diff --git "a/110546/metadata.json" "b/110546/metadata.json" new file mode 100644--- /dev/null +++ "b/110546/metadata.json" @@ -0,0 +1,9107 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "110546", + "quality_score": 0.9536, + "per_segment_quality_scores": [ + { + "start": 59.6, + "end": 60.62, + "probability": 0.6597 + }, + { + "start": 60.66, + "end": 63.4, + "probability": 0.5532 + }, + { + "start": 63.76, + "end": 69.66, + "probability": 0.9326 + }, + { + "start": 70.36, + "end": 72.76, + "probability": 0.9412 + }, + { + "start": 73.22, + "end": 74.44, + "probability": 0.9085 + }, + { + "start": 74.52, + "end": 75.58, + "probability": 0.7999 + }, + { + "start": 75.7, + "end": 78.68, + "probability": 0.9965 + }, + { + "start": 78.68, + "end": 80.94, + "probability": 0.9914 + }, + { + "start": 81.52, + "end": 83.62, + "probability": 0.9853 + }, + { + "start": 84.04, + "end": 86.48, + "probability": 0.885 + }, + { + "start": 86.58, + "end": 88.37, + "probability": 0.3701 + }, + { + "start": 88.94, + "end": 91.48, + "probability": 0.9953 + }, + { + "start": 91.68, + "end": 91.88, + "probability": 0.8215 + }, + { + "start": 94.1, + "end": 94.82, + "probability": 0.8721 + }, + { + "start": 96.82, + "end": 98.32, + "probability": 0.8244 + }, + { + "start": 99.22, + "end": 105.24, + "probability": 0.9797 + }, + { + "start": 106.08, + "end": 106.08, + "probability": 0.3974 + }, + { + "start": 106.08, + "end": 108.88, + "probability": 0.7858 + }, + { + "start": 109.74, + "end": 114.54, + "probability": 0.9905 + }, + { + "start": 115.18, + "end": 119.82, + "probability": 0.9957 + }, + { + "start": 120.92, + "end": 125.38, + "probability": 0.9468 + }, + { + "start": 126.04, + "end": 129.04, + "probability": 0.9719 + }, + { + "start": 129.5, + "end": 132.62, + "probability": 0.9896 + }, + { + "start": 133.84, + "end": 138.6, + "probability": 0.9478 + }, + { + "start": 138.8, + "end": 143.06, + "probability": 0.9951 + }, + { + "start": 143.9, + "end": 148.41, + "probability": 0.9965 + }, + { + "start": 148.48, + "end": 151.94, + "probability": 0.9707 + }, + { + "start": 152.96, + "end": 156.62, + "probability": 0.9628 + }, + { + "start": 157.3, + "end": 162.08, + "probability": 0.9311 + }, + { + "start": 162.6, + "end": 165.8, + "probability": 0.9916 + }, + { + "start": 166.68, + "end": 168.28, + "probability": 0.9772 + }, + { + "start": 169.36, + "end": 173.96, + "probability": 0.9386 + }, + { + "start": 174.72, + "end": 177.32, + "probability": 0.9929 + }, + { + "start": 178.08, + "end": 180.04, + "probability": 0.8784 + }, + { + "start": 180.82, + "end": 182.5, + "probability": 0.9864 + }, + { + "start": 183.1, + "end": 188.32, + "probability": 0.9956 + }, + { + "start": 188.84, + "end": 191.58, + "probability": 0.9958 + }, + { + "start": 192.52, + "end": 196.84, + "probability": 0.9926 + }, + { + "start": 197.56, + "end": 199.4, + "probability": 0.9885 + }, + { + "start": 200.22, + "end": 209.02, + "probability": 0.9745 + }, + { + "start": 210.22, + "end": 210.96, + "probability": 0.3557 + }, + { + "start": 213.24, + "end": 216.18, + "probability": 0.8826 + }, + { + "start": 233.48, + "end": 235.84, + "probability": 0.701 + }, + { + "start": 241.78, + "end": 245.48, + "probability": 0.996 + }, + { + "start": 246.46, + "end": 254.24, + "probability": 0.9979 + }, + { + "start": 255.4, + "end": 259.84, + "probability": 0.9686 + }, + { + "start": 261.44, + "end": 263.72, + "probability": 0.862 + }, + { + "start": 264.34, + "end": 269.86, + "probability": 0.9984 + }, + { + "start": 271.4, + "end": 274.88, + "probability": 0.9963 + }, + { + "start": 275.74, + "end": 276.96, + "probability": 0.8651 + }, + { + "start": 278.5, + "end": 279.86, + "probability": 0.975 + }, + { + "start": 280.48, + "end": 281.78, + "probability": 0.9424 + }, + { + "start": 282.46, + "end": 285.78, + "probability": 0.8108 + }, + { + "start": 286.38, + "end": 291.18, + "probability": 0.9334 + }, + { + "start": 291.98, + "end": 293.48, + "probability": 0.704 + }, + { + "start": 294.6, + "end": 297.32, + "probability": 0.9914 + }, + { + "start": 298.78, + "end": 301.08, + "probability": 0.9014 + }, + { + "start": 301.66, + "end": 306.14, + "probability": 0.9747 + }, + { + "start": 306.68, + "end": 307.24, + "probability": 0.8032 + }, + { + "start": 308.08, + "end": 314.72, + "probability": 0.9591 + }, + { + "start": 315.5, + "end": 316.52, + "probability": 0.7183 + }, + { + "start": 317.16, + "end": 320.2, + "probability": 0.8378 + }, + { + "start": 321.04, + "end": 322.12, + "probability": 0.9907 + }, + { + "start": 322.7, + "end": 325.0, + "probability": 0.9876 + }, + { + "start": 325.54, + "end": 326.68, + "probability": 0.9947 + }, + { + "start": 327.36, + "end": 329.0, + "probability": 0.9567 + }, + { + "start": 330.98, + "end": 332.52, + "probability": 0.9624 + }, + { + "start": 333.84, + "end": 334.98, + "probability": 0.9563 + }, + { + "start": 336.18, + "end": 338.06, + "probability": 0.9598 + }, + { + "start": 338.66, + "end": 345.7, + "probability": 0.9796 + }, + { + "start": 346.6, + "end": 349.32, + "probability": 0.9412 + }, + { + "start": 349.74, + "end": 354.52, + "probability": 0.9884 + }, + { + "start": 355.56, + "end": 360.04, + "probability": 0.9978 + }, + { + "start": 360.06, + "end": 364.38, + "probability": 0.9651 + }, + { + "start": 366.56, + "end": 368.76, + "probability": 0.9973 + }, + { + "start": 369.28, + "end": 372.0, + "probability": 0.9983 + }, + { + "start": 372.52, + "end": 375.16, + "probability": 0.9177 + }, + { + "start": 378.12, + "end": 380.72, + "probability": 0.3599 + }, + { + "start": 382.22, + "end": 386.46, + "probability": 0.9812 + }, + { + "start": 387.36, + "end": 390.06, + "probability": 0.977 + }, + { + "start": 391.08, + "end": 391.52, + "probability": 0.5245 + }, + { + "start": 392.24, + "end": 393.9, + "probability": 0.9917 + }, + { + "start": 394.82, + "end": 398.2, + "probability": 0.9839 + }, + { + "start": 399.18, + "end": 402.28, + "probability": 0.9915 + }, + { + "start": 403.32, + "end": 404.66, + "probability": 0.987 + }, + { + "start": 405.48, + "end": 408.66, + "probability": 0.9982 + }, + { + "start": 411.04, + "end": 412.32, + "probability": 0.9796 + }, + { + "start": 413.36, + "end": 417.74, + "probability": 0.9944 + }, + { + "start": 418.28, + "end": 419.9, + "probability": 0.9927 + }, + { + "start": 420.6, + "end": 423.06, + "probability": 0.9259 + }, + { + "start": 423.86, + "end": 425.58, + "probability": 0.9909 + }, + { + "start": 426.16, + "end": 432.52, + "probability": 0.9939 + }, + { + "start": 433.36, + "end": 435.98, + "probability": 0.943 + }, + { + "start": 436.66, + "end": 440.68, + "probability": 0.9899 + }, + { + "start": 441.5, + "end": 444.64, + "probability": 0.9912 + }, + { + "start": 444.64, + "end": 448.48, + "probability": 0.9989 + }, + { + "start": 451.84, + "end": 455.86, + "probability": 0.993 + }, + { + "start": 456.82, + "end": 461.1, + "probability": 0.9961 + }, + { + "start": 462.42, + "end": 466.98, + "probability": 0.9576 + }, + { + "start": 468.16, + "end": 470.24, + "probability": 0.981 + }, + { + "start": 470.78, + "end": 476.96, + "probability": 0.9858 + }, + { + "start": 477.82, + "end": 478.84, + "probability": 0.9398 + }, + { + "start": 479.76, + "end": 481.66, + "probability": 0.9902 + }, + { + "start": 482.64, + "end": 484.14, + "probability": 0.8449 + }, + { + "start": 484.86, + "end": 487.19, + "probability": 0.999 + }, + { + "start": 488.32, + "end": 493.64, + "probability": 0.9828 + }, + { + "start": 493.64, + "end": 498.2, + "probability": 0.9979 + }, + { + "start": 499.66, + "end": 500.1, + "probability": 0.7756 + }, + { + "start": 501.32, + "end": 505.38, + "probability": 0.9909 + }, + { + "start": 506.12, + "end": 509.68, + "probability": 0.9945 + }, + { + "start": 510.48, + "end": 512.38, + "probability": 0.9956 + }, + { + "start": 512.98, + "end": 513.9, + "probability": 0.8072 + }, + { + "start": 514.68, + "end": 517.36, + "probability": 0.9939 + }, + { + "start": 518.38, + "end": 522.22, + "probability": 0.9971 + }, + { + "start": 523.44, + "end": 523.82, + "probability": 0.7881 + }, + { + "start": 524.72, + "end": 525.1, + "probability": 0.6899 + }, + { + "start": 526.24, + "end": 527.06, + "probability": 0.7013 + }, + { + "start": 527.9, + "end": 528.64, + "probability": 0.8593 + }, + { + "start": 529.48, + "end": 530.28, + "probability": 0.9526 + }, + { + "start": 531.66, + "end": 532.72, + "probability": 0.972 + }, + { + "start": 533.44, + "end": 536.58, + "probability": 0.9857 + }, + { + "start": 537.56, + "end": 543.74, + "probability": 0.9985 + }, + { + "start": 545.08, + "end": 548.58, + "probability": 0.9758 + }, + { + "start": 549.26, + "end": 549.88, + "probability": 0.8285 + }, + { + "start": 550.62, + "end": 551.06, + "probability": 0.6604 + }, + { + "start": 551.78, + "end": 552.16, + "probability": 0.7414 + }, + { + "start": 552.48, + "end": 553.46, + "probability": 0.879 + }, + { + "start": 553.88, + "end": 557.92, + "probability": 0.6397 + }, + { + "start": 559.08, + "end": 560.08, + "probability": 0.9895 + }, + { + "start": 560.8, + "end": 561.74, + "probability": 0.9782 + }, + { + "start": 562.64, + "end": 563.7, + "probability": 0.9588 + }, + { + "start": 564.32, + "end": 565.6, + "probability": 0.9813 + }, + { + "start": 566.34, + "end": 568.86, + "probability": 0.9861 + }, + { + "start": 569.42, + "end": 573.12, + "probability": 0.9436 + }, + { + "start": 574.3, + "end": 577.92, + "probability": 0.9819 + }, + { + "start": 579.24, + "end": 582.66, + "probability": 0.9734 + }, + { + "start": 583.5, + "end": 584.9, + "probability": 0.6989 + }, + { + "start": 585.54, + "end": 589.34, + "probability": 0.9108 + }, + { + "start": 590.2, + "end": 591.3, + "probability": 0.8354 + }, + { + "start": 591.9, + "end": 594.7, + "probability": 0.9756 + }, + { + "start": 595.3, + "end": 598.9, + "probability": 0.9233 + }, + { + "start": 599.44, + "end": 600.7, + "probability": 0.9606 + }, + { + "start": 601.7, + "end": 603.48, + "probability": 0.9884 + }, + { + "start": 604.1, + "end": 605.4, + "probability": 0.8489 + }, + { + "start": 606.44, + "end": 608.0, + "probability": 0.9454 + }, + { + "start": 608.96, + "end": 609.96, + "probability": 0.897 + }, + { + "start": 610.72, + "end": 612.14, + "probability": 0.9512 + }, + { + "start": 612.7, + "end": 613.08, + "probability": 0.958 + }, + { + "start": 613.6, + "end": 615.8, + "probability": 0.9865 + }, + { + "start": 616.48, + "end": 619.54, + "probability": 0.9933 + }, + { + "start": 620.16, + "end": 621.54, + "probability": 0.9932 + }, + { + "start": 622.1, + "end": 624.52, + "probability": 0.9892 + }, + { + "start": 625.08, + "end": 626.16, + "probability": 0.9726 + }, + { + "start": 627.04, + "end": 628.8, + "probability": 0.7421 + }, + { + "start": 630.24, + "end": 631.06, + "probability": 0.9983 + }, + { + "start": 631.78, + "end": 633.14, + "probability": 0.9983 + }, + { + "start": 634.0, + "end": 634.92, + "probability": 0.6461 + }, + { + "start": 636.9, + "end": 639.22, + "probability": 0.9417 + }, + { + "start": 639.8, + "end": 640.74, + "probability": 0.9338 + }, + { + "start": 641.68, + "end": 643.14, + "probability": 0.7521 + }, + { + "start": 643.68, + "end": 649.74, + "probability": 0.9961 + }, + { + "start": 650.88, + "end": 651.52, + "probability": 0.8429 + }, + { + "start": 652.12, + "end": 655.0, + "probability": 0.9981 + }, + { + "start": 655.72, + "end": 657.18, + "probability": 0.9977 + }, + { + "start": 657.8, + "end": 660.32, + "probability": 0.9927 + }, + { + "start": 661.16, + "end": 664.64, + "probability": 0.9599 + }, + { + "start": 665.34, + "end": 666.52, + "probability": 0.9295 + }, + { + "start": 667.1, + "end": 672.64, + "probability": 0.9898 + }, + { + "start": 673.32, + "end": 674.2, + "probability": 0.8468 + }, + { + "start": 675.34, + "end": 679.48, + "probability": 0.6693 + }, + { + "start": 680.18, + "end": 682.72, + "probability": 0.8421 + }, + { + "start": 683.52, + "end": 686.46, + "probability": 0.9967 + }, + { + "start": 687.04, + "end": 688.1, + "probability": 0.988 + }, + { + "start": 688.64, + "end": 689.38, + "probability": 0.967 + }, + { + "start": 690.3, + "end": 694.86, + "probability": 0.8662 + }, + { + "start": 695.18, + "end": 695.38, + "probability": 0.8149 + }, + { + "start": 696.88, + "end": 699.22, + "probability": 0.9961 + }, + { + "start": 700.78, + "end": 702.14, + "probability": 0.9724 + }, + { + "start": 702.28, + "end": 704.82, + "probability": 0.7514 + }, + { + "start": 705.38, + "end": 707.08, + "probability": 0.825 + }, + { + "start": 707.56, + "end": 708.48, + "probability": 0.6652 + }, + { + "start": 709.9, + "end": 710.54, + "probability": 0.9315 + }, + { + "start": 713.38, + "end": 714.86, + "probability": 0.9795 + }, + { + "start": 715.14, + "end": 716.14, + "probability": 0.5368 + }, + { + "start": 716.54, + "end": 717.74, + "probability": 0.8799 + }, + { + "start": 717.8, + "end": 718.56, + "probability": 0.8474 + }, + { + "start": 718.6, + "end": 719.88, + "probability": 0.9708 + }, + { + "start": 720.56, + "end": 721.36, + "probability": 0.8482 + }, + { + "start": 721.92, + "end": 724.18, + "probability": 0.9732 + }, + { + "start": 749.86, + "end": 750.62, + "probability": 0.7688 + }, + { + "start": 750.94, + "end": 751.68, + "probability": 0.6379 + }, + { + "start": 752.67, + "end": 755.82, + "probability": 0.8901 + }, + { + "start": 756.84, + "end": 759.44, + "probability": 0.9733 + }, + { + "start": 760.92, + "end": 763.06, + "probability": 0.7881 + }, + { + "start": 764.02, + "end": 769.46, + "probability": 0.993 + }, + { + "start": 771.08, + "end": 773.1, + "probability": 0.9983 + }, + { + "start": 773.1, + "end": 777.58, + "probability": 0.9866 + }, + { + "start": 778.9, + "end": 785.3, + "probability": 0.9722 + }, + { + "start": 785.9, + "end": 789.49, + "probability": 0.9212 + }, + { + "start": 790.1, + "end": 793.12, + "probability": 0.7562 + }, + { + "start": 793.98, + "end": 797.86, + "probability": 0.9922 + }, + { + "start": 799.92, + "end": 804.8, + "probability": 0.9905 + }, + { + "start": 805.54, + "end": 807.86, + "probability": 0.6635 + }, + { + "start": 808.88, + "end": 810.56, + "probability": 0.7938 + }, + { + "start": 811.24, + "end": 815.4, + "probability": 0.9767 + }, + { + "start": 817.02, + "end": 822.64, + "probability": 0.97 + }, + { + "start": 822.64, + "end": 826.62, + "probability": 0.9902 + }, + { + "start": 827.54, + "end": 832.0, + "probability": 0.9976 + }, + { + "start": 832.64, + "end": 836.2, + "probability": 0.9952 + }, + { + "start": 836.9, + "end": 838.28, + "probability": 0.9948 + }, + { + "start": 839.92, + "end": 841.4, + "probability": 0.9991 + }, + { + "start": 842.34, + "end": 844.48, + "probability": 0.9977 + }, + { + "start": 845.12, + "end": 845.7, + "probability": 0.4714 + }, + { + "start": 846.54, + "end": 849.44, + "probability": 0.9866 + }, + { + "start": 849.44, + "end": 852.8, + "probability": 0.9836 + }, + { + "start": 853.82, + "end": 856.3, + "probability": 0.9704 + }, + { + "start": 856.92, + "end": 858.34, + "probability": 0.9471 + }, + { + "start": 880.06, + "end": 880.79, + "probability": 0.9408 + }, + { + "start": 881.86, + "end": 883.16, + "probability": 0.9989 + }, + { + "start": 883.9, + "end": 885.1, + "probability": 0.7993 + }, + { + "start": 886.08, + "end": 887.82, + "probability": 0.9797 + }, + { + "start": 888.74, + "end": 890.2, + "probability": 0.8443 + }, + { + "start": 891.38, + "end": 892.88, + "probability": 0.9872 + }, + { + "start": 893.74, + "end": 895.7, + "probability": 0.9586 + }, + { + "start": 896.64, + "end": 899.44, + "probability": 0.6243 + }, + { + "start": 900.86, + "end": 907.86, + "probability": 0.6265 + }, + { + "start": 907.86, + "end": 913.42, + "probability": 0.9603 + }, + { + "start": 914.54, + "end": 916.78, + "probability": 0.9633 + }, + { + "start": 917.72, + "end": 919.3, + "probability": 0.9674 + }, + { + "start": 920.02, + "end": 922.66, + "probability": 0.9756 + }, + { + "start": 923.76, + "end": 