diff --git "a/63981/metadata.json" "b/63981/metadata.json" new file mode 100644--- /dev/null +++ "b/63981/metadata.json" @@ -0,0 +1,18987 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "63981", + "quality_score": 0.8597, + "per_segment_quality_scores": [ + { + "start": 48.78, + "end": 49.2, + "probability": 0.3787 + }, + { + "start": 51.42, + "end": 55.5, + "probability": 0.4989 + }, + { + "start": 56.58, + "end": 58.48, + "probability": 0.8211 + }, + { + "start": 59.02, + "end": 62.36, + "probability": 0.8949 + }, + { + "start": 62.94, + "end": 63.34, + "probability": 0.6068 + }, + { + "start": 64.18, + "end": 65.6, + "probability": 0.9746 + }, + { + "start": 66.16, + "end": 66.84, + "probability": 0.8166 + }, + { + "start": 67.7, + "end": 71.92, + "probability": 0.981 + }, + { + "start": 72.44, + "end": 72.86, + "probability": 0.3094 + }, + { + "start": 73.42, + "end": 76.8, + "probability": 0.7796 + }, + { + "start": 76.9, + "end": 77.76, + "probability": 0.5682 + }, + { + "start": 78.0, + "end": 79.34, + "probability": 0.9154 + }, + { + "start": 80.06, + "end": 81.78, + "probability": 0.7557 + }, + { + "start": 84.63, + "end": 86.32, + "probability": 0.5826 + }, + { + "start": 86.32, + "end": 89.88, + "probability": 0.5413 + }, + { + "start": 90.08, + "end": 93.64, + "probability": 0.9421 + }, + { + "start": 93.98, + "end": 95.1, + "probability": 0.6899 + }, + { + "start": 95.76, + "end": 97.52, + "probability": 0.6606 + }, + { + "start": 97.94, + "end": 101.24, + "probability": 0.0534 + }, + { + "start": 101.3, + "end": 103.32, + "probability": 0.1198 + }, + { + "start": 104.46, + "end": 104.46, + "probability": 0.0142 + }, + { + "start": 104.46, + "end": 104.46, + "probability": 0.0888 + }, + { + "start": 104.46, + "end": 104.46, + "probability": 0.1524 + }, + { + "start": 104.46, + "end": 104.46, + "probability": 0.0115 + }, + { + "start": 104.46, + "end": 106.78, + "probability": 0.0434 + }, + { + "start": 123.44, + "end": 125.08, + "probability": 0.1412 + }, + { + "start": 125.6, + "end": 126.22, + "probability": 0.0469 + }, + { + "start": 127.56, + "end": 128.98, + "probability": 0.027 + }, + { + "start": 129.26, + "end": 132.23, + "probability": 0.0527 + }, + { + "start": 133.26, + "end": 134.38, + "probability": 0.0366 + }, + { + "start": 134.92, + "end": 136.36, + "probability": 0.4864 + }, + { + "start": 140.52, + "end": 141.34, + "probability": 0.1072 + }, + { + "start": 147.54, + "end": 148.16, + "probability": 0.0641 + }, + { + "start": 148.26, + "end": 151.18, + "probability": 0.0349 + }, + { + "start": 151.64, + "end": 152.6, + "probability": 0.0243 + }, + { + "start": 152.68, + "end": 155.88, + "probability": 0.0178 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.0, + "end": 196.0, + "probability": 0.0 + }, + { + "start": 196.68, + "end": 197.0, + "probability": 0.0666 + }, + { + "start": 197.0, + "end": 197.02, + "probability": 0.1285 + }, + { + "start": 197.02, + "end": 197.02, + "probability": 0.0506 + }, + { + "start": 197.02, + "end": 199.12, + "probability": 0.4468 + }, + { + "start": 199.32, + "end": 201.32, + "probability": 0.8955 + }, + { + "start": 206.5, + "end": 208.24, + "probability": 0.6694 + }, + { + "start": 209.42, + "end": 212.16, + "probability": 0.8486 + }, + { + "start": 213.26, + "end": 213.92, + "probability": 0.6893 + }, + { + "start": 215.96, + "end": 222.08, + "probability": 0.9871 + }, + { + "start": 223.52, + "end": 225.88, + "probability": 0.9968 + }, + { + "start": 227.8, + "end": 228.9, + "probability": 0.6557 + }, + { + "start": 229.02, + "end": 231.22, + "probability": 0.9914 + }, + { + "start": 231.98, + "end": 236.46, + "probability": 0.9811 + }, + { + "start": 237.94, + "end": 238.96, + "probability": 0.8751 + }, + { + "start": 240.6, + "end": 246.24, + "probability": 0.8611 + }, + { + "start": 247.44, + "end": 247.74, + "probability": 0.9043 + }, + { + "start": 249.32, + "end": 250.86, + "probability": 0.7198 + }, + { + "start": 251.94, + "end": 255.36, + "probability": 0.9351 + }, + { + "start": 256.72, + "end": 258.66, + "probability": 0.9201 + }, + { + "start": 260.0, + "end": 262.4, + "probability": 0.7544 + }, + { + "start": 263.22, + "end": 264.74, + "probability": 0.9956 + }, + { + "start": 265.64, + "end": 268.56, + "probability": 0.9231 + }, + { + "start": 270.74, + "end": 273.02, + "probability": 0.9661 + }, + { + "start": 274.72, + "end": 275.8, + "probability": 0.9907 + }, + { + "start": 276.34, + "end": 278.66, + "probability": 0.59 + }, + { + "start": 278.72, + "end": 281.52, + "probability": 0.7389 + }, + { + "start": 283.86, + "end": 285.22, + "probability": 0.7479 + }, + { + "start": 286.7, + "end": 288.4, + "probability": 0.9264 + }, + { + "start": 288.4, + "end": 292.44, + "probability": 0.7573 + }, + { + "start": 293.14, + "end": 296.74, + "probability": 0.8391 + }, + { + "start": 297.6, + "end": 298.28, + "probability": 0.2305 + }, + { + "start": 298.28, + "end": 299.05, + "probability": 0.8329 + }, + { + "start": 299.24, + "end": 305.08, + "probability": 0.8541 + }, + { + "start": 305.18, + "end": 305.46, + "probability": 0.5237 + }, + { + "start": 305.62, + "end": 306.14, + "probability": 0.4317 + }, + { + "start": 307.12, + "end": 310.8, + "probability": 0.8028 + }, + { + "start": 311.78, + "end": 312.84, + "probability": 0.9339 + }, + { + "start": 312.92, + "end": 314.14, + "probability": 0.9145 + }, + { + "start": 314.44, + "end": 317.76, + "probability": 0.8934 + }, + { + "start": 317.86, + "end": 318.3, + "probability": 0.8667 + }, + { + "start": 318.9, + "end": 320.64, + "probability": 0.6805 + }, + { + "start": 320.82, + "end": 322.98, + "probability": 0.6355 + }, + { + "start": 323.1, + "end": 324.8, + "probability": 0.8955 + }, + { + "start": 330.5, + "end": 332.22, + "probability": 0.8325 + }, + { + "start": 333.46, + "end": 338.24, + "probability": 0.9116 + }, + { + "start": 339.52, + "end": 340.32, + "probability": 0.9299 + }, + { + "start": 341.3, + "end": 342.74, + "probability": 0.7215 + }, + { + "start": 343.46, + "end": 350.78, + "probability": 0.9436 + }, + { + "start": 351.9, + "end": 355.1, + "probability": 0.8624 + }, + { + "start": 356.32, + "end": 359.24, + "probability": 0.9929 + }, + { + "start": 359.32, + "end": 359.9, + "probability": 0.6247 + }, + { + "start": 360.42, + "end": 361.68, + "probability": 0.8123 + }, + { + "start": 362.42, + "end": 368.46, + "probability": 0.9384 + }, + { + "start": 369.16, + "end": 376.08, + "probability": 0.9514 + }, + { + "start": 376.16, + "end": 376.62, + "probability": 0.8571 + }, + { + "start": 377.68, + "end": 381.8, + "probability": 0.6473 + }, + { + "start": 382.32, + "end": 387.22, + "probability": 0.9816 + }, + { + "start": 387.56, + "end": 389.8, + "probability": 0.8942 + }, + { + "start": 390.62, + "end": 395.74, + "probability": 0.8491 + }, + { + "start": 397.4, + "end": 400.8, + "probability": 0.7359 + }, + { + "start": 401.48, + "end": 404.24, + "probability": 0.9438 + }, + { + "start": 404.32, + "end": 411.05, + "probability": 0.8081 + }, + { + "start": 411.92, + "end": 415.78, + "probability": 0.9805 + }, + { + "start": 416.5, + "end": 419.38, + "probability": 0.793 + }, + { + "start": 419.96, + "end": 423.82, + "probability": 0.9448 + }, + { + "start": 423.88, + "end": 424.04, + "probability": 0.7865 + }, + { + "start": 424.66, + "end": 426.36, + "probability": 0.8633 + }, + { + "start": 426.64, + "end": 428.82, + "probability": 0.8632 + }, + { + "start": 428.82, + "end": 431.04, + "probability": 0.7855 + }, + { + "start": 432.5, + "end": 433.74, + "probability": 0.5972 + }, + { + "start": 434.64, + "end": 440.2, + "probability": 0.9579 + }, + { + "start": 441.44, + "end": 443.68, + "probability": 0.8843 + }, + { + "start": 443.74, + "end": 445.22, + "probability": 0.9868 + }, + { + "start": 445.9, + "end": 446.68, + "probability": 0.6851 + }, + { + "start": 446.8, + "end": 447.28, + "probability": 0.4302 + }, + { + "start": 447.72, + "end": 450.4, + "probability": 0.8531 + }, + { + "start": 450.48, + "end": 452.24, + "probability": 0.5895 + }, + { + "start": 452.84, + "end": 453.64, + "probability": 0.5237 + }, + { + "start": 454.62, + "end": 458.08, + "probability": 0.9295 + }, + { + "start": 459.04, + "end": 460.5, + "probability": 0.8402 + }, + { + "start": 461.14, + "end": 462.54, + "probability": 0.6545 + }, + { + "start": 462.76, + "end": 466.32, + "probability": 0.9902 + }, + { + "start": 466.76, + "end": 467.7, + "probability": 0.88 + }, + { + "start": 468.48, + "end": 472.64, + "probability": 0.9856 + }, + { + "start": 473.32, + "end": 474.46, + "probability": 0.9272 + }, + { + "start": 475.02, + "end": 475.82, + "probability": 0.9394 + }, + { + "start": 477.84, + "end": 481.9, + "probability": 0.9387 + }, + { + "start": 482.16, + "end": 483.04, + "probability": 0.8618 + }, + { + "start": 483.24, + "end": 484.76, + "probability": 0.9918 + }, + { + "start": 484.88, + "end": 485.56, + "probability": 0.8046 + }, + { + "start": 485.96, + "end": 488.72, + "probability": 0.9741 + }, + { + "start": 489.12, + "end": 489.79, + "probability": 0.9736 + }, + { + "start": 490.12, + "end": 491.08, + "probability": 0.9292 + }, + { + "start": 492.0, + "end": 495.32, + "probability": 0.9668 + }, + { + "start": 496.66, + "end": 498.1, + "probability": 0.5585 + }, + { + "start": 498.8, + "end": 499.84, + "probability": 0.8616 + }, + { + "start": 500.3, + "end": 501.04, + "probability": 0.6843 + }, + { + "start": 501.12, + "end": 502.5, + "probability": 0.7767 + }, + { + "start": 502.52, + "end": 503.26, + "probability": 0.9235 + }, + { + "start": 503.72, + "end": 505.36, + "probability": 0.852 + }, + { + "start": 505.52, + "end": 506.38, + "probability": 0.4976 + }, + { + "start": 507.28, + "end": 510.48, + "probability": 0.9683 + }, + { + "start": 510.52, + "end": 511.98, + "probability": 0.7641 + }, + { + "start": 512.32, + "end": 515.62, + "probability": 0.9845 + }, + { + "start": 516.04, + "end": 518.66, + "probability": 0.901 + }, + { + "start": 518.94, + "end": 519.26, + "probability": 0.3723 + }, + { + "start": 519.58, + "end": 521.15, + "probability": 0.688 + }, + { + "start": 521.48, + "end": 524.02, + "probability": 0.8307 + }, + { + "start": 524.2, + "end": 524.48, + "probability": 0.5656 + }, + { + "start": 524.88, + "end": 526.62, + "probability": 0.6381 + }, + { + "start": 526.72, + "end": 529.66, + "probability": 0.753 + }, + { + "start": 530.58, + "end": 534.22, + "probability": 0.9841 + }, + { + "start": 535.62, + "end": 538.54, + "probability": 0.769 + }, + { + "start": 539.2, + "end": 542.66, + "probability": 0.8517 + }, + { + "start": 543.35, + "end": 546.32, + "probability": 0.9733 + }, + { + "start": 548.24, + "end": 549.22, + "probability": 0.5402 + }, + { + "start": 549.3, + "end": 550.4, + "probability": 0.8696 + }, + { + "start": 550.48, + "end": 551.14, + "probability": 0.7734 + }, + { + "start": 551.36, + "end": 552.66, + "probability": 0.9736 + }, + { + "start": 554.18, + "end": 556.24, + "probability": 0.9667 + }, + { + "start": 556.28, + "end": 559.9, + "probability": 0.9956 + }, + { + "start": 560.54, + "end": 562.08, + "probability": 0.8776 + }, + { + "start": 562.2, + "end": 564.26, + "probability": 0.483 + }, + { + "start": 564.68, + "end": 567.16, + "probability": 0.991 + }, + { + "start": 568.06, + "end": 571.5, + "probability": 0.8285 + }, + { + "start": 572.04, + "end": 575.62, + "probability": 0.8898 + }, + { + "start": 575.62, + "end": 578.58, + "probability": 0.9674 + }, + { + "start": 579.14, + "end": 580.24, + "probability": 0.5154 + }, + { + "start": 580.38, + "end": 582.22, + "probability": 0.8975 + }, + { + "start": 582.52, + "end": 584.32, + "probability": 0.9919 + }, + { + "start": 584.9, + "end": 589.78, + "probability": 0.8265 + }, + { + "start": 589.9, + "end": 593.8, + "probability": 0.9716 + }, + { + "start": 594.12, + "end": 595.48, + "probability": 0.9967 + }, + { + "start": 596.02, + "end": 597.82, + "probability": 0.9784 + }, + { + "start": 598.58, + "end": 600.08, + "probability": 0.9775 + }, + { + "start": 600.18, + "end": 602.6, + "probability": 0.998 + }, + { + "start": 602.98, + "end": 606.88, + "probability": 0.961 + }, + { + "start": 607.16, + "end": 608.04, + "probability": 0.331 + }, + { + "start": 608.12, + "end": 610.98, + "probability": 0.9588 + }, + { + "start": 611.32, + "end": 612.32, + "probability": 0.8816 + }, + { + "start": 612.46, + "end": 613.16, + "probability": 0.8669 + }, + { + "start": 613.54, + "end": 614.26, + "probability": 0.5679 + }, + { + "start": 614.32, + "end": 614.74, + "probability": 0.9507 + }, + { + "start": 615.74, + "end": 620.82, + "probability": 0.9774 + }, + { + "start": 620.92, + "end": 622.48, + "probability": 0.9392 + }, + { + "start": 622.74, + "end": 624.02, + "probability": 0.926 + }, + { + "start": 624.44, + "end": 625.28, + "probability": 0.9372 + }, + { + "start": 625.66, + "end": 626.44, + "probability": 0.645 + }, + { + "start": 626.5, + "end": 629.56, + "probability": 0.91 + }, + { + "start": 629.74, + "end": 631.84, + "probability": 0.9742 + }, + { + "start": 631.84, + "end": 633.98, + "probability": 0.9954 + }, + { + "start": 634.52, + "end": 635.26, + "probability": 0.8895 + }, + { + "start": 635.58, + "end": 637.66, + "probability": 0.9863 + }, + { + "start": 638.06, + "end": 641.38, + "probability": 0.9931 + }, + { + "start": 641.48, + "end": 642.72, + "probability": 0.8141 + }, + { + "start": 643.04, + "end": 645.32, + "probability": 0.9984 + }, + { + "start": 645.66, + "end": 648.02, + "probability": 0.8235 + }, + { + "start": 648.3, + "end": 649.4, + "probability": 0.6437 + }, + { + "start": 649.64, + "end": 650.26, + "probability": 0.904 + }, + { + "start": 650.64, + "end": 651.32, + "probability": 0.9833 + }, + { + "start": 651.6, + "end": 653.48, + "probability": 0.9193 + }, + { + "start": 653.74, + "end": 655.36, + "probability": 0.9139 + }, + { + "start": 655.66, + "end": 656.14, + "probability": 0.6817 + }, + { + "start": 656.38, + "end": 658.66, + "probability": 0.9549 + }, + { + "start": 658.78, + "end": 660.22, + "probability": 0.8321 + }, + { + "start": 660.6, + "end": 662.64, + "probability": 0.8413 + }, + { + "start": 663.68, + "end": 665.2, + "probability": 0.6799 + }, + { + "start": 665.96, + "end": 668.38, + "probability": 0.9801 + }, + { + "start": 669.08, + "end": 673.46, + "probability": 0.8876 + }, + { + "start": 673.56, + "end": 674.68, + "probability": 0.8062 + }, + { + "start": 675.5, + "end": 678.34, + "probability": 0.9438 + }, + { + "start": 679.32, + "end": 684.72, + "probability": 0.9913 + }, + { + "start": 685.3, + "end": 688.6, + "probability": 0.6504 + }, + { + "start": 689.34, + "end": 695.92, + "probability": 0.9855 + }, + { + "start": 696.04, + "end": 699.7, + "probability": 0.9859 + }, + { + "start": 700.66, + "end": 701.55, + "probability": 0.986 + }, + { + "start": 701.92, + "end": 704.32, + "probability": 0.9941 + }, + { + "start": 704.34, + "end": 706.34, + "probability": 0.8435 + }, + { + "start": 706.64, + "end": 707.92, + "probability": 0.9476 + }, + { + "start": 708.94, + "end": 710.72, + "probability": 0.9838 + }, + { + "start": 711.28, + "end": 715.74, + "probability": 0.9949 + }, + { + "start": 716.14, + "end": 716.99, + "probability": 0.8564 + }, + { + "start": 717.54, + "end": 718.51, + "probability": 0.8438 + }, + { + "start": 719.14, + "end": 720.29, + "probability": 0.9862 + }, + { + "start": 720.62, + "end": 722.26, + "probability": 0.978 + }, + { + "start": 722.94, + "end": 723.76, + "probability": 0.8359 + }, + { + "start": 724.3, + "end": 729.76, + "probability": 0.9944 + }, + { + "start": 730.4, + "end": 733.14, + "probability": 0.8379 + }, + { + "start": 733.72, + "end": 735.7, + "probability": 0.9028 + }, + { + "start": 736.28, + "end": 739.18, + "probability": 0.9386 + }, + { + "start": 739.72, + "end": 743.64, + "probability": 0.9441 + }, + { + "start": 744.74, + "end": 746.2, + "probability": 0.8403 + }, + { + "start": 746.26, + "end": 747.08, + "probability": 0.6607 + }, + { + "start": 747.1, + "end": 748.02, + "probability": 0.9839 + }, + { + "start": 748.76, + "end": 753.62, + "probability": 0.9141 + }, + { + "start": 753.7, + "end": 755.76, + "probability": 0.8429 + }, + { + "start": 756.6, + "end": 760.42, + "probability": 0.9564 + }, + { + "start": 760.52, + "end": 761.24, + "probability": 0.796 + }, + { + "start": 761.64, + "end": 762.58, + "probability": 0.8429 + }, + { + "start": 762.66, + "end": 763.88, + "probability": 0.8844 + }, + { + "start": 764.38, + "end": 765.82, + "probability": 0.7821 + }, + { + "start": 766.16, + "end": 767.42, + "probability": 0.9566 + }, + { + "start": 767.8, + "end": 768.53, + "probability": 0.9772 + }, + { + "start": 768.92, + "end": 769.31, + "probability": 0.9834 + }, + { + "start": 769.64, + "end": 770.36, + "probability": 0.9751 + }, + { + "start": 771.32, + "end": 773.82, + "probability": 0.9829 + }, + { + "start": 774.76, + "end": 777.16, + "probability": 0.9968 + }, + { + "start": 777.96, + "end": 782.75, + "probability": 0.9495 + }, + { + "start": 783.02, + "end": 785.68, + "probability": 0.8755 + }, + { + "start": 785.8, + "end": 787.38, + "probability": 0.9908 + }, + { + "start": 787.98, + "end": 789.08, + "probability": 0.9901 + }, + { + "start": 789.48, + "end": 791.18, + "probability": 0.988 + }, + { + "start": 792.3, + "end": 795.68, + "probability": 0.9443 + }, + { + "start": 796.1, + "end": 799.94, + "probability": 0.889 + }, + { + "start": 800.22, + "end": 802.92, + "probability": 0.6236 + }, + { + "start": 803.34, + "end": 805.72, + "probability": 0.8227 + }, + { + "start": 806.54, + "end": 808.68, + "probability": 0.8765 + }, + { + "start": 813.82, + "end": 815.22, + "probability": 0.571 + }, + { + "start": 816.74, + "end": 817.74, + "probability": 0.9297 + }, + { + "start": 818.16, + "end": 824.78, + "probability": 0.988 + }, + { + "start": 825.58, + "end": 828.1, + "probability": 0.9941 + }, + { + "start": 829.1, + "end": 832.4, + "probability": 0.7335 + }, + { + "start": 834.62, + "end": 839.14, + "probability": 0.9969 + }, + { + "start": 840.3, + "end": 841.58, + "probability": 0.5661 + }, + { + "start": 842.12, + "end": 843.64, + "probability": 0.8241 + }, + { + "start": 845.1, + "end": 849.22, + "probability": 0.9288 + }, + { + "start": 851.6, + "end": 855.88, + "probability": 0.8835 + }, + { + "start": 857.4, + "end": 858.74, + "probability": 0.9833 + }, + { + "start": 860.14, + "end": 861.26, + "probability": 0.722 + }, + { + "start": 861.96, + "end": 868.62, + "probability": 0.8405 + }, + { + "start": 869.26, + "end": 872.92, + "probability": 0.9791 + }, + { + "start": 873.0, + "end": 875.5, + "probability": 0.9916 + }, + { + "start": 876.22, + "end": 877.54, + "probability": 0.9495 + }, + { + "start": 877.8, + "end": 878.72, + "probability": 0.8473 + }, + { + "start": 879.22, + "end": 881.2, + "probability": 0.9772 + }, + { + "start": 881.86, + "end": 885.76, + "probability": 0.984 + }, + { + "start": 886.65, + "end": 895.59, + "probability": 0.9103 + }, + { + "start": 896.56, + "end": 898.38, + "probability": 0.9551 + }, + { + "start": 898.46, + "end": 900.4, + "probability": 0.7137 + }, + { + "start": 900.9, + "end": 903.56, + "probability": 0.956 + }, + { + "start": 903.56, + "end": 906.82, + "probability": 0.9744 + }, + { + "start": 907.3, + "end": 908.74, + "probability": 0.9324 + }, + { + "start": 908.8, + "end": 910.42, + "probability": 0.8651 + }, + { + "start": 911.3, + "end": 914.06, + "probability": 0.896 + }, + { + "start": 914.8, + "end": 914.9, + "probability": 0.0072 + }, + { + "start": 916.38, + "end": 919.8, + "probability": 0.9285 + }, + { + "start": 920.42, + "end": 923.26, + "probability": 0.9953 + }, + { + "start": 923.76, + "end": 925.56, + "probability": 0.7235 + }, + { + "start": 925.66, + "end": 925.86, + "probability": 0.8219 + }, + { + "start": 928.26, + "end": 930.73, + "probability": 0.8975 + }, + { + "start": 931.3, + "end": 935.34, + "probability": 0.717 + }, + { + "start": 935.8, + "end": 938.52, + "probability": 0.7528 + }, + { + "start": 943.48, + "end": 945.62, + "probability": 0.6665 + }, + { + "start": 946.94, + "end": 951.1, + "probability": 0.7631 + }, + { + "start": 952.08, + "end": 953.28, + "probability": 0.7484 + }, + { + "start": 954.66, + "end": 957.8, + "probability": 0.9682 + }, + { + "start": 958.8, + "end": 963.1, + "probability": 0.9528 + }, + { + "start": 963.74, + "end": 964.62, + "probability": 0.6666 + }, + { + "start": 965.52, + "end": 967.9, + "probability": 0.9962 + }, + { + "start": 967.98, + "end": 971.12, + "probability": 0.9966 + }, + { + "start": 971.12, + "end": 973.8, + "probability": 0.9653 + }, + { + "start": 973.92, + "end": 975.9, + "probability": 0.9421 + }, + { + "start": 976.04, + "end": 977.04, + "probability": 0.7775 + }, + { + "start": 977.6, + "end": 979.64, + "probability": 0.9951 + }, + { + "start": 980.54, + "end": 981.38, + "probability": 0.8229 + }, + { + "start": 981.58, + "end": 983.28, + "probability": 0.8092 + }, + { + "start": 983.32, + "end": 984.72, + "probability": 0.9184 + }, + { + "start": 984.86, + "end": 986.5, + "probability": 0.7072 + }, + { + "start": 986.98, + "end": 992.82, + "probability": 0.9969 + }, + { + "start": 993.4, + "end": 995.8, + "probability": 0.9945 + }, + { + "start": 996.48, + "end": 997.84, + "probability": 0.9102 + }, + { + "start": 997.94, + "end": 1003.58, + "probability": 0.9858 + }, + { + "start": 1004.0, + "end": 1005.84, + "probability": 0.5703 + }, + { + "start": 1005.92, + "end": 1007.82, + "probability": 0.9983 + }, + { + "start": 1008.4, + "end": 1011.6, + "probability": 0.6717 + }, + { + "start": 1011.66, + "end": 1015.9, + "probability": 0.9541 + }, + { + "start": 1016.8, + "end": 1017.88, + "probability": 0.5516 + }, + { + "start": 1018.96, + "end": 1021.75, + "probability": 0.9946 + }, + { + "start": 1022.22, + "end": 1023.8, + "probability": 0.8152 + }, + { + "start": 1023.94, + "end": 1028.86, + "probability": 0.7505 + }, + { + "start": 1029.16, + "end": 1032.2, + "probability": 0.9468 + }, + { + "start": 1032.26, + "end": 1034.66, + "probability": 0.8255 + }, + { + "start": 1035.34, + "end": 1037.1, + "probability": 0.8459 + }, + { + "start": 1037.64, + "end": 1041.84, + "probability": 0.9974 + }, + { + "start": 1042.14, + "end": 1042.52, + "probability": 0.6598 + }, + { + "start": 1044.0, + "end": 1046.46, + "probability": 0.9514 + }, + { + "start": 1046.92, + "end": 1048.56, + "probability": 0.9236 + }, + { + "start": 1049.47, + "end": 1050.9, + "probability": 0.8015 + }, + { + "start": 1052.78, + "end": 1053.6, + "probability": 0.9531 + }, + { + "start": 1053.7, + "end": 1055.1, + "probability": 0.7318 + }, + { + "start": 1055.28, + "end": 1057.2, + "probability": 0.706 + }, + { + "start": 1057.36, + "end": 1058.28, + "probability": 0.2169 + }, + { + "start": 1058.38, + "end": 1060.92, + "probability": 0.9901 + }, + { + "start": 1061.96, + "end": 1063.56, + "probability": 0.8872 + }, + { + "start": 1064.08, + "end": 1070.02, + "probability": 0.9866 + }, + { + "start": 1070.4, + "end": 1071.9, + "probability": 0.6325 + }, + { + "start": 1072.34, + "end": 1075.28, + "probability": 0.9795 + }, + { + "start": 1076.14, + "end": 1078.18, + "probability": 0.6177 + }, + { + "start": 1079.04, + "end": 1080.54, + "probability": 0.9895 + }, + { + "start": 1081.18, + "end": 1081.74, + "probability": 0.9114 + }, + { + "start": 1082.66, + "end": 1084.34, + "probability": 0.9116 + }, + { + "start": 1084.46, + "end": 1088.76, + "probability": 0.9712 + }, + { + "start": 1089.26, + "end": 1090.3, + "probability": 0.6744 + }, + { + "start": 1091.24, + "end": 1092.06, + "probability": 0.8763 + }, + { + "start": 1092.52, + "end": 1094.42, + "probability": 0.97 + }, + { + "start": 1095.52, + "end": 1097.8, + "probability": 0.7498 + }, + { + "start": 1097.8, + "end": 1101.82, + "probability": 0.9759 + }, + { + "start": 1102.0, + "end": 1105.4, + "probability": 0.9872 + }, + { + "start": 1105.76, + "end": 1107.62, + "probability": 0.988 + }, + { + "start": 1108.32, + "end": 1108.88, + "probability": 0.6961 + }, + { + "start": 1109.44, + "end": 1112.34, + "probability": 0.9756 + }, + { + "start": 1114.38, + "end": 1116.66, + "probability": 0.9971 + }, + { + "start": 1116.66, + "end": 1121.02, + "probability": 0.9951 + }, + { + "start": 1121.8, + "end": 1123.98, + "probability": 0.9631 + }, + { + "start": 1124.02, + "end": 1127.7, + "probability": 0.9941 + }, + { + "start": 1127.88, + "end": 1128.32, + "probability": 0.7349 + }, + { + "start": 1128.8, + "end": 1132.64, + "probability": 0.841 + }, + { + "start": 1133.18, + "end": 1134.42, + "probability": 0.9581 + }, + { + "start": 1134.78, + "end": 1137.86, + "probability": 0.9746 + }, + { + "start": 1138.52, + "end": 1140.14, + "probability": 0.8022 + }, + { + "start": 1141.16, + "end": 1144.5, + "probability": 0.9344 + }, + { + "start": 1144.94, + "end": 1146.78, + "probability": 0.9973 + }, + { + "start": 1147.38, + "end": 1149.94, + "probability": 0.6741 + }, + { + "start": 1150.28, + "end": 1153.38, + "probability": 0.8521 + }, + { + "start": 1154.18, + "end": 1157.6, + "probability": 0.9693 + }, + { + "start": 1157.6, + "end": 1162.22, + "probability": 0.995 + }, + { + "start": 1163.4, + "end": 1165.68, + "probability": 0.9975 + }, + { + "start": 1166.36, + "end": 1171.38, + "probability": 0.9933 + }, + { + "start": 1171.96, + "end": 1176.16, + "probability": 0.9968 + }, + { + "start": 1176.78, + "end": 1177.8, + "probability": 0.7632 + }, + { + "start": 1177.9, + "end": 1178.4, + "probability": 0.9419 + }, + { + "start": 1178.56, + "end": 1180.3, + "probability": 0.7206 + }, + { + "start": 1180.56, + "end": 1183.48, + "probability": 0.9924 + }, + { + "start": 1184.46, + "end": 1188.54, + "probability": 0.9333 + }, + { + "start": 1189.2, + "end": 1189.83, + "probability": 0.9912 + }, + { + "start": 1190.58, + "end": 1194.16, + "probability": 0.999 + }, + { + "start": 1194.96, + "end": 1201.04, + "probability": 0.9973 + }, + { + "start": 1201.9, + "end": 1204.18, + "probability": 0.8806 + }, + { + "start": 1204.36, + "end": 1206.6, + "probability": 0.6511 + }, + { + "start": 1206.68, + "end": 1207.34, + "probability": 0.6883 + }, + { + "start": 1207.94, + "end": 1210.18, + "probability": 0.7993 + }, + { + "start": 1213.26, + "end": 1215.58, + "probability": 0.9858 + }, + { + "start": 1216.2, + "end": 1218.78, + "probability": 0.8038 + }, + { + "start": 1218.84, + "end": 1222.36, + "probability": 0.9834 + }, + { + "start": 1222.38, + "end": 1225.36, + "probability": 0.9338 + }, + { + "start": 1226.02, + "end": 1229.46, + "probability": 0.9355 + }, + { + "start": 1229.6, + "end": 1235.42, + "probability": 0.9393 + }, + { + "start": 1235.42, + "end": 1240.22, + "probability": 0.9788 + }, + { + "start": 1240.22, + "end": 1245.58, + "probability": 0.9948 + }, + { + "start": 1246.18, + "end": 1247.96, + "probability": 0.9395 + }, + { + "start": 1247.96, + "end": 1249.78, + "probability": 0.9513 + }, + { + "start": 1249.84, + "end": 1250.22, + "probability": 0.7277 + }, + { + "start": 1250.86, + "end": 1252.18, + "probability": 0.7565 + }, + { + "start": 1252.28, + "end": 1254.62, + "probability": 0.9504 + }, + { + "start": 1255.42, + "end": 1256.2, + "probability": 0.5748 + }, + { + "start": 1256.38, + "end": 1256.88, + "probability": 0.7947 + }, + { + "start": 1257.18, + "end": 1257.92, + "probability": 0.8326 + }, + { + "start": 1258.04, + "end": 1258.56, + "probability": 0.6406 + }, + { + "start": 1258.68, + "end": 1260.26, + "probability": 0.9413 + }, + { + "start": 1261.1, + "end": 1261.66, + "probability": 0.8795 + }, + { + "start": 1262.04, + "end": 1265.62, + "probability": 0.7589 + }, + { + "start": 1266.0, + "end": 1266.94, + "probability": 0.5099 + }, + { + "start": 1267.06, + "end": 1270.26, + "probability": 0.8285 + }, + { + "start": 1270.78, + "end": 1273.68, + "probability": 0.8951 + }, + { + "start": 1274.14, + "end": 1278.46, + "probability": 0.9683 + }, + { + "start": 1278.46, + "end": 1282.66, + "probability": 0.911 + }, + { + "start": 1282.76, + "end": 1284.75, + "probability": 0.7255 + }, + { + "start": 1285.0, + "end": 1288.92, + "probability": 0.9634 + }, + { + "start": 1289.02, + "end": 1291.82, + "probability": 0.8079 + }, + { + "start": 1291.98, + "end": 1292.84, + "probability": 0.6111 + }, + { + "start": 1293.0, + "end": 1294.34, + "probability": 0.8712 + }, + { + "start": 1294.86, + "end": 1296.96, + "probability": 0.4822 + }, + { + "start": 1297.54, + "end": 1298.22, + "probability": 0.8227 + }, + { + "start": 1298.42, + "end": 1300.12, + "probability": 0.9325 + }, + { + "start": 1300.3, + "end": 1303.02, + "probability": 0.8888 + }, + { + "start": 1303.02, + "end": 1306.12, + "probability": 0.8447 + }, + { + "start": 1306.32, + "end": 1306.56, + "probability": 0.4499 + }, + { + "start": 1307.24, + "end": 1310.48, + "probability": 0.7917 + }, + { + "start": 1310.48, + "end": 1313.44, + "probability": 0.7883 + }, + { + "start": 1313.62, + "end": 1314.08, + "probability": 0.2862 + }, + { + "start": 1314.12, + "end": 1314.56, + "probability": 0.3562 + }, + { + "start": 1314.62, + "end": 1318.52, + "probability": 0.9824 + }, + { + "start": 1318.62, + "end": 1318.84, + "probability": 0.8488 + }, + { + "start": 1321.76, + "end": 1323.66, + "probability": 0.7747 + }, + { + "start": 1325.72, + "end": 1328.48, + "probability": 0.7842 + }, + { + "start": 1328.5, + "end": 1330.6, + "probability": 0.8071 + }, + { + "start": 1332.18, + "end": 1332.76, + "probability": 0.6924 + }, + { + "start": 1332.84, + "end": 1334.04, + "probability": 0.8102 + }, + { + "start": 1334.7, + "end": 1342.36, + "probability": 0.9429 + }, + { + "start": 1343.6, + "end": 1344.68, + "probability": 0.7542 + }, + { + "start": 1346.4, + "end": 1350.34, + "probability": 0.8704 + }, + { + "start": 1350.94, + "end": 1352.6, + "probability": 0.6432 + }, + { + "start": 1354.78, + "end": 1359.18, + "probability": 0.6964 + }, + { + "start": 1359.78, + "end": 1362.18, + "probability": 0.9926 + }, + { + "start": 1362.82, + "end": 1366.4, + "probability": 0.5019 + }, + { + "start": 1367.88, + "end": 1373.48, + "probability": 0.7928 + }, + { + "start": 1373.48, + "end": 1377.1, + "probability": 0.9982 + }, + { + "start": 1378.1, + "end": 1384.34, + "probability": 0.9581 + }, + { + "start": 1385.04, + "end": 1388.46, + "probability": 0.9978 + }, + { + "start": 1389.24, + "end": 1390.68, + "probability": 0.9746 + }, + { + "start": 1390.76, + "end": 1392.9, + "probability": 0.5048 + }, + { + "start": 1393.04, + "end": 1396.98, + "probability": 0.7394 + }, + { + "start": 1397.58, + "end": 1398.96, + "probability": 0.9792 + }, + { + "start": 1399.54, + "end": 1403.38, + "probability": 0.9082 + }, + { + "start": 1406.15, + "end": 1409.2, + "probability": 0.9922 + }, + { + "start": 1409.28, + "end": 1412.84, + "probability": 0.7852 + }, + { + "start": 1413.28, + "end": 1414.08, + "probability": 0.8049 + }, + { + "start": 1414.9, + "end": 1419.96, + "probability": 0.9956 + }, + { + "start": 1420.88, + "end": 1422.7, + "probability": 0.7598 + }, + { + "start": 1422.78, + "end": 1424.96, + "probability": 0.8761 + }, + { + "start": 1425.06, + "end": 1425.38, + "probability": 0.4632 + }, + { + "start": 1425.4, + "end": 1425.84, + "probability": 0.7565 + }, + { + "start": 1425.98, + "end": 1426.3, + "probability": 0.1966 + }, + { + "start": 1426.44, + "end": 1427.76, + "probability": 0.7244 + }, + { + "start": 1428.16, + "end": 1431.02, + "probability": 0.6055 + }, + { + "start": 1431.76, + "end": 1434.42, + "probability": 0.9951 + }, + { + "start": 1434.9, + "end": 1435.68, + "probability": 0.6657 + }, + { + "start": 1436.32, + "end": 1439.73, + "probability": 0.9917 + }, + { + "start": 1439.96, + "end": 1440.08, + "probability": 0.0015 + }, + { + "start": 1440.08, + "end": 1441.5, + "probability": 0.6037 + }, + { + "start": 1442.04, + "end": 1444.76, + "probability": 0.9363 + }, + { + "start": 1445.0, + "end": 1447.16, + "probability": 0.8923 + }, + { + "start": 1447.32, + "end": 1453.5, + "probability": 0.7777 + }, + { + "start": 1454.2, + "end": 1457.22, + "probability": 0.9824 + }, + { + "start": 1457.28, + "end": 1458.46, + "probability": 0.9425 + }, + { + "start": 1458.82, + "end": 1459.74, + "probability": 0.8659 + }, + { + "start": 1459.82, + "end": 1463.05, + "probability": 0.9698 + }, + { + "start": 1463.36, + "end": 1466.04, + "probability": 0.9602 + }, + { + "start": 1466.66, + "end": 1469.28, + "probability": 0.845 + }, + { + "start": 1469.86, + "end": 1471.24, + "probability": 0.968 + }, + { + "start": 1471.64, + "end": 1472.9, + "probability": 0.9941 + }, + { + "start": 1473.4, + "end": 1474.72, + "probability": 0.9951 + }, + { + "start": 1474.78, + "end": 1476.1, + "probability": 0.9142 + }, + { + "start": 1476.78, + "end": 1477.38, + "probability": 0.5151 + }, + { + "start": 1477.5, + "end": 1480.2, + "probability": 0.9907 + }, + { + "start": 1480.6, + "end": 1482.52, + "probability": 0.9648 + }, + { + "start": 1483.48, + "end": 1484.36, + "probability": 0.8391 + }, + { + "start": 1484.9, + "end": 1487.9, + "probability": 0.9734 + }, + { + "start": 1488.32, + "end": 1493.4, + "probability": 0.9957 + }, + { + "start": 1493.92, + "end": 1495.5, + "probability": 0.9172 + }, + { + "start": 1495.62, + "end": 1496.98, + "probability": 0.9641 + }, + { + "start": 1497.32, + "end": 1497.92, + "probability": 0.7158 + }, + { + "start": 1498.02, + "end": 1498.28, + "probability": 0.7023 + }, + { + "start": 1498.42, + "end": 1501.94, + "probability": 0.9874 + }, + { + "start": 1501.98, + "end": 1502.46, + "probability": 0.7808 + }, + { + "start": 1503.9, + "end": 1506.32, + "probability": 0.7759 + }, + { + "start": 1506.34, + "end": 1507.82, + "probability": 0.8059 + }, + { + "start": 1507.84, + "end": 1508.28, + "probability": 0.7433 + }, + { + "start": 1508.68, + "end": 1509.7, + "probability": 0.686 + }, + { + "start": 1513.8, + "end": 1514.54, + "probability": 0.381 + }, + { + "start": 1514.68, + "end": 1515.86, + "probability": 0.7191 + }, + { + "start": 1516.2, + "end": 1518.56, + "probability": 0.9632 + }, + { + "start": 1519.26, + "end": 1523.88, + "probability": 0.6294 + }, + { + "start": 1524.84, + "end": 1530.02, + "probability": 0.8729 + }, + { + "start": 1531.0, + "end": 1533.72, + "probability": 0.8072 + }, + { + "start": 1534.72, + "end": 1539.0, + "probability": 0.8912 + }, + { + "start": 1540.02, + "end": 1545.2, + "probability": 0.84 + }, + { + "start": 1545.26, + "end": 1547.48, + "probability": 0.9919 + }, + { + "start": 1548.34, + "end": 1550.56, + "probability": 0.8118 + }, + { + "start": 1550.64, + "end": 1551.64, + "probability": 0.9098 + }, + { + "start": 1551.74, + "end": 1553.85, + "probability": 0.8182 + }, + { + "start": 1554.98, + "end": 1557.01, + "probability": 0.6218 + }, + { + "start": 1558.1, + "end": 1562.01, + "probability": 0.7351 + }, + { + "start": 1563.68, + "end": 1568.14, + "probability": 0.5295 + }, + { + "start": 1569.1, + "end": 1569.8, + "probability": 0.7477 + }, + { + "start": 1570.28, + "end": 1574.4, + "probability": 0.9818 + }, + { + "start": 1574.72, + "end": 1576.9, + "probability": 0.9883 + }, + { + "start": 1577.64, + "end": 1580.96, + "probability": 0.5585 + }, + { + "start": 1581.34, + "end": 1582.82, + "probability": 0.8698 + }, + { + "start": 1583.38, + "end": 1589.36, + "probability": 0.5894 + }, + { + "start": 1589.68, + "end": 1590.2, + "probability": 0.8271 + }, + { + "start": 1590.24, + "end": 1591.82, + "probability": 0.7677 + }, + { + "start": 1591.94, + "end": 1593.24, + "probability": 0.9543 + }, + { + "start": 1593.58, + "end": 1594.36, + "probability": 0.999 + }, + { + "start": 1594.96, + "end": 1595.46, + "probability": 0.1786 + }, + { + "start": 1596.24, + "end": 1602.68, + "probability": 0.9531 + }, + { + "start": 1603.08, + "end": 1604.12, + "probability": 0.9213 + }, + { + "start": 1604.74, + "end": 1605.0, + "probability": 0.8083 + }, + { + "start": 1605.9, + "end": 1607.52, + "probability": 0.8237 + }, + { + "start": 1608.36, + "end": 1609.96, + "probability": 0.9785 + }, + { + "start": 1610.46, + "end": 1610.66, + "probability": 0.7847 + }, + { + "start": 1610.82, + "end": 1611.0, + "probability": 0.391 + }, + { + "start": 1614.24, + "end": 1615.08, + "probability": 0.6987 + }, + { + "start": 1616.2, + "end": 1617.94, + "probability": 0.9744 + }, + { + "start": 1618.56, + "end": 1622.48, + "probability": 0.9986 + }, + { + "start": 1622.68, + "end": 1624.38, + "probability": 0.9954 + }, + { + "start": 1625.52, + "end": 1628.62, + "probability": 0.9924 + }, + { + "start": 1629.12, + "end": 1631.1, + "probability": 0.9576 + }, + { + "start": 1632.38, + "end": 1635.28, + "probability": 0.989 + }, + { + "start": 1635.7, + "end": 1638.5, + "probability": 0.853 + }, + { + "start": 1639.2, + "end": 1640.52, + "probability": 0.9167 + }, + { + "start": 1640.74, + "end": 1641.34, + "probability": 0.7033 + }, + { + "start": 1641.52, + "end": 1643.22, + "probability": 0.9772 + }, + { + "start": 1644.02, + "end": 1645.24, + "probability": 0.8337 + }, + { + "start": 1645.72, + "end": 1650.3, + "probability": 0.9941 + }, + { + "start": 1651.22, + "end": 1655.54, + "probability": 0.9883 + }, + { + "start": 1656.44, + "end": 1659.5, + "probability": 0.7631 + }, + { + "start": 1660.14, + "end": 1663.02, + "probability": 0.9786 + }, + { + "start": 1663.02, + "end": 1666.48, + "probability": 0.9971 + }, + { + "start": 1667.06, + "end": 1667.26, + "probability": 0.7634 + }, + { + "start": 1668.24, + "end": 1670.34, + "probability": 0.686 + }, + { + "start": 1670.42, + "end": 1674.8, + "probability": 0.9651 + }, + { + "start": 1675.32, + "end": 1676.84, + "probability": 0.9914 + }, + { + "start": 1677.46, + "end": 1679.3, + "probability": 0.9896 + }, + { + "start": 1682.12, + "end": 1683.42, + "probability": 0.7062 + }, + { + "start": 1685.0, + "end": 1685.5, + "probability": 0.2412 + }, + { + "start": 1694.3, + "end": 1694.4, + "probability": 0.1247 + }, + { + "start": 1694.4, + "end": 1695.26, + "probability": 0.6226 + }, + { + "start": 1695.42, + "end": 1701.14, + "probability": 0.9834 + }, + { + "start": 1701.52, + "end": 1702.28, + "probability": 0.8033 + }, + { + "start": 1702.94, + "end": 1704.54, + "probability": 0.9256 + }, + { + "start": 1704.66, + "end": 1707.84, + "probability": 0.2425 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0912 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.1118 + }, + { + "start": 1721.0, + "end": 1721.0, + "probability": 0.0316 + }, + { + "start": 1721.0, + "end": 1721.02, + "probability": 0.0314 + }, + { + "start": 1721.02, + "end": 1721.02, + "probability": 0.0352 + }, + { + "start": 1721.02, + "end": 1721.08, + "probability": 0.067 + }, + { + "start": 1726.6, + "end": 1727.4, + "probability": 0.7053 + }, + { + "start": 1734.16, + "end": 1737.94, + "probability": 0.9536 + }, + { + "start": 1739.26, + "end": 1743.66, + "probability": 0.8758 + }, + { + "start": 1744.26, + "end": 1746.12, + "probability": 0.899 + }, + { + "start": 1746.48, + "end": 1747.5, + "probability": 0.8022 + }, + { + "start": 1747.7, + "end": 1750.48, + "probability": 0.9406 + }, + { + "start": 1751.74, + "end": 1752.72, + "probability": 0.9839 + }, + { + "start": 1753.52, + "end": 1755.26, + "probability": 0.8597 + }, + { + "start": 1756.3, + "end": 1757.83, + "probability": 0.7981 + }, + { + "start": 1758.9, + "end": 1760.78, + "probability": 0.9649 + }, + { + "start": 1761.34, + "end": 1763.02, + "probability": 0.9677 + }, + { + "start": 1763.7, + "end": 1766.7, + "probability": 0.979 + }, + { + "start": 1766.96, + "end": 1767.7, + "probability": 0.8416 + }, + { + "start": 1768.12, + "end": 1771.06, + "probability": 0.9954 + }, + { + "start": 1772.38, + "end": 1775.68, + "probability": 0.9937 + }, + { + "start": 1776.1, + "end": 1777.4, + "probability": 0.7754 + }, + { + "start": 1778.14, + "end": 1781.18, + "probability": 0.9814 + }, + { + "start": 1782.68, + "end": 1787.06, + "probability": 0.9847 + }, + { + "start": 1787.24, + "end": 1787.7, + "probability": 0.8197 + }, + { + "start": 1788.86, + "end": 1793.18, + "probability": 0.9832 + }, + { + "start": 1794.08, + "end": 1799.0, + "probability": 0.9908 + }, + { + "start": 1800.12, + "end": 1801.56, + "probability": 0.7933 + }, + { + "start": 1801.82, + "end": 1804.6, + "probability": 0.9854 + }, + { + "start": 1805.38, + "end": 1806.52, + "probability": 0.9386 + }, + { + "start": 1808.04, + "end": 1810.98, + "probability": 0.6605 + }, + { + "start": 1811.36, + "end": 1813.42, + "probability": 0.9969 + }, + { + "start": 1814.42, + "end": 1817.54, + "probability": 0.9961 + }, + { + "start": 1818.52, + "end": 1820.28, + "probability": 0.9917 + }, + { + "start": 1820.4, + "end": 1821.86, + "probability": 0.9415 + }, + { + "start": 1822.4, + "end": 1825.02, + "probability": 0.9907 + }, + { + "start": 1825.66, + "end": 1828.54, + "probability": 0.9237 + }, + { + "start": 1829.08, + "end": 1830.9, + "probability": 0.9835 + }, + { + "start": 1831.72, + "end": 1833.04, + "probability": 0.9604 + }, + { + "start": 1833.18, + "end": 1837.38, + "probability": 0.7888 + }, + { + "start": 1839.17, + "end": 1842.0, + "probability": 0.9437 + }, + { + "start": 1842.5, + "end": 1843.68, + "probability": 0.974 + }, + { + "start": 1846.38, + "end": 1846.98, + "probability": 0.9278 + }, + { + "start": 1847.14, + "end": 1851.8, + "probability": 0.9897 + }, + { + "start": 1853.54, + "end": 1856.4, + "probability": 0.9362 + }, + { + "start": 1858.28, + "end": 1858.58, + "probability": 0.8778 + }, + { + "start": 1858.66, + "end": 1859.26, + "probability": 0.7862 + }, + { + "start": 1859.5, + "end": 1863.0, + "probability": 0.9884 + }, + { + "start": 1863.26, + "end": 1867.36, + "probability": 0.9807 + }, + { + "start": 1867.46, + "end": 1872.03, + "probability": 0.979 + }, + { + "start": 1875.14, + "end": 1877.44, + "probability": 0.7495 + }, + { + "start": 1878.68, + "end": 1883.44, + "probability": 0.9844 + }, + { + "start": 1883.88, + "end": 1884.77, + "probability": 0.9215 + }, + { + "start": 1885.44, + "end": 1887.18, + "probability": 0.7843 + }, + { + "start": 1888.52, + "end": 1893.82, + "probability": 0.9119 + }, + { + "start": 1894.36, + "end": 1896.16, + "probability": 0.9829 + }, + { + "start": 1896.94, + "end": 1899.8, + "probability": 0.6276 + }, + { + "start": 1900.32, + "end": 1901.68, + "probability": 0.9546 + }, + { + "start": 1902.48, + "end": 1909.62, + "probability": 0.9885 + }, + { + "start": 1909.76, + "end": 1910.18, + "probability": 0.3771 + }, + { + "start": 1910.76, + "end": 1912.56, + "probability": 0.9446 + }, + { + "start": 1913.04, + "end": 1914.5, + "probability": 0.9876 + }, + { + "start": 1915.5, + "end": 1916.46, + "probability": 0.9634 + }, + { + "start": 1916.96, + "end": 1918.2, + "probability": 0.9421 + }, + { + "start": 1918.58, + "end": 1919.87, + "probability": 0.9907 + }, + { + "start": 1920.84, + "end": 1922.49, + "probability": 0.9951 + }, + { + "start": 1922.66, + "end": 1923.5, + "probability": 0.9484 + }, + { + "start": 1923.62, + "end": 1924.44, + "probability": 0.7202 + }, + { + "start": 1925.12, + "end": 1928.5, + "probability": 0.9642 + }, + { + "start": 1929.28, + "end": 1931.44, + "probability": 0.8073 + }, + { + "start": 1931.56, + "end": 1934.19, + "probability": 0.9663 + }, + { + "start": 1935.38, + "end": 1940.19, + "probability": 0.9331 + }, + { + "start": 1941.06, + "end": 1943.54, + "probability": 0.8107 + }, + { + "start": 1944.24, + "end": 1945.88, + "probability": 0.8799 + }, + { + "start": 1947.46, + "end": 1950.2, + "probability": 0.9751 + }, + { + "start": 1950.8, + "end": 1952.82, + "probability": 0.9971 + }, + { + "start": 1953.78, + "end": 1957.08, + "probability": 0.9977 + }, + { + "start": 1957.58, + "end": 1958.02, + "probability": 0.4599 + }, + { + "start": 1959.7, + "end": 1963.7, + "probability": 0.9784 + }, + { + "start": 1964.22, + "end": 1966.74, + "probability": 0.9956 + }, + { + "start": 1967.28, + "end": 1970.94, + "probability": 0.9766 + }, + { + "start": 1972.04, + "end": 1974.96, + "probability": 0.9945 + }, + { + "start": 1976.14, + "end": 1979.78, + "probability": 0.9761 + }, + { + "start": 1981.18, + "end": 1985.96, + "probability": 0.9975 + }, + { + "start": 1986.68, + "end": 1988.44, + "probability": 0.9728 + }, + { + "start": 1989.12, + "end": 1991.72, + "probability": 0.9886 + }, + { + "start": 1992.48, + "end": 1994.18, + "probability": 0.915 + }, + { + "start": 1994.94, + "end": 1998.05, + "probability": 0.9917 + }, + { + "start": 1998.98, + "end": 1999.96, + "probability": 0.7911 + }, + { + "start": 2000.26, + "end": 2001.1, + "probability": 0.6174 + }, + { + "start": 2001.4, + "end": 2004.28, + "probability": 0.9339 + }, + { + "start": 2005.78, + "end": 2008.26, + "probability": 0.8236 + }, + { + "start": 2008.54, + "end": 2008.96, + "probability": 0.6335 + }, + { + "start": 2008.98, + "end": 2009.68, + "probability": 0.8243 + }, + { + "start": 2009.68, + "end": 2017.54, + "probability": 0.9081 + }, + { + "start": 2018.14, + "end": 2019.08, + "probability": 0.9316 + }, + { + "start": 2019.18, + "end": 2021.6, + "probability": 0.7542 + }, + { + "start": 2022.12, + "end": 2024.84, + "probability": 0.9389 + }, + { + "start": 2025.6, + "end": 2029.78, + "probability": 0.9927 + }, + { + "start": 2029.98, + "end": 2032.74, + "probability": 0.984 + }, + { + "start": 2033.82, + "end": 2037.22, + "probability": 0.9717 + }, + { + "start": 2038.28, + "end": 2039.26, + "probability": 0.6013 + }, + { + "start": 2039.62, + "end": 2041.6, + "probability": 0.9004 + }, + { + "start": 2042.1, + "end": 2044.04, + "probability": 0.9907 + }, + { + "start": 2044.62, + "end": 2046.78, + "probability": 0.9893 + }, + { + "start": 2046.96, + "end": 2048.6, + "probability": 0.9881 + }, + { + "start": 2048.72, + "end": 2049.56, + "probability": 0.6106 + }, + { + "start": 2050.3, + "end": 2053.0, + "probability": 0.9261 + }, + { + "start": 2054.87, + "end": 2060.18, + "probability": 0.9867 + }, + { + "start": 2060.18, + "end": 2065.6, + "probability": 0.9719 + }, + { + "start": 2066.48, + "end": 2068.16, + "probability": 0.5688 + }, + { + "start": 2069.32, + "end": 2070.72, + "probability": 0.6407 + }, + { + "start": 2070.86, + "end": 2077.38, + "probability": 0.9365 + }, + { + "start": 2078.76, + "end": 2079.22, + "probability": 0.7759 + }, + { + "start": 2081.1, + "end": 2084.76, + "probability": 0.9883 + }, + { + "start": 2091.1, + "end": 2092.02, + "probability": 0.6991 + }, + { + "start": 2092.65, + "end": 2093.22, + "probability": 0.6033 + }, + { + "start": 2093.72, + "end": 2095.38, + "probability": 0.5318 + }, + { + "start": 2095.68, + "end": 2096.06, + "probability": 0.6091 + }, + { + "start": 2096.84, + "end": 2100.82, + "probability": 0.9981 + }, + { + "start": 2102.76, + "end": 2103.42, + "probability": 0.7928 + }, + { + "start": 2103.56, + "end": 2112.82, + "probability": 0.9357 + }, + { + "start": 2113.48, + "end": 2116.16, + "probability": 0.8306 + }, + { + "start": 2116.58, + "end": 2121.1, + "probability": 0.9496 + }, + { + "start": 2121.18, + "end": 2122.22, + "probability": 0.9443 + }, + { + "start": 2122.74, + "end": 2123.4, + "probability": 0.9578 + }, + { + "start": 2123.48, + "end": 2125.12, + "probability": 0.9739 + }, + { + "start": 2125.24, + "end": 2128.58, + "probability": 0.9165 + }, + { + "start": 2128.6, + "end": 2132.02, + "probability": 0.8898 + }, + { + "start": 2137.44, + "end": 2138.68, + "probability": 0.6037 + }, + { + "start": 2140.42, + "end": 2141.35, + "probability": 0.7926 + }, + { + "start": 2141.88, + "end": 2148.62, + "probability": 0.9879 + }, + { + "start": 2148.66, + "end": 2153.82, + "probability": 0.999 + }, + { + "start": 2153.88, + "end": 2155.56, + "probability": 0.9964 + }, + { + "start": 2156.42, + "end": 2158.52, + "probability": 0.9885 + }, + { + "start": 2158.66, + "end": 2160.72, + "probability": 0.9321 + }, + { + "start": 2161.66, + "end": 2162.1, + "probability": 0.392 + }, + { + "start": 2162.14, + "end": 2163.52, + "probability": 0.8557 + }, + { + "start": 2163.68, + "end": 2173.52, + "probability": 0.9572 + }, + { + "start": 2174.52, + "end": 2177.46, + "probability": 0.9092 + }, + { + "start": 2177.56, + "end": 2181.9, + "probability": 0.9609 + }, + { + "start": 2182.42, + "end": 2184.28, + "probability": 0.9888 + }, + { + "start": 2187.04, + "end": 2189.2, + "probability": 0.9924 + }, + { + "start": 2192.4, + "end": 2195.44, + "probability": 0.6173 + }, + { + "start": 2195.62, + "end": 2196.54, + "probability": 0.9265 + }, + { + "start": 2196.56, + "end": 2199.1, + "probability": 0.9911 + }, + { + "start": 2200.5, + "end": 2202.24, + "probability": 0.9927 + }, + { + "start": 2202.24, + "end": 2205.32, + "probability": 0.9759 + }, + { + "start": 2206.16, + "end": 2214.42, + "probability": 0.9131 + }, + { + "start": 2214.42, + "end": 2218.64, + "probability": 0.9759 + }, + { + "start": 2218.76, + "end": 2220.88, + "probability": 0.9773 + }, + { + "start": 2221.18, + "end": 2223.34, + "probability": 0.9746 + }, + { + "start": 2223.34, + "end": 2226.1, + "probability": 0.9958 + }, + { + "start": 2226.74, + "end": 2230.0, + "probability": 0.8176 + }, + { + "start": 2231.22, + "end": 2233.26, + "probability": 0.9629 + }, + { + "start": 2233.56, + "end": 2236.26, + "probability": 0.9623 + }, + { + "start": 2236.58, + "end": 2238.28, + "probability": 0.7208 + }, + { + "start": 2240.14, + "end": 2240.36, + "probability": 0.2801 + }, + { + "start": 2240.36, + "end": 2244.54, + "probability": 0.9583 + }, + { + "start": 2245.34, + "end": 2246.12, + "probability": 0.6652 + }, + { + "start": 2246.2, + "end": 2246.48, + "probability": 0.7616 + }, + { + "start": 2247.46, + "end": 2248.84, + "probability": 0.6481 + }, + { + "start": 2248.96, + "end": 2251.28, + "probability": 0.915 + }, + { + "start": 2251.76, + "end": 2252.06, + "probability": 0.5502 + }, + { + "start": 2252.12, + "end": 2255.26, + "probability": 0.8812 + }, + { + "start": 2255.48, + "end": 2257.94, + "probability": 0.6859 + }, + { + "start": 2258.76, + "end": 2261.41, + "probability": 0.981 + }, + { + "start": 2262.26, + "end": 2264.24, + "probability": 0.9907 + }, + { + "start": 2264.96, + "end": 2266.69, + "probability": 0.9399 + }, + { + "start": 2268.14, + "end": 2269.88, + "probability": 0.7825 + }, + { + "start": 2270.82, + "end": 2270.82, + "probability": 0.1112 + }, + { + "start": 2271.02, + "end": 2271.48, + "probability": 0.194 + }, + { + "start": 2271.48, + "end": 2272.26, + "probability": 0.8799 + }, + { + "start": 2272.44, + "end": 2274.0, + "probability": 0.8622 + }, + { + "start": 2274.4, + "end": 2274.86, + "probability": 0.905 + }, + { + "start": 2274.94, + "end": 2275.48, + "probability": 0.908 + }, + { + "start": 2275.76, + "end": 2277.4, + "probability": 0.8928 + }, + { + "start": 2278.08, + "end": 2278.08, + "probability": 0.057 + }, + { + "start": 2278.08, + "end": 2280.5, + "probability": 0.8604 + }, + { + "start": 2280.96, + "end": 2281.26, + "probability": 0.0271 + }, + { + "start": 2281.26, + "end": 2288.56, + "probability": 0.9804 + }, + { + "start": 2289.28, + "end": 2291.44, + "probability": 0.9066 + }, + { + "start": 2291.92, + "end": 2292.12, + "probability": 0.8144 + }, + { + "start": 2292.6, + "end": 2294.7, + "probability": 0.8014 + }, + { + "start": 2295.0, + "end": 2296.4, + "probability": 0.8922 + }, + { + "start": 2296.54, + "end": 2298.2, + "probability": 0.9819 + }, + { + "start": 2299.04, + "end": 2303.6, + "probability": 0.9907 + }, + { + "start": 2304.08, + "end": 2305.33, + "probability": 0.9971 + }, + { + "start": 2305.86, + "end": 2307.62, + "probability": 0.8834 + }, + { + "start": 2307.64, + "end": 2309.9, + "probability": 0.9951 + }, + { + "start": 2310.36, + "end": 2312.48, + "probability": 0.9575 + }, + { + "start": 2313.8, + "end": 2314.36, + "probability": 0.4477 + }, + { + "start": 2314.5, + "end": 2318.38, + "probability": 0.9129 + }, + { + "start": 2318.42, + "end": 2320.7, + "probability": 0.9888 + }, + { + "start": 2321.02, + "end": 2321.76, + "probability": 0.8277 + }, + { + "start": 2322.18, + "end": 2322.73, + "probability": 0.8711 + }, + { + "start": 2322.94, + "end": 2327.02, + "probability": 0.9764 + }, + { + "start": 2327.5, + "end": 2328.86, + "probability": 0.8363 + }, + { + "start": 2329.9, + "end": 2330.18, + "probability": 0.2095 + }, + { + "start": 2330.18, + "end": 2331.3, + "probability": 0.3608 + }, + { + "start": 2331.3, + "end": 2331.58, + "probability": 0.4742 + }, + { + "start": 2331.94, + "end": 2332.36, + "probability": 0.7627 + }, + { + "start": 2332.42, + "end": 2333.02, + "probability": 0.7997 + }, + { + "start": 2333.24, + "end": 2333.26, + "probability": 0.1081 + }, + { + "start": 2333.26, + "end": 2334.26, + "probability": 0.5204 + }, + { + "start": 2334.7, + "end": 2335.8, + "probability": 0.7541 + }, + { + "start": 2335.98, + "end": 2336.88, + "probability": 0.7493 + }, + { + "start": 2336.98, + "end": 2337.5, + "probability": 0.2806 + }, + { + "start": 2338.14, + "end": 2339.14, + "probability": 0.4791 + }, + { + "start": 2339.26, + "end": 2339.82, + "probability": 0.4606 + }, + { + "start": 2339.82, + "end": 2340.68, + "probability": 0.0644 + }, + { + "start": 2340.68, + "end": 2342.66, + "probability": 0.6609 + }, + { + "start": 2342.86, + "end": 2345.6, + "probability": 0.983 + }, + { + "start": 2345.84, + "end": 2346.5, + "probability": 0.5907 + }, + { + "start": 2346.62, + "end": 2346.92, + "probability": 0.8997 + }, + { + "start": 2346.98, + "end": 2349.84, + "probability": 0.9836 + }, + { + "start": 2350.34, + "end": 2351.06, + "probability": 0.6981 + }, + { + "start": 2351.84, + "end": 2354.4, + "probability": 0.9648 + }, + { + "start": 2354.88, + "end": 2357.9, + "probability": 0.9718 + }, + { + "start": 2358.0, + "end": 2362.62, + "probability": 0.9912 + }, + { + "start": 2362.94, + "end": 2367.16, + "probability": 0.9985 + }, + { + "start": 2368.06, + "end": 2368.86, + "probability": 0.0447 + }, + { + "start": 2368.86, + "end": 2371.36, + "probability": 0.8433 + }, + { + "start": 2372.08, + "end": 2373.32, + "probability": 0.7663 + }, + { + "start": 2373.72, + "end": 2374.18, + "probability": 0.0594 + }, + { + "start": 2374.18, + "end": 2374.38, + "probability": 0.3665 + }, + { + "start": 2374.82, + "end": 2374.82, + "probability": 0.4988 + }, + { + "start": 2374.82, + "end": 2375.58, + "probability": 0.8279 + }, + { + "start": 2375.88, + "end": 2376.66, + "probability": 0.0465 + }, + { + "start": 2376.66, + "end": 2377.97, + "probability": 0.6638 + }, + { + "start": 2378.72, + "end": 2380.96, + "probability": 0.8961 + }, + { + "start": 2382.02, + "end": 2382.84, + "probability": 0.7668 + }, + { + "start": 2383.5, + "end": 2385.98, + "probability": 0.8942 + }, + { + "start": 2387.3, + "end": 2390.66, + "probability": 0.9102 + }, + { + "start": 2391.54, + "end": 2392.66, + "probability": 0.9141 + }, + { + "start": 2393.16, + "end": 2393.82, + "probability": 0.844 + }, + { + "start": 2394.06, + "end": 2399.5, + "probability": 0.8812 + }, + { + "start": 2399.8, + "end": 2401.64, + "probability": 0.7875 + }, + { + "start": 2401.8, + "end": 2403.72, + "probability": 0.9375 + }, + { + "start": 2403.8, + "end": 2404.57, + "probability": 0.9601 + }, + { + "start": 2405.2, + "end": 2405.82, + "probability": 0.6816 + }, + { + "start": 2406.36, + "end": 2415.36, + "probability": 0.9554 + }, + { + "start": 2415.52, + "end": 2416.11, + "probability": 0.9098 + }, + { + "start": 2416.86, + "end": 2418.96, + "probability": 0.9922 + }, + { + "start": 2419.08, + "end": 2421.08, + "probability": 0.9028 + }, + { + "start": 2421.42, + "end": 2424.01, + "probability": 0.9888 + }, + { + "start": 2424.86, + "end": 2426.52, + "probability": 0.9888 + }, + { + "start": 2427.02, + "end": 2430.56, + "probability": 0.0593 + }, + { + "start": 2431.88, + "end": 2432.66, + "probability": 0.1014 + }, + { + "start": 2432.96, + "end": 2433.02, + "probability": 0.0939 + }, + { + "start": 2433.16, + "end": 2433.18, + "probability": 0.0597 + }, + { + "start": 2433.18, + "end": 2435.86, + "probability": 0.9092 + }, + { + "start": 2436.46, + "end": 2438.1, + "probability": 0.8875 + }, + { + "start": 2438.96, + "end": 2440.04, + "probability": 0.5801 + }, + { + "start": 2440.12, + "end": 2442.82, + "probability": 0.9885 + }, + { + "start": 2442.82, + "end": 2442.84, + "probability": 0.0444 + }, + { + "start": 2442.88, + "end": 2443.0, + "probability": 0.0456 + }, + { + "start": 2443.78, + "end": 2449.12, + "probability": 0.7691 + }, + { + "start": 2449.74, + "end": 2450.46, + "probability": 0.0976 + }, + { + "start": 2451.48, + "end": 2451.52, + "probability": 0.0072 + }, + { + "start": 2451.52, + "end": 2452.38, + "probability": 0.2166 + }, + { + "start": 2452.76, + "end": 2456.1, + "probability": 0.7052 + }, + { + "start": 2456.36, + "end": 2458.62, + "probability": 0.9822 + }, + { + "start": 2458.76, + "end": 2460.32, + "probability": 0.941 + }, + { + "start": 2460.58, + "end": 2463.0, + "probability": 0.9841 + }, + { + "start": 2463.32, + "end": 2463.8, + "probability": 0.831 + }, + { + "start": 2463.92, + "end": 2464.38, + "probability": 0.9674 + }, + { + "start": 2464.5, + "end": 2464.84, + "probability": 0.9513 + }, + { + "start": 2464.94, + "end": 2465.48, + "probability": 0.9259 + }, + { + "start": 2465.96, + "end": 2466.72, + "probability": 0.9688 + }, + { + "start": 2466.82, + "end": 2467.74, + "probability": 0.7007 + }, + { + "start": 2467.86, + "end": 2471.62, + "probability": 0.9895 + }, + { + "start": 2471.98, + "end": 2473.65, + "probability": 0.99 + }, + { + "start": 2474.1, + "end": 2475.96, + "probability": 0.9833 + }, + { + "start": 2476.04, + "end": 2477.02, + "probability": 0.8301 + }, + { + "start": 2477.12, + "end": 2477.84, + "probability": 0.5551 + }, + { + "start": 2478.04, + "end": 2478.06, + "probability": 0.1078 + }, + { + "start": 2478.06, + "end": 2479.66, + "probability": 0.7374 + }, + { + "start": 2479.96, + "end": 2481.92, + "probability": 0.8311 + }, + { + "start": 2482.28, + "end": 2484.72, + "probability": 0.9167 + }, + { + "start": 2485.08, + "end": 2485.89, + "probability": 0.5023 + }, + { + "start": 2486.54, + "end": 2488.53, + "probability": 0.9155 + }, + { + "start": 2489.02, + "end": 2490.34, + "probability": 0.6302 + }, + { + "start": 2490.5, + "end": 2492.5, + "probability": 0.9643 + }, + { + "start": 2493.32, + "end": 2497.62, + "probability": 0.9484 + }, + { + "start": 2497.66, + "end": 2499.4, + "probability": 0.7139 + }, + { + "start": 2499.94, + "end": 2504.44, + "probability": 0.7301 + }, + { + "start": 2504.98, + "end": 2505.96, + "probability": 0.596 + }, + { + "start": 2507.72, + "end": 2509.68, + "probability": 0.7368 + }, + { + "start": 2510.04, + "end": 2510.04, + "probability": 0.9308 + }, + { + "start": 2510.12, + "end": 2511.28, + "probability": 0.7842 + }, + { + "start": 2511.42, + "end": 2515.38, + "probability": 0.99 + }, + { + "start": 2515.92, + "end": 2516.42, + "probability": 0.924 + }, + { + "start": 2516.46, + "end": 2517.06, + "probability": 0.6434 + }, + { + "start": 