diff --git "a/2481/metadata.json" "b/2481/metadata.json" new file mode 100644--- /dev/null +++ "b/2481/metadata.json" @@ -0,0 +1,54517 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "2481", + "quality_score": 0.8809, + "per_segment_quality_scores": [ + { + "start": 101.07, + "end": 103.7, + "probability": 0.6714 + }, + { + "start": 104.36, + "end": 104.38, + "probability": 0.4592 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 127.83, + "end": 128.32, + "probability": 0.1009 + }, + { + "start": 128.4, + "end": 130.58, + "probability": 0.0308 + }, + { + "start": 130.6, + "end": 130.94, + "probability": 0.0138 + }, + { + "start": 133.76, + "end": 139.12, + "probability": 0.09 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.0, + "end": 250.0, + "probability": 0.0 + }, + { + "start": 250.16, + "end": 250.82, + "probability": 0.1989 + }, + { + "start": 250.82, + "end": 254.82, + "probability": 0.7209 + }, + { + "start": 254.96, + "end": 255.4, + "probability": 0.6506 + }, + { + "start": 256.24, + "end": 257.94, + "probability": 0.9872 + }, + { + "start": 258.2, + "end": 261.84, + "probability": 0.9959 + }, + { + "start": 261.84, + "end": 266.72, + "probability": 0.9915 + }, + { + "start": 267.5, + "end": 268.94, + "probability": 0.9073 + }, + { + "start": 269.38, + "end": 270.98, + "probability": 0.9901 + }, + { + "start": 271.14, + "end": 273.14, + "probability": 0.8877 + }, + { + "start": 274.16, + "end": 276.3, + "probability": 0.9751 + }, + { + "start": 276.96, + "end": 280.84, + "probability": 0.9156 + }, + { + "start": 281.9, + "end": 285.5, + "probability": 0.7848 + }, + { + "start": 285.6, + "end": 288.86, + "probability": 0.9702 + }, + { + "start": 289.98, + "end": 294.9, + "probability": 0.5345 + }, + { + "start": 295.08, + "end": 295.78, + "probability": 0.644 + }, + { + "start": 296.0, + "end": 296.54, + "probability": 0.5832 + }, + { + "start": 297.08, + "end": 298.68, + "probability": 0.9692 + }, + { + "start": 298.8, + "end": 300.5, + "probability": 0.9571 + }, + { + "start": 301.16, + "end": 303.94, + "probability": 0.9677 + }, + { + "start": 304.58, + "end": 307.42, + "probability": 0.9922 + }, + { + "start": 307.42, + "end": 311.42, + "probability": 0.9972 + }, + { + "start": 312.48, + "end": 315.18, + "probability": 0.7976 + }, + { + "start": 317.5, + "end": 318.12, + "probability": 0.1841 + }, + { + "start": 318.46, + "end": 319.7, + "probability": 0.2898 + }, + { + "start": 321.94, + "end": 324.86, + "probability": 0.8373 + }, + { + "start": 325.5, + "end": 328.36, + "probability": 0.997 + }, + { + "start": 328.96, + "end": 333.5, + "probability": 0.9941 + }, + { + "start": 334.26, + "end": 335.66, + "probability": 0.39 + }, + { + "start": 336.24, + "end": 338.24, + "probability": 0.9541 + }, + { + "start": 338.58, + "end": 339.72, + "probability": 0.9863 + }, + { + "start": 340.34, + "end": 343.7, + "probability": 0.9966 + }, + { + "start": 344.24, + "end": 346.18, + "probability": 0.9924 + }, + { + "start": 346.82, + "end": 348.06, + "probability": 0.8936 + }, + { + "start": 348.28, + "end": 350.07, + "probability": 0.3708 + }, + { + "start": 350.2, + "end": 351.38, + "probability": 0.4164 + }, + { + "start": 354.36, + "end": 355.74, + "probability": 0.8452 + }, + { + "start": 356.96, + "end": 360.02, + "probability": 0.8912 + }, + { + "start": 360.9, + "end": 361.68, + "probability": 0.4177 + }, + { + "start": 361.68, + "end": 361.82, + "probability": 0.5521 + }, + { + "start": 362.16, + "end": 368.62, + "probability": 0.9419 + }, + { + "start": 368.7, + "end": 374.56, + "probability": 0.9966 + }, + { + "start": 374.66, + "end": 375.78, + "probability": 0.7201 + }, + { + "start": 375.88, + "end": 378.54, + "probability": 0.995 + }, + { + "start": 378.88, + "end": 381.74, + "probability": 0.908 + }, + { + "start": 382.58, + "end": 384.24, + "probability": 0.8954 + }, + { + "start": 385.16, + "end": 385.66, + "probability": 0.4868 + }, + { + "start": 385.9, + "end": 389.74, + "probability": 0.9871 + }, + { + "start": 389.84, + "end": 392.22, + "probability": 0.9983 + }, + { + "start": 392.56, + "end": 393.94, + "probability": 0.7529 + }, + { + "start": 395.18, + "end": 397.78, + "probability": 0.7888 + }, + { + "start": 398.58, + "end": 401.28, + "probability": 0.9513 + }, + { + "start": 402.29, + "end": 403.04, + "probability": 0.0974 + }, + { + "start": 404.0, + "end": 405.96, + "probability": 0.961 + }, + { + "start": 406.14, + "end": 409.68, + "probability": 0.7974 + }, + { + "start": 410.46, + "end": 413.28, + "probability": 0.9688 + }, + { + "start": 413.72, + "end": 414.88, + "probability": 0.868 + }, + { + "start": 415.58, + "end": 416.16, + "probability": 0.386 + }, + { + "start": 417.0, + "end": 417.9, + "probability": 0.9651 + }, + { + "start": 418.04, + "end": 421.58, + "probability": 0.9784 + }, + { + "start": 421.58, + "end": 425.08, + "probability": 0.9934 + }, + { + "start": 425.12, + "end": 426.52, + "probability": 0.9581 + }, + { + "start": 427.38, + "end": 432.2, + "probability": 0.9146 + }, + { + "start": 433.2, + "end": 436.26, + "probability": 0.753 + }, + { + "start": 436.98, + "end": 441.02, + "probability": 0.9905 + }, + { + "start": 441.62, + "end": 444.12, + "probability": 0.9956 + }, + { + "start": 444.84, + "end": 447.66, + "probability": 0.8972 + }, + { + "start": 447.66, + "end": 450.36, + "probability": 0.9995 + }, + { + "start": 451.58, + "end": 453.08, + "probability": 0.7202 + }, + { + "start": 453.2, + "end": 456.0, + "probability": 0.9855 + }, + { + "start": 456.24, + "end": 459.52, + "probability": 0.9398 + }, + { + "start": 459.52, + "end": 463.06, + "probability": 0.9905 + }, + { + "start": 463.12, + "end": 466.68, + "probability": 0.9862 + }, + { + "start": 467.42, + "end": 471.86, + "probability": 0.9866 + }, + { + "start": 471.92, + "end": 472.48, + "probability": 0.9817 + }, + { + "start": 472.88, + "end": 473.28, + "probability": 0.6221 + }, + { + "start": 473.42, + "end": 473.86, + "probability": 0.5247 + }, + { + "start": 474.66, + "end": 480.96, + "probability": 0.9961 + }, + { + "start": 481.1, + "end": 482.8, + "probability": 0.9429 + }, + { + "start": 482.96, + "end": 485.2, + "probability": 0.9326 + }, + { + "start": 485.84, + "end": 487.32, + "probability": 0.8909 + }, + { + "start": 488.18, + "end": 489.86, + "probability": 0.9933 + }, + { + "start": 489.98, + "end": 490.68, + "probability": 0.6035 + }, + { + "start": 491.06, + "end": 494.88, + "probability": 0.9937 + }, + { + "start": 495.54, + "end": 500.62, + "probability": 0.9761 + }, + { + "start": 500.82, + "end": 502.04, + "probability": 0.7028 + }, + { + "start": 502.82, + "end": 504.16, + "probability": 0.5051 + }, + { + "start": 504.68, + "end": 507.64, + "probability": 0.9318 + }, + { + "start": 508.88, + "end": 514.28, + "probability": 0.3515 + }, + { + "start": 514.84, + "end": 518.9, + "probability": 0.9946 + }, + { + "start": 518.94, + "end": 521.38, + "probability": 0.6642 + }, + { + "start": 521.4, + "end": 521.94, + "probability": 0.3525 + }, + { + "start": 522.06, + "end": 523.88, + "probability": 0.9053 + }, + { + "start": 524.16, + "end": 526.42, + "probability": 0.9804 + }, + { + "start": 526.44, + "end": 528.74, + "probability": 0.6341 + }, + { + "start": 528.92, + "end": 531.2, + "probability": 0.9907 + }, + { + "start": 531.74, + "end": 532.6, + "probability": 0.9727 + }, + { + "start": 533.12, + "end": 534.24, + "probability": 0.8522 + }, + { + "start": 534.68, + "end": 539.02, + "probability": 0.7498 + }, + { + "start": 540.2, + "end": 541.24, + "probability": 0.8964 + }, + { + "start": 541.94, + "end": 543.67, + "probability": 0.5747 + }, + { + "start": 543.82, + "end": 546.2, + "probability": 0.704 + }, + { + "start": 546.38, + "end": 547.96, + "probability": 0.9976 + }, + { + "start": 548.36, + "end": 550.38, + "probability": 0.9528 + }, + { + "start": 551.14, + "end": 554.26, + "probability": 0.8719 + }, + { + "start": 555.24, + "end": 556.88, + "probability": 0.6304 + }, + { + "start": 556.88, + "end": 559.66, + "probability": 0.6652 + }, + { + "start": 559.94, + "end": 559.94, + "probability": 0.5458 + }, + { + "start": 559.94, + "end": 564.08, + "probability": 0.9508 + }, + { + "start": 564.08, + "end": 565.14, + "probability": 0.5978 + }, + { + "start": 565.18, + "end": 569.42, + "probability": 0.9117 + }, + { + "start": 570.78, + "end": 576.36, + "probability": 0.9863 + }, + { + "start": 577.02, + "end": 580.52, + "probability": 0.7077 + }, + { + "start": 580.72, + "end": 581.34, + "probability": 0.9111 + }, + { + "start": 581.52, + "end": 585.02, + "probability": 0.6943 + }, + { + "start": 585.02, + "end": 589.56, + "probability": 0.9338 + }, + { + "start": 589.7, + "end": 594.14, + "probability": 0.9923 + }, + { + "start": 594.14, + "end": 601.18, + "probability": 0.959 + }, + { + "start": 602.24, + "end": 603.58, + "probability": 0.8379 + }, + { + "start": 603.74, + "end": 605.72, + "probability": 0.903 + }, + { + "start": 606.68, + "end": 609.56, + "probability": 0.12 + }, + { + "start": 610.1, + "end": 613.06, + "probability": 0.9378 + }, + { + "start": 613.52, + "end": 614.69, + "probability": 0.7783 + }, + { + "start": 615.88, + "end": 619.12, + "probability": 0.9032 + }, + { + "start": 619.24, + "end": 620.54, + "probability": 0.5957 + }, + { + "start": 620.98, + "end": 624.34, + "probability": 0.6838 + }, + { + "start": 624.48, + "end": 627.98, + "probability": 0.9942 + }, + { + "start": 628.74, + "end": 634.28, + "probability": 0.8219 + }, + { + "start": 634.96, + "end": 638.48, + "probability": 0.8164 + }, + { + "start": 638.56, + "end": 639.82, + "probability": 0.884 + }, + { + "start": 639.94, + "end": 640.76, + "probability": 0.9932 + }, + { + "start": 641.92, + "end": 645.22, + "probability": 0.5904 + }, + { + "start": 645.64, + "end": 647.55, + "probability": 0.2047 + }, + { + "start": 648.44, + "end": 649.16, + "probability": 0.6996 + }, + { + "start": 649.48, + "end": 649.48, + "probability": 0.535 + }, + { + "start": 649.52, + "end": 651.28, + "probability": 0.9441 + }, + { + "start": 651.4, + "end": 655.64, + "probability": 0.9841 + }, + { + "start": 655.82, + "end": 656.14, + "probability": 0.3108 + }, + { + "start": 656.14, + "end": 658.2, + "probability": 0.8936 + }, + { + "start": 659.46, + "end": 660.48, + "probability": 0.7648 + }, + { + "start": 660.72, + "end": 662.22, + "probability": 0.2377 + }, + { + "start": 662.22, + "end": 666.76, + "probability": 0.9969 + }, + { + "start": 667.3, + "end": 672.58, + "probability": 0.9102 + }, + { + "start": 673.26, + "end": 677.74, + "probability": 0.9946 + }, + { + "start": 677.74, + "end": 681.46, + "probability": 0.9279 + }, + { + "start": 681.62, + "end": 684.06, + "probability": 0.9745 + }, + { + "start": 684.72, + "end": 689.54, + "probability": 0.6607 + }, + { + "start": 689.98, + "end": 692.76, + "probability": 0.9021 + }, + { + "start": 693.2, + "end": 696.08, + "probability": 0.9331 + }, + { + "start": 698.97, + "end": 702.76, + "probability": 0.9093 + }, + { + "start": 703.44, + "end": 707.88, + "probability": 0.9766 + }, + { + "start": 708.6, + "end": 709.24, + "probability": 0.6728 + }, + { + "start": 709.86, + "end": 713.12, + "probability": 0.9933 + }, + { + "start": 714.3, + "end": 718.68, + "probability": 0.9888 + }, + { + "start": 719.7, + "end": 720.16, + "probability": 0.7254 + }, + { + "start": 720.32, + "end": 720.88, + "probability": 0.5162 + }, + { + "start": 720.88, + "end": 721.1, + "probability": 0.0182 + }, + { + "start": 722.26, + "end": 722.88, + "probability": 0.7036 + }, + { + "start": 723.18, + "end": 727.14, + "probability": 0.7 + }, + { + "start": 727.38, + "end": 732.04, + "probability": 0.99 + }, + { + "start": 732.06, + "end": 735.56, + "probability": 0.9701 + }, + { + "start": 737.14, + "end": 740.24, + "probability": 0.9811 + }, + { + "start": 740.68, + "end": 741.31, + "probability": 0.9888 + }, + { + "start": 742.08, + "end": 743.98, + "probability": 0.978 + }, + { + "start": 744.88, + "end": 748.84, + "probability": 0.9273 + }, + { + "start": 750.48, + "end": 752.16, + "probability": 0.6665 + }, + { + "start": 752.6, + "end": 757.22, + "probability": 0.9325 + }, + { + "start": 757.62, + "end": 758.66, + "probability": 0.6733 + }, + { + "start": 759.34, + "end": 760.32, + "probability": 0.9395 + }, + { + "start": 760.44, + "end": 762.68, + "probability": 0.994 + }, + { + "start": 763.32, + "end": 765.72, + "probability": 0.9875 + }, + { + "start": 765.72, + "end": 768.16, + "probability": 0.998 + }, + { + "start": 769.74, + "end": 771.2, + "probability": 0.8755 + }, + { + "start": 771.38, + "end": 774.68, + "probability": 0.6076 + }, + { + "start": 775.6, + "end": 777.6, + "probability": 0.8777 + }, + { + "start": 777.6, + "end": 780.28, + "probability": 0.9964 + }, + { + "start": 781.56, + "end": 784.96, + "probability": 0.7859 + }, + { + "start": 785.18, + "end": 786.64, + "probability": 0.9336 + }, + { + "start": 787.44, + "end": 790.28, + "probability": 0.9914 + }, + { + "start": 790.92, + "end": 794.06, + "probability": 0.9846 + }, + { + "start": 794.82, + "end": 797.0, + "probability": 0.748 + }, + { + "start": 798.98, + "end": 801.42, + "probability": 0.9974 + }, + { + "start": 801.42, + "end": 803.96, + "probability": 0.9977 + }, + { + "start": 805.34, + "end": 807.86, + "probability": 0.9792 + }, + { + "start": 808.38, + "end": 811.14, + "probability": 0.8353 + }, + { + "start": 811.78, + "end": 814.98, + "probability": 0.9829 + }, + { + "start": 816.2, + "end": 816.62, + "probability": 0.7531 + }, + { + "start": 817.26, + "end": 818.64, + "probability": 0.7816 + }, + { + "start": 818.8, + "end": 819.14, + "probability": 0.9745 + }, + { + "start": 819.32, + "end": 821.46, + "probability": 0.9933 + }, + { + "start": 821.46, + "end": 824.0, + "probability": 0.6956 + }, + { + "start": 824.6, + "end": 827.5, + "probability": 0.7823 + }, + { + "start": 828.86, + "end": 832.1, + "probability": 0.9977 + }, + { + "start": 832.8, + "end": 835.28, + "probability": 0.916 + }, + { + "start": 835.28, + "end": 837.8, + "probability": 0.9931 + }, + { + "start": 839.04, + "end": 845.48, + "probability": 0.9786 + }, + { + "start": 846.14, + "end": 849.92, + "probability": 0.9873 + }, + { + "start": 850.7, + "end": 854.92, + "probability": 0.9965 + }, + { + "start": 855.68, + "end": 858.28, + "probability": 0.9817 + }, + { + "start": 859.3, + "end": 860.74, + "probability": 0.7257 + }, + { + "start": 860.9, + "end": 862.24, + "probability": 0.9963 + }, + { + "start": 862.92, + "end": 863.88, + "probability": 0.8984 + }, + { + "start": 864.92, + "end": 867.92, + "probability": 0.9751 + }, + { + "start": 868.84, + "end": 874.66, + "probability": 0.9889 + }, + { + "start": 875.48, + "end": 879.54, + "probability": 0.9939 + }, + { + "start": 879.64, + "end": 881.02, + "probability": 0.9202 + }, + { + "start": 881.6, + "end": 882.86, + "probability": 0.9771 + }, + { + "start": 883.28, + "end": 885.92, + "probability": 0.9922 + }, + { + "start": 886.08, + "end": 889.42, + "probability": 0.8247 + }, + { + "start": 889.82, + "end": 893.44, + "probability": 0.9939 + }, + { + "start": 894.86, + "end": 896.52, + "probability": 0.9795 + }, + { + "start": 896.64, + "end": 899.64, + "probability": 0.991 + }, + { + "start": 899.88, + "end": 900.62, + "probability": 0.7377 + }, + { + "start": 901.5, + "end": 904.5, + "probability": 0.8762 + }, + { + "start": 904.78, + "end": 906.14, + "probability": 0.9976 + }, + { + "start": 906.66, + "end": 908.88, + "probability": 0.9844 + }, + { + "start": 909.2, + "end": 909.48, + "probability": 0.4944 + }, + { + "start": 910.16, + "end": 916.58, + "probability": 0.9952 + }, + { + "start": 917.08, + "end": 918.98, + "probability": 0.9946 + }, + { + "start": 921.49, + "end": 925.44, + "probability": 0.6986 + }, + { + "start": 925.72, + "end": 929.14, + "probability": 0.991 + }, + { + "start": 929.72, + "end": 932.48, + "probability": 0.9873 + }, + { + "start": 932.74, + "end": 937.7, + "probability": 0.9929 + }, + { + "start": 938.28, + "end": 941.06, + "probability": 0.9865 + }, + { + "start": 941.58, + "end": 943.94, + "probability": 0.9785 + }, + { + "start": 944.08, + "end": 944.5, + "probability": 0.7638 + }, + { + "start": 945.14, + "end": 945.46, + "probability": 0.5679 + }, + { + "start": 945.5, + "end": 948.12, + "probability": 0.6301 + }, + { + "start": 952.96, + "end": 954.82, + "probability": 0.9235 + }, + { + "start": 955.5, + "end": 958.84, + "probability": 0.8927 + }, + { + "start": 959.64, + "end": 964.16, + "probability": 0.938 + }, + { + "start": 964.26, + "end": 964.8, + "probability": 0.6207 + }, + { + "start": 964.84, + "end": 966.0, + "probability": 0.7472 + }, + { + "start": 966.76, + "end": 967.88, + "probability": 0.8734 + }, + { + "start": 969.63, + "end": 973.52, + "probability": 0.6728 + }, + { + "start": 974.72, + "end": 977.0, + "probability": 0.9341 + }, + { + "start": 977.62, + "end": 982.36, + "probability": 0.7705 + }, + { + "start": 983.36, + "end": 983.92, + "probability": 0.7336 + }, + { + "start": 984.12, + "end": 984.68, + "probability": 0.5108 + }, + { + "start": 984.92, + "end": 987.64, + "probability": 0.7599 + }, + { + "start": 988.32, + "end": 991.02, + "probability": 0.8368 + }, + { + "start": 991.62, + "end": 993.5, + "probability": 0.9666 + }, + { + "start": 994.84, + "end": 997.82, + "probability": 0.9847 + }, + { + "start": 998.3, + "end": 1000.8, + "probability": 0.9478 + }, + { + "start": 1000.94, + "end": 1008.42, + "probability": 0.9673 + }, + { + "start": 1008.96, + "end": 1010.68, + "probability": 0.995 + }, + { + "start": 1010.86, + "end": 1013.18, + "probability": 0.9795 + }, + { + "start": 1013.64, + "end": 1017.33, + "probability": 0.9974 + }, + { + "start": 1018.8, + "end": 1021.3, + "probability": 0.8768 + }, + { + "start": 1021.44, + "end": 1022.46, + "probability": 0.8459 + }, + { + "start": 1022.52, + "end": 1024.78, + "probability": 0.7108 + }, + { + "start": 1025.28, + "end": 1026.38, + "probability": 0.9629 + }, + { + "start": 1026.7, + "end": 1029.39, + "probability": 0.5356 + }, + { + "start": 1030.32, + "end": 1031.86, + "probability": 0.7493 + }, + { + "start": 1031.9, + "end": 1035.22, + "probability": 0.8846 + }, + { + "start": 1035.36, + "end": 1040.9, + "probability": 0.8408 + }, + { + "start": 1041.3, + "end": 1041.54, + "probability": 0.8016 + }, + { + "start": 1041.8, + "end": 1042.26, + "probability": 0.7122 + }, + { + "start": 1042.38, + "end": 1047.66, + "probability": 0.9843 + }, + { + "start": 1047.78, + "end": 1050.25, + "probability": 0.9951 + }, + { + "start": 1052.0, + "end": 1057.42, + "probability": 0.9841 + }, + { + "start": 1057.82, + "end": 1059.42, + "probability": 0.9973 + }, + { + "start": 1061.66, + "end": 1061.66, + "probability": 0.1932 + }, + { + "start": 1061.72, + "end": 1062.82, + "probability": 0.7245 + }, + { + "start": 1062.92, + "end": 1065.14, + "probability": 0.9803 + }, + { + "start": 1065.76, + "end": 1066.36, + "probability": 0.9675 + }, + { + "start": 1070.74, + "end": 1072.82, + "probability": 0.6913 + }, + { + "start": 1072.88, + "end": 1075.53, + "probability": 0.9685 + }, + { + "start": 1076.54, + "end": 1076.54, + "probability": 0.7105 + }, + { + "start": 1076.54, + "end": 1081.36, + "probability": 0.9779 + }, + { + "start": 1083.38, + "end": 1085.42, + "probability": 0.9924 + }, + { + "start": 1086.48, + "end": 1089.56, + "probability": 0.9906 + }, + { + "start": 1089.62, + "end": 1091.94, + "probability": 0.8542 + }, + { + "start": 1093.2, + "end": 1094.4, + "probability": 0.8044 + }, + { + "start": 1095.0, + "end": 1098.12, + "probability": 0.9202 + }, + { + "start": 1098.12, + "end": 1102.66, + "probability": 0.9101 + }, + { + "start": 1102.66, + "end": 1106.86, + "probability": 0.9933 + }, + { + "start": 1108.13, + "end": 1110.32, + "probability": 0.8802 + }, + { + "start": 1111.5, + "end": 1113.1, + "probability": 0.9688 + }, + { + "start": 1113.42, + "end": 1115.57, + "probability": 0.6791 + }, + { + "start": 1117.16, + "end": 1117.66, + "probability": 0.9907 + }, + { + "start": 1118.2, + "end": 1120.68, + "probability": 0.9818 + }, + { + "start": 1121.6, + "end": 1123.36, + "probability": 0.9976 + }, + { + "start": 1124.06, + "end": 1126.9, + "probability": 0.9357 + }, + { + "start": 1128.32, + "end": 1131.96, + "probability": 0.737 + }, + { + "start": 1131.96, + "end": 1136.1, + "probability": 0.7799 + }, + { + "start": 1136.16, + "end": 1137.7, + "probability": 0.9927 + }, + { + "start": 1138.58, + "end": 1138.68, + "probability": 0.5667 + }, + { + "start": 1138.78, + "end": 1146.4, + "probability": 0.9564 + }, + { + "start": 1146.48, + "end": 1149.14, + "probability": 0.9831 + }, + { + "start": 1150.02, + "end": 1150.56, + "probability": 0.9589 + }, + { + "start": 1151.14, + "end": 1155.04, + "probability": 0.9272 + }, + { + "start": 1156.26, + "end": 1157.56, + "probability": 0.8521 + }, + { + "start": 1158.44, + "end": 1161.92, + "probability": 0.948 + }, + { + "start": 1163.24, + "end": 1167.08, + "probability": 0.7901 + }, + { + "start": 1167.86, + "end": 1172.8, + "probability": 0.7452 + }, + { + "start": 1174.63, + "end": 1180.82, + "probability": 0.9661 + }, + { + "start": 1182.08, + "end": 1184.14, + "probability": 0.5701 + }, + { + "start": 1184.84, + "end": 1185.08, + "probability": 0.4846 + }, + { + "start": 1185.12, + "end": 1187.5, + "probability": 0.8883 + }, + { + "start": 1188.56, + "end": 1191.08, + "probability": 0.9426 + }, + { + "start": 1192.16, + "end": 1195.84, + "probability": 0.9269 + }, + { + "start": 1196.16, + "end": 1197.3, + "probability": 0.9596 + }, + { + "start": 1197.66, + "end": 1198.4, + "probability": 0.6993 + }, + { + "start": 1198.96, + "end": 1202.72, + "probability": 0.9681 + }, + { + "start": 1203.4, + "end": 1205.42, + "probability": 0.7267 + }, + { + "start": 1205.76, + "end": 1208.8, + "probability": 0.8513 + }, + { + "start": 1208.88, + "end": 1211.88, + "probability": 0.9604 + }, + { + "start": 1211.94, + "end": 1214.16, + "probability": 0.9883 + }, + { + "start": 1219.88, + "end": 1222.58, + "probability": 0.6714 + }, + { + "start": 1224.24, + "end": 1227.04, + "probability": 0.8108 + }, + { + "start": 1227.88, + "end": 1230.44, + "probability": 0.9907 + }, + { + "start": 1231.88, + "end": 1235.84, + "probability": 0.9888 + }, + { + "start": 1236.58, + "end": 1238.3, + "probability": 0.8188 + }, + { + "start": 1238.48, + "end": 1240.15, + "probability": 0.8496 + }, + { + "start": 1240.94, + "end": 1243.84, + "probability": 0.9918 + }, + { + "start": 1244.46, + "end": 1245.98, + "probability": 0.9971 + }, + { + "start": 1246.64, + "end": 1247.68, + "probability": 0.9155 + }, + { + "start": 1248.36, + "end": 1249.12, + "probability": 0.8708 + }, + { + "start": 1249.68, + "end": 1251.1, + "probability": 0.9694 + }, + { + "start": 1251.56, + "end": 1253.06, + "probability": 0.9756 + }, + { + "start": 1253.54, + "end": 1255.46, + "probability": 0.9854 + }, + { + "start": 1255.46, + "end": 1257.68, + "probability": 0.9743 + }, + { + "start": 1259.28, + "end": 1260.4, + "probability": 0.3486 + }, + { + "start": 1261.54, + "end": 1263.96, + "probability": 0.9092 + }, + { + "start": 1265.16, + "end": 1267.48, + "probability": 0.9596 + }, + { + "start": 1267.48, + "end": 1272.14, + "probability": 0.9437 + }, + { + "start": 1272.78, + "end": 1275.7, + "probability": 0.9946 + }, + { + "start": 1276.24, + "end": 1277.3, + "probability": 0.9436 + }, + { + "start": 1277.54, + "end": 1278.06, + "probability": 0.5978 + }, + { + "start": 1278.08, + "end": 1280.54, + "probability": 0.8965 + }, + { + "start": 1281.38, + "end": 1282.8, + "probability": 0.9332 + }, + { + "start": 1283.88, + "end": 1285.28, + "probability": 0.9693 + }, + { + "start": 1285.88, + "end": 1287.22, + "probability": 0.935 + }, + { + "start": 1287.22, + "end": 1289.12, + "probability": 0.7426 + }, + { + "start": 1289.72, + "end": 1292.54, + "probability": 0.9985 + }, + { + "start": 1292.94, + "end": 1294.14, + "probability": 0.7243 + }, + { + "start": 1294.48, + "end": 1296.38, + "probability": 0.7979 + }, + { + "start": 1296.86, + "end": 1298.92, + "probability": 0.9884 + }, + { + "start": 1300.1, + "end": 1301.9, + "probability": 0.4394 + }, + { + "start": 1304.18, + "end": 1307.0, + "probability": 0.7349 + }, + { + "start": 1307.76, + "end": 1308.88, + "probability": 0.9141 + }, + { + "start": 1309.48, + "end": 1311.94, + "probability": 0.8979 + }, + { + "start": 1312.2, + "end": 1315.94, + "probability": 0.9922 + }, + { + "start": 1316.62, + "end": 1318.64, + "probability": 0.9002 + }, + { + "start": 1319.22, + "end": 1321.82, + "probability": 0.9963 + }, + { + "start": 1322.32, + "end": 1323.98, + "probability": 0.9924 + }, + { + "start": 1324.54, + "end": 1324.88, + "probability": 0.6497 + }, + { + "start": 1325.06, + "end": 1331.34, + "probability": 0.957 + }, + { + "start": 1331.44, + "end": 1332.94, + "probability": 0.9958 + }, + { + "start": 1333.18, + "end": 1335.86, + "probability": 0.8064 + }, + { + "start": 1337.34, + "end": 1340.6, + "probability": 0.8431 + }, + { + "start": 1341.12, + "end": 1342.84, + "probability": 0.9822 + }, + { + "start": 1343.82, + "end": 1344.76, + "probability": 0.9709 + }, + { + "start": 1345.44, + "end": 1346.9, + "probability": 0.5789 + }, + { + "start": 1347.36, + "end": 1348.69, + "probability": 0.8123 + }, + { + "start": 1349.32, + "end": 1353.42, + "probability": 0.9575 + }, + { + "start": 1354.58, + "end": 1355.07, + "probability": 0.7703 + }, + { + "start": 1356.26, + "end": 1357.56, + "probability": 0.9905 + }, + { + "start": 1358.16, + "end": 1359.32, + "probability": 0.9012 + }, + { + "start": 1359.46, + "end": 1361.0, + "probability": 0.5661 + }, + { + "start": 1361.18, + "end": 1364.02, + "probability": 0.4702 + }, + { + "start": 1365.08, + "end": 1366.22, + "probability": 0.9204 + }, + { + "start": 1366.36, + "end": 1367.56, + "probability": 0.8733 + }, + { + "start": 1367.7, + "end": 1372.22, + "probability": 0.9488 + }, + { + "start": 1372.72, + "end": 1374.52, + "probability": 0.8298 + }, + { + "start": 1375.38, + "end": 1376.94, + "probability": 0.8596 + }, + { + "start": 1377.0, + "end": 1377.46, + "probability": 0.8239 + }, + { + "start": 1377.58, + "end": 1377.88, + "probability": 0.581 + }, + { + "start": 1377.96, + "end": 1378.5, + "probability": 0.9553 + }, + { + "start": 1378.8, + "end": 1379.54, + "probability": 0.9762 + }, + { + "start": 1379.86, + "end": 1380.46, + "probability": 0.9617 + }, + { + "start": 1381.04, + "end": 1384.94, + "probability": 0.9573 + }, + { + "start": 1385.66, + "end": 1388.72, + "probability": 0.9692 + }, + { + "start": 1389.18, + "end": 1392.22, + "probability": 0.6212 + }, + { + "start": 1393.16, + "end": 1395.36, + "probability": 0.4562 + }, + { + "start": 1395.7, + "end": 1396.56, + "probability": 0.5606 + }, + { + "start": 1396.56, + "end": 1396.86, + "probability": 0.447 + }, + { + "start": 1396.88, + "end": 1398.26, + "probability": 0.6816 + }, + { + "start": 1398.56, + "end": 1401.94, + "probability": 0.874 + }, + { + "start": 1402.98, + "end": 1408.11, + "probability": 0.9735 + }, + { + "start": 1408.68, + "end": 1410.08, + "probability": 0.9705 + }, + { + "start": 1410.62, + "end": 1412.1, + "probability": 0.6463 + }, + { + "start": 1412.4, + "end": 1413.62, + "probability": 0.6967 + }, + { + "start": 1414.12, + "end": 1415.86, + "probability": 0.9551 + }, + { + "start": 1420.78, + "end": 1423.18, + "probability": 0.6646 + }, + { + "start": 1424.76, + "end": 1425.76, + "probability": 0.6646 + }, + { + "start": 1426.56, + "end": 1429.0, + "probability": 0.9501 + }, + { + "start": 1429.68, + "end": 1430.68, + "probability": 0.906 + }, + { + "start": 1431.16, + "end": 1434.32, + "probability": 0.9939 + }, + { + "start": 1435.44, + "end": 1435.6, + "probability": 0.7366 + }, + { + "start": 1436.8, + "end": 1440.64, + "probability": 0.6681 + }, + { + "start": 1443.02, + "end": 1443.68, + "probability": 0.837 + }, + { + "start": 1444.3, + "end": 1447.54, + "probability": 0.7528 + }, + { + "start": 1448.64, + "end": 1450.17, + "probability": 0.9456 + }, + { + "start": 1451.98, + "end": 1457.34, + "probability": 0.9597 + }, + { + "start": 1457.88, + "end": 1461.84, + "probability": 0.9562 + }, + { + "start": 1461.96, + "end": 1462.48, + "probability": 0.989 + }, + { + "start": 1463.08, + "end": 1465.48, + "probability": 0.9578 + }, + { + "start": 1466.0, + "end": 1468.5, + "probability": 0.9834 + }, + { + "start": 1469.16, + "end": 1471.8, + "probability": 0.8043 + }, + { + "start": 1472.3, + "end": 1473.1, + "probability": 0.9868 + }, + { + "start": 1473.62, + "end": 1475.33, + "probability": 0.8042 + }, + { + "start": 1476.26, + "end": 1477.48, + "probability": 0.5454 + }, + { + "start": 1477.62, + "end": 1479.26, + "probability": 0.9916 + }, + { + "start": 1479.38, + "end": 1480.64, + "probability": 0.9918 + }, + { + "start": 1481.28, + "end": 1483.32, + "probability": 0.9828 + }, + { + "start": 1483.76, + "end": 1487.34, + "probability": 0.7879 + }, + { + "start": 1487.92, + "end": 1490.12, + "probability": 0.9512 + }, + { + "start": 1491.32, + "end": 1492.9, + "probability": 0.8573 + }, + { + "start": 1493.12, + "end": 1494.22, + "probability": 0.9146 + }, + { + "start": 1494.56, + "end": 1496.02, + "probability": 0.9014 + }, + { + "start": 1496.76, + "end": 1500.2, + "probability": 0.5669 + }, + { + "start": 1500.74, + "end": 1501.44, + "probability": 0.7814 + }, + { + "start": 1502.12, + "end": 1504.12, + "probability": 0.999 + }, + { + "start": 1505.92, + "end": 1506.02, + "probability": 0.0026 + }, + { + "start": 1509.4, + "end": 1513.38, + "probability": 0.9561 + }, + { + "start": 1513.92, + "end": 1515.28, + "probability": 0.8574 + }, + { + "start": 1515.9, + "end": 1519.6, + "probability": 0.9766 + }, + { + "start": 1522.48, + "end": 1524.38, + "probability": 0.988 + }, + { + "start": 1525.68, + "end": 1526.74, + "probability": 0.6994 + }, + { + "start": 1526.94, + "end": 1527.8, + "probability": 0.9644 + }, + { + "start": 1527.92, + "end": 1528.8, + "probability": 0.5452 + }, + { + "start": 1530.34, + "end": 1534.62, + "probability": 0.9473 + }, + { + "start": 1534.62, + "end": 1538.0, + "probability": 0.6626 + }, + { + "start": 1538.88, + "end": 1542.28, + "probability": 0.9246 + }, + { + "start": 1543.24, + "end": 1546.6, + "probability": 0.8513 + }, + { + "start": 1547.96, + "end": 1550.6, + "probability": 0.8371 + }, + { + "start": 1551.46, + "end": 1552.28, + "probability": 0.8637 + }, + { + "start": 1553.26, + "end": 1556.34, + "probability": 0.9431 + }, + { + "start": 1557.26, + "end": 1558.12, + "probability": 0.6761 + }, + { + "start": 1558.72, + "end": 1561.14, + "probability": 0.9879 + }, + { + "start": 1561.14, + "end": 1564.9, + "probability": 0.6639 + }, + { + "start": 1566.48, + "end": 1570.54, + "probability": 0.7082 + }, + { + "start": 1571.52, + "end": 1572.42, + "probability": 0.1522 + }, + { + "start": 1573.04, + "end": 1573.14, + "probability": 0.3331 + }, + { + "start": 1573.98, + "end": 1575.74, + "probability": 0.9584 + }, + { + "start": 1577.86, + "end": 1579.08, + "probability": 0.6774 + }, + { + "start": 1579.32, + "end": 1581.76, + "probability": 0.9562 + }, + { + "start": 1582.86, + "end": 1583.58, + "probability": 0.7977 + }, + { + "start": 1583.7, + "end": 1584.2, + "probability": 0.8279 + }, + { + "start": 1584.34, + "end": 1587.72, + "probability": 0.9266 + }, + { + "start": 1587.84, + "end": 1591.82, + "probability": 0.9017 + }, + { + "start": 1592.66, + "end": 1593.84, + "probability": 0.848 + }, + { + "start": 1594.14, + "end": 1595.92, + "probability": 0.9028 + }, + { + "start": 1596.9, + "end": 1598.52, + "probability": 0.7087 + }, + { + "start": 1599.66, + "end": 1604.88, + "probability": 0.9936 + }, + { + "start": 1606.4, + "end": 1608.14, + "probability": 0.9702 + }, + { + "start": 1609.1, + "end": 1612.24, + "probability": 0.8124 + }, + { + "start": 1613.02, + "end": 1613.3, + "probability": 0.673 + }, + { + "start": 1614.38, + "end": 1618.74, + "probability": 0.9523 + }, + { + "start": 1618.8, + "end": 1619.62, + "probability": 0.4679 + }, + { + "start": 1620.42, + "end": 1622.58, + "probability": 0.9172 + }, + { + "start": 1623.36, + "end": 1626.22, + "probability": 0.9776 + }, + { + "start": 1626.38, + "end": 1627.3, + "probability": 0.7553 + }, + { + "start": 1627.58, + "end": 1629.46, + "probability": 0.7755 + }, + { + "start": 1630.56, + "end": 1636.2, + "probability": 0.8246 + }, + { + "start": 1637.12, + "end": 1639.94, + "probability": 0.9883 + }, + { + "start": 1640.12, + "end": 1641.32, + "probability": 0.4518 + }, + { + "start": 1641.68, + "end": 1645.38, + "probability": 0.9725 + }, + { + "start": 1646.98, + "end": 1650.2, + "probability": 0.3868 + }, + { + "start": 1650.68, + "end": 1651.88, + "probability": 0.5274 + }, + { + "start": 1652.02, + "end": 1652.86, + "probability": 0.4262 + }, + { + "start": 1652.88, + "end": 1653.62, + "probability": 0.7512 + }, + { + "start": 1653.94, + "end": 1655.52, + "probability": 0.5397 + }, + { + "start": 1655.66, + "end": 1661.12, + "probability": 0.9074 + }, + { + "start": 1661.56, + "end": 1662.16, + "probability": 0.1795 + }, + { + "start": 1662.16, + "end": 1663.92, + "probability": 0.9548 + }, + { + "start": 1664.02, + "end": 1664.8, + "probability": 0.8647 + }, + { + "start": 1664.84, + "end": 1665.62, + "probability": 0.7953 + }, + { + "start": 1665.98, + "end": 1667.04, + "probability": 0.8849 + }, + { + "start": 1667.28, + "end": 1669.58, + "probability": 0.7468 + }, + { + "start": 1669.68, + "end": 1671.82, + "probability": 0.8813 + }, + { + "start": 1672.1, + "end": 1676.66, + "probability": 0.9452 + }, + { + "start": 1677.66, + "end": 1679.92, + "probability": 0.9784 + }, + { + "start": 1681.1, + "end": 1688.42, + "probability": 0.9766 + }, + { + "start": 1688.66, + "end": 1690.4, + "probability": 0.382 + }, + { + "start": 1691.38, + "end": 1694.82, + "probability": 0.786 + }, + { + "start": 1695.34, + "end": 1700.39, + "probability": 0.9525 + }, + { + "start": 1701.04, + "end": 1703.86, + "probability": 0.5248 + }, + { + "start": 1704.26, + "end": 1708.54, + "probability": 0.9893 + }, + { + "start": 1708.98, + "end": 1713.16, + "probability": 0.937 + }, + { + "start": 1713.3, + "end": 1713.68, + "probability": 0.57 + }, + { + "start": 1714.1, + "end": 1716.7, + "probability": 0.7871 + }, + { + "start": 1717.1, + "end": 1717.42, + "probability": 0.7737 + }, + { + "start": 1719.36, + "end": 1721.26, + "probability": 0.9836 + }, + { + "start": 1721.42, + "end": 1722.84, + "probability": 0.4173 + }, + { + "start": 1723.58, + "end": 1725.26, + "probability": 0.9849 + }, + { + "start": 1726.0, + "end": 1727.82, + "probability": 0.8548 + }, + { + "start": 1728.42, + "end": 1730.28, + "probability": 0.8822 + }, + { + "start": 1731.34, + "end": 1737.76, + "probability": 0.9437 + }, + { + "start": 1738.64, + "end": 1738.96, + "probability": 0.5854 + }, + { + "start": 1739.6, + "end": 1740.78, + "probability": 0.8959 + }, + { + "start": 1741.34, + "end": 1745.24, + "probability": 0.9958 + }, + { + "start": 1745.84, + "end": 1748.2, + "probability": 0.9948 + }, + { + "start": 1749.46, + "end": 1752.86, + "probability": 0.7863 + }, + { + "start": 1753.94, + "end": 1757.8, + "probability": 0.9264 + }, + { + "start": 1758.3, + "end": 1762.54, + "probability": 0.9924 + }, + { + "start": 1763.2, + "end": 1763.92, + "probability": 0.7935 + }, + { + "start": 1764.52, + "end": 1766.88, + "probability": 0.8662 + }, + { + "start": 1767.16, + "end": 1767.4, + "probability": 0.1824 + }, + { + "start": 1767.4, + "end": 1768.5, + "probability": 0.9656 + }, + { + "start": 1768.9, + "end": 1771.98, + "probability": 0.9318 + }, + { + "start": 1772.46, + "end": 1773.94, + "probability": 0.9941 + }, + { + "start": 1774.08, + "end": 1774.9, + "probability": 0.5933 + }, + { + "start": 1775.02, + "end": 1775.92, + "probability": 0.8017 + }, + { + "start": 1776.1, + "end": 1780.0, + "probability": 0.9554 + }, + { + "start": 1780.8, + "end": 1782.92, + "probability": 0.3506 + }, + { + "start": 1783.0, + "end": 1786.74, + "probability": 0.9189 + }, + { + "start": 1787.26, + "end": 1788.5, + "probability": 0.9304 + }, + { + "start": 1788.88, + "end": 1792.0, + "probability": 0.9485 + }, + { + "start": 1792.66, + "end": 1797.04, + "probability": 0.9409 + }, + { + "start": 1799.14, + "end": 1801.8, + "probability": 0.9941 + }, + { + "start": 1802.68, + "end": 1805.0, + "probability": 0.9956 + }, + { + "start": 1805.76, + "end": 1806.3, + "probability": 0.9762 + }, + { + "start": 1806.36, + "end": 1811.32, + "probability": 0.8918 + }, + { + "start": 1811.8, + "end": 1813.32, + "probability": 0.9531 + }, + { + "start": 1813.7, + "end": 1815.6, + "probability": 0.972 + }, + { + "start": 1815.6, + "end": 1817.88, + "probability": 0.9133 + }, + { + "start": 1818.02, + "end": 1822.59, + "probability": 0.9917 + }, + { + "start": 1823.42, + "end": 1824.72, + "probability": 0.4478 + }, + { + "start": 1824.95, + "end": 1825.42, + "probability": 0.1122 + }, + { + "start": 1825.42, + "end": 1830.86, + "probability": 0.8217 + }, + { + "start": 1831.12, + "end": 1833.1, + "probability": 0.5425 + }, + { + "start": 1833.18, + "end": 1834.32, + "probability": 0.6716 + }, + { + "start": 1835.96, + "end": 1837.82, + "probability": 0.9457 + }, + { + "start": 1838.72, + "end": 1839.74, + "probability": 0.9264 + }, + { + "start": 1839.76, + "end": 1841.05, + "probability": 0.8653 + }, + { + "start": 1850.58, + "end": 1853.62, + "probability": 0.6506 + }, + { + "start": 1853.62, + "end": 1858.14, + "probability": 0.8467 + }, + { + "start": 1858.9, + "end": 1859.6, + "probability": 0.6929 + }, + { + "start": 1859.84, + "end": 1861.64, + "probability": 0.9172 + }, + { + "start": 1862.7, + "end": 1863.84, + "probability": 0.7629 + }, + { + "start": 1864.52, + "end": 1866.92, + "probability": 0.9179 + }, + { + "start": 1867.2, + "end": 1869.06, + "probability": 0.8239 + }, + { + "start": 1869.92, + "end": 1871.12, + "probability": 0.7679 + }, + { + "start": 1871.76, + "end": 1872.28, + "probability": 0.7641 + }, + { + "start": 1872.82, + "end": 1873.3, + "probability": 0.4362 + }, + { + "start": 1873.66, + "end": 1875.96, + "probability": 0.9274 + }, + { + "start": 1876.06, + "end": 1876.86, + "probability": 0.6258 + }, + { + "start": 1879.9, + "end": 1880.22, + "probability": 0.4061 + }, + { + "start": 1880.22, + "end": 1881.18, + "probability": 0.7897 + }, + { + "start": 1881.74, + "end": 1883.08, + "probability": 0.5449 + }, + { + "start": 1883.08, + "end": 1884.94, + "probability": 0.7173 + }, + { + "start": 1884.98, + "end": 1887.34, + "probability": 0.6229 + }, + { + "start": 1887.93, + "end": 1893.06, + "probability": 0.6405 + }, + { + "start": 1893.08, + "end": 1894.43, + "probability": 0.715 + }, + { + "start": 1895.3, + "end": 1896.92, + "probability": 0.7956 + }, + { + "start": 1897.88, + "end": 1898.76, + "probability": 0.0939 + }, + { + "start": 1899.38, + "end": 1900.72, + "probability": 0.4609 + }, + { + "start": 1900.92, + "end": 1902.4, + "probability": 0.9583 + }, + { + "start": 1903.0, + "end": 1906.17, + "probability": 0.6666 + }, + { + "start": 1906.46, + "end": 1906.91, + "probability": 0.4309 + }, + { + "start": 1909.32, + "end": 1914.42, + "probability": 0.8191 + }, + { + "start": 1915.64, + "end": 1915.98, + "probability": 0.7268 + }, + { + "start": 1917.02, + "end": 1918.54, + "probability": 0.8555 + }, + { + "start": 1919.34, + "end": 1919.86, + "probability": 0.8946 + }, + { + "start": 1919.98, + "end": 1924.4, + "probability": 0.7742 + }, + { + "start": 1925.54, + "end": 1928.42, + "probability": 0.7295 + }, + { + "start": 1928.58, + "end": 1932.54, + "probability": 0.9712 + }, + { + "start": 1932.6, + "end": 1935.56, + "probability": 0.758 + }, + { + "start": 1935.94, + "end": 1936.66, + "probability": 0.7324 + }, + { + "start": 1936.72, + "end": 1941.72, + "probability": 0.0432 + }, + { + "start": 1941.82, + "end": 1942.46, + "probability": 0.0558 + }, + { + "start": 1942.68, + "end": 1943.86, + "probability": 0.703 + }, + { + "start": 1944.48, + "end": 1948.38, + "probability": 0.7457 + }, + { + "start": 1948.94, + "end": 1951.3, + "probability": 0.9352 + }, + { + "start": 1952.0, + "end": 1954.8, + "probability": 0.8549 + }, + { + "start": 1956.04, + "end": 1957.16, + "probability": 0.9888 + }, + { + "start": 1957.26, + "end": 1958.4, + "probability": 0.9366 + }, + { + "start": 1958.48, + "end": 1959.48, + "probability": 0.8103 + }, + { + "start": 1959.64, + "end": 1960.14, + "probability": 0.4372 + }, + { + "start": 1963.78, + "end": 1966.5, + "probability": 0.8472 + }, + { + "start": 1966.72, + "end": 1967.56, + "probability": 0.54 + }, + { + "start": 1967.68, + "end": 1968.18, + "probability": 0.3443 + }, + { + "start": 1968.3, + "end": 1970.2, + "probability": 0.8632 + }, + { + "start": 1970.42, + "end": 1970.94, + "probability": 0.5446 + }, + { + "start": 1970.94, + "end": 1972.04, + "probability": 0.9681 + }, + { + "start": 1972.78, + "end": 1976.74, + "probability": 0.9976 + }, + { + "start": 1977.14, + "end": 1979.64, + "probability": 0.8138 + }, + { + "start": 1980.3, + "end": 1980.9, + "probability": 0.3991 + }, + { + "start": 1981.24, + "end": 1986.16, + "probability": 0.9052 + }, + { + "start": 1986.36, + "end": 1987.72, + "probability": 0.9854 + }, + { + "start": 1988.3, + "end": 1990.08, + "probability": 0.7384 + }, + { + "start": 1990.22, + "end": 1990.56, + "probability": 0.5355 + }, + { + "start": 1995.66, + "end": 1998.54, + "probability": 0.6605 + }, + { + "start": 1998.7, + "end": 2000.5, + "probability": 0.6226 + }, + { + "start": 2000.88, + "end": 2003.06, + "probability": 0.6859 + }, + { + "start": 2003.12, + "end": 2003.74, + "probability": 0.4578 + }, + { + "start": 2004.59, + "end": 2007.78, + "probability": 0.8558 + }, + { + "start": 2008.18, + "end": 2009.92, + "probability": 0.2132 + }, + { + "start": 2009.92, + "end": 2011.02, + "probability": 0.7314 + }, + { + "start": 2011.1, + "end": 2012.9, + "probability": 0.8857 + }, + { + "start": 2012.92, + "end": 2013.4, + "probability": 0.72 + }, + { + "start": 2013.68, + "end": 2016.5, + "probability": 0.6127 + }, + { + "start": 2016.96, + "end": 2018.2, + "probability": 0.7453 + }, + { + "start": 2018.22, + "end": 2020.84, + "probability": 0.8175 + }, + { + "start": 2020.96, + "end": 2025.14, + "probability": 0.9155 + }, + { + "start": 2025.54, + "end": 2032.46, + "probability": 0.9677 + }, + { + "start": 2033.14, + "end": 2035.26, + "probability": 0.9271 + }, + { + "start": 2035.28, + "end": 2039.94, + "probability": 0.7512 + }, + { + "start": 2040.44, + "end": 2042.66, + "probability": 0.6327 + }, + { + "start": 2043.2, + "end": 2045.24, + "probability": 0.957 + }, + { + "start": 2045.56, + "end": 2047.73, + "probability": 0.7368 + }, + { + "start": 2048.46, + "end": 2051.94, + "probability": 0.9539 + }, + { + "start": 2052.44, + "end": 2053.46, + "probability": 0.047 + }, + { + "start": 2055.28, + "end": 2058.1, + "probability": 0.3033 + }, + { + "start": 2058.58, + "end": 2063.9, + "probability": 0.9935 + }, + { + "start": 2064.3, + "end": 2065.8, + "probability": 0.6639 + }, + { + "start": 2066.39, + "end": 2067.78, + "probability": 0.4153 + }, + { + "start": 2068.52, + "end": 2069.94, + "probability": 0.4733 + }, + { + "start": 2070.04, + "end": 2073.66, + "probability": 0.8506 + }, + { + "start": 2074.44, + "end": 2076.22, + "probability": 0.9257 + }, + { + "start": 2077.14, + "end": 2077.64, + "probability": 0.8835 + }, + { + "start": 2078.2, + "end": 2079.12, + "probability": 0.9663 + }, + { + "start": 2079.74, + "end": 2084.76, + "probability": 0.9885 + }, + { + "start": 2085.52, + "end": 2087.43, + "probability": 0.9984 + }, + { + "start": 2087.82, + "end": 2090.0, + "probability": 0.9951 + }, + { + "start": 2090.7, + "end": 2092.4, + "probability": 0.7191 + }, + { + "start": 2093.14, + "end": 2096.42, + "probability": 0.9692 + }, + { + "start": 2099.53, + "end": 2102.0, + "probability": 0.9364 + }, + { + "start": 2102.56, + "end": 2104.68, + "probability": 0.8916 + }, + { + "start": 2105.54, + "end": 2106.8, + "probability": 0.7233 + }, + { + "start": 2107.38, + "end": 2110.72, + "probability": 0.8685 + }, + { + "start": 2114.54, + "end": 2122.86, + "probability": 0.9059 + }, + { + "start": 2133.04, + "end": 2133.82, + "probability": 0.6029 + }, + { + "start": 2133.94, + "end": 2135.18, + "probability": 0.5817 + }, + { + "start": 2135.56, + "end": 2138.66, + "probability": 0.9007 + }, + { + "start": 2139.74, + "end": 2143.76, + "probability": 0.9849 + }, + { + "start": 2144.36, + "end": 2148.6, + "probability": 0.9959 + }, + { + "start": 2149.18, + "end": 2152.04, + "probability": 0.9997 + }, + { + "start": 2152.56, + "end": 2156.0, + "probability": 0.994 + }, + { + "start": 2156.0, + "end": 2159.96, + "probability": 0.9969 + }, + { + "start": 2160.2, + "end": 2164.0, + "probability": 0.7394 + }, + { + "start": 2164.58, + "end": 2167.18, + "probability": 0.2937 + }, + { + "start": 2167.76, + "end": 2170.86, + "probability": 0.928 + }, + { + "start": 2170.86, + "end": 2176.28, + "probability": 0.9585 + }, + { + "start": 2177.14, + "end": 2180.02, + "probability": 0.7668 + }, + { + "start": 2180.74, + "end": 2181.1, + "probability": 0.5397 + }, + { + "start": 2181.2, + "end": 2182.48, + "probability": 0.7493 + }, + { + "start": 2183.24, + "end": 2183.5, + "probability": 0.892 + }, + { + "start": 2183.94, + "end": 2184.86, + "probability": 0.3395 + }, + { + "start": 2185.0, + "end": 2186.1, + "probability": 0.6577 + }, + { + "start": 2186.36, + "end": 2189.56, + "probability": 0.9276 + }, + { + "start": 2191.68, + "end": 2193.74, + "probability": 0.8289 + }, + { + "start": 2193.74, + "end": 2196.68, + "probability": 0.959 + }, + { + "start": 2197.4, + "end": 2200.48, + "probability": 0.9564 + }, + { + "start": 2201.66, + "end": 2204.38, + "probability": 0.8211 + }, + { + "start": 2205.54, + "end": 2208.3, + "probability": 0.9684 + }, + { + "start": 2208.3, + "end": 2211.02, + "probability": 0.9988 + }, + { + "start": 2211.58, + "end": 2214.12, + "probability": 0.7745 + }, + { + "start": 2215.18, + "end": 2216.2, + "probability": 0.8926 + }, + { + "start": 2216.8, + "end": 2218.92, + "probability": 0.9958 + }, + { + "start": 2220.02, + "end": 2223.5, + "probability": 0.9942 + }, + { + "start": 2224.1, + "end": 2225.6, + "probability": 0.9966 + }, + { + "start": 2226.26, + "end": 2226.5, + "probability": 0.5826 + }, + { + "start": 2226.58, + "end": 2226.92, + "probability": 0.9734 + }, + { + "start": 2227.18, + "end": 2228.09, + "probability": 0.9839 + }, + { + "start": 2228.28, + "end": 2231.52, + "probability": 0.971 + }, + { + "start": 2232.36, + "end": 2234.58, + "probability": 0.8177 + }, + { + "start": 2235.16, + "end": 2238.18, + "probability": 0.9985 + }, + { + "start": 2238.18, + "end": 2240.9, + "probability": 0.9904 + }, + { + "start": 2241.9, + "end": 2244.46, + "probability": 0.9877 + }, + { + "start": 2244.56, + "end": 2247.66, + "probability": 0.9591 + }, + { + "start": 2248.58, + "end": 2249.44, + "probability": 0.9934 + }, + { + "start": 2249.96, + "end": 2253.14, + "probability": 0.9932 + }, + { + "start": 2253.74, + "end": 2256.44, + "probability": 0.9812 + }, + { + "start": 2256.44, + "end": 2260.22, + "probability": 0.9799 + }, + { + "start": 2261.06, + "end": 2262.18, + "probability": 0.7277 + }, + { + "start": 2262.44, + "end": 2265.86, + "probability": 0.9233 + }, + { + "start": 2266.53, + "end": 2270.52, + "probability": 0.7982 + }, + { + "start": 2271.02, + "end": 2273.08, + "probability": 0.9947 + }, + { + "start": 2273.94, + "end": 2276.78, + "probability": 0.9017 + }, + { + "start": 2277.56, + "end": 2280.68, + "probability": 0.9949 + }, + { + "start": 2281.5, + "end": 2283.14, + "probability": 0.6596 + }, + { + "start": 2283.6, + "end": 2287.42, + "probability": 0.9826 + }, + { + "start": 2287.42, + "end": 2292.44, + "probability": 0.9938 + }, + { + "start": 2293.32, + "end": 2297.4, + "probability": 0.9902 + }, + { + "start": 2298.76, + "end": 2300.94, + "probability": 0.8268 + }, + { + "start": 2301.6, + "end": 2303.48, + "probability": 0.9842 + }, + { + "start": 2303.74, + "end": 2307.5, + "probability": 0.9894 + }, + { + "start": 2308.18, + "end": 2311.7, + "probability": 0.9798 + }, + { + "start": 2312.86, + "end": 2313.04, + "probability": 0.4902 + }, + { + "start": 2313.12, + "end": 2313.6, + "probability": 0.8315 + }, + { + "start": 2313.84, + "end": 2318.2, + "probability": 0.9924 + }, + { + "start": 2319.06, + "end": 2322.04, + "probability": 0.949 + }, + { + "start": 2322.52, + "end": 2323.2, + "probability": 0.8145 + }, + { + "start": 2324.38, + "end": 2326.12, + "probability": 0.979 + }, + { + "start": 2326.84, + "end": 2329.18, + "probability": 0.7443 + }, + { + "start": 2329.9, + "end": 2333.78, + "probability": 0.9545 + }, + { + "start": 2334.4, + "end": 2336.44, + "probability": 0.9784 + }, + { + "start": 2336.92, + "end": 2338.82, + "probability": 0.9876 + }, + { + "start": 2339.38, + "end": 2340.02, + "probability": 0.9001 + }, + { + "start": 2340.54, + "end": 2341.23, + "probability": 0.9456 + }, + { + "start": 2341.96, + "end": 2345.76, + "probability": 0.9957 + }, + { + "start": 2345.76, + "end": 2349.88, + "probability": 0.9986 + }, + { + "start": 2350.44, + "end": 2354.44, + "probability": 0.8395 + }, + { + "start": 2354.44, + "end": 2358.58, + "probability": 0.9984 + }, + { + "start": 2359.0, + "end": 2362.6, + "probability": 0.9898 + }, + { + "start": 2363.0, + "end": 2365.96, + "probability": 0.9969 + }, + { + "start": 2366.1, + "end": 2366.62, + "probability": 0.7505 + }, + { + "start": 2369.48, + "end": 2370.74, + "probability": 0.157 + }, + { + "start": 2371.1, + "end": 2374.14, + "probability": 0.6479 + }, + { + "start": 2374.82, + "end": 2375.88, + "probability": 0.6526 + }, + { + "start": 2376.38, + "end": 2377.46, + "probability": 0.7206 + }, + { + "start": 2377.64, + "end": 2382.6, + "probability": 0.9683 + }, + { + "start": 2382.74, + "end": 2386.48, + "probability": 0.997 + }, + { + "start": 2387.0, + "end": 2392.18, + "probability": 0.9981 + }, + { + "start": 2393.12, + "end": 2399.42, + "probability": 0.9574 + }, + { + "start": 2399.84, + "end": 2400.94, + "probability": 0.8488 + }, + { + "start": 2401.6, + "end": 2404.9, + "probability": 0.9619 + }, + { + "start": 2405.8, + "end": 2412.14, + "probability": 0.8079 + }, + { + "start": 2412.84, + "end": 2416.22, + "probability": 0.7851 + }, + { + "start": 2416.3, + "end": 2422.78, + "probability": 0.7431 + }, + { + "start": 2422.86, + "end": 2423.96, + "probability": 0.6156 + }, + { + "start": 2424.76, + "end": 2430.2, + "probability": 0.8463 + }, + { + "start": 2430.2, + "end": 2433.86, + "probability": 0.989 + }, + { + "start": 2434.59, + "end": 2438.42, + "probability": 0.8521 + }, + { + "start": 2439.1, + "end": 2440.78, + "probability": 0.9222 + }, + { + "start": 2441.14, + "end": 2445.24, + "probability": 0.9727 + }, + { + "start": 2446.06, + "end": 2447.92, + "probability": 0.9155 + }, + { + "start": 2448.96, + "end": 2452.06, + "probability": 0.8133 + }, + { + "start": 2453.06, + "end": 2454.76, + "probability": 0.4537 + }, + { + "start": 2454.98, + "end": 2455.8, + "probability": 0.6778 + }, + { + "start": 2455.98, + "end": 2458.24, + "probability": 0.9917 + }, + { + "start": 2458.82, + "end": 2459.22, + "probability": 0.7856 + }, + { + "start": 2459.76, + "end": 2460.94, + "probability": 0.8948 + }, + { + "start": 2461.9, + "end": 2465.08, + "probability": 0.943 + }, + { + "start": 2466.04, + "end": 2466.24, + "probability": 0.9377 + }, + { + "start": 2466.48, + "end": 2468.64, + "probability": 0.9976 + }, + { + "start": 2468.92, + "end": 2470.66, + "probability": 0.7207 + }, + { + "start": 2471.3, + "end": 2473.56, + "probability": 0.9575 + }, + { + "start": 2474.48, + "end": 2475.54, + "probability": 0.932 + }, + { + "start": 2476.26, + "end": 2477.68, + "probability": 0.4464 + }, + { + "start": 2477.72, + "end": 2478.76, + "probability": 0.771 + }, + { + "start": 2479.32, + "end": 2480.37, + "probability": 0.9941 + }, + { + "start": 2481.56, + "end": 2484.7, + "probability": 0.9275 + }, + { + "start": 2485.18, + "end": 2486.12, + "probability": 0.9329 + }, + { + "start": 2486.2, + "end": 2489.62, + "probability": 0.9981 + }, + { + "start": 2490.32, + "end": 2493.46, + "probability": 0.9937 + }, + { + "start": 2494.86, + "end": 2496.78, + "probability": 0.9941 + }, + { + "start": 2497.69, + "end": 2500.94, + "probability": 0.8877 + }, + { + "start": 2501.62, + "end": 2502.74, + "probability": 0.9663 + }, + { + "start": 2505.73, + "end": 2507.14, + "probability": 0.918 + }, + { + "start": 2507.14, + "end": 2508.98, + "probability": 0.6895 + }, + { + "start": 2509.12, + "end": 2510.34, + "probability": 0.7504 + }, + { + "start": 2510.52, + "end": 2511.38, + "probability": 0.7378 + }, + { + "start": 2511.7, + "end": 2512.9, + "probability": 0.9578 + }, + { + "start": 2512.96, + "end": 2514.74, + "probability": 0.9891 + }, + { + "start": 2515.64, + "end": 2518.88, + "probability": 0.9377 + }, + { + "start": 2518.96, + "end": 2519.96, + "probability": 0.9518 + }, + { + "start": 2520.04, + "end": 2522.3, + "probability": 0.9805 + }, + { + "start": 2522.48, + "end": 2525.04, + "probability": 0.7998 + }, + { + "start": 2525.5, + "end": 2525.8, + "probability": 0.4526 + }, + { + "start": 2525.88, + "end": 2528.32, + "probability": 0.6165 + }, + { + "start": 2528.54, + "end": 2532.04, + "probability": 0.8668 + }, + { + "start": 2532.22, + "end": 2536.64, + "probability": 0.854 + }, + { + "start": 2537.1, + "end": 2538.22, + "probability": 0.9325 + }, + { + "start": 2538.76, + "end": 2540.74, + "probability": 0.9766 + }, + { + "start": 2541.22, + "end": 2545.2, + "probability": 0.9941 + }, + { + "start": 2545.64, + "end": 2548.68, + "probability": 0.9706 + }, + { + "start": 2550.0, + "end": 2550.84, + "probability": 0.8701 + }, + { + "start": 2550.96, + "end": 2552.04, + "probability": 0.9683 + }, + { + "start": 2552.28, + "end": 2556.98, + "probability": 0.9259 + }, + { + "start": 2557.04, + "end": 2558.68, + "probability": 0.9552 + }, + { + "start": 2559.24, + "end": 2561.67, + "probability": 0.948 + }, + { + "start": 2561.94, + "end": 2564.28, + "probability": 0.9521 + }, + { + "start": 2564.96, + "end": 2567.24, + "probability": 0.9326 + }, + { + "start": 2567.68, + "end": 2570.22, + "probability": 0.8032 + }, + { + "start": 2570.8, + "end": 2571.55, + "probability": 0.7213 + }, + { + "start": 2571.72, + "end": 2575.3, + "probability": 0.987 + }, + { + "start": 2575.94, + "end": 2577.36, + "probability": 0.8604 + }, + { + "start": 2577.84, + "end": 2580.9, + "probability": 0.9468 + }, + { + "start": 2580.9, + "end": 2581.56, + "probability": 0.5682 + }, + { + "start": 2582.12, + "end": 2583.78, + "probability": 0.5085 + }, + { + "start": 2583.82, + "end": 2589.3, + "probability": 0.9752 + }, + { + "start": 2589.66, + "end": 2591.76, + "probability": 0.8375 + }, + { + "start": 2592.04, + "end": 2592.56, + "probability": 0.1793 + }, + { + "start": 2592.94, + "end": 2595.62, + "probability": 0.4965 + }, + { + "start": 2596.12, + "end": 2597.4, + "probability": 0.9272 + }, + { + "start": 2599.84, + "end": 2601.54, + "probability": 0.6703 + }, + { + "start": 2605.92, + "end": 2607.92, + "probability": 0.7461 + }, + { + "start": 2609.12, + "end": 2613.2, + "probability": 0.9839 + }, + { + "start": 2614.18, + "end": 2617.48, + "probability": 0.9755 + }, + { + "start": 2618.12, + "end": 2625.44, + "probability": 0.9815 + }, + { + "start": 2626.18, + "end": 2634.22, + "probability": 0.7891 + }, + { + "start": 2635.0, + "end": 2645.54, + "probability": 0.9585 + }, + { + "start": 2645.88, + "end": 2651.64, + "probability": 0.9655 + }, + { + "start": 2652.78, + "end": 2655.1, + "probability": 0.8074 + }, + { + "start": 2655.88, + "end": 2662.46, + "probability": 0.8857 + }, + { + "start": 2663.46, + "end": 2669.48, + "probability": 0.736 + }, + { + "start": 2669.52, + "end": 2671.32, + "probability": 0.6631 + }, + { + "start": 2671.72, + "end": 2673.12, + "probability": 0.5412 + }, + { + "start": 2673.88, + "end": 2678.08, + "probability": 0.7547 + }, + { + "start": 2678.78, + "end": 2680.52, + "probability": 0.5936 + }, + { + "start": 2681.06, + "end": 2686.5, + "probability": 0.9453 + }, + { + "start": 2686.5, + "end": 2690.24, + "probability": 0.7137 + }, + { + "start": 2691.04, + "end": 2692.0, + "probability": 0.8358 + }, + { + "start": 2692.96, + "end": 2696.46, + "probability": 0.9384 + }, + { + "start": 2698.46, + "end": 2706.84, + "probability": 0.9826 + }, + { + "start": 2707.22, + "end": 2707.5, + "probability": 0.7834 + }, + { + "start": 2708.22, + "end": 2708.44, + "probability": 0.2566 + }, + { + "start": 2708.46, + "end": 2710.08, + "probability": 0.7136 + }, + { + "start": 2710.4, + "end": 2711.99, + "probability": 0.7463 + }, + { + "start": 2713.08, + "end": 2717.92, + "probability": 0.8624 + }, + { + "start": 2718.08, + "end": 2721.06, + "probability": 0.9727 + }, + { + "start": 2721.48, + "end": 2723.14, + "probability": 0.9741 + }, + { + "start": 2723.14, + "end": 2726.98, + "probability": 0.9839 + }, + { + "start": 2727.04, + "end": 2728.58, + "probability": 0.8688 + }, + { + "start": 2729.42, + "end": 2733.08, + "probability": 0.4827 + }, + { + "start": 2733.34, + "end": 2736.98, + "probability": 0.8911 + }, + { + "start": 2737.18, + "end": 2742.36, + "probability": 0.7244 + }, + { + "start": 2743.14, + "end": 2743.64, + "probability": 0.7754 + }, + { + "start": 2744.06, + "end": 2745.19, + "probability": 0.8262 + }, + { + "start": 2746.4, + "end": 2750.22, + "probability": 0.8904 + }, + { + "start": 2751.22, + "end": 2755.12, + "probability": 0.8813 + }, + { + "start": 2755.42, + "end": 2756.0, + "probability": 0.5955 + }, + { + "start": 2756.1, + "end": 2757.24, + "probability": 0.7909 + }, + { + "start": 2757.62, + "end": 2762.34, + "probability": 0.9626 + }, + { + "start": 2763.04, + "end": 2764.2, + "probability": 0.9338 + }, + { + "start": 2765.14, + "end": 2768.7, + "probability": 0.803 + }, + { + "start": 2770.18, + "end": 2773.64, + "probability": 0.842 + }, + { + "start": 2774.3, + "end": 2777.78, + "probability": 0.9536 + }, + { + "start": 2777.78, + "end": 2784.86, + "probability": 0.8911 + }, + { + "start": 2785.28, + "end": 2787.12, + "probability": 0.9542 + }, + { + "start": 2788.5, + "end": 2790.46, + "probability": 0.9485 + }, + { + "start": 2791.32, + "end": 2792.18, + "probability": 0.8069 + }, + { + "start": 2797.32, + "end": 2799.16, + "probability": 0.7484 + }, + { + "start": 2804.48, + "end": 2806.26, + "probability": 0.8867 + }, + { + "start": 2806.34, + "end": 2807.2, + "probability": 0.9536 + }, + { + "start": 2807.3, + "end": 2808.08, + "probability": 0.8327 + }, + { + "start": 2808.38, + "end": 2809.86, + "probability": 0.9546 + }, + { + "start": 2810.24, + "end": 2813.98, + "probability": 0.8966 + }, + { + "start": 2814.18, + "end": 2814.84, + "probability": 0.9489 + }, + { + "start": 2815.98, + "end": 2817.6, + "probability": 0.965 + }, + { + "start": 2817.96, + "end": 2820.22, + "probability": 0.991 + }, + { + "start": 2820.3, + "end": 2821.08, + "probability": 0.8051 + }, + { + "start": 2821.84, + "end": 2822.42, + "probability": 0.7474 + }, + { + "start": 2822.98, + "end": 2825.84, + "probability": 0.874 + }, + { + "start": 2826.38, + "end": 2826.84, + "probability": 0.9861 + }, + { + "start": 2827.36, + "end": 2828.71, + "probability": 0.9644 + }, + { + "start": 2828.84, + "end": 2832.36, + "probability": 0.9722 + }, + { + "start": 2832.36, + "end": 2835.72, + "probability": 0.8933 + }, + { + "start": 2836.36, + "end": 2839.14, + "probability": 0.957 + }, + { + "start": 2839.62, + "end": 2843.16, + "probability": 0.9122 + }, + { + "start": 2843.16, + "end": 2844.4, + "probability": 0.8459 + }, + { + "start": 2844.62, + "end": 2845.48, + "probability": 0.9633 + }, + { + "start": 2846.02, + "end": 2847.48, + "probability": 0.951 + }, + { + "start": 2847.94, + "end": 2848.76, + "probability": 0.958 + }, + { + "start": 2848.98, + "end": 2854.48, + "probability": 0.9111 + }, + { + "start": 2854.9, + "end": 2855.78, + "probability": 0.5343 + }, + { + "start": 2855.86, + "end": 2858.28, + "probability": 0.9146 + }, + { + "start": 2858.82, + "end": 2859.72, + "probability": 0.8947 + }, + { + "start": 2860.14, + "end": 2861.8, + "probability": 0.9629 + }, + { + "start": 2861.94, + "end": 2863.42, + "probability": 0.9935 + }, + { + "start": 2863.44, + "end": 2867.46, + "probability": 0.9912 + }, + { + "start": 2867.52, + "end": 2868.16, + "probability": 0.8731 + }, + { + "start": 2868.78, + "end": 2871.54, + "probability": 0.9906 + }, + { + "start": 2871.6, + "end": 2874.42, + "probability": 0.9871 + }, + { + "start": 2874.92, + "end": 2876.54, + "probability": 0.8875 + }, + { + "start": 2876.96, + "end": 2879.2, + "probability": 0.9609 + }, + { + "start": 2879.4, + "end": 2881.34, + "probability": 0.3085 + }, + { + "start": 2883.46, + "end": 2884.48, + "probability": 0.071 + }, + { + "start": 2884.48, + "end": 2885.42, + "probability": 0.7244 + }, + { + "start": 2885.7, + "end": 2886.36, + "probability": 0.7064 + }, + { + "start": 2886.48, + "end": 2886.84, + "probability": 0.9144 + }, + { + "start": 2886.9, + "end": 2888.66, + "probability": 0.8801 + }, + { + "start": 2888.86, + "end": 2890.56, + "probability": 0.8539 + }, + { + "start": 2890.84, + "end": 2894.6, + "probability": 0.9801 + }, + { + "start": 2895.22, + "end": 2897.0, + "probability": 0.9929 + }, + { + "start": 2897.04, + "end": 2899.22, + "probability": 0.998 + }, + { + "start": 2899.22, + "end": 2899.44, + "probability": 0.9104 + }, + { + "start": 2899.52, + "end": 2900.43, + "probability": 0.8804 + }, + { + "start": 2900.6, + "end": 2902.46, + "probability": 0.9763 + }, + { + "start": 2903.14, + "end": 2903.6, + "probability": 0.9088 + }, + { + "start": 2903.9, + "end": 2905.32, + "probability": 0.0004 + }, + { + "start": 2906.74, + "end": 2911.26, + "probability": 0.1028 + }, + { + "start": 2911.82, + "end": 2914.62, + "probability": 0.428 + }, + { + "start": 2915.44, + "end": 2919.3, + "probability": 0.7159 + }, + { + "start": 2919.76, + "end": 2922.26, + "probability": 0.9455 + }, + { + "start": 2922.78, + "end": 2925.44, + "probability": 0.8703 + }, + { + "start": 2926.08, + "end": 2928.98, + "probability": 0.8481 + }, + { + "start": 2929.4, + "end": 2932.82, + "probability": 0.9873 + }, + { + "start": 2933.68, + "end": 2934.72, + "probability": 0.9235 + }, + { + "start": 2935.36, + "end": 2940.28, + "probability": 0.9941 + }, + { + "start": 2941.7, + "end": 2944.76, + "probability": 0.9919 + }, + { + "start": 2945.1, + "end": 2946.01, + "probability": 0.9493 + }, + { + "start": 2946.64, + "end": 2950.6, + "probability": 0.9932 + }, + { + "start": 2951.34, + "end": 2952.96, + "probability": 0.8481 + }, + { + "start": 2953.84, + "end": 2954.28, + "probability": 0.5352 + }, + { + "start": 2958.4, + "end": 2959.96, + "probability": 0.7796 + }, + { + "start": 2966.34, + "end": 2966.84, + "probability": 0.7056 + }, + { + "start": 2966.96, + "end": 2971.76, + "probability": 0.9899 + }, + { + "start": 2971.76, + "end": 2976.08, + "probability": 0.9977 + }, + { + "start": 2976.8, + "end": 2984.46, + "probability": 0.9694 + }, + { + "start": 2984.8, + "end": 2985.38, + "probability": 0.9185 + }, + { + "start": 2986.68, + "end": 2989.76, + "probability": 0.9893 + }, + { + "start": 2990.36, + "end": 2991.6, + "probability": 0.9873 + }, + { + "start": 2991.72, + "end": 2992.86, + "probability": 0.957 + }, + { + "start": 2993.24, + "end": 2995.96, + "probability": 0.9897 + }, + { + "start": 2996.34, + "end": 3001.5, + "probability": 0.9802 + }, + { + "start": 3001.94, + "end": 3003.02, + "probability": 0.9666 + }, + { + "start": 3004.0, + "end": 3005.43, + "probability": 0.9798 + }, + { + "start": 3005.64, + "end": 3010.46, + "probability": 0.9468 + }, + { + "start": 3010.46, + "end": 3015.7, + "probability": 0.9815 + }, + { + "start": 3016.24, + "end": 3017.96, + "probability": 0.8338 + }, + { + "start": 3018.32, + "end": 3023.94, + "probability": 0.9724 + }, + { + "start": 3024.48, + "end": 3027.42, + "probability": 0.8623 + }, + { + "start": 3027.76, + "end": 3028.92, + "probability": 0.7941 + }, + { + "start": 3029.36, + "end": 3032.7, + "probability": 0.8671 + }, + { + "start": 3036.76, + "end": 3037.52, + "probability": 0.0395 + }, + { + "start": 3037.54, + "end": 3040.4, + "probability": 0.769 + }, + { + "start": 3041.36, + "end": 3041.76, + "probability": 0.1884 + }, + { + "start": 3041.92, + "end": 3042.24, + "probability": 0.9605 + }, + { + "start": 3042.72, + "end": 3044.52, + "probability": 0.5076 + }, + { + "start": 3044.52, + "end": 3048.02, + "probability": 0.9724 + }, + { + "start": 3048.62, + "end": 3051.96, + "probability": 0.9089 + }, + { + "start": 3051.96, + "end": 3056.32, + "probability": 0.988 + }, + { + "start": 3057.26, + "end": 3058.8, + "probability": 0.7973 + }, + { + "start": 3058.98, + "end": 3059.86, + "probability": 0.7454 + }, + { + "start": 3060.02, + "end": 3062.9, + "probability": 0.9003 + }, + { + "start": 3063.22, + "end": 3064.26, + "probability": 0.9692 + }, + { + "start": 3064.86, + "end": 3066.74, + "probability": 0.8284 + }, + { + "start": 3067.52, + "end": 3071.26, + "probability": 0.9022 + }, + { + "start": 3072.03, + "end": 3075.5, + "probability": 0.9844 + }, + { + "start": 3076.5, + "end": 3081.9, + "probability": 0.9683 + }, + { + "start": 3081.9, + "end": 3088.06, + "probability": 0.9924 + }, + { + "start": 3088.86, + "end": 3091.48, + "probability": 0.9003 + }, + { + "start": 3092.14, + "end": 3095.96, + "probability": 0.9917 + }, + { + "start": 3096.6, + "end": 3098.7, + "probability": 0.9982 + }, + { + "start": 3098.84, + "end": 3102.42, + "probability": 0.9989 + }, + { + "start": 3102.42, + "end": 3107.1, + "probability": 0.979 + }, + { + "start": 3108.2, + "end": 3108.54, + "probability": 0.5251 + }, + { + "start": 3108.66, + "end": 3112.7, + "probability": 0.9932 + }, + { + "start": 3113.38, + "end": 3114.28, + "probability": 0.7249 + }, + { + "start": 3114.94, + "end": 3117.42, + "probability": 0.5117 + }, + { + "start": 3117.52, + "end": 3117.66, + "probability": 0.6285 + }, + { + "start": 3117.66, + "end": 3120.02, + "probability": 0.7964 + }, + { + "start": 3121.34, + "end": 3122.04, + "probability": 0.7774 + }, + { + "start": 3122.18, + "end": 3123.08, + "probability": 0.8692 + }, + { + "start": 3123.2, + "end": 3126.26, + "probability": 0.9855 + }, + { + "start": 3127.26, + "end": 3134.58, + "probability": 0.9861 + }, + { + "start": 3134.66, + "end": 3135.52, + "probability": 0.7378 + }, + { + "start": 3136.0, + "end": 3138.78, + "probability": 0.954 + }, + { + "start": 3139.32, + "end": 3139.84, + "probability": 0.8556 + }, + { + "start": 3139.9, + "end": 3140.5, + "probability": 0.7216 + }, + { + "start": 3140.6, + "end": 3142.94, + "probability": 0.9845 + }, + { + "start": 3143.74, + "end": 3150.46, + "probability": 0.9886 + }, + { + "start": 3150.5, + "end": 3155.26, + "probability": 0.9995 + }, + { + "start": 3155.26, + "end": 3158.9, + "probability": 0.9962 + }, + { + "start": 3159.1, + "end": 3160.04, + "probability": 0.5267 + }, + { + "start": 3160.34, + "end": 3161.54, + "probability": 0.4077 + }, + { + "start": 3161.98, + "end": 3163.78, + "probability": 0.9095 + }, + { + "start": 3166.56, + "end": 3167.66, + "probability": 0.7119 + }, + { + "start": 3169.74, + "end": 3170.92, + "probability": 0.6639 + }, + { + "start": 3172.08, + "end": 3174.09, + "probability": 0.4845 + }, + { + "start": 3174.56, + "end": 3180.78, + "probability": 0.9984 + }, + { + "start": 3181.42, + "end": 3183.98, + "probability": 0.9899 + }, + { + "start": 3184.08, + "end": 3186.41, + "probability": 0.9927 + }, + { + "start": 3188.12, + "end": 3192.62, + "probability": 0.6655 + }, + { + "start": 3193.38, + "end": 3195.5, + "probability": 0.809 + }, + { + "start": 3196.22, + "end": 3201.0, + "probability": 0.958 + }, + { + "start": 3201.84, + "end": 3202.78, + "probability": 0.2537 + }, + { + "start": 3202.9, + "end": 3207.58, + "probability": 0.993 + }, + { + "start": 3208.35, + "end": 3211.1, + "probability": 0.9984 + }, + { + "start": 3212.04, + "end": 3215.66, + "probability": 0.8978 + }, + { + "start": 3216.3, + "end": 3221.84, + "probability": 0.9667 + }, + { + "start": 3222.0, + "end": 3222.64, + "probability": 0.3406 + }, + { + "start": 3223.36, + "end": 3228.12, + "probability": 0.9791 + }, + { + "start": 3228.54, + "end": 3228.8, + "probability": 0.4972 + }, + { + "start": 3229.22, + "end": 3232.7, + "probability": 0.981 + }, + { + "start": 3233.8, + "end": 3239.06, + "probability": 0.9912 + }, + { + "start": 3239.3, + "end": 3243.76, + "probability": 0.9922 + }, + { + "start": 3243.92, + "end": 3249.28, + "probability": 0.9915 + }, + { + "start": 3249.8, + "end": 3253.48, + "probability": 0.9831 + }, + { + "start": 3254.14, + "end": 3255.24, + "probability": 0.953 + }, + { + "start": 3255.7, + "end": 3256.06, + "probability": 0.6908 + }, + { + "start": 3256.1, + "end": 3259.56, + "probability": 0.7709 + }, + { + "start": 3260.46, + "end": 3260.46, + "probability": 0.1531 + }, + { + "start": 3260.46, + "end": 3262.88, + "probability": 0.8244 + }, + { + "start": 3263.48, + "end": 3265.34, + "probability": 0.955 + }, + { + "start": 3265.88, + "end": 3267.48, + "probability": 0.832 + }, + { + "start": 3267.52, + "end": 3269.79, + "probability": 0.9445 + }, + { + "start": 3270.48, + "end": 3270.78, + "probability": 0.9334 + }, + { + "start": 3271.38, + "end": 3273.84, + "probability": 0.8146 + }, + { + "start": 3274.44, + "end": 3274.62, + "probability": 0.1077 + }, + { + "start": 3278.0, + "end": 3278.7, + "probability": 0.5046 + }, + { + "start": 3279.38, + "end": 3281.4, + "probability": 0.991 + }, + { + "start": 3281.76, + "end": 3285.14, + "probability": 0.6717 + }, + { + "start": 3285.2, + "end": 3285.98, + "probability": 0.268 + }, + { + "start": 3286.1, + "end": 3286.88, + "probability": 0.3843 + }, + { + "start": 3308.84, + "end": 3314.52, + "probability": 0.3019 + }, + { + "start": 3314.52, + "end": 3317.37, + "probability": 0.7183 + }, + { + "start": 3318.3, + "end": 3319.7, + "probability": 0.0602 + }, + { + "start": 3319.72, + "end": 3320.88, + "probability": 0.2548 + }, + { + "start": 3320.88, + "end": 3323.96, + "probability": 0.0573 + }, + { + "start": 3323.96, + "end": 3325.04, + "probability": 0.0346 + }, + { + "start": 3325.62, + "end": 3327.8, + "probability": 0.0828 + }, + { + "start": 3332.08, + "end": 3332.8, + "probability": 0.0301 + }, + { + "start": 3336.6, + "end": 3337.78, + "probability": 0.7363 + }, + { + "start": 3337.78, + "end": 3341.12, + "probability": 0.0437 + }, + { + "start": 3342.18, + "end": 3344.34, + "probability": 0.0732 + }, + { + "start": 3346.6, + "end": 3346.92, + "probability": 0.0388 + }, + { + "start": 3346.96, + "end": 3347.24, + "probability": 0.0219 + }, + { + "start": 3347.24, + "end": 3347.8, + "probability": 0.0686 + }, + { + "start": 3348.18, + "end": 3348.3, + "probability": 0.2119 + }, + { + "start": 3348.32, + "end": 3350.62, + "probability": 0.0344 + }, + { + "start": 3350.88, + "end": 3351.08, + "probability": 0.0876 + }, + { + "start": 3351.08, + "end": 3351.08, + "probability": 0.4378 + }, + { + "start": 3351.08, + "end": 3352.08, + "probability": 0.0547 + }, + { + "start": 3352.26, + "end": 3352.98, + "probability": 0.0148 + }, + { + "start": 3353.0, + "end": 3353.0, + "probability": 0.0 + }, + { + "start": 3353.0, + "end": 3353.0, + "probability": 0.0 + }, + { + "start": 3353.0, + "end": 3353.0, + "probability": 0.0 + }, + { + "start": 3353.0, + "end": 3353.0, + "probability": 0.0 + }, + { + "start": 3353.0, + "end": 3353.0, + "probability": 0.0 + }, + { + "start": 3353.0, + "end": 3353.0, + "probability": 0.0 + }, + { + "start": 3353.18, + "end": 3353.26, + "probability": 0.0283 + }, + { + "start": 3353.26, + "end": 3353.72, + "probability": 0.0291 + }, + { + "start": 3354.2, + "end": 3357.14, + "probability": 0.743 + }, + { + "start": 3357.14, + "end": 3357.78, + "probability": 0.6248 + }, + { + "start": 3357.84, + "end": 3358.32, + "probability": 0.3592 + }, + { + "start": 3358.36, + "end": 3358.54, + "probability": 0.6104 + }, + { + "start": 3358.98, + "end": 3359.78, + "probability": 0.9089 + }, + { + "start": 3359.86, + "end": 3360.48, + "probability": 0.6149 + }, + { + "start": 3360.66, + "end": 3361.44, + "probability": 0.4948 + }, + { + "start": 3361.82, + "end": 3366.44, + "probability": 0.809 + }, + { + "start": 3366.74, + "end": 3367.62, + "probability": 0.7732 + }, + { + "start": 3368.24, + "end": 3368.52, + "probability": 0.9334 + }, + { + "start": 3394.6, + "end": 3395.72, + "probability": 0.658 + }, + { + "start": 3400.34, + "end": 3402.46, + "probability": 0.6483 + }, + { + "start": 3405.36, + "end": 3411.78, + "probability": 0.9722 + }, + { + "start": 3412.58, + "end": 3414.86, + "probability": 0.1132 + }, + { + "start": 3415.48, + "end": 3417.18, + "probability": 0.1135 + }, + { + "start": 3417.96, + "end": 3418.6, + "probability": 0.0033 + }, + { + "start": 3441.94, + "end": 3445.58, + "probability": 0.4595 + }, + { + "start": 3447.67, + "end": 3453.36, + "probability": 0.9023 + }, + { + "start": 3453.88, + "end": 3454.74, + "probability": 0.8869 + }, + { + "start": 3455.66, + "end": 3459.14, + "probability": 0.951 + }, + { + "start": 3460.24, + "end": 3463.2, + "probability": 0.9964 + }, + { + "start": 3463.2, + "end": 3467.0, + "probability": 0.9989 + }, + { + "start": 3468.14, + "end": 3469.84, + "probability": 0.8487 + }, + { + "start": 3473.38, + "end": 3477.32, + "probability": 0.9277 + }, + { + "start": 3478.16, + "end": 3479.92, + "probability": 0.6724 + }, + { + "start": 3480.3, + "end": 3482.12, + "probability": 0.9759 + }, + { + "start": 3483.4, + "end": 3486.16, + "probability": 0.9738 + }, + { + "start": 3486.82, + "end": 3489.04, + "probability": 0.9561 + }, + { + "start": 3489.2, + "end": 3489.76, + "probability": 0.409 + }, + { + "start": 3489.86, + "end": 3490.52, + "probability": 0.7946 + }, + { + "start": 3490.76, + "end": 3492.18, + "probability": 0.6918 + }, + { + "start": 3492.28, + "end": 3492.82, + "probability": 0.8197 + }, + { + "start": 3494.14, + "end": 3499.92, + "probability": 0.8999 + }, + { + "start": 3499.92, + "end": 3505.86, + "probability": 0.9933 + }, + { + "start": 3506.2, + "end": 3508.34, + "probability": 0.6487 + }, + { + "start": 3508.96, + "end": 3511.38, + "probability": 0.8616 + }, + { + "start": 3511.9, + "end": 3512.0, + "probability": 0.8354 + }, + { + "start": 3512.64, + "end": 3513.52, + "probability": 0.8364 + }, + { + "start": 3514.1, + "end": 3514.7, + "probability": 0.6622 + }, + { + "start": 3514.76, + "end": 3515.12, + "probability": 0.4809 + }, + { + "start": 3515.24, + "end": 3515.48, + "probability": 0.6128 + }, + { + "start": 3515.94, + "end": 3516.7, + "probability": 0.8898 + }, + { + "start": 3516.84, + "end": 3517.4, + "probability": 0.48 + }, + { + "start": 3517.44, + "end": 3518.34, + "probability": 0.4854 + }, + { + "start": 3518.94, + "end": 3521.56, + "probability": 0.993 + }, + { + "start": 3522.3, + "end": 3523.92, + "probability": 0.8376 + }, + { + "start": 3524.76, + "end": 3527.18, + "probability": 0.5995 + }, + { + "start": 3527.7, + "end": 3528.18, + "probability": 0.8563 + }, + { + "start": 3530.82, + "end": 3531.04, + "probability": 0.6534 + }, + { + "start": 3536.08, + "end": 3536.96, + "probability": 0.7257 + }, + { + "start": 3537.34, + "end": 3542.94, + "probability": 0.974 + }, + { + "start": 3545.12, + "end": 3546.24, + "probability": 0.8823 + }, + { + "start": 3546.84, + "end": 3550.16, + "probability": 0.9952 + }, + { + "start": 3550.74, + "end": 3555.76, + "probability": 0.9992 + }, + { + "start": 3555.76, + "end": 3561.2, + "probability": 0.9998 + }, + { + "start": 3562.64, + "end": 3566.06, + "probability": 0.9526 + }, + { + "start": 3566.58, + "end": 3569.98, + "probability": 0.9556 + }, + { + "start": 3570.78, + "end": 3575.7, + "probability": 0.9961 + }, + { + "start": 3576.28, + "end": 3581.08, + "probability": 0.9311 + }, + { + "start": 3581.38, + "end": 3581.96, + "probability": 0.9041 + }, + { + "start": 3582.66, + "end": 3584.22, + "probability": 0.9935 + }, + { + "start": 3584.88, + "end": 3590.84, + "probability": 0.9914 + }, + { + "start": 3590.84, + "end": 3596.76, + "probability": 0.9973 + }, + { + "start": 3596.76, + "end": 3601.34, + "probability": 0.9995 + }, + { + "start": 3602.7, + "end": 3606.52, + "probability": 0.8468 + }, + { + "start": 3607.26, + "end": 3609.74, + "probability": 0.8068 + }, + { + "start": 3610.56, + "end": 3612.12, + "probability": 0.9906 + }, + { + "start": 3613.2, + "end": 3616.1, + "probability": 0.9917 + }, + { + "start": 3616.32, + "end": 3619.92, + "probability": 0.8444 + }, + { + "start": 3620.64, + "end": 3623.3, + "probability": 0.9357 + }, + { + "start": 3623.96, + "end": 3626.32, + "probability": 0.7984 + }, + { + "start": 3627.34, + "end": 3628.52, + "probability": 0.9349 + }, + { + "start": 3629.12, + "end": 3632.18, + "probability": 0.9352 + }, + { + "start": 3632.7, + "end": 3633.06, + "probability": 0.6244 + }, + { + "start": 3636.72, + "end": 3639.74, + "probability": 0.8825 + }, + { + "start": 3640.16, + "end": 3643.94, + "probability": 0.724 + }, + { + "start": 3644.24, + "end": 3645.4, + "probability": 0.7511 + }, + { + "start": 3651.02, + "end": 3653.56, + "probability": 0.6783 + }, + { + "start": 3654.32, + "end": 3654.86, + "probability": 0.6946 + }, + { + "start": 3654.88, + "end": 3655.48, + "probability": 0.7741 + }, + { + "start": 3655.9, + "end": 3661.2, + "probability": 0.783 + }, + { + "start": 3662.24, + "end": 3665.36, + "probability": 0.9954 + }, + { + "start": 3666.12, + "end": 3669.12, + "probability": 0.75 + }, + { + "start": 3669.12, + "end": 3671.42, + "probability": 0.9899 + }, + { + "start": 3672.04, + "end": 3674.02, + "probability": 0.9905 + }, + { + "start": 3674.7, + "end": 3675.98, + "probability": 0.9397 + }, + { + "start": 3676.9, + "end": 3678.76, + "probability": 0.9978 + }, + { + "start": 3679.36, + "end": 3682.02, + "probability": 0.9755 + }, + { + "start": 3682.22, + "end": 3686.36, + "probability": 0.9929 + }, + { + "start": 3686.36, + "end": 3688.24, + "probability": 0.99 + }, + { + "start": 3688.92, + "end": 3692.38, + "probability": 0.7574 + }, + { + "start": 3692.86, + "end": 3693.22, + "probability": 0.8442 + }, + { + "start": 3693.38, + "end": 3695.96, + "probability": 0.9839 + }, + { + "start": 3697.99, + "end": 3701.84, + "probability": 0.9116 + }, + { + "start": 3701.96, + "end": 3704.96, + "probability": 0.9085 + }, + { + "start": 3705.72, + "end": 3710.12, + "probability": 0.6681 + }, + { + "start": 3710.8, + "end": 3712.08, + "probability": 0.9437 + }, + { + "start": 3716.56, + "end": 3718.54, + "probability": 0.8275 + }, + { + "start": 3719.04, + "end": 3719.58, + "probability": 0.4528 + }, + { + "start": 3719.58, + "end": 3720.22, + "probability": 0.5471 + }, + { + "start": 3720.64, + "end": 3721.54, + "probability": 0.6339 + }, + { + "start": 3725.85, + "end": 3727.7, + "probability": 0.2455 + }, + { + "start": 3735.1, + "end": 3735.74, + "probability": 0.171 + }, + { + "start": 3735.74, + "end": 3736.64, + "probability": 0.4528 + }, + { + "start": 3737.2, + "end": 3739.7, + "probability": 0.8407 + }, + { + "start": 3739.86, + "end": 3742.98, + "probability": 0.9766 + }, + { + "start": 3743.46, + "end": 3743.8, + "probability": 0.746 + }, + { + "start": 3743.92, + "end": 3747.2, + "probability": 0.9117 + }, + { + "start": 3747.84, + "end": 3750.24, + "probability": 0.6581 + }, + { + "start": 3750.76, + "end": 3751.38, + "probability": 0.3682 + }, + { + "start": 3751.42, + "end": 3752.04, + "probability": 0.627 + }, + { + "start": 3756.09, + "end": 3756.93, + "probability": 0.1571 + }, + { + "start": 3767.2, + "end": 3767.76, + "probability": 0.1559 + }, + { + "start": 3767.76, + "end": 3768.39, + "probability": 0.3102 + }, + { + "start": 3769.26, + "end": 3772.06, + "probability": 0.5947 + }, + { + "start": 3772.18, + "end": 3777.68, + "probability": 0.8864 + }, + { + "start": 3778.16, + "end": 3780.94, + "probability": 0.9803 + }, + { + "start": 3781.12, + "end": 3781.7, + "probability": 0.5679 + }, + { + "start": 3781.82, + "end": 3782.28, + "probability": 0.3883 + }, + { + "start": 3782.3, + "end": 3782.46, + "probability": 0.5032 + }, + { + "start": 3782.94, + "end": 3783.9, + "probability": 0.7014 + }, + { + "start": 3784.34, + "end": 3785.26, + "probability": 0.5205 + }, + { + "start": 3786.08, + "end": 3787.8, + "probability": 0.9748 + }, + { + "start": 3788.46, + "end": 3789.2, + "probability": 0.5204 + }, + { + "start": 3789.74, + "end": 3790.56, + "probability": 0.627 + }, + { + "start": 3790.64, + "end": 3791.2, + "probability": 0.3218 + }, + { + "start": 3794.46, + "end": 3797.4, + "probability": 0.5882 + }, + { + "start": 3803.9, + "end": 3803.9, + "probability": 0.0668 + }, + { + "start": 3803.9, + "end": 3809.18, + "probability": 0.8258 + }, + { + "start": 3809.34, + "end": 3814.24, + "probability": 0.8347 + }, + { + "start": 3814.32, + "end": 3814.7, + "probability": 0.7248 + }, + { + "start": 3814.84, + "end": 3815.0, + "probability": 0.5933 + }, + { + "start": 3815.42, + "end": 3816.78, + "probability": 0.7178 + }, + { + "start": 3816.9, + "end": 3818.64, + "probability": 0.6876 + }, + { + "start": 3819.28, + "end": 3820.74, + "probability": 0.9194 + }, + { + "start": 3821.22, + "end": 3826.8, + "probability": 0.9133 + }, + { + "start": 3827.76, + "end": 3837.44, + "probability": 0.8736 + }, + { + "start": 3838.08, + "end": 3841.76, + "probability": 0.9106 + }, + { + "start": 3851.16, + "end": 3854.52, + "probability": 0.116 + }, + { + "start": 3855.08, + "end": 3856.14, + "probability": 0.1231 + }, + { + "start": 3856.14, + "end": 3857.76, + "probability": 0.2058 + }, + { + "start": 3858.3, + "end": 3859.22, + "probability": 0.0609 + }, + { + "start": 3869.72, + "end": 3870.94, + "probability": 0.0601 + }, + { + "start": 3871.58, + "end": 3873.74, + "probability": 0.3246 + }, + { + "start": 3874.0, + "end": 3874.48, + "probability": 0.1058 + }, + { + "start": 3874.94, + "end": 3882.3, + "probability": 0.9459 + }, + { + "start": 3882.3, + "end": 3887.38, + "probability": 0.9402 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.0, + "end": 3964.0, + "probability": 0.0 + }, + { + "start": 3964.24, + "end": 3965.56, + "probability": 0.0392 + }, + { + "start": 3966.78, + "end": 3972.64, + "probability": 0.9448 + }, + { + "start": 3973.28, + "end": 3973.7, + "probability": 0.0001 + }, + { + "start": 3976.62, + "end": 3979.82, + "probability": 0.5615 + }, + { + "start": 3980.6, + "end": 3984.72, + "probability": 0.9329 + }, + { + "start": 3985.3, + "end": 3987.66, + "probability": 0.9668 + }, + { + "start": 3988.32, + "end": 3993.84, + "probability": 0.7912 + }, + { + "start": 3994.78, + "end": 4002.84, + "probability": 0.8896 + }, + { + "start": 4003.14, + "end": 4009.28, + "probability": 0.9972 + }, + { + "start": 4009.88, + "end": 4013.54, + "probability": 0.7412 + }, + { + "start": 4014.46, + "end": 4017.46, + "probability": 0.8596 + }, + { + "start": 4018.48, + "end": 4019.8, + "probability": 0.9016 + }, + { + "start": 4020.58, + "end": 4027.16, + "probability": 0.9697 + }, + { + "start": 4027.16, + "end": 4033.62, + "probability": 0.8109 + }, + { + "start": 4034.32, + "end": 4037.26, + "probability": 0.9119 + }, + { + "start": 4037.96, + "end": 4041.78, + "probability": 0.9849 + }, + { + "start": 4042.54, + "end": 4045.14, + "probability": 0.8602 + }, + { + "start": 4045.68, + "end": 4048.2, + "probability": 0.9712 + }, + { + "start": 4048.82, + "end": 4050.68, + "probability": 0.9073 + }, + { + "start": 4051.32, + "end": 4053.88, + "probability": 0.9086 + }, + { + "start": 4054.78, + "end": 4058.8, + "probability": 0.9341 + }, + { + "start": 4060.72, + "end": 4066.56, + "probability": 0.9421 + }, + { + "start": 4067.26, + "end": 4070.26, + "probability": 0.8113 + }, + { + "start": 4070.86, + "end": 4075.66, + "probability": 0.9817 + }, + { + "start": 4076.2, + "end": 4076.92, + "probability": 0.9028 + }, + { + "start": 4078.12, + "end": 4081.14, + "probability": 0.9291 + }, + { + "start": 4081.7, + "end": 4085.0, + "probability": 0.9407 + }, + { + "start": 4085.98, + "end": 4091.09, + "probability": 0.9611 + }, + { + "start": 4092.36, + "end": 4096.18, + "probability": 0.8393 + }, + { + "start": 4098.84, + "end": 4099.72, + "probability": 0.8274 + }, + { + "start": 4100.3, + "end": 4104.18, + "probability": 0.7386 + }, + { + "start": 4105.22, + "end": 4106.82, + "probability": 0.9443 + }, + { + "start": 4107.82, + "end": 4111.96, + "probability": 0.9941 + }, + { + "start": 4112.1, + "end": 4117.52, + "probability": 0.8527 + }, + { + "start": 4121.04, + "end": 4124.3, + "probability": 0.8428 + }, + { + "start": 4125.08, + "end": 4132.2, + "probability": 0.9186 + }, + { + "start": 4132.2, + "end": 4136.7, + "probability": 0.9976 + }, + { + "start": 4137.34, + "end": 4142.38, + "probability": 0.7076 + }, + { + "start": 4143.9, + "end": 4147.72, + "probability": 0.8828 + }, + { + "start": 4148.7, + "end": 4152.78, + "probability": 0.9917 + }, + { + "start": 4153.32, + "end": 4157.84, + "probability": 0.9729 + }, + { + "start": 4161.98, + "end": 4166.48, + "probability": 0.9591 + }, + { + "start": 4167.12, + "end": 4169.8, + "probability": 0.9229 + }, + { + "start": 4170.66, + "end": 4176.62, + "probability": 0.6713 + }, + { + "start": 4177.52, + "end": 4185.92, + "probability": 0.9675 + }, + { + "start": 4186.9, + "end": 4188.4, + "probability": 0.772 + }, + { + "start": 4189.3, + "end": 4193.92, + "probability": 0.9398 + }, + { + "start": 4193.92, + "end": 4198.84, + "probability": 0.9707 + }, + { + "start": 4199.82, + "end": 4204.72, + "probability": 0.9795 + }, + { + "start": 4204.72, + "end": 4208.9, + "probability": 0.9871 + }, + { + "start": 4209.56, + "end": 4212.1, + "probability": 0.8508 + }, + { + "start": 4212.3, + "end": 4214.88, + "probability": 0.9427 + }, + { + "start": 4217.12, + "end": 4220.32, + "probability": 0.9576 + }, + { + "start": 4221.06, + "end": 4224.8, + "probability": 0.8543 + }, + { + "start": 4225.62, + "end": 4227.46, + "probability": 0.7445 + }, + { + "start": 4227.76, + "end": 4229.78, + "probability": 0.6701 + }, + { + "start": 4229.92, + "end": 4236.36, + "probability": 0.986 + }, + { + "start": 4236.66, + "end": 4236.88, + "probability": 0.4926 + }, + { + "start": 4237.02, + "end": 4241.46, + "probability": 0.8835 + }, + { + "start": 4242.38, + "end": 4247.08, + "probability": 0.867 + }, + { + "start": 4247.64, + "end": 4249.86, + "probability": 0.9551 + }, + { + "start": 4250.24, + "end": 4250.88, + "probability": 0.8184 + }, + { + "start": 4258.66, + "end": 4260.56, + "probability": 0.9907 + }, + { + "start": 4261.54, + "end": 4264.78, + "probability": 0.5651 + }, + { + "start": 4264.84, + "end": 4270.04, + "probability": 0.96 + }, + { + "start": 4279.12, + "end": 4281.12, + "probability": 0.7431 + }, + { + "start": 4301.94, + "end": 4304.54, + "probability": 0.7182 + }, + { + "start": 4307.08, + "end": 4308.1, + "probability": 0.8421 + }, + { + "start": 4309.08, + "end": 4313.4, + "probability": 0.84 + }, + { + "start": 4315.0, + "end": 4318.04, + "probability": 0.7458 + }, + { + "start": 4318.04, + "end": 4320.96, + "probability": 0.627 + }, + { + "start": 4321.74, + "end": 4325.04, + "probability": 0.8522 + }, + { + "start": 4325.54, + "end": 4328.92, + "probability": 0.8507 + }, + { + "start": 4329.78, + "end": 4331.1, + "probability": 0.9377 + }, + { + "start": 4332.04, + "end": 4336.78, + "probability": 0.9959 + }, + { + "start": 4338.12, + "end": 4338.4, + "probability": 0.7874 + }, + { + "start": 4340.0, + "end": 4344.58, + "probability": 0.9607 + }, + { + "start": 4345.3, + "end": 4349.76, + "probability": 0.937 + }, + { + "start": 4350.54, + "end": 4355.96, + "probability": 0.9607 + }, + { + "start": 4356.42, + "end": 4356.68, + "probability": 0.8267 + }, + { + "start": 4358.0, + "end": 4358.68, + "probability": 0.7842 + }, + { + "start": 4361.52, + "end": 4364.26, + "probability": 0.9868 + }, + { + "start": 4364.34, + "end": 4365.26, + "probability": 0.9026 + }, + { + "start": 4366.24, + "end": 4367.66, + "probability": 0.9831 + }, + { + "start": 4367.74, + "end": 4369.68, + "probability": 0.8308 + }, + { + "start": 4370.32, + "end": 4371.68, + "probability": 0.8037 + }, + { + "start": 4372.42, + "end": 4373.64, + "probability": 0.9339 + }, + { + "start": 4376.14, + "end": 4377.1, + "probability": 0.2126 + }, + { + "start": 4380.34, + "end": 4383.68, + "probability": 0.809 + }, + { + "start": 4386.44, + "end": 4392.48, + "probability": 0.9967 + }, + { + "start": 4393.06, + "end": 4396.66, + "probability": 0.9965 + }, + { + "start": 4397.48, + "end": 4401.2, + "probability": 0.6794 + }, + { + "start": 4402.58, + "end": 4404.1, + "probability": 0.9435 + }, + { + "start": 4404.1, + "end": 4405.9, + "probability": 0.5642 + }, + { + "start": 4405.98, + "end": 4406.66, + "probability": 0.6669 + }, + { + "start": 4406.88, + "end": 4407.88, + "probability": 0.7197 + }, + { + "start": 4414.14, + "end": 4416.51, + "probability": 0.0393 + }, + { + "start": 4423.54, + "end": 4423.64, + "probability": 0.083 + }, + { + "start": 4423.64, + "end": 4423.64, + "probability": 0.0372 + }, + { + "start": 4423.64, + "end": 4423.64, + "probability": 0.0459 + }, + { + "start": 4423.64, + "end": 4423.64, + "probability": 0.4038 + }, + { + "start": 4423.64, + "end": 4425.47, + "probability": 0.4559 + }, + { + "start": 4426.3, + "end": 4428.52, + "probability": 0.6078 + }, + { + "start": 4428.88, + "end": 4431.32, + "probability": 0.9904 + }, + { + "start": 4431.98, + "end": 4433.12, + "probability": 0.6873 + }, + { + "start": 4433.68, + "end": 4435.34, + "probability": 0.9854 + }, + { + "start": 4436.08, + "end": 4438.23, + "probability": 0.98 + }, + { + "start": 4438.42, + "end": 4439.9, + "probability": 0.7163 + }, + { + "start": 4440.22, + "end": 4441.9, + "probability": 0.9565 + }, + { + "start": 4442.8, + "end": 4444.06, + "probability": 0.5946 + }, + { + "start": 4449.94, + "end": 4452.18, + "probability": 0.0386 + }, + { + "start": 4455.0, + "end": 4457.68, + "probability": 0.2873 + }, + { + "start": 4464.34, + "end": 4467.36, + "probability": 0.7455 + }, + { + "start": 4468.72, + "end": 4471.08, + "probability": 0.8872 + }, + { + "start": 4472.38, + "end": 4476.36, + "probability": 0.8488 + }, + { + "start": 4478.32, + "end": 4478.88, + "probability": 0.9601 + }, + { + "start": 4478.96, + "end": 4480.0, + "probability": 0.8309 + }, + { + "start": 4480.16, + "end": 4481.83, + "probability": 0.9049 + }, + { + "start": 4483.04, + "end": 4487.96, + "probability": 0.9866 + }, + { + "start": 4488.9, + "end": 4493.86, + "probability": 0.9971 + }, + { + "start": 4494.52, + "end": 4496.6, + "probability": 0.9966 + }, + { + "start": 4497.24, + "end": 4499.08, + "probability": 0.8323 + }, + { + "start": 4500.6, + "end": 4502.4, + "probability": 0.4826 + }, + { + "start": 4502.64, + "end": 4503.78, + "probability": 0.8862 + }, + { + "start": 4503.84, + "end": 4504.3, + "probability": 0.7404 + }, + { + "start": 4504.56, + "end": 4507.96, + "probability": 0.9464 + }, + { + "start": 4508.84, + "end": 4510.3, + "probability": 0.6463 + }, + { + "start": 4511.44, + "end": 4512.52, + "probability": 0.7147 + }, + { + "start": 4513.06, + "end": 4515.74, + "probability": 0.9255 + }, + { + "start": 4515.96, + "end": 4516.04, + "probability": 0.503 + }, + { + "start": 4516.04, + "end": 4516.1, + "probability": 0.4031 + }, + { + "start": 4516.16, + "end": 4517.28, + "probability": 0.9668 + }, + { + "start": 4517.46, + "end": 4518.0, + "probability": 0.8448 + }, + { + "start": 4518.22, + "end": 4519.14, + "probability": 0.6442 + }, + { + "start": 4519.2, + "end": 4525.6, + "probability": 0.7318 + }, + { + "start": 4525.6, + "end": 4525.7, + "probability": 0.4004 + }, + { + "start": 4525.7, + "end": 4525.7, + "probability": 0.0294 + }, + { + "start": 4525.7, + "end": 4528.27, + "probability": 0.2991 + }, + { + "start": 4530.22, + "end": 4531.1, + "probability": 0.8289 + }, + { + "start": 4531.24, + "end": 4532.1, + "probability": 0.9649 + }, + { + "start": 4532.18, + "end": 4535.64, + "probability": 0.9969 + }, + { + "start": 4535.64, + "end": 4539.62, + "probability": 0.9434 + }, + { + "start": 4540.3, + "end": 4543.4, + "probability": 0.9854 + }, + { + "start": 4543.98, + "end": 4546.03, + "probability": 0.9932 + }, + { + "start": 4546.94, + "end": 4548.56, + "probability": 0.9748 + }, + { + "start": 4549.18, + "end": 4552.74, + "probability": 0.8585 + }, + { + "start": 4553.4, + "end": 4557.4, + "probability": 0.9981 + }, + { + "start": 4557.9, + "end": 4561.62, + "probability": 0.8243 + }, + { + "start": 4562.64, + "end": 4564.74, + "probability": 0.9851 + }, + { + "start": 4566.0, + "end": 4569.46, + "probability": 0.9362 + }, + { + "start": 4570.06, + "end": 4574.6, + "probability": 0.6385 + }, + { + "start": 4575.18, + "end": 4578.02, + "probability": 0.9708 + }, + { + "start": 4578.68, + "end": 4580.48, + "probability": 0.9938 + }, + { + "start": 4581.4, + "end": 4583.12, + "probability": 0.8746 + }, + { + "start": 4584.22, + "end": 4584.48, + "probability": 0.4027 + }, + { + "start": 4584.62, + "end": 4589.32, + "probability": 0.951 + }, + { + "start": 4590.04, + "end": 4591.02, + "probability": 0.95 + }, + { + "start": 4591.18, + "end": 4597.74, + "probability": 0.8822 + }, + { + "start": 4598.3, + "end": 4599.56, + "probability": 0.9692 + }, + { + "start": 4600.08, + "end": 4602.14, + "probability": 0.8941 + }, + { + "start": 4602.22, + "end": 4603.54, + "probability": 0.8596 + }, + { + "start": 4603.96, + "end": 4604.7, + "probability": 0.8616 + }, + { + "start": 4605.14, + "end": 4605.94, + "probability": 0.9014 + }, + { + "start": 4607.68, + "end": 4608.66, + "probability": 0.609 + }, + { + "start": 4610.16, + "end": 4612.42, + "probability": 0.9902 + }, + { + "start": 4612.46, + "end": 4615.92, + "probability": 0.959 + }, + { + "start": 4616.5, + "end": 4619.82, + "probability": 0.8339 + }, + { + "start": 4620.44, + "end": 4627.42, + "probability": 0.9408 + }, + { + "start": 4628.18, + "end": 4629.98, + "probability": 0.7796 + }, + { + "start": 4630.88, + "end": 4633.78, + "probability": 0.946 + }, + { + "start": 4634.34, + "end": 4637.9, + "probability": 0.8774 + }, + { + "start": 4638.62, + "end": 4642.12, + "probability": 0.6373 + }, + { + "start": 4642.76, + "end": 4648.24, + "probability": 0.9826 + }, + { + "start": 4648.32, + "end": 4648.8, + "probability": 0.4991 + }, + { + "start": 4649.7, + "end": 4650.42, + "probability": 0.5472 + }, + { + "start": 4650.86, + "end": 4653.42, + "probability": 0.9447 + }, + { + "start": 4654.42, + "end": 4659.92, + "probability": 0.9409 + }, + { + "start": 4660.95, + "end": 4665.42, + "probability": 0.8643 + }, + { + "start": 4666.46, + "end": 4669.22, + "probability": 0.8486 + }, + { + "start": 4669.38, + "end": 4671.68, + "probability": 0.7558 + }, + { + "start": 4672.68, + "end": 4673.94, + "probability": 0.6639 + }, + { + "start": 