability": 0.925 + }, + { + "start": 78459.36, + "end": 78462.2, + "probability": 0.9935 + }, + { + "start": 78462.66, + "end": 78463.8, + "probability": 0.9185 + }, + { + "start": 78464.38, + "end": 78464.86, + "probability": 0.5604 + }, + { + "start": 78465.22, + "end": 78465.7, + "probability": 0.7386 + }, + { + "start": 78467.3, + "end": 78470.48, + "probability": 0.9714 + }, + { + "start": 78470.6, + "end": 78471.92, + "probability": 0.9298 + }, + { + "start": 78471.96, + "end": 78473.66, + "probability": 0.9663 + }, + { + "start": 78473.92, + "end": 78475.66, + "probability": 0.6165 + }, + { + "start": 78479.02, + "end": 78480.36, + "probability": 0.5827 + }, + { + "start": 78481.4, + "end": 78482.62, + "probability": 0.9475 + }, + { + "start": 78482.68, + "end": 78486.98, + "probability": 0.9529 + }, + { + "start": 78487.14, + "end": 78488.04, + "probability": 0.5165 + }, + { + "start": 78488.2, + "end": 78488.44, + "probability": 0.516 + }, + { + "start": 78489.48, + "end": 78495.54, + "probability": 0.9942 + }, + { + "start": 78496.6, + "end": 78502.32, + "probability": 0.9604 + }, + { + "start": 78502.9, + "end": 78507.94, + "probability": 0.8796 + }, + { + "start": 78508.56, + "end": 78509.8, + "probability": 0.8419 + }, + { + "start": 78510.02, + "end": 78513.08, + "probability": 0.969 + }, + { + "start": 78513.08, + "end": 78517.92, + "probability": 0.9818 + }, + { + "start": 78518.44, + "end": 78519.94, + "probability": 0.9844 + }, + { + "start": 78520.12, + "end": 78522.04, + "probability": 0.793 + }, + { + "start": 78522.86, + "end": 78524.82, + "probability": 0.7199 + }, + { + "start": 78525.0, + "end": 78525.0, + "probability": 0.8471 + }, + { + "start": 78525.04, + "end": 78525.54, + "probability": 0.7719 + }, + { + "start": 78526.02, + "end": 78528.3, + "probability": 0.7912 + }, + { + "start": 78528.36, + "end": 78531.27, + "probability": 0.9935 + }, + { + "start": 78531.96, + "end": 78532.82, + "probability": 0.8844 + }, + { + "start": 78534.32, + "end": 78535.04, + "probability": 0.558 + }, + { + "start": 78535.16, + "end": 78537.58, + "probability": 0.76 + }, + { + "start": 78537.82, + "end": 78543.2, + "probability": 0.7745 + }, + { + "start": 78543.3, + "end": 78545.94, + "probability": 0.1156 + }, + { + "start": 78545.96, + "end": 78547.2, + "probability": 0.6236 + }, + { + "start": 78547.54, + "end": 78549.06, + "probability": 0.8668 + }, + { + "start": 78549.76, + "end": 78550.98, + "probability": 0.8145 + }, + { + "start": 78551.04, + "end": 78551.83, + "probability": 0.7056 + }, + { + "start": 78552.1, + "end": 78556.16, + "probability": 0.9027 + }, + { + "start": 78556.76, + "end": 78560.5, + "probability": 0.6383 + }, + { + "start": 78560.86, + "end": 78562.98, + "probability": 0.8119 + }, + { + "start": 78563.24, + "end": 78565.0, + "probability": 0.6698 + }, + { + "start": 78565.3, + "end": 78566.1, + "probability": 0.4998 + }, + { + "start": 78566.66, + "end": 78567.36, + "probability": 0.6241 + }, + { + "start": 78567.76, + "end": 78568.46, + "probability": 0.4418 + }, + { + "start": 78569.08, + "end": 78569.84, + "probability": 0.6973 + }, + { + "start": 78570.68, + "end": 78573.66, + "probability": 0.0025 + }, + { + "start": 78574.88, + "end": 78575.1, + "probability": 