2517.12, + "end": 2521.16, + "probability": 0.9988 + }, + { + "start": 2521.3, + "end": 2524.84, + "probability": 0.9906 + }, + { + "start": 2525.36, + "end": 2528.5, + "probability": 0.9947 + }, + { + "start": 2528.98, + "end": 2532.82, + "probability": 0.8173 + }, + { + "start": 2533.34, + "end": 2534.98, + "probability": 0.8958 + }, + { + "start": 2535.7, + "end": 2538.36, + "probability": 0.9087 + }, + { + "start": 2538.4, + "end": 2538.92, + "probability": 0.9096 + }, + { + "start": 2539.34, + "end": 2540.04, + "probability": 0.9733 + }, + { + "start": 2540.4, + "end": 2541.22, + "probability": 0.9836 + }, + { + "start": 2541.56, + "end": 2543.14, + "probability": 0.9567 + }, + { + "start": 2543.54, + "end": 2547.62, + "probability": 0.9966 + }, + { + "start": 2547.92, + "end": 2550.56, + "probability": 0.9971 + }, + { + "start": 2550.56, + "end": 2553.52, + "probability": 0.9999 + }, + { + "start": 2554.12, + "end": 2555.92, + "probability": 0.8035 + }, + { + "start": 2556.1, + "end": 2556.98, + "probability": 0.9209 + }, + { + "start": 2557.36, + "end": 2559.04, + "probability": 0.9619 + }, + { + "start": 2559.1, + "end": 2560.82, + "probability": 0.9813 + }, + { + "start": 2561.64, + "end": 2563.08, + "probability": 0.7854 + }, + { + "start": 2563.24, + "end": 2565.26, + "probability": 0.797 + }, + { + "start": 2565.46, + "end": 2568.25, + "probability": 0.9745 + }, + { + "start": 2568.92, + "end": 2569.4, + "probability": 0.6767 + }, + { + "start": 2569.52, + "end": 2570.8, + "probability": 0.9925 + }, + { + "start": 2571.12, + "end": 2573.82, + "probability": 0.9705 + }, + { + "start": 2574.54, + "end": 2575.34, + "probability": 0.9961 + }, + { + "start": 2575.34, + "end": 2579.54, + "probability": 0.9585 + }, + { + "start": 2579.56, + "end": 2580.6, + "probability": 0.9937 + }, + { + "start": 2581.48, + "end": 2584.28, + "probability": 0.9854 + }, + { + "start": 2585.32, + "end": 2587.7, + "probability": 0.9944 + }, + { + "start": 2587.7, + "end": 2590.02, + "probability": 0.8955 + }, + { + "start": 2590.26, + "end": 2593.18, + "probability": 0.9968 + }, + { + "start": 2593.62, + "end": 2596.52, + "probability": 0.9962 + }, + { + "start": 2596.9, + "end": 2598.26, + "probability": 0.7036 + }, + { + "start": 2598.38, + "end": 2601.86, + "probability": 0.9916 + }, + { + "start": 2602.26, + "end": 2605.38, + "probability": 0.9095 + }, + { + "start": 2605.38, + "end": 2609.08, + "probability": 0.9806 + }, + { + "start": 2609.46, + "end": 2610.12, + "probability": 0.64 + }, + { + "start": 2610.24, + "end": 2610.48, + "probability": 0.9119 + }, + { + "start": 2610.54, + "end": 2611.86, + "probability": 0.9117 + }, + { + "start": 2612.2, + "end": 2614.7, + "probability": 0.9897 + }, + { + "start": 2614.7, + "end": 2617.22, + "probability": 0.9519 + }, + { + "start": 2617.36, + "end": 2617.88, + "probability": 0.649 + }, + { + "start": 2618.22, + "end": 2621.08, + "probability": 0.8258 + }, + { + "start": 2621.52, + "end": 2624.06, + "probability": 0.952 + }, + { + "start": 2624.34, + "end": 2626.74, + "probability": 0.8247 + }, + { + "start": 2627.02, + "end": 2628.18, + "probability": 0.905 + }, + { + "start": 2628.38, + "end": 2631.22, + "probability": 0.672 + }, + { + "start": 2631.52, + "end": 2634.06, + "probability": 0.8916 + }, + { + "start": 2634.4, + "end": 2635.36, + "probability": 0.2584 + }, + { + "start": 2635.36, + "end": 2636.32, + "probability": 0.7828 + }, + { + "start": 2636.36, + "end": 2638.22, + "probability": 0.9637 + }, + { + "start": 2639.04, + "end": 2639.72, + "probability": 0.91 + }, + { + "start": 2639.86, + "end": 2640.98, + "probability": 0.9941 + }, + { + "start": 2641.08, + "end": 2643.66, + "probability": 0.9954 + }, + { + "start": 2643.78, + "end": 2645.4, + "probability": 0.8019 + }, + { + "start": 2645.92, + "end": 2646.66, + "probability": 0.9383 + }, + { + "start": 2646.74, + "end": 2647.86, + "probability": 0.9731 + }, + { + "start": 2647.94, + "end": 2648.36, + "probability": 0.96 + }, + { + "start": 2649.04, + "end": 2649.39, + "probability": 0.4591 + }, + { + "start": 2650.3, + "end": 2652.72, + "probability": 0.98 + }, + { + "start": 2652.84, + "end": 2653.6, + "probability": 0.7747 + }, + { + "start": 2653.78, + "end": 2655.42, + "probability": 0.53 + }, + { + "start": 2655.46, + "end": 2656.02, + "probability": 0.6094 + }, + { + "start": 2656.44, + "end": 2658.3, + "probability": 0.9666 + }, + { + "start": 2658.62, + "end": 2659.72, + "probability": 0.9087 + }, + { + "start": 2659.84, + "end": 2660.14, + "probability": 0.8548 + }, + { + "start": 2660.44, + "end": 2664.08, + "probability": 0.9753 + }, + { + "start": 2664.44, + "end": 2664.72, + "probability": 0.6655 + }, + { + "start": 2664.78, + "end": 2665.28, + "probability": 0.8376 + }, + { + "start": 2665.7, + "end": 2666.28, + "probability": 0.8458 + }, + { + "start": 2666.4, + "end": 2666.78, + "probability": 0.8102 + }, + { + "start": 2666.86, + "end": 2667.38, + "probability": 0.5778 + }, + { + "start": 2667.56, + "end": 2669.1, + "probability": 0.9507 + }, + { + "start": 2669.82, + "end": 2673.3, + "probability": 0.9985 + }, + { + "start": 2674.9, + "end": 2678.72, + "probability": 0.9943 + }, + { + "start": 2678.78, + "end": 2679.9, + "probability": 0.7922 + }, + { + "start": 2679.98, + "end": 2681.5, + "probability": 0.6661 + }, + { + "start": 2682.62, + "end": 2686.18, + "probability": 0.963 + }, + { + "start": 2686.64, + "end": 2687.23, + "probability": 0.8618 + }, + { + "start": 2688.54, + "end": 2689.84, + "probability": 0.8139 + }, + { + "start": 2690.52, + "end": 2690.92, + "probability": 0.9134 + }, + { + "start": 2691.86, + "end": 2693.8, + "probability": 0.9304 + }, + { + "start": 2694.64, + "end": 2696.8, + "probability": 0.832 + }, + { + "start": 2697.44, + "end": 2698.5, + "probability": 0.6808 + }, + { + "start": 2699.08, + "end": 2700.22, + "probability": 0.7545 + }, + { + "start": 2700.82, + "end": 2701.16, + "probability": 0.4756 + }, + { + "start": 2702.06, + "end": 2704.74, + "probability": 0.949 + }, + { + "start": 2704.96, + "end": 2705.78, + "probability": 0.9111 + }, + { + "start": 2705.9, + "end": 2709.44, + "probability": 0.8813 + }, + { + "start": 2709.58, + "end": 2711.84, + "probability": 0.5328 + }, + { + "start": 2712.54, + "end": 2712.84, + "probability": 0.1608 + }, + { + "start": 2713.02, + "end": 2715.66, + "probability": 0.8628 + }, + { + "start": 2715.94, + "end": 2720.12, + "probability": 0.7858 + }, + { + "start": 2720.44, + "end": 2722.02, + "probability": 0.8376 + }, + { + "start": 2722.7, + "end": 2723.32, + "probability": 0.2875 + }, + { + "start": 2723.4, + "end": 2725.05, + "probability": 0.936 + }, + { + "start": 2725.21, + "end": 2729.11, + "probability": 0.9963 + }, + { + "start": 2729.73, + "end": 2732.81, + "probability": 0.9924 + }, + { + "start": 2733.21, + "end": 2737.01, + "probability": 0.9776 + }, + { + "start": 2737.13, + "end": 2739.77, + "probability": 0.6881 + }, + { + "start": 2740.05, + "end": 2741.23, + "probability": 0.9731 + }, + { + "start": 2741.45, + "end": 2742.55, + "probability": 0.9883 + }, + { + "start": 2743.19, + "end": 2746.21, + "probability": 0.8658 + }, + { + "start": 2746.97, + "end": 2747.89, + "probability": 0.8002 + }, + { + "start": 2748.03, + "end": 2749.57, + "probability": 0.8455 + }, + { + "start": 2749.73, + "end": 2750.09, + "probability": 0.7443 + }, + { + "start": 2750.19, + "end": 2751.53, + "probability": 0.9863 + }, + { + "start": 2751.77, + "end": 2752.63, + "probability": 0.9019 + }, + { + "start": 2753.11, + "end": 2754.35, + "probability": 0.9775 + }, + { + "start": 2754.81, + "end": 2755.93, + "probability": 0.9957 + }, + { + "start": 2755.99, + "end": 2757.21, + "probability": 0.0454 + }, + { + "start": 2757.81, + "end": 2761.31, + "probability": 0.9556 + }, + { + "start": 2761.33, + "end": 2762.99, + "probability": 0.8082 + }, + { + "start": 2763.35, + "end": 2763.35, + "probability": 0.0407 + }, + { + "start": 2763.35, + "end": 2766.33, + "probability": 0.9469 + }, + { + "start": 2766.45, + "end": 2767.59, + "probability": 0.9384 + }, + { + "start": 2767.91, + "end": 2772.93, + "probability": 0.885 + }, + { + "start": 2773.37, + "end": 2774.49, + "probability": 0.9907 + }, + { + "start": 2775.09, + "end": 2778.39, + "probability": 0.9538 + }, + { + "start": 2778.97, + "end": 2780.39, + "probability": 0.9036 + }, + { + "start": 2780.47, + "end": 2783.59, + "probability": 0.9824 + }, + { + "start": 2783.69, + "end": 2785.41, + "probability": 0.9955 + }, + { + "start": 2786.53, + "end": 2791.67, + "probability": 0.9964 + }, + { + "start": 2791.69, + "end": 2792.23, + "probability": 0.6287 + }, + { + "start": 2792.83, + "end": 2792.89, + "probability": 0.152 + }, + { + "start": 2792.89, + "end": 2793.01, + "probability": 0.4644 + }, + { + "start": 2793.01, + "end": 2793.55, + "probability": 0.9471 + }, + { + "start": 2793.69, + "end": 2795.67, + "probability": 0.9951 + }, + { + "start": 2796.09, + "end": 2797.31, + "probability": 0.9595 + }, + { + "start": 2797.69, + "end": 2798.58, + "probability": 0.9861 + }, + { + "start": 2799.05, + "end": 2799.15, + "probability": 0.0511 + }, + { + "start": 2799.15, + "end": 2799.85, + "probability": 0.472 + }, + { + "start": 2800.75, + "end": 2804.56, + "probability": 0.7185 + }, + { + "start": 2804.75, + "end": 2806.28, + "probability": 0.7885 + }, + { + "start": 2806.85, + "end": 2808.19, + "probability": 0.1015 + }, + { + "start": 2808.87, + "end": 2810.13, + "probability": 0.3322 + }, + { + "start": 2810.43, + "end": 2811.23, + "probability": 0.547 + }, + { + "start": 2811.23, + "end": 2811.53, + "probability": 0.2173 + }, + { + "start": 2811.69, + "end": 2813.09, + "probability": 0.6777 + }, + { + "start": 2813.29, + "end": 2814.03, + "probability": 0.6023 + }, + { + "start": 2814.25, + "end": 2815.49, + "probability": 0.5137 + }, + { + "start": 2815.71, + "end": 2818.43, + "probability": 0.0109 + }, + { + "start": 2819.33, + "end": 2821.01, + "probability": 0.7806 + }, + { + "start": 2821.01, + "end": 2824.33, + "probability": 0.0327 + }, + { + "start": 2826.63, + "end": 2828.73, + "probability": 0.0666 + }, + { + "start": 2829.05, + "end": 2830.51, + "probability": 0.1207 + }, + { + "start": 2830.51, + "end": 2831.91, + "probability": 0.2291 + }, + { + "start": 2832.23, + "end": 2832.23, + "probability": 0.2346 + }, + { + "start": 2832.35, + "end": 2832.51, + "probability": 0.2622 + }, + { + "start": 2832.53, + "end": 2834.51, + "probability": 0.5216 + }, + { + "start": 2834.59, + "end": 2837.29, + "probability": 0.6304 + }, + { + "start": 2838.15, + "end": 2838.31, + "probability": 0.0635 + }, + { + "start": 2838.31, + "end": 2838.31, + "probability": 0.0141 + }, + { + "start": 2838.31, + "end": 2840.15, + "probability": 0.4036 + }, + { + "start": 2840.27, + "end": 2841.33, + "probability": 0.9532 + }, + { + "start": 2841.97, + "end": 2841.97, + "probability": 0.1608 + }, + { + "start": 2841.97, + "end": 2844.93, + "probability": 0.9238 + }, + { + "start": 2846.71, + "end": 2848.67, + "probability": 0.0196 + }, + { + "start": 2848.67, + "end": 2849.17, + "probability": 0.0227 + }, + { + "start": 2849.17, + "end": 2850.63, + "probability": 0.0943 + }, + { + "start": 2850.63, + "end": 2850.71, + "probability": 0.0231 + }, + { + "start": 2850.71, + "end": 2850.71, + "probability": 0.1961 + }, + { + "start": 2850.71, + "end": 2853.39, + "probability": 0.5903 + }, + { + "start": 2853.67, + "end": 2853.67, + "probability": 0.1516 + }, + { + "start": 2853.67, + "end": 2855.13, + "probability": 0.4086 + }, + { + "start": 2855.97, + "end": 2856.85, + "probability": 0.7119 + }, + { + "start": 2860.1, + "end": 2861.31, + "probability": 0.591 + }, + { + "start": 2861.31, + "end": 2861.95, + "probability": 0.1721 + }, + { + "start": 2861.95, + "end": 2862.3, + "probability": 0.5844 + }, + { + "start": 2862.31, + "end": 2862.65, + "probability": 0.6204 + }, + { + "start": 2862.97, + "end": 2863.03, + "probability": 0.2992 + }, + { + "start": 2863.03, + "end": 2867.91, + "probability": 0.9378 + }, + { + "start": 2868.39, + "end": 2871.39, + "probability": 0.6348 + }, + { + "start": 2880.67, + "end": 2880.91, + "probability": 0.9058 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.0, + "end": 2907.0, + "probability": 0.0 + }, + { + "start": 2907.16, + "end": 2909.78, + "probability": 0.3434 + }, + { + "start": 2909.78, + "end": 2910.16, + "probability": 0.5469 + }, + { + "start": 2910.24, + "end": 2911.04, + "probability": 0.627 + }, + { + "start": 2911.08, + "end": 2911.44, + "probability": 0.0211 + }, + { + "start": 2912.06, + "end": 2913.12, + "probability": 0.0163 + }, + { + "start": 2914.0, + "end": 2918.04, + "probability": 0.0995 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.0, + "end": 3040.0, + "probability": 0.0 + }, + { + "start": 3040.16, + "end": 3043.24, + "probability": 0.0255 + }, + { + "start": 3043.24, + "end": 3045.98, + "probability": 0.0031 + }, + { + "start": 3045.98, + "end": 3045.98, + "probability": 0.2505 + }, + { + "start": 3046.56, + "end": 3049.02, + "probability": 0.1325 + }, + { + "start": 3049.66, + "end": 3049.76, + "probability": 0.0004 + }, + { + "start": 3051.02, + "end": 3053.58, + "probability": 0.0288 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.0, + "end": 3161.0, + "probability": 0.0 + }, + { + "start": 3161.18, + "end": 3161.18, + "probability": 0.0126 + }, + { + "start": 3161.18, + "end": 3161.4, + "probability": 0.3072 + }, + { + "start": 3161.58, + "end": 3163.12, + "probability": 0.8001 + }, + { + "start": 3163.2, + "end": 3165.22, + "probability": 0.9714 + }, + { + "start": 3165.32, + "end": 3167.44, + "probability": 0.8082 + }, + { + "start": 3171.18, + "end": 3171.74, + "probability": 0.7486 + }, + { + "start": 3171.86, + "end": 3178.48, + "probability": 0.9961 + }, + { + "start": 3179.5, + "end": 3183.18, + "probability": 0.9951 + }, + { + "start": 3183.18, + "end": 3186.88, + "probability": 0.9958 + }, + { + "start": 3188.22, + "end": 3193.3, + "probability": 0.8717 + }, + { + "start": 3193.3, + "end": 3197.56, + "probability": 0.9399 + }, + { + "start": 3198.16, + "end": 3201.44, + "probability": 0.8928 + }, + { + "start": 3203.3, + "end": 3207.76, + "probability": 0.9622 + }, + { + "start": 3208.12, + "end": 3209.98, + "probability": 0.8898 + }, + { + "start": 3211.18, + "end": 3212.98, + "probability": 0.8285 + }, + { + "start": 3213.86, + "end": 3214.98, + "probability": 0.8315 + }, + { + "start": 3215.08, + "end": 3220.2, + "probability": 0.708 + }, + { + "start": 3220.2, + "end": 3222.68, + "probability": 0.9966 + }, + { + "start": 3223.1, + "end": 3225.68, + "probability": 0.9927 + }, + { + "start": 3226.6, + "end": 3231.12, + "probability": 0.9661 + }, + { + "start": 3231.22, + "end": 3233.06, + "probability": 0.9758 + }, + { + "start": 3233.74, + "end": 3234.4, + "probability": 0.8679 + }, + { + "start": 3235.18, + "end": 3239.6, + "probability": 0.8896 + }, + { + "start": 3240.28, + "end": 3243.56, + "probability": 0.909 + }, + { + "start": 3243.56, + "end": 3246.64, + "probability": 0.9982 + }, + { + "start": 3248.08, + "end": 3251.88, + "probability": 0.881 + }, + { + "start": 3252.08, + "end": 3252.4, + "probability": 0.4021 + }, + { + "start": 3252.4, + "end": 3254.12, + "probability": 0.6864 + }, + { + "start": 3254.16, + "end": 3257.56, + "probability": 0.9723 + }, + { + "start": 3258.14, + "end": 3261.14, + "probability": 0.8745 + }, + { + "start": 3261.2, + "end": 3261.62, + "probability": 0.827 + }, + { + "start": 3261.72, + "end": 3263.84, + "probability": 0.9971 + }, + { + "start": 3264.02, + "end": 3266.1, + "probability": 0.9301 + }, + { + "start": 3266.8, + "end": 3269.64, + "probability": 0.9151 + }, + { + "start": 3270.22, + "end": 3270.84, + "probability": 0.5499 + }, + { + "start": 3271.02, + "end": 3273.82, + "probability": 0.7257 + }, + { + "start": 3273.9, + "end": 3274.56, + "probability": 0.9088 + }, + { + "start": 3274.98, + "end": 3277.7, + "probability": 0.8217 + }, + { + "start": 3277.7, + "end": 3279.88, + "probability": 0.7082 + }, + { + "start": 3280.52, + "end": 3284.28, + "probability": 0.995 + }, + { + "start": 3284.44, + "end": 3286.26, + "probability": 0.9348 + }, + { + "start": 3286.94, + "end": 3287.4, + "probability": 0.551 + }, + { + "start": 3288.34, + "end": 3289.82, + "probability": 0.7318 + }, + { + "start": 3289.84, + "end": 3290.4, + "probability": 0.7669 + }, + { + "start": 3290.56, + "end": 3290.8, + "probability": 0.7876 + }, + { + "start": 3290.88, + "end": 3296.36, + "probability": 0.9963 + }, + { + "start": 3297.16, + "end": 3300.44, + "probability": 0.9917 + }, + { + "start": 3300.78, + "end": 3301.6, + "probability": 0.9503 + }, + { + "start": 3301.62, + "end": 3303.6, + "probability": 0.9425 + }, + { + "start": 3305.38, + "end": 3311.88, + "probability": 0.9758 + }, + { + "start": 3312.6, + "end": 3313.38, + "probability": 0.7551 + }, + { + "start": 3313.52, + "end": 3313.94, + "probability": 0.9966 + }, + { + "start": 3314.56, + "end": 3317.58, + "probability": 0.9824 + }, + { + "start": 3318.2, + "end": 3319.42, + "probability": 0.9719 + }, + { + "start": 3320.02, + "end": 3322.04, + "probability": 0.9256 + }, + { + "start": 3322.88, + "end": 3326.96, + "probability": 0.9961 + }, + { + "start": 3327.48, + "end": 3330.67, + "probability": 0.988 + }, + { + "start": 3331.6, + "end": 3332.68, + "probability": 0.8537 + }, + { + "start": 3333.52, + "end": 3335.42, + "probability": 0.8878 + }, + { + "start": 3336.06, + "end": 3337.02, + "probability": 0.7958 + }, + { + "start": 3337.18, + "end": 3342.46, + "probability": 0.9775 + }, + { + "start": 3342.58, + "end": 3347.28, + "probability": 0.9979 + }, + { + "start": 3348.2, + "end": 3349.99, + "probability": 0.9396 + }, + { + "start": 3350.84, + "end": 3354.08, + "probability": 0.8735 + }, + { + "start": 3354.16, + "end": 3354.98, + "probability": 0.6245 + }, + { + "start": 3355.48, + "end": 3356.64, + "probability": 0.9452 + }, + { + "start": 3357.04, + "end": 3367.94, + "probability": 0.991 + }, + { + "start": 3369.46, + "end": 3373.32, + "probability": 0.7409 + }, + { + "start": 3373.46, + "end": 3374.96, + "probability": 0.783 + }, + { + "start": 3375.46, + "end": 3377.02, + "probability": 0.9861 + }, + { + "start": 3377.46, + "end": 3378.2, + "probability": 0.7467 + }, + { + "start": 3378.4, + "end": 3380.72, + "probability": 0.882 + }, + { + "start": 3381.44, + "end": 3382.79, + "probability": 0.9017 + }, + { + "start": 3382.92, + "end": 3385.36, + "probability": 0.9321 + }, + { + "start": 3385.68, + "end": 3389.78, + "probability": 0.7432 + }, + { + "start": 3390.42, + "end": 3394.96, + "probability": 0.7249 + }, + { + "start": 3394.96, + "end": 3398.28, + "probability": 0.9546 + }, + { + "start": 3399.14, + "end": 3404.12, + "probability": 0.9095 + }, + { + "start": 3404.38, + "end": 3404.64, + "probability": 0.367 + }, + { + "start": 3405.2, + "end": 3407.0, + "probability": 0.064 + }, + { + "start": 3409.32, + "end": 3409.48, + "probability": 0.0982 + }, + { + "start": 3409.48, + "end": 3409.48, + "probability": 0.0071 + }, + { + "start": 3409.48, + "end": 3409.48, + "probability": 0.0653 + }, + { + "start": 3409.48, + "end": 3413.54, + "probability": 0.8643 + }, + { + "start": 3414.43, + "end": 3417.96, + "probability": 0.9054 + }, + { + "start": 3418.06, + "end": 3420.16, + "probability": 0.9762 + }, + { + "start": 3420.9, + "end": 3422.96, + "probability": 0.897 + }, + { + "start": 3424.38, + "end": 3425.82, + "probability": 0.8263 + }, + { + "start": 3426.0, + "end": 3426.74, + "probability": 0.8063 + }, + { + "start": 3427.05, + "end": 3430.78, + "probability": 0.9501 + }, + { + "start": 3430.98, + "end": 3433.22, + "probability": 0.961 + }, + { + "start": 3433.84, + "end": 3436.78, + "probability": 0.9212 + }, + { + "start": 3437.1, + "end": 3439.44, + "probability": 0.3513 + }, + { + "start": 3439.44, + "end": 3439.44, + "probability": 0.1016 + }, + { + "start": 3439.44, + "end": 3439.88, + "probability": 0.4407 + }, + { + "start": 3440.06, + "end": 3443.16, + "probability": 0.6784 + }, + { + "start": 3443.72, + "end": 3445.45, + "probability": 0.9624 + }, + { + "start": 3446.66, + "end": 3447.82, + "probability": 0.9568 + }, + { + "start": 3447.92, + "end": 3449.99, + "probability": 0.9012 + }, + { + "start": 3452.22, + "end": 3454.02, + "probability": 0.7007 + }, + { + "start": 3454.02, + "end": 3456.1, + "probability": 0.1174 + }, + { + "start": 3456.8, + "end": 3457.46, + "probability": 0.2937 + }, + { + "start": 3457.74, + "end": 3461.34, + "probability": 0.9528 + }, + { + "start": 3461.44, + "end": 3462.39, + "probability": 0.7015 + }, + { + "start": 3463.34, + "end": 3464.08, + "probability": 0.7735 + }, + { + "start": 3464.26, + "end": 3464.32, + "probability": 0.5063 + }, + { + "start": 3465.04, + "end": 3469.42, + "probability": 0.9866 + }, + { + "start": 3469.42, + "end": 3474.48, + "probability": 0.9819 + }, + { + "start": 3475.28, + "end": 3476.8, + "probability": 0.8447 + }, + { + "start": 3477.48, + "end": 3481.2, + "probability": 0.9595 + }, + { + "start": 3481.28, + "end": 3481.46, + "probability": 0.0906 + }, + { + "start": 3481.56, + "end": 3484.51, + "probability": 0.9585 + }, + { + "start": 3485.32, + "end": 3485.54, + "probability": 0.2465 + }, + { + "start": 3485.89, + "end": 3491.32, + "probability": 0.9438 + }, + { + "start": 3492.0, + "end": 3494.5, + "probability": 0.8603 + }, + { + "start": 3494.7, + "end": 3494.7, + "probability": 0.5111 + }, + { + "start": 3494.8, + "end": 3496.42, + "probability": 0.9985 + }, + { + "start": 3496.58, + "end": 3498.22, + "probability": 0.9788 + }, + { + "start": 3498.74, + "end": 3502.9, + "probability": 0.7749 + }, + { + "start": 3503.08, + "end": 3504.48, + "probability": 0.9794 + }, + { + "start": 3504.56, + "end": 3509.9, + "probability": 0.9409 + }, + { + "start": 3510.34, + "end": 3510.8, + "probability": 0.657 + }, + { + "start": 3511.1, + "end": 3511.96, + "probability": 0.5319 + }, + { + "start": 3512.14, + "end": 3514.12, + "probability": 0.932 + }, + { + "start": 3515.04, + "end": 3516.34, + "probability": 0.9634 + }, + { + "start": 3522.94, + "end": 3525.18, + "probability": 0.6206 + }, + { + "start": 3526.52, + "end": 3529.88, + "probability": 0.9894 + }, + { + "start": 3531.4, + "end": 3540.8, + "probability": 0.8237 + }, + { + "start": 3541.06, + "end": 3541.16, + "probability": 0.2317 + }, + { + "start": 3542.5, + "end": 3546.94, + "probability": 0.5801 + }, + { + "start": 3548.04, + "end": 3550.6, + "probability": 0.9814 + }, + { + "start": 3551.38, + "end": 3555.36, + "probability": 0.8726 + }, + { + "start": 3555.84, + "end": 3557.2, + "probability": 0.5565 + }, + { + "start": 3557.22, + "end": 3557.72, + "probability": 0.7853 + }, + { + "start": 3558.26, + "end": 3566.5, + "probability": 0.9631 + }, + { + "start": 3567.76, + "end": 3570.54, + "probability": 0.8684 + }, + { + "start": 3571.56, + "end": 3574.74, + "probability": 0.7201 + }, + { + "start": 3575.32, + "end": 3577.06, + "probability": 0.6015 + }, + { + "start": 3577.92, + "end": 3582.32, + "probability": 0.9626 + }, + { + "start": 3582.32, + "end": 3588.4, + "probability": 0.9724 + }, + { + "start": 3589.5, + "end": 3595.62, + "probability": 0.9914 + }, + { + "start": 3595.68, + "end": 3597.5, + "probability": 0.9849 + }, + { + "start": 3598.28, + "end": 3599.2, + "probability": 0.9822 + }, + { + "start": 3600.26, + "end": 3602.68, + "probability": 0.6491 + }, + { + "start": 3604.4, + "end": 3605.08, + "probability": 0.4684 + }, + { + "start": 3605.78, + "end": 3612.82, + "probability": 0.9963 + }, + { + "start": 3612.82, + "end": 3619.3, + "probability": 0.9879 + }, + { + "start": 3620.18, + "end": 3621.42, + "probability": 0.5501 + }, + { + "start": 3621.44, + "end": 3622.2, + "probability": 0.5339 + }, + { + "start": 3622.42, + "end": 3623.84, + "probability": 0.9801 + }, + { + "start": 3624.42, + "end": 3630.2, + "probability": 0.9838 + }, + { + "start": 3630.8, + "end": 3635.92, + "probability": 0.9772 + }, + { + "start": 3636.12, + "end": 3636.76, + "probability": 0.7286 + }, + { + "start": 3636.86, + "end": 3637.5, + "probability": 0.5477 + }, + { + "start": 3638.2, + "end": 3642.74, + "probability": 0.6851 + }, + { + "start": 3643.84, + "end": 3644.28, + "probability": 0.8701 + }, + { + "start": 3644.4, + "end": 3649.64, + "probability": 0.9909 + }, + { + "start": 3649.82, + "end": 3651.34, + "probability": 0.9608 + }, + { + "start": 3651.96, + "end": 3654.22, + "probability": 0.9843 + }, + { + "start": 3654.26, + "end": 3658.28, + "probability": 0.8532 + }, + { + "start": 3658.3, + "end": 3658.42, + "probability": 0.8053 + }, + { + "start": 3659.36, + "end": 3660.44, + "probability": 0.8685 + }, + { + "start": 3661.22, + "end": 3661.9, + "probability": 0.7979 + }, + { + "start": 3662.38, + "end": 3665.2, + "probability": 0.8499 + }, + { + "start": 3665.4, + "end": 3668.96, + "probability": 0.8158 + }, + { + "start": 3669.06, + "end": 3669.32, + "probability": 0.9851 + }, + { + "start": 3669.42, + "end": 3670.18, + "probability": 0.8184 + }, + { + "start": 3670.86, + "end": 3671.98, + "probability": 0.677 + }, + { + "start": 3672.06, + "end": 3674.04, + "probability": 0.7278 + }, + { + "start": 3674.48, + "end": 3677.96, + "probability": 0.9163 + }, + { + "start": 3678.18, + "end": 3681.32, + "probability": 0.89 + }, + { + "start": 3681.78, + "end": 3682.1, + "probability": 0.9346 + }, + { + "start": 3683.02, + "end": 3688.2, + "probability": 0.9569 + }, + { + "start": 3688.6, + "end": 3690.76, + "probability": 0.9976 + }, + { + "start": 3694.0, + "end": 3695.54, + "probability": 0.7799 + }, + { + "start": 3695.7, + "end": 3699.06, + "probability": 0.8478 + }, + { + "start": 3699.3, + "end": 3703.72, + "probability": 0.9723 + }, + { + "start": 3703.84, + "end": 3704.5, + "probability": 0.8537 + }, + { + "start": 3704.54, + "end": 3706.2, + "probability": 0.9516 + }, + { + "start": 3706.3, + "end": 3708.28, + "probability": 0.9122 + }, + { + "start": 3708.92, + "end": 3713.77, + "probability": 0.9971 + }, + { + "start": 3715.06, + "end": 3720.78, + "probability": 0.978 + }, + { + "start": 3720.88, + "end": 3722.9, + "probability": 0.782 + }, + { + "start": 3727.48, + "end": 3731.86, + "probability": 0.9946 + }, + { + "start": 3732.38, + "end": 3735.16, + "probability": 0.8404 + }, + { + "start": 3735.48, + "end": 3736.5, + "probability": 0.9269 + }, + { + "start": 3736.64, + "end": 3737.08, + "probability": 0.8311 + }, + { + "start": 3737.16, + "end": 3738.24, + "probability": 0.8691 + }, + { + "start": 3738.7, + "end": 3740.34, + "probability": 0.9229 + }, + { + "start": 3740.42, + "end": 3740.92, + "probability": 0.8358 + }, + { + "start": 3741.54, + "end": 3743.88, + "probability": 0.9645 + }, + { + "start": 3744.6, + "end": 3745.1, + "probability": 0.2659 + }, + { + "start": 3745.1, + "end": 3745.32, + "probability": 0.4877 + }, + { + "start": 3745.76, + "end": 3746.2, + "probability": 0.1205 + }, + { + "start": 3746.44, + "end": 3747.1, + "probability": 0.7971 + }, + { + "start": 3747.12, + "end": 3748.32, + "probability": 0.5422 + }, + { + "start": 3748.42, + "end": 3749.94, + "probability": 0.5012 + }, + { + "start": 3749.98, + "end": 3751.56, + "probability": 0.3216 + }, + { + "start": 3751.7, + "end": 3752.72, + "probability": 0.8455 + }, + { + "start": 3753.02, + "end": 3753.1, + "probability": 0.4981 + }, + { + "start": 3753.1, + "end": 3754.88, + "probability": 0.8075 + }, + { + "start": 3755.12, + "end": 3755.88, + "probability": 0.525 + }, + { + "start": 3756.04, + "end": 3759.9, + "probability": 0.9565 + }, + { + "start": 3760.44, + "end": 3763.08, + "probability": 0.7345 + }, + { + "start": 3763.28, + "end": 3766.2, + "probability": 0.9746 + }, + { + "start": 3766.88, + "end": 3771.58, + "probability": 0.9618 + }, + { + "start": 3772.24, + "end": 3774.34, + "probability": 0.9501 + }, + { + "start": 3776.14, + "end": 3778.12, + "probability": 0.7461 + }, + { + "start": 3778.8, + "end": 3784.02, + "probability": 0.8617 + }, + { + "start": 3784.58, + "end": 3787.6, + "probability": 0.8956 + }, + { + "start": 3788.26, + "end": 3788.68, + "probability": 0.943 + }, + { + "start": 3788.74, + "end": 3790.06, + "probability": 0.7199 + }, + { + "start": 3790.16, + "end": 3791.48, + "probability": 0.9489 + }, + { + "start": 3793.6, + "end": 3794.56, + "probability": 0.2618 + }, + { + "start": 3794.76, + "end": 3795.74, + "probability": 0.6425 + }, + { + "start": 3796.04, + "end": 3798.56, + "probability": 0.7142 + }, + { + "start": 3798.86, + "end": 3800.64, + "probability": 0.9547 + }, + { + "start": 3801.62, + "end": 3801.98, + "probability": 0.402 + }, + { + "start": 3801.98, + "end": 3803.07, + "probability": 0.7902 + }, + { + "start": 3803.92, + "end": 3808.04, + "probability": 0.9302 + }, + { + "start": 3808.24, + "end": 3813.94, + "probability": 0.9976 + }, + { + "start": 3814.18, + "end": 3814.74, + "probability": 0.5441 + }, + { + "start": 3814.96, + "end": 3815.98, + "probability": 0.8762 + }, + { + "start": 3816.4, + "end": 3818.74, + "probability": 0.9323 + }, + { + "start": 3819.36, + "end": 3820.72, + "probability": 0.7775 + }, + { + "start": 3821.18, + "end": 3823.36, + "probability": 0.9097 + }, + { + "start": 3823.38, + "end": 3825.12, + "probability": 0.7524 + }, + { + "start": 3826.0, + "end": 3830.92, + "probability": 0.8468 + }, + { + "start": 3831.08, + "end": 3831.34, + "probability": 0.9423 + }, + { + "start": 3832.04, + "end": 3833.56, + "probability": 