diff --git "a/111039/metadata.json" "b/111039/metadata.json" new file mode 100644--- /dev/null +++ "b/111039/metadata.json" @@ -0,0 +1,26847 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "111039", + "quality_score": 0.9395, + "per_segment_quality_scores": [ + { + "start": 97.9, + "end": 99.46, + "probability": 0.9776 + }, + { + "start": 99.74, + "end": 101.94, + "probability": 0.5981 + }, + { + "start": 102.06, + "end": 107.92, + "probability": 0.9443 + }, + { + "start": 108.94, + "end": 111.56, + "probability": 0.9856 + }, + { + "start": 111.68, + "end": 116.5, + "probability": 0.8808 + }, + { + "start": 117.6, + "end": 122.38, + "probability": 0.9349 + }, + { + "start": 123.16, + "end": 126.62, + "probability": 0.8638 + }, + { + "start": 127.42, + "end": 128.56, + "probability": 0.7444 + }, + { + "start": 128.62, + "end": 129.58, + "probability": 0.7513 + }, + { + "start": 129.66, + "end": 131.2, + "probability": 0.9421 + }, + { + "start": 131.4, + "end": 132.04, + "probability": 0.7377 + }, + { + "start": 132.06, + "end": 132.96, + "probability": 0.6576 + }, + { + "start": 133.64, + "end": 137.26, + "probability": 0.6489 + }, + { + "start": 137.26, + "end": 140.54, + "probability": 0.976 + }, + { + "start": 140.7, + "end": 142.56, + "probability": 0.3226 + }, + { + "start": 143.4, + "end": 146.38, + "probability": 0.9715 + }, + { + "start": 146.5, + "end": 148.3, + "probability": 0.3369 + }, + { + "start": 148.92, + "end": 152.18, + "probability": 0.7399 + }, + { + "start": 152.26, + "end": 155.42, + "probability": 0.9429 + }, + { + "start": 155.8, + "end": 157.56, + "probability": 0.9139 + }, + { + "start": 158.4, + "end": 160.94, + "probability": 0.9367 + }, + { + "start": 161.36, + "end": 163.52, + "probability": 0.9475 + }, + { + "start": 163.98, + "end": 165.74, + "probability": 0.3876 + }, + { + "start": 166.34, + "end": 167.6, + "probability": 0.957 + }, + { + "start": 167.86, + "end": 169.62, + "probability": 0.8703 + }, + { + "start": 170.08, + "end": 174.14, + "probability": 0.7095 + }, + { + "start": 174.5, + "end": 176.72, + "probability": 0.9107 + }, + { + "start": 178.56, + "end": 179.36, + "probability": 0.7458 + }, + { + "start": 179.58, + "end": 186.38, + "probability": 0.9194 + }, + { + "start": 186.56, + "end": 187.6, + "probability": 0.8615 + }, + { + "start": 187.74, + "end": 192.46, + "probability": 0.9849 + }, + { + "start": 192.54, + "end": 197.88, + "probability": 0.9927 + }, + { + "start": 197.88, + "end": 201.22, + "probability": 0.9965 + }, + { + "start": 202.12, + "end": 205.12, + "probability": 0.7581 + }, + { + "start": 205.92, + "end": 210.76, + "probability": 0.9621 + }, + { + "start": 210.76, + "end": 214.84, + "probability": 0.9248 + }, + { + "start": 215.58, + "end": 216.7, + "probability": 0.612 + }, + { + "start": 216.76, + "end": 217.98, + "probability": 0.7936 + }, + { + "start": 218.13, + "end": 222.18, + "probability": 0.9912 + }, + { + "start": 222.67, + "end": 226.02, + "probability": 0.9989 + }, + { + "start": 226.08, + "end": 226.96, + "probability": 0.9359 + }, + { + "start": 226.98, + "end": 227.36, + "probability": 0.9353 + }, + { + "start": 229.24, + "end": 234.86, + "probability": 0.9878 + }, + { + "start": 235.04, + "end": 237.5, + "probability": 0.9181 + }, + { + "start": 237.9, + "end": 240.05, + "probability": 0.7936 + }, + { + "start": 240.16, + "end": 241.98, + "probability": 0.7944 + }, + { + "start": 242.1, + "end": 244.84, + "probability": 0.9517 + }, + { + "start": 244.94, + "end": 247.62, + "probability": 0.9553 + }, + { + "start": 247.96, + "end": 248.5, + "probability": 0.8979 + }, + { + "start": 264.96, + "end": 267.64, + "probability": 0.7667 + }, + { + "start": 268.5, + "end": 273.34, + "probability": 0.9757 + }, + { + "start": 274.04, + "end": 276.84, + "probability": 0.9948 + }, + { + "start": 276.96, + "end": 283.42, + "probability": 0.9707 + }, + { + "start": 283.56, + "end": 285.72, + "probability": 0.741 + }, + { + "start": 285.94, + "end": 287.26, + "probability": 0.8309 + }, + { + "start": 287.7, + "end": 287.7, + "probability": 0.0025 + }, + { + "start": 288.76, + "end": 289.78, + "probability": 0.507 + }, + { + "start": 290.3, + "end": 295.52, + "probability": 0.9974 + }, + { + "start": 296.06, + "end": 296.52, + "probability": 0.8923 + }, + { + "start": 297.9, + "end": 301.16, + "probability": 0.6908 + }, + { + "start": 301.8, + "end": 304.7, + "probability": 0.9806 + }, + { + "start": 305.16, + "end": 305.82, + "probability": 0.6881 + }, + { + "start": 306.18, + "end": 308.62, + "probability": 0.6572 + }, + { + "start": 309.34, + "end": 310.7, + "probability": 0.9728 + }, + { + "start": 313.56, + "end": 316.02, + "probability": 0.9647 + }, + { + "start": 316.02, + "end": 318.64, + "probability": 0.9832 + }, + { + "start": 319.66, + "end": 327.28, + "probability": 0.9722 + }, + { + "start": 328.5, + "end": 329.02, + "probability": 0.4833 + }, + { + "start": 329.06, + "end": 334.52, + "probability": 0.8798 + }, + { + "start": 335.36, + "end": 339.58, + "probability": 0.9954 + }, + { + "start": 339.58, + "end": 343.86, + "probability": 0.9766 + }, + { + "start": 344.34, + "end": 347.98, + "probability": 0.9969 + }, + { + "start": 348.58, + "end": 352.88, + "probability": 0.9884 + }, + { + "start": 352.88, + "end": 356.48, + "probability": 0.9765 + }, + { + "start": 356.72, + "end": 358.76, + "probability": 0.8467 + }, + { + "start": 359.42, + "end": 362.64, + "probability": 0.9993 + }, + { + "start": 362.64, + "end": 365.8, + "probability": 0.9895 + }, + { + "start": 366.62, + "end": 370.04, + "probability": 0.9977 + }, + { + "start": 370.04, + "end": 374.72, + "probability": 0.9987 + }, + { + "start": 375.32, + "end": 377.9, + "probability": 0.9773 + }, + { + "start": 378.76, + "end": 380.04, + "probability": 0.8771 + }, + { + "start": 380.6, + "end": 381.64, + "probability": 0.8936 + }, + { + "start": 382.3, + "end": 385.74, + "probability": 0.988 + }, + { + "start": 385.74, + "end": 389.0, + "probability": 0.9893 + }, + { + "start": 389.3, + "end": 389.8, + "probability": 0.9149 + }, + { + "start": 390.9, + "end": 391.54, + "probability": 0.608 + }, + { + "start": 391.7, + "end": 394.1, + "probability": 0.8574 + }, + { + "start": 396.44, + "end": 397.9, + "probability": 0.9891 + }, + { + "start": 398.64, + "end": 399.62, + "probability": 0.9043 + }, + { + "start": 401.06, + "end": 401.68, + "probability": 0.8109 + }, + { + "start": 401.74, + "end": 403.82, + "probability": 0.7941 + }, + { + "start": 404.46, + "end": 409.28, + "probability": 0.7812 + }, + { + "start": 409.86, + "end": 415.12, + "probability": 0.7907 + }, + { + "start": 415.18, + "end": 416.16, + "probability": 0.3888 + }, + { + "start": 416.6, + "end": 421.2, + "probability": 0.9899 + }, + { + "start": 421.34, + "end": 422.32, + "probability": 0.7294 + }, + { + "start": 422.86, + "end": 423.14, + "probability": 0.3902 + }, + { + "start": 423.3, + "end": 423.86, + "probability": 0.7194 + }, + { + "start": 423.9, + "end": 427.94, + "probability": 0.9388 + }, + { + "start": 428.34, + "end": 429.4, + "probability": 0.8034 + }, + { + "start": 429.54, + "end": 430.0, + "probability": 0.5039 + }, + { + "start": 430.04, + "end": 431.37, + "probability": 0.9835 + }, + { + "start": 432.44, + "end": 433.88, + "probability": 0.8806 + }, + { + "start": 435.28, + "end": 436.34, + "probability": 0.5783 + }, + { + "start": 436.34, + "end": 437.18, + "probability": 0.7251 + }, + { + "start": 437.32, + "end": 439.64, + "probability": 0.548 + }, + { + "start": 439.78, + "end": 443.42, + "probability": 0.9772 + }, + { + "start": 444.02, + "end": 448.48, + "probability": 0.9807 + }, + { + "start": 448.96, + "end": 450.46, + "probability": 0.554 + }, + { + "start": 450.6, + "end": 452.06, + "probability": 0.9054 + }, + { + "start": 452.08, + "end": 454.86, + "probability": 0.7373 + }, + { + "start": 455.6, + "end": 460.0, + "probability": 0.9481 + }, + { + "start": 460.46, + "end": 462.0, + "probability": 0.8233 + }, + { + "start": 462.48, + "end": 463.16, + "probability": 0.7859 + }, + { + "start": 463.24, + "end": 467.86, + "probability": 0.9945 + }, + { + "start": 467.86, + "end": 473.42, + "probability": 0.9935 + }, + { + "start": 473.96, + "end": 475.96, + "probability": 0.9354 + }, + { + "start": 476.64, + "end": 477.9, + "probability": 0.6312 + }, + { + "start": 478.6, + "end": 482.6, + "probability": 0.8782 + }, + { + "start": 482.78, + "end": 484.76, + "probability": 0.8637 + }, + { + "start": 485.26, + "end": 485.86, + "probability": 0.7721 + }, + { + "start": 486.4, + "end": 490.94, + "probability": 0.9811 + }, + { + "start": 490.94, + "end": 494.46, + "probability": 0.9978 + }, + { + "start": 496.04, + "end": 499.1, + "probability": 0.7999 + }, + { + "start": 499.24, + "end": 502.2, + "probability": 0.9895 + }, + { + "start": 502.78, + "end": 508.7, + "probability": 0.8958 + }, + { + "start": 508.8, + "end": 513.06, + "probability": 0.6912 + }, + { + "start": 513.74, + "end": 515.26, + "probability": 0.6719 + }, + { + "start": 515.34, + "end": 518.56, + "probability": 0.9378 + }, + { + "start": 519.06, + "end": 522.5, + "probability": 0.9045 + }, + { + "start": 522.92, + "end": 524.94, + "probability": 0.7187 + }, + { + "start": 525.58, + "end": 528.92, + "probability": 0.7406 + }, + { + "start": 528.96, + "end": 531.52, + "probability": 0.6107 + }, + { + "start": 532.22, + "end": 533.5, + "probability": 0.9309 + }, + { + "start": 535.7, + "end": 537.22, + "probability": 0.1487 + }, + { + "start": 537.22, + "end": 537.22, + "probability": 0.0931 + }, + { + "start": 537.22, + "end": 537.6, + "probability": 0.3406 + }, + { + "start": 538.1, + "end": 542.6, + "probability": 0.9437 + }, + { + "start": 542.82, + "end": 543.24, + "probability": 0.9141 + }, + { + "start": 544.0, + "end": 544.78, + "probability": 0.7034 + }, + { + "start": 544.88, + "end": 547.0, + "probability": 0.8571 + }, + { + "start": 547.38, + "end": 549.86, + "probability": 0.9451 + }, + { + "start": 554.06, + "end": 555.8, + "probability": 0.9604 + }, + { + "start": 555.82, + "end": 559.48, + "probability": 0.995 + }, + { + "start": 559.78, + "end": 562.44, + "probability": 0.839 + }, + { + "start": 562.66, + "end": 564.76, + "probability": 0.9924 + }, + { + "start": 565.44, + "end": 567.76, + "probability": 0.5919 + }, + { + "start": 568.34, + "end": 569.4, + "probability": 0.952 + }, + { + "start": 569.64, + "end": 571.46, + "probability": 0.5133 + }, + { + "start": 572.54, + "end": 577.0, + "probability": 0.7516 + }, + { + "start": 578.78, + "end": 582.2, + "probability": 0.963 + }, + { + "start": 582.72, + "end": 583.06, + "probability": 0.7437 + }, + { + "start": 583.22, + "end": 584.62, + "probability": 0.736 + }, + { + "start": 584.76, + "end": 588.76, + "probability": 0.646 + }, + { + "start": 589.24, + "end": 591.54, + "probability": 0.6459 + }, + { + "start": 592.26, + "end": 593.48, + "probability": 0.5691 + }, + { + "start": 593.68, + "end": 594.52, + "probability": 0.7055 + }, + { + "start": 594.68, + "end": 598.52, + "probability": 0.7476 + }, + { + "start": 599.24, + "end": 602.0, + "probability": 0.9149 + }, + { + "start": 602.64, + "end": 605.22, + "probability": 0.9944 + }, + { + "start": 606.32, + "end": 607.88, + "probability": 0.9371 + }, + { + "start": 608.42, + "end": 609.0, + "probability": 0.6459 + }, + { + "start": 609.42, + "end": 610.63, + "probability": 0.8234 + }, + { + "start": 610.7, + "end": 612.32, + "probability": 0.8115 + }, + { + "start": 613.18, + "end": 615.74, + "probability": 0.9907 + }, + { + "start": 616.74, + "end": 619.9, + "probability": 0.8596 + }, + { + "start": 620.6, + "end": 623.38, + "probability": 0.9705 + }, + { + "start": 624.44, + "end": 626.42, + "probability": 0.6555 + }, + { + "start": 627.06, + "end": 627.78, + "probability": 0.7704 + }, + { + "start": 628.28, + "end": 631.98, + "probability": 0.9743 + }, + { + "start": 633.1, + "end": 635.56, + "probability": 0.9618 + }, + { + "start": 635.56, + "end": 638.14, + "probability": 0.9858 + }, + { + "start": 640.12, + "end": 643.84, + "probability": 0.8836 + }, + { + "start": 643.92, + "end": 647.34, + "probability": 0.7339 + }, + { + "start": 647.58, + "end": 651.6, + "probability": 0.809 + }, + { + "start": 651.8, + "end": 652.0, + "probability": 0.7512 + }, + { + "start": 653.38, + "end": 653.98, + "probability": 0.6204 + }, + { + "start": 654.42, + "end": 656.94, + "probability": 0.7748 + }, + { + "start": 661.52, + "end": 662.62, + "probability": 0.7875 + }, + { + "start": 663.14, + "end": 664.26, + "probability": 0.8237 + }, + { + "start": 665.34, + "end": 668.02, + "probability": 0.5729 + }, + { + "start": 669.54, + "end": 674.9, + "probability": 0.998 + }, + { + "start": 675.54, + "end": 678.8, + "probability": 0.9827 + }, + { + "start": 679.68, + "end": 681.96, + "probability": 0.9799 + }, + { + "start": 682.02, + "end": 682.92, + "probability": 0.666 + }, + { + "start": 682.98, + "end": 684.32, + "probability": 0.8389 + }, + { + "start": 684.9, + "end": 687.56, + "probability": 0.9342 + }, + { + "start": 688.34, + "end": 690.2, + "probability": 0.9884 + }, + { + "start": 690.8, + "end": 695.46, + "probability": 0.6278 + }, + { + "start": 696.26, + "end": 699.92, + "probability": 0.9609 + }, + { + "start": 700.0, + "end": 701.42, + "probability": 0.9073 + }, + { + "start": 702.08, + "end": 705.98, + "probability": 0.9279 + }, + { + "start": 707.06, + "end": 708.64, + "probability": 0.8181 + }, + { + "start": 709.14, + "end": 712.47, + "probability": 0.9465 + }, + { + "start": 714.82, + "end": 717.82, + "probability": 0.9905 + }, + { + "start": 717.82, + "end": 720.3, + "probability": 0.9082 + }, + { + "start": 721.1, + "end": 727.58, + "probability": 0.94 + }, + { + "start": 728.46, + "end": 732.92, + "probability": 0.993 + }, + { + "start": 732.92, + "end": 737.32, + "probability": 0.9993 + }, + { + "start": 738.26, + "end": 743.2, + "probability": 0.9987 + }, + { + "start": 743.2, + "end": 747.68, + "probability": 0.999 + }, + { + "start": 748.4, + "end": 750.6, + "probability": 0.975 + }, + { + "start": 751.2, + "end": 752.74, + "probability": 0.989 + }, + { + "start": 753.56, + "end": 754.6, + "probability": 0.7569 + }, + { + "start": 755.18, + "end": 756.68, + "probability": 0.9353 + }, + { + "start": 756.94, + "end": 757.48, + "probability": 0.7816 + }, + { + "start": 758.72, + "end": 759.38, + "probability": 0.4788 + }, + { + "start": 759.4, + "end": 761.86, + "probability": 0.8313 + }, + { + "start": 766.48, + "end": 769.76, + "probability": 0.7231 + }, + { + "start": 770.44, + "end": 774.22, + "probability": 0.876 + }, + { + "start": 774.24, + "end": 776.74, + "probability": 0.9838 + }, + { + "start": 777.14, + "end": 780.58, + "probability": 0.9971 + }, + { + "start": 781.44, + "end": 784.74, + "probability": 0.9656 + }, + { + "start": 784.9, + "end": 786.5, + "probability": 0.8457 + }, + { + "start": 786.62, + "end": 790.54, + "probability": 0.9363 + }, + { + "start": 790.88, + "end": 791.28, + "probability": 0.1078 + }, + { + "start": 791.28, + "end": 793.62, + "probability": 0.4042 + }, + { + "start": 793.72, + "end": 794.13, + "probability": 0.3184 + }, + { + "start": 794.42, + "end": 795.1, + "probability": 0.6396 + }, + { + "start": 795.28, + "end": 795.66, + "probability": 0.6514 + }, + { + "start": 795.76, + "end": 795.96, + "probability": 0.3634 + }, + { + "start": 795.98, + "end": 798.26, + "probability": 0.7991 + }, + { + "start": 798.26, + "end": 799.74, + "probability": 0.8273 + }, + { + "start": 800.87, + "end": 801.58, + "probability": 0.9546 + }, + { + "start": 801.82, + "end": 805.42, + "probability": 0.9565 + }, + { + "start": 805.52, + "end": 805.9, + "probability": 0.8746 + }, + { + "start": 807.38, + "end": 808.74, + "probability": 0.8973 + }, + { + "start": 809.72, + "end": 813.12, + "probability": 0.9798 + }, + { + "start": 813.12, + "end": 816.64, + "probability": 0.9212 + }, + { + "start": 816.94, + "end": 820.22, + "probability": 0.9341 + }, + { + "start": 820.22, + "end": 821.92, + "probability": 0.7743 + }, + { + "start": 823.48, + "end": 824.92, + "probability": 0.9963 + }, + { + "start": 825.0, + "end": 826.08, + "probability": 0.9038 + }, + { + "start": 826.12, + "end": 826.98, + "probability": 0.8438 + }, + { + "start": 827.64, + "end": 833.3, + "probability": 0.884 + }, + { + "start": 833.3, + "end": 838.18, + "probability": 0.9898 + }, + { + "start": 839.02, + "end": 841.68, + "probability": 0.769 + }, + { + "start": 842.02, + "end": 845.58, + "probability": 0.9586 + }, + { + "start": 845.58, + "end": 848.32, + "probability": 0.9836 + }, + { + "start": 848.82, + "end": 852.57, + "probability": 0.9805 + }, + { + "start": 852.82, + "end": 858.88, + "probability": 0.9913 + }, + { + "start": 860.38, + "end": 863.46, + "probability": 0.4912 + }, + { + "start": 863.62, + "end": 866.22, + "probability": 0.7546 + }, + { + "start": 867.56, + "end": 872.16, + "probability": 0.9949 + }, + { + "start": 872.18, + "end": 874.69, + "probability": 0.6198 + }, + { + "start": 875.1, + "end": 877.4, + "probability": 0.8447 + }, + { + "start": 879.38, + "end": 883.24, + "probability": 0.6137 + }, + { + "start": 883.82, + "end": 884.92, + "probability": 0.6585 + }, + { + "start": 885.88, + "end": 886.79, + "probability": 0.9644 + }, + { + "start": 886.92, + "end": 887.28, + "probability": 0.8892 + }, + { + "start": 887.76, + "end": 888.82, + "probability": 0.4835 + }, + { + "start": 888.82, + "end": 889.06, + "probability": 0.5412 + }, + { + "start": 889.22, + "end": 890.68, + "probability": 0.6657 + }, + { + "start": 890.88, + "end": 891.52, + "probability": 0.7535 + }, + { + "start": 891.6, + "end": 892.58, + "probability": 0.9634 + }, + { + "start": 895.58, + "end": 896.8, + "probability": 0.5038 + }, + { + "start": 896.94, + "end": 902.86, + "probability": 0.9941 + }, + { + "start": 902.9, + "end": 904.9, + "probability": 0.7925 + }, + { + "start": 904.9, + "end": 908.24, + "probability": 0.9795 + }, + { + "start": 908.3, + "end": 910.36, + "probability": 0.9913 + }, + { + "start": 910.92, + "end": 913.12, + "probability": 0.9945 + }, + { + "start": 913.12, + "end": 915.84, + "probability": 0.9683 + }, + { + "start": 916.1, + "end": 916.96, + "probability": 0.8161 + }, + { + "start": 917.7, + "end": 919.6, + "probability": 0.9839 + }, + { + "start": 919.9, + "end": 922.58, + "probability": 0.9614 + }, + { + "start": 923.38, + "end": 924.58, + "probability": 0.1385 + }, + { + "start": 925.78, + "end": 927.92, + "probability": 0.7988 + }, + { + "start": 927.92, + "end": 928.34, + "probability": 0.5892 + }, + { + "start": 928.44, + "end": 929.36, + "probability": 0.8685 + }, + { + "start": 929.66, + "end": 931.82, + "probability": 0.7425 + }, + { + "start": 931.94, + "end": 937.26, + "probability": 0.9958 + }, + { + "start": 937.52, + "end": 938.78, + "probability": 0.8397 + }, + { + "start": 939.66, + "end": 943.6, + "probability": 0.9979 + }, + { + "start": 943.66, + "end": 944.7, + "probability": 0.8563 + }, + { + "start": 944.74, + "end": 947.16, + "probability": 0.2266 + }, + { + "start": 947.16, + "end": 951.32, + "probability": 0.6104 + }, + { + "start": 951.46, + "end": 951.5, + "probability": 0.0093 + }, + { + "start": 951.5, + "end": 951.5, + "probability": 0.0517 + }, + { + "start": 951.5, + "end": 951.92, + "probability": 0.3915 + }, + { + "start": 952.14, + "end": 953.26, + "probability": 0.3678 + }, + { + "start": 953.5, + "end": 954.68, + "probability": 0.803 + }, + { + "start": 954.8, + "end": 955.92, + "probability": 0.6421 + }, + { + "start": 956.52, + "end": 957.04, + "probability": 0.0433 + }, + { + "start": 957.04, + "end": 957.04, + "probability": 0.0533 + }, + { + "start": 957.04, + "end": 957.24, + "probability": 0.4566 + }, + { + "start": 957.38, + "end": 958.16, + "probability": 0.5373 + }, + { + "start": 958.48, + "end": 958.48, + "probability": 0.0085 + }, + { + "start": 958.64, + "end": 959.96, + "probability": 0.4118 + }, + { + "start": 960.08, + "end": 960.5, + "probability": 0.67 + }, + { + "start": 960.5, + "end": 960.62, + "probability": 0.2315 + }, + { + "start": 960.62, + "end": 963.04, + "probability": 0.9758 + }, + { + "start": 963.04, + "end": 963.38, + "probability": 0.1758 + }, + { + "start": 963.48, + "end": 963.88, + "probability": 0.058 + }, + { + "start": 963.88, + "end": 964.12, + "probability": 0.1754 + }, + { + "start": 964.12, + "end": 965.1, + "probability": 0.711 + }, + { + "start": 965.66, + "end": 968.7, + "probability": 0.6312 + }, + { + "start": 968.7, + "end": 969.02, + "probability": 0.2398 + }, + { + "start": 969.68, + "end": 972.84, + "probability": 0.6949 + }, + { + "start": 972.94, + "end": 975.07, + "probability": 0.7532 + }, + { + "start": 975.6, + "end": 975.74, + "probability": 0.2912 + }, + { + "start": 976.08, + "end": 976.52, + "probability": 0.2769 + }, + { + "start": 976.6, + "end": 980.44, + "probability": 0.998 + }, + { + "start": 980.44, + "end": 985.38, + "probability": 0.9734 + }, + { + "start": 986.34, + "end": 989.22, + "probability": 0.7895 + }, + { + "start": 990.26, + "end": 992.88, + "probability": 0.9576 + }, + { + "start": 992.92, + "end": 993.92, + "probability": 0.6722 + }, + { + "start": 993.92, + "end": 994.58, + "probability": 0.501 + }, + { + "start": 994.8, + "end": 996.36, + "probability": 0.5661 + }, + { + "start": 996.46, + "end": 997.46, + "probability": 0.5123 + }, + { + "start": 997.62, + "end": 1001.7, + "probability": 0.8195 + }, + { + "start": 1001.72, + "end": 1001.78, + "probability": 0.072 + }, + { + "start": 1001.78, + "end": 1009.38, + "probability": 0.9704 + }, + { + "start": 1009.38, + "end": 1014.32, + "probability": 0.9905 + }, + { + "start": 1014.32, + "end": 1020.04, + "probability": 0.9976 + }, + { + "start": 1021.08, + "end": 1026.9, + "probability": 0.953 + }, + { + "start": 1026.9, + "end": 1030.32, + "probability": 0.9979 + }, + { + "start": 1030.44, + "end": 1031.34, + "probability": 0.8056 + }, + { + "start": 1031.44, + "end": 1032.62, + "probability": 0.9943 + }, + { + "start": 1032.72, + "end": 1037.32, + "probability": 0.8979 + }, + { + "start": 1037.32, + "end": 1039.74, + "probability": 0.9829 + }, + { + "start": 1039.9, + "end": 1043.54, + "probability": 0.9962 + }, + { + "start": 1044.34, + "end": 1048.24, + "probability": 0.9975 + }, + { + "start": 1048.97, + "end": 1052.64, + "probability": 0.9944 + }, + { + "start": 1053.4, + "end": 1056.62, + "probability": 0.9023 + }, + { + "start": 1057.56, + "end": 1060.98, + "probability": 0.9971 + }, + { + "start": 1060.98, + "end": 1064.4, + "probability": 0.9996 + }, + { + "start": 1065.32, + "end": 1066.9, + "probability": 0.8852 + }, + { + "start": 1067.44, + "end": 1072.68, + "probability": 0.9683 + }, + { + "start": 1072.78, + "end": 1074.1, + "probability": 0.999 + }, + { + "start": 1074.82, + "end": 1076.34, + "probability": 0.801 + }, + { + "start": 1076.46, + "end": 1081.12, + "probability": 0.9905 + }, + { + "start": 1081.16, + "end": 1082.54, + "probability": 0.9083 + }, + { + "start": 1082.66, + "end": 1082.94, + "probability": 0.8685 + }, + { + "start": 1084.0, + "end": 1086.14, + "probability": 0.9884 + }, + { + "start": 1086.14, + "end": 1089.18, + "probability": 0.9783 + }, + { + "start": 1090.72, + "end": 1095.06, + "probability": 0.9928 + }, + { + "start": 1096.12, + "end": 1099.02, + "probability": 0.9688 + }, + { + "start": 1099.66, + "end": 1101.04, + "probability": 0.1877 + }, + { + "start": 1101.08, + "end": 1101.2, + "probability": 0.4086 + }, + { + "start": 1101.2, + "end": 1101.2, + "probability": 0.0544 + }, + { + "start": 1101.2, + "end": 1102.78, + "probability": 0.8989 + }, + { + "start": 1104.28, + "end": 1110.64, + "probability": 0.9741 + }, + { + "start": 1110.74, + "end": 1115.2, + "probability": 0.9944 + }, + { + "start": 1116.44, + "end": 1119.48, + "probability": 0.9973 + }, + { + "start": 1120.42, + "end": 1122.88, + "probability": 0.9862 + }, + { + "start": 1122.88, + "end": 1129.54, + "probability": 0.9103 + }, + { + "start": 1129.8, + "end": 1130.62, + "probability": 0.8206 + }, + { + "start": 1130.66, + "end": 1132.44, + "probability": 0.5252 + }, + { + "start": 1132.64, + "end": 1133.52, + "probability": 0.5304 + }, + { + "start": 1134.36, + "end": 1139.5, + "probability": 0.9833 + }, + { + "start": 1139.54, + "end": 1140.42, + "probability": 0.8073 + }, + { + "start": 1141.44, + "end": 1142.58, + "probability": 0.4335 + }, + { + "start": 1142.58, + "end": 1145.96, + "probability": 0.9792 + }, + { + "start": 1146.08, + "end": 1146.66, + "probability": 0.838 + }, + { + "start": 1147.58, + "end": 1149.1, + "probability": 0.6875 + }, + { + "start": 1149.34, + "end": 1149.34, + "probability": 0.8467 + }, + { + "start": 1149.34, + "end": 1150.6, + "probability": 0.8999 + }, + { + "start": 1150.68, + "end": 1154.1, + "probability": 0.979 + }, + { + "start": 1155.1, + "end": 1156.8, + "probability": 0.9471 + }, + { + "start": 1156.94, + "end": 1158.92, + "probability": 0.97 + }, + { + "start": 1159.74, + "end": 1160.5, + "probability": 0.6829 + }, + { + "start": 1166.42, + "end": 1169.76, + "probability": 0.9888 + }, + { + "start": 1170.48, + "end": 1173.1, + "probability": 0.6673 + }, + { + "start": 1173.61, + "end": 1177.36, + "probability": 0.9276 + }, + { + "start": 1178.08, + "end": 1181.68, + "probability": 0.8369 + }, + { + "start": 1182.64, + "end": 1184.16, + "probability": 0.9746 + }, + { + "start": 1185.1, + "end": 1188.04, + "probability": 0.7677 + }, + { + "start": 1189.74, + "end": 1191.96, + "probability": 0.5809 + }, + { + "start": 1192.76, + "end": 1197.42, + "probability": 0.97 + }, + { + "start": 1197.92, + "end": 1200.32, + "probability": 0.9166 + }, + { + "start": 1201.34, + "end": 1202.3, + "probability": 0.9496 + }, + { + "start": 1202.64, + "end": 1206.92, + "probability": 0.7389 + }, + { + "start": 1207.58, + "end": 1210.36, + "probability": 0.9836 + }, + { + "start": 1210.86, + "end": 1212.5, + "probability": 0.3312 + }, + { + "start": 1213.46, + "end": 1217.84, + "probability": 0.9055 + }, + { + "start": 1218.36, + "end": 1220.32, + "probability": 0.9498 + }, + { + "start": 1220.4, + "end": 1221.52, + "probability": 0.8863 + }, + { + "start": 1222.04, + "end": 1225.46, + "probability": 0.9634 + }, + { + "start": 1225.6, + "end": 1225.82, + "probability": 0.6532 + }, + { + "start": 1226.74, + "end": 1227.54, + "probability": 0.6012 + }, + { + "start": 1227.76, + "end": 1230.42, + "probability": 0.8982 + }, + { + "start": 1231.1, + "end": 1231.68, + "probability": 0.9373 + }, + { + "start": 1235.58, + "end": 1236.84, + "probability": 0.7167 + }, + { + "start": 1237.36, + "end": 1239.54, + "probability": 0.8995 + }, + { + "start": 1240.66, + "end": 1241.28, + "probability": 0.8905 + }, + { + "start": 1241.38, + "end": 1242.48, + "probability": 0.9508 + }, + { + "start": 1242.64, + "end": 1245.92, + "probability": 0.9544 + }, + { + "start": 1245.92, + "end": 1251.5, + "probability": 0.8634 + }, + { + "start": 1252.18, + "end": 1252.74, + "probability": 0.5677 + }, + { + "start": 1252.8, + "end": 1253.8, + "probability": 0.8813 + }, + { + "start": 1253.88, + "end": 1257.84, + "probability": 0.9907 + }, + { + "start": 1258.58, + "end": 1261.4, + "probability": 0.9419 + }, + { + "start": 1262.14, + "end": 1265.9, + "probability": 0.987 + }, + { + "start": 1266.6, + "end": 1268.72, + "probability": 0.9808 + }, + { + "start": 1269.38, + "end": 1276.98, + "probability": 0.9993 + }, + { + "start": 1277.7, + "end": 1284.6, + "probability": 0.9944 + }, + { + "start": 1285.16, + "end": 1290.74, + "probability": 0.9963 + }, + { + "start": 1291.22, + "end": 1295.24, + "probability": 0.9991 + }, + { + "start": 1295.7, + "end": 1301.44, + "probability": 0.9973 + }, + { + "start": 1301.44, + "end": 1307.24, + "probability": 0.998 + }, + { + "start": 1308.12, + "end": 1309.76, + "probability": 0.7332 + }, + { + "start": 1310.14, + "end": 1314.42, + "probability": 0.9899 + }, + { + "start": 1314.86, + "end": 1317.44, + "probability": 0.9829 + }, + { + "start": 1318.22, + "end": 1319.82, + "probability": 0.6978 + }, + { + "start": 1320.24, + "end": 1322.48, + "probability": 0.9952 + }, + { + "start": 1322.54, + "end": 1326.46, + "probability": 0.9927 + }, + { + "start": 1326.46, + "end": 1330.88, + "probability": 0.996 + }, + { + "start": 1331.3, + "end": 1332.18, + "probability": 0.9824 + }, + { + "start": 1333.44, + "end": 1334.26, + "probability": 0.7655 + }, + { + "start": 1335.62, + "end": 1339.0, + "probability": 0.9598 + }, + { + "start": 1339.72, + "end": 1342.38, + "probability": 0.9683 + }, + { + "start": 1343.3, + "end": 1347.46, + "probability": 0.9749 + }, + { + "start": 1348.54, + "end": 1349.76, + "probability": 0.782 + }, + { + "start": 1350.44, + "end": 1353.08, + "probability": 0.9932 + }, + { + "start": 1353.08, + "end": 1355.64, + "probability": 0.9977 + }, + { + "start": 1357.12, + "end": 1360.02, + "probability": 0.9919 + }, + { + "start": 1360.2, + "end": 1361.72, + "probability": 0.6685 + }, + { + "start": 1362.34, + "end": 1364.2, + "probability": 0.9709 + }, + { + "start": 1364.74, + "end": 1368.26, + "probability": 0.9937 + }, + { + "start": 1369.14, + "end": 1369.52, + "probability": 0.87 + }, + { + "start": 1369.68, + "end": 1370.16, + "probability": 0.9948 + }, + { + "start": 1370.48, + "end": 1374.74, + "probability": 0.9967 + }, + { + "start": 1375.42, + "end": 1377.36, + "probability": 0.9715 + }, + { + "start": 1378.02, + "end": 1382.4, + "probability": 0.9854 + }, + { + "start": 1383.6, + "end": 1387.46, + "probability": 0.9708 + }, + { + "start": 1388.34, + "end": 1395.34, + "probability": 0.9865 + }, + { + "start": 1396.46, + "end": 1401.14, + "probability": 0.9539 + }, + { + "start": 1401.14, + "end": 1407.1, + "probability": 0.9993 + }, + { + "start": 1408.5, + "end": 1409.1, + "probability": 0.8267 + }, + { + "start": 1409.28, + "end": 1412.6, + "probability": 0.9975 + }, + { + "start": 1412.6, + "end": 1418.34, + "probability": 0.988 + }, + { + "start": 1419.24, + "end": 1421.86, + "probability": 0.8905 + }, + { + "start": 1422.68, + "end": 1425.5, + "probability": 0.9935 + }, + { + "start": 1426.54, + "end": 1430.42, + "probability": 0.9711 + }, + { + "start": 1430.94, + "end": 1432.36, + "probability": 0.9919 + }, + { + "start": 1433.3, + "end": 1437.82, + "probability": 0.9985 + }, + { + "start": 1438.5, + "end": 1443.16, + "probability": 0.9963 + }, + { + "start": 1443.68, + "end": 1446.5, + "probability": 0.9835 + }, + { + "start": 1447.7, + "end": 1451.78, + "probability": 0.998 + }, + { + "start": 1451.98, + "end": 1456.66, + "probability": 0.9943 + }, + { + "start": 1456.66, + "end": 1461.88, + "probability": 0.9988 + }, + { + "start": 1462.34, + "end": 1468.18, + "probability": 0.9983 + }, + { + "start": 1469.16, + "end": 1469.92, + "probability": 0.4525 + }, + { + "start": 1470.6, + "end": 1471.76, + "probability": 0.9653 + }, + { + "start": 1472.42, + "end": 1476.18, + "probability": 0.9585 + }, + { + "start": 1476.18, + "end": 1479.86, + "probability": 0.9875 + }, + { + "start": 1481.12, + "end": 1485.58, + "probability": 0.9808 + }, + { + "start": 1486.84, + "end": 1489.6, + "probability": 0.904 + }, + { + "start": 1510.2, + "end": 1511.12, + "probability": 0.6093 + }, + { + "start": 1512.84, + "end": 1515.12, + "probability": 0.7847 + }, + { + "start": 1516.0, + "end": 1517.26, + "probability": 0.9287 + }, + { + "start": 1520.34, + "end": 1524.6, + "probability": 0.9462 + }, + { + "start": 1524.6, + "end": 1527.14, + "probability": 0.9365 + }, + { + "start": 1527.82, + "end": 1530.38, + "probability": 0.9951 + }, + { + "start": 1531.02, + "end": 1538.28, + "probability": 0.7524 + }, + { + "start": 1538.82, + "end": 1542.04, + "probability": 0.9706 + }, + { + "start": 1542.56, + "end": 1543.66, + "probability": 0.916 + }, + { + "start": 1544.26, + "end": 1545.46, + "probability": 0.9861 + }, + { + "start": 1545.88, + "end": 1547.82, + "probability": 0.9849 + }, + { + "start": 1548.06, + "end": 1551.53, + "probability": 0.8838 + }, + { + "start": 1553.38, + "end": 1560.08, + "probability": 0.9573 + }, + { + "start": 1560.08, + "end": 1565.68, + "probability": 0.9931 + }, + { + "start": 1565.68, + "end": 1570.8, + "probability": 0.9995 + }, + { + "start": 1571.58, + "end": 1573.98, + "probability": 0.6475 + }, + { + "start": 1575.2, + "end": 1578.34, + "probability": 0.9896 + }, + { + "start": 1578.36, + "end": 1582.74, + "probability": 0.9379 + }, + { + "start": 1583.72, + "end": 1588.08, + "probability": 0.9674 + }, + { + "start": 1588.82, + "end": 1593.22, + "probability": 0.9795 + }, + { + "start": 1593.86, + "end": 1595.86, + "probability": 0.9983 + }, + { + "start": 1596.8, + "end": 1597.78, + "probability": 0.5099 + }, + { + "start": 1598.88, + "end": 1601.26, + "probability": 0.9983 + }, + { + "start": 1602.06, + "end": 1607.02, + "probability": 0.9938 + }, + { + "start": 1607.98, + "end": 1609.96, + "probability": 0.9904 + }, + { + "start": 1610.62, + "end": 1612.28, + "probability": 0.9661 + }, + { + "start": 1613.02, + "end": 1616.16, + "probability": 0.9869 + }, + { + "start": 1616.68, + "end": 1618.78, + "probability": 0.969 + }, + { + "start": 1619.76, + "end": 1623.28, + "probability": 0.8693 + }, + { + "start": 1623.72, + "end": 1625.66, + "probability": 0.7546 + }, + { + "start": 1626.34, + "end": 1630.64, + "probability": 0.9892 + }, + { + "start": 1631.46, + "end": 1637.38, + "probability": 0.9913 + }, + { + "start": 1638.22, + "end": 1641.92, + "probability": 0.9914 + }, + { + "start": 1643.72, + "end": 1644.64, + "probability": 0.9373 + }, + { + "start": 1645.42, + "end": 1649.72, + "probability": 0.9922 + }, + { + "start": 1650.3, + "end": 1651.86, + "probability": 0.8525 + }, + { + "start": 1653.26, + "end": 1657.1, + "probability": 0.9499 + }, + { + "start": 1657.74, + "end": 1660.08, + "probability": 0.979 + }, + { + "start": 1660.6, + "end": 1662.32, + "probability": 0.9091 + }, + { + "start": 1662.86, + "end": 1666.72, + "probability": 0.9972 + }, + { + "start": 1667.12, + "end": 1668.62, + "probability": 0.7435 + }, + { + "start": 1669.76, + "end": 1672.2, + "probability": 0.8042 + }, + { + "start": 1672.9, + "end": 1675.04, + "probability": 0.9446 + }, + { + "start": 1675.68, + "end": 1680.74, + "probability": 0.9873 + }, + { + "start": 1681.7, + "end": 1686.12, + "probability": 0.9647 + }, + { + "start": 1686.16, + "end": 1690.2, + "probability": 0.9852 + }, + { + "start": 1691.62, + "end": 1695.48, + "probability": 0.9709 + }, + { + "start": 1695.84, + "end": 1697.66, + "probability": 0.9891 + }, + { + "start": 1698.34, + "end": 1700.96, + "probability": 0.9434 + }, + { + "start": 1702.68, + "end": 1703.46, + "probability": 0.8806 + }, + { + "start": 1704.72, + "end": 1708.04, + "probability": 0.9387 + }, + { + "start": 1708.48, + "end": 1710.72, + "probability": 0.9756 + }, + { + "start": 1711.22, + "end": 1712.8, + "probability": 0.8888 + }, + { + "start": 1713.88, + "end": 1714.56, + "probability": 0.8781 + }, + { + "start": 1716.92, + "end": 1720.62, + "probability": 0.8725 + }, + { + "start": 1722.18, + "end": 1726.68, + "probability": 0.9303 + }, + { + "start": 1727.96, + "end": 1735.0, + "probability": 0.998 + }, + { + "start": 1735.62, + "end": 1740.42, + "probability": 0.9967 + }, + { + "start": 1741.46, + "end": 1745.02, + "probability": 0.9992 + }, + { + "start": 1745.52, + "end": 1747.8, + "probability": 0.9894 + }, + { + "start": 1748.76, + "end": 1752.86, + "probability": 0.9993 + }, + { + "start": 1753.3, + "end": 1754.14, + "probability": 0.8894 + }, + { + "start": 1754.54, + "end": 1756.52, + "probability": 0.9904 + }, + { + "start": 1758.5, + "end": 1763.48, + "probability": 0.9464 + }, + { + "start": 1764.14, + "end": 1767.18, + "probability": 0.9976 + }, + { + "start": 1767.8, + "end": 1770.88, + "probability": 0.9972 + }, + { + "start": 1771.68, + "end": 1774.6, + "probability": 0.9128 + }, + { + "start": 1775.2, + "end": 1781.7, + "probability": 0.9895 + }, + { + "start": 1782.22, + "end": 1785.36, + "probability": 0.9968 + }, + { + "start": 1785.48, + "end": 1787.12, + "probability": 0.9717 + }, + { + "start": 1788.32, + "end": 1791.5, + "probability": 0.9932 + }, + { + "start": 1791.5, + "end": 1795.1, + "probability": 0.9849 + }, + { + "start": 1796.12, + "end": 1799.98, + "probability": 0.9266 + }, + { + "start": 1800.14, + "end": 1801.5, + "probability": 0.755 + }, + { + "start": 1801.62, + "end": 1802.46, + "probability": 0.7607 + }, + { + "start": 1803.04, + "end": 1805.12, + "probability": 0.9333 + }, + { + "start": 1806.02, + "end": 1808.84, + "probability": 0.998 + }, + { + "start": 1808.84, + "end": 1813.36, + "probability": 0.9971 + }, + { + "start": 1813.54, + "end": 1814.52, + "probability": 0.7059 + }, + { + "start": 1815.14, + "end": 1818.36, + "probability": 0.9902 + }, + { + "start": 1818.78, + "end": 1823.28, + "probability": 0.9973 + }, + { + "start": 1824.16, + "end": 1828.64, + "probability": 0.9416 + }, + { + "start": 1829.36, + "end": 1830.38, + "probability": 0.7926 + }, + { + "start": 1830.88, + "end": 1832.0, + "probability": 0.91 + }, + { + "start": 1832.46, + "end": 1835.88, + "probability": 0.9894 + }, + { + "start": 1835.88, + "end": 1840.64, + "probability": 0.9845 + }, + { + "start": 1841.4, + "end": 1841.8, + "probability": 0.7808 + }, + { + "start": 1843.46, + "end": 1846.58, + "probability": 0.9819 + }, + { + "start": 1846.7, + "end": 1848.78, + "probability": 0.9946 + }, + { + "start": 1849.62, + "end": 1849.72, + "probability": 0.8701 + }, + { + "start": 1858.42, + "end": 1861.4, + "probability": 0.7647 + }, + { + "start": 1862.64, + "end": 1864.98, + "probability": 0.8818 + }, + { + "start": 1865.74, + "end": 1873.34, + "probability": 0.9985 + }, + { + "start": 1873.86, + "end": 1877.06, + "probability": 0.9996 + }, + { + "start": 1877.62, + "end": 1882.08, + "probability": 0.7568 + }, + { + "start": 1882.62, + "end": 1883.44, + "probability": 0.7969 + }, + { + "start": 1885.44, + "end": 1887.66, + "probability": 0.9225 + }, + { + "start": 1888.6, + "end": 1889.16, + "probability": 0.6683 + }, + { + "start": 1890.9, + "end": 1896.78, + "probability": 0.9943 + }, + { + "start": 1897.08, + "end": 1902.16, + "probability": 0.9963 + }, + { + "start": 1903.6, + "end": 1911.14, + "probability": 0.9798 + }, + { + "start": 1913.85, + "end": 1917.06, + "probability": 0.9885 + }, + { + "start": 1917.68, + "end": 1922.0, + "probability": 0.978 + }, + { + "start": 1922.0, + "end": 1926.68, + "probability": 0.9806 + }, + { + "start": 1928.96, + "end": 1930.38, + "probability": 0.7588 + }, + { + "start": 1931.14, + "end": 1933.36, + "probability": 0.9534 + }, + { + "start": 1934.8, + "end": 1938.26, + "probability": 0.8912 + }, + { + "start": 1939.22, + "end": 1940.3, + "probability": 0.269 + }, + { + "start": 1940.92, + "end": 1941.3, + "probability": 0.8455 + }, + { + "start": 1941.82, + "end": 1943.18, + "probability": 0.8005 + }, + { + "start": 1943.9, + "end": 1946.64, + "probability": 0.9176 + }, + { + "start": 1947.28, + "end": 1953.1, + "probability": 0.9696 + }, + { + "start": 1954.2, + "end": 1955.02, + "probability": 0.624 + }, + { + "start": 1955.76, + "end": 1956.76, + "probability": 0.9643 + }, + { + "start": 1957.76, + "end": 1959.02, + "probability": 0.9816 + }, + { + "start": 1959.1, + "end": 1963.22, + "probability": 0.9623 + }, + { + "start": 1963.44, + "end": 1967.4, + "probability": 0.9927 + }, + { + "start": 1968.74, + "end": 1969.3, + "probability": 0.8786 + }, + { + "start": 1969.8, + "end": 1970.62, + "probability": 0.5523 + }, + { + "start": 1970.64, + "end": 1974.24, + "probability": 0.8936 + }, + { + "start": 1975.18, + "end": 1979.06, + "probability": 0.98 + }, + { + "start": 1980.8, + "end": 1982.94, + "probability": 0.883 + }, + { + "start": 1983.86, + "end": 1985.88, + "probability": 0.8574 + }, + { + "start": 1986.7, + "end": 1988.92, + "probability": 0.9814 + }, + { + "start": 1990.2, + "end": 1993.1, + "probability": 0.9915 + }, + { + "start": 1993.66, + "end": 1996.82, + "probability": 0.9979 + }, + { + "start": 1998.36, + "end": 2001.78, + "probability": 0.9359 + }, + { + "start": 2003.12, + "end": 2004.64, + "probability": 0.9507 + }, + { + "start": 2005.64, + "end": 2008.08, + "probability": 0.9642 + }, + { + "start": 2010.28, + "end": 2011.0, + "probability": 0.916 + }, + { + "start": 2013.02, + "end": 2016.76, + "probability": 0.7979 + }, + { + "start": 2018.06, + "end": 2019.16, + "probability": 0.9397 + }, + { + "start": 2020.76, + "end": 2021.28, + "probability": 0.7799 + }, + { + "start": 2021.4, + "end": 2022.14, + "probability": 0.8333 + }, + { + "start": 2022.26, + "end": 2024.0, + "probability": 0.9922 + }, + { + "start": 2025.1, + "end": 2027.22, + "probability": 0.908 + }, + { + "start": 2028.36, + "end": 2029.38, + "probability": 0.7623 + }, + { + "start": 2030.58, + "end": 2031.6, + "probability": 0.849 + }, + { + "start": 2032.88, + "end": 2033.54, + "probability": 0.9464 + }, + { + "start": 2034.7, + "end": 2035.42, + "probability": 0.7979 + }, + { + "start": 2036.4, + "end": 2039.0, + "probability": 0.9459 + }, + { + "start": 2039.36, + "end": 2040.92, + "probability": 0.8794 + }, + { + "start": 2041.06, + "end": 2042.98, + "probability": 0.917 + }, + { + "start": 2043.3, + "end": 2043.64, + "probability": 0.8986 + }, + { + "start": 2044.72, + "end": 2046.76, + "probability": 0.9595 + }, + { + "start": 2048.42, + "end": 2048.98, + "probability": 0.7793 + }, + { + "start": 2050.1, + "end": 2052.9, + "probability": 0.9934 + }, + { + "start": 2053.4, + "end": 2059.72, + "probability": 0.9752 + }, + { + "start": 2059.84, + "end": 2063.06, + "probability": 0.7625 + }, + { + "start": 2064.26, + "end": 2067.06, + "probability": 0.9954 + }, + { + "start": 2067.16, + "end": 2068.04, + "probability": 0.6124 + }, + { + "start": 2068.96, + "end": 2072.47, + "probability": 0.9938 + }, + { + "start": 2073.38, + "end": 2075.14, + "probability": 0.8637 + }, + { + "start": 2076.16, + "end": 2077.32, + "probability": 0.942 + }, + { + "start": 2078.86, + "end": 2083.92, + "probability": 0.9864 + }, + { + "start": 2084.28, + "end": 2084.44, + "probability": 0.9636 + }, + { + "start": 2084.96, + "end": 2086.86, + "probability": 0.7339 + }, + { + "start": 2088.04, + "end": 2089.7, + "probability": 0.9992 + }, + { + "start": 2090.32, + "end": 2092.06, + "probability": 0.9956 + }, + { + "start": 2092.48, + "end": 2096.58, + "probability": 0.9888 + }, + { + "start": 2096.58, + "end": 2099.84, + "probability": 0.9948 + }, + { + "start": 2100.8, + "end": 2101.43, + "probability": 0.5926 + }, + { + "start": 2101.8, + "end": 2103.44, + "probability": 0.9412 + }, + { + "start": 2104.24, + "end": 2108.0, + "probability": 0.9432 + }, + { + "start": 2109.78, + "end": 2110.02, + "probability": 0.7331 + }, + { + "start": 2110.1, + "end": 2114.92, + "probability": 0.9985 + }, + { + "start": 2115.42, + "end": 2118.4, + "probability": 0.9743 + }, + { + "start": 2118.98, + "end": 2119.56, + "probability": 0.8508 + }, + { + "start": 2120.9, + "end": 2125.58, + "probability": 0.9792 + }, + { + "start": 2126.1, + "end": 2132.82, + "probability": 0.9945 + }, + { + "start": 2133.5, + "end": 2135.56, + "probability": 0.9739 + }, + { + "start": 2135.8, + "end": 2136.4, + "probability": 0.6493 + }, + { + "start": 2136.52, + "end": 2137.2, + "probability": 0.6746 + }, + { + "start": 2137.66, + "end": 2139.2, + "probability": 0.9388 + }, + { + "start": 2139.28, + "end": 2142.24, + "probability": 0.8876 + }, + { + "start": 2142.6, + "end": 2145.4, + "probability": 0.9986 + }, + { + "start": 2146.12, + "end": 2147.54, + "probability": 0.7786 + }, + { + "start": 2149.14, + "end": 2150.96, + "probability": 0.9927 + }, + { + "start": 2151.9, + "end": 2154.36, + "probability": 0.9735 + }, + { + "start": 2155.24, + "end": 2155.76, + "probability": 0.6697 + }, + { + "start": 2155.82, + "end": 2156.44, + "probability": 0.8504 + }, + { + "start": 2156.68, + "end": 2160.52, + "probability": 0.9944 + }, + { + "start": 2161.06, + "end": 2162.38, + "probability": 0.9481 + }, + { + "start": 2162.68, + "end": 2163.88, + "probability": 0.981 + }, + { + "start": 2164.46, + "end": 2167.98, + "probability": 0.8431 + }, + { + "start": 2168.62, + "end": 2172.56, + "probability": 0.9971 + }, + { + "start": 2173.02, + "end": 2174.78, + "probability": 0.9584 + }, + { + "start": 2175.1, + "end": 2177.0, + "probability": 0.9858 + }, + { + "start": 2177.62, + "end": 2179.44, + "probability": 0.9778 + }, + { + "start": 2180.88, + "end": 2182.34, + "probability": 0.9709 + }, + { + "start": 2182.8, + "end": 2186.12, + "probability": 0.8378 + }, + { + "start": 2187.72, + "end": 2189.22, + "probability": 0.9679 + }, + { + "start": 2190.32, + "end": 2191.02, + "probability": 0.925 + }, + { + "start": 2192.32, + "end": 2193.38, + "probability": 0.9399 + }, + { + "start": 2194.04, + "end": 2194.94, + "probability": 0.9495 + }, + { + "start": 2195.48, + "end": 2196.74, + "probability": 0.9208 + }, + { + "start": 2196.84, + "end": 2197.75, + "probability": 0.8333 + }, + { + "start": 2198.32, + "end": 2199.44, + "probability": 0.8354 + }, + { + "start": 2200.54, + "end": 2204.18, + "probability": 0.9919 + }, + { + "start": 2204.58, + "end": 2205.68, + "probability": 0.9733 + }, + { + "start": 2206.22, + "end": 2207.18, + "probability": 0.8605 + }, + { + "start": 2207.88, + "end": 2209.52, + "probability": 0.967 + }, + { + "start": 2210.72, + "end": 2214.74, + "probability": 0.8958 + }, + { + "start": 2215.48, + "end": 2219.48, + "probability": 0.9306 + }, + { + "start": 2220.1, + "end": 2223.8, + "probability": 0.9913 + }, + { + "start": 2224.14, + "end": 2224.88, + "probability": 0.7753 + }, + { + "start": 2225.06, + "end": 2225.75, + "probability": 0.9714 + }, + { + "start": 2226.34, + "end": 2228.56, + "probability": 0.9741 + }, + { + "start": 2229.33, + "end": 2231.1, + "probability": 0.8577 + }, + { + "start": 2233.12, + "end": 2234.94, + "probability": 0.9985 + }, + { + "start": 2235.96, + "end": 2237.6, + "probability": 0.9991 + }, + { + "start": 2238.4, + "end": 2240.46, + "probability": 0.9695 + }, + { + "start": 2241.02, + "end": 2242.34, + "probability": 0.9596 + }, + { + "start": 2243.1, + "end": 2246.01, + "probability": 0.9377 + }, + { + "start": 2247.92, + "end": 2249.44, + "probability": 0.9901 + }, + { + "start": 2250.86, + "end": 2253.16, + "probability": 0.8072 + }, + { + "start": 2253.88, + "end": 2255.92, + "probability": 0.9157 + }, + { + "start": 2256.42, + "end": 2260.96, + "probability": 0.9893 + }, + { + "start": 2262.4, + "end": 2263.92, + "probability": 0.9137 + }, + { + "start": 2265.76, + "end": 2267.66, + "probability": 0.8978 + }, + { + "start": 2269.74, + "end": 2270.7, + "probability": 0.9699 + }, + { + "start": 2272.18, + "end": 2272.88, + "probability": 0.9943 + }, + { + "start": 2273.74, + "end": 2274.74, + "probability": 0.9048 + }, + { + "start": 2275.96, + "end": 2276.32, + "probability": 0.7311 + }, + { + "start": 2276.38, + "end": 2276.38, + "probability": 0.3713 + }, + { + "start": 2276.38, + "end": 2277.1, + "probability": 0.7442 + }, + { + "start": 2277.52, + "end": 2281.0, + "probability": 0.9431 + }, + { + "start": 2282.16, + "end": 2282.36, + "probability": 0.8373 + }, + { + "start": 2283.3, + "end": 2284.8, + "probability": 0.8675 + }, + { + "start": 2285.14, + "end": 2287.46, + "probability": 0.9169 + }, + { + "start": 2289.0, + "end": 2290.82, + "probability": 0.9857 + }, + { + "start": 