diff --git "a/4943/metadata.json" "b/4943/metadata.json" new file mode 100644--- /dev/null +++ "b/4943/metadata.json" @@ -0,0 +1,19227 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "4943", + "quality_score": 0.8659, + "per_segment_quality_scores": [ + { + "start": 56.0, + "end": 57.44, + "probability": 0.9377 + }, + { + "start": 57.46, + "end": 59.84, + "probability": 0.7369 + }, + { + "start": 60.1, + "end": 61.52, + "probability": 0.7131 + }, + { + "start": 62.5, + "end": 64.4, + "probability": 0.3649 + }, + { + "start": 65.2, + "end": 68.5, + "probability": 0.7207 + }, + { + "start": 69.26, + "end": 71.78, + "probability": 0.991 + }, + { + "start": 72.66, + "end": 76.74, + "probability": 0.9448 + }, + { + "start": 77.6, + "end": 79.48, + "probability": 0.4643 + }, + { + "start": 80.13, + "end": 80.76, + "probability": 0.6189 + }, + { + "start": 81.04, + "end": 84.14, + "probability": 0.9658 + }, + { + "start": 84.3, + "end": 85.36, + "probability": 0.9615 + }, + { + "start": 86.44, + "end": 86.52, + "probability": 0.1688 + }, + { + "start": 86.52, + "end": 87.63, + "probability": 0.7652 + }, + { + "start": 87.86, + "end": 88.66, + "probability": 0.1213 + }, + { + "start": 88.8, + "end": 90.32, + "probability": 0.9375 + }, + { + "start": 90.44, + "end": 91.95, + "probability": 0.4147 + }, + { + "start": 92.68, + "end": 94.2, + "probability": 0.8325 + }, + { + "start": 94.56, + "end": 97.56, + "probability": 0.7894 + }, + { + "start": 98.3, + "end": 100.62, + "probability": 0.9545 + }, + { + "start": 101.62, + "end": 103.48, + "probability": 0.9333 + }, + { + "start": 103.48, + "end": 105.38, + "probability": 0.8986 + }, + { + "start": 105.5, + "end": 105.92, + "probability": 0.8008 + }, + { + "start": 106.56, + "end": 109.1, + "probability": 0.8434 + }, + { + "start": 109.24, + "end": 109.46, + "probability": 0.3655 + }, + { + "start": 109.76, + "end": 110.38, + "probability": 0.5275 + }, + { + "start": 111.06, + "end": 111.14, + "probability": 0.0032 + }, + { + "start": 245.3, + "end": 247.0, + "probability": 0.0731 + }, + { + "start": 247.0, + "end": 251.06, + "probability": 0.0415 + }, + { + "start": 251.46, + "end": 253.64, + "probability": 0.0498 + }, + { + "start": 253.85, + "end": 254.49, + "probability": 0.0574 + }, + { + "start": 254.66, + "end": 254.7, + "probability": 0.0712 + }, + { + "start": 254.7, + "end": 254.98, + "probability": 0.0319 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 255.0, + "end": 255.0, + "probability": 0.0 + }, + { + "start": 258.06, + "end": 260.68, + "probability": 0.5871 + }, + { + "start": 260.68, + "end": 262.12, + "probability": 0.7381 + }, + { + "start": 271.72, + "end": 278.88, + "probability": 0.9782 + }, + { + "start": 278.98, + "end": 279.82, + "probability": 0.8196 + }, + { + "start": 280.36, + "end": 281.88, + "probability": 0.8216 + }, + { + "start": 282.08, + "end": 283.0, + "probability": 0.8865 + }, + { + "start": 285.5, + "end": 289.72, + "probability": 0.6993 + }, + { + "start": 290.66, + "end": 294.56, + "probability": 0.9793 + }, + { + "start": 296.04, + "end": 296.24, + "probability": 0.7632 + }, + { + "start": 296.84, + "end": 297.72, + "probability": 0.6288 + }, + { + "start": 297.98, + "end": 299.0, + "probability": 0.6501 + }, + { + "start": 299.08, + "end": 299.38, + "probability": 0.6915 + }, + { + "start": 299.4, + "end": 301.6, + "probability": 0.666 + }, + { + "start": 302.64, + "end": 306.48, + "probability": 0.4451 + }, + { + "start": 308.72, + "end": 311.96, + "probability": 0.9927 + }, + { + "start": 312.56, + "end": 313.7, + "probability": 0.7508 + }, + { + "start": 315.36, + "end": 317.84, + "probability": 0.6672 + }, + { + "start": 318.54, + "end": 319.2, + "probability": 0.7812 + }, + { + "start": 320.16, + "end": 320.88, + "probability": 0.8743 + }, + { + "start": 321.84, + "end": 324.7, + "probability": 0.9912 + }, + { + "start": 326.02, + "end": 326.51, + "probability": 0.7854 + }, + { + "start": 327.56, + "end": 329.84, + "probability": 0.7954 + }, + { + "start": 330.4, + "end": 332.48, + "probability": 0.7042 + }, + { + "start": 333.66, + "end": 335.6, + "probability": 0.4961 + }, + { + "start": 335.6, + "end": 339.5, + "probability": 0.9161 + }, + { + "start": 339.56, + "end": 342.47, + "probability": 0.9856 + }, + { + "start": 342.94, + "end": 344.56, + "probability": 0.9532 + }, + { + "start": 345.52, + "end": 350.64, + "probability": 0.9495 + }, + { + "start": 351.36, + "end": 352.3, + "probability": 0.6306 + }, + { + "start": 352.92, + "end": 354.94, + "probability": 0.9304 + }, + { + "start": 355.36, + "end": 357.0, + "probability": 0.8078 + }, + { + "start": 357.72, + "end": 360.22, + "probability": 0.7408 + }, + { + "start": 361.08, + "end": 363.48, + "probability": 0.59 + }, + { + "start": 364.22, + "end": 365.74, + "probability": 0.7241 + }, + { + "start": 366.44, + "end": 368.3, + "probability": 0.9811 + }, + { + "start": 369.06, + "end": 372.8, + "probability": 0.4807 + }, + { + "start": 372.8, + "end": 375.6, + "probability": 0.9509 + }, + { + "start": 376.68, + "end": 377.34, + "probability": 0.419 + }, + { + "start": 378.66, + "end": 379.1, + "probability": 0.2615 + }, + { + "start": 379.16, + "end": 380.5, + "probability": 0.6895 + }, + { + "start": 380.5, + "end": 382.36, + "probability": 0.2871 + }, + { + "start": 383.28, + "end": 385.78, + "probability": 0.9045 + }, + { + "start": 385.8, + "end": 385.92, + "probability": 0.1003 + }, + { + "start": 385.92, + "end": 388.04, + "probability": 0.7416 + }, + { + "start": 390.74, + "end": 393.34, + "probability": 0.9714 + }, + { + "start": 393.92, + "end": 395.26, + "probability": 0.9704 + }, + { + "start": 395.48, + "end": 396.08, + "probability": 0.0589 + }, + { + "start": 396.66, + "end": 398.42, + "probability": 0.9285 + }, + { + "start": 398.68, + "end": 400.8, + "probability": 0.9338 + }, + { + "start": 401.24, + "end": 405.96, + "probability": 0.9856 + }, + { + "start": 406.14, + "end": 408.12, + "probability": 0.9953 + }, + { + "start": 408.24, + "end": 408.64, + "probability": 0.7877 + }, + { + "start": 409.06, + "end": 412.96, + "probability": 0.9792 + }, + { + "start": 414.08, + "end": 416.88, + "probability": 0.3245 + }, + { + "start": 417.04, + "end": 419.4, + "probability": 0.7135 + }, + { + "start": 419.4, + "end": 420.68, + "probability": 0.9785 + }, + { + "start": 421.4, + "end": 423.27, + "probability": 0.7017 + }, + { + "start": 423.56, + "end": 426.8, + "probability": 0.2836 + }, + { + "start": 426.8, + "end": 427.82, + "probability": 0.6904 + }, + { + "start": 427.94, + "end": 432.48, + "probability": 0.9685 + }, + { + "start": 432.9, + "end": 435.22, + "probability": 0.0802 + }, + { + "start": 436.7, + "end": 440.8, + "probability": 0.1129 + }, + { + "start": 440.82, + "end": 442.88, + "probability": 0.4774 + }, + { + "start": 443.02, + "end": 446.9, + "probability": 0.959 + }, + { + "start": 447.28, + "end": 449.88, + "probability": 0.378 + }, + { + "start": 451.25, + "end": 460.02, + "probability": 0.6968 + }, + { + "start": 460.06, + "end": 460.06, + "probability": 0.3646 + }, + { + "start": 460.36, + "end": 462.8, + "probability": 0.5759 + }, + { + "start": 462.88, + "end": 464.0, + "probability": 0.7976 + }, + { + "start": 464.52, + "end": 466.35, + "probability": 0.796 + }, + { + "start": 466.5, + "end": 469.46, + "probability": 0.8783 + }, + { + "start": 469.68, + "end": 470.26, + "probability": 0.3836 + }, + { + "start": 470.34, + "end": 472.38, + "probability": 0.3756 + }, + { + "start": 473.0, + "end": 473.0, + "probability": 0.1291 + }, + { + "start": 473.0, + "end": 475.96, + "probability": 0.6973 + }, + { + "start": 476.76, + "end": 478.32, + "probability": 0.9902 + }, + { + "start": 478.44, + "end": 479.1, + "probability": 0.9365 + }, + { + "start": 479.12, + "end": 480.26, + "probability": 0.6425 + }, + { + "start": 480.32, + "end": 482.89, + "probability": 0.9564 + }, + { + "start": 487.88, + "end": 488.02, + "probability": 0.0343 + }, + { + "start": 488.02, + "end": 488.72, + "probability": 0.6713 + }, + { + "start": 489.7, + "end": 489.84, + "probability": 0.2693 + }, + { + "start": 490.5, + "end": 493.02, + "probability": 0.7244 + }, + { + "start": 493.12, + "end": 493.88, + "probability": 0.1935 + }, + { + "start": 494.24, + "end": 495.22, + "probability": 0.7022 + }, + { + "start": 495.36, + "end": 497.44, + "probability": 0.7606 + }, + { + "start": 501.36, + "end": 505.22, + "probability": 0.8422 + }, + { + "start": 506.32, + "end": 507.92, + "probability": 0.6248 + }, + { + "start": 508.34, + "end": 514.12, + "probability": 0.9406 + }, + { + "start": 515.74, + "end": 518.36, + "probability": 0.7346 + }, + { + "start": 519.18, + "end": 520.16, + "probability": 0.7299 + }, + { + "start": 520.5, + "end": 524.02, + "probability": 0.9931 + }, + { + "start": 524.02, + "end": 526.72, + "probability": 0.6431 + }, + { + "start": 526.72, + "end": 529.54, + "probability": 0.7994 + }, + { + "start": 531.26, + "end": 532.64, + "probability": 0.1475 + }, + { + "start": 534.82, + "end": 536.34, + "probability": 0.5773 + }, + { + "start": 537.36, + "end": 541.78, + "probability": 0.9854 + }, + { + "start": 542.32, + "end": 543.76, + "probability": 0.9237 + }, + { + "start": 543.94, + "end": 546.46, + "probability": 0.844 + }, + { + "start": 547.2, + "end": 550.18, + "probability": 0.9651 + }, + { + "start": 551.02, + "end": 557.0, + "probability": 0.9941 + }, + { + "start": 557.72, + "end": 558.88, + "probability": 0.74 + }, + { + "start": 558.96, + "end": 559.48, + "probability": 0.5615 + }, + { + "start": 559.6, + "end": 562.16, + "probability": 0.6883 + }, + { + "start": 563.2, + "end": 565.16, + "probability": 0.6886 + }, + { + "start": 566.04, + "end": 566.22, + "probability": 0.6795 + }, + { + "start": 567.28, + "end": 568.4, + "probability": 0.6625 + }, + { + "start": 568.88, + "end": 569.62, + "probability": 0.8372 + }, + { + "start": 569.98, + "end": 572.88, + "probability": 0.9902 + }, + { + "start": 572.88, + "end": 575.06, + "probability": 0.7217 + }, + { + "start": 575.26, + "end": 579.76, + "probability": 0.9599 + }, + { + "start": 580.6, + "end": 584.24, + "probability": 0.9828 + }, + { + "start": 584.24, + "end": 587.1, + "probability": 0.9633 + }, + { + "start": 587.86, + "end": 587.86, + "probability": 0.4944 + }, + { + "start": 587.86, + "end": 589.88, + "probability": 0.9962 + }, + { + "start": 590.04, + "end": 593.9, + "probability": 0.7869 + }, + { + "start": 594.58, + "end": 596.1, + "probability": 0.996 + }, + { + "start": 598.46, + "end": 600.46, + "probability": 0.8025 + }, + { + "start": 600.58, + "end": 604.18, + "probability": 0.7364 + }, + { + "start": 604.34, + "end": 604.86, + "probability": 0.4901 + }, + { + "start": 605.54, + "end": 607.32, + "probability": 0.9338 + }, + { + "start": 608.66, + "end": 609.34, + "probability": 0.8037 + }, + { + "start": 609.64, + "end": 610.25, + "probability": 0.5347 + }, + { + "start": 610.64, + "end": 611.56, + "probability": 0.7669 + }, + { + "start": 611.62, + "end": 613.28, + "probability": 0.9958 + }, + { + "start": 613.9, + "end": 614.76, + "probability": 0.7498 + }, + { + "start": 614.82, + "end": 615.88, + "probability": 0.7446 + }, + { + "start": 616.2, + "end": 618.78, + "probability": 0.8327 + }, + { + "start": 619.96, + "end": 621.3, + "probability": 0.753 + }, + { + "start": 622.12, + "end": 625.42, + "probability": 0.6158 + }, + { + "start": 626.04, + "end": 627.96, + "probability": 0.8655 + }, + { + "start": 628.5, + "end": 628.92, + "probability": 0.7399 + }, + { + "start": 629.02, + "end": 631.98, + "probability": 0.9903 + }, + { + "start": 633.06, + "end": 635.8, + "probability": 0.8605 + }, + { + "start": 636.92, + "end": 639.34, + "probability": 0.7298 + }, + { + "start": 640.02, + "end": 641.3, + "probability": 0.4951 + }, + { + "start": 641.46, + "end": 644.36, + "probability": 0.937 + }, + { + "start": 645.14, + "end": 649.26, + "probability": 0.6723 + }, + { + "start": 649.76, + "end": 652.72, + "probability": 0.9446 + }, + { + "start": 653.46, + "end": 653.9, + "probability": 0.4518 + }, + { + "start": 654.52, + "end": 658.44, + "probability": 0.9924 + }, + { + "start": 658.44, + "end": 662.94, + "probability": 0.9805 + }, + { + "start": 663.2, + "end": 667.66, + "probability": 0.7424 + }, + { + "start": 668.44, + "end": 670.73, + "probability": 0.9678 + }, + { + "start": 671.52, + "end": 674.0, + "probability": 0.9661 + }, + { + "start": 674.0, + "end": 677.42, + "probability": 0.9912 + }, + { + "start": 677.92, + "end": 682.0, + "probability": 0.8491 + }, + { + "start": 683.12, + "end": 685.79, + "probability": 0.9941 + }, + { + "start": 686.45, + "end": 689.18, + "probability": 0.9541 + }, + { + "start": 689.54, + "end": 689.54, + "probability": 0.306 + }, + { + "start": 689.72, + "end": 692.28, + "probability": 0.9883 + }, + { + "start": 692.66, + "end": 695.24, + "probability": 0.9758 + }, + { + "start": 695.8, + "end": 698.39, + "probability": 0.9631 + }, + { + "start": 698.6, + "end": 701.42, + "probability": 0.7677 + }, + { + "start": 701.42, + "end": 703.36, + "probability": 0.8813 + }, + { + "start": 703.48, + "end": 705.4, + "probability": 0.7109 + }, + { + "start": 706.04, + "end": 707.72, + "probability": 0.665 + }, + { + "start": 707.78, + "end": 708.36, + "probability": 0.7857 + }, + { + "start": 708.44, + "end": 709.28, + "probability": 0.7504 + }, + { + "start": 709.38, + "end": 710.34, + "probability": 0.7955 + }, + { + "start": 710.68, + "end": 713.58, + "probability": 0.8309 + }, + { + "start": 714.08, + "end": 715.32, + "probability": 0.8723 + }, + { + "start": 715.6, + "end": 720.42, + "probability": 0.9503 + }, + { + "start": 720.76, + "end": 722.66, + "probability": 0.6143 + }, + { + "start": 722.78, + "end": 726.08, + "probability": 0.9834 + }, + { + "start": 726.94, + "end": 728.42, + "probability": 0.8481 + }, + { + "start": 728.94, + "end": 732.74, + "probability": 0.9536 + }, + { + "start": 733.0, + "end": 733.57, + "probability": 0.9854 + }, + { + "start": 734.71, + "end": 737.85, + "probability": 0.7144 + }, + { + "start": 738.14, + "end": 740.56, + "probability": 0.5727 + }, + { + "start": 741.08, + "end": 744.62, + "probability": 0.5246 + }, + { + "start": 746.18, + "end": 746.8, + "probability": 0.3606 + }, + { + "start": 748.02, + "end": 751.24, + "probability": 0.9001 + }, + { + "start": 753.16, + "end": 754.58, + "probability": 0.5203 + }, + { + "start": 754.84, + "end": 755.0, + "probability": 0.4766 + }, + { + "start": 755.14, + "end": 758.34, + "probability": 0.9484 + }, + { + "start": 758.36, + "end": 758.92, + "probability": 0.9852 + }, + { + "start": 759.52, + "end": 760.62, + "probability": 0.9902 + }, + { + "start": 761.22, + "end": 763.96, + "probability": 0.991 + }, + { + "start": 764.66, + "end": 767.02, + "probability": 0.8487 + }, + { + "start": 767.96, + "end": 767.96, + "probability": 0.0153 + }, + { + "start": 767.96, + "end": 772.56, + "probability": 0.9273 + }, + { + "start": 773.4, + "end": 775.72, + "probability": 0.8374 + }, + { + "start": 776.76, + "end": 777.96, + "probability": 0.6956 + }, + { + "start": 778.78, + "end": 784.74, + "probability": 0.9814 + }, + { + "start": 785.14, + "end": 792.04, + "probability": 0.975 + }, + { + "start": 792.74, + "end": 795.24, + "probability": 0.9543 + }, + { + "start": 796.72, + "end": 797.98, + "probability": 0.8614 + }, + { + "start": 798.32, + "end": 803.02, + "probability": 0.9922 + }, + { + "start": 803.44, + "end": 805.72, + "probability": 0.982 + }, + { + "start": 806.52, + "end": 807.6, + "probability": 0.9896 + }, + { + "start": 808.66, + "end": 809.58, + "probability": 0.9847 + }, + { + "start": 810.18, + "end": 814.14, + "probability": 0.2783 + }, + { + "start": 814.72, + "end": 817.58, + "probability": 0.6747 + }, + { + "start": 818.34, + "end": 819.44, + "probability": 0.9954 + }, + { + "start": 820.18, + "end": 823.64, + "probability": 0.9491 + }, + { + "start": 824.36, + "end": 824.72, + "probability": 0.8928 + }, + { + "start": 824.82, + "end": 825.04, + "probability": 0.8607 + }, + { + "start": 825.3, + "end": 825.86, + "probability": 0.6214 + }, + { + "start": 826.0, + "end": 827.34, + "probability": 0.6337 + }, + { + "start": 827.34, + "end": 828.35, + "probability": 0.4555 + }, + { + "start": 835.46, + "end": 835.66, + "probability": 0.6547 + }, + { + "start": 836.54, + "end": 837.48, + "probability": 0.5878 + }, + { + "start": 837.68, + "end": 845.92, + "probability": 0.8265 + }, + { + "start": 846.78, + "end": 848.49, + "probability": 0.9985 + }, + { + "start": 849.26, + "end": 850.88, + "probability": 0.9719 + }, + { + "start": 851.5, + "end": 852.8, + "probability": 0.8691 + }, + { + "start": 854.02, + "end": 857.54, + "probability": 0.8919 + }, + { + "start": 858.36, + "end": 860.8, + "probability": 0.9766 + }, + { + "start": 862.0, + "end": 862.86, + "probability": 0.2851 + }, + { + "start": 864.7, + "end": 865.8, + "probability": 0.9662 + }, + { + "start": 866.42, + "end": 867.39, + "probability": 0.7255 + }, + { + "start": 867.7, + "end": 870.24, + "probability": 0.9946 + }, + { + "start": 870.36, + "end": 874.28, + "probability": 0.9613 + }, + { + "start": 875.18, + "end": 878.82, + "probability": 0.9565 + }, + { + "start": 879.62, + "end": 883.14, + "probability": 0.9946 + }, + { + "start": 883.76, + "end": 885.02, + "probability": 0.6337 + }, + { + "start": 885.4, + "end": 889.88, + "probability": 0.9468 + }, + { + "start": 890.32, + "end": 893.32, + "probability": 0.7758 + }, + { + "start": 893.7, + "end": 895.14, + "probability": 0.99 + }, + { + "start": 895.42, + "end": 896.4, + "probability": 0.8949 + }, + { + "start": 896.48, + "end": 897.38, + "probability": 0.5003 + }, + { + "start": 897.46, + "end": 899.04, + "probability": 0.7006 + }, + { + "start": 899.5, + "end": 899.86, + "probability": 0.3006 + }, + { + "start": 899.94, + "end": 900.94, + "probability": 0.6396 + }, + { + "start": 901.12, + "end": 904.36, + "probability": 0.9482 + }, + { + "start": 906.46, + "end": 908.76, + "probability": 0.5192 + }, + { + "start": 909.38, + "end": 913.86, + "probability": 0.0544 + }, + { + "start": 916.02, + "end": 916.28, + "probability": 0.1854 + }, + { + "start": 916.28, + "end": 916.28, + "probability": 0.0111 + }, + { + "start": 916.28, + "end": 916.28, + "probability": 0.0276 + }, + { + "start": 916.28, + "end": 917.32, + "probability": 0.2787 + }, + { + "start": 917.36, + "end": 917.68, + "probability": 0.32 + }, + { + "start": 918.08, + "end": 918.66, + "probability": 0.0402 + }, + { + "start": 920.32, + "end": 922.92, + "probability": 0.0962 + }, + { + "start": 923.72, + "end": 924.27, + "probability": 0.3171 + }, + { + "start": 924.62, + "end": 925.88, + "probability": 0.8841 + }, + { + "start": 926.06, + "end": 931.24, + "probability": 0.9956 + }, + { + "start": 931.54, + "end": 933.7, + "probability": 0.9929 + }, + { + "start": 934.02, + "end": 939.5, + "probability": 0.8733 + }, + { + "start": 940.52, + "end": 942.04, + "probability": 0.5541 + }, + { + "start": 942.12, + "end": 947.06, + "probability": 0.7475 + }, + { + "start": 949.89, + "end": 955.26, + "probability": 0.9923 + }, + { + "start": 955.84, + "end": 956.36, + "probability": 0.8646 + }, + { + "start": 957.22, + "end": 959.0, + "probability": 0.753 + }, + { + "start": 959.46, + "end": 962.45, + "probability": 0.7518 + }, + { + "start": 962.78, + "end": 964.84, + "probability": 0.8323 + }, + { + "start": 965.36, + "end": 970.67, + "probability": 0.9849 + }, + { + "start": 972.63, + "end": 976.52, + "probability": 0.8115 + }, + { + "start": 976.9, + "end": 980.88, + "probability": 0.693 + }, + { + "start": 980.96, + "end": 983.6, + "probability": 0.4986 + }, + { + "start": 983.74, + "end": 986.67, + "probability": 0.9482 + }, + { + "start": 987.5, + "end": 991.34, + "probability": 0.991 + }, + { + "start": 991.56, + "end": 991.78, + "probability": 0.7035 + }, + { + "start": 992.08, + "end": 993.92, + "probability": 0.787 + }, + { + "start": 993.92, + "end": 996.0, + "probability": 0.5886 + }, + { + "start": 996.17, + "end": 997.09, + "probability": 0.3709 + }, + { + "start": 1003.02, + "end": 1005.3, + "probability": 0.8604 + }, + { + "start": 1005.36, + "end": 1006.86, + "probability": 0.9963 + }, + { + "start": 1008.66, + "end": 1011.44, + "probability": 0.9975 + }, + { + "start": 1011.74, + "end": 1014.4, + "probability": 0.9824 + }, + { + "start": 1015.42, + "end": 1020.24, + "probability": 0.9982 + }, + { + "start": 1021.34, + "end": 1025.02, + "probability": 0.981 + }, + { + "start": 1027.28, + "end": 1031.7, + "probability": 0.9191 + }, + { + "start": 1033.04, + "end": 1035.46, + "probability": 0.8864 + }, + { + "start": 1036.66, + "end": 1038.57, + "probability": 0.9992 + }, + { + "start": 1039.86, + "end": 1040.54, + "probability": 0.964 + }, + { + "start": 1040.62, + "end": 1043.48, + "probability": 0.9974 + }, + { + "start": 1044.24, + "end": 1045.78, + "probability": 0.7988 + }, + { + "start": 1046.44, + "end": 1047.43, + "probability": 0.9156 + }, + { + "start": 1049.22, + "end": 1050.46, + "probability": 0.9434 + }, + { + "start": 1050.86, + "end": 1051.52, + "probability": 0.514 + }, + { + "start": 1052.04, + "end": 1057.24, + "probability": 0.9922 + }, + { + "start": 1057.46, + "end": 1058.42, + "probability": 0.7561 + }, + { + "start": 1058.68, + "end": 1060.92, + "probability": 0.6922 + }, + { + "start": 1061.44, + "end": 1062.74, + "probability": 0.9462 + }, + { + "start": 1063.6, + "end": 1065.86, + "probability": 0.7507 + }, + { + "start": 1067.06, + "end": 1070.3, + "probability": 0.9577 + }, + { + "start": 1070.82, + "end": 1071.14, + "probability": 0.6099 + }, + { + "start": 1073.38, + "end": 1076.56, + "probability": 0.9578 + }, + { + "start": 1077.78, + "end": 1080.58, + "probability": 0.8573 + }, + { + "start": 1080.74, + "end": 1081.86, + "probability": 0.7405 + }, + { + "start": 1083.16, + "end": 1086.98, + "probability": 0.9959 + }, + { + "start": 1088.18, + "end": 1090.72, + "probability": 0.9863 + }, + { + "start": 1091.38, + "end": 1094.22, + "probability": 0.8975 + }, + { + "start": 1094.6, + "end": 1095.76, + "probability": 0.7678 + }, + { + "start": 1098.23, + "end": 1101.9, + "probability": 0.7996 + }, + { + "start": 1103.18, + "end": 1105.4, + "probability": 0.9979 + }, + { + "start": 1106.16, + "end": 1107.88, + "probability": 0.986 + }, + { + "start": 1108.56, + "end": 1109.86, + "probability": 0.9906 + }, + { + "start": 1110.56, + "end": 1116.2, + "probability": 0.9627 + }, + { + "start": 1116.62, + "end": 1116.84, + "probability": 0.7177 + }, + { + "start": 1117.46, + "end": 1119.32, + "probability": 0.9449 + }, + { + "start": 1120.0, + "end": 1122.54, + "probability": 0.6861 + }, + { + "start": 1123.1, + "end": 1126.06, + "probability": 0.8773 + }, + { + "start": 1126.74, + "end": 1127.82, + "probability": 0.5995 + }, + { + "start": 1128.14, + "end": 1130.05, + "probability": 0.9194 + }, + { + "start": 1131.44, + "end": 1133.7, + "probability": 0.962 + }, + { + "start": 1134.8, + "end": 1135.56, + "probability": 0.9273 + }, + { + "start": 1136.86, + "end": 1138.4, + "probability": 0.4833 + }, + { + "start": 1139.62, + "end": 1143.98, + "probability": 0.9929 + }, + { + "start": 1145.34, + "end": 1149.2, + "probability": 0.9911 + }, + { + "start": 1149.36, + "end": 1151.18, + "probability": 0.7596 + }, + { + "start": 1151.3, + "end": 1152.64, + "probability": 0.9924 + }, + { + "start": 1153.38, + "end": 1154.06, + "probability": 0.5209 + }, + { + "start": 1155.1, + "end": 1159.24, + "probability": 0.5872 + }, + { + "start": 1160.16, + "end": 1163.08, + "probability": 0.9712 + }, + { + "start": 1164.3, + "end": 1167.04, + "probability": 0.6496 + }, + { + "start": 1167.22, + "end": 1167.44, + "probability": 0.6188 + }, + { + "start": 1168.22, + "end": 1171.54, + "probability": 0.5487 + }, + { + "start": 1171.94, + "end": 1174.3, + "probability": 0.8328 + }, + { + "start": 1174.48, + "end": 1176.54, + "probability": 0.8037 + }, + { + "start": 1180.04, + "end": 1180.52, + "probability": 0.4918 + }, + { + "start": 1180.64, + "end": 1181.3, + "probability": 0.8662 + }, + { + "start": 1181.52, + "end": 1181.76, + "probability": 0.4041 + }, + { + "start": 1182.12, + "end": 1187.9, + "probability": 0.9138 + }, + { + "start": 1188.28, + "end": 1189.78, + "probability": 0.9761 + }, + { + "start": 1190.34, + "end": 1192.64, + "probability": 0.8967 + }, + { + "start": 1193.6, + "end": 1200.72, + "probability": 0.858 + }, + { + "start": 1201.26, + "end": 1204.56, + "probability": 0.9973 + }, + { + "start": 1204.6, + "end": 1207.39, + "probability": 0.9318 + }, + { + "start": 1208.16, + "end": 1212.16, + "probability": 0.9951 + }, + { + "start": 1212.28, + "end": 1214.22, + "probability": 0.5469 + }, + { + "start": 1214.22, + "end": 1215.5, + "probability": 0.7086 + }, + { + "start": 1215.96, + "end": 1221.88, + "probability": 0.59 + }, + { + "start": 1222.41, + "end": 1227.26, + "probability": 0.755 + }, + { + "start": 1227.38, + "end": 1228.28, + "probability": 0.475 + }, + { + "start": 1229.28, + "end": 1233.9, + "probability": 0.9406 + }, + { + "start": 1234.26, + "end": 1238.86, + "probability": 0.9971 + }, + { + "start": 1238.94, + "end": 1243.04, + "probability": 0.8773 + }, + { + "start": 1243.04, + "end": 1245.22, + "probability": 0.9957 + }, + { + "start": 1245.9, + "end": 1249.14, + "probability": 0.6888 + }, + { + "start": 1249.62, + "end": 1250.68, + "probability": 0.7536 + }, + { + "start": 1250.72, + "end": 1253.1, + "probability": 0.8336 + }, + { + "start": 1253.94, + "end": 1255.6, + "probability": 0.6452 + }, + { + "start": 1255.9, + "end": 1258.16, + "probability": 0.7222 + }, + { + "start": 1258.66, + "end": 1260.14, + "probability": 0.7102 + }, + { + "start": 1260.46, + "end": 1262.6, + "probability": 0.7992 + }, + { + "start": 1263.3, + "end": 1264.78, + "probability": 0.9863 + }, + { + "start": 1265.22, + "end": 1268.18, + "probability": 0.7734 + }, + { + "start": 1268.8, + "end": 1268.98, + "probability": 0.6576 + }, + { + "start": 1269.14, + "end": 1272.5, + "probability": 0.5359 + }, + { + "start": 1272.84, + "end": 1273.72, + "probability": 0.1362 + }, + { + "start": 1276.72, + "end": 1281.79, + "probability": 0.9199 + }, + { + "start": 1283.48, + "end": 1286.34, + "probability": 0.8861 + }, + { + "start": 1287.24, + "end": 1289.54, + "probability": 0.964 + }, + { + "start": 1289.84, + "end": 1291.62, + "probability": 0.9674 + }, + { + "start": 1291.92, + "end": 1291.92, + "probability": 0.9136 + }, + { + "start": 1292.46, + "end": 1293.62, + "probability": 0.977 + }, + { + "start": 1294.04, + "end": 1294.62, + "probability": 0.938 + }, + { + "start": 1295.14, + "end": 1296.82, + "probability": 0.8757 + }, + { + "start": 1298.76, + "end": 1299.28, + "probability": 0.7354 + }, + { + "start": 1299.34, + "end": 1303.3, + "probability": 0.9526 + }, + { + "start": 1304.29, + "end": 1307.07, + "probability": 0.8621 + }, + { + "start": 1307.76, + "end": 1311.08, + "probability": 0.937 + }, + { + "start": 1313.27, + "end": 1314.68, + "probability": 0.6747 + }, + { + "start": 1316.2, + "end": 1319.76, + "probability": 0.6082 + }, + { + "start": 1320.04, + "end": 1323.38, + "probability": 0.9525 + }, + { + "start": 1324.66, + "end": 1325.46, + "probability": 0.5159 + }, + { + "start": 1325.7, + "end": 1325.7, + "probability": 0.5002 + }, + { + "start": 1325.78, + "end": 1327.32, + "probability": 0.9353 + }, + { + "start": 1328.34, + "end": 1329.6, + "probability": 0.826 + }, + { + "start": 1329.74, + "end": 1336.2, + "probability": 0.9943 + }, + { + "start": 1336.72, + "end": 1338.94, + "probability": 0.8752 + }, + { + "start": 1340.44, + "end": 1341.62, + "probability": 0.7274 + }, + { + "start": 1342.32, + "end": 1342.92, + "probability": 0.8242 + }, + { + "start": 1343.54, + "end": 1345.3, + "probability": 0.9625 + }, + { + "start": 1345.9, + "end": 1348.04, + "probability": 0.9837 + }, + { + "start": 1349.56, + "end": 1351.24, + "probability": 0.9924 + }, + { + "start": 1351.82, + "end": 1352.7, + "probability": 0.9976 + }, + { + "start": 1353.3, + "end": 1354.48, + "probability": 0.9967 + }, + { + "start": 1355.06, + "end": 1357.64, + "probability": 0.591 + }, + { + "start": 1358.24, + "end": 1362.96, + "probability": 0.835 + }, + { + "start": 1363.54, + "end": 1367.86, + "probability": 0.9659 + }, + { + "start": 1367.86, + "end": 1371.4, + "probability": 0.8978 + }, + { + "start": 1372.24, + "end": 1373.69, + "probability": 0.5809 + }, + { + "start": 1374.8, + "end": 1375.22, + "probability": 0.1525 + }, + { + "start": 1375.54, + "end": 1378.34, + "probability": 0.7359 + }, + { + "start": 1378.94, + "end": 1380.8, + "probability": 0.889 + }, + { + "start": 1385.98, + "end": 1386.64, + "probability": 0.7936 + }, + { + "start": 1387.28, + "end": 1388.8, + "probability": 0.7295 + }, + { + "start": 1389.9, + "end": 1393.24, + "probability": 0.9695 + }, + { + "start": 1394.04, + "end": 1395.58, + "probability": 0.86 + }, + { + "start": 1396.44, + "end": 1398.15, + "probability": 0.9804 + }, + { + "start": 1399.84, + "end": 1403.02, + "probability": 0.8913 + }, + { + "start": 1403.86, + "end": 1404.52, + "probability": 0.0524 + }, + { + "start": 1404.58, + "end": 1405.1, + "probability": 0.5289 + }, + { + "start": 1405.22, + "end": 1407.74, + "probability": 0.9819 + }, + { + "start": 1407.98, + "end": 1414.22, + "probability": 0.894 + }, + { + "start": 1414.78, + "end": 1416.4, + "probability": 0.9971 + }, + { + "start": 1416.58, + "end": 1417.1, + "probability": 0.9163 + }, + { + "start": 1417.24, + "end": 1421.82, + "probability": 0.9893 + }, + { + "start": 1422.8, + "end": 1424.84, + "probability": 0.9917 + }, + { + "start": 1425.22, + "end": 1426.26, + "probability": 0.8562 + }, + { + "start": 1426.34, + "end": 1427.36, + "probability": 0.989 + }, + { + "start": 1427.58, + "end": 1430.96, + "probability": 0.9933 + }, + { + "start": 1432.0, + "end": 1433.58, + "probability": 0.9885 + }, + { + "start": 1433.76, + "end": 1434.68, + "probability": 0.5378 + }, + { + "start": 1434.74, + "end": 1437.98, + "probability": 0.9873 + }, + { + "start": 1437.98, + "end": 1441.16, + "probability": 0.9407 + }, + { + "start": 1441.44, + "end": 1442.34, + "probability": 0.9478 + }, + { + "start": 1442.46, + "end": 1443.66, + "probability": 0.7213 + }, + { + "start": 1443.92, + "end": 1444.3, + "probability": 0.6321 + }, + { + "start": 1444.56, + "end": 1444.84, + "probability": 0.0005 + }, + { + "start": 1445.5, + "end": 1446.42, + "probability": 0.129 + }, + { + "start": 1446.48, + "end": 1447.18, + "probability": 0.3394 + }, + { + "start": 1448.09, + "end": 1453.26, + "probability": 0.9636 + }, + { + "start": 1455.04, + "end": 1458.28, + "probability": 0.4108 + }, + { + "start": 1458.28, + "end": 1458.6, + "probability": 0.4508 + }, + { + "start": 1458.74, + "end": 1462.04, + "probability": 0.6407 + }, + { + "start": 1462.14, + "end": 1464.96, + "probability": 0.689 + }, + { + "start": 1467.23, + "end": 1469.86, + "probability": 0.0167 + }, + { + "start": 1470.16, + "end": 1472.96, + "probability": 0.3338 + }, + { + "start": 1473.02, + "end": 1478.56, + "probability": 0.7389 + }, + { + "start": 1478.82, + "end": 1479.34, + "probability": 0.7203 + }, + { + "start": 1480.04, + "end": 1483.08, + "probability": 0.9736 + }, + { + "start": 1484.28, + "end": 1486.28, + "probability": 0.9761 + }, + { + "start": 1486.36, + "end": 1487.44, + "probability": 0.7682 + }, + { + "start": 1487.62, + "end": 1488.82, + "probability": 0.4969 + }, + { + "start": 1488.82, + "end": 1492.54, + "probability": 0.7964 + }, + { + "start": 1492.66, + "end": 1496.52, + "probability": 0.7517 + }, + { + "start": 1497.02, + "end": 1499.96, + "probability": 0.9833 + }, + { + "start": 1500.14, + "end": 1500.78, + "probability": 0.5753 + }, + { + "start": 1500.86, + "end": 1501.42, + "probability": 0.783 + }, + { + "start": 1501.58, + "end": 1503.02, + "probability": 0.9132 + }, + { + "start": 1503.66, + "end": 1505.62, + "probability": 0.8254 + }, + { + "start": 1506.16, + "end": 1511.04, + "probability": 0.7615 + }, + { + "start": 1511.88, + "end": 1514.62, + "probability": 0.9772 + }, + { + "start": 1514.7, + "end": 1517.7, + "probability": 0.9783 + }, + { + "start": 1517.92, + "end": 1520.6, + "probability": 0.9927 + }, + { + "start": 1520.98, + "end": 1526.9, + "probability": 0.8963 + }, + { + "start": 1527.08, + "end": 1530.68, + "probability": 0.3152 + }, + { + "start": 1531.42, + "end": 1533.74, + "probability": 0.1813 + }, + { + "start": 1533.74, + "end": 1535.26, + "probability": 0.6684 + }, + { + "start": 1536.18, + "end": 1538.5, + "probability": 0.5415 + }, + { + "start": 1538.6, + "end": 1542.68, + "probability": 0.8998 + }, + { + "start": 1543.16, + "end": 1545.6, + "probability": 0.9878 + }, + { + "start": 1546.18, + "end": 1551.34, + "probability": 