0.9741 + }, + { + "start": 3833.6, + "end": 3835.18, + "probability": 0.8584 + }, + { + "start": 3835.38, + "end": 3837.32, + "probability": 0.8513 + }, + { + "start": 3838.48, + "end": 3838.66, + "probability": 0.7625 + }, + { + "start": 3838.76, + "end": 3839.6, + "probability": 0.9633 + }, + { + "start": 3839.7, + "end": 3840.31, + "probability": 0.9689 + }, + { + "start": 3840.64, + "end": 3844.88, + "probability": 0.9513 + }, + { + "start": 3845.16, + "end": 3847.88, + "probability": 0.9798 + }, + { + "start": 3848.28, + "end": 3850.98, + "probability": 0.9524 + }, + { + "start": 3851.12, + "end": 3851.5, + "probability": 0.545 + }, + { + "start": 3852.0, + "end": 3853.38, + "probability": 0.9279 + }, + { + "start": 3853.6, + "end": 3857.66, + "probability": 0.7648 + }, + { + "start": 3857.76, + "end": 3859.6, + "probability": 0.7478 + }, + { + "start": 3860.64, + "end": 3863.1, + "probability": 0.8585 + }, + { + "start": 3863.26, + "end": 3865.54, + "probability": 0.9762 + }, + { + "start": 3865.72, + "end": 3870.02, + "probability": 0.8928 + }, + { + "start": 3870.28, + "end": 3872.86, + "probability": 0.8647 + }, + { + "start": 3873.26, + "end": 3873.96, + "probability": 0.5555 + }, + { + "start": 3874.06, + "end": 3876.28, + "probability": 0.9861 + }, + { + "start": 3876.38, + "end": 3879.16, + "probability": 0.8188 + }, + { + "start": 3879.2, + "end": 3880.4, + "probability": 0.9478 + }, + { + "start": 3880.48, + "end": 3882.52, + "probability": 0.985 + }, + { + "start": 3882.78, + "end": 3885.92, + "probability": 0.8976 + }, + { + "start": 3886.04, + "end": 3887.1, + "probability": 0.9056 + }, + { + "start": 3887.3, + "end": 3887.76, + "probability": 0.6816 + }, + { + "start": 3888.0, + "end": 3888.82, + "probability": 0.6123 + }, + { + "start": 3888.92, + "end": 3889.99, + "probability": 0.8935 + }, + { + "start": 3890.22, + "end": 3891.96, + "probability": 0.8692 + }, + { + "start": 3892.48, + "end": 3893.88, + "probability": 0.8903 + }, + { + "start": 3893.98, + "end": 3896.5, + "probability": 0.9091 + }, + { + "start": 3897.14, + "end": 3897.52, + "probability": 0.4717 + }, + { + "start": 3897.58, + "end": 3898.5, + "probability": 0.603 + }, + { + "start": 3898.54, + "end": 3901.28, + "probability": 0.9477 + }, + { + "start": 3901.4, + "end": 3902.04, + "probability": 0.9358 + }, + { + "start": 3902.12, + "end": 3902.84, + "probability": 0.8604 + }, + { + "start": 3903.0, + "end": 3906.22, + "probability": 0.9727 + }, + { + "start": 3906.78, + "end": 3909.32, + "probability": 0.8545 + }, + { + "start": 3910.2, + "end": 3910.88, + "probability": 0.7556 + }, + { + "start": 3910.94, + "end": 3913.62, + "probability": 0.6322 + }, + { + "start": 3914.06, + "end": 3914.8, + "probability": 0.9494 + }, + { + "start": 3914.94, + "end": 3918.64, + "probability": 0.9961 + }, + { + "start": 3918.92, + "end": 3920.6, + "probability": 0.9863 + }, + { + "start": 3920.96, + "end": 3925.2, + "probability": 0.8687 + }, + { + "start": 3925.34, + "end": 3928.48, + "probability": 0.9528 + }, + { + "start": 3928.62, + "end": 3929.1, + "probability": 0.6275 + }, + { + "start": 3929.44, + "end": 3930.24, + "probability": 0.4198 + }, + { + "start": 3930.32, + "end": 3930.96, + "probability": 0.8839 + }, + { + "start": 3931.24, + "end": 3933.48, + "probability": 0.9893 + }, + { + "start": 3934.06, + "end": 3935.24, + "probability": 0.9377 + }, + { + "start": 3935.34, + "end": 3936.12, + "probability": 0.3571 + }, + { + "start": 3936.22, + "end": 3936.4, + "probability": 0.2199 + }, + { + "start": 3936.52, + "end": 3936.96, + "probability": 0.86 + }, + { + "start": 3937.38, + "end": 3937.6, + "probability": 0.4846 + }, + { + "start": 3937.6, + "end": 3938.34, + "probability": 0.7673 + }, + { + "start": 3938.36, + "end": 3938.74, + "probability": 0.9531 + }, + { + "start": 3939.38, + "end": 3941.1, + "probability": 0.843 + }, + { + "start": 3941.22, + "end": 3943.82, + "probability": 0.6471 + }, + { + "start": 3944.34, + "end": 3949.74, + "probability": 0.9462 + }, + { + "start": 3951.28, + "end": 3954.28, + "probability": 0.9952 + }, + { + "start": 3954.36, + "end": 3957.48, + "probability": 0.9939 + }, + { + "start": 3957.64, + "end": 3963.46, + "probability": 0.9561 + }, + { + "start": 3963.94, + "end": 3964.6, + "probability": 0.6484 + }, + { + "start": 3964.72, + "end": 3965.9, + "probability": 0.8816 + }, + { + "start": 3966.3, + "end": 3967.67, + "probability": 0.998 + }, + { + "start": 3968.04, + "end": 3970.1, + "probability": 0.9816 + }, + { + "start": 3971.1, + "end": 3973.92, + "probability": 0.9961 + }, + { + "start": 3974.56, + "end": 3975.52, + "probability": 0.8036 + }, + { + "start": 3976.16, + "end": 3976.74, + "probability": 0.4882 + }, + { + "start": 3976.92, + "end": 3978.06, + "probability": 0.6796 + }, + { + "start": 3978.14, + "end": 3979.66, + "probability": 0.9526 + }, + { + "start": 3979.82, + "end": 3981.84, + "probability": 0.9917 + }, + { + "start": 3983.34, + "end": 3983.6, + "probability": 0.9485 + }, + { + "start": 3986.55, + "end": 3991.61, + "probability": 0.9978 + }, + { + "start": 3991.67, + "end": 3992.41, + "probability": 0.4586 + }, + { + "start": 3992.85, + "end": 3998.55, + "probability": 0.9892 + }, + { + "start": 4000.11, + "end": 4001.85, + "probability": 0.6076 + }, + { + "start": 4002.03, + "end": 4003.43, + "probability": 0.9307 + }, + { + "start": 4004.24, + "end": 4005.2, + "probability": 0.7871 + }, + { + "start": 4006.07, + "end": 4008.27, + "probability": 0.9763 + }, + { + "start": 4008.8, + "end": 4010.67, + "probability": 0.6648 + }, + { + "start": 4010.93, + "end": 4011.88, + "probability": 0.4952 + }, + { + "start": 4011.95, + "end": 4012.21, + "probability": 0.6647 + }, + { + "start": 4012.31, + "end": 4013.15, + "probability": 0.826 + }, + { + "start": 4013.33, + "end": 4013.61, + "probability": 0.1281 + }, + { + "start": 4013.89, + "end": 4015.05, + "probability": 0.5882 + }, + { + "start": 4015.17, + "end": 4015.41, + "probability": 0.4878 + }, + { + "start": 4016.03, + "end": 4020.47, + "probability": 0.3841 + }, + { + "start": 4021.03, + "end": 4021.63, + "probability": 0.0021 + }, + { + "start": 4021.97, + "end": 4025.75, + "probability": 0.1632 + }, + { + "start": 4028.91, + "end": 4032.45, + "probability": 0.0759 + }, + { + "start": 4033.17, + "end": 4034.41, + "probability": 0.2156 + }, + { + "start": 4041.7, + "end": 4043.84, + "probability": 0.2171 + }, + { + "start": 4045.16, + "end": 4047.6, + "probability": 0.0476 + }, + { + "start": 4049.34, + "end": 4056.18, + "probability": 0.0203 + }, + { + "start": 4058.2, + "end": 4059.76, + "probability": 0.0419 + }, + { + "start": 4059.76, + "end": 4059.92, + "probability": 0.051 + }, + { + "start": 4059.92, + "end": 4062.16, + "probability": 0.1301 + }, + { + "start": 4062.16, + "end": 4064.72, + "probability": 0.0147 + }, + { + "start": 4064.72, + "end": 4066.52, + "probability": 0.1541 + }, + { + "start": 4068.24, + "end": 4070.56, + "probability": 0.099 + }, + { + "start": 4070.56, + "end": 4071.8, + "probability": 0.032 + }, + { + "start": 4071.8, + "end": 4074.56, + "probability": 0.016 + }, + { + "start": 4074.56, + "end": 4074.6, + "probability": 0.1095 + }, + { + "start": 4074.6, + "end": 4078.34, + "probability": 0.0482 + }, + { + "start": 4078.7, + "end": 4080.82, + "probability": 0.2092 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4097.0, + "end": 4097.0, + "probability": 0.0 + }, + { + "start": 4111.24, + "end": 4113.03, + "probability": 0.055 + }, + { + "start": 4113.7, + "end": 4115.54, + "probability": 0.0328 + }, + { + "start": 4120.08, + "end": 4120.68, + "probability": 0.1245 + }, + { + "start": 4129.2, + "end": 4133.04, + "probability": 0.0272 + }, + { + "start": 4134.24, + "end": 4136.94, + "probability": 0.2777 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4219.0, + "end": 4219.0, + "probability": 0.0 + }, + { + "start": 4220.3, + "end": 4221.2, + "probability": 0.9075 + }, + { + "start": 4221.28, + "end": 4227.32, + "probability": 0.797 + }, + { + "start": 4227.96, + "end": 4229.14, + "probability": 0.8502 + }, + { + "start": 4229.72, + "end": 4231.58, + "probability": 0.9629 + }, + { + "start": 4232.48, + "end": 4234.52, + "probability": 0.8249 + }, + { + "start": 4234.68, + "end": 4236.62, + "probability": 0.998 + }, + { + "start": 4237.26, + "end": 4239.12, + "probability": 0.873 + }, + { + "start": 4239.32, + "end": 4241.27, + "probability": 0.8907 + }, + { + "start": 4242.56, + "end": 4243.02, + "probability": 0.5511 + }, + { + "start": 4243.1, + "end": 4246.18, + "probability": 0.9964 + }, + { + "start": 4246.24, + "end": 4250.16, + "probability": 0.996 + }, + { + "start": 4250.78, + "end": 4254.72, + "probability": 0.9938 + }, + { + "start": 4255.32, + "end": 4256.6, + "probability": 0.3877 + }, + { + "start": 4256.66, + "end": 4257.46, + "probability": 0.7645 + }, + { + "start": 4258.22, + "end": 4258.63, + "probability": 0.9224 + }, + { + "start": 4260.17, + "end": 4263.02, + "probability": 0.7958 + }, + { + "start": 4263.92, + "end": 4267.74, + "probability": 0.9904 + }, + { + "start": 4267.76, + "end": 4268.46, + "probability": 0.2599 + }, + { + "start": 4268.48, + "end": 4272.84, + "probability": 0.7933 + }, + { + "start": 4273.62, + "end": 4275.0, + "probability": 0.7827 + }, + { + "start": 4275.6, + "end": 4276.38, + "probability": 0.9524 + }, + { + "start": 4276.68, + "end": 4276.82, + "probability": 0.2589 + }, + { + "start": 4276.82, + "end": 4279.52, + "probability": 0.9695 + }, + { + "start": 4280.12, + "end": 4280.74, + "probability": 0.0048 + }, + { + "start": 4280.74, + "end": 4281.06, + "probability": 0.0863 + }, + { + "start": 4281.06, + "end": 4282.22, + "probability": 0.7743 + }, + { + "start": 4282.44, + "end": 4284.32, + "probability": 0.958 + }, + { + "start": 4285.66, + "end": 4287.44, + "probability": 0.1312 + }, + { + "start": 4288.64, + "end": 4289.9, + "probability": 0.477 + }, + { + "start": 4290.32, + "end": 4290.32, + "probability": 0.0847 + }, + { + "start": 4290.32, + "end": 4290.81, + "probability": 0.3819 + }, + { + "start": 4291.76, + "end": 4292.68, + "probability": 0.5823 + }, + { + "start": 4292.78, + "end": 4293.2, + "probability": 0.4537 + }, + { + "start": 4293.92, + "end": 4295.08, + "probability": 0.0137 + }, + { + "start": 4295.1, + "end": 4295.44, + "probability": 0.0468 + }, + { + "start": 4295.44, + "end": 4296.42, + "probability": 0.7894 + }, + { + "start": 4297.68, + "end": 4297.8, + "probability": 0.6703 + }, + { + "start": 4297.88, + "end": 4303.06, + "probability": 0.9469 + }, + { + "start": 4305.1, + "end": 4307.3, + "probability": 0.6666 + }, + { + "start": 4307.6, + "end": 4312.86, + "probability": 0.9553 + }, + { + "start": 4312.86, + "end": 4317.7, + "probability": 0.973 + }, + { + "start": 4317.9, + "end": 4320.0, + "probability": 0.9121 + }, + { + "start": 4320.7, + "end": 4321.26, + "probability": 0.3278 + }, + { + "start": 4321.26, + "end": 4323.37, + "probability": 0.8256 + }, + { + "start": 4323.46, + "end": 4326.26, + "probability": 0.9582 + }, + { + "start": 4326.58, + "end": 4327.5, + "probability": 0.3632 + }, + { + "start": 4328.0, + "end": 4330.3, + "probability": 0.8613 + }, + { + "start": 4330.52, + "end": 4331.3, + "probability": 0.536 + }, + { + "start": 4331.3, + "end": 4336.06, + "probability": 0.9814 + }, + { + "start": 4336.66, + "end": 4337.36, + "probability": 0.8617 + }, + { + "start": 4338.12, + "end": 4338.94, + "probability": 0.733 + }, + { + "start": 4339.08, + "end": 4339.38, + "probability": 0.5566 + }, + { + "start": 4339.5, + "end": 4340.72, + "probability": 0.896 + }, + { + "start": 4341.06, + "end": 4341.74, + "probability": 0.5963 + }, + { + "start": 4342.24, + "end": 4343.88, + "probability": 0.9405 + }, + { + "start": 4344.38, + "end": 4345.94, + "probability": 0.9814 + }, + { + "start": 4346.02, + "end": 4347.88, + "probability": 0.9956 + }, + { + "start": 4348.84, + "end": 4351.93, + "probability": 0.9736 + }, + { + "start": 4352.66, + "end": 4358.1, + "probability": 0.7963 + }, + { + "start": 4358.4, + "end": 4359.5, + "probability": 0.9542 + }, + { + "start": 4359.62, + "end": 4361.62, + "probability": 0.9653 + }, + { + "start": 4362.34, + "end": 4363.56, + "probability": 0.7587 + }, + { + "start": 4364.22, + "end": 4366.16, + "probability": 0.6558 + }, + { + "start": 4366.84, + "end": 4370.44, + "probability": 0.5129 + }, + { + "start": 4371.28, + "end": 4371.36, + "probability": 0.0172 + }, + { + "start": 4371.36, + "end": 4374.62, + "probability": 0.6688 + }, + { + "start": 4374.8, + "end": 4377.92, + "probability": 0.8572 + }, + { + "start": 4378.16, + "end": 4378.36, + "probability": 0.174 + }, + { + "start": 4378.36, + "end": 4380.16, + "probability": 0.8614 + }, + { + "start": 4380.26, + "end": 4381.92, + "probability": 0.5649 + }, + { + "start": 4382.38, + "end": 4382.42, + "probability": 0.328 + }, + { + "start": 4382.42, + "end": 4382.42, + "probability": 0.201 + }, + { + "start": 4382.42, + "end": 4384.42, + "probability": 0.8403 + }, + { + "start": 4384.46, + "end": 4385.13, + "probability": 0.9644 + }, + { + "start": 4385.6, + "end": 4386.02, + "probability": 0.8442 + }, + { + "start": 4386.28, + "end": 4387.12, + "probability": 0.7975 + }, + { + "start": 4387.46, + "end": 4390.15, + "probability": 0.9543 + }, + { + "start": 4390.76, + "end": 4390.78, + "probability": 0.7372 + }, + { + "start": 4390.78, + "end": 4391.76, + "probability": 0.8506 + }, + { + "start": 4391.8, + "end": 4392.8, + "probability": 0.8427 + }, + { + "start": 4393.18, + "end": 4394.36, + "probability": 0.8631 + }, + { + "start": 4394.52, + "end": 4395.96, + "probability": 0.9047 + }, + { + "start": 4396.04, + "end": 4397.04, + "probability": 0.8583 + }, + { + "start": 4397.52, + "end": 4399.14, + "probability": 0.8323 + }, + { + "start": 4399.38, + "end": 4400.82, + "probability": 0.9642 + }, + { + "start": 4401.2, + "end": 4401.2, + "probability": 0.1061 + }, + { + "start": 4401.2, + "end": 4402.9, + "probability": 0.5112 + }, + { + "start": 4402.9, + "end": 4403.93, + "probability": 0.9326 + }, + { + "start": 4404.4, + "end": 4406.48, + "probability": 0.986 + }, + { + "start": 4406.98, + "end": 4409.32, + "probability": 0.9053 + }, + { + "start": 4409.74, + "end": 4410.82, + "probability": 0.8277 + }, + { + "start": 4413.44, + "end": 4413.44, + "probability": 0.5592 + }, + { + "start": 4413.44, + "end": 4416.32, + "probability": 0.715 + }, + { + "start": 4416.56, + "end": 4418.86, + "probability": 0.8138 + }, + { + "start": 4420.2, + "end": 4422.72, + "probability": 0.5935 + }, + { + "start": 4422.82, + "end": 4424.3, + "probability": 0.2601 + }, + { + "start": 4424.42, + "end": 4426.54, + "probability": 0.6066 + }, + { + "start": 4426.66, + "end": 4427.78, + "probability": 0.7781 + }, + { + "start": 4427.84, + "end": 4427.92, + "probability": 0.5576 + }, + { + "start": 4427.94, + "end": 4428.12, + "probability": 0.3797 + }, + { + "start": 4428.28, + "end": 4431.42, + "probability": 0.9517 + }, + { + "start": 4432.22, + "end": 4432.58, + "probability": 0.1326 + }, + { + "start": 4433.48, + "end": 4434.54, + "probability": 0.7477 + }, + { + "start": 4435.14, + "end": 4437.28, + "probability": 0.6917 + }, + { + "start": 4437.76, + "end": 4440.54, + "probability": 0.9851 + }, + { + "start": 4440.82, + "end": 4442.42, + "probability": 0.843 + }, + { + "start": 4442.46, + "end": 4443.1, + "probability": 0.6918 + }, + { + "start": 4443.48, + "end": 4448.78, + "probability": 0.972 + }, + { + "start": 4449.44, + "end": 4453.1, + "probability": 0.8211 + }, + { + "start": 4453.22, + "end": 4455.04, + "probability": 0.7326 + }, + { + "start": 4456.36, + "end": 4456.6, + "probability": 0.054 + }, + { + "start": 4456.6, + "end": 4462.84, + "probability": 0.7253 + }, + { + "start": 4462.9, + "end": 4463.8, + "probability": 0.4613 + }, + { + "start": 4464.02, + "end": 4467.16, + "probability": 0.6719 + }, + { + "start": 4467.5, + "end": 4467.5, + "probability": 0.1471 + }, + { + "start": 4467.5, + "end": 4468.22, + "probability": 0.6617 + }, + { + "start": 4468.22, + "end": 4474.76, + "probability": 0.9945 + }, + { + "start": 4475.1, + "end": 4475.3, + "probability": 0.7464 + }, + { + "start": 4475.72, + "end": 4479.74, + "probability": 0.9932 + }, + { + "start": 4480.14, + "end": 4483.84, + "probability": 0.9932 + }, + { + "start": 4484.14, + "end": 4487.98, + "probability": 0.9973 + }, + { + "start": 4488.24, + "end": 4491.8, + "probability": 0.998 + }, + { + "start": 4492.94, + "end": 4492.94, + "probability": 0.1375 + }, + { + "start": 4492.94, + "end": 4494.14, + "probability": 0.5876 + }, + { + "start": 4494.4, + "end": 4496.64, + "probability": 0.7025 + }, + { + "start": 4496.72, + "end": 4497.48, + "probability": 0.9824 + }, + { + "start": 4502.4, + "end": 4503.48, + "probability": 0.7281 + }, + { + "start": 4503.62, + "end": 4504.62, + "probability": 0.7576 + }, + { + "start": 4505.04, + "end": 4505.92, + "probability": 0.9089 + }, + { + "start": 4506.3, + "end": 4509.26, + "probability": 0.8706 + }, + { + "start": 4510.16, + "end": 4514.0, + "probability": 0.9668 + }, + { + "start": 4514.0, + "end": 4518.22, + "probability": 0.8924 + }, + { + "start": 4518.5, + "end": 4519.08, + "probability": 0.9357 + }, + { + "start": 4519.54, + "end": 4521.38, + "probability": 0.8603 + }, + { + "start": 4522.52, + "end": 4529.66, + "probability": 0.9836 + }, + { + "start": 4529.7, + "end": 4530.72, + "probability": 0.892 + }, + { + "start": 4530.82, + "end": 4536.38, + "probability": 0.9912 + }, + { + "start": 4536.94, + "end": 4537.66, + "probability": 0.8018 + }, + { + "start": 4538.56, + "end": 4544.32, + "probability": 0.9416 + }, + { + "start": 4544.78, + "end": 4546.1, + "probability": 0.8949 + }, + { + "start": 4547.02, + "end": 4549.0, + "probability": 0.8932 + }, + { + "start": 4550.0, + "end": 4553.0, + "probability": 0.9963 + }, + { + "start": 4553.78, + "end": 4558.28, + "probability": 0.9502 + }, + { + "start": 4559.3, + "end": 4564.46, + "probability": 0.9927 + }, + { + "start": 4565.04, + "end": 4571.3, + "probability": 0.9968 + }, + { + "start": 4571.96, + "end": 4575.8, + "probability": 0.9635 + }, + { + "start": 4576.32, + "end": 4577.68, + "probability": 0.8404 + }, + { + "start": 4577.82, + "end": 4578.58, + "probability": 0.6195 + }, + { + "start": 4578.6, + "end": 4579.64, + "probability": 0.62 + }, + { + "start": 4580.12, + "end": 4582.0, + "probability": 0.9932 + }, + { + "start": 4582.48, + "end": 4587.08, + "probability": 0.9834 + }, + { + "start": 4587.36, + "end": 4587.68, + "probability": 0.8627 + }, + { + "start": 4587.82, + "end": 4588.46, + "probability": 0.686 + }, + { + "start": 4588.54, + "end": 4589.32, + "probability": 0.5445 + }, + { + "start": 4589.76, + "end": 4589.9, + "probability": 0.465 + }, + { + "start": 4590.74, + "end": 4594.78, + "probability": 0.9889 + }, + { + "start": 4595.52, + "end": 4596.79, + "probability": 0.5633 + }, + { + "start": 4597.68, + "end": 4599.49, + "probability": 0.6411 + }, + { + "start": 4600.3, + "end": 4601.42, + "probability": 0.6232 + }, + { + "start": 4601.42, + "end": 4605.16, + "probability": 0.991 + }, + { + "start": 4605.26, + "end": 4608.74, + "probability": 0.6789 + }, + { + "start": 4608.84, + "end": 4612.32, + "probability": 0.9907 + }, + { + "start": 4612.4, + "end": 4616.14, + "probability": 0.9918 + }, + { + "start": 4616.5, + "end": 4617.3, + "probability": 0.9552 + }, + { + "start": 4617.52, + "end": 4618.08, + "probability": 0.4179 + }, + { + "start": 4618.32, + "end": 4618.81, + "probability": 0.9591 + }, + { + "start": 4619.18, + "end": 4619.53, + "probability": 0.7587 + }, + { + "start": 4620.24, + "end": 4620.86, + "probability": 0.7094 + }, + { + "start": 4620.94, + "end": 4621.31, + "probability": 0.7041 + }, + { + "start": 4621.4, + "end": 4624.26, + "probability": 0.9021 + }, + { + "start": 4624.26, + "end": 4627.24, + "probability": 0.9607 + }, + { + "start": 4627.28, + "end": 4628.72, + "probability": 0.2587 + }, + { + "start": 4628.96, + "end": 4629.46, + "probability": 0.6088 + }, + { + "start": 4629.68, + "end": 4631.2, + "probability": 0.9343 + }, + { + "start": 4631.32, + "end": 4634.4, + "probability": 0.3528 + }, + { + "start": 4634.48, + "end": 4637.12, + "probability": 0.811 + }, + { + "start": 4637.18, + "end": 4637.88, + "probability": 0.9315 + }, + { + "start": 4639.14, + "end": 4644.59, + "probability": 0.976 + }, + { + "start": 4644.74, + "end": 4645.18, + "probability": 0.7867 + }, + { + "start": 4645.22, + "end": 4645.76, + "probability": 0.8007 + }, + { + "start": 4645.9, + "end": 4649.18, + "probability": 0.7578 + }, + { + "start": 4649.38, + "end": 4650.26, + "probability": 0.6129 + }, + { + "start": 4650.42, + "end": 4651.12, + "probability": 0.7874 + }, + { + "start": 4651.6, + "end": 4653.56, + "probability": 0.7983 + }, + { + "start": 4653.66, + "end": 4654.32, + "probability": 0.8679 + }, + { + "start": 4654.36, + "end": 4655.62, + "probability": 0.8213 + }, + { + "start": 4655.74, + "end": 4656.16, + "probability": 0.9451 + }, + { + "start": 4656.22, + "end": 4657.44, + "probability": 0.8906 + }, + { + "start": 4657.66, + "end": 4659.52, + "probability": 0.9763 + }, + { + "start": 4659.92, + "end": 4660.32, + "probability": 0.4284 + }, + { + "start": 4660.4, + "end": 4661.3, + "probability": 0.3373 + }, + { + "start": 4661.76, + "end": 4664.64, + "probability": 0.8621 + }, + { + "start": 4665.14, + "end": 4665.9, + "probability": 0.6922 + }, + { + "start": 4666.46, + "end": 4667.6, + "probability": 0.3181 + }, + { + "start": 4668.18, + "end": 4672.71, + "probability": 0.6203 + }, + { + "start": 4675.2, + "end": 4675.46, + "probability": 0.0678 + }, + { + "start": 4675.46, + "end": 4675.46, + "probability": 0.0284 + }, + { + "start": 4675.46, + "end": 4675.46, + "probability": 0.0246 + }, + { + "start": 4675.46, + "end": 4675.81, + "probability": 0.0799 + }, + { + "start": 4676.3, + "end": 4677.66, + "probability": 0.3639 + }, + { + "start": 4677.78, + "end": 4680.12, + "probability": 0.6068 + }, + { + "start": 4680.26, + "end": 4680.92, + "probability": 0.8313 + }, + { + "start": 4681.0, + "end": 4681.74, + "probability": 0.8776 + }, + { + "start": 4682.12, + "end": 4682.98, + "probability": 0.4709 + }, + { + "start": 4684.04, + "end": 4684.6, + "probability": 0.8169 + }, + { + "start": 4685.0, + "end": 4688.55, + "probability": 0.9805 + }, + { + "start": 4689.28, + "end": 4690.84, + "probability": 0.9738 + }, + { + "start": 4691.16, + "end": 4692.96, + "probability": 0.9337 + }, + { + "start": 4693.26, + "end": 4696.0, + "probability": 0.702 + }, + { + "start": 4696.24, + "end": 4699.8, + "probability": 0.9385 + }, + { + "start": 4700.12, + "end": 4700.54, + "probability": 0.5539 + }, + { + "start": 4700.74, + "end": 4701.46, + "probability": 0.0643 + }, + { + "start": 4701.48, + "end": 4702.14, + "probability": 0.8311 + }, + { + "start": 4702.26, + "end": 4702.8, + "probability": 0.7 + }, + { + "start": 4702.82, + "end": 4703.44, + "probability": 0.7371 + }, + { + "start": 4704.1, + "end": 4705.42, + "probability": 0.6536 + }, + { + "start": 4705.48, + "end": 4708.98, + "probability": 0.7799 + }, + { + "start": 4709.58, + "end": 4710.42, + "probability": 0.8035 + }, + { + "start": 4710.78, + "end": 4711.5, + "probability": 0.9758 + }, + { + "start": 4711.68, + "end": 4712.54, + "probability": 0.9839 + }, + { + "start": 4712.64, + "end": 4713.66, + "probability": 0.7479 + }, + { + "start": 4713.72, + "end": 4717.08, + "probability": 0.9849 + }, + { + "start": 4717.32, + "end": 4718.18, + "probability": 0.6738 + }, + { + "start": 4718.26, + "end": 4719.86, + "probability": 0.9901 + }, + { + "start": 4719.94, + "end": 4724.1, + "probability": 0.9894 + }, + { + "start": 4724.3, + "end": 4726.28, + "probability": 0.9809 + }, + { + "start": 4726.64, + "end": 4727.18, + "probability": 0.6911 + }, + { + "start": 4727.3, + "end": 4727.84, + "probability": 0.7603 + }, + { + "start": 4727.9, + "end": 4729.4, + "probability": 0.8372 + }, + { + "start": 4729.6, + "end": 4730.37, + "probability": 0.9851 + }, + { + "start": 4731.34, + "end": 4732.9, + "probability": 0.5667 + }, + { + "start": 4733.52, + "end": 4733.9, + "probability": 0.2303 + }, + { + "start": 4733.9, + "end": 4733.9, + "probability": 0.3884 + }, + { + "start": 4733.92, + "end": 4734.18, + "probability": 0.2533 + }, + { + "start": 4734.36, + "end": 4734.96, + "probability": 0.5524 + }, + { + "start": 4735.34, + "end": 4738.52, + "probability": 0.8804 + }, + { + "start": 4738.64, + "end": 4740.7, + "probability": 0.9756 + }, + { + "start": 4740.78, + "end": 4741.22, + "probability": 0.5569 + }, + { + "start": 4741.34, + "end": 4742.04, + "probability": 0.4617 + }, + { + "start": 4742.04, + "end": 4742.04, + "probability": 0.124 + }, + { + "start": 4742.64, + "end": 4743.36, + "probability": 0.0471 + }, + { + "start": 4743.76, + "end": 4743.76, + "probability": 0.4716 + }, + { + "start": 4743.76, + "end": 4743.86, + "probability": 0.3593 + }, + { + "start": 4743.94, + "end": 4744.06, + "probability": 0.5704 + }, + { + "start": 4744.06, + "end": 4744.2, + "probability": 0.463 + }, + { + "start": 4744.2, + "end": 4748.7, + "probability": 0.7979 + }, + { + "start": 4748.7, + "end": 4748.96, + "probability": 0.1582 + }, + { + "start": 4749.06, + "end": 4749.06, + "probability": 0.3097 + }, + { + "start": 4749.16, + "end": 4751.1, + "probability": 0.3341 + }, + { + "start": 4751.2, + "end": 4752.96, + "probability": 0.0821 + }, + { + "start": 4753.28, + "end": 4755.35, + "probability": 0.5527 + }, + { + "start": 4755.54, + "end": 4758.98, + "probability": 0.8109 + }, + { + "start": 4760.6, + "end": 4762.68, + "probability": 0.8465 + }, + { + "start": 4762.78, + "end": 4763.52, + "probability": 0.6811 + }, + { + "start": 4764.06, + "end": 4765.7, + "probability": 0.9489 + }, + { + "start": 4766.02, + "end": 4766.58, + "probability": 0.6982 + }, + { + "start": 4768.82, + "end": 4770.4, + "probability": 0.7354 + }, + { + "start": 4770.72, + "end": 4771.36, + "probability": 0.9233 + }, + { + "start": 4771.52, + "end": 4771.94, + "probability": 0.5559 + }, + { + "start": 4772.02, + "end": 4773.14, + "probability": 0.6829 + }, + { + "start": 4773.18, + "end": 4774.18, + "probability": 0.7542 + }, + { + "start": 4774.24, + "end": 4774.66, + "probability": 0.3785 + }, + { + "start": 4775.98, + "end": 4777.6, + "probability": 0.6761 + }, + { + "start": 4778.12, + "end": 4779.82, + "probability": 0.9004 + }, + { + "start": 4779.92, + "end": 4780.28, + "probability": 0.74 + }, + { + "start": 4780.38, + "end": 4782.36, + "probability": 0.959 + }, + { + "start": 4782.42, + "end": 4782.96, + "probability": 0.57 + }, + { + "start": 4783.66, + "end": 4785.24, + "probability": 0.9585 + }, + { + "start": 4785.76, + "end": 4787.06, + "probability": 0.8133 + }, + { + "start": 4787.82, + "end": 4790.78, + "probability": 0.976 + }, + { + "start": 4791.26, + "end": 4792.08, + "probability": 0.5211 + }, + { + "start": 4792.3, + "end": 4795.18, + "probability": 0.9977 + }, + { + "start": 4795.88, + "end": 4797.78, + "probability": 0.7688 + }, + { + "start": 4797.92, + "end": 4798.97, + "probability": 0.9099 + }, + { + "start": 4799.68, + "end": 4801.78, + "probability": 0.3722 + }, + { + "start": 4801.92, + "end": 4803.0, + "probability": 0.8931 + }, + { + "start": 4803.1, + "end": 4803.48, + "probability": 0.9648 + }, + { + "start": 4803.56, + "end": 4804.0, + "probability": 0.8335 + }, + { + "start": 4804.02, + "end": 4804.6, + "probability": 0.9228 + }, + { + "start": 4805.16, + "end": 4805.54, + "probability": 0.2861 + }, + { + "start": 4805.64, + "end": 4806.26, + "probability": 0.6603 + }, + { + "start": 4806.82, + "end": 4808.46, + "probability": 0.4776 + }, + { + "start": 4808.56, + "end": 4809.52, + "probability": 0.7041 + }, + { + "start": 4809.6, + "end": 4809.92, + "probability": 0.8282 + }, + { + "start": 4810.06, + "end": 4811.22, + "probability": 0.9739 + }, + { + "start": 4811.26, + "end": 4811.92, + "probability": 0.7416 + }, + { + "start": 4813.56, + "end": 4814.08, + "probability": 0.5582 + }, + { + "start": 4814.24, + "end": 4818.98, + "probability": 0.9872 + }, + { + "start": 4818.98, + "end": 4822.04, + "probability": 0.9984 + }, + { + "start": 4822.66, + "end": 4826.14, + "probability": 0.9766 + }, + { + "start": 4826.96, + "end": 4833.32, + "probability": 0.9842 + }, + { + "start": 4833.52, + "end": 4835.16, + "probability": 0.9295 + }, + { + "start": 4835.54, + "end": 4837.54, + "probability": 0.994 + }, + { + "start": 4837.9, + "end": 4840.1, + "probability": 0.9414 + }, + { + "start": 4840.22, + "end": 4844.24, + "probability": 0.9386 + }, + { + "start": 4844.7, + "end": 4847.26, + "probability": 0.976 + }, + { + "start": 4847.3, + "end": 4847.84, + "probability": 0.8465 + }, + { + "start": 4848.34, + "end": 4852.28, + "probability": 0.93 + }, + { + "start": 4852.38, + "end": 4853.56, + "probability": 0.9858 + }, + { + "start": 4853.64, + "end": 4854.7, + "probability": 0.9683 + }, + { + "start": 4855.66, + "end": 4856.3, + "probability": 0.6586 + }, + { + "start": 4856.92, + "end": 4859.82, + "probability": 0.9296 + }, + { + "start": 4860.26, + "end": 4860.7, + "probability": 0.8141 + }, + { + "start": 4860.98, + "end": 4864.46, + "probability": 0.8589 + }, + { + "start": 4864.92, + "end": 4868.69, + "probability": 0.9829 + }, + { + "start": 4869.08, + "end": 4871.9, + "probability": 0.992 + }, + { + "start": 4871.96, + "end": 4872.62, + "probability": 0.5731 + }, + { + "start": 