diff --git "a/131430/metadata.json" "b/131430/metadata.json" new file mode 100644--- /dev/null +++ "b/131430/metadata.json" @@ -0,0 +1,71367 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "131430", + "quality_score": 0.8965, + "per_segment_quality_scores": [ + { + "start": 78.14, + "end": 79.08, + "probability": 0.0333 + }, + { + "start": 81.52, + "end": 83.76, + "probability": 0.222 + }, + { + "start": 85.26, + "end": 86.72, + "probability": 0.6211 + }, + { + "start": 114.36, + "end": 118.5, + "probability": 0.5755 + }, + { + "start": 118.62, + "end": 120.28, + "probability": 0.2992 + }, + { + "start": 120.66, + "end": 123.04, + "probability": 0.9762 + }, + { + "start": 123.88, + "end": 125.52, + "probability": 0.9493 + }, + { + "start": 126.28, + "end": 129.72, + "probability": 0.9232 + }, + { + "start": 129.84, + "end": 131.52, + "probability": 0.3867 + }, + { + "start": 131.74, + "end": 134.62, + "probability": 0.545 + }, + { + "start": 135.26, + "end": 136.24, + "probability": 0.7244 + }, + { + "start": 136.4, + "end": 138.1, + "probability": 0.8729 + }, + { + "start": 138.58, + "end": 142.42, + "probability": 0.9961 + }, + { + "start": 142.52, + "end": 145.58, + "probability": 0.2376 + }, + { + "start": 146.8, + "end": 149.16, + "probability": 0.8312 + }, + { + "start": 149.4, + "end": 152.76, + "probability": 0.8363 + }, + { + "start": 152.92, + "end": 154.48, + "probability": 0.3553 + }, + { + "start": 155.78, + "end": 160.26, + "probability": 0.9304 + }, + { + "start": 162.09, + "end": 164.02, + "probability": 0.7331 + }, + { + "start": 164.18, + "end": 168.18, + "probability": 0.6073 + }, + { + "start": 168.3, + "end": 170.66, + "probability": 0.9108 + }, + { + "start": 170.66, + "end": 172.66, + "probability": 0.9952 + }, + { + "start": 172.8, + "end": 174.38, + "probability": 0.682 + }, + { + "start": 174.62, + "end": 176.28, + "probability": 0.9888 + }, + { + "start": 178.48, + "end": 180.8, + "probability": 0.9748 + }, + { + "start": 180.8, + "end": 184.72, + "probability": 0.999 + }, + { + "start": 185.24, + "end": 188.74, + "probability": 0.6022 + }, + { + "start": 188.92, + "end": 193.05, + "probability": 0.9225 + }, + { + "start": 195.1, + "end": 199.32, + "probability": 0.8228 + }, + { + "start": 199.44, + "end": 200.04, + "probability": 0.7097 + }, + { + "start": 200.42, + "end": 201.16, + "probability": 0.912 + }, + { + "start": 201.28, + "end": 202.96, + "probability": 0.751 + }, + { + "start": 203.52, + "end": 203.52, + "probability": 0.1338 + }, + { + "start": 203.52, + "end": 205.4, + "probability": 0.8983 + }, + { + "start": 205.4, + "end": 208.6, + "probability": 0.8465 + }, + { + "start": 208.72, + "end": 209.5, + "probability": 0.7735 + }, + { + "start": 209.66, + "end": 210.32, + "probability": 0.4824 + }, + { + "start": 210.46, + "end": 212.5, + "probability": 0.8533 + }, + { + "start": 218.72, + "end": 219.44, + "probability": 0.2729 + }, + { + "start": 222.26, + "end": 224.14, + "probability": 0.0766 + }, + { + "start": 224.52, + "end": 227.34, + "probability": 0.6671 + }, + { + "start": 227.34, + "end": 233.4, + "probability": 0.6588 + }, + { + "start": 233.62, + "end": 234.62, + "probability": 0.6398 + }, + { + "start": 234.96, + "end": 235.68, + "probability": 0.4425 + }, + { + "start": 236.08, + "end": 240.62, + "probability": 0.4784 + }, + { + "start": 241.14, + "end": 244.26, + "probability": 0.0336 + }, + { + "start": 244.86, + "end": 245.18, + "probability": 0.0055 + }, + { + "start": 248.74, + "end": 251.06, + "probability": 0.6217 + }, + { + "start": 264.54, + "end": 265.42, + "probability": 0.0743 + }, + { + "start": 269.0, + "end": 272.64, + "probability": 0.105 + }, + { + "start": 274.24, + "end": 276.26, + "probability": 0.0167 + }, + { + "start": 276.26, + "end": 276.32, + "probability": 0.0288 + }, + { + "start": 276.32, + "end": 278.86, + "probability": 0.527 + }, + { + "start": 278.86, + "end": 280.34, + "probability": 0.0571 + }, + { + "start": 280.36, + "end": 280.36, + "probability": 0.0192 + }, + { + "start": 280.36, + "end": 280.38, + "probability": 0.1261 + }, + { + "start": 280.46, + "end": 280.97, + "probability": 0.0401 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 281.0, + "end": 281.0, + "probability": 0.0 + }, + { + "start": 285.92, + "end": 287.56, + "probability": 0.8962 + }, + { + "start": 288.96, + "end": 292.6, + "probability": 0.5079 + }, + { + "start": 292.88, + "end": 293.54, + "probability": 0.3387 + }, + { + "start": 293.62, + "end": 294.68, + "probability": 0.764 + }, + { + "start": 294.7, + "end": 296.56, + "probability": 0.6284 + }, + { + "start": 305.2, + "end": 306.82, + "probability": 0.199 + }, + { + "start": 313.55, + "end": 317.2, + "probability": 0.0597 + }, + { + "start": 317.42, + "end": 320.42, + "probability": 0.3337 + }, + { + "start": 320.42, + "end": 325.16, + "probability": 0.5502 + }, + { + "start": 325.52, + "end": 325.7, + "probability": 0.7501 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.0, + "end": 417.0, + "probability": 0.0 + }, + { + "start": 417.2, + "end": 419.6, + "probability": 0.5331 + }, + { + "start": 420.06, + "end": 420.46, + "probability": 0.576 + }, + { + "start": 420.5, + "end": 421.24, + "probability": 0.9082 + }, + { + "start": 421.62, + "end": 422.62, + "probability": 0.8737 + }, + { + "start": 422.98, + "end": 427.02, + "probability": 0.988 + }, + { + "start": 427.68, + "end": 429.86, + "probability": 0.995 + }, + { + "start": 430.2, + "end": 431.22, + "probability": 0.5441 + }, + { + "start": 431.98, + "end": 436.46, + "probability": 0.9984 + }, + { + "start": 436.98, + "end": 438.32, + "probability": 0.8899 + }, + { + "start": 438.8, + "end": 442.7, + "probability": 0.9875 + }, + { + "start": 443.56, + "end": 444.6, + "probability": 0.9685 + }, + { + "start": 445.12, + "end": 448.14, + "probability": 0.9318 + }, + { + "start": 448.56, + "end": 453.96, + "probability": 0.9892 + }, + { + "start": 455.1, + "end": 456.26, + "probability": 0.7581 + }, + { + "start": 457.1, + "end": 457.56, + "probability": 0.9765 + }, + { + "start": 458.1, + "end": 458.5, + "probability": 0.9821 + }, + { + "start": 459.36, + "end": 460.44, + "probability": 0.9955 + }, + { + "start": 461.04, + "end": 464.26, + "probability": 0.9268 + }, + { + "start": 464.6, + "end": 468.46, + "probability": 0.9815 + }, + { + "start": 468.64, + "end": 471.88, + "probability": 0.9995 + }, + { + "start": 473.16, + "end": 475.33, + "probability": 0.527 + }, + { + "start": 475.92, + "end": 477.16, + "probability": 0.8947 + }, + { + "start": 478.34, + "end": 481.88, + "probability": 0.9662 + }, + { + "start": 482.36, + "end": 483.12, + "probability": 0.507 + }, + { + "start": 483.68, + "end": 485.8, + "probability": 0.8931 + }, + { + "start": 486.4, + "end": 487.3, + "probability": 0.7264 + }, + { + "start": 487.88, + "end": 489.72, + "probability": 0.8214 + }, + { + "start": 490.24, + "end": 491.6, + "probability": 0.945 + }, + { + "start": 492.14, + "end": 493.26, + "probability": 0.7542 + }, + { + "start": 493.98, + "end": 494.76, + "probability": 0.7565 + }, + { + "start": 495.74, + "end": 497.98, + "probability": 0.9553 + }, + { + "start": 498.8, + "end": 501.72, + "probability": 0.9537 + }, + { + "start": 502.1, + "end": 504.06, + "probability": 0.9587 + }, + { + "start": 504.46, + "end": 506.46, + "probability": 0.9627 + }, + { + "start": 507.04, + "end": 511.52, + "probability": 0.9807 + }, + { + "start": 512.36, + "end": 514.9, + "probability": 0.8162 + }, + { + "start": 516.82, + "end": 520.18, + "probability": 0.973 + }, + { + "start": 521.14, + "end": 521.58, + "probability": 0.8201 + }, + { + "start": 522.8, + "end": 524.4, + "probability": 0.9478 + }, + { + "start": 525.1, + "end": 527.58, + "probability": 0.9756 + }, + { + "start": 528.14, + "end": 530.96, + "probability": 0.9966 + }, + { + "start": 531.64, + "end": 534.8, + "probability": 0.9964 + }, + { + "start": 534.8, + "end": 537.64, + "probability": 0.9948 + }, + { + "start": 538.36, + "end": 540.52, + "probability": 0.9683 + }, + { + "start": 541.36, + "end": 544.82, + "probability": 0.9943 + }, + { + "start": 545.54, + "end": 547.76, + "probability": 0.9824 + }, + { + "start": 548.74, + "end": 552.6, + "probability": 0.8063 + }, + { + "start": 553.18, + "end": 555.94, + "probability": 0.9893 + }, + { + "start": 556.86, + "end": 559.6, + "probability": 0.9895 + }, + { + "start": 560.56, + "end": 563.98, + "probability": 0.9963 + }, + { + "start": 564.62, + "end": 568.54, + "probability": 0.9945 + }, + { + "start": 569.0, + "end": 572.88, + "probability": 0.998 + }, + { + "start": 573.64, + "end": 578.8, + "probability": 0.9964 + }, + { + "start": 579.3, + "end": 583.1, + "probability": 0.9917 + }, + { + "start": 583.5, + "end": 590.26, + "probability": 0.9746 + }, + { + "start": 591.58, + "end": 593.26, + "probability": 0.9715 + }, + { + "start": 593.8, + "end": 595.66, + "probability": 0.9541 + }, + { + "start": 596.56, + "end": 599.84, + "probability": 0.8887 + }, + { + "start": 600.6, + "end": 605.16, + "probability": 0.9709 + }, + { + "start": 606.38, + "end": 609.32, + "probability": 0.9937 + }, + { + "start": 609.32, + "end": 614.1, + "probability": 0.9868 + }, + { + "start": 614.54, + "end": 615.24, + "probability": 0.3525 + }, + { + "start": 615.78, + "end": 617.88, + "probability": 0.949 + }, + { + "start": 618.28, + "end": 619.6, + "probability": 0.988 + }, + { + "start": 619.92, + "end": 622.92, + "probability": 0.9902 + }, + { + "start": 623.24, + "end": 624.68, + "probability": 0.8446 + }, + { + "start": 624.96, + "end": 627.94, + "probability": 0.9946 + }, + { + "start": 628.62, + "end": 632.42, + "probability": 0.9904 + }, + { + "start": 632.78, + "end": 635.06, + "probability": 0.9921 + }, + { + "start": 635.54, + "end": 639.62, + "probability": 0.9889 + }, + { + "start": 639.62, + "end": 643.8, + "probability": 0.9963 + }, + { + "start": 644.28, + "end": 647.38, + "probability": 0.9788 + }, + { + "start": 647.92, + "end": 652.22, + "probability": 0.9869 + }, + { + "start": 652.96, + "end": 658.7, + "probability": 0.9847 + }, + { + "start": 659.08, + "end": 661.34, + "probability": 0.9978 + }, + { + "start": 661.42, + "end": 664.7, + "probability": 0.9462 + }, + { + "start": 666.8, + "end": 669.8, + "probability": 0.9829 + }, + { + "start": 671.42, + "end": 674.08, + "probability": 0.7725 + }, + { + "start": 674.3, + "end": 675.44, + "probability": 0.973 + }, + { + "start": 675.82, + "end": 677.5, + "probability": 0.9743 + }, + { + "start": 677.62, + "end": 678.28, + "probability": 0.9666 + }, + { + "start": 678.52, + "end": 679.38, + "probability": 0.2534 + }, + { + "start": 679.38, + "end": 684.28, + "probability": 0.9881 + }, + { + "start": 684.7, + "end": 686.96, + "probability": 0.9912 + }, + { + "start": 687.34, + "end": 690.28, + "probability": 0.9756 + }, + { + "start": 690.54, + "end": 696.36, + "probability": 0.9694 + }, + { + "start": 696.74, + "end": 697.24, + "probability": 0.8423 + }, + { + "start": 697.54, + "end": 698.28, + "probability": 0.9448 + }, + { + "start": 698.34, + "end": 699.5, + "probability": 0.9389 + }, + { + "start": 701.06, + "end": 701.7, + "probability": 0.9681 + }, + { + "start": 702.36, + "end": 703.04, + "probability": 0.8402 + }, + { + "start": 703.48, + "end": 703.92, + "probability": 0.9588 + }, + { + "start": 704.34, + "end": 705.21, + "probability": 0.9966 + }, + { + "start": 706.4, + "end": 708.32, + "probability": 0.9292 + }, + { + "start": 709.28, + "end": 710.46, + "probability": 0.9132 + }, + { + "start": 711.02, + "end": 711.44, + "probability": 0.939 + }, + { + "start": 713.28, + "end": 715.48, + "probability": 0.9224 + }, + { + "start": 715.9, + "end": 718.06, + "probability": 0.5814 + }, + { + "start": 718.68, + "end": 720.42, + "probability": 0.9345 + }, + { + "start": 721.2, + "end": 723.88, + "probability": 0.9926 + }, + { + "start": 724.28, + "end": 728.76, + "probability": 0.9911 + }, + { + "start": 729.3, + "end": 734.46, + "probability": 0.998 + }, + { + "start": 734.96, + "end": 739.1, + "probability": 0.9984 + }, + { + "start": 739.84, + "end": 744.98, + "probability": 0.9917 + }, + { + "start": 745.4, + "end": 749.76, + "probability": 0.9214 + }, + { + "start": 750.46, + "end": 756.48, + "probability": 0.9798 + }, + { + "start": 756.98, + "end": 761.38, + "probability": 0.9975 + }, + { + "start": 763.66, + "end": 766.56, + "probability": 0.8599 + }, + { + "start": 766.88, + "end": 770.18, + "probability": 0.7997 + }, + { + "start": 770.88, + "end": 774.14, + "probability": 0.9574 + }, + { + "start": 774.74, + "end": 778.02, + "probability": 0.9656 + }, + { + "start": 778.02, + "end": 781.62, + "probability": 0.9901 + }, + { + "start": 782.26, + "end": 783.82, + "probability": 0.9635 + }, + { + "start": 784.38, + "end": 789.56, + "probability": 0.9946 + }, + { + "start": 789.56, + "end": 793.74, + "probability": 0.9956 + }, + { + "start": 794.84, + "end": 799.62, + "probability": 0.9632 + }, + { + "start": 800.02, + "end": 803.56, + "probability": 0.9939 + }, + { + "start": 803.56, + "end": 807.46, + "probability": 0.9958 + }, + { + "start": 807.98, + "end": 810.76, + "probability": 0.9988 + }, + { + "start": 811.14, + "end": 814.68, + "probability": 0.9847 + }, + { + "start": 815.12, + "end": 819.0, + "probability": 0.9972 + }, + { + "start": 819.9, + "end": 822.38, + "probability": 0.9846 + }, + { + "start": 822.38, + "end": 825.32, + "probability": 0.9993 + }, + { + "start": 826.14, + "end": 827.02, + "probability": 0.8615 + }, + { + "start": 827.26, + "end": 829.16, + "probability": 0.9922 + }, + { + "start": 829.42, + "end": 834.9, + "probability": 0.9956 + }, + { + "start": 835.92, + "end": 837.64, + "probability": 0.9329 + }, + { + "start": 838.08, + "end": 841.72, + "probability": 0.9793 + }, + { + "start": 842.08, + "end": 843.02, + "probability": 0.8854 + }, + { + "start": 843.32, + "end": 843.88, + "probability": 0.9847 + }, + { + "start": 844.14, + "end": 845.98, + "probability": 0.994 + }, + { + "start": 846.26, + "end": 848.16, + "probability": 0.9971 + }, + { + "start": 848.7, + "end": 853.08, + "probability": 0.9939 + }, + { + "start": 853.62, + "end": 854.08, + "probability": 0.7838 + }, + { + "start": 854.84, + "end": 856.02, + "probability": 0.8621 + }, + { + "start": 857.14, + "end": 857.92, + "probability": 0.742 + }, + { + "start": 858.06, + "end": 858.68, + "probability": 0.7527 + }, + { + "start": 859.06, + "end": 859.8, + "probability": 0.9337 + }, + { + "start": 859.86, + "end": 861.04, + "probability": 0.8282 + }, + { + "start": 861.36, + "end": 863.08, + "probability": 0.9907 + }, + { + "start": 863.72, + "end": 866.18, + "probability": 0.9598 + }, + { + "start": 867.08, + "end": 868.68, + "probability": 0.9753 + }, + { + "start": 869.08, + "end": 872.4, + "probability": 0.9585 + }, + { + "start": 872.76, + "end": 873.14, + "probability": 0.8368 + }, + { + "start": 873.24, + "end": 873.34, + "probability": 0.9656 + }, + { + "start": 874.7, + "end": 878.92, + "probability": 0.8147 + }, + { + "start": 881.14, + "end": 884.64, + "probability": 0.2845 + }, + { + "start": 884.64, + "end": 885.06, + "probability": 0.073 + }, + { + "start": 885.68, + "end": 887.3, + "probability": 0.0449 + }, + { + "start": 887.3, + "end": 887.3, + "probability": 0.0843 + }, + { + "start": 887.3, + "end": 887.3, + "probability": 0.2598 + }, + { + "start": 887.3, + "end": 888.0, + "probability": 0.2055 + }, + { + "start": 888.0, + "end": 890.2, + "probability": 0.981 + }, + { + "start": 890.72, + "end": 894.22, + "probability": 0.9737 + }, + { + "start": 894.92, + "end": 896.04, + "probability": 0.8361 + }, + { + "start": 896.42, + "end": 897.78, + "probability": 0.9377 + }, + { + "start": 898.2, + "end": 899.56, + "probability": 0.9261 + }, + { + "start": 900.26, + "end": 901.3, + "probability": 0.9144 + }, + { + "start": 901.76, + "end": 904.12, + "probability": 0.8535 + }, + { + "start": 904.62, + "end": 908.66, + "probability": 0.9269 + }, + { + "start": 909.36, + "end": 911.7, + "probability": 0.8755 + }, + { + "start": 912.04, + "end": 914.56, + "probability": 0.9944 + }, + { + "start": 915.04, + "end": 916.8, + "probability": 0.9496 + }, + { + "start": 920.14, + "end": 921.52, + "probability": 0.9966 + }, + { + "start": 923.4, + "end": 924.72, + "probability": 0.9651 + }, + { + "start": 924.92, + "end": 925.58, + "probability": 0.947 + }, + { + "start": 925.7, + "end": 926.56, + "probability": 0.9888 + }, + { + "start": 927.88, + "end": 928.68, + "probability": 0.7953 + }, + { + "start": 928.8, + "end": 929.32, + "probability": 0.7895 + }, + { + "start": 929.56, + "end": 931.68, + "probability": 0.9942 + }, + { + "start": 932.28, + "end": 933.42, + "probability": 0.7325 + }, + { + "start": 934.24, + "end": 937.58, + "probability": 0.9914 + }, + { + "start": 938.14, + "end": 939.04, + "probability": 0.927 + }, + { + "start": 939.42, + "end": 939.74, + "probability": 0.7969 + }, + { + "start": 939.98, + "end": 943.32, + "probability": 0.9857 + }, + { + "start": 943.82, + "end": 944.82, + "probability": 0.8107 + }, + { + "start": 945.02, + "end": 945.74, + "probability": 0.8202 + }, + { + "start": 946.1, + "end": 947.16, + "probability": 0.9918 + }, + { + "start": 947.22, + "end": 948.02, + "probability": 0.7991 + }, + { + "start": 948.24, + "end": 949.66, + "probability": 0.9916 + }, + { + "start": 949.9, + "end": 950.34, + "probability": 0.978 + }, + { + "start": 951.38, + "end": 954.4, + "probability": 0.992 + }, + { + "start": 955.34, + "end": 956.19, + "probability": 0.9233 + }, + { + "start": 956.44, + "end": 958.08, + "probability": 0.9753 + }, + { + "start": 958.92, + "end": 959.8, + "probability": 0.7658 + }, + { + "start": 959.92, + "end": 960.68, + "probability": 0.9847 + }, + { + "start": 960.82, + "end": 963.6, + "probability": 0.9866 + }, + { + "start": 964.66, + "end": 966.0, + "probability": 0.7601 + }, + { + "start": 966.16, + "end": 968.34, + "probability": 0.9932 + }, + { + "start": 968.56, + "end": 969.6, + "probability": 0.968 + }, + { + "start": 970.18, + "end": 971.92, + "probability": 0.9228 + }, + { + "start": 972.08, + "end": 975.44, + "probability": 0.9906 + }, + { + "start": 975.94, + "end": 977.62, + "probability": 0.973 + }, + { + "start": 978.14, + "end": 980.02, + "probability": 0.9526 + }, + { + "start": 980.64, + "end": 981.92, + "probability": 0.9816 + }, + { + "start": 982.26, + "end": 983.24, + "probability": 0.9915 + }, + { + "start": 983.52, + "end": 985.06, + "probability": 0.7443 + }, + { + "start": 985.48, + "end": 987.02, + "probability": 0.9634 + }, + { + "start": 987.62, + "end": 990.5, + "probability": 0.9615 + }, + { + "start": 992.02, + "end": 992.74, + "probability": 0.9478 + }, + { + "start": 993.16, + "end": 993.59, + "probability": 0.9688 + }, + { + "start": 994.06, + "end": 995.29, + "probability": 0.9915 + }, + { + "start": 995.7, + "end": 996.29, + "probability": 0.9814 + }, + { + "start": 996.8, + "end": 999.0, + "probability": 0.9868 + }, + { + "start": 999.62, + "end": 1003.1, + "probability": 0.9844 + }, + { + "start": 1003.5, + "end": 1005.2, + "probability": 0.9354 + }, + { + "start": 1005.96, + "end": 1009.92, + "probability": 0.9926 + }, + { + "start": 1010.9, + "end": 1013.28, + "probability": 0.9648 + }, + { + "start": 1013.82, + "end": 1016.06, + "probability": 0.9304 + }, + { + "start": 1016.7, + "end": 1020.48, + "probability": 0.9847 + }, + { + "start": 1021.08, + "end": 1026.08, + "probability": 0.9965 + }, + { + "start": 1028.62, + "end": 1029.44, + "probability": 0.4823 + }, + { + "start": 1029.48, + "end": 1032.32, + "probability": 0.9917 + }, + { + "start": 1032.52, + "end": 1033.46, + "probability": 0.8536 + }, + { + "start": 1034.76, + "end": 1035.68, + "probability": 0.7567 + }, + { + "start": 1035.7, + "end": 1036.26, + "probability": 0.7988 + }, + { + "start": 1050.72, + "end": 1051.7, + "probability": 0.7763 + }, + { + "start": 1054.44, + "end": 1055.3, + "probability": 0.7025 + }, + { + "start": 1055.36, + "end": 1056.0, + "probability": 0.8018 + }, + { + "start": 1056.1, + "end": 1058.38, + "probability": 0.9641 + }, + { + "start": 1058.52, + "end": 1059.1, + "probability": 0.848 + }, + { + "start": 1059.32, + "end": 1065.26, + "probability": 0.9844 + }, + { + "start": 1066.46, + "end": 1071.78, + "probability": 0.988 + }, + { + "start": 1073.54, + "end": 1076.27, + "probability": 0.7579 + }, + { + "start": 1076.5, + "end": 1079.38, + "probability": 0.8076 + }, + { + "start": 1079.98, + "end": 1085.98, + "probability": 0.8191 + }, + { + "start": 1086.34, + "end": 1088.04, + "probability": 0.9293 + }, + { + "start": 1089.12, + "end": 1091.98, + "probability": 0.9842 + }, + { + "start": 1093.86, + "end": 