diff --git "a/21529/metadata.json" "b/21529/metadata.json" new file mode 100644--- /dev/null +++ "b/21529/metadata.json" @@ -0,0 +1,44722 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "21529", + "quality_score": 0.8945, + "per_segment_quality_scores": [ + { + "start": 118.9, + "end": 119.08, + "probability": 0.6526 + }, + { + "start": 119.9, + "end": 127.64, + "probability": 0.5683 + }, + { + "start": 128.26, + "end": 131.9, + "probability": 0.6708 + }, + { + "start": 152.59, + "end": 153.2, + "probability": 0.1326 + }, + { + "start": 153.2, + "end": 153.62, + "probability": 0.2551 + }, + { + "start": 153.62, + "end": 153.74, + "probability": 0.1087 + }, + { + "start": 156.76, + "end": 158.16, + "probability": 0.0987 + }, + { + "start": 161.48, + "end": 162.28, + "probability": 0.2266 + }, + { + "start": 162.3, + "end": 164.3, + "probability": 0.1225 + }, + { + "start": 164.3, + "end": 166.18, + "probability": 0.1166 + }, + { + "start": 166.76, + "end": 168.84, + "probability": 0.015 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.0, + "end": 284.0, + "probability": 0.0 + }, + { + "start": 284.26, + "end": 284.26, + "probability": 0.296 + }, + { + "start": 284.26, + "end": 284.26, + "probability": 0.0024 + }, + { + "start": 284.26, + "end": 284.26, + "probability": 0.1622 + }, + { + "start": 284.26, + "end": 284.26, + "probability": 0.1529 + }, + { + "start": 284.26, + "end": 285.14, + "probability": 0.187 + }, + { + "start": 285.24, + "end": 287.21, + "probability": 0.7939 + }, + { + "start": 289.16, + "end": 292.18, + "probability": 0.8423 + }, + { + "start": 292.26, + "end": 295.8, + "probability": 0.9276 + }, + { + "start": 296.26, + "end": 297.9, + "probability": 0.9192 + }, + { + "start": 299.06, + "end": 302.4, + "probability": 0.9473 + }, + { + "start": 302.98, + "end": 305.08, + "probability": 0.3531 + }, + { + "start": 305.94, + "end": 311.66, + "probability": 0.7363 + }, + { + "start": 312.7, + "end": 314.18, + "probability": 0.8012 + }, + { + "start": 314.34, + "end": 316.02, + "probability": 0.7142 + }, + { + "start": 316.08, + "end": 317.1, + "probability": 0.7396 + }, + { + "start": 317.24, + "end": 318.46, + "probability": 0.8087 + }, + { + "start": 318.86, + "end": 322.12, + "probability": 0.9769 + }, + { + "start": 323.36, + "end": 326.24, + "probability": 0.8923 + }, + { + "start": 326.98, + "end": 329.82, + "probability": 0.6742 + }, + { + "start": 330.34, + "end": 334.28, + "probability": 0.9596 + }, + { + "start": 335.4, + "end": 337.94, + "probability": 0.9656 + }, + { + "start": 337.94, + "end": 340.62, + "probability": 0.9007 + }, + { + "start": 341.48, + "end": 343.7, + "probability": 0.6519 + }, + { + "start": 343.96, + "end": 348.22, + "probability": 0.7595 + }, + { + "start": 348.96, + "end": 350.3, + "probability": 0.5968 + }, + { + "start": 350.36, + "end": 353.0, + "probability": 0.9201 + }, + { + "start": 353.18, + "end": 356.22, + "probability": 0.8971 + }, + { + "start": 356.62, + "end": 358.76, + "probability": 0.8735 + }, + { + "start": 359.52, + "end": 367.81, + "probability": 0.7891 + }, + { + "start": 369.44, + "end": 373.06, + "probability": 0.9398 + }, + { + "start": 373.06, + "end": 379.06, + "probability": 0.8032 + }, + { + "start": 379.58, + "end": 382.22, + "probability": 0.9419 + }, + { + "start": 383.3, + "end": 385.06, + "probability": 0.4206 + }, + { + "start": 386.82, + "end": 387.9, + "probability": 0.6659 + }, + { + "start": 388.64, + "end": 391.22, + "probability": 0.7815 + }, + { + "start": 391.4, + "end": 394.34, + "probability": 0.6353 + }, + { + "start": 394.4, + "end": 397.06, + "probability": 0.7113 + }, + { + "start": 397.62, + "end": 398.16, + "probability": 0.8889 + }, + { + "start": 398.56, + "end": 400.6, + "probability": 0.812 + }, + { + "start": 401.34, + "end": 406.46, + "probability": 0.8669 + }, + { + "start": 406.46, + "end": 409.68, + "probability": 0.9915 + }, + { + "start": 410.2, + "end": 413.04, + "probability": 0.7637 + }, + { + "start": 413.88, + "end": 414.26, + "probability": 0.6022 + }, + { + "start": 414.28, + "end": 417.54, + "probability": 0.9147 + }, + { + "start": 417.54, + "end": 421.24, + "probability": 0.9232 + }, + { + "start": 421.9, + "end": 424.87, + "probability": 0.8888 + }, + { + "start": 425.28, + "end": 426.84, + "probability": 0.7021 + }, + { + "start": 426.96, + "end": 427.7, + "probability": 0.2446 + }, + { + "start": 427.88, + "end": 430.7, + "probability": 0.8468 + }, + { + "start": 431.28, + "end": 436.44, + "probability": 0.854 + }, + { + "start": 437.1, + "end": 440.72, + "probability": 0.9442 + }, + { + "start": 440.72, + "end": 445.16, + "probability": 0.885 + }, + { + "start": 445.36, + "end": 447.5, + "probability": 0.9591 + }, + { + "start": 447.5, + "end": 451.66, + "probability": 0.9372 + }, + { + "start": 452.54, + "end": 455.78, + "probability": 0.9737 + }, + { + "start": 455.78, + "end": 459.22, + "probability": 0.9199 + }, + { + "start": 459.68, + "end": 462.48, + "probability": 0.8064 + }, + { + "start": 462.64, + "end": 465.78, + "probability": 0.9844 + }, + { + "start": 466.4, + "end": 469.6, + "probability": 0.8491 + }, + { + "start": 469.6, + "end": 473.8, + "probability": 0.9379 + }, + { + "start": 474.82, + "end": 479.72, + "probability": 0.8472 + }, + { + "start": 480.12, + "end": 485.72, + "probability": 0.9889 + }, + { + "start": 486.3, + "end": 490.86, + "probability": 0.8938 + }, + { + "start": 491.48, + "end": 494.32, + "probability": 0.8146 + }, + { + "start": 495.14, + "end": 496.08, + "probability": 0.6215 + }, + { + "start": 497.3, + "end": 499.62, + "probability": 0.5361 + }, + { + "start": 499.64, + "end": 500.98, + "probability": 0.6677 + }, + { + "start": 501.24, + "end": 501.56, + "probability": 0.4745 + }, + { + "start": 501.58, + "end": 505.2, + "probability": 0.921 + }, + { + "start": 505.34, + "end": 509.92, + "probability": 0.7288 + }, + { + "start": 512.96, + "end": 516.0, + "probability": 0.8986 + }, + { + "start": 516.88, + "end": 521.06, + "probability": 0.9455 + }, + { + "start": 521.52, + "end": 525.66, + "probability": 0.9841 + }, + { + "start": 526.32, + "end": 527.28, + "probability": 0.5953 + }, + { + "start": 528.12, + "end": 530.72, + "probability": 0.9029 + }, + { + "start": 530.86, + "end": 533.27, + "probability": 0.9925 + }, + { + "start": 535.04, + "end": 538.58, + "probability": 0.9735 + }, + { + "start": 539.48, + "end": 542.38, + "probability": 0.9907 + }, + { + "start": 542.96, + "end": 548.2, + "probability": 0.9765 + }, + { + "start": 548.92, + "end": 550.52, + "probability": 0.8039 + }, + { + "start": 550.66, + "end": 553.1, + "probability": 0.9348 + }, + { + "start": 554.28, + "end": 557.44, + "probability": 0.9476 + }, + { + "start": 557.76, + "end": 559.32, + "probability": 0.9751 + }, + { + "start": 560.0, + "end": 562.8, + "probability": 0.8511 + }, + { + "start": 562.88, + "end": 564.74, + "probability": 0.6991 + }, + { + "start": 565.18, + "end": 569.9, + "probability": 0.976 + }, + { + "start": 570.26, + "end": 572.52, + "probability": 0.9703 + }, + { + "start": 573.4, + "end": 576.34, + "probability": 0.9938 + }, + { + "start": 576.34, + "end": 579.56, + "probability": 0.996 + }, + { + "start": 579.96, + "end": 583.36, + "probability": 0.9653 + }, + { + "start": 584.28, + "end": 584.96, + "probability": 0.4381 + }, + { + "start": 585.0, + "end": 585.7, + "probability": 0.636 + }, + { + "start": 585.9, + "end": 587.24, + "probability": 0.6147 + }, + { + "start": 588.84, + "end": 590.32, + "probability": 0.9429 + }, + { + "start": 590.76, + "end": 594.24, + "probability": 0.6054 + }, + { + "start": 595.08, + "end": 596.66, + "probability": 0.9683 + }, + { + "start": 597.2, + "end": 597.52, + "probability": 0.8019 + }, + { + "start": 598.66, + "end": 600.46, + "probability": 0.9111 + }, + { + "start": 600.7, + "end": 602.68, + "probability": 0.8245 + }, + { + "start": 603.24, + "end": 604.44, + "probability": 0.9218 + }, + { + "start": 604.68, + "end": 607.6, + "probability": 0.968 + }, + { + "start": 608.4, + "end": 609.52, + "probability": 0.9427 + }, + { + "start": 610.26, + "end": 612.9, + "probability": 0.9987 + }, + { + "start": 612.96, + "end": 614.2, + "probability": 0.8024 + }, + { + "start": 615.26, + "end": 618.12, + "probability": 0.9408 + }, + { + "start": 618.96, + "end": 620.5, + "probability": 0.8396 + }, + { + "start": 620.74, + "end": 622.06, + "probability": 0.9089 + }, + { + "start": 622.14, + "end": 622.98, + "probability": 0.9691 + }, + { + "start": 623.08, + "end": 625.4, + "probability": 0.9545 + }, + { + "start": 626.24, + "end": 630.04, + "probability": 0.8888 + }, + { + "start": 630.42, + "end": 631.48, + "probability": 0.9717 + }, + { + "start": 631.62, + "end": 635.3, + "probability": 0.9984 + }, + { + "start": 635.68, + "end": 639.2, + "probability": 0.9833 + }, + { + "start": 639.86, + "end": 641.7, + "probability": 0.9921 + }, + { + "start": 641.78, + "end": 642.1, + "probability": 0.4735 + }, + { + "start": 642.2, + "end": 643.44, + "probability": 0.6059 + }, + { + "start": 643.48, + "end": 644.54, + "probability": 0.6728 + }, + { + "start": 644.66, + "end": 646.08, + "probability": 0.7928 + }, + { + "start": 646.98, + "end": 651.04, + "probability": 0.9868 + }, + { + "start": 652.16, + "end": 656.24, + "probability": 0.8141 + }, + { + "start": 656.4, + "end": 660.76, + "probability": 0.8737 + }, + { + "start": 661.22, + "end": 661.24, + "probability": 0.5421 + }, + { + "start": 661.28, + "end": 663.53, + "probability": 0.9966 + }, + { + "start": 663.7, + "end": 664.84, + "probability": 0.9768 + }, + { + "start": 665.44, + "end": 666.42, + "probability": 0.9878 + }, + { + "start": 666.52, + "end": 666.84, + "probability": 0.847 + }, + { + "start": 666.92, + "end": 670.48, + "probability": 0.9961 + }, + { + "start": 671.04, + "end": 674.02, + "probability": 0.589 + }, + { + "start": 674.62, + "end": 677.04, + "probability": 0.9883 + }, + { + "start": 677.86, + "end": 678.58, + "probability": 0.6997 + }, + { + "start": 678.88, + "end": 684.36, + "probability": 0.9841 + }, + { + "start": 684.76, + "end": 685.14, + "probability": 0.6922 + }, + { + "start": 685.28, + "end": 688.1, + "probability": 0.98 + }, + { + "start": 688.84, + "end": 692.02, + "probability": 0.9242 + }, + { + "start": 692.4, + "end": 695.38, + "probability": 0.9923 + }, + { + "start": 696.28, + "end": 699.04, + "probability": 0.9912 + }, + { + "start": 699.18, + "end": 702.22, + "probability": 0.9819 + }, + { + "start": 703.22, + "end": 707.34, + "probability": 0.9908 + }, + { + "start": 707.7, + "end": 710.98, + "probability": 0.9776 + }, + { + "start": 712.0, + "end": 713.3, + "probability": 0.9173 + }, + { + "start": 713.68, + "end": 718.22, + "probability": 0.9761 + }, + { + "start": 718.22, + "end": 721.86, + "probability": 0.9987 + }, + { + "start": 722.96, + "end": 724.11, + "probability": 0.9819 + }, + { + "start": 724.44, + "end": 726.54, + "probability": 0.945 + }, + { + "start": 726.54, + "end": 730.68, + "probability": 0.999 + }, + { + "start": 731.14, + "end": 731.74, + "probability": 0.7813 + }, + { + "start": 732.06, + "end": 732.48, + "probability": 0.6356 + }, + { + "start": 732.62, + "end": 735.92, + "probability": 0.979 + }, + { + "start": 735.92, + "end": 738.74, + "probability": 0.9958 + }, + { + "start": 739.56, + "end": 740.56, + "probability": 0.9253 + }, + { + "start": 740.76, + "end": 741.8, + "probability": 0.7359 + }, + { + "start": 741.88, + "end": 743.96, + "probability": 0.9642 + }, + { + "start": 744.7, + "end": 747.25, + "probability": 0.9958 + }, + { + "start": 747.42, + "end": 749.84, + "probability": 0.9055 + }, + { + "start": 751.32, + "end": 754.8, + "probability": 0.9832 + }, + { + "start": 755.76, + "end": 758.6, + "probability": 0.8953 + }, + { + "start": 758.76, + "end": 760.2, + "probability": 0.9556 + }, + { + "start": 760.56, + "end": 762.34, + "probability": 0.9314 + }, + { + "start": 762.42, + "end": 763.94, + "probability": 0.936 + }, + { + "start": 764.64, + "end": 768.3, + "probability": 0.9122 + }, + { + "start": 769.34, + "end": 770.1, + "probability": 0.3742 + }, + { + "start": 770.56, + "end": 772.96, + "probability": 0.8516 + }, + { + "start": 773.1, + "end": 776.66, + "probability": 0.9951 + }, + { + "start": 777.08, + "end": 779.02, + "probability": 0.9878 + }, + { + "start": 779.4, + "end": 782.01, + "probability": 0.9899 + }, + { + "start": 782.1, + "end": 784.46, + "probability": 0.8763 + }, + { + "start": 784.62, + "end": 785.04, + "probability": 0.6779 + }, + { + "start": 785.12, + "end": 785.7, + "probability": 0.519 + }, + { + "start": 785.74, + "end": 787.66, + "probability": 0.9961 + }, + { + "start": 787.68, + "end": 788.78, + "probability": 0.9893 + }, + { + "start": 789.06, + "end": 790.72, + "probability": 0.8423 + }, + { + "start": 791.36, + "end": 792.46, + "probability": 0.9974 + }, + { + "start": 793.28, + "end": 797.26, + "probability": 0.9482 + }, + { + "start": 797.28, + "end": 798.2, + "probability": 0.8799 + }, + { + "start": 798.38, + "end": 799.26, + "probability": 0.8431 + }, + { + "start": 799.42, + "end": 803.86, + "probability": 0.9801 + }, + { + "start": 804.66, + "end": 810.42, + "probability": 0.9786 + }, + { + "start": 810.92, + "end": 813.56, + "probability": 0.9977 + }, + { + "start": 813.66, + "end": 814.52, + "probability": 0.7545 + }, + { + "start": 814.64, + "end": 816.24, + "probability": 0.9058 + }, + { + "start": 816.72, + "end": 818.08, + "probability": 0.9489 + }, + { + "start": 818.46, + "end": 820.02, + "probability": 0.9727 + }, + { + "start": 820.02, + "end": 821.84, + "probability": 0.294 + }, + { + "start": 822.26, + "end": 822.26, + "probability": 0.0951 + }, + { + "start": 822.26, + "end": 823.66, + "probability": 0.9313 + }, + { + "start": 823.78, + "end": 827.36, + "probability": 0.9922 + }, + { + "start": 827.98, + "end": 829.34, + "probability": 0.8617 + }, + { + "start": 830.18, + "end": 832.9, + "probability": 0.9399 + }, + { + "start": 833.02, + "end": 835.68, + "probability": 0.9854 + }, + { + "start": 835.72, + "end": 838.64, + "probability": 0.9882 + }, + { + "start": 838.94, + "end": 844.22, + "probability": 0.9954 + }, + { + "start": 844.5, + "end": 847.24, + "probability": 0.9972 + }, + { + "start": 847.62, + "end": 850.52, + "probability": 0.9708 + }, + { + "start": 850.54, + "end": 852.74, + "probability": 0.8528 + }, + { + "start": 852.86, + "end": 853.31, + "probability": 0.6592 + }, + { + "start": 853.74, + "end": 855.3, + "probability": 0.9274 + }, + { + "start": 855.36, + "end": 856.6, + "probability": 0.9972 + }, + { + "start": 857.43, + "end": 859.86, + "probability": 0.894 + }, + { + "start": 860.22, + "end": 861.28, + "probability": 0.9524 + }, + { + "start": 861.34, + "end": 863.84, + "probability": 0.7361 + }, + { + "start": 863.98, + "end": 867.36, + "probability": 0.9818 + }, + { + "start": 867.64, + "end": 871.78, + "probability": 0.8478 + }, + { + "start": 872.4, + "end": 874.32, + "probability": 0.9124 + }, + { + "start": 875.1, + "end": 875.78, + "probability": 0.4645 + }, + { + "start": 875.9, + "end": 876.2, + "probability": 0.8489 + }, + { + "start": 876.4, + "end": 877.71, + "probability": 0.5761 + }, + { + "start": 877.74, + "end": 883.24, + "probability": 0.9207 + }, + { + "start": 884.8, + "end": 886.94, + "probability": 0.6377 + }, + { + "start": 887.74, + "end": 887.94, + "probability": 0.6243 + }, + { + "start": 888.24, + "end": 888.62, + "probability": 0.6184 + }, + { + "start": 888.78, + "end": 892.32, + "probability": 0.9434 + }, + { + "start": 892.86, + "end": 893.69, + "probability": 0.8681 + }, + { + "start": 894.1, + "end": 898.52, + "probability": 0.9465 + }, + { + "start": 899.12, + "end": 902.0, + "probability": 0.8015 + }, + { + "start": 902.56, + "end": 903.1, + "probability": 0.7189 + }, + { + "start": 904.52, + "end": 906.0, + "probability": 0.8163 + }, + { + "start": 906.74, + "end": 907.78, + "probability": 0.7575 + }, + { + "start": 908.64, + "end": 910.4, + "probability": 0.5177 + }, + { + "start": 911.06, + "end": 913.8, + "probability": 0.8025 + }, + { + "start": 914.42, + "end": 916.06, + "probability": 0.9685 + }, + { + "start": 916.58, + "end": 918.96, + "probability": 0.9788 + }, + { + "start": 919.52, + "end": 920.88, + "probability": 0.9114 + }, + { + "start": 921.32, + "end": 922.42, + "probability": 0.949 + }, + { + "start": 922.58, + "end": 922.9, + "probability": 0.4205 + }, + { + "start": 922.94, + "end": 928.34, + "probability": 0.9804 + }, + { + "start": 929.33, + "end": 934.74, + "probability": 0.7248 + }, + { + "start": 934.84, + "end": 936.77, + "probability": 0.9858 + }, + { + "start": 937.38, + "end": 942.9, + "probability": 0.9861 + }, + { + "start": 943.04, + "end": 943.8, + "probability": 0.9985 + }, + { + "start": 944.42, + "end": 947.42, + "probability": 0.9847 + }, + { + "start": 947.48, + "end": 950.48, + "probability": 0.7306 + }, + { + "start": 951.52, + "end": 952.0, + "probability": 0.3914 + }, + { + "start": 952.22, + "end": 952.54, + "probability": 0.7637 + }, + { + "start": 953.62, + "end": 955.17, + "probability": 0.6267 + }, + { + "start": 955.22, + "end": 958.14, + "probability": 0.6179 + }, + { + "start": 958.66, + "end": 958.9, + "probability": 0.4362 + }, + { + "start": 959.08, + "end": 961.69, + "probability": 0.747 + }, + { + "start": 962.68, + "end": 964.22, + "probability": 0.9277 + }, + { + "start": 965.68, + "end": 968.54, + "probability": 0.7354 + }, + { + "start": 969.84, + "end": 970.5, + "probability": 0.5156 + }, + { + "start": 970.76, + "end": 971.06, + "probability": 0.9169 + }, + { + "start": 971.82, + "end": 971.82, + "probability": 0.4483 + }, + { + "start": 972.2, + "end": 972.24, + "probability": 0.1243 + }, + { + "start": 972.24, + "end": 972.88, + "probability": 0.3841 + }, + { + "start": 973.63, + "end": 976.94, + "probability": 0.5697 + }, + { + "start": 977.02, + "end": 978.78, + "probability": 0.9984 + }, + { + "start": 979.36, + "end": 981.4, + "probability": 0.9929 + }, + { + "start": 981.9, + "end": 982.52, + "probability": 0.7782 + }, + { + "start": 983.06, + "end": 983.78, + "probability": 0.8519 + }, + { + "start": 984.38, + "end": 986.18, + "probability": 0.9902 + }, + { + "start": 986.98, + "end": 988.82, + "probability": 0.9746 + }, + { + "start": 990.12, + "end": 993.06, + "probability": 0.8171 + }, + { + "start": 995.56, + "end": 998.66, + "probability": 0.7404 + }, + { + "start": 999.88, + "end": 1002.6, + "probability": 0.7421 + }, + { + "start": 1003.9, + "end": 1007.24, + "probability": 0.88 + }, + { + "start": 1007.94, + "end": 1009.0, + "probability": 0.9723 + }, + { + "start": 1010.06, + "end": 1013.03, + "probability": 0.855 + }, + { + "start": 1014.2, + "end": 1016.46, + "probability": 0.7454 + }, + { + "start": 1016.82, + "end": 1019.2, + "probability": 0.8545 + }, + { + "start": 1019.54, + "end": 1021.6, + "probability": 0.9585 + }, + { + "start": 1021.92, + "end": 1025.36, + "probability": 0.8683 + }, + { + "start": 1025.66, + "end": 1029.54, + "probability": 0.9731 + }, + { + "start": 1029.94, + "end": 1030.72, + "probability": 0.6611 + }, + { + "start": 1031.5, + "end": 1035.42, + "probability": 0.989 + }, + { + "start": 1036.46, + "end": 1038.64, + "probability": 0.564 + }, + { + "start": 1038.76, + "end": 1041.56, + "probability": 0.8727 + }, + { + "start": 1043.99, + "end": 1048.1, + "probability": 0.9961 + }, + { + "start": 1049.22, + "end": 1050.12, + "probability": 0.8689 + }, + { + "start": 1050.76, + "end": 1052.24, + "probability": 0.9205 + }, + { + "start": 1053.16, + "end": 1055.4, + "probability": 0.8848 + }, + { + "start": 1056.02, + "end": 1057.12, + "probability": 0.9641 + }, + { + "start": 1057.76, + "end": 1061.77, + "probability": 0.9693 + }, + { + "start": 1063.08, + "end": 1063.84, + "probability": 0.8041 + }, + { + "start": 1064.56, + "end": 1066.14, + "probability": 0.9741 + }, + { + "start": 1067.2, + "end": 1070.64, + "probability": 0.8472 + }, + { + "start": 1071.32, + "end": 1072.06, + "probability": 0.8572 + }, + { + "start": 1072.76, + "end": 1073.92, + "probability": 0.8629 + }, + { + "start": 1074.6, + "end": 1078.16, + "probability": 0.9114 + }, + { + "start": 1079.0, + "end": 1079.98, + "probability": 0.3582 + }, + { + "start": 1080.08, + "end": 1080.34, + "probability": 0.4166 + }, + { + "start": 1080.7, + "end": 1081.66, + "probability": 0.4438 + }, + { + "start": 1082.34, + "end": 1085.48, + "probability": 0.8582 + }, + { + "start": 1085.86, + "end": 1087.58, + "probability": 0.6835 + }, + { + "start": 1087.92, + "end": 1088.74, + "probability": 0.9447 + }, + { + "start": 1089.14, + "end": 1089.88, + "probability": 0.5625 + }, + { + "start": 1090.52, + "end": 1092.86, + "probability": 0.8975 + }, + { + "start": 1093.44, + "end": 1094.74, + "probability": 0.579 + }, + { + "start": 1094.9, + "end": 1095.36, + "probability": 0.5511 + }, + { + "start": 1095.46, + "end": 1096.62, + "probability": 0.624 + }, + { + "start": 1097.58, + "end": 1102.76, + "probability": 0.9058 + }, + { + "start": 1103.66, + "end": 1104.63, + "probability": 0.8 + }, + { + "start": 1105.14, + "end": 1105.88, + "probability": 0.2916 + }, + { + "start": 1106.8, + "end": 1108.56, + "probability": 0.3262 + }, + { + "start": 1108.76, + "end": 1110.64, + "probability": 0.4111 + }, + { + "start": 1111.4, + "end": 1112.67, + "probability": 0.9922 + }, + { + "start": 1113.24, + "end": 1113.56, + "probability": 0.0163 + }, + { + "start": 1114.2, + "end": 1114.66, + "probability": 0.9544 + }, + { + "start": 1117.06, + "end": 1118.76, + "probability": 0.8941 + }, + { + "start": 1118.98, + "end": 1120.4, + "probability": 0.7995 + }, + { + "start": 1120.94, + "end": 1124.12, + "probability": 0.9631 + }, + { + "start": 1124.68, + "end": 1126.56, + "probability": 0.9966 + }, + { + "start": 1126.84, + "end": 1128.8, + "probability": 0.8396 + }, + { + "start": 1129.2, + "end": 1131.58, + "probability": 0.9937 + }, + { + "start": 1131.88, + "end": 1133.38, + "probability": 0.636 + }, + { + "start": 1134.78, + "end": 1140.74, + "probability": 0.7311 + }, + { + "start": 1140.88, + "end": 1141.68, + "probability": 0.935 + }, + { + "start": 1142.5, + "end": 1143.98, + "probability": 0.6719 + }, + { + "start": 1144.38, + "end": 1146.18, + "probability": 0.5616 + }, + { + "start": 1146.6, + "end": 1148.34, + "probability": 0.7665 + }, + { + "start": 1148.52, + "end": 1148.82, + "probability": 0.4601 + }, + { + "start": 1149.2, + "end": 1150.14, + "probability": 0.7886 + }, + { + "start": 1150.54, + "end": 1153.48, + "probability": 0.9787 + }, + { + "start": 1153.72, + "end": 1155.16, + "probability": 0.9774 + }, + { + "start": 1155.48, + "end": 1157.6, + "probability": 0.8756 + }, + { + "start": 1158.48, + "end": 1160.52, + "probability": 0.8955 + }, + { + "start": 1161.54, + "end": 1161.78, + "probability": 0.5262 + }, + { + "start": 1163.56, + "end": 1164.72, + "probability": 0.9458 + }, + { + "start": 1165.24, + "end": 1166.44, + "probability": 0.9202 + }, + { + "start": 1166.68, + "end": 1171.46, + "probability": 0.4497 + }, + { + "start": 1172.0, + "end": 1172.16, + "probability": 0.1192 + }, + { + "start": 1172.54, + "end": 1174.8, + "probability": 0.8965 + }, + { + "start": 1174.96, + "end": 1175.82, + "probability": 0.5089 + }, + { + "start": 1176.04, + "end": 1177.6, + "probability": 0.8221 + }, + { + "start": 1178.06, + "end": 1179.16, + "probability": 0.5478 + }, + { + "start": 1179.28, + "end": 1180.34, + "probability": 0.5249 + }, + { + "start": 1180.34, + "end": 1181.62, + "probability": 0.6819 + }, + { + "start": 1181.84, + "end": 1182.92, + "probability": 0.4492 + }, + { + "start": 1182.92, + "end": 1183.22, + "probability": 0.2839 + }, + { + "start": 1183.24, + "end": 1183.88, + "probability": 0.9216 + }, + { + "start": 1184.38, + "end": 1185.82, + "probability": 0.903 + }, + { + "start": 1186.12, + "end": 1188.72, + "probability": 0.8198 + }, + { + "start": 1189.02, + "end": 1190.26, + "probability": 0.6196 + }, + { + "start": 1190.92, + "end": 1191.98, + "probability": 0.6757 + }, + { + "start": 1192.5, + "end": 1194.74, + "probability": 0.2714 + }, + { + "start": 1194.78, + "end": 1199.48, + "probability": 0.9814 + }, + { + "start": 1199.48, + "end": 1202.38, + "probability": 0.9757 + }, + { + "start": 1203.5, + "end": 1204.4, + "probability": 0.7301 + }, + { + "start": 1205.18, + "end": 1206.7, + "probability": 0.9883 + }, + { + "start": 1207.96, + "end": 1209.27, + "probability": 0.9282 + }, + { + "start": 1209.36, + "end": 1211.98, + "probability": 0.6152 + }, + { + "start": 1212.18, + "end": 1214.38, + "probability": 0.8093 + }, + { + "start": 1214.66, + "end": 1215.66, + "probability": 0.587 + }, + { + "start": 1216.38, + "end": 1217.34, + "probability": 0.406 + }, + { + "start": 1217.44, + "end": 1219.26, + "probability": 0.6077 + }, + { + "start": 1220.38, + "end": 1220.74, + "probability": 0.9823 + }, + { + "start": 1223.66, + "end": 1228.42, + "probability": 0.9829 + }, + { + "start": 1229.34, + "end": 1233.52, + "probability": 0.7433 + }, + { + "start": 1234.54, + "end": 1242.04, + "probability": 0.6565 + }, + { + "start": 1242.42, + "end": 1242.74, + "probability": 0.3555 + }, + { + "start": 1243.08, + "end": 1245.54, + "probability": 0.9766 + }, + { + "start": 1245.84, + "end": 1248.42, + "probability": 0.6292 + }, + { + "start": 1248.64, + "end": 1249.42, + "probability": 0.777 + }, + { + "start": 1249.72, + "end": 1251.62, + "probability": 0.9751 + }, + { + "start": 1251.84, + "end": 1254.38, + "probability": 0.6527 + }, + { + "start": 1254.38, + "end": 1258.12, + "probability": 0.9356 + }, + { + "start": 1258.48, + "end": 1262.64, + "probability": 0.927 + }, + { + "start": 1263.3, + "end": 1263.86, + "probability": 0.4931 + }, + { + "start": 1264.0, + "end": 1267.08, + "probability": 0.9597 + }, + { + "start": 1267.32, + "end": 1271.78, + "probability": 0.8128 + }, + { + "start": 1272.42, + "end": 1274.72, + "probability": 0.7941 + }, + { + "start": 1275.68, + "end": 1276.26, + "probability": 0.2878 + }, + { + "start": 1276.48, + "end": 1277.12, + "probability": 0.3382 + }, + { + "start": 1277.2, + "end": 1277.88, + "probability": 0.4646 + }, + { + "start": 1278.34, + "end": 1279.22, + "probability": 0.5455 + }, + { + "start": 1279.76, + "end": 1279.76, + "probability": 0.4399 + }, + { + "start": 1280.61, + "end": 1281.62, + "probability": 0.7841 + }, + { + "start": 1281.88, + "end": 1282.6, + "probability": 0.8861 + }, + { + "start": 1282.86, + "end": 1283.5, + "probability": 0.0148 + }, + { + "start": 1284.06, + "end": 1285.18, + "probability": 0.8287 + }, + { + "start": 1285.26, + "end": 1291.04, + "probability": 0.5228 + }, + { + "start": 1293.16, + "end": 1298.34, + "probability": 0.7089 + }, + { + "start": 1298.52, + "end": 1300.26, + "probability": 0.8938 + }, + { + "start": 1300.34, + "end": 1301.04, + "probability": 0.836 + }, + { + "start": 1301.22, + "end": 1303.86, + "probability": 0.8238 + }, + { + "start": 1304.16, + "end": 1304.48, + "probability": 0.7111 + }, + { + "start": 1304.54, + "end": 1305.63, + "probability": 0.6863 + }, + { + "start": 1306.06, + "end": 1307.72, + "probability": 0.3265 + }, + { + "start": 1308.73, + "end": 1310.56, + "probability": 0.6736 + }, + { + "start": 1313.01, + "end": 1316.28, + "probability": 0.5692 + }, + { + "start": 1317.0, + "end": 1317.18, + "probability": 0.0771 + }, + { + "start": 1318.3, + "end": 1319.5, + "probability": 0.701 + }, + { + "start": 1319.58, + "end": 1321.94, + "probability": 0.6057 + }, + { + "start": 1322.06, + "end": 1323.8, + "probability": 0.617 + }, + { + "start": 1324.58, + "end": 1325.14, + "probability": 0.4476 + }, + { + "start": 1325.88, + "end": 1329.08, + "probability": 0.8369 + }, + { + "start": 1329.44, + "end": 1330.14, + "probability": 0.9235 + }, + { + "start": 1331.58, + "end": 1331.94, + "probability": 0.9557 + }, + { + "start": 1332.84, + "end": 1333.46, + "probability": 0.6092 + }, + { + "start": 1333.56, + "end": 1334.24, + "probability": 0.9103 + }, + { + "start": 1334.68, + "end": 1335.56, + "probability": 0.4826 + }, + { + "start": 1336.12, + "end": 1336.74, + "probability": 0.4252 + }, + { + "start": 1336.78, + "end": 1337.68, + "probability": 0.8411 + }, + { + "start": 1337.84, + "end": 1339.17, + "probability": 0.8467 + }, + { + "start": 1339.42, + "end": 1340.68, + "probability": 0.9452 + }, + { + "start": 1340.9, + "end": 1341.26, + "probability": 0.5518 + }, + { + "start": 1341.36, + "end": 1342.12, + "probability": 0.9252 + }, + { + "start": 1342.52, + "end": 1342.86, + "probability": 0.2619 + }, + { + "start": 1342.96, + "end": 1346.38, + "probability": 0.9806 + }, + { + "start": 1347.3, + "end": 1349.8, + "probability": 0.9882 + }, + { + "start": 1349.98, + "end": 1350.62, + "probability": 0.9404 + }, + { + "start": 1352.0, + "end": 1353.82, + "probability": 0.9377 + }, + { + "start": 1354.24, + "end": 1354.68, + "probability": 0.5169 + }, + { + "start": 1355.14, + "end": 1358.04, + "probability": 0.6493 + }, + { + "start": 1358.94, + "end": 1361.72, + "probability": 0.1924 + }, + { + "start": 1362.5, + "end": 1363.46, + "probability": 0.0488 + }, + { + "start": 1365.36, + "end": 1367.22, + "probability": 0.2036 + }, + { + "start": 1369.82, + "end": 1370.86, + "probability": 0.3576 + }, + { + "start": 1371.14, + "end": 1372.04, + "probability": 0.4619 + }, + { + "start": 1372.6, + "end": 1376.24, + "probability": 0.8842 + }, + { + "start": 1378.3, + "end": 1379.2, + "probability": 0.9705 + }, + { + "start": 1379.94, + "end": 1380.38, + "probability": 0.4231 + }, + { + "start": 1380.62, + "end": 1381.28, + "probability": 0.7067 + }, + { + "start": 1381.6, + "end": 1385.55, + "probability": 0.6883 + }, + { + "start": 1385.68, + "end": 1386.74, + "probability": 0.8003 + }, + { + "start": 1386.84, + "end": 1387.66, + "probability": 0.7271 + }, + { + "start": 1388.32, + "end": 1389.06, + "probability": 0.7328 + }, + { + "start": 1389.56, + "end": 1390.39, + "probability": 0.9757 + }, + { + "start": 1390.98, + "end": 1392.0, + "probability": 0.7899 + }, + { + "start": 1392.04, + "end": 1393.38, + "probability": 0.9768 + }, + { + "start": 1393.44, + "end": 1394.9, + "probability": 0.9053 + }, + { + "start": 1395.86, + "end": 1397.3, + "probability": 0.9866 + }, + { + "start": 1398.72, + "end": 1400.68, + "probability": 0.8103 + }, + { + "start": 1401.8, + "end": 1402.42, + "probability": 0.4228 + }, + { + "start": 1402.44, + "end": 1406.28, + "probability": 0.6953 + }, + { + "start": 1406.66, + "end": 1407.06, + "probability": 0.8383 + }, + { + "start": 1408.56, + "end": 1411.2, + "probability": 0.8796 + }, + { + "start": 1411.74, + "end": 1415.18, + "probability": 0.9411 + }, + { + "start": 1415.42, + "end": 1416.6, + "probability": 0.8691 + }, + { + "start": 1417.04, + "end": 1422.82, + "probability": 0.7936 + }, + { + "start": 1423.98, + "end": 1427.08, + "probability": 0.933 + }, + { + "start": 1427.7, + "end": 1428.12, + "probability": 0.6565 + }, + { + "start": 1428.2, + "end": 1429.7, + "probability": 0.6182 + }, + { + "start": 1430.08, + "end": 1433.42, + "probability": 0.9261 + }, + { + "start": 1433.5, + "end": 1434.44, + "probability": 0.9258 + }, + { + "start": 1435.58, + "end": 1436.94, + "probability": 0.9228 + }, + { + "start": 1437.0, + "end": 1441.14, + "probability": 0.8408 + }, + { + "start": 1441.38, + "end": 1443.62, + "probability": 0.0386 + }, + { + "start": 1443.62, + "end": 1443.72, + "probability": 0.5257 + }, + { + "start": 1444.18, + "end": 1444.52, + "probability": 0.4495 + }, + { + "start": 1444.8, + "end": 1445.38, + "probability": 0.8127 + }, + { + "start": 1445.56, + "end": 1448.6, + "probability": 0.8535 + }, + { + "start": 1448.76, + "end": 1449.83, + "probability": 0.6644 + }, + { + "start": 1450.32, + "end": 1453.3, + "probability": 0.9631 + }, + { + "start": 1453.6, + "end": 1453.86, + "probability": 0.7839 + }, + { + "start": 1454.68, + "end": 1458.4, + "probability": 0.8779 + }, + { + "start": 1459.04, + "end": 1461.25, + "probability": 0.7954 + }, + { + "start": 1461.64, + "end": 1465.4, + "probability": 0.9226 + }, + { + "start": 1465.62, + "end": 1469.1, + "probability": 0.9171 + }, + { + "start": 1469.58, + "end": 1471.34, + "probability": 0.9945 + }, + { + "start": 1471.94, + "end": 1476.2, + "probability": 0.9902 + }, + { + "start": 1476.62, + "end": 1479.13, + "probability": 0.8486 + }, + { + "start": 1479.78, + "end": 1484.38, + "probability": 0.9215 + }, + { + "start": 1484.7, + "end": 1492.0, + "probability": 0.8091 + }, + { + "start": 1492.36, + "end": 1492.92, + "probability": 0.7889 + }, + { + "start": 1492.98, + "end": 1494.12, + "probability": 0.4718 + }, + { + "start": 1494.12, + "end": 1494.56, + "probability": 0.3676 + }, + { + "start": 1494.56, + "end": 1495.58, + "probability": 0.5858 + }, + { + "start": 1495.58, + "end": 1497.36, + "probability": 0.9429 + }, + { + "start": 1498.48, + "end": 1502.1, + "probability": 0.9204 + }, + { + "start": 1502.8, + "end": 1506.48, + "probability": 0.9932 + }, + { + "start": 1506.48, + "end": 1509.4, + "probability": 0.9993 + }, + { + "start": 1510.16, + "end": 1512.94, + "probability": 0.9039 + }, + { + "start": 1512.94, + "end": 1516.42, + "probability": 0.9973 + }, + { + "start": 1517.02, + "end": 1518.96, + "probability": 0.9628 + }, + { + "start": 1519.38, + "end": 1521.74, + "probability": 0.7622 + }, + { + "start": 1522.2, + "end": 1522.84, + "probability": 0.5363 + }, + { + "start": 1522.98, + "end": 1524.42, + "probability": 0.6112 + }, + { + "start": 1524.52, + "end": 1525.34, + "probability": 0.6495 + }, + { + "start": 1525.5, + "end": 1526.6, + "probability": 0.594 + }, + { + "start": 1526.72, + "end": 1527.94, + "probability": 0.9927 + }, + { + "start": 1529.32, + "end": 1531.62, + "probability": 0.9032 + }, + { + "start": 1532.68, + "end": 1535.34, + "probability": 0.7102 + }, + { + "start": 1535.94, + "end": 1537.36, + "probability": 0.8057 + }, + { + "start": 1537.96, + "end": 1541.44, + "probability": 0.8024 + }, + { + "start": 1541.52, + "end": 1544.8, + "probability": 0.9525 + }, + { + "start": 1545.6, + "end": 1549.36, + "probability": 0.9366 + }, + { + "start": 1550.24, + "end": 1551.42, + "probability": 0.3999 + }, + { + "start": 1551.72, + "end": 1553.5, + "probability": 0.9248 + }, + { + "start": 1554.18, + "end": 1555.52, + "probability": 0.6149 + }, + { + "start": 1555.7, + "end": 1556.12, + "probability": 0.7591 + }, + { + "start": 1556.18, + "end": 1560.52, + "probability": 0.9694 + }, + { + "start": 1561.38, + "end": 1561.9, + "probability": 0.5781 + }, + { + "start": 1562.48, + "end": 1563.02, + "probability": 0.9326 + }, + { + "start": 1563.42, + "end": 1564.04, + "probability": 0.5942 + }, + { + "start": 1564.32, + "end": 1570.7, + "probability": 0.7894 + }, + { + "start": 1571.42, + "end": 1572.4, + "probability": 0.8504 + }, + { + "start": 1572.98, + "end": 1575.68, + "probability": 0.7502 + }, + { + "start": 1576.8, + "end": 1577.8, + "probability": 0.7099 + }, + { + "start": 1578.72, + "end": 1579.1, + "probability": 0.5778 + }, + { + "start": 1580.0, + "end": 1580.86, + "probability": 0.7896 + }, + { + "start": 1581.9, + "end": 1583.32, + "probability": 0.7984 + }, + { + "start": 1584.78, + "end": 1593.24, + "probability": 0.3772 + }, + { + "start": 1594.72, + "end": 1594.72, + "probability": 0.2664 + }, + { + "start": 1594.72, + "end": 1594.72, + "probability": 0.072 + }, + { + "start": 1594.72, + "end": 1594.72, + "probability": 0.1257 + }, + { + "start": 1594.76, + "end": 1598.7, + "probability": 0.1405 + }, + { + "start": 1598.88, + "end": 1599.88, + "probability": 0.5014 + }, + { + "start": 1600.24, + "end": 1603.0, + "probability": 0.8423 + }, + { + "start": 1603.84, + "end": 1604.86, + "probability": 0.8883 + }, + { + "start": 1605.58, + "end": 1606.56, + "probability": 0.932 + }, + { + "start": 1607.52, + "end": 1608.16, + "probability": 0.8018 + }, + { + "start": 1609.08, + "end": 1611.42, + "probability": 0.8955 + }, + { + "start": 1612.26, + "end": 1613.26, + "probability": 0.9172 + }, + { + "start": 1613.36, + "end": 1614.42, + "probability": 0.5866 + }, + { + "start": 1615.42, + "end": 1616.12, + "probability": 0.9797 + }, + { + "start": 1617.22, + "end": 1620.9, + "probability": 0.9537 + }, + { + "start": 1622.36, + "end": 1624.84, + "probability": 0.8529 + }, + { + "start": 1626.04, + "end": 1627.04, + "probability": 0.895 + }, + { + "start": 1627.06, + "end": 1627.8, + "probability": 0.957 + }, + { + "start": 1627.84, + "end": 1629.5, + "probability": 0.7356 + }, + { + "start": 1629.9, + "end": 1631.28, + "probability": 0.9918 + }, + { + "start": 1632.24, + "end": 1634.08, + "probability": 0.9301 + }, + { + "start": 1635.34, + "end": 1637.78, + "probability": 0.8967 + }, + { + "start": 1639.68, + "end": 1642.44, + "probability": 0.9466 + }, + { + "start": 1643.36, + "end": 1644.0, + "probability": 0.7239 + }, + { + "start": 1645.24, + "end": 1646.48, + "probability": 0.9983 + }, + { + "start": 1647.4, + "end": 1649.96, + "probability": 0.9907 + }, + { + "start": 1651.24, + "end": 1652.74, + "probability": 0.589 + }, + { + "start": 1653.7, + "end": 1655.24, + "probability": 0.6316 + }, + { + "start": 1656.32, + "end": 1656.9, + "probability": 0.8065 + }, + { + "start": 1657.56, + "end": 1661.7, + "probability": 0.9028 + }, + { + "start": 1662.2, + "end": 1664.86, + "probability": 0.7912 + }, + { + "start": 1665.38, + "end": 1665.94, + "probability": 0.976 + }, + { + "start": 1666.92, + "end": 1668.16, + "probability": 0.8643 + }, + { + "start": 1670.02, + "end": 1671.22, + "probability": 0.917 + }, + { + "start": 1672.46, + "end": 1674.28, + "probability": 0.8079 + }, + { + "start": 1674.42, + "end": 1676.2, + "probability": 0.5239 + }, + { + "start": 1676.96, + "end": 1677.81, + "probability": 0.9801 + }, + { + "start": 1680.5, + "end": 1681.4, + "probability": 0.792 + }, + { + "start": 1682.24, + "end": 1683.69, + "probability": 0.6285 + }, + { + "start": 1684.34, + "end": 1685.54, + "probability": 0.647 + }, + { + "start": 1686.68, + "end": 1687.75, + "probability": 0.8509 + }, + { + "start": 1689.8, + "end": 1691.52, + "probability": 0.6118 + }, + { + "start": 1692.72, + "end": 1693.78, + "probability": 0.4999 + }, + { + "start": 1693.82, + "end": 1694.86, + "probability": 0.7131 + }, + { + "start": 1695.32, + "end": 1696.14, + "probability": 0.7522 + }, + { + "start": 1696.36, + "end": 1697.54, + "probability": 0.929 + }, + { + "start": 1698.4, + "end": 1699.86, + "probability": 0.4997 + }, + { + "start": 1700.6, + "end": 1702.72, + "probability": 0.8665 + }, + { + "start": 1702.82, + "end": 1703.14, + "probability": 0.4761 + }, + { + "start": 1703.34, + "end": 1704.66, + "probability": 0.7965 + }, + { + "start": 1705.28, + "end": 1707.82, + "probability": 0.9106 + }, + { + "start": 1707.82, + "end": 1709.9, + "probability": 0.764 + }, + { + "start": 1710.28, + "end": 1710.82, + "probability": 0.8639 + }, + { + "start": 1711.76, + "end": 1715.44, + "probability": 0.931 + }, + { + "start": 1716.16, + "end": 1716.57, + "probability": 0.5449 + }, + { + "start": 1717.02, + "end": 1717.86, + "probability": 0.7387 + }, + { + "start": 1719.39, + "end": 1722.02, + "probability": 0.7979 + }, + { + "start": 1722.06, + "end": 1722.9, + "probability": 0.6974 + }, + { + "start": 1723.12, + "end": 1723.46, + "probability": 0.5871 + }, + { + "start": 1723.66, + "end": 1724.04, + "probability": 0.5483 + }, + { + "start": 1724.42, + "end": 1725.7, + "probability": 0.8599 + }, + { + "start": 1726.28, + "end": 1727.7, + "probability": 0.8662 + }, + { + "start": 1727.86, + "end": 1729.84, + "probability": 0.9914 + }, + { + "start": 1730.3, + "end": 1732.18, + "probability": 0.9041 + }, + { + "start": 1733.34, + "end": 1735.56, + "probability": 0.6516 + }, + { + "start": 1735.76, + "end": 1738.06, + "probability": 0.9387 + }, + { + "start": 1739.18, + "end": 1743.28, + "probability": 0.7285 + }, + { + "start": 1743.58, + "end": 1744.02, + "probability": 0.5003 + }, + { + "start": 1744.2, + "end": 1744.72, + "probability": 0.4577 + }, + { + "start": 1745.36, + "end": 1745.88, + "probability": 0.9935 + }, + { + "start": 1746.54, + "end": 1748.74, + "probability": 0.8608 + }, + { + "start": 1748.8, + "end": 1749.3, + "probability": 0.3744 + }, + { + "start": 1750.3, + "end": 1752.06, + "probability": 0.9591 + }, + { + "start": 1752.64, + "end": 1753.47, + "probability": 0.9888 + }, + { + "start": 1754.06, + "end": 1754.79, + "probability": 0.8783 + }, + { + "start": 1755.12, + "end": 1756.28, + "probability": 0.3845 + }, + { + "start": 1756.5, + "end": 1760.66, + "probability": 0.892 + }, + { + "start": 1761.4, + "end": 1763.26, + "probability": 0.7734 + }, + { + "start": 1763.38, + "end": 1766.84, + "probability": 0.957 + }, + { + "start": 1767.62, + "end": 1770.56, + "probability": 0.8213 + }, + { + "start": 1770.66, + "end": 1772.3, + "probability": 0.6328 + }, + { + "start": 1773.12, + "end": 1775.64, + "probability": 0.9396 + }, + { + "start": 1775.78, + "end": 1777.7, + "probability": 0.6915 + }, + { + "start": 1777.84, + "end": 1778.4, + "probability": 0.5286 + }, + { + "start": 1781.1, + "end": 1781.94, + "probability": 0.8227 + }, + { + "start": 1782.96, + "end": 1784.12, + "probability": 0.7675 + }, + { + "start": 1784.88, + "end": 1788.12, + "probability": 0.8684 + }, + { + "start": 1788.94, + "end": 1791.4, + "probability": 0.5067 + }, + { + "start": 1791.66, + "end": 1792.08, + "probability": 0.4045 + }, + { + "start": 1792.22, + "end": 1792.4, + "probability": 0.4328 + }, + { + "start": 1792.44, + "end": 1793.81, + "probability": 0.628 + }, + { + "start": 1795.22, + "end": 1798.92, + "probability": 0.9258 + }, + { + "start": 1799.4, + "end": 1800.98, + "probability": 0.6143 + }, + { + "start": 1801.34, + "end": 1802.52, + "probability": 0.8103 + }, + { + "start": 1802.6, + "end": 1803.92, + "probability": 0.6593 + }, + { + "start": 1804.32, + "end": 1805.34, + "probability": 0.5813 + }, + { + "start": 1805.44, + "end": 1808.55, + "probability": 0.9088 + }, + { + "start": 1809.02, + "end": 1811.14, + "probability": 0.5212 + }, + { + "start": 1811.56, + "end": 1814.48, + "probability": 0.9582 + }, + { + "start": 1814.56, + "end": 1819.26, + "probability": 0.9808 + }, + { + "start": 1819.8, + "end": 1822.2, + "probability": 0.9927 + }, + { + "start": 1822.36, + "end": 1822.94, + "probability": 0.8567 + }, + { + "start": 1823.24, + "end": 1823.74, + "probability": 0.9107 + }, + { + "start": 1823.78, + "end": 1824.92, + "probability": 0.8417 + }, + { + "start": 1825.56, + "end": 1826.52, + "probability": 0.6078 + }, + { + "start": 1826.58, + "end": 1827.18, + "probability": 0.914 + }, + { + "start": 1827.36, + "end": 1830.02, + "probability": 0.922 + }, + { + "start": 1830.52, + "end": 1831.59, + "probability": 0.9707 + }, + { + "start": 1831.84, + "end": 1834.45, + "probability": 0.9922 + }, + { + "start": 1834.7, + "end": 1835.58, + "probability": 0.8909 + }, + { + "start": 1836.48, + "end": 1836.62, + "probability": 0.8657 + }, + { + "start": 1837.54, + "end": 1840.58, + "probability": 0.9806 + }, + { + "start": 1840.74, + "end": 1841.49, + "probability": 0.8636 + }, + { + "start": 1841.72, + "end": 1846.06, + "probability": 0.9634 + }, + { + "start": 1846.64, + "end": 1847.67, + "probability": 0.6278 + }, + { + "start": 1848.48, + "end": 1851.08, + "probability": 0.8784 + }, + { + "start": 1851.62, + "end": 1853.82, + "probability": 0.9917 + }, + { + "start": 1854.64, + "end": 1858.28, + "probability": 0.8599 + }, + { + "start": 1858.38, + "end": 1860.96, + "probability": 0.874 + }, + { + "start": 1860.96, + "end": 1865.46, + "probability": 0.9913 + }, + { + "start": 1865.74, + "end": 1866.0, + "probability": 0.8292 + }, + { + "start": 1866.08, + "end": 1867.12, + "probability": 0.8774 + }, + { + "start": 1867.96, + "end": 1869.08, + "probability": 0.9607 + }, + { + "start": 1869.58, + "end": 1870.08, + "probability": 0.8282 + }, + { + "start": 1871.56, + "end": 1873.82, + "probability": 0.9797 + }, + { + "start": 1875.06, + "end": 1876.63, + "probability": 0.7705 + }, + { + "start": 1877.22, + "end": 1881.82, + "probability": 0.9844 + }, + { + "start": 1881.82, + "end": 1885.66, + "probability": 0.9927 + }, + { + "start": 1886.08, + "end": 1890.0, + "probability": 0.958 + }, + { + "start": 1890.1, + "end": 1891.84, + "probability": 0.4563 + }, + { + "start": 1891.92, + "end": 1892.94, + "probability": 0.7015 + }, + { + "start": 1893.06, + "end": 1895.06, + "probability": 0.3467 + }, + { + "start": 1896.0, + "end": 1899.2, + "probability": 0.8718 + }, + { + "start": 1899.64, + "end": 1903.42, + "probability": 0.1339 + }, + { + "start": 1903.42, + "end": 1906.32, + "probability": 0.7153 + }, + { + "start": 1906.62, + "end": 1910.2, + "probability": 0.8164 + }, + { + "start": 1910.8, + "end": 1912.34, + "probability": 0.6853 + }, + { + "start": 1912.64, + "end": 1918.02, + "probability": 0.6899 + }, + { + "start": 1918.5, + "end": 1919.16, + "probability": 0.9241 + }, + { + "start": 1919.5, + "end": 1922.25, + "probability": 0.7119 + }, + { + "start": 1922.64, + "end": 1923.86, + "probability": 0.9286 + }, + { + "start": 1923.86, + "end": 1926.6, + "probability": 0.751 + }, + { + "start": 1927.14, + "end": 1929.28, + "probability": 0.9118 + }, + { + "start": 1930.12, + "end": 1930.98, + "probability": 0.9803 + }, + { + "start": 1931.32, + "end": 1932.22, + "probability": 0.9284 + }, + { + "start": 1932.32, + "end": 1932.7, + "probability": 0.7603 + }, + { + "start": 1933.42, + "end": 1933.96, + "probability": 0.92 + }, + { + "start": 1934.66, + "end": 1937.18, + "probability": 0.9105 + }, + { + "start": 1937.64, + "end": 1940.9, + "probability": 0.8789 + }, + { + "start": 1940.9, + "end": 1942.65, + "probability": 0.9951 + }, + { + "start": 1943.16, + "end": 1944.79, + "probability": 0.9919 + }, + { + "start": 1945.5, + "end": 1946.0, + "probability": 0.903 + }, + { + "start": 1946.2, + "end": 1946.72, + "probability": 0.7215 + }, + { + "start": 1947.16, + "end": 1949.14, + "probability": 0.9683 + }, + { + "start": 1949.5, + "end": 1951.72, + "probability": 0.8171 + }, + { + "start": 1952.16, + "end": 1952.57, + "probability": 0.7456 + }, + { + "start": 1953.64, + "end": 1954.42, + "probability": 0.7389 + }, + { + "start": 1955.02, + "end": 1955.58, + "probability": 0.9413 + }, + { + "start": 1956.7, + "end": 1958.0, + "probability": 0.5347 + }, + { + "start": 1958.34, + "end": 1959.52, + "probability": 0.9207 + }, + { + "start": 1959.84, + "end": 1961.7, + "probability": 0.7853 + }, + { + "start": 1961.98, + "end": 1962.9, + "probability": 0.7917 + }, + { + "start": 1963.96, + "end": 1964.46, + "probability": 0.8569 + }, + { + "start": 1965.6, + "end": 1966.38, + "probability": 0.8789 + }, + { + "start": 1967.1, + "end": 1968.14, + "probability": 0.8406 + }, + { + "start": 1968.72, + "end": 1970.32, + "probability": 0.8255 + }, + { + "start": 1970.68, + "end": 1972.0, + "probability": 0.5774 + }, + { + "start": 1973.92, + "end": 1975.6, + "probability": 0.8877 + }, + { + "start": 1975.6, + "end": 1978.4, + "probability": 0.8374 + }, + { + "start": 1979.06, + "end": 1981.6, + "probability": 0.7272 + }, + { + "start": 1982.02, + "end": 1982.48, + "probability": 0.1443 + }, + { + "start": 1982.62, + "end": 1983.21, + "probability": 0.8279 + }, + { + "start": 1983.56, + "end": 1983.84, + "probability": 0.5325 + }, + { + "start": 1984.18, + "end": 1986.46, + "probability": 0.9839 + }, + { + "start": 1986.56, + "end": 1988.3, + "probability": 0.4602 + }, + { + "start": 1988.5, + "end": 1988.5, + "probability": 0.0972 + }, + { + "start": 1988.5, + "end": 1988.5, + "probability": 0.2779 + }, + { + "start": 1988.5, + "end": 1988.5, + "probability": 0.3452 + }, + { + "start": 1988.5, + "end": 1988.5, + "probability": 0.7302 + }, + { + "start": 1988.5, + "end": 1988.5, + "probability": 0.0273 + }, + { + "start": 1988.5, + "end": 1988.84, + "probability": 0.2012 + }, + { + "start": 1988.84, + "end": 1990.56, + "probability": 0.5796 + }, + { + "start": 1990.88, + "end": 1993.46, + "probability": 0.8973 + }, + { + "start": 1994.02, + "end": 1995.46, + "probability": 0.9624 + }, + { + "start": 1995.8, + "end": 1996.74, + "probability": 0.9274 + }, + { + "start": 1996.9, + "end": 1999.06, + "probability": 0.6916 + }, + { + "start": 1999.1, + "end": 2000.16, + "probability": 0.4823 + }, + { + "start": 2000.86, + "end": 2004.52, + "probability": 0.9727 + }, + { + "start": 2004.58, + "end": 2007.02, + "probability": 0.5515 + }, + { + "start": 2007.4, + "end": 2008.62, + "probability": 0.6067 + }, + { + "start": 2008.92, + "end": 2012.72, + "probability": 0.9771 + }, + { + "start": 2012.72, + "end": 2014.52, + "probability": 0.8765 + }, + { + "start": 2014.62, + "end": 2015.0, + "probability": 0.5125 + }, + { + "start": 2015.12, + "end": 2015.48, + "probability": 0.5864 + }, + { + "start": 2015.54, + "end": 2016.3, + "probability": 0.8958 + }, + { + "start": 2016.38, + "end": 2016.94, + "probability": 0.727 + }, + { + "start": 2017.6, + "end": 2018.34, + "probability": 0.7008 + }, + { + "start": 2019.74, + "end": 2020.7, + "probability": 0.9922 + }, + { + "start": 2021.88, + "end": 2023.84, + "probability": 0.9897 + }, + { + "start": 2024.14, + "end": 2024.42, + "probability": 0.5014 + }, + { + "start": 2024.44, + "end": 2027.44, + "probability": 0.9855 + }, + { + "start": 2030.27, + "end": 2032.92, + "probability": 0.9288 + }, + { + "start": 2033.82, + "end": 2034.66, + "probability": 0.5704 + }, + { + "start": 2035.5, + "end": 2038.88, + "probability": 0.9809 + }, + { + "start": 2039.36, + "end": 2041.92, + "probability": 0.9957 + }, + { + "start": 2041.94, + "end": 2043.24, + "probability": 0.7563 + }, + { + "start": 2043.78, + "end": 2048.98, + "probability": 0.9889 + }, + { + "start": 2049.04, + "end": 2051.1, + "probability": 0.9587 + }, + { + "start": 2051.7, + "end": 2053.56, + "probability": 0.9985 + }, + { + "start": 2053.98, + "end": 2055.62, + "probability": 0.8776 + }, + { + "start": 2055.78, + "end": 2058.8, + "probability": 0.7236 + }, + { + "start": 2059.08, + "end": 2060.36, + "probability": 0.6895 + }, + { + "start": 2060.88, + "end": 2062.34, + "probability": 0.7531 + }, + { + "start": 2063.06, + "end": 2065.52, + "probability": 0.9457 + }, + { + "start": 2066.1, + "end": 2068.17, + "probability": 0.8135 + }, + { + "start": 2069.44, + "end": 2074.46, + "probability": 0.9951 + }, + { + "start": 2074.46, + "end": 2080.28, + "probability": 0.968 + }, + { + "start": 2080.7, + "end": 2081.82, + "probability": 0.9834 + }, + { + "start": 2081.9, + "end": 2082.52, + "probability": 0.8521 + }, + { + "start": 2082.54, + "end": 2082.94, + "probability": 0.798 + }, + { + "start": 2083.14, + "end": 2083.54, + "probability": 0.8991 + }, + { + "start": 2083.64, + "end": 2086.7, + "probability": 0.9863 + }, + { + "start": 2086.7, + "end": 2089.86, + "probability": 0.9755 + }, + { + "start": 2089.96, + "end": 2092.46, + "probability": 0.978 + }, + { + "start": 2092.58, + "end": 2093.86, + "probability": 0.7518 + }, + { + "start": 2093.88, + "end": 2095.52, + "probability": 0.7293 + }, + { + "start": 2095.52, + "end": 2095.92, + "probability": 0.2748 + }, + { + "start": 2095.92, + "end": 2096.28, + "probability": 0.5613 + }, + { + "start": 2096.66, + "end": 2098.16, + "probability": 0.7841 + }, + { + "start": 2098.42, + "end": 2103.09, + "probability": 0.9937 + }, + { + "start": 2103.1, + "end": 2108.06, + "probability": 0.9954 + }, + { + "start": 2108.12, + "end": 2112.08, + "probability": 0.9588 + }, + { + "start": 2112.42, + "end": 2113.82, + "probability": 0.918 + }, + { + "start": 2114.34, + "end": 2117.8, + "probability": 0.9915 + }, + { + "start": 2118.32, + "end": 2119.3, + "probability": 0.5289 + }, + { + "start": 2119.84, + "end": 2122.46, + "probability": 0.9217 + }, + { + "start": 2122.74, + "end": 2124.18, + "probability": 0.9352 + }, + { + "start": 2124.6, + "end": 2126.64, + "probability": 0.9646 + }, + { + "start": 2127.04, + "end": 2128.08, + "probability": 0.9897 + }, + { + "start": 2128.5, + "end": 2129.02, + "probability": 0.7044 + }, + { + "start": 2129.38, + "end": 2131.62, + "probability": 0.9805 + }, + { + "start": 2131.7, + "end": 2131.88, + "probability": 0.72 + }, + { + "start": 2131.98, + "end": 2136.36, + "probability": 0.9768 + }, + { + "start": 2136.62, + "end": 2137.32, + "probability": 0.8776 + }, + { + "start": 2137.48, + "end": 2140.46, + "probability": 0.9967 + }, + { + "start": 2140.54, + "end": 2141.46, + "probability": 0.9943 + }, + { + "start": 2141.74, + "end": 2142.76, + "probability": 0.9832 + }, + { + "start": 2142.8, + "end": 2143.58, + "probability": 0.9492 + }, + { + "start": 2144.86, + "end": 2146.66, + "probability": 0.9929 + }, + { + "start": 2147.18, + "end": 2149.22, + "probability": 0.9436 + }, + { + "start": 2149.6, + "end": 2150.74, + "probability": 0.9802 + }, + { + "start": 2150.8, + "end": 2152.4, + "probability": 0.6142 + }, + { + "start": 2152.52, + "end": 2152.6, + "probability": 0.0998 + }, + { + "start": 2152.62, + "end": 2152.82, + "probability": 0.8057 + }, + { + "start": 2152.82, + "end": 2153.8, + "probability": 0.7514 + }, + { + "start": 2153.92, + "end": 2155.0, + "probability": 0.9241 + }, + { + "start": 2155.1, + "end": 2157.56, + "probability": 0.7145 + }, + { + "start": 2157.62, + "end": 2158.07, + "probability": 0.7823 + }, + { + "start": 2159.6, + "end": 2159.92, + "probability": 0.6696 + }, + { + "start": 2159.92, + "end": 2160.08, + "probability": 0.6577 + }, + { + "start": 2160.2, + "end": 2160.76, + "probability": 0.7406 + }, + { + "start": 2160.76, + "end": 2161.5, + "probability": 0.7799 + }, + { + "start": 2162.0, + "end": 2162.88, + "probability": 0.368 + }, + { + "start": 2163.0, + "end": 2163.0, + "probability": 0.4074 + }, + { + "start": 2163.02, + "end": 2163.96, + "probability": 0.5465 + }, + { + "start": 2164.22, + "end": 2164.56, + "probability": 0.5493 + }, + { + "start": 2164.68, + "end": 2165.22, + "probability": 0.7718 + }, + { + "start": 2165.54, + "end": 2166.34, + "probability": 0.8168 + }, + { + "start": 2166.4, + "end": 2166.86, + "probability": 0.5387 + }, + { + "start": 2166.9, + "end": 2167.34, + "probability": 0.54 + }, + { + "start": 2167.66, + "end": 2168.92, + "probability": 0.6516 + }, + { + "start": 2169.0, + "end": 2169.16, + "probability": 0.8424 + }, + { + "start": 2169.2, + "end": 2170.0, + "probability": 0.6064 + }, + { + "start": 2170.99, + "end": 2171.06, + "probability": 0.0728 + }, + { + "start": 2171.06, + "end": 2171.3, + "probability": 0.6676 + }, + { + "start": 2171.4, + "end": 2172.06, + "probability": 0.6402 + }, + { + "start": 2172.12, + "end": 2172.84, + "probability": 0.8625 + }, + { + "start": 2172.98, + "end": 2173.44, + "probability": 0.9272 + }, + { + "start": 2173.54, + "end": 2174.18, + "probability": 0.8623 + }, + { + "start": 2174.34, + "end": 2175.26, + "probability": 0.4647 + }, + { + "start": 2175.52, + "end": 2177.4, + "probability": 0.0055 + }, + { + "start": 2178.02, + "end": 2178.02, + "probability": 0.2233 + }, + { + "start": 2178.02, + "end": 2178.02, + "probability": 0.1016 + }, + { + "start": 2178.02, + "end": 2178.02, + "probability": 0.0494 + }, + { + "start": 2178.1, + "end": 2179.2, + "probability": 0.6134 + }, + { + "start": 2179.24, + "end": 2179.44, + "probability": 0.3021 + }, + { + "start": 2179.56, + "end": 2180.54, + "probability": 0.6696 + }, + { + "start": 2180.94, + "end": 2181.1, + "probability": 0.435 + }, + { + "start": 2181.22, + "end": 2181.52, + "probability": 0.6617 + }, + { + "start": 2181.58, + "end": 2182.64, + "probability": 0.7572 + }, + { + "start": 2182.98, + "end": 2185.34, + "probability": 0.816 + }, + { + "start": 2185.58, + "end": 2186.54, + "probability": 0.7462 + }, + { + "start": 2186.68, + "end": 2187.79, + "probability": 0.5104 + }, + { + "start": 2187.98, + "end": 2188.36, + "probability": 0.7425 + }, + { + "start": 2188.52, + "end": 2189.06, + "probability": 0.5618 + }, + { + "start": 2189.08, + "end": 2189.52, + "probability": 0.6191 + }, + { + "start": 2189.54, + "end": 2190.58, + "probability": 0.5144 + }, + { + "start": 2190.62, + "end": 2192.8, + "probability": 0.7072 + }, + { + "start": 2192.86, + "end": 2193.14, + "probability": 0.433 + }, + { + "start": 2193.14, + "end": 2194.14, + "probability": 0.7488 + }, + { + "start": 2194.42, + "end": 2196.66, + "probability": 0.8006 + }, + { + "start": 2196.72, + "end": 2199.34, + "probability": 0.5952 + }, + { + "start": 2199.34, + "end": 2199.94, + "probability": 0.6843 + }, + { + "start": 2200.12, + "end": 2201.94, + "probability": 0.7651 + }, + { + "start": 2201.94, + "end": 2205.02, + "probability": 0.931 + }, + { + "start": 2205.16, + "end": 2205.89, + "probability": 0.4482 + }, + { + "start": 2206.28, + "end": 2209.26, + "probability": 0.7666 + }, + { + "start": 2209.4, + "end": 2210.52, + "probability": 0.788 + }, + { + "start": 2211.22, + "end": 2212.2, + "probability": 0.7514 + }, + { + "start": 2212.34, + "end": 2212.34, + "probability": 0.2992 + }, + { + "start": 2212.34, + "end": 2214.56, + "probability": 0.5494 + }, + { + "start": 2215.18, + "end": 2216.82, + "probability": 0.4106 + }, + { + "start": 2216.86, + "end": 2220.12, + "probability": 0.8709 + }, + { + "start": 2221.12, + "end": 2221.86, + "probability": 0.4994 + }, + { + "start": 2222.95, + "end": 2224.16, + "probability": 0.2547 + }, + { + "start": 2224.16, + "end": 2225.03, + "probability": 0.821 + }, + { + "start": 2225.84, + "end": 2226.82, + "probability": 0.8121 + }, + { + "start": 2226.88, + "end": 2229.38, + "probability": 0.997 + }, + { + "start": 2229.54, + "end": 2229.84, + "probability": 0.6553 + }, + { + "start": 2230.04, + "end": 2232.16, + "probability": 0.9476 + }, + { + "start": 2232.26, + "end": 2232.9, + "probability": 0.9558 + }, + { + "start": 2232.98, + "end": 2233.82, + "probability": 0.9106 + }, + { + "start": 2233.98, + "end": 2235.52, + "probability": 0.9133 + }, + { + "start": 2235.6, + "end": 2235.92, + "probability": 0.8575 + }, + { + "start": 2236.5, + "end": 2239.74, + "probability": 0.9816 + }, + { + "start": 2240.1, + "end": 2241.44, + "probability": 0.9906 + }, + { + "start": 2241.52, + "end": 2242.76, + "probability": 0.9954 + }, + { + "start": 2243.24, + "end": 2244.0, + "probability": 0.7717 + }, + { + "start": 2244.18, + "end": 2246.02, + "probability": 0.7337 + }, + { + "start": 2246.14, + "end": 2247.67, + "probability": 0.8445 + }, + { + "start": 2248.74, + "end": 2250.86, + "probability": 0.8725 + }, + { + "start": 2251.4, + "end": 2251.8, + "probability": 0.8052 + }, + { + "start": 2251.8, + "end": 2252.86, + "probability": 0.6849 + }, + { + "start": 2253.12, + "end": 2253.56, + "probability": 0.3966 + }, + { + "start": 2253.56, + "end": 2253.82, + "probability": 0.4996 + }, + { + "start": 2254.2, + "end": 2254.46, + "probability": 0.3345 + }, + { + "start": 2255.12, + "end": 2256.02, + "probability": 0.4094 + }, + { + "start": 2256.06, + "end": 2256.06, + "probability": 0.453 + }, + { + "start": 2256.06, + "end": 2257.46, + "probability": 0.8843 + }, + { + "start": 2257.62, + "end": 2259.9, + "probability": 0.8105 + }, + { + "start": 2260.56, + "end": 2261.64, + "probability": 0.6572 + }, + { + "start": 2261.64, + "end": 2265.24, + "probability": 0.9819 + }, + { + "start": 2265.38, + "end": 2266.18, + "probability": 0.2954 + }, + { + "start": 2266.3, + "end": 2270.2, + "probability": 0.5069 + }, + { + "start": 2270.6, + "end": 2272.14, + "probability": 0.7307 + }, + { + "start": 2272.46, + "end": 2279.74, + "probability": 0.9796 + }, + { + "start": 2279.74, + "end": 2285.74, + "probability": 0.9559 + }, + { + "start": 2286.2, + "end": 2293.28, + "probability": 0.8094 + }, + { + "start": 2293.66, + "end": 2300.7, + "probability": 0.9397 + }, + { + "start": 2300.96, + "end": 2306.02, + "probability": 0.9976 + }, + { + "start": 2306.74, + "end": 2310.96, + "probability": 0.9995 + }, + { + "start": 2311.1, + "end": 2311.5, + "probability": 0.651 + }, + { + "start": 2311.96, + "end": 2313.44, + "probability": 0.7638 + }, + { + "start": 2327.2, + "end": 2329.48, + "probability": 0.2806 + }, + { + "start": 2329.54, + "end": 2329.86, + "probability": 0.4012 + }, + { + "start": 2332.14, + "end": 2332.24, + "probability": 0.4171 + }, + { + "start": 2333.06, + "end": 2337.08, + "probability": 0.1501 + }, + { + "start": 2338.2, + "end": 2341.0, + "probability": 0.0159 + }, + { + "start": 2341.0, + "end": 2341.0, + "probability": 0.1026 + }, + { + "start": 2341.0, + "end": 2341.06, + "probability": 0.0274 + }, + { + "start": 2343.92, + "end": 2346.74, + "probability": 0.1956 + }, + { + "start": 2346.74, + "end": 2348.12, + "probability": 0.0284 + }, + { + "start": 2349.88, + "end": 2351.0, + "probability": 0.1492 + }, + { + "start": 2352.3, + "end": 2353.96, + "probability": 0.2764 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.0, + "end": 2461.0, + "probability": 0.0 + }, + { + "start": 2461.2, + "end": 2463.36, + "probability": 0.0279 + }, + { + "start": 2463.9, + "end": 2465.56, + "probability": 0.0375 + }, + { + "start": 2467.17, + "end": 2468.98, + "probability": 0.0681 + }, + { + "start": 2469.04, + "end": 2472.48, + "probability": 0.0178 + }, + { + "start": 2474.08, + "end": 2474.78, + "probability": 0.0181 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.0, + "end": 2599.0, + "probability": 0.0 + }, + { + "start": 2599.1, + "end": 2602.64, + "probability": 0.8027 + }, + { + "start": 2602.74, + "end": 2603.24, + "probability": 0.7184 + }, + { + "start": 2603.24, + "end": 2603.94, + "probability": 0.4054 + }, + { + "start": 2604.32, + "end": 2609.62, + "probability": 0.7761 + }, + { + "start": 2609.66, + "end": 2610.24, + "probability": 0.7939 + }, + { + "start": 2610.64, + "end": 2611.3, + "probability": 0.8628 + }, + { + "start": 2611.68, + "end": 2613.06, + "probability": 0.6956 + }, + { + "start": 2613.9, + "end": 2615.31, + "probability": 0.7308 + }, + { + "start": 2616.1, + "end": 2616.46, + "probability": 0.8706 + }, + { + "start": 2617.4, + "end": 2617.92, + "probability": 0.5796 + }, + { + "start": 2618.04, + "end": 2623.02, + "probability": 0.6532 + }, + { + "start": 2623.68, + "end": 2624.57, + "probability": 0.7689 + }, + { + "start": 2627.72, + "end": 2628.22, + "probability": 0.0405 + }, + { + "start": 2628.22, + "end": 2628.22, + "probability": 0.0136 + }, + { + "start": 2628.22, + "end": 2628.22, + "probability": 0.1485 + }, + { + "start": 2628.22, + "end": 2628.29, + "probability": 0.3942 + }, + { + "start": 2628.78, + "end": 2629.5, + "probability": 0.6481 + }, + { + "start": 2629.5, + "end": 2630.04, + "probability": 0.5846 + }, + { + "start": 2630.2, + "end": 2630.7, + "probability": 0.5037 + }, + { + "start": 2630.94, + "end": 2631.22, + "probability": 0.6823 + }, + { + "start": 2631.84, + "end": 2632.68, + "probability": 0.66 + }, + { + "start": 2633.98, + "end": 2634.84, + "probability": 0.831 + }, + { + "start": 2635.46, + "end": 2635.54, + "probability": 0.1756 + }, + { + "start": 2635.54, + "end": 2635.68, + "probability": 0.5037 + }, + { + "start": 2636.6, + "end": 2638.42, + "probability": 0.9766 + }, + { + "start": 2640.04, + "end": 2641.64, + "probability": 0.9408 + }, + { + "start": 2641.92, + "end": 2642.1, + "probability": 0.4837 + }, + { + "start": 2642.24, + "end": 2642.74, + "probability": 0.8403 + }, + { + "start": 2642.82, + "end": 2643.9, + "probability": 0.8296 + }, + { + "start": 2644.64, + "end": 2645.52, + "probability": 0.9055 + }, + { + "start": 2646.68, + "end": 2649.28, + "probability": 0.6375 + }, + { + "start": 2649.7, + "end": 2650.62, + "probability": 0.9917 + }, + { + "start": 2650.68, + "end": 2651.74, + "probability": 0.8489 + }, + { + "start": 2652.62, + "end": 2652.96, + "probability": 0.7138 + }, + { + "start": 2654.28, + "end": 2655.62, + "probability": 0.3579 + }, + { + "start": 2656.1, + "end": 2657.27, + "probability": 0.9873 + }, + { + "start": 2658.1, + "end": 2659.34, + "probability": 0.9227 + }, + { + "start": 2659.72, + "end": 2663.02, + "probability": 0.8898 + }, + { + "start": 2664.02, + "end": 2665.94, + "probability": 0.5698 + }, + { + "start": 2665.98, + "end": 2668.62, + "probability": 0.9221 + }, + { + "start": 2668.7, + "end": 2669.32, + "probability": 0.6961 + }, + { + "start": 2669.78, + "end": 2672.66, + "probability": 0.9423 + }, + { + "start": 2672.76, + "end": 2675.13, + "probability": 0.8521 + }, + { + "start": 2675.78, + "end": 2676.1, + "probability": 0.597 + }, + { + "start": 2676.18, + "end": 2678.28, + "probability": 0.9648 + }, + { + "start": 2678.54, + "end": 2678.9, + "probability": 0.879 + }, + { + "start": 2679.72, + "end": 2681.57, + "probability": 0.9446 + }, + { + "start": 2682.1, + "end": 2682.96, + "probability": 0.8616 + }, + { + "start": 2683.06, + "end": 2685.96, + "probability": 0.9139 + }, + { + "start": 2686.64, + "end": 2689.46, + "probability": 0.9844 + }, + { + "start": 2690.62, + "end": 2691.66, + "probability": 0.9394 + }, + { + "start": 2691.98, + "end": 2695.38, + "probability": 0.9912 + }, + { + "start": 2695.9, + "end": 2697.5, + "probability": 0.8952 + }, + { + "start": 2698.08, + "end": 2699.68, + "probability": 0.9818 + }, + { + "start": 2700.84, + "end": 2703.4, + "probability": 0.8865 + }, + { + "start": 2703.96, + "end": 2708.84, + "probability": 0.757 + }, + { + "start": 2708.98, + "end": 2709.48, + "probability": 0.6767 + }, + { + "start": 2709.9, + "end": 2710.39, + "probability": 0.8184 + }, + { + "start": 2711.32, + "end": 2714.18, + "probability": 0.5703 + }, + { + "start": 2715.08, + "end": 2717.66, + "probability": 0.9863 + }, + { + "start": 2718.32, + "end": 2722.66, + "probability": 0.9845 + }, + { + "start": 2722.66, + "end": 2726.22, + "probability": 0.9951 + }, + { + "start": 2726.68, + "end": 2726.98, + "probability": 0.6733 + }, + { + "start": 2728.26, + "end": 2729.28, + "probability": 0.9992 + }, + { + "start": 2729.86, + "end": 2732.08, + "probability": 0.9943 + }, + { + "start": 2732.8, + "end": 2734.04, + "probability": 0.8607 + }, + { + "start": 2734.32, + "end": 2735.32, + "probability": 0.8896 + }, + { + "start": 2735.66, + "end": 2737.74, + "probability": 0.9788 + }, + { + "start": 2738.06, + "end": 2742.02, + "probability": 0.9566 + }, + { + "start": 2746.86, + "end": 2748.29, + "probability": 0.7387 + }, + { + "start": 2748.48, + "end": 2748.78, + "probability": 0.6477 + }, + { + "start": 2749.3, + "end": 2751.34, + "probability": 0.6193 + }, + { + "start": 2752.34, + "end": 2754.98, + "probability": 0.9816 + }, + { + "start": 2755.04, + "end": 2757.53, + "probability": 0.8177 + }, + { + "start": 2758.02, + "end": 2761.38, + "probability": 0.9678 + }, + { + "start": 2765.24, + "end": 2766.4, + "probability": 0.655 + }, + { + "start": 2766.56, + "end": 2766.56, + "probability": 0.563 + }, + { + "start": 2766.56, + "end": 2769.68, + "probability": 0.8409 + }, + { + "start": 2770.56, + "end": 2772.32, + "probability": 0.8472 + }, + { + "start": 2772.94, + "end": 2773.68, + "probability": 0.7925 + }, + { + "start": 2774.46, + "end": 2776.52, + "probability": 0.953 + }, + { + "start": 2777.12, + "end": 2782.42, + "probability": 0.9956 + }, + { + "start": 2782.9, + "end": 2784.58, + "probability": 0.9786 + }, + { + "start": 2784.98, + "end": 2787.38, + "probability": 0.9038 + }, + { + "start": 2787.56, + "end": 2788.6, + "probability": 0.3158 + }, + { + "start": 2789.08, + "end": 2790.72, + "probability": 0.9863 + }, + { + "start": 2791.3, + "end": 2792.42, + "probability": 0.496 + }, + { + "start": 2792.52, + "end": 2792.82, + "probability": 0.6909 + }, + { + "start": 2792.9, + "end": 2793.38, + "probability": 0.9267 + }, + { + "start": 2793.48, + "end": 2795.52, + "probability": 0.9905 + }, + { + "start": 2796.26, + "end": 2798.54, + "probability": 0.674 + }, + { + "start": 2799.26, + "end": 2801.14, + "probability": 0.9911 + }, + { + "start": 2801.76, + "end": 2806.74, + "probability": 0.9929 + }, + { + "start": 2807.26, + "end": 2808.2, + "probability": 0.998 + }, + { + "start": 2808.28, + "end": 2809.45, + "probability": 0.8313 + }, + { + "start": 2810.42, + "end": 2812.06, + "probability": 0.8876 + }, + { + "start": 2812.56, + "end": 2818.02, + "probability": 0.9583 + }, + { + "start": 2818.1, + "end": 2819.4, + "probability": 0.8346 + }, + { + "start": 2819.72, + "end": 2822.4, + "probability": 0.9586 + }, + { + "start": 2822.7, + "end": 2825.1, + "probability": 0.7884 + }, + { + "start": 2825.56, + "end": 2826.64, + "probability": 0.9021 + }, + { + "start": 2827.04, + "end": 2829.48, + "probability": 0.9648 + }, + { + "start": 2830.36, + "end": 2832.38, + "probability": 0.7671 + }, + { + "start": 2832.4, + "end": 2834.56, + "probability": 0.9105 + }, + { + "start": 2835.24, + "end": 2837.14, + "probability": 0.8361 + }, + { + "start": 2837.14, + "end": 2837.56, + "probability": 0.558 + }, + { + "start": 2837.7, + "end": 2838.08, + "probability": 0.7897 + }, + { + "start": 2838.2, + "end": 2840.3, + "probability": 0.856 + }, + { + "start": 2840.4, + "end": 2841.5, + "probability": 0.9722 + }, + { + "start": 2841.72, + "end": 2843.32, + "probability": 0.2164 + }, + { + "start": 2843.46, + "end": 2847.5, + "probability": 0.9902 + }, + { + "start": 2848.88, + "end": 2849.48, + "probability": 0.5396 + }, + { + "start": 2849.52, + "end": 2850.34, + "probability": 0.8425 + }, + { + "start": 2850.42, + "end": 2851.06, + "probability": 0.3749 + }, + { + "start": 2851.3, + "end": 2851.53, + "probability": 0.61 + }, + { + "start": 2852.44, + "end": 2854.24, + "probability": 0.4453 + }, + { + "start": 2855.42, + "end": 2857.11, + "probability": 0.9978 + }, + { + "start": 2857.32, + "end": 2858.82, + "probability": 0.5931 + }, + { + "start": 2858.96, + "end": 2860.0, + "probability": 0.8994 + }, + { + "start": 2860.94, + "end": 2863.6, + "probability": 0.8091 + }, + { + "start": 2863.88, + "end": 2864.37, + "probability": 0.6559 + }, + { + "start": 2865.08, + "end": 2865.64, + "probability": 0.9031 + }, + { + "start": 2866.48, + "end": 2869.44, + "probability": 0.9655 + }, + { + "start": 2869.58, + "end": 2871.5, + "probability": 0.9764 + }, + { + "start": 2871.82, + "end": 2874.42, + "probability": 0.8982 + }, + { + "start": 2875.58, + "end": 2879.06, + "probability": 0.9961 + }, + { + "start": 2880.66, + "end": 2882.96, + "probability": 0.8269 + }, + { + "start": 2883.18, + "end": 2885.22, + "probability": 0.9709 + }, + { + "start": 2885.76, + "end": 2887.54, + "probability": 0.7822 + }, + { + "start": 2888.1, + "end": 2889.9, + "probability": 0.8943 + }, + { + "start": 2890.04, + "end": 2890.44, + "probability": 0.9714 + }, + { + "start": 2890.58, + "end": 2891.78, + "probability": 0.8204 + }, + { + "start": 2892.18, + "end": 2894.34, + "probability": 0.7299 + }, + { + "start": 2894.5, + "end": 2896.36, + "probability": 0.7894 + }, + { + "start": 2896.68, + "end": 2896.86, + "probability": 0.5241 + }, + { + "start": 2897.44, + "end": 2898.32, + "probability": 0.8301 + }, + { + "start": 2898.62, + "end": 2900.58, + "probability": 0.8536 + }, + { + "start": 2900.68, + "end": 2901.3, + "probability": 0.9146 + }, + { + "start": 2902.08, + "end": 2904.7, + "probability": 0.8081 + }, + { + "start": 2905.2, + "end": 2907.72, + "probability": 0.867 + }, + { + "start": 2908.38, + "end": 2911.74, + "probability": 0.7904 + }, + { + "start": 2913.49, + "end": 2916.06, + "probability": 0.9565 + }, + { + "start": 2916.8, + "end": 2919.58, + "probability": 0.9811 + }, + { + "start": 2919.58, + "end": 2923.48, + "probability": 0.8567 + }, + { + "start": 2924.36, + "end": 2925.4, + "probability": 0.4586 + }, + { + "start": 2925.86, + "end": 2930.64, + "probability": 0.9627 + }, + { + "start": 2931.16, + "end": 2931.92, + "probability": 0.9065 + }, + { + "start": 2932.6, + "end": 2933.42, + "probability": 0.983 + }, + { + "start": 2934.06, + "end": 2937.32, + "probability": 0.9893 + }, + { + "start": 2937.86, + "end": 2939.98, + "probability": 0.6574 + }, + { + "start": 2942.22, + "end": 2943.96, + "probability": 0.3073 + }, + { + "start": 2944.8, + "end": 2946.72, + "probability": 0.7113 + }, + { + "start": 2947.2, + "end": 2948.7, + "probability": 0.9912 + }, + { + "start": 2948.82, + "end": 2950.38, + "probability": 0.8978 + }, + { + "start": 2950.86, + "end": 2952.34, + "probability": 0.9497 + }, + { + "start": 2952.42, + "end": 2953.96, + "probability": 0.9255 + }, + { + "start": 2954.7, + "end": 2955.66, + "probability": 0.5009 + }, + { + "start": 2956.4, + "end": 2958.98, + "probability": 0.9483 + }, + { + "start": 2960.08, + "end": 2961.4, + "probability": 0.9716 + }, + { + "start": 2961.84, + "end": 2963.03, + "probability": 0.9834 + }, + { + "start": 2963.66, + "end": 2964.92, + "probability": 0.9951 + }, + { + "start": 2965.0, + "end": 2966.46, + "probability": 0.9323 + }, + { + "start": 2967.12, + "end": 2969.72, + "probability": 0.978 + }, + { + "start": 2969.74, + "end": 2972.62, + "probability": 0.9635 + }, + { + "start": 2972.98, + "end": 2975.64, + "probability": 0.7456 + }, + { + "start": 2976.02, + "end": 2978.3, + "probability": 0.6433 + }, + { + "start": 2978.3, + "end": 2981.94, + "probability": 0.8085 + }, + { + "start": 2982.44, + "end": 2983.76, + "probability": 0.9938 + }, + { + "start": 2984.28, + "end": 2986.14, + "probability": 0.9473 + }, + { + "start": 2986.56, + "end": 2990.28, + "probability": 0.9653 + }, + { + "start": 2990.82, + "end": 2992.64, + "probability": 0.8504 + }, + { + "start": 2992.72, + "end": 2993.14, + "probability": 0.6991 + }, + { + "start": 2993.26, + "end": 2996.11, + "probability": 0.9814 + }, + { + "start": 2996.98, + "end": 2998.2, + "probability": 0.9474 + }, + { + "start": 2998.84, + "end": 3001.9, + "probability": 0.716 + }, + { + "start": 3002.34, + "end": 3006.28, + "probability": 0.985 + }, + { + "start": 3006.44, + "end": 3007.36, + "probability": 0.9611 + }, + { + "start": 3008.14, + "end": 3009.62, + "probability": 0.9448 + }, + { + "start": 3010.18, + "end": 3013.0, + "probability": 0.9302 + }, + { + "start": 3013.12, + "end": 3015.28, + "probability": 0.9875 + }, + { + "start": 3015.94, + "end": 3016.82, + "probability": 0.7295 + }, + { + "start": 3017.28, + "end": 3018.84, + "probability": 0.9509 + }, + { + "start": 3019.24, + "end": 3021.29, + "probability": 0.7458 + }, + { + "start": 3022.0, + "end": 3022.42, + "probability": 0.8919 + }, + { + "start": 3022.9, + "end": 3025.96, + "probability": 0.9333 + }, + { + "start": 3026.46, + "end": 3029.8, + "probability": 0.7238 + }, + { + "start": 3030.48, + "end": 3033.54, + "probability": 0.9894 + }, + { + "start": 3033.64, + "end": 3034.48, + "probability": 0.9631 + }, + { + "start": 3034.7, + "end": 3036.13, + "probability": 0.9295 + }, + { + "start": 3036.72, + "end": 3038.68, + "probability": 0.9849 + }, + { + "start": 3039.68, + "end": 3040.82, + "probability": 0.948 + }, + { + "start": 3041.8, + "end": 3045.66, + "probability": 0.9823 + }, + { + "start": 3045.66, + "end": 3049.38, + "probability": 0.9917 + }, + { + "start": 3050.04, + "end": 3052.28, + "probability": 0.9736 + }, + { + "start": 3052.66, + "end": 3054.08, + "probability": 0.8944 + }, + { + "start": 3055.14, + "end": 3058.16, + "probability": 0.7443 + }, + { + "start": 3059.28, + "end": 3060.76, + "probability": 0.8154 + }, + { + "start": 3060.96, + "end": 3061.62, + "probability": 0.3966 + }, + { + "start": 3061.64, + "end": 3064.94, + "probability": 0.7389 + }, + { + "start": 3064.94, + "end": 3066.0, + "probability": 0.9701 + }, + { + "start": 3068.74, + "end": 3071.9, + "probability": 0.6751 + }, + { + "start": 3072.64, + "end": 3074.82, + "probability": 0.7944 + }, + { + "start": 3075.2, + "end": 3077.72, + "probability": 0.9862 + }, + { + "start": 3078.54, + "end": 3082.9, + "probability": 0.8085 + }, + { + "start": 3083.76, + "end": 3084.02, + "probability": 0.5626 + }, + { + "start": 3084.38, + "end": 3089.4, + "probability": 0.9409 + }, + { + "start": 3089.4, + "end": 3094.64, + "probability": 0.9842 + }, + { + "start": 3094.7, + "end": 3095.0, + "probability": 0.4948 + }, + { + "start": 3095.1, + "end": 3099.74, + "probability": 0.8949 + }, + { + "start": 3100.28, + "end": 3100.58, + "probability": 0.5036 + }, + { + "start": 3100.82, + "end": 3102.16, + "probability": 0.8422 + }, + { + "start": 3102.7, + "end": 3103.78, + "probability": 0.562 + }, + { + "start": 3103.9, + "end": 3105.99, + "probability": 0.4696 + }, + { + "start": 3106.08, + "end": 3107.92, + "probability": 0.9955 + }, + { + "start": 3107.94, + "end": 3109.28, + "probability": 0.5223 + }, + { + "start": 3109.72, + "end": 3110.82, + "probability": 0.7063 + }, + { + "start": 3110.86, + "end": 3112.59, + "probability": 0.8721 + }, + { + "start": 3114.75, + "end": 3116.8, + "probability": 0.8645 + }, + { + "start": 3117.7, + "end": 3119.38, + "probability": 0.7769 + }, + { + "start": 3119.5, + "end": 3120.72, + "probability": 0.9817 + }, + { + "start": 3121.24, + "end": 3123.2, + "probability": 0.9063 + }, + { + "start": 3124.78, + "end": 3125.46, + "probability": 0.922 + }, + { + "start": 3125.74, + "end": 