4675.1, + "end": 4676.8, + "probability": 0.7744 + }, + { + "start": 4677.58, + "end": 4682.62, + "probability": 0.6634 + }, + { + "start": 4682.8, + "end": 4683.37, + "probability": 0.789 + }, + { + "start": 4684.66, + "end": 4690.92, + "probability": 0.979 + }, + { + "start": 4691.38, + "end": 4692.78, + "probability": 0.8587 + }, + { + "start": 4693.2, + "end": 4694.9, + "probability": 0.9077 + }, + { + "start": 4695.2, + "end": 4696.62, + "probability": 0.6824 + }, + { + "start": 4696.64, + "end": 4700.12, + "probability": 0.9652 + }, + { + "start": 4700.7, + "end": 4700.96, + "probability": 0.502 + }, + { + "start": 4701.0, + "end": 4701.94, + "probability": 0.8417 + }, + { + "start": 4702.34, + "end": 4707.88, + "probability": 0.9896 + }, + { + "start": 4708.98, + "end": 4709.74, + "probability": 0.9815 + }, + { + "start": 4710.48, + "end": 4713.36, + "probability": 0.9923 + }, + { + "start": 4714.12, + "end": 4714.95, + "probability": 0.9573 + }, + { + "start": 4715.32, + "end": 4717.32, + "probability": 0.9951 + }, + { + "start": 4717.74, + "end": 4720.04, + "probability": 0.9968 + }, + { + "start": 4720.42, + "end": 4722.86, + "probability": 0.9873 + }, + { + "start": 4723.5, + "end": 4729.3, + "probability": 0.9839 + }, + { + "start": 4729.86, + "end": 4731.02, + "probability": 0.9695 + }, + { + "start": 4731.64, + "end": 4732.76, + "probability": 0.9966 + }, + { + "start": 4733.3, + "end": 4737.28, + "probability": 0.9876 + }, + { + "start": 4738.2, + "end": 4740.24, + "probability": 0.6782 + }, + { + "start": 4745.38, + "end": 4746.6, + "probability": 0.8375 + }, + { + "start": 4746.96, + "end": 4750.12, + "probability": 0.9213 + }, + { + "start": 4750.62, + "end": 4753.99, + "probability": 0.9225 + }, + { + "start": 4754.96, + "end": 4759.6, + "probability": 0.8952 + }, + { + "start": 4760.64, + "end": 4762.36, + "probability": 0.9929 + }, + { + "start": 4762.94, + "end": 4764.34, + "probability": 0.5 + }, + { + "start": 4764.98, + "end": 4766.28, + "probability": 0.3337 + }, + { + "start": 4766.92, + "end": 4768.46, + "probability": 0.7699 + }, + { + "start": 4768.84, + "end": 4769.72, + "probability": 0.967 + }, + { + "start": 4770.12, + "end": 4773.94, + "probability": 0.954 + }, + { + "start": 4774.32, + "end": 4776.32, + "probability": 0.994 + }, + { + "start": 4776.78, + "end": 4781.6, + "probability": 0.9875 + }, + { + "start": 4781.74, + "end": 4782.02, + "probability": 0.7731 + }, + { + "start": 4782.72, + "end": 4784.52, + "probability": 0.9197 + }, + { + "start": 4792.56, + "end": 4793.98, + "probability": 0.7401 + }, + { + "start": 4794.62, + "end": 4794.82, + "probability": 0.0002 + }, + { + "start": 4799.62, + "end": 4802.08, + "probability": 0.4484 + }, + { + "start": 4803.36, + "end": 4804.46, + "probability": 0.0309 + }, + { + "start": 4804.46, + "end": 4805.58, + "probability": 0.29 + }, + { + "start": 4806.18, + "end": 4807.18, + "probability": 0.9495 + }, + { + "start": 4808.58, + "end": 4810.54, + "probability": 0.1473 + }, + { + "start": 4816.44, + "end": 4816.58, + "probability": 0.147 + }, + { + "start": 4816.58, + "end": 4817.06, + "probability": 0.4419 + }, + { + "start": 4817.08, + "end": 4820.5, + "probability": 0.7297 + }, + { + "start": 4821.62, + "end": 4827.7, + "probability": 0.987 + }, + { + "start": 4829.28, + "end": 4830.48, + "probability": 0.8335 + }, + { + "start": 4831.02, + "end": 4834.8, + "probability": 0.9986 + }, + { + "start": 4835.54, + "end": 4838.42, + "probability": 0.8366 + }, + { + "start": 4840.12, + "end": 4843.48, + "probability": 0.9659 + }, + { + "start": 4844.64, + "end": 4847.46, + "probability": 0.8612 + }, + { + "start": 4847.72, + "end": 4849.98, + "probability": 0.9763 + }, + { + "start": 4850.62, + "end": 4852.54, + "probability": 0.9465 + }, + { + "start": 4853.44, + "end": 4856.44, + "probability": 0.9941 + }, + { + "start": 4856.44, + "end": 4859.26, + "probability": 0.9352 + }, + { + "start": 4859.78, + "end": 4861.4, + "probability": 0.8303 + }, + { + "start": 4862.32, + "end": 4864.32, + "probability": 0.9592 + }, + { + "start": 4864.86, + "end": 4866.7, + "probability": 0.9488 + }, + { + "start": 4867.06, + "end": 4870.98, + "probability": 0.9793 + }, + { + "start": 4871.9, + "end": 4875.52, + "probability": 0.9891 + }, + { + "start": 4875.52, + "end": 4880.16, + "probability": 0.9824 + }, + { + "start": 4881.28, + "end": 4881.48, + "probability": 0.3253 + }, + { + "start": 4881.74, + "end": 4885.64, + "probability": 0.9902 + }, + { + "start": 4886.38, + "end": 4888.28, + "probability": 0.8767 + }, + { + "start": 4888.92, + "end": 4892.28, + "probability": 0.9338 + }, + { + "start": 4893.0, + "end": 4895.22, + "probability": 0.8215 + }, + { + "start": 4895.58, + "end": 4897.76, + "probability": 0.9442 + }, + { + "start": 4898.58, + "end": 4899.68, + "probability": 0.839 + }, + { + "start": 4899.72, + "end": 4904.32, + "probability": 0.9909 + }, + { + "start": 4904.86, + "end": 4908.1, + "probability": 0.9863 + }, + { + "start": 4908.78, + "end": 4911.32, + "probability": 0.9889 + }, + { + "start": 4911.94, + "end": 4915.48, + "probability": 0.9829 + }, + { + "start": 4915.82, + "end": 4917.73, + "probability": 0.6943 + }, + { + "start": 4918.14, + "end": 4919.4, + "probability": 0.6409 + }, + { + "start": 4920.06, + "end": 4921.74, + "probability": 0.7636 + }, + { + "start": 4922.34, + "end": 4923.42, + "probability": 0.8062 + }, + { + "start": 4923.52, + "end": 4923.96, + "probability": 0.7617 + }, + { + "start": 4928.24, + "end": 4929.74, + "probability": 0.3765 + }, + { + "start": 4930.88, + "end": 4931.74, + "probability": 0.255 + }, + { + "start": 4932.28, + "end": 4935.44, + "probability": 0.4988 + }, + { + "start": 4937.08, + "end": 4937.94, + "probability": 0.178 + }, + { + "start": 4938.7, + "end": 4944.36, + "probability": 0.7191 + }, + { + "start": 4944.96, + "end": 4946.98, + "probability": 0.9915 + }, + { + "start": 4952.64, + "end": 4957.8, + "probability": 0.8904 + }, + { + "start": 4958.54, + "end": 4960.84, + "probability": 0.8224 + }, + { + "start": 4961.36, + "end": 4962.3, + "probability": 0.7472 + }, + { + "start": 4962.3, + "end": 4963.3, + "probability": 0.6772 + }, + { + "start": 4964.5, + "end": 4967.48, + "probability": 0.9137 + }, + { + "start": 4968.86, + "end": 4974.1, + "probability": 0.7887 + }, + { + "start": 4974.76, + "end": 4980.72, + "probability": 0.9756 + }, + { + "start": 4982.34, + "end": 4984.74, + "probability": 0.9016 + }, + { + "start": 4985.28, + "end": 4989.59, + "probability": 0.8685 + }, + { + "start": 4991.48, + "end": 4993.76, + "probability": 0.9683 + }, + { + "start": 4994.52, + "end": 4997.14, + "probability": 0.5817 + }, + { + "start": 4998.44, + "end": 5002.16, + "probability": 0.941 + }, + { + "start": 5003.36, + "end": 5003.48, + "probability": 0.1201 + }, + { + "start": 5003.48, + "end": 5005.66, + "probability": 0.9053 + }, + { + "start": 5006.5, + "end": 5008.08, + "probability": 0.8901 + }, + { + "start": 5009.94, + "end": 5011.92, + "probability": 0.9586 + }, + { + "start": 5012.56, + "end": 5014.1, + "probability": 0.4745 + }, + { + "start": 5014.1, + "end": 5016.74, + "probability": 0.7899 + }, + { + "start": 5017.16, + "end": 5018.15, + "probability": 0.0583 + }, + { + "start": 5019.92, + "end": 5022.34, + "probability": 0.3199 + }, + { + "start": 5022.34, + "end": 5023.98, + "probability": 0.2224 + }, + { + "start": 5025.42, + "end": 5026.74, + "probability": 0.6062 + }, + { + "start": 5027.82, + "end": 5032.26, + "probability": 0.923 + }, + { + "start": 5033.24, + "end": 5033.56, + "probability": 0.0431 + }, + { + "start": 5033.56, + "end": 5033.97, + "probability": 0.7738 + }, + { + "start": 5034.64, + "end": 5037.06, + "probability": 0.6593 + }, + { + "start": 5037.4, + "end": 5038.38, + "probability": 0.9778 + }, + { + "start": 5038.68, + "end": 5040.3, + "probability": 0.8863 + }, + { + "start": 5041.06, + "end": 5042.98, + "probability": 0.6404 + }, + { + "start": 5043.76, + "end": 5048.3, + "probability": 0.9351 + }, + { + "start": 5049.48, + "end": 5052.3, + "probability": 0.9684 + }, + { + "start": 5052.64, + "end": 5053.92, + "probability": 0.7746 + }, + { + "start": 5054.62, + "end": 5060.22, + "probability": 0.8978 + }, + { + "start": 5060.38, + "end": 5060.62, + "probability": 0.684 + }, + { + "start": 5061.1, + "end": 5061.8, + "probability": 0.5732 + }, + { + "start": 5064.15, + "end": 5067.46, + "probability": 0.3545 + }, + { + "start": 5069.1, + "end": 5070.18, + "probability": 0.7393 + }, + { + "start": 5070.98, + "end": 5071.46, + "probability": 0.6185 + }, + { + "start": 5071.54, + "end": 5072.94, + "probability": 0.8449 + }, + { + "start": 5073.32, + "end": 5076.08, + "probability": 0.7599 + }, + { + "start": 5098.34, + "end": 5099.14, + "probability": 0.4481 + }, + { + "start": 5099.2, + "end": 5099.96, + "probability": 0.5404 + }, + { + "start": 5100.12, + "end": 5105.58, + "probability": 0.9242 + }, + { + "start": 5106.34, + "end": 5110.64, + "probability": 0.7209 + }, + { + "start": 5111.04, + "end": 5113.24, + "probability": 0.964 + }, + { + "start": 5113.72, + "end": 5117.04, + "probability": 0.996 + }, + { + "start": 5117.04, + "end": 5118.56, + "probability": 0.9727 + }, + { + "start": 5118.66, + "end": 5119.76, + "probability": 0.8468 + }, + { + "start": 5119.82, + "end": 5126.88, + "probability": 0.9337 + }, + { + "start": 5128.0, + "end": 5129.5, + "probability": 0.5485 + }, + { + "start": 5130.16, + "end": 5131.44, + "probability": 0.7821 + }, + { + "start": 5131.84, + "end": 5137.02, + "probability": 0.9743 + }, + { + "start": 5138.05, + "end": 5146.88, + "probability": 0.8212 + }, + { + "start": 5146.88, + "end": 5152.4, + "probability": 0.9762 + }, + { + "start": 5153.66, + "end": 5155.99, + "probability": 0.8618 + }, + { + "start": 5156.78, + "end": 5160.3, + "probability": 0.9946 + }, + { + "start": 5160.84, + "end": 5163.82, + "probability": 0.9517 + }, + { + "start": 5164.32, + "end": 5167.94, + "probability": 0.9868 + }, + { + "start": 5168.26, + "end": 5170.78, + "probability": 0.7286 + }, + { + "start": 5171.54, + "end": 5172.9, + "probability": 0.8646 + }, + { + "start": 5172.98, + "end": 5176.0, + "probability": 0.9307 + }, + { + "start": 5177.16, + "end": 5180.55, + "probability": 0.9215 + }, + { + "start": 5181.26, + "end": 5183.16, + "probability": 0.816 + }, + { + "start": 5183.26, + "end": 5183.7, + "probability": 0.9276 + }, + { + "start": 5184.16, + "end": 5185.26, + "probability": 0.6412 + }, + { + "start": 5185.42, + "end": 5187.18, + "probability": 0.5379 + }, + { + "start": 5188.68, + "end": 5190.66, + "probability": 0.7033 + }, + { + "start": 5196.0, + "end": 5197.56, + "probability": 0.7469 + }, + { + "start": 5197.66, + "end": 5198.84, + "probability": 0.5424 + }, + { + "start": 5199.78, + "end": 5202.72, + "probability": 0.8299 + }, + { + "start": 5205.78, + "end": 5209.08, + "probability": 0.9891 + }, + { + "start": 5209.74, + "end": 5213.5, + "probability": 0.948 + }, + { + "start": 5214.06, + "end": 5217.5, + "probability": 0.9888 + }, + { + "start": 5218.3, + "end": 5219.24, + "probability": 0.9783 + }, + { + "start": 5221.74, + "end": 5225.96, + "probability": 0.9858 + }, + { + "start": 5225.96, + "end": 5229.04, + "probability": 0.998 + }, + { + "start": 5229.1, + "end": 5229.72, + "probability": 0.0435 + }, + { + "start": 5230.18, + "end": 5233.06, + "probability": 0.8221 + }, + { + "start": 5233.52, + "end": 5234.64, + "probability": 0.9102 + }, + { + "start": 5234.8, + "end": 5235.62, + "probability": 0.8403 + }, + { + "start": 5236.3, + "end": 5242.92, + "probability": 0.7148 + }, + { + "start": 5243.12, + "end": 5245.62, + "probability": 0.981 + }, + { + "start": 5246.46, + "end": 5248.94, + "probability": 0.8789 + }, + { + "start": 5249.56, + "end": 5250.32, + "probability": 0.5461 + }, + { + "start": 5250.46, + "end": 5254.86, + "probability": 0.9174 + }, + { + "start": 5255.18, + "end": 5255.38, + "probability": 0.5238 + }, + { + "start": 5255.42, + "end": 5256.79, + "probability": 0.7783 + }, + { + "start": 5257.04, + "end": 5258.22, + "probability": 0.6231 + }, + { + "start": 5258.38, + "end": 5259.74, + "probability": 0.7371 + }, + { + "start": 5260.68, + "end": 5262.17, + "probability": 0.7446 + }, + { + "start": 5262.84, + "end": 5265.32, + "probability": 0.9744 + }, + { + "start": 5265.78, + "end": 5267.26, + "probability": 0.9602 + }, + { + "start": 5268.18, + "end": 5268.38, + "probability": 0.1356 + }, + { + "start": 5268.38, + "end": 5268.52, + "probability": 0.391 + }, + { + "start": 5268.66, + "end": 5269.4, + "probability": 0.978 + }, + { + "start": 5269.48, + "end": 5270.3, + "probability": 0.6778 + }, + { + "start": 5270.3, + "end": 5274.32, + "probability": 0.9789 + }, + { + "start": 5274.32, + "end": 5277.12, + "probability": 0.9992 + }, + { + "start": 5277.72, + "end": 5283.08, + "probability": 0.9936 + }, + { + "start": 5283.88, + "end": 5285.72, + "probability": 0.9292 + }, + { + "start": 5285.88, + "end": 5287.88, + "probability": 0.9987 + }, + { + "start": 5288.52, + "end": 5290.28, + "probability": 0.954 + }, + { + "start": 5290.46, + "end": 5292.64, + "probability": 0.9539 + }, + { + "start": 5292.64, + "end": 5296.7, + "probability": 0.993 + }, + { + "start": 5297.28, + "end": 5298.58, + "probability": 0.8143 + }, + { + "start": 5299.34, + "end": 5301.36, + "probability": 0.5756 + }, + { + "start": 5302.44, + "end": 5303.22, + "probability": 0.7633 + }, + { + "start": 5303.3, + "end": 5304.76, + "probability": 0.5105 + }, + { + "start": 5304.82, + "end": 5305.74, + "probability": 0.7701 + }, + { + "start": 5306.2, + "end": 5306.27, + "probability": 0.0094 + }, + { + "start": 5306.64, + "end": 5307.08, + "probability": 0.8716 + }, + { + "start": 5307.12, + "end": 5309.7, + "probability": 0.7691 + }, + { + "start": 5310.86, + "end": 5312.34, + "probability": 0.467 + }, + { + "start": 5312.7, + "end": 5313.76, + "probability": 0.7202 + }, + { + "start": 5313.82, + "end": 5314.79, + "probability": 0.4868 + }, + { + "start": 5315.58, + "end": 5317.7, + "probability": 0.9091 + }, + { + "start": 5317.7, + "end": 5318.0, + "probability": 0.7547 + }, + { + "start": 5318.08, + "end": 5320.38, + "probability": 0.9084 + }, + { + "start": 5320.46, + "end": 5321.18, + "probability": 0.7692 + }, + { + "start": 5321.24, + "end": 5327.22, + "probability": 0.9353 + }, + { + "start": 5327.76, + "end": 5327.76, + "probability": 0.0523 + }, + { + "start": 5327.88, + "end": 5335.1, + "probability": 0.9215 + }, + { + "start": 5335.68, + "end": 5340.2, + "probability": 0.9665 + }, + { + "start": 5340.72, + "end": 5343.47, + "probability": 0.6979 + }, + { + "start": 5343.64, + "end": 5349.44, + "probability": 0.8335 + }, + { + "start": 5350.58, + "end": 5353.24, + "probability": 0.9785 + }, + { + "start": 5354.08, + "end": 5355.94, + "probability": 0.7617 + }, + { + "start": 5356.44, + "end": 5357.72, + "probability": 0.7319 + }, + { + "start": 5358.58, + "end": 5359.7, + "probability": 0.9275 + }, + { + "start": 5360.44, + "end": 5361.82, + "probability": 0.9788 + }, + { + "start": 5362.46, + "end": 5363.42, + "probability": 0.9414 + }, + { + "start": 5364.04, + "end": 5366.28, + "probability": 0.9818 + }, + { + "start": 5366.9, + "end": 5370.82, + "probability": 0.9964 + }, + { + "start": 5371.38, + "end": 5373.58, + "probability": 0.5443 + }, + { + "start": 5374.58, + "end": 5376.5, + "probability": 0.9545 + }, + { + "start": 5376.52, + "end": 5376.96, + "probability": 0.6144 + }, + { + "start": 5377.19, + "end": 5380.04, + "probability": 0.6179 + }, + { + "start": 5381.46, + "end": 5384.54, + "probability": 0.7145 + }, + { + "start": 5385.42, + "end": 5390.84, + "probability": 0.8995 + }, + { + "start": 5391.32, + "end": 5392.78, + "probability": 0.9248 + }, + { + "start": 5393.5, + "end": 5395.5, + "probability": 0.8503 + }, + { + "start": 5395.96, + "end": 5397.1, + "probability": 0.9339 + }, + { + "start": 5397.58, + "end": 5401.53, + "probability": 0.9679 + }, + { + "start": 5402.38, + "end": 5403.96, + "probability": 0.7533 + }, + { + "start": 5404.28, + "end": 5405.24, + "probability": 0.4544 + }, + { + "start": 5406.1, + "end": 5409.98, + "probability": 0.9839 + }, + { + "start": 5410.36, + "end": 5415.54, + "probability": 0.3283 + }, + { + "start": 5416.46, + "end": 5417.0, + "probability": 0.5206 + }, + { + "start": 5417.2, + "end": 5421.98, + "probability": 0.8927 + }, + { + "start": 5422.18, + "end": 5423.0, + "probability": 0.6084 + }, + { + "start": 5423.02, + "end": 5423.48, + "probability": 0.6248 + }, + { + "start": 5423.88, + "end": 5424.58, + "probability": 0.6537 + }, + { + "start": 5424.62, + "end": 5425.3, + "probability": 0.8362 + }, + { + "start": 5429.59, + "end": 5430.74, + "probability": 0.0217 + }, + { + "start": 5432.52, + "end": 5434.58, + "probability": 0.427 + }, + { + "start": 5434.58, + "end": 5436.5, + "probability": 0.7631 + }, + { + "start": 5436.6, + "end": 5438.22, + "probability": 0.0312 + }, + { + "start": 5438.46, + "end": 5439.04, + "probability": 0.0884 + }, + { + "start": 5439.22, + "end": 5440.92, + "probability": 0.8947 + }, + { + "start": 5441.64, + "end": 5442.9, + "probability": 0.5836 + }, + { + "start": 5443.44, + "end": 5444.5, + "probability": 0.3336 + }, + { + "start": 5444.7, + "end": 5447.74, + "probability": 0.9757 + }, + { + "start": 5447.84, + "end": 5450.54, + "probability": 0.7163 + }, + { + "start": 5450.92, + "end": 5452.62, + "probability": 0.2786 + }, + { + "start": 5452.98, + "end": 5458.0, + "probability": 0.8933 + }, + { + "start": 5461.58, + "end": 5462.52, + "probability": 0.0016 + }, + { + "start": 5463.34, + "end": 5466.88, + "probability": 0.3279 + }, + { + "start": 5467.32, + "end": 5467.44, + "probability": 0.4669 + }, + { + "start": 5470.1, + "end": 5470.92, + "probability": 0.3968 + }, + { + "start": 5471.43, + "end": 5474.76, + "probability": 0.0261 + }, + { + "start": 5475.0, + "end": 5476.94, + "probability": 0.0412 + }, + { + "start": 5478.84, + "end": 5479.66, + "probability": 0.0661 + }, + { + "start": 5479.66, + "end": 5479.66, + "probability": 0.1513 + }, + { + "start": 5480.3, + "end": 5484.7, + "probability": 0.8151 + }, + { + "start": 5485.34, + "end": 5488.26, + "probability": 0.8203 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.0, + "end": 5567.0, + "probability": 0.0 + }, + { + "start": 5567.6, + "end": 5567.7, + "probability": 0.071 + }, + { + "start": 5587.78, + "end": 5588.58, + "probability": 0.1409 + }, + { + "start": 5589.32, + "end": 5591.7, + "probability": 0.3886 + }, + { + "start": 5591.7, + "end": 5593.39, + "probability": 0.0452 + }, + { + "start": 5593.98, + "end": 5596.18, + "probability": 0.6824 + }, + { + "start": 5597.26, + "end": 5599.9, + "probability": 0.7485 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5690.0, + "end": 5690.0, + "probability": 0.0 + }, + { + "start": 5691.02, + "end": 5692.1, + "probability": 0.0291 + }, + { + "start": 5692.1, + "end": 5692.1, + "probability": 0.024 + }, + { + "start": 5692.1, + "end": 5692.1, + "probability": 0.5015 + }, + { + "start": 5692.1, + "end": 5692.1, + "probability": 0.0665 + }, + { + "start": 5692.1, + "end": 5695.02, + "probability": 0.4681 + }, + { + "start": 5697.24, + "end": 5699.78, + "probability": 0.4807 + }, + { + "start": 5699.84, + "end": 5700.94, + "probability": 0.9056 + }, + { + "start": 5701.72, + "end": 5703.46, + "probability": 0.4698 + }, + { + "start": 5704.52, + "end": 5706.12, + "probability": 0.7877 + }, + { + "start": 5707.14, + "end": 5716.02, + "probability": 0.9706 + }, + { + "start": 5717.38, + "end": 5719.98, + "probability": 0.9294 + }, + { + "start": 5721.02, + "end": 5722.0, + "probability": 0.6513 + }, + { + "start": 5723.26, + "end": 5727.26, + "probability": 0.9234 + }, + { + "start": 5727.46, + "end": 5730.2, + "probability": 0.9342 + }, + { + "start": 5731.26, + "end": 5733.1, + "probability": 0.5 + }, + { + "start": 5734.0, + "end": 5735.86, + "probability": 0.8635 + }, + { + "start": 5737.06, + "end": 5737.78, + "probability": 0.9384 + }, + { + "start": 5740.14, + "end": 5743.26, + "probability": 0.7621 + }, + { + "start": 5744.18, + "end": 5748.0, + "probability": 0.8971 + }, + { + "start": 5749.28, + "end": 5754.28, + "probability": 0.9958 + }, + { + "start": 5755.96, + "end": 5758.26, + "probability": 0.9221 + }, + { + "start": 5758.96, + "end": 5760.68, + "probability": 0.744 + }, + { + "start": 5761.36, + "end": 5762.24, + "probability": 0.7682 + }, + { + "start": 5763.14, + "end": 5769.64, + "probability": 0.9584 + }, + { + "start": 5770.6, + "end": 5774.08, + "probability": 0.8677 + }, + { + "start": 5774.64, + "end": 5776.84, + "probability": 0.8989 + }, + { + "start": 5777.36, + "end": 5778.5, + "probability": 0.5044 + }, + { + "start": 5779.8, + "end": 5783.88, + "probability": 0.9476 + }, + { + "start": 5784.62, + "end": 5786.6, + "probability": 0.4974 + }, + { + "start": 5787.62, + "end": 5788.62, + "probability": 0.9868 + }, + { + "start": 5789.66, + "end": 5790.5, + "probability": 0.7289 + }, + { + "start": 5792.34, + "end": 5794.56, + "probability": 0.8114 + }, + { + "start": 5795.46, + "end": 5797.64, + "probability": 0.5778 + }, + { + "start": 5798.46, + "end": 5799.46, + "probability": 0.7041 + }, + { + "start": 5800.38, + "end": 5802.2, + "probability": 0.2185 + }, + { + "start": 5802.88, + "end": 5807.9, + "probability": 0.9497 + }, + { + "start": 5808.7, + "end": 5811.64, + "probability": 0.5497 + }, + { + "start": 5812.84, + "end": 5817.62, + "probability": 0.9777 + }, + { + "start": 5818.62, + "end": 5819.88, + "probability": 0.9268 + }, + { + "start": 5821.2, + "end": 5826.32, + "probability": 0.9004 + }, + { + "start": 5826.92, + "end": 5829.36, + "probability": 0.7056 + }, + { + "start": 5830.32, + "end": 5833.66, + "probability": 0.6887 + }, + { + "start": 5834.32, + "end": 5839.52, + "probability": 0.5848 + }, + { + "start": 5839.64, + "end": 5840.64, + "probability": 0.8924 + }, + { + "start": 5841.14, + "end": 5842.9, + "probability": 0.7853 + }, + { + "start": 5843.5, + "end": 5846.86, + "probability": 0.8915 + }, + { + "start": 5847.84, + "end": 5848.57, + "probability": 0.6808 + }, + { + "start": 5849.52, + "end": 5850.76, + "probability": 0.9382 + }, + { + "start": 5852.08, + "end": 5853.99, + "probability": 0.6506 + }, + { + "start": 5855.18, + "end": 5859.12, + "probability": 0.9224 + }, + { + "start": 5859.48, + "end": 5860.95, + "probability": 0.9736 + }, + { + "start": 5861.92, + "end": 5862.54, + "probability": 0.6982 + }, + { + "start": 5863.1, + "end": 5864.1, + "probability": 0.633 + }, + { + "start": 5864.46, + "end": 5864.46, + "probability": 0.2191 + }, + { + "start": 5864.46, + "end": 5865.06, + "probability": 0.5888 + }, + { + "start": 5865.48, + "end": 5867.36, + "probability": 0.3905 + }, + { + "start": 5867.62, + "end": 5869.7, + "probability": 0.6644 + }, + { + "start": 5870.0, + "end": 5870.34, + "probability": 0.2262 + }, + { + "start": 5870.5, + "end": 5871.72, + "probability": 0.9658 + }, + { + "start": 5872.0, + "end": 5877.02, + "probability": 0.8909 + }, + { + "start": 5877.02, + "end": 5877.96, + "probability": 0.5317 + }, + { + "start": 5878.88, + "end": 5880.56, + "probability": 0.6909 + }, + { + "start": 5881.22, + "end": 5881.94, + "probability": 0.3569 + }, + { + "start": 5882.5, + "end": 5883.36, + "probability": 0.8777 + }, + { + "start": 5884.51, + "end": 5890.26, + "probability": 0.9628 + }, + { + "start": 5892.2, + "end": 5893.46, + "probability": 0.0359 + }, + { + "start": 5894.0, + "end": 5898.4, + "probability": 0.499 + }, + { + "start": 5899.12, + "end": 5899.86, + "probability": 0.4318 + }, + { + "start": 5900.44, + "end": 5905.58, + "probability": 0.727 + }, + { + "start": 5906.84, + "end": 5907.26, + "probability": 0.8615 + }, + { + "start": 5908.47, + "end": 5910.96, + "probability": 0.761 + }, + { + "start": 5911.48, + "end": 5913.24, + "probability": 0.8386 + }, + { + "start": 5914.04, + "end": 5917.56, + "probability": 0.965 + }, + { + "start": 5918.68, + "end": 5922.44, + "probability": 0.9306 + }, + { + "start": 5922.86, + "end": 5924.26, + "probability": 0.7852 + }, + { + "start": 5925.54, + "end": 5929.5, + "probability": 0.795 + }, + { + "start": 5930.64, + "end": 5930.9, + "probability": 0.9004 + }, + { + "start": 5930.92, + "end": 5932.5, + "probability": 0.6322 + }, + { + "start": 5932.92, + "end": 5937.32, + "probability": 0.7979 + }, + { + "start": 5938.08, + "end": 5939.46, + "probability": 0.9243 + }, + { + "start": 5939.96, + "end": 5941.32, + "probability": 0.8192 + }, + { + "start": 5941.4, + "end": 5941.98, + "probability": 0.6238 + }, + { + "start": 5942.48, + "end": 5942.74, + "probability": 0.3979 + }, + { + "start": 5942.74, + "end": 5945.28, + "probability": 0.9339 + }, + { + "start": 5947.74, + "end": 5948.86, + "probability": 0.9153 + }, + { + "start": 5950.3, + "end": 5950.36, + "probability": 0.8169 + }, + { + "start": 5952.4, + "end": 5953.94, + "probability": 0.9382 + }, + { + "start": 5954.82, + "end": 5956.44, + "probability": 0.5102 + }, + { + "start": 5957.06, + "end": 5958.54, + "probability": 0.5918 + }, + { + "start": 5961.7, + "end": 5963.18, + "probability": 0.7152 + }, + { + "start": 5964.9, + "end": 5967.38, + "probability": 0.5558 + }, + { + "start": 5968.04, + "end": 5970.26, + "probability": 0.5909 + }, + { + "start": 5970.9, + "end": 5971.74, + "probability": 0.8051 + }, + { + "start": 5972.52, + "end": 5976.1, + "probability": 0.6717 + }, + { + "start": 5977.34, + "end": 5977.48, + "probability": 0.5384 + }, + { + "start": 5979.46, + "end": 5981.35, + "probability": 0.991 + }, + { + "start": 5981.62, + "end": 5983.24, + "probability": 0.4996 + }, + { + "start": 5985.07, + "end": 5988.42, + "probability": 0.9375 + }, + { + "start": 5990.34, + "end": 5994.74, + "probability": 0.9569 + }, + { + "start": 5995.38, + "end": 5996.9, + "probability": 0.5314 + }, + { + "start": 5998.43, + "end": 6002.76, + "probability": 0.7737 + }, + { + "start": 6003.42, + "end": 6004.9, + "probability": 0.917 + }, + { + "start": 6006.1, + "end": 6010.04, + "probability": 0.6144 + }, + { + "start": 6011.0, + "end": 6015.34, + "probability": 0.9727 + }, + { + "start": 6017.12, + "end": 6022.58, + "probability": 0.9945 + }, + { + "start": 6023.12, + "end": 6024.18, + "probability": 0.7938 + }, + { + "start": 6025.2, + "end": 6025.84, + "probability": 0.6503 + }, + { + "start": 6026.36, + "end": 6029.08, + "probability": 0.9075 + }, + { + "start": 6030.04, + "end": 6031.18, + "probability": 0.5791 + }, + { + "start": 6031.8, + "end": 6033.3, + "probability": 0.8963 + }, + { + "start": 6033.92, + "end": 6035.02, + "probability": 0.9741 + }, + { + "start": 6036.66, + "end": 6036.88, + "probability": 0.7424 + }, + { + "start": 6038.0, + "end": 6041.94, + "probability": 0.7106 + }, + { + "start": 6042.9, + "end": 6045.68, + "probability": 0.998 + }, + { + "start": 6046.54, + "end": 6049.88, + "probability": 0.9845 + }, + { + "start": 6050.8, + "end": 6051.64, + "probability": 0.7558 + }, + { + "start": 6052.32, + "end": 6053.82, + "probability": 0.882 + }, + { + "start": 6054.0, + "end": 6054.94, + "probability": 0.9305 + }, + { + "start": 6055.6, + "end": 6058.98, + "probability": 0.8739 + }, + { + "start": 6059.48, + "end": 6062.42, + "probability": 0.9231 + }, + { + "start": 6062.84, + "end": 6063.34, + "probability": 0.747 + }, + { + "start": 6063.46, + "end": 6064.7, + "probability": 0.9147 + }, + { + "start": 6065.16, + "end": 6065.96, + "probability": 0.8332 + }, + { + "start": 6066.76, + "end": 6068.68, + "probability": 0.8984 + }, + { + "start": 6069.44, + "end": 6070.28, + "probability": 0.9013 + }, + { + "start": 6070.58, + "end": 6074.34, + "probability": 0.9679 + }, + { + "start": 6075.26, + "end": 6076.34, + "probability": 0.9927 + }, + { + "start": 6077.0, + "end": 6078.14, + "probability": 0.6391 + }, + { + "start": 6078.66, + "end": 6080.28, + "probability": 0.802 + }, + { + "start": 6080.84, + "end": 6082.54, + "probability": 0.73 + }, + { + "start": 6083.82, + "end": 6085.2, + "probability": 0.9373 + }, + { + "start": 6086.44, + "end": 6087.52, + "probability": 0.965 + }, + { + "start": 6090.04, + "end": 6091.86, + "probability": 0.7999 + }, + { + "start": 6091.9, + "end": 6093.38, + "probability": 0.9847 + }, + { + "start": 6093.52, + "end": 6095.1, + "probability": 0.955 + }, + { + "start": 6095.12, + "end": 6097.02, + "probability": 0.8064 + }, + { + "start": 6097.12, + "end": 6098.4, + "probability": 0.3648 + }, + { + "start": 6098.54, + "end": 6101.0, + "probability": 0.9819 + }, + { + "start": 6101.6, + "end": 6102.18, + "probability": 0.5632 + }, + { + "start": 6103.8, + "end": 6105.06, + "probability": 0.708 + }, + { + "start": 6110.36, + "end": 6111.7, + "probability": 0.6526 + }, + { + "start": 6113.38, + "end": 6115.8, + "probability": 0.871 + }, + { + "start": 6116.68, + "end": 6121.82, + "probability": 0.9951 + }, + { + "start": 6122.33, + "end": 6126.1, + "probability": 0.9899 + }, + { + "start": 6127.64, + "end": 6132.96, + "probability": 0.9793 + }, + { + "start": 6134.28, + "end": 6137.2, + "probability": 0.9491 + }, + { + "start": 6138.04, + "end": 6140.08, + "probability": 0.9937 + }, + { + "start": 6140.92, + "end": 6143.94, + "probability": 0.9039 + }, + { + "start": 6144.8, + "end": 6147.82, + "probability": 0.997 + }, + { + "start": 6149.28, + "end": 6151.88, + "probability": 0.9983 + }, + { + "start": 6151.92, + "end": 6153.96, + "probability": 0.7532 + }, + { + "start": 6154.3, + "end": 6154.74, + "probability": 0.8683 + }, + { + "start": 6156.46, + "end": 6159.34, + "probability": 0.9968 + }, + { + "start": 6160.0, + "end": 6164.12, + "probability": 0.9832 + }, + { + "start": 6164.88, + "end": 6167.04, + "probability": 0.9878 + }, + { + "start": 6167.7, + "end": 6171.92, + "probability": 0.8497 + }, + { + "start": 6171.96, + "end": 6177.2, + "probability": 0.9978 + }, + { + "start": 6177.88, + "end": 6182.72, + "probability": 0.8725 + }, + { + "start": 6183.46, + "end": 6186.88, + "probability": 0.9365 + }, + { + "start": 6187.98, + "end": 6188.18, + "probability": 0.588 + }, + { + "start": 6189.78, + "end": 6191.1, + "probability": 0.8868 + }, + { + "start": 6191.82, + "end": 6197.0, + "probability": 0.9985 + }, + { + "start": 6197.74, + "end": 6199.86, + "probability": 0.9683 + }, + { + "start": 6201.04, + "end": 6203.56, + "probability": 0.9935 + }, + { + "start": 6206.6, + "end": 6208.4, + "probability": 0.9999 + }, + { + "start": 6208.98, + "end": 6211.08, + "probability": 0.9136 + }, + { + "start": 6212.7, + "end": 6217.48, + "probability": 0.9948 + }, + { + "start": 6218.22, + "end": 6219.08, + "probability": 0.824 + }, + { + "start": 6219.92, + "end": 6221.54, + "probability": 0.9944 + }, + { + "start": 6223.02, + "end": 6223.5, + "probability": 0.7239 + }, + { + "start": 6224.38, + "end": 6229.8, + "probability": 0.9902 + }, + { + "start": 6230.54, + "end": 6234.32, + "probability": 0.9559 + }, + { + "start": 6235.3, + "end": 6239.38, + "probability": 0.6617 + }, + { + "start": 6239.7, + "end": 6240.26, + "probability": 0.7843 + }, + { + "start": 6240.74, + "end": 6241.32, + "probability": 0.4317 + }, + { + "start": 6241.38, + "end": 6242.73, + "probability": 0.7838 + }, + { + "start": 6242.96, + "end": 6244.36, + "probability": 0.9382 + }, + { + "start": 6244.42, + "end": 6244.96, + "probability": 0.4384 + }, + { + "start": 6245.0, + "end": 6246.02, + "probability": 0.8532 + }, + { + "start": 6246.47, + "end": 6248.22, + "probability": 0.3223 + }, + { + "start": 6248.72, + "end": 6251.7, + "probability": 0.0367 + }, + { + "start": 6252.66, + "end": 6254.6, + "probability": 0.8775 + }, + { + "start": 6255.2, + "end": 6256.78, + "probability": 0.9922 + }, + { + "start": 6258.4, + "end": 6261.48, + "probability": 0.7155 + }, + { + "start": 6263.02, + "end": 6264.92, + "probability": 0.8038 + }, + { + "start": 6265.48, + "end": 6269.42, + "probability": 0.9929 + }, + { + "start": 6269.42, + "end": 6274.8, + "probability": 0.9978 + }, + { + "start": 6275.24, + "end": 6275.96, + "probability": 0.879 + }, + { + "start": 6276.52, + "end": 6277.51, + "probability": 0.8247 + }, + { + "start": 6278.16, + "end": 6278.93, + "probability": 0.9468 + }, + { + "start": 6279.8, + "end": 6282.08, + "probability": 0.9199 + }, + { + "start": 6282.64, + "end": 6283.44, + "probability": 0.3174 + }, + { + "start": 6283.52, + "end": 6286.32, + "probability": 0.9259 + }, + { + "start": 6287.36, + "end": 6287.72, + "probability": 0.7452 + }, + { + "start": 6287.84, + "end": 6290.68, + "probability": 0.3401 + }, + { + "start": 6290.92, + "end": 6294.02, + "probability": 0.7498 + }, + { + "start": 6294.54, + "end": 6297.39, + "probability": 0.593 + }, + { + "start": 6298.32, + "end": 6302.38, + "probability": 0.7285 + }, + { + "start": 6303.08, + "end": 6305.62, + "probability": 0.7609 + }, + { + "start": 6306.6, + "end": 6307.38, + "probability": 0.7024 + }, + { + "start": 6307.6, + "end": 6310.4, + "probability": 0.9138 + }, + { + "start": 6310.48, + "end": 6310.86, + "probability": 0.9299 + }, + { + "start": 6311.2, + "end": 6311.94, + "probability": 0.9668 + }, + { + "start": 6312.34, + "end": 6313.28, + "probability": 0.9088 + }, + { + "start": 6314.02, + "end": 6315.34, + "probability": 0.851 + }, + { + "start": 6315.9, + "end": 6317.12, + "probability": 0.6177 + }, + { + "start": 6317.74, + "end": 6319.02, + "probability": 0.7307 + }, + { + "start": 6319.62, + "end": 6323.06, + "probability": 0.8394 + }, + { + "start": 6325.22, + "end": 6326.38, + "probability": 0.7336 + }, + { + "start": 6327.96, + "end": 6330.26, + "probability": 0.9844 + }, + { + "start": 6332.12, + "end": 6333.92, + "probability": 0.9407 + }, + { + "start": 6334.9, + "end": 6336.38, + "probability": 0.8535 + }, + { + "start": 6337.14, + "end": 6339.38, + "probability": 0.7634 + }, + { + "start": 6340.5, + "end": 6342.3, + "probability": 0.9972 + }, + { + "start": 6342.88, + "end": 6346.92, + "probability": 0.9905 + }, + { + "start": 6347.88, + "end": 6348.22, + "probability": 0.1008 + }, + { + "start": 6348.28, + "end": 6349.82, + "probability": 0.1686 + }, + { + "start": 6353.6, + "end": 6354.0, + "probability": 0.4918 + }, + { + "start": 6354.76, + "end": 6355.46, + "probability": 0.6702 + }, + { + "start": 6366.39, + "end": 6368.64, + "probability": 0.5446 + }, + { + "start": 6369.68, + "end": 6373.56, + "probability": 0.9916 + }, + { + "start": 6382.42, + "end": 6385.86, + "probability": 0.7594 + }, + { + "start": 6386.66, + "end": 6387.14, + "probability": 0.7507 + }, + { + "start": 6387.62, + "end": 6391.12, + "probability": 0.9814 + }, + { + "start": 6391.12, + "end": 6395.01, + "probability": 0.8626 + }, + { + "start": 6395.7, + "end": 6396.76, + "probability": 0.9766 + }, + { + "start": 6397.94, + "end": 6400.94, + "probability": 0.9268 + }, + { + "start": 6401.06, + "end": 6405.96, + "probability": 0.938 + }, + { + "start": 6407.32, + "end": 6407.32, + "probability": 0.8008 + }, + { + "start": 6407.32, + "end": 6407.98, + "probability": 0.6168 + }, + { + "start": 6407.98, + "end": 6409.34, + "probability": 0.9258 + }, + { + "start": 6409.74, + "end": 6410.8, + "probability": 0.9902 + }, + { + "start": 6410.82, + "end": 6411.56, + "probability": 0.8608 + }, + { + "start": 6412.1, + "end": 6413.94, + "probability": 0.9963 + }, + { + "start": 6415.78, + "end": 6421.24, + "probability": 0.5611 + }, + { + "start": 6421.68, + "end": 6425.28, + "probability": 0.9917 + }, + { + "start": 6426.34, + "end": 6429.44, + "probability": 0.8812 + }, + { + "start": 6429.44, + "end": 6432.78, + "probability": 0.9923 + }, + { + "start": 6432.86, + "end": 6435.84, + "probability": 0.825 + }, + { + "start": 6436.96, + "end": 6440.32, + "probability": 0.8067 + }, + { + "start": 6441.58, + "end": 6441.94, + "probability": 0.5003 + }, + { + "start": 6442.0, + "end": 6445.16, + "probability": 0.9133 + }, + { + "start": 6445.66, + "end": 6449.96, + "probability": 0.9635 + }, + { + "start": 6450.94, + "end": 6452.36, + "probability": 0.9801 + }, + { + "start": 6453.36, + "end": 6458.36, + "probability": 0.5836 + }, + { + "start": 6458.82, + "end": 6459.84, + "probability": 0.9729 + }, + { + "start": 6460.44, + "end": 6460.48, + "probability": 0.1564 + }, + { + "start": 6460.94, + "end": 6462.2, + "probability": 0.0251 + }, + { + "start": 6462.4, + "end": 6464.96, + "probability": 0.9041 + }, + { + "start": 6465.96, + "end": 6469.97, + "probability": 0.8893 + }, + { + "start": 6470.5, + "end": 6474.64, + "probability": 0.8854 + }, + { + "start": 6475.5, + "end": 6477.52, + "probability": 0.7447 + }, + { + "start": 6478.42, + "end": 6481.88, + "probability": 0.954 + }, + { + "start": 6483.26, + "end": 6485.16, + "probability": 0.8311 + }, + { + "start": 6486.18, + "end": 6490.36, + "probability": 0.9368 + }, + { + "start": 6491.1, + "end": 6494.1, + "probability": 0.9459 + }, + { + "start": 6495.18, + "end": 6498.56, + "probability": 0.9811 + }, + { + "start": 6499.46, + "end": 6502.14, + "probability": 0.803 + }, + { + "start": 6502.76, + "end": 6505.34, + "probability": 0.966 + }, + { + "start": 6506.12, + "end": 6508.28, + "probability": 0.9479 + }, + { + "start": 6509.16, + "end": 6512.38, + "probability": 0.9655 + }, + { + "start": 6512.9, + "end": 6516.3, + "probability": 0.9025 + }, + { + "start": 6517.02, + "end": 6518.4, + "probability": 0.5602 + }, + { + "start": 6518.96, + "end": 6520.78, + "probability": 0.8255 + }, + { + "start": 6521.68, + "end": 6523.44, + "probability": 0.9294 + }, + { + "start": 6524.12, + "end": 6528.68, + "probability": 0.8975 + }, + { + "start": 6529.26, + "end": 6529.94, + "probability": 0.9564 + }, + { + "start": 6530.56, + "end": 6532.42, + "probability": 0.8379 + }, + { + "start": 6533.62, + "end": 6539.46, + "probability": 0.9847 + }, + { + "start": 6540.1, + "end": 6540.74, + "probability": 0.7918 + }, + { + "start": 6541.38, + "end": 6542.24, + "probability": 0.7154 + }, + { + "start": 6543.16, + "end": 6544.76, + "probability": 0.6485 + }, + { + "start": 6545.44, + "end": 6546.76, + "probability": 0.8021 + }, + { + "start": 6547.16, + "end": 6550.12, + "probability": 0.9093 + }, + { + "start": 6550.48, + "end": 6552.56, + "probability": 0.9485 + }, + { + "start": 6554.0, + "end": 6555.22, + "probability": 0.7179 + }, + { + "start": 6556.02, + "end": 6557.52, + "probability": 0.7822 + }, + { + "start": 6558.12, + "end": 6558.42, + "probability": 0.9167 + }, + { + "start": 6558.82, + "end": 6560.96, + "probability": 0.7451 + }, + { + "start": 6561.34, + "end": 6564.52, + "probability": 0.9924 + }, + { + "start": 6564.52, + "end": 6568.44, + "probability": 0.7436 + }, + { + "start": 6570.26, + "end": 6574.58, + "probability": 0.9706 + }, + { + "start": 6574.58, + "end": 6578.06, + "probability": 0.9154 + }, + { + "start": 6578.74, + "end": 6580.46, + "probability": 0.5827 + }, + { + "start": 6581.06, + "end": 6584.7, + "probability": 0.9098 + }, + { + "start": 6585.8, + "end": 6588.42, + "probability": 0.9971 + }, + { + "start": 6589.02, + "end": 6589.88, + "probability": 0.5374 + }, + { + "start": 6590.74, + "end": 6593.42, + "probability": 0.9484 + }, + { + "start": 6594.06, + "end": 6595.3, + "probability": 0.9321 + }, + { + "start": 6595.88, + "end": 6596.78, + "probability": 0.9498 + }, + { + "start": 6597.76, + "end": 6602.26, + "probability": 0.9862 + }, + { + "start": 6602.86, + "end": 6606.18, + "probability": 0.8658 + }, + { + "start": 6606.18, + "end": 6609.06, + "probability": 0.9736 + }, + { + "start": 6609.56, + "end": 6612.66, + "probability": 0.8371 + }, + { + "start": 6613.16, + "end": 6615.62, + "probability": 0.9473 + }, + { + "start": 6615.9, + "end": 6616.32, + "probability": 0.7327 + }, + { + "start": 6616.64, + "end": 6618.57, + "probability": 0.9557 + }, + { + "start": 6618.96, + "end": 6621.54, + "probability": 0.7614 + }, + { + "start": 6622.02, + "end": 6625.0, + "probability": 0.9738 + }, + { + "start": 6625.46, + "end": 6627.58, + "probability": 0.9896 + }, + { + "start": 6628.0, + "end": 6629.71, + "probability": 0.6672 + }, + { + "start": 6629.86, + "end": 6630.21, + "probability": 0.0776 + }, + { + "start": 6630.94, + "end": 6633.7, + "probability": 0.1305 + }, + { + "start": 6633.7, + "end": 6635.06, + "probability": 0.4451 + }, + { + "start": 6635.5, + "end": 6635.57, + "probability": 0.0393 + }, + { + "start": 6636.1, + "end": 6639.63, + "probability": 0.8064 + }, + { + "start": 6640.08, + "end": 6643.16, + "probability": 0.7842 + }, + { + "start": 6643.38, + "end": 6644.73, + "probability": 0.8535 + }, + { + "start": 6645.12, + "end": 6645.8, + "probability": 0.5587 + }, + { + "start": 6646.2, + "end": 6647.14, + "probability": 0.5947 + }, + { + "start": 6647.24, + "end": 6650.3, + "probability": 0.7908 + }, + { + "start": 6650.68, + "end": 6653.92, + "probability": 0.9554 + }, + { + "start": 6654.1, + "end": 6654.98, + "probability": 0.7646 + }, + { + "start": 6655.38, + "end": 6658.98, + "probability": 0.9962 + }, + { + "start": 6659.16, + "end": 6659.3, + "probability": 0.5825 + }, + { + "start": 6659.72, + "end": 6660.5, + "probability": 0.8638 + }, + { + "start": 6661.16, + "end": 6661.44, + "probability": 0.7855 + }, + { + "start": 6662.45, + "end": 6665.76, + "probability": 0.9191 + }, + { + "start": 6666.64, + "end": 6668.05, + "probability": 0.2601 + }, + { + "start": 6669.2, + "end": 6671.06, + "probability": 0.5777 + }, + { + "start": 6672.06, + "end": 6675.3, + "probability": 0.7262 + }, + { + "start": 6676.02, + "end": 6676.48, + "probability": 0.586 + }, + { + "start": 6677.16, + "end": 6678.4, + "probability": 0.6961 + }, + { + "start": 6679.08, + "end": 6681.34, + "probability": 0.9172 + }, + { + "start": 6681.9, + "end": 6684.56, + "probability": 0.9258 + }, + { + "start": 6685.08, + "end": 6687.06, + "probability": 0.9676 + }, + { + "start": 6687.76, + "end": 6689.76, + "probability": 0.9712 + }, + { + "start": 6690.39, + "end": 6693.16, + "probability": 0.9678 + }, + { + "start": 6693.22, + "end": 6695.78, + "probability": 0.9773 + }, + { + "start": 6696.68, + "end": 6698.46, + "probability": 0.6685 + }, + { + "start": 6699.54, + "end": 6701.54, + "probability": 0.9237 + }, + { + "start": 6702.84, + "end": 6703.58, + "probability": 0.9456 + }, + { + "start": 6704.5, + "end": 6707.56, + "probability": 0.7985 + }, + { + "start": 6708.6, + "end": 6713.52, + "probability": 0.1474 + }, + { + "start": 6713.74, + "end": 6715.3, + "probability": 0.6376 + }, + { + "start": 6716.41, + "end": 6722.12, + "probability": 0.2213 + }, + { + "start": 6722.6, + "end": 6723.4, + "probability": 0.1064 + }, + { + "start": 6723.4, + "end": 6725.2, + "probability": 0.1326 + }, + { + "start": 6725.56, + "end": 6727.4, + "probability": 0.1049 + }, + { + "start": 6727.76, + "end": 6728.98, + "probability": 0.7349 + }, + { + "start": 6728.98, + "end": 6731.78, + "probability": 0.8335 + }, + { + "start": 6735.1, + "end": 6738.74, + "probability": 0.4516 + }, + { + "start": 6740.16, + "end": 6741.48, + "probability": 0.6828 + }, + { + "start": 6741.6, + "end": 6742.62, + "probability": 0.2141 + }, + { + "start": 6742.62, + "end": 6745.96, + "probability": 0.0546 + }, + { + "start": 6745.96, + "end": 6751.44, + "probability": 0.9838 + }, + { + "start": 6752.64, + "end": 6754.34, + "probability": 0.7103 + }, + { + "start": 6754.98, + "end": 6759.04, + "probability": 0.742 + }, + { + "start": 6759.3, + "end": 6760.08, + "probability": 0.2431 + }, + { + "start": 6761.22, + "end": 6762.78, + "probability": 0.9354 + }, + { + "start": 6763.38, + "end": 6765.1, + "probability": 0.5363 + }, + { + "start": 6766.08, + "end": 6768.76, + "probability": 0.4999 + }, + { + "start": 6769.36, + "end": 6771.88, + "probability": 0.579 + }, + { + "start": 6772.6, + "end": 6774.74, + "probability": 0.6516 + }, + { + "start": 6775.98, + "end": 6778.66, + "probability": 0.6512 + }, + { + "start": 6780.28, + "end": 6783.48, + "probability": 0.6702 + }, + { + "start": 6784.0, + "end": 6786.34, + "probability": 0.9111 + }, + { + "start": 6786.92, + "end": 6788.68, + "probability": 0.931 + }, + { + "start": 6790.44, + "end": 6794.4, + "probability": 0.7232 + }, + { + "start": 6795.12, + "end": 6797.24, + "probability": 0.7839 + }, + { + "start": 6798.14, + "end": 6800.1, + "probability": 0.9204 + }, + { + "start": 6800.22, + "end": 6803.24, + "probability": 0.8494 + }, + { + "start": 6803.24, + "end": 6806.38, + "probability": 0.7521 + }, + { + "start": 6809.62, + "end": 6809.86, + "probability": 0.7043 + }, + { + "start": 6813.68, + "end": 6814.7, + "probability": 0.429 + }, + { + "start": 6815.42, + "end": 6819.46, + "probability": 0.958 + }, + { + "start": 6820.34, + "end": 6821.72, + "probability": 0.9858 + }, + { + "start": 6822.28, + "end": 6823.34, + "probability": 0.7982 + }, + { + "start": 6824.48, + "end": 6828.54, + "probability": 0.828 + }, + { + "start": 6829.18, + "end": 6829.66, + "probability": 0.9746 + }, + { + "start": 6830.66, + "end": 6831.74, + "probability": 0.9066 + }, + { + "start": 6832.56, + "end": 6834.66, + "probability": 0.9622 + }, + { + "start": 6835.7, + "end": 6836.14, + "probability": 0.9468 + }, + { + "start": 6836.96, + "end": 6840.62, + "probability": 0.946 + }, + { + "start": 6841.54, + "end": 6841.78, + "probability": 0.5836 + }, + { + "start": 6845.32, + "end": 6846.26, + "probability": 0.3721 + }, + { + "start": 6847.36, + "end": 6849.7, + "probability": 0.8485 + }, + { + "start": 6850.56, + "end": 6852.58, + "probability": 0.9705 + }, + { + "start": 6853.48, + "end": 6855.02, + "probability": 0.8076 + }, + { + "start": 6856.24, + "end": 6859.56, + "probability": 0.9842 + }, + { + "start": 6860.44, + "end": 6860.86, + "probability": 0.9946 + }, + { + "start": 6861.6, + "end": 6862.68, + "probability": 0.9776 + }, + { + "start": 6863.3, + "end": 6865.48, + "probability": 0.9946 + }, + { + "start": 6866.42, + "end": 6866.86, + "probability": 0.9852 + }, + { + "start": 6867.6, + "end": 6868.88, + "probability": 0.9778 + }, + { + "start": 6869.78, + "end": 6874.6, + "probability": 0.6245 + }, + { + "start": 6875.4, + "end": 6877.6, + "probability": 0.9152 + }, + { + "start": 6882.4, + "end": 6887.1, + "probability": 0.6306 + }, + { + "start": 6889.24, + "end": 6890.88, + "probability": 0.716 + }, + { + "start": 6891.7, + "end": 6892.8, + "probability": 0.8772 + }, + { + "start": 6893.78, + "end": 6895.52, + "probability": 0.8945 + }, + { + "start": 6896.58, + "end": 6898.54, + "probability": 0.8122 + }, + { + "start": 6899.88, + "end": 6902.54, + "probability": 0.8277 + }, + { + "start": 6903.38, + "end": 6905.04, + "probability": 0.9712 + }, + { + "start": 6905.98, + "end": 6907.66, + "probability": 0.9546 + }, + { + "start": 6908.4, + "end": 6910.4, + "probability": 0.9631 + }, + { + "start": 6915.12, + "end": 6917.82, + "probability": 0.5201 + }, + { + "start": 6918.78, + "end": 6920.38, + "probability": 0.8797 + }, + { + "start": 6921.44, + "end": 6923.52, + "probability": 0.9001 + }, + { + "start": 6924.44, + "end": 6925.7, + "probability": 0.8675 + }, + { + "start": 6926.72, + "end": 6929.7, + "probability": 0.7479 + }, + { + "start": 6930.8, + "end": 6937.18, + "probability": 0.7528 + }, + { + "start": 6938.22, + "end": 6940.38, + "probability": 0.8004 + }, + { + "start": 6941.44, + "end": 6943.92, + "probability": 0.8337 + }, + { + "start": 6949.26, + "end": 6954.12, + "probability": 0.7184 + }, + { + "start": 6956.12, + "end": 6957.12, + "probability": 0.7444 + }, + { + "start": 6958.18, + "end": 6959.98, + "probability": 0.9504 + }, + { + "start": 6960.82, + "end": 6962.66, + "probability": 0.9849 + }, + { + "start": 6963.48, + "end": 6965.42, + "probability": 0.9921 + }, + { + "start": 6965.94, + "end": 6967.58, + "probability": 0.9767 + }, + { + "start": 6968.04, + "end": 6972.78, + "probability": 0.7791 + }, + { + "start": 6974.02, + "end": 6976.24, + "probability": 0.9482 + }, + { + "start": 6976.86, + "end": 6977.22, + "probability": 0.9738 + }, + { + "start": 6977.74, + "end": 6978.88, + "probability": 0.8196 + }, + { + "start": 6978.88, + "end": 6982.62, + "probability": 0.7985 + }, + { + "start": 6982.84, + "end": 6985.4, + "probability": 0.8076 + }, + { + "start": 6986.26, + "end": 6988.72, + "probability": 0.7103 + }, + { + "start": 6993.3, + "end": 6995.74, + "probability": 0.087 + }, + { + "start": 6995.74, + "end": 6996.58, + "probability": 0.1334 + }, + { + "start": 6996.68, + "end": 6998.22, + "probability": 0.0867 + }, + { + "start": 6998.84, + "end": 7001.38, + "probability": 0.2213 + }, + { + "start": 7002.16, + "end": 7003.36, + "probability": 0.5201 + }, + { + "start": 7004.98, + "end": 7008.34, + "probability": 0.4546 + }, + { + "start": 7009.1, + "end": 7013.2, + "probability": 0.2625 + }, + { + "start": 7013.6, + "end": 7016.9, + "probability": 0.7466 + }, + { + "start": 7017.06, + "end": 7018.74, + "probability": 0.4136 + }, + { + "start": 7019.02, + "end": 7021.5, + "probability": 0.8656 + }, + { + "start": 7021.62, + "end": 7022.44, + "probability": 0.9414 + }, + { + "start": 7026.74, + "end": 7027.82, + "probability": 0.7387 + }, + { + "start": 7028.58, + "end": 7030.44, + "probability": 0.5323 + }, + { + "start": 7031.46, + "end": 7033.92, + "probability": 0.9402 + }, + { + "start": 7037.16, + "end": 7039.96, + "probability": 0.7887 + }, + { + "start": 7041.66, + "end": 7044.44, + "probability": 0.9279 + }, + { + "start": 7045.06, + "end": 7047.56, + "probability": 0.8945 + }, + { + "start": 7048.42, + "end": 7051.04, + "probability": 0.9509 + }, + { + "start": 7051.82, + "end": 7053.88, + "probability": 0.9622 + }, + { + "start": 7055.4, + "end": 7058.18, + "probability": 0.7439 + }, + { + "start": 7058.58, + "end": 7063.4, + "probability": 0.8533 + }, + { + "start": 7064.44, + "end": 7069.92, + "probability": 0.6265 + }, + { + "start": 7070.48, + "end": 7072.84, + "probability": 0.9151 + }, + { + "start": 7073.42, + "end": 7075.68, + "probability": 0.7822 + }, + { + "start": 7076.62, + "end": 7081.54, + "probability": 0.884 + }, + { + "start": 7082.08, + "end": 7083.92, + "probability": 0.8802 + }, + { + "start": 7084.56, + "end": 7089.86, + "probability": 0.7126 + }, + { + "start": 7090.6, + "end": 7095.58, + "probability": 0.9279 + }, + { + "start": 7097.22, + "end": 7101.98, + "probability": 0.9788 + }, + { + "start": 7103.22, + "end": 7107.32, + "probability": 0.7451 + }, + { + "start": 7108.12, + "end": 7114.2, + "probability": 0.6691 + }, + { + "start": 7114.74, + "end": 7117.42, + "probability": 0.5667 + }, + { + "start": 7118.46, + "end": 7120.64, + "probability": 0.5677 + }, + { + "start": 7121.62, + "end": 7123.58, + "probability": 0.6899 + }, + { + "start": 7124.18, + "end": 7127.94, + "probability": 0.8413 + }, + { + "start": 7129.4, + "end": 7134.96, + "probability": 0.7944 + }, + { + "start": 7135.48, + "end": 7138.06, + "probability": 0.9155 + }, + { + "start": 7139.14, + "end": 7141.24, + "probability": 0.5042 + }, + { + "start": 7142.3, + "end": 7147.34, + "probability": 0.9438 + }, + { + "start": 7148.24, + "end": 7150.08, + "probability": 0.9036 + }, + { + "start": 7150.64, + "end": 7152.36, + "probability": 0.6952 + }, + { + "start": 7153.0, + "end": 7154.9, + "probability": 0.9495 + }, + { + "start": 7157.46, + "end": 7163.08, + "probability": 0.8683 + }, + { + "start": 7163.74, + "end": 7170.6, + "probability": 0.9285 + }, + { + "start": 7171.64, + "end": 7172.44, + "probability": 0.4012 + }, + { + "start": 7173.32, + "end": 7174.56, + "probability": 0.8522 + }, + { + "start": 7176.18, + "end": 7177.08, + "probability": 0.811 + }, + { + "start": 7177.84, + "end": 7181.24, + "probability": 0.8055 + }, + { + "start": 7182.04, + "end": 7185.2, + "probability": 0.9821 + }, + { + "start": 7186.32, + "end": 7187.48, + "probability": 0.9983 + }, + { + "start": 7188.42, + "end": 7189.3, + "probability": 0.954 + }, + { + "start": 7191.16, + "end": 7192.0, + "probability": 0.9982 + }, + { + "start": 7195.3, + "end": 7197.46, + "probability": 0.5165 + }, + { + "start": 7198.88, + "end": 7199.6, + "probability": 0.7995 + }, + { + "start": 7200.5, + "end": 7201.04, + "probability": 0.7021 + }, + { + "start": 7204.42, + "end": 7205.18, + "probability": 0.3912 + }, + { + "start": 7206.04, + "end": 7206.7, + "probability": 0.7167 + }, + { + "start": 7208.48, + "end": 7210.12, + "probability": 0.5787 + }, + { + "start": 7211.26, + "end": 7211.5, + "probability": 0.7456 + }, + { + "start": 7214.88, + "end": 7215.76, + "probability": 0.2194 + }, + { + "start": 7218.22, + "end": 7219.54, + "probability": 0.8539 + }, + { + "start": 7220.25, + "end": 7225.76, + "probability": 0.6867 + }, + { + "start": 7227.86, + "end": 7229.62, + "probability": 0.7369 + }, + { + "start": 7235.88, + "end": 7241.82, + "probability": 0.602 + }, + { + "start": 7242.62, + "end": 7242.94, + "probability": 0.9185 + }, + { + "start": 7246.7, + "end": 7247.94, + "probability": 0.4396 + }, + { + "start": 7248.76, + "end": 7249.58, + "probability": 0.8582 + }, + { + "start": 7250.58, + "end": 7255.24, + "probability": 0.9124 + }, + { + "start": 7256.68, + "end": 7261.6, + "probability": 0.9906 + }, + { + "start": 7262.28, + "end": 7268.76, + "probability": 0.833 + }, + { + "start": 7269.4, + "end": 7272.34, + "probability": 0.7833 + }, + { + "start": 7272.6, + "end": 7275.58, + "probability": 0.9489 + }, + { + "start": 7276.04, + "end": 7278.7, + "probability": 0.9716 + }, + { + "start": 7278.82, + "end": 7281.64, + "probability": 0.9488 + }, + { + "start": 7281.96, + "end": 7283.02, + "probability": 0.7142 + }, + { + "start": 7283.46, + "end": 7283.66, + "probability": 0.199 + }, + { + "start": 7283.68, + "end": 7283.72, + "probability": 0.3328 + }, + { + "start": 7283.72, + "end": 7284.06, + "probability": 0.1009 + }, + { + "start": 7285.16, + "end": 7286.98, + "probability": 0.7801 + }, + { + "start": 7287.84, + "end": 7291.62, + "probability": 0.1738 + }, + { + "start": 7293.82, + "end": 7294.72, + "probability": 0.2356 + }, + { + "start": 7295.74, + "end": 7296.36, + "probability": 0.7091 + }, + { + "start": 7299.28, + "end": 7303.26, + "probability": 0.8447 + }, + { + "start": 7303.4, + "end": 7304.74, + "probability": 0.751 + }, + { + "start": 7305.04, + "end": 7306.12, + "probability": 0.8604 + }, + { + "start": 7307.02, + "end": 7307.42, + "probability": 0.9127 + }, + { + "start": 7307.9, + "end": 7308.88, + "probability": 0.7414 + }, + { + "start": 7309.34, + "end": 7310.08, + "probability": 0.7672 + }, + { + "start": 7310.5, + "end": 7311.5, + "probability": 0.7133 + }, + { + "start": 7311.64, + "end": 7315.4, + "probability": 0.9943 + }, + { + "start": 7316.52, + "end": 7317.62, + "probability": 0.4268 + }, + { + "start": 7317.92, + "end": 7321.68, + "probability": 0.7553 + }, + { + "start": 7321.68, + "end": 7326.02, + "probability": 0.1706 + }, + { + "start": 7326.84, + "end": 7328.96, + "probability": 0.6531 + }, + { + "start": 7330.4, + "end": 7330.68, + "probability": 0.4893 + }, + { + "start": 7331.42, + "end": 7332.02, + "probability": 0.5443 + }, + { + "start": 7332.02, + "end": 7334.94, + "probability": 0.4678 + }, + { + "start": 7334.96, + "end": 7337.52, + "probability": 0.5718 + }, + { + "start": 7337.74, + "end": 7337.82, + "probability": 0.5108 + }, + { + "start": 7339.44, + "end": 7340.74, + "probability": 0.3779 + }, + { + "start": 7340.94, + "end": 7346.74, + "probability": 0.9811 + }, + { + "start": 7346.82, + "end": 7353.32, + "probability": 0.8221 + }, + { + "start": 7353.7, + "end": 7358.93, + "probability": 0.9276 + }, + { + "start": 7362.1, + "end": 7362.4, + "probability": 0.8557 + }, + { + "start": 7363.86, + "end": 7365.38, + "probability": 0.7422 + }, + { + "start": 7366.1, + "end": 7369.04, + "probability": 0.998 + }, + { + "start": 7369.74, + "end": 7370.62, + "probability": 0.9788 + }, + { + "start": 7371.32, + "end": 7373.14, + "probability": 0.9941 + }, + { + "start": 7374.32, + "end": 7376.2, + "probability": 0.9688 + }, + { + "start": 7376.42, + "end": 7379.84, + "probability": 0.395 + }, + { + "start": 7382.13, + "end": 7382.25, + "probability": 0.1054 + }, + { + "start": 7383.02, + "end": 7383.02, + "probability": 0.4611 + }, + { + "start": 7383.04, + "end": 7388.0, + "probability": 0.8973 + }, + { + "start": 7388.72, + "end": 7391.68, + "probability": 0.9676 + }, + { + "start": 7392.24, + "end": 7394.72, + "probability": 0.3728 + }, + { + "start": 7407.08, + "end": 7407.68, + "probability": 0.5394 + }, + { + "start": 7409.09, + "end": 7412.7, + "probability": 0.0563 + }, + { + "start": 7414.32, + "end": 7416.2, + "probability": 0.3628 + }, + { + "start": 7417.48, + "end": 7418.68, + "probability": 0.0163 + }, + { + "start": 7420.88, + "end": 7423.86, + "probability": 0.1289 + }, + { + "start": 7423.86, + "end": 7424.15, + "probability": 0.0675 + }, + { + "start": 7431.54, + "end": 7433.84, + "probability": 0.2052 + }, + { + "start": 7434.48, + "end": 7436.0, + "probability": 0.1049 + }, + { + "start": 7436.48, + "end": 7444.82, + "probability": 0.1602 + }, + { + "start": 7444.82, + "end": 7446.72, + "probability": 0.0522 + }, + { + "start": 7448.24, + "end": 7452.4, + "probability": 0.1191 + }, + { + "start": 7452.89, + "end": 7453.24, + "probability": 0.161 + }, + { + "start": 7453.24, + "end": 7453.52, + "probability": 0.0254 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7467.0, + "probability": 0.0 + }, + { + "start": 7467.0, + "end": 7468.64, + "probability": 0.094 + }, + { + "start": 7469.0, + "end": 7469.3, + "probability": 0.7998 + }, + { + "start": 7469.42, + "end": 7471.02, + "probability": 0.9814 + }, + { + "start": 7471.14, + "end": 7472.66, + "probability": 0.9688 + }, + { + "start": 7472.84, + "end": 7473.4, + "probability": 0.8068 + }, + { + "start": 7473.44, + "end": 7474.64, + "probability": 0.8354 + }, + { + "start": 7474.64, + "end": 7475.26, + "probability": 0.5355 + }, + { + "start": 7475.4, + "end": 7477.76, + "probability": 0.6064 + }, + { + "start": 7478.08, + "end": 7480.5, + "probability": 0.4438 + }, + { + "start": 7480.74, + "end": 7487.86, + "probability": 0.9644 + }, + { + "start": 7487.94, + "end": 7488.3, + "probability": 0.4669 + }, + { + "start": 7488.3, + "end": 7489.0, + "probability": 0.4731 + }, + { + "start": 7489.0, + "end": 7490.58, + "probability": 0.5295 + }, + { + "start": 7490.74, + "end": 7492.12, + "probability": 0.0742 + }, + { + "start": 7492.12, + "end": 7492.78, + "probability": 0.6098 + }, + { + "start": 7492.86, + "end": 7493.52, + "probability": 0.8024 + }, + { + "start": 7493.74, + "end": 7496.36, + "probability": 0.9754 + }, + { + "start": 7496.5, + "end": 7497.4, + "probability": 0.8019 + }, + { + "start": 7497.9, + "end": 7499.57, + "probability": 0.7057 + }, + { + "start": 7500.48, + "end": 7503.42, + "probability": 0.9058 + }, + { + "start": 7503.64, + "end": 7505.74, + "probability": 0.9924 + }, + { + "start": 7506.12, + "end": 7506.68, + "probability": 0.0349 + }, + { + "start": 7506.96, + "end": 7508.28, + "probability": 0.0645 + }, + { + "start": 7510.5, + "end": 7510.94, + "probability": 0.009 + }, + { + "start": 7511.0, + "end": 7511.0, + "probability": 0.2389 + }, + { + "start": 7511.0, + "end": 7511.0, + "probability": 0.0284 + }, + { + "start": 7511.0, + "end": 7511.0, + "probability": 0.0833 + }, + { + "start": 7511.0, + "end": 7511.0, + "probability": 0.1404 + }, + { + "start": 7511.0, + "end": 7511.0, + "probability": 0.1961 + }, + { + "start": 7511.0, + "end": 7512.96, + "probability": 0.6385 + }, + { + "start": 7513.28, + "end": 7515.58, + "probability": 0.6982 + }, + { + "start": 7515.78, + "end": 7519.82, + "probability": 0.9891 + }, + { + "start": 7519.82, + "end": 7522.62, + "probability": 0.9946 + }, + { + "start": 7523.2, + "end": 7524.86, + "probability": 0.6766 + }, + { + "start": 7525.44, + "end": 7526.84, + "probability": 0.1629 + }, + { + "start": 7530.0, + "end": 7531.7, + "probability": 0.4695 + }, + { + "start": 7531.7, + "end": 7533.34, + "probability": 0.7025 + }, + { + "start": 7535.02, + "end": 7537.22, + "probability": 0.0387 + }, + { + "start": 7538.86, + "end": 7539.28, + "probability": 0.2581 + }, + { + "start": 7539.28, + "end": 7539.34, + "probability": 0.1594 + }, + { + "start": 7539.34, + "end": 7540.72, + "probability": 0.3334 + }, + { + "start": 7541.44, + "end": 7543.3, + "probability": 0.4733 + }, + { + "start": 7543.52, + "end": 7544.12, + "probability": 0.2727 + }, + { + "start": 7544.12, + "end": 7550.08, + "probability": 0.2198 + }, + { + "start": 7552.06, + "end": 7554.46, + "probability": 0.2158 + }, + { + "start": 7556.24, + "end": 7557.0, + "probability": 0.4266 + }, + { + "start": 7557.82, + "end": 7559.26, + "probability": 0.0661 + }, + { + "start": 7559.48, + "end": 7560.5, + "probability": 0.2421 + }, + { + "start": 7560.5, + "end": 7560.5, + "probability": 0.0993 + }, + { + "start": 7560.6, + "end": 7562.92, + "probability": 0.4485 + }, + { + "start": 7562.92, + "end": 7564.2, + "probability": 0.1547 + }, + { + "start": 7564.2, + "end": 7568.12, + "probability": 0.8469 + }, + { + "start": 7568.56, + "end": 7570.56, + "probability": 0.2636 + }, + { + "start": 7570.58, + "end": 7573.94, + "probability": 0.6359 + }, + { + "start": 7576.46, + "end": 7577.96, + "probability": 0.5276 + }, + { + "start": 7578.52, + "end": 7584.86, + "probability": 0.7808 + }, + { + "start": 7586.04, + "end": 7587.52, + "probability": 0.7115 + }, + { + "start": 7588.04, + "end": 7589.72, + "probability": 0.8125 + }, + { + "start": 7589.84, + "end": 7593.38, + "probability": 0.9844 + }, + { + "start": 7593.86, + "end": 7597.78, + "probability": 0.9264 + }, + { + "start": 7598.32, + "end": 7598.32, + "probability": 0.0518 + }, + { + "start": 7598.32, + "end": 7600.77, + "probability": 0.2772 + }, + { + "start": 7600.94, + "end": 7601.9, + "probability": 0.2217 + }, + { + "start": 7602.84, + "end": 7603.44, + "probability": 0.2622 + }, + { + "start": 7603.56, + "end": 7606.48, + "probability": 0.3955 + }, + { + "start": 7607.38, + "end": 7610.46, + "probability": 0.5084 + }, + { + "start": 7610.48, + "end": 7610.78, + "probability": 0.1111 + }, + { + "start": 7610.78, + "end": 7610.78, + "probability": 0.1093 + }, + { + "start": 7610.78, + "end": 7612.54, + "probability": 0.5061 + }, + { + "start": 7613.46, + "end": 7616.56, + "probability": 0.7833 + }, + { + "start": 7616.68, + "end": 7617.22, + "probability": 0.3297 + }, + { + "start": 7617.38, + "end": 7619.88, + "probability": 0.3801 + }, + { + "start": 7621.16, + "end": 7622.16, + "probability": 0.6726 + }, + { + "start": 7623.14, + "end": 7628.38, + "probability": 0.6415 + }, + { + "start": 7630.58, + "end": 7632.8, + "probability": 0.8545 + }, + { + "start": 7633.66, + "end": 7636.84, + "probability": 0.991 + }, + { + "start": 7636.84, + "end": 7640.22, + "probability": 0.9358 + }, + { + "start": 7640.86, + "end": 7641.8, + "probability": 0.8088 + }, + { + "start": 7642.32, + "end": 7643.09, + "probability": 0.9946 + }, + { + "start": 7643.84, + "end": 7646.22, + "probability": 0.9238 + }, + { + "start": 7646.7, + "end": 7649.0, + "probability": 0.8691 + }, + { + "start": 7649.52, + "end": 7650.51, + "probability": 0.78 + }, + { + "start": 7651.08, + "end": 7651.8, + "probability": 0.82 + }, + { + "start": 7652.54, + "end": 7654.8, + "probability": 0.7013 + }, + { + "start": 7655.0, + "end": 7658.14, + "probability": 0.836 + }, + { + "start": 7658.22, + "end": 7658.84, + "probability": 0.5764 + }, + { + "start": 7659.54, + "end": 7661.9, + "probability": 0.8096 + }, + { + "start": 7662.02, + "end": 7663.82, + "probability": 0.9134 + }, + { + "start": 7664.1, + "end": 7664.68, + "probability": 0.6596 + }, + { + "start": 7665.04, + "end": 7666.58, + "probability": 0.6962 + }, + { + "start": 7666.8, + "end": 7669.32, + "probability": 0.7097 + }, + { + "start": 7669.82, + "end": 7671.98, + "probability": 0.5648 + }, + { + "start": 7672.74, + "end": 7673.1, + "probability": 0.5035 + }, + { + "start": 7673.3, + "end": 7676.48, + "probability": 0.7067 + }, + { + "start": 7676.52, + "end": 7681.18, + "probability": 0.7558 + }, + { + "start": 7682.32, + "end": 7683.07, + "probability": 0.5345 + }, + { + "start": 7684.46, + "end": 7685.38, + "probability": 0.0821 + }, + { + "start": 7686.68, + "end": 7688.22, + "probability": 0.556 + }, + { + "start": 7688.32, + "end": 7689.46, + "probability": 0.9748 + }, + { + "start": 7690.18, + "end": 7690.56, + "probability": 0.0006 + }, + { + "start": 7693.1, + "end": 7697.42, + "probability": 0.0591 + }, + { + "start": 7698.58, + "end": 7699.64, + "probability": 0.0702 + }, + { + "start": 7699.92, + "end": 7702.34, + "probability": 0.7759 + }, + { + "start": 7703.58, + "end": 7708.44, + "probability": 0.994 + }, + { + "start": 7709.18, + "end": 7710.32, + "probability": 0.9564 + }, + { + "start": 7710.54, + "end": 7712.37, + "probability": 0.9961 + }, + { + "start": 7713.94, + "end": 7719.84, + "probability": 0.8327 + }, + { + "start": 7720.82, + "end": 7722.74, + "probability": 0.9961 + }, + { + "start": 7723.64, + "end": 7730.08, + "probability": 0.9937 + }, + { + "start": 7730.4, + "end": 7734.74, + "probability": 0.9605 + }, + { + "start": 7738.16, + "end": 7743.06, + "probability": 0.9971 + }, + { + "start": 7744.74, + "end": 7748.16, + "probability": 0.9966 + }, + { + "start": 7748.42, + "end": 7749.72, + "probability": 0.8261 + }, + { + "start": 7751.0, + "end": 7752.44, + "probability": 0.9525 + }, + { + "start": 7753.88, + "end": 7756.92, + "probability": 0.9692 + }, + { + "start": 7757.04, + "end": 7758.52, + "probability": 0.6865 + }, + { + "start": 7759.94, + "end": 7763.84, + "probability": 0.8712 + }, + { + "start": 7765.28, + "end": 7769.76, + "probability": 0.7549 + }, + { + "start": 7771.68, + "end": 7774.04, + "probability": 0.9715 + }, + { + "start": 7775.02, + "end": 7778.92, + "probability": 0.989 + }, + { + "start": 7779.72, + "end": 7781.02, + "probability": 0.9604 + }, + { + "start": 7781.62, + "end": 7784.68, + "probability": 0.9716 + }, + { + "start": 7786.08, + "end": 7787.58, + "probability": 0.8089 + }, + { + "start": 7788.2, + "end": 7789.12, + "probability": 0.0126 + }, + { + "start": 7790.06, + "end": 7793.78, + "probability": 0.8011 + }, + { + "start": 7793.94, + "end": 7797.98, + "probability": 0.8221 + }, + { + "start": 7798.3, + "end": 7804.52, + "probability": 0.9563 + }, + { + "start": 7806.12, + "end": 7806.16, + "probability": 0.3744 + }, + { + "start": 7806.24, + "end": 7807.8, + "probability": 0.0179 + }, + { + "start": 7807.8, + "end": 7808.3, + "probability": 0.6792 + }, + { + "start": 7809.7, + "end": 7812.18, + "probability": 0.9937 + }, + { + "start": 7813.3, + "end": 7817.0, + "probability": 0.9951 + }, + { + "start": 7819.24, + "end": 7822.7, + "probability": 0.7529 + }, + { + "start": 7825.36, + "end": 7834.42, + "probability": 0.9126 + }, + { + "start": 7836.18, + "end": 7839.58, + "probability": 0.9597 + }, + { + "start": 7842.8, + "end": 7846.76, + "probability": 0.9818 + }, + { + "start": 7847.34, + "end": 7848.98, + "probability": 0.9985 + }, + { + "start": 7850.4, + "end": 7852.5, + "probability": 0.9448 + }, + { + "start": 7853.48, + "end": 7858.56, + "probability": 0.9884 + }, + { + "start": 7859.44, + "end": 7861.82, + "probability": 0.9384 + }, + { + "start": 7862.0, + "end": 7863.12, + "probability": 0.9695 + }, + { + "start": 7863.88, + "end": 7868.42, + "probability": 0.9971 + }, + { + "start": 7869.14, + "end": 7872.14, + "probability": 0.9643 + }, + { + "start": 7872.78, + "end": 7877.98, + "probability": 0.998 + }, + { + "start": 7879.14, + "end": 7881.34, + "probability": 0.785 + }, + { + "start": 7881.94, + "end": 7884.72, + "probability": 0.9697 + }, + { + "start": 7885.06, + "end": 7886.02, + "probability": 0.8335 + }, + { + "start": 7886.7, + "end": 7891.42, + "probability": 0.9806 + }, + { + "start": 7892.14, + "end": 7892.64, + "probability": 0.6858 + }, + { + "start": 7893.32, + "end": 7894.18, + "probability": 0.5946 + }, + { + "start": 7895.09, + "end": 7896.94, + "probability": 0.4324 + }, + { + "start": 7897.16, + "end": 7900.2, + "probability": 0.6678 + }, + { + "start": 7901.44, + "end": 7902.1, + "probability": 0.4379 + }, + { + "start": 7902.1, + "end": 7903.92, + "probability": 0.3027 + }, + { + "start": 7904.86, + "end": 7905.02, + "probability": 0.2098 + }, + { + "start": 7905.82, + "end": 7907.16, + "probability": 0.2176 + }, + { + "start": 7907.28, + "end": 7909.16, + "probability": 0.3379 + }, + { + "start": 7909.3, + "end": 7910.9, + "probability": 0.5532 + }, + { + "start": 7911.02, + "end": 7911.6, + "probability": 0.2327 + }, + { + "start": 7912.16, + "end": 7912.78, + "probability": 0.4809 + }, + { + "start": 7913.66, + "end": 7913.84, + "probability": 0.1296 + }, + { + "start": 7913.84, + "end": 7914.84, + "probability": 0.2756 + }, + { + "start": 7914.9, + "end": 7916.16, + "probability": 0.8848 + }, + { + "start": 7916.4, + "end": 7916.98, + "probability": 0.1663 + }, + { + "start": 7917.6, + "end": 7918.42, + "probability": 0.2087 + }, + { + "start": 7919.6, + "end": 7920.38, + "probability": 0.3786 + }, + { + "start": 7920.38, + "end": 7926.82, + "probability": 0.6797 + }, + { + "start": 7927.4, + "end": 7930.38, + "probability": 0.9191 + }, + { + "start": 7930.94, + "end": 7932.48, + "probability": 0.0631 + }, + { + "start": 7932.56, + "end": 7934.54, + "probability": 0.8841 + }, + { + "start": 7934.86, + "end": 7938.8, + "probability": 0.9941 + }, + { + "start": 7938.8, + "end": 7939.82, + "probability": 0.5323 + }, + { + "start": 7940.08, + "end": 7944.96, + "probability": 0.0069 + }, + { + "start": 7945.48, + "end": 7947.6, + "probability": 0.3607 + }, + { + "start": 7948.16, + "end": 7949.27, + "probability": 0.9438 + }, + { + "start": 7949.5, + "end": 7953.18, + "probability": 0.8424 + }, + { + "start": 7953.18, + "end": 7954.04, + "probability": 0.7988 + }, + { + "start": 7954.48, + "end": 7955.98, + "probability": 0.6128 + }, + { + "start": 7956.66, + "end": 7957.16, + "probability": 0.5225 + }, + { + "start": 7957.7, + "end": 7959.84, + "probability": 0.8872 + }, + { + "start": 7960.38, + "end": 7962.5, + "probability": 0.7495 + }, + { + "start": 7964.58, + "end": 7971.5, + "probability": 0.9621 + }, + { + "start": 7971.6, + "end": 7972.14, + "probability": 0.7837 + }, + { + "start": 7972.64, + "end": 7974.6, + "probability": 0.67 + }, + { + "start": 7975.28, + "end": 7977.5, + "probability": 0.7503 + }, + { + "start": 7978.16, + "end": 7980.66, + "probability": 0.2898 + }, + { + "start": 7981.34, + "end": 7984.66, + "probability": 0.7586 + }, + { + "start": 7986.58, + "end": 7993.04, + "probability": 0.8563 + }, + { + "start": 7994.2, + "end": 7995.4, + "probability": 0.6424 + }, + { + "start": 7996.82, + "end": 7997.68, + "probability": 0.8886 + }, + { + "start": 7999.16, + "end": 8000.4, + "probability": 0.8269 + }, + { + "start": 8001.6, + "end": 8006.06, + "probability": 0.9691 + }, + { + "start": 8007.58, + "end": 8010.64, + "probability": 0.9922 + }, + { + "start": 8011.66, + "end": 8012.94, + "probability": 0.9985 + }, + { + "start": 8013.86, + "end": 8016.36, + "probability": 0.9967 + }, + { + "start": 8018.56, + "end": 8021.22, + "probability": 0.8809 + }, + { + "start": 8021.74, + "end": 8022.98, + "probability": 0.7449 + }, + { + "start": 8024.56, + "end": 8025.84, + "probability": 0.9524 + }, + { + "start": 8025.94, + "end": 8029.16, + "probability": 0.9716 + }, + { + "start": 8029.94, + "end": 8030.58, + "probability": 0.6752 + }, + { + "start": 8030.66, + "end": 8031.96, + "probability": 0.9398 + }, + { + "start": 8032.28, + "end": 8035.14, + "probability": 0.9861 + }, + { + "start": 8036.16, + "end": 8036.78, + "probability": 0.9877 + }, + { + "start": 8036.88, + "end": 8037.8, + "probability": 0.894 + }, + { + "start": 8037.88, + "end": 8038.54, + "probability": 0.9718 + }, + { + "start": 8038.72, + "end": 8039.16, + "probability": 0.9807 + }, + { + "start": 8040.1, + "end": 8041.98, + "probability": 0.9871 + }, + { + "start": 8043.82, + "end": 8044.92, + "probability": 0.9164 + }, + { + "start": 8045.76, + "end": 8047.0, + "probability": 0.9592 + }, + { + "start": 8047.16, + "end": 8048.44, + "probability": 0.9866 + }, + { + "start": 8050.86, + "end": 8051.3, + "probability": 0.9022 + }, + { + "start": 8051.46, + "end": 8053.8, + "probability": 0.7653 + }, + { + "start": 8053.9, + "end": 8054.94, + "probability": 0.9092 + }, + { + "start": 8057.1, + "end": 8064.94, + "probability": 0.9202 + }, + { + "start": 8065.7, + "end": 8068.86, + "probability": 0.9697 + }, + { + "start": 8069.72, + "end": 8070.35, + "probability": 0.819 + }, + { + "start": 8072.7, + "end": 8075.24, + "probability": 0.6551 + }, + { + "start": 8075.84, + "end": 8078.1, + "probability": 0.8457 + }, + { + "start": 8080.9, + "end": 8084.86, + "probability": 0.8708 + }, + { + "start": 8085.8, + "end": 8089.38, + "probability": 0.833 + }, + { + "start": 8090.82, + "end": 8091.92, + "probability": 0.8135 + }, + { + "start": 8093.3, + "end": 8094.48, + "probability": 0.9069 + }, + { + "start": 8094.68, + "end": 8097.98, + "probability": 0.9473 + }, + { + "start": 8098.36, + "end": 8100.0, + "probability": 0.9836 + }, + { + "start": 8100.06, + "end": 8101.4, + "probability": 0.9691 + }, + { + "start": 8101.84, + "end": 8102.94, + "probability": 0.9387 + }, + { + "start": 8103.12, + "end": 8104.22, + "probability": 0.8732 + }, + { + "start": 8106.52, + "end": 8108.69, + "probability": 0.9977 + }, + { + "start": 8109.9, + "end": 8113.1, + "probability": 0.9899 + }, + { + "start": 8113.88, + "end": 8116.14, + "probability": 0.9444 + }, + { + "start": 8117.24, + "end": 8119.34, + "probability": 0.8011 + }, + { + "start": 8120.14, + "end": 8121.08, + "probability": 0.5165 + }, + { + "start": 8121.18, + "end": 8122.14, + "probability": 0.8116 + }, + { + "start": 8122.22, + "end": 8123.3, + "probability": 0.9407 + }, + { + "start": 8123.68, + "end": 8124.75, + "probability": 0.8506 + }, + { + "start": 8126.12, + "end": 8127.4, + "probability": 0.8926 + }, + { + "start": 8127.52, + "end": 8128.9, + "probability": 0.9178 + }, + { + "start": 8130.42, + "end": 8131.83, + "probability": 0.9644 + }, + { + "start": 8132.68, + "end": 8134.82, + "probability": 0.9894 + }, + { + "start": 8134.96, + "end": 8138.5, + "probability": 0.9649 + }, + { + "start": 8138.54, + "end": 8139.96, + "probability": 0.9525 + }, + { + "start": 8142.18, + "end": 8144.46, + "probability": 0.9861 + }, + { + "start": 8146.64, + "end": 8150.1, + "probability": 0.98 + }, + { + "start": 8150.22, + "end": 8150.88, + "probability": 0.6454 + }, + { + "start": 8151.94, + "end": 8152.6, + "probability": 0.5095 + }, + { + "start": 8154.32, + "end": 8155.7, + "probability": 0.8789 + }, + { + "start": 8155.84, + "end": 8157.38, + "probability": 0.9262 + }, + { + "start": 8157.58, + "end": 8158.5, + "probability": 0.8369 + }, + { + "start": 8159.74, + "end": 8160.5, + "probability": 0.6982 + }, + { + "start": 8161.34, + "end": 8163.04, + "probability": 0.7623 + }, + { + "start": 8174.92, + "end": 8175.3, + "probability": 0.1791 + }, + { + "start": 8175.3, + "end": 8175.3, + "probability": 0.1134 + }, + { + "start": 8175.3, + "end": 8175.3, + "probability": 0.1505 + }, + { + "start": 8175.3, + "end": 8175.3, + "probability": 0.071 + }, + { + "start": 8175.3, + "end": 8175.3, + "probability": 0.1417 + }, + { + "start": 8175.3, + "end": 8175.72, + "probability": 0.0815 + }, + { + "start": 8176.96, + "end": 8177.58, + "probability": 0.4601 + }, + { + "start": 8178.74, + "end": 8179.32, + "probability": 0.3745 + }, + { + "start": 8179.44, + "end": 8180.84, + "probability": 0.9609 + }, + { + "start": 8181.0, + "end": 8182.09, + "probability": 0.9927 + }, + { + "start": 8182.52, + "end": 8183.46, + "probability": 0.9465 + }, + { + "start": 8183.6, + "end": 8184.04, + "probability": 0.8711 + }, + { + "start": 8186.46, + "end": 8188.14, + "probability": 0.9552 + }, + { + "start": 8189.62, + "end": 8189.96, + "probability": 0.9341 + }, + { + "start": 8190.8, + "end": 8192.56, + "probability": 0.9804 + }, + { + "start": 8193.86, + "end": 8199.98, + "probability": 0.9805 + }, + { + "start": 8200.08, + "end": 8201.36, + "probability": 0.7038 + }, + { + "start": 8201.82, + "end": 8203.6, + "probability": 0.9939 + }, + { + "start": 8204.36, + "end": 8205.54, + "probability": 0.8675 + }, + { + "start": 8206.8, + "end": 8210.74, + "probability": 0.8922 + }, + { + "start": 8211.34, + "end": 8214.92, + "probability": 0.9915 + }, + { + "start": 8215.72, + "end": 8218.96, + "probability": 0.9987 + }, + { + "start": 8219.9, + "end": 8220.94, + "probability": 0.3184 + }, + { + "start": 8221.7, + "end": 8223.86, + "probability": 0.6362 + }, + { + "start": 8224.68, + "end": 8226.7, + "probability": 0.8496 + }, + { + "start": 8227.32, + "end": 8227.92, + "probability": 0.9756 + }, + { + "start": 8228.38, + "end": 8229.16, + "probability": 0.9877 + }, + { + "start": 8229.56, + "end": 8231.06, + "probability": 0.9769 + }, + { + "start": 8231.56, + "end": 8234.08, + "probability": 0.9888 + }, + { + "start": 8234.64, + "end": 8236.48, + "probability": 0.8821 + }, + { + "start": 8236.9, + "end": 8239.6, + "probability": 0.992 + }, + { + "start": 8240.32, + "end": 8243.28, + "probability": 0.7566 + }, + { + "start": 8243.32, + "end": 8246.04, + "probability": 0.89 + }, + { + "start": 8246.42, + "end": 8249.54, + "probability": 0.8793 + }, + { + "start": 8250.02, + "end": 8252.7, + "probability": 0.9824 + }, + { + "start": 8254.12, + "end": 8255.26, + "probability": 0.9961 + }, + { + "start": 8256.08, + "end": 8257.32, + "probability": 0.8382 + }, + { + "start": 8258.9, + "end": 8263.12, + "probability": 0.6979 + }, + { + "start": 8263.58, + "end": 8265.0, + "probability": 0.845 + }, + { + "start": 8265.74, + "end": 8267.32, + "probability": 0.913 + }, + { + "start": 8268.04, + "end": 8269.62, + "probability": 0.7828 + }, + { + "start": 8270.0, + "end": 8272.08, + "probability": 0.9822 + }, + { + "start": 8272.76, + "end": 8274.86, + "probability": 0.8199 + }, + { + "start": 8276.3, + "end": 8276.48, + "probability": 0.9341 + }, + { + "start": 8277.32, + "end": 8280.0, + "probability": 0.9225 + }, + { + "start": 8280.68, + "end": 8282.96, + "probability": 0.9944 + }, + { + "start": 8283.24, + "end": 8286.0, + "probability": 0.9819 + }, + { + "start": 8288.02, + "end": 8291.08, + "probability": 0.9849 + }, + { + "start": 8292.22, + "end": 8294.44, + "probability": 0.9956 + }, + { + "start": 8295.96, + "end": 8297.46, + "probability": 0.6329 + }, + { + "start": 8298.38, + "end": 8301.1, + "probability": 0.9563 + }, + { + "start": 8302.56, + "end": 8307.24, + "probability": 0.9836 + }, + { + "start": 8307.24, + "end": 8310.78, + "probability": 0.9843 + }, + { + "start": 8311.26, + "end": 8312.54, + "probability": 0.8879 + }, + { + "start": 8313.0, + "end": 8315.64, + "probability": 0.8446 + }, + { + "start": 8316.02, + "end": 8319.48, + "probability": 0.9181 + }, + { + "start": 8320.4, + "end": 8320.88, + "probability": 0.9286 + }, + { + "start": 8321.54, + "end": 8323.23, + "probability": 0.9971 + }, + { + "start": 8323.52, + "end": 8324.74, + "probability": 0.9966 + }, + { + "start": 8325.42, + "end": 8326.64, + "probability": 0.9946 + }, + { + "start": 8327.84, + "end": 8330.75, + "probability": 0.9814 + }, + { + "start": 8332.58, + "end": 8333.16, + "probability": 0.9368 + }, + { + "start": 8333.98, + "end": 8338.48, + "probability": 0.9297 + }, + { + "start": 8339.72, + "end": 8340.16, + "probability": 0.6768 + }, + { + "start": 8340.2, + "end": 8343.28, + "probability": 0.9717 + }, + { + "start": 8343.28, + "end": 8347.95, + "probability": 0.986 + }, + { + "start": 8349.3, + "end": 8350.3, + "probability": 0.359 + }, + { + "start": 8350.66, + "end": 8352.56, + "probability": 0.833 + }, + { + "start": 8352.94, + "end": 8353.82, + "probability": 0.9725 + }, + { + "start": 8355.2, + "end": 8358.8, + "probability": 0.9572 + }, + { + "start": 8359.72, + "end": 8362.54, + "probability": 0.9646 + }, + { + "start": 8363.14, + "end": 8364.2, + "probability": 0.9669 + }, + { + "start": 8364.82, + "end": 8369.26, + "probability": 0.997 + }, + { + "start": 8369.84, + "end": 8371.38, + "probability": 0.9872 + }, + { + "start": 8371.46, + "end": 8371.76, + "probability": 0.8223 + }, + { + "start": 8372.54, + "end": 8374.14, + "probability": 0.7058 + }, + { + "start": 8374.34, + "end": 8376.04, + "probability": 0.9077 + }, + { + "start": 8376.9, + "end": 8380.0, + "probability": 0.9482 + }, + { + "start": 8380.54, + "end": 8382.22, + "probability": 0.6986 + }, + { + "start": 8392.86, + "end": 8393.7, + "probability": 0.4191 + }, + { + "start": 8396.72, + "end": 8398.72, + "probability": 0.8093 + }, + { + "start": 8399.32, + "end": 8401.7, + "probability": 0.9838 + }, + { + "start": 8402.22, + "end": 8406.42, + "probability": 0.9298 + }, + { + "start": 8406.42, + "end": 8409.82, + "probability": 0.9728 + }, + { + "start": 8410.44, + "end": 8411.76, + "probability": 0.7814 + }, + { + "start": 8412.44, + "end": 8413.48, + "probability": 0.9285 + }, + { + "start": 8413.92, + "end": 8415.75, + "probability": 0.9653 + }, + { + "start": 8416.46, + "end": 8416.99, + "probability": 0.6523 + }, + { + "start": 8417.48, + "end": 8418.51, + "probability": 0.8669 + }, + { + "start": 8419.08, + "end": 8423.66, + "probability": 0.9576 + }, + { + "start": 8425.2, + "end": 8426.06, + "probability": 0.8338 + }, + { + "start": 8426.7, + "end": 8430.34, + "probability": 0.9224 + }, + { + "start": 8432.2, + "end": 8432.76, + "probability": 0.7712 + }, + { + "start": 8434.5, + "end": 8436.64, + "probability": 0.6674 + }, + { + "start": 8436.64, + "end": 8438.98, + "probability": 0.9947 + }, + { + "start": 8439.06, + "end": 8443.22, + "probability": 0.8503 + }, + { + "start": 8444.34, + "end": 8446.26, + "probability": 0.6387 + }, + { + "start": 8446.82, + "end": 8448.62, + "probability": 0.7286 + }, + { + "start": 8449.08, + "end": 8453.38, + "probability": 0.9785 + }, + { + "start": 8453.98, + "end": 8458.52, + "probability": 0.9762 + }, + { + "start": 8458.66, + "end": 8460.42, + "probability": 0.7945 + }, + { + "start": 8462.98, + "end": 8467.06, + "probability": 0.923 + }, + { + "start": 8467.3, + "end": 8472.18, + "probability": 0.9883 + }, + { + "start": 8473.18, + "end": 8478.64, + "probability": 0.3733 + }, + { + "start": 8494.34, + "end": 8498.84, + "probability": 0.9832 + }, + { + "start": 8500.06, + "end": 8500.72, + "probability": 0.6016 + }, + { + "start": 8501.28, + "end": 8503.6, + "probability": 0.9977 + }, + { + "start": 8503.6, + "end": 8506.16, + "probability": 0.9922 + }, + { + "start": 8506.72, + "end": 8507.2, + "probability": 0.6298 + }, + { + "start": 8507.36, + "end": 8509.48, + "probability": 0.9128 + }, + { + "start": 8509.94, + "end": 8513.46, + "probability": 0.9908 + }, + { + "start": 8515.36, + "end": 8517.24, + "probability": 0.3938 + }, + { + "start": 8517.46, + "end": 8521.78, + "probability": 0.9987 + }, + { + "start": 8522.78, + "end": 8528.2, + "probability": 0.9918 + }, + { + "start": 8529.18, + "end": 8532.86, + "probability": 0.9922 + }, + { + "start": 8532.96, + "end": 8533.8, + "probability": 0.8094 + }, + { + "start": 8535.4, + "end": 8539.3, + "probability": 0.981 + }, + { + "start": 8540.0, + "end": 8543.4, + "probability": 0.876 + }, + { + "start": 8543.94, + "end": 8548.34, + "probability": 0.9729 + }, + { + "start": 8549.06, + "end": 8549.26, + "probability": 0.7118 + }, + { + "start": 8550.18, + "end": 8555.9, + "probability": 0.5024 + }, + { + "start": 8555.94, + "end": 8556.38, + "probability": 0.7591 + }, + { + "start": 8573.08, + "end": 8573.08, + "probability": 0.2504 + }, + { + "start": 8573.08, + "end": 8573.08, + "probability": 0.1591 + }, + { + "start": 8573.1, + "end": 8573.2, + "probability": 0.4007 + }, + { + "start": 8573.82, + "end": 8575.5, + "probability": 0.8639 + }, + { + "start": 8576.56, + "end": 8578.88, + "probability": 0.9141 + }, + { + "start": 8579.08, + "end": 8585.16, + "probability": 0.9934 + }, + { + "start": 8585.86, + "end": 8587.52, + "probability": 0.4981 + }, + { + "start": 8588.4, + "end": 8591.52, + "probability": 0.9949 + }, + { + "start": 8592.22, + "end": 8593.1, + "probability": 0.682 + }, + { + "start": 8593.7, + "end": 8595.56, + "probability": 0.6776 + }, + { + "start": 8596.18, + "end": 8598.58, + "probability": 0.9073 + }, + { + "start": 8599.44, + "end": 8599.9, + "probability": 0.6219 + }, + { + "start": 8600.52, + "end": 8602.62, + "probability": 0.7377 + }, + { + "start": 8603.02, + "end": 8606.18, + "probability": 0.9897 + }, + { + "start": 8606.94, + "end": 8607.48, + "probability": 0.4788 + }, + { + "start": 8609.76, + "end": 8610.0, + "probability": 0.5848 + }, + { + "start": 8610.0, + "end": 8614.88, + "probability": 0.7113 + }, + { + "start": 8615.42, + "end": 8620.46, + "probability": 0.954 + }, + { + "start": 8621.5, + "end": 8622.86, + "probability": 0.9479 + }, + { + "start": 8622.96, + "end": 8627.36, + "probability": 0.9973 + }, + { + "start": 8630.26, + "end": 8633.52, + "probability": 0.9888 + }, + { + "start": 8633.72, + "end": 8635.0, + "probability": 0.6867 + }, + { + "start": 8635.42, + "end": 8639.14, + "probability": 0.985 + }, + { + "start": 8639.44, + "end": 8642.32, + "probability": 0.4226 + }, + { + "start": 8643.28, + "end": 8647.9, + "probability": 0.998 + }, + { + "start": 8648.02, + "end": 8650.66, + "probability": 0.9927 + }, + { + "start": 8651.32, + "end": 8653.04, + "probability": 0.6577 + }, + { + "start": 8653.18, + "end": 8657.28, + "probability": 0.8196 + }, + { + "start": 8657.8, + "end": 8661.16, + "probability": 0.9194 + }, + { + "start": 8661.98, + "end": 8664.52, + "probability": 0.9777 + }, + { + "start": 8666.56, + "end": 8669.98, + "probability": 0.9819 + }, + { + "start": 8670.0, + "end": 8671.64, + "probability": 0.6993 + }, + { + "start": 8672.2, + "end": 8672.9, + "probability": 0.8884 + }, + { + "start": 8673.24, + "end": 8674.1, + "probability": 0.757 + }, + { + "start": 8676.2, + "end": 8680.08, + "probability": 0.8628 + }, + { + "start": 8680.08, + "end": 8681.83, + "probability": 0.7759 + }, + { + "start": 8682.02, + "end": 8682.92, + "probability": 0.8351 + }, + { + "start": 8683.4, + "end": 8688.18, + "probability": 0.9858 + }, + { + "start": 8690.04, + "end": 8696.22, + "probability": 0.9667 + }, + { + "start": 8696.8, + "end": 8700.56, + "probability": 0.9336 + }, + { + "start": 8700.98, + "end": 8705.02, + "probability": 0.9993 + }, + { + "start": 8705.58, + "end": 8710.48, + "probability": 0.9995 + }, + { + "start": 8710.8, + "end": 8713.0, + "probability": 0.9208 + }, + { + "start": 8713.56, + "end": 8714.26, + "probability": 0.3634 + }, + { + "start": 8714.6, + "end": 8716.72, + "probability": 0.7797 + }, + { + "start": 8716.84, + "end": 8719.41, + "probability": 0.7572 + }, + { + "start": 8725.54, + "end": 8726.89, + "probability": 0.0207 + }, + { + "start": 8739.14, + "end": 8739.34, + "probability": 0.1012 + }, + { + "start": 8739.34, + "end": 8739.34, + "probability": 0.1188 + }, + { + "start": 8739.34, + "end": 8739.34, + "probability": 0.0329 + }, + { + "start": 8739.34, + "end": 8744.78, + "probability": 0.8259 + }, + { + "start": 8745.32, + "end": 8745.8, + "probability": 0.9886 + }, + { + "start": 8746.88, + "end": 8752.1, + "probability": 0.9683 + }, + { + "start": 8753.16, + "end": 8755.93, + "probability": 0.9772 + }, + { + "start": 8756.96, + "end": 8758.42, + "probability": 0.8433 + }, + { + "start": 8759.42, + "end": 8761.76, + "probability": 0.2706 + }, + { + "start": 8762.56, + "end": 8764.58, + "probability": 0.9905 + }, + { + "start": 8764.92, + "end": 8767.3, + "probability": 0.8058 + }, + { + "start": 8767.56, + "end": 8768.6, + "probability": 0.9812 + }, + { + "start": 8783.44, + "end": 8785.12, + "probability": 0.7159 + }, + { + "start": 8786.2, + "end": 8786.98, + "probability": 0.89 + }, + { + "start": 8789.28, + "end": 8791.03, + "probability": 0.9981 + }, + { + "start": 8792.36, + "end": 8793.72, + "probability": 0.9856 + }, + { + "start": 8794.8, + "end": 8796.18, + "probability": 0.9447 + }, + { + "start": 8797.4, + "end": 8798.36, + "probability": 0.9923 + }, + { + "start": 8799.86, + "end": 8800.82, + "probability": 0.9235 + }, + { + "start": 8802.06, + "end": 8805.92, + "probability": 0.9678 + }, + { + "start": 8808.0, + "end": 8808.82, + "probability": 0.7219 + }, + { + "start": 8809.9, + "end": 8811.3, + "probability": 0.8829 + }, + { + "start": 8812.58, + "end": 8815.68, + "probability": 0.9715 + }, + { + "start": 8815.78, + "end": 8816.69, + "probability": 0.8519 + }, + { + "start": 8817.5, + "end": 8822.48, + "probability": 0.9727 + }, + { + "start": 8822.48, + "end": 8825.24, + "probability": 0.9914 + }, + { + "start": 8825.34, + "end": 8826.2, + "probability": 0.7394 + }, + { + "start": 8826.34, + "end": 8827.1, + "probability": 0.9113 + }, + { + "start": 8828.06, + "end": 8829.68, + "probability": 0.933 + }, + { + "start": 8830.8, + "end": 8832.84, + "probability": 0.6527 + }, + { + "start": 8834.16, + "end": 8836.84, + "probability": 0.9899 + }, + { + "start": 8838.24, + "end": 8839.28, + "probability": 0.8126 + }, + { + "start": 8840.82, + "end": 8844.4, + "probability": 0.989 + }, + { + "start": 8844.7, + "end": 8847.2, + "probability": 0.9995 + }, + { + "start": 8847.98, + "end": 8850.3, + "probability": 0.7795 + }, + { + "start": 8851.02, + "end": 8853.56, + "probability": 0.6886 + }, + { + "start": 8854.92, + "end": 8856.3, + "probability": 0.9702 + }, + { + "start": 8857.9, + "end": 8862.54, + "probability": 0.9982 + }, + { + "start": 8863.5, + "end": 8864.38, + "probability": 0.6028 + }, + { + "start": 8866.06, + "end": 8871.56, + "probability": 0.9569 + }, + { + "start": 8873.74, + "end": 8874.72, + "probability": 0.7893 + }, + { + "start": 8875.76, + "end": 8881.44, + "probability": 0.9554 + }, + { + "start": 8881.6, + "end": 8883.08, + "probability": 0.953 + }, + { + "start": 8883.64, + "end": 8884.6, + "probability": 0.9223 + }, + { + "start": 8886.26, + "end": 8887.32, + "probability": 0.9042 + }, + { + "start": 8889.1, + "end": 8890.76, + "probability": 0.9858 + }, + { + "start": 8892.02, + "end": 8895.56, + "probability": 0.9967 + }, + { + "start": 8897.64, + "end": 8899.24, + "probability": 0.7959 + }, + { + "start": 8900.62, + "end": 8904.06, + "probability": 0.8501 + }, + { + "start": 8906.24, + "end": 8906.86, + "probability": 0.827 + }, + { + "start": 8908.76, + "end": 8909.76, + "probability": 0.9109 + }, + { + "start": 8911.58, + "end": 8916.74, + "probability": 0.9781 + }, + { + "start": 8916.74, + "end": 8921.94, + "probability": 0.7895 + }, + { + "start": 8922.0, + "end": 8922.82, + "probability": 0.4866 + }, + { + "start": 8924.18, + "end": 8928.96, + "probability": 0.936 + }, + { + "start": 8929.82, + "end": 8940.72, + "probability": 0.9393 + }, + { + "start": 8941.88, + "end": 8943.06, + "probability": 0.9968 + }, + { + "start": 8943.8, + "end": 8944.62, + "probability": 0.9004 + }, + { + "start": 8946.06, + "end": 8946.9, + "probability": 0.7757 + }, + { + "start": 8948.0, + "end": 8951.2, + "probability": 0.9944 + }, + { + "start": 8952.84, + "end": 8955.7, + "probability": 0.9985 + }, + { + "start": 8955.76, + "end": 8956.52, + "probability": 0.7479 + }, + { + "start": 8958.0, + "end": 8959.86, + "probability": 0.9854 + }, + { + "start": 8960.5, + "end": 8961.64, + "probability": 0.5018 + }, + { + "start": 8963.74, + "end": 8965.52, + "probability": 0.9989 + }, + { + "start": 8966.96, + "end": 8968.92, + "probability": 0.9985 + }, + { + "start": 8970.32, + "end": 8971.32, + "probability": 0.5019 + }, + { + "start": 8972.56, + "end": 8976.44, + "probability": 0.9958 + }, + { + "start": 8979.48, + "end": 8980.8, + "probability": 0.6728 + }, + { + "start": 8982.44, + "end": 8984.94, + "probability": 0.9795 + }, + { + "start": 8984.98, + "end": 8986.32, + "probability": 0.9801 + }, + { + "start": 8986.86, + "end": 8988.0, + "probability": 0.967 + }, + { + "start": 8988.92, + "end": 8993.38, + "probability": 0.8656 + }, + { + "start": 8996.0, + "end": 8997.08, + "probability": 0.8666 + }, + { + "start": 8998.08, + "end": 9001.04, + "probability": 0.9085 + }, + { + "start": 9002.52, + "end": 9003.8, + "probability": 0.7396 + }, + { + "start": 9004.64, + "end": 9005.36, + "probability": 0.9792 + }, + { + "start": 9006.92, + "end": 9008.8, + "probability": 0.9474 + }, + { + "start": 9009.36, + "end": 9010.06, + "probability": 0.9924 + }, + { + "start": 9010.52, + "end": 9014.34, + "probability": 0.715 + }, + { + "start": 9017.88, + "end": 9019.18, + "probability": 0.4999 + }, + { + "start": 9019.18, + "end": 9019.74, + "probability": 0.2308 + }, + { + "start": 9020.46, + "end": 9021.48, + "probability": 0.9493 + }, + { + "start": 9022.0, + "end": 9023.14, + "probability": 0.7161 + }, + { + "start": 9025.0, + "end": 9026.4, + "probability": 0.606 + }, + { + "start": 9028.08, + "end": 9029.68, + "probability": 0.6992 + }, + { + "start": 9030.84, + "end": 9031.22, + "probability": 0.6924 + }, + { + "start": 9032.52, + "end": 9032.78, + "probability": 0.4336 + }, + { + "start": 9033.7, + "end": 9037.48, + "probability": 0.7195 + }, + { + "start": 9038.56, + "end": 9039.89, + "probability": 0.5 + }, + { + "start": 9041.76, + "end": 9042.34, + "probability": 0.7539 + }, + { + "start": 9043.54, + "end": 9047.84, + "probability": 0.8662 + }, + { + "start": 9047.96, + "end": 9048.84, + "probability": 0.7173 + }, + { + "start": 9050.5, + "end": 9051.6, + "probability": 0.9565 + }, + { + "start": 9052.8, + "end": 9054.94, + "probability": 0.9917 + }, + { + "start": 9055.1, + "end": 9055.28, + "probability": 0.851 + }, + { + "start": 9057.68, + "end": 9060.58, + "probability": 0.6952 + }, + { + "start": 9062.6, + "end": 9064.26, + "probability": 0.7225 + }, + { + "start": 9065.24, + "end": 9068.14, + "probability": 0.9961 + }, + { + "start": 9068.88, + "end": 9070.94, + "probability": 0.9907 + }, + { + "start": 9084.58, + "end": 9085.34, + "probability": 0.3935 + }, + { + "start": 9086.9, + "end": 9089.34, + "probability": 0.977 + }, + { + "start": 9090.76, + "end": 9092.88, + "probability": 0.8881 + }, + { + "start": 9093.76, + "end": 9095.04, + "probability": 0.9766 + }, + { + "start": 9097.16, + "end": 9102.44, + "probability": 0.9915 + }, + { + "start": 9104.02, + "end": 9106.12, + "probability": 0.4677 + }, + { + "start": 9107.58, + "end": 9111.44, + "probability": 0.9771 + }, + { + "start": 9114.28, + "end": 9116.14, + "probability": 0.8447 + }, + { + "start": 9118.08, + "end": 9118.72, + "probability": 0.8394 + }, + { + "start": 9119.86, + "end": 9123.04, + "probability": 0.9553 + }, + { + "start": 9124.12, + "end": 9124.74, + "probability": 0.4324 + }, + { + "start": 9125.32, + "end": 9127.55, + "probability": 0.3457 + }, + { + "start": 9129.0, + "end": 9129.98, + "probability": 0.0705 + }, + { + "start": 9129.98, + "end": 9130.4, + "probability": 0.1512 + }, + { + "start": 9131.0, + "end": 9132.78, + "probability": 0.78 + }, + { + "start": 9134.84, + "end": 9135.06, + "probability": 0.364 + }, + { + "start": 9135.06, + "end": 9139.58, + "probability": 0.7526 + }, + { + "start": 9141.08, + "end": 9141.98, + "probability": 0.504 + }, + { + "start": 9143.1, + "end": 9143.44, + "probability": 0.096 + }, + { + "start": 9143.44, + "end": 