0.9922 + }, + { + "start": 1552.18, + "end": 1552.72, + "probability": 0.6245 + }, + { + "start": 1552.92, + "end": 1555.38, + "probability": 0.8743 + }, + { + "start": 1556.16, + "end": 1556.78, + "probability": 0.5049 + }, + { + "start": 1557.2, + "end": 1559.22, + "probability": 0.8328 + }, + { + "start": 1559.86, + "end": 1562.59, + "probability": 0.4773 + }, + { + "start": 1562.64, + "end": 1564.08, + "probability": 0.9998 + }, + { + "start": 1564.82, + "end": 1565.06, + "probability": 0.9917 + }, + { + "start": 1573.14, + "end": 1576.98, + "probability": 0.7441 + }, + { + "start": 1578.88, + "end": 1583.64, + "probability": 0.9863 + }, + { + "start": 1584.16, + "end": 1586.8, + "probability": 0.9679 + }, + { + "start": 1586.8, + "end": 1590.24, + "probability": 0.9949 + }, + { + "start": 1590.8, + "end": 1594.18, + "probability": 0.9992 + }, + { + "start": 1594.6, + "end": 1597.52, + "probability": 0.7604 + }, + { + "start": 1598.38, + "end": 1603.72, + "probability": 0.8019 + }, + { + "start": 1604.28, + "end": 1607.6, + "probability": 0.986 + }, + { + "start": 1609.18, + "end": 1611.98, + "probability": 0.9846 + }, + { + "start": 1613.04, + "end": 1614.68, + "probability": 0.9453 + }, + { + "start": 1615.2, + "end": 1617.36, + "probability": 0.8711 + }, + { + "start": 1618.1, + "end": 1623.24, + "probability": 0.9982 + }, + { + "start": 1623.6, + "end": 1623.84, + "probability": 0.8069 + }, + { + "start": 1624.22, + "end": 1624.82, + "probability": 0.5702 + }, + { + "start": 1625.7, + "end": 1629.02, + "probability": 0.8238 + }, + { + "start": 1629.62, + "end": 1633.72, + "probability": 0.8677 + }, + { + "start": 1634.12, + "end": 1635.22, + "probability": 0.9629 + }, + { + "start": 1635.86, + "end": 1636.86, + "probability": 0.6802 + }, + { + "start": 1638.32, + "end": 1639.74, + "probability": 0.6279 + }, + { + "start": 1640.18, + "end": 1640.7, + "probability": 0.4913 + }, + { + "start": 1642.04, + "end": 1651.28, + "probability": 0.5201 + }, + { + "start": 1651.4, + "end": 1652.26, + "probability": 0.679 + }, + { + "start": 1652.86, + "end": 1653.58, + "probability": 0.7227 + }, + { + "start": 1654.78, + "end": 1656.58, + "probability": 0.7542 + }, + { + "start": 1656.96, + "end": 1661.88, + "probability": 0.5066 + }, + { + "start": 1668.98, + "end": 1668.98, + "probability": 0.0234 + }, + { + "start": 1668.98, + "end": 1669.42, + "probability": 0.0838 + }, + { + "start": 1669.42, + "end": 1670.5, + "probability": 0.3908 + }, + { + "start": 1670.5, + "end": 1675.16, + "probability": 0.8587 + }, + { + "start": 1675.26, + "end": 1678.2, + "probability": 0.9609 + }, + { + "start": 1678.54, + "end": 1683.18, + "probability": 0.9047 + }, + { + "start": 1683.42, + "end": 1683.56, + "probability": 0.2097 + }, + { + "start": 1683.62, + "end": 1684.76, + "probability": 0.8029 + }, + { + "start": 1684.84, + "end": 1685.42, + "probability": 0.695 + }, + { + "start": 1685.86, + "end": 1687.04, + "probability": 0.6351 + }, + { + "start": 1687.68, + "end": 1692.14, + "probability": 0.9771 + }, + { + "start": 1692.24, + "end": 1696.62, + "probability": 0.9968 + }, + { + "start": 1697.1, + "end": 1701.7, + "probability": 0.8143 + }, + { + "start": 1701.7, + "end": 1706.42, + "probability": 0.9666 + }, + { + "start": 1707.22, + "end": 1708.88, + "probability": 0.6416 + }, + { + "start": 1709.38, + "end": 1710.34, + "probability": 0.2759 + }, + { + "start": 1710.68, + "end": 1712.14, + "probability": 0.8821 + }, + { + "start": 1712.14, + "end": 1715.31, + "probability": 0.9233 + }, + { + "start": 1715.96, + "end": 1720.76, + "probability": 0.9779 + }, + { + "start": 1720.76, + "end": 1724.1, + "probability": 0.9979 + }, + { + "start": 1724.54, + "end": 1725.66, + "probability": 0.8734 + }, + { + "start": 1726.16, + "end": 1726.88, + "probability": 0.7559 + }, + { + "start": 1726.96, + "end": 1727.58, + "probability": 0.7392 + }, + { + "start": 1727.68, + "end": 1729.56, + "probability": 0.8407 + }, + { + "start": 1730.0, + "end": 1731.94, + "probability": 0.9495 + }, + { + "start": 1732.3, + "end": 1734.98, + "probability": 0.943 + }, + { + "start": 1735.58, + "end": 1739.72, + "probability": 0.9951 + }, + { + "start": 1740.08, + "end": 1742.12, + "probability": 0.9623 + }, + { + "start": 1742.46, + "end": 1742.86, + "probability": 0.7483 + }, + { + "start": 1743.84, + "end": 1747.1, + "probability": 0.8398 + }, + { + "start": 1747.66, + "end": 1751.62, + "probability": 0.8842 + }, + { + "start": 1752.24, + "end": 1754.8, + "probability": 0.973 + }, + { + "start": 1755.36, + "end": 1757.7, + "probability": 0.8971 + }, + { + "start": 1758.22, + "end": 1761.34, + "probability": 0.9243 + }, + { + "start": 1761.34, + "end": 1764.0, + "probability": 0.9939 + }, + { + "start": 1764.9, + "end": 1766.51, + "probability": 0.5071 + }, + { + "start": 1766.8, + "end": 1767.74, + "probability": 0.4556 + }, + { + "start": 1767.9, + "end": 1768.3, + "probability": 0.5809 + }, + { + "start": 1768.44, + "end": 1770.04, + "probability": 0.7869 + }, + { + "start": 1770.54, + "end": 1776.46, + "probability": 0.8947 + }, + { + "start": 1777.0, + "end": 1778.94, + "probability": 0.8062 + }, + { + "start": 1779.64, + "end": 1787.26, + "probability": 0.6979 + }, + { + "start": 1787.3, + "end": 1791.5, + "probability": 0.9923 + }, + { + "start": 1792.1, + "end": 1794.78, + "probability": 0.8605 + }, + { + "start": 1795.52, + "end": 1796.48, + "probability": 0.9854 + }, + { + "start": 1796.6, + "end": 1798.12, + "probability": 0.8708 + }, + { + "start": 1798.4, + "end": 1804.58, + "probability": 0.9273 + }, + { + "start": 1805.9, + "end": 1806.48, + "probability": 0.7658 + }, + { + "start": 1806.6, + "end": 1807.64, + "probability": 0.5051 + }, + { + "start": 1809.88, + "end": 1811.68, + "probability": 0.7003 + }, + { + "start": 1814.44, + "end": 1820.5, + "probability": 0.9614 + }, + { + "start": 1821.24, + "end": 1822.44, + "probability": 0.8327 + }, + { + "start": 1822.6, + "end": 1827.78, + "probability": 0.9516 + }, + { + "start": 1828.36, + "end": 1830.04, + "probability": 0.9648 + }, + { + "start": 1830.72, + "end": 1833.4, + "probability": 0.869 + }, + { + "start": 1833.94, + "end": 1838.26, + "probability": 0.9904 + }, + { + "start": 1838.88, + "end": 1840.84, + "probability": 0.9906 + }, + { + "start": 1840.88, + "end": 1847.94, + "probability": 0.9333 + }, + { + "start": 1848.26, + "end": 1849.0, + "probability": 0.4256 + }, + { + "start": 1850.0, + "end": 1852.48, + "probability": 0.7788 + }, + { + "start": 1853.12, + "end": 1854.96, + "probability": 0.9701 + }, + { + "start": 1855.16, + "end": 1855.58, + "probability": 0.8822 + }, + { + "start": 1856.66, + "end": 1857.36, + "probability": 0.8197 + }, + { + "start": 1857.46, + "end": 1859.86, + "probability": 0.9759 + }, + { + "start": 1860.32, + "end": 1864.14, + "probability": 0.7042 + }, + { + "start": 1864.68, + "end": 1868.22, + "probability": 0.8855 + }, + { + "start": 1869.62, + "end": 1873.1, + "probability": 0.9146 + }, + { + "start": 1873.44, + "end": 1876.38, + "probability": 0.9888 + }, + { + "start": 1876.84, + "end": 1882.02, + "probability": 0.8643 + }, + { + "start": 1882.1, + "end": 1882.5, + "probability": 0.8535 + }, + { + "start": 1882.96, + "end": 1884.82, + "probability": 0.8058 + }, + { + "start": 1885.46, + "end": 1888.86, + "probability": 0.6774 + }, + { + "start": 1895.02, + "end": 1895.6, + "probability": 0.6984 + }, + { + "start": 1895.72, + "end": 1900.56, + "probability": 0.9917 + }, + { + "start": 1901.22, + "end": 1903.76, + "probability": 0.8763 + }, + { + "start": 1904.36, + "end": 1907.6, + "probability": 0.9841 + }, + { + "start": 1907.74, + "end": 1909.14, + "probability": 0.8576 + }, + { + "start": 1909.2, + "end": 1910.66, + "probability": 0.6785 + }, + { + "start": 1911.48, + "end": 1916.28, + "probability": 0.9349 + }, + { + "start": 1916.8, + "end": 1918.7, + "probability": 0.9954 + }, + { + "start": 1919.44, + "end": 1921.96, + "probability": 0.8696 + }, + { + "start": 1922.3, + "end": 1923.64, + "probability": 0.8889 + }, + { + "start": 1924.56, + "end": 1924.56, + "probability": 0.1128 + }, + { + "start": 1924.56, + "end": 1926.47, + "probability": 0.7262 + }, + { + "start": 1927.26, + "end": 1928.13, + "probability": 0.963 + }, + { + "start": 1928.46, + "end": 1932.08, + "probability": 0.7682 + }, + { + "start": 1934.4, + "end": 1935.86, + "probability": 0.0558 + }, + { + "start": 1936.14, + "end": 1936.14, + "probability": 0.0381 + }, + { + "start": 1936.14, + "end": 1936.72, + "probability": 0.2228 + }, + { + "start": 1937.6, + "end": 1938.68, + "probability": 0.5221 + }, + { + "start": 1939.26, + "end": 1941.96, + "probability": 0.8899 + }, + { + "start": 1942.52, + "end": 1943.34, + "probability": 0.7767 + }, + { + "start": 1945.29, + "end": 1946.22, + "probability": 0.1013 + }, + { + "start": 1946.22, + "end": 1948.3, + "probability": 0.8313 + }, + { + "start": 1948.84, + "end": 1949.84, + "probability": 0.7436 + }, + { + "start": 1950.2, + "end": 1952.82, + "probability": 0.9875 + }, + { + "start": 1953.24, + "end": 1958.6, + "probability": 0.9731 + }, + { + "start": 1959.08, + "end": 1961.84, + "probability": 0.99 + }, + { + "start": 1962.2, + "end": 1964.8, + "probability": 0.9773 + }, + { + "start": 1964.94, + "end": 1965.28, + "probability": 0.7809 + }, + { + "start": 1966.22, + "end": 1967.88, + "probability": 0.7369 + }, + { + "start": 1968.06, + "end": 1972.22, + "probability": 0.9277 + }, + { + "start": 1972.64, + "end": 1973.04, + "probability": 0.2565 + }, + { + "start": 1973.04, + "end": 1973.04, + "probability": 0.0168 + }, + { + "start": 1973.08, + "end": 1974.08, + "probability": 0.3665 + }, + { + "start": 1974.8, + "end": 1976.48, + "probability": 0.0627 + }, + { + "start": 1976.48, + "end": 1977.88, + "probability": 0.7983 + }, + { + "start": 1978.0, + "end": 1979.86, + "probability": 0.9597 + }, + { + "start": 1981.02, + "end": 1985.88, + "probability": 0.8228 + }, + { + "start": 1986.42, + "end": 1987.26, + "probability": 0.818 + }, + { + "start": 1987.38, + "end": 1993.0, + "probability": 0.784 + }, + { + "start": 1993.08, + "end": 1994.28, + "probability": 0.4977 + }, + { + "start": 1995.16, + "end": 1996.48, + "probability": 0.8053 + }, + { + "start": 1998.68, + "end": 1998.7, + "probability": 0.4617 + }, + { + "start": 1998.88, + "end": 1999.78, + "probability": 0.606 + }, + { + "start": 1999.78, + "end": 1999.88, + "probability": 0.0154 + }, + { + "start": 2000.0, + "end": 2001.78, + "probability": 0.4996 + }, + { + "start": 2001.98, + "end": 2002.22, + "probability": 0.1279 + }, + { + "start": 2002.26, + "end": 2003.16, + "probability": 0.4686 + }, + { + "start": 2003.32, + "end": 2004.24, + "probability": 0.9009 + }, + { + "start": 2004.7, + "end": 2005.76, + "probability": 0.9431 + }, + { + "start": 2006.46, + "end": 2010.06, + "probability": 0.7202 + }, + { + "start": 2010.96, + "end": 2012.74, + "probability": 0.9825 + }, + { + "start": 2013.32, + "end": 2017.7, + "probability": 0.9757 + }, + { + "start": 2017.8, + "end": 2021.56, + "probability": 0.4474 + }, + { + "start": 2021.56, + "end": 2023.48, + "probability": 0.4835 + }, + { + "start": 2023.68, + "end": 2025.37, + "probability": 0.7633 + }, + { + "start": 2026.0, + "end": 2031.3, + "probability": 0.8346 + }, + { + "start": 2031.7, + "end": 2033.92, + "probability": 0.3785 + }, + { + "start": 2034.4, + "end": 2039.04, + "probability": 0.8051 + }, + { + "start": 2039.68, + "end": 2040.46, + "probability": 0.387 + }, + { + "start": 2040.62, + "end": 2045.0, + "probability": 0.9903 + }, + { + "start": 2046.4, + "end": 2048.92, + "probability": 0.999 + }, + { + "start": 2048.92, + "end": 2053.56, + "probability": 0.9897 + }, + { + "start": 2054.8, + "end": 2056.0, + "probability": 0.9291 + }, + { + "start": 2056.6, + "end": 2058.84, + "probability": 0.9948 + }, + { + "start": 2058.94, + "end": 2059.06, + "probability": 0.6046 + }, + { + "start": 2059.18, + "end": 2060.34, + "probability": 0.9772 + }, + { + "start": 2061.12, + "end": 2062.58, + "probability": 0.9248 + }, + { + "start": 2062.68, + "end": 2063.38, + "probability": 0.9595 + }, + { + "start": 2063.84, + "end": 2067.06, + "probability": 0.9893 + }, + { + "start": 2067.68, + "end": 2069.18, + "probability": 0.5106 + }, + { + "start": 2069.4, + "end": 2070.08, + "probability": 0.9168 + }, + { + "start": 2070.7, + "end": 2071.94, + "probability": 0.9946 + }, + { + "start": 2071.98, + "end": 2073.1, + "probability": 0.9581 + }, + { + "start": 2073.36, + "end": 2073.84, + "probability": 0.9188 + }, + { + "start": 2073.96, + "end": 2076.78, + "probability": 0.6623 + }, + { + "start": 2077.08, + "end": 2078.04, + "probability": 0.707 + }, + { + "start": 2078.28, + "end": 2080.76, + "probability": 0.9631 + }, + { + "start": 2081.54, + "end": 2086.82, + "probability": 0.996 + }, + { + "start": 2087.62, + "end": 2087.7, + "probability": 0.045 + }, + { + "start": 2087.7, + "end": 2090.38, + "probability": 0.8162 + }, + { + "start": 2090.86, + "end": 2091.28, + "probability": 0.6417 + }, + { + "start": 2092.0, + "end": 2092.88, + "probability": 0.9071 + }, + { + "start": 2093.36, + "end": 2094.42, + "probability": 0.6005 + }, + { + "start": 2094.92, + "end": 2096.48, + "probability": 0.1896 + }, + { + "start": 2096.6, + "end": 2097.2, + "probability": 0.5944 + }, + { + "start": 2097.3, + "end": 2099.42, + "probability": 0.3241 + }, + { + "start": 2099.46, + "end": 2100.59, + "probability": 0.3377 + }, + { + "start": 2101.28, + "end": 2106.06, + "probability": 0.0245 + }, + { + "start": 2108.52, + "end": 2110.7, + "probability": 0.1663 + }, + { + "start": 2110.7, + "end": 2110.7, + "probability": 0.1102 + }, + { + "start": 2110.7, + "end": 2111.36, + "probability": 0.2465 + }, + { + "start": 2112.86, + "end": 2119.62, + "probability": 0.97 + }, + { + "start": 2119.98, + "end": 2120.2, + "probability": 0.3588 + }, + { + "start": 2120.64, + "end": 2122.78, + "probability": 0.9518 + }, + { + "start": 2123.02, + "end": 2124.72, + "probability": 0.8386 + }, + { + "start": 2125.06, + "end": 2128.36, + "probability": 0.153 + }, + { + "start": 2128.46, + "end": 2130.8, + "probability": 0.7732 + }, + { + "start": 2131.34, + "end": 2133.14, + "probability": 0.769 + }, + { + "start": 2133.38, + "end": 2135.1, + "probability": 0.8988 + }, + { + "start": 2135.6, + "end": 2137.24, + "probability": 0.9722 + }, + { + "start": 2139.22, + "end": 2141.56, + "probability": 0.6505 + }, + { + "start": 2142.32, + "end": 2143.62, + "probability": 0.8556 + }, + { + "start": 2144.38, + "end": 2148.26, + "probability": 0.967 + }, + { + "start": 2148.26, + "end": 2151.08, + "probability": 0.6356 + }, + { + "start": 2151.48, + "end": 2156.72, + "probability": 0.9943 + }, + { + "start": 2156.8, + "end": 2157.28, + "probability": 0.9272 + }, + { + "start": 2157.68, + "end": 2163.46, + "probability": 0.9949 + }, + { + "start": 2163.5, + "end": 2166.24, + "probability": 0.9946 + }, + { + "start": 2166.24, + "end": 2169.86, + "probability": 0.9884 + }, + { + "start": 2170.1, + "end": 2170.4, + "probability": 0.7341 + }, + { + "start": 2170.52, + "end": 2174.02, + "probability": 0.9067 + }, + { + "start": 2174.02, + "end": 2176.98, + "probability": 0.999 + }, + { + "start": 2177.12, + "end": 2177.64, + "probability": 0.8267 + }, + { + "start": 2178.34, + "end": 2180.24, + "probability": 0.77 + }, + { + "start": 2180.74, + "end": 2181.73, + "probability": 0.4865 + }, + { + "start": 2182.12, + "end": 2184.67, + "probability": 0.9346 + }, + { + "start": 2184.84, + "end": 2185.28, + "probability": 0.6391 + }, + { + "start": 2185.28, + "end": 2185.28, + "probability": 0.5157 + }, + { + "start": 2185.34, + "end": 2186.24, + "probability": 0.7714 + }, + { + "start": 2187.74, + "end": 2189.44, + "probability": 0.8978 + }, + { + "start": 2189.88, + "end": 2190.42, + "probability": 0.8065 + }, + { + "start": 2190.52, + "end": 2192.74, + "probability": 0.9549 + }, + { + "start": 2192.88, + "end": 2193.2, + "probability": 0.1621 + }, + { + "start": 2193.44, + "end": 2193.96, + "probability": 0.7795 + }, + { + "start": 2194.14, + "end": 2194.86, + "probability": 0.7282 + }, + { + "start": 2197.24, + "end": 2199.9, + "probability": 0.8191 + }, + { + "start": 2200.82, + "end": 2201.78, + "probability": 0.8358 + }, + { + "start": 2208.14, + "end": 2211.16, + "probability": 0.9217 + }, + { + "start": 2212.6, + "end": 2215.48, + "probability": 0.9569 + }, + { + "start": 2216.08, + "end": 2219.42, + "probability": 0.9721 + }, + { + "start": 2220.26, + "end": 2222.38, + "probability": 0.9943 + }, + { + "start": 2223.78, + "end": 2227.96, + "probability": 0.9737 + }, + { + "start": 2228.5, + "end": 2231.4, + "probability": 0.9973 + }, + { + "start": 2233.18, + "end": 2234.16, + "probability": 0.8085 + }, + { + "start": 2235.14, + "end": 2238.62, + "probability": 0.9656 + }, + { + "start": 2238.62, + "end": 2241.6, + "probability": 0.9958 + }, + { + "start": 2242.1, + "end": 2243.54, + "probability": 0.947 + }, + { + "start": 2244.0, + "end": 2245.26, + "probability": 0.9836 + }, + { + "start": 2246.54, + "end": 2250.42, + "probability": 0.9828 + }, + { + "start": 2251.8, + "end": 2256.16, + "probability": 0.9928 + }, + { + "start": 2256.7, + "end": 2258.0, + "probability": 0.9958 + }, + { + "start": 2258.5, + "end": 2262.58, + "probability": 0.9928 + }, + { + "start": 2263.2, + "end": 2265.06, + "probability": 0.9893 + }, + { + "start": 2266.14, + "end": 2270.06, + "probability": 0.9724 + }, + { + "start": 2270.98, + "end": 2272.08, + "probability": 0.7469 + }, + { + "start": 2272.84, + "end": 2275.12, + "probability": 0.9038 + }, + { + "start": 2276.14, + "end": 2280.24, + "probability": 0.9858 + }, + { + "start": 2281.4, + "end": 2286.8, + "probability": 0.9636 + }, + { + "start": 2287.44, + "end": 2290.3, + "probability": 0.9641 + }, + { + "start": 2291.62, + "end": 2296.02, + "probability": 0.985 + }, + { + "start": 2296.62, + "end": 2302.5, + "probability": 0.9971 + }, + { + "start": 2304.0, + "end": 2305.7, + "probability": 0.9163 + }, + { + "start": 2306.5, + "end": 2307.9, + "probability": 0.9469 + }, + { + "start": 2308.6, + "end": 2309.74, + "probability": 0.75 + }, + { + "start": 2310.12, + "end": 2311.02, + "probability": 0.9679 + }, + { + "start": 2311.06, + "end": 2312.06, + "probability": 0.7933 + }, + { + "start": 2312.18, + "end": 2316.3, + "probability": 0.97 + }, + { + "start": 2316.88, + "end": 2320.04, + "probability": 0.9948 + }, + { + "start": 2321.36, + "end": 2324.48, + "probability": 0.9202 + }, + { + "start": 2325.22, + "end": 2326.16, + "probability": 0.8362 + }, + { + "start": 2327.0, + "end": 2329.28, + "probability": 0.8768 + }, + { + "start": 2329.86, + "end": 2334.22, + "probability": 0.8701 + }, + { + "start": 2335.08, + "end": 2336.3, + "probability": 0.9588 + }, + { + "start": 2337.2, + "end": 2338.26, + "probability": 0.9525 + }, + { + "start": 2339.08, + "end": 2342.6, + "probability": 0.972 + }, + { + "start": 2343.3, + "end": 2345.82, + "probability": 0.9282 + }, + { + "start": 2346.48, + "end": 2347.88, + "probability": 0.99 + }, + { + "start": 2348.42, + "end": 2351.42, + "probability": 0.9664 + }, + { + "start": 2352.22, + "end": 2353.36, + "probability": 0.8337 + }, + { + "start": 2354.02, + "end": 2355.74, + "probability": 0.9858 + }, + { + "start": 2356.7, + "end": 2362.62, + "probability": 0.9984 + }, + { + "start": 2363.9, + "end": 2365.14, + "probability": 0.8449 + }, + { + "start": 2366.18, + "end": 2367.5, + "probability": 0.9028 + }, + { + "start": 2368.08, + "end": 2370.54, + "probability": 0.993 + }, + { + "start": 2371.12, + "end": 2372.38, + "probability": 0.9788 + }, + { + "start": 2373.24, + "end": 2375.28, + "probability": 0.7131 + }, + { + "start": 2375.32, + "end": 2375.78, + "probability": 0.9696 + }, + { + "start": 2376.26, + "end": 2380.5, + "probability": 0.962 + }, + { + "start": 2381.68, + "end": 2382.26, + "probability": 0.4385 + }, + { + "start": 2382.84, + "end": 2386.6, + "probability": 0.9872 + }, + { + "start": 2387.18, + "end": 2387.6, + "probability": 0.9575 + }, + { + "start": 2389.04, + "end": 2390.14, + "probability": 0.9438 + }, + { + "start": 2390.4, + "end": 2394.42, + "probability": 0.991 + }, + { + "start": 2397.04, + "end": 2398.34, + "probability": 0.6393 + }, + { + "start": 2399.1, + "end": 2399.98, + "probability": 0.668 + }, + { + "start": 2401.48, + "end": 2402.96, + "probability": 0.9797 + }, + { + "start": 2403.6, + "end": 2406.82, + "probability": 0.9154 + }, + { + "start": 2406.86, + "end": 2410.1, + "probability": 0.8241 + }, + { + "start": 2410.68, + "end": 2412.06, + "probability": 0.2359 + }, + { + "start": 2412.62, + "end": 2413.58, + "probability": 0.9827 + }, + { + "start": 2414.16, + "end": 2414.96, + "probability": 0.3263 + }, + { + "start": 2415.5, + "end": 2416.74, + "probability": 0.8029 + }, + { + "start": 2417.12, + "end": 2419.05, + "probability": 0.9526 + }, + { + "start": 2419.64, + "end": 2424.24, + "probability": 0.7356 + }, + { + "start": 2424.4, + "end": 2425.28, + "probability": 0.5742 + }, + { + "start": 2426.18, + "end": 2427.65, + "probability": 0.8158 + }, + { + "start": 2429.1, + "end": 2430.16, + "probability": 0.7501 + }, + { + "start": 2430.44, + "end": 2435.04, + "probability": 0.9697 + }, + { + "start": 2435.56, + "end": 2439.3, + "probability": 0.84 + }, + { + "start": 2439.4, + "end": 2440.62, + "probability": 0.8668 + }, + { + "start": 2441.26, + "end": 2443.36, + "probability": 0.9448 + }, + { + "start": 2443.96, + "end": 2448.94, + "probability": 0.981 + }, + { + "start": 2449.24, + "end": 2450.48, + "probability": 0.827 + }, + { + "start": 2451.06, + "end": 2453.78, + "probability": 0.9502 + }, + { + "start": 2453.98, + "end": 2458.0, + "probability": 0.9991 + }, + { + "start": 2458.12, + "end": 2460.48, + "probability": 0.988 + }, + { + "start": 2461.44, + "end": 2461.78, + "probability": 0.7421 + }, + { + "start": 2462.82, + "end": 2467.92, + "probability": 0.9939 + }, + { + "start": 2468.44, + "end": 2470.82, + "probability": 0.997 + }, + { + "start": 2471.44, + "end": 2475.6, + "probability": 0.7666 + }, + { + "start": 2476.06, + "end": 2482.86, + "probability": 0.8196 + }, + { + "start": 2483.08, + "end": 2483.92, + "probability": 0.989 + }, + { + "start": 2484.46, + "end": 2489.74, + "probability": 0.9817 + }, + { + "start": 2489.96, + "end": 2492.64, + "probability": 0.9951 + }, + { + "start": 2492.8, + "end": 2493.1, + "probability": 0.7297 + }, + { + "start": 2493.74, + "end": 2494.42, + "probability": 0.3587 + }, + { + "start": 2494.9, + "end": 2495.83, + "probability": 0.7053 + }, + { + "start": 2515.56, + "end": 2515.78, + "probability": 0.6876 + }, + { + "start": 2520.92, + "end": 2524.56, + "probability": 0.4728 + }, + { + "start": 2525.94, + "end": 2526.28, + "probability": 0.6975 + }, + { + "start": 2526.9, + "end": 2527.44, + "probability": 0.1059 + }, + { + "start": 2528.04, + "end": 2529.44, + "probability": 0.7215 + }, + { + "start": 2531.76, + "end": 2532.8, + "probability": 0.7915 + }, + { + "start": 2533.54, + "end": 2534.78, + "probability": 0.8682 + }, + { + "start": 2535.8, + "end": 2539.44, + "probability": 0.9714 + }, + { + "start": 2539.56, + "end": 2543.9, + "probability": 0.9551 + }, + { + "start": 2543.9, + "end": 2547.9, + "probability": 0.999 + }, + { + "start": 2549.6, + "end": 2551.9, + "probability": 0.5212 + }, + { + "start": 2551.94, + "end": 2556.14, + "probability": 0.8046 + }, + { + "start": 2557.26, + "end": 2561.84, + "probability": 0.9832 + }, + { + "start": 2562.52, + "end": 2564.98, + "probability": 0.9952 + }, + { + "start": 2566.4, + "end": 2569.38, + "probability": 0.9913 + }, + { + "start": 2569.38, + "end": 2572.76, + "probability": 0.8893 + }, + { + "start": 2573.4, + "end": 2578.48, + "probability": 0.9883 + }, + { + "start": 2579.84, + "end": 2581.38, + "probability": 0.6749 + }, + { + "start": 2581.8, + "end": 2584.22, + "probability": 0.9223 + }, + { + "start": 2584.34, + "end": 2587.2, + "probability": 0.8797 + }, + { + "start": 2588.74, + "end": 2590.7, + "probability": 0.9927 + }, + { + "start": 2591.22, + "end": 2592.18, + "probability": 0.7151 + }, + { + "start": 2592.56, + "end": 2596.0, + "probability": 0.5703 + }, + { + "start": 2599.04, + "end": 2600.36, + "probability": 0.0338 + }, + { + "start": 2600.88, + "end": 2601.4, + "probability": 0.3813 + }, + { + "start": 2601.4, + "end": 2603.05, + "probability": 0.8679 + }, + { + "start": 2603.42, + "end": 2608.62, + "probability": 0.9625 + }, + { + "start": 2609.44, + "end": 2612.78, + "probability": 0.722 + }, + { + "start": 2613.38, + "end": 2615.14, + "probability": 0.964 + }, + { + "start": 2615.68, + "end": 2615.72, + "probability": 0.1301 + }, + { + "start": 2615.72, + "end": 2617.72, + "probability": 0.9412 + }, + { + "start": 2617.9, + "end": 2619.81, + "probability": 0.9922 + }, + { + "start": 2620.7, + "end": 2622.28, + "probability": 0.9851 + }, + { + "start": 2624.0, + "end": 2624.66, + "probability": 0.9515 + }, + { + "start": 2624.8, + "end": 2627.48, + "probability": 0.9713 + }, + { + "start": 2627.66, + "end": 2630.1, + "probability": 0.5226 + }, + { + "start": 2630.84, + "end": 2632.17, + "probability": 0.7566 + }, + { + "start": 2633.26, + "end": 2636.38, + "probability": 0.2173 + }, + { + "start": 2636.6, + "end": 2638.1, + "probability": 0.7887 + }, + { + "start": 2639.14, + "end": 2640.16, + "probability": 0.3095 + }, + { + "start": 2640.74, + "end": 2641.96, + "probability": 0.1292 + }, + { + "start": 2643.36, + "end": 2644.6, + "probability": 0.8772 + }, + { + "start": 2644.88, + "end": 2645.2, + "probability": 0.4225 + }, + { + "start": 2645.96, + "end": 2651.8, + "probability": 0.6645 + }, + { + "start": 2651.98, + "end": 2656.84, + "probability": 0.9649 + }, + { + "start": 2659.26, + "end": 2663.7, + "probability": 0.9106 + }, + { + "start": 2663.82, + "end": 2665.06, + "probability": 0.9172 + }, + { + "start": 2665.16, + "end": 2670.4, + "probability": 0.864 + }, + { + "start": 2671.28, + "end": 2676.02, + "probability": 0.891 + }, + { + "start": 2676.44, + "end": 2678.5, + "probability": 0.7041 + }, + { + "start": 2678.98, + "end": 2681.48, + "probability": 0.3778 + }, + { + "start": 2686.26, + "end": 2688.88, + "probability": 0.8684 + }, + { + "start": 2689.46, + "end": 2690.86, + "probability": 0.145 + }, + { + "start": 2691.48, + "end": 2692.44, + "probability": 0.1386 + }, + { + "start": 2693.12, + "end": 2693.66, + "probability": 0.1955 + }, + { + "start": 2696.14, + "end": 2699.68, + "probability": 0.9063 + }, + { + "start": 2700.28, + "end": 2700.5, + "probability": 0.5416 + }, + { + "start": 2700.66, + "end": 2705.58, + "probability": 0.9832 + }, + { + "start": 2705.64, + "end": 2706.78, + "probability": 0.9906 + }, + { + "start": 2707.34, + "end": 2709.56, + "probability": 0.9469 + }, + { + "start": 2710.06, + "end": 2713.64, + "probability": 0.9506 + }, + { + "start": 2713.86, + "end": 2719.4, + "probability": 0.9665 + }, + { + "start": 2719.84, + "end": 2723.48, + "probability": 0.9751 + }, + { + "start": 2723.62, + "end": 2730.0, + "probability": 0.632 + }, + { + "start": 2730.16, + "end": 2734.0, + "probability": 0.5424 + }, + { + "start": 2735.76, + "end": 2736.86, + "probability": 0.9876 + }, + { + "start": 2739.0, + "end": 2742.6, + "probability": 0.9698 + }, + { + "start": 2743.1, + "end": 2744.32, + "probability": 0.9875 + }, + { + "start": 2744.44, + "end": 2745.34, + "probability": 0.9316 + }, + { + "start": 2745.76, + "end": 2748.04, + "probability": 0.9506 + }, + { + "start": 2748.04, + "end": 2750.68, + "probability": 0.981 + }, + { + "start": 2751.68, + "end": 2752.02, + "probability": 0.4285 + }, + { + "start": 2752.56, + "end": 2753.24, + "probability": 0.7146 + }, + { + "start": 2753.82, + "end": 2754.2, + "probability": 0.7431 + }, + { + "start": 2754.34, + "end": 2755.38, + "probability": 0.7953 + }, + { + "start": 2755.48, + "end": 2758.4, + "probability": 0.9379 + }, + { + "start": 2758.56, + "end": 2760.0, + "probability": 0.7807 + }, + { + "start": 2762.0, + "end": 2763.38, + "probability": 0.4821 + }, + { + "start": 2763.42, + "end": 2768.01, + "probability": 0.9449 + }, + { + "start": 2772.7, + "end": 2774.38, + "probability": 0.5055 + }, + { + "start": 2774.92, + "end": 2775.86, + "probability": 0.2754 + }, + { + "start": 2775.86, + "end": 2775.86, + "probability": 0.053 + }, + { + "start": 2775.86, + "end": 2779.54, + "probability": 0.059 + }, + { + "start": 2780.9, + "end": 2781.81, + "probability": 0.0133 + }, + { + "start": 2791.18, + "end": 2794.38, + "probability": 0.0349 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.0, + "end": 2891.0, + "probability": 0.0 + }, + { + "start": 2891.52, + "end": 2892.7, + "probability": 0.0 + }, + { + "start": 2893.4, + "end": 2893.8, + "probability": 0.1624 + }, + { + "start": 2904.48, + "end": 2905.06, + "probability": 0.2599 + }, + { + "start": 2905.9, + "end": 2905.9, + "probability": 0.0037 + }, + { + "start": 2906.72, + "end": 2907.6, + "probability": 0.0379 + }, + { + "start": 2909.9, + "end": 2910.26, + "probability": 0.2641 + }, + { + "start": 2914.0, + "end": 2916.68, + "probability": 0.3921 + }, + { + "start": 2918.32, + "end": 2920.7, + "probability": 0.0123 + }, + { + "start": 2920.72, + "end": 2922.08, + "probability": 0.1419 + }, + { + "start": 2922.08, + "end": 2922.08, + "probability": 0.0197 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.0, + "end": 3012.0, + "probability": 0.0 + }, + { + "start": 3012.72, + "end": 3017.0, + "probability": 0.8382 + }, + { + "start": 3018.92, + "end": 3019.16, + "probability": 0.4143 + }, + { + "start": 3019.2, + "end": 3022.34, + "probability": 0.9672 + }, + { + "start": 3022.34, + "end": 3025.0, + "probability": 0.906 + }, + { + "start": 3026.96, + "end": 3027.3, + "probability": 0.8337 + }, + { + "start": 3027.48, + "end": 3031.34, + "probability": 0.9287 + }, + { + "start": 3032.5, + "end": 3032.82, + "probability": 0.8113 + }, + { + "start": 3033.28, + "end": 3035.02, + "probability": 0.9951 + }, + { + "start": 3035.62, + "end": 3037.68, + "probability": 0.2211 + }, + { + "start": 3037.76, + "end": 3038.52, + "probability": 0.7747 + }, + { + "start": 3038.8, + "end": 3044.16, + "probability": 0.9984 + }, + { + "start": 3044.16, + "end": 3048.24, + "probability": 0.8534 + }, + { + "start": 3048.92, + "end": 3052.18, + "probability": 0.9934 + }, + { + "start": 3052.18, + "end": 3056.54, + "probability": 0.9937 + }, + { + "start": 3057.0, + "end": 3061.58, + "probability": 0.8952 + }, + { + "start": 3062.56, + "end": 3065.48, + "probability": 0.9915 + }, + { + "start": 3065.52, + "end": 3067.28, + "probability": 0.9557 + }, + { + "start": 3067.56, + "end": 3068.2, + "probability": 0.4872 + }, + { + "start": 3068.2, + "end": 3071.14, + "probability": 0.957 + }, + { + "start": 3071.44, + "end": 3073.12, + "probability": 0.6843 + }, + { + "start": 3074.06, + "end": 3074.87, + "probability": 0.1461 + }, + { + "start": 3075.56, + "end": 3077.56, + "probability": 0.8707 + }, + { + "start": 3080.78, + "end": 3082.78, + "probability": 0.3221 + }, + { + "start": 3088.71, + "end": 3089.11, + "probability": 0.2712 + }, + { + "start": 3089.35, + "end": 3089.89, + "probability": 0.013 + }, + { + "start": 3090.67, + "end": 3095.91, + "probability": 0.4845 + }, + { + "start": 3096.71, + "end": 3098.465, + "probability": 0.8138 + }, + { + "start": 3099.19, + "end": 3102.3, + "probability": 0.9775 + }, + { + "start": 3106.03, + "end": 3109.87, + "probability": 0.6933 + }, + { + "start": 3111.135, + "end": 3112.28, + "probability": 0.5412 + }, + { + "start": 3113.31, + "end": 3117.21, + "probability": 0.9702 + }, + { + "start": 3117.21, + "end": 3120.27, + "probability": 0.9712 + }, + { + "start": 3120.51, + "end": 3123.97, + "probability": 0.3666 + }, + { + "start": 3124.67, + "end": 3128.09, + "probability": 0.9288 + }, + { + "start": 3129.23, + "end": 3130.19, + "probability": 0.9186 + }, + { + "start": 3130.79, + "end": 3134.25, + "probability": 0.9639 + }, + { + "start": 3134.41, + "end": 3136.73, + "probability": 0.9985 + }, + { + "start": 3137.49, + "end": 3139.71, + "probability": 0.8177 + }, + { + "start": 3140.87, + "end": 3142.63, + "probability": 0.7014 + }, + { + "start": 3143.35, + "end": 3148.73, + "probability": 0.9179 + }, + { + "start": 3149.01, + "end": 3152.35, + "probability": 0.9819 + }, + { + "start": 3152.35, + "end": 3157.13, + "probability": 0.9376 + }, + { + "start": 3157.81, + "end": 3158.93, + "probability": 0.5278 + }, + { + "start": 3160.09, + "end": 3166.75, + "probability": 0.9392 + }, + { + "start": 3167.79, + "end": 3172.6, + "probability": 0.9453 + }, + { + "start": 3172.91, + "end": 3174.68, + "probability": 0.9846 + }, + { + "start": 3174.87, + "end": 3175.67, + "probability": 0.923 + }, + { + "start": 3175.81, + "end": 3176.99, + "probability": 