2291.66, + "end": 2295.6, + "probability": 0.9567 + }, + { + "start": 2296.56, + "end": 2298.58, + "probability": 0.9795 + }, + { + "start": 2299.44, + "end": 2301.54, + "probability": 0.9951 + }, + { + "start": 2302.4, + "end": 2307.26, + "probability": 0.9084 + }, + { + "start": 2307.42, + "end": 2308.68, + "probability": 0.9908 + }, + { + "start": 2309.74, + "end": 2310.9, + "probability": 0.9092 + }, + { + "start": 2311.34, + "end": 2313.42, + "probability": 0.7454 + }, + { + "start": 2315.94, + "end": 2318.18, + "probability": 0.9967 + }, + { + "start": 2319.32, + "end": 2321.66, + "probability": 0.989 + }, + { + "start": 2322.74, + "end": 2325.06, + "probability": 0.998 + }, + { + "start": 2325.84, + "end": 2331.2, + "probability": 0.9994 + }, + { + "start": 2331.8, + "end": 2334.76, + "probability": 0.9082 + }, + { + "start": 2336.26, + "end": 2337.37, + "probability": 0.7598 + }, + { + "start": 2338.28, + "end": 2343.88, + "probability": 0.9919 + }, + { + "start": 2344.56, + "end": 2348.76, + "probability": 0.8701 + }, + { + "start": 2352.08, + "end": 2354.74, + "probability": 0.9902 + }, + { + "start": 2355.64, + "end": 2356.48, + "probability": 0.9345 + }, + { + "start": 2357.38, + "end": 2360.72, + "probability": 0.9957 + }, + { + "start": 2361.62, + "end": 2364.3, + "probability": 0.9705 + }, + { + "start": 2365.78, + "end": 2368.28, + "probability": 0.9552 + }, + { + "start": 2369.04, + "end": 2370.02, + "probability": 0.9479 + }, + { + "start": 2371.18, + "end": 2373.28, + "probability": 0.9856 + }, + { + "start": 2373.98, + "end": 2377.04, + "probability": 0.9846 + }, + { + "start": 2378.1, + "end": 2380.5, + "probability": 0.8033 + }, + { + "start": 2380.5, + "end": 2384.56, + "probability": 0.9974 + }, + { + "start": 2385.24, + "end": 2388.4, + "probability": 0.9996 + }, + { + "start": 2391.38, + "end": 2393.62, + "probability": 0.9985 + }, + { + "start": 2394.14, + "end": 2398.48, + "probability": 0.998 + }, + { + "start": 2399.5, + "end": 2401.16, + "probability": 0.89 + }, + { + "start": 2401.72, + "end": 2404.06, + "probability": 0.9842 + }, + { + "start": 2405.48, + "end": 2406.28, + "probability": 0.8251 + }, + { + "start": 2407.22, + "end": 2411.02, + "probability": 0.9834 + }, + { + "start": 2411.66, + "end": 2414.48, + "probability": 0.9543 + }, + { + "start": 2415.68, + "end": 2420.02, + "probability": 0.9861 + }, + { + "start": 2420.74, + "end": 2421.36, + "probability": 0.8611 + }, + { + "start": 2422.1, + "end": 2423.6, + "probability": 0.8422 + }, + { + "start": 2424.32, + "end": 2430.52, + "probability": 0.9971 + }, + { + "start": 2431.04, + "end": 2436.78, + "probability": 0.9988 + }, + { + "start": 2437.8, + "end": 2440.56, + "probability": 0.986 + }, + { + "start": 2441.22, + "end": 2442.22, + "probability": 0.9753 + }, + { + "start": 2442.96, + "end": 2445.62, + "probability": 0.9755 + }, + { + "start": 2446.36, + "end": 2452.12, + "probability": 0.9963 + }, + { + "start": 2452.64, + "end": 2454.96, + "probability": 0.9271 + }, + { + "start": 2455.54, + "end": 2459.08, + "probability": 0.9437 + }, + { + "start": 2459.66, + "end": 2463.3, + "probability": 0.952 + }, + { + "start": 2465.04, + "end": 2466.26, + "probability": 0.9857 + }, + { + "start": 2466.88, + "end": 2468.02, + "probability": 0.9987 + }, + { + "start": 2468.62, + "end": 2472.84, + "probability": 0.9979 + }, + { + "start": 2472.84, + "end": 2476.74, + "probability": 0.9985 + }, + { + "start": 2477.2, + "end": 2477.74, + "probability": 0.6112 + }, + { + "start": 2477.9, + "end": 2480.44, + "probability": 0.9884 + }, + { + "start": 2482.08, + "end": 2483.38, + "probability": 0.9154 + }, + { + "start": 2484.16, + "end": 2487.6, + "probability": 0.9903 + }, + { + "start": 2488.2, + "end": 2492.8, + "probability": 0.9901 + }, + { + "start": 2493.78, + "end": 2495.14, + "probability": 0.8209 + }, + { + "start": 2495.8, + "end": 2497.04, + "probability": 0.5706 + }, + { + "start": 2497.56, + "end": 2500.82, + "probability": 0.999 + }, + { + "start": 2501.9, + "end": 2506.34, + "probability": 0.9959 + }, + { + "start": 2506.34, + "end": 2510.42, + "probability": 0.9984 + }, + { + "start": 2511.26, + "end": 2514.72, + "probability": 0.9692 + }, + { + "start": 2516.86, + "end": 2520.32, + "probability": 0.9989 + }, + { + "start": 2520.8, + "end": 2521.88, + "probability": 0.9288 + }, + { + "start": 2522.44, + "end": 2522.88, + "probability": 0.9451 + }, + { + "start": 2524.32, + "end": 2528.38, + "probability": 0.8057 + }, + { + "start": 2528.38, + "end": 2529.1, + "probability": 0.505 + }, + { + "start": 2529.66, + "end": 2530.0, + "probability": 0.7236 + }, + { + "start": 2549.92, + "end": 2552.06, + "probability": 0.6345 + }, + { + "start": 2552.76, + "end": 2555.22, + "probability": 0.8663 + }, + { + "start": 2555.94, + "end": 2556.48, + "probability": 0.9147 + }, + { + "start": 2557.44, + "end": 2557.58, + "probability": 0.001 + }, + { + "start": 2558.44, + "end": 2559.22, + "probability": 0.4467 + }, + { + "start": 2560.5, + "end": 2565.57, + "probability": 0.9966 + }, + { + "start": 2567.54, + "end": 2573.08, + "probability": 0.6862 + }, + { + "start": 2573.28, + "end": 2574.16, + "probability": 0.0448 + }, + { + "start": 2574.16, + "end": 2576.04, + "probability": 0.4501 + }, + { + "start": 2576.16, + "end": 2577.0, + "probability": 0.7958 + }, + { + "start": 2579.44, + "end": 2582.1, + "probability": 0.9802 + }, + { + "start": 2583.46, + "end": 2586.66, + "probability": 0.9991 + }, + { + "start": 2587.56, + "end": 2589.72, + "probability": 0.9928 + }, + { + "start": 2591.78, + "end": 2593.16, + "probability": 0.7844 + }, + { + "start": 2595.52, + "end": 2597.12, + "probability": 0.9956 + }, + { + "start": 2599.64, + "end": 2601.68, + "probability": 0.6905 + }, + { + "start": 2603.56, + "end": 2605.34, + "probability": 0.9996 + }, + { + "start": 2606.34, + "end": 2609.2, + "probability": 0.9873 + }, + { + "start": 2612.0, + "end": 2615.44, + "probability": 0.9594 + }, + { + "start": 2616.26, + "end": 2620.72, + "probability": 0.9907 + }, + { + "start": 2622.14, + "end": 2625.21, + "probability": 0.8892 + }, + { + "start": 2626.78, + "end": 2628.26, + "probability": 0.6049 + }, + { + "start": 2630.0, + "end": 2636.26, + "probability": 0.9678 + }, + { + "start": 2637.36, + "end": 2638.76, + "probability": 0.9824 + }, + { + "start": 2640.06, + "end": 2642.24, + "probability": 0.999 + }, + { + "start": 2644.1, + "end": 2646.56, + "probability": 0.7787 + }, + { + "start": 2646.56, + "end": 2649.56, + "probability": 0.9483 + }, + { + "start": 2650.88, + "end": 2652.42, + "probability": 0.9894 + }, + { + "start": 2654.04, + "end": 2659.38, + "probability": 0.9871 + }, + { + "start": 2661.6, + "end": 2665.54, + "probability": 0.9033 + }, + { + "start": 2666.1, + "end": 2667.12, + "probability": 0.8828 + }, + { + "start": 2667.8, + "end": 2669.24, + "probability": 0.8682 + }, + { + "start": 2670.72, + "end": 2674.44, + "probability": 0.9917 + }, + { + "start": 2674.44, + "end": 2678.72, + "probability": 0.9496 + }, + { + "start": 2680.94, + "end": 2684.18, + "probability": 0.4739 + }, + { + "start": 2684.28, + "end": 2687.34, + "probability": 0.7752 + }, + { + "start": 2687.44, + "end": 2689.0, + "probability": 0.9303 + }, + { + "start": 2691.72, + "end": 2698.56, + "probability": 0.9587 + }, + { + "start": 2699.78, + "end": 2703.2, + "probability": 0.9902 + }, + { + "start": 2704.5, + "end": 2708.86, + "probability": 0.9897 + }, + { + "start": 2709.64, + "end": 2714.84, + "probability": 0.9844 + }, + { + "start": 2715.32, + "end": 2717.62, + "probability": 0.9995 + }, + { + "start": 2717.7, + "end": 2718.5, + "probability": 0.8374 + }, + { + "start": 2719.16, + "end": 2722.28, + "probability": 0.7209 + }, + { + "start": 2723.02, + "end": 2727.58, + "probability": 0.9907 + }, + { + "start": 2729.62, + "end": 2731.28, + "probability": 0.9323 + }, + { + "start": 2732.92, + "end": 2734.5, + "probability": 0.9563 + }, + { + "start": 2737.56, + "end": 2741.2, + "probability": 0.9937 + }, + { + "start": 2742.8, + "end": 2745.38, + "probability": 0.957 + }, + { + "start": 2746.54, + "end": 2749.4, + "probability": 0.9997 + }, + { + "start": 2751.7, + "end": 2754.46, + "probability": 0.6663 + }, + { + "start": 2756.7, + "end": 2758.68, + "probability": 0.9418 + }, + { + "start": 2758.86, + "end": 2761.6, + "probability": 0.9961 + }, + { + "start": 2762.84, + "end": 2767.86, + "probability": 0.98 + }, + { + "start": 2769.86, + "end": 2772.68, + "probability": 0.8722 + }, + { + "start": 2775.14, + "end": 2775.96, + "probability": 0.8771 + }, + { + "start": 2776.9, + "end": 2778.64, + "probability": 0.9097 + }, + { + "start": 2779.8, + "end": 2783.08, + "probability": 0.7346 + }, + { + "start": 2785.62, + "end": 2786.92, + "probability": 0.782 + }, + { + "start": 2791.1, + "end": 2792.12, + "probability": 0.7555 + }, + { + "start": 2794.14, + "end": 2796.5, + "probability": 0.9535 + }, + { + "start": 2798.46, + "end": 2801.46, + "probability": 0.9014 + }, + { + "start": 2803.54, + "end": 2806.22, + "probability": 0.9006 + }, + { + "start": 2808.25, + "end": 2812.15, + "probability": 0.9796 + }, + { + "start": 2817.28, + "end": 2819.38, + "probability": 0.6338 + }, + { + "start": 2820.22, + "end": 2823.11, + "probability": 0.918 + }, + { + "start": 2826.02, + "end": 2827.52, + "probability": 0.6282 + }, + { + "start": 2827.64, + "end": 2830.22, + "probability": 0.7842 + }, + { + "start": 2831.58, + "end": 2833.7, + "probability": 0.9595 + }, + { + "start": 2835.34, + "end": 2838.04, + "probability": 0.8223 + }, + { + "start": 2838.98, + "end": 2842.66, + "probability": 0.9868 + }, + { + "start": 2843.26, + "end": 2845.58, + "probability": 0.9279 + }, + { + "start": 2846.9, + "end": 2849.5, + "probability": 0.9426 + }, + { + "start": 2850.6, + "end": 2853.54, + "probability": 0.8869 + }, + { + "start": 2854.72, + "end": 2856.24, + "probability": 0.9963 + }, + { + "start": 2857.2, + "end": 2858.98, + "probability": 0.9798 + }, + { + "start": 2860.06, + "end": 2862.64, + "probability": 0.9422 + }, + { + "start": 2863.12, + "end": 2864.08, + "probability": 0.9858 + }, + { + "start": 2865.48, + "end": 2866.6, + "probability": 0.9614 + }, + { + "start": 2867.6, + "end": 2869.74, + "probability": 0.9309 + }, + { + "start": 2870.16, + "end": 2872.9, + "probability": 0.9619 + }, + { + "start": 2875.32, + "end": 2877.84, + "probability": 0.9973 + }, + { + "start": 2878.44, + "end": 2879.94, + "probability": 0.8627 + }, + { + "start": 2880.08, + "end": 2881.04, + "probability": 0.8816 + }, + { + "start": 2881.4, + "end": 2885.2, + "probability": 0.9438 + }, + { + "start": 2886.5, + "end": 2891.52, + "probability": 0.9148 + }, + { + "start": 2895.16, + "end": 2895.91, + "probability": 0.9183 + }, + { + "start": 2898.36, + "end": 2900.38, + "probability": 0.6382 + }, + { + "start": 2901.74, + "end": 2902.72, + "probability": 0.8878 + }, + { + "start": 2902.78, + "end": 2903.74, + "probability": 0.905 + }, + { + "start": 2904.18, + "end": 2905.08, + "probability": 0.8839 + }, + { + "start": 2905.1, + "end": 2906.04, + "probability": 0.9995 + }, + { + "start": 2907.46, + "end": 2908.52, + "probability": 0.9838 + }, + { + "start": 2910.98, + "end": 2918.52, + "probability": 0.9209 + }, + { + "start": 2918.62, + "end": 2920.38, + "probability": 0.8922 + }, + { + "start": 2922.3, + "end": 2925.22, + "probability": 0.9803 + }, + { + "start": 2926.66, + "end": 2930.74, + "probability": 0.9708 + }, + { + "start": 2932.2, + "end": 2934.6, + "probability": 0.9973 + }, + { + "start": 2934.82, + "end": 2936.82, + "probability": 0.9826 + }, + { + "start": 2937.44, + "end": 2939.74, + "probability": 0.9572 + }, + { + "start": 2940.88, + "end": 2945.06, + "probability": 0.8733 + }, + { + "start": 2946.72, + "end": 2951.26, + "probability": 0.9315 + }, + { + "start": 2952.68, + "end": 2952.68, + "probability": 0.959 + }, + { + "start": 2955.08, + "end": 2956.48, + "probability": 0.9956 + }, + { + "start": 2958.24, + "end": 2960.74, + "probability": 0.9763 + }, + { + "start": 2961.32, + "end": 2962.3, + "probability": 0.8012 + }, + { + "start": 2963.58, + "end": 2965.7, + "probability": 0.9561 + }, + { + "start": 2967.7, + "end": 2967.98, + "probability": 0.722 + }, + { + "start": 2968.08, + "end": 2969.7, + "probability": 0.5895 + }, + { + "start": 2969.78, + "end": 2972.62, + "probability": 0.81 + }, + { + "start": 2973.94, + "end": 2976.34, + "probability": 0.8462 + }, + { + "start": 2976.88, + "end": 2978.26, + "probability": 0.9681 + }, + { + "start": 2980.16, + "end": 2983.46, + "probability": 0.9641 + }, + { + "start": 2986.72, + "end": 2988.94, + "probability": 0.9778 + }, + { + "start": 2990.8, + "end": 2993.14, + "probability": 0.8301 + }, + { + "start": 2993.9, + "end": 2996.36, + "probability": 0.993 + }, + { + "start": 2996.46, + "end": 2999.16, + "probability": 0.8855 + }, + { + "start": 2999.22, + "end": 3003.62, + "probability": 0.998 + }, + { + "start": 3004.36, + "end": 3007.38, + "probability": 0.8912 + }, + { + "start": 3008.22, + "end": 3010.96, + "probability": 0.9805 + }, + { + "start": 3012.02, + "end": 3013.12, + "probability": 0.9976 + }, + { + "start": 3013.72, + "end": 3015.04, + "probability": 0.7465 + }, + { + "start": 3015.08, + "end": 3018.4, + "probability": 0.9982 + }, + { + "start": 3020.82, + "end": 3025.3, + "probability": 0.7543 + }, + { + "start": 3025.92, + "end": 3026.98, + "probability": 0.8339 + }, + { + "start": 3027.86, + "end": 3031.64, + "probability": 0.8756 + }, + { + "start": 3032.5, + "end": 3036.36, + "probability": 0.9757 + }, + { + "start": 3036.88, + "end": 3039.08, + "probability": 0.9319 + }, + { + "start": 3039.86, + "end": 3041.02, + "probability": 0.8529 + }, + { + "start": 3042.28, + "end": 3043.34, + "probability": 0.8164 + }, + { + "start": 3044.52, + "end": 3045.36, + "probability": 0.9622 + }, + { + "start": 3046.42, + "end": 3047.2, + "probability": 0.9964 + }, + { + "start": 3048.1, + "end": 3049.56, + "probability": 0.9229 + }, + { + "start": 3050.56, + "end": 3052.64, + "probability": 0.9974 + }, + { + "start": 3053.62, + "end": 3054.94, + "probability": 0.9547 + }, + { + "start": 3054.98, + "end": 3057.24, + "probability": 0.9612 + }, + { + "start": 3057.3, + "end": 3059.12, + "probability": 0.9678 + }, + { + "start": 3060.02, + "end": 3061.7, + "probability": 0.7708 + }, + { + "start": 3062.46, + "end": 3065.16, + "probability": 0.9843 + }, + { + "start": 3065.72, + "end": 3069.08, + "probability": 0.8683 + }, + { + "start": 3069.38, + "end": 3070.38, + "probability": 0.981 + }, + { + "start": 3072.16, + "end": 3073.44, + "probability": 0.9859 + }, + { + "start": 3074.0, + "end": 3075.38, + "probability": 0.7222 + }, + { + "start": 3075.48, + "end": 3075.58, + "probability": 0.0478 + }, + { + "start": 3075.86, + "end": 3076.98, + "probability": 0.9444 + }, + { + "start": 3077.04, + "end": 3078.46, + "probability": 0.9561 + }, + { + "start": 3078.52, + "end": 3080.29, + "probability": 0.9878 + }, + { + "start": 3080.5, + "end": 3081.38, + "probability": 0.9233 + }, + { + "start": 3081.86, + "end": 3084.7, + "probability": 0.974 + }, + { + "start": 3086.58, + "end": 3086.72, + "probability": 0.054 + }, + { + "start": 3086.72, + "end": 3087.52, + "probability": 0.9873 + }, + { + "start": 3088.52, + "end": 3089.28, + "probability": 0.6035 + }, + { + "start": 3092.06, + "end": 3093.34, + "probability": 0.851 + }, + { + "start": 3094.44, + "end": 3096.36, + "probability": 0.9662 + }, + { + "start": 3096.74, + "end": 3098.26, + "probability": 0.99 + }, + { + "start": 3099.28, + "end": 3104.62, + "probability": 0.995 + }, + { + "start": 3105.48, + "end": 3109.1, + "probability": 0.9976 + }, + { + "start": 3109.66, + "end": 3111.54, + "probability": 0.6615 + }, + { + "start": 3112.18, + "end": 3113.44, + "probability": 0.7604 + }, + { + "start": 3113.98, + "end": 3114.58, + "probability": 0.9012 + }, + { + "start": 3116.0, + "end": 3119.74, + "probability": 0.9699 + }, + { + "start": 3120.46, + "end": 3122.78, + "probability": 0.9866 + }, + { + "start": 3122.84, + "end": 3123.78, + "probability": 0.8922 + }, + { + "start": 3123.88, + "end": 3124.9, + "probability": 0.9361 + }, + { + "start": 3125.74, + "end": 3125.84, + "probability": 0.5833 + }, + { + "start": 3126.9, + "end": 3130.54, + "probability": 0.9447 + }, + { + "start": 3131.26, + "end": 3134.56, + "probability": 0.9812 + }, + { + "start": 3135.9, + "end": 3139.74, + "probability": 0.9874 + }, + { + "start": 3140.7, + "end": 3143.08, + "probability": 0.9876 + }, + { + "start": 3144.18, + "end": 3146.62, + "probability": 0.8862 + }, + { + "start": 3146.66, + "end": 3148.22, + "probability": 0.9922 + }, + { + "start": 3149.04, + "end": 3150.24, + "probability": 0.998 + }, + { + "start": 3151.5, + "end": 3153.9, + "probability": 0.8799 + }, + { + "start": 3155.3, + "end": 3156.08, + "probability": 0.3637 + }, + { + "start": 3156.34, + "end": 3157.06, + "probability": 0.8309 + }, + { + "start": 3157.4, + "end": 3158.24, + "probability": 0.8377 + }, + { + "start": 3158.74, + "end": 3159.6, + "probability": 0.9514 + }, + { + "start": 3159.72, + "end": 3160.8, + "probability": 0.9051 + }, + { + "start": 3162.28, + "end": 3163.43, + "probability": 0.9657 + }, + { + "start": 3164.56, + "end": 3168.24, + "probability": 0.9858 + }, + { + "start": 3169.34, + "end": 3171.6, + "probability": 0.9758 + }, + { + "start": 3172.54, + "end": 3174.06, + "probability": 0.9679 + }, + { + "start": 3174.88, + "end": 3176.84, + "probability": 0.9971 + }, + { + "start": 3177.2, + "end": 3179.22, + "probability": 0.9966 + }, + { + "start": 3179.64, + "end": 3180.98, + "probability": 0.9848 + }, + { + "start": 3181.02, + "end": 3182.8, + "probability": 0.9933 + }, + { + "start": 3183.96, + "end": 3187.08, + "probability": 0.9903 + }, + { + "start": 3187.08, + "end": 3190.24, + "probability": 0.9993 + }, + { + "start": 3190.68, + "end": 3191.32, + "probability": 0.6332 + }, + { + "start": 3191.38, + "end": 3193.42, + "probability": 0.9941 + }, + { + "start": 3193.94, + "end": 3196.74, + "probability": 0.9899 + }, + { + "start": 3197.44, + "end": 3198.02, + "probability": 0.7889 + }, + { + "start": 3199.2, + "end": 3201.0, + "probability": 0.5533 + }, + { + "start": 3201.64, + "end": 3202.98, + "probability": 0.954 + }, + { + "start": 3203.62, + "end": 3204.12, + "probability": 0.8804 + }, + { + "start": 3223.3, + "end": 3225.22, + "probability": 0.6374 + }, + { + "start": 3225.22, + "end": 3225.32, + "probability": 0.6241 + }, + { + "start": 3227.42, + "end": 3230.34, + "probability": 0.9691 + }, + { + "start": 3230.5, + "end": 3231.2, + "probability": 0.6539 + }, + { + "start": 3232.12, + "end": 3233.98, + "probability": 0.9805 + }, + { + "start": 3234.04, + "end": 3234.98, + "probability": 0.9843 + }, + { + "start": 3235.26, + "end": 3236.14, + "probability": 0.4663 + }, + { + "start": 3236.42, + "end": 3239.78, + "probability": 0.7522 + }, + { + "start": 3239.78, + "end": 3244.22, + "probability": 0.9884 + }, + { + "start": 3244.62, + "end": 3245.22, + "probability": 0.5696 + }, + { + "start": 3245.84, + "end": 3246.76, + "probability": 0.8367 + }, + { + "start": 3248.38, + "end": 3250.1, + "probability": 0.9072 + }, + { + "start": 3251.58, + "end": 3256.58, + "probability": 0.9865 + }, + { + "start": 3257.98, + "end": 3262.66, + "probability": 0.9976 + }, + { + "start": 3263.92, + "end": 3266.2, + "probability": 0.9545 + }, + { + "start": 3267.64, + "end": 3270.42, + "probability": 0.9652 + }, + { + "start": 3271.24, + "end": 3272.62, + "probability": 0.9989 + }, + { + "start": 3274.02, + "end": 3280.42, + "probability": 0.9924 + }, + { + "start": 3281.6, + "end": 3286.5, + "probability": 0.9668 + }, + { + "start": 3287.68, + "end": 3292.82, + "probability": 0.9027 + }, + { + "start": 3293.6, + "end": 3294.12, + "probability": 0.4252 + }, + { + "start": 3294.82, + "end": 3298.0, + "probability": 0.9438 + }, + { + "start": 3299.44, + "end": 3304.5, + "probability": 0.9426 + }, + { + "start": 3305.16, + "end": 3309.38, + "probability": 0.9367 + }, + { + "start": 3309.38, + "end": 3312.36, + "probability": 0.94 + }, + { + "start": 3313.74, + "end": 3316.4, + "probability": 0.9679 + }, + { + "start": 3317.28, + "end": 3318.52, + "probability": 0.9721 + }, + { + "start": 3319.54, + "end": 3322.72, + "probability": 0.9654 + }, + { + "start": 3323.22, + "end": 3325.36, + "probability": 0.9799 + }, + { + "start": 3326.54, + "end": 3329.9, + "probability": 0.9479 + }, + { + "start": 3330.62, + "end": 3336.24, + "probability": 0.9628 + }, + { + "start": 3337.1, + "end": 3340.34, + "probability": 0.9718 + }, + { + "start": 3342.08, + "end": 3344.7, + "probability": 0.9604 + }, + { + "start": 3345.5, + "end": 3348.76, + "probability": 0.9688 + }, + { + "start": 3349.86, + "end": 3353.1, + "probability": 0.9929 + }, + { + "start": 3354.02, + "end": 3354.84, + "probability": 0.8373 + }, + { + "start": 3355.62, + "end": 3359.04, + "probability": 0.9319 + }, + { + "start": 3360.36, + "end": 3362.32, + "probability": 0.8292 + }, + { + "start": 3363.16, + "end": 3366.9, + "probability": 0.9617 + }, + { + "start": 3367.2, + "end": 3367.9, + "probability": 0.7774 + }, + { + "start": 3368.36, + "end": 3369.96, + "probability": 0.9111 + }, + { + "start": 3370.44, + "end": 3374.6, + "probability": 0.9785 + }, + { + "start": 3376.12, + "end": 3378.38, + "probability": 0.6107 + }, + { + "start": 3379.22, + "end": 3382.04, + "probability": 0.9337 + }, + { + "start": 3382.58, + "end": 3384.1, + "probability": 0.8525 + }, + { + "start": 3384.66, + "end": 3388.44, + "probability": 0.932 + }, + { + "start": 3389.66, + "end": 3393.28, + "probability": 0.9924 + }, + { + "start": 3394.62, + "end": 3399.84, + "probability": 0.9963 + }, + { + "start": 3399.84, + "end": 3405.06, + "probability": 0.976 + }, + { + "start": 3405.5, + "end": 3407.2, + "probability": 0.8074 + }, + { + "start": 3407.76, + "end": 3410.1, + "probability": 0.8034 + }, + { + "start": 3410.98, + "end": 3416.62, + "probability": 0.9834 + }, + { + "start": 3417.3, + "end": 3422.94, + "probability": 0.9966 + }, + { + "start": 3423.98, + "end": 3428.58, + "probability": 0.8981 + }, + { + "start": 3429.56, + "end": 3434.8, + "probability": 0.7716 + }, + { + "start": 3436.06, + "end": 3439.24, + "probability": 0.8329 + }, + { + "start": 3440.26, + "end": 3443.7, + "probability": 0.9717 + }, + { + "start": 3444.62, + "end": 3445.34, + "probability": 0.8805 + }, + { + "start": 3446.44, + "end": 3448.14, + "probability": 0.8653 + }, + { + "start": 3448.96, + "end": 3450.6, + "probability": 0.8167 + }, + { + "start": 3451.42, + "end": 3453.3, + "probability": 0.785 + }, + { + "start": 3454.48, + "end": 3457.1, + "probability": 0.9956 + }, + { + "start": 3458.1, + "end": 3459.38, + "probability": 0.9764 + }, + { + "start": 3460.14, + "end": 3462.0, + "probability": 0.9804 + }, + { + "start": 3462.86, + "end": 3466.06, + "probability": 0.8441 + }, + { + "start": 3467.04, + "end": 3472.08, + "probability": 0.9541 + }, + { + "start": 3472.36, + "end": 3477.24, + "probability": 0.9744 + }, + { + "start": 3478.78, + "end": 3480.54, + "probability": 0.7889 + }, + { + "start": 3481.42, + "end": 3486.58, + "probability": 0.9814 + }, + { + "start": 3488.06, + "end": 3490.68, + "probability": 0.9722 + }, + { + "start": 3491.54, + "end": 3498.96, + "probability": 0.9973 + }, + { + "start": 3500.54, + "end": 3501.54, + "probability": 0.8302 + }, + { + "start": 3502.76, + "end": 3505.02, + "probability": 0.9581 + }, + { + "start": 3505.8, + "end": 3507.8, + "probability": 0.8371 + }, + { + "start": 3508.76, + "end": 3512.36, + "probability": 0.9923 + }, + { + "start": 3514.48, + "end": 3516.24, + "probability": 0.9731 + }, + { + "start": 3517.38, + "end": 3518.18, + "probability": 0.9357 + }, + { + "start": 3518.9, + "end": 3523.1, + "probability": 0.9561 + }, + { + "start": 3524.24, + "end": 3527.12, + "probability": 0.9951 + }, + { + "start": 3528.14, + "end": 3530.62, + "probability": 0.9345 + }, + { + "start": 3531.28, + "end": 3532.16, + "probability": 0.9501 + }, + { + "start": 3533.36, + "end": 3540.5, + "probability": 0.9466 + }, + { + "start": 3541.34, + "end": 3542.64, + "probability": 0.7573 + }, + { + "start": 3543.12, + "end": 3543.74, + "probability": 0.88 + }, + { + "start": 3545.56, + "end": 3547.96, + "probability": 0.7386 + }, + { + "start": 3548.32, + "end": 3550.78, + "probability": 0.96 + }, + { + "start": 3567.06, + "end": 3569.56, + "probability": 0.7563 + }, + { + "start": 3570.84, + "end": 3572.16, + "probability": 0.8257 + }, + { + "start": 3573.18, + "end": 3573.9, + "probability": 0.526 + }, + { + "start": 3576.68, + "end": 3578.22, + "probability": 0.9964 + }, + { + "start": 3578.88, + "end": 3581.42, + "probability": 0.9996 + }, + { + "start": 3583.0, + "end": 3584.88, + "probability": 0.9995 + }, + { + "start": 3586.4, + "end": 3589.48, + "probability": 0.9987 + }, + { + "start": 3590.76, + "end": 3598.42, + "probability": 0.9987 + }, + { + "start": 3600.56, + "end": 3601.26, + "probability": 0.9984 + }, + { + "start": 3601.98, + "end": 3603.14, + "probability": 0.988 + }, + { + "start": 3605.14, + "end": 3605.8, + "probability": 0.9854 + }, + { + "start": 3606.96, + "end": 3608.92, + "probability": 0.937 + }, + { + "start": 3611.0, + "end": 3614.08, + "probability": 0.9844 + }, + { + "start": 3615.08, + "end": 3617.82, + "probability": 0.967 + }, + { + "start": 3620.36, + "end": 3621.82, + "probability": 0.9982 + }, + { + "start": 3622.48, + "end": 3624.46, + "probability": 0.9773 + }, + { + "start": 3625.26, + "end": 3626.72, + "probability": 0.995 + }, + { + "start": 3628.74, + "end": 3630.08, + "probability": 0.9915 + }, + { + "start": 3631.1, + "end": 3632.04, + "probability": 0.9966 + }, + { + "start": 3633.22, + "end": 3635.78, + "probability": 0.9065 + }, + { + "start": 3636.94, + "end": 3640.64, + "probability": 0.989 + }, + { + "start": 3642.58, + "end": 3643.26, + "probability": 0.9604 + }, + { + "start": 3643.9, + "end": 3647.06, + "probability": 0.8515 + }, + { + "start": 3649.22, + "end": 3652.72, + "probability": 0.8631 + }, + { + "start": 3652.88, + "end": 3653.84, + "probability": 0.6813 + }, + { + "start": 3654.42, + "end": 3655.24, + "probability": 0.819 + }, + { + "start": 3656.04, + "end": 3659.82, + "probability": 0.9707 + }, + { + "start": 3660.78, + "end": 3662.86, + "probability": 0.9458 + }, + { + "start": 3663.12, + "end": 3663.47, + "probability": 0.5159 + }, + { + "start": 3664.0, + "end": 3664.54, + "probability": 0.7352 + }, + { + "start": 3664.62, + "end": 3665.64, + "probability": 0.9772 + }, + { + "start": 3666.16, + "end": 3666.98, + "probability": 0.9339 + }, + { + "start": 3668.1, + "end": 3671.88, + "probability": 0.9952 + }, + { + "start": 3672.06, + "end": 3673.82, + "probability": 0.9185 + }, + { + "start": 3674.7, + "end": 3677.16, + "probability": 0.9991 + }, + { + "start": 3678.1, + "end": 3680.58, + "probability": 0.9761 + }, + { + "start": 3680.68, + "end": 3682.32, + "probability": 0.9823 + }, + { + "start": 3682.52, + "end": 3684.38, + "probability": 0.5212 + }, + { + "start": 3684.92, + "end": 3687.12, + "probability": 0.9956 + }, + { + "start": 3687.7, + "end": 3689.2, + "probability": 0.8844 + }, + { + "start": 3689.5, + "end": 3692.14, + "probability": 0.9966 + }, + { + "start": 3693.0, + "end": 3694.78, + "probability": 0.5152 + }, + { + "start": 3695.94, + "end": 3697.26, + "probability": 0.8436 + }, + { + "start": 3697.68, + "end": 3700.18, + "probability": 0.9868 + }, + { + "start": 3700.18, + "end": 3703.72, + "probability": 0.9983 + }, + { + "start": 3704.92, + "end": 3705.34, + "probability": 0.9495 + }, + { + "start": 3706.02, + "end": 3707.6, + "probability": 0.7344 + }, + { + "start": 3708.46, + "end": 3709.22, + "probability": 0.8007 + }, + { + "start": 3709.76, + "end": 3710.5, + "probability": 0.9449 + }, + { + "start": 3710.78, + "end": 3711.58, + "probability": 0.9784 + }, + { + "start": 3711.68, + "end": 3713.36, + "probability": 0.9186 + }, + { + "start": 3714.4, + "end": 3717.56, + "probability": 0.8507 + }, + { + "start": 3718.08, + "end": 3719.04, + "probability": 0.8696 + }, + { + "start": 3719.46, + "end": 3720.1, + "probability": 0.7098 + }, + { + "start": 3720.2, + "end": 3723.82, + "probability": 0.9614 + }, + { + "start": 3724.56, + "end": 3725.04, + "probability": 0.8146 + }, + { + "start": 3726.31, + "end": 3728.6, + "probability": 0.9884 + }, + { + "start": 3733.36, + "end": 3740.28, + "probability": 0.9856 + }, + { + "start": 3741.54, + "end": 3743.24, + "probability": 0.793 + }, + { + "start": 3743.96, + "end": 3747.4, + "probability": 0.9422 + }, + { + "start": 3749.4, + "end": 3751.16, + "probability": 0.4717 + }, + { + "start": 3752.18, + "end": 3753.18, + "probability": 0.5096 + }, + { + "start": 3753.3, + "end": 3756.3, + "probability": 0.9985 + }, + { + "start": 3756.3, + "end": 3760.18, + "probability": 0.9994 + }, + { + "start": 3760.32, + "end": 3763.4, + "probability": 0.8785 + }, + { + "start": 3764.94, + "end": 3767.74, + "probability": 0.9983 + }, + { + "start": 3768.28, + "end": 3770.62, + "probability": 0.7931 + }, + { + "start": 3771.84, + "end": 3773.08, + "probability": 0.9819 + }, + { + "start": 3773.86, + "end": 3775.4, + "probability": 0.8999 + }, + { + "start": 3777.26, + "end": 3778.24, + "probability": 0.8813 + }, + { + "start": 3779.44, + "end": 3780.28, + "probability": 0.5599 + }, + { + "start": 3782.1, + "end": 3785.54, + "probability": 0.5097 + }, + { + "start": 3786.82, + "end": 3793.08, + "probability": 0.8956 + }, + { + "start": 3794.54, + "end": 3795.24, + "probability": 0.9979 + }, + { + "start": 3795.92, + "end": 3798.04, + "probability": 0.9945 + }, + { + "start": 3802.6, + "end": 3810.38, + "probability": 0.9995 + }, + { + "start": 3811.64, + "end": 3813.06, + "probability": 0.9985 + }, + { + "start": 3813.9, + "end": 3814.41, + "probability": 0.6565 + }, + { + "start": 3815.3, + "end": 3815.72, + "probability": 0.9507 + }, + { + "start": 3818.16, + "end": 3819.24, + "probability": 0.5122 + }, + { + "start": 3820.12, + "end": 3824.14, + "probability": 0.9985 + }, + { + "start": 3825.44, + "end": 3828.38, + "probability": 0.7631 + }, + { + "start": 3828.52, + "end": 3833.88, + "probability": 0.9971 + }, + { + "start": 3834.49, + "end": 3840.46, + "probability": 0.9993 + }, + { + "start": 3841.04, + "end": 3843.36, + "probability": 0.9783 + }, + { + "start": 3844.34, + "end": 3845.13, + "probability": 0.8226 + }, + { + "start": 3846.68, + "end": 3848.54, + "probability": 0.9976 + }, + { + "start": 3849.6, + "end": 3855.32, + "probability": 0.9951 + }, + { + "start": 3855.94, + "end": 3860.36, + "probability": 0.9717 + }, + { + "start": 3862.58, + "end": 3867.3, + "probability": 0.988 + }, + { + "start": 3869.0, + "end": 3869.58, + "probability": 0.3488 + }, + { + "start": 3869.82, + "end": 3874.42, + "probability": 0.989 + }, + { + "start": 3874.5, + "end": 3876.84, + "probability": 0.9243 + }, + { + "start": 3877.5, + "end": 3879.17, + "probability": 0.9619 + }, + { + "start": 3880.0, + "end": 3882.94, + "probability": 0.9689 + }, + { + "start": 3883.46, + "end": 3885.02, + "probability": 0.715 + }, + { + "start": 3887.04, + "end": 3889.56, + "probability": 0.9972 + }, + { + "start": 3889.82, + "end": 3891.62, + "probability": 0.8812 + }, + { + "start": 3891.94, + "end": 3894.12, + "probability": 0.9733 + }, + { + "start": 3894.5, + "end": 3896.5, + "probability": 0.945 + }, + { + "start": 3898.1, + "end": 3900.14, + "probability": 0.9378 + }, + { + "start": 3901.12, + "end": 3905.38, + "probability": 0.9958 + }, + { + "start": 3906.3, + "end": 3909.46, + "probability": 0.9985 + }, + { + "start": 3909.88, + "end": 3911.24, + "probability": 0.9967 + }, + { + "start": 3912.6, + "end": 3913.4, + "probability": 0.8589 + }, + { + "start": 3915.26, + "end": 3918.34, + "probability": 0.9469 + }, + { + "start": 3918.38, + "end": 3920.3, + "probability": 0.6725 + }, + { + "start": 3921.66, + "end": 3925.18, + "probability": 0.9899 + }, + { + "start": 3925.3, + "end": 3927.88, + "probability": 0.9888 + }, + { + "start": 3928.46, + "end": 3930.3, + "probability": 0.9937 + }, + { + "start": 3930.92, + "end": 3932.9, + "probability": 0.9932 + }, + { + "start": 3934.18, + "end": 3934.78, + "probability": 0.4841 + }, + { + "start": 3935.04, + "end": 3938.36, + "probability": 0.9761 + }, + { + "start": 3939.74, + "end": 3942.1, + "probability": 0.9869 + }, + { + "start": 3942.88, + "end": 3944.54, + "probability": 0.8096 + }, + { + "start": 3944.62, + "end": 3945.64, + "probability": 0.9918 + }, + { + "start": 3945.8, + "end": 3946.8, + "probability": 0.8177 + }, + { + "start": 3947.5, + "end": 3950.38, + "probability": 0.9775 + }, + { + "start": 3950.56, + "end": 3952.44, + "probability": 0.822 + }, + { + "start": 3953.06, + "end": 3954.3, + "probability": 0.9376 + }, + { + "start": 3954.92, + "end": 3956.48, + "probability": 0.9933 + }, + { + "start": 3956.82, + "end": 3960.64, + "probability": 0.9454 + }, + { + "start": 3960.64, + "end": 3961.66, + "probability": 0.2946 + }, + { + "start": 3962.06, + "end": 3962.4, + "probability": 0.2557 + }, + { + "start": 3963.02, + "end": 3965.2, + "probability": 0.961 + }, + { + "start": 3966.02, + "end": 3967.54, + "probability": 0.998 + }, + { + "start": 3967.68, + "end": 3969.3, + "probability": 0.9872 + }, + { + "start": 3970.22, + "end": 3974.28, + "probability": 0.9984 + }, + { + "start": 3975.22, + "end": 3979.52, + "probability": 0.9932 + }, + { + "start": 3981.54, + "end": 3983.87, + "probability": 0.9763 + }, + { + "start": 3984.0, + "end": 3986.36, + "probability": 0.46 + }, + { + "start": 3986.36, + "end": 3986.98, + "probability": 0.7821 + }, + { + "start": 3987.44, + "end": 3989.96, + "probability": 0.9971 + }, + { + "start": 3989.98, + "end": 3991.21, + "probability": 0.9976 + }, + { + "start": 3991.66, + "end": 3992.62, + "probability": 0.9941 + }, + { + "start": 3994.94, + "end": 3995.75, + "probability": 0.7896 + }, + { + "start": 3996.26, + "end": 3997.04, + "probability": 0.9714 + }, + { + "start": 3998.26, + "end": 4000.84, + "probability": 0.9605 + }, + { + "start": 4001.06, + "end": 4002.15, + "probability": 0.9368 + }, + { + "start": 4002.48, + "end": 4004.3, + "probability": 0.8903 + }, + { + "start": 4005.76, + "end": 4009.44, + "probability": 0.9874 + }, + { + "start": 4011.74, + "end": 4016.68, + "probability": 0.9884 + }, + { + "start": 4017.76, + "end": 4018.35, + "probability": 0.8301 + }, + { + "start": 4021.0, + "end": 4021.4, + "probability": 0.7481 + }, + { + "start": 4022.98, + "end": 4023.56, + "probability": 0.4345 + }, + { + "start": 4024.36, + "end": 4026.82, + "probability": 0.9716 + }, + { + "start": 4026.96, + "end": 4029.2, + "probability": 0.722 + }, + { + "start": 4029.72, + "end": 4033.32, + "probability": 0.9382 + }, + { + "start": 4034.76, + "end": 4037.76, + "probability": 0.8196 + }, + { + "start": 4037.84, + "end": 4039.88, + "probability": 0.9803 + }, + { + "start": 4039.96, + "end": 4041.06, + "probability": 0.8724 + }, + { + "start": 4041.08, + "end": 4042.12, + "probability": 0.9557 + }, + { + "start": 4042.88, + "end": 4043.3, + "probability": 0.9648 + }, + { + "start": 4045.24, + "end": 4046.2, + "probability": 0.8133 + }, + { + "start": 4046.76, + "end": 4047.22, + "probability": 0.8398 + }, + { + "start": 4048.1, + "end": 4049.92, + "probability": 0.9902 + }, + { + "start": 4051.67, + "end": 4055.38, + "probability": 0.7233 + }, + { + "start": 4056.1, + "end": 4060.94, + "probability": 0.9945 + }, + { + "start": 4061.8, + "end": 4065.16, + "probability": 0.9983 + }, + { + "start": 4067.38, + "end": 4069.22, + "probability": 0.9922 + }, + { + "start": 4069.94, + "end": 4071.66, + "probability": 0.999 + }, + { + "start": 4072.16, + "end": 4076.36, + "probability": 0.9451 + }, + { + "start": 4076.92, + "end": 4078.0, + "probability": 0.9666 + }, + { + "start": 4078.46, + "end": 4079.25, + "probability": 0.2383 + }, + { + "start": 4079.72, + "end": 4080.77, + "probability": 0.9968 + }, + { + "start": 4082.32, + "end": 4084.24, + "probability": 0.9882 + }, + { + "start": 4084.52, + "end": 4088.66, + "probability": 0.9974 + }, + { + "start": 4089.16, + "end": 4091.46, + "probability": 0.9976 + }, + { + "start": 4092.12, + "end": 4093.02, + "probability": 0.6726 + }, + { + "start": 4093.54, + "end": 4097.2, + "probability": 0.9958 + }, + { + "start": 4101.74, + "end": 4102.26, + "probability": 0.799 + }, + { + "start": 4103.26, + "end": 4104.26, + "probability": 0.606 + }, + { + "start": 4105.92, + "end": 4107.36, + "probability": 0.3809 + }, + { + "start": 4107.76, + "end": 4109.82, + "probability": 0.9978 + }, + { + "start": 4109.84, + "end": 4110.44, + "probability": 0.8597 + }, + { + "start": 4110.58, + "end": 4110.72, + "probability": 0.7559 + }, + { + "start": 4110.84, + "end": 4111.16, + "probability": 0.8021 + }, + { + "start": 4111.22, + "end": 4112.08, + "probability": 0.9048 + }, + { + "start": 4112.14, + "end": 4114.62, + "probability": 0.9784 + }, + { + "start": 4114.66, + "end": 4117.5, + "probability": 0.9861 + }, + { + "start": 4119.82, + "end": 4120.46, + "probability": 0.4532 + }, + { + "start": 4120.62, + "end": 4120.62, + "probability": 0.3773 + }, + { + "start": 4120.72, + "end": 4123.4, + "probability": 0.9771 + }, + { + "start": 4123.62, + "end": 4124.12, + "probability": 0.9351 + }, + { + "start": 4124.72, + "end": 4126.38, + "probability": 0.8931 + }, + { + "start": 4127.42, + "end": 4130.02, + "probability": 0.938 + }, + { + "start": 4164.46, + "end": 4165.56, + "probability": 0.7423 + }, + { + "start": 4166.7, + "end": 4168.28, + "probability": 0.912 + }, + { + "start": 4169.56, + "end": 4172.56, + "probability": 0.9855 + }, + { + "start": 4173.82, + "end": 4178.8, + "probability": 0.9635 + }, + { + "start": 4179.66, + "end": 4184.26, + "probability": 0.9225 + }, + { + "start": 4185.42, + "end": 4186.86, + "probability": 0.7485 + }, + { + "start": 4187.82, + "end": 4192.9, + "probability": 0.705 + }, + { + "start": 4193.72, + "end": 4196.06, + "probability": 0.9573 + }, + { + "start": 4197.38, + "end": 4201.12, + "probability": 0.9849 + }, + { + "start": 4201.26, + "end": 4202.24, + "probability": 0.9507 + }, + { + "start": 4203.22, + "end": 4208.46, + "probability": 0.9983 + }, + { + "start": 4209.08, + "end": 4210.36, + "probability": 0.9697 + }, + { + "start": 4212.32, + "end": 4216.26, + "probability": 0.9471 + }, + { + "start": 4217.78, + "end": 4220.4, + "probability": 0.7064 + }, + { + "start": 4221.62, + "end": 4226.78, + "probability": 0.9577 + }, + { + "start": 4227.72, + "end": 4228.94, + "probability": 0.6706 + }, + { + "start": 4229.14, + "end": 4230.96, + "probability": 0.9629 + }, + { + "start": 4231.82, + "end": 4234.04, + "probability": 0.7611 + }, + { + "start": 4235.16, + "end": 4237.72, + "probability": 0.9461 + }, + { + "start": 4239.64, + "end": 4246.18, + "probability": 0.9853 + }, + { + "start": 4247.08, + "end": 4248.66, + "probability": 0.9901 + }, + { + "start": 4249.78, + "end": 4251.8, + "probability": 0.9745 + }, + { + "start": 4251.8, + "end": 4255.5, + "probability": 0.9945 + }, + { + "start": 4256.94, + "end": 4259.0, + "probability": 0.9984 + }, + { + "start": 4259.58, + "end": 4262.94, + "probability": 0.9995 + }, + { + "start": 4263.96, + "end": 4265.18, + "probability": 0.9424 + }, + { + "start": 4265.94, + "end": 4269.14, + "probability": 0.9847 + }, + { + "start": 4269.7, + "end": 4273.78, + "probability": 0.9767 + }, + { + "start": 4274.6, + "end": 4275.36, + "probability": 0.7022 + }, + { + "start": 4276.36, + "end": 4279.22, + "probability": 0.9728 + }, + { + "start": 4280.0, + "end": 4280.62, + "probability": 0.466 + }, + { + "start": 4281.46, + "end": 4283.22, + "probability": 0.7998 + }, + { + "start": 4284.18, + "end": 4287.36, + "probability": 0.7126 + }, + { + "start": 4288.06, + "end": 4296.98, + "probability": 0.9926 + }, + { + "start": 4298.18, + "end": 4299.9, + "probability": 0.8689 + }, + { + "start": 4300.44, + "end": 4302.1, + "probability": 0.9902 + }, + { + "start": 4302.74, + "end": 4307.54, + "probability": 0.9535 + }, + { + "start": 4308.96, + "end": 4311.34, + "probability": 0.3061 + }, + { + "start": 4311.34, + "end": 4312.44, + "probability": 0.8181 + }, + { + "start": 4313.42, + "end": 4315.6, + "probability": 0.9941 + }, + { + "start": 4317.04, + "end": 4319.88, + "probability": 0.9961 + }, + { + "start": 4320.36, + "end": 4323.18, + "probability": 0.9753 + }, + { + "start": 4323.28, + "end": 4326.02, + "probability": 0.999 + }, + { + "start": 4326.4, + "end": 4328.76, + "probability": 0.8717 + }, + { + "start": 4329.12, + "end": 4330.32, + "probability": 0.9155 + }, + { + "start": 4330.94, + "end": 4336.94, + "probability": 0.9943 + }, + { + "start": 4337.44, + "end": 4338.84, + "probability": 0.9438 + }, + { + "start": 4339.44, + "end": 4341.26, + "probability": 0.9835 + }, + { + "start": 4344.52, + "end": 4347.98, + "probability": 0.9973 + }, + { + "start": 4348.64, + "end": 4350.72, + "probability": 0.8754 + }, + { + "start": 4351.14, + "end": 4356.12, + "probability": 0.98 + }, + { + "start": 4357.2, + "end": 4362.28, + "probability": 0.9642 + }, + { + "start": 4362.74, + "end": 4365.64, + "probability": 0.967 + }, + { + "start": 4366.16, + "end": 4373.78, + "probability": 0.9917 + }, + { + "start": 4374.3, + "end": 4378.42, + "probability": 0.9977 + }, + { + "start": 4379.06, + "end": 4382.5, + "probability": 0.9922 + }, + { + "start": 4383.74, + "end": 4384.68, + "probability": 0.7748 + }, + { + "start": 4385.58, + "end": 4388.68, + "probability": 0.9929 + }, + { + "start": 4388.68, + "end": 4392.68, + "probability": 0.8309 + }, + { + "start": 4393.28, + "end": 4396.48, + "probability": 0.9575 + }, + { + "start": 4397.48, + "end": 4401.02, + "probability": 0.9967 + }, + { + "start": 4401.54, + "end": 4404.6, + "probability": 0.9624 + }, + { + "start": 4405.66, + "end": 4408.14, + "probability": 0.7968 + }, + { + "start": 4408.92, + "end": 4411.08, + "probability": 0.9701 + }, + { + "start": 4411.54, + "end": 4413.02, + "probability": 0.7396 + }, + { + "start": 4413.5, + "end": 4417.48, + "probability": 0.9426 + }, + { + "start": 4417.48, + "end": 4421.32, + "probability": 0.9915 + }, + { + "start": 4422.42, + "end": 4424.68, + "probability": 0.9984 + }, + { + "start": 4425.26, + "end": 4428.28, + "probability": 0.9808 + }, + { + "start": 4432.98, + "end": 4436.06, + "probability": 0.9831 + }, + { + "start": 4437.08, + "end": 4437.56, + "probability": 0.6751 + }, + { + "start": 4437.68, + "end": 4439.46, + "probability": 0.7851 + }, + { + "start": 4439.52, + "end": 4443.16, + "probability": 0.8918 + }, + { + "start": 4444.88, + "end": 4449.42, + "probability": 0.9613 + }, + { + "start": 4450.04, + "end": 4455.76, + "probability": 0.9816 + }, + { + "start": 4456.44, + "end": 4458.96, + "probability": 0.8791 + }, + { + "start": 4459.56, + "end": 4461.46, + "probability": 0.7946 + }, + { + "start": 4462.14, + "end": 4464.42, + "probability": 0.9784 + }, + { + "start": 4465.12, + "end": 4465.76, + "probability": 0.5962 + }, + { + "start": 4465.98, + "end": 4466.84, + "probability": 0.947 + }, + { + "start": 4467.04, + "end": 4467.6, + "probability": 0.9563 + }, + { + "start": 4467.78, + "end": 4468.62, + "probability": 0.9729 + }, + { + "start": 4468.82, + "end": 4472.34, + "probability": 0.9855 + }, + { + "start": 4473.0, + "end": 4475.94, + "probability": 0.9655 + }, + { + "start": 4476.34, + "end": 4480.54, + "probability": 0.7876 + }, + { + "start": 4480.76, + "end": 4482.08, + "probability": 0.9645 + }, + { + "start": 4482.12, + "end": 4483.32, + "probability": 0.8316 + }, + { + "start": 4483.94, + "end": 4484.92, + "probability": 0.9238 + }, + { + "start": 4485.4, + "end": 4491.06, + "probability": 0.988 + }, + { + "start": 4491.6, + "end": 4492.16, + "probability": 0.7538 + }, + { + "start": 4494.2, + "end": 4494.9, + "probability": 0.8072 + }, + { + "start": 4495.96, + "end": 4499.16, + "probability": 0.942 + }, + { + "start": 4506.5, + "end": 4507.88, + "probability": 0.8716 + }, + { + "start": 4508.86, + "end": 4509.54, + "probability": 0.7526 + }, + { + "start": 4515.26, + "end": 4515.26, + "probability": 0.468 + }, + { + "start": 4549.46, + "end": 4549.48, + "probability": 0.0212 + }, + { + "start": 4549.48, + "end": 4549.48, + "probability": 0.2038 + }, + { + "start": 4549.48, + "end": 4549.48, + "probability": 0.0347 + }, + { + "start": 4549.48, + "end": 4549.58, + "probability": 0.0369 + }, + { + "start": 4549.58, + "end": 4549.64, + "probability": 0.0336 + }, + { + "start": 4587.74, + "end": 4590.78, + "probability": 0.4999 + }, + { + "start": 4591.82, + "end": 4593.4, + "probability": 0.5224 + }, + { + "start": 4594.34, + "end": 4597.1, + "probability": 0.9944 + }, + { + "start": 4597.19, + "end": 4602.68, + "probability": 0.9696 + }, + { + "start": 4603.56, + "end": 4607.3, + "probability": 0.3961 + }, + { + "start": 4607.66, + "end": 4609.06, + "probability": 0.9845 + }, + { + "start": 4610.12, + "end": 4613.8, + "probability": 0.9979 + }, + { + "start": 4613.94, + "end": 4615.8, + "probability": 0.8022 + }, + { + "start": 4616.2, + "end": 4618.22, + "probability": 0.8551 + }, + { + "start": 4619.24, + "end": 4620.5, + "probability": 0.4937 + }, + { + "start": 4622.5, + "end": 4626.78, + "probability": 0.9756 + }, + { + "start": 4627.36, + "end": 4635.22, + "probability": 0.9905 + }, + { + "start": 4635.22, + "end": 4641.86, + "probability": 0.9975 + }, + { + "start": 4642.62, + "end": 4643.84, + "probability": 0.998 + }, + { + "start": 4645.04, + "end": 4645.82, + "probability": 0.84 + }, + { + "start": 4646.36, + "end": 4650.74, + "probability": 0.9927 + }, + { + "start": 4651.5, + "end": 4657.76, + "probability": 0.9871 + }, + { + "start": 4658.38, + "end": 4664.02, + "probability": 0.9907 + }, + { + "start": 4664.7, + "end": 4671.22, + "probability": 0.9848 + }, + { + "start": 4672.88, + "end": 4678.84, + "probability": 0.9978 + }, + { + "start": 4678.84, + "end": 4686.2, + "probability": 0.9991 + }, + { + "start": 4686.96, + "end": 4692.28, + "probability": 0.9995 + }, + { + "start": 4693.22, + "end": 4698.02, + "probability": 0.8282 + }, + { + "start": 4698.1, + "end": 4699.12, + "probability": 0.61 + }, + { + "start": 4699.84, + "end": 4701.7, + "probability": 0.8445 + }, + { + "start": 4702.66, + "end": 4710.14, + "probability": 0.9843 + }, + { + "start": 4710.14, + "end": 4720.78, + "probability": 0.9801 + }, + { + "start": 4720.78, + "end": 4727.39, + "probability": 0.9302 + }, + { + "start": 4728.54, + "end": 4730.44, + "probability": 0.59 + }, + { + "start": 4731.46, + "end": 4736.52, + "probability": 0.8435 + }, + { + "start": 4737.22, + "end": 4741.32, + "probability": 0.9829 + }, + { + "start": 4741.55, + "end": 4745.6, + "probability": 0.9466 + }, + { + "start": 4745.94, + "end": 4753.8, + "probability": 0.9906 + }, + { + "start": 4753.8, + "end": 4760.18, + "probability": 0.9984 + }, + { + "start": 4760.26, + "end": 4761.98, + "probability": 0.9906 + }, + { + "start": 4762.5, + "end": 4763.84, + "probability": 0.9722 + }, + { + "start": 4764.44, + "end": 4771.14, + "probability": 0.9984 + }, + { + "start": 4771.14, + "end": 4776.04, + "probability": 0.9917 + }, + { + "start": 4776.2, + "end": 4781.1, + "probability": 0.9641 + }, + { + "start": 4781.82, + "end": 4785.9, + "probability": 0.9935 + }, + { + "start": 4786.2, + "end": 4788.8, + "probability": 0.9864 + }, + { + "start": 4788.86, + "end": 4790.24, + "probability": 0.9933 + }, + { + "start": 4790.38, + "end": 4791.3, + "probability": 0.9538 + }, + { + "start": 4791.34, + "end": 4792.12, + "probability": 0.8577 + }, + { + "start": 4792.56, + "end": 4797.02, + "probability": 0.9959 + }, + { + "start": 4797.62, + "end": 4801.46, + "probability": 0.9845 + }, + { + "start": 4802.24, + "end": 4807.32, + "probability": 0.9085 + }, + { + "start": 4807.44, + "end": 4808.2, + "probability": 0.5647 + }, + { + "start": 4808.26, + "end": 4808.78, + "probability": 0.9452 + }, + { + "start": 4809.26, + "end": 4812.8, + "probability": 0.997 + }, + { + "start": 4813.72, + "end": 4817.42, + "probability": 0.9836 + }, + { + "start": 4817.62, + "end": 4819.16, + "probability": 0.8265 + }, + { + "start": 4819.34, + "end": 4821.38, + "probability": 0.9521 + }, + { + "start": 4822.1, + "end": 4825.86, + "probability": 0.9753 + }, + { + "start": 4825.86, + "end": 4828.94, + "probability": 0.9895 + }, + { + "start": 4829.8, + "end": 4832.1, + "probability": 0.9783 + }, + { + "start": 4833.04, + "end": 4834.5, + "probability": 0.9487 + }, + { + "start": 4835.32, + "end": 4841.94, + "probability": 0.9938 + }, + { + "start": 4843.08, + "end": 4849.4, + "probability": 0.9932 + }, + { + "start": 4849.4, + "end": 4855.52, + "probability": 0.9946 + }, + { + "start": 4856.22, + "end": 4857.42, + "probability": 0.9014 + }, + { + "start": 4858.0, + "end": 4864.36, + "probability": 0.9744 + }, + { + "start": 4864.66, + "end": 4866.94, + "probability": 0.9487 + }, + { + "start": 4867.02, + "end": 4873.26, + "probability": 0.978 + }, + { + "start": 4873.84, + "end": 4875.7, + "probability": 0.9907 + }, + { + "start": 4876.78, + "end": 4880.58, + "probability": 0.9961 + }, + { + "start": 4881.12, + "end": 4884.28, + "probability": 0.969 + }, + { + "start": 4885.6, + "end": 4886.7, + "probability": 0.9868 + }, + { + "start": 4887.3, + "end": 4891.22, + "probability": 0.9971 + }, + { + "start": 4891.22, + "end": 4894.68, + "probability": 0.9914 + }, + { + "start": 4895.36, + "end": 4899.06, + "probability": 0.998 + }, + { + "start": 4899.1, + "end": 4903.24, + "probability": 0.9978 + }, + { + "start": 4903.94, + "end": 4907.06, + "probability": 0.9989 + }, + { + "start": 4907.14, + "end": 4909.44, + "probability": 0.9993 + }, + { + "start": 4909.84, + "end": 4914.48, + "probability": 0.9975 + }, + { + "start": 4915.2, + "end": 4917.54, + "probability": 0.868 + }, + { + "start": 4918.3, + "end": 4920.78, + "probability": 0.9958 + }, + { + "start": 4921.72, + "end": 4925.42, + "probability": 0.971 + }, + { + "start": 4925.68, + "end": 4928.54, + "probability": 0.9812 + }, + { + "start": 4929.14, + "end": 4929.8, + "probability": 0.8353 + }, + { + "start": 4930.14, + "end": 4931.54, + "probability": 0.4575 + }, + { + "start": 4932.04, + "end": 4933.52, + "probability": 0.6792 + }, + { + "start": 4934.3, + "end": 4943.22, + "probability": 0.9829 + }, + { + "start": 4943.38, + "end": 4944.16, + "probability": 0.9243 + }, + { + "start": 4944.92, + "end": 4950.34, + "probability": 0.998 + }, + { + "start": 4950.82, + "end": 4952.66, + "probability": 0.9772 + }, + { + "start": 4952.88, + "end": 4954.44, + "probability": 0.932 + }, + { + "start": 4955.48, + "end": 4960.82, + "probability": 0.9456 + }, + { + "start": 4961.76, + "end": 4967.82, + "probability": 0.9849 + }, + { + "start": 4967.94, + "end": 4968.4, + "probability": 0.796 + }, + { + "start": 4969.24, + "end": 4970.66, + "probability": 0.5646 + }, + { + "start": 4971.26, + "end": 4973.5, + "probability": 0.9785 + }, + { + "start": 4996.34, + "end": 4996.58, + "probability": 0.4403 + }, + { + "start": 4996.58, + "end": 4998.36, + "probability": 0.5562 + }, + { + "start": 4999.28, + "end": 5000.42, + "probability": 0.8343 + }, + { + "start": 5002.52, + "end": 5003.46, + "probability": 0.7058 + }, + { + "start": 5006.4, + "end": 5008.16, + "probability": 0.9951 + }, + { + "start": 5010.38, + "end": 5015.96, + "probability": 0.999 + }, + { + "start": 5017.56, + "end": 5020.14, + "probability": 0.9861 + }, + { + "start": 5021.2, + "end": 5022.96, + "probability": 0.8261 + }, + { + "start": 5024.1, + "end": 5026.96, + "probability": 0.9902 + }, + { + "start": 5026.96, + "end": 5031.8, + "probability": 0.9991 + }, + { + "start": 5032.62, + "end": 5035.5, + "probability": 0.9954 + }, + { + "start": 5035.68, + "end": 5036.64, + "probability": 0.9083 + }, + { + "start": 5037.52, + "end": 5039.64, + "probability": 0.9732 + }, + { + "start": 5040.32, + "end": 5041.52, + "probability": 0.9861 + }, + { + "start": 5044.0, + "end": 5047.02, + "probability": 0.9941 + }, + { + "start": 5047.02, + "end": 5049.56, + "probability": 0.865 + }, + { + "start": 5050.84, + "end": 5053.62, + "probability": 0.7086 + }, + { + "start": 5054.56, + "end": 5055.48, + "probability": 0.5007 + }, + { + "start": 5055.56, + "end": 5056.32, + "probability": 0.6698 + }, + { + "start": 5056.38, + "end": 5057.89, + "probability": 0.8162 + }, + { + "start": 5059.1, + "end": 5059.52, + "probability": 0.7739 + }, + { + "start": 5060.12, + "end": 5062.54, + "probability": 0.9559 + }, + { + "start": 5063.22, + "end": 5070.86, + "probability": 0.9955 + }, + { + "start": 5071.82, + "end": 5074.46, + "probability": 0.9847 + }, + { + "start": 5074.6, + "end": 5079.36, + "probability": 0.9977 + }, + { + "start": 5080.52, + "end": 5083.26, + "probability": 0.995 + }, + { + "start": 5083.54, + "end": 5088.04, + "probability": 0.9795 + }, + { + "start": 5089.04, + "end": 5094.64, + "probability": 0.9937 + }, + { + "start": 5094.64, + "end": 5100.42, + "probability": 0.9922 + }, + { + "start": 5101.14, + "end": 5105.26, + "probability": 0.9912 + }, + { + "start": 5105.26, + "end": 5111.0, + "probability": 0.9441 + }, + { + "start": 5111.98, + "end": 5115.84, + "probability": 0.9981 + }, + { + "start": 5116.44, + "end": 5120.28, + "probability": 0.981 + }, + { + "start": 5121.18, + "end": 5123.4, + "probability": 0.9982 + }, + { + "start": 5124.24, + "end": 5126.34, + "probability": 0.9921 + }, + { + "start": 5128.36, + "end": 5130.28, + "probability": 0.8548 + }, + { + "start": 5131.5, + "end": 5132.28, + "probability": 0.9561 + }, + { + "start": 5134.1, + "end": 5136.98, + "probability": 0.9678 + }, + { + "start": 5137.5, + "end": 5138.64, + "probability": 0.8976 + }, + { + "start": 5139.68, + "end": 5144.28, + "probability": 0.8316 + }, + { + "start": 5146.18, + "end": 5148.16, + "probability": 0.8889 + }, + { + "start": 5149.08, + "end": 5151.5, + "probability": 0.9559 + }, + { + "start": 5154.02, + "end": 5156.38, + "probability": 0.9646 + }, + { + "start": 5156.44, + "end": 5158.8, + "probability": 0.9959 + }, + { + "start": 5159.5, + "end": 5162.84, + "probability": 0.712 + }, + { + "start": 5162.9, + "end": 5165.68, + "probability": 0.9728 + }, + { + "start": 5166.7, + "end": 5168.96, + "probability": 0.7992 + }, + { + "start": 5169.9, + "end": 5170.64, + "probability": 0.9225 + }, + { + "start": 5171.66, + "end": 5172.64, + "probability": 0.946 + }, + { + "start": 5173.54, + "end": 5176.04, + "probability": 0.9865 + }, + { + "start": 5176.66, + "end": 5181.24, + "probability": 0.7899 + }, + { + "start": 5182.46, + "end": 5184.2, + "probability": 0.9109 + }, + { + "start": 5184.46, + "end": 5185.76, + "probability": 0.9272 + }, + { + "start": 5186.3, + "end": 5186.82, + "probability": 0.9384 + }, + { + "start": 5189.08, + "end": 5190.82, + "probability": 0.9969 + }, + { + "start": 5190.9, + "end": 5192.22, + "probability": 0.9284 + }, + { + "start": 5192.5, + "end": 5194.4, + "probability": 0.966 + }, + { + "start": 5195.16, + "end": 5196.76, + "probability": 0.9859 + }, + { + "start": 5197.62, + "end": 5199.76, + "probability": 0.9954 + }, + { + "start": 5199.84, + "end": 5201.52, + "probability": 0.988 + }, + { + "start": 5202.48, + "end": 5206.32, + "probability": 0.9944 + }, + { + "start": 5207.22, + "end": 5211.44, + "probability": 0.9798 + }, + { + "start": 5212.22, + "end": 5213.52, + "probability": 0.8883 + }, + { + "start": 5213.64, + "end": 5216.76, + "probability": 0.9114 + }, + { + "start": 5217.56, + "end": 5219.92, + "probability": 0.9987 + }, + { + "start": 5220.8, + "end": 5222.76, + "probability": 0.9536 + }, + { + "start": 5223.0, + "end": 5224.26, + "probability": 0.9841 + }, + { + "start": 5225.08, + "end": 5228.14, + "probability": 0.9827 + }, + { + "start": 5228.84, + "end": 5231.04, + "probability": 0.99 + }, + { + "start": 5231.16, + "end": 5234.18, + "probability": 0.7153 + }, + { + "start": 5234.9, + "end": 5236.38, + "probability": 0.9333 + }, + { + "start": 5237.22, + "end": 5238.0, + "probability": 0.8702 + }, + { + "start": 5238.88, + "end": 5240.76, + "probability": 0.9644 + }, + { + "start": 5241.5, + "end": 5242.82, + "probability": 0.8898 + }, + { + "start": 5242.86, + "end": 5245.3, + "probability": 0.9883 + }, + { + "start": 5245.88, + "end": 5251.14, + "probability": 0.962 + }, + { + "start": 5252.12, + "end": 5252.96, + "probability": 0.7298 + }, + { + "start": 5253.24, + "end": 5254.66, + "probability": 0.9438 + }, + { + "start": 5255.3, + "end": 5256.58, + "probability": 0.968 + }, + { + "start": 5256.74, + "end": 5259.9, + "probability": 0.9958 + }, + { + "start": 5260.56, + "end": 5261.7, + "probability": 0.9793 + }, + { + "start": 5262.7, + "end": 5264.98, + "probability": 0.9268 + }, + { + "start": 5265.94, + "end": 5268.72, + "probability": 0.9927 + }, + { + "start": 5269.26, + "end": 5270.74, + "probability": 0.8016 + }, + { + "start": 5271.58, + "end": 5274.32, + "probability": 0.9808 + }, + { + "start": 5275.18, + "end": 5276.7, + "probability": 0.9722 + }, + { + "start": 5277.7, + "end": 5278.56, + "probability": 0.9917 + }, + { + "start": 5279.28, + "end": 5280.72, + "probability": 0.9965 + }, + { + "start": 5282.5, + "end": 5283.96, + "probability": 0.9785 + }, + { + "start": 5285.2, + "end": 5289.88, + "probability": 0.8656 + }, + { + "start": 5290.02, + "end": 5291.51, + "probability": 0.7471 + }, + { + "start": 5292.44, + "end": 5293.44, + "probability": 0.6656 + }, + { + "start": 5294.64, + "end": 5297.44, + "probability": 0.9858 + }, + { + "start": 5298.78, + "end": 5299.54, + "probability": 0.9175 + }, + { + "start": 5301.18, + "end": 5302.08, + "probability": 0.9391 + }, + { + "start": 5303.18, + "end": 5304.2, + "probability": 0.9633 + }, + { + "start": 5305.3, + "end": 5309.76, + "probability": 0.9917 + }, + { + "start": 5310.4, + "end": 5310.78, + "probability": 0.7869 + }, + { + "start": 5312.18, + "end": 5314.14, + "probability": 0.9076 + }, + { + "start": 5314.78, + "end": 5317.76, + "probability": 0.7426 + }, + { + "start": 5318.5, + "end": 5319.18, + "probability": 0.3814 + }, + { + "start": 5319.2, + "end": 5319.66, + "probability": 0.9279 + }, + { + "start": 5336.2, + "end": 5341.28, + "probability": 0.7414 + }, + { + "start": 5342.52, + "end": 5343.16, + "probability": 0.5318 + }, + { + "start": 5343.84, + "end": 5344.12, + "probability": 0.5845 + }, + { + "start": 5345.32, + "end": 5346.08, + "probability": 0.6273 + }, + { + "start": 5346.86, + "end": 5348.12, + "probability": 0.9076 + }, + { + "start": 5349.36, + "end": 5351.46, + "probability": 0.7388 + }, + { + "start": 5351.46, + "end": 5354.82, + "probability": 0.8618 + }, + { + "start": 5357.08, + "end": 5357.86, + "probability": 0.6246 + }, + { + "start": 5358.46, + "end": 5358.9, + "probability": 0.568 + }, + { + "start": 5359.06, + "end": 5359.8, + "probability": 0.6289 + }, + { + "start": 5363.12, + "end": 5367.98, + "probability": 0.9487 + }, + { + "start": 5369.52, + "end": 5371.32, + "probability": 0.8784 + }, + { + "start": 5371.88, + "end": 5373.02, + "probability": 0.9254 + }, + { + "start": 5373.62, + "end": 5375.06, + "probability": 0.9714 + }, + { + "start": 5375.82, + "end": 5379.62, + "probability": 0.8641 + }, + { + "start": 5380.2, + "end": 5382.48, + "probability": 0.9486 + }, + { + "start": 5383.62, + "end": 5388.23, + "probability": 0.9217 + }, + { + "start": 5388.52, + "end": 5394.8, + "probability": 0.9976 + }, + { + "start": 5396.04, + "end": 5397.62, + "probability": 0.7925 + }, + { + "start": 5397.76, + "end": 5398.66, + "probability": 0.7601 + }, + { + "start": 5398.86, + "end": 5402.18, + "probability": 0.9978 + }, + { + "start": 5402.18, + "end": 5404.74, + "probability": 0.9814 + }, + { + "start": 5405.3, + "end": 5410.36, + "probability": 0.9924 + }, + { + "start": 5411.7, + "end": 5415.22, + "probability": 0.9927 + }, + { + "start": 5416.79, + "end": 5422.5, + "probability": 0.9984 + }, + { + "start": 5423.0, + "end": 5424.76, + "probability": 0.9216 + }, + { + "start": 5426.04, + "end": 5429.5, + "probability": 0.9707 + }, + { + "start": 5430.38, + "end": 5433.0, + "probability": 0.9927 + }, + { + "start": 5433.36, + "end": 5435.86, + "probability": 0.9725 + }, + { + "start": 5436.56, + "end": 5440.72, + "probability": 0.9958 + }, + { + "start": 5440.72, + "end": 5445.82, + "probability": 0.993 + }, + { + "start": 5446.5, + "end": 5452.42, + "probability": 0.9132 + }, + { + "start": 5452.46, + "end": 5454.28, + "probability": 0.9205 + }, + { + "start": 5454.42, + "end": 5455.78, + "probability": 0.9922 + }, + { + "start": 5456.52, + "end": 5461.68, + "probability": 0.8625 + }, + { + "start": 5462.2, + "end": 5464.14, + "probability": 0.9846 + }, + { + "start": 5465.36, + "end": 5468.88, + "probability": 0.9447 + }, + { + "start": 5469.0, + "end": 5472.52, + "probability": 0.9928 + }, + { + "start": 5473.5, + "end": 5477.9, + "probability": 0.9468 + }, + { + "start": 5477.9, + "end": 5481.48, + "probability": 0.8431 + }, + { + "start": 5482.08, + "end": 5484.24, + "probability": 0.9905 + }, + { + "start": 5484.42, + "end": 5487.42, + "probability": 0.8468 + }, + { + "start": 5487.98, + "end": 5493.12, + "probability": 0.9855 + }, + { + "start": 5493.46, + "end": 5494.76, + "probability": 0.8221 + }, + { + "start": 5495.08, + "end": 5500.56, + "probability": 0.9641 + }, + { + "start": 5501.42, + "end": 5507.12, + "probability": 0.9956 + }, + { + "start": 5507.2, + "end": 5509.14, + "probability": 0.7328 + }, + { + "start": 5509.62, + "end": 5510.58, + "probability": 0.6818 + }, + { + "start": 5511.62, + "end": 5515.74, + "probability": 0.992 + }, + { + "start": 5516.02, + "end": 5516.96, + "probability": 0.9154 + }, + { + "start": 5517.36, + "end": 5519.28, + "probability": 0.9417 + }, + { + "start": 5519.98, + "end": 5520.72, + "probability": 0.9692 + }, + { + "start": 5521.9, + "end": 5523.7, + "probability": 0.9689 + }, + { + "start": 5524.26, + "end": 5525.5, + "probability": 0.9195 + }, + { + "start": 5526.2, + "end": 5532.33, + "probability": 0.9959 + }, + { + "start": 5533.56, + "end": 5536.62, + "probability": 0.9915 + }, + { + "start": 5537.2, + "end": 5539.5, + "probability": 0.8171 + }, + { + "start": 5540.5, + "end": 5547.34, + "probability": 0.9935 + }, + { + "start": 5547.42, + "end": 5550.5, + "probability": 0.8595 + }, + { + "start": 5551.54, + "end": 5554.96, + "probability": 0.9837 + }, + { + "start": 5554.96, + "end": 5558.54, + "probability": 0.9958 + }, + { + "start": 5559.02, + "end": 5560.08, + "probability": 0.8465 + }, + { + "start": 5560.96, + "end": 5563.44, + "probability": 0.9015 + }, + { + "start": 5564.04, + "end": 5566.0, + "probability": 0.831 + }, + { + "start": 5566.08, + "end": 5566.9, + "probability": 0.9963 + }, + { + "start": 5567.42, + "end": 5567.62, + "probability": 0.9801 + }, + { + "start": 5568.66, + "end": 5570.36, + "probability": 0.9961 + }, + { + "start": 5571.94, + "end": 5577.08, + "probability": 0.669 + }, + { + "start": 5577.66, + "end": 5579.16, + "probability": 0.8942 + }, + { + "start": 5580.0, + "end": 5582.96, + "probability": 0.9786 + }, + { + "start": 5583.96, + "end": 5585.74, + "probability": 0.7647 + }, + { + "start": 5586.16, + "end": 5587.94, + "probability": 0.9137 + }, + { + "start": 5588.4, + "end": 5590.24, + "probability": 0.8809 + }, + { + "start": 5590.32, + "end": 5590.9, + "probability": 0.9744 + }, + { + "start": 5591.54, + "end": 5593.34, + "probability": 0.9644 + }, + { + "start": 5593.74, + "end": 5595.6, + "probability": 0.981 + }, + { + "start": 5596.42, + "end": 5597.56, + "probability": 0.9562 + }, + { + "start": 5597.76, + "end": 5602.2, + "probability": 0.7749 + }, + { + "start": 5602.42, + "end": 5603.1, + "probability": 0.8728 + }, + { + "start": 5603.12, + "end": 5603.86, + "probability": 0.6422 + }, + { + "start": 5604.58, + "end": 5606.58, + "probability": 0.876 + }, + { + "start": 5607.02, + "end": 5607.98, + "probability": 0.9148 + }, + { + "start": 5608.06, + "end": 5609.28, + "probability": 0.9489 + }, + { + "start": 5610.64, + "end": 5611.08, + "probability": 0.946 + }, + { + "start": 5611.56, + "end": 5613.58, + "probability": 0.9125 + }, + { + "start": 5613.78, + "end": 5615.48, + "probability": 0.9367 + }, + { + "start": 5616.64, + "end": 5617.74, + "probability": 0.0099 + }, + { + "start": 5618.22, + "end": 5619.5, + "probability": 0.9023 + }, + { + "start": 5619.96, + "end": 5623.84, + "probability": 0.9577 + }, + { + "start": 5624.06, + "end": 5625.96, + "probability": 0.9464 + }, + { + "start": 5626.16, + "end": 5629.06, + "probability": 0.9814 + }, + { + "start": 5632.24, + "end": 5633.06, + "probability": 0.9407 + }, + { + "start": 5634.36, + "end": 5638.34, + "probability": 0.8892 + }, + { + "start": 5638.52, + "end": 5640.32, + "probability": 0.9233 + }, + { + "start": 5640.58, + "end": 5641.19, + "probability": 0.9946 + }, + { + "start": 5641.36, + "end": 5642.2, + "probability": 0.9936 + }, + { + "start": 5642.4, + "end": 5643.88, + "probability": 0.52 + }, + { + "start": 5644.36, + "end": 5646.44, + "probability": 0.9906 + }, + { + "start": 5647.18, + "end": 5649.02, + "probability": 0.4616 + }, + { + "start": 5649.6, + "end": 5651.51, + "probability": 0.9731 + }, + { + "start": 5652.16, + "end": 5653.2, + "probability": 0.4994 + }, + { + "start": 5654.13, + "end": 5655.28, + "probability": 0.6313 + }, + { + "start": 5656.46, + "end": 5658.18, + "probability": 0.7549 + }, + { + "start": 5658.18, + "end": 5658.24, + "probability": 0.2679 + }, + { + "start": 5658.24, + "end": 5660.02, + "probability": 0.7871 + }, + { + "start": 5660.1, + "end": 5661.44, + "probability": 0.5185 + }, + { + "start": 5662.16, + "end": 5663.1, + "probability": 0.9097 + }, + { + "start": 5663.36, + "end": 5664.74, + "probability": 0.9932 + }, + { + "start": 5664.92, + "end": 5665.94, + "probability": 0.9327 + }, + { + "start": 5666.56, + "end": 5669.98, + "probability": 0.887 + }, + { + "start": 5670.6, + "end": 5672.1, + "probability": 0.9946 + }, + { + "start": 5672.78, + "end": 5675.28, + "probability": 0.7514 + }, + { + "start": 5675.74, + "end": 5678.09, + "probability": 0.9976 + }, + { + "start": 5678.18, + "end": 5680.22, + "probability": 0.9619 + }, + { + "start": 5682.2, + "end": 5685.88, + "probability": 0.9794 + }, + { + "start": 5686.42, + "end": 5687.46, + "probability": 0.9456 + }, + { + "start": 5688.18, + "end": 5689.34, + "probability": 0.9747 + }, + { + "start": 5689.76, + "end": 5690.46, + "probability": 0.8379 + }, + { + "start": 5690.54, + "end": 5692.3, + "probability": 0.9952 + }, + { + "start": 5692.36, + "end": 5693.78, + "probability": 0.9915 + }, + { + "start": 5694.34, + "end": 5695.84, + "probability": 0.935 + }, + { + "start": 5697.04, + "end": 5698.76, + "probability": 0.9943 + }, + { + "start": 5699.3, + "end": 5704.56, + "probability": 0.9668 + }, + { + "start": 5705.14, + "end": 5708.2, + "probability": 0.963 + }, + { + "start": 5708.96, + "end": 5710.92, + "probability": 0.9622 + }, + { + "start": 5710.94, + "end": 5714.8, + "probability": 0.9717 + }, + { + "start": 5715.32, + "end": 5718.16, + "probability": 0.8388 + }, + { + "start": 5718.24, + "end": 5721.1, + "probability": 0.8035 + }, + { + "start": 5722.18, + "end": 5723.74, + "probability": 0.8371 + }, + { + "start": 5724.4, + "end": 5726.92, + "probability": 0.9781 + }, + { + "start": 5726.92, + "end": 5730.68, + "probability": 0.7809 + }, + { + "start": 5731.06, + "end": 5732.7, + "probability": 0.8492 + }, + { + "start": 5733.04, + "end": 5734.42, + "probability": 0.7959 + }, + { + "start": 5734.74, + "end": 5736.52, + "probability": 0.9965 + }, + { + "start": 5736.64, + "end": 5740.84, + "probability": 0.9705 + }, + { + "start": 5742.34, + "end": 5744.24, + "probability": 0.9816 + }, + { + "start": 5745.52, + "end": 5746.18, + "probability": 0.7164 + }, + { + "start": 5746.78, + "end": 5747.84, + "probability": 0.9931 + }, + { + "start": 5748.54, + "end": 5753.57, + "probability": 0.9984 + }, + { + "start": 5755.68, + "end": 5759.94, + "probability": 0.9739 + }, + { + "start": 5761.28, + "end": 5765.54, + "probability": 0.9855 + }, + { + "start": 5765.66, + "end": 5766.58, + "probability": 0.5376 + }, + { + "start": 5767.22, + "end": 5769.76, + "probability": 0.9272 + }, + { + "start": 5770.3, + "end": 5773.1, + "probability": 0.9823 + }, + { + "start": 5774.36, + "end": 5776.22, + "probability": 0.9939 + }, + { + "start": 5776.86, + "end": 5778.92, + "probability": 0.9702 + }, + { + "start": 5779.54, + "end": 5782.84, + "probability": 0.9848 + }, + { + "start": 5783.36, + "end": 5792.02, + "probability": 0.998 + }, + { + "start": 5792.62, + "end": 5793.54, + "probability": 0.9144 + }, + { + "start": 5793.64, + "end": 5794.14, + "probability": 0.8352 + }, + { + "start": 5794.3, + "end": 5794.66, + "probability": 0.4489 + }, + { + "start": 5794.9, + "end": 5797.72, + "probability": 0.9757 + }, + { + "start": 5797.84, + "end": 5804.52, + "probability": 0.9429 + }, + { + "start": 5805.36, + "end": 5806.76, + "probability": 0.6819 + }, + { + "start": 5807.78, + "end": 5808.84, + "probability": 0.9977 + }, + { + "start": 5809.44, + "end": 5810.64, + "probability": 0.5293 + }, + { + "start": 5811.08, + "end": 5814.78, + "probability": 0.9985 + }, + { + "start": 5815.42, + "end": 5816.98, + "probability": 0.8825 + }, + { + "start": 5817.16, + "end": 5818.94, + "probability": 0.9939 + }, + { + "start": 5819.34, + "end": 5821.5, + "probability": 0.9965 + }, + { + "start": 5821.54, + "end": 5825.0, + "probability": 0.9967 + }, + { + "start": 5825.9, + "end": 5827.36, + "probability": 0.9932 + }, + { + "start": 5827.38, + "end": 5828.28, + "probability": 0.9546 + }, + { + "start": 5828.46, + "end": 5830.04, + "probability": 0.8815 + }, + { + "start": 5830.66, + "end": 5831.96, + "probability": 0.8887 + }, + { + "start": 5832.36, + "end": 5833.28, + "probability": 0.9511 + }, + { + "start": 5834.28, + "end": 5835.56, + "probability": 0.9285 + }, + { + "start": 5835.78, + "end": 5839.86, + "probability": 0.9954 + }, + { + "start": 5840.84, + "end": 5841.28, + "probability": 0.7531 + }, + { + "start": 5841.46, + "end": 5841.68, + "probability": 0.1655 + }, + { + "start": 5841.78, + "end": 5844.12, + "probability": 0.7222 + }, + { + "start": 5844.58, + "end": 5845.92, + "probability": 0.8969 + }, + { + "start": 5846.64, + "end": 5849.66, + "probability": 0.986 + }, + { + "start": 5850.06, + "end": 5852.68, + "probability": 0.9946 + }, + { + "start": 5852.68, + "end": 5856.25, + "probability": 0.8535 + }, + { + "start": 5857.5, + "end": 5861.74, + "probability": 0.9977 + }, + { + "start": 5861.74, + "end": 5865.6, + "probability": 0.8606 + }, + { + "start": 5865.68, + "end": 5866.78, + "probability": 0.9564 + }, + { + "start": 5866.92, + "end": 5867.74, + "probability": 0.8413 + }, + { + "start": 5868.46, + "end": 5870.46, + "probability": 0.9895 + }, + { + "start": 5870.56, + "end": 5871.32, + "probability": 0.9679 + }, + { + "start": 5871.4, + "end": 5872.32, + "probability": 0.9863 + }, + { + "start": 5872.78, + "end": 5874.48, + "probability": 0.9906 + }, + { + "start": 5874.8, + "end": 5876.98, + "probability": 0.9889 + }, + { + "start": 5877.22, + "end": 5878.9, + "probability": 0.9157 + }, + { + "start": 5879.32, + "end": 5880.52, + "probability": 0.9866 + }, + { + "start": 5880.76, + "end": 5882.92, + "probability": 0.8298 + }, + { + "start": 5884.18, + "end": 5886.88, + "probability": 0.9647 + }, + { + "start": 5887.38, + "end": 5890.3, + "probability": 0.822 + }, + { + "start": 5890.96, + "end": 5891.86, + "probability": 0.5309 + }, + { + "start": 5892.18, + "end": 5895.28, + "probability": 0.9657 + }, + { + "start": 5896.06, + "end": 5896.5, + "probability": 0.5474 + }, + { + "start": 5897.06, + "end": 5900.98, + "probability": 0.9972 + }, + { + "start": 5901.66, + "end": 5903.44, + "probability": 0.7524 + }, + { + "start": 5903.96, + "end": 5905.0, + "probability": 0.8843 + }, + { + "start": 5905.14, + "end": 5907.78, + "probability": 0.9549 + }, + { + "start": 5908.28, + "end": 5913.82, + "probability": 0.9891 + }, + { + "start": 5914.42, + "end": 5916.88, + "probability": 0.9795 + }, + { + "start": 5917.54, + "end": 5918.48, + "probability": 0.9879 + }, + { + "start": 5919.06, + "end": 5924.5, + "probability": 0.9836 + }, + { + "start": 5925.04, + "end": 5926.34, + "probability": 0.9823 + }, + { + "start": 5926.48, + "end": 5926.92, + "probability": 0.9606 + }, + { + "start": 5927.04, + "end": 5927.62, + "probability": 0.9875 + }, + { + "start": 5928.0, + "end": 5928.64, + "probability": 0.9943 + }, + { + "start": 5928.9, + "end": 5929.28, + "probability": 0.5155 + }, + { + "start": 5929.46, + "end": 5929.92, + "probability": 0.7251 + }, + { + "start": 5930.68, + "end": 5937.34, + "probability": 0.9744 + }, + { + "start": 5937.76, + "end": 5938.68, + "probability": 0.9183 + }, + { + "start": 5939.06, + "end": 5940.06, + "probability": 0.8604 + }, + { + "start": 5940.14, + "end": 5941.78, + "probability": 0.9149 + }, + { + "start": 5942.58, + "end": 5947.26, + "probability": 0.9595 + }, + { + "start": 5948.14, + "end": 5948.48, + "probability": 0.4996 + }, + { + "start": 5949.0, + "end": 5950.52, + "probability": 0.6537 + }, + { + "start": 5951.2, + "end": 5952.26, + "probability": 0.7091 + }, + { + "start": 5953.02, + "end": 5954.4, + "probability": 0.9393 + }, + { + "start": 5954.94, + "end": 5957.54, + "probability": 0.9479 + }, + { + "start": 5958.06, + "end": 5963.64, + "probability": 0.9577 + }, + { + "start": 5964.74, + "end": 5967.04, + "probability": 0.9691 + }, + { + "start": 5967.18, + "end": 5967.78, + "probability": 0.9677 + }, + { + "start": 5967.92, + "end": 5971.98, + "probability": 0.944 + }, + { + "start": 5972.42, + "end": 5972.84, + "probability": 0.7998 + }, + { + "start": 5973.32, + "end": 5976.5, + "probability": 0.5314 + }, + { + "start": 5976.64, + "end": 5977.3, + "probability": 0.8988 + }, + { + "start": 5978.04, + "end": 5980.96, + "probability": 0.9801 + }, + { + "start": 5981.86, + "end": 5982.72, + "probability": 0.3251 + }, + { + "start": 5983.64, + "end": 5987.0, + "probability": 0.9882 + }, + { + "start": 5988.06, + "end": 5990.12, + "probability": 0.9645 + }, + { + "start": 5990.84, + "end": 5991.7, + "probability": 0.9195 + }, + { + "start": 5992.28, + "end": 5992.62, + "probability": 0.7802 + }, + { + "start": 5995.44, + "end": 5996.86, + "probability": 0.7927 + }, + { + "start": 5996.96, + "end": 5999.4, + "probability": 0.8901 + }, + { + "start": 6000.06, + "end": 6003.36, + "probability": 0.9653 + }, + { + "start": 6004.48, + "end": 6006.22, + "probability": 0.9369 + }, + { + "start": 6006.6, + "end": 6009.42, + "probability": 0.9845 + }, + { + "start": 6010.4, + "end": 6010.86, + "probability": 0.7542 + }, + { + "start": 6013.64, + "end": 6014.16, + "probability": 0.0798 + }, + { + "start": 6040.28, + "end": 6041.02, + "probability": 0.0397 + }, + { + "start": 6041.52, + "end": 6043.9, + "probability": 0.0376 + }, + { + "start": 14488.0, + "end": 14488.0, + "probability": 0.0 + }, + { + "start": 14488.0, + "end": 14488.0, + "probability": 0.0 + }, + { + "start": 14488.0, + "end": 14488.0, + "probability": 0.0 + }, + { + "start": 14488.0, + "end": 14488.0, + "probability": 0.0 + }, + { + "start": 14488.0, + "end": 14488.0, + "probability": 0.0 + }, + { + "start": 14488.0, + "end": 14488.0, + "probability": 0.0 + }, + { + "start": 14488.0, + "end": 14488.0, + "probability": 0.0 + }, + { + "start": 14488.16, + "end": 14488.67, + "probability": 0.3308 + }, + { + "start": 14489.86, + "end": 14494.6, + "probability": 0.7493 + }, + { + "start": 14495.14, + "end": 14497.42, + "probability": 0.9768 + }, + { + "start": 14498.48, + "end": 14501.7, + "probability": 0.9933 + }, + { + "start": 14501.7, + "end": 14505.4, + "probability": 0.9091 + }, + { + "start": 14505.5, + "end": 14507.34, + "probability": 0.8602 + }, + { + "start": 14508.04, + "end": 14513.48, + "probability": 0.9344 + }, + { + "start": 14514.5, + "end": 14520.26, + "probability": 0.9486 + }, + { + "start": 14521.7, + "end": 14523.24, + "probability": 0.5099 + }, + { + "start": 14534.92, + "end": 14537.44, + "probability": 0.5092 + }, + { + "start": 14537.6, + "end": 14538.44, + "probability": 0.9736 + }, + { + "start": 14539.1, + "end": 14546.28, + "probability": 0.967 + }, + { + "start": 14546.28, + "end": 14552.0, + "probability": 0.9949 + }, + { + "start": 14552.5, + "end": 14553.0, + "probability": 0.8061 + }, + { + "start": 14553.68, + "end": 14553.94, + "probability": 0.7083 + }, + { + "start": 14555.48, + "end": 14556.44, + "probability": 0.7679 + }, + { + "start": 14556.48, + "end": 14557.79, + "probability": 0.52 + }, + { + "start": 14557.88, + "end": 14558.6, + "probability": 0.736 + }, + { + "start": 14558.88, + "end": 14559.96, + "probability": 0.4991 + }, + { + "start": 14563.04, + "end": 14569.1, + "probability": 0.896 + }, + { + "start": 14572.46, + "end": 14574.42, + "probability": 0.9832 + }, + { + "start": 14574.6, + "end": 14577.32, + "probability": 0.8569 + }, + { + "start": 14577.46, + "end": 14579.04, + "probability": 0.7157 + }, + { + "start": 14579.8, + "end": 14579.9, + "probability": 0.0563 + }, + { + "start": 14580.66, + "end": 14583.26, + "probability": 0.8174 + }, + { + "start": 14584.16, + "end": 14587.68, + "probability": 0.9953 + }, + { + "start": 14588.73, + "end": 14591.62, + "probability": 0.9395 + }, + { + "start": 14593.47, + "end": 14594.6, + "probability": 0.5628 + }, + { + "start": 14594.76, + "end": 14598.86, + "probability": 0.6657 + }, + { + "start": 14599.6, + "end": 14600.24, + "probability": 0.7743 + }, + { + "start": 14600.46, + "end": 14602.08, + "probability": 0.7969 + }, + { + "start": 14603.45, + "end": 14606.8, + "probability": 0.8258 + }, + { + "start": 14606.82, + "end": 14607.38, + "probability": 0.7249 + }, + { + "start": 14608.04, + "end": 14609.0, + "probability": 0.7033 + }, + { + "start": 14609.86, + "end": 14610.4, + "probability": 0.8306 + }, + { + "start": 14610.48, + "end": 14611.28, + "probability": 0.9207 + }, + { + "start": 14611.36, + "end": 14616.14, + "probability": 0.9926 + }, + { + "start": 14616.76, + "end": 14618.96, + "probability": 0.9932 + }, + { + "start": 14619.78, + "end": 14623.88, + "probability": 0.9861 + }, + { + "start": 14625.56, + "end": 14627.25, + "probability": 0.5913 + }, + { + "start": 14628.6, + "end": 14631.44, + "probability": 0.9762 + }, + { + "start": 14631.44, + "end": 14635.26, + "probability": 0.9974 + }, + { + "start": 14636.06, + "end": 14637.9, + "probability": 0.9756 + }, + { + "start": 14639.1, + "end": 14642.74, + "probability": 0.995 + }, + { + "start": 14643.26, + "end": 14645.66, + "probability": 0.7679 + }, + { + "start": 14646.74, + "end": 14650.16, + "probability": 0.684 + }, + { + "start": 14650.76, + "end": 14656.34, + "probability": 0.9866 + }, + { + "start": 14657.2, + "end": 14659.88, + "probability": 0.9925 + }, + { + "start": 14660.5, + "end": 14661.74, + "probability": 0.9326 + }, + { + "start": 14662.7, + "end": 14665.4, + "probability": 0.9978 + }, + { + "start": 14666.06, + "end": 14667.44, + "probability": 0.9862 + }, + { + "start": 14668.02, + "end": 14668.68, + "probability": 0.8023 + }, + { + "start": 14670.25, + "end": 14671.66, + "probability": 0.4882 + }, + { + "start": 14671.66, + "end": 14672.1, + "probability": 0.2529 + }, + { + "start": 14677.9, + "end": 14678.18, + "probability": 0.3379 + }, + { + "start": 14678.24, + "end": 14681.16, + "probability": 0.8518 + }, + { + "start": 14681.2, + "end": 14682.96, + "probability": 0.7698 + }, + { + "start": 14683.26, + "end": 14684.1, + "probability": 0.6526 + }, + { + "start": 14684.32, + "end": 14684.54, + "probability": 0.7441 + }, + { + "start": 14684.8, + "end": 14687.22, + "probability": 0.9906 + }, + { + "start": 14688.02, + "end": 14692.48, + "probability": 0.9738 + }, + { + "start": 14693.4, + "end": 14694.86, + "probability": 0.7345 + }, + { + "start": 14695.42, + "end": 14695.78, + "probability": 0.6901 + }, + { + "start": 14696.6, + "end": 14698.72, + "probability": 0.7568 + }, + { + "start": 14699.42, + "end": 14701.36, + "probability": 0.9873 + }, + { + "start": 14702.02, + "end": 14705.3, + "probability": 0.9904 + }, + { + "start": 14706.0, + "end": 14709.98, + "probability": 0.9441 + }, + { + "start": 14711.16, + "end": 14711.32, + "probability": 0.4673 + }, + { + "start": 14711.42, + "end": 14716.5, + "probability": 0.9824 + }, + { + "start": 14717.1, + "end": 14720.32, + "probability": 0.8993 + }, + { + "start": 14721.12, + "end": 14723.7, + "probability": 0.9876 + }, + { + "start": 14724.18, + "end": 14728.48, + "probability": 0.991 + }, + { + "start": 14728.48, + "end": 14733.14, + "probability": 0.9945 + }, + { + "start": 14733.98, + "end": 14735.22, + "probability": 0.7659 + }, + { + "start": 14735.78, + "end": 14738.9, + "probability": 0.926 + }, + { + "start": 14739.7, + "end": 14742.99, + "probability": 0.6317 + }, + { + "start": 14743.84, + "end": 14747.44, + "probability": 0.9448 + }, + { + "start": 14748.66, + "end": 14753.2, + "probability": 0.9818 + }, + { + "start": 14753.82, + "end": 14755.34, + "probability": 0.8498 + }, + { + "start": 14755.46, + "end": 14757.6, + "probability": 0.8631 + }, + { + "start": 14758.22, + "end": 14759.68, + "probability": 0.669 + }, + { + "start": 14759.76, + "end": 14762.62, + "probability": 0.9684 + }, + { + "start": 14763.16, + "end": 14766.57, + "probability": 0.9823 + }, + { + "start": 14767.34, + "end": 14768.2, + "probability": 0.9949 + }, + { + "start": 14770.38, + "end": 14771.22, + "probability": 0.9207 + }, + { + "start": 14771.74, + "end": 14772.18, + "probability": 0.7038 + }, + { + "start": 14772.96, + "end": 14775.53, + "probability": 0.8727 + }, + { + "start": 14776.4, + "end": 14778.84, + "probability": 0.2431 + }, + { + "start": 14779.1, + "end": 14781.77, + "probability": 0.8224 + }, + { + "start": 14784.84, + "end": 14788.8, + "probability": 0.6487 + }, + { + "start": 14788.8, + "end": 14792.44, + "probability": 0.9612 + }, + { + "start": 14793.06, + "end": 14794.48, + "probability": 0.8689 + }, + { + "start": 14795.06, + "end": 14797.04, + "probability": 0.9378 + }, + { + "start": 14797.88, + "end": 14801.02, + "probability": 0.7226 + }, + { + "start": 14801.56, + "end": 14802.54, + "probability": 0.4716 + }, + { + "start": 14802.62, + "end": 14807.42, + "probability": 0.9299 + }, + { + "start": 14807.42, + "end": 14810.98, + "probability": 0.995 + }, + { + "start": 14811.12, + "end": 14816.04, + "probability": 0.9739 + }, + { + "start": 14817.48, + "end": 14820.2, + "probability": 0.7592 + }, + { + "start": 14821.32, + "end": 14822.82, + "probability": 0.9835 + }, + { + "start": 14823.8, + "end": 14828.3, + "probability": 0.9656 + }, + { + "start": 14829.68, + "end": 14831.8, + "probability": 0.7369 + }, + { + "start": 14832.68, + "end": 14840.16, + "probability": 0.9824 + }, + { + "start": 14841.02, + "end": 14842.08, + "probability": 0.7531 + }, + { + "start": 14842.66, + "end": 14848.42, + "probability": 0.9985 + }, + { + "start": 14848.9, + "end": 14851.8, + "probability": 0.9166 + }, + { + "start": 14852.3, + "end": 14853.94, + "probability": 0.9338 + }, + { + "start": 14854.38, + "end": 14855.46, + "probability": 0.6277 + }, + { + "start": 14856.34, + "end": 14859.0, + "probability": 0.9331 + }, + { + "start": 14859.58, + "end": 14862.1, + "probability": 0.9417 + }, + { + "start": 14862.68, + "end": 14864.84, + "probability": 0.9054 + }, + { + "start": 14865.34, + "end": 14868.36, + "probability": 0.9795 + }, + { + "start": 14870.36, + "end": 14870.44, + "probability": 0.0067 + }, + { + "start": 14870.44, + "end": 14875.7, + "probability": 0.9602 + }, + { + "start": 14876.3, + "end": 14880.74, + "probability": 0.7288 + }, + { + "start": 14882.0, + "end": 14884.56, + "probability": 0.9596 + }, + { + "start": 14885.18, + "end": 14887.72, + "probability": 0.9746 + }, + { + "start": 14888.28, + "end": 14893.76, + "probability": 0.9915 + }, + { + "start": 14893.78, + "end": 14899.82, + "probability": 0.9922 + }, + { + "start": 14900.16, + "end": 14900.16, + "probability": 0.0031 + }, + { + "start": 14900.16, + "end": 14903.46, + "probability": 0.9559 + }, + { + "start": 14904.16, + "end": 14905.32, + "probability": 0.7309 + }, + { + "start": 14905.78, + "end": 14907.28, + "probability": 0.7899 + }, + { + "start": 14907.38, + "end": 14912.22, + "probability": 0.9256 + }, + { + "start": 14912.94, + "end": 14917.32, + "probability": 0.9832 + }, + { + "start": 14917.98, + "end": 14921.36, + "probability": 0.99 + }, + { + "start": 14922.08, + "end": 14929.16, + "probability": 0.9223 + }, + { + "start": 14930.14, + "end": 14931.56, + "probability": 0.651 + }, + { + "start": 14932.2, + "end": 14935.4, + "probability": 0.939 + }, + { + "start": 14935.4, + "end": 14939.66, + "probability": 0.9902 + }, + { + "start": 14939.86, + "end": 14941.8, + "probability": 0.6923 + }, + { + "start": 14942.26, + "end": 14944.2, + "probability": 0.5136 + }, + { + "start": 14944.2, + "end": 14947.26, + "probability": 0.8825 + }, + { + "start": 14948.68, + "end": 14951.98, + "probability": 0.6773 + }, + { + "start": 14952.7, + "end": 14954.34, + "probability": 0.6893 + }, + { + "start": 14954.4, + "end": 14955.33, + "probability": 0.8914 + }, + { + "start": 14955.82, + "end": 14959.54, + "probability": 0.9928 + }, + { + "start": 14960.46, + "end": 14962.74, + "probability": 0.7542 + }, + { + "start": 14963.66, + "end": 14965.42, + "probability": 0.9262 + }, + { + "start": 14965.48, + "end": 14966.72, + "probability": 0.6485 + }, + { + "start": 14966.8, + "end": 14969.96, + "probability": 0.954 + }, + { + "start": 14970.72, + "end": 14971.22, + "probability": 0.3921 + }, + { + "start": 14971.88, + "end": 14975.72, + "probability": 0.9989 + }, + { + "start": 14976.88, + "end": 14977.78, + "probability": 0.9861 + }, + { + "start": 14977.92, + "end": 14981.0, + "probability": 0.8729 + }, + { + "start": 14981.82, + "end": 14984.29, + "probability": 0.9972 + }, + { + "start": 14985.12, + "end": 14986.16, + "probability": 0.8039 + }, + { + "start": 14986.72, + "end": 14990.2, + "probability": 0.9601 + }, + { + "start": 14991.52, + "end": 14993.44, + "probability": 0.7128 + }, + { + "start": 14995.74, + "end": 14996.26, + "probability": 0.312 + }, + { + "start": 14996.62, + "end": 15001.6, + "probability": 0.9741 + }, + { + "start": 15002.02, + "end": 15007.14, + "probability": 0.8853 + }, + { + "start": 15007.5, + "end": 15007.93, + "probability": 0.9966 + }, + { + "start": 15009.08, + "end": 15010.8, + "probability": 0.9227 + }, + { + "start": 15011.44, + "end": 15015.14, + "probability": 0.995 + }, + { + "start": 15015.14, + "end": 15018.48, + "probability": 0.9109 + }, + { + "start": 15019.18, + "end": 15020.3, + "probability": 0.7849 + }, + { + "start": 15021.04, + "end": 15022.32, + "probability": 0.7905 + }, + { + "start": 15022.58, + "end": 15027.86, + "probability": 0.9435 + }, + { + "start": 15027.86, + "end": 15031.8, + "probability": 0.9379 + }, + { + "start": 15032.7, + "end": 15034.4, + "probability": 0.8399 + }, + { + "start": 15035.14, + "end": 15042.64, + "probability": 0.9786 + }, + { + "start": 15043.5, + "end": 15047.26, + "probability": 0.9449 + }, + { + "start": 15047.9, + "end": 15048.36, + "probability": 0.9139 + }, + { + "start": 15049.82, + "end": 15053.42, + "probability": 0.0807 + }, + { + "start": 15053.42, + "end": 15053.42, + "probability": 0.0825 + }, + { + "start": 15053.42, + "end": 15054.48, + "probability": 0.4738 + }, + { + "start": 15056.06, + "end": 15057.94, + "probability": 0.6844 + }, + { + "start": 15058.28, + "end": 15063.14, + "probability": 0.8586 + }, + { + "start": 15063.5, + "end": 15064.5, + "probability": 0.7985 + }, + { + "start": 15064.62, + "end": 15066.58, + "probability": 0.0992 + }, + { + "start": 15073.86, + "end": 15074.68, + "probability": 0.0133 + }, + { + "start": 15077.24, + "end": 15080.04, + "probability": 0.6661 + }, + { + "start": 15082.04, + "end": 15084.34, + "probability": 0.7921 + }, + { + "start": 15085.92, + "end": 15087.2, + "probability": 0.9547 + }, + { + "start": 15088.56, + "end": 15090.88, + "probability": 0.7799 + }, + { + "start": 15091.94, + "end": 15094.38, + "probability": 0.9323 + }, + { + "start": 15096.74, + "end": 15098.32, + "probability": 0.9746 + }, + { + "start": 15099.32, + "end": 15103.32, + "probability": 0.9077 + }, + { + "start": 15105.96, + "end": 15110.52, + "probability": 0.9782 + }, + { + "start": 15111.08, + "end": 15113.42, + "probability": 0.536 + }, + { + "start": 15114.32, + "end": 15116.5, + "probability": 0.8847 + }, + { + "start": 15117.48, + "end": 15120.36, + "probability": 0.9884 + }, + { + "start": 15121.26, + "end": 15124.24, + "probability": 0.9491 + }, + { + "start": 15127.4, + "end": 15129.94, + "probability": 0.7099 + }, + { + "start": 15131.44, + "end": 15134.22, + "probability": 0.9835 + }, + { + "start": 15135.12, + "end": 15135.97, + "probability": 0.9192 + }, + { + "start": 15136.72, + "end": 15137.34, + "probability": 0.716 + }, + { + "start": 15137.52, + "end": 15141.66, + "probability": 0.9318 + }, + { + "start": 15142.84, + "end": 15143.22, + "probability": 0.8983 + }, + { + "start": 15143.94, + "end": 15144.68, + "probability": 0.8948 + }, + { + "start": 15145.52, + "end": 15148.62, + "probability": 0.998 + }, + { + "start": 15149.9, + "end": 15150.56, + "probability": 0.4706 + }, + { + "start": 15151.58, + "end": 15152.8, + "probability": 0.9034 + }, + { + "start": 15154.04, + "end": 15155.92, + "probability": 0.9895 + }, + { + "start": 15156.7, + "end": 15157.82, + "probability": 0.9822 + }, + { + "start": 15158.6, + "end": 15162.1, + "probability": 0.9612 + }, + { + "start": 15164.82, + "end": 15165.38, + "probability": 0.9523 + }, + { + "start": 15165.98, + "end": 15168.28, + "probability": 0.9989 + }, + { + "start": 15169.02, + "end": 15171.68, + "probability": 0.8803 + }, + { + "start": 15172.7, + "end": 15176.76, + "probability": 0.9952 + }, + { + "start": 15177.86, + "end": 15180.26, + "probability": 0.707 + }, + { + "start": 15181.22, + "end": 15184.76, + "probability": 0.9697 + }, + { + "start": 15185.32, + "end": 15189.3, + "probability": 0.9932 + }, + { + "start": 15189.3, + "end": 15192.54, + "probability": 0.9973 + }, + { + "start": 15192.94, + "end": 15193.64, + "probability": 0.779 + }, + { + "start": 15194.36, + "end": 15197.84, + "probability": 0.9282 + }, + { + "start": 15198.56, + "end": 15201.44, + "probability": 0.9586 + }, + { + "start": 15202.18, + "end": 15202.88, + "probability": 0.8198 + }, + { + "start": 15204.16, + "end": 15204.86, + "probability": 0.9427 + }, + { + "start": 15205.74, + "end": 15209.6, + "probability": 0.9929 + }, + { + "start": 15209.6, + "end": 15214.18, + "probability": 0.9865 + }, + { + "start": 15215.2, + "end": 15216.48, + "probability": 0.8182 + }, + { + "start": 15217.22, + "end": 15219.56, + "probability": 0.8953 + }, + { + "start": 15219.86, + "end": 15221.3, + "probability": 0.9445 + }, + { + "start": 15221.98, + "end": 15223.4, + "probability": 0.9759 + }, + { + "start": 15224.58, + "end": 15226.98, + "probability": 0.9815 + }, + { + "start": 15227.74, + "end": 15231.94, + "probability": 0.9944 + }, + { + "start": 15232.82, + "end": 15233.38, + "probability": 0.6807 + }, + { + "start": 15233.96, + "end": 15236.42, + "probability": 0.9802 + }, + { + "start": 15236.96, + "end": 15240.28, + "probability": 0.9987 + }, + { + "start": 15240.28, + "end": 15245.02, + "probability": 0.9242 + }, + { + "start": 15246.72, + "end": 15248.66, + "probability": 0.8965 + }, + { + "start": 15249.44, + "end": 15252.4, + "probability": 0.9849 + }, + { + "start": 15252.4, + "end": 15256.4, + "probability": 0.9985 + }, + { + "start": 15257.24, + "end": 15262.48, + "probability": 0.9742 + }, + { + "start": 15263.74, + "end": 15265.48, + "probability": 0.6953 + }, + { + "start": 15265.5, + "end": 15265.94, + "probability": 0.5124 + }, + { + "start": 15266.0, + "end": 15267.78, + "probability": 0.8293 + }, + { + "start": 15268.22, + "end": 15268.98, + "probability": 0.9725 + }, + { + "start": 15270.1, + "end": 15271.74, + "probability": 0.9884 + }, + { + "start": 15271.84, + "end": 15273.62, + "probability": 0.7514 + }, + { + "start": 15273.74, + "end": 15274.06, + "probability": 0.8952 + }, + { + "start": 15274.62, + "end": 15275.46, + "probability": 0.8864 + }, + { + "start": 15276.12, + "end": 15276.64, + "probability": 0.7992 + }, + { + "start": 15277.64, + "end": 15281.66, + "probability": 0.91 + }, + { + "start": 15283.06, + "end": 15283.94, + "probability": 0.9041 + }, + { + "start": 15284.56, + "end": 15286.72, + "probability": 0.9954 + }, + { + "start": 15287.26, + "end": 15290.02, + "probability": 0.9937 + }, + { + "start": 15290.66, + "end": 15294.76, + "probability": 0.9688 + }, + { + "start": 15295.62, + "end": 15299.18, + "probability": 0.888 + }, + { + "start": 15299.34, + "end": 15300.2, + "probability": 0.7866 + }, + { + "start": 15300.88, + "end": 15301.73, + "probability": 0.9515 + }, + { + "start": 15302.48, + "end": 15303.46, + "probability": 0.9346 + }, + { + "start": 15303.92, + "end": 15305.46, + "probability": 0.8483 + }, + { + "start": 15306.38, + "end": 15311.92, + "probability": 0.9299 + }, + { + "start": 15313.44, + "end": 15314.86, + "probability": 0.8299 + }, + { + "start": 15316.26, + "end": 15316.96, + "probability": 0.867 + }, + { + "start": 15318.06, + "end": 15320.42, + "probability": 0.842 + }, + { + "start": 15321.28, + "end": 15321.94, + "probability": 0.4701 + }, + { + "start": 15322.82, + "end": 15324.82, + "probability": 0.969 + }, + { + "start": 15325.9, + "end": 15330.62, + "probability": 0.9974 + }, + { + "start": 15331.66, + "end": 15333.26, + "probability": 0.8598 + }, + { + "start": 15335.6, + "end": 15338.92, + "probability": 0.9889 + }, + { + "start": 15338.92, + "end": 15342.72, + "probability": 0.9867 + }, + { + "start": 15343.88, + "end": 15346.78, + "probability": 0.9389 + }, + { + "start": 15346.78, + "end": 15352.04, + "probability": 0.8635 + }, + { + "start": 15353.0, + "end": 15353.98, + "probability": 0.7743 + }, + { + "start": 15354.62, + "end": 15360.66, + "probability": 0.9838 + }, + { + "start": 15361.84, + "end": 15362.56, + "probability": 0.5954 + }, + { + "start": 15364.32, + "end": 15366.3, + "probability": 0.9981 + }, + { + "start": 15367.64, + "end": 15371.24, + "probability": 0.998 + }, + { + "start": 15372.06, + "end": 15375.64, + "probability": 0.9951 + }, + { + "start": 15377.82, + "end": 15382.86, + "probability": 0.9907 + }, + { + "start": 15383.72, + "end": 15387.76, + "probability": 0.8962 + }, + { + "start": 15389.94, + "end": 15390.32, + "probability": 0.75 + }, + { + "start": 15391.48, + "end": 15396.82, + "probability": 0.994 + }, + { + "start": 15397.9, + "end": 15402.2, + "probability": 0.9965 + }, + { + "start": 15403.02, + "end": 