1094.67, + "probability": 0.9885 + }, + { + "start": 1095.64, + "end": 1098.66, + "probability": 0.8909 + }, + { + "start": 1099.72, + "end": 1102.1, + "probability": 0.9414 + }, + { + "start": 1102.14, + "end": 1102.96, + "probability": 0.9956 + }, + { + "start": 1103.22, + "end": 1103.57, + "probability": 0.0029 + }, + { + "start": 1104.02, + "end": 1104.1, + "probability": 0.0272 + }, + { + "start": 1104.66, + "end": 1106.08, + "probability": 0.0734 + }, + { + "start": 1108.04, + "end": 1108.22, + "probability": 0.087 + }, + { + "start": 1108.22, + "end": 1108.22, + "probability": 0.1604 + }, + { + "start": 1108.22, + "end": 1112.02, + "probability": 0.8391 + }, + { + "start": 1112.34, + "end": 1115.58, + "probability": 0.873 + }, + { + "start": 1116.34, + "end": 1118.48, + "probability": 0.5261 + }, + { + "start": 1119.26, + "end": 1125.76, + "probability": 0.9639 + }, + { + "start": 1127.14, + "end": 1130.88, + "probability": 0.8953 + }, + { + "start": 1131.0, + "end": 1132.7, + "probability": 0.9973 + }, + { + "start": 1133.92, + "end": 1136.78, + "probability": 0.9219 + }, + { + "start": 1138.16, + "end": 1140.3, + "probability": 0.9795 + }, + { + "start": 1144.28, + "end": 1144.88, + "probability": 0.6128 + }, + { + "start": 1144.96, + "end": 1146.94, + "probability": 0.4866 + }, + { + "start": 1146.98, + "end": 1150.18, + "probability": 0.8811 + }, + { + "start": 1150.48, + "end": 1151.3, + "probability": 0.6568 + }, + { + "start": 1151.5, + "end": 1154.86, + "probability": 0.7048 + }, + { + "start": 1156.8, + "end": 1158.26, + "probability": 0.8591 + }, + { + "start": 1158.48, + "end": 1158.88, + "probability": 0.9269 + }, + { + "start": 1161.82, + "end": 1163.14, + "probability": 0.3729 + }, + { + "start": 1163.3, + "end": 1163.72, + "probability": 0.7409 + }, + { + "start": 1163.8, + "end": 1166.3, + "probability": 0.947 + }, + { + "start": 1166.38, + "end": 1168.94, + "probability": 0.9241 + }, + { + "start": 1169.08, + "end": 1170.58, + "probability": 0.9849 + }, + { + "start": 1171.42, + "end": 1172.14, + "probability": 0.9161 + }, + { + "start": 1173.16, + "end": 1174.5, + "probability": 0.9585 + }, + { + "start": 1175.32, + "end": 1177.68, + "probability": 0.9956 + }, + { + "start": 1177.76, + "end": 1178.66, + "probability": 0.6738 + }, + { + "start": 1178.84, + "end": 1179.24, + "probability": 0.6667 + }, + { + "start": 1181.82, + "end": 1183.9, + "probability": 0.9117 + }, + { + "start": 1184.8, + "end": 1185.62, + "probability": 0.66 + }, + { + "start": 1188.4, + "end": 1188.94, + "probability": 0.869 + }, + { + "start": 1189.76, + "end": 1190.28, + "probability": 0.768 + }, + { + "start": 1190.3, + "end": 1192.98, + "probability": 0.7708 + }, + { + "start": 1192.98, + "end": 1193.46, + "probability": 0.5187 + }, + { + "start": 1194.58, + "end": 1195.51, + "probability": 0.0421 + }, + { + "start": 1198.52, + "end": 1198.78, + "probability": 0.19 + }, + { + "start": 1198.78, + "end": 1198.78, + "probability": 0.053 + }, + { + "start": 1198.78, + "end": 1199.7, + "probability": 0.4865 + }, + { + "start": 1199.84, + "end": 1201.04, + "probability": 0.579 + }, + { + "start": 1201.4, + "end": 1204.8, + "probability": 0.872 + }, + { + "start": 1205.44, + "end": 1206.84, + "probability": 0.9287 + }, + { + "start": 1206.86, + "end": 1208.7, + "probability": 0.7006 + }, + { + "start": 1210.98, + "end": 1211.42, + "probability": 0.5519 + }, + { + "start": 1211.64, + "end": 1213.26, + "probability": 0.8844 + }, + { + "start": 1215.18, + "end": 1218.04, + "probability": 0.9395 + }, + { + "start": 1218.78, + "end": 1220.71, + "probability": 0.8997 + }, + { + "start": 1221.02, + "end": 1221.76, + "probability": 0.0808 + }, + { + "start": 1222.32, + "end": 1223.5, + "probability": 0.7111 + }, + { + "start": 1223.6, + "end": 1225.18, + "probability": 0.9983 + }, + { + "start": 1226.06, + "end": 1226.06, + "probability": 0.0493 + }, + { + "start": 1226.06, + "end": 1226.46, + "probability": 0.7166 + }, + { + "start": 1226.72, + "end": 1227.56, + "probability": 0.075 + }, + { + "start": 1227.84, + "end": 1230.8, + "probability": 0.9539 + }, + { + "start": 1232.06, + "end": 1233.64, + "probability": 0.8725 + }, + { + "start": 1236.58, + "end": 1237.66, + "probability": 0.0456 + }, + { + "start": 1237.76, + "end": 1237.76, + "probability": 0.2493 + }, + { + "start": 1237.76, + "end": 1237.76, + "probability": 0.5813 + }, + { + "start": 1237.76, + "end": 1240.28, + "probability": 0.7441 + }, + { + "start": 1240.64, + "end": 1241.22, + "probability": 0.6146 + }, + { + "start": 1241.98, + "end": 1241.98, + "probability": 0.5973 + }, + { + "start": 1241.98, + "end": 1243.44, + "probability": 0.9873 + }, + { + "start": 1244.04, + "end": 1248.92, + "probability": 0.9971 + }, + { + "start": 1249.4, + "end": 1250.24, + "probability": 0.2543 + }, + { + "start": 1250.62, + "end": 1253.08, + "probability": 0.9987 + }, + { + "start": 1253.28, + "end": 1257.0, + "probability": 0.9811 + }, + { + "start": 1257.2, + "end": 1258.6, + "probability": 0.9988 + }, + { + "start": 1259.82, + "end": 1260.86, + "probability": 0.9819 + }, + { + "start": 1261.3, + "end": 1265.94, + "probability": 0.9867 + }, + { + "start": 1266.74, + "end": 1267.4, + "probability": 0.7175 + }, + { + "start": 1268.4, + "end": 1270.02, + "probability": 0.9954 + }, + { + "start": 1270.7, + "end": 1272.6, + "probability": 0.9938 + }, + { + "start": 1273.16, + "end": 1276.76, + "probability": 0.8639 + }, + { + "start": 1277.88, + "end": 1281.66, + "probability": 0.0619 + }, + { + "start": 1281.66, + "end": 1283.68, + "probability": 0.3899 + }, + { + "start": 1283.94, + "end": 1285.16, + "probability": 0.8033 + }, + { + "start": 1285.58, + "end": 1286.6, + "probability": 0.6255 + }, + { + "start": 1286.64, + "end": 1287.92, + "probability": 0.9587 + }, + { + "start": 1289.1, + "end": 1289.56, + "probability": 0.1422 + }, + { + "start": 1289.56, + "end": 1292.52, + "probability": 0.6928 + }, + { + "start": 1293.52, + "end": 1293.82, + "probability": 0.0817 + }, + { + "start": 1293.88, + "end": 1297.88, + "probability": 0.6263 + }, + { + "start": 1298.4, + "end": 1299.06, + "probability": 0.338 + }, + { + "start": 1299.06, + "end": 1302.58, + "probability": 0.7548 + }, + { + "start": 1303.18, + "end": 1303.96, + "probability": 0.0058 + }, + { + "start": 1304.56, + "end": 1307.1, + "probability": 0.0471 + }, + { + "start": 1307.16, + "end": 1309.01, + "probability": 0.1992 + }, + { + "start": 1312.28, + "end": 1312.28, + "probability": 0.6367 + }, + { + "start": 1312.28, + "end": 1314.8, + "probability": 0.7648 + }, + { + "start": 1314.9, + "end": 1316.62, + "probability": 0.2185 + }, + { + "start": 1316.98, + "end": 1318.34, + "probability": 0.8652 + }, + { + "start": 1319.9, + "end": 1320.68, + "probability": 0.4605 + }, + { + "start": 1321.74, + "end": 1323.08, + "probability": 0.8148 + }, + { + "start": 1323.9, + "end": 1324.72, + "probability": 0.5264 + }, + { + "start": 1327.47, + "end": 1329.22, + "probability": 0.4048 + }, + { + "start": 1329.3, + "end": 1330.2, + "probability": 0.4097 + }, + { + "start": 1331.62, + "end": 1337.88, + "probability": 0.9965 + }, + { + "start": 1338.68, + "end": 1340.14, + "probability": 0.2854 + }, + { + "start": 1340.44, + "end": 1340.64, + "probability": 0.8258 + }, + { + "start": 1341.8, + "end": 1344.28, + "probability": 0.0029 + }, + { + "start": 1346.6, + "end": 1347.58, + "probability": 0.2171 + }, + { + "start": 1347.58, + "end": 1347.58, + "probability": 0.1424 + }, + { + "start": 1347.58, + "end": 1347.58, + "probability": 0.1706 + }, + { + "start": 1347.58, + "end": 1348.6, + "probability": 0.2533 + }, + { + "start": 1348.74, + "end": 1349.3, + "probability": 0.0994 + }, + { + "start": 1349.76, + "end": 1352.7, + "probability": 0.9864 + }, + { + "start": 1352.84, + "end": 1354.0, + "probability": 0.9281 + }, + { + "start": 1355.28, + "end": 1356.04, + "probability": 0.9485 + }, + { + "start": 1356.82, + "end": 1357.74, + "probability": 0.5792 + }, + { + "start": 1357.76, + "end": 1359.28, + "probability": 0.8224 + }, + { + "start": 1362.0, + "end": 1365.1, + "probability": 0.9868 + }, + { + "start": 1365.92, + "end": 1367.5, + "probability": 0.8282 + }, + { + "start": 1368.18, + "end": 1370.6, + "probability": 0.999 + }, + { + "start": 1371.04, + "end": 1373.12, + "probability": 0.7822 + }, + { + "start": 1373.2, + "end": 1374.12, + "probability": 0.9956 + }, + { + "start": 1375.66, + "end": 1377.32, + "probability": 0.9917 + }, + { + "start": 1378.58, + "end": 1383.0, + "probability": 0.9844 + }, + { + "start": 1383.92, + "end": 1389.08, + "probability": 0.9309 + }, + { + "start": 1389.08, + "end": 1391.92, + "probability": 0.8128 + }, + { + "start": 1392.7, + "end": 1394.94, + "probability": 0.7792 + }, + { + "start": 1395.24, + "end": 1395.24, + "probability": 0.1322 + }, + { + "start": 1395.24, + "end": 1396.08, + "probability": 0.2271 + }, + { + "start": 1396.16, + "end": 1397.04, + "probability": 0.4997 + }, + { + "start": 1397.44, + "end": 1398.84, + "probability": 0.3532 + }, + { + "start": 1399.06, + "end": 1400.5, + "probability": 0.8906 + }, + { + "start": 1401.38, + "end": 1404.98, + "probability": 0.6152 + }, + { + "start": 1405.1, + "end": 1406.38, + "probability": 0.6554 + }, + { + "start": 1406.38, + "end": 1407.8, + "probability": 0.6377 + }, + { + "start": 1408.52, + "end": 1413.02, + "probability": 0.7951 + }, + { + "start": 1413.88, + "end": 1417.47, + "probability": 0.9829 + }, + { + "start": 1418.62, + "end": 1420.12, + "probability": 0.9988 + }, + { + "start": 1421.4, + "end": 1422.36, + "probability": 0.6674 + }, + { + "start": 1422.96, + "end": 1424.54, + "probability": 0.8774 + }, + { + "start": 1425.08, + "end": 1426.26, + "probability": 0.6516 + }, + { + "start": 1426.58, + "end": 1426.98, + "probability": 0.3924 + }, + { + "start": 1428.86, + "end": 1429.88, + "probability": 0.9224 + }, + { + "start": 1430.12, + "end": 1431.16, + "probability": 0.2926 + }, + { + "start": 1432.76, + "end": 1434.52, + "probability": 0.998 + }, + { + "start": 1434.64, + "end": 1435.32, + "probability": 0.0195 + }, + { + "start": 1435.7, + "end": 1436.24, + "probability": 0.096 + }, + { + "start": 1436.24, + "end": 1438.68, + "probability": 0.5897 + }, + { + "start": 1438.78, + "end": 1442.1, + "probability": 0.9924 + }, + { + "start": 1444.26, + "end": 1444.94, + "probability": 0.8864 + }, + { + "start": 1445.94, + "end": 1446.98, + "probability": 0.7587 + }, + { + "start": 1447.78, + "end": 1450.02, + "probability": 0.8038 + }, + { + "start": 1451.14, + "end": 1452.0, + "probability": 0.9952 + }, + { + "start": 1453.34, + "end": 1456.26, + "probability": 0.9756 + }, + { + "start": 1458.04, + "end": 1462.0, + "probability": 0.9969 + }, + { + "start": 1463.24, + "end": 1466.34, + "probability": 0.9243 + }, + { + "start": 1466.48, + "end": 1469.38, + "probability": 0.9941 + }, + { + "start": 1469.82, + "end": 1471.58, + "probability": 0.9937 + }, + { + "start": 1472.16, + "end": 1474.48, + "probability": 0.8997 + }, + { + "start": 1474.48, + "end": 1475.0, + "probability": 0.0601 + }, + { + "start": 1475.24, + "end": 1479.62, + "probability": 0.9679 + }, + { + "start": 1479.62, + "end": 1483.08, + "probability": 0.9914 + }, + { + "start": 1486.2, + "end": 1488.22, + "probability": 0.8873 + }, + { + "start": 1489.52, + "end": 1491.34, + "probability": 0.9303 + }, + { + "start": 1491.66, + "end": 1494.16, + "probability": 0.8337 + }, + { + "start": 1494.38, + "end": 1495.54, + "probability": 0.7743 + }, + { + "start": 1495.76, + "end": 1497.92, + "probability": 0.8899 + }, + { + "start": 1498.44, + "end": 1499.53, + "probability": 0.9457 + }, + { + "start": 1500.3, + "end": 1502.5, + "probability": 0.7638 + }, + { + "start": 1503.62, + "end": 1505.42, + "probability": 0.986 + }, + { + "start": 1507.24, + "end": 1508.71, + "probability": 0.9207 + }, + { + "start": 1510.12, + "end": 1515.04, + "probability": 0.9871 + }, + { + "start": 1515.3, + "end": 1516.76, + "probability": 0.9922 + }, + { + "start": 1518.02, + "end": 1521.58, + "probability": 0.981 + }, + { + "start": 1521.66, + "end": 1522.4, + "probability": 0.8352 + }, + { + "start": 1523.74, + "end": 1525.08, + "probability": 0.9223 + }, + { + "start": 1525.32, + "end": 1526.86, + "probability": 0.8507 + }, + { + "start": 1526.96, + "end": 1527.3, + "probability": 0.5035 + }, + { + "start": 1527.36, + "end": 1527.84, + "probability": 0.9814 + }, + { + "start": 1528.0, + "end": 1528.82, + "probability": 0.8295 + }, + { + "start": 1532.96, + "end": 1538.1, + "probability": 0.967 + }, + { + "start": 1539.44, + "end": 1541.68, + "probability": 0.9384 + }, + { + "start": 1542.42, + "end": 1544.21, + "probability": 0.7342 + }, + { + "start": 1545.18, + "end": 1546.54, + "probability": 0.7633 + }, + { + "start": 1547.28, + "end": 1549.06, + "probability": 0.8701 + }, + { + "start": 1549.6, + "end": 1550.88, + "probability": 0.8955 + }, + { + "start": 1551.94, + "end": 1554.22, + "probability": 0.7998 + }, + { + "start": 1556.64, + "end": 1559.18, + "probability": 0.994 + }, + { + "start": 1559.78, + "end": 1561.08, + "probability": 0.9102 + }, + { + "start": 1561.66, + "end": 1567.94, + "probability": 0.2372 + }, + { + "start": 1568.06, + "end": 1568.06, + "probability": 0.0048 + }, + { + "start": 1568.06, + "end": 1568.06, + "probability": 0.0741 + }, + { + "start": 1568.06, + "end": 1568.06, + "probability": 0.0507 + }, + { + "start": 1568.06, + "end": 1568.92, + "probability": 0.1073 + }, + { + "start": 1570.2, + "end": 1574.52, + "probability": 0.9907 + }, + { + "start": 1575.46, + "end": 1578.1, + "probability": 0.8313 + }, + { + "start": 1580.12, + "end": 1581.52, + "probability": 0.923 + }, + { + "start": 1582.48, + "end": 1585.36, + "probability": 0.9907 + }, + { + "start": 1585.52, + "end": 1586.7, + "probability": 0.9844 + }, + { + "start": 1587.44, + "end": 1590.44, + "probability": 0.9484 + }, + { + "start": 1590.52, + "end": 1591.56, + "probability": 0.2046 + }, + { + "start": 1592.08, + "end": 1592.88, + "probability": 0.9757 + }, + { + "start": 1593.96, + "end": 1594.66, + "probability": 0.9469 + }, + { + "start": 1595.28, + "end": 1597.76, + "probability": 0.7229 + }, + { + "start": 1597.92, + "end": 1598.86, + "probability": 0.6058 + }, + { + "start": 1599.34, + "end": 1600.9, + "probability": 0.796 + }, + { + "start": 1602.06, + "end": 1602.57, + "probability": 0.9033 + }, + { + "start": 1604.18, + "end": 1606.0, + "probability": 0.9854 + }, + { + "start": 1606.82, + "end": 1610.26, + "probability": 0.8861 + }, + { + "start": 1610.42, + "end": 1612.78, + "probability": 0.873 + }, + { + "start": 1613.76, + "end": 1616.1, + "probability": 0.7502 + }, + { + "start": 1617.97, + "end": 1620.4, + "probability": 0.9419 + }, + { + "start": 1621.5, + "end": 1624.08, + "probability": 0.9329 + }, + { + "start": 1624.34, + "end": 1624.76, + "probability": 0.8904 + }, + { + "start": 1625.04, + "end": 1626.44, + "probability": 0.9754 + }, + { + "start": 1627.8, + "end": 1631.42, + "probability": 0.8977 + }, + { + "start": 1633.12, + "end": 1640.42, + "probability": 0.8917 + }, + { + "start": 1642.98, + "end": 1646.46, + "probability": 0.8035 + }, + { + "start": 1647.88, + "end": 1651.24, + "probability": 0.9141 + }, + { + "start": 1651.4, + "end": 1654.0, + "probability": 0.9907 + }, + { + "start": 1654.96, + "end": 1655.98, + "probability": 0.9717 + }, + { + "start": 1657.06, + "end": 1657.58, + "probability": 0.9424 + }, + { + "start": 1657.66, + "end": 1658.68, + "probability": 0.8994 + }, + { + "start": 1658.76, + "end": 1662.43, + "probability": 0.8899 + }, + { + "start": 1663.58, + "end": 1664.68, + "probability": 0.8781 + }, + { + "start": 1665.86, + "end": 1666.6, + "probability": 0.8595 + }, + { + "start": 1666.68, + "end": 1669.21, + "probability": 0.9927 + }, + { + "start": 1669.44, + "end": 1669.86, + "probability": 0.5628 + }, + { + "start": 1670.76, + "end": 1672.52, + "probability": 0.9907 + }, + { + "start": 1672.56, + "end": 1673.56, + "probability": 0.9189 + }, + { + "start": 1673.88, + "end": 1676.76, + "probability": 0.9546 + }, + { + "start": 1677.32, + "end": 1678.72, + "probability": 0.6705 + }, + { + "start": 1679.34, + "end": 1683.92, + "probability": 0.9863 + }, + { + "start": 1684.78, + "end": 1685.16, + "probability": 0.7788 + }, + { + "start": 1689.34, + "end": 1690.0, + "probability": 0.7088 + }, + { + "start": 1690.04, + "end": 1690.88, + "probability": 0.785 + }, + { + "start": 1690.94, + "end": 1693.11, + "probability": 0.9042 + }, + { + "start": 1693.52, + "end": 1698.78, + "probability": 0.891 + }, + { + "start": 1699.08, + "end": 1700.28, + "probability": 0.8311 + }, + { + "start": 1700.52, + "end": 1701.8, + "probability": 0.9145 + }, + { + "start": 1702.44, + "end": 1706.34, + "probability": 0.9867 + }, + { + "start": 1708.34, + "end": 1710.66, + "probability": 0.9433 + }, + { + "start": 1711.12, + "end": 1712.32, + "probability": 0.8948 + }, + { + "start": 1712.72, + "end": 1715.0, + "probability": 0.9653 + }, + { + "start": 1716.78, + "end": 1719.64, + "probability": 0.9656 + }, + { + "start": 1720.68, + "end": 1722.83, + "probability": 0.9064 + }, + { + "start": 1723.54, + "end": 1726.2, + "probability": 0.7047 + }, + { + "start": 1726.68, + "end": 1728.98, + "probability": 0.9935 + }, + { + "start": 1729.72, + "end": 1734.0, + "probability": 0.7522 + }, + { + "start": 1734.46, + "end": 1736.68, + "probability": 0.9651 + }, + { + "start": 1737.34, + "end": 1738.52, + "probability": 0.6825 + }, + { + "start": 1739.1, + "end": 1739.44, + "probability": 0.7257 + }, + { + "start": 1739.44, + "end": 1740.12, + "probability": 0.8716 + }, + { + "start": 1740.22, + "end": 1743.22, + "probability": 0.9805 + }, + { + "start": 1744.28, + "end": 1745.08, + "probability": 0.8967 + }, + { + "start": 1745.8, + "end": 1746.58, + "probability": 0.968 + }, + { + "start": 1746.94, + "end": 1747.28, + "probability": 0.9551 + }, + { + "start": 1747.92, + "end": 1749.82, + "probability": 0.978 + }, + { + "start": 1750.38, + "end": 1751.06, + "probability": 0.9197 + }, + { + "start": 1752.1, + "end": 1753.14, + "probability": 0.9137 + }, + { + "start": 1753.88, + "end": 1754.34, + "probability": 0.8477 + }, + { + "start": 1755.4, + "end": 1755.52, + "probability": 0.1117 + }, + { + "start": 1755.52, + "end": 1757.92, + "probability": 0.9752 + }, + { + "start": 1759.18, + "end": 1760.42, + "probability": 0.7382 + }, + { + "start": 1760.66, + "end": 1767.82, + "probability": 0.9845 + }, + { + "start": 1769.8, + "end": 1771.52, + "probability": 0.8096 + }, + { + "start": 1772.9, + "end": 1775.52, + "probability": 0.8963 + }, + { + "start": 1776.24, + "end": 1776.98, + "probability": 0.7648 + }, + { + "start": 1777.06, + "end": 1778.86, + "probability": 0.8645 + }, + { + "start": 1780.04, + "end": 1781.82, + "probability": 0.9688 + }, + { + "start": 1782.66, + "end": 1784.2, + "probability": 0.9924 + }, + { + "start": 1785.36, + "end": 1786.78, + "probability": 0.9773 + }, + { + "start": 1788.18, + "end": 1792.76, + "probability": 0.8649 + }, + { + "start": 1793.64, + "end": 1795.2, + "probability": 0.873 + }, + { + "start": 1796.54, + "end": 1800.45, + "probability": 0.7444 + }, + { + "start": 1802.78, + "end": 1805.76, + "probability": 0.6609 + }, + { + "start": 1805.94, + "end": 1807.26, + "probability": 0.9452 + }, + { + "start": 1809.04, + "end": 1813.5, + "probability": 0.9646 + }, + { + "start": 1814.24, + "end": 1816.1, + "probability": 0.9946 + }, + { + "start": 1817.2, + "end": 1818.0, + "probability": 0.8577 + }, + { + "start": 1819.1, + "end": 1822.68, + "probability": 0.9338 + }, + { + "start": 1823.9, + "end": 1828.78, + "probability": 0.9621 + }, + { + "start": 1828.88, + "end": 1829.58, + "probability": 0.8096 + }, + { + "start": 1829.9, + "end": 1831.24, + "probability": 0.9277 + }, + { + "start": 1831.62, + "end": 1832.48, + "probability": 0.9246 + }, + { + "start": 1833.66, + "end": 1835.1, + "probability": 0.5105 + }, + { + "start": 1836.3, + "end": 1837.08, + "probability": 0.9712 + }, + { + "start": 1838.18, + "end": 1840.32, + "probability": 0.9089 + }, + { + "start": 1841.72, + "end": 1843.82, + "probability": 0.995 + }, + { + "start": 1843.9, + "end": 1844.96, + "probability": 0.9868 + }, + { + "start": 1845.04, + "end": 1846.08, + "probability": 0.9957 + }, + { + "start": 1848.26, + "end": 1848.84, + "probability": 0.0655 + }, + { + "start": 1848.84, + "end": 1849.48, + "probability": 0.3475 + }, + { + "start": 1849.84, + "end": 1852.04, + "probability": 0.9829 + }, + { + "start": 1853.16, + "end": 1854.8, + "probability": 0.8642 + }, + { + "start": 1855.88, + "end": 1858.6, + "probability": 0.927 + }, + { + "start": 1860.36, + "end": 1860.5, + "probability": 