0.5429 + }, + { + "start": 3177.53, + "end": 3181.19, + "probability": 0.9916 + }, + { + "start": 3181.33, + "end": 3181.79, + "probability": 0.0659 + }, + { + "start": 3181.79, + "end": 3184.55, + "probability": 0.3243 + }, + { + "start": 3185.21, + "end": 3189.5, + "probability": 0.7086 + }, + { + "start": 3189.71, + "end": 3191.69, + "probability": 0.7982 + }, + { + "start": 3192.75, + "end": 3193.47, + "probability": 0.4946 + }, + { + "start": 3194.25, + "end": 3197.35, + "probability": 0.976 + }, + { + "start": 3197.91, + "end": 3200.33, + "probability": 0.678 + }, + { + "start": 3200.33, + "end": 3200.65, + "probability": 0.4166 + }, + { + "start": 3201.19, + "end": 3208.11, + "probability": 0.959 + }, + { + "start": 3208.11, + "end": 3212.11, + "probability": 0.9995 + }, + { + "start": 3212.9, + "end": 3217.6, + "probability": 0.9737 + }, + { + "start": 3218.35, + "end": 3221.07, + "probability": 0.7916 + }, + { + "start": 3221.85, + "end": 3223.97, + "probability": 0.7045 + }, + { + "start": 3224.59, + "end": 3226.23, + "probability": 0.8372 + }, + { + "start": 3226.41, + "end": 3227.02, + "probability": 0.9692 + }, + { + "start": 3227.33, + "end": 3229.15, + "probability": 0.9731 + }, + { + "start": 3229.31, + "end": 3233.17, + "probability": 0.9363 + }, + { + "start": 3233.17, + "end": 3233.78, + "probability": 0.0426 + }, + { + "start": 3236.43, + "end": 3240.33, + "probability": 0.968 + }, + { + "start": 3241.01, + "end": 3241.63, + "probability": 0.7024 + }, + { + "start": 3241.81, + "end": 3242.93, + "probability": 0.6733 + }, + { + "start": 3243.93, + "end": 3245.85, + "probability": 0.1368 + }, + { + "start": 3248.62, + "end": 3253.01, + "probability": 0.3362 + }, + { + "start": 3253.17, + "end": 3255.15, + "probability": 0.5619 + }, + { + "start": 3255.29, + "end": 3260.99, + "probability": 0.6157 + }, + { + "start": 3261.53, + "end": 3262.77, + "probability": 0.6729 + }, + { + "start": 3263.69, + "end": 3265.21, + "probability": 0.8253 + }, + { + "start": 3265.31, + "end": 3269.59, + "probability": 0.844 + }, + { + "start": 3270.55, + "end": 3273.05, + "probability": 0.6656 + }, + { + "start": 3273.31, + "end": 3278.01, + "probability": 0.7786 + }, + { + "start": 3278.25, + "end": 3280.59, + "probability": 0.7848 + }, + { + "start": 3281.39, + "end": 3285.67, + "probability": 0.9043 + }, + { + "start": 3286.19, + "end": 3287.31, + "probability": 0.809 + }, + { + "start": 3287.95, + "end": 3290.41, + "probability": 0.989 + }, + { + "start": 3291.03, + "end": 3293.93, + "probability": 0.7642 + }, + { + "start": 3294.51, + "end": 3302.53, + "probability": 0.759 + }, + { + "start": 3302.53, + "end": 3308.85, + "probability": 0.9547 + }, + { + "start": 3309.69, + "end": 3311.91, + "probability": 0.4256 + }, + { + "start": 3312.15, + "end": 3313.75, + "probability": 0.8977 + }, + { + "start": 3313.79, + "end": 3314.69, + "probability": 0.7849 + }, + { + "start": 3316.92, + "end": 3322.57, + "probability": 0.9378 + }, + { + "start": 3322.67, + "end": 3322.99, + "probability": 0.7343 + }, + { + "start": 3323.69, + "end": 3325.71, + "probability": 0.7098 + }, + { + "start": 3325.83, + "end": 3327.75, + "probability": 0.431 + }, + { + "start": 3327.97, + "end": 3330.65, + "probability": 0.9598 + }, + { + "start": 3331.39, + "end": 3333.73, + "probability": 0.7641 + }, + { + "start": 3334.35, + "end": 3335.11, + "probability": 0.9875 + }, + { + "start": 3335.71, + "end": 3338.43, + "probability": 0.9912 + }, + { + "start": 3339.45, + "end": 3341.66, + "probability": 0.4584 + }, + { + "start": 3341.83, + "end": 3342.85, + "probability": 0.6649 + }, + { + "start": 3343.37, + "end": 3345.93, + "probability": 0.7338 + }, + { + "start": 3345.99, + "end": 3349.81, + "probability": 0.9521 + }, + { + "start": 3350.55, + "end": 3352.79, + "probability": 0.9712 + }, + { + "start": 3353.57, + "end": 3355.85, + "probability": 0.8315 + }, + { + "start": 3356.47, + "end": 3360.03, + "probability": 0.9182 + }, + { + "start": 3360.03, + "end": 3363.01, + "probability": 0.9988 + }, + { + "start": 3363.47, + "end": 3365.25, + "probability": 0.9989 + }, + { + "start": 3365.37, + "end": 3365.87, + "probability": 0.4727 + }, + { + "start": 3366.35, + "end": 3372.77, + "probability": 0.9857 + }, + { + "start": 3372.77, + "end": 3376.73, + "probability": 0.9984 + }, + { + "start": 3377.51, + "end": 3382.47, + "probability": 0.8202 + }, + { + "start": 3382.83, + "end": 3385.03, + "probability": 0.9743 + }, + { + "start": 3385.09, + "end": 3388.35, + "probability": 0.9917 + }, + { + "start": 3389.56, + "end": 3394.69, + "probability": 0.9895 + }, + { + "start": 3394.69, + "end": 3401.81, + "probability": 0.8814 + }, + { + "start": 3402.09, + "end": 3405.45, + "probability": 0.8764 + }, + { + "start": 3406.03, + "end": 3407.23, + "probability": 0.9785 + }, + { + "start": 3407.91, + "end": 3410.99, + "probability": 0.7856 + }, + { + "start": 3411.59, + "end": 3413.29, + "probability": 0.9766 + }, + { + "start": 3413.83, + "end": 3416.87, + "probability": 0.9092 + }, + { + "start": 3416.87, + "end": 3419.63, + "probability": 0.9854 + }, + { + "start": 3420.11, + "end": 3426.75, + "probability": 0.9601 + }, + { + "start": 3427.69, + "end": 3427.71, + "probability": 0.1108 + }, + { + "start": 3427.83, + "end": 3428.07, + "probability": 0.6884 + }, + { + "start": 3428.17, + "end": 3430.57, + "probability": 0.9933 + }, + { + "start": 3430.69, + "end": 3432.57, + "probability": 0.9136 + }, + { + "start": 3433.27, + "end": 3434.89, + "probability": 0.4619 + }, + { + "start": 3435.59, + "end": 3436.95, + "probability": 0.897 + }, + { + "start": 3438.01, + "end": 3440.35, + "probability": 0.955 + }, + { + "start": 3441.45, + "end": 3442.75, + "probability": 0.568 + }, + { + "start": 3443.75, + "end": 3446.13, + "probability": 0.7217 + }, + { + "start": 3446.77, + "end": 3448.15, + "probability": 0.9704 + }, + { + "start": 3448.51, + "end": 3449.41, + "probability": 0.6332 + }, + { + "start": 3449.75, + "end": 3454.33, + "probability": 0.8745 + }, + { + "start": 3454.83, + "end": 3455.47, + "probability": 0.699 + }, + { + "start": 3456.13, + "end": 3458.05, + "probability": 0.7798 + }, + { + "start": 3459.31, + "end": 3463.03, + "probability": 0.9759 + }, + { + "start": 3463.99, + "end": 3465.47, + "probability": 0.9973 + }, + { + "start": 3465.65, + "end": 3468.37, + "probability": 0.8521 + }, + { + "start": 3469.35, + "end": 3471.25, + "probability": 0.9942 + }, + { + "start": 3471.49, + "end": 3471.88, + "probability": 0.9032 + }, + { + "start": 3472.88, + "end": 3473.61, + "probability": 0.0892 + }, + { + "start": 3474.43, + "end": 3474.91, + "probability": 0.6427 + }, + { + "start": 3475.25, + "end": 3475.77, + "probability": 0.7549 + }, + { + "start": 3476.41, + "end": 3479.69, + "probability": 0.9863 + }, + { + "start": 3479.81, + "end": 3483.29, + "probability": 0.9884 + }, + { + "start": 3483.29, + "end": 3484.25, + "probability": 0.8853 + }, + { + "start": 3484.73, + "end": 3485.53, + "probability": 0.6706 + }, + { + "start": 3486.45, + "end": 3489.07, + "probability": 0.7866 + }, + { + "start": 3489.73, + "end": 3491.99, + "probability": 0.9771 + }, + { + "start": 3492.53, + "end": 3493.17, + "probability": 0.8406 + }, + { + "start": 3493.95, + "end": 3496.47, + "probability": 0.728 + }, + { + "start": 3496.91, + "end": 3499.15, + "probability": 0.6431 + }, + { + "start": 3499.15, + "end": 3503.19, + "probability": 0.7639 + }, + { + "start": 3503.41, + "end": 3505.97, + "probability": 0.5891 + }, + { + "start": 3506.43, + "end": 3509.37, + "probability": 0.8906 + }, + { + "start": 3509.81, + "end": 3511.55, + "probability": 0.9016 + }, + { + "start": 3511.57, + "end": 3512.97, + "probability": 0.5484 + }, + { + "start": 3513.59, + "end": 3515.15, + "probability": 0.842 + }, + { + "start": 3515.79, + "end": 3517.63, + "probability": 0.9978 + }, + { + "start": 3518.19, + "end": 3519.77, + "probability": 0.9285 + }, + { + "start": 3520.25, + "end": 3526.13, + "probability": 0.786 + }, + { + "start": 3527.37, + "end": 3530.61, + "probability": 0.937 + }, + { + "start": 3530.65, + "end": 3531.65, + "probability": 0.9978 + }, + { + "start": 3532.35, + "end": 3537.07, + "probability": 0.975 + }, + { + "start": 3537.31, + "end": 3537.93, + "probability": 0.7233 + }, + { + "start": 3538.23, + "end": 3539.11, + "probability": 0.2446 + }, + { + "start": 3539.29, + "end": 3540.39, + "probability": 0.7533 + }, + { + "start": 3541.23, + "end": 3542.19, + "probability": 0.6725 + }, + { + "start": 3542.79, + "end": 3545.74, + "probability": 0.9834 + }, + { + "start": 3546.17, + "end": 3547.09, + "probability": 0.9147 + }, + { + "start": 3549.25, + "end": 3551.17, + "probability": 0.3926 + }, + { + "start": 3551.29, + "end": 3552.87, + "probability": 0.6447 + }, + { + "start": 3552.93, + "end": 3554.14, + "probability": 0.9939 + }, + { + "start": 3554.85, + "end": 3555.43, + "probability": 0.7664 + }, + { + "start": 3556.03, + "end": 3556.95, + "probability": 0.6333 + }, + { + "start": 3557.15, + "end": 3558.25, + "probability": 0.2587 + }, + { + "start": 3558.25, + "end": 3560.21, + "probability": 0.4371 + }, + { + "start": 3560.45, + "end": 3561.91, + "probability": 0.4283 + }, + { + "start": 3561.99, + "end": 3563.99, + "probability": 0.9341 + }, + { + "start": 3564.13, + "end": 3564.91, + "probability": 0.6906 + }, + { + "start": 3566.89, + "end": 3570.39, + "probability": 0.6693 + }, + { + "start": 3570.77, + "end": 3572.17, + "probability": 0.8752 + }, + { + "start": 3572.23, + "end": 3573.21, + "probability": 0.8754 + }, + { + "start": 3573.99, + "end": 3577.17, + "probability": 0.6688 + }, + { + "start": 3577.59, + "end": 3578.88, + "probability": 0.8213 + }, + { + "start": 3579.01, + "end": 3580.29, + "probability": 0.4641 + }, + { + "start": 3580.47, + "end": 3582.55, + "probability": 0.7197 + }, + { + "start": 3582.55, + "end": 3584.03, + "probability": 0.628 + }, + { + "start": 3584.15, + "end": 3585.17, + "probability": 0.897 + }, + { + "start": 3585.83, + "end": 3587.57, + "probability": 0.502 + }, + { + "start": 3588.23, + "end": 3590.17, + "probability": 0.8907 + }, + { + "start": 3590.87, + "end": 3592.81, + "probability": 0.2057 + }, + { + "start": 3595.75, + "end": 3598.13, + "probability": 0.0099 + }, + { + "start": 3598.13, + "end": 3599.49, + "probability": 0.6444 + }, + { + "start": 3599.49, + "end": 3599.49, + "probability": 0.1253 + }, + { + "start": 3599.49, + "end": 3600.95, + "probability": 0.6769 + }, + { + "start": 3601.97, + "end": 3607.55, + "probability": 0.9941 + }, + { + "start": 3607.73, + "end": 3612.27, + "probability": 0.9956 + }, + { + "start": 3614.63, + "end": 3614.93, + "probability": 0.9589 + }, + { + "start": 3615.71, + "end": 3618.31, + "probability": 0.8792 + }, + { + "start": 3619.11, + "end": 3624.97, + "probability": 0.9854 + }, + { + "start": 3625.77, + "end": 3626.51, + "probability": 0.5491 + }, + { + "start": 3626.75, + "end": 3630.03, + "probability": 0.9265 + }, + { + "start": 3630.05, + "end": 3631.27, + "probability": 0.4997 + }, + { + "start": 3631.69, + "end": 3634.79, + "probability": 0.8808 + }, + { + "start": 3635.25, + "end": 3638.71, + "probability": 0.981 + }, + { + "start": 3638.71, + "end": 3639.11, + "probability": 0.5475 + }, + { + "start": 3639.27, + "end": 3640.35, + "probability": 0.8692 + }, + { + "start": 3640.45, + "end": 3641.27, + "probability": 0.6776 + }, + { + "start": 3641.47, + "end": 3644.83, + "probability": 0.9678 + }, + { + "start": 3645.27, + "end": 3646.67, + "probability": 0.7521 + }, + { + "start": 3646.87, + "end": 3650.8, + "probability": 0.5002 + }, + { + "start": 3651.21, + "end": 3651.21, + "probability": 0.1438 + }, + { + "start": 3652.13, + "end": 3657.27, + "probability": 0.6976 + }, + { + "start": 3657.89, + "end": 3658.99, + "probability": 0.8326 + }, + { + "start": 3659.09, + "end": 3659.71, + "probability": 0.8323 + }, + { + "start": 3659.83, + "end": 3660.45, + "probability": 0.5437 + }, + { + "start": 3660.45, + "end": 3661.07, + "probability": 0.5882 + }, + { + "start": 3661.13, + "end": 3662.27, + "probability": 0.8433 + }, + { + "start": 3662.95, + "end": 3664.93, + "probability": 0.9106 + }, + { + "start": 3665.01, + "end": 3665.45, + "probability": 0.8019 + }, + { + "start": 3665.85, + "end": 3666.75, + "probability": 0.9736 + }, + { + "start": 3666.85, + "end": 3667.67, + "probability": 0.8848 + }, + { + "start": 3667.87, + "end": 3668.91, + "probability": 0.9776 + }, + { + "start": 3668.97, + "end": 3671.15, + "probability": 0.8067 + }, + { + "start": 3672.15, + "end": 3678.23, + "probability": 0.8395 + }, + { + "start": 3678.57, + "end": 3680.83, + "probability": 0.9968 + }, + { + "start": 3681.43, + "end": 3683.79, + "probability": 0.9979 + }, + { + "start": 3683.95, + "end": 3688.11, + "probability": 0.988 + }, + { + "start": 3688.85, + "end": 3690.85, + "probability": 0.8691 + }, + { + "start": 3691.69, + "end": 3695.01, + "probability": 0.8894 + }, + { + "start": 3696.19, + "end": 3698.83, + "probability": 0.9863 + }, + { + "start": 3699.41, + "end": 3703.97, + "probability": 0.9934 + }, + { + "start": 3704.65, + "end": 3706.09, + "probability": 0.9499 + }, + { + "start": 3706.57, + "end": 3710.37, + "probability": 0.9657 + }, + { + "start": 3711.17, + "end": 3714.45, + "probability": 0.9504 + }, + { + "start": 3715.55, + "end": 3718.49, + "probability": 0.9434 + }, + { + "start": 3719.27, + "end": 3724.55, + "probability": 0.9279 + }, + { + "start": 3725.89, + "end": 3730.01, + "probability": 0.9683 + }, + { + "start": 3730.13, + "end": 3731.05, + "probability": 0.621 + }, + { + "start": 3731.27, + "end": 3732.13, + "probability": 0.9512 + }, + { + "start": 3732.81, + "end": 3733.6, + "probability": 0.7964 + }, + { + "start": 3734.27, + "end": 3736.01, + "probability": 0.9532 + }, + { + "start": 3736.53, + "end": 3740.81, + "probability": 0.9336 + }, + { + "start": 3741.47, + "end": 3742.95, + "probability": 0.9897 + }, + { + "start": 3742.99, + "end": 3744.21, + "probability": 0.9183 + }, + { + "start": 3744.41, + "end": 3745.23, + "probability": 0.8955 + }, + { + "start": 3745.37, + "end": 3746.17, + "probability": 0.6809 + }, + { + "start": 3746.89, + "end": 3749.43, + "probability": 0.877 + }, + { + "start": 3750.13, + "end": 3752.55, + "probability": 0.9802 + }, + { + "start": 3752.55, + "end": 3755.37, + "probability": 0.9457 + }, + { + "start": 3755.41, + "end": 3756.05, + "probability": 0.9045 + }, + { + "start": 3756.95, + "end": 3758.03, + "probability": 0.9951 + }, + { + "start": 3758.81, + "end": 3761.33, + "probability": 0.8894 + }, + { + "start": 3761.61, + "end": 3761.65, + "probability": 0.5188 + }, + { + "start": 3761.81, + "end": 3762.35, + "probability": 0.8849 + }, + { + "start": 3762.43, + "end": 3765.69, + "probability": 0.8359 + }, + { + "start": 3766.33, + "end": 3767.03, + "probability": 0.7155 + }, + { + "start": 3767.21, + "end": 3767.81, + "probability": 0.9575 + }, + { + "start": 3767.91, + "end": 3771.35, + "probability": 0.9743 + }, + { + "start": 3771.59, + "end": 3772.11, + "probability": 0.6901 + }, + { + "start": 3772.39, + "end": 3773.97, + "probability": 0.5179 + }, + { + "start": 3774.57, + "end": 3778.25, + "probability": 0.9793 + }, + { + "start": 3779.66, + "end": 3781.75, + "probability": 0.9431 + }, + { + "start": 3784.33, + "end": 3786.51, + "probability": 0.6744 + }, + { + "start": 3787.84, + "end": 3790.15, + "probability": 0.9042 + }, + { + "start": 3791.01, + "end": 3791.57, + "probability": 0.9426 + }, + { + "start": 3793.65, + "end": 3794.35, + "probability": 0.5018 + }, + { + "start": 3795.39, + "end": 3797.29, + "probability": 0.0211 + }, + { + "start": 3799.39, + "end": 3800.13, + "probability": 0.1209 + }, + { + "start": 3801.59, + "end": 3803.81, + "probability": 0.3021 + }, + { + "start": 3804.05, + "end": 3806.69, + "probability": 0.3543 + }, + { + "start": 3806.69, + "end": 3807.99, + "probability": 0.3943 + }, + { + "start": 3808.59, + "end": 3809.23, + "probability": 0.6696 + }, + { + "start": 3813.48, + "end": 3815.48, + "probability": 0.5762 + }, + { + "start": 3816.07, + "end": 3818.89, + "probability": 0.9473 + }, + { + "start": 3819.29, + "end": 3819.55, + "probability": 0.355 + }, + { + "start": 3821.94, + "end": 3822.39, + "probability": 0.6391 + }, + { + "start": 3823.03, + "end": 3823.47, + "probability": 0.7901 + }, + { + "start": 3823.57, + "end": 3828.09, + "probability": 0.9582 + }, + { + "start": 3829.09, + "end": 3830.45, + "probability": 0.3243 + }, + { + "start": 3836.49, + "end": 3840.47, + "probability": 0.1719 + }, + { + "start": 3844.69, + "end": 3847.15, + "probability": 0.5053 + }, + { + "start": 3848.33, + "end": 3850.07, + "probability": 0.9927 + }, + { + "start": 3850.37, + "end": 3852.61, + "probability": 0.9375 + }, + { + "start": 3854.11, + "end": 3857.09, + "probability": 0.928 + }, + { + "start": 3857.91, + "end": 3859.77, + "probability": 0.9729 + }, + { + "start": 3860.69, + "end": 3865.03, + "probability": 0.9805 + }, + { + "start": 3865.89, + "end": 3867.27, + "probability": 0.897 + }, + { + "start": 3867.83, + "end": 3868.11, + "probability": 0.4877 + }, + { + "start": 3868.15, + "end": 3873.23, + "probability": 0.9703 + }, + { + "start": 3874.23, + "end": 3874.85, + "probability": 0.7299 + }, + { + "start": 3876.13, + "end": 3877.69, + "probability": 0.8823 + }, + { + "start": 3878.29, + "end": 3878.99, + "probability": 0.5361 + }, + { + "start": 3879.79, + "end": 3881.85, + "probability": 0.9818 + }, + { + "start": 3882.95, + "end": 3886.51, + "probability": 0.9953 + }, + { + "start": 3887.67, + "end": 3889.55, + "probability": 0.9968 + }, + { + "start": 3890.09, + "end": 3892.45, + "probability": 0.9927 + }, + { + "start": 3893.11, + "end": 3893.97, + "probability": 0.7711 + }, + { + "start": 3894.61, + "end": 3898.23, + "probability": 0.991 + }, + { + "start": 3899.09, + "end": 3902.87, + "probability": 0.9734 + }, + { + "start": 3902.87, + "end": 3907.13, + "probability": 0.9838 + }, + { + "start": 3907.91, + "end": 3908.43, + "probability": 0.5199 + }, + { + "start": 3910.43, + "end": 3914.99, + "probability": 0.9878 + }, + { + "start": 3915.97, + "end": 3919.05, + "probability": 0.8782 + }, + { + "start": 3919.59, + "end": 3924.09, + "probability": 0.9722 + }, + { + "start": 3925.73, + "end": 3929.19, + "probability": 0.9979 + }, + { + "start": 3929.89, + "end": 3932.67, + "probability": 0.9806 + }, + { + "start": 3932.67, + "end": 3936.35, + "probability": 0.6997 + }, + { + "start": 3936.97, + "end": 3938.37, + "probability": 0.9851 + }, + { + "start": 3939.87, + "end": 3940.07, + "probability": 0.5093 + }, + { + "start": 3940.61, + "end": 3941.97, + "probability": 0.9912 + }, + { + "start": 3942.55, + "end": 3945.29, + "probability": 0.998 + }, + { + "start": 3945.29, + "end": 3948.27, + "probability": 0.9953 + }, + { + "start": 3949.07, + "end": 3950.84, + "probability": 0.8936 + }, + { + "start": 3951.41, + "end": 3954.81, + "probability": 0.9423 + }, + { + "start": 3955.91, + "end": 3959.41, + "probability": 0.9729 + }, + { + "start": 3960.43, + "end": 3965.33, + "probability": 0.9499 + }, + { + "start": 3966.37, + "end": 3970.95, + "probability": 0.9827 + }, + { + "start": 3972.43, + "end": 3976.97, + "probability": 0.9558 + }, + { + "start": 3977.71, + "end": 3980.71, + "probability": 0.8979 + }, + { + "start": 3981.23, + "end": 3982.33, + "probability": 0.9841 + }, + { + "start": 3982.95, + "end": 3984.93, + "probability": 0.9977 + }, + { + "start": 3986.23, + "end": 3986.55, + "probability": 0.4862 + }, + { + "start": 3986.69, + "end": 3988.63, + "probability": 0.9711 + }, + { + "start": 3988.77, + "end": 3991.07, + "probability": 0.8143 + }, + { + "start": 3991.71, + "end": 3992.03, + "probability": 0.758 + }, + { + "start": 3993.07, + "end": 3993.55, + "probability": 0.7371 + }, + { + "start": 3995.01, + "end": 3996.15, + "probability": 0.2085 + }, + { + "start": 3996.29, + "end": 3997.25, + "probability": 0.9233 + }, + { + "start": 3997.53, + "end": 3998.65, + "probability": 0.7837 + }, + { + "start": 3998.81, + "end": 3999.81, + "probability": 0.7224 + }, + { + "start": 4010.59, + "end": 4011.25, + "probability": 0.4884 + }, + { + "start": 4011.27, + "end": 4012.75, + "probability": 0.9158 + }, + { + "start": 4012.9, + "end": 4015.66, + "probability": 0.7243 + }, + { + "start": 4015.99, + "end": 4016.79, + "probability": 0.8887 + }, + { + "start": 4017.45, + "end": 4019.25, + "probability": 0.5556 + }, + { + "start": 4019.75, + "end": 4021.13, + "probability": 0.9474 + }, + { + "start": 4021.47, + "end": 4021.85, + "probability": 0.6933 + }, + { + "start": 4022.11, + "end": 4023.43, + "probability": 0.9922 + }, + { + "start": 4023.53, + "end": 4023.63, + "probability": 0.8526 + }, + { + "start": 4025.07, + "end": 4025.81, + "probability": 0.957 + }, + { + "start": 4027.51, + "end": 4029.41, + "probability": 0.3909 + }, + { + "start": 4029.61, + "end": 4031.75, + "probability": 0.9775 + }, + { + "start": 4032.13, + "end": 4033.15, + "probability": 0.89 + }, + { + "start": 4033.29, + "end": 4033.69, + "probability": 0.4801 + }, + { + "start": 4033.81, + "end": 4034.57, + "probability": 0.8034 + }, + { + "start": 4035.87, + "end": 4036.63, + "probability": 0.6612 + }, + { + "start": 4037.25, + "end": 4041.49, + "probability": 0.8384 + }, + { + "start": 4041.81, + "end": 4042.43, + "probability": 0.9995 + }, + { + "start": 4043.43, + "end": 4045.13, + "probability": 0.9502 + }, + { + "start": 4045.45, + "end": 4047.73, + "probability": 0.905 + }, + { + "start": 4048.83, + "end": 4052.35, + "probability": 0.9793 + }, + { + "start": 4052.65, + "end": 4052.95, + "probability": 0.7312 + }, + { + "start": 4053.21, + "end": 4054.21, + "probability": 0.7051 + }, + { + "start": 4054.73, + "end": 4055.59, + "probability": 0.7832 + }, + { + "start": 4056.83, + "end": 4058.85, + "probability": 0.8767 + }, + { + "start": 4059.09, + "end": 4060.27, + "probability": 0.938 + }, + { + "start": 4060.43, + "end": 4061.59, + "probability": 0.7201 + }, + { + "start": 4061.61, + "end": 4062.75, + "probability": 0.6572 + }, + { + "start": 4062.99, + "end": 4064.39, + "probability": 0.9954 + }, + { + "start": 4064.81, + "end": 4065.31, + "probability": 0.2797 + }, + { + "start": 4065.41, + "end": 4067.67, + "probability": 0.5122 + }, + { + "start": 4068.31, + "end": 4072.31, + "probability": 0.9912 + }, + { + "start": 4072.75, + "end": 4074.95, + "probability": 0.8725 + }, + { + "start": 4075.89, + "end": 4081.61, + "probability": 0.8866 + }, + { + "start": 4083.22, + "end": 4083.79, + "probability": 0.0564 + }, + { + "start": 4083.79, + "end": 4085.87, + "probability": 0.6424 + }, + { + "start": 4085.95, + "end": 4086.81, + "probability": 0.8138 + }, + { + "start": 4086.99, + "end": 4087.35, + "probability": 0.7759 + }, + { + "start": 4087.57, + "end": 4088.97, + "probability": 0.7991 + }, + { + "start": 4089.19, + "end": 4089.99, + "probability": 0.5069 + }, + { + "start": 4090.63, + "end": 4092.47, + "probability": 0.9858 + }, + { + "start": 4092.53, + "end": 4092.95, + "probability": 0.4578 + }, + { + "start": 4093.11, + "end": 4093.83, + "probability": 0.7678 + }, + { + "start": 4093.99, + "end": 4095.64, + "probability": 0.8702 + }, + { + "start": 4096.07, + "end": 4097.01, + "probability": 0.9629 + }, + { + "start": 4097.09, + "end": 4100.15, + "probability": 0.7668 + }, + { + "start": 4100.69, + "end": 4102.17, + "probability": 0.7257 + }, + { + "start": 4102.51, + "end": 4103.55, + "probability": 0.5957 + }, + { + "start": 4104.47, + "end": 4106.29, + "probability": 0.7676 + }, + { + "start": 4106.39, + "end": 4107.67, + "probability": 0.9517 + }, + { + "start": 4108.05, + "end": 4109.19, + "probability": 0.8164 + }, + { + "start": 4109.27, + "end": 4109.91, + "probability": 0.8789 + }, + { + "start": 4110.55, + "end": 4114.25, + "probability": 0.9637 + }, + { + "start": 4114.99, + "end": 4117.81, + "probability": 0.6511 + }, + { + "start": 4118.57, + "end": 4120.77, + "probability": 0.4303 + }, + { + "start": 4121.27, + "end": 4122.39, + "probability": 0.6189 + }, + { + "start": 4123.69, + "end": 4126.15, + "probability": 0.9319 + }, + { + "start": 4126.49, + "end": 4126.51, + "probability": 0.4387 + }, + { + "start": 4126.63, + "end": 4128.81, + "probability": 0.9551 + }, + { + "start": 4129.21, + "end": 4130.37, + "probability": 0.9888 + }, + { + "start": 4130.69, + "end": 4131.23, + "probability": 0.7446 + }, + { + "start": 4131.71, + "end": 4135.43, + "probability": 0.9313 + }, + { + "start": 4135.69, + "end": 4136.73, + "probability": 0.6279 + }, + { + "start": 4136.75, + "end": 4136.85, + "probability": 0.6513 + }, + { + "start": 4137.11, + "end": 4138.26, + "probability": 0.9751 + }, + { + "start": 4138.69, + "end": 4140.47, + "probability": 0.762 + }, + { + "start": 4141.29, + "end": 4142.83, + "probability": 0.83 + }, + { + "start": 4142.91, + "end": 4144.04, + "probability": 0.6729 + }, + { + "start": 4144.53, + "end": 4145.63, + "probability": 0.8294 + }, + { + "start": 4145.65, + "end": 4146.29, + "probability": 0.7256 + }, + { + "start": 4147.09, + "end": 4149.53, + "probability": 0.8766 + }, + { + "start": 4149.71, + "end": 4153.49, + "probability": 0.9204 + }, + { + "start": 4153.99, + "end": 4154.67, + "probability": 0.7922 + }, + { + "start": 4155.13, + "end": 4157.91, + "probability": 0.8797 + }, + { + "start": 4158.27, + "end": 4160.05, + "probability": 0.6587 + }, + { + "start": 4162.49, + "end": 4163.49, + "probability": 0.2541 + }, + { + "start": 4163.51, + "end": 4164.71, + "probability": 0.6774 + }, + { + "start": 4164.86, + "end": 4165.69, + "probability": 0.7142 + }, + { + "start": 4165.95, + "end": 4168.15, + "probability": 0.8501 + }, + { + "start": 4169.85, + "end": 4170.83, + "probability": 0.5764 + }, + { + "start": 4173.34, + "end": 4173.85, + "probability": 0.5949 + }, + { + "start": 4175.45, + "end": 4176.52, + "probability": 0.0839 + }, + { + "start": 4179.53, + "end": 4181.63, + "probability": 0.5786 + }, + { + "start": 4187.91, + "end": 4190.05, + "probability": 0.0956 + }, + { + "start": 4190.11, + "end": 4190.11, + "probability": 0.1225 + }, + { + "start": 4190.17, + "end": 4193.19, + "probability": 0.4259 + }, + { + "start": 4193.39, + "end": 4195.25, + "probability": 0.8074 + }, + { + "start": 4195.51, + "end": 4196.17, + "probability": 0.4619 + }, + { + "start": 4196.57, + "end": 4202.17, + "probability": 0.8298 + }, + { + "start": 4203.21, + "end": 4204.45, + "probability": 0.1168 + }, + { + "start": 4209.47, + "end": 4213.23, + "probability": 0.2715 + }, + { + "start": 4215.37, + "end": 4216.67, + "probability": 0.2111 + }, + { + "start": 4219.95, + "end": 4221.61, + "probability": 0.0404 + }, + { + "start": 4222.81, + "end": 4226.47, + "probability": 0.9398 + }, + { + "start": 4226.73, + "end": 4227.29, + "probability": 0.2006 + }, + { + "start": 4229.21, + "end": 4235.07, + "probability": 0.7451 + }, + { + "start": 4242.95, + "end": 4244.01, + "probability": 0.608 + }, + { + "start": 4244.25, + "end": 4246.49, + "probability": 0.4747 + }, + { + "start": 4246.73, + "end": 4248.19, + "probability": 0.7079 + }, + { + "start": 4249.19, + "end": 4251.23, + "probability": 0.0844 + }, + { + "start": 4251.35, + "end": 4252.02, + "probability": 0.1559 + }, + { + "start": 4252.79, + "end": 4254.69, + "probability": 0.2706 + }, + { + "start": 4255.53, + "end": 4256.41, + "probability": 0.3064 + }, + { + "start": 4256.51, + "end": 4259.3, + "probability": 0.6625 + }, + { + "start": 4259.71, + "end": 4260.05, + "probability": 0.2682 + }, + { + "start": 4260.17, + "end": 4261.09, + "probability": 0.8856 + }, + { + "start": 4261.19, + "end": 4262.29, + "probability": 0.9927 + }, + { + "start": 4263.17, + "end": 4265.45, + "probability": 0.5703 + }, + { + "start": 4266.07, + "end": 4269.19, + "probability": 0.7811 + }, + { + "start": 4269.19, + "end": 4274.29, + "probability": 0.6469 + }, + { + "start": 4274.99, + "end": 4277.27, + "probability": 0.7137 + }, + { + "start": 4277.77, + "end": 4279.29, + "probability": 0.1388 + }, + { + "start": 4279.29, + "end": 4280.17, + "probability": 0.2732 + }, + { + "start": 4280.69, + "end": 4284.73, + "probability": 0.6939 + }, + { + "start": 4285.09, + "end": 4286.69, + "probability": 0.4181 + }, + { + "start": 4287.11, + "end": 4287.73, + "probability": 0.6902 + }, + { + "start": 4289.91, + "end": 4290.77, + "probability": 0.0653 + }, + { + "start": 4290.95, + "end": 4292.87, + "probability": 0.4832 + }, + { + "start": 4292.93, + "end": 4293.15, + "probability": 0.1079 + }, + { + "start": 4293.15, + "end": 4295.53, + "probability": 0.4992 + }, + { + "start": 4295.85, + "end": 4297.45, + "probability": 0.9888 + }, + { + "start": 4297.77, + "end": 4301.91, + "probability": 0.9834 + }, + { + "start": 4301.91, + "end": 4304.77, + "probability": 0.9637 + }, + { + "start": 4305.65, + "end": 4306.63, + "probability": 0.0515 + }, + { + "start": 4307.79, + "end": 4311.85, + "probability": 0.8284 + }, + { + "start": 4312.25, + "end": 4315.83, + "probability": 0.9585 + }, + { + "start": 4317.41, + "end": 4317.93, + "probability": 0.0315 + }, + { + "start": 4319.89, + "end": 4321.63, + "probability": 0.0972 + }, + { + "start": 4321.63, + "end": 4321.97, + "probability": 0.261 + }, + { + "start": 4327.51, + "end": 4327.71, + "probability": 0.0269 + }, + { + "start": 4328.97, + "end": 4329.97, + "probability": 0.7478 + }, + { + "start": 4330.75, + "end": 4335.57, + "probability": 0.6571 + }, + { + "start": 4336.59, + "end": 4340.29, + "probability": 0.9504 + }, + { + "start": 4340.43, + "end": 4341.63, + "probability": 0.9764 + }, + { + "start": 4341.85, + "end": 4347.41, + "probability": 0.9734 + }, + { + "start": 4348.03, + "end": 4351.43, + "probability": 0.9626 + }, + { + "start": 4352.07, + "end": 4354.71, + "probability": 0.9796 + }, + { + "start": 4356.24, + "end": 4362.83, + "probability": 0.9825 + }, + { + "start": 4363.55, + "end": 4368.73, + "probability": 0.9788 + }, + { + "start": 4369.81, + "end": 4371.45, + "probability": 0.8835 + }, + { + "start": 4373.15, + "end": 4377.13, + "probability": 0.9597 + }, + { + "start": 4378.21, + "end": 4383.41, + "probability": 0.9952 + }, + { + "start": 4384.59, + "end": 4388.49, + "probability": 0.9972 + }, + { + "start": 4389.61, + "end": 4391.81, + "probability": 0.9885 + }, + { + "start": 4392.67, + "end": 4397.61, + "probability": 0.9961 + }, + { + "start": 4398.19, + "end": 4400.69, + "probability": 0.9944 + }, + { + "start": 4402.13, + "end": 4404.03, + "probability": 0.9313 + }, + { + "start": 4404.17, + "end": 4407.63, + "probability": 0.9477 + }, + { + "start": 4408.39, + "end": 4413.91, + "probability": 0.9954 + }, + { + "start": 4415.53, + "end": 4417.25, + "probability": 0.895 + }, + { + "start": 4418.11, + "end": 4419.01, + "probability": 0.6932 + }, + { + "start": 4419.97, + "end": 4426.39, + "probability": 0.9946 + }, + { + "start": 4426.39, + "end": 4433.73, + "probability": 0.9921 + }, + { + "start": 4434.83, + "end": 4436.27, + "probability": 0.887 + }, + { + "start": 4439.06, + "end": 4440.65, + "probability": 0.9824 + }, + { + "start": 4442.97, + "end": 4446.33, + "probability": 0.9468 + }, + { + "start": 4447.29, + "end": 4449.31, + "probability": 0.9731 + }, + { + "start": 4450.79, + "end": 4451.55, + "probability": 0.8181 + }, + { + "start": 4452.41, + "end": 4453.15, + "probability": 0.8212 + }, + { + "start": 4454.17, + "end": 4457.67, + "probability": 0.9399 + }, + { + "start": 4458.23, + "end": 4459.85, + "probability": 0.9854 + }, + { + "start": 4460.69, + "end": 4461.71, + "probability": 0.9341 + }, + { + "start": 4462.71, + "end": 4469.25, + "probability": 0.9928 + }, + { + "start": 4469.51, + "end": 4469.87, + "probability": 0.5125 + }, + { + "start": 4470.25, + "end": 4471.41, + "probability": 0.9606 + }, + { + "start": 4472.01, + "end": 4473.11, + "probability": 0.9595 + }, + { + "start": 4473.67, + "end": 4475.91, + "probability": 0.9951 + }, + { + "start": 4476.67, + "end": 4479.02, + "probability": 0.9919 + }, + { + "start": 4480.07, + "end": 4481.97, + "probability": 0.9346 + }, + { + "start": 4482.79, + "end": 4485.92, + "probability": 0.9298 + }, + { + "start": 4486.15, + "end": 4489.03, + "probability": 0.9449 + }, + { + "start": 4489.27, + "end": 4489.83, + "probability": 0.7774 + }, + { + "start": 4490.41, + "end": 4491.36, + "probability": 0.8737 + }, + { + "start": 4492.71, + "end": 4497.87, + "probability": 0.9841 + }, + { + "start": 4498.49, + "end": 4499.69, + "probability": 0.969 + }, + { + "start": 4500.09, + "end": 4506.13, + "probability": 0.9912 + }, + { + "start": 4506.69, + "end": 4510.69, + "probability": 0.9592 + }, + { + "start": 4511.29, + "end": 4513.76, + "probability": 0.9177 + }, + { + "start": 4514.85, + "end": 4516.25, + "probability": 0.7744 + }, + { + "start": 4516.49, + "end": 