diff --git "a/114463/metadata.json" "b/114463/metadata.json" new file mode 100644--- /dev/null +++ "b/114463/metadata.json" @@ -0,0 +1,9647 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "114463", + "quality_score": 0.9607, + "per_segment_quality_scores": [ + { + "start": 63.14, + "end": 64.46, + "probability": 0.8569 + }, + { + "start": 64.82, + "end": 66.06, + "probability": 0.8398 + }, + { + "start": 66.2, + "end": 67.42, + "probability": 0.8494 + }, + { + "start": 67.5, + "end": 68.84, + "probability": 0.9163 + }, + { + "start": 69.3, + "end": 73.46, + "probability": 0.9189 + }, + { + "start": 73.84, + "end": 74.54, + "probability": 0.8569 + }, + { + "start": 74.6, + "end": 76.76, + "probability": 0.9765 + }, + { + "start": 77.87, + "end": 83.18, + "probability": 0.978 + }, + { + "start": 83.9, + "end": 87.92, + "probability": 0.9451 + }, + { + "start": 88.18, + "end": 88.38, + "probability": 0.7262 + }, + { + "start": 88.9, + "end": 89.72, + "probability": 0.7267 + }, + { + "start": 90.0, + "end": 90.76, + "probability": 0.9477 + }, + { + "start": 91.34, + "end": 92.46, + "probability": 0.877 + }, + { + "start": 92.62, + "end": 97.06, + "probability": 0.9972 + }, + { + "start": 98.2, + "end": 98.48, + "probability": 0.7838 + }, + { + "start": 112.6, + "end": 113.64, + "probability": 0.7039 + }, + { + "start": 113.82, + "end": 116.38, + "probability": 0.9147 + }, + { + "start": 116.4, + "end": 118.02, + "probability": 0.5833 + }, + { + "start": 118.08, + "end": 120.06, + "probability": 0.9154 + }, + { + "start": 127.94, + "end": 128.54, + "probability": 0.6085 + }, + { + "start": 128.58, + "end": 129.18, + "probability": 0.6343 + }, + { + "start": 129.74, + "end": 130.6, + "probability": 0.67 + }, + { + "start": 130.74, + "end": 131.64, + "probability": 0.7781 + }, + { + "start": 131.88, + "end": 132.16, + "probability": 0.4373 + }, + { + "start": 132.2, + "end": 132.94, + "probability": 0.5198 + }, + { + "start": 133.12, + "end": 139.06, + "probability": 0.895 + }, + { + "start": 139.48, + "end": 143.68, + "probability": 0.9868 + }, + { + "start": 144.56, + "end": 147.4, + "probability": 0.9355 + }, + { + "start": 148.14, + "end": 150.34, + "probability": 0.968 + }, + { + "start": 150.78, + "end": 151.98, + "probability": 0.9556 + }, + { + "start": 152.16, + "end": 153.48, + "probability": 0.9848 + }, + { + "start": 154.3, + "end": 159.82, + "probability": 0.9887 + }, + { + "start": 160.0, + "end": 161.1, + "probability": 0.8947 + }, + { + "start": 161.66, + "end": 165.34, + "probability": 0.9949 + }, + { + "start": 165.34, + "end": 168.46, + "probability": 0.9976 + }, + { + "start": 169.14, + "end": 170.74, + "probability": 0.9041 + }, + { + "start": 172.27, + "end": 175.02, + "probability": 0.9971 + }, + { + "start": 175.62, + "end": 176.16, + "probability": 0.7539 + }, + { + "start": 176.82, + "end": 181.66, + "probability": 0.9514 + }, + { + "start": 182.7, + "end": 188.12, + "probability": 0.9787 + }, + { + "start": 189.1, + "end": 191.4, + "probability": 0.881 + }, + { + "start": 191.76, + "end": 193.02, + "probability": 0.9623 + }, + { + "start": 193.16, + "end": 195.74, + "probability": 0.9606 + }, + { + "start": 196.14, + "end": 198.68, + "probability": 0.9248 + }, + { + "start": 199.2, + "end": 200.86, + "probability": 0.9883 + }, + { + "start": 201.5, + "end": 202.18, + "probability": 0.645 + }, + { + "start": 202.7, + "end": 203.66, + "probability": 0.9089 + }, + { + "start": 204.16, + "end": 207.04, + "probability": 0.9857 + }, + { + "start": 207.66, + "end": 211.06, + "probability": 0.9955 + }, + { + "start": 211.8, + "end": 216.54, + "probability": 0.9941 + }, + { + "start": 217.0, + "end": 219.48, + "probability": 0.9872 + }, + { + "start": 219.92, + "end": 223.16, + "probability": 0.9893 + }, + { + "start": 224.08, + "end": 224.4, + "probability": 0.718 + }, + { + "start": 224.56, + "end": 225.46, + "probability": 0.9777 + }, + { + "start": 225.54, + "end": 228.5, + "probability": 0.9947 + }, + { + "start": 228.5, + "end": 232.16, + "probability": 0.8857 + }, + { + "start": 232.5, + "end": 234.68, + "probability": 0.7569 + }, + { + "start": 234.92, + "end": 235.2, + "probability": 0.2971 + }, + { + "start": 235.28, + "end": 236.84, + "probability": 0.8612 + }, + { + "start": 237.02, + "end": 239.52, + "probability": 0.9428 + }, + { + "start": 240.34, + "end": 243.1, + "probability": 0.9526 + }, + { + "start": 251.6, + "end": 252.0, + "probability": 0.4343 + }, + { + "start": 252.6, + "end": 253.42, + "probability": 0.4979 + }, + { + "start": 253.46, + "end": 255.0, + "probability": 0.9669 + }, + { + "start": 255.06, + "end": 257.18, + "probability": 0.7236 + }, + { + "start": 258.08, + "end": 260.98, + "probability": 0.9379 + }, + { + "start": 261.82, + "end": 262.7, + "probability": 0.8142 + }, + { + "start": 263.98, + "end": 265.58, + "probability": 0.9076 + }, + { + "start": 266.68, + "end": 272.28, + "probability": 0.9375 + }, + { + "start": 272.92, + "end": 273.54, + "probability": 0.9355 + }, + { + "start": 274.94, + "end": 277.08, + "probability": 0.9831 + }, + { + "start": 277.64, + "end": 278.16, + "probability": 0.7767 + }, + { + "start": 278.88, + "end": 279.41, + "probability": 0.9966 + }, + { + "start": 280.64, + "end": 285.24, + "probability": 0.9692 + }, + { + "start": 286.18, + "end": 288.53, + "probability": 0.9967 + }, + { + "start": 289.74, + "end": 290.9, + "probability": 0.9234 + }, + { + "start": 292.64, + "end": 295.54, + "probability": 0.9974 + }, + { + "start": 296.48, + "end": 297.98, + "probability": 0.998 + }, + { + "start": 299.28, + "end": 302.4, + "probability": 0.9917 + }, + { + "start": 303.8, + "end": 308.14, + "probability": 0.9976 + }, + { + "start": 309.08, + "end": 312.9, + "probability": 0.8586 + }, + { + "start": 314.58, + "end": 316.54, + "probability": 0.8813 + }, + { + "start": 317.68, + "end": 319.62, + "probability": 0.9171 + }, + { + "start": 320.84, + "end": 322.4, + "probability": 0.9587 + }, + { + "start": 323.0, + "end": 323.9, + "probability": 0.71 + }, + { + "start": 324.6, + "end": 327.02, + "probability": 0.9514 + }, + { + "start": 328.32, + "end": 329.23, + "probability": 0.9264 + }, + { + "start": 330.2, + "end": 331.58, + "probability": 0.9665 + }, + { + "start": 332.38, + "end": 333.5, + "probability": 0.7791 + }, + { + "start": 334.14, + "end": 336.74, + "probability": 0.9954 + }, + { + "start": 338.12, + "end": 341.22, + "probability": 0.9952 + }, + { + "start": 342.12, + "end": 342.4, + "probability": 0.2614 + }, + { + "start": 342.94, + "end": 343.86, + "probability": 0.88 + }, + { + "start": 344.76, + "end": 347.3, + "probability": 0.9635 + }, + { + "start": 348.72, + "end": 349.87, + "probability": 0.9509 + }, + { + "start": 350.76, + "end": 351.84, + "probability": 0.9136 + }, + { + "start": 352.64, + "end": 353.32, + "probability": 0.7898 + }, + { + "start": 354.28, + "end": 356.12, + "probability": 0.9961 + }, + { + "start": 356.92, + "end": 358.12, + "probability": 0.9897 + }, + { + "start": 358.46, + "end": 359.34, + "probability": 0.9895 + }, + { + "start": 360.2, + "end": 363.36, + "probability": 0.9909 + }, + { + "start": 363.5, + "end": 364.2, + "probability": 0.6082 + }, + { + "start": 366.14, + "end": 368.2, + "probability": 0.9324 + }, + { + "start": 368.58, + "end": 371.38, + "probability": 0.9221 + }, + { + "start": 371.96, + "end": 373.48, + "probability": 0.9695 + }, + { + "start": 375.36, + "end": 377.2, + "probability": 0.9696 + }, + { + "start": 377.6, + "end": 379.66, + "probability": 0.9781 + }, + { + "start": 380.4, + "end": 384.4, + "probability": 0.9041 + }, + { + "start": 385.34, + "end": 389.22, + "probability": 0.9785 + }, + { + "start": 389.42, + "end": 393.48, + "probability": 0.9878 + }, + { + "start": 394.24, + "end": 396.52, + "probability": 0.9817 + }, + { + "start": 396.52, + "end": 399.22, + "probability": 0.9922 + }, + { + "start": 399.94, + "end": 401.6, + "probability": 0.9648 + }, + { + "start": 402.22, + "end": 406.28, + "probability": 0.9406 + }, + { + "start": 406.38, + "end": 406.94, + "probability": 0.9435 + }, + { + "start": 408.28, + "end": 412.88, + "probability": 0.8328 + }, + { + "start": 413.46, + "end": 414.62, + "probability": 0.383 + }, + { + "start": 414.92, + "end": 418.68, + "probability": 0.9575 + }, + { + "start": 419.26, + "end": 420.78, + "probability": 0.8607 + }, + { + "start": 421.32, + "end": 422.08, + "probability": 0.7732 + }, + { + "start": 422.68, + "end": 423.1, + "probability": 0.3981 + }, + { + "start": 423.72, + "end": 425.88, + "probability": 0.6912 + }, + { + "start": 426.06, + "end": 428.26, + "probability": 0.8145 + }, + { + "start": 429.14, + "end": 429.3, + "probability": 0.302 + }, + { + "start": 429.44, + "end": 430.3, + "probability": 0.8481 + }, + { + "start": 430.38, + "end": 432.94, + "probability": 0.9053 + }, + { + "start": 432.98, + "end": 433.92, + "probability": 0.7369 + }, + { + "start": 434.0, + "end": 437.32, + "probability": 0.9668 + }, + { + "start": 438.48, + "end": 440.38, + "probability": 0.9935 + }, + { + "start": 440.56, + "end": 442.32, + "probability": 0.9788 + }, + { + "start": 442.42, + "end": 443.62, + "probability": 0.95 + }, + { + "start": 444.2, + "end": 447.22, + "probability": 0.9885 + }, + { + "start": 447.22, + "end": 450.76, + "probability": 0.9821 + }, + { + "start": 451.16, + "end": 452.3, + "probability": 0.6921 + }, + { + "start": 452.74, + "end": 454.42, + "probability": 0.9508 + }, + { + "start": 454.54, + "end": 455.94, + "probability": 0.9176 + }, + { + "start": 456.0, + "end": 457.6, + "probability": 0.9611 + }, + { + "start": 457.98, + "end": 460.9, + "probability": 0.9829 + }, + { + "start": 461.4, + "end": 462.68, + "probability": 0.9838 + }, + { + "start": 462.9, + "end": 463.06, + "probability": 0.4521 + }, + { + "start": 463.46, + "end": 465.08, + "probability": 0.7638 + }, + { + "start": 465.34, + "end": 467.32, + "probability": 0.9432 + }, + { + "start": 467.38, + "end": 467.78, + "probability": 0.5038 + }, + { + "start": 467.94, + "end": 469.02, + "probability": 0.984 + }, + { + "start": 469.78, + "end": 471.1, + "probability": 0.8584 + }, + { + "start": 471.3, + "end": 475.5, + "probability": 0.9893 + }, + { + "start": 476.24, + "end": 477.8, + "probability": 0.7019 + }, + { + "start": 478.98, + "end": 480.36, + "probability": 0.8347 + }, + { + "start": 480.38, + "end": 482.18, + "probability": 0.8651 + }, + { + "start": 482.32, + "end": 483.72, + "probability": 0.8918 + }, + { + "start": 484.16, + "end": 486.78, + "probability": 0.9015 + }, + { + "start": 487.14, + "end": 490.64, + "probability": 0.9053 + }, + { + "start": 490.64, + "end": 492.9, + "probability": 0.8432 + }, + { + "start": 493.84, + "end": 495.2, + "probability": 0.9943 + }, + { + "start": 496.02, + "end": 499.94, + "probability": 0.9574 + }, + { + "start": 500.04, + "end": 503.2, + "probability": 0.9906 + }, + { + "start": 504.22, + "end": 506.3, + "probability": 0.9978 + }, + { + "start": 506.8, + "end": 507.6, + "probability": 0.8219 + }, + { + "start": 507.8, + "end": 508.94, + "probability": 0.8853 + }, + { + "start": 509.42, + "end": 511.46, + "probability": 0.9711 + }, + { + "start": 511.5, + "end": 512.34, + "probability": 0.8634 + }, + { + "start": 512.92, + "end": 514.54, + "probability": 0.7207 + }, + { + "start": 514.62, + "end": 516.92, + "probability": 0.9843 + }, + { + "start": 517.24, + "end": 519.02, + "probability": 0.9766 + }, + { + "start": 519.66, + "end": 520.72, + "probability": 0.9512 + }, + { + "start": 521.1, + "end": 523.16, + "probability": 0.9934 + }, + { + "start": 523.74, + "end": 524.76, + "probability": 0.95 + }, + { + "start": 525.46, + "end": 527.1, + "probability": 0.7233 + }, + { + "start": 527.72, + "end": 529.64, + "probability": 0.9982 + }, + { + "start": 529.82, + "end": 530.46, + "probability": 0.998 + }, + { + "start": 531.02, + "end": 533.2, + "probability": 0.8269 + }, + { + "start": 533.94, + "end": 534.22, + "probability": 0.8218 + }, + { + "start": 534.56, + "end": 538.36, + "probability": 0.9913 + }, + { + "start": 538.44, + "end": 538.8, + "probability": 0.7644 + }, + { + "start": 539.1, + "end": 540.64, + "probability": 0.7238 + }, + { + "start": 540.74, + "end": 542.3, + "probability": 0.7335 + }, + { + "start": 542.38, + "end": 542.76, + "probability": 0.7946 + }, + { + "start": 542.9, + "end": 544.12, + "probability": 0.9554 + }, + { + "start": 549.82, + "end": 550.99, + "probability": 0.5739 + }, + { + "start": 552.04, + "end": 555.6, + "probability": 0.7673 + }, + { + "start": 556.7, + "end": 561.98, + "probability": 0.9425 + }, + { + "start": 562.7, + "end": 563.46, + "probability": 0.9819 + }, + { + "start": 563.98, + "end": 565.86, + "probability": 0.9983 + }, + { + "start": 566.52, + "end": 568.3, + "probability": 0.996 + }, + { + "start": 569.56, + "end": 572.82, + "probability": 0.9877 + }, + { + "start": 574.0, + "end": 574.28, + "probability": 0.7954 + }, + { + "start": 575.16, + "end": 578.38, + "probability": 0.9974 + }, + { + "start": 579.24, + "end": 581.82, + "probability": 0.979 + }, + { + "start": 581.82, + "end": 586.7, + "probability": 0.9953 + }, + { + "start": 587.52, + "end": 587.78, + "probability": 0.8591 + }, + { + "start": 588.66, + "end": 590.84, + "probability": 0.8661 + }, + { + "start": 591.46, + "end": 596.74, + "probability": 0.9513 + }, + { + "start": 597.54, + "end": 598.57, + "probability": 0.71 + }, + { + "start": 599.42, + "end": 601.36, + "probability": 0.9882 + }, + { + "start": 602.36, + "end": 605.98, + "probability": 0.9969 + }, + { + "start": 606.9, + "end": 610.82, + "probability": 0.9814 + }, + { + "start": 610.82, + "end": 615.42, + "probability": 0.9613 + }, + { + "start": 616.02, + "end": 618.3, + "probability": 0.9951 + }, + { + "start": 618.96, + "end": 625.08, + "probability": 0.9929 + }, + { + "start": 625.44, + "end": 625.72, + "probability": 0.7494 + }, + { + "start": 626.38, + "end": 627.8, + "probability": 0.7769 + }, + { + "start": 627.9, + "end": 628.5, + "probability": 0.3625 + }, + { + "start": 629.32, + "end": 630.88, + "probability": 0.9624 + }, + { + "start": 630.94, + "end": 631.5, + "probability": 0.5281 + }, + { + "start": 631.54, + "end": 632.92, + "probability": 0.9487 + }, + { + "start": 637.52, + "end": 637.62, + "probability": 0.4003 + }, + { + "start": 638.82, + "end": 640.04, + "probability": 0.6558 + }, + { + "start": 641.08, + "end": 647.3, + "probability": 0.9868 + }, + { + "start": 648.16, + "end": 654.16, + "probability": 0.999 + }, + { + "start": 654.8, + "end": 656.9, + "probability": 0.9864 + }, + { + "start": 657.46, + "end": 658.78, + "probability": 0.8586 + }, + { + "start": 659.28, + "end": 664.94, + "probability": 0.9932 + }, + { + "start": 665.38, + "end": 666.22, + "probability": 0.7202 + }, + { + "start": 666.68, + "end": 668.48, + "probability": 0.9839 + }, + { + "start": 669.0, + "end": 670.74, + "probability": 0.9902 + }, + { + "start": 671.34, + "end": 674.06, + "probability": 0.9839 + }, + { + "start": 674.34, + "end": 676.38, + "probability": 0.5392 + }, + { + "start": 676.86, + "end": 679.7, + "probability": 0.9933 + }, + { + "start": 680.32, + "end": 683.64, + "probability": 0.7785 + }, + { + "start": 684.22, + "end": 687.72, + "probability": 0.9755 + }, + { + "start": 688.06, + "end": 688.82, + "probability": 0.6812 + }, + { + "start": 688.94, + "end": 689.32, + "probability": 0.7632 + }, + { + "start": 689.7, + "end": 690.0, + "probability": 0.6181 + }, + { + "start": 690.46, + "end": 695.8, + "probability": 0.9931 + }, + { + "start": 696.8, + "end": 701.66, + "probability": 0.9943 + }, + { + "start": 701.66, + "end": 705.94, + "probability": 0.9835 + }, + { + "start": 706.42, + "end": 710.76, + "probability": 0.9302 + }, + { + "start": 710.92, + "end": 711.72, + "probability": 0.5918 + }, + { + "start": 711.74, + "end": 713.14, + "probability": 0.4329 + }, + { + "start": 715.1, + "end": 715.72, + "probability": 0.2455 + }, + { + "start": 717.58, + "end": 723.12, + "probability": 0.9154 + }, + { + "start": 723.2, + "end": 723.48, + "probability": 0.8831 + }, + { + "start": 724.28, + "end": 725.5, + "probability": 0.5753 + }, + { + "start": 725.72, + "end": 727.54, + "probability": 0.9699 + }, + { + "start": 727.64, + "end": 728.06, + "probability": 0.5598 + }, + { + "start": 728.22, + "end": 729.26, + "probability": 0.9785 + }, + { + "start": 735.1, + "end": 737.1, + "probability": 0.6538 + }, + { + "start": 738.22, + "end": 742.44, + "probability": 0.9927 + }, + { + "start": 744.04, + "end": 745.28, + "probability": 0.9934 + }, + { + "start": 745.56, + "end": 748.52, + "probability": 0.9983 + }, + { + "start": 749.06, + "end": 749.38, + "probability": 0.9946 + }, + { + "start": 749.96, + "end": 753.22, + "probability": 0.9859 + }, + { + "start": 754.62, + "end": 757.28, + "probability": 0.9985 + }, + { + "start": 757.8, + "end": 758.96, + "probability": 0.9945 + }, + { + "start": 