0.8304 + }, + { + "start": 1860.62, + "end": 1861.4, + "probability": 0.9902 + }, + { + "start": 1861.5, + "end": 1864.58, + "probability": 0.962 + }, + { + "start": 1866.1, + "end": 1869.38, + "probability": 0.8922 + }, + { + "start": 1871.42, + "end": 1872.98, + "probability": 0.9985 + }, + { + "start": 1873.84, + "end": 1875.66, + "probability": 0.9661 + }, + { + "start": 1876.28, + "end": 1877.72, + "probability": 0.9036 + }, + { + "start": 1880.42, + "end": 1882.38, + "probability": 0.9648 + }, + { + "start": 1883.78, + "end": 1886.82, + "probability": 0.6529 + }, + { + "start": 1887.54, + "end": 1888.96, + "probability": 0.8374 + }, + { + "start": 1890.46, + "end": 1891.44, + "probability": 0.6272 + }, + { + "start": 1891.58, + "end": 1893.14, + "probability": 0.9499 + }, + { + "start": 1894.38, + "end": 1895.54, + "probability": 0.9749 + }, + { + "start": 1897.24, + "end": 1899.08, + "probability": 0.9817 + }, + { + "start": 1900.58, + "end": 1904.48, + "probability": 0.9871 + }, + { + "start": 1905.02, + "end": 1907.48, + "probability": 0.9687 + }, + { + "start": 1907.5, + "end": 1908.11, + "probability": 0.9185 + }, + { + "start": 1908.57, + "end": 1909.66, + "probability": 0.0115 + }, + { + "start": 1909.74, + "end": 1910.32, + "probability": 0.5117 + }, + { + "start": 1910.96, + "end": 1911.96, + "probability": 0.8826 + }, + { + "start": 1912.06, + "end": 1912.6, + "probability": 0.7283 + }, + { + "start": 1913.56, + "end": 1916.44, + "probability": 0.5864 + }, + { + "start": 1916.44, + "end": 1916.44, + "probability": 0.0414 + }, + { + "start": 1916.44, + "end": 1916.9, + "probability": 0.1634 + }, + { + "start": 1917.46, + "end": 1917.52, + "probability": 0.0355 + }, + { + "start": 1917.52, + "end": 1918.18, + "probability": 0.0985 + }, + { + "start": 1918.46, + "end": 1920.96, + "probability": 0.6858 + }, + { + "start": 1921.95, + "end": 1927.08, + "probability": 0.8585 + }, + { + "start": 1928.34, + "end": 1930.42, + "probability": 0.9814 + }, + { + "start": 1931.06, + "end": 1933.52, + "probability": 0.9946 + }, + { + "start": 1933.58, + "end": 1934.54, + "probability": 0.947 + }, + { + "start": 1935.68, + "end": 1938.96, + "probability": 0.7928 + }, + { + "start": 1938.98, + "end": 1939.14, + "probability": 0.6157 + }, + { + "start": 1939.24, + "end": 1941.3, + "probability": 0.9834 + }, + { + "start": 1942.56, + "end": 1944.22, + "probability": 0.7721 + }, + { + "start": 1946.24, + "end": 1948.94, + "probability": 0.0261 + }, + { + "start": 1949.1, + "end": 1949.1, + "probability": 0.3779 + }, + { + "start": 1949.1, + "end": 1951.6, + "probability": 0.5515 + }, + { + "start": 1951.9, + "end": 1952.2, + "probability": 0.6586 + }, + { + "start": 1952.36, + "end": 1953.04, + "probability": 0.8457 + }, + { + "start": 1954.44, + "end": 1957.86, + "probability": 0.9301 + }, + { + "start": 1957.98, + "end": 1959.88, + "probability": 0.9813 + }, + { + "start": 1960.38, + "end": 1961.78, + "probability": 0.6215 + }, + { + "start": 1962.62, + "end": 1963.96, + "probability": 0.9866 + }, + { + "start": 1964.34, + "end": 1967.94, + "probability": 0.9808 + }, + { + "start": 1968.02, + "end": 1969.96, + "probability": 0.9741 + }, + { + "start": 1970.12, + "end": 1970.52, + "probability": 0.9214 + }, + { + "start": 1970.86, + "end": 1973.02, + "probability": 0.9579 + }, + { + "start": 1973.72, + "end": 1974.9, + "probability": 0.9491 + }, + { + "start": 1974.98, + "end": 1976.14, + "probability": 0.9867 + }, + { + "start": 1976.39, + "end": 1979.2, + "probability": 0.4217 + }, + { + "start": 1980.68, + "end": 1981.97, + "probability": 0.5012 + }, + { + "start": 1982.22, + "end": 1985.06, + "probability": 0.9282 + }, + { + "start": 1985.22, + "end": 1985.73, + "probability": 0.9025 + }, + { + "start": 1986.04, + "end": 1987.78, + "probability": 0.2577 + }, + { + "start": 1988.66, + "end": 1991.3, + "probability": 0.2236 + }, + { + "start": 1992.2, + "end": 1994.18, + "probability": 0.0516 + }, + { + "start": 1994.34, + "end": 1995.3, + "probability": 0.2992 + }, + { + "start": 1995.36, + "end": 1996.22, + "probability": 0.6698 + }, + { + "start": 1996.3, + "end": 1997.07, + "probability": 0.7415 + }, + { + "start": 1997.18, + "end": 1998.92, + "probability": 0.9158 + }, + { + "start": 1999.16, + "end": 2001.86, + "probability": 0.7915 + }, + { + "start": 2002.24, + "end": 2004.86, + "probability": 0.6772 + }, + { + "start": 2005.54, + "end": 2006.42, + "probability": 0.0062 + }, + { + "start": 2006.42, + "end": 2006.84, + "probability": 0.693 + }, + { + "start": 2007.38, + "end": 2007.4, + "probability": 0.5494 + }, + { + "start": 2007.4, + "end": 2007.76, + "probability": 0.025 + }, + { + "start": 2008.06, + "end": 2008.92, + "probability": 0.814 + }, + { + "start": 2009.06, + "end": 2009.82, + "probability": 0.1678 + }, + { + "start": 2010.73, + "end": 2012.7, + "probability": 0.9191 + }, + { + "start": 2012.8, + "end": 2013.0, + "probability": 0.8144 + }, + { + "start": 2013.08, + "end": 2013.4, + "probability": 0.8849 + }, + { + "start": 2013.56, + "end": 2016.7, + "probability": 0.9106 + }, + { + "start": 2016.82, + "end": 2017.87, + "probability": 0.9714 + }, + { + "start": 2018.75, + "end": 2020.08, + "probability": 0.8154 + }, + { + "start": 2021.7, + "end": 2022.66, + "probability": 0.6953 + }, + { + "start": 2023.5, + "end": 2024.61, + "probability": 0.5773 + }, + { + "start": 2026.38, + "end": 2029.1, + "probability": 0.9631 + }, + { + "start": 2030.48, + "end": 2034.06, + "probability": 0.998 + }, + { + "start": 2034.46, + "end": 2035.68, + "probability": 0.9971 + }, + { + "start": 2036.36, + "end": 2040.06, + "probability": 0.3458 + }, + { + "start": 2040.06, + "end": 2040.6, + "probability": 0.2186 + }, + { + "start": 2040.68, + "end": 2040.68, + "probability": 0.1907 + }, + { + "start": 2040.68, + "end": 2043.98, + "probability": 0.5506 + }, + { + "start": 2044.76, + "end": 2045.74, + "probability": 0.7409 + }, + { + "start": 2045.92, + "end": 2046.8, + "probability": 0.8528 + }, + { + "start": 2047.84, + "end": 2052.64, + "probability": 0.9929 + }, + { + "start": 2052.7, + "end": 2054.58, + "probability": 0.9414 + }, + { + "start": 2054.64, + "end": 2054.76, + "probability": 0.7599 + }, + { + "start": 2055.0, + "end": 2056.1, + "probability": 0.6669 + }, + { + "start": 2056.16, + "end": 2057.22, + "probability": 0.5965 + }, + { + "start": 2057.32, + "end": 2061.02, + "probability": 0.998 + }, + { + "start": 2061.02, + "end": 2062.88, + "probability": 0.0347 + }, + { + "start": 2062.88, + "end": 2062.88, + "probability": 0.0656 + }, + { + "start": 2062.88, + "end": 2065.12, + "probability": 0.8896 + }, + { + "start": 2065.56, + "end": 2068.98, + "probability": 0.8852 + }, + { + "start": 2069.24, + "end": 2071.0, + "probability": 0.8195 + }, + { + "start": 2071.78, + "end": 2076.14, + "probability": 0.9858 + }, + { + "start": 2076.66, + "end": 2077.38, + "probability": 0.5413 + }, + { + "start": 2077.5, + "end": 2079.38, + "probability": 0.916 + }, + { + "start": 2079.44, + "end": 2079.74, + "probability": 0.6156 + }, + { + "start": 2080.52, + "end": 2082.46, + "probability": 0.8526 + }, + { + "start": 2084.78, + "end": 2086.76, + "probability": 0.701 + }, + { + "start": 2089.42, + "end": 2090.14, + "probability": 0.2614 + }, + { + "start": 2090.8, + "end": 2091.56, + "probability": 0.7346 + }, + { + "start": 2092.3, + "end": 2094.4, + "probability": 0.9894 + }, + { + "start": 2095.76, + "end": 2096.38, + "probability": 0.4699 + }, + { + "start": 2097.44, + "end": 2098.28, + "probability": 0.7931 + }, + { + "start": 2098.9, + "end": 2100.98, + "probability": 0.9916 + }, + { + "start": 2101.64, + "end": 2103.76, + "probability": 0.9928 + }, + { + "start": 2104.78, + "end": 2106.0, + "probability": 0.8551 + }, + { + "start": 2107.24, + "end": 2110.02, + "probability": 0.9895 + }, + { + "start": 2110.9, + "end": 2112.3, + "probability": 0.9932 + }, + { + "start": 2112.66, + "end": 2116.52, + "probability": 0.5153 + }, + { + "start": 2116.54, + "end": 2118.18, + "probability": 0.9341 + }, + { + "start": 2118.24, + "end": 2118.56, + "probability": 0.2465 + }, + { + "start": 2119.32, + "end": 2120.64, + "probability": 0.9707 + }, + { + "start": 2121.94, + "end": 2122.96, + "probability": 0.8813 + }, + { + "start": 2123.48, + "end": 2124.34, + "probability": 0.9854 + }, + { + "start": 2125.24, + "end": 2129.16, + "probability": 0.9022 + }, + { + "start": 2129.7, + "end": 2132.16, + "probability": 0.696 + }, + { + "start": 2132.88, + "end": 2134.46, + "probability": 0.8933 + }, + { + "start": 2135.14, + "end": 2137.32, + "probability": 0.5412 + }, + { + "start": 2137.44, + "end": 2138.12, + "probability": 0.1081 + }, + { + "start": 2138.44, + "end": 2138.8, + "probability": 0.4578 + }, + { + "start": 2139.94, + "end": 2140.36, + "probability": 0.1439 + }, + { + "start": 2140.36, + "end": 2140.36, + "probability": 0.0984 + }, + { + "start": 2140.36, + "end": 2144.68, + "probability": 0.919 + }, + { + "start": 2144.84, + "end": 2148.44, + "probability": 0.9974 + }, + { + "start": 2149.54, + "end": 2150.84, + "probability": 0.7234 + }, + { + "start": 2151.0, + "end": 2151.63, + "probability": 0.6621 + }, + { + "start": 2152.96, + "end": 2154.95, + "probability": 0.6567 + }, + { + "start": 2156.54, + "end": 2158.42, + "probability": 0.9608 + }, + { + "start": 2158.6, + "end": 2158.96, + "probability": 0.8401 + }, + { + "start": 2159.0, + "end": 2159.56, + "probability": 0.8967 + }, + { + "start": 2160.38, + "end": 2163.2, + "probability": 0.9518 + }, + { + "start": 2163.42, + "end": 2164.0, + "probability": 0.7006 + }, + { + "start": 2164.12, + "end": 2165.14, + "probability": 0.4565 + }, + { + "start": 2165.44, + "end": 2166.38, + "probability": 0.9686 + }, + { + "start": 2167.3, + "end": 2170.48, + "probability": 0.8682 + }, + { + "start": 2171.44, + "end": 2173.88, + "probability": 0.9919 + }, + { + "start": 2174.82, + "end": 2178.68, + "probability": 0.9492 + }, + { + "start": 2180.12, + "end": 2180.61, + "probability": 0.9801 + }, + { + "start": 2181.86, + "end": 2182.8, + "probability": 0.366 + }, + { + "start": 2183.42, + "end": 2184.5, + "probability": 0.6468 + }, + { + "start": 2187.08, + "end": 2188.4, + "probability": 0.9941 + }, + { + "start": 2190.42, + "end": 2191.38, + "probability": 0.7448 + }, + { + "start": 2192.64, + "end": 2194.08, + "probability": 0.8508 + }, + { + "start": 2194.16, + "end": 2196.08, + "probability": 0.9036 + }, + { + "start": 2196.14, + "end": 2197.06, + "probability": 0.7929 + }, + { + "start": 2197.26, + "end": 2198.46, + "probability": 0.8958 + }, + { + "start": 2198.62, + "end": 2199.06, + "probability": 0.961 + }, + { + "start": 2199.96, + "end": 2201.16, + "probability": 0.9609 + }, + { + "start": 2203.0, + "end": 2203.56, + "probability": 0.9456 + }, + { + "start": 2204.14, + "end": 2205.96, + "probability": 0.947 + }, + { + "start": 2206.26, + "end": 2209.22, + "probability": 0.8688 + }, + { + "start": 2209.48, + "end": 2210.56, + "probability": 0.5646 + }, + { + "start": 2211.78, + "end": 2214.24, + "probability": 0.8721 + }, + { + "start": 2214.46, + "end": 2215.31, + "probability": 0.976 + }, + { + "start": 2216.22, + "end": 2219.5, + "probability": 0.9921 + }, + { + "start": 2220.08, + "end": 2222.17, + "probability": 0.9699 + }, + { + "start": 2224.9, + "end": 2227.14, + "probability": 0.9744 + }, + { + "start": 2227.68, + "end": 2228.08, + "probability": 0.4591 + }, + { + "start": 2228.16, + "end": 2228.58, + "probability": 0.4311 + }, + { + "start": 2228.82, + "end": 2229.6, + "probability": 0.7758 + }, + { + "start": 2229.68, + "end": 2233.0, + "probability": 0.984 + }, + { + "start": 2233.1, + "end": 2236.62, + "probability": 0.946 + }, + { + "start": 2236.64, + "end": 2236.78, + "probability": 0.2806 + }, + { + "start": 2237.32, + "end": 2237.62, + "probability": 0.0004 + }, + { + "start": 2239.44, + "end": 2240.24, + "probability": 0.0412 + }, + { + "start": 2240.24, + "end": 2240.24, + "probability": 0.1089 + }, + { + "start": 2240.24, + "end": 2240.24, + "probability": 0.1707 + }, + { + "start": 2240.6, + "end": 2242.76, + "probability": 0.5168 + }, + { + "start": 2242.92, + "end": 2243.62, + "probability": 0.3859 + }, + { + "start": 2243.9, + "end": 2245.26, + "probability": 0.1925 + }, + { + "start": 2246.18, + "end": 2246.66, + "probability": 0.0772 + }, + { + "start": 2246.84, + "end": 2247.1, + "probability": 0.4272 + }, + { + "start": 2247.84, + "end": 2252.8, + "probability": 0.7523 + }, + { + "start": 2253.44, + "end": 2254.5, + "probability": 0.9312 + }, + { + "start": 2255.48, + "end": 2257.14, + "probability": 0.9607 + }, + { + "start": 2257.5, + "end": 2259.3, + "probability": 0.508 + }, + { + "start": 2259.7, + "end": 2261.22, + "probability": 0.9657 + }, + { + "start": 2261.3, + "end": 2262.47, + "probability": 0.9276 + }, + { + "start": 2263.88, + "end": 2270.26, + "probability": 0.9745 + }, + { + "start": 2270.54, + "end": 2274.26, + "probability": 0.9193 + }, + { + "start": 2274.84, + "end": 2275.46, + "probability": 0.7385 + }, + { + "start": 2275.6, + "end": 2278.6, + "probability": 0.9773 + }, + { + "start": 2278.98, + "end": 2279.8, + "probability": 0.9544 + }, + { + "start": 2281.12, + "end": 2284.0, + "probability": 0.9929 + }, + { + "start": 2284.44, + "end": 2285.4, + "probability": 0.77 + }, + { + "start": 2286.46, + "end": 2288.8, + "probability": 0.9686 + }, + { + "start": 2290.28, + "end": 2293.12, + "probability": 0.7739 + }, + { + "start": 2294.04, + "end": 2296.74, + "probability": 0.8868 + }, + { + "start": 2296.82, + "end": 2298.08, + "probability": 0.998 + }, + { + "start": 2300.02, + "end": 2302.64, + "probability": 0.939 + }, + { + "start": 2304.16, + "end": 2306.88, + "probability": 0.8699 + }, + { + "start": 2308.34, + "end": 2309.28, + "probability": 0.8404 + }, + { + "start": 2310.9, + "end": 2312.84, + "probability": 0.8654 + }, + { + "start": 2312.94, + "end": 2314.42, + "probability": 0.9983 + }, + { + "start": 2314.5, + "end": 2316.06, + "probability": 0.9659 + }, + { + "start": 2317.16, + "end": 2317.4, + "probability": 0.0833 + }, + { + "start": 2317.4, + "end": 2318.48, + "probability": 0.8475 + }, + { + "start": 2319.68, + "end": 2321.94, + "probability": 0.9443 + }, + { + "start": 2322.14, + "end": 2322.58, + "probability": 0.0486 + }, + { + "start": 2322.58, + "end": 2324.62, + "probability": 0.776 + }, + { + "start": 2324.92, + "end": 2325.88, + "probability": 0.4538 + }, + { + "start": 2325.9, + "end": 2330.82, + "probability": 0.894 + }, + { + "start": 2331.26, + "end": 2333.54, + "probability": 0.9876 + }, + { + "start": 2333.66, + "end": 2336.06, + "probability": 0.9417 + }, + { + "start": 2336.42, + "end": 2338.5, + "probability": 0.9502 + }, + { + "start": 2338.7, + "end": 2339.18, + "probability": 0.7372 + }, + { + "start": 2340.32, + "end": 2341.56, + "probability": 0.6692 + }, + { + "start": 2341.66, + "end": 2343.82, + "probability": 0.8835 + }, + { + "start": 2343.82, + "end": 2348.4, + "probability": 0.8907 + }, + { + "start": 2348.52, + "end": 2350.08, + "probability": 0.7024 + }, + { + "start": 2362.6, + "end": 2365.04, + "probability": 0.7813 + }, + { + "start": 2365.74, + "end": 2366.98, + "probability": 0.7907 + }, + { + "start": 2367.82, + "end": 2368.76, + "probability": 0.8322 + }, + { + "start": 2369.58, + "end": 2370.48, + "probability": 0.911 + }, + { + "start": 2372.1, + "end": 2373.94, + "probability": 0.959 + }, + { + "start": 2375.76, + "end": 2381.16, + "probability": 0.965 + }, + { + "start": 2383.1, + "end": 2383.8, + "probability": 0.6887 + }, + { + "start": 2386.16, + "end": 2388.24, + "probability": 0.9395 + }, + { + "start": 2389.96, + "end": 2390.34, + "probability": 0.9417 + }, + { + "start": 2391.34, + "end": 2392.46, + "probability": 0.7485 + }, + { + "start": 2394.04, + "end": 2398.52, + "probability": 0.8303 + }, + { + "start": 2401.32, + "end": 2403.45, + "probability": 0.5569 + }, + { + "start": 2406.08, + "end": 2408.3, + "probability": 0.774 + }, + { + "start": 2409.46, + "end": 2410.48, + "probability": 0.6628 + }, + { + "start": 2412.22, + "end": 2416.14, + "probability": 0.9782 + }, + { + "start": 2418.04, + "end": 2421.3, + "probability": 0.8322 + }, + { + "start": 2422.38, + "end": 2425.52, + "probability": 0.9807 + }, + { + "start": 2426.6, + "end": 2429.14, + "probability": 0.9111 + }, + { + "start": 2430.2, + "end": 2431.74, + "probability": 0.8804 + }, + { + "start": 2432.34, + "end": 2433.46, + "probability": 0.9911 + }, + { + "start": 2435.92, + "end": 2438.72, + "probability": 0.9047 + }, + { + "start": 2440.1, + "end": 2441.96, + "probability": 0.9873 + }, + { + "start": 2444.54, + "end": 2445.94, + "probability": 0.9895 + }, + { + "start": 2448.76, + "end": 2450.02, + "probability": 0.5257 + }, + { + "start": 2450.9, + "end": 2454.29, + "probability": 0.6691 + }, + { + "start": 2456.32, + "end": 2458.22, + "probability": 0.9807 + }, + { + "start": 2460.02, + "end": 2461.26, + "probability": 0.9797 + }, + { + "start": 2462.1, + "end": 2462.86, + "probability": 0.4024 + }, + { + "start": 2464.68, + "end": 2466.54, + "probability": 0.8739 + }, + { + "start": 2467.46, + "end": 2468.84, + "probability": 0.7914 + }, + { + "start": 2469.86, + "end": 2470.78, + "probability": 0.9891 + }, + { + "start": 2471.96, + "end": 2472.79, + "probability": 0.9924 + }, + { + "start": 2473.4, + "end": 2474.02, + "probability": 0.6694 + }, + { + "start": 2475.9, + "end": 2479.94, + "probability": 0.6435 + }, + { + "start": 2480.92, + "end": 2482.42, + "probability": 0.8991 + }, + { + "start": 2484.46, + "end": 2485.66, + "probability": 0.9894 + }, + { + "start": 2487.88, + "end": 2491.22, + "probability": 0.991 + }, + { + "start": 2493.18, + "end": 2496.85, + "probability": 0.932 + }, + { + "start": 2499.12, + "end": 2504.16, + "probability": 0.9966 + }, + { + "start": 2504.16, + "end": 2506.78, + "probability": 0.9202 + }, + { + "start": 2508.3, + "end": 2511.54, + "probability": 0.9579 + }, + { + "start": 2512.8, + "end": 2513.16, + "probability": 0.7013 + }, + { + "start": 2514.76, + "end": 2515.72, + "probability": 0.9905 + }, + { + "start": 2517.32, + "end": 2521.42, + "probability": 0.9989 + }, + { + "start": 2522.76, + "end": 2523.8, + "probability": 0.9966 + }, + { + "start": 2525.98, + "end": 2526.16, + "probability": 0.4402 + }, + { + "start": 2529.25, + "end": 2530.92, + "probability": 0.992 + }, + { + "start": 2531.77, + "end": 2533.66, + "probability": 0.9308 + }, + { + "start": 2534.61, + "end": 2536.1, + "probability": 0.9659 + }, + { + "start": 2537.29, + "end": 2539.32, + "probability": 0.9858 + }, + { + "start": 2540.68, + "end": 2541.91, + "probability": 0.8965 + }, + { + "start": 2543.05, + "end": 2544.62, + "probability": 0.7863 + }, + { + "start": 2545.47, + "end": 2546.81, + "probability": 0.8738 + }, + { + "start": 2547.97, + "end": 2549.71, + "probability": 0.9908 + }, + { + "start": 2551.19, + "end": 2552.19, + "probability": 0.7423 + }, + { + "start": 2553.3, + "end": 2554.34, + "probability": 0.8296 + }, + { + "start": 2554.97, + "end": 2556.33, + "probability": 0.9548 + }, + { + "start": 2557.53, + "end": 2558.65, + "probability": 0.9458 + }, + { + "start": 2559.27, + "end": 2560.23, + "probability": 0.9707 + }, + { + "start": 2563.33, + "end": 2564.59, + "probability": 0.8743 + }, + { + "start": 2565.99, + "end": 2571.77, + "probability": 0.9741 + }, + { + "start": 2574.59, + "end": 2576.37, + "probability": 0.0971 + }, + { + "start": 2578.17, + "end": 2580.01, + "probability": 0.5734 + }, + { + "start": 2580.95, + "end": 2581.71, + "probability": 0.623 + }, + { + "start": 2582.55, + "end": 2585.3, + "probability": 0.9734 + }, + { + "start": 2587.93, + "end": 2588.93, + "probability": 0.7722 + }, + { + "start": 2590.45, + "end": 2592.49, + "probability": 0.8859 + }, + { + "start": 2593.61, + "end": 2594.75, + "probability": 0.6716 + }, + { + "start": 2595.63, + "end": 2598.99, + "probability": 0.955 + }, + { + "start": 2600.47, + "end": 2602.39, + "probability": 0.8052 + }, + { + "start": 2603.61, + "end": 2605.67, + "probability": 0.88 + }, + { + "start": 2606.43, + "end": 2606.89, + "probability": 0.8687 + }, + { + "start": 2608.15, + "end": 2608.83, + "probability": 0.9597 + }, + { + "start": 2609.59, + "end": 2610.29, + "probability": 0.9751 + }, + { + "start": 2611.21, + "end": 2612.09, + "probability": 0.913 + }, + { + "start": 2612.63, + "end": 2613.57, + "probability": 0.8572 + }, + { + "start": 2614.33, + "end": 2615.07, + "probability": 0.8403 + }, + { + "start": 2615.61, + "end": 2616.21, + "probability": 0.9844 + }, + { + "start": 2617.63, + "end": 2618.81, + "probability": 0.9965 + }, + { + "start": 2620.41, + "end": 2622.85, + "probability": 0.9846 + }, + { + "start": 2624.39, + "end": 2628.07, + "probability": 0.852 + }, + { + "start": 2628.43, + "end": 2629.9, + "probability": 0.999 + }, + { + "start": 2631.85, + "end": 2634.91, + "probability": 0.5282 + }, + { + "start": 2635.67, + "end": 2637.03, + "probability": 0.996 + }, + { + "start": 2637.93, + "end": 2640.99, + "probability": 0.9015 + }, + { + "start": 2641.97, + "end": 2645.61, + "probability": 0.994 + }, + { + "start": 2646.13, + "end": 2647.11, + "probability": 0.6866 + }, + { + "start": 2648.53, + "end": 2651.65, + "probability": 0.9956 + }, + { + "start": 2651.85, + "end": 2653.77, + "probability": 0.96 + }, + { + "start": 2654.35, + "end": 2656.57, + "probability": 0.8757 + }, + { + "start": 2658.33, + "end": 2660.85, + "probability": 0.9739 + }, + { + "start": 2661.73, + "end": 2662.35, + "probability": 0.5652 + }, + { + "start": 2663.65, + "end": 2665.27, + "probability": 0.9982 + }, + { + "start": 2667.59, + "end": 2671.01, + "probability": 0.6954 + }, + { + "start": 2672.43, + "end": 2677.1, + "probability": 0.9979 + }, + { + "start": 2677.79, + "end": 2678.65, + "probability": 0.9319 + }, + { + "start": 2679.27, + "end": 2681.05, + "probability": 0.9987 + }, + { + "start": 2682.59, + "end": 2684.65, + "probability": 0.9719 + }, + { + "start": 2686.39, + "end": 2687.61, + "probability": 0.9819 + }, + { + "start": 2689.05, + "end": 2690.65, + "probability": 0.8525 + }, + { + "start": 2691.83, + "end": 2693.73, + "probability": 0.9966 + }, + { + "start": 2695.51, + "end": 2695.51, + "probability": 0.002 + }, + { + "start": 2697.65, + "end": 2700.61, + "probability": 0.9443 + }, + { + "start": 2701.73, + "end": 2703.93, + "probability": 0.9962 + }, + { + "start": 2705.27, + "end": 2710.41, + "probability": 0.9904 + }, + { + "start": 2712.59, + "end": 2716.45, + "probability": 0.9561 + }, + { + "start": 2719.15, + "end": 2720.69, + "probability": 0.828 + }, + { + "start": 2722.71, + "end": 2725.67, + "probability": 0.937 + }, + { + "start": 2727.19, + "end": 2730.09, + "probability": 0.7161 + }, + { + "start": 2730.75, + "end": 2733.21, + "probability": 0.9858 + }, + { + "start": 2733.83, + "end": 2736.35, + "probability": 0.9958 + }, + { + "start": 2737.83, + "end": 2739.33, + "probability": 0.9868 + }, + { + "start": 2740.35, + "end": 2741.53, + "probability": 0.8374 + }, + { + "start": 2742.95, + "end": 2744.69, + "probability": 0.9804 + }, + { + "start": 2745.69, + "end": 2748.13, + "probability": 0.9915 + }, + { + "start": 2749.05, + "end": 2750.17, + "probability": 0.8883 + }, + { + "start": 2753.23, + "end": 2754.37, + "probability": 0.7164 + }, + { + "start": 2755.15, + "end": 2758.53, + "probability": 0.9971 + }, + { + "start": 2758.85, + "end": 2760.63, + "probability": 0.998 + }, + { + "start": 2761.05, + "end": 2763.15, + "probability": 0.9123 + }, + { + "start": 2764.95, + "end": 2768.41, + "probability": 0.8707 + }, + { + "start": 2769.63, + "end": 2771.97, + "probability": 0.998 + }, + { + "start": 2772.75, + "end": 2777.67, + "probability": 0.9796 + }, + { + "start": 2779.87, + "end": 2784.59, + "probability": 0.9979 + }, + { + "start": 2785.67, + "end": 2786.47, + "probability": 0.6812 + }, + { + "start": 2787.85, + "end": 2788.82, + "probability": 0.998 + }, + { + "start": 2789.59, + "end": 2790.15, + "probability": 0.8387 + }, + { + "start": 2790.51, + "end": 2792.73, + "probability": 0.5844 + }, + { + "start": 2793.25, + "end": 2795.21, + "probability": 0.8783 + }, + { + "start": 2796.31, + "end": 2798.01, + "probability": 0.9139 + }, + { + "start": 2798.35, + "end": 2800.9, + "probability": 0.6948 + }, + { + "start": 2801.89, + "end": 2806.5, + "probability": 0.9877 + }, + { + "start": 2806.87, + "end": 2808.73, + "probability": 0.9937 + }, + { + "start": 2809.89, + "end": 2811.39, + "probability": 0.8532 + }, + { + "start": 2812.47, + "end": 2816.31, + "probability": 0.9688 + }, + { + "start": 2817.17, + "end": 2820.55, + "probability": 0.8481 + }, + { + "start": 2821.27, + "end": 2822.45, + "probability": 0.5641 + }, + { + "start": 2823.19, + "end": 2823.89, + "probability": 0.9163 + }, + { + "start": 2825.35, + "end": 2829.57, + "probability": 0.9919 + }, + { + "start": 2831.19, + "end": 2832.35, + "probability": 0.6288 + }, + { + "start": 2832.65, + "end": 2833.67, + "probability": 0.9763 + }, + { + "start": 2834.57, + "end": 2837.11, + "probability": 0.9634 + }, + { + "start": 2838.63, + "end": 2841.45, + "probability": 0.9724 + }, + { + "start": 2842.35, + "end": 2843.46, + "probability": 0.5934 + }, + { + "start": 2844.31, + "end": 2847.91, + "probability": 0.9778 + }, + { + "start": 2848.67, + "end": 2851.55, + "probability": 0.8883 + }, + { + "start": 2852.91, + "end": 2854.35, + "probability": 0.9959 + }, + { + "start": 2856.53, + "end": 2859.65, + "probability": 0.8142 + }, + { + "start": 2860.79, + "end": 2862.99, + "probability": 0.9815 + }, + { + "start": 2864.79, + "end": 2867.19, + "probability": 0.9845 + }, + { + "start": 2868.01, + "end": 2874.25, + "probability": 0.9631 + }, + { + "start": 2874.65, + "end": 2875.95, + "probability": 0.9461 + }, + { + "start": 2877.11, + "end": 2878.21, + "probability": 0.999 + }, + { + "start": 2880.01, + "end": 2883.41, + "probability": 0.9868 + }, + { + "start": 2885.45, + "end": 2886.87, + "probability": 0.5225 + }, + { + "start": 2886.99, + "end": 2888.69, + "probability": 0.7046 + }, + { + "start": 2889.61, + "end": 2891.58, + "probability": 0.929 + }, + { + "start": 2891.86, + "end": 2894.77, + "probability": 0.918 + }, + { + "start": 2895.37, + "end": 2897.91, + "probability": 0.9811 + }, + { + "start": 2898.31, + "end": 2899.43, + "probability": 0.9771 + }, + { + "start": 2900.13, + "end": 2900.81, + "probability": 0.999 + }, + { + "start": 2901.53, + "end": 2904.35, + "probability": 0.6473 + }, + { + "start": 2906.15, + "end": 2908.67, + "probability": 0.8478 + }, + { + "start": 2908.73, + "end": 2913.27, + "probability": 0.9648 + }, + { + "start": 2914.15, + "end": 2916.01, + "probability": 0.7733 + }, + { + "start": 2916.95, + "end": 2919.81, + "probability": 0.7696 + }, + { + "start": 2921.39, + "end": 2926.21, + "probability": 0.9893 + }, + { + "start": 2927.15, + "end": 2929.9, + "probability": 0.9358 + }, + { + "start": 2931.73, + "end": 2936.71, + "probability": 0.6702 + }, + { + "start": 2937.17, + "end": 2939.85, + "probability": 0.9864 + }, + { + "start": 2940.23, + "end": 2941.33, + "probability": 0.9841 + }, + { + "start": 2942.45, + "end": 2944.71, + "probability": 0.9975 + }, + { + "start": 2946.21, + "end": 2948.05, + "probability": 0.9894 + }, + { + "start": 2949.25, + "end": 2950.11, + "probability": 0.9268 + }, + { + "start": 2951.09, + "end": 2955.11, + "probability": 0.9871 + }, + { + "start": 2956.25, + "end": 2957.39, + "probability": 0.8309 + }, + { + "start": 2958.41, + "end": 2960.57, + "probability": 0.9902 + }, + { + "start": 2961.09, + "end": 2962.75, + "probability": 0.5917 + }, + { + "start": 2963.39, + "end": 2963.95, + "probability": 0.4634 + }, + { + "start": 2964.81, + "end": 2966.63, + "probability": 0.7768 + }, + { + "start": 2967.79, + "end": 2973.13, + "probability": 0.8445 + }, + { + "start": 2975.11, + "end": 2977.05, + "probability": 0.8664 + }, + { + "start": 2977.85, + "end": 2980.37, + "probability": 0.8616 + }, + { + "start": 2981.09, + "end": 2982.67, + "probability": 0.9785 + }, + { + "start": 2983.89, + "end": 2987.49, + "probability": 0.8262 + }, + { + "start": 2988.43, + "end": 2990.43, + "probability": 0.9951 + }, + { + "start": 2991.27, + "end": 2995.05, + "probability": 0.9966 + }, + { + "start": 2995.97, + "end": 2997.79, + "probability": 0.7526 + }, + { + "start": 2998.69, + "end": 3000.01, + "probability": 0.8126 + }, + { + "start": 3000.83, + "end": 3003.43, + "probability": 0.5371 + }, + { + "start": 3004.31, + "end": 3008.07, + "probability": 0.6055 + }, + { + "start": 3009.51, + "end": 3011.41, + "probability": 0.7042 + }, + { + "start": 3012.47, + "end": 3013.28, + "probability": 0.9359 + }, + { + "start": 3015.33, + "end": 3016.45, + "probability": 0.9678 + }, + { + "start": 3017.63, + "end": 3018.53, + "probability": 0.9526 + }, + { + "start": 3019.59, + "end": 3024.63, + "probability": 0.9352 + }, + { + "start": 3024.73, + "end": 3024.99, + "probability": 0.3274 + }, + { + "start": 3025.07, + "end": 3026.77, + "probability": 0.6674 + }, + { + "start": 3026.97, + "end": 3029.67, + "probability": 0.7954 + }, + { + "start": 3029.73, + "end": 3030.55, + "probability": 0.8406 + }, + { + "start": 3047.69, + "end": 3049.41, + "probability": 0.7405 + }, + { + "start": 3050.91, + "end": 3053.15, + "probability": 0.8799 + }, + { + "start": 3053.87, + "end": 3054.39, + "probability": 0.6796 + }, + { + "start": 3054.91, + "end": 3055.27, + "probability": 0.6887 + }, + { + "start": 3055.33, + "end": 3056.74, + "probability": 0.968 + }, + { + "start": 3057.51, + "end": 3057.63, + "probability": 0.3672 + }, + { + "start": 3059.05, + "end": 3060.61, + "probability": 0.9712 + }, + { + "start": 3061.01, + "end": 3064.73, + "probability": 0.9773 + }, + { + "start": 3066.85, + "end": 3068.67, + "probability": 0.7959 + }, + { + "start": 3069.21, + "end": 3069.87, + "probability": 0.1259 + }, + { + "start": 3070.41, + "end": 3072.97, + "probability": 0.5047 + }, + { + "start": 3077.53, + "end": 3078.23, + "probability": 0.8021 + }, + { + "start": 3079.01, + "end": 3080.45, + "probability": 0.8275 + }, + { + "start": 3081.21, + "end": 3082.06, + "probability": 0.8369 + }, + { + "start": 3083.01, + "end": 3085.69, + "probability": 0.9613 + }, + { + "start": 3087.35, + "end": 3091.37, + "probability": 0.9349 + }, + { + "start": 3091.37, + "end": 3095.19, + "probability": 0.962 + }, + { + "start": 3096.25, + "end": 3097.49, + "probability": 0.9953 + }, + { + "start": 3099.07, + "end": 3100.21, + "probability": 0.9089 + }, + { + "start": 3100.77, + "end": 3105.51, + "probability": 0.9849 + }, + { + "start": 3106.11, + "end": 3107.25, + "probability": 0.9541 + }, + { + "start": 3108.21, + "end": 3108.73, + "probability": 0.6753 + }, + { + "start": 3109.37, + "end": 3114.69, + "probability": 0.8613 + }, + { + "start": 3116.83, + "end": 3122.39, + "probability": 0.9518 + }, + { + "start": 3123.5, + "end": 3125.08, + "probability": 0.8395 + }, + { + "start": 3125.79, + "end": 3126.01, + "probability": 0.4442 + }, + { + "start": 3126.01, + "end": 3126.81, + "probability": 0.8473 + }, + { + "start": 3127.29, + "end": 3128.43, + "probability": 0.8014 + }, + { + "start": 3129.09, + "end": 3133.05, + "probability": 0.9136 + }, + { + "start": 3133.41, + "end": 3137.35, + "probability": 0.9701 + }, + { + "start": 3138.87, + "end": 3141.86, + "probability": 0.7569 + }, + { + "start": 3142.55, + "end": 3146.23, + "probability": 0.9482 + }, + { + "start": 3147.11, + "end": 3147.19, + "probability": 0.0202 + }, + { + "start": 3147.19, + "end": 3151.85, + "probability": 0.9332 + }, + { + "start": 3152.43, + "end": 3155.93, + "probability": 0.8646 + }, + { + "start": 3157.21, + "end": 3158.97, + "probability": 0.9309 + }, + { + "start": 3159.61, + "end": 3162.37, + "probability": 0.9976 + }, + { + "start": 3163.21, + "end": 3166.04, + "probability": 0.8874 + }, + { + "start": 3167.01, + "end": 3169.39, + "probability": 0.9825 + }, + { + "start": 3169.63, + "end": 3172.85, + "probability": 0.1321 + }, + { + "start": 3172.99, + "end": 3178.33, + "probability": 0.0702 + }, + { + "start": 3178.43, + "end": 3180.51, + "probability": 0.2188 + }, + { + "start": 3180.87, + "end": 3181.93, + "probability": 0.7729 + }, + { + "start": 3182.69, + "end": 3182.77, + "probability": 0.3335 + }, + { + "start": 3182.91, + "end": 3183.51, + "probability": 0.5761 + }, + { + "start": 3183.61, + "end": 3185.07, + "probability": 0.9139 + }, + { + "start": 3186.85, + "end": 3189.57, + "probability": 0.7976 + }, + { + "start": 3190.57, + "end": 3191.25, + "probability": 0.8613 + }, + { + "start": 3191.65, + "end": 3193.19, + "probability": 0.8915 + }, + { + "start": 3194.79, + "end": 3196.11, + "probability": 0.8483 + }, + { + "start": 3197.29, + "end": 3197.85, + "probability": 0.8286 + }, + { + "start": 3199.23, + "end": 3201.13, + "probability": 0.972 + }, + { + "start": 3202.07, + "end": 3203.17, + "probability": 0.7415 + }, + { + "start": 3204.27, + "end": 3207.31, + "probability": 0.8789 + }, + { + "start": 3207.87, + "end": 3212.07, + "probability": 0.9915 + }, + { + "start": 3212.35, + "end": 3215.01, + "probability": 0.9719 + }, + { + "start": 3216.25, + "end": 3217.28, + "probability": 0.8408 + }, + { + "start": 3218.35, + "end": 3220.57, + "probability": 0.9824 + }, + { + "start": 3222.55, + "end": 3225.65, + "probability": 0.8458 + }, + { + "start": 3226.41, + "end": 3227.93, + "probability": 0.9362 + }, + { + "start": 3228.69, + "end": 3231.51, + "probability": 0.983 + }, + { + "start": 3232.09, + "end": 3235.43, + "probability": 0.9726 + }, + { + "start": 3236.15, + "end": 3238.53, + "probability": 0.9946 + }, + { + "start": 3238.87, + "end": 3239.63, + "probability": 0.5977 + }, + { + "start": 3239.87, + "end": 3240.09, + "probability": 0.3185 + }, + { + "start": 3240.57, + "end": 3241.63, + "probability": 0.5806 + }, + { + "start": 3241.97, + "end": 3242.95, + "probability": 0.9644 + }, + { + "start": 3244.03, + "end": 3245.43, + "probability": 0.9825 + }, + { + "start": 3246.65, + "end": 3250.11, + "probability": 0.947 + }, + { + "start": 3250.71, + "end": 3252.21, + "probability": 0.9891 + }, + { + "start": 3252.23, + "end": 3253.42, + "probability": 0.9937 + }, + { + "start": 3253.87, + "end": 3255.15, + "probability": 0.9641 + }, + { + "start": 3255.21, + "end": 3256.63, + "probability": 0.9015 + }, + { + "start": 3257.27, + "end": 3258.87, + "probability": 0.8726 + }, + { + "start": 3259.75, + "end": 3260.9, + "probability": 0.7834 + }, + { + "start": 3261.43, + "end": 3264.29, + "probability": 0.9779 + }, + { + "start": 3265.37, + "end": 3267.47, + "probability": 0.9091 + }, + { + "start": 3267.75, + "end": 3268.79, + "probability": 0.8449 + }, + { + "start": 3268.83, + "end": 3269.93, + "probability": 0.9911 + }, + { + "start": 3270.71, + "end": 3272.53, + "probability": 0.9945 + }, + { + "start": 3272.99, + "end": 3274.65, + "probability": 0.9736 + }, + { + "start": 3276.79, + "end": 3277.87, + "probability": 0.9548 + }, + { + "start": 3277.99, + "end": 3280.51, + "probability": 0.9907 + }, + { + "start": 3281.89, + "end": 3291.45, + "probability": 0.975 + }, + { + "start": 3292.75, + "end": 3293.75, + "probability": 0.7071 + }, + { + "start": 3293.91, + "end": 3296.63, + "probability": 0.9956 + }, + { + "start": 3297.51, + "end": 3298.57, + "probability": 0.8675 + }, + { + "start": 3299.37, + "end": 3301.43, + "probability": 0.9966 + }, + { + "start": 3302.13, + "end": 3306.23, + "probability": 0.9236 + }, + { + "start": 3308.31, + "end": 3309.79, + "probability": 0.7496 + }, + { + "start": 3310.91, + "end": 3312.77, + "probability": 0.6375 + }, + { + "start": 3314.05, + "end": 3316.12, + "probability": 0.9678 + }, + { + "start": 3317.73, + "end": 3321.19, + "probability": 0.9126 + }, + { + "start": 3321.81, + "end": 3327.31, + "probability": 0.9532 + }, + { + "start": 3327.99, + "end": 3330.09, + "probability": 0.9474 + }, + { + "start": 3332.15, + "end": 3333.61, + "probability": 0.8893 + }, + { + "start": 3334.67, + "end": 3335.93, + "probability": 0.9956 + }, + { + "start": 3336.77, + "end": 3337.65, + "probability": 0.6553 + }, + { + "start": 3337.69, + "end": 3339.09, + "probability": 0.7192 + }, + { + "start": 3340.21, + "end": 3341.19, + "probability": 0.8073 + }, + { + "start": 3342.35, + "end": 3343.35, + "probability": 0.9751 + }, + { + "start": 3343.77, + "end": 3344.45, + "probability": 0.1288 + }, + { + "start": 3345.01, + "end": 3346.05, + "probability": 0.9839 + }, + { + "start": 3346.47, + "end": 3354.45, + "probability": 0.9839 + }, + { + "start": 3354.81, + "end": 3358.29, + "probability": 0.6527 + }, + { + "start": 3358.29, + "end": 3358.43, + "probability": 0.5265 + }, + { + "start": 3359.27, + "end": 3359.57, + "probability": 0.429 + }, + { + "start": 3359.69, + "end": 3360.73, + "probability": 0.7819 + }, + { + "start": 3360.91, + "end": 3361.47, + "probability": 0.47 + }, + { + "start": 3362.39, + "end": 3368.39, + "probability": 0.3055 + }, + { + "start": 3368.41, + "end": 3369.45, + "probability": 0.5382 + }, + { + "start": 3369.49, + "end": 3372.85, + "probability": 0.9835 + }, + { + "start": 3373.43, + "end": 3373.93, + "probability": 0.8156 + }, + { + "start": 3374.39, + "end": 3375.61, + "probability": 0.5097 + }, + { + "start": 3375.79, + "end": 3377.23, + "probability": 0.4505 + }, + { + "start": 3377.45, + "end": 3378.83, + "probability": 0.7533 + }, + { + "start": 3378.91, + "end": 3379.97, + "probability": 0.9579 + }, + { + "start": 3380.17, + "end": 3381.69, + "probability": 0.809 + }, + { + "start": 3381.83, + "end": 3385.15, + "probability": 0.9893 + }, + { + "start": 3385.15, + "end": 3389.59, + "probability": 0.9746 + }, + { + "start": 3389.79, + "end": 3390.59, + "probability": 0.0936 + }, + { + "start": 3392.55, + "end": 3392.57, + "probability": 0.1826 + }, + { + "start": 3392.57, + "end": 3393.27, + "probability": 0.4494 + }, + { + "start": 3394.03, + "end": 3394.03, + "probability": 0.0368 + }, + { + "start": 3394.03, + "end": 3394.03, + "probability": 0.0219 + }, + { + "start": 3394.03, + "end": 3394.03, + "probability": 0.792 + }, + { + "start": 3394.07, + "end": 3394.45, + "probability": 0.8287 + }, + { + "start": 3395.19, + "end": 3396.37, + "probability": 0.8546 + }, + { + "start": 3397.47, + "end": 3400.39, + "probability": 0.8228 + }, + { + "start": 3401.07, + "end": 3401.65, + "probability": 0.5611 + }, + { + "start": 3402.19, + "end": 3403.31, + "probability": 0.9128 + }, + { + "start": 3404.69, + "end": 3405.59, + "probability": 0.8069 + }, + { + "start": 3406.69, + "end": 3408.75, + "probability": 0.2991 + }, + { + "start": 3409.63, + "end": 3410.55, + "probability": 0.5022 + }, + { + "start": 3410.59, + "end": 3415.77, + "probability": 0.8739 + }, + { + "start": 3415.77, + "end": 3415.93, + "probability": 0.0104 + }, + { + "start": 3415.93, + "end": 3417.67, + "probability": 0.2391 + }, + { + "start": 3417.97, + "end": 3419.99, + "probability": 0.6908 + }, + { + "start": 3420.81, + "end": 3425.33, + "probability": 0.4621 + }, + { + "start": 3425.47, + "end": 3426.05, + "probability": 0.6187 + }, + { + "start": 3426.05, + "end": 3427.67, + "probability": 0.1944 + }, + { + "start": 3427.97, + "end": 3429.81, + "probability": 0.195 + }, + { + "start": 3429.97, + "end": 3434.27, + "probability": 0.9668 + }, + { + "start": 3435.25, + "end": 3438.27, + "probability": 0.988 + }, + { + "start": 3438.89, + "end": 3439.47, + "probability": 0.8518 + }, + { + "start": 3439.47, + "end": 3443.27, + "probability": 0.9406 + }, + { + "start": 3443.33, + "end": 3445.01, + "probability": 0.8419 + }, + { + "start": 3445.49, + "end": 3446.41, + "probability": 0.9198 + }, + { + "start": 3446.93, + "end": 3452.53, + "probability": 0.9837 + }, + { + "start": 3452.81, + "end": 3459.09, + "probability": 0.915 + }, + { + "start": 3459.49, + "end": 3460.05, + "probability": 0.8715 + }, + { + "start": 3460.51, + "end": 3464.15, + "probability": 0.9689 + }, + { + "start": 3465.61, + "end": 3466.63, + "probability": 0.4414 + }, + { + "start": 3468.11, + "end": 3468.96, + "probability": 0.9808 + }, + { + "start": 3469.61, + "end": 3473.63, + "probability": 0.9767 + }, + { + "start": 3474.27, + "end": 3475.31, + "probability": 0.7922 + }, + { + "start": 3476.35, + "end": 3478.08, + "probability": 0.9902 + }, + { + "start": 3479.03, + "end": 3480.19, + "probability": 0.853 + }, + { + "start": 3480.63, + "end": 3483.43, + "probability": 0.7161 + }, + { + "start": 3483.51, + "end": 3483.87, + "probability": 0.5165 + }, + { + "start": 3484.23, + "end": 3484.57, + "probability": 0.6346 + }, + { + "start": 3485.37, + "end": 3486.25, + "probability": 0.5952 + }, + { + "start": 3486.37, + "end": 3488.85, + "probability": 0.966 + }, + { + "start": 3490.09, + "end": 3491.79, + "probability": 0.9749 + }, + { + "start": 3492.59, + "end": 3494.77, + "probability": 0.9565 + }, + { + "start": 3495.03, + "end": 3497.05, + "probability": 0.8154 + }, + { + "start": 3498.23, + "end": 3500.69, + "probability": 0.8433 + }, + { + "start": 3500.69, + "end": 3504.55, + "probability": 0.8535 + }, + { + "start": 3504.59, + "end": 3505.43, + "probability": 0.8163 + }, + { + "start": 3506.59, + "end": 3508.57, + "probability": 0.5377 + }, + { + "start": 3510.21, + "end": 3510.85, + "probability": 0.004 + }, + { + "start": 3513.23, + "end": 3514.25, + "probability": 0.9522 + }, + { + "start": 3514.29, + "end": 3515.89, + "probability": 