4517.77, + "probability": 0.5548 + }, + { + "start": 4517.93, + "end": 4518.73, + "probability": 0.8843 + }, + { + "start": 4518.85, + "end": 4519.89, + "probability": 0.8007 + }, + { + "start": 4520.57, + "end": 4522.87, + "probability": 0.9591 + }, + { + "start": 4523.71, + "end": 4528.49, + "probability": 0.8936 + }, + { + "start": 4529.11, + "end": 4532.11, + "probability": 0.9124 + }, + { + "start": 4532.59, + "end": 4534.47, + "probability": 0.6945 + }, + { + "start": 4535.07, + "end": 4539.35, + "probability": 0.972 + }, + { + "start": 4539.93, + "end": 4543.05, + "probability": 0.9986 + }, + { + "start": 4543.73, + "end": 4545.73, + "probability": 0.7549 + }, + { + "start": 4546.33, + "end": 4548.67, + "probability": 0.682 + }, + { + "start": 4549.23, + "end": 4551.41, + "probability": 0.9389 + }, + { + "start": 4552.33, + "end": 4555.59, + "probability": 0.9688 + }, + { + "start": 4555.93, + "end": 4557.39, + "probability": 0.9292 + }, + { + "start": 4558.01, + "end": 4561.17, + "probability": 0.9388 + }, + { + "start": 4562.01, + "end": 4567.65, + "probability": 0.9972 + }, + { + "start": 4567.79, + "end": 4568.92, + "probability": 0.8876 + }, + { + "start": 4569.59, + "end": 4572.97, + "probability": 0.945 + }, + { + "start": 4573.63, + "end": 4576.83, + "probability": 0.9879 + }, + { + "start": 4577.47, + "end": 4581.51, + "probability": 0.9937 + }, + { + "start": 4582.01, + "end": 4586.31, + "probability": 0.9902 + }, + { + "start": 4586.39, + "end": 4590.59, + "probability": 0.9535 + }, + { + "start": 4591.09, + "end": 4592.81, + "probability": 0.9845 + }, + { + "start": 4593.37, + "end": 4595.31, + "probability": 0.908 + }, + { + "start": 4595.83, + "end": 4601.07, + "probability": 0.9429 + }, + { + "start": 4602.31, + "end": 4603.87, + "probability": 0.948 + }, + { + "start": 4604.29, + "end": 4605.05, + "probability": 0.8767 + }, + { + "start": 4605.51, + "end": 4608.27, + "probability": 0.9677 + }, + { + "start": 4609.11, + "end": 4612.65, + "probability": 0.9925 + }, + { + "start": 4613.59, + "end": 4619.55, + "probability": 0.9888 + }, + { + "start": 4620.51, + "end": 4623.53, + "probability": 0.9825 + }, + { + "start": 4623.53, + "end": 4627.91, + "probability": 0.8771 + }, + { + "start": 4628.05, + "end": 4631.49, + "probability": 0.8966 + }, + { + "start": 4631.81, + "end": 4633.43, + "probability": 0.8264 + }, + { + "start": 4634.83, + "end": 4638.49, + "probability": 0.9898 + }, + { + "start": 4638.97, + "end": 4640.41, + "probability": 0.8766 + }, + { + "start": 4640.69, + "end": 4641.79, + "probability": 0.999 + }, + { + "start": 4642.63, + "end": 4648.39, + "probability": 0.4377 + }, + { + "start": 4648.83, + "end": 4651.73, + "probability": 0.8589 + }, + { + "start": 4652.37, + "end": 4654.65, + "probability": 0.9987 + }, + { + "start": 4655.19, + "end": 4656.61, + "probability": 0.9185 + }, + { + "start": 4657.13, + "end": 4659.59, + "probability": 0.9801 + }, + { + "start": 4660.11, + "end": 4662.45, + "probability": 0.9894 + }, + { + "start": 4662.75, + "end": 4666.07, + "probability": 0.9996 + }, + { + "start": 4667.15, + "end": 4670.49, + "probability": 0.9717 + }, + { + "start": 4670.63, + "end": 4673.83, + "probability": 0.9757 + }, + { + "start": 4674.93, + "end": 4675.25, + "probability": 0.0033 + }, + { + "start": 4675.91, + "end": 4677.09, + "probability": 0.906 + }, + { + "start": 4677.35, + "end": 4678.77, + "probability": 0.8847 + }, + { + "start": 4679.37, + "end": 4681.89, + "probability": 0.9406 + }, + { + "start": 4682.49, + "end": 4684.19, + "probability": 0.8762 + }, + { + "start": 4684.37, + "end": 4687.43, + "probability": 0.9981 + }, + { + "start": 4687.43, + "end": 4691.23, + "probability": 0.9989 + }, + { + "start": 4692.89, + "end": 4693.37, + "probability": 0.6136 + }, + { + "start": 4694.11, + "end": 4694.65, + "probability": 0.7568 + }, + { + "start": 4696.95, + "end": 4698.71, + "probability": 0.6654 + }, + { + "start": 4723.77, + "end": 4723.77, + "probability": 0.2132 + }, + { + "start": 4723.77, + "end": 4723.97, + "probability": 0.4304 + }, + { + "start": 4724.07, + "end": 4725.31, + "probability": 0.4648 + }, + { + "start": 4726.17, + "end": 4727.99, + "probability": 0.6098 + }, + { + "start": 4729.27, + "end": 4730.99, + "probability": 0.9438 + }, + { + "start": 4732.19, + "end": 4736.25, + "probability": 0.9963 + }, + { + "start": 4737.15, + "end": 4739.43, + "probability": 0.919 + }, + { + "start": 4740.07, + "end": 4742.65, + "probability": 0.8356 + }, + { + "start": 4743.79, + "end": 4748.89, + "probability": 0.9854 + }, + { + "start": 4749.51, + "end": 4750.41, + "probability": 0.8414 + }, + { + "start": 4751.69, + "end": 4754.15, + "probability": 0.9976 + }, + { + "start": 4755.63, + "end": 4755.93, + "probability": 0.9832 + }, + { + "start": 4758.81, + "end": 4759.39, + "probability": 0.6515 + }, + { + "start": 4760.53, + "end": 4761.85, + "probability": 0.8208 + }, + { + "start": 4762.81, + "end": 4763.61, + "probability": 0.8954 + }, + { + "start": 4764.75, + "end": 4767.79, + "probability": 0.8623 + }, + { + "start": 4768.73, + "end": 4769.47, + "probability": 0.9733 + }, + { + "start": 4770.05, + "end": 4770.31, + "probability": 0.9895 + }, + { + "start": 4770.95, + "end": 4772.03, + "probability": 0.8608 + }, + { + "start": 4773.07, + "end": 4774.57, + "probability": 0.99 + }, + { + "start": 4775.77, + "end": 4777.65, + "probability": 0.2333 + }, + { + "start": 4778.77, + "end": 4780.95, + "probability": 0.9006 + }, + { + "start": 4781.67, + "end": 4782.25, + "probability": 0.3401 + }, + { + "start": 4783.03, + "end": 4784.33, + "probability": 0.783 + }, + { + "start": 4785.27, + "end": 4788.03, + "probability": 0.6626 + }, + { + "start": 4789.35, + "end": 4791.03, + "probability": 0.8224 + }, + { + "start": 4792.13, + "end": 4796.35, + "probability": 0.7506 + }, + { + "start": 4797.51, + "end": 4798.41, + "probability": 0.939 + }, + { + "start": 4799.23, + "end": 4802.77, + "probability": 0.9863 + }, + { + "start": 4804.29, + "end": 4806.41, + "probability": 0.9809 + }, + { + "start": 4807.01, + "end": 4807.33, + "probability": 0.6244 + }, + { + "start": 4807.89, + "end": 4809.01, + "probability": 0.6531 + }, + { + "start": 4810.95, + "end": 4811.71, + "probability": 0.6641 + }, + { + "start": 4812.61, + "end": 4813.87, + "probability": 0.8331 + }, + { + "start": 4814.83, + "end": 4817.49, + "probability": 0.9543 + }, + { + "start": 4818.67, + "end": 4825.07, + "probability": 0.9072 + }, + { + "start": 4827.49, + "end": 4830.63, + "probability": 0.9414 + }, + { + "start": 4832.41, + "end": 4834.04, + "probability": 0.8191 + }, + { + "start": 4835.39, + "end": 4836.65, + "probability": 0.2942 + }, + { + "start": 4837.45, + "end": 4838.37, + "probability": 0.7751 + }, + { + "start": 4839.23, + "end": 4840.47, + "probability": 0.5195 + }, + { + "start": 4841.01, + "end": 4847.17, + "probability": 0.9545 + }, + { + "start": 4849.07, + "end": 4854.13, + "probability": 0.9752 + }, + { + "start": 4854.71, + "end": 4857.15, + "probability": 0.8126 + }, + { + "start": 4858.33, + "end": 4860.69, + "probability": 0.7235 + }, + { + "start": 4862.37, + "end": 4862.47, + "probability": 0.7629 + }, + { + "start": 4863.23, + "end": 4864.07, + "probability": 0.7671 + }, + { + "start": 4865.21, + "end": 4868.81, + "probability": 0.9774 + }, + { + "start": 4869.61, + "end": 4874.35, + "probability": 0.9834 + }, + { + "start": 4875.27, + "end": 4876.61, + "probability": 0.9906 + }, + { + "start": 4877.41, + "end": 4880.87, + "probability": 0.5805 + }, + { + "start": 4882.09, + "end": 4884.21, + "probability": 0.8312 + }, + { + "start": 4885.53, + "end": 4890.67, + "probability": 0.9851 + }, + { + "start": 4891.39, + "end": 4895.61, + "probability": 0.9736 + }, + { + "start": 4895.61, + "end": 4899.69, + "probability": 0.7303 + }, + { + "start": 4900.53, + "end": 4901.73, + "probability": 0.5385 + }, + { + "start": 4902.47, + "end": 4904.49, + "probability": 0.8272 + }, + { + "start": 4905.71, + "end": 4906.57, + "probability": 0.5353 + }, + { + "start": 4907.77, + "end": 4909.05, + "probability": 0.9951 + }, + { + "start": 4910.71, + "end": 4915.87, + "probability": 0.8017 + }, + { + "start": 4916.99, + "end": 4922.09, + "probability": 0.877 + }, + { + "start": 4924.07, + "end": 4928.81, + "probability": 0.9968 + }, + { + "start": 4929.57, + "end": 4932.89, + "probability": 0.9774 + }, + { + "start": 4933.67, + "end": 4936.07, + "probability": 0.9725 + }, + { + "start": 4936.87, + "end": 4942.17, + "probability": 0.5009 + }, + { + "start": 4945.34, + "end": 4946.69, + "probability": 0.9924 + }, + { + "start": 4947.17, + "end": 4950.55, + "probability": 0.9785 + }, + { + "start": 4951.85, + "end": 4952.63, + "probability": 0.9162 + }, + { + "start": 4953.17, + "end": 4956.79, + "probability": 0.972 + }, + { + "start": 4957.53, + "end": 4963.87, + "probability": 0.9497 + }, + { + "start": 4964.73, + "end": 4969.49, + "probability": 0.9937 + }, + { + "start": 4969.59, + "end": 4974.17, + "probability": 0.9927 + }, + { + "start": 4974.91, + "end": 4977.13, + "probability": 0.9976 + }, + { + "start": 4977.71, + "end": 4984.77, + "probability": 0.9935 + }, + { + "start": 4985.93, + "end": 4986.23, + "probability": 0.53 + }, + { + "start": 4988.45, + "end": 4989.35, + "probability": 0.8826 + }, + { + "start": 4989.79, + "end": 4992.05, + "probability": 0.9963 + }, + { + "start": 4992.33, + "end": 4994.83, + "probability": 0.9628 + }, + { + "start": 4995.09, + "end": 4999.59, + "probability": 0.856 + }, + { + "start": 5001.93, + "end": 5003.65, + "probability": 0.4842 + }, + { + "start": 5004.67, + "end": 5008.51, + "probability": 0.9685 + }, + { + "start": 5009.15, + "end": 5015.31, + "probability": 0.9858 + }, + { + "start": 5016.71, + "end": 5017.75, + "probability": 0.7202 + }, + { + "start": 5018.17, + "end": 5022.47, + "probability": 0.978 + }, + { + "start": 5023.03, + "end": 5023.43, + "probability": 0.6686 + }, + { + "start": 5024.11, + "end": 5025.37, + "probability": 0.9711 + }, + { + "start": 5026.11, + "end": 5027.37, + "probability": 0.9763 + }, + { + "start": 5028.05, + "end": 5032.89, + "probability": 0.9827 + }, + { + "start": 5033.61, + "end": 5034.27, + "probability": 0.6844 + }, + { + "start": 5034.95, + "end": 5037.35, + "probability": 0.7734 + }, + { + "start": 5039.07, + "end": 5042.31, + "probability": 0.7143 + }, + { + "start": 5043.07, + "end": 5043.97, + "probability": 0.9419 + }, + { + "start": 5044.79, + "end": 5047.63, + "probability": 0.6989 + }, + { + "start": 5049.33, + "end": 5052.29, + "probability": 0.9744 + }, + { + "start": 5053.77, + "end": 5056.41, + "probability": 0.8178 + }, + { + "start": 5057.03, + "end": 5058.15, + "probability": 0.9092 + }, + { + "start": 5059.29, + "end": 5059.43, + "probability": 0.4329 + }, + { + "start": 5060.31, + "end": 5062.41, + "probability": 0.8157 + }, + { + "start": 5063.47, + "end": 5064.37, + "probability": 0.98 + }, + { + "start": 5065.15, + "end": 5068.96, + "probability": 0.7481 + }, + { + "start": 5069.47, + "end": 5072.79, + "probability": 0.7473 + }, + { + "start": 5073.49, + "end": 5076.83, + "probability": 0.9754 + }, + { + "start": 5076.89, + "end": 5082.07, + "probability": 0.9946 + }, + { + "start": 5082.57, + "end": 5086.47, + "probability": 0.9937 + }, + { + "start": 5087.25, + "end": 5088.31, + "probability": 0.9607 + }, + { + "start": 5089.17, + "end": 5089.73, + "probability": 0.701 + }, + { + "start": 5090.37, + "end": 5090.91, + "probability": 0.6633 + }, + { + "start": 5091.13, + "end": 5094.17, + "probability": 0.8479 + }, + { + "start": 5114.45, + "end": 5116.55, + "probability": 0.575 + }, + { + "start": 5118.51, + "end": 5122.27, + "probability": 0.7481 + }, + { + "start": 5123.83, + "end": 5126.93, + "probability": 0.9777 + }, + { + "start": 5128.61, + "end": 5132.83, + "probability": 0.9957 + }, + { + "start": 5134.55, + "end": 5137.49, + "probability": 0.9893 + }, + { + "start": 5138.39, + "end": 5141.79, + "probability": 0.8727 + }, + { + "start": 5141.79, + "end": 5145.01, + "probability": 0.9514 + }, + { + "start": 5145.57, + "end": 5149.27, + "probability": 0.9868 + }, + { + "start": 5149.79, + "end": 5150.81, + "probability": 0.9261 + }, + { + "start": 5151.63, + "end": 5154.63, + "probability": 0.9839 + }, + { + "start": 5154.63, + "end": 5157.77, + "probability": 0.9929 + }, + { + "start": 5161.53, + "end": 5163.09, + "probability": 0.9701 + }, + { + "start": 5164.53, + "end": 5168.81, + "probability": 0.9836 + }, + { + "start": 5169.83, + "end": 5172.75, + "probability": 0.9951 + }, + { + "start": 5173.39, + "end": 5177.37, + "probability": 0.8733 + }, + { + "start": 5177.97, + "end": 5178.69, + "probability": 0.81 + }, + { + "start": 5179.37, + "end": 5180.61, + "probability": 0.8893 + }, + { + "start": 5181.27, + "end": 5182.29, + "probability": 0.9881 + }, + { + "start": 5183.79, + "end": 5184.4, + "probability": 0.9695 + }, + { + "start": 5185.67, + "end": 5190.01, + "probability": 0.9783 + }, + { + "start": 5190.27, + "end": 5192.09, + "probability": 0.9985 + }, + { + "start": 5192.95, + "end": 5194.27, + "probability": 0.9985 + }, + { + "start": 5195.65, + "end": 5196.31, + "probability": 0.7228 + }, + { + "start": 5197.07, + "end": 5200.91, + "probability": 0.9479 + }, + { + "start": 5201.37, + "end": 5202.65, + "probability": 0.9583 + }, + { + "start": 5204.59, + "end": 5209.48, + "probability": 0.9481 + }, + { + "start": 5209.87, + "end": 5211.31, + "probability": 0.9749 + }, + { + "start": 5212.63, + "end": 5212.91, + "probability": 0.5927 + }, + { + "start": 5214.39, + "end": 5215.09, + "probability": 0.9629 + }, + { + "start": 5216.45, + "end": 5219.25, + "probability": 0.9355 + }, + { + "start": 5219.85, + "end": 5220.41, + "probability": 0.7894 + }, + { + "start": 5221.25, + "end": 5222.59, + "probability": 0.9263 + }, + { + "start": 5223.91, + "end": 5226.27, + "probability": 0.9927 + }, + { + "start": 5226.27, + "end": 5228.77, + "probability": 0.9995 + }, + { + "start": 5229.69, + "end": 5230.83, + "probability": 0.8305 + }, + { + "start": 5231.57, + "end": 5234.45, + "probability": 0.8911 + }, + { + "start": 5234.99, + "end": 5235.69, + "probability": 0.9746 + }, + { + "start": 5237.01, + "end": 5237.73, + "probability": 0.5019 + }, + { + "start": 5238.67, + "end": 5239.37, + "probability": 0.9463 + }, + { + "start": 5240.17, + "end": 5241.21, + "probability": 0.8191 + }, + { + "start": 5242.41, + "end": 5245.25, + "probability": 0.9628 + }, + { + "start": 5245.89, + "end": 5248.75, + "probability": 0.8311 + }, + { + "start": 5248.93, + "end": 5250.95, + "probability": 0.7449 + }, + { + "start": 5251.99, + "end": 5257.83, + "probability": 0.9937 + }, + { + "start": 5259.25, + "end": 5263.45, + "probability": 0.9993 + }, + { + "start": 5264.13, + "end": 5266.67, + "probability": 0.923 + }, + { + "start": 5268.09, + "end": 5270.83, + "probability": 0.8646 + }, + { + "start": 5271.95, + "end": 5277.07, + "probability": 0.9989 + }, + { + "start": 5277.59, + "end": 5279.01, + "probability": 0.9719 + }, + { + "start": 5280.11, + "end": 5283.87, + "probability": 0.9943 + }, + { + "start": 5284.19, + "end": 5288.13, + "probability": 0.9756 + }, + { + "start": 5288.61, + "end": 5290.21, + "probability": 0.7278 + }, + { + "start": 5290.83, + "end": 5292.73, + "probability": 0.9354 + }, + { + "start": 5293.33, + "end": 5295.15, + "probability": 0.913 + }, + { + "start": 5295.55, + "end": 5297.75, + "probability": 0.9904 + }, + { + "start": 5298.25, + "end": 5301.77, + "probability": 0.9864 + }, + { + "start": 5301.89, + "end": 5303.37, + "probability": 0.9726 + }, + { + "start": 5303.93, + "end": 5307.51, + "probability": 0.9955 + }, + { + "start": 5308.15, + "end": 5312.01, + "probability": 0.9846 + }, + { + "start": 5312.01, + "end": 5315.51, + "probability": 0.9986 + }, + { + "start": 5316.09, + "end": 5319.21, + "probability": 0.9324 + }, + { + "start": 5319.87, + "end": 5320.51, + "probability": 0.2893 + }, + { + "start": 5321.03, + "end": 5322.71, + "probability": 0.9972 + }, + { + "start": 5323.07, + "end": 5326.29, + "probability": 0.9948 + }, + { + "start": 5327.41, + "end": 5332.13, + "probability": 0.9697 + }, + { + "start": 5332.17, + "end": 5335.23, + "probability": 0.5098 + }, + { + "start": 5336.88, + "end": 5338.69, + "probability": 0.9209 + }, + { + "start": 5339.93, + "end": 5343.11, + "probability": 0.9761 + }, + { + "start": 5344.13, + "end": 5347.05, + "probability": 0.9938 + }, + { + "start": 5347.11, + "end": 5348.13, + "probability": 0.7111 + }, + { + "start": 5348.29, + "end": 5348.75, + "probability": 0.8933 + }, + { + "start": 5349.57, + "end": 5352.57, + "probability": 0.6179 + }, + { + "start": 5353.93, + "end": 5355.93, + "probability": 0.9946 + }, + { + "start": 5355.93, + "end": 5359.59, + "probability": 0.8647 + }, + { + "start": 5359.99, + "end": 5363.89, + "probability": 0.9574 + }, + { + "start": 5364.67, + "end": 5366.77, + "probability": 0.7537 + }, + { + "start": 5367.25, + "end": 5369.93, + "probability": 0.9264 + }, + { + "start": 5370.95, + "end": 5373.27, + "probability": 0.992 + }, + { + "start": 5373.27, + "end": 5376.27, + "probability": 0.9064 + }, + { + "start": 5376.97, + "end": 5379.59, + "probability": 0.9937 + }, + { + "start": 5380.07, + "end": 5381.15, + "probability": 0.508 + }, + { + "start": 5381.85, + "end": 5382.77, + "probability": 0.8509 + }, + { + "start": 5383.49, + "end": 5387.11, + "probability": 0.9393 + }, + { + "start": 5388.25, + "end": 5391.49, + "probability": 0.9758 + }, + { + "start": 5391.69, + "end": 5394.29, + "probability": 0.9918 + }, + { + "start": 5394.69, + "end": 5396.11, + "probability": 0.9888 + }, + { + "start": 5396.53, + "end": 5398.43, + "probability": 0.8761 + }, + { + "start": 5398.79, + "end": 5400.01, + "probability": 0.8351 + }, + { + "start": 5400.17, + "end": 5401.53, + "probability": 0.8998 + }, + { + "start": 5402.13, + "end": 5404.21, + "probability": 0.8146 + }, + { + "start": 5404.83, + "end": 5407.43, + "probability": 0.9974 + }, + { + "start": 5408.11, + "end": 5409.99, + "probability": 0.9638 + }, + { + "start": 5410.59, + "end": 5413.99, + "probability": 0.9954 + }, + { + "start": 5413.99, + "end": 5416.07, + "probability": 0.9863 + }, + { + "start": 5417.55, + "end": 5418.25, + "probability": 0.5246 + }, + { + "start": 5418.39, + "end": 5419.57, + "probability": 0.7723 + }, + { + "start": 5441.17, + "end": 5443.47, + "probability": 0.6397 + }, + { + "start": 5445.09, + "end": 5449.65, + "probability": 0.948 + }, + { + "start": 5450.57, + "end": 5453.21, + "probability": 0.9946 + }, + { + "start": 5454.59, + "end": 5457.65, + "probability": 0.9984 + }, + { + "start": 5458.17, + "end": 5461.85, + "probability": 0.9891 + }, + { + "start": 5463.21, + "end": 5465.45, + "probability": 0.9868 + }, + { + "start": 5465.61, + "end": 5470.09, + "probability": 0.997 + }, + { + "start": 5471.37, + "end": 5472.21, + "probability": 0.9888 + }, + { + "start": 5472.85, + "end": 5474.81, + "probability": 0.8768 + }, + { + "start": 5475.57, + "end": 5477.71, + "probability": 0.9688 + }, + { + "start": 5478.39, + "end": 5480.21, + "probability": 0.9973 + }, + { + "start": 5482.65, + "end": 5486.91, + "probability": 0.9921 + }, + { + "start": 5487.31, + "end": 5488.65, + "probability": 0.8166 + }, + { + "start": 5489.29, + "end": 5490.21, + "probability": 0.8051 + }, + { + "start": 5491.23, + "end": 5495.11, + "probability": 0.9668 + }, + { + "start": 5495.81, + "end": 5497.97, + "probability": 0.9662 + }, + { + "start": 5498.93, + "end": 5499.45, + "probability": 0.6562 + }, + { + "start": 5500.69, + "end": 5504.23, + "probability": 0.9903 + }, + { + "start": 5504.23, + "end": 5508.63, + "probability": 0.9963 + }, + { + "start": 5509.29, + "end": 5509.59, + "probability": 0.941 + }, + { + "start": 5510.27, + "end": 5510.59, + "probability": 0.8524 + }, + { + "start": 5512.57, + "end": 5515.07, + "probability": 0.8162 + }, + { + "start": 5515.71, + "end": 5519.07, + "probability": 0.9535 + }, + { + "start": 5519.69, + "end": 5523.05, + "probability": 0.8423 + }, + { + "start": 5523.85, + "end": 5526.05, + "probability": 0.8787 + }, + { + "start": 5528.71, + "end": 5535.03, + "probability": 0.9797 + }, + { + "start": 5535.77, + "end": 5541.17, + "probability": 0.9983 + }, + { + "start": 5541.97, + "end": 5546.05, + "probability": 0.9969 + }, + { + "start": 5546.81, + "end": 5547.83, + "probability": 0.8651 + }, + { + "start": 5549.75, + "end": 5553.03, + "probability": 0.9713 + }, + { + "start": 5554.37, + "end": 5557.19, + "probability": 0.9358 + }, + { + "start": 5557.67, + "end": 5559.49, + "probability": 0.9402 + }, + { + "start": 5560.41, + "end": 5566.41, + "probability": 0.9232 + }, + { + "start": 5567.83, + "end": 5569.83, + "probability": 0.9742 + }, + { + "start": 5570.51, + "end": 5573.11, + "probability": 0.9598 + }, + { + "start": 5573.19, + "end": 5576.01, + "probability": 0.9836 + }, + { + "start": 5577.71, + "end": 5580.07, + "probability": 0.9215 + }, + { + "start": 5581.11, + "end": 5582.19, + "probability": 0.9331 + }, + { + "start": 5583.09, + "end": 5584.45, + "probability": 0.9644 + }, + { + "start": 5585.37, + "end": 5589.41, + "probability": 0.981 + }, + { + "start": 5591.15, + "end": 5594.93, + "probability": 0.8937 + }, + { + "start": 5596.69, + "end": 5602.83, + "probability": 0.9611 + }, + { + "start": 5603.53, + "end": 5607.23, + "probability": 0.9734 + }, + { + "start": 5608.23, + "end": 5613.79, + "probability": 0.9968 + }, + { + "start": 5614.29, + "end": 5614.89, + "probability": 0.5028 + }, + { + "start": 5615.47, + "end": 5616.79, + "probability": 0.8655 + }, + { + "start": 5619.23, + "end": 5621.23, + "probability": 0.9983 + }, + { + "start": 5622.23, + "end": 5630.79, + "probability": 0.9709 + }, + { + "start": 5631.47, + "end": 5633.61, + "probability": 0.9162 + }, + { + "start": 5634.67, + "end": 5635.57, + "probability": 0.8557 + }, + { + "start": 5636.77, + "end": 5637.57, + "probability": 0.9391 + }, + { + "start": 5638.53, + "end": 5643.05, + "probability": 0.9719 + }, + { + "start": 5643.79, + "end": 5644.23, + "probability": 0.0322 + }, + { + "start": 5644.61, + "end": 5644.71, + "probability": 0.3284 + }, + { + "start": 5644.71, + "end": 5647.67, + "probability": 0.6633 + }, + { + "start": 5648.43, + "end": 5649.83, + "probability": 0.8921 + }, + { + "start": 5650.05, + "end": 5654.93, + "probability": 0.8322 + }, + { + "start": 5655.81, + "end": 5655.89, + "probability": 0.1521 + }, + { + "start": 5655.89, + "end": 5661.39, + "probability": 0.8926 + }, + { + "start": 5661.79, + "end": 5663.53, + "probability": 0.8269 + }, + { + "start": 5664.01, + "end": 5665.67, + "probability": 0.8868 + }, + { + "start": 5666.19, + "end": 5668.91, + "probability": 0.9899 + }, + { + "start": 5670.01, + "end": 5672.15, + "probability": 0.0139 + }, + { + "start": 5672.15, + "end": 5672.15, + "probability": 0.0269 + }, + { + "start": 5672.15, + "end": 5672.15, + "probability": 0.0902 + }, + { + "start": 5672.15, + "end": 5673.59, + "probability": 0.3345 + }, + { + "start": 5674.17, + "end": 5679.71, + "probability": 0.9182 + }, + { + "start": 5681.45, + "end": 5683.27, + "probability": 0.8584 + }, + { + "start": 5683.57, + "end": 5688.33, + "probability": 0.8485 + }, + { + "start": 5688.33, + "end": 5693.29, + "probability": 0.9236 + }, + { + "start": 5694.05, + "end": 5694.39, + "probability": 0.7237 + }, + { + "start": 5694.95, + "end": 5697.41, + "probability": 0.9479 + }, + { + "start": 5697.95, + "end": 5701.03, + "probability": 0.8906 + }, + { + "start": 5701.63, + "end": 5702.59, + "probability": 0.8843 + }, + { + "start": 5703.81, + "end": 5711.63, + "probability": 0.7478 + }, + { + "start": 5711.79, + "end": 5716.95, + "probability": 0.5439 + }, + { + "start": 5717.93, + "end": 5718.41, + "probability": 0.1665 + }, + { + "start": 5718.51, + "end": 5719.11, + "probability": 0.8307 + }, + { + "start": 5719.59, + "end": 5723.69, + "probability": 0.939 + }, + { + "start": 5723.85, + "end": 5723.85, + "probability": 0.2825 + }, + { + "start": 5723.85, + "end": 5725.71, + "probability": 0.7631 + }, + { + "start": 5726.99, + "end": 5728.01, + "probability": 0.9399 + }, + { + "start": 5728.85, + "end": 5732.05, + "probability": 0.2283 + }, + { + "start": 5732.05, + "end": 5736.99, + "probability": 0.7473 + }, + { + "start": 5737.39, + "end": 5740.19, + "probability": 0.9819 + }, + { + "start": 5740.97, + "end": 5743.41, + "probability": 0.551 + }, + { + "start": 5743.45, + "end": 5748.11, + "probability": 0.9637 + }, + { + "start": 5748.11, + "end": 5752.97, + "probability": 0.9968 + }, + { + "start": 5753.55, + "end": 5757.33, + "probability": 0.9845 + }, + { + "start": 5757.33, + "end": 5762.87, + "probability": 0.9824 + }, + { + "start": 5763.21, + "end": 5764.23, + "probability": 0.8222 + }, + { + "start": 5764.67, + "end": 5768.41, + "probability": 0.7411 + }, + { + "start": 5768.89, + "end": 5774.25, + "probability": 0.7292 + }, + { + "start": 5775.69, + "end": 5780.97, + "probability": 0.987 + }, + { + "start": 5781.43, + "end": 5783.81, + "probability": 0.9602 + }, + { + "start": 5784.61, + "end": 5787.37, + "probability": 0.9595 + }, + { + "start": 5788.51, + "end": 5789.59, + "probability": 0.2631 + }, + { + "start": 5790.29, + "end": 5794.35, + "probability": 0.9284 + }, + { + "start": 5794.57, + "end": 5795.83, + "probability": 0.8701 + }, + { + "start": 5796.21, + "end": 5797.75, + "probability": 0.9211 + }, + { + "start": 5798.81, + "end": 5802.77, + "probability": 0.9592 + }, + { + "start": 5802.77, + "end": 5807.35, + "probability": 0.8445 + }, + { + "start": 5807.85, + "end": 5809.17, + "probability": 0.9736 + }, + { + "start": 5809.85, + "end": 5816.85, + "probability": 0.9162 + }, + { + "start": 5817.57, + "end": 5823.31, + "probability": 0.9202 + }, + { + "start": 5823.71, + "end": 5824.13, + "probability": 0.3226 + }, + { + "start": 5824.25, + "end": 5824.89, + "probability": 0.5263 + }, + { + "start": 5825.03, + "end": 5827.79, + "probability": 0.968 + }, + { + "start": 5828.21, + "end": 5828.99, + "probability": 0.827 + }, + { + "start": 5829.57, + "end": 5830.01, + "probability": 0.5911 + }, + { + "start": 5830.09, + "end": 5831.43, + "probability": 0.5226 + }, + { + "start": 5834.35, + "end": 5834.45, + "probability": 0.1745 + }, + { + "start": 5849.75, + "end": 5855.51, + "probability": 0.7998 + }, + { + "start": 5855.79, + "end": 5857.25, + "probability": 0.6913 + }, + { + "start": 5858.73, + "end": 5859.01, + "probability": 0.3302 + }, + { + "start": 5859.01, + "end": 5860.13, + "probability": 0.3928 + }, + { + "start": 5861.29, + "end": 5862.23, + "probability": 0.6232 + }, + { + "start": 5863.27, + "end": 5865.79, + "probability": 0.8422 + }, + { + "start": 5867.79, + "end": 5871.93, + "probability": 0.8305 + }, + { + "start": 5873.33, + "end": 5878.02, + "probability": 0.9587 + }, + { + "start": 5879.29, + "end": 5881.75, + "probability": 0.9589 + }, + { + "start": 5882.27, + "end": 5883.89, + "probability": 0.9767 + }, + { + "start": 5885.01, + "end": 5886.83, + "probability": 0.9956 + }, + { + "start": 5887.45, + "end": 5890.27, + "probability": 0.9642 + }, + { + "start": 5890.27, + "end": 5893.07, + "probability": 0.751 + }, + { + "start": 5894.19, + "end": 5894.73, + "probability": 0.6708 + }, + { + "start": 5895.89, + "end": 5901.49, + "probability": 0.9354 + }, + { + "start": 5901.49, + "end": 5904.65, + "probability": 0.8967 + }, + { + "start": 5906.47, + "end": 5909.67, + "probability": 0.895 + }, + { + "start": 5910.55, + "end": 5915.31, + "probability": 0.9691 + }, + { + "start": 5916.37, + "end": 5917.07, + "probability": 0.5784 + }, + { + "start": 5917.85, + "end": 5921.85, + "probability": 0.9452 + }, + { + "start": 5922.71, + "end": 5928.43, + "probability": 0.7927 + }, + { + "start": 5929.15, + "end": 5931.27, + "probability": 0.9483 + }, + { + "start": 5932.31, + "end": 5932.93, + "probability": 0.9871 + }, + { + "start": 5933.53, + "end": 5936.23, + "probability": 0.8173 + }, + { + "start": 5936.81, + "end": 5938.69, + "probability": 0.9639 + }, + { + "start": 5939.89, + "end": 5940.39, + "probability": 0.5016 + }, + { + "start": 5941.15, + "end": 5943.53, + "probability": 0.959 + }, + { + "start": 5944.41, + "end": 5950.66, + "probability": 0.978 + }, + { + "start": 5951.59, + "end": 5955.71, + "probability": 0.8548 + }, + { + "start": 5955.77, + "end": 5959.67, + "probability": 0.9518 + }, + { + "start": 5960.31, + "end": 5961.07, + "probability": 0.8971 + }, + { + "start": 5961.83, + "end": 5962.79, + "probability": 0.9821 + }, + { + "start": 5962.99, + "end": 5963.33, + "probability": 0.9044 + }, + { + "start": 5963.39, + "end": 5963.79, + "probability": 0.9799 + }, + { + "start": 5963.87, + "end": 5964.69, + "probability": 0.9663 + }, + { + "start": 5965.85, + "end": 5969.0, + "probability": 0.9682 + }, + { + "start": 5970.95, + "end": 5975.71, + "probability": 0.9912 + }, + { + "start": 5976.45, + "end": 5979.35, + "probability": 0.9989 + }, + { + "start": 5979.97, + "end": 5981.13, + "probability": 0.624 + }, + { + "start": 5981.33, + "end": 5985.87, + "probability": 0.9886 + }, + { + "start": 5987.31, + "end": 5991.15, + "probability": 0.9917 + }, + { + "start": 5992.01, + "end": 5995.97, + "probability": 0.9986 + }, + { + "start": 5995.97, + "end": 6000.63, + "probability": 0.9986 + }, + { + "start": 6001.65, + "end": 6005.31, + "probability": 0.9878 + }, + { + "start": 6005.99, + "end": 6008.99, + "probability": 0.9843 + }, + { + "start": 6009.59, + "end": 6012.47, + "probability": 0.956 + }, + { + "start": 6013.39, + "end": 6016.17, + "probability": 0.9839 + }, + { + "start": 6016.79, + "end": 6018.31, + "probability": 0.9321 + }, + { + "start": 6019.23, + "end": 6019.59, + "probability": 0.3318 + }, + { + "start": 6019.85, + "end": 6024.09, + "probability": 0.9681 + }, + { + "start": 6024.73, + "end": 6027.19, + "probability": 0.991 + }, + { + "start": 6027.77, + "end": 6030.21, + "probability": 0.9648 + }, + { + "start": 6030.93, + "end": 6034.21, + "probability": 0.8597 + }, + { + "start": 6034.97, + "end": 6039.13, + "probability": 0.9828 + }, + { + "start": 6040.53, + "end": 6044.59, + "probability": 0.8977 + }, + { + "start": 6045.53, + "end": 6048.27, + "probability": 0.7521 + }, + { + "start": 6049.27, + "end": 6051.63, + "probability": 0.9816 + }, + { + "start": 6052.43, + "end": 6053.67, + "probability": 0.9899 + }, + { + "start": 6054.35, + "end": 6056.65, + "probability": 0.8957 + }, + { + "start": 6057.09, + "end": 6058.87, + "probability": 0.9446 + }, + { + "start": 6061.03, + "end": 6062.31, + "probability": 0.8231 + }, + { + "start": 6062.41, + "end": 6064.99, + "probability": 0.9966 + }, + { + "start": 6065.27, + "end": 6066.01, + "probability": 0.8343 + }, + { + "start": 6066.77, + "end": 6067.73, + "probability": 0.8085 + }, + { + "start": 6068.33, + "end": 6070.83, + "probability": 0.9868 + }, + { + "start": 6070.83, + "end": 6072.81, + "probability": 0.9647 + }, + { + "start": 6073.73, + "end": 6074.59, + "probability": 0.8901 + }, + { + "start": 6075.39, + "end": 6078.05, + "probability": 0.9862 + }, + { + "start": 6078.11, + "end": 6080.27, + "probability": 0.9995 + }, + { + "start": 6081.35, + "end": 6081.77, + "probability": 0.8047 + }, + { + "start": 6083.27, + "end": 6086.35, + "probability": 0.9868 + }, + { + "start": 6087.51, + "end": 6088.77, + "probability": 0.8984 + }, + { + "start": 6089.65, + "end": 6090.85, + "probability": 0.9009 + }, + { + "start": 6091.53, + "end": 6095.71, + "probability": 0.9403 + }, + { + "start": 6096.55, + "end": 6098.85, + "probability": 0.9289 + }, + { + "start": 6098.85, + "end": 6101.57, + "probability": 0.9624 + }, + { + "start": 6102.27, + "end": 6104.37, + "probability": 0.9927 + }, + { + "start": 6105.31, + "end": 6106.51, + "probability": 0.8568 + }, + { + "start": 6107.09, + "end": 6110.49, + "probability": 0.9977 + }, + { + "start": 6111.77, + "end": 6112.31, + "probability": 0.8814 + }, + { + "start": 6112.97, + "end": 6114.21, + "probability": 0.7818 + }, + { + "start": 6114.73, + "end": 6116.07, + "probability": 0.9097 + }, + { + "start": 6116.75, + "end": 6119.87, + "probability": 0.97 + }, + { + "start": 6120.83, + "end": 6124.15, + "probability": 0.9856 + }, + { + "start": 6125.15, + "end": 6127.89, + "probability": 0.995 + }, + { + "start": 6128.53, + "end": 6131.45, + "probability": 0.9864 + }, + { + "start": 6132.11, + "end": 6132.91, + "probability": 0.4967 + }, + { + "start": 6133.21, + "end": 6137.57, + "probability": 0.9277 + }, + { + "start": 6138.47, + "end": 6141.15, + "probability": 0.9924 + }, + { + "start": 6142.15, + "end": 6144.93, + "probability": 0.9294 + }, + { + "start": 6145.63, + "end": 6146.27, + "probability": 0.9524 + }, + { + "start": 6146.69, + "end": 6147.19, + "probability": 0.9922 + }, + { + "start": 