3130.56, + "probability": 0.9795 + }, + { + "start": 3131.1, + "end": 3132.14, + "probability": 0.7005 + }, + { + "start": 3133.14, + "end": 3135.3, + "probability": 0.8517 + }, + { + "start": 3137.3, + "end": 3141.9, + "probability": 0.9882 + }, + { + "start": 3142.04, + "end": 3143.34, + "probability": 0.9596 + }, + { + "start": 3143.36, + "end": 3143.93, + "probability": 0.7666 + }, + { + "start": 3144.84, + "end": 3149.44, + "probability": 0.9901 + }, + { + "start": 3151.24, + "end": 3153.34, + "probability": 0.9659 + }, + { + "start": 3153.96, + "end": 3156.92, + "probability": 0.9983 + }, + { + "start": 3157.06, + "end": 3162.72, + "probability": 0.9915 + }, + { + "start": 3163.48, + "end": 3165.26, + "probability": 0.6508 + }, + { + "start": 3166.14, + "end": 3167.74, + "probability": 0.9917 + }, + { + "start": 3168.34, + "end": 3170.88, + "probability": 0.9924 + }, + { + "start": 3171.48, + "end": 3174.84, + "probability": 0.9973 + }, + { + "start": 3175.34, + "end": 3176.48, + "probability": 0.9783 + }, + { + "start": 3177.12, + "end": 3178.38, + "probability": 0.943 + }, + { + "start": 3178.82, + "end": 3180.72, + "probability": 0.9391 + }, + { + "start": 3181.2, + "end": 3182.4, + "probability": 0.9948 + }, + { + "start": 3182.88, + "end": 3184.24, + "probability": 0.9962 + }, + { + "start": 3184.5, + "end": 3185.98, + "probability": 0.9926 + }, + { + "start": 3186.7, + "end": 3188.62, + "probability": 0.8639 + }, + { + "start": 3189.02, + "end": 3190.48, + "probability": 0.9767 + }, + { + "start": 3191.16, + "end": 3192.4, + "probability": 0.8867 + }, + { + "start": 3192.82, + "end": 3194.56, + "probability": 0.9424 + }, + { + "start": 3194.98, + "end": 3200.26, + "probability": 0.9679 + }, + { + "start": 3200.86, + "end": 3202.2, + "probability": 0.9299 + }, + { + "start": 3202.74, + "end": 3203.94, + "probability": 0.9889 + }, + { + "start": 3204.6, + "end": 3207.48, + "probability": 0.8542 + }, + { + "start": 3208.6, + "end": 3210.3, + "probability": 0.9926 + }, + { + "start": 3211.24, + "end": 3211.66, + "probability": 0.6239 + }, + { + "start": 3211.82, + "end": 3216.06, + "probability": 0.8923 + }, + { + "start": 3216.42, + "end": 3218.4, + "probability": 0.9939 + }, + { + "start": 3218.4, + "end": 3223.22, + "probability": 0.952 + }, + { + "start": 3223.62, + "end": 3226.3, + "probability": 0.9861 + }, + { + "start": 3227.02, + "end": 3230.18, + "probability": 0.8036 + }, + { + "start": 3231.08, + "end": 3233.72, + "probability": 0.8555 + }, + { + "start": 3236.64, + "end": 3238.06, + "probability": 0.6641 + }, + { + "start": 3238.84, + "end": 3241.1, + "probability": 0.7746 + }, + { + "start": 3241.26, + "end": 3241.96, + "probability": 0.2398 + }, + { + "start": 3242.16, + "end": 3242.78, + "probability": 0.7339 + }, + { + "start": 3244.12, + "end": 3245.78, + "probability": 0.8553 + }, + { + "start": 3247.18, + "end": 3251.68, + "probability": 0.9017 + }, + { + "start": 3252.12, + "end": 3254.1, + "probability": 0.7197 + }, + { + "start": 3254.18, + "end": 3254.32, + "probability": 0.1825 + }, + { + "start": 3254.58, + "end": 3254.66, + "probability": 0.2361 + }, + { + "start": 3254.76, + "end": 3255.5, + "probability": 0.7982 + }, + { + "start": 3256.38, + "end": 3257.16, + "probability": 0.8978 + }, + { + "start": 3257.62, + "end": 3259.3, + "probability": 0.6534 + }, + { + "start": 3259.52, + "end": 3262.74, + "probability": 0.9224 + }, + { + "start": 3264.16, + "end": 3267.66, + "probability": 0.9247 + }, + { + "start": 3267.94, + "end": 3268.33, + "probability": 0.5133 + }, + { + "start": 3269.94, + "end": 3274.94, + "probability": 0.1778 + }, + { + "start": 3275.3, + "end": 3277.18, + "probability": 0.61 + }, + { + "start": 3277.18, + "end": 3279.18, + "probability": 0.4804 + }, + { + "start": 3279.18, + "end": 3280.04, + "probability": 0.5435 + }, + { + "start": 3280.24, + "end": 3285.36, + "probability": 0.9842 + }, + { + "start": 3285.36, + "end": 3289.62, + "probability": 0.6513 + }, + { + "start": 3290.0, + "end": 3291.2, + "probability": 0.6971 + }, + { + "start": 3291.72, + "end": 3292.18, + "probability": 0.2646 + }, + { + "start": 3292.28, + "end": 3296.42, + "probability": 0.7842 + }, + { + "start": 3298.24, + "end": 3299.62, + "probability": 0.3244 + }, + { + "start": 3299.62, + "end": 3300.74, + "probability": 0.3442 + }, + { + "start": 3300.9, + "end": 3302.04, + "probability": 0.4717 + }, + { + "start": 3302.7, + "end": 3305.98, + "probability": 0.8757 + }, + { + "start": 3306.2, + "end": 3306.52, + "probability": 0.3006 + }, + { + "start": 3306.6, + "end": 3309.4, + "probability": 0.9629 + }, + { + "start": 3309.54, + "end": 3312.04, + "probability": 0.9925 + }, + { + "start": 3312.56, + "end": 3313.76, + "probability": 0.799 + }, + { + "start": 3313.98, + "end": 3314.75, + "probability": 0.7696 + }, + { + "start": 3315.48, + "end": 3317.84, + "probability": 0.9111 + }, + { + "start": 3318.16, + "end": 3318.82, + "probability": 0.8897 + }, + { + "start": 3318.98, + "end": 3321.18, + "probability": 0.8917 + }, + { + "start": 3321.64, + "end": 3324.22, + "probability": 0.9893 + }, + { + "start": 3324.34, + "end": 3326.56, + "probability": 0.94 + }, + { + "start": 3326.56, + "end": 3328.0, + "probability": 0.9786 + }, + { + "start": 3328.44, + "end": 3331.72, + "probability": 0.989 + }, + { + "start": 3332.48, + "end": 3337.08, + "probability": 0.9885 + }, + { + "start": 3337.46, + "end": 3340.38, + "probability": 0.9937 + }, + { + "start": 3340.54, + "end": 3344.46, + "probability": 0.9922 + }, + { + "start": 3345.12, + "end": 3350.9, + "probability": 0.8374 + }, + { + "start": 3350.9, + "end": 3356.12, + "probability": 0.9678 + }, + { + "start": 3356.82, + "end": 3362.18, + "probability": 0.9899 + }, + { + "start": 3362.84, + "end": 3362.96, + "probability": 0.1486 + }, + { + "start": 3362.96, + "end": 3363.68, + "probability": 0.6022 + }, + { + "start": 3364.12, + "end": 3366.14, + "probability": 0.9199 + }, + { + "start": 3366.78, + "end": 3368.64, + "probability": 0.9391 + }, + { + "start": 3368.84, + "end": 3372.0, + "probability": 0.9742 + }, + { + "start": 3372.18, + "end": 3377.8, + "probability": 0.936 + }, + { + "start": 3378.56, + "end": 3380.6, + "probability": 0.9386 + }, + { + "start": 3381.08, + "end": 3383.88, + "probability": 0.6271 + }, + { + "start": 3384.52, + "end": 3386.82, + "probability": 0.85 + }, + { + "start": 3387.46, + "end": 3391.0, + "probability": 0.6635 + }, + { + "start": 3391.2, + "end": 3395.82, + "probability": 0.981 + }, + { + "start": 3396.46, + "end": 3399.98, + "probability": 0.9956 + }, + { + "start": 3400.08, + "end": 3400.4, + "probability": 0.3248 + }, + { + "start": 3400.54, + "end": 3401.8, + "probability": 0.9545 + }, + { + "start": 3402.28, + "end": 3406.23, + "probability": 0.9888 + }, + { + "start": 3407.28, + "end": 3408.36, + "probability": 0.874 + }, + { + "start": 3409.54, + "end": 3414.2, + "probability": 0.9937 + }, + { + "start": 3414.98, + "end": 3417.28, + "probability": 0.9945 + }, + { + "start": 3418.28, + "end": 3421.26, + "probability": 0.9727 + }, + { + "start": 3421.42, + "end": 3424.82, + "probability": 0.9825 + }, + { + "start": 3424.94, + "end": 3426.22, + "probability": 0.2869 + }, + { + "start": 3426.22, + "end": 3426.9, + "probability": 0.5347 + }, + { + "start": 3427.22, + "end": 3431.8, + "probability": 0.4034 + }, + { + "start": 3431.96, + "end": 3433.2, + "probability": 0.9263 + }, + { + "start": 3433.42, + "end": 3438.58, + "probability": 0.9743 + }, + { + "start": 3438.94, + "end": 3440.06, + "probability": 0.9343 + }, + { + "start": 3440.06, + "end": 3440.68, + "probability": 0.9198 + }, + { + "start": 3440.84, + "end": 3447.34, + "probability": 0.9716 + }, + { + "start": 3447.48, + "end": 3447.84, + "probability": 0.8434 + }, + { + "start": 3447.92, + "end": 3448.78, + "probability": 0.5015 + }, + { + "start": 3449.56, + "end": 3452.26, + "probability": 0.8597 + }, + { + "start": 3452.38, + "end": 3453.6, + "probability": 0.8877 + }, + { + "start": 3454.08, + "end": 3454.7, + "probability": 0.9281 + }, + { + "start": 3455.3, + "end": 3457.02, + "probability": 0.8069 + }, + { + "start": 3457.14, + "end": 3457.68, + "probability": 0.9273 + }, + { + "start": 3457.8, + "end": 3458.56, + "probability": 0.7787 + }, + { + "start": 3458.7, + "end": 3459.78, + "probability": 0.5029 + }, + { + "start": 3460.04, + "end": 3461.1, + "probability": 0.9102 + }, + { + "start": 3461.26, + "end": 3461.86, + "probability": 0.8725 + }, + { + "start": 3462.16, + "end": 3463.52, + "probability": 0.8255 + }, + { + "start": 3463.82, + "end": 3464.26, + "probability": 0.8875 + }, + { + "start": 3464.4, + "end": 3464.94, + "probability": 0.9611 + }, + { + "start": 3465.02, + "end": 3465.48, + "probability": 0.9644 + }, + { + "start": 3465.58, + "end": 3466.12, + "probability": 0.8815 + }, + { + "start": 3466.42, + "end": 3467.86, + "probability": 0.9617 + }, + { + "start": 3468.24, + "end": 3469.72, + "probability": 0.9252 + }, + { + "start": 3470.3, + "end": 3472.0, + "probability": 0.9344 + }, + { + "start": 3472.34, + "end": 3473.52, + "probability": 0.9231 + }, + { + "start": 3473.6, + "end": 3478.14, + "probability": 0.9451 + }, + { + "start": 3478.32, + "end": 3479.3, + "probability": 0.9075 + }, + { + "start": 3479.56, + "end": 3480.48, + "probability": 0.5722 + }, + { + "start": 3480.58, + "end": 3481.4, + "probability": 0.8677 + }, + { + "start": 3481.44, + "end": 3482.14, + "probability": 0.6084 + }, + { + "start": 3482.4, + "end": 3484.94, + "probability": 0.9971 + }, + { + "start": 3485.36, + "end": 3489.04, + "probability": 0.964 + }, + { + "start": 3490.12, + "end": 3492.08, + "probability": 0.6964 + }, + { + "start": 3492.64, + "end": 3494.96, + "probability": 0.7708 + }, + { + "start": 3495.26, + "end": 3500.96, + "probability": 0.9868 + }, + { + "start": 3501.36, + "end": 3506.24, + "probability": 0.9452 + }, + { + "start": 3506.7, + "end": 3508.0, + "probability": 0.7402 + }, + { + "start": 3508.12, + "end": 3509.76, + "probability": 0.8613 + }, + { + "start": 3509.88, + "end": 3511.0, + "probability": 0.5068 + }, + { + "start": 3511.12, + "end": 3515.1, + "probability": 0.8586 + }, + { + "start": 3515.16, + "end": 3519.32, + "probability": 0.9878 + }, + { + "start": 3519.8, + "end": 3522.96, + "probability": 0.5708 + }, + { + "start": 3523.08, + "end": 3523.96, + "probability": 0.8441 + }, + { + "start": 3524.08, + "end": 3525.62, + "probability": 0.8322 + }, + { + "start": 3526.24, + "end": 3530.46, + "probability": 0.9579 + }, + { + "start": 3531.06, + "end": 3533.76, + "probability": 0.9938 + }, + { + "start": 3533.76, + "end": 3538.28, + "probability": 0.8279 + }, + { + "start": 3538.68, + "end": 3541.12, + "probability": 0.8405 + }, + { + "start": 3542.24, + "end": 3546.04, + "probability": 0.2265 + }, + { + "start": 3547.5, + "end": 3549.36, + "probability": 0.9259 + }, + { + "start": 3549.42, + "end": 3550.44, + "probability": 0.885 + }, + { + "start": 3550.48, + "end": 3551.14, + "probability": 0.7446 + }, + { + "start": 3551.32, + "end": 3552.72, + "probability": 0.8879 + }, + { + "start": 3553.64, + "end": 3554.24, + "probability": 0.7964 + }, + { + "start": 3555.08, + "end": 3561.06, + "probability": 0.9667 + }, + { + "start": 3562.06, + "end": 3567.78, + "probability": 0.9945 + }, + { + "start": 3568.22, + "end": 3569.36, + "probability": 0.3711 + }, + { + "start": 3570.04, + "end": 3573.26, + "probability": 0.9287 + }, + { + "start": 3574.34, + "end": 3575.12, + "probability": 0.6903 + }, + { + "start": 3575.72, + "end": 3578.04, + "probability": 0.7917 + }, + { + "start": 3578.64, + "end": 3584.42, + "probability": 0.8306 + }, + { + "start": 3584.76, + "end": 3589.88, + "probability": 0.9937 + }, + { + "start": 3590.3, + "end": 3594.0, + "probability": 0.8726 + }, + { + "start": 3594.78, + "end": 3599.44, + "probability": 0.9899 + }, + { + "start": 3599.44, + "end": 3603.74, + "probability": 0.9789 + }, + { + "start": 3604.84, + "end": 3605.42, + "probability": 0.6848 + }, + { + "start": 3606.82, + "end": 3609.48, + "probability": 0.6029 + }, + { + "start": 3609.48, + "end": 3612.68, + "probability": 0.9908 + }, + { + "start": 3613.54, + "end": 3618.28, + "probability": 0.994 + }, + { + "start": 3618.66, + "end": 3620.7, + "probability": 0.9779 + }, + { + "start": 3621.18, + "end": 3625.9, + "probability": 0.9987 + }, + { + "start": 3626.68, + "end": 3631.44, + "probability": 0.9934 + }, + { + "start": 3631.44, + "end": 3638.1, + "probability": 0.9993 + }, + { + "start": 3638.1, + "end": 3643.66, + "probability": 0.9956 + }, + { + "start": 3644.52, + "end": 3648.32, + "probability": 0.9933 + }, + { + "start": 3648.32, + "end": 3654.84, + "probability": 0.9934 + }, + { + "start": 3654.84, + "end": 3660.42, + "probability": 0.9927 + }, + { + "start": 3660.92, + "end": 3662.04, + "probability": 0.9734 + }, + { + "start": 3662.82, + "end": 3666.8, + "probability": 0.582 + }, + { + "start": 3667.34, + "end": 3673.36, + "probability": 0.9901 + }, + { + "start": 3673.36, + "end": 3679.32, + "probability": 0.9957 + }, + { + "start": 3679.98, + "end": 3681.78, + "probability": 0.6702 + }, + { + "start": 3682.14, + "end": 3685.38, + "probability": 0.9023 + }, + { + "start": 3686.04, + "end": 3687.42, + "probability": 0.7748 + }, + { + "start": 3687.5, + "end": 3688.6, + "probability": 0.3291 + }, + { + "start": 3688.74, + "end": 3689.28, + "probability": 0.9512 + }, + { + "start": 3689.78, + "end": 3691.2, + "probability": 0.9391 + }, + { + "start": 3691.3, + "end": 3692.62, + "probability": 0.9761 + }, + { + "start": 3693.06, + "end": 3693.28, + "probability": 0.7854 + }, + { + "start": 3693.96, + "end": 3693.96, + "probability": 0.2117 + }, + { + "start": 3700.44, + "end": 3700.83, + "probability": 0.6904 + }, + { + "start": 3702.22, + "end": 3702.92, + "probability": 0.6842 + }, + { + "start": 3703.48, + "end": 3703.74, + "probability": 0.521 + }, + { + "start": 3704.3, + "end": 3706.58, + "probability": 0.7001 + }, + { + "start": 3707.02, + "end": 3708.94, + "probability": 0.9856 + }, + { + "start": 3709.48, + "end": 3713.12, + "probability": 0.9937 + }, + { + "start": 3713.12, + "end": 3716.28, + "probability": 0.9859 + }, + { + "start": 3716.88, + "end": 3718.86, + "probability": 0.9832 + }, + { + "start": 3719.74, + "end": 3724.08, + "probability": 0.8174 + }, + { + "start": 3724.56, + "end": 3726.2, + "probability": 0.8939 + }, + { + "start": 3726.58, + "end": 3728.48, + "probability": 0.8047 + }, + { + "start": 3728.86, + "end": 3729.86, + "probability": 0.5764 + }, + { + "start": 3730.08, + "end": 3730.08, + "probability": 0.2999 + }, + { + "start": 3730.08, + "end": 3731.12, + "probability": 0.6668 + }, + { + "start": 3731.38, + "end": 3731.52, + "probability": 0.3344 + }, + { + "start": 3731.6, + "end": 3733.38, + "probability": 0.8428 + }, + { + "start": 3733.5, + "end": 3736.0, + "probability": 0.7388 + }, + { + "start": 3736.3, + "end": 3740.66, + "probability": 0.9536 + }, + { + "start": 3740.84, + "end": 3741.32, + "probability": 0.5275 + }, + { + "start": 3741.42, + "end": 3742.82, + "probability": 0.6252 + }, + { + "start": 3743.46, + "end": 3744.34, + "probability": 0.755 + }, + { + "start": 3745.5, + "end": 3748.49, + "probability": 0.9744 + }, + { + "start": 3748.54, + "end": 3754.12, + "probability": 0.9928 + }, + { + "start": 3755.1, + "end": 3757.94, + "probability": 0.9943 + }, + { + "start": 3758.06, + "end": 3761.4, + "probability": 0.9744 + }, + { + "start": 3761.48, + "end": 3766.04, + "probability": 0.9989 + }, + { + "start": 3766.84, + "end": 3767.4, + "probability": 0.6796 + }, + { + "start": 3767.42, + "end": 3772.94, + "probability": 0.9966 + }, + { + "start": 3773.64, + "end": 3774.58, + "probability": 0.8388 + }, + { + "start": 3775.3, + "end": 3775.7, + "probability": 0.8152 + }, + { + "start": 3776.74, + "end": 3778.58, + "probability": 0.9238 + }, + { + "start": 3779.1, + "end": 3782.04, + "probability": 0.9888 + }, + { + "start": 3782.24, + "end": 3782.84, + "probability": 0.7632 + }, + { + "start": 3783.0, + "end": 3783.22, + "probability": 0.9391 + }, + { + "start": 3783.36, + "end": 3785.44, + "probability": 0.9481 + }, + { + "start": 3785.56, + "end": 3787.24, + "probability": 0.9705 + }, + { + "start": 3789.38, + "end": 3789.9, + "probability": 0.5604 + }, + { + "start": 3789.96, + "end": 3790.94, + "probability": 0.7181 + }, + { + "start": 3791.98, + "end": 3791.98, + "probability": 0.0222 + }, + { + "start": 3791.98, + "end": 3792.42, + "probability": 0.0906 + }, + { + "start": 3792.42, + "end": 3794.82, + "probability": 0.7259 + }, + { + "start": 3794.94, + "end": 3796.76, + "probability": 0.9958 + }, + { + "start": 3797.74, + "end": 3801.02, + "probability": 0.9834 + }, + { + "start": 3801.86, + "end": 3803.12, + "probability": 0.9844 + }, + { + "start": 3803.28, + "end": 3804.1, + "probability": 0.9646 + }, + { + "start": 3804.16, + "end": 3805.32, + "probability": 0.9014 + }, + { + "start": 3806.08, + "end": 3808.54, + "probability": 0.9814 + }, + { + "start": 3808.6, + "end": 3809.37, + "probability": 0.9775 + }, + { + "start": 3809.74, + "end": 3810.92, + "probability": 0.9814 + }, + { + "start": 3811.24, + "end": 3812.78, + "probability": 0.8848 + }, + { + "start": 3812.8, + "end": 3813.3, + "probability": 0.9709 + }, + { + "start": 3813.62, + "end": 3814.58, + "probability": 0.866 + }, + { + "start": 3815.24, + "end": 3818.74, + "probability": 0.9194 + }, + { + "start": 3818.94, + "end": 3823.66, + "probability": 0.9895 + }, + { + "start": 3824.2, + "end": 3827.12, + "probability": 0.9631 + }, + { + "start": 3827.64, + "end": 3832.52, + "probability": 0.997 + }, + { + "start": 3833.04, + "end": 3835.8, + "probability": 0.9944 + }, + { + "start": 3836.58, + "end": 3838.82, + "probability": 0.9811 + }, + { + "start": 3839.7, + "end": 3842.24, + "probability": 0.9541 + }, + { + "start": 3843.14, + "end": 3845.24, + "probability": 0.9883 + }, + { + "start": 3846.82, + "end": 3848.22, + "probability": 0.7863 + }, + { + "start": 3848.94, + "end": 3849.52, + "probability": 0.9277 + }, + { + "start": 3850.66, + "end": 3856.48, + "probability": 0.9006 + }, + { + "start": 3856.84, + "end": 3856.96, + "probability": 0.3352 + }, + { + "start": 3857.0, + "end": 3860.38, + "probability": 0.9862 + }, + { + "start": 3861.0, + "end": 3866.38, + "probability": 0.7896 + }, + { + "start": 3866.92, + "end": 3869.76, + "probability": 0.9647 + }, + { + "start": 3870.62, + "end": 3873.84, + "probability": 0.9839 + }, + { + "start": 3873.88, + "end": 3874.74, + "probability": 0.9219 + }, + { + "start": 3875.68, + "end": 3878.28, + "probability": 0.99 + }, + { + "start": 3879.06, + "end": 3883.22, + "probability": 0.9957 + }, + { + "start": 3884.1, + "end": 3885.76, + "probability": 0.6692 + }, + { + "start": 3885.78, + "end": 3888.08, + "probability": 0.9969 + }, + { + "start": 3888.5, + "end": 3890.22, + "probability": 0.9952 + }, + { + "start": 3890.32, + "end": 3894.62, + "probability": 0.9917 + }, + { + "start": 3894.62, + "end": 3901.18, + "probability": 0.9391 + }, + { + "start": 3901.66, + "end": 3903.42, + "probability": 0.8038 + }, + { + "start": 3904.36, + "end": 3911.24, + "probability": 0.9938 + }, + { + "start": 3911.8, + "end": 3917.06, + "probability": 0.9892 + }, + { + "start": 3917.74, + "end": 3920.84, + "probability": 0.9984 + }, + { + "start": 3921.42, + "end": 3923.58, + "probability": 0.9635 + }, + { + "start": 3923.94, + "end": 3925.2, + "probability": 0.989 + }, + { + "start": 3925.82, + "end": 3927.62, + "probability": 0.9886 + }, + { + "start": 3928.12, + "end": 3928.76, + "probability": 0.7465 + }, + { + "start": 3929.16, + "end": 3931.96, + "probability": 0.9831 + }, + { + "start": 3931.96, + "end": 3935.8, + "probability": 0.9706 + }, + { + "start": 3936.26, + "end": 3939.7, + "probability": 0.9927 + }, + { + "start": 3939.82, + "end": 3942.64, + "probability": 0.9811 + }, + { + "start": 3943.18, + "end": 3943.46, + "probability": 0.1536 + }, + { + "start": 3943.62, + "end": 3949.18, + "probability": 0.9644 + }, + { + "start": 3949.44, + "end": 3953.84, + "probability": 0.9827 + }, + { + "start": 3953.92, + "end": 3954.84, + "probability": 0.8833 + }, + { + "start": 3955.46, + "end": 3956.9, + "probability": 0.7925 + }, + { + "start": 3957.7, + "end": 3958.1, + "probability": 0.4806 + }, + { + "start": 3958.24, + "end": 3958.48, + "probability": 0.566 + }, + { + "start": 3958.7, + "end": 3959.8, + "probability": 0.8786 + }, + { + "start": 3960.24, + "end": 3961.27, + "probability": 0.5646 + }, + { + "start": 3962.22, + "end": 3965.02, + "probability": 0.9528 + }, + { + "start": 3965.5, + "end": 3968.64, + "probability": 0.9913 + }, + { + "start": 3969.0, + "end": 3970.44, + "probability": 0.9084 + }, + { + "start": 3970.78, + "end": 3972.42, + "probability": 0.9956 + }, + { + "start": 3972.92, + "end": 3974.28, + "probability": 0.8581 + }, + { + "start": 3974.44, + "end": 3974.8, + "probability": 0.9209 + }, + { + "start": 3974.94, + "end": 3975.5, + "probability": 0.8669 + }, + { + "start": 3976.0, + "end": 3977.15, + "probability": 0.9939 + }, + { + "start": 3977.76, + "end": 3980.34, + "probability": 0.88 + }, + { + "start": 3980.78, + "end": 3984.34, + "probability": 0.9908 + }, + { + "start": 3984.98, + "end": 3985.66, + "probability": 0.7461 + }, + { + "start": 3985.76, + "end": 3988.1, + "probability": 0.9952 + }, + { + "start": 3988.22, + "end": 3990.72, + "probability": 0.7555 + }, + { + "start": 3990.92, + "end": 3992.32, + "probability": 0.9803 + }, + { + "start": 3993.08, + "end": 3996.0, + "probability": 0.9462 + }, + { + "start": 3996.1, + "end": 3997.48, + "probability": 0.9178 + }, + { + "start": 3998.12, + "end": 3998.88, + "probability": 0.8068 + }, + { + "start": 3999.0, + "end": 4001.52, + "probability": 0.9431 + }, + { + "start": 4002.38, + "end": 4004.14, + "probability": 0.999 + }, + { + "start": 4004.56, + "end": 4005.86, + "probability": 0.8872 + }, + { + "start": 4005.98, + "end": 4006.72, + "probability": 0.6294 + }, + { + "start": 4007.16, + "end": 4009.58, + "probability": 0.7052 + }, + { + "start": 4010.26, + "end": 4011.94, + "probability": 0.9963 + }, + { + "start": 4012.06, + "end": 4012.9, + "probability": 0.7417 + }, + { + "start": 4013.34, + "end": 4014.98, + "probability": 0.6765 + }, + { + "start": 4015.2, + "end": 4016.62, + "probability": 0.918 + }, + { + "start": 4017.52, + "end": 4019.0, + "probability": 0.6533 + }, + { + "start": 4019.18, + "end": 4019.46, + "probability": 0.8015 + }, + { + "start": 4019.66, + "end": 4020.24, + "probability": 0.6087 + }, + { + "start": 4020.3, + "end": 4022.46, + "probability": 0.9972 + }, + { + "start": 4022.98, + "end": 4024.48, + "probability": 0.9585 + }, + { + "start": 4024.96, + "end": 4026.52, + "probability": 0.7507 + }, + { + "start": 4026.86, + "end": 4027.8, + "probability": 0.6222 + }, + { + "start": 4027.84, + "end": 4030.0, + "probability": 0.9502 + }, + { + "start": 4030.34, + "end": 4030.62, + "probability": 0.7623 + }, + { + "start": 4030.7, + "end": 4031.02, + "probability": 0.4363 + }, + { + "start": 4031.16, + "end": 4032.8, + "probability": 0.5132 + }, + { + "start": 4033.08, + "end": 4035.84, + "probability": 0.9733 + }, + { + "start": 4035.9, + "end": 4036.08, + "probability": 0.3196 + }, + { + "start": 4036.3, + "end": 4038.32, + "probability": 0.6082 + }, + { + "start": 4038.48, + "end": 4041.22, + "probability": 0.9701 + }, + { + "start": 4041.6, + "end": 4047.52, + "probability": 0.5628 + }, + { + "start": 4048.72, + "end": 4054.58, + "probability": 0.846 + }, + { + "start": 4055.1, + "end": 4056.26, + "probability": 0.9902 + }, + { + "start": 4056.74, + "end": 4057.88, + "probability": 0.8212 + }, + { + "start": 4058.36, + "end": 4059.34, + "probability": 0.8116 + }, + { + "start": 4059.84, + "end": 4062.92, + "probability": 0.9939 + }, + { + "start": 4062.92, + "end": 4066.68, + "probability": 0.8655 + }, + { + "start": 4067.38, + "end": 4072.22, + "probability": 0.9724 + }, + { + "start": 4072.74, + "end": 4073.78, + "probability": 0.9824 + }, + { + "start": 4074.54, + "end": 4074.94, + "probability": 0.5344 + }, + { + "start": 4075.08, + "end": 4081.18, + "probability": 0.9785 + }, + { + "start": 4081.58, + "end": 4082.32, + "probability": 0.8726 + }, + { + "start": 4082.46, + "end": 4085.24, + "probability": 0.9863 + }, + { + "start": 4085.6, + "end": 4091.4, + "probability": 0.9868 + }, + { + "start": 4091.44, + "end": 4096.7, + "probability": 0.9766 + }, + { + "start": 4096.96, + "end": 4098.25, + "probability": 0.2687 + }, + { + "start": 4098.86, + "end": 4102.8, + "probability": 0.8966 + }, + { + "start": 4103.34, + "end": 4105.14, + "probability": 0.7715 + }, + { + "start": 4106.28, + "end": 4109.16, + "probability": 0.4607 + }, + { + "start": 4109.8, + "end": 4116.8, + "probability": 0.9732 + }, + { + "start": 4117.76, + "end": 4120.02, + "probability": 0.9597 + }, + { + "start": 4120.88, + "end": 4121.54, + "probability": 0.611 + }, + { + "start": 4122.1, + "end": 4122.62, + "probability": 0.4363 + }, + { + "start": 4122.74, + "end": 4124.1, + "probability": 0.8608 + }, + { + "start": 4124.32, + "end": 4129.96, + "probability": 0.9678 + }, + { + "start": 4131.38, + "end": 4133.18, + "probability": 0.7663 + }, + { + "start": 4134.12, + "end": 4137.58, + "probability": 0.9851 + }, + { + "start": 4137.74, + "end": 4140.56, + "probability": 0.9986 + }, + { + "start": 4141.47, + "end": 4142.5, + "probability": 0.968 + }, + { + "start": 4144.36, + "end": 4145.08, + "probability": 0.6668 + }, + { + "start": 4146.42, + "end": 4151.36, + "probability": 0.9925 + }, + { + "start": 4152.16, + "end": 4153.4, + "probability": 0.9309 + }, + { + "start": 4153.92, + "end": 4156.08, + "probability": 0.9893 + }, + { + "start": 4157.6, + "end": 4160.62, + "probability": 0.8499 + }, + { + "start": 4161.84, + "end": 4163.68, + "probability": 0.9963 + }, + { + "start": 4164.64, + "end": 4168.88, + "probability": 0.9907 + }, + { + "start": 4170.0, + "end": 4172.52, + "probability": 0.9657 + }, + { + "start": 4173.38, + "end": 4174.62, + "probability": 0.9805 + }, + { + "start": 4175.24, + "end": 4178.06, + "probability": 0.9725 + }, + { + "start": 4178.84, + "end": 4181.3, + "probability": 0.8796 + }, + { + "start": 4182.24, + "end": 4184.05, + "probability": 0.9966 + }, + { + "start": 4184.68, + "end": 4185.92, + "probability": 0.7211 + }, + { + "start": 4186.94, + "end": 4187.78, + "probability": 0.9274 + }, + { + "start": 4188.2, + "end": 4194.64, + "probability": 0.9979 + }, + { + "start": 4195.16, + "end": 4196.28, + "probability": 0.6027 + }, + { + "start": 4197.18, + "end": 4200.56, + "probability": 0.9858 + }, + { + "start": 4201.08, + "end": 4206.86, + "probability": 0.9741 + }, + { + "start": 4206.86, + "end": 4211.3, + "probability": 0.9976 + }, + { + "start": 4211.36, + "end": 4212.37, + "probability": 0.5476 + }, + { + "start": 4213.28, + "end": 4220.46, + "probability": 0.994 + }, + { + "start": 4221.5, + "end": 4222.2, + "probability": 0.9771 + }, + { + "start": 4225.08, + "end": 4229.6, + "probability": 0.9892 + }, + { + "start": 4229.6, + "end": 4235.18, + "probability": 0.9925 + }, + { + "start": 4237.08, + "end": 4237.68, + "probability": 0.6209 + }, + { + "start": 4238.2, + "end": 4240.22, + "probability": 0.9822 + }, + { + "start": 4241.24, + "end": 4244.06, + "probability": 0.9805 + }, + { + "start": 4244.94, + "end": 4246.86, + "probability": 0.9306 + }, + { + "start": 4247.22, + "end": 4247.4, + "probability": 0.6767 + }, + { + "start": 4247.54, + "end": 4247.84, + "probability": 0.4345 + }, + { + "start": 4247.96, + "end": 4252.54, + "probability": 0.8972 + }, + { + "start": 4252.62, + "end": 4253.4, + "probability": 0.6449 + }, + { + "start": 4253.72, + "end": 4255.68, + "probability": 0.9085 + }, + { + "start": 4256.12, + "end": 4258.81, + "probability": 0.979 + }, + { + "start": 4259.31, + "end": 4263.17, + "probability": 0.9761 + }, + { + "start": 4263.81, + "end": 4266.01, + "probability": 0.8431 + }, + { + "start": 4266.13, + "end": 4267.23, + "probability": 0.998 + }, + { + "start": 4267.75, + "end": 4270.49, + "probability": 0.875 + }, + { + "start": 4270.51, + "end": 4271.81, + "probability": 0.6973 + }, + { + "start": 4271.97, + "end": 4273.99, + "probability": 0.1562 + }, + { + "start": 4274.05, + "end": 4274.75, + "probability": 0.7572 + }, + { + "start": 4275.11, + "end": 4275.63, + "probability": 0.8624 + }, + { + "start": 4275.65, + "end": 4276.75, + "probability": 0.9751 + }, + { + "start": 4277.35, + "end": 4279.55, + "probability": 0.8921 + }, + { + "start": 4280.27, + "end": 4280.27, + "probability": 0.5571 + }, + { + "start": 4280.31, + "end": 4281.43, + "probability": 0.4792 + }, + { + "start": 4281.43, + "end": 4283.85, + "probability": 0.5051 + }, + { + "start": 4283.91, + "end": 4288.15, + "probability": 0.9546 + }, + { + "start": 4288.37, + "end": 4289.71, + "probability": 0.9958 + }, + { + "start": 4290.33, + "end": 4291.89, + "probability": 0.9248 + }, + { + "start": 4292.07, + "end": 4293.67, + "probability": 0.757 + }, + { + "start": 4294.09, + "end": 4296.41, + "probability": 0.9937 + }, + { + "start": 4296.93, + "end": 4301.51, + "probability": 0.9755 + }, + { + "start": 4302.11, + "end": 4302.37, + "probability": 0.5582 + }, + { + "start": 4302.49, + "end": 4304.77, + "probability": 0.8836 + }, + { + "start": 4305.13, + "end": 4307.85, + "probability": 0.7829 + }, + { + "start": 4308.29, + "end": 4309.39, + "probability": 0.4579 + }, + { + "start": 4309.99, + "end": 4313.69, + "probability": 0.9839 + }, + { + "start": 4313.69, + "end": 4314.35, + "probability": 0.4939 + }, + { + "start": 4314.35, + "end": 4314.87, + "probability": 0.4082 + }, + { + "start": 4314.89, + "end": 4315.45, + "probability": 0.5335 + }, + { + "start": 4315.45, + "end": 4315.91, + "probability": 0.6744 + }, + { + "start": 4316.31, + "end": 4316.95, + "probability": 0.6518 + }, + { + "start": 4333.47, + "end": 4335.47, + "probability": 0.238 + }, + { + "start": 4336.01, + "end": 4336.01, + "probability": 0.1187 + }, + { + "start": 4336.01, + "end": 4336.99, + "probability": 0.2765 + }, + { + "start": 4338.32, + "end": 4342.24, + "probability": 0.1233 + }, + { + "start": 4344.65, + "end": 4344.65, + "probability": 0.0 + }, + { + "start": 4351.13, + "end": 4352.73, + "probability": 0.0773 + }, + { + "start": 4352.73, + "end": 4354.21, + "probability": 0.0142 + }, + { + "start": 4355.09, + "end": 4358.65, + "probability": 0.0531 + }, + { + "start": 4358.87, + "end": 4360.43, + "probability": 0.4315 + }, + { + "start": 4360.81, + "end": 4364.43, + "probability": 0.0795 + }, + { + "start": 4366.83, + "end": 4369.09, + "probability": 0.0332 + }, + { + "start": 4379.17, + "end": 4379.97, + "probability": 0.0833 + }, + { + "start": 4381.21, + "end": 4383.07, + "probability": 0.0191 + }, + { + "start": 4383.09, + "end": 4383.11, + "probability": 0.0537 + }, + { + "start": 4383.59, + "end": 4385.49, + "probability": 0.067 + }, + { + "start": 4386.63, + "end": 4387.01, + "probability": 0.0197 + }, + { + "start": 4387.01, + "end": 4388.09, + "probability": 0.0123 + }, + { + "start": 4388.51, + "end": 4392.03, + "probability": 0.0622 + }, + { + "start": 4392.11, + "end": 4396.94, + "probability": 0.1658 + }, + { + "start": 4399.0, + "end": 4399.0, + "probability": 0.0 + }, + { + "start": 4399.0, + "end": 4399.0, + "probability": 0.0 + }, + { + "start": 4399.0, + "end": 4399.0, + "probability": 0.0 + }, + { + "start": 4399.0, + "end": 4399.0, + "probability": 0.0 + }, + { + "start": 4399.0, + "end": 4399.0, + "probability": 0.0 + }, + { + "start": 4399.0, + "end": 4399.0, + "probability": 0.0 + }, + { + "start": 4417.46, + "end": 4418.48, + "probability": 0.1684 + }, + { + "start": 4418.52, + "end": 4421.42, + "probability": 0.2832 + }, + { + "start": 4422.8, + "end": 4423.86, + "probability": 0.0341 + }, + { + "start": 4423.86, + "end": 4428.9, + "probability": 0.0308 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.0, + "end": 4531.0, + "probability": 0.0 + }, + { + "start": 4531.32, + "end": 4532.1, + "probability": 0.4257 + }, + { + "start": 4533.28, + "end": 4533.78, + "probability": 0.6375 + }, + { + "start": 4534.34, + "end": 4536.36, + "probability": 0.9656 + }, + { + "start": 4537.34, + "end": 4538.46, + "probability": 0.709 + }, + { + "start": 4539.52, + "end": 4545.74, + "probability": 0.9832 + }, + { + "start": 4546.36, + "end": 4548.48, + "probability": 0.9897 + }, + { + "start": 4548.6, + "end": 4550.82, + "probability": 0.916 + }, + { + "start": 4551.46, + "end": 4551.84, + "probability": 0.5643 + }, + { + "start": 4551.94, + "end": 4555.18, + "probability": 0.9148 + }, + { + "start": 4555.58, + "end": 4557.07, + "probability": 0.8554 + }, + { + "start": 4558.2, + "end": 4561.32, + "probability": 0.6986 + }, + { + "start": 4562.04, + "end": 4562.38, + "probability": 0.4596 + }, + { + "start": 4562.6, + "end": 4563.86, + "probability": 0.7648 + }, + { + "start": 4563.86, + "end": 4565.08, + "probability": 0.8845 + }, + { + "start": 4565.94, + "end": 4566.9, + "probability": 0.8672 + }, + { + "start": 4567.18, + "end": 4569.32, + "probability": 0.8347 + }, + { + "start": 4569.46, + "end": 4576.58, + "probability": 0.9015 + }, + { + "start": 4576.9, + "end": 4577.82, + "probability": 0.7454 + }, + { + "start": 4581.57, + "end": 4585.16, + "probability": 0.9952 + }, + { + "start": 4585.3, + "end": 4587.5, + "probability": 0.8072 + }, + { + "start": 4588.36, + "end": 4591.96, + "probability": 0.9049 + }, + { + "start": 4591.98, + "end": 4592.46, + "probability": 0.9299 + }, + { + "start": 4592.72, + "end": 4593.56, + "probability": 0.7163 + }, + { + "start": 4593.68, + "end": 4595.72, + "probability": 0.7129 + }, + { + "start": 4596.72, + "end": 4597.38, + "probability": 0.1004 + }, + { + "start": 4597.96, + "end": 4600.06, + "probability": 0.7622 + }, + { + "start": 4601.04, + "end": 4604.38, + "probability": 0.5336 + }, + { + "start": 4605.78, + "end": 4607.82, + "probability": 0.8291 + }, + { + "start": 4609.3, + "end": 4613.14, + "probability": 0.9802 + }, + { + "start": 4613.88, + "end": 4615.6, + "probability": 0.788 + }, + { + "start": 4616.44, + "end": 4619.72, + "probability": 0.8396 + }, + { + "start": 4620.24, + "end": 4622.52, + "probability": 0.9714 + }, + { + "start": 4623.36, + "end": 4625.04, + "probability": 0.8121 + }, + { + "start": 4626.14, + "end": 4629.68, + "probability": 0.9905 + }, + { + "start": 4629.78, + "end": 4630.78, + "probability": 0.8246 + }, + { + "start": 4631.24, + "end": 4634.94, + "probability": 0.9492 + }, + { + "start": 4635.24, + "end": 4636.04, + "probability": 0.7265 + }, + { + "start": 4636.12, + "end": 4636.74, + "probability": 0.8778 + }, + { + "start": 4637.22, + "end": 4638.06, + "probability": 0.678 + }, + { + "start": 4638.86, + "end": 4640.28, + "probability": 0.7833 + }, + { + "start": 4641.34, + "end": 4644.84, + "probability": 0.906 + }, + { + "start": 4645.46, + "end": 4647.26, + "probability": 0.7895 + }, + { + "start": 4649.98, + "end": 4650.54, + "probability": 0.6127 + }, + { + "start": 4650.54, + "end": 4651.76, + "probability": 0.8144 + }, + { + "start": 4651.96, + "end": 4658.48, + "probability": 0.9699 + }, + { + "start": 4658.54, + "end": 4660.92, + "probability": 0.6597 + }, + { + "start": 4660.92, + "end": 4663.46, + "probability": 0.985 + }, + { + "start": 4663.58, + "end": 4664.64, + "probability": 0.7268 + }, + { + "start": 4665.92, + "end": 4667.34, + "probability": 0.214 + }, + { + "start": 4667.58, + "end": 4668.7, + "probability": 0.4629 + }, + { + "start": 4670.76, + "end": 4675.66, + "probability": 0.3076 + }, + { + "start": 4676.22, + "end": 4680.06, + "probability": 0.327 + }, + { + "start": 4680.16, + "end": 4680.16, + "probability": 0.0813 + }, + { + "start": 4680.16, + "end": 4680.16, + "probability": 0.0521 + }, + { + "start": 4680.16, + "end": 4681.12, + "probability": 0.5709 + }, + { + "start": 4683.94, + "end": 4686.26, + "probability": 0.0994 + }, + { + "start": 4687.36, + "end": 4692.44, + "probability": 0.8735 + }, + { + "start": 4693.12, + "end": 4694.14, + "probability": 0.0395 + }, + { + "start": 4694.74, + "end": 4694.96, + "probability": 0.3352 + }, + { + "start": 4694.96, + "end": 4697.54, + "probability": 0.5666 + }, + { + "start": 4697.54, + "end": 4701.42, + "probability": 0.9689 + }, + { + "start": 4702.56, + "end": 4703.9, + "probability": 0.0242 + }, + { + "start": 4704.2, + "end": 4705.58, + "probability": 0.6555 + }, + { + "start": 4706.0, + "end": 4706.64, + "probability": 0.9617 + }, + { + "start": 4707.47, + "end": 4711.1, + "probability": 0.8717 + }, + { + "start": 4711.54, + "end": 4713.94, + "probability": 0.6963 + }, + { + "start": 4714.06, + "end": 4715.94, + "probability": 0.8699 + }, + { + "start": 4716.02, + "end": 4717.38, + "probability": 0.718 + }, + { + "start": 4717.6, + "end": 4719.26, + "probability": 0.9714 + }, + { + "start": 4719.28, + "end": 4720.76, + "probability": 0.7538 + }, + { + "start": 4721.18, + "end": 4723.42, + "probability": 0.9289 + }, + { + "start": 4724.0, + "end": 4728.66, + "probability": 0.7676 + }, + { + "start": 4728.72, + "end": 4729.74, + "probability": 0.9706 + }, + { + "start": 4729.74, + "end": 4734.4, + "probability": 0.7605 + }, + { + "start": 4735.18, + "end": 4738.89, + "probability": 0.0328 + }, + { + "start": 4739.58, + "end": 4739.68, + "probability": 0.0541 + }, + { + "start": 4739.68, + "end": 4740.08, + "probability": 0.6911 + }, + { + "start": 4741.2, + "end": 4747.04, + "probability": 0.9957 + }, + { + "start": 4747.04, + "end": 4751.52, + "probability": 0.9406 + }, + { + "start": 4751.68, + "end": 4755.24, + "probability": 0.8991 + }, + { + "start": 4755.56, + "end": 4756.5, + "probability": 0.7626 + }, + { + "start": 4756.64, + "end": 4758.32, + "probability": 0.6863 + }, + { + "start": 4758.64, + "end": 4760.73, + "probability": 0.8596 + }, + { + "start": 4761.42, + "end": 4767.02, + "probability": 0.9507 + }, + { + "start": 4767.02, + "end": 4770.38, + "probability": 0.9023 + }, + { + "start": 4771.08, + "end": 4774.0, + "probability": 0.9771 + }, + { + "start": 4774.16, + "end": 4775.52, + "probability": 0.9697 + }, + { + "start": 4775.88, + "end": 4778.18, + "probability": 0.9855 + }, + { + "start": 4778.22, + "end": 4780.6, + "probability": 0.9604 + }, + { + "start": 4780.82, + "end": 4781.76, + "probability": 0.7581 + }, + { + "start": 4782.1, + "end": 4784.78, + "probability": 0.9742 + }, + { + "start": 4785.48, + "end": 4790.8, + "probability": 0.9976 + }, + { + "start": 4790.8, + "end": 4796.2, + "probability": 0.6589 + }, + { + "start": 4796.72, + "end": 4800.56, + "probability": 0.9641 + }, + { + "start": 4800.88, + "end": 4803.46, + "probability": 0.853 + }, + { + "start": 4803.88, + "end": 4808.58, + "probability": 0.9834 + }, + { + "start": 4809.2, + "end": 4811.26, + "probability": 0.563 + }, + { + "start": 4817.49, + "end": 4822.5, + "probability": 0.9614 + }, + { + "start": 4822.92, + "end": 4824.94, + "probability": 0.9921 + }, + { + "start": 4824.98, + "end": 4828.46, + "probability": 0.7528 + }, + { + "start": 4828.9, + "end": 4830.36, + "probability": 0.9656 + }, + { + "start": 4830.68, + "end": 4831.66, + "probability": 0.6295 + }, + { + "start": 4831.7, + "end": 4832.36, + "probability": 0.9666 + }, + { + "start": 4832.46, + "end": 4832.62, + "probability": 0.5038 + }, + { + "start": 4832.68, + "end": 4833.08, + "probability": 0.4657 + }, + { + "start": 4833.08, + "end": 4834.38, + "probability": 0.8276 + }, + { + "start": 4834.9, + "end": 4836.12, + "probability": 0.9624 + }, + { + "start": 4836.46, + "end": 4838.94, + "probability": 0.7847 + }, + { + "start": 4839.6, + "end": 4840.44, + "probability": 0.8928 + }, + { + "start": 4843.22, + "end": 4845.94, + "probability": 0.9347 + }, + { + "start": 4846.4, + "end": 4850.12, + "probability": 0.9474 + }, + { + "start": 4850.79, + "end": 4853.46, + "probability": 0.6015 + }, + { + "start": 4854.2, + "end": 4857.34, + "probability": 0.9865 + }, + { + "start": 4858.26, + "end": 4859.38, + "probability": 0.9912 + }, + { + "start": 4861.0, + "end": 4862.1, + "probability": 0.7889 + }, + { + "start": 4864.64, + "end": 4867.76, + "probability": 0.99 + }, + { + "start": 4870.17, + "end": 4874.12, + "probability": 0.9278 + }, + { + "start": 4874.2, + "end": 4875.62, + "probability": 0.7815 + }, + { + "start": 4876.64, + "end": 4880.0, + "probability": 0.9987 + }, + { + "start": 4881.06, + "end": 4882.58, + "probability": 0.8415 + }, + { + "start": 4882.84, + "end": 4887.04, + "probability": 0.7621 + }, + { + "start": 4888.8, + "end": 4889.54, + "probability": 0.8209 + }, + { + "start": 4891.74, + "end": 4893.42, + "probability": 0.7798 + }, + { + "start": 4895.24, + "end": 4897.42, + "probability": 0.9025 + }, + { + "start": 4898.0, + "end": 4901.18, + "probability": 0.9857 + }, + { + "start": 4901.84, + "end": 4904.58, + "probability": 0.8358 + }, + { + "start": 4904.94, + "end": 4905.74, + "probability": 0.4691 + }, + { + "start": 4906.4, + "end": 4906.85, + "probability": 0.3359 + }, + { + "start": 4907.3, + "end": 4911.1, + "probability": 0.6964 + }, + { + "start": 4911.64, + "end": 4912.48, + "probability": 0.9181 + }, + { + "start": 4912.58, + "end": 4914.08, + "probability": 0.8021 + }, + { + "start": 4914.18, + "end": 4915.16, + "probability": 0.9867 + }, + { + "start": 4915.4, + "end": 4915.88, + "probability": 0.8832 + }, + { + "start": 4916.92, + "end": 4918.6, + "probability": 0.8266 + }, + { + "start": 4919.64, + "end": 4921.34, + "probability": 0.9007 + }, + { + "start": 4922.04, + "end": 4922.66, + "probability": 0.9709 + }, + { + "start": 4923.94, + "end": 4926.66, + "probability": 0.9022 + }, + { + "start": 4927.9, + "end": 4930.71, + "probability": 0.6762 + }, + { + "start": 4931.42, + "end": 4932.76, + "probability": 0.8108 + }, + { + "start": 4932.86, + "end": 4933.78, + "probability": 0.5012 + }, + { + "start": 4934.82, + "end": 4935.42, + "probability": 0.5107 + }, + { + "start": 4935.96, + "end": 4936.42, + "probability": 0.6339 + }, + { + "start": 4938.0, + "end": 4939.76, + "probability": 0.9321 + }, + { + "start": 4940.0, + "end": 4941.12, + "probability": 0.9 + }, + { + "start": 4942.12, + "end": 4943.08, + "probability": 0.97 + }, + { + "start": 4943.3, + "end": 4948.72, + "probability": 0.9614 + }, + { + "start": 4949.6, + "end": 4951.14, + "probability": 0.6137 + }, + { + "start": 4951.92, + "end": 4953.72, + "probability": 0.9279 + }, + { + "start": 4954.3, + "end": 4955.3, + "probability": 0.755 + }, + { + "start": 4957.3, + "end": 4960.3, + "probability": 0.8944 + }, + { + "start": 4960.98, + "end": 4962.14, + "probability": 0.7925 + }, + { + "start": 4962.9, + "end": 4964.06, + "probability": 0.599 + }, + { + "start": 4965.12, + "end": 4966.62, + "probability": 0.8418 + }, + { + "start": 4967.76, + "end": 4968.16, + "probability": 0.6424 + }, + { + "start": 4969.08, + "end": 4970.04, + "probability": 0.7954 + }, + { + "start": 4970.56, + "end": 4972.06, + "probability": 0.9282 + }, + { + "start": 4972.88, + "end": 4978.72, + "probability": 0.822 + }, + { + "start": 4978.78, + "end": 4979.15, + "probability": 0.9819 + }, + { + "start": 4981.14, + "end": 4986.08, + "probability": 0.8776 + }, + { + "start": 4988.1, + "end": 4989.21, + "probability": 0.8441 + }, + { + "start": 4989.82, + "end": 4996.26, + "probability": 0.7473 + }, + { + "start": 4997.8, + "end": 4999.98, + "probability": 0.9909 + }, + { + "start": 5001.06, + "end": 5003.56, + "probability": 0.9544 + }, + { + "start": 5003.7, + "end": 5004.2, + "probability": 0.9081 + }, + { + "start": 5004.34, + "end": 5005.04, + "probability": 0.8901 + }, + { + "start": 5005.18, + "end": 5005.74, + "probability": 0.8958 + }, + { + "start": 5006.88, + "end": 5009.3, + "probability": 0.6483 + }, + { + "start": 5009.76, + "end": 5010.53, + "probability": 0.8352 + }, + { + "start": 5010.9, + "end": 5011.53, + "probability": 0.9473 + }, + { + "start": 5012.82, + "end": 5014.0, + "probability": 0.7632 + }, + { + "start": 5014.86, + "end": 5015.78, + "probability": 0.9304 + }, + { + "start": 5015.88, + "end": 5016.7, + "probability": 0.9124 + }, + { + "start": 5016.86, + "end": 5018.78, + "probability": 0.9132 + }, + { + "start": 5019.84, + "end": 5021.22, + "probability": 0.9563 + }, + { + "start": 5026.12, + "end": 5028.96, + "probability": 0.5215 + }, + { + "start": 5029.0, + "end": 5029.63, + "probability": 0.3906 + }, + { + "start": 5029.94, + "end": 5032.28, + "probability": 0.9612 + }, + { + "start": 5032.84, + "end": 5034.21, + "probability": 0.7183 + }, + { + "start": 5035.04, + "end": 5035.98, + "probability": 0.6689 + }, + { + "start": 5036.82, + "end": 5038.34, + "probability": 0.7627 + }, + { + "start": 5038.52, + "end": 5041.52, + "probability": 0.0397 + }, + { + "start": 5041.52, + "end": 5042.74, + "probability": 0.5042 + }, + { + "start": 5043.94, + "end": 5046.28, + "probability": 0.5158 + }, + { + "start": 5048.55, + "end": 5049.14, + "probability": 0.8733 + }, + { + "start": 5050.12, + "end": 5053.6, + "probability": 0.9868 + }, + { + "start": 5054.56, + "end": 5059.56, + "probability": 0.9597 + }, + { + "start": 5060.18, + "end": 5061.54, + "probability": 0.9812 + }, + { + "start": 5062.24, + "end": 5065.41, + "probability": 0.8936 + }, + { + "start": 5066.3, + "end": 5068.12, + "probability": 0.8267 + }, + { + "start": 5069.66, + "end": 5071.34, + "probability": 0.9167 + }, + { + "start": 5072.7, + "end": 5074.49, + "probability": 0.9759 + }, + { + "start": 5076.54, + "end": 5079.39, + "probability": 0.9897 + }, + { + "start": 5081.54, + "end": 5084.0, + "probability": 0.9754 + }, + { + "start": 5084.82, + "end": 5086.6, + "probability": 0.9878 + }, + { + "start": 5086.98, + "end": 5088.64, + "probability": 0.8994 + }, + { + "start": 5089.14, + "end": 5092.44, + "probability": 0.9619 + }, + { + "start": 5092.64, + "end": 5094.14, + "probability": 0.7237 + }, + { + "start": 5094.42, + "end": 5094.88, + "probability": 0.3993 + }, + { + "start": 5094.96, + "end": 5096.92, + "probability": 0.5112 + }, + { + "start": 5101.6, + "end": 5102.34, + "probability": 0.3782 + }, + { + "start": 5102.38, + "end": 5106.46, + "probability": 0.964 + }, + { + "start": 5106.76, + "end": 5107.8, + "probability": 0.9978 + }, + { + "start": 5108.78, + "end": 5112.34, + "probability": 0.996 + }, + { + "start": 5113.54, + "end": 5119.4, + "probability": 0.8289 + }, + { + "start": 5119.6, + "end": 5121.44, + "probability": 0.5678 + }, + { + "start": 5121.5, + "end": 5121.88, + "probability": 0.8241 + }, + { + "start": 5121.92, + "end": 5123.5, + "probability": 0.8767 + }, + { + "start": 5124.42, + "end": 5127.74, + "probability": 0.9535 + }, + { + "start": 5129.04, + "end": 5131.56, + "probability": 0.6627 + }, + { + "start": 5132.62, + "end": 5134.13, + "probability": 0.7389 + }, + { + "start": 5135.06, + "end": 5136.96, + "probability": 0.9131 + }, + { + "start": 5137.82, + "end": 5143.18, + "probability": 0.8866 + }, + { + "start": 5143.84, + "end": 5146.82, + "probability": 0.6713 + }, + { + "start": 5155.58, + "end": 5156.06, + "probability": 0.868 + }, + { + "start": 5160.98, + "end": 5162.28, + "probability": 0.4351 + }, + { + "start": 5162.34, + "end": 5162.72, + "probability": 0.6919 + }, + { + "start": 5163.76, + "end": 5164.4, + "probability": 0.6487 + }, + { + "start": 5165.14, + "end": 5167.06, + "probability": 0.6694 + }, + { + "start": 5167.6, + "end": 5169.44, + "probability": 0.743 + }, + { + "start": 5169.58, + "end": 5172.34, + "probability": 0.9878 + }, + { + "start": 5174.14, + "end": 5177.28, + "probability": 0.9761 + }, + { + "start": 5178.0, + "end": 5179.52, + "probability": 0.9014 + }, + { + "start": 5185.76, + "end": 5187.08, + "probability": 0.5279 + }, + { + "start": 5188.06, + "end": 5191.66, + "probability": 0.9548 + }, + { + "start": 5192.44, + "end": 5194.68, + "probability": 0.8041 + }, + { + "start": 5195.6, + "end": 5198.02, + "probability": 0.8809 + }, + { + "start": 5198.2, + "end": 5198.76, + "probability": 0.3665 + }, + { + "start": 5200.76, + "end": 5200.96, + "probability": 0.7854 + }, + { + "start": 5200.96, + "end": 5202.7, + "probability": 0.6404 + }, + { + "start": 5202.7, + "end": 5204.0, + "probability": 0.8307 + }, + { + "start": 5204.18, + "end": 5205.0, + "probability": 0.7078 + }, + { + "start": 5205.58, + "end": 5207.32, + "probability": 0.6398 + }, + { + "start": 5207.5, + "end": 5208.94, + "probability": 0.9306 + }, + { + "start": 5209.84, + "end": 5211.66, + "probability": 0.9792 + }, + { + "start": 5212.92, + "end": 5214.3, + "probability": 0.2913 + }, + { + "start": 5215.36, + "end": 5221.06, + "probability": 0.9453 + }, + { + "start": 5222.06, + "end": 5222.88, + "probability": 0.3613 + }, + { + "start": 5223.04, + "end": 5225.94, + "probability": 0.7803 + }, + { + "start": 5226.36, + "end": 5227.04, + "probability": 0.842 + }, + { + "start": 5228.04, + "end": 5229.5, + "probability": 0.9929 + }, + { + "start": 5229.62, + "end": 5231.12, + "probability": 0.9989 + }, + { + "start": 5231.82, + "end": 5238.16, + "probability": 0.9894 + }, + { + "start": 5239.06, + "end": 5240.04, + "probability": 0.6699 + }, + { + "start": 5240.62, + "end": 5245.9, + "probability": 0.9965 + }, + { + "start": 5246.62, + "end": 5247.94, + "probability": 0.3535 + }, + { + "start": 5248.1, + "end": 5254.52, + "probability": 0.8938 + }, + { + "start": 5254.56, + "end": 5257.6, + "probability": 0.8697 + }, + { + "start": 5257.98, + "end": 5258.63, + "probability": 0.963 + }, + { + "start": 5259.22, + "end": 5259.71, + "probability": 0.6344 + }, + { + "start": 5260.62, + "end": 5265.86, + "probability": 0.9599 + }, + { + "start": 5266.94, + "end": 5269.7, + "probability": 0.5546 + }, + { + "start": 5270.46, + "end": 5272.0, + "probability": 0.9221 + }, + { + "start": 5272.38, + "end": 5274.3, + "probability": 0.6453 + }, + { + "start": 5275.12, + "end": 5279.24, + "probability": 0.8877 + }, + { + "start": 5279.96, + "end": 5283.2, + "probability": 0.7611 + }, + { + "start": 5283.94, + "end": 5284.44, + "probability": 0.3916 + }, + { + "start": 5284.82, + "end": 5287.16, + "probability": 0.8931 + }, + { + "start": 5287.28, + "end": 5291.89, + "probability": 0.9565 + }, + { + "start": 5292.6, + "end": 5293.08, + "probability": 0.7326 + }, + { + "start": 5293.2, + "end": 5294.42, + "probability": 0.6701 + }, + { + "start": 5294.7, + "end": 5300.72, + "probability": 0.9975 + }, + { + "start": 5301.42, + "end": 5303.46, + "probability": 0.9983 + }, + { + "start": 5303.96, + "end": 5304.7, + "probability": 0.8128 + }, + { + "start": 5305.24, + "end": 5312.46, + "probability": 0.9951 + }, + { + "start": 5312.94, + "end": 5314.28, + "probability": 0.9539 + }, + { + "start": 5314.32, + "end": 5315.98, + "probability": 0.4842 + }, + { + "start": 5316.46, + "end": 5316.94, + "probability": 0.0851 + }, + { + "start": 5316.94, + "end": 5318.12, + "probability": 0.5403 + }, + { + "start": 5318.88, + "end": 5323.44, + "probability": 0.9445 + }, + { + "start": 5324.08, + "end": 5325.98, + "probability": 0.9841 + }, + { + "start": 5326.52, + "end": 5327.36, + "probability": 0.7903 + }, + { + "start": 5327.76, + "end": 5329.12, + "probability": 0.7111 + }, + { + "start": 5329.38, + "end": 5332.14, + "probability": 0.99 + }, + { + "start": 5332.54, + "end": 5333.24, + "probability": 0.5437 + }, + { + "start": 5333.3, + "end": 5334.32, + "probability": 0.7164 + }, + { + "start": 5334.42, + "end": 5336.02, + "probability": 0.9047 + }, + { + "start": 5336.46, + "end": 5339.04, + "probability": 0.9658 + }, + { + "start": 5339.9, + "end": 5344.58, + "probability": 0.8813 + }, + { + "start": 5345.56, + "end": 5349.32, + "probability": 0.9562 + }, + { + "start": 5349.9, + "end": 5350.32, + "probability": 0.4402 + }, + { + "start": 5350.78, + "end": 5357.78, + "probability": 0.9307 + }, + { + "start": 5358.3, + "end": 5361.0, + "probability": 0.9956 + }, + { + "start": 5361.44, + "end": 5363.68, + "probability": 0.9895 + }, + { + "start": 5364.06, + "end": 5366.26, + "probability": 0.9937 + }, + { + "start": 5366.66, + "end": 5368.94, + "probability": 0.9797 + }, + { + "start": 5369.06, + "end": 5372.52, + "probability": 0.9924 + }, + { + "start": 5372.66, + "end": 5373.56, + "probability": 0.8189 + }, + { + "start": 5373.82, + "end": 5377.9, + "probability": 0.8794 + }, + { + "start": 5378.14, + "end": 5378.44, + "probability": 0.68 + }, + { + "start": 5378.5, + "end": 5380.1, + "probability": 0.5694 + }, + { + "start": 5380.6, + "end": 5382.78, + "probability": 0.6789 + }, + { + "start": 5390.94, + "end": 5390.94, + "probability": 0.2404 + }, + { + "start": 5390.94, + "end": 5393.2, + "probability": 0.9436 + }, + { + "start": 5393.32, + "end": 5395.0, + "probability": 0.9814 + }, + { + "start": 5398.5, + "end": 5399.2, + "probability": 0.6652 + }, + { + "start": 5400.54, + "end": 5404.18, + "probability": 0.9885 + }, + { + "start": 5404.28, + "end": 5405.74, + "probability": 0.7502 + }, + { + "start": 5406.46, + "end": 5408.14, + "probability": 0.9275 + }, + { + "start": 5408.26, + "end": 5411.04, + "probability": 0.9694 + }, + { + "start": 5412.52, + "end": 5414.58, + "probability": 0.9957 + }, + { + "start": 5415.12, + "end": 5417.58, + "probability": 0.5629 + }, + { + "start": 5418.22, + "end": 5419.5, + "probability": 0.7935 + }, + { + "start": 5420.28, + "end": 5421.64, + "probability": 0.9934 + }, + { + "start": 5421.8, + "end": 5424.66, + "probability": 0.7515 + }, + { + "start": 5424.78, + "end": 5424.94, + "probability": 0.6183 + }, + { + "start": 5425.08, + "end": 5426.9, + "probability": 0.9315 + }, + { + "start": 5427.48, + "end": 5431.68, + "probability": 0.8057 + }, + { + "start": 5432.16, + "end": 5436.62, + "probability": 0.9894 + }, + { + "start": 5437.3, + "end": 5440.0, + "probability": 0.9686 + }, + { + "start": 5441.02, + "end": 5441.26, + "probability": 0.0376 + }, + { + "start": 5441.72, + "end": 5443.76, + "probability": 0.9892 + }, + { + "start": 5444.4, + "end": 5447.83, + "probability": 0.9922 + }, + { + "start": 5448.02, + "end": 5448.88, + "probability": 0.5424 + }, + { + "start": 5448.9, + "end": 5451.62, + "probability": 0.9021 + }, + { + "start": 5452.44, + "end": 5454.1, + "probability": 0.5587 + }, + { + "start": 5454.2, + "end": 5457.24, + "probability": 0.959 + }, + { + "start": 5457.28, + "end": 5457.32, + "probability": 0.4925 + }, + { + "start": 5457.32, + "end": 5459.24, + "probability": 0.6819 + }, + { + "start": 5459.48, + "end": 5460.6, + "probability": 0.3102 + }, + { + "start": 5460.6, + "end": 5462.42, + "probability": 0.9941 + }, + { + "start": 5462.54, + "end": 5463.28, + "probability": 0.9714 + }, + { + "start": 5463.54, + "end": 5467.38, + "probability": 0.827 + }, + { + "start": 5467.72, + "end": 5469.36, + "probability": 0.9933 + }, + { + "start": 5469.86, + "end": 5471.26, + "probability": 0.9969 + }, + { + "start": 5471.8, + "end": 5473.4, + "probability": 0.9855 + }, + { + "start": 5474.24, + "end": 5477.66, + "probability": 0.9712 + }, + { + "start": 5478.44, + "end": 5482.3, + "probability": 0.9927 + }, + { + "start": 5482.88, + "end": 5483.14, + "probability": 0.428 + }, + { + "start": 5483.22, + "end": 5484.24, + "probability": 0.9187 + }, + { + "start": 5484.6, + "end": 5488.52, + "probability": 0.9521 + }, + { + "start": 5489.16, + "end": 5491.5, + "probability": 0.984 + }, + { + "start": 5492.28, + "end": 5492.88, + "probability": 0.6578 + }, + { + "start": 5493.0, + "end": 5496.8, + "probability": 0.9789 + }, + { + "start": 5497.2, + "end": 5501.04, + "probability": 0.9971 + }, + { + "start": 5502.94, + "end": 5503.42, + "probability": 0.5234 + }, + { + "start": 5503.5, + "end": 5505.88, + "probability": 0.9633 + }, + { + "start": 5506.38, + "end": 5506.96, + "probability": 0.7435 + }, + { + "start": 5507.14, + "end": 5507.64, + "probability": 0.9565 + }, + { + "start": 5507.98, + "end": 5508.74, + "probability": 0.8352 + }, + { + "start": 5509.44, + "end": 5513.04, + "probability": 0.9359 + }, + { + "start": 5513.52, + "end": 5514.86, + "probability": 0.9355 + }, + { + "start": 5515.24, + "end": 5516.48, + "probability": 0.6917 + }, + { + "start": 5517.64, + "end": 5518.66, + "probability": 0.5066 + }, + { + "start": 5518.82, + "end": 5521.24, + "probability": 0.7135 + }, + { + "start": 5521.32, + "end": 5523.14, + "probability": 0.8481 + }, + { + "start": 5523.44, + "end": 5525.9, + "probability": 0.9712 + }, + { + "start": 5526.48, + "end": 5528.84, + "probability": 0.9946 + }, + { + "start": 5529.32, + "end": 5539.66, + "probability": 0.9715 + }, + { + "start": 5540.2, + "end": 5541.44, + "probability": 0.2789 + }, + { + "start": 5541.82, + "end": 5544.22, + "probability": 0.7654 + }, + { + "start": 5545.04, + "end": 5548.5, + "probability": 0.994 + }, + { + "start": 5548.62, + "end": 5551.3, + "probability": 0.8413 + }, + { + "start": 5551.44, + "end": 5554.46, + "probability": 0.5166 + }, + { + "start": 5554.54, + "end": 5555.16, + "probability": 0.5894 + }, + { + "start": 5555.28, + "end": 5556.14, + "probability": 0.4792 + }, + { + "start": 5556.14, + "end": 5558.38, + "probability": 0.726 + }, + { + "start": 5580.46, + "end": 5581.64, + "probability": 0.1048 + }, + { + "start": 5581.64, + "end": 5585.94, + "probability": 0.243 + }, + { + "start": 5586.34, + "end": 5588.8, + "probability": 0.7368 + }, + { + "start": 5589.62, + "end": 5592.1, + "probability": 0.0631 + }, + { + "start": 5594.16, + "end": 5596.68, + "probability": 0.3663 + }, + { + "start": 5599.48, + "end": 5601.58, + "probability": 0.0183 + }, + { + "start": 5603.33, + "end": 5603.92, + "probability": 0.026 + }, + { + "start": 5603.92, + "end": 5605.22, + "probability": 0.0467 + }, + { + "start": 5613.36, + "end": 5614.34, + "probability": 0.2743 + }, + { + "start": 5618.65, + "end": 5620.62, + "probability": 0.0154 + }, + { + "start": 5620.88, + "end": 5623.36, + "probability": 0.0778 + }, + { + "start": 5623.36, + "end": 5627.52, + "probability": 0.0584 + }, + { + "start": 5627.52, + "end": 5627.52, + "probability": 0.0611 + }, + { + "start": 5628.23, + "end": 5630.8, + "probability": 0.4441 + }, + { + "start": 5631.44, + "end": 5631.62, + "probability": 0.1227 + }, + { + "start": 5631.62, + "end": 5631.62, + "probability": 0.2907 + }, + { + "start": 5631.62, + "end": 5632.0, + "probability": 0.0339 + }, + { + "start": 5632.06, + "end": 5632.42, + "probability": 0.072 + }, + { + "start": 5632.96, + "end": 5634.76, + "probability": 0.0185 + }, + { + "start": 5635.52, + "end": 5635.8, + "probability": 0.031 + }, + { + "start": 5635.8, + "end": 5635.8, + "probability": 0.0872 + }, + { + "start": 5635.8, + "end": 5635.8, + "probability": 0.2844 + }, + { + "start": 5635.8, + "end": 5635.8, + "probability": 0.2404 + }, + { + "start": 5635.8, + "end": 5639.14, + "probability": 0.6353 + }, + { + "start": 5639.14, + "end": 5642.5, + "probability": 0.9206 + }, + { + "start": 5642.5, + "end": 5646.42, + "probability": 0.7555 + }, + { + "start": 5660.04, + "end": 5662.54, + "probability": 0.7797 + }, + { + "start": 5665.12, + "end": 5666.4, + "probability": 0.8841 + }, + { + "start": 5668.1, + "end": 5670.82, + "probability": 0.9794 + }, + { + "start": 5671.8, + "end": 5674.37, + "probability": 0.9949 + }, + { + "start": 5675.18, + "end": 5678.76, + "probability": 0.9852 + }, + { + "start": 5679.68, + "end": 5683.24, + "probability": 0.968 + }, + { + "start": 5683.6, + "end": 5686.12, + "probability": 0.993 + }, + { + "start": 5690.53, + "end": 5693.68, + "probability": 0.9948 + }, + { + "start": 5694.5, + "end": 5698.44, + "probability": 0.9761 + }, + { + "start": 5698.44, + "end": 5702.66, + "probability": 0.7772 + }, + { + "start": 5704.0, + "end": 5706.1, + "probability": 0.772 + }, + { + "start": 5706.74, + "end": 5707.24, + "probability": 0.8486 + }, + { + "start": 5707.32, + "end": 5708.42, + "probability": 0.8458 + }, + { + "start": 5708.86, + "end": 5711.52, + "probability": 0.9832 + }, + { + "start": 5711.88, + "end": 5713.2, + "probability": 0.9831 + }, + { + "start": 5713.4, + "end": 5714.62, + "probability": 0.9919 + }, + { + "start": 5715.04, + "end": 5718.54, + "probability": 0.9194 + }, + { + "start": 5719.52, + "end": 5720.06, + "probability": 0.6289 + }, + { + "start": 5720.66, + "end": 5721.79, + "probability": 0.8401 + }, + { + "start": 5723.08, + "end": 5724.62, + "probability": 0.9393 + }, + { + "start": 5725.44, + "end": 5726.16, + "probability": 0.9886 + }, + { + "start": 5726.74, + "end": 5729.5, + "probability": 0.8826 + }, + { + "start": 5729.72, + "end": 5730.88, + "probability": 0.7092 + }, + { + "start": 5731.42, + "end": 5732.96, + "probability": 0.5427 + }, + { + "start": 5733.96, + "end": 5735.27, + "probability": 0.754 + }, + { + "start": 5735.52, + "end": 5737.0, + "probability": 0.9242 + }, + { + "start": 5737.1, + "end": 5740.06, + "probability": 0.9484 + }, + { + "start": 5740.14, + "end": 5742.4, + "probability": 0.8992 + }, + { + "start": 5743.5, + "end": 5746.56, + "probability": 0.9073 + }, + { + "start": 5746.76, + "end": 5747.68, + "probability": 0.6953 + }, + { + "start": 5747.82, + "end": 5748.92, + "probability": 0.8655 + }, + { + "start": 5749.2, + "end": 5752.22, + "probability": 0.913 + }, + { + "start": 5752.74, + "end": 5756.06, + "probability": 0.9939 + }, + { + "start": 5756.66, + "end": 5761.34, + "probability": 0.9945 + }, + { + "start": 5761.38, + "end": 5762.8, + "probability": 0.7255 + }, + { + "start": 5763.46, + "end": 5765.7, + "probability": 0.9523 + }, + { + "start": 5765.88, + "end": 5767.22, + "probability": 0.9262 + }, + { + "start": 5767.78, + "end": 5770.66, + "probability": 0.9836 + }, + { + "start": 5771.42, + "end": 5772.05, + "probability": 0.9082 + }, + { + "start": 5772.92, + "end": 5777.86, + "probability": 0.9533 + }, + { + "start": 5778.72, + "end": 5780.26, + "probability": 0.5379 + }, + { + "start": 5780.9, + "end": 5786.96, + "probability": 0.9735 + }, + { + "start": 5788.48, + "end": 5796.86, + "probability": 0.972 + }, + { + "start": 5797.56, + "end": 5801.18, + "probability": 0.8376 + }, + { + "start": 5801.9, + "end": 5803.82, + "probability": 0.9673 + }, + { + "start": 5804.36, + "end": 5804.46, + "probability": 0.6936 + }, + { + "start": 5804.52, + "end": 5807.88, + "probability": 0.9878 + }, + { + "start": 5808.3, + "end": 5810.08, + "probability": 0.9162 + }, + { + "start": 5810.62, + "end": 5814.78, + "probability": 0.8963 + }, + { + "start": 5815.76, + "end": 5818.58, + "probability": 0.824 + }, + { + "start": 5819.56, + "end": 5822.68, + "probability": 0.7913 + }, + { + "start": 5823.68, + "end": 5823.96, + "probability": 0.4152 + }, + { + "start": 5824.6, + "end": 5826.8, + "probability": 0.9901 + }, + { + "start": 5826.94, + "end": 5827.72, + "probability": 0.4396 + }, + { + "start": 5828.14, + "end": 5829.44, + "probability": 0.8059 + }, + { + "start": 5829.52, + "end": 5831.64, + "probability": 0.5935 + }, + { + "start": 5831.9, + "end": 5833.3, + "probability": 0.6487 + }, + { + "start": 5833.52, + "end": 5834.1, + "probability": 0.8614 + }, + { + "start": 5834.34, + "end": 5835.84, + "probability": 0.9132 + }, + { + "start": 5836.88, + "end": 5841.7, + "probability": 0.9447 + }, + { + "start": 5841.7, + "end": 5846.18, + "probability": 0.7681 + }, + { + "start": 5846.3, + "end": 5849.94, + "probability": 0.9982 + }, + { + "start": 5850.48, + "end": 5851.8, + "probability": 0.6359 + }, + { + "start": 5851.82, + "end": 5855.36, + "probability": 0.9943 + }, + { + "start": 5858.4, + "end": 5862.02, + "probability": 0.8185 + }, + { + "start": 5863.1, + "end": 5864.34, + "probability": 0.686 + }, + { + "start": 5864.48, + "end": 5868.06, + "probability": 0.9937 + }, + { + "start": 5869.12, + "end": 5875.12, + "probability": 0.989 + }, + { + "start": 5875.88, + "end": 5878.28, + "probability": 0.9629 + }, + { + "start": 5878.76, + "end": 5882.88, + "probability": 0.9649 + }, + { + "start": 5883.42, + "end": 5885.76, + "probability": 0.9465 + }, + { + "start": 5885.76, + "end": 5887.82, + "probability": 0.992 + }, + { + "start": 5889.0, + "end": 5890.74, + "probability": 0.9565 + }, + { + "start": 5891.12, + "end": 5891.38, + "probability": 0.6684 + }, + { + "start": 5891.96, + "end": 5896.1, + "probability": 0.9918 + }, + { + "start": 5896.7, + "end": 5897.12, + "probability": 0.5312 + }, + { + "start": 5897.94, + "end": 5899.84, + "probability": 0.991 + }, + { + "start": 5900.7, + "end": 5903.18, + "probability": 0.9591 + }, + { + "start": 5903.32, + "end": 5903.42, + "probability": 0.5771 + }, + { + "start": 5903.72, + "end": 5905.24, + "probability": 0.9677 + }, + { + "start": 5905.8, + "end": 5907.96, + "probability": 0.9846 + }, + { + "start": 5908.08, + "end": 5908.86, + "probability": 0.8166 + }, + { + "start": 5910.6, + "end": 5912.32, + "probability": 0.9627 + }, + { + "start": 5912.86, + "end": 5917.56, + "probability": 0.9958 + }, + { + "start": 5918.5, + "end": 5922.56, + "probability": 0.6968 + }, + { + "start": 5923.1, + "end": 5927.22, + "probability": 0.9451 + }, + { + "start": 5928.0, + "end": 5930.56, + "probability": 0.9671 + }, + { + "start": 5930.94, + "end": 5931.5, + "probability": 0.8164 + }, + { + "start": 5932.02, + "end": 5938.36, + "probability": 0.9922 + }, + { + "start": 5938.5, + "end": 5939.8, + "probability": 0.9718 + }, + { + "start": 5939.94, + "end": 5943.18, + "probability": 0.6538 + }, + { + "start": 5943.18, + "end": 5945.66, + "probability": 0.8901 + }, + { + "start": 5946.08, + "end": 5946.46, + "probability": 0.7065 + }, + { + "start": 5946.58, + "end": 5951.04, + "probability": 0.9972 + }, + { + "start": 5951.12, + "end": 5952.97, + "probability": 0.9869 + }, + { + "start": 5953.26, + "end": 5954.56, + "probability": 0.5547 + }, + { + "start": 5955.22, + "end": 5957.94, + "probability": 0.8654 + }, + { + "start": 5958.04, + "end": 5958.26, + "probability": 0.7377 + }, + { + "start": 5958.36, + "end": 5960.48, + "probability": 0.9445 + }, + { + "start": 5960.62, + "end": 5962.94, + "probability": 0.6778 + }, + { + "start": 5963.88, + "end": 5966.12, + "probability": 0.9895 + }, + { + "start": 5966.38, + "end": 5966.64, + "probability": 0.7584 + }, + { + "start": 5966.86, + "end": 5967.46, + "probability": 0.7411 + }, + { + "start": 5967.82, + "end": 5972.46, + "probability": 0.7446 + }, + { + "start": 5974.52, + "end": 5974.86, + "probability": 0.6853 + }, + { + "start": 5974.96, + "end": 5975.28, + "probability": 0.6239 + }, + { + "start": 5975.74, + "end": 5978.42, + "probability": 0.4208 + }, + { + "start": 5978.52, + "end": 5979.92, + "probability": 0.801 + }, + { + "start": 5980.38, + "end": 5981.5, + "probability": 0.4453 + }, + { + "start": 5981.54, + "end": 5982.5, + "probability": 0.7021 + }, + { + "start": 5983.2, + "end": 5985.18, + "probability": 0.7915 + }, + { + "start": 5985.86, + "end": 5990.22, + "probability": 0.9522 + }, + { + "start": 5992.04, + "end": 5992.54, + "probability": 0.33 + }, + { + "start": 6001.26, + "end": 6002.36, + "probability": 0.3697 + }, + { + "start": 6003.4, + "end": 6007.58, + "probability": 0.6578 + }, + { + "start": 6008.86, + "end": 6011.98, + "probability": 0.9652 + }, + { + "start": 6012.46, + "end": 6013.8, + "probability": 0.8711 + }, + { + "start": 6014.4, + "end": 6020.6, + "probability": 0.7834 + }, + { + "start": 6020.8, + "end": 6024.3, + "probability": 0.9625 + }, + { + "start": 6024.94, + "end": 6028.4, + "probability": 0.7913 + }, + { + "start": 6028.92, + "end": 6030.74, + "probability": 0.9917 + }, + { + "start": 6030.96, + "end": 6034.86, + "probability": 0.9947 + }, + { + "start": 6035.48, + "end": 6036.78, + "probability": 0.988 + }, + { + "start": 6037.46, + "end": 6037.7, + "probability": 0.505 + }, + { + "start": 6037.7, + "end": 6037.82, + "probability": 0.3831 + }, + { + "start": 6037.9, + "end": 6038.6, + "probability": 0.7916 + }, + { + "start": 6038.72, + "end": 6039.7, + "probability": 0.5626 + }, + { + "start": 6039.92, + "end": 6041.7, + "probability": 0.8459 + }, + { + "start": 6041.7, + "end": 6050.84, + "probability": 0.9459 + }, + { + "start": 6053.64, + "end": 6056.32, + "probability": 0.0857 + }, + { + "start": 6056.86, + "end": 6057.54, + "probability": 0.7341 + }, + { + "start": 6057.58, + "end": 6058.54, + "probability": 0.6046 + }, + { + "start": 6058.6, + "end": 6060.98, + "probability": 0.6847 + }, + { + "start": 6061.06, + "end": 6062.28, + "probability": 0.4681 + }, + { + "start": 6062.4, + "end": 6063.46, + "probability": 0.4833 + }, + { + "start": 6063.5, + "end": 6065.23, + "probability": 0.8364 + }, + { + "start": 6065.78, + "end": 6066.54, + "probability": 0.4032 + }, + { + "start": 6066.72, + "end": 6070.14, + "probability": 0.6977 + }, + { + "start": 6070.36, + "end": 6076.02, + "probability": 0.993 + }, + { + "start": 6076.18, + "end": 6076.59, + "probability": 0.9506 + }, + { + "start": 6077.5, + "end": 6080.94, + "probability": 0.8914 + }, + { + "start": 6081.82, + "end": 6082.92, + "probability": 0.6564 + }, + { + "start": 6087.24, + "end": 6089.58, + "probability": 0.6688 + }, + { + "start": 6090.2, + "end": 6093.64, + "probability": 0.9038 + }, + { + "start": 6093.8, + "end": 6095.32, + "probability": 0.6374 + }, + { + "start": 6096.02, + "end": 6097.86, + "probability": 0.6068 + }, + { + "start": 6098.38, + "end": 6099.3, + "probability": 0.4648 + }, + { + "start": 6099.88, + "end": 6100.18, + "probability": 0.6633 + }, + { + "start": 6100.34, + "end": 6104.42, + "probability": 0.955 + }, + { + "start": 6105.46, + "end": 6110.8, + "probability": 0.9927 + }, + { + "start": 6111.36, + "end": 6113.56, + "probability": 0.8655 + }, + { + "start": 6114.06, + "end": 6120.08, + "probability": 0.9805 + }, + { + "start": 6120.18, + "end": 6122.34, + "probability": 0.978 + }, + { + "start": 6122.94, + "end": 6127.74, + "probability": 0.9988 + }, + { + "start": 6127.94, + "end": 6130.44, + "probability": 0.999 + }, + { + "start": 6130.84, + "end": 6133.17, + "probability": 0.9816 + }, + { + "start": 6134.18, + "end": 6137.76, + "probability": 0.925 + }, + { + "start": 6138.46, + "end": 6139.58, + "probability": 0.8023 + }, + { + "start": 6139.78, + "end": 6142.1, + "probability": 0.9291 + }, + { + "start": 6142.58, + "end": 6143.88, + "probability": 0.9938 + }, + { + "start": 6144.06, + "end": 6145.74, + "probability": 0.9913 + }, + { + "start": 6146.34, + "end": 6147.72, + "probability": 0.9436 + }, + { + "start": 6147.78, + "end": 6148.98, + "probability": 0.7372 + }, + { + "start": 6149.38, + "end": 6151.84, + "probability": 0.981 + }, + { + "start": 6152.3, + "end": 6153.22, + "probability": 0.9384 + }, + { + "start": 6153.34, + "end": 6154.7, + "probability": 0.7728 + }, + { + "start": 6155.16, + "end": 6158.16, + "probability": 0.9819 + }, + { + "start": 6158.6, + "end": 6163.18, + "probability": 0.9635 + }, + { + "start": 6163.74, + "end": 6164.56, + "probability": 0.7515 + }, + { + "start": 6164.72, + "end": 6164.96, + "probability": 0.7333 + }, + { + "start": 6165.04, + "end": 6169.48, + "probability": 0.9917 + }, + { + "start": 6169.76, + "end": 6171.38, + "probability": 0.9651 + }, + { + "start": 6171.96, + "end": 6175.5, + "probability": 0.998 + }, + { + "start": 6176.12, + "end": 6178.43, + "probability": 0.7608 + }, + { + "start": 6179.2, + "end": 6182.46, + "probability": 0.8805 + }, + { + "start": 6183.1, + "end": 6184.46, + "probability": 0.9587 + }, + { + "start": 6185.0, + "end": 6187.9, + "probability": 0.9969 + }, + { + "start": 6188.08, + "end": 6191.08, + "probability": 0.9673 + }, + { + "start": 6191.88, + "end": 6196.94, + "probability": 0.9858 + }, + { + "start": 6197.48, + "end": 6202.38, + "probability": 0.9939 + }, + { + "start": 6203.14, + "end": 6204.44, + "probability": 0.9971 + }, + { + "start": 6204.96, + "end": 6205.44, + "probability": 0.7447 + }, + { + "start": 6206.42, + "end": 6207.48, + "probability": 0.696 + }, + { + "start": 6208.28, + "end": 6209.36, + "probability": 0.9331 + }, + { + "start": 6210.44, + "end": 6212.48, + "probability": 0.7719 + }, + { + "start": 6217.12, + "end": 6221.54, + "probability": 0.9027 + }, + { + "start": 6227.3, + "end": 6228.46, + "probability": 0.6436 + }, + { + "start": 6228.64, + "end": 6231.42, + "probability": 0.8208 + }, + { + "start": 6231.48, + "end": 6234.4, + "probability": 0.7165 + }, + { + "start": 6237.1, + "end": 6240.28, + "probability": 0.9222 + }, + { + "start": 6240.86, + "end": 6242.06, + "probability": 0.9409 + }, + { + "start": 6243.48, + "end": 6244.02, + "probability": 0.848 + }, + { + "start": 6244.24, + "end": 6246.29, + "probability": 0.9956 + }, + { + "start": 6246.62, + "end": 6246.82, + "probability": 0.5945 + }, + { + "start": 6247.72, + "end": 6248.5, + "probability": 0.4838 + }, + { + "start": 6248.5, + "end": 6249.32, + "probability": 0.5868 + }, + { + "start": 6249.54, + "end": 6252.72, + "probability": 0.8562 + }, + { + "start": 6254.92, + "end": 6256.7, + "probability": 0.2054 + }, + { + "start": 6256.78, + "end": 6259.7, + "probability": 0.8164 + }, + { + "start": 6259.84, + "end": 6261.66, + "probability": 0.987 + }, + { + "start": 6262.32, + "end": 6265.36, + "probability": 0.9658 + }, + { + "start": 6266.26, + "end": 6269.24, + "probability": 0.9071 + }, + { + "start": 6271.06, + "end": 6273.8, + "probability": 0.9181 + }, + { + "start": 6275.08, + "end": 6279.72, + "probability": 0.8818 + }, + { + "start": 6280.52, + "end": 6281.8, + "probability": 0.9761 + }, + { + "start": 6284.28, + "end": 6288.12, + "probability": 0.6337 + }, + { + "start": 6289.76, + "end": 6290.42, + "probability": 0.5767 + }, + { + "start": 6290.42, + "end": 6291.02, + "probability": 0.7568 + }, + { + "start": 6291.4, + "end": 6293.1, + "probability": 0.2888 + }, + { + "start": 6293.22, + "end": 6293.78, + "probability": 0.3999 + }, + { + "start": 6293.9, + "end": 6295.6, + "probability": 0.6832 + }, + { + "start": 6296.46, + "end": 6301.92, + "probability": 0.955 + }, + { + "start": 6302.8, + "end": 6303.22, + "probability": 0.4568 + }, + { + "start": 6303.8, + "end": 6305.12, + "probability": 0.8882 + }, + { + "start": 6305.28, + "end": 6306.75, + "probability": 0.9294 + }, + { + "start": 6307.72, + "end": 6308.74, + "probability": 0.7853 + }, + { + "start": 6309.32, + "end": 6310.2, + "probability": 0.8429 + }, + { + "start": 6310.58, + "end": 6310.62, + "probability": 0.0385 + }, + { + "start": 6311.54, + "end": 6312.22, + "probability": 0.3029 + }, + { + "start": 6312.84, + "end": 6314.94, + "probability": 0.4662 + }, + { + "start": 6315.44, + "end": 6315.86, + "probability": 0.3102 + }, + { + "start": 6316.5, + "end": 6320.54, + "probability": 0.3296 + }, + { + "start": 6320.78, + "end": 6323.88, + "probability": 0.7534 + }, + { + "start": 6325.2, + "end": 6325.69, + "probability": 0.9349 + }, + { + "start": 6326.06, + "end": 6326.66, + "probability": 0.2681 + }, + { + "start": 6326.66, + "end": 6327.34, + "probability": 0.9446 + }, + { + "start": 6327.98, + "end": 6332.2, + "probability": 0.9648 + }, + { + "start": 6332.54, + "end": 6335.6, + "probability": 0.7944 + }, + { + "start": 6335.6, + "end": 6340.4, + "probability": 0.9584 + }, + { + "start": 6341.6, + "end": 6342.0, + "probability": 0.2491 + }, + { + "start": 6343.24, + "end": 6344.06, + "probability": 0.0781 + }, + { + "start": 6344.68, + "end": 6346.16, + "probability": 0.1328 + }, + { + "start": 6347.55, + "end": 6350.48, + "probability": 0.4021 + }, + { + "start": 6350.72, + "end": 6351.36, + "probability": 0.2847 + }, + { + "start": 6351.94, + "end": 6352.04, + "probability": 0.0005 + }, + { + "start": 6352.28, + "end": 6354.46, + "probability": 0.6957 + }, + { + "start": 6355.9, + "end": 6360.1, + "probability": 0.9158 + }, + { + "start": 6360.18, + "end": 6361.7, + "probability": 0.7616 + }, + { + "start": 6361.8, + "end": 6364.72, + "probability": 0.9648 + }, + { + "start": 6365.2, + "end": 6365.73, + "probability": 0.863 + }, + { + "start": 6366.22, + "end": 6369.6, + "probability": 0.4321 + }, + { + "start": 6370.18, + "end": 6373.88, + "probability": 0.9126 + }, + { + "start": 6375.72, + "end": 6376.26, + "probability": 0.7166 + }, + { + "start": 6376.5, + "end": 6376.82, + "probability": 0.373 + }, + { + "start": 6376.9, + "end": 6379.48, + "probability": 0.8491 + }, + { + "start": 6379.7, + "end": 6380.4, + "probability": 0.8443 + }, + { + "start": 6380.48, + "end": 6381.4, + "probability": 0.9247 + }, + { + "start": 6382.2, + "end": 6383.22, + "probability": 0.605 + }, + { + "start": 6383.32, + "end": 6385.3, + "probability": 0.9589 + }, + { + "start": 6385.74, + "end": 6386.06, + "probability": 0.9004 + }, + { + "start": 6386.48, + "end": 6387.06, + "probability": 0.9074 + }, + { + "start": 6387.38, + "end": 6388.68, + "probability": 0.9473 + }, + { + "start": 6389.14, + "end": 6389.98, + "probability": 0.9988 + }, + { + "start": 6390.66, + "end": 6393.52, + "probability": 0.8206 + }, + { + "start": 6393.92, + "end": 6395.44, + "probability": 0.9637 + }, + { + "start": 6396.1, + "end": 6400.3, + "probability": 0.8688 + }, + { + "start": 6401.69, + "end": 6405.62, + "probability": 0.8928 + }, + { + "start": 6406.9, + "end": 6411.08, + "probability": 0.9485 + }, + { + "start": 6411.52, + "end": 6414.76, + "probability": 0.1232 + }, + { + "start": 6415.06, + "end": 6417.2, + "probability": 0.7351 + }, + { + "start": 6417.3, + "end": 6418.08, + "probability": 0.6079 + }, + { + "start": 6418.74, + "end": 6423.7, + "probability": 0.3418 + }, + { + "start": 6424.7, + "end": 6425.58, + "probability": 0.7443 + }, + { + "start": 6425.66, + "end": 6426.46, + "probability": 0.8632 + }, + { + "start": 6426.46, + "end": 6427.06, + "probability": 0.8261 + }, + { + "start": 6427.26, + "end": 6428.96, + "probability": 0.917 + }, + { + "start": 6429.06, + "end": 6429.3, + "probability": 0.8647 + }, + { + "start": 6429.78, + "end": 6431.68, + "probability": 0.6968 + }, + { + "start": 6431.72, + "end": 6432.36, + "probability": 0.3662 + }, + { + "start": 6432.36, + "end": 6432.8, + "probability": 0.5037 + }, + { + "start": 6433.2, + "end": 6436.22, + "probability": 0.5988 + }, + { + "start": 6436.56, + "end": 6438.44, + "probability": 0.5203 + }, + { + "start": 6438.74, + "end": 6438.86, + "probability": 0.8671 + }, + { + "start": 6438.96, + "end": 6440.36, + "probability": 0.9919 + }, + { + "start": 6440.48, + "end": 6441.2, + "probability": 0.7226 + }, + { + "start": 6441.38, + "end": 6443.2, + "probability": 0.8136 + }, + { + "start": 6444.04, + "end": 6448.32, + "probability": 0.9931 + }, + { + "start": 6448.62, + "end": 6449.98, + "probability": 0.757 + }, + { + "start": 6450.72, + "end": 6455.42, + "probability": 0.8199 + }, + { + "start": 6455.48, + "end": 6458.74, + "probability": 0.975 + }, + { + "start": 6459.16, + "end": 6460.96, + "probability": 0.9043 + }, + { + "start": 6461.22, + "end": 6462.98, + "probability": 0.8058 + }, + { + "start": 6463.08, + "end": 6466.38, + "probability": 0.8535 + }, + { + "start": 6467.26, + "end": 6468.4, + "probability": 0.2917 + }, + { + "start": 6469.26, + "end": 6473.58, + "probability": 0.4549 + }, + { + "start": 6473.88, + "end": 6477.56, + "probability": 0.8779 + }, + { + "start": 6478.18, + "end": 6480.58, + "probability": 0.9888 + }, + { + "start": 6481.64, + "end": 6483.44, + "probability": 0.7852 + }, + { + "start": 6484.44, + "end": 6487.56, + "probability": 0.8966 + }, + { + "start": 6488.12, + "end": 6489.3, + "probability": 0.9869 + }, + { + "start": 6489.94, + "end": 6491.6, + "probability": 0.081 + }, + { + "start": 6491.6, + "end": 6496.94, + "probability": 0.8882 + }, + { + "start": 6497.54, + "end": 6500.46, + "probability": 0.9253 + }, + { + "start": 6500.48, + "end": 6501.06, + "probability": 0.5241 + }, + { + "start": 6501.18, + "end": 6503.06, + "probability": 0.9934 + }, + { + "start": 6503.1, + "end": 6503.84, + "probability": 0.9031 + }, + { + "start": 6504.22, + "end": 6505.7, + "probability": 0.9944 + }, + { + "start": 6506.1, + "end": 6507.62, + "probability": 0.696 + }, + { + "start": 6508.26, + "end": 6511.14, + "probability": 0.9795 + }, + { + "start": 6511.26, + "end": 6512.04, + "probability": 0.9697 + }, + { + "start": 6512.76, + "end": 6513.64, + "probability": 0.7396 + }, + { + "start": 6513.78, + "end": 6514.64, + "probability": 0.932 + }, + { + "start": 6514.78, + "end": 6515.64, + "probability": 0.7095 + }, + { + "start": 6515.74, + "end": 6519.5, + "probability": 0.8754 + }, + { + "start": 6519.56, + "end": 6521.62, + "probability": 0.9941 + }, + { + "start": 6522.34, + "end": 6525.76, + "probability": 0.9067 + }, + { + "start": 6526.4, + "end": 6529.58, + "probability": 0.981 + }, + { + "start": 6529.66, + "end": 6531.72, + "probability": 0.9358 + }, + { + "start": 6532.26, + "end": 6533.0, + "probability": 0.9768 + }, + { + "start": 6533.14, + "end": 6535.37, + "probability": 0.9604 + }, + { + "start": 6536.1, + "end": 6536.62, + "probability": 0.8427 + }, + { + "start": 6536.74, + "end": 6540.7, + "probability": 0.9446 + }, + { + "start": 6561.66, + "end": 6562.9, + "probability": 0.3489 + }, + { + "start": 6564.38, + "end": 6567.0, + "probability": 0.7369 + }, + { + "start": 6567.04, + "end": 6567.82, + "probability": 0.8838 + }, + { + "start": 6568.26, + "end": 6568.36, + "probability": 0.8147 + }, + { + "start": 6568.58, + "end": 6570.3, + "probability": 0.9614 + }, + { + "start": 6570.78, + "end": 6571.84, + "probability": 0.9432 + }, + { + "start": 6571.9, + "end": 6575.56, + "probability": 0.9509 + }, + { + "start": 6575.64, + "end": 6577.64, + "probability": 0.9629 + }, + { + "start": 6578.0, + "end": 6580.36, + "probability": 0.9596 + }, + { + "start": 6581.34, + "end": 6583.9, + "probability": 0.9794 + }, + { + "start": 6585.06, + "end": 6585.38, + "probability": 0.8766 + }, + { + "start": 6587.82, + "end": 6589.32, + "probability": 0.97 + }, + { + "start": 6589.96, + "end": 6591.08, + "probability": 0.8411 + }, + { + "start": 6592.1, + "end": 6595.72, + "probability": 0.9609 + }, + { + "start": 6596.64, + "end": 6597.6, + "probability": 0.703 + }, + { + "start": 6597.78, + "end": 6598.5, + "probability": 0.952 + }, + { + "start": 6598.82, + "end": 6602.08, + "probability": 0.9851 + }, + { + "start": 6602.1, + "end": 6603.08, + "probability": 0.7406 + }, + { + "start": 6603.78, + "end": 6606.38, + "probability": 0.776 + }, + { + "start": 6606.38, + "end": 6609.3, + "probability": 0.9836 + }, + { + "start": 6610.2, + "end": 6612.34, + "probability": 0.9941 + }, + { + "start": 6612.58, + "end": 6614.68, + "probability": 0.8428 + }, + { + "start": 6615.86, + "end": 6619.8, + "probability": 0.9622 + }, + { + "start": 6619.8, + "end": 6622.6, + "probability": 0.9942 + }, + { + "start": 6622.68, + "end": 6623.22, + "probability": 0.8608 + }, + { + "start": 6623.64, + "end": 6628.68, + "probability": 0.9735 + }, + { + "start": 6629.74, + "end": 6630.84, + "probability": 0.899 + }, + { + "start": 6630.94, + "end": 6633.18, + "probability": 0.9771 + }, + { + "start": 6633.84, + "end": 6634.58, + "probability": 0.9211 + }, + { + "start": 6634.68, + "end": 6637.06, + "probability": 0.9965 + }, + { + "start": 6638.28, + "end": 6644.36, + "probability": 0.9827 + }, + { + "start": 6644.76, + "end": 6645.94, + "probability": 0.8936 + }, + { + "start": 6646.48, + "end": 6648.66, + "probability": 0.9089 + }, + { + "start": 6649.6, + "end": 6651.52, + "probability": 0.671 + }, + { + "start": 6651.62, + "end": 6652.8, + "probability": 0.3525 + }, + { + "start": 6653.6, + "end": 6655.76, + "probability": 0.8741 + }, + { + "start": 6656.76, + "end": 6659.02, + "probability": 0.8485 + }, + { + "start": 6659.14, + "end": 6661.2, + "probability": 0.9694 + }, + { + "start": 6662.04, + "end": 6663.7, + "probability": 0.9355 + }, + { + "start": 6664.04, + "end": 6668.74, + "probability": 0.9512 + }, + { + "start": 6669.62, + "end": 6672.3, + "probability": 0.9137 + }, + { + "start": 6672.88, + "end": 6675.0, + "probability": 0.9902 + }, + { + "start": 6678.54, + "end": 6680.58, + "probability": 0.9315 + }, + { + "start": 6680.58, + "end": 6682.08, + "probability": 0.6555 + }, + { + "start": 6682.22, + "end": 6684.78, + "probability": 0.8772 + }, + { + "start": 6684.86, + "end": 6689.08, + "probability": 0.9824 + }, + { + "start": 6689.34, + "end": 6689.9, + "probability": 0.7698 + }, + { + "start": 6690.3, + "end": 6690.7, + "probability": 0.6819 + }, + { + "start": 6690.9, + "end": 6691.18, + "probability": 0.5488 + }, + { + "start": 6691.26, + "end": 6695.26, + "probability": 0.9485 + }, + { + "start": 6695.6, + "end": 6695.86, + "probability": 0.9172 + }, + { + "start": 6695.98, + "end": 6700.12, + "probability": 0.8871 + }, + { + "start": 6700.28, + "end": 6700.74, + "probability": 0.9862 + }, + { + "start": 6701.06, + "end": 6702.42, + "probability": 0.9795 + }, + { + "start": 6702.78, + "end": 6704.44, + "probability": 0.9604 + }, + { + "start": 6704.62, + "end": 6706.6, + "probability": 0.8479 + }, + { + "start": 6706.72, + "end": 6708.26, + "probability": 0.931 + }, + { + "start": 6708.82, + "end": 6709.9, + "probability": 0.8314 + }, + { + "start": 6709.98, + "end": 6712.46, + "probability": 0.9592 + }, + { + "start": 6712.52, + "end": 6714.2, + "probability": 0.9377 + }, + { + "start": 6714.6, + "end": 6716.3, + "probability": 0.9484 + }, + { + "start": 6716.62, + "end": 6717.92, + "probability": 0.8926 + }, + { + "start": 6718.12, + "end": 6718.82, + "probability": 0.7646 + }, + { + "start": 6718.82, + "end": 6718.82, + "probability": 0.3954 + }, + { + "start": 6718.82, + "end": 6720.62, + "probability": 0.8538 + }, + { + "start": 6720.62, + "end": 6721.42, + "probability": 0.4118 + }, + { + "start": 6721.6, + "end": 6722.82, + "probability": 0.8304 + }, + { + "start": 6723.0, + "end": 6724.48, + "probability": 0.9924 + }, + { + "start": 6726.34, + "end": 6730.92, + "probability": 0.8114 + }, + { + "start": 6731.76, + "end": 6734.66, + "probability": 0.8633 + }, + { + "start": 6735.04, + "end": 6737.82, + "probability": 0.8225 + }, + { + "start": 6738.22, + "end": 6739.62, + "probability": 0.9386 + }, + { + "start": 6739.8, + "end": 6742.04, + "probability": 0.9956 + }, + { + "start": 6742.58, + "end": 6746.56, + "probability": 0.9801 + }, + { + "start": 6747.58, + "end": 6750.52, + "probability": 0.9799 + }, + { + "start": 6750.88, + "end": 6752.74, + "probability": 0.9737 + }, + { + "start": 6753.24, + "end": 6753.7, + "probability": 0.7962 + }, + { + "start": 6753.86, + "end": 6755.23, + "probability": 0.7884 + }, + { + "start": 6755.4, + "end": 6756.96, + "probability": 0.4762 + }, + { + "start": 6757.42, + "end": 6757.78, + "probability": 0.0099 + }, + { + "start": 6757.78, + "end": 6757.78, + "probability": 0.3048 + }, + { + "start": 6757.78, + "end": 6758.64, + "probability": 0.5096 + }, + { + "start": 6759.04, + "end": 6761.64, + "probability": 0.86 + }, + { + "start": 6762.32, + "end": 6764.36, + "probability": 0.0457 + }, + { + "start": 6764.36, + "end": 6765.22, + "probability": 0.5547 + }, + { + "start": 6766.26, + "end": 6767.4, + "probability": 0.8163 + }, + { + "start": 6767.42, + "end": 6767.44, + "probability": 0.0877 + }, + { + "start": 6767.44, + "end": 6767.44, + "probability": 0.7629 + }, + { + "start": 6767.44, + "end": 6768.0, + "probability": 0.7836 + }, + { + "start": 6768.26, + "end": 6770.19, + "probability": 0.9375 + }, + { + "start": 6770.82, + "end": 6776.28, + "probability": 0.6301 + }, + { + "start": 6776.4, + "end": 6777.2, + "probability": 0.6165 + }, + { + "start": 6778.22, + "end": 6778.22, + "probability": 0.0487 + }, + { + "start": 6778.22, + "end": 6779.16, + "probability": 0.6566 + }, + { + "start": 6779.18, + "end": 6780.9, + "probability": 0.6916 + }, + { + "start": 6781.0, + "end": 6781.41, + "probability": 0.4684 + }, + { + "start": 6781.6, + "end": 6783.02, + "probability": 0.8613 + }, + { + "start": 6783.3, + "end": 6784.67, + "probability": 0.7162 + }, + { + "start": 6784.96, + "end": 6787.06, + "probability": 0.8486 + }, + { + "start": 6787.14, + "end": 6789.1, + "probability": 0.9655 + }, + { + "start": 6789.26, + "end": 6789.84, + "probability": 0.5557 + }, + { + "start": 6789.88, + "end": 6789.98, + "probability": 0.3777 + }, + { + "start": 6790.6, + "end": 6794.78, + "probability": 0.7725 + }, + { + "start": 6795.0, + "end": 6795.76, + "probability": 0.789 + }, + { + "start": 6796.14, + "end": 6799.58, + "probability": 0.6876 + }, + { + "start": 6800.06, + "end": 6800.97, + "probability": 0.8032 + }, + { + "start": 6801.22, + "end": 6803.18, + "probability": 0.9681 + }, + { + "start": 6803.64, + "end": 6805.16, + "probability": 0.6743 + }, + { + "start": 6805.36, + "end": 6808.46, + "probability": 0.8281 + }, + { + "start": 6808.8, + "end": 6811.08, + "probability": 0.9041 + }, + { + "start": 6811.38, + "end": 6813.26, + "probability": 0.9668 + }, + { + "start": 6813.38, + "end": 6814.66, + "probability": 0.7424 + }, + { + "start": 6815.56, + "end": 6817.26, + "probability": 0.8422 + }, + { + "start": 6817.3, + "end": 6822.6, + "probability": 0.9977 + }, + { + "start": 6822.8, + "end": 6824.72, + "probability": 0.9987 + }, + { + "start": 6824.96, + "end": 6825.18, + "probability": 0.1059 + }, + { + "start": 6825.68, + "end": 6826.46, + "probability": 0.8248 + }, + { + "start": 6826.52, + "end": 6827.72, + "probability": 0.9956 + }, + { + "start": 6827.96, + "end": 6828.7, + "probability": 0.773 + }, + { + "start": 6829.24, + "end": 6830.56, + "probability": 0.817 + }, + { + "start": 6831.7, + "end": 6833.08, + "probability": 0.8278 + }, + { + "start": 6833.44, + "end": 6836.18, + "probability": 0.9775 + }, + { + "start": 6836.72, + "end": 6839.22, + "probability": 0.9801 + }, + { + "start": 6839.22, + "end": 6842.44, + "probability": 0.9984 + }, + { + "start": 6842.9, + "end": 6843.68, + "probability": 0.6621 + }, + { + "start": 6843.74, + "end": 6847.1, + "probability": 0.8993 + }, + { + "start": 6847.52, + "end": 6848.22, + "probability": 0.7846 + }, + { + "start": 6849.04, + "end": 6849.7, + "probability": 0.7886 + }, + { + "start": 6849.82, + "end": 6850.8, + "probability": 0.8529 + }, + { + "start": 6851.5, + "end": 6853.02, + "probability": 0.7689 + }, + { + "start": 6853.12, + "end": 6855.52, + "probability": 0.5173 + }, + { + "start": 6855.62, + "end": 6855.72, + "probability": 0.3593 + }, + { + "start": 6856.5, + "end": 6858.74, + "probability": 0.8983 + }, + { + "start": 6858.92, + "end": 6861.38, + "probability": 0.7489 + }, + { + "start": 6861.38, + "end": 6864.6, + "probability": 0.7798 + }, + { + "start": 6865.4, + "end": 6867.32, + "probability": 0.7244 + }, + { + "start": 6867.96, + "end": 6870.06, + "probability": 0.9012 + }, + { + "start": 6870.28, + "end": 6871.52, + "probability": 0.991 + }, + { + "start": 6873.67, + "end": 6875.14, + "probability": 0.3214 + }, + { + "start": 6875.68, + "end": 6876.6, + "probability": 0.7888 + }, + { + "start": 6876.86, + "end": 6878.06, + "probability": 0.978 + }, + { + "start": 6878.2, + "end": 6881.24, + "probability": 0.9738 + }, + { + "start": 6881.86, + "end": 6883.62, + "probability": 0.6825 + }, + { + "start": 6883.74, + "end": 6884.52, + "probability": 0.5044 + }, + { + "start": 6884.6, + "end": 6886.82, + "probability": 0.9207 + }, + { + "start": 6887.1, + "end": 6888.32, + "probability": 0.9587 + }, + { + "start": 6888.64, + "end": 6891.12, + "probability": 0.9499 + }, + { + "start": 6891.5, + "end": 6891.94, + "probability": 0.6495 + }, + { + "start": 6891.94, + "end": 6894.42, + "probability": 0.9666 + }, + { + "start": 6894.92, + "end": 6898.02, + "probability": 0.9862 + }, + { + "start": 6898.02, + "end": 6901.62, + "probability": 0.9904 + }, + { + "start": 6903.16, + "end": 6904.48, + "probability": 0.1959 + }, + { + "start": 6905.6, + "end": 6905.72, + "probability": 0.0654 + }, + { + "start": 6905.72, + "end": 6905.72, + "probability": 0.0079 + }, + { + "start": 6905.72, + "end": 6906.77, + "probability": 0.3868 + }, + { + "start": 6907.6, + "end": 6909.62, + "probability": 0.3981 + }, + { + "start": 6909.9, + "end": 6911.94, + "probability": 0.343 + }, + { + "start": 6912.48, + "end": 6913.3, + "probability": 0.7743 + }, + { + "start": 6914.01, + "end": 6916.12, + "probability": 0.8861 + }, + { + "start": 6917.14, + "end": 6921.04, + "probability": 0.703 + }, + { + "start": 6921.34, + "end": 6923.02, + "probability": 0.6746 + }, + { + "start": 6924.66, + "end": 6931.4, + "probability": 0.9542 + }, + { + "start": 6931.8, + "end": 6932.78, + "probability": 0.7829 + }, + { + "start": 6932.82, + "end": 6933.24, + "probability": 0.8789 + }, + { + "start": 6933.28, + "end": 6934.96, + "probability": 0.9969 + }, + { + "start": 6935.14, + "end": 6938.2, + "probability": 0.8551 + }, + { + "start": 6938.72, + "end": 6940.9, + "probability": 0.9674 + }, + { + "start": 6941.32, + "end": 6942.22, + "probability": 0.778 + }, + { + "start": 6944.75, + "end": 6947.54, + "probability": 0.2859 + }, + { + "start": 6948.8, + "end": 6949.44, + "probability": 0.2496 + }, + { + "start": 6957.4, + "end": 6962.94, + "probability": 0.0938 + }, + { + "start": 6962.94, + "end": 6962.94, + "probability": 0.0188 + }, + { + "start": 6962.94, + "end": 6962.94, + "probability": 0.0318 + }, + { + "start": 6964.22, + "end": 6964.56, + "probability": 0.0191 + }, + { + "start": 6964.56, + "end": 6964.56, + "probability": 0.0575 + }, + { + "start": 6964.56, + "end": 6964.56, + "probability": 0.176 + }, + { + "start": 6964.56, + "end": 6968.56, + "probability": 0.9102 + }, + { + "start": 6968.56, + "end": 6969.42, + "probability": 0.5741 + }, + { + "start": 6969.8, + "end": 6974.24, + "probability": 0.5441 + }, + { + "start": 6974.32, + "end": 6974.92, + "probability": 0.7236 + }, + { + "start": 6975.74, + "end": 6978.4, + "probability": 0.1314 + }, + { + "start": 6978.4, + "end": 6981.7, + "probability": 0.0153 + }, + { + "start": 6983.4, + "end": 6984.12, + "probability": 0.2172 + }, + { + "start": 6989.99, + "end": 6991.31, + "probability": 0.1132 + }, + { + "start": 6991.95, + "end": 6992.75, + "probability": 0.1895 + }, + { + "start": 6992.75, + "end": 6994.6, + "probability": 0.464 + }, + { + "start": 6994.93, + "end": 7000.73, + "probability": 0.9387 + }, + { + "start": 7001.11, + "end": 7003.25, + "probability": 0.9932 + }, + { + "start": 7003.69, + "end": 7007.76, + "probability": 0.9647 + }, + { + "start": 7008.72, + "end": 7013.01, + "probability": 0.8621 + }, + { + "start": 7013.51, + "end": 7015.09, + "probability": 0.9971 + }, + { + "start": 7015.49, + "end": 7016.43, + "probability": 0.689 + }, + { + "start": 7016.83, + "end": 7019.25, + "probability": 0.9421 + }, + { + "start": 7020.95, + "end": 7024.49, + "probability": 0.9863 + }, + { + "start": 7024.97, + "end": 7025.97, + "probability": 0.5448 + }, + { + "start": 7026.05, + "end": 7028.45, + "probability": 0.9035 + }, + { + "start": 7029.03, + "end": 7029.37, + "probability": 0.942 + }, + { + "start": 7030.87, + "end": 7033.79, + "probability": 0.8707 + }, + { + "start": 7034.91, + "end": 7036.91, + "probability": 0.9038 + }, + { + "start": 7037.41, + "end": 7041.11, + "probability": 0.9332 + }, + { + "start": 7041.99, + "end": 7045.75, + "probability": 0.9816 + }, + { + "start": 7046.29, + "end": 7049.71, + "probability": 0.9922 + }, + { + "start": 7050.25, + "end": 7051.99, + "probability": 0.8318 + }, + { + "start": 7053.45, + "end": 7055.77, + "probability": 0.7489 + }, + { + "start": 7056.73, + "end": 7059.55, + "probability": 0.9208 + }, + { + "start": 7060.73, + "end": 7061.73, + "probability": 0.9559 + }, + { + "start": 7061.95, + "end": 7062.75, + "probability": 0.8683 + }, + { + "start": 7062.99, + "end": 7066.21, + "probability": 0.9626 + }, + { + "start": 7067.43, + "end": 7071.3, + "probability": 0.998 + }, + { + "start": 7071.55, + "end": 7075.77, + "probability": 0.9113 + }, + { + "start": 7076.53, + "end": 7080.37, + "probability": 0.9165 + }, + { + "start": 7081.85, + "end": 7084.85, + "probability": 0.9469 + }, + { + "start": 7085.83, + "end": 7091.15, + "probability": 0.9457 + }, + { + "start": 7091.77, + "end": 7092.69, + "probability": 0.5233 + }, + { + "start": 7093.69, + "end": 7095.97, + "probability": 0.8348 + }, + { + "start": 7096.77, + "end": 7097.65, + "probability": 0.8286 + }, + { + "start": 7098.59, + "end": 7102.45, + "probability": 0.9086 + }, + { + "start": 7103.41, + "end": 7105.99, + "probability": 0.9551 + }, + { + "start": 7106.73, + "end": 7115.67, + "probability": 0.9373 + }, + { + "start": 7116.53, + "end": 7120.75, + "probability": 0.8936 + }, + { + "start": 7122.11, + "end": 7127.93, + "probability": 0.7876 + }, + { + "start": 7127.97, + "end": 7130.07, + "probability": 0.8983 + }, + { + "start": 7130.15, + "end": 7133.73, + "probability": 0.8753 + }, + { + "start": 7134.05, + "end": 7135.73, + "probability": 0.8298 + }, + { + "start": 7136.59, + "end": 7137.41, + "probability": 0.2001 + }, + { + "start": 7138.49, + "end": 7141.25, + "probability": 0.7984 + }, + { + "start": 7141.97, + "end": 7143.29, + "probability": 0.9695 + }, + { + "start": 7144.35, + "end": 7148.07, + "probability": 0.9682 + }, + { + "start": 7148.59, + "end": 7150.95, + "probability": 0.9481 + }, + { + "start": 7151.55, + "end": 7153.37, + "probability": 0.6938 + }, + { + "start": 7153.91, + "end": 7156.29, + "probability": 0.9753 + }, + { + "start": 7156.81, + "end": 7158.73, + "probability": 0.7249 + }, + { + "start": 7159.31, + "end": 7162.29, + "probability": 0.777 + }, + { + "start": 7163.63, + "end": 7163.89, + "probability": 0.8732 + }, + { + "start": 7165.27, + "end": 7165.98, + "probability": 0.8916 + }, + { + "start": 7166.29, + "end": 7167.83, + "probability": 0.9141 + }, + { + "start": 7168.25, + "end": 7173.01, + "probability": 0.9006 + }, + { + "start": 7173.53, + "end": 7176.03, + "probability": 0.6966 + }, + { + "start": 7176.99, + "end": 7180.09, + "probability": 0.9982 + }, + { + "start": 7180.23, + "end": 7182.43, + "probability": 0.5967 + }, + { + "start": 7182.49, + "end": 7185.39, + "probability": 0.9737 + }, + { + "start": 7186.53, + "end": 7189.37, + "probability": 0.5922 + }, + { + "start": 7190.49, + "end": 7192.79, + "probability": 0.9904 + }, + { + "start": 7193.97, + "end": 7194.07, + "probability": 0.5445 + }, + { + "start": 7194.21, + "end": 7197.12, + "probability": 0.9697 + }, + { + "start": 7198.03, + "end": 7198.91, + "probability": 0.752 + }, + { + "start": 7199.57, + "end": 7201.05, + "probability": 0.8451 + }, + { + "start": 7201.57, + "end": 7201.67, + "probability": 0.7468 + }, + { + "start": 7201.97, + "end": 7202.78, + "probability": 0.4896 + }, + { + "start": 7203.09, + "end": 7206.23, + "probability": 0.9213 + }, + { + "start": 7207.21, + "end": 7208.69, + "probability": 0.9327 + }, + { + "start": 7208.89, + "end": 7209.57, + "probability": 0.9735 + }, + { + "start": 7209.95, + "end": 7211.09, + "probability": 0.9893 + }, + { + "start": 7211.45, + "end": 7211.71, + "probability": 0.68 + }, + { + "start": 7211.99, + "end": 7213.79, + "probability": 0.9902 + }, + { + "start": 7215.21, + "end": 7219.13, + "probability": 0.9792 + }, + { + "start": 7220.55, + "end": 7221.59, + "probability": 0.6168 + }, + { + "start": 7221.69, + "end": 7222.25, + "probability": 0.7102 + }, + { + "start": 7222.63, + "end": 7224.07, + "probability": 0.7843 + }, + { + "start": 7224.27, + "end": 7226.89, + "probability": 0.8084 + }, + { + "start": 7227.49, + "end": 7227.59, + "probability": 0.7265 + }, + { + "start": 7227.83, + "end": 7229.95, + "probability": 0.9 + }, + { + "start": 7230.63, + "end": 7232.77, + "probability": 0.8545 + }, + { + "start": 7233.33, + "end": 7234.11, + "probability": 0.7848 + }, + { + "start": 7234.63, + "end": 7235.57, + "probability": 0.9482 + }, + { + "start": 7235.65, + "end": 7237.16, + "probability": 0.9814 + }, + { + "start": 7237.57, + "end": 7240.17, + "probability": 0.9245 + }, + { + "start": 7240.83, + "end": 7241.39, + "probability": 0.9537 + }, + { + "start": 7242.19, + "end": 7242.97, + "probability": 0.8171 + }, + { + "start": 7243.89, + "end": 7244.41, + "probability": 0.5143 + }, + { + "start": 7244.53, + "end": 7245.22, + "probability": 0.918 + }, + { + "start": 7246.03, + "end": 7247.23, + "probability": 0.9497 + }, + { + "start": 7247.43, + "end": 7248.71, + "probability": 0.8281 + }, + { + "start": 7249.17, + "end": 7250.09, + "probability": 0.8687 + }, + { + "start": 7251.11, + "end": 7252.51, + "probability": 0.9752 + }, + { + "start": 7252.95, + "end": 7256.29, + "probability": 0.9912 + }, + { + "start": 7256.79, + "end": 7259.03, + "probability": 0.9958 + }, + { + "start": 7259.85, + "end": 7260.34, + "probability": 0.9502 + }, + { + "start": 7260.45, + "end": 7260.95, + "probability": 0.6973 + }, + { + "start": 7261.09, + "end": 7263.63, + "probability": 0.8752 + }, + { + "start": 7264.03, + "end": 7264.37, + "probability": 0.5269 + }, + { + "start": 7264.43, + "end": 7266.01, + "probability": 0.8745 + }, + { + "start": 7266.05, + "end": 7267.01, + "probability": 0.8571 + }, + { + "start": 7267.83, + "end": 7268.91, + "probability": 0.8604 + }, + { + "start": 7269.27, + "end": 7269.61, + "probability": 0.5275 + }, + { + "start": 7269.65, + "end": 7270.05, + "probability": 0.5883 + }, + { + "start": 7270.19, + "end": 7271.66, + "probability": 0.9468 + }, + { + "start": 7272.07, + "end": 7275.47, + "probability": 0.9662 + }, + { + "start": 7275.83, + "end": 7276.13, + "probability": 0.5342 + }, + { + "start": 7276.25, + "end": 7277.21, + "probability": 0.906 + }, + { + "start": 7277.89, + "end": 7281.25, + "probability": 0.7588 + }, + { + "start": 7282.61, + "end": 7285.13, + "probability": 0.9077 + }, + { + "start": 7285.67, + "end": 7286.85, + "probability": 0.9893 + }, + { + "start": 7288.41, + "end": 7292.33, + "probability": 0.8636 + }, + { + "start": 7292.69, + "end": 7294.03, + "probability": 0.9871 + }, + { + "start": 7294.07, + "end": 7294.89, + "probability": 0.6614 + }, + { + "start": 7295.75, + "end": 7296.13, + "probability": 0.541 + }, + { + "start": 7296.17, + "end": 7298.63, + "probability": 0.9962 + }, + { + "start": 7298.63, + "end": 7301.59, + "probability": 0.9723 + }, + { + "start": 7301.69, + "end": 7302.81, + "probability": 0.6799 + }, + { + "start": 7303.69, + "end": 7305.49, + "probability": 0.9907 + }, + { + "start": 7306.17, + "end": 7308.65, + "probability": 0.8062 + }, + { + "start": 7309.59, + "end": 7312.45, + "probability": 0.9895 + }, + { + "start": 7314.33, + "end": 7314.87, + "probability": 0.7347 + }, + { + "start": 7315.39, + "end": 7316.03, + "probability": 0.8201 + }, + { + "start": 7317.05, + "end": 7318.25, + "probability": 0.6594 + }, + { + "start": 7319.11, + "end": 7320.43, + "probability": 0.818 + }, + { + "start": 7321.19, + "end": 7322.55, + "probability": 0.7908 + }, + { + "start": 7323.13, + "end": 7323.81, + "probability": 0.7212 + }, + { + "start": 7323.89, + "end": 7324.83, + "probability": 0.7971 + }, + { + "start": 7324.95, + "end": 7328.11, + "probability": 0.8564 + }, + { + "start": 7328.23, + "end": 7328.59, + "probability": 0.8359 + }, + { + "start": 7329.09, + "end": 7329.75, + "probability": 0.6296 + }, + { + "start": 7329.95, + "end": 7331.53, + "probability": 0.8044 + }, + { + "start": 7332.51, + "end": 7333.89, + "probability": 0.6912 + }, + { + "start": 7334.89, + "end": 7335.49, + "probability": 0.8777 + }, + { + "start": 7336.07, + "end": 7336.7, + "probability": 0.7778 + }, + { + "start": 7337.39, + "end": 7339.47, + "probability": 0.9619 + }, + { + "start": 7339.59, + "end": 7342.81, + "probability": 0.873 + }, + { + "start": 7343.81, + "end": 7348.49, + "probability": 0.8036 + }, + { + "start": 7348.67, + "end": 7349.55, + "probability": 0.998 + }, + { + "start": 7350.55, + "end": 7352.41, + "probability": 0.9592 + }, + { + "start": 7353.61, + "end": 7358.73, + "probability": 0.731 + }, + { + "start": 7359.83, + "end": 7360.35, + "probability": 0.7452 + }, + { + "start": 7360.49, + "end": 7363.97, + "probability": 0.9907 + }, + { + "start": 7364.17, + "end": 7366.19, + "probability": 0.6773 + }, + { + "start": 7367.23, + "end": 7368.51, + "probability": 0.4794 + }, + { + "start": 7369.17, + "end": 7373.17, + "probability": 0.9836 + }, + { + "start": 7373.17, + "end": 7377.57, + "probability": 0.9951 + }, + { + "start": 7379.13, + "end": 7380.09, + "probability": 0.9875 + }, + { + "start": 7381.71, + "end": 7382.39, + "probability": 0.8736 + }, + { + "start": 7382.53, + "end": 7387.33, + "probability": 0.9975 + }, + { + "start": 7388.09, + "end": 7389.47, + "probability": 0.9839 + }, + { + "start": 7390.07, + "end": 7390.79, + "probability": 0.7333 + }, + { + "start": 7391.43, + "end": 7392.67, + "probability": 0.7886 + }, + { + "start": 7393.49, + "end": 7394.77, + "probability": 0.5791 + }, + { + "start": 7395.55, + "end": 7397.01, + "probability": 0.9048 + }, + { + "start": 7397.67, + "end": 7400.71, + "probability": 0.8227 + }, + { + "start": 7401.51, + "end": 7403.91, + "probability": 0.8967 + }, + { + "start": 7405.43, + "end": 7406.01, + "probability": 0.7491 + }, + { + "start": 7406.89, + "end": 7408.45, + "probability": 0.8293 + }, + { + "start": 7409.23, + "end": 7410.69, + "probability": 0.9379 + }, + { + "start": 7411.45, + "end": 7414.09, + "probability": 0.8696 + }, + { + "start": 7415.27, + "end": 7416.39, + "probability": 0.9639 + }, + { + "start": 7416.49, + "end": 7420.19, + "probability": 0.9755 + }, + { + "start": 7420.27, + "end": 7421.65, + "probability": 0.9473 + }, + { + "start": 7422.07, + "end": 7423.79, + "probability": 0.7952 + }, + { + "start": 7424.53, + "end": 7426.07, + "probability": 0.707 + }, + { + "start": 7426.61, + "end": 7427.35, + "probability": 0.9001 + }, + { + "start": 7427.89, + "end": 7429.07, + "probability": 0.9614 + }, + { + "start": 7429.61, + "end": 7431.39, + "probability": 0.9572 + }, + { + "start": 7432.51, + "end": 7433.31, + "probability": 0.9565 + }, + { + "start": 7433.91, + "end": 7434.73, + "probability": 0.9332 + }, + { + "start": 7435.11, + "end": 7437.57, + "probability": 0.9561 + }, + { + "start": 7437.97, + "end": 7439.05, + "probability": 0.9995 + }, + { + "start": 7439.77, + "end": 7440.19, + "probability": 0.5164 + }, + { + "start": 7440.6, + "end": 7443.03, + "probability": 0.7798 + }, + { + "start": 7443.03, + "end": 7445.25, + "probability": 0.789 + }, + { + "start": 7445.29, + "end": 7445.35, + "probability": 0.0673 + }, + { + "start": 7445.35, + "end": 7446.13, + "probability": 0.9668 + }, + { + "start": 7446.65, + "end": 7448.71, + "probability": 0.8636 + }, + { + "start": 7448.71, + "end": 7449.23, + "probability": 0.9286 + }, + { + "start": 7449.93, + "end": 7453.37, + "probability": 0.9451 + }, + { + "start": 7453.59, + "end": 7454.37, + "probability": 0.577 + }, + { + "start": 7454.83, + "end": 7454.91, + "probability": 0.2445 + }, + { + "start": 7455.05, + "end": 7458.37, + "probability": 0.9094 + }, + { + "start": 7458.81, + "end": 7460.07, + "probability": 0.9183 + }, + { + "start": 7460.49, + "end": 7462.19, + "probability": 0.9803 + }, + { + "start": 7462.63, + "end": 7463.43, + "probability": 0.7798 + }, + { + "start": 7463.55, + "end": 7464.37, + "probability": 0.3797 + }, + { + "start": 7464.81, + "end": 7466.01, + "probability": 0.9534 + }, + { + "start": 7466.17, + "end": 7468.15, + "probability": 0.5551 + }, + { + "start": 7468.45, + "end": 7470.85, + "probability": 0.924 + }, + { + "start": 7471.13, + "end": 7473.17, + "probability": 0.8768 + }, + { + "start": 7474.31, + "end": 7475.65, + "probability": 0.9427 + }, + { + "start": 7476.41, + "end": 7477.39, + "probability": 0.7484 + }, + { + "start": 7477.45, + "end": 7477.79, + "probability": 0.7087 + }, + { + "start": 7478.23, + "end": 7481.13, + "probability": 0.9302 + }, + { + "start": 7482.07, + "end": 7484.17, + "probability": 0.9554 + }, + { + "start": 7484.17, + "end": 7484.61, + "probability": 0.6461 + }, + { + "start": 7484.69, + "end": 7484.69, + "probability": 0.8133 + }, + { + "start": 7484.77, + "end": 7486.31, + "probability": 0.8875 + }, + { + "start": 7486.67, + "end": 7487.6, + "probability": 0.9668 + }, + { + "start": 7488.39, + "end": 7490.31, + "probability": 0.9976 + }, + { + "start": 7490.64, + "end": 7493.59, + "probability": 0.99 + }, + { + "start": 7493.71, + "end": 7495.73, + "probability": 0.7546 + }, + { + "start": 7495.81, + "end": 7496.57, + "probability": 0.35 + }, + { + "start": 7496.69, + "end": 7497.41, + "probability": 0.8599 + }, + { + "start": 7498.79, + "end": 7500.07, + "probability": 0.7629 + }, + { + "start": 7500.57, + "end": 7500.93, + "probability": 0.5792 + }, + { + "start": 7500.97, + "end": 7502.01, + "probability": 0.6687 + }, + { + "start": 7502.03, + "end": 7503.32, + "probability": 0.8454 + }, + { + "start": 7503.49, + "end": 7507.27, + "probability": 0.7317 + }, + { + "start": 7507.73, + "end": 7510.15, + "probability": 0.9863 + }, + { + "start": 7510.51, + "end": 7512.39, + "probability": 0.9642 + }, + { + "start": 7512.95, + "end": 7515.95, + "probability": 0.7001 + }, + { + "start": 7516.39, + "end": 7518.91, + "probability": 0.9036 + }, + { + "start": 7519.47, + "end": 7519.51, + "probability": 0.915 + }, + { + "start": 7521.05, + "end": 7521.79, + "probability": 0.4954 + }, + { + "start": 7522.51, + "end": 7523.17, + "probability": 0.7886 + }, + { + "start": 7523.73, + "end": 7524.39, + "probability": 0.9003 + }, + { + "start": 7525.07, + "end": 7526.17, + "probability": 0.845 + }, + { + "start": 7526.21, + "end": 7530.45, + "probability": 0.938 + }, + { + "start": 7530.99, + "end": 7532.41, + "probability": 0.8731 + }, + { + "start": 7532.93, + "end": 7537.67, + "probability": 0.9594 + }, + { + "start": 7538.33, + "end": 7540.81, + "probability": 0.7814 + }, + { + "start": 7541.39, + "end": 7542.09, + "probability": 0.7252 + }, + { + "start": 7542.75, + "end": 7545.45, + "probability": 0.9383 + }, + { + "start": 7545.45, + "end": 7550.41, + "probability": 0.9748 + }, + { + "start": 7550.99, + "end": 7552.41, + "probability": 0.9575 + }, + { + "start": 7553.11, + "end": 7554.17, + "probability": 0.9084 + }, + { + "start": 7554.85, + "end": 7556.89, + "probability": 0.7092 + }, + { + "start": 7557.47, + "end": 7560.03, + "probability": 0.544 + }, + { + "start": 7560.67, + "end": 7561.65, + "probability": 0.9615 + }, + { + "start": 7562.19, + "end": 7562.68, + "probability": 0.9639 + }, + { + "start": 7564.13, + "end": 7565.87, + "probability": 0.7971 + }, + { + "start": 7566.31, + "end": 7569.75, + "probability": 0.8684 + }, + { + "start": 7570.23, + "end": 7570.93, + "probability": 0.6371 + }, + { + "start": 7571.23, + "end": 7571.67, + "probability": 0.2155 + }, + { + "start": 7571.89, + "end": 7575.01, + "probability": 0.6717 + }, + { + "start": 7575.27, + "end": 7576.49, + "probability": 0.7891 + }, + { + "start": 7577.11, + "end": 7581.69, + "probability": 0.9633 + }, + { + "start": 7584.66, + "end": 7587.73, + "probability": 0.6864 + }, + { + "start": 7588.03, + "end": 7588.51, + "probability": 0.7252 + }, + { + "start": 7589.25, + "end": 7589.61, + "probability": 0.9216 + }, + { + "start": 7590.57, + "end": 7591.43, + "probability": 0.7903 + }, + { + "start": 7592.47, + "end": 7594.79, + "probability": 0.7966 + }, + { + "start": 7595.61, + "end": 7596.51, + "probability": 0.7262 + }, + { + "start": 7598.09, + "end": 7600.51, + "probability": 0.7802 + }, + { + "start": 7601.11, + "end": 7604.49, + "probability": 0.9209 + }, + { + "start": 7604.49, + "end": 7605.31, + "probability": 0.0597 + }, + { + "start": 7605.53, + "end": 7606.25, + "probability": 0.1173 + }, + { + "start": 7606.59, + "end": 7609.83, + "probability": 0.9446 + }, + { + "start": 7609.83, + "end": 7615.07, + "probability": 0.9373 + }, + { + "start": 7615.11, + "end": 7620.55, + "probability": 0.8683 + }, + { + "start": 7621.29, + "end": 7623.31, + "probability": 0.8204 + }, + { + "start": 7623.77, + "end": 7624.77, + "probability": 0.8463 + }, + { + "start": 7625.23, + "end": 7631.11, + "probability": 0.957 + }, + { + "start": 7631.87, + "end": 7633.35, + "probability": 0.9049 + }, + { + "start": 7633.47, + "end": 7634.29, + "probability": 0.9387 + }, + { + "start": 7634.45, + "end": 7635.71, + "probability": 0.9075 + }, + { + "start": 7635.77, + "end": 7636.71, + "probability": 0.9678 + }, + { + "start": 7637.29, + "end": 7637.89, + "probability": 0.7222 + }, + { + "start": 7638.67, + "end": 7639.01, + "probability": 0.9773 + }, + { + "start": 7639.47, + "end": 7640.39, + "probability": 0.9796 + }, + { + "start": 7640.85, + "end": 7642.25, + "probability": 0.8798 + }, + { + "start": 7642.31, + "end": 7644.75, + "probability": 0.9834 + }, + { + "start": 7646.2, + "end": 7649.13, + "probability": 0.9849 + }, + { + "start": 7649.71, + "end": 7653.75, + "probability": 0.9902 + }, + { + "start": 7653.97, + "end": 7654.35, + "probability": 0.9654 + }, + { + "start": 7654.95, + "end": 7657.67, + "probability": 0.9897 + }, + { + "start": 7658.23, + "end": 7660.79, + "probability": 0.9935 + }, + { + "start": 7661.33, + "end": 7662.61, + "probability": 0.9777 + }, + { + "start": 7663.17, + "end": 7663.41, + "probability": 0.946 + }, + { + "start": 7664.13, + "end": 7667.97, + "probability": 0.9897 + }, + { + "start": 7668.85, + "end": 7669.65, + "probability": 0.5318 + }, + { + "start": 7670.39, + "end": 7672.37, + "probability": 0.9633 + }, + { + "start": 7672.41, + "end": 7674.01, + "probability": 0.9765 + }, + { + "start": 7675.37, + "end": 7680.25, + "probability": 0.9919 + }, + { + "start": 7680.39, + "end": 7682.03, + "probability": 0.8424 + }, + { + "start": 7682.47, + "end": 7684.81, + "probability": 0.9976 + }, + { + "start": 7685.25, + "end": 7689.59, + "probability": 0.9887 + }, + { + "start": 7690.03, + "end": 7692.23, + "probability": 0.853 + }, + { + "start": 7693.19, + "end": 7696.83, + "probability": 0.6805 + }, + { + "start": 7697.15, + "end": 7698.19, + "probability": 0.6203 + }, + { + "start": 7698.77, + "end": 7699.87, + "probability": 0.8584 + }, + { + "start": 7700.39, + "end": 7702.65, + "probability": 0.887 + }, + { + "start": 7703.23, + "end": 7705.53, + "probability": 0.9698 + }, + { + "start": 7705.95, + "end": 7707.15, + "probability": 0.9843 + }, + { + "start": 7707.77, + "end": 7707.91, + "probability": 0.1207 + }, + { + "start": 7707.91, + "end": 7711.11, + "probability": 0.9318 + }, + { + "start": 7712.33, + "end": 7714.49, + "probability": 0.7402 + }, + { + "start": 7717.41, + "end": 7719.81, + "probability": 0.8131 + }, + { + "start": 7719.87, + "end": 7721.55, + "probability": 0.9879 + }, + { + "start": 7722.59, + "end": 7726.91, + "probability": 0.8611 + }, + { + "start": 7727.55, + "end": 7731.35, + "probability": 0.9198 + }, + { + "start": 7731.49, + "end": 7731.67, + "probability": 0.6355 + }, + { + "start": 7731.71, + "end": 7734.45, + "probability": 0.8767 + }, + { + "start": 7734.91, + "end": 7737.09, + "probability": 0.8262 + }, + { + "start": 7737.81, + "end": 7738.89, + "probability": 0.9619 + }, + { + "start": 7739.03, + "end": 7741.59, + "probability": 0.9022 + }, + { + "start": 7741.65, + "end": 7744.57, + "probability": 0.9966 + }, + { + "start": 7745.11, + "end": 7746.61, + "probability": 0.8835 + }, + { + "start": 7747.05, + "end": 7751.41, + "probability": 0.9824 + }, + { + "start": 7751.95, + "end": 7756.25, + "probability": 0.9899 + }, + { + "start": 7756.85, + "end": 7758.59, + "probability": 0.9651 + }, + { + "start": 7759.19, + "end": 7760.39, + "probability": 0.9931 + }, + { + "start": 7760.67, + "end": 7760.95, + "probability": 0.8285 + }, + { + "start": 7761.57, + "end": 7762.71, + "probability": 0.9863 + }, + { + "start": 7763.17, + "end": 7766.41, + "probability": 0.9872 + }, + { + "start": 7766.41, + "end": 7768.89, + "probability": 0.9191 + }, + { + "start": 7769.31, + "end": 7770.39, + "probability": 0.9931 + }, + { + "start": 7770.87, + "end": 7771.71, + "probability": 0.9679 + }, + { + "start": 7771.83, + "end": 7772.93, + "probability": 0.8945 + }, + { + "start": 7773.45, + "end": 7775.16, + "probability": 0.8887 + }, + { + "start": 7776.15, + "end": 7778.81, + "probability": 0.957 + }, + { + "start": 7779.49, + "end": 7780.97, + "probability": 0.5085 + }, + { + "start": 7781.51, + "end": 7784.71, + "probability": 0.9712 + }, + { + "start": 7785.27, + "end": 7788.05, + "probability": 0.9742 + }, + { + "start": 7788.19, + "end": 7792.03, + "probability": 0.9989 + }, + { + "start": 7792.21, + "end": 7792.57, + "probability": 0.7096 + }, + { + "start": 7792.85, + "end": 7795.03, + "probability": 0.9641 + }, + { + "start": 7795.61, + "end": 7796.71, + "probability": 0.7886 + }, + { + "start": 7798.95, + "end": 7803.17, + "probability": 0.9375 + }, + { + "start": 7803.71, + "end": 7804.45, + "probability": 0.7675 + }, + { + "start": 7805.61, + "end": 7806.13, + "probability": 0.1701 + }, + { + "start": 7830.69, + "end": 7833.95, + "probability": 0.5654 + }, + { + "start": 7834.57, + "end": 7837.19, + "probability": 0.86 + }, + { + "start": 7837.79, + "end": 7838.11, + "probability": 0.1314 + }, + { + "start": 7842.09, + "end": 7842.49, + "probability": 0.1929 + }, + { + "start": 7844.09, + "end": 7845.85, + "probability": 0.7007 + }, + { + "start": 7848.07, + "end": 7850.55, + "probability": 0.9393 + }, + { + "start": 7850.59, + "end": 7851.31, + "probability": 0.7773 + }, + { + "start": 7851.55, + "end": 7852.36, + "probability": 0.8203 + }, + { + "start": 7853.15, + "end": 7855.85, + "probability": 0.9913 + }, + { + "start": 7856.53, + "end": 7858.19, + "probability": 0.7486 + }, + { + "start": 7860.29, + "end": 7860.39, + "probability": 0.8281 + }, + { + "start": 7861.83, + "end": 7863.51, + "probability": 0.8595 + }, + { + "start": 7864.93, + "end": 7867.13, + "probability": 0.9333 + }, + { + "start": 7867.55, + "end": 7869.77, + "probability": 0.9878 + }, + { + "start": 7870.75, + "end": 7872.01, + "probability": 0.8804 + }, + { + "start": 7872.83, + "end": 7873.73, + "probability": 0.9197 + }, + { + "start": 7875.01, + "end": 7875.47, + "probability": 0.5956 + }, + { + "start": 7875.65, + "end": 7875.95, + "probability": 0.7262 + }, + { + "start": 7876.07, + "end": 7879.01, + "probability": 0.8607 + }, + { + "start": 7879.25, + "end": 7880.12, + "probability": 0.6421 + }, + { + "start": 7881.07, + "end": 7883.95, + "probability": 0.9725 + }, + { + "start": 7884.63, + "end": 7885.87, + "probability": 0.9779 + }, + { + "start": 7886.55, + "end": 7887.83, + "probability": 0.952 + }, + { + "start": 7888.97, + "end": 7891.03, + "probability": 0.9907 + }, + { + "start": 7891.03, + "end": 7894.19, + "probability": 0.9528 + }, + { + "start": 7895.39, + "end": 7897.49, + "probability": 0.8672 + }, + { + "start": 7899.09, + "end": 7899.71, + "probability": 0.6639 + }, + { + "start": 7901.23, + "end": 7903.73, + "probability": 0.8066 + }, + { + "start": 7903.81, + "end": 7905.69, + "probability": 0.9349 + }, + { + "start": 7906.63, + "end": 7909.45, + "probability": 0.446 + }, + { + "start": 7910.23, + "end": 7913.91, + "probability": 0.6981 + }, + { + "start": 7914.59, + "end": 7917.65, + "probability": 0.7852 + }, + { + "start": 7920.07, + "end": 7921.59, + "probability": 0.6753 + }, + { + "start": 7922.85, + "end": 7923.21, + "probability": 0.441 + }, + { + "start": 7923.33, + "end": 7924.35, + "probability": 0.441 + }, + { + "start": 7925.35, + "end": 7926.55, + "probability": 0.3894 + }, + { + "start": 7927.17, + "end": 7929.85, + "probability": 0.9113 + }, + { + "start": 7930.03, + "end": 7933.06, + "probability": 0.9526 + }, + { + "start": 7933.59, + "end": 7934.25, + "probability": 0.6875 + }, + { + "start": 7934.69, + "end": 7935.21, + "probability": 0.7284 + }, + { + "start": 7938.11, + "end": 7941.01, + "probability": 0.7015 + }, + { + "start": 7941.01, + "end": 7945.31, + "probability": 0.9907 + }, + { + "start": 7945.31, + "end": 7947.83, + "probability": 0.8254 + }, + { + "start": 7947.95, + "end": 7948.58, + "probability": 0.4109 + }, + { + "start": 7948.75, + "end": 7951.29, + "probability": 0.744 + }, + { + "start": 7951.47, + "end": 7951.79, + "probability": 0.6563 + }, + { + "start": 7952.77, + "end": 7954.81, + "probability": 0.8598 + }, + { + "start": 7954.97, + "end": 7955.93, + "probability": 0.8459 + }, + { + "start": 7957.19, + "end": 7958.97, + "probability": 0.7152 + }, + { + "start": 7958.97, + "end": 7961.17, + "probability": 0.7563 + }, + { + "start": 7961.87, + "end": 7965.67, + "probability": 0.8792 + }, + { + "start": 7966.47, + "end": 7970.29, + "probability": 0.8678 + }, + { + "start": 7971.13, + "end": 7973.85, + "probability": 0.6877 + }, + { + "start": 7973.97, + "end": 7976.65, + "probability": 0.9738 + }, + { + "start": 7977.97, + "end": 7980.81, + "probability": 0.8486 + }, + { + "start": 7980.83, + "end": 7982.39, + "probability": 0.1322 + }, + { + "start": 7982.49, + "end": 7983.61, + "probability": 0.5104 + }, + { + "start": 7984.49, + "end": 7987.07, + "probability": 0.8769 + }, + { + "start": 7987.15, + "end": 7987.77, + "probability": 0.5244 + }, + { + "start": 7988.31, + "end": 7989.97, + "probability": 0.9751 + }, + { + "start": 7990.13, + "end": 7993.59, + "probability": 0.8295 + }, + { + "start": 7994.91, + "end": 7995.93, + "probability": 0.7203 + }, + { + "start": 7996.99, + "end": 7998.65, + "probability": 0.8135 + }, + { + "start": 8000.45, + "end": 8002.59, + "probability": 0.7695 + }, + { + "start": 8002.59, + "end": 8005.09, + "probability": 0.881 + }, + { + "start": 8006.27, + "end": 8008.13, + "probability": 0.9766 + }, + { + "start": 8008.65, + "end": 8010.59, + "probability": 0.954 + }, + { + "start": 8011.33, + "end": 8014.47, + "probability": 0.8835 + }, + { + "start": 8015.29, + "end": 8017.99, + "probability": 0.9014 + }, + { + "start": 8021.01, + "end": 8021.71, + "probability": 0.4702 + }, + { + "start": 8022.67, + "end": 8025.59, + "probability": 0.8707 + }, + { + "start": 8027.11, + "end": 8028.33, + "probability": 0.6561 + }, + { + "start": 8030.75, + "end": 8031.27, + "probability": 0.6197 + }, + { + "start": 8032.67, + "end": 8036.71, + "probability": 0.9165 + }, + { + "start": 8037.35, + "end": 8041.21, + "probability": 0.9311 + }, + { + "start": 8041.45, + "end": 8042.91, + "probability": 0.607 + }, + { + "start": 8043.61, + "end": 8044.64, + "probability": 0.6641 + }, + { + "start": 8045.67, + "end": 8046.67, + "probability": 0.6262 + }, + { + "start": 8047.61, + "end": 8050.97, + "probability": 0.6581 + }, + { + "start": 8054.37, + "end": 8058.93, + "probability": 0.9271 + }, + { + "start": 8060.11, + "end": 8060.83, + "probability": 0.6512 + }, + { + "start": 8061.69, + "end": 8064.37, + "probability": 0.9668 + }, + { + "start": 8065.01, + "end": 8067.57, + "probability": 0.9572 + }, + { + "start": 8067.67, + "end": 8068.77, + "probability": 0.8225 + }, + { + "start": 8068.87, + "end": 8069.97, + "probability": 0.9926 + }, + { + "start": 8070.81, + "end": 8072.55, + "probability": 0.9262 + }, + { + "start": 8079.95, + "end": 8081.37, + "probability": 0.7223 + }, + { + "start": 8081.47, + "end": 8081.79, + "probability": 0.6873 + }, + { + "start": 8081.89, + "end": 8083.53, + "probability": 0.8881 + }, + { + "start": 8083.59, + "end": 8084.21, + "probability": 0.8645 + }, + { + "start": 8084.27, + "end": 8084.91, + "probability": 0.7809 + }, + { + "start": 8087.49, + "end": 8093.87, + "probability": 0.985 + }, + { + "start": 8094.79, + "end": 8097.87, + "probability": 0.98 + }, + { + "start": 8098.19, + "end": 8098.65, + "probability": 0.8137 + }, + { + "start": 8098.73, + "end": 8099.67, + "probability": 0.9637 + }, + { + "start": 8100.97, + "end": 8101.46, + "probability": 0.9525 + }, + { + "start": 8102.23, + "end": 8103.47, + "probability": 0.9658 + }, + { + "start": 8104.09, + "end": 8104.87, + "probability": 0.6713 + }, + { + "start": 8105.45, + "end": 8106.49, + "probability": 0.8663 + }, + { + "start": 8106.55, + "end": 8110.51, + "probability": 0.9513 + }, + { + "start": 8111.25, + "end": 8113.91, + "probability": 0.7814 + }, + { + "start": 8114.23, + "end": 8118.11, + "probability": 0.5028 + }, + { + "start": 8119.37, + "end": 8119.67, + "probability": 0.9482 + }, + { + "start": 8123.25, + "end": 8131.69, + "probability": 0.7718 + }, + { + "start": 8132.45, + "end": 8133.39, + "probability": 0.999 + }, + { + "start": 8134.15, + "end": 8138.11, + "probability": 0.7334 + }, + { + "start": 8138.89, + "end": 8140.13, + "probability": 0.8994 + }, + { + "start": 8140.79, + "end": 8142.55, + "probability": 0.9438 + }, + { + "start": 8143.73, + "end": 8145.27, + "probability": 0.9692 + }, + { + "start": 8145.95, + "end": 8147.25, + "probability": 0.642 + }, + { + "start": 8147.39, + "end": 8153.87, + "probability": 0.5855 + }, + { + "start": 8154.19, + "end": 8157.41, + "probability": 0.3003 + }, + { + "start": 8158.07, + "end": 8158.97, + "probability": 0.2575 + }, + { + "start": 8159.39, + "end": 8160.33, + "probability": 0.9375 + }, + { + "start": 8160.81, + "end": 8164.09, + "probability": 0.9176 + }, + { + "start": 8164.47, + "end": 8165.59, + "probability": 0.5817 + }, + { + "start": 8165.95, + "end": 8170.13, + "probability": 0.7179 + }, + { + "start": 8170.73, + "end": 8172.79, + "probability": 0.589 + }, + { + "start": 8173.33, + "end": 8175.27, + "probability": 0.6641 + }, + { + "start": 8175.65, + "end": 8178.33, + "probability": 0.9819 + }, + { + "start": 8178.41, + "end": 8179.11, + "probability": 0.7558 + }, + { + "start": 8179.43, + "end": 8182.91, + "probability": 0.8448 + }, + { + "start": 8183.51, + "end": 8189.13, + "probability": 0.9474 + }, + { + "start": 8189.91, + "end": 8191.43, + "probability": 0.8726 + }, + { + "start": 8191.59, + "end": 8192.63, + "probability": 0.6081 + }, + { + "start": 8192.77, + "end": 8194.28, + "probability": 0.9897 + }, + { + "start": 8194.59, + "end": 8195.33, + "probability": 0.635 + }, + { + "start": 8196.07, + "end": 8198.23, + "probability": 0.8023 + }, + { + "start": 8198.81, + "end": 8199.77, + "probability": 0.8765 + }, + { + "start": 8200.63, + "end": 8204.13, + "probability": 0.6115 + }, + { + "start": 8204.23, + "end": 8204.81, + "probability": 0.8793 + }, + { + "start": 8205.27, + "end": 8206.79, + "probability": 0.9121 + }, + { + "start": 8206.81, + "end": 8208.13, + "probability": 0.9203 + }, + { + "start": 8208.27, + "end": 8209.75, + "probability": 0.5012 + }, + { + "start": 8210.53, + "end": 8212.19, + "probability": 0.9171 + }, + { + "start": 8213.73, + "end": 8216.13, + "probability": 0.8718 + }, + { + "start": 8216.21, + "end": 8217.41, + "probability": 0.9705 + }, + { + "start": 8217.45, + "end": 8217.87, + "probability": 0.3617 + }, + { + "start": 8217.91, + "end": 8219.63, + "probability": 0.9749 + }, + { + "start": 8220.27, + "end": 8222.19, + "probability": 0.8493 + }, + { + "start": 8224.21, + "end": 8226.17, + "probability": 0.3203 + }, + { + "start": 8226.37, + "end": 8227.37, + "probability": 0.2848 + }, + { + "start": 8227.75, + "end": 8229.37, + "probability": 0.9523 + }, + { + "start": 8229.85, + "end": 8230.45, + "probability": 0.435 + }, + { + "start": 8230.89, + "end": 8231.87, + "probability": 0.6391 + }, + { + "start": 8236.11, + "end": 8237.17, + "probability": 0.5378 + }, + { + "start": 8237.77, + "end": 8240.19, + "probability": 0.0196 + }, + { + "start": 8248.19, + "end": 8248.39, + "probability": 0.0346 + }, + { + "start": 8248.39, + "end": 8251.57, + "probability": 0.6287 + }, + { + "start": 8252.49, + "end": 8253.15, + "probability": 0.6722 + }, + { + "start": 8254.51, + "end": 8256.45, + "probability": 0.3791 + }, + { + "start": 8259.11, + "end": 8259.83, + "probability": 0.9188 + }, + { + "start": 8260.53, + "end": 8262.23, + "probability": 0.6772 + }, + { + "start": 8263.23, + "end": 8265.19, + "probability": 0.7688 + }, + { + "start": 8267.59, + "end": 8268.49, + "probability": 0.7917 + }, + { + "start": 8271.51, + "end": 8272.27, + "probability": 0.5365 + }, + { + "start": 8273.99, + "end": 8275.11, + "probability": 0.9471 + }, + { + "start": 8275.13, + "end": 8275.51, + "probability": 0.6132 + }, + { + "start": 8275.55, + "end": 8278.93, + "probability": 0.6866 + }, + { + "start": 8278.97, + "end": 8281.25, + "probability": 0.822 + }, + { + "start": 8282.49, + "end": 8283.79, + "probability": 0.8173 + }, + { + "start": 8284.43, + "end": 8285.83, + "probability": 0.825 + }, + { + "start": 8286.99, + "end": 8289.59, + "probability": 0.7492 + }, + { + "start": 8290.81, + "end": 8291.99, + "probability": 0.012 + }, + { + "start": 8292.59, + "end": 8295.31, + "probability": 0.3407 + }, + { + "start": 8295.37, + "end": 8295.87, + "probability": 0.7448 + }, + { + "start": 8297.61, + "end": 8300.12, + "probability": 0.039 + }, + { + "start": 8301.47, + "end": 8305.69, + "probability": 0.0051 + }, + { + "start": 8308.22, + "end": 8309.31, + "probability": 0.0274 + }, + { + "start": 8312.77, + "end": 8313.23, + "probability": 0.2011 + }, + { + "start": 8316.59, + "end": 8316.59, + "probability": 0.0385 + }, + { + "start": 8316.59, + "end": 8316.59, + "probability": 0.0289 + }, + { + "start": 8316.59, + "end": 8316.59, + "probability": 0.087 + }, + { + "start": 8316.59, + "end": 8317.73, + "probability": 0.4732 + }, + { + "start": 8318.31, + "end": 8322.15, + "probability": 0.8586 + }, + { + "start": 8322.15, + "end": 8325.95, + "probability": 0.7635 + }, + { + "start": 8326.67, + "end": 8327.97, + "probability": 0.7297 + }, + { + "start": 8328.03, + "end": 8329.57, + "probability": 0.9523 + }, + { + "start": 8331.73, + "end": 8335.37, + "probability": 0.5005 + }, + { + "start": 8335.63, + "end": 8337.29, + "probability": 0.7668 + }, + { + "start": 8337.49, + "end": 8339.79, + "probability": 0.975 + }, + { + "start": 8340.23, + "end": 8342.91, + "probability": 0.853 + }, + { + "start": 8343.07, + "end": 8343.39, + "probability": 0.1737 + }, + { + "start": 8345.01, + "end": 8346.49, + "probability": 0.5829 + }, + { + "start": 8346.53, + "end": 8347.13, + "probability": 0.6288 + }, + { + "start": 8354.45, + "end": 8362.31, + "probability": 0.0309 + }, + { + "start": 8364.07, + "end": 8364.79, + "probability": 0.0269 + }, + { + "start": 8365.45, + "end": 8365.97, + "probability": 0.2025 + }, + { + "start": 8365.97, + "end": 8369.13, + "probability": 0.1773 + }, + { + "start": 8369.39, + "end": 8371.23, + "probability": 0.7113 + }, + { + "start": 8372.33, + "end": 8376.67, + "probability": 0.8282 + }, + { + "start": 8376.79, + "end": 8379.19, + "probability": 0.9232 + }, + { + "start": 8379.33, + "end": 8380.75, + "probability": 0.4003 + }, + { + "start": 8381.25, + "end": 8382.2, + "probability": 0.9922 + }, + { + "start": 8383.51, + "end": 8384.37, + "probability": 0.8858 + }, + { + "start": 8389.59, + "end": 8392.67, + "probability": 0.9107 + }, + { + "start": 8393.15, + "end": 8395.43, + "probability": 0.6868 + }, + { + "start": 8397.63, + "end": 8398.39, + "probability": 0.8006 + }, + { + "start": 8398.85, + "end": 8400.25, + "probability": 0.8542 + }, + { + "start": 8400.63, + "end": 8403.21, + "probability": 0.9919 + }, + { + "start": 8403.91, + "end": 8406.03, + "probability": 0.9901 + }, + { + "start": 8407.25, + "end": 8408.81, + "probability": 0.9961 + }, + { + "start": 8410.13, + "end": 8411.73, + "probability": 0.6746 + }, + { + "start": 8412.99, + "end": 8413.59, + "probability": 0.9945 + }, + { + "start": 8414.47, + "end": 8415.33, + "probability": 0.9246 + }, + { + "start": 8416.41, + "end": 8418.53, + "probability": 0.5757 + }, + { + "start": 8419.31, + "end": 8420.05, + "probability": 0.8686 + }, + { + "start": 8420.95, + "end": 8421.77, + "probability": 0.3476 + }, + { + "start": 8422.79, + "end": 8423.55, + "probability": 0.9277 + }, + { + "start": 8425.07, + "end": 8426.95, + "probability": 0.9258 + }, + { + "start": 8428.07, + "end": 8429.49, + "probability": 0.9408 + }, + { + "start": 8430.69, + "end": 8431.89, + "probability": 0.9815 + }, + { + "start": 8433.63, + "end": 8436.15, + "probability": 0.9825 + }, + { + "start": 8437.33, + "end": 8439.95, + "probability": 0.9904 + }, + { + "start": 8442.12, + "end": 8443.81, + "probability": 0.9659 + }, + { + "start": 8444.73, + "end": 8450.15, + "probability": 0.9906 + }, + { + "start": 8450.65, + "end": 8453.17, + "probability": 0.9293 + }, + { + "start": 8453.71, + "end": 8456.03, + "probability": 0.8132 + }, + { + "start": 8456.61, + "end": 8459.11, + "probability": 0.9214 + }, + { + "start": 8460.51, + "end": 8461.95, + "probability": 0.7425 + }, + { + "start": 8463.45, + "end": 8465.75, + "probability": 0.9548 + }, + { + "start": 8466.13, + "end": 8468.01, + "probability": 0.9543 + }, + { + "start": 8468.69, + "end": 8469.91, + "probability": 0.9369 + }, + { + "start": 8470.05, + "end": 8472.21, + "probability": 0.4385 + }, + { + "start": 8472.61, + "end": 8473.03, + "probability": 0.894 + }, + { + "start": 8474.13, + "end": 8477.51, + "probability": 0.8828 + }, + { + "start": 8477.51, + "end": 8481.39, + "probability": 0.9787 + }, + { + "start": 8482.71, + "end": 8484.93, + "probability": 0.9873 + }, + { + "start": 8485.53, + "end": 8486.63, + "probability": 0.7277 + }, + { + "start": 8487.19, + "end": 8487.63, + "probability": 0.9339 + }, + { + "start": 8487.73, + "end": 8490.99, + "probability": 0.822 + }, + { + "start": 8491.09, + "end": 8493.35, + "probability": 0.7252 + }, + { + "start": 8494.03, + "end": 8495.33, + "probability": 0.944 + }, + { + "start": 8496.05, + "end": 8497.33, + "probability": 0.9834 + }, + { + "start": 8497.87, + "end": 8499.47, + "probability": 0.77 + }, + { + "start": 8500.29, + "end": 8502.32, + "probability": 0.9551 + }, + { + "start": 8503.47, + "end": 8505.89, + "probability": 0.9915 + }, + { + "start": 8506.37, + "end": 8507.01, + "probability": 0.8684 + }, + { + "start": 8508.15, + "end": 8508.63, + "probability": 0.7304 + }, + { + "start": 8508.87, + "end": 8509.21, + "probability": 0.8495 + }, + { + "start": 8509.37, + "end": 8509.99, + "probability": 0.8073 + }, + { + "start": 8510.05, + "end": 8510.35, + "probability": 0.8005 + }, + { + "start": 8510.41, + "end": 8511.11, + "probability": 0.8946 + }, + { + "start": 8511.49, + "end": 8512.25, + "probability": 0.7656 + }, + { + "start": 8512.31, + "end": 8513.97, + "probability": 0.9711 + }, + { + "start": 8514.87, + "end": 8515.19, + "probability": 0.7234 + }, + { + "start": 8516.69, + "end": 8517.07, + "probability": 0.5629 + }, + { + "start": 8517.15, + "end": 8517.31, + "probability": 0.8006 + }, + { + "start": 8517.39, + "end": 8519.65, + "probability": 0.9272 + }, + { + "start": 8520.43, + "end": 8522.55, + "probability": 0.9704 + }, + { + "start": 8522.63, + "end": 8522.93, + "probability": 0.7778 + }, + { + "start": 8522.95, + "end": 8523.75, + "probability": 0.8712 + }, + { + "start": 8524.23, + "end": 8525.77, + "probability": 0.7407 + }, + { + "start": 8526.49, + "end": 8526.65, + "probability": 0.1415 + }, + { + "start": 8528.95, + "end": 8532.43, + "probability": 0.9177 + }, + { + "start": 8532.43, + "end": 8535.07, + "probability": 0.9823 + }, + { + "start": 8535.95, + "end": 8537.45, + "probability": 0.9787 + }, + { + "start": 8537.49, + "end": 8539.99, + "probability": 0.9834 + }, + { + "start": 8540.35, + "end": 8541.63, + "probability": 0.6864 + }, + { + "start": 8541.63, + "end": 8542.11, + "probability": 0.5325 + }, + { + "start": 8542.59, + "end": 8543.87, + "probability": 0.8502 + }, + { + "start": 8543.89, + "end": 8546.01, + "probability": 0.9076 + }, + { + "start": 8546.05, + "end": 8547.85, + "probability": 0.8163 + }, + { + "start": 8547.93, + "end": 8549.11, + "probability": 0.8241 + }, + { + "start": 8549.67, + "end": 8550.11, + "probability": 0.9565 + }, + { + "start": 8550.95, + "end": 8552.89, + "probability": 0.8037 + }, + { + "start": 8553.79, + "end": 8555.77, + "probability": 0.8145 + }, + { + "start": 8556.47, + "end": 8558.69, + "probability": 0.8272 + }, + { + "start": 8559.25, + "end": 8560.29, + "probability": 0.9001 + }, + { + "start": 8561.75, + "end": 8563.88, + "probability": 0.8405 + }, + { + "start": 8564.87, + "end": 8566.93, + "probability": 0.8923 + }, + { + "start": 8567.85, + "end": 8568.35, + "probability": 0.6628 + }, + { + "start": 8568.83, + "end": 8570.85, + "probability": 0.954 + }, + { + "start": 8572.19, + "end": 8573.31, + "probability": 0.8367 + }, + { + "start": 8574.47, + "end": 8579.85, + "probability": 0.9939 + }, + { + "start": 8580.47, + "end": 8581.89, + "probability": 0.9163 + }, + { + "start": 8582.73, + "end": 8586.49, + "probability": 0.9073 + }, + { + "start": 8586.83, + "end": 8587.87, + "probability": 0.6498 + }, + { + "start": 8587.87, + "end": 8589.19, + "probability": 0.6608 + }, + { + "start": 8589.25, + "end": 8590.98, + "probability": 0.5003 + }, + { + "start": 8592.31, + "end": 8593.67, + "probability": 0.9358 + }, + { + "start": 8595.07, + "end": 8597.19, + "probability": 0.7579 + }, + { + "start": 8598.15, + "end": 8599.17, + "probability": 0.6341 + }, + { + "start": 8599.29, + "end": 8600.79, + "probability": 0.5199 + }, + { + "start": 8600.87, + "end": 8602.25, + "probability": 0.6651 + }, + { + "start": 8602.77, + "end": 8605.29, + "probability": 0.6636 + }, + { + "start": 8605.55, + "end": 8606.03, + "probability": 0.6808 + }, + { + "start": 8606.47, + "end": 8607.65, + "probability": 0.9293 + }, + { + "start": 8607.81, + "end": 8608.45, + "probability": 0.8375 + }, + { + "start": 8608.79, + "end": 8610.01, + "probability": 0.9688 + }, + { + "start": 8610.13, + "end": 8610.75, + "probability": 0.9795 + }, + { + "start": 8611.75, + "end": 8614.23, + "probability": 0.7624 + }, + { + "start": 8614.77, + "end": 8618.21, + "probability": 0.7314 + }, + { + "start": 8619.81, + "end": 8622.65, + "probability": 0.9834 + }, + { + "start": 8623.45, + "end": 8624.59, + "probability": 0.8201 + }, + { + "start": 8624.75, + "end": 8625.19, + "probability": 0.8899 + }, + { + "start": 8625.21, + "end": 8625.87, + "probability": 0.8649 + }, + { + "start": 8625.87, + "end": 8626.87, + "probability": 0.9788 + }, + { + "start": 8627.71, + "end": 8628.05, + "probability": 0.1752 + }, + { + "start": 8629.13, + "end": 8630.93, + "probability": 0.46 + }, + { + "start": 8631.81, + "end": 8633.27, + "probability": 0.8863 + }, + { + "start": 8633.37, + "end": 8634.85, + "probability": 0.8246 + }, + { + "start": 8635.51, + "end": 8637.97, + "probability": 0.9717 + }, + { + "start": 8638.41, + "end": 8638.67, + "probability": 0.8905 + }, + { + "start": 8638.99, + "end": 8639.47, + "probability": 0.7676 + }, + { + "start": 8639.69, + "end": 8640.19, + "probability": 0.3983 + }, + { + "start": 8641.05, + "end": 8645.13, + "probability": 0.9853 + }, + { + "start": 8645.57, + "end": 8646.17, + "probability": 0.8796 + }, + { + "start": 8647.43, + "end": 8651.15, + "probability": 0.9263 + }, + { + "start": 8651.73, + "end": 8655.55, + "probability": 0.9907 + }, + { + "start": 8656.57, + "end": 8657.71, + "probability": 0.9156 + }, + { + "start": 8659.47, + "end": 8662.07, + "probability": 0.8205 + }, + { + "start": 8662.07, + "end": 8663.97, + "probability": 0.9834 + }, + { + "start": 8664.51, + "end": 8665.85, + "probability": 0.8613 + }, + { + "start": 8665.99, + "end": 8666.76, + "probability": 0.6485 + }, + { + "start": 8667.72, + "end": 8669.13, + "probability": 0.7114 + }, + { + "start": 8669.61, + "end": 8672.25, + "probability": 0.9702 + }, + { + "start": 8672.57, + "end": 8672.91, + "probability": 0.5028 + }, + { + "start": 8673.49, + "end": 8677.41, + "probability": 0.9823 + }, + { + "start": 8678.45, + "end": 8679.47, + "probability": 0.8684 + }, + { + "start": 8680.17, + "end": 8683.09, + "probability": 0.9902 + }, + { + "start": 8683.63, + "end": 8686.57, + "probability": 0.8988 + }, + { + "start": 8687.81, + "end": 8688.57, + "probability": 0.9587 + }, + { + "start": 8689.85, + "end": 8690.31, + "probability": 0.7535 + }, + { + "start": 8691.53, + "end": 8692.07, + "probability": 0.7904 + }, + { + "start": 8693.71, + "end": 8695.29, + "probability": 0.9886 + }, + { + "start": 8696.23, + "end": 8697.57, + "probability": 0.9983 + }, + { + "start": 8699.22, + "end": 8701.57, + "probability": 0.9355 + }, + { + "start": 8702.17, + "end": 8702.33, + "probability": 0.0199 + }, + { + "start": 8702.33, + "end": 8704.09, + "probability": 0.3617 + }, + { + "start": 8704.09, + "end": 8706.23, + "probability": 0.9649 + }, + { + "start": 8706.95, + "end": 8707.53, + "probability": 0.6713 + }, + { + "start": 8708.17, + "end": 8709.95, + "probability": 0.873 + }, + { + "start": 8710.57, + "end": 8712.73, + "probability": 0.9348 + }, + { + "start": 8713.47, + "end": 8714.12, + "probability": 0.3017 + }, + { + "start": 8715.35, + "end": 8717.59, + "probability": 0.6997 + }, + { + "start": 8718.21, + "end": 8719.09, + "probability": 0.8776 + }, + { + "start": 8719.89, + "end": 8721.57, + "probability": 0.9759 + }, + { + "start": 8723.65, + "end": 8730.21, + "probability": 0.9417 + }, + { + "start": 8730.83, + "end": 8735.61, + "probability": 0.974 + }, + { + "start": 8737.07, + "end": 8739.15, + "probability": 0.9955 + }, + { + "start": 8739.43, + "end": 8741.75, + "probability": 0.717 + }, + { + "start": 8742.97, + "end": 8746.37, + "probability": 0.954 + }, + { + "start": 8747.75, + "end": 8751.47, + "probability": 0.9702 + }, + { + "start": 8752.63, + "end": 8755.41, + "probability": 0.9393 + }, + { + "start": 8756.01, + "end": 8759.37, + "probability": 0.7268 + }, + { + "start": 8760.79, + "end": 8762.05, + "probability": 0.9396 + }, + { + "start": 8763.11, + "end": 8763.91, + "probability": 0.9192 + }, + { + "start": 8764.83, + "end": 8767.65, + "probability": 0.9603 + }, + { + "start": 8768.51, + "end": 8769.85, + "probability": 0.8648 + }, + { + "start": 8770.25, + "end": 8773.29, + "probability": 0.771 + }, + { + "start": 8773.31, + "end": 8777.77, + "probability": 0.9697 + }, + { + "start": 8778.69, + "end": 8780.21, + "probability": 0.9068 + }, + { + "start": 8780.99, + "end": 8781.91, + "probability": 0.7714 + }, + { + "start": 8782.25, + "end": 8783.05, + "probability": 0.7815 + }, + { + "start": 8783.89, + "end": 8784.99, + "probability": 0.9605 + }, + { + "start": 8786.19, + "end": 8787.37, + "probability": 0.6899 + }, + { + "start": 8787.45, + "end": 8789.61, + "probability": 0.8601 + }, + { + "start": 8790.63, + "end": 8792.15, + "probability": 0.8761 + }, + { + "start": 8793.41, + "end": 8793.55, + "probability": 0.473 + }, + { + "start": 8793.55, + "end": 8797.53, + "probability": 0.9565 + }, + { + "start": 8797.59, + "end": 8799.07, + "probability": 0.9214 + }, + { + "start": 8799.69, + "end": 8801.27, + "probability": 0.9685 + }, + { + "start": 8801.87, + "end": 8803.69, + "probability": 0.9971 + }, + { + "start": 8803.93, + "end": 8804.5, + "probability": 0.7498 + }, + { + "start": 8805.29, + "end": 8805.87, + "probability": 0.7969 + }, + { + "start": 8807.43, + "end": 8810.81, + "probability": 0.9771 + }, + { + "start": 8812.19, + "end": 8813.1, + "probability": 0.1794 + }, + { + "start": 8813.69, + "end": 8814.81, + "probability": 0.9679 + }, + { + "start": 8816.23, + "end": 8818.87, + "probability": 0.9583 + }, + { + "start": 8819.41, + "end": 8821.63, + "probability": 0.998 + }, + { + "start": 8822.33, + "end": 8825.12, + "probability": 0.8984 + }, + { + "start": 8825.89, + "end": 8826.23, + "probability": 0.8905 + }, + { + "start": 8827.15, + "end": 8827.71, + "probability": 0.7379 + }, + { + "start": 8829.15, + "end": 8830.43, + "probability": 0.8208 + }, + { + "start": 8830.45, + "end": 8832.03, + "probability": 0.4706 + }, + { + "start": 8832.47, + "end": 8833.73, + "probability": 0.8252 + }, + { + "start": 8834.43, + "end": 8835.61, + "probability": 0.4349 + }, + { + "start": 8836.39, + "end": 8837.8, + "probability": 0.7272 + }, + { + "start": 8838.55, + "end": 8841.75, + "probability": 0.9883 + }, + { + "start": 8842.37, + "end": 8843.79, + "probability": 0.9742 + }, + { + "start": 8844.41, + "end": 8846.73, + "probability": 0.9895 + }, + { + "start": 8847.43, + "end": 8850.97, + "probability": 0.8091 + }, + { + "start": 8852.03, + "end": 8852.68, + "probability": 0.7811 + }, + { + "start": 8853.21, + "end": 8854.31, + "probability": 0.5299 + }, + { + "start": 8855.17, + "end": 8855.78, + "probability": 0.9807 + }, + { + "start": 8856.13, + "end": 8859.25, + "probability": 0.9103 + }, + { + "start": 8859.83, + "end": 8861.19, + "probability": 0.7292 + }, + { + "start": 8861.65, + "end": 8863.51, + "probability": 0.9456 + }, + { + "start": 8864.15, + "end": 8866.03, + "probability": 0.6681 + }, + { + "start": 8866.87, + "end": 8868.01, + "probability": 0.6703 + }, + { + "start": 8868.27, + "end": 8870.93, + "probability": 0.9812 + }, + { + "start": 8872.13, + "end": 8875.21, + "probability": 0.9187 + }, + { + "start": 8875.39, + "end": 8876.11, + "probability": 0.9211 + }, + { + "start": 8876.19, + "end": 8876.49, + "probability": 0.7078 + }, + { + "start": 8876.95, + "end": 8879.71, + "probability": 0.745 + }, + { + "start": 8880.37, + "end": 8880.63, + "probability": 0.8777 + }, + { + "start": 8880.71, + "end": 8881.19, + "probability": 0.7973 + }, + { + "start": 8882.47, + "end": 8885.49, + "probability": 0.9119 + }, + { + "start": 8886.81, + "end": 8888.63, + "probability": 0.9392 + }, + { + "start": 8890.57, + "end": 8892.97, + "probability": 0.8942 + }, + { + "start": 8893.73, + "end": 8894.73, + "probability": 0.7093 + }, + { + "start": 8895.55, + "end": 8899.25, + "probability": 0.9343 + }, + { + "start": 8900.33, + "end": 8901.57, + "probability": 0.8254 + }, + { + "start": 8902.05, + "end": 8903.43, + "probability": 0.9098 + }, + { + "start": 8903.43, + "end": 8904.59, + "probability": 0.518 + }, + { + "start": 8904.73, + "end": 8906.05, + "probability": 0.6579 + }, + { + "start": 8906.17, + "end": 8907.19, + "probability": 0.9891 + }, + { + "start": 8907.55, + "end": 8908.83, + "probability": 0.5761 + }, + { + "start": 8909.77, + "end": 8912.83, + "probability": 0.9449 + }, + { + "start": 8913.47, + "end": 8914.29, + "probability": 0.401 + }, + { + "start": 8915.01, + "end": 8917.11, + "probability": 0.8462 + }, + { + "start": 8919.15, + "end": 8919.43, + "probability": 0.0128 + }, + { + "start": 8919.43, + "end": 8919.63, + "probability": 0.1618 + }, + { + "start": 8919.67, + "end": 8919.77, + "probability": 0.3972 + }, + { + "start": 8919.93, + "end": 8921.09, + "probability": 0.8821 + }, + { + "start": 8921.41, + "end": 8922.91, + "probability": 0.9161 + }, + { + "start": 8923.09, + "end": 8923.75, + "probability": 0.6961 + }, + { + "start": 8923.81, + "end": 8924.63, + "probability": 0.9646 + }, + { + "start": 8925.37, + "end": 8928.85, + "probability": 0.6326 + }, + { + "start": 8928.95, + "end": 8931.33, + "probability": 0.5788 + }, + { + "start": 8931.37, + "end": 8934.21, + "probability": 0.6341 + }, + { + "start": 8934.93, + "end": 8936.25, + "probability": 0.9439 + }, + { + "start": 8937.21, + "end": 8941.27, + "probability": 0.6774 + }, + { + "start": 8941.39, + "end": 8942.21, + "probability": 0.9572 + }, + { + "start": 8943.89, + "end": 8944.55, + "probability": 0.4373 + }, + { + "start": 8946.17, + "end": 8946.87, + "probability": 0.6109 + }, + { + "start": 8946.93, + "end": 8952.65, + "probability": 0.9961 + }, + { + "start": 8952.66, + "end": 8957.09, + "probability": 0.991 + }, + { + "start": 8957.81, + "end": 8959.11, + "probability": 0.7591 + }, + { + "start": 8959.77, + "end": 8962.45, + "probability": 0.6392 + }, + { + "start": 8963.01, + "end": 8964.45, + "probability": 0.9868 + }, + { + "start": 8964.71, + "end": 8965.81, + "probability": 0.9308 + }, + { + "start": 8966.31, + "end": 8971.33, + "probability": 0.9113 + }, + { + "start": 8971.77, + "end": 8972.17, + "probability": 0.2709 + }, + { + "start": 8972.23, + "end": 8972.91, + "probability": 0.8472 + }, + { + "start": 8973.73, + "end": 8974.63, + "probability": 0.9705 + }, + { + "start": 8974.75, + "end": 8977.1, + "probability": 0.7583 + }, + { + "start": 8977.75, + "end": 8979.37, + "probability": 0.9884 + }, + { + "start": 8979.45, + "end": 8979.55, + "probability": 0.308 + }, + { + "start": 8980.13, + "end": 8983.41, + "probability": 0.9839 + }, + { + "start": 8983.53, + "end": 8984.73, + "probability": 0.7421 + }, + { + "start": 8985.43, + "end": 8987.65, + "probability": 0.8335 + }, + { + "start": 8987.65, + "end": 8988.49, + "probability": 0.9673 + }, + { + "start": 8989.27, + "end": 8992.03, + "probability": 0.9704 + }, + { + "start": 8992.59, + "end": 8993.29, + "probability": 0.7545 + }, + { + "start": 8993.57, + "end": 8994.29, + "probability": 0.7524 + }, + { + "start": 8995.2, + "end": 8996.07, + "probability": 0.2787 + }, + { + "start": 8997.61, + "end": 9000.71, + "probability": 0.9969 + }, + { + "start": 9001.15, + "end": 9004.27, + "probability": 0.9844 + }, + { + "start": 9004.81, + "end": 9005.87, + "probability": 0.8672 + }, + { + "start": 9006.99, + "end": 9009.63, + "probability": 0.4551 + }, + { + "start": 9009.63, + "end": 9010.25, + "probability": 0.1287 + }, + { + "start": 9010.97, + "end": 9011.23, + "probability": 0.6458 + }, + { + "start": 9011.75, + "end": 9013.79, + "probability": 0.7063 + }, + { + "start": 9013.95, + "end": 9015.35, + "probability": 0.8188 + }, + { + "start": 9018.81, + "end": 9021.37, + "probability": 0.9767 + }, + { + "start": 9022.22, + "end": 9025.03, + "probability": 0.908 + }, + { + "start": 9031.19, + "end": 9033.73, + "probability": 0.8666 + }, + { + "start": 9033.77, + "end": 9034.31, + "probability": 0.6919 + }, + { + "start": 9037.19, + "end": 9041.75, + "probability": 0.8745 + }, + { + "start": 9042.51, + "end": 9044.97, + "probability": 0.8032 + }, + { + "start": 9045.11, + "end": 9048.09, + "probability": 0.8975 + }, + { + "start": 9048.89, + "end": 9052.72, + "probability": 0.9845 + }, + { + "start": 9054.05, + "end": 9057.79, + "probability": 0.959 + }, + { + "start": 9057.79, + "end": 9060.47, + "probability": 0.9359 + }, + { + "start": 9061.58, + "end": 9064.41, + "probability": 0.9731 + }, + { + "start": 9065.19, + "end": 9067.25, + "probability": 0.7436 + }, + { + "start": 9067.89, + "end": 9068.85, + "probability": 0.8392 + }, + { + "start": 9069.37, + "end": 9071.33, + "probability": 0.4289 + }, + { + "start": 9071.77, + "end": 9073.21, + "probability": 0.5581 + }, + { + "start": 9073.29, + "end": 9074.23, + "probability": 0.9549 + }, + { + "start": 9074.31, + "end": 9074.53, + "probability": 0.7606 + }, + { + "start": 9075.49, + "end": 9076.53, + "probability": 0.5483 + }, + { + "start": 9077.09, + "end": 9078.61, + "probability": 0.8412 + }, + { + "start": 9085.87, + "end": 9086.83, + "probability": 0.6279 + }, + { + "start": 9087.36, + "end": 9092.33, + "probability": 0.9558 + }, + { + "start": 9093.45, + "end": 9094.39, + "probability": 0.947 + }, + { + "start": 9096.33, + "end": 9097.21, + "probability": 0.6357 + }, + { + "start": 9106.35, + "end": 9108.19, + "probability": 0.2345 + }, + { + "start": 9109.17, + "end": 9110.61, + "probability": 0.5791 + }, + { + "start": 9112.99, + "end": 9115.47, + "probability": 0.7567 + }, + { + "start": 9115.61, + "end": 9115.71, + "probability": 0.6628 + }, + { + "start": 9116.15, + "end": 9119.87, + "probability": 0.5804 + }, + { + "start": 9121.35, + "end": 9122.75, + "probability": 0.9523 + }, + { + "start": 9127.55, + "end": 9129.19, + "probability": 0.6959 + }, + { + "start": 9129.89, + "end": 9132.43, + "probability": 0.9614 + }, + { + "start": 9144.75, + "end": 9145.99, + "probability": 0.4776 + }, + { + "start": 9147.73, + "end": 9149.15, + "probability": 0.6707 + }, + { + "start": 9149.17, + "end": 9150.63, + "probability": 0.8077 + }, + { + "start": 9150.69, + "end": 9151.57, + "probability": 0.8653 + }, + { + "start": 9152.49, + "end": 9153.33, + "probability": 0.6897 + }, + { + "start": 9153.85, + "end": 9155.03, + "probability": 0.7453 + }, + { + "start": 9155.79, + "end": 9156.31, + "probability": 0.6213 + }, + { + "start": 9156.91, + "end": 9157.65, + "probability": 0.0388 + }, + { + "start": 9159.49, + "end": 9162.91, + "probability": 0.8188 + }, + { + "start": 9163.05, + "end": 9165.01, + "probability": 0.941 + }, + { + "start": 9166.39, + "end": 9167.69, + "probability": 0.5166 + }, + { + "start": 9168.39, + "end": 9169.93, + "probability": 0.5013 + }, + { + "start": 9171.65, + "end": 9173.31, + "probability": 0.6195 + }, + { + "start": 9174.05, + "end": 9174.13, + "probability": 0.287 + }, + { + "start": 9174.67, + "end": 9174.79, + "probability": 0.033 + }, + { + "start": 9177.57, + "end": 9177.67, + "probability": 0.0055 + }, + { + "start": 9181.66, + "end": 9183.85, + "probability": 0.1294 + }, + { + "start": 9184.45, + "end": 9185.75, + "probability": 0.5105 + }, + { + "start": 9185.91, + "end": 9189.41, + "probability": 0.5458 + }, + { + "start": 9189.45, + "end": 9190.21, + "probability": 0.3089 + }, + { + "start": 9193.01, + "end": 9193.87, + "probability": 0.8996 + }, + { + "start": 9194.11, + "end": 9195.87, + "probability": 0.9834 + }, + { + "start": 9196.25, + "end": 9200.35, + "probability": 0.8475 + }, + { + "start": 9201.31, + "end": 9203.05, + "probability": 0.6737 + }, + { + "start": 9204.01, + "end": 9204.66, + "probability": 0.935 + }, + { + "start": 9205.27, + "end": 9205.85, + "probability": 0.8572 + }, + { + "start": 9205.95, + "end": 9209.43, + "probability": 0.9246 + }, + { + "start": 9210.45, + "end": 9213.07, + "probability": 0.9498 + }, + { + "start": 9215.59, + "end": 9216.57, + "probability": 0.765 + }, + { + "start": 9218.09, + "end": 9220.28, + "probability": 0.9235 + }, + { + "start": 9220.49, + "end": 9221.81, + "probability": 0.5727 + }, + { + "start": 9221.97, + "end": 9222.69, + "probability": 0.7928 + }, + { + "start": 9223.99, + "end": 9225.89, + "probability": 0.9692 + }, + { + "start": 9225.93, + "end": 9228.61, + "probability": 0.8816 + }, + { + "start": 9228.75, + "end": 9228.85, + "probability": 0.2561 + }, + { + "start": 9229.59, + "end": 9231.57, + "probability": 0.8376 + }, + { + "start": 9232.53, + "end": 9234.61, + "probability": 0.8813 + }, + { + "start": 9235.61, + "end": 9238.01, + "probability": 0.9475 + }, + { + "start": 9239.83, + "end": 9240.49, + "probability": 0.9718 + }, + { + "start": 9242.57, + "end": 9247.01, + "probability": 0.9676 + }, + { + "start": 9247.03, + "end": 9247.63, + "probability": 0.7577 + }, + { + "start": 