15405.28, + "probability": 0.9668 + }, + { + "start": 15405.94, + "end": 15407.08, + "probability": 0.9399 + }, + { + "start": 15407.68, + "end": 15409.82, + "probability": 0.9841 + }, + { + "start": 15410.3, + "end": 15413.48, + "probability": 0.9882 + }, + { + "start": 15415.14, + "end": 15418.4, + "probability": 0.9897 + }, + { + "start": 15418.8, + "end": 15421.9, + "probability": 0.9975 + }, + { + "start": 15422.68, + "end": 15428.2, + "probability": 0.9779 + }, + { + "start": 15429.56, + "end": 15431.26, + "probability": 0.9267 + }, + { + "start": 15431.76, + "end": 15431.76, + "probability": 0.6982 + }, + { + "start": 15434.68, + "end": 15438.44, + "probability": 0.9797 + }, + { + "start": 15439.58, + "end": 15441.08, + "probability": 0.9715 + }, + { + "start": 15442.62, + "end": 15445.14, + "probability": 0.9978 + }, + { + "start": 15445.14, + "end": 15448.0, + "probability": 0.9985 + }, + { + "start": 15448.9, + "end": 15450.76, + "probability": 0.6996 + }, + { + "start": 15451.02, + "end": 15453.54, + "probability": 0.866 + }, + { + "start": 15454.3, + "end": 15456.98, + "probability": 0.8362 + }, + { + "start": 15458.04, + "end": 15459.82, + "probability": 0.6575 + }, + { + "start": 15461.04, + "end": 15462.58, + "probability": 0.9892 + }, + { + "start": 15464.66, + "end": 15467.84, + "probability": 0.985 + }, + { + "start": 15468.88, + "end": 15473.05, + "probability": 0.9985 + }, + { + "start": 15473.44, + "end": 15477.9, + "probability": 0.9987 + }, + { + "start": 15477.9, + "end": 15483.78, + "probability": 0.9955 + }, + { + "start": 15486.04, + "end": 15487.7, + "probability": 0.6789 + }, + { + "start": 15488.44, + "end": 15496.16, + "probability": 0.9811 + }, + { + "start": 15497.76, + "end": 15502.44, + "probability": 0.9784 + }, + { + "start": 15503.72, + "end": 15504.56, + "probability": 0.6291 + }, + { + "start": 15505.48, + "end": 15508.84, + "probability": 0.981 + }, + { + "start": 15510.62, + "end": 15512.36, + "probability": 0.8892 + }, + { + "start": 15513.18, + "end": 15515.94, + "probability": 0.6987 + }, + { + "start": 15516.88, + "end": 15518.4, + "probability": 0.9932 + }, + { + "start": 15519.34, + "end": 15522.62, + "probability": 0.9759 + }, + { + "start": 15524.58, + "end": 15527.72, + "probability": 0.9507 + }, + { + "start": 15528.38, + "end": 15532.9, + "probability": 0.9963 + }, + { + "start": 15533.62, + "end": 15537.24, + "probability": 0.9814 + }, + { + "start": 15539.86, + "end": 15540.58, + "probability": 0.7446 + }, + { + "start": 15541.28, + "end": 15543.38, + "probability": 0.9984 + }, + { + "start": 15543.44, + "end": 15543.94, + "probability": 0.7568 + }, + { + "start": 15544.02, + "end": 15544.84, + "probability": 0.9228 + }, + { + "start": 15546.72, + "end": 15551.24, + "probability": 0.9955 + }, + { + "start": 15551.48, + "end": 15552.46, + "probability": 0.5053 + }, + { + "start": 15554.32, + "end": 15557.78, + "probability": 0.9897 + }, + { + "start": 15558.92, + "end": 15561.26, + "probability": 0.9922 + }, + { + "start": 15561.36, + "end": 15564.08, + "probability": 0.8773 + }, + { + "start": 15564.7, + "end": 15565.74, + "probability": 0.8987 + }, + { + "start": 15566.44, + "end": 15571.44, + "probability": 0.9785 + }, + { + "start": 15572.34, + "end": 15574.76, + "probability": 0.8563 + }, + { + "start": 15576.06, + "end": 15580.62, + "probability": 0.9348 + }, + { + "start": 15582.26, + "end": 15584.72, + "probability": 0.7261 + }, + { + "start": 15585.62, + "end": 15587.1, + "probability": 0.6931 + }, + { + "start": 15588.02, + "end": 15592.92, + "probability": 0.974 + }, + { + "start": 15593.74, + "end": 15599.66, + "probability": 0.9982 + }, + { + "start": 15601.52, + "end": 15604.4, + "probability": 0.7749 + }, + { + "start": 15604.98, + "end": 15608.18, + "probability": 0.9985 + }, + { + "start": 15612.12, + "end": 15612.76, + "probability": 0.8981 + }, + { + "start": 15613.4, + "end": 15620.14, + "probability": 0.9805 + }, + { + "start": 15623.95, + "end": 15627.72, + "probability": 0.8889 + }, + { + "start": 15627.82, + "end": 15628.24, + "probability": 0.709 + }, + { + "start": 15628.28, + "end": 15629.48, + "probability": 0.9115 + }, + { + "start": 15630.52, + "end": 15635.6, + "probability": 0.9781 + }, + { + "start": 15636.18, + "end": 15640.32, + "probability": 0.9889 + }, + { + "start": 15641.46, + "end": 15641.66, + "probability": 0.2708 + }, + { + "start": 15641.7, + "end": 15646.76, + "probability": 0.7209 + }, + { + "start": 15646.88, + "end": 15647.44, + "probability": 0.2618 + }, + { + "start": 15648.24, + "end": 15650.92, + "probability": 0.906 + }, + { + "start": 15651.0, + "end": 15652.0, + "probability": 0.7435 + }, + { + "start": 15652.04, + "end": 15654.32, + "probability": 0.7829 + }, + { + "start": 15654.82, + "end": 15656.04, + "probability": 0.7252 + }, + { + "start": 15656.5, + "end": 15660.38, + "probability": 0.9862 + }, + { + "start": 15660.88, + "end": 15664.22, + "probability": 0.9685 + }, + { + "start": 15664.7, + "end": 15667.72, + "probability": 0.9806 + }, + { + "start": 15668.56, + "end": 15671.98, + "probability": 0.968 + }, + { + "start": 15672.4, + "end": 15672.66, + "probability": 0.8447 + }, + { + "start": 15672.74, + "end": 15675.16, + "probability": 0.9855 + }, + { + "start": 15676.98, + "end": 15679.72, + "probability": 0.985 + }, + { + "start": 15679.72, + "end": 15682.66, + "probability": 0.989 + }, + { + "start": 15683.4, + "end": 15690.22, + "probability": 0.9971 + }, + { + "start": 15690.72, + "end": 15691.0, + "probability": 0.6337 + }, + { + "start": 15691.52, + "end": 15693.58, + "probability": 0.8485 + }, + { + "start": 15694.06, + "end": 15698.9, + "probability": 0.9872 + }, + { + "start": 15699.92, + "end": 15700.9, + "probability": 0.9625 + }, + { + "start": 15701.66, + "end": 15702.43, + "probability": 0.8079 + }, + { + "start": 15703.06, + "end": 15708.54, + "probability": 0.8662 + }, + { + "start": 15709.2, + "end": 15713.02, + "probability": 0.9873 + }, + { + "start": 15714.76, + "end": 15716.36, + "probability": 0.9788 + }, + { + "start": 15717.32, + "end": 15722.58, + "probability": 0.9961 + }, + { + "start": 15723.3, + "end": 15726.56, + "probability": 0.991 + }, + { + "start": 15727.62, + "end": 15729.53, + "probability": 0.9645 + }, + { + "start": 15731.28, + "end": 15731.98, + "probability": 0.6919 + }, + { + "start": 15732.86, + "end": 15737.34, + "probability": 0.9963 + }, + { + "start": 15737.48, + "end": 15738.22, + "probability": 0.6851 + }, + { + "start": 15739.0, + "end": 15741.16, + "probability": 0.7691 + }, + { + "start": 15741.92, + "end": 15743.56, + "probability": 0.9898 + }, + { + "start": 15743.76, + "end": 15746.38, + "probability": 0.9845 + }, + { + "start": 15747.66, + "end": 15751.7, + "probability": 0.9716 + }, + { + "start": 15752.18, + "end": 15754.14, + "probability": 0.9941 + }, + { + "start": 15754.2, + "end": 15755.62, + "probability": 0.9465 + }, + { + "start": 15756.2, + "end": 15758.82, + "probability": 0.6581 + }, + { + "start": 15760.02, + "end": 15764.96, + "probability": 0.9917 + }, + { + "start": 15765.64, + "end": 15769.92, + "probability": 0.8356 + }, + { + "start": 15770.48, + "end": 15772.74, + "probability": 0.9502 + }, + { + "start": 15772.99, + "end": 15775.98, + "probability": 0.9503 + }, + { + "start": 15776.06, + "end": 15778.72, + "probability": 0.9944 + }, + { + "start": 15779.48, + "end": 15779.94, + "probability": 0.9622 + }, + { + "start": 15780.3, + "end": 15781.48, + "probability": 0.9857 + }, + { + "start": 15781.72, + "end": 15782.22, + "probability": 0.3538 + }, + { + "start": 15782.3, + "end": 15782.9, + "probability": 0.951 + }, + { + "start": 15782.94, + "end": 15783.86, + "probability": 0.824 + }, + { + "start": 15783.92, + "end": 15784.16, + "probability": 0.8853 + }, + { + "start": 15785.28, + "end": 15785.81, + "probability": 0.3034 + }, + { + "start": 15787.06, + "end": 15787.5, + "probability": 0.957 + }, + { + "start": 15789.0, + "end": 15790.06, + "probability": 0.6352 + }, + { + "start": 15790.64, + "end": 15790.98, + "probability": 0.98 + }, + { + "start": 15791.92, + "end": 15792.54, + "probability": 0.8631 + }, + { + "start": 15793.26, + "end": 15793.62, + "probability": 0.9939 + }, + { + "start": 15794.76, + "end": 15795.48, + "probability": 0.7549 + }, + { + "start": 15796.18, + "end": 15796.44, + "probability": 0.6726 + }, + { + "start": 15797.54, + "end": 15798.18, + "probability": 0.5395 + }, + { + "start": 15801.76, + "end": 15802.58, + "probability": 0.9253 + }, + { + "start": 15804.14, + "end": 15804.98, + "probability": 0.9396 + }, + { + "start": 15806.01, + "end": 15808.78, + "probability": 0.7794 + }, + { + "start": 15810.1, + "end": 15810.76, + "probability": 0.6321 + }, + { + "start": 15811.36, + "end": 15812.18, + "probability": 0.7331 + }, + { + "start": 15813.34, + "end": 15813.86, + "probability": 0.9948 + }, + { + "start": 15815.6, + "end": 15816.44, + "probability": 0.8403 + }, + { + "start": 15817.58, + "end": 15819.9, + "probability": 0.9824 + }, + { + "start": 15823.18, + "end": 15823.54, + "probability": 0.9901 + }, + { + "start": 15825.7, + "end": 15826.54, + "probability": 0.6019 + }, + { + "start": 15827.64, + "end": 15827.92, + "probability": 0.6919 + }, + { + "start": 15829.38, + "end": 15830.34, + "probability": 0.9621 + }, + { + "start": 15831.58, + "end": 15832.76, + "probability": 0.957 + }, + { + "start": 15833.78, + "end": 15834.5, + "probability": 0.958 + }, + { + "start": 15836.37, + "end": 15838.56, + "probability": 0.9773 + }, + { + "start": 15844.5, + "end": 15845.28, + "probability": 0.8592 + }, + { + "start": 15846.92, + "end": 15847.72, + "probability": 0.8592 + }, + { + "start": 15850.24, + "end": 15850.62, + "probability": 0.7715 + }, + { + "start": 15852.84, + "end": 15853.56, + "probability": 0.9242 + }, + { + "start": 15854.96, + "end": 15855.3, + "probability": 0.8908 + }, + { + "start": 15856.86, + "end": 15857.54, + "probability": 0.9662 + }, + { + "start": 15859.18, + "end": 15860.64, + "probability": 0.9915 + }, + { + "start": 15861.42, + "end": 15862.76, + "probability": 0.9421 + }, + { + "start": 15864.56, + "end": 15867.12, + "probability": 0.5133 + }, + { + "start": 15868.04, + "end": 15868.38, + "probability": 0.068 + }, + { + "start": 15881.3, + "end": 15882.1, + "probability": 0.7039 + }, + { + "start": 15883.2, + "end": 15885.56, + "probability": 0.9722 + }, + { + "start": 15886.2, + "end": 15886.94, + "probability": 0.8962 + }, + { + "start": 15887.8, + "end": 15888.7, + "probability": 0.9548 + }, + { + "start": 15889.78, + "end": 15890.66, + "probability": 0.9809 + }, + { + "start": 15891.7, + "end": 15892.08, + "probability": 0.7708 + }, + { + "start": 15893.86, + "end": 15894.7, + "probability": 0.9679 + }, + { + "start": 15895.28, + "end": 15897.8, + "probability": 0.981 + }, + { + "start": 15898.96, + "end": 15899.7, + "probability": 0.99 + }, + { + "start": 15900.72, + "end": 15902.16, + "probability": 0.9868 + }, + { + "start": 15902.84, + "end": 15903.66, + "probability": 0.9545 + }, + { + "start": 15904.7, + "end": 15905.1, + "probability": 0.9977 + }, + { + "start": 15906.56, + "end": 15907.38, + "probability": 0.959 + }, + { + "start": 15908.24, + "end": 15908.32, + "probability": 0.3272 + }, + { + "start": 15912.78, + "end": 15913.82, + "probability": 0.3061 + }, + { + "start": 15914.64, + "end": 15915.02, + "probability": 0.5133 + }, + { + "start": 15916.36, + "end": 15917.22, + "probability": 0.8105 + }, + { + "start": 15920.32, + "end": 15921.9, + "probability": 0.9824 + }, + { + "start": 15922.5, + "end": 15923.16, + "probability": 0.7794 + }, + { + "start": 15924.37, + "end": 15926.22, + "probability": 0.9441 + }, + { + "start": 15927.34, + "end": 15929.5, + "probability": 0.938 + }, + { + "start": 15930.8, + "end": 15933.44, + "probability": 0.9551 + }, + { + "start": 15936.82, + "end": 15937.36, + "probability": 0.8729 + }, + { + "start": 15941.06, + "end": 15941.86, + "probability": 0.8398 + }, + { + "start": 15944.48, + "end": 15945.28, + "probability": 0.8952 + }, + { + "start": 15946.52, + "end": 15947.54, + "probability": 0.7977 + }, + { + "start": 15948.7, + "end": 15949.0, + "probability": 0.9139 + }, + { + "start": 15950.68, + "end": 15951.46, + "probability": 0.9427 + }, + { + "start": 15952.12, + "end": 15952.4, + "probability": 0.7803 + }, + { + "start": 15953.76, + "end": 15954.9, + "probability": 0.7234 + }, + { + "start": 15956.28, + "end": 15957.76, + "probability": 0.8602 + }, + { + "start": 15959.67, + "end": 15961.54, + "probability": 0.9797 + }, + { + "start": 15962.61, + "end": 15965.24, + "probability": 0.9895 + }, + { + "start": 15966.48, + "end": 15967.42, + "probability": 0.0646 + }, + { + "start": 15969.56, + "end": 15972.96, + "probability": 0.2896 + }, + { + "start": 15974.42, + "end": 15975.54, + "probability": 0.7183 + }, + { + "start": 15976.46, + "end": 15976.76, + "probability": 0.8685 + }, + { + "start": 15978.64, + "end": 15979.36, + "probability": 0.8622 + }, + { + "start": 15981.04, + "end": 15984.16, + "probability": 0.9869 + }, + { + "start": 15985.33, + "end": 15988.28, + "probability": 0.9563 + }, + { + "start": 15989.82, + "end": 15990.24, + "probability": 0.9939 + }, + { + "start": 15991.86, + "end": 15992.88, + "probability": 0.9925 + }, + { + "start": 15993.65, + "end": 15996.18, + "probability": 0.9829 + }, + { + "start": 15997.28, + "end": 15997.62, + "probability": 0.9797 + }, + { + "start": 15999.88, + "end": 16001.04, + "probability": 0.6981 + }, + { + "start": 16001.9, + "end": 16002.16, + "probability": 0.7588 + }, + { + "start": 16004.16, + "end": 16004.58, + "probability": 0.6115 + }, + { + "start": 16005.52, + "end": 16006.0, + "probability": 0.9388 + }, + { + "start": 16007.4, + "end": 16008.54, + "probability": 0.8937 + }, + { + "start": 16010.15, + "end": 16012.12, + "probability": 0.9093 + }, + { + "start": 16013.28, + "end": 16014.68, + "probability": 0.9945 + }, + { + "start": 16016.24, + "end": 16016.7, + "probability": 0.9116 + }, + { + "start": 16018.68, + "end": 16020.96, + "probability": 0.984 + }, + { + "start": 16021.66, + "end": 16022.46, + "probability": 0.9084 + }, + { + "start": 16023.46, + "end": 16023.9, + "probability": 0.8262 + }, + { + "start": 16025.68, + "end": 16026.26, + "probability": 0.6533 + }, + { + "start": 16027.14, + "end": 16027.42, + "probability": 0.9846 + }, + { + "start": 16028.46, + "end": 16029.32, + "probability": 0.8964 + }, + { + "start": 16031.72, + "end": 16032.5, + "probability": 0.814 + }, + { + "start": 16033.24, + "end": 16033.56, + "probability": 0.8757 + }, + { + "start": 16034.84, + "end": 16035.44, + "probability": 0.957 + }, + { + "start": 16036.8, + "end": 16038.88, + "probability": 0.9778 + }, + { + "start": 16040.49, + "end": 16042.08, + "probability": 0.9822 + }, + { + "start": 16044.04, + "end": 16044.54, + "probability": 0.9769 + }, + { + "start": 16047.18, + "end": 16051.16, + "probability": 0.9915 + }, + { + "start": 16052.24, + "end": 16052.66, + "probability": 0.988 + }, + { + "start": 16053.9, + "end": 16054.62, + "probability": 0.9658 + }, + { + "start": 16056.02, + "end": 16056.42, + "probability": 0.9951 + }, + { + "start": 16060.7, + "end": 16061.38, + "probability": 0.7767 + }, + { + "start": 16064.38, + "end": 16064.88, + "probability": 0.6855 + }, + { + "start": 16066.6, + "end": 16067.4, + "probability": 0.7585 + }, + { + "start": 16068.56, + "end": 16070.82, + "probability": 0.9658 + }, + { + "start": 16072.44, + "end": 16073.72, + "probability": 0.938 + }, + { + "start": 16074.96, + "end": 16075.34, + "probability": 0.9629 + }, + { + "start": 16076.62, + "end": 16078.28, + "probability": 0.8267 + }, + { + "start": 16079.32, + "end": 16079.74, + "probability": 0.9948 + }, + { + "start": 16081.4, + "end": 16082.06, + "probability": 0.9639 + }, + { + "start": 16083.16, + "end": 16084.3, + "probability": 0.9748 + }, + { + "start": 16085.96, + "end": 16087.72, + "probability": 0.9438 + }, + { + "start": 16089.3, + "end": 16090.24, + "probability": 0.9194 + }, + { + "start": 16091.44, + "end": 16091.72, + "probability": 0.8278 + }, + { + "start": 16093.5, + "end": 16094.5, + "probability": 0.92 + }, + { + "start": 16095.6, + "end": 16096.68, + "probability": 0.9821 + }, + { + "start": 16097.58, + "end": 16098.26, + "probability": 0.9785 + }, + { + "start": 16099.52, + "end": 16102.42, + "probability": 0.9793 + }, + { + "start": 16104.18, + "end": 16106.04, + "probability": 0.7288 + }, + { + "start": 16119.16, + "end": 16120.36, + "probability": 0.6666 + }, + { + "start": 16121.12, + "end": 16121.36, + "probability": 0.7686 + }, + { + "start": 16124.14, + "end": 16125.02, + "probability": 0.6668 + }, + { + "start": 16126.22, + "end": 16126.44, + "probability": 0.5338 + }, + { + "start": 16130.74, + "end": 16131.34, + "probability": 0.4546 + }, + { + "start": 16132.68, + "end": 16132.94, + "probability": 0.8405 + }, + { + "start": 16137.16, + "end": 16137.64, + "probability": 0.5765 + }, + { + "start": 16139.18, + "end": 16139.58, + "probability": 0.6786 + }, + { + "start": 16141.44, + "end": 16142.06, + "probability": 0.8672 + }, + { + "start": 16144.32, + "end": 16144.68, + "probability": 0.5573 + }, + { + "start": 16149.06, + "end": 16149.56, + "probability": 0.784 + }, + { + "start": 16151.04, + "end": 16152.8, + "probability": 0.9246 + }, + { + "start": 16154.02, + "end": 16154.54, + "probability": 0.9577 + }, + { + "start": 16155.84, + "end": 16157.1, + "probability": 0.9709 + }, + { + "start": 16158.1, + "end": 16161.26, + "probability": 0.9767 + }, + { + "start": 16168.14, + "end": 16170.86, + "probability": 0.7659 + }, + { + "start": 16172.48, + "end": 16173.68, + "probability": 0.5639 + }, + { + "start": 16175.7, + "end": 16178.8, + "probability": 0.934 + }, + { + "start": 16179.66, + "end": 16180.56, + "probability": 0.722 + }, + { + "start": 16182.94, + "end": 16185.4, + "probability": 0.8976 + }, + { + "start": 16186.4, + "end": 16187.54, + "probability": 0.8641 + }, + { + "start": 16188.82, + "end": 16189.06, + "probability": 0.8843 + }, + { + "start": 16190.88, + "end": 16191.84, + "probability": 0.9417 + }, + { + "start": 16193.72, + "end": 16194.36, + "probability": 0.3649 + }, + { + "start": 16195.94, + "end": 16196.82, + "probability": 0.3283 + }, + { + "start": 16197.56, + "end": 16197.96, + "probability": 0.5818 + }, + { + "start": 16199.4, + "end": 16200.16, + "probability": 0.8305 + }, + { + "start": 16201.14, + "end": 16204.02, + "probability": 0.9224 + }, + { + "start": 16205.48, + "end": 16206.22, + "probability": 0.9597 + }, + { + "start": 16207.96, + "end": 16208.74, + "probability": 0.9275 + }, + { + "start": 16210.05, + "end": 16212.24, + "probability": 0.9645 + }, + { + "start": 16213.38, + "end": 16213.8, + "probability": 0.9906 + }, + { + "start": 16215.48, + "end": 16216.4, + "probability": 0.9904 + }, + { + "start": 16217.38, + "end": 16218.28, + "probability": 0.9889 + }, + { + "start": 16219.36, + "end": 16220.04, + "probability": 0.8944 + }, + { + "start": 16221.98, + "end": 16222.66, + "probability": 0.138 + }, + { + "start": 16230.12, + "end": 16231.52, + "probability": 0.355 + }, + { + "start": 16234.02, + "end": 16234.74, + "probability": 0.4938 + }, + { + "start": 16236.88, + "end": 16239.18, + "probability": 0.8613 + }, + { + "start": 16240.0, + "end": 16241.06, + "probability": 0.865 + }, + { + "start": 16242.28, + "end": 16242.68, + "probability": 0.9706 + }, + { + "start": 16244.7, + "end": 16245.52, + "probability": 0.8483 + }, + { + "start": 16246.8, + "end": 16247.64, + "probability": 0.8299 + }, + { + "start": 16249.52, + "end": 16251.08, + "probability": 0.9875 + }, + { + "start": 16252.28, + "end": 16253.22, + "probability": 0.9565 + }, + { + "start": 16254.42, + "end": 16254.68, + "probability": 0.749 + }, + { + "start": 16257.84, + "end": 16258.94, + "probability": 0.6475 + }, + { + "start": 16261.88, + "end": 16262.38, + "probability": 0.9684 + }, + { + "start": 16264.4, + "end": 16265.78, + "probability": 0.8653 + }, + { + "start": 16266.62, + "end": 16267.64, + "probability": 0.9774 + }, + { + "start": 16268.62, + "end": 16268.98, + "probability": 0.951 + }, + { + "start": 16270.3, + "end": 16270.72, + "probability": 0.7786 + }, + { + "start": 16272.22, + "end": 16272.84, + "probability": 0.9678 + }, + { + "start": 16274.16, + "end": 16274.52, + "probability": 0.9858 + }, + { + "start": 16276.62, + "end": 16277.34, + "probability": 0.8801 + }, + { + "start": 16278.4, + "end": 16278.78, + "probability": 0.9709 + }, + { + "start": 16280.4, + "end": 16281.16, + "probability": 0.8879 + }, + { + "start": 16284.29, + "end": 16285.51, + "probability": 0.113 + }, + { + "start": 16291.24, + "end": 16292.56, + "probability": 0.0102 + }, + { + "start": 16296.28, + "end": 16296.66, + "probability": 0.7109 + }, + { + "start": 16298.06, + "end": 16298.94, + "probability": 0.8179 + }, + { + "start": 16301.78, + "end": 16304.08, + "probability": 0.9125 + }, + { + "start": 16306.84, + "end": 16308.98, + "probability": 0.9902 + }, + { + "start": 16309.7, + "end": 16310.82, + "probability": 0.82 + }, + { + "start": 16312.96, + "end": 16315.78, + "probability": 0.0593 + }, + { + "start": 16317.2, + "end": 16318.14, + "probability": 0.3743 + }, + { + "start": 16319.18, + "end": 16319.5, + "probability": 0.8035 + }, + { + "start": 16321.16, + "end": 16322.02, + "probability": 0.8515 + }, + { + "start": 16323.82, + "end": 16325.84, + "probability": 0.9824 + }, + { + "start": 16326.9, + "end": 16327.34, + "probability": 0.6874 + }, + { + "start": 16328.78, + "end": 16329.84, + "probability": 0.8631 + }, + { + "start": 16333.24, + "end": 16334.62, + "probability": 0.6743 + }, + { + "start": 16335.14, + "end": 16335.76, + "probability": 0.9122 + }, + { + "start": 16336.74, + "end": 16337.84, + "probability": 0.9655 + }, + { + "start": 16338.72, + "end": 16339.78, + "probability": 0.913 + }, + { + "start": 16341.18, + "end": 16341.62, + "probability": 0.9899 + }, + { + "start": 16342.98, + "end": 16343.96, + "probability": 0.8436 + }, + { + "start": 16345.38, + "end": 16345.7, + "probability": 0.9954 + }, + { + "start": 16346.4, + "end": 16347.76, + "probability": 0.5851 + }, + { + "start": 16348.12, + "end": 16351.62, + "probability": 0.9746 + }, + { + "start": 16352.5, + "end": 16353.8, + "probability": 0.1863 + }, + { + "start": 16355.6, + "end": 16356.14, + "probability": 0.9284 + }, + { + "start": 16359.84, + "end": 16360.52, + "probability": 0.6463 + }, + { + "start": 16361.72, + "end": 16361.98, + "probability": 0.7812 + }, + { + "start": 16364.48, + "end": 16365.34, + "probability": 0.8787 + }, + { + "start": 16366.84, + "end": 16370.02, + "probability": 0.922 + }, + { + "start": 16371.1, + "end": 16372.78, + "probability": 0.9385 + }, + { + "start": 16375.4, + "end": 16375.84, + "probability": 0.9941 + }, + { + "start": 16378.24, + "end": 16378.82, + "probability": 0.8844 + }, + { + "start": 16383.88, + "end": 16384.6, + "probability": 0.8936 + }, + { + "start": 16388.58, + "end": 16389.02, + "probability": 0.6799 + }, + { + "start": 16390.84, + "end": 16393.54, + "probability": 0.8883 + }, + { + "start": 16396.88, + "end": 16397.78, + "probability": 0.5237 + }, + { + "start": 16399.22, + "end": 16399.68, + "probability": 0.7401 + }, + { + "start": 16401.6, + "end": 16402.48, + "probability": 0.6381 + }, + { + "start": 16404.08, + "end": 16406.28, + "probability": 0.8654 + }, + { + "start": 16407.02, + "end": 16407.72, + "probability": 0.882 + }, + { + "start": 16413.04, + "end": 16413.04, + "probability": 0.5175 + }, + { + "start": 16414.12, + "end": 16415.06, + "probability": 0.5358 + }, + { + "start": 16419.04, + "end": 16419.9, + "probability": 0.8992 + }, + { + "start": 16420.6, + "end": 16421.8, + "probability": 0.7199 + }, + { + "start": 16423.32, + "end": 16426.46, + "probability": 0.9092 + }, + { + "start": 16429.68, + "end": 16431.82, + "probability": 0.7801 + }, + { + "start": 16432.4, + "end": 16435.88, + "probability": 0.9922 + }, + { + "start": 16435.96, + "end": 16439.12, + "probability": 0.9851 + }, + { + "start": 16440.34, + "end": 16442.8, + "probability": 0.993 + }, + { + "start": 16444.28, + "end": 16448.32, + "probability": 0.6263 + }, + { + "start": 16448.42, + "end": 16450.88, + "probability": 0.8727 + }, + { + "start": 16474.68, + "end": 16480.7, + "probability": 0.1081 + }, + { + "start": 16485.16, + "end": 16489.64, + "probability": 0.1639 + }, + { + "start": 16671.0, + "end": 16671.0, + "probability": 0.0 + }, + { + "start": 16671.0, + "end": 16671.0, + "probability": 0.0 + }, + { + "start": 16671.0, + "end": 16671.0, + "probability": 0.0 + }, + { + "start": 16671.38, + "end": 16673.12, + "probability": 0.169 + }, + { + "start": 16674.1, + "end": 16674.88, + "probability": 0.748 + }, + { + "start": 16675.46, + "end": 16675.56, + "probability": 0.4397 + }, + { + "start": 16675.9, + "end": 16678.66, + "probability": 0.921 + }, + { + "start": 16678.78, + "end": 16680.04, + "probability": 0.8994 + }, + { + "start": 16680.1, + "end": 16681.8, + "probability": 0.9526 + }, + { + "start": 16682.24, + "end": 16684.12, + "probability": 0.9445 + }, + { + "start": 16684.5, + "end": 16687.3, + "probability": 0.964 + }, + { + "start": 16687.84, + "end": 16693.36, + "probability": 0.9823 + }, + { + "start": 16694.56, + "end": 16697.62, + "probability": 0.9955 + }, + { + "start": 16697.88, + "end": 16700.72, + "probability": 0.8851 + }, + { + "start": 16701.3, + "end": 16703.08, + "probability": 0.2254 + }, + { + "start": 16703.98, + "end": 16705.88, + "probability": 0.9766 + }, + { + "start": 16706.08, + "end": 16710.28, + "probability": 0.998 + }, + { + "start": 16710.3, + "end": 16711.02, + "probability": 0.463 + }, + { + "start": 16729.14, + "end": 16731.1, + "probability": 0.8177 + }, + { + "start": 16731.6, + "end": 16731.96, + "probability": 0.9789 + }, + { + "start": 16732.72, + "end": 16734.34, + "probability": 0.7629 + }, + { + "start": 16735.1, + "end": 16737.96, + "probability": 0.9457 + }, + { + "start": 16739.1, + "end": 16747.84, + "probability": 0.9961 + }, + { + "start": 16748.62, + "end": 16751.38, + "probability": 0.8034 + }, + { + "start": 16752.7, + "end": 16756.22, + "probability": 0.9924 + }, + { + "start": 16757.0, + "end": 16758.16, + "probability": 0.999 + }, + { + "start": 16758.42, + "end": 16761.3, + "probability": 0.9389 + }, + { + "start": 16761.44, + "end": 16762.48, + "probability": 0.8793 + }, + { + "start": 16763.18, + "end": 16763.62, + "probability": 0.7942 + }, + { + "start": 16764.86, + "end": 16766.06, + "probability": 0.7421 + }, + { + "start": 16767.22, + "end": 16768.62, + "probability": 0.7243 + }, + { + "start": 16769.76, + "end": 16770.56, + "probability": 0.9687 + }, + { + "start": 16771.62, + "end": 16780.14, + "probability": 0.9936 + }, + { + "start": 16780.28, + "end": 16782.06, + "probability": 0.7887 + }, + { + "start": 16782.8, + "end": 16784.46, + "probability": 0.9795 + }, + { + "start": 16784.98, + "end": 16791.78, + "probability": 0.9943 + }, + { + "start": 16793.2, + "end": 16795.16, + "probability": 0.751 + }, + { + "start": 16795.82, + "end": 16799.4, + "probability": 0.9141 + }, + { + "start": 16800.82, + "end": 16808.66, + "probability": 0.999 + }, + { + "start": 16809.6, + "end": 16812.58, + "probability": 0.8572 + }, + { + "start": 16813.2, + "end": 16815.01, + "probability": 0.9722 + }, + { + "start": 16816.2, + "end": 16817.98, + "probability": 0.8838 + }, + { + "start": 16818.7, + "end": 16824.1, + "probability": 0.9753 + }, + { + "start": 16824.66, + "end": 16826.56, + "probability": 0.9941 + }, + { + "start": 16827.0, + "end": 16828.94, + "probability": 0.8277 + }, + { + "start": 16829.56, + "end": 16832.68, + "probability": 0.7771 + }, + { + "start": 16832.96, + "end": 16833.6, + "probability": 0.4241 + }, + { + "start": 16833.82, + "end": 16835.18, + "probability": 0.9989 + }, + { + "start": 16836.02, + "end": 16839.46, + "probability": 0.9951 + }, + { + "start": 16840.2, + "end": 16844.44, + "probability": 0.9897 + }, + { + "start": 16845.52, + "end": 16849.88, + "probability": 0.9091 + }, + { + "start": 16850.44, + "end": 16851.96, + "probability": 0.9492 + }, + { + "start": 16852.74, + "end": 16856.52, + "probability": 0.9839 + }, + { + "start": 16857.34, + "end": 16860.04, + "probability": 0.9875 + }, + { + "start": 16860.96, + "end": 16861.5, + "probability": 0.924 + }, + { + "start": 16862.06, + "end": 16864.82, + "probability": 0.9528 + }, + { + "start": 16865.7, + "end": 16866.98, + "probability": 0.9966 + }, + { + "start": 16867.76, + "end": 16872.38, + "probability": 0.964 + }, + { + "start": 16872.94, + "end": 16876.78, + "probability": 0.9322 + }, + { + "start": 16877.54, + "end": 16886.04, + "probability": 0.9955 + }, + { + "start": 16887.04, + "end": 16893.8, + "probability": 0.9876 + }, + { + "start": 16894.14, + "end": 16895.18, + "probability": 0.791 + }, + { + "start": 16896.08, + "end": 16896.64, + "probability": 0.6372 + }, + { + "start": 16897.18, + "end": 16897.66, + "probability": 0.8883 + }, + { + "start": 16898.52, + "end": 16904.1, + "probability": 0.9971 + }, + { + "start": 16904.66, + "end": 16908.36, + "probability": 0.986 + }, + { + "start": 16909.12, + "end": 16910.02, + "probability": 0.7532 + }, + { + "start": 16911.12, + "end": 16913.0, + "probability": 0.9785 + }, + { + "start": 16913.54, + "end": 16915.0, + "probability": 0.7715 + }, + { + "start": 16916.04, + "end": 16917.58, + "probability": 0.9821 + }, + { + "start": 16918.32, + "end": 16919.74, + "probability": 0.9553 + }, + { + "start": 16920.5, + "end": 16922.0, + "probability": 0.9729 + }, + { + "start": 16922.78, + "end": 16925.77, + "probability": 0.9873 + }, + { + "start": 16927.44, + "end": 16930.18, + "probability": 0.9913 + }, + { + "start": 16931.18, + "end": 16932.68, + "probability": 0.8875 + }, + { + "start": 16933.58, + "end": 16935.35, + "probability": 0.9253 + }, + { + "start": 16936.48, + "end": 16937.18, + "probability": 0.1195 + }, + { + "start": 16937.92, + "end": 16939.78, + "probability": 0.9491 + }, + { + "start": 16940.2, + "end": 16942.12, + "probability": 0.957 + }, + { + "start": 16942.12, + "end": 16945.88, + "probability": 0.9652 + }, + { + "start": 16946.86, + "end": 16949.4, + "probability": 0.9443 + }, + { + "start": 16949.96, + "end": 16952.42, + "probability": 0.8706 + }, + { + "start": 16952.96, + "end": 16957.96, + "probability": 0.6879 + }, + { + "start": 16958.26, + "end": 16960.5, + "probability": 0.6458 + }, + { + "start": 16961.68, + "end": 16963.84, + "probability": 0.0448 + }, + { + "start": 16963.84, + "end": 16963.84, + "probability": 0.0371 + }, + { + "start": 16963.84, + "end": 16970.06, + "probability": 0.9666 + }, + { + "start": 16970.6, + "end": 16973.04, + "probability": 0.9995 + }, + { + "start": 16973.54, + "end": 16976.12, + "probability": 0.9985 + }, + { + "start": 16976.82, + "end": 16979.12, + "probability": 0.0724 + }, + { + "start": 16979.12, + "end": 16979.78, + "probability": 0.4259 + }, + { + "start": 16979.78, + "end": 16979.78, + "probability": 0.2353 + }, + { + "start": 16979.78, + "end": 16981.32, + "probability": 0.854 + }, + { + "start": 16981.32, + "end": 16981.6, + "probability": 0.4508 + }, + { + "start": 16982.39, + "end": 16982.48, + "probability": 0.1321 + }, + { + "start": 16982.58, + "end": 16982.58, + "probability": 0.1197 + }, + { + "start": 16982.58, + "end": 16982.58, + "probability": 0.181 + }, + { + "start": 16982.58, + "end": 16984.14, + "probability": 0.6494 + }, + { + "start": 16984.8, + "end": 16992.21, + "probability": 0.599 + }, + { + "start": 16993.46, + "end": 16994.36, + "probability": 0.6723 + }, + { + "start": 16996.6, + "end": 16998.96, + "probability": 0.2872 + }, + { + "start": 16999.14, + "end": 17000.84, + "probability": 0.0836 + }, + { + "start": 17000.9, + "end": 17003.24, + "probability": 0.6152 + }, + { + "start": 17003.66, + "end": 17006.64, + "probability": 0.6923 + }, + { + "start": 17006.64, + "end": 17009.48, + "probability": 0.4255 + }, + { + "start": 17009.96, + "end": 17010.96, + "probability": 0.6142 + }, + { + "start": 17012.38, + "end": 17012.46, + "probability": 0.0862 + }, + { + "start": 17012.46, + "end": 17012.56, + "probability": 0.1259 + }, + { + "start": 17012.56, + "end": 17012.62, + "probability": 0.1018 + }, + { + "start": 17012.62, + "end": 17012.76, + "probability": 0.1809 + }, + { + "start": 17012.76, + "end": 17014.1, + "probability": 0.0332 + }, + { + "start": 17014.1, + "end": 17018.0, + "probability": 0.0552 + }, + { + "start": 17018.0, + "end": 17019.82, + "probability": 0.0851 + }, + { + "start": 17020.0, + "end": 17020.24, + "probability": 0.0649 + }, + { + "start": 17020.52, + "end": 17021.5, + "probability": 0.0665 + }, + { + "start": 17021.5, + "end": 17021.5, + "probability": 0.0271 + }, + { + "start": 17021.5, + "end": 17021.5, + "probability": 0.0094 + }, + { + "start": 17021.5, + "end": 17021.5, + "probability": 0.2946 + }, + { + "start": 17021.5, + "end": 17021.5, + "probability": 0.0415 + }, + { + "start": 17021.5, + "end": 17022.3, + "probability": 0.4673 + }, + { + "start": 17022.88, + "end": 17024.3, + "probability": 0.9523 + }, + { + "start": 17025.26, + "end": 17029.54, + "probability": 0.9743 + }, + { + "start": 17029.68, + "end": 17030.96, + "probability": 0.6633 + }, + { + "start": 17031.12, + "end": 17037.54, + "probability": 0.9594 + }, + { + "start": 17037.64, + "end": 17038.52, + "probability": 0.0679 + }, + { + "start": 17038.86, + "end": 17039.38, + "probability": 0.075 + }, + { + "start": 17039.38, + "end": 17041.3, + "probability": 0.821 + }, + { + "start": 17041.34, + "end": 17042.82, + "probability": 0.7022 + }, + { + "start": 17043.28, + "end": 17046.28, + "probability": 0.9966 + }, + { + "start": 17046.48, + "end": 17047.52, + "probability": 0.7366 + }, + { + "start": 17048.46, + "end": 17049.79, + "probability": 0.9443 + }, + { + "start": 17052.82, + "end": 17053.08, + "probability": 0.014 + }, + { + "start": 17053.08, + "end": 17053.08, + "probability": 0.1214 + }, + { + "start": 17053.08, + "end": 17053.08, + "probability": 0.0323 + }, + { + "start": 17053.08, + "end": 17053.08, + "probability": 0.003 + }, + { + "start": 17053.08, + "end": 17053.08, + "probability": 0.1315 + }, + { + "start": 17053.08, + "end": 17054.2, + "probability": 0.5034 + }, + { + "start": 17055.04, + "end": 17061.28, + "probability": 0.7076 + }, + { + "start": 17061.28, + "end": 17062.91, + "probability": 0.7993 + }, + { + "start": 17063.5, + "end": 17069.18, + "probability": 0.9674 + }, + { + "start": 17069.88, + "end": 17071.0, + "probability": 0.9026 + }, + { + "start": 17071.1, + "end": 17073.2, + "probability": 0.0725 + }, + { + "start": 17074.9, + "end": 17077.22, + "probability": 0.1623 + }, + { + "start": 17077.28, + "end": 17079.8, + "probability": 0.1074 + }, + { + "start": 17081.1, + "end": 17081.4, + "probability": 0.0181 + }, + { + "start": 17081.4, + "end": 17083.36, + "probability": 0.3031 + }, + { + "start": 17083.74, + "end": 17085.72, + "probability": 0.7029 + }, + { + "start": 17086.34, + "end": 17090.08, + "probability": 0.7893 + }, + { + "start": 17090.64, + "end": 17090.84, + "probability": 0.1052 + }, + { + "start": 17090.84, + "end": 17094.0, + "probability": 0.9812 + }, + { + "start": 17094.54, + "end": 17097.28, + "probability": 0.9206 + }, + { + "start": 17097.76, + "end": 17098.94, + "probability": 0.9912 + }, + { + "start": 17099.06, + "end": 17100.24, + "probability": 0.7481 + }, + { + "start": 17100.76, + "end": 17105.66, + "probability": 0.9756 + }, + { + "start": 17106.02, + "end": 17108.72, + "probability": 0.9692 + }, + { + "start": 17109.14, + "end": 17110.74, + "probability": 0.9368 + }, + { + "start": 17111.28, + "end": 17111.9, + "probability": 0.9014 + }, + { + "start": 17112.26, + "end": 17114.86, + "probability": 0.9972 + }, + { + "start": 17116.34, + "end": 17119.28, + "probability": 0.6508 + }, + { + "start": 17119.28, + "end": 17119.6, + "probability": 0.2065 + }, + { + "start": 17119.6, + "end": 17119.6, + "probability": 0.0255 + }, + { + "start": 17119.6, + "end": 17121.32, + "probability": 0.0256 + }, + { + "start": 17121.7, + "end": 17122.82, + "probability": 0.464 + }, + { + "start": 17123.18, + "end": 17125.5, + "probability": 0.9126 + }, + { + "start": 17125.72, + "end": 17129.78, + "probability": 0.7419 + }, + { + "start": 17130.26, + "end": 17131.36, + "probability": 0.0421 + }, + { + "start": 17131.36, + "end": 17131.36, + "probability": 0.5877 + }, + { + "start": 17131.54, + "end": 17133.36, + "probability": 0.5078 + }, + { + "start": 17133.96, + "end": 17135.36, + "probability": 0.2178 + }, + { + "start": 17135.36, + "end": 17136.62, + "probability": 0.0791 + }, + { + "start": 17137.2, + "end": 17137.92, + "probability": 0.207 + }, + { + "start": 17138.72, + "end": 17139.06, + "probability": 0.052 + }, + { + "start": 17139.06, + "end": 17144.76, + "probability": 0.8493 + }, + { + "start": 17145.2, + "end": 17148.16, + "probability": 0.9429 + }, + { + "start": 17148.18, + "end": 17151.58, + "probability": 0.9696 + }, + { + "start": 17152.36, + "end": 17155.3, + "probability": 0.8841 + }, + { + "start": 17155.32, + "end": 17160.42, + "probability": 0.9686 + }, + { + "start": 17161.45, + "end": 17163.94, + "probability": 0.0187 + }, + { + "start": 17163.94, + "end": 17163.94, + "probability": 0.0317 + }, + { + "start": 17163.94, + "end": 17163.94, + "probability": 0.1705 + }, + { + "start": 17163.94, + "end": 17163.94, + "probability": 0.239 + }, + { + "start": 17163.94, + "end": 17169.68, + "probability": 0.7625 + }, + { + "start": 17170.0, + "end": 17172.6, + "probability": 0.3323 + }, + { + "start": 17172.66, + "end": 17176.06, + "probability": 0.6827 + }, + { + "start": 17176.84, + "end": 17178.92, + "probability": 0.8487 + }, + { + "start": 17178.94, + "end": 17182.46, + "probability": 0.9309 + }, + { + "start": 17182.92, + "end": 17185.22, + "probability": 0.9763 + }, + { + "start": 17185.76, + "end": 17185.76, + "probability": 0.03 + }, + { + "start": 17185.76, + "end": 17185.76, + "probability": 0.0415 + }, + { + "start": 17185.76, + "end": 17186.64, + "probability": 0.7405 + }, + { + "start": 17187.2, + "end": 17189.2, + "probability": 0.8352 + }, + { + "start": 17189.86, + "end": 17193.26, + "probability": 0.9758 + }, + { + "start": 17194.06, + "end": 17194.4, + "probability": 0.0232 + }, + { + "start": 17194.4, + "end": 17197.34, + "probability": 0.0066 + }, + { + "start": 17197.88, + "end": 17198.12, + "probability": 0.2648 + }, + { + "start": 17198.64, + "end": 17198.64, + "probability": 0.0828 + }, + { + "start": 17198.64, + "end": 17198.64, + "probability": 0.2407 + }, + { + "start": 17198.64, + "end": 17198.64, + "probability": 0.1831 + }, + { + "start": 17198.64, + "end": 17198.64, + "probability": 0.2541 + }, + { + "start": 17198.64, + "end": 17202.18, + "probability": 0.915 + }, + { + "start": 17202.6, + "end": 17203.74, + "probability": 0.9517 + }, + { + "start": 17204.22, + "end": 17204.26, + "probability": 0.0912 + }, + { + "start": 17204.26, + "end": 17204.26, + "probability": 0.2241 + }, + { + "start": 17204.26, + "end": 17209.36, + "probability": 0.8683 + }, + { + "start": 17209.9, + "end": 17212.3, + "probability": 0.8977 + }, + { + "start": 17212.38, + "end": 17214.12, + "probability": 0.9906 + }, + { + "start": 17214.68, + "end": 17217.34, + "probability": 0.9914 + }, + { + "start": 17217.82, + "end": 17219.14, + "probability": 0.8076 + }, + { + "start": 17219.62, + "end": 17220.98, + "probability": 0.9609 + }, + { + "start": 17221.58, + "end": 17224.6, + "probability": 0.9862 + }, + { + "start": 17225.52, + "end": 17227.16, + "probability": 0.9956 + }, + { + "start": 17228.24, + "end": 17229.18, + "probability": 0.7505 + }, + { + "start": 17229.38, + "end": 17233.66, + "probability": 0.9948 + }, + { + "start": 17233.88, + "end": 17235.96, + "probability": 0.9772 + }, + { + "start": 17236.52, + "end": 17237.52, + "probability": 0.9756 + }, + { + "start": 17238.32, + "end": 17240.11, + "probability": 0.9958 + }, + { + "start": 17240.92, + "end": 17240.92, + "probability": 0.1535 + }, + { + "start": 17240.92, + "end": 17243.34, + "probability": 0.8589 + }, + { + "start": 17243.86, + "end": 17246.06, + "probability": 0.9479 + }, + { + "start": 17246.62, + "end": 17249.6, + "probability": 0.9971 + }, + { + "start": 17249.78, + "end": 17250.98, + "probability": 0.9424 + }, + { + "start": 17251.5, + "end": 17255.14, + "probability": 0.9306 + }, + { + "start": 17255.82, + "end": 17257.26, + "probability": 0.7408 + }, + { + "start": 17257.88, + "end": 17260.62, + "probability": 0.9272 + }, + { + "start": 17261.34, + "end": 17262.14, + "probability": 0.9673 + }, + { + "start": 17262.76, + "end": 17265.06, + "probability": 0.9885 + }, + { + "start": 17265.42, + "end": 17266.52, + "probability": 0.8448 + }, + { + "start": 17266.68, + "end": 17268.6, + "probability": 0.7308 + }, + { + "start": 17269.2, + "end": 17270.76, + "probability": 0.9251 + }, + { + "start": 17271.28, + "end": 17271.48, + "probability": 0.0582 + }, + { + "start": 17271.48, + "end": 17271.48, + "probability": 0.1322 + }, + { + "start": 17271.48, + "end": 17271.48, + "probability": 0.14 + }, + { + "start": 17271.48, + "end": 17272.0, + "probability": 0.2082 + }, + { + "start": 17272.78, + "end": 17274.62, + "probability": 0.8342 + }, + { + "start": 17275.22, + "end": 17277.12, + "probability": 0.8646 + }, + { + "start": 17277.5, + "end": 17282.6, + "probability": 0.9294 + }, + { + "start": 17282.96, + "end": 17286.3, + "probability": 0.9716 + }, + { + "start": 17286.68, + "end": 17288.1, + "probability": 0.9818 + }, + { + "start": 17288.24, + "end": 17288.54, + "probability": 0.8259 + }, + { + "start": 17289.34, + "end": 17292.12, + "probability": 0.9816 + }, + { + "start": 17292.3, + "end": 17293.14, + "probability": 0.9415 + }, + { + "start": 17293.76, + "end": 17294.36, + "probability": 0.7704 + }, + { + "start": 17296.13, + "end": 17301.34, + "probability": 0.818 + }, + { + "start": 17301.46, + "end": 17301.82, + "probability": 0.8873 + }, + { + "start": 17302.7, + "end": 17305.02, + "probability": 0.9902 + }, + { + "start": 17305.22, + "end": 17308.02, + "probability": 0.8871 + }, + { + "start": 17308.18, + "end": 17311.0, + "probability": 0.9978 + }, + { + "start": 17311.78, + "end": 17315.72, + "probability": 0.9219 + }, + { + "start": 17316.14, + "end": 17316.92, + "probability": 0.2247 + }, + { + "start": 17317.44, + "end": 17318.2, + "probability": 0.3876 + }, + { + "start": 17318.2, + "end": 17318.72, + "probability": 0.5913 + }, + { + "start": 17318.74, + "end": 17319.82, + "probability": 0.5786 + }, + { + "start": 17320.36, + "end": 17323.6, + "probability": 0.049 + }, + { + "start": 17323.6, + "end": 17325.44, + "probability": 0.8815 + }, + { + "start": 17325.44, + "end": 17329.6, + "probability": 0.9895 + }, + { + "start": 17330.18, + "end": 17339.54, + "probability": 0.9896 + }, + { + "start": 17340.92, + "end": 17341.36, + "probability": 0.8298 + }, + { + "start": 17341.58, + "end": 17345.48, + "probability": 0.9944 + }, + { + "start": 17345.84, + "end": 17346.86, + "probability": 0.6133 + }, + { + "start": 17347.62, + "end": 17348.33, + "probability": 0.9977 + }, + { + "start": 17349.56, + "end": 17350.64, + "probability": 0.8734 + }, + { + "start": 17351.86, + "end": 17355.08, + "probability": 0.7859 + }, + { + "start": 17355.5, + "end": 17356.34, + "probability": 0.9381 + }, + { + "start": 17365.14, + "end": 17366.44, + "probability": 0.756 + }, + { + "start": 17367.8, + "end": 17372.42, + "probability": 0.9979 + }, + { + "start": 17373.72, + "end": 17376.6, + "probability": 0.9771 + }, + { + "start": 17377.58, + "end": 17385.14, + "probability": 0.9966 + }, + { + "start": 17386.4, + "end": 17390.22, + "probability": 0.9751 + }, + { + "start": 17390.98, + "end": 17393.72, + "probability": 0.9532 + }, + { + "start": 17394.42, + "end": 17397.86, + "probability": 0.9866 + }, + { + "start": 17398.14, + "end": 17399.1, + "probability": 0.0067 + }, + { + "start": 17399.1, + "end": 17401.22, + "probability": 0.4003 + }, + { + "start": 17401.36, + "end": 17403.48, + "probability": 0.9574 + }, + { + "start": 17403.68, + "end": 17406.24, + "probability": 0.4747 + }, + { + "start": 17407.06, + "end": 17407.88, + "probability": 0.639 + }, + { + "start": 17407.88, + "end": 17413.04, + "probability": 0.955 + }, + { + "start": 17413.04, + "end": 17413.86, + "probability": 0.8909 + }, + { + "start": 17414.08, + "end": 17415.24, + "probability": 0.1136 + }, + { + "start": 17415.24, + "end": 17415.24, + "probability": 0.0873 + }, + { + "start": 17415.24, + "end": 17418.1, + "probability": 0.7525 + }, + { + "start": 17418.36, + "end": 17421.2, + "probability": 0.9204 + }, + { + "start": 17421.38, + "end": 17421.96, + "probability": 0.9586 + }, + { + "start": 17421.96, + "end": 17425.84, + "probability": 0.6397 + }, + { + "start": 17426.48, + "end": 17428.54, + "probability": 0.5181 + }, + { + "start": 17430.02, + "end": 17430.32, + "probability": 0.6166 + }, + { + "start": 17430.48, + "end": 17431.96, + "probability": 0.7441 + }, + { + "start": 17432.52, + "end": 17433.78, + "probability": 0.7068 + }, + { + "start": 17433.96, + "end": 17438.84, + "probability": 0.9888 + }, + { + "start": 17438.84, + "end": 17443.98, + "probability": 0.9985 + }, + { + "start": 17444.84, + "end": 17448.52, + "probability": 0.9969 + }, + { + "start": 17449.34, + "end": 17456.54, + "probability": 0.947 + }, + { + "start": 17457.56, + "end": 17460.62, + "probability": 0.9538 + }, + { + "start": 17461.24, + "end": 17465.36, + "probability": 0.9907 + }, + { + "start": 17465.92, + "end": 17468.64, + "probability": 0.9965 + }, + { + "start": 17469.22, + "end": 17472.94, + "probability": 0.9963 + }, + { + "start": 17472.94, + "end": 17476.26, + "probability": 0.98 + }, + { + "start": 17476.9, + "end": 17477.62, + "probability": 0.6486 + }, + { + "start": 17478.3, + "end": 17483.54, + "probability": 0.9895 + }, + { + "start": 17484.86, + "end": 17491.78, + "probability": 0.9928 + }, + { + "start": 17492.68, + "end": 17493.7, + "probability": 0.9368 + }, + { + "start": 17494.3, + "end": 17495.54, + "probability": 0.99 + }, + { + "start": 17496.02, + "end": 17498.52, + "probability": 0.9953 + }, + { + "start": 17499.3, + "end": 17504.68, + "probability": 0.7804 + }, + { + "start": 17505.5, + "end": 17510.94, + "probability": 0.9958 + }, + { + "start": 17511.46, + "end": 17516.16, + "probability": 0.9961 + }, + { + "start": 17516.16, + "end": 17521.5, + "probability": 0.9883 + }, + { + "start": 17522.1, + "end": 17531.44, + "probability": 0.8979 + }, + { + "start": 17532.0, + "end": 17537.54, + "probability": 0.9701 + }, + { + "start": 17538.64, + "end": 17542.36, + "probability": 0.9876 + }, + { + "start": 17542.44, + "end": 17545.8, + "probability": 0.8417 + }, + { + "start": 17545.8, + "end": 17548.72, + "probability": 0.9966 + }, + { + "start": 17549.52, + "end": 17552.6, + "probability": 0.9598 + }, + { + "start": 17553.14, + "end": 17559.52, + "probability": 0.9839 + }, + { + "start": 17560.16, + "end": 17560.54, + "probability": 0.0947 + }, + { + "start": 17560.96, + "end": 17561.52, + "probability": 0.8897 + }, + { + "start": 17562.18, + "end": 17566.64, + "probability": 0.9481 + }, + { + "start": 17567.38, + "end": 17571.44, + "probability": 0.9062 + }, + { + "start": 17572.06, + "end": 17574.96, + "probability": 0.7282 + }, + { + "start": 17575.68, + "end": 17580.6, + "probability": 0.9966 + }, + { + "start": 17581.4, + "end": 17588.8, + "probability": 0.9933 + }, + { + "start": 17589.94, + "end": 17595.5, + "probability": 0.9769 + }, + { + "start": 17596.34, + "end": 17600.56, + "probability": 0.9944 + }, + { + "start": 17600.82, + "end": 17601.04, + "probability": 0.2828 + }, + { + "start": 17601.14, + "end": 17602.1, + "probability": 0.8715 + }, + { + "start": 17602.7, + "end": 17606.0, + "probability": 0.9627 + }, + { + "start": 17606.66, + "end": 17609.98, + "probability": 0.95 + }, + { + "start": 17612.56, + "end": 17618.28, + "probability": 0.8563 + }, + { + "start": 17619.64, + "end": 17621.33, + "probability": 0.9952 + }, + { + "start": 17622.16, + "end": 17628.32, + "probability": 0.9961 + }, + { + "start": 17628.4, + "end": 17629.26, + "probability": 0.9 + }, + { + "start": 17629.32, + "end": 17630.04, + "probability": 0.7422 + }, + { + "start": 17630.1, + "end": 17630.42, + "probability": 0.4448 + }, + { + "start": 17630.98, + "end": 17633.16, + "probability": 0.9923 + }, + { + "start": 17635.2, + "end": 17637.46, + "probability": 0.9896 + }, + { + "start": 17637.84, + "end": 17641.94, + "probability": 0.9862 + }, + { + "start": 17642.58, + "end": 17646.44, + "probability": 0.9964 + }, + { + "start": 17647.42, + "end": 17649.32, + "probability": 0.9613 + }, + { + "start": 17649.4, + "end": 17652.46, + "probability": 0.9937 + }, + { + "start": 17653.46, + "end": 17657.04, + "probability": 0.9956 + }, + { + "start": 17657.76, + "end": 17661.5, + "probability": 0.9975 + }, + { + "start": 17661.5, + "end": 17666.4, + "probability": 0.973 + }, + { + "start": 17667.5, + "end": 17667.66, + "probability": 0.2145 + }, + { + "start": 17667.84, + "end": 17674.36, + "probability": 0.9874 + }, + { + "start": 17675.58, + "end": 17676.42, + "probability": 0.7343 + }, + { + "start": 17677.22, + "end": 17682.16, + "probability": 0.9741 + }, + { + "start": 17682.16, + "end": 17686.74, + "probability": 0.8437 + }, + { + "start": 17688.88, + "end": 17691.86, + "probability": 0.98 + }, + { + "start": 17697.42, + "end": 17698.46, + "probability": 0.8466 + }, + { + "start": 17699.06, + "end": 17700.14, + "probability": 0.7546 + }, + { + "start": 17701.16, + "end": 17703.1, + "probability": 0.767 + }, + { + "start": 17703.28, + "end": 17703.8, + "probability": 0.9208 + }, + { + "start": 17704.04, + "end": 17708.06, + "probability": 0.9913 + }, + { + "start": 17708.68, + "end": 17714.54, + "probability": 0.9818 + }, + { + "start": 17715.14, + "end": 17717.1, + "probability": 0.9821 + }, + { + "start": 17717.89, + "end": 17725.26, + "probability": 0.5608 + }, + { + "start": 17725.82, + "end": 17727.36, + "probability": 0.8956 + }, + { + "start": 17727.92, + "end": 17727.96, + "probability": 0.1112 + }, + { + "start": 17727.96, + "end": 17729.31, + "probability": 0.8564 + }, + { + "start": 17729.94, + "end": 17732.56, + "probability": 0.9815 + }, + { + "start": 17733.0, + "end": 17734.8, + "probability": 0.8991 + }, + { + "start": 17735.74, + "end": 17740.42, + "probability": 0.9593 + }, + { + "start": 17740.58, + "end": 17741.52, + "probability": 0.8847 + }, + { + "start": 17741.66, + "end": 17745.62, + "probability": 0.9581 + }, + { + "start": 17746.28, + "end": 17748.88, + "probability": 0.9543 + }, + { + "start": 17749.4, + "end": 17750.52, + "probability": 0.9784 + }, + { + "start": 17750.98, + "end": 17753.28, + "probability": 0.8769 + }, + { + "start": 17754.3, + "end": 17755.0, + "probability": 0.6678 + }, + { + "start": 17755.95, + "end": 17761.22, + "probability": 0.9938 + }, + { + "start": 17761.26, + "end": 17762.32, + "probability": 0.5519 + }, + { + "start": 17763.04, + "end": 17770.44, + "probability": 0.9779 + }, + { + "start": 17770.98, + "end": 17774.78, + "probability": 0.9983 + }, + { + "start": 17775.54, + "end": 17779.54, + "probability": 0.8927 + }, + { + "start": 17780.02, + "end": 17780.62, + "probability": 0.7922 + }, + { + "start": 17781.24, + "end": 17784.58, + "probability": 0.8354 + }, + { + "start": 17785.5, + "end": 17787.78, + "probability": 0.4954 + }, + { + "start": 17787.78, + "end": 17790.26, + "probability": 0.7696 + }, + { + "start": 17790.52, + "end": 17794.3, + "probability": 0.9526 + }, + { + "start": 17794.46, + "end": 17798.42, + "probability": 0.9254 + }, + { + "start": 17798.9, + "end": 17801.0, + "probability": 0.8965 + }, + { + "start": 17801.98, + "end": 17805.12, + "probability": 0.914 + }, + { + "start": 17805.64, + "end": 17808.02, + "probability": 0.9932 + }, + { + "start": 17809.08, + "end": 17809.8, + "probability": 0.9438 + }, + { + "start": 17810.62, + "end": 17814.96, + "probability": 0.9597 + }, + { + "start": 17815.1, + "end": 17815.4, + "probability": 0.0878 + }, + { + "start": 17815.58, + "end": 17819.86, + "probability": 0.9961 + }, + { + "start": 17820.92, + "end": 17821.62, + "probability": 0.7531 + }, + { + "start": 17822.4, + "end": 17827.96, + "probability": 0.9854 + }, + { + "start": 17827.98, + "end": 17833.94, + "probability": 0.9998 + }, + { + "start": 17834.6, + "end": 17837.34, + "probability": 0.9185 + }, + { + "start": 17837.9, + "end": 17843.58, + "probability": 0.968 + }, + { + "start": 17845.6, + "end": 17849.96, + "probability": 0.9761 + }, + { + "start": 17850.52, + "end": 17852.94, + "probability": 0.8806 + }, + { + "start": 17853.46, + "end": 17855.26, + "probability": 0.7548 + }, + { + "start": 17855.76, + "end": 17859.46, + "probability": 0.9262 + }, + { + "start": 17860.18, + "end": 17863.32, + "probability": 0.9978 + }, + { + "start": 17863.74, + "end": 17867.18, + "probability": 0.9995 + }, + { + "start": 17867.18, + "end": 17871.96, + "probability": 0.9326 + }, + { + "start": 17873.62, + "end": 17874.42, + "probability": 0.707 + }, + { + "start": 17874.98, + "end": 17881.12, + "probability": 0.9951 + }, + { + "start": 17881.82, + "end": 17885.14, + "probability": 0.9857 + }, + { + "start": 17885.84, + "end": 17888.62, + "probability": 0.9808 + }, + { + "start": 17889.24, + "end": 17891.5, + "probability": 0.9893 + }, + { + "start": 17892.2, + "end": 17898.38, + "probability": 0.9902 + }, + { + "start": 17898.88, + "end": 17903.72, + "probability": 0.9946 + }, + { + "start": 17904.32, + "end": 17907.46, + "probability": 0.9941 + }, + { + "start": 17907.46, + "end": 17910.42, + "probability": 0.9944 + }, + { + "start": 17910.9, + "end": 17913.3, + "probability": 0.9613 + }, + { + "start": 17914.42, + "end": 17915.16, + "probability": 0.9329 + }, + { + "start": 17916.42, + "end": 17917.42, + "probability": 0.8214 + }, + { + "start": 17919.28, + "end": 17922.48, + "probability": 0.9961 + }, + { + "start": 17923.1, + "end": 17930.76, + "probability": 0.9883 + }, + { + "start": 17931.48, + "end": 17935.56, + "probability": 0.9692 + }, + { + "start": 17937.22, + "end": 17940.8, + "probability": 0.9969 + }, + { + "start": 17941.66, + "end": 17944.96, + "probability": 0.9753 + }, + { + "start": 17945.14, + "end": 17946.94, + "probability": 0.864 + }, + { + "start": 17947.6, + "end": 17951.24, + "probability": 0.9639 + }, + { + "start": 17952.02, + "end": 17953.4, + "probability": 0.8623 + }, + { + "start": 17953.82, + "end": 17956.42, + "probability": 0.982 + }, + { + "start": 17956.96, + "end": 17960.7, + "probability": 0.9666 + }, + { + "start": 17960.7, + "end": 17965.18, + "probability": 0.9897 + }, + { + "start": 17965.64, + "end": 17966.66, + "probability": 0.9799 + }, + { + "start": 17967.14, + "end": 17969.02, + "probability": 0.9214 + }, + { + "start": 17969.88, + "end": 17973.48, + "probability": 0.9849 + }, + { + "start": 17974.3, + "end": 17977.32, + "probability": 0.9821 + }, + { + "start": 17977.96, + "end": 17981.96, + "probability": 0.988 + }, + { + "start": 17982.44, + "end": 17985.34, + "probability": 0.9969 + }, + { + "start": 17985.34, + "end": 17990.32, + "probability": 0.9904 + }, + { + "start": 17990.92, + "end": 17993.06, + "probability": 0.7606 + }, + { + "start": 17993.38, + "end": 18000.56, + "probability": 0.9913 + }, + { + "start": 18001.1, + "end": 18003.02, + "probability": 0.9526 + }, + { + "start": 18003.54, + "end": 18009.38, + "probability": 0.9918 + }, + { + "start": 18010.06, + "end": 18015.2, + "probability": 0.989 + }, + { + "start": 18015.8, + "end": 18017.72, + "probability": 0.8487 + }, + { + "start": 18018.18, + "end": 18020.2, + "probability": 0.989 + }, + { + "start": 18020.9, + "end": 18025.06, + "probability": 0.9688 + }, + { + "start": 18025.06, + "end": 18028.96, + "probability": 0.9982 + }, + { + "start": 18030.24, + "end": 18035.1, + "probability": 0.7544 + }, + { + "start": 18035.16, + "end": 18038.54, + "probability": 0.8609 + }, + { + "start": 18039.06, + "end": 18039.52, + "probability": 0.3166 + }, + { + "start": 18040.22, + "end": 18041.36, + "probability": 0.873 + }, + { + "start": 18041.48, + "end": 18041.68, + "probability": 0.7576 + }, + { + "start": 18042.08, + "end": 18042.08, + "probability": 0.3383 + }, + { + "start": 18042.14, + "end": 18045.5, + "probability": 0.9951 + }, + { + "start": 18045.56, + "end": 18046.08, + "probability": 0.9001 + }, + { + "start": 18046.18, + "end": 18049.0, + "probability": 0.8891 + }, + { + "start": 18049.54, + "end": 18053.86, + "probability": 0.9974 + }, + { + "start": 18054.44, + "end": 18056.52, + "probability": 0.895 + }, + { + "start": 18057.12, + "end": 18060.54, + "probability": 0.818 + }, + { + "start": 18061.1, + "end": 18063.74, + "probability": 0.9517 + }, + { + "start": 18064.38, + "end": 18067.48, + "probability": 0.9702 + }, + { + "start": 18067.76, + "end": 18068.88, + "probability": 0.9219 + }, + { + "start": 18069.46, + "end": 18074.2, + "probability": 0.9324 + }, + { + "start": 18074.96, + "end": 18077.32, + "probability": 0.96 + }, + { + "start": 18078.66, + "end": 18083.5, + "probability": 0.9949 + }, + { + "start": 18084.0, + "end": 18088.8, + "probability": 0.9941 + }, + { + "start": 18088.8, + "end": 18094.5, + "probability": 0.9972 + }, + { + "start": 18095.62, + "end": 18096.24, + "probability": 0.513 + }, + { + "start": 18097.0, + "end": 18098.32, + "probability": 0.8835 + }, + { + "start": 18098.34, + "end": 18100.8, + "probability": 0.9816 + }, + { + "start": 18101.48, + "end": 18103.64, + "probability": 0.9639 + }, + { + "start": 18104.28, + "end": 18106.6, + "probability": 0.9096 + }, + { + "start": 18108.22, + "end": 18109.15, + "probability": 0.9043 + }, + { + "start": 18110.16, + "end": 18115.94, + "probability": 0.9717 + }, + { + "start": 18116.42, + "end": 18122.38, + "probability": 0.9933 + }, + { + "start": 18123.14, + "end": 18124.56, + "probability": 0.6892 + }, + { + "start": 18124.74, + "end": 18126.02, + "probability": 0.9547 + }, + { + "start": 18126.5, + "end": 18127.28, + "probability": 0.8929 + }, + { + "start": 18127.76, + "end": 18134.44, + "probability": 0.9923 + }, + { + "start": 18134.94, + "end": 18135.58, + "probability": 0.9659 + }, + { + "start": 18136.02, + "end": 18138.42, + "probability": 0.9571 + }, + { + "start": 18140.64, + "end": 18142.06, + "probability": 0.837 + }, + { + "start": 18142.18, + "end": 18145.48, + "probability": 0.5725 + }, + { + "start": 18145.76, + "end": 18148.4, + "probability": 0.9346 + }, + { + "start": 18148.48, + "end": 18152.14, + "probability": 0.7488 + }, + { + "start": 18152.62, + "end": 18153.22, + "probability": 0.9033 + }, + { + "start": 18153.78, + "end": 18158.92, + "probability": 0.9735 + }, + { + "start": 18159.92, + "end": 18164.52, + "probability": 0.5477 + }, + { + "start": 18165.12, + "end": 18165.8, + "probability": 0.6467 + }, + { + "start": 18166.4, + "end": 18167.1, + "probability": 0.6385 + }, + { + "start": 18168.38, + "end": 18170.8, + "probability": 0.9889 + }, + { + "start": 18171.54, + "end": 18172.34, + "probability": 0.9357 + }, + { + "start": 18172.56, + "end": 18172.76, + "probability": 0.6544 + }, + { + "start": 18172.88, + "end": 18174.76, + "probability": 0.7765 + }, + { + "start": 18175.79, + "end": 18181.22, + "probability": 0.773 + }, + { + "start": 18182.18, + "end": 18184.58, + "probability": 0.1741 + }, + { + "start": 18184.76, + "end": 18187.38, + "probability": 0.321 + }, + { + "start": 18187.46, + "end": 18188.8, + "probability": 0.8072 + }, + { + "start": 18188.9, + "end": 18189.84, + "probability": 0.4849 + }, + { + "start": 18190.18, + "end": 18191.16, + "probability": 0.9082 + }, + { + "start": 18191.16, + "end": 18193.38, + "probability": 0.717 + }, + { + "start": 18193.58, + "end": 18194.64, + "probability": 0.7945 + }, + { + "start": 18194.72, + "end": 18195.0, + "probability": 0.6079 + }, + { + "start": 18195.22, + "end": 18196.26, + "probability": 0.7019 + }, + { + "start": 18196.26, + "end": 18196.6, + "probability": 0.6485 + }, + { + "start": 18196.9, + "end": 18197.58, + "probability": 0.9695 + }, + { + "start": 18197.74, + "end": 18198.35, + "probability": 0.7665 + }, + { + "start": 18199.36, + "end": 18201.76, + "probability": 0.7327 + }, + { + "start": 18202.38, + "end": 18202.98, + "probability": 0.7634 + }, + { + "start": 18204.1, + "end": 18207.9, + "probability": 0.9927 + }, + { + "start": 18209.11, + "end": 18210.32, + "probability": 0.7205 + }, + { + "start": 18210.38, + "end": 18214.22, + "probability": 0.9995 + }, + { + "start": 18215.0, + "end": 18217.06, + "probability": 0.9403 + }, + { + "start": 18217.18, + "end": 18219.18, + "probability": 0.9774 + }, + { + "start": 18220.34, + "end": 18222.5, + "probability": 0.9815 + }, + { + "start": 18223.38, + "end": 18226.58, + "probability": 0.9872 + }, + { + "start": 18227.34, + "end": 18229.44, + "probability": 0.9874 + }, + { + "start": 18230.32, + "end": 18232.34, + "probability": 0.9957 + }, + { + "start": 18233.2, + "end": 18235.56, + "probability": 0.9253 + }, + { + "start": 18236.08, + "end": 18237.22, + "probability": 0.8432 + }, + { + "start": 18238.04, + "end": 18240.1, + "probability": 0.8632 + }, + { + "start": 18241.18, + "end": 18246.88, + "probability": 0.9448 + }, + { + "start": 18247.06, + "end": 18248.68, + "probability": 0.8398 + }, + { + "start": 18249.62, + "end": 18255.86, + "probability": 0.9843 + }, + { + "start": 18256.5, + "end": 18262.68, + "probability": 0.9707 + }, + { + "start": 18262.68, + "end": 18267.5, + "probability": 0.9468 + }, + { + "start": 18268.34, + "end": 18270.62, + "probability": 0.6654 + }, + { + "start": 18271.7, + "end": 18273.08, + "probability": 0.3055 + }, + { + "start": 18273.08, + "end": 18273.9, + "probability": 0.5236 + }, + { + "start": 18273.94, + "end": 18275.06, + "probability": 0.6619 + }, + { + "start": 18275.68, + "end": 18278.36, + "probability": 0.9784 + }, + { + "start": 18278.96, + "end": 18282.28, + "probability": 0.8667 + }, + { + "start": 18283.02, + "end": 18285.1, + "probability": 0.7279 + }, + { + "start": 18285.1, + "end": 18288.9, + "probability": 0.618 + }, + { + "start": 18289.34, + "end": 18291.94, + "probability": 0.8339 + }, + { + "start": 18292.28, + "end": 18294.8, + "probability": 0.9108 + }, + { + "start": 18295.4, + "end": 18296.74, + "probability": 0.6248 + }, + { + "start": 18298.12, + "end": 18300.5, + "probability": 0.9635 + }, + { + "start": 18301.06, + "end": 18302.46, + "probability": 0.9539 + }, + { + "start": 18303.02, + "end": 18305.56, + "probability": 0.9924 + }, + { + "start": 18306.18, + "end": 18309.12, + "probability": 0.9941 + }, + { + "start": 18309.66, + "end": 18311.22, + "probability": 0.9947 + }, + { + "start": 18312.42, + "end": 18316.62, + "probability": 0.9992 + }, + { + "start": 18316.62, + "end": 18320.94, + "probability": 0.9995 + }, + { + "start": 18321.66, + "end": 18322.48, + "probability": 0.7089 + }, + { + "start": 18323.06, + "end": 18324.56, + "probability": 0.9784 + }, + { + "start": 18325.04, + "end": 18331.38, + "probability": 0.9893 + }, + { + "start": 18331.84, + "end": 18334.32, + "probability": 0.6096 + }, + { + "start": 18334.8, + "end": 18336.78, + "probability": 0.9325 + }, + { + "start": 18337.74, + "end": 18338.82, + "probability": 0.9794 + }, + { + "start": 18339.54, + "end": 18340.54, + "probability": 0.9267 + }, + { + "start": 18341.22, + "end": 18342.9, + "probability": 0.9934 + }, + { + "start": 18343.38, + "end": 18345.88, + "probability": 0.8462 + }, + { + "start": 18346.5, + "end": 18348.7, + "probability": 0.6722 + }, + { + "start": 18349.08, + "end": 18350.16, + "probability": 0.9456 + }, + { + "start": 18350.94, + "end": 18352.1, + "probability": 0.942 + }, + { + "start": 18352.86, + "end": 18353.46, + "probability": 0.522 + }, + { + "start": 18353.58, + "end": 18355.88, + "probability": 0.9789 + }, + { + "start": 18356.08, + "end": 18356.82, + "probability": 0.8949 + }, + { + "start": 18357.2, + "end": 18362.8, + "probability": 0.99 + }, + { + "start": 18363.2, + "end": 18366.12, + "probability": 0.8002 + }, + { + "start": 18366.84, + "end": 18367.66, + "probability": 0.8956 + }, + { + "start": 18367.96, + "end": 18368.54, + "probability": 0.9262 + }, + { + "start": 18368.84, + "end": 18369.8, + "probability": 0.9217 + }, + { + "start": 18370.54, + "end": 18374.2, + "probability": 0.9956 + }, + { + "start": 18375.3, + "end": 18377.78, + "probability": 0.6065 + }, + { + "start": 18378.52, + "end": 18381.46, + "probability": 0.7344 + }, + { + "start": 18381.56, + "end": 18384.54, + "probability": 0.802 + }, + { + "start": 18384.54, + "end": 18388.74, + "probability": 0.9478 + }, + { + "start": 18389.56, + "end": 18390.84, + "probability": 0.9592 + }, + { + "start": 18391.08, + "end": 18392.54, + "probability": 0.8806 + }, + { + "start": 18393.94, + "end": 18395.34, + "probability": 0.0328 + }, + { + "start": 18396.34, + "end": 18397.14, + "probability": 0.5839 + }, + { + "start": 18398.3, + "end": 18398.68, + "probability": 0.8735 + }, + { + "start": 18400.12, + "end": 18402.02, + "probability": 0.748 + }, + { + "start": 18403.22, + "end": 18404.04, + "probability": 0.8716 + }, + { + "start": 18404.6, + "end": 18406.7, + "probability": 0.9178 + }, + { + "start": 18408.0, + "end": 18408.26, + "probability": 0.9902 + }, + { + "start": 18409.52, + "end": 18410.38, + "probability": 0.9211 + }, + { + "start": 18411.1, + "end": 18411.36, + "probability": 0.9543 + }, + { + "start": 18412.7, + "end": 18413.48, + "probability": 0.7429 + }, + { + "start": 18414.16, + "end": 18414.34, + "probability": 0.5692 + }, + { + "start": 18415.64, + "end": 18416.36, + "probability": 0.54 + }, + { + "start": 18418.96, + "end": 18419.44, + "probability": 0.9562 + }, + { + "start": 18420.92, + "end": 18421.68, + "probability": 0.6105 + }, + { + "start": 18423.91, + "end": 18427.52, + "probability": 0.8057 + }, + { + "start": 18429.05, + "end": 18431.12, + "probability": 0.9827 + }, + { + "start": 18432.14, + "end": 18432.44, + "probability": 0.8028 + }, + { + "start": 18433.8, + "end": 18437.86, + "probability": 0.9727 + }, + { + "start": 18438.5, + "end": 18440.32, + "probability": 0.9705 + }, + { + "start": 18441.4, + "end": 18443.12, + "probability": 0.9863 + }, + { + "start": 18444.02, + "end": 18444.22, + "probability": 0.564 + }, + { + "start": 18445.34, + "end": 18446.06, + "probability": 0.8926 + }, + { + "start": 18447.12, + "end": 18448.3, + "probability": 0.9712 + }, + { + "start": 18449.18, + "end": 18449.82, + "probability": 0.9486 + }, + { + "start": 18451.16, + "end": 18451.46, + "probability": 0.9702 + }, + { + "start": 18453.26, + "end": 18453.94, + "probability": 0.9932 + }, + { + "start": 18454.85, + "end": 18457.24, + "probability": 0.9686 + }, + { + "start": 18458.26, + "end": 18459.52, + "probability": 0.9696 + }, + { + "start": 18460.2, + "end": 18460.88, + "probability": 0.9276 + }, + { + "start": 18463.38, + "end": 18464.08, + "probability": 0.9658 + }, + { + "start": 18464.98, + "end": 18465.64, + "probability": 0.8811 + }, + { + "start": 18466.66, + "end": 18467.1, + "probability": 0.9895 + }, + { + "start": 18468.62, + "end": 18469.46, + "probability": 0.958 + }, + { + "start": 18470.14, + "end": 18471.18, + "probability": 0.8142 + }, + { + "start": 18472.08, + "end": 18472.48, + "probability": 0.9701 + }, + { + "start": 18474.43, + "end": 18477.86, + "probability": 0.8832 + }, + { + "start": 18479.3, + "end": 18480.08, + "probability": 0.9771 + }, + { + "start": 18480.98, + "end": 18481.32, + "probability": 0.7131 + }, + { + "start": 18482.66, + "end": 18483.4, + "probability": 0.9627 + }, + { + "start": 18484.3, + "end": 18485.92, + "probability": 0.9773 + }, + { + "start": 18486.66, + "end": 18487.58, + "probability": 0.8563 + }, + { + "start": 18488.58, + "end": 18490.98, + "probability": 0.9448 + }, + { + "start": 18492.14, + "end": 18492.56, + "probability": 0.9857 + }, + { + "start": 18494.24, + "end": 18494.9, + "probability": 0.9531 + }, + { + "start": 18496.94, + "end": 18498.48, + "probability": 0.9907 + }, + { + "start": 18499.12, + "end": 18499.76, + "probability": 0.955 + }, + { + "start": 18500.56, + "end": 18500.88, + "probability": 0.9922 + }, + { + "start": 18502.1, + "end": 18502.8, + "probability": 0.7412 + }, + { + "start": 18503.96, + "end": 18504.34, + "probability": 0.5762 + }, + { + "start": 18505.58, + "end": 18506.14, + "probability": 0.7441 + }, + { + "start": 18508.1, + "end": 18508.52, + "probability": 0.9775 + }, + { + "start": 18509.84, + "end": 18510.48, + "probability": 0.88 + }, + { + "start": 18511.5, + "end": 18513.4, + "probability": 0.9854 + }, + { + "start": 18514.4, + "end": 18516.66, + "probability": 0.9724 + }, + { + "start": 18518.84, + "end": 18520.7, + "probability": 0.838 + }, + { + "start": 18523.58, + "end": 18525.86, + "probability": 0.9411 + }, + { + "start": 18526.42, + "end": 18526.66, + "probability": 0.9297 + }, + { + "start": 18528.0, + "end": 18528.74, + "probability": 0.9891 + }, + { + "start": 18529.38, + "end": 18529.7, + "probability": 0.9822 + }, + { + "start": 18530.96, + "end": 18531.9, + "probability": 0.508 + }, + { + "start": 18532.91, + "end": 18534.54, + "probability": 0.8756 + }, + { + "start": 18537.12, + "end": 18537.78, + "probability": 0.9934 + }, + { + "start": 18538.73, + "end": 18540.76, + "probability": 0.9919 + }, + { + "start": 18541.82, + "end": 18542.5, + "probability": 0.9944 + }, + { + "start": 18543.32, + "end": 18544.18, + "probability": 0.7974 + }, + { + "start": 18544.84, + "end": 18547.18, + "probability": 0.9823 + }, + { + "start": 18550.88, + "end": 18551.68, + "probability": 0.742 + }, + { + "start": 18552.34, + "end": 18553.1, + "probability": 0.8728 + }, + { + "start": 18554.52, + "end": 18555.72, + "probability": 0.9912 + }, + { + "start": 18556.72, + "end": 18557.92, + "probability": 0.9917 + }, + { + "start": 18559.36, + "end": 18559.6, + "probability": 0.9888 + }, + { + "start": 18561.08, + "end": 18562.26, + "probability": 0.7852 + }, + { + "start": 18567.74, + "end": 18568.44, + "probability": 0.774 + }, + { + "start": 18569.68, + "end": 18570.76, + "probability": 0.7686 + }, + { + "start": 18572.48, + "end": 18572.8, + "probability": 0.9575 + }, + { + "start": 18574.9, + "end": 18575.7, + "probability": 0.8827 + }, + { + "start": 18576.9, + "end": 18577.22, + "probability": 0.9871 + }, + { + "start": 18578.62, + "end": 18579.64, + "probability": 0.7021 + }, + { + "start": 18580.22, + "end": 18580.48, + "probability": 0.9611 + }, + { + "start": 18581.7, + "end": 18582.32, + "probability": 0.4095 + }, + { + "start": 18583.3, + "end": 18584.04, + "probability": 0.8315 + }, + { + "start": 18584.92, + "end": 18585.68, + "probability": 0.8432 + }, + { + "start": 18588.08, + "end": 18588.36, + "probability": 0.7358 + }, + { + "start": 18589.98, + "end": 18590.5, + "probability": 0.5215 + }, + { + "start": 18591.54, + "end": 18591.74, + "probability": 0.7725 + }, + { + "start": 18596.12, + "end": 18596.68, + "probability": 0.67 + }, + { + "start": 18597.86, + "end": 18599.56, + "probability": 0.9112 + }, + { + "start": 18600.34, + "end": 18600.76, + "probability": 0.7889 + }, + { + "start": 18602.52, + "end": 18602.8, + "probability": 0.7257 + }, + { + "start": 18604.1, + "end": 18604.56, + "probability": 0.7341 + }, + { + "start": 18606.04, + "end": 18607.4, + "probability": 0.9825 + }, + { + "start": 18609.07, + "end": 18610.84, + "probability": 0.979 + }, + { + "start": 18611.7, + "end": 18612.02, + "probability": 0.8999 + }, + { + "start": 18613.08, + "end": 18613.6, + "probability": 0.9564 + }, + { + "start": 18615.02, + "end": 18615.82, + "probability": 0.9951 + }, + { + "start": 18616.64, + "end": 18617.2, + "probability": 0.9827 + }, + { + "start": 18617.98, + "end": 18618.98, + "probability": 0.9888 + }, + { + "start": 18619.5, + "end": 18620.08, + "probability": 0.9725 + }, + { + "start": 18622.24, + "end": 18622.58, + "probability": 0.9816 + }, + { + "start": 18624.12, + "end": 18624.54, + "probability": 0.967 + }, + { + "start": 18625.62, + "end": 18625.84, + "probability": 0.7222 + }, + { + "start": 18627.12, + "end": 18627.9, + "probability": 0.7708 + }, + { + "start": 18628.62, + "end": 18630.62, + "probability": 0.9408 + }, + { + "start": 18632.05, + "end": 18633.62, + "probability": 0.9837 + }, + { + "start": 18634.46, + "end": 18636.68, + "probability": 0.9937 + }, + { + "start": 18638.01, + "end": 18639.48, + "probability": 0.9904 + }, + { + "start": 18641.39, + "end": 18643.44, + "probability": 0.9863 + }, + { + "start": 18645.02, + "end": 18647.68, + "probability": 0.8252 + }, + { + "start": 18648.92, + "end": 18649.92, + "probability": 0.6119 + }, + { + "start": 18653.3, + "end": 18653.7, + "probability": 0.9614 + }, + { + "start": 18655.52, + "end": 18656.14, + "probability": 0.8284 + }, + { + "start": 18657.34, + "end": 18657.8, + "probability": 0.8431 + }, + { + "start": 18659.12, + "end": 18660.76, + "probability": 0.7488 + }, + { + "start": 18662.16, + "end": 18663.0, + "probability": 0.7316 + }, + { + "start": 18666.96, + "end": 18667.42, + "probability": 0.9775 + }, + { + "start": 18669.9, + "end": 18670.88, + "probability": 0.9611 + }, + { + "start": 18673.84, + "end": 18674.24, + "probability": 0.992 + }, + { + "start": 18676.08, + "end": 18676.68, + "probability": 0.9871 + }, + { + "start": 18678.0, + "end": 18680.02, + "probability": 0.9596 + }, + { + "start": 18680.7, + "end": 18680.92, + "probability": 0.8162 + }, + { + "start": 18682.52, + "end": 18683.32, + "probability": 0.7287 + }, + { + "start": 18684.0, + "end": 18684.0, + "probability": 0.812 + }, + { + "start": 18686.68, + "end": 18688.86, + "probability": 0.6806 + }, + { + "start": 18690.48, + "end": 18691.14, + "probability": 0.7283 + }, + { + "start": 18694.96, + "end": 18695.78, + "probability": 0.7767 + }, + { + "start": 18696.52, + "end": 18697.44, + "probability": 0.8289 + }, + { + "start": 18698.96, + "end": 18700.14, + "probability": 0.99 + }, + { + "start": 18700.8, + "end": 18701.4, + "probability": 0.9476 + }, + { + "start": 18703.22, + "end": 18704.68, + "probability": 0.9829 + }, + { + "start": 18707.43, + "end": 18709.34, + "probability": 0.9827 + }, + { + "start": 18711.46, + "end": 18712.92, + "probability": 0.9858 + }, + { + "start": 18714.18, + "end": 18714.38, + "probability": 0.6926 + }, + { + "start": 18715.96, + "end": 18716.94, + "probability": 0.6385 + }, + { + "start": 18720.44, + "end": 18720.78, + "probability": 0.9207 + }, + { + "start": 18722.46, + "end": 18723.32, + "probability": 0.7772 + }, + { + "start": 18724.06, + "end": 18724.84, + "probability": 0.9917 + }, + { + "start": 18725.84, + "end": 18726.52, + "probability": 0.7198 + }, + { + "start": 18727.1, + "end": 18727.36, + "probability": 0.9323 + }, + { + "start": 18728.44, + "end": 18729.22, + "probability": 0.8795 + }, + { + "start": 18731.44, + "end": 18732.06, + "probability": 0.7872 + }, + { + "start": 18732.64, + "end": 18733.56, + "probability": 0.7345 + }, + { + "start": 18734.82, + "end": 18735.1, + "probability": 0.9858 + }, + { + "start": 18736.48, + "end": 18737.4, + "probability": 0.8191 + }, + { + "start": 18740.06, + "end": 18741.14, + "probability": 0.135 + }, + { + "start": 18742.12, + "end": 18742.64, + "probability": 0.4056 + }, + { + "start": 18747.38, + "end": 18748.34, + "probability": 0.1013 + }, + { + "start": 18749.56, + "end": 18749.9, + "probability": 0.6033 + }, + { + "start": 18751.04, + "end": 18751.94, + "probability": 0.6337 + }, + { + "start": 18753.04, + "end": 18753.38, + "probability": 0.9009 + }, + { + "start": 18754.64, + "end": 18755.28, + "probability": 0.687 + }, + { + "start": 18756.2, + "end": 18757.92, + "probability": 0.8535 + }, + { + "start": 18758.92, + "end": 18759.26, + "probability": 0.9746 + }, + { + "start": 18761.02, + "end": 18761.68, + "probability": 0.864 + }, + { + "start": 18763.54, + "end": 18766.0, + "probability": 0.8476 + }, + { + "start": 18766.7, + "end": 18767.34, + "probability": 0.9227 + }, + { + "start": 18768.72, + "end": 18770.6, + "probability": 0.9435 + }, + { + "start": 18771.52, + "end": 18772.4, + "probability": 0.7363 + }, + { + "start": 18773.96, + "end": 18774.38, + "probability": 0.828 + }, + { + "start": 18776.14, + "end": 18776.78, + "probability": 0.7244 + }, + { + "start": 18777.74, + "end": 18778.26, + "probability": 0.9756 + }, + { + "start": 18779.48, + "end": 18780.26, + "probability": 0.98 + }, + { + "start": 18781.08, + "end": 18781.4, + "probability": 0.8677 + }, + { + "start": 18782.88, + "end": 18783.56, + "probability": 0.9478 + }, + { + "start": 18784.48, + "end": 18784.96, + "probability": 0.9816 + }, + { + "start": 18786.12, + "end": 18786.7, + "probability": 0.7995 + }, + { + "start": 18788.64, + "end": 18789.34, + "probability": 0.9746 + }, + { + "start": 18790.64, + "end": 18791.52, + "probability": 0.9813 + }, + { + "start": 18792.22, + "end": 18794.88, + "probability": 0.8773 + }, + { + "start": 18797.54, + "end": 18797.88, + "probability": 0.993 + }, + { + "start": 18799.6, + "end": 18800.6, + "probability": 0.7272 + }, + { + "start": 18801.16, + "end": 18801.5, + "probability": 0.9933 + }, + { + "start": 18802.86, + "end": 18803.18, + "probability": 0.8066 + }, + { + "start": 18804.32, + "end": 18804.66, + "probability": 0.7793 + }, + { + "start": 18805.96, + "end": 18806.58, + "probability": 0.8864 + }, + { + "start": 18807.84, + "end": 18808.16, + "probability": 0.9183 + }, + { + "start": 18809.8, + "end": 18810.5, + "probability": 0.8719 + }, + { + "start": 18812.33, + "end": 18814.44, + "probability": 0.9844 + }, + { + "start": 18815.7, + "end": 18816.0, + "probability": 0.9949 + }, + { + "start": 18817.54, + "end": 18818.44, + "probability": 0.986 + }, + { + "start": 18819.96, + "end": 18822.2, + "probability": 0.8931 + }, + { + "start": 18824.36, + "end": 18825.2, + "probability": 0.874 + }, + { + "start": 18826.5, + "end": 18826.74, + "probability": 0.9927 + }, + { + "start": 18828.44, + "end": 18829.0, + "probability": 0.9892 + }, + { + "start": 18830.16, + "end": 18830.52, + "probability": 0.9922 + }, + { + "start": 18831.82, + "end": 18832.6, + "probability": 0.8013 + }, + { + "start": 18833.48, + "end": 18833.9, + "probability": 0.7305 + }, + { + "start": 18834.86, + "end": 18835.84, + "probability": 0.8708 + }, + { + "start": 18837.14, + "end": 18839.14, + "probability": 0.7946 + }, + { + "start": 18840.38, + "end": 18841.16, + "probability": 0.9845 + }, + { + "start": 18841.92, + "end": 18842.72, + "probability": 0.9266 + }, + { + "start": 18846.4, + "end": 18848.24, + "probability": 0.955 + }, + { + "start": 18849.1, + "end": 18850.32, + "probability": 0.9798 + }, + { + "start": 18850.92, + "end": 18851.8, + "probability": 0.8993 + }, + { + "start": 18853.06, + "end": 18853.96, + "probability": 0.9778 + }, + { + "start": 18855.52, + "end": 18856.44, + "probability": 0.8751 + }, + { + "start": 18858.7, + "end": 18859.02, + "probability": 0.9954 + }, + { + "start": 18860.74, + "end": 18861.4, + "probability": 0.8204 + }, + { + "start": 18862.44, + "end": 18862.82, + "probability": 0.6837 + }, + { + "start": 18864.24, + "end": 18865.22, + "probability": 0.8936 + }, + { + "start": 18866.22, + "end": 18867.1, + "probability": 0.9953 + }, + { + "start": 18867.74, + "end": 18868.4, + "probability": 0.6608 + }, + { + "start": 18870.56, + "end": 18870.88, + "probability": 0.8387 + }, + { + "start": 18875.76, + "end": 18876.48, + "probability": 0.6463 + }, + { + "start": 18876.74, + "end": 18880.16, + "probability": 0.7676 + }, + { + "start": 18880.76, + "end": 18881.42, + "probability": 0.2504 + }, + { + "start": 18883.42, + "end": 18884.18, + "probability": 0.973 + }, + { + "start": 18885.74, + "end": 18886.44, + "probability": 0.6003 + }, + { + "start": 18891.54, + "end": 18892.16, + "probability": 0.7682 + }, + { + "start": 18893.2, + "end": 18893.92, + "probability": 0.9583 + }, + { + "start": 18895.84, + "end": 18896.66, + "probability": 0.9906 + }, + { + "start": 18899.24, + "end": 18899.62, + "probability": 0.6802 + }, + { + "start": 18902.04, + "end": 18903.7, + "probability": 0.7219 + }, + { + "start": 18904.42, + "end": 18904.88, + "probability": 0.7308 + }, + { + "start": 18907.18, + "end": 18907.9, + "probability": 0.9669 + }, + { + "start": 18908.64, + "end": 18909.52, + "probability": 0.6599 + }, + { + "start": 18910.54, + "end": 18911.02, + "probability": 0.9574 + }, + { + "start": 18913.96, + "end": 18915.22, + "probability": 0.841 + }, + { + "start": 18916.04, + "end": 18916.28, + "probability": 0.6267 + }, + { + "start": 18920.8, + "end": 18921.34, + "probability": 0.6881 + }, + { + "start": 18923.66, + "end": 18924.42, + "probability": 0.8448 + }, + { + "start": 18925.98, + "end": 18926.8, + "probability": 0.7115 + }, + { + "start": 18928.06, + "end": 18928.54, + "probability": 0.9767 + }, + { + "start": 18933.78, + "end": 18934.48, + "probability": 0.5321 + }, + { + "start": 18936.26, + "end": 18937.0, + "probability": 0.9567 + }, + { + "start": 18938.1, + "end": 18938.72, + "probability": 0.8312 + }, + { + "start": 18940.14, + "end": 18941.38, + "probability": 0.9928 + }, + { + "start": 18943.38, + "end": 18944.0, + "probability": 0.8028 + }, + { + "start": 18952.72, + "end": 18953.09, + "probability": 0.6651 + }, + { + "start": 18954.94, + "end": 18955.18, + "probability": 0.6879 + }, + { + "start": 18957.58, + "end": 18962.92, + "probability": 0.8857 + }, + { + "start": 18962.92, + "end": 18963.02, + "probability": 0.2059 + }, + { + "start": 18963.02, + "end": 18963.5, + "probability": 0.3935 + }, + { + "start": 18964.54, + "end": 18964.78, + "probability": 0.9554 + }, + { + "start": 18966.65, + "end": 18970.72, + "probability": 0.6843 + }, + { + "start": 18971.02, + "end": 18975.36, + "probability": 0.9066 + }, + { + "start": 18987.22, + "end": 18989.18, + "probability": 0.4852 + }, + { + "start": 18990.6, + "end": 18990.78, + "probability": 0.04 + }, + { + "start": 18993.36, + "end": 18999.24, + "probability": 0.1177 + }, + { + "start": 19003.68, + "end": 19004.14, + "probability": 0.0432 + }, + { + "start": 19009.58, + "end": 19010.84, + "probability": 0.2435 + }, + { + "start": 19011.56, + "end": 19013.52, + "probability": 0.1733 + }, + { + "start": 19014.44, + "end": 19014.64, + "probability": 0.0194 + }, + { + "start": 19194.0, + "end": 19195.76, + "probability": 0.3613 + }, + { + "start": 19196.22, + "end": 19197.34, + "probability": 0.4811 + }, + { + "start": 19197.68, + "end": 19199.26, + "probability": 0.959 + }, + { + "start": 19199.7, + "end": 19202.5, + "probability": 0.9518 + }, + { + "start": 19202.5, + "end": 19207.06, + "probability": 0.9808 + }, + { + "start": 19208.36, + "end": 19209.34, + "probability": 0.7452 + }, + { + "start": 19209.42, + "end": 19214.8, + "probability": 0.9785 + }, + { + "start": 19215.48, + "end": 19217.26, + "probability": 0.8704 + }, + { + "start": 19217.54, + "end": 19220.58, + "probability": 0.9626 + }, + { + "start": 19229.35, + "end": 19231.44, + "probability": 0.567 + }, + { + "start": 19232.68, + "end": 19235.16, + "probability": 0.8221 + }, + { + "start": 19236.9, + "end": 19238.03, + "probability": 0.4809 + }, + { + "start": 19238.74, + "end": 19239.32, + "probability": 0.8442 + }, + { + "start": 19240.72, + "end": 19243.8, + "probability": 0.9546 + }, + { + "start": 19244.24, + "end": 19245.74, + "probability": 0.9836 + }, + { + "start": 19246.66, + "end": 19247.46, + "probability": 0.9092 + }, + { + "start": 19248.08, + "end": 19249.22, + "probability": 0.8776 + }, + { + "start": 19250.14, + "end": 19252.02, + "probability": 0.9873 + }, + { + "start": 19253.24, + "end": 19255.58, + "probability": 0.925 + }, + { + "start": 19256.72, + "end": 19257.56, + "probability": 0.8823 + }, + { + "start": 19258.52, + "end": 19260.3, + "probability": 0.987 + }, + { + "start": 19261.6, + "end": 19262.32, + "probability": 0.2791 + }, + { + "start": 19262.64, + "end": 19264.1, + "probability": 0.9259 + }, + { + "start": 19264.2, + "end": 19265.38, + "probability": 0.8824 + }, + { + "start": 19265.62, + "end": 19265.62, + "probability": 0.0041 + }, + { + "start": 19266.0, + "end": 19266.24, + "probability": 0.1066 + }, + { + "start": 19266.24, + "end": 19266.24, + "probability": 0.041 + }, + { + "start": 19266.24, + "end": 19268.44, + "probability": 0.9078 + }, + { + "start": 19269.42, + "end": 19274.06, + "probability": 0.7946 + }, + { + "start": 19274.98, + "end": 19275.1, + "probability": 0.1465 + }, + { + "start": 19275.1, + "end": 19275.86, + "probability": 0.7591 + }, + { + "start": 19275.98, + "end": 19282.02, + "probability": 0.9083 + }, + { + "start": 19282.36, + "end": 19284.62, + "probability": 0.6735 + }, + { + "start": 19284.92, + "end": 19285.38, + "probability": 0.0733 + }, + { + "start": 19285.76, + "end": 19288.33, + "probability": 0.8833 + }, + { + "start": 19288.8, + "end": 19292.6, + "probability": 0.96 + }, + { + "start": 19292.6, + "end": 19296.79, + "probability": 0.924 + }, + { + "start": 19298.14, + "end": 19301.1, + "probability": 0.7936 + }, + { + "start": 19301.66, + "end": 19305.42, + "probability": 0.7967 + }, + { + "start": 19306.88, + "end": 19307.6, + "probability": 0.1124 + }, + { + "start": 19307.6, + "end": 19307.66, + "probability": 0.1686 + }, + { + "start": 19308.08, + "end": 19309.48, + "probability": 0.7129 + }, + { + "start": 19309.74, + "end": 19312.54, + "probability": 0.9607 + }, + { + "start": 19313.62, + "end": 19317.6, + "probability": 0.5775 + }, + { + "start": 19318.3, + "end": 19322.2, + "probability": 0.938 + }, + { + "start": 19322.74, + "end": 19325.36, + "probability": 0.9956 + }, + { + "start": 19326.24, + "end": 19326.84, + "probability": 0.6534 + }, + { + "start": 19326.98, + "end": 19328.2, + "probability": 0.9812 + }, + { + "start": 19329.08, + "end": 19331.42, + "probability": 0.8262 + }, + { + "start": 19332.48, + "end": 19336.3, + "probability": 0.7745 + }, + { + "start": 19336.32, + "end": 19337.36, + "probability": 0.7796 + }, + { + "start": 19337.42, + "end": 19339.92, + "probability": 0.8888 + }, + { + "start": 19340.76, + "end": 19341.6, + "probability": 0.8889 + }, + { + "start": 19342.14, + "end": 19343.28, + "probability": 0.572 + }, + { + "start": 19344.16, + "end": 19346.92, + "probability": 0.991 + }, + { + "start": 19347.41, + "end": 19350.7, + "probability": 0.7198 + }, + { + "start": 19351.26, + "end": 19351.98, + "probability": 0.7964 + }, + { + "start": 19352.98, + "end": 19353.52, + "probability": 0.748 + }, + { + "start": 19357.52, + "end": 19358.54, + "probability": 0.8583 + }, + { + "start": 19359.18, + "end": 19359.76, + "probability": 0.9855 + }, + { + "start": 19361.04, + "end": 19364.1, + "probability": 0.9971 + }, + { + "start": 19370.4, + "end": 19371.24, + "probability": 0.6666 + }, + { + "start": 19372.24, + "end": 19373.6, + "probability": 0.5125 + }, + { + "start": 19374.46, + "end": 19374.84, + "probability": 0.6577 + }, + { + "start": 19375.58, + "end": 19380.58, + "probability": 0.9954 + }, + { + "start": 19382.18, + "end": 19386.92, + "probability": 0.9951 + }, + { + "start": 19387.02, + "end": 19388.3, + "probability": 0.8835 + }, + { + "start": 19389.02, + "end": 19391.64, + "probability": 0.9626 + }, + { + "start": 19392.3, + "end": 19396.38, + "probability": 0.9899 + }, + { + "start": 19396.5, + "end": 19398.92, + "probability": 0.8516 + }, + { + "start": 19399.62, + "end": 19400.44, + "probability": 0.8766 + }, + { + "start": 19402.24, + "end": 19406.4, + "probability": 0.9959 + }, + { + "start": 19406.4, + "end": 19411.81, + "probability": 0.9697 + }, + { + "start": 19412.42, + "end": 19415.06, + "probability": 0.9993 + }, + { + "start": 19415.28, + "end": 19419.7, + "probability": 0.9995 + }, + { + "start": 19422.56, + "end": 19426.32, + "probability": 0.9958 + }, + { + "start": 19433.34, + "end": 19438.94, + "probability": 0.9907 + }, + { + "start": 19439.38, + "end": 19440.24, + "probability": 0.9102 + }, + { + "start": 19440.3, + "end": 19443.98, + "probability": 0.9976 + }, + { + "start": 19443.98, + "end": 19447.66, + "probability": 0.9921 + }, + { + "start": 19448.36, + "end": 19451.36, + "probability": 0.7394 + }, + { + "start": 19451.58, + "end": 19451.92, + "probability": 0.8243 + }, + { + "start": 19452.06, + "end": 19453.34, + "probability": 0.9541 + }, + { + "start": 19453.66, + "end": 19457.42, + "probability": 0.9962 + }, + { + "start": 19457.9, + "end": 19460.46, + "probability": 0.9841 + }, + { + "start": 19460.87, + "end": 19462.94, + "probability": 0.9891 + }, + { + "start": 19463.36, + "end": 19466.8, + "probability": 0.998 + }, + { + "start": 19467.02, + "end": 19470.42, + "probability": 0.8343 + }, + { + "start": 19470.86, + "end": 19473.94, + "probability": 0.9969 + }, + { + "start": 19474.24, + "end": 19475.8, + "probability": 0.6695 + }, + { + "start": 19475.84, + "end": 19476.06, + "probability": 0.7033 + }, + { + "start": 19476.36, + "end": 19480.02, + "probability": 0.9944 + }, + { + "start": 19480.1, + "end": 19482.5, + "probability": 0.9858 + }, + { + "start": 19482.62, + "end": 19485.54, + "probability": 0.9955 + }, + { + "start": 19485.94, + "end": 19487.22, + "probability": 0.6743 + }, + { + "start": 19490.62, + "end": 19493.96, + "probability": 0.9739 + }, + { + "start": 19494.84, + "end": 19495.64, + "probability": 0.9043 + }, + { + "start": 19496.24, + "end": 19499.8, + "probability": 0.6958 + }, + { + "start": 19500.56, + "end": 19501.52, + "probability": 0.8553 + }, + { + "start": 19503.12, + "end": 19505.08, + "probability": 0.7353 + }, + { + "start": 19531.44, + "end": 19531.94, + "probability": 0.7106 + }, + { + "start": 19532.86, + "end": 19534.14, + "probability": 0.5945 + }, + { + "start": 19536.0, + "end": 19536.72, + "probability": 0.6893 + }, + { + "start": 19539.8, + "end": 19543.1, + "probability": 0.9849 + }, + { + "start": 19554.3, + "end": 19557.28, + "probability": 0.9993 + }, + { + "start": 19557.56, + "end": 19558.42, + "probability": 0.6206 + }, + { + "start": 19560.58, + "end": 19561.18, + "probability": 0.5096 + }, + { + "start": 19563.16, + "end": 19565.38, + "probability": 0.989 + }, + { + "start": 19567.13, + "end": 19571.98, + "probability": 0.7727 + }, + { + "start": 19572.0, + "end": 19572.0, + "probability": 0.4084 + }, + { + "start": 19572.86, + "end": 19572.94, + "probability": 0.0166 + }, + { + "start": 19582.9, + "end": 19584.86, + "probability": 0.6495 + }, + { + "start": 19586.34, + "end": 19587.74, + "probability": 0.9663 + }, + { + "start": 19588.28, + "end": 19590.4, + "probability": 0.9993 + }, + { + "start": 19591.6, + "end": 19594.34, + "probability": 0.8856 + }, + { + "start": 19596.76, + "end": 19598.76, + "probability": 0.838 + }, + { + "start": 19601.66, + "end": 19602.42, + "probability": 0.9839 + }, + { + "start": 19605.96, + "end": 19608.86, + "probability": 0.8921 + }, + { + "start": 19609.9, + "end": 19610.7, + "probability": 0.9995 + }, + { + "start": 19611.84, + "end": 19614.34, + "probability": 0.9915 + }, + { + "start": 19614.42, + "end": 19617.58, + "probability": 0.816 + }, + { + "start": 19618.36, + "end": 19625.56, + "probability": 0.995 + }, + { + "start": 19625.74, + "end": 19628.06, + "probability": 0.8814 + }, + { + "start": 19628.96, + "end": 19630.14, + "probability": 0.9771 + }, + { + "start": 19630.26, + "end": 19631.85, + "probability": 0.9388 + }, + { + "start": 19631.96, + "end": 19637.34, + "probability": 0.9922 + }, + { + "start": 19638.88, + "end": 19641.72, + "probability": 0.9989 + }, + { + "start": 19642.72, + "end": 19644.4, + "probability": 0.9998 + }, + { + "start": 19644.6, + "end": 19649.08, + "probability": 0.9967 + }, + { + "start": 19650.76, + "end": 19652.94, + "probability": 0.8345 + }, + { + "start": 19654.0, + "end": 19658.36, + "probability": 0.9945 + }, + { + "start": 19659.4, + "end": 19662.28, + "probability": 0.9917 + }, + { + "start": 19662.84, + "end": 19664.44, + "probability": 0.815 + }, + { + "start": 19666.18, + "end": 19666.7, + "probability": 0.9266 + }, + { + "start": 19667.58, + "end": 19669.22, + "probability": 0.981 + }, + { + "start": 19670.4, + "end": 19674.1, + "probability": 0.9993 + }, + { + "start": 19675.5, + "end": 19680.62, + "probability": 0.9971 + }, + { + "start": 19682.3, + "end": 19682.8, + "probability": 0.8029 + }, + { + "start": 19683.94, + "end": 19685.72, + "probability": 0.9634 + }, + { + "start": 19687.14, + "end": 19688.42, + "probability": 0.9431 + }, + { + "start": 19689.5, + "end": 19694.52, + "probability": 0.9927 + }, + { + "start": 19696.64, + "end": 19698.62, + "probability": 0.2296 + }, + { + "start": 19703.48, + "end": 19704.98, + "probability": 0.7266 + }, + { + "start": 19706.34, + "end": 19709.06, + "probability": 0.9976 + }, + { + "start": 19710.14, + "end": 19711.44, + "probability": 0.9944 + }, + { + "start": 19712.22, + "end": 19713.08, + "probability": 0.9041 + }, + { + "start": 19713.94, + "end": 19717.74, + "probability": 0.9951 + }, + { + "start": 19720.36, + "end": 19729.56, + "probability": 0.9934 + }, + { + "start": 19730.64, + "end": 19732.1, + "probability": 0.9987 + }, + { + "start": 19733.22, + "end": 19734.54, + "probability": 0.8457 + }, + { + "start": 19735.38, + "end": 19736.18, + "probability": 0.8633 + }, + { + "start": 19737.66, + "end": 19739.16, + "probability": 0.976 + }, + { + "start": 19740.26, + "end": 19745.46, + "probability": 0.999 + }, + { + "start": 19745.64, + "end": 19747.68, + "probability": 0.8297 + }, + { + "start": 19749.16, + "end": 19752.18, + "probability": 0.9751 + }, + { + "start": 19753.42, + "end": 19758.28, + "probability": 0.9844 + }, + { + "start": 19760.04, + "end": 19763.58, + "probability": 0.9947 + }, + { + "start": 19763.8, + "end": 19766.82, + "probability": 0.9978 + }, + { + "start": 19768.04, + "end": 19770.16, + "probability": 0.9954 + }, + { + "start": 19771.28, + "end": 19772.88, + "probability": 0.9343 + }, + { + "start": 19773.5, + "end": 19776.2, + "probability": 0.9658 + }, + { + "start": 19777.18, + "end": 19779.56, + "probability": 0.9814 + }, + { + "start": 19780.84, + "end": 19786.54, + "probability": 0.9724 + }, + { + "start": 19787.68, + "end": 19789.08, + "probability": 0.9871 + }, + { + "start": 19790.18, + "end": 19791.82, + "probability": 0.9525 + }, + { + "start": 19792.36, + "end": 19794.32, + "probability": 0.8683 + }, + { + "start": 19795.06, + "end": 19798.38, + "probability": 0.9854 + }, + { + "start": 19799.74, + "end": 19804.98, + "probability": 0.9826 + }, + { + "start": 19805.58, + "end": 19807.08, + "probability": 0.9251 + }, + { + "start": 19807.76, + "end": 19810.97, + "probability": 0.9849 + }, + { + "start": 19812.48, + "end": 19817.46, + "probability": 0.9491 + }, + { + "start": 19818.5, + "end": 