759.96, + "end": 761.43, + "probability": 0.9844 + }, + { + "start": 762.08, + "end": 765.37, + "probability": 0.9946 + }, + { + "start": 765.77, + "end": 770.2, + "probability": 0.9915 + }, + { + "start": 771.18, + "end": 772.94, + "probability": 0.9959 + }, + { + "start": 773.48, + "end": 776.42, + "probability": 0.9175 + }, + { + "start": 777.04, + "end": 778.8, + "probability": 0.9234 + }, + { + "start": 779.38, + "end": 783.38, + "probability": 0.9977 + }, + { + "start": 783.84, + "end": 785.3, + "probability": 0.9697 + }, + { + "start": 785.94, + "end": 787.5, + "probability": 0.9086 + }, + { + "start": 788.2, + "end": 788.8, + "probability": 0.9988 + }, + { + "start": 789.34, + "end": 791.68, + "probability": 0.8486 + }, + { + "start": 792.24, + "end": 798.2, + "probability": 0.994 + }, + { + "start": 799.46, + "end": 801.32, + "probability": 0.8196 + }, + { + "start": 802.3, + "end": 804.56, + "probability": 0.9888 + }, + { + "start": 805.24, + "end": 808.34, + "probability": 0.9923 + }, + { + "start": 808.98, + "end": 809.18, + "probability": 0.6149 + }, + { + "start": 809.9, + "end": 810.98, + "probability": 0.6393 + }, + { + "start": 811.12, + "end": 813.32, + "probability": 0.984 + }, + { + "start": 813.44, + "end": 814.06, + "probability": 0.508 + }, + { + "start": 814.26, + "end": 815.62, + "probability": 0.9664 + }, + { + "start": 821.48, + "end": 823.6, + "probability": 0.7588 + }, + { + "start": 824.66, + "end": 828.78, + "probability": 0.9898 + }, + { + "start": 829.7, + "end": 830.56, + "probability": 0.8135 + }, + { + "start": 831.16, + "end": 836.56, + "probability": 0.8376 + }, + { + "start": 838.66, + "end": 840.46, + "probability": 0.9863 + }, + { + "start": 841.62, + "end": 844.76, + "probability": 0.9939 + }, + { + "start": 845.56, + "end": 847.62, + "probability": 0.9439 + }, + { + "start": 848.5, + "end": 849.16, + "probability": 0.9946 + }, + { + "start": 849.9, + "end": 850.68, + "probability": 0.994 + }, + { + "start": 851.48, + "end": 852.4, + "probability": 0.589 + }, + { + "start": 853.1, + "end": 857.3, + "probability": 0.7693 + }, + { + "start": 857.82, + "end": 860.12, + "probability": 0.9683 + }, + { + "start": 860.88, + "end": 861.82, + "probability": 0.9773 + }, + { + "start": 863.04, + "end": 866.8, + "probability": 0.9989 + }, + { + "start": 867.54, + "end": 868.04, + "probability": 0.863 + }, + { + "start": 868.68, + "end": 869.14, + "probability": 0.9989 + }, + { + "start": 869.66, + "end": 872.76, + "probability": 0.9998 + }, + { + "start": 873.56, + "end": 874.96, + "probability": 0.9902 + }, + { + "start": 875.64, + "end": 877.94, + "probability": 0.9668 + }, + { + "start": 879.48, + "end": 880.46, + "probability": 0.6744 + }, + { + "start": 881.08, + "end": 884.5, + "probability": 0.9493 + }, + { + "start": 885.02, + "end": 887.2, + "probability": 0.9343 + }, + { + "start": 888.12, + "end": 890.0, + "probability": 0.7386 + }, + { + "start": 890.14, + "end": 890.38, + "probability": 0.6704 + }, + { + "start": 890.42, + "end": 894.94, + "probability": 0.9715 + }, + { + "start": 895.06, + "end": 896.1, + "probability": 0.9661 + }, + { + "start": 896.72, + "end": 901.4, + "probability": 0.9476 + }, + { + "start": 901.4, + "end": 906.88, + "probability": 0.9833 + }, + { + "start": 907.4, + "end": 908.78, + "probability": 0.634 + }, + { + "start": 911.44, + "end": 912.72, + "probability": 0.2739 + }, + { + "start": 913.42, + "end": 914.66, + "probability": 0.5321 + }, + { + "start": 915.12, + "end": 920.1, + "probability": 0.9774 + }, + { + "start": 920.1, + "end": 927.6, + "probability": 0.9485 + }, + { + "start": 928.1, + "end": 930.56, + "probability": 0.9922 + }, + { + "start": 931.1, + "end": 937.02, + "probability": 0.9899 + }, + { + "start": 937.84, + "end": 942.02, + "probability": 0.9987 + }, + { + "start": 942.5, + "end": 946.46, + "probability": 0.9975 + }, + { + "start": 946.96, + "end": 950.26, + "probability": 0.6844 + }, + { + "start": 950.72, + "end": 952.44, + "probability": 0.9795 + }, + { + "start": 952.54, + "end": 955.64, + "probability": 0.9919 + }, + { + "start": 955.76, + "end": 956.84, + "probability": 0.7853 + }, + { + "start": 957.4, + "end": 962.64, + "probability": 0.9878 + }, + { + "start": 963.22, + "end": 968.22, + "probability": 0.9974 + }, + { + "start": 968.22, + "end": 972.12, + "probability": 0.9772 + }, + { + "start": 972.94, + "end": 973.68, + "probability": 0.8275 + }, + { + "start": 973.94, + "end": 976.7, + "probability": 0.9938 + }, + { + "start": 976.84, + "end": 979.3, + "probability": 0.9725 + }, + { + "start": 979.64, + "end": 981.14, + "probability": 0.6565 + }, + { + "start": 981.34, + "end": 984.24, + "probability": 0.8571 + }, + { + "start": 996.86, + "end": 999.46, + "probability": 0.7266 + }, + { + "start": 1001.46, + "end": 1006.24, + "probability": 0.8916 + }, + { + "start": 1006.24, + "end": 1012.44, + "probability": 0.9755 + }, + { + "start": 1013.48, + "end": 1019.72, + "probability": 0.9031 + }, + { + "start": 1020.56, + "end": 1022.58, + "probability": 0.9191 + }, + { + "start": 1023.36, + "end": 1027.38, + "probability": 0.8617 + }, + { + "start": 1027.94, + "end": 1031.86, + "probability": 0.9348 + }, + { + "start": 1033.0, + "end": 1034.76, + "probability": 0.8237 + }, + { + "start": 1035.54, + "end": 1037.66, + "probability": 0.3531 + }, + { + "start": 1037.66, + "end": 1040.58, + "probability": 0.9971 + }, + { + "start": 1040.66, + "end": 1041.88, + "probability": 0.8303 + }, + { + "start": 1042.56, + "end": 1046.92, + "probability": 0.989 + }, + { + "start": 1047.78, + "end": 1052.76, + "probability": 0.9974 + }, + { + "start": 1053.2, + "end": 1058.18, + "probability": 0.9981 + }, + { + "start": 1058.88, + "end": 1059.54, + "probability": 0.8304 + }, + { + "start": 1060.04, + "end": 1061.0, + "probability": 0.9246 + }, + { + "start": 1061.16, + "end": 1062.3, + "probability": 0.8586 + }, + { + "start": 1062.66, + "end": 1064.12, + "probability": 0.9918 + }, + { + "start": 1064.6, + "end": 1068.04, + "probability": 0.972 + }, + { + "start": 1068.82, + "end": 1073.0, + "probability": 0.9601 + }, + { + "start": 1074.16, + "end": 1077.84, + "probability": 0.9574 + }, + { + "start": 1078.02, + "end": 1078.78, + "probability": 0.3821 + }, + { + "start": 1078.94, + "end": 1079.4, + "probability": 0.6032 + }, + { + "start": 1080.14, + "end": 1081.78, + "probability": 0.9019 + }, + { + "start": 1082.52, + "end": 1083.9, + "probability": 0.9081 + }, + { + "start": 1084.38, + "end": 1086.76, + "probability": 0.9857 + }, + { + "start": 1086.76, + "end": 1089.38, + "probability": 0.9909 + }, + { + "start": 1090.32, + "end": 1093.7, + "probability": 0.8351 + }, + { + "start": 1095.24, + "end": 1098.84, + "probability": 0.9907 + }, + { + "start": 1099.22, + "end": 1102.78, + "probability": 0.8413 + }, + { + "start": 1103.56, + "end": 1108.22, + "probability": 0.9972 + }, + { + "start": 1108.74, + "end": 1111.28, + "probability": 0.9728 + }, + { + "start": 1112.12, + "end": 1114.9, + "probability": 0.9528 + }, + { + "start": 1114.9, + "end": 1117.56, + "probability": 0.9839 + }, + { + "start": 1118.02, + "end": 1121.97, + "probability": 0.9933 + }, + { + "start": 1123.06, + "end": 1124.48, + "probability": 0.9104 + }, + { + "start": 1124.62, + "end": 1126.6, + "probability": 0.9684 + }, + { + "start": 1127.18, + "end": 1128.74, + "probability": 0.9651 + }, + { + "start": 1129.18, + "end": 1131.82, + "probability": 0.9814 + }, + { + "start": 1131.92, + "end": 1134.9, + "probability": 0.9968 + }, + { + "start": 1135.82, + "end": 1135.98, + "probability": 0.9119 + }, + { + "start": 1136.1, + "end": 1136.76, + "probability": 0.7245 + }, + { + "start": 1137.02, + "end": 1137.54, + "probability": 0.7005 + }, + { + "start": 1138.04, + "end": 1141.72, + "probability": 0.8264 + }, + { + "start": 1142.22, + "end": 1142.72, + "probability": 0.8628 + }, + { + "start": 1142.96, + "end": 1143.48, + "probability": 0.6031 + }, + { + "start": 1143.54, + "end": 1144.16, + "probability": 0.976 + }, + { + "start": 1144.48, + "end": 1146.14, + "probability": 0.9502 + }, + { + "start": 1146.78, + "end": 1148.42, + "probability": 0.9431 + }, + { + "start": 1149.04, + "end": 1150.0, + "probability": 0.9896 + }, + { + "start": 1150.9, + "end": 1151.2, + "probability": 0.5885 + }, + { + "start": 1152.16, + "end": 1154.24, + "probability": 0.6238 + }, + { + "start": 1155.36, + "end": 1159.36, + "probability": 0.9514 + }, + { + "start": 1160.86, + "end": 1163.98, + "probability": 0.8862 + }, + { + "start": 1164.52, + "end": 1165.06, + "probability": 0.8221 + }, + { + "start": 1167.12, + "end": 1167.92, + "probability": 0.5004 + }, + { + "start": 1182.64, + "end": 1183.9, + "probability": 0.4624 + }, + { + "start": 1184.14, + "end": 1185.36, + "probability": 0.8224 + }, + { + "start": 1187.12, + "end": 1189.1, + "probability": 0.9866 + }, + { + "start": 1189.36, + "end": 1190.88, + "probability": 0.7378 + }, + { + "start": 1190.94, + "end": 1191.28, + "probability": 0.9409 + }, + { + "start": 1191.8, + "end": 1193.16, + "probability": 0.8628 + }, + { + "start": 1193.74, + "end": 1195.8, + "probability": 0.8325 + }, + { + "start": 1196.62, + "end": 1197.16, + "probability": 0.848 + }, + { + "start": 1197.6, + "end": 1198.74, + "probability": 0.9796 + }, + { + "start": 1198.9, + "end": 1200.58, + "probability": 0.7572 + }, + { + "start": 1201.1, + "end": 1202.32, + "probability": 0.9771 + }, + { + "start": 1204.28, + "end": 1206.66, + "probability": 0.9953 + }, + { + "start": 1206.82, + "end": 1209.02, + "probability": 0.999 + }, + { + "start": 1209.94, + "end": 1212.26, + "probability": 0.8494 + }, + { + "start": 1212.26, + "end": 1214.92, + "probability": 0.6865 + }, + { + "start": 1214.94, + "end": 1216.92, + "probability": 0.9391 + }, + { + "start": 1217.96, + "end": 1219.98, + "probability": 0.1058 + }, + { + "start": 1220.4, + "end": 1222.54, + "probability": 0.9746 + }, + { + "start": 1223.14, + "end": 1223.22, + "probability": 0.0343 + }, + { + "start": 1223.74, + "end": 1224.87, + "probability": 0.162 + }, + { + "start": 1225.16, + "end": 1228.0, + "probability": 0.9658 + }, + { + "start": 1228.74, + "end": 1230.34, + "probability": 0.8438 + }, + { + "start": 1230.44, + "end": 1235.5, + "probability": 0.9719 + }, + { + "start": 1235.92, + "end": 1236.14, + "probability": 0.7008 + }, + { + "start": 1237.98, + "end": 1239.66, + "probability": 0.2701 + }, + { + "start": 1239.8, + "end": 1240.9, + "probability": 0.9963 + }, + { + "start": 1241.24, + "end": 1243.42, + "probability": 0.9056 + }, + { + "start": 1243.96, + "end": 1247.6, + "probability": 0.8486 + }, + { + "start": 1247.9, + "end": 1248.96, + "probability": 0.8762 + }, + { + "start": 1250.96, + "end": 1252.56, + "probability": 0.921 + }, + { + "start": 1253.52, + "end": 1254.1, + "probability": 0.8938 + }, + { + "start": 1254.32, + "end": 1257.34, + "probability": 0.9593 + }, + { + "start": 1257.4, + "end": 1261.18, + "probability": 0.8772 + }, + { + "start": 1262.1, + "end": 1264.98, + "probability": 0.7039 + }, + { + "start": 1265.56, + "end": 1267.32, + "probability": 0.9655 + }, + { + "start": 1267.7, + "end": 1268.12, + "probability": 0.7526 + }, + { + "start": 1268.54, + "end": 1270.26, + "probability": 0.7229 + }, + { + "start": 1270.42, + "end": 1270.74, + "probability": 0.7553 + }, + { + "start": 1271.16, + "end": 1272.48, + "probability": 0.807 + }, + { + "start": 1272.52, + "end": 1275.86, + "probability": 0.974 + }, + { + "start": 1276.72, + "end": 1279.06, + "probability": 0.9988 + }, + { + "start": 1279.24, + "end": 1280.54, + "probability": 0.7727 + }, + { + "start": 1281.12, + "end": 1282.14, + "probability": 0.9872 + }, + { + "start": 1295.32, + "end": 1296.76, + "probability": 0.8351 + }, + { + "start": 1297.56, + "end": 1300.9, + "probability": 0.7602 + }, + { + "start": 1302.24, + "end": 1304.3, + "probability": 0.9027 + }, + { + "start": 1305.66, + "end": 1307.06, + "probability": 0.975 + }, + { + "start": 1307.7, + "end": 1310.6, + "probability": 0.9749 + }, + { + "start": 1310.84, + "end": 1311.38, + "probability": 0.5 + }, + { + "start": 1311.9, + "end": 1314.5, + "probability": 0.9548 + }, + { + "start": 1315.3, + "end": 1317.8, + "probability": 0.9611 + }, + { + "start": 1317.94, + "end": 1318.84, + "probability": 0.9233 + }, + { + "start": 1319.42, + "end": 1321.72, + "probability": 0.6741 + }, + { + "start": 1322.3, + "end": 1324.3, + "probability": 0.9744 + }, + { + "start": 1324.34, + "end": 1324.74, + "probability": 0.6705 + }, + { + "start": 1325.5, + "end": 1327.94, + "probability": 0.6875 + }, + { + "start": 1328.16, + "end": 1329.94, + "probability": 0.8744 + }, + { + "start": 1330.3, + "end": 1331.78, + "probability": 0.8712 + }, + { + "start": 1332.18, + "end": 1335.94, + "probability": 0.9963 + }, + { + "start": 1336.6, + "end": 1337.96, + "probability": 0.8139 + }, + { + "start": 1338.38, + "end": 1339.8, + "probability": 0.8406 + }, + { + "start": 1339.94, + "end": 1340.84, + "probability": 0.7065 + }, + { + "start": 1340.86, + "end": 1341.22, + "probability": 0.7438 + }, + { + "start": 1342.24, + "end": 1347.34, + "probability": 0.9657 + }, + { + "start": 1348.46, + "end": 1353.16, + "probability": 0.9649 + }, + { + "start": 1353.36, + "end": 1354.68, + "probability": 0.6393 + }, + { + "start": 1355.7, + "end": 1359.2, + "probability": 0.9735 + }, + { + "start": 1359.3, + "end": 1361.76, + "probability": 0.9984 + }, + { + "start": 1362.32, + "end": 1364.76, + "probability": 0.9946 + }, + { + "start": 1365.72, + "end": 1367.42, + "probability": 0.8303 + }, + { + "start": 1368.74, + "end": 1371.56, + "probability": 0.6614 + }, + { + "start": 1371.56, + "end": 1372.86, + "probability": 0.5833 + }, + { + "start": 1373.24, + "end": 1373.8, + "probability": 0.672 + }, + { + "start": 1374.5, + "end": 1375.9, + "probability": 0.7639 + }, + { + "start": 1376.78, + "end": 1378.32, + "probability": 0.8769 + }, + { + "start": 1380.16, + "end": 1384.78, + "probability": 0.9753 + }, + { + "start": 1384.82, + "end": 1385.8, + "probability": 0.8462 + }, + { + "start": 1386.28, + "end": 1387.98, + "probability": 0.9735 + }, + { + "start": 1389.4, + "end": 1391.64, + "probability": 0.7331 + }, + { + "start": 1393.02, + "end": 1393.78, + "probability": 0.9966 + }, + { + "start": 1394.62, + "end": 1396.12, + "probability": 0.9673 + }, + { + "start": 1397.16, + "end": 1398.6, + "probability": 0.8294 + }, + { + "start": 1399.24, + "end": 1402.0, + "probability": 0.981 + }, + { + "start": 1403.84, + "end": 1406.44, + "probability": 0.9987 + }, + { + "start": 1408.24, + "end": 1411.84, + "probability": 0.9954 + }, + { + "start": 1412.34, + "end": 1413.4, + "probability": 0.7551 + }, + { + "start": 1413.98, + "end": 1416.12, + "probability": 0.9728 + }, + { + "start": 1416.82, + "end": 1418.86, + "probability": 0.7637 + }, + { + "start": 1420.18, + "end": 1424.16, + "probability": 0.9764 + }, + { + "start": 1425.7, + "end": 1427.18, + "probability": 0.9343 + }, + { + "start": 1427.9, + "end": 1428.7, + "probability": 0.9568 + }, + { + "start": 1429.42, + "end": 1430.16, + "probability": 0.6996 + }, + { + "start": 1430.76, + "end": 1431.34, + "probability": 0.8236 + }, + { + "start": 1431.88, + "end": 1433.08, + "probability": 0.9867 + }, + { + "start": 1434.83, + "end": 1438.5, + "probability": 0.9458 + }, + { + "start": 1439.02, + "end": 1444.14, + "probability": 0.9414 + }, + { + "start": 1444.94, + "end": 1446.24, + "probability": 0.6324 + }, + { + "start": 1446.54, + "end": 1448.4, + "probability": 0.7165 + }, + { + "start": 1449.5, + "end": 1449.74, + "probability": 0.9778 + }, + { + "start": 1450.4, + "end": 1452.52, + "probability": 0.9627 + }, + { + "start": 1453.22, + "end": 1456.92, + "probability": 0.9296 + }, + { + "start": 1457.7, + "end": 1460.02, + "probability": 0.9621 + }, + { + "start": 1461.02, + "end": 1462.38, + "probability": 0.7375 + }, + { + "start": 1463.96, + "end": 1464.98, + "probability": 0.6974 + }, + { + "start": 1466.12, + "end": 1467.0, + "probability": 0.8896 + }, + { + "start": 1468.56, + "end": 1469.42, + "probability": 0.0022 + }, + { + "start": 1474.02, + "end": 1477.14, + "probability": 0.8132 + }, + { + "start": 1477.2, + "end": 1479.04, + "probability": 0.9336 + }, + { + "start": 1479.76, + "end": 1481.6, + "probability": 0.4119 + }, + { + "start": 1482.28, + "end": 1482.96, + "probability": 0.9697 + }, + { + "start": 1483.48, + "end": 1485.18, + "probability": 0.9733 + }, + { + "start": 1486.24, + "end": 1487.44, + "probability": 0.9848 + }, + { + "start": 1488.24, + "end": 1494.1, + "probability": 0.9575 + }, + { + "start": 1494.94, + "end": 1495.0, + "probability": 0.2697 + }, + { + "start": 1495.2, + "end": 1496.48, + "probability": 0.8872 + }, + { + "start": 1496.86, + "end": 1500.84, + "probability": 0.9778 + }, + { + "start": 1502.07, + "end": 1504.64, + "probability": 0.7637 + }, + { + "start": 1505.06, + "end": 1506.26, + "probability": 