9247.79, + "end": 9248.58, + "probability": 0.7424 + }, + { + "start": 9249.29, + "end": 9250.43, + "probability": 0.9897 + }, + { + "start": 9250.77, + "end": 9252.03, + "probability": 0.1181 + }, + { + "start": 9252.45, + "end": 9253.41, + "probability": 0.8287 + }, + { + "start": 9253.47, + "end": 9256.03, + "probability": 0.9789 + }, + { + "start": 9256.85, + "end": 9259.83, + "probability": 0.7672 + }, + { + "start": 9261.53, + "end": 9264.51, + "probability": 0.9944 + }, + { + "start": 9264.51, + "end": 9269.11, + "probability": 0.9817 + }, + { + "start": 9269.95, + "end": 9274.47, + "probability": 0.9671 + }, + { + "start": 9274.49, + "end": 9275.13, + "probability": 0.7638 + }, + { + "start": 9275.21, + "end": 9275.67, + "probability": 0.8564 + }, + { + "start": 9276.73, + "end": 9277.39, + "probability": 0.4306 + }, + { + "start": 9278.23, + "end": 9279.01, + "probability": 0.766 + }, + { + "start": 9279.65, + "end": 9280.15, + "probability": 0.4026 + }, + { + "start": 9280.31, + "end": 9280.87, + "probability": 0.6107 + }, + { + "start": 9280.95, + "end": 9282.83, + "probability": 0.7854 + }, + { + "start": 9283.97, + "end": 9287.77, + "probability": 0.9747 + }, + { + "start": 9288.35, + "end": 9290.21, + "probability": 0.984 + }, + { + "start": 9294.83, + "end": 9297.12, + "probability": 0.7368 + }, + { + "start": 9297.63, + "end": 9298.21, + "probability": 0.5018 + }, + { + "start": 9298.31, + "end": 9298.49, + "probability": 0.832 + }, + { + "start": 9299.05, + "end": 9302.85, + "probability": 0.8096 + }, + { + "start": 9304.63, + "end": 9306.05, + "probability": 0.8944 + }, + { + "start": 9306.47, + "end": 9308.41, + "probability": 0.8086 + }, + { + "start": 9309.21, + "end": 9310.61, + "probability": 0.9429 + }, + { + "start": 9310.67, + "end": 9315.67, + "probability": 0.9343 + }, + { + "start": 9316.47, + "end": 9319.43, + "probability": 0.9663 + }, + { + "start": 9319.69, + "end": 9321.61, + "probability": 0.0981 + }, + { + "start": 9322.39, + "end": 9323.12, + "probability": 0.4482 + }, + { + "start": 9324.17, + "end": 9324.89, + "probability": 0.5359 + }, + { + "start": 9327.37, + "end": 9327.96, + "probability": 0.9619 + }, + { + "start": 9328.85, + "end": 9332.59, + "probability": 0.6363 + }, + { + "start": 9332.63, + "end": 9333.81, + "probability": 0.7253 + }, + { + "start": 9334.45, + "end": 9335.69, + "probability": 0.7478 + }, + { + "start": 9335.79, + "end": 9336.41, + "probability": 0.4841 + }, + { + "start": 9336.85, + "end": 9338.31, + "probability": 0.9163 + }, + { + "start": 9339.61, + "end": 9341.27, + "probability": 0.9934 + }, + { + "start": 9342.03, + "end": 9344.91, + "probability": 0.8348 + }, + { + "start": 9345.41, + "end": 9347.35, + "probability": 0.7013 + }, + { + "start": 9347.43, + "end": 9347.69, + "probability": 0.783 + }, + { + "start": 9349.19, + "end": 9352.67, + "probability": 0.847 + }, + { + "start": 9353.71, + "end": 9354.79, + "probability": 0.9993 + }, + { + "start": 9355.93, + "end": 9357.47, + "probability": 0.921 + }, + { + "start": 9374.15, + "end": 9374.73, + "probability": 0.6633 + }, + { + "start": 9374.85, + "end": 9377.79, + "probability": 0.9341 + }, + { + "start": 9377.87, + "end": 9379.11, + "probability": 0.8677 + }, + { + "start": 9379.23, + "end": 9382.63, + "probability": 0.9019 + }, + { + "start": 9382.63, + "end": 9384.57, + "probability": 0.9922 + }, + { + "start": 9385.77, + "end": 9388.64, + "probability": 0.8645 + }, + { + "start": 9389.57, + "end": 9391.07, + "probability": 0.9775 + }, + { + "start": 9391.55, + "end": 9392.45, + "probability": 0.8118 + }, + { + "start": 9393.65, + "end": 9394.89, + "probability": 0.9719 + }, + { + "start": 9396.07, + "end": 9398.14, + "probability": 0.8904 + }, + { + "start": 9400.03, + "end": 9402.49, + "probability": 0.9823 + }, + { + "start": 9402.55, + "end": 9402.83, + "probability": 0.983 + }, + { + "start": 9403.53, + "end": 9404.73, + "probability": 0.9902 + }, + { + "start": 9405.21, + "end": 9405.73, + "probability": 0.9475 + }, + { + "start": 9406.55, + "end": 9407.96, + "probability": 0.9746 + }, + { + "start": 9409.07, + "end": 9409.47, + "probability": 0.7227 + }, + { + "start": 9410.11, + "end": 9410.89, + "probability": 0.9574 + }, + { + "start": 9411.79, + "end": 9416.69, + "probability": 0.9829 + }, + { + "start": 9417.73, + "end": 9420.91, + "probability": 0.9582 + }, + { + "start": 9421.41, + "end": 9422.37, + "probability": 0.8877 + }, + { + "start": 9422.81, + "end": 9425.47, + "probability": 0.8592 + }, + { + "start": 9425.89, + "end": 9426.51, + "probability": 0.8606 + }, + { + "start": 9427.25, + "end": 9429.73, + "probability": 0.903 + }, + { + "start": 9429.95, + "end": 9430.41, + "probability": 0.8242 + }, + { + "start": 9431.03, + "end": 9431.95, + "probability": 0.7755 + }, + { + "start": 9432.13, + "end": 9435.61, + "probability": 0.95 + }, + { + "start": 9436.17, + "end": 9438.11, + "probability": 0.9946 + }, + { + "start": 9438.81, + "end": 9439.67, + "probability": 0.7263 + }, + { + "start": 9439.97, + "end": 9440.63, + "probability": 0.8807 + }, + { + "start": 9441.35, + "end": 9444.27, + "probability": 0.9948 + }, + { + "start": 9445.65, + "end": 9448.03, + "probability": 0.783 + }, + { + "start": 9448.23, + "end": 9450.19, + "probability": 0.7244 + }, + { + "start": 9451.93, + "end": 9454.01, + "probability": 0.9761 + }, + { + "start": 9454.39, + "end": 9455.03, + "probability": 0.9145 + }, + { + "start": 9455.81, + "end": 9456.15, + "probability": 0.6284 + }, + { + "start": 9456.29, + "end": 9457.35, + "probability": 0.9419 + }, + { + "start": 9457.59, + "end": 9458.01, + "probability": 0.8347 + }, + { + "start": 9458.95, + "end": 9460.63, + "probability": 0.9176 + }, + { + "start": 9461.17, + "end": 9462.57, + "probability": 0.7402 + }, + { + "start": 9463.39, + "end": 9463.89, + "probability": 0.8498 + }, + { + "start": 9463.91, + "end": 9465.41, + "probability": 0.9846 + }, + { + "start": 9466.71, + "end": 9467.97, + "probability": 0.5199 + }, + { + "start": 9468.63, + "end": 9468.71, + "probability": 0.6233 + }, + { + "start": 9472.03, + "end": 9473.15, + "probability": 0.6334 + }, + { + "start": 9473.31, + "end": 9474.47, + "probability": 0.1633 + }, + { + "start": 9474.65, + "end": 9476.83, + "probability": 0.8789 + }, + { + "start": 9476.91, + "end": 9479.15, + "probability": 0.6826 + }, + { + "start": 9480.13, + "end": 9481.83, + "probability": 0.8842 + }, + { + "start": 9483.13, + "end": 9483.57, + "probability": 0.6866 + }, + { + "start": 9485.74, + "end": 9487.43, + "probability": 0.5496 + }, + { + "start": 9489.39, + "end": 9490.27, + "probability": 0.8405 + }, + { + "start": 9491.07, + "end": 9493.51, + "probability": 0.9669 + }, + { + "start": 9493.63, + "end": 9494.27, + "probability": 0.8557 + }, + { + "start": 9494.35, + "end": 9497.61, + "probability": 0.9261 + }, + { + "start": 9497.71, + "end": 9498.59, + "probability": 0.8424 + }, + { + "start": 9499.15, + "end": 9500.41, + "probability": 0.7703 + }, + { + "start": 9501.03, + "end": 9502.86, + "probability": 0.9873 + }, + { + "start": 9503.03, + "end": 9504.01, + "probability": 0.7906 + }, + { + "start": 9504.41, + "end": 9505.67, + "probability": 0.7516 + }, + { + "start": 9506.09, + "end": 9508.71, + "probability": 0.9811 + }, + { + "start": 9509.07, + "end": 9510.19, + "probability": 0.2428 + }, + { + "start": 9510.95, + "end": 9513.75, + "probability": 0.8698 + }, + { + "start": 9513.75, + "end": 9516.59, + "probability": 0.8732 + }, + { + "start": 9517.15, + "end": 9519.05, + "probability": 0.6135 + }, + { + "start": 9519.21, + "end": 9519.87, + "probability": 0.5355 + }, + { + "start": 9519.97, + "end": 9520.53, + "probability": 0.8248 + }, + { + "start": 9520.63, + "end": 9522.66, + "probability": 0.8384 + }, + { + "start": 9522.73, + "end": 9525.41, + "probability": 0.836 + }, + { + "start": 9525.65, + "end": 9527.85, + "probability": 0.6896 + }, + { + "start": 9528.69, + "end": 9532.47, + "probability": 0.8599 + }, + { + "start": 9532.77, + "end": 9534.13, + "probability": 0.9963 + }, + { + "start": 9534.71, + "end": 9536.57, + "probability": 0.9849 + }, + { + "start": 9537.39, + "end": 9539.17, + "probability": 0.7852 + }, + { + "start": 9539.73, + "end": 9541.67, + "probability": 0.9972 + }, + { + "start": 9542.29, + "end": 9543.09, + "probability": 0.8364 + }, + { + "start": 9543.83, + "end": 9545.38, + "probability": 0.9919 + }, + { + "start": 9545.53, + "end": 9545.89, + "probability": 0.5739 + }, + { + "start": 9546.01, + "end": 9548.09, + "probability": 0.9211 + }, + { + "start": 9548.41, + "end": 9550.23, + "probability": 0.8016 + }, + { + "start": 9550.97, + "end": 9554.75, + "probability": 0.8639 + }, + { + "start": 9554.75, + "end": 9557.63, + "probability": 0.8426 + }, + { + "start": 9558.21, + "end": 9561.97, + "probability": 0.5688 + }, + { + "start": 9562.07, + "end": 9562.71, + "probability": 0.5618 + }, + { + "start": 9570.71, + "end": 9576.93, + "probability": 0.1079 + }, + { + "start": 9577.22, + "end": 9578.06, + "probability": 0.0469 + }, + { + "start": 9578.51, + "end": 9579.75, + "probability": 0.0362 + }, + { + "start": 9580.05, + "end": 9580.61, + "probability": 0.4585 + }, + { + "start": 9580.97, + "end": 9582.41, + "probability": 0.429 + }, + { + "start": 9583.09, + "end": 9583.93, + "probability": 0.663 + }, + { + "start": 9584.53, + "end": 9586.01, + "probability": 0.9045 + }, + { + "start": 9587.33, + "end": 9589.71, + "probability": 0.3079 + }, + { + "start": 9595.23, + "end": 9595.37, + "probability": 0.0149 + }, + { + "start": 9595.37, + "end": 9595.37, + "probability": 0.2138 + }, + { + "start": 9595.37, + "end": 9595.37, + "probability": 0.0136 + }, + { + "start": 9595.37, + "end": 9600.01, + "probability": 0.762 + }, + { + "start": 9600.11, + "end": 9605.87, + "probability": 0.929 + }, + { + "start": 9606.59, + "end": 9607.09, + "probability": 0.5347 + }, + { + "start": 9607.85, + "end": 9609.15, + "probability": 0.5904 + }, + { + "start": 9610.49, + "end": 9612.37, + "probability": 0.8117 + }, + { + "start": 9613.75, + "end": 9617.77, + "probability": 0.8105 + }, + { + "start": 9617.77, + "end": 9620.09, + "probability": 0.9795 + }, + { + "start": 9620.21, + "end": 9621.57, + "probability": 0.3938 + }, + { + "start": 9622.05, + "end": 9624.25, + "probability": 0.9751 + }, + { + "start": 9627.41, + "end": 9628.79, + "probability": 0.936 + }, + { + "start": 9629.83, + "end": 9632.69, + "probability": 0.9889 + }, + { + "start": 9632.91, + "end": 9633.87, + "probability": 0.9849 + }, + { + "start": 9634.23, + "end": 9635.25, + "probability": 0.8358 + }, + { + "start": 9636.03, + "end": 9637.65, + "probability": 0.9247 + }, + { + "start": 9638.25, + "end": 9639.75, + "probability": 0.916 + }, + { + "start": 9640.67, + "end": 9642.47, + "probability": 0.965 + }, + { + "start": 9643.21, + "end": 9644.97, + "probability": 0.998 + }, + { + "start": 9646.11, + "end": 9648.17, + "probability": 0.7426 + }, + { + "start": 9649.91, + "end": 9654.19, + "probability": 0.8503 + }, + { + "start": 9654.19, + "end": 9658.21, + "probability": 0.9841 + }, + { + "start": 9659.13, + "end": 9660.11, + "probability": 0.7095 + }, + { + "start": 9661.35, + "end": 9664.33, + "probability": 0.991 + }, + { + "start": 9665.39, + "end": 9667.33, + "probability": 0.9078 + }, + { + "start": 9668.27, + "end": 9670.63, + "probability": 0.9859 + }, + { + "start": 9672.39, + "end": 9674.91, + "probability": 0.9915 + }, + { + "start": 9676.21, + "end": 9677.31, + "probability": 0.7609 + }, + { + "start": 9678.63, + "end": 9681.51, + "probability": 0.9249 + }, + { + "start": 9682.45, + "end": 9683.59, + "probability": 0.7739 + }, + { + "start": 9684.39, + "end": 9687.99, + "probability": 0.8327 + }, + { + "start": 9688.75, + "end": 9689.38, + "probability": 0.5411 + }, + { + "start": 9690.59, + "end": 9691.63, + "probability": 0.9514 + }, + { + "start": 9692.97, + "end": 9693.03, + "probability": 0.0216 + }, + { + "start": 9693.03, + "end": 9697.15, + "probability": 0.9668 + }, + { + "start": 9698.39, + "end": 9700.73, + "probability": 0.9316 + }, + { + "start": 9702.39, + "end": 9705.07, + "probability": 0.9704 + }, + { + "start": 9705.95, + "end": 9706.72, + "probability": 0.7726 + }, + { + "start": 9708.89, + "end": 9712.07, + "probability": 0.9933 + }, + { + "start": 9712.99, + "end": 9715.07, + "probability": 0.7916 + }, + { + "start": 9715.59, + "end": 9717.69, + "probability": 0.9932 + }, + { + "start": 9719.09, + "end": 9721.35, + "probability": 0.9619 + }, + { + "start": 9721.47, + "end": 9725.25, + "probability": 0.7505 + }, + { + "start": 9726.51, + "end": 9727.75, + "probability": 0.8794 + }, + { + "start": 9728.81, + "end": 9730.29, + "probability": 0.9111 + }, + { + "start": 9731.23, + "end": 9732.85, + "probability": 0.9823 + }, + { + "start": 9733.49, + "end": 9735.01, + "probability": 0.9874 + }, + { + "start": 9735.61, + "end": 9737.15, + "probability": 0.9821 + }, + { + "start": 9737.77, + "end": 9738.51, + "probability": 0.9006 + }, + { + "start": 9739.29, + "end": 9741.97, + "probability": 0.9845 + }, + { + "start": 9742.15, + "end": 9747.61, + "probability": 0.9668 + }, + { + "start": 9748.69, + "end": 9753.07, + "probability": 0.7755 + }, + { + "start": 9754.01, + "end": 9755.85, + "probability": 0.9429 + }, + { + "start": 9757.73, + "end": 9760.27, + "probability": 0.9282 + }, + { + "start": 9761.29, + "end": 9764.95, + "probability": 0.9235 + }, + { + "start": 9767.29, + "end": 9767.91, + "probability": 0.8628 + }, + { + "start": 9771.25, + "end": 9775.29, + "probability": 0.7735 + }, + { + "start": 9775.29, + "end": 9777.89, + "probability": 0.9982 + }, + { + "start": 9778.93, + "end": 9780.67, + "probability": 0.7114 + }, + { + "start": 9780.79, + "end": 9783.15, + "probability": 0.748 + }, + { + "start": 9783.41, + "end": 9783.73, + "probability": 0.6154 + }, + { + "start": 9783.81, + "end": 9784.69, + "probability": 0.8399 + }, + { + "start": 9785.59, + "end": 9786.63, + "probability": 0.7637 + }, + { + "start": 9788.27, + "end": 9791.15, + "probability": 0.9478 + }, + { + "start": 9791.27, + "end": 9792.35, + "probability": 0.7758 + }, + { + "start": 9792.75, + "end": 9793.69, + "probability": 0.957 + }, + { + "start": 9793.91, + "end": 9795.57, + "probability": 0.8205 + }, + { + "start": 9795.71, + "end": 9798.93, + "probability": 0.9982 + }, + { + "start": 9799.83, + "end": 9801.77, + "probability": 0.9629 + }, + { + "start": 9802.45, + "end": 9803.81, + "probability": 0.9275 + }, + { + "start": 9804.51, + "end": 9809.07, + "probability": 0.9957 + }, + { + "start": 9809.91, + "end": 9810.71, + "probability": 0.9795 + }, + { + "start": 9811.71, + "end": 9813.37, + "probability": 0.9639 + }, + { + "start": 9814.27, + "end": 9815.67, + "probability": 0.9823 + }, + { + "start": 9816.75, + "end": 9820.25, + "probability": 0.9749 + }, + { + "start": 9823.25, + "end": 9825.35, + "probability": 0.7474 + }, + { + "start": 9826.73, + "end": 9831.31, + "probability": 0.9523 + }, + { + "start": 9831.51, + "end": 9833.25, + "probability": 0.9084 + }, + { + "start": 9833.53, + "end": 9834.91, + "probability": 0.9225 + }, + { + "start": 9835.37, + "end": 9839.99, + "probability": 0.9662 + }, + { + "start": 9840.07, + "end": 9841.13, + "probability": 0.9502 + }, + { + "start": 9841.57, + "end": 9842.93, + "probability": 0.9922 + }, + { + "start": 9843.03, + "end": 9844.21, + "probability": 0.9711 + }, + { + "start": 9844.29, + "end": 9845.95, + "probability": 0.9546 + }, + { + "start": 9847.37, + "end": 9849.23, + "probability": 0.9961 + }, + { + "start": 9850.07, + "end": 9850.43, + "probability": 0.7558 + }, + { + "start": 9850.67, + "end": 9851.35, + "probability": 0.7677 + }, + { + "start": 9851.51, + "end": 9854.74, + "probability": 0.9932 + }, + { + "start": 9855.37, + "end": 9856.13, + "probability": 0.7185 + }, + { + "start": 9857.47, + "end": 9858.77, + "probability": 0.9822 + }, + { + "start": 9859.33, + "end": 9861.37, + "probability": 0.8808 + }, + { + "start": 9862.21, + "end": 9865.15, + "probability": 0.9717 + }, + { + "start": 9865.47, + "end": 9870.45, + "probability": 0.9933 + }, + { + "start": 9872.91, + "end": 9875.91, + "probability": 0.8864 + }, + { + "start": 9876.19, + "end": 9881.63, + "probability": 0.9899 + }, + { + "start": 9882.65, + "end": 9888.29, + "probability": 0.9883 + }, + { + "start": 9888.65, + "end": 9889.53, + "probability": 0.7628 + }, + { + "start": 9889.83, + "end": 9891.34, + "probability": 0.7427 + }, + { + "start": 9893.73, + "end": 9894.85, + "probability": 0.9036 + }, + { + "start": 9896.21, + "end": 9897.37, + "probability": 0.9966 + }, + { + "start": 9899.01, + "end": 9901.79, + "probability": 0.9378 + }, + { + "start": 9903.61, + "end": 9906.43, + "probability": 0.9768 + }, + { + "start": 9909.15, + "end": 9914.29, + "probability": 0.8147 + }, + { + "start": 9914.35, + "end": 9916.55, + "probability": 0.9226 + }, + { + "start": 9916.61, + "end": 9918.37, + "probability": 0.976 + }, + { + "start": 9918.99, + "end": 9922.05, + "probability": 0.9917 + }, + { + "start": 9922.59, + "end": 9923.65, + "probability": 0.9601 + }, + { + "start": 9924.63, + "end": 9926.49, + "probability": 0.9968 + }, + { + "start": 9927.71, + "end": 9929.12, + "probability": 0.7205 + }, + { + "start": 9930.45, + "end": 9932.29, + "probability": 0.9178 + }, + { + "start": 9933.51, + "end": 9935.13, + "probability": 0.9274 + }, + { + "start": 9935.87, + "end": 9937.33, + "probability": 0.9878 + }, + { + "start": 9937.47, + "end": 9938.13, + "probability": 0.9088 + }, + { + "start": 9938.29, + "end": 9939.05, + "probability": 0.9691 + }, + { + "start": 9940.09, + "end": 9942.91, + "probability": 0.88 + }, + { + "start": 9944.25, + "end": 9944.99, + "probability": 0.8553 + }, + { + "start": 9945.37, + "end": 9947.01, + "probability": 0.9903 + }, + { + "start": 9947.35, + "end": 9948.35, + "probability": 0.8581 + }, + { + "start": 9948.55, + "end": 9951.31, + "probability": 0.9847 + }, + { + "start": 9952.19, + "end": 9955.87, + "probability": 0.8643 + }, + { + "start": 9956.75, + "end": 9961.97, + "probability": 0.995 + }, + { + "start": 9962.27, + "end": 9966.51, + "probability": 0.8251 + }, + { + "start": 9966.75, + "end": 9968.17, + "probability": 0.9022 + }, + { + "start": 9968.35, + "end": 9968.9, + "probability": 0.7666 + }, + { + "start": 9969.19, + "end": 9971.99, + "probability": 0.9396 + }, + { + "start": 9974.79, + "end": 9976.35, + "probability": 0.919 + }, + { + "start": 9976.39, + "end": 9978.39, + "probability": 0.9417 + }, + { + "start": 9978.93, + "end": 9983.15, + "probability": 0.9987 + }, + { + "start": 9983.31, + "end": 9985.39, + "probability": 0.9969 + }, + { + "start": 9986.05, + "end": 9989.03, + "probability": 0.9956 + }, + { + "start": 9989.13, + "end": 9993.95, + "probability": 0.9903 + }, + { + "start": 9995.61, + "end": 9995.83, + "probability": 0.2735 + }, + { + "start": 9995.83, + "end": 9995.83, + "probability": 0.0913 + }, + { + "start": 9995.83, + "end": 9997.13, + "probability": 0.7661 + }, + { + "start": 9997.31, + "end": 9997.75, + "probability": 0.7982 + }, + { + "start": 9997.87, + "end": 10000.83, + "probability": 0.9926 + }, + { + "start": 10000.99, + "end": 10002.11, + "probability": 0.8159 + }, + { + "start": 10002.73, + "end": 10005.82, + "probability": 0.9771 + }, + { + "start": 10006.61, + "end": 10007.45, + "probability": 0.8403 + }, + { + "start": 10008.09, + "end": 10008.09, + "probability": 0.0565 + }, + { + "start": 10008.09, + "end": 10008.21, + "probability": 0.2097 + }, + { + "start": 10009.13, + "end": 10010.15, + "probability": 0.8781 + }, + { + "start": 10010.21, + "end": 10010.59, + "probability": 0.7217 + }, + { + "start": 10010.79, + "end": 10010.99, + "probability": 0.8123 + }, + { + "start": 10011.17, + "end": 10012.01, + "probability": 0.9041 + }, + { + "start": 10012.11, + "end": 10012.51, + "probability": 0.9256 + }, + { + "start": 10012.67, + "end": 10017.19, + "probability": 0.9061 + }, + { + "start": 10017.37, + "end": 10022.42, + "probability": 0.989 + }, + { + "start": 10022.71, + "end": 10024.53, + "probability": 0.659 + }, + { + "start": 10025.29, + "end": 10028.11, + "probability": 0.9251 + }, + { + "start": 10028.81, + "end": 10031.25, + "probability": 0.7244 + }, + { + "start": 10031.83, + "end": 10033.59, + "probability": 0.9639 + }, + { + "start": 10034.77, + "end": 10035.93, + "probability": 0.9712 + }, + { + "start": 10036.47, + "end": 10038.33, + "probability": 0.8551 + }, + { + "start": 10039.23, + "end": 10040.69, + "probability": 0.9633 + }, + { + "start": 10041.47, + "end": 10042.79, + "probability": 0.9587 + }, + { + "start": 10042.91, + "end": 10043.35, + "probability": 0.9146 + }, + { + "start": 10043.83, + "end": 10046.73, + "probability": 0.9893 + }, + { + "start": 10047.27, + "end": 10048.91, + "probability": 0.995 + }, + { + "start": 10049.59, + "end": 10052.73, + "probability": 0.9187 + }, + { + "start": 10053.45, + "end": 10054.99, + "probability": 0.9988 + }, + { + "start": 10056.07, + "end": 10057.65, + "probability": 0.9982 + }, + { + "start": 10058.01, + "end": 10059.62, + "probability": 0.9941 + }, + { + "start": 10061.51, + "end": 10062.79, + "probability": 0.9971 + }, + { + "start": 10063.09, + "end": 10064.75, + "probability": 0.0358 + }, + { + "start": 10065.05, + "end": 10066.49, + "probability": 0.999 + }, + { + "start": 10068.37, + "end": 10071.98, + "probability": 0.7513 + }, + { + "start": 10073.47, + "end": 10076.79, + "probability": 0.8085 + }, + { + "start": 10076.91, + "end": 10080.17, + "probability": 0.7103 + }, + { + "start": 10082.73, + "end": 10084.99, + "probability": 0.9897 + }, + { + "start": 10086.45, + "end": 10092.53, + "probability": 0.9986 + }, + { + "start": 10092.61, + "end": 10093.71, + "probability": 0.7545 + }, + { + "start": 10094.47, + "end": 10095.77, + "probability": 0.9902 + }, + { + "start": 10096.77, + "end": 10097.79, + "probability": 0.9213 + }, + { + "start": 10098.03, + "end": 10099.39, + "probability": 0.1568 + }, + { + "start": 10099.91, + "end": 10101.05, + "probability": 0.7607 + }, + { + "start": 10102.41, + "end": 10105.49, + "probability": 0.322 + }, + { + "start": 10105.67, + "end": 10108.19, + "probability": 0.8769 + }, + { + "start": 10108.31, + "end": 10109.15, + "probability": 0.938 + }, + { + "start": 10109.27, + "end": 10109.59, + "probability": 0.3148 + }, + { + "start": 10109.95, + "end": 10110.71, + "probability": 0.6695 + }, + { + "start": 10110.81, + "end": 10112.17, + "probability": 0.4974 + }, + { + "start": 10112.29, + "end": 10112.99, + "probability": 0.5039 + }, + { + "start": 10113.01, + "end": 10113.43, + "probability": 0.1357 + }, + { + "start": 10114.71, + "end": 10116.01, + "probability": 0.5024 + }, + { + "start": 10116.07, + "end": 10117.29, + "probability": 0.748 + }, + { + "start": 10117.61, + "end": 10118.75, + "probability": 0.7227 + }, + { + "start": 10119.49, + "end": 10119.73, + "probability": 0.3935 + }, + { + "start": 10119.73, + "end": 10119.87, + "probability": 0.4641 + }, + { + "start": 10120.45, + "end": 10121.77, + "probability": 0.9875 + }, + { + "start": 10122.21, + "end": 10123.45, + "probability": 0.9888 + }, + { + "start": 10123.53, + "end": 10123.85, + "probability": 0.7596 + }, + { + "start": 10123.91, + "end": 10124.07, + "probability": 0.6747 + }, + { + "start": 10124.11, + "end": 10125.47, + "probability": 0.9557 + }, + { + "start": 10125.67, + "end": 10126.13, + "probability": 0.8685 + }, + { + "start": 10127.95, + "end": 10128.85, + "probability": 0.8992 + }, + { + "start": 10129.11, + "end": 10129.11, + "probability": 0.0294 + }, + { + "start": 10129.11, + "end": 10129.29, + "probability": 0.356 + }, + { + "start": 10129.35, + "end": 10130.61, + "probability": 0.7522 + }, + { + "start": 10130.83, + "end": 10131.31, + "probability": 0.668 + }, + { + "start": 10131.37, + "end": 10135.11, + "probability": 0.9863 + }, + { + "start": 10136.33, + "end": 10139.41, + "probability": 0.9965 + }, + { + "start": 10140.55, + "end": 10143.53, + "probability": 0.9756 + }, + { + "start": 10144.49, + "end": 10145.79, + "probability": 0.9873 + }, + { + "start": 10146.45, + "end": 10147.93, + "probability": 0.8961 + }, + { + "start": 10149.73, + "end": 10152.13, + "probability": 0.9633 + }, + { + "start": 10152.81, + "end": 10154.09, + "probability": 0.8904 + }, + { + "start": 10155.49, + "end": 10156.37, + "probability": 0.8868 + }, + { + "start": 10156.45, + "end": 10156.91, + "probability": 0.5128 + }, + { + "start": 10157.01, + "end": 10159.37, + "probability": 0.9851 + }, + { + "start": 10160.77, + "end": 10162.31, + "probability": 0.9517 + }, + { + "start": 10163.21, + "end": 10166.05, + "probability": 0.8955 + }, + { + "start": 10166.95, + "end": 10171.77, + "probability": 0.9934 + }, + { + "start": 10171.81, + "end": 10173.77, + "probability": 0.8825 + }, + { + "start": 10176.05, + "end": 10180.77, + "probability": 0.7956 + }, + { + "start": 10181.43, + "end": 10182.95, + "probability": 0.8841 + }, + { + "start": 10183.55, + "end": 10185.03, + "probability": 0.9517 + }, + { + "start": 10186.03, + "end": 10187.45, + "probability": 0.9961 + }, + { + "start": 10188.37, + "end": 10196.01, + "probability": 0.9954 + }, + { + "start": 10198.3, + "end": 10199.33, + "probability": 0.0722 + }, + { + "start": 10199.33, + "end": 10199.93, + "probability": 0.3383 + }, + { + "start": 10200.29, + "end": 10200.75, + "probability": 0.4549 + }, + { + "start": 10201.45, + "end": 10206.25, + "probability": 0.9922 + }, + { + "start": 10206.77, + "end": 10207.73, + "probability": 0.9844 + }, + { + "start": 10208.51, + "end": 10210.15, + "probability": 0.9502 + }, + { + "start": 10212.25, + "end": 10215.37, + "probability": 0.948 + }, + { + "start": 10216.69, + "end": 10217.21, + "probability": 0.7362 + }, + { + "start": 10218.87, + "end": 10220.69, + "probability": 0.8709 + }, + { + "start": 10221.51, + "end": 10223.57, + "probability": 0.8778 + }, + { + "start": 10224.31, + "end": 10225.65, + "probability": 0.9759 + }, + { + "start": 10226.69, + "end": 10228.13, + "probability": 0.9842 + }, + { + "start": 10228.81, + "end": 10231.21, + "probability": 0.9796 + }, + { + "start": 10231.27, + "end": 10235.23, + "probability": 0.9964 + }, + { + "start": 10236.11, + "end": 10238.19, + "probability": 0.6927 + }, + { + "start": 10239.07, + "end": 10239.99, + "probability": 0.9432 + }, + { + "start": 10240.31, + "end": 10241.43, + "probability": 0.918 + }, + { + "start": 10241.85, + "end": 10244.27, + "probability": 0.9932 + }, + { + "start": 10244.75, + "end": 10245.92, + "probability": 0.9974 + }, + { + "start": 10246.73, + "end": 10249.13, + "probability": 0.951 + }, + { + "start": 10249.71, + "end": 10250.27, + "probability": 0.5985 + }, + { + "start": 10251.01, + "end": 10253.47, + "probability": 0.9326 + }, + { + "start": 10254.69, + "end": 10256.25, + "probability": 0.9055 + }, + { + "start": 10256.35, + "end": 10260.01, + "probability": 0.9878 + }, + { + "start": 10260.13, + "end": 10263.73, + "probability": 0.9863 + }, + { + "start": 10264.09, + "end": 10265.09, + "probability": 0.7891 + }, + { + "start": 10265.31, + "end": 10269.29, + "probability": 0.9709 + }, + { + "start": 10269.63, + "end": 10272.95, + "probability": 0.9824 + }, + { + "start": 10274.01, + "end": 10277.87, + "probability": 0.9825 + }, + { + "start": 10278.53, + "end": 10280.41, + "probability": 0.9227 + }, + { + "start": 10280.67, + "end": 10281.45, + "probability": 0.976 + }, + { + "start": 10281.87, + "end": 10284.73, + "probability": 0.7983 + }, + { + "start": 10285.11, + "end": 10287.79, + "probability": 0.9235 + }, + { + "start": 10297.37, + "end": 10299.83, + "probability": 0.639 + }, + { + "start": 10299.89, + "end": 10302.95, + "probability": 0.7727 + }, + { + "start": 10303.07, + "end": 10304.09, + "probability": 0.738 + }, + { + "start": 10304.63, + "end": 10307.13, + "probability": 0.7191 + }, + { + "start": 10307.81, + "end": 10308.79, + "probability": 0.8662 + }, + { + "start": 10308.95, + "end": 10309.37, + "probability": 0.7006 + }, + { + "start": 10309.47, + "end": 10310.67, + "probability": 0.959 + }, + { + "start": 10310.83, + "end": 10315.31, + "probability": 0.8164 + }, + { + "start": 10315.43, + "end": 10316.17, + "probability": 0.6993 + }, + { + "start": 10316.29, + "end": 10317.23, + "probability": 0.9125 + }, + { + "start": 10317.35, + "end": 10318.54, + "probability": 0.1398 + }, + { + "start": 10319.45, + "end": 10322.43, + "probability": 0.9443 + }, + { + "start": 10323.63, + "end": 10325.47, + "probability": 0.9078 + }, + { + "start": 10325.51, + "end": 10326.39, + "probability": 0.7168 + }, + { + "start": 10326.41, + "end": 10327.19, + "probability": 0.7847 + }, + { + "start": 10327.55, + "end": 10327.91, + "probability": 0.5993 + }, + { + "start": 10327.93, + "end": 10329.33, + "probability": 0.8867 + }, + { + "start": 10329.69, + "end": 10330.67, + "probability": 0.9368 + }, + { + "start": 10330.73, + "end": 10331.83, + "probability": 0.9878 + }, + { + "start": 10333.09, + "end": 10334.89, + "probability": 0.8691 + }, + { + "start": 10335.01, + "end": 10336.77, + "probability": 0.4806 + }, + { + "start": 10336.93, + "end": 10340.51, + "probability": 0.9839 + }, + { + "start": 10340.73, + "end": 10341.15, + "probability": 0.5118 + }, + { + "start": 10341.15, + "end": 10342.48, + "probability": 0.0337 + }, + { + "start": 10342.79, + "end": 10344.79, + "probability": 0.8235 + }, + { + "start": 10345.31, + "end": 10348.63, + "probability": 0.8879 + }, + { + "start": 10348.73, + "end": 10352.69, + "probability": 0.9811 + }, + { + "start": 10353.28, + "end": 10356.87, + "probability": 0.9773 + }, + { + "start": 10356.99, + "end": 10360.43, + "probability": 0.9789 + }, + { + "start": 10361.25, + "end": 10362.53, + "probability": 0.7714 + }, + { + "start": 10362.89, + "end": 10366.51, + "probability": 0.9283 + }, + { + "start": 10369.25, + "end": 10372.77, + "probability": 0.7742 + }, + { + "start": 10373.66, + "end": 10375.91, + "probability": 0.4691 + }, + { + "start": 10377.75, + "end": 10381.13, + "probability": 0.974 + }, + { + "start": 10381.13, + "end": 10384.59, + "probability": 0.9621 + }, + { + "start": 10384.91, + "end": 10388.33, + "probability": 0.6872 + }, + { + "start": 10390.07, + "end": 10394.09, + "probability": 0.9776 + }, + { + "start": 10395.85, + "end": 10398.63, + "probability": 0.9529 + }, + { + "start": 10400.49, + "end": 10402.43, + "probability": 0.9112 + }, + { + "start": 10403.55, + "end": 10405.79, + "probability": 0.9231 + }, + { + "start": 10405.79, + "end": 10408.09, + "probability": 0.9156 + }, + { + "start": 10408.49, + "end": 10409.35, + "probability": 0.6173 + }, + { + "start": 10410.67, + "end": 10413.57, + "probability": 0.6086 + }, + { + "start": 10413.71, + "end": 10415.31, + "probability": 0.6567 + }, + { + "start": 10416.65, + "end": 10418.89, + "probability": 0.9861 + }, + { + "start": 10419.35, + "end": 10420.61, + "probability": 0.6454 + }, + { + "start": 10420.61, + "end": 10421.38, + "probability": 0.822 + }, + { + "start": 10422.81, + "end": 10423.57, + "probability": 0.9043 + }, + { + "start": 10424.51, + "end": 10425.07, + "probability": 0.1164 + }, + { + "start": 10425.53, + "end": 10425.85, + "probability": 0.4971 + }, + { + "start": 10426.07, + "end": 10427.26, + "probability": 0.97 + }, + { + "start": 10428.57, + "end": 10430.87, + "probability": 0.9539 + }, + { + "start": 10431.95, + "end": 10434.03, + "probability": 0.8461 + }, + { + "start": 10434.09, + "end": 10435.11, + "probability": 0.9717 + }, + { + "start": 10435.31, + "end": 10437.69, + "probability": 0.9932 + }, + { + "start": 10438.59, + "end": 10440.17, + "probability": 0.7773 + }, + { + "start": 10441.87, + "end": 10445.37, + "probability": 0.8417 + }, + { + "start": 10445.49, + "end": 10447.67, + "probability": 0.9758 + }, + { + "start": 10449.25, + "end": 10449.63, + "probability": 0.9762 + }, + { + "start": 10451.35, + "end": 10452.31, + "probability": 0.4882 + }, + { + "start": 10452.45, + "end": 10455.65, + "probability": 0.6002 + }, + { + "start": 10457.03, + "end": 10459.45, + "probability": 0.9902 + }, + { + "start": 10459.45, + "end": 10461.65, + "probability": 0.9529 + }, + { + "start": 10463.21, + "end": 10465.27, + "probability": 0.8293 + }, + { + "start": 10466.81, + "end": 10470.55, + "probability": 0.9843 + }, + { + "start": 10470.55, + "end": 10474.59, + "probability": 0.8356 + }, + { + "start": 10474.67, + "end": 10476.75, + "probability": 0.8671 + }, + { + "start": 10476.87, + "end": 10479.09, + "probability": 0.4026 + }, + { + "start": 10479.09, + "end": 10481.34, + "probability": 0.998 + }, + { + "start": 10481.43, + "end": 10484.05, + "probability": 0.9106 + }, + { + "start": 10485.59, + "end": 10490.03, + "probability": 0.8347 + }, + { + "start": 10490.11, + "end": 10492.69, + "probability": 0.7042 + }, + { + "start": 10494.97, + "end": 10497.19, + "probability": 0.8555 + }, + { + "start": 10497.19, + "end": 10499.69, + "probability": 0.874 + }, + { + "start": 10499.79, + "end": 10500.67, + "probability": 0.9404 + }, + { + "start": 10500.89, + "end": 10501.33, + "probability": 0.6225 + }, + { + "start": 10502.45, + "end": 10505.91, + "probability": 0.5972 + }, + { + "start": 10507.83, + "end": 10511.17, + "probability": 0.9851 + }, + { + "start": 10513.53, + "end": 10515.13, + "probability": 0.6657 + }, + { + "start": 10515.27, + "end": 10521.83, + "probability": 0.8815 + }, + { + "start": 10521.83, + "end": 10523.97, + "probability": 0.9476 + }, + { + "start": 10525.51, + "end": 10528.55, + "probability": 0.9495 + }, + { + "start": 10528.85, + "end": 10533.11, + "probability": 0.9982 + }, + { + "start": 10534.27, + "end": 10535.35, + "probability": 0.7898 + }, + { + "start": 10538.31, + "end": 10538.89, + "probability": 0.7059 + }, + { + "start": 10539.19, + "end": 10539.95, + "probability": 0.5687 + }, + { + "start": 10540.05, + "end": 10542.71, + "probability": 0.9929 + }, + { + "start": 10542.71, + "end": 10545.91, + "probability": 0.9963 + }, + { + "start": 10546.13, + "end": 10548.55, + "probability": 0.976 + }, + { + "start": 10550.12, + "end": 10555.11, + "probability": 0.9219 + }, + { + "start": 10555.81, + "end": 10557.55, + "probability": 0.9027 + }, + { + "start": 10557.65, + "end": 10558.41, + "probability": 0.8977 + }, + { + "start": 10561.51, + "end": 10563.43, + "probability": 0.8235 + }, + { + "start": 10565.73, + "end": 10567.99, + "probability": 0.967 + }, + { + "start": 10568.75, + "end": 10569.59, + "probability": 0.8492 + }, + { + "start": 10570.55, + "end": 10573.29, + "probability": 0.733 + }, + { + "start": 10573.29, + "end": 10577.98, + "probability": 0.9281 + }, + { + "start": 10578.91, + "end": 10580.89, + "probability": 0.973 + }, + { + "start": 10581.95, + "end": 10585.67, + "probability": 0.9561 + }, + { + "start": 10587.95, + "end": 10589.09, + "probability": 0.7464 + }, + { + "start": 10593.03, + "end": 10594.93, + "probability": 0.8161 + }, + { + "start": 10597.75, + "end": 10602.69, + "probability": 0.9703 + }, + { + "start": 10606.11, + "end": 10607.71, + "probability": 0.9723 + }, + { + "start": 10608.33, + "end": 10608.97, + "probability": 0.705 + }, + { + "start": 10610.39, + "end": 10612.35, + "probability": 0.6622 + }, + { + "start": 10613.31, + "end": 10616.15, + "probability": 0.9922 + }, + { + "start": 10616.85, + "end": 10619.87, + "probability": 0.9391 + }, + { + "start": 10619.87, + "end": 10622.47, + "probability": 0.8962 + }, + { + "start": 10623.19, + "end": 10626.07, + "probability": 0.9547 + }, + { + "start": 10627.17, + "end": 10630.03, + "probability": 0.9531 + }, + { + "start": 10630.31, + "end": 10631.27, + "probability": 0.7921 + }, + { + "start": 10631.41, + "end": 10632.59, + "probability": 0.9832 + }, + { + "start": 10632.85, + "end": 10634.57, + "probability": 0.9225 + }, + { + "start": 10635.49, + "end": 10638.69, + "probability": 0.96 + }, + { + "start": 10639.35, + "end": 10642.09, + "probability": 0.9692 + }, + { + "start": 10645.71, + "end": 10645.85, + "probability": 0.1062 + }, + { + "start": 10645.87, + "end": 10647.69, + "probability": 0.7324 + }, + { + "start": 10648.81, + "end": 10651.09, + "probability": 0.8994 + }, + { + "start": 10651.09, + "end": 10654.53, + "probability": 0.9351 + }, + { + "start": 10655.07, + "end": 10657.27, + "probability": 0.9685 + }, + { + "start": 10658.45, + "end": 10665.33, + "probability": 0.7933 + }, + { + "start": 10665.33, + "end": 10668.87, + "probability": 0.8465 + }, + { + "start": 10670.03, + "end": 10671.65, + "probability": 0.8595 + }, + { + "start": 10672.81, + "end": 10674.83, + "probability": 0.8708 + }, + { + "start": 10675.21, + "end": 10677.53, + "probability": 0.8949 + }, + { + "start": 10678.77, + "end": 10679.51, + "probability": 0.9783 + }, + { + "start": 10680.25, + "end": 10683.07, + "probability": 0.9097 + }, + { + "start": 10683.47, + "end": 10684.29, + "probability": 0.9883 + }, + { + "start": 10684.45, + "end": 10684.95, + "probability": 0.5875 + }, + { + "start": 10685.91, + "end": 10690.51, + "probability": 0.7641 + }, + { + "start": 10692.91, + "end": 10695.49, + "probability": 0.6676 + }, + { + "start": 10695.59, + "end": 10695.87, + "probability": 0.7633 + }, + { + "start": 10696.89, + "end": 10699.91, + "probability": 0.9211 + }, + { + "start": 10699.99, + "end": 10703.41, + "probability": 0.8967 + }, + { + "start": 10707.57, + "end": 10708.83, + "probability": 0.6925 + }, + { + "start": 10710.29, + "end": 10711.73, + "probability": 0.2034 + }, + { + "start": 10711.99, + "end": 10713.19, + "probability": 0.7271 + }, + { + "start": 10713.35, + "end": 10715.01, + "probability": 0.8496 + }, + { + "start": 10715.01, + "end": 10715.17, + "probability": 0.0932 + }, + { + "start": 10715.65, + "end": 10717.49, + "probability": 0.7558 + }, + { + "start": 10717.55, + "end": 10722.19, + "probability": 0.9743 + }, + { + "start": 10722.57, + "end": 10724.31, + "probability": 0.9144 + }, + { + "start": 10724.53, + "end": 10724.55, + "probability": 0.0144 + }, + { + "start": 10724.55, + "end": 10724.55, + "probability": 0.173 + }, + { + "start": 10724.55, + "end": 10727.55, + "probability": 0.8673 + }, + { + "start": 10728.07, + "end": 10728.39, + "probability": 0.5556 + }, + { + "start": 10728.55, + "end": 10729.49, + "probability": 0.6683 + }, + { + "start": 10729.57, + "end": 10730.49, + "probability": 0.7604 + }, + { + "start": 10730.61, + "end": 10733.27, + "probability": 0.8466 + }, + { + "start": 10736.23, + "end": 10740.77, + "probability": 0.9985 + }, + { + "start": 10741.79, + "end": 10746.67, + "probability": 0.9978 + }, + { + "start": 10747.19, + "end": 10749.27, + "probability": 0.9749 + }, + { + "start": 10749.87, + "end": 10750.53, + "probability": 0.863 + }, + { + "start": 10751.33, + "end": 10752.29, + "probability": 0.8176 + }, + { + "start": 10752.83, + "end": 10753.97, + "probability": 0.9261 + }, + { + "start": 10754.51, + "end": 10755.71, + "probability": 0.9715 + }, + { + "start": 10756.27, + "end": 10757.99, + "probability": 0.7493 + }, + { + "start": 10758.77, + "end": 10760.67, + "probability": 0.9779 + }, + { + "start": 10762.29, + "end": 10762.87, + "probability": 0.8711 + }, + { + "start": 10763.41, + "end": 10765.49, + "probability": 0.9494 + }, + { + "start": 10766.05, + "end": 10767.29, + "probability": 0.9976 + }, + { + "start": 10767.71, + "end": 10769.01, + "probability": 0.9961 + }, + { + "start": 10769.61, + "end": 10771.95, + "probability": 0.9803 + }, + { + "start": 10772.19, + "end": 10772.95, + "probability": 0.9553 + }, + { + "start": 10772.99, + "end": 10773.85, + "probability": 0.7078 + }, + { + "start": 10774.17, + "end": 10775.39, + "probability": 0.9802 + }, + { + "start": 10775.87, + "end": 10776.64, + "probability": 0.985 + }, + { + "start": 10777.45, + "end": 10778.62, + "probability": 0.9779 + }, + { + "start": 10779.03, + "end": 10780.65, + "probability": 0.8636 + }, + { + "start": 10780.99, + "end": 10783.37, + "probability": 0.924 + }, + { + "start": 10783.69, + "end": 10785.73, + "probability": 0.9321 + }, + { + "start": 10786.51, + "end": 10787.97, + "probability": 0.999 + }, + { + "start": 10788.03, + "end": 10789.57, + "probability": 0.9385 + }, + { + "start": 10790.13, + "end": 10793.93, + "probability": 0.9336 + }, + { + "start": 10794.61, + "end": 10796.79, + "probability": 0.9987 + }, + { + "start": 10797.11, + "end": 10798.99, + "probability": 0.9971 + }, + { + "start": 10799.71, + "end": 10802.77, + "probability": 0.9912 + }, + { + "start": 10802.85, + "end": 10804.41, + "probability": 0.998 + }, + { + "start": 10805.33, + "end": 10806.37, + "probability": 0.8406 + }, + { + "start": 10806.53, + "end": 10808.97, + "probability": 0.9317 + }, + { + "start": 10809.45, + "end": 10813.51, + "probability": 0.8853 + }, + { + "start": 10813.69, + "end": 10815.09, + "probability": 0.6512 + }, + { + "start": 10815.29, + "end": 10816.45, + "probability": 0.9777 + }, + { + "start": 10817.49, + "end": 10818.55, + "probability": 0.9009 + }, + { + "start": 10819.01, + "end": 10820.23, + "probability": 0.8352 + }, + { + "start": 10820.59, + "end": 10822.85, + "probability": 0.9262 + }, + { + "start": 10823.21, + "end": 10825.59, + "probability": 0.994 + }, + { + "start": 10826.15, + "end": 10828.13, + "probability": 0.7772 + }, + { + "start": 10828.51, + "end": 10831.59, + "probability": 0.97 + }, + { + "start": 10832.45, + "end": 10836.27, + "probability": 0.7238 + }, + { + "start": 10836.65, + "end": 10839.95, + "probability": 0.9895 + }, + { + "start": 10840.83, + "end": 10843.79, + "probability": 0.9047 + }, + { + "start": 10843.99, + "end": 10847.99, + "probability": 0.943 + }, + { + "start": 10848.21, + "end": 10849.17, + "probability": 0.9541 + }, + { + "start": 10849.53, + "end": 10850.33, + "probability": 0.8445 + }, + { + "start": 10850.53, + "end": 10852.31, + "probability": 0.9902 + }, + { + "start": 10852.83, + "end": 10854.57, + "probability": 0.9581 + }, + { + "start": 10855.13, + "end": 10856.43, + "probability": 0.8223 + }, + { + "start": 10856.49, + "end": 10859.29, + "probability": 0.991 + }, + { + "start": 10860.01, + "end": 10861.23, + "probability": 0.853 + }, + { + "start": 10862.15, + "end": 10863.13, + "probability": 0.9712 + }, + { + "start": 10863.43, + "end": 10864.31, + "probability": 0.5026 + }, + { + "start": 10864.53, + "end": 10866.47, + "probability": 0.8658 + }, + { + "start": 10866.81, + "end": 10869.73, + "probability": 0.8526 + }, + { + "start": 10870.33, + "end": 10872.23, + "probability": 0.97 + }, + { + "start": 10872.55, + "end": 10875.39, + "probability": 0.2997 + }, + { + "start": 10875.45, + "end": 10876.97, + "probability": 0.9488 + }, + { + "start": 10886.91, + "end": 10889.64, + "probability": 0.1615 + }, + { + "start": 10891.81, + "end": 10894.67, + "probability": 0.3531 + }, + { + "start": 10896.07, + "end": 10899.99, + "probability": 0.597 + }, + { + "start": 10900.37, + "end": 10906.69, + "probability": 0.3317 + }, + { + "start": 10908.39, + "end": 10909.49, + "probability": 0.3626 + }, + { + "start": 10909.49, + "end": 10912.81, + "probability": 0.5736 + }, + { + "start": 10912.89, + "end": 10915.79, + "probability": 0.7981 + }, + { + "start": 10917.25, + "end": 10922.27, + "probability": 0.9761 + }, + { + "start": 10922.47, + "end": 10923.65, + "probability": 0.9731 + }, + { + "start": 10924.33, + "end": 10928.27, + "probability": 0.8925 + }, + { + "start": 10929.33, + "end": 10930.63, + "probability": 0.6579 + }, + { + "start": 10930.71, + "end": 10931.67, + "probability": 0.9487 + }, + { + "start": 10932.59, + "end": 10936.69, + "probability": 0.7192 + }, + { + "start": 10938.53, + "end": 10940.01, + "probability": 0.7509 + }, + { + "start": 10941.83, + "end": 10942.39, + "probability": 0.8873 + }, + { + "start": 10942.61, + "end": 10944.87, + "probability": 0.8473 + }, + { + "start": 10945.83, + "end": 10946.38, + "probability": 0.9409 + }, + { + "start": 10946.77, + "end": 10948.09, + "probability": 0.9451 + }, + { + "start": 10948.39, + "end": 10950.11, + "probability": 0.514 + }, + { + "start": 10950.11, + "end": 10950.97, + "probability": 0.7881 + }, + { + "start": 10951.07, + "end": 10953.87, + "probability": 0.9788 + }, + { + "start": 10955.33, + "end": 10955.97, + "probability": 0.1367 + }, + { + "start": 10955.97, + "end": 10956.75, + "probability": 0.7367 + }, + { + "start": 10956.89, + "end": 10962.69, + "probability": 0.7285 + }, + { + "start": 10963.51, + "end": 10964.79, + "probability": 0.1777 + }, + { + "start": 10965.15, + "end": 10968.87, + "probability": 0.4258 + }, + { + "start": 10969.21, + "end": 10971.33, + "probability": 0.7988 + }, + { + "start": 10971.75, + "end": 10972.63, + "probability": 0.9548 + }, + { + "start": 10973.03, + "end": 10974.05, + "probability": 0.9977 + }, + { + "start": 10976.11, + "end": 10979.77, + "probability": 0.2001 + }, + { + "start": 10980.59, + "end": 10981.6, + "probability": 0.2809 + }, + { + "start": 10986.93, + "end": 10989.23, + "probability": 0.5805 + }, + { + "start": 10990.28, + "end": 10992.53, + "probability": 0.7965 + }, + { + "start": 10992.59, + "end": 10993.79, + "probability": 0.8995 + }, + { + "start": 11006.05, + "end": 11009.37, + "probability": 0.595 + }, + { + "start": 11009.61, + "end": 11010.01, + "probability": 0.1812 + }, + { + "start": 11010.17, + "end": 11014.13, + "probability": 0.6244 + }, + { + "start": 11014.19, + "end": 11016.25, + "probability": 0.51 + }, + { + "start": 11016.77, + "end": 11019.37, + "probability": 0.9321 + }, + { + "start": 11019.41, + "end": 11020.43, + "probability": 0.9633 + }, + { + "start": 11020.49, + "end": 11021.35, + "probability": 0.9728 + }, + { + "start": 11021.59, + "end": 11021.73, + "probability": 0.3786 + }, + { + "start": 11022.93, + "end": 11024.77, + "probability": 0.7803 + }, + { + "start": 11026.15, + "end": 11027.76, + "probability": 0.9253 + }, + { + "start": 11029.07, + "end": 11032.41, + "probability": 0.3442 + }, + { + "start": 11033.13, + "end": 11033.77, + "probability": 0.9258 + }, + { + "start": 11041.93, + "end": 11042.51, + "probability": 0.3118 + }, + { + "start": 11056.53, + "end": 11057.67, + "probability": 0.4695 + }, + { + "start": 11075.13, + "end": 11076.65, + "probability": 0.5658 + }, + { + "start": 11076.79, + "end": 11082.07, + "probability": 0.6861 + }, + { + "start": 11083.29, + "end": 11083.65, + "probability": 0.3304 + }, + { + "start": 11084.69, + "end": 11085.39, + "probability": 0.6411 + }, + { + "start": 11085.41, + "end": 11087.87, + "probability": 0.6009 + }, + { + "start": 11088.45, + "end": 11090.77, + "probability": 0.7174 + }, + { + "start": 11093.74, + "end": 11099.37, + "probability": 0.8247 + }, + { + "start": 11099.53, + "end": 11100.43, + "probability": 0.5822 + }, + { + "start": 11101.09, + "end": 11103.03, + "probability": 0.5815 + }, + { + "start": 11103.61, + "end": 11104.95, + "probability": 0.9927 + }, + { + "start": 11105.93, + "end": 11106.35, + "probability": 0.7162 + }, + { + "start": 11106.39, + "end": 11107.45, + "probability": 0.6009 + }, + { + "start": 11107.47, + "end": 11109.79, + "probability": 0.9727 + }, + { + "start": 11112.33, + "end": 11114.31, + "probability": 0.9663 + }, + { + "start": 11114.31, + "end": 11114.9, + "probability": 0.6356 + }, + { + "start": 11116.21, + "end": 11119.09, + "probability": 0.9937 + }, + { + "start": 11119.09, + "end": 11122.97, + "probability": 0.867 + }, + { + "start": 11123.61, + "end": 11125.27, + "probability": 0.9865 + }, + { + "start": 11125.63, + "end": 11127.69, + "probability": 0.9087 + }, + { + "start": 11128.83, + "end": 11129.29, + "probability": 0.2576 + }, + { + "start": 11131.53, + "end": 11133.85, + "probability": 0.7988 + }, + { + "start": 11133.85, + "end": 11134.43, + "probability": 0.4274 + }, + { + "start": 11134.57, + "end": 11135.05, + "probability": 0.6453 + }, + { + "start": 11135.07, + "end": 11136.55, + "probability": 0.7728 + }, + { + "start": 11136.77, + "end": 11137.61, + "probability": 0.283 + }, + { + "start": 11138.91, + "end": 11140.11, + "probability": 0.2979 + }, + { + "start": 11140.91, + "end": 11143.91, + "probability": 0.3603 + }, + { + "start": 11146.91, + "end": 11149.84, + "probability": 0.142 + }, + { + "start": 11150.89, + "end": 11154.35, + "probability": 0.4166 + }, + { + "start": 11154.73, + "end": 11157.95, + "probability": 0.5866 + }, + { + "start": 11158.09, + "end": 11160.13, + "probability": 0.1402 + }, + { + "start": 11162.51, + "end": 11163.55, + "probability": 0.172 + }, + { + "start": 11163.61, + "end": 11165.15, + "probability": 0.9674 + }, + { + "start": 11165.27, + "end": 11165.91, + "probability": 0.8681 + }, + { + "start": 11165.99, + "end": 11167.67, + "probability": 0.532 + }, + { + "start": 11167.75, + "end": 11169.07, + "probability": 0.7183 + }, + { + "start": 11169.99, + "end": 11172.61, + "probability": 0.8701 + }, + { + "start": 11173.01, + "end": 11177.95, + "probability": 0.9156 + }, + { + "start": 11178.79, + "end": 11179.19, + "probability": 0.5325 + }, + { + "start": 11185.41, + "end": 11185.91, + "probability": 0.1832 + }, + { + "start": 11185.91, + "end": 11188.35, + "probability": 0.6643 + }, + { + "start": 11188.43, + "end": 11192.47, + "probability": 0.8932 + }, + { + "start": 11192.67, + "end": 11193.87, + "probability": 0.2434 + }, + { + "start": 11194.41, + "end": 11197.01, + "probability": 0.9041 + }, + { + "start": 11198.87, + "end": 11199.65, + "probability": 0.9215 + }, + { + "start": 11200.95, + "end": 11201.09, + "probability": 0.506 + }, + { + "start": 11219.73, + "end": 11220.79, + "probability": 0.7126 + }, + { + "start": 11223.0, + "end": 11225.11, + "probability": 0.6945 + }, + { + "start": 11226.23, + "end": 11233.61, + "probability": 0.8668 + }, + { + "start": 11234.49, + "end": 11240.39, + "probability": 0.5226 + }, + { + "start": 11241.11, + "end": 11242.23, + "probability": 0.743 + }, + { + "start": 11243.05, + "end": 11246.35, + "probability": 0.4846 + }, + { + "start": 11246.45, + "end": 11247.33, + "probability": 0.8978 + }, + { + "start": 11247.41, + "end": 11251.61, + "probability": 0.9619 + }, + { + "start": 11251.75, + "end": 11253.09, + "probability": 0.9122 + }, + { + "start": 11253.61, + "end": 11254.79, + "probability": 0.9388 + }, + { + "start": 11254.85, + "end": 11256.81, + "probability": 0.9966 + }, + { + "start": 11256.81, + "end": 11258.95, + "probability": 0.726 + }, + { + "start": 11259.23, + "end": 11259.25, + "probability": 0.1597 + }, + { + "start": 11260.33, + "end": 11262.95, + "probability": 0.7411 + }, + { + "start": 11263.07, + "end": 11266.21, + "probability": 0.6467 + }, + { + "start": 11266.71, + "end": 11267.23, + "probability": 0.9485 + }, + { + "start": 11267.85, + "end": 11269.55, + "probability": 0.9912 + }, + { + "start": 11269.95, + "end": 11270.69, + "probability": 0.8667 + }, + { + "start": 11271.71, + "end": 11277.47, + "probability": 0.9284 + }, + { + "start": 11278.42, + "end": 11281.74, + "probability": 0.9945 + }, + { + "start": 11282.67, + "end": 11284.85, + "probability": 0.9593 + }, + { + "start": 11285.39, + "end": 11288.11, + "probability": 0.7152 + }, + { + "start": 11288.41, + "end": 11292.59, + "probability": 0.8089 + }, + { + "start": 11293.33, + "end": 11299.75, + "probability": 0.8838 + }, + { + "start": 11300.01, + "end": 11303.59, + "probability": 0.9242 + }, + { + "start": 11304.11, + "end": 11305.15, + "probability": 0.97 + }, + { + "start": 11305.29, + "end": 11308.91, + "probability": 0.9645 + }, + { + "start": 11310.05, + "end": 11310.87, + "probability": 0.9253 + }, + { + "start": 11311.53, + "end": 11316.27, + "probability": 0.7558 + }, + { + "start": 11316.79, + "end": 11318.71, + "probability": 0.965 + }, + { + "start": 11319.29, + "end": 11319.81, + "probability": 0.7601 + }, + { + "start": 11320.91, + "end": 11322.59, + "probability": 0.7573 + }, + { + "start": 11322.91, + "end": 11324.03, + "probability": 0.9255 + }, + { + "start": 11324.27, + "end": 11326.27, + "probability": 0.9573 + }, + { + "start": 11326.89, + "end": 11332.67, + "probability": 0.9683 + }, + { + "start": 11333.61, + "end": 11337.27, + "probability": 0.6509 + }, + { + "start": 11337.27, + "end": 11341.69, + "probability": 0.8824 + }, + { + "start": 11342.15, + "end": 11343.17, + "probability": 0.7881 + }, + { + "start": 11343.75, + "end": 11346.23, + "probability": 0.9235 + }, + { + "start": 11346.89, + "end": 11348.35, + "probability": 0.8764 + }, + { + "start": 11349.03, + "end": 11352.73, + "probability": 0.9565 + }, + { + "start": 11353.35, + "end": 11354.75, + "probability": 0.888 + }, + { + "start": 11355.33, + "end": 11355.9, + "probability": 0.8667 + }, + { + "start": 11356.95, + "end": 11357.91, + "probability": 0.8717 + }, + { + "start": 11358.49, + "end": 11360.07, + "probability": 0.8914 + }, + { + "start": 11361.49, + "end": 11363.83, + "probability": 0.9517 + }, + { + "start": 11364.45, + "end": 11368.31, + "probability": 0.9866 + }, + { + "start": 11369.07, + "end": 11375.63, + "probability": 0.9779 + }, + { + "start": 11376.41, + "end": 11380.41, + "probability": 0.9843 + }, + { + "start": 11381.81, + "end": 11387.11, + "probability": 0.9549 + }, + { + "start": 11388.44, + "end": 11390.31, + "probability": 0.9336 + }, + { + "start": 11391.07, + "end": 11392.41, + "probability": 0.8966 + }, + { + "start": 11393.17, + "end": 11394.25, + "probability": 0.9305 + }, + { + "start": 11396.47, + "end": 11397.27, + "probability": 0.9285 + }, + { + "start": 11398.33, + "end": 11401.31, + "probability": 0.9729 + }, + { + "start": 11401.83, + "end": 11402.53, + "probability": 0.9527 + }, + { + "start": 11403.65, + "end": 11406.37, + "probability": 0.7286 + }, + { + "start": 11407.33, + "end": 11409.35, + "probability": 0.9548 + }, + { + "start": 11410.07, + "end": 11410.63, + "probability": 0.7491 + }, + { + "start": 11411.19, + "end": 11412.99, + "probability": 0.9871 + }, + { + "start": 11413.73, + "end": 11414.87, + "probability": 0.9862 + }, + { + "start": 11415.07, + "end": 11416.19, + "probability": 0.859 + }, + { + "start": 11416.23, + "end": 11419.15, + "probability": 0.7786 + }, + { + "start": 11420.03, + "end": 11424.39, + "probability": 0.9159 + }, + { + "start": 11425.09, + "end": 11426.85, + "probability": 0.9813 + }, + { + "start": 11427.53, + "end": 11431.07, + "probability": 0.96 + }, + { + "start": 11431.59, + "end": 11434.17, + "probability": 0.9956 + }, + { + "start": 11434.75, + "end": 11439.01, + "probability": 0.9917 + }, + { + "start": 11439.71, + "end": 11440.69, + "probability": 0.98 + }, + { + "start": 11441.17, + "end": 11444.15, + "probability": 0.99 + }, + { + "start": 11445.11, + "end": 11446.85, + "probability": 0.7889 + }, + { + "start": 11447.65, + "end": 11451.21, + "probability": 0.9992 + }, + { + "start": 11451.81, + "end": 11452.93, + "probability": 0.8877 + }, + { + "start": 11453.81, + "end": 11454.25, + "probability": 0.4226 + }, + { + "start": 11454.51, + "end": 11458.23, + "probability": 0.9738 + }, + { + "start": 11458.93, + "end": 11461.93, + "probability": 0.8512 + }, + { + "start": 11462.49, + "end": 11467.49, + "probability": 0.8608 + }, + { + "start": 11467.83, + "end": 11471.09, + "probability": 0.5382 + }, + { + "start": 11471.21, + "end": 11472.07, + "probability": 0.7596 + }, + { + "start": 11473.09, + "end": 11478.59, + "probability": 0.9622 + }, + { + "start": 11479.67, + "end": 11481.63, + "probability": 0.9725 + }, + { + "start": 11482.67, + "end": 11484.64, + "probability": 0.9709 + }, + { + "start": 11486.05, + "end": 11488.95, + "probability": 0.9897 + }, + { + "start": 11489.81, + "end": 11491.75, + "probability": 0.9924 + }, + { + "start": 11492.39, + "end": 11493.33, + "probability": 0.7706 + }, + { + "start": 11493.79, + "end": 11495.61, + "probability": 0.5612 + }, + { + "start": 11496.11, + "end": 11496.97, + "probability": 0.8577 + }, + { + "start": 11497.51, + "end": 11499.59, + "probability": 0.9909 + }, + { + "start": 11500.33, + "end": 11501.18, + "probability": 0.9907 + }, + { + "start": 11501.41, + "end": 11503.25, + "probability": 0.9945 + }, + { + "start": 11503.77, + "end": 11506.25, + "probability": 0.9707 + }, + { + "start": 11506.89, + "end": 11508.23, + "probability": 0.5011 + }, + { + "start": 11508.39, + "end": 11509.75, + "probability": 0.9902 + }, + { + "start": 11510.11, + "end": 11511.55, + "probability": 0.8741 + }, + { + "start": 11511.71, + "end": 11513.07, + "probability": 0.9559 + }, + { + "start": 11513.67, + "end": 11519.17, + "probability": 0.9008 + }, + { + "start": 11519.19, + "end": 11523.37, + "probability": 0.9957 + }, + { + "start": 11523.71, + "end": 11526.21, + "probability": 0.9137 + }, + { + "start": 11526.77, + "end": 11528.08, + "probability": 0.8805 + }, + { + "start": 11528.59, + "end": 11529.13, + "probability": 0.7319 + }, + { + "start": 11529.19, + "end": 11529.87, + "probability": 0.6811 + }, + { + "start": 11530.01, + "end": 11531.21, + "probability": 0.8597 + }, + { + "start": 11531.73, + "end": 11536.93, + "probability": 0.9856 + }, + { + "start": 11537.69, + "end": 11540.99, + "probability": 0.8529 + }, + { + "start": 11541.83, + "end": 11547.45, + "probability": 0.9784 + }, + { + "start": 11548.25, + "end": 11552.39, + "probability": 0.9966 + }, + { + "start": 11552.43, + "end": 11553.74, + "probability": 0.7662 + }, + { + "start": 11553.83, + "end": 11554.57, + "probability": 0.9102 + }, + { + "start": 11555.53, + "end": 11558.09, + "probability": 0.9006 + }, + { + "start": 11558.93, + "end": 11564.29, + "probability": 0.951 + }, + { + "start": 11564.61, + "end": 11565.49, + "probability": 0.9646 + }, + { + "start": 11565.81, + "end": 11567.05, + "probability": 0.4924 + }, + { + "start": 11567.05, + "end": 11567.66, + "probability": 0.7776 + }, + { + "start": 11568.89, + "end": 11573.23, + "probability": 0.9536 + }, + { + "start": 11574.07, + "end": 11575.27, + "probability": 0.9457 + }, + { + "start": 11575.97, + "end": 11578.43, + "probability": 0.9937 + }, + { + "start": 11579.33, + "end": 11580.33, + "probability": 0.9044 + }, + { + "start": 11581.01, + "end": 11581.47, + "probability": 0.7637 + }, + { + "start": 11581.63, + "end": 11581.77, + "probability": 0.7544 + }, + { + "start": 11581.81, + "end": 11583.15, + "probability": 0.709 + }, + { + "start": 11583.57, + "end": 11587.35, + "probability": 0.9131 + }, + { + "start": 11587.93, + "end": 11592.41, + "probability": 0.9096 + }, + { + "start": 11593.07, + "end": 11594.75, + "probability": 0.9006 + }, + { + "start": 11595.29, + "end": 11596.63, + "probability": 0.8535 + }, + { + "start": 11598.11, + "end": 11603.35, + "probability": 0.9806 + }, + { + "start": 11603.49, + "end": 11606.87, + "probability": 0.9277 + }, + { + "start": 11607.95, + "end": 11610.65, + "probability": 0.9089 + }, + { + "start": 11610.85, + "end": 11611.85, + "probability": 0.7846 + }, + { + "start": 11612.29, + "end": 11613.04, + "probability": 0.9673 + }, + { + "start": 11613.61, + "end": 11615.01, + "probability": 0.8163 + }, + { + "start": 11615.63, + "end": 11619.17, + "probability": 0.9523 + }, + { + "start": 11619.23, + "end": 11621.63, + "probability": 0.9337 + }, + { + "start": 11622.35, + "end": 11624.51, + "probability": 0.9891 + }, + { + "start": 11625.43, + "end": 11628.45, + "probability": 0.53 + }, + { + "start": 11629.09, + "end": 11632.03, + "probability": 0.9056 + }, + { + "start": 11632.61, + "end": 11636.29, + "probability": 0.9148 + }, + { + "start": 11637.01, + "end": 11641.23, + "probability": 0.9611 + }, + { + "start": 11641.57, + "end": 11642.73, + "probability": 0.9542 + }, + { + "start": 11643.25, + "end": 11645.87, + "probability": 0.9646 + }, + { + "start": 11646.35, + "end": 11649.61, + "probability": 0.6842 + }, + { + "start": 11650.09, + "end": 11650.33, + "probability": 0.974 + }, + { + "start": 11650.89, + "end": 11654.61, + "probability": 0.969 + }, + { + "start": 11654.87, + "end": 11657.33, + "probability": 0.9849 + }, + { + "start": 11658.05, + "end": 11659.65, + "probability": 0.9395 + }, + { + "start": 11660.21, + "end": 11662.59, + "probability": 0.914 + }, + { + "start": 11663.65, + "end": 11666.43, + "probability": 0.9748 + }, + { + "start": 11666.81, + "end": 11668.13, + "probability": 0.9932 + }, + { + "start": 11668.31, + "end": 11669.4, + "probability": 0.9657 + }, + { + "start": 11670.23, + "end": 11673.77, + "probability": 0.9741 + }, + { + "start": 11673.87, + "end": 11676.13, + "probability": 0.9918 + }, + { + "start": 11676.79, + "end": 11680.53, + "probability": 0.935 + }, + { + "start": 11680.97, + "end": 11681.67, + "probability": 0.8331 + }, + { + "start": 11682.03, + "end": 11683.95, + "probability": 0.9175 + }, + { + "start": 11683.99, + "end": 11687.57, + "probability": 0.9808 + }, + { + "start": 11688.79, + "end": 11691.19, + "probability": 0.8548 + }, + { + "start": 11692.05, + "end": 11693.49, + "probability": 0.9411 + }, + { + "start": 11693.89, + "end": 11696.91, + "probability": 0.962 + }, + { + "start": 11696.91, + "end": 11699.77, + "probability": 0.9987 + }, + { + "start": 11700.27, + "end": 11700.91, + "probability": 0.5133 + }, + { + "start": 11701.47, + "end": 11702.63, + "probability": 0.6342 + }, + { + "start": 11702.75, + "end": 11704.59, + "probability": 0.7612 + }, + { + "start": 11705.79, + "end": 11709.21, + "probability": 0.9993 + }, + { + "start": 11710.67, + "end": 11712.75, + "probability": 0.6985 + }, + { + "start": 11712.83, + "end": 11714.63, + "probability": 0.9961 + }, + { + "start": 11715.15, + "end": 11718.23, + "probability": 0.9944 + }, + { + "start": 11718.59, + "end": 11721.17, + "probability": 0.8322 + }, + { + "start": 11721.25, + "end": 11722.33, + "probability": 0.8682 + }, + { + "start": 11722.89, + "end": 11723.13, + "probability": 0.4982 + }, + { + "start": 11723.15, + "end": 11723.55, + "probability": 0.5154 + }, + { + "start": 11723.99, + "end": 11725.19, + "probability": 0.9128 + }, + { + "start": 11725.53, + "end": 11726.42, + "probability": 0.9574 + }, + { + "start": 11726.83, + "end": 11727.95, + "probability": 0.893 + }, + { + "start": 11728.31, + "end": 11730.75, + "probability": 0.9769 + }, + { + "start": 11730.89, + "end": 11731.47, + "probability": 0.8838 + }, + { + "start": 11732.13, + "end": 11735.45, + "probability": 0.8532 + }, + { + "start": 11735.51, + "end": 11736.19, + "probability": 0.7249 + }, + { + "start": 11736.29, + "end": 11736.73, + "probability": 0.7418 + }, + { + "start": 11736.87, + "end": 11740.99, + "probability": 0.9476 + }, + { + "start": 11741.07, + "end": 11743.21, + "probability": 0.972 + }, + { + "start": 11743.37, + "end": 11748.65, + "probability": 0.9944 + }, + { + "start": 11749.05, + "end": 11751.47, + "probability": 0.9568 + }, + { + "start": 11752.05, + "end": 11753.43, + "probability": 0.931 + }, + { + "start": 11753.49, + "end": 11758.69, + "probability": 0.9751 + }, + { + "start": 11758.79, + "end": 11758.97, + "probability": 0.9299 + }, + { + "start": 11759.39, + "end": 11760.11, + "probability": 0.8832 + }, + { + "start": 11760.31, + "end": 11761.17, + "probability": 0.8672 + }, + { + "start": 11761.55, + "end": 11765.93, + "probability": 0.8625 + }, + { + "start": 11766.29, + "end": 11768.59, + "probability": 0.767 + }, + { + "start": 11768.63, + "end": 11769.09, + "probability": 0.6725 + }, + { + "start": 11769.47, + "end": 11769.67, + "probability": 0.5401 + }, + { + "start": 11769.77, + "end": 11770.05, + "probability": 0.7001 + }, + { + "start": 11770.55, + "end": 11772.95, + "probability": 0.6937 + }, + { + "start": 11773.33, + "end": 11774.26, + "probability": 0.9547 + }, + { + "start": 11775.11, + "end": 11779.63, + "probability": 0.9421 + }, + { + "start": 11779.75, + "end": 11780.13, + "probability": 0.38 + }, + { + "start": 11780.25, + "end": 11780.71, + "probability": 0.6219 + }, + { + "start": 11780.81, + "end": 11781.27, + "probability": 0.714 + }, + { + "start": 11781.51, + "end": 11783.47, + "probability": 0.8324 + }, + { + "start": 11783.87, + "end": 11787.97, + "probability": 0.8052 + }, + { + "start": 11788.49, + "end": 11792.83, + "probability": 0.9951 + }, + { + "start": 11793.41, + "end": 11795.17, + "probability": 0.8976 + }, + { + "start": 11795.91, + "end": 11795.91, + "probability": 0.0591 + }, + { + "start": 11795.91, + "end": 11796.41, + "probability": 0.6515 + }, + { + "start": 11796.55, + "end": 11796.77, + "probability": 0.7455 + }, + { + "start": 11796.77, + "end": 11797.13, + "probability": 0.6286 + }, + { + "start": 11798.35, + "end": 11798.63, + "probability": 0.2189 + }, + { + "start": 11798.63, + "end": 11799.25, + "probability": 0.8882 + }, + { + "start": 11799.35, + "end": 11801.65, + "probability": 0.9434 + }, + { + "start": 11802.39, + "end": 11804.35, + "probability": 0.9078 + }, + { + "start": 11805.05, + "end": 11807.35, + "probability": 0.9766 + }, + { + "start": 11808.11, + "end": 11811.15, + "probability": 0.7085 + }, + { + "start": 11811.89, + "end": 11813.97, + "probability": 0.9783 + }, + { + "start": 11814.05, + "end": 11816.71, + "probability": 0.9682 + }, + { + "start": 11817.19, + "end": 11819.15, + "probability": 0.9478 + }, + { + "start": 11819.57, + "end": 11821.61, + "probability": 0.9734 + }, + { + "start": 11822.01, + "end": 11822.91, + "probability": 0.7289 + }, + { + "start": 11822.99, + "end": 11824.33, + "probability": 0.999 + }, + { + "start": 11824.85, + "end": 11827.45, + "probability": 0.9945 + }, + { + "start": 11827.91, + "end": 11828.85, + "probability": 0.9951 + }, + { + "start": 11829.29, + "end": 11829.61, + "probability": 0.8381 + }, + { + "start": 11830.01, + "end": 11832.67, + "probability": 0.6953 + }, + { + "start": 11832.89, + "end": 11835.27, + "probability": 0.6239 + }, + { + "start": 11836.21, + "end": 11837.39, + "probability": 0.0174 + }, + { + "start": 11838.67, + "end": 11842.89, + "probability": 0.1853 + }, + { + "start": 11843.65, + "end": 11845.18, + "probability": 0.4844 + }, + { + "start": 11846.63, + "end": 11847.09, + "probability": 0.1246 + }, + { + "start": 11853.03, + "end": 11856.23, + "probability": 0.959 + }, + { + "start": 11856.65, + "end": 11857.63, + "probability": 0.2961 + }, + { + "start": 11861.4, + "end": 11863.25, + "probability": 0.8712 + }, + { + "start": 11863.81, + "end": 11863.87, + "probability": 0.1135 + }, + { + "start": 11864.85, + "end": 11865.93, + "probability": 0.0155 + }, + { + "start": 11866.45, + "end": 11868.43, + "probability": 0.7371 + }, + { + "start": 11869.85, + "end": 11874.57, + "probability": 0.8099 + }, + { + "start": 11874.69, + "end": 11878.59, + "probability": 0.9792 + }, + { + "start": 11879.55, + "end": 11885.19, + "probability": 0.9974 + }, + { + "start": 11886.33, + "end": 11890.37, + "probability": 0.9635 + }, + { + "start": 11890.45, + "end": 11893.11, + "probability": 0.9619 + }, + { + "start": 11893.95, + "end": 11895.97, + "probability": 0.9988 + }, + { + "start": 11896.03, + "end": 11898.73, + "probability": 0.8559 + }, + { + "start": 11898.85, + "end": 11899.09, + "probability": 0.4157 + }, + { + "start": 11899.09, + "end": 11899.23, + "probability": 0.6131 + }, + { + "start": 11899.91, + "end": 11902.32, + "probability": 0.9682 + }, + { + "start": 11903.03, + "end": 11904.59, + "probability": 0.9666 + }, + { + "start": 11905.43, + "end": 11906.37, + "probability": 0.9501 + }, + { + "start": 11906.49, + "end": 11909.15, + "probability": 0.9861 + }, + { + "start": 11911.09, + "end": 11912.31, + "probability": 0.7329 + }, + { + "start": 11912.83, + "end": 11917.47, + "probability": 0.708 + }, + { + "start": 11918.17, + "end": 11920.97, + "probability": 0.9924 + }, + { + "start": 11922.85, + "end": 11927.13, + "probability": 0.9253 + }, + { + "start": 11927.45, + "end": 11929.19, + "probability": 0.9959 + }, + { + "start": 11929.97, + "end": 11934.27, + "probability": 0.9347 + }, + { + "start": 11934.39, + "end": 11935.57, + "probability": 0.9298 + }, + { + "start": 11936.29, + "end": 11939.95, + "probability": 0.7491 + }, + { + "start": 11941.37, + "end": 11945.93, + "probability": 0.8581 + }, + { + "start": 11946.03, + "end": 11947.79, + "probability": 0.9442 + }, + { + "start": 11949.76, + "end": 11952.71, + "probability": 0.929 + }, + { + "start": 11953.47, + "end": 11954.39, + "probability": 0.9076 + }, + { + "start": 11954.81, + "end": 11957.01, + "probability": 0.9565 + }, + { + "start": 11957.87, + "end": 11960.39, + "probability": 0.7897 + }, + { + "start": 11960.47, + "end": 11961.17, + "probability": 0.9375 + }, + { + "start": 11961.95, + "end": 11964.69, + "probability": 0.8464 + }, + { + "start": 11967.49, + "end": 11970.81, + "probability": 0.8357 + }, + { + "start": 11970.87, + "end": 11976.75, + "probability": 0.9904 + }, + { + "start": 11978.03, + "end": 11980.27, + "probability": 0.7694 + }, + { + "start": 11981.47, + "end": 11983.07, + "probability": 0.9683 + }, + { + "start": 11984.15, + "end": 11987.55, + "probability": 0.9966 + }, + { + "start": 11988.93, + "end": 11995.11, + "probability": 0.9926 + }, + { + "start": 11995.17, + "end": 11996.65, + "probability": 0.6824 + }, + { + "start": 11996.85, + "end": 11999.87, + "probability": 0.8758 + }, + { + "start": 12000.63, + "end": 12004.85, + "probability": 0.9782 + }, + { + "start": 12005.67, + "end": 12007.13, + "probability": 0.9624 + }, + { + "start": 12007.67, + "end": 12009.37, + "probability": 0.6128 + }, + { + "start": 12009.41, + "end": 12010.53, + "probability": 0.9126 + }, + { + "start": 12010.71, + "end": 12011.71, + "probability": 0.7777 + }, + { + "start": 12012.39, + "end": 12014.85, + "probability": 0.9056 + }, + { + "start": 12014.93, + "end": 12016.21, + "probability": 0.9004 + }, + { + "start": 12016.75, + "end": 12017.51, + "probability": 0.7386 + }, + { + "start": 12017.75, + "end": 12019.04, + "probability": 0.8745 + }, + { + "start": 12019.27, + "end": 12020.95, + "probability": 0.6965 + }, + { + "start": 12022.13, + "end": 12024.13, + "probability": 0.8353 + }, + { + "start": 12024.29, + "end": 12026.27, + "probability": 0.9257 + }, + { + "start": 12026.53, + "end": 12027.75, + "probability": 0.9286 + }, + { + "start": 12028.07, + "end": 12028.95, + "probability": 0.9897 + }, + { + "start": 12029.59, + "end": 12031.49, + "probability": 0.96 + }, + { + "start": 12032.21, + "end": 12034.51, + "probability": 0.997 + }, + { + "start": 12034.51, + "end": 12037.35, + "probability": 0.9993 + }, + { + "start": 12038.03, + "end": 12039.7, + "probability": 0.9951 + }, + { + "start": 12041.31, + "end": 12044.45, + "probability": 0.979 + }, + { + "start": 12044.61, + "end": 12046.35, + "probability": 0.7884 + }, + { + "start": 12046.93, + "end": 12049.31, + "probability": 0.9965 + }, + { + "start": 12049.33, + "end": 12050.77, + "probability": 0.9688 + }, + { + "start": 12051.21, + "end": 12051.63, + "probability": 0.6195 + }, + { + "start": 12051.99, + "end": 12052.51, + "probability": 0.7241 + }, + { + "start": 12052.85, + "end": 12053.45, + "probability": 0.5132 + }, + { + "start": 12053.57, + "end": 12054.07, + "probability": 0.9556 + }, + { + "start": 12055.69, + "end": 12061.07, + "probability": 0.6732 + }, + { + "start": 12061.15, + "end": 12064.45, + "probability": 0.5581 + }, + { + "start": 12065.33, + "end": 12068.29, + "probability": 0.9924 + }, + { + "start": 12068.91, + "end": 12072.07, + "probability": 0.9854 + }, + { + "start": 12072.69, + "end": 12075.99, + "probability": 0.9717 + }, + { + "start": 12076.85, + "end": 12082.23, + "probability": 0.9991 + }, + { + "start": 12084.05, + "end": 12086.09, + "probability": 0.9977 + }, + { + "start": 12086.09, + "end": 12089.71, + "probability": 0.9817 + }, + { + "start": 12089.87, + "end": 12091.45, + "probability": 0.825 + }, + { + "start": 12092.05, + "end": 12093.29, + "probability": 0.5893 + }, + { + "start": 12094.79, + "end": 12100.11, + "probability": 0.9904 + }, + { + "start": 12100.85, + "end": 12103.99, + "probability": 0.9928 + }, + { + "start": 12104.25, + "end": 12108.03, + "probability": 0.9707 + }, + { + "start": 12108.69, + "end": 12112.03, + "probability": 0.8661 + }, + { + "start": 12112.23, + "end": 12114.43, + "probability": 0.8571 + }, + { + "start": 12114.51, + "end": 12117.79, + "probability": 0.9878 + }, + { + "start": 12118.73, + "end": 12126.83, + "probability": 0.9942 + }, + { + "start": 12126.93, + "end": 12127.79, + "probability": 0.9551 + }, + { + "start": 12128.05, + "end": 12131.77, + "probability": 0.9282 + }, + { + "start": 12131.85, + "end": 12133.25, + "probability": 0.9746 + }, + { + "start": 12134.13, + "end": 12136.45, + "probability": 0.9824 + }, + { + "start": 12139.55, + "end": 12139.73, + "probability": 0.9846 + }, + { + "start": 12140.59, + "end": 12142.25, + "probability": 0.9948 + }, + { + "start": 12144.03, + "end": 12144.63, + "probability": 0.8027 + }, + { + "start": 12146.69, + "end": 12149.37, + "probability": 0.9775 + }, + { + "start": 12150.77, + "end": 12154.41, + "probability": 0.9702 + }, + { + "start": 12154.47, + "end": 12155.0, + "probability": 0.989 + }, + { + "start": 12155.49, + "end": 12156.37, + "probability": 0.9271 + }, + { + "start": 12157.59, + "end": 12158.67, + "probability": 0.9913 + }, + { + "start": 12160.75, + "end": 12163.23, + "probability": 0.9966 + }, + { + "start": 12164.41, + "end": 12165.55, + "probability": 0.9569 + }, + { + "start": 12165.67, + "end": 12167.17, + "probability": 0.9005 + }, + { + "start": 12167.75, + "end": 12169.79, + "probability": 0.872 + }, + { + "start": 12170.59, + "end": 12173.99, + "probability": 0.989 + }, + { + "start": 12173.99, + "end": 12176.87, + "probability": 0.9977 + }, + { + "start": 12179.23, + "end": 12179.65, + "probability": 0.0165 + }, + { + "start": 12180.77, + "end": 12180.83, + "probability": 0.0458 + }, + { + "start": 12180.83, + "end": 12182.45, + "probability": 0.7966 + }, + { + "start": 12182.88, + "end": 12184.72, + "probability": 0.9404 + }, + { + "start": 12185.69, + "end": 12190.15, + "probability": 0.9941 + }, + { + "start": 12190.65, + "end": 12192.27, + "probability": 0.9764 + }, + { + "start": 12193.05, + "end": 12193.89, + "probability": 0.8113 + }, + { + "start": 12194.79, + "end": 12195.91, + "probability": 0.9976 + }, + { + "start": 12196.23, + "end": 12196.73, + "probability": 0.659 + }, + { + "start": 12196.73, + "end": 12197.53, + "probability": 0.8405 + }, + { + "start": 12197.57, + "end": 12198.95, + "probability": 0.973 + }, + { + "start": 12199.85, + "end": 12202.65, + "probability": 0.9946 + }, + { + "start": 12203.19, + "end": 12204.89, + "probability": 0.978 + }, + { + "start": 12205.27, + "end": 12206.75, + "probability": 0.8139 + }, + { + "start": 12207.31, + "end": 12208.61, + "probability": 0.5592 + }, + { + "start": 12210.04, + "end": 12210.11, + "probability": 0.7486 + }, + { + "start": 12210.11, + "end": 12211.73, + "probability": 0.6571 + }, + { + "start": 12211.73, + "end": 12212.58, + "probability": 0.9294 + }, + { + "start": 12213.21, + "end": 12213.91, + "probability": 0.7847 + }, + { + "start": 12214.07, + "end": 12215.35, + "probability": 0.7598 + }, + { + "start": 12215.47, + "end": 12216.01, + "probability": 0.535 + }, + { + "start": 12216.13, + "end": 12218.55, + "probability": 0.9941 + }, + { + "start": 12219.21, + "end": 12221.97, + "probability": 0.9846 + }, + { + "start": 12222.95, + "end": 12225.21, + "probability": 0.9955 + }, + { + "start": 12225.97, + "end": 12230.25, + "probability": 0.8817 + }, + { + "start": 12230.57, + "end": 12231.44, + "probability": 0.9858 + }, + { + "start": 12232.27, + "end": 12232.51, + "probability": 0.6705 + }, + { + "start": 12232.51, + "end": 12234.29, + "probability": 0.5533 + }, + { + "start": 12234.29, + "end": 12237.15, + "probability": 0.9797 + }, + { + "start": 12237.29, + "end": 12239.77, + "probability": 0.0413 + }, + { + "start": 12239.77, + "end": 12239.87, + "probability": 0.1745 + }, + { + "start": 12239.87, + "end": 12239.87, + "probability": 0.7976 + }, + { + "start": 12239.87, + "end": 12242.38, + "probability": 0.8145 + }, + { + "start": 12242.98, + "end": 12243.19, + "probability": 0.0317 + }, + { + "start": 12245.03, + "end": 12245.95, + "probability": 0.6046 + }, + { + "start": 12247.35, + "end": 12249.91, + "probability": 0.9686 + }, + { + "start": 12249.97, + "end": 12251.25, + "probability": 0.9007 + }, + { + "start": 12251.25, + "end": 12251.97, + "probability": 0.4365 + }, + { + "start": 12252.49, + "end": 12253.52, + "probability": 0.9792 + }, + { + "start": 12253.69, + "end": 12255.46, + "probability": 0.8872 + }, + { + "start": 12255.73, + "end": 12256.16, + "probability": 0.9478 + }, + { + "start": 12257.49, + "end": 12260.17, + "probability": 0.9028 + }, + { + "start": 12261.17, + "end": 12261.81, + "probability": 0.6833 + }, + { + "start": 12262.17, + "end": 12262.27, + "probability": 0.4385 + }, + { + "start": 12262.29, + "end": 12266.17, + "probability": 0.9714 + }, + { + "start": 12266.17, + "end": 12268.51, + "probability": 0.9985 + }, + { + "start": 12268.57, + "end": 12274.33, + "probability": 0.9712 + }, + { + "start": 12274.39, + "end": 12275.03, + "probability": 