927.02, + "probability": 0.8517 + }, + { + "start": 928.16, + "end": 933.8, + "probability": 0.9925 + }, + { + "start": 934.48, + "end": 935.52, + "probability": 0.7961 + }, + { + "start": 937.08, + "end": 937.72, + "probability": 0.8925 + }, + { + "start": 938.26, + "end": 942.7, + "probability": 0.9531 + }, + { + "start": 943.74, + "end": 944.48, + "probability": 0.8247 + }, + { + "start": 945.6, + "end": 947.62, + "probability": 0.8606 + }, + { + "start": 948.54, + "end": 949.4, + "probability": 0.6757 + }, + { + "start": 950.22, + "end": 952.3, + "probability": 0.9067 + }, + { + "start": 952.48, + "end": 954.6, + "probability": 0.9818 + }, + { + "start": 955.78, + "end": 957.28, + "probability": 0.9873 + }, + { + "start": 957.78, + "end": 958.54, + "probability": 0.9812 + }, + { + "start": 958.72, + "end": 961.5, + "probability": 0.9104 + }, + { + "start": 963.12, + "end": 966.8, + "probability": 0.9872 + }, + { + "start": 967.72, + "end": 969.26, + "probability": 0.9901 + }, + { + "start": 970.26, + "end": 973.1, + "probability": 0.9667 + }, + { + "start": 973.9, + "end": 979.42, + "probability": 0.9906 + }, + { + "start": 980.8, + "end": 983.08, + "probability": 0.9834 + }, + { + "start": 983.76, + "end": 986.66, + "probability": 0.9683 + }, + { + "start": 987.14, + "end": 991.4, + "probability": 0.9701 + }, + { + "start": 993.46, + "end": 997.44, + "probability": 0.9979 + }, + { + "start": 998.02, + "end": 1000.68, + "probability": 0.9425 + }, + { + "start": 1001.38, + "end": 1002.14, + "probability": 0.6102 + }, + { + "start": 1003.08, + "end": 1006.12, + "probability": 0.9894 + }, + { + "start": 1006.18, + "end": 1007.02, + "probability": 0.524 + }, + { + "start": 1008.08, + "end": 1010.54, + "probability": 0.8859 + }, + { + "start": 1011.27, + "end": 1013.32, + "probability": 0.8085 + }, + { + "start": 1014.68, + "end": 1017.48, + "probability": 0.9831 + }, + { + "start": 1017.6, + "end": 1018.76, + "probability": 0.7833 + }, + { + "start": 1020.76, + "end": 1024.74, + "probability": 0.9559 + }, + { + "start": 1025.94, + "end": 1026.04, + "probability": 0.3396 + }, + { + "start": 1026.78, + "end": 1029.14, + "probability": 0.9967 + }, + { + "start": 1030.14, + "end": 1034.36, + "probability": 0.972 + }, + { + "start": 1035.88, + "end": 1037.12, + "probability": 0.9631 + }, + { + "start": 1037.74, + "end": 1038.79, + "probability": 0.9575 + }, + { + "start": 1039.56, + "end": 1042.28, + "probability": 0.8904 + }, + { + "start": 1042.86, + "end": 1044.78, + "probability": 0.966 + }, + { + "start": 1045.68, + "end": 1049.28, + "probability": 0.9688 + }, + { + "start": 1050.54, + "end": 1054.78, + "probability": 0.9507 + }, + { + "start": 1054.78, + "end": 1059.26, + "probability": 0.9669 + }, + { + "start": 1059.8, + "end": 1062.84, + "probability": 0.9919 + }, + { + "start": 1064.04, + "end": 1064.78, + "probability": 0.5697 + }, + { + "start": 1065.4, + "end": 1067.0, + "probability": 0.8996 + }, + { + "start": 1067.68, + "end": 1069.22, + "probability": 0.9344 + }, + { + "start": 1070.28, + "end": 1071.7, + "probability": 0.9717 + }, + { + "start": 1072.56, + "end": 1074.9, + "probability": 0.9946 + }, + { + "start": 1075.9, + "end": 1076.1, + "probability": 0.8157 + }, + { + "start": 1077.38, + "end": 1079.72, + "probability": 0.7118 + }, + { + "start": 1079.78, + "end": 1081.38, + "probability": 0.853 + }, + { + "start": 1081.54, + "end": 1083.26, + "probability": 0.9873 + }, + { + "start": 1083.5, + "end": 1085.48, + "probability": 0.9163 + }, + { + "start": 1085.88, + "end": 1088.82, + "probability": 0.9102 + }, + { + "start": 1089.44, + "end": 1089.66, + "probability": 0.5446 + }, + { + "start": 1090.18, + "end": 1091.4, + "probability": 0.2945 + }, + { + "start": 1092.14, + "end": 1093.36, + "probability": 0.9556 + }, + { + "start": 1095.16, + "end": 1097.28, + "probability": 0.9167 + }, + { + "start": 1110.62, + "end": 1112.32, + "probability": 0.5907 + }, + { + "start": 1114.82, + "end": 1115.72, + "probability": 0.6613 + }, + { + "start": 1116.18, + "end": 1117.02, + "probability": 0.8194 + }, + { + "start": 1117.12, + "end": 1120.87, + "probability": 0.9896 + }, + { + "start": 1121.82, + "end": 1123.82, + "probability": 0.5963 + }, + { + "start": 1124.98, + "end": 1125.18, + "probability": 0.4401 + }, + { + "start": 1126.42, + "end": 1127.44, + "probability": 0.9747 + }, + { + "start": 1128.0, + "end": 1130.24, + "probability": 0.9406 + }, + { + "start": 1132.54, + "end": 1135.64, + "probability": 0.994 + }, + { + "start": 1137.39, + "end": 1139.66, + "probability": 0.6565 + }, + { + "start": 1140.14, + "end": 1142.36, + "probability": 0.9075 + }, + { + "start": 1144.02, + "end": 1147.72, + "probability": 0.9819 + }, + { + "start": 1148.66, + "end": 1150.16, + "probability": 0.8816 + }, + { + "start": 1151.12, + "end": 1153.12, + "probability": 0.9991 + }, + { + "start": 1154.24, + "end": 1155.72, + "probability": 0.9846 + }, + { + "start": 1156.72, + "end": 1158.66, + "probability": 0.7559 + }, + { + "start": 1158.82, + "end": 1160.74, + "probability": 0.9735 + }, + { + "start": 1161.66, + "end": 1164.36, + "probability": 0.9583 + }, + { + "start": 1164.96, + "end": 1167.62, + "probability": 0.9949 + }, + { + "start": 1167.8, + "end": 1168.56, + "probability": 0.6466 + }, + { + "start": 1168.68, + "end": 1169.46, + "probability": 0.9343 + }, + { + "start": 1171.02, + "end": 1174.44, + "probability": 0.916 + }, + { + "start": 1175.24, + "end": 1180.2, + "probability": 0.9781 + }, + { + "start": 1180.68, + "end": 1182.48, + "probability": 0.9701 + }, + { + "start": 1183.08, + "end": 1187.22, + "probability": 0.9982 + }, + { + "start": 1188.77, + "end": 1191.78, + "probability": 0.9904 + }, + { + "start": 1192.34, + "end": 1193.3, + "probability": 0.7453 + }, + { + "start": 1194.18, + "end": 1197.5, + "probability": 0.9868 + }, + { + "start": 1198.2, + "end": 1200.14, + "probability": 0.9869 + }, + { + "start": 1201.08, + "end": 1204.98, + "probability": 0.9746 + }, + { + "start": 1206.0, + "end": 1207.12, + "probability": 0.9767 + }, + { + "start": 1208.16, + "end": 1209.2, + "probability": 0.572 + }, + { + "start": 1210.58, + "end": 1210.88, + "probability": 0.4902 + }, + { + "start": 1211.56, + "end": 1216.94, + "probability": 0.9887 + }, + { + "start": 1218.18, + "end": 1219.02, + "probability": 0.8752 + }, + { + "start": 1219.72, + "end": 1220.66, + "probability": 0.9796 + }, + { + "start": 1221.2, + "end": 1224.22, + "probability": 0.7874 + }, + { + "start": 1224.5, + "end": 1226.0, + "probability": 0.9666 + }, + { + "start": 1226.48, + "end": 1227.2, + "probability": 0.8154 + }, + { + "start": 1227.3, + "end": 1228.24, + "probability": 0.4429 + }, + { + "start": 1229.36, + "end": 1231.32, + "probability": 0.8191 + }, + { + "start": 1232.14, + "end": 1235.36, + "probability": 0.9823 + }, + { + "start": 1236.28, + "end": 1237.08, + "probability": 0.9879 + }, + { + "start": 1237.4, + "end": 1242.36, + "probability": 0.6665 + }, + { + "start": 1243.22, + "end": 1244.64, + "probability": 0.8018 + }, + { + "start": 1245.36, + "end": 1247.54, + "probability": 0.9209 + }, + { + "start": 1248.72, + "end": 1250.46, + "probability": 0.9849 + }, + { + "start": 1250.48, + "end": 1251.18, + "probability": 0.876 + }, + { + "start": 1251.26, + "end": 1252.18, + "probability": 0.7968 + }, + { + "start": 1252.4, + "end": 1253.0, + "probability": 0.6512 + }, + { + "start": 1253.22, + "end": 1261.18, + "probability": 0.9746 + }, + { + "start": 1261.96, + "end": 1262.38, + "probability": 0.827 + }, + { + "start": 1263.48, + "end": 1265.38, + "probability": 0.9793 + }, + { + "start": 1265.46, + "end": 1267.48, + "probability": 0.94 + }, + { + "start": 1268.08, + "end": 1268.94, + "probability": 0.9871 + }, + { + "start": 1269.88, + "end": 1271.45, + "probability": 0.9973 + }, + { + "start": 1272.5, + "end": 1278.6, + "probability": 0.8479 + }, + { + "start": 1279.74, + "end": 1280.76, + "probability": 0.9162 + }, + { + "start": 1281.12, + "end": 1283.96, + "probability": 0.9071 + }, + { + "start": 1284.56, + "end": 1285.22, + "probability": 0.9031 + }, + { + "start": 1286.26, + "end": 1287.74, + "probability": 0.9937 + }, + { + "start": 1288.62, + "end": 1289.36, + "probability": 0.9482 + }, + { + "start": 1289.88, + "end": 1293.7, + "probability": 0.9695 + }, + { + "start": 1294.44, + "end": 1295.74, + "probability": 0.9987 + }, + { + "start": 1296.26, + "end": 1298.42, + "probability": 0.9919 + }, + { + "start": 1299.44, + "end": 1300.0, + "probability": 0.8756 + }, + { + "start": 1301.16, + "end": 1302.08, + "probability": 0.925 + }, + { + "start": 1303.98, + "end": 1306.9, + "probability": 0.9936 + }, + { + "start": 1308.34, + "end": 1310.0, + "probability": 0.9869 + }, + { + "start": 1310.04, + "end": 1310.92, + "probability": 0.7769 + }, + { + "start": 1310.96, + "end": 1311.38, + "probability": 0.7808 + }, + { + "start": 1311.44, + "end": 1312.16, + "probability": 0.7245 + }, + { + "start": 1312.34, + "end": 1312.74, + "probability": 0.8949 + }, + { + "start": 1313.8, + "end": 1314.6, + "probability": 0.9731 + }, + { + "start": 1315.22, + "end": 1316.84, + "probability": 0.9988 + }, + { + "start": 1317.7, + "end": 1324.54, + "probability": 0.8793 + }, + { + "start": 1325.18, + "end": 1327.14, + "probability": 0.8472 + }, + { + "start": 1327.8, + "end": 1328.56, + "probability": 0.9888 + }, + { + "start": 1329.26, + "end": 1333.64, + "probability": 0.9951 + }, + { + "start": 1334.48, + "end": 1336.34, + "probability": 0.9722 + }, + { + "start": 1337.16, + "end": 1340.78, + "probability": 0.7593 + }, + { + "start": 1341.42, + "end": 1342.17, + "probability": 0.74 + }, + { + "start": 1343.08, + "end": 1344.02, + "probability": 0.7847 + }, + { + "start": 1346.22, + "end": 1348.86, + "probability": 0.9595 + }, + { + "start": 1369.8, + "end": 1370.7, + "probability": 0.591 + }, + { + "start": 1372.0, + "end": 1373.36, + "probability": 0.8468 + }, + { + "start": 1374.48, + "end": 1375.26, + "probability": 0.7281 + }, + { + "start": 1377.46, + "end": 1379.98, + "probability": 0.9268 + }, + { + "start": 1381.54, + "end": 1387.0, + "probability": 0.9724 + }, + { + "start": 1388.32, + "end": 1391.14, + "probability": 0.9927 + }, + { + "start": 1391.54, + "end": 1392.54, + "probability": 0.4996 + }, + { + "start": 1393.52, + "end": 1394.36, + "probability": 0.6824 + }, + { + "start": 1394.36, + "end": 1395.38, + "probability": 0.4894 + }, + { + "start": 1397.1, + "end": 1397.56, + "probability": 0.8756 + }, + { + "start": 1400.8, + "end": 1403.42, + "probability": 0.9576 + }, + { + "start": 1407.14, + "end": 1407.7, + "probability": 0.0677 + }, + { + "start": 1407.7, + "end": 1408.74, + "probability": 0.159 + }, + { + "start": 1408.74, + "end": 1410.42, + "probability": 0.904 + }, + { + "start": 1411.58, + "end": 1412.04, + "probability": 0.9768 + }, + { + "start": 1412.6, + "end": 1413.62, + "probability": 0.9192 + }, + { + "start": 1414.9, + "end": 1416.5, + "probability": 0.9875 + }, + { + "start": 1417.24, + "end": 1423.6, + "probability": 0.9872 + }, + { + "start": 1424.38, + "end": 1428.52, + "probability": 0.9978 + }, + { + "start": 1429.04, + "end": 1431.1, + "probability": 0.9954 + }, + { + "start": 1431.72, + "end": 1432.68, + "probability": 0.8533 + }, + { + "start": 1433.4, + "end": 1437.5, + "probability": 0.8586 + }, + { + "start": 1438.88, + "end": 1442.92, + "probability": 0.9526 + }, + { + "start": 1443.7, + "end": 1444.36, + "probability": 0.9044 + }, + { + "start": 1445.1, + "end": 1447.78, + "probability": 0.981 + }, + { + "start": 1448.46, + "end": 1449.32, + "probability": 0.9221 + }, + { + "start": 1449.92, + "end": 1450.62, + "probability": 0.945 + }, + { + "start": 1451.56, + "end": 1452.08, + "probability": 0.9568 + }, + { + "start": 1452.74, + "end": 1453.36, + "probability": 0.9458 + }, + { + "start": 1454.26, + "end": 1456.5, + "probability": 0.9855 + }, + { + "start": 1457.44, + "end": 1458.88, + "probability": 0.9827 + }, + { + "start": 1459.48, + "end": 1461.38, + "probability": 0.9176 + }, + { + "start": 1462.2, + "end": 1463.2, + "probability": 0.9457 + }, + { + "start": 1464.1, + "end": 1465.22, + "probability": 0.9984 + }, + { + "start": 1466.22, + "end": 1469.18, + "probability": 0.9821 + }, + { + "start": 1469.92, + "end": 1472.26, + "probability": 0.9906 + }, + { + "start": 1472.34, + "end": 1476.5, + "probability": 0.981 + }, + { + "start": 1477.58, + "end": 1482.94, + "probability": 0.9928 + }, + { + "start": 1483.72, + "end": 1487.06, + "probability": 0.9852 + }, + { + "start": 1487.22, + "end": 1488.2, + "probability": 0.8171 + }, + { + "start": 1489.26, + "end": 1489.78, + "probability": 0.8334 + }, + { + "start": 1490.56, + "end": 1493.86, + "probability": 0.9599 + }, + { + "start": 1494.44, + "end": 1497.16, + "probability": 0.9585 + }, + { + "start": 1497.68, + "end": 1499.6, + "probability": 0.7389 + }, + { + "start": 1500.38, + "end": 1502.3, + "probability": 0.9305 + }, + { + "start": 1503.24, + "end": 1504.1, + "probability": 0.9738 + }, + { + "start": 1504.68, + "end": 1506.12, + "probability": 0.8795 + }, + { + "start": 1507.04, + "end": 1508.82, + "probability": 0.9468 + }, + { + "start": 1509.4, + "end": 1510.76, + "probability": 0.8134 + }, + { + "start": 1511.58, + "end": 1519.34, + "probability": 0.9949 + }, + { + "start": 1520.18, + "end": 1521.46, + "probability": 0.7566 + }, + { + "start": 1522.04, + "end": 1526.94, + "probability": 0.9893 + }, + { + "start": 1527.68, + "end": 1528.14, + "probability": 0.9361 + }, + { + "start": 1529.04, + "end": 1531.7, + "probability": 0.9925 + }, + { + "start": 1532.5, + "end": 1537.5, + "probability": 0.9289 + }, + { + "start": 1538.22, + "end": 1542.02, + "probability": 0.9893 + }, + { + "start": 1542.92, + "end": 1545.88, + "probability": 0.9662 + }, + { + "start": 1546.96, + "end": 1551.64, + "probability": 0.9829 + }, + { + "start": 1552.4, + "end": 1559.02, + "probability": 0.8517 + }, + { + "start": 1559.3, + "end": 1559.6, + "probability": 0.6353 + }, + { + "start": 1560.26, + "end": 1563.9, + "probability": 0.9435 + }, + { + "start": 1564.1, + "end": 1567.72, + "probability": 0.9784 + }, + { + "start": 1568.66, + "end": 1570.54, + "probability": 0.9314 + }, + { + "start": 1571.28, + "end": 1572.78, + "probability": 0.9897 + }, + { + "start": 1573.42, + "end": 1575.52, + "probability": 0.9696 + }, + { + "start": 1576.04, + "end": 1579.88, + "probability": 0.984 + }, + { + "start": 1580.54, + "end": 1582.26, + "probability": 0.995 + }, + { + "start": 1582.8, + "end": 1585.04, + "probability": 0.9828 + }, + { + "start": 1586.36, + "end": 1590.1, + "probability": 0.9385 + }, + { + "start": 1590.66, + "end": 1592.58, + "probability": 0.9224 + }, + { + "start": 1593.32, + "end": 1596.64, + "probability": 0.9776 + }, + { + "start": 1597.92, + "end": 1598.62, + "probability": 0.7797 + }, + { + "start": 1599.28, + "end": 1603.44, + "probability": 0.9993 + }, + { + "start": 1604.36, + "end": 1607.58, + "probability": 0.9989 + }, + { + "start": 1608.34, + "end": 1610.72, + "probability": 0.999 + }, + { + "start": 1611.9, + "end": 1612.62, + "probability": 0.9244 + }, + { + "start": 1613.56, + "end": 1614.44, + "probability": 0.984 + }, + { + "start": 1615.36, + "end": 1618.76, + "probability": 0.8315 + }, + { + "start": 1619.38, + "end": 1620.54, + "probability": 0.9215 + }, + { + "start": 1621.42, + "end": 1622.64, + "probability": 0.9839 + }, + { + "start": 1623.64, + "end": 1631.46, + "probability": 0.9787 + }, + { + "start": 1631.6, + "end": 1632.62, + "probability": 0.6017 + }, + { + "start": 1633.32, + "end": 1637.78, + "probability": 0.9871 + }, + { + "start": 1637.94, + "end": 1638.36, + "probability": 0.0657 + }, + { + "start": 1639.26, + "end": 1640.48, + "probability": 0.8447 + }, + { + "start": 1641.28, + "end": 1642.56, + "probability": 0.9489 + }, + { + "start": 1643.22, + "end": 1644.88, + "probability": 0.9928 + }, + { + "start": 1645.4, + "end": 1647.9, + "probability": 0.9487 + }, + { + "start": 1648.48, + "end": 