4873.14, + "end": 4874.44, + "probability": 0.952 + }, + { + "start": 4874.44, + "end": 4875.76, + "probability": 0.5556 + }, + { + "start": 4876.62, + "end": 4879.42, + "probability": 0.9881 + }, + { + "start": 4879.84, + "end": 4883.48, + "probability": 0.9832 + }, + { + "start": 4883.92, + "end": 4886.44, + "probability": 0.7875 + }, + { + "start": 4887.24, + "end": 4888.92, + "probability": 0.4798 + }, + { + "start": 4889.5, + "end": 4890.12, + "probability": 0.5779 + }, + { + "start": 4890.36, + "end": 4892.48, + "probability": 0.9602 + }, + { + "start": 4892.98, + "end": 4893.46, + "probability": 0.7681 + }, + { + "start": 4893.48, + "end": 4894.56, + "probability": 0.8419 + }, + { + "start": 4895.02, + "end": 4898.44, + "probability": 0.9707 + }, + { + "start": 4898.9, + "end": 4899.7, + "probability": 0.7394 + }, + { + "start": 4900.38, + "end": 4901.34, + "probability": 0.9648 + }, + { + "start": 4902.14, + "end": 4906.54, + "probability": 0.9982 + }, + { + "start": 4906.54, + "end": 4909.3, + "probability": 0.9927 + }, + { + "start": 4909.8, + "end": 4910.06, + "probability": 0.3384 + }, + { + "start": 4910.18, + "end": 4911.06, + "probability": 0.7961 + }, + { + "start": 4911.36, + "end": 4912.98, + "probability": 0.9384 + }, + { + "start": 4913.44, + "end": 4913.62, + "probability": 0.6564 + }, + { + "start": 4913.68, + "end": 4916.7, + "probability": 0.8915 + }, + { + "start": 4916.7, + "end": 4919.44, + "probability": 0.7278 + }, + { + "start": 4919.96, + "end": 4921.58, + "probability": 0.6816 + }, + { + "start": 4921.92, + "end": 4924.5, + "probability": 0.5454 + }, + { + "start": 4925.04, + "end": 4926.78, + "probability": 0.8164 + }, + { + "start": 4926.98, + "end": 4928.36, + "probability": 0.504 + }, + { + "start": 4928.46, + "end": 4929.28, + "probability": 0.7259 + }, + { + "start": 4929.34, + "end": 4929.86, + "probability": 0.9465 + }, + { + "start": 4930.18, + "end": 4930.28, + "probability": 0.4099 + }, + { + "start": 4930.38, + "end": 4931.22, + "probability": 0.8113 + }, + { + "start": 4931.4, + "end": 4936.38, + "probability": 0.9519 + }, + { + "start": 4937.26, + "end": 4938.16, + "probability": 0.627 + }, + { + "start": 4939.16, + "end": 4940.94, + "probability": 0.9802 + }, + { + "start": 4940.94, + "end": 4943.08, + "probability": 0.9462 + }, + { + "start": 4943.18, + "end": 4944.18, + "probability": 0.5721 + }, + { + "start": 4944.38, + "end": 4947.46, + "probability": 0.2134 + }, + { + "start": 4947.46, + "end": 4947.9, + "probability": 0.539 + }, + { + "start": 4948.46, + "end": 4952.14, + "probability": 0.8487 + }, + { + "start": 4952.8, + "end": 4959.4, + "probability": 0.9962 + }, + { + "start": 4960.42, + "end": 4960.66, + "probability": 0.9405 + }, + { + "start": 4961.94, + "end": 4963.2, + "probability": 0.2878 + }, + { + "start": 4963.24, + "end": 4965.44, + "probability": 0.9912 + }, + { + "start": 4965.58, + "end": 4966.94, + "probability": 0.7342 + }, + { + "start": 4967.16, + "end": 4970.98, + "probability": 0.9199 + }, + { + "start": 4972.27, + "end": 4977.0, + "probability": 0.8381 + }, + { + "start": 4977.54, + "end": 4978.16, + "probability": 0.9291 + }, + { + "start": 4978.32, + "end": 4986.36, + "probability": 0.9817 + }, + { + "start": 4987.72, + "end": 4990.74, + "probability": 0.8682 + }, + { + "start": 4990.98, + "end": 4993.46, + "probability": 0.994 + }, + { + "start": 4993.54, + "end": 4994.48, + "probability": 0.9692 + }, + { + "start": 4995.64, + "end": 4996.4, + "probability": 0.4304 + }, + { + "start": 4997.01, + "end": 5002.64, + "probability": 0.988 + }, + { + "start": 5002.78, + "end": 5003.38, + "probability": 0.942 + }, + { + "start": 5003.5, + "end": 5005.12, + "probability": 0.9371 + }, + { + "start": 5005.24, + "end": 5009.26, + "probability": 0.9924 + }, + { + "start": 5009.62, + "end": 5011.66, + "probability": 0.9969 + }, + { + "start": 5012.28, + "end": 5015.42, + "probability": 0.8846 + }, + { + "start": 5015.84, + "end": 5017.86, + "probability": 0.8481 + }, + { + "start": 5018.02, + "end": 5024.18, + "probability": 0.9912 + }, + { + "start": 5024.26, + "end": 5024.84, + "probability": 0.7074 + }, + { + "start": 5025.06, + "end": 5026.4, + "probability": 0.8245 + }, + { + "start": 5027.08, + "end": 5029.38, + "probability": 0.9932 + }, + { + "start": 5029.52, + "end": 5029.78, + "probability": 0.9013 + }, + { + "start": 5031.47, + "end": 5035.54, + "probability": 0.9951 + }, + { + "start": 5035.66, + "end": 5035.96, + "probability": 0.7675 + }, + { + "start": 5036.1, + "end": 5037.3, + "probability": 0.978 + }, + { + "start": 5037.56, + "end": 5038.54, + "probability": 0.8275 + }, + { + "start": 5038.68, + "end": 5038.92, + "probability": 0.9388 + }, + { + "start": 5039.44, + "end": 5040.4, + "probability": 0.8877 + }, + { + "start": 5040.86, + "end": 5044.74, + "probability": 0.9399 + }, + { + "start": 5045.2, + "end": 5047.75, + "probability": 0.9527 + }, + { + "start": 5049.61, + "end": 5051.49, + "probability": 0.9976 + }, + { + "start": 5052.36, + "end": 5056.54, + "probability": 0.9865 + }, + { + "start": 5056.88, + "end": 5057.94, + "probability": 0.942 + }, + { + "start": 5058.04, + "end": 5058.3, + "probability": 0.3653 + }, + { + "start": 5058.34, + "end": 5059.19, + "probability": 0.999 + }, + { + "start": 5059.7, + "end": 5061.76, + "probability": 0.7011 + }, + { + "start": 5061.82, + "end": 5065.3, + "probability": 0.9507 + }, + { + "start": 5066.88, + "end": 5071.14, + "probability": 0.8131 + }, + { + "start": 5071.24, + "end": 5072.98, + "probability": 0.9117 + }, + { + "start": 5073.08, + "end": 5074.02, + "probability": 0.6452 + }, + { + "start": 5074.5, + "end": 5075.78, + "probability": 0.9524 + }, + { + "start": 5075.9, + "end": 5076.0, + "probability": 0.964 + }, + { + "start": 5078.0, + "end": 5080.28, + "probability": 0.7676 + }, + { + "start": 5080.76, + "end": 5082.4, + "probability": 0.8455 + }, + { + "start": 5082.42, + "end": 5084.72, + "probability": 0.841 + }, + { + "start": 5085.34, + "end": 5087.78, + "probability": 0.9596 + }, + { + "start": 5102.16, + "end": 5102.94, + "probability": 0.2008 + }, + { + "start": 5102.94, + "end": 5102.94, + "probability": 0.0751 + }, + { + "start": 5102.94, + "end": 5102.94, + "probability": 0.3625 + }, + { + "start": 5102.94, + "end": 5102.94, + "probability": 0.3963 + }, + { + "start": 5102.94, + "end": 5103.85, + "probability": 0.7375 + }, + { + "start": 5104.08, + "end": 5105.18, + "probability": 0.9077 + }, + { + "start": 5105.92, + "end": 5110.22, + "probability": 0.6951 + }, + { + "start": 5110.66, + "end": 5111.4, + "probability": 0.5285 + }, + { + "start": 5111.52, + "end": 5112.4, + "probability": 0.9017 + }, + { + "start": 5112.44, + "end": 5113.18, + "probability": 0.9681 + }, + { + "start": 5113.54, + "end": 5114.26, + "probability": 0.9834 + }, + { + "start": 5114.36, + "end": 5114.92, + "probability": 0.9011 + }, + { + "start": 5116.4, + "end": 5118.26, + "probability": 0.9401 + }, + { + "start": 5119.3, + "end": 5120.34, + "probability": 0.9069 + }, + { + "start": 5120.52, + "end": 5122.66, + "probability": 0.795 + }, + { + "start": 5123.83, + "end": 5126.84, + "probability": 0.9792 + }, + { + "start": 5127.52, + "end": 5129.04, + "probability": 0.8195 + }, + { + "start": 5129.1, + "end": 5133.91, + "probability": 0.7688 + }, + { + "start": 5134.2, + "end": 5136.28, + "probability": 0.9845 + }, + { + "start": 5136.28, + "end": 5139.2, + "probability": 0.9939 + }, + { + "start": 5139.38, + "end": 5140.16, + "probability": 0.9551 + }, + { + "start": 5140.46, + "end": 5140.7, + "probability": 0.6358 + }, + { + "start": 5141.2, + "end": 5146.4, + "probability": 0.8696 + }, + { + "start": 5146.54, + "end": 5147.88, + "probability": 0.886 + }, + { + "start": 5148.42, + "end": 5150.48, + "probability": 0.9456 + }, + { + "start": 5151.08, + "end": 5154.5, + "probability": 0.8835 + }, + { + "start": 5155.34, + "end": 5160.56, + "probability": 0.9754 + }, + { + "start": 5160.66, + "end": 5162.12, + "probability": 0.9595 + }, + { + "start": 5162.74, + "end": 5165.88, + "probability": 0.9539 + }, + { + "start": 5166.58, + "end": 5170.6, + "probability": 0.9976 + }, + { + "start": 5171.92, + "end": 5174.54, + "probability": 0.9973 + }, + { + "start": 5174.54, + "end": 5177.92, + "probability": 0.9069 + }, + { + "start": 5178.54, + "end": 5180.1, + "probability": 0.99 + }, + { + "start": 5180.18, + "end": 5183.28, + "probability": 0.9902 + }, + { + "start": 5184.18, + "end": 5187.48, + "probability": 0.9919 + }, + { + "start": 5187.94, + "end": 5190.14, + "probability": 0.8914 + }, + { + "start": 5190.22, + "end": 5191.16, + "probability": 0.9299 + }, + { + "start": 5192.04, + "end": 5193.84, + "probability": 0.9963 + }, + { + "start": 5194.46, + "end": 5195.16, + "probability": 0.9763 + }, + { + "start": 5196.02, + "end": 5198.95, + "probability": 0.8292 + }, + { + "start": 5199.42, + "end": 5205.62, + "probability": 0.9932 + }, + { + "start": 5206.06, + "end": 5208.54, + "probability": 0.9355 + }, + { + "start": 5209.06, + "end": 5213.52, + "probability": 0.9113 + }, + { + "start": 5214.2, + "end": 5216.16, + "probability": 0.9092 + }, + { + "start": 5216.32, + "end": 5218.02, + "probability": 0.8066 + }, + { + "start": 5218.14, + "end": 5219.28, + "probability": 0.9807 + }, + { + "start": 5219.94, + "end": 5221.34, + "probability": 0.9323 + }, + { + "start": 5221.8, + "end": 5224.7, + "probability": 0.9905 + }, + { + "start": 5225.16, + "end": 5229.32, + "probability": 0.9954 + }, + { + "start": 5229.32, + "end": 5232.8, + "probability": 0.9511 + }, + { + "start": 5232.86, + "end": 5235.4, + "probability": 0.888 + }, + { + "start": 5235.88, + "end": 5236.2, + "probability": 0.7338 + }, + { + "start": 5237.38, + "end": 5237.62, + "probability": 0.4258 + }, + { + "start": 5237.76, + "end": 5238.26, + "probability": 0.8586 + }, + { + "start": 5239.02, + "end": 5244.58, + "probability": 0.9636 + }, + { + "start": 5245.2, + "end": 5249.2, + "probability": 0.9558 + }, + { + "start": 5251.29, + "end": 5254.8, + "probability": 0.9851 + }, + { + "start": 5255.18, + "end": 5255.61, + "probability": 0.9261 + }, + { + "start": 5256.2, + "end": 5261.6, + "probability": 0.8967 + }, + { + "start": 5262.42, + "end": 5267.24, + "probability": 0.9639 + }, + { + "start": 5267.48, + "end": 5270.27, + "probability": 0.9949 + }, + { + "start": 5270.94, + "end": 5271.36, + "probability": 0.7334 + }, + { + "start": 5272.1, + "end": 5275.32, + "probability": 0.99 + }, + { + "start": 5275.32, + "end": 5279.8, + "probability": 0.9802 + }, + { + "start": 5280.16, + "end": 5280.7, + "probability": 0.6684 + }, + { + "start": 5281.14, + "end": 5282.0, + "probability": 0.7482 + }, + { + "start": 5282.14, + "end": 5283.2, + "probability": 0.8369 + }, + { + "start": 5283.7, + "end": 5285.17, + "probability": 0.96 + }, + { + "start": 5285.9, + "end": 5289.28, + "probability": 0.9915 + }, + { + "start": 5289.78, + "end": 5295.02, + "probability": 0.9895 + }, + { + "start": 5295.18, + "end": 5298.44, + "probability": 0.8628 + }, + { + "start": 5298.99, + "end": 5308.18, + "probability": 0.9266 + }, + { + "start": 5308.4, + "end": 5309.3, + "probability": 0.4768 + }, + { + "start": 5309.48, + "end": 5310.92, + "probability": 0.9907 + }, + { + "start": 5311.08, + "end": 5314.1, + "probability": 0.6837 + }, + { + "start": 5315.14, + "end": 5316.58, + "probability": 0.6976 + }, + { + "start": 5317.24, + "end": 5317.52, + "probability": 0.527 + }, + { + "start": 5318.14, + "end": 5319.38, + "probability": 0.477 + }, + { + "start": 5319.46, + "end": 5320.94, + "probability": 0.7625 + }, + { + "start": 5321.02, + "end": 5323.08, + "probability": 0.9966 + }, + { + "start": 5323.16, + "end": 5323.8, + "probability": 0.6235 + }, + { + "start": 5323.9, + "end": 5324.72, + "probability": 0.9305 + }, + { + "start": 5325.08, + "end": 5326.38, + "probability": 0.7501 + }, + { + "start": 5326.4, + "end": 5327.44, + "probability": 0.9249 + }, + { + "start": 5327.8, + "end": 5330.02, + "probability": 0.9524 + }, + { + "start": 5332.52, + "end": 5334.9, + "probability": 0.9895 + }, + { + "start": 5335.46, + "end": 5337.04, + "probability": 0.9088 + }, + { + "start": 5337.76, + "end": 5340.1, + "probability": 0.7899 + }, + { + "start": 5340.76, + "end": 5343.82, + "probability": 0.969 + }, + { + "start": 5343.84, + "end": 5344.32, + "probability": 0.9707 + }, + { + "start": 5344.96, + "end": 5347.56, + "probability": 0.9618 + }, + { + "start": 5347.66, + "end": 5348.8, + "probability": 0.9385 + }, + { + "start": 5348.88, + "end": 5349.94, + "probability": 0.9917 + }, + { + "start": 5350.54, + "end": 5352.02, + "probability": 0.7148 + }, + { + "start": 5352.76, + "end": 5357.18, + "probability": 0.9789 + }, + { + "start": 5357.88, + "end": 5361.92, + "probability": 0.9834 + }, + { + "start": 5362.62, + "end": 5365.64, + "probability": 0.996 + }, + { + "start": 5366.54, + "end": 5371.24, + "probability": 0.9972 + }, + { + "start": 5371.24, + "end": 5375.08, + "probability": 0.9995 + }, + { + "start": 5375.78, + "end": 5379.26, + "probability": 0.9879 + }, + { + "start": 5379.94, + "end": 5381.16, + "probability": 0.7332 + }, + { + "start": 5381.7, + "end": 5383.78, + "probability": 0.9956 + }, + { + "start": 5384.22, + "end": 5389.56, + "probability": 0.9631 + }, + { + "start": 5390.08, + "end": 5392.08, + "probability": 0.991 + }, + { + "start": 5393.28, + "end": 5393.52, + "probability": 0.8074 + }, + { + "start": 5394.2, + "end": 5395.04, + "probability": 0.8666 + }, + { + "start": 5395.5, + "end": 5396.72, + "probability": 0.9907 + }, + { + "start": 5397.14, + "end": 5402.18, + "probability": 0.9967 + }, + { + "start": 5402.92, + "end": 5404.58, + "probability": 0.6797 + }, + { + "start": 5405.1, + "end": 5409.26, + "probability": 0.9959 + }, + { + "start": 5410.38, + "end": 5413.64, + "probability": 0.9209 + }, + { + "start": 5414.44, + "end": 5421.06, + "probability": 0.9614 + }, + { + "start": 5421.98, + "end": 5425.96, + "probability": 0.875 + }, + { + "start": 5426.48, + "end": 5429.5, + "probability": 0.8994 + }, + { + "start": 5430.06, + "end": 5431.88, + "probability": 0.1595 + }, + { + "start": 5432.6, + "end": 5434.96, + "probability": 0.9303 + }, + { + "start": 5435.64, + "end": 5437.98, + "probability": 0.8023 + }, + { + "start": 5438.22, + "end": 5438.42, + "probability": 0.722 + }, + { + "start": 5438.54, + "end": 5439.12, + "probability": 0.5489 + }, + { + "start": 5439.22, + "end": 5440.06, + "probability": 0.7028 + }, + { + "start": 5440.22, + "end": 5443.33, + "probability": 0.813 + }, + { + "start": 5444.62, + "end": 5446.68, + "probability": 0.944 + }, + { + "start": 5447.74, + "end": 5449.26, + "probability": 0.983 + }, + { + "start": 5449.3, + "end": 5455.82, + "probability": 0.8684 + }, + { + "start": 5456.02, + "end": 5456.08, + "probability": 0.16 + }, + { + "start": 5456.08, + "end": 5456.5, + "probability": 0.4526 + }, + { + "start": 5456.76, + "end": 5456.8, + "probability": 0.1288 + }, + { + "start": 5457.12, + "end": 5461.0, + "probability": 0.7235 + }, + { + "start": 5461.16, + "end": 5461.96, + "probability": 0.9795 + }, + { + "start": 5462.56, + "end": 5464.5, + "probability": 0.6056 + }, + { + "start": 5466.62, + "end": 5469.62, + "probability": 0.9962 + }, + { + "start": 5469.72, + "end": 5470.38, + "probability": 0.8727 + }, + { + "start": 5471.18, + "end": 5472.66, + "probability": 0.9967 + }, + { + "start": 5473.3, + "end": 5475.74, + "probability": 0.8911 + }, + { + "start": 5476.4, + "end": 5478.78, + "probability": 0.9295 + }, + { + "start": 5479.04, + "end": 5479.56, + "probability": 0.6234 + }, + { + "start": 5479.78, + "end": 5481.5, + "probability": 0.8345 + }, + { + "start": 5481.8, + "end": 5486.3, + "probability": 0.9891 + }, + { + "start": 5486.4, + "end": 5488.42, + "probability": 0.9469 + }, + { + "start": 5488.86, + "end": 5490.16, + "probability": 0.5445 + }, + { + "start": 5490.3, + "end": 5493.56, + "probability": 0.9709 + }, + { + "start": 5493.56, + "end": 5496.86, + "probability": 0.6897 + }, + { + "start": 5497.02, + "end": 5499.22, + "probability": 0.9971 + }, + { + "start": 5499.22, + "end": 5500.13, + "probability": 0.7485 + }, + { + "start": 5500.96, + "end": 5502.94, + "probability": 0.9683 + }, + { + "start": 5503.56, + "end": 5504.52, + "probability": 0.7299 + }, + { + "start": 5504.58, + "end": 5505.14, + "probability": 0.6419 + }, + { + "start": 5505.18, + "end": 5505.46, + "probability": 0.8531 + }, + { + "start": 5505.7, + "end": 5508.24, + "probability": 0.8677 + }, + { + "start": 5508.56, + "end": 5510.18, + "probability": 0.9688 + }, + { + "start": 5511.46, + "end": 5512.88, + "probability": 0.8774 + }, + { + "start": 5512.9, + "end": 5513.32, + "probability": 0.9675 + }, + { + "start": 5513.44, + "end": 5514.44, + "probability": 0.6208 + }, + { + "start": 5514.94, + "end": 5517.82, + "probability": 0.8179 + }, + { + "start": 5518.3, + "end": 5518.94, + "probability": 0.9044 + }, + { + "start": 5519.04, + "end": 5519.84, + "probability": 0.9377 + }, + { + "start": 5519.88, + "end": 5522.82, + "probability": 0.9338 + }, + { + "start": 5523.16, + "end": 5524.52, + "probability": 0.9656 + }, + { + "start": 5524.68, + "end": 5525.86, + "probability": 0.8158 + }, + { + "start": 5528.04, + "end": 5528.44, + "probability": 0.0263 + }, + { + "start": 5528.44, + "end": 5528.96, + "probability": 0.4794 + }, + { + "start": 5529.04, + "end": 5530.72, + "probability": 0.7768 + }, + { + "start": 5531.32, + "end": 5534.66, + "probability": 0.8521 + }, + { + "start": 5536.0, + "end": 5537.42, + "probability": 0.4901 + }, + { + "start": 5537.48, + "end": 5537.52, + "probability": 0.6486 + }, + { + "start": 5537.68, + "end": 5541.06, + "probability": 0.9604 + }, + { + "start": 5541.48, + "end": 5542.64, + "probability": 0.5307 + }, + { + "start": 5542.82, + "end": 5544.22, + "probability": 0.5818 + }, + { + "start": 5544.32, + "end": 5546.66, + "probability": 0.9423 + }, + { + "start": 5546.7, + "end": 5547.5, + "probability": 0.8402 + }, + { + "start": 5548.12, + "end": 5551.38, + "probability": 0.934 + }, + { + "start": 5551.74, + "end": 5554.37, + "probability": 0.9741 + }, + { + "start": 5555.06, + "end": 5557.82, + "probability": 0.9858 + }, + { + "start": 5558.44, + "end": 5558.96, + "probability": 0.4769 + }, + { + "start": 5559.08, + "end": 5559.68, + "probability": 0.7216 + }, + { + "start": 5560.26, + "end": 5561.72, + "probability": 0.9952 + }, + { + "start": 5562.91, + "end": 5569.12, + "probability": 0.6934 + }, + { + "start": 5569.26, + "end": 5569.76, + "probability": 0.8033 + }, + { + "start": 5570.0, + "end": 5571.68, + "probability": 0.738 + }, + { + "start": 5571.84, + "end": 5572.05, + "probability": 0.6841 + }, + { + "start": 5573.16, + "end": 5573.72, + "probability": 0.6461 + }, + { + "start": 5573.76, + "end": 5576.8, + "probability": 0.606 + }, + { + "start": 5577.16, + "end": 5581.0, + "probability": 0.8739 + }, + { + "start": 5581.82, + "end": 5583.38, + "probability": 0.9824 + }, + { + "start": 5583.62, + "end": 5586.4, + "probability": 0.9435 + }, + { + "start": 5587.42, + "end": 5591.84, + "probability": 0.9903 + }, + { + "start": 5592.02, + "end": 5592.96, + "probability": 0.8868 + }, + { + "start": 5593.2, + "end": 5596.54, + "probability": 0.9899 + }, + { + "start": 5596.78, + "end": 5597.94, + "probability": 0.9048 + }, + { + "start": 5598.08, + "end": 5598.86, + "probability": 0.9972 + }, + { + "start": 5599.78, + "end": 5599.84, + "probability": 0.4858 + }, + { + "start": 5599.84, + "end": 5600.36, + "probability": 0.3039 + }, + { + "start": 5600.86, + "end": 5601.56, + "probability": 0.5469 + }, + { + "start": 5601.86, + "end": 5602.4, + "probability": 0.3458 + }, + { + "start": 5602.74, + "end": 5604.7, + "probability": 0.7605 + }, + { + "start": 5604.82, + "end": 5605.03, + "probability": 0.9668 + }, + { + "start": 5605.16, + "end": 5606.26, + "probability": 0.9126 + }, + { + "start": 5606.76, + "end": 5607.86, + "probability": 0.937 + }, + { + "start": 5607.88, + "end": 5609.68, + "probability": 0.973 + }, + { + "start": 5609.96, + "end": 5611.02, + "probability": 0.9548 + }, + { + "start": 5611.66, + "end": 5615.34, + "probability": 0.7946 + }, + { + "start": 5615.4, + "end": 5616.06, + "probability": 0.5849 + }, + { + "start": 5616.58, + "end": 5618.8, + "probability": 0.9148 + }, + { + "start": 5619.66, + "end": 5621.88, + "probability": 0.9821 + }, + { + "start": 5622.02, + "end": 5623.56, + "probability": 0.7926 + }, + { + "start": 5624.0, + "end": 5627.74, + "probability": 0.9838 + }, + { + "start": 5628.04, + "end": 5629.0, + "probability": 0.9338 + }, + { + "start": 5629.78, + "end": 5632.02, + "probability": 0.7476 + }, + { + "start": 5632.22, + "end": 5632.76, + "probability": 0.903 + }, + { + "start": 5632.96, + "end": 5634.3, + "probability": 0.8007 + }, + { + "start": 5634.88, + "end": 5636.46, + "probability": 0.9462 + }, + { + "start": 5636.66, + "end": 5638.58, + "probability": 0.9577 + }, + { + "start": 5638.82, + "end": 5639.96, + "probability": 0.992 + }, + { + "start": 5640.2, + "end": 5641.36, + "probability": 0.946 + }, + { + "start": 5641.5, + "end": 5641.88, + "probability": 0.5282 + }, + { + "start": 5641.88, + "end": 5643.16, + "probability": 0.9312 + }, + { + "start": 5643.58, + "end": 5645.34, + "probability": 0.9824 + }, + { + "start": 5645.44, + "end": 5648.3, + "probability": 0.9423 + }, + { + "start": 5648.8, + "end": 5649.14, + "probability": 0.8289 + }, + { + "start": 5649.28, + "end": 5650.78, + "probability": 0.8145 + }, + { + "start": 5650.94, + "end": 5653.3, + "probability": 0.9201 + }, + { + "start": 5653.36, + "end": 5653.88, + "probability": 0.7511 + }, + { + "start": 5654.38, + "end": 5656.58, + "probability": 0.9359 + }, + { + "start": 5656.86, + "end": 5657.35, + "probability": 0.2538 + }, + { + "start": 5658.48, + "end": 5658.64, + "probability": 0.3461 + }, + { + "start": 5659.24, + "end": 5659.62, + "probability": 0.8484 + }, + { + "start": 5660.41, + "end": 5663.2, + "probability": 0.9395 + }, + { + "start": 5665.78, + "end": 5666.64, + "probability": 0.9718 + }, + { + "start": 5667.7, + "end": 5669.12, + "probability": 0.9634 + }, + { + "start": 5670.08, + "end": 5671.04, + "probability": 0.9733 + }, + { + "start": 5671.52, + "end": 5672.71, + "probability": 0.9819 + }, + { + "start": 5673.26, + "end": 5674.96, + "probability": 0.867 + }, + { + "start": 5676.66, + "end": 5677.94, + "probability": 0.6257 + }, + { + "start": 5678.94, + "end": 5683.1, + "probability": 0.9605 + }, + { + "start": 5683.16, + "end": 5686.22, + "probability": 0.8581 + }, + { + "start": 5686.88, + "end": 5689.54, + "probability": 0.9883 + }, + { + "start": 5689.54, + "end": 5693.92, + "probability": 0.9709 + }, + { + "start": 5694.92, + "end": 5699.16, + "probability": 0.9194 + }, + { + "start": 5699.28, + "end": 5699.79, + "probability": 0.9807 + }, + { + "start": 5700.08, + "end": 5700.64, + "probability": 0.7196 + }, + { + "start": 5700.86, + "end": 5703.16, + "probability": 0.9724 + }, + { + "start": 5703.2, + "end": 5705.36, + "probability": 0.9744 + }, + { + "start": 5706.1, + "end": 5709.48, + "probability": 0.7488 + }, + { + "start": 5709.48, + "end": 5712.32, + "probability": 0.9937 + }, + { + "start": 5712.64, + "end": 5715.76, + "probability": 0.9905 + }, + { + "start": 5716.32, + "end": 5718.4, + "probability": 0.967 + }, + { + "start": 5718.72, + "end": 5721.88, + "probability": 0.9904 + }, + { + "start": 5722.04, + "end": 5722.92, + "probability": 0.7639 + }, + { + "start": 5723.3, + "end": 5726.38, + "probability": 0.9831 + }, + { + "start": 5726.38, + "end": 5731.18, + "probability": 0.9576 + }, + { + "start": 5731.48, + "end": 5731.62, + "probability": 0.0899 + }, + { + "start": 5731.7, + "end": 5734.16, + "probability": 0.7842 + }, + { + "start": 5734.24, + "end": 5736.36, + "probability": 0.806 + }, + { + "start": 5738.24, + "end": 5738.72, + "probability": 0.443 + }, + { + "start": 5738.82, + "end": 5739.74, + "probability": 0.5064 + }, + { + "start": 5739.98, + "end": 5743.94, + "probability": 0.9019 + }, + { + "start": 5744.12, + "end": 5745.4, + "probability": 0.8486 + }, + { + "start": 5745.52, + "end": 5750.38, + "probability": 0.9482 + }, + { + "start": 5750.46, + "end": 5753.84, + "probability": 0.996 + }, + { + "start": 5754.22, + "end": 5757.24, + "probability": 0.6721 + }, + { + "start": 5758.5, + "end": 5763.64, + "probability": 0.8061 + }, + { + "start": 5764.22, + "end": 5765.46, + "probability": 0.9157 + }, + { + "start": 5765.56, + "end": 5766.0, + "probability": 0.9528 + }, + { + "start": 5766.22, + "end": 5774.76, + "probability": 0.9277 + }, + { + "start": 5774.76, + "end": 5775.74, + "probability": 0.7995 + }, + { + "start": 5775.84, + "end": 5777.54, + "probability": 0.8568 + }, + { + "start": 5779.01, + "end": 5781.96, + "probability": 0.9922 + }, + { + "start": 5782.78, + "end": 5786.54, + "probability": 0.9912 + }, + { + "start": 5787.26, + "end": 5789.74, + "probability": 0.9783 + }, + { + "start": 5790.3, + "end": 5792.28, + "probability": 0.8877 + }, + { + "start": 5795.2, + "end": 5797.38, + "probability": 0.9553 + }, + { + "start": 5797.5, + "end": 5800.94, + "probability": 0.9347 + }, + { + "start": 5801.04, + "end": 5802.14, + "probability": 0.8848 + }, + { + "start": 5802.62, + "end": 5806.84, + "probability": 0.9951 + }, + { + "start": 5807.42, + "end": 5808.42, + "probability": 0.8587 + }, + { + "start": 5809.72, + "end": 5814.26, + "probability": 0.913 + }, + { + "start": 5814.42, + "end": 5815.98, + "probability": 0.7263 + }, + { + "start": 5816.68, + "end": 5817.0, + "probability": 0.6263 + }, + { + "start": 5817.52, + "end": 5819.18, + "probability": 0.9508 + }, + { + "start": 5819.3, + "end": 5820.94, + "probability": 0.9688 + }, + { + "start": 5821.34, + "end": 5822.2, + "probability": 0.9806 + }, + { + "start": 5822.36, + "end": 5823.18, + "probability": 0.6711 + }, + { + "start": 5823.74, + "end": 5824.7, + "probability": 0.8677 + }, + { + "start": 5824.98, + "end": 5827.14, + "probability": 0.9805 + }, + { + "start": 5827.86, + "end": 5828.68, + "probability": 0.6138 + }, + { + "start": 5829.22, + "end": 5832.76, + "probability": 0.8354 + }, + { + "start": 5833.34, + "end": 5835.94, + "probability": 0.8671 + }, + { + "start": 5836.44, + "end": 5840.26, + "probability": 0.9493 + }, + { + "start": 5840.26, + "end": 5842.5, + "probability": 0.7038 + }, + { + "start": 5843.86, + "end": 5845.12, + "probability": 0.986 + }, + { + "start": 5845.2, + "end": 5845.42, + "probability": 0.7723 + }, + { + "start": 5845.48, + "end": 5846.88, + "probability": 0.957 + }, + { + "start": 5847.56, + "end": 5850.72, + "probability": 0.9961 + }, + { + "start": 5851.32, + "end": 5852.1, + "probability": 0.9229 + }, + { + "start": 5852.2, + "end": 5853.82, + "probability": 0.8773 + }, + { + "start": 5853.92, + "end": 5854.88, + "probability": 0.9467 + }, + { + "start": 5856.59, + "end": 5860.2, + "probability": 0.9985 + }, + { + "start": 5860.5, + "end": 5861.08, + "probability": 0.3993 + }, + { + "start": 5861.2, + "end": 5862.5, + "probability": 0.8307 + }, + { + "start": 5862.92, + "end": 5866.72, + "probability": 0.986 + }, + { + "start": 5866.8, + "end": 5869.02, + "probability": 0.6816 + }, + { + "start": 5869.8, + "end": 5870.57, + "probability": 0.7811 + }, + { + "start": 5871.22, + "end": 5875.96, + "probability": 0.8491 + }, + { + "start": 5876.22, + "end": 5877.57, + "probability": 0.8961 + }, + { + "start": 5877.9, + "end": 5882.12, + "probability": 0.9047 + }, + { + "start": 5882.88, + "end": 5885.18, + "probability": 0.9403 + }, + { + "start": 5885.61, + "end": 5886.78, + "probability": 0.5178 + }, + { + "start": 5886.8, + "end": 5888.7, + "probability": 0.9966 + }, + { + "start": 5888.78, + "end": 5889.32, + "probability": 0.4539 + }, + { + "start": 5889.52, + "end": 5891.16, + "probability": 0.2898 + }, + { + "start": 5891.26, + "end": 5891.82, + "probability": 0.7234 + }, + { + "start": 5892.12, + "end": 5892.42, + "probability": 0.9216 + }, + { + "start": 5892.42, + "end": 5893.04, + "probability": 0.8331 + }, + { + "start": 5893.12, + "end": 5894.08, + "probability": 0.9645 + }, + { + "start": 5894.16, + "end": 5894.52, + "probability": 0.7654 + }, + { + "start": 5894.66, + "end": 5895.4, + "probability": 0.9014 + }, + { + "start": 5895.94, + "end": 5897.88, + "probability": 0.9565 + }, + { + "start": 5898.8, + "end": 5903.28, + "probability": 0.9869 + }, + { + "start": 5904.1, + "end": 5909.26, + "probability": 0.9105 + }, + { + "start": 5909.36, + "end": 5913.36, + "probability": 0.941 + }, + { + "start": 5913.58, + "end": 5915.42, + "probability": 0.998 + }, + { + "start": 5915.64, + "end": 5916.14, + "probability": 0.7958 + }, + { + "start": 5916.58, + "end": 5916.92, + "probability": 0.6555 + }, + { + "start": 5917.9, + "end": 5918.22, + "probability": 0.044 + }, + { + "start": 5918.22, + "end": 5918.22, + "probability": 0.0098 + }, + { + "start": 5918.22, + "end": 5919.96, + "probability": 0.9884 + }, + { + "start": 5920.64, + "end": 5921.66, + "probability": 0.5741 + }, + { + "start": 5921.96, + "end": 5925.48, + "probability": 0.7848 + }, + { + "start": 5926.64, + "end": 5929.2, + "probability": 0.7803 + }, + { + "start": 5929.3, + "end": 5930.37, + "probability": 0.8016 + }, + { + "start": 5930.54, + "end": 5930.74, + "probability": 0.9146 + }, + { + "start": 5933.82, + "end": 5935.16, + "probability": 0.6669 + }, + { + "start": 5936.28, + "end": 5939.4, + "probability": 0.8563 + }, + { + "start": 5940.36, + "end": 5943.36, + "probability": 0.9602 + }, + { + "start": 5944.04, + "end": 5945.76, + "probability": 0.998 + }, + { + "start": 5946.64, + "end": 5947.22, + "probability": 0.8306 + }, + { + "start": 5949.02, + "end": 5953.92, + "probability": 0.9911 + }, + { + "start": 5954.72, + "end": 5958.14, + "probability": 0.7795 + }, + { + "start": 5958.72, + "end": 5959.7, + "probability": 0.8469 + }, + { + "start": 5960.18, + "end": 5961.58, + "probability": 0.883 + }, + { + "start": 5962.02, + "end": 5964.2, + "probability": 0.561 + }, + { + "start": 5964.92, + "end": 5965.66, + "probability": 0.9579 + }, + { + "start": 5966.48, + "end": 5969.06, + "probability": 0.8743 + }, + { + "start": 5970.46, + "end": 5973.4, + "probability": 0.9637 + }, + { + "start": 5974.73, + "end": 5979.12, + "probability": 0.9686 + }, + { + "start": 5981.12, + "end": 5983.26, + "probability": 0.8296 + }, + { + "start": 5984.04, + "end": 5986.24, + "probability": 0.7594 + }, + { + "start": 5987.06, + "end": 5989.52, + "probability": 0.5902 + }, + { + "start": 5990.74, + "end": 5993.68, + "probability": 0.6661 + }, + { + "start": 5994.18, + "end": 5997.73, + "probability": 0.9556 + }, + { + "start": 5998.56, + "end": 6000.58, + "probability": 0.8928 + }, + { + "start": 6000.86, + "end": 6001.1, + "probability": 0.7238 + }, + { + "start": 6001.34, + "end": 6002.74, + "probability": 0.4313 + }, + { + "start": 6002.84, + "end": 6003.06, + "probability": 0.5389 + }, + { + "start": 6003.32, + "end": 6004.9, + "probability": 0.945 + }, + { + "start": 6005.0, + "end": 6007.46, + "probability": 0.9196 + }, + { + "start": 6007.58, + "end": 6007.96, + "probability": 0.8579 + }, + { + "start": 6008.14, + "end": 6009.35, + "probability": 0.8451 + }, + { + "start": 6010.16, + "end": 6012.02, + "probability": 0.9238 + }, + { + "start": 6013.59, + "end": 6018.7, + "probability": 0.916 + }, + { + "start": 6019.88, + "end": 6022.86, + "probability": 0.9927 + }, + { + "start": 6023.08, + "end": 6024.76, + "probability": 0.981 + }, + { + "start": 6026.3, + "end": 6028.24, + "probability": 0.9937 + }, + { + "start": 6029.32, + "end": 6030.18, + "probability": 0.9445 + }, + { + "start": 6030.62, + "end": 6031.57, + "probability": 0.962 + }, + { + "start": 6032.02, + "end": 6033.98, + "probability": 0.9474 + }, + { + "start": 6034.58, + "end": 6038.28, + "probability": 0.9979 + }, + { + "start": 6039.26, + "end": 6041.32, + "probability": 0.0071 + }, + { + "start": 6041.32, + "end": 6041.32, + "probability": 0.0621 + }, + { + "start": 6041.32, + "end": 6041.32, + "probability": 0.0361 + }, + { + "start": 6041.32, + "end": 6041.32, + "probability": 0.0361 + }, + { + "start": 6041.32, + "end": 6042.12, + "probability": 0.1705 + }, + { + "start": 6042.24, + "end": 6042.76, + "probability": 0.1704 + }, + { + "start": 6042.94, + "end": 6044.76, + "probability": 0.9807 + }, + { + "start": 6044.76, + "end": 6047.13, + "probability": 0.9517 + }, + { + "start": 6048.04, + "end": 6048.22, + "probability": 0.057 + }, + { + "start": 6048.22, + "end": 6049.42, + "probability": 0.7554 + }, + { + "start": 6049.42, + "end": 6051.22, + "probability": 0.9827 + }, + { + "start": 6051.34, + "end": 6052.42, + "probability": 0.972 + }, + { + "start": 6052.44, + "end": 6053.39, + "probability": 0.9316 + }, + { + "start": 6054.02, + "end": 6057.08, + "probability": 0.885 + }, + { + "start": 6057.2, + "end": 6058.78, + "probability": 0.9087 + }, + { + "start": 6071.34, + "end": 6074.48, + "probability": 0.0096 + }, + { + "start": 6075.19, + "end": 6077.24, + "probability": 0.0353 + }, + { + "start": 6079.88, + "end": 6083.3, + "probability": 0.2436 + }, + { + "start": 6086.52, + "end": 6087.14, + "probability": 0.0066 + }, + { + "start": 6096.14, + "end": 6098.46, + "probability": 0.0765 + }, + { + "start": 6098.78, + "end": 6101.36, + "probability": 0.0391 + }, + { + "start": 6104.36, + "end": 6105.46, + "probability": 0.0771 + }, + { + "start": 6106.16, + "end": 6110.3, + "probability": 0.0359 + }, + { + "start": 6111.53, + "end": 6111.88, + "probability": 0.0804 + }, + { + "start": 6111.88, + "end": 6112.56, + "probability": 0.0224 + }, + { + "start": 6112.56, + "end": 6112.74, + "probability": 0.0366 + }, + { + "start": 6113.16, + "end": 6113.94, + "probability": 0.0939 + }, + { + "start": 6114.78, + "end": 6115.58, + "probability": 0.0998 + }, + { + "start": 6115.74, + "end": 6115.98, + "probability": 0.0829 + }, + { + "start": 6115.98, + "end": 6120.76, + "probability": 0.06 + }, + { + "start": 6123.18, + "end": 6125.32, + "probability": 0.0718 + }, + { + "start": 6125.32, + "end": 6125.32, + "probability": 0.0949 + }, + { + "start": 6125.58, + "end": 6126.44, + "probability": 0.2384 + }, + { + "start": 6126.48, + "end": 6128.6, + "probability": 0.0128 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.0, + "end": 6129.0, + "probability": 0.0 + }, + { + "start": 6129.72, + "end": 6130.0, + "probability": 0.1735 + }, + { + "start": 6131.14, + "end": 6131.14, + "probability": 0.0197 + }, + { + "start": 6137.74, + "end": 6138.02, + "probability": 0.1192 + }, + { + "start": 6138.02, + "end": 6138.02, + "probability": 0.075 + }, + { + "start": 6138.02, + "end": 6138.02, + "probability": 0.0231 + }, + { + "start": 6138.02, + "end": 6138.02, + "probability": 0.0147 + }, + { + "start": 6138.02, + "end": 6138.02, + "probability": 0.2556 + }, + { + "start": 6138.02, + "end": 6140.48, + "probability": 0.5231 + }, + { + "start": 6141.28, + "end": 6147.3, + "probability": 0.8484 + }, + { + "start": 6148.1, + "end": 6149.16, + "probability": 0.7467 + }, + { + "start": 6149.24, + "end": 6154.2, + "probability": 0.879 + }, + { + "start": 6154.54, + "end": 6155.0, + "probability": 0.8298 + }, + { + "start": 6156.16, + "end": 6156.7, + "probability": 0.8262 + }, + { + "start": 6157.12, + "end": 6157.3, + "probability": 0.4417 + }, + { + "start": 6157.56, + "end": 6162.1, + "probability": 0.8623 + }, + { + "start": 6162.18, + "end": 6162.58, + "probability": 0.6051 + }, + { + "start": 6162.72, + "end": 6165.0, + "probability": 0.7601 + }, + { + "start": 6165.14, + "end": 6166.66, + "probability": 0.7218 + }, + { + "start": 6166.74, + "end": 6170.14, + "probability": 0.976 + }, + { + "start": 6170.54, + "end": 6171.66, + "probability": 0.7316 + }, + { + "start": 6172.26, + "end": 6175.44, + "probability": 0.9607 + }, + { + "start": 6175.9, + "end": 6178.18, + "probability": 0.9634 + }, + { + "start": 6178.3, + "end": 6182.24, + "probability": 0.9928 + }, + { + "start": 6182.32, + "end": 6183.77, + "probability": 0.8081 + }, + { + "start": 6184.96, + "end": 6186.0, + "probability": 0.8904 + }, + { + "start": 6186.36, + "end": 6187.46, + "probability": 0.9574 + }, + { + "start": 6188.0, + "end": 6191.08, + "probability": 0.9826 + }, + { + "start": 6191.94, + "end": 6192.54, + "probability": 0.7996 + }, + { + "start": 6192.6, + "end": 6194.16, + "probability": 0.7888 + }, + { + "start": 6194.18, + "end": 6198.33, + "probability": 0.9886 + }, + { + "start": 6199.6, + "end": 6200.46, + "probability": 0.9047 + }, + { + "start": 6200.56, + "end": 6200.98, + "probability": 0.8128 + }, + { + "start": 6201.31, + "end": 6203.44, + "probability": 0.9955 + }, + { + "start": 6203.44, + "end": 6205.88, + "probability": 0.9979 + }, + { + "start": 6206.22, + "end": 6207.2, + "probability": 0.7368 + }, + { + "start": 6207.94, + "end": 6211.68, + "probability": 0.9919 + }, + { + "start": 6212.28, + "end": 6212.94, + "probability": 0.6491 + }, + { + "start": 6213.32, + "end": 6215.95, + "probability": 0.8808 + }, + { + "start": 6216.3, + "end": 6217.62, + "probability": 0.6529 + }, + { + "start": 6218.4, + "end": 6219.92, + "probability": 0.9839 + }, + { + "start": 6220.46, + "end": 6220.83, + "probability": 0.8384 + }, + { + "start": 6222.08, + "end": 6225.08, + "probability": 0.863 + }, + { + "start": 6225.52, + "end": 6228.14, + "probability": 0.7866 + }, + { + "start": 6229.81, + "end": 6236.7, + "probability": 0.9938 + }, + { + "start": 6238.02, + "end": 6238.22, + "probability": 0.1109 + }, + { + "start": 6238.22, + "end": 6242.28, + "probability": 0.6502 + }, + { + "start": 6242.38, + "end": 6246.94, + "probability": 0.8305 + }, + { + "start": 6247.06, + "end": 6249.96, + "probability": 0.975 + }, + { + "start": 6250.22, + "end": 6250.78, + "probability": 0.7369 + }, + { + "start": 6250.86, + "end": 6252.94, + "probability": 0.8652 + }, + { + "start": 6253.38, + "end": 6258.18, + "probability": 0.9067 + }, + { + "start": 6258.36, + "end": 6259.34, + "probability": 0.9672 + }, + { + "start": 6259.34, + "end": 6261.3, + "probability": 0.6885 + }, + { + "start": 6261.56, + "end": 6262.38, + "probability": 0.7616 + }, + { + "start": 6262.54, + "end": 6266.54, + "probability": 0.9802 + }, + { + "start": 6266.86, + "end": 6268.2, + "probability": 0.8822 + }, + { + "start": 6268.76, + "end": 6268.98, + "probability": 0.5114 + }, + { + "start": 6269.1, + "end": 6270.26, + "probability": 0.6747 + }, + { + "start": 6270.34, + "end": 6272.24, + "probability": 0.8942 + }, + { + "start": 6272.42, + "end": 6275.0, + "probability": 0.9792 + }, + { + "start": 6275.54, + "end": 6278.52, + "probability": 0.5185 + }, + { + "start": 6278.6, + "end": 6281.59, + "probability": 0.9468 + }, + { + "start": 6282.06, + "end": 6286.66, + "probability": 0.809 + }, + { + "start": 6287.3, + "end": 6288.9, + "probability": 0.5559 + }, + { + "start": 6289.16, + "end": 6290.46, + "probability": 0.9072 + }, + { + "start": 6290.6, + "end": 6291.54, + "probability": 0.9907 + }, + { + "start": 6291.68, + "end": 6292.19, + "probability": 0.9819 + }, + { + "start": 6292.7, + "end": 6293.24, + "probability": 0.9807 + }, + { + "start": 6293.5, + "end": 6294.2, + "probability": 0.8008 + }, + { + "start": 6294.96, + "end": 6295.16, + "probability": 0.1242 + }, + { + "start": 6295.16, + "end": 6295.16, + "probability": 0.1692 + }, + { + "start": 6295.88, + "end": 6296.68, + "probability": 0.2069 + }, + { + "start": 6296.87, + "end": 6302.56, + "probability": 0.8309 + }, + { + "start": 6303.02, + "end": 6303.96, + "probability": 0.7877 + }, + { + "start": 6304.02, + "end": 6306.14, + "probability": 0.8081 + }, + { + "start": 6306.58, + "end": 6307.34, + "probability": 0.7455 + }, + { + "start": 6307.64, + "end": 6308.6, + "probability": 0.8898 + }, + { + "start": 6308.7, + "end": 6309.78, + "probability": 0.8228 + }, + { + "start": 6310.12, + "end": 6311.82, + "probability": 0.9685 + }, + { + "start": 6313.73, + "end": 6316.28, + "probability": 0.6423 + }, + { + "start": 6316.7, + "end": 6319.59, + "probability": 0.6418 + }, + { + "start": 6320.34, + "end": 6323.5, + "probability": 0.9885 + }, + { + "start": 6323.54, + "end": 6324.48, + "probability": 0.9115 + }, + { + "start": 6324.86, + "end": 6326.58, + "probability": 0.799 + }, + { + "start": 6326.72, + "end": 6329.52, + "probability": 0.9797 + }, + { + "start": 6329.64, + "end": 6329.96, + "probability": 0.6688 + }, + { + "start": 6330.24, + "end": 6333.74, + "probability": 0.9215 + }, + { + "start": 6334.42, + "end": 6335.34, + "probability": 0.7113 + }, + { + "start": 6335.66, + "end": 6336.88, + "probability": 0.9754 + }, + { + "start": 6336.94, + "end": 6338.52, + "probability": 0.8998 + }, + { + "start": 6338.86, + "end": 6341.38, + "probability": 0.9943 + }, + { + "start": 6342.38, + "end": 6345.04, + "probability": 0.7454 + }, + { + "start": 6345.62, + "end": 6348.66, + "probability": 0.7636 + }, + { + "start": 6349.14, + "end": 6349.4, + "probability": 0.6381 + }, + { + "start": 6349.42, + "end": 6350.16, + "probability": 0.8113 + }, + { + "start": 6350.32, + "end": 6352.1, + "probability": 0.9772 + }, + { + "start": 6352.82, + "end": 6354.74, + "probability": 0.7256 + }, + { + "start": 6356.44, + "end": 6361.2, + "probability": 0.8574 + }, + { + "start": 6362.06, + "end": 6363.94, + "probability": 0.9984 + }, + { + "start": 6364.08, + "end": 6365.86, + "probability": 0.955 + }, + { + "start": 6366.0, + "end": 6367.16, + "probability": 0.9295 + }, + { + "start": 6367.52, + "end": 6368.1, + "probability": 0.8125 + }, + { + "start": 6368.18, + "end": 6368.9, + "probability": 0.9561 + }, + { + "start": 6369.02, + "end": 6369.5, + "probability": 0.5258 + }, + { + "start": 6369.8, + "end": 6370.28, + "probability": 0.6689 + }, + { + "start": 6370.4, + "end": 6372.88, + "probability": 0.9267 + }, + { + "start": 6373.08, + "end": 6374.58, + "probability": 0.9723 + }, + { + "start": 6374.66, + "end": 6376.74, + "probability": 0.9844 + }, + { + "start": 6377.56, + "end": 6377.92, + "probability": 0.0604 + }, + { + "start": 6378.38, + "end": 6379.08, + "probability": 0.5043 + }, + { + "start": 6379.2, + "end": 6381.48, + "probability": 0.6406 + }, + { + "start": 6382.22, + "end": 6383.27, + "probability": 0.9746 + }, + { + "start": 6383.66, + "end": 6384.88, + "probability": 0.7924 + }, + { + "start": 6384.98, + "end": 6385.92, + "probability": 0.8643 + }, + { + "start": 6386.28, + "end": 6388.66, + "probability": 0.6655 + }, + { + "start": 6388.94, + "end": 6390.6, + "probability": 0.9378 + }, + { + "start": 6390.82, + "end": 6395.28, + "probability": 0.9834 + }, + { + "start": 6395.8, + "end": 6397.04, + "probability": 0.5622 + }, + { + "start": 6397.14, + "end": 6401.38, + "probability": 0.9907 + }, + { + "start": 6402.29, + "end": 6405.08, + "probability": 0.6393 + }, + { + "start": 6405.16, + "end": 6406.76, + "probability": 0.4507 + }, + { + "start": 6406.98, + "end": 6411.28, + "probability": 0.9758 + }, + { + "start": 6411.92, + "end": 6415.78, + "probability": 0.9583 + }, + { + "start": 6416.3, + "end": 6419.78, + "probability": 0.8997 + }, + { + "start": 6420.48, + "end": 6423.78, + "probability": 0.8316 + }, + { + "start": 6424.18, + "end": 6426.84, + "probability": 0.9863 + }, + { + "start": 6427.22, + "end": 6427.68, + "probability": 0.6362 + }, + { + "start": 6427.78, + "end": 6429.7, + "probability": 0.5614 + }, + { + "start": 6429.82, + "end": 6430.3, + "probability": 0.4798 + }, + { + "start": 6430.4, + "end": 6430.72, + "probability": 0.6894 + }, + { + "start": 6431.12, + "end": 6434.58, + "probability": 0.9813 + }, + { + "start": 6435.28, + "end": 6440.28, + "probability": 0.9632 + }, + { + "start": 6440.34, + "end": 6444.24, + "probability": 0.9443 + }, + { + "start": 6444.3, + "end": 6444.76, + "probability": 0.5302 + }, + { + "start": 6444.8, + "end": 6445.36, + "probability": 0.8796 + }, + { + "start": 6445.4, + "end": 6445.98, + "probability": 0.7905 + }, + { + "start": 6446.56, + "end": 6447.18, + "probability": 0.7398 + }, + { + "start": 6447.76, + "end": 6448.12, + "probability": 0.6191 + }, + { + "start": 6448.18, + "end": 6449.04, + "probability": 0.7562 + }, + { + "start": 6449.04, + "end": 6451.2, + "probability": 0.86 + }, + { + "start": 6451.28, + "end": 6452.0, + "probability": 0.8234 + }, + { + "start": 6452.56, + "end": 6453.48, + "probability": 0.9323 + }, + { + "start": 6461.0, + "end": 6463.34, + "probability": 0.9976 + }, + { + "start": 6463.48, + "end": 6463.9, + "probability": 0.6127 + }, + { + "start": 6464.87, + "end": 6470.22, + "probability": 0.8073 + }, + { + "start": 6470.72, + "end": 6475.6, + "probability": 0.9933 + }, + { + "start": 6476.02, + "end": 6481.26, + "probability": 0.8363 + }, + { + "start": 6481.92, + "end": 6482.36, + "probability": 0.3085 + }, + { + "start": 6482.38, + "end": 6482.48, + "probability": 0.8625 + }, + { + "start": 6482.78, + "end": 6486.18, + "probability": 0.9956 + }, + { + "start": 6486.56, + "end": 6487.22, + "probability": 0.7641 + }, + { + "start": 6487.4, + "end": 6488.26, + "probability": 0.7662 + }, + { + "start": 6488.44, + "end": 6490.52, + "probability": 0.9539 + }, + { + "start": 6490.62, + "end": 6491.98, + "probability": 0.7493 + }, + { + "start": 6492.64, + "end": 6493.56, + "probability": 0.4253 + }, + { + "start": 6493.64, + "end": 6497.1, + "probability": 0.9842 + }, + { + "start": 6497.26, + "end": 6501.08, + "probability": 0.9752 + }, + { + "start": 6501.98, + "end": 6503.36, + "probability": 0.0039 + }, + { + "start": 6503.66, + "end": 6504.56, + "probability": 0.7115 + }, + { + "start": 6504.88, + "end": 6505.84, + "probability": 0.0695 + }, + { + "start": 6506.3, + "end": 6509.24, + "probability": 0.9759 + }, + { + "start": 6509.24, + "end": 6512.82, + "probability": 0.7488 + }, + { + "start": 6513.34, + "end": 6513.44, + "probability": 0.0948 + }, + { + "start": 6513.64, + "end": 6515.12, + "probability": 0.923 + }, + { + "start": 6515.6, + "end": 6517.94, + "probability": 0.9104 + }, + { + "start": 6518.82, + "end": 6520.06, + "probability": 0.3933 + }, + { + "start": 6520.64, + "end": 6523.24, + "probability": 0.9888 + }, + { + "start": 6523.62, + "end": 6527.14, + "probability": 0.9934 + }, + { + "start": 6527.2, + "end": 6528.76, + "probability": 0.8203 + }, + { + "start": 6529.35, + "end": 6530.14, + "probability": 0.0518 + }, + { + "start": 6530.32, + "end": 6533.54, + "probability": 0.6895 + }, + { + "start": 6533.98, + "end": 6535.7, + "probability": 0.9946 + }, + { + "start": 6535.8, + "end": 6537.53, + "probability": 0.8623 + }, + { + "start": 6537.8, + "end": 6537.94, + "probability": 0.4869 + }, + { + "start": 6538.02, + "end": 6540.36, + "probability": 0.9922 + }, + { + "start": 6540.94, + "end": 6545.92, + "probability": 0.958 + }, + { + "start": 6546.1, + "end": 6549.42, + "probability": 0.9538 + }, + { + "start": 6549.84, + "end": 6551.36, + "probability": 0.1156 + }, + { + "start": 6551.46, + "end": 6554.38, + "probability": 0.9698 + }, + { + "start": 6554.74, + "end": 6556.2, + "probability": 0.189 + }, + { + "start": 6556.26, + "end": 6560.36, + "probability": 0.8378 + }, + { + "start": 6560.66, + "end": 6564.24, + "probability": 0.965 + }, + { + "start": 6564.42, + "end": 6564.93, + "probability": 0.8599 + }, + { + "start": 6565.7, + "end": 6569.38, + "probability": 0.6464 + }, + { + "start": 6569.58, + "end": 6572.64, + "probability": 0.832 + }, + { + "start": 6573.18, + "end": 6577.16, + "probability": 0.4688 + }, + { + "start": 6577.2, + "end": 6578.3, + "probability": 0.8065 + }, + { + "start": 6578.86, + "end": 6580.38, + "probability": 0.9781 + }, + { + "start": 6582.37, + "end": 6584.68, + "probability": 0.7535 + }, + { + "start": 6586.94, + "end": 6587.56, + "probability": 0.7668 + }, + { + "start": 6587.72, + "end": 6588.2, + "probability": 0.9147 + }, + { + "start": 6588.22, + "end": 6593.9, + "probability": 0.928 + }, + { + "start": 6594.82, + "end": 6597.6, + "probability": 0.8523 + }, + { + "start": 6598.54, + "end": 6600.38, + "probability": 0.929 + }, + { + "start": 6609.56, + "end": 6613.88, + "probability": 0.5671 + }, + { + "start": 6614.76, + "end": 6617.02, + "probability": 0.8745 + }, + { + "start": 6618.18, + "end": 6619.98, + "probability": 0.9713 + }, + { + "start": 6628.32, + "end": 6628.34, + "probability": 0.2638 + }, + { + "start": 6639.52, + "end": 6640.54, + "probability": 0.6186 + }, + { + "start": 6641.32, + "end": 6642.72, + "probability": 0.9678 + }, + { + "start": 6643.54, + "end": 6647.44, + "probability": 0.9312 + }, + { + "start": 6648.3, + "end": 6648.98, + "probability": 0.9926 + }, + { + "start": 6650.64, + "end": 6651.54, + "probability": 0.9163 + }, + { + "start": 6654.46, + "end": 6657.64, + "probability": 0.9258 + }, + { + "start": 6658.88, + "end": 6661.74, + "probability": 0.9688 + }, + { + "start": 6662.8, + "end": 6663.52, + "probability": 0.8265 + }, + { + "start": 6665.32, + "end": 6668.14, + "probability": 0.9953 + }, + { + "start": 6669.02, + "end": 6671.46, + "probability": 0.9923 + }, + { + "start": 6671.74, + "end": 6676.02, + "probability": 0.9916 + }, + { + "start": 6676.94, + "end": 6682.48, + "probability": 0.9921 + }, + { + "start": 6684.04, + "end": 6685.64, + "probability": 0.6984 + }, + { + "start": 6688.02, + "end": 6691.56, + "probability": 0.9966 + }, + { + "start": 6692.58, + "end": 6692.98, + "probability": 0.8303 + }, + { + "start": 6694.28, + "end": 6697.46, + "probability": 0.9884 + }, + { + "start": 6698.6, + "end": 6700.3, + "probability": 0.8872 + }, + { + "start": 6702.08, + "end": 6707.96, + "probability": 0.7786 + }, + { + "start": 6708.1, + "end": 6710.64, + "probability": 0.9531 + }, + { + "start": 6712.12, + "end": 6720.4, + "probability": 0.9521 + }, + { + "start": 6720.56, + "end": 6720.94, + "probability": 0.7107 + }, + { + "start": 6722.74, + "end": 6724.16, + "probability": 0.9485 + }, + { + "start": 6727.56, + "end": 6730.38, + "probability": 0.9183 + }, + { + "start": 6731.42, + "end": 6736.86, + "probability": 0.8275 + }, + { + "start": 6739.72, + "end": 6741.28, + "probability": 0.8051 + }, + { + "start": 6742.32, + "end": 6750.26, + "probability": 0.9802 + }, + { + "start": 6750.4, + "end": 6751.08, + "probability": 0.9244 + }, + { + "start": 6751.16, + "end": 6752.14, + "probability": 0.9456 + }, + { + "start": 6752.54, + "end": 6754.72, + "probability": 0.9893 + }, + { + "start": 6754.84, + "end": 6756.28, + "probability": 0.9961 + }, + { + "start": 6757.1, + "end": 6759.3, + "probability": 0.669 + }, + { + "start": 6759.54, + "end": 6763.6, + "probability": 0.9866 + }, + { + "start": 6764.14, + "end": 6768.96, + "probability": 0.8019 + }, + { + "start": 6769.54, + "end": 6772.82, + "probability": 0.8377 + }, + { + "start": 6773.4, + "end": 6774.88, + "probability": 0.9078 + }, + { + "start": 6776.0, + "end": 6780.14, + "probability": 0.9609 + }, + { + "start": 6780.66, + "end": 6782.22, + "probability": 0.7072 + }, + { + "start": 6783.04, + "end": 6790.28, + "probability": 0.9966 + }, + { + "start": 6791.74, + "end": 6796.28, + "probability": 0.9917 + }, + { + "start": 6796.36, + "end": 6798.54, + "probability": 0.8033 + }, + { + "start": 6799.94, + "end": 6804.32, + "probability": 0.9935 + }, + { + "start": 6804.64, + "end": 6806.18, + "probability": 0.9272 + }, + { + "start": 6807.48, + "end": 6811.68, + "probability": 0.9542 + }, + { + "start": 6812.2, + "end": 6814.62, + "probability": 0.9718 + }, + { + "start": 6817.64, + "end": 6823.12, + "probability": 0.9961 + }, + { + "start": 6823.88, + "end": 6826.94, + "probability": 0.7553 + }, + { + "start": 6828.3, + "end": 6830.78, + "probability": 0.9915 + }, + { + "start": 6832.46, + "end": 6834.16, + "probability": 0.9564 + }, + { + "start": 6834.74, + "end": 6836.64, + "probability": 0.6355 + }, + { + "start": 6837.58, + "end": 6842.64, + "probability": 0.9309 + }, + { + "start": 6843.06, + "end": 6850.02, + "probability": 0.9972 + }, + { + "start": 6850.62, + "end": 6851.44, + "probability": 0.5903 + }, + { + "start": 6852.18, + "end": 6854.86, + "probability": 0.9129 + }, + { + "start": 6855.22, + "end": 6858.4, + "probability": 0.8353 + }, + { + "start": 6859.4, + "end": 6862.96, + "probability": 0.9805 + }, + { + "start": 6863.5, + "end": 6865.8, + "probability": 0.856 + }, + { + "start": 6875.52, + "end": 6877.36, + "probability": 0.9305 + }, + { + "start": 6878.56, + "end": 6879.42, + "probability": 0.8213 + }, + { + "start": 6881.97, + "end": 6883.68, + "probability": 0.844 + }, + { + "start": 6884.26, + "end": 6884.58, + "probability": 0.8263 + }, + { + "start": 6886.42, + "end": 6886.52, + "probability": 0.5795 + }, + { + "start": 6886.9, + "end": 6890.8, + "probability": 0.9153 + }, + { + "start": 6892.26, + "end": 6892.62, + "probability": 0.536 + }, + { + "start": 6892.7, + "end": 6893.86, + "probability": 0.9105 + }, + { + "start": 6893.9, + "end": 6897.62, + "probability": 0.8779 + }, + { + "start": 6897.74, + "end": 6901.42, + "probability": 0.71 + }, + { + "start": 6903.1, + "end": 6908.32, + "probability": 0.7323 + }, + { + "start": 6909.62, + "end": 6910.38, + "probability": 0.7695 + }, + { + "start": 6910.56, + "end": 6914.01, + "probability": 0.9096 + }, + { + "start": 6915.74, + "end": 6919.08, + "probability": 0.9661 + }, + { + "start": 6919.88, + "end": 6922.65, + "probability": 0.7076 + }, + { + "start": 6923.78, + "end": 6924.68, + "probability": 0.7447 + }, + { + "start": 6924.82, + "end": 6926.9, + "probability": 0.7916 + }, + { + "start": 6927.28, + "end": 6928.44, + "probability": 0.9476 + }, + { + "start": 6930.12, + "end": 6934.76, + "probability": 0.9946 + }, + { + "start": 6935.04, + "end": 6936.18, + "probability": 0.9922 + }, + { + "start": 6937.16, + "end": 6939.06, + "probability": 0.6972 + }, + { + "start": 6939.08, + "end": 6942.12, + "probability": 0.8191 + }, + { + "start": 6943.42, + "end": 6944.76, + "probability": 0.6748 + }, + { + "start": 6944.88, + "end": 6946.32, + "probability": 0.8482 + }, + { + "start": 6946.38, + "end": 6947.5, + "probability": 0.4554 + }, + { + "start": 6947.6, + "end": 6947.7, + "probability": 0.4806 + }, + { + "start": 6950.08, + "end": 6952.56, + "probability": 0.5702 + }, + { + "start": 6955.32, + "end": 6957.17, + "probability": 0.9912 + }, + { + "start": 6958.46, + "end": 6959.4, + "probability": 0.9993 + }, + { + "start": 6960.94, + "end": 6963.58, + "probability": 0.9283 + }, + { + "start": 6966.34, + "end": 6969.86, + "probability": 0.6985 + }, + { + "start": 6971.44, + "end": 6973.52, + "probability": 0.9602 + }, + { + "start": 6974.06, + "end": 6975.38, + "probability": 0.9417 + }, + { + "start": 6975.52, + "end": 6978.24, + "probability": 0.9166 + }, + { + "start": 6978.38, + "end": 6979.28, + "probability": 0.7233 + }, + { + "start": 6979.36, + "end": 6980.06, + "probability": 0.722 + }, + { + "start": 6980.84, + "end": 6984.5, + "probability": 0.9528 + }, + { + "start": 6985.14, + "end": 6988.68, + "probability": 0.9614 + }, + { + "start": 6988.86, + "end": 6993.02, + "probability": 0.7301 + }, + { + "start": 6993.18, + "end": 6995.34, + "probability": 0.5949 + }, + { + "start": 6996.16, + "end": 6997.6, + "probability": 0.7878 + }, + { + "start": 6997.82, + "end": 7000.42, + "probability": 0.7813 + }, + { + "start": 7001.12, + "end": 7003.38, + "probability": 0.844 + }, + { + "start": 7003.44, + "end": 7004.28, + "probability": 0.494 + }, + { + "start": 7004.32, + "end": 7004.72, + "probability": 0.816 + }, + { + "start": 7004.92, + "end": 7006.04, + "probability": 0.9369 + }, + { + "start": 7007.32, + "end": 7014.54, + "probability": 0.9916 + }, + { + "start": 7016.14, + "end": 7019.5, + "probability": 0.7519 + }, + { + "start": 7019.7, + "end": 7021.55, + "probability": 0.9912 + }, + { + "start": 7022.32, + "end": 7022.81, + "probability": 0.561 + }, + { + "start": 7023.18, + "end": 7023.42, + "probability": 0.6169 + }, + { + "start": 7023.46, + "end": 7024.28, + "probability": 0.5139 + }, + { + "start": 7024.66, + "end": 7024.9, + "probability": 0.3865 + }, + { + "start": 7025.0, + "end": 7030.2, + "probability": 0.9626 + }, + { + "start": 7031.64, + "end": 7032.2, + "probability": 0.943 + }, + { + "start": 7032.92, + "end": 7035.88, + "probability": 0.9901 + }, + { + "start": 7036.72, + "end": 7038.7, + "probability": 0.9078 + }, + { + "start": 7039.96, + "end": 7041.78, + "probability": 0.9836 + }, + { + "start": 7042.34, + "end": 7045.76, + "probability": 0.8518 + }, + { + "start": 7046.82, + "end": 7048.0, + "probability": 0.0428 + }, + { + "start": 7048.66, + "end": 7050.66, + "probability": 0.1667 + }, + { + "start": 7051.06, + "end": 7052.47, + "probability": 0.8181 + }, + { + "start": 7053.52, + "end": 7054.42, + "probability": 0.9474 + }, + { + "start": 7054.84, + "end": 7057.24, + "probability": 0.9785 + }, + { + "start": 7057.28, + "end": 7060.06, + "probability": 0.8166 + }, + { + "start": 7060.14, + "end": 7061.38, + "probability": 0.2456 + }, + { + "start": 7061.64, + "end": 7066.4, + "probability": 0.9915 + }, + { + "start": 7066.74, + "end": 7067.54, + "probability": 0.423 + }, + { + "start": 7067.66, + "end": 7067.82, + "probability": 0.1195 + }, + { + "start": 7068.48, + "end": 7069.66, + "probability": 0.8958 + }, + { + "start": 7069.72, + "end": 7070.88, + "probability": 0.7179 + }, + { + "start": 7071.06, + "end": 7071.56, + "probability": 0.3304 + }, + { + "start": 7071.88, + "end": 7073.4, + "probability": 0.7738 + }, + { + "start": 7073.84, + "end": 7074.49, + "probability": 0.9185 + }, + { + "start": 7075.62, + "end": 7077.7, + "probability": 0.972 + }, + { + "start": 7077.78, + "end": 7079.36, + "probability": 0.6765 + }, + { + "start": 7079.52, + "end": 7080.1, + "probability": 0.6725 + }, + { + "start": 7080.64, + "end": 7081.88, + "probability": 0.9131 + }, + { + "start": 7082.3, + "end": 7082.94, + "probability": 0.651 + }, + { + "start": 7083.04, + "end": 7083.68, + "probability": 0.8817 + }, + { + "start": 7083.8, + "end": 7084.31, + "probability": 0.758 + }, + { + "start": 7085.2, + "end": 7087.8, + "probability": 0.8577 + }, + { + "start": 7088.28, + "end": 7089.71, + "probability": 0.569 + }, + { + "start": 7090.72, + "end": 7094.8, + "probability": 0.9861 + }, + { + "start": 7095.19, + "end": 7097.21, + "probability": 0.4612 + }, + { + "start": 7097.7, + "end": 7099.26, + "probability": 0.7777 + }, + { + "start": 7100.34, + "end": 7102.56, + "probability": 0.6934 + }, + { + "start": 7103.88, + "end": 7104.58, + "probability": 0.9128 + }, + { + "start": 7104.96, + "end": 7106.14, + "probability": 0.927 + }, + { + "start": 7106.26, + "end": 7106.78, + "probability": 0.9613 + }, + { + "start": 7106.86, + "end": 7107.48, + "probability": 0.9321 + }, + { + "start": 7107.64, + "end": 7112.54, + "probability": 0.973 + }, + { + "start": 7112.54, + "end": 7114.32, + "probability": 0.8696 + }, + { + "start": 7114.92, + "end": 7118.06, + "probability": 0.5756 + }, + { + "start": 7118.66, + "end": 7122.52, + "probability": 0.9035 + }, + { + "start": 