0.8657 + }, + { + "start": 1506.82, + "end": 1508.42, + "probability": 0.9871 + }, + { + "start": 1509.46, + "end": 1514.16, + "probability": 0.9534 + }, + { + "start": 1515.16, + "end": 1518.72, + "probability": 0.923 + }, + { + "start": 1520.06, + "end": 1520.9, + "probability": 0.9945 + }, + { + "start": 1521.34, + "end": 1521.94, + "probability": 0.6232 + }, + { + "start": 1523.14, + "end": 1525.52, + "probability": 0.9054 + }, + { + "start": 1526.88, + "end": 1526.88, + "probability": 0.0067 + }, + { + "start": 1526.88, + "end": 1528.48, + "probability": 0.3584 + }, + { + "start": 1528.58, + "end": 1529.95, + "probability": 0.7758 + }, + { + "start": 1530.64, + "end": 1531.36, + "probability": 0.9687 + }, + { + "start": 1532.08, + "end": 1534.14, + "probability": 0.9222 + }, + { + "start": 1534.76, + "end": 1536.54, + "probability": 0.7837 + }, + { + "start": 1537.34, + "end": 1539.46, + "probability": 0.9939 + }, + { + "start": 1540.44, + "end": 1541.16, + "probability": 0.8273 + }, + { + "start": 1542.18, + "end": 1543.52, + "probability": 0.5315 + }, + { + "start": 1546.48, + "end": 1548.44, + "probability": 0.5012 + }, + { + "start": 1549.86, + "end": 1550.91, + "probability": 0.7986 + }, + { + "start": 1551.56, + "end": 1552.16, + "probability": 0.4902 + }, + { + "start": 1552.78, + "end": 1554.42, + "probability": 0.9917 + }, + { + "start": 1555.04, + "end": 1557.16, + "probability": 0.9819 + }, + { + "start": 1557.66, + "end": 1561.06, + "probability": 0.9887 + }, + { + "start": 1561.24, + "end": 1562.16, + "probability": 0.9823 + }, + { + "start": 1562.22, + "end": 1562.78, + "probability": 0.9438 + }, + { + "start": 1563.6, + "end": 1564.99, + "probability": 0.8442 + }, + { + "start": 1566.64, + "end": 1567.72, + "probability": 0.788 + }, + { + "start": 1569.42, + "end": 1569.98, + "probability": 0.7523 + }, + { + "start": 1571.04, + "end": 1573.18, + "probability": 0.9514 + }, + { + "start": 1573.34, + "end": 1576.12, + "probability": 0.9819 + }, + { + "start": 1577.02, + "end": 1579.02, + "probability": 0.8198 + }, + { + "start": 1579.46, + "end": 1580.94, + "probability": 0.9195 + }, + { + "start": 1581.46, + "end": 1583.16, + "probability": 0.9873 + }, + { + "start": 1583.68, + "end": 1584.54, + "probability": 0.9446 + }, + { + "start": 1584.68, + "end": 1585.52, + "probability": 0.6428 + }, + { + "start": 1585.82, + "end": 1586.98, + "probability": 0.6449 + }, + { + "start": 1587.36, + "end": 1593.32, + "probability": 0.7373 + }, + { + "start": 1593.96, + "end": 1595.38, + "probability": 0.9022 + }, + { + "start": 1595.56, + "end": 1595.68, + "probability": 0.4725 + }, + { + "start": 1596.18, + "end": 1597.1, + "probability": 0.794 + }, + { + "start": 1597.58, + "end": 1598.28, + "probability": 0.6727 + }, + { + "start": 1599.76, + "end": 1600.3, + "probability": 0.9302 + }, + { + "start": 1600.82, + "end": 1603.36, + "probability": 0.9725 + }, + { + "start": 1604.06, + "end": 1605.42, + "probability": 0.8936 + }, + { + "start": 1607.04, + "end": 1608.08, + "probability": 0.8869 + }, + { + "start": 1609.24, + "end": 1611.14, + "probability": 0.8405 + }, + { + "start": 1613.52, + "end": 1614.56, + "probability": 0.9554 + }, + { + "start": 1615.64, + "end": 1618.48, + "probability": 0.4741 + }, + { + "start": 1619.0, + "end": 1620.74, + "probability": 0.9011 + }, + { + "start": 1622.04, + "end": 1622.36, + "probability": 0.5659 + }, + { + "start": 1623.46, + "end": 1624.46, + "probability": 0.7134 + }, + { + "start": 1624.66, + "end": 1627.1, + "probability": 0.1359 + }, + { + "start": 1628.46, + "end": 1629.42, + "probability": 0.4768 + }, + { + "start": 1630.12, + "end": 1631.46, + "probability": 0.5501 + }, + { + "start": 1631.92, + "end": 1633.74, + "probability": 0.7595 + }, + { + "start": 1634.38, + "end": 1634.8, + "probability": 0.9451 + }, + { + "start": 1634.86, + "end": 1635.06, + "probability": 0.453 + }, + { + "start": 1635.18, + "end": 1636.5, + "probability": 0.7619 + }, + { + "start": 1636.94, + "end": 1637.81, + "probability": 0.9849 + }, + { + "start": 1638.48, + "end": 1641.42, + "probability": 0.7898 + }, + { + "start": 1641.8, + "end": 1648.78, + "probability": 0.9802 + }, + { + "start": 1649.12, + "end": 1649.9, + "probability": 0.8054 + }, + { + "start": 1650.28, + "end": 1651.38, + "probability": 0.1165 + }, + { + "start": 1651.38, + "end": 1651.62, + "probability": 0.2519 + }, + { + "start": 1652.1, + "end": 1655.04, + "probability": 0.9835 + }, + { + "start": 1673.4, + "end": 1674.66, + "probability": 0.5793 + }, + { + "start": 1676.72, + "end": 1679.68, + "probability": 0.9875 + }, + { + "start": 1679.76, + "end": 1679.76, + "probability": 0.3252 + }, + { + "start": 1679.76, + "end": 1681.06, + "probability": 0.7212 + }, + { + "start": 1681.2, + "end": 1683.58, + "probability": 0.8804 + }, + { + "start": 1685.3, + "end": 1689.72, + "probability": 0.6807 + }, + { + "start": 1691.16, + "end": 1692.0, + "probability": 0.6032 + }, + { + "start": 1692.9, + "end": 1694.76, + "probability": 0.9932 + }, + { + "start": 1695.06, + "end": 1695.96, + "probability": 0.2827 + }, + { + "start": 1696.02, + "end": 1696.8, + "probability": 0.9174 + }, + { + "start": 1696.86, + "end": 1698.06, + "probability": 0.7485 + }, + { + "start": 1699.18, + "end": 1701.14, + "probability": 0.9929 + }, + { + "start": 1701.24, + "end": 1701.58, + "probability": 0.8303 + }, + { + "start": 1701.76, + "end": 1702.06, + "probability": 0.6317 + }, + { + "start": 1702.38, + "end": 1702.9, + "probability": 0.8552 + }, + { + "start": 1703.36, + "end": 1704.3, + "probability": 0.9175 + }, + { + "start": 1704.72, + "end": 1707.32, + "probability": 0.8762 + }, + { + "start": 1708.24, + "end": 1710.52, + "probability": 0.9608 + }, + { + "start": 1710.52, + "end": 1713.52, + "probability": 0.9769 + }, + { + "start": 1714.74, + "end": 1715.22, + "probability": 0.4192 + }, + { + "start": 1715.88, + "end": 1718.68, + "probability": 0.8108 + }, + { + "start": 1719.44, + "end": 1721.4, + "probability": 0.9359 + }, + { + "start": 1721.6, + "end": 1722.02, + "probability": 0.9683 + }, + { + "start": 1722.32, + "end": 1724.9, + "probability": 0.9644 + }, + { + "start": 1726.12, + "end": 1729.3, + "probability": 0.9802 + }, + { + "start": 1730.18, + "end": 1733.5, + "probability": 0.9759 + }, + { + "start": 1734.58, + "end": 1737.46, + "probability": 0.9955 + }, + { + "start": 1738.16, + "end": 1740.62, + "probability": 0.9918 + }, + { + "start": 1741.96, + "end": 1746.66, + "probability": 0.9197 + }, + { + "start": 1747.78, + "end": 1749.74, + "probability": 0.9767 + }, + { + "start": 1750.06, + "end": 1750.5, + "probability": 0.8958 + }, + { + "start": 1750.7, + "end": 1751.32, + "probability": 0.8997 + }, + { + "start": 1751.38, + "end": 1752.38, + "probability": 0.9781 + }, + { + "start": 1752.52, + "end": 1753.0, + "probability": 0.9867 + }, + { + "start": 1753.02, + "end": 1753.44, + "probability": 0.9773 + }, + { + "start": 1753.82, + "end": 1754.92, + "probability": 0.9384 + }, + { + "start": 1755.8, + "end": 1757.26, + "probability": 0.9924 + }, + { + "start": 1757.84, + "end": 1760.5, + "probability": 0.8551 + }, + { + "start": 1761.56, + "end": 1761.8, + "probability": 0.8404 + }, + { + "start": 1762.04, + "end": 1764.86, + "probability": 0.863 + }, + { + "start": 1764.94, + "end": 1765.52, + "probability": 0.8182 + }, + { + "start": 1766.06, + "end": 1766.36, + "probability": 0.7049 + }, + { + "start": 1766.58, + "end": 1767.7, + "probability": 0.9606 + }, + { + "start": 1767.9, + "end": 1770.82, + "probability": 0.9729 + }, + { + "start": 1771.52, + "end": 1772.16, + "probability": 0.9387 + }, + { + "start": 1772.3, + "end": 1776.4, + "probability": 0.9937 + }, + { + "start": 1777.28, + "end": 1778.4, + "probability": 0.7191 + }, + { + "start": 1778.58, + "end": 1778.58, + "probability": 0.665 + }, + { + "start": 1778.58, + "end": 1780.22, + "probability": 0.95 + }, + { + "start": 1780.7, + "end": 1781.84, + "probability": 0.5891 + }, + { + "start": 1782.1, + "end": 1782.74, + "probability": 0.6819 + }, + { + "start": 1783.24, + "end": 1784.52, + "probability": 0.9717 + }, + { + "start": 1784.94, + "end": 1785.3, + "probability": 0.4602 + }, + { + "start": 1785.42, + "end": 1785.54, + "probability": 0.5489 + }, + { + "start": 1785.62, + "end": 1787.47, + "probability": 0.8122 + }, + { + "start": 1788.1, + "end": 1788.8, + "probability": 0.7972 + }, + { + "start": 1789.42, + "end": 1791.66, + "probability": 0.9487 + }, + { + "start": 1791.8, + "end": 1792.94, + "probability": 0.8478 + }, + { + "start": 1793.06, + "end": 1793.6, + "probability": 0.9194 + }, + { + "start": 1794.46, + "end": 1795.38, + "probability": 0.5921 + }, + { + "start": 1795.5, + "end": 1796.36, + "probability": 0.9568 + }, + { + "start": 1796.44, + "end": 1797.38, + "probability": 0.9666 + }, + { + "start": 1798.32, + "end": 1800.5, + "probability": 0.876 + }, + { + "start": 1800.84, + "end": 1801.3, + "probability": 0.8276 + }, + { + "start": 1801.36, + "end": 1801.62, + "probability": 0.9703 + }, + { + "start": 1801.68, + "end": 1802.26, + "probability": 0.8951 + }, + { + "start": 1802.82, + "end": 1804.48, + "probability": 0.9492 + }, + { + "start": 1804.56, + "end": 1806.12, + "probability": 0.9544 + }, + { + "start": 1806.66, + "end": 1807.7, + "probability": 0.9127 + }, + { + "start": 1807.96, + "end": 1808.46, + "probability": 0.7688 + }, + { + "start": 1808.58, + "end": 1809.98, + "probability": 0.9175 + }, + { + "start": 1810.4, + "end": 1810.8, + "probability": 0.8959 + }, + { + "start": 1811.0, + "end": 1811.62, + "probability": 0.9482 + }, + { + "start": 1812.34, + "end": 1812.76, + "probability": 0.7988 + }, + { + "start": 1813.02, + "end": 1813.66, + "probability": 0.9263 + }, + { + "start": 1813.74, + "end": 1815.02, + "probability": 0.6206 + }, + { + "start": 1815.04, + "end": 1817.4, + "probability": 0.9495 + }, + { + "start": 1817.72, + "end": 1819.4, + "probability": 0.9918 + }, + { + "start": 1820.22, + "end": 1824.4, + "probability": 0.9292 + }, + { + "start": 1825.38, + "end": 1828.26, + "probability": 0.9897 + }, + { + "start": 1828.48, + "end": 1829.74, + "probability": 0.9707 + }, + { + "start": 1830.4, + "end": 1832.24, + "probability": 0.9963 + }, + { + "start": 1832.38, + "end": 1834.76, + "probability": 0.9058 + }, + { + "start": 1834.92, + "end": 1835.5, + "probability": 0.9441 + }, + { + "start": 1835.5, + "end": 1837.52, + "probability": 0.6505 + }, + { + "start": 1838.06, + "end": 1839.88, + "probability": 0.9939 + }, + { + "start": 1840.82, + "end": 1843.3, + "probability": 0.9821 + }, + { + "start": 1843.94, + "end": 1845.32, + "probability": 0.9255 + }, + { + "start": 1845.42, + "end": 1847.16, + "probability": 0.8416 + }, + { + "start": 1848.04, + "end": 1849.8, + "probability": 0.9666 + }, + { + "start": 1850.48, + "end": 1854.64, + "probability": 0.9849 + }, + { + "start": 1855.98, + "end": 1859.46, + "probability": 0.9966 + }, + { + "start": 1859.68, + "end": 1860.62, + "probability": 0.8157 + }, + { + "start": 1861.14, + "end": 1864.5, + "probability": 0.9894 + }, + { + "start": 1864.92, + "end": 1865.4, + "probability": 0.8042 + }, + { + "start": 1865.44, + "end": 1866.32, + "probability": 0.9225 + }, + { + "start": 1866.8, + "end": 1871.1, + "probability": 0.992 + }, + { + "start": 1872.22, + "end": 1876.54, + "probability": 0.9853 + }, + { + "start": 1877.24, + "end": 1880.02, + "probability": 0.9896 + }, + { + "start": 1880.02, + "end": 1883.34, + "probability": 0.7685 + }, + { + "start": 1883.78, + "end": 1886.16, + "probability": 0.9006 + }, + { + "start": 1887.22, + "end": 1887.88, + "probability": 0.8783 + }, + { + "start": 1888.08, + "end": 1889.28, + "probability": 0.986 + }, + { + "start": 1889.38, + "end": 1891.85, + "probability": 0.9861 + }, + { + "start": 1892.62, + "end": 1895.38, + "probability": 0.9525 + }, + { + "start": 1895.84, + "end": 1896.54, + "probability": 0.904 + }, + { + "start": 1896.66, + "end": 1899.18, + "probability": 0.7955 + }, + { + "start": 1899.82, + "end": 1900.16, + "probability": 0.8919 + }, + { + "start": 1900.24, + "end": 1901.84, + "probability": 0.9902 + }, + { + "start": 1902.0, + "end": 1906.44, + "probability": 0.9058 + }, + { + "start": 1906.52, + "end": 1906.8, + "probability": 0.7581 + }, + { + "start": 1906.9, + "end": 1907.52, + "probability": 0.9648 + }, + { + "start": 1908.48, + "end": 1910.32, + "probability": 0.9636 + }, + { + "start": 1911.0, + "end": 1912.4, + "probability": 0.9443 + }, + { + "start": 1913.3, + "end": 1916.5, + "probability": 0.6256 + }, + { + "start": 1917.57, + "end": 1919.46, + "probability": 0.7567 + }, + { + "start": 1919.46, + "end": 1922.04, + "probability": 0.9245 + }, + { + "start": 1922.28, + "end": 1923.28, + "probability": 0.8384 + }, + { + "start": 1924.18, + "end": 1924.72, + "probability": 0.0223 + }, + { + "start": 1925.32, + "end": 1925.5, + "probability": 0.0667 + }, + { + "start": 1925.5, + "end": 1925.5, + "probability": 0.1118 + }, + { + "start": 1925.5, + "end": 1925.78, + "probability": 0.409 + }, + { + "start": 1926.24, + "end": 1927.34, + "probability": 0.5912 + }, + { + "start": 1927.77, + "end": 1930.84, + "probability": 0.9613 + }, + { + "start": 1931.06, + "end": 1931.98, + "probability": 0.527 + }, + { + "start": 1932.5, + "end": 1933.55, + "probability": 0.5782 + }, + { + "start": 1934.38, + "end": 1936.2, + "probability": 0.9602 + }, + { + "start": 1936.88, + "end": 1938.41, + "probability": 0.9595 + }, + { + "start": 1939.82, + "end": 1941.98, + "probability": 0.9609 + }, + { + "start": 1942.44, + "end": 1943.42, + "probability": 0.9514 + }, + { + "start": 1943.64, + "end": 1944.58, + "probability": 0.981 + }, + { + "start": 1944.66, + "end": 1950.34, + "probability": 0.9762 + }, + { + "start": 1950.42, + "end": 1951.44, + "probability": 0.9337 + }, + { + "start": 1951.6, + "end": 1952.18, + "probability": 0.8841 + }, + { + "start": 1952.6, + "end": 1953.72, + "probability": 0.6432 + }, + { + "start": 1954.3, + "end": 1958.16, + "probability": 0.9879 + }, + { + "start": 1958.6, + "end": 1959.78, + "probability": 0.9499 + }, + { + "start": 1959.94, + "end": 1961.18, + "probability": 0.9858 + }, + { + "start": 1961.28, + "end": 1962.44, + "probability": 0.9756 + }, + { + "start": 1962.86, + "end": 1966.22, + "probability": 0.9891 + }, + { + "start": 1966.28, + "end": 1967.07, + "probability": 0.9672 + }, + { + "start": 1967.76, + "end": 1970.14, + "probability": 0.8419 + }, + { + "start": 1970.62, + "end": 1971.2, + "probability": 0.737 + }, + { + "start": 1971.44, + "end": 1972.02, + "probability": 0.5343 + }, + { + "start": 1972.5, + "end": 1974.82, + "probability": 0.9729 + }, + { + "start": 1975.14, + "end": 1975.52, + "probability": 0.8558 + }, + { + "start": 1976.22, + "end": 1977.94, + "probability": 0.9587 + }, + { + "start": 1978.02, + "end": 1981.0, + "probability": 0.9771 + }, + { + "start": 1993.4, + "end": 1994.08, + "probability": 0.9143 + }, + { + "start": 1994.8, + "end": 1995.94, + "probability": 0.7619 + }, + { + "start": 1996.92, + "end": 1997.66, + "probability": 0.6876 + }, + { + "start": 1999.32, + "end": 2002.34, + "probability": 0.9941 + }, + { + "start": 2002.34, + "end": 2005.36, + "probability": 0.9938 + }, + { + "start": 2006.78, + "end": 2009.18, + "probability": 0.9614 + }, + { + "start": 2010.52, + "end": 2010.88, + "probability": 0.6871 + }, + { + "start": 2011.68, + "end": 2012.18, + "probability": 0.9555 + }, + { + "start": 2013.66, + "end": 2015.74, + "probability": 0.9928 + }, + { + "start": 2016.64, + "end": 2019.36, + "probability": 0.9741 + }, + { + "start": 2022.1, + "end": 2028.38, + "probability": 0.9893 + }, + { + "start": 2029.92, + "end": 2032.62, + "probability": 0.978 + }, + { + "start": 2033.2, + "end": 2034.94, + "probability": 0.9933 + }, + { + "start": 2035.9, + "end": 2041.06, + "probability": 0.988 + }, + { + "start": 2041.06, + "end": 2044.74, + "probability": 0.9996 + }, + { + "start": 2046.18, + "end": 2051.58, + "probability": 0.9874 + }, + { + "start": 2052.86, + "end": 2058.4, + "probability": 0.9927 + }, + { + "start": 2059.44, + "end": 2064.58, + "probability": 0.9799 + }, + { + "start": 2066.16, + "end": 2068.9, + "probability": 0.9218 + }, + { + "start": 2069.14, + "end": 2070.46, + "probability": 0.9741 + }, + { + "start": 2072.74, + "end": 2074.26, + "probability": 0.9977 + }, + { + "start": 2074.82, + "end": 2078.24, + "probability": 0.9965 + }, + { + "start": 2079.32, + "end": 2083.12, + "probability": 0.979 + }, + { + "start": 2084.28, + "end": 2087.02, + "probability": 0.9813 + }, + { + "start": 2088.5, + "end": 2091.94, + "probability": 0.9883 + }, + { + "start": 2093.0, + "end": 2097.28, + "probability": 0.9197 + }, + { + "start": 2098.3, + "end": 2099.73, + "probability": 0.9297 + }, + { + "start": 2102.2, + "end": 2103.66, + "probability": 0.955 + }, + { + "start": 2104.74, + "end": 2105.4, + "probability": 0.9367 + }, + { + "start": 