1651.1, + "probability": 0.9966 + }, + { + "start": 1654.29, + "end": 1655.24, + "probability": 0.9834 + }, + { + "start": 1655.24, + "end": 1656.64, + "probability": 0.6726 + }, + { + "start": 1657.22, + "end": 1659.16, + "probability": 0.8939 + }, + { + "start": 1659.74, + "end": 1662.32, + "probability": 0.9967 + }, + { + "start": 1663.06, + "end": 1663.44, + "probability": 0.8612 + }, + { + "start": 1664.54, + "end": 1667.24, + "probability": 0.9946 + }, + { + "start": 1667.94, + "end": 1674.32, + "probability": 0.9989 + }, + { + "start": 1674.9, + "end": 1678.32, + "probability": 0.9635 + }, + { + "start": 1678.9, + "end": 1681.86, + "probability": 0.9962 + }, + { + "start": 1682.76, + "end": 1684.38, + "probability": 0.8956 + }, + { + "start": 1684.98, + "end": 1691.02, + "probability": 0.9753 + }, + { + "start": 1691.02, + "end": 1696.36, + "probability": 0.9993 + }, + { + "start": 1697.0, + "end": 1699.3, + "probability": 0.973 + }, + { + "start": 1700.48, + "end": 1700.48, + "probability": 0.0322 + }, + { + "start": 1700.48, + "end": 1700.48, + "probability": 0.099 + }, + { + "start": 1700.48, + "end": 1702.54, + "probability": 0.929 + }, + { + "start": 1703.14, + "end": 1704.72, + "probability": 0.9799 + }, + { + "start": 1705.68, + "end": 1706.94, + "probability": 0.5955 + }, + { + "start": 1707.04, + "end": 1707.16, + "probability": 0.0701 + }, + { + "start": 1707.16, + "end": 1707.59, + "probability": 0.7082 + }, + { + "start": 1707.92, + "end": 1709.68, + "probability": 0.9718 + }, + { + "start": 1710.06, + "end": 1712.72, + "probability": 0.998 + }, + { + "start": 1712.72, + "end": 1715.38, + "probability": 0.9984 + }, + { + "start": 1716.36, + "end": 1718.26, + "probability": 0.906 + }, + { + "start": 1718.62, + "end": 1720.2, + "probability": 0.956 + }, + { + "start": 1720.8, + "end": 1722.42, + "probability": 0.9878 + }, + { + "start": 1723.34, + "end": 1727.06, + "probability": 0.9813 + }, + { + "start": 1727.06, + "end": 1730.74, + "probability": 0.9924 + }, + { + "start": 1731.42, + "end": 1732.58, + "probability": 0.9917 + }, + { + "start": 1733.2, + "end": 1734.82, + "probability": 0.9632 + }, + { + "start": 1735.46, + "end": 1738.22, + "probability": 0.9711 + }, + { + "start": 1738.86, + "end": 1739.48, + "probability": 0.9965 + }, + { + "start": 1740.22, + "end": 1744.9, + "probability": 0.9924 + }, + { + "start": 1745.62, + "end": 1745.64, + "probability": 0.3994 + }, + { + "start": 1745.64, + "end": 1745.64, + "probability": 0.0551 + }, + { + "start": 1745.64, + "end": 1746.26, + "probability": 0.3622 + }, + { + "start": 1746.92, + "end": 1749.1, + "probability": 0.766 + }, + { + "start": 1750.5, + "end": 1751.78, + "probability": 0.1473 + }, + { + "start": 1751.78, + "end": 1752.12, + "probability": 0.3301 + }, + { + "start": 1752.62, + "end": 1752.62, + "probability": 0.1691 + }, + { + "start": 1752.62, + "end": 1753.52, + "probability": 0.7712 + }, + { + "start": 1753.64, + "end": 1758.44, + "probability": 0.9839 + }, + { + "start": 1758.54, + "end": 1758.54, + "probability": 0.2568 + }, + { + "start": 1758.54, + "end": 1758.7, + "probability": 0.1288 + }, + { + "start": 1758.96, + "end": 1759.04, + "probability": 0.034 + }, + { + "start": 1759.5, + "end": 1760.36, + "probability": 0.1789 + }, + { + "start": 1761.1, + "end": 1761.38, + "probability": 0.2158 + }, + { + "start": 1761.86, + "end": 1761.9, + "probability": 0.2658 + }, + { + "start": 1761.9, + "end": 1764.34, + "probability": 0.4477 + }, + { + "start": 1764.36, + "end": 1765.36, + "probability": 0.0754 + }, + { + "start": 1765.36, + "end": 1765.36, + "probability": 0.0936 + }, + { + "start": 1765.48, + "end": 1766.94, + "probability": 0.4883 + }, + { + "start": 1767.16, + "end": 1769.1, + "probability": 0.8694 + }, + { + "start": 1769.38, + "end": 1770.48, + "probability": 0.4582 + }, + { + "start": 1770.48, + "end": 1771.28, + "probability": 0.328 + }, + { + "start": 1771.34, + "end": 1772.04, + "probability": 0.6619 + }, + { + "start": 1772.06, + "end": 1774.86, + "probability": 0.8614 + }, + { + "start": 1774.9, + "end": 1775.56, + "probability": 0.6616 + }, + { + "start": 1775.68, + "end": 1776.46, + "probability": 0.5638 + }, + { + "start": 1776.66, + "end": 1779.7, + "probability": 0.4569 + }, + { + "start": 1780.06, + "end": 1780.2, + "probability": 0.0911 + }, + { + "start": 1781.3, + "end": 1784.36, + "probability": 0.6563 + }, + { + "start": 1784.54, + "end": 1784.78, + "probability": 0.3997 + }, + { + "start": 1784.92, + "end": 1786.7, + "probability": 0.9083 + }, + { + "start": 1786.72, + "end": 1786.84, + "probability": 0.3481 + }, + { + "start": 1787.44, + "end": 1788.8, + "probability": 0.866 + }, + { + "start": 1788.8, + "end": 1789.48, + "probability": 0.2779 + }, + { + "start": 1789.52, + "end": 1791.36, + "probability": 0.9847 + }, + { + "start": 1791.54, + "end": 1791.96, + "probability": 0.4141 + }, + { + "start": 1791.98, + "end": 1792.98, + "probability": 0.7026 + }, + { + "start": 1793.64, + "end": 1795.1, + "probability": 0.9756 + }, + { + "start": 1795.94, + "end": 1798.28, + "probability": 0.4573 + }, + { + "start": 1798.28, + "end": 1798.4, + "probability": 0.5579 + }, + { + "start": 1798.4, + "end": 1800.24, + "probability": 0.9022 + }, + { + "start": 1800.64, + "end": 1801.46, + "probability": 0.9407 + }, + { + "start": 1801.86, + "end": 1805.38, + "probability": 0.9559 + }, + { + "start": 1806.16, + "end": 1806.44, + "probability": 0.7464 + }, + { + "start": 1806.96, + "end": 1807.56, + "probability": 0.7725 + }, + { + "start": 1811.16, + "end": 1811.76, + "probability": 0.7236 + }, + { + "start": 1811.96, + "end": 1813.32, + "probability": 0.6028 + }, + { + "start": 1813.42, + "end": 1815.34, + "probability": 0.8653 + }, + { + "start": 1815.54, + "end": 1817.04, + "probability": 0.86 + }, + { + "start": 1817.06, + "end": 1819.1, + "probability": 0.6344 + }, + { + "start": 1819.84, + "end": 1821.46, + "probability": 0.2628 + }, + { + "start": 1827.9, + "end": 1828.84, + "probability": 0.1957 + }, + { + "start": 1848.26, + "end": 1850.54, + "probability": 0.6732 + }, + { + "start": 1852.8, + "end": 1855.58, + "probability": 0.7781 + }, + { + "start": 1855.58, + "end": 1857.88, + "probability": 0.9965 + }, + { + "start": 1859.42, + "end": 1866.4, + "probability": 0.99 + }, + { + "start": 1868.04, + "end": 1872.98, + "probability": 0.979 + }, + { + "start": 1874.02, + "end": 1875.76, + "probability": 0.9709 + }, + { + "start": 1876.36, + "end": 1878.04, + "probability": 0.9971 + }, + { + "start": 1878.62, + "end": 1879.42, + "probability": 0.8951 + }, + { + "start": 1880.36, + "end": 1881.22, + "probability": 0.9748 + }, + { + "start": 1882.04, + "end": 1886.28, + "probability": 0.9735 + }, + { + "start": 1887.12, + "end": 1890.04, + "probability": 0.9997 + }, + { + "start": 1890.92, + "end": 1894.96, + "probability": 0.9377 + }, + { + "start": 1895.56, + "end": 1896.8, + "probability": 0.6788 + }, + { + "start": 1898.18, + "end": 1900.5, + "probability": 0.8887 + }, + { + "start": 1900.96, + "end": 1902.0, + "probability": 0.967 + }, + { + "start": 1902.44, + "end": 1903.3, + "probability": 0.9617 + }, + { + "start": 1904.4, + "end": 1904.84, + "probability": 0.9922 + }, + { + "start": 1905.78, + "end": 1906.74, + "probability": 0.3429 + }, + { + "start": 1907.7, + "end": 1908.94, + "probability": 0.9917 + }, + { + "start": 1909.89, + "end": 1912.52, + "probability": 0.9847 + }, + { + "start": 1913.5, + "end": 1916.12, + "probability": 0.9845 + }, + { + "start": 1916.92, + "end": 1918.02, + "probability": 0.9966 + }, + { + "start": 1918.72, + "end": 1924.38, + "probability": 0.9956 + }, + { + "start": 1928.46, + "end": 1929.54, + "probability": 0.8964 + }, + { + "start": 1930.66, + "end": 1931.62, + "probability": 0.7582 + }, + { + "start": 1932.8, + "end": 1935.58, + "probability": 0.9871 + }, + { + "start": 1936.5, + "end": 1937.82, + "probability": 0.9949 + }, + { + "start": 1938.34, + "end": 1939.66, + "probability": 0.9764 + }, + { + "start": 1940.76, + "end": 1941.44, + "probability": 0.5058 + }, + { + "start": 1942.14, + "end": 1943.32, + "probability": 0.9303 + }, + { + "start": 1943.84, + "end": 1945.38, + "probability": 0.7788 + }, + { + "start": 1946.14, + "end": 1948.32, + "probability": 0.8295 + }, + { + "start": 1948.94, + "end": 1950.0, + "probability": 0.8769 + }, + { + "start": 1951.14, + "end": 1955.26, + "probability": 0.9195 + }, + { + "start": 1956.5, + "end": 1959.24, + "probability": 0.9966 + }, + { + "start": 1959.78, + "end": 1965.06, + "probability": 0.9558 + }, + { + "start": 1965.58, + "end": 1969.02, + "probability": 0.9774 + }, + { + "start": 1970.0, + "end": 1972.02, + "probability": 0.9086 + }, + { + "start": 1973.06, + "end": 1977.74, + "probability": 0.9495 + }, + { + "start": 1978.24, + "end": 1979.32, + "probability": 0.8654 + }, + { + "start": 1980.48, + "end": 1983.46, + "probability": 0.974 + }, + { + "start": 1984.02, + "end": 1984.77, + "probability": 0.6066 + }, + { + "start": 1985.72, + "end": 1987.92, + "probability": 0.9889 + }, + { + "start": 1989.4, + "end": 1995.2, + "probability": 0.967 + }, + { + "start": 1995.68, + "end": 1996.16, + "probability": 0.9754 + }, + { + "start": 1996.36, + "end": 1997.08, + "probability": 0.9837 + }, + { + "start": 1997.46, + "end": 1998.1, + "probability": 0.9813 + }, + { + "start": 1998.52, + "end": 1999.08, + "probability": 0.6934 + }, + { + "start": 1999.98, + "end": 2000.84, + "probability": 0.9575 + }, + { + "start": 2001.36, + "end": 2003.18, + "probability": 0.8064 + }, + { + "start": 2004.12, + "end": 2006.04, + "probability": 0.8886 + }, + { + "start": 2006.96, + "end": 2007.14, + "probability": 0.7561 + }, + { + "start": 2007.82, + "end": 2008.82, + "probability": 0.6222 + }, + { + "start": 2009.58, + "end": 2015.08, + "probability": 0.9821 + }, + { + "start": 2016.42, + "end": 2017.44, + "probability": 0.8229 + }, + { + "start": 2018.26, + "end": 2022.36, + "probability": 0.9983 + }, + { + "start": 2023.06, + "end": 2024.32, + "probability": 0.984 + }, + { + "start": 2025.0, + "end": 2027.9, + "probability": 0.9993 + }, + { + "start": 2028.72, + "end": 2029.3, + "probability": 0.5416 + }, + { + "start": 2030.1, + "end": 2032.78, + "probability": 0.9502 + }, + { + "start": 2033.06, + "end": 2034.0, + "probability": 0.8962 + }, + { + "start": 2034.08, + "end": 2034.66, + "probability": 0.9948 + }, + { + "start": 2034.7, + "end": 2035.2, + "probability": 0.9889 + }, + { + "start": 2035.4, + "end": 2035.72, + "probability": 0.8651 + }, + { + "start": 2036.16, + "end": 2036.7, + "probability": 0.9368 + }, + { + "start": 2036.76, + "end": 2037.22, + "probability": 0.9308 + }, + { + "start": 2037.4, + "end": 2037.94, + "probability": 0.6533 + }, + { + "start": 2038.42, + "end": 2041.98, + "probability": 0.9186 + }, + { + "start": 2042.44, + "end": 2045.82, + "probability": 0.9877 + }, + { + "start": 2046.86, + "end": 2049.94, + "probability": 0.9873 + }, + { + "start": 2050.52, + "end": 2054.5, + "probability": 0.869 + }, + { + "start": 2055.24, + "end": 2057.9, + "probability": 0.652 + }, + { + "start": 2058.34, + "end": 2061.76, + "probability": 0.9841 + }, + { + "start": 2061.76, + "end": 2064.24, + "probability": 0.9857 + }, + { + "start": 2064.8, + "end": 2065.52, + "probability": 0.958 + }, + { + "start": 2066.78, + "end": 2069.66, + "probability": 0.9834 + }, + { + "start": 2069.76, + "end": 2071.66, + "probability": 0.9723 + }, + { + "start": 2072.14, + "end": 2075.68, + "probability": 0.9363 + }, + { + "start": 2076.4, + "end": 2077.04, + "probability": 0.9569 + }, + { + "start": 2077.6, + "end": 2081.54, + "probability": 0.8147 + }, + { + "start": 2082.26, + "end": 2083.58, + "probability": 0.9377 + }, + { + "start": 2085.28, + "end": 2089.08, + "probability": 0.998 + }, + { + "start": 2089.52, + "end": 2093.46, + "probability": 0.958 + }, + { + "start": 2093.98, + "end": 2095.82, + "probability": 0.7682 + }, + { + "start": 2096.14, + "end": 2098.32, + "probability": 0.9489 + }, + { + "start": 2098.68, + "end": 2101.0, + "probability": 0.8696 + }, + { + "start": 2101.2, + "end": 2101.68, + "probability": 0.4792 + }, + { + "start": 2102.02, + "end": 2105.36, + "probability": 0.9953 + }, + { + "start": 2105.96, + "end": 2108.16, + "probability": 0.8887 + }, + { + "start": 2108.54, + "end": 2111.58, + "probability": 0.9341 + }, + { + "start": 2112.54, + "end": 2113.8, + "probability": 0.9836 + }, + { + "start": 2114.5, + "end": 2116.74, + "probability": 0.9834 + }, + { + "start": 2117.52, + "end": 2118.14, + "probability": 0.8818 + }, + { + "start": 2118.28, + "end": 2118.94, + "probability": 0.9849 + }, + { + "start": 2119.3, + "end": 2119.84, + "probability": 0.6667 + }, + { + "start": 2120.28, + "end": 2121.34, + "probability": 0.8666 + }, + { + "start": 2122.3, + "end": 2123.56, + "probability": 0.9926 + }, + { + "start": 2123.86, + "end": 2124.58, + "probability": 0.9812 + }, + { + "start": 2124.8, + "end": 2125.54, + "probability": 0.8916 + }, + { + "start": 2125.94, + "end": 2127.76, + "probability": 0.9896 + }, + { + "start": 2128.42, + "end": 2130.24, + "probability": 0.9772 + }, + { + "start": 2130.58, + "end": 2133.42, + "probability": 0.9044 + }, + { + "start": 2133.56, + "end": 2134.74, + "probability": 0.6653 + }, + { + "start": 2135.16, + "end": 2136.18, + "probability": 0.9115 + }, + { + "start": 2136.5, + "end": 2138.44, + "probability": 0.9379 + }, + { + "start": 2138.76, + "end": 2139.36, + "probability": 0.8344 + }, + { + "start": 2139.94, + "end": 2144.83, + "probability": 0.9805 + }, + { + "start": 2145.18, + "end": 2145.58, + "probability": 0.9516 + }, + { + "start": 2146.34, + "end": 2147.52, + "probability": 0.9518 + }, + { + "start": 2147.92, + "end": 2149.72, + "probability": 0.9012 + }, + { + "start": 2150.36, + "end": 2153.42, + "probability": 0.9586 + }, + { + "start": 2154.16, + "end": 2156.52, + "probability": 0.8311 + }, + { + "start": 2158.5, + "end": 2159.12, + "probability": 0.6642 + }, + { + "start": 2159.28, + "end": 2160.55, + "probability": 0.9614 + }, + { + "start": 2161.16, + "end": 2162.53, + "probability": 0.9989 + }, + { + "start": 2163.32, + "end": 2167.44, + "probability": 0.989 + }, + { + "start": 2168.34, + "end": 2169.44, + "probability": 0.5533 + }, + { + "start": 2170.44, + "end": 2170.64, + "probability": 0.1012 + }, + { + "start": 2170.64, + "end": 2171.14, + "probability": 0.5032 + }, + { + "start": 2171.6, + "end": 2172.9, + "probability": 0.0807 + }, + { + "start": 2174.21, + "end": 2178.56, + "probability": 0.9372 + }, + { + "start": 2179.09, + "end": 2182.98, + "probability": 0.939 + }, + { + "start": 2185.06, + "end": 2185.66, + "probability": 0.5166 + }, + { + "start": 2185.74, + "end": 2187.25, + "probability": 0.9817 + }, + { + "start": 2190.26, + "end": 2192.76, + "probability": 0.8137 + }, + { + "start": 2194.04, + "end": 2196.3, + "probability": 0.8119 + }, + { + "start": 2199.52, + "end": 2200.1, + "probability": 0.5608 + }, + { + "start": 2201.44, + "end": 2203.08, + "probability": 0.1748 + }, + { + "start": 2203.38, + "end": 2203.4, + "probability": 0.194 + }, + { + "start": 2203.42, + "end": 2203.96, + "probability": 0.2036 + }, + { + "start": 2203.96, + "end": 2205.58, + "probability": 0.025 + }, + { + "start": 2206.24, + "end": 2206.7, + "probability": 0.5637 + }, + { + "start": 2207.64, + "end": 2207.68, + "probability": 0.0117 + }, + { + "start": 2215.34, + "end": 2215.66, + "probability": 0.0687 + }, + { + "start": 2218.4, + "end": 2218.52, + "probability": 0.0776 + }, + { + "start": 2237.38, + "end": 2239.42, + "probability": 0.0139 + }, + { + "start": 2245.82, + "end": 2250.3, + "probability": 0.9494 + }, + { + "start": 2251.04, + "end": 2255.2, + "probability": 0.9578 + }, + { + "start": 2256.26, + "end": 2256.96, + "probability": 0.3956 + }, + { + "start": 2257.9, + "end": 2261.68, + "probability": 0.9789 + }, + { + "start": 2261.78, + "end": 2264.86, + "probability": 0.9966 + }, + { + "start": 2265.46, + "end": 