0.0 + }, + { + "start": 78588.0, + "end": 78588.26, + "probability": 0.0513 + }, + { + "start": 78588.26, + "end": 78589.0, + "probability": 0.6482 + }, + { + "start": 78589.3, + "end": 78590.5, + "probability": 0.4812 + }, + { + "start": 78590.56, + "end": 78591.66, + "probability": 0.9136 + }, + { + "start": 78591.76, + "end": 78592.62, + "probability": 0.7532 + }, + { + "start": 78592.82, + "end": 78593.72, + "probability": 0.7675 + }, + { + "start": 78594.5, + "end": 78599.92, + "probability": 0.8936 + }, + { + "start": 78601.22, + "end": 78601.22, + "probability": 0.0001 + }, + { + "start": 78601.22, + "end": 78601.22, + "probability": 0.0124 + }, + { + "start": 78601.22, + "end": 78602.64, + "probability": 0.9039 + }, + { + "start": 78602.88, + "end": 78604.28, + "probability": 0.7097 + }, + { + "start": 78604.4, + "end": 78605.64, + "probability": 0.8075 + }, + { + "start": 78606.14, + "end": 78608.9, + "probability": 0.9877 + }, + { + "start": 78616.12, + "end": 78616.94, + "probability": 0.6038 + }, + { + "start": 78617.26, + "end": 78617.88, + "probability": 0.56 + }, + { + "start": 78618.3, + "end": 78621.08, + "probability": 0.5909 + }, + { + "start": 78622.28, + "end": 78623.26, + "probability": 0.0351 + }, + { + "start": 78629.98, + "end": 78629.98, + "probability": 0.0147 + }, + { + "start": 78629.98, + "end": 78629.98, + "probability": 0.0737 + }, + { + "start": 78629.98, + "end": 78630.0, + "probability": 0.1575 + }, + { + "start": 78630.0, + "end": 78630.02, + "probability": 0.0197 + }, + { + "start": 78652.7, + "end": 78656.28, + "probability": 0.4353 + }, + { + "start": 78656.34, + "end": 78660.68, + "probability": 0.9707 + }, + { + "start": 78661.22, + "end": 78663.84, + "probability": 0.5634 + }, + { + "start": 78664.12, + "end": 78669.1, + "probability": 0.9827 + }, + { + "start": 78670.04, + "end": 78671.64, + "probability": 0.7005 + }, + { + "start": 78672.16, + "end": 78672.8, + "probability": 0.4538 + }, + { + "start": 78673.02, + "end": 78673.9, + "probability": 0.95 + }, + { + "start": 78674.98, + "end": 78679.76, + "probability": 0.9923 + }, + { + "start": 78679.94, + "end": 78683.2, + "probability": 0.5012 + }, + { + "start": 78684.0, + "end": 78687.84, + "probability": 0.7605 + }, + { + "start": 78688.1, + "end": 78690.56, + "probability": 0.7639 + }, + { + "start": 78690.68, + "end": 78692.64, + "probability": 0.4624 + }, + { + "start": 78693.3, + "end": 78699.06, + "probability": 0.9419 + }, + { + "start": 78703.8, + "end": 78704.48, + "probability": 0.6587 + }, + { + "start": 78705.1, + "end": 78706.3, + "probability": 0.678 + }, + { + "start": 78706.48, + "end": 78709.76, + "probability": 0.8506 + }, + { + "start": 78709.76, + "end": 78714.08, + "probability": 0.9153 + }, + { + "start": 78715.84, + "end": 78717.28, + "probability": 0.8063 + }, + { + "start": 78717.8, + "end": 78719.28, + "probability": 0.9802 + }, + { + "start": 78720.98, + "end": 78724.48, + "probability": 0.3909 + }, + { + "start": 78724.48, + "end": 78725.16, + "probability": 0.62 + }, + { + "start": 78726.54, + "end": 78730.44, + "probability": 0.0007 + }, + { + "start": 78748.62, + "end": 78750.16, + "probability": 0.3491 + }, + { + "start": 78750.96, + "end": 78754.04, + "probability": 0.7864 + }, + { + "start": 78754.82, + "end": 78760.28, + "probability": 0.8203 + }, + { + "start": 78760.4, + "end": 78761.08, + "probability": 0.8981 + }, + { + "start": 78761.7, + "end": 78766.16, + "probability": 0.9717 + }, + { + "start": 78766.86, + "end": 78769.54, + "probability": 0.9627 + }, + { + "start": 78769.54, + "end": 78773.32, + "probability": 0.5945 + }, + { + "start": 78773.38, + "end": 78775.46, + "probability": 0.4237 + }, + { + "start": 78775.46, + "end": 78776.48, + "probability": 0.8815 + }, + { + "start": 78785.64, + "end": 78786.0, + "probability": 0.411 + }, + { + "start": 78792.6, + "end": 78793.4, + "probability": 0.1187 + }, + { + "start": 78793.4, + "end": 78795.72, + "probability": 0.619 + }, + { + "start": 78795.86, + "end": 78797.76, + "probability": 0.9614 + }, + { + "start": 78798.2, + "end": 78798.88, + "probability": 0.7423 + }, + { + "start": 78798.98, + "end": 78799.38, + "probability": 0.8447 + }, + { + "start": 78799.62, + "end": 78801.54, + "probability": 0.9556 + }, + { + "start": 78801.76, + "end": 78803.78, + "probability": 0.7941 + }, + { + "start": 78804.42, + "end": 78805.06, + "probability": 0.578 + }, + { + "start": 78805.44, + "end": 78806.02, + "probability": 0.7096 + }, + { + "start": 78806.1, + "end": 78809.24, + "probability": 0.9183 + }, + { + "start": 78824.54, + "end": 78824.54, + "probability": 0.4939 + }, + { + "start": 78824.54, + "end": 78824.54, + "probability": 0.1397 + }, + { + "start": 78824.54, + "end": 78824.54, + "probability": 0.1904 + }, + { + "start": 78824.54, + "end": 78828.34, + "probability": 0.466 + }, + { + "start": 78828.46, + "end": 78831.96, + "probability": 0.7596 + }, + { + "start": 78834.46, + "end": 78835.16, + "probability": 0.1828 + }, + { + "start": 78835.16, + "end": 78837.88, + "probability": 0.281 + }, + { + "start": 78837.9, + "end": 78838.46, + "probability": 0.6075 + }, + { + "start": 78838.74, + "end": 78839.66, + "probability": 0.7549 + }, + { + "start": 78839.86, + "end": 78840.8, + "probability": 0.592 + }, + { + "start": 78840.88, + "end": 78842.04, + "probability": 0.7383 + }, + { + "start": 78847.38, + "end": 78848.84, + "probability": 0.5065 + }, + { + "start": 78849.02, + "end": 78851.14, + "probability": 0.2109 + }, + { + "start": 78860.16, + "end": 78865.22, + "probability": 0.7168 + }, + { + "start": 78867.4, + "end": 78871.28, + "probability": 0.5722 + }, + { + "start": 78871.54, + "end": 78877.18, + "probability": 0.8786 + }, + { + "start": 78877.64, + "end": 78879.42, + "probability": 0.7499 + }, + { + "start": 78879.54, + "end": 78880.52, + "probability": 0.9173 + }, + { + "start": 78882.36, + "end": 78883.3, + "probability": 0.6932 + }, + { + "start": 78883.36, + "end": 78886.68, + "probability": 0.9972 + }, + { + "start": 78887.46, + "end": 78888.92, + "probability": 0.9552 + }, + { + "start": 78889.12, + "end": 78892.04, + "probability": 0.922 + }, + { + "start": 78892.08, + "end": 78897.6, + "probability": 0.8184 + }, + { + "start": 78899.2, + "end": 78899.22, + "probability": 0.0772 + }, + { + "start": 78899.22, + "end": 78900.92, + "probability": 0.9937 + }, + { + "start": 78901.02, + "end": 78904.17, + "probability": 0.9222 + }, + { + "start": 78904.54, + "end": 78907.8, + "probability": 