0.8717 + }, + { + "start": 3517.37, + "end": 3519.07, + "probability": 0.7831 + }, + { + "start": 3520.29, + "end": 3524.29, + "probability": 0.8074 + }, + { + "start": 3524.29, + "end": 3524.29, + "probability": 0.0525 + }, + { + "start": 3525.11, + "end": 3526.63, + "probability": 0.1063 + }, + { + "start": 3526.95, + "end": 3527.87, + "probability": 0.5663 + }, + { + "start": 3528.27, + "end": 3532.71, + "probability": 0.9901 + }, + { + "start": 3533.29, + "end": 3535.58, + "probability": 0.8333 + }, + { + "start": 3536.55, + "end": 3536.57, + "probability": 0.6121 + }, + { + "start": 3536.57, + "end": 3537.43, + "probability": 0.8579 + }, + { + "start": 3537.51, + "end": 3538.31, + "probability": 0.9575 + }, + { + "start": 3539.69, + "end": 3540.39, + "probability": 0.4371 + }, + { + "start": 3541.13, + "end": 3541.77, + "probability": 0.5687 + }, + { + "start": 3543.23, + "end": 3545.17, + "probability": 0.9771 + }, + { + "start": 3546.95, + "end": 3549.35, + "probability": 0.9917 + }, + { + "start": 3551.03, + "end": 3553.03, + "probability": 0.999 + }, + { + "start": 3554.99, + "end": 3556.61, + "probability": 0.9132 + }, + { + "start": 3557.75, + "end": 3558.55, + "probability": 0.922 + }, + { + "start": 3560.73, + "end": 3560.87, + "probability": 0.5023 + }, + { + "start": 3560.99, + "end": 3565.02, + "probability": 0.9834 + }, + { + "start": 3566.43, + "end": 3570.91, + "probability": 0.9754 + }, + { + "start": 3572.69, + "end": 3576.41, + "probability": 0.9327 + }, + { + "start": 3576.53, + "end": 3577.29, + "probability": 0.6589 + }, + { + "start": 3578.55, + "end": 3581.39, + "probability": 0.9313 + }, + { + "start": 3583.51, + "end": 3585.41, + "probability": 0.8231 + }, + { + "start": 3586.71, + "end": 3589.61, + "probability": 0.9919 + }, + { + "start": 3590.97, + "end": 3592.17, + "probability": 0.9601 + }, + { + "start": 3593.21, + "end": 3595.21, + "probability": 0.986 + }, + { + "start": 3595.99, + "end": 3597.01, + "probability": 0.8683 + }, + { + "start": 3599.85, + "end": 3602.57, + "probability": 0.9961 + }, + { + "start": 3603.63, + "end": 3607.67, + "probability": 0.9896 + }, + { + "start": 3608.69, + "end": 3610.19, + "probability": 0.999 + }, + { + "start": 3611.95, + "end": 3614.81, + "probability": 0.9948 + }, + { + "start": 3616.15, + "end": 3620.81, + "probability": 0.9931 + }, + { + "start": 3621.79, + "end": 3624.81, + "probability": 0.9857 + }, + { + "start": 3626.97, + "end": 3628.67, + "probability": 0.9142 + }, + { + "start": 3629.83, + "end": 3630.93, + "probability": 0.6851 + }, + { + "start": 3632.07, + "end": 3642.01, + "probability": 0.9336 + }, + { + "start": 3643.81, + "end": 3647.63, + "probability": 0.6297 + }, + { + "start": 3648.61, + "end": 3652.91, + "probability": 0.9971 + }, + { + "start": 3654.09, + "end": 3656.27, + "probability": 0.9985 + }, + { + "start": 3658.83, + "end": 3661.17, + "probability": 0.8111 + }, + { + "start": 3661.79, + "end": 3667.23, + "probability": 0.9893 + }, + { + "start": 3669.11, + "end": 3674.79, + "probability": 0.9697 + }, + { + "start": 3676.63, + "end": 3680.71, + "probability": 0.5658 + }, + { + "start": 3681.79, + "end": 3683.09, + "probability": 0.9995 + }, + { + "start": 3683.79, + "end": 3689.09, + "probability": 0.9719 + }, + { + "start": 3690.69, + "end": 3693.95, + "probability": 0.4991 + }, + { + "start": 3696.49, + "end": 3701.09, + "probability": 0.7495 + }, + { + "start": 3703.07, + "end": 3708.23, + "probability": 0.5791 + }, + { + "start": 3709.73, + "end": 3713.69, + "probability": 0.7269 + }, + { + "start": 3714.69, + "end": 3720.55, + "probability": 0.9824 + }, + { + "start": 3722.07, + "end": 3724.03, + "probability": 0.615 + }, + { + "start": 3725.11, + "end": 3726.57, + "probability": 0.7716 + }, + { + "start": 3726.79, + "end": 3727.87, + "probability": 0.9482 + }, + { + "start": 3728.27, + "end": 3733.27, + "probability": 0.9474 + }, + { + "start": 3733.39, + "end": 3737.59, + "probability": 0.9278 + }, + { + "start": 3738.39, + "end": 3740.71, + "probability": 0.9285 + }, + { + "start": 3741.51, + "end": 3744.15, + "probability": 0.9951 + }, + { + "start": 3744.87, + "end": 3746.35, + "probability": 0.9756 + }, + { + "start": 3747.09, + "end": 3750.35, + "probability": 0.8018 + }, + { + "start": 3752.25, + "end": 3754.09, + "probability": 0.7411 + }, + { + "start": 3755.59, + "end": 3757.95, + "probability": 0.9919 + }, + { + "start": 3759.29, + "end": 3762.59, + "probability": 0.9929 + }, + { + "start": 3764.17, + "end": 3767.35, + "probability": 0.855 + }, + { + "start": 3769.93, + "end": 3772.53, + "probability": 0.968 + }, + { + "start": 3774.01, + "end": 3778.43, + "probability": 0.9805 + }, + { + "start": 3780.07, + "end": 3781.05, + "probability": 0.8485 + }, + { + "start": 3781.33, + "end": 3785.99, + "probability": 0.9922 + }, + { + "start": 3787.63, + "end": 3790.79, + "probability": 0.9379 + }, + { + "start": 3791.65, + "end": 3793.85, + "probability": 0.9685 + }, + { + "start": 3794.63, + "end": 3795.23, + "probability": 0.8956 + }, + { + "start": 3797.49, + "end": 3799.57, + "probability": 0.4674 + }, + { + "start": 3800.21, + "end": 3807.63, + "probability": 0.9543 + }, + { + "start": 3808.83, + "end": 3809.71, + "probability": 0.6624 + }, + { + "start": 3810.81, + "end": 3813.41, + "probability": 0.9678 + }, + { + "start": 3814.21, + "end": 3817.67, + "probability": 0.9727 + }, + { + "start": 3818.23, + "end": 3820.21, + "probability": 0.3473 + }, + { + "start": 3821.29, + "end": 3825.73, + "probability": 0.7203 + }, + { + "start": 3827.49, + "end": 3831.13, + "probability": 0.9953 + }, + { + "start": 3831.67, + "end": 3835.99, + "probability": 0.9725 + }, + { + "start": 3837.29, + "end": 3841.31, + "probability": 0.9569 + }, + { + "start": 3841.49, + "end": 3842.13, + "probability": 0.7012 + }, + { + "start": 3842.21, + "end": 3842.63, + "probability": 0.6783 + }, + { + "start": 3843.55, + "end": 3845.27, + "probability": 0.9603 + }, + { + "start": 3846.27, + "end": 3849.43, + "probability": 0.9927 + }, + { + "start": 3850.31, + "end": 3851.19, + "probability": 0.8005 + }, + { + "start": 3851.99, + "end": 3853.61, + "probability": 0.8231 + }, + { + "start": 3854.57, + "end": 3858.87, + "probability": 0.9761 + }, + { + "start": 3860.45, + "end": 3862.63, + "probability": 0.9139 + }, + { + "start": 3863.47, + "end": 3864.09, + "probability": 0.7827 + }, + { + "start": 3865.49, + "end": 3873.09, + "probability": 0.9827 + }, + { + "start": 3873.99, + "end": 3877.63, + "probability": 0.9531 + }, + { + "start": 3877.63, + "end": 3885.17, + "probability": 0.9321 + }, + { + "start": 3886.61, + "end": 3892.93, + "probability": 0.9538 + }, + { + "start": 3893.65, + "end": 3895.95, + "probability": 0.986 + }, + { + "start": 3896.65, + "end": 3897.77, + "probability": 0.6314 + }, + { + "start": 3898.65, + "end": 3901.43, + "probability": 0.5345 + }, + { + "start": 3902.29, + "end": 3903.21, + "probability": 0.7846 + }, + { + "start": 3903.43, + "end": 3907.71, + "probability": 0.8858 + }, + { + "start": 3907.77, + "end": 3912.11, + "probability": 0.959 + }, + { + "start": 3912.75, + "end": 3917.75, + "probability": 0.9548 + }, + { + "start": 3918.39, + "end": 3921.35, + "probability": 0.994 + }, + { + "start": 3922.13, + "end": 3927.43, + "probability": 0.9807 + }, + { + "start": 3927.43, + "end": 3932.57, + "probability": 0.9941 + }, + { + "start": 3934.67, + "end": 3940.05, + "probability": 0.9266 + }, + { + "start": 3943.35, + "end": 3948.37, + "probability": 0.9873 + }, + { + "start": 3950.15, + "end": 3953.65, + "probability": 0.6437 + }, + { + "start": 3955.27, + "end": 3959.63, + "probability": 0.9718 + }, + { + "start": 3960.67, + "end": 3963.61, + "probability": 0.5073 + }, + { + "start": 3964.17, + "end": 3966.15, + "probability": 0.993 + }, + { + "start": 3967.81, + "end": 3970.99, + "probability": 0.953 + }, + { + "start": 3971.71, + "end": 3973.67, + "probability": 0.978 + }, + { + "start": 3974.39, + "end": 3975.43, + "probability": 0.9251 + }, + { + "start": 3976.65, + "end": 3980.85, + "probability": 0.9946 + }, + { + "start": 3982.43, + "end": 3985.17, + "probability": 0.9099 + }, + { + "start": 3986.75, + "end": 3994.09, + "probability": 0.8934 + }, + { + "start": 3995.95, + "end": 3999.13, + "probability": 0.8364 + }, + { + "start": 4000.21, + "end": 4001.95, + "probability": 0.9185 + }, + { + "start": 4004.97, + "end": 4006.91, + "probability": 0.9894 + }, + { + "start": 4008.17, + "end": 4011.23, + "probability": 0.8194 + }, + { + "start": 4011.83, + "end": 4015.37, + "probability": 0.9269 + }, + { + "start": 4015.81, + "end": 4021.87, + "probability": 0.9467 + }, + { + "start": 4023.85, + "end": 4024.65, + "probability": 0.5873 + }, + { + "start": 4025.71, + "end": 4028.37, + "probability": 0.9821 + }, + { + "start": 4029.61, + "end": 4037.13, + "probability": 0.9587 + }, + { + "start": 4037.83, + "end": 4038.75, + "probability": 0.7169 + }, + { + "start": 4041.07, + "end": 4041.29, + "probability": 0.1798 + }, + { + "start": 4041.29, + "end": 4049.65, + "probability": 0.9663 + }, + { + "start": 4050.77, + "end": 4053.41, + "probability": 0.9896 + }, + { + "start": 4054.23, + "end": 4055.79, + "probability": 0.7227 + }, + { + "start": 4056.59, + "end": 4059.19, + "probability": 0.9916 + }, + { + "start": 4059.81, + "end": 4065.99, + "probability": 0.9912 + }, + { + "start": 4067.07, + "end": 4069.29, + "probability": 0.713 + }, + { + "start": 4069.55, + "end": 4069.87, + "probability": 0.3365 + }, + { + "start": 4069.97, + "end": 4072.39, + "probability": 0.6859 + }, + { + "start": 4073.23, + "end": 4082.55, + "probability": 0.8893 + }, + { + "start": 4082.65, + "end": 4084.63, + "probability": 0.6595 + }, + { + "start": 4084.63, + "end": 4085.02, + "probability": 0.9629 + }, + { + "start": 4085.95, + "end": 4089.91, + "probability": 0.9948 + }, + { + "start": 4089.95, + "end": 4096.37, + "probability": 0.978 + }, + { + "start": 4097.37, + "end": 4102.35, + "probability": 0.9922 + }, + { + "start": 4102.35, + "end": 4107.61, + "probability": 0.9869 + }, + { + "start": 4107.79, + "end": 4112.17, + "probability": 0.9103 + }, + { + "start": 4113.97, + "end": 4116.15, + "probability": 0.573 + }, + { + "start": 4116.29, + "end": 4118.75, + "probability": 0.9971 + }, + { + "start": 4120.33, + "end": 4122.17, + "probability": 0.895 + }, + { + "start": 4123.53, + "end": 4127.45, + "probability": 0.9541 + }, + { + "start": 4128.59, + "end": 4129.81, + "probability": 0.6113 + }, + { + "start": 4130.67, + "end": 4131.75, + "probability": 0.95 + }, + { + "start": 4132.23, + "end": 4132.71, + "probability": 0.964 + }, + { + "start": 4133.43, + "end": 4135.85, + "probability": 0.9824 + }, + { + "start": 4137.23, + "end": 4140.01, + "probability": 0.7562 + }, + { + "start": 4141.15, + "end": 4145.73, + "probability": 0.8833 + }, + { + "start": 4146.89, + "end": 4153.17, + "probability": 0.8988 + }, + { + "start": 4153.37, + "end": 4154.89, + "probability": 0.8266 + }, + { + "start": 4154.95, + "end": 4155.71, + "probability": 0.5447 + }, + { + "start": 4156.03, + "end": 4157.31, + "probability": 0.674 + }, + { + "start": 4158.17, + "end": 4159.59, + "probability": 0.3715 + }, + { + "start": 4159.63, + "end": 4160.27, + "probability": 0.4614 + }, + { + "start": 4160.31, + "end": 4162.03, + "probability": 0.715 + }, + { + "start": 4162.11, + "end": 4164.97, + "probability": 0.9843 + }, + { + "start": 4165.77, + "end": 4166.97, + "probability": 0.8413 + }, + { + "start": 4168.07, + "end": 4171.95, + "probability": 0.9795 + }, + { + "start": 4172.38, + "end": 4174.55, + "probability": 0.9229 + }, + { + "start": 4175.75, + "end": 4178.79, + "probability": 0.9435 + }, + { + "start": 4178.89, + "end": 4179.77, + "probability": 0.604 + }, + { + "start": 4179.81, + "end": 4180.43, + "probability": 0.9146 + }, + { + "start": 4185.75, + "end": 4186.43, + "probability": 0.3453 + }, + { + "start": 4194.93, + "end": 4195.05, + "probability": 0.0178 + }, + { + "start": 4196.03, + "end": 4196.89, + "probability": 0.0139 + }, + { + "start": 4198.75, + "end": 4199.27, + "probability": 0.0444 + }, + { + "start": 4199.71, + "end": 4199.87, + "probability": 0.0945 + }, + { + "start": 4199.93, + "end": 4199.93, + "probability": 0.1222 + }, + { + "start": 4201.15, + "end": 4201.15, + "probability": 0.064 + }, + { + "start": 4201.15, + "end": 4201.15, + "probability": 0.0802 + }, + { + "start": 4201.15, + "end": 4201.15, + "probability": 0.1982 + }, + { + "start": 4201.15, + "end": 4201.15, + "probability": 0.2637 + }, + { + "start": 4201.15, + "end": 4202.45, + "probability": 0.7552 + }, + { + "start": 4202.57, + "end": 4203.37, + "probability": 0.7937 + }, + { + "start": 4203.45, + "end": 4203.52, + "probability": 0.1375 + }, + { + "start": 4204.91, + "end": 4206.28, + "probability": 0.1912 + }, + { + "start": 4210.95, + "end": 4213.13, + "probability": 0.2008 + }, + { + "start": 4217.17, + "end": 4217.87, + "probability": 0.0219 + }, + { + "start": 4218.09, + "end": 4218.27, + "probability": 0.0672 + }, + { + "start": 4218.27, + "end": 4218.27, + "probability": 0.035 + }, + { + "start": 4218.27, + "end": 4218.47, + "probability": 0.0727 + }, + { + "start": 4218.97, + "end": 4220.37, + "probability": 0.2112 + }, + { + "start": 4221.31, + "end": 4223.51, + "probability": 0.7413 + }, + { + "start": 4223.61, + "end": 4223.95, + "probability": 0.524 + }, + { + "start": 4224.97, + "end": 4229.01, + "probability": 0.9211 + }, + { + "start": 4229.01, + "end": 4231.01, + "probability": 0.9987 + }, + { + "start": 4233.49, + "end": 4234.07, + "probability": 0.533 + }, + { + "start": 4235.63, + "end": 4238.01, + "probability": 0.9984 + }, + { + "start": 4239.11, + "end": 4241.77, + "probability": 0.9526 + }, + { + "start": 4242.03, + "end": 4244.01, + "probability": 0.7233 + }, + { + "start": 4245.79, + "end": 4249.21, + "probability": 0.7709 + }, + { + "start": 4249.27, + "end": 4250.25, + "probability": 0.7619 + }, + { + "start": 4251.27, + "end": 4253.99, + "probability": 0.9929 + }, + { + "start": 4255.39, + "end": 4256.05, + "probability": 0.9555 + }, + { + "start": 4256.19, + "end": 4257.19, + "probability": 0.9782 + }, + { + "start": 4257.23, + "end": 4258.37, + "probability": 0.9854 + }, + { + "start": 4259.33, + "end": 4265.19, + "probability": 0.9952 + }, + { + "start": 4266.19, + "end": 4266.33, + "probability": 0.2318 + }, + { + "start": 4266.33, + "end": 4266.61, + "probability": 0.47 + }, + { + "start": 4267.07, + "end": 4268.69, + "probability": 0.9617 + }, + { + "start": 4269.35, + "end": 4270.35, + "probability": 0.8997 + }, + { + "start": 4271.57, + "end": 4271.57, + "probability": 0.0137 + }, + { + "start": 4273.01, + "end": 4274.13, + "probability": 0.1058 + }, + { + "start": 4274.25, + "end": 4274.83, + "probability": 0.5691 + }, + { + "start": 4276.09, + "end": 4278.17, + "probability": 0.7664 + }, + { + "start": 4278.17, + "end": 4278.17, + "probability": 0.062 + }, + { + "start": 4278.17, + "end": 4278.17, + "probability": 0.1839 + }, + { + "start": 4278.17, + "end": 4280.29, + "probability": 0.9326 + }, + { + "start": 4280.81, + "end": 4282.05, + "probability": 0.6872 + }, + { + "start": 4283.25, + "end": 4285.37, + "probability": 0.5806 + }, + { + "start": 4285.99, + "end": 4286.71, + "probability": 0.719 + }, + { + "start": 4286.77, + "end": 4287.37, + "probability": 0.9537 + }, + { + "start": 4288.31, + "end": 4290.65, + "probability": 0.5793 + }, + { + "start": 4291.45, + "end": 4295.43, + "probability": 0.9884 + }, + { + "start": 4296.15, + "end": 4297.37, + "probability": 0.172 + }, + { + "start": 4297.37, + "end": 4299.35, + "probability": 0.226 + }, + { + "start": 4299.65, + "end": 4302.49, + "probability": 0.0287 + }, + { + "start": 4305.09, + "end": 4305.49, + "probability": 0.0419 + }, + { + "start": 4305.49, + "end": 4305.49, + "probability": 0.0589 + }, + { + "start": 4305.49, + "end": 4308.95, + "probability": 0.7124 + }, + { + "start": 4309.95, + "end": 4315.43, + "probability": 0.9424 + }, + { + "start": 4316.31, + "end": 4318.97, + "probability": 0.8418 + }, + { + "start": 4319.39, + "end": 4321.31, + "probability": 0.8494 + }, + { + "start": 4323.35, + "end": 4324.49, + "probability": 0.8764 + }, + { + "start": 4324.63, + "end": 4325.23, + "probability": 0.8494 + }, + { + "start": 4325.33, + "end": 4326.93, + "probability": 0.9771 + }, + { + "start": 4327.77, + "end": 4331.75, + "probability": 0.9053 + }, + { + "start": 4332.53, + "end": 4336.61, + "probability": 0.9097 + }, + { + "start": 4336.87, + "end": 4337.71, + "probability": 0.2458 + }, + { + "start": 4337.91, + "end": 4338.53, + "probability": 0.5584 + }, + { + "start": 4338.61, + "end": 4338.77, + "probability": 0.592 + }, + { + "start": 4339.09, + "end": 4340.05, + "probability": 0.9771 + }, + { + "start": 4340.29, + "end": 4341.65, + "probability": 0.9984 + }, + { + "start": 4342.87, + "end": 4344.51, + "probability": 0.9407 + }, + { + "start": 4344.67, + "end": 4346.01, + "probability": 0.4949 + }, + { + "start": 4346.17, + "end": 4348.28, + "probability": 0.8994 + }, + { + "start": 4349.29, + "end": 4350.11, + "probability": 0.7774 + }, + { + "start": 4350.47, + "end": 4353.03, + "probability": 0.5691 + }, + { + "start": 4353.19, + "end": 4355.19, + "probability": 0.8041 + }, + { + "start": 4355.27, + "end": 4355.47, + "probability": 0.4417 + }, + { + "start": 4356.37, + "end": 4356.55, + "probability": 0.0007 + }, + { + "start": 4356.55, + "end": 4357.45, + "probability": 0.2088 + }, + { + "start": 4357.45, + "end": 4358.63, + "probability": 0.2947 + }, + { + "start": 4358.77, + "end": 4359.33, + "probability": 0.7945 + }, + { + "start": 4359.41, + "end": 4362.79, + "probability": 0.8312 + }, + { + "start": 4362.87, + "end": 4363.63, + "probability": 0.7448 + }, + { + "start": 4363.63, + "end": 4364.71, + "probability": 0.717 + }, + { + "start": 4364.97, + "end": 4367.67, + "probability": 0.1148 + }, + { + "start": 4367.67, + "end": 4369.45, + "probability": 0.32 + }, + { + "start": 4369.47, + "end": 4370.49, + "probability": 0.3583 + }, + { + "start": 4370.49, + "end": 4372.37, + "probability": 0.4631 + }, + { + "start": 4373.07, + "end": 4374.35, + "probability": 0.4951 + }, + { + "start": 4374.41, + "end": 4374.71, + "probability": 0.9431 + }, + { + "start": 4374.89, + "end": 4377.27, + "probability": 0.9871 + }, + { + "start": 4378.05, + "end": 4382.65, + "probability": 0.9982 + }, + { + "start": 4383.71, + "end": 4385.73, + "probability": 0.9012 + }, + { + "start": 4386.17, + "end": 4388.03, + "probability": 0.9891 + }, + { + "start": 4388.41, + "end": 4390.33, + "probability": 0.8731 + }, + { + "start": 4391.47, + "end": 4392.17, + "probability": 0.8682 + }, + { + "start": 4393.11, + "end": 4396.37, + "probability": 0.9825 + }, + { + "start": 4397.87, + "end": 4401.29, + "probability": 0.8862 + }, + { + "start": 4401.45, + "end": 4402.88, + "probability": 0.5217 + }, + { + "start": 4403.13, + "end": 4403.53, + "probability": 0.8353 + }, + { + "start": 4403.57, + "end": 4404.03, + "probability": 0.8717 + }, + { + "start": 4404.87, + "end": 4407.53, + "probability": 0.8516 + }, + { + "start": 4408.55, + "end": 4412.39, + "probability": 0.9373 + }, + { + "start": 4413.41, + "end": 4415.33, + "probability": 0.9916 + }, + { + "start": 4415.83, + "end": 4417.05, + "probability": 0.998 + }, + { + "start": 4418.63, + "end": 4420.15, + "probability": 0.9927 + }, + { + "start": 4420.31, + "end": 4423.71, + "probability": 0.9924 + }, + { + "start": 4424.59, + "end": 4425.45, + "probability": 0.8033 + }, + { + "start": 4425.51, + "end": 4429.19, + "probability": 0.9966 + }, + { + "start": 4429.19, + "end": 4431.15, + "probability": 0.9988 + }, + { + "start": 4432.35, + "end": 4436.37, + "probability": 0.694 + }, + { + "start": 4436.43, + "end": 4437.07, + "probability": 0.5526 + }, + { + "start": 4437.39, + "end": 4438.41, + "probability": 0.9619 + }, + { + "start": 4438.43, + "end": 4439.05, + "probability": 0.8863 + }, + { + "start": 4439.41, + "end": 4442.69, + "probability": 0.9981 + }, + { + "start": 4443.12, + "end": 4447.43, + "probability": 0.8578 + }, + { + "start": 4448.75, + "end": 4449.41, + "probability": 0.4858 + }, + { + "start": 4449.83, + "end": 4450.79, + "probability": 0.9346 + }, + { + "start": 4451.29, + "end": 4452.19, + "probability": 0.9589 + }, + { + "start": 4452.59, + "end": 4453.59, + "probability": 0.6858 + }, + { + "start": 4453.63, + "end": 4453.99, + "probability": 0.928 + }, + { + "start": 4454.09, + "end": 4454.61, + "probability": 0.72 + }, + { + "start": 4456.19, + "end": 4457.53, + "probability": 0.9134 + }, + { + "start": 4459.04, + "end": 4460.69, + "probability": 0.5915 + }, + { + "start": 4463.69, + "end": 