6147.53, + "end": 6148.31, + "probability": 0.981 + }, + { + "start": 6148.55, + "end": 6149.09, + "probability": 0.7918 + }, + { + "start": 6149.19, + "end": 6151.47, + "probability": 0.9838 + }, + { + "start": 6152.03, + "end": 6152.81, + "probability": 0.7732 + }, + { + "start": 6154.61, + "end": 6157.83, + "probability": 0.963 + }, + { + "start": 6157.89, + "end": 6158.45, + "probability": 0.5581 + }, + { + "start": 6158.53, + "end": 6159.11, + "probability": 0.9651 + }, + { + "start": 6159.69, + "end": 6161.43, + "probability": 0.9196 + }, + { + "start": 6161.79, + "end": 6162.49, + "probability": 0.8894 + }, + { + "start": 6162.93, + "end": 6163.29, + "probability": 0.9553 + }, + { + "start": 6163.77, + "end": 6164.21, + "probability": 0.9808 + }, + { + "start": 6164.65, + "end": 6166.03, + "probability": 0.926 + }, + { + "start": 6166.31, + "end": 6166.69, + "probability": 0.8464 + }, + { + "start": 6168.61, + "end": 6169.21, + "probability": 0.7909 + }, + { + "start": 6172.91, + "end": 6174.13, + "probability": 0.4397 + }, + { + "start": 6174.33, + "end": 6174.93, + "probability": 0.9245 + }, + { + "start": 6175.29, + "end": 6176.71, + "probability": 0.7466 + }, + { + "start": 6177.95, + "end": 6177.99, + "probability": 0.0276 + }, + { + "start": 6177.99, + "end": 6178.21, + "probability": 0.7965 + }, + { + "start": 6179.23, + "end": 6181.99, + "probability": 0.2679 + }, + { + "start": 6183.85, + "end": 6186.45, + "probability": 0.9248 + }, + { + "start": 6186.85, + "end": 6190.63, + "probability": 0.9922 + }, + { + "start": 6190.75, + "end": 6192.53, + "probability": 0.6788 + }, + { + "start": 6192.69, + "end": 6193.37, + "probability": 0.3056 + }, + { + "start": 6194.86, + "end": 6199.92, + "probability": 0.8072 + }, + { + "start": 6200.57, + "end": 6202.63, + "probability": 0.3183 + }, + { + "start": 6202.71, + "end": 6203.72, + "probability": 0.8299 + }, + { + "start": 6206.27, + "end": 6207.69, + "probability": 0.8992 + }, + { + "start": 6207.77, + "end": 6208.73, + "probability": 0.4957 + }, + { + "start": 6208.81, + "end": 6210.79, + "probability": 0.783 + }, + { + "start": 6211.05, + "end": 6212.41, + "probability": 0.7164 + }, + { + "start": 6212.63, + "end": 6215.65, + "probability": 0.5194 + }, + { + "start": 6215.85, + "end": 6216.77, + "probability": 0.3889 + }, + { + "start": 6217.41, + "end": 6218.05, + "probability": 0.7624 + }, + { + "start": 6218.53, + "end": 6219.77, + "probability": 0.2647 + }, + { + "start": 6221.19, + "end": 6223.15, + "probability": 0.4374 + }, + { + "start": 6224.11, + "end": 6224.11, + "probability": 0.0823 + }, + { + "start": 6224.11, + "end": 6224.57, + "probability": 0.5061 + }, + { + "start": 6224.89, + "end": 6225.19, + "probability": 0.722 + }, + { + "start": 6226.39, + "end": 6226.81, + "probability": 0.8404 + }, + { + "start": 6227.94, + "end": 6232.39, + "probability": 0.9703 + }, + { + "start": 6234.81, + "end": 6237.21, + "probability": 0.5532 + }, + { + "start": 6239.55, + "end": 6240.61, + "probability": 0.6956 + }, + { + "start": 6242.37, + "end": 6242.65, + "probability": 0.2984 + }, + { + "start": 6242.65, + "end": 6243.69, + "probability": 0.0067 + }, + { + "start": 6243.69, + "end": 6245.07, + "probability": 0.6979 + }, + { + "start": 6245.65, + "end": 6247.15, + "probability": 0.9681 + }, + { + "start": 6247.55, + "end": 6247.93, + "probability": 0.8718 + }, + { + "start": 6248.01, + "end": 6248.31, + "probability": 0.4672 + }, + { + "start": 6248.45, + "end": 6248.47, + "probability": 0.0 + }, + { + "start": 6250.14, + "end": 6251.97, + "probability": 0.7565 + }, + { + "start": 6252.39, + "end": 6253.41, + "probability": 0.9312 + }, + { + "start": 6255.29, + "end": 6255.39, + "probability": 0.4409 + }, + { + "start": 6258.01, + "end": 6260.23, + "probability": 0.6411 + }, + { + "start": 6263.75, + "end": 6265.43, + "probability": 0.7928 + }, + { + "start": 6265.57, + "end": 6267.05, + "probability": 0.5324 + }, + { + "start": 6267.17, + "end": 6267.81, + "probability": 0.4931 + }, + { + "start": 6268.49, + "end": 6269.49, + "probability": 0.8497 + }, + { + "start": 6269.53, + "end": 6272.59, + "probability": 0.882 + }, + { + "start": 6273.67, + "end": 6274.55, + "probability": 0.2834 + }, + { + "start": 6276.43, + "end": 6277.21, + "probability": 0.7933 + }, + { + "start": 6277.87, + "end": 6279.03, + "probability": 0.5759 + }, + { + "start": 6279.59, + "end": 6280.43, + "probability": 0.998 + }, + { + "start": 6281.11, + "end": 6285.35, + "probability": 0.8866 + }, + { + "start": 6286.05, + "end": 6286.47, + "probability": 0.5742 + }, + { + "start": 6287.79, + "end": 6290.17, + "probability": 0.7987 + }, + { + "start": 6290.39, + "end": 6294.51, + "probability": 0.9658 + }, + { + "start": 6294.55, + "end": 6299.87, + "probability": 0.7497 + }, + { + "start": 6300.55, + "end": 6303.49, + "probability": 0.9918 + }, + { + "start": 6304.97, + "end": 6311.49, + "probability": 0.6524 + }, + { + "start": 6312.13, + "end": 6312.69, + "probability": 0.4389 + }, + { + "start": 6313.83, + "end": 6317.81, + "probability": 0.8347 + }, + { + "start": 6318.59, + "end": 6319.27, + "probability": 0.8181 + }, + { + "start": 6321.27, + "end": 6324.49, + "probability": 0.9989 + }, + { + "start": 6324.65, + "end": 6325.99, + "probability": 0.9976 + }, + { + "start": 6326.63, + "end": 6336.5, + "probability": 0.4754 + }, + { + "start": 6337.93, + "end": 6341.07, + "probability": 0.9046 + }, + { + "start": 6341.45, + "end": 6341.77, + "probability": 0.7946 + }, + { + "start": 6344.22, + "end": 6348.53, + "probability": 0.6532 + }, + { + "start": 6350.13, + "end": 6356.89, + "probability": 0.8101 + }, + { + "start": 6357.55, + "end": 6362.35, + "probability": 0.9875 + }, + { + "start": 6362.43, + "end": 6363.05, + "probability": 0.8437 + }, + { + "start": 6364.51, + "end": 6366.11, + "probability": 0.8368 + }, + { + "start": 6366.75, + "end": 6370.73, + "probability": 0.8833 + }, + { + "start": 6371.85, + "end": 6372.81, + "probability": 0.6428 + }, + { + "start": 6373.83, + "end": 6378.15, + "probability": 0.9965 + }, + { + "start": 6378.81, + "end": 6380.05, + "probability": 0.9977 + }, + { + "start": 6380.73, + "end": 6384.81, + "probability": 0.8904 + }, + { + "start": 6385.85, + "end": 6388.89, + "probability": 0.9727 + }, + { + "start": 6389.27, + "end": 6390.69, + "probability": 0.7648 + }, + { + "start": 6391.77, + "end": 6395.77, + "probability": 0.9011 + }, + { + "start": 6396.47, + "end": 6401.51, + "probability": 0.8953 + }, + { + "start": 6401.81, + "end": 6403.75, + "probability": 0.6704 + }, + { + "start": 6404.35, + "end": 6405.79, + "probability": 0.9794 + }, + { + "start": 6406.41, + "end": 6408.81, + "probability": 0.9769 + }, + { + "start": 6409.65, + "end": 6410.83, + "probability": 0.9478 + }, + { + "start": 6412.13, + "end": 6416.35, + "probability": 0.9669 + }, + { + "start": 6416.91, + "end": 6419.59, + "probability": 0.8384 + }, + { + "start": 6419.59, + "end": 6422.85, + "probability": 0.9905 + }, + { + "start": 6423.35, + "end": 6427.23, + "probability": 0.9732 + }, + { + "start": 6429.65, + "end": 6430.65, + "probability": 0.1691 + }, + { + "start": 6432.01, + "end": 6433.21, + "probability": 0.8413 + }, + { + "start": 6434.15, + "end": 6438.23, + "probability": 0.7528 + }, + { + "start": 6439.15, + "end": 6445.25, + "probability": 0.9871 + }, + { + "start": 6445.75, + "end": 6451.23, + "probability": 0.9947 + }, + { + "start": 6451.23, + "end": 6456.73, + "probability": 0.9784 + }, + { + "start": 6457.15, + "end": 6457.39, + "probability": 0.7269 + }, + { + "start": 6458.29, + "end": 6463.03, + "probability": 0.799 + }, + { + "start": 6463.17, + "end": 6464.98, + "probability": 0.9927 + }, + { + "start": 6468.15, + "end": 6468.63, + "probability": 0.6936 + }, + { + "start": 6469.01, + "end": 6472.15, + "probability": 0.6961 + }, + { + "start": 6472.15, + "end": 6474.37, + "probability": 0.5201 + }, + { + "start": 6474.73, + "end": 6475.51, + "probability": 0.6436 + }, + { + "start": 6475.71, + "end": 6476.65, + "probability": 0.896 + }, + { + "start": 6476.69, + "end": 6477.72, + "probability": 0.8719 + }, + { + "start": 6480.15, + "end": 6481.46, + "probability": 0.9971 + }, + { + "start": 6481.99, + "end": 6482.75, + "probability": 0.3687 + }, + { + "start": 6483.43, + "end": 6483.43, + "probability": 0.1173 + }, + { + "start": 6483.53, + "end": 6484.37, + "probability": 0.5289 + }, + { + "start": 6484.95, + "end": 6487.75, + "probability": 0.8196 + }, + { + "start": 6488.43, + "end": 6491.95, + "probability": 0.8017 + }, + { + "start": 6492.15, + "end": 6494.05, + "probability": 0.5584 + }, + { + "start": 6494.83, + "end": 6496.69, + "probability": 0.3512 + }, + { + "start": 6497.43, + "end": 6498.47, + "probability": 0.4651 + }, + { + "start": 6500.99, + "end": 6503.33, + "probability": 0.2751 + }, + { + "start": 6504.61, + "end": 6508.63, + "probability": 0.9909 + }, + { + "start": 6509.21, + "end": 6510.41, + "probability": 0.7499 + }, + { + "start": 6511.29, + "end": 6512.39, + "probability": 0.6442 + }, + { + "start": 6512.53, + "end": 6517.41, + "probability": 0.8288 + }, + { + "start": 6517.41, + "end": 6518.63, + "probability": 0.5049 + }, + { + "start": 6518.87, + "end": 6518.87, + "probability": 0.0804 + }, + { + "start": 6518.87, + "end": 6519.41, + "probability": 0.0371 + }, + { + "start": 6519.51, + "end": 6523.55, + "probability": 0.5349 + }, + { + "start": 6525.27, + "end": 6530.37, + "probability": 0.8459 + }, + { + "start": 6532.01, + "end": 6533.87, + "probability": 0.3782 + }, + { + "start": 6534.13, + "end": 6536.63, + "probability": 0.8917 + }, + { + "start": 6537.99, + "end": 6540.1, + "probability": 0.5962 + }, + { + "start": 6540.29, + "end": 6542.83, + "probability": 0.7929 + }, + { + "start": 6543.83, + "end": 6545.81, + "probability": 0.9935 + }, + { + "start": 6545.89, + "end": 6547.23, + "probability": 0.6308 + }, + { + "start": 6547.39, + "end": 6548.89, + "probability": 0.9927 + }, + { + "start": 6549.51, + "end": 6553.53, + "probability": 0.6881 + }, + { + "start": 6553.75, + "end": 6555.09, + "probability": 0.5 + }, + { + "start": 6555.61, + "end": 6556.07, + "probability": 0.6048 + }, + { + "start": 6556.63, + "end": 6558.75, + "probability": 0.8363 + }, + { + "start": 6558.75, + "end": 6561.91, + "probability": 0.8195 + }, + { + "start": 6562.07, + "end": 6562.77, + "probability": 0.7767 + }, + { + "start": 6563.49, + "end": 6563.77, + "probability": 0.4772 + }, + { + "start": 6565.13, + "end": 6567.55, + "probability": 0.6688 + }, + { + "start": 6568.91, + "end": 6569.51, + "probability": 0.9 + }, + { + "start": 6571.37, + "end": 6576.13, + "probability": 0.6701 + }, + { + "start": 6576.99, + "end": 6579.09, + "probability": 0.8987 + }, + { + "start": 6580.03, + "end": 6583.25, + "probability": 0.8306 + }, + { + "start": 6584.81, + "end": 6585.85, + "probability": 0.8994 + }, + { + "start": 6587.11, + "end": 6590.25, + "probability": 0.6783 + }, + { + "start": 6590.83, + "end": 6590.93, + "probability": 0.023 + }, + { + "start": 6591.11, + "end": 6594.53, + "probability": 0.8125 + }, + { + "start": 6594.95, + "end": 6596.67, + "probability": 0.9907 + }, + { + "start": 6597.99, + "end": 6600.49, + "probability": 0.8756 + }, + { + "start": 6601.55, + "end": 6603.95, + "probability": 0.6966 + }, + { + "start": 6604.11, + "end": 6604.97, + "probability": 0.7712 + }, + { + "start": 6605.27, + "end": 6607.55, + "probability": 0.9718 + }, + { + "start": 6608.17, + "end": 6608.67, + "probability": 0.2297 + }, + { + "start": 6608.89, + "end": 6608.89, + "probability": 0.0244 + }, + { + "start": 6614.75, + "end": 6617.79, + "probability": 0.939 + }, + { + "start": 6617.81, + "end": 6619.27, + "probability": 0.6107 + }, + { + "start": 6619.47, + "end": 6620.47, + "probability": 0.7065 + }, + { + "start": 6621.13, + "end": 6622.11, + "probability": 0.9883 + }, + { + "start": 6622.41, + "end": 6624.15, + "probability": 0.9888 + }, + { + "start": 6624.47, + "end": 6624.85, + "probability": 0.8022 + }, + { + "start": 6625.13, + "end": 6626.57, + "probability": 0.8359 + }, + { + "start": 6627.07, + "end": 6631.03, + "probability": 0.6967 + }, + { + "start": 6631.21, + "end": 6631.69, + "probability": 0.7026 + }, + { + "start": 6632.21, + "end": 6634.03, + "probability": 0.7572 + }, + { + "start": 6634.61, + "end": 6639.65, + "probability": 0.5343 + }, + { + "start": 6640.25, + "end": 6643.73, + "probability": 0.8761 + }, + { + "start": 6643.91, + "end": 6645.3, + "probability": 0.2275 + }, + { + "start": 6646.15, + "end": 6649.21, + "probability": 0.835 + }, + { + "start": 6650.65, + "end": 6653.77, + "probability": 0.7553 + }, + { + "start": 6653.79, + "end": 6658.01, + "probability": 0.9951 + }, + { + "start": 6658.81, + "end": 6662.33, + "probability": 0.9474 + }, + { + "start": 6662.85, + "end": 6664.79, + "probability": 0.9677 + }, + { + "start": 6665.27, + "end": 6667.35, + "probability": 0.9792 + }, + { + "start": 6668.53, + "end": 6670.75, + "probability": 0.5574 + }, + { + "start": 6670.91, + "end": 6673.05, + "probability": 0.944 + }, + { + "start": 6675.01, + "end": 6675.89, + "probability": 0.7291 + }, + { + "start": 6676.03, + "end": 6677.25, + "probability": 0.6894 + }, + { + "start": 6677.31, + "end": 6679.4, + "probability": 0.9067 + }, + { + "start": 6681.09, + "end": 6683.75, + "probability": 0.7998 + }, + { + "start": 6683.75, + "end": 6686.01, + "probability": 0.6408 + }, + { + "start": 6686.63, + "end": 6689.01, + "probability": 0.8292 + }, + { + "start": 6689.01, + "end": 6693.41, + "probability": 0.9495 + }, + { + "start": 6693.57, + "end": 6695.23, + "probability": 0.9149 + }, + { + "start": 6697.13, + "end": 6699.83, + "probability": 0.3328 + }, + { + "start": 6699.83, + "end": 6701.83, + "probability": 0.6573 + }, + { + "start": 6702.43, + "end": 6703.41, + "probability": 0.8033 + }, + { + "start": 6704.21, + "end": 6704.65, + "probability": 0.5754 + }, + { + "start": 6704.73, + "end": 6708.13, + "probability": 0.7138 + }, + { + "start": 6708.13, + "end": 6711.41, + "probability": 0.9552 + }, + { + "start": 6712.43, + "end": 6714.21, + "probability": 0.8874 + }, + { + "start": 6714.43, + "end": 6717.07, + "probability": 0.802 + }, + { + "start": 6717.21, + "end": 6717.93, + "probability": 0.7869 + }, + { + "start": 6718.69, + "end": 6722.17, + "probability": 0.9782 + }, + { + "start": 6723.15, + "end": 6727.93, + "probability": 0.7995 + }, + { + "start": 6727.93, + "end": 6730.73, + "probability": 0.5225 + }, + { + "start": 6731.63, + "end": 6734.35, + "probability": 0.7032 + }, + { + "start": 6734.99, + "end": 6737.71, + "probability": 0.8733 + }, + { + "start": 6738.95, + "end": 6741.37, + "probability": 0.5636 + }, + { + "start": 6741.62, + "end": 6742.53, + "probability": 0.7236 + }, + { + "start": 6742.95, + "end": 6743.29, + "probability": 0.3054 + }, + { + "start": 6743.33, + "end": 6743.81, + "probability": 0.4651 + }, + { + "start": 6743.89, + "end": 6744.09, + "probability": 0.7136 + }, + { + "start": 6745.81, + "end": 6747.35, + "probability": 0.9847 + }, + { + "start": 6747.95, + "end": 6750.87, + "probability": 0.8346 + }, + { + "start": 6752.15, + "end": 6753.61, + "probability": 0.6912 + }, + { + "start": 6755.05, + "end": 6756.79, + "probability": 0.7192 + }, + { + "start": 6757.45, + "end": 6759.33, + "probability": 0.4923 + }, + { + "start": 6760.29, + "end": 6761.13, + "probability": 0.729 + }, + { + "start": 6762.29, + "end": 6766.01, + "probability": 0.8597 + }, + { + "start": 6766.33, + "end": 6767.19, + "probability": 0.669 + }, + { + "start": 6769.41, + "end": 6770.67, + "probability": 0.6471 + }, + { + "start": 6771.23, + "end": 6774.9, + "probability": 0.8811 + }, + { + "start": 6775.69, + "end": 6780.33, + "probability": 0.6473 + }, + { + "start": 6780.53, + "end": 6781.75, + "probability": 0.6388 + }, + { + "start": 6781.83, + "end": 6784.17, + "probability": 0.8943 + }, + { + "start": 6785.07, + "end": 6786.51, + "probability": 0.461 + }, + { + "start": 6787.35, + "end": 6790.51, + "probability": 0.7702 + }, + { + "start": 6792.05, + "end": 6794.89, + "probability": 0.7456 + }, + { + "start": 6794.91, + "end": 6795.37, + "probability": 0.445 + }, + { + "start": 6795.81, + "end": 6797.61, + "probability": 0.8618 + }, + { + "start": 6801.57, + "end": 6802.57, + "probability": 0.5096 + }, + { + "start": 6803.13, + "end": 6804.31, + "probability": 0.8728 + }, + { + "start": 6811.95, + "end": 6812.21, + "probability": 0.0432 + }, + { + "start": 6812.43, + "end": 6813.59, + "probability": 0.7287 + }, + { + "start": 6813.99, + "end": 6817.29, + "probability": 0.621 + }, + { + "start": 6818.01, + "end": 6821.83, + "probability": 0.8723 + }, + { + "start": 6822.85, + "end": 6823.55, + "probability": 0.7987 + }, + { + "start": 6824.19, + "end": 6825.49, + "probability": 0.9971 + }, + { + "start": 6826.23, + "end": 6831.11, + "probability": 0.8849 + }, + { + "start": 6832.31, + "end": 6836.21, + "probability": 0.8451 + }, + { + "start": 6836.29, + "end": 6836.85, + "probability": 0.8035 + }, + { + "start": 6839.01, + "end": 6841.89, + "probability": 0.73 + }, + { + "start": 6842.25, + "end": 6843.29, + "probability": 0.8356 + }, + { + "start": 6843.41, + "end": 6844.57, + "probability": 0.774 + }, + { + "start": 6844.95, + "end": 6845.63, + "probability": 0.3355 + }, + { + "start": 6846.07, + "end": 6849.87, + "probability": 0.6529 + }, + { + "start": 6850.11, + "end": 6851.51, + "probability": 0.7371 + }, + { + "start": 6852.11, + "end": 6855.83, + "probability": 0.8949 + }, + { + "start": 6856.61, + "end": 6857.65, + "probability": 0.816 + }, + { + "start": 6857.77, + "end": 6858.03, + "probability": 0.4249 + }, + { + "start": 6858.11, + "end": 6859.17, + "probability": 0.7864 + }, + { + "start": 6859.23, + "end": 6863.31, + "probability": 0.5251 + }, + { + "start": 6863.31, + "end": 6866.39, + "probability": 0.9945 + }, + { + "start": 6867.05, + "end": 6870.21, + "probability": 0.7752 + }, + { + "start": 6870.97, + "end": 6871.98, + "probability": 0.0819 + }, + { + "start": 6872.21, + "end": 6872.83, + "probability": 0.7358 + }, + { + "start": 6872.97, + "end": 6875.93, + "probability": 0.9034 + }, + { + "start": 6875.93, + "end": 6876.67, + "probability": 0.9437 + }, + { + "start": 6877.58, + "end": 6878.41, + "probability": 0.3377 + }, + { + "start": 6878.55, + "end": 6879.61, + "probability": 0.8149 + }, + { + "start": 6880.37, + "end": 6881.27, + "probability": 0.8645 + }, + { + "start": 6881.37, + "end": 6884.49, + "probability": 0.8792 + }, + { + "start": 6885.15, + "end": 6885.79, + "probability": 0.9656 + }, + { + "start": 6886.29, + "end": 6888.35, + "probability": 0.9117 + }, + { + "start": 6888.83, + "end": 6892.71, + "probability": 0.8951 + }, + { + "start": 6892.77, + "end": 6893.61, + "probability": 0.9685 + }, + { + "start": 6894.67, + "end": 6896.05, + "probability": 0.9338 + }, + { + "start": 6896.75, + "end": 6898.33, + "probability": 0.4504 + }, + { + "start": 6898.63, + "end": 6900.85, + "probability": 0.7067 + }, + { + "start": 6901.03, + "end": 6903.17, + "probability": 0.9744 + }, + { + "start": 6904.05, + "end": 6906.87, + "probability": 0.1594 + }, + { + "start": 6906.89, + "end": 6907.67, + "probability": 0.7301 + }, + { + "start": 6907.69, + "end": 6908.93, + "probability": 0.9586 + }, + { + "start": 6911.71, + "end": 6914.43, + "probability": 0.6592 + }, + { + "start": 6915.29, + "end": 6916.55, + "probability": 0.6733 + }, + { + "start": 6916.83, + "end": 6919.87, + "probability": 0.9757 + }, + { + "start": 6920.93, + "end": 6922.75, + "probability": 0.6684 + }, + { + "start": 6922.93, + "end": 6924.95, + "probability": 0.8164 + }, + { + "start": 6925.61, + "end": 6926.83, + "probability": 0.9494 + }, + { + "start": 6927.35, + "end": 6927.73, + "probability": 0.5588 + }, + { + "start": 6928.25, + "end": 6929.53, + "probability": 0.8285 + }, + { + "start": 6930.27, + "end": 6936.29, + "probability": 0.9342 + }, + { + "start": 6937.57, + "end": 6939.91, + "probability": 0.9153 + }, + { + "start": 6940.31, + "end": 6941.47, + "probability": 0.4993 + }, + { + "start": 6942.21, + "end": 6944.85, + "probability": 0.8076 + }, + { + "start": 6945.99, + "end": 6947.21, + "probability": 0.9543 + }, + { + "start": 6948.39, + "end": 6948.99, + "probability": 0.8584 + }, + { + "start": 6949.43, + "end": 6951.33, + "probability": 0.7678 + }, + { + "start": 6952.55, + "end": 6956.03, + "probability": 0.5348 + }, + { + "start": 6956.19, + "end": 6958.99, + "probability": 0.682 + }, + { + "start": 6959.29, + "end": 6959.57, + "probability": 0.7485 + }, + { + "start": 6960.23, + "end": 6960.77, + "probability": 0.5505 + }, + { + "start": 6961.85, + "end": 6965.85, + "probability": 0.5742 + }, + { + "start": 6965.99, + "end": 6966.45, + "probability": 0.6484 + }, + { + "start": 6967.17, + "end": 6969.86, + "probability": 0.8989 + }, + { + "start": 6971.28, + "end": 6973.1, + "probability": 0.385 + }, + { + "start": 6973.47, + "end": 6976.47, + "probability": 0.8702 + }, + { + "start": 6976.57, + "end": 6978.19, + "probability": 0.8792 + }, + { + "start": 6978.61, + "end": 6979.27, + "probability": 0.7958 + }, + { + "start": 6979.79, + "end": 6982.79, + "probability": 0.9495 + }, + { + "start": 6983.03, + "end": 6983.77, + "probability": 0.6392 + }, + { + "start": 6983.93, + "end": 6985.29, + "probability": 0.4856 + }, + { + "start": 6985.67, + "end": 6986.77, + "probability": 0.8667 + }, + { + "start": 6986.87, + "end": 6987.68, + "probability": 0.9932 + }, + { + "start": 6988.29, + "end": 6989.41, + "probability": 0.7157 + }, + { + "start": 6991.78, + "end": 6994.55, + "probability": 0.5148 + }, + { + "start": 6994.95, + "end": 6995.95, + "probability": 0.7348 + }, + { + "start": 6996.71, + "end": 6998.07, + "probability": 0.8637 + }, + { + "start": 6998.13, + "end": 6999.35, + "probability": 0.9567 + }, + { + "start": 6999.45, + "end": 6999.81, + "probability": 0.5351 + }, + { + "start": 7001.17, + "end": 7004.29, + "probability": 0.6929 + }, + { + "start": 7004.31, + "end": 7010.45, + "probability": 0.9099 + }, + { + "start": 7011.01, + "end": 7012.63, + "probability": 0.875 + }, + { + "start": 7013.81, + "end": 7017.17, + "probability": 0.8413 + }, + { + "start": 7018.83, + "end": 7019.77, + "probability": 0.8478 + }, + { + "start": 7019.85, + "end": 7021.61, + "probability": 0.4182 + }, + { + "start": 7021.61, + "end": 7025.69, + "probability": 0.445 + }, + { + "start": 7025.79, + "end": 7026.31, + "probability": 0.219 + }, + { + "start": 7026.67, + "end": 7027.41, + "probability": 0.5348 + }, + { + "start": 7028.03, + "end": 7029.23, + "probability": 0.0699 + }, + { + "start": 7029.77, + "end": 7033.43, + "probability": 0.5471 + }, + { + "start": 7034.22, + "end": 7036.45, + "probability": 0.8042 + }, + { + "start": 7036.95, + "end": 7038.09, + "probability": 0.697 + }, + { + "start": 7039.27, + "end": 7041.33, + "probability": 0.7397 + }, + { + "start": 7041.99, + "end": 7043.79, + "probability": 0.4967 + }, + { + "start": 7043.89, + "end": 7044.77, + "probability": 0.9523 + }, + { + "start": 7045.69, + "end": 7046.55, + "probability": 0.5828 + }, + { + "start": 7053.11, + "end": 7055.01, + "probability": 0.6389 + }, + { + "start": 7055.57, + "end": 7055.99, + "probability": 0.2649 + }, + { + "start": 7057.31, + "end": 7057.52, + "probability": 0.5161 + }, + { + "start": 7058.75, + "end": 7061.13, + "probability": 0.3486 + }, + { + "start": 7061.27, + "end": 7062.09, + "probability": 0.7643 + }, + { + "start": 7062.55, + "end": 7066.09, + "probability": 0.993 + }, + { + "start": 7066.97, + "end": 7068.95, + "probability": 0.991 + }, + { + "start": 7070.11, + "end": 7072.69, + "probability": 0.9993 + }, + { + "start": 7072.69, + "end": 7076.69, + "probability": 0.8302 + }, + { + "start": 7077.57, + "end": 7082.83, + "probability": 0.5794 + }, + { + "start": 7082.97, + "end": 7085.51, + "probability": 0.9678 + }, + { + "start": 7086.65, + "end": 7091.53, + "probability": 0.994 + }, + { + "start": 7091.67, + "end": 7095.05, + "probability": 0.8748 + }, + { + "start": 7095.85, + "end": 7101.59, + "probability": 0.8701 + }, + { + "start": 7102.13, + "end": 7105.73, + "probability": 0.8929 + }, + { + "start": 7107.21, + "end": 7109.35, + "probability": 0.7121 + }, + { + "start": 7109.35, + "end": 7111.73, + "probability": 0.9948 + }, + { + "start": 7112.69, + "end": 7115.75, + "probability": 0.9191 + }, + { + "start": 7115.91, + "end": 7120.05, + "probability": 0.993 + }, + { + "start": 7120.63, + "end": 7125.31, + "probability": 0.6451 + }, + { + "start": 7126.75, + "end": 7127.41, + "probability": 0.6102 + }, + { + "start": 7127.88, + "end": 7131.78, + "probability": 0.7709 + }, + { + "start": 7132.63, + "end": 7135.07, + "probability": 0.8598 + }, + { + "start": 7135.45, + "end": 7137.87, + "probability": 0.7587 + }, + { + "start": 7137.87, + "end": 7140.51, + "probability": 0.9889 + }, + { + "start": 7140.99, + "end": 7143.33, + "probability": 0.9044 + }, + { + "start": 7143.33, + "end": 7147.65, + "probability": 0.9626 + }, + { + "start": 7148.35, + "end": 7149.07, + "probability": 0.975 + }, + { + "start": 7150.37, + "end": 7154.89, + "probability": 0.976 + }, + { + "start": 7155.47, + "end": 7158.91, + "probability": 0.9411 + }, + { + "start": 7160.11, + "end": 7164.23, + "probability": 0.9419 + }, + { + "start": 7165.23, + "end": 7167.43, + "probability": 0.7051 + }, + { + "start": 7167.49, + "end": 7170.63, + "probability": 0.9832 + }, + { + "start": 7171.09, + "end": 7175.73, + "probability": 0.8434 + }, + { + "start": 7176.25, + "end": 7176.59, + "probability": 0.2581 + }, + { + "start": 7177.11, + "end": 7177.69, + "probability": 0.9625 + }, + { + "start": 7178.19, + "end": 7181.81, + "probability": 0.804 + }, + { + "start": 7182.41, + "end": 7185.91, + "probability": 0.989 + }, + { + "start": 7186.37, + "end": 7186.77, + "probability": 0.7463 + }, + { + "start": 7187.79, + "end": 7191.23, + "probability": 0.9388 + }, + { + "start": 7191.23, + "end": 7194.63, + "probability": 0.8389 + }, + { + "start": 7196.11, + "end": 7199.49, + "probability": 0.9934 + }, + { + "start": 7200.55, + "end": 7203.59, + "probability": 0.8311 + }, + { + "start": 7203.59, + "end": 7208.29, + "probability": 0.8343 + }, + { + "start": 7208.89, + "end": 7211.95, + "probability": 0.9308 + }, + { + "start": 7212.37, + "end": 7214.25, + "probability": 0.9383 + }, + { + "start": 7214.63, + "end": 7215.33, + "probability": 0.8325 + }, + { + "start": 7215.57, + "end": 7219.03, + "probability": 0.8342 + }, + { + "start": 7219.51, + "end": 7220.8, + "probability": 0.8974 + }, + { + "start": 7221.05, + "end": 7222.37, + "probability": 0.8179 + }, + { + "start": 7222.49, + "end": 7222.75, + "probability": 0.9705 + }, + { + "start": 7223.01, + "end": 7223.33, + "probability": 0.3884 + }, + { + "start": 7223.39, + "end": 7224.03, + "probability": 0.4356 + }, + { + "start": 7224.27, + "end": 7228.49, + "probability": 0.7284 + }, + { + "start": 7228.75, + "end": 7234.99, + "probability": 0.7841 + }, + { + "start": 7235.29, + "end": 7239.59, + "probability": 0.7715 + }, + { + "start": 7239.83, + "end": 7240.45, + "probability": 0.6604 + }, + { + "start": 7240.51, + "end": 7240.61, + "probability": 0.4655 + }, + { + "start": 7241.11, + "end": 7242.61, + "probability": 0.7056 + }, + { + "start": 7243.07, + "end": 7247.61, + "probability": 0.9312 + }, + { + "start": 7248.97, + "end": 7252.83, + "probability": 0.7656 + }, + { + "start": 7253.95, + "end": 7256.41, + "probability": 0.844 + }, + { + "start": 7256.57, + "end": 7261.53, + "probability": 0.7645 + }, + { + "start": 7261.59, + "end": 7263.05, + "probability": 0.6397 + }, + { + "start": 7263.81, + "end": 7266.79, + "probability": 0.7461 + }, + { + "start": 7267.43, + "end": 7269.67, + "probability": 0.812 + }, + { + "start": 7269.79, + "end": 7272.99, + "probability": 0.5745 + }, + { + "start": 7273.43, + "end": 7277.07, + "probability": 0.7058 + }, + { + "start": 7277.17, + "end": 7282.65, + "probability": 0.6937 + }, + { + "start": 7283.63, + "end": 7287.99, + "probability": 0.8655 + }, + { + "start": 7288.25, + "end": 7291.29, + "probability": 0.8527 + }, + { + "start": 7291.95, + "end": 7298.91, + "probability": 0.4492 + }, + { + "start": 7299.27, + "end": 7300.57, + "probability": 0.9777 + }, + { + "start": 7301.21, + "end": 7304.09, + "probability": 0.9631 + }, + { + "start": 7304.37, + "end": 7306.65, + "probability": 0.7093 + }, + { + "start": 7309.23, + "end": 7309.57, + "probability": 0.281 + }, + { + "start": 7309.83, + "end": 7311.35, + "probability": 0.6641 + }, + { + "start": 7311.43, + "end": 7311.61, + "probability": 0.0223 + }, + { + "start": 7311.81, + "end": 7312.87, + "probability": 0.197 + }, + { + "start": 7313.17, + "end": 7314.03, + "probability": 0.0787 + }, + { + "start": 7314.03, + "end": 7314.57, + "probability": 0.4139 + }, + { + "start": 7316.51, + "end": 7317.55, + "probability": 0.4187 + }, + { + "start": 7326.73, + "end": 7328.83, + "probability": 0.9692 + }, + { + "start": 7330.09, + "end": 7330.48, + "probability": 0.4315 + }, + { + "start": 7330.83, + "end": 7332.71, + "probability": 0.3907 + }, + { + "start": 7333.35, + "end": 7337.11, + "probability": 0.8626 + }, + { + "start": 7337.71, + "end": 7339.47, + "probability": 0.9931 + }, + { + "start": 7340.81, + "end": 7345.61, + "probability": 0.9673 + }, + { + "start": 7347.55, + "end": 7350.61, + "probability": 0.999 + }, + { + "start": 7351.06, + "end": 7358.97, + "probability": 0.869 + }, + { + "start": 7359.09, + "end": 7359.25, + "probability": 0.8928 + }, + { + "start": 7359.87, + "end": 7361.97, + "probability": 0.9886 + }, + { + "start": 7362.45, + "end": 7364.03, + "probability": 0.9997 + }, + { + "start": 7364.67, + "end": 7368.46, + "probability": 0.81 + }, + { + "start": 7369.69, + "end": 7371.23, + "probability": 0.7899 + }, + { + "start": 7371.29, + "end": 7372.93, + "probability": 0.9926 + }, + { + "start": 7374.12, + "end": 7376.31, + "probability": 0.7438 + }, + { + "start": 7376.41, + "end": 7379.57, + "probability": 0.9395 + }, + { + "start": 7380.73, + "end": 7381.55, + "probability": 0.5997 + }, + { + "start": 7383.95, + "end": 7385.61, + "probability": 0.499 + }, + { + "start": 7386.47, + "end": 7391.63, + "probability": 0.8467 + }, + { + "start": 7413.01, + "end": 7416.05, + "probability": 0.8024 + }, + { + "start": 7417.61, + "end": 7419.89, + "probability": 0.6707 + }, + { + "start": 7420.59, + "end": 7423.49, + "probability": 0.4205 + }, + { + "start": 7424.07, + "end": 7427.67, + "probability": 0.4971 + }, + { + "start": 7428.95, + "end": 7430.33, + "probability": 0.426 + }, + { + "start": 7431.01, + "end": 7431.75, + "probability": 0.5993 + }, + { + "start": 7431.81, + "end": 7434.76, + "probability": 0.8138 + }, + { + "start": 7435.97, + "end": 7439.59, + "probability": 0.9683 + }, + { + "start": 7440.57, + "end": 7443.4, + "probability": 0.6681 + }, + { + "start": 7444.91, + "end": 7447.89, + "probability": 0.8641 + }, + { + "start": 7448.51, + "end": 7449.79, + "probability": 0.6491 + }, + { + "start": 7451.23, + "end": 7453.73, + "probability": 0.9023 + }, + { + "start": 7454.45, + "end": 7454.75, + "probability": 0.8835 + }, + { + "start": 7455.01, + "end": 7460.35, + "probability": 0.8704 + }, + { + "start": 7461.63, + "end": 7467.23, + "probability": 0.9232 + }, + { + "start": 7467.23, + "end": 7469.61, + "probability": 0.8142 + }, + { + "start": 7469.79, + "end": 7470.01, + "probability": 0.5161 + }, + { + "start": 7471.03, + "end": 7472.09, + "probability": 0.7887 + }, + { + "start": 7472.23, + "end": 7474.35, + "probability": 0.8183 + }, + { + "start": 7475.15, + "end": 7478.01, + "probability": 0.609 + }, + { + "start": 7478.07, + "end": 7480.15, + "probability": 0.7168 + }, + { + "start": 7481.23, + "end": 7483.61, + "probability": 0.6246 + }, + { + "start": 7485.35, + "end": 7489.03, + "probability": 0.8136 + }, + { + "start": 7489.07, + "end": 7489.67, + "probability": 0.6242 + }, + { + "start": 7489.73, + "end": 7490.19, + "probability": 0.9538 + }, + { + "start": 7490.49, + "end": 7494.87, + "probability": 0.5209 + }, + { + "start": 7495.67, + "end": 7497.82, + "probability": 0.9042 + }, + { + "start": 7498.69, + "end": 7502.03, + "probability": 0.3659 + }, + { + "start": 7502.15, + "end": 7509.15, + "probability": 0.9421 + }, + { + "start": 7509.41, + "end": 7513.79, + "probability": 0.9028 + }, + { + "start": 7513.79, + "end": 7516.03, + "probability": 0.6156 + }, + { + "start": 7518.01, + "end": 7520.07, + "probability": 0.8862 + }, + { + "start": 7522.79, + "end": 7524.85, + "probability": 0.4683 + }, + { + "start": 7524.85, + "end": 7527.51, + "probability": 0.4778 + }, + { + "start": 7528.15, + "end": 7532.47, + "probability": 0.7913 + }, + { + "start": 7532.47, + "end": 7537.33, + "probability": 0.9279 + }, + { + "start": 7538.29, + "end": 7542.21, + "probability": 0.9039 + }, + { + "start": 7542.67, + "end": 7543.97, + "probability": 0.7916 + }, + { + "start": 7544.41, + "end": 7546.93, + "probability": 0.9144 + }, + { + "start": 7547.63, + "end": 7549.87, + "probability": 0.7151 + }, + { + "start": 7550.09, + "end": 7551.41, + "probability": 0.784 + }, + { + "start": 7555.03, + "end": 7556.29, + "probability": 0.2383 + }, + { + "start": 7557.51, + "end": 7558.31, + "probability": 0.9323 + }, + { + "start": 7559.13, + "end": 7563.01, + "probability": 0.3554 + }, + { + "start": 7563.65, + "end": 7567.15, + "probability": 0.6571 + }, + { + "start": 7567.29, + "end": 7569.89, + "probability": 0.854 + }, + { + "start": 7570.49, + "end": 7573.35, + "probability": 0.9137 + }, + { + "start": 7573.45, + "end": 7576.17, + "probability": 0.8618 + }, + { + "start": 7576.85, + "end": 7578.07, + "probability": 0.7929 + }, + { + "start": 7578.33, + "end": 7580.35, + "probability": 0.7135 + }, + { + "start": 7581.79, + "end": 7583.45, + "probability": 0.4054 + }, + { + "start": 7585.97, + "end": 7586.49, + "probability": 0.4742 + }, + { + "start": 7586.49, + "end": 7587.85, + "probability": 0.2739 + }, + { + "start": 7596.95, + "end": 7600.69, + "probability": 0.5488 + }, + { + "start": 7601.67, + "end": 7603.03, + "probability": 0.8539 + }, + { + "start": 7603.37, + "end": 7605.87, + "probability": 0.6572 + }, + { + "start": 7606.33, + "end": 7609.49, + "probability": 0.9522 + }, + { + "start": 7609.49, + "end": 7612.79, + "probability": 0.7112 + }, + { + "start": 7613.75, + "end": 7615.41, + "probability": 0.6992 + }, + { + "start": 7616.19, + "end": 7619.33, + "probability": 0.9313 + }, + { + "start": 7620.65, + "end": 7623.31, + "probability": 0.9933 + }, + { + "start": 7623.31, + "end": 7626.79, + "probability": 0.9771 + }, + { + "start": 7627.41, + "end": 7627.77, + "probability": 0.4541 + }, + { + "start": 7627.91, + "end": 7628.91, + "probability": 0.7185 + }, + { + "start": 7629.05, + "end": 7631.31, + "probability": 0.9251 + }, + { + "start": 7632.39, + "end": 7635.11, + "probability": 0.7567 + }, + { + "start": 7635.11, + "end": 7638.27, + "probability": 0.9311 + }, + { + "start": 7638.29, + "end": 7638.99, + "probability": 0.0892 + }, + { + "start": 7640.93, + "end": 7642.89, + "probability": 0.758 + }, + { + "start": 7643.03, + "end": 7643.57, + "probability": 0.5068 + }, + { + "start": 7644.25, + "end": 7647.37, + "probability": 0.8635 + }, + { + "start": 7648.18, + "end": 7649.65, + "probability": 0.7561 + }, + { + "start": 7650.33, + "end": 7652.23, + "probability": 0.6506 + }, + { + "start": 7652.91, + "end": 7653.57, + "probability": 0.489 + }, + { + "start": 7653.73, + "end": 7654.23, + "probability": 0.1081 + }, + { + "start": 7654.33, + "end": 7656.27, + "probability": 0.6845 + }, + { + "start": 7656.47, + "end": 7660.83, + "probability": 0.82 + }, + { + "start": 7661.61, + "end": 7663.35, + "probability": 0.384 + }, + { + "start": 7663.39, + "end": 7667.11, + "probability": 0.5473 + }, + { + "start": 7667.83, + "end": 7669.69, + "probability": 0.839 + }, + { + "start": 7669.73, + "end": 7670.03, + "probability": 0.8108 + }, + { + "start": 7671.39, + "end": 7675.25, + "probability": 0.4545 + }, + { + "start": 7675.27, + "end": 7678.07, + "probability": 0.8627 + }, + { + "start": 7678.59, + "end": 7682.35, + "probability": 0.9096 + }, + { + "start": 7683.19, + "end": 7683.71, + "probability": 0.3701 + }, + { + "start": 7684.15, + "end": 7684.51, + "probability": 0.6697 + }, + { + "start": 7684.65, + "end": 7685.57, + "probability": 0.7949 + }, + { + "start": 7685.89, + "end": 7689.71, + "probability": 0.9329 + }, + { + "start": 7690.39, + "end": 7693.65, + "probability": 0.7457 + }, + { + "start": 7693.79, + "end": 7698.31, + "probability": 0.9688 + }, + { + "start": 7698.91, + "end": 7702.79, + "probability": 0.9244 + }, + { + "start": 7703.39, + "end": 7708.25, + "probability": 0.5079 + }, + { + "start": 7708.77, + "end": 7710.41, + "probability": 0.8505 + }, + { + "start": 7711.17, + "end": 7714.63, + "probability": 0.9129 + }, + { + "start": 7714.63, + "end": 7718.41, + "probability": 0.9194 + }, + { + "start": 7719.07, + "end": 7722.91, + "probability": 0.9877 + }, + { + "start": 7723.75, + "end": 7726.85, + "probability": 0.8619 + }, + { + "start": 7727.09, + "end": 7728.83, + "probability": 0.4556 + }, + { + "start": 7730.51, + "end": 7735.01, + "probability": 0.7479 + }, + { + "start": 7735.01, + "end": 7741.35, + "probability": 0.8155 + }, + { + "start": 7741.53, + "end": 7744.99, + "probability": 0.96 + }, + { + "start": 7745.15, + "end": 7750.01, + "probability": 0.9304 + }, + { + "start": 7750.01, + "end": 7752.37, + "probability": 0.7556 + }, + { + "start": 7752.57, + "end": 7755.79, + "probability": 0.6475 + }, + { + "start": 7755.85, + "end": 7760.19, + "probability": 0.7937 + }, + { + "start": 7760.97, + "end": 7762.81, + "probability": 0.8768 + }, + { + "start": 7762.91, + "end": 7764.38, + "probability": 0.9127 + }, + { + "start": 7765.63, + "end": 7766.15, + "probability": 0.9495 + }, + { + "start": 7767.39, + "end": 7770.77, + "probability": 0.761 + }, + { + "start": 7770.89, + "end": 7773.85, + "probability": 0.6463 + }, + { + "start": 7773.91, + "end": 7774.69, + "probability": 0.5081 + }, + { + "start": 7775.13, + "end": 7777.39, + "probability": 0.7444 + }, + { + "start": 7777.74, + "end": 7780.59, + "probability": 0.8857 + }, + { + "start": 7782.35, + "end": 7785.93, + "probability": 0.7316 + }, + { + "start": 7786.65, + "end": 7787.91, + "probability": 0.9924 + }, + { + "start": 7789.05, + "end": 7791.65, + "probability": 0.9403 + }, + { + "start": 7791.65, + "end": 7794.75, + "probability": 0.6588 + }, + { + "start": 7794.97, + "end": 7796.81, + "probability": 0.9477 + }, + { + "start": 7797.55, + "end": 7798.55, + "probability": 0.9988 + }, + { + "start": 7798.85, + "end": 7800.77, + "probability": 0.5165 + }, + { + "start": 7800.81, + "end": 7803.29, + "probability": 0.9508 + }, + { + "start": 7803.45, + "end": 7806.55, + "probability": 0.9501 + }, + { + "start": 7806.55, + "end": 7809.57, + "probability": 0.9911 + }, + { + "start": 7809.77, + "end": 7812.61, + "probability": 0.8565 + }, + { + "start": 7813.33, + "end": 7815.81, + "probability": 0.6751 + }, + { + "start": 7816.87, + "end": 7823.15, + "probability": 0.4869 + }, + { + "start": 7823.15, + "end": 7831.1, + "probability": 0.5457 + }, + { + "start": 7834.61, + "end": 7834.61, + "probability": 0.0715 + }, + { + "start": 7834.61, + "end": 7842.53, + "probability": 0.6815 + }, + { + "start": 7843.41, + "end": 7847.11, + "probability": 0.9698 + }, + { + "start": 7849.85, + "end": 7850.15, + "probability": 0.4772 + }, + { + "start": 7850.35, + "end": 7851.03, + "probability": 0.3937 + }, + { + "start": 7862.91, + "end": 7863.95, + "probability": 0.8604 + }, + { + "start": 7864.51, + "end": 7866.53, + "probability": 0.735 + }, + { + "start": 7866.77, + "end": 7868.65, + "probability": 0.9951 + }, + { + "start": 7868.75, + "end": 7869.92, + "probability": 0.8675 + }, + { + "start": 7871.27, + "end": 7872.45, + "probability": 0.8677 + }, + { + "start": 7873.09, + "end": 7875.77, + "probability": 0.9951 + }, + { + "start": 7875.91, + "end": 7879.13, + "probability": 0.9768 + }, + { + "start": 7879.75, + "end": 7881.93, + "probability": 0.94 + }, + { + "start": 7881.93, + "end": 7884.17, + "probability": 0.8141 + }, + { + "start": 7885.03, + "end": 7886.79, + "probability": 0.8875 + }, + { + "start": 7886.87, + "end": 7888.05, + "probability": 0.8198 + }, + { + "start": 7888.19, + "end": 7889.19, + "probability": 0.9219 + }, + { + "start": 7890.21, + "end": 7892.67, + "probability": 0.9814 + }, + { + "start": 7892.67, + "end": 7894.97, + "probability": 0.9891 + }, + { + "start": 7895.77, + "end": 7896.61, + "probability": 0.5527 + }, + { + "start": 7897.61, + "end": 7898.73, + "probability": 0.371 + }, + { + "start": 7899.37, + "end": 7900.43, + "probability": 0.8825 + }, + { + "start": 7900.91, + "end": 7903.23, + "probability": 0.7638 + }, + { + "start": 7904.13, + "end": 7907.03, + "probability": 0.9982 + }, + { + "start": 7907.78, + "end": 7912.03, + "probability": 0.6929 + }, + { + "start": 7912.11, + "end": 7913.37, + "probability": 0.4644 + }, + { + "start": 7914.35, + "end": 7915.81, + "probability": 0.9795 + }, + { + "start": 7918.77, + "end": 7919.89, + "probability": 0.9658 + }, + { + "start": 7920.73, + "end": 7924.25, + "probability": 0.7049 + }, + { + "start": 7924.89, + "end": 7926.07, + "probability": 0.6236 + }, + { + "start": 7926.51, + "end": 7927.73, + "probability": 0.7632 + }, + { + "start": 7930.29, + "end": 7933.49, + "probability": 0.8566 + }, + { + "start": 7934.05, + "end": 7934.81, + "probability": 0.8594 + }, + { + "start": 7935.23, + "end": 7935.71, + "probability": 0.4645 + }, + { + "start": 7937.13, + "end": 7940.25, + "probability": 0.4833 + }, + { + "start": 7943.39, + "end": 7946.33, + "probability": 0.8362 + }, + { + "start": 7947.03, + "end": 7948.63, + "probability": 0.6431 + }, + { + "start": 7949.23, + "end": 7952.11, + "probability": 0.9161 + }, + { + "start": 7953.43, + "end": 7955.27, + "probability": 0.8362 + }, + { + "start": 7956.69, + "end": 7958.55, + "probability": 0.2434 + }, + { + "start": 7959.21, + "end": 7960.0, + "probability": 0.8059 + }, + { + "start": 7960.51, + "end": 7961.7, + "probability": 0.6472 + }, + { + "start": 7962.61, + "end": 7963.85, + "probability": 0.6682 + }, + { + "start": 7964.41, + "end": 7967.05, + "probability": 0.7141 + }, + { + "start": 7968.11, + "end": 7968.35, + "probability": 0.0536 + }, + { + "start": 7968.55, + "end": 7970.75, + "probability": 0.7083 + }, + { + "start": 7971.17, + "end": 7971.81, + "probability": 0.5765 + }, + { + "start": 7973.57, + "end": 7974.89, + "probability": 0.8226 + }, + { + "start": 7975.64, + "end": 7976.39, + "probability": 0.2729 + }, + { + "start": 7977.11, + "end": 7978.11, + "probability": 0.7727 + }, + { + "start": 7978.53, + "end": 7979.57, + "probability": 0.7484 + }, + { + "start": 7980.65, + "end": 7981.62, + "probability": 0.9177 + }, + { + "start": 7982.27, + "end": 7983.59, + "probability": 0.862 + }, + { + "start": 7985.63, + "end": 7987.56, + "probability": 0.992 + }, + { + "start": 7988.69, + "end": 7990.35, + "probability": 0.6409 + }, + { + "start": 7990.65, + "end": 7992.91, + "probability": 0.9243 + }, + { + "start": 7993.77, + "end": 7993.91, + "probability": 0.0013 + }, + { + "start": 8001.07, + "end": 8003.27, + "probability": 0.547 + }, + { + "start": 8003.67, + "end": 8006.75, + "probability": 0.1476 + }, + { + "start": 8006.75, + "end": 8008.51, + "probability": 0.7512 + }, + { + "start": 8009.13, + "end": 8014.59, + "probability": 0.9614 + }, + { + "start": 8014.95, + "end": 8016.33, + "probability": 0.53 + }, + { + "start": 8018.99, + "end": 8020.35, + "probability": 0.6635 + }, + { + "start": 8021.33, + "end": 8028.35, + "probability": 0.8418 + }, + { + "start": 8029.03, + "end": 8030.77, + "probability": 0.8026 + }, + { + "start": 8032.13, + "end": 8033.23, + "probability": 0.493 + }, + { + "start": 8033.71, + "end": 8035.63, + "probability": 0.512 + }, + { + "start": 8035.77, + "end": 8036.97, + "probability": 0.6796 + }, + { + "start": 8037.11, + "end": 8039.2, + "probability": 0.7371 + }, + { + "start": 8039.98, + "end": 8042.07, + "probability": 0.9744 + }, + { + "start": 8042.49, + "end": 8047.55, + "probability": 0.6594 + }, + { + "start": 8048.69, + "end": 8049.55, + "probability": 0.7144 + }, + { + "start": 8050.57, + "end": 8051.77, + "probability": 0.8375 + }, + { + "start": 8052.71, + "end": 8054.73, + "probability": 0.5889 + }, + { + "start": 8055.25, + "end": 8057.29, + "probability": 0.832 + }, + { + "start": 8058.19, + "end": 8060.45, + "probability": 0.6199 + }, + { + "start": 8060.61, + "end": 8066.99, + "probability": 0.501 + }, + { + "start": 8067.51, + "end": 8069.29, + "probability": 0.9131 + }, + { + "start": 8069.93, + "end": 8074.21, + "probability": 0.8739 + }, + { + "start": 8074.33, + "end": 8076.83, + "probability": 0.756 + }, + { + "start": 8078.29, + "end": 8083.05, + "probability": 0.6269 + }, + { + "start": 8083.05, + "end": 8084.01, + "probability": 0.3824 + }, + { + "start": 8085.93, + "end": 8090.67, + "probability": 0.2848 + }, + { + "start": 8093.09, + "end": 8093.52, + "probability": 0.8271 + }, + { + "start": 8094.19, + "end": 8095.51, + "probability": 0.8291 + }, + { + "start": 8096.31, + "end": 8097.01, + "probability": 0.7393 + }, + { + "start": 8097.77, + "end": 8100.41, + "probability": 0.4971 + }, + { + "start": 8101.21, + "end": 8102.01, + "probability": 0.9111 + }, + { + "start": 8103.05, + "end": 8104.99, + "probability": 0.9968 + }, + { + "start": 8105.57, + "end": 8108.19, + "probability": 0.7616 + }, + { + "start": 8108.71, + "end": 8110.79, + "probability": 0.908 + }, + { + "start": 8111.23, + "end": 8111.81, + "probability": 0.869 + }, + { + "start": 8112.57, + "end": 8114.0, + "probability": 0.3596 + }, + { + "start": 8115.43, + "end": 8117.35, + "probability": 0.1398 + }, + { + "start": 8118.27, + "end": 8119.09, + "probability": 0.525 + }, + { + "start": 8119.77, + "end": 8121.45, + "probability": 0.8371 + }, + { + "start": 8121.61, + "end": 8122.04, + "probability": 0.4478 + }, + { + "start": 8123.05, + "end": 8124.45, + "probability": 0.4821 + }, + { + "start": 8124.61, + "end": 8124.97, + "probability": 0.848 + }, + { + "start": 8125.37, + "end": 8133.59, + "probability": 0.8454 + }, + { + "start": 8134.49, + "end": 8136.25, + "probability": 0.9057 + }, + { + "start": 8136.97, + "end": 8140.21, + "probability": 0.4741 + }, + { + "start": 8140.43, + "end": 8140.61, + "probability": 0.1833 + }, + { + "start": 8141.09, + "end": 8141.99, + "probability": 0.6424 + }, + { + "start": 8143.49, + "end": 8145.01, + "probability": 0.7531 + }, + { + "start": 8145.31, + "end": 8146.61, + "probability": 0.9933 + }, + { + "start": 8146.7, + "end": 8150.05, + "probability": 0.78 + }, + { + "start": 8152.81, + "end": 8157.93, + "probability": 0.6024 + }, + { + "start": 8158.05, + "end": 8161.61, + "probability": 0.8675 + }, + { + "start": 8162.97, + "end": 8164.07, + "probability": 0.5724 + }, + { + "start": 8164.53, + "end": 8166.05, + "probability": 0.6707 + }, + { + "start": 8167.15, + "end": 8168.03, + "probability": 0.8858 + }, + { + "start": 8169.13, + "end": 8171.41, + "probability": 0.9204 + }, + { + "start": 8171.65, + "end": 8172.87, + "probability": 0.9795 + }, + { + "start": 8173.49, + "end": 8175.87, + "probability": 0.8224 + }, + { + "start": 8176.27, + "end": 8178.07, + "probability": 0.846 + }, + { + "start": 8178.5, + "end": 8181.65, + "probability": 0.608 + }, + { + "start": 8181.87, + "end": 8182.39, + "probability": 0.363 + }, + { + "start": 8182.53, + "end": 8183.39, + "probability": 0.9207 + }, + { + "start": 8183.53, + "end": 8185.81, + "probability": 0.8632 + }, + { + "start": 8187.41, + "end": 8189.51, + "probability": 0.8418 + }, + { + "start": 8189.81, + "end": 8190.71, + "probability": 0.5151 + }, + { + "start": 8190.71, + "end": 8192.93, + "probability": 0.7324 + }, + { + "start": 8193.33, + "end": 8194.85, + "probability": 0.6025 + }, + { + "start": 8195.77, + "end": 8197.23, + "probability": 0.651 + }, + { + "start": 8197.33, + "end": 8200.01, + "probability": 0.3715 + }, + { + "start": 8200.05, + "end": 8202.27, + "probability": 0.6672 + }, + { + "start": 8202.99, + "end": 8205.65, + "probability": 0.9769 + }, + { + "start": 8206.95, + "end": 8208.2, + "probability": 0.5896 + }, + { + "start": 8208.69, + "end": 8209.67, + "probability": 0.818 + }, + { + "start": 8210.69, + "end": 8211.17, + "probability": 0.3598 + }, + { + "start": 8211.31, + "end": 8211.87, + "probability": 0.9328 + }, + { + "start": 8212.19, + "end": 8213.39, + "probability": 0.6981 + }, + { + "start": 8216.07, + "end": 8217.57, + "probability": 0.9155 + }, + { + "start": 8218.41, + "end": 8222.17, + "probability": 0.6743 + }, + { + "start": 8222.89, + "end": 8224.34, + "probability": 0.9907 + }, + { + "start": 8224.45, + "end": 8225.99, + "probability": 0.8153 + }, + { + "start": 8226.51, + "end": 8227.73, + "probability": 0.6631 + }, + { + "start": 8228.21, + "end": 8231.25, + "probability": 0.875 + }, + { + "start": 8231.71, + "end": 8232.05, + "probability": 0.3562 + }, + { + "start": 8232.15, + "end": 8233.25, + "probability": 0.9287 + }, + { + "start": 8234.11, + "end": 8236.27, + "probability": 0.983 + }, + { + "start": 8237.87, + "end": 8245.89, + "probability": 0.6642 + }, + { + "start": 8247.55, + "end": 8251.79, + "probability": 0.9299 + }, + { + "start": 8253.83, + "end": 8258.81, + "probability": 0.3847 + }, + { + "start": 8263.37, + "end": 8264.31, + "probability": 0.7925 + }, + { + "start": 8265.59, + "end": 8266.87, + "probability": 0.2906 + }, + { + "start": 8266.97, + "end": 8269.73, + "probability": 0.9292 + }, + { + "start": 8269.85, + "end": 8271.27, + "probability": 0.7184 + }, + { + "start": 8271.49, + "end": 8272.67, + "probability": 0.2916 + }, + { + "start": 8272.79, + "end": 8273.59, + "probability": 0.3161 + }, + { + "start": 8274.35, + "end": 8277.11, + "probability": 0.5983 + }, + { + "start": 8277.35, + "end": 8278.35, + "probability": 0.4937 + }, + { + "start": 8278.45, + "end": 8278.89, + "probability": 0.3529 + }, + { + "start": 8279.73, + "end": 8281.77, + "probability": 0.6561 + }, + { + "start": 8281.97, + "end": 8283.55, + "probability": 0.9243 + }, + { + "start": 8283.67, + "end": 8284.55, + "probability": 0.9976 + }, + { + "start": 8285.17, + "end": 8288.91, + "probability": 0.6364 + }, + { + "start": 8289.21, + "end": 8291.61, + "probability": 0.9468 + }, + { + "start": 8292.39, + "end": 8292.67, + "probability": 0.7047 + }, + { + "start": 8293.39, + "end": 8293.83, + "probability": 0.7456 + }, + { + "start": 8294.61, + "end": 8295.65, + "probability": 0.2651 + }, + { + "start": 8295.77, + "end": 8296.51, + "probability": 0.6381 + }, + { + "start": 8297.01, + "end": 8299.39, + "probability": 0.4541 + }, + { + "start": 8300.83, + "end": 8301.59, + "probability": 0.4756 + }, + { + "start": 8302.13, + "end": 8303.09, + "probability": 0.8448 + }, + { + "start": 8303.93, + "end": 8304.73, + "probability": 0.27 + }, + { + "start": 8304.77, + "end": 8307.15, + "probability": 0.8158 + }, + { + "start": 8308.03, + "end": 8309.07, + "probability": 0.8041 + }, + { + "start": 8309.13, + "end": 8309.48, + "probability": 0.7828 + }, + { + "start": 8309.81, + "end": 8311.35, + "probability": 0.2986 + }, + { + "start": 8312.25, + "end": 8313.75, + "probability": 0.9128 + }, + { + "start": 8314.67, + "end": 8317.65, + "probability": 0.725 + }, + { + "start": 8318.67, + "end": 8320.47, + "probability": 0.3513 + }, + { + "start": 8321.15, + "end": 8321.89, + "probability": 0.7902 + }, + { + "start": 8322.53, + "end": 8324.27, + "probability": 0.9287 + }, + { + "start": 8324.87, + "end": 8326.55, + "probability": 0.7646 + }, + { + "start": 8326.67, + "end": 8327.77, + "probability": 0.7366 + }, + { + "start": 8328.43, + "end": 8328.99, + "probability": 0.9437 + }, + { + "start": 8329.55, + "end": 8330.8, + "probability": 0.8194 + }, + { + "start": 8331.03, + "end": 8332.59, + "probability": 0.8594 + }, + { + "start": 8332.85, + "end": 8334.19, + "probability": 0.6897 + }, + { + "start": 8334.99, + "end": 8337.07, + "probability": 0.9521 + }, + { + "start": 8337.57, + "end": 8339.23, + "probability": 0.8586 + }, + { + "start": 8340.55, + "end": 8341.19, + "probability": 0.7051 + }, + { + "start": 8341.43, + "end": 8344.39, + "probability": 0.8297 + }, + { + "start": 8344.73, + "end": 8345.08, + "probability": 0.8342 + }, + { + "start": 8346.89, + "end": 8350.27, + "probability": 0.9624 + }, + { + "start": 8353.14, + "end": 8355.37, + "probability": 0.4857 + }, + { + "start": 8356.39, + "end": 8361.91, + "probability": 0.8604 + }, + { + "start": 8364.47, + "end": 8367.03, + "probability": 0.795 + }, + { + "start": 8367.69, + "end": 8369.59, + "probability": 0.4455 + }, + { + "start": 8370.81, + "end": 8373.75, + "probability": 0.8531 + }, + { + "start": 8374.01, + "end": 8376.11, + "probability": 0.715 + }, + { + "start": 8376.51, + "end": 8379.37, + "probability": 0.9136 + }, + { + "start": 8380.37, + "end": 8380.59, + "probability": 0.5751 + }, + { + "start": 8381.31, + "end": 8383.87, + "probability": 0.5869 + }, + { + "start": 8384.57, + "end": 8385.59, + "probability": 0.8541 + }, + { + "start": 8386.67, + "end": 8391.06, + "probability": 0.9851 + }, + { + "start": 8392.53, + "end": 8394.93, + "probability": 0.7247 + }, + { + "start": 8395.57, + "end": 8396.25, + "probability": 0.7907 + }, + { + "start": 8396.87, + "end": 8397.55, + "probability": 0.9302 + }, + { + "start": 8398.33, + "end": 8400.97, + "probability": 0.3438 + }, + { + "start": 8400.97, + "end": 8400.97, + "probability": 0.1083 + }, + { + "start": 8400.97, + "end": 8402.26, + "probability": 0.5771 + }, + { + "start": 8402.61, + "end": 8406.71, + "probability": 0.8561 + }, + { + "start": 8407.23, + "end": 8407.99, + "probability": 0.9194 + }, + { + "start": 8408.37, + "end": 8409.85, + "probability": 0.8237 + }, + { + "start": 8409.85, + "end": 8410.43, + "probability": 0.5188 + }, + { + "start": 8410.51, + "end": 8411.03, + "probability": 0.8128 + }, + { + "start": 8411.31, + "end": 8412.51, + "probability": 0.6689 + }, + { + "start": 8412.65, + "end": 8416.07, + "probability": 0.9937 + }, + { + "start": 8416.25, + "end": 8418.17, + "probability": 0.714 + }, + { + "start": 8418.39, + "end": 8418.9, + "probability": 0.6821 + }, + { + "start": 8419.39, + "end": 8420.37, + "probability": 0.9878 + }, + { + "start": 8420.65, + "end": 8420.79, + "probability": 0.0464 + }, + { + "start": 8421.45, + "end": 8422.11, + "probability": 0.277 + }, + { + "start": 8422.25, + "end": 8424.77, + "probability": 0.1077 + }, + { + "start": 8424.77, + "end": 8425.51, + "probability": 0.2813 + }, + { + "start": 8426.01, + "end": 8427.05, + "probability": 0.425 + }, + { + "start": 8427.51, + "end": 8428.81, + "probability": 0.672 + }, + { + "start": 8429.15, + "end": 8430.11, + "probability": 0.7677 + }, + { + "start": 8430.37, + "end": 8431.59, + "probability": 0.9524 + }, + { + "start": 8432.33, + "end": 8432.89, + "probability": 0.7865 + }, + { + "start": 8432.99, + "end": 8435.3, + "probability": 0.9666 + }, + { + "start": 8435.91, + "end": 8437.09, + "probability": 0.1731 + }, + { + "start": 8437.11, + "end": 8439.39, + "probability": 0.7563 + }, + { + "start": 8440.37, + "end": 8441.23, + "probability": 0.8345 + }, + { + "start": 8441.29, + "end": 8441.77, + "probability": 0.735 + }, + { + "start": 8442.13, + "end": 8445.74, + "probability": 0.8763 + }, + { + "start": 8446.77, + "end": 8448.03, + "probability": 0.9812 + }, + { + "start": 8448.69, + "end": 8451.97, + "probability": 0.9717 + }, + { + "start": 8452.95, + "end": 8460.07, + "probability": 0.79 + }, + { + "start": 8460.43, + "end": 8461.59, + "probability": 0.6044 + }, + { + "start": 8461.77, + "end": 8463.35, + "probability": 0.7649 + }, + { + "start": 8463.97, + "end": 8466.33, + "probability": 0.822 + }, + { + "start": 8466.59, + "end": 8470.43, + "probability": 0.9698 + }, + { + "start": 8471.35, + "end": 8471.57, + "probability": 0.708 + }, + { + "start": 8472.11, + "end": 8473.72, + "probability": 0.6156 + }, + { + "start": 8475.09, + "end": 8476.25, + "probability": 0.8366 + }, + { + "start": 8476.83, + "end": 8477.19, + "probability": 0.9517 + }, + { + "start": 8478.11, + "end": 8481.17, + "probability": 0.7146 + }, + { + "start": 8481.93, + "end": 8483.21, + "probability": 0.7747 + }, + { + "start": 8483.89, + "end": 8484.67, + "probability": 0.7753 + }, + { + "start": 8485.45, + "end": 8487.15, + "probability": 0.964 + }, + { + "start": 8487.25, + "end": 8488.21, + "probability": 0.9217 + }, + { + "start": 8488.67, + "end": 8489.21, + "probability": 0.8312 + }, + { + "start": 8489.31, + "end": 8490.12, + "probability": 0.8864 + }, + { + "start": 8490.59, + "end": 8491.53, + "probability": 0.557 + }, + { + "start": 8492.61, + "end": 8493.25, + "probability": 0.6689 + }, + { + "start": 8495.24, + "end": 8497.39, + "probability": 0.7653 + }, + { + "start": 8497.53, + "end": 8498.45, + "probability": 0.9263 + }, + { + "start": 8498.89, + "end": 8499.57, + "probability": 0.6995 + }, + { + "start": 8499.97, + "end": 8501.17, + "probability": 0.1463 + }, + { + "start": 8501.17, + "end": 8501.31, + "probability": 0.0025 + }, + { + "start": 8501.93, + "end": 8502.33, + "probability": 0.4001 + }, + { + "start": 8502.81, + "end": 8503.93, + "probability": 0.9178 + }, + { + "start": 8505.09, + "end": 8505.71, + "probability": 0.8021 + }, + { + "start": 8506.67, + "end": 8508.58, + "probability": 0.6089 + }, + { + "start": 8508.87, + "end": 8509.65, + "probability": 0.3253 + }, + { + "start": 8509.95, + "end": 8512.23, + "probability": 0.7188 + }, + { + "start": 8512.37, + "end": 8513.65, + "probability": 0.7082 + }, + { + "start": 8513.93, + "end": 8515.75, + "probability": 0.7734 + }, + { + "start": 8516.31, + "end": 8517.39, + "probability": 0.6958 + }, + { + "start": 8517.43, + "end": 8517.49, + "probability": 0.0127 + }, + { + "start": 8517.63, + "end": 8518.79, + "probability": 0.4201 + }, + { + "start": 8519.31, + "end": 8519.51, + "probability": 0.4684 + }, + { + "start": 8520.73, + "end": 8523.65, + "probability": 0.8222 + }, + { + "start": 8524.27, + "end": 8526.69, + "probability": 0.771 + }, + { + "start": 8527.03, + "end": 8528.41, + "probability": 0.4889 + }, + { + "start": 8528.51, + "end": 8529.31, + "probability": 0.9499 + }, + { + "start": 8529.39, + "end": 8530.35, + "probability": 0.8297 + }, + { + "start": 8531.21, + "end": 8532.03, + "probability": 0.4306 + }, + { + "start": 8533.21, + "end": 8535.19, + "probability": 0.45 + }, + { + "start": 8535.79, + "end": 8537.09, + "probability": 0.7884 + }, + { + "start": 8537.86, + "end": 8540.79, + "probability": 0.72 + }, + { + "start": 8540.97, + "end": 8541.99, + "probability": 0.9067 + }, + { + "start": 8542.39, + "end": 8545.17, + "probability": 0.8673 + }, + { + "start": 8546.41, + "end": 8549.27, + "probability": 0.9805 + }, + { + "start": 8549.53, + "end": 8550.99, + "probability": 0.729 + }, + { + "start": 8551.51, + "end": 8553.21, + "probability": 0.7972 + }, + { + "start": 8553.69, + "end": 8554.55, + "probability": 0.7372 + }, + { + "start": 8555.07, + "end": 8556.23, + "probability": 0.6626 + }, + { + "start": 8556.91, + "end": 8558.91, + "probability": 0.9881 + }, + { + "start": 8559.63, + "end": 8560.59, + "probability": 0.754 + }, + { + "start": 8561.79, + "end": 8564.33, + "probability": 0.1656 + }, + { + "start": 8564.65, + "end": 8564.99, + "probability": 0.1857 + }, + { + "start": 8565.07, + "end": 8567.11, + "probability": 0.9934 + }, + { + "start": 8567.19, + "end": 8568.47, + "probability": 0.5623 + }, + { + "start": 8569.09, + "end": 8569.09, + "probability": 0.3911 + }, + { + "start": 8569.09, + "end": 8571.93, + "probability": 0.9829 + }, + { + "start": 8572.13, + "end": 8574.03, + "probability": 0.9219 + }, + { + "start": 8574.45, + "end": 8575.81, + "probability": 0.9099 + }, + { + "start": 8576.47, + "end": 8578.19, + "probability": 0.9678 + }, + { + "start": 8578.93, + "end": 8584.65, + "probability": 0.9573 + }, + { + "start": 8584.97, + "end": 8586.47, + "probability": 0.9895 + }, + { + "start": 8586.63, + "end": 8589.77, + "probability": 0.9963 + }, + { + "start": 8589.77, + "end": 8592.79, + "probability": 0.991 + }, + { + "start": 8592.91, + "end": 8594.99, + "probability": 0.9819 + }, + { + "start": 8595.87, + "end": 8597.17, + "probability": 0.9929 + }, + { + "start": 8597.53, + "end": 8598.75, + "probability": 0.9509 + }, + { + "start": 8599.09, + "end": 8599.75, + "probability": 0.806 + }, + { + "start": 8600.83, + "end": 8601.51, + "probability": 0.9822 + }, + { + "start": 8602.77, + "end": 8604.23, + "probability": 0.6901 + }, + { + "start": 8604.43, + "end": 8605.77, + "probability": 0.7878 + }, + { + "start": 8605.95, + "end": 8605.95, + "probability": 0.0746 + }, + { + "start": 8607.87, + "end": 8610.61, + "probability": 0.6829 + }, + { + "start": 8611.37, + "end": 8612.35, + "probability": 0.7204 + }, + { + "start": 8612.41, + "end": 8616.71, + "probability": 0.8521 + }, + { + "start": 8617.15, + "end": 8617.83, + "probability": 0.6125 + }, + { + "start": 8621.25, + "end": 8621.77, + "probability": 0.158 + }, + { + "start": 8621.77, + "end": 8621.77, + "probability": 0.2631 + }, + { + "start": 8621.77, + "end": 8621.77, + "probability": 0.0426 + }, + { + "start": 8621.77, + "end": 8622.35, + "probability": 0.1616 + }, + { + "start": 8622.47, + "end": 8624.13, + "probability": 0.3429 + }, + { + "start": 8624.29, + "end": 8626.71, + "probability": 0.8667 + }, + { + "start": 8627.23, + "end": 8628.13, + "probability": 0.921 + }, + { + "start": 8628.63, + "end": 8630.19, + "probability": 0.8699 + }, + { + "start": 8630.43, + "end": 8632.27, + "probability": 0.9071 + }, + { + "start": 8632.33, + "end": 8633.09, + "probability": 0.7681 + }, + { + "start": 8633.19, + "end": 8634.05, + "probability": 0.9604 + }, + { + "start": 8634.73, + "end": 8635.59, + "probability": 0.6265 + }, + { + "start": 8635.69, + "end": 8636.57, + "probability": 0.7812 + }, + { + "start": 8638.11, + "end": 8639.11, + "probability": 0.8867 + }, + { + "start": 8639.11, + "end": 8641.43, + "probability": 0.8622 + }, + { + "start": 8641.53, + "end": 8641.71, + "probability": 0.9848 + }, + { + "start": 8642.07, + "end": 8645.31, + "probability": 0.9098 + }, + { + "start": 8647.31, + "end": 8648.21, + "probability": 0.9971 + }, + { + "start": 8648.67, + "end": 8650.39, + "probability": 0.5103 + }, + { + "start": 8651.47, + "end": 8652.95, + "probability": 0.7378 + }, + { + "start": 8653.09, + "end": 8653.29, + "probability": 0.7693 + }, + { + "start": 8655.14, + "end": 8656.61, + "probability": 0.749 + }, + { + "start": 8657.23, + "end": 8658.05, + "probability": 0.5875 + }, + { + "start": 8658.21, + "end": 8658.93, + "probability": 0.6766 + }, + { + "start": 8658.93, + "end": 8661.35, + "probability": 0.8351 + }, + { + "start": 8663.47, + "end": 8669.79, + "probability": 0.7751 + }, + { + "start": 8669.89, + "end": 8670.61, + "probability": 0.4862 + }, + { + "start": 8670.67, + "end": 8673.03, + "probability": 0.7229 + }, + { + "start": 8673.95, + "end": 8674.29, + "probability": 0.8219 + }, + { + "start": 8674.49, + "end": 8677.19, + "probability": 0.8439 + }, + { + "start": 8677.25, + "end": 8680.01, + "probability": 0.9262 + }, + { + "start": 8680.81, + "end": 8681.23, + "probability": 0.6383 + }, + { + "start": 8681.71, + "end": 8681.89, + "probability": 0.1274 + }, + { + "start": 8681.89, + "end": 8683.01, + "probability": 0.9282 + }, + { + "start": 8683.47, + "end": 8684.41, + "probability": 0.7484 + }, + { + "start": 8684.51, + "end": 8685.67, + "probability": 0.7026 + }, + { + "start": 8685.87, + "end": 8688.31, + "probability": 0.6724 + }, + { + "start": 8688.93, + "end": 8691.75, + "probability": 0.4851 + }, + { + "start": 8692.41, + "end": 8693.05, + "probability": 0.7823 + }, + { + "start": 8693.97, + "end": 8695.75, + "probability": 0.9823 + }, + { + "start": 8696.09, + "end": 8696.45, + "probability": 0.856 + }, + { + "start": 8697.49, + "end": 8699.91, + "probability": 0.7291 + }, + { + "start": 8699.99, + "end": 8700.51, + "probability": 0.5831 + }, + { + "start": 8700.59, + "end": 8701.91, + "probability": 0.8894 + }, + { + "start": 8702.21, + "end": 8706.75, + "probability": 0.7407 + }, + { + "start": 8707.49, + "end": 8708.81, + "probability": 0.8895 + }, + { + "start": 8709.53, + "end": 8710.93, + "probability": 0.737 + }, + { + "start": 8711.33, + "end": 8712.75, + "probability": 0.9647 + }, + { + "start": 8712.91, + "end": 8715.33, + "probability": 0.6215 + }, + { + "start": 8716.03, + "end": 8717.21, + "probability": 0.9207 + }, + { + "start": 8717.75, + "end": 8718.37, + "probability": 0.8882 + }, + { + "start": 8719.09, + "end": 8720.7, + "probability": 0.9814 + }, + { + "start": 8720.85, + "end": 8721.49, + "probability": 0.5623 + }, + { + "start": 8721.95, + "end": 8722.25, + "probability": 0.4977 + }, + { + "start": 8722.65, + "end": 8722.99, + "probability": 0.6544 + }, + { + "start": 8724.75, + "end": 8725.37, + "probability": 0.2551 + }, + { + "start": 8725.37, + "end": 8727.89, + "probability": 0.9412 + }, + { + "start": 8728.35, + "end": 8731.67, + "probability": 0.675 + }, + { + "start": 8731.97, + "end": 8732.47, + "probability": 0.9893 + }, + { + "start": 8733.13, + "end": 8735.55, + "probability": 0.9505 + }, + { + "start": 8736.09, + "end": 8737.45, + "probability": 0.8717 + }, + { + "start": 8737.67, + "end": 8740.03, + "probability": 0.6053 + }, + { + "start": 8742.11, + "end": 8744.71, + "probability": 0.7918 + }, + { + "start": 