2266.6, + "probability": 0.9978 + }, + { + "start": 2267.52, + "end": 2268.7, + "probability": 0.9909 + }, + { + "start": 2270.06, + "end": 2271.56, + "probability": 0.9763 + }, + { + "start": 2272.18, + "end": 2272.74, + "probability": 0.9669 + }, + { + "start": 2273.32, + "end": 2276.48, + "probability": 0.8629 + }, + { + "start": 2277.56, + "end": 2283.3, + "probability": 0.9688 + }, + { + "start": 2284.8, + "end": 2288.48, + "probability": 0.9906 + }, + { + "start": 2289.14, + "end": 2290.92, + "probability": 0.9939 + }, + { + "start": 2291.92, + "end": 2293.62, + "probability": 0.9817 + }, + { + "start": 2294.36, + "end": 2295.86, + "probability": 0.9456 + }, + { + "start": 2296.7, + "end": 2299.18, + "probability": 0.9888 + }, + { + "start": 2299.18, + "end": 2304.3, + "probability": 0.9942 + }, + { + "start": 2306.3, + "end": 2309.24, + "probability": 0.8631 + }, + { + "start": 2310.08, + "end": 2314.1, + "probability": 0.9964 + }, + { + "start": 2314.7, + "end": 2319.8, + "probability": 0.9926 + }, + { + "start": 2320.36, + "end": 2322.22, + "probability": 0.9833 + }, + { + "start": 2323.58, + "end": 2324.78, + "probability": 0.8345 + }, + { + "start": 2325.4, + "end": 2326.88, + "probability": 0.9192 + }, + { + "start": 2327.62, + "end": 2331.26, + "probability": 0.9961 + }, + { + "start": 2331.26, + "end": 2335.04, + "probability": 0.9985 + }, + { + "start": 2335.64, + "end": 2337.82, + "probability": 0.9331 + }, + { + "start": 2338.88, + "end": 2341.2, + "probability": 0.7613 + }, + { + "start": 2341.88, + "end": 2346.2, + "probability": 0.9972 + }, + { + "start": 2346.9, + "end": 2350.68, + "probability": 0.9685 + }, + { + "start": 2351.88, + "end": 2355.32, + "probability": 0.9976 + }, + { + "start": 2355.32, + "end": 2358.78, + "probability": 0.9979 + }, + { + "start": 2359.32, + "end": 2363.86, + "probability": 0.9868 + }, + { + "start": 2365.06, + "end": 2367.08, + "probability": 0.8383 + }, + { + "start": 2367.6, + "end": 2370.5, + "probability": 0.9443 + }, + { + "start": 2371.08, + "end": 2376.56, + "probability": 0.9836 + }, + { + "start": 2377.2, + "end": 2377.88, + "probability": 0.7545 + }, + { + "start": 2379.88, + "end": 2382.3, + "probability": 0.8618 + }, + { + "start": 2383.26, + "end": 2384.68, + "probability": 0.8848 + }, + { + "start": 2386.0, + "end": 2390.5, + "probability": 0.9752 + }, + { + "start": 2391.08, + "end": 2393.52, + "probability": 0.9979 + }, + { + "start": 2394.34, + "end": 2396.9, + "probability": 0.9961 + }, + { + "start": 2397.54, + "end": 2401.38, + "probability": 0.9702 + }, + { + "start": 2402.24, + "end": 2405.16, + "probability": 0.973 + }, + { + "start": 2408.74, + "end": 2413.12, + "probability": 0.9946 + }, + { + "start": 2413.86, + "end": 2417.24, + "probability": 0.9984 + }, + { + "start": 2418.04, + "end": 2421.36, + "probability": 0.9886 + }, + { + "start": 2421.76, + "end": 2423.72, + "probability": 0.9767 + }, + { + "start": 2424.36, + "end": 2426.84, + "probability": 0.8948 + }, + { + "start": 2427.94, + "end": 2431.6, + "probability": 0.9349 + }, + { + "start": 2432.42, + "end": 2435.06, + "probability": 0.9979 + }, + { + "start": 2435.8, + "end": 2436.84, + "probability": 0.9171 + }, + { + "start": 2437.36, + "end": 2440.98, + "probability": 0.9927 + }, + { + "start": 2444.18, + "end": 2444.98, + "probability": 0.7129 + }, + { + "start": 2448.22, + "end": 2449.5, + "probability": 0.9099 + }, + { + "start": 2452.18, + "end": 2455.28, + "probability": 0.1346 + }, + { + "start": 2457.06, + "end": 2461.82, + "probability": 0.1601 + }, + { + "start": 2476.04, + "end": 2479.18, + "probability": 0.538 + }, + { + "start": 2481.24, + "end": 2483.78, + "probability": 0.9058 + }, + { + "start": 2484.76, + "end": 2489.5, + "probability": 0.9785 + }, + { + "start": 2490.04, + "end": 2490.49, + "probability": 0.9229 + }, + { + "start": 2492.31, + "end": 2495.38, + "probability": 0.9143 + }, + { + "start": 2496.52, + "end": 2501.3, + "probability": 0.9793 + }, + { + "start": 2504.86, + "end": 2505.88, + "probability": 0.9596 + }, + { + "start": 2508.44, + "end": 2509.76, + "probability": 0.9863 + }, + { + "start": 2510.76, + "end": 2511.32, + "probability": 0.7975 + }, + { + "start": 2513.38, + "end": 2516.84, + "probability": 0.9937 + }, + { + "start": 2517.74, + "end": 2520.24, + "probability": 0.7783 + }, + { + "start": 2521.28, + "end": 2525.22, + "probability": 0.8735 + }, + { + "start": 2525.5, + "end": 2525.5, + "probability": 0.0001 + }, + { + "start": 2526.24, + "end": 2528.12, + "probability": 0.183 + }, + { + "start": 2528.22, + "end": 2531.14, + "probability": 0.6425 + }, + { + "start": 2531.52, + "end": 2532.34, + "probability": 0.753 + }, + { + "start": 2532.42, + "end": 2532.8, + "probability": 0.3424 + }, + { + "start": 2533.02, + "end": 2534.56, + "probability": 0.8144 + }, + { + "start": 2534.64, + "end": 2535.1, + "probability": 0.6979 + }, + { + "start": 2535.1, + "end": 2536.5, + "probability": 0.6799 + }, + { + "start": 2537.2, + "end": 2537.46, + "probability": 0.4574 + }, + { + "start": 2537.78, + "end": 2538.3, + "probability": 0.6548 + }, + { + "start": 2539.76, + "end": 2539.76, + "probability": 0.3691 + }, + { + "start": 2539.98, + "end": 2546.58, + "probability": 0.5149 + }, + { + "start": 2547.92, + "end": 2551.32, + "probability": 0.944 + }, + { + "start": 2553.96, + "end": 2554.4, + "probability": 0.998 + }, + { + "start": 2555.7, + "end": 2556.44, + "probability": 0.9767 + }, + { + "start": 2556.74, + "end": 2557.52, + "probability": 0.9878 + }, + { + "start": 2558.48, + "end": 2560.14, + "probability": 0.8164 + }, + { + "start": 2561.0, + "end": 2567.38, + "probability": 0.9733 + }, + { + "start": 2568.5, + "end": 2569.14, + "probability": 0.8301 + }, + { + "start": 2570.52, + "end": 2571.06, + "probability": 0.6978 + }, + { + "start": 2571.72, + "end": 2574.92, + "probability": 0.8823 + }, + { + "start": 2576.26, + "end": 2577.32, + "probability": 0.825 + }, + { + "start": 2578.18, + "end": 2579.72, + "probability": 0.5214 + }, + { + "start": 2580.8, + "end": 2582.72, + "probability": 0.9575 + }, + { + "start": 2583.98, + "end": 2584.58, + "probability": 0.5889 + }, + { + "start": 2586.0, + "end": 2586.72, + "probability": 0.9036 + }, + { + "start": 2588.12, + "end": 2588.64, + "probability": 0.888 + }, + { + "start": 2592.22, + "end": 2593.2, + "probability": 0.5115 + }, + { + "start": 2594.06, + "end": 2595.26, + "probability": 0.9021 + }, + { + "start": 2595.42, + "end": 2596.96, + "probability": 0.8545 + }, + { + "start": 2598.42, + "end": 2598.81, + "probability": 0.0635 + }, + { + "start": 2599.6, + "end": 2600.6, + "probability": 0.9395 + }, + { + "start": 2603.62, + "end": 2604.78, + "probability": 0.056 + }, + { + "start": 2604.78, + "end": 2606.47, + "probability": 0.1373 + }, + { + "start": 2607.0, + "end": 2609.06, + "probability": 0.6167 + }, + { + "start": 2609.14, + "end": 2610.02, + "probability": 0.7166 + }, + { + "start": 2610.24, + "end": 2610.92, + "probability": 0.1066 + }, + { + "start": 2611.0, + "end": 2611.36, + "probability": 0.1238 + }, + { + "start": 2611.5, + "end": 2612.62, + "probability": 0.342 + }, + { + "start": 2612.94, + "end": 2615.74, + "probability": 0.9744 + }, + { + "start": 2615.92, + "end": 2616.18, + "probability": 0.8136 + }, + { + "start": 2616.58, + "end": 2618.94, + "probability": 0.9928 + }, + { + "start": 2619.64, + "end": 2620.7, + "probability": 0.9936 + }, + { + "start": 2622.81, + "end": 2625.02, + "probability": 0.9514 + }, + { + "start": 2625.04, + "end": 2626.26, + "probability": 0.9508 + }, + { + "start": 2626.32, + "end": 2627.32, + "probability": 0.9967 + }, + { + "start": 2629.02, + "end": 2629.56, + "probability": 0.6232 + }, + { + "start": 2630.02, + "end": 2631.46, + "probability": 0.9983 + }, + { + "start": 2631.64, + "end": 2631.72, + "probability": 0.3335 + }, + { + "start": 2631.72, + "end": 2634.7, + "probability": 0.5115 + }, + { + "start": 2635.66, + "end": 2636.4, + "probability": 0.5854 + }, + { + "start": 2636.4, + "end": 2636.78, + "probability": 0.608 + }, + { + "start": 2637.0, + "end": 2638.96, + "probability": 0.9714 + }, + { + "start": 2640.0, + "end": 2643.12, + "probability": 0.4197 + }, + { + "start": 2643.12, + "end": 2645.02, + "probability": 0.7987 + }, + { + "start": 2645.8, + "end": 2647.86, + "probability": 0.835 + }, + { + "start": 2648.68, + "end": 2649.56, + "probability": 0.6344 + }, + { + "start": 2649.56, + "end": 2649.68, + "probability": 0.0334 + }, + { + "start": 2649.9, + "end": 2650.52, + "probability": 0.4682 + }, + { + "start": 2650.62, + "end": 2652.66, + "probability": 0.5844 + }, + { + "start": 2652.66, + "end": 2654.26, + "probability": 0.6937 + }, + { + "start": 2655.04, + "end": 2655.85, + "probability": 0.929 + }, + { + "start": 2656.66, + "end": 2659.46, + "probability": 0.9514 + }, + { + "start": 2660.1, + "end": 2661.86, + "probability": 0.3888 + }, + { + "start": 2662.36, + "end": 2662.64, + "probability": 0.4687 + }, + { + "start": 2664.06, + "end": 2664.78, + "probability": 0.7778 + }, + { + "start": 2665.18, + "end": 2665.84, + "probability": 0.3702 + }, + { + "start": 2665.98, + "end": 2666.16, + "probability": 0.0726 + }, + { + "start": 2666.22, + "end": 2669.58, + "probability": 0.8151 + }, + { + "start": 2669.7, + "end": 2672.16, + "probability": 0.8922 + }, + { + "start": 2672.26, + "end": 2672.72, + "probability": 0.3683 + }, + { + "start": 2672.86, + "end": 2672.86, + "probability": 0.1068 + }, + { + "start": 2672.86, + "end": 2672.86, + "probability": 0.0568 + }, + { + "start": 2672.86, + "end": 2673.32, + "probability": 0.7447 + }, + { + "start": 2674.36, + "end": 2676.42, + "probability": 0.957 + }, + { + "start": 2676.84, + "end": 2678.46, + "probability": 0.5075 + }, + { + "start": 2678.46, + "end": 2680.2, + "probability": 0.2023 + }, + { + "start": 2680.52, + "end": 2681.66, + "probability": 0.2402 + }, + { + "start": 2681.72, + "end": 2682.4, + "probability": 0.2893 + }, + { + "start": 2682.64, + "end": 2683.56, + "probability": 0.2067 + }, + { + "start": 2683.64, + "end": 2686.1, + "probability": 0.8918 + }, + { + "start": 2686.76, + "end": 2687.2, + "probability": 0.701 + }, + { + "start": 2687.46, + "end": 2688.36, + "probability": 0.9806 + }, + { + "start": 2688.56, + "end": 2691.96, + "probability": 0.979 + }, + { + "start": 2692.5, + "end": 2693.56, + "probability": 0.9692 + }, + { + "start": 2694.18, + "end": 2694.6, + "probability": 0.0466 + }, + { + "start": 2695.4, + "end": 2695.6, + "probability": 0.0693 + }, + { + "start": 2695.76, + "end": 2696.54, + "probability": 0.7444 + }, + { + "start": 2697.14, + "end": 2698.5, + "probability": 0.7807 + }, + { + "start": 2699.92, + "end": 2701.04, + "probability": 0.2454 + }, + { + "start": 2701.38, + "end": 2701.52, + "probability": 0.5213 + }, + { + "start": 2701.52, + "end": 2702.2, + "probability": 0.6674 + }, + { + "start": 2702.26, + "end": 2703.02, + "probability": 0.2415 + }, + { + "start": 2703.7, + "end": 2704.64, + "probability": 0.5135 + }, + { + "start": 2704.66, + "end": 2705.82, + "probability": 0.7616 + }, + { + "start": 2706.18, + "end": 2707.58, + "probability": 0.9394 + }, + { + "start": 2707.74, + "end": 2710.34, + "probability": 0.9215 + }, + { + "start": 2710.54, + "end": 2712.16, + "probability": 0.1048 + }, + { + "start": 2712.46, + "end": 2715.04, + "probability": 0.8929 + }, + { + "start": 2715.2, + "end": 2716.32, + "probability": 0.2358 + }, + { + "start": 2716.64, + "end": 2717.9, + "probability": 0.6873 + }, + { + "start": 2718.54, + "end": 2718.54, + "probability": 0.5125 + }, + { + "start": 2718.54, + "end": 2718.54, + "probability": 0.7217 + }, + { + "start": 2718.54, + "end": 2722.57, + "probability": 0.8569 + }, + { + "start": 2722.66, + "end": 2726.08, + "probability": 0.8052 + }, + { + "start": 2726.1, + "end": 2729.62, + "probability": 0.4187 + }, + { + "start": 2730.02, + "end": 2730.02, + "probability": 0.2715 + }, + { + "start": 2730.02, + "end": 2730.02, + "probability": 0.3711 + }, + { + "start": 2730.02, + "end": 2732.9, + "probability": 0.6421 + }, + { + "start": 2733.1, + "end": 2734.48, + "probability": 0.2024 + }, + { + "start": 2734.96, + "end": 2735.42, + "probability": 0.9005 + }, + { + "start": 2735.72, + "end": 2736.04, + "probability": 0.5393 + }, + { + "start": 2736.3, + "end": 2736.8, + "probability": 0.7596 + }, + { + "start": 2737.58, + "end": 2740.04, + "probability": 0.9725 + }, + { + "start": 2742.4, + "end": 2743.22, + "probability": 0.918 + }, + { + "start": 2744.18, + "end": 2747.36, + "probability": 0.9727 + }, + { + "start": 2747.76, + "end": 2748.34, + "probability": 0.861 + }, + { + "start": 2748.8, + "end": 2749.38, + "probability": 0.7586 + }, + { + "start": 2749.42, + "end": 2749.6, + "probability": 0.9334 + }, + { + "start": 2750.04, + "end": 2750.62, + "probability": 0.5023 + }, + { + "start": 2751.1, + "end": 2752.72, + "probability": 0.9455 + }, + { + "start": 2754.06, + "end": 2755.56, + "probability": 0.9966 + }, + { + "start": 2757.42, + "end": 2757.56, + "probability": 0.3643 + }, + { + "start": 2757.56, + "end": 2758.14, + "probability": 0.9707 + }, + { + "start": 2758.7, + "end": 2759.24, + "probability": 0.259 + }, + { + "start": 2759.74, + "end": 2760.88, + "probability": 0.7449 + }, + { + "start": 2761.36, + "end": 2761.76, + "probability": 0.3831 + }, + { + "start": 2761.82, + "end": 2763.06, + "probability": 0.9441 + }, + { + "start": 2763.56, + "end": 2768.08, + "probability": 0.9275 + }, + { + "start": 2768.26, + "end": 2769.64, + "probability": 0.9708 + }, + { + "start": 2769.92, + "end": 2770.22, + "probability": 0.8764 + }, + { + "start": 2770.64, + "end": 2771.14, + "probability": 0.5273 + }, + { + "start": 2771.2, + "end": 2771.64, + "probability": 0.822 + }, + { + "start": 2771.9, + "end": 2772.9, + "probability": 0.935 + }, + { + "start": 2773.2, + "end": 2774.86, + "probability": 0.9231 + }, + { + "start": 2775.56, + "end": 2776.78, + "probability": 0.9951 + }, + { + "start": 2777.36, + "end": 2781.92, + "probability": 0.7137 + }, + { + "start": 2782.48, + "end": 2785.76, + "probability": 0.9521 + }, + { + "start": 2785.86, + "end": 2786.46, + "probability": 0.779 + }, + { + "start": 2786.58, + "end": 2787.38, + "probability": 0.8314 + }, + { + "start": 2788.9, + "end": 2789.4, + "probability": 0.025 + }, + { + "start": 2789.4, + "end": 2791.96, + "probability": 0.7748 + }, + { + "start": 2793.36, + "end": 2793.88, + "probability": 0.1126 + }, + { + "start": 2793.88, + "end": 2793.88, + "probability": 0.2265 + }, + { + "start": 2793.88, + "end": 2796.78, + "probability": 0.6777 + }, + { + "start": 2800.76, + "end": 2800.9, + "probability": 0.0003 + }, + { + "start": 2800.98, + "end": 2800.98, + "probability": 0.0075 + }, + { + "start": 2800.98, + "end": 2805.44, + "probability": 0.421 + }, + { + "start": 2805.44, + "end": 2805.54, + "probability": 0.0097 + }, + { + "start": 2805.54, + "end": 2808.5, + "probability": 0.517 + }, + { + "start": 2808.54, + "end": 2810.12, + "probability": 0.816 + }, + { + "start": 2810.78, + "end": 2812.37, + "probability": 0.759 + }, + { + "start": 2812.42, + "end": 2815.44, + "probability": 0.0081 + }, + { + "start": 2815.44, + "end": 2815.44, + "probability": 0.2084 + }, + { + "start": 2815.44, + "end": 2815.5, + "probability": 0.1693 + }, + { + "start": 2815.5, + "end": 2816.78, + "probability": 0.7111 + }, + { + "start": 2816.86, + "end": 2820.06, + "probability": 0.009 + }, + { + "start": 2822.09, + "end": 2825.58, + "probability": 0.6935 + }, + { + "start": 2826.5, + "end": 2826.86, + "probability": 0.0435 + }, + { + "start": 2826.86, + "end": 2827.1, + "probability": 0.0903 + }, + { + "start": 2827.1, + "end": 2827.64, + "probability": 0.0759 + }, + { + "start": 2827.64, + "end": 2827.64, + "probability": 0.354 + }, + { + "start": 2827.64, + "end": 2827.76, + "probability": 0.1225 + }, + { + "start": 2828.06, + "end": 2828.34, + "probability": 0.4607 + }, + { + "start": 2828.46, + "end": 2829.06, + "probability": 0.7032 + }, + { + "start": 2829.24, + "end": 2831.48, + "probability": 0.7733 + }, + { + "start": 2831.66, + "end": 2832.76, + "probability": 0.7027 + }, + { + "start": 2833.48, + "end": 2833.72, + "probability": 0.105 + }, + { + "start": 2834.0, + "end": 2837.2, + "probability": 0.6701 + }, + { + "start": 2837.3, + "end": 2838.56, + "probability": 0.8335 + }, + { + "start": 2839.34, + "end": 2843.42, + "probability": 0.9141 + }, + { + "start": 2844.54, + "end": 2851.42, + "probability": 0.6302 + }, + { + "start": 2851.94, + "end": 2852.14, + "probability": 0.0492 + }, + { + "start": 2852.34, + "end": 2852.34, + "probability": 0.0807 + }, + { + "start": 2852.34, + "end": 2853.08, + "probability": 0.2029 + }, + { + "start": 2853.14, + "end": 2855.74, + "probability": 0.6742 + }, + { + "start": 2855.88, + "end": 2858.5, + "probability": 0.6278 + }, + { + "start": 2858.76, + "end": 2860.06, + "probability": 0.9617 + }, + { + "start": 2860.16, + "end": 2861.34, + "probability": 0.8439 + }, + { + "start": 2861.76, + "end": 2862.58, + "probability": 0.4114 + }, + { + "start": 2863.24, + "end": 2863.76, + "probability": 0.401 + }, + { + "start": 2863.86, + "end": 2864.26, + "probability": 0.743 + }, + { + "start": 2864.9, + "end": 2866.42, + "probability": 0.6835 + }, + { + "start": 2866.8, + "end": 2867.2, + "probability": 0.5796 + }, + { + "start": 2868.04, + "end": 2869.0, + "probability": 0.6636 + }, + { + "start": 2869.62, + "end": 2871.56, + "probability": 0.9726 + }, + { + "start": 2872.68, + "end": 2879.24, + "probability": 0.9836 + }, + { + "start": 2880.0, + "end": 2884.46, + "probability": 0.9708 + }, + { + "start": 2885.0, + "end": 2887.74, + "probability": 0.8123 + }, + { + "start": 2888.28, + "end": 2888.92, + "probability": 0.8972 + }, + { + "start": 2889.98, + "end": 2892.52, + "probability": 0.9779 + }, + { + "start": 2894.18, + "end": 2894.74, + "probability": 0.6704 + }, + { + "start": 2894.74, + "end": 2894.96, + "probability": 0.3309 + }, + { + "start": 2894.96, + "end": 2894.96, + "probability": 0.2206 + }, + { + "start": 2894.96, + "end": 2895.2, + "probability": 0.3993 + }, + { + "start": 2895.22, + "end": 2897.46, + "probability": 0.7222 + }, + { + "start": 2899.4, + "end": 2900.34, + "probability": 0.5164 + }, + { + "start": 2900.64, + "end": 2902.22, + "probability": 0.0716 + }, + { + "start": 2908.1, + "end": 2910.22, + "probability": 0.049 + }, + { + "start": 2910.28, + "end": 2911.16, + "probability": 0.1687 + }, + { + "start": 2911.16, + "end": 2911.18, + "probability": 0.2022 + }, + { + "start": 2911.18, + "end": 2912.18, + "probability": 0.6271 + }, + { + "start": 2912.78, + "end": 2913.34, + "probability": 0.4535 + }, + { + "start": 2913.44, + "end": 2914.2, + "probability": 0.538 + }, + { + "start": 2915.26, + "end": 2915.52, + "probability": 0.347 + }, + { + "start": 2915.62, + "end": 2917.62, + "probability": 0.6342 + }, + { + "start": 2918.42, + "end": 2918.52, + "probability": 0.0245 + }, + { + "start": 2918.52, + "end": 2919.26, + "probability": 0.181 + }, + { + "start": 2919.66, + "end": 2920.02, + "probability": 0.6976 + }, + { + "start": 2921.02, + "end": 2921.62, + "probability": 0.5073 + }, + { + "start": 2921.92, + "end": 2922.58, + "probability": 0.6646 + }, + { + "start": 2923.0, + "end": 2923.86, + "probability": 0.7435 + }, + { + "start": 2923.86, + "end": 2926.2, + "probability": 0.7834 + }, + { + "start": 2926.22, + "end": 2929.06, + "probability": 0.3322 + }, + { + "start": 2929.84, + "end": 2930.08, + "probability": 0.6651 + }, + { + "start": 2930.08, + "end": 2932.66, + "probability": 0.1077 + }, + { + "start": 2933.14, + "end": 2934.22, + "probability": 0.4518 + }, + { + "start": 2936.98, + "end": 2938.8, + "probability": 0.3576 + }, + { + "start": 2940.0, + "end": 2943.06, + "probability": 0.5185 + }, + { + "start": 2943.26, + "end": 2946.26, + "probability": 0.4161 + }, + { + "start": 2947.48, + "end": 2947.56, + "probability": 0.0393 + }, + { + "start": 2947.56, + "end": 2947.56, + "probability": 0.1052 + }, + { + "start": 2947.56, + "end": 2950.72, + "probability": 0.454 + }, + { + "start": 2951.04, + "end": 2952.46, + "probability": 0.6775 + }, + { + "start": 2954.04, + "end": 2956.62, + "probability": 0.6808 + }, + { + "start": 2956.72, + "end": 2957.54, + "probability": 0.6425 + }, + { + "start": 2957.54, + "end": 2957.54, + "probability": 0.7583 + }, + { + "start": 2957.54, + "end": 2959.34, + "probability": 0.7529 + }, + { + "start": 2959.74, + "end": 2960.8, + "probability": 0.6106 + }, + { + "start": 2960.92, + "end": 2960.92, + "probability": 0.614 + }, + { + "start": 2961.9, + "end": 2963.32, + "probability": 0.1471 + }, + { + "start": 2964.58, + "end": 2964.92, + "probability": 0.1031 + }, + { + "start": 2967.76, + "end": 2968.64, + "probability": 0.3543 + }, + { + "start": 2969.24, + "end": 2969.42, + "probability": 0.152 + }, + { + "start": 2969.86, + "end": 2970.86, + "probability": 0.0546 + }, + { + "start": 2971.4, + "end": 2972.8, + "probability": 0.1278 + }, + { + "start": 2972.8, + "end": 2973.14, + "probability": 0.153 + }, + { + "start": 2973.3, + "end": 2976.24, + "probability": 0.259 + }, + { + "start": 2976.54, + "end": 2976.54, + "probability": 0.4923 + }, + { + "start": 2976.54, + "end": 2976.54, + "probability": 0.3231 + }, + { + "start": 2976.54, + "end": 2978.96, + "probability": 0.5404 + }, + { + "start": 2980.2, + "end": 2982.8, + "probability": 0.0551 + }, + { + "start": 2982.92, + "end": 2983.88, + "probability": 0.1403 + }, + { + "start": 2983.92, + "end": 2984.5, + "probability": 0.3661 + }, + { + "start": 2984.6, + "end": 2986.82, + "probability": 0.7467 + }, + { + "start": 2987.3, + "end": 2988.9, + "probability": 0.8047 + }, + { + "start": 2989.04, + "end": 2989.92, + "probability": 0.7105 + }, + { + "start": 2992.22, + "end": 2994.48, + "probability": 0.9904 + }, + { + "start": 2994.48, + "end": 2997.7, + "probability": 0.9591 + }, + { + "start": 2997.84, + "end": 3000.78, + "probability": 0.9849 + }, + { + "start": 3002.12, + "end": 3003.78, + "probability": 0.9014 + }, + { + "start": 3003.96, + "end": 3004.92, + "probability": 0.77 + }, + { + "start": 3004.94, + "end": 3007.12, + "probability": 0.991 + }, + { + "start": 3007.84, + "end": 3009.4, + "probability": 0.7624 + }, + { + "start": 3009.84, + "end": 3015.12, + "probability": 0.9883 + }, + { + "start": 3016.3, + "end": 3021.47, + "probability": 0.9724 + }, + { + "start": 3022.95, + "end": 3028.58, + "probability": 0.9893 + }, + { + "start": 3029.6, + "end": 3030.62, + "probability": 0.6597 + }, + { + "start": 3031.6, + "end": 3034.88, + "probability": 0.8665 + }, + { + "start": 3035.52, + "end": 3037.18, + "probability": 0.8644 + }, + { + "start": 3037.7, + "end": 3039.0, + "probability": 0.9862 + }, + { + "start": 3039.88, + "end": 3042.3, + "probability": 0.9875 + }, + { + "start": 3044.02, + "end": 3047.96, + "probability": 0.995 + }, + { + "start": 3048.6, + "end": 3049.42, + "probability": 0.7605 + }, + { + "start": 3049.94, + "end": 3050.7, + "probability": 0.9677 + }, + { + "start": 3052.44, + "end": 3055.96, + "probability": 0.975 + }, + { + "start": 3056.98, + "end": 3060.5, + "probability": 0.9943 + }, + { + "start": 3061.92, + "end": 3066.1, + "probability": 0.9939 + }, + { + "start": 3067.38, + "end": 3069.6, + "probability": 0.9812 + }, + { + "start": 3070.68, + "end": 3073.7, + "probability": 0.96 + }, + { + "start": 3074.6, + "end": 3076.76, + "probability": 0.9692 + }, + { + "start": 3078.96, + "end": 3082.2, + "probability": 0.9617 + }, + { + "start": 3082.96, + "end": 3087.96, + "probability": 0.9926 + }, + { + "start": 3089.08, + "end": 3090.42, + "probability": 0.9176 + }, + { + "start": 3090.98, + "end": 3093.2, + "probability": 0.985 + }, + { + "start": 3093.6, + "end": 3097.32, + "probability": 0.9779 + }, + { + "start": 3098.72, + "end": 3102.76, + "probability": 0.9507 + }, + { + "start": 3103.02, + "end": 3106.38, + "probability": 0.9889 + }, + { + "start": 3107.16, + "end": 3111.54, + "probability": 0.9954 + }, + { + "start": 3112.66, + "end": 3113.54, + "probability": 0.6682 + }, + { + "start": 3113.64, + "end": 3116.3, + "probability": 0.9866 + }, + { + "start": 3118.82, + "end": 3121.16, + "probability": 0.9093 + }, + { + "start": 3121.16, + "end": 3123.82, + "probability": 0.902 + }, + { + "start": 3124.42, + "end": 3127.8, + "probability": 0.8831 + }, + { + "start": 3128.56, + "end": 3132.08, + "probability": 0.9938 + }, + { + "start": 3133.12, + "end": 3133.46, + "probability": 0.8492 + }, + { + "start": 3134.24, + "end": 3136.96, + "probability": 0.9939 + }, + { + "start": 3136.96, + "end": 3139.8, + "probability": 0.9955 + }, + { + "start": 3140.5, + "end": 3145.84, + "probability": 0.9688 + }, + { + "start": 3146.86, + "end": 3149.74, + "probability": 0.9969 + }, + { + "start": 3150.34, + "end": 3151.38, + "probability": 0.8477 + }, + { + "start": 3152.2, + "end": 3153.96, + "probability": 0.9906 + }, + { + "start": 3154.56, + "end": 3155.16, + "probability": 0.9028 + }, + { + "start": 3155.16, + "end": 3155.82, + "probability": 0.9868 + }, + { + "start": 3155.96, + "end": 3157.08, + "probability": 0.977 + }, + { + "start": 3157.38, + "end": 3158.46, + "probability": 0.9795 + }, + { + "start": 3158.58, + "end": 3159.74, + "probability": 0.6446 + }, + { + "start": 3159.96, + "end": 3160.58, + "probability": 0.9871 + }, + { + "start": 3160.84, + "end": 3162.5, + "probability": 0.9886 + }, + { + "start": 3163.06, + "end": 3166.86, + "probability": 0.9906 + }, + { + "start": 3168.38, + "end": 3171.7, + "probability": 0.9614 + }, + { + "start": 3172.4, + "end": 3173.74, + "probability": 0.9858 + }, + { + "start": 3173.86, + "end": 3176.04, + "probability": 0.9844 + }, + { + "start": 3177.66, + "end": 3182.3, + "probability": 0.9912 + }, + { + "start": 3182.78, + "end": 3185.5, + "probability": 0.9883 + }, + { + "start": 3186.08, + "end": 3187.3, + "probability": 0.7983 + }, + { + "start": 3188.06, + "end": 3190.24, + "probability": 0.9779 + }, + { + "start": 3191.0, + "end": 3195.4, + "probability": 0.9885 + }, + { + "start": 3195.72, + "end": 3196.54, + "probability": 0.7291 + }, + { + "start": 3197.54, + "end": 3199.04, + "probability": 0.4619 + }, + { + "start": 3200.04, + "end": 3201.22, + "probability": 0.9255 + }, + { + "start": 3202.56, + "end": 3207.06, + "probability": 0.9932 + }, + { + "start": 3207.18, + "end": 3208.86, + "probability": 0.9561 + }, + { + "start": 3209.92, + "end": 3213.9, + "probability": 0.9951 + }, + { + "start": 3214.48, + "end": 3217.1, + "probability": 0.9942 + }, + { + "start": 3218.46, + "end": 3220.18, + "probability": 0.8501 + }, + { + "start": 3220.54, + "end": 3226.0, + "probability": 0.892 + }, + { + "start": 3226.98, + "end": 3230.58, + "probability": 0.9813 + }, + { + "start": 3231.94, + "end": 3234.88, + "probability": 0.9465 + }, + { + "start": 3235.04, + "end": 3237.7, + "probability": 0.9533 + }, + { + "start": 3239.06, + "end": 3241.7, + "probability": 0.9567 + }, + { + "start": 3243.16, + "end": 3245.32, + "probability": 0.8706 + }, + { + "start": 3245.52, + "end": 3247.38, + "probability": 0.9985 + }, + { + "start": 3248.46, + "end": 3253.34, + "probability": 0.9792 + }, + { + "start": 3253.64, + "end": 3255.86, + "probability": 0.966 + }, + { + "start": 3255.94, + "end": 3257.78, + "probability": 0.3679 + }, + { + "start": 3257.96, + "end": 3260.76, + "probability": 0.8361 + }, + { + "start": 3261.42, + "end": 3262.32, + "probability": 0.7892 + }, + { + "start": 3262.86, + "end": 3265.48, + "probability": 0.9863 + }, + { + "start": 3265.84, + "end": 3266.4, + "probability": 0.9215 + }, + { + "start": 3266.64, + "end": 3267.1, + "probability": 0.9803 + }, + { + "start": 3267.32, + "end": 3267.96, + "probability": 0.7279 + }, + { + "start": 3268.52, + "end": 3273.52, + "probability": 0.9338 + }, + { + "start": 3274.04, + "end": 3275.96, + "probability": 0.8333 + }, + { + "start": 3276.94, + "end": 3283.72, + "probability": 0.9882 + }, + { + "start": 3284.16, + "end": 3288.22, + "probability": 0.96 + }, + { + "start": 3288.46, + "end": 3289.88, + "probability": 0.7005 + }, + { + "start": 3290.66, + "end": 3295.74, + "probability": 0.9956 + }, + { + "start": 3296.22, + "end": 3297.52, + "probability": 0.8604 + }, + { + "start": 3298.14, + "end": 3300.34, + "probability": 0.8957 + }, + { + "start": 3301.56, + "end": 3304.02, + "probability": 0.9922 + }, + { + "start": 3305.28, + "end": 3309.36, + "probability": 0.8139 + }, + { + "start": 3310.6, + "end": 3314.78, + "probability": 0.8135 + }, + { + "start": 3315.88, + "end": 3317.72, + "probability": 0.8063 + }, + { + "start": 3317.9, + "end": 3320.88, + "probability": 0.9924 + }, + { + "start": 3322.1, + "end": 3326.32, + "probability": 0.9345 + }, + { + "start": 3327.18, + "end": 3328.12, + "probability": 0.8297 + }, + { + "start": 3328.48, + "end": 3331.06, + "probability": 0.8558 + }, + { + "start": 3331.72, + "end": 3331.94, + "probability": 0.7425 + }, + { + "start": 3333.8, + "end": 3334.32, + "probability": 0.6023 + }, + { + "start": 3334.4, + "end": 3336.2, + "probability": 0.8392 + }, + { + "start": 3350.78, + "end": 3351.0, + "probability": 0.4993 + }, + { + "start": 3353.08, + "end": 3353.44, + "probability": 0.119 + }, + { + "start": 3356.88, + "end": 3357.56, + "probability": 0.7142 + }, + { + "start": 3359.22, + "end": 3361.56, + "probability": 0.9781 + }, + { + "start": 3361.78, + "end": 3367.84, + "probability": 0.9404 + }, + { + "start": 3368.6, + "end": 3371.78, + "probability": 0.9794 + }, + { + "start": 3372.4, + "end": 3372.64, + "probability": 0.4193 + }, + { + "start": 3372.78, + "end": 3373.5, + "probability": 0.79 + }, + { + "start": 3373.88, + "end": 3378.06, + "probability": 0.9743 + }, + { + "start": 3379.18, + "end": 3386.1, + "probability": 0.9884 + }, + { + "start": 3387.0, + "end": 3391.7, + "probability": 0.9921 + }, + { + "start": 3391.8, + "end": 3394.12, + "probability": 0.8191 + }, + { + "start": 3394.12, + "end": 3397.64, + "probability": 0.9619 + }, + { + "start": 3398.98, + "end": 3403.74, + "probability": 0.9912 + }, + { + "start": 3404.32, + "end": 3406.8, + "probability": 0.9902 + }, + { + "start": 3406.86, + "end": 3409.6, + "probability": 0.9941 + }, + { + "start": 3410.02, + "end": 3411.18, + "probability": 0.3411 + }, + { + "start": 3414.76, + "end": 3421.36, + "probability": 0.9613 + }, + { + "start": 3421.56, + "end": 3422.24, + "probability": 0.8731 + }, + { + "start": 3423.04, + "end": 3426.92, + "probability": 0.8833 + }, + { + "start": 3427.48, + "end": 3429.18, + "probability": 0.8851 + }, + { + "start": 3429.26, + "end": 3431.38, + "probability": 0.9232 + }, + { + "start": 3431.56, + "end": 3432.62, + "probability": 0.9635 + }, + { + "start": 3433.26, + "end": 3435.14, + "probability": 0.9544 + }, + { + "start": 3435.74, + "end": 3439.88, + "probability": 0.9837 + }, + { + "start": 3439.88, + "end": 3444.1, + "probability": 0.9893 + }, + { + "start": 3444.68, + "end": 3447.74, + "probability": 0.9945 + }, + { + "start": 3448.98, + "end": 3454.44, + "probability": 0.996 + }, + { + "start": 3454.44, + "end": 3460.54, + "probability": 0.9995 + }, + { + "start": 3461.36, + "end": 3466.16, + "probability": 0.994 + }, + { + "start": 3466.16, + "end": 3471.72, + "probability": 0.9993 + }, + { + "start": 3472.64, + "end": 3476.94, + "probability": 0.9858 + }, + { + "start": 3477.48, + "end": 3480.94, + "probability": 0.9768 + }, + { + "start": 3484.7, + "end": 3490.32, + "probability": 0.9889 + }, + { + "start": 3490.32, + "end": 3495.14, + "probability": 0.9995 + }, + { + "start": 3495.14, + "end": 3499.52, + "probability": 0.998 + }, + { + "start": 3501.02, + "end": 3505.7, + "probability": 0.837 + }, + { + "start": 3506.76, + "end": 3508.76, + "probability": 0.8058 + }, + { + "start": 3509.94, + "end": 3511.56, + "probability": 0.8418 + }, + { + "start": 3512.36, + "end": 3514.3, + "probability": 0.9893 + }, + { + "start": 3515.16, + "end": 3517.48, + "probability": 0.9973 + }, + { + "start": 