4467.25, + "probability": 0.9602 + }, + { + "start": 4469.21, + "end": 4471.41, + "probability": 0.9639 + }, + { + "start": 4472.51, + "end": 4475.77, + "probability": 0.9026 + }, + { + "start": 4475.85, + "end": 4477.21, + "probability": 0.9718 + }, + { + "start": 4477.61, + "end": 4478.53, + "probability": 0.8561 + }, + { + "start": 4479.25, + "end": 4479.93, + "probability": 0.4297 + }, + { + "start": 4480.81, + "end": 4483.33, + "probability": 0.9645 + }, + { + "start": 4483.45, + "end": 4486.23, + "probability": 0.8035 + }, + { + "start": 4488.29, + "end": 4491.21, + "probability": 0.709 + }, + { + "start": 4492.59, + "end": 4493.65, + "probability": 0.9497 + }, + { + "start": 4493.79, + "end": 4494.21, + "probability": 0.7769 + }, + { + "start": 4494.53, + "end": 4496.81, + "probability": 0.9426 + }, + { + "start": 4497.31, + "end": 4499.63, + "probability": 0.8575 + }, + { + "start": 4500.39, + "end": 4502.59, + "probability": 0.9895 + }, + { + "start": 4503.27, + "end": 4504.51, + "probability": 0.4265 + }, + { + "start": 4504.69, + "end": 4505.35, + "probability": 0.9865 + }, + { + "start": 4506.53, + "end": 4509.81, + "probability": 0.9956 + }, + { + "start": 4510.37, + "end": 4510.85, + "probability": 0.6421 + }, + { + "start": 4511.39, + "end": 4514.13, + "probability": 0.9905 + }, + { + "start": 4514.15, + "end": 4514.65, + "probability": 0.8096 + }, + { + "start": 4516.05, + "end": 4517.35, + "probability": 0.9937 + }, + { + "start": 4519.01, + "end": 4521.91, + "probability": 0.9814 + }, + { + "start": 4522.07, + "end": 4522.99, + "probability": 0.5127 + }, + { + "start": 4523.03, + "end": 4523.83, + "probability": 0.9518 + }, + { + "start": 4524.81, + "end": 4528.1, + "probability": 0.9668 + }, + { + "start": 4528.83, + "end": 4530.19, + "probability": 0.9811 + }, + { + "start": 4531.75, + "end": 4533.15, + "probability": 0.9106 + }, + { + "start": 4533.81, + "end": 4535.33, + "probability": 0.757 + }, + { + "start": 4536.29, + "end": 4539.57, + "probability": 0.9169 + }, + { + "start": 4540.41, + "end": 4542.09, + "probability": 0.9995 + }, + { + "start": 4543.11, + "end": 4546.17, + "probability": 0.999 + }, + { + "start": 4546.49, + "end": 4547.13, + "probability": 0.283 + }, + { + "start": 4547.21, + "end": 4547.93, + "probability": 0.9525 + }, + { + "start": 4549.49, + "end": 4550.67, + "probability": 0.8149 + }, + { + "start": 4551.25, + "end": 4553.49, + "probability": 0.9897 + }, + { + "start": 4554.37, + "end": 4557.81, + "probability": 0.9913 + }, + { + "start": 4559.03, + "end": 4561.19, + "probability": 0.7362 + }, + { + "start": 4562.25, + "end": 4563.37, + "probability": 0.7094 + }, + { + "start": 4564.15, + "end": 4570.35, + "probability": 0.7181 + }, + { + "start": 4572.71, + "end": 4573.41, + "probability": 0.4412 + }, + { + "start": 4574.57, + "end": 4575.31, + "probability": 0.7437 + }, + { + "start": 4576.93, + "end": 4578.17, + "probability": 0.7691 + }, + { + "start": 4579.51, + "end": 4581.21, + "probability": 0.8422 + }, + { + "start": 4581.99, + "end": 4585.93, + "probability": 0.9888 + }, + { + "start": 4586.31, + "end": 4586.33, + "probability": 0.5675 + }, + { + "start": 4586.33, + "end": 4589.37, + "probability": 0.9456 + }, + { + "start": 4590.31, + "end": 4591.85, + "probability": 0.6716 + }, + { + "start": 4593.19, + "end": 4593.19, + "probability": 0.0501 + }, + { + "start": 4593.19, + "end": 4593.61, + "probability": 0.4307 + }, + { + "start": 4593.95, + "end": 4596.39, + "probability": 0.7291 + }, + { + "start": 4596.79, + "end": 4597.09, + "probability": 0.4822 + }, + { + "start": 4597.09, + "end": 4600.01, + "probability": 0.7851 + }, + { + "start": 4600.55, + "end": 4601.41, + "probability": 0.5556 + }, + { + "start": 4601.57, + "end": 4602.99, + "probability": 0.8135 + }, + { + "start": 4605.05, + "end": 4605.99, + "probability": 0.6469 + }, + { + "start": 4606.09, + "end": 4609.07, + "probability": 0.9425 + }, + { + "start": 4610.43, + "end": 4610.75, + "probability": 0.0484 + }, + { + "start": 4611.13, + "end": 4611.7, + "probability": 0.076 + }, + { + "start": 4611.85, + "end": 4613.07, + "probability": 0.7754 + }, + { + "start": 4613.71, + "end": 4615.49, + "probability": 0.8938 + }, + { + "start": 4615.81, + "end": 4616.15, + "probability": 0.491 + }, + { + "start": 4616.27, + "end": 4617.75, + "probability": 0.9725 + }, + { + "start": 4618.33, + "end": 4618.33, + "probability": 0.2062 + }, + { + "start": 4618.33, + "end": 4619.15, + "probability": 0.7812 + }, + { + "start": 4619.51, + "end": 4623.55, + "probability": 0.3466 + }, + { + "start": 4623.57, + "end": 4623.57, + "probability": 0.1588 + }, + { + "start": 4623.65, + "end": 4629.33, + "probability": 0.6567 + }, + { + "start": 4629.33, + "end": 4629.49, + "probability": 0.1712 + }, + { + "start": 4629.65, + "end": 4634.49, + "probability": 0.8398 + }, + { + "start": 4634.63, + "end": 4635.47, + "probability": 0.771 + }, + { + "start": 4635.59, + "end": 4636.21, + "probability": 0.5729 + }, + { + "start": 4636.72, + "end": 4638.78, + "probability": 0.7903 + }, + { + "start": 4640.49, + "end": 4644.71, + "probability": 0.923 + }, + { + "start": 4646.49, + "end": 4647.63, + "probability": 0.4231 + }, + { + "start": 4648.21, + "end": 4649.45, + "probability": 0.8162 + }, + { + "start": 4649.47, + "end": 4652.19, + "probability": 0.6434 + }, + { + "start": 4652.19, + "end": 4653.4, + "probability": 0.6807 + }, + { + "start": 4653.53, + "end": 4656.15, + "probability": 0.7666 + }, + { + "start": 4656.59, + "end": 4659.83, + "probability": 0.8771 + }, + { + "start": 4660.23, + "end": 4660.93, + "probability": 0.0003 + }, + { + "start": 4661.43, + "end": 4661.43, + "probability": 0.1836 + }, + { + "start": 4661.43, + "end": 4662.95, + "probability": 0.9102 + }, + { + "start": 4663.91, + "end": 4665.63, + "probability": 0.6975 + }, + { + "start": 4665.69, + "end": 4666.79, + "probability": 0.1257 + }, + { + "start": 4666.79, + "end": 4671.99, + "probability": 0.955 + }, + { + "start": 4673.19, + "end": 4677.21, + "probability": 0.9874 + }, + { + "start": 4677.43, + "end": 4679.31, + "probability": 0.8037 + }, + { + "start": 4680.41, + "end": 4681.98, + "probability": 0.7585 + }, + { + "start": 4683.19, + "end": 4686.17, + "probability": 0.9789 + }, + { + "start": 4686.33, + "end": 4687.05, + "probability": 0.7478 + }, + { + "start": 4687.59, + "end": 4690.33, + "probability": 0.4338 + }, + { + "start": 4691.27, + "end": 4692.41, + "probability": 0.4767 + }, + { + "start": 4693.69, + "end": 4694.27, + "probability": 0.4288 + }, + { + "start": 4694.33, + "end": 4696.87, + "probability": 0.521 + }, + { + "start": 4697.01, + "end": 4697.59, + "probability": 0.3375 + }, + { + "start": 4697.77, + "end": 4699.37, + "probability": 0.6309 + }, + { + "start": 4700.25, + "end": 4702.61, + "probability": 0.5019 + }, + { + "start": 4702.65, + "end": 4703.65, + "probability": 0.7251 + }, + { + "start": 4704.43, + "end": 4705.93, + "probability": 0.9429 + }, + { + "start": 4706.35, + "end": 4707.27, + "probability": 0.9148 + }, + { + "start": 4707.39, + "end": 4708.15, + "probability": 0.8383 + }, + { + "start": 4708.57, + "end": 4712.13, + "probability": 0.6303 + }, + { + "start": 4714.03, + "end": 4716.23, + "probability": 0.8734 + }, + { + "start": 4716.93, + "end": 4718.71, + "probability": 0.9858 + }, + { + "start": 4719.27, + "end": 4719.85, + "probability": 0.6889 + }, + { + "start": 4721.23, + "end": 4722.88, + "probability": 0.6383 + }, + { + "start": 4723.65, + "end": 4727.07, + "probability": 0.0881 + }, + { + "start": 4727.07, + "end": 4727.31, + "probability": 0.1514 + }, + { + "start": 4727.31, + "end": 4727.31, + "probability": 0.0345 + }, + { + "start": 4727.31, + "end": 4727.31, + "probability": 0.0169 + }, + { + "start": 4727.31, + "end": 4727.31, + "probability": 0.0269 + }, + { + "start": 4727.31, + "end": 4727.53, + "probability": 0.0824 + }, + { + "start": 4727.89, + "end": 4729.31, + "probability": 0.6669 + }, + { + "start": 4729.31, + "end": 4733.49, + "probability": 0.0307 + }, + { + "start": 4735.45, + "end": 4737.19, + "probability": 0.0725 + }, + { + "start": 4737.19, + "end": 4737.33, + "probability": 0.0596 + }, + { + "start": 4737.33, + "end": 4737.95, + "probability": 0.3854 + }, + { + "start": 4737.95, + "end": 4742.31, + "probability": 0.339 + }, + { + "start": 4742.43, + "end": 4744.75, + "probability": 0.4098 + }, + { + "start": 4744.87, + "end": 4745.95, + "probability": 0.5412 + }, + { + "start": 4746.91, + "end": 4750.11, + "probability": 0.9625 + }, + { + "start": 4750.83, + "end": 4751.27, + "probability": 0.8995 + }, + { + "start": 4751.71, + "end": 4753.19, + "probability": 0.0221 + }, + { + "start": 4753.27, + "end": 4754.06, + "probability": 0.067 + }, + { + "start": 4754.93, + "end": 4758.23, + "probability": 0.5065 + }, + { + "start": 4758.79, + "end": 4762.07, + "probability": 0.4647 + }, + { + "start": 4762.17, + "end": 4763.73, + "probability": 0.8857 + }, + { + "start": 4764.07, + "end": 4766.47, + "probability": 0.9899 + }, + { + "start": 4766.55, + "end": 4766.81, + "probability": 0.0343 + }, + { + "start": 4766.87, + "end": 4769.99, + "probability": 0.9045 + }, + { + "start": 4770.75, + "end": 4772.09, + "probability": 0.9409 + }, + { + "start": 4774.13, + "end": 4777.21, + "probability": 0.8975 + }, + { + "start": 4778.23, + "end": 4780.99, + "probability": 0.704 + }, + { + "start": 4782.19, + "end": 4786.35, + "probability": 0.9729 + }, + { + "start": 4789.27, + "end": 4793.63, + "probability": 0.7927 + }, + { + "start": 4793.97, + "end": 4796.01, + "probability": 0.9976 + }, + { + "start": 4796.17, + "end": 4797.07, + "probability": 0.1864 + }, + { + "start": 4798.45, + "end": 4798.55, + "probability": 0.278 + }, + { + "start": 4798.55, + "end": 4800.11, + "probability": 0.455 + }, + { + "start": 4801.13, + "end": 4803.21, + "probability": 0.4065 + }, + { + "start": 4805.13, + "end": 4806.09, + "probability": 0.2083 + }, + { + "start": 4806.09, + "end": 4806.47, + "probability": 0.0681 + }, + { + "start": 4806.67, + "end": 4807.63, + "probability": 0.4048 + }, + { + "start": 4808.17, + "end": 4809.49, + "probability": 0.6456 + }, + { + "start": 4809.93, + "end": 4812.15, + "probability": 0.1052 + }, + { + "start": 4812.37, + "end": 4816.89, + "probability": 0.9326 + }, + { + "start": 4816.97, + "end": 4817.37, + "probability": 0.5598 + }, + { + "start": 4817.57, + "end": 4819.13, + "probability": 0.388 + }, + { + "start": 4819.91, + "end": 4822.31, + "probability": 0.1365 + }, + { + "start": 4822.39, + "end": 4822.57, + "probability": 0.2941 + }, + { + "start": 4822.57, + "end": 4823.87, + "probability": 0.8322 + }, + { + "start": 4824.73, + "end": 4827.79, + "probability": 0.7724 + }, + { + "start": 4827.79, + "end": 4832.95, + "probability": 0.987 + }, + { + "start": 4833.89, + "end": 4834.49, + "probability": 0.1047 + }, + { + "start": 4835.15, + "end": 4838.01, + "probability": 0.166 + }, + { + "start": 4838.23, + "end": 4841.01, + "probability": 0.8095 + }, + { + "start": 4841.35, + "end": 4842.45, + "probability": 0.8969 + }, + { + "start": 4842.99, + "end": 4844.99, + "probability": 0.6795 + }, + { + "start": 4846.01, + "end": 4846.49, + "probability": 0.0013 + }, + { + "start": 4847.43, + "end": 4848.95, + "probability": 0.9046 + }, + { + "start": 4849.03, + "end": 4854.11, + "probability": 0.9917 + }, + { + "start": 4854.13, + "end": 4854.95, + "probability": 0.3508 + }, + { + "start": 4855.51, + "end": 4856.37, + "probability": 0.4538 + }, + { + "start": 4856.37, + "end": 4857.29, + "probability": 0.6938 + }, + { + "start": 4857.35, + "end": 4858.79, + "probability": 0.8662 + }, + { + "start": 4859.31, + "end": 4861.81, + "probability": 0.77 + }, + { + "start": 4864.55, + "end": 4864.81, + "probability": 0.0496 + }, + { + "start": 4864.81, + "end": 4864.81, + "probability": 0.0415 + }, + { + "start": 4864.81, + "end": 4866.51, + "probability": 0.8975 + }, + { + "start": 4866.51, + "end": 4867.09, + "probability": 0.479 + }, + { + "start": 4867.13, + "end": 4867.37, + "probability": 0.0872 + }, + { + "start": 4867.37, + "end": 4869.61, + "probability": 0.6395 + }, + { + "start": 4870.21, + "end": 4873.81, + "probability": 0.7245 + }, + { + "start": 4874.05, + "end": 4876.73, + "probability": 0.8946 + }, + { + "start": 4876.85, + "end": 4877.43, + "probability": 0.7285 + }, + { + "start": 4877.66, + "end": 4880.05, + "probability": 0.9365 + }, + { + "start": 4880.13, + "end": 4881.25, + "probability": 0.3475 + }, + { + "start": 4881.25, + "end": 4883.23, + "probability": 0.7955 + }, + { + "start": 4883.29, + "end": 4884.64, + "probability": 0.9866 + }, + { + "start": 4884.69, + "end": 4887.83, + "probability": 0.9749 + }, + { + "start": 4887.89, + "end": 4889.41, + "probability": 0.7546 + }, + { + "start": 4889.73, + "end": 4890.03, + "probability": 0.1698 + }, + { + "start": 4890.09, + "end": 4890.09, + "probability": 0.6138 + }, + { + "start": 4890.13, + "end": 4892.93, + "probability": 0.8649 + }, + { + "start": 4893.59, + "end": 4895.99, + "probability": 0.9229 + }, + { + "start": 4896.69, + "end": 4899.55, + "probability": 0.9736 + }, + { + "start": 4899.97, + "end": 4900.99, + "probability": 0.4915 + }, + { + "start": 4901.57, + "end": 4902.81, + "probability": 0.1411 + }, + { + "start": 4903.27, + "end": 4906.51, + "probability": 0.6031 + }, + { + "start": 4906.63, + "end": 4906.63, + "probability": 0.0128 + }, + { + "start": 4911.15, + "end": 4913.83, + "probability": 0.6027 + }, + { + "start": 4914.01, + "end": 4917.93, + "probability": 0.9727 + }, + { + "start": 4928.01, + "end": 4932.73, + "probability": 0.6685 + }, + { + "start": 4934.19, + "end": 4936.96, + "probability": 0.9125 + }, + { + "start": 4937.99, + "end": 4939.07, + "probability": 0.8995 + }, + { + "start": 4941.01, + "end": 4943.49, + "probability": 0.9921 + }, + { + "start": 4944.91, + "end": 4946.53, + "probability": 0.5415 + }, + { + "start": 4946.95, + "end": 4948.31, + "probability": 0.5781 + }, + { + "start": 4948.31, + "end": 4948.91, + "probability": 0.8323 + }, + { + "start": 4948.99, + "end": 4949.75, + "probability": 0.6722 + }, + { + "start": 4949.75, + "end": 4951.61, + "probability": 0.8889 + }, + { + "start": 4952.25, + "end": 4954.63, + "probability": 0.9158 + }, + { + "start": 4955.45, + "end": 4956.41, + "probability": 0.9447 + }, + { + "start": 4958.72, + "end": 4962.29, + "probability": 0.954 + }, + { + "start": 4962.81, + "end": 4963.39, + "probability": 0.4208 + }, + { + "start": 4963.53, + "end": 4964.13, + "probability": 0.8327 + }, + { + "start": 4964.25, + "end": 4965.65, + "probability": 0.5054 + }, + { + "start": 4965.65, + "end": 4966.75, + "probability": 0.9313 + }, + { + "start": 4966.77, + "end": 4967.59, + "probability": 0.7368 + }, + { + "start": 4967.65, + "end": 4968.27, + "probability": 0.9469 + }, + { + "start": 4968.95, + "end": 4969.67, + "probability": 0.7754 + }, + { + "start": 4969.73, + "end": 4972.91, + "probability": 0.9922 + }, + { + "start": 4973.39, + "end": 4974.32, + "probability": 0.9702 + }, + { + "start": 4975.73, + "end": 4976.53, + "probability": 0.7675 + }, + { + "start": 4976.75, + "end": 4978.87, + "probability": 0.9904 + }, + { + "start": 4978.95, + "end": 4979.53, + "probability": 0.597 + }, + { + "start": 4979.59, + "end": 4981.27, + "probability": 0.8677 + }, + { + "start": 4981.39, + "end": 4982.54, + "probability": 0.991 + }, + { + "start": 4983.57, + "end": 4984.93, + "probability": 0.9746 + }, + { + "start": 4985.59, + "end": 4988.27, + "probability": 0.8643 + }, + { + "start": 4990.61, + "end": 4991.03, + "probability": 0.1234 + }, + { + "start": 4991.03, + "end": 4991.55, + "probability": 0.2076 + }, + { + "start": 4992.11, + "end": 4993.65, + "probability": 0.8598 + }, + { + "start": 4994.63, + "end": 4996.31, + "probability": 0.7738 + }, + { + "start": 4996.43, + "end": 4997.23, + "probability": 0.8829 + }, + { + "start": 4997.31, + "end": 4998.31, + "probability": 0.7842 + }, + { + "start": 4998.99, + "end": 5000.13, + "probability": 0.8193 + }, + { + "start": 5001.17, + "end": 5004.43, + "probability": 0.9956 + }, + { + "start": 5005.27, + "end": 5006.71, + "probability": 0.8949 + }, + { + "start": 5007.03, + "end": 5007.73, + "probability": 0.909 + }, + { + "start": 5007.83, + "end": 5009.39, + "probability": 0.9762 + }, + { + "start": 5009.59, + "end": 5010.37, + "probability": 0.8103 + }, + { + "start": 5011.17, + "end": 5015.57, + "probability": 0.974 + }, + { + "start": 5015.69, + "end": 5016.19, + "probability": 0.6921 + }, + { + "start": 5016.43, + "end": 5016.95, + "probability": 0.5935 + }, + { + "start": 5016.97, + "end": 5017.93, + "probability": 0.8472 + }, + { + "start": 5019.09, + "end": 5021.05, + "probability": 0.9903 + }, + { + "start": 5021.17, + "end": 5022.68, + "probability": 0.9728 + }, + { + "start": 5024.69, + "end": 5026.97, + "probability": 0.9978 + }, + { + "start": 5031.37, + "end": 5031.37, + "probability": 0.8784 + }, + { + "start": 5032.85, + "end": 5032.85, + "probability": 0.2986 + }, + { + "start": 5032.85, + "end": 5035.41, + "probability": 0.9498 + }, + { + "start": 5036.97, + "end": 5038.16, + "probability": 0.629 + }, + { + "start": 5039.11, + "end": 5039.85, + "probability": 0.7115 + }, + { + "start": 5040.73, + "end": 5042.59, + "probability": 0.9969 + }, + { + "start": 5044.71, + "end": 5046.66, + "probability": 0.9978 + }, + { + "start": 5047.61, + "end": 5048.97, + "probability": 0.8598 + }, + { + "start": 5049.05, + "end": 5050.31, + "probability": 0.9321 + }, + { + "start": 5050.61, + "end": 5050.88, + "probability": 0.9266 + }, + { + "start": 5052.13, + "end": 5053.73, + "probability": 0.9855 + }, + { + "start": 5053.79, + "end": 5056.39, + "probability": 0.9238 + }, + { + "start": 5056.55, + "end": 5057.81, + "probability": 0.959 + }, + { + "start": 5060.39, + "end": 5062.65, + "probability": 0.9872 + }, + { + "start": 5064.41, + "end": 5067.51, + "probability": 0.9175 + }, + { + "start": 5067.57, + "end": 5068.07, + "probability": 0.5188 + }, + { + "start": 5068.13, + "end": 5068.39, + "probability": 0.8765 + }, + { + "start": 5068.47, + "end": 5069.83, + "probability": 0.9167 + }, + { + "start": 5069.97, + "end": 5072.49, + "probability": 0.9883 + }, + { + "start": 5074.09, + "end": 5079.85, + "probability": 0.988 + }, + { + "start": 5079.93, + "end": 5085.29, + "probability": 0.993 + }, + { + "start": 5085.63, + "end": 5086.57, + "probability": 0.9737 + }, + { + "start": 5088.97, + "end": 5094.63, + "probability": 0.9977 + }, + { + "start": 5095.33, + "end": 5095.97, + "probability": 0.4161 + }, + { + "start": 5097.31, + "end": 5099.77, + "probability": 0.1592 + }, + { + "start": 5100.01, + "end": 5100.13, + "probability": 0.1224 + }, + { + "start": 5100.15, + "end": 5100.79, + "probability": 0.902 + }, + { + "start": 5101.69, + "end": 5105.39, + "probability": 0.6792 + }, + { + "start": 5105.69, + "end": 5107.81, + "probability": 0.8735 + }, + { + "start": 5108.53, + "end": 5110.29, + "probability": 0.9757 + }, + { + "start": 5110.83, + "end": 5111.39, + "probability": 0.5177 + }, + { + "start": 5111.51, + "end": 5112.19, + "probability": 0.9051 + }, + { + "start": 5113.73, + "end": 5117.37, + "probability": 0.9844 + }, + { + "start": 5117.49, + "end": 5118.54, + "probability": 0.9937 + }, + { + "start": 5118.93, + "end": 5123.57, + "probability": 0.9917 + }, + { + "start": 5124.57, + "end": 5127.81, + "probability": 0.9874 + }, + { + "start": 5128.21, + "end": 5128.77, + "probability": 0.5257 + }, + { + "start": 5129.19, + "end": 5129.61, + "probability": 0.9058 + }, + { + "start": 5130.55, + "end": 5134.09, + "probability": 0.7829 + }, + { + "start": 5134.59, + "end": 5136.69, + "probability": 0.9862 + }, + { + "start": 5141.21, + "end": 5141.59, + "probability": 0.3973 + }, + { + "start": 5145.45, + "end": 5145.89, + "probability": 0.698 + }, + { + "start": 5146.27, + "end": 5146.91, + "probability": 0.7313 + }, + { + "start": 5148.25, + "end": 5149.61, + "probability": 0.9463 + }, + { + "start": 5152.25, + "end": 5152.65, + "probability": 0.3568 + }, + { + "start": 5165.65, + "end": 5168.45, + "probability": 0.4054 + }, + { + "start": 5169.61, + "end": 5171.93, + "probability": 0.8042 + }, + { + "start": 5172.25, + "end": 5173.33, + "probability": 0.665 + }, + { + "start": 5173.51, + "end": 5176.29, + "probability": 0.7933 + }, + { + "start": 5176.49, + "end": 5176.99, + "probability": 0.0012 + }, + { + "start": 5178.21, + "end": 5179.91, + "probability": 0.7327 + }, + { + "start": 5180.43, + "end": 5181.57, + "probability": 0.9881 + }, + { + "start": 5182.47, + "end": 5184.33, + "probability": 0.9539 + }, + { + "start": 5185.15, + "end": 5185.37, + "probability": 0.5405 + }, + { + "start": 