19820.94, + "probability": 0.9307 + }, + { + "start": 19821.5, + "end": 19823.7, + "probability": 0.8472 + }, + { + "start": 19824.26, + "end": 19825.05, + "probability": 0.9517 + }, + { + "start": 19825.6, + "end": 19828.28, + "probability": 0.9429 + }, + { + "start": 19828.7, + "end": 19829.4, + "probability": 0.6444 + }, + { + "start": 19829.48, + "end": 19829.92, + "probability": 0.8837 + }, + { + "start": 19830.2, + "end": 19834.44, + "probability": 0.7784 + }, + { + "start": 19835.2, + "end": 19837.59, + "probability": 0.9901 + }, + { + "start": 19837.78, + "end": 19839.02, + "probability": 0.865 + }, + { + "start": 19839.38, + "end": 19843.52, + "probability": 0.9709 + }, + { + "start": 19843.66, + "end": 19844.46, + "probability": 0.7299 + }, + { + "start": 19844.62, + "end": 19845.34, + "probability": 0.8882 + }, + { + "start": 19846.08, + "end": 19852.8, + "probability": 0.9753 + }, + { + "start": 19853.68, + "end": 19861.62, + "probability": 0.9497 + }, + { + "start": 19862.8, + "end": 19865.72, + "probability": 0.9956 + }, + { + "start": 19865.8, + "end": 19869.92, + "probability": 0.9901 + }, + { + "start": 19870.7, + "end": 19873.04, + "probability": 0.9223 + }, + { + "start": 19873.6, + "end": 19875.46, + "probability": 0.9703 + }, + { + "start": 19876.1, + "end": 19877.7, + "probability": 0.9951 + }, + { + "start": 19878.44, + "end": 19880.3, + "probability": 0.9854 + }, + { + "start": 19880.94, + "end": 19887.38, + "probability": 0.9969 + }, + { + "start": 19887.38, + "end": 19897.34, + "probability": 0.9998 + }, + { + "start": 19898.72, + "end": 19899.54, + "probability": 0.8501 + }, + { + "start": 19900.34, + "end": 19905.96, + "probability": 0.9969 + }, + { + "start": 19906.4, + "end": 19907.16, + "probability": 0.8087 + }, + { + "start": 19907.68, + "end": 19908.82, + "probability": 0.9836 + }, + { + "start": 19909.5, + "end": 19910.74, + "probability": 0.9976 + }, + { + "start": 19911.62, + "end": 19914.46, + "probability": 0.9938 + }, + { + "start": 19915.28, + "end": 19917.36, + "probability": 0.9907 + }, + { + "start": 19918.9, + "end": 19921.52, + "probability": 0.7372 + }, + { + "start": 19921.72, + "end": 19922.76, + "probability": 0.8019 + }, + { + "start": 19922.96, + "end": 19930.18, + "probability": 0.9977 + }, + { + "start": 19931.48, + "end": 19934.24, + "probability": 0.9963 + }, + { + "start": 19935.42, + "end": 19935.96, + "probability": 0.7876 + }, + { + "start": 19937.34, + "end": 19937.48, + "probability": 0.0616 + }, + { + "start": 19937.48, + "end": 19938.06, + "probability": 0.9217 + }, + { + "start": 19938.8, + "end": 19940.08, + "probability": 0.9976 + }, + { + "start": 19941.16, + "end": 19944.9, + "probability": 0.9946 + }, + { + "start": 19944.9, + "end": 19948.34, + "probability": 0.996 + }, + { + "start": 19949.48, + "end": 19950.8, + "probability": 0.995 + }, + { + "start": 19951.5, + "end": 19955.42, + "probability": 0.9966 + }, + { + "start": 19956.62, + "end": 19958.1, + "probability": 0.8857 + }, + { + "start": 19959.92, + "end": 19964.42, + "probability": 0.9749 + }, + { + "start": 19966.24, + "end": 19967.8, + "probability": 0.8848 + }, + { + "start": 19969.2, + "end": 19972.32, + "probability": 0.9946 + }, + { + "start": 19972.32, + "end": 19976.4, + "probability": 0.9966 + }, + { + "start": 19976.4, + "end": 19979.38, + "probability": 0.9966 + }, + { + "start": 19980.14, + "end": 19980.62, + "probability": 0.8056 + }, + { + "start": 19981.36, + "end": 19983.6, + "probability": 0.8792 + }, + { + "start": 19983.7, + "end": 19987.72, + "probability": 0.9332 + }, + { + "start": 19988.64, + "end": 19991.32, + "probability": 0.9688 + }, + { + "start": 19991.38, + "end": 19992.62, + "probability": 0.6108 + }, + { + "start": 19993.82, + "end": 19994.76, + "probability": 0.9409 + }, + { + "start": 19995.1, + "end": 19998.78, + "probability": 0.9602 + }, + { + "start": 19998.78, + "end": 20002.64, + "probability": 0.8872 + }, + { + "start": 20004.22, + "end": 20007.2, + "probability": 0.9922 + }, + { + "start": 20008.2, + "end": 20011.08, + "probability": 0.9677 + }, + { + "start": 20011.4, + "end": 20014.14, + "probability": 0.8164 + }, + { + "start": 20015.04, + "end": 20016.46, + "probability": 0.9964 + }, + { + "start": 20017.64, + "end": 20019.18, + "probability": 0.9791 + }, + { + "start": 20019.22, + "end": 20020.58, + "probability": 0.9216 + }, + { + "start": 20020.78, + "end": 20022.4, + "probability": 0.892 + }, + { + "start": 20023.78, + "end": 20024.2, + "probability": 0.864 + }, + { + "start": 20025.4, + "end": 20027.12, + "probability": 0.9413 + }, + { + "start": 20028.58, + "end": 20034.34, + "probability": 0.9953 + }, + { + "start": 20035.46, + "end": 20037.16, + "probability": 0.3672 + }, + { + "start": 20037.16, + "end": 20037.26, + "probability": 0.1357 + }, + { + "start": 20041.9, + "end": 20042.58, + "probability": 0.3284 + }, + { + "start": 20042.9, + "end": 20045.02, + "probability": 0.981 + }, + { + "start": 20046.14, + "end": 20053.26, + "probability": 0.9963 + }, + { + "start": 20053.74, + "end": 20055.56, + "probability": 0.9794 + }, + { + "start": 20056.92, + "end": 20057.88, + "probability": 0.5108 + }, + { + "start": 20058.22, + "end": 20059.24, + "probability": 0.7555 + }, + { + "start": 20060.82, + "end": 20064.86, + "probability": 0.8658 + }, + { + "start": 20065.2, + "end": 20065.79, + "probability": 0.0302 + }, + { + "start": 20066.86, + "end": 20067.36, + "probability": 0.9668 + }, + { + "start": 20067.4, + "end": 20068.98, + "probability": 0.8794 + }, + { + "start": 20070.1, + "end": 20074.24, + "probability": 0.9908 + }, + { + "start": 20075.4, + "end": 20076.58, + "probability": 0.913 + }, + { + "start": 20077.72, + "end": 20080.86, + "probability": 0.9876 + }, + { + "start": 20080.9, + "end": 20082.2, + "probability": 0.8129 + }, + { + "start": 20082.32, + "end": 20083.66, + "probability": 0.9453 + }, + { + "start": 20084.44, + "end": 20087.56, + "probability": 0.9606 + }, + { + "start": 20088.4, + "end": 20092.1, + "probability": 0.9489 + }, + { + "start": 20092.1, + "end": 20095.7, + "probability": 0.9961 + }, + { + "start": 20095.88, + "end": 20097.72, + "probability": 0.9865 + }, + { + "start": 20098.36, + "end": 20102.28, + "probability": 0.9933 + }, + { + "start": 20103.26, + "end": 20106.18, + "probability": 0.9764 + }, + { + "start": 20106.94, + "end": 20108.34, + "probability": 0.9175 + }, + { + "start": 20108.44, + "end": 20111.94, + "probability": 0.9949 + }, + { + "start": 20113.22, + "end": 20114.12, + "probability": 0.7992 + }, + { + "start": 20114.2, + "end": 20115.38, + "probability": 0.8196 + }, + { + "start": 20115.48, + "end": 20115.94, + "probability": 0.9144 + }, + { + "start": 20116.02, + "end": 20117.42, + "probability": 0.9878 + }, + { + "start": 20118.0, + "end": 20118.74, + "probability": 0.6579 + }, + { + "start": 20118.92, + "end": 20119.16, + "probability": 0.4064 + }, + { + "start": 20120.98, + "end": 20122.9, + "probability": 0.9915 + }, + { + "start": 20123.16, + "end": 20125.14, + "probability": 0.9975 + }, + { + "start": 20125.64, + "end": 20128.34, + "probability": 0.9846 + }, + { + "start": 20129.0, + "end": 20131.28, + "probability": 0.9818 + }, + { + "start": 20132.02, + "end": 20133.66, + "probability": 0.4433 + }, + { + "start": 20134.28, + "end": 20134.38, + "probability": 0.1891 + }, + { + "start": 20135.38, + "end": 20138.0, + "probability": 0.9929 + }, + { + "start": 20138.0, + "end": 20141.48, + "probability": 0.9646 + }, + { + "start": 20142.72, + "end": 20145.44, + "probability": 0.9951 + }, + { + "start": 20146.26, + "end": 20147.42, + "probability": 0.9511 + }, + { + "start": 20147.96, + "end": 20148.58, + "probability": 0.5396 + }, + { + "start": 20149.16, + "end": 20150.5, + "probability": 0.9216 + }, + { + "start": 20151.1, + "end": 20151.4, + "probability": 0.7071 + }, + { + "start": 20151.92, + "end": 20154.42, + "probability": 0.8167 + }, + { + "start": 20155.52, + "end": 20156.28, + "probability": 0.9973 + }, + { + "start": 20156.9, + "end": 20159.94, + "probability": 0.9722 + }, + { + "start": 20160.02, + "end": 20164.3, + "probability": 0.958 + }, + { + "start": 20164.38, + "end": 20164.4, + "probability": 0.1237 + }, + { + "start": 20164.4, + "end": 20165.62, + "probability": 0.7827 + }, + { + "start": 20165.78, + "end": 20170.38, + "probability": 0.9849 + }, + { + "start": 20171.32, + "end": 20172.06, + "probability": 0.9556 + }, + { + "start": 20172.7, + "end": 20174.74, + "probability": 0.8507 + }, + { + "start": 20175.26, + "end": 20176.2, + "probability": 0.9753 + }, + { + "start": 20176.82, + "end": 20177.68, + "probability": 0.8419 + }, + { + "start": 20178.74, + "end": 20179.34, + "probability": 0.5072 + }, + { + "start": 20179.5, + "end": 20181.16, + "probability": 0.8947 + }, + { + "start": 20181.22, + "end": 20182.48, + "probability": 0.9583 + }, + { + "start": 20182.54, + "end": 20184.78, + "probability": 0.8564 + }, + { + "start": 20184.88, + "end": 20185.24, + "probability": 0.4615 + }, + { + "start": 20185.72, + "end": 20186.62, + "probability": 0.3159 + }, + { + "start": 20186.62, + "end": 20187.82, + "probability": 0.8994 + }, + { + "start": 20188.76, + "end": 20190.66, + "probability": 0.5852 + }, + { + "start": 20190.74, + "end": 20192.48, + "probability": 0.9216 + }, + { + "start": 20193.36, + "end": 20194.26, + "probability": 0.9655 + }, + { + "start": 20194.44, + "end": 20196.28, + "probability": 0.9609 + }, + { + "start": 20196.32, + "end": 20197.0, + "probability": 0.8912 + }, + { + "start": 20197.1, + "end": 20198.66, + "probability": 0.9028 + }, + { + "start": 20199.44, + "end": 20200.18, + "probability": 0.7094 + }, + { + "start": 20200.96, + "end": 20202.72, + "probability": 0.9845 + }, + { + "start": 20203.12, + "end": 20206.64, + "probability": 0.9938 + }, + { + "start": 20207.52, + "end": 20209.44, + "probability": 0.9953 + }, + { + "start": 20210.46, + "end": 20214.82, + "probability": 0.9935 + }, + { + "start": 20215.6, + "end": 20218.4, + "probability": 0.8545 + }, + { + "start": 20219.12, + "end": 20220.44, + "probability": 0.9569 + }, + { + "start": 20221.16, + "end": 20223.14, + "probability": 0.7089 + }, + { + "start": 20223.14, + "end": 20223.42, + "probability": 0.6965 + }, + { + "start": 20223.52, + "end": 20224.8, + "probability": 0.9466 + }, + { + "start": 20225.58, + "end": 20227.76, + "probability": 0.9847 + }, + { + "start": 20228.46, + "end": 20232.56, + "probability": 0.9957 + }, + { + "start": 20232.56, + "end": 20236.76, + "probability": 0.9959 + }, + { + "start": 20237.44, + "end": 20237.88, + "probability": 0.4072 + }, + { + "start": 20238.06, + "end": 20238.86, + "probability": 0.7465 + }, + { + "start": 20238.94, + "end": 20240.27, + "probability": 0.9971 + }, + { + "start": 20241.16, + "end": 20243.86, + "probability": 0.9722 + }, + { + "start": 20244.42, + "end": 20245.26, + "probability": 0.8732 + }, + { + "start": 20245.7, + "end": 20248.62, + "probability": 0.9149 + }, + { + "start": 20248.78, + "end": 20249.02, + "probability": 0.7283 + }, + { + "start": 20249.02, + "end": 20249.56, + "probability": 0.7424 + }, + { + "start": 20250.28, + "end": 20250.66, + "probability": 0.8448 + }, + { + "start": 20251.46, + "end": 20252.86, + "probability": 0.6383 + }, + { + "start": 20254.0, + "end": 20259.22, + "probability": 0.8928 + }, + { + "start": 20259.4, + "end": 20262.22, + "probability": 0.98 + }, + { + "start": 20262.5, + "end": 20264.1, + "probability": 0.3711 + }, + { + "start": 20265.02, + "end": 20266.2, + "probability": 0.7198 + }, + { + "start": 20266.2, + "end": 20268.0, + "probability": 0.6789 + }, + { + "start": 20268.2, + "end": 20268.48, + "probability": 0.9041 + }, + { + "start": 20274.42, + "end": 20275.38, + "probability": 0.5558 + }, + { + "start": 20275.62, + "end": 20276.06, + "probability": 0.7145 + }, + { + "start": 20276.68, + "end": 20279.08, + "probability": 0.0575 + }, + { + "start": 20279.66, + "end": 20282.2, + "probability": 0.1236 + }, + { + "start": 20282.2, + "end": 20283.42, + "probability": 0.0441 + }, + { + "start": 20284.17, + "end": 20285.04, + "probability": 0.0684 + }, + { + "start": 20285.66, + "end": 20288.1, + "probability": 0.4848 + }, + { + "start": 20290.58, + "end": 20295.9, + "probability": 0.4919 + }, + { + "start": 20297.74, + "end": 20299.24, + "probability": 0.8574 + }, + { + "start": 20301.04, + "end": 20302.84, + "probability": 0.8893 + }, + { + "start": 20303.08, + "end": 20304.82, + "probability": 0.9624 + }, + { + "start": 20306.26, + "end": 20307.08, + "probability": 0.7885 + }, + { + "start": 20307.16, + "end": 20307.42, + "probability": 0.5024 + }, + { + "start": 20307.54, + "end": 20308.32, + "probability": 0.7869 + }, + { + "start": 20309.58, + "end": 20312.22, + "probability": 0.8456 + }, + { + "start": 20312.86, + "end": 20314.54, + "probability": 0.4985 + }, + { + "start": 20315.33, + "end": 20318.28, + "probability": 0.6594 + }, + { + "start": 20318.96, + "end": 20319.8, + "probability": 0.8914 + }, + { + "start": 20320.06, + "end": 20320.94, + "probability": 0.728 + }, + { + "start": 20321.26, + "end": 20324.12, + "probability": 0.5017 + }, + { + "start": 20324.18, + "end": 20324.58, + "probability": 0.8829 + }, + { + "start": 20325.36, + "end": 20328.34, + "probability": 0.9186 + }, + { + "start": 20328.36, + "end": 20330.08, + "probability": 0.815 + }, + { + "start": 20330.2, + "end": 20331.54, + "probability": 0.2592 + }, + { + "start": 20332.1, + "end": 20335.92, + "probability": 0.7573 + }, + { + "start": 20336.3, + "end": 20338.68, + "probability": 0.9156 + }, + { + "start": 20338.68, + "end": 20340.78, + "probability": 0.6712 + }, + { + "start": 20341.22, + "end": 20346.64, + "probability": 0.9487 + }, + { + "start": 20346.68, + "end": 20348.76, + "probability": 0.9679 + }, + { + "start": 20348.96, + "end": 20350.54, + "probability": 0.3109 + }, + { + "start": 20350.64, + "end": 20352.62, + "probability": 0.9575 + }, + { + "start": 20353.78, + "end": 20355.82, + "probability": 0.885 + }, + { + "start": 20356.26, + "end": 20356.82, + "probability": 0.7283 + }, + { + "start": 20362.2, + "end": 20362.94, + "probability": 0.5895 + }, + { + "start": 20363.08, + "end": 20364.02, + "probability": 0.7109 + }, + { + "start": 20364.4, + "end": 20368.44, + "probability": 0.9699 + }, + { + "start": 20368.94, + "end": 20371.06, + "probability": 0.9988 + }, + { + "start": 20371.46, + "end": 20373.42, + "probability": 0.9441 + }, + { + "start": 20373.5, + "end": 20377.56, + "probability": 0.7837 + }, + { + "start": 20377.94, + "end": 20379.08, + "probability": 0.9188 + }, + { + "start": 20379.34, + "end": 20382.35, + "probability": 0.9794 + }, + { + "start": 20383.36, + "end": 20384.52, + "probability": 0.7947 + }, + { + "start": 20384.88, + "end": 20388.12, + "probability": 0.9326 + }, + { + "start": 20388.18, + "end": 20388.4, + "probability": 0.7718 + }, + { + "start": 20388.5, + "end": 20389.24, + "probability": 0.5464 + }, + { + "start": 20390.36, + "end": 20391.3, + "probability": 0.6536 + }, + { + "start": 20391.66, + "end": 20392.94, + "probability": 0.5845 + }, + { + "start": 20394.3, + "end": 20394.94, + "probability": 0.0467 + }, + { + "start": 20396.14, + "end": 20398.86, + "probability": 0.6245 + }, + { + "start": 20400.98, + "end": 20405.28, + "probability": 0.5865 + }, + { + "start": 20405.42, + "end": 20405.66, + "probability": 0.5704 + }, + { + "start": 20405.8, + "end": 20406.28, + "probability": 0.7292 + }, + { + "start": 20406.82, + "end": 20409.14, + "probability": 0.1526 + }, + { + "start": 20409.22, + "end": 20411.18, + "probability": 0.1116 + }, + { + "start": 20412.14, + "end": 20412.86, + "probability": 0.374 + }, + { + "start": 20417.74, + "end": 20418.56, + "probability": 0.6233 + }, + { + "start": 20418.92, + "end": 20420.38, + "probability": 0.7314 + }, + { + "start": 20420.58, + "end": 20422.82, + "probability": 0.8846 + }, + { + "start": 20423.92, + "end": 20424.62, + "probability": 0.8094 + }, + { + "start": 20424.64, + "end": 20425.58, + "probability": 0.6829 + }, + { + "start": 20425.76, + "end": 20431.16, + "probability": 0.7981 + }, + { + "start": 20431.36, + "end": 20432.76, + "probability": 0.9556 + }, + { + "start": 20432.76, + "end": 20433.42, + "probability": 0.9071 + }, + { + "start": 20434.36, + "end": 20435.4, + "probability": 0.664 + }, + { + "start": 20436.14, + "end": 20442.32, + "probability": 0.9886 + }, + { + "start": 20442.36, + "end": 20443.38, + "probability": 0.8594 + }, + { + "start": 20443.52, + "end": 20444.74, + "probability": 0.8695 + }, + { + "start": 20445.5, + "end": 20448.16, + "probability": 0.9926 + }, + { + "start": 20448.36, + "end": 20449.28, + "probability": 0.6664 + }, + { + "start": 20449.36, + "end": 20450.36, + "probability": 0.8145 + }, + { + "start": 20450.88, + "end": 20452.3, + "probability": 0.8726 + }, + { + "start": 20455.74, + "end": 20457.76, + "probability": 0.9474 + }, + { + "start": 20457.8, + "end": 20460.16, + "probability": 0.9912 + }, + { + "start": 20460.4, + "end": 20463.62, + "probability": 0.88 + }, + { + "start": 20465.08, + "end": 20468.44, + "probability": 0.0258 + }, + { + "start": 20470.06, + "end": 20473.66, + "probability": 0.6179 + }, + { + "start": 20473.84, + "end": 20474.24, + "probability": 0.6421 + }, + { + "start": 20474.68, + "end": 20476.44, + "probability": 0.8737 + }, + { + "start": 20476.68, + "end": 20478.68, + "probability": 0.7773 + }, + { + "start": 20480.32, + "end": 20484.44, + "probability": 0.9329 + }, + { + "start": 20485.58, + "end": 20487.1, + "probability": 0.9987 + }, + { + "start": 20488.4, + "end": 20490.5, + "probability": 0.8003 + }, + { + "start": 20491.5, + "end": 20492.02, + "probability": 0.6267 + }, + { + "start": 20493.44, + "end": 20495.48, + "probability": 0.9983 + }, + { + "start": 20498.2, + "end": 20501.64, + "probability": 0.9961 + }, + { + "start": 20501.64, + "end": 20504.94, + "probability": 0.9835 + }, + { + "start": 20505.54, + "end": 20508.04, + "probability": 0.7841 + }, + { + "start": 20508.24, + "end": 20509.18, + "probability": 0.9636 + }, + { + "start": 20509.34, + "end": 20510.58, + "probability": 0.8363 + }, + { + "start": 20510.98, + "end": 20511.84, + "probability": 0.6836 + }, + { + "start": 20511.9, + "end": 20512.3, + "probability": 0.7271 + }, + { + "start": 20512.34, + "end": 20513.54, + "probability": 0.7935 + }, + { + "start": 20513.66, + "end": 20514.66, + "probability": 0.9069 + }, + { + "start": 20515.36, + "end": 20516.66, + "probability": 0.9107 + }, + { + "start": 20516.76, + "end": 20517.42, + "probability": 0.9412 + }, + { + "start": 20517.48, + "end": 20518.34, + "probability": 0.9232 + }, + { + "start": 20518.84, + "end": 20518.9, + "probability": 0.0122 + }, + { + "start": 20518.9, + "end": 20521.02, + "probability": 0.9922 + }, + { + "start": 20521.28, + "end": 20522.62, + "probability": 0.883 + }, + { + "start": 20523.58, + "end": 20526.52, + "probability": 0.4671 + }, + { + "start": 20526.52, + "end": 20526.52, + "probability": 0.2648 + }, + { + "start": 20526.6, + "end": 20529.26, + "probability": 0.5995 + }, + { + "start": 20529.8, + "end": 20530.32, + "probability": 0.725 + }, + { + "start": 20530.32, + "end": 20530.32, + "probability": 0.0025 + }, + { + "start": 20530.32, + "end": 20532.16, + "probability": 0.791 + }, + { + "start": 20533.28, + "end": 20535.5, + "probability": 0.1518 + }, + { + "start": 20536.18, + "end": 20538.54, + "probability": 0.0352 + }, + { + "start": 20540.56, + "end": 20541.24, + "probability": 0.0023 + }, + { + "start": 20543.4, + "end": 20544.26, + "probability": 0.1672 + }, + { + "start": 20544.48, + "end": 20545.64, + "probability": 0.1632 + }, + { + "start": 20547.54, + "end": 20548.62, + "probability": 0.0047 + }, + { + "start": 20548.62, + "end": 20548.62, + "probability": 0.1997 + }, + { + "start": 20548.62, + "end": 20548.62, + "probability": 0.0343 + }, + { + "start": 20548.62, + "end": 20548.62, + "probability": 0.0919 + }, + { + "start": 20548.62, + "end": 20548.62, + "probability": 0.2722 + }, + { + "start": 20548.62, + "end": 20548.62, + "probability": 0.2905 + }, + { + "start": 20548.62, + "end": 20549.98, + "probability": 0.3383 + }, + { + "start": 20550.04, + "end": 20551.42, + "probability": 0.3953 + }, + { + "start": 20551.74, + "end": 20554.08, + "probability": 0.5171 + }, + { + "start": 20555.08, + "end": 20555.78, + "probability": 0.7457 + }, + { + "start": 20555.98, + "end": 20555.98, + "probability": 0.138 + }, + { + "start": 20555.98, + "end": 20556.92, + "probability": 0.5328 + }, + { + "start": 20556.92, + "end": 20558.28, + "probability": 0.728 + }, + { + "start": 20558.5, + "end": 20559.7, + "probability": 0.8792 + }, + { + "start": 20559.94, + "end": 20562.52, + "probability": 0.9896 + }, + { + "start": 20563.12, + "end": 20564.52, + "probability": 0.8148 + }, + { + "start": 20564.84, + "end": 20566.72, + "probability": 0.8804 + }, + { + "start": 20566.86, + "end": 20570.14, + "probability": 0.8702 + }, + { + "start": 20570.7, + "end": 20571.42, + "probability": 0.7277 + }, + { + "start": 20571.84, + "end": 20572.46, + "probability": 0.6369 + }, + { + "start": 20572.52, + "end": 20573.4, + "probability": 0.9237 + }, + { + "start": 20573.96, + "end": 20573.96, + "probability": 0.0505 + }, + { + "start": 20576.66, + "end": 20576.76, + "probability": 0.0076 + }, + { + "start": 20579.36, + "end": 20579.98, + "probability": 0.1006 + }, + { + "start": 20587.6, + "end": 20588.26, + "probability": 0.0027 + }, + { + "start": 20588.92, + "end": 20591.42, + "probability": 0.8558 + }, + { + "start": 20592.48, + "end": 20595.52, + "probability": 0.9847 + }, + { + "start": 20595.94, + "end": 20596.2, + "probability": 0.3399 + }, + { + "start": 20596.2, + "end": 20597.24, + "probability": 0.1835 + }, + { + "start": 20597.7, + "end": 20599.12, + "probability": 0.9817 + }, + { + "start": 20600.36, + "end": 20602.08, + "probability": 0.4996 + }, + { + "start": 20602.5, + "end": 20605.56, + "probability": 0.8756 + }, + { + "start": 20606.46, + "end": 20607.88, + "probability": 0.9448 + }, + { + "start": 20608.36, + "end": 20609.33, + "probability": 0.7186 + }, + { + "start": 20610.04, + "end": 20611.6, + "probability": 0.7764 + }, + { + "start": 20611.94, + "end": 20611.96, + "probability": 0.2695 + }, + { + "start": 20617.01, + "end": 20618.48, + "probability": 0.0323 + }, + { + "start": 20619.42, + "end": 20623.64, + "probability": 0.0364 + }, + { + "start": 20624.2, + "end": 20625.04, + "probability": 0.0447 + }, + { + "start": 20625.96, + "end": 20627.68, + "probability": 0.6581 + }, + { + "start": 20628.52, + "end": 20628.84, + "probability": 0.6539 + }, + { + "start": 20629.0, + "end": 20629.66, + "probability": 0.5752 + }, + { + "start": 20629.8, + "end": 20633.8, + "probability": 0.8769 + }, + { + "start": 20634.12, + "end": 20637.26, + "probability": 0.9354 + }, + { + "start": 20637.72, + "end": 20638.58, + "probability": 0.5533 + }, + { + "start": 20639.4, + "end": 20641.5, + "probability": 0.8802 + }, + { + "start": 20643.16, + "end": 20645.28, + "probability": 0.7518 + }, + { + "start": 20645.76, + "end": 20647.02, + "probability": 0.9565 + }, + { + "start": 20647.06, + "end": 20648.4, + "probability": 0.9587 + }, + { + "start": 20648.78, + "end": 20650.14, + "probability": 0.9832 + }, + { + "start": 20650.66, + "end": 20655.44, + "probability": 0.8384 + }, + { + "start": 20656.08, + "end": 20656.92, + "probability": 0.3319 + }, + { + "start": 20662.12, + "end": 20663.16, + "probability": 0.6385 + }, + { + "start": 20663.74, + "end": 20666.2, + "probability": 0.9148 + }, + { + "start": 20666.32, + "end": 20668.18, + "probability": 0.4868 + }, + { + "start": 20670.0, + "end": 20670.52, + "probability": 0.703 + }, + { + "start": 20670.54, + "end": 20672.7, + "probability": 0.5045 + }, + { + "start": 20672.72, + "end": 20673.54, + "probability": 0.5421 + }, + { + "start": 20673.68, + "end": 20674.12, + "probability": 0.6125 + }, + { + "start": 20674.12, + "end": 20678.2, + "probability": 0.9497 + }, + { + "start": 20678.4, + "end": 20680.4, + "probability": 0.9411 + }, + { + "start": 20680.86, + "end": 20681.9, + "probability": 0.8775 + }, + { + "start": 20683.06, + "end": 20683.5, + "probability": 0.5818 + }, + { + "start": 20683.68, + "end": 20690.74, + "probability": 0.833 + }, + { + "start": 20691.2, + "end": 20693.8, + "probability": 0.923 + }, + { + "start": 20694.4, + "end": 20696.28, + "probability": 0.7756 + }, + { + "start": 20696.38, + "end": 20696.94, + "probability": 0.6933 + }, + { + "start": 20705.52, + "end": 20707.18, + "probability": 0.7208 + }, + { + "start": 20707.78, + "end": 20709.8, + "probability": 0.9667 + }, + { + "start": 20710.5, + "end": 20713.78, + "probability": 0.9972 + }, + { + "start": 20713.78, + "end": 20718.08, + "probability": 0.9412 + }, + { + "start": 20718.26, + "end": 20719.08, + "probability": 0.687 + }, + { + "start": 20719.2, + "end": 20720.18, + "probability": 0.6669 + }, + { + "start": 20720.86, + "end": 20721.72, + "probability": 0.7572 + }, + { + "start": 20722.24, + "end": 20723.3, + "probability": 0.5946 + }, + { + "start": 20723.34, + "end": 20723.88, + "probability": 0.5835 + }, + { + "start": 20723.9, + "end": 20727.6, + "probability": 0.9556 + }, + { + "start": 20727.94, + "end": 20728.66, + "probability": 0.5848 + }, + { + "start": 20728.96, + "end": 20731.22, + "probability": 0.7956 + }, + { + "start": 20731.34, + "end": 20732.12, + "probability": 0.7998 + }, + { + "start": 20733.7, + "end": 20735.42, + "probability": 0.7164 + }, + { + "start": 20735.58, + "end": 20738.16, + "probability": 0.8079 + }, + { + "start": 20738.24, + "end": 20740.22, + "probability": 0.9486 + }, + { + "start": 20740.78, + "end": 20743.26, + "probability": 0.9503 + }, + { + "start": 20743.26, + "end": 20745.16, + "probability": 0.9944 + }, + { + "start": 20746.0, + "end": 20747.82, + "probability": 0.7953 + }, + { + "start": 20748.36, + "end": 20751.98, + "probability": 0.9517 + }, + { + "start": 20752.54, + "end": 20755.46, + "probability": 0.9415 + }, + { + "start": 20755.46, + "end": 20761.16, + "probability": 0.8246 + }, + { + "start": 20761.28, + "end": 20762.42, + "probability": 0.9343 + }, + { + "start": 20763.08, + "end": 20764.74, + "probability": 0.7651 + }, + { + "start": 20764.88, + "end": 20769.06, + "probability": 0.9788 + }, + { + "start": 20769.72, + "end": 20770.22, + "probability": 0.8779 + }, + { + "start": 20770.24, + "end": 20771.8, + "probability": 0.9586 + }, + { + "start": 20771.9, + "end": 20774.6, + "probability": 0.99 + }, + { + "start": 20775.1, + "end": 20776.68, + "probability": 0.7929 + }, + { + "start": 20776.84, + "end": 20778.36, + "probability": 0.6935 + }, + { + "start": 20778.42, + "end": 20778.52, + "probability": 0.0579 + }, + { + "start": 20780.24, + "end": 20781.54, + "probability": 0.8904 + }, + { + "start": 20781.76, + "end": 20787.14, + "probability": 0.9867 + }, + { + "start": 20787.28, + "end": 20788.32, + "probability": 0.7266 + }, + { + "start": 20790.0, + "end": 20791.14, + "probability": 0.7544 + }, + { + "start": 20791.14, + "end": 20791.68, + "probability": 0.6919 + }, + { + "start": 20792.3, + "end": 20796.28, + "probability": 0.9814 + }, + { + "start": 20796.44, + "end": 20797.46, + "probability": 0.7524 + }, + { + "start": 20798.14, + "end": 20801.0, + "probability": 0.9317 + }, + { + "start": 20801.72, + "end": 20803.4, + "probability": 0.6558 + }, + { + "start": 20803.8, + "end": 20806.34, + "probability": 0.8157 + }, + { + "start": 20807.06, + "end": 20808.18, + "probability": 0.9313 + }, + { + "start": 20808.9, + "end": 20813.0, + "probability": 0.8313 + }, + { + "start": 20813.2, + "end": 20813.84, + "probability": 0.5907 + }, + { + "start": 20813.94, + "end": 20815.32, + "probability": 0.6835 + }, + { + "start": 20815.9, + "end": 20819.0, + "probability": 0.9839 + }, + { + "start": 20819.82, + "end": 20821.1, + "probability": 0.7998 + }, + { + "start": 20821.18, + "end": 20823.26, + "probability": 0.9245 + }, + { + "start": 20823.4, + "end": 20824.34, + "probability": 0.8705 + }, + { + "start": 20824.66, + "end": 20826.62, + "probability": 0.9764 + }, + { + "start": 20827.48, + "end": 20829.78, + "probability": 0.9827 + }, + { + "start": 20829.84, + "end": 20833.98, + "probability": 0.6858 + }, + { + "start": 20833.98, + "end": 20834.94, + "probability": 0.7502 + }, + { + "start": 20855.17, + "end": 20859.2, + "probability": 0.0567 + }, + { + "start": 20859.2, + "end": 20860.56, + "probability": 0.0299 + }, + { + "start": 20860.56, + "end": 20860.56, + "probability": 0.049 + }, + { + "start": 20860.56, + "end": 20861.16, + "probability": 0.4194 + }, + { + "start": 20861.26, + "end": 20861.86, + "probability": 0.5528 + }, + { + "start": 20862.2, + "end": 20864.7, + "probability": 0.9523 + }, + { + "start": 20865.12, + "end": 20865.88, + "probability": 0.7236 + }, + { + "start": 20866.56, + "end": 20867.04, + "probability": 0.9369 + }, + { + "start": 20867.7, + "end": 20871.86, + "probability": 0.9805 + }, + { + "start": 20872.74, + "end": 20875.04, + "probability": 0.9758 + }, + { + "start": 20875.16, + "end": 20877.22, + "probability": 0.9478 + }, + { + "start": 20877.3, + "end": 20881.26, + "probability": 0.3937 + }, + { + "start": 20881.26, + "end": 20885.54, + "probability": 0.8976 + }, + { + "start": 20886.42, + "end": 20889.64, + "probability": 0.9061 + }, + { + "start": 20889.74, + "end": 20889.98, + "probability": 0.6071 + }, + { + "start": 20891.38, + "end": 20893.12, + "probability": 0.5072 + }, + { + "start": 20894.1, + "end": 20894.64, + "probability": 0.4703 + }, + { + "start": 20894.68, + "end": 20900.24, + "probability": 0.9201 + }, + { + "start": 20900.32, + "end": 20901.84, + "probability": 0.4553 + }, + { + "start": 20902.14, + "end": 20902.8, + "probability": 0.9069 + }, + { + "start": 20903.24, + "end": 20903.7, + "probability": 0.8939 + }, + { + "start": 20904.67, + "end": 20907.7, + "probability": 0.0776 + }, + { + "start": 28830.0, + "end": 28830.0, + "probability": 0.0 + }, + { + "start": 28830.0, + "end": 28830.0, + "probability": 0.0 + }, + { + "start": 28830.0, + "end": 28830.0, + "probability": 0.0 + }, + { + "start": 28830.92, + "end": 28833.42, + "probability": 0.5619 + }, + { + "start": 28834.18, + "end": 28836.24, + "probability": 0.967 + }, + { + "start": 28836.96, + "end": 28840.76, + "probability": 0.8582 + }, + { + "start": 28840.78, + "end": 28842.78, + "probability": 0.9218 + }, + { + "start": 28843.1, + "end": 28843.46, + "probability": 0.9371 + }, + { + "start": 28844.76, + "end": 28846.08, + "probability": 0.7117 + }, + { + "start": 28846.08, + "end": 28846.8, + "probability": 0.7466 + }, + { + "start": 28846.98, + "end": 28849.84, + "probability": 0.9853 + }, + { + "start": 28849.9, + "end": 28852.8, + "probability": 0.9742 + }, + { + "start": 28854.2, + "end": 28858.6, + "probability": 0.9957 + }, + { + "start": 28858.6, + "end": 28863.7, + "probability": 0.9911 + }, + { + "start": 28865.94, + "end": 28869.62, + "probability": 0.9771 + }, + { + "start": 28870.22, + "end": 28872.5, + "probability": 0.7298 + }, + { + "start": 28873.42, + "end": 28874.82, + "probability": 0.6715 + }, + { + "start": 28875.44, + "end": 28878.2, + "probability": 0.98 + }, + { + "start": 28879.04, + "end": 28881.84, + "probability": 0.9954 + }, + { + "start": 28881.84, + "end": 28884.86, + "probability": 0.9974 + }, + { + "start": 28885.54, + "end": 28886.88, + "probability": 0.9645 + }, + { + "start": 28888.56, + "end": 28893.38, + "probability": 0.983 + }, + { + "start": 28894.3, + "end": 28894.74, + "probability": 0.6597 + }, + { + "start": 28895.38, + "end": 28899.2, + "probability": 0.8899 + }, + { + "start": 28899.52, + "end": 28900.62, + "probability": 0.8684 + }, + { + "start": 28900.78, + "end": 28901.82, + "probability": 0.1338 + }, + { + "start": 28902.48, + "end": 28904.02, + "probability": 0.687 + }, + { + "start": 28904.2, + "end": 28904.56, + "probability": 0.1187 + }, + { + "start": 28904.66, + "end": 28905.96, + "probability": 0.8186 + }, + { + "start": 28906.64, + "end": 28907.66, + "probability": 0.4662 + }, + { + "start": 28908.38, + "end": 28912.46, + "probability": 0.9712 + }, + { + "start": 28913.02, + "end": 28914.9, + "probability": 0.7188 + }, + { + "start": 28915.62, + "end": 28916.8, + "probability": 0.7105 + }, + { + "start": 28916.9, + "end": 28918.41, + "probability": 0.9434 + }, + { + "start": 28919.16, + "end": 28922.1, + "probability": 0.8696 + }, + { + "start": 28923.06, + "end": 28924.92, + "probability": 0.7478 + }, + { + "start": 28925.5, + "end": 28927.96, + "probability": 0.8575 + }, + { + "start": 28928.52, + "end": 28929.56, + "probability": 0.6063 + }, + { + "start": 28930.1, + "end": 28932.2, + "probability": 0.6395 + }, + { + "start": 28932.9, + "end": 28934.96, + "probability": 0.7646 + }, + { + "start": 28935.52, + "end": 28937.06, + "probability": 0.8861 + }, + { + "start": 28937.58, + "end": 28939.22, + "probability": 0.9624 + }, + { + "start": 28939.78, + "end": 28942.56, + "probability": 0.9372 + }, + { + "start": 28943.16, + "end": 28944.34, + "probability": 0.5956 + }, + { + "start": 28944.46, + "end": 28945.94, + "probability": 0.7718 + }, + { + "start": 28946.4, + "end": 28947.38, + "probability": 0.9775 + }, + { + "start": 28947.54, + "end": 28948.88, + "probability": 0.96 + }, + { + "start": 28949.28, + "end": 28950.1, + "probability": 0.8846 + }, + { + "start": 28950.18, + "end": 28951.8, + "probability": 0.9913 + }, + { + "start": 28952.24, + "end": 28953.36, + "probability": 0.8474 + }, + { + "start": 28953.4, + "end": 28955.48, + "probability": 0.83 + }, + { + "start": 28955.92, + "end": 28956.72, + "probability": 0.6542 + }, + { + "start": 28956.84, + "end": 28958.18, + "probability": 0.9306 + }, + { + "start": 28959.34, + "end": 28960.22, + "probability": 0.7502 + }, + { + "start": 28960.86, + "end": 28964.18, + "probability": 0.9879 + }, + { + "start": 28964.88, + "end": 28966.54, + "probability": 0.4396 + }, + { + "start": 28966.98, + "end": 28969.14, + "probability": 0.7912 + }, + { + "start": 28969.68, + "end": 28970.66, + "probability": 0.956 + }, + { + "start": 28971.22, + "end": 28973.06, + "probability": 0.5954 + }, + { + "start": 28973.64, + "end": 28974.66, + "probability": 0.9251 + }, + { + "start": 28974.76, + "end": 28976.3, + "probability": 0.928 + }, + { + "start": 28976.38, + "end": 28978.2, + "probability": 0.2799 + }, + { + "start": 28978.86, + "end": 28981.78, + "probability": 0.676 + }, + { + "start": 28982.56, + "end": 28985.36, + "probability": 0.6292 + }, + { + "start": 28986.22, + "end": 28986.42, + "probability": 0.9091 + }, + { + "start": 28986.8, + "end": 28988.18, + "probability": 0.9474 + }, + { + "start": 28988.58, + "end": 28989.64, + "probability": 0.9688 + }, + { + "start": 28989.78, + "end": 28991.26, + "probability": 0.9826 + }, + { + "start": 28992.34, + "end": 28993.76, + "probability": 0.9883 + }, + { + "start": 28993.8, + "end": 28995.76, + "probability": 0.6359 + }, + { + "start": 28996.22, + "end": 28997.26, + "probability": 0.9492 + }, + { + "start": 28997.36, + "end": 28998.84, + "probability": 0.9337 + }, + { + "start": 28999.2, + "end": 29000.42, + "probability": 0.9368 + }, + { + "start": 29000.5, + "end": 29002.36, + "probability": 0.943 + }, + { + "start": 29002.76, + "end": 29003.44, + "probability": 0.8423 + }, + { + "start": 29003.52, + "end": 29005.21, + "probability": 0.8135 + }, + { + "start": 29006.42, + "end": 29006.72, + "probability": 0.4237 + }, + { + "start": 29007.4, + "end": 29008.66, + "probability": 0.7268 + }, + { + "start": 29009.76, + "end": 29014.16, + "probability": 0.8854 + }, + { + "start": 29014.28, + "end": 29015.42, + "probability": 0.6837 + }, + { + "start": 29015.98, + "end": 29019.9, + "probability": 0.9843 + }, + { + "start": 29020.56, + "end": 29021.42, + "probability": 0.5952 + }, + { + "start": 29021.5, + "end": 29025.42, + "probability": 0.5918 + }, + { + "start": 29026.26, + "end": 29029.64, + "probability": 0.9505 + }, + { + "start": 29029.76, + "end": 29033.6, + "probability": 0.9194 + }, + { + "start": 29033.6, + "end": 29038.54, + "probability": 0.7924 + }, + { + "start": 29038.84, + "end": 29040.94, + "probability": 0.9812 + }, + { + "start": 29041.42, + "end": 29042.69, + "probability": 0.5987 + }, + { + "start": 29043.2, + "end": 29045.74, + "probability": 0.9179 + }, + { + "start": 29046.26, + "end": 29048.26, + "probability": 0.8652 + }, + { + "start": 29049.04, + "end": 29049.78, + "probability": 0.8363 + }, + { + "start": 29050.68, + "end": 29056.06, + "probability": 0.8392 + }, + { + "start": 29057.46, + "end": 29057.7, + "probability": 0.9762 + }, + { + "start": 29058.26, + "end": 29058.92, + "probability": 0.6271 + }, + { + "start": 29059.54, + "end": 29062.56, + "probability": 0.908 + }, + { + "start": 29063.2, + "end": 29066.42, + "probability": 0.9642 + }, + { + "start": 29066.56, + "end": 29068.28, + "probability": 0.934 + }, + { + "start": 29068.74, + "end": 29071.66, + "probability": 0.7982 + }, + { + "start": 29072.36, + "end": 29075.84, + "probability": 0.9984 + }, + { + "start": 29079.16, + "end": 29080.18, + "probability": 0.7507 + }, + { + "start": 29080.54, + "end": 29082.44, + "probability": 0.9956 + }, + { + "start": 29083.84, + "end": 29085.52, + "probability": 0.7788 + }, + { + "start": 29085.62, + "end": 29092.24, + "probability": 0.8666 + }, + { + "start": 29094.28, + "end": 29095.89, + "probability": 0.6075 + }, + { + "start": 29096.84, + "end": 29098.22, + "probability": 0.8726 + }, + { + "start": 29098.94, + "end": 29101.18, + "probability": 0.9987 + }, + { + "start": 29101.9, + "end": 29102.24, + "probability": 0.7016 + }, + { + "start": 29102.58, + "end": 29103.82, + "probability": 0.915 + }, + { + "start": 29104.26, + "end": 29107.36, + "probability": 0.8147 + }, + { + "start": 29107.48, + "end": 29107.94, + "probability": 0.8041 + }, + { + "start": 29108.96, + "end": 29112.56, + "probability": 0.6899 + }, + { + "start": 29112.66, + "end": 29116.23, + "probability": 0.998 + }, + { + "start": 29117.88, + "end": 29122.3, + "probability": 0.9907 + }, + { + "start": 29123.02, + "end": 29128.34, + "probability": 0.964 + }, + { + "start": 29128.68, + "end": 29131.14, + "probability": 0.9775 + }, + { + "start": 29131.22, + "end": 29137.44, + "probability": 0.8385 + }, + { + "start": 29138.22, + "end": 29140.29, + "probability": 0.6254 + }, + { + "start": 29140.34, + "end": 29142.78, + "probability": 0.9229 + }, + { + "start": 29143.48, + "end": 29144.34, + "probability": 0.4388 + }, + { + "start": 29144.54, + "end": 29146.78, + "probability": 0.8793 + }, + { + "start": 29158.56, + "end": 29158.56, + "probability": 0.0271 + }, + { + "start": 29158.56, + "end": 29158.56, + "probability": 0.4027 + }, + { + "start": 29158.56, + "end": 29158.56, + "probability": 0.1374 + }, + { + "start": 29158.56, + "end": 29158.58, + "probability": 0.1441 + }, + { + "start": 29158.58, + "end": 29158.6, + "probability": 0.0371 + }, + { + "start": 29178.32, + "end": 29182.32, + "probability": 0.9714 + }, + { + "start": 29182.32, + "end": 29186.22, + "probability": 0.9988 + }, + { + "start": 29187.12, + "end": 29187.74, + "probability": 0.7541 + }, + { + "start": 29188.44, + "end": 29193.04, + "probability": 0.9919 + }, + { + "start": 29193.68, + "end": 29194.94, + "probability": 0.827 + }, + { + "start": 29195.72, + "end": 29199.4, + "probability": 0.9821 + }, + { + "start": 29200.38, + "end": 29204.4, + "probability": 0.9988 + }, + { + "start": 29205.24, + "end": 29206.8, + "probability": 0.9764 + }, + { + "start": 29207.42, + "end": 29208.87, + "probability": 0.9809 + }, + { + "start": 29209.5, + "end": 29214.16, + "probability": 0.9815 + }, + { + "start": 29215.12, + "end": 29219.2, + "probability": 0.999 + }, + { + "start": 29219.74, + "end": 29223.6, + "probability": 0.9855 + }, + { + "start": 29223.6, + "end": 29227.54, + "probability": 0.9969 + }, + { + "start": 29228.14, + "end": 29228.84, + "probability": 0.8101 + }, + { + "start": 29229.34, + "end": 29234.42, + "probability": 0.9834 + }, + { + "start": 29235.12, + "end": 29237.86, + "probability": 0.9895 + }, + { + "start": 29237.86, + "end": 29241.52, + "probability": 0.9937 + }, + { + "start": 29241.6, + "end": 29246.34, + "probability": 0.9853 + }, + { + "start": 29246.86, + "end": 29247.68, + "probability": 0.6912 + }, + { + "start": 29247.92, + "end": 29249.96, + "probability": 0.993 + }, + { + "start": 29250.34, + "end": 29252.74, + "probability": 0.9916 + }, + { + "start": 29253.28, + "end": 29258.72, + "probability": 0.969 + }, + { + "start": 29259.38, + "end": 29264.5, + "probability": 0.9964 + }, + { + "start": 29264.95, + "end": 29268.72, + "probability": 0.9976 + }, + { + "start": 29268.72, + "end": 29273.54, + "probability": 0.9927 + }, + { + "start": 29274.04, + "end": 29276.7, + "probability": 0.967 + }, + { + "start": 29277.34, + "end": 29283.62, + "probability": 0.9919 + }, + { + "start": 29284.18, + "end": 29289.88, + "probability": 0.9683 + }, + { + "start": 29290.28, + "end": 29295.02, + "probability": 0.9966 + }, + { + "start": 29295.9, + "end": 29297.51, + "probability": 0.9167 + }, + { + "start": 29298.1, + "end": 29300.64, + "probability": 0.9883 + }, + { + "start": 29301.34, + "end": 29305.62, + "probability": 0.9795 + }, + { + "start": 29306.26, + "end": 29311.3, + "probability": 0.9946 + }, + { + "start": 29311.84, + "end": 29313.2, + "probability": 0.18 + }, + { + "start": 29314.54, + "end": 29318.0, + "probability": 0.0693 + }, + { + "start": 29321.92, + "end": 29323.28, + "probability": 0.0948 + }, + { + "start": 29323.28, + "end": 29324.11, + "probability": 0.055 + }, + { + "start": 29324.18, + "end": 29324.94, + "probability": 0.2 + }, + { + "start": 29325.84, + "end": 29332.72, + "probability": 0.0868 + }, + { + "start": 29334.02, + "end": 29337.28, + "probability": 0.0867 + }, + { + "start": 29338.34, + "end": 29339.4, + "probability": 0.0385 + }, + { + "start": 29339.4, + "end": 29342.36, + "probability": 0.0406 + }, + { + "start": 29342.46, + "end": 29346.14, + "probability": 0.6201 + }, + { + "start": 29347.8, + "end": 29349.14, + "probability": 0.2835 + }, + { + "start": 29351.66, + "end": 29361.0, + "probability": 0.0822 + }, + { + "start": 29367.5, + "end": 29368.82, + "probability": 0.047 + }, + { + "start": 29368.82, + "end": 29374.54, + "probability": 0.0203 + }, + { + "start": 29374.54, + "end": 29376.21, + "probability": 0.0887 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.0, + "end": 29387.0, + "probability": 0.0 + }, + { + "start": 29387.26, + "end": 29389.52, + "probability": 0.1302 + }, + { + "start": 29390.22, + "end": 29391.36, + "probability": 0.1562 + }, + { + "start": 29391.54, + "end": 29393.62, + "probability": 0.168 + }, + { + "start": 29393.84, + "end": 29394.32, + "probability": 0.0964 + }, + { + "start": 29394.32, + "end": 29394.32, + "probability": 0.1649 + }, + { + "start": 29411.28, + "end": 29412.04, + "probability": 0.1832 + }, + { + "start": 29412.82, + "end": 29412.92, + "probability": 0.004 + }, + { + "start": 29417.94, + "end": 29420.62, + "probability": 0.0391 + }, + { + "start": 29420.62, + "end": 29422.54, + "probability": 0.1467 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.0, + "end": 29513.0, + "probability": 0.0 + }, + { + "start": 29513.18, + "end": 29514.48, + "probability": 0.4175 + }, + { + "start": 29515.38, + "end": 29516.46, + "probability": 0.8307 + }, + { + "start": 29518.24, + "end": 29520.68, + "probability": 0.9533 + }, + { + "start": 29520.68, + "end": 29521.62, + "probability": 0.7297 + }, + { + "start": 29521.86, + "end": 29521.94, + "probability": 0.824 + }, + { + "start": 29522.0, + "end": 29523.44, + "probability": 0.723 + }, + { + "start": 29523.46, + "end": 29523.64, + "probability": 0.6191 + }, + { + "start": 29523.78, + "end": 29525.6, + "probability": 0.9902 + }, + { + "start": 29526.04, + "end": 29529.0, + "probability": 0.8521 + }, + { + "start": 29530.06, + "end": 29531.05, + "probability": 0.7508 + }, + { + "start": 29532.58, + "end": 29534.02, + "probability": 0.8299 + }, + { + "start": 29534.66, + "end": 29537.12, + "probability": 0.974 + }, + { + "start": 29538.1, + "end": 29539.86, + "probability": 0.9085 + }, + { + "start": 29541.04, + "end": 29543.82, + "probability": 0.9224 + }, + { + "start": 29544.1, + "end": 29546.3, + "probability": 0.9915 + }, + { + "start": 29546.5, + "end": 29547.77, + "probability": 0.9258 + }, + { + "start": 29548.76, + "end": 29551.64, + "probability": 0.9731 + }, + { + "start": 29552.64, + "end": 29553.98, + "probability": 0.9556 + }, + { + "start": 29554.78, + "end": 29555.7, + "probability": 0.549 + }, + { + "start": 29556.42, + "end": 29558.82, + "probability": 0.9321 + }, + { + "start": 29558.9, + "end": 29560.02, + "probability": 0.9437 + }, + { + "start": 29560.74, + "end": 29562.14, + "probability": 0.9751 + }, + { + "start": 29562.72, + "end": 29563.12, + "probability": 0.6622 + }, + { + "start": 29564.48, + "end": 29567.44, + "probability": 0.9342 + }, + { + "start": 29568.74, + "end": 29572.58, + "probability": 0.8008 + }, + { + "start": 29573.52, + "end": 29575.9, + "probability": 0.9712 + }, + { + "start": 29576.44, + "end": 29581.1, + "probability": 0.9933 + }, + { + "start": 29581.58, + "end": 29586.72, + "probability": 0.9655 + }, + { + "start": 29586.8, + "end": 29587.38, + "probability": 0.2835 + }, + { + "start": 29587.4, + "end": 29587.82, + "probability": 0.4502 + }, + { + "start": 29587.9, + "end": 29589.8, + "probability": 0.1213 + }, + { + "start": 29589.96, + "end": 29596.32, + "probability": 0.9888 + }, + { + "start": 29596.48, + "end": 29597.42, + "probability": 0.6813 + }, + { + "start": 29597.74, + "end": 29598.96, + "probability": 0.0214 + }, + { + "start": 29600.52, + "end": 29600.72, + "probability": 0.1374 + }, + { + "start": 29600.72, + "end": 29601.21, + "probability": 0.1036 + }, + { + "start": 29601.76, + "end": 29602.81, + "probability": 0.7456 + }, + { + "start": 29603.22, + "end": 29603.26, + "probability": 0.0464 + }, + { + "start": 29603.26, + "end": 29603.26, + "probability": 0.4551 + }, + { + "start": 29603.26, + "end": 29605.5, + "probability": 0.8608 + }, + { + "start": 29606.0, + "end": 29608.58, + "probability": 0.9818 + }, + { + "start": 29609.08, + "end": 29610.54, + "probability": 0.8327 + }, + { + "start": 29610.64, + "end": 29611.56, + "probability": 0.9521 + }, + { + "start": 29611.88, + "end": 29613.46, + "probability": 0.9718 + }, + { + "start": 29613.76, + "end": 29614.2, + "probability": 0.7744 + }, + { + "start": 29615.02, + "end": 29615.88, + "probability": 0.6879 + }, + { + "start": 29616.4, + "end": 29618.4, + "probability": 0.9459 + }, + { + "start": 29620.89, + "end": 29623.88, + "probability": 0.9351 + }, + { + "start": 29627.58, + "end": 29630.29, + "probability": 0.729 + }, + { + "start": 29652.8, + "end": 29655.04, + "probability": 0.7716 + }, + { + "start": 29655.04, + "end": 29657.68, + "probability": 0.2393 + }, + { + "start": 29658.12, + "end": 29661.48, + "probability": 0.9722 + }, + { + "start": 29661.86, + "end": 29662.9, + "probability": 0.8052 + }, + { + "start": 29663.12, + "end": 29663.66, + "probability": 0.5165 + }, + { + "start": 29663.86, + "end": 29664.26, + "probability": 0.8564 + }, + { + "start": 29665.14, + "end": 29668.02, + "probability": 0.9773 + }, + { + "start": 29669.6, + "end": 29673.6, + "probability": 0.9328 + }, + { + "start": 29674.44, + "end": 