7123.18, + "end": 7126.46, + "probability": 0.877 + }, + { + "start": 7126.64, + "end": 7128.44, + "probability": 0.86 + }, + { + "start": 7129.02, + "end": 7130.5, + "probability": 0.9327 + }, + { + "start": 7130.78, + "end": 7131.98, + "probability": 0.6626 + }, + { + "start": 7132.98, + "end": 7135.02, + "probability": 0.9434 + }, + { + "start": 7135.24, + "end": 7136.34, + "probability": 0.7279 + }, + { + "start": 7137.28, + "end": 7138.84, + "probability": 0.6215 + }, + { + "start": 7138.86, + "end": 7141.94, + "probability": 0.4457 + }, + { + "start": 7142.64, + "end": 7142.74, + "probability": 0.0083 + }, + { + "start": 7142.74, + "end": 7142.94, + "probability": 0.7205 + }, + { + "start": 7143.26, + "end": 7145.02, + "probability": 0.8242 + }, + { + "start": 7145.24, + "end": 7146.62, + "probability": 0.5591 + }, + { + "start": 7146.8, + "end": 7149.2, + "probability": 0.9886 + }, + { + "start": 7149.44, + "end": 7150.34, + "probability": 0.771 + }, + { + "start": 7150.46, + "end": 7151.9, + "probability": 0.8894 + }, + { + "start": 7152.26, + "end": 7154.5, + "probability": 0.8599 + }, + { + "start": 7154.7, + "end": 7156.8, + "probability": 0.746 + }, + { + "start": 7156.96, + "end": 7158.58, + "probability": 0.6701 + }, + { + "start": 7158.94, + "end": 7159.84, + "probability": 0.7242 + }, + { + "start": 7160.4, + "end": 7162.18, + "probability": 0.8831 + }, + { + "start": 7162.78, + "end": 7164.63, + "probability": 0.8639 + }, + { + "start": 7165.06, + "end": 7167.08, + "probability": 0.9845 + }, + { + "start": 7167.6, + "end": 7168.64, + "probability": 0.941 + }, + { + "start": 7169.36, + "end": 7170.36, + "probability": 0.7313 + }, + { + "start": 7170.5, + "end": 7173.02, + "probability": 0.8473 + }, + { + "start": 7173.14, + "end": 7174.73, + "probability": 0.8457 + }, + { + "start": 7174.9, + "end": 7176.24, + "probability": 0.8681 + }, + { + "start": 7176.48, + "end": 7177.8, + "probability": 0.9956 + }, + { + "start": 7179.38, + "end": 7182.96, + "probability": 0.9757 + }, + { + "start": 7182.96, + "end": 7187.46, + "probability": 0.998 + }, + { + "start": 7187.88, + "end": 7188.86, + "probability": 0.9449 + }, + { + "start": 7188.94, + "end": 7191.98, + "probability": 0.9893 + }, + { + "start": 7192.44, + "end": 7194.32, + "probability": 0.9116 + }, + { + "start": 7195.08, + "end": 7199.72, + "probability": 0.9665 + }, + { + "start": 7200.3, + "end": 7202.8, + "probability": 0.6953 + }, + { + "start": 7203.94, + "end": 7205.96, + "probability": 0.959 + }, + { + "start": 7206.34, + "end": 7210.74, + "probability": 0.9969 + }, + { + "start": 7211.02, + "end": 7211.36, + "probability": 0.4164 + }, + { + "start": 7211.58, + "end": 7214.88, + "probability": 0.9847 + }, + { + "start": 7215.36, + "end": 7220.9, + "probability": 0.9702 + }, + { + "start": 7221.28, + "end": 7224.3, + "probability": 0.9495 + }, + { + "start": 7224.44, + "end": 7229.19, + "probability": 0.8895 + }, + { + "start": 7229.38, + "end": 7232.4, + "probability": 0.7991 + }, + { + "start": 7232.5, + "end": 7232.74, + "probability": 0.2344 + }, + { + "start": 7233.1, + "end": 7234.72, + "probability": 0.6259 + }, + { + "start": 7234.72, + "end": 7234.76, + "probability": 0.1181 + }, + { + "start": 7234.76, + "end": 7234.76, + "probability": 0.1399 + }, + { + "start": 7234.76, + "end": 7236.46, + "probability": 0.7959 + }, + { + "start": 7236.6, + "end": 7236.6, + "probability": 0.6078 + }, + { + "start": 7236.8, + "end": 7239.68, + "probability": 0.623 + }, + { + "start": 7239.86, + "end": 7242.74, + "probability": 0.7923 + }, + { + "start": 7243.56, + "end": 7244.64, + "probability": 0.614 + }, + { + "start": 7244.68, + "end": 7247.12, + "probability": 0.803 + }, + { + "start": 7247.44, + "end": 7249.58, + "probability": 0.5403 + }, + { + "start": 7250.02, + "end": 7252.28, + "probability": 0.895 + }, + { + "start": 7252.36, + "end": 7253.16, + "probability": 0.4896 + }, + { + "start": 7253.18, + "end": 7253.7, + "probability": 0.5439 + }, + { + "start": 7254.64, + "end": 7258.18, + "probability": 0.9111 + }, + { + "start": 7258.32, + "end": 7263.48, + "probability": 0.6346 + }, + { + "start": 7264.06, + "end": 7264.6, + "probability": 0.9343 + }, + { + "start": 7265.28, + "end": 7266.16, + "probability": 0.5031 + }, + { + "start": 7267.74, + "end": 7269.14, + "probability": 0.7075 + }, + { + "start": 7269.22, + "end": 7271.88, + "probability": 0.5845 + }, + { + "start": 7271.94, + "end": 7273.36, + "probability": 0.4492 + }, + { + "start": 7279.46, + "end": 7280.64, + "probability": 0.6371 + }, + { + "start": 7281.68, + "end": 7282.5, + "probability": 0.9109 + }, + { + "start": 7284.08, + "end": 7287.18, + "probability": 0.915 + }, + { + "start": 7291.03, + "end": 7295.52, + "probability": 0.9578 + }, + { + "start": 7296.34, + "end": 7298.94, + "probability": 0.9738 + }, + { + "start": 7299.3, + "end": 7301.55, + "probability": 0.99 + }, + { + "start": 7302.6, + "end": 7303.82, + "probability": 0.8433 + }, + { + "start": 7305.24, + "end": 7307.7, + "probability": 0.7275 + }, + { + "start": 7308.3, + "end": 7311.5, + "probability": 0.9161 + }, + { + "start": 7312.18, + "end": 7315.8, + "probability": 0.9854 + }, + { + "start": 7315.98, + "end": 7319.04, + "probability": 0.7962 + }, + { + "start": 7319.36, + "end": 7322.12, + "probability": 0.9118 + }, + { + "start": 7323.14, + "end": 7325.82, + "probability": 0.8375 + }, + { + "start": 7327.1, + "end": 7328.82, + "probability": 0.1577 + }, + { + "start": 7328.92, + "end": 7330.22, + "probability": 0.4731 + }, + { + "start": 7331.78, + "end": 7332.12, + "probability": 0.655 + }, + { + "start": 7333.4, + "end": 7335.62, + "probability": 0.0857 + }, + { + "start": 7337.32, + "end": 7340.9, + "probability": 0.0471 + }, + { + "start": 7344.32, + "end": 7347.12, + "probability": 0.0306 + }, + { + "start": 7349.28, + "end": 7352.64, + "probability": 0.2571 + }, + { + "start": 7354.54, + "end": 7357.26, + "probability": 0.1129 + }, + { + "start": 7358.12, + "end": 7362.64, + "probability": 0.0449 + }, + { + "start": 7363.72, + "end": 7368.36, + "probability": 0.2418 + }, + { + "start": 7371.99, + "end": 7374.93, + "probability": 0.0173 + }, + { + "start": 7377.32, + "end": 7379.2, + "probability": 0.4305 + }, + { + "start": 7380.02, + "end": 7383.72, + "probability": 0.0669 + }, + { + "start": 7385.28, + "end": 7391.0, + "probability": 0.0206 + }, + { + "start": 7391.95, + "end": 7393.13, + "probability": 0.0691 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7546.0, + "end": 7546.0, + "probability": 0.0 + }, + { + "start": 7547.5, + "end": 7547.9, + "probability": 0.3819 + }, + { + "start": 7547.9, + "end": 7547.9, + "probability": 0.0137 + }, + { + "start": 7547.9, + "end": 7547.9, + "probability": 0.0818 + }, + { + "start": 7547.9, + "end": 7552.16, + "probability": 0.4869 + }, + { + "start": 7552.3, + "end": 7552.94, + "probability": 0.5876 + }, + { + "start": 7553.98, + "end": 7554.74, + "probability": 0.6809 + }, + { + "start": 7556.0, + "end": 7557.4, + "probability": 0.9941 + }, + { + "start": 7558.58, + "end": 7561.92, + "probability": 0.8313 + }, + { + "start": 7562.24, + "end": 7563.5, + "probability": 0.8147 + }, + { + "start": 7565.36, + "end": 7565.36, + "probability": 0.4932 + }, + { + "start": 7565.36, + "end": 7566.42, + "probability": 0.5867 + }, + { + "start": 7567.1, + "end": 7570.74, + "probability": 0.9132 + }, + { + "start": 7571.56, + "end": 7572.36, + "probability": 0.4162 + }, + { + "start": 7573.04, + "end": 7573.32, + "probability": 0.3986 + }, + { + "start": 7573.32, + "end": 7573.32, + "probability": 0.5211 + }, + { + "start": 7573.32, + "end": 7577.7, + "probability": 0.5577 + }, + { + "start": 7577.9, + "end": 7577.9, + "probability": 0.1498 + }, + { + "start": 7577.9, + "end": 7577.9, + "probability": 0.285 + }, + { + "start": 7577.9, + "end": 7578.06, + "probability": 0.7651 + }, + { + "start": 7578.12, + "end": 7579.96, + "probability": 0.5215 + }, + { + "start": 7580.16, + "end": 7581.58, + "probability": 0.7135 + }, + { + "start": 7581.8, + "end": 7582.59, + "probability": 0.8315 + }, + { + "start": 7582.8, + "end": 7583.96, + "probability": 0.4755 + }, + { + "start": 7583.98, + "end": 7586.58, + "probability": 0.1282 + }, + { + "start": 7586.58, + "end": 7586.72, + "probability": 0.4663 + }, + { + "start": 7586.86, + "end": 7588.06, + "probability": 0.5548 + }, + { + "start": 7588.12, + "end": 7588.52, + "probability": 0.044 + }, + { + "start": 7590.98, + "end": 7595.1, + "probability": 0.0272 + }, + { + "start": 7595.94, + "end": 7598.97, + "probability": 0.0281 + }, + { + "start": 7598.98, + "end": 7600.4, + "probability": 0.1208 + }, + { + "start": 7602.66, + "end": 7602.76, + "probability": 0.0377 + }, + { + "start": 7603.54, + "end": 7603.54, + "probability": 0.0229 + }, + { + "start": 7604.08, + "end": 7604.86, + "probability": 0.1433 + }, + { + "start": 7608.72, + "end": 7609.52, + "probability": 0.288 + }, + { + "start": 7609.52, + "end": 7610.9, + "probability": 0.0882 + }, + { + "start": 7611.92, + "end": 7612.92, + "probability": 0.0624 + }, + { + "start": 7614.3, + "end": 7614.94, + "probability": 0.1079 + }, + { + "start": 7614.94, + "end": 7616.28, + "probability": 0.0599 + }, + { + "start": 7618.76, + "end": 7623.54, + "probability": 0.0174 + }, + { + "start": 7624.46, + "end": 7627.58, + "probability": 0.1054 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.0, + "end": 7683.0, + "probability": 0.0 + }, + { + "start": 7683.9, + "end": 7684.02, + "probability": 0.0897 + }, + { + "start": 7684.02, + "end": 7685.43, + "probability": 0.5023 + }, + { + "start": 7685.54, + "end": 7690.6, + "probability": 0.9634 + }, + { + "start": 7691.28, + "end": 7696.66, + "probability": 0.9962 + }, + { + "start": 7696.66, + "end": 7701.62, + "probability": 0.9951 + }, + { + "start": 7701.68, + "end": 7702.46, + "probability": 0.7457 + }, + { + "start": 7703.2, + "end": 7706.88, + "probability": 0.9885 + }, + { + "start": 7707.68, + "end": 7712.86, + "probability": 0.9688 + }, + { + "start": 7713.82, + "end": 7716.1, + "probability": 0.8655 + }, + { + "start": 7716.64, + "end": 7718.92, + "probability": 0.9227 + }, + { + "start": 7719.62, + "end": 7724.12, + "probability": 0.9793 + }, + { + "start": 7724.76, + "end": 7727.04, + "probability": 0.7425 + }, + { + "start": 7727.74, + "end": 7731.0, + "probability": 0.9912 + }, + { + "start": 7731.0, + "end": 7734.76, + "probability": 0.9565 + }, + { + "start": 7735.1, + "end": 7735.9, + "probability": 0.7734 + }, + { + "start": 7736.04, + "end": 7739.28, + "probability": 0.9751 + }, + { + "start": 7739.72, + "end": 7746.0, + "probability": 0.9795 + }, + { + "start": 7746.64, + "end": 7749.82, + "probability": 0.9242 + }, + { + "start": 7750.32, + "end": 7754.64, + "probability": 0.7446 + }, + { + "start": 7755.08, + "end": 7756.96, + "probability": 0.958 + }, + { + "start": 7757.54, + "end": 7761.02, + "probability": 0.8313 + }, + { + "start": 7761.12, + "end": 7765.16, + "probability": 0.9711 + }, + { + "start": 7765.68, + "end": 7770.94, + "probability": 0.9849 + }, + { + "start": 7771.04, + "end": 7771.24, + "probability": 0.5341 + }, + { + "start": 7772.14, + "end": 7775.0, + "probability": 0.5714 + }, + { + "start": 7776.0, + "end": 7777.62, + "probability": 0.947 + }, + { + "start": 7779.46, + "end": 7783.72, + "probability": 0.6506 + }, + { + "start": 7787.94, + "end": 7791.0, + "probability": 0.824 + }, + { + "start": 7793.4, + "end": 7794.02, + "probability": 0.6597 + }, + { + "start": 7795.96, + "end": 7797.6, + "probability": 0.7843 + }, + { + "start": 7798.74, + "end": 7801.34, + "probability": 0.8694 + }, + { + "start": 7801.44, + "end": 7805.04, + "probability": 0.9199 + }, + { + "start": 7805.38, + "end": 7805.82, + "probability": 0.8301 + }, + { + "start": 7806.42, + "end": 7814.3, + "probability": 0.9978 + }, + { + "start": 7814.3, + "end": 7819.56, + "probability": 0.9995 + }, + { + "start": 7819.74, + "end": 7822.78, + "probability": 0.9959 + }, + { + "start": 7822.84, + "end": 7824.28, + "probability": 0.9788 + }, + { + "start": 7824.82, + "end": 7827.08, + "probability": 0.973 + }, + { + "start": 7827.16, + "end": 7827.68, + "probability": 0.1672 + }, + { + "start": 7827.84, + "end": 7827.94, + "probability": 0.5137 + }, + { + "start": 7828.04, + "end": 7828.28, + "probability": 0.7551 + }, + { + "start": 7828.36, + "end": 7829.92, + "probability": 0.9941 + }, + { + "start": 7830.14, + "end": 7833.82, + "probability": 0.9944 + }, + { + "start": 7833.96, + "end": 7837.78, + "probability": 0.9961 + }, + { + "start": 7838.0, + "end": 7838.84, + "probability": 0.6284 + }, + { + "start": 7839.36, + "end": 7841.48, + "probability": 0.7485 + }, + { + "start": 7842.22, + "end": 7845.52, + "probability": 0.9744 + }, + { + "start": 7845.64, + "end": 7848.92, + "probability": 0.9395 + }, + { + "start": 7849.52, + "end": 7851.9, + "probability": 0.9627 + }, + { + "start": 7852.48, + "end": 7856.54, + "probability": 0.9967 + }, + { + "start": 7857.42, + "end": 7858.72, + "probability": 0.7798 + }, + { + "start": 7858.86, + "end": 7864.82, + "probability": 0.9754 + }, + { + "start": 7865.6, + "end": 7865.72, + "probability": 0.4721 + }, + { + "start": 7865.82, + "end": 7867.54, + "probability": 0.9924 + }, + { + "start": 7867.6, + "end": 7871.14, + "probability": 0.7612 + }, + { + "start": 7872.02, + "end": 7873.62, + "probability": 0.7171 + }, + { + "start": 7874.2, + "end": 7875.74, + "probability": 0.9291 + }, + { + "start": 7876.3, + "end": 7877.8, + "probability": 0.9918 + }, + { + "start": 7878.7, + "end": 7879.72, + "probability": 0.9003 + }, + { + "start": 7880.36, + "end": 7881.18, + "probability": 0.7193 + }, + { + "start": 7881.28, + "end": 7882.05, + "probability": 0.9399 + }, + { + "start": 7882.7, + "end": 7888.16, + "probability": 0.6889 + }, + { + "start": 7889.23, + "end": 7894.7, + "probability": 0.9989 + }, + { + "start": 7894.78, + "end": 7895.26, + "probability": 0.6389 + }, + { + "start": 7895.38, + "end": 7896.94, + "probability": 0.8439 + }, + { + "start": 7897.68, + "end": 7898.54, + "probability": 0.8165 + }, + { + "start": 7898.98, + "end": 7900.48, + "probability": 0.966 + }, + { + "start": 7900.96, + "end": 7907.24, + "probability": 0.9803 + }, + { + "start": 7907.48, + "end": 7908.96, + "probability": 0.8472 + }, + { + "start": 7909.12, + "end": 7910.34, + "probability": 0.9655 + }, + { + "start": 7910.7, + "end": 7915.68, + "probability": 0.9841 + }, + { + "start": 7916.24, + "end": 7918.0, + "probability": 0.9204 + }, + { + "start": 7918.3, + "end": 7919.22, + "probability": 0.8111 + }, + { + "start": 7919.94, + "end": 7923.16, + "probability": 0.9753 + }, + { + "start": 7923.64, + "end": 7925.52, + "probability": 0.7566 + }, + { + "start": 7926.2, + "end": 7927.06, + "probability": 0.9271 + }, + { + "start": 7927.7, + "end": 7930.72, + "probability": 0.9206 + }, + { + "start": 7931.44, + "end": 7932.32, + "probability": 0.9521 + }, + { + "start": 7932.42, + "end": 7941.24, + "probability": 0.9199 + }, + { + "start": 7941.44, + "end": 7942.0, + "probability": 0.7182 + }, + { + "start": 7942.06, + "end": 7943.3, + "probability": 0.4252 + }, + { + "start": 7943.82, + "end": 7944.71, + "probability": 0.9607 + }, + { + "start": 7945.2, + "end": 7948.28, + "probability": 0.9451 + }, + { + "start": 7948.6, + "end": 7950.78, + "probability": 0.7647 + }, + { + "start": 7951.22, + "end": 7952.12, + "probability": 0.6362 + }, + { + "start": 7952.52, + "end": 7954.62, + "probability": 0.9149 + }, + { + "start": 7955.0, + "end": 7956.16, + "probability": 0.876 + }, + { + "start": 7956.58, + "end": 7960.4, + "probability": 0.9949 + }, + { + "start": 7960.78, + "end": 7963.74, + "probability": 0.9354 + }, + { + "start": 7964.14, + "end": 7964.88, + "probability": 0.7397 + }, + { + "start": 7965.22, + "end": 7966.56, + "probability": 0.9763 + }, + { + "start": 7967.16, + "end": 7968.11, + "probability": 0.9139 + }, + { + "start": 7968.86, + "end": 7969.56, + "probability": 0.9186 + }, + { + "start": 7969.84, + "end": 7970.98, + "probability": 0.8574 + }, + { + "start": 7971.06, + "end": 7973.14, + "probability": 0.9934 + }, + { + "start": 7973.42, + "end": 7973.94, + "probability": 0.8005 + }, + { + "start": 7974.72, + "end": 7974.88, + "probability": 0.6564 + }, + { + "start": 7976.8, + "end": 7978.62, + "probability": 0.7308 + }, + { + "start": 7978.88, + "end": 7980.06, + "probability": 0.9831 + }, + { + "start": 7980.76, + "end": 7983.2, + "probability": 0.4476 + }, + { + "start": 7984.72, + "end": 7984.94, + "probability": 0.0207 + }, + { + "start": 7984.94, + "end": 7985.64, + "probability": 0.3906 + }, + { + "start": 7987.26, + "end": 7987.92, + "probability": 0.7828 + }, + { + "start": 7988.52, + "end": 7990.12, + "probability": 0.7393 + }, + { + "start": 7990.7, + "end": 7992.16, + "probability": 0.7688 + }, + { + "start": 8005.04, + "end": 8006.16, + "probability": 0.6856 + }, + { + "start": 8006.2, + "end": 8010.0, + "probability": 0.6178 + }, + { + "start": 8010.96, + "end": 8014.9, + "probability": 0.8589 + }, + { + "start": 8014.9, + "end": 8021.24, + "probability": 0.9851 + }, + { + "start": 8021.84, + "end": 8025.22, + "probability": 0.9912 + }, + { + "start": 8026.48, + "end": 8028.42, + "probability": 0.2004 + }, + { + "start": 8029.02, + "end": 8031.24, + "probability": 0.5292 + }, + { + "start": 8031.34, + "end": 8032.34, + "probability": 0.9738 + }, + { + "start": 8032.52, + "end": 8033.32, + "probability": 0.4904 + }, + { + "start": 8034.66, + "end": 8035.68, + "probability": 0.9536 + }, + { + "start": 8036.52, + "end": 8040.38, + "probability": 0.9864 + }, + { + "start": 8041.44, + "end": 8041.94, + "probability": 0.6847 + }, + { + "start": 8042.14, + "end": 8043.1, + "probability": 0.9885 + }, + { + "start": 8043.2, + "end": 8045.28, + "probability": 0.9935 + }, + { + "start": 8046.16, + "end": 8048.6, + "probability": 0.8765 + }, + { + "start": 8049.26, + "end": 8050.44, + "probability": 0.9442 + }, + { + "start": 8050.6, + "end": 8052.84, + "probability": 0.9873 + }, + { + "start": 8052.92, + "end": 8055.82, + "probability": 0.9746 + }, + { + "start": 8056.66, + "end": 8058.66, + "probability": 0.7312 + }, + { + "start": 8059.88, + "end": 8061.56, + "probability": 0.7612 + }, + { + "start": 8061.56, + "end": 8061.56, + "probability": 0.2533 + }, + { + "start": 8061.66, + "end": 8065.88, + "probability": 0.9447 + }, + { + "start": 8066.48, + "end": 8072.8, + "probability": 0.9789 + }, + { + "start": 8072.94, + "end": 8073.66, + "probability": 0.8335 + }, + { + "start": 8073.9, + "end": 8074.94, + "probability": 0.8091 + }, + { + "start": 8075.98, + "end": 8078.24, + "probability": 0.8027 + }, + { + "start": 8079.36, + "end": 8080.44, + "probability": 0.5971 + }, + { + "start": 8080.82, + "end": 8084.78, + "probability": 0.8413 + }, + { + "start": 8084.88, + "end": 8088.08, + "probability": 0.979 + }, + { + "start": 8088.84, + "end": 8090.5, + "probability": 0.9683 + }, + { + "start": 8090.66, + "end": 8091.84, + "probability": 0.9572 + }, + { + "start": 8091.88, + "end": 8093.08, + "probability": 0.9596 + }, + { + "start": 8093.38, + "end": 8097.96, + "probability": 0.9762 + }, + { + "start": 8098.44, + "end": 8100.22, + "probability": 0.9512 + }, + { + "start": 8100.34, + "end": 8100.82, + "probability": 0.0373 + }, + { + "start": 8101.78, + "end": 8104.36, + "probability": 0.8739 + }, + { + "start": 8105.18, + "end": 8106.36, + "probability": 0.7873 + }, + { + "start": 8106.58, + "end": 8108.46, + "probability": 0.9935 + }, + { + "start": 8108.62, + "end": 8110.1, + "probability": 0.8155 + }, + { + "start": 8110.64, + "end": 8117.06, + "probability": 0.9272 + }, + { + "start": 8117.08, + "end": 8117.88, + "probability": 0.9697 + }, + { + "start": 8118.64, + "end": 8119.94, + "probability": 0.8156 + }, + { + "start": 8120.36, + "end": 8122.16, + "probability": 0.7395 + }, + { + "start": 8122.24, + "end": 8122.96, + "probability": 0.8175 + }, + { + "start": 8123.12, + "end": 8125.44, + "probability": 0.9849 + }, + { + "start": 8126.16, + "end": 8127.62, + "probability": 0.8706 + }, + { + "start": 8128.18, + "end": 8132.32, + "probability": 0.9927 + }, + { + "start": 8132.34, + "end": 8132.62, + "probability": 0.618 + }, + { + "start": 8133.62, + "end": 8137.22, + "probability": 0.7598 + }, + { + "start": 8137.84, + "end": 8138.84, + "probability": 0.9849 + }, + { + "start": 8140.22, + "end": 8143.72, + "probability": 0.5446 + }, + { + "start": 8146.88, + "end": 8147.8, + "probability": 0.4074 + }, + { + "start": 8148.72, + "end": 8151.16, + "probability": 0.8861 + }, + { + "start": 8161.88, + "end": 8164.38, + "probability": 0.7306 + }, + { + "start": 8165.42, + "end": 8167.52, + "probability": 0.8485 + }, + { + "start": 8167.6, + "end": 8168.18, + "probability": 0.6063 + }, + { + "start": 8168.52, + "end": 8169.96, + "probability": 0.8328 + }, + { + "start": 8171.94, + "end": 8173.73, + "probability": 0.7682 + }, + { + "start": 8173.84, + "end": 8176.29, + "probability": 0.919 + }, + { + "start": 8177.02, + "end": 8179.22, + "probability": 0.5629 + }, + { + "start": 8181.08, + "end": 8182.14, + "probability": 0.7154 + }, + { + "start": 8182.98, + "end": 8185.08, + "probability": 0.7614 + }, + { + "start": 8186.18, + "end": 8186.8, + "probability": 0.9878 + }, + { + "start": 8187.92, + "end": 8194.74, + "probability": 0.9499 + }, + { + "start": 8195.98, + "end": 8196.54, + "probability": 0.9189 + }, + { + "start": 8198.14, + "end": 8201.62, + "probability": 0.9738 + }, + { + "start": 8202.46, + "end": 8204.18, + "probability": 0.8263 + }, + { + "start": 8204.98, + "end": 8208.0, + "probability": 0.9854 + }, + { + "start": 8208.54, + "end": 8209.9, + "probability": 0.8624 + }, + { + "start": 8211.24, + "end": 8215.92, + "probability": 0.9448 + }, + { + "start": 8217.92, + "end": 8221.48, + "probability": 0.9831 + }, + { + "start": 8222.5, + "end": 8225.42, + "probability": 0.977 + }, + { + "start": 8226.22, + "end": 8228.88, + "probability": 0.9864 + }, + { + "start": 8229.86, + "end": 8230.96, + "probability": 0.7467 + }, + { + "start": 8231.52, + "end": 8234.36, + "probability": 0.9602 + }, + { + "start": 8235.56, + "end": 8235.56, + "probability": 0.4175 + }, + { + "start": 8236.56, + "end": 8238.86, + "probability": 0.9638 + }, + { + "start": 8239.42, + "end": 8240.88, + "probability": 0.9636 + }, + { + "start": 8243.48, + "end": 8245.12, + "probability": 0.9326 + }, + { + "start": 8245.86, + "end": 8245.86, + "probability": 0.0143 + }, + { + "start": 8245.86, + "end": 8247.06, + "probability": 0.6371 + }, + { + "start": 8248.0, + "end": 8251.58, + "probability": 0.9956 + }, + { + "start": 8252.98, + "end": 8255.36, + "probability": 0.9448 + }, + { + "start": 8256.1, + "end": 8257.3, + "probability": 0.7968 + }, + { + "start": 8258.0, + "end": 8262.92, + "probability": 0.9961 + }, + { + "start": 8263.84, + "end": 8266.36, + "probability": 0.985 + }, + { + "start": 8267.22, + "end": 8268.44, + "probability": 0.8069 + }, + { + "start": 8269.34, + "end": 8271.74, + "probability": 0.9237 + }, + { + "start": 8272.44, + "end": 8278.02, + "probability": 0.9941 + }, + { + "start": 8279.01, + "end": 8284.32, + "probability": 0.9985 + }, + { + "start": 8284.98, + "end": 8286.12, + "probability": 0.8136 + }, + { + "start": 8287.06, + "end": 8289.9, + "probability": 0.998 + }, + { + "start": 8290.76, + "end": 8293.24, + "probability": 0.9985 + }, + { + "start": 8295.08, + "end": 8297.08, + "probability": 0.9177 + }, + { + "start": 8297.26, + "end": 8298.52, + "probability": 0.8791 + }, + { + "start": 8298.6, + "end": 8299.34, + "probability": 0.9161 + }, + { + "start": 8299.48, + "end": 8300.94, + "probability": 0.9285 + }, + { + "start": 8301.26, + "end": 8302.86, + "probability": 0.9658 + }, + { + "start": 8303.18, + "end": 8306.24, + "probability": 0.9887 + }, + { + "start": 8306.3, + "end": 8307.22, + "probability": 0.7122 + }, + { + "start": 8307.66, + "end": 8315.14, + "probability": 0.98 + }, + { + "start": 8316.22, + "end": 8320.28, + "probability": 0.9771 + }, + { + "start": 8320.62, + "end": 8322.88, + "probability": 0.8668 + }, + { + "start": 8323.48, + "end": 8327.38, + "probability": 0.9532 + }, + { + "start": 8327.84, + "end": 8328.28, + "probability": 0.7558 + }, + { + "start": 8328.96, + "end": 8332.54, + "probability": 0.6801 + }, + { + "start": 8332.76, + "end": 8334.48, + "probability": 0.7778 + }, + { + "start": 8334.62, + "end": 8335.78, + "probability": 0.7188 + }, + { + "start": 8335.94, + "end": 8339.48, + "probability": 0.866 + }, + { + "start": 8348.06, + "end": 8350.2, + "probability": 0.7175 + }, + { + "start": 8351.02, + "end": 8351.78, + "probability": 0.8787 + }, + { + "start": 8351.94, + "end": 8353.64, + "probability": 0.9855 + }, + { + "start": 8353.84, + "end": 8356.12, + "probability": 0.9537 + }, + { + "start": 8356.72, + "end": 8360.62, + "probability": 0.9121 + }, + { + "start": 8363.32, + "end": 8363.82, + "probability": 0.0545 + }, + { + "start": 8363.82, + "end": 8363.82, + "probability": 0.0309 + }, + { + "start": 8363.82, + "end": 8364.92, + "probability": 0.1556 + }, + { + "start": 8365.5, + "end": 8368.88, + "probability": 0.5903 + }, + { + "start": 8369.52, + "end": 8370.44, + "probability": 0.9465 + }, + { + "start": 8371.32, + "end": 8374.22, + "probability": 0.9976 + }, + { + "start": 8374.36, + "end": 8377.62, + "probability": 0.9896 + }, + { + "start": 8378.62, + "end": 8383.36, + "probability": 0.9704 + }, + { + "start": 8383.92, + "end": 8387.62, + "probability": 0.9773 + }, + { + "start": 8388.56, + "end": 8391.32, + "probability": 0.9971 + }, + { + "start": 8391.76, + "end": 8392.34, + "probability": 0.39 + }, + { + "start": 8392.42, + "end": 8393.38, + "probability": 0.8862 + }, + { + "start": 8393.5, + "end": 8395.56, + "probability": 0.8301 + }, + { + "start": 8396.22, + "end": 8397.0, + "probability": 0.825 + }, + { + "start": 8397.02, + "end": 8400.74, + "probability": 0.9594 + }, + { + "start": 8401.08, + "end": 8403.82, + "probability": 0.9797 + }, + { + "start": 8404.88, + "end": 8407.3, + "probability": 0.9279 + }, + { + "start": 8408.3, + "end": 8412.64, + "probability": 0.9925 + }, + { + "start": 8412.7, + "end": 8414.6, + "probability": 0.9867 + }, + { + "start": 8414.96, + "end": 8418.08, + "probability": 0.9922 + }, + { + "start": 8418.14, + "end": 8419.26, + "probability": 0.6217 + }, + { + "start": 8420.16, + "end": 8421.46, + "probability": 0.9099 + }, + { + "start": 8423.2, + "end": 8433.08, + "probability": 0.9681 + }, + { + "start": 8433.46, + "end": 8434.2, + "probability": 0.7678 + }, + { + "start": 8435.0, + "end": 8437.2, + "probability": 0.95 + }, + { + "start": 8437.2, + "end": 8438.2, + "probability": 0.8686 + }, + { + "start": 8439.94, + "end": 8440.92, + "probability": 0.8961 + }, + { + "start": 8444.18, + "end": 8444.88, + "probability": 0.7639 + }, + { + "start": 8446.3, + "end": 8446.3, + "probability": 0.0433 + }, + { + "start": 8454.42, + "end": 8456.4, + "probability": 0.4715 + }, + { + "start": 8456.44, + "end": 8457.73, + "probability": 0.9973 + }, + { + "start": 8466.98, + "end": 8469.1, + "probability": 0.6487 + }, + { + "start": 8471.62, + "end": 8477.1, + "probability": 0.9653 + }, + { + "start": 8477.44, + "end": 8479.0, + "probability": 0.9851 + }, + { + "start": 8479.18, + "end": 8482.42, + "probability": 0.3807 + }, + { + "start": 8483.12, + "end": 8483.26, + "probability": 0.4136 + }, + { + "start": 8485.54, + "end": 8485.54, + "probability": 0.2512 + }, + { + "start": 8485.54, + "end": 8486.68, + "probability": 0.6183 + }, + { + "start": 8487.32, + "end": 8489.4, + "probability": 0.5916 + }, + { + "start": 8489.94, + "end": 8491.44, + "probability": 0.8052 + }, + { + "start": 8494.58, + "end": 8497.06, + "probability": 0.6616 + }, + { + "start": 8498.42, + "end": 8498.82, + "probability": 0.6185 + }, + { + "start": 8498.92, + "end": 8501.88, + "probability": 0.7637 + }, + { + "start": 8502.08, + "end": 8508.4, + "probability": 0.8905 + }, + { + "start": 8508.42, + "end": 8509.86, + "probability": 0.7078 + }, + { + "start": 8509.9, + "end": 8512.42, + "probability": 0.9749 + }, + { + "start": 8513.18, + "end": 8518.06, + "probability": 0.9453 + }, + { + "start": 8518.32, + "end": 8520.92, + "probability": 0.9674 + }, + { + "start": 8520.92, + "end": 8523.08, + "probability": 0.9697 + }, + { + "start": 8523.84, + "end": 8526.24, + "probability": 0.7508 + }, + { + "start": 8526.4, + "end": 8529.3, + "probability": 0.9916 + }, + { + "start": 8529.3, + "end": 8531.86, + "probability": 0.993 + }, + { + "start": 8532.38, + "end": 8534.16, + "probability": 0.9952 + }, + { + "start": 8534.36, + "end": 8537.98, + "probability": 0.9487 + }, + { + "start": 8538.1, + "end": 8542.56, + "probability": 0.8992 + }, + { + "start": 8543.16, + "end": 8546.12, + "probability": 0.9883 + }, + { + "start": 8546.64, + "end": 8548.32, + "probability": 0.9926 + }, + { + "start": 8548.46, + "end": 8549.24, + "probability": 0.7637 + }, + { + "start": 8549.5, + "end": 8554.9, + "probability": 0.9751 + }, + { + "start": 8556.08, + "end": 8559.1, + "probability": 0.901 + }, + { + "start": 8559.82, + "end": 8562.56, + "probability": 0.9951 + }, + { + "start": 8562.64, + "end": 8566.22, + "probability": 0.9363 + }, + { + "start": 8566.38, + "end": 8568.6, + "probability": 0.9772 + }, + { + "start": 8569.28, + "end": 8571.18, + "probability": 0.9299 + }, + { + "start": 8571.32, + "end": 8574.52, + "probability": 0.9867 + }, + { + "start": 