8745.53, + "end": 8748.97, + "probability": 0.961 + }, + { + "start": 8750.39, + "end": 8751.71, + "probability": 0.706 + }, + { + "start": 8752.61, + "end": 8753.65, + "probability": 0.5024 + }, + { + "start": 8754.47, + "end": 8756.67, + "probability": 0.6603 + }, + { + "start": 8757.65, + "end": 8760.19, + "probability": 0.8085 + }, + { + "start": 8760.77, + "end": 8761.33, + "probability": 0.8868 + }, + { + "start": 8761.85, + "end": 8763.55, + "probability": 0.8246 + }, + { + "start": 8764.99, + "end": 8765.29, + "probability": 0.7656 + }, + { + "start": 8766.39, + "end": 8767.03, + "probability": 0.5346 + }, + { + "start": 8767.77, + "end": 8771.75, + "probability": 0.8272 + }, + { + "start": 8771.95, + "end": 8773.19, + "probability": 0.9406 + }, + { + "start": 8773.67, + "end": 8774.33, + "probability": 0.8556 + }, + { + "start": 8775.67, + "end": 8779.69, + "probability": 0.9849 + }, + { + "start": 8780.09, + "end": 8781.57, + "probability": 0.6099 + }, + { + "start": 8781.59, + "end": 8782.45, + "probability": 0.8967 + }, + { + "start": 8783.01, + "end": 8783.45, + "probability": 0.4315 + }, + { + "start": 8784.45, + "end": 8790.85, + "probability": 0.9771 + }, + { + "start": 8791.85, + "end": 8793.27, + "probability": 0.9091 + }, + { + "start": 8794.03, + "end": 8794.41, + "probability": 0.5363 + }, + { + "start": 8795.46, + "end": 8797.97, + "probability": 0.5463 + }, + { + "start": 8798.33, + "end": 8798.83, + "probability": 0.5967 + }, + { + "start": 8799.43, + "end": 8801.71, + "probability": 0.8885 + }, + { + "start": 8802.33, + "end": 8805.17, + "probability": 0.5829 + }, + { + "start": 8806.31, + "end": 8807.87, + "probability": 0.5465 + }, + { + "start": 8808.53, + "end": 8809.55, + "probability": 0.8466 + }, + { + "start": 8810.45, + "end": 8813.51, + "probability": 0.3548 + }, + { + "start": 8814.21, + "end": 8817.53, + "probability": 0.7774 + }, + { + "start": 8818.67, + "end": 8819.85, + "probability": 0.9397 + }, + { + "start": 8820.57, + "end": 8821.95, + "probability": 0.716 + }, + { + "start": 8822.29, + "end": 8823.49, + "probability": 0.9321 + }, + { + "start": 8824.51, + "end": 8826.22, + "probability": 0.5455 + }, + { + "start": 8827.67, + "end": 8829.87, + "probability": 0.6544 + }, + { + "start": 8831.37, + "end": 8833.61, + "probability": 0.6797 + }, + { + "start": 8834.03, + "end": 8835.09, + "probability": 0.7027 + }, + { + "start": 8836.77, + "end": 8839.53, + "probability": 0.1667 + }, + { + "start": 8840.01, + "end": 8840.19, + "probability": 0.7715 + }, + { + "start": 8840.21, + "end": 8843.37, + "probability": 0.8408 + }, + { + "start": 8844.79, + "end": 8847.83, + "probability": 0.7202 + }, + { + "start": 8848.29, + "end": 8849.55, + "probability": 0.6186 + }, + { + "start": 8849.69, + "end": 8851.85, + "probability": 0.9131 + }, + { + "start": 8852.05, + "end": 8852.77, + "probability": 0.9932 + }, + { + "start": 8854.27, + "end": 8856.65, + "probability": 0.2934 + }, + { + "start": 8856.79, + "end": 8856.93, + "probability": 0.6403 + }, + { + "start": 8856.93, + "end": 8858.82, + "probability": 0.2712 + }, + { + "start": 8860.25, + "end": 8860.89, + "probability": 0.9286 + }, + { + "start": 8860.97, + "end": 8863.74, + "probability": 0.8311 + }, + { + "start": 8864.55, + "end": 8865.13, + "probability": 0.8952 + }, + { + "start": 8866.15, + "end": 8870.53, + "probability": 0.9391 + }, + { + "start": 8870.65, + "end": 8873.27, + "probability": 0.769 + }, + { + "start": 8874.55, + "end": 8877.39, + "probability": 0.5578 + }, + { + "start": 8877.63, + "end": 8881.19, + "probability": 0.923 + }, + { + "start": 8881.79, + "end": 8886.15, + "probability": 0.8403 + }, + { + "start": 8886.81, + "end": 8891.23, + "probability": 0.9979 + }, + { + "start": 8891.71, + "end": 8893.17, + "probability": 0.7988 + }, + { + "start": 8896.69, + "end": 8897.99, + "probability": 0.7757 + }, + { + "start": 8899.31, + "end": 8904.31, + "probability": 0.4296 + }, + { + "start": 8906.47, + "end": 8910.14, + "probability": 0.765 + }, + { + "start": 8911.61, + "end": 8914.03, + "probability": 0.7648 + }, + { + "start": 8915.45, + "end": 8917.85, + "probability": 0.6677 + }, + { + "start": 8920.21, + "end": 8921.5, + "probability": 0.6644 + }, + { + "start": 8923.29, + "end": 8925.23, + "probability": 0.5218 + }, + { + "start": 8925.45, + "end": 8926.11, + "probability": 0.8484 + }, + { + "start": 8934.41, + "end": 8936.63, + "probability": 0.8702 + }, + { + "start": 8937.23, + "end": 8937.91, + "probability": 0.5544 + }, + { + "start": 8937.91, + "end": 8938.69, + "probability": 0.6143 + }, + { + "start": 8939.55, + "end": 8940.27, + "probability": 0.5412 + }, + { + "start": 8960.71, + "end": 8961.45, + "probability": 0.0822 + }, + { + "start": 8961.45, + "end": 8962.41, + "probability": 0.3863 + }, + { + "start": 8963.93, + "end": 8964.81, + "probability": 0.6476 + }, + { + "start": 8964.85, + "end": 8965.41, + "probability": 0.7432 + }, + { + "start": 8965.61, + "end": 8968.07, + "probability": 0.789 + }, + { + "start": 8968.17, + "end": 8969.63, + "probability": 0.8422 + }, + { + "start": 8970.35, + "end": 8973.61, + "probability": 0.8763 + }, + { + "start": 8973.61, + "end": 8976.73, + "probability": 0.9916 + }, + { + "start": 8976.83, + "end": 8977.55, + "probability": 0.7619 + }, + { + "start": 8978.07, + "end": 8979.49, + "probability": 0.7115 + }, + { + "start": 8979.97, + "end": 8982.55, + "probability": 0.9889 + }, + { + "start": 8982.71, + "end": 8986.63, + "probability": 0.7926 + }, + { + "start": 8986.73, + "end": 8987.73, + "probability": 0.964 + }, + { + "start": 8987.81, + "end": 8989.89, + "probability": 0.7213 + }, + { + "start": 8990.33, + "end": 8991.65, + "probability": 0.9736 + }, + { + "start": 8991.75, + "end": 8992.87, + "probability": 0.7566 + }, + { + "start": 8993.35, + "end": 8993.93, + "probability": 0.6438 + }, + { + "start": 8994.05, + "end": 8994.61, + "probability": 0.6177 + }, + { + "start": 8994.71, + "end": 8996.45, + "probability": 0.8911 + }, + { + "start": 8996.93, + "end": 8997.85, + "probability": 0.9004 + }, + { + "start": 8997.93, + "end": 8998.59, + "probability": 0.9478 + }, + { + "start": 8998.69, + "end": 8999.81, + "probability": 0.9249 + }, + { + "start": 8999.99, + "end": 9000.85, + "probability": 0.7918 + }, + { + "start": 9001.29, + "end": 9002.39, + "probability": 0.8757 + }, + { + "start": 9002.45, + "end": 9004.37, + "probability": 0.7593 + }, + { + "start": 9005.41, + "end": 9009.41, + "probability": 0.9089 + }, + { + "start": 9010.69, + "end": 9012.79, + "probability": 0.9991 + }, + { + "start": 9012.89, + "end": 9014.61, + "probability": 0.361 + }, + { + "start": 9014.77, + "end": 9016.83, + "probability": 0.049 + }, + { + "start": 9017.31, + "end": 9019.45, + "probability": 0.9245 + }, + { + "start": 9019.57, + "end": 9021.35, + "probability": 0.7265 + }, + { + "start": 9021.53, + "end": 9024.47, + "probability": 0.8326 + }, + { + "start": 9025.11, + "end": 9028.01, + "probability": 0.9164 + }, + { + "start": 9028.01, + "end": 9030.97, + "probability": 0.9861 + }, + { + "start": 9031.47, + "end": 9033.46, + "probability": 0.8566 + }, + { + "start": 9033.81, + "end": 9039.07, + "probability": 0.923 + }, + { + "start": 9039.07, + "end": 9042.05, + "probability": 0.9568 + }, + { + "start": 9042.55, + "end": 9043.73, + "probability": 0.7666 + }, + { + "start": 9044.07, + "end": 9046.53, + "probability": 0.8224 + }, + { + "start": 9047.13, + "end": 9049.29, + "probability": 0.9232 + }, + { + "start": 9050.67, + "end": 9051.01, + "probability": 0.6997 + }, + { + "start": 9060.45, + "end": 9063.69, + "probability": 0.3918 + }, + { + "start": 9064.35, + "end": 9065.55, + "probability": 0.7156 + }, + { + "start": 9065.85, + "end": 9068.37, + "probability": 0.4253 + }, + { + "start": 9068.47, + "end": 9069.93, + "probability": 0.0243 + }, + { + "start": 9071.37, + "end": 9072.27, + "probability": 0.409 + }, + { + "start": 9072.27, + "end": 9072.39, + "probability": 0.0055 + }, + { + "start": 9073.03, + "end": 9075.65, + "probability": 0.0243 + }, + { + "start": 9078.33, + "end": 9078.43, + "probability": 0.0049 + }, + { + "start": 9087.59, + "end": 9090.57, + "probability": 0.716 + }, + { + "start": 9091.33, + "end": 9094.6, + "probability": 0.1161 + }, + { + "start": 9095.21, + "end": 9095.93, + "probability": 0.1041 + }, + { + "start": 9096.21, + "end": 9097.33, + "probability": 0.1452 + }, + { + "start": 9098.15, + "end": 9101.97, + "probability": 0.0706 + }, + { + "start": 9109.19, + "end": 9109.29, + "probability": 0.0161 + }, + { + "start": 9119.07, + "end": 9122.33, + "probability": 0.1851 + }, + { + "start": 9122.33, + "end": 9122.33, + "probability": 0.1044 + }, + { + "start": 9124.27, + "end": 9125.25, + "probability": 0.0016 + }, + { + "start": 9125.81, + "end": 9128.65, + "probability": 0.5802 + }, + { + "start": 9130.55, + "end": 9133.37, + "probability": 0.0803 + }, + { + "start": 9134.05, + "end": 9140.95, + "probability": 0.4598 + }, + { + "start": 9140.99, + "end": 9144.87, + "probability": 0.0248 + }, + { + "start": 9144.87, + "end": 9147.11, + "probability": 0.2629 + }, + { + "start": 9149.68, + "end": 9155.41, + "probability": 0.0249 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.0, + "end": 9170.0, + "probability": 0.0 + }, + { + "start": 9170.66, + "end": 9171.46, + "probability": 0.4073 + }, + { + "start": 9172.9, + "end": 9176.46, + "probability": 0.6567 + }, + { + "start": 9178.19, + "end": 9183.6, + "probability": 0.8393 + }, + { + "start": 9183.68, + "end": 9188.78, + "probability": 0.9938 + }, + { + "start": 9189.92, + "end": 9200.12, + "probability": 0.9551 + }, + { + "start": 9200.56, + "end": 9203.9, + "probability": 0.996 + }, + { + "start": 9205.6, + "end": 9210.8, + "probability": 0.7013 + }, + { + "start": 9212.52, + "end": 9219.78, + "probability": 0.9699 + }, + { + "start": 9220.3, + "end": 9225.36, + "probability": 0.9854 + }, + { + "start": 9226.04, + "end": 9228.5, + "probability": 0.9376 + }, + { + "start": 9228.94, + "end": 9232.5, + "probability": 0.9932 + }, + { + "start": 9232.94, + "end": 9235.22, + "probability": 0.9813 + }, + { + "start": 9236.5, + "end": 9238.18, + "probability": 0.9188 + }, + { + "start": 9239.48, + "end": 9244.76, + "probability": 0.2202 + }, + { + "start": 9247.8, + "end": 9249.04, + "probability": 0.8263 + }, + { + "start": 9249.36, + "end": 9255.22, + "probability": 0.9794 + }, + { + "start": 9255.46, + "end": 9257.88, + "probability": 0.7926 + }, + { + "start": 9261.16, + "end": 9267.54, + "probability": 0.9902 + }, + { + "start": 9269.9, + "end": 9271.88, + "probability": 0.9993 + }, + { + "start": 9272.3, + "end": 9275.48, + "probability": 0.998 + }, + { + "start": 9275.54, + "end": 9275.84, + "probability": 0.6151 + }, + { + "start": 9276.7, + "end": 9279.5, + "probability": 0.7354 + }, + { + "start": 9280.5, + "end": 9282.02, + "probability": 0.7439 + }, + { + "start": 9282.6, + "end": 9283.98, + "probability": 0.9962 + }, + { + "start": 9284.78, + "end": 9289.26, + "probability": 0.9551 + }, + { + "start": 9289.5, + "end": 9290.56, + "probability": 0.663 + }, + { + "start": 9292.42, + "end": 9297.08, + "probability": 0.6085 + }, + { + "start": 9297.64, + "end": 9299.98, + "probability": 0.7276 + }, + { + "start": 9300.62, + "end": 9302.72, + "probability": 0.9861 + }, + { + "start": 9303.48, + "end": 9308.68, + "probability": 0.7123 + }, + { + "start": 9311.12, + "end": 9316.9, + "probability": 0.8535 + }, + { + "start": 9317.42, + "end": 9318.7, + "probability": 0.9672 + }, + { + "start": 9319.44, + "end": 9327.3, + "probability": 0.9893 + }, + { + "start": 9328.12, + "end": 9333.08, + "probability": 0.991 + }, + { + "start": 9333.66, + "end": 9340.58, + "probability": 0.7464 + }, + { + "start": 9341.52, + "end": 9345.4, + "probability": 0.6731 + }, + { + "start": 9347.1, + "end": 9349.24, + "probability": 0.9312 + }, + { + "start": 9349.8, + "end": 9352.0, + "probability": 0.9937 + }, + { + "start": 9353.18, + "end": 9354.79, + "probability": 0.9031 + }, + { + "start": 9355.6, + "end": 9357.06, + "probability": 0.8509 + }, + { + "start": 9358.3, + "end": 9359.76, + "probability": 0.9199 + }, + { + "start": 9360.84, + "end": 9361.74, + "probability": 0.7365 + }, + { + "start": 9362.3, + "end": 9362.84, + "probability": 0.2325 + }, + { + "start": 9363.1, + "end": 9364.8, + "probability": 0.8118 + }, + { + "start": 9364.88, + "end": 9369.18, + "probability": 0.4744 + }, + { + "start": 9370.08, + "end": 9376.21, + "probability": 0.8911 + }, + { + "start": 9376.42, + "end": 9381.6, + "probability": 0.856 + }, + { + "start": 9382.38, + "end": 9387.06, + "probability": 0.5924 + }, + { + "start": 9387.7, + "end": 9392.96, + "probability": 0.9559 + }, + { + "start": 9394.12, + "end": 9395.58, + "probability": 0.7542 + }, + { + "start": 9396.46, + "end": 9397.54, + "probability": 0.8867 + }, + { + "start": 9398.44, + "end": 9400.64, + "probability": 0.9844 + }, + { + "start": 9401.76, + "end": 9406.08, + "probability": 0.9642 + }, + { + "start": 9407.62, + "end": 9409.14, + "probability": 0.9912 + }, + { + "start": 9409.9, + "end": 9412.6, + "probability": 0.9949 + }, + { + "start": 9413.78, + "end": 9417.42, + "probability": 0.999 + }, + { + "start": 9418.22, + "end": 9421.0, + "probability": 0.6091 + }, + { + "start": 9421.62, + "end": 9423.62, + "probability": 0.9951 + }, + { + "start": 9424.26, + "end": 9424.86, + "probability": 0.4818 + }, + { + "start": 9424.98, + "end": 9428.64, + "probability": 0.9689 + }, + { + "start": 9429.28, + "end": 9431.78, + "probability": 0.8803 + }, + { + "start": 9432.44, + "end": 9436.74, + "probability": 0.9778 + }, + { + "start": 9437.02, + "end": 9439.88, + "probability": 0.8909 + }, + { + "start": 9441.58, + "end": 9448.04, + "probability": 0.5801 + }, + { + "start": 9448.54, + "end": 9452.46, + "probability": 0.9916 + }, + { + "start": 9452.46, + "end": 9454.98, + "probability": 0.9903 + }, + { + "start": 9455.56, + "end": 9459.82, + "probability": 0.9367 + }, + { + "start": 9459.82, + "end": 9462.04, + "probability": 0.9801 + }, + { + "start": 9463.72, + "end": 9466.73, + "probability": 0.9955 + }, + { + "start": 9467.14, + "end": 9470.72, + "probability": 0.9958 + }, + { + "start": 9471.34, + "end": 9472.52, + "probability": 0.9031 + }, + { + "start": 9473.18, + "end": 9476.86, + "probability": 0.998 + }, + { + "start": 9477.42, + "end": 9480.62, + "probability": 0.9993 + }, + { + "start": 9481.02, + "end": 9483.28, + "probability": 0.98 + }, + { + "start": 9483.82, + "end": 9485.56, + "probability": 0.6972 + }, + { + "start": 9486.46, + "end": 9488.26, + "probability": 0.2842 + }, + { + "start": 9489.56, + "end": 9492.98, + "probability": 0.6894 + }, + { + "start": 9493.74, + "end": 9497.16, + "probability": 0.9753 + }, + { + "start": 9498.24, + "end": 9498.78, + "probability": 0.8633 + }, + { + "start": 9499.74, + "end": 9502.49, + "probability": 0.998 + }, + { + "start": 9503.74, + "end": 9510.32, + "probability": 0.9077 + }, + { + "start": 9511.06, + "end": 9513.36, + "probability": 0.8525 + }, + { + "start": 9514.08, + "end": 9516.22, + "probability": 0.788 + }, + { + "start": 9516.92, + "end": 9517.64, + "probability": 0.7829 + }, + { + "start": 9518.94, + "end": 9519.26, + "probability": 0.5589 + }, + { + "start": 9520.14, + "end": 9523.1, + "probability": 0.9565 + }, + { + "start": 9523.2, + "end": 9524.9, + "probability": 0.9976 + }, + { + "start": 9526.04, + "end": 9532.48, + "probability": 0.9324 + }, + { + "start": 9534.54, + "end": 9535.86, + "probability": 0.4993 + }, + { + "start": 9536.46, + "end": 9539.5, + "probability": 0.9056 + }, + { + "start": 9540.4, + "end": 9541.08, + "probability": 0.7064 + }, + { + "start": 9541.88, + "end": 9544.44, + "probability": 0.999 + }, + { + "start": 9544.48, + "end": 9545.76, + "probability": 0.9937 + }, + { + "start": 9546.38, + "end": 9548.96, + "probability": 0.8984 + }, + { + "start": 9549.76, + "end": 9551.98, + "probability": 0.9403 + }, + { + "start": 9552.34, + "end": 9556.88, + "probability": 0.9956 + }, + { + "start": 9557.06, + "end": 9562.36, + "probability": 0.979 + }, + { + "start": 9562.82, + "end": 9563.94, + "probability": 0.8203 + }, + { + "start": 9564.22, + "end": 9564.99, + "probability": 0.6694 + }, + { + "start": 9565.8, + "end": 9566.56, + "probability": 0.3633 + }, + { + "start": 9567.78, + "end": 9568.9, + "probability": 0.8886 + }, + { + "start": 9569.7, + "end": 9573.08, + "probability": 0.8466 + }, + { + "start": 9573.62, + "end": 9579.12, + "probability": 0.8104 + }, + { + "start": 9579.92, + "end": 9582.04, + "probability": 0.912 + }, + { + "start": 9582.62, + "end": 9582.68, + "probability": 0.1489 + }, + { + "start": 9582.68, + "end": 9583.64, + "probability": 0.6817 + }, + { + "start": 9583.64, + "end": 9584.72, + "probability": 0.5594 + }, + { + "start": 9584.9, + "end": 9586.0, + "probability": 0.5971 + }, + { + "start": 9586.24, + "end": 9588.96, + "probability": 0.8984 + }, + { + "start": 9589.96, + "end": 9591.14, + "probability": 0.9653 + }, + { + "start": 9592.58, + "end": 9595.82, + "probability": 0.7761 + }, + { + "start": 9596.18, + "end": 9597.22, + "probability": 0.6874 + }, + { + "start": 9597.9, + "end": 9601.58, + "probability": 0.9814 + }, + { + "start": 9602.18, + "end": 9603.04, + "probability": 0.7745 + }, + { + "start": 9603.16, + "end": 9604.18, + "probability": 0.8188 + }, + { + "start": 9604.2, + "end": 9608.68, + "probability": 0.9868 + }, + { + "start": 9608.98, + "end": 9614.02, + "probability": 0.9813 + }, + { + "start": 9614.98, + "end": 9619.72, + "probability": 0.7483 + }, + { + "start": 9620.54, + "end": 9622.88, + "probability": 0.5822 + }, + { + "start": 9626.48, + "end": 9627.9, + "probability": 0.0016 + }, + { + "start": 9633.66, + "end": 9638.92, + "probability": 0.245 + }, + { + "start": 9639.58, + "end": 9640.34, + "probability": 0.351 + }, + { + "start": 9641.02, + "end": 9646.06, + "probability": 0.9099 + }, + { + "start": 9646.06, + "end": 9649.16, + "probability": 0.9092 + }, + { + "start": 9649.9, + "end": 9650.24, + "probability": 0.7582 + }, + { + "start": 9651.66, + "end": 9652.93, + "probability": 0.5245 + }, + { + "start": 9653.14, + "end": 9654.48, + "probability": 0.6166 + }, + { + "start": 9655.02, + "end": 9655.78, + "probability": 0.6172 + }, + { + "start": 9656.1, + "end": 9659.38, + "probability": 0.9419 + }, + { + "start": 9659.38, + "end": 9664.14, + "probability": 0.9767 + }, + { + "start": 9665.92, + "end": 9669.76, + "probability": 0.9351 + }, + { + "start": 9670.0, + "end": 9672.3, + "probability": 0.8423 + }, + { + "start": 9672.4, + "end": 9673.51, + "probability": 0.4194 + }, + { + "start": 9674.3, + "end": 9678.0, + "probability": 0.9525 + }, + { + "start": 9678.58, + "end": 9681.18, + "probability": 0.9329 + }, + { + "start": 9681.74, + "end": 9686.76, + "probability": 0.74 + }, + { + "start": 9687.72, + "end": 9692.46, + "probability": 0.983 + }, + { + "start": 9693.28, + "end": 9696.26, + "probability": 0.6762 + }, + { + "start": 9696.8, + "end": 9698.92, + "probability": 0.6547 + }, + { + "start": 9702.72, + "end": 9703.56, + "probability": 0.6428 + }, + { + "start": 9703.98, + "end": 9707.88, + "probability": 0.894 + }, + { + "start": 9707.88, + "end": 9712.24, + "probability": 0.956 + }, + { + "start": 9713.6, + "end": 9718.12, + "probability": 0.9404 + }, + { + "start": 9718.73, + "end": 9720.92, + "probability": 0.9941 + }, + { + "start": 9721.2, + "end": 9723.26, + "probability": 0.7444 + }, + { + "start": 9723.42, + "end": 9724.58, + "probability": 0.9207 + }, + { + "start": 9724.68, + "end": 9725.76, + "probability": 0.9892 + }, + { + "start": 9726.26, + "end": 9729.92, + "probability": 0.9774 + }, + { + "start": 9730.42, + "end": 9731.16, + "probability": 0.6073 + }, + { + "start": 9731.54, + "end": 9733.76, + "probability": 0.99 + }, + { + "start": 9735.79, + "end": 9738.18, + "probability": 0.1897 + }, + { + "start": 9738.18, + "end": 9738.18, + "probability": 0.2951 + }, + { + "start": 9738.18, + "end": 9738.6, + "probability": 0.2014 + }, + { + "start": 9738.64, + "end": 9740.06, + "probability": 0.0562 + }, + { + "start": 9740.12, + "end": 9741.32, + "probability": 0.5042 + }, + { + "start": 9743.06, + "end": 9745.02, + "probability": 0.6037 + }, + { + "start": 9745.24, + "end": 9745.8, + "probability": 0.3448 + }, + { + "start": 9745.86, + "end": 9747.28, + "probability": 0.5028 + }, + { + "start": 9747.82, + "end": 9748.38, + "probability": 0.8169 + }, + { + "start": 9748.82, + "end": 9750.93, + "probability": 0.995 + }, + { + "start": 9751.54, + "end": 9754.52, + "probability": 0.9976 + }, + { + "start": 9755.08, + "end": 9760.17, + "probability": 0.9806 + }, + { + "start": 9760.22, + "end": 9761.26, + "probability": 0.762 + }, + { + "start": 9761.78, + "end": 9762.44, + "probability": 0.9252 + }, + { + "start": 9762.8, + "end": 9765.76, + "probability": 0.5975 + }, + { + "start": 9765.76, + "end": 9768.6, + "probability": 0.9919 + }, + { + "start": 9769.48, + "end": 9771.4, + "probability": 0.9545 + }, + { + "start": 9771.56, + "end": 9772.56, + "probability": 0.9658 + }, + { + "start": 9773.46, + "end": 9775.96, + "probability": 0.7862 + }, + { + "start": 9776.38, + "end": 9777.0, + "probability": 0.9869 + }, + { + "start": 9777.1, + "end": 9777.78, + "probability": 0.992 + }, + { + "start": 9777.86, + "end": 9778.2, + "probability": 0.8211 + }, + { + "start": 9778.52, + "end": 9781.98, + "probability": 0.9774 + }, + { + "start": 9782.08, + "end": 9783.07, + "probability": 0.6845 + }, + { + "start": 9783.26, + "end": 9786.3, + "probability": 0.9245 + }, + { + "start": 9786.4, + "end": 9789.2, + "probability": 0.9961 + }, + { + "start": 9789.2, + "end": 9792.0, + "probability": 0.9511 + }, + { + "start": 9792.04, + "end": 9793.18, + "probability": 0.9529 + }, + { + "start": 9793.42, + "end": 9794.12, + "probability": 0.9213 + }, + { + "start": 9794.72, + "end": 9795.22, + "probability": 0.4916 + }, + { + "start": 9796.26, + "end": 9796.32, + "probability": 0.0139 + }, + { + "start": 9815.38, + "end": 9816.16, + "probability": 0.1213 + }, + { + "start": 9816.16, + "end": 9817.0, + "probability": 0.4522 + }, + { + "start": 9817.2, + "end": 9823.17, + "probability": 0.7076 + }, + { + "start": 9823.66, + "end": 9826.0, + "probability": 0.7383 + }, + { + "start": 9827.46, + "end": 9830.96, + "probability": 0.8438 + }, + { + "start": 9830.96, + "end": 9834.28, + "probability": 0.918 + }, + { + "start": 9834.9, + "end": 9838.7, + "probability": 0.6999 + }, + { + "start": 9839.38, + "end": 9841.56, + "probability": 0.6688 + }, + { + "start": 9842.12, + "end": 9843.38, + "probability": 0.6636 + }, + { + "start": 9844.6, + "end": 9848.5, + "probability": 0.679 + }, + { + "start": 9848.52, + "end": 9851.18, + "probability": 0.8381 + }, + { + "start": 9852.34, + "end": 9857.9, + "probability": 0.7645 + }, + { + "start": 9858.56, + "end": 9862.0, + "probability": 0.949 + }, + { + "start": 9862.18, + "end": 9862.36, + "probability": 0.7307 + }, + { + "start": 9862.76, + "end": 9864.84, + "probability": 0.716 + }, + { + "start": 9865.54, + "end": 9869.54, + "probability": 0.8832 + }, + { + "start": 9870.62, + "end": 9875.36, + "probability": 0.8965 + }, + { + "start": 9876.08, + "end": 9877.52, + "probability": 0.9471 + }, + { + "start": 9878.24, + "end": 9881.98, + "probability": 0.912 + }, + { + "start": 9883.08, + "end": 9884.08, + "probability": 0.9653 + }, + { + "start": 9885.38, + "end": 9888.74, + "probability": 0.8218 + }, + { + "start": 9888.9, + "end": 9891.1, + "probability": 0.7519 + }, + { + "start": 9891.44, + "end": 9892.44, + "probability": 0.6913 + }, + { + "start": 9893.02, + "end": 9895.7, + "probability": 0.6606 + }, + { + "start": 9896.74, + "end": 9897.36, + "probability": 0.8511 + }, + { + "start": 9897.84, + "end": 9898.44, + "probability": 0.8257 + }, + { + "start": 9898.7, + "end": 9901.28, + "probability": 0.8785 + }, + { + "start": 9901.28, + "end": 9904.7, + "probability": 0.9934 + }, + { + "start": 9905.26, + "end": 9908.08, + "probability": 0.9148 + }, + { + "start": 9908.14, + "end": 9912.36, + "probability": 0.3703 + }, + { + "start": 9912.7, + "end": 9914.02, + "probability": 0.6696 + }, + { + "start": 9914.72, + "end": 9918.32, + "probability": 0.9388 + }, + { + "start": 9919.14, + "end": 9921.34, + "probability": 0.9409 + }, + { + "start": 9922.24, + "end": 9924.58, + "probability": 0.7652 + }, + { + "start": 9924.58, + "end": 9927.32, + "probability": 0.9793 + }, + { + "start": 9928.38, + "end": 9929.04, + "probability": 0.8108 + }, + { + "start": 9930.14, + "end": 9933.72, + "probability": 0.9969 + }, + { + "start": 9934.3, + "end": 9938.44, + "probability": 0.8832 + }, + { + "start": 9938.96, + "end": 9943.54, + "probability": 0.8853 + }, + { + "start": 9944.3, + "end": 9944.74, + "probability": 0.7562 + }, + { + "start": 9945.24, + "end": 9948.74, + "probability": 0.9721 + }, + { + "start": 9948.76, + "end": 9951.3, + "probability": 0.9985 + }, + { + "start": 9952.44, + "end": 9955.3, + "probability": 0.8904 + }, + { + "start": 9955.46, + "end": 9961.12, + "probability": 0.8724 + }, + { + "start": 9961.8, + "end": 9965.24, + "probability": 0.9775 + }, + { + "start": 9966.04, + "end": 9969.9, + "probability": 0.9172 + }, + { + "start": 9970.48, + "end": 9974.72, + "probability": 0.8048 + }, + { + "start": 9974.98, + "end": 9976.46, + "probability": 0.895 + }, + { + "start": 9977.58, + "end": 9980.54, + "probability": 0.644 + }, + { + "start": 9980.68, + "end": 9981.68, + "probability": 0.9098 + }, + { + "start": 9982.1, + "end": 9985.06, + "probability": 0.9632 + }, + { + "start": 9985.6, + "end": 9987.9, + "probability": 0.794 + }, + { + "start": 9988.0, + "end": 9990.46, + "probability": 0.3283 + }, + { + "start": 9990.46, + "end": 9992.76, + "probability": 0.9873 + }, + { + "start": 9993.58, + "end": 9996.14, + "probability": 0.7605 + }, + { + "start": 9997.28, + "end": 9997.86, + "probability": 0.7837 + }, + { + "start": 9998.8, + "end": 10001.74, + "probability": 0.9888 + }, + { + "start": 10001.86, + "end": 10004.14, + "probability": 0.8466 + }, + { + "start": 10005.4, + "end": 10007.46, + "probability": 0.9161 + }, + { + "start": 10010.34, + "end": 10012.52, + "probability": 0.6555 + }, + { + "start": 10012.58, + "end": 10015.46, + "probability": 0.6252 + }, + { + "start": 10017.76, + "end": 10020.58, + "probability": 0.3386 + }, + { + "start": 10021.66, + "end": 10022.44, + "probability": 0.3771 + }, + { + "start": 10024.4, + "end": 10027.7, + "probability": 0.3825 + }, + { + "start": 10027.7, + "end": 10027.7, + "probability": 0.4325 + }, + { + "start": 10031.28, + "end": 10031.9, + "probability": 0.2785 + }, + { + "start": 10055.07, + "end": 10055.24, + "probability": 0.1942 + }, + { + "start": 10055.24, + "end": 10055.24, + "probability": 0.3794 + }, + { + "start": 10055.24, + "end": 10056.15, + "probability": 0.7694 + }, + { + "start": 10056.5, + "end": 10057.72, + "probability": 0.4921 + }, + { + "start": 10057.9, + "end": 10060.54, + "probability": 0.9619 + }, + { + "start": 10060.9, + "end": 10062.18, + "probability": 0.6961 + }, + { + "start": 10063.82, + "end": 10065.34, + "probability": 0.7865 + }, + { + "start": 10066.76, + "end": 10070.18, + "probability": 0.2189 + }, + { + "start": 10086.6, + "end": 10086.6, + "probability": 0.034 + }, + { + "start": 10086.6, + "end": 10086.78, + "probability": 0.2537 + }, + { + "start": 10086.78, + "end": 10087.42, + "probability": 0.055 + }, + { + "start": 10087.84, + "end": 10088.64, + "probability": 0.1881 + }, + { + "start": 10089.41, + "end": 10091.98, + "probability": 0.6489 + }, + { + "start": 10092.68, + "end": 10096.16, + "probability": 0.7462 + }, + { + "start": 10097.76, + "end": 10104.08, + "probability": 0.8374 + }, + { + "start": 10104.34, + "end": 10105.06, + "probability": 0.7722 + }, + { + "start": 10105.94, + "end": 10108.84, + "probability": 0.9072 + }, + { + "start": 10109.48, + "end": 10111.68, + "probability": 0.991 + }, + { + "start": 10113.04, + "end": 10114.12, + "probability": 0.6768 + }, + { + "start": 10114.76, + "end": 10117.18, + "probability": 0.6919 + }, + { + "start": 10117.46, + "end": 10120.14, + "probability": 0.738 + }, + { + "start": 10120.84, + "end": 10122.68, + "probability": 0.607 + }, + { + "start": 10122.86, + "end": 10123.44, + "probability": 0.7994 + }, + { + "start": 10123.88, + "end": 10125.04, + "probability": 0.7172 + }, + { + "start": 10125.72, + "end": 10127.82, + "probability": 0.902 + }, + { + "start": 10128.62, + "end": 10131.72, + "probability": 0.9303 + }, + { + "start": 10132.18, + "end": 10133.3, + "probability": 0.9934 + }, + { + "start": 10134.36, + "end": 10137.04, + "probability": 0.6442 + }, + { + "start": 10137.56, + "end": 10142.5, + "probability": 0.9772 + }, + { + "start": 10143.3, + "end": 10148.28, + "probability": 0.9941 + }, + { + "start": 10148.92, + "end": 10151.32, + "probability": 0.9923 + }, + { + "start": 10152.1, + "end": 10153.04, + "probability": 0.6522 + }, + { + "start": 10154.3, + "end": 10157.62, + "probability": 0.9868 + }, + { + "start": 10157.96, + "end": 10159.06, + "probability": 0.8066 + }, + { + "start": 10159.6, + "end": 10161.86, + "probability": 0.999 + }, + { + "start": 10161.9, + "end": 10164.4, + "probability": 0.9937 + }, + { + "start": 10164.92, + "end": 10165.42, + "probability": 0.7441 + }, + { + "start": 10165.52, + "end": 10168.76, + "probability": 0.9791 + }, + { + "start": 10169.56, + "end": 10171.34, + "probability": 0.9307 + }, + { + "start": 10171.84, + "end": 10173.36, + "probability": 0.8773 + }, + { + "start": 10174.12, + "end": 10177.06, + "probability": 0.9554 + }, + { + "start": 10177.68, + "end": 10179.88, + "probability": 0.5526 + }, + { + "start": 10180.46, + "end": 10185.5, + "probability": 0.9849 + }, + { + "start": 10186.7, + "end": 10187.82, + "probability": 0.582 + }, + { + "start": 10187.94, + "end": 10188.04, + "probability": 0.6283 + }, + { + "start": 10188.16, + "end": 10190.5, + "probability": 0.8418 + }, + { + "start": 10190.56, + "end": 10192.19, + "probability": 0.2905 + }, + { + "start": 10193.4, + "end": 10194.68, + "probability": 0.4131 + }, + { + "start": 10195.16, + "end": 10200.12, + "probability": 0.9767 + }, + { + "start": 10200.84, + "end": 10203.82, + "probability": 0.8971 + }, + { + "start": 10204.66, + "end": 10208.04, + "probability": 0.7797 + }, + { + "start": 10208.7, + "end": 10211.92, + "probability": 0.8262 + }, + { + "start": 10212.56, + "end": 10213.46, + "probability": 0.6768 + }, + { + "start": 10214.04, + "end": 10218.1, + "probability": 0.8824 + }, + { + "start": 10219.22, + "end": 10220.22, + "probability": 0.772 + }, + { + "start": 10220.32, + "end": 10220.74, + "probability": 0.6923 + }, + { + "start": 10220.82, + "end": 10222.22, + "probability": 0.7368 + }, + { + "start": 10222.58, + "end": 10223.78, + "probability": 0.7322 + }, + { + "start": 10225.42, + "end": 10228.46, + "probability": 0.9399 + }, + { + "start": 10229.0, + "end": 10232.08, + "probability": 0.9305 + }, + { + "start": 10232.7, + "end": 10234.5, + "probability": 0.9841 + }, + { + "start": 10235.28, + "end": 10237.3, + "probability": 0.771 + }, + { + "start": 10237.84, + "end": 10240.74, + "probability": 0.9912 + }, + { + "start": 10241.74, + "end": 10244.06, + "probability": 0.4412 + }, + { + "start": 10245.02, + "end": 10247.02, + "probability": 0.9031 + }, + { + "start": 10247.6, + "end": 10251.9, + "probability": 0.9768 + }, + { + "start": 10253.04, + "end": 10256.86, + "probability": 0.9927 + }, + { + "start": 10257.74, + "end": 10260.42, + "probability": 0.9907 + }, + { + "start": 10260.9, + "end": 10266.28, + "probability": 0.9308 + }, + { + "start": 10266.82, + "end": 10271.76, + "probability": 0.9628 + }, + { + "start": 10272.7, + "end": 10277.58, + "probability": 0.9941 + }, + { + "start": 10278.22, + "end": 10281.64, + "probability": 0.909 + }, + { + "start": 10282.5, + "end": 10286.44, + "probability": 0.9702 + }, + { + "start": 10286.52, + "end": 10287.14, + "probability": 0.8438 + }, + { + "start": 10287.76, + "end": 10288.6, + "probability": 0.9497 + }, + { + "start": 10288.86, + "end": 10290.88, + "probability": 0.7976 + }, + { + "start": 10292.44, + "end": 10295.86, + "probability": 0.9683 + }, + { + "start": 10296.44, + "end": 10298.18, + "probability": 0.5172 + }, + { + "start": 10298.3, + "end": 10299.68, + "probability": 0.8216 + }, + { + "start": 10300.3, + "end": 10301.7, + "probability": 0.7471 + }, + { + "start": 10302.32, + "end": 10303.22, + "probability": 0.9922 + }, + { + "start": 10303.76, + "end": 10305.48, + "probability": 0.977 + }, + { + "start": 10305.72, + "end": 10308.3, + "probability": 0.9534 + }, + { + "start": 10308.54, + "end": 10309.4, + "probability": 0.8148 + }, + { + "start": 10310.22, + "end": 10310.9, + "probability": 