29676.72, + "probability": 0.9646 + }, + { + "start": 29677.48, + "end": 29678.96, + "probability": 0.4394 + }, + { + "start": 29679.16, + "end": 29680.32, + "probability": 0.9753 + }, + { + "start": 29680.42, + "end": 29682.32, + "probability": 0.9918 + }, + { + "start": 29682.44, + "end": 29683.82, + "probability": 0.9897 + }, + { + "start": 29684.64, + "end": 29685.88, + "probability": 0.9951 + }, + { + "start": 29686.2, + "end": 29687.14, + "probability": 0.7553 + }, + { + "start": 29687.36, + "end": 29687.82, + "probability": 0.8686 + }, + { + "start": 29688.12, + "end": 29689.9, + "probability": 0.8478 + }, + { + "start": 29690.6, + "end": 29693.1, + "probability": 0.9882 + }, + { + "start": 29693.84, + "end": 29697.86, + "probability": 0.9704 + }, + { + "start": 29699.7, + "end": 29702.56, + "probability": 0.9468 + }, + { + "start": 29702.7, + "end": 29703.88, + "probability": 0.9443 + }, + { + "start": 29704.8, + "end": 29706.62, + "probability": 0.3744 + }, + { + "start": 29708.48, + "end": 29711.48, + "probability": 0.9868 + }, + { + "start": 29712.7, + "end": 29715.82, + "probability": 0.9766 + }, + { + "start": 29716.82, + "end": 29720.38, + "probability": 0.9499 + }, + { + "start": 29720.78, + "end": 29721.2, + "probability": 0.4102 + }, + { + "start": 29721.3, + "end": 29721.5, + "probability": 0.5719 + }, + { + "start": 29721.66, + "end": 29725.54, + "probability": 0.976 + }, + { + "start": 29725.6, + "end": 29726.7, + "probability": 0.5317 + }, + { + "start": 29728.58, + "end": 29732.88, + "probability": 0.9698 + }, + { + "start": 29733.36, + "end": 29737.3, + "probability": 0.9982 + }, + { + "start": 29737.3, + "end": 29740.92, + "probability": 0.9883 + }, + { + "start": 29742.02, + "end": 29743.32, + "probability": 0.8748 + }, + { + "start": 29743.98, + "end": 29744.8, + "probability": 0.9834 + }, + { + "start": 29745.14, + "end": 29747.76, + "probability": 0.9919 + }, + { + "start": 29748.68, + "end": 29750.87, + "probability": 0.9712 + }, + { + "start": 29753.63, + "end": 29758.84, + "probability": 0.9602 + }, + { + "start": 29759.22, + "end": 29760.9, + "probability": 0.9983 + }, + { + "start": 29761.38, + "end": 29763.32, + "probability": 0.5891 + }, + { + "start": 29763.62, + "end": 29763.88, + "probability": 0.6678 + }, + { + "start": 29765.38, + "end": 29765.92, + "probability": 0.2916 + }, + { + "start": 29766.08, + "end": 29767.38, + "probability": 0.965 + }, + { + "start": 29767.5, + "end": 29770.72, + "probability": 0.9162 + }, + { + "start": 29770.82, + "end": 29772.42, + "probability": 0.8135 + }, + { + "start": 29772.6, + "end": 29774.41, + "probability": 0.9587 + }, + { + "start": 29775.12, + "end": 29777.98, + "probability": 0.9099 + }, + { + "start": 29778.42, + "end": 29779.22, + "probability": 0.7401 + }, + { + "start": 29779.86, + "end": 29783.66, + "probability": 0.8099 + }, + { + "start": 29783.86, + "end": 29784.98, + "probability": 0.9249 + }, + { + "start": 29785.08, + "end": 29788.68, + "probability": 0.9749 + }, + { + "start": 29789.1, + "end": 29790.6, + "probability": 0.9531 + }, + { + "start": 29791.98, + "end": 29792.84, + "probability": 0.0959 + }, + { + "start": 29792.84, + "end": 29793.84, + "probability": 0.5181 + }, + { + "start": 29793.92, + "end": 29799.3, + "probability": 0.9562 + }, + { + "start": 29799.46, + "end": 29801.5, + "probability": 0.8068 + }, + { + "start": 29801.86, + "end": 29804.48, + "probability": 0.9881 + }, + { + "start": 29804.48, + "end": 29804.82, + "probability": 0.2705 + }, + { + "start": 29804.98, + "end": 29806.84, + "probability": 0.8276 + }, + { + "start": 29807.16, + "end": 29807.49, + "probability": 0.1075 + }, + { + "start": 29809.24, + "end": 29811.04, + "probability": 0.6628 + }, + { + "start": 29811.34, + "end": 29811.34, + "probability": 0.0176 + }, + { + "start": 29811.34, + "end": 29814.72, + "probability": 0.6971 + }, + { + "start": 29815.3, + "end": 29815.74, + "probability": 0.6793 + }, + { + "start": 29815.9, + "end": 29816.16, + "probability": 0.7681 + }, + { + "start": 29816.24, + "end": 29818.06, + "probability": 0.9945 + }, + { + "start": 29818.22, + "end": 29820.5, + "probability": 0.9673 + }, + { + "start": 29821.56, + "end": 29823.86, + "probability": 0.9956 + }, + { + "start": 29824.02, + "end": 29826.24, + "probability": 0.9222 + }, + { + "start": 29827.26, + "end": 29831.64, + "probability": 0.9891 + }, + { + "start": 29832.16, + "end": 29836.58, + "probability": 0.9957 + }, + { + "start": 29837.06, + "end": 29837.76, + "probability": 0.8372 + }, + { + "start": 29838.22, + "end": 29838.92, + "probability": 0.9245 + }, + { + "start": 29839.9, + "end": 29840.32, + "probability": 0.6809 + }, + { + "start": 29840.68, + "end": 29842.54, + "probability": 0.9532 + }, + { + "start": 29843.92, + "end": 29847.04, + "probability": 0.9782 + }, + { + "start": 29847.8, + "end": 29850.62, + "probability": 0.9331 + }, + { + "start": 29861.5, + "end": 29865.42, + "probability": 0.7721 + }, + { + "start": 29866.2, + "end": 29866.48, + "probability": 0.6995 + }, + { + "start": 29866.58, + "end": 29869.24, + "probability": 0.9543 + }, + { + "start": 29869.24, + "end": 29870.24, + "probability": 0.717 + }, + { + "start": 29870.24, + "end": 29871.72, + "probability": 0.6233 + }, + { + "start": 29872.34, + "end": 29873.06, + "probability": 0.5536 + }, + { + "start": 29873.14, + "end": 29873.44, + "probability": 0.4919 + }, + { + "start": 29874.34, + "end": 29874.96, + "probability": 0.9 + }, + { + "start": 29875.41, + "end": 29878.1, + "probability": 0.9508 + }, + { + "start": 29878.24, + "end": 29879.78, + "probability": 0.9742 + }, + { + "start": 29880.2, + "end": 29885.46, + "probability": 0.9062 + }, + { + "start": 29886.48, + "end": 29888.24, + "probability": 0.9907 + }, + { + "start": 29889.1, + "end": 29890.28, + "probability": 0.6369 + }, + { + "start": 29891.32, + "end": 29892.92, + "probability": 0.9476 + }, + { + "start": 29894.5, + "end": 29897.06, + "probability": 0.9913 + }, + { + "start": 29897.6, + "end": 29898.84, + "probability": 0.86 + }, + { + "start": 29898.92, + "end": 29902.04, + "probability": 0.9611 + }, + { + "start": 29903.06, + "end": 29903.96, + "probability": 0.9681 + }, + { + "start": 29904.72, + "end": 29906.94, + "probability": 0.9884 + }, + { + "start": 29908.12, + "end": 29908.7, + "probability": 0.8773 + }, + { + "start": 29909.44, + "end": 29912.44, + "probability": 0.9772 + }, + { + "start": 29913.06, + "end": 29916.84, + "probability": 0.9808 + }, + { + "start": 29917.4, + "end": 29918.6, + "probability": 0.983 + }, + { + "start": 29919.18, + "end": 29921.54, + "probability": 0.9991 + }, + { + "start": 29922.06, + "end": 29925.16, + "probability": 0.9596 + }, + { + "start": 29925.92, + "end": 29927.96, + "probability": 0.9745 + }, + { + "start": 29928.6, + "end": 29930.04, + "probability": 0.9165 + }, + { + "start": 29930.52, + "end": 29932.6, + "probability": 0.988 + }, + { + "start": 29932.7, + "end": 29934.22, + "probability": 0.906 + }, + { + "start": 29934.9, + "end": 29935.62, + "probability": 0.9558 + }, + { + "start": 29936.18, + "end": 29938.7, + "probability": 0.8955 + }, + { + "start": 29939.48, + "end": 29940.86, + "probability": 0.9969 + }, + { + "start": 29941.04, + "end": 29942.12, + "probability": 0.9829 + }, + { + "start": 29942.92, + "end": 29943.76, + "probability": 0.9946 + }, + { + "start": 29944.06, + "end": 29945.64, + "probability": 0.9521 + }, + { + "start": 29946.12, + "end": 29946.74, + "probability": 0.8805 + }, + { + "start": 29947.02, + "end": 29947.76, + "probability": 0.7657 + }, + { + "start": 29947.8, + "end": 29949.76, + "probability": 0.9274 + }, + { + "start": 29950.32, + "end": 29954.84, + "probability": 0.9948 + }, + { + "start": 29955.36, + "end": 29956.26, + "probability": 0.8601 + }, + { + "start": 29957.34, + "end": 29957.8, + "probability": 0.9344 + }, + { + "start": 29958.28, + "end": 29960.0, + "probability": 0.9711 + }, + { + "start": 29960.42, + "end": 29962.03, + "probability": 0.9829 + }, + { + "start": 29962.4, + "end": 29964.7, + "probability": 0.9406 + }, + { + "start": 29965.22, + "end": 29965.94, + "probability": 0.6948 + }, + { + "start": 29966.48, + "end": 29967.16, + "probability": 0.9553 + }, + { + "start": 29968.52, + "end": 29970.42, + "probability": 0.9602 + }, + { + "start": 29971.26, + "end": 29973.42, + "probability": 0.5967 + }, + { + "start": 29974.0, + "end": 29976.72, + "probability": 0.9796 + }, + { + "start": 29977.26, + "end": 29978.46, + "probability": 0.9807 + }, + { + "start": 29979.06, + "end": 29980.62, + "probability": 0.9757 + }, + { + "start": 29993.28, + "end": 29993.84, + "probability": 0.3116 + }, + { + "start": 29993.84, + "end": 29993.84, + "probability": 0.035 + }, + { + "start": 29993.84, + "end": 29993.84, + "probability": 0.102 + }, + { + "start": 29993.84, + "end": 29993.84, + "probability": 0.0829 + }, + { + "start": 29993.84, + "end": 29993.84, + "probability": 0.0994 + }, + { + "start": 29993.84, + "end": 29996.58, + "probability": 0.6154 + }, + { + "start": 29996.84, + "end": 29998.94, + "probability": 0.7204 + }, + { + "start": 29999.52, + "end": 30000.8, + "probability": 0.7448 + }, + { + "start": 30001.9, + "end": 30005.82, + "probability": 0.9837 + }, + { + "start": 30005.96, + "end": 30007.54, + "probability": 0.661 + }, + { + "start": 30008.1, + "end": 30010.84, + "probability": 0.8359 + }, + { + "start": 30011.34, + "end": 30013.76, + "probability": 0.7625 + }, + { + "start": 30013.92, + "end": 30022.3, + "probability": 0.8733 + }, + { + "start": 30022.88, + "end": 30027.38, + "probability": 0.8017 + }, + { + "start": 30028.24, + "end": 30030.86, + "probability": 0.6837 + }, + { + "start": 63031.0, + "end": 63031.0, + "probability": 0.0 + }, + { + "start": 63031.0, + "end": 63031.0, + "probability": 0.0 + }, + { + "start": 63031.0, + "end": 63031.0, + "probability": 0.0 + }, + { + "start": 63031.0, + "end": 63031.0, + "probability": 0.0 + }, + { + "start": 63031.1, + "end": 63031.1, + "probability": 0.0278 + }, + { + "start": 63031.1, + "end": 63034.4, + "probability": 0.824 + }, + { + "start": 63034.44, + "end": 63037.7, + "probability": 0.8365 + }, + { + "start": 63038.36, + "end": 63040.46, + "probability": 0.9976 + }, + { + "start": 63041.02, + "end": 63045.54, + "probability": 0.8353 + }, + { + "start": 63046.14, + "end": 63047.34, + "probability": 0.7387 + }, + { + "start": 63058.48, + "end": 63062.56, + "probability": 0.6983 + }, + { + "start": 63064.56, + "end": 63065.27, + "probability": 0.93 + }, + { + "start": 63066.62, + "end": 63069.07, + "probability": 0.9956 + }, + { + "start": 63070.16, + "end": 63070.96, + "probability": 0.8202 + }, + { + "start": 63071.82, + "end": 63073.24, + "probability": 0.9937 + }, + { + "start": 63074.18, + "end": 63077.06, + "probability": 0.6344 + }, + { + "start": 63078.2, + "end": 63079.92, + "probability": 0.9987 + }, + { + "start": 63080.8, + "end": 63082.04, + "probability": 0.9989 + }, + { + "start": 63082.98, + "end": 63084.7, + "probability": 0.998 + }, + { + "start": 63086.56, + "end": 63087.68, + "probability": 0.9175 + }, + { + "start": 63088.2, + "end": 63090.16, + "probability": 0.991 + }, + { + "start": 63091.8, + "end": 63092.36, + "probability": 0.9094 + }, + { + "start": 63093.22, + "end": 63095.76, + "probability": 0.6222 + }, + { + "start": 63096.82, + "end": 63098.94, + "probability": 0.8349 + }, + { + "start": 63099.3, + "end": 63101.56, + "probability": 0.986 + }, + { + "start": 63102.54, + "end": 63103.1, + "probability": 0.8752 + }, + { + "start": 63104.08, + "end": 63105.64, + "probability": 0.8971 + }, + { + "start": 63106.08, + "end": 63106.88, + "probability": 0.7387 + }, + { + "start": 63106.9, + "end": 63108.04, + "probability": 0.9915 + }, + { + "start": 63109.78, + "end": 63113.43, + "probability": 0.9798 + }, + { + "start": 63116.0, + "end": 63116.0, + "probability": 0.0131 + }, + { + "start": 63116.0, + "end": 63118.88, + "probability": 0.8406 + }, + { + "start": 63119.64, + "end": 63120.2, + "probability": 0.7219 + }, + { + "start": 63120.34, + "end": 63120.64, + "probability": 0.8368 + }, + { + "start": 63120.7, + "end": 63122.36, + "probability": 0.9852 + }, + { + "start": 63123.38, + "end": 63130.2, + "probability": 0.9363 + }, + { + "start": 63131.32, + "end": 63134.12, + "probability": 0.9898 + }, + { + "start": 63135.26, + "end": 63140.4, + "probability": 0.7498 + }, + { + "start": 63140.96, + "end": 63142.88, + "probability": 0.876 + }, + { + "start": 63143.96, + "end": 63146.18, + "probability": 0.9866 + }, + { + "start": 63147.32, + "end": 63151.34, + "probability": 0.6992 + }, + { + "start": 63151.5, + "end": 63152.66, + "probability": 0.687 + }, + { + "start": 63153.04, + "end": 63157.3, + "probability": 0.9316 + }, + { + "start": 63157.38, + "end": 63157.94, + "probability": 0.9606 + }, + { + "start": 63158.0, + "end": 63159.06, + "probability": 0.7798 + }, + { + "start": 63159.62, + "end": 63161.62, + "probability": 0.7195 + }, + { + "start": 63162.5, + "end": 63163.3, + "probability": 0.6743 + }, + { + "start": 63163.5, + "end": 63167.32, + "probability": 0.8151 + }, + { + "start": 63167.52, + "end": 63169.86, + "probability": 0.7085 + }, + { + "start": 63170.38, + "end": 63171.82, + "probability": 0.8023 + }, + { + "start": 63173.02, + "end": 63177.94, + "probability": 0.9728 + }, + { + "start": 63178.46, + "end": 63179.6, + "probability": 0.7366 + }, + { + "start": 63180.14, + "end": 63181.12, + "probability": 0.4894 + }, + { + "start": 63181.88, + "end": 63183.18, + "probability": 0.8545 + }, + { + "start": 63183.32, + "end": 63184.8, + "probability": 0.948 + }, + { + "start": 63184.92, + "end": 63185.34, + "probability": 0.7626 + }, + { + "start": 63185.92, + "end": 63189.04, + "probability": 0.9661 + }, + { + "start": 63189.66, + "end": 63190.3, + "probability": 0.6639 + }, + { + "start": 63191.14, + "end": 63198.78, + "probability": 0.9741 + }, + { + "start": 63200.5, + "end": 63200.98, + "probability": 0.7731 + }, + { + "start": 63201.78, + "end": 63205.62, + "probability": 0.7892 + }, + { + "start": 63206.5, + "end": 63207.84, + "probability": 0.8901 + }, + { + "start": 63208.48, + "end": 63211.4, + "probability": 0.9954 + }, + { + "start": 63212.34, + "end": 63214.58, + "probability": 0.954 + }, + { + "start": 63215.48, + "end": 63217.78, + "probability": 0.9997 + }, + { + "start": 63217.9, + "end": 63218.5, + "probability": 0.5151 + }, + { + "start": 63219.64, + "end": 63225.28, + "probability": 0.8798 + }, + { + "start": 63226.24, + "end": 63228.46, + "probability": 0.9909 + }, + { + "start": 63228.6, + "end": 63228.96, + "probability": 0.7413 + }, + { + "start": 63229.92, + "end": 63232.17, + "probability": 0.9941 + }, + { + "start": 63232.92, + "end": 63234.12, + "probability": 0.9658 + }, + { + "start": 63234.2, + "end": 63239.88, + "probability": 0.9828 + }, + { + "start": 63240.02, + "end": 63241.0, + "probability": 0.8133 + }, + { + "start": 63242.02, + "end": 63244.48, + "probability": 0.7912 + }, + { + "start": 63245.24, + "end": 63247.36, + "probability": 0.8975 + }, + { + "start": 63247.52, + "end": 63250.4, + "probability": 0.9431 + }, + { + "start": 63251.7, + "end": 63253.64, + "probability": 0.7008 + }, + { + "start": 63254.7, + "end": 63258.78, + "probability": 0.9907 + }, + { + "start": 63259.5, + "end": 63260.06, + "probability": 0.8086 + }, + { + "start": 63262.84, + "end": 63269.22, + "probability": 0.9979 + }, + { + "start": 63270.28, + "end": 63272.84, + "probability": 0.9947 + }, + { + "start": 63273.04, + "end": 63276.18, + "probability": 0.9985 + }, + { + "start": 63276.78, + "end": 63278.14, + "probability": 0.9961 + }, + { + "start": 63278.8, + "end": 63279.42, + "probability": 0.848 + }, + { + "start": 63280.18, + "end": 63280.64, + "probability": 0.7348 + }, + { + "start": 63280.82, + "end": 63281.84, + "probability": 0.9776 + }, + { + "start": 63282.26, + "end": 63283.76, + "probability": 0.9798 + }, + { + "start": 63283.86, + "end": 63285.0, + "probability": 0.9212 + }, + { + "start": 63285.96, + "end": 63291.2, + "probability": 0.974 + }, + { + "start": 63292.6, + "end": 63296.94, + "probability": 0.9896 + }, + { + "start": 63297.04, + "end": 63299.56, + "probability": 0.903 + }, + { + "start": 63300.32, + "end": 63302.28, + "probability": 0.975 + }, + { + "start": 63302.28, + "end": 63306.3, + "probability": 0.7616 + }, + { + "start": 63307.94, + "end": 63310.74, + "probability": 0.9844 + }, + { + "start": 63312.05, + "end": 63312.78, + "probability": 0.9028 + }, + { + "start": 63313.68, + "end": 63314.72, + "probability": 0.8321 + }, + { + "start": 63314.94, + "end": 63315.88, + "probability": 0.8918 + }, + { + "start": 63316.24, + "end": 63318.38, + "probability": 0.9504 + }, + { + "start": 63318.82, + "end": 63321.5, + "probability": 0.767 + }, + { + "start": 63322.32, + "end": 63324.76, + "probability": 0.9887 + }, + { + "start": 63325.18, + "end": 63327.8, + "probability": 0.9748 + }, + { + "start": 63327.86, + "end": 63328.38, + "probability": 0.364 + }, + { + "start": 63329.56, + "end": 63330.76, + "probability": 0.6894 + }, + { + "start": 63330.8, + "end": 63332.98, + "probability": 0.9948 + }, + { + "start": 63335.2, + "end": 63336.26, + "probability": 0.6747 + }, + { + "start": 63337.06, + "end": 63338.28, + "probability": 0.7506 + }, + { + "start": 63338.38, + "end": 63339.56, + "probability": 0.9111 + }, + { + "start": 63339.92, + "end": 63343.54, + "probability": 0.995 + }, + { + "start": 63343.98, + "end": 63344.79, + "probability": 0.74 + }, + { + "start": 63345.0, + "end": 63345.82, + "probability": 0.7401 + }, + { + "start": 63346.24, + "end": 63349.22, + "probability": 0.4286 + }, + { + "start": 63349.3, + "end": 63350.95, + "probability": 0.9611 + }, + { + "start": 63351.08, + "end": 63351.4, + "probability": 0.5987 + }, + { + "start": 63351.5, + "end": 63355.84, + "probability": 0.9629 + }, + { + "start": 63356.68, + "end": 63363.32, + "probability": 0.9901 + }, + { + "start": 63363.84, + "end": 63364.78, + "probability": 0.6653 + }, + { + "start": 63364.94, + "end": 63367.18, + "probability": 0.7431 + }, + { + "start": 63367.8, + "end": 63368.02, + "probability": 0.756 + }, + { + "start": 63368.32, + "end": 63371.9, + "probability": 0.9945 + }, + { + "start": 63371.98, + "end": 63376.02, + "probability": 0.9973 + }, + { + "start": 63377.76, + "end": 63381.56, + "probability": 0.9985 + }, + { + "start": 63382.12, + "end": 63383.34, + "probability": 0.9791 + }, + { + "start": 63384.16, + "end": 63388.32, + "probability": 0.9953 + }, + { + "start": 63388.32, + "end": 63391.34, + "probability": 0.9702 + }, + { + "start": 63391.4, + "end": 63391.82, + "probability": 0.4136 + }, + { + "start": 63391.88, + "end": 63394.52, + "probability": 0.955 + }, + { + "start": 63396.12, + "end": 63399.13, + "probability": 0.9814 + }, + { + "start": 63399.56, + "end": 63402.86, + "probability": 0.9971 + }, + { + "start": 63404.0, + "end": 63405.44, + "probability": 0.8609 + }, + { + "start": 63406.04, + "end": 63406.96, + "probability": 0.8925 + }, + { + "start": 63407.04, + "end": 63407.49, + "probability": 0.9169 + }, + { + "start": 63407.82, + "end": 63412.58, + "probability": 0.9203 + }, + { + "start": 63414.28, + "end": 63416.38, + "probability": 0.9005 + }, + { + "start": 63416.54, + "end": 63417.58, + "probability": 0.8313 + }, + { + "start": 63417.78, + "end": 63422.44, + "probability": 0.9568 + }, + { + "start": 63423.14, + "end": 63425.06, + "probability": 0.9963 + }, + { + "start": 63425.72, + "end": 63428.28, + "probability": 0.9861 + }, + { + "start": 63428.88, + "end": 63431.84, + "probability": 0.9887 + }, + { + "start": 63432.36, + "end": 63435.62, + "probability": 0.9954 + }, + { + "start": 63436.26, + "end": 63437.24, + "probability": 0.9672 + }, + { + "start": 63437.34, + "end": 63438.74, + "probability": 0.8286 + }, + { + "start": 63439.26, + "end": 63440.04, + "probability": 0.9189 + }, + { + "start": 63440.16, + "end": 63440.7, + "probability": 0.7528 + }, + { + "start": 63440.9, + "end": 63442.18, + "probability": 0.919 + }, + { + "start": 63442.2, + "end": 63444.34, + "probability": 0.833 + }, + { + "start": 63445.7, + "end": 63448.98, + "probability": 0.9232 + }, + { + "start": 63449.08, + "end": 63449.66, + "probability": 0.9326 + }, + { + "start": 63449.74, + "end": 63450.0, + "probability": 0.6251 + }, + { + "start": 63450.08, + "end": 63450.28, + "probability": 0.0237 + }, + { + "start": 63450.3, + "end": 63450.4, + "probability": 0.4399 + }, + { + "start": 63451.22, + "end": 63454.44, + "probability": 0.9711 + }, + { + "start": 63454.52, + "end": 63455.16, + "probability": 0.9792 + }, + { + "start": 63455.18, + "end": 63455.44, + "probability": 0.8449 + }, + { + "start": 63455.5, + "end": 63456.87, + "probability": 0.9692 + }, + { + "start": 63457.52, + "end": 63458.22, + "probability": 0.926 + }, + { + "start": 63458.28, + "end": 63461.55, + "probability": 0.9993 + }, + { + "start": 63461.68, + "end": 63462.24, + "probability": 0.64 + }, + { + "start": 63463.52, + "end": 63464.83, + "probability": 0.9447 + }, + { + "start": 63465.8, + "end": 63467.9, + "probability": 0.9989 + }, + { + "start": 63469.42, + "end": 63470.68, + "probability": 0.7876 + }, + { + "start": 63470.92, + "end": 63473.14, + "probability": 0.9912 + }, + { + "start": 63473.76, + "end": 63475.36, + "probability": 0.8058 + }, + { + "start": 63475.94, + "end": 63477.5, + "probability": 0.9974 + }, + { + "start": 63478.72, + "end": 63481.44, + "probability": 0.7267 + }, + { + "start": 63482.46, + "end": 63483.19, + "probability": 0.8637 + }, + { + "start": 63483.7, + "end": 63484.68, + "probability": 0.9439 + }, + { + "start": 63485.18, + "end": 63490.74, + "probability": 0.8782 + }, + { + "start": 63491.92, + "end": 63492.68, + "probability": 0.9971 + }, + { + "start": 63493.96, + "end": 63494.42, + "probability": 0.5253 + }, + { + "start": 63495.82, + "end": 63498.42, + "probability": 0.9979 + }, + { + "start": 63499.04, + "end": 63500.42, + "probability": 0.9968 + }, + { + "start": 63501.36, + "end": 63502.2, + "probability": 0.7636 + }, + { + "start": 63502.22, + "end": 63504.18, + "probability": 0.9983 + }, + { + "start": 63504.28, + "end": 63505.06, + "probability": 0.9112 + }, + { + "start": 63505.24, + "end": 63507.66, + "probability": 0.9951 + }, + { + "start": 63507.74, + "end": 63510.38, + "probability": 0.9966 + }, + { + "start": 63511.58, + "end": 63513.46, + "probability": 0.9909 + }, + { + "start": 63515.62, + "end": 63516.74, + "probability": 0.3632 + }, + { + "start": 63517.36, + "end": 63520.74, + "probability": 0.9619 + }, + { + "start": 63521.5, + "end": 63522.16, + "probability": 0.8145 + }, + { + "start": 63522.76, + "end": 63525.3, + "probability": 0.3209 + }, + { + "start": 63525.3, + "end": 63526.72, + "probability": 0.9674 + }, + { + "start": 63526.74, + "end": 63527.96, + "probability": 0.971 + }, + { + "start": 63528.68, + "end": 63530.68, + "probability": 0.9873 + }, + { + "start": 63530.68, + "end": 63534.92, + "probability": 0.6704 + }, + { + "start": 63535.44, + "end": 63540.18, + "probability": 0.9818 + }, + { + "start": 63542.2, + "end": 63543.56, + "probability": 0.999 + }, + { + "start": 63544.16, + "end": 63545.9, + "probability": 0.9409 + }, + { + "start": 63546.8, + "end": 63548.08, + "probability": 0.8544 + }, + { + "start": 63549.1, + "end": 63550.8, + "probability": 0.6292 + }, + { + "start": 63551.82, + "end": 63554.12, + "probability": 0.9725 + }, + { + "start": 63556.08, + "end": 63559.56, + "probability": 0.9663 + }, + { + "start": 63559.66, + "end": 63560.46, + "probability": 0.6892 + }, + { + "start": 63560.5, + "end": 63563.74, + "probability": 0.9828 + }, + { + "start": 63564.8, + "end": 63568.42, + "probability": 0.9969 + }, + { + "start": 63569.1, + "end": 63570.0, + "probability": 0.7668 + }, + { + "start": 63570.12, + "end": 63571.28, + "probability": 0.6376 + }, + { + "start": 63571.5, + "end": 63572.88, + "probability": 0.873 + }, + { + "start": 63574.02, + "end": 63576.18, + "probability": 0.9507 + }, + { + "start": 63576.4, + "end": 63580.5, + "probability": 0.9252 + }, + { + "start": 63580.58, + "end": 63581.3, + "probability": 0.7195 + }, + { + "start": 63582.58, + "end": 63584.2, + "probability": 0.8711 + }, + { + "start": 63585.1, + "end": 63585.75, + "probability": 0.0557 + }, + { + "start": 63590.14, + "end": 63590.14, + "probability": 0.0003 + }, + { + "start": 63592.46, + "end": 63593.84, + "probability": 0.8491 + }, + { + "start": 63593.84, + "end": 63596.64, + "probability": 0.0128 + }, + { + "start": 63598.6, + "end": 63598.76, + "probability": 0.4649 + }, + { + "start": 63600.97, + "end": 63601.08, + "probability": 0.7049 + }, + { + "start": 63601.08, + "end": 63601.24, + "probability": 0.4827 + }, + { + "start": 63603.98, + "end": 63605.42, + "probability": 0.0372 + }, + { + "start": 63606.35, + "end": 63609.62, + "probability": 0.252 + }, + { + "start": 63610.36, + "end": 63612.19, + "probability": 0.1986 + }, + { + "start": 63636.62, + "end": 63636.98, + "probability": 0.2877 + }, + { + "start": 63637.78, + "end": 63640.44, + "probability": 0.947 + }, + { + "start": 63640.48, + "end": 63641.8, + "probability": 0.9893 + }, + { + "start": 63642.16, + "end": 63643.12, + "probability": 0.9613 + }, + { + "start": 63643.26, + "end": 63644.6, + "probability": 0.5583 + }, + { + "start": 63644.9, + "end": 63649.08, + "probability": 0.6649 + }, + { + "start": 63649.34, + "end": 63652.26, + "probability": 0.6919 + }, + { + "start": 63652.62, + "end": 63655.94, + "probability": 0.9746 + }, + { + "start": 63656.02, + "end": 63656.96, + "probability": 0.8776 + }, + { + "start": 63657.02, + "end": 63658.8, + "probability": 0.8212 + }, + { + "start": 63658.82, + "end": 63660.68, + "probability": 0.9878 + }, + { + "start": 63661.06, + "end": 63663.16, + "probability": 0.9229 + }, + { + "start": 63664.14, + "end": 63666.48, + "probability": 0.767 + }, + { + "start": 63666.62, + "end": 63671.34, + "probability": 0.9597 + }, + { + "start": 63672.22, + "end": 63672.34, + "probability": 0.1119 + }, + { + "start": 63672.74, + "end": 63673.44, + "probability": 0.5723 + }, + { + "start": 63673.94, + "end": 63674.64, + "probability": 0.8528 + }, + { + "start": 63675.76, + "end": 63677.22, + "probability": 0.6736 + }, + { + "start": 63677.38, + "end": 63678.66, + "probability": 0.8799 + }, + { + "start": 63678.7, + "end": 63682.12, + "probability": 0.9936 + }, + { + "start": 63682.64, + "end": 63686.98, + "probability": 0.4747 + }, + { + "start": 63688.8, + "end": 63696.92, + "probability": 0.8511 + }, + { + "start": 63696.92, + "end": 63697.84, + "probability": 0.7088 + }, + { + "start": 63697.88, + "end": 63698.6, + "probability": 0.9446 + }, + { + "start": 63698.66, + "end": 63700.56, + "probability": 0.7305 + }, + { + "start": 63700.66, + "end": 63701.08, + "probability": 0.7433 + }, + { + "start": 63702.12, + "end": 63702.92, + "probability": 0.7603 + }, + { + "start": 63703.3, + "end": 63705.14, + "probability": 0.8281 + }, + { + "start": 63705.42, + "end": 63706.16, + "probability": 0.7634 + }, + { + "start": 63706.16, + "end": 63706.44, + "probability": 0.7398 + }, + { + "start": 63706.5, + "end": 63711.16, + "probability": 0.9858 + }, + { + "start": 63711.36, + "end": 63711.7, + "probability": 0.8835 + }, + { + "start": 63712.64, + "end": 63714.34, + "probability": 0.874 + }, + { + "start": 63715.1, + "end": 63719.66, + "probability": 0.9353 + }, + { + "start": 63721.02, + "end": 63722.4, + "probability": 0.9301 + }, + { + "start": 63723.08, + "end": 63724.64, + "probability": 0.9966 + }, + { + "start": 63725.14, + "end": 63727.68, + "probability": 0.9766 + }, + { + "start": 63727.76, + "end": 63728.32, + "probability": 0.3207 + }, + { + "start": 63728.62, + "end": 63730.54, + "probability": 0.086 + }, + { + "start": 63730.62, + "end": 63732.34, + "probability": 0.1908 + }, + { + "start": 63732.34, + "end": 63734.5, + "probability": 0.6674 + }, + { + "start": 63734.5, + "end": 63741.4, + "probability": 0.941 + }, + { + "start": 63742.08, + "end": 63744.12, + "probability": 0.8442 + }, + { + "start": 63744.58, + "end": 63747.56, + "probability": 0.5627 + }, + { + "start": 63747.92, + "end": 63748.28, + "probability": 0.7575 + }, + { + "start": 63748.28, + "end": 63750.86, + "probability": 0.8237 + }, + { + "start": 63750.96, + "end": 63754.46, + "probability": 0.9224 + }, + { + "start": 63755.04, + "end": 63757.1, + "probability": 0.9664 + }, + { + "start": 63757.68, + "end": 63759.34, + "probability": 0.8829 + }, + { + "start": 63760.08, + "end": 63760.86, + "probability": 0.4026 + }, + { + "start": 63761.18, + "end": 63763.22, + "probability": 0.9456 + }, + { + "start": 63763.26, + "end": 63764.3, + "probability": 0.9481 + }, + { + "start": 63764.9, + "end": 63765.46, + "probability": 0.4674 + }, + { + "start": 63765.5, + "end": 63767.38, + "probability": 0.9968 + }, + { + "start": 63767.54, + "end": 63768.46, + "probability": 0.9288 + }, + { + "start": 63768.78, + "end": 63772.7, + "probability": 0.5552 + }, + { + "start": 63772.82, + "end": 63773.52, + "probability": 0.4336 + }, + { + "start": 63773.72, + "end": 63775.08, + "probability": 0.8081 + }, + { + "start": 63775.64, + "end": 63776.26, + "probability": 0.5023 + }, + { + "start": 63777.7, + "end": 63778.64, + "probability": 0.0335 + }, + { + "start": 63778.64, + "end": 63779.46, + "probability": 0.0533 + }, + { + "start": 63779.78, + "end": 63782.28, + "probability": 0.8677 + }, + { + "start": 63782.32, + "end": 63784.44, + "probability": 0.8832 + }, + { + "start": 63784.6, + "end": 63784.82, + "probability": 0.3685 + }, + { + "start": 63784.86, + "end": 63790.02, + "probability": 0.4687 + }, + { + "start": 63790.3, + "end": 63792.52, + "probability": 0.6073 + }, + { + "start": 63792.62, + "end": 63793.62, + "probability": 0.5607 + }, + { + "start": 63801.0, + "end": 63804.46, + "probability": 0.4342 + }, + { + "start": 63807.56, + "end": 63811.4, + "probability": 0.3839 + }, + { + "start": 63811.52, + "end": 63815.68, + "probability": 0.9333 + }, + { + "start": 63815.76, + "end": 63817.83, + "probability": 0.9014 + }, + { + "start": 63818.58, + "end": 63821.5, + "probability": 0.9761 + }, + { + "start": 63821.76, + "end": 63822.96, + "probability": 0.7878 + }, + { + "start": 63824.4, + "end": 63826.23, + "probability": 0.6854 + }, + { + "start": 63827.86, + "end": 63828.02, + "probability": 0.5508 + }, + { + "start": 63828.1, + "end": 63830.56, + "probability": 0.9957 + }, + { + "start": 63830.64, + "end": 63832.77, + "probability": 0.9963 + }, + { + "start": 63833.22, + "end": 63833.6, + "probability": 0.9408 + }, + { + "start": 63833.96, + "end": 63838.76, + "probability": 0.93 + }, + { + "start": 63839.08, + "end": 63841.36, + "probability": 0.9658 + }, + { + "start": 63841.5, + "end": 63842.36, + "probability": 0.7833 + }, + { + "start": 63842.54, + "end": 63842.86, + "probability": 0.6782 + }, + { + "start": 63842.9, + "end": 63844.38, + "probability": 0.9296 + }, + { + "start": 63844.46, + "end": 63845.82, + "probability": 0.9883 + }, + { + "start": 63846.38, + "end": 63847.88, + "probability": 0.7853 + }, + { + "start": 63848.5, + "end": 63849.04, + "probability": 0.6211 + }, + { + "start": 63849.46, + "end": 63855.42, + "probability": 0.9713 + }, + { + "start": 63855.72, + "end": 63856.4, + "probability": 0.4974 + }, + { + "start": 63856.78, + "end": 63857.78, + "probability": 0.9604 + }, + { + "start": 63857.84, + "end": 63858.52, + "probability": 0.9418 + }, + { + "start": 63858.84, + "end": 63859.58, + "probability": 0.9004 + }, + { + "start": 63859.92, + "end": 63861.99, + "probability": 0.932 + }, + { + "start": 63863.1, + "end": 63866.42, + "probability": 0.9035 + }, + { + "start": 63866.48, + "end": 63870.1, + "probability": 0.9754 + }, + { + "start": 63870.16, + "end": 63870.86, + "probability": 0.9114 + }, + { + "start": 63871.26, + "end": 63872.74, + "probability": 0.961 + }, + { + "start": 63872.9, + "end": 63873.46, + "probability": 0.5629 + }, + { + "start": 63873.56, + "end": 63876.04, + "probability": 0.7133 + }, + { + "start": 63876.26, + "end": 63877.28, + "probability": 0.644 + }, + { + "start": 63877.84, + "end": 63879.24, + "probability": 0.7896 + }, + { + "start": 63879.32, + "end": 63883.42, + "probability": 0.6544 + }, + { + "start": 63883.44, + "end": 63884.78, + "probability": 0.6823 + }, + { + "start": 63884.8, + "end": 63889.4, + "probability": 0.6285 + }, + { + "start": 63890.4, + "end": 63891.94, + "probability": 0.9924 + }, + { + "start": 63892.46, + "end": 63893.7, + "probability": 0.5857 + }, + { + "start": 63894.26, + "end": 63895.32, + "probability": 0.9611 + }, + { + "start": 63895.9, + "end": 63902.12, + "probability": 0.9617 + }, + { + "start": 63902.18, + "end": 63902.66, + "probability": 0.791 + }, + { + "start": 63903.44, + "end": 63905.0, + "probability": 0.0256 + }, + { + "start": 63905.18, + "end": 63908.94, + "probability": 0.9734 + }, + { + "start": 63909.5, + "end": 63910.13, + "probability": 0.9279 + }, + { + "start": 63910.56, + "end": 63910.94, + "probability": 0.7857 + }, + { + "start": 63910.98, + "end": 63911.22, + "probability": 0.9329 + }, + { + "start": 63911.82, + "end": 63912.4, + "probability": 0.58 + }, + { + "start": 63912.5, + "end": 63913.88, + "probability": 0.9284 + }, + { + "start": 63914.04, + "end": 63915.46, + "probability": 0.9978 + }, + { + "start": 63915.8, + "end": 63917.02, + "probability": 0.974 + }, + { + "start": 63917.58, + "end": 63919.34, + "probability": 0.9927 + }, + { + "start": 63920.02, + "end": 63921.42, + "probability": 0.9504 + }, + { + "start": 63921.52, + "end": 63925.24, + "probability": 0.6198 + }, + { + "start": 63925.38, + "end": 63927.76, + "probability": 0.9755 + }, + { + "start": 63928.66, + "end": 63929.82, + "probability": 0.932 + }, + { + "start": 63930.58, + "end": 63932.04, + "probability": 0.9966 + }, + { + "start": 63932.92, + "end": 63934.46, + "probability": 0.8892 + }, + { + "start": 63935.7, + "end": 63937.73, + "probability": 0.9917 + }, + { + "start": 63937.86, + "end": 63940.88, + "probability": 0.9629 + }, + { + "start": 63940.98, + "end": 63942.92, + "probability": 0.8879 + }, + { + "start": 63944.47, + "end": 63946.48, + "probability": 0.9731 + }, + { + "start": 63946.6, + "end": 63948.68, + "probability": 0.9951 + }, + { + "start": 63948.68, + "end": 63952.18, + "probability": 0.9854 + }, + { + "start": 63952.88, + "end": 63956.16, + "probability": 0.9894 + }, + { + "start": 63956.2, + "end": 63961.52, + "probability": 0.9985 + }, + { + "start": 63964.76, + "end": 63967.6, + "probability": 0.7335 + }, + { + "start": 63968.32, + "end": 63971.92, + "probability": 0.9082 + }, + { + "start": 63971.92, + "end": 63976.2, + "probability": 0.9883 + }, + { + "start": 63977.84, + "end": 63983.16, + "probability": 0.9957 + }, + { + "start": 63983.22, + "end": 63984.02, + "probability": 0.8337 + }, + { + "start": 63984.12, + "end": 63985.72, + "probability": 0.8519 + }, + { + "start": 63987.28, + "end": 63988.8, + "probability": 0.6801 + }, + { + "start": 63991.46, + "end": 63994.16, + "probability": 0.9875 + }, + { + "start": 63994.7, + "end": 63995.16, + "probability": 0.809 + }, + { + "start": 63995.3, + "end": 63996.18, + "probability": 0.9875 + }, + { + "start": 63996.32, + "end": 63999.54, + "probability": 0.9773 + }, + { + "start": 64000.34, + "end": 64004.62, + "probability": 0.9683 + }, + { + "start": 64004.68, + "end": 64007.67, + "probability": 0.9897 + }, + { + "start": 64007.8, + "end": 64010.3, + "probability": 0.9779 + }, + { + "start": 64012.14, + "end": 64015.04, + "probability": 0.6226 + }, + { + "start": 64016.26, + "end": 64016.28, + "probability": 0.0016 + }, + { + "start": 64017.12, + "end": 64017.22, + "probability": 0.5281 + }, + { + "start": 64017.22, + "end": 64018.58, + "probability": 0.9839 + }, + { + "start": 64018.74, + "end": 64020.9, + "probability": 0.9523 + }, + { + "start": 64021.02, + "end": 64022.72, + "probability": 0.6682 + }, + { + "start": 64022.76, + "end": 64024.16, + "probability": 0.9202 + }, + { + "start": 64024.92, + "end": 64026.12, + "probability": 0.8965 + }, + { + "start": 64027.38, + "end": 64030.42, + "probability": 0.83 + }, + { + "start": 64031.68, + "end": 64035.78, + "probability": 0.9488 + }, + { + "start": 64037.62, + "end": 64038.93, + "probability": 0.9922 + }, + { + "start": 64039.18, + "end": 64042.92, + "probability": 0.9956 + }, + { + "start": 64044.4, + "end": 64045.38, + "probability": 0.5707 + }, + { + "start": 64046.36, + "end": 64051.42, + "probability": 0.9284 + }, + { + "start": 64051.58, + "end": 64052.48, + "probability": 0.8062 + }, + { + "start": 64054.02, + "end": 64055.06, + "probability": 0.9854 + }, + { + "start": 64055.72, + "end": 64059.28, + "probability": 0.9907 + }, + { + "start": 64061.08, + "end": 64062.99, + "probability": 0.9956 + }, + { + "start": 64064.04, + "end": 64067.94, + "probability": 0.9985 + }, + { + "start": 64068.31, + "end": 64071.42, + "probability": 0.9983 + }, + { + "start": 64072.3, + "end": 64078.32, + "probability": 0.9404 + }, + { + "start": 64078.36, + "end": 64078.96, + "probability": 0.8788 + }, + { + "start": 64079.66, + "end": 64083.26, + "probability": 0.9966 + }, + { + "start": 64083.72, + "end": 64084.98, + "probability": 0.9359 + }, + { + "start": 64085.38, + "end": 64086.24, + "probability": 0.7873 + }, + { + "start": 64086.66, + "end": 64089.08, + "probability": 0.9741 + }, + { + "start": 64089.46, + "end": 64091.64, + "probability": 0.8684 + }, + { + "start": 64092.2, + "end": 64094.86, + "probability": 0.9832 + }, + { + "start": 64094.86, + "end": 64098.1, + "probability": 0.998 + }, + { + "start": 64098.28, + "end": 64100.18, + "probability": 0.6996 + }, + { + "start": 64100.68, + "end": 64102.44, + "probability": 0.8233 + }, + { + "start": 64103.12, + "end": 64106.9, + "probability": 0.968 + }, + { + "start": 64107.46, + "end": 64109.8, + "probability": 0.9684 + }, + { + "start": 64109.88, + "end": 64111.24, + "probability": 0.7162 + }, + { + "start": 64111.46, + "end": 64111.88, + "probability": 0.799 + }, + { + "start": 64112.42, + "end": 64113.28, + "probability": 0.9272 + }, + { + "start": 64113.92, + "end": 64116.3, + "probability": 0.9874 + }, + { + "start": 64116.78, + "end": 64118.08, + "probability": 0.8932 + }, + { + "start": 64118.44, + "end": 64120.96, + "probability": 0.7949 + }, + { + "start": 64121.46, + "end": 64122.3, + "probability": 0.9102 + }, + { + "start": 64122.38, + "end": 64123.48, + "probability": 0.9858 + }, + { + "start": 64123.8, + "end": 64126.2, + "probability": 0.9412 + }, + { + "start": 64126.98, + "end": 64129.22, + "probability": 0.9502 + }, + { + "start": 64129.96, + "end": 64132.52, + "probability": 0.6128 + }, + { + "start": 64133.18, + "end": 64139.44, + "probability": 0.958 + }, + { + "start": 64139.54, + "end": 64140.1, + "probability": 0.5482 + }, + { + "start": 64140.28, + "end": 64140.96, + "probability": 0.7866 + }, + { + "start": 64141.56, + "end": 64144.3, + "probability": 0.9886 + }, + { + "start": 64144.4, + "end": 64144.6, + "probability": 0.5401 + }, + { + "start": 64144.72, + "end": 64146.2, + "probability": 0.839 + }, + { + "start": 64147.34, + "end": 64154.4, + "probability": 0.9922 + }, + { + "start": 64154.98, + "end": 64156.0, + "probability": 0.9939 + }, + { + "start": 64157.18, + "end": 64163.1, + "probability": 0.8295 + }, + { + "start": 64164.0, + "end": 64164.46, + "probability": 0.397 + }, + { + "start": 64165.2, + "end": 64167.5, + "probability": 0.8966 + }, + { + "start": 64168.18, + "end": 64169.1, + "probability": 0.816 + }, + { + "start": 64169.24, + "end": 64172.78, + "probability": 0.1824 + }, + { + "start": 64174.87, + "end": 64178.36, + "probability": 0.5737 + }, + { + "start": 64178.36, + "end": 64178.36, + "probability": 0.3718 + }, + { + "start": 64178.54, + "end": 64179.96, + "probability": 0.6551 + }, + { + "start": 64180.72, + "end": 64184.88, + "probability": 0.9906 + }, + { + "start": 64186.3, + "end": 64187.1, + "probability": 0.9803 + }, + { + "start": 64187.78, + "end": 64190.24, + "probability": 0.9022 + }, + { + "start": 64190.8, + "end": 64193.18, + "probability": 0.9146 + }, + { + "start": 64194.24, + "end": 64196.44, + "probability": 0.9899 + }, + { + "start": 64197.3, + "end": 64199.96, + "probability": 0.9958 + }, + { + "start": 64200.72, + "end": 64204.36, + "probability": 0.9446 + }, + { + "start": 64204.88, + "end": 64207.8, + "probability": 0.8184 + }, + { + "start": 64208.54, + "end": 64213.66, + "probability": 0.993 + }, + { + "start": 64213.92, + "end": 64217.04, + "probability": 0.9768 + }, + { + "start": 64218.44, + "end": 64221.52, + "probability": 0.9702 + }, + { + "start": 64222.0, + "end": 64223.26, + "probability": 0.9264 + }, + { + "start": 64223.88, + "end": 64225.04, + "probability": 0.812 + }, + { + "start": 64225.98, + "end": 64230.04, + "probability": 0.9878 + }, + { + "start": 64230.24, + "end": 64230.46, + "probability": 0.479 + }, + { + "start": 64231.02, + "end": 64232.12, + "probability": 0.8122 + }, + { + "start": 64232.7, + "end": 64235.36, + "probability": 0.9662 + }, + { + "start": 64236.38, + "end": 64236.94, + "probability": 0.4691 + }, + { + "start": 64237.46, + "end": 64238.9, + "probability": 0.9897 + }, + { + "start": 64239.5, + "end": 64241.0, + "probability": 0.8824 + }, + { + "start": 64241.48, + "end": 64245.82, + "probability": 0.9832 + }, + { + "start": 64245.82, + "end": 64248.72, + "probability": 0.9847 + }, + { + "start": 64249.98, + "end": 64253.1, + "probability": 0.7202 + }, + { + "start": 64253.22, + "end": 64254.74, + "probability": 0.8409 + }, + { + "start": 64254.78, + "end": 64255.38, + "probability": 0.809 + }, + { + "start": 64255.7, + "end": 64257.14, + "probability": 0.5436 + }, + { + "start": 64257.8, + "end": 64260.12, + "probability": 0.7585 + }, + { + "start": 64260.94, + "end": 64261.69, + "probability": 0.9375 + }, + { + "start": 64262.04, + "end": 64263.78, + "probability": 0.447 + }, + { + "start": 64264.32, + "end": 64270.16, + "probability": 0.6244 + }, + { + "start": 64270.46, + "end": 64270.46, + "probability": 0.2752 + }, + { + "start": 64270.46, + "end": 64272.8, + "probability": 0.9427 + }, + { + "start": 64272.86, + "end": 64275.34, + "probability": 0.9585 + }, + { + "start": 64276.7, + "end": 64279.36, + "probability": 0.7277 + }, + { + "start": 64280.08, + "end": 64282.22, + "probability": 0.9337 + }, + { + "start": 64282.86, + "end": 64283.48, + "probability": 0.5447 + }, + { + "start": 64284.94, + "end": 64288.92, + "probability": 0.9431 + }, + { + "start": 64288.92, + "end": 64291.3, + "probability": 0.9969 + }, + { + "start": 64292.34, + "end": 64295.16, + "probability": 0.9054 + }, + { + "start": 64295.9, + "end": 64298.04, + "probability": 0.9556 + }, + { + "start": 64298.88, + "end": 64301.56, + "probability": 0.999 + }, + { + "start": 64302.24, + "end": 64304.74, + "probability": 0.8803 + }, + { + "start": 64305.3, + "end": 64308.52, + "probability": 0.9115 + }, + { + "start": 64308.52, + "end": 64310.97, + "probability": 0.3224 + }, + { + "start": 64312.82, + "end": 64314.52, + "probability": 0.2227 + }, + { + "start": 64314.8, + "end": 64316.11, + "probability": 0.6862 + }, + { + "start": 64316.38, + "end": 64318.96, + "probability": 0.5945 + }, + { + "start": 64319.54, + "end": 64322.49, + "probability": 0.917 + }, + { + "start": 64323.52, + "end": 64325.22, + "probability": 0.4572 + }, + { + "start": 64325.48, + "end": 64326.66, + "probability": 0.6324 + }, + { + "start": 64328.02, + "end": 64329.68, + "probability": 0.9455 + }, + { + "start": 64330.52, + "end": 64333.94, + "probability": 0.9929 + }, + { + "start": 64334.7, + "end": 64335.88, + "probability": 0.9712 + }, + { + "start": 64338.96, + "end": 64344.2, + "probability": 0.7906 + }, + { + "start": 64345.12, + "end": 64347.74, + "probability": 0.9552 + }, + { + "start": 64347.82, + "end": 64348.26, + "probability": 0.7427 + }, + { + "start": 64348.38, + "end": 64348.8, + "probability": 0.7293 + }, + { + "start": 64348.84, + "end": 64349.36, + "probability": 0.7515 + }, + { + "start": 64349.44, + "end": 64349.86, + "probability": 0.761 + }, + { + "start": 64350.28, + "end": 64351.5, + "probability": 0.9489 + }, + { + "start": 64351.54, + "end": 64354.71, + "probability": 0.9886 + }, + { + "start": 64355.58, + "end": 64359.04, + "probability": 0.9084 + }, + { + "start": 64359.64, + "end": 64361.06, + "probability": 0.4837 + }, + { + "start": 64361.69, + "end": 64364.78, + "probability": 0.6824 + }, + { + "start": 64364.94, + "end": 64368.96, + "probability": 0.4864 + }, + { + "start": 64369.08, + "end": 64369.66, + "probability": 0.9561 + }, + { + "start": 64369.7, + "end": 64372.36, + "probability": 0.995 + }, + { + "start": 64373.32, + "end": 64375.74, + "probability": 0.9884 + }, + { + "start": 64376.28, + "end": 64377.4, + "probability": 0.9814 + }, + { + "start": 64378.32, + "end": 64379.76, + "probability": 0.9941 + }, + { + "start": 64379.92, + "end": 64380.68, + "probability": 0.3457 + }, + { + "start": 64380.7, + "end": 64382.98, + "probability": 0.9529 + }, + { + "start": 64383.5, + "end": 64385.34, + "probability": 0.868 + }, + { + "start": 64386.12, + "end": 64389.84, + "probability": 0.9533 + }, + { + "start": 64390.38, + "end": 64392.0, + "probability": 0.9187 + }, + { + "start": 64392.64, + "end": 64394.4, + "probability": 0.9463 + }, + { + "start": 64395.22, + "end": 64400.26, + "probability": 0.9746 + }, + { + "start": 64400.74, + "end": 64402.4, + "probability": 0.8254 + }, + { + "start": 64402.46, + "end": 64403.56, + "probability": 0.7853 + }, + { + "start": 64406.07, + "end": 64408.78, + "probability": 0.4402 + }, + { + "start": 64408.98, + "end": 64410.88, + "probability": 0.5495 + }, + { + "start": 64411.12, + "end": 64412.2, + "probability": 0.3586 + }, + { + "start": 64412.3, + "end": 64413.32, + "probability": 0.9893 + }, + { + "start": 64413.68, + "end": 64415.5, + "probability": 0.283 + }, + { + "start": 64415.6, + "end": 64416.44, + "probability": 0.227 + }, + { + "start": 64416.78, + "end": 64418.35, + "probability": 0.9756 + }, + { + "start": 64418.82, + "end": 64420.48, + "probability": 0.2702 + }, + { + "start": 64420.8, + "end": 64422.62, + "probability": 0.4597 + }, + { + "start": 64423.02, + "end": 64424.4, + "probability": 0.5256 + }, + { + "start": 64424.6, + "end": 64429.98, + "probability": 0.9706 + }, + { + "start": 64430.06, + "end": 64431.0, + "probability": 0.8277 + }, + { + "start": 64431.65, + "end": 64434.74, + "probability": 0.9985 + }, + { + "start": 64434.74, + "end": 64435.87, + "probability": 0.3713 + }, + { + "start": 64436.32, + "end": 64439.21, + "probability": 0.7979 + }, + { + "start": 64439.5, + "end": 64440.78, + "probability": 0.9398 + }, + { + "start": 64441.42, + "end": 64441.98, + "probability": 0.1098 + }, + { + "start": 64442.02, + "end": 64443.14, + "probability": 0.4992 + }, + { + "start": 64444.2, + "end": 64446.62, + "probability": 0.328 + }, + { + "start": 64447.36, + "end": 64448.57, + "probability": 0.7838 + }, + { + "start": 64448.7, + "end": 64451.28, + "probability": 0.9086 + }, + { + "start": 64451.98, + "end": 64454.86, + "probability": 0.9342 + }, + { + "start": 64454.98, + "end": 64456.92, + "probability": 0.9512 + }, + { + "start": 64457.08, + "end": 64460.36, + "probability": 0.9096 + }, + { + "start": 64460.52, + "end": 64460.8, + "probability": 0.4478 + }, + { + "start": 