0.7607 + }, + { + "start": 12275.35, + "end": 12276.25, + "probability": 0.8815 + }, + { + "start": 12276.39, + "end": 12276.39, + "probability": 0.204 + }, + { + "start": 12276.39, + "end": 12276.61, + "probability": 0.1239 + }, + { + "start": 12276.75, + "end": 12279.25, + "probability": 0.8212 + }, + { + "start": 12279.51, + "end": 12279.83, + "probability": 0.6818 + }, + { + "start": 12279.91, + "end": 12280.89, + "probability": 0.7301 + }, + { + "start": 12281.47, + "end": 12282.37, + "probability": 0.777 + }, + { + "start": 12282.67, + "end": 12283.78, + "probability": 0.854 + }, + { + "start": 12284.07, + "end": 12284.11, + "probability": 0.0826 + }, + { + "start": 12287.56, + "end": 12289.83, + "probability": 0.0642 + }, + { + "start": 12290.09, + "end": 12291.03, + "probability": 0.0635 + }, + { + "start": 12291.25, + "end": 12291.25, + "probability": 0.0362 + }, + { + "start": 12291.47, + "end": 12291.47, + "probability": 0.1447 + }, + { + "start": 12291.47, + "end": 12291.47, + "probability": 0.1733 + }, + { + "start": 12291.47, + "end": 12293.49, + "probability": 0.7062 + }, + { + "start": 12294.75, + "end": 12295.83, + "probability": 0.9626 + }, + { + "start": 12296.77, + "end": 12297.56, + "probability": 0.4834 + }, + { + "start": 12298.87, + "end": 12300.47, + "probability": 0.803 + }, + { + "start": 12301.81, + "end": 12303.03, + "probability": 0.8628 + }, + { + "start": 12303.11, + "end": 12303.95, + "probability": 0.9229 + }, + { + "start": 12304.37, + "end": 12307.11, + "probability": 0.9817 + }, + { + "start": 12307.39, + "end": 12308.99, + "probability": 0.7588 + }, + { + "start": 12312.21, + "end": 12314.47, + "probability": 0.684 + }, + { + "start": 12315.99, + "end": 12318.15, + "probability": 0.1939 + }, + { + "start": 12318.53, + "end": 12319.12, + "probability": 0.5496 + }, + { + "start": 12320.87, + "end": 12323.05, + "probability": 0.9965 + }, + { + "start": 12324.29, + "end": 12324.31, + "probability": 0.1892 + }, + { + "start": 12324.31, + "end": 12325.47, + "probability": 0.857 + }, + { + "start": 12326.75, + "end": 12329.05, + "probability": 0.51 + }, + { + "start": 12329.33, + "end": 12329.33, + "probability": 0.0009 + }, + { + "start": 12329.33, + "end": 12329.33, + "probability": 0.1532 + }, + { + "start": 12329.41, + "end": 12332.29, + "probability": 0.6492 + }, + { + "start": 12332.53, + "end": 12332.97, + "probability": 0.2451 + }, + { + "start": 12333.01, + "end": 12333.87, + "probability": 0.6258 + }, + { + "start": 12334.39, + "end": 12336.29, + "probability": 0.2163 + }, + { + "start": 12338.19, + "end": 12340.39, + "probability": 0.1557 + }, + { + "start": 12340.39, + "end": 12340.39, + "probability": 0.0909 + }, + { + "start": 12340.39, + "end": 12342.21, + "probability": 0.3497 + }, + { + "start": 12342.89, + "end": 12343.73, + "probability": 0.9236 + }, + { + "start": 12344.55, + "end": 12346.91, + "probability": 0.9675 + }, + { + "start": 12347.61, + "end": 12350.39, + "probability": 0.932 + }, + { + "start": 12350.95, + "end": 12351.59, + "probability": 0.9222 + }, + { + "start": 12352.79, + "end": 12354.67, + "probability": 0.9421 + }, + { + "start": 12355.69, + "end": 12362.51, + "probability": 0.9487 + }, + { + "start": 12362.51, + "end": 12370.93, + "probability": 0.9564 + }, + { + "start": 12371.53, + "end": 12375.85, + "probability": 0.9961 + }, + { + "start": 12376.41, + "end": 12377.55, + "probability": 0.9396 + }, + { + "start": 12378.17, + "end": 12380.81, + "probability": 0.9617 + }, + { + "start": 12381.95, + "end": 12383.31, + "probability": 0.9676 + }, + { + "start": 12385.79, + "end": 12389.79, + "probability": 0.9807 + }, + { + "start": 12390.17, + "end": 12391.05, + "probability": 0.9966 + }, + { + "start": 12391.99, + "end": 12392.59, + "probability": 0.2889 + }, + { + "start": 12392.59, + "end": 12392.97, + "probability": 0.4301 + }, + { + "start": 12393.05, + "end": 12393.47, + "probability": 0.441 + }, + { + "start": 12393.49, + "end": 12394.13, + "probability": 0.655 + }, + { + "start": 12394.29, + "end": 12397.05, + "probability": 0.9564 + }, + { + "start": 12397.17, + "end": 12399.77, + "probability": 0.9178 + }, + { + "start": 12400.09, + "end": 12401.45, + "probability": 0.6921 + }, + { + "start": 12401.63, + "end": 12402.49, + "probability": 0.9425 + }, + { + "start": 12402.57, + "end": 12404.03, + "probability": 0.957 + }, + { + "start": 12404.47, + "end": 12405.59, + "probability": 0.748 + }, + { + "start": 12407.29, + "end": 12410.75, + "probability": 0.8859 + }, + { + "start": 12410.83, + "end": 12411.53, + "probability": 0.9445 + }, + { + "start": 12412.99, + "end": 12415.03, + "probability": 0.8678 + }, + { + "start": 12416.41, + "end": 12418.69, + "probability": 0.9063 + }, + { + "start": 12420.31, + "end": 12422.21, + "probability": 0.814 + }, + { + "start": 12422.73, + "end": 12423.87, + "probability": 0.9951 + }, + { + "start": 12423.95, + "end": 12424.93, + "probability": 0.9801 + }, + { + "start": 12425.39, + "end": 12428.61, + "probability": 0.9858 + }, + { + "start": 12429.05, + "end": 12429.89, + "probability": 0.7332 + }, + { + "start": 12429.95, + "end": 12430.75, + "probability": 0.7383 + }, + { + "start": 12431.69, + "end": 12432.99, + "probability": 0.9437 + }, + { + "start": 12433.57, + "end": 12435.53, + "probability": 0.8907 + }, + { + "start": 12436.05, + "end": 12437.15, + "probability": 0.9922 + }, + { + "start": 12437.95, + "end": 12440.29, + "probability": 0.8647 + }, + { + "start": 12440.41, + "end": 12441.39, + "probability": 0.8237 + }, + { + "start": 12441.61, + "end": 12441.95, + "probability": 0.3496 + }, + { + "start": 12442.03, + "end": 12442.85, + "probability": 0.8153 + }, + { + "start": 12443.17, + "end": 12443.51, + "probability": 0.7716 + }, + { + "start": 12443.61, + "end": 12444.41, + "probability": 0.6588 + }, + { + "start": 12444.89, + "end": 12446.01, + "probability": 0.8296 + }, + { + "start": 12446.43, + "end": 12447.57, + "probability": 0.9863 + }, + { + "start": 12448.09, + "end": 12450.15, + "probability": 0.9951 + }, + { + "start": 12450.93, + "end": 12452.11, + "probability": 0.8699 + }, + { + "start": 12452.25, + "end": 12456.69, + "probability": 0.9539 + }, + { + "start": 12457.15, + "end": 12457.49, + "probability": 0.7971 + }, + { + "start": 12458.07, + "end": 12461.85, + "probability": 0.7327 + }, + { + "start": 12463.15, + "end": 12465.67, + "probability": 0.7932 + }, + { + "start": 12465.67, + "end": 12466.85, + "probability": 0.9013 + }, + { + "start": 12466.87, + "end": 12467.87, + "probability": 0.7415 + }, + { + "start": 12468.15, + "end": 12471.23, + "probability": 0.7381 + }, + { + "start": 12471.41, + "end": 12472.14, + "probability": 0.4709 + }, + { + "start": 12472.97, + "end": 12475.67, + "probability": 0.7368 + }, + { + "start": 12476.21, + "end": 12477.53, + "probability": 0.7317 + }, + { + "start": 12478.71, + "end": 12484.89, + "probability": 0.9872 + }, + { + "start": 12485.43, + "end": 12486.99, + "probability": 0.9978 + }, + { + "start": 12488.07, + "end": 12489.65, + "probability": 0.4622 + }, + { + "start": 12489.91, + "end": 12491.65, + "probability": 0.3821 + }, + { + "start": 12491.65, + "end": 12491.75, + "probability": 0.1442 + }, + { + "start": 12491.75, + "end": 12492.05, + "probability": 0.4882 + }, + { + "start": 12492.11, + "end": 12493.85, + "probability": 0.5203 + }, + { + "start": 12493.97, + "end": 12495.05, + "probability": 0.8798 + }, + { + "start": 12495.6, + "end": 12498.97, + "probability": 0.8621 + }, + { + "start": 12499.05, + "end": 12502.51, + "probability": 0.3547 + }, + { + "start": 12502.67, + "end": 12503.01, + "probability": 0.7124 + }, + { + "start": 12503.57, + "end": 12504.35, + "probability": 0.2882 + }, + { + "start": 12504.39, + "end": 12506.81, + "probability": 0.5102 + }, + { + "start": 12507.61, + "end": 12507.81, + "probability": 0.366 + }, + { + "start": 12508.21, + "end": 12509.89, + "probability": 0.575 + }, + { + "start": 12510.01, + "end": 12510.75, + "probability": 0.1454 + }, + { + "start": 12510.83, + "end": 12511.28, + "probability": 0.302 + }, + { + "start": 12511.63, + "end": 12512.93, + "probability": 0.6671 + }, + { + "start": 12513.07, + "end": 12513.75, + "probability": 0.02 + }, + { + "start": 12513.75, + "end": 12516.01, + "probability": 0.9965 + }, + { + "start": 12516.19, + "end": 12516.73, + "probability": 0.7936 + }, + { + "start": 12516.97, + "end": 12517.65, + "probability": 0.7933 + }, + { + "start": 12518.09, + "end": 12518.37, + "probability": 0.9062 + }, + { + "start": 12519.75, + "end": 12521.43, + "probability": 0.9341 + }, + { + "start": 12521.85, + "end": 12522.25, + "probability": 0.0123 + }, + { + "start": 12522.95, + "end": 12524.17, + "probability": 0.6987 + }, + { + "start": 12524.23, + "end": 12527.01, + "probability": 0.9753 + }, + { + "start": 12527.33, + "end": 12529.18, + "probability": 0.9941 + }, + { + "start": 12531.93, + "end": 12533.81, + "probability": 0.1959 + }, + { + "start": 12533.81, + "end": 12541.97, + "probability": 0.8982 + }, + { + "start": 12543.75, + "end": 12548.81, + "probability": 0.9291 + }, + { + "start": 12549.69, + "end": 12551.11, + "probability": 0.9678 + }, + { + "start": 12551.47, + "end": 12552.97, + "probability": 0.9798 + }, + { + "start": 12553.05, + "end": 12556.35, + "probability": 0.9878 + }, + { + "start": 12556.71, + "end": 12560.41, + "probability": 0.9915 + }, + { + "start": 12560.87, + "end": 12561.39, + "probability": 0.8852 + }, + { + "start": 12561.67, + "end": 12563.73, + "probability": 0.8345 + }, + { + "start": 12563.93, + "end": 12566.35, + "probability": 0.4675 + }, + { + "start": 12567.45, + "end": 12567.45, + "probability": 0.0659 + }, + { + "start": 12567.45, + "end": 12567.45, + "probability": 0.1539 + }, + { + "start": 12567.45, + "end": 12571.93, + "probability": 0.6392 + }, + { + "start": 12576.51, + "end": 12578.61, + "probability": 0.3461 + }, + { + "start": 12578.69, + "end": 12580.05, + "probability": 0.2555 + }, + { + "start": 12580.27, + "end": 12583.33, + "probability": 0.6908 + }, + { + "start": 12583.89, + "end": 12587.17, + "probability": 0.9866 + }, + { + "start": 12587.41, + "end": 12588.59, + "probability": 0.1175 + }, + { + "start": 12588.67, + "end": 12591.31, + "probability": 0.7582 + }, + { + "start": 12591.77, + "end": 12592.25, + "probability": 0.5416 + }, + { + "start": 12592.27, + "end": 12592.75, + "probability": 0.4007 + }, + { + "start": 12592.83, + "end": 12593.23, + "probability": 0.5784 + }, + { + "start": 12594.09, + "end": 12595.57, + "probability": 0.1742 + }, + { + "start": 12607.03, + "end": 12608.55, + "probability": 0.0385 + }, + { + "start": 12608.55, + "end": 12609.85, + "probability": 0.0741 + }, + { + "start": 12609.85, + "end": 12609.85, + "probability": 0.0948 + }, + { + "start": 12609.85, + "end": 12609.85, + "probability": 0.0478 + }, + { + "start": 12609.85, + "end": 12609.85, + "probability": 0.1682 + }, + { + "start": 12609.85, + "end": 12609.85, + "probability": 0.1404 + }, + { + "start": 12609.85, + "end": 12611.01, + "probability": 0.566 + }, + { + "start": 12611.23, + "end": 12611.39, + "probability": 0.1041 + }, + { + "start": 12612.13, + "end": 12615.44, + "probability": 0.5898 + }, + { + "start": 12617.15, + "end": 12620.19, + "probability": 0.8413 + }, + { + "start": 12620.25, + "end": 12623.25, + "probability": 0.8722 + }, + { + "start": 12623.45, + "end": 12627.59, + "probability": 0.6363 + }, + { + "start": 12633.15, + "end": 12634.45, + "probability": 0.9834 + }, + { + "start": 12635.37, + "end": 12636.23, + "probability": 0.4574 + }, + { + "start": 12636.85, + "end": 12637.67, + "probability": 0.7579 + }, + { + "start": 12637.87, + "end": 12642.89, + "probability": 0.8262 + }, + { + "start": 12643.09, + "end": 12643.75, + "probability": 0.8052 + }, + { + "start": 12644.24, + "end": 12647.43, + "probability": 0.6318 + }, + { + "start": 12648.53, + "end": 12650.99, + "probability": 0.732 + }, + { + "start": 12652.05, + "end": 12656.21, + "probability": 0.9204 + }, + { + "start": 12656.95, + "end": 12661.19, + "probability": 0.859 + }, + { + "start": 12662.11, + "end": 12664.93, + "probability": 0.8612 + }, + { + "start": 12665.85, + "end": 12669.73, + "probability": 0.9814 + }, + { + "start": 12669.73, + "end": 12673.57, + "probability": 0.8254 + }, + { + "start": 12674.55, + "end": 12677.09, + "probability": 0.8976 + }, + { + "start": 12677.89, + "end": 12678.97, + "probability": 0.7454 + }, + { + "start": 12679.69, + "end": 12683.07, + "probability": 0.87 + }, + { + "start": 12683.59, + "end": 12684.67, + "probability": 0.5247 + }, + { + "start": 12686.19, + "end": 12692.47, + "probability": 0.9532 + }, + { + "start": 12693.01, + "end": 12696.97, + "probability": 0.7463 + }, + { + "start": 12697.51, + "end": 12701.81, + "probability": 0.9709 + }, + { + "start": 12702.39, + "end": 12708.09, + "probability": 0.7852 + }, + { + "start": 12708.85, + "end": 12709.71, + "probability": 0.8871 + }, + { + "start": 12710.35, + "end": 12714.49, + "probability": 0.9948 + }, + { + "start": 12714.49, + "end": 12720.49, + "probability": 0.8193 + }, + { + "start": 12721.49, + "end": 12726.65, + "probability": 0.9766 + }, + { + "start": 12728.23, + "end": 12733.81, + "probability": 0.988 + }, + { + "start": 12733.81, + "end": 12739.95, + "probability": 0.7677 + }, + { + "start": 12743.99, + "end": 12747.59, + "probability": 0.6381 + }, + { + "start": 12749.11, + "end": 12750.69, + "probability": 0.8563 + }, + { + "start": 12751.77, + "end": 12754.65, + "probability": 0.8 + }, + { + "start": 12755.23, + "end": 12758.69, + "probability": 0.9917 + }, + { + "start": 12759.33, + "end": 12760.51, + "probability": 0.9662 + }, + { + "start": 12761.35, + "end": 12768.71, + "probability": 0.8072 + }, + { + "start": 12768.91, + "end": 12777.25, + "probability": 0.9043 + }, + { + "start": 12778.03, + "end": 12782.47, + "probability": 0.9883 + }, + { + "start": 12782.91, + "end": 12784.03, + "probability": 0.9177 + }, + { + "start": 12784.25, + "end": 12784.83, + "probability": 0.732 + }, + { + "start": 12785.39, + "end": 12790.17, + "probability": 0.9219 + }, + { + "start": 12791.11, + "end": 12793.69, + "probability": 0.7503 + }, + { + "start": 12794.29, + "end": 12795.73, + "probability": 0.3438 + }, + { + "start": 12795.73, + "end": 12801.91, + "probability": 0.9478 + }, + { + "start": 12802.73, + "end": 12805.91, + "probability": 0.9131 + }, + { + "start": 12805.91, + "end": 12812.59, + "probability": 0.7992 + }, + { + "start": 12813.51, + "end": 12818.23, + "probability": 0.7799 + }, + { + "start": 12819.85, + "end": 12820.83, + "probability": 0.4763 + }, + { + "start": 12821.23, + "end": 12826.77, + "probability": 0.972 + }, + { + "start": 12827.41, + "end": 12831.55, + "probability": 0.8942 + }, + { + "start": 12831.55, + "end": 12836.63, + "probability": 0.9678 + }, + { + "start": 12837.13, + "end": 12840.71, + "probability": 0.8973 + }, + { + "start": 12841.25, + "end": 12843.25, + "probability": 0.7235 + }, + { + "start": 12843.47, + "end": 12846.61, + "probability": 0.9684 + }, + { + "start": 12847.11, + "end": 12851.31, + "probability": 0.9954 + }, + { + "start": 12851.31, + "end": 12857.33, + "probability": 0.9639 + }, + { + "start": 12857.43, + "end": 12861.97, + "probability": 0.9458 + }, + { + "start": 12863.01, + "end": 12867.85, + "probability": 0.9806 + }, + { + "start": 12868.27, + "end": 12871.63, + "probability": 0.9755 + }, + { + "start": 12871.63, + "end": 12876.77, + "probability": 0.9873 + }, + { + "start": 12877.15, + "end": 12883.55, + "probability": 0.9405 + }, + { + "start": 12884.03, + "end": 12888.99, + "probability": 0.8083 + }, + { + "start": 12889.39, + "end": 12893.29, + "probability": 0.9325 + }, + { + "start": 12893.29, + "end": 12900.35, + "probability": 0.9137 + }, + { + "start": 12901.07, + "end": 12906.23, + "probability": 0.6971 + }, + { + "start": 12906.59, + "end": 12909.87, + "probability": 0.8388 + }, + { + "start": 12910.33, + "end": 12915.33, + "probability": 0.9263 + }, + { + "start": 12915.45, + "end": 12919.15, + "probability": 0.9787 + }, + { + "start": 12919.81, + "end": 12922.27, + "probability": 0.8661 + }, + { + "start": 12922.83, + "end": 12929.19, + "probability": 0.9708 + }, + { + "start": 12929.19, + "end": 12936.33, + "probability": 0.9368 + }, + { + "start": 12936.33, + "end": 12944.55, + "probability": 0.9951 + }, + { + "start": 12944.95, + "end": 12945.63, + "probability": 0.6353 + }, + { + "start": 12945.83, + "end": 12950.19, + "probability": 0.7075 + }, + { + "start": 12950.41, + "end": 12956.01, + "probability": 0.9727 + }, + { + "start": 12956.43, + "end": 12959.91, + "probability": 0.9271 + }, + { + "start": 12959.91, + "end": 12963.83, + "probability": 0.6681 + }, + { + "start": 12965.09, + "end": 12968.09, + "probability": 0.7455 + }, + { + "start": 12968.67, + "end": 12973.81, + "probability": 0.9551 + }, + { + "start": 12973.81, + "end": 12979.93, + "probability": 0.9615 + }, + { + "start": 12980.65, + "end": 12986.17, + "probability": 0.974 + }, + { + "start": 12986.67, + "end": 12992.83, + "probability": 0.9109 + }, + { + "start": 12993.43, + "end": 12997.93, + "probability": 0.9956 + }, + { + "start": 12998.09, + "end": 13001.89, + "probability": 0.7942 + }, + { + "start": 13002.35, + "end": 13009.41, + "probability": 0.9727 + }, + { + "start": 13009.41, + "end": 13016.39, + "probability": 0.9836 + }, + { + "start": 13016.75, + "end": 13020.13, + "probability": 0.9363 + }, + { + "start": 13020.57, + "end": 13022.31, + "probability": 0.9034 + }, + { + "start": 13026.09, + "end": 13034.09, + "probability": 0.8711 + }, + { + "start": 13034.09, + "end": 13041.39, + "probability": 0.9985 + }, + { + "start": 13041.39, + "end": 13046.35, + "probability": 0.9941 + }, + { + "start": 13046.75, + "end": 13052.73, + "probability": 0.5896 + }, + { + "start": 13053.27, + "end": 13060.05, + "probability": 0.9261 + }, + { + "start": 13060.47, + "end": 13063.03, + "probability": 0.9509 + }, + { + "start": 13063.33, + "end": 13069.89, + "probability": 0.9504 + }, + { + "start": 13069.89, + "end": 13077.37, + "probability": 0.8591 + }, + { + "start": 13078.09, + "end": 13085.43, + "probability": 0.9708 + }, + { + "start": 13085.81, + "end": 13089.39, + "probability": 0.8604 + }, + { + "start": 13090.07, + "end": 13091.33, + "probability": 0.8345 + }, + { + "start": 13091.39, + "end": 13091.89, + "probability": 0.7103 + }, + { + "start": 13092.57, + "end": 13096.03, + "probability": 0.8361 + }, + { + "start": 13096.87, + "end": 13101.21, + "probability": 0.8896 + }, + { + "start": 13115.85, + "end": 13116.91, + "probability": 0.17 + }, + { + "start": 13117.57, + "end": 13117.83, + "probability": 0.1222 + }, + { + "start": 13118.73, + "end": 13120.67, + "probability": 0.1581 + }, + { + "start": 13145.33, + "end": 13148.59, + "probability": 0.7188 + }, + { + "start": 13152.31, + "end": 13153.59, + "probability": 0.4912 + }, + { + "start": 13154.51, + "end": 13158.73, + "probability": 0.9934 + }, + { + "start": 13158.81, + "end": 13160.89, + "probability": 0.9955 + }, + { + "start": 13162.19, + "end": 13165.89, + "probability": 0.9862 + }, + { + "start": 13165.89, + "end": 13171.01, + "probability": 0.9811 + }, + { + "start": 13171.21, + "end": 13172.97, + "probability": 0.5346 + }, + { + "start": 13174.01, + "end": 13180.47, + "probability": 0.9918 + }, + { + "start": 13181.19, + "end": 13184.5, + "probability": 0.8918 + }, + { + "start": 13185.21, + "end": 13186.95, + "probability": 0.9377 + }, + { + "start": 13187.79, + "end": 13189.91, + "probability": 0.9686 + }, + { + "start": 13190.83, + "end": 13193.13, + "probability": 0.9922 + }, + { + "start": 13193.37, + "end": 13193.91, + "probability": 0.8328 + }, + { + "start": 13194.47, + "end": 13199.05, + "probability": 0.8944 + }, + { + "start": 13199.31, + "end": 13202.07, + "probability": 0.9586 + }, + { + "start": 13203.29, + "end": 13204.95, + "probability": 0.8824 + }, + { + "start": 13206.31, + "end": 13206.83, + "probability": 0.613 + }, + { + "start": 13207.67, + "end": 13209.59, + "probability": 0.7002 + }, + { + "start": 13210.37, + "end": 13211.57, + "probability": 0.8945 + }, + { + "start": 13212.93, + "end": 13214.07, + "probability": 0.9512 + }, + { + "start": 13215.63, + "end": 13215.69, + "probability": 0.9541 + }, + { + "start": 13216.95, + "end": 13217.97, + "probability": 0.9244 + }, + { + "start": 13219.75, + "end": 13219.91, + "probability": 0.079 + }, + { + "start": 13219.91, + "end": 13220.93, + "probability": 0.4902 + }, + { + "start": 13221.17, + "end": 13221.94, + "probability": 0.9177 + }, + { + "start": 13222.19, + "end": 13223.05, + "probability": 0.7183 + }, + { + "start": 13223.43, + "end": 13224.03, + "probability": 0.9455 + }, + { + "start": 13224.29, + "end": 13225.33, + "probability": 0.8898 + }, + { + "start": 13226.67, + "end": 13227.23, + "probability": 0.9585 + }, + { + "start": 13227.31, + "end": 13228.51, + "probability": 0.8589 + }, + { + "start": 13228.65, + "end": 13231.35, + "probability": 0.8127 + }, + { + "start": 13232.55, + "end": 13233.89, + "probability": 0.6636 + }, + { + "start": 13235.01, + "end": 13236.31, + "probability": 0.7434 + }, + { + "start": 13237.63, + "end": 13238.29, + "probability": 0.7707 + }, + { + "start": 13240.53, + "end": 13241.49, + "probability": 0.8829 + }, + { + "start": 13242.63, + "end": 13245.63, + "probability": 0.8721 + }, + { + "start": 13246.73, + "end": 13250.59, + "probability": 0.9743 + }, + { + "start": 13250.67, + "end": 13251.19, + "probability": 0.5426 + }, + { + "start": 13251.55, + "end": 13253.03, + "probability": 0.8003 + }, + { + "start": 13253.91, + "end": 13255.53, + "probability": 0.9802 + }, + { + "start": 13255.93, + "end": 13257.63, + "probability": 0.8078 + }, + { + "start": 13257.99, + "end": 13264.63, + "probability": 0.8988 + }, + { + "start": 13265.11, + "end": 13265.93, + "probability": 0.8445 + }, + { + "start": 13266.75, + "end": 13268.79, + "probability": 0.9575 + }, + { + "start": 13269.43, + "end": 13272.87, + "probability": 0.9912 + }, + { + "start": 13273.05, + "end": 13274.09, + "probability": 0.8726 + }, + { + "start": 13275.17, + "end": 13275.83, + "probability": 0.4643 + }, + { + "start": 13275.95, + "end": 13276.99, + "probability": 0.9625 + }, + { + "start": 13277.11, + "end": 13281.73, + "probability": 0.9939 + }, + { + "start": 13282.53, + "end": 13284.19, + "probability": 0.9948 + }, + { + "start": 13285.61, + "end": 13289.67, + "probability": 0.9871 + }, + { + "start": 13290.25, + "end": 13291.35, + "probability": 0.5631 + }, + { + "start": 13292.01, + "end": 13292.25, + "probability": 0.6801 + }, + { + "start": 13292.49, + "end": 13293.23, + "probability": 0.7092 + }, + { + "start": 13293.83, + "end": 13294.41, + "probability": 0.7749 + }, + { + "start": 13294.51, + "end": 13294.91, + "probability": 0.8039 + }, + { + "start": 13295.41, + "end": 13297.71, + "probability": 0.928 + }, + { + "start": 13298.47, + "end": 13300.73, + "probability": 0.9814 + }, + { + "start": 13301.33, + "end": 13302.15, + "probability": 0.9985 + }, + { + "start": 13302.73, + "end": 13308.33, + "probability": 0.8575 + }, + { + "start": 13309.03, + "end": 13310.11, + "probability": 0.9902 + }, + { + "start": 13310.87, + "end": 13312.71, + "probability": 0.8651 + }, + { + "start": 13312.73, + "end": 13314.07, + "probability": 0.7665 + }, + { + "start": 13314.77, + "end": 13315.97, + "probability": 0.3831 + }, + { + "start": 13316.31, + "end": 13318.59, + "probability": 0.8671 + }, + { + "start": 13319.27, + "end": 13321.35, + "probability": 0.7961 + }, + { + "start": 13321.73, + "end": 13323.91, + "probability": 0.9866 + }, + { + "start": 13325.05, + "end": 13329.05, + "probability": 0.9503 + }, + { + "start": 13329.05, + "end": 13331.53, + "probability": 0.897 + }, + { + "start": 13331.75, + "end": 13331.85, + "probability": 0.8977 + }, + { + "start": 13332.41, + "end": 13333.87, + "probability": 0.2632 + }, + { + "start": 13336.21, + "end": 13336.41, + "probability": 0.0473 + }, + { + "start": 13337.13, + "end": 13340.71, + "probability": 0.9794 + }, + { + "start": 13341.31, + "end": 13345.53, + "probability": 0.9157 + }, + { + "start": 13346.35, + "end": 13349.35, + "probability": 0.9907 + }, + { + "start": 13350.23, + "end": 13355.93, + "probability": 0.9878 + }, + { + "start": 13356.11, + "end": 13356.69, + "probability": 0.4378 + }, + { + "start": 13357.99, + "end": 13360.21, + "probability": 0.9602 + }, + { + "start": 13360.97, + "end": 13361.45, + "probability": 0.7951 + }, + { + "start": 13361.49, + "end": 13363.43, + "probability": 0.9479 + }, + { + "start": 13363.49, + "end": 13365.63, + "probability": 0.83 + }, + { + "start": 13365.73, + "end": 13366.61, + "probability": 0.9081 + }, + { + "start": 13366.93, + "end": 13368.35, + "probability": 0.5673 + }, + { + "start": 13368.99, + "end": 13369.62, + "probability": 0.5038 + }, + { + "start": 13371.33, + "end": 13376.05, + "probability": 0.8866 + }, + { + "start": 13377.29, + "end": 13379.99, + "probability": 0.9452 + }, + { + "start": 13380.23, + "end": 13381.87, + "probability": 0.7626 + }, + { + "start": 13381.91, + "end": 13384.27, + "probability": 0.943 + }, + { + "start": 13384.41, + "end": 13388.43, + "probability": 0.979 + }, + { + "start": 13389.09, + "end": 13389.87, + "probability": 0.9701 + }, + { + "start": 13389.99, + "end": 13390.79, + "probability": 0.8291 + }, + { + "start": 13390.87, + "end": 13391.13, + "probability": 0.8807 + }, + { + "start": 13391.19, + "end": 13394.65, + "probability": 0.9366 + }, + { + "start": 13395.71, + "end": 13399.85, + "probability": 0.8459 + }, + { + "start": 13400.55, + "end": 13404.69, + "probability": 0.6532 + }, + { + "start": 13405.33, + "end": 13406.57, + "probability": 0.8394 + }, + { + "start": 13407.23, + "end": 13408.35, + "probability": 0.9243 + }, + { + "start": 13409.33, + "end": 13410.23, + "probability": 0.9693 + }, + { + "start": 13410.39, + "end": 13412.49, + "probability": 0.7989 + }, + { + "start": 13412.57, + "end": 13413.15, + "probability": 0.7991 + }, + { + "start": 13413.23, + "end": 13414.08, + "probability": 0.999 + }, + { + "start": 13414.81, + "end": 13415.86, + "probability": 0.9979 + }, + { + "start": 13416.39, + "end": 13417.74, + "probability": 0.9951 + }, + { + "start": 13418.31, + "end": 13419.27, + "probability": 0.8844 + }, + { + "start": 13419.51, + "end": 13424.59, + "probability": 0.9138 + }, + { + "start": 13425.13, + "end": 13425.89, + "probability": 0.9827 + }, + { + "start": 13426.63, + "end": 13428.33, + "probability": 0.9842 + }, + { + "start": 13429.01, + "end": 13429.89, + "probability": 0.7745 + }, + { + "start": 13430.69, + "end": 13432.21, + "probability": 0.5091 + }, + { + "start": 13432.31, + "end": 13433.99, + "probability": 0.8043 + }, + { + "start": 13434.07, + "end": 13435.53, + "probability": 0.9657 + }, + { + "start": 13435.95, + "end": 13438.01, + "probability": 0.9214 + }, + { + "start": 13452.27, + "end": 13455.15, + "probability": 0.9558 + }, + { + "start": 13455.45, + "end": 13455.85, + "probability": 0.8999 + }, + { + "start": 13457.25, + "end": 13458.61, + "probability": 0.9417 + }, + { + "start": 13459.83, + "end": 13463.29, + "probability": 0.8142 + }, + { + "start": 13464.39, + "end": 13469.49, + "probability": 0.9945 + }, + { + "start": 13470.13, + "end": 13472.35, + "probability": 0.9478 + }, + { + "start": 13473.87, + "end": 13478.11, + "probability": 0.4851 + }, + { + "start": 13479.59, + "end": 13483.11, + "probability": 0.795 + }, + { + "start": 13483.87, + "end": 13489.53, + "probability": 0.9026 + }, + { + "start": 13491.39, + "end": 13493.05, + "probability": 0.2234 + }, + { + "start": 13497.11, + "end": 13498.73, + "probability": 0.8454 + }, + { + "start": 13499.27, + "end": 13501.61, + "probability": 0.3234 + }, + { + "start": 13506.81, + "end": 13507.81, + "probability": 0.4763 + }, + { + "start": 13508.33, + "end": 13509.13, + "probability": 0.7745 + }, + { + "start": 13509.37, + "end": 13514.49, + "probability": 0.9198 + }, + { + "start": 13515.67, + "end": 13517.13, + "probability": 0.8756 + }, + { + "start": 13517.89, + "end": 13520.35, + "probability": 0.9873 + }, + { + "start": 13520.87, + "end": 13522.69, + "probability": 0.9105 + }, + { + "start": 13523.25, + "end": 13524.77, + "probability": 0.843 + }, + { + "start": 13525.29, + "end": 13527.43, + "probability": 0.7311 + }, + { + "start": 13527.99, + "end": 13528.79, + "probability": 0.4271 + }, + { + "start": 13530.41, + "end": 13534.65, + "probability": 0.8963 + }, + { + "start": 13535.75, + "end": 13537.15, + "probability": 0.7249 + }, + { + "start": 13537.43, + "end": 13542.53, + "probability": 0.8474 + }, + { + "start": 13543.27, + "end": 13544.03, + "probability": 0.9484 + }, + { + "start": 13544.69, + "end": 13547.13, + "probability": 0.9403 + }, + { + "start": 13547.13, + "end": 13547.77, + "probability": 0.7061 + }, + { + "start": 13548.59, + "end": 13550.21, + "probability": 0.9771 + }, + { + "start": 13551.49, + "end": 13553.63, + "probability": 0.9866 + }, + { + "start": 13554.33, + "end": 13555.75, + "probability": 0.9813 + }, + { + "start": 13555.91, + "end": 13558.91, + "probability": 0.9526 + }, + { + "start": 13559.19, + "end": 13560.31, + "probability": 0.4326 + }, + { + "start": 13560.39, + "end": 13562.99, + "probability": 0.925 + }, + { + "start": 13563.11, + "end": 13563.51, + "probability": 0.5627 + }, + { + "start": 13563.55, + "end": 13564.05, + "probability": 0.555 + }, + { + "start": 13564.13, + "end": 13564.79, + "probability": 0.666 + }, + { + "start": 13565.55, + "end": 13566.71, + "probability": 0.0746 + }, + { + "start": 13582.64, + "end": 13586.05, + "probability": 0.0869 + }, + { + "start": 13586.05, + "end": 13586.05, + "probability": 0.1021 + }, + { + "start": 13586.05, + "end": 13586.07, + "probability": 0.0408 + }, + { + "start": 13586.07, + "end": 13586.73, + "probability": 0.5186 + }, + { + "start": 13587.95, + "end": 13587.95, + "probability": 0.0257 + }, + { + "start": 13587.95, + "end": 13588.39, + "probability": 0.374 + }, + { + "start": 13588.39, + "end": 13592.91, + "probability": 0.8884 + }, + { + "start": 13594.55, + "end": 13597.49, + "probability": 0.7885 + }, + { + "start": 13598.47, + "end": 13599.67, + "probability": 0.2556 + }, + { + "start": 13600.21, + "end": 13603.91, + "probability": 0.5097 + }, + { + "start": 13606.19, + "end": 13608.81, + "probability": 0.945 + }, + { + "start": 13612.33, + "end": 13615.35, + "probability": 0.3837 + }, + { + "start": 13615.47, + "end": 13618.35, + "probability": 0.8707 + }, + { + "start": 13620.73, + "end": 13621.99, + "probability": 0.8141 + }, + { + "start": 13623.59, + "end": 13624.85, + "probability": 0.9459 + }, + { + "start": 13626.11, + "end": 13629.05, + "probability": 0.9922 + }, + { + "start": 13629.67, + "end": 13640.89, + "probability": 0.8083 + }, + { + "start": 13641.97, + "end": 13643.33, + "probability": 0.8306 + }, + { + "start": 13647.11, + "end": 13650.79, + "probability": 0.9899 + }, + { + "start": 13651.41, + "end": 13659.37, + "probability": 0.993 + }, + { + "start": 13659.67, + "end": 13659.99, + "probability": 0.7145 + }, + { + "start": 13660.83, + "end": 13667.39, + "probability": 0.9027 + }, + { + "start": 13667.59, + "end": 13671.59, + "probability": 0.8701 + }, + { + "start": 13672.61, + "end": 13673.57, + "probability": 0.4872 + }, + { + "start": 13674.21, + "end": 13677.23, + "probability": 0.9584 + }, + { + "start": 13677.39, + "end": 13683.28, + "probability": 0.9601 + }, + { + "start": 13683.65, + "end": 13689.68, + "probability": 0.9556 + }, + { + "start": 13691.77, + "end": 13692.39, + "probability": 0.5508 + }, + { + "start": 13692.59, + "end": 13700.91, + "probability": 0.8427 + }, + { + "start": 13701.53, + "end": 13709.07, + "probability": 0.9752 + }, + { + "start": 13709.79, + "end": 13713.31, + "probability": 0.7913 + }, + { + "start": 13716.05, + "end": 13720.09, + "probability": 0.4594 + }, + { + "start": 13720.71, + "end": 13723.71, + "probability": 0.9627 + }, + { + "start": 13723.89, + "end": 13725.67, + "probability": 0.8318 + }, + { + "start": 13726.19, + "end": 13731.37, + "probability": 0.9597 + }, + { + "start": 13736.33, + "end": 13742.01, + "probability": 0.9399 + }, + { + "start": 13742.23, + "end": 13744.69, + "probability": 0.9501 + }, + { + "start": 13745.21, + "end": 13746.77, + "probability": 0.9813 + }, + { + "start": 13747.89, + "end": 13751.57, + "probability": 0.886 + }, + { + "start": 13752.23, + "end": 13755.27, + "probability": 0.9876 + }, + { + "start": 13755.45, + "end": 13760.11, + "probability": 0.9746 + }, + { + "start": 13760.21, + "end": 13765.49, + "probability": 0.9618 + }, + { + "start": 13766.19, + "end": 13766.83, + "probability": 0.6152 + }, + { + "start": 13767.59, + "end": 13772.59, + "probability": 0.9881 + }, + { + "start": 13772.81, + "end": 13777.57, + "probability": 0.8695 + }, + { + "start": 13778.21, + "end": 13779.99, + "probability": 0.9529 + }, + { + "start": 13781.05, + "end": 13783.23, + "probability": 0.3889 + }, + { + "start": 13783.45, + "end": 13787.75, + "probability": 0.9678 + }, + { + "start": 13788.29, + "end": 13790.13, + "probability": 0.9648 + }, + { + "start": 13792.25, + "end": 13798.71, + "probability": 0.9927 + }, + { + "start": 13799.99, + "end": 13806.55, + "probability": 0.9956 + }, + { + "start": 13807.29, + "end": 13808.49, + "probability": 0.9805 + }, + { + "start": 13809.37, + "end": 13811.89, + "probability": 0.7377 + }, + { + "start": 13812.35, + "end": 13814.02, + "probability": 0.8934 + }, + { + "start": 13814.57, + "end": 13816.81, + "probability": 0.9692 + }, + { + "start": 13817.79, + "end": 13818.13, + "probability": 0.727 + }, + { + "start": 13819.33, + "end": 13822.09, + "probability": 0.9623 + }, + { + "start": 13822.89, + "end": 13824.85, + "probability": 0.7271 + }, + { + "start": 13825.59, + "end": 13834.53, + "probability": 0.9863 + }, + { + "start": 13835.33, + "end": 13842.53, + "probability": 0.9904 + }, + { + "start": 13843.05, + "end": 13845.05, + "probability": 0.7538 + }, + { + "start": 13845.31, + "end": 13848.33, + "probability": 0.8354 + }, + { + "start": 13848.41, + "end": 13849.01, + "probability": 0.9307 + }, + { + "start": 13849.11, + "end": 13852.47, + "probability": 0.9972 + }, + { + "start": 13853.05, + "end": 13855.79, + "probability": 0.886 + }, + { + "start": 13855.83, + "end": 13861.21, + "probability": 0.9786 + }, + { + "start": 13861.35, + "end": 13865.51, + "probability": 0.9906 + }, + { + "start": 13865.73, + "end": 13868.01, + "probability": 0.9547 + }, + { + "start": 13868.51, + "end": 13871.91, + "probability": 0.9935 + }, + { + "start": 13871.91, + "end": 13877.63, + "probability": 0.9784 + }, + { + "start": 13878.15, + "end": 13881.73, + "probability": 0.9268 + }, + { + "start": 13882.25, + "end": 13884.65, + "probability": 0.807 + }, + { + "start": 13885.17, + "end": 13890.77, + "probability": 0.9815 + }, + { + "start": 13890.91, + "end": 13892.64, + "probability": 0.9459 + }, + { + "start": 13892.97, + "end": 13895.81, + "probability": 0.9907 + }, + { + "start": 13895.95, + "end": 13900.99, + "probability": 0.9806 + }, + { + "start": 13901.19, + "end": 13905.25, + "probability": 0.9951 + }, + { + "start": 13905.59, + "end": 13910.17, + "probability": 0.9921 + }, + { + "start": 13911.53, + "end": 13915.91, + "probability": 0.9747 + }, + { + "start": 13916.31, + "end": 13921.01, + "probability": 0.9899 + }, + { + "start": 13921.49, + "end": 13923.85, + "probability": 0.8555 + }, + { + "start": 13924.03, + "end": 13927.07, + "probability": 0.5021 + }, + { + "start": 13927.65, + "end": 13930.13, + "probability": 0.9347 + }, + { + "start": 13930.89, + "end": 13935.97, + "probability": 0.9473 + }, + { + "start": 13937.27, + "end": 13945.69, + "probability": 0.9446 + }, + { + "start": 13946.03, + "end": 13947.39, + "probability": 0.6681 + }, + { + "start": 13948.03, + "end": 13956.24, + "probability": 0.9742 + }, + { + "start": 13956.99, + "end": 13962.23, + "probability": 0.9907 + }, + { + "start": 13962.47, + "end": 13963.91, + "probability": 0.9451 + }, + { + "start": 13964.21, + "end": 13966.79, + "probability": 0.4539 + }, + { + "start": 13966.99, + "end": 13970.25, + "probability": 0.8112 + }, + { + "start": 13970.33, + "end": 13971.09, + "probability": 0.5874 + }, + { + "start": 13971.29, + "end": 13971.89, + "probability": 0.7621 + }, + { + "start": 13972.13, + "end": 13972.77, + "probability": 0.8725 + }, + { + "start": 13973.05, + "end": 13973.93, + "probability": 0.8745 + }, + { + "start": 13974.29, + "end": 13979.83, + "probability": 0.9876 + }, + { + "start": 13980.01, + "end": 13985.61, + "probability": 0.9895 + }, + { + "start": 13986.07, + "end": 13988.6, + "probability": 0.7526 + }, + { + "start": 13989.91, + "end": 13993.57, + "probability": 0.981 + }, + { + "start": 13994.21, + "end": 13999.55, + "probability": 0.9219 + }, + { + "start": 14000.59, + "end": 14002.09, + "probability": 0.8589 + }, + { + "start": 14003.85, + "end": 14010.51, + "probability": 0.9813 + }, + { + "start": 14011.57, + "end": 14015.77, + "probability": 0.9965 + }, + { + "start": 14015.85, + "end": 14016.93, + "probability": 0.9965 + }, + { + "start": 14017.23, + "end": 14019.09, + "probability": 0.9909 + }, + { + "start": 14019.49, + "end": 14023.59, + "probability": 0.9662 + }, + { + "start": 14023.69, + "end": 14024.18, + "probability": 0.9116 + }, + { + "start": 14025.03, + "end": 14025.52, + "probability": 0.9082 + }, + { + "start": 14026.05, + "end": 14034.25, + "probability": 0.9753 + }, + { + "start": 14034.79, + "end": 14041.68, + "probability": 0.979 + }, + { + "start": 14042.59, + "end": 14047.09, + "probability": 0.9501 + }, + { + "start": 14048.83, + "end": 14056.21, + "probability": 0.7522 + }, + { + "start": 14056.59, + "end": 14064.29, + "probability": 0.9155 + }, + { + "start": 14064.45, + "end": 14067.53, + "probability": 0.8577 + }, + { + "start": 14067.99, + "end": 14071.95, + "probability": 0.9398 + }, + { + "start": 14072.23, + "end": 14074.91, + "probability": 0.8623 + }, + { + "start": 14075.41, + "end": 14077.31, + "probability": 0.9771 + }, + { + "start": 14077.37, + "end": 14086.05, + "probability": 0.761 + }, + { + "start": 14086.19, + "end": 14090.89, + "probability": 0.9558 + }, + { + "start": 14091.09, + "end": 14091.83, + "probability": 0.9702 + }, + { + "start": 14093.49, + "end": 14095.69, + "probability": 0.9155 + }, + { + "start": 14095.81, + "end": 14098.27, + "probability": 0.7926 + }, + { + "start": 14098.77, + "end": 14104.01, + "probability": 0.9645 + }, + { + "start": 14104.31, + "end": 14105.79, + "probability": 0.304 + }, + { + "start": 14106.19, + "end": 14110.05, + "probability": 0.9786 + }, + { + "start": 14110.27, + "end": 14114.23, + "probability": 0.9762 + }, + { + "start": 14115.25, + "end": 14122.05, + "probability": 0.9943 + }, + { + "start": 14122.05, + "end": 14127.43, + "probability": 0.8621 + }, + { + "start": 14128.13, + "end": 14128.29, + "probability": 0.6065 + }, + { + "start": 14129.09, + "end": 14130.85, + "probability": 0.5294 + }, + { + "start": 14130.85, + "end": 14131.09, + "probability": 0.4084 + }, + { + "start": 14131.11, + "end": 14131.83, + "probability": 0.6655 + }, + { + "start": 14132.15, + "end": 14136.85, + "probability": 0.9621 + }, + { + "start": 14136.85, + "end": 14139.15, + "probability": 0.5076 + }, + { + "start": 14140.85, + "end": 14143.79, + "probability": 0.5643 + }, + { + "start": 14144.23, + "end": 14145.37, + "probability": 0.5347 + }, + { + "start": 14145.47, + "end": 14149.15, + "probability": 0.7106 + }, + { + "start": 14149.77, + "end": 14150.57, + "probability": 0.9385 + }, + { + "start": 14152.07, + "end": 14153.36, + "probability": 0.5785 + }, + { + "start": 14154.57, + "end": 14155.97, + "probability": 0.7344 + }, + { + "start": 14156.39, + "end": 14158.79, + "probability": 0.7363 + }, + { + "start": 14172.89, + "end": 14176.61, + "probability": 0.0258 + }, + { + "start": 14179.89, + "end": 14184.03, + "probability": 0.0175 + }, + { + "start": 14184.03, + "end": 14187.43, + "probability": 0.0357 + }, + { + "start": 14188.17, + "end": 14189.33, + "probability": 0.0812 + }, + { + "start": 14190.13, + "end": 14193.57, + "probability": 0.1442 + }, + { + "start": 14193.57, + "end": 14196.81, + "probability": 0.0331 + }, + { + "start": 14199.27, + "end": 14204.15, + "probability": 0.3293 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14267.0, + "end": 14267.0, + "probability": 0.0 + }, + { + "start": 14268.04, + "end": 14268.08, + "probability": 0.1588 + }, + { + "start": 14268.08, + "end": 14276.6, + "probability": 0.9701 + }, + { + "start": 14277.36, + "end": 14279.44, + "probability": 0.9682 + }, + { + "start": 14279.68, + "end": 14280.78, + "probability": 0.8614 + }, + { + "start": 14281.44, + "end": 14285.52, + "probability": 0.9307 + }, + { + "start": 14286.42, + "end": 14290.18, + "probability": 0.6678 + }, + { + "start": 14290.9, + "end": 14296.46, + "probability": 0.9163 + }, + { + "start": 14296.62, + "end": 14297.32, + "probability": 0.8649 + }, + { + "start": 14297.84, + "end": 14299.56, + "probability": 0.8447 + }, + { + "start": 14300.0, + "end": 14302.78, + "probability": 0.9918 + }, + { + "start": 14302.78, + "end": 14305.22, + "probability": 0.9556 + }, + { + "start": 14306.58, + "end": 14309.0, + "probability": 0.6923 + }, + { + "start": 14309.08, + "end": 14311.78, + "probability": 0.996 + }, + { + "start": 14311.78, + "end": 14313.98, + "probability": 0.6734 + }, + { + "start": 14314.12, + "end": 14315.34, + "probability": 0.9313 + }, + { + "start": 14316.3, + "end": 14321.14, + "probability": 0.9591 + }, + { + "start": 14322.04, + "end": 14323.12, + "probability": 0.8062 + }, + { + "start": 14323.2, + "end": 14323.88, + "probability": 0.9182 + }, + { + "start": 14323.96, + "end": 14324.62, + "probability": 0.7847 + }, + { + "start": 14324.7, + "end": 14325.48, + "probability": 0.8006 + }, + { + "start": 14325.52, + "end": 14326.36, + "probability": 0.9653 + }, + { + "start": 14327.62, + "end": 14330.74, + "probability": 0.9918 + }, + { + "start": 14331.68, + "end": 14335.96, + "probability": 0.9346 + }, + { + "start": 14336.56, + "end": 14338.32, + "probability": 0.7867 + }, + { + "start": 14338.92, + "end": 14344.5, + "probability": 0.9961 + }, + { + "start": 14345.04, + "end": 14348.02, + "probability": 0.3357 + }, + { + "start": 14348.02, + "end": 14350.82, + "probability": 0.743 + }, + { + "start": 14351.22, + "end": 14352.78, + "probability": 0.9049 + }, + { + "start": 14353.22, + "end": 14354.86, + "probability": 0.9806 + }, + { + "start": 14356.6, + "end": 14357.82, + "probability": 0.5724 + }, + { + "start": 14357.82, + "end": 14357.89, + "probability": 0.6328 + }, + { + "start": 14359.24, + "end": 14362.36, + "probability": 0.9888 + }, + { + "start": 14362.72, + "end": 14363.28, + "probability": 0.8494 + }, + { + "start": 14363.68, + "end": 14364.52, + "probability": 0.7386 + }, + { + "start": 14365.73, + "end": 14368.44, + "probability": 0.9701 + }, + { + "start": 14368.54, + "end": 14368.96, + "probability": 0.9182 + }, + { + "start": 14369.14, + "end": 14371.59, + "probability": 0.9128 + }, + { + "start": 14372.26, + "end": 14372.82, + "probability": 0.4539 + }, + { + "start": 14373.16, + "end": 14374.42, + "probability": 0.9944 + }, + { + "start": 14375.14, + "end": 14378.04, + "probability": 0.7898 + }, + { + "start": 14379.06, + "end": 14380.36, + "probability": 0.9097 + }, + { + "start": 14381.24, + "end": 14382.21, + "probability": 0.9137 + }, + { + "start": 14382.36, + "end": 14383.44, + "probability": 0.9844 + }, + { + "start": 14383.52, + "end": 14385.66, + "probability": 0.9214 + }, + { + "start": 14386.06, + "end": 14386.7, + "probability": 0.658 + }, + { + "start": 14387.04, + "end": 14388.06, + "probability": 0.99 + }, + { + "start": 14388.72, + "end": 14389.18, + "probability": 0.4926 + }, + { + "start": 14390.22, + "end": 14390.65, + "probability": 0.9604 + }, + { + "start": 14391.6, + "end": 14392.3, + "probability": 0.8876 + }, + { + "start": 14392.72, + "end": 14395.16, + "probability": 0.9678 + }, + { + "start": 14397.29, + "end": 14401.7, + "probability": 0.8215 + }, + { + "start": 14401.78, + "end": 14403.9, + "probability": 0.99 + }, + { + "start": 14405.06, + "end": 14407.2, + "probability": 0.8953 + }, + { + "start": 14407.86, + "end": 14410.26, + "probability": 0.8492 + }, + { + "start": 14410.7, + "end": 14412.88, + "probability": 0.9919 + }, + { + "start": 14413.46, + "end": 14415.02, + "probability": 0.9216 + }, + { + "start": 14415.54, + "end": 14421.92, + "probability": 0.8929 + }, + { + "start": 14422.9, + "end": 14425.28, + "probability": 0.9012 + }, + { + "start": 14425.28, + "end": 14427.72, + "probability": 0.897 + }, + { + "start": 14429.56, + "end": 14430.16, + "probability": 0.8767 + }, + { + "start": 14430.28, + "end": 14432.06, + "probability": 0.8518 + }, + { + "start": 14432.06, + "end": 14433.9, + "probability": 0.991 + }, + { + "start": 14434.78, + "end": 14435.86, + "probability": 0.9493 + }, + { + "start": 14436.3, + "end": 14439.48, + "probability": 0.9016 + }, + { + "start": 14439.98, + "end": 14444.16, + "probability": 0.9814 + }, + { + "start": 14444.54, + "end": 14446.56, + "probability": 0.9332 + }, + { + "start": 14447.02, + "end": 14448.7, + "probability": 0.8726 + }, + { + "start": 14449.64, + "end": 14450.9, + "probability": 0.6405 + }, + { + "start": 14451.56, + "end": 14455.26, + "probability": 0.9068 + }, + { + "start": 14455.98, + "end": 14456.7, + "probability": 0.9542 + }, + { + "start": 14456.82, + "end": 14457.3, + "probability": 0.9743 + }, + { + "start": 14457.34, + "end": 14457.78, + "probability": 0.9067 + }, + { + "start": 14457.84, + "end": 14458.34, + "probability": 0.786 + }, + { + "start": 14458.44, + "end": 14458.8, + "probability": 0.254 + }, + { + "start": 14458.84, + "end": 14459.48, + "probability": 0.7947 + }, + { + "start": 14459.84, + "end": 14461.98, + "probability": 0.8512 + }, + { + "start": 14462.34, + "end": 14463.2, + "probability": 0.6731 + }, + { + "start": 14463.3, + "end": 14463.9, + "probability": 0.921 + }, + { + "start": 14464.0, + "end": 14464.6, + "probability": 0.8195 + }, + { + "start": 14464.7, + "end": 14465.12, + "probability": 0.6293 + }, + { + "start": 14465.18, + "end": 14465.7, + "probability": 0.6569 + }, + { + "start": 14465.72, + "end": 14466.66, + "probability": 0.9196 + }, + { + "start": 14467.1, + "end": 14467.96, + "probability": 0.9594 + }, + { + "start": 14468.7, + "end": 14469.68, + "probability": 0.9051 + }, + { + "start": 14469.84, + "end": 14470.5, + "probability": 0.6391 + }, + { + "start": 14470.52, + "end": 14470.9, + "probability": 0.3768 + }, + { + "start": 14471.02, + "end": 14471.28, + "probability": 0.8131 + }, + { + "start": 14471.38, + "end": 14471.9, + "probability": 0.8001 + }, + { + "start": 14471.98, + "end": 14475.1, + "probability": 0.8755 + }, + { + "start": 14475.68, + "end": 14479.56, + "probability": 0.9104 + }, + { + "start": 14479.9, + "end": 14480.34, + "probability": 0.9121 + }, + { + "start": 14481.38, + "end": 14484.38, + "probability": 0.9882 + }, + { + "start": 14484.92, + "end": 14488.22, + "probability": 0.6097 + }, + { + "start": 14488.43, + "end": 14491.66, + "probability": 0.5299 + }, + { + "start": 14492.24, + "end": 14494.26, + "probability": 0.8223 + }, + { + "start": 14494.64, + "end": 14496.36, + "probability": 0.9445 + }, + { + "start": 14496.96, + "end": 14499.74, + "probability": 0.9189 + }, + { + "start": 14501.32, + "end": 14504.84, + "probability": 0.91 + }, + { + "start": 14505.32, + "end": 14506.16, + "probability": 0.2696 + }, + { + "start": 14507.0, + "end": 14509.38, + "probability": 0.9778 + }, + { + "start": 14509.42, + "end": 14512.36, + "probability": 0.8642 + }, + { + "start": 14513.06, + "end": 14516.92, + "probability": 0.9688 + }, + { + "start": 14517.5, + "end": 14519.78, + "probability": 0.9835 + }, + { + "start": 14520.44, + "end": 14521.22, + "probability": 0.4566 + }, + { + "start": 14522.08, + "end": 14523.88, + "probability": 0.851 + }, + { + "start": 14524.58, + "end": 14525.76, + "probability": 0.9725 + }, + { + "start": 14526.18, + "end": 14527.74, + "probability": 0.9562 + }, + { + "start": 14528.08, + "end": 14529.54, + "probability": 0.9609 + }, + { + "start": 14530.0, + "end": 14532.88, + "probability": 0.8306 + }, + { + "start": 14533.48, + "end": 14534.64, + "probability": 0.8254 + }, + { + "start": 14535.02, + "end": 14536.24, + "probability": 0.9586 + }, + { + "start": 14536.7, + "end": 14537.92, + "probability": 0.975 + }, + { + "start": 14538.28, + "end": 14539.8, + "probability": 0.9932 + }, + { + "start": 14540.14, + "end": 14541.36, + "probability": 0.9922 + }, + { + "start": 14541.78, + "end": 14543.56, + "probability": 0.9105 + }, + { + "start": 14545.27, + "end": 14546.14, + "probability": 0.5931 + }, + { + "start": 14546.14, + "end": 14546.42, + "probability": 0.859 + }, + { + "start": 14547.28, + "end": 14548.66, + "probability": 0.9757 + }, + { + "start": 14549.04, + "end": 14550.24, + "probability": 0.9749 + }, + { + "start": 14550.66, + "end": 14551.9, + "probability": 0.9893 + }, + { + "start": 14552.32, + "end": 14553.66, + "probability": 0.9868 + }, + { + "start": 14553.98, + "end": 14555.46, + "probability": 0.8889 + }, + { + "start": 14555.72, + "end": 14557.22, + "probability": 0.9509 + }, + { + "start": 14557.52, + "end": 14558.98, + "probability": 0.9837 + }, + { + "start": 14559.24, + "end": 14560.62, + "probability": 0.9951 + }, + { + "start": 14561.0, + "end": 14562.78, + "probability": 0.9827 + }, + { + "start": 14563.12, + "end": 14564.94, + "probability": 0.9713 + }, + { + "start": 14565.3, + "end": 14566.74, + "probability": 0.9781 + }, + { + "start": 14568.88, + "end": 14569.96, + "probability": 0.0733 + }, + { + "start": 14569.96, + "end": 14573.06, + "probability": 0.6665 + }, + { + "start": 14573.52, + "end": 14574.52, + "probability": 0.5289 + }, + { + "start": 14575.0, + "end": 14575.66, + "probability": 0.6982 + }, + { + "start": 14575.74, + "end": 14576.16, + "probability": 0.7358 + }, + { + "start": 14576.24, + "end": 14577.06, + "probability": 0.9507 + }, + { + "start": 14577.5, + "end": 14580.76, + "probability": 0.9387 + }, + { + "start": 14581.14, + "end": 14584.86, + "probability": 0.9963 + }, + { + "start": 14585.6, + "end": 14587.05, + "probability": 0.9233 + }, + { + "start": 14587.86, + "end": 14591.92, + "probability": 0.8345 + }, + { + "start": 14592.16, + "end": 14593.9, + "probability": 0.8247 + }, + { + "start": 14594.54, + "end": 14600.22, + "probability": 0.9775 + }, + { + "start": 14600.78, + "end": 14602.78, + "probability": 0.78 + }, + { + "start": 14603.3, + "end": 14606.42, + "probability": 0.9696 + }, + { + "start": 14607.12, + "end": 14608.49, + "probability": 0.9038 + }, + { + "start": 14609.3, + "end": 14611.96, + "probability": 0.9316 + }, + { + "start": 14615.42, + "end": 14616.8, + "probability": 0.3577 + }, + { + "start": 14616.86, + "end": 14617.22, + "probability": 0.3091 + }, + { + "start": 14617.28, + "end": 14618.7, + "probability": 0.8367 + }, + { + "start": 14618.88, + "end": 14621.32, + "probability": 0.2581 + }, + { + "start": 14621.64, + "end": 14622.7, + "probability": 0.7255 + }, + { + "start": 14622.82, + "end": 14623.48, + "probability": 0.9524 + }, + { + "start": 14623.68, + "end": 14625.78, + "probability": 0.9382 + }, + { + "start": 14626.12, + "end": 14628.12, + "probability": 0.9161 + }, + { + "start": 14628.8, + "end": 14628.94, + "probability": 0.5545 + }, + { + "start": 14629.08, + "end": 14632.4, + "probability": 0.989 + }, + { + "start": 14633.1, + "end": 14636.12, + "probability": 0.9951 + }, + { + "start": 14636.22, + "end": 14638.86, + "probability": 0.9359 + }, + { + "start": 14638.86, + "end": 14641.72, + "probability": 0.9952 + }, + { + "start": 14642.42, + "end": 14646.16, + "probability": 0.4171 + }, + { + "start": 14646.4, + "end": 14646.83, + "probability": 0.7824 + }, + { + "start": 14647.62, + "end": 14648.76, + "probability": 0.9396 + }, + { + "start": 14648.98, + "end": 14649.76, + "probability": 0.8024 + }, + { + "start": 14650.1, + "end": 14651.24, + "probability": 0.7797 + }, + { + "start": 14651.52, + "end": 14652.5, + "probability": 0.8789 + }, + { + "start": 14652.98, + "end": 14654.44, + "probability": 0.8655 + }, + { + "start": 14654.5, + "end": 14656.82, + "probability": 0.9037 + }, + { + "start": 14657.36, + "end": 14658.38, + "probability": 0.9792 + }, + { + "start": 14659.14, + "end": 14660.04, + "probability": 0.6688 + }, + { + "start": 14660.32, + "end": 14660.6, + "probability": 0.6678 + }, + { + "start": 14661.04, + "end": 14663.06, + "probability": 0.4587 + }, + { + "start": 14663.44, + "end": 14665.2, + "probability": 0.6664 + }, + { + "start": 14665.64, + "end": 14666.92, + "probability": 0.7948 + }, + { + "start": 14667.42, + "end": 14669.24, + "probability": 0.9672 + }, + { + "start": 14669.64, + "end": 14670.56, + "probability": 0.9722 + }, + { + "start": 14671.02, + "end": 14671.52, + "probability": 0.9832 + }, + { + "start": 14672.22, + "end": 14673.2, + "probability": 0.9899 + }, + { + "start": 14674.2, + "end": 14678.62, + "probability": 0.8594 + }, + { + "start": 14679.18, + "end": 14682.88, + "probability": 0.7708 + }, + { + "start": 14683.16, + "end": 14683.76, + "probability": 0.7499 + }, + { + "start": 14683.8, + "end": 14686.56, + "probability": 0.9426 + }, + { + "start": 14686.62, + "end": 14690.64, + "probability": 0.9481 + }, + { + "start": 14691.07, + "end": 14694.7, + "probability": 0.9466 + }, + { + "start": 14694.86, + "end": 14695.1, + "probability": 0.4332 + }, + { + "start": 14696.12, + "end": 14698.42, + "probability": 0.801 + }, + { + "start": 14699.0, + "end": 14700.08, + "probability": 0.9328 + }, + { + "start": 14700.6, + "end": 14701.72, + "probability": 0.8615 + }, + { + "start": 14701.78, + "end": 14702.4, + "probability": 0.7679 + }, + { + "start": 14702.46, + "end": 14703.95, + "probability": 0.6593 + }, + { + "start": 14705.06, + "end": 14707.52, + "probability": 0.9328 + }, + { + "start": 14708.06, + "end": 14710.24, + "probability": 0.957 + }, + { + "start": 14710.58, + "end": 14711.98, + "probability": 0.8718 + }, + { + "start": 14712.56, + "end": 14717.82, + "probability": 0.9446 + }, + { + "start": 14718.54, + "end": 14722.5, + "probability": 0.885 + }, + { + "start": 14722.5, + "end": 14723.28, + "probability": 0.6368 + }, + { + "start": 14723.72, + "end": 14725.56, + "probability": 0.9524 + }, + { + "start": 14726.26, + "end": 14727.3, + "probability": 0.8466 + }, + { + "start": 14727.74, + "end": 14731.74, + "probability": 0.9281 + }, + { + "start": 14732.14, + "end": 14738.26, + "probability": 0.9784 + }, + { + "start": 14738.84, + "end": 14739.26, + "probability": 0.6067 + }, + { + "start": 14739.26, + "end": 14740.01, + "probability": 0.9415 + }, + { + "start": 14740.46, + "end": 14745.1, + "probability": 0.879 + }, + { + "start": 14745.16, + "end": 14746.23, + "probability": 0.9764 + }, + { + "start": 14746.72, + "end": 14747.98, + "probability": 0.9426 + }, + { + "start": 14749.26, + "end": 14751.08, + "probability": 0.9392 + }, + { + "start": 14751.4, + "end": 14755.64, + "probability": 0.9927 + }, + { + "start": 14755.8, + "end": 14759.24, + "probability": 0.9581 + }, + { + "start": 14761.12, + "end": 14765.52, + "probability": 0.7817 + }, + { + "start": 14766.18, + "end": 14767.72, + "probability": 0.9984 + }, + { + "start": 14768.16, + "end": 14770.82, + "probability": 0.7451 + }, + { + "start": 14772.12, + "end": 14774.76, + "probability": 0.4216 + }, + { + "start": 14775.24, + "end": 14777.6, + "probability": 0.8396 + }, + { + "start": 14777.66, + "end": 14780.4, + "probability": 0.9272 + }, + { + "start": 14780.4, + "end": 14783.6, + "probability": 0.9839 + }, + { + "start": 14784.04, + "end": 14785.82, + "probability": 0.5902 + }, + { + "start": 14786.24, + "end": 14792.76, + "probability": 0.8003 + }, + { + "start": 14793.44, + "end": 14796.42, + "probability": 0.8782 + }, + { + "start": 14796.54, + "end": 14797.96, + "probability": 0.5353 + }, + { + "start": 14798.76, + "end": 14799.51, + "probability": 0.8517 + }, + { + "start": 14800.24, + "end": 14800.88, + "probability": 0.7627 + }, + { + "start": 14800.96, + "end": 14801.48, + "probability": 0.5285 + }, + { + "start": 14801.48, + "end": 14807.8, + "probability": 0.9544 + }, + { + "start": 14808.0, + "end": 14809.92, + "probability": 0.5886 + }, + { + "start": 14810.08, + "end": 14815.7, + "probability": 0.8398 + }, + { + "start": 14816.16, + "end": 14817.0, + "probability": 0.8114 + }, + { + "start": 14817.46, + "end": 14818.82, + "probability": 0.7446 + }, + { + "start": 14819.14, + "end": 14821.05, + "probability": 0.976 + }, + { + "start": 14821.62, + "end": 14824.78, + "probability": 0.8462 + }, + { + "start": 14825.38, + "end": 14825.88, + "probability": 0.8809 + }, + { + "start": 14825.98, + "end": 14826.48, + "probability": 0.8566 + }, + { + "start": 14826.78, + "end": 14827.08, + "probability": 0.4387 + }, + { + "start": 14827.34, + "end": 14827.92, + "probability": 0.7163 + }, + { + "start": 14828.34, + "end": 14828.86, + "probability": 0.8046 + }, + { + "start": 14828.92, + "end": 14829.46, + "probability": 0.9062 + }, + { + "start": 14829.92, + "end": 14830.58, + "probability": 0.521 + }, + { + "start": 14830.58, + "end": 14831.28, + "probability": 0.8857 + }, + { + "start": 14831.52, + "end": 14832.02, + "probability": 0.9089 + }, + { + "start": 14832.12, + "end": 14832.82, + "probability": 0.9452 + }, + { + "start": 14833.26, + "end": 14833.9, + "probability": 0.7496 + }, + { + "start": 14834.0, + "end": 14834.52, + "probability": 0.9797 + }, + { + "start": 14835.1, + "end": 14837.62, + "probability": 0.6702 + }, + { + "start": 14837.92, + "end": 14840.38, + "probability": 0.9745 + }, + { + "start": 14840.38, + "end": 14843.06, + "probability": 0.995 + }, + { + "start": 14843.86, + "end": 14845.7, + "probability": 0.7072 + }, + { + "start": 14845.88, + "end": 14846.6, + "probability": 0.614 + }, + { + "start": 14846.78, + "end": 14847.74, + "probability": 0.8553 + }, + { + "start": 14848.12, + "end": 14848.66, + "probability": 0.5759 + }, + { + "start": 14848.74, + "end": 14849.62, + "probability": 0.9315 + }, + { + "start": 14850.04, + "end": 14850.62, + "probability": 0.5749 + }, + { + "start": 14850.64, + "end": 14851.18, + "probability": 0.7348 + }, + { + "start": 14851.48, + "end": 14851.78, + "probability": 0.4037 + }, + { + "start": 14851.82, + "end": 14852.3, + "probability": 0.2377 + }, + { + "start": 14852.42, + "end": 14852.8, + "probability": 0.2115 + }, + { + "start": 14852.8, + "end": 14853.75, + "probability": 0.5992 + }, + { + "start": 14854.3, + "end": 14858.5, + "probability": 0.7949 + }, + { + "start": 14858.86, + "end": 14859.54, + "probability": 0.7802 + }, + { + "start": 14859.66, + "end": 14862.02, + "probability": 0.9775 + }, + { + "start": 14862.7, + "end": 14864.34, + "probability": 0.7619 + }, + { + "start": 14864.44, + "end": 14864.78, + "probability": 0.8148 + }, + { + "start": 14864.88, + "end": 14865.7, + "probability": 0.8462 + }, + { + "start": 14865.76, + "end": 14866.22, + "probability": 0.7267 + }, + { + "start": 14866.28, + "end": 14867.08, + "probability": 0.8935 + }, + { + "start": 14867.98, + "end": 14869.26, + "probability": 0.63 + }, + { + "start": 14869.96, + "end": 14875.44, + "probability": 0.9482 + }, + { + "start": 14875.8, + "end": 14876.76, + "probability": 0.8745 + }, + { + "start": 14877.2, + "end": 14878.46, + "probability": 0.9138 + }, + { + "start": 14879.04, + "end": 14880.34, + "probability": 0.7614 + }, + { + "start": 14880.6, + "end": 14882.16, + "probability": 0.9712 + }, + { + "start": 14882.22, + "end": 14885.82, + "probability": 0.5185 + }, + { + "start": 14885.82, + "end": 14890.26, + "probability": 0.9832 + }, + { + "start": 14890.68, + "end": 14893.63, + "probability": 0.9954 + }, + { + "start": 14894.3, + "end": 14898.97, + "probability": 0.9621 + }, + { + "start": 14899.76, + "end": 14900.16, + "probability": 0.8658 + }, + { + "start": 14900.24, + "end": 14901.22, + "probability": 0.8612 + }, + { + "start": 14901.42, + "end": 14901.72, + "probability": 0.7361 + }, + { + "start": 14902.08, + "end": 14902.76, + "probability": 0.7611 + }, + { + "start": 14902.9, + "end": 14904.32, + "probability": 0.7019 + }, + { + "start": 14904.44, + "end": 14909.14, + "probability": 0.886 + }, + { + "start": 14909.2, + "end": 14909.32, + "probability": 0.8616 + }, + { + "start": 14909.84, + "end": 14910.08, + "probability": 0.7282 + }, + { + "start": 14910.64, + "end": 14913.18, + "probability": 0.9904 + }, + { + "start": 14913.62, + "end": 14916.24, + "probability": 0.5386 + }, + { + "start": 14937.36, + "end": 14938.58, + "probability": 0.7989 + }, + { + "start": 14939.4, + "end": 14940.32, + "probability": 0.8282 + }, + { + "start": 14941.48, + "end": 14943.21, + "probability": 0.4862 + }, + { + "start": 14947.3, + "end": 14950.24, + "probability": 0.9893 + }, + { + "start": 14950.94, + "end": 14955.0, + "probability": 0.9266 + }, + { + "start": 14957.02, + "end": 14957.46, + "probability": 0.537 + }, + { + "start": 14958.64, + "end": 14963.36, + "probability": 0.9902 + }, + { + "start": 14965.68, + "end": 14967.53, + "probability": 0.7322 + }, + { + "start": 14968.1, + "end": 14969.66, + "probability": 0.8239 + }, + { + "start": 14970.68, + "end": 14971.4, + "probability": 0.1852 + }, + { + "start": 14974.92, + "end": 14980.04, + "probability": 0.3914 + }, + { + "start": 14981.68, + "end": 14985.28, + "probability": 0.9941 + }, + { + "start": 14986.16, + "end": 14987.16, + "probability": 0.2726 + }, + { + "start": 14987.24, + "end": 14988.96, + "probability": 0.7815 + }, + { + "start": 14989.24, + "end": 14996.54, + "probability": 0.0872 + }, + { + "start": 14996.54, + "end": 14996.84, + "probability": 0.018 + }, + { + "start": 14999.62, + "end": 15001.44, + "probability": 0.1232 + }, + { + "start": 15014.94, + "end": 15015.44, + "probability": 0.0362 + }, + { + "start": 15015.44, + "end": 15015.44, + "probability": 0.0457 + }, + { + "start": 15015.44, + "end": 15015.44, + "probability": 0.2322 + }, + { + "start": 15015.44, + "end": 15017.3, + "probability": 0.7262 + }, + { + "start": 15017.8, + "end": 15020.94, + "probability": 0.8002 + }, + { + "start": 15021.48, + "end": 15022.21, + "probability": 0.8043 + }, + { + "start": 15023.22, + "end": 15024.76, + "probability": 0.9811 + }, + { + "start": 15027.58, + "end": 15028.36, + "probability": 0.0038 + }, + { + "start": 15029.48, + "end": 15031.14, + "probability": 0.9983 + }, + { + "start": 15032.54, + "end": 15032.72, + "probability": 0.5577 + }, + { + "start": 15035.64, + "end": 15037.84, + "probability": 0.8823 + }, + { + "start": 15038.0, + "end": 15039.92, + "probability": 0.8312 + }, + { + "start": 15040.94, + "end": 15042.62, + "probability": 0.7156 + }, + { + "start": 15042.74, + "end": 15046.28, + "probability": 0.9174 + }, + { + "start": 15046.44, + "end": 15048.4, + "probability": 0.5018 + }, + { + "start": 15048.5, + "end": 15049.38, + "probability": 0.7341 + }, + { + "start": 15049.48, + "end": 15049.9, + "probability": 0.6966 + }, + { + "start": 15068.98, + "end": 15069.24, + "probability": 0.2515 + }, + { + "start": 15069.24, + "end": 15071.02, + "probability": 0.6464 + }, + { + "start": 15074.54, + "end": 15075.96, + "probability": 0.6664 + }, + { + "start": 15077.82, + "end": 15079.82, + "probability": 0.9176 + }, + { + "start": 15080.88, + "end": 15084.08, + "probability": 0.9921 + }, + { + "start": 15084.08, + "end": 15088.5, + "probability": 0.7491 + }, + { + "start": 15089.98, + "end": 15092.34, + "probability": 0.9991 + }, + { + "start": 15093.12, + "end": 15095.2, + "probability": 0.9896 + }, + { + "start": 15096.34, + "end": 15101.5, + "probability": 0.8671 + }, + { + "start": 15102.66, + "end": 15104.82, + "probability": 0.9746 + }, + { + "start": 15105.42, + "end": 15107.32, + "probability": 0.9333 + }, + { + "start": 15108.42, + "end": 15110.1, + "probability": 0.8553 + }, + { + "start": 15110.66, + "end": 15116.24, + "probability": 0.9378 + }, + { + "start": 15117.44, + "end": 15119.98, + "probability": 0.8056 + }, + { + "start": 15120.58, + "end": 15121.28, + "probability": 0.5221 + }, + { + "start": 15121.56, + "end": 15126.34, + "probability": 0.9028 + }, + { + "start": 15128.46, + "end": 15128.8, + "probability": 0.7618 + }, + { + "start": 15128.88, + "end": 15134.46, + "probability": 0.9684 + }, + { + "start": 15135.18, + "end": 15141.68, + "probability": 0.9906 + }, + { + "start": 15141.68, + "end": 15148.28, + "probability": 0.9956 + }, + { + "start": 15149.2, + "end": 15152.82, + "probability": 0.9653 + }, + { + "start": 15153.6, + "end": 15155.62, + "probability": 0.9866 + }, + { + "start": 15156.3, + "end": 15156.96, + "probability": 0.5653 + }, + { + "start": 15157.56, + "end": 15159.4, + "probability": 0.9206 + }, + { + "start": 15160.1, + "end": 15163.86, + "probability": 0.963 + }, + { + "start": 15164.36, + "end": 15167.96, + "probability": 0.9846 + }, + { + "start": 15168.62, + "end": 15170.2, + "probability": 0.1294 + }, + { + "start": 15171.56, + "end": 15172.6, + "probability": 0.7209 + }, + { + "start": 15173.14, + "end": 15173.86, + "probability": 0.9438 + }, + { + "start": 15174.6, + "end": 15176.9, + "probability": 0.9388 + }, + { + "start": 15177.4, + "end": 15181.06, + "probability": 0.993 + }, + { + "start": 15182.02, + "end": 15183.34, + "probability": 0.998 + }, + { + "start": 15183.7, + "end": 15184.94, + "probability": 0.3813 + }, + { + "start": 15184.94, + "end": 15185.3, + "probability": 0.4227 + }, + { + "start": 15185.74, + "end": 15187.08, + "probability": 0.738 + }, + { + "start": 15187.54, + "end": 15191.7, + "probability": 0.9704 + }, + { + "start": 15192.92, + "end": 15195.96, + "probability": 0.9283 + }, + { + "start": 15196.26, + "end": 15196.68, + "probability": 0.5344 + }, + { + "start": 15198.26, + "end": 15198.78, + "probability": 0.7419 + }, + { + "start": 15199.38, + "end": 15203.5, + "probability": 0.8123 + }, + { + "start": 15204.62, + "end": 15205.24, + "probability": 0.7941 + }, + { + "start": 15206.32, + "end": 15208.96, + "probability": 0.8747 + }, + { + "start": 15209.46, + "end": 15211.28, + "probability": 0.8801 + }, + { + "start": 15212.1, + "end": 15217.66, + "probability": 0.9453 + }, + { + "start": 15220.32, + "end": 15222.88, + "probability": 0.9546 + }, + { + "start": 15224.26, + "end": 15229.78, + "probability": 0.7324 + }, + { + "start": 15229.88, + "end": 15230.48, + "probability": 0.5464 + }, + { + "start": 15230.86, + "end": 15231.7, + "probability": 0.5739 + }, + { + "start": 15232.44, + "end": 15233.64, + "probability": 0.9803 + }, + { + "start": 15235.16, + "end": 15235.64, + "probability": 0.9512 + }, + { + "start": 15236.74, + "end": 15238.33, + "probability": 0.9595 + }, + { + "start": 15239.12, + "end": 15240.3, + "probability": 0.9956 + }, + { + "start": 15241.08, + "end": 15242.32, + "probability": 0.5741 + }, + { + "start": 15242.92, + "end": 15244.78, + "probability": 0.9175 + }, + { + "start": 15245.32, + "end": 15249.2, + "probability": 0.8735 + }, + { + "start": 15250.04, + "end": 15251.77, + "probability": 0.978 + }, + { + "start": 15253.22, + "end": 15254.44, + "probability": 0.7925 + }, + { + "start": 15255.54, + "end": 15256.62, + "probability": 0.9056 + }, + { + "start": 15259.52, + "end": 15260.56, + "probability": 0.9531 + }, + { + "start": 15264.82, + "end": 15266.12, + "probability": 0.4748 + }, + { + "start": 15266.96, + "end": 15272.74, + "probability": 0.9884 + }, + { + "start": 15275.82, + "end": 15278.58, + "probability": 0.9953 + }, + { + "start": 15279.3, + "end": 15281.5, + "probability": 0.9937 + }, + { + "start": 15282.2, + "end": 15285.0, + "probability": 0.9819 + }, + { + "start": 15285.76, + "end": 15286.9, + "probability": 0.9392 + }, + { + "start": 15288.14, + "end": 15289.06, + "probability": 0.8043 + }, + { + "start": 15289.56, + "end": 15289.74, + "probability": 0.2902 + }, + { + "start": 15289.76, + "end": 15298.76, + "probability": 0.9529 + }, + { + "start": 15299.08, + "end": 15307.64, + "probability": 0.9129 + }, + { + "start": 15308.32, + "end": 15309.86, + "probability": 0.7298 + }, + { + "start": 15310.12, + "end": 15311.06, + "probability": 0.5603 + }, + { + "start": 15311.34, + "end": 15312.54, + "probability": 0.8944 + }, + { + "start": 15312.96, + "end": 15315.5, + "probability": 0.6167 + }, + { + "start": 15317.71, + "end": 15319.88, + "probability": 0.9397 + }, + { + "start": 15319.96, + "end": 15326.82, + "probability": 0.8664 + }, + { + "start": 15326.88, + "end": 15333.58, + "probability": 0.7917 + }, + { + "start": 15333.58, + "end": 15338.5, + "probability": 0.9891 + }, + { + "start": 15339.16, + "end": 15342.49, + "probability": 0.9731 + }, + { + "start": 15342.84, + "end": 15346.22, + "probability": 0.9381 + }, + { + "start": 15346.22, + "end": 15352.12, + "probability": 0.9437 + }, + { + "start": 15353.2, + "end": 15354.96, + "probability": 0.711 + }, + { + "start": 15355.8, + "end": 15357.88, + "probability": 0.9966 + }, + { + "start": 15358.5, + "end": 15360.04, + "probability": 0.9798 + }, + { + "start": 15360.88, + "end": 15361.76, + "probability": 0.9527 + }, + { + "start": 15363.0, + "end": 15364.59, + "probability": 0.8104 + }, + { + "start": 15365.88, + "end": 15369.42, + "probability": 0.7008 + }, + { + "start": 15370.44, + "end": 15374.9, + "probability": 0.9582 + }, + { + "start": 15375.68, + "end": 15380.43, + "probability": 0.8641 + }, + { + "start": 15381.38, + "end": 15387.7, + "probability": 0.9768 + }, + { + "start": 15387.92, + "end": 15388.8, + "probability": 0.5961 + }, + { + "start": 15388.88, + "end": 15391.8, + "probability": 0.6971 + }, + { + "start": 15392.28, + "end": 15392.5, + "probability": 0.4808 + }, + { + "start": 15395.06, + "end": 15396.14, + "probability": 0.8453 + }, + { + "start": 15396.36, + "end": 15397.73, + "probability": 0.5898 + }, + { + "start": 15398.06, + "end": 15399.23, + "probability": 0.5897 + }, + { + "start": 15400.02, + "end": 15401.35, + "probability": 0.7554 + }, + { + "start": 15401.9, + "end": 15403.88, + "probability": 0.4848 + }, + { + "start": 15404.48, + "end": 15404.86, + "probability": 0.5081 + }, + { + "start": 15406.28, + "end": 15407.3, + "probability": 0.8885 + }, + { + "start": 15407.62, + "end": 15407.88, + "probability": 0.6324 + }, + { + "start": 15407.96, + "end": 15408.16, + "probability": 0.9391 + }, + { + "start": 15408.16, + "end": 15409.28, + "probability": 0.4815 + }, + { + "start": 15409.5, + "end": 15412.7, + "probability": 0.5774 + }, + { + "start": 15413.38, + "end": 15417.6, + "probability": 0.9931 + }, + { + "start": 15417.74, + "end": 15418.14, + "probability": 0.8082 + }, + { + "start": 15418.26, + "end": 15420.6, + "probability": 0.9609 + }, + { + "start": 15421.42, + "end": 15422.36, + "probability": 0.8491 + }, + { + "start": 15422.54, + "end": 15422.64, + "probability": 0.3499 + }, + { + "start": 15422.72, + "end": 15423.38, + "probability": 0.9574 + }, + { + "start": 15424.38, + "end": 15425.4, + "probability": 0.9884 + }, + { + "start": 15425.86, + "end": 15429.38, + "probability": 0.991 + }, + { + "start": 15429.38, + "end": 15432.0, + "probability": 0.9979 + }, + { + "start": 15433.76, + "end": 15440.64, + "probability": 0.8381 + }, + { + "start": 15441.55, + "end": 15443.37, + "probability": 0.9751 + }, + { + "start": 15444.5, + "end": 15445.02, + "probability": 0.9419 + }, + { + "start": 15446.74, + "end": 15449.38, + "probability": 0.9834 + }, + { + "start": 15450.52, + "end": 15452.18, + "probability": 0.6805 + }, + { + "start": 15452.46, + "end": 15454.1, + "probability": 0.9573 + }, + { + "start": 15454.86, + "end": 15455.88, + "probability": 0.9724 + }, + { + "start": 15456.58, + "end": 15458.68, + "probability": 0.9861 + }, + { + "start": 15460.12, + "end": 15461.42, + "probability": 0.8704 + }, + { + "start": 15462.06, + "end": 15463.26, + "probability": 0.6466 + }, + { + "start": 15464.0, + "end": 15468.16, + "probability": 0.9855 + }, + { + "start": 15468.98, + "end": 15471.08, + "probability": 0.993 + }, + { + "start": 15471.08, + "end": 15475.32, + "probability": 0.9314 + }, + { + "start": 15475.86, + "end": 15479.64, + "probability": 0.8796 + }, + { + "start": 15480.06, + "end": 15481.94, + "probability": 0.9068 + }, + { + "start": 15482.1, + "end": 15483.08, + "probability": 0.7271 + }, + { + "start": 15483.46, + "end": 15488.84, + "probability": 0.9563 + }, + { + "start": 15489.36, + "end": 15493.34, + "probability": 0.9955 + }, + { + "start": 15493.52, + "end": 15499.98, + "probability": 0.9946 + }, + { + "start": 15500.34, + "end": 15501.6, + "probability": 0.7377 + }, + { + "start": 15503.33, + "end": 15506.32, + "probability": 0.6135 + }, + { + "start": 15506.74, + "end": 15507.32, + "probability": 0.3835 + }, + { + "start": 15507.32, + "end": 15509.5, + "probability": 0.8477 + }, + { + "start": 15511.14, + "end": 15514.58, + "probability": 0.9932 + }, + { + "start": 15515.16, + "end": 15515.62, + "probability": 0.7061 + }, + { + "start": 15516.52, + "end": 15520.42, + "probability": 0.9064 + }, + { + "start": 15520.88, + "end": 15522.86, + "probability": 0.9984 + }, + { + "start": 15523.56, + "end": 15524.58, + "probability": 0.9937 + }, + { + "start": 15525.32, + "end": 15525.9, + "probability": 0.7207 + }, + { + "start": 15526.36, + "end": 15527.6, + "probability": 0.7857 + }, + { + "start": 15528.0, + "end": 15528.6, + "probability": 0.4882 + }, + { + "start": 15528.76, + "end": 15529.64, + "probability": 0.9369 + }, + { + "start": 15530.08, + "end": 15532.9, + "probability": 0.9976 + }, + { + "start": 15533.44, + "end": 15535.86, + "probability": 0.7506 + }, + { + "start": 15536.5, + "end": 15537.36, + "probability": 0.9821 + }, + { + "start": 15537.98, + "end": 15539.56, + "probability": 0.9951 + }, + { + "start": 15540.08, + "end": 15543.6, + "probability": 0.9858 + }, + { + "start": 15543.6, + "end": 15547.7, + "probability": 0.6106 + }, + { + "start": 15547.76, + "end": 15548.64, + "probability": 0.9663 + }, + { + "start": 15550.1, + "end": 15553.44, + "probability": 0.8795 + }, + { + "start": 15553.98, + "end": 15555.14, + "probability": 0.9345 + }, + { + "start": 15555.7, + "end": 15559.46, + "probability": 0.9895 + }, + { + "start": 15560.44, + "end": 15563.16, + "probability": 0.8422 + }, + { + "start": 15563.16, + "end": 15566.92, + "probability": 0.9873 + }, + { + "start": 15567.54, + "end": 15572.22, + "probability": 0.9985 + }, + { + "start": 15573.0, + "end": 15577.68, + "probability": 0.9891 + }, + { + "start": 15577.68, + "end": 15582.32, + "probability": 0.997 + }, + { + "start": 15584.36, + "end": 15585.12, + "probability": 0.5192 + }, + { + "start": 15586.45, + "end": 15591.2, + "probability": 0.7007 + }, + { + "start": 15591.9, + "end": 15592.16, + "probability": 0.4205 + }, + { + "start": 15592.32, + "end": 15596.06, + "probability": 0.9798 + }, + { + "start": 15597.32, + "end": 15600.52, + "probability": 0.9968 + }, + { + "start": 15601.08, + "end": 15603.64, + "probability": 0.7404 + }, + { + "start": 15604.2, + "end": 15607.3, + "probability": 0.906 + }, + { + "start": 15608.24, + "end": 15611.94, + "probability": 0.8628 + }, + { + "start": 15612.1, + "end": 15613.86, + "probability": 0.9929 + }, + { + "start": 15614.38, + "end": 15619.24, + "probability": 0.9551 + }, + { + "start": 15619.94, + "end": 15623.32, + "probability": 0.8355 + }, + { + "start": 15623.74, + "end": 15625.46, + "probability": 0.5331 + }, + { + "start": 15626.08, + "end": 15628.58, + "probability": 0.991 + }, + { + "start": 15630.2, + "end": 15632.56, + "probability": 0.9785 + }, + { + "start": 15633.46, + "end": 15636.16, + "probability": 0.9946 + }, + { + "start": 15636.86, + "end": 15640.12, + "probability": 0.9983 + }, + { + "start": 15640.5, + "end": 15641.16, + "probability": 0.8415 + }, + { + "start": 15641.84, + "end": 15642.08, + "probability": 0.9609 + }, + { + "start": 15642.7, + "end": 15644.12, + "probability": 0.6873 + }, + { + "start": 15645.74, + "end": 15648.12, + "probability": 0.9219 + }, + { + "start": 15649.02, + "end": 15650.68, + "probability": 0.8465 + }, + { + "start": 15650.82, + "end": 15653.02, + "probability": 0.1787 + }, + { + "start": 15653.1, + "end": 15655.6, + "probability": 0.8162 + }, + { + "start": 15656.44, + "end": 15657.2, + "probability": 0.8322 + }, + { + "start": 15657.94, + "end": 15658.88, + "probability": 0.6559 + }, + { + "start": 15659.44, + "end": 15661.18, + "probability": 0.9761 + }, + { + "start": 15661.78, + "end": 15664.7, + "probability": 0.9988 + }, + { + "start": 15666.2, + "end": 15666.68, + "probability": 0.6743 + }, + { + "start": 15667.42, + "end": 15669.78, + "probability": 0.9758 + }, + { + "start": 15671.4, + "end": 15673.78, + "probability": 0.8626 + }, + { + "start": 15673.78, + "end": 