2105.98, + "end": 2106.34, + "probability": 0.7039 + }, + { + "start": 2108.4, + "end": 2113.98, + "probability": 0.9978 + }, + { + "start": 2115.04, + "end": 2120.0, + "probability": 0.9536 + }, + { + "start": 2121.16, + "end": 2122.62, + "probability": 0.9993 + }, + { + "start": 2123.4, + "end": 2126.64, + "probability": 0.9769 + }, + { + "start": 2128.08, + "end": 2130.66, + "probability": 0.9919 + }, + { + "start": 2131.24, + "end": 2131.62, + "probability": 0.5465 + }, + { + "start": 2131.72, + "end": 2134.52, + "probability": 0.9567 + }, + { + "start": 2134.82, + "end": 2135.46, + "probability": 0.9913 + }, + { + "start": 2135.98, + "end": 2136.8, + "probability": 0.8812 + }, + { + "start": 2137.7, + "end": 2139.02, + "probability": 0.9988 + }, + { + "start": 2140.24, + "end": 2143.7, + "probability": 0.9962 + }, + { + "start": 2143.92, + "end": 2147.7, + "probability": 0.9983 + }, + { + "start": 2148.88, + "end": 2151.1, + "probability": 0.8293 + }, + { + "start": 2151.1, + "end": 2153.76, + "probability": 0.9863 + }, + { + "start": 2154.06, + "end": 2154.46, + "probability": 0.4414 + }, + { + "start": 2155.2, + "end": 2156.6, + "probability": 0.9886 + }, + { + "start": 2157.34, + "end": 2160.53, + "probability": 0.989 + }, + { + "start": 2160.74, + "end": 2162.3, + "probability": 0.8522 + }, + { + "start": 2162.38, + "end": 2165.74, + "probability": 0.9973 + }, + { + "start": 2166.34, + "end": 2166.88, + "probability": 0.988 + }, + { + "start": 2166.92, + "end": 2167.38, + "probability": 0.974 + }, + { + "start": 2167.5, + "end": 2168.1, + "probability": 0.9858 + }, + { + "start": 2168.14, + "end": 2169.24, + "probability": 0.8461 + }, + { + "start": 2169.26, + "end": 2171.48, + "probability": 0.8041 + }, + { + "start": 2173.42, + "end": 2179.72, + "probability": 0.9972 + }, + { + "start": 2179.78, + "end": 2183.92, + "probability": 0.9991 + }, + { + "start": 2184.68, + "end": 2186.0, + "probability": 0.7032 + }, + { + "start": 2186.82, + "end": 2188.76, + "probability": 0.9203 + }, + { + "start": 2188.8, + "end": 2190.1, + "probability": 0.7908 + }, + { + "start": 2190.58, + "end": 2191.18, + "probability": 0.959 + }, + { + "start": 2191.6, + "end": 2193.3, + "probability": 0.9247 + }, + { + "start": 2194.7, + "end": 2196.6, + "probability": 0.9725 + }, + { + "start": 2197.44, + "end": 2202.08, + "probability": 0.971 + }, + { + "start": 2202.7, + "end": 2204.04, + "probability": 0.9927 + }, + { + "start": 2205.42, + "end": 2209.98, + "probability": 0.975 + }, + { + "start": 2210.38, + "end": 2215.5, + "probability": 0.9961 + }, + { + "start": 2216.38, + "end": 2219.92, + "probability": 0.988 + }, + { + "start": 2221.5, + "end": 2222.0, + "probability": 0.7475 + }, + { + "start": 2222.42, + "end": 2226.26, + "probability": 0.9973 + }, + { + "start": 2226.26, + "end": 2229.3, + "probability": 0.9971 + }, + { + "start": 2230.48, + "end": 2235.3, + "probability": 0.9322 + }, + { + "start": 2236.96, + "end": 2240.06, + "probability": 0.989 + }, + { + "start": 2240.3, + "end": 2244.32, + "probability": 0.9958 + }, + { + "start": 2246.08, + "end": 2246.8, + "probability": 0.7032 + }, + { + "start": 2248.06, + "end": 2248.58, + "probability": 0.8619 + }, + { + "start": 2249.46, + "end": 2250.48, + "probability": 0.8538 + }, + { + "start": 2251.36, + "end": 2252.92, + "probability": 0.9915 + }, + { + "start": 2253.68, + "end": 2257.12, + "probability": 0.9102 + }, + { + "start": 2258.02, + "end": 2260.92, + "probability": 0.9066 + }, + { + "start": 2261.56, + "end": 2263.5, + "probability": 0.8677 + }, + { + "start": 2267.12, + "end": 2272.16, + "probability": 0.9935 + }, + { + "start": 2272.84, + "end": 2277.24, + "probability": 0.9887 + }, + { + "start": 2278.36, + "end": 2279.72, + "probability": 0.9984 + }, + { + "start": 2280.5, + "end": 2282.62, + "probability": 0.9395 + }, + { + "start": 2282.76, + "end": 2286.22, + "probability": 0.9862 + }, + { + "start": 2286.22, + "end": 2290.72, + "probability": 0.9273 + }, + { + "start": 2291.4, + "end": 2294.44, + "probability": 0.9983 + }, + { + "start": 2295.56, + "end": 2296.3, + "probability": 0.4542 + }, + { + "start": 2296.64, + "end": 2297.66, + "probability": 0.9628 + }, + { + "start": 2297.96, + "end": 2302.7, + "probability": 0.9946 + }, + { + "start": 2302.88, + "end": 2308.04, + "probability": 0.9983 + }, + { + "start": 2308.86, + "end": 2309.46, + "probability": 0.844 + }, + { + "start": 2309.62, + "end": 2310.18, + "probability": 0.2966 + }, + { + "start": 2310.34, + "end": 2310.78, + "probability": 0.9404 + }, + { + "start": 2310.88, + "end": 2311.54, + "probability": 0.9652 + }, + { + "start": 2311.74, + "end": 2313.16, + "probability": 0.9187 + }, + { + "start": 2313.92, + "end": 2317.54, + "probability": 0.9569 + }, + { + "start": 2318.56, + "end": 2321.76, + "probability": 0.9611 + }, + { + "start": 2322.36, + "end": 2323.44, + "probability": 0.9978 + }, + { + "start": 2324.1, + "end": 2326.36, + "probability": 0.4994 + }, + { + "start": 2328.34, + "end": 2328.48, + "probability": 0.6482 + }, + { + "start": 2330.42, + "end": 2332.22, + "probability": 0.9126 + }, + { + "start": 2332.66, + "end": 2334.86, + "probability": 0.8392 + }, + { + "start": 2335.8, + "end": 2337.08, + "probability": 0.7326 + }, + { + "start": 2338.88, + "end": 2340.02, + "probability": 0.2465 + }, + { + "start": 2342.36, + "end": 2344.4, + "probability": 0.0675 + }, + { + "start": 2347.5, + "end": 2348.3, + "probability": 0.1757 + }, + { + "start": 2371.46, + "end": 2371.56, + "probability": 0.0203 + }, + { + "start": 2372.3, + "end": 2373.1, + "probability": 0.5381 + }, + { + "start": 2373.9, + "end": 2376.54, + "probability": 0.9515 + }, + { + "start": 2376.54, + "end": 2379.18, + "probability": 0.8199 + }, + { + "start": 2380.42, + "end": 2382.58, + "probability": 0.9185 + }, + { + "start": 2383.98, + "end": 2386.16, + "probability": 0.9967 + }, + { + "start": 2387.48, + "end": 2389.4, + "probability": 0.991 + }, + { + "start": 2390.46, + "end": 2391.22, + "probability": 0.993 + }, + { + "start": 2392.76, + "end": 2395.24, + "probability": 0.9971 + }, + { + "start": 2396.14, + "end": 2398.8, + "probability": 0.9867 + }, + { + "start": 2398.88, + "end": 2401.6, + "probability": 0.9932 + }, + { + "start": 2403.32, + "end": 2404.32, + "probability": 0.5187 + }, + { + "start": 2405.32, + "end": 2408.04, + "probability": 0.9702 + }, + { + "start": 2409.48, + "end": 2411.2, + "probability": 0.9268 + }, + { + "start": 2411.88, + "end": 2412.5, + "probability": 0.7749 + }, + { + "start": 2413.3, + "end": 2416.24, + "probability": 0.9543 + }, + { + "start": 2417.1, + "end": 2422.26, + "probability": 0.9766 + }, + { + "start": 2423.26, + "end": 2424.86, + "probability": 0.9612 + }, + { + "start": 2425.76, + "end": 2427.84, + "probability": 0.9225 + }, + { + "start": 2428.46, + "end": 2430.86, + "probability": 0.5526 + }, + { + "start": 2431.66, + "end": 2433.34, + "probability": 0.8372 + }, + { + "start": 2434.2, + "end": 2435.48, + "probability": 0.703 + }, + { + "start": 2436.96, + "end": 2439.7, + "probability": 0.9956 + }, + { + "start": 2441.02, + "end": 2443.52, + "probability": 0.9579 + }, + { + "start": 2443.52, + "end": 2447.08, + "probability": 0.7409 + }, + { + "start": 2447.68, + "end": 2450.28, + "probability": 0.978 + }, + { + "start": 2451.46, + "end": 2455.88, + "probability": 0.9874 + }, + { + "start": 2457.14, + "end": 2457.8, + "probability": 0.8393 + }, + { + "start": 2458.8, + "end": 2461.26, + "probability": 0.6335 + }, + { + "start": 2462.64, + "end": 2466.52, + "probability": 0.9834 + }, + { + "start": 2467.08, + "end": 2467.74, + "probability": 0.8037 + }, + { + "start": 2468.62, + "end": 2469.4, + "probability": 0.5356 + }, + { + "start": 2471.66, + "end": 2472.6, + "probability": 0.9919 + }, + { + "start": 2473.72, + "end": 2476.18, + "probability": 0.6614 + }, + { + "start": 2477.56, + "end": 2479.42, + "probability": 0.9893 + }, + { + "start": 2480.14, + "end": 2481.24, + "probability": 0.6898 + }, + { + "start": 2482.46, + "end": 2483.6, + "probability": 0.9965 + }, + { + "start": 2484.32, + "end": 2485.78, + "probability": 0.9974 + }, + { + "start": 2487.8, + "end": 2491.68, + "probability": 0.9862 + }, + { + "start": 2492.28, + "end": 2495.6, + "probability": 0.979 + }, + { + "start": 2495.6, + "end": 2502.44, + "probability": 0.9243 + }, + { + "start": 2502.68, + "end": 2504.1, + "probability": 0.7648 + }, + { + "start": 2504.84, + "end": 2507.24, + "probability": 0.9595 + }, + { + "start": 2508.08, + "end": 2513.88, + "probability": 0.9743 + }, + { + "start": 2514.5, + "end": 2517.24, + "probability": 0.9995 + }, + { + "start": 2517.24, + "end": 2520.5, + "probability": 0.9995 + }, + { + "start": 2521.88, + "end": 2527.82, + "probability": 0.9804 + }, + { + "start": 2528.42, + "end": 2531.7, + "probability": 0.9244 + }, + { + "start": 2532.34, + "end": 2535.26, + "probability": 0.9665 + }, + { + "start": 2535.84, + "end": 2539.92, + "probability": 0.9485 + }, + { + "start": 2541.22, + "end": 2546.76, + "probability": 0.978 + }, + { + "start": 2547.72, + "end": 2549.34, + "probability": 0.9731 + }, + { + "start": 2550.1, + "end": 2552.44, + "probability": 0.8139 + }, + { + "start": 2553.16, + "end": 2554.58, + "probability": 0.8284 + }, + { + "start": 2555.48, + "end": 2558.48, + "probability": 0.96 + }, + { + "start": 2559.0, + "end": 2560.0, + "probability": 0.7352 + }, + { + "start": 2560.54, + "end": 2560.94, + "probability": 0.9299 + }, + { + "start": 2561.76, + "end": 2564.04, + "probability": 0.9196 + }, + { + "start": 2564.64, + "end": 2570.22, + "probability": 0.949 + }, + { + "start": 2570.86, + "end": 2571.9, + "probability": 0.9867 + }, + { + "start": 2572.9, + "end": 2576.3, + "probability": 0.9968 + }, + { + "start": 2576.3, + "end": 2580.8, + "probability": 0.9882 + }, + { + "start": 2581.48, + "end": 2582.66, + "probability": 0.9731 + }, + { + "start": 2584.42, + "end": 2585.6, + "probability": 0.9714 + }, + { + "start": 2587.04, + "end": 2590.7, + "probability": 0.9966 + }, + { + "start": 2591.22, + "end": 2591.6, + "probability": 0.6954 + }, + { + "start": 2593.08, + "end": 2594.82, + "probability": 0.9456 + }, + { + "start": 2595.26, + "end": 2596.72, + "probability": 0.7656 + }, + { + "start": 2619.78, + "end": 2620.02, + "probability": 0.3075 + }, + { + "start": 2620.66, + "end": 2621.06, + "probability": 0.8292 + }, + { + "start": 2622.54, + "end": 2623.4, + "probability": 0.8459 + }, + { + "start": 2624.44, + "end": 2625.36, + "probability": 0.8671 + }, + { + "start": 2626.56, + "end": 2628.66, + "probability": 0.6859 + }, + { + "start": 2629.36, + "end": 2630.04, + "probability": 0.6365 + }, + { + "start": 2631.46, + "end": 2635.6, + "probability": 0.9823 + }, + { + "start": 2636.54, + "end": 2637.36, + "probability": 0.9041 + }, + { + "start": 2637.96, + "end": 2640.74, + "probability": 0.9108 + }, + { + "start": 2641.4, + "end": 2643.4, + "probability": 0.4466 + }, + { + "start": 2644.1, + "end": 2645.72, + "probability": 0.8911 + }, + { + "start": 2646.72, + "end": 2648.24, + "probability": 0.9745 + }, + { + "start": 2649.34, + "end": 2649.76, + "probability": 0.5388 + }, + { + "start": 2649.82, + "end": 2650.34, + "probability": 0.6903 + }, + { + "start": 2650.52, + "end": 2651.24, + "probability": 0.8032 + }, + { + "start": 2651.38, + "end": 2653.54, + "probability": 0.9873 + }, + { + "start": 2654.3, + "end": 2659.12, + "probability": 0.995 + }, + { + "start": 2659.96, + "end": 2660.96, + "probability": 0.9963 + }, + { + "start": 2662.38, + "end": 2665.22, + "probability": 0.9956 + }, + { + "start": 2666.02, + "end": 2668.38, + "probability": 0.9155 + }, + { + "start": 2669.04, + "end": 2669.64, + "probability": 0.9351 + }, + { + "start": 2671.28, + "end": 2676.04, + "probability": 0.9742 + }, + { + "start": 2676.74, + "end": 2678.18, + "probability": 0.9113 + }, + { + "start": 2679.02, + "end": 2681.6, + "probability": 0.9986 + }, + { + "start": 2683.0, + "end": 2686.1, + "probability": 0.9836 + }, + { + "start": 2687.14, + "end": 2689.62, + "probability": 0.8694 + }, + { + "start": 2691.06, + "end": 2691.46, + "probability": 0.6507 + }, + { + "start": 2692.78, + "end": 2694.18, + "probability": 0.8577 + }, + { + "start": 2695.06, + "end": 2695.8, + "probability": 0.944 + }, + { + "start": 2697.34, + "end": 2700.36, + "probability": 0.9614 + }, + { + "start": 2700.88, + "end": 2703.0, + "probability": 0.9569 + }, + { + "start": 2704.12, + "end": 2708.82, + "probability": 0.9521 + }, + { + "start": 2710.06, + "end": 2711.16, + "probability": 0.7238 + }, + { + "start": 2711.9, + "end": 2713.14, + "probability": 0.6506 + }, + { + "start": 2714.16, + "end": 2714.9, + "probability": 0.9819 + }, + { + "start": 2715.76, + "end": 2719.18, + "probability": 0.9978 + }, + { + "start": 2720.42, + "end": 2725.44, + "probability": 0.8687 + }, + { + "start": 2726.4, + "end": 2727.12, + "probability": 0.8523 + }, + { + "start": 2728.74, + "end": 2731.97, + "probability": 0.974 + }, + { + "start": 2734.16, + "end": 2736.0, + "probability": 0.9108 + }, + { + "start": 2736.42, + "end": 2737.4, + "probability": 0.7742 + }, + { + "start": 2738.42, + "end": 2738.52, + "probability": 0.6986 + }, + { + "start": 2740.46, + "end": 2741.3, + "probability": 0.9613 + }, + { + "start": 2742.38, + "end": 2742.64, + "probability": 0.3979 + }, + { + "start": 2742.72, + "end": 2743.56, + "probability": 0.9905 + }, + { + "start": 2743.7, + "end": 2746.9, + "probability": 0.9534 + }, + { + "start": 2746.98, + "end": 2747.46, + "probability": 0.907 + }, + { + "start": 2747.6, + "end": 2748.38, + "probability": 0.7955 + }, + { + "start": 2749.3, + "end": 2752.2, + "probability": 0.9591 + }, + { + "start": 2753.98, + "end": 2755.3, + "probability": 0.9054 + }, + { + "start": 2756.28, + "end": 2757.4, + "probability": 0.8199 + }, + { + "start": 2758.38, + "end": 2760.5, + "probability": 0.9976 + }, + { + "start": 2761.14, + "end": 2762.84, + "probability": 0.9418 + }, + { + "start": 2764.24, + "end": 2766.66, + "probability": 0.92 + }, + { + "start": 2768.04, + "end": 2769.34, + "probability": 0.9793 + }, + { + "start": 2770.78, + "end": 2773.02, + "probability": 0.993 + }, + { + "start": 2773.78, + "end": 2775.04, + "probability": 0.6302 + }, + { + "start": 2776.16, + "end": 2777.84, + "probability": 0.9937 + }, + { + "start": 2778.9, + "end": 2780.04, + "probability": 0.9582 + }, + { + "start": 2780.84, + "end": 2783.02, + "probability": 0.9838 + }, + { + "start": 2783.18, + "end": 2784.0, + "probability": 0.8754 + }, + { + "start": 2785.34, + "end": 2786.92, + "probability": 0.9828 + }, + { + "start": 2788.04, + "end": 2791.88, + "probability": 0.9969 + }, + { + "start": 2792.76, + "end": 2795.27, + "probability": 0.8556 + }, + { + "start": 2796.72, + "end": 2801.34, + "probability": 0.9951 + }, + { + "start": 2802.2, + "end": 2803.92, + "probability": 0.99 + }, + { + "start": 2804.74, + "end": 2805.1, + "probability": 0.8507 + }, + { + "start": 2806.2, + "end": 2807.34, + "probability": 0.8172 + }, + { + "start": 2808.46, + "end": 2811.08, + "probability": 0.9875 + }, + { + "start": 2811.72, + "end": 2812.45, + "probability": 0.995 + }, + { + "start": 2813.26, + "end": 2816.78, + "probability": 0.9922 + }, + { + "start": 2817.92, + "end": 2818.88, + "probability": 0.9744 + }, + { + "start": 2819.34, + "end": 2819.64, + "probability": 0.7767 + }, + { + "start": 2821.4, + "end": 2822.92, + "probability": 0.6411 + }, + { + "start": 2823.06, + "end": 2825.22, + "probability": 0.841 + }, + { + "start": 2847.14, + "end": 2847.14, + "probability": 0.2849 + }, + { + "start": 2847.24, + "end": 2848.92, + "probability": 0.7278 + }, + { + "start": 2850.96, + "end": 2853.68, + "probability": 0.9026 + }, + { + "start": 2854.22, + "end": 2857.42, + "probability": 0.8622 + }, + { + "start": 2858.54, + "end": 2860.86, + "probability": 0.9966 + }, + { + "start": 2861.06, + "end": 2865.96, + "probability": 0.9956 + }, + { + "start": 2866.6, + "end": 2868.06, + "probability": 0.9872 + }, + { + "start": 2869.72, + "end": 2870.0, + "probability": 0.5376 + }, + { + "start": 2870.7, + "end": 2873.96, + "probability": 0.9898 + }, + { + "start": 2873.98, + "end": 2877.84, + "probability": 0.979 + }, + { + "start": 2879.18, + "end": 2883.6, + "probability": 0.9977 + }, + { + "start": 2883.6, + "end": 2887.42, + "probability": 0.9363 + }, + { + "start": 2888.38, + "end": 2894.46, + "probability": 0.9912 + }, + { + "start": 2895.44, + "end": 2896.12, + "probability": 0.772 + }, + { + "start": 2898.36, + "end": 2902.5, + "probability": 0.9974 + }, + { + "start": 2903.78, + "end": 2906.14, + "probability": 0.9658 + }, + { + "start": 2907.2, + "end": 2909.54, + "probability": 0.978 + }, + { + "start": 2909.68, + "end": 2914.7, + "probability": 0.9948 + }, + { + "start": 2915.16, + "end": 2915.84, + "probability": 0.6946 + }, + { + "start": 2916.4, + "end": 2917.98, + "probability": 0.998 + }, + { + "start": 2918.78, + "end": 2919.06, + "probability": 0.4482 + }, + { + "start": 2919.08, + "end": 2920.16, + "probability": 0.7471 + }, + { + "start": 2920.32, + "end": 2923.42, + "probability": 0.9707 + }, + { + "start": 2924.26, + "end": 2925.72, + "probability": 0.9758 + }, + { + "start": 2927.32, + "end": 2930.92, + "probability": 0.9789 + }, + { + "start": 2930.92, + "end": 2934.84, + "probability": 0.9886 + }, + { + "start": 2936.24, + "end": 2940.0, + "probability": 0.9968 + }, + { + "start": 2940.52, + "end": 2942.98, + "probability": 0.9946 + }, + { + "start": 2944.26, + "end": 2945.7, + "probability": 0.5347 + }, + { + "start": 2946.98, + "end": 2951.98, + "probability": 0.9862 + }, + { + "start": 2952.62, + "end": 2957.4, + "probability": 0.9912 + }, + { + "start": 2958.26, + "end": 2962.98, + "probability": 0.9938 + }, + { + "start": 2963.94, + "end": 2965.72, + "probability": 0.9836 + }, + { + "start": 2967.52, + "end": 2973.08, + "probability": 0.9873 + }, + { + "start": 2973.3, + "end": 2974.04, + "probability": 0.7381 + }, + { + "start": 2974.12, + "end": 2974.88, + "probability": 0.8552 + }, + { + "start": 2974.98, + "end": 2977.14, + "probability": 0.9893 + }, + { + "start": 2977.9, + "end": 2981.68, + "probability": 0.8095 + }, + { + "start": 2982.86, + "end": 2986.26, + "probability": 0.9829 + }, + { + "start": 2986.8, + "end": 2991.5, + "probability": 0.9957 + }, + { + "start": 2992.3, + "end": 2995.7, + "probability": 0.9958 + }, + { + "start": 2995.7, + "end": 2998.32, + "probability": 0.9638 + }, + { + "start": 3000.2, + "end": 3003.16, + "probability": 0.8779 + }, + { + "start": 3004.0, + "end": 3007.2, + "probability": 0.8183 + }, + { + "start": 3007.88, + "end": 3013.84, + "probability": 0.9849 + }, + { + "start": 3014.86, + "end": 3018.84, + "probability": 0.9653 + }, + { + "start": 3020.46, + "end": 3022.34, + "probability": 0.7803 + }, + { + "start": 3023.2, + "end": 3026.68, + "probability": 0.8528 + }, + { + "start": 3027.58, + "end": 3028.7, + "probability": 0.7671 + }, + { + "start": 3029.24, + "end": 3029.46, + "probability": 0.9513 + }, + { + "start": 3031.1, + "end": 3032.44, + "probability": 0.9644 + }, + { + "start": 3032.64, + "end": 3033.8, + "probability": 0.9197 + }, + { + "start": 3033.96, + "end": 3036.66, + "probability": 0.9692 + }, + { + "start": 3038.36, + "end": 3040.0, + "probability": 0.7543 + }, + { + "start": 3040.42, + "end": 3045.58, + "probability": 0.9792 + }, + { + "start": 3045.9, + "end": 3046.82, + "probability": 0.8319 + }, + { + "start": 3047.66, + "end": 3050.5, + "probability": 0.9763 + }, + { + "start": 3052.76, + "end": 3057.34, + "probability": 0.9554 + }, + { + "start": 3059.1, + "end": 3062.0, + "probability": 0.9439 + }, + { + "start": 3062.16, + "end": 3062.74, + "probability": 0.6312 + }, + { + "start": 3064.22, + "end": 3067.1, + "probability": 0.9688 + }, + { + "start": 3067.82, + "end": 3071.82, + "probability": 0.9911 + }, + { + "start": 3071.92, + "end": 3078.68, + "probability": 0.9943 + }, + { + "start": 3080.24, + "end": 3081.7, + "probability": 0.8898 + }, + { + "start": 3081.78, + "end": 3082.76, + "probability": 0.8657 + }, + { + "start": 3083.14, + "end": 3086.04, + "probability": 0.9952 + }, + { + "start": 3086.72, + "end": 3091.34, + "probability": 0.9922 + }, + { + "start": 3093.02, + "end": 3096.68, + "probability": 0.9984 + }, + { + "start": 3097.66, + "end": 3099.5, + "probability": 0.9691 + }, + { + "start": 3099.58, + "end": 3101.04, + "probability": 0.9302 + }, + { + "start": 3101.16, + "end": 3103.84, + "probability": 0.9507 + }, + { + "start": 3104.4, + "end": 3105.49, + "probability": 0.9348 + }, + { + "start": 3106.38, + "end": 3110.32, + "probability": 0.9919 + }, + { + "start": 3110.78, + "end": 3111.22, + "probability": 0.8597 + }, + { + "start": 3112.0, + "end": 3115.36, + "probability": 0.9963 + }, + { + "start": 3115.36, + "end": 3119.54, + "probability": 0.9973 + }, + { + "start": 3120.06, + "end": 3124.22, + "probability": 0.9878 + }, + { + "start": 3124.72, + "end": 3127.16, + "probability": 0.6799 + }, + { + "start": 3127.62, + "end": 3127.8, + "probability": 0.7599 + }, + { + "start": 3129.52, + "end": 3132.02, + "probability": 0.9299 + }, + { + "start": 3132.02, + "end": 3136.4, + "probability": 0.9968 + }, + { + "start": 3137.06, + "end": 3138.68, + "probability": 0.9895 + }, + { + "start": 3139.46, + "end": 3140.4, + "probability": 0.9093 + }, + { + "start": 3141.2, + "end": 3143.38, + "probability": 0.9637 + }, + { + "start": 3144.08, + "end": 3144.72, + "probability": 0.968 + }, + { + "start": 3144.86, + "end": 3147.94, + "probability": 0.8879 + }, + { + "start": 3148.08, + "end": 3149.04, + "probability": 0.9581 + }, + { + "start": 3149.48, + "end": 3152.1, + "probability": 0.983 + }, + { + "start": 3152.1, + "end": 3155.14, + "probability": 0.9957 + }, + { + "start": 3156.02, + "end": 3158.0, + "probability": 0.9541 + }, + { + "start": 3158.5, + "end": 3160.12, + "probability": 0.9725 + }, + { + "start": 3160.54, + "end": 3164.12, + "probability": 0.996 + }, + { + "start": 3164.26, + "end": 3165.26, + "probability": 0.8782 + }, + { + "start": 3166.02, + "end": 3170.02, + "probability": 0.9891 + }, + { + "start": 3171.0, + "end": 3171.44, + "probability": 0.7475 + }, + { + "start": 3171.98, + "end": 3174.4, + "probability": 0.9683 + }, + { + "start": 3174.4, + "end": 3178.44, + "probability": 0.9852 + }, + { + "start": 3179.22, + "end": 3180.62, + "probability": 0.7183 + }, + { + "start": 3180.64, + "end": 3181.92, + "probability": 0.8279 + }, + { + "start": 3182.16, + "end": 3182.26, + "probability": 0.3085 + }, + { + "start": 3183.56, + "end": 3186.98, + "probability": 0.9727 + }, + { + "start": 3186.98, + "end": 3190.5, + "probability": 0.998 + }, + { + "start": 3191.08, + "end": 3193.64, + "probability": 0.915 + }, + { + "start": 3194.24, + "end": 3194.54, + "probability": 0.7891 + }, + { + "start": 3194.7, + "end": 3195.76, + "probability": 0.9868 + }, + { + "start": 3196.44, + "end": 3200.02, + "probability": 0.9666 + }, + { + "start": 3200.18, + "end": 3200.48, + "probability": 0.8659 + }, + { + "start": 3201.36, + "end": 3202.3, + "probability": 0.9513 + }, + { + "start": 3202.34, + "end": 3207.24, + "probability": 0.8423 + }, + { + "start": 3207.94, + "end": 3207.96, + "probability": 0.2242 + }, + { + "start": 3207.96, + "end": 3209.92, + "probability": 0.9648 + }, + { + "start": 3212.71, + "end": 3213.32, + "probability": 0.1091 + }, + { + "start": 3213.32, + "end": 3215.28, + "probability": 0.6775 + }, + { + "start": 3215.48, + "end": 3217.88, + "probability": 0.6951 + }, + { + "start": 3217.88, + "end": 3221.74, + "probability": 0.7849 + }, + { + "start": 3222.2, + "end": 3226.38, + "probability": 0.9852 + }, + { + "start": 3226.84, + "end": 3230.14, + "probability": 0.9977 + }, + { + "start": 3230.52, + "end": 3232.56, + "probability": 0.9985 + }, + { + "start": 3233.26, + "end": 3237.22, + "probability": 0.999 + }, + { + "start": 3237.7, + "end": 3240.8, + "probability": 0.999 + }, + { + "start": 3241.28, + "end": 3243.88, + "probability": 0.9675 + }, + { + "start": 3244.6, + "end": 3246.26, + "probability": 0.8433 + }, + { + "start": 3246.82, + "end": 3248.44, + "probability": 0.9926 + }, + { + "start": 3248.94, + "end": 3249.4, + "probability": 0.8841 + }, + { + "start": 3250.4, + "end": 3252.08, + "probability": 0.7369 + }, + { + "start": 3252.14, + "end": 3252.9, + "probability": 0.6013 + }, + { + "start": 3253.7, + "end": 3254.16, + "probability": 0.6017 + }, + { + "start": 3254.48, + "end": 3255.08, + "probability": 0.4846 + }, + { + "start": 3256.04, + "end": 3257.52, + "probability": 0.8103 + }, + { + "start": 3258.7, + "end": 3260.17, + "probability": 0.9821 + }, + { + "start": 3260.5, + "end": 3261.46, + "probability": 0.9373 + }, + { + "start": 3276.48, + "end": 3278.02, + "probability": 0.5441 + }, + { + "start": 3278.92, + "end": 3281.48, + "probability": 0.7197 + }, + { + "start": 3282.34, + "end": 3283.4, + "probability": 0.8851 + }, + { + "start": 3283.58, + "end": 3286.98, + "probability": 0.9635 + }, + { + "start": 3287.06, + "end": 3289.56, + "probability": 0.9659 + }, + { + "start": 3290.06, + "end": 3291.44, + "probability": 0.9917 + }, + { + "start": 3294.52, + "end": 3294.52, + "probability": 0.2052 + }, + { + "start": 3294.52, + "end": 3294.98, + "probability": 0.3032 + }, + { + "start": 3295.66, + "end": 3297.63, + "probability": 0.862 + }, + { + "start": 3299.34, + "end": 3302.98, + "probability": 0.8769 + }, + { + "start": 3304.34, + "end": 3305.02, + "probability": 0.826 + }, + { + "start": 3306.18, + "end": 3306.88, + "probability": 0.9795 + }, + { + "start": 3306.96, + "end": 3311.32, + "probability": 0.8826 + }, + { + "start": 3312.76, + "end": 3313.84, + "probability": 0.769 + }, + { + "start": 3315.02, + "end": 3317.7, + "probability": 0.9946 + }, + { + "start": 3319.36, + "end": 3321.66, + "probability": 0.999 + }, + { + "start": 3322.24, + "end": 3323.06, + "probability": 0.8529 + }, + { + "start": 3323.62, + "end": 3325.84, + "probability": 0.9876 + }, + { + "start": 3327.36, + "end": 3331.94, + "probability": 0.998 + }, + { + "start": 3332.7, + "end": 3333.76, + "probability": 0.7971 + }, + { + "start": 3333.78, + "end": 3336.12, + "probability": 0.9975 + }, + { + "start": 3336.26, + "end": 3337.66, + "probability": 0.9949 + }, + { + "start": 3338.82, + "end": 3339.98, + "probability": 0.9995 + }, + { + "start": 3341.32, + "end": 3343.12, + "probability": 0.9956 + }, + { + "start": 3344.0, + "end": 3344.12, + "probability": 0.8212 + }, + { + "start": 3344.68, + "end": 3345.54, + "probability": 0.9484 + }, + { + "start": 3346.24, + "end": 3346.28, + "probability": 0.9268 + }, + { + "start": 3347.6, + "end": 3350.12, + "probability": 0.9941 + }, + { + "start": 3351.02, + "end": 3353.77, + "probability": 0.9854 + }, + { + "start": 3357.02, + "end": 3359.42, + "probability": 0.9939 + }, + { + "start": 3359.56, + "end": 3360.84, + "probability": 0.9768 + }, + { + "start": 3360.9, + "end": 3361.96, + "probability": 0.7985 + }, + { + "start": 3362.08, + "end": 3364.3, + "probability": 0.9014 + }, + { + "start": 3364.38, + "end": 3366.1, + "probability": 0.9938 + }, + { + "start": 3366.54, + "end": 3368.08, + "probability": 0.8865 + }, + { + "start": 3371.06, + "end": 3374.54, + "probability": 0.9928 + }, + { + "start": 3374.54, + "end": 3378.24, + "probability": 0.9897 + }, + { + "start": 3378.36, + "end": 3380.86, + "probability": 0.9954 + }, + { + "start": 3381.84, + "end": 3383.02, + "probability": 0.9325 + }, + { + "start": 3383.08, + "end": 3383.98, + "probability": 0.8578 + }, + { + "start": 3384.08, + "end": 3385.4, + "probability": 0.951 + }, + { + "start": 3385.58, + "end": 3387.02, + "probability": 0.8972 + }, + { + "start": 3387.12, + "end": 3388.96, + "probability": 0.8483 + }, + { + "start": 3389.5, + "end": 3390.8, + "probability": 0.8725 + }, + { + "start": 3391.84, + "end": 3392.48, + "probability": 0.7586 + }, + { + "start": 3393.64, + "end": 3395.84, + "probability": 0.9934 + }, + { + "start": 3398.04, + "end": 3400.68, + "probability": 0.9925 + }, + { + "start": 3401.02, + "end": 3403.18, + "probability": 0.9963 + }, + { + "start": 3404.18, + "end": 3406.64, + "probability": 0.975 + }, + { + "start": 3407.16, + "end": 3407.9, + "probability": 0.9985 + }, + { + "start": 3408.52, + "end": 3411.38, + "probability": 0.9999 + }, + { + "start": 3413.7, + "end": 3415.44, + "probability": 0.882 + }, + { + "start": 3416.24, + "end": 3420.06, + "probability": 0.9971 + }, + { + "start": 3421.9, + "end": 3422.92, + "probability": 0.7697 + }, + { + "start": 3423.1, + "end": 3424.8, + "probability": 0.7925 + }, + { + "start": 3424.84, + "end": 3425.3, + "probability": 0.4692 + }, + { + "start": 3425.4, + "end": 3425.78, + "probability": 0.6136 + }, + { + "start": 3426.46, + "end": 3430.56, + "probability": 0.986 + }, + { + "start": 3432.06, + "end": 3436.02, + "probability": 0.9856 + }, + { + "start": 3436.14, + "end": 3438.38, + "probability": 0.9201 + }, + { + "start": 3438.46, + "end": 3438.94, + "probability": 0.5243 + }, + { + "start": 3440.2, + "end": 3444.42, + "probability": 0.9968 + }, + { + "start": 3444.54, + "end": 3446.54, + "probability": 0.9868 + }, + { + "start": 3446.66, + "end": 3450.76, + "probability": 0.9206 + }, + { + "start": 3451.6, + "end": 3452.58, + "probability": 0.9193 + }, + { + "start": 3452.66, + "end": 3456.44, + "probability": 0.9929 + }, + { + "start": 3456.8, + "end": 3460.84, + "probability": 0.9406 + }, + { + "start": 3461.4, + "end": 3464.34, + "probability": 0.9443 + }, + { + "start": 3466.24, + "end": 3467.84, + "probability": 0.9438 + }, + { + "start": 3468.1, + "end": 3468.34, + "probability": 0.8824 + }, + { + "start": 3468.56, + "end": 3471.92, + "probability": 0.9347 + }, + { + "start": 3471.98, + "end": 3473.2, + "probability": 0.9854 + }, + { + "start": 3474.12, + "end": 3475.32, + "probability": 0.9678 + }, + { + "start": 3475.44, + "end": 3477.08, + "probability": 0.9775 + }, + { + "start": 3477.92, + "end": 3480.26, + "probability": 0.9973 + }, + { + "start": 3480.38, + "end": 3481.48, + "probability": 0.8609 + }, + { + "start": 3482.2, + "end": 3483.62, + "probability": 0.6016 + }, + { + "start": 3483.88, + "end": 3483.88, + "probability": 0.6328 + }, + { + "start": 3485.18, + "end": 3491.34, + "probability": 0.9888 + }, + { + "start": 3491.48, + "end": 3491.68, + "probability": 0.6131 + }, + { + "start": 3491.82, + "end": 3493.5, + "probability": 0.9883 + }, + { + "start": 3495.4, + "end": 3496.88, + "probability": 0.7945 + }, + { + "start": 3497.92, + "end": 3498.12, + "probability": 0.7552 + }, + { + "start": 3498.2, + "end": 3499.36, + "probability": 0.8447 + }, + { + "start": 3499.44, + "end": 3500.98, + "probability": 0.9868 + }, + { + "start": 3501.1, + "end": 3502.73, + "probability": 0.9878 + }, + { + "start": 3502.92, + "end": 3506.62, + "probability": 0.9807 + }, + { + "start": 3507.56, + "end": 3510.26, + "probability": 0.9972 + }, + { + "start": 3512.22, + "end": 3514.9, + "probability": 0.7168 + }, + { + "start": 3515.54, + "end": 3516.14, + "probability": 0.4138 + }, + { + "start": 3516.28, + "end": 3520.1, + "probability": 0.5531 + }, + { + "start": 3520.1, + "end": 3521.84, + "probability": 0.2224 + }, + { + "start": 3521.84, + "end": 3522.44, + "probability": 0.4687 + }, + { + "start": 3524.02, + "end": 3525.66, + "probability": 0.7677 + }, + { + "start": 3525.76, + "end": 3528.78, + "probability": 0.3272 + }, + { + "start": 3528.96, + "end": 3529.2, + "probability": 0.4084 + }, + { + "start": 3529.2, + "end": 3530.54, + "probability": 0.9816 + }, + { + "start": 3532.87, + "end": 3535.96, + "probability": 0.762 + }, + { + "start": 3536.96, + "end": 3540.12, + "probability": 0.8425 + }, + { + "start": 3540.4, + "end": 3541.38, + "probability": 0.9951 + }, + { + "start": 3542.72, + "end": 3544.16, + "probability": 0.7113 + }, + { + "start": 3544.28, + "end": 3545.32, + "probability": 0.9872 + }, + { + "start": 3545.4, + "end": 3547.0, + "probability": 0.9116 + }, + { + "start": 3547.08, + "end": 3547.68, + "probability": 0.8355 + }, + { + "start": 3547.78, + "end": 3550.22, + "probability": 0.9765 + }, + { + "start": 3550.22, + "end": 3552.66, + "probability": 0.9932 + }, + { + "start": 3553.82, + "end": 3554.87, + "probability": 0.9983 + }, + { + "start": 3555.4, + "end": 3555.96, + "probability": 0.9962 + }, + { + "start": 3556.62, + "end": 3558.82, + "probability": 0.9614 + }, + { + "start": 3559.64, + "end": 3561.02, + "probability": 0.7583 + }, + { + "start": 3561.2, + "end": 3561.48, + "probability": 0.751 + }, + { + "start": 3561.86, + "end": 3562.18, + "probability": 0.8993 + }, + { + "start": 3562.26, + "end": 3564.16, + "probability": 0.7241 + }, + { + "start": 3564.9, + "end": 3567.44, + "probability": 0.9932 + }, + { + "start": 3567.9, + "end": 3569.74, + "probability": 0.9946 + }, + { + "start": 3570.66, + "end": 3572.8, + "probability": 0.9958 + }, + { + "start": 3573.46, + "end": 3575.56, + "probability": 0.9767 + }, + { + "start": 3576.64, + "end": 3577.94, + "probability": 0.6011 + }, + { + "start": 3579.22, + "end": 3580.4, + "probability": 0.5651 + }, + { + "start": 3580.5, + "end": 3583.26, + "probability": 0.9446 + }, + { + "start": 3583.46, + "end": 3584.14, + "probability": 0.6149 + }, + { + "start": 3584.24, + "end": 3585.0, + "probability": 0.774 + }, + { + "start": 3585.1, + "end": 3585.7, + "probability": 0.7073 + }, + { + "start": 3585.9, + "end": 3587.0, + "probability": 0.6211 + }, + { + "start": 3587.38, + "end": 3589.82, + "probability": 0.9966 + }, + { + "start": 3591.1, + "end": 3591.32, + "probability": 0.9217 + }, + { + "start": 3591.42, + "end": 3593.86, + "probability": 0.9956 + }, + { + "start": 3594.04, + "end": 3595.9, + "probability": 0.9943 + }, + { + "start": 3597.18, + "end": 3599.16, + "probability": 0.9944 + }, + { + "start": 3599.32, + "end": 