9144.38, + "probability": 0.599 + }, + { + "start": 9145.16, + "end": 9146.66, + "probability": 0.7996 + }, + { + "start": 9147.54, + "end": 9148.72, + "probability": 0.9644 + }, + { + "start": 9149.7, + "end": 9151.22, + "probability": 0.6741 + }, + { + "start": 9153.94, + "end": 9157.18, + "probability": 0.8252 + }, + { + "start": 9157.28, + "end": 9161.37, + "probability": 0.8943 + }, + { + "start": 9162.32, + "end": 9163.83, + "probability": 0.827 + }, + { + "start": 9164.6, + "end": 9165.82, + "probability": 0.9373 + }, + { + "start": 9166.58, + "end": 9167.92, + "probability": 0.3624 + }, + { + "start": 9168.48, + "end": 9169.12, + "probability": 0.6235 + }, + { + "start": 9169.7, + "end": 9171.58, + "probability": 0.4181 + }, + { + "start": 9172.04, + "end": 9172.94, + "probability": 0.8361 + }, + { + "start": 9173.6, + "end": 9174.78, + "probability": 0.6498 + }, + { + "start": 9174.88, + "end": 9176.45, + "probability": 0.6983 + }, + { + "start": 9176.64, + "end": 9177.58, + "probability": 0.2625 + }, + { + "start": 9178.3, + "end": 9179.38, + "probability": 0.9248 + }, + { + "start": 9180.96, + "end": 9182.12, + "probability": 0.7923 + }, + { + "start": 9182.82, + "end": 9184.24, + "probability": 0.7391 + }, + { + "start": 9184.38, + "end": 9186.14, + "probability": 0.922 + }, + { + "start": 9187.48, + "end": 9188.54, + "probability": 0.9659 + }, + { + "start": 9189.7, + "end": 9191.3, + "probability": 0.9391 + }, + { + "start": 9192.02, + "end": 9194.02, + "probability": 0.9991 + }, + { + "start": 9194.92, + "end": 9199.4, + "probability": 0.9924 + }, + { + "start": 9199.62, + "end": 9201.14, + "probability": 0.311 + }, + { + "start": 9202.25, + "end": 9203.72, + "probability": 0.0663 + }, + { + "start": 9203.72, + "end": 9204.84, + "probability": 0.567 + }, + { + "start": 9204.84, + "end": 9205.68, + "probability": 0.7995 + }, + { + "start": 9206.92, + "end": 9211.16, + "probability": 0.6846 + }, + { + "start": 9211.58, + "end": 9211.98, + "probability": 0.2935 + }, + { + "start": 9212.4, + "end": 9212.8, + "probability": 0.6457 + }, + { + "start": 9214.1, + "end": 9215.35, + "probability": 0.7853 + }, + { + "start": 9216.82, + "end": 9220.38, + "probability": 0.9425 + }, + { + "start": 9221.6, + "end": 9222.98, + "probability": 0.6976 + }, + { + "start": 9224.38, + "end": 9225.62, + "probability": 0.537 + }, + { + "start": 9227.02, + "end": 9232.2, + "probability": 0.8491 + }, + { + "start": 9232.32, + "end": 9236.88, + "probability": 0.9856 + }, + { + "start": 9237.16, + "end": 9237.86, + "probability": 0.9833 + }, + { + "start": 9238.2, + "end": 9238.81, + "probability": 0.9754 + }, + { + "start": 9239.78, + "end": 9245.44, + "probability": 0.97 + }, + { + "start": 9246.28, + "end": 9246.85, + "probability": 0.9272 + }, + { + "start": 9248.76, + "end": 9251.42, + "probability": 0.6869 + }, + { + "start": 9252.72, + "end": 9254.32, + "probability": 0.8432 + }, + { + "start": 9259.9, + "end": 9261.1, + "probability": 0.2447 + }, + { + "start": 9261.72, + "end": 9263.15, + "probability": 0.6628 + }, + { + "start": 9264.8, + "end": 9264.8, + "probability": 0.0806 + }, + { + "start": 9265.98, + "end": 9267.84, + "probability": 0.7873 + }, + { + "start": 9271.54, + "end": 9277.54, + "probability": 0.8112 + }, + { + "start": 9279.36, + "end": 9280.42, + "probability": 0.735 + }, + { + "start": 9281.56, + "end": 9282.26, + "probability": 0.7711 + }, + { + "start": 9283.14, + "end": 9285.08, + "probability": 0.821 + }, + { + "start": 9286.36, + "end": 9289.64, + "probability": 0.6978 + }, + { + "start": 9289.74, + "end": 9290.56, + "probability": 0.8589 + }, + { + "start": 9291.52, + "end": 9292.43, + "probability": 0.8228 + }, + { + "start": 9293.58, + "end": 9295.56, + "probability": 0.9728 + }, + { + "start": 9296.72, + "end": 9301.9, + "probability": 0.9933 + }, + { + "start": 9302.46, + "end": 9302.68, + "probability": 0.8239 + }, + { + "start": 9303.72, + "end": 9304.98, + "probability": 0.8642 + }, + { + "start": 9305.14, + "end": 9306.64, + "probability": 0.9575 + }, + { + "start": 9308.48, + "end": 9309.1, + "probability": 0.9534 + }, + { + "start": 9310.36, + "end": 9310.92, + "probability": 0.9388 + }, + { + "start": 9311.9, + "end": 9312.74, + "probability": 0.4491 + }, + { + "start": 9313.9, + "end": 9315.7, + "probability": 0.9211 + }, + { + "start": 9318.24, + "end": 9322.36, + "probability": 0.735 + }, + { + "start": 9322.42, + "end": 9323.12, + "probability": 0.9397 + }, + { + "start": 9326.48, + "end": 9327.18, + "probability": 0.6476 + }, + { + "start": 9327.18, + "end": 9327.52, + "probability": 0.7968 + }, + { + "start": 9328.8, + "end": 9329.22, + "probability": 0.7752 + }, + { + "start": 9330.66, + "end": 9331.9, + "probability": 0.7138 + }, + { + "start": 9332.54, + "end": 9335.32, + "probability": 0.7116 + }, + { + "start": 9339.24, + "end": 9341.38, + "probability": 0.5806 + }, + { + "start": 9342.72, + "end": 9346.86, + "probability": 0.5727 + }, + { + "start": 9347.54, + "end": 9348.42, + "probability": 0.7904 + }, + { + "start": 9350.48, + "end": 9351.5, + "probability": 0.9927 + }, + { + "start": 9352.4, + "end": 9354.39, + "probability": 0.7836 + }, + { + "start": 9355.2, + "end": 9359.08, + "probability": 0.9257 + }, + { + "start": 9361.82, + "end": 9364.92, + "probability": 0.5626 + }, + { + "start": 9365.14, + "end": 9368.9, + "probability": 0.8289 + }, + { + "start": 9368.9, + "end": 9372.76, + "probability": 0.7932 + }, + { + "start": 9372.92, + "end": 9373.5, + "probability": 0.5269 + }, + { + "start": 9374.8, + "end": 9375.16, + "probability": 0.5564 + }, + { + "start": 9375.2, + "end": 9376.68, + "probability": 0.781 + }, + { + "start": 9376.7, + "end": 9379.32, + "probability": 0.7009 + }, + { + "start": 9380.22, + "end": 9384.58, + "probability": 0.7594 + }, + { + "start": 9385.38, + "end": 9388.2, + "probability": 0.8826 + }, + { + "start": 9389.42, + "end": 9392.3, + "probability": 0.7874 + }, + { + "start": 9392.58, + "end": 9395.7, + "probability": 0.8133 + }, + { + "start": 9401.86, + "end": 9401.86, + "probability": 0.0351 + }, + { + "start": 9402.46, + "end": 9405.3, + "probability": 0.9084 + }, + { + "start": 9406.26, + "end": 9407.72, + "probability": 0.5017 + }, + { + "start": 9408.3, + "end": 9409.46, + "probability": 0.7959 + }, + { + "start": 9409.82, + "end": 9413.1, + "probability": 0.6867 + }, + { + "start": 9415.44, + "end": 9418.74, + "probability": 0.511 + }, + { + "start": 9419.02, + "end": 9420.5, + "probability": 0.6689 + }, + { + "start": 9420.92, + "end": 9421.18, + "probability": 0.0098 + }, + { + "start": 9421.18, + "end": 9423.4, + "probability": 0.6953 + }, + { + "start": 9423.52, + "end": 9425.62, + "probability": 0.5643 + }, + { + "start": 9425.72, + "end": 9428.03, + "probability": 0.8428 + }, + { + "start": 9429.08, + "end": 9432.08, + "probability": 0.77 + }, + { + "start": 9433.02, + "end": 9435.82, + "probability": 0.9756 + }, + { + "start": 9435.94, + "end": 9436.56, + "probability": 0.2635 + }, + { + "start": 9436.58, + "end": 9443.42, + "probability": 0.7324 + }, + { + "start": 9444.0, + "end": 9446.92, + "probability": 0.8193 + }, + { + "start": 9447.28, + "end": 9447.78, + "probability": 0.5018 + }, + { + "start": 9448.32, + "end": 9449.53, + "probability": 0.9917 + }, + { + "start": 9451.79, + "end": 9456.86, + "probability": 0.7194 + }, + { + "start": 9457.04, + "end": 9460.38, + "probability": 0.8311 + }, + { + "start": 9460.92, + "end": 9461.82, + "probability": 0.8457 + }, + { + "start": 9462.02, + "end": 9466.74, + "probability": 0.8207 + }, + { + "start": 9467.88, + "end": 9468.96, + "probability": 0.7617 + }, + { + "start": 9471.14, + "end": 9478.86, + "probability": 0.9955 + }, + { + "start": 9479.4, + "end": 9483.69, + "probability": 0.9894 + }, + { + "start": 9484.72, + "end": 9487.66, + "probability": 0.7393 + }, + { + "start": 9490.46, + "end": 9494.36, + "probability": 0.9377 + }, + { + "start": 9494.36, + "end": 9498.78, + "probability": 0.986 + }, + { + "start": 9500.16, + "end": 9503.18, + "probability": 0.5693 + }, + { + "start": 9504.24, + "end": 9509.88, + "probability": 0.6852 + }, + { + "start": 9510.62, + "end": 9512.12, + "probability": 0.9738 + }, + { + "start": 9512.52, + "end": 9514.66, + "probability": 0.6003 + }, + { + "start": 9515.76, + "end": 9517.32, + "probability": 0.9526 + }, + { + "start": 9518.4, + "end": 9518.4, + "probability": 0.728 + }, + { + "start": 9519.46, + "end": 9520.8, + "probability": 0.5614 + }, + { + "start": 9521.2, + "end": 9521.99, + "probability": 0.8452 + }, + { + "start": 9523.72, + "end": 9527.2, + "probability": 0.7896 + }, + { + "start": 9527.62, + "end": 9530.6, + "probability": 0.9802 + }, + { + "start": 9531.28, + "end": 9534.14, + "probability": 0.7727 + }, + { + "start": 9534.28, + "end": 9534.68, + "probability": 0.8113 + }, + { + "start": 9535.76, + "end": 9538.0, + "probability": 0.653 + }, + { + "start": 9538.08, + "end": 9540.16, + "probability": 0.8042 + }, + { + "start": 9540.26, + "end": 9541.08, + "probability": 0.0161 + }, + { + "start": 9543.08, + "end": 9546.4, + "probability": 0.0398 + }, + { + "start": 9548.6, + "end": 9549.52, + "probability": 0.0198 + }, + { + "start": 9550.88, + "end": 9553.36, + "probability": 0.0756 + }, + { + "start": 9566.54, + "end": 9567.38, + "probability": 0.0478 + }, + { + "start": 9567.38, + "end": 9569.98, + "probability": 0.1205 + }, + { + "start": 9570.48, + "end": 9572.88, + "probability": 0.9174 + }, + { + "start": 9573.94, + "end": 9575.02, + "probability": 0.8914 + }, + { + "start": 9575.4, + "end": 9576.2, + "probability": 0.1739 + }, + { + "start": 9578.64, + "end": 9581.53, + "probability": 0.8615 + }, + { + "start": 9582.3, + "end": 9585.04, + "probability": 0.9565 + }, + { + "start": 9585.52, + "end": 9590.32, + "probability": 0.592 + }, + { + "start": 9590.52, + "end": 9591.78, + "probability": 0.2514 + }, + { + "start": 9592.68, + "end": 9593.77, + "probability": 0.8732 + }, + { + "start": 9595.9, + "end": 9597.72, + "probability": 0.9543 + }, + { + "start": 9598.62, + "end": 9604.6, + "probability": 0.916 + }, + { + "start": 9604.96, + "end": 9608.06, + "probability": 0.3052 + }, + { + "start": 9608.52, + "end": 9609.5, + "probability": 0.9971 + }, + { + "start": 9610.22, + "end": 9611.16, + "probability": 0.5399 + }, + { + "start": 9612.08, + "end": 9613.1, + "probability": 0.5723 + }, + { + "start": 9613.3, + "end": 9615.06, + "probability": 0.6103 + }, + { + "start": 9615.32, + "end": 9617.74, + "probability": 0.9399 + }, + { + "start": 9617.92, + "end": 9619.24, + "probability": 0.7047 + }, + { + "start": 9620.4, + "end": 9621.86, + "probability": 0.9336 + }, + { + "start": 9623.84, + "end": 9624.28, + "probability": 0.3956 + }, + { + "start": 9624.94, + "end": 9627.54, + "probability": 0.3648 + }, + { + "start": 9627.54, + "end": 9628.18, + "probability": 0.2843 + }, + { + "start": 9631.56, + "end": 9632.3, + "probability": 0.3621 + }, + { + "start": 9640.32, + "end": 9641.6, + "probability": 0.4444 + }, + { + "start": 9643.08, + "end": 9648.18, + "probability": 0.7417 + }, + { + "start": 9649.44, + "end": 9649.88, + "probability": 0.5628 + }, + { + "start": 9650.02, + "end": 9650.6, + "probability": 0.63 + }, + { + "start": 9650.64, + "end": 9655.8, + "probability": 0.8168 + }, + { + "start": 9656.34, + "end": 9659.8, + "probability": 0.5571 + }, + { + "start": 9661.42, + "end": 9662.92, + "probability": 0.6016 + }, + { + "start": 9662.92, + "end": 9664.24, + "probability": 0.8223 + }, + { + "start": 9665.76, + "end": 9667.98, + "probability": 0.9781 + }, + { + "start": 9669.64, + "end": 9671.26, + "probability": 0.9799 + }, + { + "start": 9671.44, + "end": 9672.14, + "probability": 0.5948 + }, + { + "start": 9672.2, + "end": 9673.26, + "probability": 0.7345 + }, + { + "start": 9674.16, + "end": 9674.86, + "probability": 0.6991 + }, + { + "start": 9675.4, + "end": 9676.14, + "probability": 0.9618 + }, + { + "start": 9676.92, + "end": 9677.32, + "probability": 0.7699 + }, + { + "start": 9679.78, + "end": 9682.86, + "probability": 0.9949 + }, + { + "start": 9683.92, + "end": 9687.64, + "probability": 0.9801 + }, + { + "start": 9689.0, + "end": 9692.38, + "probability": 0.99 + }, + { + "start": 9693.76, + "end": 9698.56, + "probability": 0.9918 + }, + { + "start": 9699.84, + "end": 9705.54, + "probability": 0.7594 + }, + { + "start": 9706.4, + "end": 9708.84, + "probability": 0.6101 + }, + { + "start": 9711.16, + "end": 9715.66, + "probability": 0.995 + }, + { + "start": 9715.82, + "end": 9719.02, + "probability": 0.9989 + }, + { + "start": 9719.62, + "end": 9720.78, + "probability": 0.8581 + }, + { + "start": 9722.1, + "end": 9727.68, + "probability": 0.9865 + }, + { + "start": 9728.58, + "end": 9729.5, + "probability": 0.6253 + }, + { + "start": 9730.76, + "end": 9731.68, + "probability": 0.838 + }, + { + "start": 9732.36, + "end": 9734.3, + "probability": 0.8245 + }, + { + "start": 9735.16, + "end": 9738.24, + "probability": 0.9758 + }, + { + "start": 9738.24, + "end": 9741.88, + "probability": 0.9966 + }, + { + "start": 9742.66, + "end": 9746.38, + "probability": 0.615 + }, + { + "start": 9747.22, + "end": 9748.82, + "probability": 0.8855 + }, + { + "start": 9749.18, + "end": 9753.08, + "probability": 0.7976 + }, + { + "start": 9754.48, + "end": 9758.2, + "probability": 0.9827 + }, + { + "start": 9758.38, + "end": 9758.46, + "probability": 0.5966 + }, + { + "start": 9758.68, + "end": 9760.74, + "probability": 0.6988 + }, + { + "start": 9763.08, + "end": 9763.18, + "probability": 0.0405 + }, + { + "start": 9763.18, + "end": 9764.84, + "probability": 0.7175 + }, + { + "start": 9765.5, + "end": 9767.34, + "probability": 0.802 + }, + { + "start": 9767.6, + "end": 9768.06, + "probability": 0.1785 + }, + { + "start": 9770.11, + "end": 9776.62, + "probability": 0.9904 + }, + { + "start": 9777.24, + "end": 9778.88, + "probability": 0.9915 + }, + { + "start": 9779.96, + "end": 9782.78, + "probability": 0.9862 + }, + { + "start": 9783.58, + "end": 9786.98, + "probability": 0.9904 + }, + { + "start": 9786.98, + "end": 9790.44, + "probability": 0.8839 + }, + { + "start": 9791.84, + "end": 9795.2, + "probability": 0.9966 + }, + { + "start": 9795.2, + "end": 9799.02, + "probability": 0.9816 + }, + { + "start": 9800.3, + "end": 9803.28, + "probability": 0.997 + }, + { + "start": 9803.28, + "end": 9809.24, + "probability": 0.9674 + }, + { + "start": 9810.82, + "end": 9815.4, + "probability": 0.9971 + }, + { + "start": 9815.4, + "end": 9820.48, + "probability": 0.9958 + }, + { + "start": 9821.52, + "end": 9824.76, + "probability": 0.5971 + }, + { + "start": 9825.42, + "end": 9830.24, + "probability": 0.9854 + }, + { + "start": 9831.02, + "end": 9832.92, + "probability": 0.8004 + }, + { + "start": 9834.38, + "end": 9835.08, + "probability": 0.7944 + }, + { + "start": 9836.1, + "end": 9840.78, + "probability": 0.9468 + }, + { + "start": 9840.82, + "end": 9842.28, + "probability": 0.0981 + }, + { + "start": 9842.42, + "end": 9846.38, + "probability": 0.8961 + }, + { + "start": 9847.68, + "end": 9849.64, + "probability": 0.8484 + }, + { + "start": 9850.32, + "end": 9853.44, + "probability": 0.9289 + }, + { + "start": 9853.98, + "end": 9859.8, + "probability": 0.9515 + }, + { + "start": 9860.58, + "end": 9864.62, + "probability": 0.7081 + }, + { + "start": 9866.16, + "end": 9867.5, + "probability": 0.8233 + }, + { + "start": 9868.38, + "end": 9872.68, + "probability": 0.9865 + }, + { + "start": 9872.68, + "end": 9876.96, + "probability": 0.9936 + }, + { + "start": 9878.08, + "end": 9879.96, + "probability": 0.9946 + }, + { + "start": 9880.58, + "end": 9882.28, + "probability": 0.3986 + }, + { + "start": 9883.0, + "end": 9885.0, + "probability": 0.6902 + }, + { + "start": 9885.6, + "end": 9889.26, + "probability": 0.9809 + }, + { + "start": 9890.62, + "end": 9892.84, + "probability": 0.8903 + }, + { + "start": 9893.42, + "end": 9895.42, + "probability": 0.6296 + }, + { + "start": 9896.12, + "end": 9898.26, + "probability": 0.9827 + }, + { + "start": 9899.22, + "end": 9901.96, + "probability": 0.897 + }, + { + "start": 9902.88, + "end": 9905.28, + "probability": 0.7792 + }, + { + "start": 9905.84, + "end": 9909.76, + "probability": 0.8905 + }, + { + "start": 9910.7, + "end": 9912.44, + "probability": 0.9509 + }, + { + "start": 9913.64, + "end": 9914.84, + "probability": 0.9368 + }, + { + "start": 9915.78, + "end": 9921.2, + "probability": 0.9504 + }, + { + "start": 9921.82, + "end": 9925.08, + "probability": 0.9577 + }, + { + "start": 9925.98, + "end": 9930.14, + "probability": 0.9922 + }, + { + "start": 9930.94, + "end": 9935.74, + "probability": 0.7673 + }, + { + "start": 9936.56, + "end": 9938.88, + "probability": 0.8606 + }, + { + "start": 9939.78, + "end": 9944.6, + "probability": 0.9868 + }, + { + "start": 9944.64, + "end": 9947.12, + "probability": 0.1232 + }, + { + "start": 9947.78, + "end": 9947.98, + "probability": 0.0276 + }, + { + "start": 9948.92, + "end": 9950.4, + "probability": 0.9551 + }, + { + "start": 9951.14, + "end": 9952.64, + "probability": 0.8881 + }, + { + "start": 9953.32, + "end": 9956.7, + "probability": 0.9714 + }, + { + "start": 9956.7, + "end": 9961.42, + "probability": 0.9751 + }, + { + "start": 9961.56, + "end": 9961.92, + "probability": 0.0479 + }, + { + "start": 9962.84, + "end": 9965.24, + "probability": 0.7207 + }, + { + "start": 9965.84, + "end": 9967.8, + "probability": 0.8377 + }, + { + "start": 9968.32, + "end": 9969.86, + "probability": 0.6631 + }, + { + "start": 9970.54, + "end": 9971.54, + "probability": 0.7135 + }, + { + "start": 9971.74, + "end": 9974.92, + "probability": 0.9952 + }, + { + "start": 9974.92, + "end": 9978.54, + "probability": 0.9264 + }, + { + "start": 9979.1, + "end": 9982.66, + "probability": 0.9747 + }, + { + "start": 9983.86, + "end": 9986.12, + "probability": 0.7289 + }, + { + "start": 9987.2, + "end": 9990.22, + "probability": 0.7744 + }, + { + "start": 9991.42, + "end": 9992.4, + "probability": 0.1837 + }, + { + "start": 9993.08, + "end": 9994.34, + "probability": 0.6673 + }, + { + "start": 9995.06, + "end": 9998.32, + "probability": 0.8862 + }, + { + "start": 9999.4, + "end": 10001.88, + "probability": 0.9351 + }, + { + "start": 10003.52, + "end": 10004.44, + "probability": 0.856 + }, + { + "start": 10004.58, + "end": 10008.6, + "probability": 0.9249 + }, + { + "start": 10009.66, + "end": 10010.26, + "probability": 0.939 + }, + { + "start": 10010.38, + "end": 10016.4, + "probability": 0.9779 + }, + { + "start": 10017.2, + "end": 10020.34, + "probability": 0.8228 + }, + { + "start": 10020.34, + "end": 10024.92, + "probability": 0.8534 + }, + { + "start": 10025.18, + "end": 10028.14, + "probability": 0.8904 + }, + { + "start": 10029.28, + "end": 10032.88, + "probability": 0.8043 + }, + { + "start": 10033.92, + "end": 10036.08, + "probability": 0.8703 + }, + { + "start": 10036.82, + "end": 10040.98, + "probability": 0.9965 + }, + { + "start": 10040.98, + "end": 10048.16, + "probability": 0.9812 + }, + { + "start": 10048.9, + "end": 10050.84, + "probability": 0.9301 + }, + { + "start": 10053.82, + "end": 10055.0, + "probability": 0.9255 + }, + { + "start": 10056.56, + "end": 10063.76, + "probability": 0.8515 + }, + { + "start": 10063.76, + "end": 10067.12, + "probability": 0.9895 + }, + { + "start": 10067.9, + "end": 10068.56, + "probability": 0.8865 + }, + { + "start": 10069.02, + "end": 10073.36, + "probability": 0.9753 + }, + { + "start": 10074.18, + "end": 10078.3, + "probability": 0.9889 + }, + { + "start": 10078.48, + "end": 10079.06, + "probability": 0.6202 + }, + { + "start": 10080.0, + "end": 10085.28, + "probability": 0.8568 + }, + { + "start": 10086.08, + "end": 10086.46, + "probability": 0.4914 + }, + { + "start": 10087.26, + "end": 10088.7, + "probability": 0.998 + }, + { + "start": 10089.36, + "end": 10092.26, + "probability": 0.7041 + }, + { + "start": 10092.72, + "end": 10096.4, + "probability": 0.9245 + }, + { + "start": 10097.02, + "end": 10102.16, + "probability": 0.7471 + }, + { + "start": 10102.78, + "end": 10103.96, + "probability": 0.7909 + }, + { + "start": 10104.06, + "end": 10105.4, + "probability": 0.923 + }, + { + "start": 10106.5, + "end": 10110.98, + "probability": 0.8207 + }, + { + "start": 10111.68, + "end": 10116.78, + "probability": 0.8474 + }, + { + "start": 10116.9, + "end": 10117.7, + "probability": 0.3687 + }, + { + "start": 10118.08, + "end": 10118.78, + "probability": 0.6038 + }, + { + "start": 10119.1, + "end": 10119.82, + "probability": 0.8985 + }, + { + "start": 10120.76, + "end": 10121.46, + "probability": 0.6193 + }, + { + "start": 10122.26, + "end": 10127.34, + "probability": 0.9175 + }, + { + "start": 10128.3, + "end": 10128.64, + "probability": 0.4553 + }, + { + "start": 10128.72, + "end": 10129.5, + "probability": 0.5328 + }, + { + "start": 10150.0, + "end": 10150.64, + "probability": 0.4964 + }, + { + "start": 10150.78, + "end": 10151.68, + "probability": 0.7309 + }, + { + "start": 10152.67, + "end": 10156.06, + "probability": 0.9504 + }, + { + "start": 10156.22, + "end": 10158.86, + "probability": 0.9975 + }, + { + "start": 10159.86, + "end": 10163.8, + "probability": 0.9971 + }, + { + "start": 10164.68, + "end": 10166.3, + "probability": 0.9059 + }, + { + "start": 10166.5, + "end": 10168.16, + "probability": 0.952 + }, + { + "start": 10168.28, + "end": 10170.55, + "probability": 0.9856 + }, + { + "start": 10170.78, + "end": 10172.54, + "probability": 0.9925 + }, + { + "start": 10173.64, + "end": 10175.22, + "probability": 0.8972 + }, + { + "start": 10176.5, + "end": 10177.76, + "probability": 0.6816 + }, + { + "start": 10178.38, + "end": 10180.0, + "probability": 0.9937 + }, + { + "start": 10181.24, + "end": 10184.99, + "probability": 0.8818 + }, + { + "start": 10185.8, + "end": 10189.7, + "probability": 0.9915 + }, + { + "start": 10189.7, + "end": 10191.06, + "probability": 0.7817 + }, + { + "start": 10191.26, + "end": 10192.5, + "probability": 0.9897 + }, + { + "start": 10193.44, + "end": 10194.7, + "probability": 0.7843 + }, + { + "start": 10195.18, + "end": 10196.4, + "probability": 0.9775 + }, + { + "start": 10197.18, + "end": 10197.68, + "probability": 0.8245 + }, + { + "start": 10197.68, + "end": 10199.5, + "probability": 0.9438 + }, + { + "start": 10200.04, + "end": 10200.94, + "probability": 0.9082 + }, + { + "start": 10202.78, + "end": 10205.0, + "probability": 0.9942 + }, + { + "start": 10206.6, + "end": 10208.36, + "probability": 0.9671 + }, + { + "start": 10210.58, + "end": 10211.74, + "probability": 0.9826 + }, + { + "start": 10212.66, + "end": 10214.48, + "probability": 0.6539 + }, + { + "start": 10215.0, + "end": 10215.48, + "probability": 0.7949 + }, + { + "start": 10217.22, + "end": 10219.64, + "probability": 0.997 + }, + { + "start": 10220.36, + "end": 10222.74, + "probability": 0.9397 + }, + { + "start": 10223.8, + "end": 10227.08, + "probability": 0.9639 + }, + { + "start": 10229.06, + "end": 10231.6, + "probability": 0.841 + }, + { + "start": 10233.9, + "end": 10236.37, + "probability": 0.7035 + }, + { + "start": 10238.08, + "end": 10239.14, + "probability": 0.8976 + }, + { + "start": 10239.26, + "end": 10244.72, + "probability": 0.8381 + }, + { + "start": 10245.3, + "end": 10249.08, + "probability": 0.996 + }, + { + "start": 10250.54, + "end": 10253.86, + "probability": 0.9069 + }, + { + "start": 10253.86, + "end": 10258.02, + "probability": 0.9863 + }, + { + "start": 10259.46, + "end": 10263.04, + "probability": 0.9831 + }, + { + "start": 10263.62, + "end": 10264.42, + "probability": 0.7371 + }, + { + "start": 10264.68, + "end": 10268.3, + "probability": 0.9727 + }, + { + "start": 10269.96, + "end": 10272.02, + "probability": 0.8813 + }, + { + "start": 10273.34, + "end": 10274.38, + "probability": 0.6699 + }, + { + "start": 10275.68, + "end": 10278.1, + "probability": 0.9824 + }, + { + "start": 10279.96, + "end": 10281.7, + "probability": 0.5636 + }, + { + "start": 10282.7, + "end": 10284.38, + "probability": 0.9947 + }, + { + "start": 10285.0, + "end": 10286.12, + "probability": 0.9444 + }, + { + "start": 10287.3, + "end": 10289.9, + "probability": 0.9571 + }, + { + "start": 10290.68, + "end": 10293.26, + "probability": 0.9705 + }, + { + "start": 10294.32, + "end": 10294.82, + "probability": 0.6264 + }, + { + "start": 10295.04, + "end": 10298.88, + "probability": 0.9654 + }, + { + "start": 10300.4, + "end": 10301.54, + "probability": 0.7032 + }, + { + "start": 10302.64, + "end": 10306.18, + "probability": 0.9897 + }, + { + "start": 10307.84, + "end": 10310.04, + "probability": 0.9944 + }, + { + "start": 10310.72, + "end": 10314.2, + "probability": 0.8755 + }, + { + "start": 10315.12, + "end": 10316.38, + "probability": 0.9639 + }, + { + "start": 10317.56, + "end": 10322.22, + "probability": 0.9618 + }, + { + "start": 10323.0, + "end": 10325.06, + "probability": 0.9697 + }, + { + "start": 10325.5, + "end": 10327.3, + "probability": 0.5161 + }, + { + "start": 10328.36, + "end": 10331.48, + "probability": 0.7698 + }, + { + "start": 10332.0, + "end": 10333.12, + "probability": 0.8333 + }, + { + "start": 10333.52, + "end": 10336.92, + "probability": 0.8179 + }, + { + "start": 10337.62, + "end": 10342.08, + "probability": 0.6946 + }, + { + "start": 10343.0, + "end": 10343.38, + "probability": 0.8636 + }, + { + "start": 10345.84, + "end": 10348.2, + "probability": 0.9205 + }, + { + "start": 10364.8, + "end": 10366.34, + "probability": 0.7004 + }, + { + "start": 10367.26, + "end": 10369.52, + "probability": 0.9053 + }, + { + "start": 10370.86, + "end": 10375.58, + "probability": 0.9504 + }, + { + "start": 10377.02, + "end": 10380.04, + "probability": 0.9822 + }, + { + "start": 10381.14, + "end": 10382.74, + "probability": 0.9966 + }, + { + "start": 10384.18, + "end": 10386.24, + "probability": 0.3628 + }, + { + "start": 10386.96, + "end": 10391.68, + "probability": 0.891 + }, + { + "start": 10393.18, + "end": 10394.26, + "probability": 0.9189 + }, + { + "start": 10395.12, + "end": 10396.22, + "probability": 0.779 + }, + { + "start": 10397.14, + "end": 10397.92, + "probability": 0.9 + }, + { + "start": 10398.64, + "end": 10403.48, + "probability": 0.973 + }, + { + "start": 10404.52, + "end": 10407.72, + "probability": 0.882 + }, + { + "start": 10408.38, + "end": 10413.68, + "probability": 0.9157 + }, + { + "start": 10414.26, + "end": 10416.4, + "probability": 0.9226 + }, + { + "start": 10418.76, + "end": 10419.64, + "probability": 0.9371 + }, + { + "start": 10421.2, + "end": 10424.07, + "probability": 0.9909 + }, + { + "start": 10424.76, + "end": 10427.44, + "probability": 0.7525 + }, + { + "start": 10428.26, + "end": 10432.72, + "probability": 0.8206 + }, + { + "start": 10433.02, + "end": 10436.62, + "probability": 0.9364 + }, + { + "start": 10437.92, + "end": 10441.38, + "probability": 0.648 + }, + { + "start": 10441.76, + "end": 10442.26, + "probability": 0.6899 + }, + { + "start": 10442.3, + "end": 10442.6, + "probability": 0.6941 + }, + { + "start": 10445.24, + "end": 10449.28, + "probability": 0.9479 + }, + { + "start": 10450.56, + "end": 10453.66, + "probability": 0.6091 + }, + { + "start": 10455.74, + "end": 10458.44, + "probability": 0.9407 + }, + { + "start": 10459.68, + "end": 10463.94, + "probability": 0.9939 + }, + { + "start": 10464.08, + "end": 10465.78, + "probability": 0.8692 + }, + { + "start": 10466.74, + "end": 10470.02, + "probability": 0.9956 + }, + { + "start": 10470.72, + "end": 10473.68, + "probability": 0.7666 + }, + { + "start": 10474.62, + "end": 10476.8, + "probability": 0.9763 + }, + { + "start": 10478.1, + "end": 10480.2, + "probability": 0.9976 + }, + { + "start": 10480.98, + "end": 10482.49, + "probability": 0.7244 + }, + { + "start": 10483.22, + "end": 10487.26, + "probability": 0.9951 + }, + { + "start": 10487.5, + "end": 10488.76, + "probability": 0.8428 + }, + { + "start": 10490.08, + "end": 10491.82, + "probability": 0.8976 + }, + { + "start": 10492.4, + "end": 10495.08, + "probability": 0.8563 + }, + { + "start": 10495.88, + "end": 10496.7, + "probability": 0.5634 + }, + { + "start": 10497.48, + "end": 10498.94, + "probability": 0.8311 + }, + { + "start": 10499.34, + "end": 10501.32, + "probability": 0.6906 + }, + { + "start": 10501.42, + "end": 10502.06, + "probability": 0.6529 + }, + { + "start": 10502.18, + "end": 10502.68, + "probability": 0.4637 + }, + { + "start": 10503.14, + "end": 10507.44, + "probability": 0.9099 + }, + { + "start": 10508.36, + "end": 10510.94, + "probability": 0.9819 + }, + { + "start": 10511.2, + "end": 10512.44, + "probability": 0.9034 + }, + { + "start": 10512.94, + "end": 10515.98, + "probability": 0.761 + }, + { + "start": 10516.4, + "end": 10517.28, + "probability": 0.5579 + }, + { + "start": 10517.52, + "end": 10519.18, + "probability": 0.98 + }, + { + "start": 10519.64, + "end": 10521.14, + "probability": 0.9723 + }, + { + "start": 10521.18, + "end": 10525.37, + "probability": 0.995 + }, + { + "start": 10525.72, + "end": 10529.76, + "probability": 0.9746 + }, + { + "start": 10530.26, + "end": 10534.3, + "probability": 0.9603 + }, + { + "start": 10535.76, + "end": 10536.4, + "probability": 0.826 + }, + { + "start": 10536.96, + "end": 10540.62, + "probability": 0.7625 + }, + { + "start": 10541.04, + "end": 10544.38, + "probability": 0.9562 + }, + { + "start": 10544.38, + "end": 10544.68, + "probability": 0.8795 + }, + { + "start": 10546.24, + "end": 10546.92, + "probability": 0.5583 + }, + { + "start": 10547.64, + "end": 10549.22, + "probability": 0.5469 + }, + { + "start": 10550.74, + "end": 10552.16, + "probability": 0.2152 + }, + { + "start": 10552.16, + "end": 10553.14, + "probability": 0.6195 + }, + { + "start": 10553.78, + "end": 10553.88, + "probability": 0.3381 + }, + { + "start": 10554.88, + "end": 10556.06, + "probability": 0.7367 + }, + { + "start": 10557.42, + "end": 10558.42, + "probability": 0.395 + }, + { + "start": 10561.94, + "end": 10564.32, + "probability": 0.01 + }, + { + "start": 10564.32, + "end": 10564.88, + "probability": 0.0978 + }, + { + "start": 10565.5, + "end": 10569.36, + "probability": 0.037 + }, + { + "start": 10570.34, + "end": 10570.58, + "probability": 0.0799 + }, + { + "start": 10579.3, + "end": 10579.3, + "probability": 0.0555 + }, + { + "start": 10579.3, + "end": 10579.48, + "probability": 0.1081 + }, + { + "start": 10580.08, + "end": 10580.34, + "probability": 0.286 + }, + { + "start": 10580.96, + "end": 10582.14, + "probability": 0.8896 + }, + { + "start": 10583.22, + "end": 10584.14, + "probability": 0.5564 + }, + { + "start": 10584.6, + "end": 10586.2, + "probability": 0.9029 + }, + { + "start": 10587.32, + "end": 10587.92, + "probability": 0.5995 + }, + { + "start": 10589.62, + "end": 10592.34, + "probability": 0.8608 + }, + { + "start": 10593.74, + "end": 10594.44, + "probability": 0.9686 + }, + { + "start": 10596.2, + "end": 10597.46, + "probability": 0.2754 + }, + { + "start": 10599.36, + "end": 10604.66, + "probability": 0.9778 + }, + { + "start": 10605.48, + "end": 10613.08, + "probability": 0.9868 + }, + { + "start": 10613.32, + "end": 10613.88, + "probability": 0.5644 + }, + { + "start": 10615.66, + "end": 10618.42, + "probability": 0.5 + }, + { + "start": 10618.42, + "end": 10619.12, + "probability": 0.0643 + }, + { + "start": 10623.66, + "end": 10625.5, + "probability": 0.0539 + }, + { + "start": 10638.96, + "end": 10639.6, + "probability": 0.5548 + }, + { + "start": 10640.46, + "end": 10641.12, + "probability": 0.7358 + }, + { + "start": 10641.28, + "end": 10642.08, + "probability": 0.882 + }, + { + "start": 10642.2, + "end": 10645.95, + "probability": 0.4791 + }, + { + "start": 10646.52, + "end": 10647.84, + "probability": 0.4838 + }, + { + "start": 10649.06, + "end": 10652.72, + "probability": 0.9078 + }, + { + "start": 10652.8, + "end": 10656.62, + "probability": 0.9687 + }, + { + "start": 10657.72, + "end": 10660.8, + "probability": 0.9698 + }, + { + "start": 10661.36, + "end": 10664.56, + "probability": 0.8258 + }, + { + "start": 10664.66, + "end": 10667.34, + "probability": 0.995 + }, + { + "start": 10668.33, + "end": 10669.9, + "probability": 0.9565 + }, + { + "start": 10670.84, + "end": 10674.52, + "probability": 0.939 + }, + { + "start": 10674.8, + "end": 10677.82, + "probability": 0.9974 + }, + { + "start": 10678.14, + "end": 10679.8, + "probability": 0.933 + }, + { + "start": 10680.58, + "end": 10681.96, + "probability": 0.1123 + }, + { + "start": 10682.32, + "end": 10684.32, + "probability": 0.7336 + }, + { + "start": 10684.78, + "end": 10687.58, + "probability": 0.9545 + }, + { + "start": 10687.84, + "end": 10688.08, + "probability": 0.7595 + }, + { + "start": 10688.82, + "end": 10690.22, + "probability": 0.6934 + }, + { + "start": 10691.52, + "end": 10696.88, + "probability": 0.7604 + }, + { + "start": 10697.48, + "end": 10698.1, + "probability": 0.3142 + }, + { + "start": 10708.78, + "end": 10709.68, + "probability": 0.1036 + }, + { + "start": 10712.14, + "end": 10715.48, + "probability": 0.6241 + }, + { + "start": 10717.6, + "end": 10722.32, + "probability": 0.7602 + }, + { + "start": 10724.36, + "end": 10726.4, + "probability": 0.7473 + }, + { + "start": 10727.28, + "end": 10730.64, + "probability": 0.9719 + }, + { + "start": 10731.5, + "end": 10732.38, + "probability": 0.991 + }, + { + "start": 10733.26, + "end": 10735.94, + "probability": 0.9243 + }, + { + "start": 10736.84, + "end": 10742.86, + "probability": 0.9937 + }, + { + "start": 10742.86, + "end": 10747.18, + "probability": 0.976 + }, + { + "start": 10748.02, + "end": 10751.02, + "probability": 0.994 + }, + { + "start": 10751.68, + "end": 10753.26, + "probability": 0.9964 + }, + { + "start": 10754.32, + "end": 10754.42, + "probability": 0.114 + }, + { + "start": 10754.42, + "end": 10756.3, + "probability": 0.744 + }, + { + "start": 10757.02, + "end": 10759.14, + "probability": 0.9976 + }, + { + "start": 10759.82, + "end": 10762.8, + "probability": 0.9495 + }, + { + "start": 10763.74, + "end": 10765.16, + "probability": 0.6298 + }, + { + "start": 10765.26, + "end": 10767.5, + "probability": 0.9784 + }, + { + "start": 10768.12, + "end": 10769.46, + "probability": 0.9896 + }, + { + "start": 10770.2, + "end": 10772.48, + "probability": 0.922 + }, + { + "start": 10773.12, + "end": 10775.04, + "probability": 0.7266 + }, + { + "start": 10775.74, + "end": 10777.96, + "probability": 0.9989 + }, + { + "start": 10778.6, + "end": 10779.64, + "probability": 0.998 + }, + { + "start": 10781.84, + "end": 10782.63, + "probability": 0.3117 + }, + { + "start": 10783.92, + "end": 10786.8, + "probability": 0.2832 + }, + { + "start": 10787.7, + "end": 10789.34, + "probability": 0.9538 + }, + { + "start": 10791.16, + "end": 10793.2, + "probability": 0.8989 + }, + { + "start": 10794.34, + "end": 10795.8, + "probability": 0.7771 + }, + { + "start": 10795.9, + "end": 10801.36, + "probability": 0.8418 + }, + { + "start": 10801.68, + "end": 10802.0, + "probability": 0.6906 + }, + { + "start": 10802.74, + "end": 10804.38, + "probability": 0.6663 + }, + { + "start": 10805.34, + "end": 10807.74, + "probability": 0.9641 + }, + { + "start": 10807.9, + "end": 10812.48, + "probability": 0.9569 + }, + { + "start": 10813.26, + "end": 10817.88, + "probability": 0.9384 + }, + { + "start": 10817.88, + "end": 10826.66, + "probability": 0.6732 + }, + { + "start": 10826.9, + "end": 10827.5, + "probability": 0.5207 + }, + { + "start": 10828.18, + "end": 10831.45, + "probability": 0.7937 + }, + { + "start": 10832.64, + "end": 10835.0, + "probability": 0.9859 + }, + { + "start": 10835.99, + "end": 10841.275, + "probability": 0.8957 + }, + { + "start": 10842.06, + "end": 10844.95, + "probability": 0.9895 + }, + { + "start": 10845.16, + "end": 10849.02, + "probability": 0.9469 + }, + { + "start": 10849.14, + "end": 10850.14, + "probability": 0.4697 + }, + { + "start": 10850.72, + "end": 10853.48, + "probability": 0.7769 + }, + { + "start": 10854.32, + "end": 10855.2, + "probability": 0.5021 + }, + { + "start": 10855.64, + "end": 10857.36, + "probability": 0.5538 + }, + { + "start": 10857.98, + "end": 10861.2, + "probability": 0.9613 + }, + { + "start": 10861.54, + "end": 10864.12, + "probability": 0.7993 + }, + { + "start": 10865.04, + "end": 10868.22, + "probability": 0.8396 + }, + { + "start": 10869.42, + "end": 10870.34, + "probability": 0.2093 + }, + { + "start": 10892.02, + "end": 10894.66, + "probability": 0.2279 + }, + { + "start": 10899.8, + "end": 10903.54, + "probability": 0.0704 + }, + { + "start": 10904.97, + "end": 10907.58, + "probability": 0.187 + }, + { + "start": 10910.34, + "end": 10915.04, + "probability": 0.0156 + }, + { + "start": 10916.24, + "end": 10917.48, + "probability": 0.0017 + }, + { + "start": 10920.96, + "end": 10921.04, + "probability": 0.0002 + }, + { + "start": 10928.02, + "end": 10928.84, + "probability": 0.0257 + }, + { + "start": 10932.41, + "end": 10933.03, + "probability": 0.0671 + }, + { + "start": 10947.37, + "end": 10949.3, + "probability": 0.0876 + }, + { + "start": 10949.3, + "end": 10951.54, + "probability": 0.139 + }, + { + "start": 10976.0, + "end": 10976.0, + "probability": 0.0 + }, + { + "start": 10976.0, + "end": 10976.0, + "probability": 0.0 + }, + { + "start": 10976.0, + "end": 10976.0, + "probability": 0.0 + }, + { + "start": 10976.0, + "end": 10976.0, + "probability": 0.0 + }, + { + "start": 10976.0, + "end": 10976.0, + "probability": 0.0 + }, + { + "start": 10976.0, + "end": 10976.0, + "probability": 0.0 + }, + { + "start": 10976.0, + "end": 10976.0, + "probability": 0.0 + }, + { + "start": 10976.0, + "end": 10976.0, + "probability": 0.0 + }, + { + "start": 10976.0, + "end": 10976.0, + "probability": 0.0 + }, + { + "start": 10976.98, + "end": 10977.0, + "probability": 0.1104 + }, + { + "start": 10977.0, + "end": 10977.0, + "probability": 0.2469 + }, + { + "start": 10977.0, + "end": 10977.0, + "probability": 0.12 + }, + { + "start": 10977.0, + "end": 10977.0, + "probability": 0.0479 + }, + { + "start": 10977.0, + "end": 10977.0, + "probability": 0.1067 + }, + { + "start": 10977.0, + "end": 10978.54, + "probability": 0.7393 + }, + { + "start": 10979.92, + "end": 10980.84, + "probability": 0.6291 + }, + { + "start": 10981.42, + "end": 10984.02, + "probability": 0.5693 + }, + { + "start": 10986.72, + "end": 10990.94, + "probability": 0.5351 + }, + { + "start": 10993.07, + "end": 10996.01, + "probability": 0.8613 + }, + { + "start": 10997.88, + "end": 11001.68, + "probability": 0.9444 + }, + { + "start": 11002.38, + "end": 11003.78, + "probability": 0.6036 + }, + { + "start": 11004.06, + "end": 11007.38, + "probability": 0.969 + }, + { + "start": 11007.68, + "end": 11009.58, + "probability": 0.9712 + }, + { + "start": 11009.66, + "end": 11011.44, + "probability": 0.9763 + }, + { + "start": 11012.34, + "end": 11014.98, + "probability": 0.9251 + }, + { + "start": 11015.24, + "end": 11019.3, + "probability": 0.9697 + }, + { + "start": 11020.34, + "end": 11020.34, + "probability": 0.979 + }, + { + "start": 11021.08, + "end": 11022.04, + "probability": 0.2809 + }, + { + "start": 11022.9, + "end": 11025.84, + "probability": 0.7102 + }, + { + "start": 11028.29, + "end": 11029.81, + "probability": 0.9976 + }, + { + "start": 11030.48, + "end": 11032.96, + "probability": 0.9969 + }, + { + "start": 11033.6, + "end": 11037.38, + "probability": 0.8285 + }, + { + "start": 11038.04, + "end": 11039.32, + "probability": 0.9425 + }, + { + "start": 11040.56, + "end": 11042.78, + "probability": 0.9777 + }, + { + "start": 11043.16, + "end": 11045.3, + "probability": 0.9894 + }, + { + "start": 11046.38, + "end": 11047.52, + "probability": 0.0161 + }, + { + "start": 11048.72, + "end": 11049.44, + "probability": 0.0072 + }, + { + "start": 11050.44, + "end": 11058.3, + "probability": 0.6151 + }, + { + "start": 11058.36, + "end": 11059.24, + "probability": 0.4592 + }, + { + "start": 11059.24, + "end": 11063.36, + "probability": 0.5752 + }, + { + "start": 11063.78, + "end": 11068.82, + "probability": 0.9821 + }, + { + "start": 11070.08, + "end": 11070.74, + "probability": 0.3357 + }, + { + "start": 11070.8, + "end": 11078.68, + "probability": 0.8906 + }, + { + "start": 11079.32, + "end": 11079.68, + "probability": 0.3224 + }, + { + "start": 11080.66, + "end": 11084.46, + "probability": 0.4466 + }, + { + "start": 11084.5, + "end": 11086.12, + "probability": 0.6188 + }, + { + "start": 11086.68, + "end": 11089.34, + "probability": 0.8432 + }, + { + "start": 11090.3, + "end": 11091.55, + "probability": 0.8731 + }, + { + "start": 11092.26, + "end": 11096.24, + "probability": 0.7495 + }, + { + "start": 11096.7, + "end": 11099.46, + "probability": 0.9714 + }, + { + "start": 11103.0, + "end": 11105.69, + "probability": 0.5122 + }, + { + "start": 11106.54, + "end": 11112.5, + "probability": 0.9546 + }, + { + "start": 11112.5, + "end": 11116.6, + "probability": 0.845 + }, + { + "start": 11117.52, + "end": 11122.32, + "probability": 0.9839 + }, + { + "start": 11123.02, + "end": 11126.54, + "probability": 0.7744 + }, + { + "start": 11128.4, + "end": 11130.84, + "probability": 0.9759 + }, + { + "start": 11131.08, + "end": 11138.98, + "probability": 0.7443 + }, + { + "start": 11139.58, + "end": 11139.88, + "probability": 0.7685 + }, + { + "start": 11140.0, + "end": 11140.94, + "probability": 0.6313 + }, + { + "start": 11141.06, + "end": 11143.58, + "probability": 0.7458 + }, + { + "start": 11143.74, + "end": 11145.1, + "probability": 0.9493 + }, + { + "start": 11145.86, + "end": 11149.34, + "probability": 0.9832 + }, + { + "start": 11149.44, + "end": 11151.46, + "probability": 0.4927 + }, + { + "start": 11153.16, + "end": 11156.35, + "probability": 0.4466 + }, + { + "start": 11156.92, + "end": 11159.8, + "probability": 0.6648 + }, + { + "start": 11160.96, + "end": 11161.26, + "probability": 0.7681 + }, + { + "start": 11161.34, + "end": 11162.22, + "probability": 0.7643 + }, + { + "start": 11162.64, + "end": 11163.44, + "probability": 0.7089 + }, + { + "start": 11163.56, + "end": 11163.98, + "probability": 0.7627 + }, + { + "start": 11164.28, + "end": 11165.4, + "probability": 0.9749 + }, + { + "start": 11165.54, + "end": 11170.04, + "probability": 0.9971 + }, + { + "start": 11170.66, + "end": 11171.6, + "probability": 0.6969 + }, + { + "start": 11172.14, + "end": 11173.72, + "probability": 0.9857 + }, + { + "start": 11174.34, + "end": 11177.68, + "probability": 0.6672 + }, + { + "start": 11178.3, + "end": 11179.42, + "probability": 0.6007 + }, + { + "start": 11179.94, + "end": 11184.86, + "probability": 0.6367 + }, + { + "start": 11185.68, + "end": 11187.42, + "probability": 0.606 + }, + { + "start": 11187.92, + "end": 11190.44, + "probability": 0.5277 + }, + { + "start": 11191.52, + "end": 11195.38, + "probability": 0.961 + }, + { + "start": 11195.46, + "end": 11195.92, + "probability": 0.8765 + }, + { + "start": 11196.9, + "end": 11198.38, + "probability": 0.6991 + }, + { + "start": 11198.62, + "end": 11205.74, + "probability": 0.6927 + }, + { + "start": 11206.5, + "end": 11207.52, + "probability": 0.9583 + }, + { + "start": 11209.16, + "end": 11211.0, + "probability": 0.3467 + }, + { + "start": 11212.24, + "end": 11214.7, + "probability": 0.6148 + }, + { + "start": 11216.4, + "end": 11219.52, + "probability": 0.9968 + }, + { + "start": 11219.52, + "end": 11223.18, + "probability": 0.986 + }, + { + "start": 11223.26, + "end": 11228.24, + "probability": 0.8122 + }, + { + "start": 11228.24, + "end": 11232.72, + "probability": 0.8715 + }, + { + "start": 11233.48, + "end": 11235.6, + "probability": 0.981 + }, + { + "start": 11236.44, + "end": 11239.96, + "probability": 0.7041 + }, + { + "start": 11240.14, + "end": 11243.02, + "probability": 0.9143 + }, + { + "start": 11243.78, + "end": 11245.04, + "probability": 0.8051 + }, + { + "start": 11245.34, + "end": 11250.0, + "probability": 0.8875 + }, + { + "start": 11250.64, + "end": 11255.1, + "probability": 0.9848 + }, + { + "start": 11255.72, + "end": 11256.18, + "probability": 0.3473 + }, + { + "start": 11257.96, + "end": 11262.88, + "probability": 0.7203 + }, + { + "start": 11263.22, + "end": 11264.68, + "probability": 0.7518 + }, + { + "start": 11264.94, + "end": 11270.4, + "probability": 0.9598 + }, + { + "start": 11270.4, + "end": 11274.72, + "probability": 0.9961 + }, + { + "start": 11275.24, + "end": 11275.98, + "probability": 0.7151 + }, + { + "start": 11276.06, + "end": 11276.7, + "probability": 0.9798 + }, + { + "start": 11276.92, + "end": 11279.3, + "probability": 0.9753 + }, + { + "start": 11279.86, + "end": 11281.24, + "probability": 0.659 + }, + { + "start": 11281.48, + "end": 11284.06, + "probability": 0.9858 + }, + { + "start": 11284.58, + "end": 11287.75, + "probability": 0.9121 + }, + { + "start": 11288.5, + "end": 11291.9, + "probability": 0.9641 + }, + { + "start": 11292.04, + "end": 11292.24, + "probability": 0.7027 + }, + { + "start": 11293.1, + "end": 11294.86, + "probability": 0.8981 + }, + { + "start": 11295.5, + "end": 11296.56, + "probability": 0.817 + }, + { + "start": 11297.08, + "end": 11300.04, + "probability": 0.9331 + }, + { + "start": 11300.64, + "end": 11301.84, + "probability": 0.9545 + }, + { + "start": 11302.56, + "end": 11307.3, + "probability": 0.9453 + }, + { + "start": 11311.54, + "end": 11312.06, + "probability": 0.4684 + }, + { + "start": 11312.12, + "end": 11312.88, + "probability": 0.9263 + }, + { + "start": 11312.98, + "end": 11314.92, + "probability": 0.9319 + }, + { + "start": 11315.64, + "end": 11316.58, + "probability": 0.6531 + }, + { + "start": 11316.68, + "end": 11317.5, + "probability": 0.7825 + }, + { + "start": 11317.74, + "end": 11319.2, + "probability": 0.341 + }, + { + "start": 11320.52, + "end": 11321.56, + "probability": 0.7602 + }, + { + "start": 11321.68, + "end": 11323.06, + "probability": 0.9727 + }, + { + "start": 11323.22, + "end": 11324.08, + "probability": 0.8694 + }, + { + "start": 11325.18, + "end": 11327.19, + "probability": 0.5523 + }, + { + "start": 11328.84, + "end": 11330.16, + "probability": 0.7662 + }, + { + "start": 11330.88, + "end": 11331.62, + "probability": 0.8103 + }, + { + "start": 11332.6, + "end": 11334.58, + "probability": 0.9295 + }, + { + "start": 11335.36, + "end": 11336.64, + "probability": 0.6125 + }, + { + "start": 11337.42, + "end": 11339.22, + "probability": 0.6463 + }, + { + "start": 11339.94, + "end": 11340.66, + "probability": 0.9642 + }, + { + "start": 11341.86, + "end": 11344.44, + "probability": 0.9834 + }, + { + "start": 11345.78, + "end": 11347.2, + "probability": 0.9897 + }, + { + "start": 11347.26, + "end": 11347.46, + "probability": 0.8942 + }, + { + "start": 11347.78, + "end": 11349.44, + "probability": 0.9943 + }, + { + "start": 11350.58, + "end": 11351.4, + "probability": 0.6451 + }, + { + "start": 11352.82, + "end": 11357.1, + "probability": 0.4843 + }, + { + "start": 11358.86, + "end": 11363.7, + "probability": 0.5724 + }, + { + "start": 11365.1, + "end": 11365.78, + "probability": 0.5363 + }, + { + "start": 11365.78, + "end": 11367.76, + "probability": 0.9559 + }, + { + "start": 11367.92, + "end": 11370.08, + "probability": 0.3533 + }, + { + "start": 11371.74, + "end": 11375.48, + "probability": 0.9507 + }, + { + "start": 11375.94, + "end": 11376.92, + "probability": 0.5307 + }, + { + "start": 11377.16, + "end": 11379.78, + "probability": 0.8651 + }, + { + "start": 11379.86, + "end": 11380.46, + "probability": 0.9579 + }, + { + "start": 11380.68, + "end": 11381.83, + "probability": 0.9313 + }, + { + "start": 11383.36, + "end": 11384.64, + "probability": 0.6669 + }, + { + "start": 11384.68, + "end": 11385.74, + "probability": 0.523 + }, + { + "start": 11385.74, + "end": 11387.3, + "probability": 0.8359 + }, + { + "start": 11387.38, + "end": 11391.86, + "probability": 0.8802 + }, + { + "start": 11392.62, + "end": 11396.46, + "probability": 0.9258 + }, + { + "start": 11396.58, + "end": 11397.12, + "probability": 0.7388 + }, + { + "start": 11397.2, + "end": 11400.3, + "probability": 0.7928 + }, + { + "start": 11401.0, + "end": 11406.62, + "probability": 0.9368 + }, + { + "start": 11406.78, + "end": 11408.0, + "probability": 0.8328 + }, + { + "start": 11408.74, + "end": 11410.06, + "probability": 0.9789 + }, + { + "start": 11410.24, + "end": 11410.8, + "probability": 0.6581 + }, + { + "start": 11410.94, + "end": 11411.68, + "probability": 0.9525 + }, + { + "start": 11412.4, + "end": 11415.0, + "probability": 0.9922 + }, + { + "start": 11415.5, + "end": 11419.0, + "probability": 0.8617 + }, + { + "start": 11420.04, + "end": 11420.81, + "probability": 0.9153 + }, + { + "start": 11420.94, + "end": 11422.02, + "probability": 0.1441 + }, + { + "start": 11422.02, + "end": 11422.86, + "probability": 0.615 + }, + { + "start": 11424.59, + "end": 11426.32, + "probability": 0.454 + }, + { + "start": 11426.42, + "end": 11428.64, + "probability": 0.3054 + }, + { + "start": 11429.7, + "end": 11432.12, + "probability": 0.8603 + }, + { + "start": 11432.82, + "end": 11434.26, + "probability": 0.743 + }, + { + "start": 11434.38, + "end": 11435.05, + "probability": 0.6678 + }, + { + "start": 11435.72, + "end": 11439.15, + "probability": 0.3549 + }, + { + "start": 11439.52, + "end": 11440.89, + "probability": 0.6121 + }, + { + "start": 11442.7, + "end": 11446.52, + "probability": 0.8109 + }, + { + "start": 11447.06, + "end": 11447.13, + "probability": 0.2759 + }, + { + "start": 11448.48, + "end": 11451.74, + "probability": 0.075 + }, + { + "start": 11452.9, + "end": 11454.26, + "probability": 0.4026 + }, + { + "start": 11454.74, + "end": 11456.1, + "probability": 0.6386 + }, + { + "start": 11456.16, + "end": 11458.74, + "probability": 0.8596 + }, + { + "start": 11458.9, + "end": 11463.1, + "probability": 0.6858 + }, + { + "start": 11463.18, + "end": 11464.48, + "probability": 0.9819 + }, + { + "start": 11464.96, + "end": 11465.86, + "probability": 0.7601 + }, + { + "start": 11466.16, + "end": 11466.7, + "probability": 0.5387 + }, + { + "start": 11466.88, + "end": 11467.14, + "probability": 0.1958 + }, + { + "start": 11467.28, + "end": 11469.48, + "probability": 0.3252 + }, + { + "start": 11469.54, + "end": 11472.7, + "probability": 0.765 + }, + { + "start": 11472.76, + "end": 11474.9, + "probability": 0.5424 + }, + { + "start": 11475.44, + "end": 11476.89, + "probability": 0.7421 + }, + { + "start": 11477.36, + "end": 11478.88, + "probability": 0.4263 + }, + { + "start": 11479.18, + "end": 11479.65, + "probability": 0.0207 + }, + { + "start": 11480.75, + "end": 11484.66, + "probability": 0.825 + }, + { + "start": 11484.98, + "end": 11486.22, + "probability": 0.9956 + }, + { + "start": 11486.38, + "end": 11490.24, + "probability": 0.9902 + }, + { + "start": 11490.98, + "end": 11492.22, + "probability": 0.662 + }, + { + "start": 11492.64, + "end": 11493.68, + "probability": 0.5532 + }, + { + "start": 11494.3, + "end": 11495.9, + "probability": 0.7148 + }, + { + "start": 11496.28, + "end": 11497.82, + "probability": 0.9978 + }, + { + "start": 11498.02, + "end": 11498.8, + "probability": 0.615 + }, + { + "start": 11499.1, + "end": 11500.1, + "probability": 0.8357 + }, + { + "start": 11500.88, + "end": 11502.5, + "probability": 0.8904 + }, + { + "start": 11503.3, + "end": 11504.88, + "probability": 0.9917 + }, + { + "start": 11505.46, + "end": 11506.74, + "probability": 0.9883 + }, + { + "start": 11506.96, + "end": 11508.12, + "probability": 0.8038 + }, + { + "start": 11508.3, + "end": 11509.88, + "probability": 0.9922 + }, + { + "start": 11510.54, + "end": 11511.42, + "probability": 0.3707 + }, + { + "start": 11511.46, + "end": 11512.1, + "probability": 0.9837 + }, + { + "start": 11512.44, + "end": 11513.34, + "probability": 0.7331 + }, + { + "start": 11513.96, + "end": 11517.13, + "probability": 0.9929 + }, + { + "start": 11517.92, + "end": 11519.14, + "probability": 0.9703 + }, + { + "start": 11520.26, + "end": 11520.66, + "probability": 0.3095 + }, + { + "start": 11520.82, + "end": 11521.92, + "probability": 0.7485 + }, + { + "start": 11522.0, + "end": 11522.26, + "probability": 0.3974 + }, + { + "start": 11522.3, + "end": 11522.9, + "probability": 0.6049 + }, + { + "start": 11523.32, + "end": 11524.82, + "probability": 0.978 + }, + { + "start": 11525.3, + "end": 11527.44, + "probability": 0.9268 + }, + { + "start": 11528.0, + "end": 11528.95, + "probability": 0.8681 + }, + { + "start": 11530.52, + "end": 11531.56, + "probability": 0.9443 + }, + { + "start": 11531.76, + "end": 11533.9, + "probability": 0.9956 + }, + { + "start": 11534.9, + "end": 11537.04, + "probability": 0.6728 + }, + { + "start": 11537.72, + "end": 11539.36, + "probability": 0.9609 + }, + { + "start": 11539.8, + "end": 11541.34, + "probability": 0.9782 + }, + { + "start": 11541.98, + "end": 11543.22, + "probability": 0.9775 + }, + { + "start": 11543.3, + "end": 11545.78, + "probability": 0.6438 + }, + { + "start": 11546.38, + "end": 11548.02, + "probability": 0.984 + }, + { + "start": 11548.66, + "end": 11550.22, + "probability": 0.9849 + }, + { + "start": 11550.28, + "end": 11550.48, + "probability": 0.4003 + }, + { + "start": 11550.5, + "end": 11551.04, + "probability": 0.5709 + }, + { + "start": 11552.77, + "end": 11556.49, + "probability": 0.9769 + }, + { + "start": 11556.62, + "end": 11557.48, + "probability": 0.6874 + }, + { + "start": 11557.6, + "end": 11557.82, + "probability": 0.7131 + }, + { + "start": 11557.86, + "end": 11558.43, + "probability": 0.9322 + }, + { + "start": 11558.6, + "end": 11559.0, + "probability": 0.9002 + }, + { + "start": 11559.1, + "end": 11559.48, + "probability": 0.5117 + }, + { + "start": 11559.56, + "end": 11562.08, + "probability": 0.7047 + }, + { + "start": 11562.14, + "end": 11562.64, + "probability": 0.6463 + }, + { + "start": 11563.5, + "end": 11564.14, + "probability": 0.9167 + }, + { + "start": 11564.86, + "end": 11566.54, + "probability": 0.8464 + }, + { + "start": 11566.6, + "end": 11567.88, + "probability": 0.9973 + }, + { + "start": 11568.34, + "end": 11571.3, + "probability": 0.8964 + }, + { + "start": 11573.1, + "end": 11575.88, + "probability": 0.7258 + }, + { + "start": 11576.08, + "end": 11578.54, + "probability": 0.788 + }, + { + "start": 11590.06, + "end": 11590.64, + "probability": 0.2266 + }, + { + "start": 11597.14, + "end": 11598.14, + "probability": 0.5742 + }, + { + "start": 11602.82, + "end": 11608.1, + "probability": 0.9339 + }, + { + "start": 11608.1, + "end": 11613.28, + "probability": 0.9658 + }, + { + "start": 11613.68, + "end": 11615.28, + "probability": 0.2095 + }, + { + "start": 11615.88, + "end": 11618.58, + "probability": 0.0826 + }, + { + "start": 11626.14, + "end": 11627.2, + "probability": 0.0276 + }, + { + "start": 11627.88, + "end": 11630.66, + "probability": 0.145 + }, + { + "start": 11632.58, + "end": 11632.9, + "probability": 0.1199 + }, + { + "start": 11633.9, + "end": 11634.02, + "probability": 0.0566 + }, + { + "start": 11634.12, + "end": 11636.56, + "probability": 0.0148 + }, + { + "start": 11636.56, + "end": 11639.22, + "probability": 0.0638 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.0, + "end": 11739.0, + "probability": 0.0 + }, + { + "start": 11739.69, + "end": 11740.51, + "probability": 0.2579 + }, + { + "start": 11740.82, + "end": 11742.86, + "probability": 0.9774 + }, + { + "start": 11746.18, + "end": 11751.86, + "probability": 0.7487 + }, + { + "start": 11752.24, + "end": 11752.48, + "probability": 0.4061 + }, + { + "start": 11753.14, + "end": 11755.06, + "probability": 0.6055 + }, + { + "start": 11755.22, + "end": 11757.14, + "probability": 0.1812 + }, + { + "start": 11757.36, + "end": 11758.66, + "probability": 0.6422 + }, + { + "start": 11758.68, + "end": 11759.7, + "probability": 0.8094 + }, + { + "start": 11760.04, + "end": 11762.94, + "probability": 0.7907 + }, + { + "start": 11762.94, + "end": 11768.42, + "probability": 0.9598 + }, + { + "start": 11768.74, + "end": 11769.3, + "probability": 0.4671 + }, + { + "start": 11769.74, + "end": 11773.86, + "probability": 0.9161 + }, + { + "start": 11773.9, + "end": 11777.76, + "probability": 0.5227 + }, + { + "start": 11778.52, + "end": 11779.34, + "probability": 0.9715 + }, + { + "start": 11779.5, + "end": 11781.03, + "probability": 0.9774 + }, + { + "start": 11781.74, + "end": 11783.18, + "probability": 0.975 + }, + { + "start": 11784.32, + "end": 11788.52, + "probability": 0.9653 + }, + { + "start": 11788.6, + "end": 11789.66, + "probability": 0.9481 + }, + { + "start": 11790.58, + "end": 11794.38, + "probability": 0.9739 + }, + { + "start": 11794.54, + "end": 11795.72, + "probability": 0.9483 + }, + { + "start": 11796.26, + "end": 11797.9, + "probability": 0.9727 + }, + { + "start": 11801.89, + "end": 11804.18, + "probability": 0.7401 + }, + { + "start": 11810.58, + "end": 11813.66, + "probability": 0.7532 + }, + { + "start": 11818.33, + "end": 11822.42, + "probability": 0.686 + }, + { + "start": 11822.6, + "end": 11823.28, + "probability": 0.9775 + }, + { + "start": 11824.22, + "end": 11827.86, + "probability": 0.8735 + }, + { + "start": 11827.94, + "end": 11830.32, + "probability": 0.9928 + }, + { + "start": 11831.1, + "end": 11832.06, + "probability": 0.9091 + }, + { + "start": 11833.22, + "end": 11836.08, + "probability": 0.8353 + }, + { + "start": 11836.6, + "end": 11840.38, + "probability": 0.8903 + }, + { + "start": 11840.5, + "end": 11841.92, + "probability": 0.9273 + }, + { + "start": 11842.36, + "end": 11844.04, + "probability": 0.9716 + }, + { + "start": 11844.46, + "end": 11846.74, + "probability": 0.9797 + }, + { + "start": 11847.12, + "end": 11849.7, + "probability": 0.7294 + }, + { + "start": 11850.28, + "end": 11850.88, + "probability": 0.7554 + }, + { + "start": 11851.0, + "end": 11854.32, + "probability": 0.8776 + }, + { + "start": 11854.86, + "end": 11857.16, + "probability": 0.742 + }, + { + "start": 11858.02, + "end": 11861.54, + "probability": 0.9852 + }, + { + "start": 11861.9, + "end": 11863.96, + "probability": 0.9005 + }, + { + "start": 11864.82, + "end": 11866.24, + "probability": 0.8922 + }, + { + "start": 11866.34, + "end": 11869.96, + "probability": 0.9755 + }, + { + "start": 11870.48, + "end": 11871.62, + "probability": 0.5908 + }, + { + "start": 11872.36, + "end": 11873.96, + "probability": 0.6133 + }, + { + "start": 11874.08, + "end": 11874.92, + "probability": 0.5365 + }, + { + "start": 11875.16, + "end": 11876.34, + "probability": 0.9382 + }, + { + "start": 11877.02, + "end": 11877.86, + "probability": 0.2396 + }, + { + "start": 11878.38, + "end": 11884.42, + "probability": 0.9766 + }, + { + "start": 11884.58, + "end": 11886.24, + "probability": 0.9709 + }, + { + "start": 11887.34, + "end": 11888.48, + "probability": 0.9359 + }, + { + "start": 11888.6, + "end": 11889.34, + "probability": 0.8965 + }, + { + "start": 11889.72, + "end": 11889.88, + "probability": 0.3835 + }, + { + "start": 11889.9, + "end": 11893.9, + "probability": 0.8481 + }, + { + "start": 11893.9, + "end": 11896.96, + "probability": 0.9995 + }, + { + "start": 11897.12, + "end": 11902.52, + "probability": 0.9238 + }, + { + "start": 11902.96, + "end": 11905.28, + "probability": 0.8119 + }, + { + "start": 11905.48, + "end": 11910.52, + "probability": 0.8448 + }, + { + "start": 11911.1, + "end": 11914.4, + "probability": 0.744 + }, + { + "start": 11915.16, + "end": 11915.68, + "probability": 0.8373 + }, + { + "start": 11915.76, + "end": 11917.68, + "probability": 0.9852 + }, + { + "start": 11917.76, + "end": 11918.72, + "probability": 0.7668 + }, + { + "start": 11919.26, + "end": 11921.02, + "probability": 0.9691 + }, + { + "start": 11921.36, + "end": 11922.5, + "probability": 0.9924 + }, + { + "start": 11922.8, + "end": 11923.58, + "probability": 0.7737 + }, + { + "start": 11924.22, + "end": 11924.84, + "probability": 0.9404 + }, + { + "start": 11925.66, + "end": 11926.96, + "probability": 0.9333 + }, + { + "start": 11927.56, + "end": 11930.62, + "probability": 0.9966 + }, + { + "start": 11930.72, + "end": 11932.3, + "probability": 0.9624 + }, + { + "start": 11932.78, + "end": 11935.05, + "probability": 0.974 + }, + { + "start": 11935.7, + "end": 11939.82, + "probability": 0.9848 + }, + { + "start": 11940.36, + "end": 11940.56, + "probability": 0.6879 + }, + { + "start": 11940.72, + "end": 11941.24, + "probability": 0.8707 + }, + { + "start": 11941.34, + "end": 11944.18, + "probability": 0.9838 + }, + { + "start": 11944.18, + "end": 11949.18, + "probability": 0.9824 + }, + { + "start": 11949.64, + "end": 11950.36, + "probability": 0.7954 + }, + { + "start": 11950.4, + "end": 11950.74, + "probability": 0.6501 + }, + { + "start": 11952.06, + "end": 11953.96, + "probability": 0.7557 + }, + { + "start": 11954.18, + "end": 11960.06, + "probability": 0.9849 + }, + { + "start": 11960.34, + "end": 11962.1, + "probability": 0.821 + }, + { + "start": 11962.28, + "end": 11964.16, + "probability": 0.8303 + }, + { + "start": 11964.32, + "end": 11967.58, + "probability": 0.9818 + }, + { + "start": 11967.58, + "end": 11971.94, + "probability": 0.9971 + }, + { + "start": 11972.22, + "end": 11973.76, + "probability": 0.6577 + }, + { + "start": 11974.1, + "end": 11976.94, + "probability": 0.6396 + }, + { + "start": 11977.74, + "end": 11978.76, + "probability": 0.8357 + }, + { + "start": 11978.94, + "end": 11981.5, + "probability": 0.9919 + }, + { + "start": 11981.96, + "end": 11983.44, + "probability": 0.938 + }, + { + "start": 11983.78, + "end": 11987.64, + "probability": 0.9578 + }, + { + "start": 11988.44, + "end": 11990.4, + "probability": 0.9948 + }, + { + "start": 11990.42, + "end": 11994.24, + "probability": 0.8371 + }, + { + "start": 11994.82, + "end": 11997.08, + "probability": 0.9858 + }, + { + "start": 11997.14, + "end": 11998.73, + "probability": 0.98 + }, + { + "start": 11999.46, + "end": 12001.35, + "probability": 0.9971 + }, + { + "start": 12002.26, + "end": 12004.04, + "probability": 0.998 + }, + { + "start": 12005.18, + "end": 12008.14, + "probability": 0.8232 + }, + { + "start": 12008.54, + "end": 12009.94, + "probability": 0.6787 + }, + { + "start": 12010.22, + "end": 12011.56, + "probability": 0.4846 + }, + { + "start": 12011.76, + "end": 12013.22, + "probability": 0.9144 + }, + { + "start": 12013.82, + "end": 12014.92, + "probability": 0.6182 + }, + { + "start": 12015.78, + "end": 12017.74, + "probability": 0.7068 + }, + { + "start": 12018.38, + "end": 12020.12, + "probability": 0.8534 + }, + { + "start": 12020.68, + "end": 12023.82, + "probability": 0.8462 + }, + { + "start": 12025.22, + "end": 12029.02, + "probability": 0.8547 + }, + { + "start": 12030.78, + "end": 12031.56, + "probability": 0.8267 + }, + { + "start": 12032.82, + "end": 12034.72, + "probability": 0.834 + }, + { + "start": 12036.22, + "end": 12037.46, + "probability": 0.8894 + }, + { + "start": 12037.6, + "end": 12039.26, + "probability": 0.7676 + }, + { + "start": 12039.54, + "end": 12039.64, + "probability": 0.1898 + }, + { + "start": 12040.28, + "end": 12040.96, + "probability": 0.9175 + }, + { + "start": 12044.08, + "end": 12045.36, + "probability": 0.0619 + }, + { + "start": 12045.5, + "end": 12048.76, + "probability": 0.7525 + }, + { + "start": 12053.3, + "end": 12055.94, + "probability": 0.8098 + }, + { + "start": 12056.66, + "end": 12059.2, + "probability": 0.891 + }, + { + "start": 12059.36, + "end": 12060.66, + "probability": 0.9731 + }, + { + "start": 12060.76, + "end": 12063.38, + "probability": 0.6319 + }, + { + "start": 12073.08, + "end": 12074.12, + "probability": 0.4113 + }, + { + "start": 12074.76, + "end": 12076.36, + "probability": 0.121 + }, + { + "start": 12077.46, + "end": 12079.84, + "probability": 0.9288 + }, + { + "start": 12080.4, + "end": 12081.92, + "probability": 0.8958 + }, + { + "start": 12084.82, + "end": 12086.56, + "probability": 0.803 + }, + { + "start": 12090.8, + "end": 12093.52, + "probability": 0.8749 + }, + { + "start": 12094.56, + "end": 12096.0, + "probability": 0.3636 + }, + { + "start": 12097.44, + "end": 12101.94, + "probability": 0.8031 + }, + { + "start": 12102.8, + "end": 12104.28, + "probability": 0.8431 + }, + { + "start": 12104.86, + "end": 12105.47, + "probability": 0.837 + }, + { + "start": 12106.92, + "end": 12108.46, + "probability": 0.6111 + }, + { + "start": 12110.42, + "end": 12113.78, + "probability": 0.6636 + }, + { + "start": 12114.0, + "end": 12117.32, + "probability": 0.6977 + }, + { + "start": 12119.54, + "end": 12126.0, + "probability": 0.9583 + }, + { + "start": 12127.6, + "end": 12130.02, + "probability": 0.9933 + }, + { + "start": 12131.44, + "end": 12132.84, + "probability": 0.5363 + }, + { + "start": 12135.1, + "end": 12137.5, + "probability": 0.9948 + }, + { + "start": 12138.92, + "end": 12141.12, + "probability": 0.0961 + }, + { + "start": 12141.36, + "end": 12142.14, + "probability": 0.6897 + }, + { + "start": 12143.94, + "end": 12145.94, + "probability": 0.9001 + }, + { + "start": 12147.36, + "end": 12150.42, + "probability": 0.9785 + }, + { + "start": 12151.68, + "end": 12155.84, + "probability": 0.8017 + }, + { + "start": 12156.14, + "end": 12160.83, + "probability": 0.8716 + }, + { + "start": 12161.62, + "end": 12164.1, + "probability": 0.993 + }, + { + "start": 12165.1, + "end": 12168.02, + "probability": 0.5885 + }, + { + "start": 12168.68, + "end": 12170.18, + "probability": 0.0753 + }, + { + "start": 12172.7, + "end": 12173.7, + "probability": 0.2137 + }, + { + "start": 12174.44, + "end": 12175.2, + "probability": 0.4563 + }, + { + "start": 12175.76, + "end": 12178.14, + "probability": 0.7936 + }, + { + "start": 12178.76, + "end": 12179.48, + "probability": 0.7863 + }, + { + "start": 12180.4, + "end": 12182.76, + "probability": 0.9253 + }, + { + "start": 12183.44, + "end": 12183.54, + "probability": 0.6924 + }, + { + "start": 12185.36, + "end": 12189.38, + "probability": 0.9045 + }, + { + "start": 12191.04, + "end": 12192.0, + "probability": 0.9839 + }, + { + "start": 12192.88, + "end": 12193.48, + "probability": 0.91 + }, + { + "start": 12194.7, + "end": 12196.86, + "probability": 0.5696 + }, + { + "start": 12198.88, + "end": 12200.52, + "probability": 0.8314 + }, + { + "start": 12201.86, + "end": 12204.9, + "probability": 0.5715 + }, + { + "start": 12209.94, + "end": 12213.12, + "probability": 0.987 + }, + { + "start": 12213.68, + "end": 12214.32, + "probability": 0.6964 + }, + { + "start": 12215.54, + "end": 12217.96, + "probability": 0.7368 + }, + { + "start": 12222.92, + "end": 12223.5, + "probability": 0.1063 + }, + { + "start": 12224.34, + "end": 12225.52, + "probability": 0.7727 + }, + { + "start": 12227.52, + "end": 12227.52, + "probability": 0.2339 + }, + { + "start": 12229.1, + "end": 12234.12, + "probability": 0.965 + }, + { + "start": 12235.18, + "end": 12237.46, + "probability": 0.9215 + }, + { + "start": 12238.64, + "end": 12241.34, + "probability": 0.9391 + }, + { + "start": 12242.54, + "end": 12243.26, + "probability": 0.0147 + }, + { + "start": 12243.32, + "end": 12243.99, + "probability": 0.2416 + }, + { + "start": 12244.4, + "end": 12246.4, + "probability": 0.6897 + }, + { + "start": 12246.5, + "end": 12249.8, + "probability": 0.9572 + }, + { + "start": 12251.11, + "end": 12254.06, + "probability": 0.6508 + }, + { + "start": 12255.14, + "end": 12257.6, + "probability": 0.7576 + }, + { + "start": 12258.48, + "end": 12258.8, + "probability": 0.5574 + }, + { + "start": 12259.42, + "end": 12262.0, + "probability": 0.9873 + }, + { + "start": 12262.18, + "end": 12264.7, + "probability": 0.8523 + }, + { + "start": 12264.8, + "end": 12267.22, + "probability": 0.7771 + }, + { + "start": 12268.0, + "end": 12268.84, + "probability": 0.915 + }, + { + "start": 12270.1, + "end": 12272.38, + "probability": 0.6934 + }, + { + "start": 12272.72, + "end": 12274.7, + "probability": 0.9891 + }, + { + "start": 12274.84, + "end": 12275.24, + "probability": 0.7702 + }, + { + "start": 12275.92, + "end": 12276.66, + "probability": 0.8169 + }, + { + "start": 12276.76, + "end": 12278.5, + "probability": 0.9927 + }, + { + "start": 12280.46, + "end": 12285.5, + "probability": 0.6735 + }, + { + "start": 12285.66, + "end": 12286.6, + "probability": 0.8538 + }, + { + "start": 12287.44, + "end": 12288.86, + "probability": 0.8841 + }, + { + "start": 12289.4, + "end": 12290.12, + "probability": 0.6989 + }, + { + "start": 12292.28, + "end": 12296.2, + "probability": 0.734 + }, + { + "start": 12297.04, + "end": 12299.14, + "probability": 0.9536 + }, + { + "start": 12300.04, + "end": 12302.26, + "probability": 0.5286 + }, + { + "start": 12303.92, + "end": 12308.56, + "probability": 0.974 + }, + { + "start": 12309.2, + "end": 12309.64, + "probability": 0.2683 + }, + { + "start": 12309.64, + "end": 12310.84, + "probability": 0.6527 + }, + { + "start": 12310.9, + "end": 12312.72, + "probability": 0.9313 + }, + { + "start": 12313.4, + "end": 12314.68, + "probability": 0.9594 + }, + { + "start": 12314.72, + "end": 12316.94, + "probability": 0.987 + }, + { + "start": 12317.88, + "end": 12318.72, + "probability": 0.9888 + }, + { + "start": 12322.02, + "end": 12324.94, + "probability": 0.9269 + }, + { + "start": 12330.2, + "end": 12332.58, + "probability": 0.7295 + }, + { + "start": 12333.18, + "end": 12336.54, + "probability": 0.8761 + }, + { + "start": 12336.64, + "end": 12338.34, + "probability": 0.824 + }, + { + "start": 12338.92, + "end": 12343.14, + "probability": 0.9275 + }, + { + "start": 12346.19, + "end": 12348.78, + "probability": 0.6887 + }, + { + "start": 12349.82, + "end": 12351.7, + "probability": 0.9603 + }, + { + "start": 12353.3, + "end": 12355.8, + "probability": 0.9209 + }, + { + "start": 12357.18, + "end": 12357.86, + "probability": 0.6594 + }, + { + "start": 12358.8, + "end": 12360.4, + "probability": 0.256 + }, + { + "start": 12360.48, + "end": 12361.14, + "probability": 0.7508 + }, + { + "start": 12361.62, + "end": 12362.86, + "probability": 0.3865 + }, + { + "start": 12364.14, + "end": 12366.8, + "probability": 0.6427 + }, + { + "start": 12367.58, + "end": 12368.59, + "probability": 0.744 + }, + { + "start": 12368.8, + "end": 12369.75, + "probability": 0.6685 + }, + { + "start": 12370.62, + "end": 12373.78, + "probability": 0.7819 + }, + { + "start": 12374.28, + "end": 12378.2, + "probability": 0.9683 + }, + { + "start": 12379.0, + "end": 12381.14, + "probability": 0.8226 + }, + { + "start": 12381.38, + "end": 12382.99, + "probability": 0.9795 + }, + { + "start": 12383.72, + "end": 12386.26, + "probability": 0.8627 + }, + { + "start": 12387.06, + "end": 12390.38, + "probability": 0.7879 + }, + { + "start": 12390.8, + "end": 12392.5, + "probability": 0.9653 + }, + { + "start": 12392.88, + "end": 12394.31, + "probability": 0.8516 + }, + { + "start": 12394.78, + "end": 12396.48, + "probability": 0.8212 + }, + { + "start": 12397.84, + "end": 12400.24, + "probability": 0.7236 + }, + { + "start": 12400.46, + "end": 12400.5, + "probability": 0.3349 + }, + { + "start": 12400.5, + "end": 12402.62, + "probability": 0.8659 + }, + { + "start": 12402.66, + "end": 12404.36, + "probability": 0.9677 + }, + { + "start": 12404.48, + "end": 12406.54, + "probability": 0.6416 + }, + { + "start": 12406.84, + "end": 12408.2, + "probability": 0.9588 + }, + { + "start": 12410.42, + "end": 12412.04, + "probability": 0.8138 + }, + { + "start": 12412.14, + "end": 12414.52, + "probability": 0.8135 + }, + { + "start": 12415.28, + "end": 12420.12, + "probability": 0.9937 + }, + { + "start": 12421.14, + "end": 12422.44, + "probability": 0.5404 + }, + { + "start": 12422.52, + "end": 12422.98, + "probability": 0.6287 + }, + { + "start": 12423.02, + "end": 12426.16, + "probability": 0.6748 + }, + { + "start": 12426.28, + "end": 12430.64, + "probability": 0.3739 + }, + { + "start": 12430.92, + "end": 12433.56, + "probability": 0.6162 + }, + { + "start": 12433.76, + "end": 12434.2, + "probability": 0.5401 + }, + { + "start": 12434.32, + "end": 12434.68, + "probability": 0.55 + }, + { + "start": 12434.68, + "end": 12434.89, + "probability": 0.7256 + }, + { + "start": 12435.5, + "end": 12436.19, + "probability": 0.8713 + }, + { + "start": 12436.86, + "end": 12438.57, + "probability": 0.8717 + }, + { + "start": 12439.32, + "end": 12442.66, + "probability": 0.96 + }, + { + "start": 12443.34, + "end": 12444.7, + "probability": 0.9829 + }, + { + "start": 12446.02, + "end": 12449.14, + "probability": 0.7465 + }, + { + "start": 12449.46, + "end": 12450.6, + "probability": 0.9814 + }, + { + "start": 12450.96, + "end": 12452.31, + "probability": 0.9092 + }, + { + "start": 12453.52, + "end": 12455.66, + "probability": 0.9937 + }, + { + "start": 12456.78, + "end": 12459.2, + "probability": 0.9896 + }, + { + "start": 12460.46, + "end": 12461.38, + "probability": 0.9856 + }, + { + "start": 12462.12, + "end": 12463.23, + "probability": 0.9318 + }, + { + "start": 12464.18, + "end": 12468.76, + "probability": 0.9084 + }, + { + "start": 12469.1, + "end": 12470.33, + "probability": 0.7715 + }, + { + "start": 12471.86, + "end": 12472.82, + "probability": 0.9597 + }, + { + "start": 12474.46, + "end": 12477.78, + "probability": 0.9984 + }, + { + "start": 12478.88, + "end": 12479.5, + "probability": 0.9031 + }, + { + "start": 12480.72, + "end": 12484.88, + "probability": 0.9485 + }, + { + "start": 12485.72, + "end": 12487.55, + "probability": 0.9013 + }, + { + "start": 12488.08, + "end": 12490.12, + "probability": 0.9023 + }, + { + "start": 12490.92, + "end": 12494.68, + "probability": 0.9972 + }, + { + "start": 12495.02, + "end": 12495.26, + "probability": 0.1872 + }, + { + "start": 12496.06, + "end": 12496.82, + "probability": 0.5085 + }, + { + "start": 12497.6, + "end": 12499.28, + "probability": 0.4355 + }, + { + "start": 12500.86, + "end": 12503.16, + "probability": 0.8817 + }, + { + "start": 12503.68, + "end": 12505.24, + "probability": 0.7585 + }, + { + "start": 12506.8, + "end": 12509.84, + "probability": 0.9915 + }, + { + "start": 12510.46, + "end": 12511.92, + "probability": 0.8629 + }, + { + "start": 12512.04, + "end": 12512.86, + "probability": 0.7285 + }, + { + "start": 12513.68, + "end": 12514.08, + "probability": 0.7514 + }, + { + "start": 12514.14, + "end": 12514.86, + "probability": 0.8002 + }, + { + "start": 12515.28, + "end": 12515.91, + "probability": 0.7916 + }, + { + "start": 12516.26, + "end": 12516.98, + "probability": 0.8485 + }, + { + "start": 12517.02, + "end": 12517.32, + "probability": 0.9456 + }, + { + "start": 12517.34, + "end": 12517.46, + "probability": 0.8492 + }, + { + "start": 12517.46, + "end": 12517.58, + "probability": 0.6983 + }, + { + "start": 12517.8, + "end": 12518.66, + "probability": 0.896 + }, + { + "start": 12519.72, + "end": 12525.92, + "probability": 0.6775 + }, + { + "start": 12526.66, + "end": 12527.14, + "probability": 0.8568 + }, + { + "start": 12527.3, + "end": 12528.02, + "probability": 0.9933 + }, + { + "start": 12528.1, + "end": 12528.88, + "probability": 0.959 + }, + { + "start": 12528.94, + "end": 12530.92, + "probability": 0.7041 + }, + { + "start": 12531.08, + "end": 12531.82, + "probability": 0.5622 + }, + { + "start": 12532.72, + "end": 12534.22, + "probability": 0.9172 + }, + { + "start": 12534.26, + "end": 12537.32, + "probability": 0.9956 + }, + { + "start": 12537.36, + "end": 12538.54, + "probability": 0.9287 + }, + { + "start": 12539.06, + "end": 12544.1, + "probability": 0.8403 + }, + { + "start": 12544.66, + "end": 12548.14, + "probability": 0.9116 + }, + { + "start": 12548.24, + "end": 12549.8, + "probability": 0.8448 + }, + { + "start": 12549.88, + "end": 12551.52, + "probability": 0.7614 + }, + { + "start": 12552.24, + "end": 12555.3, + "probability": 0.7622 + }, + { + "start": 12555.88, + "end": 12558.52, + "probability": 0.9482 + }, + { + "start": 12559.2, + "end": 12560.54, + "probability": 0.7664 + }, + { + "start": 12560.66, + "end": 12562.27, + "probability": 0.0514 + }, + { + "start": 12562.38, + "end": 12562.6, + "probability": 0.4186 + }, + { + "start": 12563.28, + "end": 12565.68, + "probability": 0.9801 + }, + { + "start": 12565.76, + "end": 12566.84, + "probability": 0.9771 + }, + { + "start": 12567.5, + "end": 12574.8, + "probability": 0.9814 + }, + { + "start": 12575.54, + "end": 12577.96, + "probability": 0.9652 + }, + { + "start": 12578.96, + "end": 12579.3, + "probability": 0.9319 + }, + { + "start": 12579.36, + "end": 12581.68, + "probability": 0.7677 + }, + { + "start": 12582.38, + "end": 12584.46, + "probability": 0.8254 + }, + { + "start": 12585.0, + "end": 12587.62, + "probability": 0.8957 + }, + { + "start": 12588.24, + "end": 12588.7, + "probability": 0.6004 + }, + { + "start": 12589.44, + "end": 12592.86, + "probability": 0.7785 + }, + { + "start": 12593.42, + "end": 12596.88, + "probability": 0.9874 + }, + { + "start": 12597.74, + "end": 12599.68, + "probability": 0.8403 + }, + { + "start": 12601.75, + "end": 12603.74, + "probability": 0.7813 + }, + { + "start": 12604.6, + "end": 12606.98, + "probability": 0.7159 + }, + { + "start": 12607.6, + "end": 12609.84, + "probability": 0.82 + }, + { + "start": 12610.06, + "end": 12610.78, + "probability": 0.9601 + }, + { + "start": 12610.98, + "end": 12612.28, + "probability": 0.9336 + }, + { + "start": 12612.36, + "end": 12615.34, + "probability": 0.967 + }, + { + "start": 12615.34, + "end": 12617.8, + "probability": 0.8954 + }, + { + "start": 12618.16, + "end": 12618.66, + "probability": 0.8355 + }, + { + "start": 12619.34, + "end": 12619.9, + "probability": 0.6191 + }, + { + "start": 12620.02, + "end": 12620.44, + "probability": 0.8092 + }, + { + "start": 12620.56, + "end": 12621.04, + "probability": 0.8938 + }, + { + "start": 12621.22, + "end": 12622.54, + "probability": 0.9849 + }, + { + "start": 12623.42, + "end": 12625.0, + "probability": 0.9173 + }, + { + "start": 12626.32, + "end": 12628.3, + "probability": 0.9707 + }, + { + "start": 12628.84, + "end": 12631.64, + "probability": 0.5576 + }, + { + "start": 12632.2, + "end": 12633.68, + "probability": 0.949 + }, + { + "start": 12634.46, + "end": 12635.28, + "probability": 0.8616 + }, + { + "start": 12635.94, + "end": 12640.04, + "probability": 0.8103 + }, + { + "start": 12640.58, + "end": 12642.58, + "probability": 0.8171 + }, + { + "start": 12643.26, + "end": 12644.17, + "probability": 0.9144 + }, + { + "start": 12645.66, + "end": 12647.83, + "probability": 0.8951 + }, + { + "start": 12648.8, + "end": 12652.7, + "probability": 0.8369 + }, + { + "start": 12653.14, + "end": 12654.2, + "probability": 0.6969 + }, + { + "start": 12655.02, + "end": 12656.28, + "probability": 0.9777 + }, + { + "start": 12656.38, + "end": 12657.28, + "probability": 0.9924 + }, + { + "start": 12658.26, + "end": 12660.34, + "probability": 0.9748 + }, + { + "start": 12660.42, + "end": 12661.76, + "probability": 0.9678 + }, + { + "start": 12661.9, + "end": 12667.66, + "probability": 0.9408 + }, + { + "start": 12667.92, + "end": 12670.1, + "probability": 0.8007 + }, + { + "start": 12670.76, + "end": 12672.2, + "probability": 0.9797 + }, + { + "start": 12672.28, + "end": 12672.78, + "probability": 0.5859 + }, + { + "start": 12672.82, + "end": 12673.46, + "probability": 0.8374 + }, + { + "start": 12673.52, + "end": 12675.58, + "probability": 0.9395 + }, + { + "start": 12675.64, + "end": 12676.24, + "probability": 0.8093 + }, + { + "start": 12676.52, + "end": 12677.56, + "probability": 0.6735 + }, + { + "start": 12678.22, + "end": 12680.5, + "probability": 0.9839 + }, + { + "start": 12680.84, + "end": 12685.36, + "probability": 0.7974 + }, + { + "start": 12685.46, + "end": 12686.96, + "probability": 0.965 + }, + { + "start": 12688.0, + "end": 12689.44, + "probability": 0.9052 + }, + { + "start": 12690.14, + "end": 12692.55, + "probability": 0.9905 + }, + { + "start": 12692.62, + "end": 12694.04, + "probability": 0.6794 + }, + { + "start": 12694.44, + "end": 12694.88, + "probability": 0.6653 + }, + { + "start": 12694.98, + "end": 12695.56, + "probability": 0.9606 + }, + { + "start": 12695.58, + "end": 12696.38, + "probability": 0.5826 + }, + { + "start": 12696.42, + "end": 12697.53, + "probability": 0.7742 + }, + { + "start": 12698.28, + "end": 12699.56, + "probability": 0.0179 + }, + { + "start": 12699.64, + "end": 12701.36, + "probability": 0.8743 + }, + { + "start": 12701.84, + "end": 12703.26, + "probability": 0.9851 + }, + { + "start": 12703.48, + "end": 12704.0, + "probability": 0.9609 + }, + { + "start": 12705.0, + "end": 12705.72, + "probability": 0.8018 + }, + { + "start": 12706.26, + "end": 12708.98, + "probability": 0.8623 + }, + { + "start": 12710.28, + "end": 12713.74, + "probability": 0.9829 + }, + { + "start": 12714.42, + "end": 12716.78, + "probability": 0.8564 + }, + { + "start": 12717.54, + "end": 12718.1, + "probability": 0.7355 + }, + { + "start": 12718.62, + "end": 12720.18, + "probability": 0.5871 + }, + { + "start": 12721.08, + "end": 12723.38, + "probability": 0.6408 + }, + { + "start": 12724.88, + "end": 12725.8, + "probability": 0.9092 + }, + { + "start": 12726.88, + "end": 12727.0, + "probability": 0.4657 + }, + { + "start": 12727.6, + "end": 12729.6, + "probability": 0.868 + }, + { + "start": 12730.26, + "end": 12731.76, + "probability": 0.892 + }, + { + "start": 12732.54, + "end": 12735.04, + "probability": 0.9973 + }, + { + "start": 12735.68, + "end": 12736.98, + "probability": 0.9656 + }, + { + "start": 12737.08, + "end": 12737.96, + "probability": 0.9946 + }, + { + "start": 12738.18, + "end": 12739.66, + "probability": 0.9849 + }, + { + "start": 12739.88, + "end": 12742.72, + "probability": 0.9574 + }, + { + "start": 12743.4, + "end": 12743.92, + "probability": 0.9749 + }, + { + "start": 12744.58, + "end": 12747.5, + "probability": 0.5332 + }, + { + "start": 12748.35, + "end": 12750.1, + "probability": 0.7373 + }, + { + "start": 12750.94, + "end": 12752.2, + "probability": 0.9904 + }, + { + "start": 12754.26, + "end": 12758.48, + "probability": 0.9316 + }, + { + "start": 12758.88, + "end": 12759.9, + "probability": 0.6354 + }, + { + "start": 12760.92, + "end": 12762.06, + "probability": 0.7422 + }, + { + "start": 12762.98, + "end": 12763.92, + "probability": 0.9734 + }, + { + "start": 12764.88, + "end": 12765.71, + "probability": 0.9144 + }, + { + "start": 12766.38, + "end": 12768.18, + "probability": 0.9419 + }, + { + "start": 12769.24, + "end": 12771.28, + "probability": 0.9801 + }, + { + "start": 12771.4, + "end": 12773.5, + "probability": 0.9823 + }, + { + "start": 12774.54, + "end": 12776.3, + "probability": 0.9105 + }, + { + "start": 12777.12, + "end": 12779.02, + "probability": 0.7756 + }, + { + "start": 12779.58, + "end": 12779.98, + "probability": 0.7243 + }, + { + "start": 12780.06, + "end": 12780.28, + "probability": 0.8224 + }, + { + "start": 12780.36, + "end": 12781.2, + "probability": 0.8007 + }, + { + "start": 12781.42, + "end": 12783.36, + "probability": 0.5807 + }, + { + "start": 12783.76, + "end": 12785.3, + "probability": 0.3863 + }, + { + "start": 12786.76, + "end": 12788.56, + "probability": 0.5647 + }, + { + "start": 12788.64, + "end": 12790.92, + "probability": 0.8677 + }, + { + "start": 12791.26, + "end": 12791.74, + "probability": 0.9551 + }, + { + "start": 12792.08, + "end": 12795.02, + "probability": 0.9922 + }, + { + "start": 12795.02, + "end": 12797.92, + "probability": 0.9827 + }, + { + "start": 12798.06, + "end": 12801.1, + "probability": 0.8207 + }, + { + "start": 12801.32, + "end": 12804.96, + "probability": 0.7237 + }, + { + "start": 12806.2, + "end": 12809.6, + "probability": 0.8473 + }, + { + "start": 12810.42, + "end": 12813.44, + "probability": 0.9349 + }, + { + "start": 12814.24, + "end": 12815.38, + "probability": 0.8938 + }, + { + "start": 12815.6, + "end": 12819.95, + "probability": 0.9183 + }, + { + "start": 12821.3, + "end": 12824.92, + "probability": 0.9988 + }, + { + "start": 12825.0, + "end": 12826.14, + "probability": 0.983 + }, + { + "start": 12826.4, + "end": 12826.94, + "probability": 0.5 + }, + { + "start": 12827.22, + "end": 12828.1, + "probability": 0.9976 + }, + { + "start": 12831.28, + "end": 12834.0, + "probability": 0.8723 + }, + { + "start": 12834.92, + "end": 12836.4, + "probability": 0.7715 + }, + { + "start": 12836.52, + "end": 12837.28, + "probability": 0.97 + }, + { + "start": 12838.48, + "end": 12839.28, + "probability": 0.5876 + }, + { + "start": 12840.12, + "end": 12840.48, + "probability": 0.3417 + }, + { + "start": 12840.48, + "end": 12840.98, + "probability": 0.6983 + }, + { + "start": 12842.14, + "end": 12844.6, + "probability": 0.9805 + }, + { + "start": 12846.64, + "end": 12847.92, + "probability": 0.5053 + }, + { + "start": 12848.04, + "end": 12849.04, + "probability": 0.992 + }, + { + "start": 12849.86, + "end": 12850.76, + "probability": 0.8121 + }, + { + "start": 12851.3, + "end": 12854.99, + "probability": 0.4995 + }, + { + "start": 12855.14, + "end": 12855.4, + "probability": 0.8495 + }, + { + "start": 12858.34, + "end": 12860.02, + "probability": 0.7673 + }, + { + "start": 12860.76, + "end": 12862.14, + "probability": 0.7885 + }, + { + "start": 12862.34, + "end": 12862.84, + "probability": 0.781 + }, + { + "start": 12862.96, + "end": 12863.58, + "probability": 0.8987 + }, + { + "start": 12863.66, + "end": 12865.6, + "probability": 0.9913 + }, + { + "start": 12866.5, + "end": 12868.31, + "probability": 0.6185 + }, + { + "start": 12869.3, + "end": 12870.48, + "probability": 0.8216 + }, + { + "start": 12871.88, + "end": 12872.72, + "probability": 0.7028 + }, + { + "start": 12873.4, + "end": 12877.18, + "probability": 0.9919 + }, + { + "start": 12877.74, + "end": 12879.82, + "probability": 0.7401 + }, + { + "start": 12880.32, + "end": 12886.22, + "probability": 0.9865 + }, + { + "start": 12886.46, + "end": 12890.2, + "probability": 0.9911 + }, + { + "start": 12891.22, + "end": 12893.8, + "probability": 0.6425 + }, + { + "start": 12894.28, + "end": 12894.78, + "probability": 0.4897 + }, + { + "start": 12895.02, + "end": 12895.66, + "probability": 0.732 + }, + { + "start": 12895.9, + "end": 12896.74, + "probability": 0.9731 + }, + { + "start": 12896.82, + "end": 12899.84, + "probability": 0.7576 + }, + { + "start": 12899.98, + "end": 12902.42, + "probability": 0.9614 + }, + { + "start": 12903.0, + "end": 12904.72, + "probability": 0.9198 + }, + { + "start": 12905.22, + "end": 12905.56, + "probability": 0.378 + }, + { + "start": 12905.62, + "end": 12910.62, + "probability": 0.9475 + }, + { + "start": 12911.08, + "end": 12913.88, + "probability": 0.6655 + }, + { + "start": 12913.88, + "end": 12916.54, + "probability": 0.9463 + }, + { + "start": 12917.12, + "end": 12921.11, + "probability": 0.9557 + }, + { + "start": 12921.56, + "end": 12924.1, + "probability": 0.9919 + }, + { + "start": 12925.12, + "end": 12927.56, + "probability": 0.2421 + }, + { + "start": 12927.74, + "end": 12929.42, + "probability": 0.9041 + }, + { + "start": 12929.5, + "end": 12929.96, + "probability": 0.2674 + }, + { + "start": 12930.02, + "end": 12932.7, + "probability": 0.8542 + }, + { + "start": 12933.4, + "end": 12936.92, + "probability": 0.9934 + }, + { + "start": 12936.96, + "end": 12937.2, + "probability": 0.7993 + }, + { + "start": 12938.18, + "end": 12940.78, + "probability": 0.7634 + }, + { + "start": 12944.26, + "end": 12945.06, + "probability": 0.1792 + }, + { + "start": 12945.06, + "end": 12948.16, + "probability": 0.7537 + }, + { + "start": 12948.9, + "end": 12950.78, + "probability": 0.8218 + }, + { + "start": 12951.44, + "end": 12953.3, + "probability": 0.835 + }, + { + "start": 12957.74, + "end": 12958.56, + "probability": 0.1894 + }, + { + "start": 12970.02, + "end": 12971.2, + "probability": 0.501 + }, + { + "start": 12973.04, + "end": 12974.16, + "probability": 0.1079 + }, + { + "start": 12974.7, + "end": 12977.14, + "probability": 0.2987 + }, + { + "start": 12977.34, + "end": 12977.6, + "probability": 0.6795 + }, + { + "start": 12977.68, + "end": 12980.6, + "probability": 0.7083 + }, + { + "start": 12980.6, + "end": 12983.78, + "probability": 0.9632 + }, + { + "start": 12984.6, + "end": 12988.62, + "probability": 0.437 + }, + { + "start": 12991.07, + "end": 12993.3, + "probability": 0.5614 + }, + { + "start": 12993.44, + "end": 12995.54, + "probability": 0.8316 + }, + { + "start": 12995.72, + "end": 12996.66, + "probability": 0.4436 + }, + { + "start": 12996.72, + "end": 12997.28, + "probability": 0.4874 + }, + { + "start": 12997.5, + "end": 12998.5, + "probability": 0.8149 + }, + { + "start": 12999.48, + "end": 13000.44, + "probability": 0.0755 + }, + { + "start": 13001.5, + "end": 13003.22, + "probability": 0.0661 + }, + { + "start": 13004.66, + "end": 13008.06, + "probability": 0.9675 + }, + { + "start": 13008.62, + "end": 13010.1, + "probability": 0.6291 + }, + { + "start": 13010.62, + "end": 13012.78, + "probability": 0.7209 + }, + { + "start": 13015.62, + "end": 13018.28, + "probability": 0.9176 + }, + { + "start": 13018.48, + "end": 13020.86, + "probability": 0.583 + }, + { + "start": 13023.4, + "end": 13024.28, + "probability": 0.103 + }, + { + "start": 13024.28, + "end": 13025.68, + "probability": 0.4548 + }, + { + "start": 13026.4, + "end": 13030.4, + "probability": 0.8679 + }, + { + "start": 13032.62, + "end": 13035.82, + "probability": 0.8995 + }, + { + "start": 13037.28, + "end": 13039.64, + "probability": 0.9715 + }, + { + "start": 13040.08, + "end": 13041.94, + "probability": 0.8444 + }, + { + "start": 13043.08, + "end": 13046.42, + "probability": 0.7481 + }, + { + "start": 13046.6, + "end": 13047.48, + "probability": 0.8948 + }, + { + "start": 13047.86, + "end": 13049.02, + "probability": 0.4361 + }, + { + "start": 13049.9, + "end": 13050.14, + "probability": 0.2006 + }, + { + "start": 13050.26, + "end": 13051.32, + "probability": 0.9761 + }, + { + "start": 13052.4, + "end": 13053.1, + "probability": 0.9729 + }, + { + "start": 13055.3, + "end": 13057.56, + "probability": 0.9973 + }, + { + "start": 13058.18, + "end": 13058.62, + "probability": 0.1011 + }, + { + "start": 13058.98, + "end": 13059.4, + "probability": 0.3767 + }, + { + "start": 13059.4, + "end": 13062.04, + "probability": 0.9912 + }, + { + "start": 13062.08, + "end": 13063.14, + "probability": 0.7725 + }, + { + "start": 13064.48, + "end": 13067.18, + "probability": 0.9933 + }, + { + "start": 13068.22, + "end": 13068.7, + "probability": 0.0213 + }, + { + "start": 13068.7, + "end": 13070.96, + "probability": 0.9285 + }, + { + "start": 13071.06, + "end": 13071.96, + "probability": 0.882 + }, + { + "start": 13072.08, + "end": 13073.36, + "probability": 0.9233 + }, + { + "start": 13074.12, + "end": 13075.7, + "probability": 0.9974 + }, + { + "start": 13078.16, + "end": 13083.24, + "probability": 0.9857 + }, + { + "start": 13083.3, + "end": 13084.34, + "probability": 0.9652 + }, + { + "start": 13084.88, + "end": 13086.42, + "probability": 0.9074 + }, + { + "start": 13087.18, + "end": 13089.08, + "probability": 0.8845 + }, + { + "start": 13089.18, + "end": 13089.9, + "probability": 0.6163 + }, + { + "start": 13090.5, + "end": 13092.56, + "probability": 0.9792 + }, + { + "start": 13093.04, + "end": 13094.26, + "probability": 0.9838 + }, + { + "start": 13094.38, + "end": 13096.16, + "probability": 0.6725 + }, + { + "start": 13097.2, + "end": 13097.86, + "probability": 0.8801 + }, + { + "start": 13097.92, + "end": 13098.8, + "probability": 0.9016 + }, + { + "start": 13099.16, + "end": 13100.84, + "probability": 0.8842 + }, + { + "start": 13101.62, + "end": 13102.94, + "probability": 0.9296 + }, + { + "start": 13102.96, + "end": 13106.72, + "probability": 0.9722 + }, + { + "start": 13106.78, + "end": 13109.6, + "probability": 0.908 + }, + { + "start": 13109.78, + "end": 13113.86, + "probability": 0.9819 + }, + { + "start": 13115.86, + "end": 13119.9, + "probability": 0.9571 + }, + { + "start": 13121.04, + "end": 13121.68, + "probability": 0.7484 + }, + { + "start": 13122.48, + "end": 13123.44, + "probability": 0.8853 + }, + { + "start": 13124.48, + "end": 13124.98, + "probability": 0.5928 + }, + { + "start": 13125.6, + "end": 13126.92, + "probability": 0.9545 + }, + { + "start": 13127.86, + "end": 13128.98, + "probability": 0.2925 + }, + { + "start": 13132.2, + "end": 13132.78, + "probability": 0.0417 + }, + { + "start": 13132.78, + "end": 13134.12, + "probability": 0.863 + }, + { + "start": 13134.2, + "end": 13135.46, + "probability": 0.7477 + }, + { + "start": 13135.82, + "end": 13137.72, + "probability": 0.915 + }, + { + "start": 13137.82, + "end": 13140.02, + "probability": 0.9954 + }, + { + "start": 13140.24, + "end": 13141.3, + "probability": 0.8652 + }, + { + "start": 13141.42, + "end": 13142.67, + "probability": 0.3142 + }, + { + "start": 13143.14, + "end": 13144.02, + "probability": 0.8915 + }, + { + "start": 13144.12, + "end": 13145.56, + "probability": 0.9878 + }, + { + "start": 13145.62, + "end": 13147.06, + "probability": 0.9958 + }, + { + "start": 13148.1, + "end": 13148.1, + "probability": 0.8996 + }, + { + "start": 13148.1, + "end": 13148.28, + "probability": 0.6453 + }, + { + "start": 13148.58, + "end": 13149.96, + "probability": 0.4642 + }, + { + "start": 13150.58, + "end": 13152.28, + "probability": 0.4588 + }, + { + "start": 13152.28, + "end": 13153.35, + "probability": 0.8963 + }, + { + "start": 13153.62, + "end": 13155.92, + "probability": 0.3259 + }, + { + "start": 13156.0, + "end": 13158.33, + "probability": 0.4832 + }, + { + "start": 13160.0, + "end": 13160.1, + "probability": 0.4965 + }, + { + "start": 13161.4, + "end": 13161.66, + "probability": 0.7336 + }, + { + "start": 13162.42, + "end": 13163.12, + "probability": 0.5752 + }, + { + "start": 13163.34, + "end": 13166.17, + "probability": 0.9883 + }, + { + "start": 13166.66, + "end": 13168.1, + "probability": 0.9 + }, + { + "start": 13168.68, + "end": 13171.76, + "probability": 0.1895 + }, + { + "start": 13171.76, + "end": 13172.8, + "probability": 0.7273 + }, + { + "start": 13173.14, + "end": 13174.6, + "probability": 0.9766 + }, + { + "start": 13175.14, + "end": 13176.2, + "probability": 0.917 + }, + { + "start": 13176.84, + "end": 13178.02, + "probability": 0.941 + }, + { + "start": 13178.52, + "end": 13179.6, + "probability": 0.1022 + }, + { + "start": 13180.32, + "end": 13182.52, + "probability": 0.4761 + }, + { + "start": 13183.22, + "end": 13183.83, + "probability": 0.387 + }, + { + "start": 13184.26, + "end": 13184.78, + "probability": 0.2703 + }, + { + "start": 13185.4, + "end": 13186.32, + "probability": 0.781 + }, + { + "start": 13186.48, + "end": 13187.36, + "probability": 0.9429 + }, + { + "start": 13187.86, + "end": 13189.02, + "probability": 0.9782 + }, + { + "start": 13189.7, + "end": 13190.16, + "probability": 0.9344 + }, + { + "start": 13191.2, + "end": 13192.28, + "probability": 0.9781 + }, + { + "start": 13193.08, + "end": 13194.44, + "probability": 0.9956 + }, + { + "start": 13194.9, + "end": 13196.78, + "probability": 0.8886 + }, + { + "start": 13197.88, + "end": 13198.58, + "probability": 0.5787 + }, + { + "start": 13199.92, + "end": 13200.54, + "probability": 0.7096 + }, + { + "start": 13201.32, + "end": 13201.7, + "probability": 0.9469 + }, + { + "start": 13201.84, + "end": 13203.32, + "probability": 0.9502 + }, + { + "start": 13203.84, + "end": 13205.44, + "probability": 0.961 + }, + { + "start": 13206.3, + "end": 13207.16, + "probability": 0.9878 + }, + { + "start": 13207.42, + "end": 13209.88, + "probability": 0.9862 + }, + { + "start": 13211.14, + "end": 13213.78, + "probability": 