15675.52, + "probability": 0.9185 + }, + { + "start": 15675.64, + "end": 15677.42, + "probability": 0.6942 + }, + { + "start": 15677.84, + "end": 15680.16, + "probability": 0.6797 + }, + { + "start": 15681.84, + "end": 15684.06, + "probability": 0.9003 + }, + { + "start": 15684.08, + "end": 15684.5, + "probability": 0.7523 + }, + { + "start": 15684.7, + "end": 15685.5, + "probability": 0.6469 + }, + { + "start": 15685.5, + "end": 15686.68, + "probability": 0.7957 + }, + { + "start": 15686.84, + "end": 15687.18, + "probability": 0.4618 + }, + { + "start": 15687.32, + "end": 15689.34, + "probability": 0.6105 + }, + { + "start": 15689.55, + "end": 15691.37, + "probability": 0.9631 + }, + { + "start": 15692.1, + "end": 15693.82, + "probability": 0.6826 + }, + { + "start": 15694.16, + "end": 15695.42, + "probability": 0.8988 + }, + { + "start": 15696.2, + "end": 15699.06, + "probability": 0.8311 + }, + { + "start": 15699.42, + "end": 15700.26, + "probability": 0.9966 + }, + { + "start": 15702.68, + "end": 15704.14, + "probability": 0.993 + }, + { + "start": 15705.18, + "end": 15705.86, + "probability": 0.6293 + }, + { + "start": 15706.0, + "end": 15709.74, + "probability": 0.9932 + }, + { + "start": 15710.22, + "end": 15713.47, + "probability": 0.9231 + }, + { + "start": 15715.36, + "end": 15715.94, + "probability": 0.2496 + }, + { + "start": 15715.94, + "end": 15716.9, + "probability": 0.894 + }, + { + "start": 15717.04, + "end": 15718.72, + "probability": 0.9777 + }, + { + "start": 15719.48, + "end": 15722.05, + "probability": 0.9561 + }, + { + "start": 15723.18, + "end": 15726.02, + "probability": 0.8894 + }, + { + "start": 15727.32, + "end": 15728.3, + "probability": 0.8054 + }, + { + "start": 15729.16, + "end": 15730.14, + "probability": 0.9839 + }, + { + "start": 15730.84, + "end": 15732.02, + "probability": 0.958 + }, + { + "start": 15732.92, + "end": 15734.54, + "probability": 0.7654 + }, + { + "start": 15735.22, + "end": 15735.68, + "probability": 0.7701 + }, + { + "start": 15736.12, + "end": 15737.52, + "probability": 0.8211 + }, + { + "start": 15737.82, + "end": 15739.48, + "probability": 0.9635 + }, + { + "start": 15740.08, + "end": 15742.04, + "probability": 0.8126 + }, + { + "start": 15744.06, + "end": 15747.28, + "probability": 0.8578 + }, + { + "start": 15748.14, + "end": 15749.02, + "probability": 0.8358 + }, + { + "start": 15750.28, + "end": 15754.24, + "probability": 0.9827 + }, + { + "start": 15754.32, + "end": 15757.52, + "probability": 0.8991 + }, + { + "start": 15758.92, + "end": 15759.6, + "probability": 0.7946 + }, + { + "start": 15760.48, + "end": 15762.32, + "probability": 0.8442 + }, + { + "start": 15764.0, + "end": 15764.45, + "probability": 0.5059 + }, + { + "start": 15765.8, + "end": 15768.04, + "probability": 0.7571 + }, + { + "start": 15769.18, + "end": 15770.4, + "probability": 0.8391 + }, + { + "start": 15771.68, + "end": 15776.38, + "probability": 0.7878 + }, + { + "start": 15777.42, + "end": 15778.42, + "probability": 0.8125 + }, + { + "start": 15779.24, + "end": 15780.78, + "probability": 0.7251 + }, + { + "start": 15783.12, + "end": 15785.06, + "probability": 0.9673 + }, + { + "start": 15785.38, + "end": 15786.44, + "probability": 0.5885 + }, + { + "start": 15786.48, + "end": 15786.86, + "probability": 0.8815 + }, + { + "start": 15787.0, + "end": 15787.5, + "probability": 0.6695 + }, + { + "start": 15788.0, + "end": 15789.38, + "probability": 0.9868 + }, + { + "start": 15789.4, + "end": 15790.35, + "probability": 0.9396 + }, + { + "start": 15791.1, + "end": 15791.58, + "probability": 0.7186 + }, + { + "start": 15793.32, + "end": 15795.1, + "probability": 0.5185 + }, + { + "start": 15795.66, + "end": 15798.24, + "probability": 0.5854 + }, + { + "start": 15798.84, + "end": 15800.26, + "probability": 0.9604 + }, + { + "start": 15802.16, + "end": 15803.22, + "probability": 0.4201 + }, + { + "start": 15805.71, + "end": 15810.56, + "probability": 0.9058 + }, + { + "start": 15811.64, + "end": 15813.76, + "probability": 0.998 + }, + { + "start": 15813.82, + "end": 15816.02, + "probability": 0.9227 + }, + { + "start": 15816.36, + "end": 15816.76, + "probability": 0.8355 + }, + { + "start": 15817.62, + "end": 15822.54, + "probability": 0.7363 + }, + { + "start": 15823.1, + "end": 15826.42, + "probability": 0.708 + }, + { + "start": 15827.4, + "end": 15832.04, + "probability": 0.7606 + }, + { + "start": 15832.56, + "end": 15837.32, + "probability": 0.8558 + }, + { + "start": 15837.92, + "end": 15842.82, + "probability": 0.9787 + }, + { + "start": 15843.48, + "end": 15849.34, + "probability": 0.9528 + }, + { + "start": 15849.74, + "end": 15851.52, + "probability": 0.9663 + }, + { + "start": 15852.46, + "end": 15853.49, + "probability": 0.9509 + }, + { + "start": 15854.08, + "end": 15857.62, + "probability": 0.9408 + }, + { + "start": 15858.04, + "end": 15860.28, + "probability": 0.9569 + }, + { + "start": 15860.94, + "end": 15866.24, + "probability": 0.9866 + }, + { + "start": 15867.82, + "end": 15870.64, + "probability": 0.8872 + }, + { + "start": 15871.4, + "end": 15872.66, + "probability": 0.9973 + }, + { + "start": 15874.6, + "end": 15878.58, + "probability": 0.9844 + }, + { + "start": 15879.34, + "end": 15882.9, + "probability": 0.9991 + }, + { + "start": 15883.3, + "end": 15885.7, + "probability": 0.619 + }, + { + "start": 15886.2, + "end": 15888.67, + "probability": 0.814 + }, + { + "start": 15889.22, + "end": 15889.94, + "probability": 0.8896 + }, + { + "start": 15890.4, + "end": 15891.52, + "probability": 0.7704 + }, + { + "start": 15891.64, + "end": 15892.7, + "probability": 0.8442 + }, + { + "start": 15893.04, + "end": 15895.38, + "probability": 0.9318 + }, + { + "start": 15896.32, + "end": 15899.78, + "probability": 0.9144 + }, + { + "start": 15900.68, + "end": 15901.94, + "probability": 0.813 + }, + { + "start": 15902.32, + "end": 15903.88, + "probability": 0.9897 + }, + { + "start": 15904.44, + "end": 15905.92, + "probability": 0.8258 + }, + { + "start": 15905.98, + "end": 15906.3, + "probability": 0.9606 + }, + { + "start": 15906.86, + "end": 15907.72, + "probability": 0.9404 + }, + { + "start": 15908.04, + "end": 15908.38, + "probability": 0.7514 + }, + { + "start": 15909.34, + "end": 15909.84, + "probability": 0.5554 + }, + { + "start": 15909.9, + "end": 15911.08, + "probability": 0.9378 + }, + { + "start": 15911.36, + "end": 15912.6, + "probability": 0.682 + }, + { + "start": 15912.66, + "end": 15914.2, + "probability": 0.7846 + }, + { + "start": 15915.94, + "end": 15917.46, + "probability": 0.7132 + }, + { + "start": 15917.82, + "end": 15918.6, + "probability": 0.9404 + }, + { + "start": 15918.98, + "end": 15920.94, + "probability": 0.994 + }, + { + "start": 15921.3, + "end": 15922.68, + "probability": 0.9253 + }, + { + "start": 15924.06, + "end": 15925.02, + "probability": 0.5593 + }, + { + "start": 15925.6, + "end": 15927.52, + "probability": 0.9243 + }, + { + "start": 15928.34, + "end": 15931.54, + "probability": 0.9704 + }, + { + "start": 15932.24, + "end": 15934.08, + "probability": 0.7453 + }, + { + "start": 15934.26, + "end": 15937.02, + "probability": 0.2267 + }, + { + "start": 15937.48, + "end": 15940.44, + "probability": 0.9377 + }, + { + "start": 15941.3, + "end": 15942.4, + "probability": 0.7309 + }, + { + "start": 15942.44, + "end": 15943.88, + "probability": 0.7694 + }, + { + "start": 15959.78, + "end": 15961.72, + "probability": 0.0112 + }, + { + "start": 15962.74, + "end": 15962.98, + "probability": 0.0002 + }, + { + "start": 15962.98, + "end": 15965.74, + "probability": 0.8811 + }, + { + "start": 15966.02, + "end": 15967.8, + "probability": 0.855 + }, + { + "start": 15968.18, + "end": 15971.78, + "probability": 0.9428 + }, + { + "start": 15972.22, + "end": 15977.02, + "probability": 0.9436 + }, + { + "start": 15977.41, + "end": 15981.03, + "probability": 0.0137 + }, + { + "start": 15982.84, + "end": 15983.18, + "probability": 0.0293 + }, + { + "start": 15986.92, + "end": 15989.26, + "probability": 0.117 + }, + { + "start": 15993.64, + "end": 15996.68, + "probability": 0.9794 + }, + { + "start": 15996.92, + "end": 15999.34, + "probability": 0.8665 + }, + { + "start": 15999.5, + "end": 16001.12, + "probability": 0.9648 + }, + { + "start": 16001.16, + "end": 16002.62, + "probability": 0.8752 + }, + { + "start": 16004.68, + "end": 16009.22, + "probability": 0.8014 + }, + { + "start": 16009.28, + "end": 16010.2, + "probability": 0.945 + }, + { + "start": 16011.72, + "end": 16011.96, + "probability": 0.9113 + }, + { + "start": 16012.36, + "end": 16012.84, + "probability": 0.5264 + }, + { + "start": 16013.22, + "end": 16016.16, + "probability": 0.6262 + }, + { + "start": 16017.34, + "end": 16021.46, + "probability": 0.9871 + }, + { + "start": 16021.54, + "end": 16023.39, + "probability": 0.9642 + }, + { + "start": 16024.06, + "end": 16027.82, + "probability": 0.6361 + }, + { + "start": 16028.7, + "end": 16028.94, + "probability": 0.0322 + }, + { + "start": 16031.14, + "end": 16031.5, + "probability": 0.0476 + }, + { + "start": 16032.06, + "end": 16032.06, + "probability": 0.2947 + }, + { + "start": 16034.22, + "end": 16034.22, + "probability": 0.0951 + }, + { + "start": 16034.22, + "end": 16034.22, + "probability": 0.058 + }, + { + "start": 16034.22, + "end": 16034.88, + "probability": 0.4481 + }, + { + "start": 16035.7, + "end": 16037.3, + "probability": 0.7049 + }, + { + "start": 16052.7, + "end": 16054.92, + "probability": 0.6551 + }, + { + "start": 16056.46, + "end": 16059.1, + "probability": 0.9784 + }, + { + "start": 16059.1, + "end": 16062.18, + "probability": 0.9058 + }, + { + "start": 16063.06, + "end": 16065.38, + "probability": 0.8494 + }, + { + "start": 16067.72, + "end": 16068.42, + "probability": 0.3238 + }, + { + "start": 16068.68, + "end": 16073.02, + "probability": 0.7621 + }, + { + "start": 16075.54, + "end": 16077.94, + "probability": 0.2599 + }, + { + "start": 16077.98, + "end": 16078.77, + "probability": 0.8101 + }, + { + "start": 16079.08, + "end": 16079.84, + "probability": 0.9253 + }, + { + "start": 16079.94, + "end": 16080.46, + "probability": 0.6695 + }, + { + "start": 16080.7, + "end": 16083.16, + "probability": 0.9561 + }, + { + "start": 16084.06, + "end": 16089.02, + "probability": 0.9914 + }, + { + "start": 16089.64, + "end": 16096.08, + "probability": 0.7962 + }, + { + "start": 16096.2, + "end": 16096.9, + "probability": 0.7325 + }, + { + "start": 16096.96, + "end": 16099.04, + "probability": 0.9814 + }, + { + "start": 16099.48, + "end": 16100.4, + "probability": 0.9272 + }, + { + "start": 16100.46, + "end": 16104.74, + "probability": 0.6821 + }, + { + "start": 16105.2, + "end": 16109.62, + "probability": 0.9536 + }, + { + "start": 16109.98, + "end": 16112.14, + "probability": 0.9905 + }, + { + "start": 16112.22, + "end": 16114.54, + "probability": 0.7564 + }, + { + "start": 16114.58, + "end": 16116.22, + "probability": 0.9547 + }, + { + "start": 16116.68, + "end": 16122.12, + "probability": 0.998 + }, + { + "start": 16122.64, + "end": 16128.18, + "probability": 0.9888 + }, + { + "start": 16128.98, + "end": 16130.35, + "probability": 0.4878 + }, + { + "start": 16130.6, + "end": 16130.94, + "probability": 0.7335 + }, + { + "start": 16131.02, + "end": 16135.96, + "probability": 0.9313 + }, + { + "start": 16136.84, + "end": 16138.6, + "probability": 0.9403 + }, + { + "start": 16139.38, + "end": 16141.48, + "probability": 0.9687 + }, + { + "start": 16142.58, + "end": 16144.88, + "probability": 0.9321 + }, + { + "start": 16145.44, + "end": 16149.36, + "probability": 0.9847 + }, + { + "start": 16150.38, + "end": 16152.94, + "probability": 0.991 + }, + { + "start": 16154.29, + "end": 16157.34, + "probability": 0.9009 + }, + { + "start": 16157.34, + "end": 16161.2, + "probability": 0.7067 + }, + { + "start": 16161.88, + "end": 16164.42, + "probability": 0.9025 + }, + { + "start": 16165.38, + "end": 16168.26, + "probability": 0.9195 + }, + { + "start": 16168.94, + "end": 16172.44, + "probability": 0.9927 + }, + { + "start": 16172.76, + "end": 16175.3, + "probability": 0.9003 + }, + { + "start": 16175.34, + "end": 16176.6, + "probability": 0.7866 + }, + { + "start": 16176.76, + "end": 16180.3, + "probability": 0.9935 + }, + { + "start": 16181.12, + "end": 16186.72, + "probability": 0.9935 + }, + { + "start": 16187.3, + "end": 16188.92, + "probability": 0.7379 + }, + { + "start": 16189.48, + "end": 16191.3, + "probability": 0.9743 + }, + { + "start": 16192.7, + "end": 16200.92, + "probability": 0.99 + }, + { + "start": 16201.84, + "end": 16203.76, + "probability": 0.9955 + }, + { + "start": 16204.24, + "end": 16207.28, + "probability": 0.9771 + }, + { + "start": 16207.86, + "end": 16211.36, + "probability": 0.9906 + }, + { + "start": 16211.36, + "end": 16216.24, + "probability": 0.9893 + }, + { + "start": 16216.62, + "end": 16219.26, + "probability": 0.9979 + }, + { + "start": 16219.26, + "end": 16223.2, + "probability": 0.9973 + }, + { + "start": 16223.62, + "end": 16226.74, + "probability": 0.9754 + }, + { + "start": 16227.92, + "end": 16229.9, + "probability": 0.9647 + }, + { + "start": 16230.4, + "end": 16232.52, + "probability": 0.9958 + }, + { + "start": 16232.92, + "end": 16234.22, + "probability": 0.9911 + }, + { + "start": 16234.54, + "end": 16237.1, + "probability": 0.9341 + }, + { + "start": 16237.68, + "end": 16239.42, + "probability": 0.7944 + }, + { + "start": 16239.84, + "end": 16240.28, + "probability": 0.4472 + }, + { + "start": 16240.72, + "end": 16243.68, + "probability": 0.9671 + }, + { + "start": 16244.02, + "end": 16245.72, + "probability": 0.9222 + }, + { + "start": 16245.8, + "end": 16249.2, + "probability": 0.9404 + }, + { + "start": 16249.4, + "end": 16251.56, + "probability": 0.9215 + }, + { + "start": 16252.02, + "end": 16253.84, + "probability": 0.7345 + }, + { + "start": 16254.4, + "end": 16255.08, + "probability": 0.5933 + }, + { + "start": 16255.08, + "end": 16256.32, + "probability": 0.0596 + }, + { + "start": 16256.52, + "end": 16256.73, + "probability": 0.3967 + }, + { + "start": 16256.84, + "end": 16257.2, + "probability": 0.5666 + }, + { + "start": 16257.76, + "end": 16261.34, + "probability": 0.9746 + }, + { + "start": 16261.96, + "end": 16265.28, + "probability": 0.9769 + }, + { + "start": 16265.86, + "end": 16268.22, + "probability": 0.9737 + }, + { + "start": 16268.4, + "end": 16268.84, + "probability": 0.7078 + }, + { + "start": 16269.08, + "end": 16273.63, + "probability": 0.9785 + }, + { + "start": 16274.12, + "end": 16274.9, + "probability": 0.9897 + }, + { + "start": 16275.36, + "end": 16278.14, + "probability": 0.7527 + }, + { + "start": 16278.14, + "end": 16278.74, + "probability": 0.7082 + }, + { + "start": 16279.08, + "end": 16279.4, + "probability": 0.4135 + }, + { + "start": 16279.56, + "end": 16280.7, + "probability": 0.9418 + }, + { + "start": 16282.0, + "end": 16285.03, + "probability": 0.929 + }, + { + "start": 16286.42, + "end": 16286.72, + "probability": 0.757 + }, + { + "start": 16287.62, + "end": 16289.42, + "probability": 0.5924 + }, + { + "start": 16290.1, + "end": 16293.16, + "probability": 0.9738 + }, + { + "start": 16293.16, + "end": 16296.98, + "probability": 0.9602 + }, + { + "start": 16297.08, + "end": 16298.68, + "probability": 0.8971 + }, + { + "start": 16299.22, + "end": 16304.16, + "probability": 0.9748 + }, + { + "start": 16304.7, + "end": 16307.04, + "probability": 0.7854 + }, + { + "start": 16307.28, + "end": 16308.06, + "probability": 0.9341 + }, + { + "start": 16309.14, + "end": 16310.72, + "probability": 0.932 + }, + { + "start": 16310.94, + "end": 16314.2, + "probability": 0.9526 + }, + { + "start": 16314.36, + "end": 16315.56, + "probability": 0.9946 + }, + { + "start": 16315.8, + "end": 16318.6, + "probability": 0.9204 + }, + { + "start": 16319.28, + "end": 16321.42, + "probability": 0.9964 + }, + { + "start": 16321.46, + "end": 16322.82, + "probability": 0.9967 + }, + { + "start": 16323.3, + "end": 16326.66, + "probability": 0.9917 + }, + { + "start": 16327.24, + "end": 16329.48, + "probability": 0.9899 + }, + { + "start": 16329.56, + "end": 16330.72, + "probability": 0.8217 + }, + { + "start": 16330.9, + "end": 16332.02, + "probability": 0.8201 + }, + { + "start": 16332.94, + "end": 16333.78, + "probability": 0.8742 + }, + { + "start": 16333.88, + "end": 16336.3, + "probability": 0.9509 + }, + { + "start": 16336.4, + "end": 16339.92, + "probability": 0.9252 + }, + { + "start": 16339.92, + "end": 16342.22, + "probability": 0.9717 + }, + { + "start": 16342.96, + "end": 16345.23, + "probability": 0.9902 + }, + { + "start": 16345.72, + "end": 16347.88, + "probability": 0.998 + }, + { + "start": 16348.7, + "end": 16348.98, + "probability": 0.7194 + }, + { + "start": 16349.08, + "end": 16351.18, + "probability": 0.9907 + }, + { + "start": 16351.32, + "end": 16353.36, + "probability": 0.9773 + }, + { + "start": 16354.1, + "end": 16359.2, + "probability": 0.9832 + }, + { + "start": 16359.66, + "end": 16360.58, + "probability": 0.7699 + }, + { + "start": 16360.88, + "end": 16361.92, + "probability": 0.9622 + }, + { + "start": 16362.52, + "end": 16364.66, + "probability": 0.8369 + }, + { + "start": 16365.24, + "end": 16366.36, + "probability": 0.787 + }, + { + "start": 16366.4, + "end": 16368.56, + "probability": 0.9884 + }, + { + "start": 16369.06, + "end": 16373.04, + "probability": 0.8455 + }, + { + "start": 16373.98, + "end": 16376.8, + "probability": 0.7261 + }, + { + "start": 16377.72, + "end": 16380.1, + "probability": 0.9759 + }, + { + "start": 16380.22, + "end": 16380.8, + "probability": 0.9712 + }, + { + "start": 16381.16, + "end": 16382.42, + "probability": 0.7678 + }, + { + "start": 16383.34, + "end": 16383.76, + "probability": 0.8749 + }, + { + "start": 16383.8, + "end": 16387.0, + "probability": 0.9907 + }, + { + "start": 16387.62, + "end": 16391.54, + "probability": 0.9661 + }, + { + "start": 16392.04, + "end": 16393.62, + "probability": 0.8125 + }, + { + "start": 16394.06, + "end": 16394.78, + "probability": 0.9556 + }, + { + "start": 16394.94, + "end": 16396.0, + "probability": 0.9617 + }, + { + "start": 16396.06, + "end": 16396.9, + "probability": 0.9897 + }, + { + "start": 16397.64, + "end": 16401.22, + "probability": 0.9944 + }, + { + "start": 16401.84, + "end": 16403.92, + "probability": 0.979 + }, + { + "start": 16404.12, + "end": 16405.38, + "probability": 0.8372 + }, + { + "start": 16406.04, + "end": 16406.88, + "probability": 0.787 + }, + { + "start": 16407.9, + "end": 16409.32, + "probability": 0.9958 + }, + { + "start": 16409.36, + "end": 16410.41, + "probability": 0.6071 + }, + { + "start": 16410.6, + "end": 16414.5, + "probability": 0.9935 + }, + { + "start": 16414.5, + "end": 16417.8, + "probability": 0.9963 + }, + { + "start": 16417.92, + "end": 16418.64, + "probability": 0.7073 + }, + { + "start": 16419.52, + "end": 16422.32, + "probability": 0.9956 + }, + { + "start": 16422.32, + "end": 16426.66, + "probability": 0.9915 + }, + { + "start": 16426.8, + "end": 16427.29, + "probability": 0.7547 + }, + { + "start": 16428.08, + "end": 16432.24, + "probability": 0.9934 + }, + { + "start": 16432.42, + "end": 16433.2, + "probability": 0.9707 + }, + { + "start": 16434.38, + "end": 16437.78, + "probability": 0.8664 + }, + { + "start": 16438.78, + "end": 16440.4, + "probability": 0.9768 + }, + { + "start": 16441.22, + "end": 16442.52, + "probability": 0.7724 + }, + { + "start": 16443.1, + "end": 16444.36, + "probability": 0.8287 + }, + { + "start": 16444.46, + "end": 16445.68, + "probability": 0.9938 + }, + { + "start": 16446.4, + "end": 16448.98, + "probability": 0.9811 + }, + { + "start": 16449.58, + "end": 16452.06, + "probability": 0.9918 + }, + { + "start": 16452.42, + "end": 16455.04, + "probability": 0.978 + }, + { + "start": 16455.64, + "end": 16456.84, + "probability": 0.8948 + }, + { + "start": 16457.66, + "end": 16461.24, + "probability": 0.6484 + }, + { + "start": 16461.62, + "end": 16462.7, + "probability": 0.9225 + }, + { + "start": 16463.18, + "end": 16464.94, + "probability": 0.9009 + }, + { + "start": 16465.88, + "end": 16467.28, + "probability": 0.9492 + }, + { + "start": 16468.08, + "end": 16470.0, + "probability": 0.9194 + }, + { + "start": 16470.06, + "end": 16471.16, + "probability": 0.5721 + }, + { + "start": 16471.82, + "end": 16472.83, + "probability": 0.5943 + }, + { + "start": 16473.02, + "end": 16476.64, + "probability": 0.9258 + }, + { + "start": 16476.76, + "end": 16477.14, + "probability": 0.7928 + }, + { + "start": 16478.0, + "end": 16478.48, + "probability": 0.5275 + }, + { + "start": 16478.7, + "end": 16481.5, + "probability": 0.7711 + }, + { + "start": 16484.64, + "end": 16486.54, + "probability": 0.7166 + }, + { + "start": 16489.08, + "end": 16494.16, + "probability": 0.7497 + }, + { + "start": 16498.76, + "end": 16499.72, + "probability": 0.62 + }, + { + "start": 16500.08, + "end": 16500.08, + "probability": 0.4397 + }, + { + "start": 16500.12, + "end": 16500.68, + "probability": 0.7589 + }, + { + "start": 16500.8, + "end": 16501.56, + "probability": 0.7749 + }, + { + "start": 16502.5, + "end": 16502.82, + "probability": 0.8034 + }, + { + "start": 16502.92, + "end": 16503.52, + "probability": 0.8816 + }, + { + "start": 16503.54, + "end": 16506.0, + "probability": 0.999 + }, + { + "start": 16507.14, + "end": 16510.2, + "probability": 0.8784 + }, + { + "start": 16511.52, + "end": 16513.64, + "probability": 0.9807 + }, + { + "start": 16515.02, + "end": 16515.7, + "probability": 0.9587 + }, + { + "start": 16516.56, + "end": 16517.54, + "probability": 0.9007 + }, + { + "start": 16518.78, + "end": 16520.1, + "probability": 0.8884 + }, + { + "start": 16520.78, + "end": 16522.15, + "probability": 0.9964 + }, + { + "start": 16522.96, + "end": 16524.04, + "probability": 0.9893 + }, + { + "start": 16525.02, + "end": 16525.72, + "probability": 0.8877 + }, + { + "start": 16526.54, + "end": 16528.66, + "probability": 0.9822 + }, + { + "start": 16529.18, + "end": 16530.92, + "probability": 0.7567 + }, + { + "start": 16531.72, + "end": 16532.9, + "probability": 0.8454 + }, + { + "start": 16533.84, + "end": 16535.06, + "probability": 0.899 + }, + { + "start": 16536.04, + "end": 16538.14, + "probability": 0.9868 + }, + { + "start": 16539.2, + "end": 16540.56, + "probability": 0.9976 + }, + { + "start": 16541.22, + "end": 16543.98, + "probability": 0.9923 + }, + { + "start": 16544.38, + "end": 16545.26, + "probability": 0.7839 + }, + { + "start": 16546.28, + "end": 16551.17, + "probability": 0.9824 + }, + { + "start": 16552.46, + "end": 16553.72, + "probability": 0.9961 + }, + { + "start": 16554.38, + "end": 16555.8, + "probability": 0.7163 + }, + { + "start": 16556.58, + "end": 16559.18, + "probability": 0.9377 + }, + { + "start": 16559.82, + "end": 16561.6, + "probability": 0.9833 + }, + { + "start": 16562.26, + "end": 16564.98, + "probability": 0.8954 + }, + { + "start": 16566.28, + "end": 16568.38, + "probability": 0.9819 + }, + { + "start": 16568.6, + "end": 16569.34, + "probability": 0.076 + }, + { + "start": 16569.34, + "end": 16569.38, + "probability": 0.1641 + }, + { + "start": 16569.56, + "end": 16575.0, + "probability": 0.7514 + }, + { + "start": 16575.52, + "end": 16578.68, + "probability": 0.9629 + }, + { + "start": 16579.46, + "end": 16584.23, + "probability": 0.9884 + }, + { + "start": 16584.9, + "end": 16587.66, + "probability": 0.5028 + }, + { + "start": 16588.22, + "end": 16590.84, + "probability": 0.9553 + }, + { + "start": 16591.24, + "end": 16592.48, + "probability": 0.9877 + }, + { + "start": 16592.68, + "end": 16594.46, + "probability": 0.9912 + }, + { + "start": 16595.12, + "end": 16596.9, + "probability": 0.9955 + }, + { + "start": 16597.48, + "end": 16599.76, + "probability": 0.9961 + }, + { + "start": 16600.64, + "end": 16602.42, + "probability": 0.908 + }, + { + "start": 16602.94, + "end": 16605.54, + "probability": 0.9784 + }, + { + "start": 16606.12, + "end": 16608.1, + "probability": 0.8818 + }, + { + "start": 16608.74, + "end": 16609.42, + "probability": 0.6891 + }, + { + "start": 16609.52, + "end": 16611.72, + "probability": 0.9672 + }, + { + "start": 16612.2, + "end": 16613.44, + "probability": 0.9771 + }, + { + "start": 16613.82, + "end": 16615.22, + "probability": 0.9769 + }, + { + "start": 16615.84, + "end": 16618.96, + "probability": 0.9966 + }, + { + "start": 16619.36, + "end": 16620.24, + "probability": 0.7993 + }, + { + "start": 16620.84, + "end": 16622.6, + "probability": 0.9611 + }, + { + "start": 16623.52, + "end": 16624.02, + "probability": 0.75 + }, + { + "start": 16624.8, + "end": 16626.44, + "probability": 0.9966 + }, + { + "start": 16627.14, + "end": 16629.16, + "probability": 0.9835 + }, + { + "start": 16629.78, + "end": 16630.6, + "probability": 0.9668 + }, + { + "start": 16631.26, + "end": 16633.78, + "probability": 0.9979 + }, + { + "start": 16634.48, + "end": 16638.46, + "probability": 0.9708 + }, + { + "start": 16639.28, + "end": 16640.82, + "probability": 0.9988 + }, + { + "start": 16641.36, + "end": 16642.44, + "probability": 0.8921 + }, + { + "start": 16642.98, + "end": 16643.57, + "probability": 0.9448 + }, + { + "start": 16644.44, + "end": 16646.62, + "probability": 0.7603 + }, + { + "start": 16647.16, + "end": 16652.38, + "probability": 0.9139 + }, + { + "start": 16653.16, + "end": 16654.96, + "probability": 0.9839 + }, + { + "start": 16655.56, + "end": 16658.82, + "probability": 0.996 + }, + { + "start": 16659.56, + "end": 16664.46, + "probability": 0.9024 + }, + { + "start": 16665.22, + "end": 16666.44, + "probability": 0.6723 + }, + { + "start": 16667.2, + "end": 16668.34, + "probability": 0.9834 + }, + { + "start": 16669.06, + "end": 16671.36, + "probability": 0.1694 + }, + { + "start": 16671.78, + "end": 16672.5, + "probability": 0.772 + }, + { + "start": 16672.66, + "end": 16677.82, + "probability": 0.9749 + }, + { + "start": 16678.12, + "end": 16678.34, + "probability": 0.1677 + }, + { + "start": 16678.44, + "end": 16679.2, + "probability": 0.5894 + }, + { + "start": 16679.82, + "end": 16685.06, + "probability": 0.9814 + }, + { + "start": 16685.72, + "end": 16687.38, + "probability": 0.9893 + }, + { + "start": 16687.72, + "end": 16687.88, + "probability": 0.6289 + }, + { + "start": 16687.94, + "end": 16690.1, + "probability": 0.7796 + }, + { + "start": 16691.5, + "end": 16692.38, + "probability": 0.0059 + }, + { + "start": 16693.02, + "end": 16694.4, + "probability": 0.9351 + }, + { + "start": 16694.8, + "end": 16696.42, + "probability": 0.9484 + }, + { + "start": 16696.94, + "end": 16698.3, + "probability": 0.9153 + }, + { + "start": 16698.78, + "end": 16700.27, + "probability": 0.9856 + }, + { + "start": 16700.44, + "end": 16701.82, + "probability": 0.7005 + }, + { + "start": 16702.52, + "end": 16705.55, + "probability": 0.9813 + }, + { + "start": 16705.94, + "end": 16709.36, + "probability": 0.9897 + }, + { + "start": 16709.6, + "end": 16709.82, + "probability": 0.703 + }, + { + "start": 16711.76, + "end": 16713.4, + "probability": 0.8053 + }, + { + "start": 16714.16, + "end": 16716.16, + "probability": 0.58 + }, + { + "start": 16726.45, + "end": 16729.6, + "probability": 0.7607 + }, + { + "start": 16736.9, + "end": 16738.04, + "probability": 0.5945 + }, + { + "start": 16738.36, + "end": 16738.38, + "probability": 0.2099 + }, + { + "start": 16738.38, + "end": 16738.9, + "probability": 0.7388 + }, + { + "start": 16739.0, + "end": 16740.1, + "probability": 0.6929 + }, + { + "start": 16741.22, + "end": 16744.9, + "probability": 0.9919 + }, + { + "start": 16744.9, + "end": 16748.12, + "probability": 0.9929 + }, + { + "start": 16749.22, + "end": 16750.8, + "probability": 0.981 + }, + { + "start": 16751.7, + "end": 16755.0, + "probability": 0.6997 + }, + { + "start": 16755.64, + "end": 16757.3, + "probability": 0.9982 + }, + { + "start": 16758.0, + "end": 16759.22, + "probability": 0.9885 + }, + { + "start": 16759.56, + "end": 16762.24, + "probability": 0.9634 + }, + { + "start": 16763.36, + "end": 16764.38, + "probability": 0.8649 + }, + { + "start": 16765.38, + "end": 16767.82, + "probability": 0.9026 + }, + { + "start": 16768.5, + "end": 16770.64, + "probability": 0.7747 + }, + { + "start": 16771.66, + "end": 16773.4, + "probability": 0.9396 + }, + { + "start": 16773.52, + "end": 16780.6, + "probability": 0.928 + }, + { + "start": 16781.0, + "end": 16783.76, + "probability": 0.9966 + }, + { + "start": 16784.34, + "end": 16788.06, + "probability": 0.8379 + }, + { + "start": 16788.58, + "end": 16795.26, + "probability": 0.9762 + }, + { + "start": 16795.72, + "end": 16796.6, + "probability": 0.9131 + }, + { + "start": 16797.18, + "end": 16802.44, + "probability": 0.9624 + }, + { + "start": 16803.12, + "end": 16804.24, + "probability": 0.9873 + }, + { + "start": 16805.02, + "end": 16811.16, + "probability": 0.9992 + }, + { + "start": 16812.14, + "end": 16816.12, + "probability": 0.9072 + }, + { + "start": 16816.62, + "end": 16818.86, + "probability": 0.9854 + }, + { + "start": 16819.92, + "end": 16821.94, + "probability": 0.9089 + }, + { + "start": 16822.58, + "end": 16824.78, + "probability": 0.9683 + }, + { + "start": 16825.94, + "end": 16828.02, + "probability": 0.9912 + }, + { + "start": 16828.6, + "end": 16834.22, + "probability": 0.9951 + }, + { + "start": 16836.5, + "end": 16837.54, + "probability": 0.8535 + }, + { + "start": 16837.68, + "end": 16838.84, + "probability": 0.7275 + }, + { + "start": 16838.9, + "end": 16842.42, + "probability": 0.9862 + }, + { + "start": 16843.56, + "end": 16845.12, + "probability": 0.8272 + }, + { + "start": 16845.28, + "end": 16847.88, + "probability": 0.9684 + }, + { + "start": 16847.98, + "end": 16850.02, + "probability": 0.9941 + }, + { + "start": 16850.02, + "end": 16852.38, + "probability": 0.854 + }, + { + "start": 16853.8, + "end": 16857.32, + "probability": 0.9891 + }, + { + "start": 16857.46, + "end": 16860.32, + "probability": 0.8874 + }, + { + "start": 16860.96, + "end": 16864.44, + "probability": 0.7834 + }, + { + "start": 16864.6, + "end": 16867.98, + "probability": 0.9877 + }, + { + "start": 16868.8, + "end": 16874.0, + "probability": 0.943 + }, + { + "start": 16874.0, + "end": 16877.28, + "probability": 0.9888 + }, + { + "start": 16877.96, + "end": 16880.04, + "probability": 0.9405 + }, + { + "start": 16880.6, + "end": 16882.96, + "probability": 0.9805 + }, + { + "start": 16884.76, + "end": 16886.32, + "probability": 0.9199 + }, + { + "start": 16887.26, + "end": 16891.84, + "probability": 0.9731 + }, + { + "start": 16892.04, + "end": 16893.78, + "probability": 0.9751 + }, + { + "start": 16894.2, + "end": 16898.58, + "probability": 0.9973 + }, + { + "start": 16898.58, + "end": 16902.36, + "probability": 0.9173 + }, + { + "start": 16903.26, + "end": 16906.24, + "probability": 0.8475 + }, + { + "start": 16907.04, + "end": 16910.76, + "probability": 0.9934 + }, + { + "start": 16912.19, + "end": 16912.74, + "probability": 0.3181 + }, + { + "start": 16914.2, + "end": 16917.24, + "probability": 0.9963 + }, + { + "start": 16917.92, + "end": 16919.58, + "probability": 0.9749 + }, + { + "start": 16920.46, + "end": 16922.92, + "probability": 0.9927 + }, + { + "start": 16923.76, + "end": 16930.2, + "probability": 0.9875 + }, + { + "start": 16930.98, + "end": 16933.08, + "probability": 0.9534 + }, + { + "start": 16933.5, + "end": 16935.88, + "probability": 0.9792 + }, + { + "start": 16936.5, + "end": 16937.42, + "probability": 0.9289 + }, + { + "start": 16937.7, + "end": 16940.64, + "probability": 0.8028 + }, + { + "start": 16940.78, + "end": 16944.08, + "probability": 0.6348 + }, + { + "start": 16944.82, + "end": 16948.56, + "probability": 0.9873 + }, + { + "start": 16948.8, + "end": 16952.86, + "probability": 0.9933 + }, + { + "start": 16952.86, + "end": 16957.26, + "probability": 0.9521 + }, + { + "start": 16957.96, + "end": 16959.2, + "probability": 0.9665 + }, + { + "start": 16960.0, + "end": 16960.24, + "probability": 0.7638 + }, + { + "start": 16961.4, + "end": 16962.5, + "probability": 0.8804 + }, + { + "start": 16963.18, + "end": 16964.4, + "probability": 0.9586 + }, + { + "start": 16965.48, + "end": 16966.16, + "probability": 0.251 + }, + { + "start": 16966.22, + "end": 16967.87, + "probability": 0.7197 + }, + { + "start": 16969.8, + "end": 16970.0, + "probability": 0.8625 + }, + { + "start": 16970.86, + "end": 16973.52, + "probability": 0.7898 + }, + { + "start": 16977.12, + "end": 16978.02, + "probability": 0.3466 + }, + { + "start": 16980.34, + "end": 16985.26, + "probability": 0.0862 + }, + { + "start": 16987.67, + "end": 16988.56, + "probability": 0.0261 + }, + { + "start": 17023.24, + "end": 17025.44, + "probability": 0.9216 + }, + { + "start": 17026.78, + "end": 17029.28, + "probability": 0.9951 + }, + { + "start": 17030.5, + "end": 17036.3, + "probability": 0.999 + }, + { + "start": 17037.28, + "end": 17040.9, + "probability": 0.9885 + }, + { + "start": 17042.12, + "end": 17045.52, + "probability": 0.9844 + }, + { + "start": 17046.06, + "end": 17053.52, + "probability": 0.8282 + }, + { + "start": 17054.92, + "end": 17056.92, + "probability": 0.7628 + }, + { + "start": 17060.04, + "end": 17060.36, + "probability": 0.8839 + }, + { + "start": 17061.44, + "end": 17061.44, + "probability": 0.1541 + }, + { + "start": 17061.44, + "end": 17063.6, + "probability": 0.7374 + }, + { + "start": 17063.72, + "end": 17066.04, + "probability": 0.8665 + }, + { + "start": 17066.82, + "end": 17069.34, + "probability": 0.8005 + }, + { + "start": 17070.1, + "end": 17070.84, + "probability": 0.6638 + }, + { + "start": 17073.42, + "end": 17074.36, + "probability": 0.6399 + }, + { + "start": 17074.38, + "end": 17075.84, + "probability": 0.6692 + }, + { + "start": 17075.92, + "end": 17078.72, + "probability": 0.5758 + }, + { + "start": 17078.84, + "end": 17080.1, + "probability": 0.7644 + }, + { + "start": 17080.88, + "end": 17086.04, + "probability": 0.9868 + }, + { + "start": 17086.04, + "end": 17091.3, + "probability": 0.9912 + }, + { + "start": 17092.42, + "end": 17096.4, + "probability": 0.9875 + }, + { + "start": 17096.8, + "end": 17098.34, + "probability": 0.9825 + }, + { + "start": 17098.64, + "end": 17099.6, + "probability": 0.9215 + }, + { + "start": 17099.94, + "end": 17101.74, + "probability": 0.9846 + }, + { + "start": 17101.86, + "end": 17104.12, + "probability": 0.7878 + }, + { + "start": 17104.74, + "end": 17108.11, + "probability": 0.9937 + }, + { + "start": 17109.18, + "end": 17111.88, + "probability": 0.9509 + }, + { + "start": 17111.88, + "end": 17115.24, + "probability": 0.9978 + }, + { + "start": 17115.7, + "end": 17116.9, + "probability": 0.9623 + }, + { + "start": 17117.3, + "end": 17119.38, + "probability": 0.9651 + }, + { + "start": 17120.34, + "end": 17122.6, + "probability": 0.9854 + }, + { + "start": 17123.1, + "end": 17124.24, + "probability": 0.6398 + }, + { + "start": 17125.78, + "end": 17127.66, + "probability": 0.9595 + }, + { + "start": 17127.66, + "end": 17129.4, + "probability": 0.8618 + }, + { + "start": 17129.84, + "end": 17131.08, + "probability": 0.8895 + }, + { + "start": 17132.28, + "end": 17136.0, + "probability": 0.98 + }, + { + "start": 17136.58, + "end": 17141.04, + "probability": 0.9955 + }, + { + "start": 17141.44, + "end": 17142.18, + "probability": 0.9966 + }, + { + "start": 17142.62, + "end": 17146.52, + "probability": 0.9863 + }, + { + "start": 17146.94, + "end": 17150.36, + "probability": 0.9737 + }, + { + "start": 17150.7, + "end": 17153.52, + "probability": 0.9989 + }, + { + "start": 17153.9, + "end": 17157.3, + "probability": 0.9883 + }, + { + "start": 17157.56, + "end": 17161.46, + "probability": 0.9907 + }, + { + "start": 17162.36, + "end": 17164.26, + "probability": 0.9922 + }, + { + "start": 17164.72, + "end": 17165.65, + "probability": 0.9575 + }, + { + "start": 17166.18, + "end": 17167.0, + "probability": 0.9085 + }, + { + "start": 17167.14, + "end": 17168.12, + "probability": 0.7623 + }, + { + "start": 17168.68, + "end": 17169.16, + "probability": 0.5793 + }, + { + "start": 17169.2, + "end": 17170.96, + "probability": 0.9949 + }, + { + "start": 17171.42, + "end": 17173.22, + "probability": 0.9458 + }, + { + "start": 17173.8, + "end": 17175.12, + "probability": 0.9676 + }, + { + "start": 17175.48, + "end": 17178.28, + "probability": 0.9885 + }, + { + "start": 17178.74, + "end": 17180.88, + "probability": 0.9772 + }, + { + "start": 17181.14, + "end": 17183.19, + "probability": 0.9944 + }, + { + "start": 17183.52, + "end": 17183.62, + "probability": 0.6738 + }, + { + "start": 17184.0, + "end": 17184.94, + "probability": 0.6475 + }, + { + "start": 17185.26, + "end": 17187.44, + "probability": 0.9105 + }, + { + "start": 17187.54, + "end": 17191.16, + "probability": 0.9798 + }, + { + "start": 17191.54, + "end": 17192.78, + "probability": 0.6543 + }, + { + "start": 17193.12, + "end": 17194.1, + "probability": 0.9246 + }, + { + "start": 17194.42, + "end": 17198.44, + "probability": 0.9391 + }, + { + "start": 17198.78, + "end": 17199.12, + "probability": 0.6928 + }, + { + "start": 17199.42, + "end": 17200.12, + "probability": 0.9476 + }, + { + "start": 17200.6, + "end": 17202.84, + "probability": 0.8879 + }, + { + "start": 17202.98, + "end": 17204.18, + "probability": 0.8808 + }, + { + "start": 17204.62, + "end": 17205.56, + "probability": 0.9595 + }, + { + "start": 17206.04, + "end": 17209.02, + "probability": 0.9967 + }, + { + "start": 17209.16, + "end": 17211.62, + "probability": 0.6175 + }, + { + "start": 17212.28, + "end": 17215.36, + "probability": 0.9669 + }, + { + "start": 17215.8, + "end": 17220.22, + "probability": 0.9934 + }, + { + "start": 17220.22, + "end": 17223.32, + "probability": 0.9985 + }, + { + "start": 17225.84, + "end": 17226.42, + "probability": 0.6664 + }, + { + "start": 17227.76, + "end": 17230.24, + "probability": 0.0061 + }, + { + "start": 17230.9, + "end": 17233.82, + "probability": 0.9872 + }, + { + "start": 17234.58, + "end": 17236.74, + "probability": 0.9982 + }, + { + "start": 17238.04, + "end": 17240.68, + "probability": 0.6319 + }, + { + "start": 17240.98, + "end": 17246.26, + "probability": 0.8854 + }, + { + "start": 17246.88, + "end": 17252.5, + "probability": 0.9077 + }, + { + "start": 17253.42, + "end": 17255.58, + "probability": 0.9336 + }, + { + "start": 17255.7, + "end": 17256.38, + "probability": 0.8101 + }, + { + "start": 17256.5, + "end": 17259.42, + "probability": 0.9166 + }, + { + "start": 17259.48, + "end": 17262.74, + "probability": 0.9744 + }, + { + "start": 17263.24, + "end": 17264.91, + "probability": 0.9922 + }, + { + "start": 17265.58, + "end": 17269.02, + "probability": 0.7315 + }, + { + "start": 17269.18, + "end": 17270.82, + "probability": 0.75 + }, + { + "start": 17271.06, + "end": 17272.22, + "probability": 0.0425 + }, + { + "start": 17273.96, + "end": 17275.07, + "probability": 0.8287 + }, + { + "start": 17275.4, + "end": 17275.76, + "probability": 0.0215 + }, + { + "start": 17277.18, + "end": 17278.4, + "probability": 0.385 + }, + { + "start": 17278.86, + "end": 17285.48, + "probability": 0.7437 + }, + { + "start": 17286.0, + "end": 17286.94, + "probability": 0.4282 + }, + { + "start": 17287.28, + "end": 17287.92, + "probability": 0.8882 + }, + { + "start": 17288.12, + "end": 17289.83, + "probability": 0.5001 + }, + { + "start": 17290.62, + "end": 17292.65, + "probability": 0.564 + }, + { + "start": 17298.04, + "end": 17299.08, + "probability": 0.6314 + }, + { + "start": 17299.34, + "end": 17299.44, + "probability": 0.5249 + }, + { + "start": 17299.44, + "end": 17301.04, + "probability": 0.6538 + }, + { + "start": 17301.46, + "end": 17302.14, + "probability": 0.9511 + }, + { + "start": 17302.8, + "end": 17305.6, + "probability": 0.8877 + }, + { + "start": 17306.1, + "end": 17308.74, + "probability": 0.9698 + }, + { + "start": 17309.66, + "end": 17311.06, + "probability": 0.633 + }, + { + "start": 17311.12, + "end": 17313.62, + "probability": 0.9265 + }, + { + "start": 17313.98, + "end": 17314.82, + "probability": 0.8122 + }, + { + "start": 17315.62, + "end": 17318.24, + "probability": 0.9633 + }, + { + "start": 17318.32, + "end": 17319.46, + "probability": 0.824 + }, + { + "start": 17319.86, + "end": 17322.2, + "probability": 0.9846 + }, + { + "start": 17322.88, + "end": 17326.48, + "probability": 0.9985 + }, + { + "start": 17327.24, + "end": 17328.5, + "probability": 0.9849 + }, + { + "start": 17328.58, + "end": 17330.03, + "probability": 0.5842 + }, + { + "start": 17330.78, + "end": 17333.78, + "probability": 0.9307 + }, + { + "start": 17334.42, + "end": 17335.24, + "probability": 0.8587 + }, + { + "start": 17335.88, + "end": 17338.94, + "probability": 0.9955 + }, + { + "start": 17339.5, + "end": 17342.52, + "probability": 0.9954 + }, + { + "start": 17343.34, + "end": 17347.82, + "probability": 0.9445 + }, + { + "start": 17348.18, + "end": 17350.16, + "probability": 0.89 + }, + { + "start": 17350.54, + "end": 17351.82, + "probability": 0.9858 + }, + { + "start": 17352.42, + "end": 17354.96, + "probability": 0.9832 + }, + { + "start": 17355.76, + "end": 17358.96, + "probability": 0.8824 + }, + { + "start": 17359.7, + "end": 17362.12, + "probability": 0.9863 + }, + { + "start": 17362.98, + "end": 17364.68, + "probability": 0.9922 + }, + { + "start": 17365.6, + "end": 17370.62, + "probability": 0.9836 + }, + { + "start": 17370.62, + "end": 17376.72, + "probability": 0.9882 + }, + { + "start": 17377.28, + "end": 17378.46, + "probability": 0.7556 + }, + { + "start": 17379.16, + "end": 17382.32, + "probability": 0.9927 + }, + { + "start": 17383.42, + "end": 17384.84, + "probability": 0.9902 + }, + { + "start": 17386.04, + "end": 17389.94, + "probability": 0.9955 + }, + { + "start": 17392.84, + "end": 17394.68, + "probability": 0.9382 + }, + { + "start": 17395.36, + "end": 17397.04, + "probability": 0.9941 + }, + { + "start": 17397.72, + "end": 17399.88, + "probability": 0.9951 + }, + { + "start": 17400.78, + "end": 17404.1, + "probability": 0.9823 + }, + { + "start": 17404.8, + "end": 17409.58, + "probability": 0.9793 + }, + { + "start": 17410.1, + "end": 17413.0, + "probability": 0.7617 + }, + { + "start": 17413.62, + "end": 17416.18, + "probability": 0.8577 + }, + { + "start": 17416.74, + "end": 17417.8, + "probability": 0.8995 + }, + { + "start": 17417.98, + "end": 17423.02, + "probability": 0.9748 + }, + { + "start": 17423.6, + "end": 17425.54, + "probability": 0.8688 + }, + { + "start": 17425.98, + "end": 17427.1, + "probability": 0.9512 + }, + { + "start": 17428.18, + "end": 17429.56, + "probability": 0.9506 + }, + { + "start": 17430.74, + "end": 17433.78, + "probability": 0.8585 + }, + { + "start": 17434.46, + "end": 17436.52, + "probability": 0.9878 + }, + { + "start": 17436.54, + "end": 17439.08, + "probability": 0.9866 + }, + { + "start": 17439.94, + "end": 17442.88, + "probability": 0.9899 + }, + { + "start": 17442.88, + "end": 17446.02, + "probability": 0.9984 + }, + { + "start": 17446.56, + "end": 17448.87, + "probability": 0.998 + }, + { + "start": 17449.8, + "end": 17453.78, + "probability": 0.9973 + }, + { + "start": 17454.28, + "end": 17457.97, + "probability": 0.9943 + }, + { + "start": 17459.56, + "end": 17463.72, + "probability": 0.9988 + }, + { + "start": 17464.92, + "end": 17465.79, + "probability": 0.9971 + }, + { + "start": 17466.5, + "end": 17470.0, + "probability": 0.9634 + }, + { + "start": 17470.84, + "end": 17471.74, + "probability": 0.9575 + }, + { + "start": 17471.86, + "end": 17474.58, + "probability": 0.9995 + }, + { + "start": 17475.06, + "end": 17478.3, + "probability": 0.8818 + }, + { + "start": 17478.96, + "end": 17480.52, + "probability": 0.9391 + }, + { + "start": 17480.78, + "end": 17484.92, + "probability": 0.9973 + }, + { + "start": 17485.26, + "end": 17486.02, + "probability": 0.6836 + }, + { + "start": 17486.14, + "end": 17486.42, + "probability": 0.3044 + }, + { + "start": 17486.42, + "end": 17490.12, + "probability": 0.9731 + }, + { + "start": 17490.26, + "end": 17490.94, + "probability": 0.6395 + }, + { + "start": 17491.84, + "end": 17494.46, + "probability": 0.8967 + }, + { + "start": 17495.56, + "end": 17498.02, + "probability": 0.908 + }, + { + "start": 17508.86, + "end": 17510.3, + "probability": 0.72 + }, + { + "start": 17510.72, + "end": 17511.14, + "probability": 0.8634 + }, + { + "start": 17511.3, + "end": 17512.28, + "probability": 0.8899 + }, + { + "start": 17512.42, + "end": 17515.62, + "probability": 0.9629 + }, + { + "start": 17515.62, + "end": 17519.28, + "probability": 0.9905 + }, + { + "start": 17519.68, + "end": 17521.34, + "probability": 0.9458 + }, + { + "start": 17521.98, + "end": 17527.54, + "probability": 0.9954 + }, + { + "start": 17528.42, + "end": 17533.5, + "probability": 0.9036 + }, + { + "start": 17534.12, + "end": 17540.42, + "probability": 0.9989 + }, + { + "start": 17540.56, + "end": 17541.06, + "probability": 0.7252 + }, + { + "start": 17541.84, + "end": 17545.18, + "probability": 0.9785 + }, + { + "start": 17545.76, + "end": 17548.94, + "probability": 0.9709 + }, + { + "start": 17550.32, + "end": 17550.8, + "probability": 0.6742 + }, + { + "start": 17550.96, + "end": 17551.62, + "probability": 0.8255 + }, + { + "start": 17551.76, + "end": 17553.19, + "probability": 0.9945 + }, + { + "start": 17554.32, + "end": 17555.87, + "probability": 0.9688 + }, + { + "start": 17556.8, + "end": 17560.21, + "probability": 0.997 + }, + { + "start": 17560.96, + "end": 17563.74, + "probability": 0.9713 + }, + { + "start": 17564.42, + "end": 17566.24, + "probability": 0.9447 + }, + { + "start": 17567.5, + "end": 17569.52, + "probability": 0.8439 + }, + { + "start": 17570.3, + "end": 17575.04, + "probability": 0.9818 + }, + { + "start": 17575.18, + "end": 17576.74, + "probability": 0.8706 + }, + { + "start": 17577.44, + "end": 17582.36, + "probability": 0.8749 + }, + { + "start": 17582.5, + "end": 17583.4, + "probability": 0.9435 + }, + { + "start": 17584.24, + "end": 17590.22, + "probability": 0.9916 + }, + { + "start": 17590.92, + "end": 17593.72, + "probability": 0.9971 + }, + { + "start": 17594.2, + "end": 17597.16, + "probability": 0.9172 + }, + { + "start": 17598.06, + "end": 17599.74, + "probability": 0.9788 + }, + { + "start": 17600.32, + "end": 17605.26, + "probability": 0.9961 + }, + { + "start": 17605.56, + "end": 17609.88, + "probability": 0.9941 + }, + { + "start": 17609.96, + "end": 17611.48, + "probability": 0.9745 + }, + { + "start": 17612.38, + "end": 17614.84, + "probability": 0.7681 + }, + { + "start": 17615.62, + "end": 17621.06, + "probability": 0.9538 + }, + { + "start": 17621.26, + "end": 17621.74, + "probability": 0.947 + }, + { + "start": 17621.78, + "end": 17623.0, + "probability": 0.8777 + }, + { + "start": 17623.88, + "end": 17626.36, + "probability": 0.9465 + }, + { + "start": 17626.98, + "end": 17629.5, + "probability": 0.8602 + }, + { + "start": 17630.02, + "end": 17630.92, + "probability": 0.8021 + }, + { + "start": 17631.0, + "end": 17631.6, + "probability": 0.9294 + }, + { + "start": 17631.68, + "end": 17632.28, + "probability": 0.9774 + }, + { + "start": 17632.38, + "end": 17633.44, + "probability": 0.8873 + }, + { + "start": 17633.82, + "end": 17635.88, + "probability": 0.988 + }, + { + "start": 17636.34, + "end": 17638.62, + "probability": 0.9568 + }, + { + "start": 17639.62, + "end": 17640.12, + "probability": 0.4848 + }, + { + "start": 17640.68, + "end": 17642.36, + "probability": 0.8936 + }, + { + "start": 17643.04, + "end": 17643.76, + "probability": 0.8832 + }, + { + "start": 17644.22, + "end": 17645.26, + "probability": 0.843 + }, + { + "start": 17645.56, + "end": 17646.68, + "probability": 0.9692 + }, + { + "start": 17647.06, + "end": 17650.7, + "probability": 0.9893 + }, + { + "start": 17651.08, + "end": 17654.26, + "probability": 0.9659 + }, + { + "start": 17654.34, + "end": 17660.2, + "probability": 0.9639 + }, + { + "start": 17660.2, + "end": 17664.62, + "probability": 0.9852 + }, + { + "start": 17664.82, + "end": 17665.04, + "probability": 0.7142 + }, + { + "start": 17665.48, + "end": 17667.32, + "probability": 0.9937 + }, + { + "start": 17667.56, + "end": 17668.68, + "probability": 0.9692 + }, + { + "start": 17668.76, + "end": 17671.2, + "probability": 0.9857 + }, + { + "start": 17671.28, + "end": 17671.92, + "probability": 0.5466 + }, + { + "start": 17672.24, + "end": 17675.04, + "probability": 0.9941 + }, + { + "start": 17675.12, + "end": 17676.02, + "probability": 0.9966 + }, + { + "start": 17677.18, + "end": 17679.72, + "probability": 0.8792 + }, + { + "start": 17680.04, + "end": 17681.1, + "probability": 0.9849 + }, + { + "start": 17681.14, + "end": 17683.88, + "probability": 0.9979 + }, + { + "start": 17684.58, + "end": 17687.84, + "probability": 0.9983 + }, + { + "start": 17688.12, + "end": 17689.58, + "probability": 0.9275 + }, + { + "start": 17689.94, + "end": 17691.26, + "probability": 0.8051 + }, + { + "start": 17691.76, + "end": 17693.22, + "probability": 0.9882 + }, + { + "start": 17693.78, + "end": 17697.32, + "probability": 0.9814 + }, + { + "start": 17698.16, + "end": 17701.24, + "probability": 0.9812 + }, + { + "start": 17701.84, + "end": 17706.76, + "probability": 0.9644 + }, + { + "start": 17707.38, + "end": 17707.96, + "probability": 0.453 + }, + { + "start": 17708.66, + "end": 17710.66, + "probability": 0.9315 + }, + { + "start": 17711.04, + "end": 17711.44, + "probability": 0.8535 + }, + { + "start": 17712.2, + "end": 17712.6, + "probability": 0.7175 + }, + { + "start": 17714.72, + "end": 17716.7, + "probability": 0.8926 + }, + { + "start": 17716.92, + "end": 17718.86, + "probability": 0.4937 + }, + { + "start": 17721.7, + "end": 17724.84, + "probability": 0.98 + }, + { + "start": 17724.94, + "end": 17725.36, + "probability": 0.649 + }, + { + "start": 17726.02, + "end": 17732.0, + "probability": 0.972 + }, + { + "start": 17735.36, + "end": 17736.16, + "probability": 0.7462 + }, + { + "start": 17736.28, + "end": 17737.22, + "probability": 0.526 + }, + { + "start": 17737.3, + "end": 17738.48, + "probability": 0.6438 + }, + { + "start": 17739.24, + "end": 17745.4, + "probability": 0.9864 + }, + { + "start": 17745.4, + "end": 17751.38, + "probability": 0.9939 + }, + { + "start": 17751.38, + "end": 17756.26, + "probability": 0.996 + }, + { + "start": 17757.8, + "end": 17764.12, + "probability": 0.9979 + }, + { + "start": 17767.88, + "end": 17770.74, + "probability": 0.9951 + }, + { + "start": 17771.9, + "end": 17773.2, + "probability": 0.9778 + }, + { + "start": 17774.8, + "end": 17777.18, + "probability": 0.9702 + }, + { + "start": 17777.28, + "end": 17779.94, + "probability": 0.9515 + }, + { + "start": 17781.08, + "end": 17782.76, + "probability": 0.8034 + }, + { + "start": 17783.4, + "end": 17790.04, + "probability": 0.9794 + }, + { + "start": 17790.12, + "end": 17790.22, + "probability": 0.2774 + }, + { + "start": 17790.34, + "end": 17790.5, + "probability": 0.3658 + }, + { + "start": 17792.28, + "end": 17793.8, + "probability": 0.9553 + }, + { + "start": 17795.22, + "end": 17796.78, + "probability": 0.9536 + }, + { + "start": 17797.02, + "end": 17799.94, + "probability": 0.8638 + }, + { + "start": 17800.08, + "end": 17802.88, + "probability": 0.8134 + }, + { + "start": 17803.96, + "end": 17805.36, + "probability": 0.9971 + }, + { + "start": 17806.78, + "end": 17809.18, + "probability": 0.9664 + }, + { + "start": 17810.36, + "end": 17811.36, + "probability": 0.9966 + }, + { + "start": 17812.08, + "end": 17812.96, + "probability": 0.6807 + }, + { + "start": 17813.22, + "end": 17814.4, + "probability": 0.8579 + }, + { + "start": 17814.68, + "end": 17815.86, + "probability": 0.8244 + }, + { + "start": 17816.44, + "end": 17819.6, + "probability": 0.8415 + }, + { + "start": 17820.58, + "end": 17822.2, + "probability": 0.9468 + }, + { + "start": 17822.44, + "end": 17825.24, + "probability": 0.9745 + }, + { + "start": 17826.5, + "end": 17830.14, + "probability": 0.9899 + }, + { + "start": 17831.16, + "end": 17835.42, + "probability": 0.9995 + }, + { + "start": 17835.76, + "end": 17837.36, + "probability": 0.8717 + }, + { + "start": 17837.64, + "end": 17838.32, + "probability": 0.9216 + }, + { + "start": 17838.8, + "end": 17839.22, + "probability": 0.8459 + }, + { + "start": 17840.1, + "end": 17842.62, + "probability": 0.9979 + }, + { + "start": 17843.24, + "end": 17844.64, + "probability": 0.9902 + }, + { + "start": 17845.86, + "end": 17848.14, + "probability": 0.9956 + }, + { + "start": 17849.52, + "end": 17850.06, + "probability": 0.9715 + }, + { + "start": 17850.9, + "end": 17851.44, + "probability": 0.9756 + }, + { + "start": 17853.1, + "end": 17853.66, + "probability": 0.8382 + }, + { + "start": 17854.32, + "end": 17856.9, + "probability": 0.9728 + }, + { + "start": 17860.02, + "end": 17865.06, + "probability": 0.9855 + }, + { + "start": 17866.18, + "end": 17867.38, + "probability": 0.9758 + }, + { + "start": 17867.8, + "end": 17870.52, + "probability": 0.9584 + }, + { + "start": 17872.72, + "end": 17873.76, + "probability": 0.9941 + }, + { + "start": 17875.62, + "end": 17878.75, + "probability": 0.6551 + }, + { + "start": 17879.08, + "end": 17883.33, + "probability": 0.9863 + }, + { + "start": 17883.44, + "end": 17887.75, + "probability": 0.9907 + }, + { + "start": 17888.82, + "end": 17889.4, + "probability": 0.5716 + }, + { + "start": 17890.42, + "end": 17890.82, + "probability": 0.9368 + }, + { + "start": 17892.04, + "end": 17894.6, + "probability": 0.9651 + }, + { + "start": 17896.06, + "end": 17898.24, + "probability": 0.9451 + }, + { + "start": 17898.4, + "end": 17901.36, + "probability": 0.9628 + }, + { + "start": 17901.42, + "end": 17902.21, + "probability": 0.877 + }, + { + "start": 17903.84, + "end": 17904.4, + "probability": 0.7382 + }, + { + "start": 17906.74, + "end": 17915.04, + "probability": 0.9785 + }, + { + "start": 17915.52, + "end": 17919.6, + "probability": 0.8567 + }, + { + "start": 17920.96, + "end": 17921.45, + "probability": 0.9722 + }, + { + "start": 17923.06, + "end": 17926.0, + "probability": 0.9499 + }, + { + "start": 17926.76, + "end": 17929.82, + "probability": 0.999 + }, + { + "start": 17930.68, + "end": 17931.94, + "probability": 0.9443 + }, + { + "start": 17933.36, + "end": 17933.99, + "probability": 0.9839 + }, + { + "start": 17934.94, + "end": 17937.86, + "probability": 0.9644 + }, + { + "start": 17939.3, + "end": 17942.04, + "probability": 0.999 + }, + { + "start": 17943.06, + "end": 17943.68, + "probability": 0.5112 + }, + { + "start": 17944.02, + "end": 17946.46, + "probability": 0.8626 + }, + { + "start": 17947.3, + "end": 17949.68, + "probability": 0.9768 + }, + { + "start": 17949.78, + "end": 17951.08, + "probability": 0.8765 + }, + { + "start": 17951.86, + "end": 17955.34, + "probability": 0.9885 + }, + { + "start": 17956.42, + "end": 17957.34, + "probability": 0.9792 + }, + { + "start": 17958.76, + "end": 17960.08, + "probability": 0.6256 + }, + { + "start": 17961.04, + "end": 17964.42, + "probability": 0.9991 + }, + { + "start": 17965.96, + "end": 17967.96, + "probability": 0.8715 + }, + { + "start": 17968.68, + "end": 17969.74, + "probability": 0.951 + }, + { + "start": 17969.84, + "end": 17972.0, + "probability": 0.929 + }, + { + "start": 17973.44, + "end": 17974.87, + "probability": 0.9957 + }, + { + "start": 17975.66, + "end": 17977.2, + "probability": 0.6784 + }, + { + "start": 17977.82, + "end": 17980.24, + "probability": 0.9906 + }, + { + "start": 17981.42, + "end": 17983.0, + "probability": 0.9928 + }, + { + "start": 17983.34, + "end": 17988.46, + "probability": 0.9849 + }, + { + "start": 17988.62, + "end": 17990.96, + "probability": 0.9763 + }, + { + "start": 17992.58, + "end": 17992.88, + "probability": 0.7045 + }, + { + "start": 17993.08, + "end": 17996.94, + "probability": 0.7827 + }, + { + "start": 17996.94, + "end": 17999.54, + "probability": 0.7511 + }, + { + "start": 18024.0, + "end": 18024.16, + "probability": 0.2567 + }, + { + "start": 18024.22, + "end": 18025.22, + "probability": 0.5922 + }, + { + "start": 18027.6, + "end": 18036.06, + "probability": 0.9604 + }, + { + "start": 18036.16, + "end": 18037.9, + "probability": 0.9308 + }, + { + "start": 18038.52, + "end": 18039.56, + "probability": 0.9844 + }, + { + "start": 18040.12, + "end": 18046.76, + "probability": 0.9437 + }, + { + "start": 18047.68, + "end": 18050.3, + "probability": 0.6956 + }, + { + "start": 18051.5, + "end": 18053.88, + "probability": 0.9584 + }, + { + "start": 18055.1, + "end": 18059.36, + "probability": 0.9185 + }, + { + "start": 18059.5, + "end": 18063.88, + "probability": 0.9931 + }, + { + "start": 18064.66, + "end": 18067.9, + "probability": 0.9663 + }, + { + "start": 18068.96, + "end": 18069.8, + "probability": 0.9673 + }, + { + "start": 18070.68, + "end": 18071.32, + "probability": 0.8673 + }, + { + "start": 18071.94, + "end": 18073.46, + "probability": 0.7279 + }, + { + "start": 18074.56, + "end": 18075.08, + "probability": 0.9002 + }, + { + "start": 18075.86, + "end": 18076.42, + "probability": 0.9081 + }, + { + "start": 18077.76, + "end": 18079.44, + "probability": 0.9592 + }, + { + "start": 18080.68, + "end": 18081.42, + "probability": 0.5663 + }, + { + "start": 18083.01, + "end": 18090.38, + "probability": 0.9428 + }, + { + "start": 18091.26, + "end": 18093.06, + "probability": 0.8074 + }, + { + "start": 18093.58, + "end": 18096.44, + "probability": 0.988 + }, + { + "start": 18096.92, + "end": 18101.2, + "probability": 0.9944 + }, + { + "start": 18101.2, + "end": 18105.56, + "probability": 0.7758 + }, + { + "start": 18105.94, + "end": 18109.62, + "probability": 0.9737 + }, + { + "start": 18110.1, + "end": 18111.74, + "probability": 0.981 + }, + { + "start": 18113.16, + "end": 18115.28, + "probability": 0.9062 + }, + { + "start": 18115.44, + "end": 18116.22, + "probability": 0.7493 + }, + { + "start": 18116.32, + "end": 18118.34, + "probability": 0.9861 + }, + { + "start": 18118.42, + "end": 18121.0, + "probability": 0.8021 + }, + { + "start": 18121.64, + "end": 18127.68, + "probability": 0.8253 + }, + { + "start": 18128.32, + "end": 18131.36, + "probability": 0.9267 + }, + { + "start": 18131.92, + "end": 18132.44, + "probability": 0.9795 + }, + { + "start": 18133.16, + "end": 18135.02, + "probability": 0.7314 + }, + { + "start": 18136.54, + "end": 18138.62, + "probability": 0.9392 + }, + { + "start": 18139.24, + "end": 18145.32, + "probability": 0.9834 + }, + { + "start": 18146.34, + "end": 18147.94, + "probability": 0.96 + }, + { + "start": 18149.0, + "end": 18149.7, + "probability": 0.9822 + }, + { + "start": 18150.36, + "end": 18155.54, + "probability": 0.9568 + }, + { + "start": 18156.84, + "end": 18158.5, + "probability": 0.5555 + }, + { + "start": 18159.38, + "end": 18164.56, + "probability": 0.9512 + }, + { + "start": 18165.16, + "end": 18169.94, + "probability": 0.9157 + }, + { + "start": 18170.34, + "end": 18173.28, + "probability": 0.9937 + }, + { + "start": 18174.2, + "end": 18175.14, + "probability": 0.3689 + }, + { + "start": 18175.78, + "end": 18179.58, + "probability": 0.9901 + }, + { + "start": 18180.04, + "end": 18180.72, + "probability": 0.678 + }, + { + "start": 18182.06, + "end": 18182.82, + "probability": 0.9795 + }, + { + "start": 18183.88, + "end": 18185.02, + "probability": 0.7504 + }, + { + "start": 18186.38, + "end": 18187.16, + "probability": 0.8807 + }, + { + "start": 18187.94, + "end": 18192.04, + "probability": 0.9831 + }, + { + "start": 18193.02, + "end": 18195.52, + "probability": 0.9731 + }, + { + "start": 18196.04, + "end": 18199.82, + "probability": 0.9904 + }, + { + "start": 18201.04, + "end": 18202.78, + "probability": 0.4606 + }, + { + "start": 18203.18, + "end": 18205.02, + "probability": 0.7627 + }, + { + "start": 18205.7, + "end": 18208.0, + "probability": 0.9022 + }, + { + "start": 18208.46, + "end": 18209.04, + "probability": 0.9392 + }, + { + "start": 18209.82, + "end": 18210.34, + "probability": 0.5811 + }, + { + "start": 18211.44, + "end": 18221.68, + "probability": 0.9648 + }, + { + "start": 18221.82, + "end": 18222.7, + "probability": 0.6778 + }, + { + "start": 18222.78, + "end": 18223.4, + "probability": 0.7494 + }, + { + "start": 18225.06, + "end": 18229.02, + "probability": 0.9475 + }, + { + "start": 18231.38, + "end": 18232.7, + "probability": 0.8982 + }, + { + "start": 18233.9, + "end": 18234.9, + "probability": 0.7256 + }, + { + "start": 18235.64, + "end": 18236.24, + "probability": 0.8598 + }, + { + "start": 18237.3, + "end": 18238.7, + "probability": 0.8646 + }, + { + "start": 18239.3, + "end": 18241.78, + "probability": 0.942 + }, + { + "start": 18242.06, + "end": 18242.76, + "probability": 0.8572 + }, + { + "start": 18242.94, + "end": 18243.8, + "probability": 0.6406 + }, + { + "start": 18244.76, + "end": 18245.32, + "probability": 0.745 + }, + { + "start": 18245.9, + "end": 18249.28, + "probability": 0.9459 + }, + { + "start": 18251.44, + "end": 18254.36, + "probability": 0.9526 + }, + { + "start": 18255.82, + "end": 18256.48, + "probability": 0.8972 + }, + { + "start": 18257.58, + "end": 18258.47, + "probability": 0.6708 + }, + { + "start": 18259.4, + "end": 18260.76, + "probability": 0.9201 + }, + { + "start": 18261.58, + "end": 18262.2, + "probability": 0.9255 + }, + { + "start": 18262.74, + "end": 18265.48, + "probability": 0.8859 + }, + { + "start": 18265.56, + "end": 18268.5, + "probability": 0.8734 + }, + { + "start": 18268.56, + "end": 18269.38, + "probability": 0.8739 + }, + { + "start": 18269.86, + "end": 18280.28, + "probability": 0.8955 + }, + { + "start": 18280.94, + "end": 18285.9, + "probability": 0.9106 + }, + { + "start": 18286.26, + "end": 18289.4, + "probability": 0.8644 + }, + { + "start": 18289.84, + "end": 18290.98, + "probability": 0.8164 + }, + { + "start": 18292.16, + "end": 18292.77, + "probability": 0.9299 + }, + { + "start": 18293.5, + "end": 18295.28, + "probability": 0.7284 + }, + { + "start": 18295.72, + "end": 18296.56, + "probability": 0.8271 + }, + { + "start": 18297.64, + "end": 18298.32, + "probability": 0.595 + }, + { + "start": 18298.34, + "end": 18299.0, + "probability": 0.9653 + }, + { + "start": 18299.12, + "end": 18303.14, + "probability": 0.8884 + }, + { + "start": 18303.3, + "end": 18304.3, + "probability": 0.4724 + }, + { + "start": 18305.04, + "end": 18308.26, + "probability": 0.9937 + }, + { + "start": 18309.6, + "end": 18316.8, + "probability": 0.9834 + }, + { + "start": 18317.92, + "end": 18318.76, + "probability": 0.9569 + }, + { + "start": 18319.28, + "end": 18322.12, + "probability": 0.9752 + }, + { + "start": 18322.72, + "end": 18326.5, + "probability": 0.9965 + }, + { + "start": 18327.74, + "end": 18337.64, + "probability": 0.9873 + }, + { + "start": 18338.1, + "end": 18344.42, + "probability": 0.8615 + }, + { + "start": 18344.8, + "end": 18347.26, + "probability": 0.6365 + }, + { + "start": 18348.0, + "end": 18350.1, + "probability": 0.8784 + }, + { + "start": 18351.1, + "end": 18353.4, + "probability": 0.9689 + }, + { + "start": 18354.1, + "end": 18357.82, + "probability": 0.6579 + }, + { + "start": 18358.84, + "end": 18360.56, + "probability": 0.7218 + }, + { + "start": 18362.12, + "end": 18364.41, + "probability": 0.6867 + }, + { + "start": 18365.76, + "end": 18367.76, + "probability": 0.8445 + }, + { + "start": 18368.24, + "end": 18369.54, + "probability": 0.6475 + }, + { + "start": 18370.3, + "end": 18374.88, + "probability": 0.9315 + }, + { + "start": 18375.18, + "end": 18379.16, + "probability": 0.9924 + }, + { + "start": 18379.7, + "end": 18380.56, + "probability": 0.4962 + }, + { + "start": 18381.42, + "end": 18382.22, + "probability": 0.9577 + }, + { + "start": 18382.92, + "end": 18385.8, + "probability": 0.9314 + }, + { + "start": 18386.4, + "end": 18389.88, + "probability": 0.9395 + }, + { + "start": 18390.74, + "end": 18392.54, + "probability": 0.7393 + }, + { + "start": 18393.42, + "end": 18394.48, + "probability": 0.8347 + }, + { + "start": 18395.58, + "end": 18397.56, + "probability": 0.8407 + }, + { + "start": 18398.56, + "end": 18400.0, + "probability": 0.8807 + }, + { + "start": 18401.3, + "end": 18403.18, + "probability": 0.9575 + }, + { + "start": 18404.33, + "end": 18406.1, + "probability": 0.8582 + }, + { + "start": 18406.14, + "end": 18407.16, + "probability": 0.9734 + }, + { + "start": 18408.1, + "end": 18410.95, + "probability": 0.8892 + }, + { + "start": 18412.54, + "end": 18416.36, + "probability": 0.9218 + }, + { + "start": 18417.56, + "end": 18419.75, + "probability": 0.3997 + }, + { + "start": 18421.14, + "end": 18425.06, + "probability": 0.94 + }, + { + "start": 18425.9, + "end": 18430.62, + "probability": 0.9152 + }, + { + "start": 18431.58, + "end": 18436.6, + "probability": 0.9434 + }, + { + "start": 18438.91, + "end": 18442.28, + "probability": 0.8519 + }, + { + "start": 18443.28, + "end": 18444.26, + "probability": 0.9368 + }, + { + "start": 18444.8, + "end": 18446.48, + "probability": 0.8037 + }, + { + "start": 18447.02, + "end": 18447.6, + "probability": 0.626 + }, + { + "start": 18448.62, + "end": 18457.16, + "probability": 0.9695 + }, + { + "start": 18457.72, + "end": 18462.0, + "probability": 0.7859 + }, + { + "start": 18462.06, + "end": 18462.58, + "probability": 0.6479 + }, + { + "start": 18464.29, + "end": 18467.66, + "probability": 0.9595 + }, + { + "start": 18468.5, + "end": 18469.16, + "probability": 0.8279 + }, + { + "start": 18470.1, + "end": 18473.16, + "probability": 0.9242 + }, + { + "start": 18473.16, + "end": 18477.56, + "probability": 0.7149 + }, + { + "start": 18477.94, + "end": 18480.68, + "probability": 0.9268 + }, + { + "start": 18481.72, + "end": 18484.1, + "probability": 0.777 + }, + { + "start": 18484.78, + "end": 18488.26, + "probability": 0.9707 + }, + { + "start": 18489.06, + "end": 18491.12, + "probability": 0.9689 + }, + { + "start": 18492.04, + "end": 18494.84, + "probability": 0.7511 + }, + { + "start": 18496.46, + "end": 18499.08, + "probability": 0.9289 + }, + { + "start": 18499.76, + "end": 18502.56, + "probability": 0.82 + }, + { + "start": 18503.28, + "end": 18507.46, + "probability": 0.9854 + }, + { + "start": 18507.46, + "end": 18512.8, + "probability": 0.984 + }, + { + "start": 18513.92, + "end": 18516.5, + "probability": 0.9617 + }, + { + "start": 18517.04, + "end": 18521.9, + "probability": 0.9329 + }, + { + "start": 18522.44, + "end": 18524.32, + "probability": 0.9266 + }, + { + "start": 18525.2, + "end": 18526.62, + "probability": 0.9862 + }, + { + "start": 18527.58, + "end": 18530.98, + "probability": 0.9966 + }, + { + "start": 18531.68, + "end": 18538.64, + "probability": 0.9799 + }, + { + "start": 18541.92, + "end": 18543.89, + "probability": 0.9149 + }, + { + "start": 18544.86, + "end": 18549.3, + "probability": 0.7871 + }, + { + "start": 18550.66, + "end": 18551.72, + "probability": 0.918 + }, + { + "start": 18552.74, + "end": 18553.92, + "probability": 0.5671 + }, + { + "start": 18554.56, + "end": 18555.68, + "probability": 0.7356 + }, + { + "start": 18556.28, + "end": 18557.42, + "probability": 0.8999 + }, + { + "start": 18558.22, + "end": 18562.44, + "probability": 0.9845 + }, + { + "start": 18562.46, + "end": 18566.18, + "probability": 0.9937 + }, + { + "start": 18566.7, + "end": 18568.9, + "probability": 0.5655 + }, + { + "start": 18569.42, + "end": 18571.9, + "probability": 0.8358 + }, + { + "start": 18572.92, + "end": 18576.6, + "probability": 0.9623 + }, + { + "start": 18576.9, + "end": 18579.6, + "probability": 0.9622 + }, + { + "start": 18579.96, + "end": 18581.76, + "probability": 0.979 + }, + { + "start": 18582.26, + "end": 18583.04, + "probability": 0.9897 + }, + { + "start": 18583.52, + "end": 18584.06, + "probability": 0.6458 + }, + { + "start": 18584.44, + "end": 18585.28, + "probability": 0.751 + }, + { + "start": 18585.68, + "end": 18587.56, + "probability": 0.8523 + }, + { + "start": 18588.78, + "end": 18592.54, + "probability": 0.7393 + }, + { + "start": 18594.71, + "end": 18596.72, + "probability": 0.9785 + }, + { + "start": 18597.48, + "end": 18599.72, + "probability": 0.6991 + }, + { + "start": 18600.04, + "end": 18607.44, + "probability": 0.9927 + }, + { + "start": 18607.52, + "end": 18610.56, + "probability": 0.9893 + }, + { + "start": 18610.56, + "end": 18613.62, + "probability": 0.8248 + }, + { + "start": 18613.64, + "end": 18618.62, + "probability": 0.6715 + }, + { + "start": 18619.14, + "end": 18622.92, + "probability": 0.9824 + }, + { + "start": 18623.2, + "end": 18623.76, + "probability": 0.5889 + }, + { + "start": 18624.74, + "end": 18625.76, + "probability": 0.9106 + }, + { + "start": 18626.52, + "end": 18627.81, + "probability": 0.9329 + }, + { + "start": 18629.06, + "end": 18630.44, + "probability": 0.9038 + }, + { + "start": 18631.6, + "end": 18635.96, + "probability": 0.8962 + }, + { + "start": 18635.96, + "end": 18643.46, + "probability": 0.9341 + }, + { + "start": 18644.04, + "end": 18645.14, + "probability": 0.8471 + }, + { + "start": 18645.3, + "end": 18645.9, + "probability": 0.7983 + }, + { + "start": 18646.0, + "end": 18652.6, + "probability": 0.8231 + }, + { + "start": 18653.3, + "end": 18654.52, + "probability": 0.5294 + }, + { + "start": 18655.02, + "end": 18656.43, + "probability": 0.962 + }, + { + "start": 18657.28, + "end": 18659.06, + "probability": 0.9458 + }, + { + "start": 18659.52, + "end": 18660.32, + "probability": 0.7455 + }, + { + "start": 18660.64, + "end": 18663.16, + "probability": 0.9923 + }, + { + "start": 18663.4, + "end": 18663.54, + "probability": 0.6476 + }, + { + "start": 18665.66, + "end": 18666.2, + "probability": 0.4035 + }, + { + "start": 18666.48, + "end": 18672.04, + "probability": 0.9775 + }, + { + "start": 18674.08, + "end": 18675.94, + "probability": 0.8504 + }, + { + "start": 18676.96, + "end": 18677.36, + "probability": 0.87 + }, + { + "start": 18682.54, + "end": 18684.96, + "probability": 0.9011 + }, + { + "start": 18685.66, + "end": 18689.5, + "probability": 0.9294 + }, + { + "start": 18689.5, + "end": 18696.24, + "probability": 0.9844 + }, + { + "start": 18696.5, + "end": 18698.56, + "probability": 0.7994 + }, + { + "start": 18698.9, + "end": 18703.22, + "probability": 0.9678 + }, + { + "start": 18703.74, + "end": 18708.26, + "probability": 0.9897 + }, + { + "start": 18708.26, + "end": 18713.22, + "probability": 0.9969 + }, + { + "start": 18713.22, + "end": 18719.38, + "probability": 0.9883 + }, + { + "start": 18719.56, + "end": 18721.82, + "probability": 0.9927 + }, + { + "start": 18722.24, + "end": 18725.74, + "probability": 0.8928 + }, + { + "start": 18726.02, + "end": 18729.88, + "probability": 0.8569 + }, + { + "start": 18730.28, + "end": 18731.22, + "probability": 0.9358 + }, + { + "start": 18731.62, + "end": 18731.82, + "probability": 0.8444 + }, + { + "start": 18733.26, + "end": 18733.74, + "probability": 0.6481 + }, + { + "start": 18734.18, + "end": 18735.98, + "probability": 0.7566 + }, + { + "start": 18737.02, + "end": 18737.92, + "probability": 0.8751 + }, + { + "start": 18742.54, + "end": 18744.44, + "probability": 0.8281 + }, + { + "start": 18745.28, + "end": 18748.82, + "probability": 0.7974 + }, + { + "start": 18749.4, + "end": 18752.88, + "probability": 0.9824 + }, + { + "start": 18753.78, + "end": 18761.94, + "probability": 0.9539 + }, + { + "start": 18762.54, + "end": 18763.74, + "probability": 0.8676 + }, + { + "start": 18764.84, + "end": 18767.1, + "probability": 0.9761 + }, + { + "start": 18767.64, + "end": 18771.86, + "probability": 0.941 + }, + { + "start": 18772.58, + "end": 18777.32, + "probability": 0.9567 + }, + { + "start": 18777.86, + "end": 18780.18, + "probability": 0.9211 + }, + { + "start": 18780.62, + "end": 18781.84, + "probability": 0.8887 + }, + { + "start": 18782.26, + "end": 18783.48, + "probability": 0.9436 + }, + { + "start": 18783.74, + "end": 18785.1, + "probability": 0.9785 + }, + { + "start": 18785.82, + "end": 18789.08, + "probability": 0.807 + }, + { + "start": 18789.36, + "end": 18790.92, + "probability": 0.9694 + }, + { + "start": 18792.02, + "end": 18792.26, + "probability": 0.584 + }, + { + "start": 18794.56, + "end": 18797.82, + "probability": 0.4457 + }, + { + "start": 18797.82, + "end": 18797.98, + "probability": 0.7249 + }, + { + "start": 18798.6, + "end": 18798.92, + "probability": 0.1494 + }, + { + "start": 18798.92, + "end": 18799.84, + "probability": 0.6334 + }, + { + "start": 18800.9, + "end": 18801.94, + "probability": 0.333 + }, + { + "start": 18805.86, + "end": 18807.76, + "probability": 0.4813 + }, + { + "start": 18808.72, + "end": 18810.74, + "probability": 0.9119 + }, + { + "start": 18811.92, + "end": 18813.28, + "probability": 0.8376 + }, + { + "start": 18814.54, + "end": 18819.24, + "probability": 0.9766 + }, + { + "start": 18820.08, + "end": 18821.69, + "probability": 0.9685 + }, + { + "start": 18822.86, + "end": 18823.72, + "probability": 0.9578 + }, + { + "start": 18824.62, + "end": 18827.08, + "probability": 0.9591 + }, + { + "start": 18828.1, + "end": 18831.1, + "probability": 0.8442 + }, + { + "start": 18831.62, + "end": 18832.07, + "probability": 0.9383 + }, + { + "start": 18832.64, + "end": 18833.16, + "probability": 0.5682 + }, + { + "start": 18833.28, + "end": 18833.38, + "probability": 0.8219 + }, + { + "start": 18833.6, + "end": 18840.44, + "probability": 0.9028 + }, + { + "start": 18841.26, + "end": 18843.1, + "probability": 0.9924 + }, + { + "start": 18844.18, + "end": 18847.64, + "probability": 0.9121 + }, + { + "start": 18847.76, + "end": 18848.44, + "probability": 0.3183 + }, + { + "start": 18848.46, + "end": 18850.56, + "probability": 0.892 + }, + { + "start": 18851.4, + "end": 18852.26, + "probability": 0.9553 + }, + { + "start": 18853.58, + "end": 18855.78, + "probability": 0.6846 + }, + { + "start": 18855.9, + "end": 18856.33, + "probability": 0.9119 + }, + { + "start": 18857.3, + "end": 18857.92, + "probability": 0.9346 + }, + { + "start": 18858.64, + "end": 18862.1, + "probability": 0.8987 + }, + { + "start": 18862.68, + "end": 18864.24, + "probability": 0.9867 + }, + { + "start": 18865.02, + "end": 18868.8, + "probability": 0.9634 + }, + { + "start": 18869.48, + "end": 18871.38, + "probability": 0.9797 + }, + { + "start": 18871.38, + "end": 18874.52, + "probability": 0.9948 + }, + { + "start": 18875.0, + "end": 18876.34, + "probability": 0.6882 + }, + { + "start": 18877.12, + "end": 18879.14, + "probability": 0.7387 + }, + { + "start": 18880.3, + "end": 18885.08, + "probability": 0.7335 + }, + { + "start": 18885.46, + "end": 18889.02, + "probability": 0.866 + }, + { + "start": 18889.28, + "end": 18892.38, + "probability": 0.5325 + }, + { + "start": 18892.64, + "end": 18894.48, + "probability": 0.8202 + }, + { + "start": 18894.52, + "end": 18896.82, + "probability": 0.8563 + }, + { + "start": 18897.18, + "end": 18899.1, + "probability": 0.825 + }, + { + "start": 18899.18, + "end": 18900.72, + "probability": 0.6744 + }, + { + "start": 18901.2, + "end": 18902.21, + "probability": 0.3349 + }, + { + "start": 18902.66, + "end": 18904.18, + "probability": 0.5963 + }, + { + "start": 18904.56, + "end": 18905.76, + "probability": 0.7332 + }, + { + "start": 18905.84, + "end": 18907.88, + "probability": 0.9336 + }, + { + "start": 18907.88, + "end": 18909.94, + "probability": 0.7198 + }, + { + "start": 18910.06, + "end": 18912.78, + "probability": 0.9669 + }, + { + "start": 18913.16, + "end": 18913.88, + "probability": 0.5537 + }, + { + "start": 18913.98, + "end": 18920.22, + "probability": 0.9084 + }, + { + "start": 18921.04, + "end": 18922.0, + "probability": 0.7064 + }, + { + "start": 18923.76, + "end": 18924.4, + "probability": 0.5137 + }, + { + "start": 18924.62, + "end": 18925.88, + "probability": 0.6745 + }, + { + "start": 18926.28, + "end": 18930.92, + "probability": 0.702 + }, + { + "start": 18931.0, + "end": 18931.48, + "probability": 0.4709 + }, + { + "start": 18931.7, + "end": 18931.98, + "probability": 0.4273 + }, + { + "start": 18932.1, + "end": 18933.36, + "probability": 0.7376 + }, + { + "start": 18937.07, + "end": 18938.54, + "probability": 0.4088 + }, + { + "start": 18938.88, + "end": 18939.8, + "probability": 0.93 + }, + { + "start": 18940.52, + "end": 18941.3, + "probability": 0.4507 + }, + { + "start": 18941.58, + "end": 18942.2, + "probability": 0.6792 + }, + { + "start": 18943.74, + "end": 18945.71, + "probability": 0.9773 + }, + { + "start": 18952.0, + "end": 18952.68, + "probability": 0.1499 + }, + { + "start": 18952.68, + "end": 18954.65, + "probability": 0.5648 + }, + { + "start": 18955.34, + "end": 18961.48, + "probability": 0.8375 + }, + { + "start": 18961.56, + "end": 18962.56, + "probability": 0.5265 + }, + { + "start": 18962.62, + "end": 18964.76, + "probability": 0.7102 + }, + { + "start": 18966.04, + "end": 18969.26, + "probability": 0.9901 + }, + { + "start": 18969.88, + "end": 18970.06, + "probability": 0.18 + }, + { + "start": 18970.06, + "end": 18972.42, + "probability": 0.613 + }, + { + "start": 18980.92, + "end": 18980.92, + "probability": 0.3353 + }, + { + "start": 18980.92, + "end": 18981.06, + "probability": 0.1967 + }, + { + "start": 18981.4, + "end": 18982.5, + "probability": 0.7081 + }, + { + "start": 18982.56, + "end": 18983.08, + "probability": 