8574.58, + "end": 8575.64, + "probability": 0.5846 + }, + { + "start": 8576.32, + "end": 8577.2, + "probability": 0.1656 + }, + { + "start": 8577.28, + "end": 8578.24, + "probability": 0.8428 + }, + { + "start": 8578.36, + "end": 8580.3, + "probability": 0.8584 + }, + { + "start": 8580.44, + "end": 8583.64, + "probability": 0.7099 + }, + { + "start": 8584.64, + "end": 8586.34, + "probability": 0.3144 + }, + { + "start": 8586.44, + "end": 8587.8, + "probability": 0.6833 + }, + { + "start": 8587.9, + "end": 8591.5, + "probability": 0.9888 + }, + { + "start": 8591.5, + "end": 8595.64, + "probability": 0.7812 + }, + { + "start": 8596.06, + "end": 8598.92, + "probability": 0.9929 + }, + { + "start": 8600.0, + "end": 8600.94, + "probability": 0.6671 + }, + { + "start": 8601.02, + "end": 8603.12, + "probability": 0.9362 + }, + { + "start": 8603.14, + "end": 8603.6, + "probability": 0.894 + }, + { + "start": 8603.72, + "end": 8604.32, + "probability": 0.7173 + }, + { + "start": 8604.6, + "end": 8605.88, + "probability": 0.9761 + }, + { + "start": 8606.4, + "end": 8610.64, + "probability": 0.9738 + }, + { + "start": 8610.64, + "end": 8613.66, + "probability": 0.9696 + }, + { + "start": 8614.28, + "end": 8617.86, + "probability": 0.9914 + }, + { + "start": 8617.86, + "end": 8621.6, + "probability": 0.9904 + }, + { + "start": 8621.66, + "end": 8623.88, + "probability": 0.9132 + }, + { + "start": 8624.5, + "end": 8625.3, + "probability": 0.9094 + }, + { + "start": 8625.58, + "end": 8627.96, + "probability": 0.9953 + }, + { + "start": 8627.96, + "end": 8630.98, + "probability": 0.9548 + }, + { + "start": 8631.3, + "end": 8631.4, + "probability": 0.3394 + }, + { + "start": 8631.96, + "end": 8632.58, + "probability": 0.8527 + }, + { + "start": 8632.66, + "end": 8633.54, + "probability": 0.5839 + }, + { + "start": 8633.6, + "end": 8635.06, + "probability": 0.9331 + }, + { + "start": 8635.14, + "end": 8635.54, + "probability": 0.7897 + }, + { + "start": 8636.06, + "end": 8639.36, + "probability": 0.7115 + }, + { + "start": 8639.78, + "end": 8640.54, + "probability": 0.7661 + }, + { + "start": 8640.74, + "end": 8647.9, + "probability": 0.9732 + }, + { + "start": 8648.48, + "end": 8649.0, + "probability": 0.5978 + }, + { + "start": 8649.16, + "end": 8652.46, + "probability": 0.9585 + }, + { + "start": 8654.52, + "end": 8656.72, + "probability": 0.8482 + }, + { + "start": 8659.5, + "end": 8660.78, + "probability": 0.6118 + }, + { + "start": 8661.86, + "end": 8662.54, + "probability": 0.8437 + }, + { + "start": 8666.42, + "end": 8669.32, + "probability": 0.0181 + }, + { + "start": 8673.91, + "end": 8679.0, + "probability": 0.04 + }, + { + "start": 8680.58, + "end": 8682.06, + "probability": 0.3257 + }, + { + "start": 8683.04, + "end": 8684.4, + "probability": 0.6079 + }, + { + "start": 8685.0, + "end": 8686.02, + "probability": 0.5286 + }, + { + "start": 8686.54, + "end": 8690.42, + "probability": 0.9697 + }, + { + "start": 8693.5, + "end": 8697.8, + "probability": 0.9778 + }, + { + "start": 8699.02, + "end": 8705.54, + "probability": 0.5855 + }, + { + "start": 8706.5, + "end": 8708.54, + "probability": 0.9598 + }, + { + "start": 8709.1, + "end": 8711.41, + "probability": 0.9626 + }, + { + "start": 8714.86, + "end": 8717.98, + "probability": 0.2645 + }, + { + "start": 8718.0, + "end": 8719.3, + "probability": 0.7028 + }, + { + "start": 8720.04, + "end": 8721.19, + "probability": 0.9841 + }, + { + "start": 8721.96, + "end": 8723.26, + "probability": 0.0369 + }, + { + "start": 8723.34, + "end": 8724.78, + "probability": 0.5958 + }, + { + "start": 8724.94, + "end": 8727.36, + "probability": 0.8305 + }, + { + "start": 8727.78, + "end": 8731.0, + "probability": 0.9733 + }, + { + "start": 8731.14, + "end": 8731.82, + "probability": 0.7705 + }, + { + "start": 8731.9, + "end": 8734.32, + "probability": 0.71 + }, + { + "start": 8740.3, + "end": 8741.34, + "probability": 0.579 + }, + { + "start": 8742.12, + "end": 8744.74, + "probability": 0.8332 + }, + { + "start": 8745.62, + "end": 8746.32, + "probability": 0.9497 + }, + { + "start": 8746.76, + "end": 8747.36, + "probability": 0.9425 + }, + { + "start": 8747.5, + "end": 8751.22, + "probability": 0.9307 + }, + { + "start": 8751.86, + "end": 8753.64, + "probability": 0.2961 + }, + { + "start": 8755.63, + "end": 8759.16, + "probability": 0.0386 + }, + { + "start": 8759.9, + "end": 8761.5, + "probability": 0.8009 + }, + { + "start": 8762.88, + "end": 8767.02, + "probability": 0.853 + }, + { + "start": 8767.52, + "end": 8767.96, + "probability": 0.792 + }, + { + "start": 8768.08, + "end": 8774.58, + "probability": 0.9954 + }, + { + "start": 8775.18, + "end": 8776.52, + "probability": 0.8103 + }, + { + "start": 8776.76, + "end": 8781.28, + "probability": 0.9872 + }, + { + "start": 8781.28, + "end": 8785.86, + "probability": 0.9723 + }, + { + "start": 8787.83, + "end": 8790.48, + "probability": 0.9971 + }, + { + "start": 8791.82, + "end": 8793.06, + "probability": 0.9939 + }, + { + "start": 8794.32, + "end": 8798.46, + "probability": 0.9979 + }, + { + "start": 8799.34, + "end": 8801.98, + "probability": 0.9939 + }, + { + "start": 8803.36, + "end": 8807.4, + "probability": 0.9797 + }, + { + "start": 8808.02, + "end": 8813.08, + "probability": 0.9814 + }, + { + "start": 8813.3, + "end": 8815.58, + "probability": 0.9952 + }, + { + "start": 8816.74, + "end": 8817.62, + "probability": 0.8228 + }, + { + "start": 8820.18, + "end": 8824.3, + "probability": 0.9695 + }, + { + "start": 8824.6, + "end": 8826.04, + "probability": 0.8442 + }, + { + "start": 8826.66, + "end": 8828.36, + "probability": 0.8918 + }, + { + "start": 8829.0, + "end": 8834.02, + "probability": 0.9929 + }, + { + "start": 8834.64, + "end": 8839.34, + "probability": 0.9915 + }, + { + "start": 8840.16, + "end": 8843.0, + "probability": 0.9955 + }, + { + "start": 8843.0, + "end": 8847.7, + "probability": 0.9978 + }, + { + "start": 8847.76, + "end": 8848.83, + "probability": 0.8792 + }, + { + "start": 8849.54, + "end": 8850.12, + "probability": 0.5869 + }, + { + "start": 8850.42, + "end": 8852.58, + "probability": 0.9935 + }, + { + "start": 8853.74, + "end": 8856.92, + "probability": 0.9832 + }, + { + "start": 8857.26, + "end": 8860.08, + "probability": 0.9946 + }, + { + "start": 8860.64, + "end": 8861.1, + "probability": 0.7049 + }, + { + "start": 8861.14, + "end": 8864.8, + "probability": 0.9896 + }, + { + "start": 8864.8, + "end": 8868.36, + "probability": 0.9921 + }, + { + "start": 8869.62, + "end": 8873.46, + "probability": 0.8662 + }, + { + "start": 8873.66, + "end": 8875.34, + "probability": 0.886 + }, + { + "start": 8876.06, + "end": 8878.62, + "probability": 0.9758 + }, + { + "start": 8879.64, + "end": 8884.48, + "probability": 0.7358 + }, + { + "start": 8884.6, + "end": 8888.14, + "probability": 0.9498 + }, + { + "start": 8888.14, + "end": 8892.38, + "probability": 0.9146 + }, + { + "start": 8892.86, + "end": 8898.02, + "probability": 0.9825 + }, + { + "start": 8899.38, + "end": 8900.86, + "probability": 0.9963 + }, + { + "start": 8901.38, + "end": 8903.19, + "probability": 0.9221 + }, + { + "start": 8903.94, + "end": 8904.76, + "probability": 0.6987 + }, + { + "start": 8905.1, + "end": 8908.96, + "probability": 0.9794 + }, + { + "start": 8909.6, + "end": 8912.14, + "probability": 0.7968 + }, + { + "start": 8912.74, + "end": 8913.72, + "probability": 0.8875 + }, + { + "start": 8914.4, + "end": 8916.74, + "probability": 0.9585 + }, + { + "start": 8916.98, + "end": 8917.22, + "probability": 0.6739 + }, + { + "start": 8917.86, + "end": 8922.48, + "probability": 0.8254 + }, + { + "start": 8923.06, + "end": 8924.6, + "probability": 0.7198 + }, + { + "start": 8925.1, + "end": 8925.56, + "probability": 0.9325 + }, + { + "start": 8925.82, + "end": 8928.64, + "probability": 0.9572 + }, + { + "start": 8928.78, + "end": 8929.36, + "probability": 0.5987 + }, + { + "start": 8929.82, + "end": 8933.92, + "probability": 0.8723 + }, + { + "start": 8934.02, + "end": 8935.84, + "probability": 0.7701 + }, + { + "start": 8936.48, + "end": 8938.34, + "probability": 0.443 + }, + { + "start": 8938.98, + "end": 8943.52, + "probability": 0.5724 + }, + { + "start": 8943.56, + "end": 8944.2, + "probability": 0.7148 + }, + { + "start": 8944.9, + "end": 8950.22, + "probability": 0.0034 + }, + { + "start": 8960.82, + "end": 8963.7, + "probability": 0.5516 + }, + { + "start": 8963.84, + "end": 8966.64, + "probability": 0.9803 + }, + { + "start": 8967.42, + "end": 8970.86, + "probability": 0.9048 + }, + { + "start": 8971.54, + "end": 8972.32, + "probability": 0.7075 + }, + { + "start": 8972.9, + "end": 8973.8, + "probability": 0.5686 + }, + { + "start": 8990.98, + "end": 8991.5, + "probability": 0.1669 + }, + { + "start": 8991.5, + "end": 8993.74, + "probability": 0.5971 + }, + { + "start": 8993.86, + "end": 8996.7, + "probability": 0.623 + }, + { + "start": 8997.44, + "end": 8997.58, + "probability": 0.433 + }, + { + "start": 8998.92, + "end": 9002.18, + "probability": 0.8479 + }, + { + "start": 9002.78, + "end": 9005.56, + "probability": 0.9956 + }, + { + "start": 9007.08, + "end": 9007.72, + "probability": 0.7447 + }, + { + "start": 9007.86, + "end": 9012.24, + "probability": 0.9785 + }, + { + "start": 9012.96, + "end": 9016.5, + "probability": 0.8948 + }, + { + "start": 9016.7, + "end": 9019.74, + "probability": 0.9647 + }, + { + "start": 9020.48, + "end": 9023.82, + "probability": 0.6713 + }, + { + "start": 9024.92, + "end": 9028.1, + "probability": 0.7429 + }, + { + "start": 9028.82, + "end": 9029.56, + "probability": 0.6403 + }, + { + "start": 9030.42, + "end": 9035.16, + "probability": 0.9943 + }, + { + "start": 9035.72, + "end": 9036.8, + "probability": 0.7793 + }, + { + "start": 9037.42, + "end": 9043.38, + "probability": 0.4646 + }, + { + "start": 9045.86, + "end": 9051.04, + "probability": 0.9603 + }, + { + "start": 9051.58, + "end": 9052.62, + "probability": 0.9698 + }, + { + "start": 9053.66, + "end": 9058.6, + "probability": 0.9928 + }, + { + "start": 9059.04, + "end": 9060.54, + "probability": 0.7834 + }, + { + "start": 9060.54, + "end": 9066.02, + "probability": 0.904 + }, + { + "start": 9066.88, + "end": 9071.45, + "probability": 0.955 + }, + { + "start": 9073.5, + "end": 9080.18, + "probability": 0.9907 + }, + { + "start": 9081.0, + "end": 9087.38, + "probability": 0.7258 + }, + { + "start": 9092.04, + "end": 9096.12, + "probability": 0.9962 + }, + { + "start": 9096.92, + "end": 9099.26, + "probability": 0.9368 + }, + { + "start": 9105.68, + "end": 9107.6, + "probability": 0.9617 + }, + { + "start": 9109.1, + "end": 9111.7, + "probability": 0.9055 + }, + { + "start": 9112.98, + "end": 9119.82, + "probability": 0.9541 + }, + { + "start": 9121.04, + "end": 9125.86, + "probability": 0.4143 + }, + { + "start": 9126.38, + "end": 9128.09, + "probability": 0.9762 + }, + { + "start": 9128.8, + "end": 9130.7, + "probability": 0.5335 + }, + { + "start": 9132.2, + "end": 9133.98, + "probability": 0.6065 + }, + { + "start": 9135.14, + "end": 9136.26, + "probability": 0.9942 + }, + { + "start": 9139.41, + "end": 9142.03, + "probability": 0.9052 + }, + { + "start": 9142.03, + "end": 9146.41, + "probability": 0.9988 + }, + { + "start": 9146.98, + "end": 9151.82, + "probability": 0.9643 + }, + { + "start": 9153.37, + "end": 9156.67, + "probability": 0.6627 + }, + { + "start": 9157.39, + "end": 9161.04, + "probability": 0.9969 + }, + { + "start": 9161.87, + "end": 9163.15, + "probability": 0.9558 + }, + { + "start": 9163.95, + "end": 9165.43, + "probability": 0.9846 + }, + { + "start": 9165.67, + "end": 9169.59, + "probability": 0.9972 + }, + { + "start": 9170.07, + "end": 9171.69, + "probability": 0.9133 + }, + { + "start": 9173.27, + "end": 9176.29, + "probability": 0.9929 + }, + { + "start": 9176.29, + "end": 9180.67, + "probability": 0.973 + }, + { + "start": 9181.13, + "end": 9184.71, + "probability": 0.7963 + }, + { + "start": 9184.77, + "end": 9185.73, + "probability": 0.8465 + }, + { + "start": 9186.29, + "end": 9191.29, + "probability": 0.9878 + }, + { + "start": 9192.33, + "end": 9195.89, + "probability": 0.8531 + }, + { + "start": 9196.91, + "end": 9198.47, + "probability": 0.9954 + }, + { + "start": 9199.69, + "end": 9203.69, + "probability": 0.9556 + }, + { + "start": 9204.73, + "end": 9207.17, + "probability": 0.9966 + }, + { + "start": 9207.33, + "end": 9211.07, + "probability": 0.9899 + }, + { + "start": 9211.57, + "end": 9213.27, + "probability": 0.3752 + }, + { + "start": 9214.63, + "end": 9219.23, + "probability": 0.9912 + }, + { + "start": 9219.87, + "end": 9221.51, + "probability": 0.8687 + }, + { + "start": 9222.27, + "end": 9222.87, + "probability": 0.2602 + }, + { + "start": 9223.14, + "end": 9227.35, + "probability": 0.9443 + }, + { + "start": 9228.29, + "end": 9232.85, + "probability": 0.9965 + }, + { + "start": 9233.89, + "end": 9238.65, + "probability": 0.999 + }, + { + "start": 9239.59, + "end": 9242.01, + "probability": 0.7458 + }, + { + "start": 9242.67, + "end": 9243.89, + "probability": 0.9603 + }, + { + "start": 9245.03, + "end": 9248.47, + "probability": 0.7379 + }, + { + "start": 9249.41, + "end": 9250.65, + "probability": 0.7154 + }, + { + "start": 9251.39, + "end": 9253.01, + "probability": 0.9883 + }, + { + "start": 9254.01, + "end": 9256.17, + "probability": 0.9783 + }, + { + "start": 9256.65, + "end": 9257.19, + "probability": 0.4985 + }, + { + "start": 9257.19, + "end": 9263.79, + "probability": 0.9228 + }, + { + "start": 9265.09, + "end": 9268.29, + "probability": 0.7847 + }, + { + "start": 9270.19, + "end": 9272.29, + "probability": 0.9362 + }, + { + "start": 9273.69, + "end": 9277.47, + "probability": 0.994 + }, + { + "start": 9278.61, + "end": 9280.39, + "probability": 0.7472 + }, + { + "start": 9281.07, + "end": 9283.83, + "probability": 0.9076 + }, + { + "start": 9284.57, + "end": 9286.75, + "probability": 0.9225 + }, + { + "start": 9287.37, + "end": 9288.21, + "probability": 0.7166 + }, + { + "start": 9289.23, + "end": 9290.31, + "probability": 0.987 + }, + { + "start": 9291.01, + "end": 9296.33, + "probability": 0.9328 + }, + { + "start": 9296.43, + "end": 9297.83, + "probability": 0.7764 + }, + { + "start": 9298.43, + "end": 9300.29, + "probability": 0.9559 + }, + { + "start": 9301.35, + "end": 9302.12, + "probability": 0.7026 + }, + { + "start": 9302.64, + "end": 9306.36, + "probability": 0.9972 + }, + { + "start": 9306.67, + "end": 9309.43, + "probability": 0.9957 + }, + { + "start": 9311.03, + "end": 9312.61, + "probability": 0.9474 + }, + { + "start": 9313.33, + "end": 9314.93, + "probability": 0.9929 + }, + { + "start": 9316.37, + "end": 9319.13, + "probability": 0.8637 + }, + { + "start": 9320.21, + "end": 9321.99, + "probability": 0.9938 + }, + { + "start": 9322.69, + "end": 9324.13, + "probability": 0.8849 + }, + { + "start": 9324.89, + "end": 9327.99, + "probability": 0.9901 + }, + { + "start": 9328.61, + "end": 9328.83, + "probability": 0.7952 + }, + { + "start": 9330.87, + "end": 9332.33, + "probability": 0.6486 + }, + { + "start": 9332.37, + "end": 9334.89, + "probability": 0.5578 + }, + { + "start": 9335.17, + "end": 9336.25, + "probability": 0.6096 + }, + { + "start": 9336.37, + "end": 9341.07, + "probability": 0.7517 + }, + { + "start": 9341.31, + "end": 9344.37, + "probability": 0.9443 + }, + { + "start": 9345.15, + "end": 9348.91, + "probability": 0.8042 + }, + { + "start": 9349.45, + "end": 9351.97, + "probability": 0.6223 + }, + { + "start": 9352.01, + "end": 9352.61, + "probability": 0.704 + }, + { + "start": 9352.69, + "end": 9353.31, + "probability": 0.7452 + }, + { + "start": 9354.45, + "end": 9358.37, + "probability": 0.0498 + }, + { + "start": 9370.25, + "end": 9373.91, + "probability": 0.5255 + }, + { + "start": 9374.31, + "end": 9376.5, + "probability": 0.6478 + }, + { + "start": 9377.17, + "end": 9379.45, + "probability": 0.9961 + }, + { + "start": 9379.51, + "end": 9379.97, + "probability": 0.453 + }, + { + "start": 9380.01, + "end": 9380.75, + "probability": 0.7088 + }, + { + "start": 9399.74, + "end": 9405.65, + "probability": 0.4454 + }, + { + "start": 9406.73, + "end": 9406.87, + "probability": 0.1029 + }, + { + "start": 9406.87, + "end": 9406.87, + "probability": 0.0659 + }, + { + "start": 9406.87, + "end": 9406.87, + "probability": 0.021 + }, + { + "start": 9406.87, + "end": 9406.87, + "probability": 0.1919 + }, + { + "start": 9406.87, + "end": 9408.13, + "probability": 0.8127 + }, + { + "start": 9408.87, + "end": 9411.37, + "probability": 0.975 + }, + { + "start": 9412.79, + "end": 9415.04, + "probability": 0.988 + }, + { + "start": 9415.61, + "end": 9418.59, + "probability": 0.8516 + }, + { + "start": 9419.41, + "end": 9420.29, + "probability": 0.8783 + }, + { + "start": 9421.31, + "end": 9424.93, + "probability": 0.8517 + }, + { + "start": 9426.71, + "end": 9428.09, + "probability": 0.0565 + }, + { + "start": 9429.03, + "end": 9432.09, + "probability": 0.8707 + }, + { + "start": 9433.19, + "end": 9435.95, + "probability": 0.8274 + }, + { + "start": 9451.11, + "end": 9452.29, + "probability": 0.5282 + }, + { + "start": 9452.85, + "end": 9453.37, + "probability": 0.5916 + }, + { + "start": 9454.17, + "end": 9458.89, + "probability": 0.9725 + }, + { + "start": 9459.55, + "end": 9462.87, + "probability": 0.8687 + }, + { + "start": 9463.97, + "end": 9464.63, + "probability": 0.8897 + }, + { + "start": 9465.39, + "end": 9468.19, + "probability": 0.9837 + }, + { + "start": 9469.37, + "end": 9475.15, + "probability": 0.9271 + }, + { + "start": 9475.87, + "end": 9478.17, + "probability": 0.9565 + }, + { + "start": 9479.23, + "end": 9482.23, + "probability": 0.9963 + }, + { + "start": 9483.11, + "end": 9485.01, + "probability": 0.9629 + }, + { + "start": 9485.19, + "end": 9488.91, + "probability": 0.6618 + }, + { + "start": 9490.15, + "end": 9490.85, + "probability": 0.6837 + }, + { + "start": 9492.39, + "end": 9494.71, + "probability": 0.9226 + }, + { + "start": 9496.55, + "end": 9500.53, + "probability": 0.8719 + }, + { + "start": 9501.47, + "end": 9504.97, + "probability": 0.9326 + }, + { + "start": 9505.49, + "end": 9507.63, + "probability": 0.817 + }, + { + "start": 9508.03, + "end": 9509.63, + "probability": 0.9681 + }, + { + "start": 9510.51, + "end": 9515.89, + "probability": 0.9871 + }, + { + "start": 9517.43, + "end": 9518.92, + "probability": 0.9978 + }, + { + "start": 9520.41, + "end": 9523.19, + "probability": 0.8615 + }, + { + "start": 9524.05, + "end": 9525.63, + "probability": 0.5493 + }, + { + "start": 9526.23, + "end": 9529.27, + "probability": 0.9835 + }, + { + "start": 9529.89, + "end": 9533.27, + "probability": 0.9956 + }, + { + "start": 9533.73, + "end": 9535.29, + "probability": 0.7885 + }, + { + "start": 9536.25, + "end": 9539.29, + "probability": 0.7426 + }, + { + "start": 9539.49, + "end": 9546.63, + "probability": 0.837 + }, + { + "start": 9547.17, + "end": 9551.57, + "probability": 0.9286 + }, + { + "start": 9552.17, + "end": 9555.65, + "probability": 0.9994 + }, + { + "start": 9558.21, + "end": 9560.13, + "probability": 0.2213 + }, + { + "start": 9560.21, + "end": 9560.23, + "probability": 0.0114 + }, + { + "start": 9560.49, + "end": 9563.21, + "probability": 0.6137 + }, + { + "start": 9563.29, + "end": 9564.2, + "probability": 0.5015 + }, + { + "start": 9566.09, + "end": 9567.87, + "probability": 0.8283 + }, + { + "start": 9568.51, + "end": 9569.73, + "probability": 0.8552 + }, + { + "start": 9570.61, + "end": 9573.09, + "probability": 0.8032 + }, + { + "start": 9573.13, + "end": 9574.81, + "probability": 0.9808 + }, + { + "start": 9575.51, + "end": 9576.69, + "probability": 0.6236 + }, + { + "start": 9576.85, + "end": 9577.45, + "probability": 0.8353 + }, + { + "start": 9577.89, + "end": 9580.71, + "probability": 0.7891 + }, + { + "start": 9580.71, + "end": 9584.47, + "probability": 0.9828 + }, + { + "start": 9584.89, + "end": 9586.87, + "probability": 0.83 + }, + { + "start": 9586.95, + "end": 9587.23, + "probability": 0.7003 + }, + { + "start": 9587.75, + "end": 9588.17, + "probability": 0.7243 + }, + { + "start": 9588.59, + "end": 9594.07, + "probability": 0.9287 + }, + { + "start": 9594.53, + "end": 9595.85, + "probability": 0.8983 + }, + { + "start": 9596.61, + "end": 9598.33, + "probability": 0.9326 + }, + { + "start": 9598.57, + "end": 9603.33, + "probability": 0.8971 + }, + { + "start": 9603.87, + "end": 9605.15, + "probability": 0.8013 + }, + { + "start": 9605.27, + "end": 9609.13, + "probability": 0.968 + }, + { + "start": 9609.57, + "end": 9612.27, + "probability": 0.8384 + }, + { + "start": 9612.69, + "end": 9614.69, + "probability": 0.9651 + }, + { + "start": 9615.19, + "end": 9618.07, + "probability": 0.6847 + }, + { + "start": 9618.51, + "end": 9620.61, + "probability": 0.9123 + }, + { + "start": 9620.97, + "end": 9622.23, + "probability": 0.9099 + }, + { + "start": 9622.75, + "end": 9624.03, + "probability": 0.9788 + }, + { + "start": 9625.63, + "end": 9627.55, + "probability": 0.5908 + }, + { + "start": 9627.55, + "end": 9629.89, + "probability": 0.9485 + }, + { + "start": 9630.43, + "end": 9634.63, + "probability": 0.9976 + }, + { + "start": 9634.99, + "end": 9637.77, + "probability": 0.9784 + }, + { + "start": 9638.43, + "end": 9641.45, + "probability": 0.9449 + }, + { + "start": 9641.45, + "end": 9646.75, + "probability": 0.8707 + }, + { + "start": 9647.05, + "end": 9653.95, + "probability": 0.9858 + }, + { + "start": 9654.69, + "end": 9655.33, + "probability": 0.598 + }, + { + "start": 9656.11, + "end": 9657.81, + "probability": 0.8113 + }, + { + "start": 9658.73, + "end": 9658.89, + "probability": 0.811 + }, + { + "start": 9669.05, + "end": 9669.65, + "probability": 0.7595 + }, + { + "start": 9670.49, + "end": 9671.13, + "probability": 0.8423 + }, + { + "start": 9671.65, + "end": 9672.23, + "probability": 0.7477 + }, + { + "start": 9672.93, + "end": 9673.65, + "probability": 0.7743 + }, + { + "start": 9674.37, + "end": 9675.17, + "probability": 0.9592 + }, + { + "start": 9675.31, + "end": 9675.49, + "probability": 0.5893 + }, + { + "start": 9675.97, + "end": 9676.91, + "probability": 0.5415 + }, + { + "start": 9677.07, + "end": 9679.07, + "probability": 0.9685 + }, + { + "start": 9679.45, + "end": 9680.79, + "probability": 0.9116 + }, + { + "start": 9680.83, + "end": 9681.9, + "probability": 0.9482 + }, + { + "start": 9682.25, + "end": 9683.85, + "probability": 0.9189 + }, + { + "start": 9683.91, + "end": 9685.29, + "probability": 0.682 + }, + { + "start": 9685.99, + "end": 9688.21, + "probability": 0.8812 + }, + { + "start": 9688.83, + "end": 9689.89, + "probability": 0.6698 + }, + { + "start": 9690.69, + "end": 9690.91, + "probability": 0.357 + }, + { + "start": 9691.23, + "end": 9691.79, + "probability": 0.7799 + }, + { + "start": 9692.17, + "end": 9693.91, + "probability": 0.7946 + }, + { + "start": 9694.01, + "end": 9694.71, + "probability": 0.8041 + }, + { + "start": 9694.93, + "end": 9695.79, + "probability": 0.9786 + }, + { + "start": 9695.95, + "end": 9697.65, + "probability": 0.9747 + }, + { + "start": 9698.73, + "end": 9699.89, + "probability": 0.8193 + }, + { + "start": 9700.11, + "end": 9701.01, + "probability": 0.9482 + }, + { + "start": 9701.05, + "end": 9703.05, + "probability": 0.7709 + }, + { + "start": 9703.11, + "end": 9703.85, + "probability": 0.6271 + }, + { + "start": 9703.97, + "end": 9704.85, + "probability": 0.8411 + }, + { + "start": 9706.01, + "end": 9707.15, + "probability": 0.7119 + }, + { + "start": 9707.29, + "end": 9708.11, + "probability": 0.9548 + }, + { + "start": 9708.59, + "end": 9714.27, + "probability": 0.9895 + }, + { + "start": 9714.75, + "end": 9718.13, + "probability": 0.7692 + }, + { + "start": 9718.73, + "end": 9721.39, + "probability": 0.9876 + }, + { + "start": 9721.47, + "end": 9724.21, + "probability": 0.9217 + }, + { + "start": 9724.65, + "end": 9727.29, + "probability": 0.9564 + }, + { + "start": 9728.13, + "end": 9730.31, + "probability": 0.8463 + }, + { + "start": 9730.45, + "end": 9732.76, + "probability": 0.2576 + }, + { + "start": 9733.01, + "end": 9734.45, + "probability": 0.897 + }, + { + "start": 9735.07, + "end": 9735.75, + "probability": 0.618 + }, + { + "start": 9736.13, + "end": 9740.73, + "probability": 0.7866 + }, + { + "start": 9741.57, + "end": 9743.9, + "probability": 0.5478 + }, + { + "start": 9744.21, + "end": 9745.01, + "probability": 0.6747 + }, + { + "start": 9745.39, + "end": 9747.33, + "probability": 0.8579 + }, + { + "start": 9747.49, + "end": 9749.85, + "probability": 0.9955 + }, + { + "start": 9750.19, + "end": 9751.59, + "probability": 0.2907 + }, + { + "start": 9751.59, + "end": 9752.83, + "probability": 0.8365 + }, + { + "start": 9752.83, + "end": 9755.07, + "probability": 0.7234 + }, + { + "start": 9755.25, + "end": 9756.45, + "probability": 0.7851 + }, + { + "start": 9756.87, + "end": 9758.57, + "probability": 0.8653 + }, + { + "start": 9758.95, + "end": 9760.73, + "probability": 0.9993 + }, + { + "start": 9761.69, + "end": 9763.53, + "probability": 0.9072 + }, + { + "start": 9764.45, + "end": 9768.03, + "probability": 0.8472 + }, + { + "start": 9768.75, + "end": 9773.37, + "probability": 0.7802 + }, + { + "start": 9774.07, + "end": 9778.17, + "probability": 0.9753 + }, + { + "start": 9778.45, + "end": 9783.33, + "probability": 0.9406 + }, + { + "start": 9783.39, + "end": 9786.51, + "probability": 0.9499 + }, + { + "start": 9786.69, + "end": 9787.79, + "probability": 0.7733 + }, + { + "start": 9788.27, + "end": 9792.33, + "probability": 0.9858 + }, + { + "start": 9792.95, + "end": 9798.71, + "probability": 0.9825 + }, + { + "start": 9799.25, + "end": 9799.76, + "probability": 0.675 + }, + { + "start": 9799.95, + "end": 9801.01, + "probability": 0.5453 + }, + { + "start": 9801.11, + "end": 9801.57, + "probability": 0.8572 + }, + { + "start": 9801.65, + "end": 9802.63, + "probability": 0.9667 + }, + { + "start": 9803.13, + "end": 9804.73, + "probability": 0.676 + }, + { + "start": 9807.11, + "end": 9809.21, + "probability": 0.9883 + }, + { + "start": 9810.17, + "end": 9810.24, + "probability": 0.8501 + }, + { + "start": 9814.39, + "end": 9819.89, + "probability": 0.986 + }, + { + "start": 9820.65, + "end": 9822.23, + "probability": 0.657 + }, + { + "start": 9822.29, + "end": 9826.21, + "probability": 0.9725 + }, + { + "start": 9826.77, + "end": 9828.15, + "probability": 0.7529 + }, + { + "start": 9828.19, + "end": 9828.67, + "probability": 0.6272 + }, + { + "start": 9829.01, + "end": 9832.71, + "probability": 0.9135 + }, + { + "start": 9833.41, + "end": 9834.01, + "probability": 0.7529 + }, + { + "start": 9834.63, + "end": 9836.39, + "probability": 0.9531 + }, + { + "start": 9837.19, + "end": 9838.05, + "probability": 0.992 + }, + { + "start": 9838.57, + "end": 9842.61, + "probability": 0.9813 + }, + { + "start": 9843.11, + "end": 9845.63, + "probability": 0.978 + }, + { + "start": 9846.57, + "end": 9852.95, + "probability": 0.9951 + }, + { + "start": 9852.99, + "end": 9854.87, + "probability": 0.6206 + }, + { + "start": 9855.63, + "end": 9856.79, + "probability": 0.8453 + }, + { + "start": 9857.43, + "end": 9860.35, + "probability": 0.9854 + }, + { + "start": 9860.83, + "end": 9863.91, + "probability": 0.9888 + }, + { + "start": 9864.47, + "end": 9868.29, + "probability": 0.9883 + }, + { + "start": 9868.29, + "end": 9871.87, + "probability": 0.9906 + }, + { + "start": 9872.11, + "end": 9873.01, + "probability": 0.7479 + }, + { + "start": 9873.45, + "end": 9874.54, + "probability": 0.8126 + }, + { + "start": 9874.87, + "end": 9875.41, + "probability": 0.3057 + }, + { + "start": 9875.45, + "end": 9878.51, + "probability": 0.9706 + }, + { + "start": 9879.01, + "end": 9879.29, + "probability": 0.9073 + }, + { + "start": 9879.61, + "end": 9879.91, + "probability": 0.914 + }, + { + "start": 9880.03, + "end": 9881.09, + "probability": 0.9761 + }, + { + "start": 9881.49, + "end": 9885.93, + "probability": 0.9775 + }, + { + "start": 9886.55, + "end": 9887.27, + "probability": 0.8586 + }, + { + "start": 9887.47, + "end": 9888.03, + "probability": 0.7989 + }, + { + "start": 9888.07, + "end": 9890.05, + "probability": 0.8224 + }, + { + "start": 9890.69, + "end": 9893.89, + "probability": 0.9827 + }, + { + "start": 9893.93, + "end": 9896.59, + "probability": 0.9723 + }, + { + "start": 9897.11, + "end": 9898.43, + "probability": 0.9525 + }, + { + "start": 9898.95, + "end": 9905.35, + "probability": 0.9946 + }, + { + "start": 9906.03, + "end": 9910.85, + "probability": 0.9881 + }, + { + "start": 9910.99, + "end": 9911.89, + "probability": 0.9343 + }, + { + "start": 9912.15, + "end": 9912.73, + "probability": 0.9757 + }, + { + "start": 9913.23, + "end": 9913.79, + "probability": 0.5045 + }, + { + "start": 9914.25, + "end": 9915.93, + "probability": 0.6498 + }, + { + "start": 9915.95, + "end": 9918.87, + "probability": 0.6631 + }, + { + "start": 9920.15, + "end": 9922.43, + "probability": 0.8036 + }, + { + "start": 9922.53, + "end": 9924.55, + "probability": 0.8984 + }, + { + "start": 9926.09, + "end": 9927.55, + "probability": 0.9299 + }, + { + "start": 9928.13, + "end": 9929.97, + "probability": 0.727 + }, + { + "start": 9930.69, + "end": 9932.95, + "probability": 0.8456 + }, + { + "start": 9933.53, + "end": 9939.49, + "probability": 0.6667 + } + ], + "segments_count": 3794, + "words_count": 18358, + "avg_words_per_segment": 4.8387, + "avg_segment_duration": 1.8731, + "avg_words_per_minute": 109.0977, + "plenum_id": "63981", + "duration": 10096.27, + "title": null, + "plenum_date": "2017-05-15" +} \ No newline at end of file