3601.16, + "probability": 0.9946 + }, + { + "start": 3601.18, + "end": 3602.56, + "probability": 0.8427 + }, + { + "start": 3603.3, + "end": 3605.52, + "probability": 0.9604 + }, + { + "start": 3605.96, + "end": 3606.86, + "probability": 0.8813 + }, + { + "start": 3607.34, + "end": 3608.62, + "probability": 0.4448 + }, + { + "start": 3608.66, + "end": 3609.1, + "probability": 0.7824 + }, + { + "start": 3609.14, + "end": 3610.5, + "probability": 0.9891 + }, + { + "start": 3612.16, + "end": 3613.12, + "probability": 0.6873 + }, + { + "start": 3613.12, + "end": 3613.54, + "probability": 0.9692 + }, + { + "start": 3613.72, + "end": 3613.88, + "probability": 0.7522 + }, + { + "start": 3613.98, + "end": 3616.12, + "probability": 0.9684 + }, + { + "start": 3616.26, + "end": 3617.16, + "probability": 0.5627 + }, + { + "start": 3619.46, + "end": 3621.04, + "probability": 0.95 + }, + { + "start": 3621.68, + "end": 3624.1, + "probability": 0.6962 + }, + { + "start": 3624.28, + "end": 3627.2, + "probability": 0.9938 + }, + { + "start": 3628.4, + "end": 3630.52, + "probability": 0.7607 + }, + { + "start": 3632.42, + "end": 3635.7, + "probability": 0.9494 + }, + { + "start": 3635.7, + "end": 3639.3, + "probability": 0.9008 + }, + { + "start": 3639.36, + "end": 3642.24, + "probability": 0.9922 + }, + { + "start": 3642.24, + "end": 3644.6, + "probability": 0.9986 + }, + { + "start": 3645.64, + "end": 3647.02, + "probability": 0.5474 + }, + { + "start": 3647.34, + "end": 3647.56, + "probability": 0.2066 + }, + { + "start": 3647.64, + "end": 3650.1, + "probability": 0.9504 + }, + { + "start": 3650.6, + "end": 3652.84, + "probability": 0.997 + }, + { + "start": 3653.18, + "end": 3653.56, + "probability": 0.8195 + }, + { + "start": 3653.64, + "end": 3655.72, + "probability": 0.9853 + }, + { + "start": 3656.44, + "end": 3658.94, + "probability": 0.9712 + }, + { + "start": 3660.12, + "end": 3660.66, + "probability": 0.658 + }, + { + "start": 3660.74, + "end": 3661.2, + "probability": 0.7504 + }, + { + "start": 3661.26, + "end": 3663.22, + "probability": 0.9829 + }, + { + "start": 3663.22, + "end": 3665.3, + "probability": 0.9986 + }, + { + "start": 3665.9, + "end": 3670.08, + "probability": 0.9654 + }, + { + "start": 3672.14, + "end": 3674.92, + "probability": 0.9978 + }, + { + "start": 3675.08, + "end": 3675.74, + "probability": 0.824 + }, + { + "start": 3676.46, + "end": 3678.6, + "probability": 0.9922 + }, + { + "start": 3678.74, + "end": 3681.38, + "probability": 0.837 + }, + { + "start": 3681.52, + "end": 3684.08, + "probability": 0.9413 + }, + { + "start": 3684.58, + "end": 3685.9, + "probability": 0.972 + }, + { + "start": 3686.04, + "end": 3686.56, + "probability": 0.8785 + }, + { + "start": 3686.62, + "end": 3686.86, + "probability": 0.8711 + }, + { + "start": 3686.92, + "end": 3688.06, + "probability": 0.9509 + }, + { + "start": 3688.44, + "end": 3689.38, + "probability": 0.9804 + }, + { + "start": 3689.5, + "end": 3691.7, + "probability": 0.9788 + }, + { + "start": 3692.5, + "end": 3695.8, + "probability": 0.9764 + }, + { + "start": 3696.34, + "end": 3698.08, + "probability": 0.9719 + }, + { + "start": 3698.28, + "end": 3699.64, + "probability": 0.8995 + }, + { + "start": 3700.2, + "end": 3701.34, + "probability": 0.9612 + }, + { + "start": 3701.48, + "end": 3702.82, + "probability": 0.9533 + }, + { + "start": 3702.92, + "end": 3703.66, + "probability": 0.8885 + }, + { + "start": 3704.26, + "end": 3708.6, + "probability": 0.9868 + }, + { + "start": 3709.04, + "end": 3709.78, + "probability": 0.3777 + }, + { + "start": 3709.92, + "end": 3711.64, + "probability": 0.9788 + }, + { + "start": 3712.52, + "end": 3717.58, + "probability": 0.8639 + }, + { + "start": 3717.98, + "end": 3720.62, + "probability": 0.9126 + }, + { + "start": 3720.7, + "end": 3722.7, + "probability": 0.8656 + }, + { + "start": 3723.22, + "end": 3724.66, + "probability": 0.9642 + }, + { + "start": 3725.16, + "end": 3729.2, + "probability": 0.9717 + }, + { + "start": 3729.22, + "end": 3730.38, + "probability": 0.69 + }, + { + "start": 3731.12, + "end": 3733.2, + "probability": 0.949 + }, + { + "start": 3733.2, + "end": 3736.0, + "probability": 0.9987 + }, + { + "start": 3737.04, + "end": 3737.74, + "probability": 0.7627 + }, + { + "start": 3740.64, + "end": 3741.86, + "probability": 0.964 + }, + { + "start": 3742.7, + "end": 3745.87, + "probability": 0.924 + }, + { + "start": 3746.2, + "end": 3747.62, + "probability": 0.8332 + }, + { + "start": 3748.92, + "end": 3750.3, + "probability": 0.958 + }, + { + "start": 3750.62, + "end": 3752.92, + "probability": 0.9525 + }, + { + "start": 3753.08, + "end": 3754.38, + "probability": 0.9182 + }, + { + "start": 3755.46, + "end": 3760.18, + "probability": 0.9805 + }, + { + "start": 3760.28, + "end": 3764.06, + "probability": 0.8741 + }, + { + "start": 3764.8, + "end": 3768.88, + "probability": 0.9811 + }, + { + "start": 3769.44, + "end": 3771.14, + "probability": 0.7534 + }, + { + "start": 3771.22, + "end": 3772.56, + "probability": 0.9542 + }, + { + "start": 3773.52, + "end": 3773.72, + "probability": 0.4534 + }, + { + "start": 3773.74, + "end": 3774.74, + "probability": 0.7717 + }, + { + "start": 3774.8, + "end": 3776.01, + "probability": 0.8872 + }, + { + "start": 3776.52, + "end": 3778.82, + "probability": 0.7403 + }, + { + "start": 3780.88, + "end": 3783.34, + "probability": 0.992 + }, + { + "start": 3784.36, + "end": 3785.84, + "probability": 0.7573 + }, + { + "start": 3786.82, + "end": 3791.88, + "probability": 0.8184 + }, + { + "start": 3791.96, + "end": 3792.7, + "probability": 0.6619 + }, + { + "start": 3793.44, + "end": 3795.64, + "probability": 0.8643 + }, + { + "start": 3796.68, + "end": 3798.08, + "probability": 0.9675 + }, + { + "start": 3799.04, + "end": 3800.16, + "probability": 0.871 + }, + { + "start": 3802.28, + "end": 3802.86, + "probability": 0.9085 + }, + { + "start": 3812.4, + "end": 3814.24, + "probability": 0.5876 + }, + { + "start": 3822.32, + "end": 3823.2, + "probability": 0.6081 + }, + { + "start": 3827.46, + "end": 3828.54, + "probability": 0.7028 + }, + { + "start": 3829.34, + "end": 3830.24, + "probability": 0.8437 + }, + { + "start": 3831.28, + "end": 3831.78, + "probability": 0.7443 + }, + { + "start": 3834.38, + "end": 3836.06, + "probability": 0.9941 + }, + { + "start": 3837.12, + "end": 3839.62, + "probability": 0.9917 + }, + { + "start": 3840.46, + "end": 3841.88, + "probability": 0.8739 + }, + { + "start": 3842.7, + "end": 3845.38, + "probability": 0.9788 + }, + { + "start": 3846.0, + "end": 3847.28, + "probability": 0.5646 + }, + { + "start": 3848.52, + "end": 3853.94, + "probability": 0.9918 + }, + { + "start": 3855.62, + "end": 3857.64, + "probability": 0.9771 + }, + { + "start": 3858.6, + "end": 3861.98, + "probability": 0.9592 + }, + { + "start": 3863.2, + "end": 3868.64, + "probability": 0.9543 + }, + { + "start": 3869.5, + "end": 3870.44, + "probability": 0.9937 + }, + { + "start": 3871.0, + "end": 3872.96, + "probability": 0.9969 + }, + { + "start": 3874.6, + "end": 3876.32, + "probability": 0.9765 + }, + { + "start": 3877.22, + "end": 3879.3, + "probability": 0.7258 + }, + { + "start": 3880.32, + "end": 3881.82, + "probability": 0.9699 + }, + { + "start": 3882.34, + "end": 3885.02, + "probability": 0.8887 + }, + { + "start": 3886.12, + "end": 3892.36, + "probability": 0.9103 + }, + { + "start": 3893.54, + "end": 3895.56, + "probability": 0.8266 + }, + { + "start": 3896.4, + "end": 3898.08, + "probability": 0.9681 + }, + { + "start": 3899.58, + "end": 3903.7, + "probability": 0.9842 + }, + { + "start": 3904.94, + "end": 3907.08, + "probability": 0.8716 + }, + { + "start": 3907.84, + "end": 3909.38, + "probability": 0.7585 + }, + { + "start": 3909.46, + "end": 3912.02, + "probability": 0.9814 + }, + { + "start": 3912.02, + "end": 3915.52, + "probability": 0.9908 + }, + { + "start": 3916.06, + "end": 3917.32, + "probability": 0.9897 + }, + { + "start": 3917.88, + "end": 3923.66, + "probability": 0.9414 + }, + { + "start": 3924.54, + "end": 3925.28, + "probability": 0.637 + }, + { + "start": 3925.82, + "end": 3926.64, + "probability": 0.7504 + }, + { + "start": 3928.6, + "end": 3932.66, + "probability": 0.8335 + }, + { + "start": 3933.4, + "end": 3937.62, + "probability": 0.9951 + }, + { + "start": 3939.16, + "end": 3941.62, + "probability": 0.9801 + }, + { + "start": 3942.36, + "end": 3944.76, + "probability": 0.9583 + }, + { + "start": 3946.92, + "end": 3947.26, + "probability": 0.7159 + }, + { + "start": 3947.3, + "end": 3948.48, + "probability": 0.9666 + }, + { + "start": 3948.86, + "end": 3951.68, + "probability": 0.9968 + }, + { + "start": 3952.32, + "end": 3956.25, + "probability": 0.9919 + }, + { + "start": 3956.38, + "end": 3959.6, + "probability": 0.9968 + }, + { + "start": 3960.4, + "end": 3963.98, + "probability": 0.9971 + }, + { + "start": 3963.98, + "end": 3968.0, + "probability": 0.9936 + }, + { + "start": 3969.2, + "end": 3974.58, + "probability": 0.9888 + }, + { + "start": 3975.48, + "end": 3980.12, + "probability": 0.9851 + }, + { + "start": 3981.12, + "end": 3983.54, + "probability": 0.9963 + }, + { + "start": 3983.54, + "end": 3987.16, + "probability": 0.9951 + }, + { + "start": 3988.06, + "end": 3991.04, + "probability": 0.9672 + }, + { + "start": 3992.24, + "end": 3993.28, + "probability": 0.999 + }, + { + "start": 3993.84, + "end": 3994.52, + "probability": 0.9574 + }, + { + "start": 3995.66, + "end": 3998.36, + "probability": 0.9992 + }, + { + "start": 3999.24, + "end": 4001.1, + "probability": 0.9872 + }, + { + "start": 4002.58, + "end": 4003.92, + "probability": 0.9331 + }, + { + "start": 4004.82, + "end": 4010.14, + "probability": 0.99 + }, + { + "start": 4011.44, + "end": 4014.52, + "probability": 0.9371 + }, + { + "start": 4015.24, + "end": 4021.5, + "probability": 0.9966 + }, + { + "start": 4022.48, + "end": 4025.34, + "probability": 0.9624 + }, + { + "start": 4025.98, + "end": 4028.08, + "probability": 0.8818 + }, + { + "start": 4029.08, + "end": 4031.04, + "probability": 0.863 + }, + { + "start": 4031.94, + "end": 4033.98, + "probability": 0.9971 + }, + { + "start": 4033.98, + "end": 4037.66, + "probability": 0.9928 + }, + { + "start": 4038.8, + "end": 4039.86, + "probability": 0.8059 + }, + { + "start": 4040.0, + "end": 4042.5, + "probability": 0.8076 + }, + { + "start": 4042.58, + "end": 4043.2, + "probability": 0.8498 + }, + { + "start": 4043.32, + "end": 4048.66, + "probability": 0.8927 + }, + { + "start": 4050.96, + "end": 4052.62, + "probability": 0.8403 + }, + { + "start": 4053.0, + "end": 4054.12, + "probability": 0.9574 + }, + { + "start": 4054.26, + "end": 4058.7, + "probability": 0.9966 + }, + { + "start": 4059.3, + "end": 4061.2, + "probability": 0.9138 + }, + { + "start": 4062.1, + "end": 4063.58, + "probability": 0.5583 + }, + { + "start": 4063.88, + "end": 4066.7, + "probability": 0.9369 + }, + { + "start": 4067.38, + "end": 4070.48, + "probability": 0.9944 + }, + { + "start": 4070.58, + "end": 4075.32, + "probability": 0.9586 + }, + { + "start": 4076.04, + "end": 4080.16, + "probability": 0.9258 + }, + { + "start": 4083.08, + "end": 4083.56, + "probability": 0.8124 + }, + { + "start": 4085.28, + "end": 4087.18, + "probability": 0.7235 + }, + { + "start": 4088.4, + "end": 4091.8, + "probability": 0.9843 + }, + { + "start": 4092.98, + "end": 4097.2, + "probability": 0.9913 + }, + { + "start": 4097.96, + "end": 4100.28, + "probability": 0.9683 + }, + { + "start": 4101.48, + "end": 4104.72, + "probability": 0.9765 + }, + { + "start": 4105.74, + "end": 4107.38, + "probability": 0.9971 + }, + { + "start": 4108.04, + "end": 4109.28, + "probability": 0.8711 + }, + { + "start": 4110.04, + "end": 4113.42, + "probability": 0.9948 + }, + { + "start": 4113.42, + "end": 4118.04, + "probability": 0.9984 + }, + { + "start": 4118.96, + "end": 4119.6, + "probability": 0.6239 + }, + { + "start": 4120.18, + "end": 4120.8, + "probability": 0.8512 + }, + { + "start": 4121.88, + "end": 4122.98, + "probability": 0.8931 + }, + { + "start": 4124.06, + "end": 4127.42, + "probability": 0.9982 + }, + { + "start": 4128.36, + "end": 4131.82, + "probability": 0.8841 + }, + { + "start": 4132.54, + "end": 4133.6, + "probability": 0.7994 + }, + { + "start": 4134.14, + "end": 4135.56, + "probability": 0.9475 + }, + { + "start": 4135.88, + "end": 4136.08, + "probability": 0.817 + }, + { + "start": 4137.1, + "end": 4137.52, + "probability": 0.8549 + }, + { + "start": 4139.04, + "end": 4140.58, + "probability": 0.864 + }, + { + "start": 4141.5, + "end": 4142.44, + "probability": 0.8064 + }, + { + "start": 4143.02, + "end": 4144.14, + "probability": 0.8096 + }, + { + "start": 4149.8, + "end": 4151.66, + "probability": 0.0392 + }, + { + "start": 4152.96, + "end": 4155.54, + "probability": 0.0631 + }, + { + "start": 4155.82, + "end": 4158.24, + "probability": 0.6398 + }, + { + "start": 4159.74, + "end": 4162.6, + "probability": 0.2908 + }, + { + "start": 4163.66, + "end": 4164.0, + "probability": 0.0192 + }, + { + "start": 4164.0, + "end": 4164.0, + "probability": 0.0199 + }, + { + "start": 4164.0, + "end": 4165.46, + "probability": 0.7227 + }, + { + "start": 4167.7, + "end": 4168.95, + "probability": 0.2723 + }, + { + "start": 4170.82, + "end": 4173.2, + "probability": 0.9139 + }, + { + "start": 4173.4, + "end": 4174.24, + "probability": 0.9007 + }, + { + "start": 4176.98, + "end": 4178.82, + "probability": 0.5863 + }, + { + "start": 4179.48, + "end": 4180.4, + "probability": 0.8198 + }, + { + "start": 4182.2, + "end": 4182.8, + "probability": 0.4673 + }, + { + "start": 4182.8, + "end": 4182.94, + "probability": 0.0098 + }, + { + "start": 4183.38, + "end": 4183.86, + "probability": 0.4022 + }, + { + "start": 4184.02, + "end": 4184.94, + "probability": 0.709 + }, + { + "start": 4188.08, + "end": 4191.06, + "probability": 0.6078 + }, + { + "start": 4192.14, + "end": 4194.2, + "probability": 0.5021 + }, + { + "start": 4197.0, + "end": 4197.0, + "probability": 0.0786 + }, + { + "start": 4197.0, + "end": 4197.0, + "probability": 0.0702 + }, + { + "start": 4197.0, + "end": 4198.06, + "probability": 0.3861 + }, + { + "start": 4198.12, + "end": 4198.92, + "probability": 0.8456 + }, + { + "start": 4199.4, + "end": 4201.5, + "probability": 0.9192 + }, + { + "start": 4201.68, + "end": 4204.88, + "probability": 0.7975 + }, + { + "start": 4204.98, + "end": 4205.33, + "probability": 0.6465 + }, + { + "start": 4206.36, + "end": 4209.24, + "probability": 0.9932 + }, + { + "start": 4210.54, + "end": 4213.5, + "probability": 0.8558 + }, + { + "start": 4214.42, + "end": 4215.96, + "probability": 0.7485 + }, + { + "start": 4217.46, + "end": 4218.28, + "probability": 0.9828 + }, + { + "start": 4218.98, + "end": 4223.04, + "probability": 0.9851 + }, + { + "start": 4223.14, + "end": 4224.5, + "probability": 0.7131 + }, + { + "start": 4225.18, + "end": 4226.22, + "probability": 0.7492 + }, + { + "start": 4226.94, + "end": 4229.3, + "probability": 0.9001 + }, + { + "start": 4230.28, + "end": 4231.2, + "probability": 0.6621 + }, + { + "start": 4232.42, + "end": 4233.08, + "probability": 0.7746 + }, + { + "start": 4233.64, + "end": 4236.38, + "probability": 0.9549 + }, + { + "start": 4238.08, + "end": 4238.76, + "probability": 0.7202 + }, + { + "start": 4238.84, + "end": 4239.32, + "probability": 0.4486 + }, + { + "start": 4239.46, + "end": 4242.92, + "probability": 0.9211 + }, + { + "start": 4243.08, + "end": 4245.16, + "probability": 0.7704 + }, + { + "start": 4246.94, + "end": 4251.08, + "probability": 0.9663 + }, + { + "start": 4251.64, + "end": 4254.16, + "probability": 0.9763 + }, + { + "start": 4255.02, + "end": 4259.02, + "probability": 0.9875 + }, + { + "start": 4259.8, + "end": 4263.9, + "probability": 0.9924 + }, + { + "start": 4264.32, + "end": 4265.02, + "probability": 0.9925 + }, + { + "start": 4266.48, + "end": 4268.44, + "probability": 0.9944 + }, + { + "start": 4268.52, + "end": 4271.7, + "probability": 0.996 + }, + { + "start": 4272.4, + "end": 4274.4, + "probability": 0.9822 + }, + { + "start": 4275.16, + "end": 4277.56, + "probability": 0.8916 + }, + { + "start": 4277.84, + "end": 4279.36, + "probability": 0.9821 + }, + { + "start": 4280.0, + "end": 4281.14, + "probability": 0.9956 + }, + { + "start": 4281.94, + "end": 4283.98, + "probability": 0.9971 + }, + { + "start": 4285.33, + "end": 4286.84, + "probability": 0.8345 + }, + { + "start": 4287.78, + "end": 4288.26, + "probability": 0.6894 + }, + { + "start": 4289.02, + "end": 4292.26, + "probability": 0.9447 + }, + { + "start": 4293.08, + "end": 4296.5, + "probability": 0.996 + }, + { + "start": 4297.2, + "end": 4299.3, + "probability": 0.822 + }, + { + "start": 4300.38, + "end": 4303.8, + "probability": 0.8802 + }, + { + "start": 4305.2, + "end": 4308.08, + "probability": 0.9493 + }, + { + "start": 4308.3, + "end": 4310.18, + "probability": 0.9493 + }, + { + "start": 4310.58, + "end": 4311.6, + "probability": 0.7737 + }, + { + "start": 