64461.02, + "end": 64461.02, + "probability": 0.5347 + }, + { + "start": 64461.02, + "end": 64465.44, + "probability": 0.9919 + }, + { + "start": 64465.54, + "end": 64467.34, + "probability": 0.8823 + }, + { + "start": 64467.7, + "end": 64468.26, + "probability": 0.96 + }, + { + "start": 64468.36, + "end": 64469.3, + "probability": 0.8678 + }, + { + "start": 64469.74, + "end": 64470.63, + "probability": 0.9729 + }, + { + "start": 64471.22, + "end": 64472.32, + "probability": 0.8013 + }, + { + "start": 64472.96, + "end": 64473.64, + "probability": 0.0575 + }, + { + "start": 64473.76, + "end": 64476.02, + "probability": 0.6107 + }, + { + "start": 64476.4, + "end": 64476.62, + "probability": 0.338 + }, + { + "start": 64476.92, + "end": 64477.76, + "probability": 0.2049 + }, + { + "start": 64478.1, + "end": 64479.42, + "probability": 0.7224 + }, + { + "start": 64480.14, + "end": 64485.0, + "probability": 0.9786 + }, + { + "start": 64485.36, + "end": 64487.26, + "probability": 0.4583 + }, + { + "start": 64487.7, + "end": 64488.0, + "probability": 0.1483 + }, + { + "start": 64488.0, + "end": 64490.6, + "probability": 0.7516 + }, + { + "start": 64490.66, + "end": 64491.86, + "probability": 0.7468 + }, + { + "start": 64492.2, + "end": 64494.78, + "probability": 0.8586 + }, + { + "start": 64495.38, + "end": 64497.62, + "probability": 0.585 + }, + { + "start": 64497.78, + "end": 64498.82, + "probability": 0.6404 + }, + { + "start": 64499.02, + "end": 64500.12, + "probability": 0.4193 + }, + { + "start": 64500.12, + "end": 64502.9, + "probability": 0.4531 + }, + { + "start": 64502.94, + "end": 64503.32, + "probability": 0.8535 + }, + { + "start": 64503.46, + "end": 64504.36, + "probability": 0.8991 + }, + { + "start": 64504.84, + "end": 64506.62, + "probability": 0.5478 + }, + { + "start": 64506.74, + "end": 64507.68, + "probability": 0.998 + }, + { + "start": 64508.44, + "end": 64512.64, + "probability": 0.6471 + }, + { + "start": 64513.18, + "end": 64514.59, + "probability": 0.7677 + }, + { + "start": 64515.02, + "end": 64515.9, + "probability": 0.883 + }, + { + "start": 64516.14, + "end": 64517.46, + "probability": 0.5169 + }, + { + "start": 64518.52, + "end": 64521.6, + "probability": 0.4404 + }, + { + "start": 64521.8, + "end": 64523.8, + "probability": 0.2089 + }, + { + "start": 64523.9, + "end": 64526.8, + "probability": 0.6802 + }, + { + "start": 64527.12, + "end": 64528.46, + "probability": 0.2414 + }, + { + "start": 64528.72, + "end": 64531.2, + "probability": 0.0061 + }, + { + "start": 64533.14, + "end": 64533.24, + "probability": 0.6322 + }, + { + "start": 64535.1, + "end": 64536.06, + "probability": 0.1333 + }, + { + "start": 64536.66, + "end": 64537.94, + "probability": 0.3241 + }, + { + "start": 64538.08, + "end": 64539.26, + "probability": 0.2881 + }, + { + "start": 64539.84, + "end": 64540.62, + "probability": 0.875 + }, + { + "start": 64540.7, + "end": 64542.65, + "probability": 0.9442 + }, + { + "start": 64542.68, + "end": 64543.9, + "probability": 0.5909 + }, + { + "start": 64544.16, + "end": 64544.72, + "probability": 0.4205 + }, + { + "start": 64544.92, + "end": 64545.64, + "probability": 0.9919 + }, + { + "start": 64546.02, + "end": 64548.18, + "probability": 0.2958 + }, + { + "start": 64548.68, + "end": 64549.28, + "probability": 0.2934 + }, + { + "start": 64549.28, + "end": 64549.58, + "probability": 0.4613 + }, + { + "start": 64550.1, + "end": 64550.36, + "probability": 0.0031 + }, + { + "start": 64550.36, + "end": 64550.36, + "probability": 0.1059 + }, + { + "start": 64550.36, + "end": 64550.36, + "probability": 0.3124 + }, + { + "start": 64550.36, + "end": 64552.19, + "probability": 0.8489 + }, + { + "start": 64552.28, + "end": 64553.32, + "probability": 0.7777 + }, + { + "start": 64553.38, + "end": 64554.4, + "probability": 0.4169 + }, + { + "start": 64554.88, + "end": 64557.94, + "probability": 0.546 + }, + { + "start": 64557.94, + "end": 64560.68, + "probability": 0.8723 + }, + { + "start": 64561.7, + "end": 64562.26, + "probability": 0.4007 + }, + { + "start": 64562.72, + "end": 64564.72, + "probability": 0.8164 + }, + { + "start": 64565.32, + "end": 64566.78, + "probability": 0.6708 + }, + { + "start": 64567.02, + "end": 64567.24, + "probability": 0.1754 + }, + { + "start": 64567.38, + "end": 64568.0, + "probability": 0.7959 + }, + { + "start": 64568.08, + "end": 64568.66, + "probability": 0.6173 + }, + { + "start": 64568.76, + "end": 64570.74, + "probability": 0.8516 + }, + { + "start": 64570.8, + "end": 64573.08, + "probability": 0.6523 + }, + { + "start": 64573.56, + "end": 64574.68, + "probability": 0.5607 + }, + { + "start": 64575.28, + "end": 64578.18, + "probability": 0.8171 + }, + { + "start": 64578.68, + "end": 64582.42, + "probability": 0.7309 + }, + { + "start": 64583.5, + "end": 64584.79, + "probability": 0.9399 + }, + { + "start": 64585.24, + "end": 64585.76, + "probability": 0.9061 + }, + { + "start": 64585.86, + "end": 64587.68, + "probability": 0.5352 + }, + { + "start": 64589.66, + "end": 64591.7, + "probability": 0.9949 + }, + { + "start": 64592.32, + "end": 64595.62, + "probability": 0.9668 + }, + { + "start": 64595.76, + "end": 64598.2, + "probability": 0.6982 + }, + { + "start": 64598.82, + "end": 64599.78, + "probability": 0.6255 + }, + { + "start": 64600.14, + "end": 64600.86, + "probability": 0.5629 + }, + { + "start": 64600.98, + "end": 64602.22, + "probability": 0.707 + }, + { + "start": 64602.32, + "end": 64602.66, + "probability": 0.8462 + }, + { + "start": 64602.74, + "end": 64603.26, + "probability": 0.9418 + }, + { + "start": 64603.52, + "end": 64605.12, + "probability": 0.5576 + }, + { + "start": 64605.24, + "end": 64605.44, + "probability": 0.8519 + }, + { + "start": 64605.56, + "end": 64613.26, + "probability": 0.9666 + }, + { + "start": 64613.58, + "end": 64616.76, + "probability": 0.9863 + }, + { + "start": 64616.88, + "end": 64617.94, + "probability": 0.6486 + }, + { + "start": 64618.82, + "end": 64623.0, + "probability": 0.9841 + }, + { + "start": 64623.58, + "end": 64626.24, + "probability": 0.7449 + }, + { + "start": 64626.94, + "end": 64628.18, + "probability": 0.9559 + }, + { + "start": 64628.88, + "end": 64630.46, + "probability": 0.1428 + }, + { + "start": 64631.02, + "end": 64635.72, + "probability": 0.6802 + }, + { + "start": 64636.08, + "end": 64636.72, + "probability": 0.6078 + }, + { + "start": 64636.92, + "end": 64640.82, + "probability": 0.9282 + }, + { + "start": 64641.42, + "end": 64643.5, + "probability": 0.9551 + }, + { + "start": 64643.58, + "end": 64644.9, + "probability": 0.9878 + }, + { + "start": 64645.38, + "end": 64648.18, + "probability": 0.9863 + }, + { + "start": 64648.72, + "end": 64652.44, + "probability": 0.8749 + }, + { + "start": 64653.06, + "end": 64657.1, + "probability": 0.9824 + }, + { + "start": 64657.16, + "end": 64663.58, + "probability": 0.2835 + }, + { + "start": 64663.58, + "end": 64664.5, + "probability": 0.8647 + }, + { + "start": 64664.6, + "end": 64666.0, + "probability": 0.5046 + }, + { + "start": 64666.1, + "end": 64667.03, + "probability": 0.5732 + }, + { + "start": 64668.31, + "end": 64670.13, + "probability": 0.7715 + }, + { + "start": 64670.34, + "end": 64671.26, + "probability": 0.8934 + }, + { + "start": 64671.4, + "end": 64673.12, + "probability": 0.9493 + }, + { + "start": 64678.8, + "end": 64679.06, + "probability": 0.7343 + }, + { + "start": 64680.7, + "end": 64682.24, + "probability": 0.5417 + }, + { + "start": 64682.64, + "end": 64683.06, + "probability": 0.6896 + }, + { + "start": 64683.14, + "end": 64683.86, + "probability": 0.9417 + }, + { + "start": 64683.94, + "end": 64684.14, + "probability": 0.8954 + }, + { + "start": 64684.32, + "end": 64684.98, + "probability": 0.6295 + }, + { + "start": 64685.18, + "end": 64685.62, + "probability": 0.7217 + }, + { + "start": 64686.1, + "end": 64688.82, + "probability": 0.4018 + }, + { + "start": 64689.3, + "end": 64691.64, + "probability": 0.9662 + }, + { + "start": 64691.88, + "end": 64692.64, + "probability": 0.8596 + }, + { + "start": 64692.84, + "end": 64693.86, + "probability": 0.7075 + }, + { + "start": 64693.88, + "end": 64694.54, + "probability": 0.2833 + }, + { + "start": 64694.56, + "end": 64695.08, + "probability": 0.3815 + }, + { + "start": 64695.92, + "end": 64698.08, + "probability": 0.4082 + }, + { + "start": 64698.96, + "end": 64701.8, + "probability": 0.5744 + }, + { + "start": 64702.2, + "end": 64702.2, + "probability": 0.1254 + }, + { + "start": 64702.82, + "end": 64703.52, + "probability": 0.7652 + }, + { + "start": 64703.58, + "end": 64704.4, + "probability": 0.2518 + }, + { + "start": 64704.56, + "end": 64706.04, + "probability": 0.9673 + }, + { + "start": 64706.08, + "end": 64708.84, + "probability": 0.9207 + }, + { + "start": 64709.02, + "end": 64710.88, + "probability": 0.7986 + }, + { + "start": 64711.04, + "end": 64711.92, + "probability": 0.8614 + }, + { + "start": 64712.44, + "end": 64712.54, + "probability": 0.6179 + }, + { + "start": 64712.54, + "end": 64714.16, + "probability": 0.2553 + }, + { + "start": 64714.66, + "end": 64715.1, + "probability": 0.306 + }, + { + "start": 64715.22, + "end": 64718.48, + "probability": 0.2268 + }, + { + "start": 64718.66, + "end": 64718.9, + "probability": 0.0903 + }, + { + "start": 64719.1, + "end": 64720.56, + "probability": 0.6914 + }, + { + "start": 64720.74, + "end": 64722.8, + "probability": 0.785 + }, + { + "start": 64725.51, + "end": 64729.0, + "probability": 0.6751 + }, + { + "start": 64729.74, + "end": 64735.8, + "probability": 0.9238 + }, + { + "start": 64736.18, + "end": 64737.47, + "probability": 0.9941 + }, + { + "start": 64738.28, + "end": 64740.38, + "probability": 0.9473 + }, + { + "start": 64740.38, + "end": 64743.02, + "probability": 0.907 + }, + { + "start": 64744.02, + "end": 64748.9, + "probability": 0.9623 + }, + { + "start": 64749.42, + "end": 64751.2, + "probability": 0.9885 + }, + { + "start": 64751.74, + "end": 64753.46, + "probability": 0.9764 + }, + { + "start": 64754.06, + "end": 64755.5, + "probability": 0.974 + }, + { + "start": 64755.76, + "end": 64757.2, + "probability": 0.8452 + }, + { + "start": 64757.96, + "end": 64761.88, + "probability": 0.9714 + }, + { + "start": 64763.04, + "end": 64763.88, + "probability": 0.735 + }, + { + "start": 64763.98, + "end": 64764.6, + "probability": 0.8064 + }, + { + "start": 64764.8, + "end": 64768.44, + "probability": 0.889 + }, + { + "start": 64769.52, + "end": 64771.48, + "probability": 0.9973 + }, + { + "start": 64771.56, + "end": 64774.42, + "probability": 0.9019 + }, + { + "start": 64774.46, + "end": 64777.42, + "probability": 0.9316 + }, + { + "start": 64777.62, + "end": 64779.0, + "probability": 0.9171 + }, + { + "start": 64779.14, + "end": 64780.0, + "probability": 0.9442 + }, + { + "start": 64780.18, + "end": 64780.44, + "probability": 0.8117 + }, + { + "start": 64780.52, + "end": 64781.42, + "probability": 0.9083 + }, + { + "start": 64781.54, + "end": 64788.38, + "probability": 0.9849 + }, + { + "start": 64794.4, + "end": 64806.74, + "probability": 0.9478 + }, + { + "start": 64808.09, + "end": 64811.77, + "probability": 0.5995 + }, + { + "start": 64812.76, + "end": 64814.56, + "probability": 0.8159 + }, + { + "start": 64815.28, + "end": 64816.68, + "probability": 0.7104 + }, + { + "start": 64817.24, + "end": 64817.92, + "probability": 0.9433 + }, + { + "start": 64818.58, + "end": 64823.32, + "probability": 0.988 + }, + { + "start": 64823.96, + "end": 64827.48, + "probability": 0.9657 + }, + { + "start": 64827.56, + "end": 64828.0, + "probability": 0.7532 + }, + { + "start": 64828.76, + "end": 64829.42, + "probability": 0.8113 + }, + { + "start": 64830.34, + "end": 64833.16, + "probability": 0.9314 + }, + { + "start": 64833.28, + "end": 64834.66, + "probability": 0.9491 + }, + { + "start": 64835.86, + "end": 64838.4, + "probability": 0.939 + }, + { + "start": 64838.56, + "end": 64842.34, + "probability": 0.8885 + }, + { + "start": 64845.4, + "end": 64845.78, + "probability": 0.4782 + }, + { + "start": 64845.98, + "end": 64851.4, + "probability": 0.9816 + }, + { + "start": 64851.42, + "end": 64855.42, + "probability": 0.9879 + }, + { + "start": 64855.98, + "end": 64858.26, + "probability": 0.7221 + }, + { + "start": 64858.8, + "end": 64860.46, + "probability": 0.4572 + }, + { + "start": 64860.86, + "end": 64863.5, + "probability": 0.8508 + }, + { + "start": 64863.52, + "end": 64864.96, + "probability": 0.8182 + }, + { + "start": 64865.52, + "end": 64869.08, + "probability": 0.4397 + }, + { + "start": 64870.06, + "end": 64873.1, + "probability": 0.9282 + }, + { + "start": 64873.9, + "end": 64876.98, + "probability": 0.8608 + }, + { + "start": 64877.94, + "end": 64878.56, + "probability": 0.2874 + }, + { + "start": 64879.78, + "end": 64880.1, + "probability": 0.7439 + }, + { + "start": 64881.42, + "end": 64883.2, + "probability": 0.8036 + }, + { + "start": 64884.34, + "end": 64885.0, + "probability": 0.8231 + }, + { + "start": 64885.72, + "end": 64885.96, + "probability": 0.9585 + }, + { + "start": 64887.38, + "end": 64888.04, + "probability": 0.5176 + }, + { + "start": 64889.1, + "end": 64889.42, + "probability": 0.6453 + }, + { + "start": 64890.64, + "end": 64891.3, + "probability": 0.7004 + }, + { + "start": 64892.18, + "end": 64892.46, + "probability": 0.9673 + }, + { + "start": 64893.96, + "end": 64898.2, + "probability": 0.9265 + }, + { + "start": 64899.82, + "end": 64900.54, + "probability": 0.9928 + }, + { + "start": 64901.9, + "end": 64902.64, + "probability": 0.5733 + }, + { + "start": 64912.5, + "end": 64912.94, + "probability": 0.787 + }, + { + "start": 64915.12, + "end": 64915.86, + "probability": 0.6388 + }, + { + "start": 64916.92, + "end": 64917.28, + "probability": 0.5617 + }, + { + "start": 64919.22, + "end": 64919.84, + "probability": 0.84 + }, + { + "start": 64920.46, + "end": 64920.72, + "probability": 0.8205 + }, + { + "start": 64922.22, + "end": 64923.08, + "probability": 0.9551 + }, + { + "start": 64923.82, + "end": 64926.48, + "probability": 0.9749 + }, + { + "start": 64928.25, + "end": 64929.96, + "probability": 0.9785 + }, + { + "start": 64932.07, + "end": 64934.08, + "probability": 0.9922 + }, + { + "start": 64935.82, + "end": 64937.62, + "probability": 0.9941 + }, + { + "start": 64938.88, + "end": 64940.6, + "probability": 0.9927 + }, + { + "start": 64941.54, + "end": 64941.92, + "probability": 0.9914 + }, + { + "start": 64943.94, + "end": 64944.56, + "probability": 0.9968 + }, + { + "start": 64945.4, + "end": 64945.5, + "probability": 0.9971 + }, + { + "start": 64947.12, + "end": 64948.4, + "probability": 0.8792 + }, + { + "start": 64950.02, + "end": 64950.28, + "probability": 0.8945 + }, + { + "start": 64952.12, + "end": 64952.84, + "probability": 0.8307 + }, + { + "start": 64955.3, + "end": 64957.62, + "probability": 0.8897 + }, + { + "start": 64958.24, + "end": 64958.58, + "probability": 0.6454 + }, + { + "start": 64960.38, + "end": 64961.3, + "probability": 0.9366 + }, + { + "start": 64961.96, + "end": 64964.84, + "probability": 0.8894 + }, + { + "start": 64966.53, + "end": 64973.16, + "probability": 0.9835 + }, + { + "start": 64974.3, + "end": 64974.62, + "probability": 0.9441 + }, + { + "start": 64975.89, + "end": 64977.0, + "probability": 0.8223 + }, + { + "start": 64979.72, + "end": 64981.24, + "probability": 0.9788 + }, + { + "start": 64982.4, + "end": 64983.42, + "probability": 0.9654 + }, + { + "start": 64984.54, + "end": 64984.86, + "probability": 0.9832 + }, + { + "start": 64985.94, + "end": 64986.88, + "probability": 0.924 + }, + { + "start": 64987.56, + "end": 64987.88, + "probability": 0.9619 + }, + { + "start": 64988.74, + "end": 64989.94, + "probability": 0.9109 + }, + { + "start": 64991.32, + "end": 64993.3, + "probability": 0.9881 + }, + { + "start": 64994.44, + "end": 65000.2, + "probability": 0.9912 + }, + { + "start": 65000.82, + "end": 65002.16, + "probability": 0.5504 + }, + { + "start": 65008.3, + "end": 65009.38, + "probability": 0.2965 + }, + { + "start": 65011.46, + "end": 65011.88, + "probability": 0.5085 + }, + { + "start": 65013.34, + "end": 65014.2, + "probability": 0.8494 + }, + { + "start": 65016.34, + "end": 65016.84, + "probability": 0.7693 + }, + { + "start": 65018.02, + "end": 65018.74, + "probability": 0.7494 + }, + { + "start": 65019.56, + "end": 65021.58, + "probability": 0.9736 + }, + { + "start": 65022.26, + "end": 65023.72, + "probability": 0.9111 + }, + { + "start": 65024.4, + "end": 65024.88, + "probability": 0.8869 + }, + { + "start": 65026.34, + "end": 65027.2, + "probability": 0.9105 + }, + { + "start": 65028.16, + "end": 65030.94, + "probability": 0.7059 + }, + { + "start": 65031.82, + "end": 65032.04, + "probability": 0.9878 + }, + { + "start": 65033.82, + "end": 65034.34, + "probability": 0.5604 + }, + { + "start": 65036.96, + "end": 65038.7, + "probability": 0.9785 + }, + { + "start": 65039.5, + "end": 65042.2, + "probability": 0.9873 + }, + { + "start": 65044.73, + "end": 65047.04, + "probability": 0.8542 + }, + { + "start": 65049.46, + "end": 65054.18, + "probability": 0.7052 + }, + { + "start": 65054.98, + "end": 65058.26, + "probability": 0.9159 + }, + { + "start": 65059.44, + "end": 65063.48, + "probability": 0.2083 + }, + { + "start": 65064.58, + "end": 65065.04, + "probability": 0.5783 + }, + { + "start": 65067.16, + "end": 65068.18, + "probability": 0.8428 + }, + { + "start": 65069.02, + "end": 65069.84, + "probability": 0.9294 + }, + { + "start": 65071.06, + "end": 65072.14, + "probability": 0.9932 + }, + { + "start": 65073.11, + "end": 65075.62, + "probability": 0.936 + }, + { + "start": 65078.5, + "end": 65078.88, + "probability": 0.9889 + }, + { + "start": 65080.9, + "end": 65081.98, + "probability": 0.7843 + }, + { + "start": 65084.78, + "end": 65085.24, + "probability": 0.9871 + }, + { + "start": 65087.62, + "end": 65088.18, + "probability": 0.3448 + }, + { + "start": 65089.38, + "end": 65089.78, + "probability": 0.9795 + }, + { + "start": 65091.3, + "end": 65092.28, + "probability": 0.8311 + }, + { + "start": 65093.14, + "end": 65093.38, + "probability": 0.7858 + }, + { + "start": 65095.04, + "end": 65095.78, + "probability": 0.7189 + }, + { + "start": 65096.4, + "end": 65098.32, + "probability": 0.9629 + }, + { + "start": 65099.06, + "end": 65099.82, + "probability": 0.9453 + }, + { + "start": 65102.4, + "end": 65103.12, + "probability": 0.9621 + }, + { + "start": 65103.9, + "end": 65104.62, + "probability": 0.8915 + }, + { + "start": 65106.02, + "end": 65108.6, + "probability": 0.7656 + }, + { + "start": 65110.16, + "end": 65112.58, + "probability": 0.9871 + }, + { + "start": 65113.44, + "end": 65113.86, + "probability": 0.9861 + }, + { + "start": 65114.64, + "end": 65115.88, + "probability": 0.9596 + }, + { + "start": 65117.22, + "end": 65120.4, + "probability": 0.9639 + }, + { + "start": 65122.14, + "end": 65122.76, + "probability": 0.5922 + }, + { + "start": 65124.22, + "end": 65124.86, + "probability": 0.6146 + }, + { + "start": 65125.6, + "end": 65128.24, + "probability": 0.8555 + }, + { + "start": 65131.22, + "end": 65131.96, + "probability": 0.7758 + }, + { + "start": 65132.72, + "end": 65133.48, + "probability": 0.8045 + }, + { + "start": 65136.92, + "end": 65138.8, + "probability": 0.9023 + }, + { + "start": 65139.78, + "end": 65140.18, + "probability": 0.9611 + }, + { + "start": 65142.3, + "end": 65143.0, + "probability": 0.9121 + }, + { + "start": 65144.36, + "end": 65144.64, + "probability": 0.9741 + }, + { + "start": 65145.9, + "end": 65146.42, + "probability": 0.9224 + }, + { + "start": 65148.86, + "end": 65149.56, + "probability": 0.4378 + }, + { + "start": 65150.51, + "end": 65151.3, + "probability": 0.4312 + }, + { + "start": 65156.74, + "end": 65157.48, + "probability": 0.2324 + }, + { + "start": 65159.7, + "end": 65161.48, + "probability": 0.6873 + }, + { + "start": 65163.54, + "end": 65164.48, + "probability": 0.5252 + }, + { + "start": 65166.09, + "end": 65167.52, + "probability": 0.9125 + }, + { + "start": 65168.96, + "end": 65170.4, + "probability": 0.8685 + }, + { + "start": 65171.12, + "end": 65172.84, + "probability": 0.9208 + }, + { + "start": 65174.0, + "end": 65174.74, + "probability": 0.8007 + }, + { + "start": 65176.7, + "end": 65177.06, + "probability": 0.9873 + }, + { + "start": 65179.18, + "end": 65180.1, + "probability": 0.9899 + }, + { + "start": 65181.26, + "end": 65183.0, + "probability": 0.0107 + }, + { + "start": 65186.9, + "end": 65187.74, + "probability": 0.3249 + }, + { + "start": 65188.76, + "end": 65189.06, + "probability": 0.7714 + }, + { + "start": 65195.62, + "end": 65196.6, + "probability": 0.4148 + }, + { + "start": 65200.62, + "end": 65201.1, + "probability": 0.8165 + }, + { + "start": 65203.3, + "end": 65204.14, + "probability": 0.5336 + }, + { + "start": 65206.48, + "end": 65207.74, + "probability": 0.9678 + }, + { + "start": 65208.72, + "end": 65209.94, + "probability": 0.919 + }, + { + "start": 65211.12, + "end": 65211.54, + "probability": 0.7783 + }, + { + "start": 65213.46, + "end": 65214.2, + "probability": 0.9041 + }, + { + "start": 65215.02, + "end": 65215.34, + "probability": 0.9012 + }, + { + "start": 65216.76, + "end": 65217.62, + "probability": 0.9666 + }, + { + "start": 65219.16, + "end": 65219.94, + "probability": 0.9932 + }, + { + "start": 65221.34, + "end": 65222.0, + "probability": 0.97 + }, + { + "start": 65223.84, + "end": 65225.6, + "probability": 0.9899 + }, + { + "start": 65226.28, + "end": 65226.98, + "probability": 0.1954 + }, + { + "start": 65232.02, + "end": 65233.36, + "probability": 0.0227 + }, + { + "start": 65234.74, + "end": 65235.22, + "probability": 0.7499 + }, + { + "start": 65236.64, + "end": 65237.58, + "probability": 0.8167 + }, + { + "start": 65240.32, + "end": 65240.88, + "probability": 0.6945 + }, + { + "start": 65242.3, + "end": 65243.28, + "probability": 0.6918 + }, + { + "start": 65244.84, + "end": 65245.34, + "probability": 0.9943 + }, + { + "start": 65246.42, + "end": 65247.14, + "probability": 0.7816 + }, + { + "start": 65247.84, + "end": 65248.22, + "probability": 0.9609 + }, + { + "start": 65249.0, + "end": 65249.86, + "probability": 0.8905 + }, + { + "start": 65252.01, + "end": 65253.68, + "probability": 0.5942 + }, + { + "start": 65254.92, + "end": 65255.1, + "probability": 0.9739 + }, + { + "start": 65256.62, + "end": 65257.44, + "probability": 0.8331 + }, + { + "start": 65259.28, + "end": 65259.64, + "probability": 0.5651 + }, + { + "start": 65261.14, + "end": 65262.0, + "probability": 0.9658 + }, + { + "start": 65263.57, + "end": 65265.34, + "probability": 0.9866 + }, + { + "start": 65266.8, + "end": 65268.02, + "probability": 0.9878 + }, + { + "start": 65268.7, + "end": 65269.74, + "probability": 0.8003 + }, + { + "start": 65270.9, + "end": 65272.8, + "probability": 0.9788 + }, + { + "start": 65273.76, + "end": 65275.64, + "probability": 0.9645 + }, + { + "start": 65276.5, + "end": 65276.84, + "probability": 0.9928 + }, + { + "start": 65277.6, + "end": 65279.22, + "probability": 0.9917 + }, + { + "start": 65280.94, + "end": 65283.7, + "probability": 0.953 + }, + { + "start": 65284.8, + "end": 65285.42, + "probability": 0.5757 + }, + { + "start": 65286.62, + "end": 65287.66, + "probability": 0.2514 + }, + { + "start": 65288.42, + "end": 65288.64, + "probability": 0.8014 + }, + { + "start": 65289.98, + "end": 65290.64, + "probability": 0.7194 + }, + { + "start": 65292.28, + "end": 65293.76, + "probability": 0.9823 + }, + { + "start": 65294.3, + "end": 65295.24, + "probability": 0.8663 + }, + { + "start": 65295.96, + "end": 65296.38, + "probability": 0.8408 + }, + { + "start": 65297.82, + "end": 65298.64, + "probability": 0.9632 + }, + { + "start": 65299.58, + "end": 65300.04, + "probability": 0.9854 + }, + { + "start": 65301.56, + "end": 65302.28, + "probability": 0.839 + }, + { + "start": 65303.66, + "end": 65304.4, + "probability": 0.9766 + }, + { + "start": 65306.14, + "end": 65307.0, + "probability": 0.9659 + }, + { + "start": 65307.98, + "end": 65308.92, + "probability": 0.9813 + }, + { + "start": 65310.06, + "end": 65311.12, + "probability": 0.7543 + }, + { + "start": 65312.1, + "end": 65312.52, + "probability": 0.9889 + }, + { + "start": 65314.7, + "end": 65315.88, + "probability": 0.6419 + }, + { + "start": 65316.54, + "end": 65316.8, + "probability": 0.733 + }, + { + "start": 65318.08, + "end": 65318.74, + "probability": 0.7646 + }, + { + "start": 65322.4, + "end": 65322.82, + "probability": 0.553 + }, + { + "start": 65324.54, + "end": 65325.38, + "probability": 0.9354 + }, + { + "start": 65326.85, + "end": 65329.16, + "probability": 0.9108 + }, + { + "start": 65330.38, + "end": 65332.46, + "probability": 0.9842 + }, + { + "start": 65333.96, + "end": 65336.5, + "probability": 0.9789 + }, + { + "start": 65340.52, + "end": 65340.9, + "probability": 0.687 + }, + { + "start": 65344.2, + "end": 65344.86, + "probability": 0.6922 + }, + { + "start": 65345.66, + "end": 65346.06, + "probability": 0.9055 + }, + { + "start": 65347.32, + "end": 65347.9, + "probability": 0.8697 + }, + { + "start": 65349.12, + "end": 65349.44, + "probability": 0.9678 + }, + { + "start": 65351.06, + "end": 65351.8, + "probability": 0.9152 + }, + { + "start": 65352.72, + "end": 65353.06, + "probability": 0.9466 + }, + { + "start": 65354.52, + "end": 65355.38, + "probability": 0.8464 + }, + { + "start": 65360.44, + "end": 65360.9, + "probability": 0.9924 + }, + { + "start": 65362.56, + "end": 65365.04, + "probability": 0.9082 + }, + { + "start": 65365.78, + "end": 65366.5, + "probability": 0.9415 + }, + { + "start": 65370.3, + "end": 65371.66, + "probability": 0.961 + }, + { + "start": 65372.96, + "end": 65373.66, + "probability": 0.6028 + }, + { + "start": 65374.7, + "end": 65375.52, + "probability": 0.8062 + }, + { + "start": 65377.24, + "end": 65378.02, + "probability": 0.8508 + }, + { + "start": 65378.66, + "end": 65379.28, + "probability": 0.5672 + }, + { + "start": 65380.54, + "end": 65381.54, + "probability": 0.9202 + }, + { + "start": 65383.42, + "end": 65385.06, + "probability": 0.9947 + }, + { + "start": 65386.38, + "end": 65389.08, + "probability": 0.9247 + }, + { + "start": 65391.2, + "end": 65391.52, + "probability": 0.9989 + }, + { + "start": 65392.6, + "end": 65393.38, + "probability": 0.5305 + }, + { + "start": 65396.3, + "end": 65397.36, + "probability": 0.9318 + }, + { + "start": 65397.88, + "end": 65404.34, + "probability": 0.9749 + }, + { + "start": 65405.16, + "end": 65409.06, + "probability": 0.6312 + }, + { + "start": 65410.1, + "end": 65410.72, + "probability": 0.6188 + }, + { + "start": 65412.74, + "end": 65413.4, + "probability": 0.9259 + }, + { + "start": 65414.94, + "end": 65415.94, + "probability": 0.859 + }, + { + "start": 65417.18, + "end": 65417.8, + "probability": 0.9901 + }, + { + "start": 65419.4, + "end": 65420.26, + "probability": 0.7275 + }, + { + "start": 65422.04, + "end": 65422.54, + "probability": 0.9814 + }, + { + "start": 65424.2, + "end": 65424.68, + "probability": 0.7218 + }, + { + "start": 65425.76, + "end": 65426.2, + "probability": 0.7325 + }, + { + "start": 65428.42, + "end": 65429.08, + "probability": 0.7959 + }, + { + "start": 65431.12, + "end": 65434.62, + "probability": 0.9028 + }, + { + "start": 65436.02, + "end": 65439.98, + "probability": 0.5255 + }, + { + "start": 65442.3, + "end": 65444.66, + "probability": 0.8108 + }, + { + "start": 65446.94, + "end": 65447.66, + "probability": 0.9885 + }, + { + "start": 65447.92, + "end": 65455.5, + "probability": 0.9548 + }, + { + "start": 65462.08, + "end": 65462.48, + "probability": 0.622 + }, + { + "start": 65465.0, + "end": 65465.74, + "probability": 0.1539 + }, + { + "start": 65466.22, + "end": 65466.44, + "probability": 0.8739 + }, + { + "start": 65467.6, + "end": 65472.04, + "probability": 0.6133 + }, + { + "start": 65472.26, + "end": 65474.08, + "probability": 0.9666 + }, + { + "start": 65612.0, + "end": 65612.0, + "probability": 0.0 + }, + { + "start": 65612.0, + "end": 65612.0, + "probability": 0.0 + }, + { + "start": 65612.4, + "end": 65613.54, + "probability": 0.3079 + }, + { + "start": 65614.72, + "end": 65615.8, + "probability": 0.7058 + }, + { + "start": 65616.0, + "end": 65618.16, + "probability": 0.5767 + }, + { + "start": 65618.52, + "end": 65623.52, + "probability": 0.9614 + }, + { + "start": 65624.12, + "end": 65630.84, + "probability": 0.9747 + }, + { + "start": 65630.84, + "end": 65635.7, + "probability": 0.9938 + }, + { + "start": 65635.9, + "end": 65637.48, + "probability": 0.6024 + }, + { + "start": 65638.08, + "end": 65640.44, + "probability": 0.4089 + }, + { + "start": 65641.46, + "end": 65645.06, + "probability": 0.8525 + }, + { + "start": 65645.7, + "end": 65647.34, + "probability": 0.9461 + }, + { + "start": 65649.14, + "end": 65649.7, + "probability": 0.0338 + }, + { + "start": 65650.94, + "end": 65651.18, + "probability": 0.822 + }, + { + "start": 65652.52, + "end": 65653.54, + "probability": 0.6696 + }, + { + "start": 65654.26, + "end": 65654.46, + "probability": 0.9653 + }, + { + "start": 65655.64, + "end": 65656.24, + "probability": 0.8195 + }, + { + "start": 65656.9, + "end": 65658.68, + "probability": 0.524 + }, + { + "start": 65665.5, + "end": 65666.12, + "probability": 0.5143 + }, + { + "start": 65669.48, + "end": 65669.96, + "probability": 0.5585 + }, + { + "start": 65671.22, + "end": 65671.58, + "probability": 0.8817 + }, + { + "start": 65673.12, + "end": 65673.8, + "probability": 0.8914 + }, + { + "start": 65674.94, + "end": 65675.34, + "probability": 0.855 + }, + { + "start": 65677.22, + "end": 65678.02, + "probability": 0.5773 + }, + { + "start": 65681.22, + "end": 65681.8, + "probability": 0.7535 + }, + { + "start": 65682.4, + "end": 65683.0, + "probability": 0.7452 + }, + { + "start": 65685.2, + "end": 65685.94, + "probability": 0.9953 + }, + { + "start": 65687.56, + "end": 65688.32, + "probability": 0.7862 + }, + { + "start": 65689.04, + "end": 65690.12, + "probability": 0.9829 + }, + { + "start": 65690.74, + "end": 65691.3, + "probability": 0.9354 + }, + { + "start": 65693.44, + "end": 65696.06, + "probability": 0.2991 + }, + { + "start": 65700.14, + "end": 65701.16, + "probability": 0.4955 + }, + { + "start": 65702.38, + "end": 65703.02, + "probability": 0.7059 + }, + { + "start": 65704.09, + "end": 65705.76, + "probability": 0.9287 + }, + { + "start": 65706.52, + "end": 65708.24, + "probability": 0.9845 + }, + { + "start": 65709.7, + "end": 65710.82, + "probability": 0.9395 + }, + { + "start": 65714.2, + "end": 65716.1, + "probability": 0.9702 + }, + { + "start": 65717.12, + "end": 65717.48, + "probability": 0.9466 + }, + { + "start": 65718.44, + "end": 65718.96, + "probability": 0.9849 + }, + { + "start": 65720.02, + "end": 65720.78, + "probability": 0.9973 + }, + { + "start": 65721.58, + "end": 65722.6, + "probability": 0.9736 + }, + { + "start": 65723.54, + "end": 65725.52, + "probability": 0.956 + }, + { + "start": 65726.48, + "end": 65727.0, + "probability": 0.9672 + }, + { + "start": 65728.0, + "end": 65728.6, + "probability": 0.834 + }, + { + "start": 65729.24, + "end": 65729.4, + "probability": 0.5122 + }, + { + "start": 65730.92, + "end": 65731.68, + "probability": 0.8349 + }, + { + "start": 65732.52, + "end": 65732.76, + "probability": 0.8851 + }, + { + "start": 65734.0, + "end": 65734.72, + "probability": 0.9473 + }, + { + "start": 65736.04, + "end": 65736.44, + "probability": 0.9777 + }, + { + "start": 65738.06, + "end": 65738.68, + "probability": 0.9856 + }, + { + "start": 65739.48, + "end": 65741.62, + "probability": 0.9935 + }, + { + "start": 65742.8, + "end": 65743.08, + "probability": 0.9102 + }, + { + "start": 65744.52, + "end": 65745.22, + "probability": 0.9175 + }, + { + "start": 65746.12, + "end": 65747.46, + "probability": 0.9927 + }, + { + "start": 65748.58, + "end": 65749.4, + "probability": 0.9908 + }, + { + "start": 65750.46, + "end": 65751.4, + "probability": 0.9829 + }, + { + "start": 65752.48, + "end": 65753.28, + "probability": 0.8525 + }, + { + "start": 65754.16, + "end": 65754.54, + "probability": 0.9967 + }, + { + "start": 65755.88, + "end": 65756.44, + "probability": 0.8159 + }, + { + "start": 65757.46, + "end": 65757.8, + "probability": 0.5349 + }, + { + "start": 65759.08, + "end": 65759.66, + "probability": 0.5496 + }, + { + "start": 65760.68, + "end": 65762.76, + "probability": 0.9402 + }, + { + "start": 65768.36, + "end": 65768.78, + "probability": 0.579 + }, + { + "start": 65770.8, + "end": 65771.24, + "probability": 0.7185 + }, + { + "start": 65776.98, + "end": 65777.74, + "probability": 0.8913 + }, + { + "start": 65778.44, + "end": 65779.04, + "probability": 0.8346 + }, + { + "start": 65780.86, + "end": 65781.28, + "probability": 0.9243 + }, + { + "start": 65783.0, + "end": 65783.6, + "probability": 0.9421 + }, + { + "start": 65784.54, + "end": 65785.44, + "probability": 0.9404 + }, + { + "start": 65786.36, + "end": 65786.98, + "probability": 0.9789 + }, + { + "start": 65789.14, + "end": 65789.78, + "probability": 0.9706 + }, + { + "start": 65790.5, + "end": 65791.18, + "probability": 0.8903 + }, + { + "start": 65796.44, + "end": 65797.14, + "probability": 0.8682 + }, + { + "start": 65798.24, + "end": 65799.12, + "probability": 0.7762 + }, + { + "start": 65800.02, + "end": 65800.44, + "probability": 0.8818 + }, + { + "start": 65802.42, + "end": 65803.08, + "probability": 0.9026 + }, + { + "start": 65803.88, + "end": 65804.26, + "probability": 0.7668 + }, + { + "start": 65805.72, + "end": 65806.74, + "probability": 0.7285 + }, + { + "start": 65811.62, + "end": 65812.48, + "probability": 0.9613 + }, + { + "start": 65813.06, + "end": 65813.82, + "probability": 0.7908 + }, + { + "start": 65817.83, + "end": 65819.68, + "probability": 0.9304 + }, + { + "start": 65820.38, + "end": 65822.67, + "probability": 0.1321 + }, + { + "start": 65824.4, + "end": 65824.82, + "probability": 0.6571 + }, + { + "start": 65826.64, + "end": 65827.56, + "probability": 0.7959 + }, + { + "start": 65828.92, + "end": 65831.02, + "probability": 0.7218 + }, + { + "start": 65835.28, + "end": 65837.3, + "probability": 0.7841 + }, + { + "start": 65838.5, + "end": 65840.12, + "probability": 0.967 + }, + { + "start": 65841.5, + "end": 65842.74, + "probability": 0.9854 + }, + { + "start": 65843.54, + "end": 65844.94, + "probability": 0.9832 + }, + { + "start": 65845.66, + "end": 65846.74, + "probability": 0.9526 + }, + { + "start": 65847.88, + "end": 65848.34, + "probability": 0.9902 + }, + { + "start": 65849.9, + "end": 65850.84, + "probability": 0.9279 + }, + { + "start": 65851.94, + "end": 65852.16, + "probability": 0.6786 + }, + { + "start": 65853.6, + "end": 65854.44, + "probability": 0.6023 + }, + { + "start": 65855.64, + "end": 65855.98, + "probability": 0.9735 + }, + { + "start": 65857.54, + "end": 65861.16, + "probability": 0.7213 + }, + { + "start": 65861.88, + "end": 65862.28, + "probability": 0.9025 + }, + { + "start": 65863.26, + "end": 65863.62, + "probability": 0.9188 + }, + { + "start": 65865.04, + "end": 65865.36, + "probability": 0.9953 + }, + { + "start": 65866.52, + "end": 65867.04, + "probability": 0.8711 + }, + { + "start": 65867.8, + "end": 65868.3, + "probability": 0.9943 + }, + { + "start": 65870.1, + "end": 65870.82, + "probability": 0.9714 + }, + { + "start": 65872.3, + "end": 65872.92, + "probability": 0.9722 + }, + { + "start": 65873.94, + "end": 65874.62, + "probability": 0.878 + }, + { + "start": 65879.64, + "end": 65880.08, + "probability": 0.9924 + }, + { + "start": 65881.98, + "end": 65882.42, + "probability": 0.5519 + }, + { + "start": 65883.73, + "end": 65885.54, + "probability": 0.8864 + }, + { + "start": 65888.86, + "end": 65889.24, + "probability": 0.939 + }, + { + "start": 65890.58, + "end": 65891.2, + "probability": 0.8121 + }, + { + "start": 65892.0, + "end": 65892.32, + "probability": 0.8626 + }, + { + "start": 65893.66, + "end": 65894.0, + "probability": 0.9755 + }, + { + "start": 65895.41, + "end": 65897.12, + "probability": 0.9856 + }, + { + "start": 65898.02, + "end": 65899.0, + "probability": 0.9934 + }, + { + "start": 65899.86, + "end": 65900.5, + "probability": 0.9813 + }, + { + "start": 65901.84, + "end": 65902.26, + "probability": 0.9743 + }, + { + "start": 65903.96, + "end": 65904.66, + "probability": 0.9818 + }, + { + "start": 65906.32, + "end": 65906.72, + "probability": 0.994 + }, + { + "start": 65908.12, + "end": 65908.84, + "probability": 0.9737 + }, + { + "start": 65909.44, + "end": 65909.72, + "probability": 0.9937 + }, + { + "start": 65911.14, + "end": 65911.7, + "probability": 0.4441 + }, + { + "start": 65912.8, + "end": 65913.16, + "probability": 0.9611 + }, + { + "start": 65914.8, + "end": 65915.38, + "probability": 0.8949 + }, + { + "start": 65916.4, + "end": 65916.72, + "probability": 0.8418 + }, + { + "start": 65918.18, + "end": 65918.88, + "probability": 0.9817 + }, + { + "start": 65920.62, + "end": 65922.16, + "probability": 0.9829 + }, + { + "start": 65925.7, + "end": 65926.04, + "probability": 0.9966 + }, + { + "start": 65927.44, + "end": 65927.92, + "probability": 0.9878 + }, + { + "start": 65928.96, + "end": 65929.44, + "probability": 0.9937 + }, + { + "start": 65930.72, + "end": 65932.38, + "probability": 0.7764 + }, + { + "start": 65934.1, + "end": 65934.6, + "probability": 0.9746 + }, + { + "start": 65935.88, + "end": 65936.16, + "probability": 0.9842 + }, + { + "start": 65937.84, + "end": 65939.36, + "probability": 0.981 + }, + { + "start": 65941.36, + "end": 65942.14, + "probability": 0.5955 + }, + { + "start": 65943.04, + "end": 65943.32, + "probability": 0.8955 + }, + { + "start": 65944.76, + "end": 65945.6, + "probability": 0.8888 + }, + { + "start": 65947.0, + "end": 65947.42, + "probability": 0.9826 + }, + { + "start": 65949.22, + "end": 65949.82, + "probability": 0.9835 + }, + { + "start": 65951.64, + "end": 65952.3, + "probability": 0.8913 + }, + { + "start": 65953.48, + "end": 65954.24, + "probability": 0.8735 + }, + { + "start": 65954.98, + "end": 65955.3, + "probability": 0.897 + }, + { + "start": 65957.0, + "end": 65957.82, + "probability": 0.7489 + }, + { + "start": 65959.78, + "end": 65960.22, + "probability": 0.9954 + }, + { + "start": 65962.34, + "end": 65963.44, + "probability": 0.9129 + }, + { + "start": 65964.32, + "end": 65964.66, + "probability": 0.9814 + }, + { + "start": 65966.7, + "end": 65967.62, + "probability": 0.8254 + }, + { + "start": 65968.36, + "end": 65968.58, + "probability": 0.9941 + }, + { + "start": 65970.24, + "end": 65971.12, + "probability": 0.8888 + }, + { + "start": 65972.0, + "end": 65972.2, + "probability": 0.5718 + }, + { + "start": 65973.56, + "end": 65974.1, + "probability": 0.8019 + }, + { + "start": 65976.61, + "end": 65978.12, + "probability": 0.9795 + }, + { + "start": 65985.18, + "end": 65985.6, + "probability": 0.6462 + }, + { + "start": 65989.26, + "end": 65989.88, + "probability": 0.7225 + }, + { + "start": 65991.18, + "end": 65991.54, + "probability": 0.9158 + }, + { + "start": 65992.84, + "end": 65993.32, + "probability": 0.8541 + }, + { + "start": 65994.8, + "end": 65995.24, + "probability": 0.9398 + }, + { + "start": 65996.96, + "end": 65997.82, + "probability": 0.9459 + }, + { + "start": 65999.02, + "end": 65999.6, + "probability": 0.9301 + }, + { + "start": 66000.26, + "end": 66001.04, + "probability": 0.7771 + }, + { + "start": 66001.88, + "end": 66002.34, + "probability": 0.9914 + }, + { + "start": 66003.66, + "end": 66005.28, + "probability": 0.8953 + }, + { + "start": 66006.34, + "end": 66007.06, + "probability": 0.734 + }, + { + "start": 66009.06, + "end": 66011.0, + "probability": 0.832 + }, + { + "start": 66012.18, + "end": 66012.5, + "probability": 0.9968 + }, + { + "start": 66013.94, + "end": 66014.54, + "probability": 0.9878 + }, + { + "start": 66015.62, + "end": 66015.82, + "probability": 0.9963 + }, + { + "start": 66017.22, + "end": 66018.08, + "probability": 0.9861 + }, + { + "start": 66019.32, + "end": 66019.72, + "probability": 0.6025 + }, + { + "start": 66020.72, + "end": 66021.4, + "probability": 0.8284 + }, + { + "start": 66022.46, + "end": 66022.94, + "probability": 0.9785 + }, + { + "start": 66023.96, + "end": 66024.98, + "probability": 0.7438 + }, + { + "start": 66025.61, + "end": 66027.84, + "probability": 0.9521 + }, + { + "start": 66029.02, + "end": 66031.08, + "probability": 0.9327 + }, + { + "start": 66032.72, + "end": 66033.02, + "probability": 0.9839 + }, + { + "start": 66034.38, + "end": 66035.18, + "probability": 0.9681 + }, + { + "start": 66037.4, + "end": 66037.76, + "probability": 0.9925 + }, + { + "start": 66039.26, + "end": 66039.84, + "probability": 0.9174 + }, + { + "start": 66040.91, + "end": 66043.12, + "probability": 0.9354 + }, + { + "start": 66044.32, + "end": 66044.62, + "probability": 0.9969 + }, + { + "start": 66045.9, + "end": 66046.58, + "probability": 0.6028 + }, + { + "start": 66048.74, + "end": 66049.12, + "probability": 0.8166 + }, + { + "start": 66050.58, + "end": 66051.32, + "probability": 0.8675 + }, + { + "start": 66052.16, + "end": 66052.64, + "probability": 0.8533 + }, + { + "start": 66053.7, + "end": 66054.34, + "probability": 0.8634 + }, + { + "start": 66055.62, + "end": 66056.78, + "probability": 0.9616 + }, + { + "start": 66057.62, + "end": 66058.28, + "probability": 0.9083 + }, + { + "start": 66059.22, + "end": 66059.9, + "probability": 0.9832 + }, + { + "start": 66061.08, + "end": 66061.84, + "probability": 0.9667 + }, + { + "start": 66062.68, + "end": 66063.38, + "probability": 0.9173 + }, + { + "start": 66064.4, + "end": 66065.48, + "probability": 0.7819 + }, + { + "start": 66069.94, + "end": 66070.66, + "probability": 0.3359 + }, + { + "start": 66071.2, + "end": 66072.5, + "probability": 0.7439 + }, + { + "start": 66078.72, + "end": 66080.34, + "probability": 0.7298 + }, + { + "start": 66083.7, + "end": 66083.98, + "probability": 0.6579 + }, + { + "start": 66085.7, + "end": 66086.02, + "probability": 0.7913 + }, + { + "start": 66088.24, + "end": 66088.86, + "probability": 0.9011 + }, + { + "start": 66090.58, + "end": 66091.52, + "probability": 0.9676 + }, + { + "start": 66092.34, + "end": 66092.9, + "probability": 0.8608 + }, + { + "start": 66094.98, + "end": 66096.5, + "probability": 0.9849 + }, + { + "start": 66098.17, + "end": 66100.42, + "probability": 0.9913 + }, + { + "start": 66105.36, + "end": 66106.5, + "probability": 0.6747 + }, + { + "start": 66107.62, + "end": 66108.06, + "probability": 0.9705 + }, + { + "start": 66109.22, + "end": 66109.9, + "probability": 0.8912 + }, + { + "start": 66111.66, + "end": 66112.08, + "probability": 0.9424 + }, + { + "start": 66113.68, + "end": 66114.52, + "probability": 0.9315 + }, + { + "start": 66115.36, + "end": 66115.84, + "probability": 0.9946 + }, + { + "start": 66117.2, + "end": 66118.36, + "probability": 0.9299 + }, + { + "start": 66119.14, + "end": 66119.58, + "probability": 0.9761 + }, + { + "start": 66120.96, + "end": 66121.98, + "probability": 0.7056 + }, + { + "start": 66122.6, + "end": 66123.04, + "probability": 0.9787 + }, + { + "start": 66124.5, + "end": 66125.32, + "probability": 0.9742 + }, + { + "start": 66126.32, + "end": 66126.7, + "probability": 0.9857 + }, + { + "start": 66128.24, + "end": 66128.98, + "probability": 0.9941 + }, + { + "start": 66132.12, + "end": 66132.84, + "probability": 0.6464 + }, + { + "start": 66133.78, + "end": 66134.1, + "probability": 0.646 + }, + { + "start": 66135.68, + "end": 66136.6, + "probability": 0.8343 + }, + { + "start": 66138.62, + "end": 66139.04, + "probability": 0.9878 + }, + { + "start": 66140.72, + "end": 66141.34, + "probability": 0.9547 + }, + { + "start": 66142.28, + "end": 66144.86, + "probability": 0.9152 + }, + { + "start": 66146.3, + "end": 66147.32, + "probability": 0.9977 + }, + { + "start": 66148.12, + "end": 66148.72, + "probability": 0.5266 + }, + { + "start": 66150.42, + "end": 66151.88, + "probability": 0.8193 + }, + { + "start": 66152.4, + "end": 66153.42, + "probability": 0.8769 + }, + { + "start": 66153.78, + "end": 66157.06, + "probability": 0.8833 + }, + { + "start": 66158.55, + "end": 66158.9, + "probability": 0.0178 + }, + { + "start": 66160.74, + "end": 66161.44, + "probability": 0.383 + }, + { + "start": 66164.72, + "end": 66165.42, + "probability": 0.8921 + }, + { + "start": 66166.86, + "end": 66167.66, + "probability": 0.4938 + }, + { + "start": 66169.7, + "end": 66170.08, + "probability": 0.9766 + }, + { + "start": 66172.46, + "end": 66173.3, + "probability": 0.8342 + }, + { + "start": 66174.84, + "end": 66175.54, + "probability": 0.99 + }, + { + "start": 66178.32, + "end": 66179.08, + "probability": 0.6914 + }, + { + "start": 66179.82, + "end": 66180.24, + "probability": 0.578 + }, + { + "start": 66183.02, + "end": 66183.66, + "probability": 0.7489 + }, + { + "start": 66185.64, + "end": 66186.38, + "probability": 0.8314 + }, + { + "start": 66187.26, + "end": 66187.64, + "probability": 0.6693 + }, + { + "start": 66188.48, + "end": 66189.36, + "probability": 0.9231 + }, + { + "start": 66192.42, + "end": 66193.58, + "probability": 0.6091 + }, + { + "start": 66194.52, + "end": 66196.24, + "probability": 0.9275 + }, + { + "start": 66197.4, + "end": 66198.38, + "probability": 0.7962 + }, + { + "start": 66200.08, + "end": 66200.78, + "probability": 0.9138 + }, + { + "start": 66201.44, + "end": 66202.7, + "probability": 0.8501 + }, + { + "start": 66204.26, + "end": 66204.66, + "probability": 0.9906 + }, + { + "start": 66209.62, + "end": 66210.18, + "probability": 0.6822 + }, + { + "start": 66212.14, + "end": 66212.84, + "probability": 0.9249 + }, + { + "start": 66213.7, + "end": 66214.38, + "probability": 0.8276 + }, + { + "start": 66216.4, + "end": 66217.08, + "probability": 0.9783 + }, + { + "start": 66220.4, + "end": 66221.24, + "probability": 0.7208 + }, + { + "start": 66222.5, + "end": 66223.2, + "probability": 0.7518 + }, + { + "start": 66228.26, + "end": 66228.78, + "probability": 0.3209 + }, + { + "start": 66231.72, + "end": 66237.9, + "probability": 0.9429 + }, + { + "start": 66238.34, + "end": 66238.44, + "probability": 0.1291 + }, + { + "start": 66238.68, + "end": 66239.22, + "probability": 0.2113 + }, + { + "start": 66240.02, + "end": 66240.3, + "probability": 0.8533 + }, + { + "start": 66241.84, + "end": 66241.84, + "probability": 0.2324 + }, + { + "start": 66241.84, + "end": 66245.56, + "probability": 0.0788 + }, + { + "start": 66276.38, + "end": 66276.82, + "probability": 0.0813 + }, + { + "start": 66285.5, + "end": 66286.22, + "probability": 0.0234 + }, + { + "start": 66288.1, + "end": 66290.7, + "probability": 0.1076 + }, + { + "start": 66379.84, + "end": 66382.94, + "probability": 0.0584 + }, + { + "start": 66382.94, + "end": 66383.18, + "probability": 0.0356 + }, + { + "start": 66383.18, + "end": 66386.0, + "probability": 0.0591 + }, + { + "start": 66386.0, + "end": 66386.58, + "probability": 0.1281 + }, + { + "start": 66386.58, + "end": 66387.2, + "probability": 0.1191 + }, + { + "start": 66387.2, + "end": 66391.38, + "probability": 0.0915 + }, + { + "start": 66393.56, + "end": 66394.8, + "probability": 0.0403 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + }, + { + "start": 66429.278, + "end": 66429.278, + "probability": 0.0 + } + ], + "segments_count": 5366, + "words_count": 24807, + "avg_words_per_segment": 4.623, + "avg_segment_duration": 2.0722, + "avg_words_per_minute": 22.4061, + "plenum_id": "111039", + "duration": 66429.27, + "title": null, + "plenum_date": "2022-12-13" +} \ No newline at end of file