0.2987 + }, + { + "start": 18983.18, + "end": 18988.46, + "probability": 0.8715 + }, + { + "start": 18988.58, + "end": 18991.58, + "probability": 0.5835 + }, + { + "start": 18991.8, + "end": 18993.2, + "probability": 0.2598 + }, + { + "start": 18994.28, + "end": 18996.46, + "probability": 0.7345 + }, + { + "start": 18997.22, + "end": 18999.96, + "probability": 0.8644 + }, + { + "start": 19000.68, + "end": 19003.56, + "probability": 0.9465 + }, + { + "start": 19005.34, + "end": 19005.84, + "probability": 0.5456 + }, + { + "start": 19005.96, + "end": 19006.56, + "probability": 0.7263 + }, + { + "start": 19006.58, + "end": 19006.92, + "probability": 0.6315 + }, + { + "start": 19007.04, + "end": 19011.04, + "probability": 0.9268 + }, + { + "start": 19013.14, + "end": 19015.18, + "probability": 0.7724 + }, + { + "start": 19016.22, + "end": 19017.94, + "probability": 0.6358 + }, + { + "start": 19018.7, + "end": 19026.3, + "probability": 0.9875 + }, + { + "start": 19028.18, + "end": 19030.9, + "probability": 0.6144 + }, + { + "start": 19031.18, + "end": 19032.28, + "probability": 0.7695 + }, + { + "start": 19033.1, + "end": 19039.49, + "probability": 0.6365 + }, + { + "start": 19041.22, + "end": 19042.31, + "probability": 0.5272 + }, + { + "start": 19045.02, + "end": 19049.54, + "probability": 0.9395 + }, + { + "start": 19050.48, + "end": 19052.38, + "probability": 0.978 + }, + { + "start": 19052.5, + "end": 19053.48, + "probability": 0.9907 + }, + { + "start": 19054.74, + "end": 19060.42, + "probability": 0.793 + }, + { + "start": 19061.36, + "end": 19062.46, + "probability": 0.797 + }, + { + "start": 19063.14, + "end": 19068.28, + "probability": 0.596 + }, + { + "start": 19068.96, + "end": 19071.92, + "probability": 0.9238 + }, + { + "start": 19073.28, + "end": 19074.39, + "probability": 0.998 + }, + { + "start": 19075.44, + "end": 19078.28, + "probability": 0.8579 + }, + { + "start": 19078.94, + "end": 19079.58, + "probability": 0.6171 + }, + { + "start": 19080.72, + "end": 19082.7, + "probability": 0.9345 + }, + { + "start": 19082.78, + "end": 19089.58, + "probability": 0.9275 + }, + { + "start": 19090.7, + "end": 19092.56, + "probability": 0.992 + }, + { + "start": 19093.34, + "end": 19098.42, + "probability": 0.7684 + }, + { + "start": 19099.14, + "end": 19103.5, + "probability": 0.994 + }, + { + "start": 19104.42, + "end": 19104.88, + "probability": 0.785 + }, + { + "start": 19105.54, + "end": 19109.04, + "probability": 0.9785 + }, + { + "start": 19110.1, + "end": 19112.14, + "probability": 0.7605 + }, + { + "start": 19112.9, + "end": 19115.38, + "probability": 0.7643 + }, + { + "start": 19115.98, + "end": 19118.96, + "probability": 0.8573 + }, + { + "start": 19119.46, + "end": 19120.36, + "probability": 0.8214 + }, + { + "start": 19120.92, + "end": 19122.98, + "probability": 0.8111 + }, + { + "start": 19123.56, + "end": 19125.46, + "probability": 0.915 + }, + { + "start": 19125.88, + "end": 19127.46, + "probability": 0.9131 + }, + { + "start": 19127.84, + "end": 19129.88, + "probability": 0.9894 + }, + { + "start": 19130.2, + "end": 19132.48, + "probability": 0.967 + }, + { + "start": 19133.04, + "end": 19133.94, + "probability": 0.6998 + }, + { + "start": 19134.38, + "end": 19136.36, + "probability": 0.6555 + }, + { + "start": 19136.8, + "end": 19140.52, + "probability": 0.8862 + }, + { + "start": 19140.52, + "end": 19144.92, + "probability": 0.8252 + }, + { + "start": 19145.8, + "end": 19149.82, + "probability": 0.9755 + }, + { + "start": 19150.44, + "end": 19152.66, + "probability": 0.8931 + }, + { + "start": 19153.16, + "end": 19153.46, + "probability": 0.564 + }, + { + "start": 19153.46, + "end": 19154.66, + "probability": 0.869 + }, + { + "start": 19155.0, + "end": 19155.7, + "probability": 0.7671 + }, + { + "start": 19156.18, + "end": 19156.32, + "probability": 0.8815 + }, + { + "start": 19156.42, + "end": 19157.94, + "probability": 0.9736 + }, + { + "start": 19158.86, + "end": 19159.24, + "probability": 0.9365 + }, + { + "start": 19160.04, + "end": 19162.04, + "probability": 0.9199 + }, + { + "start": 19162.56, + "end": 19164.84, + "probability": 0.8816 + }, + { + "start": 19165.94, + "end": 19166.84, + "probability": 0.7566 + }, + { + "start": 19167.52, + "end": 19172.3, + "probability": 0.9207 + }, + { + "start": 19172.8, + "end": 19174.8, + "probability": 0.9292 + }, + { + "start": 19175.76, + "end": 19176.58, + "probability": 0.8238 + }, + { + "start": 19176.68, + "end": 19177.54, + "probability": 0.9081 + }, + { + "start": 19177.88, + "end": 19179.23, + "probability": 0.8479 + }, + { + "start": 19179.64, + "end": 19182.46, + "probability": 0.8239 + }, + { + "start": 19183.18, + "end": 19184.02, + "probability": 0.9131 + }, + { + "start": 19184.62, + "end": 19186.4, + "probability": 0.8462 + }, + { + "start": 19187.06, + "end": 19192.06, + "probability": 0.9709 + }, + { + "start": 19192.92, + "end": 19194.74, + "probability": 0.9953 + }, + { + "start": 19195.9, + "end": 19197.98, + "probability": 0.8183 + }, + { + "start": 19198.82, + "end": 19200.56, + "probability": 0.9734 + }, + { + "start": 19201.28, + "end": 19203.1, + "probability": 0.9556 + }, + { + "start": 19204.0, + "end": 19206.34, + "probability": 0.9478 + }, + { + "start": 19207.28, + "end": 19212.92, + "probability": 0.8652 + }, + { + "start": 19213.5, + "end": 19215.26, + "probability": 0.8323 + }, + { + "start": 19215.68, + "end": 19219.52, + "probability": 0.9162 + }, + { + "start": 19219.94, + "end": 19221.48, + "probability": 0.9404 + }, + { + "start": 19222.46, + "end": 19223.94, + "probability": 0.8341 + }, + { + "start": 19224.58, + "end": 19225.58, + "probability": 0.9636 + }, + { + "start": 19226.1, + "end": 19227.31, + "probability": 0.9795 + }, + { + "start": 19227.7, + "end": 19230.82, + "probability": 0.8443 + }, + { + "start": 19231.18, + "end": 19232.42, + "probability": 0.9648 + }, + { + "start": 19233.88, + "end": 19236.82, + "probability": 0.6194 + }, + { + "start": 19237.66, + "end": 19240.3, + "probability": 0.8765 + }, + { + "start": 19242.18, + "end": 19247.4, + "probability": 0.99 + }, + { + "start": 19247.54, + "end": 19249.05, + "probability": 0.9204 + }, + { + "start": 19249.8, + "end": 19252.06, + "probability": 0.9352 + }, + { + "start": 19252.96, + "end": 19255.82, + "probability": 0.9782 + }, + { + "start": 19256.16, + "end": 19256.86, + "probability": 0.6998 + }, + { + "start": 19256.98, + "end": 19257.8, + "probability": 0.8833 + }, + { + "start": 19258.18, + "end": 19258.86, + "probability": 0.8706 + }, + { + "start": 19258.94, + "end": 19259.48, + "probability": 0.9573 + }, + { + "start": 19259.56, + "end": 19260.02, + "probability": 0.7418 + }, + { + "start": 19260.14, + "end": 19260.64, + "probability": 0.7958 + }, + { + "start": 19261.1, + "end": 19263.0, + "probability": 0.9812 + }, + { + "start": 19263.62, + "end": 19265.28, + "probability": 0.9261 + }, + { + "start": 19266.44, + "end": 19267.34, + "probability": 0.9736 + }, + { + "start": 19268.0, + "end": 19269.22, + "probability": 0.9874 + }, + { + "start": 19269.96, + "end": 19273.92, + "probability": 0.9466 + }, + { + "start": 19274.5, + "end": 19276.4, + "probability": 0.8895 + }, + { + "start": 19276.92, + "end": 19277.98, + "probability": 0.9023 + }, + { + "start": 19278.52, + "end": 19280.2, + "probability": 0.833 + }, + { + "start": 19280.64, + "end": 19283.16, + "probability": 0.9768 + }, + { + "start": 19283.22, + "end": 19283.84, + "probability": 0.5857 + }, + { + "start": 19284.36, + "end": 19287.08, + "probability": 0.4353 + }, + { + "start": 19287.9, + "end": 19289.94, + "probability": 0.6429 + }, + { + "start": 19290.12, + "end": 19293.1, + "probability": 0.9729 + }, + { + "start": 19293.18, + "end": 19297.46, + "probability": 0.9951 + }, + { + "start": 19297.9, + "end": 19300.12, + "probability": 0.9882 + }, + { + "start": 19300.44, + "end": 19301.34, + "probability": 0.9149 + }, + { + "start": 19301.6, + "end": 19305.06, + "probability": 0.9383 + }, + { + "start": 19305.42, + "end": 19305.98, + "probability": 0.8665 + }, + { + "start": 19306.38, + "end": 19306.7, + "probability": 0.2674 + }, + { + "start": 19306.86, + "end": 19308.24, + "probability": 0.8527 + }, + { + "start": 19308.56, + "end": 19309.64, + "probability": 0.8236 + }, + { + "start": 19310.0, + "end": 19311.23, + "probability": 0.9192 + }, + { + "start": 19311.8, + "end": 19313.38, + "probability": 0.9263 + }, + { + "start": 19313.7, + "end": 19317.32, + "probability": 0.9502 + }, + { + "start": 19317.4, + "end": 19318.34, + "probability": 0.5631 + }, + { + "start": 19318.4, + "end": 19318.9, + "probability": 0.9018 + }, + { + "start": 19319.3, + "end": 19320.06, + "probability": 0.4088 + }, + { + "start": 19320.34, + "end": 19322.42, + "probability": 0.9736 + }, + { + "start": 19322.86, + "end": 19323.54, + "probability": 0.5593 + }, + { + "start": 19323.74, + "end": 19325.2, + "probability": 0.8314 + }, + { + "start": 19332.54, + "end": 19333.04, + "probability": 0.6872 + }, + { + "start": 19340.64, + "end": 19341.88, + "probability": 0.702 + }, + { + "start": 19342.9, + "end": 19345.04, + "probability": 0.9294 + }, + { + "start": 19345.18, + "end": 19347.58, + "probability": 0.9625 + }, + { + "start": 19348.52, + "end": 19350.2, + "probability": 0.8866 + }, + { + "start": 19351.76, + "end": 19353.5, + "probability": 0.9199 + }, + { + "start": 19354.0, + "end": 19355.38, + "probability": 0.1357 + }, + { + "start": 19356.3, + "end": 19358.34, + "probability": 0.0607 + }, + { + "start": 19358.56, + "end": 19360.66, + "probability": 0.9568 + }, + { + "start": 19360.84, + "end": 19361.8, + "probability": 0.5848 + }, + { + "start": 19362.78, + "end": 19366.28, + "probability": 0.6322 + }, + { + "start": 19366.42, + "end": 19368.14, + "probability": 0.8966 + }, + { + "start": 19368.36, + "end": 19370.62, + "probability": 0.822 + }, + { + "start": 19371.2, + "end": 19373.14, + "probability": 0.9917 + }, + { + "start": 19374.4, + "end": 19375.76, + "probability": 0.866 + }, + { + "start": 19375.86, + "end": 19377.14, + "probability": 0.9799 + }, + { + "start": 19377.22, + "end": 19377.95, + "probability": 0.9917 + }, + { + "start": 19378.14, + "end": 19378.48, + "probability": 0.3705 + }, + { + "start": 19378.64, + "end": 19380.5, + "probability": 0.6834 + }, + { + "start": 19380.64, + "end": 19381.52, + "probability": 0.1217 + }, + { + "start": 19381.58, + "end": 19381.7, + "probability": 0.1496 + }, + { + "start": 19382.24, + "end": 19382.65, + "probability": 0.8096 + }, + { + "start": 19382.7, + "end": 19383.1, + "probability": 0.4239 + }, + { + "start": 19383.92, + "end": 19384.34, + "probability": 0.8297 + }, + { + "start": 19385.79, + "end": 19389.0, + "probability": 0.9868 + }, + { + "start": 19389.46, + "end": 19395.14, + "probability": 0.9485 + }, + { + "start": 19395.26, + "end": 19397.48, + "probability": 0.8032 + }, + { + "start": 19397.84, + "end": 19398.64, + "probability": 0.8366 + }, + { + "start": 19398.9, + "end": 19401.14, + "probability": 0.8867 + }, + { + "start": 19402.86, + "end": 19406.44, + "probability": 0.7109 + }, + { + "start": 19407.52, + "end": 19411.08, + "probability": 0.9717 + }, + { + "start": 19411.38, + "end": 19414.0, + "probability": 0.8886 + }, + { + "start": 19414.2, + "end": 19414.58, + "probability": 0.54 + }, + { + "start": 19414.66, + "end": 19415.32, + "probability": 0.9078 + }, + { + "start": 19417.02, + "end": 19419.78, + "probability": 0.8787 + }, + { + "start": 19420.36, + "end": 19423.28, + "probability": 0.9741 + }, + { + "start": 19423.28, + "end": 19426.48, + "probability": 0.9915 + }, + { + "start": 19427.55, + "end": 19429.88, + "probability": 0.8922 + }, + { + "start": 19431.4, + "end": 19434.84, + "probability": 0.9888 + }, + { + "start": 19434.98, + "end": 19437.84, + "probability": 0.9695 + }, + { + "start": 19438.38, + "end": 19441.5, + "probability": 0.9666 + }, + { + "start": 19442.14, + "end": 19447.38, + "probability": 0.9972 + }, + { + "start": 19448.42, + "end": 19453.88, + "probability": 0.9882 + }, + { + "start": 19455.46, + "end": 19456.72, + "probability": 0.8041 + }, + { + "start": 19456.82, + "end": 19457.22, + "probability": 0.8353 + }, + { + "start": 19457.34, + "end": 19459.04, + "probability": 0.9165 + }, + { + "start": 19459.5, + "end": 19462.68, + "probability": 0.9829 + }, + { + "start": 19462.78, + "end": 19465.68, + "probability": 0.8939 + }, + { + "start": 19465.88, + "end": 19466.58, + "probability": 0.6711 + }, + { + "start": 19467.38, + "end": 19470.76, + "probability": 0.9231 + }, + { + "start": 19471.2, + "end": 19474.78, + "probability": 0.9909 + }, + { + "start": 19476.4, + "end": 19479.82, + "probability": 0.9979 + }, + { + "start": 19480.48, + "end": 19481.36, + "probability": 0.5412 + }, + { + "start": 19481.96, + "end": 19484.56, + "probability": 0.8683 + }, + { + "start": 19484.88, + "end": 19485.24, + "probability": 0.9656 + }, + { + "start": 19485.9, + "end": 19486.82, + "probability": 0.7979 + }, + { + "start": 19487.7, + "end": 19491.98, + "probability": 0.8545 + }, + { + "start": 19493.06, + "end": 19497.16, + "probability": 0.9775 + }, + { + "start": 19497.5, + "end": 19498.72, + "probability": 0.8555 + }, + { + "start": 19499.46, + "end": 19500.6, + "probability": 0.994 + }, + { + "start": 19501.24, + "end": 19502.71, + "probability": 0.9485 + }, + { + "start": 19504.38, + "end": 19504.66, + "probability": 0.3223 + }, + { + "start": 19504.7, + "end": 19506.92, + "probability": 0.9452 + }, + { + "start": 19507.62, + "end": 19511.54, + "probability": 0.9927 + }, + { + "start": 19512.78, + "end": 19513.78, + "probability": 0.6901 + }, + { + "start": 19514.0, + "end": 19517.52, + "probability": 0.993 + }, + { + "start": 19517.52, + "end": 19521.1, + "probability": 0.9953 + }, + { + "start": 19521.32, + "end": 19521.98, + "probability": 0.8142 + }, + { + "start": 19522.06, + "end": 19522.24, + "probability": 0.8905 + }, + { + "start": 19522.32, + "end": 19524.0, + "probability": 0.9628 + }, + { + "start": 19524.28, + "end": 19525.34, + "probability": 0.7603 + }, + { + "start": 19525.74, + "end": 19526.76, + "probability": 0.9219 + }, + { + "start": 19527.7, + "end": 19528.32, + "probability": 0.3238 + }, + { + "start": 19528.96, + "end": 19531.84, + "probability": 0.9803 + }, + { + "start": 19532.08, + "end": 19533.1, + "probability": 0.5207 + }, + { + "start": 19533.62, + "end": 19534.76, + "probability": 0.9763 + }, + { + "start": 19534.9, + "end": 19535.6, + "probability": 0.6951 + }, + { + "start": 19536.02, + "end": 19537.2, + "probability": 0.9041 + }, + { + "start": 19538.2, + "end": 19540.84, + "probability": 0.7189 + }, + { + "start": 19541.62, + "end": 19544.42, + "probability": 0.9714 + }, + { + "start": 19545.66, + "end": 19548.6, + "probability": 0.8516 + }, + { + "start": 19549.3, + "end": 19553.7, + "probability": 0.9927 + }, + { + "start": 19554.06, + "end": 19557.34, + "probability": 0.998 + }, + { + "start": 19557.98, + "end": 19560.04, + "probability": 0.9863 + }, + { + "start": 19561.68, + "end": 19562.82, + "probability": 0.7821 + }, + { + "start": 19562.82, + "end": 19564.06, + "probability": 0.7281 + }, + { + "start": 19564.78, + "end": 19566.91, + "probability": 0.9937 + }, + { + "start": 19567.62, + "end": 19569.74, + "probability": 0.9642 + }, + { + "start": 19570.06, + "end": 19570.47, + "probability": 0.9785 + }, + { + "start": 19570.88, + "end": 19572.02, + "probability": 0.9946 + }, + { + "start": 19572.1, + "end": 19572.88, + "probability": 0.9679 + }, + { + "start": 19573.68, + "end": 19577.34, + "probability": 0.9106 + }, + { + "start": 19577.92, + "end": 19579.38, + "probability": 0.9319 + }, + { + "start": 19580.04, + "end": 19580.94, + "probability": 0.968 + }, + { + "start": 19581.5, + "end": 19585.08, + "probability": 0.989 + }, + { + "start": 19586.14, + "end": 19588.06, + "probability": 0.9844 + }, + { + "start": 19588.4, + "end": 19588.8, + "probability": 0.8621 + }, + { + "start": 19589.88, + "end": 19590.52, + "probability": 0.4236 + }, + { + "start": 19591.0, + "end": 19591.0, + "probability": 0.3248 + }, + { + "start": 19591.0, + "end": 19593.74, + "probability": 0.6929 + }, + { + "start": 19594.4, + "end": 19595.02, + "probability": 0.4214 + }, + { + "start": 19596.18, + "end": 19597.58, + "probability": 0.7054 + }, + { + "start": 19598.48, + "end": 19600.52, + "probability": 0.8813 + }, + { + "start": 19601.84, + "end": 19603.1, + "probability": 0.9425 + }, + { + "start": 19604.92, + "end": 19607.5, + "probability": 0.8652 + }, + { + "start": 19613.96, + "end": 19614.1, + "probability": 0.0912 + }, + { + "start": 19614.1, + "end": 19615.14, + "probability": 0.6335 + }, + { + "start": 19616.56, + "end": 19618.48, + "probability": 0.776 + }, + { + "start": 19619.86, + "end": 19621.88, + "probability": 0.9685 + }, + { + "start": 19623.66, + "end": 19627.34, + "probability": 0.9934 + }, + { + "start": 19628.22, + "end": 19629.64, + "probability": 0.9956 + }, + { + "start": 19631.44, + "end": 19633.58, + "probability": 0.9971 + }, + { + "start": 19634.28, + "end": 19637.6, + "probability": 0.8694 + }, + { + "start": 19638.22, + "end": 19641.34, + "probability": 0.9531 + }, + { + "start": 19642.82, + "end": 19645.14, + "probability": 0.9175 + }, + { + "start": 19645.88, + "end": 19647.56, + "probability": 0.8069 + }, + { + "start": 19648.12, + "end": 19648.74, + "probability": 0.9409 + }, + { + "start": 19649.98, + "end": 19651.84, + "probability": 0.9954 + }, + { + "start": 19652.02, + "end": 19653.98, + "probability": 0.9856 + }, + { + "start": 19654.22, + "end": 19657.58, + "probability": 0.9961 + }, + { + "start": 19658.58, + "end": 19660.34, + "probability": 0.7518 + }, + { + "start": 19660.52, + "end": 19663.67, + "probability": 0.9871 + }, + { + "start": 19664.16, + "end": 19665.22, + "probability": 0.947 + }, + { + "start": 19665.3, + "end": 19666.12, + "probability": 0.7676 + }, + { + "start": 19668.32, + "end": 19668.32, + "probability": 0.02 + }, + { + "start": 19668.34, + "end": 19672.24, + "probability": 0.7631 + }, + { + "start": 19672.64, + "end": 19673.66, + "probability": 0.9858 + }, + { + "start": 19673.76, + "end": 19674.88, + "probability": 0.9844 + }, + { + "start": 19676.26, + "end": 19679.28, + "probability": 0.7892 + }, + { + "start": 19680.12, + "end": 19681.66, + "probability": 0.9966 + }, + { + "start": 19682.26, + "end": 19687.36, + "probability": 0.9358 + }, + { + "start": 19688.02, + "end": 19691.9, + "probability": 0.776 + }, + { + "start": 19692.74, + "end": 19696.36, + "probability": 0.8695 + }, + { + "start": 19696.94, + "end": 19698.98, + "probability": 0.855 + }, + { + "start": 19699.04, + "end": 19705.56, + "probability": 0.9696 + }, + { + "start": 19706.74, + "end": 19710.66, + "probability": 0.8013 + }, + { + "start": 19711.84, + "end": 19714.22, + "probability": 0.9609 + }, + { + "start": 19714.58, + "end": 19717.26, + "probability": 0.8249 + }, + { + "start": 19717.94, + "end": 19719.02, + "probability": 0.9148 + }, + { + "start": 19719.44, + "end": 19720.68, + "probability": 0.3692 + }, + { + "start": 19722.32, + "end": 19724.44, + "probability": 0.3426 + }, + { + "start": 19724.48, + "end": 19726.68, + "probability": 0.3551 + }, + { + "start": 19726.84, + "end": 19729.46, + "probability": 0.9449 + }, + { + "start": 19731.5, + "end": 19739.42, + "probability": 0.9907 + }, + { + "start": 19740.0, + "end": 19745.26, + "probability": 0.9258 + }, + { + "start": 19745.8, + "end": 19748.16, + "probability": 0.6169 + }, + { + "start": 19748.76, + "end": 19753.28, + "probability": 0.8218 + }, + { + "start": 19753.56, + "end": 19755.64, + "probability": 0.9966 + }, + { + "start": 19756.1, + "end": 19761.38, + "probability": 0.9515 + }, + { + "start": 19761.54, + "end": 19764.26, + "probability": 0.9904 + }, + { + "start": 19764.94, + "end": 19770.02, + "probability": 0.9857 + }, + { + "start": 19770.82, + "end": 19772.28, + "probability": 0.798 + }, + { + "start": 19773.48, + "end": 19777.18, + "probability": 0.8057 + }, + { + "start": 19777.56, + "end": 19781.58, + "probability": 0.9561 + }, + { + "start": 19782.12, + "end": 19784.6, + "probability": 0.9912 + }, + { + "start": 19784.96, + "end": 19785.91, + "probability": 0.9918 + }, + { + "start": 19786.52, + "end": 19787.94, + "probability": 0.9222 + }, + { + "start": 19788.3, + "end": 19792.18, + "probability": 0.9762 + }, + { + "start": 19792.5, + "end": 19794.56, + "probability": 0.9985 + }, + { + "start": 19794.84, + "end": 19800.78, + "probability": 0.9987 + }, + { + "start": 19801.18, + "end": 19803.58, + "probability": 0.7556 + }, + { + "start": 19803.6, + "end": 19804.54, + "probability": 0.8357 + }, + { + "start": 19805.34, + "end": 19810.52, + "probability": 0.9844 + }, + { + "start": 19810.86, + "end": 19812.44, + "probability": 0.9548 + }, + { + "start": 19813.4, + "end": 19818.84, + "probability": 0.9619 + }, + { + "start": 19819.36, + "end": 19823.96, + "probability": 0.9787 + }, + { + "start": 19824.34, + "end": 19829.7, + "probability": 0.999 + }, + { + "start": 19830.4, + "end": 19830.62, + "probability": 0.7105 + }, + { + "start": 19830.96, + "end": 19831.38, + "probability": 0.7107 + }, + { + "start": 19836.36, + "end": 19836.36, + "probability": 0.3309 + }, + { + "start": 19836.36, + "end": 19837.66, + "probability": 0.4837 + }, + { + "start": 19837.66, + "end": 19839.06, + "probability": 0.8135 + }, + { + "start": 19840.18, + "end": 19840.98, + "probability": 0.8732 + }, + { + "start": 19841.9, + "end": 19842.66, + "probability": 0.7076 + }, + { + "start": 19843.62, + "end": 19845.56, + "probability": 0.7825 + }, + { + "start": 19868.78, + "end": 19870.26, + "probability": 0.6019 + }, + { + "start": 19871.76, + "end": 19872.72, + "probability": 0.7856 + }, + { + "start": 19873.76, + "end": 19875.8, + "probability": 0.8041 + }, + { + "start": 19877.04, + "end": 19882.88, + "probability": 0.9897 + }, + { + "start": 19882.88, + "end": 19889.68, + "probability": 0.8401 + }, + { + "start": 19893.87, + "end": 19899.42, + "probability": 0.9366 + }, + { + "start": 19900.46, + "end": 19902.74, + "probability": 0.9805 + }, + { + "start": 19903.96, + "end": 19904.62, + "probability": 0.9971 + }, + { + "start": 19906.56, + "end": 19912.04, + "probability": 0.9729 + }, + { + "start": 19912.86, + "end": 19913.68, + "probability": 0.9915 + }, + { + "start": 19914.86, + "end": 19917.68, + "probability": 0.9777 + }, + { + "start": 19918.7, + "end": 19919.38, + "probability": 0.8816 + }, + { + "start": 19920.0, + "end": 19921.16, + "probability": 0.689 + }, + { + "start": 19922.44, + "end": 19923.5, + "probability": 0.9968 + }, + { + "start": 19925.38, + "end": 19927.02, + "probability": 0.8371 + }, + { + "start": 19928.16, + "end": 19931.36, + "probability": 0.9908 + }, + { + "start": 19932.14, + "end": 19935.5, + "probability": 0.9709 + }, + { + "start": 19936.52, + "end": 19943.78, + "probability": 0.9266 + }, + { + "start": 19945.04, + "end": 19947.46, + "probability": 0.9523 + }, + { + "start": 19947.98, + "end": 19954.58, + "probability": 0.8781 + }, + { + "start": 19958.84, + "end": 19963.7, + "probability": 0.8408 + }, + { + "start": 19964.72, + "end": 19965.56, + "probability": 0.9344 + }, + { + "start": 19966.3, + "end": 19969.08, + "probability": 0.9635 + }, + { + "start": 19969.28, + "end": 19970.56, + "probability": 0.7169 + }, + { + "start": 19971.06, + "end": 19976.52, + "probability": 0.9281 + }, + { + "start": 19976.88, + "end": 19977.62, + "probability": 0.6166 + }, + { + "start": 19977.66, + "end": 19979.9, + "probability": 0.9608 + }, + { + "start": 19980.08, + "end": 19982.98, + "probability": 0.857 + }, + { + "start": 19984.34, + "end": 19985.8, + "probability": 0.667 + }, + { + "start": 19986.54, + "end": 19987.12, + "probability": 0.8798 + }, + { + "start": 19988.54, + "end": 19993.72, + "probability": 0.9663 + }, + { + "start": 19995.18, + "end": 19997.16, + "probability": 0.8698 + }, + { + "start": 19997.82, + "end": 20003.49, + "probability": 0.9609 + }, + { + "start": 20005.32, + "end": 20009.34, + "probability": 0.9035 + }, + { + "start": 20010.26, + "end": 20011.34, + "probability": 0.8911 + }, + { + "start": 20012.64, + "end": 20016.36, + "probability": 0.9639 + }, + { + "start": 20016.46, + "end": 20021.99, + "probability": 0.8367 + }, + { + "start": 20024.62, + "end": 20027.94, + "probability": 0.7417 + }, + { + "start": 20028.7, + "end": 20030.86, + "probability": 0.873 + }, + { + "start": 20032.0, + "end": 20036.92, + "probability": 0.9907 + }, + { + "start": 20037.7, + "end": 20038.62, + "probability": 0.6608 + }, + { + "start": 20039.54, + "end": 20042.02, + "probability": 0.9425 + }, + { + "start": 20043.06, + "end": 20045.08, + "probability": 0.9789 + }, + { + "start": 20045.6, + "end": 20046.14, + "probability": 0.7305 + }, + { + "start": 20047.68, + "end": 20049.04, + "probability": 0.9167 + }, + { + "start": 20049.34, + "end": 20053.16, + "probability": 0.9033 + }, + { + "start": 20053.78, + "end": 20054.32, + "probability": 0.9624 + }, + { + "start": 20055.76, + "end": 20059.9, + "probability": 0.8994 + }, + { + "start": 20060.96, + "end": 20061.72, + "probability": 0.3591 + }, + { + "start": 20062.68, + "end": 20063.2, + "probability": 0.8078 + }, + { + "start": 20064.28, + "end": 20064.96, + "probability": 0.8977 + }, + { + "start": 20065.76, + "end": 20066.8, + "probability": 0.9128 + }, + { + "start": 20069.24, + "end": 20069.88, + "probability": 0.7512 + }, + { + "start": 20070.48, + "end": 20075.38, + "probability": 0.9431 + }, + { + "start": 20076.6, + "end": 20080.86, + "probability": 0.9321 + }, + { + "start": 20081.08, + "end": 20084.8, + "probability": 0.8665 + }, + { + "start": 20085.92, + "end": 20086.7, + "probability": 0.5356 + }, + { + "start": 20087.34, + "end": 20089.96, + "probability": 0.9958 + }, + { + "start": 20091.52, + "end": 20092.02, + "probability": 0.9948 + }, + { + "start": 20092.66, + "end": 20094.44, + "probability": 0.8484 + }, + { + "start": 20096.04, + "end": 20097.78, + "probability": 0.8201 + }, + { + "start": 20097.86, + "end": 20103.14, + "probability": 0.9954 + }, + { + "start": 20103.28, + "end": 20109.46, + "probability": 0.9778 + }, + { + "start": 20110.55, + "end": 20112.48, + "probability": 0.9941 + }, + { + "start": 20113.18, + "end": 20118.74, + "probability": 0.943 + }, + { + "start": 20118.92, + "end": 20121.56, + "probability": 0.9558 + }, + { + "start": 20121.74, + "end": 20125.12, + "probability": 0.9565 + }, + { + "start": 20126.96, + "end": 20130.66, + "probability": 0.9702 + }, + { + "start": 20133.12, + "end": 20134.78, + "probability": 0.8216 + }, + { + "start": 20135.82, + "end": 20143.46, + "probability": 0.9918 + }, + { + "start": 20145.7, + "end": 20146.4, + "probability": 0.8107 + }, + { + "start": 20147.2, + "end": 20148.66, + "probability": 0.5429 + }, + { + "start": 20149.24, + "end": 20151.14, + "probability": 0.708 + }, + { + "start": 20151.72, + "end": 20154.56, + "probability": 0.9948 + }, + { + "start": 20155.12, + "end": 20157.24, + "probability": 0.9283 + }, + { + "start": 20157.94, + "end": 20164.28, + "probability": 0.9599 + }, + { + "start": 20164.82, + "end": 20168.82, + "probability": 0.9583 + }, + { + "start": 20172.32, + "end": 20176.74, + "probability": 0.914 + }, + { + "start": 20177.66, + "end": 20184.94, + "probability": 0.9642 + }, + { + "start": 20185.58, + "end": 20187.32, + "probability": 0.6619 + }, + { + "start": 20188.44, + "end": 20190.68, + "probability": 0.9865 + }, + { + "start": 20191.56, + "end": 20199.46, + "probability": 0.9268 + }, + { + "start": 20200.06, + "end": 20203.4, + "probability": 0.9804 + }, + { + "start": 20203.98, + "end": 20206.58, + "probability": 0.9727 + }, + { + "start": 20207.66, + "end": 20209.64, + "probability": 0.9993 + }, + { + "start": 20210.28, + "end": 20211.6, + "probability": 0.9411 + }, + { + "start": 20212.88, + "end": 20213.8, + "probability": 0.7631 + }, + { + "start": 20214.68, + "end": 20218.3, + "probability": 0.6519 + }, + { + "start": 20219.08, + "end": 20219.98, + "probability": 0.9536 + }, + { + "start": 20220.5, + "end": 20222.4, + "probability": 0.9385 + }, + { + "start": 20223.46, + "end": 20224.46, + "probability": 0.4887 + }, + { + "start": 20225.14, + "end": 20228.16, + "probability": 0.7569 + }, + { + "start": 20228.86, + "end": 20235.52, + "probability": 0.9702 + }, + { + "start": 20236.88, + "end": 20239.72, + "probability": 0.986 + }, + { + "start": 20240.68, + "end": 20241.2, + "probability": 0.888 + }, + { + "start": 20242.22, + "end": 20242.78, + "probability": 0.8455 + }, + { + "start": 20243.48, + "end": 20248.38, + "probability": 0.9625 + }, + { + "start": 20248.86, + "end": 20250.42, + "probability": 0.7787 + }, + { + "start": 20250.66, + "end": 20251.16, + "probability": 0.7013 + }, + { + "start": 20251.6, + "end": 20252.04, + "probability": 0.5856 + }, + { + "start": 20252.7, + "end": 20256.33, + "probability": 0.9839 + }, + { + "start": 20256.76, + "end": 20257.5, + "probability": 0.8167 + }, + { + "start": 20258.14, + "end": 20260.22, + "probability": 0.9399 + }, + { + "start": 20260.86, + "end": 20265.2, + "probability": 0.9851 + }, + { + "start": 20265.92, + "end": 20269.08, + "probability": 0.9814 + }, + { + "start": 20269.54, + "end": 20270.22, + "probability": 0.6932 + }, + { + "start": 20270.84, + "end": 20271.48, + "probability": 0.3377 + }, + { + "start": 20271.48, + "end": 20276.22, + "probability": 0.9142 + }, + { + "start": 20276.94, + "end": 20277.24, + "probability": 0.9484 + }, + { + "start": 20277.64, + "end": 20277.86, + "probability": 0.812 + }, + { + "start": 20278.0, + "end": 20278.7, + "probability": 0.7249 + }, + { + "start": 20279.66, + "end": 20282.52, + "probability": 0.9246 + }, + { + "start": 20286.34, + "end": 20286.34, + "probability": 0.6626 + }, + { + "start": 20286.34, + "end": 20286.8, + "probability": 0.7329 + }, + { + "start": 20286.98, + "end": 20289.84, + "probability": 0.5638 + }, + { + "start": 20291.28, + "end": 20292.86, + "probability": 0.7272 + }, + { + "start": 20293.0, + "end": 20294.04, + "probability": 0.5379 + }, + { + "start": 20294.74, + "end": 20295.96, + "probability": 0.5313 + }, + { + "start": 20296.0, + "end": 20296.52, + "probability": 0.9316 + }, + { + "start": 20298.06, + "end": 20300.34, + "probability": 0.6647 + }, + { + "start": 20302.44, + "end": 20305.08, + "probability": 0.0838 + }, + { + "start": 20306.02, + "end": 20312.88, + "probability": 0.5417 + }, + { + "start": 20313.16, + "end": 20313.7, + "probability": 0.7593 + }, + { + "start": 20313.76, + "end": 20316.88, + "probability": 0.2303 + }, + { + "start": 20317.58, + "end": 20318.48, + "probability": 0.3333 + }, + { + "start": 20318.6, + "end": 20320.04, + "probability": 0.9158 + }, + { + "start": 20320.08, + "end": 20322.38, + "probability": 0.7473 + }, + { + "start": 20322.44, + "end": 20323.46, + "probability": 0.5619 + }, + { + "start": 20323.56, + "end": 20324.48, + "probability": 0.7512 + }, + { + "start": 20324.6, + "end": 20325.14, + "probability": 0.8785 + }, + { + "start": 20325.2, + "end": 20326.28, + "probability": 0.8036 + }, + { + "start": 20326.32, + "end": 20326.92, + "probability": 0.9937 + }, + { + "start": 20327.22, + "end": 20327.52, + "probability": 0.7022 + }, + { + "start": 20327.56, + "end": 20328.24, + "probability": 0.8273 + }, + { + "start": 20328.36, + "end": 20330.24, + "probability": 0.1754 + }, + { + "start": 20330.98, + "end": 20332.9, + "probability": 0.3066 + }, + { + "start": 20332.9, + "end": 20334.62, + "probability": 0.358 + }, + { + "start": 20334.66, + "end": 20335.58, + "probability": 0.3792 + }, + { + "start": 20336.2, + "end": 20338.4, + "probability": 0.6855 + }, + { + "start": 20340.13, + "end": 20342.7, + "probability": 0.9298 + }, + { + "start": 20342.7, + "end": 20345.68, + "probability": 0.7159 + }, + { + "start": 20345.96, + "end": 20349.96, + "probability": 0.6899 + }, + { + "start": 20350.18, + "end": 20350.84, + "probability": 0.8482 + }, + { + "start": 20351.32, + "end": 20352.4, + "probability": 0.7552 + }, + { + "start": 20352.54, + "end": 20353.5, + "probability": 0.5458 + }, + { + "start": 20353.54, + "end": 20355.26, + "probability": 0.8959 + }, + { + "start": 20355.94, + "end": 20356.78, + "probability": 0.7671 + }, + { + "start": 20357.4, + "end": 20360.68, + "probability": 0.5254 + }, + { + "start": 20361.16, + "end": 20363.26, + "probability": 0.2047 + }, + { + "start": 20363.7, + "end": 20364.94, + "probability": 0.9725 + }, + { + "start": 20365.06, + "end": 20365.62, + "probability": 0.6585 + }, + { + "start": 20365.7, + "end": 20366.38, + "probability": 0.7415 + }, + { + "start": 20367.34, + "end": 20367.8, + "probability": 0.6384 + }, + { + "start": 20367.92, + "end": 20368.82, + "probability": 0.8901 + }, + { + "start": 20369.52, + "end": 20371.74, + "probability": 0.6372 + }, + { + "start": 20371.9, + "end": 20372.1, + "probability": 0.0374 + }, + { + "start": 20372.1, + "end": 20372.1, + "probability": 0.0447 + }, + { + "start": 20372.1, + "end": 20374.2, + "probability": 0.7516 + }, + { + "start": 20374.84, + "end": 20376.54, + "probability": 0.7411 + }, + { + "start": 20377.2, + "end": 20379.07, + "probability": 0.4965 + }, + { + "start": 20379.7, + "end": 20381.96, + "probability": 0.5036 + }, + { + "start": 20383.22, + "end": 20385.66, + "probability": 0.6719 + }, + { + "start": 20385.94, + "end": 20386.56, + "probability": 0.6957 + }, + { + "start": 20388.12, + "end": 20390.38, + "probability": 0.7338 + }, + { + "start": 20391.62, + "end": 20393.1, + "probability": 0.998 + }, + { + "start": 20394.3, + "end": 20400.46, + "probability": 0.979 + }, + { + "start": 20401.72, + "end": 20406.48, + "probability": 0.9987 + }, + { + "start": 20408.08, + "end": 20414.44, + "probability": 0.9958 + }, + { + "start": 20416.86, + "end": 20417.16, + "probability": 0.4204 + }, + { + "start": 20417.54, + "end": 20421.22, + "probability": 0.9947 + }, + { + "start": 20421.52, + "end": 20425.9, + "probability": 0.8392 + }, + { + "start": 20426.06, + "end": 20430.72, + "probability": 0.7918 + }, + { + "start": 20431.86, + "end": 20437.04, + "probability": 0.9189 + }, + { + "start": 20437.72, + "end": 20440.46, + "probability": 0.9954 + }, + { + "start": 20440.64, + "end": 20443.1, + "probability": 0.9316 + }, + { + "start": 20444.52, + "end": 20451.12, + "probability": 0.9968 + }, + { + "start": 20452.42, + "end": 20455.38, + "probability": 0.9967 + }, + { + "start": 20455.5, + "end": 20457.36, + "probability": 0.9484 + }, + { + "start": 20458.32, + "end": 20461.18, + "probability": 0.9902 + }, + { + "start": 20462.56, + "end": 20465.14, + "probability": 0.9863 + }, + { + "start": 20465.98, + "end": 20466.72, + "probability": 0.8864 + }, + { + "start": 20467.12, + "end": 20473.6, + "probability": 0.978 + }, + { + "start": 20473.8, + "end": 20477.88, + "probability": 0.9463 + }, + { + "start": 20477.96, + "end": 20478.94, + "probability": 0.9743 + }, + { + "start": 20480.88, + "end": 20485.6, + "probability": 0.9859 + }, + { + "start": 20486.2, + "end": 20491.34, + "probability": 0.9817 + }, + { + "start": 20493.08, + "end": 20493.76, + "probability": 0.9927 + }, + { + "start": 20494.4, + "end": 20499.2, + "probability": 0.6838 + }, + { + "start": 20500.06, + "end": 20503.72, + "probability": 0.7106 + }, + { + "start": 20505.36, + "end": 20508.22, + "probability": 0.8212 + }, + { + "start": 20508.36, + "end": 20508.68, + "probability": 0.6788 + }, + { + "start": 20510.08, + "end": 20515.22, + "probability": 0.9235 + }, + { + "start": 20516.08, + "end": 20518.12, + "probability": 0.9982 + }, + { + "start": 20519.54, + "end": 20520.82, + "probability": 0.9395 + }, + { + "start": 20522.08, + "end": 20523.12, + "probability": 0.7237 + }, + { + "start": 20524.32, + "end": 20525.16, + "probability": 0.9661 + }, + { + "start": 20525.46, + "end": 20526.48, + "probability": 0.8906 + }, + { + "start": 20526.58, + "end": 20531.14, + "probability": 0.9788 + }, + { + "start": 20532.7, + "end": 20535.64, + "probability": 0.813 + }, + { + "start": 20537.19, + "end": 20544.52, + "probability": 0.9978 + }, + { + "start": 20545.66, + "end": 20546.12, + "probability": 0.3369 + }, + { + "start": 20546.3, + "end": 20548.26, + "probability": 0.9935 + }, + { + "start": 20548.4, + "end": 20551.56, + "probability": 0.9805 + }, + { + "start": 20552.8, + "end": 20553.32, + "probability": 0.8533 + }, + { + "start": 20554.48, + "end": 20557.36, + "probability": 0.745 + }, + { + "start": 20558.18, + "end": 20560.12, + "probability": 0.9932 + }, + { + "start": 20561.7, + "end": 20564.02, + "probability": 0.9739 + }, + { + "start": 20565.82, + "end": 20567.66, + "probability": 0.9265 + }, + { + "start": 20569.22, + "end": 20570.92, + "probability": 0.9783 + }, + { + "start": 20572.42, + "end": 20574.76, + "probability": 0.9787 + }, + { + "start": 20575.12, + "end": 20576.94, + "probability": 0.5039 + }, + { + "start": 20578.56, + "end": 20579.28, + "probability": 0.9646 + }, + { + "start": 20580.18, + "end": 20581.02, + "probability": 0.3513 + }, + { + "start": 20581.02, + "end": 20586.02, + "probability": 0.9838 + }, + { + "start": 20586.26, + "end": 20587.16, + "probability": 0.4776 + }, + { + "start": 20587.26, + "end": 20588.84, + "probability": 0.8826 + }, + { + "start": 20589.26, + "end": 20590.66, + "probability": 0.9963 + }, + { + "start": 20590.8, + "end": 20591.52, + "probability": 0.7344 + }, + { + "start": 20591.72, + "end": 20592.74, + "probability": 0.9709 + }, + { + "start": 20594.74, + "end": 20599.12, + "probability": 0.9688 + }, + { + "start": 20599.26, + "end": 20601.02, + "probability": 0.9932 + }, + { + "start": 20601.86, + "end": 20603.94, + "probability": 0.9397 + }, + { + "start": 20604.04, + "end": 20604.82, + "probability": 0.877 + }, + { + "start": 20605.64, + "end": 20608.38, + "probability": 0.9902 + }, + { + "start": 20608.8, + "end": 20610.16, + "probability": 0.9978 + }, + { + "start": 20610.96, + "end": 20612.48, + "probability": 0.9678 + }, + { + "start": 20613.6, + "end": 20615.86, + "probability": 0.9316 + }, + { + "start": 20616.74, + "end": 20618.9, + "probability": 0.9297 + }, + { + "start": 20619.12, + "end": 20619.92, + "probability": 0.5113 + }, + { + "start": 20620.52, + "end": 20623.82, + "probability": 0.9971 + }, + { + "start": 20624.5, + "end": 20626.92, + "probability": 0.9731 + }, + { + "start": 20627.42, + "end": 20631.38, + "probability": 0.9965 + }, + { + "start": 20632.08, + "end": 20636.04, + "probability": 0.6792 + }, + { + "start": 20636.18, + "end": 20637.8, + "probability": 0.7236 + }, + { + "start": 20638.22, + "end": 20639.02, + "probability": 0.9331 + }, + { + "start": 20640.16, + "end": 20640.92, + "probability": 0.9094 + }, + { + "start": 20640.94, + "end": 20641.46, + "probability": 0.8032 + }, + { + "start": 20642.3, + "end": 20646.34, + "probability": 0.1788 + }, + { + "start": 20646.68, + "end": 20649.5, + "probability": 0.5481 + }, + { + "start": 20649.88, + "end": 20651.16, + "probability": 0.9917 + }, + { + "start": 20651.24, + "end": 20654.7, + "probability": 0.9837 + }, + { + "start": 20655.44, + "end": 20658.02, + "probability": 0.9675 + }, + { + "start": 20659.28, + "end": 20661.44, + "probability": 0.9622 + }, + { + "start": 20664.4, + "end": 20666.1, + "probability": 0.5154 + }, + { + "start": 20667.1, + "end": 20667.72, + "probability": 0.851 + }, + { + "start": 20668.72, + "end": 20670.6, + "probability": 0.9855 + }, + { + "start": 20671.22, + "end": 20674.38, + "probability": 0.9987 + }, + { + "start": 20675.2, + "end": 20677.5, + "probability": 0.9949 + }, + { + "start": 20678.06, + "end": 20679.38, + "probability": 0.9485 + }, + { + "start": 20679.62, + "end": 20682.04, + "probability": 0.9889 + }, + { + "start": 20683.04, + "end": 20685.4, + "probability": 0.8122 + }, + { + "start": 20686.26, + "end": 20687.72, + "probability": 0.9543 + }, + { + "start": 20688.34, + "end": 20688.66, + "probability": 0.9766 + }, + { + "start": 20690.0, + "end": 20692.1, + "probability": 0.9658 + }, + { + "start": 20692.3, + "end": 20692.88, + "probability": 0.6688 + }, + { + "start": 20692.94, + "end": 20694.14, + "probability": 0.6069 + }, + { + "start": 20694.82, + "end": 20697.52, + "probability": 0.9611 + }, + { + "start": 20698.7, + "end": 20701.1, + "probability": 0.825 + }, + { + "start": 20713.1, + "end": 20713.82, + "probability": 0.5829 + }, + { + "start": 20714.18, + "end": 20717.14, + "probability": 0.79 + }, + { + "start": 20718.76, + "end": 20724.86, + "probability": 0.9644 + }, + { + "start": 20726.26, + "end": 20729.56, + "probability": 0.046 + }, + { + "start": 20731.24, + "end": 20736.18, + "probability": 0.0781 + }, + { + "start": 20736.78, + "end": 20739.16, + "probability": 0.2578 + }, + { + "start": 20739.34, + "end": 20739.9, + "probability": 0.7157 + }, + { + "start": 20740.1, + "end": 20741.16, + "probability": 0.972 + }, + { + "start": 20741.26, + "end": 20741.82, + "probability": 0.7247 + }, + { + "start": 20741.92, + "end": 20742.48, + "probability": 0.9717 + }, + { + "start": 20742.84, + "end": 20743.57, + "probability": 0.9783 + }, + { + "start": 20744.62, + "end": 20748.52, + "probability": 0.9461 + }, + { + "start": 20750.54, + "end": 20752.53, + "probability": 0.8076 + }, + { + "start": 20755.26, + "end": 20756.18, + "probability": 0.9357 + }, + { + "start": 20756.3, + "end": 20758.04, + "probability": 0.8715 + }, + { + "start": 20758.5, + "end": 20760.68, + "probability": 0.9781 + }, + { + "start": 20761.32, + "end": 20762.76, + "probability": 0.9575 + }, + { + "start": 20764.64, + "end": 20768.98, + "probability": 0.7659 + }, + { + "start": 20769.6, + "end": 20773.8, + "probability": 0.7875 + }, + { + "start": 20775.34, + "end": 20777.44, + "probability": 0.8612 + }, + { + "start": 20779.1, + "end": 20780.0, + "probability": 0.801 + }, + { + "start": 20780.84, + "end": 20781.6, + "probability": 0.5112 + }, + { + "start": 20781.9, + "end": 20783.51, + "probability": 0.9829 + }, + { + "start": 20785.24, + "end": 20786.72, + "probability": 0.7773 + }, + { + "start": 20787.52, + "end": 20791.02, + "probability": 0.8328 + }, + { + "start": 20791.54, + "end": 20793.58, + "probability": 0.986 + }, + { + "start": 20794.28, + "end": 20795.26, + "probability": 0.7949 + }, + { + "start": 20795.6, + "end": 20797.66, + "probability": 0.7149 + }, + { + "start": 20798.26, + "end": 20799.7, + "probability": 0.908 + }, + { + "start": 20800.42, + "end": 20803.4, + "probability": 0.8793 + }, + { + "start": 20803.7, + "end": 20808.5, + "probability": 0.875 + }, + { + "start": 20808.62, + "end": 20809.46, + "probability": 0.9222 + }, + { + "start": 20810.06, + "end": 20812.68, + "probability": 0.8128 + }, + { + "start": 20814.04, + "end": 20814.76, + "probability": 0.9878 + }, + { + "start": 20815.66, + "end": 20816.4, + "probability": 0.9912 + }, + { + "start": 20816.96, + "end": 20817.94, + "probability": 0.9412 + }, + { + "start": 20818.54, + "end": 20819.26, + "probability": 0.8719 + }, + { + "start": 20820.12, + "end": 20823.02, + "probability": 0.9744 + }, + { + "start": 20823.9, + "end": 20823.96, + "probability": 0.3579 + }, + { + "start": 20824.04, + "end": 20826.42, + "probability": 0.9561 + }, + { + "start": 20827.26, + "end": 20827.58, + "probability": 0.5901 + }, + { + "start": 20828.5, + "end": 20830.86, + "probability": 0.9255 + }, + { + "start": 20836.22, + "end": 20836.68, + "probability": 0.6763 + }, + { + "start": 20836.84, + "end": 20839.58, + "probability": 0.8006 + }, + { + "start": 20841.96, + "end": 20842.18, + "probability": 0.9294 + }, + { + "start": 20842.86, + "end": 20843.62, + "probability": 0.9542 + }, + { + "start": 20844.16, + "end": 20845.44, + "probability": 0.9409 + }, + { + "start": 20845.96, + "end": 20848.42, + "probability": 0.9609 + }, + { + "start": 20848.84, + "end": 20850.54, + "probability": 0.9653 + }, + { + "start": 20851.0, + "end": 20851.74, + "probability": 0.4221 + }, + { + "start": 20852.08, + "end": 20853.6, + "probability": 0.797 + }, + { + "start": 20854.14, + "end": 20855.78, + "probability": 0.9146 + }, + { + "start": 20856.18, + "end": 20857.65, + "probability": 0.8245 + }, + { + "start": 20857.98, + "end": 20858.88, + "probability": 0.7908 + }, + { + "start": 20859.4, + "end": 20861.02, + "probability": 0.7246 + }, + { + "start": 20862.12, + "end": 20863.24, + "probability": 0.9199 + }, + { + "start": 20864.06, + "end": 20866.05, + "probability": 0.7508 + }, + { + "start": 20867.18, + "end": 20869.56, + "probability": 0.9408 + }, + { + "start": 20870.76, + "end": 20873.86, + "probability": 0.5979 + }, + { + "start": 20874.98, + "end": 20876.58, + "probability": 0.7739 + }, + { + "start": 20877.44, + "end": 20881.12, + "probability": 0.9631 + }, + { + "start": 20884.62, + "end": 20887.14, + "probability": 0.6468 + }, + { + "start": 20887.7, + "end": 20888.52, + "probability": 0.3127 + }, + { + "start": 20888.96, + "end": 20889.48, + "probability": 0.8003 + }, + { + "start": 20889.74, + "end": 20890.42, + "probability": 0.9116 + }, + { + "start": 20890.76, + "end": 20894.36, + "probability": 0.6924 + }, + { + "start": 20895.36, + "end": 20896.14, + "probability": 0.9421 + }, + { + "start": 20896.24, + "end": 20897.58, + "probability": 0.9138 + }, + { + "start": 20897.8, + "end": 20901.48, + "probability": 0.7304 + }, + { + "start": 20901.62, + "end": 20902.06, + "probability": 0.8572 + }, + { + "start": 20902.54, + "end": 20902.92, + "probability": 0.8489 + }, + { + "start": 20905.2, + "end": 20907.0, + "probability": 0.9875 + }, + { + "start": 20907.74, + "end": 20909.18, + "probability": 0.9382 + }, + { + "start": 20909.46, + "end": 20910.3, + "probability": 0.8325 + }, + { + "start": 20910.38, + "end": 20911.2, + "probability": 0.9395 + }, + { + "start": 20911.54, + "end": 20916.16, + "probability": 0.5904 + }, + { + "start": 20916.34, + "end": 20917.84, + "probability": 0.8578 + }, + { + "start": 20920.32, + "end": 20921.28, + "probability": 0.8208 + }, + { + "start": 20922.24, + "end": 20923.01, + "probability": 0.9954 + }, + { + "start": 20923.72, + "end": 20925.74, + "probability": 0.7696 + }, + { + "start": 20926.3, + "end": 20931.42, + "probability": 0.5894 + }, + { + "start": 20931.46, + "end": 20932.28, + "probability": 0.8051 + }, + { + "start": 20932.7, + "end": 20934.94, + "probability": 0.9922 + }, + { + "start": 20936.28, + "end": 20940.9, + "probability": 0.9326 + }, + { + "start": 20941.14, + "end": 20942.32, + "probability": 0.6868 + }, + { + "start": 20943.04, + "end": 20943.38, + "probability": 0.5011 + }, + { + "start": 20944.1, + "end": 20944.7, + "probability": 0.8251 + }, + { + "start": 20945.34, + "end": 20947.42, + "probability": 0.9932 + }, + { + "start": 20948.44, + "end": 20952.06, + "probability": 0.9545 + }, + { + "start": 20952.56, + "end": 20953.34, + "probability": 0.9033 + }, + { + "start": 20953.72, + "end": 20956.86, + "probability": 0.8797 + }, + { + "start": 20957.12, + "end": 20959.42, + "probability": 0.9611 + }, + { + "start": 20959.42, + "end": 20962.54, + "probability": 0.8865 + }, + { + "start": 20962.86, + "end": 20963.2, + "probability": 0.7577 + }, + { + "start": 20963.42, + "end": 20963.68, + "probability": 0.6304 + }, + { + "start": 20964.94, + "end": 20966.92, + "probability": 0.8089 + }, + { + "start": 20968.14, + "end": 20970.22, + "probability": 0.5376 + }, + { + "start": 20970.32, + "end": 20972.02, + "probability": 0.8958 + }, + { + "start": 20972.28, + "end": 20975.52, + "probability": 0.8821 + }, + { + "start": 20975.64, + "end": 20979.15, + "probability": 0.9662 + }, + { + "start": 20980.32, + "end": 20985.1, + "probability": 0.9978 + }, + { + "start": 20985.8, + "end": 20987.88, + "probability": 0.9784 + }, + { + "start": 20988.68, + "end": 20990.74, + "probability": 0.5629 + }, + { + "start": 20997.44, + "end": 21002.6, + "probability": 0.9184 + }, + { + "start": 21004.98, + "end": 21005.92, + "probability": 0.8648 + }, + { + "start": 21006.46, + "end": 21006.66, + "probability": 0.8455 + }, + { + "start": 21007.24, + "end": 21008.2, + "probability": 0.8916 + }, + { + "start": 21010.78, + "end": 21014.18, + "probability": 0.8382 + }, + { + "start": 21014.82, + "end": 21015.94, + "probability": 0.9447 + }, + { + "start": 21017.28, + "end": 21018.46, + "probability": 0.9887 + }, + { + "start": 21020.52, + "end": 21023.62, + "probability": 0.9548 + }, + { + "start": 21024.78, + "end": 21026.6, + "probability": 0.8879 + }, + { + "start": 21027.59, + "end": 21028.1, + "probability": 0.9448 + }, + { + "start": 21029.82, + "end": 21032.1, + "probability": 0.8831 + }, + { + "start": 21033.76, + "end": 21034.68, + "probability": 0.7838 + }, + { + "start": 21035.26, + "end": 21036.32, + "probability": 0.9807 + }, + { + "start": 21037.62, + "end": 21038.12, + "probability": 0.8108 + }, + { + "start": 21040.3, + "end": 21044.2, + "probability": 0.8757 + }, + { + "start": 21045.16, + "end": 21047.08, + "probability": 0.9148 + }, + { + "start": 21048.02, + "end": 21049.72, + "probability": 0.854 + }, + { + "start": 21051.92, + "end": 21051.92, + "probability": 0.7404 + }, + { + "start": 21051.92, + "end": 21057.24, + "probability": 0.8453 + }, + { + "start": 21058.5, + "end": 21060.98, + "probability": 0.9082 + }, + { + "start": 21062.4, + "end": 21064.0, + "probability": 0.8311 + }, + { + "start": 21066.52, + "end": 21070.56, + "probability": 0.6823 + }, + { + "start": 21071.62, + "end": 21073.92, + "probability": 0.9965 + }, + { + "start": 21076.6, + "end": 21082.02, + "probability": 0.9927 + }, + { + "start": 21083.04, + "end": 21087.48, + "probability": 0.9767 + }, + { + "start": 21088.56, + "end": 21091.22, + "probability": 0.9997 + }, + { + "start": 21092.38, + "end": 21093.48, + "probability": 0.6121 + }, + { + "start": 21094.46, + "end": 21097.78, + "probability": 0.9498 + }, + { + "start": 21097.9, + "end": 21099.66, + "probability": 0.9881 + }, + { + "start": 21099.98, + "end": 21101.49, + "probability": 0.9657 + }, + { + "start": 21101.96, + "end": 21105.88, + "probability": 0.9929 + }, + { + "start": 21105.88, + "end": 21109.4, + "probability": 0.9868 + }, + { + "start": 21112.66, + "end": 21113.82, + "probability": 0.5204 + }, + { + "start": 21113.92, + "end": 21116.74, + "probability": 0.9731 + }, + { + "start": 21119.88, + "end": 21122.02, + "probability": 0.9729 + }, + { + "start": 21122.86, + "end": 21124.26, + "probability": 0.8448 + }, + { + "start": 21126.14, + "end": 21128.36, + "probability": 0.9358 + }, + { + "start": 21131.2, + "end": 21133.48, + "probability": 0.9902 + }, + { + "start": 21135.0, + "end": 21136.08, + "probability": 0.9897 + }, + { + "start": 21136.72, + "end": 21138.12, + "probability": 0.7219 + }, + { + "start": 21138.9, + "end": 21139.86, + "probability": 0.9434 + }, + { + "start": 21141.36, + "end": 21141.66, + "probability": 0.9312 + }, + { + "start": 21142.98, + "end": 21144.44, + "probability": 0.9321 + }, + { + "start": 21144.78, + "end": 21148.3, + "probability": 0.9902 + }, + { + "start": 21148.88, + "end": 21150.86, + "probability": 0.8786 + }, + { + "start": 21151.9, + "end": 21152.56, + "probability": 0.3869 + }, + { + "start": 21154.02, + "end": 21159.68, + "probability": 0.9598 + }, + { + "start": 21161.54, + "end": 21165.52, + "probability": 0.9971 + }, + { + "start": 21166.44, + "end": 21169.29, + "probability": 0.7775 + }, + { + "start": 21171.06, + "end": 21172.64, + "probability": 0.4424 + }, + { + "start": 21174.6, + "end": 21177.48, + "probability": 0.3328 + }, + { + "start": 21179.72, + "end": 21180.66, + "probability": 0.714 + }, + { + "start": 21180.92, + "end": 21183.38, + "probability": 0.9526 + }, + { + "start": 21183.62, + "end": 21186.14, + "probability": 0.9246 + }, + { + "start": 21188.44, + "end": 21189.62, + "probability": 0.0076 + }, + { + "start": 21190.16, + "end": 21194.54, + "probability": 0.9856 + }, + { + "start": 21194.58, + "end": 21195.58, + "probability": 0.8492 + }, + { + "start": 21196.08, + "end": 21197.66, + "probability": 0.8094 + }, + { + "start": 21202.9, + "end": 21205.86, + "probability": 0.9582 + }, + { + "start": 21206.12, + "end": 21208.18, + "probability": 0.7809 + }, + { + "start": 21208.96, + "end": 21210.48, + "probability": 0.7769 + }, + { + "start": 21211.38, + "end": 21215.54, + "probability": 0.959 + }, + { + "start": 21217.62, + "end": 21218.12, + "probability": 0.9561 + }, + { + "start": 21218.22, + "end": 21218.58, + "probability": 0.8893 + }, + { + "start": 21219.6, + "end": 21221.88, + "probability": 0.8192 + }, + { + "start": 21223.06, + "end": 21224.5, + "probability": 0.9624 + }, + { + "start": 21225.36, + "end": 21228.62, + "probability": 0.9875 + }, + { + "start": 21229.98, + "end": 21230.98, + "probability": 0.9016 + }, + { + "start": 21231.06, + "end": 21232.26, + "probability": 0.8745 + }, + { + "start": 21233.14, + "end": 21233.72, + "probability": 0.8516 + }, + { + "start": 21234.42, + "end": 21235.3, + "probability": 0.8862 + }, + { + "start": 21236.36, + "end": 21236.91, + "probability": 0.9248 + }, + { + "start": 21238.98, + "end": 21239.72, + "probability": 0.9835 + }, + { + "start": 21240.34, + "end": 21241.9, + "probability": 0.906 + }, + { + "start": 21242.76, + "end": 21243.12, + "probability": 0.6295 + }, + { + "start": 21243.36, + "end": 21247.4, + "probability": 0.8444 + }, + { + "start": 21247.84, + "end": 21251.82, + "probability": 0.9919 + }, + { + "start": 21252.42, + "end": 21254.45, + "probability": 0.7144 + }, + { + "start": 21255.16, + "end": 21259.18, + "probability": 0.9902 + }, + { + "start": 21259.82, + "end": 21260.62, + "probability": 0.9998 + }, + { + "start": 21261.28, + "end": 21262.14, + "probability": 0.5352 + }, + { + "start": 21262.26, + "end": 21265.3, + "probability": 0.7278 + }, + { + "start": 21266.1, + "end": 21272.7, + "probability": 0.9886 + }, + { + "start": 21272.7, + "end": 21276.2, + "probability": 0.8389 + }, + { + "start": 21276.62, + "end": 21278.24, + "probability": 0.9318 + }, + { + "start": 21278.56, + "end": 21278.72, + "probability": 0.7153 + }, + { + "start": 21279.4, + "end": 21279.64, + "probability": 0.6774 + }, + { + "start": 21280.92, + "end": 21286.16, + "probability": 0.9704 + }, + { + "start": 21295.16, + "end": 21295.16, + "probability": 0.2626 + }, + { + "start": 21295.16, + "end": 21295.16, + "probability": 0.3224 + }, + { + "start": 21295.16, + "end": 21295.16, + "probability": 0.0886 + }, + { + "start": 21295.16, + "end": 21295.16, + "probability": 0.0735 + }, + { + "start": 21295.16, + "end": 21295.16, + "probability": 0.0989 + }, + { + "start": 21295.16, + "end": 21295.16, + "probability": 0.0139 + }, + { + "start": 21295.16, + "end": 21295.16, + "probability": 0.2696 + }, + { + "start": 21295.16, + "end": 21295.16, + "probability": 0.0139 + }, + { + "start": 21325.14, + "end": 21330.64, + "probability": 0.8696 + }, + { + "start": 21331.33, + "end": 21335.0, + "probability": 0.9933 + }, + { + "start": 21335.54, + "end": 21337.1, + "probability": 0.9834 + }, + { + "start": 21338.86, + "end": 21339.64, + "probability": 0.7807 + }, + { + "start": 21340.48, + "end": 21341.52, + "probability": 0.7535 + }, + { + "start": 21342.32, + "end": 21343.81, + "probability": 0.9888 + }, + { + "start": 21344.74, + "end": 21347.14, + "probability": 0.7762 + }, + { + "start": 21348.1, + "end": 21349.5, + "probability": 0.9042 + }, + { + "start": 21350.42, + "end": 21351.44, + "probability": 0.5758 + }, + { + "start": 21351.58, + "end": 21356.94, + "probability": 0.9912 + }, + { + "start": 21357.06, + "end": 21357.84, + "probability": 0.6741 + }, + { + "start": 21359.04, + "end": 21363.86, + "probability": 0.98 + }, + { + "start": 21364.44, + "end": 21366.2, + "probability": 0.4516 + }, + { + "start": 21366.76, + "end": 21367.37, + "probability": 0.9756 + }, + { + "start": 21368.0, + "end": 21374.8, + "probability": 0.9834 + }, + { + "start": 21376.2, + "end": 21378.24, + "probability": 0.5219 + }, + { + "start": 21379.14, + "end": 21380.32, + "probability": 0.9237 + }, + { + "start": 21381.44, + "end": 21384.22, + "probability": 0.9032 + }, + { + "start": 21384.96, + "end": 21388.66, + "probability": 0.9901 + }, + { + "start": 21389.7, + "end": 21390.12, + "probability": 0.6415 + }, + { + "start": 21390.66, + "end": 21391.62, + "probability": 0.9415 + }, + { + "start": 21393.66, + "end": 21394.92, + "probability": 0.7209 + }, + { + "start": 21395.64, + "end": 21401.98, + "probability": 0.775 + }, + { + "start": 21402.86, + "end": 21404.52, + "probability": 0.8447 + }, + { + "start": 21404.62, + "end": 21409.12, + "probability": 0.8853 + }, + { + "start": 21409.26, + "end": 21409.98, + "probability": 0.6816 + }, + { + "start": 21412.56, + "end": 21417.06, + "probability": 0.8721 + }, + { + "start": 21417.68, + "end": 21419.96, + "probability": 0.81 + }, + { + "start": 21424.2, + "end": 21427.9, + "probability": 0.8916 + }, + { + "start": 21428.44, + "end": 21429.74, + "probability": 0.5533 + }, + { + "start": 21430.24, + "end": 21433.74, + "probability": 0.9277 + }, + { + "start": 21434.22, + "end": 21435.32, + "probability": 0.9541 + }, + { + "start": 21436.36, + "end": 21442.86, + "probability": 0.9814 + }, + { + "start": 21443.62, + "end": 21446.6, + "probability": 0.6072 + }, + { + "start": 21447.26, + "end": 21452.76, + "probability": 0.9301 + }, + { + "start": 21452.9, + "end": 21453.24, + "probability": 0.9608 + }, + { + "start": 21453.24, + "end": 21453.78, + "probability": 0.2013 + }, + { + "start": 21454.46, + "end": 21455.96, + "probability": 0.9806 + }, + { + "start": 21456.82, + "end": 21459.56, + "probability": 0.7029 + }, + { + "start": 21459.84, + "end": 21461.1, + "probability": 0.8479 + }, + { + "start": 21463.26, + "end": 21463.86, + "probability": 0.1958 + }, + { + "start": 21463.94, + "end": 21465.74, + "probability": 0.4541 + }, + { + "start": 21466.24, + "end": 21467.08, + "probability": 0.5832 + }, + { + "start": 21468.5, + "end": 21468.5, + "probability": 0.0436 + }, + { + "start": 21468.5, + "end": 21470.7, + "probability": 0.8975 + }, + { + "start": 21471.16, + "end": 21472.38, + "probability": 0.8438 + }, + { + "start": 21472.52, + "end": 21473.02, + "probability": 0.9769 + }, + { + "start": 21473.52, + "end": 21475.48, + "probability": 0.9944 + }, + { + "start": 21476.36, + "end": 21479.54, + "probability": 0.988 + }, + { + "start": 21480.44, + "end": 21485.2, + "probability": 0.9753 + }, + { + "start": 21485.26, + "end": 21486.12, + "probability": 0.4639 + }, + { + "start": 21486.18, + "end": 21487.02, + "probability": 0.8363 + }, + { + "start": 21488.2, + "end": 21492.68, + "probability": 0.7266 + }, + { + "start": 21493.62, + "end": 21495.24, + "probability": 0.9504 + }, + { + "start": 21496.38, + "end": 21498.46, + "probability": 0.9048 + }, + { + "start": 21499.14, + "end": 21499.96, + "probability": 0.4984 + }, + { + "start": 21500.62, + "end": 21504.82, + "probability": 0.9434 + }, + { + "start": 21504.9, + "end": 21512.26, + "probability": 0.9959 + }, + { + "start": 21512.88, + "end": 21515.84, + "probability": 0.9925 + }, + { + "start": 21516.48, + "end": 21520.1, + "probability": 0.9482 + }, + { + "start": 21520.1, + "end": 21524.11, + "probability": 0.9993 + }, + { + "start": 21525.12, + "end": 21526.84, + "probability": 0.6912 + }, + { + "start": 21527.38, + "end": 21534.06, + "probability": 0.8433 + }, + { + "start": 21535.26, + "end": 21542.98, + "probability": 0.7753 + }, + { + "start": 21545.06, + "end": 21545.78, + "probability": 0.6661 + }, + { + "start": 21548.12, + "end": 21551.76, + "probability": 0.8238 + }, + { + "start": 21553.3, + "end": 21554.4, + "probability": 0.9655 + }, + { + "start": 21555.0, + "end": 21557.48, + "probability": 0.9751 + }, + { + "start": 21557.5, + "end": 21561.46, + "probability": 0.9556 + }, + { + "start": 21562.14, + "end": 21563.5, + "probability": 0.979 + }, + { + "start": 21564.36, + "end": 21565.94, + "probability": 0.934 + }, + { + "start": 21566.54, + "end": 21568.0, + "probability": 0.9843 + }, + { + "start": 21568.08, + "end": 21568.74, + "probability": 0.8836 + }, + { + "start": 21569.32, + "end": 21572.54, + "probability": 0.9642 + }, + { + "start": 21572.98, + "end": 21581.86, + "probability": 0.9912 + }, + { + "start": 21583.04, + "end": 21584.18, + "probability": 0.8381 + }, + { + "start": 21584.72, + "end": 21587.62, + "probability": 0.9871 + }, + { + "start": 21588.66, + "end": 21590.02, + "probability": 0.9635 + }, + { + "start": 21590.66, + "end": 21591.52, + "probability": 0.799 + }, + { + "start": 21593.6, + "end": 21598.34, + "probability": 0.8714 + }, + { + "start": 21599.1, + "end": 21603.9, + "probability": 0.9743 + }, + { + "start": 21604.06, + "end": 21607.75, + "probability": 0.9598 + }, + { + "start": 21608.78, + "end": 21612.1, + "probability": 0.9815 + }, + { + "start": 21613.6, + "end": 21614.06, + "probability": 0.9774 + }, + { + "start": 21615.0, + "end": 21619.36, + "probability": 0.8742 + }, + { + "start": 21621.1, + "end": 21623.16, + "probability": 0.9027 + }, + { + "start": 21624.08, + "end": 21631.26, + "probability": 0.951 + }, + { + "start": 21632.2, + "end": 21635.66, + "probability": 0.9849 + }, + { + "start": 21636.44, + "end": 21642.98, + "probability": 0.9867 + }, + { + "start": 21642.98, + "end": 21650.26, + "probability": 0.9777 + }, + { + "start": 21650.52, + "end": 21654.06, + "probability": 0.9979 + }, + { + "start": 21654.52, + "end": 21657.5, + "probability": 0.9879 + }, + { + "start": 21657.5, + "end": 21660.56, + "probability": 0.9887 + }, + { + "start": 21660.66, + "end": 21661.5, + "probability": 0.7147 + }, + { + "start": 21662.54, + "end": 21665.26, + "probability": 0.7498 + }, + { + "start": 21666.42, + "end": 21667.96, + "probability": 0.941 + }, + { + "start": 21670.12, + "end": 21671.08, + "probability": 0.6357 + }, + { + "start": 21672.48, + "end": 21677.76, + "probability": 0.8245 + }, + { + "start": 21678.44, + "end": 21679.16, + "probability": 0.4421 + }, + { + "start": 21679.5, + "end": 21680.41, + "probability": 0.9071 + }, + { + "start": 21681.12, + "end": 21681.74, + "probability": 0.832 + }, + { + "start": 21682.28, + "end": 21682.82, + "probability": 0.9268 + }, + { + "start": 21683.38, + "end": 21684.58, + "probability": 0.6953 + }, + { + "start": 21685.82, + "end": 21689.86, + "probability": 0.9617 + }, + { + "start": 21690.2, + "end": 21691.27, + "probability": 0.6646 + }, + { + "start": 21691.82, + "end": 21692.45, + "probability": 0.9572 + }, + { + "start": 21693.4, + "end": 21695.48, + "probability": 0.9844 + }, + { + "start": 21695.92, + "end": 21698.24, + "probability": 0.7625 + }, + { + "start": 21699.22, + "end": 21700.48, + "probability": 0.9373 + }, + { + "start": 21701.06, + "end": 21702.2, + "probability": 0.9591 + }, + { + "start": 21703.58, + "end": 21707.2, + "probability": 0.7821 + }, + { + "start": 21708.32, + "end": 21709.42, + "probability": 0.9722 + }, + { + "start": 21710.92, + "end": 21712.12, + "probability": 0.6601 + }, + { + "start": 21713.98, + "end": 21714.68, + "probability": 0.728 + }, + { + "start": 21716.88, + "end": 21720.66, + "probability": 0.9548 + }, + { + "start": 21722.6, + "end": 21723.88, + "probability": 0.8574 + }, + { + "start": 21725.42, + "end": 21726.04, + "probability": 0.9842 + }, + { + "start": 21728.2, + "end": 21733.28, + "probability": 0.9706 + }, + { + "start": 21733.88, + "end": 21735.14, + "probability": 0.5555 + }, + { + "start": 21735.98, + "end": 21736.94, + "probability": 0.9003 + }, + { + "start": 21737.92, + "end": 21742.66, + "probability": 0.8605 + }, + { + "start": 21743.6, + "end": 21744.76, + "probability": 0.7924 + }, + { + "start": 21745.5, + "end": 21746.46, + "probability": 0.8692 + }, + { + "start": 21747.0, + "end": 21748.44, + "probability": 0.9501 + }, + { + "start": 21749.82, + "end": 21752.92, + "probability": 0.8223 + }, + { + "start": 21753.1, + "end": 21754.1, + "probability": 0.8804 + }, + { + "start": 21754.54, + "end": 21760.68, + "probability": 0.9866 + }, + { + "start": 21761.82, + "end": 21762.52, + "probability": 0.5756 + }, + { + "start": 21763.06, + "end": 21766.96, + "probability": 0.7199 + }, + { + "start": 21767.14, + "end": 21768.36, + "probability": 0.9579 + }, + { + "start": 21769.08, + "end": 21772.06, + "probability": 0.9731 + }, + { + "start": 21773.3, + "end": 21778.0, + "probability": 0.7037 + }, + { + "start": 21778.16, + "end": 21778.62, + "probability": 0.8754 + }, + { + "start": 21778.76, + "end": 21781.91, + "probability": 0.8885 + }, + { + "start": 21782.6, + "end": 21787.56, + "probability": 0.8011 + }, + { + "start": 21788.02, + "end": 21789.95, + "probability": 0.8822 + }, + { + "start": 21791.04, + "end": 21792.76, + "probability": 0.9646 + }, + { + "start": 21794.44, + "end": 21798.9, + "probability": 0.7976 + }, + { + "start": 21799.44, + "end": 21801.28, + "probability": 0.9497 + }, + { + "start": 21801.78, + "end": 21806.98, + "probability": 0.9959 + }, + { + "start": 21807.7, + "end": 21811.0, + "probability": 0.8602 + }, + { + "start": 21812.0, + "end": 21814.44, + "probability": 0.6116 + }, + { + "start": 21814.46, + "end": 21814.92, + "probability": 0.9609 + }, + { + "start": 21816.14, + "end": 21823.96, + "probability": 0.9766 + }, + { + "start": 21824.6, + "end": 21828.4, + "probability": 0.993 + }, + { + "start": 21829.72, + "end": 21831.78, + "probability": 0.7276 + }, + { + "start": 21832.66, + "end": 21834.44, + "probability": 0.8162 + }, + { + "start": 21836.1, + "end": 21839.47, + "probability": 0.3386 + }, + { + "start": 21839.78, + "end": 21841.16, + "probability": 0.7851 + }, + { + "start": 21841.16, + "end": 21841.32, + "probability": 0.4838 + }, + { + "start": 21841.78, + "end": 21842.92, + "probability": 0.1734 + }, + { + "start": 21842.94, + "end": 21843.74, + "probability": 0.7783 + }, + { + "start": 21843.9, + "end": 21845.92, + "probability": 0.8338 + }, + { + "start": 21846.06, + "end": 21847.77, + "probability": 0.7455 + }, + { + "start": 21849.34, + "end": 21850.02, + "probability": 0.4381 + }, + { + "start": 21850.74, + "end": 21852.94, + "probability": 0.4796 + }, + { + "start": 21853.14, + "end": 21855.34, + "probability": 0.3066 + }, + { + "start": 21855.5, + "end": 21856.32, + "probability": 0.4402 + }, + { + "start": 21856.32, + "end": 21856.86, + "probability": 0.5454 + }, + { + "start": 21856.86, + "end": 21858.0, + "probability": 0.5468 + }, + { + "start": 21859.28, + "end": 21862.22, + "probability": 0.8165 + }, + { + "start": 21863.08, + "end": 21864.18, + "probability": 0.6498 + }, + { + "start": 21864.34, + "end": 21865.08, + "probability": 0.7107 + }, + { + "start": 21865.56, + "end": 21866.7, + "probability": 0.9852 + }, + { + "start": 21867.9, + "end": 21871.16, + "probability": 0.7556 + }, + { + "start": 21874.32, + "end": 21875.82, + "probability": 0.8364 + }, + { + "start": 21878.78, + "end": 21880.24, + "probability": 0.9785 + }, + { + "start": 21881.44, + "end": 21889.82, + "probability": 0.9661 + }, + { + "start": 21890.44, + "end": 21891.32, + "probability": 0.8984 + }, + { + "start": 21891.9, + "end": 21894.08, + "probability": 0.9956 + }, + { + "start": 21894.74, + "end": 21895.7, + "probability": 0.934 + }, + { + "start": 21896.36, + "end": 21896.54, + "probability": 0.6755 + }, + { + "start": 21898.04, + "end": 21899.36, + "probability": 0.9016 + }, + { + "start": 21901.7, + "end": 21905.82, + "probability": 0.8809 + }, + { + "start": 21906.84, + "end": 21916.6, + "probability": 0.9747 + }, + { + "start": 21918.14, + "end": 21919.16, + "probability": 0.7743 + }, + { + "start": 21920.36, + "end": 21930.58, + "probability": 0.9904 + }, + { + "start": 21931.5, + "end": 21935.02, + "probability": 0.9959 + }, + { + "start": 21935.18, + "end": 21938.51, + "probability": 0.5728 + }, + { + "start": 21938.64, + "end": 21942.38, + "probability": 0.9786 + }, + { + "start": 21942.88, + "end": 21943.36, + "probability": 0.6997 + }, + { + "start": 21944.48, + "end": 21950.04, + "probability": 0.9119 + }, + { + "start": 21950.66, + "end": 21952.02, + "probability": 0.9917 + }, + { + "start": 21952.66, + "end": 21956.72, + "probability": 0.749 + }, + { + "start": 21957.58, + "end": 21966.14, + "probability": 0.9754 + }, + { + "start": 21966.42, + "end": 21967.24, + "probability": 0.8651 + }, + { + "start": 21967.74, + "end": 21969.14, + "probability": 0.9421 + }, + { + "start": 21969.86, + "end": 21973.02, + "probability": 0.897 + }, + { + "start": 21974.26, + "end": 21975.64, + "probability": 0.925 + }, + { + "start": 21976.58, + "end": 21977.04, + "probability": 0.5248 + }, + { + "start": 21977.04, + "end": 21977.76, + "probability": 0.5559 + }, + { + "start": 21978.2, + "end": 21980.9, + "probability": 0.9717 + }, + { + "start": 21980.96, + "end": 21982.52, + "probability": 0.7987 + }, + { + "start": 21984.04, + "end": 21985.0, + "probability": 0.8113 + }, + { + "start": 21985.98, + "end": 21987.38, + "probability": 0.9061 + }, + { + "start": 21987.82, + "end": 21994.14, + "probability": 0.855 + }, + { + "start": 21994.7, + "end": 21996.34, + "probability": 0.9222 + }, + { + "start": 21996.76, + "end": 21999.26, + "probability": 0.6524 + }, + { + "start": 21999.7, + "end": 22004.6, + "probability": 0.8979 + }, + { + "start": 22005.44, + "end": 22008.88, + "probability": 0.8458 + }, + { + "start": 22009.94, + "end": 22010.4, + "probability": 0.8557 + }, + { + "start": 22011.86, + "end": 22013.44, + "probability": 0.5994 + }, + { + "start": 22014.1, + "end": 22014.68, + "probability": 0.7653 + }, + { + "start": 22016.04, + "end": 22017.62, + "probability": 0.8021 + }, + { + "start": 22018.44, + "end": 22024.1, + "probability": 0.9741 + }, + { + "start": 22024.58, + "end": 22030.3, + "probability": 0.9696 + }, + { + "start": 22030.36, + "end": 22034.48, + "probability": 0.7985 + }, + { + "start": 22035.32, + "end": 22035.58, + "probability": 0.613 + }, + { + "start": 22036.44, + "end": 22039.24, + "probability": 0.9922 + }, + { + "start": 22039.8, + "end": 22041.42, + "probability": 0.916 + }, + { + "start": 22041.98, + "end": 22043.18, + "probability": 0.6227 + }, + { + "start": 22043.72, + "end": 22045.18, + "probability": 0.8811 + }, + { + "start": 22045.84, + "end": 22047.9, + "probability": 0.8838 + }, + { + "start": 22048.38, + "end": 22049.98, + "probability": 0.8581 + }, + { + "start": 22050.42, + "end": 22052.82, + "probability": 0.8813 + }, + { + "start": 22053.36, + "end": 22054.43, + "probability": 0.9842 + }, + { + "start": 22055.12, + "end": 22056.3, + "probability": 0.9928 + }, + { + "start": 22056.92, + "end": 22057.99, + "probability": 0.9937 + }, + { + "start": 22058.34, + "end": 22059.56, + "probability": 0.7111 + }, + { + "start": 22060.22, + "end": 22064.96, + "probability": 0.9371 + }, + { + "start": 22065.58, + "end": 22069.46, + "probability": 0.9915 + }, + { + "start": 22070.52, + "end": 22074.24, + "probability": 0.9938 + }, + { + "start": 22074.86, + "end": 22077.28, + "probability": 0.9849 + }, + { + "start": 22079.42, + "end": 22084.34, + "probability": 0.9904 + }, + { + "start": 22085.04, + "end": 22087.92, + "probability": 0.7502 + }, + { + "start": 22088.8, + "end": 22090.16, + "probability": 0.9305 + }, + { + "start": 22090.96, + "end": 22092.38, + "probability": 0.9587 + }, + { + "start": 22093.08, + "end": 22095.1, + "probability": 0.9939 + }, + { + "start": 22095.86, + "end": 22098.1, + "probability": 0.9822 + }, + { + "start": 22098.98, + "end": 22100.38, + "probability": 0.9873 + }, + { + "start": 22100.5, + "end": 22101.3, + "probability": 0.9917 + }, + { + "start": 22101.86, + "end": 22102.7, + "probability": 0.9224 + }, + { + "start": 22102.76, + "end": 22105.46, + "probability": 0.8903 + }, + { + "start": 22106.3, + "end": 22109.28, + "probability": 0.8835 + }, + { + "start": 22109.58, + "end": 22112.42, + "probability": 0.7391 + }, + { + "start": 22112.98, + "end": 22119.64, + "probability": 0.9878 + }, + { + "start": 22120.28, + "end": 22120.52, + "probability": 0.8204 + }, + { + "start": 22120.6, + "end": 22121.26, + "probability": 0.7454 + }, + { + "start": 22121.48, + "end": 22127.94, + "probability": 0.9409 + }, + { + "start": 22128.48, + "end": 22129.82, + "probability": 0.7096 + }, + { + "start": 22129.9, + "end": 22131.0, + "probability": 0.9595 + }, + { + "start": 22131.1, + "end": 22131.72, + "probability": 0.6081 + }, + { + "start": 22132.12, + "end": 22134.74, + "probability": 0.8114 + }, + { + "start": 22134.94, + "end": 22137.14, + "probability": 0.877 + }, + { + "start": 22137.56, + "end": 22137.72, + "probability": 0.7993 + }, + { + "start": 22138.5, + "end": 22139.52, + "probability": 0.6837 + }, + { + "start": 22139.62, + "end": 22143.52, + "probability": 0.9761 + }, + { + "start": 22144.2, + "end": 22146.06, + "probability": 0.8675 + }, + { + "start": 22147.34, + "end": 22148.28, + "probability": 0.7758 + }, + { + "start": 22153.36, + "end": 22155.18, + "probability": 0.5768 + }, + { + "start": 22155.76, + "end": 22159.78, + "probability": 0.9285 + }, + { + "start": 22160.18, + "end": 22160.56, + "probability": 0.5116 + }, + { + "start": 22160.7, + "end": 22161.6, + "probability": 0.9873 + }, + { + "start": 22162.98, + "end": 22166.78, + "probability": 0.9897 + }, + { + "start": 22166.84, + "end": 22168.7, + "probability": 0.6285 + }, + { + "start": 22168.78, + "end": 22171.12, + "probability": 0.7506 + }, + { + "start": 22171.44, + "end": 22175.96, + "probability": 0.9667 + }, + { + "start": 22176.46, + "end": 22177.8, + "probability": 0.873 + }, + { + "start": 22178.7, + "end": 22180.74, + "probability": 0.9922 + }, + { + "start": 22180.74, + "end": 22182.64, + "probability": 0.8319 + }, + { + "start": 22182.96, + "end": 22187.74, + "probability": 0.9891 + }, + { + "start": 22188.1, + "end": 22190.8, + "probability": 0.9925 + }, + { + "start": 22191.06, + "end": 22193.36, + "probability": 0.9404 + }, + { + "start": 22193.78, + "end": 22194.0, + "probability": 0.868 + }, + { + "start": 22194.6, + "end": 22195.08, + "probability": 0.7314 + }, + { + "start": 22195.56, + "end": 22197.9, + "probability": 0.715 + }, + { + "start": 22204.7, + "end": 22206.42, + "probability": 0.435 + }, + { + "start": 22207.44, + "end": 22207.64, + "probability": 0.8047 + }, + { + "start": 22209.2, + "end": 22211.32, + "probability": 0.9017 + }, + { + "start": 22211.42, + "end": 22212.7, + "probability": 0.8665 + }, + { + "start": 22213.0, + "end": 22216.0, + "probability": 0.9919 + }, + { + "start": 22217.08, + "end": 22219.34, + "probability": 0.8212 + }, + { + "start": 22219.88, + "end": 22223.04, + "probability": 0.9913 + }, + { + "start": 22223.14, + "end": 22224.13, + "probability": 0.9899 + }, + { + "start": 22224.86, + "end": 22226.04, + "probability": 0.968 + }, + { + "start": 22226.88, + "end": 22228.54, + "probability": 0.7867 + }, + { + "start": 22229.44, + "end": 22230.02, + "probability": 0.4253 + }, + { + "start": 22231.7, + "end": 22232.92, + "probability": 0.739 + }, + { + "start": 22233.66, + "end": 22237.48, + "probability": 0.9849 + }, + { + "start": 22237.56, + "end": 22241.04, + "probability": 0.8862 + }, + { + "start": 22241.54, + "end": 22243.02, + "probability": 0.9128 + }, + { + "start": 22243.14, + "end": 22249.22, + "probability": 0.9777 + }, + { + "start": 22249.28, + "end": 22250.76, + "probability": 0.9985 + }, + { + "start": 22250.88, + "end": 22251.24, + "probability": 0.7365 + }, + { + "start": 22252.54, + "end": 22254.18, + "probability": 0.7307 + }, + { + "start": 22260.74, + "end": 22262.6, + "probability": 0.6098 + }, + { + "start": 22263.42, + "end": 22265.86, + "probability": 0.9713 + }, + { + "start": 22266.8, + "end": 22271.94, + "probability": 0.943 + }, + { + "start": 22272.6, + "end": 22273.76, + "probability": 0.932 + }, + { + "start": 22274.08, + "end": 22276.58, + "probability": 0.5669 + }, + { + "start": 22277.82, + "end": 22280.79, + "probability": 0.8525 + }, + { + "start": 22281.6, + "end": 22286.6, + "probability": 0.871 + }, + { + "start": 22287.98, + "end": 22291.42, + "probability": 0.9976 + }, + { + "start": 22291.42, + "end": 22294.02, + "probability": 0.9978 + }, + { + "start": 22294.92, + "end": 22296.9, + "probability": 0.9819 + }, + { + "start": 22297.56, + "end": 22299.68, + "probability": 0.6593 + }, + { + "start": 22300.84, + "end": 22303.26, + "probability": 0.9814 + }, + { + "start": 22304.22, + "end": 22309.32, + "probability": 0.9451 + }, + { + "start": 22310.2, + "end": 22312.6, + "probability": 0.9465 + }, + { + "start": 22313.38, + "end": 22316.98, + "probability": 0.8412 + }, + { + "start": 22317.72, + "end": 22318.0, + "probability": 0.6094 + }, + { + "start": 22318.08, + "end": 22318.7, + "probability": 0.7279 + }, + { + "start": 22319.12, + "end": 22320.17, + "probability": 0.9213 + }, + { + "start": 22320.66, + "end": 22321.72, + "probability": 0.7655 + }, + { + "start": 22322.0, + "end": 22322.74, + "probability": 0.6551 + }, + { + "start": 22322.88, + "end": 22323.42, + "probability": 0.7939 + }, + { + "start": 22324.34, + "end": 22324.84, + "probability": 0.7677 + }, + { + "start": 22324.9, + "end": 22328.16, + "probability": 0.9507 + }, + { + "start": 22328.44, + "end": 22328.68, + "probability": 0.7303 + }, + { + "start": 22329.18, + "end": 22329.18, + "probability": 0.6536 + }, + { + "start": 22329.54, + "end": 22331.78, + "probability": 0.8862 + }, + { + "start": 22338.94, + "end": 22339.36, + "probability": 0.4923 + }, + { + "start": 22340.24, + "end": 22340.96, + "probability": 0.6923 + }, + { + "start": 22341.68, + "end": 22343.24, + "probability": 0.986 + }, + { + "start": 22343.86, + "end": 22347.6, + "probability": 0.8809 + }, + { + "start": 22347.72, + "end": 22350.4, + "probability": 0.9936 + }, + { + "start": 22351.72, + "end": 22355.86, + "probability": 0.9571 + }, + { + "start": 22355.86, + "end": 22361.04, + "probability": 0.7025 + }, + { + "start": 22362.42, + "end": 22363.1, + "probability": 0.8813 + }, + { + "start": 22364.0, + "end": 22367.5, + "probability": 0.9871 + }, + { + "start": 22368.6, + "end": 22373.28, + "probability": 0.877 + }, + { + "start": 22374.5, + "end": 22375.48, + "probability": 0.8792 + }, + { + "start": 22375.58, + "end": 22377.52, + "probability": 0.912 + }, + { + "start": 22377.88, + "end": 22380.36, + "probability": 0.9768 + }, + { + "start": 22381.02, + "end": 22382.58, + "probability": 0.9591 + }, + { + "start": 22382.82, + "end": 22383.64, + "probability": 0.9428 + }, + { + "start": 22384.12, + "end": 22385.1, + "probability": 0.9114 + }, + { + "start": 22385.52, + "end": 22385.8, + "probability": 0.8293 + }, + { + "start": 22385.9, + "end": 22387.02, + "probability": 0.9404 + }, + { + "start": 22387.98, + "end": 22391.26, + "probability": 0.979 + }, + { + "start": 22392.8, + "end": 22394.1, + "probability": 0.9888 + }, + { + "start": 22395.7, + "end": 22399.28, + "probability": 0.9614 + }, + { + "start": 22399.95, + "end": 22402.88, + "probability": 0.9821 + }, + { + "start": 22403.06, + "end": 22405.92, + "probability": 0.7894 + }, + { + "start": 22406.34, + "end": 22407.18, + "probability": 0.9471 + }, + { + "start": 22407.76, + "end": 22409.4, + "probability": 0.5656 + }, + { + "start": 22409.52, + "end": 22410.72, + "probability": 0.9107 + }, + { + "start": 22410.98, + "end": 22411.62, + "probability": 0.7039 + }, + { + "start": 22412.08, + "end": 22413.2, + "probability": 0.839 + }, + { + "start": 22414.24, + "end": 22417.12, + "probability": 0.986 + }, + { + "start": 22418.06, + "end": 22419.08, + "probability": 0.9109 + }, + { + "start": 22419.3, + "end": 22423.86, + "probability": 0.8507 + }, + { + "start": 22424.16, + "end": 22427.44, + "probability": 0.9767 + }, + { + "start": 22427.96, + "end": 22430.0, + "probability": 0.6631 + }, + { + "start": 22431.08, + "end": 22431.52, + "probability": 0.7818 + }, + { + "start": 22432.18, + "end": 22434.34, + "probability": 0.746 + }, + { + "start": 22435.14, + "end": 22435.7, + "probability": 0.7323 + }, + { + "start": 22436.44, + "end": 22439.66, + "probability": 0.9938 + }, + { + "start": 22439.76, + "end": 22440.9, + "probability": 0.8573 + }, + { + "start": 22441.4, + "end": 22445.62, + "probability": 0.9878 + }, + { + "start": 22446.18, + "end": 22446.92, + "probability": 0.9576 + }, + { + "start": 22447.54, + "end": 22447.84, + "probability": 0.4312 + }, + { + "start": 22448.38, + "end": 22449.73, + "probability": 0.8567 + }, + { + "start": 22452.22, + "end": 22456.94, + "probability": 0.8638 + }, + { + "start": 22458.38, + "end": 22461.5, + "probability": 0.2952 + }, + { + "start": 22462.18, + "end": 22465.02, + "probability": 0.9135 + }, + { + "start": 22465.34, + "end": 22465.78, + "probability": 0.9142 + }, + { + "start": 22468.14, + "end": 22468.14, + "probability": 0.0034 + }, + { + "start": 22469.32, + "end": 22472.96, + "probability": 0.0281 + }, + { + "start": 22488.64, + "end": 22489.64, + "probability": 0.3606 + }, + { + "start": 22489.78, + "end": 22490.82, + "probability": 0.8867 + }, + { + "start": 22492.2, + "end": 22495.66, + "probability": 0.7241 + }, + { + "start": 22495.94, + "end": 22495.94, + "probability": 0.1043 + }, + { + "start": 22495.94, + "end": 22495.94, + "probability": 0.2377 + }, + { + "start": 22495.94, + "end": 22495.94, + "probability": 0.0748 + }, + { + "start": 22495.94, + "end": 22498.44, + "probability": 0.689 + }, + { + "start": 22518.78, + "end": 22518.78, + "probability": 0.4978 + }, + { + "start": 22518.78, + "end": 22519.5, + "probability": 0.5078 + }, + { + "start": 22519.5, + "end": 22523.14, + "probability": 0.6135 + }, + { + "start": 22523.8, + "end": 22527.32, + "probability": 0.9753 + }, + { + "start": 22528.38, + "end": 22530.01, + "probability": 0.9958 + }, + { + "start": 22530.76, + "end": 22533.42, + "probability": 0.9674 + }, + { + "start": 22534.28, + "end": 22537.08, + "probability": 0.9856 + }, + { + "start": 22537.9, + "end": 22542.84, + "probability": 0.9696 + }, + { + "start": 22544.92, + "end": 22551.36, + "probability": 0.88 + }, + { + "start": 22552.62, + "end": 22558.3, + "probability": 0.9736 + }, + { + "start": 22558.92, + "end": 22563.48, + "probability": 0.897 + }, + { + "start": 22564.12, + "end": 22565.74, + "probability": 0.9721 + }, + { + "start": 22568.08, + "end": 22570.94, + "probability": 0.9895 + }, + { + "start": 22572.88, + "end": 22574.04, + "probability": 0.7024 + }, + { + "start": 22574.24, + "end": 22576.4, + "probability": 0.9945 + }, + { + "start": 22576.48, + "end": 22578.36, + "probability": 0.9945 + }, + { + "start": 22580.02, + "end": 22580.68, + "probability": 0.0387 + }, + { + "start": 22580.68, + "end": 22583.04, + "probability": 0.7352 + }, + { + "start": 22583.08, + "end": 22583.85, + "probability": 0.1983 + }, + { + "start": 22584.56, + "end": 22587.42, + "probability": 0.7242 + }, + { + "start": 22587.84, + "end": 22590.12, + "probability": 0.9931 + }, + { + "start": 22590.22, + "end": 22591.62, + "probability": 0.8757 + }, + { + "start": 22592.44, + "end": 22595.08, + "probability": 0.902 + }, + { + "start": 22596.5, + "end": 22596.52, + "probability": 0.0877 + }, + { + "start": 22596.52, + "end": 22596.96, + "probability": 0.4915 + }, + { + "start": 22597.48, + "end": 22603.04, + "probability": 0.6571 + }, + { + "start": 22603.86, + "end": 22605.86, + "probability": 0.5356 + }, + { + "start": 22606.42, + "end": 22608.16, + "probability": 0.5103 + }, + { + "start": 22608.84, + "end": 22612.72, + "probability": 0.5463 + }, + { + "start": 22613.12, + "end": 22613.2, + "probability": 0.0807 + }, + { + "start": 22613.2, + "end": 22617.24, + "probability": 0.8293 + }, + { + "start": 22618.92, + "end": 22619.82, + "probability": 0.0273 + }, + { + "start": 22619.82, + "end": 22620.66, + "probability": 0.2431 + }, + { + "start": 22620.82, + "end": 22622.44, + "probability": 0.1657 + }, + { + "start": 22622.46, + "end": 22622.46, + "probability": 0.1968 + }, + { + "start": 22622.46, + "end": 22623.42, + "probability": 0.549 + }, + { + "start": 22623.68, + "end": 22625.7, + "probability": 0.7688 + }, + { + "start": 22625.9, + "end": 22633.66, + "probability": 0.9959 + }, + { + "start": 22633.66, + "end": 22640.06, + "probability": 0.9977 + }, + { + "start": 22640.4, + "end": 22641.72, + "probability": 0.8777 + }, + { + "start": 22641.84, + "end": 22643.84, + "probability": 0.9519 + }, + { + "start": 22644.26, + "end": 22650.3, + "probability": 0.9981 + }, + { + "start": 22653.38, + "end": 22653.38, + "probability": 0.0999 + }, + { + "start": 22653.38, + "end": 22653.38, + "probability": 0.0355 + }, + { + "start": 22653.38, + "end": 22653.38, + "probability": 0.2321 + }, + { + "start": 22653.38, + "end": 22653.38, + "probability": 0.3623 + }, + { + "start": 22653.38, + "end": 22654.44, + "probability": 0.3582 + }, + { + "start": 22654.5, + "end": 22656.0, + "probability": 0.9148 + }, + { + "start": 22656.0, + "end": 22656.44, + "probability": 0.8231 + }, + { + "start": 22656.46, + "end": 22656.46, + "probability": 0.2748 + }, + { + "start": 22656.54, + "end": 22659.62, + "probability": 0.9631 + }, + { + "start": 22660.42, + "end": 22665.32, + "probability": 0.985 + }, + { + "start": 22665.62, + "end": 22666.66, + "probability": 0.6798 + }, + { + "start": 22667.06, + "end": 22670.98, + "probability": 0.9857 + }, + { + "start": 22671.6, + "end": 22672.7, + "probability": 0.9085 + }, + { + "start": 22673.22, + "end": 22674.86, + "probability": 0.9924 + }, + { + "start": 22675.86, + "end": 22677.64, + "probability": 0.9932 + }, + { + "start": 22677.68, + "end": 22678.52, + "probability": 0.9709 + }, + { + "start": 22678.96, + "end": 22679.9, + "probability": 0.9005 + }, + { + "start": 22680.64, + "end": 22684.96, + "probability": 0.9865 + }, + { + "start": 22686.06, + "end": 22690.3, + "probability": 0.9844 + }, + { + "start": 22690.7, + "end": 22692.08, + "probability": 0.7417 + }, + { + "start": 22692.38, + "end": 22692.76, + "probability": 0.4155 + }, + { + "start": 22692.84, + "end": 22695.52, + "probability": 0.9893 + }, + { + "start": 22695.64, + "end": 22697.8, + "probability": 0.9722 + }, + { + "start": 22698.48, + "end": 22702.64, + "probability": 0.7113 + }, + { + "start": 22702.92, + "end": 22703.2, + "probability": 0.5735 + }, + { + "start": 22703.32, + "end": 22704.54, + "probability": 0.6025 + }, + { + "start": 22704.72, + "end": 22710.1, + "probability": 0.7455 + }, + { + "start": 22710.18, + "end": 22711.6, + "probability": 0.9688 + }, + { + "start": 22711.62, + "end": 22712.84, + "probability": 0.6598 + }, + { + "start": 22712.98, + "end": 22714.22, + "probability": 0.9208 + }, + { + "start": 22714.44, + "end": 22715.34, + "probability": 0.506 + }, + { + "start": 22716.5, + "end": 22720.46, + "probability": 0.9867 + }, + { + "start": 22721.2, + "end": 22725.82, + "probability": 0.9951 + }, + { + "start": 22725.94, + "end": 22726.34, + "probability": 0.6532 + }, + { + "start": 22726.42, + "end": 22726.82, + "probability": 0.8668 + }, + { + "start": 22726.94, + "end": 22730.78, + "probability": 0.9749 + }, + { + "start": 22731.68, + "end": 22732.52, + "probability": 0.8779 + }, + { + "start": 22732.62, + "end": 22734.78, + "probability": 0.9663 + }, + { + "start": 22735.26, + "end": 22736.02, + "probability": 0.9799 + }, + { + "start": 22736.42, + "end": 22737.3, + "probability": 0.9204 + }, + { + "start": 22737.68, + "end": 22738.42, + "probability": 0.8578 + }, + { + "start": 22738.68, + "end": 22741.76, + "probability": 0.9916 + }, + { + "start": 22742.14, + "end": 22745.02, + "probability": 0.9952 + }, + { + "start": 22746.08, + "end": 22747.42, + "probability": 0.9332 + }, + { + "start": 22747.98, + "end": 22749.22, + "probability": 0.9819 + }, + { + "start": 22751.94, + "end": 22753.2, + "probability": 0.9602 + }, + { + "start": 22754.6, + "end": 22755.96, + "probability": 0.9949 + }, + { + "start": 22756.18, + "end": 22761.9, + "probability": 0.9985 + }, + { + "start": 22762.1, + "end": 22763.52, + "probability": 0.5207 + }, + { + "start": 22764.74, + "end": 22766.3, + "probability": 0.9409 + }, + { + "start": 22766.58, + "end": 22767.9, + "probability": 0.9773 + }, + { + "start": 22768.14, + "end": 22769.46, + "probability": 0.6736 + }, + { + "start": 22769.72, + "end": 22773.78, + "probability": 0.9971 + }, + { + "start": 22773.78, + "end": 22778.32, + "probability": 0.9348 + }, + { + "start": 22780.12, + "end": 22783.4, + "probability": 0.999 + }, + { + "start": 22783.4, + "end": 22786.26, + "probability": 0.9984 + }, + { + "start": 22786.36, + "end": 22787.28, + "probability": 0.9636 + }, + { + "start": 22788.56, + "end": 22790.28, + "probability": 0.7778 + }, + { + "start": 22790.82, + "end": 22793.12, + "probability": 0.9893 + }, + { + "start": 22793.2, + "end": 22793.3, + "probability": 0.8035 + }, + { + "start": 22793.5, + "end": 22799.42, + "probability": 0.9927 + }, + { + "start": 22799.42, + "end": 22805.26, + "probability": 0.9924 + }, + { + "start": 22806.36, + "end": 22809.22, + "probability": 0.998 + }, + { + "start": 22809.24, + "end": 22810.14, + "probability": 0.792 + }, + { + "start": 22811.16, + "end": 22813.94, + "probability": 0.9384 + }, + { + "start": 22814.44, + "end": 22817.8, + "probability": 0.9177 + }, + { + "start": 22818.54, + "end": 22820.62, + "probability": 0.9971 + }, + { + "start": 22821.44, + "end": 22822.78, + "probability": 0.9813 + }, + { + "start": 22824.12, + "end": 22828.28, + "probability": 0.9974 + }, + { + "start": 22828.94, + "end": 22831.88, + "probability": 0.9976 + }, + { + "start": 22832.42, + "end": 22836.26, + "probability": 0.9863 + }, + { + "start": 22836.88, + "end": 22837.12, + "probability": 0.7639 + }, + { + "start": 22837.7, + "end": 22838.94, + "probability": 0.8557 + }, + { + "start": 22839.04, + "end": 22842.46, + "probability": 0.7098 + }, + { + "start": 22843.66, + "end": 22844.5, + "probability": 0.5489 + }, + { + "start": 22844.62, + "end": 22846.38, + "probability": 0.9113 + }, + { + "start": 22846.56, + "end": 22847.62, + "probability": 0.9668 + }, + { + "start": 22848.28, + "end": 22851.6, + "probability": 0.9255 + }, + { + "start": 22860.0, + "end": 22861.74, + "probability": 0.5403 + }, + { + "start": 22862.36, + "end": 22864.3, + "probability": 0.5253 + }, + { + "start": 22865.92, + "end": 22867.14, + "probability": 0.9954 + }, + { + "start": 22868.24, + "end": 22871.26, + "probability": 0.779 + }, + { + "start": 22871.98, + "end": 22873.84, + "probability": 0.9287 + }, + { + "start": 22874.4, + "end": 22879.3, + "probability": 0.984 + }, + { + "start": 22881.54, + "end": 22884.32, + "probability": 0.2482 + }, + { + "start": 22885.02, + "end": 22889.12, + "probability": 0.9338 + }, + { + "start": 22890.28, + "end": 22893.01, + "probability": 0.98 + }, + { + "start": 22894.26, + "end": 22895.68, + "probability": 0.9333 + }, + { + "start": 22896.36, + "end": 22899.62, + "probability": 0.9866 + }, + { + "start": 22899.62, + "end": 22906.32, + "probability": 0.8193 + }, + { + "start": 22906.32, + "end": 22910.28, + "probability": 0.9621 + }, + { + "start": 22911.04, + "end": 22916.7, + "probability": 0.9673 + }, + { + "start": 22919.28, + "end": 22923.34, + "probability": 0.7387 + }, + { + "start": 22923.72, + "end": 22925.16, + "probability": 0.8163 + }, + { + "start": 22926.18, + "end": 22928.76, + "probability": 0.7478 + }, + { + "start": 22929.7, + "end": 22932.9, + "probability": 0.792 + }, + { + "start": 22933.66, + "end": 22935.56, + "probability": 0.7819 + }, + { + "start": 22936.36, + "end": 22938.72, + "probability": 0.9277 + }, + { + "start": 22939.44, + "end": 22942.58, + "probability": 0.9897 + }, + { + "start": 22943.2, + "end": 22946.56, + "probability": 0.5543 + }, + { + "start": 22946.72, + "end": 22947.04, + "probability": 0.7554 + }, + { + "start": 22947.26, + "end": 22949.26, + "probability": 0.771 + }, + { + "start": 22950.22, + "end": 22957.12, + "probability": 0.9573 + }, + { + "start": 22957.78, + "end": 22959.92, + "probability": 0.9259 + }, + { + "start": 22960.88, + "end": 22961.34, + "probability": 0.5566 + }, + { + "start": 22962.32, + "end": 22964.2, + "probability": 0.7214 + }, + { + "start": 22965.0, + "end": 22971.26, + "probability": 0.9863 + }, + { + "start": 22972.4, + "end": 22975.5, + "probability": 0.6235 + }, + { + "start": 22976.14, + "end": 22979.1, + "probability": 0.562 + }, + { + "start": 22979.62, + "end": 22982.46, + "probability": 0.8635 + }, + { + "start": 22984.28, + "end": 22985.61, + "probability": 0.8607 + }, + { + "start": 22986.76, + "end": 22990.02, + "probability": 0.5356 + }, + { + "start": 22990.54, + "end": 22991.96, + "probability": 0.9639 + }, + { + "start": 22993.1, + "end": 22994.46, + "probability": 0.6456 + }, + { + "start": 22994.82, + "end": 22999.32, + "probability": 0.8351 + }, + { + "start": 22999.96, + "end": 23002.86, + "probability": 0.9761 + }, + { + "start": 23003.52, + "end": 23004.32, + "probability": 0.844 + }, + { + "start": 23004.98, + "end": 23006.9, + "probability": 0.8643 + }, + { + "start": 23007.62, + "end": 23011.8, + "probability": 0.9591 + }, + { + "start": 23013.62, + "end": 23019.06, + "probability": 0.8917 + }, + { + "start": 23019.78, + "end": 23024.42, + "probability": 0.9976 + }, + { + "start": 23025.38, + "end": 23027.76, + "probability": 0.958 + }, + { + "start": 23027.78, + "end": 23028.36, + "probability": 0.9492 + }, + { + "start": 23029.0, + "end": 23034.3, + "probability": 0.9268 + }, + { + "start": 23035.0, + "end": 23039.9, + "probability": 0.954 + }, + { + "start": 23041.12, + "end": 23051.4, + "probability": 0.96 + }, + { + "start": 23052.02, + "end": 23053.2, + "probability": 0.4052 + }, + { + "start": 23053.9, + "end": 23054.82, + "probability": 0.8995 + }, + { + "start": 23055.48, + "end": 23060.16, + "probability": 0.9794 + }, + { + "start": 23061.2, + "end": 23062.12, + "probability": 0.8009 + }, + { + "start": 23062.96, + "end": 23067.1, + "probability": 0.9924 + }, + { + "start": 23067.36, + "end": 23074.54, + "probability": 0.8879 + }, + { + "start": 23076.13, + "end": 23081.04, + "probability": 0.988 + }, + { + "start": 23081.72, + "end": 23088.48, + "probability": 0.9945 + }, + { + "start": 23089.46, + "end": 23090.4, + "probability": 0.5107 + }, + { + "start": 23090.52, + "end": 23094.6, + "probability": 0.9456 + }, + { + "start": 23094.98, + "end": 23097.1, + "probability": 0.9878 + }, + { + "start": 23099.16, + "end": 23101.84, + "probability": 0.3646 + }, + { + "start": 23102.96, + "end": 23106.98, + "probability": 0.8141 + }, + { + "start": 23107.88, + "end": 23112.22, + "probability": 0.8936 + }, + { + "start": 23112.22, + "end": 23115.08, + "probability": 0.9705 + }, + { + "start": 23116.36, + "end": 23118.15, + "probability": 0.9855 + }, + { + "start": 23119.7, + "end": 23120.29, + "probability": 0.7348 + }, + { + "start": 23121.28, + "end": 23124.7, + "probability": 0.712 + }, + { + "start": 23125.5, + "end": 23128.12, + "probability": 0.9894 + }, + { + "start": 23128.76, + "end": 23129.46, + "probability": 0.924 + }, + { + "start": 23129.88, + "end": 23130.94, + "probability": 0.9788 + }, + { + "start": 23131.06, + "end": 23132.21, + "probability": 0.9814 + }, + { + "start": 23132.76, + "end": 23133.1, + "probability": 0.8157 + }, + { + "start": 23133.76, + "end": 23137.22, + "probability": 0.9565 + }, + { + "start": 23137.38, + "end": 23137.46, + "probability": 0.339 + }, + { + "start": 23137.52, + "end": 23137.66, + "probability": 0.4422 + }, + { + "start": 23137.7, + "end": 23139.98, + "probability": 0.728 + }, + { + "start": 23140.04, + "end": 23140.92, + "probability": 0.9865 + }, + { + "start": 23141.0, + "end": 23142.54, + "probability": 0.5198 + }, + { + "start": 23142.66, + "end": 23143.68, + "probability": 0.7099 + }, + { + "start": 23143.74, + "end": 23143.74, + "probability": 0.3512 + }, + { + "start": 23143.74, + "end": 23143.74, + "probability": 0.4545 + }, + { + "start": 23143.74, + "end": 23146.7, + "probability": 0.7593 + }, + { + "start": 23147.02, + "end": 23147.44, + "probability": 0.2844 + }, + { + "start": 23147.58, + "end": 23150.24, + "probability": 0.7391 + }, + { + "start": 23150.88, + "end": 23153.38, + "probability": 0.6506 + }, + { + "start": 23153.58, + "end": 23154.66, + "probability": 0.9466 + }, + { + "start": 23155.6, + "end": 23156.25, + "probability": 0.9375 + }, + { + "start": 23157.12, + "end": 23160.52, + "probability": 0.9519 + }, + { + "start": 23161.16, + "end": 23164.76, + "probability": 0.8026 + }, + { + "start": 23165.66, + "end": 23168.78, + "probability": 0.6353 + }, + { + "start": 23169.5, + "end": 23171.84, + "probability": 0.9588 + }, + { + "start": 23172.52, + "end": 23176.62, + "probability": 0.9549 + }, + { + "start": 23176.62, + "end": 23180.36, + "probability": 0.8797 + }, + { + "start": 23180.98, + "end": 23182.5, + "probability": 0.9917 + }, + { + "start": 23182.94, + "end": 23183.76, + "probability": 0.893 + }, + { + "start": 23183.82, + "end": 23184.58, + "probability": 0.8459 + }, + { + "start": 23186.26, + "end": 23189.16, + "probability": 0.9438 + }, + { + "start": 23189.86, + "end": 23195.94, + "probability": 0.996 + }, + { + "start": 23197.58, + "end": 23199.2, + "probability": 0.9885 + }, + { + "start": 23199.98, + "end": 23201.44, + "probability": 0.837 + }, + { + "start": 23202.06, + "end": 23204.99, + "probability": 0.9792 + }, + { + "start": 23206.98, + "end": 23207.5, + "probability": 0.609 + }, + { + "start": 23208.68, + "end": 23209.14, + "probability": 0.7163 + }, + { + "start": 23209.26, + "end": 23210.16, + "probability": 0.9683 + }, + { + "start": 23210.54, + "end": 23213.34, + "probability": 0.9387 + }, + { + "start": 23213.66, + "end": 23217.56, + "probability": 0.9668 + }, + { + "start": 23218.12, + "end": 23218.93, + "probability": 0.7644 + }, + { + "start": 23219.72, + "end": 23220.86, + "probability": 0.7511 + }, + { + "start": 23220.96, + "end": 23221.44, + "probability": 0.8897 + }, + { + "start": 23221.98, + "end": 23228.16, + "probability": 0.9223 + }, + { + "start": 23228.38, + "end": 23232.62, + "probability": 0.8836 + }, + { + "start": 23232.62, + "end": 23236.7, + "probability": 0.9896 + }, + { + "start": 23236.98, + "end": 23241.44, + "probability": 0.9861 + }, + { + "start": 23241.72, + "end": 23242.76, + "probability": 0.9785 + }, + { + "start": 23243.32, + "end": 23245.22, + "probability": 0.5775 + }, + { + "start": 23245.56, + "end": 23248.34, + "probability": 0.878 + }, + { + "start": 23248.44, + "end": 23249.52, + "probability": 0.9316 + }, + { + "start": 23253.68, + "end": 23253.68, + "probability": 0.0726 + }, + { + "start": 23253.68, + "end": 23253.8, + "probability": 0.0267 + }, + { + "start": 23255.04, + "end": 23256.24, + "probability": 0.4486 + }, + { + "start": 23256.4, + "end": 23260.99, + "probability": 0.9824 + }, + { + "start": 23263.72, + "end": 23264.7, + "probability": 0.3917 + }, + { + "start": 23266.3, + "end": 23272.6, + "probability": 0.8972 + }, + { + "start": 23272.7, + "end": 23274.6, + "probability": 0.9101 + }, + { + "start": 23274.62, + "end": 23276.05, + "probability": 0.7871 + }, + { + "start": 23282.44, + "end": 23284.35, + "probability": 0.7141 + }, + { + "start": 23285.5, + "end": 23288.97, + "probability": 0.9823 + }, + { + "start": 23290.06, + "end": 23291.52, + "probability": 0.8613 + }, + { + "start": 23292.32, + "end": 23294.88, + "probability": 0.9967 + }, + { + "start": 23294.88, + "end": 23300.04, + "probability": 0.9539 + }, + { + "start": 23300.1, + "end": 23301.0, + "probability": 0.9448 + }, + { + "start": 23301.2, + "end": 23303.96, + "probability": 0.7311 + }, + { + "start": 23304.16, + "end": 23304.56, + "probability": 0.5658 + }, + { + "start": 23304.74, + "end": 23306.78, + "probability": 0.8677 + }, + { + "start": 23307.2, + "end": 23308.72, + "probability": 0.9941 + }, + { + "start": 23308.76, + "end": 23310.46, + "probability": 0.9912 + }, + { + "start": 23311.06, + "end": 23314.22, + "probability": 0.7289 + }, + { + "start": 23314.74, + "end": 23318.62, + "probability": 0.9519 + }, + { + "start": 23318.78, + "end": 23320.1, + "probability": 0.8674 + }, + { + "start": 23321.48, + "end": 23322.64, + "probability": 0.8327 + }, + { + "start": 23322.68, + "end": 23322.8, + "probability": 0.7624 + }, + { + "start": 23322.9, + "end": 23326.22, + "probability": 0.9805 + }, + { + "start": 23327.0, + "end": 23327.0, + "probability": 0.7998 + }, + { + "start": 23328.28, + "end": 23330.14, + "probability": 0.9285 + }, + { + "start": 23330.4, + "end": 23331.5, + "probability": 0.9797 + }, + { + "start": 23331.74, + "end": 23332.72, + "probability": 0.8897 + }, + { + "start": 23332.88, + "end": 23333.9, + "probability": 0.8914 + }, + { + "start": 23334.0, + "end": 23335.02, + "probability": 0.996 + }, + { + "start": 23335.6, + "end": 23337.06, + "probability": 0.9733 + }, + { + "start": 23337.94, + "end": 23341.26, + "probability": 0.9728 + }, + { + "start": 23341.8, + "end": 23342.04, + "probability": 0.4799 + }, + { + "start": 23342.28, + "end": 23344.12, + "probability": 0.8481 + }, + { + "start": 23344.24, + "end": 23346.36, + "probability": 0.851 + }, + { + "start": 23346.96, + "end": 23352.48, + "probability": 0.9489 + }, + { + "start": 23352.6, + "end": 23353.26, + "probability": 0.8967 + }, + { + "start": 23353.36, + "end": 23353.86, + "probability": 0.8696 + }, + { + "start": 23353.92, + "end": 23354.46, + "probability": 0.887 + }, + { + "start": 23354.62, + "end": 23355.38, + "probability": 0.6608 + }, + { + "start": 23356.18, + "end": 23357.5, + "probability": 0.9961 + }, + { + "start": 23358.18, + "end": 23359.74, + "probability": 0.9682 + }, + { + "start": 23360.8, + "end": 23361.32, + "probability": 0.9558 + }, + { + "start": 23362.14, + "end": 23364.06, + "probability": 0.7398 + }, + { + "start": 23364.16, + "end": 23365.0, + "probability": 0.71 + }, + { + "start": 23365.76, + "end": 23367.34, + "probability": 0.9924 + }, + { + "start": 23367.5, + "end": 23369.26, + "probability": 0.6065 + }, + { + "start": 23369.26, + "end": 23369.4, + "probability": 0.8269 + }, + { + "start": 23370.3, + "end": 23372.36, + "probability": 0.9775 + }, + { + "start": 23373.06, + "end": 23376.2, + "probability": 0.9746 + }, + { + "start": 23377.84, + "end": 23380.22, + "probability": 0.5018 + }, + { + "start": 23380.82, + "end": 23381.82, + "probability": 0.9258 + }, + { + "start": 23382.04, + "end": 23382.18, + "probability": 0.4111 + }, + { + "start": 23382.3, + "end": 23385.64, + "probability": 0.8508 + }, + { + "start": 23385.66, + "end": 23386.16, + "probability": 0.2655 + }, + { + "start": 23386.2, + "end": 23386.92, + "probability": 0.9622 + }, + { + "start": 23387.56, + "end": 23387.86, + "probability": 0.7522 + }, + { + "start": 23388.5, + "end": 23391.16, + "probability": 0.9682 + }, + { + "start": 23391.74, + "end": 23392.0, + "probability": 0.344 + }, + { + "start": 23392.06, + "end": 23393.29, + "probability": 0.7843 + }, + { + "start": 23393.4, + "end": 23394.43, + "probability": 0.958 + }, + { + "start": 23395.04, + "end": 23395.74, + "probability": 0.7441 + }, + { + "start": 23395.86, + "end": 23396.64, + "probability": 0.2784 + }, + { + "start": 23396.76, + "end": 23397.82, + "probability": 0.9521 + }, + { + "start": 23397.96, + "end": 23399.8, + "probability": 0.9133 + }, + { + "start": 23400.8, + "end": 23402.96, + "probability": 0.9733 + }, + { + "start": 23403.72, + "end": 23407.86, + "probability": 0.8844 + }, + { + "start": 23408.94, + "end": 23411.38, + "probability": 0.777 + }, + { + "start": 23411.98, + "end": 23413.32, + "probability": 0.482 + }, + { + "start": 23413.74, + "end": 23414.66, + "probability": 0.5261 + }, + { + "start": 23415.62, + "end": 23418.52, + "probability": 0.9761 + }, + { + "start": 23418.52, + "end": 23421.06, + "probability": 0.9722 + }, + { + "start": 23422.0, + "end": 23425.69, + "probability": 0.9463 + }, + { + "start": 23426.32, + "end": 23427.6, + "probability": 0.9006 + }, + { + "start": 23428.14, + "end": 23430.5, + "probability": 0.9395 + }, + { + "start": 23430.5, + "end": 23433.7, + "probability": 0.9255 + }, + { + "start": 23434.4, + "end": 23436.9, + "probability": 0.9844 + }, + { + "start": 23437.46, + "end": 23440.76, + "probability": 0.9943 + }, + { + "start": 23440.76, + "end": 23445.22, + "probability": 0.9976 + }, + { + "start": 23445.32, + "end": 23448.42, + "probability": 0.9966 + }, + { + "start": 23448.78, + "end": 23449.82, + "probability": 0.8781 + }, + { + "start": 23449.92, + "end": 23453.57, + "probability": 0.8082 + }, + { + "start": 23454.24, + "end": 23454.78, + "probability": 0.6875 + }, + { + "start": 23455.0, + "end": 23455.88, + "probability": 0.7967 + }, + { + "start": 23456.06, + "end": 23457.36, + "probability": 0.8892 + }, + { + "start": 23458.2, + "end": 23461.1, + "probability": 0.9604 + }, + { + "start": 23461.58, + "end": 23462.42, + "probability": 0.794 + }, + { + "start": 23462.82, + "end": 23465.78, + "probability": 0.9537 + }, + { + "start": 23466.2, + "end": 23469.28, + "probability": 0.7025 + }, + { + "start": 23469.9, + "end": 23470.5, + "probability": 0.6198 + }, + { + "start": 23470.56, + "end": 23474.28, + "probability": 0.9882 + }, + { + "start": 23474.3, + "end": 23477.18, + "probability": 0.9901 + }, + { + "start": 23477.28, + "end": 23479.58, + "probability": 0.9823 + }, + { + "start": 23479.96, + "end": 23483.4, + "probability": 0.8486 + }, + { + "start": 23483.58, + "end": 23486.26, + "probability": 0.7899 + }, + { + "start": 23486.9, + "end": 23491.32, + "probability": 0.9838 + }, + { + "start": 23491.92, + "end": 23494.36, + "probability": 0.9821 + }, + { + "start": 23494.36, + "end": 23496.52, + "probability": 0.9714 + }, + { + "start": 23496.9, + "end": 23500.1, + "probability": 0.9918 + }, + { + "start": 23500.2, + "end": 23500.58, + "probability": 0.7759 + }, + { + "start": 23501.28, + "end": 23503.13, + "probability": 0.7134 + }, + { + "start": 23503.56, + "end": 23508.52, + "probability": 0.7383 + }, + { + "start": 23527.64, + "end": 23530.34, + "probability": 0.5044 + }, + { + "start": 23531.98, + "end": 23536.16, + "probability": 0.7259 + }, + { + "start": 23536.16, + "end": 23542.4, + "probability": 0.8595 + }, + { + "start": 23542.96, + "end": 23545.54, + "probability": 0.7993 + }, + { + "start": 23546.08, + "end": 23547.28, + "probability": 0.9237 + }, + { + "start": 23547.4, + "end": 23552.82, + "probability": 0.971 + }, + { + "start": 23552.94, + "end": 23554.38, + "probability": 0.9717 + }, + { + "start": 23554.96, + "end": 23557.22, + "probability": 0.7489 + }, + { + "start": 23557.34, + "end": 23560.06, + "probability": 0.9796 + }, + { + "start": 23560.12, + "end": 23560.46, + "probability": 0.7735 + }, + { + "start": 23561.24, + "end": 23563.46, + "probability": 0.9461 + }, + { + "start": 23564.2, + "end": 23566.72, + "probability": 0.9821 + }, + { + "start": 23567.02, + "end": 23569.14, + "probability": 0.8439 + }, + { + "start": 23569.56, + "end": 23571.44, + "probability": 0.9927 + }, + { + "start": 23571.7, + "end": 23574.34, + "probability": 0.9709 + }, + { + "start": 23574.84, + "end": 23576.48, + "probability": 0.9839 + }, + { + "start": 23578.02, + "end": 23579.83, + "probability": 0.9917 + }, + { + "start": 23580.42, + "end": 23581.46, + "probability": 0.3028 + }, + { + "start": 23581.48, + "end": 23582.72, + "probability": 0.9622 + }, + { + "start": 23583.3, + "end": 23584.14, + "probability": 0.8777 + }, + { + "start": 23585.68, + "end": 23589.64, + "probability": 0.9735 + }, + { + "start": 23590.32, + "end": 23593.93, + "probability": 0.9879 + }, + { + "start": 23595.16, + "end": 23598.68, + "probability": 0.9836 + }, + { + "start": 23598.72, + "end": 23603.2, + "probability": 0.9554 + }, + { + "start": 23604.3, + "end": 23608.74, + "probability": 0.9616 + }, + { + "start": 23609.42, + "end": 23612.04, + "probability": 0.9371 + }, + { + "start": 23612.6, + "end": 23615.9, + "probability": 0.9391 + }, + { + "start": 23616.52, + "end": 23620.24, + "probability": 0.995 + }, + { + "start": 23621.66, + "end": 23623.5, + "probability": 0.5441 + }, + { + "start": 23624.56, + "end": 23630.76, + "probability": 0.7421 + }, + { + "start": 23631.58, + "end": 23633.88, + "probability": 0.9821 + }, + { + "start": 23635.04, + "end": 23641.5, + "probability": 0.9123 + }, + { + "start": 23642.44, + "end": 23646.26, + "probability": 0.9951 + }, + { + "start": 23646.26, + "end": 23649.64, + "probability": 0.8618 + }, + { + "start": 23650.42, + "end": 23654.06, + "probability": 0.7007 + }, + { + "start": 23655.84, + "end": 23663.88, + "probability": 0.8823 + }, + { + "start": 23666.96, + "end": 23670.32, + "probability": 0.5727 + }, + { + "start": 23671.74, + "end": 23673.84, + "probability": 0.9123 + }, + { + "start": 23675.8, + "end": 23676.52, + "probability": 0.6211 + }, + { + "start": 23677.18, + "end": 23679.64, + "probability": 0.9165 + }, + { + "start": 23679.64, + "end": 23685.08, + "probability": 0.9924 + }, + { + "start": 23685.08, + "end": 23688.46, + "probability": 0.9934 + }, + { + "start": 23688.68, + "end": 23691.54, + "probability": 0.824 + }, + { + "start": 23692.14, + "end": 23699.28, + "probability": 0.8874 + }, + { + "start": 23699.28, + "end": 23704.74, + "probability": 0.9226 + }, + { + "start": 23705.68, + "end": 23706.26, + "probability": 0.8984 + }, + { + "start": 23707.02, + "end": 23707.68, + "probability": 0.7004 + }, + { + "start": 23708.2, + "end": 23711.09, + "probability": 0.9728 + }, + { + "start": 23712.72, + "end": 23715.16, + "probability": 0.9757 + }, + { + "start": 23716.38, + "end": 23720.3, + "probability": 0.7357 + }, + { + "start": 23720.82, + "end": 23723.0, + "probability": 0.9883 + }, + { + "start": 23723.26, + "end": 23728.16, + "probability": 0.9642 + }, + { + "start": 23729.18, + "end": 23731.06, + "probability": 0.4987 + }, + { + "start": 23732.26, + "end": 23733.48, + "probability": 0.1928 + }, + { + "start": 23734.74, + "end": 23737.42, + "probability": 0.997 + }, + { + "start": 23738.58, + "end": 23740.68, + "probability": 0.6745 + }, + { + "start": 23741.98, + "end": 23742.9, + "probability": 0.6974 + }, + { + "start": 23746.56, + "end": 23747.28, + "probability": 0.6235 + }, + { + "start": 23748.76, + "end": 23751.8, + "probability": 0.953 + }, + { + "start": 23753.26, + "end": 23757.62, + "probability": 0.984 + }, + { + "start": 23759.2, + "end": 23761.16, + "probability": 0.9612 + }, + { + "start": 23762.56, + "end": 23763.66, + "probability": 0.9005 + }, + { + "start": 23763.76, + "end": 23764.92, + "probability": 0.9851 + }, + { + "start": 23764.98, + "end": 23766.24, + "probability": 0.9873 + }, + { + "start": 23766.7, + "end": 23771.34, + "probability": 0.9729 + }, + { + "start": 23773.56, + "end": 23779.58, + "probability": 0.9974 + }, + { + "start": 23780.72, + "end": 23781.74, + "probability": 0.9603 + }, + { + "start": 23783.8, + "end": 23785.04, + "probability": 0.8715 + }, + { + "start": 23785.68, + "end": 23786.8, + "probability": 0.981 + }, + { + "start": 23787.48, + "end": 23788.94, + "probability": 0.9677 + }, + { + "start": 23790.9, + "end": 23792.84, + "probability": 0.9862 + }, + { + "start": 23795.58, + "end": 23798.12, + "probability": 0.9978 + }, + { + "start": 23798.68, + "end": 23800.19, + "probability": 0.7025 + }, + { + "start": 23801.04, + "end": 23804.15, + "probability": 0.9319 + }, + { + "start": 23806.14, + "end": 23806.58, + "probability": 0.8184 + }, + { + "start": 23807.86, + "end": 23810.68, + "probability": 0.9935 + }, + { + "start": 23810.74, + "end": 23811.3, + "probability": 0.7324 + }, + { + "start": 23813.32, + "end": 23815.18, + "probability": 0.7656 + }, + { + "start": 23815.76, + "end": 23819.14, + "probability": 0.7371 + }, + { + "start": 23819.72, + "end": 23820.48, + "probability": 0.8201 + }, + { + "start": 23821.94, + "end": 23824.04, + "probability": 0.9917 + }, + { + "start": 23824.3, + "end": 23827.98, + "probability": 0.9609 + }, + { + "start": 23828.06, + "end": 23830.06, + "probability": 0.9614 + }, + { + "start": 23830.9, + "end": 23833.36, + "probability": 0.9736 + }, + { + "start": 23833.94, + "end": 23836.28, + "probability": 0.822 + }, + { + "start": 23837.38, + "end": 23839.32, + "probability": 0.8423 + }, + { + "start": 23840.82, + "end": 23843.26, + "probability": 0.9082 + }, + { + "start": 23843.84, + "end": 23844.36, + "probability": 0.9313 + }, + { + "start": 23845.14, + "end": 23850.1, + "probability": 0.9584 + }, + { + "start": 23850.72, + "end": 23854.86, + "probability": 0.9847 + }, + { + "start": 23855.52, + "end": 23859.62, + "probability": 0.9937 + }, + { + "start": 23861.54, + "end": 23864.76, + "probability": 0.8006 + }, + { + "start": 23866.36, + "end": 23867.88, + "probability": 0.9426 + }, + { + "start": 23870.16, + "end": 23870.54, + "probability": 0.9893 + }, + { + "start": 23871.82, + "end": 23872.86, + "probability": 0.9898 + }, + { + "start": 23873.6, + "end": 23877.0, + "probability": 0.8578 + }, + { + "start": 23877.14, + "end": 23877.54, + "probability": 0.9012 + }, + { + "start": 23878.02, + "end": 23879.48, + "probability": 0.7006 + }, + { + "start": 23879.58, + "end": 23879.81, + "probability": 0.8988 + }, + { + "start": 23880.86, + "end": 23882.54, + "probability": 0.354 + }, + { + "start": 23883.14, + "end": 23886.48, + "probability": 0.7717 + }, + { + "start": 23887.24, + "end": 23890.06, + "probability": 0.6347 + }, + { + "start": 23890.34, + "end": 23893.22, + "probability": 0.2691 + }, + { + "start": 23893.94, + "end": 23896.88, + "probability": 0.0336 + }, + { + "start": 23896.88, + "end": 23897.69, + "probability": 0.344 + }, + { + "start": 23898.32, + "end": 23900.16, + "probability": 0.3418 + }, + { + "start": 23900.16, + "end": 23901.06, + "probability": 0.4878 + }, + { + "start": 23901.22, + "end": 23902.14, + "probability": 0.7196 + }, + { + "start": 23902.66, + "end": 23903.34, + "probability": 0.7584 + }, + { + "start": 23903.42, + "end": 23905.08, + "probability": 0.8972 + }, + { + "start": 23905.38, + "end": 23906.1, + "probability": 0.8223 + }, + { + "start": 23907.32, + "end": 23909.96, + "probability": 0.5113 + }, + { + "start": 23910.1, + "end": 23911.64, + "probability": 0.4174 + }, + { + "start": 23911.94, + "end": 23912.94, + "probability": 0.1317 + }, + { + "start": 23913.28, + "end": 23913.84, + "probability": 0.2083 + }, + { + "start": 23915.86, + "end": 23917.34, + "probability": 0.4074 + }, + { + "start": 23918.78, + "end": 23921.28, + "probability": 0.6185 + }, + { + "start": 23921.56, + "end": 23925.02, + "probability": 0.4825 + }, + { + "start": 23925.64, + "end": 23925.96, + "probability": 0.6708 + }, + { + "start": 23926.14, + "end": 23927.14, + "probability": 0.6209 + }, + { + "start": 23927.24, + "end": 23930.24, + "probability": 0.2716 + }, + { + "start": 23930.24, + "end": 23931.32, + "probability": 0.6534 + }, + { + "start": 23931.56, + "end": 23933.16, + "probability": 0.8722 + }, + { + "start": 23933.36, + "end": 23934.88, + "probability": 0.9266 + }, + { + "start": 23934.96, + "end": 23936.6, + "probability": 0.5169 + }, + { + "start": 23936.68, + "end": 23937.9, + "probability": 0.7748 + }, + { + "start": 23938.66, + "end": 23940.62, + "probability": 0.2202 + }, + { + "start": 23940.62, + "end": 23944.08, + "probability": 0.2045 + }, + { + "start": 23944.4, + "end": 23945.4, + "probability": 0.343 + }, + { + "start": 23945.62, + "end": 23946.02, + "probability": 0.7429 + }, + { + "start": 23947.26, + "end": 23948.59, + "probability": 0.6533 + }, + { + "start": 23949.44, + "end": 23950.22, + "probability": 0.6123 + }, + { + "start": 23950.36, + "end": 23951.46, + "probability": 0.5086 + }, + { + "start": 23951.52, + "end": 23952.4, + "probability": 0.8232 + }, + { + "start": 23953.04, + "end": 23953.53, + "probability": 0.8901 + }, + { + "start": 23953.96, + "end": 23955.42, + "probability": 0.7569 + }, + { + "start": 23955.54, + "end": 23955.82, + "probability": 0.6279 + }, + { + "start": 23956.22, + "end": 23957.39, + "probability": 0.9932 + }, + { + "start": 23957.8, + "end": 23960.54, + "probability": 0.9744 + }, + { + "start": 23960.54, + "end": 23963.62, + "probability": 0.9969 + }, + { + "start": 23963.84, + "end": 23965.94, + "probability": 0.2447 + }, + { + "start": 23969.22, + "end": 23969.5, + "probability": 0.8547 + }, + { + "start": 23969.66, + "end": 23973.99, + "probability": 0.8101 + }, + { + "start": 23974.86, + "end": 23977.6, + "probability": 0.8306 + }, + { + "start": 23978.18, + "end": 23979.58, + "probability": 0.5204 + }, + { + "start": 23979.78, + "end": 23982.44, + "probability": 0.8948 + }, + { + "start": 23982.48, + "end": 23984.44, + "probability": 0.9197 + }, + { + "start": 23984.56, + "end": 23985.6, + "probability": 0.832 + }, + { + "start": 24001.12, + "end": 24001.38, + "probability": 0.2568 + }, + { + "start": 24001.38, + "end": 24001.7, + "probability": 0.1723 + }, + { + "start": 24002.12, + "end": 24002.46, + "probability": 0.1146 + }, + { + "start": 24002.72, + "end": 24003.2, + "probability": 0.419 + }, + { + "start": 24003.46, + "end": 24006.72, + "probability": 0.7369 + }, + { + "start": 24006.72, + "end": 24011.7, + "probability": 0.9119 + }, + { + "start": 24012.46, + "end": 24017.74, + "probability": 0.8674 + }, + { + "start": 24017.74, + "end": 24022.02, + "probability": 0.8499 + }, + { + "start": 24022.62, + "end": 24027.9, + "probability": 0.0469 + }, + { + "start": 24054.5, + "end": 24056.46, + "probability": 0.0411 + }, + { + "start": 24057.82, + "end": 24057.96, + "probability": 0.0187 + }, + { + "start": 24057.96, + "end": 24057.96, + "probability": 0.0385 + }, + { + "start": 24057.96, + "end": 24057.96, + "probability": 0.025 + }, + { + "start": 24057.96, + "end": 24057.96, + "probability": 0.1534 + }, + { + "start": 24057.96, + "end": 24057.96, + "probability": 0.2309 + }, + { + "start": 24057.96, + "end": 24058.9, + "probability": 0.3998 + }, + { + "start": 24059.3, + "end": 24060.44, + "probability": 0.3129 + }, + { + "start": 24061.08, + "end": 24064.86, + "probability": 0.8741 + }, + { + "start": 24065.7, + "end": 24069.42, + "probability": 0.9088 + }, + { + "start": 24070.2, + "end": 24072.14, + "probability": 0.9678 + }, + { + "start": 24072.92, + "end": 24077.04, + "probability": 0.7609 + }, + { + "start": 24078.16, + "end": 24078.82, + "probability": 0.9145 + }, + { + "start": 24079.98, + "end": 24084.2, + "probability": 0.8956 + }, + { + "start": 24084.42, + "end": 24090.05, + "probability": 0.9956 + }, + { + "start": 24090.48, + "end": 24091.62, + "probability": 0.9973 + }, + { + "start": 24092.32, + "end": 24093.78, + "probability": 0.7331 + }, + { + "start": 24093.9, + "end": 24096.02, + "probability": 0.643 + }, + { + "start": 24096.18, + "end": 24098.5, + "probability": 0.9648 + }, + { + "start": 24102.56, + "end": 24107.76, + "probability": 0.9962 + }, + { + "start": 24108.44, + "end": 24110.24, + "probability": 0.9701 + }, + { + "start": 24111.66, + "end": 24112.96, + "probability": 0.6875 + }, + { + "start": 24113.5, + "end": 24114.62, + "probability": 0.8548 + }, + { + "start": 24116.74, + "end": 24122.0, + "probability": 0.957 + }, + { + "start": 24123.06, + "end": 24126.22, + "probability": 0.9724 + }, + { + "start": 24126.98, + "end": 24127.08, + "probability": 0.3008 + }, + { + "start": 24127.52, + "end": 24127.82, + "probability": 0.8298 + }, + { + "start": 24127.86, + "end": 24128.36, + "probability": 0.8639 + }, + { + "start": 24128.66, + "end": 24132.36, + "probability": 0.9168 + }, + { + "start": 24133.42, + "end": 24134.14, + "probability": 0.6339 + }, + { + "start": 24134.76, + "end": 24137.82, + "probability": 0.9856 + }, + { + "start": 24137.82, + "end": 24140.76, + "probability": 0.9885 + }, + { + "start": 24141.84, + "end": 24143.84, + "probability": 0.979 + }, + { + "start": 24144.38, + "end": 24145.42, + "probability": 0.5019 + }, + { + "start": 24146.48, + "end": 24149.62, + "probability": 0.9426 + }, + { + "start": 24150.74, + "end": 24153.88, + "probability": 0.9409 + }, + { + "start": 24155.2, + "end": 24157.88, + "probability": 0.9204 + }, + { + "start": 24157.96, + "end": 24159.02, + "probability": 0.9926 + }, + { + "start": 24159.98, + "end": 24161.48, + "probability": 0.937 + }, + { + "start": 24162.68, + "end": 24163.36, + "probability": 0.8643 + }, + { + "start": 24164.28, + "end": 24168.86, + "probability": 0.9915 + }, + { + "start": 24169.76, + "end": 24173.64, + "probability": 0.7942 + }, + { + "start": 24174.38, + "end": 24177.16, + "probability": 0.8467 + }, + { + "start": 24178.64, + "end": 24179.16, + "probability": 0.8072 + }, + { + "start": 24180.02, + "end": 24180.96, + "probability": 0.7318 + }, + { + "start": 24181.08, + "end": 24187.06, + "probability": 0.9903 + }, + { + "start": 24188.2, + "end": 24193.1, + "probability": 0.9886 + }, + { + "start": 24194.44, + "end": 24200.08, + "probability": 0.9956 + }, + { + "start": 24200.98, + "end": 24202.84, + "probability": 0.9344 + }, + { + "start": 24203.56, + "end": 24205.7, + "probability": 0.9341 + }, + { + "start": 24206.3, + "end": 24208.82, + "probability": 0.9697 + }, + { + "start": 24210.0, + "end": 24211.8, + "probability": 0.9851 + }, + { + "start": 24212.62, + "end": 24215.22, + "probability": 0.8442 + }, + { + "start": 24215.36, + "end": 24218.92, + "probability": 0.9631 + }, + { + "start": 24220.26, + "end": 24222.4, + "probability": 0.9722 + }, + { + "start": 24223.58, + "end": 24227.18, + "probability": 0.8686 + }, + { + "start": 24227.66, + "end": 24232.94, + "probability": 0.9333 + }, + { + "start": 24233.5, + "end": 24235.34, + "probability": 0.9955 + }, + { + "start": 24236.1, + "end": 24239.04, + "probability": 0.9272 + }, + { + "start": 24240.18, + "end": 24243.98, + "probability": 0.9846 + }, + { + "start": 24245.22, + "end": 24246.9, + "probability": 0.9774 + }, + { + "start": 24248.48, + "end": 24249.03, + "probability": 0.812 + }, + { + "start": 24250.0, + "end": 24250.74, + "probability": 0.4557 + }, + { + "start": 24250.92, + "end": 24251.52, + "probability": 0.8117 + }, + { + "start": 24251.66, + "end": 24253.66, + "probability": 0.8931 + }, + { + "start": 24254.42, + "end": 24259.44, + "probability": 0.8997 + }, + { + "start": 24260.26, + "end": 24262.42, + "probability": 0.9881 + }, + { + "start": 24263.02, + "end": 24265.46, + "probability": 0.9286 + }, + { + "start": 24265.46, + "end": 24265.54, + "probability": 0.2518 + }, + { + "start": 24265.86, + "end": 24267.0, + "probability": 0.7617 + }, + { + "start": 24267.08, + "end": 24269.32, + "probability": 0.9181 + }, + { + "start": 24269.5, + "end": 24270.44, + "probability": 0.6691 + }, + { + "start": 24271.06, + "end": 24271.4, + "probability": 0.6513 + }, + { + "start": 24271.78, + "end": 24272.3, + "probability": 0.9161 + }, + { + "start": 24272.8, + "end": 24276.78, + "probability": 0.9637 + }, + { + "start": 24277.98, + "end": 24280.32, + "probability": 0.7594 + }, + { + "start": 24280.32, + "end": 24280.46, + "probability": 0.3105 + }, + { + "start": 24280.52, + "end": 24281.4, + "probability": 0.221 + }, + { + "start": 24281.48, + "end": 24282.72, + "probability": 0.4493 + }, + { + "start": 24282.72, + "end": 24284.44, + "probability": 0.8669 + }, + { + "start": 24284.44, + "end": 24286.72, + "probability": 0.9471 + }, + { + "start": 24286.82, + "end": 24287.6, + "probability": 0.7452 + }, + { + "start": 24287.7, + "end": 24289.82, + "probability": 0.8525 + }, + { + "start": 24290.68, + "end": 24292.16, + "probability": 0.4895 + }, + { + "start": 24292.16, + "end": 24294.39, + "probability": 0.5027 + }, + { + "start": 24294.62, + "end": 24294.62, + "probability": 0.701 + }, + { + "start": 24294.72, + "end": 24296.3, + "probability": 0.6276 + }, + { + "start": 24297.24, + "end": 24299.5, + "probability": 0.5132 + }, + { + "start": 24299.5, + "end": 24300.34, + "probability": 0.3181 + }, + { + "start": 24300.34, + "end": 24301.38, + "probability": 0.7585 + }, + { + "start": 24302.36, + "end": 24305.06, + "probability": 0.837 + }, + { + "start": 24305.16, + "end": 24306.6, + "probability": 0.6457 + }, + { + "start": 24306.88, + "end": 24307.64, + "probability": 0.0316 + }, + { + "start": 24307.84, + "end": 24307.86, + "probability": 0.2717 + }, + { + "start": 24307.86, + "end": 24308.0, + "probability": 0.2758 + }, + { + "start": 24308.0, + "end": 24309.1, + "probability": 0.2426 + }, + { + "start": 24309.2, + "end": 24310.48, + "probability": 0.2702 + }, + { + "start": 24311.4, + "end": 24312.56, + "probability": 0.6234 + }, + { + "start": 24312.74, + "end": 24312.82, + "probability": 0.556 + }, + { + "start": 24312.82, + "end": 24314.5, + "probability": 0.7156 + }, + { + "start": 24315.02, + "end": 24316.78, + "probability": 0.8398 + }, + { + "start": 24317.54, + "end": 24319.96, + "probability": 0.4916 + }, + { + "start": 24319.98, + "end": 24320.32, + "probability": 0.6356 + }, + { + "start": 24320.44, + "end": 24322.14, + "probability": 0.804 + }, + { + "start": 24322.14, + "end": 24323.06, + "probability": 0.7108 + }, + { + "start": 24323.3, + "end": 24325.88, + "probability": 0.8644 + }, + { + "start": 24326.1, + "end": 24326.3, + "probability": 0.3634 + }, + { + "start": 24326.32, + "end": 24326.84, + "probability": 0.8302 + }, + { + "start": 24327.4, + "end": 24329.76, + "probability": 0.9141 + }, + { + "start": 24329.76, + "end": 24330.04, + "probability": 0.4077 + }, + { + "start": 24330.42, + "end": 24333.06, + "probability": 0.75 + }, + { + "start": 24333.94, + "end": 24334.22, + "probability": 0.2232 + }, + { + "start": 24334.22, + "end": 24335.17, + "probability": 0.8047 + }, + { + "start": 24336.04, + "end": 24337.4, + "probability": 0.8522 + }, + { + "start": 24337.48, + "end": 24338.0, + "probability": 0.4915 + }, + { + "start": 24338.06, + "end": 24338.42, + "probability": 0.8143 + }, + { + "start": 24338.6, + "end": 24340.52, + "probability": 0.6587 + }, + { + "start": 24341.06, + "end": 24346.36, + "probability": 0.7644 + }, + { + "start": 24346.36, + "end": 24346.36, + "probability": 0.242 + }, + { + "start": 24346.36, + "end": 24346.52, + "probability": 0.3152 + }, + { + "start": 24346.72, + "end": 24350.26, + "probability": 0.8333 + }, + { + "start": 24350.98, + "end": 24353.98, + "probability": 0.9783 + }, + { + "start": 24354.34, + "end": 24358.18, + "probability": 0.9946 + }, + { + "start": 24358.28, + "end": 24360.4, + "probability": 0.6023 + }, + { + "start": 24360.46, + "end": 24361.1, + "probability": 0.6874 + }, + { + "start": 24361.62, + "end": 24362.8, + "probability": 0.8645 + }, + { + "start": 24363.0, + "end": 24365.1, + "probability": 0.8915 + }, + { + "start": 24365.3, + "end": 24370.88, + "probability": 0.9151 + }, + { + "start": 24371.18, + "end": 24372.59, + "probability": 0.8657 + }, + { + "start": 24373.36, + "end": 24377.74, + "probability": 0.9886 + }, + { + "start": 24377.74, + "end": 24380.96, + "probability": 0.9995 + }, + { + "start": 24381.52, + "end": 24384.2, + "probability": 0.9948 + }, + { + "start": 24384.62, + "end": 24385.02, + "probability": 0.0867 + }, + { + "start": 24385.94, + "end": 24385.94, + "probability": 0.1282 + }, + { + "start": 24385.94, + "end": 24385.94, + "probability": 0.1508 + }, + { + "start": 24385.94, + "end": 24385.94, + "probability": 0.1727 + }, + { + "start": 24385.94, + "end": 24389.48, + "probability": 0.8069 + }, + { + "start": 24389.54, + "end": 24390.98, + "probability": 0.6011 + }, + { + "start": 24391.32, + "end": 24392.14, + "probability": 0.8123 + }, + { + "start": 24392.54, + "end": 24393.87, + "probability": 0.9028 + }, + { + "start": 24394.82, + "end": 24395.02, + "probability": 0.0723 + }, + { + "start": 24395.02, + "end": 24396.0, + "probability": 0.3661 + }, + { + "start": 24396.4, + "end": 24400.3, + "probability": 0.8035 + }, + { + "start": 24402.3, + "end": 24404.64, + "probability": 0.052 + }, + { + "start": 24405.28, + "end": 24407.04, + "probability": 0.3209 + }, + { + "start": 24407.04, + "end": 24407.14, + "probability": 0.2059 + }, + { + "start": 24407.14, + "end": 24408.02, + "probability": 0.0282 + }, + { + "start": 24408.06, + "end": 24411.47, + "probability": 0.925 + }, + { + "start": 24412.06, + "end": 24412.72, + "probability": 0.6306 + }, + { + "start": 24413.88, + "end": 24414.23, + "probability": 0.1287 + }, + { + "start": 24417.32, + "end": 24418.08, + "probability": 0.0286 + }, + { + "start": 24418.5, + "end": 24418.5, + "probability": 0.1085 + }, + { + "start": 24418.5, + "end": 24418.52, + "probability": 0.0442 + }, + { + "start": 24418.52, + "end": 24422.44, + "probability": 0.0954 + }, + { + "start": 24422.62, + "end": 24422.62, + "probability": 0.0488 + }, + { + "start": 24422.62, + "end": 24424.14, + "probability": 0.2116 + }, + { + "start": 24424.88, + "end": 24424.94, + "probability": 0.2299 + }, + { + "start": 24424.94, + "end": 24424.94, + "probability": 0.3744 + }, + { + "start": 24424.94, + "end": 24424.94, + "probability": 0.2388 + }, + { + "start": 24424.94, + "end": 24424.94, + "probability": 0.3656 + }, + { + "start": 24424.94, + "end": 24426.66, + "probability": 0.2583 + }, + { + "start": 24426.84, + "end": 24428.48, + "probability": 0.4803 + }, + { + "start": 24429.5, + "end": 24431.52, + "probability": 0.9038 + }, + { + "start": 24431.74, + "end": 24433.46, + "probability": 0.9397 + }, + { + "start": 24435.86, + "end": 24435.92, + "probability": 0.208 + }, + { + "start": 24435.92, + "end": 24437.76, + "probability": 0.6855 + }, + { + "start": 24439.06, + "end": 24439.22, + "probability": 0.097 + }, + { + "start": 24439.22, + "end": 24441.84, + "probability": 0.7306 + }, + { + "start": 24441.94, + "end": 24443.2, + "probability": 0.1954 + }, + { + "start": 24443.34, + "end": 24445.8, + "probability": 0.8405 + }, + { + "start": 24445.96, + "end": 24449.88, + "probability": 0.0236 + }, + { + "start": 24450.52, + "end": 24453.22, + "probability": 0.1384 + }, + { + "start": 24453.48, + "end": 24453.5, + "probability": 0.0643 + }, + { + "start": 24453.5, + "end": 24454.86, + "probability": 0.2934 + }, + { + "start": 24455.52, + "end": 24455.52, + "probability": 0.1441 + }, + { + "start": 24455.52, + "end": 24460.66, + "probability": 0.3975 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.0, + "end": 24504.0, + "probability": 0.0 + }, + { + "start": 24504.18, + "end": 24504.18, + "probability": 0.0414 + }, + { + "start": 24504.18, + "end": 24504.74, + "probability": 0.0712 + }, + { + "start": 24504.82, + "end": 24504.96, + "probability": 0.0855 + }, + { + "start": 24504.96, + "end": 24505.82, + "probability": 0.3221 + }, + { + "start": 24506.1, + "end": 24511.16, + "probability": 0.0652 + }, + { + "start": 24513.72, + "end": 24517.19, + "probability": 0.0125 + }, + { + "start": 24521.66, + "end": 24522.3, + "probability": 0.0618 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24641.0, + "end": 24641.0, + "probability": 0.0 + }, + { + "start": 24649.84, + "end": 24650.36, + "probability": 0.0096 + }, + { + "start": 24650.36, + "end": 24650.6, + "probability": 0.1075 + }, + { + "start": 24650.92, + "end": 24651.52, + "probability": 0.2309 + }, + { + "start": 24653.62, + "end": 24657.78, + "probability": 0.1506 + }, + { + "start": 24658.06, + "end": 24660.98, + "probability": 0.0431 + }, + { + "start": 24661.42, + "end": 24664.4, + "probability": 0.0311 + }, + { + "start": 24664.44, + "end": 24666.38, + "probability": 0.2657 + }, + { + "start": 24667.42, + "end": 24669.32, + "probability": 0.1096 + }, + { + "start": 24669.82, + "end": 24673.44, + "probability": 0.0422 + }, + { + "start": 24675.72, + "end": 24675.82, + "probability": 0.046 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.0, + "end": 24763.0, + "probability": 0.0 + }, + { + "start": 24763.36, + "end": 24763.36, + "probability": 0.1862 + }, + { + "start": 24763.36, + "end": 24764.54, + "probability": 0.7384 + }, + { + "start": 24768.2, + "end": 24770.46, + "probability": 0.9924 + }, + { + "start": 24770.7, + "end": 24774.8, + "probability": 0.9955 + }, + { + "start": 24775.36, + "end": 24781.44, + "probability": 0.9958 + }, + { + "start": 24782.36, + "end": 24786.1, + "probability": 0.8844 + }, + { + "start": 24786.1, + "end": 24789.78, + "probability": 0.9442 + }, + { + "start": 24790.18, + "end": 24794.82, + "probability": 0.915 + }, + { + "start": 24794.82, + "end": 24800.06, + "probability": 0.9921 + }, + { + "start": 24800.76, + "end": 24803.34, + "probability": 0.995 + }, + { + "start": 24804.32, + "end": 24807.82, + "probability": 0.8471 + }, + { + "start": 24807.9, + "end": 24810.74, + "probability": 0.7342 + }, + { + "start": 24811.22, + "end": 24814.2, + "probability": 0.9604 + }, + { + "start": 24814.98, + "end": 24815.82, + "probability": 0.9615 + }, + { + "start": 24816.7, + "end": 24823.94, + "probability": 0.9914 + }, + { + "start": 24824.62, + "end": 24827.02, + "probability": 0.9601 + }, + { + "start": 24827.66, + "end": 24831.84, + "probability": 0.9531 + }, + { + "start": 24832.4, + "end": 24837.02, + "probability": 0.9744 + }, + { + "start": 24837.14, + "end": 24838.16, + "probability": 0.9421 + }, + { + "start": 24838.8, + "end": 24842.12, + "probability": 0.9956 + }, + { + "start": 24842.66, + "end": 24844.86, + "probability": 0.9954 + }, + { + "start": 24845.8, + "end": 24846.64, + "probability": 0.8867 + }, + { + "start": 24846.8, + "end": 24847.56, + "probability": 0.48 + }, + { + "start": 24847.7, + "end": 24852.72, + "probability": 0.9397 + }, + { + "start": 24853.4, + "end": 24858.12, + "probability": 0.9954 + }, + { + "start": 24858.7, + "end": 24861.96, + "probability": 0.9738 + }, + { + "start": 24862.6, + "end": 24869.76, + "probability": 0.9921 + }, + { + "start": 24870.14, + "end": 24871.7, + "probability": 0.9841 + }, + { + "start": 24872.24, + "end": 24873.76, + "probability": 0.9248 + }, + { + "start": 24874.22, + "end": 24878.9, + "probability": 0.9928 + }, + { + "start": 24879.62, + "end": 24880.5, + "probability": 0.8729 + }, + { + "start": 24881.08, + "end": 24885.5, + "probability": 0.9855 + }, + { + "start": 24886.18, + "end": 24889.28, + "probability": 0.9927 + }, + { + "start": 24889.28, + "end": 24893.2, + "probability": 0.9948 + }, + { + "start": 24893.9, + "end": 24895.06, + "probability": 0.8457 + }, + { + "start": 24895.78, + "end": 24897.66, + "probability": 0.588 + }, + { + "start": 24897.72, + "end": 24898.32, + "probability": 0.6206 + }, + { + "start": 24898.32, + "end": 24900.42, + "probability": 0.8284 + }, + { + "start": 24900.78, + "end": 24901.68, + "probability": 0.7016 + }, + { + "start": 24901.84, + "end": 24903.56, + "probability": 0.7607 + }, + { + "start": 24904.18, + "end": 24909.38, + "probability": 0.9729 + }, + { + "start": 24910.1, + "end": 24910.52, + "probability": 0.8491 + }, + { + "start": 24910.98, + "end": 24914.9, + "probability": 0.9907 + }, + { + "start": 24914.9, + "end": 24918.54, + "probability": 0.9545 + }, + { + "start": 24918.98, + "end": 24925.37, + "probability": 0.9458 + }, + { + "start": 24927.32, + "end": 24927.74, + "probability": 0.6203 + }, + { + "start": 24927.84, + "end": 24929.38, + "probability": 0.8853 + }, + { + "start": 24929.42, + "end": 24930.9, + "probability": 0.7516 + }, + { + "start": 24931.02, + "end": 24934.32, + "probability": 0.9586 + }, + { + "start": 24935.06, + "end": 24936.66, + "probability": 0.9476 + }, + { + "start": 24936.88, + "end": 24937.86, + "probability": 0.6133 + }, + { + "start": 24938.02, + "end": 24938.45, + "probability": 0.9487 + }, + { + "start": 24938.76, + "end": 24941.23, + "probability": 0.9766 + }, + { + "start": 24943.63, + "end": 24945.26, + "probability": 0.8467 + }, + { + "start": 24945.32, + "end": 24947.1, + "probability": 0.6107 + }, + { + "start": 24947.68, + "end": 24950.44, + "probability": 0.9648 + }, + { + "start": 24950.98, + "end": 24955.32, + "probability": 0.9141 + }, + { + "start": 24955.52, + "end": 24955.74, + "probability": 0.1011 + }, + { + "start": 24955.74, + "end": 24955.84, + "probability": 0.5408 + }, + { + "start": 24955.84, + "end": 24955.84, + "probability": 0.1268 + }, + { + "start": 24955.94, + "end": 24956.36, + "probability": 0.8148 + }, + { + "start": 24957.06, + "end": 24957.44, + "probability": 0.3394 + }, + { + "start": 24957.74, + "end": 24960.48, + "probability": 0.9287 + }, + { + "start": 24962.33, + "end": 24965.42, + "probability": 0.7518 + }, + { + "start": 24965.5, + "end": 24966.56, + "probability": 0.8992 + }, + { + "start": 24966.74, + "end": 24972.54, + "probability": 0.9792 + }, + { + "start": 24972.88, + "end": 24974.42, + "probability": 0.8809 + }, + { + "start": 24974.48, + "end": 24974.9, + "probability": 0.8411 + }, + { + "start": 24975.42, + "end": 24976.82, + "probability": 0.9514 + }, + { + "start": 24977.08, + "end": 24977.74, + "probability": 0.562 + }, + { + "start": 24977.74, + "end": 24978.3, + "probability": 0.8443 + }, + { + "start": 24978.52, + "end": 24979.24, + "probability": 0.7596 + }, + { + "start": 24980.22, + "end": 24981.8, + "probability": 0.8752 + }, + { + "start": 24983.08, + "end": 24988.64, + "probability": 0.7785 + }, + { + "start": 24989.46, + "end": 24990.36, + "probability": 0.8202 + }, + { + "start": 24991.06, + "end": 24993.48, + "probability": 0.8856 + }, + { + "start": 24993.86, + "end": 24995.06, + "probability": 0.8684 + }, + { + "start": 24995.66, + "end": 24997.66, + "probability": 0.9809 + }, + { + "start": 24998.26, + "end": 25000.12, + "probability": 0.9922 + }, + { + "start": 25000.64, + "end": 25003.5, + "probability": 0.9417 + }, + { + "start": 25004.66, + "end": 25005.44, + "probability": 0.8543 + }, + { + "start": 25006.12, + "end": 25007.54, + "probability": 0.9069 + }, + { + "start": 25007.74, + "end": 25008.1, + "probability": 0.8972 + }, + { + "start": 25009.52, + "end": 25009.58, + "probability": 0.4292 + }, + { + "start": 25009.58, + "end": 25010.89, + "probability": 0.9719 + }, + { + "start": 25011.3, + "end": 25012.28, + "probability": 0.8967 + }, + { + "start": 25012.3, + "end": 25012.48, + "probability": 0.9479 + }, + { + "start": 25013.72, + "end": 25014.22, + "probability": 0.7365 + }, + { + "start": 25014.9, + "end": 25018.98, + "probability": 0.9561 + }, + { + "start": 25019.74, + "end": 25023.14, + "probability": 0.8907 + }, + { + "start": 25024.14, + "end": 25030.66, + "probability": 0.7775 + }, + { + "start": 25031.38, + "end": 25033.27, + "probability": 0.9238 + }, + { + "start": 25034.12, + "end": 25036.1, + "probability": 0.9084 + }, + { + "start": 25036.68, + "end": 25040.18, + "probability": 0.9744 + }, + { + "start": 25040.94, + "end": 25047.12, + "probability": 0.979 + }, + { + "start": 25047.48, + "end": 25047.94, + "probability": 0.1012 + }, + { + "start": 25047.94, + "end": 25047.94, + "probability": 0.0237 + }, + { + "start": 25047.94, + "end": 25047.94, + "probability": 0.0246 + }, + { + "start": 25047.94, + "end": 25049.0, + "probability": 0.7191 + }, + { + "start": 25049.42, + "end": 25049.66, + "probability": 0.2849 + }, + { + "start": 25049.78, + "end": 25050.66, + "probability": 0.6768 + }, + { + "start": 25051.2, + "end": 25055.32, + "probability": 0.7901 + }, + { + "start": 25055.58, + "end": 25061.0, + "probability": 0.8455 + }, + { + "start": 25061.32, + "end": 25062.8, + "probability": 0.7044 + }, + { + "start": 25063.0, + "end": 25064.4, + "probability": 0.9143 + }, + { + "start": 25064.76, + "end": 25066.14, + "probability": 0.6132 + }, + { + "start": 25066.24, + "end": 25066.84, + "probability": 0.9302 + }, + { + "start": 25067.06, + "end": 25068.14, + "probability": 0.9399 + }, + { + "start": 25068.5, + "end": 25069.1, + "probability": 0.3854 + }, + { + "start": 25069.42, + "end": 25071.12, + "probability": 0.9941 + }, + { + "start": 25071.38, + "end": 25073.42, + "probability": 0.4997 + }, + { + "start": 25073.96, + "end": 25074.84, + "probability": 0.9932 + }, + { + "start": 25075.3, + "end": 25075.92, + "probability": 0.9579 + }, + { + "start": 25075.92, + "end": 25076.96, + "probability": 0.7013 + }, + { + "start": 25077.62, + "end": 25078.48, + "probability": 0.7928 + }, + { + "start": 25079.06, + "end": 25082.24, + "probability": 0.9246 + }, + { + "start": 25082.46, + "end": 25083.54, + "probability": 0.4889 + }, + { + "start": 25083.78, + "end": 25085.74, + "probability": 0.9272 + }, + { + "start": 25085.92, + "end": 25087.6, + "probability": 0.9254 + }, + { + "start": 25087.96, + "end": 25089.48, + "probability": 0.9624 + }, + { + "start": 25089.78, + "end": 25096.5, + "probability": 0.9899 + }, + { + "start": 25096.78, + "end": 25097.22, + "probability": 0.3875 + }, + { + "start": 25097.64, + "end": 25097.64, + "probability": 0.0196 + }, + { + "start": 25097.64, + "end": 25099.02, + "probability": 0.7356 + }, + { + "start": 25099.44, + "end": 25100.88, + "probability": 0.9208 + }, + { + "start": 25100.98, + "end": 25106.26, + "probability": 0.9526 + }, + { + "start": 25106.46, + "end": 25107.78, + "probability": 0.8698 + }, + { + "start": 25107.86, + "end": 25109.7, + "probability": 0.9496 + }, + { + "start": 25110.06, + "end": 25110.62, + "probability": 0.8645 + }, + { + "start": 25110.94, + "end": 25111.58, + "probability": 0.6544 + }, + { + "start": 25111.84, + "end": 25113.4, + "probability": 0.9383 + }, + { + "start": 25113.58, + "end": 25118.44, + "probability": 0.9648 + }, + { + "start": 25118.46, + "end": 25118.46, + "probability": 0.0057 + }, + { + "start": 25118.46, + "end": 25118.46, + "probability": 0.4401 + }, + { + "start": 25118.46, + "end": 25122.06, + "probability": 0.9254 + }, + { + "start": 25122.12, + "end": 25123.96, + "probability": 0.2106 + }, + { + "start": 25124.24, + "end": 25127.28, + "probability": 0.4598 + }, + { + "start": 25127.38, + "end": 25129.57, + "probability": 0.8623 + }, + { + "start": 25130.54, + "end": 25131.0, + "probability": 0.5641 + }, + { + "start": 25131.12, + "end": 25134.16, + "probability": 0.9787 + }, + { + "start": 25134.82, + "end": 25141.58, + "probability": 0.9865 + }, + { + "start": 25141.58, + "end": 25147.86, + "probability": 0.998 + }, + { + "start": 25147.98, + "end": 25149.24, + "probability": 0.5693 + }, + { + "start": 25149.36, + "end": 25151.99, + "probability": 0.3848 + }, + { + "start": 25152.66, + "end": 25153.94, + "probability": 0.9294 + }, + { + "start": 25154.54, + "end": 25156.76, + "probability": 0.9349 + }, + { + "start": 25157.18, + "end": 25157.98, + "probability": 0.6161 + }, + { + "start": 25158.18, + "end": 25159.08, + "probability": 0.4171 + }, + { + "start": 25159.46, + "end": 25160.04, + "probability": 0.5574 + }, + { + "start": 25160.76, + "end": 25165.04, + "probability": 0.8446 + }, + { + "start": 25165.64, + "end": 25168.5, + "probability": 0.7622 + }, + { + "start": 25169.06, + "end": 25170.02, + "probability": 0.7154 + }, + { + "start": 25170.16, + "end": 25171.04, + "probability": 0.9731 + }, + { + "start": 25171.1, + "end": 25171.94, + "probability": 0.7554 + }, + { + "start": 25171.94, + "end": 25176.26, + "probability": 0.8866 + }, + { + "start": 25176.84, + "end": 25177.42, + "probability": 0.0713 + }, + { + "start": 25177.42, + "end": 25177.96, + "probability": 0.0949 + }, + { + "start": 25177.96, + "end": 25178.95, + "probability": 0.2522 + }, + { + "start": 25179.98, + "end": 25182.02, + "probability": 0.8982 + }, + { + "start": 25182.52, + "end": 25186.38, + "probability": 0.9768 + }, + { + "start": 25186.7, + "end": 25191.18, + "probability": 0.9264 + }, + { + "start": 25191.48, + "end": 25192.79, + "probability": 0.6854 + }, + { + "start": 25194.5, + "end": 25196.08, + "probability": 0.8018 + }, + { + "start": 25196.2, + "end": 25200.9, + "probability": 0.9719 + }, + { + "start": 25201.2, + "end": 25202.16, + "probability": 0.7324 + }, + { + "start": 25202.22, + "end": 25204.38, + "probability": 0.8138 + }, + { + "start": 25204.42, + "end": 25209.76, + "probability": 0.9124 + }, + { + "start": 25210.18, + "end": 25210.54, + "probability": 0.8437 + }, + { + "start": 25210.66, + "end": 25213.1, + "probability": 0.9873 + }, + { + "start": 25213.88, + "end": 25215.32, + "probability": 0.9546 + }, + { + "start": 25215.94, + "end": 25219.17, + "probability": 0.8617 + }, + { + "start": 25220.08, + "end": 25220.58, + "probability": 0.6949 + }, + { + "start": 25221.14, + "end": 25224.82, + "probability": 0.9705 + }, + { + "start": 25225.54, + "end": 25230.02, + "probability": 0.6068 + }, + { + "start": 25230.74, + "end": 25231.76, + "probability": 0.3571 + }, + { + "start": 25231.76, + "end": 25232.78, + "probability": 0.4283 + }, + { + "start": 25233.1, + "end": 25233.12, + "probability": 0.1996 + }, + { + "start": 25233.12, + "end": 25234.96, + "probability": 0.0134 + }, + { + "start": 25238.68, + "end": 25243.78, + "probability": 0.9717 + }, + { + "start": 25244.36, + "end": 25247.42, + "probability": 0.9319 + }, + { + "start": 25249.3, + "end": 25249.58, + "probability": 0.564 + }, + { + "start": 25249.72, + "end": 25251.96, + "probability": 0.8098 + }, + { + "start": 25252.62, + "end": 25254.78, + "probability": 0.8877 + }, + { + "start": 25254.78, + "end": 25259.28, + "probability": 0.9585 + }, + { + "start": 25259.94, + "end": 25263.44, + "probability": 0.9777 + }, + { + "start": 25263.94, + "end": 25268.6, + "probability": 0.9255 + }, + { + "start": 25268.76, + "end": 25268.98, + "probability": 0.5059 + }, + { + "start": 25269.02, + "end": 25270.02, + "probability": 0.691 + }, + { + "start": 25270.14, + "end": 25271.1, + "probability": 0.7389 + }, + { + "start": 25271.22, + "end": 25272.93, + "probability": 0.6587 + }, + { + "start": 25273.1, + "end": 25274.31, + "probability": 0.7444 + }, + { + "start": 25274.42, + "end": 25276.0, + "probability": 0.6461 + }, + { + "start": 25276.24, + "end": 25276.46, + "probability": 0.8489 + }, + { + "start": 25276.46, + "end": 25280.26, + "probability": 0.9902 + }, + { + "start": 25280.98, + "end": 25287.0, + "probability": 0.9931 + }, + { + "start": 25287.0, + "end": 25293.34, + "probability": 0.9104 + }, + { + "start": 25293.88, + "end": 25296.04, + "probability": 0.814 + }, + { + "start": 25296.14, + "end": 25297.66, + "probability": 0.9077 + }, + { + "start": 25297.82, + "end": 25299.44, + "probability": 0.6209 + }, + { + "start": 25300.64, + "end": 25302.28, + "probability": 0.9452 + }, + { + "start": 25303.38, + "end": 25305.98, + "probability": 0.9075 + }, + { + "start": 25306.44, + "end": 25307.1, + "probability": 0.9107 + }, + { + "start": 25307.32, + "end": 25309.26, + "probability": 0.2229 + }, + { + "start": 25309.82, + "end": 25311.24, + "probability": 0.9672 + }, + { + "start": 25311.48, + "end": 25314.34, + "probability": 0.7932 + }, + { + "start": 25314.5, + "end": 25315.24, + "probability": 0.9556 + }, + { + "start": 25315.52, + "end": 25316.36, + "probability": 0.9431 + }, + { + "start": 25316.7, + "end": 25318.4, + "probability": 0.7394 + }, + { + "start": 25318.52, + "end": 25319.22, + "probability": 0.8739 + }, + { + "start": 25319.3, + "end": 25320.0, + "probability": 0.9407 + }, + { + "start": 25320.58, + "end": 25321.18, + "probability": 0.926 + }, + { + "start": 25321.4, + "end": 25322.39, + "probability": 0.9804 + }, + { + "start": 25322.5, + "end": 25323.2, + "probability": 0.6881 + }, + { + "start": 25324.58, + "end": 25330.24, + "probability": 0.7017 + }, + { + "start": 25330.48, + "end": 25331.42, + "probability": 0.6215 + }, + { + "start": 25332.91, + "end": 25335.7, + "probability": 0.9906 + }, + { + "start": 25335.8, + "end": 25338.66, + "probability": 0.9395 + }, + { + "start": 25339.52, + "end": 25341.96, + "probability": 0.9938 + }, + { + "start": 25342.7, + "end": 25347.08, + "probability": 0.9058 + }, + { + "start": 25347.22, + "end": 25348.32, + "probability": 0.9678 + }, + { + "start": 25348.96, + "end": 25351.32, + "probability": 0.9893 + }, + { + "start": 25352.08, + "end": 25354.04, + "probability": 0.5376 + }, + { + "start": 25354.36, + "end": 25356.48, + "probability": 0.9148 + }, + { + "start": 25356.9, + "end": 25359.32, + "probability": 0.4824 + }, + { + "start": 25360.2, + "end": 25361.24, + "probability": 0.5534 + }, + { + "start": 25361.36, + "end": 25365.78, + "probability": 0.7539 + }, + { + "start": 25366.04, + "end": 25366.88, + "probability": 0.4999 + }, + { + "start": 25367.08, + "end": 25368.8, + "probability": 0.4387 + }, + { + "start": 25368.8, + "end": 25370.12, + "probability": 0.75 + }, + { + "start": 25370.27, + "end": 25370.99, + "probability": 0.1204 + }, + { + "start": 25372.5, + "end": 25373.76, + "probability": 0.3019 + }, + { + "start": 25373.76, + "end": 25375.24, + "probability": 0.5847 + }, + { + "start": 25375.64, + "end": 25376.66, + "probability": 0.8187 + }, + { + "start": 25376.88, + "end": 25380.9, + "probability": 0.9322 + }, + { + "start": 25381.26, + "end": 25383.42, + "probability": 0.3919 + }, + { + "start": 25383.66, + "end": 25384.24, + "probability": 0.0064 + }, + { + "start": 25384.24, + "end": 25385.83, + "probability": 0.3054 + }, + { + "start": 25386.04, + "end": 25387.92, + "probability": 0.273 + }, + { + "start": 25388.7, + "end": 25390.46, + "probability": 0.6171 + }, + { + "start": 25390.64, + "end": 25395.84, + "probability": 0.8034 + }, + { + "start": 25396.34, + "end": 25397.65, + "probability": 0.9912 + }, + { + "start": 25399.08, + "end": 25399.26, + "probability": 0.0028 + }, + { + "start": 25400.7, + "end": 25402.12, + "probability": 0.1999 + }, + { + "start": 25402.16, + "end": 25403.56, + "probability": 0.8252 + }, + { + "start": 25404.78, + "end": 25405.5, + "probability": 0.8792 + }, + { + "start": 25405.62, + "end": 25407.64, + "probability": 0.9647 + }, + { + "start": 25408.38, + "end": 25411.49, + "probability": 0.9273 + }, + { + "start": 25412.11, + "end": 25414.78, + "probability": 0.9738 + }, + { + "start": 25414.88, + "end": 25420.5, + "probability": 0.9792 + }, + { + "start": 25422.0, + "end": 25422.88, + "probability": 0.8403 + }, + { + "start": 25423.14, + "end": 25423.73, + "probability": 0.2952 + }, + { + "start": 25427.88, + "end": 25429.2, + "probability": 0.7137 + }, + { + "start": 25429.56, + "end": 25430.18, + "probability": 0.57 + }, + { + "start": 25430.5, + "end": 25431.34, + "probability": 0.8302 + }, + { + "start": 25431.6, + "end": 25435.92, + "probability": 0.9185 + }, + { + "start": 25435.98, + "end": 25437.96, + "probability": 0.9691 + }, + { + "start": 25438.72, + "end": 25440.16, + "probability": 0.9962 + }, + { + "start": 25440.92, + "end": 25441.7, + "probability": 0.3417 + }, + { + "start": 25441.7, + "end": 25444.2, + "probability": 0.9893 + }, + { + "start": 25444.82, + "end": 25445.94, + "probability": 0.9563 + }, + { + "start": 25446.1, + "end": 25447.78, + "probability": 0.9966 + }, + { + "start": 25448.04, + "end": 25449.03, + "probability": 0.9888 + }, + { + "start": 25449.8, + "end": 25451.29, + "probability": 0.5554 + }, + { + "start": 25451.7, + "end": 25452.76, + "probability": 0.922 + }, + { + "start": 25455.24, + "end": 25459.26, + "probability": 0.8941 + }, + { + "start": 25460.72, + "end": 25462.2, + "probability": 0.9263 + }, + { + "start": 25462.28, + "end": 25463.34, + "probability": 0.9548 + }, + { + "start": 25463.4, + "end": 25464.8, + "probability": 0.9634 + }, + { + "start": 25465.18, + "end": 25467.18, + "probability": 0.8964 + }, + { + "start": 25467.3, + "end": 25468.76, + "probability": 0.6508 + }, + { + "start": 25469.91, + "end": 25471.18, + "probability": 0.9571 + }, + { + "start": 25472.78, + "end": 25478.18, + "probability": 0.9067 + }, + { + "start": 25478.32, + "end": 25481.42, + "probability": 0.954 + }, + { + "start": 25482.64, + "end": 25485.38, + "probability": 0.6661 + }, + { + "start": 25485.5, + "end": 25488.26, + "probability": 0.5806 + }, + { + "start": 25488.82, + "end": 25492.96, + "probability": 0.9305 + }, + { + "start": 25493.72, + "end": 25496.15, + "probability": 0.9138 + }, + { + "start": 25498.2, + "end": 25500.56, + "probability": 0.9585 + }, + { + "start": 25502.38, + "end": 25504.36, + "probability": 0.9694 + }, + { + "start": 25504.36, + "end": 25507.44, + "probability": 0.9894 + }, + { + "start": 25508.08, + "end": 25509.08, + "probability": 0.6881 + }, + { + "start": 25509.66, + "end": 25512.28, + "probability": 0.9536 + }, + { + "start": 25512.46, + "end": 25512.78, + "probability": 0.7641 + }, + { + "start": 25512.88, + "end": 25513.44, + "probability": 0.917 + }, + { + "start": 25513.88, + "end": 25518.08, + "probability": 0.8574 + }, + { + "start": 25518.26, + "end": 25520.22, + "probability": 0.8406 + }, + { + "start": 25521.72, + "end": 25522.74, + "probability": 0.739 + }, + { + "start": 25523.76, + "end": 25524.66, + "probability": 0.584 + }, + { + "start": 25525.72, + "end": 25526.26, + "probability": 0.9415 + }, + { + "start": 25527.48, + "end": 25528.94, + "probability": 0.5271 + }, + { + "start": 25529.06, + "end": 25530.14, + "probability": 0.9731 + }, + { + "start": 25530.22, + "end": 25533.13, + "probability": 0.9168 + }, + { + "start": 25533.7, + "end": 25536.52, + "probability": 0.9702 + }, + { + "start": 25537.16, + "end": 25538.36, + "probability": 0.5564 + }, + { + "start": 25539.38, + "end": 25541.16, + "probability": 0.8759 + }, + { + "start": 25541.26, + "end": 25543.38, + "probability": 0.9294 + }, + { + "start": 25547.64, + "end": 25549.22, + "probability": 0.7377 + }, + { + "start": 25549.42, + "end": 25552.06, + "probability": 0.8959 + }, + { + "start": 25558.0, + "end": 25565.7, + "probability": 0.3378 + }, + { + "start": 25567.13, + "end": 25569.24, + "probability": 0.1495 + }, + { + "start": 25569.24, + "end": 25570.26, + "probability": 0.1231 + }, + { + "start": 25572.56, + "end": 25574.38, + "probability": 0.1881 + }, + { + "start": 25577.04, + "end": 25577.3, + "probability": 0.0364 + }, + { + "start": 25581.88, + "end": 25585.66, + "probability": 0.0299 + }, + { + "start": 25586.24, + "end": 25587.58, + "probability": 0.1788 + }, + { + "start": 25587.613, + "end": 25587.613, + "probability": 0.0 + }, + { + "start": 25587.613, + "end": 25587.613, + "probability": 0.0 + }, + { + "start": 25587.613, + "end": 25587.613, + "probability": 0.0 + } + ], + "segments_count": 8941, + "words_count": 44236, + "avg_words_per_segment": 4.9475, + "avg_segment_duration": 2.0502, + "avg_words_per_minute": 103.7284, + "plenum_id": "21529", + "duration": 25587.6, + "title": null, + "plenum_date": "2012-05-02" +} \ No newline at end of file