3517.48, + "end": 3520.36, + "probability": 0.9995 + }, + { + "start": 3520.86, + "end": 3522.8, + "probability": 0.9932 + }, + { + "start": 3523.52, + "end": 3526.86, + "probability": 0.9948 + }, + { + "start": 3527.64, + "end": 3532.54, + "probability": 0.706 + }, + { + "start": 3534.5, + "end": 3539.0, + "probability": 0.9738 + }, + { + "start": 3539.6, + "end": 3541.76, + "probability": 0.6702 + }, + { + "start": 3544.12, + "end": 3547.4, + "probability": 0.8671 + }, + { + "start": 3548.1, + "end": 3552.42, + "probability": 0.986 + }, + { + "start": 3553.3, + "end": 3553.94, + "probability": 0.8561 + }, + { + "start": 3554.08, + "end": 3558.26, + "probability": 0.9964 + }, + { + "start": 3558.78, + "end": 3564.9, + "probability": 0.9945 + }, + { + "start": 3564.94, + "end": 3570.2, + "probability": 0.9947 + }, + { + "start": 3571.94, + "end": 3575.4, + "probability": 0.9581 + }, + { + "start": 3576.78, + "end": 3579.46, + "probability": 0.9989 + }, + { + "start": 3579.46, + "end": 3584.54, + "probability": 0.9696 + }, + { + "start": 3585.12, + "end": 3587.24, + "probability": 0.9385 + }, + { + "start": 3587.32, + "end": 3589.36, + "probability": 0.9258 + }, + { + "start": 3591.44, + "end": 3597.38, + "probability": 0.8253 + }, + { + "start": 3597.96, + "end": 3601.54, + "probability": 0.7476 + }, + { + "start": 3602.08, + "end": 3603.24, + "probability": 0.8107 + }, + { + "start": 3605.0, + "end": 3609.64, + "probability": 0.9001 + }, + { + "start": 3610.28, + "end": 3610.92, + "probability": 0.4949 + }, + { + "start": 3611.48, + "end": 3613.06, + "probability": 0.9928 + }, + { + "start": 3614.04, + "end": 3615.98, + "probability": 0.7457 + }, + { + "start": 3616.84, + "end": 3619.0, + "probability": 0.916 + }, + { + "start": 3619.56, + "end": 3620.68, + "probability": 0.7781 + }, + { + "start": 3621.18, + "end": 3623.66, + "probability": 0.9204 + }, + { + "start": 3626.62, + "end": 3629.3, + "probability": 0.8935 + }, + { + "start": 3630.18, + "end": 3637.92, + "probability": 0.6171 + }, + { + "start": 3637.96, + "end": 3639.86, + "probability": 0.6214 + }, + { + "start": 3640.56, + "end": 3641.86, + "probability": 0.947 + }, + { + "start": 3642.8, + "end": 3647.6, + "probability": 0.7308 + }, + { + "start": 3647.6, + "end": 3648.9, + "probability": 0.9564 + }, + { + "start": 3649.9, + "end": 3654.84, + "probability": 0.8666 + }, + { + "start": 3655.02, + "end": 3656.62, + "probability": 0.9803 + }, + { + "start": 3657.08, + "end": 3659.7, + "probability": 0.9869 + }, + { + "start": 3660.78, + "end": 3663.88, + "probability": 0.9907 + }, + { + "start": 3664.4, + "end": 3667.52, + "probability": 0.9919 + }, + { + "start": 3667.64, + "end": 3668.64, + "probability": 0.746 + }, + { + "start": 3669.0, + "end": 3670.72, + "probability": 0.9724 + }, + { + "start": 3672.08, + "end": 3676.0, + "probability": 0.995 + }, + { + "start": 3676.54, + "end": 3678.78, + "probability": 0.9597 + }, + { + "start": 3679.46, + "end": 3684.5, + "probability": 0.875 + }, + { + "start": 3685.22, + "end": 3690.28, + "probability": 0.9518 + }, + { + "start": 3691.34, + "end": 3694.92, + "probability": 0.9785 + }, + { + "start": 3695.48, + "end": 3696.34, + "probability": 0.5004 + }, + { + "start": 3697.7, + "end": 3698.98, + "probability": 0.7287 + }, + { + "start": 3699.18, + "end": 3699.92, + "probability": 0.956 + }, + { + "start": 3700.0, + "end": 3702.84, + "probability": 0.9946 + }, + { + "start": 3702.98, + "end": 3704.06, + "probability": 0.6666 + }, + { + "start": 3704.82, + "end": 3707.4, + "probability": 0.9868 + }, + { + "start": 3708.24, + "end": 3711.1, + "probability": 0.9002 + }, + { + "start": 3712.08, + "end": 3717.98, + "probability": 0.9927 + }, + { + "start": 3718.66, + "end": 3720.03, + "probability": 0.9766 + }, + { + "start": 3720.26, + "end": 3723.28, + "probability": 0.9523 + }, + { + "start": 3723.96, + "end": 3729.86, + "probability": 0.9565 + }, + { + "start": 3729.96, + "end": 3731.4, + "probability": 0.8118 + }, + { + "start": 3731.74, + "end": 3734.2, + "probability": 0.9507 + }, + { + "start": 3734.76, + "end": 3734.76, + "probability": 0.0971 + }, + { + "start": 3734.76, + "end": 3735.2, + "probability": 0.4996 + }, + { + "start": 3736.42, + "end": 3736.92, + "probability": 0.4993 + }, + { + "start": 3736.94, + "end": 3739.3, + "probability": 0.8656 + }, + { + "start": 3764.52, + "end": 3765.66, + "probability": 0.622 + }, + { + "start": 3767.58, + "end": 3769.56, + "probability": 0.985 + }, + { + "start": 3769.66, + "end": 3773.82, + "probability": 0.9837 + }, + { + "start": 3773.82, + "end": 3777.72, + "probability": 0.9785 + }, + { + "start": 3779.02, + "end": 3781.36, + "probability": 0.9941 + }, + { + "start": 3781.36, + "end": 3784.64, + "probability": 0.9993 + }, + { + "start": 3785.6, + "end": 3787.8, + "probability": 0.9887 + }, + { + "start": 3788.68, + "end": 3789.26, + "probability": 0.9216 + }, + { + "start": 3789.98, + "end": 3792.24, + "probability": 0.9848 + }, + { + "start": 3793.0, + "end": 3794.6, + "probability": 0.9668 + }, + { + "start": 3795.2, + "end": 3795.72, + "probability": 0.8681 + }, + { + "start": 3796.44, + "end": 3800.6, + "probability": 0.9903 + }, + { + "start": 3801.76, + "end": 3807.64, + "probability": 0.9913 + }, + { + "start": 3809.12, + "end": 3814.36, + "probability": 0.9985 + }, + { + "start": 3815.06, + "end": 3818.14, + "probability": 0.9235 + }, + { + "start": 3818.34, + "end": 3820.64, + "probability": 0.998 + }, + { + "start": 3821.86, + "end": 3825.76, + "probability": 0.9922 + }, + { + "start": 3827.88, + "end": 3829.4, + "probability": 0.9932 + }, + { + "start": 3830.48, + "end": 3833.7, + "probability": 0.9897 + }, + { + "start": 3834.76, + "end": 3837.98, + "probability": 0.948 + }, + { + "start": 3838.58, + "end": 3843.7, + "probability": 0.9515 + }, + { + "start": 3845.36, + "end": 3847.82, + "probability": 0.9219 + }, + { + "start": 3848.76, + "end": 3850.2, + "probability": 0.5548 + }, + { + "start": 3851.22, + "end": 3854.16, + "probability": 0.9213 + }, + { + "start": 3854.76, + "end": 3856.36, + "probability": 0.9045 + }, + { + "start": 3857.36, + "end": 3861.6, + "probability": 0.9993 + }, + { + "start": 3862.48, + "end": 3867.08, + "probability": 0.9967 + }, + { + "start": 3867.94, + "end": 3871.48, + "probability": 0.9895 + }, + { + "start": 3872.74, + "end": 3873.23, + "probability": 0.9429 + }, + { + "start": 3874.38, + "end": 3876.12, + "probability": 0.9473 + }, + { + "start": 3876.96, + "end": 3881.8, + "probability": 0.9891 + }, + { + "start": 3882.6, + "end": 3884.32, + "probability": 0.8492 + }, + { + "start": 3885.02, + "end": 3887.98, + "probability": 0.9868 + }, + { + "start": 3888.74, + "end": 3890.12, + "probability": 0.7435 + }, + { + "start": 3890.88, + "end": 3895.44, + "probability": 0.9842 + }, + { + "start": 3896.68, + "end": 3899.88, + "probability": 0.9856 + }, + { + "start": 3900.74, + "end": 3903.92, + "probability": 0.9916 + }, + { + "start": 3904.64, + "end": 3908.18, + "probability": 0.9885 + }, + { + "start": 3909.1, + "end": 3911.9, + "probability": 0.9763 + }, + { + "start": 3912.52, + "end": 3919.42, + "probability": 0.9659 + }, + { + "start": 3920.92, + "end": 3924.3, + "probability": 0.9903 + }, + { + "start": 3924.86, + "end": 3927.84, + "probability": 0.9961 + }, + { + "start": 3928.56, + "end": 3930.28, + "probability": 0.951 + }, + { + "start": 3931.26, + "end": 3936.06, + "probability": 0.9288 + }, + { + "start": 3936.9, + "end": 3941.84, + "probability": 0.8838 + }, + { + "start": 3942.06, + "end": 3947.22, + "probability": 0.9984 + }, + { + "start": 3948.86, + "end": 3951.68, + "probability": 0.9806 + }, + { + "start": 3951.68, + "end": 3954.4, + "probability": 0.9982 + }, + { + "start": 3955.54, + "end": 3959.94, + "probability": 0.9988 + }, + { + "start": 3960.9, + "end": 3964.06, + "probability": 0.9987 + }, + { + "start": 3964.06, + "end": 3968.38, + "probability": 0.9985 + }, + { + "start": 3969.48, + "end": 3973.42, + "probability": 0.9995 + }, + { + "start": 3973.42, + "end": 3976.7, + "probability": 0.9982 + }, + { + "start": 3977.28, + "end": 3982.32, + "probability": 0.9921 + }, + { + "start": 3983.78, + "end": 3984.92, + "probability": 0.6174 + }, + { + "start": 3985.82, + "end": 3987.08, + "probability": 0.9526 + }, + { + "start": 3988.14, + "end": 3988.98, + "probability": 0.9295 + }, + { + "start": 3989.86, + "end": 3991.58, + "probability": 0.9574 + }, + { + "start": 3992.72, + "end": 3996.08, + "probability": 0.988 + }, + { + "start": 3996.08, + "end": 3999.48, + "probability": 0.9963 + }, + { + "start": 4000.24, + "end": 4005.0, + "probability": 0.9043 + }, + { + "start": 4006.76, + "end": 4009.14, + "probability": 0.9639 + }, + { + "start": 4009.8, + "end": 4011.46, + "probability": 0.9542 + }, + { + "start": 4011.64, + "end": 4013.7, + "probability": 0.9543 + }, + { + "start": 4013.84, + "end": 4014.64, + "probability": 0.8528 + }, + { + "start": 4015.66, + "end": 4018.48, + "probability": 0.9819 + }, + { + "start": 4019.24, + "end": 4021.92, + "probability": 0.9836 + }, + { + "start": 4022.58, + "end": 4024.36, + "probability": 0.988 + }, + { + "start": 4025.02, + "end": 4026.94, + "probability": 0.9805 + }, + { + "start": 4027.8, + "end": 4032.34, + "probability": 0.8911 + }, + { + "start": 4033.22, + "end": 4037.0, + "probability": 0.9945 + }, + { + "start": 4040.36, + "end": 4044.28, + "probability": 0.9746 + }, + { + "start": 4044.28, + "end": 4048.28, + "probability": 0.9989 + }, + { + "start": 4049.14, + "end": 4053.72, + "probability": 0.9796 + }, + { + "start": 4054.28, + "end": 4056.34, + "probability": 0.8505 + }, + { + "start": 4056.98, + "end": 4058.3, + "probability": 0.6983 + }, + { + "start": 4059.24, + "end": 4061.62, + "probability": 0.8772 + }, + { + "start": 4062.12, + "end": 4062.6, + "probability": 0.8944 + }, + { + "start": 4063.74, + "end": 4064.5, + "probability": 0.7906 + }, + { + "start": 4065.24, + "end": 4070.44, + "probability": 0.9749 + }, + { + "start": 4070.44, + "end": 4070.56, + "probability": 0.9037 + }, + { + "start": 4074.46, + "end": 4075.72, + "probability": 0.2945 + }, + { + "start": 4079.32, + "end": 4079.32, + "probability": 0.3125 + }, + { + "start": 4087.14, + "end": 4087.68, + "probability": 0.3186 + }, + { + "start": 4092.04, + "end": 4097.22, + "probability": 0.9937 + }, + { + "start": 4098.08, + "end": 4101.84, + "probability": 0.8444 + }, + { + "start": 4102.84, + "end": 4105.0, + "probability": 0.9494 + }, + { + "start": 4105.54, + "end": 4107.98, + "probability": 0.9861 + }, + { + "start": 4109.08, + "end": 4113.68, + "probability": 0.9354 + }, + { + "start": 4115.34, + "end": 4119.52, + "probability": 0.9844 + }, + { + "start": 4120.22, + "end": 4124.48, + "probability": 0.9415 + }, + { + "start": 4125.78, + "end": 4127.82, + "probability": 0.9609 + }, + { + "start": 4129.1, + "end": 4131.84, + "probability": 0.9879 + }, + { + "start": 4132.84, + "end": 4136.48, + "probability": 0.9968 + }, + { + "start": 4136.48, + "end": 4139.78, + "probability": 0.9979 + }, + { + "start": 4141.72, + "end": 4143.76, + "probability": 0.833 + }, + { + "start": 4144.4, + "end": 4146.66, + "probability": 0.9538 + }, + { + "start": 4146.66, + "end": 4148.08, + "probability": 0.8077 + }, + { + "start": 4148.4, + "end": 4150.86, + "probability": 0.73 + }, + { + "start": 4151.12, + "end": 4152.82, + "probability": 0.7686 + }, + { + "start": 4153.26, + "end": 4155.94, + "probability": 0.7802 + }, + { + "start": 4156.46, + "end": 4157.9, + "probability": 0.7974 + }, + { + "start": 4159.02, + "end": 4162.7, + "probability": 0.9905 + }, + { + "start": 4163.88, + "end": 4166.92, + "probability": 0.7413 + }, + { + "start": 4167.86, + "end": 4172.22, + "probability": 0.9987 + }, + { + "start": 4172.22, + "end": 4175.98, + "probability": 0.999 + }, + { + "start": 4178.42, + "end": 4180.68, + "probability": 0.8729 + }, + { + "start": 4181.66, + "end": 4182.94, + "probability": 0.9984 + }, + { + "start": 4183.48, + "end": 4185.66, + "probability": 0.9803 + }, + { + "start": 4185.9, + "end": 4188.68, + "probability": 0.9619 + }, + { + "start": 4189.34, + "end": 4192.58, + "probability": 0.9984 + }, + { + "start": 4192.6, + "end": 4196.5, + "probability": 0.9998 + }, + { + "start": 4197.22, + "end": 4200.14, + "probability": 0.9996 + }, + { + "start": 4200.88, + "end": 4202.14, + "probability": 0.9813 + }, + { + "start": 4202.56, + "end": 4203.32, + "probability": 0.9794 + }, + { + "start": 4204.48, + "end": 4209.44, + "probability": 0.9989 + }, + { + "start": 4210.74, + "end": 4216.42, + "probability": 0.992 + }, + { + "start": 4216.96, + "end": 4219.64, + "probability": 0.8905 + }, + { + "start": 4219.74, + "end": 4220.36, + "probability": 0.6526 + }, + { + "start": 4220.8, + "end": 4221.42, + "probability": 0.9251 + }, + { + "start": 4221.52, + "end": 4221.96, + "probability": 0.9522 + }, + { + "start": 4222.06, + "end": 4223.04, + "probability": 0.7135 + }, + { + "start": 4223.88, + "end": 4226.44, + "probability": 0.9945 + }, + { + "start": 4227.52, + "end": 4229.98, + "probability": 0.6848 + }, + { + "start": 4231.58, + "end": 4235.64, + "probability": 0.9816 + }, + { + "start": 4236.24, + "end": 4239.48, + "probability": 0.6578 + }, + { + "start": 4240.52, + "end": 4241.34, + "probability": 0.8013 + }, + { + "start": 4241.86, + "end": 4243.92, + "probability": 0.9526 + }, + { + "start": 4245.28, + "end": 4247.86, + "probability": 0.8731 + }, + { + "start": 4248.86, + "end": 4250.02, + "probability": 0.9294 + }, + { + "start": 4250.62, + "end": 4251.28, + "probability": 0.967 + }, + { + "start": 4251.96, + "end": 4252.5, + "probability": 0.9438 + }, + { + "start": 4253.74, + "end": 4258.02, + "probability": 0.9976 + }, + { + "start": 4258.02, + "end": 4261.84, + "probability": 0.9982 + }, + { + "start": 4262.9, + "end": 4266.54, + "probability": 0.8254 + }, + { + "start": 4267.26, + "end": 4271.34, + "probability": 0.9979 + }, + { + "start": 4273.18, + "end": 4278.05, + "probability": 0.9769 + }, + { + "start": 4280.9, + "end": 4284.2, + "probability": 0.9689 + }, + { + "start": 4285.8, + "end": 4286.52, + "probability": 0.8283 + }, + { + "start": 4287.32, + "end": 4290.54, + "probability": 0.9867 + }, + { + "start": 4291.28, + "end": 4295.44, + "probability": 0.9373 + }, + { + "start": 4297.36, + "end": 4299.4, + "probability": 0.6556 + }, + { + "start": 4299.58, + "end": 4299.96, + "probability": 0.7487 + }, + { + "start": 4300.06, + "end": 4301.04, + "probability": 0.8794 + }, + { + "start": 4301.4, + "end": 4302.48, + "probability": 0.9935 + }, + { + "start": 4304.26, + "end": 4305.02, + "probability": 0.4336 + }, + { + "start": 4305.62, + "end": 4308.24, + "probability": 0.8215 + }, + { + "start": 4308.92, + "end": 4312.22, + "probability": 0.9536 + }, + { + "start": 4312.22, + "end": 4315.44, + "probability": 0.9556 + }, + { + "start": 4317.4, + "end": 4322.1, + "probability": 0.9756 + }, + { + "start": 4322.1, + "end": 4327.62, + "probability": 0.9962 + }, + { + "start": 4328.74, + "end": 4329.9, + "probability": 0.8168 + }, + { + "start": 4331.32, + "end": 4333.48, + "probability": 0.9849 + }, + { + "start": 4334.2, + "end": 4336.74, + "probability": 0.8975 + }, + { + "start": 4337.42, + "end": 4343.2, + "probability": 0.9792 + }, + { + "start": 4343.64, + "end": 4344.38, + "probability": 0.9885 + }, + { + "start": 4345.74, + "end": 4350.7, + "probability": 0.9706 + }, + { + "start": 4351.94, + "end": 4359.18, + "probability": 0.9802 + }, + { + "start": 4359.64, + "end": 4360.66, + "probability": 0.9132 + }, + { + "start": 4362.68, + "end": 4363.8, + "probability": 0.9982 + }, + { + "start": 4364.46, + "end": 4368.26, + "probability": 0.8547 + }, + { + "start": 4369.3, + "end": 4372.38, + "probability": 0.7815 + }, + { + "start": 4372.92, + "end": 4373.74, + "probability": 0.2975 + }, + { + "start": 4374.72, + "end": 4378.14, + "probability": 0.7837 + }, + { + "start": 4379.28, + "end": 4382.92, + "probability": 0.3492 + }, + { + "start": 4383.22, + "end": 