0.9863 + }, + { + "start": 13214.38, + "end": 13214.82, + "probability": 0.8998 + }, + { + "start": 13215.72, + "end": 13219.06, + "probability": 0.7749 + }, + { + "start": 13219.14, + "end": 13220.42, + "probability": 0.7073 + }, + { + "start": 13221.62, + "end": 13223.72, + "probability": 0.9788 + }, + { + "start": 13224.72, + "end": 13225.06, + "probability": 0.5996 + }, + { + "start": 13225.12, + "end": 13228.62, + "probability": 0.2589 + }, + { + "start": 13228.62, + "end": 13229.0, + "probability": 0.822 + }, + { + "start": 13229.08, + "end": 13229.7, + "probability": 0.8071 + }, + { + "start": 13230.64, + "end": 13233.0, + "probability": 0.9763 + }, + { + "start": 13233.8, + "end": 13237.12, + "probability": 0.9052 + }, + { + "start": 13237.74, + "end": 13238.44, + "probability": 0.9892 + }, + { + "start": 13239.3, + "end": 13242.62, + "probability": 0.7298 + }, + { + "start": 13242.78, + "end": 13243.04, + "probability": 0.5253 + }, + { + "start": 13243.98, + "end": 13245.74, + "probability": 0.9414 + }, + { + "start": 13246.54, + "end": 13247.64, + "probability": 0.924 + }, + { + "start": 13248.34, + "end": 13249.64, + "probability": 0.9058 + }, + { + "start": 13250.46, + "end": 13251.74, + "probability": 0.9846 + }, + { + "start": 13251.86, + "end": 13254.92, + "probability": 0.7866 + }, + { + "start": 13255.28, + "end": 13256.62, + "probability": 0.998 + }, + { + "start": 13256.96, + "end": 13258.58, + "probability": 0.9888 + }, + { + "start": 13259.76, + "end": 13262.6, + "probability": 0.8765 + }, + { + "start": 13263.62, + "end": 13264.94, + "probability": 0.7545 + }, + { + "start": 13265.92, + "end": 13269.08, + "probability": 0.9775 + }, + { + "start": 13270.94, + "end": 13270.94, + "probability": 0.0587 + }, + { + "start": 13270.94, + "end": 13272.79, + "probability": 0.5977 + }, + { + "start": 13273.72, + "end": 13277.24, + "probability": 0.8878 + }, + { + "start": 13278.28, + "end": 13279.42, + "probability": 0.4666 + }, + { + "start": 13280.28, + "end": 13281.45, + "probability": 0.8486 + }, + { + "start": 13283.96, + "end": 13285.76, + "probability": 0.9336 + }, + { + "start": 13286.54, + "end": 13288.52, + "probability": 0.9136 + }, + { + "start": 13290.02, + "end": 13291.22, + "probability": 0.9337 + }, + { + "start": 13291.8, + "end": 13291.94, + "probability": 0.2771 + }, + { + "start": 13294.26, + "end": 13298.0, + "probability": 0.9564 + }, + { + "start": 13299.42, + "end": 13301.36, + "probability": 0.8231 + }, + { + "start": 13301.36, + "end": 13304.34, + "probability": 0.9787 + }, + { + "start": 13305.54, + "end": 13309.78, + "probability": 0.7216 + }, + { + "start": 13310.38, + "end": 13311.72, + "probability": 0.732 + }, + { + "start": 13312.44, + "end": 13314.1, + "probability": 0.7726 + }, + { + "start": 13314.82, + "end": 13317.44, + "probability": 0.9798 + }, + { + "start": 13317.74, + "end": 13322.9, + "probability": 0.4635 + }, + { + "start": 13323.44, + "end": 13327.22, + "probability": 0.7761 + }, + { + "start": 13328.26, + "end": 13330.6, + "probability": 0.9568 + }, + { + "start": 13331.72, + "end": 13332.66, + "probability": 0.8313 + }, + { + "start": 13333.44, + "end": 13334.4, + "probability": 0.93 + }, + { + "start": 13335.0, + "end": 13336.54, + "probability": 0.9893 + }, + { + "start": 13337.29, + "end": 13343.84, + "probability": 0.7511 + }, + { + "start": 13344.52, + "end": 13347.88, + "probability": 0.9549 + }, + { + "start": 13349.88, + "end": 13350.4, + "probability": 0.6133 + }, + { + "start": 13351.2, + "end": 13354.94, + "probability": 0.549 + }, + { + "start": 13355.66, + "end": 13359.22, + "probability": 0.9946 + }, + { + "start": 13360.06, + "end": 13364.36, + "probability": 0.9957 + }, + { + "start": 13365.06, + "end": 13367.52, + "probability": 0.8027 + }, + { + "start": 13368.34, + "end": 13368.96, + "probability": 0.6072 + }, + { + "start": 13369.5, + "end": 13371.88, + "probability": 0.9487 + }, + { + "start": 13373.1, + "end": 13375.46, + "probability": 0.9626 + }, + { + "start": 13376.0, + "end": 13377.06, + "probability": 0.8916 + }, + { + "start": 13377.62, + "end": 13381.06, + "probability": 0.853 + }, + { + "start": 13382.62, + "end": 13385.15, + "probability": 0.5146 + }, + { + "start": 13386.1, + "end": 13388.12, + "probability": 0.9894 + }, + { + "start": 13388.82, + "end": 13392.24, + "probability": 0.7484 + }, + { + "start": 13392.94, + "end": 13399.9, + "probability": 0.7634 + }, + { + "start": 13400.44, + "end": 13401.32, + "probability": 0.6853 + }, + { + "start": 13401.36, + "end": 13401.98, + "probability": 0.5538 + }, + { + "start": 13402.12, + "end": 13403.24, + "probability": 0.9855 + }, + { + "start": 13404.24, + "end": 13406.96, + "probability": 0.9941 + }, + { + "start": 13407.22, + "end": 13411.44, + "probability": 0.9717 + }, + { + "start": 13412.24, + "end": 13412.82, + "probability": 0.4665 + }, + { + "start": 13413.86, + "end": 13418.3, + "probability": 0.7391 + }, + { + "start": 13418.98, + "end": 13421.7, + "probability": 0.7669 + }, + { + "start": 13422.42, + "end": 13426.76, + "probability": 0.86 + }, + { + "start": 13427.44, + "end": 13430.46, + "probability": 0.7381 + }, + { + "start": 13431.06, + "end": 13431.84, + "probability": 0.4254 + }, + { + "start": 13432.38, + "end": 13435.54, + "probability": 0.9373 + }, + { + "start": 13436.02, + "end": 13437.44, + "probability": 0.9844 + }, + { + "start": 13438.24, + "end": 13441.72, + "probability": 0.7213 + }, + { + "start": 13443.5, + "end": 13445.46, + "probability": 0.9444 + }, + { + "start": 13445.6, + "end": 13447.2, + "probability": 0.845 + }, + { + "start": 13447.68, + "end": 13449.72, + "probability": 0.7926 + }, + { + "start": 13449.8, + "end": 13450.88, + "probability": 0.9854 + }, + { + "start": 13451.26, + "end": 13451.38, + "probability": 0.0068 + }, + { + "start": 13453.24, + "end": 13457.18, + "probability": 0.9544 + }, + { + "start": 13457.18, + "end": 13460.64, + "probability": 0.9912 + }, + { + "start": 13461.34, + "end": 13462.42, + "probability": 0.8845 + }, + { + "start": 13463.04, + "end": 13464.06, + "probability": 0.7801 + }, + { + "start": 13464.88, + "end": 13467.86, + "probability": 0.9771 + }, + { + "start": 13468.3, + "end": 13472.44, + "probability": 0.9675 + }, + { + "start": 13473.0, + "end": 13473.8, + "probability": 0.3735 + }, + { + "start": 13475.48, + "end": 13478.38, + "probability": 0.7644 + }, + { + "start": 13479.96, + "end": 13480.22, + "probability": 0.5545 + }, + { + "start": 13480.9, + "end": 13485.78, + "probability": 0.7997 + }, + { + "start": 13486.22, + "end": 13490.38, + "probability": 0.751 + }, + { + "start": 13491.04, + "end": 13493.32, + "probability": 0.9871 + }, + { + "start": 13493.88, + "end": 13496.58, + "probability": 0.6918 + }, + { + "start": 13497.14, + "end": 13498.24, + "probability": 0.735 + }, + { + "start": 13498.3, + "end": 13500.02, + "probability": 0.9169 + }, + { + "start": 13500.48, + "end": 13502.88, + "probability": 0.908 + }, + { + "start": 13503.36, + "end": 13506.35, + "probability": 0.9679 + }, + { + "start": 13506.38, + "end": 13509.52, + "probability": 0.9734 + }, + { + "start": 13509.94, + "end": 13510.04, + "probability": 0.0108 + }, + { + "start": 13510.12, + "end": 13510.56, + "probability": 0.7407 + }, + { + "start": 13510.64, + "end": 13514.24, + "probability": 0.705 + }, + { + "start": 13514.76, + "end": 13517.8, + "probability": 0.4208 + }, + { + "start": 13518.1, + "end": 13518.28, + "probability": 0.6904 + }, + { + "start": 13518.7, + "end": 13520.2, + "probability": 0.6333 + }, + { + "start": 13520.4, + "end": 13522.82, + "probability": 0.946 + }, + { + "start": 13524.08, + "end": 13525.74, + "probability": 0.6445 + }, + { + "start": 13526.8, + "end": 13529.24, + "probability": 0.4312 + }, + { + "start": 13529.96, + "end": 13532.04, + "probability": 0.5102 + }, + { + "start": 13534.4, + "end": 13534.82, + "probability": 0.1461 + }, + { + "start": 13539.78, + "end": 13540.74, + "probability": 0.4731 + }, + { + "start": 13540.88, + "end": 13541.84, + "probability": 0.8257 + }, + { + "start": 13542.04, + "end": 13546.32, + "probability": 0.7266 + }, + { + "start": 13547.3, + "end": 13548.18, + "probability": 0.443 + }, + { + "start": 13551.34, + "end": 13554.24, + "probability": 0.8203 + }, + { + "start": 13555.28, + "end": 13556.94, + "probability": 0.9041 + }, + { + "start": 13557.82, + "end": 13559.08, + "probability": 0.9391 + }, + { + "start": 13559.26, + "end": 13561.84, + "probability": 0.9941 + }, + { + "start": 13562.74, + "end": 13564.94, + "probability": 0.7682 + }, + { + "start": 13565.62, + "end": 13566.56, + "probability": 0.5621 + }, + { + "start": 13567.28, + "end": 13568.88, + "probability": 0.9438 + }, + { + "start": 13569.04, + "end": 13569.76, + "probability": 0.8216 + }, + { + "start": 13569.86, + "end": 13570.42, + "probability": 0.6566 + }, + { + "start": 13572.16, + "end": 13574.32, + "probability": 0.992 + }, + { + "start": 13574.38, + "end": 13575.52, + "probability": 0.9791 + }, + { + "start": 13575.94, + "end": 13580.79, + "probability": 0.8032 + }, + { + "start": 13582.2, + "end": 13582.76, + "probability": 0.745 + }, + { + "start": 13584.36, + "end": 13585.1, + "probability": 0.9092 + }, + { + "start": 13585.64, + "end": 13587.12, + "probability": 0.9878 + }, + { + "start": 13587.76, + "end": 13589.52, + "probability": 0.7777 + }, + { + "start": 13590.2, + "end": 13593.62, + "probability": 0.5965 + }, + { + "start": 13594.36, + "end": 13596.3, + "probability": 0.9235 + }, + { + "start": 13598.36, + "end": 13599.48, + "probability": 0.6765 + }, + { + "start": 13600.2, + "end": 13601.5, + "probability": 0.7249 + }, + { + "start": 13602.56, + "end": 13605.96, + "probability": 0.9728 + }, + { + "start": 13607.02, + "end": 13607.84, + "probability": 0.9476 + }, + { + "start": 13609.08, + "end": 13610.76, + "probability": 0.4375 + }, + { + "start": 13611.52, + "end": 13612.08, + "probability": 0.5842 + }, + { + "start": 13612.22, + "end": 13612.98, + "probability": 0.8363 + }, + { + "start": 13613.06, + "end": 13614.32, + "probability": 0.9889 + }, + { + "start": 13614.48, + "end": 13615.96, + "probability": 0.897 + }, + { + "start": 13616.42, + "end": 13616.92, + "probability": 0.7056 + }, + { + "start": 13617.14, + "end": 13620.14, + "probability": 0.7604 + }, + { + "start": 13620.26, + "end": 13620.9, + "probability": 0.8306 + }, + { + "start": 13621.42, + "end": 13623.68, + "probability": 0.8563 + }, + { + "start": 13624.2, + "end": 13625.46, + "probability": 0.989 + }, + { + "start": 13626.58, + "end": 13626.98, + "probability": 0.7903 + }, + { + "start": 13627.12, + "end": 13627.79, + "probability": 0.9548 + }, + { + "start": 13628.08, + "end": 13632.18, + "probability": 0.9785 + }, + { + "start": 13632.76, + "end": 13634.96, + "probability": 0.6838 + }, + { + "start": 13635.6, + "end": 13636.4, + "probability": 0.8813 + }, + { + "start": 13637.26, + "end": 13638.58, + "probability": 0.908 + }, + { + "start": 13639.58, + "end": 13640.36, + "probability": 0.6017 + }, + { + "start": 13640.36, + "end": 13643.1, + "probability": 0.5228 + }, + { + "start": 13643.16, + "end": 13644.1, + "probability": 0.7691 + }, + { + "start": 13644.54, + "end": 13645.53, + "probability": 0.8 + }, + { + "start": 13647.3, + "end": 13649.96, + "probability": 0.9749 + }, + { + "start": 13650.76, + "end": 13653.04, + "probability": 0.9906 + }, + { + "start": 13654.34, + "end": 13655.16, + "probability": 0.6409 + }, + { + "start": 13655.94, + "end": 13659.16, + "probability": 0.6315 + }, + { + "start": 13664.0, + "end": 13668.12, + "probability": 0.5584 + }, + { + "start": 13668.98, + "end": 13670.2, + "probability": 0.9757 + }, + { + "start": 13670.86, + "end": 13673.88, + "probability": 0.9138 + }, + { + "start": 13674.84, + "end": 13675.84, + "probability": 0.7062 + }, + { + "start": 13676.02, + "end": 13685.3, + "probability": 0.8812 + }, + { + "start": 13686.02, + "end": 13686.92, + "probability": 0.9609 + }, + { + "start": 13690.04, + "end": 13690.72, + "probability": 0.4915 + }, + { + "start": 13690.86, + "end": 13693.86, + "probability": 0.6821 + }, + { + "start": 13694.38, + "end": 13695.52, + "probability": 0.9971 + }, + { + "start": 13696.76, + "end": 13699.02, + "probability": 0.7402 + }, + { + "start": 13699.02, + "end": 13700.04, + "probability": 0.3579 + }, + { + "start": 13701.46, + "end": 13702.94, + "probability": 0.9778 + }, + { + "start": 13703.58, + "end": 13704.26, + "probability": 0.981 + }, + { + "start": 13706.3, + "end": 13707.44, + "probability": 0.4652 + }, + { + "start": 13714.58, + "end": 13715.54, + "probability": 0.6108 + }, + { + "start": 13717.08, + "end": 13719.58, + "probability": 0.8037 + }, + { + "start": 13720.56, + "end": 13722.12, + "probability": 0.9983 + }, + { + "start": 13722.3, + "end": 13723.46, + "probability": 0.6602 + }, + { + "start": 13724.54, + "end": 13726.98, + "probability": 0.9944 + }, + { + "start": 13727.06, + "end": 13730.6, + "probability": 0.9744 + }, + { + "start": 13730.6, + "end": 13734.44, + "probability": 0.9624 + }, + { + "start": 13735.26, + "end": 13738.78, + "probability": 0.664 + }, + { + "start": 13739.32, + "end": 13745.3, + "probability": 0.8293 + }, + { + "start": 13745.94, + "end": 13746.8, + "probability": 0.9763 + }, + { + "start": 13747.3, + "end": 13747.52, + "probability": 0.8501 + }, + { + "start": 13747.76, + "end": 13749.72, + "probability": 0.927 + }, + { + "start": 13750.2, + "end": 13753.54, + "probability": 0.9863 + }, + { + "start": 13754.12, + "end": 13757.36, + "probability": 0.9885 + }, + { + "start": 13758.02, + "end": 13759.24, + "probability": 0.7127 + }, + { + "start": 13765.56, + "end": 13766.02, + "probability": 0.4572 + }, + { + "start": 13766.06, + "end": 13767.02, + "probability": 0.644 + }, + { + "start": 13767.48, + "end": 13768.14, + "probability": 0.7674 + }, + { + "start": 13768.26, + "end": 13768.78, + "probability": 0.9148 + }, + { + "start": 13768.8, + "end": 13769.48, + "probability": 0.9578 + }, + { + "start": 13772.66, + "end": 13775.56, + "probability": 0.9957 + }, + { + "start": 13776.3, + "end": 13777.54, + "probability": 0.7822 + }, + { + "start": 13779.06, + "end": 13780.96, + "probability": 0.9894 + }, + { + "start": 13781.74, + "end": 13782.44, + "probability": 0.2733 + }, + { + "start": 13783.6, + "end": 13786.86, + "probability": 0.6724 + }, + { + "start": 13788.94, + "end": 13790.02, + "probability": 0.6729 + }, + { + "start": 13790.58, + "end": 13792.66, + "probability": 0.9727 + }, + { + "start": 13792.9, + "end": 13794.18, + "probability": 0.7267 + }, + { + "start": 13794.6, + "end": 13795.26, + "probability": 0.9626 + }, + { + "start": 13796.16, + "end": 13797.72, + "probability": 0.9434 + }, + { + "start": 13797.76, + "end": 13798.38, + "probability": 0.6119 + }, + { + "start": 13798.88, + "end": 13800.7, + "probability": 0.8708 + }, + { + "start": 13801.4, + "end": 13804.42, + "probability": 0.7277 + }, + { + "start": 13804.48, + "end": 13805.4, + "probability": 0.5936 + }, + { + "start": 13806.08, + "end": 13807.24, + "probability": 0.7296 + }, + { + "start": 13808.3, + "end": 13809.4, + "probability": 0.9861 + }, + { + "start": 13810.56, + "end": 13812.48, + "probability": 0.8839 + }, + { + "start": 13813.26, + "end": 13814.64, + "probability": 0.5132 + }, + { + "start": 13815.08, + "end": 13816.62, + "probability": 0.9824 + }, + { + "start": 13817.76, + "end": 13819.22, + "probability": 0.9679 + }, + { + "start": 13819.76, + "end": 13822.96, + "probability": 0.9963 + }, + { + "start": 13823.48, + "end": 13824.84, + "probability": 0.9883 + }, + { + "start": 13825.24, + "end": 13826.26, + "probability": 0.9233 + }, + { + "start": 13827.1, + "end": 13827.44, + "probability": 0.8789 + }, + { + "start": 13828.1, + "end": 13829.3, + "probability": 0.6793 + }, + { + "start": 13829.9, + "end": 13830.96, + "probability": 0.9642 + }, + { + "start": 13831.52, + "end": 13832.94, + "probability": 0.8973 + }, + { + "start": 13833.02, + "end": 13833.88, + "probability": 0.9875 + }, + { + "start": 13834.58, + "end": 13836.88, + "probability": 0.97 + }, + { + "start": 13837.4, + "end": 13838.52, + "probability": 0.9438 + }, + { + "start": 13839.38, + "end": 13840.3, + "probability": 0.78 + }, + { + "start": 13841.12, + "end": 13842.38, + "probability": 0.9675 + }, + { + "start": 13842.66, + "end": 13844.56, + "probability": 0.1026 + }, + { + "start": 13844.62, + "end": 13845.82, + "probability": 0.4032 + }, + { + "start": 13846.08, + "end": 13846.76, + "probability": 0.7491 + }, + { + "start": 13848.1, + "end": 13849.82, + "probability": 0.8301 + }, + { + "start": 13850.76, + "end": 13852.5, + "probability": 0.9482 + }, + { + "start": 13852.64, + "end": 13856.12, + "probability": 0.9837 + }, + { + "start": 13856.38, + "end": 13857.16, + "probability": 0.9503 + }, + { + "start": 13858.18, + "end": 13859.24, + "probability": 0.5557 + }, + { + "start": 13862.5, + "end": 13863.82, + "probability": 0.5916 + }, + { + "start": 13863.96, + "end": 13864.88, + "probability": 0.4962 + }, + { + "start": 13865.16, + "end": 13867.39, + "probability": 0.7749 + }, + { + "start": 13868.56, + "end": 13869.35, + "probability": 0.9563 + }, + { + "start": 13869.58, + "end": 13870.58, + "probability": 0.6829 + }, + { + "start": 13871.02, + "end": 13871.02, + "probability": 0.281 + }, + { + "start": 13873.24, + "end": 13877.48, + "probability": 0.7522 + }, + { + "start": 13878.28, + "end": 13881.56, + "probability": 0.8123 + }, + { + "start": 13882.66, + "end": 13885.92, + "probability": 0.9767 + }, + { + "start": 13886.94, + "end": 13889.14, + "probability": 0.577 + }, + { + "start": 13890.18, + "end": 13892.09, + "probability": 0.3594 + }, + { + "start": 13892.38, + "end": 13893.16, + "probability": 0.4954 + }, + { + "start": 13893.74, + "end": 13894.36, + "probability": 0.3635 + }, + { + "start": 13895.38, + "end": 13900.6, + "probability": 0.5682 + }, + { + "start": 13902.48, + "end": 13906.02, + "probability": 0.7328 + }, + { + "start": 13906.8, + "end": 13910.12, + "probability": 0.745 + }, + { + "start": 13911.7, + "end": 13914.18, + "probability": 0.717 + }, + { + "start": 13914.9, + "end": 13916.06, + "probability": 0.1885 + }, + { + "start": 13917.14, + "end": 13918.56, + "probability": 0.6668 + }, + { + "start": 13920.25, + "end": 13922.9, + "probability": 0.5024 + }, + { + "start": 13923.82, + "end": 13928.76, + "probability": 0.7506 + }, + { + "start": 13929.42, + "end": 13932.38, + "probability": 0.6917 + }, + { + "start": 13933.06, + "end": 13933.44, + "probability": 0.5675 + }, + { + "start": 13934.16, + "end": 13934.98, + "probability": 0.8201 + }, + { + "start": 13937.7, + "end": 13942.88, + "probability": 0.7773 + }, + { + "start": 13943.4, + "end": 13944.0, + "probability": 0.8126 + }, + { + "start": 13944.48, + "end": 13945.41, + "probability": 0.3316 + }, + { + "start": 13945.5, + "end": 13947.46, + "probability": 0.9487 + }, + { + "start": 13948.76, + "end": 13951.18, + "probability": 0.6829 + }, + { + "start": 13952.22, + "end": 13954.04, + "probability": 0.7608 + }, + { + "start": 13954.72, + "end": 13956.84, + "probability": 0.9845 + }, + { + "start": 13957.56, + "end": 13958.76, + "probability": 0.7948 + }, + { + "start": 13960.24, + "end": 13962.64, + "probability": 0.9718 + }, + { + "start": 13964.76, + "end": 13965.62, + "probability": 0.5114 + }, + { + "start": 13965.9, + "end": 13966.5, + "probability": 0.8289 + }, + { + "start": 13966.62, + "end": 13967.17, + "probability": 0.8999 + }, + { + "start": 13968.2, + "end": 13968.84, + "probability": 0.9939 + }, + { + "start": 13969.6, + "end": 13971.14, + "probability": 0.8055 + }, + { + "start": 13971.86, + "end": 13974.9, + "probability": 0.6046 + }, + { + "start": 13975.5, + "end": 13976.38, + "probability": 0.8378 + }, + { + "start": 13979.3, + "end": 13980.22, + "probability": 0.749 + }, + { + "start": 13980.98, + "end": 13981.72, + "probability": 0.8254 + }, + { + "start": 13982.64, + "end": 13984.06, + "probability": 0.7729 + }, + { + "start": 13984.76, + "end": 13988.08, + "probability": 0.9664 + }, + { + "start": 13991.52, + "end": 13994.5, + "probability": 0.8329 + }, + { + "start": 13995.62, + "end": 13996.3, + "probability": 0.8973 + }, + { + "start": 13997.52, + "end": 14001.04, + "probability": 0.9329 + }, + { + "start": 14001.76, + "end": 14006.78, + "probability": 0.9304 + }, + { + "start": 14006.78, + "end": 14012.32, + "probability": 0.9768 + }, + { + "start": 14013.28, + "end": 14015.68, + "probability": 0.6363 + }, + { + "start": 14017.96, + "end": 14019.06, + "probability": 0.6689 + }, + { + "start": 14019.76, + "end": 14025.28, + "probability": 0.7247 + }, + { + "start": 14026.18, + "end": 14028.68, + "probability": 0.5709 + }, + { + "start": 14028.74, + "end": 14030.28, + "probability": 0.5648 + }, + { + "start": 14031.46, + "end": 14032.16, + "probability": 0.8465 + }, + { + "start": 14033.3, + "end": 14035.48, + "probability": 0.8626 + }, + { + "start": 14035.58, + "end": 14040.02, + "probability": 0.9204 + }, + { + "start": 14040.5, + "end": 14042.16, + "probability": 0.9902 + }, + { + "start": 14043.36, + "end": 14046.4, + "probability": 0.988 + }, + { + "start": 14046.9, + "end": 14047.4, + "probability": 0.3941 + }, + { + "start": 14048.0, + "end": 14050.96, + "probability": 0.8022 + }, + { + "start": 14052.56, + "end": 14055.06, + "probability": 0.9822 + }, + { + "start": 14055.64, + "end": 14057.5, + "probability": 0.7012 + }, + { + "start": 14058.22, + "end": 14063.8, + "probability": 0.9648 + }, + { + "start": 14064.78, + "end": 14066.1, + "probability": 0.932 + }, + { + "start": 14066.48, + "end": 14068.46, + "probability": 0.6757 + }, + { + "start": 14069.64, + "end": 14071.56, + "probability": 0.9956 + }, + { + "start": 14071.66, + "end": 14073.52, + "probability": 0.836 + }, + { + "start": 14074.74, + "end": 14076.62, + "probability": 0.9746 + }, + { + "start": 14077.22, + "end": 14080.32, + "probability": 0.9323 + }, + { + "start": 14080.92, + "end": 14083.94, + "probability": 0.737 + }, + { + "start": 14084.61, + "end": 14085.86, + "probability": 0.6038 + }, + { + "start": 14086.88, + "end": 14089.42, + "probability": 0.9767 + }, + { + "start": 14089.54, + "end": 14090.82, + "probability": 0.1833 + }, + { + "start": 14091.44, + "end": 14095.29, + "probability": 0.8138 + }, + { + "start": 14095.62, + "end": 14097.7, + "probability": 0.7134 + }, + { + "start": 14097.8, + "end": 14098.88, + "probability": 0.8993 + }, + { + "start": 14098.98, + "end": 14101.04, + "probability": 0.8726 + }, + { + "start": 14101.12, + "end": 14101.88, + "probability": 0.2948 + }, + { + "start": 14102.12, + "end": 14102.72, + "probability": 0.309 + }, + { + "start": 14103.62, + "end": 14104.22, + "probability": 0.0665 + }, + { + "start": 14104.22, + "end": 14107.04, + "probability": 0.4739 + }, + { + "start": 14107.7, + "end": 14108.92, + "probability": 0.9608 + }, + { + "start": 14109.4, + "end": 14110.88, + "probability": 0.8297 + }, + { + "start": 14111.04, + "end": 14111.6, + "probability": 0.8332 + }, + { + "start": 14112.18, + "end": 14115.8, + "probability": 0.8267 + }, + { + "start": 14117.34, + "end": 14118.96, + "probability": 0.5533 + }, + { + "start": 14119.26, + "end": 14121.12, + "probability": 0.7032 + }, + { + "start": 14121.12, + "end": 14122.94, + "probability": 0.8618 + }, + { + "start": 14123.58, + "end": 14125.38, + "probability": 0.9331 + }, + { + "start": 14125.5, + "end": 14127.38, + "probability": 0.9746 + }, + { + "start": 14128.54, + "end": 14131.32, + "probability": 0.4467 + }, + { + "start": 14131.6, + "end": 14134.96, + "probability": 0.8362 + }, + { + "start": 14135.26, + "end": 14135.86, + "probability": 0.6341 + }, + { + "start": 14135.86, + "end": 14135.88, + "probability": 0.2035 + }, + { + "start": 14135.92, + "end": 14136.54, + "probability": 0.1975 + }, + { + "start": 14136.76, + "end": 14137.12, + "probability": 0.1682 + }, + { + "start": 14137.18, + "end": 14137.62, + "probability": 0.6746 + }, + { + "start": 14137.74, + "end": 14141.16, + "probability": 0.9421 + }, + { + "start": 14141.24, + "end": 14143.04, + "probability": 0.8934 + }, + { + "start": 14143.24, + "end": 14145.64, + "probability": 0.7688 + }, + { + "start": 14146.2, + "end": 14148.76, + "probability": 0.5481 + }, + { + "start": 14149.3, + "end": 14150.64, + "probability": 0.731 + }, + { + "start": 14150.96, + "end": 14153.02, + "probability": 0.937 + }, + { + "start": 14153.44, + "end": 14154.24, + "probability": 0.678 + }, + { + "start": 14154.62, + "end": 14155.04, + "probability": 0.0345 + }, + { + "start": 14155.38, + "end": 14157.62, + "probability": 0.8216 + }, + { + "start": 14158.1, + "end": 14159.74, + "probability": 0.5082 + }, + { + "start": 14160.46, + "end": 14161.48, + "probability": 0.6256 + }, + { + "start": 14161.62, + "end": 14164.6, + "probability": 0.737 + }, + { + "start": 14165.88, + "end": 14168.98, + "probability": 0.8589 + }, + { + "start": 14169.98, + "end": 14173.84, + "probability": 0.9375 + }, + { + "start": 14173.84, + "end": 14176.6, + "probability": 0.8865 + }, + { + "start": 14176.7, + "end": 14177.42, + "probability": 0.733 + }, + { + "start": 14177.82, + "end": 14178.62, + "probability": 0.6702 + }, + { + "start": 14179.52, + "end": 14181.07, + "probability": 0.7304 + }, + { + "start": 14181.86, + "end": 14184.02, + "probability": 0.6332 + }, + { + "start": 14184.62, + "end": 14185.48, + "probability": 0.348 + }, + { + "start": 14187.42, + "end": 14190.18, + "probability": 0.7772 + }, + { + "start": 14191.86, + "end": 14193.63, + "probability": 0.9451 + }, + { + "start": 14195.14, + "end": 14199.38, + "probability": 0.9091 + }, + { + "start": 14199.94, + "end": 14201.86, + "probability": 0.9159 + }, + { + "start": 14202.24, + "end": 14204.84, + "probability": 0.7548 + }, + { + "start": 14205.54, + "end": 14207.1, + "probability": 0.865 + }, + { + "start": 14208.18, + "end": 14213.54, + "probability": 0.9768 + }, + { + "start": 14214.54, + "end": 14216.16, + "probability": 0.8063 + }, + { + "start": 14216.26, + "end": 14216.78, + "probability": 0.6715 + }, + { + "start": 14216.84, + "end": 14217.78, + "probability": 0.8268 + }, + { + "start": 14218.56, + "end": 14219.54, + "probability": 0.3235 + }, + { + "start": 14220.36, + "end": 14220.92, + "probability": 0.2134 + }, + { + "start": 14222.38, + "end": 14223.28, + "probability": 0.574 + }, + { + "start": 14223.34, + "end": 14226.42, + "probability": 0.974 + }, + { + "start": 14227.06, + "end": 14227.22, + "probability": 0.7246 + }, + { + "start": 14227.5, + "end": 14230.33, + "probability": 0.7794 + }, + { + "start": 14231.18, + "end": 14235.46, + "probability": 0.9742 + }, + { + "start": 14235.72, + "end": 14237.14, + "probability": 0.4624 + }, + { + "start": 14237.62, + "end": 14237.62, + "probability": 0.4734 + }, + { + "start": 14237.62, + "end": 14240.28, + "probability": 0.9249 + }, + { + "start": 14240.9, + "end": 14243.2, + "probability": 0.5472 + }, + { + "start": 14243.96, + "end": 14244.86, + "probability": 0.9535 + }, + { + "start": 14245.02, + "end": 14246.42, + "probability": 0.8424 + }, + { + "start": 14246.52, + "end": 14246.54, + "probability": 0.3894 + }, + { + "start": 14247.16, + "end": 14249.7, + "probability": 0.6201 + }, + { + "start": 14249.82, + "end": 14252.66, + "probability": 0.8395 + }, + { + "start": 14253.08, + "end": 14256.58, + "probability": 0.5075 + }, + { + "start": 14256.9, + "end": 14259.54, + "probability": 0.9185 + }, + { + "start": 14259.72, + "end": 14260.46, + "probability": 0.6053 + }, + { + "start": 14261.1, + "end": 14261.1, + "probability": 0.1986 + }, + { + "start": 14261.28, + "end": 14263.94, + "probability": 0.9658 + }, + { + "start": 14264.78, + "end": 14266.26, + "probability": 0.9966 + }, + { + "start": 14266.7, + "end": 14267.24, + "probability": 0.2626 + }, + { + "start": 14267.38, + "end": 14267.76, + "probability": 0.6615 + }, + { + "start": 14268.14, + "end": 14271.64, + "probability": 0.7432 + }, + { + "start": 14272.0, + "end": 14272.34, + "probability": 0.9932 + }, + { + "start": 14273.04, + "end": 14275.22, + "probability": 0.9736 + }, + { + "start": 14275.66, + "end": 14276.9, + "probability": 0.9448 + }, + { + "start": 14277.54, + "end": 14280.34, + "probability": 0.7905 + }, + { + "start": 14280.44, + "end": 14281.42, + "probability": 0.6254 + }, + { + "start": 14281.58, + "end": 14282.32, + "probability": 0.9463 + }, + { + "start": 14282.78, + "end": 14285.34, + "probability": 0.9836 + }, + { + "start": 14285.34, + "end": 14287.07, + "probability": 0.6958 + }, + { + "start": 14287.96, + "end": 14288.58, + "probability": 0.7772 + }, + { + "start": 14288.88, + "end": 14291.92, + "probability": 0.7552 + }, + { + "start": 14292.4, + "end": 14293.34, + "probability": 0.6094 + }, + { + "start": 14294.14, + "end": 14295.74, + "probability": 0.8119 + }, + { + "start": 14296.16, + "end": 14297.51, + "probability": 0.8627 + }, + { + "start": 14297.78, + "end": 14298.48, + "probability": 0.6576 + }, + { + "start": 14299.0, + "end": 14300.66, + "probability": 0.5603 + }, + { + "start": 14301.18, + "end": 14301.84, + "probability": 0.9186 + }, + { + "start": 14302.5, + "end": 14303.38, + "probability": 0.6996 + }, + { + "start": 14303.5, + "end": 14305.14, + "probability": 0.9884 + }, + { + "start": 14305.74, + "end": 14307.58, + "probability": 0.8266 + }, + { + "start": 14307.94, + "end": 14308.42, + "probability": 0.7393 + }, + { + "start": 14309.7, + "end": 14310.46, + "probability": 0.7584 + }, + { + "start": 14310.48, + "end": 14315.2, + "probability": 0.9202 + }, + { + "start": 14315.2, + "end": 14316.12, + "probability": 0.9685 + }, + { + "start": 14316.74, + "end": 14320.82, + "probability": 0.8357 + }, + { + "start": 14321.86, + "end": 14322.56, + "probability": 0.9421 + }, + { + "start": 14322.64, + "end": 14324.8, + "probability": 0.6489 + }, + { + "start": 14325.3, + "end": 14326.92, + "probability": 0.8582 + }, + { + "start": 14328.78, + "end": 14328.78, + "probability": 0.0064 + }, + { + "start": 14329.7, + "end": 14329.7, + "probability": 0.1318 + }, + { + "start": 14329.7, + "end": 14331.68, + "probability": 0.3494 + }, + { + "start": 14332.02, + "end": 14332.44, + "probability": 0.4617 + }, + { + "start": 14332.62, + "end": 14333.12, + "probability": 0.4946 + }, + { + "start": 14333.26, + "end": 14334.44, + "probability": 0.6038 + }, + { + "start": 14334.76, + "end": 14335.84, + "probability": 0.7012 + }, + { + "start": 14336.46, + "end": 14337.24, + "probability": 0.9539 + }, + { + "start": 14337.84, + "end": 14339.1, + "probability": 0.7948 + }, + { + "start": 14339.96, + "end": 14340.56, + "probability": 0.561 + }, + { + "start": 14341.12, + "end": 14342.78, + "probability": 0.2094 + }, + { + "start": 14343.08, + "end": 14344.36, + "probability": 0.3279 + }, + { + "start": 14344.54, + "end": 14345.8, + "probability": 0.9279 + }, + { + "start": 14346.56, + "end": 14347.42, + "probability": 0.7557 + }, + { + "start": 14347.5, + "end": 14349.88, + "probability": 0.8172 + }, + { + "start": 14350.62, + "end": 14354.7, + "probability": 0.9448 + }, + { + "start": 14355.28, + "end": 14357.66, + "probability": 0.9678 + }, + { + "start": 14358.42, + "end": 14360.19, + "probability": 0.4995 + }, + { + "start": 14361.18, + "end": 14362.54, + "probability": 0.5994 + }, + { + "start": 14363.18, + "end": 14364.48, + "probability": 0.9477 + }, + { + "start": 14365.36, + "end": 14367.7, + "probability": 0.9514 + }, + { + "start": 14369.0, + "end": 14371.38, + "probability": 0.7315 + }, + { + "start": 14371.6, + "end": 14372.24, + "probability": 0.6469 + }, + { + "start": 14372.3, + "end": 14372.64, + "probability": 0.787 + }, + { + "start": 14374.3, + "end": 14374.56, + "probability": 0.2543 + }, + { + "start": 14374.66, + "end": 14374.84, + "probability": 0.3011 + }, + { + "start": 14374.84, + "end": 14377.62, + "probability": 0.8259 + }, + { + "start": 14379.0, + "end": 14379.8, + "probability": 0.8839 + }, + { + "start": 14380.1, + "end": 14381.08, + "probability": 0.8464 + }, + { + "start": 14381.5, + "end": 14384.88, + "probability": 0.5734 + }, + { + "start": 14384.94, + "end": 14385.68, + "probability": 0.2212 + }, + { + "start": 14386.58, + "end": 14386.72, + "probability": 0.6592 + }, + { + "start": 14386.84, + "end": 14391.18, + "probability": 0.9553 + }, + { + "start": 14392.46, + "end": 14394.9, + "probability": 0.8353 + }, + { + "start": 14395.38, + "end": 14396.52, + "probability": 0.1993 + }, + { + "start": 14397.04, + "end": 14399.12, + "probability": 0.6724 + }, + { + "start": 14399.64, + "end": 14400.8, + "probability": 0.6762 + }, + { + "start": 14401.22, + "end": 14401.78, + "probability": 0.5595 + }, + { + "start": 14401.9, + "end": 14406.18, + "probability": 0.8395 + }, + { + "start": 14406.62, + "end": 14407.07, + "probability": 0.434 + }, + { + "start": 14407.7, + "end": 14408.25, + "probability": 0.0789 + }, + { + "start": 14409.46, + "end": 14410.18, + "probability": 0.9589 + }, + { + "start": 14424.32, + "end": 14425.6, + "probability": 0.1908 + }, + { + "start": 14426.62, + "end": 14428.32, + "probability": 0.0069 + }, + { + "start": 14428.88, + "end": 14432.86, + "probability": 0.0687 + }, + { + "start": 14436.21, + "end": 14439.74, + "probability": 0.3357 + }, + { + "start": 14440.08, + "end": 14441.11, + "probability": 0.1467 + }, + { + "start": 14444.7, + "end": 14447.88, + "probability": 0.8964 + }, + { + "start": 14448.54, + "end": 14449.32, + "probability": 0.7534 + }, + { + "start": 14454.74, + "end": 14455.72, + "probability": 0.6017 + }, + { + "start": 14456.56, + "end": 14459.08, + "probability": 0.6104 + }, + { + "start": 14459.8, + "end": 14460.98, + "probability": 0.6875 + }, + { + "start": 14461.4, + "end": 14464.35, + "probability": 0.8033 + }, + { + "start": 14465.0, + "end": 14465.93, + "probability": 0.9055 + }, + { + "start": 14470.68, + "end": 14471.36, + "probability": 0.361 + }, + { + "start": 14481.18, + "end": 14483.22, + "probability": 0.7999 + }, + { + "start": 14484.18, + "end": 14484.68, + "probability": 0.7025 + }, + { + "start": 14492.74, + "end": 14497.06, + "probability": 0.9865 + }, + { + "start": 14498.64, + "end": 14500.81, + "probability": 0.9989 + }, + { + "start": 14502.66, + "end": 14504.8, + "probability": 0.921 + }, + { + "start": 14507.33, + "end": 14511.38, + "probability": 0.9548 + }, + { + "start": 14512.44, + "end": 14512.98, + "probability": 0.8715 + }, + { + "start": 14513.02, + "end": 14516.5, + "probability": 0.9857 + }, + { + "start": 14517.56, + "end": 14518.34, + "probability": 0.7926 + }, + { + "start": 14519.88, + "end": 14524.7, + "probability": 0.8827 + }, + { + "start": 14525.6, + "end": 14528.76, + "probability": 0.8857 + }, + { + "start": 14529.6, + "end": 14532.18, + "probability": 0.9983 + }, + { + "start": 14532.84, + "end": 14533.72, + "probability": 0.9658 + }, + { + "start": 14534.44, + "end": 14541.44, + "probability": 0.989 + }, + { + "start": 14542.64, + "end": 14543.68, + "probability": 0.2076 + }, + { + "start": 14544.12, + "end": 14547.6, + "probability": 0.9349 + }, + { + "start": 14548.52, + "end": 14549.98, + "probability": 0.9988 + }, + { + "start": 14550.54, + "end": 14551.84, + "probability": 0.9341 + }, + { + "start": 14552.72, + "end": 14554.54, + "probability": 0.9938 + }, + { + "start": 14555.38, + "end": 14556.74, + "probability": 0.7637 + }, + { + "start": 14557.4, + "end": 14560.14, + "probability": 0.935 + }, + { + "start": 14560.64, + "end": 14563.22, + "probability": 0.9935 + }, + { + "start": 14563.9, + "end": 14565.58, + "probability": 0.9974 + }, + { + "start": 14567.32, + "end": 14568.54, + "probability": 0.9718 + }, + { + "start": 14568.72, + "end": 14569.6, + "probability": 0.9762 + }, + { + "start": 14569.74, + "end": 14572.86, + "probability": 0.9228 + }, + { + "start": 14574.17, + "end": 14577.54, + "probability": 0.7031 + }, + { + "start": 14578.28, + "end": 14579.9, + "probability": 0.9438 + }, + { + "start": 14580.8, + "end": 14583.72, + "probability": 0.904 + }, + { + "start": 14584.3, + "end": 14585.98, + "probability": 0.9399 + }, + { + "start": 14587.08, + "end": 14588.3, + "probability": 0.914 + }, + { + "start": 14588.84, + "end": 14591.6, + "probability": 0.9853 + }, + { + "start": 14592.14, + "end": 14593.18, + "probability": 0.8419 + }, + { + "start": 14593.72, + "end": 14597.1, + "probability": 0.9886 + }, + { + "start": 14597.76, + "end": 14600.04, + "probability": 0.5604 + }, + { + "start": 14600.7, + "end": 14601.58, + "probability": 0.7483 + }, + { + "start": 14602.48, + "end": 14603.96, + "probability": 0.7604 + }, + { + "start": 14604.8, + "end": 14605.34, + "probability": 0.6221 + }, + { + "start": 14606.16, + "end": 14609.04, + "probability": 0.6411 + }, + { + "start": 14609.86, + "end": 14613.16, + "probability": 0.8291 + }, + { + "start": 14613.68, + "end": 14615.02, + "probability": 0.9331 + }, + { + "start": 14615.68, + "end": 14615.96, + "probability": 0.927 + }, + { + "start": 14616.52, + "end": 14617.06, + "probability": 0.6243 + }, + { + "start": 14619.28, + "end": 14621.58, + "probability": 0.7776 + }, + { + "start": 14622.7, + "end": 14625.48, + "probability": 0.9133 + }, + { + "start": 14625.48, + "end": 14630.14, + "probability": 0.9027 + }, + { + "start": 14631.5, + "end": 14633.66, + "probability": 0.6258 + }, + { + "start": 14634.88, + "end": 14638.94, + "probability": 0.9648 + }, + { + "start": 14640.0, + "end": 14643.26, + "probability": 0.9149 + }, + { + "start": 14644.42, + "end": 14647.58, + "probability": 0.7539 + }, + { + "start": 14648.64, + "end": 14649.38, + "probability": 0.7372 + }, + { + "start": 14650.0, + "end": 14652.56, + "probability": 0.7244 + }, + { + "start": 14654.5, + "end": 14655.36, + "probability": 0.8555 + }, + { + "start": 14661.12, + "end": 14666.3, + "probability": 0.9885 + }, + { + "start": 14667.5, + "end": 14669.2, + "probability": 0.9829 + }, + { + "start": 14670.88, + "end": 14675.0, + "probability": 0.9901 + }, + { + "start": 14676.45, + "end": 14681.18, + "probability": 0.9924 + }, + { + "start": 14683.22, + "end": 14684.88, + "probability": 0.997 + }, + { + "start": 14685.64, + "end": 14685.82, + "probability": 0.8833 + }, + { + "start": 14688.08, + "end": 14689.42, + "probability": 0.8221 + }, + { + "start": 14690.2, + "end": 14691.58, + "probability": 0.7028 + }, + { + "start": 14691.76, + "end": 14693.82, + "probability": 0.6817 + }, + { + "start": 14693.92, + "end": 14697.0, + "probability": 0.8563 + }, + { + "start": 14697.88, + "end": 14700.32, + "probability": 0.9747 + }, + { + "start": 14700.72, + "end": 14705.98, + "probability": 0.6791 + }, + { + "start": 14706.06, + "end": 14706.66, + "probability": 0.6597 + }, + { + "start": 14707.1, + "end": 14707.44, + "probability": 0.6239 + }, + { + "start": 14708.04, + "end": 14708.96, + "probability": 0.9808 + }, + { + "start": 14709.62, + "end": 14712.72, + "probability": 0.8704 + }, + { + "start": 14713.62, + "end": 14715.04, + "probability": 0.5445 + }, + { + "start": 14715.76, + "end": 14716.88, + "probability": 0.9243 + }, + { + "start": 14717.4, + "end": 14719.68, + "probability": 0.8394 + }, + { + "start": 14720.52, + "end": 14722.72, + "probability": 0.9459 + }, + { + "start": 14723.28, + "end": 14726.9, + "probability": 0.9847 + }, + { + "start": 14727.92, + "end": 14735.12, + "probability": 0.7238 + }, + { + "start": 14735.83, + "end": 14739.44, + "probability": 0.979 + }, + { + "start": 14739.92, + "end": 14741.26, + "probability": 0.7819 + }, + { + "start": 14742.48, + "end": 14744.06, + "probability": 0.7924 + }, + { + "start": 14745.08, + "end": 14746.2, + "probability": 0.8392 + }, + { + "start": 14747.74, + "end": 14748.62, + "probability": 0.9709 + }, + { + "start": 14749.36, + "end": 14749.6, + "probability": 0.0526 + }, + { + "start": 14751.34, + "end": 14758.5, + "probability": 0.4497 + }, + { + "start": 14760.08, + "end": 14761.62, + "probability": 0.5795 + }, + { + "start": 14762.72, + "end": 14764.0, + "probability": 0.5978 + }, + { + "start": 14764.78, + "end": 14766.66, + "probability": 0.8873 + }, + { + "start": 14768.2, + "end": 14774.46, + "probability": 0.5603 + }, + { + "start": 14776.6, + "end": 14776.86, + "probability": 0.4736 + }, + { + "start": 14777.76, + "end": 14780.24, + "probability": 0.6235 + }, + { + "start": 14781.12, + "end": 14785.46, + "probability": 0.6587 + }, + { + "start": 14786.18, + "end": 14787.56, + "probability": 0.7586 + }, + { + "start": 14788.04, + "end": 14790.38, + "probability": 0.8361 + }, + { + "start": 14791.66, + "end": 14795.06, + "probability": 0.7294 + }, + { + "start": 14795.84, + "end": 14796.86, + "probability": 0.8573 + }, + { + "start": 14797.54, + "end": 14801.0, + "probability": 0.9692 + }, + { + "start": 14802.62, + "end": 14804.68, + "probability": 0.8719 + }, + { + "start": 14805.56, + "end": 14807.51, + "probability": 0.6005 + }, + { + "start": 14808.54, + "end": 14810.38, + "probability": 0.908 + }, + { + "start": 14811.64, + "end": 14812.66, + "probability": 0.6537 + }, + { + "start": 14813.58, + "end": 14817.96, + "probability": 0.8844 + }, + { + "start": 14819.32, + "end": 14825.1, + "probability": 0.8701 + }, + { + "start": 14826.26, + "end": 14830.24, + "probability": 0.5921 + }, + { + "start": 14831.0, + "end": 14831.54, + "probability": 0.6228 + }, + { + "start": 14833.24, + "end": 14835.68, + "probability": 0.9926 + }, + { + "start": 14836.12, + "end": 14837.72, + "probability": 0.9814 + }, + { + "start": 14838.04, + "end": 14838.98, + "probability": 0.9398 + }, + { + "start": 14839.06, + "end": 14839.92, + "probability": 0.8784 + }, + { + "start": 14840.26, + "end": 14844.36, + "probability": 0.9839 + }, + { + "start": 14844.6, + "end": 14845.82, + "probability": 0.9844 + }, + { + "start": 14846.24, + "end": 14846.76, + "probability": 0.7814 + }, + { + "start": 14847.08, + "end": 14850.96, + "probability": 0.8219 + }, + { + "start": 14851.28, + "end": 14853.6, + "probability": 0.6671 + }, + { + "start": 14854.1, + "end": 14856.4, + "probability": 0.9618 + }, + { + "start": 14857.06, + "end": 14857.34, + "probability": 0.489 + }, + { + "start": 14857.58, + "end": 14858.62, + "probability": 0.9573 + }, + { + "start": 14858.98, + "end": 14860.22, + "probability": 0.9409 + }, + { + "start": 14860.98, + "end": 14861.62, + "probability": 0.7874 + }, + { + "start": 14861.68, + "end": 14862.28, + "probability": 0.7258 + }, + { + "start": 14862.66, + "end": 14867.64, + "probability": 0.8784 + }, + { + "start": 14867.77, + "end": 14871.58, + "probability": 0.5397 + }, + { + "start": 14872.1, + "end": 14874.28, + "probability": 0.871 + }, + { + "start": 14874.84, + "end": 14875.6, + "probability": 0.9963 + }, + { + "start": 14877.36, + "end": 14877.44, + "probability": 0.0467 + }, + { + "start": 14877.54, + "end": 14880.9, + "probability": 0.8224 + }, + { + "start": 14881.44, + "end": 14883.2, + "probability": 0.9932 + }, + { + "start": 14884.14, + "end": 14887.38, + "probability": 0.9296 + }, + { + "start": 14887.46, + "end": 14888.24, + "probability": 0.8116 + }, + { + "start": 14888.58, + "end": 14889.68, + "probability": 0.9292 + }, + { + "start": 14890.42, + "end": 14895.18, + "probability": 0.911 + }, + { + "start": 14895.72, + "end": 14898.44, + "probability": 0.8887 + }, + { + "start": 14899.76, + "end": 14900.88, + "probability": 0.9929 + }, + { + "start": 14901.32, + "end": 14908.2, + "probability": 0.9817 + }, + { + "start": 14908.98, + "end": 14909.6, + "probability": 0.6442 + }, + { + "start": 14910.16, + "end": 14911.62, + "probability": 0.9189 + }, + { + "start": 14912.22, + "end": 14913.84, + "probability": 0.9341 + }, + { + "start": 14914.4, + "end": 14914.6, + "probability": 0.946 + }, + { + "start": 14915.18, + "end": 14918.23, + "probability": 0.8877 + }, + { + "start": 14919.14, + "end": 14920.58, + "probability": 0.9897 + }, + { + "start": 14921.22, + "end": 14922.4, + "probability": 0.9751 + }, + { + "start": 14923.2, + "end": 14924.3, + "probability": 0.7368 + }, + { + "start": 14925.0, + "end": 14926.12, + "probability": 0.7944 + }, + { + "start": 14926.46, + "end": 14928.82, + "probability": 0.8045 + }, + { + "start": 14929.28, + "end": 14930.26, + "probability": 0.9794 + }, + { + "start": 14930.44, + "end": 14931.52, + "probability": 0.9693 + }, + { + "start": 14932.04, + "end": 14933.98, + "probability": 0.9906 + }, + { + "start": 14934.28, + "end": 14935.5, + "probability": 0.9801 + }, + { + "start": 14935.9, + "end": 14940.7, + "probability": 0.9626 + }, + { + "start": 14941.06, + "end": 14943.48, + "probability": 0.9355 + }, + { + "start": 14945.2, + "end": 14946.3, + "probability": 0.7518 + }, + { + "start": 14946.92, + "end": 14949.7, + "probability": 0.9471 + }, + { + "start": 14950.88, + "end": 14953.68, + "probability": 0.9456 + }, + { + "start": 14955.12, + "end": 14958.54, + "probability": 0.8441 + }, + { + "start": 14959.68, + "end": 14962.64, + "probability": 0.8942 + }, + { + "start": 14963.32, + "end": 14973.68, + "probability": 0.8813 + }, + { + "start": 14973.78, + "end": 14975.06, + "probability": 0.8292 + }, + { + "start": 14975.72, + "end": 14978.82, + "probability": 0.7238 + }, + { + "start": 14979.56, + "end": 14983.38, + "probability": 0.911 + }, + { + "start": 14983.9, + "end": 14986.8, + "probability": 0.9116 + }, + { + "start": 14987.14, + "end": 14988.46, + "probability": 0.7882 + }, + { + "start": 14989.08, + "end": 14989.74, + "probability": 0.8486 + }, + { + "start": 14990.4, + "end": 14990.98, + "probability": 0.6016 + }, + { + "start": 14991.22, + "end": 14991.82, + "probability": 0.973 + }, + { + "start": 14992.22, + "end": 14995.22, + "probability": 0.9517 + }, + { + "start": 14995.56, + "end": 14996.9, + "probability": 0.7058 + }, + { + "start": 14997.86, + "end": 15000.64, + "probability": 0.9146 + }, + { + "start": 15001.18, + "end": 15002.36, + "probability": 0.9927 + }, + { + "start": 15003.1, + "end": 15003.88, + "probability": 0.9946 + }, + { + "start": 15004.4, + "end": 15005.76, + "probability": 0.9072 + }, + { + "start": 15006.56, + "end": 15009.14, + "probability": 0.7658 + }, + { + "start": 15009.76, + "end": 15011.5, + "probability": 0.866 + }, + { + "start": 15011.86, + "end": 15012.3, + "probability": 0.8681 + }, + { + "start": 15012.62, + "end": 15013.3, + "probability": 0.8518 + }, + { + "start": 15013.9, + "end": 15016.0, + "probability": 0.8704 + }, + { + "start": 15017.02, + "end": 15021.1, + "probability": 0.9636 + }, + { + "start": 15021.78, + "end": 15022.61, + "probability": 0.7939 + }, + { + "start": 15023.24, + "end": 15024.2, + "probability": 0.9784 + }, + { + "start": 15024.58, + "end": 15026.0, + "probability": 0.9731 + }, + { + "start": 15026.38, + "end": 15028.56, + "probability": 0.8689 + }, + { + "start": 15029.34, + "end": 15030.28, + "probability": 0.3744 + }, + { + "start": 15032.02, + "end": 15032.7, + "probability": 0.7762 + }, + { + "start": 15036.94, + "end": 15041.59, + "probability": 0.8137 + }, + { + "start": 15042.9, + "end": 15043.62, + "probability": 0.6197 + }, + { + "start": 15044.2, + "end": 15046.3, + "probability": 0.9404 + }, + { + "start": 15046.38, + "end": 15048.78, + "probability": 0.9857 + }, + { + "start": 15048.84, + "end": 15050.18, + "probability": 0.9828 + }, + { + "start": 15050.26, + "end": 15051.14, + "probability": 0.8555 + }, + { + "start": 15051.58, + "end": 15052.61, + "probability": 0.8428 + }, + { + "start": 15053.12, + "end": 15058.74, + "probability": 0.9858 + }, + { + "start": 15059.74, + "end": 15063.8, + "probability": 0.9762 + }, + { + "start": 15064.1, + "end": 15065.42, + "probability": 0.8926 + }, + { + "start": 15065.74, + "end": 15067.0, + "probability": 0.8459 + }, + { + "start": 15067.44, + "end": 15068.48, + "probability": 0.6879 + }, + { + "start": 15068.9, + "end": 15073.5, + "probability": 0.9888 + }, + { + "start": 15074.28, + "end": 15076.52, + "probability": 0.652 + }, + { + "start": 15076.88, + "end": 15079.22, + "probability": 0.9968 + }, + { + "start": 15080.96, + "end": 15082.96, + "probability": 0.7452 + }, + { + "start": 15083.62, + "end": 15084.88, + "probability": 0.9315 + }, + { + "start": 15085.64, + "end": 15089.6, + "probability": 0.9467 + }, + { + "start": 15090.38, + "end": 15093.84, + "probability": 0.8742 + }, + { + "start": 15094.92, + "end": 15097.56, + "probability": 0.8083 + }, + { + "start": 15097.9, + "end": 15099.02, + "probability": 0.6916 + }, + { + "start": 15099.54, + "end": 15100.44, + "probability": 0.9948 + }, + { + "start": 15109.32, + "end": 15110.58, + "probability": 0.5788 + }, + { + "start": 15110.72, + "end": 15114.24, + "probability": 0.6362 + }, + { + "start": 15116.08, + "end": 15120.36, + "probability": 0.9808 + }, + { + "start": 15120.44, + "end": 15123.5, + "probability": 0.9807 + }, + { + "start": 15124.14, + "end": 15126.24, + "probability": 0.7238 + }, + { + "start": 15126.54, + "end": 15127.66, + "probability": 0.7898 + }, + { + "start": 15127.92, + "end": 15129.46, + "probability": 0.8413 + }, + { + "start": 15129.86, + "end": 15133.6, + "probability": 0.8936 + }, + { + "start": 15133.98, + "end": 15134.18, + "probability": 0.8189 + }, + { + "start": 15134.6, + "end": 15135.56, + "probability": 0.3619 + }, + { + "start": 15136.64, + "end": 15138.31, + "probability": 0.6687 + }, + { + "start": 15149.38, + "end": 15149.9, + "probability": 0.411 + }, + { + "start": 15150.1, + "end": 15155.98, + "probability": 0.7587 + }, + { + "start": 15155.98, + "end": 15158.12, + "probability": 0.8011 + }, + { + "start": 15159.36, + "end": 15161.84, + "probability": 0.8865 + }, + { + "start": 15162.26, + "end": 15163.0, + "probability": 0.6641 + }, + { + "start": 15163.96, + "end": 15165.62, + "probability": 0.6155 + }, + { + "start": 15165.84, + "end": 15167.62, + "probability": 0.9474 + }, + { + "start": 15167.74, + "end": 15168.28, + "probability": 0.8867 + }, + { + "start": 15169.18, + "end": 15170.18, + "probability": 0.8122 + }, + { + "start": 15170.28, + "end": 15171.52, + "probability": 0.8264 + }, + { + "start": 15171.64, + "end": 15172.26, + "probability": 0.9377 + }, + { + "start": 15172.4, + "end": 15173.04, + "probability": 0.284 + }, + { + "start": 15173.86, + "end": 15174.78, + "probability": 0.9478 + }, + { + "start": 15175.34, + "end": 15177.3, + "probability": 0.5254 + }, + { + "start": 15177.84, + "end": 15178.32, + "probability": 0.7696 + }, + { + "start": 15178.38, + "end": 15180.55, + "probability": 0.7144 + }, + { + "start": 15181.3, + "end": 15184.1, + "probability": 0.8945 + }, + { + "start": 15184.68, + "end": 15185.11, + "probability": 0.8853 + }, + { + "start": 15185.86, + "end": 15186.36, + "probability": 0.9233 + }, + { + "start": 15186.82, + "end": 15187.54, + "probability": 0.9297 + }, + { + "start": 15187.9, + "end": 15188.52, + "probability": 0.6746 + }, + { + "start": 15189.56, + "end": 15191.72, + "probability": 0.5853 + }, + { + "start": 15193.08, + "end": 15195.72, + "probability": 0.7873 + }, + { + "start": 15196.9, + "end": 15199.24, + "probability": 0.1869 + }, + { + "start": 15201.52, + "end": 15205.6, + "probability": 0.6553 + }, + { + "start": 15205.66, + "end": 15207.17, + "probability": 0.9246 + }, + { + "start": 15207.32, + "end": 15207.54, + "probability": 0.1585 + }, + { + "start": 15207.7, + "end": 15210.2, + "probability": 0.7163 + }, + { + "start": 15210.8, + "end": 15212.18, + "probability": 0.7341 + }, + { + "start": 15212.28, + "end": 15213.05, + "probability": 0.9769 + }, + { + "start": 15213.6, + "end": 15214.42, + "probability": 0.8428 + }, + { + "start": 15214.82, + "end": 15216.37, + "probability": 0.9112 + }, + { + "start": 15217.18, + "end": 15220.16, + "probability": 0.8895 + }, + { + "start": 15221.42, + "end": 15226.68, + "probability": 0.9289 + }, + { + "start": 15227.24, + "end": 15228.88, + "probability": 0.781 + }, + { + "start": 15229.76, + "end": 15231.78, + "probability": 0.9696 + }, + { + "start": 15231.88, + "end": 15233.1, + "probability": 0.8613 + }, + { + "start": 15233.74, + "end": 15234.54, + "probability": 0.9486 + }, + { + "start": 15234.96, + "end": 15236.16, + "probability": 0.7967 + }, + { + "start": 15237.0, + "end": 15238.48, + "probability": 0.9849 + }, + { + "start": 15239.06, + "end": 15240.04, + "probability": 0.6694 + }, + { + "start": 15241.06, + "end": 15242.72, + "probability": 0.571 + }, + { + "start": 15244.24, + "end": 15246.16, + "probability": 0.7468 + }, + { + "start": 15246.92, + "end": 15250.84, + "probability": 0.9675 + }, + { + "start": 15252.04, + "end": 15254.52, + "probability": 0.8784 + }, + { + "start": 15255.66, + "end": 15257.38, + "probability": 0.7157 + }, + { + "start": 15258.0, + "end": 15259.01, + "probability": 0.9617 + }, + { + "start": 15259.38, + "end": 15260.76, + "probability": 0.9553 + }, + { + "start": 15261.3, + "end": 15262.78, + "probability": 0.7148 + }, + { + "start": 15264.14, + "end": 15264.68, + "probability": 0.8856 + }, + { + "start": 15265.34, + "end": 15265.98, + "probability": 0.5688 + }, + { + "start": 15266.4, + "end": 15270.98, + "probability": 0.8825 + }, + { + "start": 15271.24, + "end": 15272.7, + "probability": 0.5205 + }, + { + "start": 15273.44, + "end": 15277.28, + "probability": 0.7365 + }, + { + "start": 15279.08, + "end": 15281.22, + "probability": 0.658 + }, + { + "start": 15281.42, + "end": 15281.96, + "probability": 0.7768 + }, + { + "start": 15281.98, + "end": 15283.04, + "probability": 0.9143 + }, + { + "start": 15283.94, + "end": 15286.06, + "probability": 0.991 + }, + { + "start": 15286.64, + "end": 15289.04, + "probability": 0.9393 + }, + { + "start": 15289.92, + "end": 15291.22, + "probability": 0.7315 + }, + { + "start": 15291.66, + "end": 15292.66, + "probability": 0.4551 + }, + { + "start": 15293.44, + "end": 15294.1, + "probability": 0.9906 + }, + { + "start": 15294.84, + "end": 15295.6, + "probability": 0.805 + }, + { + "start": 15296.52, + "end": 15296.74, + "probability": 0.9057 + }, + { + "start": 15297.84, + "end": 15298.44, + "probability": 0.6973 + }, + { + "start": 15299.0, + "end": 15300.78, + "probability": 0.812 + }, + { + "start": 15301.44, + "end": 15301.98, + "probability": 0.6447 + }, + { + "start": 15302.96, + "end": 15308.2, + "probability": 0.8941 + }, + { + "start": 15308.52, + "end": 15310.58, + "probability": 0.7481 + }, + { + "start": 15310.78, + "end": 15311.26, + "probability": 0.5566 + }, + { + "start": 15311.58, + "end": 15311.92, + "probability": 0.7942 + }, + { + "start": 15312.6, + "end": 15315.44, + "probability": 0.4569 + }, + { + "start": 15316.7, + "end": 15317.56, + "probability": 0.6876 + }, + { + "start": 15318.48, + "end": 15320.55, + "probability": 0.9866 + }, + { + "start": 15321.68, + "end": 15322.42, + "probability": 0.9677 + }, + { + "start": 15323.58, + "end": 15324.31, + "probability": 0.8464 + }, + { + "start": 15325.16, + "end": 15326.26, + "probability": 0.3551 + }, + { + "start": 15327.08, + "end": 15329.41, + "probability": 0.8256 + }, + { + "start": 15330.28, + "end": 15331.84, + "probability": 0.8716 + }, + { + "start": 15333.36, + "end": 15334.24, + "probability": 0.5654 + }, + { + "start": 15334.96, + "end": 15339.12, + "probability": 0.6914 + }, + { + "start": 15339.6, + "end": 15340.04, + "probability": 0.6549 + }, + { + "start": 15340.76, + "end": 15343.47, + "probability": 0.8175 + }, + { + "start": 15344.42, + "end": 15347.36, + "probability": 0.9199 + }, + { + "start": 15348.06, + "end": 15351.28, + "probability": 0.8198 + }, + { + "start": 15351.74, + "end": 15353.22, + "probability": 0.7843 + }, + { + "start": 15353.97, + "end": 15355.63, + "probability": 0.9369 + }, + { + "start": 15357.25, + "end": 15358.38, + "probability": 0.5069 + }, + { + "start": 15358.44, + "end": 15360.88, + "probability": 0.5543 + }, + { + "start": 15361.4, + "end": 15365.56, + "probability": 0.4988 + }, + { + "start": 15365.56, + "end": 15366.04, + "probability": 0.6654 + }, + { + "start": 15366.4, + "end": 15367.36, + "probability": 0.4987 + }, + { + "start": 15367.4, + "end": 15368.26, + "probability": 0.672 + }, + { + "start": 15369.5, + "end": 15371.57, + "probability": 0.2405 + }, + { + "start": 15371.64, + "end": 15373.22, + "probability": 0.6052 + }, + { + "start": 15373.74, + "end": 15374.02, + "probability": 0.8466 + }, + { + "start": 15375.2, + "end": 15376.59, + "probability": 0.8659 + }, + { + "start": 15384.12, + "end": 15387.36, + "probability": 0.7869 + }, + { + "start": 15388.94, + "end": 15392.2, + "probability": 0.9664 + }, + { + "start": 15393.14, + "end": 15393.98, + "probability": 0.9819 + }, + { + "start": 15395.14, + "end": 15397.42, + "probability": 0.6419 + }, + { + "start": 15398.6, + "end": 15402.74, + "probability": 0.9161 + }, + { + "start": 15405.02, + "end": 15405.88, + "probability": 0.9985 + }, + { + "start": 15407.1, + "end": 15408.0, + "probability": 0.8134 + }, + { + "start": 15410.18, + "end": 15413.8, + "probability": 0.8977 + }, + { + "start": 15414.88, + "end": 15415.82, + "probability": 0.9848 + }, + { + "start": 15417.22, + "end": 15422.1, + "probability": 0.7468 + }, + { + "start": 15423.56, + "end": 15429.28, + "probability": 0.7685 + }, + { + "start": 15430.24, + "end": 15430.72, + "probability": 0.4739 + }, + { + "start": 15431.74, + "end": 15432.26, + "probability": 0.9557 + }, + { + "start": 15433.24, + "end": 15434.26, + "probability": 0.8394 + }, + { + "start": 15435.96, + "end": 15441.3, + "probability": 0.6283 + }, + { + "start": 15443.5, + "end": 15445.18, + "probability": 0.781 + }, + { + "start": 15447.08, + "end": 15449.4, + "probability": 0.6554 + }, + { + "start": 15450.44, + "end": 15459.06, + "probability": 0.8609 + }, + { + "start": 15459.68, + "end": 15460.5, + "probability": 0.7939 + }, + { + "start": 15461.96, + "end": 15463.44, + "probability": 0.9744 + }, + { + "start": 15464.88, + "end": 15467.5, + "probability": 0.9962 + }, + { + "start": 15468.18, + "end": 15471.1, + "probability": 0.6888 + }, + { + "start": 15472.18, + "end": 15476.74, + "probability": 0.8984 + }, + { + "start": 15477.72, + "end": 15479.16, + "probability": 0.9276 + }, + { + "start": 15479.94, + "end": 15483.52, + "probability": 0.9144 + }, + { + "start": 15483.88, + "end": 15484.48, + "probability": 0.7488 + }, + { + "start": 15484.66, + "end": 15489.22, + "probability": 0.9626 + }, + { + "start": 15490.36, + "end": 15494.58, + "probability": 0.9961 + }, + { + "start": 15494.58, + "end": 15499.12, + "probability": 0.9731 + }, + { + "start": 15499.9, + "end": 15502.86, + "probability": 0.8159 + }, + { + "start": 15503.32, + "end": 15506.68, + "probability": 0.9658 + }, + { + "start": 15506.74, + "end": 15507.4, + "probability": 0.7754 + }, + { + "start": 15508.98, + "end": 15510.5, + "probability": 0.7671 + }, + { + "start": 15511.22, + "end": 15512.88, + "probability": 0.8763 + }, + { + "start": 15513.18, + "end": 15513.78, + "probability": 0.5666 + }, + { + "start": 15514.4, + "end": 15515.4, + "probability": 0.8546 + }, + { + "start": 15516.3, + "end": 15520.36, + "probability": 0.8245 + }, + { + "start": 15520.42, + "end": 15522.88, + "probability": 0.6898 + }, + { + "start": 15524.28, + "end": 15527.34, + "probability": 0.9967 + }, + { + "start": 15527.46, + "end": 15531.08, + "probability": 0.7593 + }, + { + "start": 15531.26, + "end": 15532.84, + "probability": 0.6796 + }, + { + "start": 15532.9, + "end": 15533.66, + "probability": 0.5997 + }, + { + "start": 15534.18, + "end": 15536.56, + "probability": 0.9692 + }, + { + "start": 15536.68, + "end": 15537.84, + "probability": 0.9849 + }, + { + "start": 15537.98, + "end": 15542.96, + "probability": 0.9463 + }, + { + "start": 15543.76, + "end": 15547.46, + "probability": 0.9986 + }, + { + "start": 15547.9, + "end": 15548.5, + "probability": 0.6331 + }, + { + "start": 15549.68, + "end": 15551.1, + "probability": 0.4603 + }, + { + "start": 15551.2, + "end": 15553.32, + "probability": 0.9253 + }, + { + "start": 15553.86, + "end": 15554.6, + "probability": 0.9381 + }, + { + "start": 15555.14, + "end": 15555.94, + "probability": 0.9277 + }, + { + "start": 15560.28, + "end": 15561.38, + "probability": 0.1329 + }, + { + "start": 15566.84, + "end": 15571.52, + "probability": 0.177 + }, + { + "start": 15573.86, + "end": 15574.5, + "probability": 0.6204 + }, + { + "start": 15575.02, + "end": 15576.4, + "probability": 0.6851 + }, + { + "start": 15576.5, + "end": 15580.8, + "probability": 0.9648 + }, + { + "start": 15583.92, + "end": 15585.66, + "probability": 0.822 + }, + { + "start": 15585.74, + "end": 15588.32, + "probability": 0.6476 + }, + { + "start": 15588.88, + "end": 15590.3, + "probability": 0.5723 + }, + { + "start": 15590.54, + "end": 15590.78, + "probability": 0.7663 + }, + { + "start": 15592.94, + "end": 15594.26, + "probability": 0.2131 + }, + { + "start": 15594.66, + "end": 15597.68, + "probability": 0.8349 + }, + { + "start": 15599.02, + "end": 15599.38, + "probability": 0.3154 + }, + { + "start": 15599.56, + "end": 15600.68, + "probability": 0.8198 + }, + { + "start": 15600.78, + "end": 15602.2, + "probability": 0.8446 + }, + { + "start": 15602.82, + "end": 15603.62, + "probability": 0.9554 + }, + { + "start": 15608.4, + "end": 15609.26, + "probability": 0.3011 + }, + { + "start": 15610.24, + "end": 15611.16, + "probability": 0.3974 + }, + { + "start": 15613.68, + "end": 15615.0, + "probability": 0.6435 + }, + { + "start": 15617.86, + "end": 15619.34, + "probability": 0.278 + }, + { + "start": 15619.6, + "end": 15619.88, + "probability": 0.4028 + }, + { + "start": 15620.48, + "end": 15622.56, + "probability": 0.5683 + }, + { + "start": 15622.76, + "end": 15623.22, + "probability": 0.0881 + }, + { + "start": 15625.38, + "end": 15627.84, + "probability": 0.524 + }, + { + "start": 15627.96, + "end": 15629.34, + "probability": 0.4503 + }, + { + "start": 15630.52, + "end": 15630.7, + "probability": 0.0411 + }, + { + "start": 15630.7, + "end": 15631.06, + "probability": 0.2012 + }, + { + "start": 15631.14, + "end": 15632.18, + "probability": 0.5565 + }, + { + "start": 15635.04, + "end": 15639.34, + "probability": 0.6466 + }, + { + "start": 15643.68, + "end": 15644.22, + "probability": 0.005 + }, + { + "start": 15661.96, + "end": 15663.12, + "probability": 0.2946 + }, + { + "start": 15663.28, + "end": 15663.94, + "probability": 0.2973 + }, + { + "start": 15664.0, + "end": 15666.4, + "probability": 0.6706 + }, + { + "start": 15667.52, + "end": 15668.06, + "probability": 0.7237 + }, + { + "start": 15668.8, + "end": 15671.48, + "probability": 0.8495 + }, + { + "start": 15671.68, + "end": 15672.66, + "probability": 0.8052 + }, + { + "start": 15673.12, + "end": 15674.56, + "probability": 0.6529 + }, + { + "start": 15674.72, + "end": 15676.92, + "probability": 0.9906 + }, + { + "start": 15678.36, + "end": 15681.38, + "probability": 0.8525 + }, + { + "start": 15681.52, + "end": 15686.96, + "probability": 0.8565 + }, + { + "start": 15687.26, + "end": 15688.32, + "probability": 0.6588 + }, + { + "start": 15689.58, + "end": 15694.64, + "probability": 0.9682 + }, + { + "start": 15695.68, + "end": 15696.68, + "probability": 0.8829 + }, + { + "start": 15697.72, + "end": 15703.84, + "probability": 0.7592 + }, + { + "start": 15704.55, + "end": 15705.26, + "probability": 0.8204 + }, + { + "start": 15705.8, + "end": 15706.6, + "probability": 0.568 + }, + { + "start": 15706.78, + "end": 15708.44, + "probability": 0.4796 + }, + { + "start": 15708.92, + "end": 15709.08, + "probability": 0.5947 + }, + { + "start": 15709.08, + "end": 15709.54, + "probability": 0.4919 + }, + { + "start": 15709.6, + "end": 15710.56, + "probability": 0.688 + }, + { + "start": 15710.88, + "end": 15712.88, + "probability": 0.8851 + }, + { + "start": 15715.4, + "end": 15719.92, + "probability": 0.9816 + }, + { + "start": 15720.64, + "end": 15722.52, + "probability": 0.9049 + }, + { + "start": 15723.62, + "end": 15725.76, + "probability": 0.8346 + }, + { + "start": 15725.94, + "end": 15730.34, + "probability": 0.7987 + }, + { + "start": 15730.48, + "end": 15732.95, + "probability": 0.7488 + }, + { + "start": 15733.78, + "end": 15734.24, + "probability": 0.7775 + }, + { + "start": 15736.24, + "end": 15739.32, + "probability": 0.8813 + }, + { + "start": 15739.42, + "end": 15741.14, + "probability": 0.8344 + }, + { + "start": 15741.2, + "end": 15742.54, + "probability": 0.9614 + }, + { + "start": 15743.58, + "end": 15746.3, + "probability": 0.8965 + }, + { + "start": 15746.38, + "end": 15747.42, + "probability": 0.6999 + }, + { + "start": 15747.42, + "end": 15750.12, + "probability": 0.9022 + }, + { + "start": 15750.48, + "end": 15751.46, + "probability": 0.7029 + }, + { + "start": 15752.0, + "end": 15756.5, + "probability": 0.9923 + }, + { + "start": 15757.78, + "end": 15759.1, + "probability": 0.7246 + }, + { + "start": 15759.18, + "end": 15762.04, + "probability": 0.9827 + }, + { + "start": 15762.04, + "end": 15765.02, + "probability": 0.9689 + }, + { + "start": 15766.28, + "end": 15768.54, + "probability": 0.9403 + }, + { + "start": 15769.9, + "end": 15772.32, + "probability": 0.8398 + }, + { + "start": 15772.78, + "end": 15776.36, + "probability": 0.9521 + }, + { + "start": 15776.36, + "end": 15780.22, + "probability": 0.9956 + }, + { + "start": 15782.3, + "end": 15784.84, + "probability": 0.5416 + }, + { + "start": 15785.86, + "end": 15788.36, + "probability": 0.7176 + }, + { + "start": 15788.92, + "end": 15793.18, + "probability": 0.958 + }, + { + "start": 15793.82, + "end": 15795.66, + "probability": 0.9785 + }, + { + "start": 15795.66, + "end": 15798.8, + "probability": 0.9941 + }, + { + "start": 15799.96, + "end": 15802.04, + "probability": 0.9855 + }, + { + "start": 15802.9, + "end": 15804.52, + "probability": 0.9159 + }, + { + "start": 15805.1, + "end": 15810.2, + "probability": 0.8882 + }, + { + "start": 15810.98, + "end": 15814.64, + "probability": 0.6988 + }, + { + "start": 15815.56, + "end": 15816.66, + "probability": 0.4647 + }, + { + "start": 15816.74, + "end": 15821.74, + "probability": 0.9458 + }, + { + "start": 15822.08, + "end": 15822.74, + "probability": 0.3549 + }, + { + "start": 15823.16, + "end": 15826.54, + "probability": 0.8276 + }, + { + "start": 15826.76, + "end": 15829.02, + "probability": 0.9661 + }, + { + "start": 15829.96, + "end": 15832.92, + "probability": 0.8029 + }, + { + "start": 15834.3, + "end": 15835.6, + "probability": 0.8608 + }, + { + "start": 15837.02, + "end": 15838.88, + "probability": 0.7871 + }, + { + "start": 15840.02, + "end": 15842.62, + "probability": 0.9091 + }, + { + "start": 15843.28, + "end": 15848.42, + "probability": 0.9221 + }, + { + "start": 15849.22, + "end": 15850.98, + "probability": 0.9582 + }, + { + "start": 15852.2, + "end": 15854.86, + "probability": 0.9857 + }, + { + "start": 15856.66, + "end": 15858.44, + "probability": 0.9067 + }, + { + "start": 15858.6, + "end": 15863.16, + "probability": 0.9742 + }, + { + "start": 15863.24, + "end": 15864.34, + "probability": 0.9551 + }, + { + "start": 15865.6, + "end": 15866.46, + "probability": 0.9401 + }, + { + "start": 15867.78, + "end": 15870.02, + "probability": 0.917 + }, + { + "start": 15870.88, + "end": 15873.6, + "probability": 0.7422 + }, + { + "start": 15874.32, + "end": 15876.34, + "probability": 0.9403 + }, + { + "start": 15876.34, + "end": 15878.84, + "probability": 0.8308 + }, + { + "start": 15879.44, + "end": 15882.54, + "probability": 0.8 + }, + { + "start": 15883.1, + "end": 15885.96, + "probability": 0.9362 + }, + { + "start": 15886.64, + "end": 15888.32, + "probability": 0.8192 + }, + { + "start": 15888.48, + "end": 15888.48, + "probability": 0.1641 + }, + { + "start": 15888.48, + "end": 15890.18, + "probability": 0.6626 + }, + { + "start": 15890.18, + "end": 15891.46, + "probability": 0.5183 + }, + { + "start": 15894.56, + "end": 15896.18, + "probability": 0.5072 + }, + { + "start": 15896.78, + "end": 15898.18, + "probability": 0.494 + }, + { + "start": 15898.18, + "end": 15901.92, + "probability": 0.6573 + }, + { + "start": 15902.02, + "end": 15904.07, + "probability": 0.7612 + }, + { + "start": 15904.68, + "end": 15905.4, + "probability": 0.7454 + }, + { + "start": 15905.82, + "end": 15910.52, + "probability": 0.915 + }, + { + "start": 15911.2, + "end": 15914.0, + "probability": 0.9019 + }, + { + "start": 15914.24, + "end": 15915.26, + "probability": 0.6407 + }, + { + "start": 15916.02, + "end": 15917.78, + "probability": 0.9937 + }, + { + "start": 15917.92, + "end": 15919.78, + "probability": 0.9559 + }, + { + "start": 15920.04, + "end": 15920.28, + "probability": 0.9605 + }, + { + "start": 15921.3, + "end": 15924.2, + "probability": 0.8851 + }, + { + "start": 15926.48, + "end": 15930.94, + "probability": 0.8916 + }, + { + "start": 15930.94, + "end": 15936.28, + "probability": 0.9228 + }, + { + "start": 15937.22, + "end": 15938.42, + "probability": 0.7326 + }, + { + "start": 15938.5, + "end": 15939.56, + "probability": 0.8603 + }, + { + "start": 15939.7, + "end": 15940.44, + "probability": 0.4973 + }, + { + "start": 15940.54, + "end": 15941.12, + "probability": 0.4225 + }, + { + "start": 15942.34, + "end": 15943.46, + "probability": 0.9807 + }, + { + "start": 15944.18, + "end": 15947.0, + "probability": 0.991 + }, + { + "start": 15947.26, + "end": 15947.8, + "probability": 0.468 + }, + { + "start": 15948.04, + "end": 15953.82, + "probability": 0.885 + }, + { + "start": 15953.84, + "end": 15954.24, + "probability": 0.5185 + }, + { + "start": 15954.88, + "end": 15961.16, + "probability": 0.9354 + }, + { + "start": 15961.26, + "end": 15965.62, + "probability": 0.9899 + }, + { + "start": 15965.62, + "end": 15970.7, + "probability": 0.9473 + }, + { + "start": 15971.52, + "end": 15972.42, + "probability": 0.8685 + }, + { + "start": 15972.62, + "end": 15975.16, + "probability": 0.9556 + }, + { + "start": 15975.98, + "end": 15976.22, + "probability": 0.5231 + }, + { + "start": 15977.14, + "end": 15978.22, + "probability": 0.9717 + }, + { + "start": 15979.2, + "end": 15981.62, + "probability": 0.8494 + }, + { + "start": 15982.18, + "end": 15983.64, + "probability": 0.911 + }, + { + "start": 15985.22, + "end": 15985.7, + "probability": 0.3494 + }, + { + "start": 15985.86, + "end": 15986.6, + "probability": 0.9416 + }, + { + "start": 15987.0, + "end": 15990.16, + "probability": 0.9692 + }, + { + "start": 15991.08, + "end": 15992.3, + "probability": 0.9806 + }, + { + "start": 15992.86, + "end": 15994.14, + "probability": 0.8923 + }, + { + "start": 15995.28, + "end": 15997.54, + "probability": 0.9115 + }, + { + "start": 15998.58, + "end": 16000.32, + "probability": 0.6884 + }, + { + "start": 16000.88, + "end": 16003.22, + "probability": 0.9744 + }, + { + "start": 16003.46, + "end": 16004.82, + "probability": 0.8126 + }, + { + "start": 16005.08, + "end": 16007.64, + "probability": 0.6891 + }, + { + "start": 16008.54, + "end": 16013.56, + "probability": 0.7324 + }, + { + "start": 16014.88, + "end": 16017.24, + "probability": 0.621 + }, + { + "start": 16017.64, + "end": 16020.12, + "probability": 0.6086 + }, + { + "start": 16021.04, + "end": 16024.26, + "probability": 0.8795 + }, + { + "start": 16024.94, + "end": 16028.28, + "probability": 0.7178 + }, + { + "start": 16028.8, + "end": 16030.48, + "probability": 0.6362 + }, + { + "start": 16034.76, + "end": 16038.64, + "probability": 0.9561 + }, + { + "start": 16039.06, + "end": 16039.99, + "probability": 0.2302 + }, + { + "start": 16041.28, + "end": 16043.08, + "probability": 0.9007 + }, + { + "start": 16043.3, + "end": 16044.6, + "probability": 0.9814 + }, + { + "start": 16044.6, + "end": 16045.68, + "probability": 0.5881 + }, + { + "start": 16046.11, + "end": 16049.32, + "probability": 0.9541 + }, + { + "start": 16049.44, + "end": 16050.58, + "probability": 0.624 + }, + { + "start": 16050.98, + "end": 16052.37, + "probability": 0.9824 + }, + { + "start": 16053.08, + "end": 16056.02, + "probability": 0.7708 + }, + { + "start": 16056.58, + "end": 16057.6, + "probability": 0.6609 + }, + { + "start": 16057.66, + "end": 16058.66, + "probability": 0.3429 + }, + { + "start": 16059.06, + "end": 16061.82, + "probability": 0.7354 + }, + { + "start": 16062.1, + "end": 16064.0, + "probability": 0.5969 + }, + { + "start": 16064.12, + "end": 16065.47, + "probability": 0.9181 + }, + { + "start": 16066.22, + "end": 16066.48, + "probability": 0.7632 + }, + { + "start": 16067.42, + "end": 16069.54, + "probability": 0.0606 + }, + { + "start": 16069.84, + "end": 16071.04, + "probability": 0.6797 + }, + { + "start": 16072.1, + "end": 16074.34, + "probability": 0.7397 + }, + { + "start": 16074.42, + "end": 16075.04, + "probability": 0.5003 + }, + { + "start": 16075.08, + "end": 16075.72, + "probability": 0.749 + }, + { + "start": 16075.96, + "end": 16078.84, + "probability": 0.6358 + }, + { + "start": 16079.6, + "end": 16080.34, + "probability": 0.7421 + }, + { + "start": 16080.56, + "end": 16081.2, + "probability": 0.8064 + }, + { + "start": 16081.28, + "end": 16082.58, + "probability": 0.8715 + }, + { + "start": 16082.72, + "end": 16084.0, + "probability": 0.3903 + }, + { + "start": 16084.12, + "end": 16085.46, + "probability": 0.5922 + }, + { + "start": 16086.4, + "end": 16091.02, + "probability": 0.8281 + }, + { + "start": 16091.68, + "end": 16097.02, + "probability": 0.9035 + }, + { + "start": 16097.78, + "end": 16101.16, + "probability": 0.928 + }, + { + "start": 16101.84, + "end": 16104.72, + "probability": 0.7892 + }, + { + "start": 16105.38, + "end": 16106.64, + "probability": 0.8319 + }, + { + "start": 16106.92, + "end": 16109.02, + "probability": 0.7482 + }, + { + "start": 16109.58, + "end": 16111.8, + "probability": 0.7627 + }, + { + "start": 16112.92, + "end": 16113.8, + "probability": 0.5061 + }, + { + "start": 16115.0, + "end": 16117.18, + "probability": 0.9041 + }, + { + "start": 16117.18, + "end": 16119.5, + "probability": 0.5863 + }, + { + "start": 16120.44, + "end": 16122.22, + "probability": 0.587 + }, + { + "start": 16122.46, + "end": 16125.3, + "probability": 0.6484 + }, + { + "start": 16126.1, + "end": 16129.84, + "probability": 0.8784 + }, + { + "start": 16130.58, + "end": 16132.4, + "probability": 0.8696 + }, + { + "start": 16132.9, + "end": 16134.88, + "probability": 0.6927 + }, + { + "start": 16135.74, + "end": 16139.36, + "probability": 0.5866 + }, + { + "start": 16139.54, + "end": 16140.36, + "probability": 0.5045 + }, + { + "start": 16140.98, + "end": 16142.56, + "probability": 0.774 + }, + { + "start": 16142.7, + "end": 16143.28, + "probability": 0.4205 + }, + { + "start": 16143.52, + "end": 16143.9, + "probability": 0.5676 + }, + { + "start": 16146.04, + "end": 16146.14, + "probability": 0.626 + }, + { + "start": 16146.48, + "end": 16147.6, + "probability": 0.9316 + }, + { + "start": 16147.78, + "end": 16149.88, + "probability": 0.7175 + }, + { + "start": 16150.7, + "end": 16154.58, + "probability": 0.9773 + }, + { + "start": 16155.2, + "end": 16155.98, + "probability": 0.9893 + }, + { + "start": 16156.04, + "end": 16159.04, + "probability": 0.6629 + }, + { + "start": 16159.62, + "end": 16161.16, + "probability": 0.959 + }, + { + "start": 16161.86, + "end": 16163.88, + "probability": 0.5885 + }, + { + "start": 16164.98, + "end": 16167.46, + "probability": 0.9629 + }, + { + "start": 16168.06, + "end": 16169.58, + "probability": 0.7259 + }, + { + "start": 16170.2, + "end": 16170.48, + "probability": 0.8719 + }, + { + "start": 16170.68, + "end": 16172.94, + "probability": 0.7086 + }, + { + "start": 16172.94, + "end": 16174.98, + "probability": 0.8008 + }, + { + "start": 16175.52, + "end": 16177.96, + "probability": 0.637 + }, + { + "start": 16178.48, + "end": 16179.4, + "probability": 0.5374 + }, + { + "start": 16179.68, + "end": 16182.78, + "probability": 0.563 + }, + { + "start": 16183.66, + "end": 16185.96, + "probability": 0.8815 + }, + { + "start": 16186.6, + "end": 16187.42, + "probability": 0.9795 + }, + { + "start": 16188.32, + "end": 16191.94, + "probability": 0.7859 + }, + { + "start": 16192.56, + "end": 16197.26, + "probability": 0.7715 + }, + { + "start": 16197.68, + "end": 16197.94, + "probability": 0.2222 + }, + { + "start": 16199.16, + "end": 16201.78, + "probability": 0.5432 + }, + { + "start": 16202.94, + "end": 16204.9, + "probability": 0.9116 + }, + { + "start": 16205.88, + "end": 16206.92, + "probability": 0.834 + }, + { + "start": 16212.68, + "end": 16214.86, + "probability": 0.48 + }, + { + "start": 16214.98, + "end": 16217.1, + "probability": 0.5266 + }, + { + "start": 16217.66, + "end": 16219.32, + "probability": 0.9556 + }, + { + "start": 16220.02, + "end": 16223.38, + "probability": 0.8617 + }, + { + "start": 16223.56, + "end": 16224.58, + "probability": 0.3354 + }, + { + "start": 16224.78, + "end": 16226.22, + "probability": 0.4472 + }, + { + "start": 16226.88, + "end": 16232.54, + "probability": 0.3274 + }, + { + "start": 16239.08, + "end": 16239.6, + "probability": 0.1363 + }, + { + "start": 16247.38, + "end": 16248.48, + "probability": 0.6623 + }, + { + "start": 16249.42, + "end": 16251.36, + "probability": 0.757 + }, + { + "start": 16251.66, + "end": 16252.66, + "probability": 0.8949 + }, + { + "start": 16253.16, + "end": 16253.98, + "probability": 0.4705 + }, + { + "start": 16254.5, + "end": 16255.91, + "probability": 0.6393 + }, + { + "start": 16257.12, + "end": 16259.7, + "probability": 0.8063 + }, + { + "start": 16259.78, + "end": 16263.4, + "probability": 0.9793 + }, + { + "start": 16264.26, + "end": 16266.14, + "probability": 0.8006 + }, + { + "start": 16266.68, + "end": 16271.08, + "probability": 0.5302 + }, + { + "start": 16271.54, + "end": 16272.16, + "probability": 0.812 + }, + { + "start": 16272.46, + "end": 16272.8, + "probability": 0.2055 + }, + { + "start": 16273.14, + "end": 16275.46, + "probability": 0.9612 + }, + { + "start": 16275.58, + "end": 16277.28, + "probability": 0.8096 + }, + { + "start": 16278.24, + "end": 16279.8, + "probability": 0.3567 + }, + { + "start": 16279.8, + "end": 16279.94, + "probability": 0.4295 + }, + { + "start": 16280.3, + "end": 16282.58, + "probability": 0.9385 + }, + { + "start": 16284.14, + "end": 16285.78, + "probability": 0.6072 + }, + { + "start": 16288.04, + "end": 16291.38, + "probability": 0.742 + }, + { + "start": 16292.04, + "end": 16293.64, + "probability": 0.8898 + }, + { + "start": 16294.18, + "end": 16295.56, + "probability": 0.7805 + }, + { + "start": 16296.44, + "end": 16302.06, + "probability": 0.9714 + }, + { + "start": 16303.2, + "end": 16303.86, + "probability": 0.7042 + }, + { + "start": 16304.0, + "end": 16304.35, + "probability": 0.8774 + }, + { + "start": 16304.84, + "end": 16307.3, + "probability": 0.8484 + }, + { + "start": 16308.34, + "end": 16310.77, + "probability": 0.9238 + }, + { + "start": 16311.02, + "end": 16311.9, + "probability": 0.8628 + }, + { + "start": 16312.7, + "end": 16314.2, + "probability": 0.9038 + }, + { + "start": 16315.06, + "end": 16316.64, + "probability": 0.9754 + }, + { + "start": 16317.14, + "end": 16318.98, + "probability": 0.9918 + }, + { + "start": 16319.62, + "end": 16320.8, + "probability": 0.7517 + }, + { + "start": 16322.28, + "end": 16326.2, + "probability": 0.9417 + }, + { + "start": 16326.62, + "end": 16328.04, + "probability": 0.9769 + }, + { + "start": 16328.16, + "end": 16330.22, + "probability": 0.9824 + }, + { + "start": 16330.44, + "end": 16330.96, + "probability": 0.9292 + }, + { + "start": 16331.0, + "end": 16333.54, + "probability": 0.8423 + }, + { + "start": 16333.98, + "end": 16336.04, + "probability": 0.421 + }, + { + "start": 16336.12, + "end": 16337.1, + "probability": 0.6877 + }, + { + "start": 16337.16, + "end": 16338.0, + "probability": 0.929 + }, + { + "start": 16338.56, + "end": 16340.9, + "probability": 0.7228 + }, + { + "start": 16341.54, + "end": 16342.0, + "probability": 0.6218 + }, + { + "start": 16345.94, + "end": 16346.84, + "probability": 0.6606 + }, + { + "start": 16346.96, + "end": 16347.4, + "probability": 0.9393 + }, + { + "start": 16347.74, + "end": 16348.24, + "probability": 0.7916 + }, + { + "start": 16348.42, + "end": 16350.9, + "probability": 0.931 + }, + { + "start": 16352.54, + "end": 16353.08, + "probability": 0.8051 + }, + { + "start": 16353.54, + "end": 16354.92, + "probability": 0.8645 + }, + { + "start": 16357.1, + "end": 16358.6, + "probability": 0.9368 + }, + { + "start": 16359.58, + "end": 16362.2, + "probability": 0.9155 + }, + { + "start": 16362.74, + "end": 16363.2, + "probability": 0.7307 + }, + { + "start": 16364.72, + "end": 16366.3, + "probability": 0.7593 + }, + { + "start": 16366.36, + "end": 16367.02, + "probability": 0.9755 + }, + { + "start": 16368.26, + "end": 16371.02, + "probability": 0.8912 + }, + { + "start": 16372.4, + "end": 16373.56, + "probability": 0.5919 + }, + { + "start": 16374.72, + "end": 16376.0, + "probability": 0.7253 + }, + { + "start": 16376.86, + "end": 16377.56, + "probability": 0.9355 + }, + { + "start": 16379.28, + "end": 16379.88, + "probability": 0.8994 + }, + { + "start": 16380.24, + "end": 16380.9, + "probability": 0.9701 + }, + { + "start": 16381.06, + "end": 16382.88, + "probability": 0.9795 + }, + { + "start": 16382.96, + "end": 16383.92, + "probability": 0.8452 + }, + { + "start": 16384.26, + "end": 16385.15, + "probability": 0.728 + }, + { + "start": 16386.74, + "end": 16387.37, + "probability": 0.2094 + }, + { + "start": 16388.1, + "end": 16392.86, + "probability": 0.457 + }, + { + "start": 16393.12, + "end": 16397.18, + "probability": 0.9224 + }, + { + "start": 16398.34, + "end": 16402.9, + "probability": 0.9325 + }, + { + "start": 16403.5, + "end": 16404.5, + "probability": 0.4964 + }, + { + "start": 16404.5, + "end": 16405.26, + "probability": 0.5395 + }, + { + "start": 16405.34, + "end": 16405.8, + "probability": 0.9055 + }, + { + "start": 16405.92, + "end": 16406.36, + "probability": 0.9644 + }, + { + "start": 16406.54, + "end": 16406.92, + "probability": 0.7813 + }, + { + "start": 16407.64, + "end": 16408.2, + "probability": 0.6677 + }, + { + "start": 16408.74, + "end": 16410.14, + "probability": 0.8253 + }, + { + "start": 16410.28, + "end": 16411.42, + "probability": 0.3465 + }, + { + "start": 16412.2, + "end": 16413.4, + "probability": 0.8177 + }, + { + "start": 16413.56, + "end": 16414.16, + "probability": 0.6618 + }, + { + "start": 16414.66, + "end": 16415.75, + "probability": 0.9315 + }, + { + "start": 16416.52, + "end": 16417.64, + "probability": 0.5341 + }, + { + "start": 16418.52, + "end": 16419.98, + "probability": 0.8436 + }, + { + "start": 16420.08, + "end": 16420.56, + "probability": 0.8926 + }, + { + "start": 16422.12, + "end": 16423.18, + "probability": 0.3622 + }, + { + "start": 16424.6, + "end": 16426.24, + "probability": 0.501 + }, + { + "start": 16426.64, + "end": 16427.34, + "probability": 0.7779 + }, + { + "start": 16427.92, + "end": 16429.0, + "probability": 0.3381 + }, + { + "start": 16431.28, + "end": 16433.1, + "probability": 0.9941 + }, + { + "start": 16433.66, + "end": 16434.39, + "probability": 0.5467 + }, + { + "start": 16435.28, + "end": 16435.56, + "probability": 0.8253 + }, + { + "start": 16437.3, + "end": 16441.3, + "probability": 0.9734 + }, + { + "start": 16442.3, + "end": 16442.86, + "probability": 0.9057 + }, + { + "start": 16444.22, + "end": 16444.96, + "probability": 0.8262 + }, + { + "start": 16445.78, + "end": 16447.66, + "probability": 0.7101 + }, + { + "start": 16448.32, + "end": 16449.53, + "probability": 0.95 + }, + { + "start": 16451.28, + "end": 16453.31, + "probability": 0.7223 + }, + { + "start": 16454.36, + "end": 16454.76, + "probability": 0.8382 + }, + { + "start": 16455.52, + "end": 16457.78, + "probability": 0.6907 + }, + { + "start": 16458.52, + "end": 16458.75, + "probability": 0.5006 + }, + { + "start": 16459.46, + "end": 16463.28, + "probability": 0.7271 + }, + { + "start": 16463.28, + "end": 16463.28, + "probability": 0.6805 + }, + { + "start": 16463.28, + "end": 16464.82, + "probability": 0.8193 + }, + { + "start": 16465.38, + "end": 16466.2, + "probability": 0.1443 + }, + { + "start": 16467.2, + "end": 16468.7, + "probability": 0.343 + }, + { + "start": 16468.72, + "end": 16469.04, + "probability": 0.4115 + }, + { + "start": 16469.16, + "end": 16471.16, + "probability": 0.8422 + }, + { + "start": 16472.14, + "end": 16472.58, + "probability": 0.0889 + }, + { + "start": 16472.58, + "end": 16473.74, + "probability": 0.6348 + }, + { + "start": 16473.94, + "end": 16475.56, + "probability": 0.946 + }, + { + "start": 16476.14, + "end": 16476.6, + "probability": 0.756 + }, + { + "start": 16476.68, + "end": 16477.34, + "probability": 0.586 + }, + { + "start": 16477.72, + "end": 16479.3, + "probability": 0.8759 + }, + { + "start": 16479.36, + "end": 16479.68, + "probability": 0.4377 + }, + { + "start": 16481.82, + "end": 16483.64, + "probability": 0.9756 + }, + { + "start": 16484.24, + "end": 16485.18, + "probability": 0.9277 + }, + { + "start": 16486.26, + "end": 16488.0, + "probability": 0.549 + }, + { + "start": 16488.28, + "end": 16492.22, + "probability": 0.9318 + }, + { + "start": 16492.7, + "end": 16493.0, + "probability": 0.7817 + }, + { + "start": 16493.76, + "end": 16493.76, + "probability": 0.9624 + }, + { + "start": 16494.92, + "end": 16496.92, + "probability": 0.9111 + }, + { + "start": 16497.58, + "end": 16498.6, + "probability": 0.7286 + }, + { + "start": 16499.14, + "end": 16501.48, + "probability": 0.9977 + }, + { + "start": 16502.42, + "end": 16503.32, + "probability": 0.2297 + }, + { + "start": 16503.32, + "end": 16504.42, + "probability": 0.6613 + }, + { + "start": 16506.12, + "end": 16506.86, + "probability": 0.0502 + }, + { + "start": 16506.96, + "end": 16507.78, + "probability": 0.8499 + }, + { + "start": 16511.42, + "end": 16514.52, + "probability": 0.7236 + }, + { + "start": 16514.66, + "end": 16515.88, + "probability": 0.8472 + }, + { + "start": 16516.74, + "end": 16517.82, + "probability": 0.8469 + }, + { + "start": 16519.14, + "end": 16520.26, + "probability": 0.6784 + }, + { + "start": 16521.24, + "end": 16522.48, + "probability": 0.9046 + }, + { + "start": 16523.0, + "end": 16524.14, + "probability": 0.6184 + }, + { + "start": 16524.86, + "end": 16526.14, + "probability": 0.7249 + }, + { + "start": 16528.82, + "end": 16529.98, + "probability": 0.8904 + }, + { + "start": 16530.98, + "end": 16532.58, + "probability": 0.89 + }, + { + "start": 16533.52, + "end": 16534.16, + "probability": 0.8143 + }, + { + "start": 16534.74, + "end": 16536.04, + "probability": 0.9803 + }, + { + "start": 16536.62, + "end": 16537.4, + "probability": 0.8491 + }, + { + "start": 16537.9, + "end": 16540.6, + "probability": 0.9351 + }, + { + "start": 16541.92, + "end": 16542.92, + "probability": 0.2365 + }, + { + "start": 16543.08, + "end": 16543.5, + "probability": 0.703 + }, + { + "start": 16543.5, + "end": 16543.82, + "probability": 0.6889 + }, + { + "start": 16545.04, + "end": 16546.3, + "probability": 0.3398 + }, + { + "start": 16546.36, + "end": 16546.66, + "probability": 0.3795 + }, + { + "start": 16547.12, + "end": 16548.32, + "probability": 0.6378 + }, + { + "start": 16548.96, + "end": 16549.9, + "probability": 0.7679 + }, + { + "start": 16551.18, + "end": 16553.78, + "probability": 0.7989 + }, + { + "start": 16554.5, + "end": 16556.2, + "probability": 0.7008 + }, + { + "start": 16557.52, + "end": 16558.44, + "probability": 0.4596 + }, + { + "start": 16559.14, + "end": 16561.48, + "probability": 0.8037 + }, + { + "start": 16561.6, + "end": 16561.86, + "probability": 0.8416 + }, + { + "start": 16562.6, + "end": 16563.7, + "probability": 0.7281 + }, + { + "start": 16565.24, + "end": 16565.76, + "probability": 0.9536 + }, + { + "start": 16567.9, + "end": 16568.26, + "probability": 0.8326 + }, + { + "start": 16569.06, + "end": 16569.52, + "probability": 0.8596 + }, + { + "start": 16570.0, + "end": 16571.34, + "probability": 0.3686 + }, + { + "start": 16574.62, + "end": 16576.96, + "probability": 0.6952 + }, + { + "start": 16577.08, + "end": 16580.02, + "probability": 0.9836 + }, + { + "start": 16580.1, + "end": 16582.36, + "probability": 0.9944 + }, + { + "start": 16582.52, + "end": 16585.16, + "probability": 0.9937 + }, + { + "start": 16586.28, + "end": 16586.38, + "probability": 0.2671 + }, + { + "start": 16586.74, + "end": 16588.68, + "probability": 0.9631 + }, + { + "start": 16588.92, + "end": 16589.52, + "probability": 0.5323 + }, + { + "start": 16589.64, + "end": 16590.74, + "probability": 0.9531 + }, + { + "start": 16590.82, + "end": 16592.71, + "probability": 0.9923 + }, + { + "start": 16593.3, + "end": 16597.56, + "probability": 0.9972 + }, + { + "start": 16597.72, + "end": 16599.18, + "probability": 0.9626 + }, + { + "start": 16599.7, + "end": 16602.39, + "probability": 0.8555 + }, + { + "start": 16602.94, + "end": 16603.68, + "probability": 0.9592 + }, + { + "start": 16603.78, + "end": 16607.16, + "probability": 0.9569 + }, + { + "start": 16607.16, + "end": 16609.44, + "probability": 0.8626 + }, + { + "start": 16609.72, + "end": 16611.74, + "probability": 0.9426 + }, + { + "start": 16612.28, + "end": 16615.8, + "probability": 0.9717 + }, + { + "start": 16616.32, + "end": 16617.36, + "probability": 0.7429 + }, + { + "start": 16617.78, + "end": 16619.18, + "probability": 0.8404 + }, + { + "start": 16619.34, + "end": 16620.02, + "probability": 0.9679 + }, + { + "start": 16620.1, + "end": 16621.12, + "probability": 0.967 + }, + { + "start": 16621.42, + "end": 16624.72, + "probability": 0.9852 + }, + { + "start": 16625.24, + "end": 16625.52, + "probability": 0.7471 + }, + { + "start": 16626.14, + "end": 16628.98, + "probability": 0.9588 + }, + { + "start": 16629.42, + "end": 16629.9, + "probability": 0.8464 + }, + { + "start": 16630.0, + "end": 16630.88, + "probability": 0.9235 + }, + { + "start": 16630.92, + "end": 16631.3, + "probability": 0.8164 + }, + { + "start": 16631.34, + "end": 16634.28, + "probability": 0.9485 + }, + { + "start": 16634.48, + "end": 16635.54, + "probability": 0.6587 + }, + { + "start": 16637.26, + "end": 16640.02, + "probability": 0.206 + }, + { + "start": 16640.02, + "end": 16641.64, + "probability": 0.0875 + }, + { + "start": 16641.64, + "end": 16641.78, + "probability": 0.1721 + }, + { + "start": 16641.78, + "end": 16641.84, + "probability": 0.4442 + }, + { + "start": 16641.84, + "end": 16643.2, + "probability": 0.4653 + }, + { + "start": 16643.2, + "end": 16643.2, + "probability": 0.1574 + }, + { + "start": 16643.2, + "end": 16644.24, + "probability": 0.9755 + }, + { + "start": 16645.96, + "end": 16648.44, + "probability": 0.6868 + }, + { + "start": 16651.3, + "end": 16651.4, + "probability": 0.0616 + }, + { + "start": 16651.4, + "end": 16651.4, + "probability": 0.0367 + }, + { + "start": 16651.4, + "end": 16651.4, + "probability": 0.1626 + }, + { + "start": 16651.4, + "end": 16652.12, + "probability": 0.305 + }, + { + "start": 16652.24, + "end": 16654.92, + "probability": 0.6529 + }, + { + "start": 16655.0, + "end": 16656.18, + "probability": 0.6655 + }, + { + "start": 16656.3, + "end": 16657.63, + "probability": 0.7497 + }, + { + "start": 16657.92, + "end": 16659.22, + "probability": 0.8636 + }, + { + "start": 16659.54, + "end": 16660.94, + "probability": 0.827 + }, + { + "start": 16661.02, + "end": 16662.22, + "probability": 0.8696 + }, + { + "start": 16662.58, + "end": 16663.14, + "probability": 0.9688 + }, + { + "start": 16663.54, + "end": 16664.0, + "probability": 0.7871 + }, + { + "start": 16664.58, + "end": 16664.88, + "probability": 0.9815 + }, + { + "start": 16665.26, + "end": 16666.36, + "probability": 0.881 + }, + { + "start": 16666.46, + "end": 16667.28, + "probability": 0.9099 + }, + { + "start": 16667.62, + "end": 16669.16, + "probability": 0.7511 + }, + { + "start": 16669.68, + "end": 16670.86, + "probability": 0.9337 + }, + { + "start": 16670.94, + "end": 16672.38, + "probability": 0.5173 + }, + { + "start": 16672.48, + "end": 16676.52, + "probability": 0.9971 + }, + { + "start": 16676.9, + "end": 16678.3, + "probability": 0.9316 + }, + { + "start": 16678.54, + "end": 16682.9, + "probability": 0.8775 + }, + { + "start": 16682.94, + "end": 16685.16, + "probability": 0.9752 + }, + { + "start": 16686.38, + "end": 16688.21, + "probability": 0.6595 + }, + { + "start": 16690.08, + "end": 16691.96, + "probability": 0.6751 + }, + { + "start": 16691.96, + "end": 16693.54, + "probability": 0.9502 + }, + { + "start": 16693.94, + "end": 16695.2, + "probability": 0.83 + }, + { + "start": 16695.36, + "end": 16699.46, + "probability": 0.9417 + }, + { + "start": 16699.72, + "end": 16701.82, + "probability": 0.7487 + }, + { + "start": 16701.9, + "end": 16702.46, + "probability": 0.458 + }, + { + "start": 16702.8, + "end": 16703.02, + "probability": 0.3281 + }, + { + "start": 16703.02, + "end": 16704.66, + "probability": 0.4234 + }, + { + "start": 16705.96, + "end": 16709.0, + "probability": 0.7368 + }, + { + "start": 16709.96, + "end": 16710.1, + "probability": 0.4262 + }, + { + "start": 16710.1, + "end": 16714.12, + "probability": 0.7952 + }, + { + "start": 16714.64, + "end": 16716.0, + "probability": 0.7736 + }, + { + "start": 16716.1, + "end": 16716.96, + "probability": 0.5418 + }, + { + "start": 16717.0, + "end": 16717.53, + "probability": 0.9438 + }, + { + "start": 16717.65, + "end": 16720.73, + "probability": 0.9676 + }, + { + "start": 16720.79, + "end": 16720.99, + "probability": 0.3329 + }, + { + "start": 16720.99, + "end": 16721.77, + "probability": 0.7829 + }, + { + "start": 16722.11, + "end": 16723.24, + "probability": 0.8916 + }, + { + "start": 16725.15, + "end": 16726.19, + "probability": 0.5885 + }, + { + "start": 16726.63, + "end": 16727.97, + "probability": 0.9624 + }, + { + "start": 16736.21, + "end": 16736.21, + "probability": 0.0138 + }, + { + "start": 16736.21, + "end": 16739.69, + "probability": 0.7062 + }, + { + "start": 16739.89, + "end": 16740.73, + "probability": 0.8687 + }, + { + "start": 16741.89, + "end": 16742.63, + "probability": 0.9593 + }, + { + "start": 16744.39, + "end": 16745.43, + "probability": 0.653 + }, + { + "start": 16747.41, + "end": 16750.33, + "probability": 0.969 + }, + { + "start": 16751.53, + "end": 16751.99, + "probability": 0.5668 + }, + { + "start": 16752.61, + "end": 16753.95, + "probability": 0.9099 + }, + { + "start": 16754.67, + "end": 16755.55, + "probability": 0.2035 + }, + { + "start": 16755.55, + "end": 16757.01, + "probability": 0.5009 + }, + { + "start": 16757.15, + "end": 16758.13, + "probability": 0.4351 + }, + { + "start": 16758.25, + "end": 16759.25, + "probability": 0.6987 + }, + { + "start": 16759.45, + "end": 16760.69, + "probability": 0.957 + }, + { + "start": 16761.07, + "end": 16762.15, + "probability": 0.2002 + }, + { + "start": 16765.07, + "end": 16768.11, + "probability": 0.7882 + }, + { + "start": 16769.03, + "end": 16771.33, + "probability": 0.8444 + }, + { + "start": 16772.09, + "end": 16774.23, + "probability": 0.972 + }, + { + "start": 16775.21, + "end": 16777.97, + "probability": 0.8004 + }, + { + "start": 16780.17, + "end": 16786.45, + "probability": 0.0541 + }, + { + "start": 16788.52, + "end": 16795.55, + "probability": 0.3598 + }, + { + "start": 16799.69, + "end": 16800.81, + "probability": 0.0384 + }, + { + "start": 16800.81, + "end": 16801.65, + "probability": 0.0547 + }, + { + "start": 16801.81, + "end": 16802.61, + "probability": 0.0229 + }, + { + "start": 16802.61, + "end": 16803.05, + "probability": 0.1272 + }, + { + "start": 16803.25, + "end": 16803.91, + "probability": 0.1208 + }, + { + "start": 16808.01, + "end": 16809.33, + "probability": 0.4443 + }, + { + "start": 16809.45, + "end": 16810.45, + "probability": 0.0668 + }, + { + "start": 16810.67, + "end": 16811.05, + "probability": 0.0499 + }, + { + "start": 16811.05, + "end": 16812.23, + "probability": 0.0824 + }, + { + "start": 16812.99, + "end": 16812.99, + "probability": 0.0581 + }, + { + "start": 16812.99, + "end": 16813.13, + "probability": 0.315 + }, + { + "start": 16813.85, + "end": 16817.99, + "probability": 0.2311 + }, + { + "start": 16824.25, + "end": 16824.95, + "probability": 0.0506 + }, + { + "start": 16830.33, + "end": 16830.33, + "probability": 0.2252 + }, + { + "start": 16830.33, + "end": 16833.03, + "probability": 0.0286 + }, + { + "start": 16834.51, + "end": 16836.37, + "probability": 0.044 + }, + { + "start": 16836.37, + "end": 16836.89, + "probability": 0.0676 + }, + { + "start": 16836.89, + "end": 16838.43, + "probability": 0.1022 + }, + { + "start": 16857.0, + "end": 16857.0, + "probability": 0.0 + }, + { + "start": 16857.0, + "end": 16857.0, + "probability": 0.0 + }, + { + "start": 16857.0, + "end": 16857.0, + "probability": 0.0 + }, + { + "start": 16857.0, + "end": 16857.0, + "probability": 0.0 + }, + { + "start": 16857.0, + "end": 16857.0, + "probability": 0.0 + }, + { + "start": 16857.0, + "end": 16857.0, + "probability": 0.0 + }, + { + "start": 16857.0, + "end": 16857.0, + "probability": 0.0 + }, + { + "start": 16857.44, + "end": 16858.35, + "probability": 0.1063 + }, + { + "start": 16858.74, + "end": 16859.04, + "probability": 0.1809 + }, + { + "start": 16859.04, + "end": 16860.72, + "probability": 0.3501 + }, + { + "start": 16862.55, + "end": 16864.9, + "probability": 0.2513 + }, + { + "start": 16865.58, + "end": 16866.66, + "probability": 0.5952 + }, + { + "start": 16867.2, + "end": 16869.28, + "probability": 0.9175 + }, + { + "start": 16870.78, + "end": 16870.9, + "probability": 0.6531 + }, + { + "start": 16871.04, + "end": 16872.34, + "probability": 0.8176 + }, + { + "start": 16872.46, + "end": 16873.72, + "probability": 0.9438 + }, + { + "start": 16874.12, + "end": 16875.34, + "probability": 0.7125 + }, + { + "start": 16875.64, + "end": 16877.12, + "probability": 0.5063 + }, + { + "start": 16877.82, + "end": 16878.9, + "probability": 0.3824 + }, + { + "start": 16879.0, + "end": 16880.58, + "probability": 0.807 + }, + { + "start": 16880.82, + "end": 16882.38, + "probability": 0.8237 + }, + { + "start": 16883.04, + "end": 16883.96, + "probability": 0.765 + }, + { + "start": 16884.0, + "end": 16884.1, + "probability": 0.2034 + }, + { + "start": 16885.02, + "end": 16886.44, + "probability": 0.3734 + }, + { + "start": 16886.8, + "end": 16889.62, + "probability": 0.1961 + }, + { + "start": 16890.0, + "end": 16890.6, + "probability": 0.4737 + }, + { + "start": 16891.4, + "end": 16892.66, + "probability": 0.1011 + }, + { + "start": 16893.16, + "end": 16897.0, + "probability": 0.8779 + }, + { + "start": 16897.02, + "end": 16897.18, + "probability": 0.3767 + }, + { + "start": 16897.88, + "end": 16898.88, + "probability": 0.1939 + }, + { + "start": 16899.28, + "end": 16905.42, + "probability": 0.9418 + }, + { + "start": 16905.56, + "end": 16905.96, + "probability": 0.9465 + }, + { + "start": 16906.62, + "end": 16909.82, + "probability": 0.9515 + }, + { + "start": 16910.28, + "end": 16911.12, + "probability": 0.3267 + }, + { + "start": 16912.2, + "end": 16914.4, + "probability": 0.9773 + }, + { + "start": 16915.16, + "end": 16916.5, + "probability": 0.8642 + }, + { + "start": 16916.8, + "end": 16918.0, + "probability": 0.9723 + }, + { + "start": 16918.08, + "end": 16920.72, + "probability": 0.9771 + }, + { + "start": 16921.9, + "end": 16923.4, + "probability": 0.6146 + }, + { + "start": 16923.91, + "end": 16925.94, + "probability": 0.7945 + }, + { + "start": 16926.76, + "end": 16928.95, + "probability": 0.7143 + }, + { + "start": 16929.58, + "end": 16931.54, + "probability": 0.5675 + }, + { + "start": 16931.62, + "end": 16933.15, + "probability": 0.6784 + }, + { + "start": 16934.08, + "end": 16935.86, + "probability": 0.8748 + }, + { + "start": 16936.24, + "end": 16940.38, + "probability": 0.3793 + }, + { + "start": 16941.48, + "end": 16947.56, + "probability": 0.9396 + }, + { + "start": 16948.96, + "end": 16951.1, + "probability": 0.9526 + }, + { + "start": 16951.2, + "end": 16951.92, + "probability": 0.8981 + }, + { + "start": 16952.22, + "end": 16953.04, + "probability": 0.5223 + }, + { + "start": 16953.14, + "end": 16954.22, + "probability": 0.8467 + }, + { + "start": 16954.84, + "end": 16958.48, + "probability": 0.9065 + }, + { + "start": 16959.18, + "end": 16960.14, + "probability": 0.8816 + }, + { + "start": 16960.2, + "end": 16960.8, + "probability": 0.98 + }, + { + "start": 16960.9, + "end": 16962.76, + "probability": 0.8653 + }, + { + "start": 16962.88, + "end": 16965.08, + "probability": 0.932 + }, + { + "start": 16965.66, + "end": 16967.14, + "probability": 0.6245 + }, + { + "start": 16967.68, + "end": 16969.06, + "probability": 0.9258 + }, + { + "start": 16969.9, + "end": 16972.76, + "probability": 0.8261 + }, + { + "start": 16974.08, + "end": 16979.52, + "probability": 0.9914 + }, + { + "start": 16980.9, + "end": 16982.76, + "probability": 0.9669 + }, + { + "start": 16984.18, + "end": 16985.56, + "probability": 0.9346 + }, + { + "start": 16986.7, + "end": 16987.22, + "probability": 0.7935 + }, + { + "start": 16988.42, + "end": 16992.12, + "probability": 0.421 + }, + { + "start": 16992.56, + "end": 16992.86, + "probability": 0.6991 + }, + { + "start": 16992.94, + "end": 16993.5, + "probability": 0.6274 + }, + { + "start": 16993.58, + "end": 16995.17, + "probability": 0.969 + }, + { + "start": 16996.36, + "end": 16999.0, + "probability": 0.9719 + }, + { + "start": 17000.38, + "end": 17000.68, + "probability": 0.6372 + }, + { + "start": 17000.7, + "end": 17002.88, + "probability": 0.9873 + }, + { + "start": 17004.14, + "end": 17007.58, + "probability": 0.9629 + }, + { + "start": 17008.62, + "end": 17012.02, + "probability": 0.9896 + }, + { + "start": 17014.32, + "end": 17015.06, + "probability": 0.8749 + }, + { + "start": 17016.7, + "end": 17018.76, + "probability": 0.7728 + }, + { + "start": 17019.86, + "end": 17023.3, + "probability": 0.9692 + }, + { + "start": 17025.28, + "end": 17027.2, + "probability": 0.9956 + }, + { + "start": 17029.48, + "end": 17033.46, + "probability": 0.9043 + }, + { + "start": 17034.78, + "end": 17035.66, + "probability": 0.9506 + }, + { + "start": 17037.2, + "end": 17038.8, + "probability": 0.9713 + }, + { + "start": 17040.02, + "end": 17042.18, + "probability": 0.9602 + }, + { + "start": 17042.88, + "end": 17045.34, + "probability": 0.9592 + }, + { + "start": 17046.34, + "end": 17048.14, + "probability": 0.8328 + }, + { + "start": 17048.78, + "end": 17050.74, + "probability": 0.8756 + }, + { + "start": 17052.02, + "end": 17052.48, + "probability": 0.8887 + }, + { + "start": 17052.56, + "end": 17053.02, + "probability": 0.8682 + }, + { + "start": 17053.32, + "end": 17053.94, + "probability": 0.5216 + }, + { + "start": 17054.02, + "end": 17056.32, + "probability": 0.9152 + }, + { + "start": 17056.8, + "end": 17060.98, + "probability": 0.9435 + }, + { + "start": 17062.7, + "end": 17065.3, + "probability": 0.9592 + }, + { + "start": 17066.62, + "end": 17070.44, + "probability": 0.9914 + }, + { + "start": 17070.94, + "end": 17073.6, + "probability": 0.9971 + }, + { + "start": 17074.08, + "end": 17076.92, + "probability": 0.7242 + }, + { + "start": 17077.16, + "end": 17080.24, + "probability": 0.99 + }, + { + "start": 17080.84, + "end": 17081.72, + "probability": 0.6157 + }, + { + "start": 17083.04, + "end": 17085.22, + "probability": 0.6782 + }, + { + "start": 17085.26, + "end": 17085.78, + "probability": 0.7222 + }, + { + "start": 17085.9, + "end": 17086.44, + "probability": 0.9335 + }, + { + "start": 17086.52, + "end": 17088.76, + "probability": 0.9707 + }, + { + "start": 17090.84, + "end": 17091.86, + "probability": 0.9037 + }, + { + "start": 17092.64, + "end": 17097.82, + "probability": 0.9941 + }, + { + "start": 17098.1, + "end": 17098.74, + "probability": 0.776 + }, + { + "start": 17100.14, + "end": 17103.72, + "probability": 0.9932 + }, + { + "start": 17103.72, + "end": 17108.68, + "probability": 0.9859 + }, + { + "start": 17109.02, + "end": 17109.62, + "probability": 0.9373 + }, + { + "start": 17109.68, + "end": 17110.52, + "probability": 0.953 + }, + { + "start": 17110.66, + "end": 17111.42, + "probability": 0.6693 + }, + { + "start": 17113.36, + "end": 17115.18, + "probability": 0.8364 + }, + { + "start": 17115.26, + "end": 17116.7, + "probability": 0.8174 + }, + { + "start": 17116.8, + "end": 17118.44, + "probability": 0.9126 + }, + { + "start": 17118.88, + "end": 17119.86, + "probability": 0.36 + }, + { + "start": 17120.8, + "end": 17123.64, + "probability": 0.9983 + }, + { + "start": 17124.52, + "end": 17130.12, + "probability": 0.9329 + }, + { + "start": 17130.76, + "end": 17136.24, + "probability": 0.9973 + }, + { + "start": 17137.58, + "end": 17140.4, + "probability": 0.7889 + }, + { + "start": 17140.9, + "end": 17143.22, + "probability": 0.9906 + }, + { + "start": 17143.56, + "end": 17145.96, + "probability": 0.9896 + }, + { + "start": 17146.98, + "end": 17148.7, + "probability": 0.9884 + }, + { + "start": 17149.28, + "end": 17150.14, + "probability": 0.1186 + }, + { + "start": 17150.14, + "end": 17153.78, + "probability": 0.9688 + }, + { + "start": 17153.86, + "end": 17154.1, + "probability": 0.8459 + }, + { + "start": 17156.5, + "end": 17156.73, + "probability": 0.9413 + }, + { + "start": 17158.66, + "end": 17159.78, + "probability": 0.9959 + }, + { + "start": 17160.64, + "end": 17161.94, + "probability": 0.8682 + }, + { + "start": 17162.24, + "end": 17164.4, + "probability": 0.9428 + }, + { + "start": 17165.28, + "end": 17166.94, + "probability": 0.9817 + }, + { + "start": 17167.48, + "end": 17170.74, + "probability": 0.8879 + }, + { + "start": 17171.64, + "end": 17175.38, + "probability": 0.9978 + }, + { + "start": 17175.84, + "end": 17176.14, + "probability": 0.4896 + }, + { + "start": 17176.96, + "end": 17178.58, + "probability": 0.9756 + }, + { + "start": 17179.98, + "end": 17182.9, + "probability": 0.9978 + }, + { + "start": 17184.32, + "end": 17186.44, + "probability": 0.9716 + }, + { + "start": 17188.08, + "end": 17191.32, + "probability": 0.9969 + }, + { + "start": 17191.32, + "end": 17195.0, + "probability": 0.9883 + }, + { + "start": 17195.48, + "end": 17195.85, + "probability": 0.9155 + }, + { + "start": 17196.8, + "end": 17198.9, + "probability": 0.9996 + }, + { + "start": 17200.64, + "end": 17203.58, + "probability": 0.9978 + }, + { + "start": 17205.95, + "end": 17207.5, + "probability": 0.6573 + }, + { + "start": 17208.88, + "end": 17209.14, + "probability": 0.777 + }, + { + "start": 17210.32, + "end": 17211.62, + "probability": 0.7137 + }, + { + "start": 17211.96, + "end": 17214.22, + "probability": 0.9525 + }, + { + "start": 17215.96, + "end": 17216.9, + "probability": 0.7602 + }, + { + "start": 17217.26, + "end": 17217.26, + "probability": 0.6797 + }, + { + "start": 17217.86, + "end": 17218.8, + "probability": 0.7094 + }, + { + "start": 17221.38, + "end": 17224.32, + "probability": 0.996 + }, + { + "start": 17224.62, + "end": 17225.68, + "probability": 0.9505 + }, + { + "start": 17228.04, + "end": 17229.7, + "probability": 0.7575 + }, + { + "start": 17231.14, + "end": 17231.68, + "probability": 0.7529 + }, + { + "start": 17231.86, + "end": 17235.01, + "probability": 0.9899 + }, + { + "start": 17235.14, + "end": 17238.1, + "probability": 0.9917 + }, + { + "start": 17238.24, + "end": 17239.26, + "probability": 0.7204 + }, + { + "start": 17240.12, + "end": 17241.08, + "probability": 0.9871 + }, + { + "start": 17241.66, + "end": 17244.98, + "probability": 0.9655 + }, + { + "start": 17246.28, + "end": 17248.16, + "probability": 0.9821 + }, + { + "start": 17249.96, + "end": 17251.42, + "probability": 0.9458 + }, + { + "start": 17253.06, + "end": 17255.72, + "probability": 0.9873 + }, + { + "start": 17257.32, + "end": 17258.74, + "probability": 0.8113 + }, + { + "start": 17259.38, + "end": 17259.98, + "probability": 0.9626 + }, + { + "start": 17261.62, + "end": 17262.02, + "probability": 0.6564 + }, + { + "start": 17262.12, + "end": 17262.82, + "probability": 0.6297 + }, + { + "start": 17263.28, + "end": 17265.44, + "probability": 0.9874 + }, + { + "start": 17266.12, + "end": 17266.48, + "probability": 0.9661 + }, + { + "start": 17267.2, + "end": 17270.6, + "probability": 0.8717 + }, + { + "start": 17272.06, + "end": 17275.46, + "probability": 0.9967 + }, + { + "start": 17276.54, + "end": 17277.48, + "probability": 0.9514 + }, + { + "start": 17278.38, + "end": 17279.96, + "probability": 0.7764 + }, + { + "start": 17280.12, + "end": 17281.18, + "probability": 0.9228 + }, + { + "start": 17281.36, + "end": 17282.2, + "probability": 0.0439 + }, + { + "start": 17282.98, + "end": 17283.6, + "probability": 0.543 + }, + { + "start": 17284.2, + "end": 17286.2, + "probability": 0.8259 + }, + { + "start": 17286.62, + "end": 17288.5, + "probability": 0.7949 + }, + { + "start": 17289.48, + "end": 17290.76, + "probability": 0.9863 + }, + { + "start": 17290.92, + "end": 17292.63, + "probability": 0.8659 + }, + { + "start": 17293.42, + "end": 17294.08, + "probability": 0.5506 + }, + { + "start": 17294.4, + "end": 17295.08, + "probability": 0.8459 + }, + { + "start": 17297.96, + "end": 17302.26, + "probability": 0.8325 + }, + { + "start": 17302.38, + "end": 17303.08, + "probability": 0.5673 + }, + { + "start": 17303.34, + "end": 17308.08, + "probability": 0.8932 + }, + { + "start": 17308.58, + "end": 17309.06, + "probability": 0.4591 + }, + { + "start": 17309.66, + "end": 17313.06, + "probability": 0.8668 + }, + { + "start": 17313.12, + "end": 17316.62, + "probability": 0.9718 + }, + { + "start": 17317.34, + "end": 17320.44, + "probability": 0.8793 + }, + { + "start": 17321.46, + "end": 17324.76, + "probability": 0.9989 + }, + { + "start": 17325.48, + "end": 17325.98, + "probability": 0.6034 + }, + { + "start": 17326.16, + "end": 17330.42, + "probability": 0.8124 + }, + { + "start": 17331.34, + "end": 17333.62, + "probability": 0.9631 + }, + { + "start": 17335.06, + "end": 17338.64, + "probability": 0.9673 + }, + { + "start": 17338.96, + "end": 17339.96, + "probability": 0.9978 + }, + { + "start": 17340.66, + "end": 17342.42, + "probability": 0.9392 + }, + { + "start": 17343.36, + "end": 17345.34, + "probability": 0.9591 + }, + { + "start": 17346.94, + "end": 17348.34, + "probability": 0.7861 + }, + { + "start": 17349.8, + "end": 17351.1, + "probability": 0.9883 + }, + { + "start": 17352.4, + "end": 17355.64, + "probability": 0.6807 + }, + { + "start": 17357.46, + "end": 17358.57, + "probability": 0.9736 + }, + { + "start": 17360.06, + "end": 17361.52, + "probability": 0.9626 + }, + { + "start": 17363.42, + "end": 17366.86, + "probability": 0.9961 + }, + { + "start": 17368.66, + "end": 17370.14, + "probability": 0.9574 + }, + { + "start": 17370.6, + "end": 17371.78, + "probability": 0.8529 + }, + { + "start": 17372.28, + "end": 17374.52, + "probability": 0.948 + }, + { + "start": 17374.86, + "end": 17379.12, + "probability": 0.9904 + }, + { + "start": 17379.6, + "end": 17379.6, + "probability": 0.9385 + }, + { + "start": 17381.46, + "end": 17382.34, + "probability": 0.3629 + }, + { + "start": 17382.34, + "end": 17383.14, + "probability": 0.4139 + }, + { + "start": 17383.54, + "end": 17384.78, + "probability": 0.77 + }, + { + "start": 17384.88, + "end": 17387.9, + "probability": 0.9748 + }, + { + "start": 17389.08, + "end": 17390.94, + "probability": 0.9645 + }, + { + "start": 17391.82, + "end": 17393.92, + "probability": 0.962 + }, + { + "start": 17394.78, + "end": 17397.94, + "probability": 0.8695 + }, + { + "start": 17398.52, + "end": 17399.2, + "probability": 0.8423 + }, + { + "start": 17401.36, + "end": 17402.2, + "probability": 0.7897 + }, + { + "start": 17402.72, + "end": 17406.48, + "probability": 0.9637 + }, + { + "start": 17407.86, + "end": 17410.16, + "probability": 0.8628 + }, + { + "start": 17411.04, + "end": 17412.54, + "probability": 0.9865 + }, + { + "start": 17413.36, + "end": 17414.16, + "probability": 0.5651 + }, + { + "start": 17414.42, + "end": 17417.8, + "probability": 0.9974 + }, + { + "start": 17419.02, + "end": 17420.32, + "probability": 0.8755 + }, + { + "start": 17421.2, + "end": 17422.38, + "probability": 0.8684 + }, + { + "start": 17422.48, + "end": 17425.42, + "probability": 0.8553 + }, + { + "start": 17425.6, + "end": 17426.0, + "probability": 0.8492 + }, + { + "start": 17426.94, + "end": 17428.78, + "probability": 0.7323 + }, + { + "start": 17430.62, + "end": 17433.34, + "probability": 0.8951 + }, + { + "start": 17435.52, + "end": 17436.82, + "probability": 0.9703 + }, + { + "start": 17438.14, + "end": 17439.1, + "probability": 0.8924 + }, + { + "start": 17440.32, + "end": 17440.64, + "probability": 0.7242 + }, + { + "start": 17440.72, + "end": 17441.46, + "probability": 0.9391 + }, + { + "start": 17441.54, + "end": 17442.66, + "probability": 0.8333 + }, + { + "start": 17443.14, + "end": 17444.82, + "probability": 0.761 + }, + { + "start": 17445.26, + "end": 17446.94, + "probability": 0.7935 + }, + { + "start": 17447.3, + "end": 17448.7, + "probability": 0.1345 + }, + { + "start": 17448.7, + "end": 17449.12, + "probability": 0.5587 + }, + { + "start": 17450.46, + "end": 17452.62, + "probability": 0.9982 + }, + { + "start": 17453.3, + "end": 17456.74, + "probability": 0.8925 + }, + { + "start": 17457.66, + "end": 17459.5, + "probability": 0.9917 + }, + { + "start": 17459.9, + "end": 17462.28, + "probability": 0.9929 + }, + { + "start": 17463.72, + "end": 17465.4, + "probability": 0.9224 + }, + { + "start": 17465.42, + "end": 17469.7, + "probability": 0.9972 + }, + { + "start": 17469.78, + "end": 17472.0, + "probability": 0.8283 + }, + { + "start": 17472.66, + "end": 17475.54, + "probability": 0.9966 + }, + { + "start": 17477.52, + "end": 17482.24, + "probability": 0.7477 + }, + { + "start": 17483.28, + "end": 17485.34, + "probability": 0.5818 + }, + { + "start": 17486.92, + "end": 17487.68, + "probability": 0.897 + }, + { + "start": 17488.8, + "end": 17489.96, + "probability": 0.867 + }, + { + "start": 17491.22, + "end": 17493.04, + "probability": 0.8323 + }, + { + "start": 17494.38, + "end": 17495.18, + "probability": 0.5213 + }, + { + "start": 17497.02, + "end": 17497.86, + "probability": 0.0363 + }, + { + "start": 17498.58, + "end": 17501.22, + "probability": 0.8207 + }, + { + "start": 17501.54, + "end": 17502.08, + "probability": 0.8219 + }, + { + "start": 17502.66, + "end": 17503.4, + "probability": 0.7514 + }, + { + "start": 17503.76, + "end": 17504.66, + "probability": 0.668 + }, + { + "start": 17505.48, + "end": 17507.92, + "probability": 0.5612 + }, + { + "start": 17508.34, + "end": 17509.82, + "probability": 0.891 + }, + { + "start": 17511.04, + "end": 17512.67, + "probability": 0.7364 + }, + { + "start": 17513.96, + "end": 17517.0, + "probability": 0.9823 + }, + { + "start": 17517.84, + "end": 17520.2, + "probability": 0.9846 + }, + { + "start": 17520.2, + "end": 17521.48, + "probability": 0.9456 + }, + { + "start": 17522.24, + "end": 17523.24, + "probability": 0.8224 + }, + { + "start": 17524.2, + "end": 17526.02, + "probability": 0.9558 + }, + { + "start": 17526.6, + "end": 17530.68, + "probability": 0.936 + }, + { + "start": 17531.04, + "end": 17532.08, + "probability": 0.9352 + }, + { + "start": 17534.06, + "end": 17535.14, + "probability": 0.9901 + }, + { + "start": 17535.68, + "end": 17536.82, + "probability": 0.8129 + }, + { + "start": 17539.52, + "end": 17541.2, + "probability": 0.6944 + }, + { + "start": 17542.22, + "end": 17544.54, + "probability": 0.7603 + }, + { + "start": 17544.8, + "end": 17546.2, + "probability": 0.944 + }, + { + "start": 17546.8, + "end": 17550.72, + "probability": 0.9639 + }, + { + "start": 17551.84, + "end": 17554.3, + "probability": 0.9968 + }, + { + "start": 17554.36, + "end": 17556.74, + "probability": 0.9976 + }, + { + "start": 17557.3, + "end": 17559.16, + "probability": 0.5851 + }, + { + "start": 17559.96, + "end": 17562.66, + "probability": 0.9956 + }, + { + "start": 17562.88, + "end": 17564.24, + "probability": 0.9751 + }, + { + "start": 17565.42, + "end": 17569.0, + "probability": 0.9932 + }, + { + "start": 17569.6, + "end": 17570.02, + "probability": 0.8929 + }, + { + "start": 17570.84, + "end": 17572.82, + "probability": 0.9893 + }, + { + "start": 17572.82, + "end": 17575.0, + "probability": 0.9989 + }, + { + "start": 17575.76, + "end": 17577.12, + "probability": 0.9014 + }, + { + "start": 17577.58, + "end": 17580.84, + "probability": 0.9919 + }, + { + "start": 17581.52, + "end": 17583.18, + "probability": 0.5601 + }, + { + "start": 17585.26, + "end": 17588.02, + "probability": 0.99 + }, + { + "start": 17589.44, + "end": 17590.6, + "probability": 0.6664 + }, + { + "start": 17591.22, + "end": 17593.58, + "probability": 0.9896 + }, + { + "start": 17594.04, + "end": 17595.42, + "probability": 0.9976 + }, + { + "start": 17596.2, + "end": 17598.66, + "probability": 0.917 + }, + { + "start": 17599.16, + "end": 17600.74, + "probability": 0.9142 + }, + { + "start": 17605.12, + "end": 17605.54, + "probability": 0.7173 + }, + { + "start": 17606.32, + "end": 17608.81, + "probability": 0.8374 + }, + { + "start": 17610.18, + "end": 17611.68, + "probability": 0.9876 + }, + { + "start": 17611.86, + "end": 17612.44, + "probability": 0.7746 + }, + { + "start": 17613.66, + "end": 17614.38, + "probability": 0.6031 + }, + { + "start": 17615.36, + "end": 17615.82, + "probability": 0.8315 + }, + { + "start": 17616.66, + "end": 17616.74, + "probability": 0.4808 + }, + { + "start": 17616.74, + "end": 17617.0, + "probability": 0.1501 + }, + { + "start": 17617.56, + "end": 17618.4, + "probability": 0.7376 + }, + { + "start": 17619.06, + "end": 17620.86, + "probability": 0.9296 + }, + { + "start": 17621.92, + "end": 17622.92, + "probability": 0.9135 + }, + { + "start": 17623.72, + "end": 17624.93, + "probability": 0.9845 + }, + { + "start": 17625.06, + "end": 17626.76, + "probability": 0.3707 + }, + { + "start": 17627.06, + "end": 17627.24, + "probability": 0.616 + }, + { + "start": 17627.38, + "end": 17627.98, + "probability": 0.5943 + }, + { + "start": 17630.14, + "end": 17630.93, + "probability": 0.8921 + }, + { + "start": 17631.98, + "end": 17633.48, + "probability": 0.9856 + }, + { + "start": 17633.96, + "end": 17639.56, + "probability": 0.9351 + }, + { + "start": 17640.06, + "end": 17640.38, + "probability": 0.9652 + }, + { + "start": 17641.98, + "end": 17643.06, + "probability": 0.7836 + }, + { + "start": 17643.12, + "end": 17643.7, + "probability": 0.3737 + }, + { + "start": 17644.86, + "end": 17645.62, + "probability": 0.0636 + }, + { + "start": 17669.92, + "end": 17670.68, + "probability": 0.3284 + }, + { + "start": 17670.68, + "end": 17673.5, + "probability": 0.7225 + }, + { + "start": 17674.92, + "end": 17681.14, + "probability": 0.9772 + }, + { + "start": 17682.34, + "end": 17686.06, + "probability": 0.9547 + }, + { + "start": 17686.18, + "end": 17687.92, + "probability": 0.9594 + }, + { + "start": 17688.2, + "end": 17691.5, + "probability": 0.8643 + }, + { + "start": 17691.82, + "end": 17692.36, + "probability": 0.2486 + }, + { + "start": 17693.1, + "end": 17697.95, + "probability": 0.9792 + }, + { + "start": 17699.5, + "end": 17700.14, + "probability": 0.6019 + }, + { + "start": 17700.26, + "end": 17703.78, + "probability": 0.9781 + }, + { + "start": 17703.88, + "end": 17705.08, + "probability": 0.9562 + }, + { + "start": 17705.86, + "end": 17707.44, + "probability": 0.9299 + }, + { + "start": 17707.76, + "end": 17709.96, + "probability": 0.9204 + }, + { + "start": 17711.32, + "end": 17711.98, + "probability": 0.5907 + }, + { + "start": 17712.06, + "end": 17715.58, + "probability": 0.8576 + }, + { + "start": 17716.96, + "end": 17717.78, + "probability": 0.7813 + }, + { + "start": 17718.02, + "end": 17724.34, + "probability": 0.9961 + }, + { + "start": 17724.42, + "end": 17725.56, + "probability": 0.8027 + }, + { + "start": 17726.22, + "end": 17730.04, + "probability": 0.9835 + }, + { + "start": 17730.56, + "end": 17736.72, + "probability": 0.9813 + }, + { + "start": 17736.72, + "end": 17739.68, + "probability": 0.9915 + }, + { + "start": 17739.76, + "end": 17741.82, + "probability": 0.9932 + }, + { + "start": 17742.8, + "end": 17746.96, + "probability": 0.9909 + }, + { + "start": 17748.64, + "end": 17751.42, + "probability": 0.9726 + }, + { + "start": 17751.66, + "end": 17757.3, + "probability": 0.9574 + }, + { + "start": 17757.3, + "end": 17761.2, + "probability": 0.9652 + }, + { + "start": 17762.0, + "end": 17764.26, + "probability": 0.9971 + }, + { + "start": 17765.62, + "end": 17768.8, + "probability": 0.9691 + }, + { + "start": 17769.38, + "end": 17771.12, + "probability": 0.6914 + }, + { + "start": 17772.18, + "end": 17775.0, + "probability": 0.7876 + }, + { + "start": 17775.14, + "end": 17776.46, + "probability": 0.9578 + }, + { + "start": 17777.2, + "end": 17778.32, + "probability": 0.6211 + }, + { + "start": 17778.36, + "end": 17780.32, + "probability": 0.5686 + }, + { + "start": 17781.32, + "end": 17785.16, + "probability": 0.8335 + }, + { + "start": 17785.94, + "end": 17787.32, + "probability": 0.9687 + }, + { + "start": 17787.94, + "end": 17793.54, + "probability": 0.9254 + }, + { + "start": 17794.98, + "end": 17800.04, + "probability": 0.9507 + }, + { + "start": 17800.68, + "end": 17801.16, + "probability": 0.7785 + }, + { + "start": 17801.3, + "end": 17804.52, + "probability": 0.7835 + }, + { + "start": 17804.52, + "end": 17806.7, + "probability": 0.861 + }, + { + "start": 17807.6, + "end": 17810.94, + "probability": 0.962 + }, + { + "start": 17811.54, + "end": 17815.02, + "probability": 0.9841 + }, + { + "start": 17815.02, + "end": 17817.12, + "probability": 0.9959 + }, + { + "start": 17817.22, + "end": 17818.36, + "probability": 0.4869 + }, + { + "start": 17819.26, + "end": 17820.48, + "probability": 0.8727 + }, + { + "start": 17821.04, + "end": 17823.56, + "probability": 0.9042 + }, + { + "start": 17823.66, + "end": 17825.14, + "probability": 0.9976 + }, + { + "start": 17826.12, + "end": 17827.86, + "probability": 0.9988 + }, + { + "start": 17828.84, + "end": 17830.28, + "probability": 0.6292 + }, + { + "start": 17830.48, + "end": 17838.58, + "probability": 0.9212 + }, + { + "start": 17840.44, + "end": 17843.16, + "probability": 0.6114 + }, + { + "start": 17843.66, + "end": 17847.28, + "probability": 0.9848 + }, + { + "start": 17847.4, + "end": 17848.9, + "probability": 0.6385 + }, + { + "start": 17849.32, + "end": 17850.84, + "probability": 0.9118 + }, + { + "start": 17852.26, + "end": 17854.9, + "probability": 0.9595 + }, + { + "start": 17856.8, + "end": 17857.86, + "probability": 0.985 + }, + { + "start": 17859.12, + "end": 17860.56, + "probability": 0.9377 + }, + { + "start": 17861.38, + "end": 17862.5, + "probability": 0.9823 + }, + { + "start": 17863.12, + "end": 17864.72, + "probability": 0.9805 + }, + { + "start": 17865.04, + "end": 17867.7, + "probability": 0.9751 + }, + { + "start": 17868.44, + "end": 17869.14, + "probability": 0.851 + }, + { + "start": 17869.26, + "end": 17871.36, + "probability": 0.7222 + }, + { + "start": 17873.68, + "end": 17876.26, + "probability": 0.3403 + }, + { + "start": 17876.84, + "end": 17880.22, + "probability": 0.8447 + }, + { + "start": 17880.76, + "end": 17882.38, + "probability": 0.9209 + }, + { + "start": 17882.9, + "end": 17883.94, + "probability": 0.7652 + }, + { + "start": 17884.94, + "end": 17886.1, + "probability": 0.9883 + }, + { + "start": 17886.78, + "end": 17888.28, + "probability": 0.8867 + }, + { + "start": 17888.96, + "end": 17891.92, + "probability": 0.9504 + }, + { + "start": 17892.02, + "end": 17896.16, + "probability": 0.8254 + }, + { + "start": 17897.0, + "end": 17898.36, + "probability": 0.9967 + }, + { + "start": 17899.56, + "end": 17905.06, + "probability": 0.9746 + }, + { + "start": 17905.06, + "end": 17907.56, + "probability": 0.9897 + }, + { + "start": 17907.94, + "end": 17908.14, + "probability": 0.7639 + }, + { + "start": 17909.04, + "end": 17909.92, + "probability": 0.7129 + }, + { + "start": 17909.96, + "end": 17911.44, + "probability": 0.6424 + }, + { + "start": 17932.18, + "end": 17934.58, + "probability": 0.6863 + }, + { + "start": 17936.32, + "end": 17942.48, + "probability": 0.9099 + }, + { + "start": 17942.84, + "end": 17943.8, + "probability": 0.4224 + }, + { + "start": 17944.16, + "end": 17945.1, + "probability": 0.6655 + }, + { + "start": 17946.22, + "end": 17946.46, + "probability": 0.605 + }, + { + "start": 17948.04, + "end": 17948.68, + "probability": 0.0215 + }, + { + "start": 17953.66, + "end": 17957.2, + "probability": 0.996 + }, + { + "start": 17957.96, + "end": 17958.7, + "probability": 0.6366 + }, + { + "start": 17959.42, + "end": 17962.88, + "probability": 0.7596 + }, + { + "start": 17963.06, + "end": 17967.58, + "probability": 0.9618 + }, + { + "start": 17968.9, + "end": 17969.56, + "probability": 0.9897 + }, + { + "start": 17972.0, + "end": 17976.4, + "probability": 0.8358 + }, + { + "start": 17977.0, + "end": 17978.86, + "probability": 0.8122 + }, + { + "start": 17978.94, + "end": 17981.34, + "probability": 0.9147 + }, + { + "start": 17981.42, + "end": 17982.74, + "probability": 0.5501 + }, + { + "start": 17983.46, + "end": 17984.64, + "probability": 0.9919 + }, + { + "start": 17987.84, + "end": 17990.06, + "probability": 0.9661 + }, + { + "start": 17991.1, + "end": 17993.64, + "probability": 0.9878 + }, + { + "start": 17995.56, + "end": 17997.74, + "probability": 0.9531 + }, + { + "start": 17998.7, + "end": 18001.74, + "probability": 0.8294 + }, + { + "start": 18002.74, + "end": 18004.74, + "probability": 0.9844 + }, + { + "start": 18005.26, + "end": 18006.82, + "probability": 0.7381 + }, + { + "start": 18007.44, + "end": 18009.96, + "probability": 0.5815 + }, + { + "start": 18010.18, + "end": 18010.8, + "probability": 0.9541 + }, + { + "start": 18011.02, + "end": 18013.5, + "probability": 0.9823 + }, + { + "start": 18014.46, + "end": 18015.42, + "probability": 0.6553 + }, + { + "start": 18016.26, + "end": 18017.58, + "probability": 0.969 + }, + { + "start": 18020.24, + "end": 18021.52, + "probability": 0.9941 + }, + { + "start": 18021.64, + "end": 18023.48, + "probability": 0.9877 + }, + { + "start": 18023.48, + "end": 18024.88, + "probability": 0.9966 + }, + { + "start": 18025.04, + "end": 18027.12, + "probability": 0.997 + }, + { + "start": 18028.28, + "end": 18031.7, + "probability": 0.9875 + }, + { + "start": 18031.72, + "end": 18035.26, + "probability": 0.9473 + }, + { + "start": 18035.34, + "end": 18036.22, + "probability": 0.8027 + }, + { + "start": 18037.08, + "end": 18039.24, + "probability": 0.9937 + }, + { + "start": 18039.88, + "end": 18041.7, + "probability": 0.9697 + }, + { + "start": 18042.12, + "end": 18043.7, + "probability": 0.7812 + }, + { + "start": 18046.88, + "end": 18050.16, + "probability": 0.9634 + }, + { + "start": 18051.08, + "end": 18052.42, + "probability": 0.8461 + }, + { + "start": 18053.06, + "end": 18054.42, + "probability": 0.9351 + }, + { + "start": 18054.9, + "end": 18056.0, + "probability": 0.8941 + }, + { + "start": 18056.26, + "end": 18057.48, + "probability": 0.9879 + }, + { + "start": 18057.92, + "end": 18059.48, + "probability": 0.979 + }, + { + "start": 18060.34, + "end": 18061.7, + "probability": 0.9434 + }, + { + "start": 18062.2, + "end": 18063.7, + "probability": 0.6862 + }, + { + "start": 18064.56, + "end": 18069.7, + "probability": 0.9741 + }, + { + "start": 18069.86, + "end": 18071.72, + "probability": 0.9764 + }, + { + "start": 18073.02, + "end": 18074.8, + "probability": 0.905 + }, + { + "start": 18074.88, + "end": 18075.32, + "probability": 0.8754 + }, + { + "start": 18075.44, + "end": 18076.66, + "probability": 0.8992 + }, + { + "start": 18077.26, + "end": 18081.8, + "probability": 0.8783 + }, + { + "start": 18081.88, + "end": 18084.1, + "probability": 0.9517 + }, + { + "start": 18086.84, + "end": 18087.8, + "probability": 0.8643 + }, + { + "start": 18088.08, + "end": 18090.22, + "probability": 0.9694 + }, + { + "start": 18090.24, + "end": 18090.34, + "probability": 0.7655 + }, + { + "start": 18091.24, + "end": 18095.38, + "probability": 0.7449 + }, + { + "start": 18097.22, + "end": 18097.66, + "probability": 0.9736 + }, + { + "start": 18099.02, + "end": 18102.91, + "probability": 0.9054 + }, + { + "start": 18105.32, + "end": 18106.24, + "probability": 0.8815 + }, + { + "start": 18108.14, + "end": 18109.6, + "probability": 0.9971 + }, + { + "start": 18109.84, + "end": 18112.56, + "probability": 0.5514 + }, + { + "start": 18112.84, + "end": 18118.02, + "probability": 0.9604 + }, + { + "start": 18118.44, + "end": 18126.04, + "probability": 0.9567 + }, + { + "start": 18126.66, + "end": 18130.2, + "probability": 0.8986 + }, + { + "start": 18131.1, + "end": 18133.84, + "probability": 0.7435 + }, + { + "start": 18134.64, + "end": 18139.42, + "probability": 0.7936 + }, + { + "start": 18141.22, + "end": 18142.58, + "probability": 0.9922 + }, + { + "start": 18142.92, + "end": 18145.6, + "probability": 0.9351 + }, + { + "start": 18145.88, + "end": 18148.6, + "probability": 0.967 + }, + { + "start": 18148.84, + "end": 18149.54, + "probability": 0.9121 + }, + { + "start": 18149.86, + "end": 18151.42, + "probability": 0.8289 + }, + { + "start": 18151.52, + "end": 18152.38, + "probability": 0.889 + }, + { + "start": 18152.76, + "end": 18154.4, + "probability": 0.9176 + }, + { + "start": 18154.6, + "end": 18156.95, + "probability": 0.9874 + }, + { + "start": 18157.18, + "end": 18158.36, + "probability": 0.8871 + }, + { + "start": 18158.92, + "end": 18159.88, + "probability": 0.9482 + }, + { + "start": 18160.3, + "end": 18161.79, + "probability": 0.9929 + }, + { + "start": 18162.3, + "end": 18165.1, + "probability": 0.9661 + }, + { + "start": 18165.76, + "end": 18166.86, + "probability": 0.9609 + }, + { + "start": 18167.32, + "end": 18168.72, + "probability": 0.9893 + }, + { + "start": 18169.18, + "end": 18170.52, + "probability": 0.9844 + }, + { + "start": 18170.6, + "end": 18172.88, + "probability": 0.9935 + }, + { + "start": 18173.06, + "end": 18173.64, + "probability": 0.7997 + }, + { + "start": 18174.28, + "end": 18174.98, + "probability": 0.8884 + }, + { + "start": 18175.52, + "end": 18176.22, + "probability": 0.8575 + }, + { + "start": 18176.6, + "end": 18177.08, + "probability": 0.853 + }, + { + "start": 18177.4, + "end": 18177.68, + "probability": 0.7207 + }, + { + "start": 18177.88, + "end": 18183.92, + "probability": 0.8829 + }, + { + "start": 18184.24, + "end": 18184.86, + "probability": 0.3446 + }, + { + "start": 18184.92, + "end": 18186.74, + "probability": 0.7979 + }, + { + "start": 18197.74, + "end": 18199.98, + "probability": 0.7205 + }, + { + "start": 18200.82, + "end": 18202.16, + "probability": 0.6268 + }, + { + "start": 18203.08, + "end": 18205.52, + "probability": 0.7259 + }, + { + "start": 18206.34, + "end": 18206.56, + "probability": 0.9142 + }, + { + "start": 18206.62, + "end": 18207.08, + "probability": 0.9639 + }, + { + "start": 18208.02, + "end": 18211.24, + "probability": 0.8374 + }, + { + "start": 18212.88, + "end": 18216.12, + "probability": 0.9971 + }, + { + "start": 18216.46, + "end": 18216.66, + "probability": 0.6464 + }, + { + "start": 18218.14, + "end": 18218.7, + "probability": 0.825 + }, + { + "start": 18218.9, + "end": 18219.48, + "probability": 0.4583 + }, + { + "start": 18220.4, + "end": 18221.1, + "probability": 0.5641 + }, + { + "start": 18221.8, + "end": 18222.52, + "probability": 0.8875 + }, + { + "start": 18223.9, + "end": 18226.04, + "probability": 0.9395 + }, + { + "start": 18226.2, + "end": 18226.88, + "probability": 0.3907 + }, + { + "start": 18228.28, + "end": 18229.26, + "probability": 0.9158 + }, + { + "start": 18229.88, + "end": 18233.12, + "probability": 0.6094 + }, + { + "start": 18235.78, + "end": 18238.68, + "probability": 0.8332 + }, + { + "start": 18239.8, + "end": 18243.96, + "probability": 0.91 + }, + { + "start": 18244.54, + "end": 18245.02, + "probability": 0.8424 + }, + { + "start": 18246.02, + "end": 18248.68, + "probability": 0.9812 + }, + { + "start": 18249.1, + "end": 18250.42, + "probability": 0.3895 + }, + { + "start": 18250.54, + "end": 18251.06, + "probability": 0.4913 + }, + { + "start": 18251.18, + "end": 18251.64, + "probability": 0.9398 + }, + { + "start": 18252.46, + "end": 18253.04, + "probability": 0.7829 + }, + { + "start": 18253.36, + "end": 18253.78, + "probability": 0.9171 + }, + { + "start": 18254.4, + "end": 18255.24, + "probability": 0.75 + }, + { + "start": 18256.14, + "end": 18257.64, + "probability": 0.9967 + }, + { + "start": 18258.5, + "end": 18263.04, + "probability": 0.9682 + }, + { + "start": 18263.74, + "end": 18266.78, + "probability": 0.7642 + }, + { + "start": 18268.1, + "end": 18268.38, + "probability": 0.5686 + }, + { + "start": 18269.02, + "end": 18270.64, + "probability": 0.8683 + }, + { + "start": 18270.76, + "end": 18272.66, + "probability": 0.682 + }, + { + "start": 18273.1, + "end": 18273.83, + "probability": 0.9019 + }, + { + "start": 18274.38, + "end": 18278.84, + "probability": 0.8193 + }, + { + "start": 18278.84, + "end": 18282.9, + "probability": 0.9417 + }, + { + "start": 18282.94, + "end": 18283.66, + "probability": 0.5095 + }, + { + "start": 18283.94, + "end": 18284.72, + "probability": 0.7451 + }, + { + "start": 18284.8, + "end": 18287.08, + "probability": 0.7532 + }, + { + "start": 18288.16, + "end": 18290.04, + "probability": 0.9727 + }, + { + "start": 18290.94, + "end": 18293.2, + "probability": 0.9958 + }, + { + "start": 18293.3, + "end": 18293.86, + "probability": 0.4635 + }, + { + "start": 18294.02, + "end": 18294.82, + "probability": 0.7294 + }, + { + "start": 18295.24, + "end": 18297.14, + "probability": 0.9895 + }, + { + "start": 18297.28, + "end": 18297.78, + "probability": 0.5521 + }, + { + "start": 18298.74, + "end": 18300.2, + "probability": 0.9905 + }, + { + "start": 18300.74, + "end": 18301.79, + "probability": 0.981 + }, + { + "start": 18302.94, + "end": 18303.34, + "probability": 0.9233 + }, + { + "start": 18303.42, + "end": 18303.63, + "probability": 0.7651 + }, + { + "start": 18303.92, + "end": 18304.38, + "probability": 0.6787 + }, + { + "start": 18305.08, + "end": 18305.6, + "probability": 0.6554 + }, + { + "start": 18306.82, + "end": 18308.73, + "probability": 0.9054 + }, + { + "start": 18309.6, + "end": 18310.6, + "probability": 0.6614 + }, + { + "start": 18310.72, + "end": 18311.06, + "probability": 0.4952 + }, + { + "start": 18311.18, + "end": 18312.42, + "probability": 0.8009 + }, + { + "start": 18314.06, + "end": 18315.44, + "probability": 0.3898 + }, + { + "start": 18316.34, + "end": 18318.72, + "probability": 0.8786 + }, + { + "start": 18318.94, + "end": 18321.24, + "probability": 0.3157 + }, + { + "start": 18321.88, + "end": 18322.02, + "probability": 0.578 + }, + { + "start": 18322.14, + "end": 18322.74, + "probability": 0.8617 + }, + { + "start": 18323.18, + "end": 18323.76, + "probability": 0.742 + }, + { + "start": 18323.92, + "end": 18327.16, + "probability": 0.8347 + }, + { + "start": 18327.34, + "end": 18333.6, + "probability": 0.6453 + }, + { + "start": 18334.24, + "end": 18340.12, + "probability": 0.9788 + }, + { + "start": 18340.66, + "end": 18343.1, + "probability": 0.9968 + }, + { + "start": 18343.34, + "end": 18343.94, + "probability": 0.7429 + }, + { + "start": 18344.08, + "end": 18345.25, + "probability": 0.9899 + }, + { + "start": 18345.78, + "end": 18347.14, + "probability": 0.7354 + }, + { + "start": 18347.18, + "end": 18348.5, + "probability": 0.9961 + }, + { + "start": 18348.86, + "end": 18349.71, + "probability": 0.5582 + }, + { + "start": 18349.86, + "end": 18350.38, + "probability": 0.9771 + }, + { + "start": 18351.26, + "end": 18351.72, + "probability": 0.9282 + }, + { + "start": 18353.42, + "end": 18353.72, + "probability": 0.6685 + }, + { + "start": 18354.96, + "end": 18357.06, + "probability": 0.7668 + }, + { + "start": 18358.12, + "end": 18360.48, + "probability": 0.8022 + }, + { + "start": 18362.26, + "end": 18364.76, + "probability": 0.9585 + }, + { + "start": 18366.62, + "end": 18369.14, + "probability": 0.9905 + }, + { + "start": 18370.18, + "end": 18371.14, + "probability": 0.9767 + }, + { + "start": 18371.76, + "end": 18372.36, + "probability": 0.853 + }, + { + "start": 18372.62, + "end": 18373.78, + "probability": 0.9701 + }, + { + "start": 18374.2, + "end": 18375.02, + "probability": 0.5496 + }, + { + "start": 18375.1, + "end": 18376.46, + "probability": 0.7505 + }, + { + "start": 18376.56, + "end": 18377.14, + "probability": 0.9588 + }, + { + "start": 18377.62, + "end": 18377.9, + "probability": 0.7546 + }, + { + "start": 18378.24, + "end": 18379.1, + "probability": 0.8875 + }, + { + "start": 18380.0, + "end": 18380.76, + "probability": 0.7113 + }, + { + "start": 18381.98, + "end": 18382.38, + "probability": 0.9277 + }, + { + "start": 18383.18, + "end": 18383.91, + "probability": 0.9829 + }, + { + "start": 18384.46, + "end": 18385.18, + "probability": 0.4781 + }, + { + "start": 18385.6, + "end": 18387.32, + "probability": 0.9634 + }, + { + "start": 18388.28, + "end": 18389.96, + "probability": 0.626 + }, + { + "start": 18390.14, + "end": 18390.58, + "probability": 0.5065 + }, + { + "start": 18391.86, + "end": 18395.24, + "probability": 0.7446 + }, + { + "start": 18395.8, + "end": 18397.44, + "probability": 0.9963 + }, + { + "start": 18397.98, + "end": 18399.22, + "probability": 0.9703 + }, + { + "start": 18399.36, + "end": 18400.48, + "probability": 0.934 + }, + { + "start": 18401.16, + "end": 18401.64, + "probability": 0.9479 + }, + { + "start": 18402.24, + "end": 18403.56, + "probability": 0.8662 + }, + { + "start": 18404.12, + "end": 18410.12, + "probability": 0.8486 + }, + { + "start": 18410.12, + "end": 18410.22, + "probability": 0.2264 + }, + { + "start": 18411.56, + "end": 18411.86, + "probability": 0.0638 + }, + { + "start": 18412.8, + "end": 18414.66, + "probability": 0.6481 + }, + { + "start": 18415.72, + "end": 18418.98, + "probability": 0.7573 + }, + { + "start": 18419.98, + "end": 18421.73, + "probability": 0.6182 + }, + { + "start": 18423.3, + "end": 18426.42, + "probability": 0.9739 + }, + { + "start": 18426.52, + "end": 18426.78, + "probability": 0.6681 + }, + { + "start": 18427.44, + "end": 18427.64, + "probability": 0.8222 + }, + { + "start": 18428.54, + "end": 18429.36, + "probability": 0.9641 + }, + { + "start": 18435.28, + "end": 18435.4, + "probability": 0.0195 + }, + { + "start": 18435.4, + "end": 18435.56, + "probability": 0.6884 + }, + { + "start": 18436.82, + "end": 18440.36, + "probability": 0.0902 + }, + { + "start": 18448.6, + "end": 18449.86, + "probability": 0.6592 + }, + { + "start": 18451.52, + "end": 18453.84, + "probability": 0.7145 + }, + { + "start": 18455.54, + "end": 18455.99, + "probability": 0.9624 + }, + { + "start": 18457.38, + "end": 18458.04, + "probability": 0.4387 + }, + { + "start": 18458.64, + "end": 18459.1, + "probability": 0.9321 + }, + { + "start": 18460.22, + "end": 18461.12, + "probability": 0.5917 + }, + { + "start": 18463.88, + "end": 18465.74, + "probability": 0.8827 + }, + { + "start": 18466.86, + "end": 18469.18, + "probability": 0.9951 + }, + { + "start": 18470.02, + "end": 18470.6, + "probability": 0.9464 + }, + { + "start": 18471.48, + "end": 18472.54, + "probability": 0.9777 + }, + { + "start": 18473.22, + "end": 18474.84, + "probability": 0.9783 + }, + { + "start": 18475.46, + "end": 18476.04, + "probability": 0.4191 + }, + { + "start": 18477.08, + "end": 18477.92, + "probability": 0.5387 + }, + { + "start": 18478.0, + "end": 18478.0, + "probability": 0.6582 + }, + { + "start": 18478.08, + "end": 18481.94, + "probability": 0.9574 + }, + { + "start": 18482.88, + "end": 18485.58, + "probability": 0.9915 + }, + { + "start": 18486.38, + "end": 18488.1, + "probability": 0.8433 + }, + { + "start": 18488.82, + "end": 18489.52, + "probability": 0.9719 + }, + { + "start": 18490.24, + "end": 18490.86, + "probability": 0.3285 + }, + { + "start": 18492.06, + "end": 18493.44, + "probability": 0.994 + }, + { + "start": 18494.12, + "end": 18496.02, + "probability": 0.9608 + }, + { + "start": 18496.74, + "end": 18498.0, + "probability": 0.9836 + }, + { + "start": 18499.02, + "end": 18501.86, + "probability": 0.7144 + }, + { + "start": 18502.46, + "end": 18505.2, + "probability": 0.9866 + }, + { + "start": 18506.24, + "end": 18507.3, + "probability": 0.7044 + }, + { + "start": 18508.2, + "end": 18511.98, + "probability": 0.6145 + }, + { + "start": 18512.2, + "end": 18513.32, + "probability": 0.7316 + }, + { + "start": 18514.4, + "end": 18515.18, + "probability": 0.7639 + }, + { + "start": 18516.9, + "end": 18520.93, + "probability": 0.7073 + }, + { + "start": 18521.72, + "end": 18522.5, + "probability": 0.2212 + }, + { + "start": 18523.22, + "end": 18525.28, + "probability": 0.4931 + }, + { + "start": 18525.28, + "end": 18525.96, + "probability": 0.9435 + }, + { + "start": 18526.44, + "end": 18526.94, + "probability": 0.8837 + }, + { + "start": 18527.66, + "end": 18528.92, + "probability": 0.854 + }, + { + "start": 18530.04, + "end": 18532.12, + "probability": 0.942 + }, + { + "start": 18532.64, + "end": 18536.08, + "probability": 0.8052 + }, + { + "start": 18537.48, + "end": 18538.08, + "probability": 0.5828 + }, + { + "start": 18538.86, + "end": 18539.56, + "probability": 0.7586 + }, + { + "start": 18540.34, + "end": 18541.36, + "probability": 0.6097 + }, + { + "start": 18542.06, + "end": 18542.58, + "probability": 0.2968 + }, + { + "start": 18543.04, + "end": 18546.28, + "probability": 0.8007 + }, + { + "start": 18547.44, + "end": 18548.7, + "probability": 0.8751 + }, + { + "start": 18549.7, + "end": 18554.34, + "probability": 0.9932 + }, + { + "start": 18555.14, + "end": 18556.5, + "probability": 0.9787 + }, + { + "start": 18557.52, + "end": 18558.24, + "probability": 0.9225 + }, + { + "start": 18558.9, + "end": 18563.2, + "probability": 0.9378 + }, + { + "start": 18563.88, + "end": 18565.68, + "probability": 0.9958 + }, + { + "start": 18566.98, + "end": 18568.8, + "probability": 0.9392 + }, + { + "start": 18568.84, + "end": 18569.22, + "probability": 0.902 + }, + { + "start": 18569.7, + "end": 18570.66, + "probability": 0.9395 + }, + { + "start": 18571.32, + "end": 18572.35, + "probability": 0.9961 + }, + { + "start": 18575.06, + "end": 18575.7, + "probability": 0.948 + }, + { + "start": 18576.58, + "end": 18577.27, + "probability": 0.8043 + }, + { + "start": 18577.56, + "end": 18578.43, + "probability": 0.9897 + }, + { + "start": 18578.74, + "end": 18579.62, + "probability": 0.563 + }, + { + "start": 18579.82, + "end": 18580.38, + "probability": 0.7227 + }, + { + "start": 18580.44, + "end": 18582.38, + "probability": 0.6672 + }, + { + "start": 18583.26, + "end": 18584.6, + "probability": 0.9471 + }, + { + "start": 18585.78, + "end": 18587.6, + "probability": 0.9028 + }, + { + "start": 18588.12, + "end": 18589.56, + "probability": 0.7474 + }, + { + "start": 18589.56, + "end": 18592.24, + "probability": 0.9108 + }, + { + "start": 18592.8, + "end": 18595.4, + "probability": 0.9171 + }, + { + "start": 18595.62, + "end": 18598.22, + "probability": 0.9717 + }, + { + "start": 18598.4, + "end": 18599.14, + "probability": 0.7647 + }, + { + "start": 18599.68, + "end": 18599.88, + "probability": 0.7851 + }, + { + "start": 18602.58, + "end": 18604.3, + "probability": 0.5325 + }, + { + "start": 18605.44, + "end": 18606.6, + "probability": 0.2145 + }, + { + "start": 18607.38, + "end": 18608.3, + "probability": 0.8792 + }, + { + "start": 18627.86, + "end": 18629.96, + "probability": 0.6878 + }, + { + "start": 18630.9, + "end": 18633.22, + "probability": 0.9844 + }, + { + "start": 18634.0, + "end": 18639.76, + "probability": 0.9867 + }, + { + "start": 18639.88, + "end": 18641.68, + "probability": 0.5742 + }, + { + "start": 18642.42, + "end": 18649.16, + "probability": 0.9943 + }, + { + "start": 18650.04, + "end": 18654.98, + "probability": 0.9955 + }, + { + "start": 18655.12, + "end": 18657.06, + "probability": 0.7874 + }, + { + "start": 18658.18, + "end": 18667.28, + "probability": 0.9482 + }, + { + "start": 18667.56, + "end": 18668.68, + "probability": 0.0901 + }, + { + "start": 18668.98, + "end": 18673.9, + "probability": 0.9819 + }, + { + "start": 18675.26, + "end": 18676.56, + "probability": 0.8298 + }, + { + "start": 18677.56, + "end": 18678.14, + "probability": 0.8257 + }, + { + "start": 18678.18, + "end": 18683.02, + "probability": 0.9881 + }, + { + "start": 18683.02, + "end": 18687.24, + "probability": 0.9543 + }, + { + "start": 18687.46, + "end": 18688.58, + "probability": 0.6243 + }, + { + "start": 18689.44, + "end": 18693.34, + "probability": 0.9635 + }, + { + "start": 18694.06, + "end": 18696.0, + "probability": 0.6029 + }, + { + "start": 18696.64, + "end": 18698.68, + "probability": 0.8666 + }, + { + "start": 18698.98, + "end": 18701.92, + "probability": 0.9968 + }, + { + "start": 18702.84, + "end": 18703.86, + "probability": 0.4145 + }, + { + "start": 18704.06, + "end": 18705.55, + "probability": 0.7524 + }, + { + "start": 18705.66, + "end": 18706.3, + "probability": 0.7148 + }, + { + "start": 18706.52, + "end": 18707.12, + "probability": 0.9526 + }, + { + "start": 18707.18, + "end": 18710.01, + "probability": 0.9754 + }, + { + "start": 18710.78, + "end": 18711.44, + "probability": 0.9445 + }, + { + "start": 18712.76, + "end": 18714.94, + "probability": 0.9437 + }, + { + "start": 18715.08, + "end": 18715.72, + "probability": 0.8253 + }, + { + "start": 18715.82, + "end": 18720.0, + "probability": 0.991 + }, + { + "start": 18721.72, + "end": 18724.72, + "probability": 0.995 + }, + { + "start": 18725.52, + "end": 18726.56, + "probability": 0.9619 + }, + { + "start": 18727.12, + "end": 18727.96, + "probability": 0.9406 + }, + { + "start": 18728.6, + "end": 18729.3, + "probability": 0.9054 + }, + { + "start": 18729.5, + "end": 18730.48, + "probability": 0.7933 + }, + { + "start": 18730.94, + "end": 18734.22, + "probability": 0.9797 + }, + { + "start": 18734.86, + "end": 18736.68, + "probability": 0.7834 + }, + { + "start": 18736.78, + "end": 18739.86, + "probability": 0.9052 + }, + { + "start": 18740.68, + "end": 18741.16, + "probability": 0.9355 + }, + { + "start": 18741.95, + "end": 18746.04, + "probability": 0.9766 + }, + { + "start": 18746.64, + "end": 18749.04, + "probability": 0.9695 + }, + { + "start": 18749.2, + "end": 18751.14, + "probability": 0.724 + }, + { + "start": 18752.0, + "end": 18756.7, + "probability": 0.9575 + }, + { + "start": 18758.02, + "end": 18761.14, + "probability": 0.4439 + }, + { + "start": 18761.22, + "end": 18762.58, + "probability": 0.9397 + }, + { + "start": 18762.72, + "end": 18764.3, + "probability": 0.9784 + }, + { + "start": 18764.82, + "end": 18768.8, + "probability": 0.9961 + }, + { + "start": 18769.74, + "end": 18772.1, + "probability": 0.9561 + }, + { + "start": 18772.92, + "end": 18775.4, + "probability": 0.8619 + }, + { + "start": 18776.18, + "end": 18778.72, + "probability": 0.9975 + }, + { + "start": 18778.96, + "end": 18779.34, + "probability": 0.5847 + }, + { + "start": 18779.44, + "end": 18780.58, + "probability": 0.9797 + }, + { + "start": 18781.56, + "end": 18786.33, + "probability": 0.9501 + }, + { + "start": 18786.36, + "end": 18791.76, + "probability": 0.9828 + }, + { + "start": 18792.3, + "end": 18793.58, + "probability": 0.999 + }, + { + "start": 18793.98, + "end": 18797.26, + "probability": 0.9613 + }, + { + "start": 18797.4, + "end": 18797.96, + "probability": 0.9622 + }, + { + "start": 18798.74, + "end": 18802.92, + "probability": 0.9876 + }, + { + "start": 18803.1, + "end": 18804.64, + "probability": 0.9897 + }, + { + "start": 18805.18, + "end": 18809.54, + "probability": 0.9348 + }, + { + "start": 18809.68, + "end": 18810.0, + "probability": 0.9406 + }, + { + "start": 18810.66, + "end": 18811.98, + "probability": 0.6133 + }, + { + "start": 18812.5, + "end": 18815.8, + "probability": 0.7959 + }, + { + "start": 18816.16, + "end": 18816.66, + "probability": 0.7696 + }, + { + "start": 18816.76, + "end": 18819.1, + "probability": 0.9738 + }, + { + "start": 18819.78, + "end": 18820.42, + "probability": 0.9391 + }, + { + "start": 18821.5, + "end": 18825.6, + "probability": 0.9965 + }, + { + "start": 18826.02, + "end": 18828.92, + "probability": 0.9916 + }, + { + "start": 18829.36, + "end": 18829.76, + "probability": 0.1087 + }, + { + "start": 18829.96, + "end": 18831.54, + "probability": 0.777 + }, + { + "start": 18832.12, + "end": 18835.04, + "probability": 0.9775 + }, + { + "start": 18835.04, + "end": 18838.76, + "probability": 0.9946 + }, + { + "start": 18838.94, + "end": 18839.54, + "probability": 0.2804 + }, + { + "start": 18839.54, + "end": 18840.24, + "probability": 0.7427 + }, + { + "start": 18840.72, + "end": 18842.06, + "probability": 0.8608 + }, + { + "start": 18842.66, + "end": 18845.8, + "probability": 0.9613 + }, + { + "start": 18846.58, + "end": 18848.56, + "probability": 0.9886 + }, + { + "start": 18848.62, + "end": 18849.24, + "probability": 0.6042 + }, + { + "start": 18849.3, + "end": 18850.18, + "probability": 0.9316 + }, + { + "start": 18850.82, + "end": 18851.54, + "probability": 0.571 + }, + { + "start": 18853.44, + "end": 18853.96, + "probability": 0.4307 + }, + { + "start": 18858.86, + "end": 18860.07, + "probability": 0.9962 + }, + { + "start": 18860.4, + "end": 18861.82, + "probability": 0.9597 + }, + { + "start": 18867.12, + "end": 18868.5, + "probability": 0.9982 + }, + { + "start": 18871.66, + "end": 18873.86, + "probability": 0.6638 + }, + { + "start": 18876.22, + "end": 18878.2, + "probability": 0.7919 + }, + { + "start": 18880.1, + "end": 18882.84, + "probability": 0.696 + }, + { + "start": 18884.06, + "end": 18885.68, + "probability": 0.8802 + }, + { + "start": 18888.44, + "end": 18891.92, + "probability": 0.9863 + }, + { + "start": 18893.08, + "end": 18894.9, + "probability": 0.997 + }, + { + "start": 18897.34, + "end": 18899.56, + "probability": 0.9966 + }, + { + "start": 18900.68, + "end": 18901.64, + "probability": 0.945 + }, + { + "start": 18902.62, + "end": 18903.92, + "probability": 0.9536 + }, + { + "start": 18905.04, + "end": 18906.16, + "probability": 0.8439 + }, + { + "start": 18907.06, + "end": 18909.43, + "probability": 0.8107 + }, + { + "start": 18910.5, + "end": 18911.02, + "probability": 0.7765 + }, + { + "start": 18911.76, + "end": 18914.52, + "probability": 0.8679 + }, + { + "start": 18915.5, + "end": 18917.26, + "probability": 0.6317 + }, + { + "start": 18917.8, + "end": 18919.34, + "probability": 0.8942 + }, + { + "start": 18920.0, + "end": 18920.62, + "probability": 0.715 + }, + { + "start": 18920.82, + "end": 18922.02, + "probability": 0.6639 + }, + { + "start": 18922.54, + "end": 18923.05, + "probability": 0.707 + }, + { + "start": 18924.38, + "end": 18924.68, + "probability": 0.6218 + }, + { + "start": 18925.76, + "end": 18931.14, + "probability": 0.6623 + }, + { + "start": 18931.36, + "end": 18932.16, + "probability": 0.7299 + }, + { + "start": 18933.22, + "end": 18934.8, + "probability": 0.9438 + }, + { + "start": 18936.0, + "end": 18938.52, + "probability": 0.7687 + }, + { + "start": 18939.94, + "end": 18941.38, + "probability": 0.5651 + }, + { + "start": 18942.66, + "end": 18944.08, + "probability": 0.8413 + }, + { + "start": 18944.9, + "end": 18949.04, + "probability": 0.938 + }, + { + "start": 18949.08, + "end": 18950.2, + "probability": 0.5998 + }, + { + "start": 18951.74, + "end": 18954.08, + "probability": 0.5564 + }, + { + "start": 18954.8, + "end": 18955.76, + "probability": 0.8907 + }, + { + "start": 18957.3, + "end": 18960.42, + "probability": 0.9679 + }, + { + "start": 18961.36, + "end": 18965.14, + "probability": 0.9261 + }, + { + "start": 18965.68, + "end": 18966.72, + "probability": 0.8735 + }, + { + "start": 18967.6, + "end": 18968.5, + "probability": 0.7845 + }, + { + "start": 18969.42, + "end": 18970.59, + "probability": 0.5207 + }, + { + "start": 18971.08, + "end": 18971.58, + "probability": 0.7569 + }, + { + "start": 18972.34, + "end": 18974.14, + "probability": 0.7002 + }, + { + "start": 18975.04, + "end": 18976.26, + "probability": 0.9947 + }, + { + "start": 18977.78, + "end": 18979.36, + "probability": 0.8105 + }, + { + "start": 18980.28, + "end": 18981.42, + "probability": 0.5326 + }, + { + "start": 18982.14, + "end": 18984.38, + "probability": 0.7554 + }, + { + "start": 18985.78, + "end": 18986.78, + "probability": 0.7514 + }, + { + "start": 18988.08, + "end": 18989.86, + "probability": 0.9003 + }, + { + "start": 18991.4, + "end": 18995.46, + "probability": 0.8353 + }, + { + "start": 18996.24, + "end": 18998.48, + "probability": 0.8268 + }, + { + "start": 18998.62, + "end": 19000.36, + "probability": 0.9883 + }, + { + "start": 19002.12, + "end": 19003.88, + "probability": 0.9489 + }, + { + "start": 19004.92, + "end": 19007.9, + "probability": 0.8738 + }, + { + "start": 19009.76, + "end": 19011.26, + "probability": 0.947 + }, + { + "start": 19012.42, + "end": 19013.54, + "probability": 0.6642 + }, + { + "start": 19014.36, + "end": 19016.26, + "probability": 0.9553 + }, + { + "start": 19017.58, + "end": 19019.86, + "probability": 0.8455 + }, + { + "start": 19020.3, + "end": 19022.26, + "probability": 0.9429 + }, + { + "start": 19026.08, + "end": 19026.95, + "probability": 0.7455 + }, + { + "start": 19029.5, + "end": 19033.04, + "probability": 0.8713 + }, + { + "start": 19034.5, + "end": 19040.4, + "probability": 0.8183 + }, + { + "start": 19040.44, + "end": 19041.22, + "probability": 0.6275 + }, + { + "start": 19041.3, + "end": 19041.86, + "probability": 0.6959 + }, + { + "start": 19042.04, + "end": 19042.44, + "probability": 0.6649 + }, + { + "start": 19043.9, + "end": 19048.42, + "probability": 0.6995 + }, + { + "start": 19049.76, + "end": 19050.22, + "probability": 0.8575 + }, + { + "start": 19050.6, + "end": 19053.34, + "probability": 0.9384 + }, + { + "start": 19053.82, + "end": 19055.3, + "probability": 0.8161 + }, + { + "start": 19056.04, + "end": 19056.84, + "probability": 0.7985 + }, + { + "start": 19057.78, + "end": 19059.12, + "probability": 0.7032 + }, + { + "start": 19059.4, + "end": 19061.06, + "probability": 0.9469 + }, + { + "start": 19061.94, + "end": 19062.48, + "probability": 0.6707 + }, + { + "start": 19063.24, + "end": 19067.24, + "probability": 0.8368 + }, + { + "start": 19067.38, + "end": 19068.01, + "probability": 0.5759 + }, + { + "start": 19068.76, + "end": 19070.54, + "probability": 0.5192 + }, + { + "start": 19071.46, + "end": 19072.68, + "probability": 0.8625 + }, + { + "start": 19073.1, + "end": 19073.72, + "probability": 0.9744 + }, + { + "start": 19074.0, + "end": 19076.3, + "probability": 0.9667 + }, + { + "start": 19076.32, + "end": 19076.86, + "probability": 0.5388 + }, + { + "start": 19077.08, + "end": 19078.53, + "probability": 0.1576 + }, + { + "start": 19078.72, + "end": 19080.18, + "probability": 0.6698 + }, + { + "start": 19080.36, + "end": 19081.41, + "probability": 0.9928 + }, + { + "start": 19082.48, + "end": 19085.16, + "probability": 0.6481 + }, + { + "start": 19087.86, + "end": 19091.6, + "probability": 0.5456 + }, + { + "start": 19092.14, + "end": 19093.06, + "probability": 0.8597 + }, + { + "start": 19094.02, + "end": 19097.11, + "probability": 0.8332 + }, + { + "start": 19098.4, + "end": 19099.84, + "probability": 0.7466 + }, + { + "start": 19100.8, + "end": 19104.0, + "probability": 0.9944 + }, + { + "start": 19104.8, + "end": 19107.28, + "probability": 0.8978 + }, + { + "start": 19107.92, + "end": 19108.84, + "probability": 0.8707 + }, + { + "start": 19109.52, + "end": 19113.3, + "probability": 0.9555 + }, + { + "start": 19114.16, + "end": 19115.92, + "probability": 0.6552 + }, + { + "start": 19116.54, + "end": 19118.18, + "probability": 0.8118 + }, + { + "start": 19118.72, + "end": 19121.1, + "probability": 0.964 + }, + { + "start": 19121.8, + "end": 19124.82, + "probability": 0.7763 + }, + { + "start": 19124.82, + "end": 19127.2, + "probability": 0.9661 + }, + { + "start": 19127.44, + "end": 19127.78, + "probability": 0.5992 + }, + { + "start": 19128.76, + "end": 19129.76, + "probability": 0.614 + }, + { + "start": 19139.1, + "end": 19139.1, + "probability": 0.0101 + }, + { + "start": 19139.1, + "end": 19139.1, + "probability": 0.0684 + }, + { + "start": 19139.1, + "end": 19139.17, + "probability": 0.0917 + }, + { + "start": 19151.3, + "end": 19152.4, + "probability": 0.6337 + }, + { + "start": 19153.44, + "end": 19155.98, + "probability": 0.8758 + }, + { + "start": 19156.5, + "end": 19158.12, + "probability": 0.7958 + }, + { + "start": 19159.26, + "end": 19165.1, + "probability": 0.9644 + }, + { + "start": 19166.2, + "end": 19168.46, + "probability": 0.8652 + }, + { + "start": 19169.4, + "end": 19173.86, + "probability": 0.966 + }, + { + "start": 19174.44, + "end": 19176.84, + "probability": 0.9935 + }, + { + "start": 19176.84, + "end": 19180.8, + "probability": 0.9518 + }, + { + "start": 19182.34, + "end": 19184.42, + "probability": 0.9798 + }, + { + "start": 19184.54, + "end": 19185.08, + "probability": 0.5286 + }, + { + "start": 19185.24, + "end": 19185.6, + "probability": 0.35 + }, + { + "start": 19185.94, + "end": 19186.82, + "probability": 0.4591 + }, + { + "start": 19186.86, + "end": 19189.42, + "probability": 0.9715 + }, + { + "start": 19190.18, + "end": 19191.1, + "probability": 0.2713 + }, + { + "start": 19191.6, + "end": 19193.22, + "probability": 0.9575 + }, + { + "start": 19193.34, + "end": 19194.26, + "probability": 0.8236 + }, + { + "start": 19194.98, + "end": 19195.84, + "probability": 0.5476 + }, + { + "start": 19196.54, + "end": 19201.12, + "probability": 0.9648 + }, + { + "start": 19201.24, + "end": 19202.09, + "probability": 0.0234 + }, + { + "start": 19203.26, + "end": 19205.26, + "probability": 0.0527 + }, + { + "start": 19205.26, + "end": 19206.24, + "probability": 0.3839 + }, + { + "start": 19206.28, + "end": 19207.62, + "probability": 0.3512 + }, + { + "start": 19209.32, + "end": 19213.44, + "probability": 0.9425 + }, + { + "start": 19213.64, + "end": 19217.52, + "probability": 0.9937 + }, + { + "start": 19217.68, + "end": 19220.86, + "probability": 0.9966 + }, + { + "start": 19221.38, + "end": 19222.02, + "probability": 0.8431 + }, + { + "start": 19222.48, + "end": 19226.86, + "probability": 0.8493 + }, + { + "start": 19227.72, + "end": 19230.02, + "probability": 0.9855 + }, + { + "start": 19231.5, + "end": 19234.5, + "probability": 0.9917 + }, + { + "start": 19235.38, + "end": 19236.78, + "probability": 0.8745 + }, + { + "start": 19237.42, + "end": 19240.64, + "probability": 0.9538 + }, + { + "start": 19240.86, + "end": 19245.54, + "probability": 0.9972 + }, + { + "start": 19245.92, + "end": 19247.9, + "probability": 0.9976 + }, + { + "start": 19247.98, + "end": 19249.24, + "probability": 0.9977 + }, + { + "start": 19250.4, + "end": 19251.8, + "probability": 0.9571 + }, + { + "start": 19252.84, + "end": 19255.76, + "probability": 0.9992 + }, + { + "start": 19256.62, + "end": 19259.56, + "probability": 0.9981 + }, + { + "start": 19259.9, + "end": 19261.64, + "probability": 0.9018 + }, + { + "start": 19262.42, + "end": 19263.74, + "probability": 0.969 + }, + { + "start": 19263.94, + "end": 19264.87, + "probability": 0.9183 + }, + { + "start": 19265.36, + "end": 19271.08, + "probability": 0.9807 + }, + { + "start": 19272.04, + "end": 19275.78, + "probability": 0.9541 + }, + { + "start": 19276.34, + "end": 19278.08, + "probability": 0.9592 + }, + { + "start": 19278.8, + "end": 19281.06, + "probability": 0.743 + }, + { + "start": 19281.74, + "end": 19283.32, + "probability": 0.8902 + }, + { + "start": 19284.48, + "end": 19288.42, + "probability": 0.9807 + }, + { + "start": 19289.04, + "end": 19291.2, + "probability": 0.6628 + }, + { + "start": 19291.64, + "end": 19291.64, + "probability": 0.041 + }, + { + "start": 19291.64, + "end": 19294.72, + "probability": 0.7952 + }, + { + "start": 19295.28, + "end": 19296.34, + "probability": 0.9064 + }, + { + "start": 19297.06, + "end": 19299.28, + "probability": 0.9941 + }, + { + "start": 19300.12, + "end": 19301.62, + "probability": 0.9893 + }, + { + "start": 19302.44, + "end": 19303.88, + "probability": 0.6494 + }, + { + "start": 19304.48, + "end": 19309.06, + "probability": 0.9482 + }, + { + "start": 19309.84, + "end": 19313.76, + "probability": 0.9847 + }, + { + "start": 19314.16, + "end": 19315.16, + "probability": 0.96 + }, + { + "start": 19315.64, + "end": 19318.18, + "probability": 0.9978 + }, + { + "start": 19319.16, + "end": 19319.98, + "probability": 0.7142 + }, + { + "start": 19320.02, + "end": 19323.12, + "probability": 0.9312 + }, + { + "start": 19323.34, + "end": 19327.2, + "probability": 0.9742 + }, + { + "start": 19327.84, + "end": 19329.66, + "probability": 0.9222 + }, + { + "start": 19330.24, + "end": 19331.1, + "probability": 0.6578 + }, + { + "start": 19331.74, + "end": 19332.0, + "probability": 0.731 + }, + { + "start": 19332.74, + "end": 19333.86, + "probability": 0.9928 + }, + { + "start": 19334.5, + "end": 19335.52, + "probability": 0.9585 + }, + { + "start": 19335.92, + "end": 19339.24, + "probability": 0.9088 + }, + { + "start": 19339.56, + "end": 19340.68, + "probability": 0.9878 + }, + { + "start": 19340.76, + "end": 19341.6, + "probability": 0.9071 + }, + { + "start": 19342.12, + "end": 19345.2, + "probability": 0.8625 + }, + { + "start": 19345.64, + "end": 19346.06, + "probability": 0.9058 + }, + { + "start": 19346.26, + "end": 19346.96, + "probability": 0.2621 + }, + { + "start": 19347.14, + "end": 19348.36, + "probability": 0.9932 + }, + { + "start": 19348.46, + "end": 19348.74, + "probability": 0.4382 + }, + { + "start": 19348.82, + "end": 19349.52, + "probability": 0.7992 + }, + { + "start": 19350.36, + "end": 19352.74, + "probability": 0.9891 + }, + { + "start": 19354.96, + "end": 19355.46, + "probability": 0.6364 + }, + { + "start": 19356.64, + "end": 19359.68, + "probability": 0.4319 + }, + { + "start": 19360.2, + "end": 19362.18, + "probability": 0.7016 + }, + { + "start": 19362.6, + "end": 19365.54, + "probability": 0.948 + }, + { + "start": 19366.24, + "end": 19368.6, + "probability": 0.9492 + }, + { + "start": 19369.22, + "end": 19372.1, + "probability": 0.9832 + }, + { + "start": 19372.26, + "end": 19373.7, + "probability": 0.8835 + }, + { + "start": 19373.84, + "end": 19375.1, + "probability": 0.7331 + }, + { + "start": 19375.48, + "end": 19376.1, + "probability": 0.9888 + }, + { + "start": 19376.24, + "end": 19376.76, + "probability": 0.4946 + }, + { + "start": 19377.12, + "end": 19381.1, + "probability": 0.8882 + }, + { + "start": 19381.12, + "end": 19382.8, + "probability": 0.769 + }, + { + "start": 19383.48, + "end": 19385.9, + "probability": 0.6509 + }, + { + "start": 19386.18, + "end": 19389.24, + "probability": 0.4874 + }, + { + "start": 19389.82, + "end": 19390.62, + "probability": 0.608 + }, + { + "start": 19393.52, + "end": 19395.04, + "probability": 0.5641 + }, + { + "start": 19395.12, + "end": 19395.58, + "probability": 0.5557 + }, + { + "start": 19395.62, + "end": 19395.97, + "probability": 0.6103 + }, + { + "start": 19396.58, + "end": 19399.74, + "probability": 0.6341 + }, + { + "start": 19400.68, + "end": 19401.38, + "probability": 0.2953 + }, + { + "start": 19401.44, + "end": 19403.5, + "probability": 0.2713 + }, + { + "start": 19404.04, + "end": 19404.1, + "probability": 0.0568 + }, + { + "start": 19404.1, + "end": 19405.44, + "probability": 0.4164 + }, + { + "start": 19407.88, + "end": 19410.7, + "probability": 0.7181 + }, + { + "start": 19410.7, + "end": 19412.5, + "probability": 0.7982 + }, + { + "start": 19412.68, + "end": 19413.48, + "probability": 0.8314 + }, + { + "start": 19414.22, + "end": 19415.8, + "probability": 0.7651 + }, + { + "start": 19417.26, + "end": 19418.98, + "probability": 0.9085 + }, + { + "start": 19419.86, + "end": 19420.93, + "probability": 0.7563 + }, + { + "start": 19422.1, + "end": 19424.52, + "probability": 0.8967 + }, + { + "start": 19425.82, + "end": 19426.7, + "probability": 0.5096 + }, + { + "start": 19427.3, + "end": 19428.68, + "probability": 0.7168 + }, + { + "start": 19429.74, + "end": 19429.8, + "probability": 0.0898 + }, + { + "start": 19429.8, + "end": 19432.8, + "probability": 0.8354 + }, + { + "start": 19432.8, + "end": 19434.98, + "probability": 0.9987 + }, + { + "start": 19435.46, + "end": 19437.1, + "probability": 0.2351 + }, + { + "start": 19437.28, + "end": 19437.68, + "probability": 0.5411 + }, + { + "start": 19437.92, + "end": 19439.32, + "probability": 0.8965 + }, + { + "start": 19439.38, + "end": 19439.86, + "probability": 0.7277 + }, + { + "start": 19440.06, + "end": 19440.2, + "probability": 0.9425 + }, + { + "start": 19441.02, + "end": 19443.74, + "probability": 0.9836 + }, + { + "start": 19444.06, + "end": 19444.54, + "probability": 0.7458 + }, + { + "start": 19444.84, + "end": 19445.74, + "probability": 0.4567 + }, + { + "start": 19446.06, + "end": 19447.48, + "probability": 0.5359 + }, + { + "start": 19448.08, + "end": 19450.14, + "probability": 0.7778 + }, + { + "start": 19450.4, + "end": 19451.28, + "probability": 0.5392 + }, + { + "start": 19451.54, + "end": 19453.5, + "probability": 0.8302 + }, + { + "start": 19453.74, + "end": 19454.26, + "probability": 0.7826 + }, + { + "start": 19456.02, + "end": 19457.19, + "probability": 0.5227 + }, + { + "start": 19458.34, + "end": 19460.18, + "probability": 0.0727 + }, + { + "start": 19460.4, + "end": 19461.23, + "probability": 0.902 + }, + { + "start": 19461.36, + "end": 19462.48, + "probability": 0.7554 + }, + { + "start": 19463.08, + "end": 19464.2, + "probability": 0.9407 + }, + { + "start": 19464.24, + "end": 19465.98, + "probability": 0.938 + }, + { + "start": 19466.12, + "end": 19466.94, + "probability": 0.8138 + }, + { + "start": 19467.68, + "end": 19468.06, + "probability": 0.4997 + }, + { + "start": 19468.58, + "end": 19469.2, + "probability": 0.0581 + }, + { + "start": 19469.2, + "end": 19469.86, + "probability": 0.213 + }, + { + "start": 19469.98, + "end": 19472.7, + "probability": 0.9199 + }, + { + "start": 19473.0, + "end": 19473.08, + "probability": 0.0573 + }, + { + "start": 19473.18, + "end": 19473.7, + "probability": 0.1335 + }, + { + "start": 19473.94, + "end": 19474.68, + "probability": 0.8108 + }, + { + "start": 19474.76, + "end": 19475.12, + "probability": 0.8689 + }, + { + "start": 19475.42, + "end": 19476.48, + "probability": 0.9677 + }, + { + "start": 19477.06, + "end": 19477.44, + "probability": 0.5559 + }, + { + "start": 19478.52, + "end": 19478.58, + "probability": 0.2455 + }, + { + "start": 19478.58, + "end": 19480.14, + "probability": 0.2381 + }, + { + "start": 19480.48, + "end": 19480.89, + "probability": 0.253 + }, + { + "start": 19481.36, + "end": 19481.98, + "probability": 0.3611 + }, + { + "start": 19482.02, + "end": 19483.66, + "probability": 0.1957 + }, + { + "start": 19484.66, + "end": 19484.98, + "probability": 0.584 + }, + { + "start": 19485.24, + "end": 19487.68, + "probability": 0.973 + }, + { + "start": 19488.38, + "end": 19489.76, + "probability": 0.7596 + }, + { + "start": 19490.14, + "end": 19490.82, + "probability": 0.8011 + }, + { + "start": 19491.64, + "end": 19494.22, + "probability": 0.9 + }, + { + "start": 19494.22, + "end": 19496.84, + "probability": 0.7089 + }, + { + "start": 19499.32, + "end": 19501.44, + "probability": 0.9531 + }, + { + "start": 19501.82, + "end": 19501.86, + "probability": 0.0632 + }, + { + "start": 19501.86, + "end": 19507.28, + "probability": 0.9584 + }, + { + "start": 19507.28, + "end": 19511.92, + "probability": 0.9819 + }, + { + "start": 19512.22, + "end": 19512.84, + "probability": 0.8016 + }, + { + "start": 19513.22, + "end": 19513.5, + "probability": 0.5534 + }, + { + "start": 19513.74, + "end": 19514.96, + "probability": 0.4012 + }, + { + "start": 19515.82, + "end": 19516.56, + "probability": 0.8558 + }, + { + "start": 19516.82, + "end": 19519.13, + "probability": 0.7985 + }, + { + "start": 19520.38, + "end": 19522.64, + "probability": 0.9906 + }, + { + "start": 19524.1, + "end": 19525.72, + "probability": 0.8311 + }, + { + "start": 19526.54, + "end": 19529.58, + "probability": 0.9736 + }, + { + "start": 19531.18, + "end": 19536.38, + "probability": 0.821 + }, + { + "start": 19537.44, + "end": 19539.16, + "probability": 0.7083 + }, + { + "start": 19539.7, + "end": 19540.81, + "probability": 0.8281 + }, + { + "start": 19541.72, + "end": 19542.36, + "probability": 0.8447 + }, + { + "start": 19542.98, + "end": 19545.76, + "probability": 0.9788 + }, + { + "start": 19545.76, + "end": 19547.76, + "probability": 0.839 + }, + { + "start": 19549.08, + "end": 19551.52, + "probability": 0.9886 + }, + { + "start": 19552.36, + "end": 19554.94, + "probability": 0.908 + }, + { + "start": 19555.62, + "end": 19556.9, + "probability": 0.6761 + }, + { + "start": 19557.6, + "end": 19559.66, + "probability": 0.9757 + }, + { + "start": 19562.42, + "end": 19566.16, + "probability": 0.8994 + }, + { + "start": 19566.16, + "end": 19570.78, + "probability": 0.9658 + }, + { + "start": 19572.06, + "end": 19573.38, + "probability": 0.9712 + }, + { + "start": 19573.74, + "end": 19574.2, + "probability": 0.8662 + }, + { + "start": 19574.62, + "end": 19576.64, + "probability": 0.8772 + }, + { + "start": 19578.56, + "end": 19583.7, + "probability": 0.75 + }, + { + "start": 19584.32, + "end": 19585.08, + "probability": 0.8712 + }, + { + "start": 19585.9, + "end": 19586.46, + "probability": 0.9689 + }, + { + "start": 19588.14, + "end": 19589.9, + "probability": 0.9475 + }, + { + "start": 19593.04, + "end": 19593.62, + "probability": 0.5824 + }, + { + "start": 19594.92, + "end": 19596.08, + "probability": 0.8236 + }, + { + "start": 19597.54, + "end": 19603.02, + "probability": 0.9687 + }, + { + "start": 19603.12, + "end": 19604.14, + "probability": 0.9215 + }, + { + "start": 19604.78, + "end": 19605.4, + "probability": 0.9736 + }, + { + "start": 19606.62, + "end": 19608.7, + "probability": 0.9839 + }, + { + "start": 19608.76, + "end": 19611.16, + "probability": 0.6497 + }, + { + "start": 19617.1, + "end": 19617.82, + "probability": 0.1578 + }, + { + "start": 19617.82, + "end": 19617.82, + "probability": 0.1614 + }, + { + "start": 19617.82, + "end": 19617.82, + "probability": 0.0492 + }, + { + "start": 19617.82, + "end": 19617.82, + "probability": 0.0069 + }, + { + "start": 19617.82, + "end": 19619.7, + "probability": 0.8742 + }, + { + "start": 19620.96, + "end": 19622.5, + "probability": 0.6069 + }, + { + "start": 19622.5, + "end": 19623.01, + "probability": 0.2854 + }, + { + "start": 19623.08, + "end": 19624.14, + "probability": 0.7642 + }, + { + "start": 19625.38, + "end": 19626.61, + "probability": 0.9962 + }, + { + "start": 19627.66, + "end": 19629.56, + "probability": 0.7974 + }, + { + "start": 19630.3, + "end": 19633.44, + "probability": 0.9131 + }, + { + "start": 19634.22, + "end": 19636.28, + "probability": 0.8824 + }, + { + "start": 19637.76, + "end": 19640.22, + "probability": 0.6919 + }, + { + "start": 19641.06, + "end": 19644.3, + "probability": 0.7342 + }, + { + "start": 19646.22, + "end": 19647.1, + "probability": 0.7822 + }, + { + "start": 19647.1, + "end": 19647.34, + "probability": 0.0398 + }, + { + "start": 19647.34, + "end": 19648.02, + "probability": 0.1826 + }, + { + "start": 19648.16, + "end": 19648.75, + "probability": 0.6676 + }, + { + "start": 19649.26, + "end": 19649.3, + "probability": 0.0546 + }, + { + "start": 19649.34, + "end": 19652.1, + "probability": 0.3764 + }, + { + "start": 19652.26, + "end": 19652.26, + "probability": 0.2443 + }, + { + "start": 19652.26, + "end": 19652.66, + "probability": 0.8164 + }, + { + "start": 19653.52, + "end": 19654.91, + "probability": 0.9683 + }, + { + "start": 19655.2, + "end": 19656.48, + "probability": 0.5244 + }, + { + "start": 19656.48, + "end": 19657.06, + "probability": 0.6989 + }, + { + "start": 19657.84, + "end": 19660.92, + "probability": 0.6867 + }, + { + "start": 19661.22, + "end": 19661.34, + "probability": 0.0686 + }, + { + "start": 19661.34, + "end": 19662.1, + "probability": 0.9342 + }, + { + "start": 19662.1, + "end": 19663.17, + "probability": 0.4549 + }, + { + "start": 19663.6, + "end": 19664.88, + "probability": 0.9966 + }, + { + "start": 19665.06, + "end": 19666.52, + "probability": 0.898 + }, + { + "start": 19666.96, + "end": 19668.68, + "probability": 0.9694 + }, + { + "start": 19670.14, + "end": 19670.82, + "probability": 0.9531 + }, + { + "start": 19671.82, + "end": 19672.02, + "probability": 0.3031 + }, + { + "start": 19673.02, + "end": 19676.98, + "probability": 0.9611 + }, + { + "start": 19678.4, + "end": 19679.24, + "probability": 0.8551 + }, + { + "start": 19680.08, + "end": 19684.14, + "probability": 0.9719 + }, + { + "start": 19684.82, + "end": 19687.38, + "probability": 0.8881 + }, + { + "start": 19687.98, + "end": 19691.46, + "probability": 0.798 + }, + { + "start": 19692.86, + "end": 19693.51, + "probability": 0.957 + }, + { + "start": 19693.9, + "end": 19694.16, + "probability": 0.5139 + }, + { + "start": 19694.24, + "end": 19695.42, + "probability": 0.8823 + }, + { + "start": 19696.04, + "end": 19696.64, + "probability": 0.9803 + }, + { + "start": 19697.46, + "end": 19699.78, + "probability": 0.9111 + }, + { + "start": 19699.88, + "end": 19702.3, + "probability": 0.8113 + }, + { + "start": 19703.26, + "end": 19703.28, + "probability": 0.0783 + }, + { + "start": 19703.28, + "end": 19705.78, + "probability": 0.9678 + }, + { + "start": 19706.32, + "end": 19709.54, + "probability": 0.9729 + }, + { + "start": 19710.12, + "end": 19711.0, + "probability": 0.6928 + }, + { + "start": 19711.64, + "end": 19713.62, + "probability": 0.9074 + }, + { + "start": 19714.62, + "end": 19717.82, + "probability": 0.7856 + }, + { + "start": 19718.48, + "end": 19723.1, + "probability": 0.9625 + }, + { + "start": 19723.96, + "end": 19727.8, + "probability": 0.9165 + }, + { + "start": 19728.02, + "end": 19728.66, + "probability": 0.7251 + }, + { + "start": 19729.28, + "end": 19731.89, + "probability": 0.8244 + }, + { + "start": 19732.22, + "end": 19733.8, + "probability": 0.3738 + }, + { + "start": 19749.72, + "end": 19749.94, + "probability": 0.0303 + }, + { + "start": 19749.94, + "end": 19750.86, + "probability": 0.6633 + }, + { + "start": 19751.64, + "end": 19753.84, + "probability": 0.5846 + }, + { + "start": 19754.1, + "end": 19755.32, + "probability": 0.5198 + }, + { + "start": 19755.32, + "end": 19756.32, + "probability": 0.7449 + }, + { + "start": 19756.9, + "end": 19757.28, + "probability": 0.6047 + }, + { + "start": 19757.54, + "end": 19758.64, + "probability": 0.6345 + }, + { + "start": 19761.9, + "end": 19762.3, + "probability": 0.0348 + }, + { + "start": 19762.3, + "end": 19765.16, + "probability": 0.3176 + }, + { + "start": 19765.6, + "end": 19765.78, + "probability": 0.3588 + }, + { + "start": 19765.92, + "end": 19767.84, + "probability": 0.5935 + }, + { + "start": 19768.64, + "end": 19775.72, + "probability": 0.9617 + }, + { + "start": 19776.52, + "end": 19779.02, + "probability": 0.9851 + }, + { + "start": 19780.48, + "end": 19783.9, + "probability": 0.9958 + }, + { + "start": 19785.04, + "end": 19789.08, + "probability": 0.9977 + }, + { + "start": 19790.92, + "end": 19792.72, + "probability": 0.9741 + }, + { + "start": 19792.8, + "end": 19796.46, + "probability": 0.9335 + }, + { + "start": 19797.14, + "end": 19797.66, + "probability": 0.5289 + }, + { + "start": 19798.18, + "end": 19800.0, + "probability": 0.6959 + }, + { + "start": 19801.04, + "end": 19803.28, + "probability": 0.9792 + }, + { + "start": 19803.82, + "end": 19808.32, + "probability": 0.9936 + }, + { + "start": 19809.02, + "end": 19809.54, + "probability": 0.5078 + }, + { + "start": 19809.6, + "end": 19809.98, + "probability": 0.8783 + }, + { + "start": 19810.08, + "end": 19811.2, + "probability": 0.8462 + }, + { + "start": 19811.28, + "end": 19812.16, + "probability": 0.9375 + }, + { + "start": 19812.42, + "end": 19813.3, + "probability": 0.819 + }, + { + "start": 19814.9, + "end": 19815.96, + "probability": 0.8178 + }, + { + "start": 19816.78, + "end": 19820.32, + "probability": 0.9626 + }, + { + "start": 19821.06, + "end": 19822.12, + "probability": 0.632 + }, + { + "start": 19823.08, + "end": 19825.44, + "probability": 0.9229 + }, + { + "start": 19825.66, + "end": 19827.8, + "probability": 0.8843 + }, + { + "start": 19828.3, + "end": 19834.88, + "probability": 0.9692 + }, + { + "start": 19836.26, + "end": 19838.92, + "probability": 0.9933 + }, + { + "start": 19839.64, + "end": 19842.84, + "probability": 0.9644 + }, + { + "start": 19843.98, + "end": 19849.26, + "probability": 0.9971 + }, + { + "start": 19849.4, + "end": 19850.64, + "probability": 0.9522 + }, + { + "start": 19851.54, + "end": 19853.4, + "probability": 0.9472 + }, + { + "start": 19854.02, + "end": 19857.76, + "probability": 0.9954 + }, + { + "start": 19859.18, + "end": 19864.34, + "probability": 0.9846 + }, + { + "start": 19865.16, + "end": 19868.59, + "probability": 0.9914 + }, + { + "start": 19869.98, + "end": 19873.14, + "probability": 0.9757 + }, + { + "start": 19873.82, + "end": 19875.26, + "probability": 0.9337 + }, + { + "start": 19875.4, + "end": 19876.44, + "probability": 0.9153 + }, + { + "start": 19876.6, + "end": 19879.22, + "probability": 0.8969 + }, + { + "start": 19879.3, + "end": 19880.26, + "probability": 0.9927 + }, + { + "start": 19881.64, + "end": 19883.16, + "probability": 0.7307 + }, + { + "start": 19883.28, + "end": 19886.86, + "probability": 0.9191 + }, + { + "start": 19887.2, + "end": 19889.9, + "probability": 0.96 + }, + { + "start": 19889.9, + "end": 19892.06, + "probability": 0.9598 + }, + { + "start": 19892.24, + "end": 19895.14, + "probability": 0.9917 + }, + { + "start": 19895.36, + "end": 19898.76, + "probability": 0.9951 + }, + { + "start": 19899.94, + "end": 19901.78, + "probability": 0.981 + }, + { + "start": 19901.84, + "end": 19905.32, + "probability": 0.927 + }, + { + "start": 19906.18, + "end": 19906.74, + "probability": 0.7906 + }, + { + "start": 19907.44, + "end": 19910.4, + "probability": 0.9846 + }, + { + "start": 19910.9, + "end": 19911.52, + "probability": 0.7659 + }, + { + "start": 19912.02, + "end": 19912.58, + "probability": 0.8654 + }, + { + "start": 19912.68, + "end": 19913.3, + "probability": 0.9119 + }, + { + "start": 19913.98, + "end": 19914.74, + "probability": 0.5625 + }, + { + "start": 19915.68, + "end": 19917.26, + "probability": 0.9741 + }, + { + "start": 19918.34, + "end": 19922.54, + "probability": 0.9502 + }, + { + "start": 19922.84, + "end": 19923.7, + "probability": 0.9608 + }, + { + "start": 19924.62, + "end": 19926.6, + "probability": 0.9701 + }, + { + "start": 19927.04, + "end": 19929.0, + "probability": 0.9764 + }, + { + "start": 19929.1, + "end": 19931.6, + "probability": 0.9907 + }, + { + "start": 19931.6, + "end": 19933.6, + "probability": 0.9813 + }, + { + "start": 19934.38, + "end": 19937.94, + "probability": 0.9967 + }, + { + "start": 19938.82, + "end": 19941.68, + "probability": 0.9944 + }, + { + "start": 19942.22, + "end": 19943.02, + "probability": 0.7638 + }, + { + "start": 19943.58, + "end": 19947.4, + "probability": 0.9692 + }, + { + "start": 19947.76, + "end": 19951.52, + "probability": 0.9084 + }, + { + "start": 19952.2, + "end": 19953.36, + "probability": 0.967 + }, + { + "start": 19953.96, + "end": 19956.92, + "probability": 0.7506 + }, + { + "start": 19957.18, + "end": 19962.4, + "probability": 0.9628 + }, + { + "start": 19962.6, + "end": 19962.92, + "probability": 0.3269 + }, + { + "start": 19962.92, + "end": 19963.24, + "probability": 0.7217 + }, + { + "start": 19963.98, + "end": 19966.76, + "probability": 0.9219 + }, + { + "start": 19967.0, + "end": 19969.52, + "probability": 0.9512 + }, + { + "start": 19972.86, + "end": 19973.66, + "probability": 0.8455 + }, + { + "start": 19973.9, + "end": 19975.76, + "probability": 0.2617 + }, + { + "start": 19975.86, + "end": 19976.62, + "probability": 0.7666 + }, + { + "start": 19976.82, + "end": 19977.68, + "probability": 0.8356 + }, + { + "start": 19978.04, + "end": 19978.28, + "probability": 0.4223 + }, + { + "start": 19978.46, + "end": 19979.96, + "probability": 0.9749 + }, + { + "start": 19980.9, + "end": 19983.38, + "probability": 0.9954 + }, + { + "start": 19984.86, + "end": 19985.82, + "probability": 0.9414 + }, + { + "start": 19986.24, + "end": 19989.1, + "probability": 0.9907 + }, + { + "start": 19989.1, + "end": 19990.26, + "probability": 0.9043 + }, + { + "start": 19990.26, + "end": 19991.5, + "probability": 0.4235 + }, + { + "start": 19991.54, + "end": 19991.7, + "probability": 0.4375 + }, + { + "start": 19991.82, + "end": 19992.22, + "probability": 0.556 + }, + { + "start": 19992.4, + "end": 19996.88, + "probability": 0.9905 + }, + { + "start": 19997.02, + "end": 20002.24, + "probability": 0.9486 + }, + { + "start": 20002.24, + "end": 20007.3, + "probability": 0.8938 + }, + { + "start": 20008.1, + "end": 20008.84, + "probability": 0.0683 + }, + { + "start": 20008.84, + "end": 20011.34, + "probability": 0.8478 + }, + { + "start": 20012.28, + "end": 20015.86, + "probability": 0.9987 + }, + { + "start": 20016.66, + "end": 20020.74, + "probability": 0.571 + }, + { + "start": 20021.3, + "end": 20022.1, + "probability": 0.9227 + }, + { + "start": 20022.18, + "end": 20025.28, + "probability": 0.9993 + }, + { + "start": 20025.94, + "end": 20029.58, + "probability": 0.8878 + }, + { + "start": 20029.82, + "end": 20030.6, + "probability": 0.5159 + }, + { + "start": 20030.84, + "end": 20032.68, + "probability": 0.9855 + }, + { + "start": 20032.94, + "end": 20034.26, + "probability": 0.7699 + }, + { + "start": 20034.86, + "end": 20037.7, + "probability": 0.9531 + }, + { + "start": 20037.9, + "end": 20040.56, + "probability": 0.9889 + }, + { + "start": 20041.62, + "end": 20044.2, + "probability": 0.9961 + }, + { + "start": 20044.58, + "end": 20048.14, + "probability": 0.9879 + }, + { + "start": 20049.18, + "end": 20051.64, + "probability": 0.9497 + }, + { + "start": 20052.36, + "end": 20055.38, + "probability": 0.9935 + }, + { + "start": 20056.04, + "end": 20059.1, + "probability": 0.9536 + }, + { + "start": 20061.62, + "end": 20063.04, + "probability": 0.1442 + }, + { + "start": 20063.04, + "end": 20063.12, + "probability": 0.7958 + }, + { + "start": 20063.34, + "end": 20064.28, + "probability": 0.8167 + }, + { + "start": 20064.32, + "end": 20066.12, + "probability": 0.9632 + }, + { + "start": 20066.34, + "end": 20069.46, + "probability": 0.9874 + }, + { + "start": 20070.24, + "end": 20072.32, + "probability": 0.9468 + }, + { + "start": 20074.34, + "end": 20078.16, + "probability": 0.7617 + }, + { + "start": 20078.2, + "end": 20079.12, + "probability": 0.677 + }, + { + "start": 20079.34, + "end": 20080.0, + "probability": 0.7035 + }, + { + "start": 20080.04, + "end": 20080.46, + "probability": 0.8295 + }, + { + "start": 20082.74, + "end": 20085.6, + "probability": 0.5369 + }, + { + "start": 20085.94, + "end": 20088.56, + "probability": 0.7278 + }, + { + "start": 20088.64, + "end": 20089.48, + "probability": 0.9642 + }, + { + "start": 20089.54, + "end": 20090.52, + "probability": 0.8472 + }, + { + "start": 20090.9, + "end": 20092.44, + "probability": 0.6936 + }, + { + "start": 20092.56, + "end": 20094.34, + "probability": 0.7603 + }, + { + "start": 20094.44, + "end": 20095.02, + "probability": 0.7955 + }, + { + "start": 20095.16, + "end": 20101.42, + "probability": 0.981 + }, + { + "start": 20101.42, + "end": 20106.98, + "probability": 0.9983 + }, + { + "start": 20107.4, + "end": 20107.94, + "probability": 0.5303 + }, + { + "start": 20108.08, + "end": 20112.12, + "probability": 0.9263 + }, + { + "start": 20112.76, + "end": 20116.22, + "probability": 0.6224 + }, + { + "start": 20117.96, + "end": 20122.16, + "probability": 0.0065 + }, + { + "start": 20122.16, + "end": 20122.28, + "probability": 0.0635 + }, + { + "start": 20122.34, + "end": 20122.34, + "probability": 0.0215 + }, + { + "start": 20122.36, + "end": 20122.74, + "probability": 0.0342 + }, + { + "start": 20122.74, + "end": 20126.72, + "probability": 0.3369 + }, + { + "start": 20127.72, + "end": 20134.86, + "probability": 0.9707 + }, + { + "start": 20135.92, + "end": 20138.18, + "probability": 0.9012 + }, + { + "start": 20138.46, + "end": 20138.88, + "probability": 0.3779 + }, + { + "start": 20138.94, + "end": 20144.04, + "probability": 0.9391 + }, + { + "start": 20144.3, + "end": 20147.4, + "probability": 0.8703 + }, + { + "start": 20147.4, + "end": 20154.24, + "probability": 0.9696 + }, + { + "start": 20155.12, + "end": 20156.84, + "probability": 0.8145 + }, + { + "start": 20157.78, + "end": 20159.12, + "probability": 0.2342 + }, + { + "start": 20159.38, + "end": 20166.0, + "probability": 0.9945 + }, + { + "start": 20167.18, + "end": 20167.38, + "probability": 0.4221 + }, + { + "start": 20167.6, + "end": 20168.86, + "probability": 0.947 + }, + { + "start": 20168.96, + "end": 20173.08, + "probability": 0.9541 + }, + { + "start": 20173.62, + "end": 20174.38, + "probability": 0.8903 + }, + { + "start": 20174.94, + "end": 20176.96, + "probability": 0.9719 + }, + { + "start": 20177.5, + "end": 20183.92, + "probability": 0.9915 + }, + { + "start": 20184.62, + "end": 20186.1, + "probability": 0.9344 + }, + { + "start": 20186.7, + "end": 20188.3, + "probability": 0.8746 + }, + { + "start": 20188.94, + "end": 20190.4, + "probability": 0.9762 + }, + { + "start": 20191.62, + "end": 20194.02, + "probability": 0.7384 + }, + { + "start": 20194.06, + "end": 20199.0, + "probability": 0.9932 + }, + { + "start": 20199.06, + "end": 20201.92, + "probability": 0.999 + }, + { + "start": 20202.5, + "end": 20206.92, + "probability": 0.9505 + }, + { + "start": 20207.56, + "end": 20210.48, + "probability": 0.9964 + }, + { + "start": 20210.6, + "end": 20213.92, + "probability": 0.994 + }, + { + "start": 20214.02, + "end": 20217.72, + "probability": 0.9988 + }, + { + "start": 20218.04, + "end": 20219.56, + "probability": 0.9865 + }, + { + "start": 20219.74, + "end": 20223.44, + "probability": 0.7489 + }, + { + "start": 20223.44, + "end": 20227.38, + "probability": 0.9927 + }, + { + "start": 20227.52, + "end": 20234.6, + "probability": 0.9772 + }, + { + "start": 20235.12, + "end": 20237.96, + "probability": 0.9897 + }, + { + "start": 20238.32, + "end": 20242.16, + "probability": 0.9771 + }, + { + "start": 20242.8, + "end": 20245.58, + "probability": 0.984 + }, + { + "start": 20245.7, + "end": 20246.62, + "probability": 0.9342 + }, + { + "start": 20247.04, + "end": 20253.4, + "probability": 0.9797 + }, + { + "start": 20253.48, + "end": 20258.38, + "probability": 0.8833 + }, + { + "start": 20258.74, + "end": 20261.16, + "probability": 0.5632 + }, + { + "start": 20261.16, + "end": 20262.87, + "probability": 0.7955 + }, + { + "start": 20263.9, + "end": 20264.94, + "probability": 0.7668 + }, + { + "start": 20265.42, + "end": 20267.0, + "probability": 0.7205 + }, + { + "start": 20267.64, + "end": 20269.94, + "probability": 0.9796 + }, + { + "start": 20270.26, + "end": 20275.16, + "probability": 0.9956 + }, + { + "start": 20275.66, + "end": 20276.18, + "probability": 0.7032 + }, + { + "start": 20276.34, + "end": 20277.32, + "probability": 0.8606 + }, + { + "start": 20277.54, + "end": 20278.68, + "probability": 0.6934 + }, + { + "start": 20279.26, + "end": 20282.54, + "probability": 0.9929 + }, + { + "start": 20282.54, + "end": 20286.82, + "probability": 0.9706 + }, + { + "start": 20287.34, + "end": 20288.9, + "probability": 0.8705 + }, + { + "start": 20289.98, + "end": 20293.26, + "probability": 0.9937 + }, + { + "start": 20293.36, + "end": 20296.42, + "probability": 0.9871 + }, + { + "start": 20296.7, + "end": 20300.12, + "probability": 0.9873 + }, + { + "start": 20300.6, + "end": 20303.42, + "probability": 0.9909 + }, + { + "start": 20303.64, + "end": 20306.78, + "probability": 0.8001 + }, + { + "start": 20307.14, + "end": 20310.02, + "probability": 0.8964 + }, + { + "start": 20310.84, + "end": 20316.78, + "probability": 0.9202 + }, + { + "start": 20317.12, + "end": 20322.22, + "probability": 0.9955 + }, + { + "start": 20322.8, + "end": 20324.34, + "probability": 0.6214 + }, + { + "start": 20324.46, + "end": 20326.36, + "probability": 0.977 + }, + { + "start": 20326.5, + "end": 20327.96, + "probability": 0.8557 + }, + { + "start": 20329.3, + "end": 20332.12, + "probability": 0.9722 + }, + { + "start": 20332.86, + "end": 20334.42, + "probability": 0.8295 + }, + { + "start": 20334.54, + "end": 20336.84, + "probability": 0.9648 + }, + { + "start": 20338.22, + "end": 20342.56, + "probability": 0.9289 + }, + { + "start": 20342.62, + "end": 20345.28, + "probability": 0.8315 + }, + { + "start": 20345.76, + "end": 20346.56, + "probability": 0.5923 + }, + { + "start": 20346.66, + "end": 20348.32, + "probability": 0.7405 + }, + { + "start": 20348.32, + "end": 20350.4, + "probability": 0.7893 + }, + { + "start": 20350.64, + "end": 20351.36, + "probability": 0.6624 + }, + { + "start": 20351.46, + "end": 20354.5, + "probability": 0.9823 + }, + { + "start": 20354.92, + "end": 20355.34, + "probability": 0.8233 + }, + { + "start": 20355.74, + "end": 20356.1, + "probability": 0.7437 + }, + { + "start": 20356.44, + "end": 20359.8, + "probability": 0.9528 + }, + { + "start": 20360.08, + "end": 20364.94, + "probability": 0.9966 + }, + { + "start": 20364.98, + "end": 20366.94, + "probability": 0.8524 + }, + { + "start": 20367.08, + "end": 20367.6, + "probability": 0.8156 + }, + { + "start": 20367.74, + "end": 20368.56, + "probability": 0.9274 + }, + { + "start": 20369.14, + "end": 20372.56, + "probability": 0.9922 + }, + { + "start": 20372.64, + "end": 20376.48, + "probability": 0.9972 + }, + { + "start": 20377.22, + "end": 20377.66, + "probability": 0.8401 + }, + { + "start": 20377.8, + "end": 20380.48, + "probability": 0.9739 + }, + { + "start": 20380.54, + "end": 20381.86, + "probability": 0.9528 + }, + { + "start": 20382.42, + "end": 20384.96, + "probability": 0.9412 + }, + { + "start": 20385.34, + "end": 20388.13, + "probability": 0.9966 + }, + { + "start": 20389.14, + "end": 20391.6, + "probability": 0.958 + }, + { + "start": 20393.14, + "end": 20395.5, + "probability": 0.9847 + }, + { + "start": 20395.66, + "end": 20398.08, + "probability": 0.9972 + }, + { + "start": 20398.62, + "end": 20402.8, + "probability": 0.8958 + }, + { + "start": 20403.18, + "end": 20405.8, + "probability": 0.9949 + }, + { + "start": 20405.8, + "end": 20408.54, + "probability": 0.9998 + }, + { + "start": 20409.16, + "end": 20412.3, + "probability": 0.9909 + }, + { + "start": 20415.9, + "end": 20416.98, + "probability": 0.1792 + }, + { + "start": 20417.56, + "end": 20418.94, + "probability": 0.5746 + }, + { + "start": 20419.92, + "end": 20420.58, + "probability": 0.4815 + }, + { + "start": 20420.76, + "end": 