5185.81, + "end": 5186.37, + "probability": 0.8292 + }, + { + "start": 5187.01, + "end": 5187.17, + "probability": 0.3301 + }, + { + "start": 5187.29, + "end": 5188.17, + "probability": 0.979 + }, + { + "start": 5190.31, + "end": 5193.71, + "probability": 0.937 + }, + { + "start": 5195.45, + "end": 5202.39, + "probability": 0.9028 + }, + { + "start": 5202.89, + "end": 5204.1, + "probability": 0.9494 + }, + { + "start": 5204.71, + "end": 5206.77, + "probability": 0.5866 + }, + { + "start": 5207.79, + "end": 5209.51, + "probability": 0.7816 + }, + { + "start": 5209.79, + "end": 5213.25, + "probability": 0.967 + }, + { + "start": 5214.43, + "end": 5219.59, + "probability": 0.9509 + }, + { + "start": 5220.57, + "end": 5223.63, + "probability": 0.9922 + }, + { + "start": 5224.15, + "end": 5225.43, + "probability": 0.9897 + }, + { + "start": 5226.19, + "end": 5227.41, + "probability": 0.9458 + }, + { + "start": 5227.71, + "end": 5230.53, + "probability": 0.9766 + }, + { + "start": 5231.93, + "end": 5235.39, + "probability": 0.799 + }, + { + "start": 5236.05, + "end": 5238.25, + "probability": 0.8914 + }, + { + "start": 5238.67, + "end": 5240.33, + "probability": 0.9937 + }, + { + "start": 5241.33, + "end": 5244.35, + "probability": 0.9308 + }, + { + "start": 5245.17, + "end": 5247.09, + "probability": 0.4997 + }, + { + "start": 5248.43, + "end": 5250.21, + "probability": 0.9817 + }, + { + "start": 5251.87, + "end": 5254.03, + "probability": 0.7554 + }, + { + "start": 5254.07, + "end": 5256.43, + "probability": 0.9688 + }, + { + "start": 5256.71, + "end": 5259.07, + "probability": 0.8668 + }, + { + "start": 5260.67, + "end": 5263.53, + "probability": 0.8039 + }, + { + "start": 5264.71, + "end": 5265.51, + "probability": 0.8849 + }, + { + "start": 5266.15, + "end": 5266.85, + "probability": 0.7606 + }, + { + "start": 5267.57, + "end": 5268.48, + "probability": 0.3759 + }, + { + "start": 5269.43, + "end": 5270.58, + "probability": 0.6906 + }, + { + "start": 5271.05, + "end": 5272.75, + "probability": 0.9249 + }, + { + "start": 5273.43, + "end": 5275.62, + "probability": 0.941 + }, + { + "start": 5275.81, + "end": 5279.71, + "probability": 0.9618 + }, + { + "start": 5281.09, + "end": 5282.39, + "probability": 0.8033 + }, + { + "start": 5284.67, + "end": 5286.61, + "probability": 0.7751 + }, + { + "start": 5287.97, + "end": 5288.81, + "probability": 0.3018 + }, + { + "start": 5289.63, + "end": 5290.23, + "probability": 0.9064 + }, + { + "start": 5291.77, + "end": 5293.95, + "probability": 0.9622 + }, + { + "start": 5294.19, + "end": 5299.57, + "probability": 0.9932 + }, + { + "start": 5299.57, + "end": 5303.97, + "probability": 0.9945 + }, + { + "start": 5305.21, + "end": 5309.77, + "probability": 0.9578 + }, + { + "start": 5310.37, + "end": 5313.11, + "probability": 0.9103 + }, + { + "start": 5313.19, + "end": 5316.65, + "probability": 0.9547 + }, + { + "start": 5316.81, + "end": 5322.35, + "probability": 0.9946 + }, + { + "start": 5323.09, + "end": 5323.69, + "probability": 0.9095 + }, + { + "start": 5325.01, + "end": 5326.05, + "probability": 0.9448 + }, + { + "start": 5326.69, + "end": 5328.73, + "probability": 0.7994 + }, + { + "start": 5328.83, + "end": 5332.05, + "probability": 0.9937 + }, + { + "start": 5332.19, + "end": 5336.23, + "probability": 0.9839 + }, + { + "start": 5336.75, + "end": 5340.35, + "probability": 0.9477 + }, + { + "start": 5340.61, + "end": 5341.09, + "probability": 0.8885 + }, + { + "start": 5341.57, + "end": 5344.75, + "probability": 0.8644 + }, + { + "start": 5345.37, + "end": 5349.05, + "probability": 0.887 + }, + { + "start": 5349.21, + "end": 5350.63, + "probability": 0.8675 + }, + { + "start": 5351.85, + "end": 5353.71, + "probability": 0.8869 + }, + { + "start": 5353.73, + "end": 5354.87, + "probability": 0.9831 + }, + { + "start": 5354.91, + "end": 5355.81, + "probability": 0.9009 + }, + { + "start": 5355.89, + "end": 5356.23, + "probability": 0.9136 + }, + { + "start": 5356.87, + "end": 5357.92, + "probability": 0.9474 + }, + { + "start": 5358.77, + "end": 5359.57, + "probability": 0.1036 + }, + { + "start": 5360.23, + "end": 5360.23, + "probability": 0.1339 + }, + { + "start": 5360.39, + "end": 5361.77, + "probability": 0.8955 + }, + { + "start": 5365.71, + "end": 5366.13, + "probability": 0.7827 + }, + { + "start": 5366.23, + "end": 5367.37, + "probability": 0.5611 + }, + { + "start": 5368.09, + "end": 5370.07, + "probability": 0.8858 + }, + { + "start": 5370.69, + "end": 5372.93, + "probability": 0.9946 + }, + { + "start": 5373.43, + "end": 5375.11, + "probability": 0.9842 + }, + { + "start": 5375.37, + "end": 5376.89, + "probability": 0.8623 + }, + { + "start": 5377.41, + "end": 5379.53, + "probability": 0.9651 + }, + { + "start": 5380.25, + "end": 5381.37, + "probability": 0.9957 + }, + { + "start": 5382.23, + "end": 5384.79, + "probability": 0.9829 + }, + { + "start": 5384.87, + "end": 5388.99, + "probability": 0.9769 + }, + { + "start": 5389.65, + "end": 5392.75, + "probability": 0.9955 + }, + { + "start": 5392.83, + "end": 5394.79, + "probability": 0.9932 + }, + { + "start": 5395.81, + "end": 5399.45, + "probability": 0.9985 + }, + { + "start": 5400.03, + "end": 5401.81, + "probability": 0.9514 + }, + { + "start": 5402.03, + "end": 5405.15, + "probability": 0.9413 + }, + { + "start": 5405.65, + "end": 5407.48, + "probability": 0.9946 + }, + { + "start": 5407.69, + "end": 5409.11, + "probability": 0.8476 + }, + { + "start": 5409.35, + "end": 5411.87, + "probability": 0.9619 + }, + { + "start": 5412.35, + "end": 5416.91, + "probability": 0.9901 + }, + { + "start": 5417.43, + "end": 5421.05, + "probability": 0.996 + }, + { + "start": 5421.49, + "end": 5422.69, + "probability": 0.8739 + }, + { + "start": 5423.33, + "end": 5427.89, + "probability": 0.9941 + }, + { + "start": 5428.51, + "end": 5429.75, + "probability": 0.9897 + }, + { + "start": 5429.85, + "end": 5431.07, + "probability": 0.9609 + }, + { + "start": 5431.21, + "end": 5431.67, + "probability": 0.9941 + }, + { + "start": 5431.73, + "end": 5432.21, + "probability": 0.9958 + }, + { + "start": 5432.23, + "end": 5432.85, + "probability": 0.9683 + }, + { + "start": 5432.85, + "end": 5433.53, + "probability": 0.9392 + }, + { + "start": 5433.85, + "end": 5434.25, + "probability": 0.8332 + }, + { + "start": 5434.37, + "end": 5434.85, + "probability": 0.8901 + }, + { + "start": 5434.93, + "end": 5435.49, + "probability": 0.811 + }, + { + "start": 5435.61, + "end": 5437.15, + "probability": 0.9524 + }, + { + "start": 5437.33, + "end": 5439.93, + "probability": 0.9741 + }, + { + "start": 5440.45, + "end": 5441.93, + "probability": 0.9956 + }, + { + "start": 5442.77, + "end": 5444.17, + "probability": 0.8005 + }, + { + "start": 5444.29, + "end": 5446.87, + "probability": 0.9896 + }, + { + "start": 5447.23, + "end": 5452.19, + "probability": 0.9622 + }, + { + "start": 5452.63, + "end": 5455.83, + "probability": 0.8969 + }, + { + "start": 5456.43, + "end": 5459.29, + "probability": 0.9681 + }, + { + "start": 5459.93, + "end": 5460.95, + "probability": 0.8042 + }, + { + "start": 5461.03, + "end": 5463.57, + "probability": 0.9988 + }, + { + "start": 5464.19, + "end": 5464.99, + "probability": 0.5777 + }, + { + "start": 5465.43, + "end": 5468.31, + "probability": 0.9574 + }, + { + "start": 5468.75, + "end": 5471.27, + "probability": 0.958 + }, + { + "start": 5473.27, + "end": 5474.93, + "probability": 0.4498 + }, + { + "start": 5474.93, + "end": 5474.93, + "probability": 0.1726 + }, + { + "start": 5474.93, + "end": 5475.39, + "probability": 0.4275 + }, + { + "start": 5475.53, + "end": 5477.07, + "probability": 0.3602 + }, + { + "start": 5477.77, + "end": 5478.65, + "probability": 0.9919 + }, + { + "start": 5478.95, + "end": 5480.43, + "probability": 0.8418 + }, + { + "start": 5480.75, + "end": 5484.01, + "probability": 0.9777 + }, + { + "start": 5484.19, + "end": 5484.81, + "probability": 0.8908 + }, + { + "start": 5485.53, + "end": 5488.65, + "probability": 0.9603 + }, + { + "start": 5489.21, + "end": 5490.59, + "probability": 0.9348 + }, + { + "start": 5491.21, + "end": 5494.75, + "probability": 0.9843 + }, + { + "start": 5494.75, + "end": 5499.55, + "probability": 0.9734 + }, + { + "start": 5499.75, + "end": 5500.89, + "probability": 0.908 + }, + { + "start": 5501.43, + "end": 5503.63, + "probability": 0.9785 + }, + { + "start": 5504.13, + "end": 5508.89, + "probability": 0.9948 + }, + { + "start": 5509.55, + "end": 5515.61, + "probability": 0.9908 + }, + { + "start": 5516.19, + "end": 5517.61, + "probability": 0.9919 + }, + { + "start": 5518.31, + "end": 5523.63, + "probability": 0.9937 + }, + { + "start": 5524.55, + "end": 5525.53, + "probability": 0.9835 + }, + { + "start": 5525.95, + "end": 5528.95, + "probability": 0.9857 + }, + { + "start": 5529.43, + "end": 5534.05, + "probability": 0.918 + }, + { + "start": 5534.51, + "end": 5537.63, + "probability": 0.9868 + }, + { + "start": 5538.09, + "end": 5538.69, + "probability": 0.8813 + }, + { + "start": 5539.19, + "end": 5543.41, + "probability": 0.9726 + }, + { + "start": 5543.97, + "end": 5545.03, + "probability": 0.8813 + }, + { + "start": 5545.73, + "end": 5549.63, + "probability": 0.9876 + }, + { + "start": 5549.63, + "end": 5553.43, + "probability": 0.9664 + }, + { + "start": 5554.07, + "end": 5556.09, + "probability": 0.9397 + }, + { + "start": 5556.21, + "end": 5556.63, + "probability": 0.9009 + }, + { + "start": 5559.23, + "end": 5561.71, + "probability": 0.7523 + }, + { + "start": 5561.95, + "end": 5564.21, + "probability": 0.8943 + }, + { + "start": 5564.85, + "end": 5565.57, + "probability": 0.4701 + }, + { + "start": 5565.75, + "end": 5566.97, + "probability": 0.9685 + }, + { + "start": 5581.09, + "end": 5583.07, + "probability": 0.5897 + }, + { + "start": 5583.99, + "end": 5586.57, + "probability": 0.9634 + }, + { + "start": 5587.27, + "end": 5591.41, + "probability": 0.9862 + }, + { + "start": 5592.31, + "end": 5595.07, + "probability": 0.9543 + }, + { + "start": 5595.75, + "end": 5600.75, + "probability": 0.9765 + }, + { + "start": 5601.31, + "end": 5603.25, + "probability": 0.9946 + }, + { + "start": 5603.37, + "end": 5604.05, + "probability": 0.9775 + }, + { + "start": 5604.21, + "end": 5605.61, + "probability": 0.9579 + }, + { + "start": 5605.71, + "end": 5608.13, + "probability": 0.9987 + }, + { + "start": 5608.51, + "end": 5610.15, + "probability": 0.9524 + }, + { + "start": 5610.23, + "end": 5612.35, + "probability": 0.9802 + }, + { + "start": 5612.47, + "end": 5616.19, + "probability": 0.9274 + }, + { + "start": 5616.63, + "end": 5617.79, + "probability": 0.9322 + }, + { + "start": 5619.03, + "end": 5621.55, + "probability": 0.9482 + }, + { + "start": 5622.33, + "end": 5625.67, + "probability": 0.9401 + }, + { + "start": 5625.73, + "end": 5626.91, + "probability": 0.6628 + }, + { + "start": 5627.01, + "end": 5628.45, + "probability": 0.7345 + }, + { + "start": 5628.53, + "end": 5630.67, + "probability": 0.8958 + }, + { + "start": 5630.85, + "end": 5632.17, + "probability": 0.9726 + }, + { + "start": 5632.55, + "end": 5634.23, + "probability": 0.5338 + }, + { + "start": 5634.75, + "end": 5634.95, + "probability": 0.3529 + }, + { + "start": 5635.47, + "end": 5637.83, + "probability": 0.9748 + }, + { + "start": 5638.61, + "end": 5641.87, + "probability": 0.968 + }, + { + "start": 5642.35, + "end": 5643.79, + "probability": 0.8666 + }, + { + "start": 5644.31, + "end": 5646.83, + "probability": 0.766 + }, + { + "start": 5648.17, + "end": 5651.29, + "probability": 0.8752 + }, + { + "start": 5651.89, + "end": 5654.77, + "probability": 0.8026 + }, + { + "start": 5655.55, + "end": 5657.73, + "probability": 0.9624 + }, + { + "start": 5657.81, + "end": 5661.91, + "probability": 0.9689 + }, + { + "start": 5662.49, + "end": 5665.38, + "probability": 0.916 + }, + { + "start": 5665.97, + "end": 5668.83, + "probability": 0.9922 + }, + { + "start": 5669.83, + "end": 5671.49, + "probability": 0.8631 + }, + { + "start": 5671.95, + "end": 5676.31, + "probability": 0.9559 + }, + { + "start": 5676.75, + "end": 5677.85, + "probability": 0.7762 + }, + { + "start": 5678.49, + "end": 5680.21, + "probability": 0.9282 + }, + { + "start": 5680.61, + "end": 5685.33, + "probability": 0.9871 + }, + { + "start": 5685.99, + "end": 5688.87, + "probability": 0.9974 + }, + { + "start": 5689.27, + "end": 5692.73, + "probability": 0.999 + }, + { + "start": 5693.43, + "end": 5695.69, + "probability": 0.8286 + }, + { + "start": 5696.69, + "end": 5698.05, + "probability": 0.8518 + }, + { + "start": 5698.61, + "end": 5702.43, + "probability": 0.9963 + }, + { + "start": 5703.27, + "end": 5706.85, + "probability": 0.6465 + }, + { + "start": 5707.01, + "end": 5707.93, + "probability": 0.2871 + }, + { + "start": 5708.13, + "end": 5708.95, + "probability": 0.7072 + }, + { + "start": 5710.05, + "end": 5711.63, + "probability": 0.8786 + }, + { + "start": 5712.49, + "end": 5713.33, + "probability": 0.8006 + }, + { + "start": 5714.11, + "end": 5716.59, + "probability": 0.9966 + }, + { + "start": 5717.11, + "end": 5720.09, + "probability": 0.9717 + }, + { + "start": 5720.61, + "end": 5721.25, + "probability": 0.4861 + }, + { + "start": 5721.91, + "end": 5724.65, + "probability": 0.9994 + }, + { + "start": 5725.61, + "end": 5729.61, + "probability": 0.9819 + }, + { + "start": 5730.71, + "end": 5735.57, + "probability": 0.9966 + }, + { + "start": 5735.57, + "end": 5740.49, + "probability": 0.8915 + }, + { + "start": 5741.57, + "end": 5748.91, + "probability": 0.9886 + }, + { + "start": 5749.25, + "end": 5751.23, + "probability": 0.8278 + }, + { + "start": 5751.39, + "end": 5753.53, + "probability": 0.9626 + }, + { + "start": 5754.29, + "end": 5757.95, + "probability": 0.9819 + }, + { + "start": 5759.67, + "end": 5763.31, + "probability": 0.9972 + }, + { + "start": 5764.35, + "end": 5765.33, + "probability": 0.6012 + }, + { + "start": 5766.07, + "end": 5767.37, + "probability": 0.9691 + }, + { + "start": 5768.19, + "end": 5771.51, + "probability": 0.9299 + }, + { + "start": 5772.51, + "end": 5774.51, + "probability": 0.9618 + }, + { + "start": 5775.17, + "end": 5781.39, + "probability": 0.9448 + }, + { + "start": 5781.71, + "end": 5781.75, + "probability": 0.2022 + }, + { + "start": 5781.75, + "end": 5782.49, + "probability": 0.321 + }, + { + "start": 5782.63, + "end": 5784.77, + "probability": 0.6881 + }, + { + "start": 5785.27, + "end": 5789.15, + "probability": 0.9766 + }, + { + "start": 5789.77, + "end": 5792.75, + "probability": 0.9993 + }, + { + "start": 5793.73, + "end": 5797.25, + "probability": 0.6189 + }, + { + "start": 5797.47, + "end": 5797.51, + "probability": 0.4938 + }, + { + "start": 5797.51, + "end": 5798.89, + "probability": 0.7353 + }, + { + "start": 5799.07, + "end": 5800.39, + "probability": 0.6903 + }, + { + "start": 5801.09, + "end": 5807.05, + "probability": 0.9967 + }, + { + "start": 5807.05, + "end": 5811.03, + "probability": 0.9958 + }, + { + "start": 5811.67, + "end": 5815.09, + "probability": 0.9833 + }, + { + "start": 5815.25, + "end": 5818.91, + "probability": 0.991 + }, + { + "start": 5818.91, + "end": 5819.29, + "probability": 0.7351 + }, + { + "start": 5820.03, + "end": 5823.61, + "probability": 0.9967 + }, + { + "start": 5824.41, + "end": 5826.63, + "probability": 0.9892 + }, + { + "start": 5826.97, + "end": 5828.87, + "probability": 0.7539 + }, + { + "start": 5828.87, + "end": 5828.99, + "probability": 0.0437 + }, + { + "start": 5829.31, + "end": 5833.19, + "probability": 0.9905 + }, + { + "start": 5833.19, + "end": 5833.67, + "probability": 0.1563 + }, + { + "start": 5833.79, + "end": 5834.65, + "probability": 0.3438 + }, + { + "start": 5835.73, + "end": 5836.35, + "probability": 0.0694 + }, + { + "start": 5836.39, + "end": 5836.46, + "probability": 0.303 + }, + { + "start": 5837.6, + "end": 5837.95, + "probability": 0.1015 + }, + { + "start": 5837.97, + "end": 5837.97, + "probability": 0.2101 + }, + { + "start": 5838.15, + "end": 5840.09, + "probability": 0.6361 + }, + { + "start": 5840.11, + "end": 5841.83, + "probability": 0.8776 + }, + { + "start": 5841.83, + "end": 5843.17, + "probability": 0.8846 + }, + { + "start": 5843.73, + "end": 5844.37, + "probability": 0.7096 + }, + { + "start": 5846.03, + "end": 5849.33, + "probability": 0.2632 + }, + { + "start": 5849.43, + "end": 5849.43, + "probability": 0.2425 + }, + { + "start": 5849.43, + "end": 5849.43, + "probability": 0.1967 + }, + { + "start": 5849.43, + "end": 5850.07, + "probability": 0.5782 + }, + { + "start": 5850.83, + "end": 5852.11, + "probability": 0.1181 + }, + { + "start": 5852.13, + "end": 5852.17, + "probability": 0.1749 + }, + { + "start": 5852.19, + "end": 5853.07, + "probability": 0.1422 + }, + { + "start": 5853.43, + "end": 5854.67, + "probability": 0.0653 + }, + { + "start": 5854.83, + "end": 5854.95, + "probability": 0.0592 + }, + { + "start": 5854.95, + "end": 5854.99, + "probability": 0.5526 + }, + { + "start": 5854.99, + "end": 5855.11, + "probability": 0.1285 + }, + { + "start": 5855.11, + "end": 5858.99, + "probability": 0.2366 + }, + { + "start": 5858.99, + "end": 5860.29, + "probability": 0.4877 + }, + { + "start": 5861.59, + "end": 5862.43, + "probability": 0.0189 + }, + { + "start": 5862.43, + "end": 5862.43, + "probability": 0.0443 + }, + { + "start": 5862.43, + "end": 5863.39, + "probability": 0.5704 + }, + { + "start": 5863.41, + "end": 5864.25, + "probability": 0.8403 + }, + { + "start": 5864.25, + "end": 5865.73, + "probability": 0.575 + }, + { + "start": 5866.49, + "end": 5868.65, + "probability": 0.9657 + }, + { + "start": 5868.65, + "end": 5870.69, + "probability": 0.9538 + }, + { + "start": 5870.77, + "end": 5874.29, + "probability": 0.9267 + }, + { + "start": 5874.29, + "end": 5876.99, + "probability": 0.9966 + }, + { + "start": 5878.53, + "end": 5880.57, + "probability": 0.855 + }, + { + "start": 5883.65, + "end": 5886.29, + "probability": 0.63 + }, + { + "start": 5886.53, + "end": 5889.95, + "probability": 0.9062 + }, + { + "start": 5890.31, + "end": 5892.85, + "probability": 0.9267 + }, + { + "start": 5892.91, + "end": 5894.75, + "probability": 0.7274 + }, + { + "start": 5894.97, + "end": 5900.31, + "probability": 0.9085 + }, + { + "start": 5914.01, + "end": 5914.31, + "probability": 0.6259 + }, + { + "start": 5916.25, + "end": 5918.23, + "probability": 0.4488 + }, + { + "start": 5918.99, + "end": 5920.27, + "probability": 0.8787 + }, + { + "start": 5920.85, + "end": 5921.6, + "probability": 0.9814 + }, + { + "start": 5922.79, + "end": 5923.97, + "probability": 0.926 + }, + { + "start": 5924.05, + "end": 5924.49, + "probability": 0.9697 + }, + { + "start": 5924.89, + "end": 5926.46, + "probability": 0.8752 + }, + { + "start": 5927.27, + "end": 5928.69, + "probability": 0.9667 + }, + { + "start": 5929.69, + "end": 5931.08, + "probability": 0.9976 + }, + { + "start": 5931.83, + "end": 5935.85, + "probability": 0.9954 + }, + { + "start": 5936.55, + "end": 5937.15, + "probability": 0.8012 + }, + { + "start": 5937.23, + "end": 5938.59, + "probability": 0.5375 + }, + { + "start": 5938.71, + "end": 5940.09, + "probability": 0.8195 + }, + { + "start": 5942.07, + "end": 5942.89, + "probability": 0.9795 + }, + { + "start": 5943.59, + "end": 5948.03, + "probability": 0.9985 + }, + { + "start": 5948.03, + "end": 5952.53, + "probability": 0.998 + }, + { + "start": 5952.53, + "end": 5958.13, + "probability": 0.9997 + }, + { + "start": 5959.03, + "end": 5961.23, + "probability": 0.998 + }, + { + "start": 5962.09, + "end": 5965.19, + "probability": 0.9977 + }, + { + "start": 5966.11, + "end": 5969.37, + "probability": 0.9985 + }, + { + "start": 5969.51, + "end": 5971.75, + "probability": 0.9972 + }, + { + "start": 5973.77, + "end": 5973.95, + "probability": 0.694 + }, + { + "start": 5975.43, + "end": 5976.19, + "probability": 0.4274 + }, + { + "start": 5976.77, + "end": 5976.95, + "probability": 0.6445 + }, + { + "start": 5978.07, + "end": 5978.78, + "probability": 0.9512 + }, + { + "start": 5979.27, + "end": 5986.47, + "probability": 0.8076 + }, + { + "start": 5986.69, + "end": 5988.89, + "probability": 0.732 + }, + { + "start": 5989.79, + "end": 5990.73, + "probability": 0.9525 + }, + { + "start": 5991.43, + "end": 5995.24, + "probability": 0.9465 + }, + { + "start": 5995.59, + "end": 5996.81, + "probability": 0.6563 + }, + { + "start": 5997.11, + "end": 6000.73, + "probability": 0.8234 + }, + { + "start": 6001.65, + "end": 6004.87, + "probability": 0.7394 + }, + { + "start": 6005.63, + "end": 6006.47, + "probability": 0.8697 + }, + { + "start": 6006.95, + "end": 6007.55, + "probability": 0.921 + }, + { + "start": 6007.83, + "end": 6013.57, + "probability": 0.9768 + }, + { + "start": 6013.65, + "end": 6013.97, + "probability": 