4386.2, + "probability": 0.9274 + }, + { + "start": 4387.36, + "end": 4391.92, + "probability": 0.7109 + }, + { + "start": 4392.2, + "end": 4397.28, + "probability": 0.9612 + }, + { + "start": 4399.94, + "end": 4401.3, + "probability": 0.98 + }, + { + "start": 4402.08, + "end": 4402.68, + "probability": 0.9697 + }, + { + "start": 4404.06, + "end": 4405.7, + "probability": 0.9187 + }, + { + "start": 4406.58, + "end": 4407.88, + "probability": 0.8558 + }, + { + "start": 4408.68, + "end": 4413.06, + "probability": 0.841 + }, + { + "start": 4414.24, + "end": 4415.36, + "probability": 0.4621 + }, + { + "start": 4418.5, + "end": 4420.22, + "probability": 0.987 + }, + { + "start": 4421.26, + "end": 4423.44, + "probability": 0.9872 + }, + { + "start": 4424.12, + "end": 4424.36, + "probability": 0.3488 + }, + { + "start": 4425.58, + "end": 4427.52, + "probability": 0.9377 + }, + { + "start": 4428.16, + "end": 4432.06, + "probability": 0.8233 + }, + { + "start": 4433.44, + "end": 4435.6, + "probability": 0.9781 + }, + { + "start": 4436.22, + "end": 4439.4, + "probability": 0.9816 + }, + { + "start": 4440.14, + "end": 4442.98, + "probability": 0.9321 + }, + { + "start": 4443.98, + "end": 4446.14, + "probability": 0.7969 + }, + { + "start": 4447.24, + "end": 4450.04, + "probability": 0.9457 + }, + { + "start": 4451.58, + "end": 4454.14, + "probability": 0.9772 + }, + { + "start": 4454.88, + "end": 4459.08, + "probability": 0.9648 + }, + { + "start": 4459.08, + "end": 4464.52, + "probability": 0.9951 + }, + { + "start": 4468.98, + "end": 4472.4, + "probability": 0.8447 + }, + { + "start": 4473.36, + "end": 4476.36, + "probability": 0.9968 + }, + { + "start": 4477.4, + "end": 4482.1, + "probability": 0.9957 + }, + { + "start": 4483.6, + "end": 4485.76, + "probability": 0.9461 + }, + { + "start": 4486.32, + "end": 4486.88, + "probability": 0.9125 + }, + { + "start": 4487.12, + "end": 4487.58, + "probability": 0.8007 + }, + { + "start": 4487.94, + "end": 4488.3, + "probability": 0.914 + }, + { + "start": 4488.32, + "end": 4488.92, + "probability": 0.761 + }, + { + "start": 4488.96, + "end": 4489.48, + "probability": 0.9238 + }, + { + "start": 4490.76, + "end": 4493.04, + "probability": 0.9853 + }, + { + "start": 4494.9, + "end": 4498.48, + "probability": 0.9633 + }, + { + "start": 4499.22, + "end": 4501.77, + "probability": 0.9814 + }, + { + "start": 4502.7, + "end": 4504.38, + "probability": 0.9746 + }, + { + "start": 4505.06, + "end": 4506.66, + "probability": 0.9274 + }, + { + "start": 4507.42, + "end": 4508.22, + "probability": 0.9519 + }, + { + "start": 4509.34, + "end": 4510.9, + "probability": 0.9953 + }, + { + "start": 4511.62, + "end": 4513.4, + "probability": 0.9976 + }, + { + "start": 4514.24, + "end": 4515.08, + "probability": 0.9274 + }, + { + "start": 4516.02, + "end": 4520.42, + "probability": 0.9996 + }, + { + "start": 4524.58, + "end": 4526.82, + "probability": 0.9972 + }, + { + "start": 4528.14, + "end": 4529.92, + "probability": 0.9945 + }, + { + "start": 4530.1, + "end": 4531.62, + "probability": 0.9473 + }, + { + "start": 4531.8, + "end": 4536.14, + "probability": 0.9908 + }, + { + "start": 4537.32, + "end": 4538.46, + "probability": 0.9957 + }, + { + "start": 4539.24, + "end": 4541.28, + "probability": 0.9837 + }, + { + "start": 4541.62, + "end": 4543.54, + "probability": 0.9353 + }, + { + "start": 4544.0, + "end": 4546.88, + "probability": 0.999 + }, + { + "start": 4547.96, + "end": 4548.46, + "probability": 0.8451 + }, + { + "start": 4549.0, + "end": 4551.46, + "probability": 0.9983 + }, + { + "start": 4551.82, + "end": 4554.26, + "probability": 0.9983 + }, + { + "start": 4555.22, + "end": 4556.58, + "probability": 0.9968 + }, + { + "start": 4557.66, + "end": 4559.38, + "probability": 0.9321 + }, + { + "start": 4560.16, + "end": 4560.36, + "probability": 0.773 + }, + { + "start": 4561.88, + "end": 4566.1, + "probability": 0.8441 + }, + { + "start": 4566.6, + "end": 4570.04, + "probability": 0.9958 + }, + { + "start": 4570.24, + "end": 4571.98, + "probability": 0.9928 + }, + { + "start": 4573.04, + "end": 4575.34, + "probability": 0.7713 + }, + { + "start": 4576.5, + "end": 4579.98, + "probability": 0.8467 + }, + { + "start": 4580.98, + "end": 4584.38, + "probability": 0.8563 + }, + { + "start": 4584.48, + "end": 4584.96, + "probability": 0.9303 + }, + { + "start": 4623.8, + "end": 4626.2, + "probability": 0.7351 + }, + { + "start": 4627.12, + "end": 4629.4, + "probability": 0.9016 + }, + { + "start": 4630.84, + "end": 4633.0, + "probability": 0.9444 + }, + { + "start": 4633.94, + "end": 4634.74, + "probability": 0.8218 + }, + { + "start": 4636.72, + "end": 4636.88, + "probability": 0.7983 + }, + { + "start": 4637.66, + "end": 4639.42, + "probability": 0.8428 + }, + { + "start": 4640.02, + "end": 4642.82, + "probability": 0.6685 + }, + { + "start": 4643.86, + "end": 4646.12, + "probability": 0.7792 + }, + { + "start": 4646.86, + "end": 4649.56, + "probability": 0.9795 + }, + { + "start": 4650.14, + "end": 4651.54, + "probability": 0.7472 + }, + { + "start": 4653.2, + "end": 4656.5, + "probability": 0.9668 + }, + { + "start": 4657.28, + "end": 4657.66, + "probability": 0.9617 + }, + { + "start": 4658.58, + "end": 4661.64, + "probability": 0.9916 + }, + { + "start": 4661.64, + "end": 4665.66, + "probability": 0.9915 + }, + { + "start": 4667.1, + "end": 4670.02, + "probability": 0.9579 + }, + { + "start": 4670.7, + "end": 4674.64, + "probability": 0.989 + }, + { + "start": 4674.9, + "end": 4675.9, + "probability": 0.9265 + }, + { + "start": 4676.48, + "end": 4678.16, + "probability": 0.8409 + }, + { + "start": 4679.6, + "end": 4682.12, + "probability": 0.9321 + }, + { + "start": 4683.4, + "end": 4686.44, + "probability": 0.8225 + }, + { + "start": 4687.62, + "end": 4691.1, + "probability": 0.9352 + }, + { + "start": 4692.04, + "end": 4692.58, + "probability": 0.7843 + }, + { + "start": 4693.3, + "end": 4694.14, + "probability": 0.7638 + }, + { + "start": 4695.32, + "end": 4698.62, + "probability": 0.6875 + }, + { + "start": 4699.66, + "end": 4701.72, + "probability": 0.9552 + }, + { + "start": 4702.52, + "end": 4704.18, + "probability": 0.9388 + }, + { + "start": 4704.84, + "end": 4706.55, + "probability": 0.9686 + }, + { + "start": 4707.5, + "end": 4707.82, + "probability": 0.5907 + }, + { + "start": 4708.76, + "end": 4709.86, + "probability": 0.6383 + }, + { + "start": 4712.96, + "end": 4713.18, + "probability": 0.2253 + }, + { + "start": 4713.18, + "end": 4716.22, + "probability": 0.6338 + }, + { + "start": 4717.18, + "end": 4719.72, + "probability": 0.9302 + }, + { + "start": 4720.62, + "end": 4723.36, + "probability": 0.8137 + }, + { + "start": 4724.28, + "end": 4725.1, + "probability": 0.8916 + }, + { + "start": 4725.94, + "end": 4728.32, + "probability": 0.8964 + }, + { + "start": 4729.0, + "end": 4731.12, + "probability": 0.965 + }, + { + "start": 4731.9, + "end": 4733.48, + "probability": 0.96 + }, + { + "start": 4734.26, + "end": 4738.86, + "probability": 0.9893 + }, + { + "start": 4740.32, + "end": 4741.28, + "probability": 0.9918 + }, + { + "start": 4743.64, + "end": 4746.82, + "probability": 0.8352 + }, + { + "start": 4747.52, + "end": 4749.58, + "probability": 0.9703 + }, + { + "start": 4750.06, + "end": 4753.3, + "probability": 0.8121 + }, + { + "start": 4754.02, + "end": 4757.02, + "probability": 0.9845 + }, + { + "start": 4758.72, + "end": 4759.6, + "probability": 0.7246 + }, + { + "start": 4760.3, + "end": 4762.54, + "probability": 0.9343 + }, + { + "start": 4763.16, + "end": 4765.38, + "probability": 0.936 + }, + { + "start": 4766.24, + "end": 4768.62, + "probability": 0.965 + }, + { + "start": 4769.64, + "end": 4773.22, + "probability": 0.8024 + }, + { + "start": 4773.6, + "end": 4775.34, + "probability": 0.6343 + }, + { + "start": 4776.76, + "end": 4778.12, + "probability": 0.8432 + }, + { + "start": 4778.9, + "end": 4781.48, + "probability": 0.9913 + }, + { + "start": 4782.14, + "end": 4783.98, + "probability": 0.9969 + }, + { + "start": 4784.56, + "end": 4785.16, + "probability": 0.9633 + }, + { + "start": 4786.24, + "end": 4787.28, + "probability": 0.9331 + }, + { + "start": 4787.84, + "end": 4788.54, + "probability": 0.9909 + }, + { + "start": 4789.1, + "end": 4789.7, + "probability": 0.9913 + }, + { + "start": 4790.4, + "end": 4790.76, + "probability": 0.699 + }, + { + "start": 4791.56, + "end": 4795.68, + "probability": 0.8646 + }, + { + "start": 4796.62, + "end": 4799.66, + "probability": 0.9842 + }, + { + "start": 4802.3, + "end": 4806.08, + "probability": 0.9984 + }, + { + "start": 4807.72, + "end": 4808.98, + "probability": 0.8564 + }, + { + "start": 4809.68, + "end": 4810.98, + "probability": 0.9498 + }, + { + "start": 4812.58, + "end": 4815.14, + "probability": 0.6525 + }, + { + "start": 4816.18, + "end": 4817.02, + "probability": 0.9277 + }, + { + "start": 4818.18, + "end": 4821.1, + "probability": 0.9573 + }, + { + "start": 4821.78, + "end": 4823.16, + "probability": 0.9089 + }, + { + "start": 4823.96, + "end": 4826.4, + "probability": 0.6472 + }, + { + "start": 4827.66, + "end": 4828.92, + "probability": 0.8176 + }, + { + "start": 4829.88, + "end": 4832.22, + "probability": 0.9845 + }, + { + "start": 4833.36, + "end": 4834.66, + "probability": 0.7098 + }, + { + "start": 4835.6, + "end": 4837.88, + "probability": 0.9922 + }, + { + "start": 4838.4, + "end": 4840.72, + "probability": 0.9856 + }, + { + "start": 4842.5, + "end": 4844.4, + "probability": 0.7681 + }, + { + "start": 4844.86, + "end": 4846.72, + "probability": 0.7442 + }, + { + "start": 4847.14, + "end": 4851.12, + "probability": 0.9047 + }, + { + "start": 4853.98, + "end": 4856.86, + "probability": 0.8728 + }, + { + "start": 4857.84, + "end": 4860.44, + "probability": 0.9353 + }, + { + "start": 4861.4, + "end": 4864.66, + "probability": 0.9596 + }, + { + "start": 4865.48, + "end": 4866.0, + "probability": 0.9841 + }, + { + "start": 4867.06, + "end": 4870.02, + "probability": 0.9517 + }, + { + "start": 4870.78, + "end": 4874.06, + "probability": 0.9662 + }, + { + "start": 4877.7, + "end": 4879.96, + "probability": 0.9915 + }, + { + "start": 4881.22, + "end": 4882.4, + "probability": 0.9448 + }, + { + "start": 4883.08, + "end": 4884.28, + "probability": 0.7894 + }, + { + "start": 4885.26, + "end": 4886.7, + "probability": 0.842 + }, + { + "start": 4888.6, + "end": 4889.23, + "probability": 0.8541 + }, + { + "start": 4889.9, + "end": 4891.48, + "probability": 0.9348 + }, + { + "start": 4892.12, + "end": 4896.5, + "probability": 0.9654 + }, + { + "start": 4897.42, + "end": 4898.5, + "probability": 0.7168 + }, + { + "start": 4899.2, + "end": 4901.44, + "probability": 0.9599 + }, + { + "start": 4902.08, + "end": 4903.22, + "probability": 0.9333 + }, + { + "start": 4907.22, + "end": 4910.74, + "probability": 0.9869 + }, + { + "start": 4911.98, + "end": 4913.88, + "probability": 0.9698 + }, + { + "start": 4914.96, + "end": 4915.42, + "probability": 0.9826 + }, + { + "start": 4916.14, + "end": 4916.74, + "probability": 0.9862 + }, + { + "start": 4917.4, + "end": 4922.18, + "probability": 0.9963 + }, + { + "start": 4922.18, + "end": 4927.06, + "probability": 0.9986 + }, + { + "start": 4927.98, + "end": 4930.64, + "probability": 0.9562 + }, + { + "start": 4933.26, + "end": 4938.32, + "probability": 0.9732 + }, + { + "start": 4938.4, + "end": 4938.68, + "probability": 0.6136 + }, + { + "start": 4939.44, + "end": 4943.64, + "probability": 0.9126 + }, + { + "start": 4944.56, + "end": 4946.58, + "probability": 0.8744 + }, + { + "start": 4947.18, + "end": 4951.34, + "probability": 0.9575 + }, + { + "start": 4951.88, + "end": 4953.74, + "probability": 0.9485 + }, + { + "start": 4956.24, + "end": 4956.68, + "probability": 0.9772 + }, + { + "start": 4957.34, + "end": 4960.6, + "probability": 0.9175 + }, + { + "start": 4961.2, + "end": 4962.26, + "probability": 0.5274 + }, + { + "start": 4963.88, + "end": 4968.34, + "probability": 0.9528 + }, + { + "start": 4969.82, + "end": 4971.12, + "probability": 0.9741 + }, + { + "start": 4972.08, + "end": 4974.4, + "probability": 0.9341 + }, + { + "start": 4975.02, + "end": 4978.9, + "probability": 0.9734 + }, + { + "start": 4980.0, + "end": 4981.26, + "probability": 0.9435 + }, + { + "start": 4981.86, + "end": 4984.36, + "probability": 0.9935 + }, + { + "start": 4984.98, + "end": 4991.54, + "probability": 0.9966 + }, + { + "start": 4991.54, + "end": 4997.4, + "probability": 0.9843 + }, + { + "start": 4998.64, + "end": 5000.82, + "probability": 0.8615 + }, + { + "start": 5001.78, + "end": 5004.4, + "probability": 0.9574 + }, + { + "start": 5004.96, + "end": 5007.34, + "probability": 0.9648 + }, + { + "start": 5010.42, + "end": 5011.54, + "probability": 0.9749 + }, + { + "start": 5012.54, + "end": 5013.1, + "probability": 0.6037 + }, + { + "start": 5013.62, + "end": 5018.08, + "probability": 0.9921 + }, + { + "start": 5018.72, + "end": 5020.22, + "probability": 0.8142 + }, + { + "start": 5020.78, + "end": 5021.92, + "probability": 0.7787 + }, + { + "start": 5024.32, + "end": 5025.32, + "probability": 0.9703 + }, + { + "start": 5026.18, + "end": 5030.46, + "probability": 0.9946 + }, + { + "start": 5030.72, + "end": 5036.16, + "probability": 0.7913 + }, + { + "start": 5037.04, + "end": 5038.4, + "probability": 0.6413 + }, + { + "start": 5038.92, + "end": 5043.28, + "probability": 0.985 + }, + { + "start": 5044.02, + "end": 5047.78, + "probability": 0.9773 + }, + { + "start": 5052.0, + "end": 5054.02, + "probability": 0.953 + }, + { + "start": 5054.74, + "end": 5055.56, + "probability": 0.8258 + }, + { + "start": 5056.14, + "end": 5058.3, + "probability": 0.999 + }, + { + "start": 5059.04, + "end": 5060.36, + "probability": 0.7345 + }, + { + "start": 5060.96, + "end": 5062.24, + "probability": 0.8226 + }, + { + "start": 5063.14, + "end": 5065.42, + "probability": 0.9919 + }, + { + "start": 5066.08, + "end": 5068.0, + "probability": 0.9172 + }, + { + "start": 5068.7, + "end": 5070.22, + "probability": 0.9046 + }, + { + "start": 5070.84, + "end": 5074.3, + "probability": 0.992 + }, + { + "start": 5074.8, + "end": 5079.28, + "probability": 0.986 + }, + { + "start": 5080.98, + "end": 5085.9, + "probability": 0.8687 + }, + { + "start": 5086.5, + "end": 5087.78, + "probability": 0.9939 + }, + { + "start": 5088.3, + "end": 5090.44, + "probability": 0.8184 + }, + { + "start": 5091.52, + "end": 5091.92, + "probability": 0.5356 + }, + { + "start": 5092.54, + "end": 5093.32, + "probability": 0.9718 + }, + { + "start": 5093.98, + "end": 5096.98, + "probability": 0.9425 + }, + { + "start": 5097.64, + "end": 5099.72, + "probability": 0.994 + }, + { + "start": 5100.7, + "end": 5105.34, + "probability": 0.9956 + }, + { + "start": 5108.1, + "end": 5110.46, + "probability": 0.9838 + }, + { + "start": 5111.66, + "end": 5114.32, + "probability": 0.6588 + }, + { + "start": 5115.18, + "end": 5116.68, + "probability": 0.4908 + }, + { + "start": 5117.84, + "end": 5120.96, + "probability": 0.5948 + }, + { + "start": 5121.66, + "end": 5124.22, + "probability": 0.5544 + }, + { + "start": 5125.06, + "end": 5128.02, + "probability": 0.6403 + }, + { + "start": 5128.3, + "end": 5129.3, + "probability": 0.8238 + }, + { + "start": 5131.33, + "end": 5133.76, + "probability": 0.7761 + }, + { + "start": 5133.94, + "end": 5134.22, + "probability": 0.5555 + }, + { + "start": 5134.36, + "end": 5136.64, + "probability": 0.5969 + }, + { + "start": 5137.16, + "end": 5140.72, + "probability": 0.8482 + }, + { + "start": 5141.62, + "end": 5144.04, + "probability": 0.9836 + }, + { + "start": 5144.04, + "end": 5146.76, + "probability": 0.9547 + }, + { + "start": 5147.84, + "end": 5149.18, + "probability": 0.6455 + }, + { + "start": 5149.92, + "end": 5150.82, + "probability": 0.7276 + }, + { + "start": 5151.54, + "end": 5152.98, + "probability": 0.8866 + }, + { + "start": 5153.92, + "end": 5155.52, + "probability": 0.83 + }, + { + "start": 5155.88, + "end": 5158.02, + "probability": 0.8193 + }, + { + "start": 5158.84, + "end": 5160.4, + "probability": 