20422.24, + "probability": 0.79 + }, + { + "start": 20422.42, + "end": 20424.1, + "probability": 0.5287 + }, + { + "start": 20424.26, + "end": 20426.46, + "probability": 0.3146 + }, + { + "start": 20426.53, + "end": 20428.28, + "probability": 0.3495 + }, + { + "start": 20428.54, + "end": 20433.98, + "probability": 0.8378 + }, + { + "start": 20434.1, + "end": 20434.64, + "probability": 0.8003 + }, + { + "start": 20435.48, + "end": 20436.8, + "probability": 0.759 + }, + { + "start": 20437.8, + "end": 20438.66, + "probability": 0.8751 + }, + { + "start": 20438.7, + "end": 20440.42, + "probability": 0.8433 + }, + { + "start": 20440.64, + "end": 20442.48, + "probability": 0.9928 + }, + { + "start": 20442.76, + "end": 20444.1, + "probability": 0.9665 + }, + { + "start": 20444.38, + "end": 20445.5, + "probability": 0.8342 + }, + { + "start": 20445.9, + "end": 20449.8, + "probability": 0.7646 + }, + { + "start": 20449.86, + "end": 20451.36, + "probability": 0.3656 + }, + { + "start": 20451.44, + "end": 20454.36, + "probability": 0.0127 + }, + { + "start": 20454.36, + "end": 20454.36, + "probability": 0.2438 + }, + { + "start": 20454.36, + "end": 20454.36, + "probability": 0.0799 + }, + { + "start": 20454.36, + "end": 20454.62, + "probability": 0.0354 + }, + { + "start": 20455.38, + "end": 20457.58, + "probability": 0.9655 + }, + { + "start": 20458.18, + "end": 20458.28, + "probability": 0.074 + }, + { + "start": 20458.28, + "end": 20458.28, + "probability": 0.0479 + }, + { + "start": 20458.28, + "end": 20461.64, + "probability": 0.6442 + }, + { + "start": 20461.92, + "end": 20463.72, + "probability": 0.8331 + }, + { + "start": 20463.8, + "end": 20466.94, + "probability": 0.8893 + }, + { + "start": 20467.66, + "end": 20468.78, + "probability": 0.0385 + }, + { + "start": 20471.94, + "end": 20471.94, + "probability": 0.0705 + }, + { + "start": 20471.94, + "end": 20471.94, + "probability": 0.2056 + }, + { + "start": 20471.94, + "end": 20472.14, + "probability": 0.0499 + }, + { + "start": 20472.38, + "end": 20474.44, + "probability": 0.9892 + }, + { + "start": 20474.6, + "end": 20476.18, + "probability": 0.9348 + }, + { + "start": 20476.32, + "end": 20477.32, + "probability": 0.8588 + }, + { + "start": 20477.52, + "end": 20477.68, + "probability": 0.149 + }, + { + "start": 20477.68, + "end": 20478.6, + "probability": 0.4621 + }, + { + "start": 20478.72, + "end": 20480.3, + "probability": 0.8299 + }, + { + "start": 20480.34, + "end": 20481.34, + "probability": 0.8169 + }, + { + "start": 20481.56, + "end": 20484.9, + "probability": 0.8748 + }, + { + "start": 20485.85, + "end": 20485.92, + "probability": 0.0822 + }, + { + "start": 20485.92, + "end": 20486.18, + "probability": 0.3023 + }, + { + "start": 20486.8, + "end": 20487.78, + "probability": 0.5191 + }, + { + "start": 20487.88, + "end": 20488.5, + "probability": 0.8266 + }, + { + "start": 20489.22, + "end": 20489.28, + "probability": 0.3227 + }, + { + "start": 20489.28, + "end": 20489.77, + "probability": 0.2452 + }, + { + "start": 20490.26, + "end": 20491.76, + "probability": 0.6826 + }, + { + "start": 20491.82, + "end": 20492.72, + "probability": 0.7266 + }, + { + "start": 20493.22, + "end": 20494.62, + "probability": 0.9181 + }, + { + "start": 20495.6, + "end": 20496.36, + "probability": 0.5534 + }, + { + "start": 20497.28, + "end": 20497.56, + "probability": 0.7852 + }, + { + "start": 20498.1, + "end": 20498.68, + "probability": 0.9427 + }, + { + "start": 20498.78, + "end": 20503.58, + "probability": 0.7559 + }, + { + "start": 20503.7, + "end": 20504.74, + "probability": 0.9125 + }, + { + "start": 20505.96, + "end": 20507.34, + "probability": 0.7998 + }, + { + "start": 20507.64, + "end": 20514.02, + "probability": 0.976 + }, + { + "start": 20514.44, + "end": 20515.84, + "probability": 0.5189 + }, + { + "start": 20515.94, + "end": 20517.14, + "probability": 0.9039 + }, + { + "start": 20518.22, + "end": 20522.77, + "probability": 0.978 + }, + { + "start": 20523.14, + "end": 20527.04, + "probability": 0.9987 + }, + { + "start": 20527.98, + "end": 20533.66, + "probability": 0.9009 + }, + { + "start": 20533.66, + "end": 20538.62, + "probability": 0.9976 + }, + { + "start": 20538.76, + "end": 20544.06, + "probability": 0.896 + }, + { + "start": 20545.16, + "end": 20546.24, + "probability": 0.9398 + }, + { + "start": 20546.54, + "end": 20551.32, + "probability": 0.9938 + }, + { + "start": 20551.5, + "end": 20552.02, + "probability": 0.7272 + }, + { + "start": 20553.04, + "end": 20553.28, + "probability": 0.764 + }, + { + "start": 20553.96, + "end": 20555.78, + "probability": 0.7363 + }, + { + "start": 20563.08, + "end": 20565.54, + "probability": 0.8696 + }, + { + "start": 20566.58, + "end": 20568.68, + "probability": 0.8628 + }, + { + "start": 20569.36, + "end": 20570.76, + "probability": 0.9944 + }, + { + "start": 20570.9, + "end": 20574.7, + "probability": 0.9336 + }, + { + "start": 20575.82, + "end": 20578.36, + "probability": 0.8792 + }, + { + "start": 20579.02, + "end": 20581.44, + "probability": 0.978 + }, + { + "start": 20581.44, + "end": 20584.9, + "probability": 0.9648 + }, + { + "start": 20585.58, + "end": 20586.16, + "probability": 0.5022 + }, + { + "start": 20587.1, + "end": 20590.84, + "probability": 0.9966 + }, + { + "start": 20591.42, + "end": 20592.92, + "probability": 0.9767 + }, + { + "start": 20593.5, + "end": 20594.92, + "probability": 0.9386 + }, + { + "start": 20595.5, + "end": 20597.78, + "probability": 0.9507 + }, + { + "start": 20598.44, + "end": 20601.94, + "probability": 0.9878 + }, + { + "start": 20601.98, + "end": 20602.18, + "probability": 0.4485 + }, + { + "start": 20602.18, + "end": 20602.5, + "probability": 0.5654 + }, + { + "start": 20602.64, + "end": 20603.68, + "probability": 0.8821 + }, + { + "start": 20609.8, + "end": 20609.9, + "probability": 0.2658 + }, + { + "start": 20609.92, + "end": 20611.42, + "probability": 0.4848 + }, + { + "start": 20611.54, + "end": 20614.92, + "probability": 0.9761 + }, + { + "start": 20615.1, + "end": 20619.5, + "probability": 0.9904 + }, + { + "start": 20620.18, + "end": 20622.02, + "probability": 0.9966 + }, + { + "start": 20622.88, + "end": 20624.52, + "probability": 0.8599 + }, + { + "start": 20624.74, + "end": 20625.86, + "probability": 0.9377 + }, + { + "start": 20626.28, + "end": 20627.38, + "probability": 0.8273 + }, + { + "start": 20628.1, + "end": 20629.74, + "probability": 0.9038 + }, + { + "start": 20630.72, + "end": 20632.5, + "probability": 0.9897 + }, + { + "start": 20632.7, + "end": 20633.64, + "probability": 0.8918 + }, + { + "start": 20634.0, + "end": 20636.62, + "probability": 0.8217 + }, + { + "start": 20636.62, + "end": 20639.86, + "probability": 0.9957 + }, + { + "start": 20640.38, + "end": 20642.76, + "probability": 0.9826 + }, + { + "start": 20642.94, + "end": 20645.18, + "probability": 0.9824 + }, + { + "start": 20645.78, + "end": 20645.9, + "probability": 0.5281 + }, + { + "start": 20646.06, + "end": 20646.6, + "probability": 0.6216 + }, + { + "start": 20646.76, + "end": 20649.02, + "probability": 0.9858 + }, + { + "start": 20649.6, + "end": 20651.48, + "probability": 0.9476 + }, + { + "start": 20652.04, + "end": 20652.92, + "probability": 0.993 + }, + { + "start": 20652.94, + "end": 20653.48, + "probability": 0.5387 + }, + { + "start": 20653.48, + "end": 20654.96, + "probability": 0.8354 + }, + { + "start": 20657.06, + "end": 20660.82, + "probability": 0.9062 + }, + { + "start": 20662.54, + "end": 20663.04, + "probability": 0.9924 + }, + { + "start": 20664.31, + "end": 20666.92, + "probability": 0.9927 + }, + { + "start": 20667.12, + "end": 20672.54, + "probability": 0.9912 + }, + { + "start": 20673.42, + "end": 20678.44, + "probability": 0.904 + }, + { + "start": 20680.5, + "end": 20685.02, + "probability": 0.9758 + }, + { + "start": 20685.16, + "end": 20685.76, + "probability": 0.7526 + }, + { + "start": 20686.28, + "end": 20689.36, + "probability": 0.9961 + }, + { + "start": 20689.84, + "end": 20692.2, + "probability": 0.998 + }, + { + "start": 20693.02, + "end": 20695.86, + "probability": 0.8113 + }, + { + "start": 20695.96, + "end": 20698.0, + "probability": 0.9922 + }, + { + "start": 20698.34, + "end": 20699.04, + "probability": 0.9224 + }, + { + "start": 20699.76, + "end": 20707.52, + "probability": 0.8486 + }, + { + "start": 20707.66, + "end": 20707.84, + "probability": 0.7926 + }, + { + "start": 20708.62, + "end": 20709.92, + "probability": 0.9852 + }, + { + "start": 20710.66, + "end": 20711.81, + "probability": 0.9897 + }, + { + "start": 20712.16, + "end": 20713.0, + "probability": 0.7756 + }, + { + "start": 20713.08, + "end": 20713.56, + "probability": 0.61 + }, + { + "start": 20713.76, + "end": 20714.5, + "probability": 0.9077 + }, + { + "start": 20714.66, + "end": 20717.1, + "probability": 0.8289 + }, + { + "start": 20717.38, + "end": 20718.7, + "probability": 0.0992 + }, + { + "start": 20718.82, + "end": 20720.24, + "probability": 0.9804 + }, + { + "start": 20720.92, + "end": 20721.24, + "probability": 0.3904 + }, + { + "start": 20721.38, + "end": 20727.18, + "probability": 0.8286 + }, + { + "start": 20727.88, + "end": 20731.5, + "probability": 0.9955 + }, + { + "start": 20731.86, + "end": 20733.4, + "probability": 0.9973 + }, + { + "start": 20733.58, + "end": 20734.13, + "probability": 0.0041 + }, + { + "start": 20735.04, + "end": 20735.18, + "probability": 0.2817 + }, + { + "start": 20735.26, + "end": 20735.6, + "probability": 0.3945 + }, + { + "start": 20736.56, + "end": 20737.61, + "probability": 0.3945 + }, + { + "start": 20739.98, + "end": 20742.82, + "probability": 0.77 + }, + { + "start": 20743.18, + "end": 20744.96, + "probability": 0.9136 + }, + { + "start": 20747.94, + "end": 20748.5, + "probability": 0.1706 + }, + { + "start": 20760.21, + "end": 20762.24, + "probability": 0.6394 + }, + { + "start": 20762.76, + "end": 20766.64, + "probability": 0.0264 + }, + { + "start": 20767.56, + "end": 20767.56, + "probability": 0.081 + }, + { + "start": 20768.53, + "end": 20769.4, + "probability": 0.0214 + }, + { + "start": 20769.4, + "end": 20769.58, + "probability": 0.0217 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.0, + "end": 20878.0, + "probability": 0.0 + }, + { + "start": 20878.32, + "end": 20880.48, + "probability": 0.3279 + }, + { + "start": 20880.6, + "end": 20881.08, + "probability": 0.7094 + }, + { + "start": 20882.88, + "end": 20883.82, + "probability": 0.2514 + }, + { + "start": 20887.81, + "end": 20888.16, + "probability": 0.1906 + }, + { + "start": 20897.74, + "end": 20898.76, + "probability": 0.1657 + }, + { + "start": 20901.88, + "end": 20903.5, + "probability": 0.6474 + }, + { + "start": 20904.18, + "end": 20909.84, + "probability": 0.1081 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 20999.0, + "end": 20999.0, + "probability": 0.0 + }, + { + "start": 21005.28, + "end": 21005.74, + "probability": 0.0007 + }, + { + "start": 21006.5, + "end": 21008.52, + "probability": 0.7608 + }, + { + "start": 21008.82, + "end": 21011.08, + "probability": 0.8214 + }, + { + "start": 21011.92, + "end": 21015.04, + "probability": 0.9007 + }, + { + "start": 21015.32, + "end": 21016.4, + "probability": 0.746 + }, + { + "start": 21016.6, + "end": 21018.06, + "probability": 0.6866 + }, + { + "start": 21018.58, + "end": 21021.54, + "probability": 0.643 + }, + { + "start": 21022.48, + "end": 21022.63, + "probability": 0.1807 + }, + { + "start": 21024.66, + "end": 21027.28, + "probability": 0.6147 + }, + { + "start": 21027.52, + "end": 21028.94, + "probability": 0.2312 + }, + { + "start": 21029.32, + "end": 21034.46, + "probability": 0.9163 + }, + { + "start": 21035.22, + "end": 21035.98, + "probability": 0.773 + }, + { + "start": 21037.96, + "end": 21039.98, + "probability": 0.7149 + }, + { + "start": 21040.08, + "end": 21042.42, + "probability": 0.9808 + }, + { + "start": 21044.12, + "end": 21045.1, + "probability": 0.1501 + }, + { + "start": 21045.8, + "end": 21048.62, + "probability": 0.4633 + }, + { + "start": 21049.8, + "end": 21051.78, + "probability": 0.6355 + }, + { + "start": 21051.88, + "end": 21053.16, + "probability": 0.5179 + }, + { + "start": 21053.38, + "end": 21053.38, + "probability": 0.0593 + }, + { + "start": 21053.38, + "end": 21055.44, + "probability": 0.4687 + }, + { + "start": 21056.4, + "end": 21058.34, + "probability": 0.9058 + }, + { + "start": 21058.4, + "end": 21060.14, + "probability": 0.5258 + }, + { + "start": 21061.2, + "end": 21064.32, + "probability": 0.7948 + }, + { + "start": 21065.06, + "end": 21066.28, + "probability": 0.8916 + }, + { + "start": 21066.88, + "end": 21069.64, + "probability": 0.6546 + }, + { + "start": 21069.64, + "end": 21073.06, + "probability": 0.9799 + }, + { + "start": 21074.5, + "end": 21077.86, + "probability": 0.9421 + }, + { + "start": 21078.34, + "end": 21079.96, + "probability": 0.8712 + }, + { + "start": 21081.36, + "end": 21082.94, + "probability": 0.8056 + }, + { + "start": 21083.34, + "end": 21084.5, + "probability": 0.8684 + }, + { + "start": 21084.66, + "end": 21087.02, + "probability": 0.8865 + }, + { + "start": 21088.02, + "end": 21090.14, + "probability": 0.9662 + }, + { + "start": 21091.2, + "end": 21093.02, + "probability": 0.97 + }, + { + "start": 21094.12, + "end": 21096.36, + "probability": 0.8656 + }, + { + "start": 21096.36, + "end": 21101.08, + "probability": 0.9859 + }, + { + "start": 21102.04, + "end": 21103.98, + "probability": 0.8785 + }, + { + "start": 21104.86, + "end": 21106.42, + "probability": 0.8381 + }, + { + "start": 21107.7, + "end": 21111.66, + "probability": 0.9807 + }, + { + "start": 21112.94, + "end": 21117.16, + "probability": 0.9529 + }, + { + "start": 21117.38, + "end": 21118.5, + "probability": 0.8377 + }, + { + "start": 21119.28, + "end": 21120.1, + "probability": 0.9843 + }, + { + "start": 21121.06, + "end": 21124.62, + "probability": 0.9138 + }, + { + "start": 21125.96, + "end": 21127.9, + "probability": 0.9552 + }, + { + "start": 21128.24, + "end": 21128.83, + "probability": 0.7729 + }, + { + "start": 21129.6, + "end": 21131.12, + "probability": 0.7018 + }, + { + "start": 21131.22, + "end": 21134.9, + "probability": 0.8975 + }, + { + "start": 21135.84, + "end": 21141.4, + "probability": 0.9358 + }, + { + "start": 21142.32, + "end": 21143.02, + "probability": 0.4665 + }, + { + "start": 21143.4, + "end": 21147.74, + "probability": 0.9871 + }, + { + "start": 21147.9, + "end": 21153.18, + "probability": 0.9801 + }, + { + "start": 21153.9, + "end": 21155.5, + "probability": 0.338 + }, + { + "start": 21155.7, + "end": 21156.48, + "probability": 0.7447 + }, + { + "start": 21156.66, + "end": 21159.16, + "probability": 0.8771 + }, + { + "start": 21159.78, + "end": 21161.46, + "probability": 0.7716 + }, + { + "start": 21162.0, + "end": 21162.7, + "probability": 0.88 + }, + { + "start": 21163.2, + "end": 21166.52, + "probability": 0.7283 + }, + { + "start": 21167.46, + "end": 21172.82, + "probability": 0.9848 + }, + { + "start": 21174.2, + "end": 21177.22, + "probability": 0.6761 + }, + { + "start": 21177.5, + "end": 21180.52, + "probability": 0.9949 + }, + { + "start": 21181.7, + "end": 21187.32, + "probability": 0.9575 + }, + { + "start": 21188.08, + "end": 21191.24, + "probability": 0.8465 + }, + { + "start": 21192.28, + "end": 21195.74, + "probability": 0.989 + }, + { + "start": 21195.92, + "end": 21198.0, + "probability": 0.9667 + }, + { + "start": 21199.9, + "end": 21202.62, + "probability": 0.9235 + }, + { + "start": 21202.86, + "end": 21204.54, + "probability": 0.7343 + }, + { + "start": 21205.02, + "end": 21206.62, + "probability": 0.9035 + }, + { + "start": 21206.76, + "end": 21209.64, + "probability": 0.6116 + }, + { + "start": 21210.4, + "end": 21210.82, + "probability": 0.6097 + }, + { + "start": 21210.92, + "end": 21213.64, + "probability": 0.9023 + }, + { + "start": 21214.14, + "end": 21216.48, + "probability": 0.7203 + }, + { + "start": 21217.12, + "end": 21219.28, + "probability": 0.6385 + }, + { + "start": 21219.34, + "end": 21222.18, + "probability": 0.8818 + }, + { + "start": 21222.3, + "end": 21223.15, + "probability": 0.9191 + }, + { + "start": 21224.18, + "end": 21225.1, + "probability": 0.7162 + }, + { + "start": 21225.68, + "end": 21229.7, + "probability": 0.8321 + }, + { + "start": 21230.6, + "end": 21233.44, + "probability": 0.8568 + }, + { + "start": 21234.5, + "end": 21237.42, + "probability": 0.9188 + }, + { + "start": 21237.98, + "end": 21241.02, + "probability": 0.9927 + }, + { + "start": 21241.66, + "end": 21243.84, + "probability": 0.9863 + }, + { + "start": 21244.5, + "end": 21247.28, + "probability": 0.9873 + }, + { + "start": 21248.5, + "end": 21249.4, + "probability": 0.6865 + }, + { + "start": 21250.14, + "end": 21254.7, + "probability": 0.8828 + }, + { + "start": 21254.74, + "end": 21255.2, + "probability": 0.7377 + }, + { + "start": 21256.82, + "end": 21258.16, + "probability": 0.8394 + }, + { + "start": 21272.54, + "end": 21273.43, + "probability": 0.8423 + }, + { + "start": 21276.5, + "end": 21278.14, + "probability": 0.8321 + }, + { + "start": 21279.0, + "end": 21281.02, + "probability": 0.9517 + }, + { + "start": 21281.16, + "end": 21282.66, + "probability": 0.9021 + }, + { + "start": 21282.7, + "end": 21283.94, + "probability": 0.9095 + }, + { + "start": 21285.38, + "end": 21290.98, + "probability": 0.9785 + }, + { + "start": 21290.98, + "end": 21296.0, + "probability": 0.9894 + }, + { + "start": 21296.54, + "end": 21297.68, + "probability": 0.6136 + }, + { + "start": 21298.32, + "end": 21301.08, + "probability": 0.8021 + }, + { + "start": 21301.8, + "end": 21304.88, + "probability": 0.962 + }, + { + "start": 21305.94, + "end": 21308.32, + "probability": 0.9973 + }, + { + "start": 21308.52, + "end": 21309.12, + "probability": 0.623 + }, + { + "start": 21309.22, + "end": 21311.66, + "probability": 0.5706 + }, + { + "start": 21312.54, + "end": 21316.16, + "probability": 0.9893 + }, + { + "start": 21316.16, + "end": 21320.24, + "probability": 0.9469 + }, + { + "start": 21321.5, + "end": 21325.28, + "probability": 0.7747 + }, + { + "start": 21326.26, + "end": 21326.94, + "probability": 0.5869 + }, + { + "start": 21328.0, + "end": 21329.94, + "probability": 0.9683 + }, + { + "start": 21330.06, + "end": 21333.82, + "probability": 0.9866 + }, + { + "start": 21334.84, + "end": 21336.12, + "probability": 0.6986 + }, + { + "start": 21336.78, + "end": 21338.28, + "probability": 0.959 + }, + { + "start": 21338.38, + "end": 21338.62, + "probability": 0.5434 + }, + { + "start": 21338.72, + "end": 21338.9, + "probability": 0.8619 + }, + { + "start": 21338.9, + "end": 21339.84, + "probability": 0.8888 + }, + { + "start": 21339.96, + "end": 21340.52, + "probability": 0.8726 + }, + { + "start": 21340.98, + "end": 21341.77, + "probability": 0.9567 + }, + { + "start": 21342.76, + "end": 21345.26, + "probability": 0.9242 + }, + { + "start": 21345.44, + "end": 21346.54, + "probability": 0.9295 + }, + { + "start": 21346.78, + "end": 21351.46, + "probability": 0.8605 + }, + { + "start": 21351.88, + "end": 21354.22, + "probability": 0.9065 + }, + { + "start": 21354.54, + "end": 21358.52, + "probability": 0.9957 + }, + { + "start": 21358.52, + "end": 21361.92, + "probability": 0.9839 + }, + { + "start": 21362.92, + "end": 21365.02, + "probability": 0.9985 + }, + { + "start": 21365.2, + "end": 21366.92, + "probability": 0.9682 + }, + { + "start": 21367.42, + "end": 21373.84, + "probability": 0.9661 + }, + { + "start": 21374.96, + "end": 21376.66, + "probability": 0.9888 + }, + { + "start": 21377.52, + "end": 21379.54, + "probability": 0.9929 + }, + { + "start": 21379.96, + "end": 21381.38, + "probability": 0.6661 + }, + { + "start": 21381.84, + "end": 21385.98, + "probability": 0.9886 + }, + { + "start": 21387.36, + "end": 21388.74, + "probability": 0.5654 + }, + { + "start": 21389.34, + "end": 21393.08, + "probability": 0.6534 + }, + { + "start": 21393.6, + "end": 21395.1, + "probability": 0.9448 + }, + { + "start": 21395.76, + "end": 21399.1, + "probability": 0.9897 + }, + { + "start": 21399.1, + "end": 21400.56, + "probability": 0.8121 + }, + { + "start": 21401.52, + "end": 21403.0, + "probability": 0.9985 + }, + { + "start": 21403.18, + "end": 21405.76, + "probability": 0.9941 + }, + { + "start": 21405.76, + "end": 21408.46, + "probability": 0.9475 + }, + { + "start": 21408.94, + "end": 21410.74, + "probability": 0.9963 + }, + { + "start": 21411.24, + "end": 21413.56, + "probability": 0.8745 + }, + { + "start": 21414.1, + "end": 21417.64, + "probability": 0.9982 + }, + { + "start": 21418.08, + "end": 21421.18, + "probability": 0.9988 + }, + { + "start": 21421.64, + "end": 21423.84, + "probability": 0.9965 + }, + { + "start": 21424.58, + "end": 21425.48, + "probability": 0.8899 + }, + { + "start": 21425.94, + "end": 21428.26, + "probability": 0.9364 + }, + { + "start": 21428.44, + "end": 21429.36, + "probability": 0.8996 + }, + { + "start": 21429.38, + "end": 21430.14, + "probability": 0.9479 + }, + { + "start": 21430.6, + "end": 21434.49, + "probability": 0.7766 + }, + { + "start": 21434.78, + "end": 21437.64, + "probability": 0.9585 + }, + { + "start": 21437.74, + "end": 21437.9, + "probability": 0.0216 + }, + { + "start": 21440.22, + "end": 21441.32, + "probability": 0.5803 + }, + { + "start": 21441.66, + "end": 21443.3, + "probability": 0.8569 + }, + { + "start": 21443.66, + "end": 21445.94, + "probability": 0.899 + }, + { + "start": 21446.28, + "end": 21447.58, + "probability": 0.966 + }, + { + "start": 21448.04, + "end": 21450.16, + "probability": 0.8145 + }, + { + "start": 21450.28, + "end": 21450.9, + "probability": 0.8815 + }, + { + "start": 21453.58, + "end": 21454.94, + "probability": 0.38 + }, + { + "start": 21455.65, + "end": 21460.08, + "probability": 0.7562 + }, + { + "start": 21460.36, + "end": 21461.62, + "probability": 0.7923 + }, + { + "start": 21462.0, + "end": 21465.2, + "probability": 0.8963 + }, + { + "start": 21465.54, + "end": 21466.86, + "probability": 0.9541 + }, + { + "start": 21467.82, + "end": 21472.9, + "probability": 0.9532 + }, + { + "start": 21472.96, + "end": 21474.44, + "probability": 0.6924 + }, + { + "start": 21474.58, + "end": 21476.62, + "probability": 0.8479 + }, + { + "start": 21476.84, + "end": 21480.12, + "probability": 0.9949 + }, + { + "start": 21480.22, + "end": 21480.48, + "probability": 0.3204 + }, + { + "start": 21480.76, + "end": 21481.28, + "probability": 0.2948 + }, + { + "start": 21481.94, + "end": 21483.8, + "probability": 0.7982 + }, + { + "start": 21485.96, + "end": 21489.48, + "probability": 0.6323 + }, + { + "start": 21489.74, + "end": 21490.54, + "probability": 0.3726 + }, + { + "start": 21490.88, + "end": 21496.62, + "probability": 0.4951 + }, + { + "start": 21497.02, + "end": 21498.44, + "probability": 0.1108 + }, + { + "start": 21498.66, + "end": 21502.32, + "probability": 0.1731 + }, + { + "start": 21507.76, + "end": 21508.98, + "probability": 0.6725 + }, + { + "start": 21513.4, + "end": 21515.82, + "probability": 0.7845 + }, + { + "start": 21517.26, + "end": 21517.54, + "probability": 0.4445 + }, + { + "start": 21517.64, + "end": 21519.24, + "probability": 0.9515 + }, + { + "start": 21519.28, + "end": 21521.5, + "probability": 0.8054 + }, + { + "start": 21521.84, + "end": 21523.58, + "probability": 0.7153 + }, + { + "start": 21523.64, + "end": 21524.42, + "probability": 0.9593 + }, + { + "start": 21524.74, + "end": 21525.34, + "probability": 0.9458 + }, + { + "start": 21526.46, + "end": 21528.6, + "probability": 0.9927 + }, + { + "start": 21529.34, + "end": 21530.64, + "probability": 0.957 + }, + { + "start": 21534.08, + "end": 21535.8, + "probability": 0.7172 + }, + { + "start": 21537.54, + "end": 21540.86, + "probability": 0.7703 + }, + { + "start": 21541.96, + "end": 21544.08, + "probability": 0.8284 + }, + { + "start": 21544.96, + "end": 21545.6, + "probability": 0.709 + }, + { + "start": 21546.06, + "end": 21546.92, + "probability": 0.0092 + }, + { + "start": 21547.96, + "end": 21551.28, + "probability": 0.8833 + }, + { + "start": 21552.82, + "end": 21557.42, + "probability": 0.9913 + }, + { + "start": 21558.04, + "end": 21560.34, + "probability": 0.965 + }, + { + "start": 21561.32, + "end": 21565.9, + "probability": 0.9985 + }, + { + "start": 21566.44, + "end": 21568.5, + "probability": 0.958 + }, + { + "start": 21571.08, + "end": 21571.38, + "probability": 0.7099 + }, + { + "start": 21572.72, + "end": 21573.53, + "probability": 0.9205 + }, + { + "start": 21574.58, + "end": 21576.98, + "probability": 0.9276 + }, + { + "start": 21579.2, + "end": 21580.02, + "probability": 0.9988 + }, + { + "start": 21581.82, + "end": 21585.36, + "probability": 0.9854 + }, + { + "start": 21587.22, + "end": 21589.74, + "probability": 0.8658 + }, + { + "start": 21591.08, + "end": 21593.58, + "probability": 0.7807 + }, + { + "start": 21595.22, + "end": 21597.32, + "probability": 0.9609 + }, + { + "start": 21599.16, + "end": 21603.14, + "probability": 0.98 + }, + { + "start": 21604.54, + "end": 21606.72, + "probability": 0.9871 + }, + { + "start": 21607.8, + "end": 21610.48, + "probability": 0.9876 + }, + { + "start": 21610.62, + "end": 21611.56, + "probability": 0.9004 + }, + { + "start": 21614.1, + "end": 21614.5, + "probability": 0.9377 + }, + { + "start": 21615.22, + "end": 21616.86, + "probability": 0.999 + }, + { + "start": 21617.84, + "end": 21621.82, + "probability": 0.9534 + }, + { + "start": 21622.28, + "end": 21624.06, + "probability": 0.9946 + }, + { + "start": 21625.64, + "end": 21626.9, + "probability": 0.9829 + }, + { + "start": 21627.02, + "end": 21629.14, + "probability": 0.9787 + }, + { + "start": 21631.0, + "end": 21631.54, + "probability": 0.6713 + }, + { + "start": 21632.42, + "end": 21633.01, + "probability": 0.9749 + }, + { + "start": 21634.96, + "end": 21636.84, + "probability": 0.9929 + }, + { + "start": 21637.6, + "end": 21640.1, + "probability": 0.9973 + }, + { + "start": 21641.3, + "end": 21641.78, + "probability": 0.6618 + }, + { + "start": 21642.62, + "end": 21646.86, + "probability": 0.9327 + }, + { + "start": 21646.94, + "end": 21651.04, + "probability": 0.9584 + }, + { + "start": 21652.22, + "end": 21654.92, + "probability": 0.8175 + }, + { + "start": 21655.7, + "end": 21657.7, + "probability": 0.7976 + }, + { + "start": 21658.36, + "end": 21660.84, + "probability": 0.6597 + }, + { + "start": 21661.98, + "end": 21662.96, + "probability": 0.9062 + }, + { + "start": 21665.22, + "end": 21666.9, + "probability": 0.7497 + }, + { + "start": 21668.06, + "end": 21668.8, + "probability": 0.7695 + }, + { + "start": 21669.96, + "end": 21670.98, + "probability": 0.5376 + }, + { + "start": 21671.66, + "end": 21672.76, + "probability": 0.5511 + }, + { + "start": 21676.66, + "end": 21678.04, + "probability": 0.8925 + }, + { + "start": 21678.5, + "end": 21679.14, + "probability": 0.6636 + }, + { + "start": 21679.84, + "end": 21682.48, + "probability": 0.3008 + }, + { + "start": 21682.8, + "end": 21684.1, + "probability": 0.8483 + }, + { + "start": 21685.18, + "end": 21685.18, + "probability": 0.028 + }, + { + "start": 21686.1, + "end": 21687.74, + "probability": 0.085 + }, + { + "start": 21687.74, + "end": 21689.74, + "probability": 0.7207 + }, + { + "start": 21690.84, + "end": 21693.04, + "probability": 0.1282 + }, + { + "start": 21693.76, + "end": 21695.96, + "probability": 0.3749 + }, + { + "start": 21696.1, + "end": 21698.38, + "probability": 0.8236 + }, + { + "start": 21700.74, + "end": 21704.2, + "probability": 0.5005 + }, + { + "start": 21705.36, + "end": 21706.04, + "probability": 0.6285 + }, + { + "start": 21707.12, + "end": 21708.24, + "probability": 0.9858 + }, + { + "start": 21708.66, + "end": 21710.14, + "probability": 0.9768 + }, + { + "start": 21711.34, + "end": 21714.34, + "probability": 0.9946 + }, + { + "start": 21715.48, + "end": 21718.72, + "probability": 0.9669 + }, + { + "start": 21720.36, + "end": 21720.46, + "probability": 0.184 + }, + { + "start": 21720.46, + "end": 21728.16, + "probability": 0.6767 + }, + { + "start": 21731.06, + "end": 21731.68, + "probability": 0.6721 + }, + { + "start": 21733.64, + "end": 21736.14, + "probability": 0.2236 + }, + { + "start": 21736.8, + "end": 21740.12, + "probability": 0.9556 + }, + { + "start": 21741.12, + "end": 21742.6, + "probability": 0.8877 + }, + { + "start": 21742.72, + "end": 21746.48, + "probability": 0.4736 + }, + { + "start": 21746.52, + "end": 21747.04, + "probability": 0.3188 + }, + { + "start": 21747.62, + "end": 21748.88, + "probability": 0.7434 + }, + { + "start": 21752.42, + "end": 21753.94, + "probability": 0.9852 + }, + { + "start": 21754.04, + "end": 21755.06, + "probability": 0.8947 + }, + { + "start": 21755.08, + "end": 21756.46, + "probability": 0.9684 + }, + { + "start": 21757.14, + "end": 21757.94, + "probability": 0.5771 + }, + { + "start": 21758.42, + "end": 21761.58, + "probability": 0.8686 + }, + { + "start": 21761.72, + "end": 21762.04, + "probability": 0.6896 + }, + { + "start": 21763.02, + "end": 21764.9, + "probability": 0.7783 + }, + { + "start": 21765.3, + "end": 21766.11, + "probability": 0.551 + }, + { + "start": 21767.08, + "end": 21768.46, + "probability": 0.1539 + }, + { + "start": 21768.46, + "end": 21771.15, + "probability": 0.6919 + }, + { + "start": 21774.22, + "end": 21774.82, + "probability": 0.4615 + }, + { + "start": 21776.94, + "end": 21778.16, + "probability": 0.0368 + }, + { + "start": 21778.16, + "end": 21778.98, + "probability": 0.0619 + }, + { + "start": 21783.74, + "end": 21784.44, + "probability": 0.5427 + }, + { + "start": 21785.3, + "end": 21786.88, + "probability": 0.6159 + }, + { + "start": 21787.92, + "end": 21790.3, + "probability": 0.8137 + }, + { + "start": 21790.48, + "end": 21792.74, + "probability": 0.7097 + }, + { + "start": 21793.1, + "end": 21793.2, + "probability": 0.2504 + }, + { + "start": 21793.2, + "end": 21794.1, + "probability": 0.7791 + }, + { + "start": 21794.23, + "end": 21798.02, + "probability": 0.6394 + }, + { + "start": 21798.04, + "end": 21799.74, + "probability": 0.7198 + }, + { + "start": 21800.5, + "end": 21801.74, + "probability": 0.9594 + }, + { + "start": 21801.82, + "end": 21802.98, + "probability": 0.5284 + }, + { + "start": 21803.8, + "end": 21804.41, + "probability": 0.4846 + }, + { + "start": 21804.86, + "end": 21806.16, + "probability": 0.8643 + }, + { + "start": 21806.32, + "end": 21806.95, + "probability": 0.8374 + }, + { + "start": 21808.04, + "end": 21808.64, + "probability": 0.2718 + }, + { + "start": 21808.64, + "end": 21813.92, + "probability": 0.7856 + }, + { + "start": 21815.28, + "end": 21816.94, + "probability": 0.6892 + }, + { + "start": 21817.68, + "end": 21818.22, + "probability": 0.863 + }, + { + "start": 21819.1, + "end": 21819.48, + "probability": 0.9062 + }, + { + "start": 21822.16, + "end": 21825.34, + "probability": 0.3858 + }, + { + "start": 21826.12, + "end": 21828.2, + "probability": 0.2958 + }, + { + "start": 21828.54, + "end": 21831.8, + "probability": 0.5373 + }, + { + "start": 21831.8, + "end": 21834.5, + "probability": 0.8213 + }, + { + "start": 21834.7, + "end": 21838.72, + "probability": 0.6738 + }, + { + "start": 21839.08, + "end": 21841.8, + "probability": 0.6123 + }, + { + "start": 21844.06, + "end": 21847.58, + "probability": 0.7096 + }, + { + "start": 21847.74, + "end": 21850.52, + "probability": 0.8066 + }, + { + "start": 21851.11, + "end": 21853.82, + "probability": 0.9924 + }, + { + "start": 21853.9, + "end": 21856.06, + "probability": 0.3552 + }, + { + "start": 21856.18, + "end": 21857.02, + "probability": 0.6618 + }, + { + "start": 21857.24, + "end": 21859.14, + "probability": 0.2714 + }, + { + "start": 21859.14, + "end": 21859.56, + "probability": 0.2457 + }, + { + "start": 21860.08, + "end": 21861.3, + "probability": 0.6849 + }, + { + "start": 21861.94, + "end": 21863.13, + "probability": 0.9821 + }, + { + "start": 21863.94, + "end": 21865.2, + "probability": 0.4604 + }, + { + "start": 21865.52, + "end": 21866.64, + "probability": 0.9744 + }, + { + "start": 21866.68, + "end": 21867.72, + "probability": 0.7391 + }, + { + "start": 21867.72, + "end": 21867.96, + "probability": 0.9203 + }, + { + "start": 21868.08, + "end": 21869.32, + "probability": 0.7078 + }, + { + "start": 21869.9, + "end": 21871.26, + "probability": 0.4974 + }, + { + "start": 21872.26, + "end": 21873.0, + "probability": 0.8726 + }, + { + "start": 21873.12, + "end": 21877.89, + "probability": 0.9255 + }, + { + "start": 21878.18, + "end": 21881.2, + "probability": 0.9979 + }, + { + "start": 21881.34, + "end": 21882.72, + "probability": 0.6327 + }, + { + "start": 21882.8, + "end": 21883.4, + "probability": 0.6512 + }, + { + "start": 21883.56, + "end": 21886.02, + "probability": 0.7819 + }, + { + "start": 21886.34, + "end": 21889.32, + "probability": 0.7355 + }, + { + "start": 21891.12, + "end": 21892.54, + "probability": 0.7483 + }, + { + "start": 21894.1, + "end": 21898.16, + "probability": 0.9593 + }, + { + "start": 21898.22, + "end": 21903.52, + "probability": 0.9924 + }, + { + "start": 21904.06, + "end": 21905.56, + "probability": 0.9938 + }, + { + "start": 21905.56, + "end": 21908.16, + "probability": 0.7587 + }, + { + "start": 21909.02, + "end": 21909.64, + "probability": 0.6198 + }, + { + "start": 21909.74, + "end": 21912.42, + "probability": 0.9443 + }, + { + "start": 21913.84, + "end": 21917.06, + "probability": 0.7015 + }, + { + "start": 21917.2, + "end": 21921.18, + "probability": 0.926 + }, + { + "start": 21921.36, + "end": 21922.43, + "probability": 0.9852 + }, + { + "start": 21922.68, + "end": 21923.62, + "probability": 0.6927 + }, + { + "start": 21923.84, + "end": 21924.46, + "probability": 0.7803 + }, + { + "start": 21926.38, + "end": 21929.76, + "probability": 0.9705 + }, + { + "start": 21930.42, + "end": 21931.8, + "probability": 0.9699 + }, + { + "start": 21933.58, + "end": 21937.32, + "probability": 0.9858 + }, + { + "start": 21937.32, + "end": 21940.96, + "probability": 0.9973 + }, + { + "start": 21942.52, + "end": 21943.96, + "probability": 0.6916 + }, + { + "start": 21945.04, + "end": 21951.4, + "probability": 0.959 + }, + { + "start": 21951.5, + "end": 21952.64, + "probability": 0.9607 + }, + { + "start": 21952.74, + "end": 21954.62, + "probability": 0.8267 + }, + { + "start": 21954.82, + "end": 21958.56, + "probability": 0.9892 + }, + { + "start": 21959.02, + "end": 21966.1, + "probability": 0.9777 + }, + { + "start": 21967.42, + "end": 21973.56, + "probability": 0.9513 + }, + { + "start": 21974.88, + "end": 21977.27, + "probability": 0.9984 + }, + { + "start": 21978.14, + "end": 21979.06, + "probability": 0.8997 + }, + { + "start": 21979.14, + "end": 21982.82, + "probability": 0.9779 + }, + { + "start": 21983.92, + "end": 21984.96, + "probability": 0.97 + }, + { + "start": 21986.34, + "end": 21988.84, + "probability": 0.9858 + }, + { + "start": 21988.92, + "end": 21990.86, + "probability": 0.9768 + }, + { + "start": 21992.48, + "end": 21997.48, + "probability": 0.9389 + }, + { + "start": 21997.6, + "end": 21998.36, + "probability": 0.6644 + }, + { + "start": 21998.92, + "end": 21999.8, + "probability": 0.8813 + }, + { + "start": 22000.92, + "end": 22002.38, + "probability": 0.916 + }, + { + "start": 22003.38, + "end": 22003.94, + "probability": 0.8032 + }, + { + "start": 22004.5, + "end": 22006.28, + "probability": 0.8693 + }, + { + "start": 22006.34, + "end": 22008.2, + "probability": 0.9369 + }, + { + "start": 22008.28, + "end": 22009.4, + "probability": 0.9733 + }, + { + "start": 22009.5, + "end": 22010.06, + "probability": 0.5331 + }, + { + "start": 22010.86, + "end": 22014.3, + "probability": 0.8701 + }, + { + "start": 22015.0, + "end": 22019.66, + "probability": 0.9646 + }, + { + "start": 22019.82, + "end": 22024.08, + "probability": 0.8115 + }, + { + "start": 22025.06, + "end": 22026.24, + "probability": 0.6796 + }, + { + "start": 22027.08, + "end": 22028.26, + "probability": 0.9531 + }, + { + "start": 22028.42, + "end": 22030.9, + "probability": 0.9401 + }, + { + "start": 22031.68, + "end": 22036.14, + "probability": 0.8549 + }, + { + "start": 22036.4, + "end": 22038.04, + "probability": 0.9976 + }, + { + "start": 22038.18, + "end": 22040.1, + "probability": 0.9878 + }, + { + "start": 22040.2, + "end": 22040.68, + "probability": 0.7159 + }, + { + "start": 22040.86, + "end": 22041.28, + "probability": 0.5284 + }, + { + "start": 22041.8, + "end": 22044.7, + "probability": 0.9811 + }, + { + "start": 22044.7, + "end": 22048.56, + "probability": 0.9882 + }, + { + "start": 22049.8, + "end": 22052.9, + "probability": 0.9983 + }, + { + "start": 22052.94, + "end": 22053.32, + "probability": 0.5209 + }, + { + "start": 22053.42, + "end": 22054.42, + "probability": 0.7667 + }, + { + "start": 22054.42, + "end": 22058.5, + "probability": 0.9596 + }, + { + "start": 22059.38, + "end": 22060.78, + "probability": 0.9251 + }, + { + "start": 22061.64, + "end": 22065.78, + "probability": 0.9662 + }, + { + "start": 22066.76, + "end": 22072.3, + "probability": 0.9587 + }, + { + "start": 22073.72, + "end": 22074.82, + "probability": 0.5972 + }, + { + "start": 22076.66, + "end": 22077.36, + "probability": 0.243 + }, + { + "start": 22077.36, + "end": 22077.71, + "probability": 0.3738 + }, + { + "start": 22079.66, + "end": 22082.04, + "probability": 0.9741 + }, + { + "start": 22082.98, + "end": 22083.76, + "probability": 0.7468 + }, + { + "start": 22084.44, + "end": 22087.3, + "probability": 0.9931 + }, + { + "start": 22087.96, + "end": 22089.48, + "probability": 0.9984 + }, + { + "start": 22089.7, + "end": 22090.74, + "probability": 0.9595 + }, + { + "start": 22091.36, + "end": 22092.42, + "probability": 0.9653 + }, + { + "start": 22093.08, + "end": 22096.88, + "probability": 0.9881 + }, + { + "start": 22097.06, + "end": 22101.26, + "probability": 0.9749 + }, + { + "start": 22101.56, + "end": 22106.42, + "probability": 0.9492 + }, + { + "start": 22106.56, + "end": 22108.82, + "probability": 0.7117 + }, + { + "start": 22109.5, + "end": 22109.84, + "probability": 0.8149 + }, + { + "start": 22110.2, + "end": 22111.1, + "probability": 0.6274 + }, + { + "start": 22111.22, + "end": 22112.74, + "probability": 0.8198 + }, + { + "start": 22112.94, + "end": 22114.12, + "probability": 0.7001 + }, + { + "start": 22114.3, + "end": 22115.06, + "probability": 0.432 + }, + { + "start": 22115.7, + "end": 22117.9, + "probability": 0.9946 + }, + { + "start": 22118.66, + "end": 22121.26, + "probability": 0.5839 + }, + { + "start": 22121.78, + "end": 22122.38, + "probability": 0.9441 + }, + { + "start": 22122.74, + "end": 22124.7, + "probability": 0.9668 + }, + { + "start": 22124.82, + "end": 22126.98, + "probability": 0.9227 + }, + { + "start": 22127.4, + "end": 22128.15, + "probability": 0.8433 + }, + { + "start": 22128.92, + "end": 22131.14, + "probability": 0.5407 + }, + { + "start": 22131.22, + "end": 22133.8, + "probability": 0.7875 + }, + { + "start": 22133.8, + "end": 22136.3, + "probability": 0.6523 + }, + { + "start": 22136.36, + "end": 22140.48, + "probability": 0.8363 + }, + { + "start": 22141.12, + "end": 22141.14, + "probability": 0.3756 + }, + { + "start": 22141.14, + "end": 22142.94, + "probability": 0.9556 + }, + { + "start": 22142.94, + "end": 22146.1, + "probability": 0.8163 + }, + { + "start": 22146.3, + "end": 22147.06, + "probability": 0.4984 + }, + { + "start": 22147.06, + "end": 22147.44, + "probability": 0.6875 + }, + { + "start": 22147.46, + "end": 22148.76, + "probability": 0.9906 + }, + { + "start": 22149.1, + "end": 22149.18, + "probability": 0.6333 + }, + { + "start": 22149.26, + "end": 22150.96, + "probability": 0.9535 + }, + { + "start": 22151.08, + "end": 22151.58, + "probability": 0.7789 + }, + { + "start": 22152.34, + "end": 22152.52, + "probability": 0.4428 + }, + { + "start": 22152.7, + "end": 22155.24, + "probability": 0.9434 + }, + { + "start": 22155.36, + "end": 22156.6, + "probability": 0.7326 + }, + { + "start": 22156.66, + "end": 22157.46, + "probability": 0.7225 + }, + { + "start": 22157.5, + "end": 22158.64, + "probability": 0.6077 + }, + { + "start": 22158.76, + "end": 22159.1, + "probability": 0.2879 + }, + { + "start": 22159.8, + "end": 22160.2, + "probability": 0.8835 + }, + { + "start": 22166.37, + "end": 22169.54, + "probability": 0.8134 + }, + { + "start": 22181.66, + "end": 22182.64, + "probability": 0.4138 + }, + { + "start": 22191.52, + "end": 22192.58, + "probability": 0.7476 + }, + { + "start": 22193.26, + "end": 22194.0, + "probability": 0.7649 + }, + { + "start": 22194.76, + "end": 22196.16, + "probability": 0.749 + }, + { + "start": 22196.86, + "end": 22198.2, + "probability": 0.864 + }, + { + "start": 22198.88, + "end": 22199.28, + "probability": 0.5596 + }, + { + "start": 22199.88, + "end": 22200.46, + "probability": 0.9519 + }, + { + "start": 22201.32, + "end": 22201.92, + "probability": 0.4929 + }, + { + "start": 22202.5, + "end": 22203.4, + "probability": 0.8535 + }, + { + "start": 22204.26, + "end": 22207.92, + "probability": 0.9896 + }, + { + "start": 22207.92, + "end": 22211.76, + "probability": 0.9982 + }, + { + "start": 22212.8, + "end": 22217.62, + "probability": 0.9944 + }, + { + "start": 22218.36, + "end": 22220.6, + "probability": 0.9399 + }, + { + "start": 22221.18, + "end": 22223.62, + "probability": 0.7071 + }, + { + "start": 22225.12, + "end": 22226.96, + "probability": 0.9916 + }, + { + "start": 22227.48, + "end": 22228.68, + "probability": 0.6156 + }, + { + "start": 22231.2, + "end": 22234.34, + "probability": 0.9905 + }, + { + "start": 22235.98, + "end": 22238.08, + "probability": 0.9517 + }, + { + "start": 22238.4, + "end": 22240.04, + "probability": 0.9062 + }, + { + "start": 22240.44, + "end": 22241.1, + "probability": 0.7647 + }, + { + "start": 22242.34, + "end": 22244.26, + "probability": 0.8101 + }, + { + "start": 22245.94, + "end": 22246.72, + "probability": 0.7622 + }, + { + "start": 22247.58, + "end": 22250.22, + "probability": 0.98 + }, + { + "start": 22250.92, + "end": 22252.04, + "probability": 0.9811 + }, + { + "start": 22252.2, + "end": 22253.1, + "probability": 0.9344 + }, + { + "start": 22253.34, + "end": 22254.3, + "probability": 0.8418 + }, + { + "start": 22256.06, + "end": 22260.22, + "probability": 0.9329 + }, + { + "start": 22261.2, + "end": 22264.48, + "probability": 0.6952 + }, + { + "start": 22265.36, + "end": 22270.1, + "probability": 0.6712 + }, + { + "start": 22270.32, + "end": 22270.7, + "probability": 0.3194 + }, + { + "start": 22271.12, + "end": 22272.06, + "probability": 0.9893 + }, + { + "start": 22272.2, + "end": 22273.18, + "probability": 0.9245 + }, + { + "start": 22273.76, + "end": 22278.26, + "probability": 0.9899 + }, + { + "start": 22278.84, + "end": 22281.44, + "probability": 0.973 + }, + { + "start": 22282.32, + "end": 22283.34, + "probability": 0.8605 + }, + { + "start": 22284.0, + "end": 22284.82, + "probability": 0.3983 + }, + { + "start": 22285.6, + "end": 22287.36, + "probability": 0.9977 + }, + { + "start": 22287.82, + "end": 22290.12, + "probability": 0.6436 + }, + { + "start": 22291.14, + "end": 22292.48, + "probability": 0.9457 + }, + { + "start": 22293.2, + "end": 22298.3, + "probability": 0.8846 + }, + { + "start": 22298.68, + "end": 22301.5, + "probability": 0.9917 + }, + { + "start": 22302.22, + "end": 22304.1, + "probability": 0.5737 + }, + { + "start": 22304.18, + "end": 22304.84, + "probability": 0.701 + }, + { + "start": 22304.98, + "end": 22306.42, + "probability": 0.8033 + }, + { + "start": 22307.02, + "end": 22308.22, + "probability": 0.8619 + }, + { + "start": 22309.06, + "end": 22310.0, + "probability": 0.721 + }, + { + "start": 22310.56, + "end": 22312.24, + "probability": 0.9833 + }, + { + "start": 22312.9, + "end": 22313.56, + "probability": 0.7634 + }, + { + "start": 22314.1, + "end": 22320.36, + "probability": 0.9922 + }, + { + "start": 22321.04, + "end": 22322.94, + "probability": 0.8022 + }, + { + "start": 22323.3, + "end": 22324.48, + "probability": 0.5348 + }, + { + "start": 22324.96, + "end": 22326.4, + "probability": 0.7674 + }, + { + "start": 22326.58, + "end": 22327.2, + "probability": 0.9469 + }, + { + "start": 22327.58, + "end": 22328.1, + "probability": 0.6507 + }, + { + "start": 22328.54, + "end": 22330.98, + "probability": 0.5822 + }, + { + "start": 22331.84, + "end": 22333.24, + "probability": 0.6622 + }, + { + "start": 22333.36, + "end": 22334.92, + "probability": 0.5671 + }, + { + "start": 22335.44, + "end": 22336.78, + "probability": 0.773 + }, + { + "start": 22337.26, + "end": 22340.53, + "probability": 0.9799 + }, + { + "start": 22341.24, + "end": 22342.58, + "probability": 0.7785 + }, + { + "start": 22343.28, + "end": 22343.86, + "probability": 0.4338 + }, + { + "start": 22344.34, + "end": 22346.42, + "probability": 0.9626 + }, + { + "start": 22346.56, + "end": 22347.22, + "probability": 0.7604 + }, + { + "start": 22348.26, + "end": 22348.98, + "probability": 0.8901 + }, + { + "start": 22350.0, + "end": 22350.68, + "probability": 0.634 + }, + { + "start": 22350.94, + "end": 22355.5, + "probability": 0.8601 + }, + { + "start": 22355.6, + "end": 22356.38, + "probability": 0.9722 + }, + { + "start": 22356.58, + "end": 22357.8, + "probability": 0.9917 + }, + { + "start": 22358.56, + "end": 22361.69, + "probability": 0.9258 + }, + { + "start": 22362.82, + "end": 22365.1, + "probability": 0.6229 + }, + { + "start": 22365.89, + "end": 22367.22, + "probability": 0.9851 + }, + { + "start": 22367.94, + "end": 22371.32, + "probability": 0.9812 + }, + { + "start": 22371.96, + "end": 22372.42, + "probability": 0.8913 + }, + { + "start": 22372.5, + "end": 22375.2, + "probability": 0.9879 + }, + { + "start": 22375.44, + "end": 22375.88, + "probability": 0.9755 + }, + { + "start": 22376.74, + "end": 22378.56, + "probability": 0.8753 + }, + { + "start": 22379.12, + "end": 22380.4, + "probability": 0.8551 + }, + { + "start": 22381.3, + "end": 22381.68, + "probability": 0.6984 + }, + { + "start": 22382.06, + "end": 22382.38, + "probability": 0.5224 + }, + { + "start": 22382.48, + "end": 22384.72, + "probability": 0.9706 + }, + { + "start": 22384.94, + "end": 22385.42, + "probability": 0.7153 + }, + { + "start": 22385.44, + "end": 22387.64, + "probability": 0.9735 + }, + { + "start": 22387.72, + "end": 22388.34, + "probability": 0.6802 + }, + { + "start": 22389.4, + "end": 22391.48, + "probability": 0.7534 + }, + { + "start": 22392.18, + "end": 22393.4, + "probability": 0.646 + }, + { + "start": 22395.18, + "end": 22395.46, + "probability": 0.2592 + }, + { + "start": 22395.76, + "end": 22398.14, + "probability": 0.8151 + }, + { + "start": 22401.93, + "end": 22404.18, + "probability": 0.9893 + }, + { + "start": 22404.32, + "end": 22405.06, + "probability": 0.9785 + }, + { + "start": 22405.14, + "end": 22405.9, + "probability": 0.2561 + }, + { + "start": 22406.72, + "end": 22409.52, + "probability": 0.4923 + }, + { + "start": 22409.58, + "end": 22410.0, + "probability": 0.5378 + }, + { + "start": 22410.26, + "end": 22413.34, + "probability": 0.8327 + }, + { + "start": 22413.4, + "end": 22414.06, + "probability": 0.9686 + }, + { + "start": 22414.9, + "end": 22416.98, + "probability": 0.8419 + }, + { + "start": 22417.6, + "end": 22419.12, + "probability": 0.7158 + }, + { + "start": 22419.74, + "end": 22421.16, + "probability": 0.9972 + }, + { + "start": 22421.7, + "end": 22424.24, + "probability": 0.5508 + }, + { + "start": 22424.28, + "end": 22425.2, + "probability": 0.6705 + }, + { + "start": 22425.6, + "end": 22431.52, + "probability": 0.6586 + }, + { + "start": 22432.0, + "end": 22432.26, + "probability": 0.2518 + }, + { + "start": 22432.36, + "end": 22434.46, + "probability": 0.7265 + }, + { + "start": 22434.86, + "end": 22439.12, + "probability": 0.971 + }, + { + "start": 22439.5, + "end": 22439.66, + "probability": 0.1699 + }, + { + "start": 22439.76, + "end": 22440.16, + "probability": 0.2834 + }, + { + "start": 22440.3, + "end": 22441.72, + "probability": 0.683 + }, + { + "start": 22441.98, + "end": 22444.16, + "probability": 0.663 + }, + { + "start": 22444.62, + "end": 22445.28, + "probability": 0.9371 + }, + { + "start": 22462.32, + "end": 22463.94, + "probability": 0.6771 + }, + { + "start": 22467.38, + "end": 22471.18, + "probability": 0.9061 + }, + { + "start": 22471.18, + "end": 22475.73, + "probability": 0.9849 + }, + { + "start": 22477.58, + "end": 22482.1, + "probability": 0.9507 + }, + { + "start": 22482.92, + "end": 22484.52, + "probability": 0.8886 + }, + { + "start": 22484.66, + "end": 22487.48, + "probability": 0.9235 + }, + { + "start": 22489.64, + "end": 22492.58, + "probability": 0.9161 + }, + { + "start": 22493.56, + "end": 22494.3, + "probability": 0.7555 + }, + { + "start": 22495.34, + "end": 22496.2, + "probability": 0.7363 + }, + { + "start": 22496.84, + "end": 22498.78, + "probability": 0.9331 + }, + { + "start": 22499.44, + "end": 22500.38, + "probability": 0.9922 + }, + { + "start": 22502.3, + "end": 22506.06, + "probability": 0.9948 + }, + { + "start": 22506.84, + "end": 22508.9, + "probability": 0.8931 + }, + { + "start": 22509.96, + "end": 22514.8, + "probability": 0.9861 + }, + { + "start": 22516.5, + "end": 22520.92, + "probability": 0.9085 + }, + { + "start": 22521.12, + "end": 22523.23, + "probability": 0.8146 + }, + { + "start": 22524.12, + "end": 22526.12, + "probability": 0.9952 + }, + { + "start": 22527.94, + "end": 22530.56, + "probability": 0.9938 + }, + { + "start": 22530.56, + "end": 22533.68, + "probability": 0.9733 + }, + { + "start": 22534.4, + "end": 22535.06, + "probability": 0.7267 + }, + { + "start": 22535.92, + "end": 22540.4, + "probability": 0.9845 + }, + { + "start": 22541.46, + "end": 22544.0, + "probability": 0.971 + }, + { + "start": 22545.16, + "end": 22547.4, + "probability": 0.8894 + }, + { + "start": 22548.86, + "end": 22549.8, + "probability": 0.5174 + }, + { + "start": 22549.86, + "end": 22554.52, + "probability": 0.9293 + }, + { + "start": 22556.76, + "end": 22559.8, + "probability": 0.9315 + }, + { + "start": 22560.88, + "end": 22565.34, + "probability": 0.8614 + }, + { + "start": 22565.34, + "end": 22569.52, + "probability": 0.985 + }, + { + "start": 22571.48, + "end": 22573.28, + "probability": 0.886 + }, + { + "start": 22573.5, + "end": 22576.1, + "probability": 0.934 + }, + { + "start": 22576.86, + "end": 22578.98, + "probability": 0.9702 + }, + { + "start": 22580.12, + "end": 22582.22, + "probability": 0.9852 + }, + { + "start": 22583.1, + "end": 22587.56, + "probability": 0.945 + }, + { + "start": 22588.46, + "end": 22591.84, + "probability": 0.9836 + }, + { + "start": 22592.96, + "end": 22597.8, + "probability": 0.9734 + }, + { + "start": 22598.44, + "end": 22600.36, + "probability": 0.9862 + }, + { + "start": 22601.7, + "end": 22606.64, + "probability": 0.9801 + }, + { + "start": 22608.64, + "end": 22610.98, + "probability": 0.8239 + }, + { + "start": 22611.34, + "end": 22613.9, + "probability": 0.7521 + }, + { + "start": 22614.54, + "end": 22618.0, + "probability": 0.9908 + }, + { + "start": 22618.62, + "end": 22621.22, + "probability": 0.9788 + }, + { + "start": 22622.04, + "end": 22622.94, + "probability": 0.8864 + }, + { + "start": 22623.66, + "end": 22625.7, + "probability": 0.7944 + }, + { + "start": 22626.3, + "end": 22629.0, + "probability": 0.8965 + }, + { + "start": 22629.0, + "end": 22633.98, + "probability": 0.9804 + }, + { + "start": 22634.68, + "end": 22635.12, + "probability": 0.9607 + }, + { + "start": 22635.74, + "end": 22637.46, + "probability": 0.9943 + }, + { + "start": 22638.08, + "end": 22638.98, + "probability": 0.9618 + }, + { + "start": 22640.92, + "end": 22645.98, + "probability": 0.9223 + }, + { + "start": 22647.04, + "end": 22648.66, + "probability": 0.9888 + }, + { + "start": 22649.64, + "end": 22652.52, + "probability": 0.8893 + }, + { + "start": 22653.12, + "end": 22656.46, + "probability": 0.9958 + }, + { + "start": 22656.54, + "end": 22657.6, + "probability": 0.8914 + }, + { + "start": 22658.72, + "end": 22659.96, + "probability": 0.9899 + }, + { + "start": 22661.78, + "end": 22665.52, + "probability": 0.9356 + }, + { + "start": 22665.52, + "end": 22670.29, + "probability": 0.9718 + }, + { + "start": 22670.4, + "end": 22671.82, + "probability": 0.7686 + }, + { + "start": 22673.1, + "end": 22673.54, + "probability": 0.6756 + }, + { + "start": 22673.6, + "end": 22674.6, + "probability": 0.8716 + }, + { + "start": 22674.98, + "end": 22676.12, + "probability": 0.9861 + }, + { + "start": 22676.3, + "end": 22676.64, + "probability": 0.9688 + }, + { + "start": 22677.08, + "end": 22677.76, + "probability": 0.9699 + }, + { + "start": 22678.52, + "end": 22683.76, + "probability": 0.9325 + }, + { + "start": 22685.56, + "end": 22688.26, + "probability": 0.8499 + }, + { + "start": 22689.4, + "end": 22692.32, + "probability": 0.995 + }, + { + "start": 22693.44, + "end": 22697.06, + "probability": 0.9414 + }, + { + "start": 22698.44, + "end": 22701.22, + "probability": 0.9941 + }, + { + "start": 22702.32, + "end": 22703.06, + "probability": 0.8465 + }, + { + "start": 22703.8, + "end": 22704.62, + "probability": 0.863 + }, + { + "start": 22705.7, + "end": 22706.28, + "probability": 0.7469 + }, + { + "start": 22707.6, + "end": 22710.36, + "probability": 0.9253 + }, + { + "start": 22711.1, + "end": 22712.76, + "probability": 0.9956 + }, + { + "start": 22713.46, + "end": 22717.66, + "probability": 0.87 + }, + { + "start": 22718.52, + "end": 22722.86, + "probability": 0.9771 + }, + { + "start": 22723.92, + "end": 22725.16, + "probability": 0.8473 + }, + { + "start": 22725.5, + "end": 22729.06, + "probability": 0.8796 + }, + { + "start": 22730.0, + "end": 22733.97, + "probability": 0.8735 + }, + { + "start": 22734.76, + "end": 22737.1, + "probability": 0.8879 + }, + { + "start": 22737.88, + "end": 22742.02, + "probability": 0.9413 + }, + { + "start": 22743.54, + "end": 22746.82, + "probability": 0.9878 + }, + { + "start": 22747.12, + "end": 22749.1, + "probability": 0.9074 + }, + { + "start": 22750.76, + "end": 22753.86, + "probability": 0.9464 + }, + { + "start": 22754.32, + "end": 22758.42, + "probability": 0.9468 + }, + { + "start": 22758.8, + "end": 22759.76, + "probability": 0.7308 + }, + { + "start": 22759.94, + "end": 22763.06, + "probability": 0.9708 + }, + { + "start": 22763.52, + "end": 22764.3, + "probability": 0.8702 + }, + { + "start": 22765.56, + "end": 22766.92, + "probability": 0.7738 + }, + { + "start": 22768.02, + "end": 22768.41, + "probability": 0.9478 + }, + { + "start": 22770.34, + "end": 22770.86, + "probability": 0.6225 + }, + { + "start": 22771.28, + "end": 22774.39, + "probability": 0.14 + }, + { + "start": 22774.6, + "end": 22775.28, + "probability": 0.5488 + }, + { + "start": 22776.84, + "end": 22777.54, + "probability": 0.7745 + }, + { + "start": 22777.62, + "end": 22779.08, + "probability": 0.1473 + }, + { + "start": 22785.12, + "end": 22787.72, + "probability": 0.6527 + }, + { + "start": 22788.06, + "end": 22791.52, + "probability": 0.4771 + }, + { + "start": 22792.67, + "end": 22794.8, + "probability": 0.9971 + }, + { + "start": 22797.3, + "end": 22800.6, + "probability": 0.8044 + }, + { + "start": 22806.38, + "end": 22807.0, + "probability": 0.3507 + }, + { + "start": 22807.84, + "end": 22809.6, + "probability": 0.5706 + }, + { + "start": 22809.84, + "end": 22811.08, + "probability": 0.3806 + }, + { + "start": 22812.1, + "end": 22813.18, + "probability": 0.6511 + }, + { + "start": 22813.41, + "end": 22816.8, + "probability": 0.957 + }, + { + "start": 22818.14, + "end": 22819.42, + "probability": 0.7534 + }, + { + "start": 22820.48, + "end": 22825.24, + "probability": 0.4893 + }, + { + "start": 22825.78, + "end": 22830.2, + "probability": 0.2315 + }, + { + "start": 22830.64, + "end": 22832.86, + "probability": 0.1182 + }, + { + "start": 22832.86, + "end": 22833.8, + "probability": 0.6598 + }, + { + "start": 22834.8, + "end": 22839.6, + "probability": 0.8295 + }, + { + "start": 22840.5, + "end": 22842.0, + "probability": 0.6895 + }, + { + "start": 22842.02, + "end": 22842.94, + "probability": 0.1699 + }, + { + "start": 22844.2, + "end": 22847.1, + "probability": 0.1935 + }, + { + "start": 22847.64, + "end": 22848.16, + "probability": 0.0118 + }, + { + "start": 22848.36, + "end": 22849.62, + "probability": 0.7661 + }, + { + "start": 22849.84, + "end": 22851.28, + "probability": 0.6384 + }, + { + "start": 22851.28, + "end": 22852.46, + "probability": 0.8369 + }, + { + "start": 22854.48, + "end": 22857.18, + "probability": 0.3978 + }, + { + "start": 22857.3, + "end": 22859.41, + "probability": 0.7026 + }, + { + "start": 22859.68, + "end": 22861.94, + "probability": 0.4446 + }, + { + "start": 22862.52, + "end": 22862.68, + "probability": 0.5273 + }, + { + "start": 22862.68, + "end": 22863.94, + "probability": 0.9141 + }, + { + "start": 22864.73, + "end": 22866.12, + "probability": 0.8647 + }, + { + "start": 22866.32, + "end": 22867.06, + "probability": 0.6438 + }, + { + "start": 22867.3, + "end": 22868.91, + "probability": 0.964 + }, + { + "start": 22869.04, + "end": 22869.7, + "probability": 0.4185 + }, + { + "start": 22869.76, + "end": 22872.1, + "probability": 0.9618 + }, + { + "start": 22872.16, + "end": 22873.04, + "probability": 0.4276 + }, + { + "start": 22873.1, + "end": 22873.74, + "probability": 0.8203 + }, + { + "start": 22874.68, + "end": 22875.8, + "probability": 0.7687 + }, + { + "start": 22876.34, + "end": 22877.44, + "probability": 0.9017 + }, + { + "start": 22877.66, + "end": 22880.58, + "probability": 0.6194 + }, + { + "start": 22881.28, + "end": 22882.58, + "probability": 0.9365 + }, + { + "start": 22882.98, + "end": 22883.5, + "probability": 0.8434 + }, + { + "start": 22884.06, + "end": 22886.74, + "probability": 0.9113 + }, + { + "start": 22886.82, + "end": 22888.18, + "probability": 0.9622 + }, + { + "start": 22888.3, + "end": 22888.86, + "probability": 0.7664 + }, + { + "start": 22889.68, + "end": 22890.76, + "probability": 0.8621 + }, + { + "start": 22891.34, + "end": 22896.14, + "probability": 0.9889 + }, + { + "start": 22896.82, + "end": 22898.18, + "probability": 0.7737 + }, + { + "start": 22899.14, + "end": 22900.36, + "probability": 0.727 + }, + { + "start": 22900.9, + "end": 22901.99, + "probability": 0.8309 + }, + { + "start": 22903.04, + "end": 22906.4, + "probability": 0.9596 + }, + { + "start": 22906.44, + "end": 22907.04, + "probability": 0.6297 + }, + { + "start": 22907.1, + "end": 22907.96, + "probability": 0.8536 + }, + { + "start": 22908.56, + "end": 22912.98, + "probability": 0.9188 + }, + { + "start": 22913.72, + "end": 22916.12, + "probability": 0.726 + }, + { + "start": 22916.88, + "end": 22921.58, + "probability": 0.9622 + }, + { + "start": 22922.58, + "end": 22924.38, + "probability": 0.0221 + }, + { + "start": 22924.38, + "end": 22924.78, + "probability": 0.1137 + }, + { + "start": 22925.06, + "end": 22925.24, + "probability": 0.594 + }, + { + "start": 22925.24, + "end": 22929.32, + "probability": 0.6821 + }, + { + "start": 22929.96, + "end": 22932.06, + "probability": 0.6767 + }, + { + "start": 22932.48, + "end": 22933.78, + "probability": 0.9138 + }, + { + "start": 22933.82, + "end": 22938.62, + "probability": 0.7843 + }, + { + "start": 22939.76, + "end": 22941.94, + "probability": 0.8533 + }, + { + "start": 22942.66, + "end": 22943.32, + "probability": 0.0232 + }, + { + "start": 22943.58, + "end": 22943.72, + "probability": 0.0051 + }, + { + "start": 22943.74, + "end": 22948.74, + "probability": 0.7665 + }, + { + "start": 22949.52, + "end": 22950.06, + "probability": 0.6547 + }, + { + "start": 22950.44, + "end": 22951.34, + "probability": 0.9458 + }, + { + "start": 22951.4, + "end": 22953.62, + "probability": 0.6851 + }, + { + "start": 22953.64, + "end": 22954.08, + "probability": 0.8939 + }, + { + "start": 22955.08, + "end": 22956.2, + "probability": 0.8091 + }, + { + "start": 22956.3, + "end": 22957.08, + "probability": 0.5169 + }, + { + "start": 22957.18, + "end": 22959.14, + "probability": 0.8548 + }, + { + "start": 22959.8, + "end": 22960.9, + "probability": 0.6056 + }, + { + "start": 22961.12, + "end": 22965.02, + "probability": 0.4864 + }, + { + "start": 22965.6, + "end": 22966.82, + "probability": 0.8131 + }, + { + "start": 22967.12, + "end": 22973.8, + "probability": 0.4811 + }, + { + "start": 22977.34, + "end": 22980.76, + "probability": 0.9784 + }, + { + "start": 22981.18, + "end": 22984.76, + "probability": 0.9811 + }, + { + "start": 22985.5, + "end": 22985.6, + "probability": 0.0298 + }, + { + "start": 22985.6, + "end": 22985.7, + "probability": 0.2422 + }, + { + "start": 22985.7, + "end": 22986.1, + "probability": 0.5386 + }, + { + "start": 22986.52, + "end": 22988.32, + "probability": 0.7444 + }, + { + "start": 22988.84, + "end": 22990.64, + "probability": 0.8396 + }, + { + "start": 22990.94, + "end": 22992.68, + "probability": 0.802 + }, + { + "start": 22993.48, + "end": 22993.48, + "probability": 0.1513 + }, + { + "start": 22993.48, + "end": 22995.12, + "probability": 0.769 + }, + { + "start": 22998.62, + "end": 22999.06, + "probability": 0.7293 + }, + { + "start": 23014.4, + "end": 23014.64, + "probability": 0.3215 + }, + { + "start": 23014.72, + "end": 23016.5, + "probability": 0.7074 + }, + { + "start": 23017.44, + "end": 23019.82, + "probability": 0.9896 + }, + { + "start": 23020.6, + "end": 23025.68, + "probability": 0.9876 + }, + { + "start": 23025.68, + "end": 23030.38, + "probability": 0.9926 + }, + { + "start": 23031.42, + "end": 23034.28, + "probability": 0.735 + }, + { + "start": 23034.36, + "end": 23038.64, + "probability": 0.9909 + }, + { + "start": 23039.18, + "end": 23042.04, + "probability": 0.9879 + }, + { + "start": 23042.04, + "end": 23044.96, + "probability": 0.998 + }, + { + "start": 23045.78, + "end": 23047.88, + "probability": 0.984 + }, + { + "start": 23048.36, + "end": 23051.36, + "probability": 0.9492 + }, + { + "start": 23051.36, + "end": 23054.68, + "probability": 0.9931 + }, + { + "start": 23055.46, + "end": 23060.16, + "probability": 0.9863 + }, + { + "start": 23060.72, + "end": 23061.84, + "probability": 0.7986 + }, + { + "start": 23062.3, + "end": 23064.72, + "probability": 0.8548 + }, + { + "start": 23065.12, + "end": 23069.56, + "probability": 0.9941 + }, + { + "start": 23070.02, + "end": 23070.98, + "probability": 0.9866 + }, + { + "start": 23071.52, + "end": 23075.4, + "probability": 0.9834 + }, + { + "start": 23076.08, + "end": 23081.84, + "probability": 0.8337 + }, + { + "start": 23082.2, + "end": 23083.9, + "probability": 0.9057 + }, + { + "start": 23084.36, + "end": 23086.94, + "probability": 0.9288 + }, + { + "start": 23087.06, + "end": 23087.94, + "probability": 0.813 + }, + { + "start": 23088.82, + "end": 23090.06, + "probability": 0.821 + }, + { + "start": 23090.84, + "end": 23096.32, + "probability": 0.9902 + }, + { + "start": 23096.9, + "end": 23103.0, + "probability": 0.9922 + }, + { + "start": 23103.36, + "end": 23108.26, + "probability": 0.9761 + }, + { + "start": 23108.58, + "end": 23114.04, + "probability": 0.98 + }, + { + "start": 23114.7, + "end": 23118.84, + "probability": 0.8966 + }, + { + "start": 23118.98, + "end": 23120.12, + "probability": 0.8816 + }, + { + "start": 23120.6, + "end": 23125.42, + "probability": 0.9906 + }, + { + "start": 23125.42, + "end": 23130.0, + "probability": 0.987 + }, + { + "start": 23130.54, + "end": 23132.72, + "probability": 0.9172 + }, + { + "start": 23133.48, + "end": 23135.0, + "probability": 0.9847 + }, + { + "start": 23136.46, + "end": 23140.76, + "probability": 0.9773 + }, + { + "start": 23141.06, + "end": 23144.82, + "probability": 0.9946 + }, + { + "start": 23145.58, + "end": 23151.3, + "probability": 0.9399 + }, + { + "start": 23151.72, + "end": 23154.9, + "probability": 0.794 + }, + { + "start": 23155.54, + "end": 23156.22, + "probability": 0.9884 + }, + { + "start": 23157.76, + "end": 23160.38, + "probability": 0.9959 + }, + { + "start": 23161.06, + "end": 23165.06, + "probability": 0.9143 + }, + { + "start": 23165.44, + "end": 23166.84, + "probability": 0.9933 + }, + { + "start": 23167.38, + "end": 23171.0, + "probability": 0.9923 + }, + { + "start": 23172.14, + "end": 23173.42, + "probability": 0.2128 + }, + { + "start": 23174.32, + "end": 23176.62, + "probability": 0.9477 + }, + { + "start": 23177.24, + "end": 23184.02, + "probability": 0.865 + }, + { + "start": 23184.3, + "end": 23186.14, + "probability": 0.8297 + }, + { + "start": 23187.04, + "end": 23191.82, + "probability": 0.9612 + }, + { + "start": 23192.66, + "end": 23198.5, + "probability": 0.9802 + }, + { + "start": 23198.92, + "end": 23201.5, + "probability": 0.9598 + }, + { + "start": 23202.02, + "end": 23205.04, + "probability": 0.9772 + }, + { + "start": 23206.32, + "end": 23209.56, + "probability": 0.9974 + }, + { + "start": 23209.56, + "end": 23213.52, + "probability": 0.9973 + }, + { + "start": 23214.16, + "end": 23218.86, + "probability": 0.9969 + }, + { + "start": 23219.28, + "end": 23221.5, + "probability": 0.9793 + }, + { + "start": 23221.94, + "end": 23224.54, + "probability": 0.9861 + }, + { + "start": 23225.14, + "end": 23229.72, + "probability": 0.9868 + }, + { + "start": 23230.54, + "end": 23233.9, + "probability": 0.982 + }, + { + "start": 23234.66, + "end": 23240.14, + "probability": 0.9921 + }, + { + "start": 23240.76, + "end": 23241.86, + "probability": 0.8011 + }, + { + "start": 23241.92, + "end": 23243.78, + "probability": 0.831 + }, + { + "start": 23243.82, + "end": 23245.24, + "probability": 0.9735 + }, + { + "start": 23246.08, + "end": 23249.48, + "probability": 0.9906 + }, + { + "start": 23249.48, + "end": 23252.6, + "probability": 0.9956 + }, + { + "start": 23253.44, + "end": 23258.94, + "probability": 0.9814 + }, + { + "start": 23258.94, + "end": 23263.82, + "probability": 0.999 + }, + { + "start": 23264.44, + "end": 23268.3, + "probability": 0.9856 + }, + { + "start": 23269.34, + "end": 23270.1, + "probability": 0.8348 + }, + { + "start": 23270.76, + "end": 23272.96, + "probability": 0.9985 + }, + { + "start": 23273.34, + "end": 23276.12, + "probability": 0.995 + }, + { + "start": 23276.88, + "end": 23282.78, + "probability": 0.9973 + }, + { + "start": 23282.78, + "end": 23289.06, + "probability": 0.9873 + }, + { + "start": 23289.64, + "end": 23290.56, + "probability": 0.6855 + }, + { + "start": 23291.38, + "end": 23291.96, + "probability": 0.8461 + }, + { + "start": 23292.44, + "end": 23295.26, + "probability": 0.8994 + }, + { + "start": 23295.64, + "end": 23296.82, + "probability": 0.8483 + }, + { + "start": 23297.14, + "end": 23299.36, + "probability": 0.9886 + }, + { + "start": 23299.8, + "end": 23303.62, + "probability": 0.996 + }, + { + "start": 23304.14, + "end": 23304.14, + "probability": 0.5771 + }, + { + "start": 23304.74, + "end": 23310.88, + "probability": 0.9946 + }, + { + "start": 23310.88, + "end": 23315.88, + "probability": 0.9709 + }, + { + "start": 23316.78, + "end": 23318.04, + "probability": 0.7533 + }, + { + "start": 23318.78, + "end": 23323.68, + "probability": 0.9595 + }, + { + "start": 23324.12, + "end": 23328.0, + "probability": 0.9697 + }, + { + "start": 23328.0, + "end": 23330.94, + "probability": 0.9784 + }, + { + "start": 23331.38, + "end": 23335.46, + "probability": 0.9554 + }, + { + "start": 23335.46, + "end": 23340.58, + "probability": 0.8403 + }, + { + "start": 23341.16, + "end": 23342.24, + "probability": 0.9934 + }, + { + "start": 23342.86, + "end": 23346.1, + "probability": 0.9262 + }, + { + "start": 23346.56, + "end": 23350.2, + "probability": 0.729 + }, + { + "start": 23351.34, + "end": 23356.9, + "probability": 0.8352 + }, + { + "start": 23357.36, + "end": 23362.02, + "probability": 0.985 + }, + { + "start": 23362.64, + "end": 23366.04, + "probability": 0.9977 + }, + { + "start": 23366.04, + "end": 23368.74, + "probability": 0.9995 + }, + { + "start": 23369.3, + "end": 23374.36, + "probability": 0.9495 + }, + { + "start": 23374.82, + "end": 23376.74, + "probability": 0.9279 + }, + { + "start": 23377.32, + "end": 23381.02, + "probability": 0.996 + }, + { + "start": 23381.26, + "end": 23384.84, + "probability": 0.9978 + }, + { + "start": 23385.34, + "end": 23390.14, + "probability": 0.9917 + }, + { + "start": 23390.64, + "end": 23393.1, + "probability": 0.994 + }, + { + "start": 23393.42, + "end": 23397.06, + "probability": 0.9675 + }, + { + "start": 23397.06, + "end": 23401.74, + "probability": 0.997 + }, + { + "start": 23401.9, + "end": 23402.28, + "probability": 0.9395 + }, + { + "start": 23403.08, + "end": 23405.2, + "probability": 0.7408 + }, + { + "start": 23405.94, + "end": 23410.28, + "probability": 0.9946 + }, + { + "start": 23410.64, + "end": 23414.18, + "probability": 0.9855 + }, + { + "start": 23414.18, + "end": 23417.56, + "probability": 0.938 + }, + { + "start": 23418.38, + "end": 23424.56, + "probability": 0.9467 + }, + { + "start": 23424.82, + "end": 23425.8, + "probability": 0.4994 + }, + { + "start": 23426.14, + "end": 23428.55, + "probability": 0.9564 + }, + { + "start": 23429.12, + "end": 23431.32, + "probability": 0.9683 + }, + { + "start": 23431.86, + "end": 23433.5, + "probability": 0.8354 + }, + { + "start": 23434.12, + "end": 23439.04, + "probability": 0.9947 + }, + { + "start": 23439.52, + "end": 23444.68, + "probability": 0.995 + }, + { + "start": 23444.68, + "end": 23451.38, + "probability": 0.8224 + }, + { + "start": 23451.72, + "end": 23454.32, + "probability": 0.9972 + }, + { + "start": 23454.32, + "end": 23457.18, + "probability": 0.9971 + }, + { + "start": 23457.78, + "end": 23463.18, + "probability": 0.9108 + }, + { + "start": 23463.18, + "end": 23466.2, + "probability": 0.9982 + }, + { + "start": 23466.74, + "end": 23469.9, + "probability": 0.8881 + }, + { + "start": 23470.44, + "end": 23472.32, + "probability": 0.9714 + }, + { + "start": 23472.84, + "end": 23478.08, + "probability": 0.9966 + }, + { + "start": 23478.64, + "end": 23483.98, + "probability": 0.9904 + }, + { + "start": 23484.36, + "end": 23487.8, + "probability": 0.6462 + }, + { + "start": 23488.48, + "end": 23489.78, + "probability": 0.9957 + }, + { + "start": 23490.46, + "end": 23491.12, + "probability": 0.9684 + }, + { + "start": 23491.74, + "end": 23493.1, + "probability": 0.9523 + }, + { + "start": 23493.44, + "end": 23497.42, + "probability": 0.9888 + }, + { + "start": 23497.42, + "end": 23501.64, + "probability": 0.9971 + }, + { + "start": 23502.18, + "end": 23506.14, + "probability": 0.9984 + }, + { + "start": 23506.68, + "end": 23507.3, + "probability": 0.8293 + }, + { + "start": 23507.9, + "end": 23508.42, + "probability": 0.314 + }, + { + "start": 23508.46, + "end": 23514.2, + "probability": 0.756 + }, + { + "start": 23514.66, + "end": 23517.42, + "probability": 0.965 + }, + { + "start": 23517.72, + "end": 23519.18, + "probability": 0.854 + }, + { + "start": 23519.56, + "end": 23520.46, + "probability": 0.8577 + }, + { + "start": 23520.78, + "end": 23521.4, + "probability": 0.886 + }, + { + "start": 23521.8, + "end": 23522.62, + "probability": 0.7799 + }, + { + "start": 23522.96, + "end": 23526.0, + "probability": 0.8914 + }, + { + "start": 23526.34, + "end": 23529.48, + "probability": 0.9993 + }, + { + "start": 23529.72, + "end": 23533.02, + "probability": 0.9883 + }, + { + "start": 23533.54, + "end": 23538.64, + "probability": 0.9307 + }, + { + "start": 23538.92, + "end": 23540.28, + "probability": 0.8101 + }, + { + "start": 23540.86, + "end": 23541.74, + "probability": 0.6233 + }, + { + "start": 23542.12, + "end": 23543.16, + "probability": 0.6841 + }, + { + "start": 23558.8, + "end": 23560.0, + "probability": 0.1826 + }, + { + "start": 23562.2, + "end": 23564.7, + "probability": 0.7163 + }, + { + "start": 23565.78, + "end": 23570.42, + "probability": 0.9874 + }, + { + "start": 23570.42, + "end": 23573.82, + "probability": 0.9494 + }, + { + "start": 23574.8, + "end": 23575.64, + "probability": 0.9964 + }, + { + "start": 23579.12, + "end": 23582.46, + "probability": 0.4856 + }, + { + "start": 23583.02, + "end": 23586.98, + "probability": 0.9684 + }, + { + "start": 23588.98, + "end": 23593.36, + "probability": 0.9963 + }, + { + "start": 23593.5, + "end": 23597.12, + "probability": 0.9784 + }, + { + "start": 23598.16, + "end": 23600.7, + "probability": 0.6595 + }, + { + "start": 23600.96, + "end": 23602.04, + "probability": 0.8508 + }, + { + "start": 23602.52, + "end": 23605.9, + "probability": 0.9883 + }, + { + "start": 23607.68, + "end": 23611.88, + "probability": 0.9818 + }, + { + "start": 23612.88, + "end": 23615.66, + "probability": 0.9959 + }, + { + "start": 23617.24, + "end": 23621.42, + "probability": 0.9917 + }, + { + "start": 23623.0, + "end": 23626.94, + "probability": 0.9317 + }, + { + "start": 23627.0, + "end": 23630.94, + "probability": 0.8265 + }, + { + "start": 23630.94, + "end": 23632.84, + "probability": 0.9989 + }, + { + "start": 23633.02, + "end": 23634.8, + "probability": 0.9789 + }, + { + "start": 23635.76, + "end": 23639.28, + "probability": 0.948 + }, + { + "start": 23639.28, + "end": 23643.22, + "probability": 0.8735 + }, + { + "start": 23645.4, + "end": 23648.16, + "probability": 0.9686 + }, + { + "start": 23648.16, + "end": 23650.32, + "probability": 0.9972 + }, + { + "start": 23651.38, + "end": 23655.48, + "probability": 0.8277 + }, + { + "start": 23656.38, + "end": 23659.04, + "probability": 0.9865 + }, + { + "start": 23659.1, + "end": 23663.16, + "probability": 0.9193 + }, + { + "start": 23663.84, + "end": 23666.66, + "probability": 0.5011 + }, + { + "start": 23667.72, + "end": 23670.36, + "probability": 0.9972 + }, + { + "start": 23671.46, + "end": 23675.82, + "probability": 0.9895 + }, + { + "start": 23676.7, + "end": 23680.14, + "probability": 0.9997 + }, + { + "start": 23680.14, + "end": 23682.98, + "probability": 0.9902 + }, + { + "start": 23684.6, + "end": 23686.0, + "probability": 0.9641 + }, + { + "start": 23686.78, + "end": 23689.68, + "probability": 0.76 + }, + { + "start": 23690.7, + "end": 23693.25, + "probability": 0.9993 + }, + { + "start": 23694.22, + "end": 23698.38, + "probability": 0.8874 + }, + { + "start": 23699.64, + "end": 23704.58, + "probability": 0.9499 + }, + { + "start": 23704.68, + "end": 23705.24, + "probability": 0.547 + }, + { + "start": 23707.1, + "end": 23714.54, + "probability": 0.9775 + }, + { + "start": 23714.8, + "end": 23717.92, + "probability": 0.8915 + }, + { + "start": 23719.6, + "end": 23721.46, + "probability": 0.8609 + }, + { + "start": 23721.5, + "end": 23723.92, + "probability": 0.8857 + }, + { + "start": 23723.92, + "end": 23726.56, + "probability": 0.9917 + }, + { + "start": 23726.8, + "end": 23727.9, + "probability": 0.8711 + }, + { + "start": 23728.6, + "end": 23729.68, + "probability": 0.9092 + }, + { + "start": 23730.7, + "end": 23735.38, + "probability": 0.9969 + }, + { + "start": 23736.44, + "end": 23738.78, + "probability": 0.9875 + }, + { + "start": 23739.24, + "end": 23740.4, + "probability": 0.9871 + }, + { + "start": 23740.52, + "end": 23741.96, + "probability": 0.985 + }, + { + "start": 23743.08, + "end": 23747.12, + "probability": 0.8812 + }, + { + "start": 23747.66, + "end": 23749.48, + "probability": 0.7282 + }, + { + "start": 23750.02, + "end": 23752.5, + "probability": 0.955 + }, + { + "start": 23753.36, + "end": 23755.62, + "probability": 0.8243 + }, + { + "start": 23756.32, + "end": 23758.36, + "probability": 0.5669 + }, + { + "start": 23758.54, + "end": 23761.76, + "probability": 0.8689 + }, + { + "start": 23763.5, + "end": 23765.5, + "probability": 0.9612 + }, + { + "start": 23765.64, + "end": 23768.7, + "probability": 0.3876 + }, + { + "start": 23769.48, + "end": 23770.3, + "probability": 0.9644 + }, + { + "start": 23771.08, + "end": 23772.94, + "probability": 0.6876 + }, + { + "start": 23773.04, + "end": 23776.26, + "probability": 0.9669 + }, + { + "start": 23777.02, + "end": 23779.34, + "probability": 0.9644 + }, + { + "start": 23779.38, + "end": 23783.06, + "probability": 0.9969 + }, + { + "start": 23783.7, + "end": 23786.36, + "probability": 0.9864 + }, + { + "start": 23786.92, + "end": 23789.1, + "probability": 0.8205 + }, + { + "start": 23789.62, + "end": 23792.6, + "probability": 0.8564 + }, + { + "start": 23793.16, + "end": 23795.46, + "probability": 0.9904 + }, + { + "start": 23795.58, + "end": 23795.88, + "probability": 0.8785 + }, + { + "start": 23796.96, + "end": 23798.62, + "probability": 0.9634 + }, + { + "start": 23799.68, + "end": 23800.48, + "probability": 0.6882 + }, + { + "start": 23803.37, + "end": 23805.2, + "probability": 0.7281 + }, + { + "start": 23805.5, + "end": 23806.66, + "probability": 0.7957 + }, + { + "start": 23806.76, + "end": 23807.74, + "probability": 0.5907 + }, + { + "start": 23809.12, + "end": 23809.32, + "probability": 0.3324 + }, + { + "start": 23810.06, + "end": 23812.4, + "probability": 0.1529 + }, + { + "start": 23813.24, + "end": 23816.16, + "probability": 0.7752 + }, + { + "start": 23817.24, + "end": 23817.24, + "probability": 0.0496 + }, + { + "start": 23817.24, + "end": 23817.24, + "probability": 0.3117 + }, + { + "start": 23817.24, + "end": 23817.24, + "probability": 0.3503 + }, + { + "start": 23817.24, + "end": 23817.24, + "probability": 0.2643 + }, + { + "start": 23817.24, + "end": 23817.24, + "probability": 0.3604 + }, + { + "start": 23817.24, + "end": 23817.24, + "probability": 0.058 + }, + { + "start": 23817.24, + "end": 23817.66, + "probability": 0.3205 + }, + { + "start": 23818.48, + "end": 23820.16, + "probability": 0.7726 + }, + { + "start": 23820.76, + "end": 23823.92, + "probability": 0.4724 + }, + { + "start": 23825.34, + "end": 23827.3, + "probability": 0.9473 + }, + { + "start": 23827.4, + "end": 23827.91, + "probability": 0.6074 + }, + { + "start": 23828.94, + "end": 23831.94, + "probability": 0.9795 + }, + { + "start": 23832.98, + "end": 23833.58, + "probability": 0.5135 + }, + { + "start": 23837.57, + "end": 23841.16, + "probability": 0.7285 + }, + { + "start": 23841.26, + "end": 23842.9, + "probability": 0.7281 + }, + { + "start": 23843.0, + "end": 23845.76, + "probability": 0.4627 + }, + { + "start": 23846.1, + "end": 23850.4, + "probability": 0.7142 + }, + { + "start": 23850.76, + "end": 23852.88, + "probability": 0.3915 + }, + { + "start": 23853.04, + "end": 23854.78, + "probability": 0.8317 + }, + { + "start": 23858.34, + "end": 23858.64, + "probability": 0.0726 + }, + { + "start": 23859.68, + "end": 23860.75, + "probability": 0.5262 + }, + { + "start": 23861.6, + "end": 23861.8, + "probability": 0.0242 + }, + { + "start": 23861.8, + "end": 23862.64, + "probability": 0.2686 + }, + { + "start": 23862.76, + "end": 23864.42, + "probability": 0.1857 + }, + { + "start": 23864.58, + "end": 23869.22, + "probability": 0.9238 + }, + { + "start": 23871.62, + "end": 23873.04, + "probability": 0.7694 + }, + { + "start": 23873.34, + "end": 23875.14, + "probability": 0.7185 + }, + { + "start": 23881.26, + "end": 23882.56, + "probability": 0.7781 + }, + { + "start": 23895.8, + "end": 23896.5, + "probability": 0.6831 + }, + { + "start": 23896.66, + "end": 23896.66, + "probability": 0.2862 + }, + { + "start": 23896.66, + "end": 23897.3, + "probability": 0.8521 + }, + { + "start": 23897.44, + "end": 23898.56, + "probability": 0.8219 + }, + { + "start": 23900.04, + "end": 23903.22, + "probability": 0.9617 + }, + { + "start": 23903.22, + "end": 23905.44, + "probability": 0.9752 + }, + { + "start": 23907.34, + "end": 23908.78, + "probability": 0.7258 + }, + { + "start": 23908.84, + "end": 23912.08, + "probability": 0.8785 + }, + { + "start": 23912.15, + "end": 23914.18, + "probability": 0.8971 + }, + { + "start": 23915.1, + "end": 23919.36, + "probability": 0.8031 + }, + { + "start": 23920.28, + "end": 23920.72, + "probability": 0.7441 + }, + { + "start": 23922.22, + "end": 23923.64, + "probability": 0.9092 + }, + { + "start": 23924.34, + "end": 23925.44, + "probability": 0.9676 + }, + { + "start": 23925.54, + "end": 23927.22, + "probability": 0.9832 + }, + { + "start": 23927.5, + "end": 23928.24, + "probability": 0.4645 + }, + { + "start": 23928.36, + "end": 23930.0, + "probability": 0.9987 + }, + { + "start": 23930.3, + "end": 23931.62, + "probability": 0.9176 + }, + { + "start": 23932.0, + "end": 23933.72, + "probability": 0.9698 + }, + { + "start": 23934.8, + "end": 23936.24, + "probability": 0.9135 + }, + { + "start": 23937.64, + "end": 23939.5, + "probability": 0.3384 + }, + { + "start": 23941.4, + "end": 23944.06, + "probability": 0.8358 + }, + { + "start": 23944.42, + "end": 23948.34, + "probability": 0.9771 + }, + { + "start": 23949.08, + "end": 23950.44, + "probability": 0.8425 + }, + { + "start": 23950.72, + "end": 23954.36, + "probability": 0.8059 + }, + { + "start": 23955.54, + "end": 23958.26, + "probability": 0.98 + }, + { + "start": 23958.9, + "end": 23963.06, + "probability": 0.8211 + }, + { + "start": 23963.52, + "end": 23964.28, + "probability": 0.9137 + }, + { + "start": 23965.48, + "end": 23967.8, + "probability": 0.9844 + }, + { + "start": 23968.6, + "end": 23972.3, + "probability": 0.8723 + }, + { + "start": 23972.34, + "end": 23974.02, + "probability": 0.7661 + }, + { + "start": 23974.34, + "end": 23974.96, + "probability": 0.7403 + }, + { + "start": 23975.02, + "end": 23977.72, + "probability": 0.7981 + }, + { + "start": 23977.72, + "end": 23978.23, + "probability": 0.5908 + }, + { + "start": 23978.58, + "end": 23979.14, + "probability": 0.2688 + }, + { + "start": 23979.36, + "end": 23980.02, + "probability": 0.6521 + }, + { + "start": 23981.0, + "end": 23984.28, + "probability": 0.5874 + }, + { + "start": 23984.42, + "end": 23986.04, + "probability": 0.7791 + }, + { + "start": 23986.12, + "end": 23986.54, + "probability": 0.8035 + }, + { + "start": 23987.04, + "end": 23988.22, + "probability": 0.9617 + }, + { + "start": 23990.18, + "end": 23994.36, + "probability": 0.9702 + }, + { + "start": 23994.52, + "end": 23998.92, + "probability": 0.9468 + }, + { + "start": 24000.86, + "end": 24001.24, + "probability": 0.0123 + }, + { + "start": 24001.24, + "end": 24001.72, + "probability": 0.0932 + }, + { + "start": 24002.48, + "end": 24003.04, + "probability": 0.1277 + }, + { + "start": 24003.28, + "end": 24006.9, + "probability": 0.8519 + }, + { + "start": 24006.98, + "end": 24009.96, + "probability": 0.6757 + }, + { + "start": 24011.82, + "end": 24014.08, + "probability": 0.9498 + }, + { + "start": 24014.74, + "end": 24021.08, + "probability": 0.8149 + }, + { + "start": 24021.8, + "end": 24023.94, + "probability": 0.422 + }, + { + "start": 24025.35, + "end": 24031.3, + "probability": 0.287 + }, + { + "start": 24031.84, + "end": 24035.52, + "probability": 0.5679 + }, + { + "start": 24036.16, + "end": 24036.54, + "probability": 0.0292 + }, + { + "start": 24038.28, + "end": 24040.16, + "probability": 0.4982 + }, + { + "start": 24040.54, + "end": 24040.68, + "probability": 0.4841 + }, + { + "start": 24041.02, + "end": 24041.88, + "probability": 0.6605 + }, + { + "start": 24041.98, + "end": 24047.42, + "probability": 0.2174 + }, + { + "start": 24047.96, + "end": 24048.98, + "probability": 0.4376 + }, + { + "start": 24049.72, + "end": 24057.74, + "probability": 0.5791 + }, + { + "start": 24058.18, + "end": 24059.92, + "probability": 0.5271 + }, + { + "start": 24060.06, + "end": 24064.58, + "probability": 0.8275 + }, + { + "start": 24064.98, + "end": 24067.29, + "probability": 0.682 + }, + { + "start": 24068.02, + "end": 24069.86, + "probability": 0.3397 + }, + { + "start": 24069.88, + "end": 24073.3, + "probability": 0.734 + }, + { + "start": 24073.36, + "end": 24076.0, + "probability": 0.6892 + }, + { + "start": 24076.54, + "end": 24078.06, + "probability": 0.8374 + }, + { + "start": 24078.7, + "end": 24081.08, + "probability": 0.7747 + }, + { + "start": 24081.22, + "end": 24082.16, + "probability": 0.6538 + }, + { + "start": 24082.74, + "end": 24086.8, + "probability": 0.9883 + }, + { + "start": 24087.54, + "end": 24088.46, + "probability": 0.4116 + }, + { + "start": 24089.14, + "end": 24091.04, + "probability": 0.884 + }, + { + "start": 24092.42, + "end": 24092.78, + "probability": 0.2047 + }, + { + "start": 24093.26, + "end": 24095.0, + "probability": 0.8701 + }, + { + "start": 24095.62, + "end": 24097.58, + "probability": 0.5733 + }, + { + "start": 24097.64, + "end": 24102.06, + "probability": 0.9736 + }, + { + "start": 24102.06, + "end": 24109.86, + "probability": 0.9869 + }, + { + "start": 24110.8, + "end": 24113.2, + "probability": 0.9829 + }, + { + "start": 24113.82, + "end": 24119.14, + "probability": 0.9722 + }, + { + "start": 24120.58, + "end": 24123.09, + "probability": 0.5052 + }, + { + "start": 24125.96, + "end": 24129.8, + "probability": 0.7813 + }, + { + "start": 24131.28, + "end": 24134.08, + "probability": 0.9509 + }, + { + "start": 24134.42, + "end": 24135.74, + "probability": 0.6592 + }, + { + "start": 24135.9, + "end": 24137.12, + "probability": 0.9348 + }, + { + "start": 24137.22, + "end": 24141.78, + "probability": 0.9884 + }, + { + "start": 24142.3, + "end": 24146.38, + "probability": 0.9535 + }, + { + "start": 24147.76, + "end": 24152.18, + "probability": 0.9816 + }, + { + "start": 24153.02, + "end": 24153.68, + "probability": 0.8339 + }, + { + "start": 24154.42, + "end": 24158.5, + "probability": 0.889 + }, + { + "start": 24159.28, + "end": 24167.36, + "probability": 0.9834 + }, + { + "start": 24167.94, + "end": 24172.54, + "probability": 0.9912 + }, + { + "start": 24173.06, + "end": 24174.7, + "probability": 0.9966 + }, + { + "start": 24175.38, + "end": 24179.14, + "probability": 0.9075 + }, + { + "start": 24180.38, + "end": 24183.46, + "probability": 0.9845 + }, + { + "start": 24184.08, + "end": 24185.81, + "probability": 0.9873 + }, + { + "start": 24186.06, + "end": 24189.68, + "probability": 0.9743 + }, + { + "start": 24189.84, + "end": 24194.5, + "probability": 0.8891 + }, + { + "start": 24194.5, + "end": 24198.66, + "probability": 0.9985 + }, + { + "start": 24199.14, + "end": 24200.74, + "probability": 0.7466 + }, + { + "start": 24201.28, + "end": 24203.72, + "probability": 0.867 + }, + { + "start": 24204.92, + "end": 24209.68, + "probability": 0.9607 + }, + { + "start": 24210.48, + "end": 24214.24, + "probability": 0.9961 + }, + { + "start": 24214.82, + "end": 24217.2, + "probability": 0.7683 + }, + { + "start": 24217.78, + "end": 24220.54, + "probability": 0.9538 + }, + { + "start": 24220.54, + "end": 24226.82, + "probability": 0.9607 + }, + { + "start": 24227.28, + "end": 24228.26, + "probability": 0.8369 + }, + { + "start": 24228.38, + "end": 24232.8, + "probability": 0.9933 + }, + { + "start": 24233.92, + "end": 24237.98, + "probability": 0.9813 + }, + { + "start": 24238.85, + "end": 24242.72, + "probability": 0.9985 + }, + { + "start": 24243.3, + "end": 24245.88, + "probability": 0.9951 + }, + { + "start": 24246.14, + "end": 24250.7, + "probability": 0.9653 + }, + { + "start": 24251.54, + "end": 24252.9, + "probability": 0.9965 + }, + { + "start": 24253.66, + "end": 24260.44, + "probability": 0.9734 + }, + { + "start": 24260.44, + "end": 24264.18, + "probability": 0.9906 + }, + { + "start": 24264.76, + "end": 24272.06, + "probability": 0.9945 + }, + { + "start": 24272.74, + "end": 24277.08, + "probability": 0.9962 + }, + { + "start": 24277.08, + "end": 24281.62, + "probability": 0.9985 + }, + { + "start": 24282.18, + "end": 24283.3, + "probability": 0.9954 + }, + { + "start": 24283.52, + "end": 24284.5, + "probability": 0.735 + }, + { + "start": 24284.68, + "end": 24285.44, + "probability": 0.5581 + }, + { + "start": 24285.7, + "end": 24286.64, + "probability": 0.9434 + }, + { + "start": 24287.24, + "end": 24289.64, + "probability": 0.7222 + }, + { + "start": 24306.52, + "end": 24307.72, + "probability": 0.729 + }, + { + "start": 24308.5, + "end": 24310.04, + "probability": 0.7513 + }, + { + "start": 24312.12, + "end": 24318.6, + "probability": 0.88 + }, + { + "start": 24319.62, + "end": 24321.06, + "probability": 0.8504 + }, + { + "start": 24321.94, + "end": 24322.78, + "probability": 0.4566 + }, + { + "start": 24324.5, + "end": 24328.66, + "probability": 0.9466 + }, + { + "start": 24329.56, + "end": 24332.02, + "probability": 0.9961 + }, + { + "start": 24333.08, + "end": 24335.3, + "probability": 0.7641 + }, + { + "start": 24336.52, + "end": 24338.74, + "probability": 0.9675 + }, + { + "start": 24338.9, + "end": 24339.84, + "probability": 0.7679 + }, + { + "start": 24340.24, + "end": 24341.16, + "probability": 0.8526 + }, + { + "start": 24342.12, + "end": 24352.24, + "probability": 0.8519 + }, + { + "start": 24353.34, + "end": 24355.2, + "probability": 0.9843 + }, + { + "start": 24356.12, + "end": 24358.69, + "probability": 0.8853 + }, + { + "start": 24360.18, + "end": 24363.38, + "probability": 0.861 + }, + { + "start": 24364.52, + "end": 24367.94, + "probability": 0.879 + }, + { + "start": 24368.9, + "end": 24370.78, + "probability": 0.7508 + }, + { + "start": 24371.6, + "end": 24373.56, + "probability": 0.9911 + }, + { + "start": 24375.28, + "end": 24380.54, + "probability": 0.9902 + }, + { + "start": 24381.86, + "end": 24384.2, + "probability": 0.9553 + }, + { + "start": 24384.74, + "end": 24388.18, + "probability": 0.9072 + }, + { + "start": 24390.0, + "end": 24395.86, + "probability": 0.9722 + }, + { + "start": 24396.61, + "end": 24403.08, + "probability": 0.8107 + }, + { + "start": 24403.66, + "end": 24406.02, + "probability": 0.9021 + }, + { + "start": 24407.6, + "end": 24410.44, + "probability": 0.6604 + }, + { + "start": 24410.7, + "end": 24412.14, + "probability": 0.8673 + }, + { + "start": 24412.3, + "end": 24414.8, + "probability": 0.7998 + }, + { + "start": 24416.88, + "end": 24417.64, + "probability": 0.9922 + }, + { + "start": 24418.26, + "end": 24419.66, + "probability": 0.9876 + }, + { + "start": 24421.06, + "end": 24424.58, + "probability": 0.9612 + }, + { + "start": 24425.1, + "end": 24427.36, + "probability": 0.929 + }, + { + "start": 24428.3, + "end": 24433.28, + "probability": 0.9446 + }, + { + "start": 24434.14, + "end": 24435.94, + "probability": 0.9947 + }, + { + "start": 24436.5, + "end": 24438.88, + "probability": 0.9971 + }, + { + "start": 24440.16, + "end": 24441.48, + "probability": 0.914 + }, + { + "start": 24442.08, + "end": 24444.82, + "probability": 0.8665 + }, + { + "start": 24446.61, + "end": 24449.18, + "probability": 0.9348 + }, + { + "start": 24449.94, + "end": 24453.04, + "probability": 0.8364 + }, + { + "start": 24454.02, + "end": 24457.34, + "probability": 0.9991 + }, + { + "start": 24458.74, + "end": 24462.4, + "probability": 0.9988 + }, + { + "start": 24462.52, + "end": 24465.0, + "probability": 0.4552 + }, + { + "start": 24466.62, + "end": 24469.3, + "probability": 0.932 + }, + { + "start": 24470.3, + "end": 24472.34, + "probability": 0.9976 + }, + { + "start": 24472.48, + "end": 24475.16, + "probability": 0.9922 + }, + { + "start": 24475.94, + "end": 24479.82, + "probability": 0.9883 + }, + { + "start": 24480.38, + "end": 24481.86, + "probability": 0.9924 + }, + { + "start": 24482.84, + "end": 24483.96, + "probability": 0.8011 + }, + { + "start": 24485.22, + "end": 24487.36, + "probability": 0.6928 + }, + { + "start": 24487.5, + "end": 24488.52, + "probability": 0.6794 + }, + { + "start": 24488.76, + "end": 24491.66, + "probability": 0.7424 + }, + { + "start": 24492.28, + "end": 24493.02, + "probability": 0.9485 + }, + { + "start": 24493.7, + "end": 24499.34, + "probability": 0.9604 + }, + { + "start": 24499.94, + "end": 24500.88, + "probability": 0.6417 + }, + { + "start": 24501.16, + "end": 24502.1, + "probability": 0.9181 + }, + { + "start": 24502.32, + "end": 24502.44, + "probability": 0.3223 + }, + { + "start": 24502.58, + "end": 24504.02, + "probability": 0.7183 + }, + { + "start": 24504.88, + "end": 24505.92, + "probability": 0.9204 + }, + { + "start": 24506.86, + "end": 24507.54, + "probability": 0.8935 + }, + { + "start": 24508.3, + "end": 24513.3, + "probability": 0.993 + }, + { + "start": 24513.48, + "end": 24513.9, + "probability": 0.393 + }, + { + "start": 24514.06, + "end": 24515.44, + "probability": 0.7885 + }, + { + "start": 24516.91, + "end": 24520.18, + "probability": 0.8506 + }, + { + "start": 24520.78, + "end": 24526.24, + "probability": 0.9982 + }, + { + "start": 24526.64, + "end": 24526.92, + "probability": 0.8209 + }, + { + "start": 24527.44, + "end": 24531.04, + "probability": 0.7871 + }, + { + "start": 24531.84, + "end": 24532.83, + "probability": 0.7825 + }, + { + "start": 24533.72, + "end": 24538.8, + "probability": 0.9369 + }, + { + "start": 24539.48, + "end": 24540.0, + "probability": 0.6145 + }, + { + "start": 24540.5, + "end": 24541.14, + "probability": 0.5476 + }, + { + "start": 24541.24, + "end": 24542.6, + "probability": 0.5984 + }, + { + "start": 24543.42, + "end": 24544.84, + "probability": 0.5721 + }, + { + "start": 24557.18, + "end": 24560.68, + "probability": 0.6893 + }, + { + "start": 24561.58, + "end": 24565.18, + "probability": 0.9912 + }, + { + "start": 24565.36, + "end": 24569.08, + "probability": 0.8123 + }, + { + "start": 24569.94, + "end": 24575.52, + "probability": 0.981 + }, + { + "start": 24576.52, + "end": 24581.0, + "probability": 0.9692 + }, + { + "start": 24581.62, + "end": 24585.44, + "probability": 0.9941 + }, + { + "start": 24586.24, + "end": 24587.78, + "probability": 0.8862 + }, + { + "start": 24588.24, + "end": 24590.88, + "probability": 0.9657 + }, + { + "start": 24591.04, + "end": 24594.3, + "probability": 0.9924 + }, + { + "start": 24594.3, + "end": 24597.76, + "probability": 0.9909 + }, + { + "start": 24598.54, + "end": 24599.56, + "probability": 0.3673 + }, + { + "start": 24599.72, + "end": 24600.76, + "probability": 0.8267 + }, + { + "start": 24600.8, + "end": 24603.74, + "probability": 0.9789 + }, + { + "start": 24604.42, + "end": 24607.68, + "probability": 0.9932 + }, + { + "start": 24608.2, + "end": 24609.08, + "probability": 0.9985 + }, + { + "start": 24610.08, + "end": 24610.8, + "probability": 0.5823 + }, + { + "start": 24611.23, + "end": 24616.1, + "probability": 0.6746 + }, + { + "start": 24616.36, + "end": 24619.44, + "probability": 0.9744 + }, + { + "start": 24619.6, + "end": 24621.48, + "probability": 0.882 + }, + { + "start": 24621.82, + "end": 24624.9, + "probability": 0.9925 + }, + { + "start": 24630.58, + "end": 24631.48, + "probability": 0.0402 + }, + { + "start": 24631.48, + "end": 24633.71, + "probability": 0.1548 + }, + { + "start": 24636.84, + "end": 24639.44, + "probability": 0.5798 + }, + { + "start": 24640.1, + "end": 24640.1, + "probability": 0.0567 + }, + { + "start": 24643.98, + "end": 24649.36, + "probability": 0.3382 + }, + { + "start": 24653.15, + "end": 24655.02, + "probability": 0.6556 + }, + { + "start": 24655.06, + "end": 24658.64, + "probability": 0.6323 + }, + { + "start": 24658.68, + "end": 24660.36, + "probability": 0.8849 + }, + { + "start": 24661.08, + "end": 24662.96, + "probability": 0.8775 + }, + { + "start": 24664.1, + "end": 24665.98, + "probability": 0.8577 + }, + { + "start": 24667.14, + "end": 24670.42, + "probability": 0.5967 + }, + { + "start": 24670.6, + "end": 24672.1, + "probability": 0.6558 + }, + { + "start": 24672.14, + "end": 24676.14, + "probability": 0.7507 + }, + { + "start": 24676.14, + "end": 24681.6, + "probability": 0.9205 + }, + { + "start": 24681.74, + "end": 24684.18, + "probability": 0.9167 + }, + { + "start": 24685.32, + "end": 