4313.06, + "end": 4316.76, + "probability": 0.7683 + }, + { + "start": 4317.16, + "end": 4319.94, + "probability": 0.978 + }, + { + "start": 4320.26, + "end": 4320.82, + "probability": 0.7485 + }, + { + "start": 4321.76, + "end": 4324.52, + "probability": 0.7993 + }, + { + "start": 4325.1, + "end": 4329.2, + "probability": 0.9973 + }, + { + "start": 4331.71, + "end": 4334.28, + "probability": 0.7316 + }, + { + "start": 4335.98, + "end": 4337.04, + "probability": 0.5705 + }, + { + "start": 4337.16, + "end": 4338.16, + "probability": 0.8591 + }, + { + "start": 4338.22, + "end": 4339.31, + "probability": 0.9771 + }, + { + "start": 4339.6, + "end": 4340.06, + "probability": 0.9771 + }, + { + "start": 4340.54, + "end": 4342.02, + "probability": 0.9974 + }, + { + "start": 4342.36, + "end": 4343.3, + "probability": 0.9523 + }, + { + "start": 4343.46, + "end": 4343.87, + "probability": 0.9596 + }, + { + "start": 4344.3, + "end": 4345.84, + "probability": 0.9816 + }, + { + "start": 4346.66, + "end": 4348.34, + "probability": 0.9936 + }, + { + "start": 4348.58, + "end": 4349.49, + "probability": 0.9048 + }, + { + "start": 4350.12, + "end": 4355.36, + "probability": 0.9831 + }, + { + "start": 4356.12, + "end": 4358.96, + "probability": 0.883 + }, + { + "start": 4359.06, + "end": 4360.34, + "probability": 0.9937 + }, + { + "start": 4360.36, + "end": 4361.6, + "probability": 0.9868 + }, + { + "start": 4362.8, + "end": 4365.98, + "probability": 0.896 + }, + { + "start": 4366.84, + "end": 4370.18, + "probability": 0.9972 + }, + { + "start": 4370.9, + "end": 4374.24, + "probability": 0.8885 + }, + { + "start": 4374.34, + "end": 4380.42, + "probability": 0.8693 + }, + { + "start": 4380.98, + "end": 4382.52, + "probability": 0.8225 + }, + { + "start": 4382.84, + "end": 4383.5, + "probability": 0.6475 + }, + { + "start": 4383.62, + "end": 4385.18, + "probability": 0.9946 + }, + { + "start": 4385.62, + "end": 4388.22, + "probability": 0.9736 + }, + { + "start": 4388.22, + "end": 4390.76, + "probability": 0.9966 + }, + { + "start": 4391.14, + "end": 4393.84, + "probability": 0.8372 + }, + { + "start": 4394.26, + "end": 4395.18, + "probability": 0.7622 + }, + { + "start": 4395.28, + "end": 4396.02, + "probability": 0.7143 + }, + { + "start": 4396.62, + "end": 4400.58, + "probability": 0.9639 + }, + { + "start": 4400.66, + "end": 4402.34, + "probability": 0.9247 + }, + { + "start": 4402.8, + "end": 4408.16, + "probability": 0.8864 + }, + { + "start": 4408.92, + "end": 4411.74, + "probability": 0.865 + }, + { + "start": 4412.64, + "end": 4415.04, + "probability": 0.9714 + }, + { + "start": 4415.12, + "end": 4415.56, + "probability": 0.5743 + }, + { + "start": 4416.34, + "end": 4417.78, + "probability": 0.4573 + }, + { + "start": 4418.46, + "end": 4421.34, + "probability": 0.7709 + }, + { + "start": 4421.34, + "end": 4423.54, + "probability": 0.9993 + }, + { + "start": 4424.42, + "end": 4427.88, + "probability": 0.9922 + }, + { + "start": 4427.92, + "end": 4431.52, + "probability": 0.9992 + }, + { + "start": 4432.14, + "end": 4435.08, + "probability": 0.9938 + }, + { + "start": 4435.08, + "end": 4437.54, + "probability": 0.9961 + }, + { + "start": 4438.04, + "end": 4441.01, + "probability": 0.8187 + }, + { + "start": 4442.0, + "end": 4444.5, + "probability": 0.9985 + }, + { + "start": 4445.0, + "end": 4445.68, + "probability": 0.8289 + }, + { + "start": 4446.28, + "end": 4448.5, + "probability": 0.7661 + }, + { + "start": 4448.82, + "end": 4450.0, + "probability": 0.7873 + }, + { + "start": 4450.06, + "end": 4452.64, + "probability": 0.9707 + }, + { + "start": 4452.88, + "end": 4454.48, + "probability": 0.8438 + }, + { + "start": 4454.54, + "end": 4458.18, + "probability": 0.991 + }, + { + "start": 4458.66, + "end": 4461.16, + "probability": 0.961 + }, + { + "start": 4461.58, + "end": 4462.04, + "probability": 0.5267 + }, + { + "start": 4462.12, + "end": 4462.82, + "probability": 0.4918 + }, + { + "start": 4462.9, + "end": 4468.56, + "probability": 0.9061 + }, + { + "start": 4469.12, + "end": 4471.9, + "probability": 0.9887 + }, + { + "start": 4472.32, + "end": 4474.94, + "probability": 0.6226 + }, + { + "start": 4475.42, + "end": 4478.28, + "probability": 0.9867 + }, + { + "start": 4478.28, + "end": 4482.3, + "probability": 0.9567 + }, + { + "start": 4482.64, + "end": 4484.24, + "probability": 0.6255 + }, + { + "start": 4485.3, + "end": 4486.9, + "probability": 0.7259 + }, + { + "start": 4487.96, + "end": 4493.68, + "probability": 0.9815 + }, + { + "start": 4494.28, + "end": 4495.92, + "probability": 0.9244 + }, + { + "start": 4496.3, + "end": 4499.84, + "probability": 0.9843 + }, + { + "start": 4500.56, + "end": 4502.86, + "probability": 0.9526 + }, + { + "start": 4502.92, + "end": 4504.18, + "probability": 0.7614 + }, + { + "start": 4504.3, + "end": 4507.14, + "probability": 0.9386 + }, + { + "start": 4507.7, + "end": 4510.18, + "probability": 0.9624 + }, + { + "start": 4510.54, + "end": 4514.74, + "probability": 0.9974 + }, + { + "start": 4514.74, + "end": 4519.12, + "probability": 0.9888 + }, + { + "start": 4519.12, + "end": 4523.82, + "probability": 0.9394 + }, + { + "start": 4524.24, + "end": 4525.36, + "probability": 0.976 + }, + { + "start": 4526.06, + "end": 4528.3, + "probability": 0.9171 + }, + { + "start": 4528.78, + "end": 4530.16, + "probability": 0.9606 + }, + { + "start": 4530.88, + "end": 4531.65, + "probability": 0.8419 + }, + { + "start": 4532.34, + "end": 4534.94, + "probability": 0.8588 + }, + { + "start": 4535.24, + "end": 4536.2, + "probability": 0.9805 + }, + { + "start": 4536.38, + "end": 4537.16, + "probability": 0.92 + }, + { + "start": 4537.22, + "end": 4540.0, + "probability": 0.9266 + }, + { + "start": 4540.04, + "end": 4540.04, + "probability": 0.0387 + }, + { + "start": 4540.06, + "end": 4541.19, + "probability": 0.9819 + }, + { + "start": 4542.02, + "end": 4542.92, + "probability": 0.9171 + }, + { + "start": 4543.22, + "end": 4545.38, + "probability": 0.9812 + }, + { + "start": 4546.22, + "end": 4551.12, + "probability": 0.9443 + }, + { + "start": 4551.12, + "end": 4554.7, + "probability": 0.8778 + }, + { + "start": 4555.24, + "end": 4556.38, + "probability": 0.9592 + }, + { + "start": 4556.46, + "end": 4557.5, + "probability": 0.9219 + }, + { + "start": 4557.92, + "end": 4559.12, + "probability": 0.9167 + }, + { + "start": 4559.42, + "end": 4565.08, + "probability": 0.9626 + }, + { + "start": 4565.52, + "end": 4567.87, + "probability": 0.9406 + }, + { + "start": 4569.14, + "end": 4573.62, + "probability": 0.993 + }, + { + "start": 4573.62, + "end": 4577.04, + "probability": 0.9194 + }, + { + "start": 4577.22, + "end": 4578.48, + "probability": 0.7499 + }, + { + "start": 4578.82, + "end": 4581.9, + "probability": 0.9873 + }, + { + "start": 4582.2, + "end": 4582.96, + "probability": 0.773 + }, + { + "start": 4583.68, + "end": 4583.96, + "probability": 0.9594 + }, + { + "start": 4584.48, + "end": 4586.56, + "probability": 0.8791 + }, + { + "start": 4587.12, + "end": 4588.32, + "probability": 0.9762 + }, + { + "start": 4588.44, + "end": 4589.78, + "probability": 0.7828 + }, + { + "start": 4590.18, + "end": 4590.84, + "probability": 0.7729 + }, + { + "start": 4590.94, + "end": 4593.94, + "probability": 0.7736 + }, + { + "start": 4594.18, + "end": 4594.18, + "probability": 0.4995 + }, + { + "start": 4594.3, + "end": 4597.52, + "probability": 0.9958 + }, + { + "start": 4597.52, + "end": 4600.9, + "probability": 0.7887 + }, + { + "start": 4601.32, + "end": 4602.84, + "probability": 0.6318 + }, + { + "start": 4603.22, + "end": 4605.36, + "probability": 0.9771 + }, + { + "start": 4605.62, + "end": 4606.94, + "probability": 0.9697 + }, + { + "start": 4607.1, + "end": 4607.36, + "probability": 0.797 + }, + { + "start": 4608.12, + "end": 4608.66, + "probability": 0.7196 + }, + { + "start": 4608.86, + "end": 4609.92, + "probability": 0.7888 + }, + { + "start": 4629.78, + "end": 4631.9, + "probability": 0.7839 + }, + { + "start": 4632.98, + "end": 4636.0, + "probability": 0.9812 + }, + { + "start": 4636.28, + "end": 4636.94, + "probability": 0.8727 + }, + { + "start": 4637.46, + "end": 4637.74, + "probability": 0.9321 + }, + { + "start": 4637.82, + "end": 4638.38, + "probability": 0.978 + }, + { + "start": 4638.48, + "end": 4639.56, + "probability": 0.668 + }, + { + "start": 4640.18, + "end": 4641.42, + "probability": 0.6578 + }, + { + "start": 4642.24, + "end": 4647.72, + "probability": 0.9563 + }, + { + "start": 4648.52, + "end": 4650.66, + "probability": 0.976 + }, + { + "start": 4651.18, + "end": 4653.18, + "probability": 0.7824 + }, + { + "start": 4653.8, + "end": 4659.8, + "probability": 0.9717 + }, + { + "start": 4660.8, + "end": 4663.32, + "probability": 0.6473 + }, + { + "start": 4663.88, + "end": 4665.76, + "probability": 0.9512 + }, + { + "start": 4667.12, + "end": 4668.6, + "probability": 0.9157 + }, + { + "start": 4668.92, + "end": 4671.62, + "probability": 0.9798 + }, + { + "start": 4672.58, + "end": 4675.88, + "probability": 0.9757 + }, + { + "start": 4675.88, + "end": 4680.74, + "probability": 0.9802 + }, + { + "start": 4680.74, + "end": 4684.24, + "probability": 0.855 + }, + { + "start": 4685.48, + "end": 4689.44, + "probability": 0.9403 + }, + { + "start": 4689.72, + "end": 4693.36, + "probability": 0.9976 + }, + { + "start": 4693.6, + "end": 4697.8, + "probability": 0.9932 + }, + { + "start": 4699.22, + "end": 4701.14, + "probability": 0.5532 + }, + { + "start": 4701.8, + "end": 4703.88, + "probability": 0.9034 + }, + { + "start": 4704.78, + "end": 4707.14, + "probability": 0.8752 + }, + { + "start": 4708.32, + "end": 4712.16, + "probability": 0.9818 + }, + { + "start": 4713.16, + "end": 4714.38, + "probability": 0.9919 + }, + { + "start": 4714.92, + "end": 4716.8, + "probability": 0.6748 + }, + { + "start": 4718.0, + "end": 4721.4, + "probability": 0.9561 + }, + { + "start": 4721.4, + "end": 4724.96, + "probability": 0.9934 + }, + { + "start": 4726.18, + "end": 4729.4, + "probability": 0.8759 + }, + { + "start": 4729.98, + "end": 4732.74, + "probability": 0.9091 + }, + { + "start": 4733.14, + "end": 4736.84, + "probability": 0.9964 + }, + { + "start": 4737.28, + "end": 4738.4, + "probability": 0.8234 + }, + { + "start": 4739.62, + "end": 4744.92, + "probability": 0.8927 + }, + { + "start": 4745.18, + "end": 4749.04, + "probability": 0.9803 + }, + { + "start": 4749.04, + "end": 4751.26, + "probability": 0.9974 + }, + { + "start": 4752.48, + "end": 4755.41, + "probability": 0.7603 + }, + { + "start": 4755.9, + "end": 4756.62, + "probability": 0.8651 + }, + { + "start": 4757.8, + "end": 4758.88, + "probability": 0.5333 + }, + { + "start": 4758.9, + "end": 4764.9, + "probability": 0.9309 + }, + { + "start": 4764.9, + "end": 4771.32, + "probability": 0.9287 + }, + { + "start": 4772.32, + "end": 4772.7, + "probability": 0.2928 + }, + { + "start": 4772.76, + "end": 4773.5, + "probability": 0.7296 + }, + { + "start": 4773.6, + "end": 4778.02, + "probability": 0.9836 + }, + { + "start": 4778.68, + "end": 4783.04, + "probability": 0.9652 + }, + { + "start": 4783.2, + "end": 4785.06, + "probability": 0.9827 + }, + { + "start": 4786.14, + "end": 4789.1, + "probability": 0.9435 + }, + { + "start": 4789.74, + "end": 4793.02, + "probability": 0.9802 + }, + { + "start": 4793.88, + "end": 4797.28, + "probability": 0.9868 + }, + { + "start": 4797.98, + "end": 4799.86, + "probability": 0.9934 + }, + { + "start": 4800.56, + "end": 4802.64, + "probability": 0.676 + }, + { + "start": 4803.72, + "end": 4804.2, + "probability": 0.8575 + }, + { + "start": 4804.36, + "end": 4807.42, + "probability": 0.8603 + }, + { + "start": 4808.56, + "end": 4814.3, + "probability": 0.9806 + }, + { + "start": 4814.42, + "end": 4815.28, + "probability": 0.3502 + }, + { + "start": 4815.5, + "end": 4818.26, + "probability": 0.9358 + }, + { + "start": 4819.44, + "end": 4826.68, + "probability": 0.8271 + }, + { + "start": 4826.82, + "end": 4828.68, + "probability": 0.69 + }, + { + "start": 4829.24, + "end": 4834.7, + "probability": 0.9846 + }, + { + "start": 4836.1, + "end": 4838.46, + "probability": 0.989 + }, + { + "start": 4839.14, + "end": 4839.4, + "probability": 0.4125 + }, + { + "start": 4839.56, + "end": 4846.74, + "probability": 0.9928 + }, + { + "start": 4847.3, + "end": 4852.12, + "probability": 0.8149 + }, + { + "start": 4852.12, + "end": 4859.43, + "probability": 0.9529 + }, + { + "start": 4860.78, + "end": 4862.66, + "probability": 0.579 + }, + { + "start": 4864.26, + "end": 4865.1, + "probability": 0.7474 + }, + { + "start": 4865.16, + "end": 4866.68, + "probability": 0.9159 + }, + { + "start": 4866.92, + "end": 4868.88, + "probability": 0.8491 + }, + { + "start": 4869.76, + "end": 4874.6, + "probability": 0.9912 + }, + { + "start": 4875.78, + "end": 4878.34, + "probability": 0.9636 + }, + { + "start": 4878.78, + "end": 4881.14, + "probability": 0.5331 + }, + { + "start": 4881.92, + "end": 4882.92, + "probability": 0.9517 + }, + { + "start": 4883.0, + "end": 4884.72, + "probability": 0.7429 + }, + { + "start": 4884.76, + "end": 4885.62, + "probability": 0.7326 + }, + { + "start": 4886.18, + "end": 4889.0, + "probability": 0.9573 + }, + { + "start": 4889.5, + "end": 4894.62, + "probability": 0.9579 + }, + { + "start": 4895.46, + "end": 4896.73, + "probability": 0.6061 + }, + { + "start": 4897.42, + "end": 4899.82, + "probability": 0.8155 + }, + { + "start": 4900.16, + "end": 4904.1, + "probability": 0.9932 + }, + { + "start": 4904.1, + "end": 4909.24, + "probability": 0.9979 + }, + { + "start": 4910.1, + "end": 4910.42, + "probability": 0.8607 + }, + { + "start": 4910.78, + "end": 4913.06, + "probability": 0.6171 + }, + { + "start": 4913.22, + "end": 4915.88, + "probability": 0.9915 + }, + { + "start": 4917.36, + "end": 4919.74, + "probability": 0.787 + }, + { + "start": 4919.88, + "end": 4923.65, + "probability": 0.9419 + }, + { + "start": 4924.88, + "end": 4930.28, + "probability": 0.9532 + }, + { + "start": 4930.44, + "end": 4932.1, + "probability": 0.9764 + }, + { + "start": 4932.62, + "end": 4933.1, + "probability": 0.9613 + }, + { + "start": 4934.22, + "end": 4936.18, + "probability": 0.7065 + }, + { + "start": 4946.1, + "end": 4947.08, + "probability": 0.6559 + }, + { + "start": 4947.68, + "end": 4949.28, + "probability": 0.9883 + }, + { + "start": 4950.52, + "end": 4954.66, + "probability": 0.9762 + }, + { + "start": 4955.36, + "end": 4957.56, + "probability": 0.5266 + }, + { + "start": 4961.32, + "end": 4963.6, + "probability": 0.9833 + }, + { + "start": 4964.34, + "end": 4966.24, + "probability": 0.8312 + }, + { + "start": 4967.62, + "end": 4971.4, + "probability": 0.6964 + }, + { + "start": 4972.22, + "end": 4973.5, + "probability": 0.9631 + }, + { + "start": 4974.26, + "end": 4976.62, + "probability": 0.7607 + }, + { + "start": 4977.36, + "end": 4981.36, + "probability": 0.8657 + }, + { + "start": 4981.96, + "end": 4983.84, + "probability": 0.9473 + }, + { + "start": 4984.74, + "end": 4985.02, + "probability": 0.1213 + }, + { + "start": 4985.6, + "end": 4985.94, + "probability": 0.9434 + }, + { + "start": 4987.08, + "end": 4988.16, + "probability": 0.9536 + }, + { + "start": 4990.08, + "end": 4991.6, + "probability": 0.9406 + }, + { + "start": 4992.26, + "end": 4993.44, + "probability": 0.9807 + }, + { + "start": 4994.36, + "end": 4997.12, + "probability": 0.9836 + }, + { + "start": 4998.42, + "end": 5003.12, + "probability": 0.9639 + }, + { + "start": 5003.68, + "end": 5005.56, + "probability": 0.9985 + }, + { + "start": 5006.54, + "end": 5007.94, + "probability": 0.8762 + }, + { + "start": 5008.1, + "end": 5009.12, + "probability": 0.8738 + }, + { + "start": 5009.56, + "end": 5011.7, + "probability": 0.9805 + }, + { + "start": 5011.86, + "end": 5012.86, + "probability": 0.8433 + }, + { + "start": 5013.22, + "end": 5016.42, + "probability": 0.9284 + }, + { + "start": 5017.36, + "end": 5022.68, + "probability": 0.9971 + }, + { + "start": 5024.1, + "end": 5025.78, + "probability": 0.9968 + }, + { + "start": 5026.04, + "end": 5030.08, + "probability": 0.9976 + }, + { + "start": 5030.62, + "end": 5031.88, + "probability": 0.9993 + }, + { + "start": 5035.8, + "end": 5036.38, + "probability": 0.5615 + }, + { + "start": 5037.02, + "end": 5038.64, + "probability": 0.5115 + }, + { + "start": 5038.76, + "end": 5040.94, + "probability": 0.9 + }, + { + "start": 5041.06, + "end": 5041.66, + "probability": 0.9882 + }, + { + "start": 5042.84, + "end": 5045.38, + "probability": 0.9901 + }, + { + "start": 5045.44, + "end": 5048.02, + "probability": 0.9819 + }, + { + "start": 5048.74, + "end": 5051.98, + "probability": 0.7821 + }, + { + "start": 5052.5, + "end": 5057.56, + "probability": 0.7905 + }, + { + "start": 5058.16, + "end": 5062.46, + "probability": 0.9263 + }, + { + "start": 5063.04, + "end": 5066.96, + "probability": 0.8579 + }, + { + "start": 5067.64, + "end": 5072.42, + "probability": 0.994 + }, + { + "start": 5073.44, + "end": 