0.9666 + }, + { + "start": 5161.1, + "end": 5163.96, + "probability": 0.8368 + }, + { + "start": 5165.24, + "end": 5167.0, + "probability": 0.9029 + }, + { + "start": 5167.68, + "end": 5169.9, + "probability": 0.8435 + }, + { + "start": 5170.92, + "end": 5171.36, + "probability": 0.9398 + }, + { + "start": 5172.12, + "end": 5173.92, + "probability": 0.9863 + }, + { + "start": 5174.54, + "end": 5176.08, + "probability": 0.9592 + }, + { + "start": 5177.1, + "end": 5179.32, + "probability": 0.9747 + }, + { + "start": 5180.88, + "end": 5181.4, + "probability": 0.8671 + }, + { + "start": 5182.26, + "end": 5183.3, + "probability": 0.9099 + }, + { + "start": 5183.78, + "end": 5185.52, + "probability": 0.9044 + }, + { + "start": 5186.18, + "end": 5189.22, + "probability": 0.9079 + }, + { + "start": 5189.78, + "end": 5191.46, + "probability": 0.6532 + }, + { + "start": 5192.04, + "end": 5195.96, + "probability": 0.5402 + }, + { + "start": 5196.38, + "end": 5196.8, + "probability": 0.8373 + }, + { + "start": 5197.1, + "end": 5197.42, + "probability": 0.7775 + }, + { + "start": 5197.82, + "end": 5198.02, + "probability": 0.6149 + }, + { + "start": 5198.02, + "end": 5198.56, + "probability": 0.8504 + }, + { + "start": 5199.04, + "end": 5199.16, + "probability": 0.6613 + }, + { + "start": 5207.1, + "end": 5207.88, + "probability": 0.3394 + }, + { + "start": 5207.88, + "end": 5209.18, + "probability": 0.0428 + }, + { + "start": 5288.8, + "end": 5290.02, + "probability": 0.7589 + }, + { + "start": 5310.38, + "end": 5312.84, + "probability": 0.7726 + }, + { + "start": 5313.66, + "end": 5315.7, + "probability": 0.7817 + }, + { + "start": 5316.72, + "end": 5319.4, + "probability": 0.95 + }, + { + "start": 5320.42, + "end": 5321.86, + "probability": 0.8747 + }, + { + "start": 5322.92, + "end": 5324.44, + "probability": 0.9944 + }, + { + "start": 5325.4, + "end": 5326.5, + "probability": 0.7471 + }, + { + "start": 5327.92, + "end": 5330.2, + "probability": 0.9468 + }, + { + "start": 5331.78, + "end": 5335.68, + "probability": 0.8657 + }, + { + "start": 5337.02, + "end": 5337.62, + "probability": 0.8154 + }, + { + "start": 5338.64, + "end": 5342.88, + "probability": 0.9578 + }, + { + "start": 5343.68, + "end": 5346.08, + "probability": 0.9549 + }, + { + "start": 5347.3, + "end": 5350.32, + "probability": 0.9731 + }, + { + "start": 5351.2, + "end": 5353.34, + "probability": 0.7915 + }, + { + "start": 5355.34, + "end": 5356.24, + "probability": 0.7587 + }, + { + "start": 5358.14, + "end": 5359.32, + "probability": 0.4884 + }, + { + "start": 5359.84, + "end": 5362.7, + "probability": 0.7877 + }, + { + "start": 5363.74, + "end": 5366.18, + "probability": 0.6347 + }, + { + "start": 5366.92, + "end": 5368.4, + "probability": 0.9757 + }, + { + "start": 5368.86, + "end": 5371.1, + "probability": 0.8171 + }, + { + "start": 5371.58, + "end": 5374.08, + "probability": 0.7747 + }, + { + "start": 5374.16, + "end": 5375.24, + "probability": 0.4777 + }, + { + "start": 5376.06, + "end": 5378.12, + "probability": 0.8939 + }, + { + "start": 5378.92, + "end": 5380.96, + "probability": 0.6428 + }, + { + "start": 5383.16, + "end": 5387.54, + "probability": 0.9518 + }, + { + "start": 5387.78, + "end": 5388.42, + "probability": 0.7553 + }, + { + "start": 5389.32, + "end": 5390.56, + "probability": 0.8664 + }, + { + "start": 5391.18, + "end": 5392.22, + "probability": 0.9451 + }, + { + "start": 5393.02, + "end": 5394.3, + "probability": 0.9754 + }, + { + "start": 5395.26, + "end": 5396.9, + "probability": 0.962 + }, + { + "start": 5398.72, + "end": 5399.3, + "probability": 0.5454 + }, + { + "start": 5399.44, + "end": 5404.52, + "probability": 0.9766 + }, + { + "start": 5405.84, + "end": 5407.4, + "probability": 0.5817 + }, + { + "start": 5408.48, + "end": 5410.08, + "probability": 0.9489 + }, + { + "start": 5411.0, + "end": 5413.56, + "probability": 0.579 + }, + { + "start": 5414.2, + "end": 5417.86, + "probability": 0.6968 + }, + { + "start": 5419.58, + "end": 5420.36, + "probability": 0.7527 + }, + { + "start": 5420.48, + "end": 5423.3, + "probability": 0.9198 + }, + { + "start": 5423.7, + "end": 5424.86, + "probability": 0.9609 + }, + { + "start": 5425.46, + "end": 5426.96, + "probability": 0.7812 + }, + { + "start": 5427.7, + "end": 5429.86, + "probability": 0.741 + }, + { + "start": 5430.74, + "end": 5434.82, + "probability": 0.9949 + }, + { + "start": 5435.8, + "end": 5438.18, + "probability": 0.8932 + }, + { + "start": 5439.06, + "end": 5443.6, + "probability": 0.9959 + }, + { + "start": 5444.58, + "end": 5449.28, + "probability": 0.9861 + }, + { + "start": 5449.88, + "end": 5450.58, + "probability": 0.9099 + }, + { + "start": 5451.5, + "end": 5455.76, + "probability": 0.9556 + }, + { + "start": 5457.38, + "end": 5460.12, + "probability": 0.9814 + }, + { + "start": 5461.56, + "end": 5462.94, + "probability": 0.5802 + }, + { + "start": 5463.62, + "end": 5465.58, + "probability": 0.7845 + }, + { + "start": 5466.42, + "end": 5469.96, + "probability": 0.9897 + }, + { + "start": 5470.86, + "end": 5473.32, + "probability": 0.9968 + }, + { + "start": 5474.28, + "end": 5479.2, + "probability": 0.9909 + }, + { + "start": 5480.38, + "end": 5481.88, + "probability": 0.9682 + }, + { + "start": 5482.62, + "end": 5485.5, + "probability": 0.9351 + }, + { + "start": 5486.08, + "end": 5491.06, + "probability": 0.9871 + }, + { + "start": 5491.64, + "end": 5494.28, + "probability": 0.9978 + }, + { + "start": 5494.96, + "end": 5496.1, + "probability": 0.8846 + }, + { + "start": 5496.88, + "end": 5498.5, + "probability": 0.9626 + }, + { + "start": 5499.26, + "end": 5500.48, + "probability": 0.8096 + }, + { + "start": 5501.18, + "end": 5502.88, + "probability": 0.8141 + }, + { + "start": 5504.04, + "end": 5504.92, + "probability": 0.9572 + }, + { + "start": 5505.52, + "end": 5506.6, + "probability": 0.9384 + }, + { + "start": 5507.22, + "end": 5509.14, + "probability": 0.9836 + }, + { + "start": 5510.66, + "end": 5512.2, + "probability": 0.8498 + }, + { + "start": 5512.84, + "end": 5515.9, + "probability": 0.9954 + }, + { + "start": 5516.44, + "end": 5520.06, + "probability": 0.9949 + }, + { + "start": 5521.22, + "end": 5523.24, + "probability": 0.9971 + }, + { + "start": 5523.8, + "end": 5525.74, + "probability": 0.7482 + }, + { + "start": 5526.16, + "end": 5528.0, + "probability": 0.96 + }, + { + "start": 5529.68, + "end": 5530.36, + "probability": 0.9105 + }, + { + "start": 5530.9, + "end": 5532.92, + "probability": 0.9513 + }, + { + "start": 5533.58, + "end": 5539.32, + "probability": 0.9792 + }, + { + "start": 5541.0, + "end": 5542.92, + "probability": 0.9647 + }, + { + "start": 5543.98, + "end": 5548.46, + "probability": 0.6919 + }, + { + "start": 5549.06, + "end": 5551.14, + "probability": 0.9695 + }, + { + "start": 5552.02, + "end": 5554.11, + "probability": 0.7579 + }, + { + "start": 5555.18, + "end": 5558.74, + "probability": 0.9597 + }, + { + "start": 5559.42, + "end": 5561.08, + "probability": 0.5101 + }, + { + "start": 5561.64, + "end": 5563.43, + "probability": 0.6512 + }, + { + "start": 5564.26, + "end": 5568.56, + "probability": 0.9093 + }, + { + "start": 5568.94, + "end": 5569.22, + "probability": 0.8888 + }, + { + "start": 5569.44, + "end": 5570.54, + "probability": 0.9121 + }, + { + "start": 5571.02, + "end": 5575.44, + "probability": 0.9741 + }, + { + "start": 5577.78, + "end": 5581.08, + "probability": 0.8723 + }, + { + "start": 5581.42, + "end": 5582.32, + "probability": 0.8921 + }, + { + "start": 5583.36, + "end": 5584.72, + "probability": 0.9299 + }, + { + "start": 5586.5, + "end": 5588.98, + "probability": 0.9488 + }, + { + "start": 5589.8, + "end": 5590.38, + "probability": 0.9668 + }, + { + "start": 5591.38, + "end": 5593.24, + "probability": 0.8511 + }, + { + "start": 5593.92, + "end": 5594.76, + "probability": 0.8763 + }, + { + "start": 5594.92, + "end": 5595.78, + "probability": 0.9783 + }, + { + "start": 5597.34, + "end": 5600.48, + "probability": 0.998 + }, + { + "start": 5601.22, + "end": 5604.1, + "probability": 0.9784 + }, + { + "start": 5605.26, + "end": 5607.15, + "probability": 0.9536 + }, + { + "start": 5608.34, + "end": 5611.12, + "probability": 0.9817 + }, + { + "start": 5611.74, + "end": 5613.38, + "probability": 0.9972 + }, + { + "start": 5614.28, + "end": 5615.44, + "probability": 0.8635 + }, + { + "start": 5616.12, + "end": 5617.66, + "probability": 0.9786 + }, + { + "start": 5618.88, + "end": 5621.18, + "probability": 0.7776 + }, + { + "start": 5621.98, + "end": 5624.88, + "probability": 0.9932 + }, + { + "start": 5625.72, + "end": 5626.98, + "probability": 0.9592 + }, + { + "start": 5628.14, + "end": 5629.18, + "probability": 0.8921 + }, + { + "start": 5630.4, + "end": 5631.84, + "probability": 0.856 + }, + { + "start": 5633.08, + "end": 5633.86, + "probability": 0.7407 + }, + { + "start": 5634.88, + "end": 5635.78, + "probability": 0.5227 + }, + { + "start": 5636.92, + "end": 5638.16, + "probability": 0.9943 + }, + { + "start": 5638.22, + "end": 5638.88, + "probability": 0.9758 + }, + { + "start": 5638.96, + "end": 5641.68, + "probability": 0.9883 + }, + { + "start": 5642.16, + "end": 5643.78, + "probability": 0.9772 + }, + { + "start": 5644.92, + "end": 5650.32, + "probability": 0.952 + }, + { + "start": 5651.06, + "end": 5652.74, + "probability": 0.6952 + }, + { + "start": 5652.94, + "end": 5655.8, + "probability": 0.978 + }, + { + "start": 5656.82, + "end": 5658.24, + "probability": 0.7021 + }, + { + "start": 5658.48, + "end": 5659.94, + "probability": 0.9314 + }, + { + "start": 5661.26, + "end": 5663.88, + "probability": 0.9973 + }, + { + "start": 5664.34, + "end": 5665.42, + "probability": 0.98 + }, + { + "start": 5666.3, + "end": 5667.84, + "probability": 0.7579 + }, + { + "start": 5668.14, + "end": 5669.82, + "probability": 0.9985 + }, + { + "start": 5670.72, + "end": 5672.89, + "probability": 0.9988 + }, + { + "start": 5673.62, + "end": 5675.64, + "probability": 0.9761 + }, + { + "start": 5676.86, + "end": 5679.56, + "probability": 0.9448 + }, + { + "start": 5680.3, + "end": 5682.6, + "probability": 0.9834 + }, + { + "start": 5683.82, + "end": 5685.0, + "probability": 0.5815 + }, + { + "start": 5685.7, + "end": 5688.15, + "probability": 0.985 + }, + { + "start": 5688.94, + "end": 5689.76, + "probability": 0.9554 + }, + { + "start": 5689.96, + "end": 5690.44, + "probability": 0.7841 + }, + { + "start": 5691.64, + "end": 5695.24, + "probability": 0.848 + }, + { + "start": 5695.42, + "end": 5696.74, + "probability": 0.8935 + }, + { + "start": 5698.86, + "end": 5699.88, + "probability": 0.5345 + }, + { + "start": 5700.9, + "end": 5701.46, + "probability": 0.8878 + }, + { + "start": 5702.68, + "end": 5703.84, + "probability": 0.7485 + }, + { + "start": 5704.04, + "end": 5706.18, + "probability": 0.9976 + }, + { + "start": 5706.94, + "end": 5709.24, + "probability": 0.9295 + }, + { + "start": 5710.66, + "end": 5711.66, + "probability": 0.9707 + }, + { + "start": 5711.72, + "end": 5714.8, + "probability": 0.9762 + }, + { + "start": 5715.16, + "end": 5718.32, + "probability": 0.7496 + }, + { + "start": 5720.14, + "end": 5724.34, + "probability": 0.5294 + }, + { + "start": 5726.8, + "end": 5727.8, + "probability": 0.7715 + }, + { + "start": 5728.0, + "end": 5731.06, + "probability": 0.9956 + }, + { + "start": 5732.32, + "end": 5735.1, + "probability": 0.9931 + }, + { + "start": 5735.1, + "end": 5736.96, + "probability": 0.9993 + }, + { + "start": 5738.94, + "end": 5740.46, + "probability": 0.9854 + }, + { + "start": 5741.82, + "end": 5746.42, + "probability": 0.9934 + }, + { + "start": 5747.48, + "end": 5749.1, + "probability": 0.9945 + }, + { + "start": 5749.6, + "end": 5752.16, + "probability": 0.9919 + }, + { + "start": 5752.76, + "end": 5755.0, + "probability": 0.9273 + }, + { + "start": 5755.84, + "end": 5760.5, + "probability": 0.993 + }, + { + "start": 5761.2, + "end": 5765.58, + "probability": 0.9974 + }, + { + "start": 5766.26, + "end": 5767.76, + "probability": 0.9971 + }, + { + "start": 5768.44, + "end": 5769.14, + "probability": 0.9668 + }, + { + "start": 5769.24, + "end": 5770.46, + "probability": 0.9604 + }, + { + "start": 5770.6, + "end": 5771.72, + "probability": 0.9201 + }, + { + "start": 5771.88, + "end": 5772.46, + "probability": 0.4421 + }, + { + "start": 5773.24, + "end": 5774.64, + "probability": 0.9858 + }, + { + "start": 5777.08, + "end": 5778.3, + "probability": 0.7927 + }, + { + "start": 5778.99, + "end": 5781.14, + "probability": 0.9531 + }, + { + "start": 5781.24, + "end": 5782.06, + "probability": 0.5994 + }, + { + "start": 5782.08, + "end": 5783.52, + "probability": 0.8436 + }, + { + "start": 5783.62, + "end": 5784.78, + "probability": 0.977 + }, + { + "start": 5784.94, + "end": 5786.48, + "probability": 0.8485 + }, + { + "start": 5786.6, + "end": 5786.92, + "probability": 0.8754 + }, + { + "start": 5787.16, + "end": 5787.9, + "probability": 0.8264 + }, + { + "start": 5788.68, + "end": 5790.94, + "probability": 0.9977 + }, + { + "start": 5791.6, + "end": 5793.14, + "probability": 0.8523 + }, + { + "start": 5793.7, + "end": 5796.84, + "probability": 0.965 + }, + { + "start": 5797.64, + "end": 5801.72, + "probability": 0.9941 + }, + { + "start": 5802.38, + "end": 5804.86, + "probability": 0.9862 + }, + { + "start": 5805.5, + "end": 5807.8, + "probability": 0.9962 + }, + { + "start": 5808.52, + "end": 5809.84, + "probability": 0.98 + }, + { + "start": 5810.04, + "end": 5811.8, + "probability": 0.9987 + }, + { + "start": 5812.38, + "end": 5815.24, + "probability": 0.9839 + }, + { + "start": 5815.62, + "end": 5816.72, + "probability": 0.8166 + }, + { + "start": 5817.2, + "end": 5821.04, + "probability": 0.9941 + }, + { + "start": 5821.16, + "end": 5822.66, + "probability": 0.9509 + }, + { + "start": 5823.28, + "end": 5825.0, + "probability": 0.8856 + }, + { + "start": 5825.42, + "end": 5827.06, + "probability": 0.8539 + }, + { + "start": 5827.52, + "end": 5829.14, + "probability": 0.9889 + }, + { + "start": 5831.6, + "end": 5834.92, + "probability": 0.8875 + }, + { + "start": 5835.44, + "end": 5836.48, + "probability": 0.7208 + }, + { + "start": 5836.56, + "end": 5837.92, + "probability": 0.8894 + }, + { + "start": 5838.1, + "end": 5839.88, + "probability": 0.9616 + }, + { + "start": 5840.4, + "end": 5843.46, + "probability": 0.9688 + }, + { + "start": 5844.12, + "end": 5845.36, + "probability": 0.9937 + }, + { + "start": 5846.06, + "end": 5847.2, + "probability": 0.7166 + }, + { + "start": 5847.26, + "end": 5849.86, + "probability": 0.999 + }, + { + "start": 5850.44, + "end": 5851.79, + "probability": 0.9771 + }, + { + "start": 5853.34, + "end": 5855.58, + "probability": 0.5741 + }, + { + "start": 5856.24, + "end": 5859.42, + "probability": 0.7744 + }, + { + "start": 5860.0, + "end": 5862.06, + "probability": 0.7465 + }, + { + "start": 5862.22, + "end": 5865.56, + "probability": 0.7222 + }, + { + "start": 5866.62, + "end": 5871.78, + "probability": 0.946 + }, + { + "start": 5872.44, + "end": 5873.78, + "probability": 0.8589 + }, + { + "start": 5874.54, + "end": 5875.92, + "probability": 0.53 + }, + { + "start": 5877.4, + "end": 5882.84, + "probability": 0.8164 + }, + { + "start": 5882.84, + "end": 5888.76, + "probability": 0.7607 + }, + { + "start": 5889.44, + "end": 5891.72, + "probability": 0.7668 + }, + { + "start": 5892.46, + "end": 5894.28, + "probability": 0.7574 + }, + { + "start": 5894.88, + "end": 5896.34, + "probability": 0.9019 + }, + { + "start": 5897.16, + "end": 5899.26, + "probability": 0.7097 + }, + { + "start": 5899.78, + "end": 5900.46, + "probability": 0.7566 + }, + { + "start": 5901.36, + "end": 5904.08, + "probability": 0.8931 + }, + { + "start": 5905.68, + "end": 5905.92, + "probability": 0.0252 + } + ], + "segments_count": 1818, + "words_count": 8945, + "avg_words_per_segment": 4.9202, + "avg_segment_duration": 2.2216, + "avg_words_per_minute": 89.6977, + "plenum_id": "110546", + "duration": 5983.43, + "title": null, + "plenum_date": "2022-11-30" +} \ No newline at end of file