24689.03, + "probability": 0.9572 + }, + { + "start": 24689.74, + "end": 24693.7, + "probability": 0.873 + }, + { + "start": 24694.08, + "end": 24694.68, + "probability": 0.4875 + }, + { + "start": 24695.76, + "end": 24699.92, + "probability": 0.9217 + }, + { + "start": 24701.18, + "end": 24705.96, + "probability": 0.929 + }, + { + "start": 24706.12, + "end": 24707.8, + "probability": 0.1614 + }, + { + "start": 24707.8, + "end": 24710.04, + "probability": 0.4149 + }, + { + "start": 24710.96, + "end": 24713.48, + "probability": 0.4533 + }, + { + "start": 24713.48, + "end": 24717.28, + "probability": 0.9292 + }, + { + "start": 24717.92, + "end": 24723.87, + "probability": 0.9053 + }, + { + "start": 24725.76, + "end": 24728.8, + "probability": 0.6227 + }, + { + "start": 24728.8, + "end": 24732.02, + "probability": 0.9661 + }, + { + "start": 24732.18, + "end": 24732.28, + "probability": 0.6643 + }, + { + "start": 24733.26, + "end": 24734.52, + "probability": 0.7921 + }, + { + "start": 24735.4, + "end": 24738.66, + "probability": 0.6556 + }, + { + "start": 24738.92, + "end": 24740.72, + "probability": 0.9474 + }, + { + "start": 24741.32, + "end": 24742.76, + "probability": 0.9287 + }, + { + "start": 24743.28, + "end": 24744.6, + "probability": 0.8262 + }, + { + "start": 24744.76, + "end": 24751.9, + "probability": 0.8623 + }, + { + "start": 24752.98, + "end": 24754.93, + "probability": 0.9941 + }, + { + "start": 24755.1, + "end": 24756.5, + "probability": 0.2664 + }, + { + "start": 24757.4, + "end": 24759.08, + "probability": 0.789 + }, + { + "start": 24759.2, + "end": 24762.54, + "probability": 0.4097 + }, + { + "start": 24762.98, + "end": 24764.7, + "probability": 0.988 + }, + { + "start": 24765.0, + "end": 24769.5, + "probability": 0.9736 + }, + { + "start": 24770.17, + "end": 24772.36, + "probability": 0.4069 + }, + { + "start": 24772.8, + "end": 24775.26, + "probability": 0.9783 + }, + { + "start": 24775.96, + "end": 24778.8, + "probability": 0.7473 + }, + { + "start": 24779.78, + "end": 24783.66, + "probability": 0.9697 + }, + { + "start": 24783.9, + "end": 24784.34, + "probability": 0.6247 + }, + { + "start": 24785.1, + "end": 24786.42, + "probability": 0.9863 + }, + { + "start": 24786.42, + "end": 24787.96, + "probability": 0.978 + }, + { + "start": 24788.38, + "end": 24792.46, + "probability": 0.9124 + }, + { + "start": 24792.96, + "end": 24794.06, + "probability": 0.9758 + }, + { + "start": 24794.74, + "end": 24795.62, + "probability": 0.6239 + }, + { + "start": 24795.98, + "end": 24799.78, + "probability": 0.834 + }, + { + "start": 24799.88, + "end": 24802.4, + "probability": 0.9951 + }, + { + "start": 24802.8, + "end": 24803.52, + "probability": 0.881 + }, + { + "start": 24804.08, + "end": 24808.18, + "probability": 0.9644 + }, + { + "start": 24808.18, + "end": 24811.82, + "probability": 0.8845 + }, + { + "start": 24811.94, + "end": 24814.84, + "probability": 0.6176 + }, + { + "start": 24814.96, + "end": 24818.02, + "probability": 0.9836 + }, + { + "start": 24818.64, + "end": 24820.72, + "probability": 0.8713 + }, + { + "start": 24821.5, + "end": 24822.16, + "probability": 0.6722 + }, + { + "start": 24822.63, + "end": 24824.58, + "probability": 0.9792 + }, + { + "start": 24825.02, + "end": 24827.16, + "probability": 0.8466 + }, + { + "start": 24827.18, + "end": 24828.88, + "probability": 0.9905 + }, + { + "start": 24829.98, + "end": 24831.78, + "probability": 0.9856 + }, + { + "start": 24832.3, + "end": 24835.48, + "probability": 0.9346 + }, + { + "start": 24836.28, + "end": 24838.02, + "probability": 0.9948 + }, + { + "start": 24838.82, + "end": 24842.86, + "probability": 0.9967 + }, + { + "start": 24842.86, + "end": 24846.38, + "probability": 0.9418 + }, + { + "start": 24846.68, + "end": 24847.88, + "probability": 0.9799 + }, + { + "start": 24847.94, + "end": 24849.0, + "probability": 0.9647 + }, + { + "start": 24849.28, + "end": 24850.68, + "probability": 0.9531 + }, + { + "start": 24850.68, + "end": 24851.22, + "probability": 0.5556 + }, + { + "start": 24852.14, + "end": 24856.06, + "probability": 0.9611 + }, + { + "start": 24856.06, + "end": 24858.8, + "probability": 0.9946 + }, + { + "start": 24858.98, + "end": 24861.14, + "probability": 0.9958 + }, + { + "start": 24861.5, + "end": 24863.48, + "probability": 0.8154 + }, + { + "start": 24864.0, + "end": 24868.16, + "probability": 0.9736 + }, + { + "start": 24868.26, + "end": 24869.36, + "probability": 0.844 + }, + { + "start": 24869.4, + "end": 24872.2, + "probability": 0.9961 + }, + { + "start": 24872.2, + "end": 24872.88, + "probability": 0.9966 + }, + { + "start": 24873.52, + "end": 24874.26, + "probability": 0.9072 + }, + { + "start": 24875.12, + "end": 24880.74, + "probability": 0.9894 + }, + { + "start": 24881.24, + "end": 24884.89, + "probability": 0.5249 + }, + { + "start": 24887.54, + "end": 24889.52, + "probability": 0.6041 + }, + { + "start": 24889.76, + "end": 24890.68, + "probability": 0.689 + }, + { + "start": 24890.76, + "end": 24895.2, + "probability": 0.9912 + }, + { + "start": 24895.54, + "end": 24895.64, + "probability": 0.0078 + }, + { + "start": 24895.64, + "end": 24897.02, + "probability": 0.428 + }, + { + "start": 24897.1, + "end": 24898.74, + "probability": 0.6533 + }, + { + "start": 24899.62, + "end": 24900.38, + "probability": 0.6189 + }, + { + "start": 24900.84, + "end": 24903.16, + "probability": 0.9541 + }, + { + "start": 24903.86, + "end": 24905.72, + "probability": 0.9257 + }, + { + "start": 24905.82, + "end": 24906.16, + "probability": 0.3151 + }, + { + "start": 24906.22, + "end": 24906.92, + "probability": 0.2767 + }, + { + "start": 24907.6, + "end": 24909.54, + "probability": 0.988 + }, + { + "start": 24911.5, + "end": 24912.8, + "probability": 0.5705 + }, + { + "start": 24913.34, + "end": 24914.22, + "probability": 0.1901 + }, + { + "start": 24914.36, + "end": 24915.38, + "probability": 0.0568 + }, + { + "start": 24915.92, + "end": 24919.92, + "probability": 0.0662 + }, + { + "start": 24926.16, + "end": 24928.74, + "probability": 0.6537 + }, + { + "start": 24935.5, + "end": 24936.92, + "probability": 0.6208 + }, + { + "start": 24938.52, + "end": 24941.12, + "probability": 0.9402 + }, + { + "start": 24942.18, + "end": 24944.44, + "probability": 0.7709 + }, + { + "start": 24944.82, + "end": 24945.34, + "probability": 0.3839 + }, + { + "start": 24946.6, + "end": 24949.8, + "probability": 0.4683 + }, + { + "start": 24957.92, + "end": 24958.26, + "probability": 0.1663 + }, + { + "start": 24967.14, + "end": 24969.8, + "probability": 0.0713 + }, + { + "start": 24971.08, + "end": 24971.6, + "probability": 0.0131 + }, + { + "start": 24971.6, + "end": 24972.18, + "probability": 0.0623 + }, + { + "start": 24974.49, + "end": 24976.24, + "probability": 0.0578 + }, + { + "start": 24977.22, + "end": 24977.22, + "probability": 0.0732 + }, + { + "start": 24977.22, + "end": 24979.32, + "probability": 0.0686 + }, + { + "start": 24979.47, + "end": 24981.02, + "probability": 0.0903 + }, + { + "start": 24989.39, + "end": 24989.75, + "probability": 0.0251 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25035.0, + "end": 25035.0, + "probability": 0.0 + }, + { + "start": 25038.97, + "end": 25039.98, + "probability": 0.787 + }, + { + "start": 25040.88, + "end": 25043.24, + "probability": 0.4977 + }, + { + "start": 25044.94, + "end": 25048.08, + "probability": 0.5988 + }, + { + "start": 25048.7, + "end": 25050.46, + "probability": 0.4507 + }, + { + "start": 25051.42, + "end": 25052.7, + "probability": 0.3873 + }, + { + "start": 25053.94, + "end": 25055.56, + "probability": 0.4186 + }, + { + "start": 25056.56, + "end": 25058.88, + "probability": 0.9491 + }, + { + "start": 25059.92, + "end": 25062.62, + "probability": 0.7477 + }, + { + "start": 25063.62, + "end": 25065.14, + "probability": 0.9016 + }, + { + "start": 25066.14, + "end": 25067.96, + "probability": 0.9331 + }, + { + "start": 25068.22, + "end": 25071.34, + "probability": 0.99 + }, + { + "start": 25073.0, + "end": 25078.36, + "probability": 0.9884 + }, + { + "start": 25078.52, + "end": 25082.26, + "probability": 0.9999 + }, + { + "start": 25082.38, + "end": 25084.9, + "probability": 0.9644 + }, + { + "start": 25084.92, + "end": 25085.78, + "probability": 0.8613 + }, + { + "start": 25086.4, + "end": 25089.06, + "probability": 0.8731 + }, + { + "start": 25089.96, + "end": 25093.9, + "probability": 0.8091 + }, + { + "start": 25094.92, + "end": 25095.2, + "probability": 0.5208 + }, + { + "start": 25095.36, + "end": 25096.26, + "probability": 0.9175 + }, + { + "start": 25096.6, + "end": 25097.1, + "probability": 0.7949 + }, + { + "start": 25097.22, + "end": 25098.34, + "probability": 0.9811 + }, + { + "start": 25098.5, + "end": 25099.64, + "probability": 0.9412 + }, + { + "start": 25100.26, + "end": 25103.6, + "probability": 0.9927 + }, + { + "start": 25103.82, + "end": 25105.16, + "probability": 0.686 + }, + { + "start": 25105.3, + "end": 25106.6, + "probability": 0.9639 + }, + { + "start": 25108.78, + "end": 25110.52, + "probability": 0.8706 + }, + { + "start": 25111.06, + "end": 25113.75, + "probability": 0.5079 + }, + { + "start": 25114.34, + "end": 25116.18, + "probability": 0.7075 + }, + { + "start": 25116.44, + "end": 25117.63, + "probability": 0.9287 + }, + { + "start": 25118.72, + "end": 25122.22, + "probability": 0.9985 + }, + { + "start": 25122.26, + "end": 25122.84, + "probability": 0.9018 + }, + { + "start": 25122.94, + "end": 25125.76, + "probability": 0.9948 + }, + { + "start": 25125.76, + "end": 25127.74, + "probability": 0.8285 + }, + { + "start": 25127.82, + "end": 25128.34, + "probability": 0.8303 + }, + { + "start": 25128.9, + "end": 25131.66, + "probability": 0.9973 + }, + { + "start": 25131.78, + "end": 25132.16, + "probability": 0.5349 + }, + { + "start": 25132.3, + "end": 25134.36, + "probability": 0.8709 + }, + { + "start": 25134.82, + "end": 25137.44, + "probability": 0.9923 + }, + { + "start": 25138.26, + "end": 25142.9, + "probability": 0.9878 + }, + { + "start": 25142.96, + "end": 25143.84, + "probability": 0.9907 + }, + { + "start": 25144.9, + "end": 25148.28, + "probability": 0.9694 + }, + { + "start": 25149.04, + "end": 25152.5, + "probability": 0.9955 + }, + { + "start": 25153.52, + "end": 25153.66, + "probability": 0.0056 + }, + { + "start": 25153.66, + "end": 25154.2, + "probability": 0.3718 + }, + { + "start": 25154.36, + "end": 25155.96, + "probability": 0.9891 + }, + { + "start": 25156.04, + "end": 25156.62, + "probability": 0.9066 + }, + { + "start": 25157.44, + "end": 25158.92, + "probability": 0.9828 + }, + { + "start": 25159.0, + "end": 25159.66, + "probability": 0.9971 + }, + { + "start": 25160.34, + "end": 25162.12, + "probability": 0.8655 + }, + { + "start": 25162.16, + "end": 25163.22, + "probability": 0.982 + }, + { + "start": 25164.26, + "end": 25165.9, + "probability": 0.9953 + }, + { + "start": 25166.12, + "end": 25166.94, + "probability": 0.9226 + }, + { + "start": 25167.36, + "end": 25168.78, + "probability": 0.9895 + }, + { + "start": 25171.6, + "end": 25175.86, + "probability": 0.9276 + }, + { + "start": 25176.86, + "end": 25179.22, + "probability": 0.9545 + }, + { + "start": 25180.56, + "end": 25184.38, + "probability": 0.8492 + }, + { + "start": 25186.48, + "end": 25187.5, + "probability": 0.3398 + }, + { + "start": 25189.18, + "end": 25192.06, + "probability": 0.9307 + }, + { + "start": 25192.28, + "end": 25193.44, + "probability": 0.9882 + }, + { + "start": 25194.2, + "end": 25197.54, + "probability": 0.9939 + }, + { + "start": 25199.12, + "end": 25199.84, + "probability": 0.5563 + }, + { + "start": 25200.6, + "end": 25201.42, + "probability": 0.9582 + }, + { + "start": 25202.02, + "end": 25203.2, + "probability": 0.6981 + }, + { + "start": 25203.4, + "end": 25204.32, + "probability": 0.3355 + }, + { + "start": 25204.58, + "end": 25206.44, + "probability": 0.2441 + }, + { + "start": 25206.44, + "end": 25208.48, + "probability": 0.5837 + }, + { + "start": 25210.24, + "end": 25211.52, + "probability": 0.2089 + }, + { + "start": 25211.52, + "end": 25214.36, + "probability": 0.9075 + }, + { + "start": 25214.5, + "end": 25216.44, + "probability": 0.8777 + }, + { + "start": 25217.24, + "end": 25218.42, + "probability": 0.4409 + }, + { + "start": 25218.61, + "end": 25221.52, + "probability": 0.8054 + }, + { + "start": 25222.62, + "end": 25224.36, + "probability": 0.826 + }, + { + "start": 25225.42, + "end": 25226.3, + "probability": 0.8284 + }, + { + "start": 25229.5, + "end": 25231.42, + "probability": 0.631 + }, + { + "start": 25231.96, + "end": 25235.58, + "probability": 0.8721 + }, + { + "start": 25235.78, + "end": 25238.54, + "probability": 0.9918 + }, + { + "start": 25239.02, + "end": 25239.54, + "probability": 0.9845 + }, + { + "start": 25240.58, + "end": 25241.42, + "probability": 0.7421 + }, + { + "start": 25242.8, + "end": 25244.26, + "probability": 0.7543 + }, + { + "start": 25244.92, + "end": 25247.66, + "probability": 0.5968 + }, + { + "start": 25248.86, + "end": 25251.26, + "probability": 0.9475 + }, + { + "start": 25252.16, + "end": 25253.54, + "probability": 0.9978 + }, + { + "start": 25254.84, + "end": 25257.0, + "probability": 0.9939 + }, + { + "start": 25257.06, + "end": 25259.7, + "probability": 0.2937 + }, + { + "start": 25259.84, + "end": 25261.04, + "probability": 0.5978 + }, + { + "start": 25261.16, + "end": 25261.98, + "probability": 0.5411 + }, + { + "start": 25262.1, + "end": 25267.0, + "probability": 0.9684 + }, + { + "start": 25267.0, + "end": 25270.98, + "probability": 0.9812 + }, + { + "start": 25271.06, + "end": 25271.72, + "probability": 0.9954 + }, + { + "start": 25272.88, + "end": 25273.52, + "probability": 0.9649 + }, + { + "start": 25274.78, + "end": 25277.88, + "probability": 0.889 + }, + { + "start": 25278.78, + "end": 25280.18, + "probability": 0.5632 + }, + { + "start": 25281.2, + "end": 25285.26, + "probability": 0.9923 + }, + { + "start": 25286.04, + "end": 25287.82, + "probability": 0.9901 + }, + { + "start": 25287.9, + "end": 25288.78, + "probability": 0.8637 + }, + { + "start": 25288.86, + "end": 25289.42, + "probability": 0.9272 + }, + { + "start": 25290.46, + "end": 25295.2, + "probability": 0.9958 + }, + { + "start": 25295.36, + "end": 25296.32, + "probability": 0.8709 + }, + { + "start": 25296.76, + "end": 25298.08, + "probability": 0.8208 + }, + { + "start": 25298.22, + "end": 25300.5, + "probability": 0.9917 + }, + { + "start": 25300.5, + "end": 25302.3, + "probability": 0.9961 + }, + { + "start": 25303.12, + "end": 25305.88, + "probability": 0.776 + }, + { + "start": 25306.82, + "end": 25307.4, + "probability": 0.814 + }, + { + "start": 25307.62, + "end": 25307.94, + "probability": 0.6705 + }, + { + "start": 25308.3, + "end": 25309.72, + "probability": 0.5839 + }, + { + "start": 25309.82, + "end": 25312.62, + "probability": 0.8307 + }, + { + "start": 25312.68, + "end": 25316.62, + "probability": 0.7309 + }, + { + "start": 25316.86, + "end": 25317.14, + "probability": 0.7563 + }, + { + "start": 25317.42, + "end": 25317.98, + "probability": 0.6776 + }, + { + "start": 25318.48, + "end": 25320.04, + "probability": 0.7035 + }, + { + "start": 25333.02, + "end": 25333.7, + "probability": 0.462 + }, + { + "start": 25333.92, + "end": 25334.1, + "probability": 0.1755 + }, + { + "start": 25334.1, + "end": 25334.1, + "probability": 0.1245 + }, + { + "start": 25334.1, + "end": 25334.1, + "probability": 0.1518 + }, + { + "start": 25334.1, + "end": 25334.22, + "probability": 0.0357 + }, + { + "start": 25334.22, + "end": 25335.26, + "probability": 0.0649 + }, + { + "start": 25335.26, + "end": 25335.26, + "probability": 0.0639 + }, + { + "start": 25335.26, + "end": 25336.2, + "probability": 0.0583 + }, + { + "start": 25346.18, + "end": 25347.1, + "probability": 0.1663 + }, + { + "start": 25359.64, + "end": 25360.26, + "probability": 0.5169 + }, + { + "start": 25361.26, + "end": 25364.5, + "probability": 0.7462 + }, + { + "start": 25365.26, + "end": 25367.3, + "probability": 0.7444 + }, + { + "start": 25367.76, + "end": 25370.0, + "probability": 0.9438 + }, + { + "start": 25370.48, + "end": 25373.96, + "probability": 0.8377 + }, + { + "start": 25374.54, + "end": 25375.7, + "probability": 0.8857 + }, + { + "start": 25376.8, + "end": 25377.48, + "probability": 0.6682 + }, + { + "start": 25378.16, + "end": 25382.27, + "probability": 0.9902 + }, + { + "start": 25383.02, + "end": 25383.36, + "probability": 0.9385 + }, + { + "start": 25388.67, + "end": 25389.72, + "probability": 0.8994 + }, + { + "start": 25389.92, + "end": 25395.49, + "probability": 0.9845 + }, + { + "start": 25397.02, + "end": 25404.75, + "probability": 0.9927 + }, + { + "start": 25405.3, + "end": 25406.14, + "probability": 0.5583 + }, + { + "start": 25406.16, + "end": 25410.48, + "probability": 0.9744 + }, + { + "start": 25412.38, + "end": 25413.14, + "probability": 0.5255 + }, + { + "start": 25413.78, + "end": 25414.34, + "probability": 0.8222 + }, + { + "start": 25416.28, + "end": 25418.86, + "probability": 0.7532 + }, + { + "start": 25420.86, + "end": 25422.96, + "probability": 0.7583 + }, + { + "start": 25423.36, + "end": 25426.16, + "probability": 0.9888 + }, + { + "start": 25427.7, + "end": 25430.3, + "probability": 0.9568 + }, + { + "start": 25432.1, + "end": 25432.52, + "probability": 0.519 + }, + { + "start": 25433.18, + "end": 25438.36, + "probability": 0.7284 + }, + { + "start": 25439.14, + "end": 25441.32, + "probability": 0.7243 + }, + { + "start": 25442.2, + "end": 25447.6, + "probability": 0.7752 + }, + { + "start": 25447.96, + "end": 25449.21, + "probability": 0.407 + }, + { + "start": 25451.82, + "end": 25451.92, + "probability": 0.6736 + }, + { + "start": 25454.3, + "end": 25457.1, + "probability": 0.9636 + }, + { + "start": 25457.62, + "end": 25457.62, + "probability": 0.1666 + }, + { + "start": 25457.62, + "end": 25457.62, + "probability": 0.0098 + }, + { + "start": 25457.62, + "end": 25457.62, + "probability": 0.0723 + }, + { + "start": 25457.62, + "end": 25459.3, + "probability": 0.9197 + }, + { + "start": 25459.74, + "end": 25461.38, + "probability": 0.1841 + }, + { + "start": 25461.38, + "end": 25462.5, + "probability": 0.3685 + }, + { + "start": 25462.62, + "end": 25468.6, + "probability": 0.8149 + }, + { + "start": 25470.37, + "end": 25476.48, + "probability": 0.9895 + }, + { + "start": 25477.36, + "end": 25479.72, + "probability": 0.9761 + }, + { + "start": 25481.86, + "end": 25484.86, + "probability": 0.8254 + }, + { + "start": 25485.5, + "end": 25492.06, + "probability": 0.9237 + }, + { + "start": 25492.26, + "end": 25493.48, + "probability": 0.5656 + }, + { + "start": 25494.68, + "end": 25498.66, + "probability": 0.8877 + }, + { + "start": 25499.5, + "end": 25502.46, + "probability": 0.7871 + }, + { + "start": 25502.94, + "end": 25505.64, + "probability": 0.8064 + }, + { + "start": 25506.54, + "end": 25507.44, + "probability": 0.9797 + }, + { + "start": 25508.5, + "end": 25510.16, + "probability": 0.757 + }, + { + "start": 25510.72, + "end": 25513.14, + "probability": 0.9878 + }, + { + "start": 25514.84, + "end": 25517.8, + "probability": 0.7723 + }, + { + "start": 25519.28, + "end": 25522.68, + "probability": 0.9754 + }, + { + "start": 25523.84, + "end": 25523.96, + "probability": 0.5643 + }, + { + "start": 25524.45, + "end": 25525.58, + "probability": 0.5007 + }, + { + "start": 25526.62, + "end": 25527.42, + "probability": 0.0843 + }, + { + "start": 25527.42, + "end": 25529.06, + "probability": 0.741 + }, + { + "start": 25529.36, + "end": 25530.08, + "probability": 0.7019 + }, + { + "start": 25530.54, + "end": 25536.74, + "probability": 0.9862 + }, + { + "start": 25536.74, + "end": 25542.2, + "probability": 0.9823 + }, + { + "start": 25542.9, + "end": 25546.6, + "probability": 0.9774 + }, + { + "start": 25546.6, + "end": 25550.3, + "probability": 0.7022 + }, + { + "start": 25551.4, + "end": 25551.4, + "probability": 0.3321 + }, + { + "start": 25551.4, + "end": 25557.9, + "probability": 0.8738 + }, + { + "start": 25557.9, + "end": 25562.44, + "probability": 0.9978 + }, + { + "start": 25562.98, + "end": 25566.62, + "probability": 0.9961 + }, + { + "start": 25567.16, + "end": 25569.9, + "probability": 0.8572 + }, + { + "start": 25570.28, + "end": 25575.88, + "probability": 0.6625 + }, + { + "start": 25576.1, + "end": 25580.17, + "probability": 0.9858 + }, + { + "start": 25580.58, + "end": 25581.18, + "probability": 0.6898 + }, + { + "start": 25581.4, + "end": 25583.0, + "probability": 0.7926 + }, + { + "start": 25584.36, + "end": 25589.2, + "probability": 0.5006 + }, + { + "start": 25589.98, + "end": 25592.62, + "probability": 0.718 + }, + { + "start": 25593.66, + "end": 25594.7, + "probability": 0.6228 + }, + { + "start": 25596.86, + "end": 25600.98, + "probability": 0.1731 + }, + { + "start": 25601.1, + "end": 25601.9, + "probability": 0.0695 + }, + { + "start": 25603.0, + "end": 25604.48, + "probability": 0.0639 + }, + { + "start": 25625.64, + "end": 25628.62, + "probability": 0.277 + }, + { + "start": 25629.1, + "end": 25631.98, + "probability": 0.6636 + }, + { + "start": 25632.66, + "end": 25634.3, + "probability": 0.6248 + }, + { + "start": 25637.12, + "end": 25639.58, + "probability": 0.4718 + }, + { + "start": 25639.66, + "end": 25640.88, + "probability": 0.8306 + }, + { + "start": 25641.46, + "end": 25643.9, + "probability": 0.1228 + }, + { + "start": 25643.9, + "end": 25644.88, + "probability": 0.5813 + }, + { + "start": 25645.78, + "end": 25646.82, + "probability": 0.3992 + }, + { + "start": 25647.68, + "end": 25649.06, + "probability": 0.1208 + }, + { + "start": 25649.06, + "end": 25652.0, + "probability": 0.9714 + }, + { + "start": 25653.18, + "end": 25656.48, + "probability": 0.7064 + }, + { + "start": 25657.66, + "end": 25657.9, + "probability": 0.0007 + }, + { + "start": 25659.06, + "end": 25661.04, + "probability": 0.6274 + }, + { + "start": 25663.06, + "end": 25665.56, + "probability": 0.3595 + }, + { + "start": 25666.7, + "end": 25671.2, + "probability": 0.4839 + }, + { + "start": 25671.62, + "end": 25673.0, + "probability": 0.9928 + }, + { + "start": 25673.84, + "end": 25676.38, + "probability": 0.9852 + }, + { + "start": 25676.48, + "end": 25678.96, + "probability": 0.9943 + }, + { + "start": 25680.44, + "end": 25681.8, + "probability": 0.6656 + }, + { + "start": 25681.88, + "end": 25683.88, + "probability": 0.919 + }, + { + "start": 25685.2, + "end": 25690.26, + "probability": 0.6901 + }, + { + "start": 25691.66, + "end": 25694.86, + "probability": 0.7437 + }, + { + "start": 25695.76, + "end": 25701.04, + "probability": 0.9692 + }, + { + "start": 25701.68, + "end": 25705.52, + "probability": 0.9207 + }, + { + "start": 25706.76, + "end": 25707.9, + "probability": 0.6719 + }, + { + "start": 25708.78, + "end": 25711.36, + "probability": 0.9922 + }, + { + "start": 25712.2, + "end": 25715.94, + "probability": 0.9937 + }, + { + "start": 25715.94, + "end": 25719.6, + "probability": 0.9597 + }, + { + "start": 25720.6, + "end": 25723.86, + "probability": 0.9826 + }, + { + "start": 25724.24, + "end": 25724.74, + "probability": 0.5265 + }, + { + "start": 25725.66, + "end": 25728.92, + "probability": 0.9944 + }, + { + "start": 25729.76, + "end": 25733.63, + "probability": 0.9853 + }, + { + "start": 25735.22, + "end": 25738.16, + "probability": 0.949 + }, + { + "start": 25738.16, + "end": 25741.92, + "probability": 0.9925 + }, + { + "start": 25742.72, + "end": 25746.4, + "probability": 0.9948 + }, + { + "start": 25748.06, + "end": 25754.2, + "probability": 0.9368 + }, + { + "start": 25754.3, + "end": 25755.54, + "probability": 0.6522 + }, + { + "start": 25755.76, + "end": 25756.74, + "probability": 0.497 + }, + { + "start": 25757.92, + "end": 25758.96, + "probability": 0.8113 + }, + { + "start": 25759.64, + "end": 25760.6, + "probability": 0.6719 + }, + { + "start": 25761.36, + "end": 25764.42, + "probability": 0.9536 + }, + { + "start": 25765.16, + "end": 25769.18, + "probability": 0.996 + }, + { + "start": 25769.72, + "end": 25775.02, + "probability": 0.9795 + }, + { + "start": 25775.18, + "end": 25776.06, + "probability": 0.8096 + }, + { + "start": 25776.78, + "end": 25781.1, + "probability": 0.9827 + }, + { + "start": 25782.22, + "end": 25785.22, + "probability": 0.9979 + }, + { + "start": 25786.16, + "end": 25790.5, + "probability": 0.7871 + }, + { + "start": 25791.7, + "end": 25796.58, + "probability": 0.9711 + }, + { + "start": 25797.14, + "end": 25802.18, + "probability": 0.8655 + }, + { + "start": 25803.64, + "end": 25804.76, + "probability": 0.5332 + }, + { + "start": 25805.46, + "end": 25808.54, + "probability": 0.9971 + }, + { + "start": 25808.56, + "end": 25813.0, + "probability": 0.9955 + }, + { + "start": 25813.38, + "end": 25816.62, + "probability": 0.9906 + }, + { + "start": 25818.14, + "end": 25819.22, + "probability": 0.9431 + }, + { + "start": 25820.06, + "end": 25822.12, + "probability": 0.9932 + }, + { + "start": 25822.78, + "end": 25826.96, + "probability": 0.9558 + }, + { + "start": 25827.92, + "end": 25828.68, + "probability": 0.5223 + }, + { + "start": 25829.84, + "end": 25833.58, + "probability": 0.9966 + }, + { + "start": 25833.94, + "end": 25835.44, + "probability": 0.8613 + }, + { + "start": 25836.08, + "end": 25836.7, + "probability": 0.9688 + }, + { + "start": 25837.16, + "end": 25837.88, + "probability": 0.9085 + }, + { + "start": 25838.42, + "end": 25840.46, + "probability": 0.7078 + }, + { + "start": 25841.28, + "end": 25844.42, + "probability": 0.8119 + }, + { + "start": 25845.0, + "end": 25846.38, + "probability": 0.6955 + }, + { + "start": 25847.12, + "end": 25847.5, + "probability": 0.3965 + }, + { + "start": 25847.6, + "end": 25848.6, + "probability": 0.9202 + }, + { + "start": 25848.74, + "end": 25854.08, + "probability": 0.9859 + }, + { + "start": 25854.6, + "end": 25855.8, + "probability": 0.8643 + }, + { + "start": 25856.16, + "end": 25856.98, + "probability": 0.9087 + }, + { + "start": 25857.42, + "end": 25859.68, + "probability": 0.7947 + }, + { + "start": 25859.72, + "end": 25860.48, + "probability": 0.8037 + }, + { + "start": 25884.04, + "end": 25886.72, + "probability": 0.696 + }, + { + "start": 25887.98, + "end": 25890.74, + "probability": 0.7816 + }, + { + "start": 25891.74, + "end": 25893.62, + "probability": 0.9971 + }, + { + "start": 25894.4, + "end": 25895.6, + "probability": 0.9695 + }, + { + "start": 25896.38, + "end": 25899.78, + "probability": 0.9989 + }, + { + "start": 25900.36, + "end": 25906.2, + "probability": 0.9618 + }, + { + "start": 25906.94, + "end": 25910.16, + "probability": 0.9575 + }, + { + "start": 25911.42, + "end": 25915.62, + "probability": 0.9226 + }, + { + "start": 25916.02, + "end": 25917.56, + "probability": 0.6617 + }, + { + "start": 25918.04, + "end": 25919.12, + "probability": 0.5646 + }, + { + "start": 25919.22, + "end": 25921.2, + "probability": 0.783 + }, + { + "start": 25922.56, + "end": 25924.72, + "probability": 0.7824 + }, + { + "start": 25925.94, + "end": 25928.7, + "probability": 0.9886 + }, + { + "start": 25929.2, + "end": 25930.12, + "probability": 0.9419 + }, + { + "start": 25930.94, + "end": 25931.82, + "probability": 0.951 + }, + { + "start": 25932.62, + "end": 25934.72, + "probability": 0.7221 + }, + { + "start": 25935.62, + "end": 25939.82, + "probability": 0.9907 + }, + { + "start": 25940.06, + "end": 25940.8, + "probability": 0.7352 + }, + { + "start": 25941.14, + "end": 25942.22, + "probability": 0.9758 + }, + { + "start": 25942.98, + "end": 25944.52, + "probability": 0.8396 + }, + { + "start": 25944.94, + "end": 25949.84, + "probability": 0.8278 + }, + { + "start": 25950.56, + "end": 25953.36, + "probability": 0.7738 + }, + { + "start": 25954.36, + "end": 25956.68, + "probability": 0.8404 + }, + { + "start": 25957.28, + "end": 25960.92, + "probability": 0.9628 + }, + { + "start": 25961.64, + "end": 25966.12, + "probability": 0.8883 + }, + { + "start": 25966.52, + "end": 25968.46, + "probability": 0.9826 + }, + { + "start": 25970.26, + "end": 25971.8, + "probability": 0.9956 + }, + { + "start": 25972.7, + "end": 25973.47, + "probability": 0.9403 + }, + { + "start": 25974.46, + "end": 25975.3, + "probability": 0.474 + }, + { + "start": 25976.02, + "end": 25979.42, + "probability": 0.9208 + }, + { + "start": 25979.68, + "end": 25982.67, + "probability": 0.9709 + }, + { + "start": 25983.22, + "end": 25985.76, + "probability": 0.8199 + }, + { + "start": 25986.74, + "end": 25987.04, + "probability": 0.4457 + }, + { + "start": 25987.18, + "end": 25989.76, + "probability": 0.9609 + }, + { + "start": 25990.22, + "end": 25993.86, + "probability": 0.972 + }, + { + "start": 25994.22, + "end": 25996.84, + "probability": 0.8401 + }, + { + "start": 25997.92, + "end": 25998.48, + "probability": 0.5517 + }, + { + "start": 25998.58, + "end": 26000.68, + "probability": 0.5058 + }, + { + "start": 26000.76, + "end": 26003.26, + "probability": 0.5857 + }, + { + "start": 26003.38, + "end": 26003.98, + "probability": 0.3478 + }, + { + "start": 26003.98, + "end": 26005.14, + "probability": 0.8466 + }, + { + "start": 26006.2, + "end": 26007.38, + "probability": 0.8704 + }, + { + "start": 26008.88, + "end": 26011.18, + "probability": 0.6463 + }, + { + "start": 26018.75, + "end": 26021.18, + "probability": 0.3217 + }, + { + "start": 26040.6, + "end": 26042.52, + "probability": 0.4433 + }, + { + "start": 26043.44, + "end": 26047.22, + "probability": 0.9193 + }, + { + "start": 26047.94, + "end": 26054.96, + "probability": 0.6165 + }, + { + "start": 26055.04, + "end": 26055.7, + "probability": 0.5455 + }, + { + "start": 26056.24, + "end": 26056.89, + "probability": 0.057 + }, + { + "start": 26060.93, + "end": 26062.02, + "probability": 0.4885 + }, + { + "start": 26063.02, + "end": 26064.4, + "probability": 0.8388 + }, + { + "start": 26065.34, + "end": 26071.76, + "probability": 0.6186 + }, + { + "start": 26072.24, + "end": 26073.62, + "probability": 0.2865 + }, + { + "start": 26073.62, + "end": 26077.44, + "probability": 0.9278 + }, + { + "start": 26077.74, + "end": 26082.98, + "probability": 0.564 + }, + { + "start": 26083.9, + "end": 26084.12, + "probability": 0.2098 + }, + { + "start": 26084.12, + "end": 26085.64, + "probability": 0.3214 + }, + { + "start": 26086.36, + "end": 26089.46, + "probability": 0.3019 + }, + { + "start": 26090.48, + "end": 26092.28, + "probability": 0.1258 + }, + { + "start": 26094.8, + "end": 26100.88, + "probability": 0.5383 + }, + { + "start": 26101.42, + "end": 26102.56, + "probability": 0.342 + }, + { + "start": 26102.62, + "end": 26103.74, + "probability": 0.3631 + }, + { + "start": 26103.76, + "end": 26104.1, + "probability": 0.2449 + }, + { + "start": 26104.16, + "end": 26107.64, + "probability": 0.3717 + }, + { + "start": 26107.68, + "end": 26109.94, + "probability": 0.1908 + }, + { + "start": 26110.6, + "end": 26112.5, + "probability": 0.1559 + }, + { + "start": 26112.5, + "end": 26113.54, + "probability": 0.0783 + }, + { + "start": 26114.06, + "end": 26115.02, + "probability": 0.0626 + }, + { + "start": 26115.06, + "end": 26115.06, + "probability": 0.1949 + }, + { + "start": 26115.06, + "end": 26115.06, + "probability": 0.1209 + }, + { + "start": 26115.06, + "end": 26115.22, + "probability": 0.0352 + }, + { + "start": 26115.28, + "end": 26118.07, + "probability": 0.1626 + }, + { + "start": 26119.34, + "end": 26119.34, + "probability": 0.0682 + }, + { + "start": 26119.34, + "end": 26122.86, + "probability": 0.6244 + }, + { + "start": 26122.94, + "end": 26123.34, + "probability": 0.5118 + }, + { + "start": 26123.98, + "end": 26125.16, + "probability": 0.7485 + }, + { + "start": 26129.06, + "end": 26132.46, + "probability": 0.7695 + }, + { + "start": 26134.78, + "end": 26140.6, + "probability": 0.9883 + }, + { + "start": 26141.22, + "end": 26146.22, + "probability": 0.9624 + }, + { + "start": 26147.5, + "end": 26152.01, + "probability": 0.9908 + }, + { + "start": 26152.6, + "end": 26154.0, + "probability": 0.974 + }, + { + "start": 26155.64, + "end": 26157.54, + "probability": 0.8833 + }, + { + "start": 26158.12, + "end": 26162.94, + "probability": 0.9857 + }, + { + "start": 26164.62, + "end": 26166.18, + "probability": 0.9918 + }, + { + "start": 26167.74, + "end": 26169.04, + "probability": 0.9667 + }, + { + "start": 26170.5, + "end": 26171.66, + "probability": 0.9395 + }, + { + "start": 26172.9, + "end": 26175.02, + "probability": 0.9668 + }, + { + "start": 26175.86, + "end": 26177.28, + "probability": 0.5308 + }, + { + "start": 26178.06, + "end": 26178.66, + "probability": 0.8654 + }, + { + "start": 26180.22, + "end": 26183.02, + "probability": 0.9626 + }, + { + "start": 26185.04, + "end": 26188.54, + "probability": 0.9912 + }, + { + "start": 26190.3, + "end": 26197.28, + "probability": 0.971 + }, + { + "start": 26198.0, + "end": 26199.5, + "probability": 0.6523 + }, + { + "start": 26200.76, + "end": 26200.76, + "probability": 0.0035 + }, + { + "start": 26201.6, + "end": 26202.6, + "probability": 0.9841 + }, + { + "start": 26204.36, + "end": 26205.56, + "probability": 0.9328 + }, + { + "start": 26206.5, + "end": 26207.7, + "probability": 0.9869 + }, + { + "start": 26209.94, + "end": 26211.03, + "probability": 0.9588 + }, + { + "start": 26212.62, + "end": 26215.48, + "probability": 0.9573 + }, + { + "start": 26216.0, + "end": 26217.26, + "probability": 0.6218 + }, + { + "start": 26218.4, + "end": 26220.1, + "probability": 0.8913 + }, + { + "start": 26222.48, + "end": 26223.66, + "probability": 0.8071 + }, + { + "start": 26224.98, + "end": 26228.94, + "probability": 0.8524 + }, + { + "start": 26230.96, + "end": 26232.36, + "probability": 0.915 + }, + { + "start": 26234.44, + "end": 26240.12, + "probability": 0.9926 + }, + { + "start": 26242.72, + "end": 26243.34, + "probability": 0.8017 + }, + { + "start": 26243.4, + "end": 26246.45, + "probability": 0.9652 + }, + { + "start": 26248.6, + "end": 26255.0, + "probability": 0.9907 + }, + { + "start": 26256.68, + "end": 26257.24, + "probability": 0.5211 + }, + { + "start": 26258.0, + "end": 26260.12, + "probability": 0.9234 + }, + { + "start": 26260.62, + "end": 26261.64, + "probability": 0.7556 + }, + { + "start": 26261.82, + "end": 26263.04, + "probability": 0.8508 + }, + { + "start": 26263.88, + "end": 26267.6, + "probability": 0.9907 + }, + { + "start": 26268.44, + "end": 26270.18, + "probability": 0.9073 + }, + { + "start": 26273.92, + "end": 26278.48, + "probability": 0.9963 + }, + { + "start": 26278.64, + "end": 26279.46, + "probability": 0.9202 + }, + { + "start": 26280.08, + "end": 26285.06, + "probability": 0.8083 + }, + { + "start": 26286.1, + "end": 26291.2, + "probability": 0.9888 + }, + { + "start": 26291.9, + "end": 26295.42, + "probability": 0.959 + }, + { + "start": 26296.82, + "end": 26302.1, + "probability": 0.9937 + }, + { + "start": 26303.98, + "end": 26305.67, + "probability": 0.532 + }, + { + "start": 26307.72, + "end": 26311.94, + "probability": 0.553 + }, + { + "start": 26314.92, + "end": 26319.32, + "probability": 0.9951 + }, + { + "start": 26320.88, + "end": 26322.62, + "probability": 0.9882 + }, + { + "start": 26323.26, + "end": 26323.72, + "probability": 0.9129 + }, + { + "start": 26325.54, + "end": 26329.6, + "probability": 0.9898 + }, + { + "start": 26332.92, + "end": 26338.02, + "probability": 0.9665 + }, + { + "start": 26338.8, + "end": 26339.6, + "probability": 0.9077 + }, + { + "start": 26340.42, + "end": 26342.06, + "probability": 0.8843 + }, + { + "start": 26343.94, + "end": 26345.12, + "probability": 0.4287 + }, + { + "start": 26345.12, + "end": 26345.3, + "probability": 0.7788 + }, + { + "start": 26345.44, + "end": 26350.8, + "probability": 0.9762 + }, + { + "start": 26353.04, + "end": 26355.54, + "probability": 0.7958 + }, + { + "start": 26355.98, + "end": 26357.0, + "probability": 0.5694 + }, + { + "start": 26357.06, + "end": 26357.74, + "probability": 0.827 + }, + { + "start": 26357.82, + "end": 26360.24, + "probability": 0.9707 + }, + { + "start": 26360.94, + "end": 26363.42, + "probability": 0.5313 + }, + { + "start": 26364.92, + "end": 26365.72, + "probability": 0.7865 + }, + { + "start": 26365.72, + "end": 26366.3, + "probability": 0.1397 + }, + { + "start": 26366.3, + "end": 26369.86, + "probability": 0.9546 + }, + { + "start": 26370.18, + "end": 26371.44, + "probability": 0.5534 + }, + { + "start": 26371.9, + "end": 26374.7, + "probability": 0.3402 + }, + { + "start": 26375.42, + "end": 26381.78, + "probability": 0.7332 + }, + { + "start": 26382.12, + "end": 26382.34, + "probability": 0.0466 + }, + { + "start": 26382.34, + "end": 26384.4, + "probability": 0.5543 + }, + { + "start": 26385.02, + "end": 26387.8, + "probability": 0.6653 + }, + { + "start": 26388.22, + "end": 26389.76, + "probability": 0.9437 + }, + { + "start": 26389.96, + "end": 26390.91, + "probability": 0.8776 + }, + { + "start": 26392.42, + "end": 26395.22, + "probability": 0.9712 + }, + { + "start": 26395.84, + "end": 26396.9, + "probability": 0.7281 + }, + { + "start": 26396.98, + "end": 26399.9, + "probability": 0.511 + }, + { + "start": 26400.22, + "end": 26400.73, + "probability": 0.7368 + }, + { + "start": 26401.7, + "end": 26403.52, + "probability": 0.7721 + }, + { + "start": 26406.42, + "end": 26411.78, + "probability": 0.8318 + }, + { + "start": 26411.78, + "end": 26415.44, + "probability": 0.9281 + }, + { + "start": 26415.64, + "end": 26417.18, + "probability": 0.9854 + }, + { + "start": 26418.44, + "end": 26425.88, + "probability": 0.8159 + }, + { + "start": 26426.0, + "end": 26427.22, + "probability": 0.7651 + }, + { + "start": 26427.5, + "end": 26428.5, + "probability": 0.7881 + }, + { + "start": 26428.68, + "end": 26429.59, + "probability": 0.1449 + }, + { + "start": 26429.74, + "end": 26430.28, + "probability": 0.6311 + }, + { + "start": 26430.36, + "end": 26433.81, + "probability": 0.9727 + }, + { + "start": 26434.66, + "end": 26435.44, + "probability": 0.8822 + }, + { + "start": 26435.78, + "end": 26437.42, + "probability": 0.8343 + }, + { + "start": 26437.8, + "end": 26442.02, + "probability": 0.9773 + }, + { + "start": 26442.08, + "end": 26445.94, + "probability": 0.8335 + }, + { + "start": 26445.94, + "end": 26448.82, + "probability": 0.9819 + }, + { + "start": 26450.04, + "end": 26453.34, + "probability": 0.9371 + }, + { + "start": 26456.7, + "end": 26458.68, + "probability": 0.9005 + }, + { + "start": 26459.76, + "end": 26460.84, + "probability": 0.9801 + }, + { + "start": 26464.16, + "end": 26464.84, + "probability": 0.693 + }, + { + "start": 26465.64, + "end": 26466.82, + "probability": 0.8151 + }, + { + "start": 26468.34, + "end": 26468.66, + "probability": 0.6466 + }, + { + "start": 26468.74, + "end": 26473.46, + "probability": 0.9964 + }, + { + "start": 26474.34, + "end": 26474.58, + "probability": 0.5247 + }, + { + "start": 26474.7, + "end": 26475.46, + "probability": 0.7874 + }, + { + "start": 26475.58, + "end": 26476.28, + "probability": 0.8121 + }, + { + "start": 26476.4, + "end": 26477.12, + "probability": 0.7795 + }, + { + "start": 26477.62, + "end": 26480.14, + "probability": 0.9663 + }, + { + "start": 26480.9, + "end": 26484.86, + "probability": 0.9021 + }, + { + "start": 26484.86, + "end": 26491.08, + "probability": 0.9844 + }, + { + "start": 26491.24, + "end": 26492.49, + "probability": 0.9922 + }, + { + "start": 26492.74, + "end": 26493.78, + "probability": 0.8776 + }, + { + "start": 26494.54, + "end": 26498.32, + "probability": 0.9818 + }, + { + "start": 26498.32, + "end": 26501.8, + "probability": 0.9896 + }, + { + "start": 26502.9, + "end": 26507.32, + "probability": 0.9939 + }, + { + "start": 26508.12, + "end": 26513.12, + "probability": 0.9966 + }, + { + "start": 26514.6, + "end": 26517.62, + "probability": 0.9971 + }, + { + "start": 26518.28, + "end": 26521.58, + "probability": 0.9979 + }, + { + "start": 26522.82, + "end": 26524.82, + "probability": 0.9893 + }, + { + "start": 26525.96, + "end": 26526.78, + "probability": 0.8733 + }, + { + "start": 26528.88, + "end": 26532.12, + "probability": 0.7005 + }, + { + "start": 26532.76, + "end": 26534.6, + "probability": 0.5022 + }, + { + "start": 26536.06, + "end": 26538.06, + "probability": 0.6471 + }, + { + "start": 26538.1, + "end": 26540.84, + "probability": 0.9825 + }, + { + "start": 26541.36, + "end": 26541.58, + "probability": 0.8553 + }, + { + "start": 26541.66, + "end": 26543.3, + "probability": 0.9165 + }, + { + "start": 26543.42, + "end": 26545.32, + "probability": 0.9956 + }, + { + "start": 26546.0, + "end": 26546.74, + "probability": 0.9006 + }, + { + "start": 26547.28, + "end": 26549.24, + "probability": 0.9713 + }, + { + "start": 26550.44, + "end": 26555.86, + "probability": 0.9847 + }, + { + "start": 26556.82, + "end": 26558.08, + "probability": 0.3379 + }, + { + "start": 26558.76, + "end": 26559.9, + "probability": 0.3875 + }, + { + "start": 26561.1, + "end": 26561.1, + "probability": 0.1798 + }, + { + "start": 26561.1, + "end": 26562.72, + "probability": 0.8121 + }, + { + "start": 26563.5, + "end": 26564.7, + "probability": 0.9597 + }, + { + "start": 26564.78, + "end": 26565.76, + "probability": 0.9849 + }, + { + "start": 26565.9, + "end": 26567.66, + "probability": 0.9126 + }, + { + "start": 26568.3, + "end": 26568.8, + "probability": 0.9702 + }, + { + "start": 26570.0, + "end": 26572.88, + "probability": 0.9798 + }, + { + "start": 26573.58, + "end": 26574.44, + "probability": 0.9849 + }, + { + "start": 26575.16, + "end": 26578.99, + "probability": 0.7015 + }, + { + "start": 26580.7, + "end": 26583.1, + "probability": 0.8734 + }, + { + "start": 26584.34, + "end": 26586.44, + "probability": 0.9969 + }, + { + "start": 26587.06, + "end": 26590.52, + "probability": 0.9992 + }, + { + "start": 26591.12, + "end": 26592.16, + "probability": 0.7327 + }, + { + "start": 26592.8, + "end": 26596.6, + "probability": 0.9313 + }, + { + "start": 26597.36, + "end": 26598.7, + "probability": 0.9851 + }, + { + "start": 26599.3, + "end": 26599.8, + "probability": 0.826 + }, + { + "start": 26600.34, + "end": 26602.42, + "probability": 0.9624 + }, + { + "start": 26603.36, + "end": 26604.54, + "probability": 0.9197 + }, + { + "start": 26605.6, + "end": 26606.56, + "probability": 0.9457 + }, + { + "start": 26607.32, + "end": 26608.62, + "probability": 0.9229 + }, + { + "start": 26609.36, + "end": 26612.1, + "probability": 0.8954 + }, + { + "start": 26613.8, + "end": 26618.04, + "probability": 0.9077 + }, + { + "start": 26619.76, + "end": 26620.88, + "probability": 0.6502 + }, + { + "start": 26623.44, + "end": 26626.64, + "probability": 0.9639 + }, + { + "start": 26627.84, + "end": 26630.12, + "probability": 0.9064 + }, + { + "start": 26631.74, + "end": 26636.48, + "probability": 0.9697 + }, + { + "start": 26637.38, + "end": 26639.56, + "probability": 0.9673 + }, + { + "start": 26640.44, + "end": 26641.84, + "probability": 0.6509 + }, + { + "start": 26642.88, + "end": 26645.78, + "probability": 0.7702 + }, + { + "start": 26646.72, + "end": 26648.34, + "probability": 0.9937 + }, + { + "start": 26649.96, + "end": 26650.42, + "probability": 0.2941 + }, + { + "start": 26650.54, + "end": 26655.46, + "probability": 0.9216 + }, + { + "start": 26656.24, + "end": 26660.84, + "probability": 0.8089 + }, + { + "start": 26661.42, + "end": 26663.12, + "probability": 0.9839 + }, + { + "start": 26663.76, + "end": 26665.28, + "probability": 0.9969 + }, + { + "start": 26666.4, + "end": 26669.52, + "probability": 0.9761 + }, + { + "start": 26669.96, + "end": 26670.32, + "probability": 0.7672 + }, + { + "start": 26670.5, + "end": 26673.14, + "probability": 0.5338 + }, + { + "start": 26674.22, + "end": 26677.44, + "probability": 0.8023 + }, + { + "start": 26678.98, + "end": 26679.46, + "probability": 0.5179 + }, + { + "start": 26680.08, + "end": 26681.28, + "probability": 0.048 + }, + { + "start": 26688.315, + "end": 26691.92, + "probability": 0.5064 + }, + { + "start": 26694.47, + "end": 26695.55, + "probability": 0.0833 + }, + { + "start": 26697.64, + "end": 26699.73, + "probability": 0.1361 + }, + { + "start": 26699.83, + "end": 26701.03, + "probability": 0.1019 + }, + { + "start": 26701.83, + "end": 26704.37, + "probability": 0.0357 + }, + { + "start": 26707.17, + "end": 26707.17, + "probability": 0.1854 + }, + { + "start": 26731.81, + "end": 26732.71, + "probability": 0.5033 + }, + { + "start": 26733.67, + "end": 26735.03, + "probability": 0.9364 + }, + { + "start": 26736.21, + "end": 26740.01, + "probability": 0.6524 + }, + { + "start": 26740.53, + "end": 26742.23, + "probability": 0.5971 + }, + { + "start": 26742.97, + "end": 26744.59, + "probability": 0.964 + }, + { + "start": 26745.29, + "end": 26748.01, + "probability": 0.6541 + }, + { + "start": 26748.77, + "end": 26749.31, + "probability": 0.4375 + }, + { + "start": 26751.01, + "end": 26752.99, + "probability": 0.9155 + }, + { + "start": 26753.95, + "end": 26757.23, + "probability": 0.9911 + }, + { + "start": 26758.01, + "end": 26758.77, + "probability": 0.7163 + }, + { + "start": 26759.45, + "end": 26760.71, + "probability": 0.9385 + }, + { + "start": 26761.85, + "end": 26762.31, + "probability": 0.5823 + }, + { + "start": 26762.35, + "end": 26766.31, + "probability": 0.9836 + }, + { + "start": 26766.97, + "end": 26768.37, + "probability": 0.9935 + }, + { + "start": 26769.05, + "end": 26771.25, + "probability": 0.3901 + }, + { + "start": 26771.51, + "end": 26773.33, + "probability": 0.6263 + }, + { + "start": 26775.25, + "end": 26775.67, + "probability": 0.7286 + }, + { + "start": 26775.67, + "end": 26776.09, + "probability": 0.3311 + }, + { + "start": 26776.73, + "end": 26777.99, + "probability": 0.3628 + }, + { + "start": 26778.17, + "end": 26780.6, + "probability": 0.4668 + }, + { + "start": 26781.12, + "end": 26783.95, + "probability": 0.7417 + }, + { + "start": 26785.13, + "end": 26789.59, + "probability": 0.6504 + }, + { + "start": 26790.49, + "end": 26792.21, + "probability": 0.3899 + }, + { + "start": 26794.19, + "end": 26798.15, + "probability": 0.5258 + }, + { + "start": 26800.69, + "end": 26801.63, + "probability": 0.033 + }, + { + "start": 26803.21, + "end": 26804.75, + "probability": 0.3384 + }, + { + "start": 26805.91, + "end": 26808.89, + "probability": 0.3598 + }, + { + "start": 26808.99, + "end": 26809.93, + "probability": 0.4488 + }, + { + "start": 26809.99, + "end": 26810.67, + "probability": 0.1891 + }, + { + "start": 26811.19, + "end": 26814.91, + "probability": 0.7542 + }, + { + "start": 26815.64, + "end": 26818.55, + "probability": 0.5553 + }, + { + "start": 26819.12, + "end": 26821.69, + "probability": 0.8461 + }, + { + "start": 26822.13, + "end": 26823.87, + "probability": 0.1779 + }, + { + "start": 26824.55, + "end": 26827.03, + "probability": 0.5988 + }, + { + "start": 26827.15, + "end": 26828.37, + "probability": 0.69 + }, + { + "start": 26828.63, + "end": 26831.21, + "probability": 0.7882 + }, + { + "start": 26831.33, + "end": 26833.97, + "probability": 0.7296 + }, + { + "start": 26834.13, + "end": 26836.69, + "probability": 0.6829 + }, + { + "start": 26836.91, + "end": 26840.25, + "probability": 0.8249 + }, + { + "start": 26842.95, + "end": 26846.55, + "probability": 0.7462 + }, + { + "start": 26847.07, + "end": 26847.07, + "probability": 0.0261 + }, + { + "start": 26847.07, + "end": 26849.21, + "probability": 0.4417 + }, + { + "start": 26849.97, + "end": 26851.15, + "probability": 0.6964 + }, + { + "start": 26851.19, + "end": 26852.39, + "probability": 0.9375 + }, + { + "start": 26852.59, + "end": 26854.71, + "probability": 0.7279 + }, + { + "start": 26854.79, + "end": 26857.3, + "probability": 0.8901 + }, + { + "start": 26857.81, + "end": 26858.15, + "probability": 0.6067 + }, + { + "start": 26858.29, + "end": 26859.77, + "probability": 0.6075 + }, + { + "start": 26859.87, + "end": 26862.13, + "probability": 0.4133 + }, + { + "start": 26863.17, + "end": 26866.83, + "probability": 0.6176 + }, + { + "start": 26867.03, + "end": 26867.57, + "probability": 0.0388 + }, + { + "start": 26868.77, + "end": 26869.23, + "probability": 0.0615 + }, + { + "start": 26869.45, + "end": 26870.52, + "probability": 0.8746 + }, + { + "start": 26871.83, + "end": 26873.23, + "probability": 0.6293 + }, + { + "start": 26873.29, + "end": 26873.78, + "probability": 0.6963 + }, + { + "start": 26874.51, + "end": 26876.55, + "probability": 0.6548 + }, + { + "start": 26876.55, + "end": 26879.77, + "probability": 0.6612 + }, + { + "start": 26880.31, + "end": 26881.14, + "probability": 0.5793 + }, + { + "start": 26881.55, + "end": 26882.93, + "probability": 0.4667 + }, + { + "start": 26883.01, + "end": 26883.31, + "probability": 0.3063 + }, + { + "start": 26883.59, + "end": 26885.51, + "probability": 0.3734 + }, + { + "start": 26886.09, + "end": 26886.65, + "probability": 0.9503 + }, + { + "start": 26887.49, + "end": 26892.45, + "probability": 0.0937 + }, + { + "start": 26892.55, + "end": 26894.69, + "probability": 0.7246 + }, + { + "start": 26894.93, + "end": 26896.49, + "probability": 0.6592 + }, + { + "start": 26897.45, + "end": 26902.99, + "probability": 0.9611 + }, + { + "start": 26903.41, + "end": 26905.03, + "probability": 0.7811 + }, + { + "start": 26905.73, + "end": 26908.95, + "probability": 0.9648 + }, + { + "start": 26909.31, + "end": 26910.59, + "probability": 0.6972 + }, + { + "start": 26910.93, + "end": 26912.17, + "probability": 0.8428 + }, + { + "start": 26912.77, + "end": 26916.23, + "probability": 0.8261 + }, + { + "start": 26916.23, + "end": 26919.73, + "probability": 0.9302 + }, + { + "start": 26920.13, + "end": 26922.71, + "probability": 0.9834 + }, + { + "start": 26923.11, + "end": 26923.81, + "probability": 0.7173 + }, + { + "start": 26924.41, + "end": 26925.53, + "probability": 0.9688 + }, + { + "start": 26925.81, + "end": 26926.43, + "probability": 0.448 + }, + { + "start": 26926.49, + "end": 26927.43, + "probability": 0.7108 + }, + { + "start": 26928.06, + "end": 26932.21, + "probability": 0.5986 + }, + { + "start": 26932.45, + "end": 26936.39, + "probability": 0.7646 + }, + { + "start": 26937.07, + "end": 26938.17, + "probability": 0.826 + }, + { + "start": 26938.25, + "end": 26939.35, + "probability": 0.5844 + }, + { + "start": 26939.47, + "end": 26940.71, + "probability": 0.9757 + }, + { + "start": 26940.79, + "end": 26941.15, + "probability": 0.5239 + }, + { + "start": 26941.81, + "end": 26948.39, + "probability": 0.3685 + }, + { + "start": 26948.43, + "end": 26951.59, + "probability": 0.5171 + }, + { + "start": 26951.59, + "end": 26954.15, + "probability": 0.5872 + }, + { + "start": 26954.39, + "end": 26956.52, + "probability": 0.7874 + }, + { + "start": 26957.05, + "end": 26960.57, + "probability": 0.6191 + }, + { + "start": 26960.65, + "end": 26961.31, + "probability": 0.4463 + }, + { + "start": 26961.53, + "end": 26962.49, + "probability": 0.2519 + }, + { + "start": 26962.65, + "end": 26965.85, + "probability": 0.7461 + }, + { + "start": 26967.33, + "end": 26969.89, + "probability": 0.7314 + }, + { + "start": 26969.99, + "end": 26970.77, + "probability": 0.4552 + }, + { + "start": 26970.91, + "end": 26976.71, + "probability": 0.3363 + }, + { + "start": 26976.79, + "end": 26979.33, + "probability": 0.7515 + }, + { + "start": 26979.61, + "end": 26981.03, + "probability": 0.0242 + }, + { + "start": 26981.03, + "end": 26983.31, + "probability": 0.7736 + }, + { + "start": 26984.51, + "end": 26987.41, + "probability": 0.6185 + }, + { + "start": 26988.09, + "end": 26990.71, + "probability": 0.9019 + }, + { + "start": 26990.73, + "end": 26992.71, + "probability": 0.9866 + }, + { + "start": 26996.47, + "end": 26996.63, + "probability": 0.1273 + }, + { + "start": 26996.63, + "end": 26996.63, + "probability": 0.1145 + }, + { + "start": 26996.63, + "end": 26999.45, + "probability": 0.5297 + }, + { + "start": 26999.69, + "end": 27000.89, + "probability": 0.6467 + }, + { + "start": 27001.21, + "end": 27004.35, + "probability": 0.8246 + }, + { + "start": 27004.45, + "end": 27010.09, + "probability": 0.9604 + }, + { + "start": 27010.65, + "end": 27011.05, + "probability": 0.273 + }, + { + "start": 27011.17, + "end": 27012.87, + "probability": 0.3474 + }, + { + "start": 27013.25, + "end": 27014.71, + "probability": 0.9028 + }, + { + "start": 27014.87, + "end": 27020.97, + "probability": 0.6849 + }, + { + "start": 27021.41, + "end": 27022.27, + "probability": 0.5204 + }, + { + "start": 27022.67, + "end": 27025.37, + "probability": 0.9692 + }, + { + "start": 27025.75, + "end": 27027.03, + "probability": 0.7521 + }, + { + "start": 27027.15, + "end": 27028.41, + "probability": 0.8712 + }, + { + "start": 27028.57, + "end": 27031.51, + "probability": 0.7769 + }, + { + "start": 27031.65, + "end": 27033.8, + "probability": 0.4608 + }, + { + "start": 27034.43, + "end": 27035.8, + "probability": 0.9345 + }, + { + "start": 27036.13, + "end": 27036.92, + "probability": 0.8364 + }, + { + "start": 27037.57, + "end": 27039.17, + "probability": 0.5974 + }, + { + "start": 27040.15, + "end": 27040.33, + "probability": 0.1534 + }, + { + "start": 27040.41, + "end": 27044.25, + "probability": 0.5396 + }, + { + "start": 27045.13, + "end": 27045.75, + "probability": 0.6534 + }, + { + "start": 27046.35, + "end": 27049.93, + "probability": 0.9876 + }, + { + "start": 27051.17, + "end": 27053.19, + "probability": 0.3645 + }, + { + "start": 27057.13, + "end": 27058.57, + "probability": 0.6051 + }, + { + "start": 27058.73, + "end": 27062.13, + "probability": 0.6963 + }, + { + "start": 27062.13, + "end": 27062.87, + "probability": 0.7591 + }, + { + "start": 27065.23, + "end": 27068.21, + "probability": 0.3323 + }, + { + "start": 27068.79, + "end": 27069.21, + "probability": 0.4821 + }, + { + "start": 27071.03, + "end": 27071.29, + "probability": 0.0729 + }, + { + "start": 27075.29, + "end": 27079.53, + "probability": 0.2188 + }, + { + "start": 27085.77, + "end": 27088.29, + "probability": 0.3359 + }, + { + "start": 27088.69, + "end": 27090.21, + "probability": 0.631 + }, + { + "start": 27091.15, + "end": 27093.21, + "probability": 0.097 + }, + { + "start": 27093.37, + "end": 27094.95, + "probability": 0.2329 + }, + { + "start": 27095.25, + "end": 27097.79, + "probability": 0.9553 + }, + { + "start": 27098.23, + "end": 27101.47, + "probability": 0.6774 + }, + { + "start": 27101.97, + "end": 27101.97, + "probability": 0.0151 + }, + { + "start": 27101.97, + "end": 27102.97, + "probability": 0.5433 + }, + { + "start": 27103.11, + "end": 27104.59, + "probability": 0.8989 + }, + { + "start": 27105.07, + "end": 27105.81, + "probability": 0.6266 + }, + { + "start": 27107.09, + "end": 27108.33, + "probability": 0.6933 + }, + { + "start": 27126.85, + "end": 27127.79, + "probability": 0.6785 + }, + { + "start": 27129.65, + "end": 27131.27, + "probability": 0.9832 + }, + { + "start": 27132.75, + "end": 27133.91, + "probability": 0.8031 + }, + { + "start": 27135.51, + "end": 27136.61, + "probability": 0.9679 + }, + { + "start": 27137.73, + "end": 27139.13, + "probability": 0.986 + }, + { + "start": 27140.47, + "end": 27143.05, + "probability": 0.8797 + }, + { + "start": 27144.65, + "end": 27152.71, + "probability": 0.8039 + }, + { + "start": 27154.67, + "end": 27155.87, + "probability": 0.8409 + }, + { + "start": 27155.99, + "end": 27162.19, + "probability": 0.9407 + }, + { + "start": 27163.75, + "end": 27169.53, + "probability": 0.6503 + }, + { + "start": 27170.17, + "end": 27170.87, + "probability": 0.8289 + }, + { + "start": 27171.65, + "end": 27178.21, + "probability": 0.7366 + }, + { + "start": 27178.41, + "end": 27180.79, + "probability": 0.7942 + }, + { + "start": 27182.53, + "end": 27183.67, + "probability": 0.9981 + }, + { + "start": 27184.91, + "end": 27186.83, + "probability": 0.6998 + }, + { + "start": 27188.69, + "end": 27190.21, + "probability": 0.6732 + }, + { + "start": 27191.67, + "end": 27194.89, + "probability": 0.7818 + }, + { + "start": 27195.59, + "end": 27201.67, + "probability": 0.8861 + }, + { + "start": 27202.33, + "end": 27204.35, + "probability": 0.86 + }, + { + "start": 27205.41, + "end": 27208.83, + "probability": 0.9983 + }, + { + "start": 27210.53, + "end": 27211.77, + "probability": 0.9917 + }, + { + "start": 27212.89, + "end": 27214.61, + "probability": 0.9959 + }, + { + "start": 27216.04, + "end": 27220.47, + "probability": 0.3989 + }, + { + "start": 27221.29, + "end": 27221.73, + "probability": 0.6989 + }, + { + "start": 27221.83, + "end": 27222.63, + "probability": 0.9268 + }, + { + "start": 27222.73, + "end": 27223.27, + "probability": 0.6344 + }, + { + "start": 27223.39, + "end": 27223.93, + "probability": 0.8906 + }, + { + "start": 27226.35, + "end": 27228.87, + "probability": 0.874 + }, + { + "start": 27228.93, + "end": 27231.23, + "probability": 0.9895 + }, + { + "start": 27232.45, + "end": 27233.67, + "probability": 0.9431 + }, + { + "start": 27235.29, + "end": 27238.49, + "probability": 0.7319 + }, + { + "start": 27240.35, + "end": 27241.01, + "probability": 0.8564 + }, + { + "start": 27241.61, + "end": 27243.27, + "probability": 0.9873 + }, + { + "start": 27245.35, + "end": 27246.51, + "probability": 0.7449 + }, + { + "start": 27247.43, + "end": 27248.95, + "probability": 0.9669 + }, + { + "start": 27250.57, + "end": 27251.71, + "probability": 0.7629 + }, + { + "start": 27256.19, + "end": 27256.61, + "probability": 0.4269 + }, + { + "start": 27256.73, + "end": 27257.47, + "probability": 0.8036 + }, + { + "start": 27257.87, + "end": 27261.43, + "probability": 0.8055 + }, + { + "start": 27264.01, + "end": 27266.33, + "probability": 0.9875 + }, + { + "start": 27267.23, + "end": 27267.25, + "probability": 0.0493 + }, + { + "start": 27270.95, + "end": 27272.39, + "probability": 0.9587 + }, + { + "start": 27275.69, + "end": 27276.65, + "probability": 0.5972 + }, + { + "start": 27277.47, + "end": 27281.05, + "probability": 0.8601 + }, + { + "start": 27282.35, + "end": 27285.17, + "probability": 0.4767 + }, + { + "start": 27286.33, + "end": 27286.77, + "probability": 0.5828 + }, + { + "start": 27287.55, + "end": 27289.07, + "probability": 0.5466 + }, + { + "start": 27289.75, + "end": 27291.91, + "probability": 0.7575 + }, + { + "start": 27292.99, + "end": 27293.89, + "probability": 0.8949 + }, + { + "start": 27296.33, + "end": 27298.39, + "probability": 0.6469 + }, + { + "start": 27299.89, + "end": 27302.17, + "probability": 0.9484 + }, + { + "start": 27303.23, + "end": 27304.25, + "probability": 0.6786 + }, + { + "start": 27304.43, + "end": 27308.49, + "probability": 0.8545 + }, + { + "start": 27309.49, + "end": 27311.61, + "probability": 0.7969 + }, + { + "start": 27313.03, + "end": 27316.13, + "probability": 0.9097 + }, + { + "start": 27317.39, + "end": 27319.65, + "probability": 0.7481 + }, + { + "start": 27321.19, + "end": 27321.99, + "probability": 0.0235 + }, + { + "start": 27322.19, + "end": 27328.53, + "probability": 0.8482 + }, + { + "start": 27329.47, + "end": 27332.31, + "probability": 0.9497 + }, + { + "start": 27333.73, + "end": 27336.25, + "probability": 0.8184 + }, + { + "start": 27339.27, + "end": 27340.73, + "probability": 0.4862 + }, + { + "start": 27340.75, + "end": 27342.63, + "probability": 0.7478 + }, + { + "start": 27343.87, + "end": 27346.13, + "probability": 0.5811 + }, + { + "start": 27348.03, + "end": 27351.65, + "probability": 0.7921 + }, + { + "start": 27353.67, + "end": 27357.27, + "probability": 0.9235 + }, + { + "start": 27358.11, + "end": 27362.97, + "probability": 0.9884 + }, + { + "start": 27364.17, + "end": 27365.37, + "probability": 0.8013 + }, + { + "start": 27366.27, + "end": 27368.29, + "probability": 0.7619 + }, + { + "start": 27369.45, + "end": 27370.57, + "probability": 0.9203 + }, + { + "start": 27371.39, + "end": 27375.75, + "probability": 0.9042 + }, + { + "start": 27376.47, + "end": 27381.75, + "probability": 0.6879 + }, + { + "start": 27385.27, + "end": 27385.85, + "probability": 0.9819 + }, + { + "start": 27387.33, + "end": 27390.43, + "probability": 0.4513 + }, + { + "start": 27391.47, + "end": 27393.73, + "probability": 0.9886 + }, + { + "start": 27395.11, + "end": 27396.51, + "probability": 0.9277 + }, + { + "start": 27397.09, + "end": 27397.85, + "probability": 0.3602 + }, + { + "start": 27399.79, + "end": 27401.07, + "probability": 0.7354 + }, + { + "start": 27401.11, + "end": 27402.05, + "probability": 0.7998 + }, + { + "start": 27402.21, + "end": 27403.45, + "probability": 0.8773 + }, + { + "start": 27403.63, + "end": 27404.35, + "probability": 0.3198 + }, + { + "start": 27406.21, + "end": 27406.99, + "probability": 0.8232 + }, + { + "start": 27408.17, + "end": 27412.47, + "probability": 0.9207 + }, + { + "start": 27413.61, + "end": 27417.07, + "probability": 0.9077 + }, + { + "start": 27418.05, + "end": 27419.21, + "probability": 0.4992 + }, + { + "start": 27420.21, + "end": 27422.03, + "probability": 0.686 + }, + { + "start": 27431.71, + "end": 27434.05, + "probability": 0.511 + }, + { + "start": 27435.13, + "end": 27440.51, + "probability": 0.8854 + }, + { + "start": 27441.45, + "end": 27444.31, + "probability": 0.937 + }, + { + "start": 27444.37, + "end": 27445.13, + "probability": 0.9856 + }, + { + "start": 27445.65, + "end": 27446.87, + "probability": 0.9871 + }, + { + "start": 27447.55, + "end": 27451.07, + "probability": 0.6687 + }, + { + "start": 27451.71, + "end": 27454.85, + "probability": 0.8237 + }, + { + "start": 27455.75, + "end": 27457.08, + "probability": 0.4938 + }, + { + "start": 27457.77, + "end": 27460.27, + "probability": 0.9731 + }, + { + "start": 27460.29, + "end": 27462.08, + "probability": 0.8638 + }, + { + "start": 27463.05, + "end": 27464.47, + "probability": 0.8161 + }, + { + "start": 27465.35, + "end": 27467.13, + "probability": 0.6602 + }, + { + "start": 27467.85, + "end": 27468.63, + "probability": 0.7239 + }, + { + "start": 27468.77, + "end": 27471.41, + "probability": 0.8257 + }, + { + "start": 27472.23, + "end": 27476.97, + "probability": 0.8775 + }, + { + "start": 27477.79, + "end": 27478.15, + "probability": 0.5018 + }, + { + "start": 27478.17, + "end": 27478.45, + "probability": 0.7268 + }, + { + "start": 27478.7, + "end": 27480.57, + "probability": 0.7409 + }, + { + "start": 27480.57, + "end": 27481.81, + "probability": 0.9873 + }, + { + "start": 27482.61, + "end": 27484.59, + "probability": 0.9224 + }, + { + "start": 27484.97, + "end": 27486.67, + "probability": 0.941 + }, + { + "start": 27487.05, + "end": 27489.65, + "probability": 0.9344 + }, + { + "start": 27490.13, + "end": 27490.73, + "probability": 0.4928 + }, + { + "start": 27490.97, + "end": 27493.43, + "probability": 0.91 + }, + { + "start": 27493.53, + "end": 27493.87, + "probability": 0.7856 + }, + { + "start": 27493.95, + "end": 27494.09, + "probability": 0.0703 + }, + { + "start": 27494.47, + "end": 27497.75, + "probability": 0.9736 + }, + { + "start": 27498.23, + "end": 27499.99, + "probability": 0.9814 + }, + { + "start": 27500.81, + "end": 27502.75, + "probability": 0.8865 + }, + { + "start": 27502.99, + "end": 27505.99, + "probability": 0.8034 + }, + { + "start": 27507.23, + "end": 27508.47, + "probability": 0.9071 + }, + { + "start": 27511.23, + "end": 27514.05, + "probability": 0.8299 + }, + { + "start": 27514.67, + "end": 27516.01, + "probability": 0.9206 + }, + { + "start": 27516.75, + "end": 27517.31, + "probability": 0.5211 + }, + { + "start": 27518.41, + "end": 27519.81, + "probability": 0.9602 + }, + { + "start": 27519.89, + "end": 27521.39, + "probability": 0.8416 + }, + { + "start": 27522.07, + "end": 27523.51, + "probability": 0.986 + }, + { + "start": 27523.89, + "end": 27525.03, + "probability": 0.994 + }, + { + "start": 27525.35, + "end": 27526.19, + "probability": 0.9429 + }, + { + "start": 27526.83, + "end": 27527.78, + "probability": 0.9512 + }, + { + "start": 27528.29, + "end": 27529.71, + "probability": 0.9692 + }, + { + "start": 27530.01, + "end": 27532.19, + "probability": 0.5054 + }, + { + "start": 27532.49, + "end": 27532.97, + "probability": 0.1766 + }, + { + "start": 27533.31, + "end": 27534.45, + "probability": 0.9219 + }, + { + "start": 27534.61, + "end": 27537.73, + "probability": 0.9062 + }, + { + "start": 27538.07, + "end": 27538.97, + "probability": 0.9091 + }, + { + "start": 27539.15, + "end": 27539.57, + "probability": 0.9543 + }, + { + "start": 27540.23, + "end": 27541.15, + "probability": 0.9614 + }, + { + "start": 27541.35, + "end": 27543.67, + "probability": 0.7521 + }, + { + "start": 27545.75, + "end": 27547.39, + "probability": 0.9471 + }, + { + "start": 27547.57, + "end": 27550.03, + "probability": 0.984 + }, + { + "start": 27550.17, + "end": 27552.89, + "probability": 0.7269 + }, + { + "start": 27553.55, + "end": 27556.29, + "probability": 0.6786 + }, + { + "start": 27556.83, + "end": 27559.77, + "probability": 0.8221 + }, + { + "start": 27560.07, + "end": 27565.97, + "probability": 0.9893 + }, + { + "start": 27566.43, + "end": 27569.79, + "probability": 0.7009 + }, + { + "start": 27570.33, + "end": 27572.15, + "probability": 0.7082 + }, + { + "start": 27572.47, + "end": 27574.95, + "probability": 0.7167 + }, + { + "start": 27575.03, + "end": 27576.91, + "probability": 0.3414 + }, + { + "start": 27576.91, + "end": 27578.41, + "probability": 0.5483 + }, + { + "start": 27578.85, + "end": 27582.51, + "probability": 0.911 + }, + { + "start": 27583.39, + "end": 27588.75, + "probability": 0.9285 + }, + { + "start": 27589.29, + "end": 27590.79, + "probability": 0.4931 + }, + { + "start": 27592.32, + "end": 27595.23, + "probability": 0.8448 + }, + { + "start": 27608.33, + "end": 27609.45, + "probability": 0.768 + }, + { + "start": 27611.05, + "end": 27613.07, + "probability": 0.6568 + }, + { + "start": 27613.13, + "end": 27613.57, + "probability": 0.4106 + }, + { + "start": 27613.57, + "end": 27615.61, + "probability": 0.8054 + }, + { + "start": 27616.17, + "end": 27620.37, + "probability": 0.9377 + }, + { + "start": 27621.25, + "end": 27624.87, + "probability": 0.9094 + }, + { + "start": 27625.21, + "end": 27627.81, + "probability": 0.9215 + }, + { + "start": 27627.93, + "end": 27630.37, + "probability": 0.9735 + }, + { + "start": 27630.47, + "end": 27631.03, + "probability": 0.5243 + }, + { + "start": 27631.74, + "end": 27635.87, + "probability": 0.6753 + }, + { + "start": 27636.19, + "end": 27638.15, + "probability": 0.9125 + }, + { + "start": 27638.21, + "end": 27640.13, + "probability": 0.7228 + }, + { + "start": 27640.69, + "end": 27647.29, + "probability": 0.6618 + }, + { + "start": 27647.55, + "end": 27650.45, + "probability": 0.927 + }, + { + "start": 27650.67, + "end": 27652.81, + "probability": 0.8214 + }, + { + "start": 27653.31, + "end": 27654.57, + "probability": 0.7857 + }, + { + "start": 27654.57, + "end": 27655.23, + "probability": 0.5906 + }, + { + "start": 27656.53, + "end": 27658.67, + "probability": 0.5182 + }, + { + "start": 27660.23, + "end": 27661.89, + "probability": 0.9255 + }, + { + "start": 27662.25, + "end": 27664.07, + "probability": 0.9548 + }, + { + "start": 27664.17, + "end": 27666.74, + "probability": 0.8177 + }, + { + "start": 27667.43, + "end": 27669.01, + "probability": 0.9537 + }, + { + "start": 27669.13, + "end": 27673.59, + "probability": 0.998 + }, + { + "start": 27674.39, + "end": 27676.26, + "probability": 0.7775 + }, + { + "start": 27677.25, + "end": 27678.49, + "probability": 0.4824 + }, + { + "start": 27678.51, + "end": 27680.59, + "probability": 0.5536 + }, + { + "start": 27680.91, + "end": 27681.34, + "probability": 0.8074 + }, + { + "start": 27682.53, + "end": 27687.17, + "probability": 0.9202 + }, + { + "start": 27688.71, + "end": 27689.65, + "probability": 0.0968 + }, + { + "start": 27690.25, + "end": 27692.37, + "probability": 0.4881 + }, + { + "start": 27692.91, + "end": 27694.83, + "probability": 0.839 + }, + { + "start": 27695.63, + "end": 27697.75, + "probability": 0.9426 + }, + { + "start": 27698.57, + "end": 27700.91, + "probability": 0.6208 + }, + { + "start": 27701.23, + "end": 27702.29, + "probability": 0.6532 + }, + { + "start": 27702.44, + "end": 27704.71, + "probability": 0.6388 + }, + { + "start": 27705.39, + "end": 27707.69, + "probability": 0.7804 + }, + { + "start": 27707.69, + "end": 27710.35, + "probability": 0.8534 + }, + { + "start": 27711.29, + "end": 27711.29, + "probability": 0.366 + }, + { + "start": 27712.35, + "end": 27713.37, + "probability": 0.8629 + }, + { + "start": 27713.89, + "end": 27716.75, + "probability": 0.5391 + }, + { + "start": 27716.87, + "end": 27719.27, + "probability": 0.2499 + }, + { + "start": 27719.93, + "end": 27724.27, + "probability": 0.8776 + }, + { + "start": 27725.55, + "end": 27726.71, + "probability": 0.7335 + }, + { + "start": 27727.47, + "end": 27733.87, + "probability": 0.7215 + }, + { + "start": 27735.15, + "end": 27736.57, + "probability": 0.4764 + }, + { + "start": 27736.61, + "end": 27740.01, + "probability": 0.9951 + }, + { + "start": 27740.59, + "end": 27743.31, + "probability": 0.9181 + }, + { + "start": 27743.51, + "end": 27745.99, + "probability": 0.6564 + }, + { + "start": 27746.41, + "end": 27752.93, + "probability": 0.9688 + }, + { + "start": 27753.13, + "end": 27754.21, + "probability": 0.5716 + }, + { + "start": 27754.23, + "end": 27754.99, + "probability": 0.5032 + }, + { + "start": 27755.05, + "end": 27755.55, + "probability": 0.7414 + }, + { + "start": 27756.01, + "end": 27757.42, + "probability": 0.6617 + }, + { + "start": 27758.1, + "end": 27761.11, + "probability": 0.7646 + }, + { + "start": 27761.49, + "end": 27762.15, + "probability": 0.7004 + }, + { + "start": 27762.85, + "end": 27763.05, + "probability": 0.734 + }, + { + "start": 27763.43, + "end": 27766.89, + "probability": 0.9451 + }, + { + "start": 27767.17, + "end": 27768.91, + "probability": 0.9054 + }, + { + "start": 27769.67, + "end": 27773.81, + "probability": 0.8372 + }, + { + "start": 27774.01, + "end": 27774.11, + "probability": 0.7295 + }, + { + "start": 27774.21, + "end": 27774.83, + "probability": 0.5515 + }, + { + "start": 27776.93, + "end": 27781.31, + "probability": 0.896 + }, + { + "start": 27781.89, + "end": 27782.87, + "probability": 0.9978 + }, + { + "start": 27783.41, + "end": 27785.41, + "probability": 0.963 + }, + { + "start": 27785.77, + "end": 27787.63, + "probability": 0.6186 + }, + { + "start": 27787.83, + "end": 27788.65, + "probability": 0.5285 + }, + { + "start": 27788.71, + "end": 27791.75, + "probability": 0.7629 + }, + { + "start": 27792.21, + "end": 27793.19, + "probability": 0.339 + }, + { + "start": 27793.59, + "end": 27796.29, + "probability": 0.8591 + }, + { + "start": 27796.43, + "end": 27796.55, + "probability": 0.3732 + }, + { + "start": 27797.15, + "end": 27797.15, + "probability": 0.2616 + }, + { + "start": 27797.45, + "end": 27798.81, + "probability": 0.5411 + }, + { + "start": 27799.37, + "end": 27802.13, + "probability": 0.7656 + }, + { + "start": 27802.75, + "end": 27803.37, + "probability": 0.6143 + }, + { + "start": 27819.49, + "end": 27819.73, + "probability": 0.2702 + }, + { + "start": 27819.73, + "end": 27821.35, + "probability": 0.6096 + }, + { + "start": 27822.85, + "end": 27825.59, + "probability": 0.9172 + }, + { + "start": 27825.99, + "end": 27827.84, + "probability": 0.7071 + }, + { + "start": 27829.03, + "end": 27830.53, + "probability": 0.9834 + }, + { + "start": 27830.83, + "end": 27831.93, + "probability": 0.4273 + }, + { + "start": 27832.73, + "end": 27834.87, + "probability": 0.3475 + }, + { + "start": 27836.13, + "end": 27838.37, + "probability": 0.8889 + }, + { + "start": 27838.89, + "end": 27840.97, + "probability": 0.8306 + }, + { + "start": 27842.63, + "end": 27846.75, + "probability": 0.9966 + }, + { + "start": 27847.51, + "end": 27849.91, + "probability": 0.9253 + }, + { + "start": 27851.45, + "end": 27853.75, + "probability": 0.9865 + }, + { + "start": 27853.75, + "end": 27854.97, + "probability": 0.8287 + }, + { + "start": 27856.01, + "end": 27859.57, + "probability": 0.9403 + }, + { + "start": 27860.31, + "end": 27862.85, + "probability": 0.9741 + }, + { + "start": 27863.79, + "end": 27866.07, + "probability": 0.7534 + }, + { + "start": 27867.19, + "end": 27869.73, + "probability": 0.9929 + }, + { + "start": 27870.65, + "end": 27872.91, + "probability": 0.565 + }, + { + "start": 27874.05, + "end": 27878.61, + "probability": 0.8127 + }, + { + "start": 27880.33, + "end": 27883.51, + "probability": 0.9768 + }, + { + "start": 27885.41, + "end": 27891.73, + "probability": 0.9749 + }, + { + "start": 27892.77, + "end": 27894.97, + "probability": 0.9903 + }, + { + "start": 27895.61, + "end": 27899.57, + "probability": 0.9515 + }, + { + "start": 27899.75, + "end": 27900.75, + "probability": 0.6897 + }, + { + "start": 27901.43, + "end": 27904.15, + "probability": 0.7735 + }, + { + "start": 27905.43, + "end": 27907.95, + "probability": 0.757 + }, + { + "start": 27908.85, + "end": 27912.37, + "probability": 0.8936 + }, + { + "start": 27912.77, + "end": 27913.77, + "probability": 0.6528 + }, + { + "start": 27915.03, + "end": 27918.11, + "probability": 0.9762 + }, + { + "start": 27918.97, + "end": 27920.59, + "probability": 0.9081 + }, + { + "start": 27921.47, + "end": 27923.71, + "probability": 0.9953 + }, + { + "start": 27924.41, + "end": 27925.87, + "probability": 0.7755 + }, + { + "start": 27925.99, + "end": 27929.71, + "probability": 0.9717 + }, + { + "start": 27930.59, + "end": 27934.85, + "probability": 0.9706 + }, + { + "start": 27935.73, + "end": 27936.87, + "probability": 0.6823 + }, + { + "start": 27937.81, + "end": 27941.49, + "probability": 0.9474 + }, + { + "start": 27942.19, + "end": 27943.81, + "probability": 0.9963 + }, + { + "start": 27944.53, + "end": 27946.69, + "probability": 0.9743 + }, + { + "start": 27947.25, + "end": 27949.01, + "probability": 0.8348 + }, + { + "start": 27949.93, + "end": 27953.29, + "probability": 0.9681 + }, + { + "start": 27953.49, + "end": 27958.1, + "probability": 0.6858 + }, + { + "start": 27958.89, + "end": 27959.42, + "probability": 0.9304 + }, + { + "start": 27960.59, + "end": 27961.93, + "probability": 0.9576 + }, + { + "start": 27963.33, + "end": 27963.81, + "probability": 0.7392 + }, + { + "start": 27963.95, + "end": 27964.35, + "probability": 0.9921 + }, + { + "start": 27964.43, + "end": 27970.11, + "probability": 0.9856 + }, + { + "start": 27970.77, + "end": 27973.05, + "probability": 0.9854 + }, + { + "start": 27974.75, + "end": 27975.95, + "probability": 0.7828 + }, + { + "start": 27977.27, + "end": 27979.91, + "probability": 0.8398 + }, + { + "start": 27980.61, + "end": 27981.85, + "probability": 0.9974 + }, + { + "start": 27982.39, + "end": 27985.07, + "probability": 0.9924 + }, + { + "start": 27985.71, + "end": 27989.05, + "probability": 0.9929 + }, + { + "start": 27989.05, + "end": 27995.05, + "probability": 0.9977 + }, + { + "start": 27998.53, + "end": 28002.31, + "probability": 0.9799 + }, + { + "start": 28003.29, + "end": 28005.01, + "probability": 0.9801 + }, + { + "start": 28005.77, + "end": 28008.43, + "probability": 0.9948 + }, + { + "start": 28009.67, + "end": 28013.55, + "probability": 0.7746 + }, + { + "start": 28014.55, + "end": 28016.93, + "probability": 0.7598 + }, + { + "start": 28018.59, + "end": 28022.37, + "probability": 0.7509 + }, + { + "start": 28023.33, + "end": 28025.81, + "probability": 0.9947 + }, + { + "start": 28026.51, + "end": 28029.77, + "probability": 0.9783 + }, + { + "start": 28030.79, + "end": 28032.17, + "probability": 0.8376 + }, + { + "start": 28032.33, + "end": 28036.99, + "probability": 0.6914 + }, + { + "start": 28037.97, + "end": 28042.97, + "probability": 0.7667 + }, + { + "start": 28043.83, + "end": 28046.35, + "probability": 0.6555 + }, + { + "start": 28047.41, + "end": 28050.81, + "probability": 0.7786 + }, + { + "start": 28050.95, + "end": 28051.23, + "probability": 0.4142 + }, + { + "start": 28051.25, + "end": 28051.61, + "probability": 0.9033 + }, + { + "start": 28051.65, + "end": 28052.11, + "probability": 0.8936 + }, + { + "start": 28053.05, + "end": 28054.03, + "probability": 0.962 + }, + { + "start": 28054.91, + "end": 28056.59, + "probability": 0.5618 + }, + { + "start": 28056.81, + "end": 28059.47, + "probability": 0.9849 + }, + { + "start": 28060.49, + "end": 28062.37, + "probability": 0.9786 + }, + { + "start": 28063.11, + "end": 28066.77, + "probability": 0.9771 + }, + { + "start": 28069.08, + "end": 28071.19, + "probability": 0.8901 + }, + { + "start": 28071.85, + "end": 28073.13, + "probability": 0.5014 + }, + { + "start": 28073.91, + "end": 28077.59, + "probability": 0.9705 + }, + { + "start": 28079.17, + "end": 28084.29, + "probability": 0.8308 + }, + { + "start": 28085.07, + "end": 28088.07, + "probability": 0.9992 + }, + { + "start": 28088.85, + "end": 28090.27, + "probability": 0.8782 + }, + { + "start": 28091.35, + "end": 28094.13, + "probability": 0.838 + }, + { + "start": 28095.41, + "end": 28097.63, + "probability": 0.7992 + }, + { + "start": 28098.65, + "end": 28101.75, + "probability": 0.9434 + }, + { + "start": 28102.65, + "end": 28105.29, + "probability": 0.964 + }, + { + "start": 28106.15, + "end": 28108.57, + "probability": 0.79 + }, + { + "start": 28109.23, + "end": 28112.47, + "probability": 0.6132 + }, + { + "start": 28113.27, + "end": 28114.25, + "probability": 0.9712 + }, + { + "start": 28114.87, + "end": 28116.39, + "probability": 0.9868 + }, + { + "start": 28117.83, + "end": 28118.73, + "probability": 0.5813 + }, + { + "start": 28119.69, + "end": 28120.91, + "probability": 0.9594 + }, + { + "start": 28121.71, + "end": 28123.41, + "probability": 0.9834 + }, + { + "start": 28124.49, + "end": 28125.73, + "probability": 0.9194 + }, + { + "start": 28126.49, + "end": 28127.01, + "probability": 0.9582 + }, + { + "start": 28127.95, + "end": 28129.97, + "probability": 0.9974 + }, + { + "start": 28130.13, + "end": 28132.41, + "probability": 0.9282 + }, + { + "start": 28132.41, + "end": 28132.65, + "probability": 0.3486 + }, + { + "start": 28132.81, + "end": 28133.89, + "probability": 0.2598 + }, + { + "start": 28133.91, + "end": 28135.81, + "probability": 0.9025 + }, + { + "start": 28136.53, + "end": 28139.39, + "probability": 0.8689 + }, + { + "start": 28140.17, + "end": 28140.39, + "probability": 0.474 + }, + { + "start": 28140.39, + "end": 28143.05, + "probability": 0.8561 + }, + { + "start": 28143.57, + "end": 28145.27, + "probability": 0.8534 + }, + { + "start": 28146.53, + "end": 28149.17, + "probability": 0.7493 + }, + { + "start": 28150.03, + "end": 28151.11, + "probability": 0.9602 + }, + { + "start": 28151.91, + "end": 28155.17, + "probability": 0.9349 + }, + { + "start": 28155.89, + "end": 28160.11, + "probability": 0.9682 + }, + { + "start": 28160.73, + "end": 28162.41, + "probability": 0.9773 + }, + { + "start": 28163.47, + "end": 28164.85, + "probability": 0.6638 + }, + { + "start": 28165.81, + "end": 28167.67, + "probability": 0.9615 + }, + { + "start": 28168.43, + "end": 28169.34, + "probability": 0.5688 + }, + { + "start": 28170.49, + "end": 28173.51, + "probability": 0.9368 + }, + { + "start": 28174.53, + "end": 28177.61, + "probability": 0.9375 + }, + { + "start": 28178.91, + "end": 28181.75, + "probability": 0.9829 + }, + { + "start": 28182.39, + "end": 28184.65, + "probability": 0.9416 + }, + { + "start": 28185.59, + "end": 28186.59, + "probability": 0.8209 + }, + { + "start": 28186.65, + "end": 28187.61, + "probability": 0.9156 + }, + { + "start": 28188.19, + "end": 28190.91, + "probability": 0.9535 + }, + { + "start": 28191.81, + "end": 28194.37, + "probability": 0.7314 + }, + { + "start": 28195.41, + "end": 28199.59, + "probability": 0.9871 + }, + { + "start": 28199.59, + "end": 28202.03, + "probability": 0.9912 + }, + { + "start": 28202.91, + "end": 28204.01, + "probability": 0.7674 + }, + { + "start": 28204.59, + "end": 28206.87, + "probability": 0.9956 + }, + { + "start": 28207.45, + "end": 28209.35, + "probability": 0.9111 + }, + { + "start": 28211.31, + "end": 28214.47, + "probability": 0.9916 + }, + { + "start": 28215.41, + "end": 28218.41, + "probability": 0.7469 + }, + { + "start": 28219.69, + "end": 28222.19, + "probability": 0.9716 + }, + { + "start": 28223.01, + "end": 28225.81, + "probability": 0.9226 + }, + { + "start": 28226.75, + "end": 28227.71, + "probability": 0.7057 + }, + { + "start": 28228.39, + "end": 28230.23, + "probability": 0.9914 + }, + { + "start": 28230.81, + "end": 28231.95, + "probability": 0.7006 + }, + { + "start": 28232.35, + "end": 28234.17, + "probability": 0.9521 + }, + { + "start": 28234.99, + "end": 28237.32, + "probability": 0.4856 + }, + { + "start": 28238.19, + "end": 28240.27, + "probability": 0.9845 + }, + { + "start": 28241.17, + "end": 28243.15, + "probability": 0.8721 + }, + { + "start": 28243.97, + "end": 28244.89, + "probability": 0.8809 + }, + { + "start": 28245.95, + "end": 28251.61, + "probability": 0.9905 + }, + { + "start": 28252.21, + "end": 28254.15, + "probability": 0.6838 + }, + { + "start": 28254.71, + "end": 28257.45, + "probability": 0.9907 + }, + { + "start": 28258.25, + "end": 28260.59, + "probability": 0.7954 + }, + { + "start": 28261.59, + "end": 28264.29, + "probability": 0.9603 + }, + { + "start": 28264.91, + "end": 28268.21, + "probability": 0.849 + }, + { + "start": 28269.81, + "end": 28273.15, + "probability": 0.9128 + }, + { + "start": 28273.83, + "end": 28275.13, + "probability": 0.3048 + }, + { + "start": 28275.27, + "end": 28275.73, + "probability": 0.7481 + }, + { + "start": 28275.89, + "end": 28276.69, + "probability": 0.7799 + }, + { + "start": 28277.53, + "end": 28283.11, + "probability": 0.4887 + }, + { + "start": 28284.07, + "end": 28285.01, + "probability": 0.8161 + }, + { + "start": 28285.63, + "end": 28287.51, + "probability": 0.7424 + }, + { + "start": 28288.39, + "end": 28290.75, + "probability": 0.9863 + }, + { + "start": 28291.65, + "end": 28294.89, + "probability": 0.9616 + }, + { + "start": 28295.83, + "end": 28299.39, + "probability": 0.7919 + }, + { + "start": 28299.53, + "end": 28302.31, + "probability": 0.534 + }, + { + "start": 28303.02, + "end": 28307.53, + "probability": 0.9504 + }, + { + "start": 28307.89, + "end": 28309.69, + "probability": 0.9753 + }, + { + "start": 28310.25, + "end": 28313.85, + "probability": 0.9963 + }, + { + "start": 28313.99, + "end": 28314.59, + "probability": 0.795 + }, + { + "start": 28315.79, + "end": 28320.63, + "probability": 0.8515 + }, + { + "start": 28322.15, + "end": 28324.63, + "probability": 0.8521 + }, + { + "start": 28324.67, + "end": 28326.11, + "probability": 0.877 + }, + { + "start": 28326.97, + "end": 28330.33, + "probability": 0.9795 + }, + { + "start": 28330.33, + "end": 28333.31, + "probability": 0.8934 + }, + { + "start": 28335.55, + "end": 28340.85, + "probability": 0.7705 + }, + { + "start": 28341.73, + "end": 28344.71, + "probability": 0.9426 + }, + { + "start": 28344.71, + "end": 28350.97, + "probability": 0.9967 + }, + { + "start": 28351.85, + "end": 28353.17, + "probability": 0.9902 + }, + { + "start": 28353.25, + "end": 28356.09, + "probability": 0.9889 + }, + { + "start": 28356.87, + "end": 28358.36, + "probability": 0.9452 + }, + { + "start": 28359.37, + "end": 28360.19, + "probability": 0.9037 + }, + { + "start": 28360.83, + "end": 28363.41, + "probability": 0.9257 + }, + { + "start": 28364.13, + "end": 28366.31, + "probability": 0.9871 + }, + { + "start": 28366.31, + "end": 28369.27, + "probability": 0.9896 + }, + { + "start": 28370.07, + "end": 28373.89, + "probability": 0.7505 + }, + { + "start": 28374.93, + "end": 28375.81, + "probability": 0.841 + }, + { + "start": 28376.61, + "end": 28377.75, + "probability": 0.8441 + }, + { + "start": 28378.65, + "end": 28381.63, + "probability": 0.9845 + }, + { + "start": 28382.31, + "end": 28383.21, + "probability": 0.9837 + }, + { + "start": 28384.07, + "end": 28387.05, + "probability": 0.9868 + }, + { + "start": 28387.87, + "end": 28390.99, + "probability": 0.9552 + }, + { + "start": 28391.15, + "end": 28392.95, + "probability": 0.847 + }, + { + "start": 28394.05, + "end": 28395.63, + "probability": 0.8138 + }, + { + "start": 28397.31, + "end": 28400.57, + "probability": 0.9183 + }, + { + "start": 28401.55, + "end": 28403.53, + "probability": 0.9609 + }, + { + "start": 28404.17, + "end": 28405.33, + "probability": 0.9808 + }, + { + "start": 28406.97, + "end": 28408.73, + "probability": 0.4105 + }, + { + "start": 28409.47, + "end": 28415.23, + "probability": 0.8821 + }, + { + "start": 28418.02, + "end": 28420.69, + "probability": 0.9894 + }, + { + "start": 28421.93, + "end": 28423.39, + "probability": 0.7663 + }, + { + "start": 28424.31, + "end": 28428.95, + "probability": 0.9872 + }, + { + "start": 28429.07, + "end": 28429.79, + "probability": 0.9858 + }, + { + "start": 28430.77, + "end": 28432.33, + "probability": 0.9728 + }, + { + "start": 28433.01, + "end": 28433.87, + "probability": 0.8723 + }, + { + "start": 28433.99, + "end": 28435.16, + "probability": 0.7506 + }, + { + "start": 28435.93, + "end": 28436.93, + "probability": 0.949 + }, + { + "start": 28437.63, + "end": 28440.37, + "probability": 0.9869 + }, + { + "start": 28441.39, + "end": 28443.55, + "probability": 0.9155 + }, + { + "start": 28444.23, + "end": 28447.37, + "probability": 0.8432 + }, + { + "start": 28447.67, + "end": 28448.23, + "probability": 0.938 + }, + { + "start": 28448.69, + "end": 28449.87, + "probability": 0.8132 + }, + { + "start": 28449.93, + "end": 28450.53, + "probability": 0.8813 + }, + { + "start": 28451.31, + "end": 28452.63, + "probability": 0.8405 + }, + { + "start": 28453.79, + "end": 28454.99, + "probability": 0.875 + }, + { + "start": 28455.63, + "end": 28456.97, + "probability": 0.8709 + }, + { + "start": 28457.49, + "end": 28459.23, + "probability": 0.9899 + }, + { + "start": 28460.27, + "end": 28464.63, + "probability": 0.8901 + }, + { + "start": 28465.85, + "end": 28470.51, + "probability": 0.9454 + }, + { + "start": 28471.27, + "end": 28472.67, + "probability": 0.5085 + }, + { + "start": 28473.09, + "end": 28474.39, + "probability": 0.9995 + }, + { + "start": 28474.91, + "end": 28476.93, + "probability": 0.9712 + }, + { + "start": 28477.31, + "end": 28477.59, + "probability": 0.7898 + }, + { + "start": 28477.77, + "end": 28478.51, + "probability": 0.2957 + }, + { + "start": 28478.63, + "end": 28481.93, + "probability": 0.6926 + }, + { + "start": 28482.83, + "end": 28484.03, + "probability": 0.8381 + }, + { + "start": 28484.19, + "end": 28486.79, + "probability": 0.3575 + }, + { + "start": 28488.37, + "end": 28492.25, + "probability": 0.5031 + }, + { + "start": 28492.95, + "end": 28494.15, + "probability": 0.0797 + }, + { + "start": 28497.13, + "end": 28499.45, + "probability": 0.5729 + }, + { + "start": 28500.43, + "end": 28501.57, + "probability": 0.5765 + }, + { + "start": 28502.99, + "end": 28504.57, + "probability": 0.3882 + }, + { + "start": 28505.09, + "end": 28506.13, + "probability": 0.6814 + }, + { + "start": 28509.73, + "end": 28512.07, + "probability": 0.6096 + }, + { + "start": 28512.23, + "end": 28513.51, + "probability": 0.8491 + }, + { + "start": 28514.57, + "end": 28515.95, + "probability": 0.7856 + }, + { + "start": 28517.17, + "end": 28520.71, + "probability": 0.9748 + }, + { + "start": 28529.75, + "end": 28530.65, + "probability": 0.265 + }, + { + "start": 28538.99, + "end": 28539.15, + "probability": 0.3996 + }, + { + "start": 28539.15, + "end": 28539.93, + "probability": 0.0864 + }, + { + "start": 28540.63, + "end": 28542.09, + "probability": 0.2841 + }, + { + "start": 28542.81, + "end": 28545.81, + "probability": 0.9609 + }, + { + "start": 28547.79, + "end": 28550.31, + "probability": 0.728 + }, + { + "start": 28552.17, + "end": 28552.41, + "probability": 0.0495 + }, + { + "start": 28552.41, + "end": 28555.61, + "probability": 0.3606 + }, + { + "start": 28556.61, + "end": 28563.17, + "probability": 0.9666 + }, + { + "start": 28564.25, + "end": 28568.53, + "probability": 0.8027 + }, + { + "start": 28569.47, + "end": 28569.95, + "probability": 0.6764 + }, + { + "start": 28570.53, + "end": 28571.29, + "probability": 0.4422 + }, + { + "start": 28571.65, + "end": 28574.63, + "probability": 0.6352 + }, + { + "start": 28575.35, + "end": 28578.83, + "probability": 0.8562 + }, + { + "start": 28581.69, + "end": 28582.81, + "probability": 0.85 + }, + { + "start": 28583.51, + "end": 28584.39, + "probability": 0.9388 + }, + { + "start": 28585.17, + "end": 28586.21, + "probability": 0.7606 + }, + { + "start": 28587.85, + "end": 28589.47, + "probability": 0.8621 + }, + { + "start": 28590.97, + "end": 28593.09, + "probability": 0.6569 + }, + { + "start": 28595.09, + "end": 28595.53, + "probability": 0.3115 + }, + { + "start": 28600.19, + "end": 28607.61, + "probability": 0.9842 + }, + { + "start": 28608.75, + "end": 28610.83, + "probability": 0.8911 + }, + { + "start": 28611.57, + "end": 28614.95, + "probability": 0.8412 + }, + { + "start": 28617.09, + "end": 28622.49, + "probability": 0.9763 + }, + { + "start": 28623.63, + "end": 28626.07, + "probability": 0.902 + }, + { + "start": 28628.53, + "end": 28630.43, + "probability": 0.9095 + }, + { + "start": 28630.55, + "end": 28634.51, + "probability": 0.7924 + }, + { + "start": 28635.79, + "end": 28642.03, + "probability": 0.9595 + }, + { + "start": 28643.25, + "end": 28643.89, + "probability": 0.9792 + }, + { + "start": 28645.29, + "end": 28646.45, + "probability": 0.4954 + }, + { + "start": 28646.99, + "end": 28649.45, + "probability": 0.5953 + }, + { + "start": 28651.25, + "end": 28655.81, + "probability": 0.8325 + }, + { + "start": 28657.03, + "end": 28657.93, + "probability": 0.9466 + }, + { + "start": 28658.31, + "end": 28661.01, + "probability": 0.9785 + }, + { + "start": 28661.29, + "end": 28662.39, + "probability": 0.9588 + }, + { + "start": 28666.57, + "end": 28668.49, + "probability": 0.3578 + }, + { + "start": 28669.85, + "end": 28671.17, + "probability": 0.9014 + }, + { + "start": 28673.13, + "end": 28676.35, + "probability": 0.9849 + }, + { + "start": 28681.95, + "end": 28682.67, + "probability": 0.2823 + }, + { + "start": 28683.73, + "end": 28686.39, + "probability": 0.7902 + }, + { + "start": 28687.99, + "end": 28689.19, + "probability": 0.8515 + }, + { + "start": 28689.63, + "end": 28695.87, + "probability": 0.8212 + }, + { + "start": 28695.87, + "end": 28697.49, + "probability": 0.9504 + }, + { + "start": 28699.11, + "end": 28700.85, + "probability": 0.9728 + }, + { + "start": 28701.01, + "end": 28702.49, + "probability": 0.9961 + }, + { + "start": 28704.23, + "end": 28706.99, + "probability": 0.9988 + }, + { + "start": 28707.65, + "end": 28709.08, + "probability": 0.9989 + }, + { + "start": 28712.31, + "end": 28715.27, + "probability": 0.999 + }, + { + "start": 28715.92, + "end": 28720.89, + "probability": 0.957 + }, + { + "start": 28722.07, + "end": 28724.83, + "probability": 0.8073 + }, + { + "start": 28727.99, + "end": 28733.65, + "probability": 0.9976 + }, + { + "start": 28735.91, + "end": 28737.27, + "probability": 0.8963 + }, + { + "start": 28737.81, + "end": 28740.15, + "probability": 0.9861 + }, + { + "start": 28740.55, + "end": 28741.09, + "probability": 0.9979 + }, + { + "start": 28742.81, + "end": 28743.71, + "probability": 0.6715 + }, + { + "start": 28745.47, + "end": 28746.53, + "probability": 0.8485 + }, + { + "start": 28747.31, + "end": 28751.03, + "probability": 0.98 + }, + { + "start": 28751.21, + "end": 28753.03, + "probability": 0.7645 + }, + { + "start": 28755.51, + "end": 28757.83, + "probability": 0.8871 + }, + { + "start": 28759.25, + "end": 28761.99, + "probability": 0.9985 + }, + { + "start": 28766.13, + "end": 28769.61, + "probability": 0.9829 + }, + { + "start": 28771.33, + "end": 28773.43, + "probability": 0.897 + }, + { + "start": 28773.97, + "end": 28774.57, + "probability": 0.5653 + }, + { + "start": 28776.63, + "end": 28779.41, + "probability": 0.8861 + }, + { + "start": 28780.71, + "end": 28786.39, + "probability": 0.944 + }, + { + "start": 28787.43, + "end": 28788.07, + "probability": 0.9893 + }, + { + "start": 28790.13, + "end": 28792.45, + "probability": 0.9921 + }, + { + "start": 28792.55, + "end": 28793.67, + "probability": 0.9365 + }, + { + "start": 28795.11, + "end": 28798.85, + "probability": 0.9458 + }, + { + "start": 28799.55, + "end": 28801.47, + "probability": 0.9951 + }, + { + "start": 28802.77, + "end": 28807.13, + "probability": 0.971 + }, + { + "start": 28807.87, + "end": 28808.21, + "probability": 0.8939 + }, + { + "start": 28809.81, + "end": 28810.59, + "probability": 0.9731 + }, + { + "start": 28813.45, + "end": 28821.25, + "probability": 0.9338 + }, + { + "start": 28822.55, + "end": 28826.09, + "probability": 0.9293 + }, + { + "start": 28827.79, + "end": 28829.95, + "probability": 0.9731 + }, + { + "start": 28831.53, + "end": 28834.33, + "probability": 0.9285 + }, + { + "start": 28835.27, + "end": 28837.55, + "probability": 0.944 + }, + { + "start": 28838.83, + "end": 28840.79, + "probability": 0.7771 + }, + { + "start": 28842.65, + "end": 28846.81, + "probability": 0.9929 + }, + { + "start": 28849.19, + "end": 28850.05, + "probability": 0.7253 + }, + { + "start": 28850.67, + "end": 28853.89, + "probability": 0.8647 + }, + { + "start": 28855.41, + "end": 28861.89, + "probability": 0.8575 + }, + { + "start": 28863.31, + "end": 28864.59, + "probability": 0.7849 + }, + { + "start": 28869.91, + "end": 28870.57, + "probability": 0.6426 + }, + { + "start": 28871.49, + "end": 28872.65, + "probability": 0.7978 + }, + { + "start": 28872.97, + "end": 28874.23, + "probability": 0.9878 + }, + { + "start": 28875.21, + "end": 28876.21, + "probability": 0.9478 + }, + { + "start": 28878.51, + "end": 28882.15, + "probability": 0.9747 + }, + { + "start": 28883.21, + "end": 28886.37, + "probability": 0.7084 + }, + { + "start": 28886.69, + "end": 28889.11, + "probability": 0.6516 + }, + { + "start": 28889.31, + "end": 28891.37, + "probability": 0.9722 + }, + { + "start": 28891.43, + "end": 28892.37, + "probability": 0.8828 + }, + { + "start": 28892.51, + "end": 28893.85, + "probability": 0.5731 + }, + { + "start": 28895.05, + "end": 28895.59, + "probability": 0.834 + }, + { + "start": 28896.27, + "end": 28897.03, + "probability": 0.6931 + }, + { + "start": 28897.33, + "end": 28898.57, + "probability": 0.9318 + }, + { + "start": 28898.65, + "end": 28899.31, + "probability": 0.7393 + }, + { + "start": 28899.67, + "end": 28900.77, + "probability": 0.8909 + }, + { + "start": 28902.73, + "end": 28905.17, + "probability": 0.8344 + }, + { + "start": 28906.39, + "end": 28907.09, + "probability": 0.9818 + }, + { + "start": 28907.65, + "end": 28909.99, + "probability": 0.9965 + }, + { + "start": 28910.87, + "end": 28911.29, + "probability": 0.7882 + }, + { + "start": 28913.11, + "end": 28916.11, + "probability": 0.8285 + }, + { + "start": 28918.95, + "end": 28923.49, + "probability": 0.6643 + }, + { + "start": 28923.53, + "end": 28928.65, + "probability": 0.824 + }, + { + "start": 28930.35, + "end": 28933.39, + "probability": 0.7896 + }, + { + "start": 28934.73, + "end": 28937.97, + "probability": 0.9443 + }, + { + "start": 28939.75, + "end": 28942.65, + "probability": 0.9919 + }, + { + "start": 28947.05, + "end": 28950.13, + "probability": 0.9288 + }, + { + "start": 28951.61, + "end": 28952.01, + "probability": 0.9933 + }, + { + "start": 28954.81, + "end": 28957.31, + "probability": 0.9893 + }, + { + "start": 28961.15, + "end": 