5076.56, + "probability": 0.9948 + }, + { + "start": 5076.66, + "end": 5077.5, + "probability": 0.9791 + }, + { + "start": 5078.24, + "end": 5080.2, + "probability": 0.9951 + }, + { + "start": 5080.28, + "end": 5081.74, + "probability": 0.937 + }, + { + "start": 5082.74, + "end": 5086.2, + "probability": 0.994 + }, + { + "start": 5086.82, + "end": 5088.64, + "probability": 0.9796 + }, + { + "start": 5089.52, + "end": 5091.88, + "probability": 0.928 + }, + { + "start": 5092.34, + "end": 5094.88, + "probability": 0.9648 + }, + { + "start": 5095.5, + "end": 5098.6, + "probability": 0.9491 + }, + { + "start": 5099.28, + "end": 5104.84, + "probability": 0.9963 + }, + { + "start": 5105.5, + "end": 5108.58, + "probability": 0.8151 + }, + { + "start": 5109.06, + "end": 5109.88, + "probability": 0.8119 + }, + { + "start": 5109.96, + "end": 5111.14, + "probability": 0.9733 + }, + { + "start": 5111.28, + "end": 5112.48, + "probability": 0.9716 + }, + { + "start": 5113.16, + "end": 5115.22, + "probability": 0.9962 + }, + { + "start": 5115.68, + "end": 5117.44, + "probability": 0.9554 + }, + { + "start": 5117.52, + "end": 5117.96, + "probability": 0.9811 + }, + { + "start": 5118.1, + "end": 5118.52, + "probability": 0.9875 + }, + { + "start": 5119.04, + "end": 5121.02, + "probability": 0.9819 + }, + { + "start": 5122.28, + "end": 5124.52, + "probability": 0.9966 + }, + { + "start": 5124.92, + "end": 5127.16, + "probability": 0.9982 + }, + { + "start": 5127.66, + "end": 5130.36, + "probability": 0.9701 + }, + { + "start": 5131.12, + "end": 5136.06, + "probability": 0.9509 + }, + { + "start": 5136.4, + "end": 5137.0, + "probability": 0.6877 + }, + { + "start": 5137.28, + "end": 5138.52, + "probability": 0.9987 + }, + { + "start": 5139.56, + "end": 5139.78, + "probability": 0.7515 + }, + { + "start": 5140.28, + "end": 5142.6, + "probability": 0.8843 + }, + { + "start": 5143.36, + "end": 5145.78, + "probability": 0.7125 + }, + { + "start": 5147.16, + "end": 5148.54, + "probability": 0.8984 + }, + { + "start": 5149.32, + "end": 5150.18, + "probability": 0.4857 + }, + { + "start": 5151.1, + "end": 5151.58, + "probability": 0.888 + }, + { + "start": 5152.34, + "end": 5154.06, + "probability": 0.5008 + }, + { + "start": 5155.02, + "end": 5156.94, + "probability": 0.6791 + }, + { + "start": 5156.98, + "end": 5157.04, + "probability": 0.4762 + }, + { + "start": 5157.04, + "end": 5158.38, + "probability": 0.9575 + }, + { + "start": 5158.71, + "end": 5160.33, + "probability": 0.4739 + }, + { + "start": 5161.18, + "end": 5164.36, + "probability": 0.7189 + }, + { + "start": 5165.06, + "end": 5167.56, + "probability": 0.9074 + }, + { + "start": 5168.52, + "end": 5170.2, + "probability": 0.6944 + }, + { + "start": 5170.28, + "end": 5172.98, + "probability": 0.9715 + }, + { + "start": 5173.04, + "end": 5175.02, + "probability": 0.906 + }, + { + "start": 5176.08, + "end": 5177.38, + "probability": 0.8182 + }, + { + "start": 5177.92, + "end": 5180.44, + "probability": 0.9844 + }, + { + "start": 5181.74, + "end": 5186.72, + "probability": 0.978 + }, + { + "start": 5187.26, + "end": 5188.68, + "probability": 0.9988 + }, + { + "start": 5189.7, + "end": 5190.72, + "probability": 0.8752 + }, + { + "start": 5191.62, + "end": 5194.94, + "probability": 0.9957 + }, + { + "start": 5195.76, + "end": 5196.9, + "probability": 0.8696 + }, + { + "start": 5197.42, + "end": 5198.82, + "probability": 0.929 + }, + { + "start": 5199.74, + "end": 5205.34, + "probability": 0.995 + }, + { + "start": 5206.8, + "end": 5210.2, + "probability": 0.9835 + }, + { + "start": 5210.96, + "end": 5211.72, + "probability": 0.9224 + }, + { + "start": 5213.2, + "end": 5216.42, + "probability": 0.9678 + }, + { + "start": 5217.7, + "end": 5218.92, + "probability": 0.9976 + }, + { + "start": 5219.48, + "end": 5221.92, + "probability": 0.9995 + }, + { + "start": 5222.94, + "end": 5223.8, + "probability": 0.7352 + }, + { + "start": 5224.72, + "end": 5227.1, + "probability": 0.8478 + }, + { + "start": 5227.96, + "end": 5231.56, + "probability": 0.8852 + }, + { + "start": 5232.36, + "end": 5233.38, + "probability": 0.9916 + }, + { + "start": 5234.6, + "end": 5237.92, + "probability": 0.8265 + }, + { + "start": 5239.06, + "end": 5240.24, + "probability": 0.9228 + }, + { + "start": 5240.76, + "end": 5243.32, + "probability": 0.9305 + }, + { + "start": 5243.44, + "end": 5244.26, + "probability": 0.9973 + }, + { + "start": 5245.26, + "end": 5246.62, + "probability": 0.8527 + }, + { + "start": 5248.86, + "end": 5249.86, + "probability": 0.8058 + }, + { + "start": 5251.1, + "end": 5256.17, + "probability": 0.9731 + }, + { + "start": 5257.5, + "end": 5258.64, + "probability": 0.6624 + }, + { + "start": 5259.72, + "end": 5263.64, + "probability": 0.8402 + }, + { + "start": 5263.84, + "end": 5268.88, + "probability": 0.9865 + }, + { + "start": 5269.66, + "end": 5270.96, + "probability": 0.4856 + }, + { + "start": 5271.92, + "end": 5273.06, + "probability": 0.568 + }, + { + "start": 5274.68, + "end": 5276.16, + "probability": 0.9923 + }, + { + "start": 5277.44, + "end": 5279.41, + "probability": 0.9897 + }, + { + "start": 5280.58, + "end": 5283.44, + "probability": 0.9404 + }, + { + "start": 5284.48, + "end": 5289.68, + "probability": 0.9972 + }, + { + "start": 5290.86, + "end": 5291.46, + "probability": 0.8707 + }, + { + "start": 5292.14, + "end": 5296.88, + "probability": 0.802 + }, + { + "start": 5297.62, + "end": 5301.2, + "probability": 0.984 + }, + { + "start": 5302.1, + "end": 5305.02, + "probability": 0.4843 + }, + { + "start": 5305.9, + "end": 5307.24, + "probability": 0.7965 + }, + { + "start": 5308.86, + "end": 5311.14, + "probability": 0.8663 + }, + { + "start": 5311.22, + "end": 5314.42, + "probability": 0.9907 + }, + { + "start": 5315.18, + "end": 5317.3, + "probability": 0.9281 + }, + { + "start": 5317.94, + "end": 5320.92, + "probability": 0.9834 + }, + { + "start": 5321.84, + "end": 5325.93, + "probability": 0.9959 + }, + { + "start": 5326.14, + "end": 5330.92, + "probability": 0.9915 + }, + { + "start": 5331.02, + "end": 5332.62, + "probability": 0.8923 + }, + { + "start": 5333.38, + "end": 5335.58, + "probability": 0.989 + }, + { + "start": 5336.44, + "end": 5340.62, + "probability": 0.9321 + }, + { + "start": 5341.22, + "end": 5344.16, + "probability": 0.9918 + }, + { + "start": 5345.06, + "end": 5345.94, + "probability": 0.9808 + }, + { + "start": 5346.32, + "end": 5350.06, + "probability": 0.7608 + }, + { + "start": 5351.14, + "end": 5351.76, + "probability": 0.431 + }, + { + "start": 5351.98, + "end": 5357.82, + "probability": 0.9611 + }, + { + "start": 5358.68, + "end": 5361.62, + "probability": 0.669 + }, + { + "start": 5362.44, + "end": 5363.54, + "probability": 0.8977 + }, + { + "start": 5364.52, + "end": 5368.48, + "probability": 0.9703 + }, + { + "start": 5369.02, + "end": 5372.74, + "probability": 0.7324 + }, + { + "start": 5372.78, + "end": 5377.26, + "probability": 0.9462 + }, + { + "start": 5378.32, + "end": 5381.14, + "probability": 0.9922 + }, + { + "start": 5381.8, + "end": 5382.44, + "probability": 0.9468 + }, + { + "start": 5383.92, + "end": 5386.62, + "probability": 0.9988 + }, + { + "start": 5387.24, + "end": 5390.56, + "probability": 0.959 + }, + { + "start": 5391.56, + "end": 5393.51, + "probability": 0.9844 + }, + { + "start": 5394.46, + "end": 5396.66, + "probability": 0.9873 + }, + { + "start": 5396.94, + "end": 5398.68, + "probability": 0.9976 + }, + { + "start": 5399.22, + "end": 5400.72, + "probability": 0.9275 + }, + { + "start": 5401.8, + "end": 5403.08, + "probability": 0.987 + }, + { + "start": 5404.04, + "end": 5406.64, + "probability": 0.9609 + }, + { + "start": 5407.38, + "end": 5408.98, + "probability": 0.9259 + }, + { + "start": 5409.94, + "end": 5411.4, + "probability": 0.968 + }, + { + "start": 5412.0, + "end": 5413.82, + "probability": 0.8789 + }, + { + "start": 5413.9, + "end": 5415.16, + "probability": 0.8584 + }, + { + "start": 5415.24, + "end": 5418.92, + "probability": 0.9805 + }, + { + "start": 5419.06, + "end": 5420.28, + "probability": 0.7638 + }, + { + "start": 5420.86, + "end": 5424.2, + "probability": 0.98 + }, + { + "start": 5424.9, + "end": 5428.12, + "probability": 0.9153 + }, + { + "start": 5428.72, + "end": 5430.76, + "probability": 0.693 + }, + { + "start": 5431.5, + "end": 5433.2, + "probability": 0.9263 + }, + { + "start": 5433.5, + "end": 5437.42, + "probability": 0.9764 + }, + { + "start": 5438.08, + "end": 5439.94, + "probability": 0.9148 + }, + { + "start": 5440.78, + "end": 5444.06, + "probability": 0.619 + }, + { + "start": 5444.78, + "end": 5448.38, + "probability": 0.9754 + }, + { + "start": 5449.12, + "end": 5450.12, + "probability": 0.797 + }, + { + "start": 5451.22, + "end": 5453.26, + "probability": 0.9843 + }, + { + "start": 5453.62, + "end": 5454.62, + "probability": 0.7179 + }, + { + "start": 5454.7, + "end": 5458.2, + "probability": 0.7861 + }, + { + "start": 5458.36, + "end": 5459.32, + "probability": 0.832 + }, + { + "start": 5460.52, + "end": 5462.9, + "probability": 0.9971 + }, + { + "start": 5463.06, + "end": 5464.72, + "probability": 0.9926 + }, + { + "start": 5465.44, + "end": 5467.42, + "probability": 0.9797 + }, + { + "start": 5467.52, + "end": 5467.96, + "probability": 0.7294 + }, + { + "start": 5468.24, + "end": 5470.6, + "probability": 0.9338 + }, + { + "start": 5471.72, + "end": 5475.52, + "probability": 0.8823 + }, + { + "start": 5475.6, + "end": 5476.68, + "probability": 0.6856 + }, + { + "start": 5477.06, + "end": 5478.7, + "probability": 0.778 + }, + { + "start": 5488.96, + "end": 5489.59, + "probability": 0.528 + }, + { + "start": 5490.56, + "end": 5491.48, + "probability": 0.7691 + }, + { + "start": 5493.12, + "end": 5494.3, + "probability": 0.9922 + }, + { + "start": 5494.96, + "end": 5495.72, + "probability": 0.8004 + }, + { + "start": 5496.84, + "end": 5500.2, + "probability": 0.9941 + }, + { + "start": 5502.0, + "end": 5505.5, + "probability": 0.9681 + }, + { + "start": 5506.54, + "end": 5506.82, + "probability": 0.8945 + }, + { + "start": 5507.9, + "end": 5509.56, + "probability": 0.9915 + }, + { + "start": 5510.24, + "end": 5510.98, + "probability": 0.9593 + }, + { + "start": 5511.58, + "end": 5513.68, + "probability": 0.9998 + }, + { + "start": 5514.58, + "end": 5516.62, + "probability": 0.8883 + }, + { + "start": 5517.32, + "end": 5519.2, + "probability": 0.9971 + }, + { + "start": 5520.22, + "end": 5520.44, + "probability": 0.8667 + }, + { + "start": 5521.3, + "end": 5523.86, + "probability": 0.9837 + }, + { + "start": 5524.52, + "end": 5525.96, + "probability": 0.9314 + }, + { + "start": 5526.64, + "end": 5527.44, + "probability": 0.988 + }, + { + "start": 5527.96, + "end": 5529.44, + "probability": 0.9932 + }, + { + "start": 5530.22, + "end": 5532.72, + "probability": 0.9981 + }, + { + "start": 5533.48, + "end": 5535.42, + "probability": 0.9936 + }, + { + "start": 5536.82, + "end": 5541.1, + "probability": 0.9972 + }, + { + "start": 5541.1, + "end": 5544.62, + "probability": 0.9962 + }, + { + "start": 5545.4, + "end": 5546.96, + "probability": 0.7988 + }, + { + "start": 5547.56, + "end": 5548.54, + "probability": 0.6634 + }, + { + "start": 5549.1, + "end": 5549.64, + "probability": 0.7939 + }, + { + "start": 5550.3, + "end": 5553.4, + "probability": 0.9945 + }, + { + "start": 5554.64, + "end": 5555.46, + "probability": 0.9143 + }, + { + "start": 5556.16, + "end": 5558.46, + "probability": 0.9948 + }, + { + "start": 5559.56, + "end": 5560.64, + "probability": 0.7495 + }, + { + "start": 5561.3, + "end": 5562.12, + "probability": 0.7825 + }, + { + "start": 5562.66, + "end": 5564.12, + "probability": 0.8004 + }, + { + "start": 5564.7, + "end": 5567.06, + "probability": 0.9926 + }, + { + "start": 5567.86, + "end": 5570.32, + "probability": 0.9919 + }, + { + "start": 5571.08, + "end": 5575.3, + "probability": 0.9923 + }, + { + "start": 5576.52, + "end": 5577.34, + "probability": 0.9993 + }, + { + "start": 5578.44, + "end": 5581.22, + "probability": 0.9361 + }, + { + "start": 5581.92, + "end": 5584.6, + "probability": 0.9713 + }, + { + "start": 5584.9, + "end": 5587.74, + "probability": 0.9824 + }, + { + "start": 5587.8, + "end": 5588.36, + "probability": 0.7681 + }, + { + "start": 5588.96, + "end": 5590.58, + "probability": 0.9673 + }, + { + "start": 5591.1, + "end": 5592.64, + "probability": 0.9067 + }, + { + "start": 5592.74, + "end": 5594.56, + "probability": 0.9676 + }, + { + "start": 5594.72, + "end": 5595.31, + "probability": 0.9775 + }, + { + "start": 5596.32, + "end": 5598.28, + "probability": 0.9948 + }, + { + "start": 5599.08, + "end": 5601.74, + "probability": 0.8118 + }, + { + "start": 5602.96, + "end": 5606.28, + "probability": 0.9859 + }, + { + "start": 5607.02, + "end": 5610.6, + "probability": 0.997 + }, + { + "start": 5611.4, + "end": 5614.06, + "probability": 0.9354 + }, + { + "start": 5614.28, + "end": 5617.38, + "probability": 0.9943 + }, + { + "start": 5618.34, + "end": 5620.18, + "probability": 0.8274 + }, + { + "start": 5620.98, + "end": 5624.32, + "probability": 0.866 + }, + { + "start": 5625.02, + "end": 5626.7, + "probability": 0.9966 + }, + { + "start": 5627.3, + "end": 5628.98, + "probability": 0.9875 + }, + { + "start": 5629.95, + "end": 5631.64, + "probability": 0.9046 + }, + { + "start": 5632.38, + "end": 5635.66, + "probability": 0.9395 + }, + { + "start": 5636.94, + "end": 5637.88, + "probability": 0.9951 + }, + { + "start": 5638.46, + "end": 5640.26, + "probability": 0.9983 + }, + { + "start": 5640.8, + "end": 5642.32, + "probability": 0.9731 + }, + { + "start": 5643.48, + "end": 5646.78, + "probability": 0.9983 + }, + { + "start": 5647.64, + "end": 5648.58, + "probability": 0.9319 + }, + { + "start": 5649.12, + "end": 5650.14, + "probability": 0.99 + }, + { + "start": 5650.84, + "end": 5651.6, + "probability": 0.9543 + }, + { + "start": 5651.76, + "end": 5653.8, + "probability": 0.9414 + }, + { + "start": 5654.02, + "end": 5655.22, + "probability": 0.999 + }, + { + "start": 5656.74, + "end": 5657.64, + "probability": 0.9622 + }, + { + "start": 5658.46, + "end": 5660.58, + "probability": 0.9678 + }, + { + "start": 5662.0, + "end": 5663.06, + "probability": 0.9299 + }, + { + "start": 5664.0, + "end": 5664.56, + "probability": 0.9628 + }, + { + "start": 5665.4, + "end": 5666.46, + "probability": 0.7583 + }, + { + "start": 5667.42, + "end": 5669.86, + "probability": 0.805 + }, + { + "start": 5669.9, + "end": 5670.48, + "probability": 0.858 + }, + { + "start": 5670.64, + "end": 5672.02, + "probability": 0.8442 + }, + { + "start": 5672.08, + "end": 5676.66, + "probability": 0.9893 + }, + { + "start": 5677.46, + "end": 5679.64, + "probability": 0.8023 + }, + { + "start": 5680.28, + "end": 5682.42, + "probability": 0.9709 + }, + { + "start": 5683.3, + "end": 5685.98, + "probability": 0.9891 + }, + { + "start": 5686.74, + "end": 5688.68, + "probability": 0.99 + }, + { + "start": 5689.32, + "end": 5691.96, + "probability": 0.9971 + }, + { + "start": 5692.66, + "end": 5693.9, + "probability": 0.9932 + }, + { + "start": 5695.5, + "end": 5698.48, + "probability": 0.9952 + }, + { + "start": 5699.1, + "end": 5699.8, + "probability": 0.9719 + }, + { + "start": 5700.44, + "end": 5702.84, + "probability": 0.9452 + }, + { + "start": 5703.5, + "end": 5705.6, + "probability": 0.989 + }, + { + "start": 5706.34, + "end": 5707.18, + "probability": 0.6132 + }, + { + "start": 5707.72, + "end": 5709.5, + "probability": 0.9985 + }, + { + "start": 5709.98, + "end": 5710.28, + "probability": 0.8059 + }, + { + "start": 5711.66, + "end": 5716.47, + "probability": 0.8441 + }, + { + "start": 5717.62, + "end": 5719.14, + "probability": 0.9242 + }, + { + "start": 5720.0, + "end": 5724.28, + "probability": 0.7705 + }, + { + "start": 5724.38, + "end": 5726.0, + "probability": 0.8432 + }, + { + "start": 5726.8, + "end": 5729.8, + "probability": 0.851 + }, + { + "start": 5730.22, + "end": 5730.66, + "probability": 0.5587 + }, + { + "start": 5730.78, + "end": 5732.78, + "probability": 0.7897 + }, + { + "start": 5732.96, + "end": 5733.3, + "probability": 0.8535 + }, + { + "start": 5734.38, + "end": 5735.98, + "probability": 0.9763 + }, + { + "start": 5736.06, + "end": 5737.98, + "probability": 0.6104 + }, + { + "start": 5738.12, + "end": 5738.5, + "probability": 0.4937 + }, + { + "start": 5738.62, + "end": 5739.66, + "probability": 0.9464 + }, + { + "start": 5740.74, + "end": 5742.2, + "probability": 0.835 + }, + { + "start": 5742.38, + "end": 5744.11, + "probability": 0.623 + }, + { + "start": 5744.88, + "end": 5747.52, + "probability": 0.8997 + }, + { + "start": 5752.4, + "end": 5754.54, + "probability": 0.2894 + } + ], + "segments_count": 1926, + "words_count": 10056, + "avg_words_per_segment": 5.2212, + "avg_segment_duration": 2.1341, + "avg_words_per_minute": 103.873, + "plenum_id": "114463", + "duration": 5808.63, + "title": null, + "plenum_date": "2023-02-28" +} \ No newline at end of file