0.9945 + }, + { + "start": 10312.16, + "end": 10316.4, + "probability": 0.9905 + }, + { + "start": 10317.06, + "end": 10317.8, + "probability": 0.9908 + }, + { + "start": 10318.64, + "end": 10320.34, + "probability": 0.9718 + }, + { + "start": 10320.6, + "end": 10323.36, + "probability": 0.9895 + }, + { + "start": 10323.7, + "end": 10326.5, + "probability": 0.9743 + }, + { + "start": 10326.74, + "end": 10327.64, + "probability": 0.7163 + }, + { + "start": 10328.2, + "end": 10330.4, + "probability": 0.9841 + }, + { + "start": 10330.94, + "end": 10334.14, + "probability": 0.8823 + }, + { + "start": 10334.42, + "end": 10335.52, + "probability": 0.8694 + }, + { + "start": 10335.98, + "end": 10336.72, + "probability": 0.3666 + }, + { + "start": 10336.78, + "end": 10340.86, + "probability": 0.9418 + }, + { + "start": 10341.28, + "end": 10343.4, + "probability": 0.9922 + }, + { + "start": 10344.34, + "end": 10346.14, + "probability": 0.9531 + }, + { + "start": 10346.76, + "end": 10350.3, + "probability": 0.9613 + }, + { + "start": 10351.52, + "end": 10353.78, + "probability": 0.9661 + }, + { + "start": 10354.28, + "end": 10355.5, + "probability": 0.987 + }, + { + "start": 10356.48, + "end": 10357.24, + "probability": 0.9165 + }, + { + "start": 10357.56, + "end": 10361.25, + "probability": 0.9966 + }, + { + "start": 10362.56, + "end": 10363.94, + "probability": 0.9577 + }, + { + "start": 10365.65, + "end": 10371.72, + "probability": 0.9984 + }, + { + "start": 10372.34, + "end": 10373.96, + "probability": 0.977 + }, + { + "start": 10374.5, + "end": 10375.59, + "probability": 0.856 + }, + { + "start": 10376.84, + "end": 10380.36, + "probability": 0.9818 + }, + { + "start": 10380.62, + "end": 10382.72, + "probability": 0.9608 + }, + { + "start": 10383.88, + "end": 10385.6, + "probability": 0.9541 + }, + { + "start": 10385.78, + "end": 10389.22, + "probability": 0.9922 + }, + { + "start": 10389.32, + "end": 10390.48, + "probability": 0.8239 + }, + { + "start": 10390.92, + "end": 10391.92, + "probability": 0.8732 + }, + { + "start": 10392.14, + "end": 10394.2, + "probability": 0.9578 + }, + { + "start": 10394.9, + "end": 10397.76, + "probability": 0.9979 + }, + { + "start": 10398.02, + "end": 10399.96, + "probability": 0.8493 + }, + { + "start": 10401.02, + "end": 10403.88, + "probability": 0.981 + }, + { + "start": 10404.48, + "end": 10408.38, + "probability": 0.9901 + }, + { + "start": 10409.02, + "end": 10409.94, + "probability": 0.769 + }, + { + "start": 10410.52, + "end": 10413.84, + "probability": 0.994 + }, + { + "start": 10414.0, + "end": 10415.24, + "probability": 0.9736 + }, + { + "start": 10416.44, + "end": 10419.56, + "probability": 0.9668 + }, + { + "start": 10420.7, + "end": 10424.66, + "probability": 0.8542 + }, + { + "start": 10425.72, + "end": 10428.94, + "probability": 0.9772 + }, + { + "start": 10429.4, + "end": 10433.5, + "probability": 0.9966 + }, + { + "start": 10434.52, + "end": 10437.36, + "probability": 0.9446 + }, + { + "start": 10437.96, + "end": 10438.78, + "probability": 0.7602 + }, + { + "start": 10439.3, + "end": 10442.26, + "probability": 0.9958 + }, + { + "start": 10442.26, + "end": 10445.84, + "probability": 0.9994 + }, + { + "start": 10446.64, + "end": 10451.52, + "probability": 0.999 + }, + { + "start": 10452.28, + "end": 10452.58, + "probability": 0.482 + }, + { + "start": 10452.7, + "end": 10456.9, + "probability": 0.9174 + }, + { + "start": 10457.12, + "end": 10458.24, + "probability": 0.6818 + }, + { + "start": 10458.72, + "end": 10460.24, + "probability": 0.9957 + }, + { + "start": 10461.26, + "end": 10464.8, + "probability": 0.4962 + }, + { + "start": 10465.94, + "end": 10470.14, + "probability": 0.9178 + }, + { + "start": 10470.94, + "end": 10472.0, + "probability": 0.9913 + }, + { + "start": 10472.52, + "end": 10473.76, + "probability": 0.9097 + }, + { + "start": 10474.66, + "end": 10476.56, + "probability": 0.9899 + }, + { + "start": 10477.44, + "end": 10479.48, + "probability": 0.9936 + }, + { + "start": 10480.06, + "end": 10481.42, + "probability": 0.9863 + }, + { + "start": 10481.74, + "end": 10484.32, + "probability": 0.9949 + }, + { + "start": 10484.82, + "end": 10485.0, + "probability": 0.7244 + }, + { + "start": 10485.78, + "end": 10486.66, + "probability": 0.851 + }, + { + "start": 10487.58, + "end": 10490.12, + "probability": 0.9995 + }, + { + "start": 10490.88, + "end": 10493.22, + "probability": 0.854 + }, + { + "start": 10493.98, + "end": 10495.9, + "probability": 0.9858 + }, + { + "start": 10496.94, + "end": 10499.91, + "probability": 0.9619 + }, + { + "start": 10500.76, + "end": 10502.76, + "probability": 0.9778 + }, + { + "start": 10504.26, + "end": 10507.52, + "probability": 0.7686 + }, + { + "start": 10507.88, + "end": 10510.32, + "probability": 0.6109 + }, + { + "start": 10510.9, + "end": 10514.08, + "probability": 0.8758 + }, + { + "start": 10514.66, + "end": 10516.6, + "probability": 0.7694 + }, + { + "start": 10517.22, + "end": 10518.1, + "probability": 0.7248 + }, + { + "start": 10518.76, + "end": 10521.0, + "probability": 0.9502 + }, + { + "start": 10521.52, + "end": 10522.18, + "probability": 0.6243 + }, + { + "start": 10522.84, + "end": 10526.76, + "probability": 0.7461 + }, + { + "start": 10527.36, + "end": 10529.28, + "probability": 0.99 + }, + { + "start": 10529.86, + "end": 10533.54, + "probability": 0.9985 + }, + { + "start": 10534.18, + "end": 10537.94, + "probability": 0.989 + }, + { + "start": 10538.48, + "end": 10539.92, + "probability": 0.83 + }, + { + "start": 10540.64, + "end": 10541.0, + "probability": 0.7386 + }, + { + "start": 10541.5, + "end": 10544.25, + "probability": 0.9975 + }, + { + "start": 10544.62, + "end": 10546.84, + "probability": 0.989 + }, + { + "start": 10547.36, + "end": 10548.82, + "probability": 0.9455 + }, + { + "start": 10550.44, + "end": 10553.14, + "probability": 0.9499 + }, + { + "start": 10553.14, + "end": 10555.9, + "probability": 0.9932 + }, + { + "start": 10556.78, + "end": 10557.87, + "probability": 0.8427 + }, + { + "start": 10558.2, + "end": 10560.7, + "probability": 0.9885 + }, + { + "start": 10561.24, + "end": 10561.98, + "probability": 0.8426 + }, + { + "start": 10562.72, + "end": 10566.6, + "probability": 0.9861 + }, + { + "start": 10566.6, + "end": 10569.52, + "probability": 0.9572 + }, + { + "start": 10570.08, + "end": 10570.82, + "probability": 0.9899 + }, + { + "start": 10571.7, + "end": 10574.54, + "probability": 0.9719 + }, + { + "start": 10575.28, + "end": 10576.74, + "probability": 0.7649 + }, + { + "start": 10576.98, + "end": 10577.7, + "probability": 0.6375 + }, + { + "start": 10578.04, + "end": 10581.52, + "probability": 0.9879 + }, + { + "start": 10582.26, + "end": 10582.9, + "probability": 0.4857 + }, + { + "start": 10583.98, + "end": 10585.5, + "probability": 0.8908 + }, + { + "start": 10585.88, + "end": 10587.74, + "probability": 0.9547 + }, + { + "start": 10589.12, + "end": 10589.5, + "probability": 0.795 + }, + { + "start": 10589.62, + "end": 10593.97, + "probability": 0.9743 + }, + { + "start": 10594.84, + "end": 10595.8, + "probability": 0.5005 + }, + { + "start": 10595.84, + "end": 10600.04, + "probability": 0.9968 + }, + { + "start": 10600.5, + "end": 10601.38, + "probability": 0.6728 + }, + { + "start": 10601.96, + "end": 10603.45, + "probability": 0.7528 + }, + { + "start": 10604.56, + "end": 10606.36, + "probability": 0.5597 + }, + { + "start": 10606.54, + "end": 10608.52, + "probability": 0.5255 + }, + { + "start": 10609.68, + "end": 10611.32, + "probability": 0.9893 + }, + { + "start": 10611.76, + "end": 10614.3, + "probability": 0.9629 + }, + { + "start": 10614.92, + "end": 10617.6, + "probability": 0.976 + }, + { + "start": 10618.58, + "end": 10618.58, + "probability": 0.3083 + }, + { + "start": 10619.28, + "end": 10621.7, + "probability": 0.6641 + }, + { + "start": 10622.9, + "end": 10623.56, + "probability": 0.9277 + }, + { + "start": 10624.52, + "end": 10626.2, + "probability": 0.9917 + }, + { + "start": 10627.62, + "end": 10630.9, + "probability": 0.9502 + }, + { + "start": 10631.8, + "end": 10633.6, + "probability": 0.9471 + }, + { + "start": 10634.78, + "end": 10637.98, + "probability": 0.9712 + }, + { + "start": 10639.1, + "end": 10645.16, + "probability": 0.9813 + }, + { + "start": 10645.98, + "end": 10649.16, + "probability": 0.77 + }, + { + "start": 10649.16, + "end": 10653.26, + "probability": 0.9223 + }, + { + "start": 10654.16, + "end": 10655.82, + "probability": 0.9369 + }, + { + "start": 10656.54, + "end": 10657.3, + "probability": 0.6658 + }, + { + "start": 10657.46, + "end": 10659.2, + "probability": 0.7271 + }, + { + "start": 10660.0, + "end": 10663.42, + "probability": 0.9961 + }, + { + "start": 10663.44, + "end": 10665.46, + "probability": 0.9956 + }, + { + "start": 10666.16, + "end": 10667.12, + "probability": 0.8577 + }, + { + "start": 10667.54, + "end": 10670.34, + "probability": 0.6505 + }, + { + "start": 10671.06, + "end": 10673.84, + "probability": 0.7888 + }, + { + "start": 10674.66, + "end": 10676.02, + "probability": 0.9193 + }, + { + "start": 10677.36, + "end": 10679.22, + "probability": 0.8266 + }, + { + "start": 10679.8, + "end": 10679.96, + "probability": 0.0789 + }, + { + "start": 10680.64, + "end": 10684.04, + "probability": 0.9691 + }, + { + "start": 10685.78, + "end": 10689.52, + "probability": 0.8584 + }, + { + "start": 10690.52, + "end": 10691.58, + "probability": 0.8422 + }, + { + "start": 10692.56, + "end": 10693.24, + "probability": 0.7328 + }, + { + "start": 10693.24, + "end": 10696.48, + "probability": 0.9769 + }, + { + "start": 10696.7, + "end": 10696.82, + "probability": 0.6402 + }, + { + "start": 10698.48, + "end": 10699.28, + "probability": 0.9458 + }, + { + "start": 10700.2, + "end": 10701.4, + "probability": 0.9722 + }, + { + "start": 10701.76, + "end": 10704.46, + "probability": 0.9394 + }, + { + "start": 10705.24, + "end": 10705.96, + "probability": 0.6323 + }, + { + "start": 10706.7, + "end": 10710.32, + "probability": 0.9973 + }, + { + "start": 10710.66, + "end": 10711.34, + "probability": 0.8826 + }, + { + "start": 10712.76, + "end": 10714.98, + "probability": 0.9977 + }, + { + "start": 10714.98, + "end": 10717.48, + "probability": 0.9338 + }, + { + "start": 10718.06, + "end": 10718.64, + "probability": 0.7894 + }, + { + "start": 10718.78, + "end": 10721.3, + "probability": 0.9853 + }, + { + "start": 10721.8, + "end": 10722.38, + "probability": 0.9271 + }, + { + "start": 10723.8, + "end": 10725.48, + "probability": 0.9009 + }, + { + "start": 10725.52, + "end": 10728.12, + "probability": 0.998 + }, + { + "start": 10728.82, + "end": 10731.88, + "probability": 0.994 + }, + { + "start": 10731.92, + "end": 10732.7, + "probability": 0.7614 + }, + { + "start": 10733.5, + "end": 10736.04, + "probability": 0.9407 + }, + { + "start": 10737.34, + "end": 10737.66, + "probability": 0.6996 + }, + { + "start": 10738.62, + "end": 10739.85, + "probability": 0.9561 + }, + { + "start": 10740.88, + "end": 10744.56, + "probability": 0.7617 + }, + { + "start": 10745.16, + "end": 10745.92, + "probability": 0.8317 + }, + { + "start": 10746.46, + "end": 10747.58, + "probability": 0.9188 + }, + { + "start": 10748.16, + "end": 10750.3, + "probability": 0.8453 + }, + { + "start": 10751.14, + "end": 10753.18, + "probability": 0.7612 + }, + { + "start": 10753.92, + "end": 10756.44, + "probability": 0.7651 + }, + { + "start": 10756.68, + "end": 10758.9, + "probability": 0.7149 + }, + { + "start": 10759.16, + "end": 10760.24, + "probability": 0.4617 + }, + { + "start": 10761.26, + "end": 10763.92, + "probability": 0.9044 + }, + { + "start": 10764.54, + "end": 10765.0, + "probability": 0.9215 + }, + { + "start": 10765.06, + "end": 10768.45, + "probability": 0.9894 + }, + { + "start": 10768.54, + "end": 10771.35, + "probability": 0.7159 + }, + { + "start": 10773.02, + "end": 10773.5, + "probability": 0.599 + }, + { + "start": 10774.0, + "end": 10775.74, + "probability": 0.8753 + }, + { + "start": 10776.46, + "end": 10781.4, + "probability": 0.9685 + }, + { + "start": 10781.56, + "end": 10782.15, + "probability": 0.493 + }, + { + "start": 10782.58, + "end": 10783.1, + "probability": 0.8931 + }, + { + "start": 10784.88, + "end": 10787.54, + "probability": 0.6524 + }, + { + "start": 10788.46, + "end": 10789.04, + "probability": 0.9358 + }, + { + "start": 10789.14, + "end": 10790.63, + "probability": 0.8716 + }, + { + "start": 10790.94, + "end": 10791.46, + "probability": 0.4919 + }, + { + "start": 10792.56, + "end": 10794.22, + "probability": 0.8565 + }, + { + "start": 10794.3, + "end": 10794.82, + "probability": 0.6009 + }, + { + "start": 10794.84, + "end": 10796.5, + "probability": 0.9366 + }, + { + "start": 10796.98, + "end": 10797.28, + "probability": 0.7501 + }, + { + "start": 10797.28, + "end": 10797.3, + "probability": 0.1659 + }, + { + "start": 10797.3, + "end": 10798.52, + "probability": 0.7673 + }, + { + "start": 10798.72, + "end": 10799.18, + "probability": 0.8721 + }, + { + "start": 10799.94, + "end": 10800.28, + "probability": 0.4534 + }, + { + "start": 10801.06, + "end": 10802.62, + "probability": 0.5519 + }, + { + "start": 10803.02, + "end": 10804.38, + "probability": 0.9851 + }, + { + "start": 10804.6, + "end": 10806.46, + "probability": 0.9871 + }, + { + "start": 10806.92, + "end": 10807.96, + "probability": 0.9858 + }, + { + "start": 10808.9, + "end": 10811.5, + "probability": 0.9966 + }, + { + "start": 10812.38, + "end": 10816.14, + "probability": 0.8203 + }, + { + "start": 10816.9, + "end": 10817.26, + "probability": 0.5472 + }, + { + "start": 10818.22, + "end": 10821.78, + "probability": 0.8509 + }, + { + "start": 10822.52, + "end": 10829.72, + "probability": 0.8986 + }, + { + "start": 10830.36, + "end": 10831.88, + "probability": 0.9806 + }, + { + "start": 10832.42, + "end": 10836.46, + "probability": 0.9689 + }, + { + "start": 10836.94, + "end": 10837.72, + "probability": 0.5387 + }, + { + "start": 10837.78, + "end": 10843.66, + "probability": 0.9869 + }, + { + "start": 10845.14, + "end": 10850.32, + "probability": 0.9985 + }, + { + "start": 10850.84, + "end": 10854.98, + "probability": 0.9976 + }, + { + "start": 10855.4, + "end": 10858.56, + "probability": 0.9976 + }, + { + "start": 10859.74, + "end": 10861.56, + "probability": 0.7628 + }, + { + "start": 10861.66, + "end": 10865.18, + "probability": 0.9592 + }, + { + "start": 10866.6, + "end": 10866.82, + "probability": 0.6284 + }, + { + "start": 10867.26, + "end": 10867.86, + "probability": 0.2791 + }, + { + "start": 10868.0, + "end": 10869.18, + "probability": 0.8411 + }, + { + "start": 10874.94, + "end": 10875.14, + "probability": 0.4267 + }, + { + "start": 10875.14, + "end": 10877.1, + "probability": 0.0622 + }, + { + "start": 10894.12, + "end": 10894.26, + "probability": 0.0231 + }, + { + "start": 10894.26, + "end": 10895.46, + "probability": 0.6148 + }, + { + "start": 10896.04, + "end": 10898.14, + "probability": 0.8566 + }, + { + "start": 10899.26, + "end": 10901.44, + "probability": 0.9714 + }, + { + "start": 10901.86, + "end": 10903.3, + "probability": 0.1714 + }, + { + "start": 10905.3, + "end": 10906.24, + "probability": 0.0352 + }, + { + "start": 10906.24, + "end": 10906.24, + "probability": 0.0974 + }, + { + "start": 10906.24, + "end": 10906.24, + "probability": 0.0169 + }, + { + "start": 10906.3, + "end": 10906.5, + "probability": 0.7426 + }, + { + "start": 10920.8, + "end": 10921.74, + "probability": 0.556 + }, + { + "start": 10921.98, + "end": 10921.98, + "probability": 0.1437 + }, + { + "start": 10921.98, + "end": 10922.54, + "probability": 0.7824 + }, + { + "start": 10922.84, + "end": 10923.92, + "probability": 0.7039 + }, + { + "start": 10926.62, + "end": 10931.86, + "probability": 0.9449 + }, + { + "start": 10932.44, + "end": 10934.3, + "probability": 0.991 + }, + { + "start": 10935.14, + "end": 10938.78, + "probability": 0.6996 + }, + { + "start": 10940.4, + "end": 10941.92, + "probability": 0.8357 + }, + { + "start": 10942.84, + "end": 10946.56, + "probability": 0.9823 + }, + { + "start": 10947.62, + "end": 10949.44, + "probability": 0.9943 + }, + { + "start": 10950.08, + "end": 10952.04, + "probability": 0.8306 + }, + { + "start": 10953.98, + "end": 10959.82, + "probability": 0.9904 + }, + { + "start": 10959.86, + "end": 10960.59, + "probability": 0.9321 + }, + { + "start": 10962.2, + "end": 10963.04, + "probability": 0.7523 + }, + { + "start": 10963.88, + "end": 10965.74, + "probability": 0.9937 + }, + { + "start": 10967.48, + "end": 10970.14, + "probability": 0.9715 + }, + { + "start": 10971.18, + "end": 10972.18, + "probability": 0.9826 + }, + { + "start": 10973.02, + "end": 10973.82, + "probability": 0.9795 + }, + { + "start": 10974.46, + "end": 10975.44, + "probability": 0.9911 + }, + { + "start": 10977.44, + "end": 10983.72, + "probability": 0.9913 + }, + { + "start": 10984.94, + "end": 10990.0, + "probability": 0.9473 + }, + { + "start": 10990.06, + "end": 10993.66, + "probability": 0.9919 + }, + { + "start": 10994.3, + "end": 11000.04, + "probability": 0.9915 + }, + { + "start": 11000.78, + "end": 11001.22, + "probability": 0.9318 + }, + { + "start": 11003.24, + "end": 11005.2, + "probability": 0.5973 + }, + { + "start": 11005.54, + "end": 11010.38, + "probability": 0.7874 + }, + { + "start": 11010.44, + "end": 11013.34, + "probability": 0.8876 + }, + { + "start": 11013.48, + "end": 11014.92, + "probability": 0.8987 + }, + { + "start": 11015.72, + "end": 11017.86, + "probability": 0.918 + }, + { + "start": 11018.5, + "end": 11019.7, + "probability": 0.3894 + }, + { + "start": 11020.94, + "end": 11026.5, + "probability": 0.8341 + }, + { + "start": 11027.02, + "end": 11031.3, + "probability": 0.9901 + }, + { + "start": 11032.86, + "end": 11039.56, + "probability": 0.8536 + }, + { + "start": 11040.26, + "end": 11043.36, + "probability": 0.9172 + }, + { + "start": 11044.08, + "end": 11045.14, + "probability": 0.7795 + }, + { + "start": 11045.64, + "end": 11048.04, + "probability": 0.9752 + }, + { + "start": 11048.56, + "end": 11055.4, + "probability": 0.8124 + }, + { + "start": 11056.58, + "end": 11063.74, + "probability": 0.9561 + }, + { + "start": 11064.32, + "end": 11065.48, + "probability": 0.9846 + }, + { + "start": 11065.64, + "end": 11067.06, + "probability": 0.9934 + }, + { + "start": 11067.5, + "end": 11070.84, + "probability": 0.9442 + }, + { + "start": 11071.36, + "end": 11071.74, + "probability": 0.4347 + }, + { + "start": 11071.96, + "end": 11076.36, + "probability": 0.9971 + }, + { + "start": 11076.36, + "end": 11080.8, + "probability": 0.9994 + }, + { + "start": 11081.2, + "end": 11081.56, + "probability": 0.7513 + }, + { + "start": 11081.62, + "end": 11082.1, + "probability": 0.6297 + }, + { + "start": 11082.3, + "end": 11082.84, + "probability": 0.2604 + }, + { + "start": 11104.46, + "end": 11104.9, + "probability": 0.008 + }, + { + "start": 11104.9, + "end": 11105.7, + "probability": 0.587 + }, + { + "start": 11107.44, + "end": 11109.1, + "probability": 0.7899 + }, + { + "start": 11110.5, + "end": 11111.78, + "probability": 0.8969 + }, + { + "start": 11113.0, + "end": 11113.5, + "probability": 0.9395 + }, + { + "start": 11114.7, + "end": 11115.18, + "probability": 0.6863 + }, + { + "start": 11115.34, + "end": 11117.64, + "probability": 0.8818 + }, + { + "start": 11118.54, + "end": 11119.67, + "probability": 0.981 + }, + { + "start": 11121.54, + "end": 11123.68, + "probability": 0.9958 + }, + { + "start": 11124.76, + "end": 11125.7, + "probability": 0.9029 + }, + { + "start": 11127.2, + "end": 11131.94, + "probability": 0.913 + }, + { + "start": 11132.04, + "end": 11134.52, + "probability": 0.9658 + }, + { + "start": 11135.68, + "end": 11139.28, + "probability": 0.9962 + }, + { + "start": 11139.38, + "end": 11145.38, + "probability": 0.951 + }, + { + "start": 11147.08, + "end": 11148.0, + "probability": 0.4385 + }, + { + "start": 11148.9, + "end": 11150.26, + "probability": 0.9512 + }, + { + "start": 11151.34, + "end": 11152.88, + "probability": 0.6435 + }, + { + "start": 11154.34, + "end": 11161.42, + "probability": 0.9436 + }, + { + "start": 11161.5, + "end": 11163.36, + "probability": 0.6021 + }, + { + "start": 11163.64, + "end": 11164.04, + "probability": 0.3694 + }, + { + "start": 11164.52, + "end": 11167.96, + "probability": 0.9498 + }, + { + "start": 11168.6, + "end": 11170.62, + "probability": 0.9695 + }, + { + "start": 11171.34, + "end": 11175.31, + "probability": 0.9354 + }, + { + "start": 11176.06, + "end": 11177.56, + "probability": 0.9863 + }, + { + "start": 11178.4, + "end": 11180.18, + "probability": 0.8034 + }, + { + "start": 11180.52, + "end": 11180.98, + "probability": 0.4285 + }, + { + "start": 11181.14, + "end": 11181.74, + "probability": 0.6958 + }, + { + "start": 11181.88, + "end": 11183.1, + "probability": 0.7249 + }, + { + "start": 11183.28, + "end": 11183.64, + "probability": 0.6637 + }, + { + "start": 11183.9, + "end": 11188.34, + "probability": 0.9962 + }, + { + "start": 11189.14, + "end": 11191.0, + "probability": 0.9058 + }, + { + "start": 11191.56, + "end": 11192.68, + "probability": 0.623 + }, + { + "start": 11193.14, + "end": 11196.94, + "probability": 0.9775 + }, + { + "start": 11197.9, + "end": 11200.66, + "probability": 0.9534 + }, + { + "start": 11200.76, + "end": 11202.16, + "probability": 0.7938 + }, + { + "start": 11202.86, + "end": 11203.34, + "probability": 0.8542 + }, + { + "start": 11203.4, + "end": 11205.22, + "probability": 0.9708 + }, + { + "start": 11206.52, + "end": 11208.14, + "probability": 0.6777 + }, + { + "start": 11208.84, + "end": 11210.74, + "probability": 0.9348 + }, + { + "start": 11211.76, + "end": 11213.38, + "probability": 0.9922 + }, + { + "start": 11213.44, + "end": 11216.02, + "probability": 0.9924 + }, + { + "start": 11217.42, + "end": 11218.26, + "probability": 0.8068 + }, + { + "start": 11219.26, + "end": 11222.0, + "probability": 0.9033 + }, + { + "start": 11222.98, + "end": 11224.78, + "probability": 0.4983 + }, + { + "start": 11225.52, + "end": 11226.2, + "probability": 0.95 + }, + { + "start": 11227.1, + "end": 11228.08, + "probability": 0.9098 + }, + { + "start": 11228.2, + "end": 11232.96, + "probability": 0.8792 + }, + { + "start": 11234.14, + "end": 11235.38, + "probability": 0.7779 + }, + { + "start": 11236.16, + "end": 11238.34, + "probability": 0.6614 + }, + { + "start": 11238.42, + "end": 11240.14, + "probability": 0.7551 + }, + { + "start": 11240.24, + "end": 11241.16, + "probability": 0.7596 + }, + { + "start": 11241.24, + "end": 11241.82, + "probability": 0.724 + }, + { + "start": 11242.14, + "end": 11242.62, + "probability": 0.8767 + }, + { + "start": 11243.24, + "end": 11244.78, + "probability": 0.9333 + }, + { + "start": 11245.22, + "end": 11246.12, + "probability": 0.8965 + }, + { + "start": 11246.64, + "end": 11247.7, + "probability": 0.7242 + }, + { + "start": 11248.22, + "end": 11250.92, + "probability": 0.9946 + }, + { + "start": 11251.64, + "end": 11252.9, + "probability": 0.8297 + }, + { + "start": 11253.8, + "end": 11256.38, + "probability": 0.9465 + }, + { + "start": 11257.0, + "end": 11258.82, + "probability": 0.7633 + }, + { + "start": 11259.8, + "end": 11262.42, + "probability": 0.9895 + }, + { + "start": 11263.32, + "end": 11266.68, + "probability": 0.5873 + }, + { + "start": 11266.68, + "end": 11267.43, + "probability": 0.9902 + }, + { + "start": 11268.24, + "end": 11271.62, + "probability": 0.9715 + }, + { + "start": 11271.7, + "end": 11273.22, + "probability": 0.6607 + }, + { + "start": 11273.88, + "end": 11276.9, + "probability": 0.9718 + }, + { + "start": 11277.0, + "end": 11278.06, + "probability": 0.9077 + }, + { + "start": 11278.18, + "end": 11280.52, + "probability": 0.994 + }, + { + "start": 11280.82, + "end": 11282.62, + "probability": 0.9935 + }, + { + "start": 11282.68, + "end": 11284.22, + "probability": 0.9733 + }, + { + "start": 11284.41, + "end": 11286.21, + "probability": 0.0914 + }, + { + "start": 11287.18, + "end": 11288.34, + "probability": 0.7856 + }, + { + "start": 11288.88, + "end": 11291.46, + "probability": 0.9431 + }, + { + "start": 11291.98, + "end": 11295.5, + "probability": 0.9521 + }, + { + "start": 11296.04, + "end": 11296.14, + "probability": 0.1825 + }, + { + "start": 11296.26, + "end": 11298.3, + "probability": 0.809 + }, + { + "start": 11299.24, + "end": 11300.02, + "probability": 0.8971 + }, + { + "start": 11300.74, + "end": 11302.44, + "probability": 0.8888 + }, + { + "start": 11303.08, + "end": 11305.8, + "probability": 0.9265 + }, + { + "start": 11306.94, + "end": 11307.88, + "probability": 0.8344 + }, + { + "start": 11307.9, + "end": 11309.12, + "probability": 0.8934 + }, + { + "start": 11309.92, + "end": 11315.08, + "probability": 0.9762 + }, + { + "start": 11315.12, + "end": 11317.32, + "probability": 0.9801 + }, + { + "start": 11317.52, + "end": 11317.86, + "probability": 0.7343 + }, + { + "start": 11318.4, + "end": 11319.06, + "probability": 0.6599 + }, + { + "start": 11319.48, + "end": 11320.48, + "probability": 0.8965 + }, + { + "start": 11326.96, + "end": 11327.1, + "probability": 0.0677 + }, + { + "start": 11345.18, + "end": 11345.42, + "probability": 0.0139 + }, + { + "start": 11345.42, + "end": 11345.42, + "probability": 0.0026 + }, + { + "start": 11345.42, + "end": 11345.42, + "probability": 0.5237 + }, + { + "start": 11345.42, + "end": 11347.66, + "probability": 0.7819 + }, + { + "start": 11347.74, + "end": 11348.84, + "probability": 0.6546 + }, + { + "start": 11348.84, + "end": 11349.72, + "probability": 0.981 + }, + { + "start": 11350.3, + "end": 11351.44, + "probability": 0.9875 + }, + { + "start": 11353.4, + "end": 11355.62, + "probability": 0.9944 + }, + { + "start": 11356.74, + "end": 11357.52, + "probability": 0.3776 + }, + { + "start": 11358.84, + "end": 11360.82, + "probability": 0.7736 + }, + { + "start": 11363.75, + "end": 11364.82, + "probability": 0.8361 + }, + { + "start": 11365.62, + "end": 11368.16, + "probability": 0.2118 + }, + { + "start": 11368.16, + "end": 11372.62, + "probability": 0.9226 + }, + { + "start": 11379.94, + "end": 11379.94, + "probability": 0.1312 + }, + { + "start": 11379.94, + "end": 11383.64, + "probability": 0.1793 + }, + { + "start": 11384.62, + "end": 11385.36, + "probability": 0.7753 + }, + { + "start": 11389.23, + "end": 11392.82, + "probability": 0.9935 + }, + { + "start": 11399.78, + "end": 11401.08, + "probability": 0.4817 + }, + { + "start": 11402.14, + "end": 11410.52, + "probability": 0.0174 + }, + { + "start": 11413.22, + "end": 11413.52, + "probability": 0.0002 + }, + { + "start": 11415.02, + "end": 11416.18, + "probability": 0.0253 + }, + { + "start": 11417.18, + "end": 11420.62, + "probability": 0.0095 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.0, + "end": 11474.0, + "probability": 0.0 + }, + { + "start": 11474.58, + "end": 11475.82, + "probability": 0.8205 + }, + { + "start": 11478.06, + "end": 11482.78, + "probability": 0.9891 + }, + { + "start": 11486.36, + "end": 11489.46, + "probability": 0.8318 + }, + { + "start": 11490.24, + "end": 11493.58, + "probability": 0.9932 + }, + { + "start": 11494.38, + "end": 11496.74, + "probability": 0.9868 + }, + { + "start": 11497.72, + "end": 11500.9, + "probability": 0.7049 + }, + { + "start": 11502.56, + "end": 11504.42, + "probability": 0.659 + }, + { + "start": 11505.06, + "end": 11508.66, + "probability": 0.9944 + }, + { + "start": 11509.44, + "end": 11513.64, + "probability": 0.995 + }, + { + "start": 11514.62, + "end": 11517.6, + "probability": 0.9233 + }, + { + "start": 11518.76, + "end": 11520.9, + "probability": 0.859 + }, + { + "start": 11521.08, + "end": 11521.57, + "probability": 0.9792 + }, + { + "start": 11522.24, + "end": 11523.92, + "probability": 0.9496 + }, + { + "start": 11525.54, + "end": 11526.68, + "probability": 0.9552 + }, + { + "start": 11527.2, + "end": 11528.44, + "probability": 0.876 + }, + { + "start": 11528.98, + "end": 11533.64, + "probability": 0.9976 + }, + { + "start": 11534.32, + "end": 11534.6, + "probability": 0.8162 + }, + { + "start": 11534.74, + "end": 11535.16, + "probability": 0.9282 + }, + { + "start": 11535.68, + "end": 11539.0, + "probability": 0.9871 + }, + { + "start": 11539.54, + "end": 11542.88, + "probability": 0.5613 + }, + { + "start": 11543.5, + "end": 11544.66, + "probability": 0.9897 + }, + { + "start": 11545.18, + "end": 11547.7, + "probability": 0.9038 + }, + { + "start": 11547.94, + "end": 11554.0, + "probability": 0.994 + }, + { + "start": 11554.62, + "end": 11555.46, + "probability": 0.7493 + }, + { + "start": 11555.64, + "end": 11557.56, + "probability": 0.9131 + }, + { + "start": 11557.64, + "end": 11559.24, + "probability": 0.9926 + }, + { + "start": 11560.98, + "end": 11563.18, + "probability": 0.901 + }, + { + "start": 11565.46, + "end": 11569.12, + "probability": 0.9812 + }, + { + "start": 11570.3, + "end": 11575.9, + "probability": 0.9786 + }, + { + "start": 11576.5, + "end": 11577.26, + "probability": 0.7976 + }, + { + "start": 11578.3, + "end": 11580.02, + "probability": 0.8131 + }, + { + "start": 11582.68, + "end": 11586.44, + "probability": 0.9651 + }, + { + "start": 11587.2, + "end": 11592.26, + "probability": 0.969 + }, + { + "start": 11592.26, + "end": 11595.26, + "probability": 0.9637 + }, + { + "start": 11598.02, + "end": 11600.34, + "probability": 0.5461 + }, + { + "start": 11601.32, + "end": 11603.7, + "probability": 0.9937 + }, + { + "start": 11603.86, + "end": 11606.74, + "probability": 0.9707 + }, + { + "start": 11606.82, + "end": 11609.56, + "probability": 0.9858 + }, + { + "start": 11609.64, + "end": 11611.5, + "probability": 0.9384 + }, + { + "start": 11612.0, + "end": 11613.4, + "probability": 0.8944 + }, + { + "start": 11613.88, + "end": 11615.6, + "probability": 0.8667 + }, + { + "start": 11615.84, + "end": 11616.66, + "probability": 0.5223 + }, + { + "start": 11617.06, + "end": 11618.73, + "probability": 0.9919 + }, + { + "start": 11619.06, + "end": 11622.54, + "probability": 0.7681 + }, + { + "start": 11623.16, + "end": 11624.76, + "probability": 0.9484 + }, + { + "start": 11625.36, + "end": 11629.86, + "probability": 0.6974 + }, + { + "start": 11630.62, + "end": 11634.38, + "probability": 0.9932 + }, + { + "start": 11635.24, + "end": 11636.6, + "probability": 0.9387 + }, + { + "start": 11637.26, + "end": 11640.56, + "probability": 0.5741 + }, + { + "start": 11641.12, + "end": 11643.42, + "probability": 0.9969 + }, + { + "start": 11644.58, + "end": 11646.48, + "probability": 0.9996 + }, + { + "start": 11646.98, + "end": 11649.82, + "probability": 0.9972 + }, + { + "start": 11650.42, + "end": 11651.1, + "probability": 0.8832 + }, + { + "start": 11651.64, + "end": 11652.94, + "probability": 0.9053 + }, + { + "start": 11654.36, + "end": 11658.0, + "probability": 0.964 + }, + { + "start": 11658.96, + "end": 11660.18, + "probability": 0.9991 + }, + { + "start": 11661.08, + "end": 11661.94, + "probability": 0.8689 + }, + { + "start": 11662.38, + "end": 11665.68, + "probability": 0.9961 + }, + { + "start": 11665.68, + "end": 11668.98, + "probability": 0.989 + }, + { + "start": 11669.12, + "end": 11671.46, + "probability": 0.9805 + }, + { + "start": 11672.28, + "end": 11673.26, + "probability": 0.9516 + }, + { + "start": 11674.06, + "end": 11677.44, + "probability": 0.8184 + }, + { + "start": 11678.38, + "end": 11680.32, + "probability": 0.995 + }, + { + "start": 11680.98, + "end": 11681.74, + "probability": 0.8428 + }, + { + "start": 11682.18, + "end": 11686.56, + "probability": 0.8968 + }, + { + "start": 11686.62, + "end": 11693.16, + "probability": 0.9456 + }, + { + "start": 11693.72, + "end": 11695.54, + "probability": 0.9974 + }, + { + "start": 11698.78, + "end": 11699.4, + "probability": 0.5044 + }, + { + "start": 11703.82, + "end": 11705.08, + "probability": 0.4653 + }, + { + "start": 11705.24, + "end": 11705.44, + "probability": 0.83 + }, + { + "start": 11705.66, + "end": 11706.62, + "probability": 0.8091 + }, + { + "start": 11706.86, + "end": 11708.84, + "probability": 0.7379 + }, + { + "start": 11709.68, + "end": 11710.8, + "probability": 0.916 + }, + { + "start": 11710.92, + "end": 11711.38, + "probability": 0.8802 + }, + { + "start": 11711.72, + "end": 11712.74, + "probability": 0.5452 + }, + { + "start": 11713.02, + "end": 11714.48, + "probability": 0.975 + }, + { + "start": 11714.56, + "end": 11719.76, + "probability": 0.9949 + }, + { + "start": 11720.06, + "end": 11720.48, + "probability": 0.5731 + }, + { + "start": 11726.18, + "end": 11726.24, + "probability": 0.2053 + }, + { + "start": 11726.26, + "end": 11726.28, + "probability": 0.0175 + } + ], + "segments_count": 3842, + "words_count": 19970, + "avg_words_per_segment": 5.1978, + "avg_segment_duration": 2.1523, + "avg_words_per_minute": 101.7657, + "plenum_id": "4943", + "duration": 11774.1, + "title": null, + "plenum_date": "2009-11-24" +} \ No newline at end of file