28962.25, + "probability": 0.7146 + }, + { + "start": 28963.77, + "end": 28965.43, + "probability": 0.9964 + }, + { + "start": 28966.11, + "end": 28968.23, + "probability": 0.7659 + }, + { + "start": 28969.87, + "end": 28971.77, + "probability": 0.7819 + }, + { + "start": 28972.63, + "end": 28973.85, + "probability": 0.8247 + }, + { + "start": 28975.75, + "end": 28978.45, + "probability": 0.9356 + }, + { + "start": 28978.65, + "end": 28980.47, + "probability": 0.8347 + }, + { + "start": 28981.61, + "end": 28983.15, + "probability": 0.9836 + }, + { + "start": 28983.95, + "end": 28985.93, + "probability": 0.9243 + }, + { + "start": 28986.69, + "end": 28990.27, + "probability": 0.9561 + }, + { + "start": 28990.71, + "end": 28992.21, + "probability": 0.9966 + }, + { + "start": 28993.83, + "end": 28995.67, + "probability": 0.9782 + }, + { + "start": 28995.73, + "end": 28996.89, + "probability": 0.9881 + }, + { + "start": 28997.05, + "end": 28998.65, + "probability": 0.6869 + }, + { + "start": 29001.13, + "end": 29001.79, + "probability": 0.8891 + }, + { + "start": 29003.07, + "end": 29005.83, + "probability": 0.9316 + }, + { + "start": 29007.03, + "end": 29007.83, + "probability": 0.8928 + }, + { + "start": 29009.93, + "end": 29011.55, + "probability": 0.766 + }, + { + "start": 29013.01, + "end": 29015.38, + "probability": 0.8422 + }, + { + "start": 29017.39, + "end": 29019.51, + "probability": 0.9883 + }, + { + "start": 29021.79, + "end": 29022.43, + "probability": 0.9723 + }, + { + "start": 29026.19, + "end": 29030.61, + "probability": 0.9702 + }, + { + "start": 29034.29, + "end": 29035.45, + "probability": 0.6945 + }, + { + "start": 29037.93, + "end": 29040.33, + "probability": 0.7898 + }, + { + "start": 29042.09, + "end": 29045.81, + "probability": 0.894 + }, + { + "start": 29046.87, + "end": 29051.23, + "probability": 0.8877 + }, + { + "start": 29052.05, + "end": 29052.51, + "probability": 0.8545 + }, + { + "start": 29054.44, + "end": 29055.99, + "probability": 0.8628 + }, + { + "start": 29056.39, + "end": 29057.25, + "probability": 0.8892 + }, + { + "start": 29059.73, + "end": 29062.93, + "probability": 0.7841 + }, + { + "start": 29063.61, + "end": 29065.37, + "probability": 0.8355 + }, + { + "start": 29066.61, + "end": 29067.77, + "probability": 0.756 + }, + { + "start": 29069.23, + "end": 29070.15, + "probability": 0.9684 + }, + { + "start": 29071.43, + "end": 29074.29, + "probability": 0.979 + }, + { + "start": 29074.41, + "end": 29076.1, + "probability": 0.9641 + }, + { + "start": 29076.39, + "end": 29077.67, + "probability": 0.8459 + }, + { + "start": 29077.85, + "end": 29079.55, + "probability": 0.9839 + }, + { + "start": 29082.15, + "end": 29083.57, + "probability": 0.6547 + }, + { + "start": 29086.75, + "end": 29089.55, + "probability": 0.7304 + }, + { + "start": 29090.41, + "end": 29092.97, + "probability": 0.9612 + }, + { + "start": 29093.09, + "end": 29094.19, + "probability": 0.9786 + }, + { + "start": 29094.31, + "end": 29095.81, + "probability": 0.7999 + }, + { + "start": 29096.63, + "end": 29099.07, + "probability": 0.6111 + }, + { + "start": 29104.41, + "end": 29107.45, + "probability": 0.6736 + }, + { + "start": 29109.37, + "end": 29109.73, + "probability": 0.4121 + }, + { + "start": 29111.77, + "end": 29114.13, + "probability": 0.9254 + }, + { + "start": 29115.27, + "end": 29116.15, + "probability": 0.045 + }, + { + "start": 29117.33, + "end": 29119.61, + "probability": 0.7245 + }, + { + "start": 29120.21, + "end": 29124.85, + "probability": 0.9242 + }, + { + "start": 29126.89, + "end": 29128.31, + "probability": 0.8545 + }, + { + "start": 29128.89, + "end": 29129.51, + "probability": 0.6329 + }, + { + "start": 29129.53, + "end": 29130.03, + "probability": 0.9836 + }, + { + "start": 29130.53, + "end": 29131.03, + "probability": 0.7696 + }, + { + "start": 29131.13, + "end": 29131.95, + "probability": 0.841 + }, + { + "start": 29132.23, + "end": 29133.37, + "probability": 0.8625 + }, + { + "start": 29134.15, + "end": 29135.59, + "probability": 0.6331 + }, + { + "start": 29136.35, + "end": 29136.97, + "probability": 0.8482 + }, + { + "start": 29137.63, + "end": 29138.57, + "probability": 0.8604 + }, + { + "start": 29138.61, + "end": 29140.65, + "probability": 0.9341 + }, + { + "start": 29140.65, + "end": 29141.69, + "probability": 0.7644 + }, + { + "start": 29141.77, + "end": 29142.23, + "probability": 0.8725 + }, + { + "start": 29146.03, + "end": 29147.17, + "probability": 0.8188 + }, + { + "start": 29149.03, + "end": 29152.87, + "probability": 0.6398 + }, + { + "start": 29153.93, + "end": 29154.39, + "probability": 0.5023 + }, + { + "start": 29154.61, + "end": 29158.05, + "probability": 0.9773 + }, + { + "start": 29158.57, + "end": 29160.25, + "probability": 0.5625 + }, + { + "start": 29161.59, + "end": 29164.71, + "probability": 0.6287 + }, + { + "start": 29166.43, + "end": 29169.69, + "probability": 0.9892 + }, + { + "start": 29171.51, + "end": 29175.33, + "probability": 0.7855 + }, + { + "start": 29176.29, + "end": 29177.09, + "probability": 0.9077 + }, + { + "start": 29178.05, + "end": 29179.41, + "probability": 0.7185 + }, + { + "start": 29179.77, + "end": 29182.53, + "probability": 0.8305 + }, + { + "start": 29183.05, + "end": 29183.73, + "probability": 0.8663 + }, + { + "start": 29184.23, + "end": 29186.93, + "probability": 0.9683 + }, + { + "start": 29192.15, + "end": 29195.97, + "probability": 0.9779 + }, + { + "start": 29196.83, + "end": 29199.59, + "probability": 0.8729 + }, + { + "start": 29200.43, + "end": 29203.03, + "probability": 0.6997 + }, + { + "start": 29203.75, + "end": 29207.73, + "probability": 0.9445 + }, + { + "start": 29209.85, + "end": 29210.19, + "probability": 0.8958 + }, + { + "start": 29212.59, + "end": 29214.39, + "probability": 0.6047 + }, + { + "start": 29214.91, + "end": 29216.81, + "probability": 0.9867 + }, + { + "start": 29217.61, + "end": 29220.09, + "probability": 0.5789 + }, + { + "start": 29220.87, + "end": 29223.19, + "probability": 0.772 + }, + { + "start": 29224.23, + "end": 29228.57, + "probability": 0.9382 + }, + { + "start": 29229.47, + "end": 29230.39, + "probability": 0.7575 + }, + { + "start": 29231.97, + "end": 29233.91, + "probability": 0.6679 + }, + { + "start": 29234.69, + "end": 29235.09, + "probability": 0.9819 + }, + { + "start": 29235.95, + "end": 29238.84, + "probability": 0.9639 + }, + { + "start": 29240.23, + "end": 29243.67, + "probability": 0.867 + }, + { + "start": 29244.21, + "end": 29246.23, + "probability": 0.9807 + }, + { + "start": 29247.05, + "end": 29248.91, + "probability": 0.5975 + }, + { + "start": 29251.53, + "end": 29252.53, + "probability": 0.9937 + }, + { + "start": 29254.13, + "end": 29255.19, + "probability": 0.9047 + }, + { + "start": 29257.09, + "end": 29260.03, + "probability": 0.9836 + }, + { + "start": 29261.45, + "end": 29262.53, + "probability": 0.9515 + }, + { + "start": 29263.53, + "end": 29266.51, + "probability": 0.8125 + }, + { + "start": 29269.37, + "end": 29269.87, + "probability": 0.7474 + }, + { + "start": 29270.65, + "end": 29271.73, + "probability": 0.9812 + }, + { + "start": 29273.23, + "end": 29274.71, + "probability": 0.8948 + }, + { + "start": 29275.49, + "end": 29277.33, + "probability": 0.8262 + }, + { + "start": 29278.84, + "end": 29282.85, + "probability": 0.9836 + }, + { + "start": 29283.39, + "end": 29288.19, + "probability": 0.9756 + }, + { + "start": 29288.69, + "end": 29291.75, + "probability": 0.7491 + }, + { + "start": 29291.85, + "end": 29292.47, + "probability": 0.7904 + }, + { + "start": 29292.59, + "end": 29293.49, + "probability": 0.6227 + }, + { + "start": 29294.63, + "end": 29298.03, + "probability": 0.8215 + }, + { + "start": 29298.45, + "end": 29300.87, + "probability": 0.3414 + }, + { + "start": 29301.63, + "end": 29303.65, + "probability": 0.5107 + }, + { + "start": 29304.87, + "end": 29305.45, + "probability": 0.8325 + }, + { + "start": 29306.21, + "end": 29307.43, + "probability": 0.9393 + }, + { + "start": 29307.53, + "end": 29308.85, + "probability": 0.9686 + }, + { + "start": 29308.91, + "end": 29310.23, + "probability": 0.9785 + }, + { + "start": 29310.67, + "end": 29312.46, + "probability": 0.9536 + }, + { + "start": 29312.91, + "end": 29313.77, + "probability": 0.9775 + }, + { + "start": 29314.25, + "end": 29314.83, + "probability": 0.6113 + }, + { + "start": 29314.95, + "end": 29315.97, + "probability": 0.8596 + }, + { + "start": 29316.99, + "end": 29319.81, + "probability": 0.9397 + }, + { + "start": 29338.81, + "end": 29341.03, + "probability": 0.7873 + }, + { + "start": 29341.85, + "end": 29342.07, + "probability": 0.7904 + }, + { + "start": 29342.25, + "end": 29347.83, + "probability": 0.9374 + }, + { + "start": 29350.74, + "end": 29352.77, + "probability": 0.9353 + }, + { + "start": 29353.59, + "end": 29358.29, + "probability": 0.9846 + }, + { + "start": 29361.13, + "end": 29365.25, + "probability": 0.9612 + }, + { + "start": 29366.73, + "end": 29367.77, + "probability": 0.9721 + }, + { + "start": 29369.51, + "end": 29374.73, + "probability": 0.8441 + }, + { + "start": 29376.11, + "end": 29377.23, + "probability": 0.9965 + }, + { + "start": 29377.75, + "end": 29379.53, + "probability": 0.9777 + }, + { + "start": 29380.55, + "end": 29383.01, + "probability": 0.8553 + }, + { + "start": 29387.41, + "end": 29390.69, + "probability": 0.8464 + }, + { + "start": 29392.39, + "end": 29396.03, + "probability": 0.9779 + }, + { + "start": 29397.55, + "end": 29400.53, + "probability": 0.8621 + }, + { + "start": 29402.03, + "end": 29404.03, + "probability": 0.9561 + }, + { + "start": 29406.09, + "end": 29406.75, + "probability": 0.7531 + }, + { + "start": 29408.79, + "end": 29409.81, + "probability": 0.6363 + }, + { + "start": 29410.37, + "end": 29411.39, + "probability": 0.9743 + }, + { + "start": 29413.09, + "end": 29417.39, + "probability": 0.846 + }, + { + "start": 29419.79, + "end": 29421.59, + "probability": 0.9973 + }, + { + "start": 29424.59, + "end": 29425.43, + "probability": 0.8582 + }, + { + "start": 29426.61, + "end": 29427.87, + "probability": 0.9941 + }, + { + "start": 29428.25, + "end": 29430.09, + "probability": 0.7858 + }, + { + "start": 29431.25, + "end": 29432.07, + "probability": 0.7245 + }, + { + "start": 29434.33, + "end": 29436.15, + "probability": 0.3528 + }, + { + "start": 29436.29, + "end": 29436.65, + "probability": 0.6708 + }, + { + "start": 29439.31, + "end": 29440.15, + "probability": 0.933 + }, + { + "start": 29440.99, + "end": 29442.59, + "probability": 0.9625 + }, + { + "start": 29443.81, + "end": 29445.77, + "probability": 0.923 + }, + { + "start": 29447.23, + "end": 29450.01, + "probability": 0.9111 + }, + { + "start": 29451.77, + "end": 29453.95, + "probability": 0.9473 + }, + { + "start": 29456.49, + "end": 29458.75, + "probability": 0.9683 + }, + { + "start": 29459.83, + "end": 29461.91, + "probability": 0.8106 + }, + { + "start": 29462.51, + "end": 29463.87, + "probability": 0.9893 + }, + { + "start": 29465.51, + "end": 29466.91, + "probability": 0.8794 + }, + { + "start": 29471.29, + "end": 29472.97, + "probability": 0.9628 + }, + { + "start": 29474.31, + "end": 29475.35, + "probability": 0.9945 + }, + { + "start": 29476.61, + "end": 29478.51, + "probability": 0.7701 + }, + { + "start": 29478.65, + "end": 29479.09, + "probability": 0.8452 + }, + { + "start": 29481.23, + "end": 29483.97, + "probability": 0.9976 + }, + { + "start": 29486.11, + "end": 29487.11, + "probability": 0.7087 + }, + { + "start": 29489.01, + "end": 29492.45, + "probability": 0.9819 + }, + { + "start": 29493.35, + "end": 29496.27, + "probability": 0.9551 + }, + { + "start": 29497.69, + "end": 29498.43, + "probability": 0.7132 + }, + { + "start": 29499.13, + "end": 29499.93, + "probability": 0.9883 + }, + { + "start": 29500.69, + "end": 29503.17, + "probability": 0.9047 + }, + { + "start": 29505.25, + "end": 29506.09, + "probability": 0.9541 + }, + { + "start": 29507.01, + "end": 29507.99, + "probability": 0.6994 + }, + { + "start": 29508.41, + "end": 29511.35, + "probability": 0.6611 + }, + { + "start": 29514.13, + "end": 29514.79, + "probability": 0.8687 + }, + { + "start": 29517.63, + "end": 29518.47, + "probability": 0.9316 + }, + { + "start": 29520.13, + "end": 29522.35, + "probability": 0.8976 + }, + { + "start": 29523.59, + "end": 29524.3, + "probability": 0.9512 + }, + { + "start": 29524.63, + "end": 29531.51, + "probability": 0.8942 + }, + { + "start": 29531.61, + "end": 29533.99, + "probability": 0.4768 + }, + { + "start": 29534.27, + "end": 29536.95, + "probability": 0.5746 + }, + { + "start": 29537.51, + "end": 29540.97, + "probability": 0.8727 + }, + { + "start": 29541.25, + "end": 29542.33, + "probability": 0.6653 + }, + { + "start": 29543.66, + "end": 29545.43, + "probability": 0.9875 + }, + { + "start": 29545.57, + "end": 29546.27, + "probability": 0.7695 + }, + { + "start": 29547.27, + "end": 29550.15, + "probability": 0.954 + }, + { + "start": 29553.07, + "end": 29555.05, + "probability": 0.8998 + }, + { + "start": 29556.23, + "end": 29556.41, + "probability": 0.9468 + }, + { + "start": 29558.93, + "end": 29563.03, + "probability": 0.9669 + }, + { + "start": 29565.19, + "end": 29567.71, + "probability": 0.9482 + }, + { + "start": 29568.23, + "end": 29568.95, + "probability": 0.7591 + }, + { + "start": 29572.43, + "end": 29573.09, + "probability": 0.9594 + }, + { + "start": 29574.09, + "end": 29574.61, + "probability": 0.992 + }, + { + "start": 29575.35, + "end": 29576.27, + "probability": 0.9937 + }, + { + "start": 29576.95, + "end": 29578.47, + "probability": 0.9369 + }, + { + "start": 29579.67, + "end": 29579.85, + "probability": 0.0316 + }, + { + "start": 29581.97, + "end": 29582.67, + "probability": 0.905 + }, + { + "start": 29585.29, + "end": 29586.05, + "probability": 0.9482 + }, + { + "start": 29589.05, + "end": 29593.31, + "probability": 0.9985 + }, + { + "start": 29594.09, + "end": 29595.27, + "probability": 0.6841 + }, + { + "start": 29595.61, + "end": 29596.37, + "probability": 0.6899 + }, + { + "start": 29597.27, + "end": 29598.55, + "probability": 0.8434 + }, + { + "start": 29600.51, + "end": 29601.71, + "probability": 0.9094 + }, + { + "start": 29602.19, + "end": 29603.15, + "probability": 0.8732 + }, + { + "start": 29603.99, + "end": 29605.07, + "probability": 0.6657 + }, + { + "start": 29606.05, + "end": 29609.07, + "probability": 0.9768 + }, + { + "start": 29609.15, + "end": 29609.93, + "probability": 0.8569 + }, + { + "start": 29610.01, + "end": 29610.73, + "probability": 0.7203 + }, + { + "start": 29610.89, + "end": 29612.01, + "probability": 0.5668 + }, + { + "start": 29612.39, + "end": 29614.81, + "probability": 0.9947 + }, + { + "start": 29615.41, + "end": 29618.65, + "probability": 0.9892 + }, + { + "start": 29618.75, + "end": 29619.33, + "probability": 0.8274 + }, + { + "start": 29619.51, + "end": 29620.23, + "probability": 0.8838 + }, + { + "start": 29620.29, + "end": 29623.89, + "probability": 0.9664 + }, + { + "start": 29626.17, + "end": 29629.21, + "probability": 0.8917 + }, + { + "start": 29630.57, + "end": 29633.91, + "probability": 0.9951 + }, + { + "start": 29639.25, + "end": 29640.53, + "probability": 0.8637 + }, + { + "start": 29642.19, + "end": 29643.35, + "probability": 0.9727 + }, + { + "start": 29645.81, + "end": 29647.25, + "probability": 0.9919 + }, + { + "start": 29648.03, + "end": 29649.21, + "probability": 0.9446 + }, + { + "start": 29649.39, + "end": 29651.07, + "probability": 0.9884 + }, + { + "start": 29651.17, + "end": 29652.17, + "probability": 0.6528 + }, + { + "start": 29652.19, + "end": 29653.73, + "probability": 0.9946 + }, + { + "start": 29655.93, + "end": 29657.53, + "probability": 0.9964 + }, + { + "start": 29661.35, + "end": 29666.75, + "probability": 0.9979 + }, + { + "start": 29668.21, + "end": 29669.37, + "probability": 0.9915 + }, + { + "start": 29671.47, + "end": 29673.55, + "probability": 0.8817 + }, + { + "start": 29675.31, + "end": 29676.21, + "probability": 0.7984 + }, + { + "start": 29679.79, + "end": 29680.66, + "probability": 0.9937 + }, + { + "start": 29681.49, + "end": 29681.95, + "probability": 0.8161 + }, + { + "start": 29686.59, + "end": 29689.27, + "probability": 0.7276 + }, + { + "start": 29690.59, + "end": 29691.01, + "probability": 0.5906 + }, + { + "start": 29692.43, + "end": 29694.57, + "probability": 0.9731 + }, + { + "start": 29695.33, + "end": 29696.81, + "probability": 0.9503 + }, + { + "start": 29697.03, + "end": 29699.61, + "probability": 0.9479 + }, + { + "start": 29700.59, + "end": 29701.37, + "probability": 0.8556 + }, + { + "start": 29702.01, + "end": 29706.21, + "probability": 0.9081 + }, + { + "start": 29710.99, + "end": 29712.75, + "probability": 0.996 + }, + { + "start": 29715.33, + "end": 29717.13, + "probability": 0.8835 + }, + { + "start": 29717.69, + "end": 29719.07, + "probability": 0.777 + }, + { + "start": 29720.49, + "end": 29721.01, + "probability": 0.9049 + }, + { + "start": 29721.69, + "end": 29722.97, + "probability": 0.8524 + }, + { + "start": 29725.45, + "end": 29726.45, + "probability": 0.7457 + }, + { + "start": 29727.73, + "end": 29729.01, + "probability": 0.6382 + }, + { + "start": 29729.63, + "end": 29731.91, + "probability": 0.9671 + }, + { + "start": 29733.27, + "end": 29735.15, + "probability": 0.8093 + }, + { + "start": 29737.29, + "end": 29738.47, + "probability": 0.9314 + }, + { + "start": 29738.69, + "end": 29739.89, + "probability": 0.9217 + }, + { + "start": 29740.05, + "end": 29740.97, + "probability": 0.7402 + }, + { + "start": 29742.65, + "end": 29745.87, + "probability": 0.9939 + }, + { + "start": 29747.11, + "end": 29750.89, + "probability": 0.9706 + }, + { + "start": 29751.29, + "end": 29754.59, + "probability": 0.9982 + }, + { + "start": 29756.99, + "end": 29759.07, + "probability": 0.9995 + }, + { + "start": 29759.23, + "end": 29760.73, + "probability": 0.9966 + }, + { + "start": 29761.49, + "end": 29762.83, + "probability": 0.9944 + }, + { + "start": 29764.95, + "end": 29767.55, + "probability": 0.9873 + }, + { + "start": 29770.03, + "end": 29771.33, + "probability": 0.9612 + }, + { + "start": 29772.09, + "end": 29773.97, + "probability": 0.9939 + }, + { + "start": 29775.61, + "end": 29777.07, + "probability": 0.6891 + }, + { + "start": 29777.41, + "end": 29777.87, + "probability": 0.9312 + }, + { + "start": 29778.91, + "end": 29780.61, + "probability": 0.9964 + }, + { + "start": 29782.13, + "end": 29786.59, + "probability": 0.9685 + }, + { + "start": 29786.59, + "end": 29789.45, + "probability": 0.7869 + }, + { + "start": 29790.49, + "end": 29791.25, + "probability": 0.9826 + }, + { + "start": 29793.19, + "end": 29793.85, + "probability": 0.9342 + }, + { + "start": 29794.75, + "end": 29797.55, + "probability": 0.9982 + }, + { + "start": 29798.05, + "end": 29800.33, + "probability": 0.984 + }, + { + "start": 29800.85, + "end": 29806.81, + "probability": 0.9768 + }, + { + "start": 29808.57, + "end": 29809.27, + "probability": 0.7418 + }, + { + "start": 29810.99, + "end": 29811.93, + "probability": 0.9988 + }, + { + "start": 29814.75, + "end": 29817.45, + "probability": 0.6177 + }, + { + "start": 29817.51, + "end": 29819.87, + "probability": 0.9688 + }, + { + "start": 29820.97, + "end": 29821.75, + "probability": 0.7339 + }, + { + "start": 29822.55, + "end": 29823.45, + "probability": 0.9946 + }, + { + "start": 29823.67, + "end": 29825.27, + "probability": 0.8251 + }, + { + "start": 29826.63, + "end": 29829.33, + "probability": 0.9926 + }, + { + "start": 29830.71, + "end": 29833.15, + "probability": 0.8604 + }, + { + "start": 29833.89, + "end": 29836.79, + "probability": 0.9441 + }, + { + "start": 29838.23, + "end": 29840.67, + "probability": 0.9973 + }, + { + "start": 29842.25, + "end": 29845.35, + "probability": 0.9767 + }, + { + "start": 29846.05, + "end": 29848.25, + "probability": 0.9939 + }, + { + "start": 29851.15, + "end": 29853.99, + "probability": 0.8225 + }, + { + "start": 29854.09, + "end": 29855.91, + "probability": 0.9778 + }, + { + "start": 29856.39, + "end": 29857.39, + "probability": 0.7617 + }, + { + "start": 29859.57, + "end": 29859.97, + "probability": 0.6139 + }, + { + "start": 29862.89, + "end": 29865.89, + "probability": 0.8487 + }, + { + "start": 29866.63, + "end": 29867.25, + "probability": 0.9851 + }, + { + "start": 29871.51, + "end": 29873.39, + "probability": 0.9904 + }, + { + "start": 29876.75, + "end": 29877.43, + "probability": 0.4863 + }, + { + "start": 29878.41, + "end": 29879.77, + "probability": 0.9061 + }, + { + "start": 29881.41, + "end": 29882.01, + "probability": 0.9334 + }, + { + "start": 29883.71, + "end": 29884.47, + "probability": 0.936 + }, + { + "start": 29885.21, + "end": 29887.65, + "probability": 0.9901 + }, + { + "start": 29889.65, + "end": 29890.25, + "probability": 0.9233 + }, + { + "start": 29890.33, + "end": 29896.03, + "probability": 0.9263 + }, + { + "start": 29898.47, + "end": 29899.13, + "probability": 0.9693 + }, + { + "start": 29900.35, + "end": 29904.85, + "probability": 0.9229 + }, + { + "start": 29904.85, + "end": 29908.13, + "probability": 0.9377 + }, + { + "start": 29910.17, + "end": 29914.29, + "probability": 0.7749 + }, + { + "start": 29915.22, + "end": 29917.45, + "probability": 0.8926 + }, + { + "start": 29918.19, + "end": 29921.61, + "probability": 0.9514 + }, + { + "start": 29923.49, + "end": 29926.51, + "probability": 0.9796 + }, + { + "start": 29929.45, + "end": 29931.45, + "probability": 0.8592 + }, + { + "start": 29934.17, + "end": 29937.65, + "probability": 0.8987 + }, + { + "start": 29939.11, + "end": 29945.11, + "probability": 0.7568 + }, + { + "start": 29947.63, + "end": 29949.73, + "probability": 0.9849 + }, + { + "start": 29950.25, + "end": 29951.27, + "probability": 0.8187 + }, + { + "start": 29951.39, + "end": 29953.43, + "probability": 0.9571 + }, + { + "start": 29953.67, + "end": 29954.79, + "probability": 0.7609 + }, + { + "start": 29956.57, + "end": 29957.01, + "probability": 0.969 + }, + { + "start": 29958.41, + "end": 29959.65, + "probability": 0.9531 + }, + { + "start": 29961.53, + "end": 29964.29, + "probability": 0.8776 + }, + { + "start": 29964.41, + "end": 29965.01, + "probability": 0.9457 + }, + { + "start": 29968.07, + "end": 29968.57, + "probability": 0.9384 + }, + { + "start": 29969.93, + "end": 29971.09, + "probability": 0.8454 + }, + { + "start": 29972.75, + "end": 29974.15, + "probability": 0.882 + }, + { + "start": 29978.13, + "end": 29978.85, + "probability": 0.5089 + }, + { + "start": 29978.91, + "end": 29979.61, + "probability": 0.3056 + }, + { + "start": 29980.93, + "end": 29981.71, + "probability": 0.9617 + }, + { + "start": 29984.07, + "end": 29984.69, + "probability": 0.8755 + }, + { + "start": 29986.03, + "end": 29986.93, + "probability": 0.6484 + }, + { + "start": 29987.51, + "end": 29989.65, + "probability": 0.96 + }, + { + "start": 29993.67, + "end": 29997.83, + "probability": 0.9814 + }, + { + "start": 29999.19, + "end": 30000.51, + "probability": 0.9648 + }, + { + "start": 30001.09, + "end": 30001.87, + "probability": 0.9614 + }, + { + "start": 30002.51, + "end": 30003.41, + "probability": 0.9862 + }, + { + "start": 30005.88, + "end": 30006.93, + "probability": 0.1191 + }, + { + "start": 30006.93, + "end": 30009.35, + "probability": 0.8894 + }, + { + "start": 30010.01, + "end": 30011.19, + "probability": 0.9856 + }, + { + "start": 30012.53, + "end": 30013.29, + "probability": 0.9895 + }, + { + "start": 30014.29, + "end": 30017.29, + "probability": 0.7254 + }, + { + "start": 30018.85, + "end": 30019.51, + "probability": 0.8503 + }, + { + "start": 30022.35, + "end": 30023.87, + "probability": 0.8372 + }, + { + "start": 30024.83, + "end": 30027.37, + "probability": 0.9358 + }, + { + "start": 30027.75, + "end": 30028.47, + "probability": 0.6979 + }, + { + "start": 30029.33, + "end": 30030.81, + "probability": 0.7766 + }, + { + "start": 30032.55, + "end": 30033.09, + "probability": 0.7332 + }, + { + "start": 30034.79, + "end": 30035.41, + "probability": 0.5069 + }, + { + "start": 30036.11, + "end": 30038.27, + "probability": 0.7025 + }, + { + "start": 30050.05, + "end": 30051.01, + "probability": 0.6769 + }, + { + "start": 30052.41, + "end": 30053.73, + "probability": 0.8736 + }, + { + "start": 30054.43, + "end": 30055.89, + "probability": 0.9425 + }, + { + "start": 30057.29, + "end": 30059.03, + "probability": 0.9946 + }, + { + "start": 30060.73, + "end": 30061.33, + "probability": 0.9425 + }, + { + "start": 30062.03, + "end": 30062.45, + "probability": 0.9995 + }, + { + "start": 30063.79, + "end": 30064.83, + "probability": 0.9995 + }, + { + "start": 30066.05, + "end": 30067.53, + "probability": 0.9526 + }, + { + "start": 30068.45, + "end": 30069.67, + "probability": 0.9241 + }, + { + "start": 30071.15, + "end": 30072.11, + "probability": 0.9794 + }, + { + "start": 30072.81, + "end": 30075.27, + "probability": 0.8466 + }, + { + "start": 30076.69, + "end": 30077.49, + "probability": 0.7239 + }, + { + "start": 30078.01, + "end": 30078.89, + "probability": 0.8493 + }, + { + "start": 30080.11, + "end": 30084.01, + "probability": 0.9497 + }, + { + "start": 30085.51, + "end": 30087.43, + "probability": 0.9894 + }, + { + "start": 30089.39, + "end": 30090.17, + "probability": 0.8923 + }, + { + "start": 30090.79, + "end": 30092.23, + "probability": 0.849 + }, + { + "start": 30092.89, + "end": 30098.43, + "probability": 0.9895 + }, + { + "start": 30100.05, + "end": 30103.95, + "probability": 0.9548 + }, + { + "start": 30105.35, + "end": 30105.97, + "probability": 0.9277 + }, + { + "start": 30107.09, + "end": 30112.31, + "probability": 0.999 + }, + { + "start": 30113.47, + "end": 30114.31, + "probability": 0.8175 + }, + { + "start": 30115.17, + "end": 30115.67, + "probability": 0.4986 + }, + { + "start": 30116.29, + "end": 30117.6, + "probability": 0.7965 + }, + { + "start": 30118.25, + "end": 30118.85, + "probability": 0.9498 + }, + { + "start": 30119.57, + "end": 30123.95, + "probability": 0.9811 + }, + { + "start": 30126.31, + "end": 30127.75, + "probability": 0.2848 + }, + { + "start": 30128.69, + "end": 30131.81, + "probability": 0.8865 + }, + { + "start": 30132.41, + "end": 30134.51, + "probability": 0.9977 + }, + { + "start": 30135.13, + "end": 30139.69, + "probability": 0.9841 + }, + { + "start": 30141.61, + "end": 30147.13, + "probability": 0.9328 + }, + { + "start": 30147.65, + "end": 30148.77, + "probability": 0.9277 + }, + { + "start": 30149.59, + "end": 30153.17, + "probability": 0.9885 + }, + { + "start": 30153.95, + "end": 30157.97, + "probability": 0.9922 + }, + { + "start": 30158.49, + "end": 30161.01, + "probability": 0.9927 + }, + { + "start": 30162.53, + "end": 30166.65, + "probability": 0.9704 + }, + { + "start": 30167.73, + "end": 30172.21, + "probability": 0.6541 + }, + { + "start": 30172.89, + "end": 30174.29, + "probability": 0.2194 + }, + { + "start": 30175.07, + "end": 30177.99, + "probability": 0.6035 + }, + { + "start": 30178.33, + "end": 30181.99, + "probability": 0.8878 + }, + { + "start": 30182.27, + "end": 30183.91, + "probability": 0.7052 + }, + { + "start": 30184.49, + "end": 30185.77, + "probability": 0.612 + }, + { + "start": 30186.69, + "end": 30188.21, + "probability": 0.762 + }, + { + "start": 30189.51, + "end": 30193.31, + "probability": 0.3135 + }, + { + "start": 30193.33, + "end": 30195.87, + "probability": 0.8561 + }, + { + "start": 30196.73, + "end": 30201.13, + "probability": 0.9941 + }, + { + "start": 30201.63, + "end": 30202.69, + "probability": 0.9527 + }, + { + "start": 30203.27, + "end": 30204.49, + "probability": 0.7764 + }, + { + "start": 30205.41, + "end": 30211.15, + "probability": 0.899 + }, + { + "start": 30212.03, + "end": 30216.47, + "probability": 0.9773 + }, + { + "start": 30216.97, + "end": 30217.67, + "probability": 0.96 + }, + { + "start": 30218.21, + "end": 30224.31, + "probability": 0.9098 + }, + { + "start": 30224.41, + "end": 30225.83, + "probability": 0.9897 + }, + { + "start": 30226.09, + "end": 30226.91, + "probability": 0.6862 + }, + { + "start": 30227.85, + "end": 30228.76, + "probability": 0.9541 + }, + { + "start": 30229.47, + "end": 30230.31, + "probability": 0.9591 + }, + { + "start": 30231.69, + "end": 30235.07, + "probability": 0.8726 + }, + { + "start": 30235.81, + "end": 30237.83, + "probability": 0.9886 + }, + { + "start": 30238.49, + "end": 30240.35, + "probability": 0.9973 + }, + { + "start": 30240.87, + "end": 30242.71, + "probability": 0.994 + }, + { + "start": 30244.75, + "end": 30246.19, + "probability": 0.971 + }, + { + "start": 30246.47, + "end": 30248.23, + "probability": 0.9856 + }, + { + "start": 30248.83, + "end": 30250.35, + "probability": 0.9108 + }, + { + "start": 30250.93, + "end": 30253.29, + "probability": 0.9893 + }, + { + "start": 30253.93, + "end": 30256.41, + "probability": 0.5687 + }, + { + "start": 30256.95, + "end": 30262.09, + "probability": 0.8805 + }, + { + "start": 30262.91, + "end": 30263.55, + "probability": 0.9344 + }, + { + "start": 30264.43, + "end": 30267.53, + "probability": 0.921 + }, + { + "start": 30268.05, + "end": 30270.29, + "probability": 0.9927 + }, + { + "start": 30270.71, + "end": 30275.29, + "probability": 0.9766 + }, + { + "start": 30276.19, + "end": 30277.37, + "probability": 0.9885 + }, + { + "start": 30278.23, + "end": 30278.81, + "probability": 0.6214 + }, + { + "start": 30279.43, + "end": 30281.37, + "probability": 0.6904 + }, + { + "start": 30281.93, + "end": 30284.25, + "probability": 0.8257 + }, + { + "start": 30285.63, + "end": 30286.69, + "probability": 0.6992 + }, + { + "start": 30287.21, + "end": 30290.35, + "probability": 0.7866 + }, + { + "start": 30290.85, + "end": 30292.65, + "probability": 0.7504 + }, + { + "start": 30293.37, + "end": 30295.71, + "probability": 0.9038 + }, + { + "start": 30296.43, + "end": 30300.13, + "probability": 0.9963 + }, + { + "start": 30300.13, + "end": 30306.35, + "probability": 0.903 + }, + { + "start": 30307.03, + "end": 30310.95, + "probability": 0.715 + }, + { + "start": 30311.61, + "end": 30312.67, + "probability": 0.9951 + }, + { + "start": 30313.73, + "end": 30316.83, + "probability": 0.9429 + }, + { + "start": 30317.85, + "end": 30323.51, + "probability": 0.9713 + }, + { + "start": 30325.61, + "end": 30325.99, + "probability": 0.472 + }, + { + "start": 30326.59, + "end": 30328.05, + "probability": 0.909 + }, + { + "start": 30328.91, + "end": 30329.91, + "probability": 0.7781 + }, + { + "start": 30330.73, + "end": 30333.03, + "probability": 0.9602 + }, + { + "start": 30333.91, + "end": 30338.03, + "probability": 0.8966 + }, + { + "start": 30338.71, + "end": 30345.36, + "probability": 0.9902 + }, + { + "start": 30347.03, + "end": 30347.85, + "probability": 0.6175 + }, + { + "start": 30349.05, + "end": 30352.23, + "probability": 0.67 + }, + { + "start": 30352.95, + "end": 30355.31, + "probability": 0.7275 + }, + { + "start": 30355.87, + "end": 30356.69, + "probability": 0.9708 + }, + { + "start": 30358.19, + "end": 30358.81, + "probability": 0.6616 + }, + { + "start": 30360.63, + "end": 30365.89, + "probability": 0.9333 + }, + { + "start": 30365.89, + "end": 30371.93, + "probability": 0.9338 + }, + { + "start": 30372.85, + "end": 30374.77, + "probability": 0.6992 + }, + { + "start": 30377.09, + "end": 30378.87, + "probability": 0.5166 + }, + { + "start": 30379.79, + "end": 30384.67, + "probability": 0.9858 + }, + { + "start": 30385.79, + "end": 30388.23, + "probability": 0.998 + }, + { + "start": 30389.27, + "end": 30390.39, + "probability": 0.9585 + }, + { + "start": 30391.33, + "end": 30393.85, + "probability": 0.8727 + }, + { + "start": 30395.71, + "end": 30397.03, + "probability": 0.9865 + }, + { + "start": 30397.57, + "end": 30399.01, + "probability": 0.9885 + }, + { + "start": 30399.69, + "end": 30401.55, + "probability": 0.9105 + }, + { + "start": 30402.19, + "end": 30405.25, + "probability": 0.9116 + }, + { + "start": 30405.35, + "end": 30407.01, + "probability": 0.8445 + }, + { + "start": 30408.49, + "end": 30412.21, + "probability": 0.9907 + }, + { + "start": 30412.21, + "end": 30418.51, + "probability": 0.9145 + }, + { + "start": 30419.87, + "end": 30420.67, + "probability": 0.9691 + }, + { + "start": 30421.47, + "end": 30421.57, + "probability": 0.9957 + }, + { + "start": 30422.53, + "end": 30423.11, + "probability": 0.9464 + }, + { + "start": 30423.57, + "end": 30424.77, + "probability": 0.4607 + }, + { + "start": 30425.77, + "end": 30427.49, + "probability": 0.857 + }, + { + "start": 30427.57, + "end": 30428.71, + "probability": 0.4919 + }, + { + "start": 30429.11, + "end": 30432.67, + "probability": 0.9214 + }, + { + "start": 30433.57, + "end": 30436.15, + "probability": 0.7191 + }, + { + "start": 30436.83, + "end": 30437.87, + "probability": 0.5403 + }, + { + "start": 30438.39, + "end": 30441.61, + "probability": 0.1952 + }, + { + "start": 30441.61, + "end": 30443.27, + "probability": 0.1015 + }, + { + "start": 30443.95, + "end": 30445.83, + "probability": 0.8577 + }, + { + "start": 30446.05, + "end": 30447.29, + "probability": 0.8776 + }, + { + "start": 30447.29, + "end": 30450.37, + "probability": 0.8884 + }, + { + "start": 30450.41, + "end": 30452.13, + "probability": 0.8481 + }, + { + "start": 30452.73, + "end": 30456.55, + "probability": 0.9526 + }, + { + "start": 30456.69, + "end": 30458.89, + "probability": 0.6311 + }, + { + "start": 30459.15, + "end": 30464.85, + "probability": 0.5823 + }, + { + "start": 30465.51, + "end": 30467.65, + "probability": 0.1782 + }, + { + "start": 30467.83, + "end": 30468.23, + "probability": 0.4364 + }, + { + "start": 30468.49, + "end": 30470.05, + "probability": 0.8657 + }, + { + "start": 30470.25, + "end": 30471.51, + "probability": 0.672 + }, + { + "start": 30472.17, + "end": 30473.91, + "probability": 0.1648 + }, + { + "start": 30474.55, + "end": 30480.45, + "probability": 0.9365 + }, + { + "start": 30481.35, + "end": 30485.23, + "probability": 0.9087 + }, + { + "start": 30485.27, + "end": 30485.73, + "probability": 0.4455 + }, + { + "start": 30486.19, + "end": 30486.81, + "probability": 0.76 + }, + { + "start": 30486.93, + "end": 30488.03, + "probability": 0.978 + }, + { + "start": 30488.53, + "end": 30490.21, + "probability": 0.9329 + }, + { + "start": 30490.79, + "end": 30493.51, + "probability": 0.991 + }, + { + "start": 30493.59, + "end": 30496.55, + "probability": 0.9875 + }, + { + "start": 30496.55, + "end": 30499.93, + "probability": 0.9636 + }, + { + "start": 30500.47, + "end": 30501.37, + "probability": 0.9959 + }, + { + "start": 30501.71, + "end": 30503.79, + "probability": 0.9764 + }, + { + "start": 30503.95, + "end": 30504.65, + "probability": 0.7498 + }, + { + "start": 30505.71, + "end": 30506.6, + "probability": 0.3704 + }, + { + "start": 30508.13, + "end": 30512.11, + "probability": 0.9377 + }, + { + "start": 30512.61, + "end": 30514.57, + "probability": 0.6055 + }, + { + "start": 30522.83, + "end": 30524.47, + "probability": 0.5393 + }, + { + "start": 30525.47, + "end": 30526.91, + "probability": 0.9883 + }, + { + "start": 30527.61, + "end": 30529.35, + "probability": 0.9827 + }, + { + "start": 30529.63, + "end": 30531.0, + "probability": 0.9062 + }, + { + "start": 30531.33, + "end": 30531.77, + "probability": 0.8239 + }, + { + "start": 30532.75, + "end": 30537.59, + "probability": 0.9727 + }, + { + "start": 30538.25, + "end": 30540.07, + "probability": 0.9965 + }, + { + "start": 30540.63, + "end": 30543.37, + "probability": 0.916 + }, + { + "start": 30544.71, + "end": 30546.37, + "probability": 0.9955 + }, + { + "start": 30546.97, + "end": 30550.81, + "probability": 0.9141 + }, + { + "start": 30551.43, + "end": 30553.27, + "probability": 0.7934 + }, + { + "start": 30553.65, + "end": 30555.62, + "probability": 0.9412 + }, + { + "start": 30556.33, + "end": 30556.88, + "probability": 0.917 + }, + { + "start": 30557.07, + "end": 30558.65, + "probability": 0.3574 + }, + { + "start": 30559.03, + "end": 30560.21, + "probability": 0.5441 + }, + { + "start": 30560.65, + "end": 30562.61, + "probability": 0.8451 + }, + { + "start": 30564.01, + "end": 30564.47, + "probability": 0.2803 + }, + { + "start": 30564.49, + "end": 30568.73, + "probability": 0.8018 + }, + { + "start": 30571.45, + "end": 30572.03, + "probability": 0.6566 + }, + { + "start": 30573.47, + "end": 30576.11, + "probability": 0.887 + }, + { + "start": 30577.09, + "end": 30581.27, + "probability": 0.2942 + }, + { + "start": 30581.97, + "end": 30583.11, + "probability": 0.432 + }, + { + "start": 30584.29, + "end": 30588.09, + "probability": 0.8624 + }, + { + "start": 30589.03, + "end": 30590.85, + "probability": 0.3131 + }, + { + "start": 30591.05, + "end": 30593.01, + "probability": 0.576 + }, + { + "start": 30593.91, + "end": 30594.39, + "probability": 0.0659 + }, + { + "start": 30594.55, + "end": 30598.4, + "probability": 0.5039 + }, + { + "start": 30598.79, + "end": 30598.91, + "probability": 0.6942 + }, + { + "start": 30599.61, + "end": 30602.45, + "probability": 0.7642 + }, + { + "start": 30603.67, + "end": 30604.37, + "probability": 0.3337 + }, + { + "start": 30605.03, + "end": 30606.21, + "probability": 0.3205 + }, + { + "start": 30608.15, + "end": 30612.93, + "probability": 0.1975 + }, + { + "start": 30613.01, + "end": 30613.77, + "probability": 0.2825 + }, + { + "start": 30615.33, + "end": 30617.93, + "probability": 0.9303 + }, + { + "start": 30618.07, + "end": 30620.2, + "probability": 0.9204 + }, + { + "start": 30621.41, + "end": 30623.18, + "probability": 0.778 + }, + { + "start": 30623.51, + "end": 30625.13, + "probability": 0.4544 + }, + { + "start": 30625.83, + "end": 30627.17, + "probability": 0.6864 + }, + { + "start": 30628.35, + "end": 30632.59, + "probability": 0.6071 + }, + { + "start": 30638.67, + "end": 30639.79, + "probability": 0.6163 + }, + { + "start": 30642.67, + "end": 30645.37, + "probability": 0.6015 + }, + { + "start": 30648.38, + "end": 30651.04, + "probability": 0.1311 + }, + { + "start": 30653.23, + "end": 30656.15, + "probability": 0.5396 + }, + { + "start": 30656.15, + "end": 30657.99, + "probability": 0.3571 + }, + { + "start": 30658.87, + "end": 30661.67, + "probability": 0.9744 + }, + { + "start": 30664.99, + "end": 30665.39, + "probability": 0.2436 + }, + { + "start": 30665.43, + "end": 30666.29, + "probability": 0.0954 + }, + { + "start": 30666.51, + "end": 30666.81, + "probability": 0.4092 + }, + { + "start": 30666.81, + "end": 30670.63, + "probability": 0.7654 + }, + { + "start": 30672.37, + "end": 30674.47, + "probability": 0.8426 + }, + { + "start": 30674.85, + "end": 30679.11, + "probability": 0.8068 + }, + { + "start": 30679.57, + "end": 30681.71, + "probability": 0.5606 + }, + { + "start": 30681.81, + "end": 30683.53, + "probability": 0.7042 + }, + { + "start": 30690.09, + "end": 30690.79, + "probability": 0.3291 + }, + { + "start": 30693.89, + "end": 30694.65, + "probability": 0.4321 + }, + { + "start": 30694.65, + "end": 30696.75, + "probability": 0.7923 + }, + { + "start": 30707.91, + "end": 30713.01, + "probability": 0.3891 + }, + { + "start": 30713.43, + "end": 30717.55, + "probability": 0.3308 + }, + { + "start": 30719.68, + "end": 30721.17, + "probability": 0.2158 + }, + { + "start": 30723.65, + "end": 30727.95, + "probability": 0.6226 + }, + { + "start": 30729.27, + "end": 30730.15, + "probability": 0.7439 + }, + { + "start": 30731.63, + "end": 30735.25, + "probability": 0.9978 + }, + { + "start": 30736.15, + "end": 30742.61, + "probability": 0.9809 + }, + { + "start": 30743.95, + "end": 30745.87, + "probability": 0.6793 + }, + { + "start": 30747.13, + "end": 30751.96, + "probability": 0.9941 + }, + { + "start": 30754.91, + "end": 30756.03, + "probability": 0.9739 + }, + { + "start": 30759.01, + "end": 30764.41, + "probability": 0.9472 + }, + { + "start": 30764.99, + "end": 30766.65, + "probability": 0.9241 + }, + { + "start": 30768.63, + "end": 30769.27, + "probability": 0.9469 + }, + { + "start": 30770.43, + "end": 30778.15, + "probability": 0.9587 + }, + { + "start": 30778.85, + "end": 30779.95, + "probability": 0.7574 + }, + { + "start": 30780.41, + "end": 30781.93, + "probability": 0.9971 + }, + { + "start": 30783.81, + "end": 30787.07, + "probability": 0.9551 + }, + { + "start": 30787.87, + "end": 30790.91, + "probability": 0.8749 + }, + { + "start": 30791.67, + "end": 30794.83, + "probability": 0.9963 + }, + { + "start": 30795.65, + "end": 30797.15, + "probability": 0.9987 + }, + { + "start": 30797.27, + "end": 30800.0, + "probability": 0.9414 + }, + { + "start": 30801.83, + "end": 30804.31, + "probability": 0.9977 + }, + { + "start": 30805.13, + "end": 30807.05, + "probability": 0.9657 + }, + { + "start": 30807.19, + "end": 30808.47, + "probability": 0.9398 + }, + { + "start": 30809.59, + "end": 30811.79, + "probability": 0.9907 + }, + { + "start": 30811.95, + "end": 30813.59, + "probability": 0.9982 + }, + { + "start": 30813.79, + "end": 30815.34, + "probability": 0.8038 + }, + { + "start": 30816.61, + "end": 30821.97, + "probability": 0.9813 + }, + { + "start": 30823.65, + "end": 30824.99, + "probability": 0.8713 + }, + { + "start": 30826.31, + "end": 30829.95, + "probability": 0.9653 + }, + { + "start": 30830.03, + "end": 30831.24, + "probability": 0.9184 + }, + { + "start": 30832.63, + "end": 30834.75, + "probability": 0.9099 + }, + { + "start": 30834.83, + "end": 30835.63, + "probability": 0.9619 + }, + { + "start": 30835.75, + "end": 30836.37, + "probability": 0.4846 + }, + { + "start": 30838.43, + "end": 30841.71, + "probability": 0.9601 + }, + { + "start": 30842.37, + "end": 30842.93, + "probability": 0.7242 + }, + { + "start": 30843.51, + "end": 30846.87, + "probability": 0.7914 + }, + { + "start": 30849.95, + "end": 30853.81, + "probability": 0.8096 + }, + { + "start": 30854.93, + "end": 30858.31, + "probability": 0.8261 + }, + { + "start": 30859.15, + "end": 30859.91, + "probability": 0.8276 + }, + { + "start": 30860.23, + "end": 30861.29, + "probability": 0.7517 + }, + { + "start": 30861.31, + "end": 30863.15, + "probability": 0.9077 + }, + { + "start": 30863.21, + "end": 30864.67, + "probability": 0.9455 + }, + { + "start": 30864.73, + "end": 30865.51, + "probability": 0.5347 + }, + { + "start": 30866.31, + "end": 30868.73, + "probability": 0.8187 + }, + { + "start": 30868.83, + "end": 30870.23, + "probability": 0.7751 + }, + { + "start": 30871.71, + "end": 30873.65, + "probability": 0.7193 + }, + { + "start": 30874.21, + "end": 30875.95, + "probability": 0.8489 + }, + { + "start": 30877.03, + "end": 30879.27, + "probability": 0.9429 + }, + { + "start": 30880.41, + "end": 30882.38, + "probability": 0.9373 + }, + { + "start": 30883.29, + "end": 30883.97, + "probability": 0.9224 + }, + { + "start": 30885.07, + "end": 30885.93, + "probability": 0.5526 + }, + { + "start": 30886.69, + "end": 30888.77, + "probability": 0.6608 + }, + { + "start": 30891.29, + "end": 30891.57, + "probability": 0.2885 + }, + { + "start": 30892.63, + "end": 30892.63, + "probability": 0.8818 + }, + { + "start": 30895.79, + "end": 30898.73, + "probability": 0.8225 + }, + { + "start": 30900.71, + "end": 30901.77, + "probability": 0.9807 + }, + { + "start": 30903.03, + "end": 30905.23, + "probability": 0.9887 + }, + { + "start": 30905.69, + "end": 30908.41, + "probability": 0.7691 + }, + { + "start": 30908.99, + "end": 30910.69, + "probability": 0.772 + }, + { + "start": 30911.35, + "end": 30913.25, + "probability": 0.9969 + }, + { + "start": 30914.25, + "end": 30916.49, + "probability": 0.9385 + }, + { + "start": 30917.47, + "end": 30918.69, + "probability": 0.8305 + }, + { + "start": 30919.63, + "end": 30921.33, + "probability": 0.9851 + }, + { + "start": 30922.19, + "end": 30923.81, + "probability": 0.9157 + }, + { + "start": 30924.13, + "end": 30924.77, + "probability": 0.9887 + }, + { + "start": 30924.83, + "end": 30925.59, + "probability": 0.9904 + }, + { + "start": 30925.67, + "end": 30926.47, + "probability": 0.9767 + }, + { + "start": 30926.55, + "end": 30929.31, + "probability": 0.8806 + }, + { + "start": 30929.91, + "end": 30930.95, + "probability": 0.7347 + }, + { + "start": 30931.09, + "end": 30931.51, + "probability": 0.9026 + }, + { + "start": 30932.57, + "end": 30933.43, + "probability": 0.9714 + }, + { + "start": 30933.93, + "end": 30936.35, + "probability": 0.4392 + }, + { + "start": 30937.97, + "end": 30940.93, + "probability": 0.9868 + }, + { + "start": 30941.85, + "end": 30942.97, + "probability": 0.8607 + }, + { + "start": 30944.23, + "end": 30948.79, + "probability": 0.339 + }, + { + "start": 30950.47, + "end": 30953.15, + "probability": 0.6889 + }, + { + "start": 30953.87, + "end": 30954.73, + "probability": 0.9193 + }, + { + "start": 30955.99, + "end": 30956.87, + "probability": 0.9702 + }, + { + "start": 30957.05, + "end": 30958.01, + "probability": 0.9551 + }, + { + "start": 30958.87, + "end": 30960.29, + "probability": 0.9707 + }, + { + "start": 30961.21, + "end": 30964.37, + "probability": 0.9878 + }, + { + "start": 30965.11, + "end": 30965.87, + "probability": 0.9385 + }, + { + "start": 30966.87, + "end": 30969.69, + "probability": 0.9917 + }, + { + "start": 30969.79, + "end": 30970.93, + "probability": 0.9223 + }, + { + "start": 30973.31, + "end": 30974.57, + "probability": 0.9357 + }, + { + "start": 30975.07, + "end": 30975.23, + "probability": 0.7868 + }, + { + "start": 30977.05, + "end": 30977.93, + "probability": 0.9729 + }, + { + "start": 30979.33, + "end": 30979.85, + "probability": 0.9941 + }, + { + "start": 30981.21, + "end": 30982.03, + "probability": 0.9888 + }, + { + "start": 30983.53, + "end": 30983.97, + "probability": 0.6274 + }, + { + "start": 30984.85, + "end": 30989.19, + "probability": 0.3769 + }, + { + "start": 30990.23, + "end": 30990.58, + "probability": 0.0724 + }, + { + "start": 30992.09, + "end": 30993.15, + "probability": 0.9888 + }, + { + "start": 30993.95, + "end": 30994.99, + "probability": 0.9629 + }, + { + "start": 30996.87, + "end": 31000.63, + "probability": 0.9849 + }, + { + "start": 31001.69, + "end": 31002.97, + "probability": 0.9169 + }, + { + "start": 31004.27, + "end": 31004.91, + "probability": 0.9564 + }, + { + "start": 31006.19, + "end": 31008.59, + "probability": 0.9625 + }, + { + "start": 31009.87, + "end": 31010.83, + "probability": 0.9194 + }, + { + "start": 31011.21, + "end": 31011.91, + "probability": 0.8606 + }, + { + "start": 31012.01, + "end": 31012.55, + "probability": 0.8204 + }, + { + "start": 31012.67, + "end": 31013.21, + "probability": 0.7886 + }, + { + "start": 31013.53, + "end": 31014.11, + "probability": 0.8876 + }, + { + "start": 31014.65, + "end": 31016.03, + "probability": 0.9834 + }, + { + "start": 31017.31, + "end": 31019.49, + "probability": 0.8931 + }, + { + "start": 31020.17, + "end": 31022.67, + "probability": 0.748 + }, + { + "start": 31023.51, + "end": 31025.95, + "probability": 0.5677 + }, + { + "start": 31026.79, + "end": 31027.75, + "probability": 0.3627 + }, + { + "start": 31028.09, + "end": 31028.89, + "probability": 0.2891 + }, + { + "start": 31029.18, + "end": 31030.81, + "probability": 0.6857 + }, + { + "start": 31031.61, + "end": 31032.63, + "probability": 0.9302 + }, + { + "start": 31032.71, + "end": 31036.19, + "probability": 0.8179 + }, + { + "start": 31036.25, + "end": 31037.53, + "probability": 0.8043 + }, + { + "start": 31038.47, + "end": 31039.59, + "probability": 0.923 + }, + { + "start": 31039.65, + "end": 31040.05, + "probability": 0.8944 + }, + { + "start": 31040.11, + "end": 31041.47, + "probability": 0.9863 + }, + { + "start": 31042.25, + "end": 31047.81, + "probability": 0.9449 + }, + { + "start": 31047.89, + "end": 31048.73, + "probability": 0.9452 + }, + { + "start": 31049.95, + "end": 31053.05, + "probability": 0.9863 + }, + { + "start": 31053.25, + "end": 31056.37, + "probability": 0.7653 + }, + { + "start": 31056.43, + "end": 31057.21, + "probability": 0.8196 + }, + { + "start": 31057.35, + "end": 31058.49, + "probability": 0.7872 + }, + { + "start": 31060.23, + "end": 31061.49, + "probability": 0.6417 + }, + { + "start": 31062.75, + "end": 31065.39, + "probability": 0.972 + }, + { + "start": 31066.71, + "end": 31067.47, + "probability": 0.9976 + }, + { + "start": 31068.97, + "end": 31070.37, + "probability": 0.9308 + }, + { + "start": 31070.91, + "end": 31072.25, + "probability": 0.9883 + }, + { + "start": 31074.43, + "end": 31076.97, + "probability": 0.9924 + }, + { + "start": 31077.81, + "end": 31079.27, + "probability": 0.8796 + }, + { + "start": 31081.09, + "end": 31082.03, + "probability": 0.7457 + }, + { + "start": 31083.53, + "end": 31085.37, + "probability": 0.5391 + }, + { + "start": 31086.01, + "end": 31086.77, + "probability": 0.9902 + }, + { + "start": 31087.47, + "end": 31088.37, + "probability": 0.7947 + }, + { + "start": 31089.45, + "end": 31092.11, + "probability": 0.9287 + }, + { + "start": 31093.15, + "end": 31093.65, + "probability": 0.8852 + }, + { + "start": 31094.61, + "end": 31096.77, + "probability": 0.988 + }, + { + "start": 31098.19, + "end": 31100.23, + "probability": 0.9984 + }, + { + "start": 31100.41, + "end": 31101.55, + "probability": 0.9814 + }, + { + "start": 31102.75, + "end": 31104.49, + "probability": 0.8292 + }, + { + "start": 31106.05, + "end": 31106.51, + "probability": 0.6668 + }, + { + "start": 31107.17, + "end": 31108.17, + "probability": 0.9817 + }, + { + "start": 31110.05, + "end": 31112.07, + "probability": 0.9475 + }, + { + "start": 31112.25, + "end": 31115.03, + "probability": 0.944 + }, + { + "start": 31116.05, + "end": 31116.79, + "probability": 0.8381 + }, + { + "start": 31117.49, + "end": 31118.22, + "probability": 0.9653 + }, + { + "start": 31118.73, + "end": 31121.89, + "probability": 0.9796 + }, + { + "start": 31122.91, + "end": 31124.85, + "probability": 0.9766 + }, + { + "start": 31126.31, + "end": 31130.13, + "probability": 0.9945 + }, + { + "start": 31131.41, + "end": 31133.15, + "probability": 0.9787 + }, + { + "start": 31134.67, + "end": 31136.53, + "probability": 0.974 + }, + { + "start": 31137.75, + "end": 31139.51, + "probability": 0.9993 + }, + { + "start": 31140.21, + "end": 31142.81, + "probability": 0.8495 + }, + { + "start": 31144.43, + "end": 31145.39, + "probability": 0.8546 + }, + { + "start": 31146.39, + "end": 31147.21, + "probability": 0.9373 + }, + { + "start": 31147.93, + "end": 31150.09, + "probability": 0.9163 + }, + { + "start": 31152.03, + "end": 31152.45, + "probability": 0.8732 + }, + { + "start": 31153.81, + "end": 31154.48, + "probability": 0.5633 + }, + { + "start": 31155.47, + "end": 31157.03, + "probability": 0.8752 + }, + { + "start": 31157.89, + "end": 31158.91, + "probability": 0.8497 + }, + { + "start": 31160.31, + "end": 31162.01, + "probability": 0.8639 + }, + { + "start": 31163.43, + "end": 31164.37, + "probability": 0.6527 + }, + { + "start": 31165.05, + "end": 31165.43, + "probability": 0.6826 + }, + { + "start": 31167.03, + "end": 31168.71, + "probability": 0.5723 + }, + { + "start": 31170.37, + "end": 31177.05, + "probability": 0.9866 + }, + { + "start": 31177.25, + "end": 31179.17, + "probability": 0.9792 + }, + { + "start": 31180.25, + "end": 31182.13, + "probability": 0.9598 + }, + { + "start": 31183.69, + "end": 31184.93, + "probability": 0.9698 + }, + { + "start": 31186.01, + "end": 31187.41, + "probability": 0.559 + }, + { + "start": 31187.45, + "end": 31188.39, + "probability": 0.695 + }, + { + "start": 31188.51, + "end": 31192.19, + "probability": 0.9512 + }, + { + "start": 31193.21, + "end": 31194.65, + "probability": 0.8484 + }, + { + "start": 31195.53, + "end": 31195.79, + "probability": 0.4667 + }, + { + "start": 31196.49, + "end": 31199.25, + "probability": 0.9457 + }, + { + "start": 31199.77, + "end": 31201.57, + "probability": 0.98 + }, + { + "start": 31202.83, + "end": 31204.31, + "probability": 0.9922 + }, + { + "start": 31204.35, + "end": 31206.73, + "probability": 0.9255 + }, + { + "start": 31208.21, + "end": 31210.35, + "probability": 0.9736 + }, + { + "start": 31211.91, + "end": 31213.11, + "probability": 0.9127 + }, + { + "start": 31214.53, + "end": 31215.05, + "probability": 0.9721 + }, + { + "start": 31217.69, + "end": 31219.05, + "probability": 0.7553 + }, + { + "start": 31219.75, + "end": 31223.55, + "probability": 0.7155 + }, + { + "start": 31224.79, + "end": 31226.75, + "probability": 0.9935 + }, + { + "start": 31227.65, + "end": 31229.41, + "probability": 0.998 + }, + { + "start": 31229.89, + "end": 31231.09, + "probability": 0.9734 + }, + { + "start": 31231.25, + "end": 31233.11, + "probability": 0.6013 + }, + { + "start": 31233.45, + "end": 31233.75, + "probability": 0.3895 + }, + { + "start": 31233.81, + "end": 31234.09, + "probability": 0.7733 + }, + { + "start": 31234.57, + "end": 31236.27, + "probability": 0.9865 + }, + { + "start": 31238.77, + "end": 31240.85, + "probability": 0.8978 + }, + { + "start": 31241.35, + "end": 31242.45, + "probability": 0.9944 + }, + { + "start": 31246.49, + "end": 31247.71, + "probability": 0.9727 + }, + { + "start": 31248.47, + "end": 31249.29, + "probability": 0.7928 + }, + { + "start": 31251.37, + "end": 31252.15, + "probability": 0.9538 + }, + { + "start": 31254.39, + "end": 31255.17, + "probability": 0.8993 + }, + { + "start": 31256.69, + "end": 31259.05, + "probability": 0.9396 + }, + { + "start": 31260.17, + "end": 31261.89, + "probability": 0.9854 + }, + { + "start": 31263.49, + "end": 31265.09, + "probability": 0.9648 + }, + { + "start": 31266.81, + "end": 31270.09, + "probability": 0.9932 + }, + { + "start": 31271.37, + "end": 31275.67, + "probability": 0.9883 + }, + { + "start": 31275.67, + "end": 31278.17, + "probability": 0.9996 + }, + { + "start": 31278.97, + "end": 31280.93, + "probability": 0.9917 + }, + { + "start": 31282.21, + "end": 31284.45, + "probability": 0.9597 + }, + { + "start": 31285.49, + "end": 31286.99, + "probability": 0.6779 + }, + { + "start": 31288.39, + "end": 31292.39, + "probability": 0.6587 + }, + { + "start": 31294.71, + "end": 31298.11, + "probability": 0.9987 + }, + { + "start": 31298.11, + "end": 31299.89, + "probability": 0.9985 + }, + { + "start": 31301.69, + "end": 31302.17, + "probability": 0.6898 + }, + { + "start": 31303.65, + "end": 31304.67, + "probability": 0.8987 + }, + { + "start": 31305.89, + "end": 31306.93, + "probability": 0.8516 + }, + { + "start": 31308.33, + "end": 31310.51, + "probability": 0.9842 + }, + { + "start": 31311.45, + "end": 31312.47, + "probability": 0.9976 + }, + { + "start": 31313.15, + "end": 31315.75, + "probability": 0.8818 + }, + { + "start": 31316.75, + "end": 31318.95, + "probability": 0.8706 + }, + { + "start": 31320.27, + "end": 31322.93, + "probability": 0.9377 + }, + { + "start": 31323.07, + "end": 31323.79, + "probability": 0.7861 + }, + { + "start": 31324.29, + "end": 31324.85, + "probability": 0.9392 + }, + { + "start": 31324.93, + "end": 31327.47, + "probability": 0.9884 + }, + { + "start": 31327.63, + "end": 31328.45, + "probability": 0.972 + }, + { + "start": 31328.63, + "end": 31328.89, + "probability": 0.4633 + }, + { + "start": 31329.67, + "end": 31330.17, + "probability": 0.5738 + }, + { + "start": 31330.95, + "end": 31331.73, + "probability": 0.9561 + }, + { + "start": 31332.57, + "end": 31333.55, + "probability": 0.9819 + }, + { + "start": 31334.23, + "end": 31334.87, + "probability": 0.8541 + }, + { + "start": 31336.53, + "end": 31339.07, + "probability": 0.8654 + }, + { + "start": 31340.01, + "end": 31341.67, + "probability": 0.9821 + }, + { + "start": 31342.21, + "end": 31342.89, + "probability": 0.9511 + }, + { + "start": 31343.45, + "end": 31345.55, + "probability": 0.9966 + }, + { + "start": 31346.39, + "end": 31349.47, + "probability": 0.9933 + }, + { + "start": 31350.19, + "end": 31351.35, + "probability": 0.5566 + }, + { + "start": 31353.69, + "end": 31355.01, + "probability": 0.9714 + }, + { + "start": 31355.11, + "end": 31357.37, + "probability": 0.7896 + }, + { + "start": 31359.57, + "end": 31361.79, + "probability": 0.7271 + }, + { + "start": 31363.17, + "end": 31364.91, + "probability": 0.978 + }, + { + "start": 31365.79, + "end": 31366.65, + "probability": 0.7878 + }, + { + "start": 31367.11, + "end": 31368.19, + "probability": 0.5982 + }, + { + "start": 31372.71, + "end": 31374.37, + "probability": 0.8121 + }, + { + "start": 31375.39, + "end": 31376.25, + "probability": 0.9731 + }, + { + "start": 31377.39, + "end": 31379.17, + "probability": 0.9836 + }, + { + "start": 31379.27, + "end": 31381.55, + "probability": 0.7485 + }, + { + "start": 31381.81, + "end": 31382.33, + "probability": 0.6928 + }, + { + "start": 31383.31, + "end": 31385.13, + "probability": 0.1997 + }, + { + "start": 31385.97, + "end": 31387.45, + "probability": 0.9705 + }, + { + "start": 31387.55, + "end": 31390.17, + "probability": 0.9106 + }, + { + "start": 31391.91, + "end": 31392.49, + "probability": 0.905 + }, + { + "start": 31393.69, + "end": 31395.53, + "probability": 0.9619 + }, + { + "start": 31396.87, + "end": 31397.77, + "probability": 0.9854 + }, + { + "start": 31397.89, + "end": 31399.65, + "probability": 0.9253 + }, + { + "start": 31400.15, + "end": 31400.71, + "probability": 0.1116 + }, + { + "start": 31401.43, + "end": 31401.67, + "probability": 0.7435 + }, + { + "start": 31414.53, + "end": 31416.91, + "probability": 0.0507 + }, + { + "start": 31416.91, + "end": 31416.91, + "probability": 0.0738 + }, + { + "start": 31416.91, + "end": 31416.91, + "probability": 0.0866 + }, + { + "start": 31416.91, + "end": 31417.61, + "probability": 0.2822 + }, + { + "start": 31417.61, + "end": 31418.31, + "probability": 0.805 + }, + { + "start": 31419.57, + "end": 31420.57, + "probability": 0.7274 + }, + { + "start": 31420.71, + "end": 31421.37, + "probability": 0.5895 + }, + { + "start": 31421.57, + "end": 31424.13, + "probability": 0.8057 + }, + { + "start": 31424.83, + "end": 31426.69, + "probability": 0.9954 + }, + { + "start": 31427.33, + "end": 31428.19, + "probability": 0.9557 + }, + { + "start": 31429.09, + "end": 31429.96, + "probability": 0.8922 + }, + { + "start": 31430.63, + "end": 31432.35, + "probability": 0.9927 + }, + { + "start": 31432.73, + "end": 31433.56, + "probability": 0.9675 + }, + { + "start": 31433.73, + "end": 31434.81, + "probability": 0.8033 + }, + { + "start": 31435.13, + "end": 31435.91, + "probability": 0.8489 + }, + { + "start": 31437.37, + "end": 31437.95, + "probability": 0.9117 + }, + { + "start": 31438.49, + "end": 31438.59, + "probability": 0.6615 + }, + { + "start": 31439.07, + "end": 31439.85, + "probability": 0.5882 + }, + { + "start": 31439.99, + "end": 31441.31, + "probability": 0.9519 + }, + { + "start": 31442.01, + "end": 31442.99, + "probability": 0.9486 + }, + { + "start": 31443.53, + "end": 31444.71, + "probability": 0.7805 + }, + { + "start": 31445.85, + "end": 31447.15, + "probability": 0.9766 + }, + { + "start": 31447.67, + "end": 31448.95, + "probability": 0.9492 + }, + { + "start": 31450.37, + "end": 31452.51, + "probability": 0.9789 + }, + { + "start": 31454.98, + "end": 31458.61, + "probability": 0.0498 + }, + { + "start": 31459.81, + "end": 31461.07, + "probability": 0.3668 + }, + { + "start": 31462.21, + "end": 31464.57, + "probability": 0.5331 + }, + { + "start": 31464.79, + "end": 31465.39, + "probability": 0.6787 + }, + { + "start": 31467.43, + "end": 31468.35, + "probability": 0.0045 + }, + { + "start": 31469.73, + "end": 31474.45, + "probability": 0.6291 + }, + { + "start": 31475.35, + "end": 31480.07, + "probability": 0.7379 + }, + { + "start": 31480.59, + "end": 31481.73, + "probability": 0.702 + }, + { + "start": 31483.21, + "end": 31485.25, + "probability": 0.9733 + }, + { + "start": 31485.81, + "end": 31489.23, + "probability": 0.8914 + }, + { + "start": 31489.79, + "end": 31491.49, + "probability": 0.9991 + }, + { + "start": 31492.57, + "end": 31498.07, + "probability": 0.9987 + }, + { + "start": 31499.31, + "end": 31499.73, + "probability": 0.9555 + }, + { + "start": 31500.55, + "end": 31501.05, + "probability": 0.8915 + }, + { + "start": 31502.01, + "end": 31503.43, + "probability": 0.7019 + }, + { + "start": 31503.95, + "end": 31504.13, + "probability": 0.4339 + }, + { + "start": 31504.75, + "end": 31505.25, + "probability": 0.9897 + }, + { + "start": 31505.79, + "end": 31508.83, + "probability": 0.7817 + }, + { + "start": 31508.83, + "end": 31511.47, + "probability": 0.7859 + }, + { + "start": 31511.99, + "end": 31515.55, + "probability": 0.7387 + }, + { + "start": 31515.59, + "end": 31517.29, + "probability": 0.8301 + }, + { + "start": 31517.95, + "end": 31520.24, + "probability": 0.9306 + }, + { + "start": 31520.99, + "end": 31524.19, + "probability": 0.9951 + }, + { + "start": 31524.55, + "end": 31528.69, + "probability": 0.855 + }, + { + "start": 31529.45, + "end": 31530.19, + "probability": 0.7137 + }, + { + "start": 31530.45, + "end": 31531.41, + "probability": 0.6651 + }, + { + "start": 31531.69, + "end": 31534.05, + "probability": 0.7501 + }, + { + "start": 31535.19, + "end": 31536.57, + "probability": 0.7316 + }, + { + "start": 31537.59, + "end": 31538.31, + "probability": 0.1172 + }, + { + "start": 31539.09, + "end": 31539.85, + "probability": 0.7567 + }, + { + "start": 31546.41, + "end": 31549.13, + "probability": 0.8144 + }, + { + "start": 31551.49, + "end": 31552.03, + "probability": 0.694 + }, + { + "start": 31553.51, + "end": 31555.27, + "probability": 0.8716 + }, + { + "start": 31556.15, + "end": 31558.93, + "probability": 0.9928 + }, + { + "start": 31559.79, + "end": 31561.51, + "probability": 0.9485 + }, + { + "start": 31562.11, + "end": 31566.19, + "probability": 0.8784 + }, + { + "start": 31567.53, + "end": 31569.45, + "probability": 0.9366 + }, + { + "start": 31569.97, + "end": 31572.31, + "probability": 0.8542 + }, + { + "start": 31572.87, + "end": 31575.87, + "probability": 0.9928 + }, + { + "start": 31576.73, + "end": 31579.63, + "probability": 0.9613 + }, + { + "start": 31580.65, + "end": 31581.63, + "probability": 0.5038 + }, + { + "start": 31581.85, + "end": 31582.83, + "probability": 0.8291 + }, + { + "start": 31583.25, + "end": 31585.49, + "probability": 0.6374 + }, + { + "start": 31585.65, + "end": 31591.89, + "probability": 0.8945 + }, + { + "start": 31592.47, + "end": 31594.89, + "probability": 0.9849 + }, + { + "start": 31594.89, + "end": 31599.45, + "probability": 0.7107 + }, + { + "start": 31600.51, + "end": 31601.21, + "probability": 0.6414 + }, + { + "start": 31601.75, + "end": 31603.81, + "probability": 0.9715 + }, + { + "start": 31603.97, + "end": 31609.07, + "probability": 0.8999 + }, + { + "start": 31609.49, + "end": 31610.79, + "probability": 0.9976 + }, + { + "start": 31610.93, + "end": 31612.07, + "probability": 0.8502 + }, + { + "start": 31613.21, + "end": 31617.03, + "probability": 0.9754 + }, + { + "start": 31618.61, + "end": 31620.45, + "probability": 0.8047 + }, + { + "start": 31620.99, + "end": 31625.21, + "probability": 0.9847 + }, + { + "start": 31625.95, + "end": 31628.81, + "probability": 0.9554 + }, + { + "start": 31629.49, + "end": 31633.21, + "probability": 0.9462 + }, + { + "start": 31633.67, + "end": 31637.73, + "probability": 0.9807 + }, + { + "start": 31638.59, + "end": 31639.51, + "probability": 0.9631 + }, + { + "start": 31639.83, + "end": 31644.09, + "probability": 0.995 + }, + { + "start": 31644.31, + "end": 31645.0, + "probability": 0.8503 + }, + { + "start": 31645.97, + "end": 31650.23, + "probability": 0.7986 + }, + { + "start": 31650.83, + "end": 31657.93, + "probability": 0.939 + }, + { + "start": 31658.41, + "end": 31661.75, + "probability": 0.8273 + }, + { + "start": 31662.11, + "end": 31666.25, + "probability": 0.9822 + }, + { + "start": 31666.73, + "end": 31670.01, + "probability": 0.9894 + }, + { + "start": 31670.65, + "end": 31670.85, + "probability": 0.637 + }, + { + "start": 31670.89, + "end": 31671.31, + "probability": 0.7621 + }, + { + "start": 31671.59, + "end": 31674.7, + "probability": 0.9863 + }, + { + "start": 31675.53, + "end": 31678.67, + "probability": 0.7677 + }, + { + "start": 31678.83, + "end": 31684.21, + "probability": 0.4987 + }, + { + "start": 31684.35, + "end": 31687.12, + "probability": 0.8718 + }, + { + "start": 31687.41, + "end": 31688.29, + "probability": 0.5286 + }, + { + "start": 31689.15, + "end": 31692.95, + "probability": 0.8347 + }, + { + "start": 31693.83, + "end": 31699.87, + "probability": 0.9567 + }, + { + "start": 31700.47, + "end": 31705.09, + "probability": 0.7775 + }, + { + "start": 31705.99, + "end": 31706.27, + "probability": 0.7512 + }, + { + "start": 31706.75, + "end": 31709.65, + "probability": 0.994 + }, + { + "start": 31709.85, + "end": 31711.95, + "probability": 0.9968 + }, + { + "start": 31712.69, + "end": 31717.27, + "probability": 0.9905 + }, + { + "start": 31718.47, + "end": 31722.33, + "probability": 0.9954 + }, + { + "start": 31722.45, + "end": 31724.07, + "probability": 0.9956 + }, + { + "start": 31724.69, + "end": 31726.21, + "probability": 0.9798 + }, + { + "start": 31726.31, + "end": 31728.47, + "probability": 0.9662 + }, + { + "start": 31729.07, + "end": 31734.15, + "probability": 0.9089 + }, + { + "start": 31734.15, + "end": 31738.63, + "probability": 0.9621 + }, + { + "start": 31738.99, + "end": 31739.35, + "probability": 0.7921 + }, + { + "start": 31739.41, + "end": 31743.65, + "probability": 0.9983 + }, + { + "start": 31743.87, + "end": 31747.09, + "probability": 0.972 + }, + { + "start": 31748.09, + "end": 31751.91, + "probability": 0.931 + }, + { + "start": 31752.41, + "end": 31755.73, + "probability": 0.9899 + }, + { + "start": 31755.95, + "end": 31760.87, + "probability": 0.9812 + }, + { + "start": 31761.57, + "end": 31764.67, + "probability": 0.97 + }, + { + "start": 31765.83, + "end": 31772.85, + "probability": 0.9919 + }, + { + "start": 31773.27, + "end": 31776.27, + "probability": 0.9834 + }, + { + "start": 31776.27, + "end": 31780.41, + "probability": 0.9702 + }, + { + "start": 31781.03, + "end": 31782.55, + "probability": 0.968 + }, + { + "start": 31784.11, + "end": 31785.29, + "probability": 0.9245 + }, + { + "start": 31786.39, + "end": 31787.43, + "probability": 0.9294 + }, + { + "start": 31787.97, + "end": 31793.29, + "probability": 0.9797 + }, + { + "start": 31793.29, + "end": 31796.47, + "probability": 0.5837 + }, + { + "start": 31796.91, + "end": 31798.09, + "probability": 0.9068 + }, + { + "start": 31800.03, + "end": 31802.71, + "probability": 0.9961 + }, + { + "start": 31802.71, + "end": 31806.85, + "probability": 0.9953 + }, + { + "start": 31806.93, + "end": 31808.29, + "probability": 0.6606 + }, + { + "start": 31808.35, + "end": 31809.37, + "probability": 0.8574 + }, + { + "start": 31809.71, + "end": 31815.73, + "probability": 0.9937 + }, + { + "start": 31816.81, + "end": 31817.77, + "probability": 0.7492 + }, + { + "start": 31817.89, + "end": 31825.37, + "probability": 0.9814 + }, + { + "start": 31826.21, + "end": 31831.03, + "probability": 0.9486 + }, + { + "start": 31832.59, + "end": 31837.65, + "probability": 0.7491 + }, + { + "start": 31838.05, + "end": 31845.33, + "probability": 0.9104 + }, + { + "start": 31846.15, + "end": 31847.27, + "probability": 0.8753 + }, + { + "start": 31848.82, + "end": 31855.59, + "probability": 0.8262 + }, + { + "start": 31855.79, + "end": 31855.79, + "probability": 0.4855 + }, + { + "start": 31855.79, + "end": 31856.29, + "probability": 0.7064 + }, + { + "start": 31856.81, + "end": 31860.65, + "probability": 0.9947 + }, + { + "start": 31861.19, + "end": 31862.37, + "probability": 0.8697 + }, + { + "start": 31863.53, + "end": 31866.85, + "probability": 0.883 + }, + { + "start": 31868.01, + "end": 31871.83, + "probability": 0.9952 + }, + { + "start": 31872.71, + "end": 31876.31, + "probability": 0.9079 + }, + { + "start": 31876.83, + "end": 31882.85, + "probability": 0.9827 + }, + { + "start": 31883.87, + "end": 31888.05, + "probability": 0.9711 + }, + { + "start": 31888.75, + "end": 31890.51, + "probability": 0.8916 + }, + { + "start": 31891.31, + "end": 31891.63, + "probability": 0.8556 + }, + { + "start": 31894.33, + "end": 31896.53, + "probability": 0.731 + }, + { + "start": 31897.21, + "end": 31899.69, + "probability": 0.9776 + }, + { + "start": 31900.33, + "end": 31902.77, + "probability": 0.973 + }, + { + "start": 31903.49, + "end": 31908.59, + "probability": 0.9928 + }, + { + "start": 31911.52, + "end": 31914.61, + "probability": 0.6987 + }, + { + "start": 31915.15, + "end": 31917.37, + "probability": 0.9172 + }, + { + "start": 31917.37, + "end": 31922.15, + "probability": 0.8655 + }, + { + "start": 31922.75, + "end": 31924.39, + "probability": 0.7739 + }, + { + "start": 31925.99, + "end": 31929.79, + "probability": 0.8619 + }, + { + "start": 31931.07, + "end": 31934.59, + "probability": 0.9822 + }, + { + "start": 31936.87, + "end": 31939.85, + "probability": 0.9366 + }, + { + "start": 31941.51, + "end": 31946.41, + "probability": 0.9894 + }, + { + "start": 31946.87, + "end": 31950.23, + "probability": 0.9565 + }, + { + "start": 31951.17, + "end": 31953.01, + "probability": 0.7485 + }, + { + "start": 31954.73, + "end": 31959.83, + "probability": 0.6413 + }, + { + "start": 31959.83, + "end": 31963.79, + "probability": 0.9662 + }, + { + "start": 31964.85, + "end": 31969.03, + "probability": 0.9689 + }, + { + "start": 31969.63, + "end": 31970.73, + "probability": 0.7744 + }, + { + "start": 31971.25, + "end": 31972.67, + "probability": 0.7407 + }, + { + "start": 31974.45, + "end": 31979.21, + "probability": 0.9736 + }, + { + "start": 31980.15, + "end": 31983.35, + "probability": 0.959 + }, + { + "start": 31984.35, + "end": 31985.25, + "probability": 0.6532 + }, + { + "start": 31986.43, + "end": 31990.45, + "probability": 0.9695 + }, + { + "start": 31990.59, + "end": 31993.51, + "probability": 0.9368 + }, + { + "start": 31994.29, + "end": 31997.43, + "probability": 0.9814 + }, + { + "start": 31998.13, + "end": 32002.17, + "probability": 0.9783 + }, + { + "start": 32002.93, + "end": 32005.07, + "probability": 0.9102 + }, + { + "start": 32006.01, + "end": 32010.23, + "probability": 0.8688 + }, + { + "start": 32010.99, + "end": 32011.53, + "probability": 0.8284 + }, + { + "start": 32012.17, + "end": 32015.75, + "probability": 0.973 + }, + { + "start": 32017.21, + "end": 32021.07, + "probability": 0.7989 + }, + { + "start": 32021.65, + "end": 32024.75, + "probability": 0.996 + }, + { + "start": 32025.39, + "end": 32027.68, + "probability": 0.9705 + }, + { + "start": 32028.81, + "end": 32030.45, + "probability": 0.9953 + }, + { + "start": 32031.81, + "end": 32032.71, + "probability": 0.8886 + }, + { + "start": 32033.25, + "end": 32036.53, + "probability": 0.9595 + }, + { + "start": 32037.39, + "end": 32038.44, + "probability": 0.9817 + }, + { + "start": 32039.51, + "end": 32042.91, + "probability": 0.9937 + }, + { + "start": 32042.91, + "end": 32051.03, + "probability": 0.9873 + }, + { + "start": 32053.17, + "end": 32057.55, + "probability": 0.9977 + }, + { + "start": 32058.25, + "end": 32061.01, + "probability": 0.9831 + }, + { + "start": 32061.61, + "end": 32065.53, + "probability": 0.9478 + }, + { + "start": 32065.53, + "end": 32069.01, + "probability": 0.9637 + }, + { + "start": 32069.51, + "end": 32076.59, + "probability": 0.9691 + }, + { + "start": 32077.25, + "end": 32080.25, + "probability": 0.9752 + }, + { + "start": 32080.77, + "end": 32083.05, + "probability": 0.9848 + }, + { + "start": 32084.53, + "end": 32089.01, + "probability": 0.6749 + }, + { + "start": 32089.29, + "end": 32092.73, + "probability": 0.9825 + }, + { + "start": 32092.99, + "end": 32097.21, + "probability": 0.9947 + }, + { + "start": 32097.21, + "end": 32101.83, + "probability": 0.8759 + }, + { + "start": 32104.07, + "end": 32109.13, + "probability": 0.998 + }, + { + "start": 32109.13, + "end": 32113.49, + "probability": 0.9797 + }, + { + "start": 32114.09, + "end": 32115.31, + "probability": 0.6528 + }, + { + "start": 32117.47, + "end": 32119.51, + "probability": 0.5034 + }, + { + "start": 32119.95, + "end": 32120.87, + "probability": 0.8749 + }, + { + "start": 32121.71, + "end": 32124.05, + "probability": 0.8922 + }, + { + "start": 32124.97, + "end": 32129.53, + "probability": 0.9409 + }, + { + "start": 32130.01, + "end": 32133.43, + "probability": 0.9955 + }, + { + "start": 32133.43, + "end": 32137.57, + "probability": 0.9481 + }, + { + "start": 32138.17, + "end": 32143.21, + "probability": 0.9966 + }, + { + "start": 32144.95, + "end": 32148.09, + "probability": 0.8717 + }, + { + "start": 32148.35, + "end": 32149.35, + "probability": 0.9971 + }, + { + "start": 32150.15, + "end": 32154.81, + "probability": 0.9614 + }, + { + "start": 32156.61, + "end": 32157.13, + "probability": 0.7873 + }, + { + "start": 32157.99, + "end": 32162.27, + "probability": 0.9779 + }, + { + "start": 32162.77, + "end": 32164.53, + "probability": 0.9717 + }, + { + "start": 32164.65, + "end": 32166.39, + "probability": 0.9982 + }, + { + "start": 32166.91, + "end": 32169.81, + "probability": 0.995 + }, + { + "start": 32171.19, + "end": 32175.11, + "probability": 0.9974 + }, + { + "start": 32175.15, + "end": 32179.21, + "probability": 0.9808 + }, + { + "start": 32179.91, + "end": 32180.13, + "probability": 0.6877 + }, + { + "start": 32180.75, + "end": 32181.29, + "probability": 0.8104 + }, + { + "start": 32182.33, + "end": 32184.27, + "probability": 0.7542 + }, + { + "start": 32192.87, + "end": 32192.87, + "probability": 0.4229 + }, + { + "start": 32192.87, + "end": 32192.87, + "probability": 0.1561 + }, + { + "start": 32192.87, + "end": 32192.87, + "probability": 0.0552 + }, + { + "start": 32192.87, + "end": 32192.89, + "probability": 0.0182 + }, + { + "start": 32192.89, + "end": 32192.89, + "probability": 0.0574 + }, + { + "start": 32225.89, + "end": 32228.85, + "probability": 0.6409 + }, + { + "start": 32229.51, + "end": 32231.19, + "probability": 0.6647 + }, + { + "start": 32231.25, + "end": 32233.17, + "probability": 0.641 + }, + { + "start": 32234.29, + "end": 32236.27, + "probability": 0.9233 + }, + { + "start": 32237.17, + "end": 32237.67, + "probability": 0.6867 + }, + { + "start": 32238.07, + "end": 32238.73, + "probability": 0.7272 + }, + { + "start": 32239.37, + "end": 32240.17, + "probability": 0.6902 + }, + { + "start": 32240.81, + "end": 32242.49, + "probability": 0.3789 + }, + { + "start": 32242.49, + "end": 32244.69, + "probability": 0.9959 + }, + { + "start": 32245.13, + "end": 32245.76, + "probability": 0.9269 + }, + { + "start": 32246.11, + "end": 32246.99, + "probability": 0.6665 + }, + { + "start": 32247.95, + "end": 32251.41, + "probability": 0.6841 + }, + { + "start": 32251.45, + "end": 32254.3, + "probability": 0.9851 + }, + { + "start": 32254.71, + "end": 32254.81, + "probability": 0.5306 + }, + { + "start": 32255.69, + "end": 32257.53, + "probability": 0.9918 + }, + { + "start": 32258.97, + "end": 32261.67, + "probability": 0.9751 + }, + { + "start": 32261.73, + "end": 32265.69, + "probability": 0.999 + }, + { + "start": 32266.43, + "end": 32268.79, + "probability": 0.8564 + }, + { + "start": 32270.07, + "end": 32272.81, + "probability": 0.9387 + }, + { + "start": 32273.61, + "end": 32275.95, + "probability": 0.8841 + }, + { + "start": 32276.97, + "end": 32279.19, + "probability": 0.9925 + }, + { + "start": 32279.97, + "end": 32284.49, + "probability": 0.9873 + }, + { + "start": 32285.01, + "end": 32288.93, + "probability": 0.9833 + }, + { + "start": 32290.03, + "end": 32292.93, + "probability": 0.9932 + }, + { + "start": 32293.79, + "end": 32294.87, + "probability": 0.9277 + }, + { + "start": 32295.49, + "end": 32297.31, + "probability": 0.9847 + }, + { + "start": 32297.97, + "end": 32300.45, + "probability": 0.9517 + }, + { + "start": 32301.53, + "end": 32302.57, + "probability": 0.8496 + }, + { + "start": 32303.15, + "end": 32305.13, + "probability": 0.965 + }, + { + "start": 32305.35, + "end": 32308.87, + "probability": 0.7509 + }, + { + "start": 32308.87, + "end": 32311.41, + "probability": 0.9708 + }, + { + "start": 32312.21, + "end": 32314.23, + "probability": 0.8493 + }, + { + "start": 32314.89, + "end": 32318.51, + "probability": 0.9801 + }, + { + "start": 32323.03, + "end": 32323.03, + "probability": 0.0912 + }, + { + "start": 32323.03, + "end": 32324.48, + "probability": 0.228 + }, + { + "start": 32325.73, + "end": 32330.57, + "probability": 0.2786 + }, + { + "start": 32331.21, + "end": 32334.39, + "probability": 0.9287 + }, + { + "start": 32335.11, + "end": 32336.41, + "probability": 0.9583 + }, + { + "start": 32336.53, + "end": 32341.11, + "probability": 0.8156 + }, + { + "start": 32341.13, + "end": 32341.57, + "probability": 0.5821 + }, + { + "start": 32342.87, + "end": 32342.87, + "probability": 0.111 + }, + { + "start": 32342.87, + "end": 32345.09, + "probability": 0.8411 + }, + { + "start": 32345.19, + "end": 32349.41, + "probability": 0.8169 + }, + { + "start": 32349.41, + "end": 32352.53, + "probability": 0.9854 + }, + { + "start": 32353.05, + "end": 32356.67, + "probability": 0.7801 + }, + { + "start": 32357.57, + "end": 32359.91, + "probability": 0.6782 + }, + { + "start": 32360.93, + "end": 32364.53, + "probability": 0.812 + }, + { + "start": 32365.01, + "end": 32366.81, + "probability": 0.5593 + }, + { + "start": 32367.33, + "end": 32369.93, + "probability": 0.9012 + }, + { + "start": 32370.29, + "end": 32370.85, + "probability": 0.8797 + }, + { + "start": 32370.97, + "end": 32371.39, + "probability": 0.932 + }, + { + "start": 32371.53, + "end": 32372.37, + "probability": 0.9796 + }, + { + "start": 32372.47, + "end": 32373.29, + "probability": 0.9159 + }, + { + "start": 32373.31, + "end": 32373.75, + "probability": 0.9558 + }, + { + "start": 32374.25, + "end": 32374.83, + "probability": 0.9794 + }, + { + "start": 32375.39, + "end": 32379.69, + "probability": 0.9438 + }, + { + "start": 32380.25, + "end": 32382.37, + "probability": 0.9624 + }, + { + "start": 32382.43, + "end": 32383.19, + "probability": 0.9896 + }, + { + "start": 32383.31, + "end": 32386.05, + "probability": 0.9173 + }, + { + "start": 32386.77, + "end": 32389.91, + "probability": 0.9914 + }, + { + "start": 32390.41, + "end": 32392.81, + "probability": 0.9536 + }, + { + "start": 32392.89, + "end": 32393.99, + "probability": 0.4185 + }, + { + "start": 32394.47, + "end": 32396.15, + "probability": 0.891 + }, + { + "start": 32397.21, + "end": 32399.59, + "probability": 0.8368 + }, + { + "start": 32400.09, + "end": 32403.11, + "probability": 0.9887 + }, + { + "start": 32404.19, + "end": 32407.63, + "probability": 0.9613 + }, + { + "start": 32407.63, + "end": 32411.53, + "probability": 0.9838 + }, + { + "start": 32411.79, + "end": 32414.27, + "probability": 0.8502 + }, + { + "start": 32414.99, + "end": 32418.95, + "probability": 0.9259 + }, + { + "start": 32419.07, + "end": 32421.27, + "probability": 0.8982 + }, + { + "start": 32422.29, + "end": 32425.58, + "probability": 0.9164 + }, + { + "start": 32426.23, + "end": 32427.51, + "probability": 0.8672 + }, + { + "start": 32427.73, + "end": 32428.13, + "probability": 0.8907 + }, + { + "start": 32428.87, + "end": 32431.73, + "probability": 0.9356 + }, + { + "start": 32432.69, + "end": 32434.35, + "probability": 0.5638 + }, + { + "start": 32434.95, + "end": 32437.25, + "probability": 0.9736 + }, + { + "start": 32437.71, + "end": 32441.37, + "probability": 0.988 + }, + { + "start": 32441.81, + "end": 32445.11, + "probability": 0.9577 + }, + { + "start": 32445.11, + "end": 32449.09, + "probability": 0.9535 + }, + { + "start": 32449.97, + "end": 32451.43, + "probability": 0.7056 + }, + { + "start": 32451.57, + "end": 32453.87, + "probability": 0.8228 + }, + { + "start": 32453.87, + "end": 32455.97, + "probability": 0.9902 + }, + { + "start": 32456.95, + "end": 32459.35, + "probability": 0.9856 + }, + { + "start": 32460.07, + "end": 32461.97, + "probability": 0.481 + }, + { + "start": 32461.97, + "end": 32463.79, + "probability": 0.9501 + }, + { + "start": 32464.95, + "end": 32469.47, + "probability": 0.7885 + }, + { + "start": 32470.23, + "end": 32474.71, + "probability": 0.9619 + }, + { + "start": 32475.47, + "end": 32479.03, + "probability": 0.987 + }, + { + "start": 32479.73, + "end": 32482.79, + "probability": 0.9093 + }, + { + "start": 32482.95, + "end": 32487.77, + "probability": 0.8457 + }, + { + "start": 32488.47, + "end": 32491.31, + "probability": 0.7303 + }, + { + "start": 32491.77, + "end": 32496.01, + "probability": 0.9924 + }, + { + "start": 32496.01, + "end": 32498.23, + "probability": 0.8835 + }, + { + "start": 32498.73, + "end": 32499.09, + "probability": 0.7659 + }, + { + "start": 32499.35, + "end": 32500.27, + "probability": 0.7308 + }, + { + "start": 32501.81, + "end": 32505.21, + "probability": 0.9884 + }, + { + "start": 32505.75, + "end": 32508.39, + "probability": 0.8844 + }, + { + "start": 32509.09, + "end": 32511.17, + "probability": 0.7839 + }, + { + "start": 32511.25, + "end": 32512.37, + "probability": 0.864 + }, + { + "start": 32512.85, + "end": 32515.43, + "probability": 0.7814 + }, + { + "start": 32515.85, + "end": 32517.67, + "probability": 0.8918 + }, + { + "start": 32518.21, + "end": 32520.35, + "probability": 0.8286 + }, + { + "start": 32520.39, + "end": 32522.25, + "probability": 0.6502 + }, + { + "start": 32523.57, + "end": 32525.39, + "probability": 0.67 + }, + { + "start": 32525.95, + "end": 32527.05, + "probability": 0.4993 + }, + { + "start": 32527.55, + "end": 32531.21, + "probability": 0.9591 + }, + { + "start": 32531.75, + "end": 32533.07, + "probability": 0.7436 + }, + { + "start": 32533.95, + "end": 32535.57, + "probability": 0.6694 + }, + { + "start": 32535.67, + "end": 32537.59, + "probability": 0.9318 + }, + { + "start": 32538.15, + "end": 32540.89, + "probability": 0.7984 + }, + { + "start": 32541.37, + "end": 32542.93, + "probability": 0.7809 + }, + { + "start": 32543.89, + "end": 32547.83, + "probability": 0.6372 + }, + { + "start": 32547.83, + "end": 32550.07, + "probability": 0.9932 + }, + { + "start": 32550.19, + "end": 32550.79, + "probability": 0.7486 + }, + { + "start": 32551.31, + "end": 32552.67, + "probability": 0.9959 + }, + { + "start": 32553.55, + "end": 32557.15, + "probability": 0.9759 + }, + { + "start": 32557.53, + "end": 32558.83, + "probability": 0.9139 + }, + { + "start": 32559.43, + "end": 32560.31, + "probability": 0.8828 + }, + { + "start": 32560.95, + "end": 32563.11, + "probability": 0.99 + }, + { + "start": 32564.03, + "end": 32566.69, + "probability": 0.7852 + }, + { + "start": 32567.25, + "end": 32568.09, + "probability": 0.9739 + }, + { + "start": 32568.97, + "end": 32569.07, + "probability": 0.9917 + }, + { + "start": 32569.59, + "end": 32572.41, + "probability": 0.9624 + }, + { + "start": 32572.89, + "end": 32575.33, + "probability": 0.984 + }, + { + "start": 32576.41, + "end": 32580.68, + "probability": 0.6642 + }, + { + "start": 32581.89, + "end": 32583.71, + "probability": 0.8759 + }, + { + "start": 32583.71, + "end": 32585.53, + "probability": 0.4297 + }, + { + "start": 32585.55, + "end": 32588.13, + "probability": 0.6342 + }, + { + "start": 32588.81, + "end": 32588.81, + "probability": 0.2689 + }, + { + "start": 32588.81, + "end": 32589.45, + "probability": 0.6383 + }, + { + "start": 32590.67, + "end": 32594.59, + "probability": 0.7908 + }, + { + "start": 32594.71, + "end": 32594.83, + "probability": 0.3788 + }, + { + "start": 32594.83, + "end": 32595.43, + "probability": 0.6556 + }, + { + "start": 32595.59, + "end": 32597.91, + "probability": 0.8637 + }, + { + "start": 32598.17, + "end": 32598.73, + "probability": 0.5655 + }, + { + "start": 32599.83, + "end": 32600.23, + "probability": 0.7174 + }, + { + "start": 32601.29, + "end": 32604.71, + "probability": 0.8113 + }, + { + "start": 32604.79, + "end": 32608.89, + "probability": 0.8266 + }, + { + "start": 32609.89, + "end": 32613.11, + "probability": 0.9796 + }, + { + "start": 32613.19, + "end": 32614.41, + "probability": 0.2722 + }, + { + "start": 32614.45, + "end": 32615.49, + "probability": 0.6178 + }, + { + "start": 32615.57, + "end": 32615.67, + "probability": 0.3943 + }, + { + "start": 32616.75, + "end": 32618.37, + "probability": 0.5105 + }, + { + "start": 32619.45, + "end": 32622.19, + "probability": 0.962 + }, + { + "start": 32622.19, + "end": 32625.43, + "probability": 0.9364 + }, + { + "start": 32626.67, + "end": 32630.23, + "probability": 0.8019 + }, + { + "start": 32630.41, + "end": 32633.71, + "probability": 0.825 + }, + { + "start": 32633.83, + "end": 32634.43, + "probability": 0.7708 + }, + { + "start": 32635.15, + "end": 32637.35, + "probability": 0.8564 + }, + { + "start": 32637.35, + "end": 32639.65, + "probability": 0.983 + }, + { + "start": 32640.67, + "end": 32644.47, + "probability": 0.9353 + }, + { + "start": 32647.59, + "end": 32647.87, + "probability": 0.1664 + }, + { + "start": 32649.49, + "end": 32655.47, + "probability": 0.7244 + }, + { + "start": 32656.15, + "end": 32658.37, + "probability": 0.9102 + }, + { + "start": 32659.05, + "end": 32661.07, + "probability": 0.7898 + }, + { + "start": 32662.55, + "end": 32663.17, + "probability": 0.8334 + }, + { + "start": 32665.76, + "end": 32665.83, + "probability": 0.1011 + }, + { + "start": 32665.83, + "end": 32667.35, + "probability": 0.9935 + }, + { + "start": 32668.03, + "end": 32670.59, + "probability": 0.9375 + }, + { + "start": 32670.59, + "end": 32673.07, + "probability": 0.9729 + }, + { + "start": 32673.97, + "end": 32674.65, + "probability": 0.9208 + }, + { + "start": 32675.45, + "end": 32679.57, + "probability": 0.8247 + }, + { + "start": 32680.19, + "end": 32684.17, + "probability": 0.9878 + }, + { + "start": 32684.83, + "end": 32687.39, + "probability": 0.801 + }, + { + "start": 32687.81, + "end": 32690.63, + "probability": 0.9433 + }, + { + "start": 32690.79, + "end": 32696.59, + "probability": 0.8363 + }, + { + "start": 32697.35, + "end": 32702.13, + "probability": 0.7882 + }, + { + "start": 32702.21, + "end": 32707.39, + "probability": 0.9585 + }, + { + "start": 32707.61, + "end": 32710.95, + "probability": 0.7278 + }, + { + "start": 32712.05, + "end": 32715.23, + "probability": 0.873 + }, + { + "start": 32715.69, + "end": 32720.11, + "probability": 0.9875 + }, + { + "start": 32720.25, + "end": 32726.91, + "probability": 0.996 + }, + { + "start": 32727.53, + "end": 32729.05, + "probability": 0.9592 + }, + { + "start": 32729.33, + "end": 32732.37, + "probability": 0.9168 + }, + { + "start": 32732.47, + "end": 32734.37, + "probability": 0.9355 + }, + { + "start": 32734.45, + "end": 32736.25, + "probability": 0.6561 + }, + { + "start": 32736.93, + "end": 32739.19, + "probability": 0.9948 + }, + { + "start": 32739.83, + "end": 32741.85, + "probability": 0.96 + }, + { + "start": 32742.51, + "end": 32744.49, + "probability": 0.8985 + }, + { + "start": 32744.65, + "end": 32748.59, + "probability": 0.8767 + }, + { + "start": 32749.57, + "end": 32753.99, + "probability": 0.9506 + }, + { + "start": 32754.55, + "end": 32757.33, + "probability": 0.9002 + }, + { + "start": 32757.49, + "end": 32759.79, + "probability": 0.8276 + }, + { + "start": 32759.91, + "end": 32763.19, + "probability": 0.8805 + }, + { + "start": 32763.25, + "end": 32764.33, + "probability": 0.3468 + }, + { + "start": 32764.95, + "end": 32765.99, + "probability": 0.6938 + }, + { + "start": 32766.11, + "end": 32768.19, + "probability": 0.69 + }, + { + "start": 32768.35, + "end": 32770.12, + "probability": 0.8267 + }, + { + "start": 32770.91, + "end": 32771.33, + "probability": 0.7754 + }, + { + "start": 32771.79, + "end": 32775.55, + "probability": 0.7737 + }, + { + "start": 32776.09, + "end": 32778.43, + "probability": 0.8356 + }, + { + "start": 32779.21, + "end": 32780.07, + "probability": 0.8872 + }, + { + "start": 32780.19, + "end": 32782.49, + "probability": 0.9256 + }, + { + "start": 32783.03, + "end": 32784.33, + "probability": 0.9085 + }, + { + "start": 32785.01, + "end": 32787.19, + "probability": 0.9623 + }, + { + "start": 32787.47, + "end": 32789.83, + "probability": 0.5395 + }, + { + "start": 32789.93, + "end": 32790.07, + "probability": 0.0149 + }, + { + "start": 32790.69, + "end": 32791.85, + "probability": 0.8704 + }, + { + "start": 32791.95, + "end": 32797.87, + "probability": 0.8912 + }, + { + "start": 32798.09, + "end": 32798.45, + "probability": 0.524 + }, + { + "start": 32798.97, + "end": 32801.29, + "probability": 0.7984 + }, + { + "start": 32802.07, + "end": 32803.13, + "probability": 0.9097 + }, + { + "start": 32803.65, + "end": 32803.79, + "probability": 0.2883 + }, + { + "start": 32804.45, + "end": 32807.11, + "probability": 0.5645 + }, + { + "start": 32807.19, + "end": 32807.85, + "probability": 0.9689 + }, + { + "start": 32808.31, + "end": 32809.83, + "probability": 0.9306 + }, + { + "start": 32810.21, + "end": 32811.21, + "probability": 0.8392 + }, + { + "start": 32811.25, + "end": 32812.51, + "probability": 0.8852 + }, + { + "start": 32813.57, + "end": 32815.01, + "probability": 0.6631 + }, + { + "start": 32815.61, + "end": 32815.81, + "probability": 0.8524 + }, + { + "start": 32816.89, + "end": 32818.63, + "probability": 0.8649 + }, + { + "start": 32818.67, + "end": 32820.31, + "probability": 0.8848 + }, + { + "start": 32820.79, + "end": 32820.99, + "probability": 0.2882 + }, + { + "start": 32820.99, + "end": 32823.95, + "probability": 0.5124 + }, + { + "start": 32824.45, + "end": 32827.29, + "probability": 0.9441 + }, + { + "start": 32828.51, + "end": 32828.51, + "probability": 0.006 + }, + { + "start": 32828.51, + "end": 32829.59, + "probability": 0.6677 + }, + { + "start": 32830.19, + "end": 32832.73, + "probability": 0.5267 + }, + { + "start": 32833.15, + "end": 32836.19, + "probability": 0.9257 + }, + { + "start": 32836.81, + "end": 32837.15, + "probability": 0.7031 + }, + { + "start": 32837.34, + "end": 32839.89, + "probability": 0.8497 + }, + { + "start": 32840.57, + "end": 32843.79, + "probability": 0.9846 + }, + { + "start": 32844.41, + "end": 32844.63, + "probability": 0.0627 + }, + { + "start": 32844.73, + "end": 32847.83, + "probability": 0.9549 + }, + { + "start": 32848.65, + "end": 32848.97, + "probability": 0.5977 + }, + { + "start": 32849.01, + "end": 32851.94, + "probability": 0.9759 + }, + { + "start": 32852.21, + "end": 32852.47, + "probability": 0.4866 + }, + { + "start": 32852.65, + "end": 32857.37, + "probability": 0.9726 + }, + { + "start": 32857.95, + "end": 32859.23, + "probability": 0.7441 + }, + { + "start": 32860.33, + "end": 32862.45, + "probability": 0.7514 + }, + { + "start": 32863.03, + "end": 32866.45, + "probability": 0.97 + }, + { + "start": 32866.97, + "end": 32868.03, + "probability": 0.5029 + }, + { + "start": 32868.59, + "end": 32872.27, + "probability": 0.6616 + }, + { + "start": 32873.07, + "end": 32878.45, + "probability": 0.8379 + }, + { + "start": 32879.07, + "end": 32880.87, + "probability": 0.8782 + }, + { + "start": 32882.41, + "end": 32884.81, + "probability": 0.9267 + }, + { + "start": 32885.73, + "end": 32890.93, + "probability": 0.7744 + }, + { + "start": 32892.27, + "end": 32894.83, + "probability": 0.7457 + }, + { + "start": 32895.47, + "end": 32896.55, + "probability": 0.9331 + }, + { + "start": 32896.69, + "end": 32897.01, + "probability": 0.5926 + }, + { + "start": 32897.67, + "end": 32898.49, + "probability": 0.2733 + }, + { + "start": 32898.55, + "end": 32898.92, + "probability": 0.8179 + }, + { + "start": 32899.53, + "end": 32904.35, + "probability": 0.812 + }, + { + "start": 32904.91, + "end": 32908.15, + "probability": 0.9091 + }, + { + "start": 32909.15, + "end": 32909.97, + "probability": 0.0642 + }, + { + "start": 32910.41, + "end": 32911.0, + "probability": 0.1408 + }, + { + "start": 32911.19, + "end": 32911.4, + "probability": 0.6142 + }, + { + "start": 32911.79, + "end": 32913.09, + "probability": 0.307 + }, + { + "start": 32913.51, + "end": 32915.33, + "probability": 0.3854 + }, + { + "start": 32915.47, + "end": 32916.13, + "probability": 0.5323 + }, + { + "start": 32920.22, + "end": 32922.31, + "probability": 0.6382 + }, + { + "start": 32923.46, + "end": 32925.73, + "probability": 0.1812 + }, + { + "start": 32927.19, + "end": 32927.47, + "probability": 0.5673 + }, + { + "start": 32927.67, + "end": 32927.99, + "probability": 0.5485 + }, + { + "start": 32929.09, + "end": 32929.73, + "probability": 0.7347 + }, + { + "start": 32929.77, + "end": 32932.39, + "probability": 0.4215 + }, + { + "start": 32933.63, + "end": 32935.81, + "probability": 0.4818 + }, + { + "start": 32936.43, + "end": 32936.43, + "probability": 0.0551 + }, + { + "start": 32937.91, + "end": 32940.41, + "probability": 0.7574 + }, + { + "start": 32940.55, + "end": 32945.17, + "probability": 0.9692 + }, + { + "start": 32945.26, + "end": 32948.91, + "probability": 0.9546 + }, + { + "start": 32949.89, + "end": 32951.03, + "probability": 0.7249 + }, + { + "start": 32951.61, + "end": 32952.55, + "probability": 0.7965 + }, + { + "start": 32953.09, + "end": 32955.35, + "probability": 0.8885 + }, + { + "start": 32955.97, + "end": 32958.13, + "probability": 0.5712 + }, + { + "start": 32958.61, + "end": 32960.07, + "probability": 0.3678 + }, + { + "start": 32962.09, + "end": 32964.02, + "probability": 0.3845 + }, + { + "start": 32964.63, + "end": 32966.97, + "probability": 0.105 + }, + { + "start": 32981.79, + "end": 32984.27, + "probability": 0.21 + }, + { + "start": 32984.27, + "end": 32987.39, + "probability": 0.6554 + }, + { + "start": 32987.75, + "end": 32990.37, + "probability": 0.6414 + }, + { + "start": 32991.27, + "end": 32996.83, + "probability": 0.7479 + }, + { + "start": 33003.33, + "end": 33005.39, + "probability": 0.6459 + }, + { + "start": 33011.85, + "end": 33012.21, + "probability": 0.0794 + }, + { + "start": 33013.21, + "end": 33015.75, + "probability": 0.4965 + }, + { + "start": 33016.35, + "end": 33018.49, + "probability": 0.5282 + }, + { + "start": 33020.51, + "end": 33022.17, + "probability": 0.4663 + }, + { + "start": 33023.09, + "end": 33023.67, + "probability": 0.7599 + }, + { + "start": 33023.73, + "end": 33026.14, + "probability": 0.5827 + }, + { + "start": 33026.33, + "end": 33029.35, + "probability": 0.8471 + }, + { + "start": 33029.39, + "end": 33032.45, + "probability": 0.2699 + }, + { + "start": 33032.53, + "end": 33032.67, + "probability": 0.1026 + }, + { + "start": 33032.67, + "end": 33033.37, + "probability": 0.2449 + }, + { + "start": 33034.03, + "end": 33034.17, + "probability": 0.6849 + }, + { + "start": 33034.69, + "end": 33034.89, + "probability": 0.7808 + }, + { + "start": 33036.57, + "end": 33039.31, + "probability": 0.313 + }, + { + "start": 33039.87, + "end": 33040.87, + "probability": 0.0076 + }, + { + "start": 33042.16, + "end": 33046.65, + "probability": 0.0044 + }, + { + "start": 33048.19, + "end": 33050.17, + "probability": 0.0121 + }, + { + "start": 33050.17, + "end": 33050.17, + "probability": 0.055 + }, + { + "start": 33050.75, + "end": 33050.75, + "probability": 0.2064 + }, + { + "start": 33080.41, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + }, + { + "start": 33084.301, + "end": 33084.301, + "probability": 0.0 + } + ], + "segments_count": 10900, + "words_count": 53967, + "avg_words_per_segment": 4.9511, + "avg_segment_duration": 2.0878, + "avg_words_per_minute": 97.8718, + "plenum_id": "2481", + "duration": 33084.3, + "title": null, + "plenum_date": "2009-06-10" +} \ No newline at end of file