0.9544 + }, + { + "start": 78908.42, + "end": 78911.64, + "probability": 0.9642 + }, + { + "start": 78912.38, + "end": 78915.05, + "probability": 0.9878 + }, + { + "start": 78915.52, + "end": 78916.62, + "probability": 0.1472 + }, + { + "start": 78916.62, + "end": 78917.64, + "probability": 0.908 + }, + { + "start": 78918.2, + "end": 78919.92, + "probability": 0.9864 + }, + { + "start": 78920.0, + "end": 78921.08, + "probability": 0.949 + }, + { + "start": 78921.28, + "end": 78922.5, + "probability": 0.7501 + }, + { + "start": 78922.68, + "end": 78923.98, + "probability": 0.776 + }, + { + "start": 78924.6, + "end": 78925.2, + "probability": 0.6414 + }, + { + "start": 78925.28, + "end": 78925.84, + "probability": 0.4675 + }, + { + "start": 78925.84, + "end": 78926.98, + "probability": 0.4651 + }, + { + "start": 78941.5, + "end": 78941.78, + "probability": 0.1103 + }, + { + "start": 78941.78, + "end": 78945.98, + "probability": 0.6622 + }, + { + "start": 78946.16, + "end": 78948.46, + "probability": 0.9487 + }, + { + "start": 78951.26, + "end": 78951.28, + "probability": 0.0289 + }, + { + "start": 78951.28, + "end": 78957.24, + "probability": 0.9823 + }, + { + "start": 78957.3, + "end": 78957.78, + "probability": 0.7473 + }, + { + "start": 78979.08, + "end": 78979.38, + "probability": 0.3172 + }, + { + "start": 78979.38, + "end": 78981.96, + "probability": 0.8407 + }, + { + "start": 78982.72, + "end": 78985.4, + "probability": 0.9646 + }, + { + "start": 78986.58, + "end": 78992.36, + "probability": 0.9951 + }, + { + "start": 78993.54, + "end": 78997.82, + "probability": 0.9969 + }, + { + "start": 78998.78, + "end": 79004.46, + "probability": 0.9937 + }, + { + "start": 79005.8, + "end": 79011.9, + "probability": 0.992 + }, + { + "start": 79011.9, + "end": 79017.02, + "probability": 0.991 + }, + { + "start": 79017.62, + "end": 79018.46, + "probability": 0.1698 + }, + { + "start": 79019.2, + "end": 79024.24, + "probability": 0.9818 + }, + { + "start": 79025.5, + "end": 79032.8, + "probability": 0.9463 + }, + { + "start": 79033.72, + "end": 79035.8, + "probability": 0.9336 + }, + { + "start": 79036.36, + "end": 79037.9, + "probability": 0.9995 + }, + { + "start": 79039.62, + "end": 79043.61, + "probability": 0.9951 + }, + { + "start": 79044.3, + "end": 79049.06, + "probability": 0.999 + }, + { + "start": 79049.2, + "end": 79054.7, + "probability": 0.9958 + }, + { + "start": 79055.62, + "end": 79057.28, + "probability": 0.9209 + }, + { + "start": 79058.06, + "end": 79059.82, + "probability": 0.9453 + }, + { + "start": 79061.16, + "end": 79063.2, + "probability": 0.8326 + }, + { + "start": 79064.06, + "end": 79066.2, + "probability": 0.9827 + }, + { + "start": 79067.78, + "end": 79069.62, + "probability": 0.9836 + }, + { + "start": 79070.86, + "end": 79076.6, + "probability": 0.9615 + }, + { + "start": 79076.78, + "end": 79077.82, + "probability": 0.678 + }, + { + "start": 79078.48, + "end": 79079.42, + "probability": 0.9753 + }, + { + "start": 79079.96, + "end": 79081.12, + "probability": 0.8934 + }, + { + "start": 79081.9, + "end": 79083.84, + "probability": 0.9857 + }, + { + "start": 79084.38, + "end": 79086.06, + "probability": 0.9492 + }, + { + "start": 79087.1, + "end": 79089.76, + "probability": 0.9966 + }, + { + "start": 79090.28, + "end": 79091.48, + "probability": 0.9484 + }, + { + "start": 79092.04, + "end": 79096.66, + "probability": 0.9851 + }, + { + "start": 79098.3, + "end": 79100.42, + "probability": 0.9098 + }, + { + "start": 79101.16, + "end": 79106.52, + "probability": 0.9834 + }, + { + "start": 79106.52, + "end": 79110.94, + "probability": 0.9897 + }, + { + "start": 79111.9, + "end": 79112.86, + "probability": 0.7144 + }, + { + "start": 79113.74, + "end": 79115.96, + "probability": 0.8144 + }, + { + "start": 79117.0, + "end": 79120.08, + "probability": 0.9445 + }, + { + "start": 79120.8, + "end": 79125.62, + "probability": 0.9313 + }, + { + "start": 79126.2, + "end": 79130.76, + "probability": 0.993 + }, + { + "start": 79132.1, + "end": 79133.92, + "probability": 0.6828 + }, + { + "start": 79134.02, + "end": 79135.18, + "probability": 0.6773 + }, + { + "start": 79135.58, + "end": 79136.72, + "probability": 0.9864 + }, + { + "start": 79138.16, + "end": 79142.32, + "probability": 0.9894 + }, + { + "start": 79142.32, + "end": 79147.7, + "probability": 0.9788 + }, + { + "start": 79147.84, + "end": 79153.9, + "probability": 0.9977 + }, + { + "start": 79154.74, + "end": 79159.92, + "probability": 0.9975 + }, + { + "start": 79160.52, + "end": 79161.88, + "probability": 0.9951 + }, + { + "start": 79162.4, + "end": 79165.42, + "probability": 0.9995 + }, + { + "start": 79166.7, + "end": 79168.98, + "probability": 0.9879 + }, + { + "start": 79169.54, + "end": 79173.44, + "probability": 0.9865 + }, + { + "start": 79174.66, + "end": 79176.86, + "probability": 0.6427 + }, + { + "start": 79177.4, + "end": 79181.44, + "probability": 0.9896 + }, + { + "start": 79182.64, + "end": 79186.32, + "probability": 0.9976 + }, + { + "start": 79187.96, + "end": 79189.9, + "probability": 0.8541 + }, + { + "start": 79190.66, + "end": 79193.34, + "probability": 0.9945 + }, + { + "start": 79194.08, + "end": 79197.68, + "probability": 0.9674 + }, + { + "start": 79198.74, + "end": 79203.88, + "probability": 0.9878 + }, + { + "start": 79204.52, + "end": 79206.92, + "probability": 0.6691 + }, + { + "start": 79207.92, + "end": 79208.7, + "probability": 0.9615 + }, + { + "start": 79209.24, + "end": 79213.74, + "probability": 0.983 + }, + { + "start": 79213.74, + "end": 79217.32, + "probability": 0.9964 + }, + { + "start": 79218.64, + "end": 79220.8, + "probability": 0.9661 + }, + { + "start": 79221.84, + "end": 79224.2, + "probability": 0.9108 + }, + { + "start": 79225.04, + "end": 79227.3, + "probability": 0.9768 + }, + { + "start": 79228.08, + "end": 79230.26, + "probability": 0.925 + }, + { + "start": 79230.78, + "end": 79235.04, + "probability": 0.9984 + }, + { + "start": 79235.04, + "end": 79238.34, + "probability": 0.9982 + }, + { + "start": 79239.46, + "end": 79243.84, + "probability": 0.9706 + }, + { + "start": 79244.82, + "end": 79246.06, + "probability": 0.9829 + }, + { + "start": 79246.86, + "end": 79247.78, + "probability": 0.9316 + }, + { + "start": 79248.34, + "end": 79249.32, + "probability": 0.9946 + }, + { + "start": 79250.02, + "end": 79255.4, + "probability": 0.9896 + }, + { + "start": 79256.52, + "end": 79258.62, + "probability": 0.9517 + }, + { + "start": 79259.52, + "end": 79262.9, + "probability": 0.8107 + }, + { + "start": 79262.92, + "end": 79265.12, + "probability": 0.858 + }, + { + "start": 79267.08, + "end": 79271.96, + "probability": 0.9426 + }, + { + "start": 79272.6, + "end": 79273.42, + "probability": 0.7323 + }, + { + "start": 79273.42, + "end": 79277.36, + "probability": 0.9717 + }, + { + "start": 79277.78, + "end": 79279.94, + "probability": 0.9946 + }, + { + "start": 79281.24, + "end": 79282.14, + "probability": 0.5085 + }, + { + "start": 79282.26, + "end": 79283.32, + "probability": 0.7449 + }, + { + "start": 79283.72, + "end": 79285.85, + "probability": 0.9592 + }, + { + "start": 79286.94, + "end": 79287.98, + "probability": 0.9144 + }, + { + "start": 79288.84, + "end": 79290.88, + "probability": 0.9867 + }, + { + "start": 79291.52, + "end": 79295.72, + "probability": 0.8704 + }, + { + "start": 79295.88, + "end": 79297.29, + "probability": 0.9956 + }, + { + "start": 79298.7, + "end": 79299.6, + "probability": 0.833 + }, + { + "start": 79300.2, + "end": 79302.18, + "probability": 0.9983 + }, + { + "start": 79303.18, + "end": 79305.4, + "probability": 0.9948 + }, + { + "start": 79305.54, + "end": 79308.0, + "probability": 0.8502 + }, + { + "start": 79308.78, + "end": 79313.24, + "probability": 0.9698 + }, + { + "start": 79313.24, + "end": 79318.04, + "probability": 0.9761 + }, + { + "start": 79318.92, + "end": 79320.04, + "probability": 0.842 + }, + { + "start": 79320.92, + "end": 79327.46, + "probability": 0.9795 + }, + { + "start": 79328.12, + "end": 79334.02, + "probability": 0.9546 + }, + { + "start": 79334.66, + "end": 79336.26, + "probability": 0.9989 + }, + { + "start": 79336.94, + "end": 79340.5, + "probability": 0.9961 + }, + { + "start": 79341.68, + "end": 79342.82, + "probability": 0.4061 + }, + { + "start": 79343.0, + "end": 79345.48, + "probability": 0.9934 + }, + { + "start": 79346.54, + "end": 79348.34, + "probability": 0.9983 + }, + { + "start": 79348.96, + "end": 79351.76, + "probability": 0.9993 + }, + { + "start": 79352.62, + "end": 79353.62, + "probability": 0.9312 + }, + { + "start": 79354.3, + "end": 79355.04, + "probability": 0.711 + }, + { + "start": 79355.9, + "end": 79358.72, + "probability": 0.9952 + }, + { + "start": 79359.36, + "end": 79363.1, + "probability": 0.904 + }, + { + "start": 79363.56, + "end": 79367.24, + "probability": 0.9901 + }, + { + "start": 79367.96, + "end": 79370.26, + "probability": 0.9891 + }, + { + "start": 79371.02, + "end": 79377.04, + "probability": 0.9835 + }, + { + "start": 79377.66, + "end": 79381.58, + "probability": 0.9775 + }, + { + "start": 79382.06, + "end": 79382.28, + "probability": 0.7999 + }, + { + "start": 79383.36, + "end": 79385.38, + "probability": 0.8778 + }, + { + "start": 79385.96, + "end": 79386.78, + "probability": 0.9548 + }, + { + "start": 79387.6, + "end": 79391.74, + "probability": 0.9617 + }, + { + "start": 79392.46, + "end": 79394.96, + "probability": 0.9469 + }, + { + "start": 79395.76, + "end": 79395.92, + "probability": 0.0142 + } + ], + "segments_count": 7429, + "words_count": 40690, + "avg_words_per_segment": 5.4772, + "avg_segment_duration": 2.3971, + "avg_words_per_minute": 30.6899, + "plenum_id": "36215", + "duration": 79550.5, + "title": null, + "plenum_date": "2014-03-11" +} \ No newline at end of file