0.5085 + }, + { + "start": 6014.07, + "end": 6015.17, + "probability": 0.9395 + }, + { + "start": 6015.87, + "end": 6016.59, + "probability": 0.2647 + }, + { + "start": 6017.55, + "end": 6017.83, + "probability": 0.7296 + }, + { + "start": 6017.93, + "end": 6018.31, + "probability": 0.7424 + }, + { + "start": 6018.41, + "end": 6021.87, + "probability": 0.9144 + }, + { + "start": 6022.65, + "end": 6023.35, + "probability": 0.6929 + }, + { + "start": 6023.49, + "end": 6027.63, + "probability": 0.9677 + }, + { + "start": 6028.13, + "end": 6030.13, + "probability": 0.7334 + }, + { + "start": 6030.61, + "end": 6032.07, + "probability": 0.9689 + }, + { + "start": 6032.85, + "end": 6033.63, + "probability": 0.8562 + }, + { + "start": 6033.71, + "end": 6039.09, + "probability": 0.896 + }, + { + "start": 6039.71, + "end": 6042.43, + "probability": 0.9599 + }, + { + "start": 6043.39, + "end": 6049.13, + "probability": 0.998 + }, + { + "start": 6049.83, + "end": 6051.31, + "probability": 0.9153 + }, + { + "start": 6051.31, + "end": 6052.75, + "probability": 0.8649 + }, + { + "start": 6052.79, + "end": 6052.79, + "probability": 0.544 + }, + { + "start": 6052.87, + "end": 6054.75, + "probability": 0.9215 + }, + { + "start": 6055.65, + "end": 6060.73, + "probability": 0.8542 + }, + { + "start": 6061.67, + "end": 6064.09, + "probability": 0.7689 + }, + { + "start": 6064.77, + "end": 6068.65, + "probability": 0.9961 + }, + { + "start": 6069.45, + "end": 6070.57, + "probability": 0.7485 + }, + { + "start": 6070.65, + "end": 6071.29, + "probability": 0.8827 + }, + { + "start": 6071.45, + "end": 6073.77, + "probability": 0.836 + }, + { + "start": 6074.17, + "end": 6075.53, + "probability": 0.973 + }, + { + "start": 6076.25, + "end": 6081.85, + "probability": 0.9796 + }, + { + "start": 6082.73, + "end": 6083.19, + "probability": 0.7189 + }, + { + "start": 6083.37, + "end": 6085.45, + "probability": 0.9924 + }, + { + "start": 6085.45, + "end": 6088.53, + "probability": 0.9794 + }, + { + "start": 6089.29, + "end": 6091.95, + "probability": 0.9851 + }, + { + "start": 6092.15, + "end": 6096.89, + "probability": 0.9875 + }, + { + "start": 6097.45, + "end": 6098.21, + "probability": 0.8829 + }, + { + "start": 6098.73, + "end": 6099.95, + "probability": 0.8509 + }, + { + "start": 6100.35, + "end": 6103.77, + "probability": 0.9926 + }, + { + "start": 6103.83, + "end": 6105.77, + "probability": 0.8159 + }, + { + "start": 6105.97, + "end": 6108.01, + "probability": 0.9199 + }, + { + "start": 6108.65, + "end": 6110.55, + "probability": 0.8746 + }, + { + "start": 6111.11, + "end": 6112.79, + "probability": 0.9854 + }, + { + "start": 6113.39, + "end": 6115.73, + "probability": 0.9958 + }, + { + "start": 6116.87, + "end": 6119.71, + "probability": 0.9968 + }, + { + "start": 6120.61, + "end": 6122.11, + "probability": 0.9979 + }, + { + "start": 6122.29, + "end": 6123.14, + "probability": 0.0102 + }, + { + "start": 6127.73, + "end": 6133.91, + "probability": 0.9971 + }, + { + "start": 6134.51, + "end": 6137.89, + "probability": 0.999 + }, + { + "start": 6138.71, + "end": 6141.21, + "probability": 0.9761 + }, + { + "start": 6142.17, + "end": 6146.39, + "probability": 0.9356 + }, + { + "start": 6146.86, + "end": 6150.15, + "probability": 0.9935 + }, + { + "start": 6150.65, + "end": 6156.49, + "probability": 0.9569 + }, + { + "start": 6156.95, + "end": 6158.28, + "probability": 0.8906 + }, + { + "start": 6159.67, + "end": 6160.9, + "probability": 0.5713 + }, + { + "start": 6161.57, + "end": 6162.67, + "probability": 0.9141 + }, + { + "start": 6163.29, + "end": 6164.67, + "probability": 0.9712 + }, + { + "start": 6165.27, + "end": 6167.95, + "probability": 0.989 + }, + { + "start": 6169.79, + "end": 6171.38, + "probability": 0.9883 + }, + { + "start": 6172.21, + "end": 6179.83, + "probability": 0.9952 + }, + { + "start": 6180.35, + "end": 6182.21, + "probability": 0.66 + }, + { + "start": 6182.53, + "end": 6187.19, + "probability": 0.999 + }, + { + "start": 6187.37, + "end": 6189.8, + "probability": 0.875 + }, + { + "start": 6190.51, + "end": 6193.49, + "probability": 0.8797 + }, + { + "start": 6194.01, + "end": 6195.83, + "probability": 0.8946 + }, + { + "start": 6207.47, + "end": 6208.87, + "probability": 0.4794 + }, + { + "start": 6210.59, + "end": 6216.67, + "probability": 0.9976 + }, + { + "start": 6217.65, + "end": 6220.09, + "probability": 0.8878 + }, + { + "start": 6220.73, + "end": 6224.27, + "probability": 0.9799 + }, + { + "start": 6224.79, + "end": 6225.85, + "probability": 0.8055 + }, + { + "start": 6227.11, + "end": 6231.45, + "probability": 0.9946 + }, + { + "start": 6232.93, + "end": 6233.77, + "probability": 0.6863 + }, + { + "start": 6234.13, + "end": 6238.43, + "probability": 0.9027 + }, + { + "start": 6238.55, + "end": 6240.81, + "probability": 0.8199 + }, + { + "start": 6242.51, + "end": 6245.93, + "probability": 0.8198 + }, + { + "start": 6247.49, + "end": 6248.56, + "probability": 0.2049 + }, + { + "start": 6249.91, + "end": 6250.59, + "probability": 0.8967 + }, + { + "start": 6251.31, + "end": 6252.69, + "probability": 0.8768 + }, + { + "start": 6254.07, + "end": 6258.83, + "probability": 0.8858 + }, + { + "start": 6258.83, + "end": 6265.39, + "probability": 0.9547 + }, + { + "start": 6266.63, + "end": 6268.05, + "probability": 0.9106 + }, + { + "start": 6269.11, + "end": 6276.25, + "probability": 0.9907 + }, + { + "start": 6276.81, + "end": 6284.11, + "probability": 0.9747 + }, + { + "start": 6285.11, + "end": 6290.75, + "probability": 0.9932 + }, + { + "start": 6290.95, + "end": 6292.43, + "probability": 0.9372 + }, + { + "start": 6293.15, + "end": 6294.41, + "probability": 0.8662 + }, + { + "start": 6294.71, + "end": 6295.75, + "probability": 0.916 + }, + { + "start": 6296.23, + "end": 6298.55, + "probability": 0.8503 + }, + { + "start": 6298.61, + "end": 6299.27, + "probability": 0.7936 + }, + { + "start": 6300.39, + "end": 6301.91, + "probability": 0.9934 + }, + { + "start": 6302.45, + "end": 6304.07, + "probability": 0.9819 + }, + { + "start": 6304.77, + "end": 6309.39, + "probability": 0.995 + }, + { + "start": 6310.93, + "end": 6312.91, + "probability": 0.9528 + }, + { + "start": 6313.45, + "end": 6314.77, + "probability": 0.8078 + }, + { + "start": 6315.65, + "end": 6321.39, + "probability": 0.9978 + }, + { + "start": 6322.75, + "end": 6326.03, + "probability": 0.992 + }, + { + "start": 6327.59, + "end": 6329.35, + "probability": 0.9424 + }, + { + "start": 6332.01, + "end": 6334.57, + "probability": 0.9962 + }, + { + "start": 6336.53, + "end": 6339.47, + "probability": 0.9559 + }, + { + "start": 6340.75, + "end": 6344.43, + "probability": 0.9974 + }, + { + "start": 6346.35, + "end": 6353.01, + "probability": 0.9858 + }, + { + "start": 6354.01, + "end": 6355.61, + "probability": 0.9797 + }, + { + "start": 6356.31, + "end": 6357.44, + "probability": 0.6966 + }, + { + "start": 6358.29, + "end": 6359.55, + "probability": 0.8366 + }, + { + "start": 6360.21, + "end": 6363.81, + "probability": 0.8915 + }, + { + "start": 6364.37, + "end": 6365.57, + "probability": 0.9729 + }, + { + "start": 6366.45, + "end": 6367.61, + "probability": 0.7926 + }, + { + "start": 6368.35, + "end": 6369.75, + "probability": 0.96 + }, + { + "start": 6370.27, + "end": 6374.65, + "probability": 0.9978 + }, + { + "start": 6376.67, + "end": 6382.27, + "probability": 0.9974 + }, + { + "start": 6382.27, + "end": 6387.71, + "probability": 0.9998 + }, + { + "start": 6388.37, + "end": 6391.71, + "probability": 0.5094 + }, + { + "start": 6391.81, + "end": 6394.67, + "probability": 0.9966 + }, + { + "start": 6395.23, + "end": 6397.89, + "probability": 0.6565 + }, + { + "start": 6398.39, + "end": 6401.13, + "probability": 0.3928 + }, + { + "start": 6401.67, + "end": 6403.65, + "probability": 0.7948 + }, + { + "start": 6404.91, + "end": 6405.61, + "probability": 0.7096 + }, + { + "start": 6414.31, + "end": 6415.11, + "probability": 0.3539 + }, + { + "start": 6415.11, + "end": 6422.61, + "probability": 0.7149 + }, + { + "start": 6423.03, + "end": 6425.45, + "probability": 0.8193 + }, + { + "start": 6434.81, + "end": 6435.45, + "probability": 0.3222 + }, + { + "start": 6447.23, + "end": 6448.81, + "probability": 0.2059 + }, + { + "start": 6448.81, + "end": 6451.67, + "probability": 0.1102 + }, + { + "start": 6451.67, + "end": 6457.33, + "probability": 0.711 + }, + { + "start": 6463.03, + "end": 6465.55, + "probability": 0.9754 + }, + { + "start": 6466.15, + "end": 6469.65, + "probability": 0.841 + }, + { + "start": 6470.27, + "end": 6474.72, + "probability": 0.9163 + }, + { + "start": 6475.83, + "end": 6478.95, + "probability": 0.9478 + }, + { + "start": 6483.09, + "end": 6483.83, + "probability": 0.4163 + }, + { + "start": 6484.19, + "end": 6485.1, + "probability": 0.0317 + }, + { + "start": 6485.79, + "end": 6495.67, + "probability": 0.1005 + }, + { + "start": 6496.23, + "end": 6500.23, + "probability": 0.8125 + }, + { + "start": 6500.95, + "end": 6505.23, + "probability": 0.9912 + }, + { + "start": 6505.91, + "end": 6508.31, + "probability": 0.9022 + }, + { + "start": 6508.35, + "end": 6511.85, + "probability": 0.8457 + }, + { + "start": 6513.11, + "end": 6517.85, + "probability": 0.7812 + }, + { + "start": 6519.03, + "end": 6520.13, + "probability": 0.8301 + }, + { + "start": 6520.93, + "end": 6522.99, + "probability": 0.0167 + }, + { + "start": 6528.65, + "end": 6530.63, + "probability": 0.0234 + }, + { + "start": 6531.93, + "end": 6532.99, + "probability": 0.1014 + }, + { + "start": 6532.99, + "end": 6536.67, + "probability": 0.7254 + }, + { + "start": 6537.23, + "end": 6541.99, + "probability": 0.9854 + }, + { + "start": 6543.13, + "end": 6544.31, + "probability": 0.9071 + }, + { + "start": 6544.71, + "end": 6545.97, + "probability": 0.9893 + }, + { + "start": 6547.27, + "end": 6551.07, + "probability": 0.9836 + }, + { + "start": 6551.07, + "end": 6555.45, + "probability": 0.9423 + }, + { + "start": 6555.85, + "end": 6559.57, + "probability": 0.8182 + }, + { + "start": 6561.05, + "end": 6564.69, + "probability": 0.994 + }, + { + "start": 6564.69, + "end": 6572.95, + "probability": 0.8716 + }, + { + "start": 6576.93, + "end": 6584.05, + "probability": 0.991 + }, + { + "start": 6584.57, + "end": 6585.89, + "probability": 0.7108 + }, + { + "start": 6586.11, + "end": 6587.63, + "probability": 0.6153 + }, + { + "start": 6587.83, + "end": 6589.67, + "probability": 0.8556 + }, + { + "start": 6589.85, + "end": 6592.85, + "probability": 0.8793 + }, + { + "start": 6593.97, + "end": 6596.33, + "probability": 0.9695 + }, + { + "start": 6596.43, + "end": 6598.26, + "probability": 0.7518 + }, + { + "start": 6598.87, + "end": 6600.15, + "probability": 0.6695 + }, + { + "start": 6600.57, + "end": 6603.13, + "probability": 0.9824 + }, + { + "start": 6603.51, + "end": 6605.13, + "probability": 0.8 + }, + { + "start": 6605.23, + "end": 6608.17, + "probability": 0.8104 + }, + { + "start": 6608.45, + "end": 6610.71, + "probability": 0.7731 + }, + { + "start": 6611.03, + "end": 6612.18, + "probability": 0.8435 + }, + { + "start": 6621.93, + "end": 6623.53, + "probability": 0.6511 + }, + { + "start": 6624.01, + "end": 6624.97, + "probability": 0.9779 + }, + { + "start": 6625.15, + "end": 6629.71, + "probability": 0.8788 + }, + { + "start": 6630.05, + "end": 6633.35, + "probability": 0.8817 + }, + { + "start": 6637.11, + "end": 6637.11, + "probability": 0.1764 + }, + { + "start": 6654.17, + "end": 6656.93, + "probability": 0.4926 + }, + { + "start": 6657.15, + "end": 6659.41, + "probability": 0.8889 + }, + { + "start": 6659.87, + "end": 6663.17, + "probability": 0.9985 + }, + { + "start": 6663.31, + "end": 6668.69, + "probability": 0.978 + }, + { + "start": 6690.97, + "end": 6692.21, + "probability": 0.7911 + }, + { + "start": 6692.83, + "end": 6694.9, + "probability": 0.957 + }, + { + "start": 6695.35, + "end": 6698.33, + "probability": 0.9596 + }, + { + "start": 6698.77, + "end": 6701.59, + "probability": 0.9873 + }, + { + "start": 6702.11, + "end": 6705.99, + "probability": 0.699 + }, + { + "start": 6707.5, + "end": 6711.53, + "probability": 0.93 + }, + { + "start": 6712.23, + "end": 6716.43, + "probability": 0.9888 + }, + { + "start": 6717.07, + "end": 6718.35, + "probability": 0.8093 + }, + { + "start": 6718.53, + "end": 6721.71, + "probability": 0.7212 + }, + { + "start": 6722.57, + "end": 6726.05, + "probability": 0.9206 + }, + { + "start": 6726.83, + "end": 6728.93, + "probability": 0.8271 + }, + { + "start": 6729.15, + "end": 6733.07, + "probability": 0.9779 + }, + { + "start": 6733.07, + "end": 6737.03, + "probability": 0.9819 + }, + { + "start": 6737.67, + "end": 6739.85, + "probability": 0.6397 + }, + { + "start": 6740.55, + "end": 6744.99, + "probability": 0.7788 + }, + { + "start": 6745.27, + "end": 6746.69, + "probability": 0.0326 + }, + { + "start": 6748.39, + "end": 6761.73, + "probability": 0.7505 + }, + { + "start": 6763.37, + "end": 6764.25, + "probability": 0.645 + }, + { + "start": 6764.55, + "end": 6765.91, + "probability": 0.3673 + }, + { + "start": 6766.33, + "end": 6769.27, + "probability": 0.8696 + }, + { + "start": 6769.35, + "end": 6771.2, + "probability": 0.9578 + }, + { + "start": 6771.97, + "end": 6773.23, + "probability": 0.6048 + }, + { + "start": 6773.57, + "end": 6778.51, + "probability": 0.9148 + }, + { + "start": 6778.85, + "end": 6781.63, + "probability": 0.9906 + }, + { + "start": 6782.51, + "end": 6784.29, + "probability": 0.9468 + }, + { + "start": 6785.57, + "end": 6788.47, + "probability": 0.972 + }, + { + "start": 6789.69, + "end": 6793.85, + "probability": 0.4984 + }, + { + "start": 6794.59, + "end": 6795.93, + "probability": 0.7711 + }, + { + "start": 6795.99, + "end": 6797.13, + "probability": 0.8037 + }, + { + "start": 6797.21, + "end": 6797.83, + "probability": 0.7827 + }, + { + "start": 6797.91, + "end": 6798.97, + "probability": 0.9314 + }, + { + "start": 6799.67, + "end": 6801.83, + "probability": 0.9982 + }, + { + "start": 6801.95, + "end": 6803.29, + "probability": 0.8972 + }, + { + "start": 6803.39, + "end": 6804.15, + "probability": 0.7637 + }, + { + "start": 6804.69, + "end": 6806.11, + "probability": 0.9109 + }, + { + "start": 6806.77, + "end": 6809.41, + "probability": 0.8825 + }, + { + "start": 6811.19, + "end": 6812.71, + "probability": 0.6663 + }, + { + "start": 6813.63, + "end": 6815.86, + "probability": 0.9965 + }, + { + "start": 6816.07, + "end": 6816.71, + "probability": 0.9528 + }, + { + "start": 6816.71, + "end": 6817.29, + "probability": 0.5858 + }, + { + "start": 6817.43, + "end": 6819.15, + "probability": 0.5218 + }, + { + "start": 6819.33, + "end": 6820.33, + "probability": 0.7919 + }, + { + "start": 6820.33, + "end": 6821.41, + "probability": 0.4944 + }, + { + "start": 6821.59, + "end": 6822.81, + "probability": 0.9062 + }, + { + "start": 6828.35, + "end": 6830.15, + "probability": 0.521 + }, + { + "start": 6830.77, + "end": 6831.69, + "probability": 0.348 + }, + { + "start": 6832.61, + "end": 6832.93, + "probability": 0.5226 + }, + { + "start": 6832.93, + "end": 6833.73, + "probability": 0.5918 + }, + { + "start": 6833.83, + "end": 6835.16, + "probability": 0.9148 + }, + { + "start": 6835.29, + "end": 6836.19, + "probability": 0.7916 + }, + { + "start": 6836.23, + "end": 6837.27, + "probability": 0.4661 + }, + { + "start": 6837.69, + "end": 6837.81, + "probability": 0.281 + }, + { + "start": 6837.97, + "end": 6838.39, + "probability": 0.7349 + }, + { + "start": 6838.47, + "end": 6838.99, + "probability": 0.4913 + }, + { + "start": 6839.05, + "end": 6839.51, + "probability": 0.147 + }, + { + "start": 6839.55, + "end": 6839.69, + "probability": 0.0034 + }, + { + "start": 6839.71, + "end": 6841.83, + "probability": 0.8042 + }, + { + "start": 6844.35, + "end": 6846.23, + "probability": 0.7107 + }, + { + "start": 6846.55, + "end": 6848.33, + "probability": 0.821 + }, + { + "start": 6849.03, + "end": 6850.88, + "probability": 0.9443 + }, + { + "start": 6851.7, + "end": 6853.05, + "probability": 0.5879 + }, + { + "start": 6853.65, + "end": 6856.96, + "probability": 0.943 + }, + { + "start": 6857.29, + "end": 6858.55, + "probability": 0.9613 + }, + { + "start": 6858.65, + "end": 6864.11, + "probability": 0.8825 + }, + { + "start": 6865.31, + "end": 6869.17, + "probability": 0.9854 + }, + { + "start": 6869.87, + "end": 6871.29, + "probability": 0.9972 + }, + { + "start": 6872.17, + "end": 6875.73, + "probability": 0.9092 + }, + { + "start": 6875.85, + "end": 6876.87, + "probability": 0.9807 + }, + { + "start": 6877.15, + "end": 6878.63, + "probability": 0.9069 + }, + { + "start": 6878.65, + "end": 6880.21, + "probability": 0.9551 + }, + { + "start": 6880.33, + "end": 6881.55, + "probability": 0.9961 + }, + { + "start": 6882.17, + "end": 6882.65, + "probability": 0.7043 + }, + { + "start": 6882.81, + "end": 6886.11, + "probability": 0.9944 + }, + { + "start": 6886.61, + "end": 6888.89, + "probability": 0.9797 + }, + { + "start": 6889.67, + "end": 6890.89, + "probability": 0.9889 + }, + { + "start": 6892.03, + "end": 6893.89, + "probability": 0.1944 + }, + { + "start": 6894.27, + "end": 6900.25, + "probability": 0.797 + }, + { + "start": 6900.99, + "end": 6905.67, + "probability": 0.9849 + }, + { + "start": 6906.13, + "end": 6906.97, + "probability": 0.8909 + }, + { + "start": 6907.61, + "end": 6909.81, + "probability": 0.7999 + }, + { + "start": 6910.15, + "end": 6910.65, + "probability": 0.9902 + }, + { + "start": 6911.43, + "end": 6913.53, + "probability": 0.7805 + }, + { + "start": 6914.09, + "end": 6915.51, + "probability": 0.9238 + }, + { + "start": 6916.07, + "end": 6917.58, + "probability": 0.8725 + }, + { + "start": 6918.11, + "end": 6921.18, + "probability": 0.9917 + }, + { + "start": 6922.71, + "end": 6923.51, + "probability": 0.8132 + }, + { + "start": 6923.99, + "end": 6926.43, + "probability": 0.9583 + }, + { + "start": 6926.51, + "end": 6929.19, + "probability": 0.9971 + }, + { + "start": 6929.55, + "end": 6932.43, + "probability": 0.9961 + }, + { + "start": 6933.19, + "end": 6935.85, + "probability": 0.993 + }, + { + "start": 6936.25, + "end": 6941.01, + "probability": 0.9854 + }, + { + "start": 6941.69, + "end": 6942.75, + "probability": 0.7865 + }, + { + "start": 6942.85, + "end": 6946.73, + "probability": 0.9761 + }, + { + "start": 6946.83, + "end": 6947.61, + "probability": 0.9993 + }, + { + "start": 6948.15, + "end": 6951.09, + "probability": 0.9898 + }, + { + "start": 6951.33, + "end": 6954.27, + "probability": 0.8313 + }, + { + "start": 6956.45, + "end": 6960.15, + "probability": 0.9746 + }, + { + "start": 6960.27, + "end": 6960.87, + "probability": 0.4078 + }, + { + "start": 6960.91, + "end": 6962.57, + "probability": 0.7142 + }, + { + "start": 6962.57, + "end": 6965.01, + "probability": 0.9622 + }, + { + "start": 6965.11, + "end": 6965.51, + "probability": 0.4638 + }, + { + "start": 6965.91, + "end": 6969.07, + "probability": 0.9585 + }, + { + "start": 6969.07, + "end": 6971.53, + "probability": 0.957 + }, + { + "start": 6971.95, + "end": 6975.87, + "probability": 0.9604 + }, + { + "start": 6976.33, + "end": 6978.19, + "probability": 0.9972 + }, + { + "start": 6978.69, + "end": 6985.69, + "probability": 0.9756 + }, + { + "start": 6986.25, + "end": 6987.59, + "probability": 0.8926 + }, + { + "start": 6987.73, + "end": 6991.01, + "probability": 0.9624 + }, + { + "start": 6992.08, + "end": 6997.29, + "probability": 0.9823 + }, + { + "start": 6997.47, + "end": 6998.95, + "probability": 0.8581 + }, + { + "start": 6999.01, + "end": 7001.75, + "probability": 0.9948 + }, + { + "start": 7002.21, + "end": 7003.29, + "probability": 0.8411 + }, + { + "start": 7003.49, + "end": 7004.67, + "probability": 0.8961 + }, + { + "start": 7004.75, + "end": 7008.57, + "probability": 0.9974 + }, + { + "start": 7008.57, + "end": 7012.41, + "probability": 0.967 + }, + { + "start": 7013.09, + "end": 7016.97, + "probability": 0.9933 + }, + { + "start": 7017.43, + "end": 7019.05, + "probability": 0.9829 + }, + { + "start": 7019.07, + "end": 7020.89, + "probability": 0.7128 + }, + { + "start": 7021.65, + "end": 7023.75, + "probability": 0.8806 + }, + { + "start": 7024.63, + "end": 7026.07, + "probability": 0.7799 + }, + { + "start": 7026.59, + "end": 7028.41, + "probability": 0.9691 + }, + { + "start": 7029.65, + "end": 7034.63, + "probability": 0.8134 + }, + { + "start": 7035.77, + "end": 7037.67, + "probability": 0.9215 + }, + { + "start": 7054.65, + "end": 7056.51, + "probability": 0.4585 + }, + { + "start": 7058.73, + "end": 7061.41, + "probability": 0.6909 + }, + { + "start": 7061.49, + "end": 7067.37, + "probability": 0.8937 + }, + { + "start": 7079.57, + "end": 7082.19, + "probability": 0.6582 + }, + { + "start": 7083.23, + "end": 7084.21, + "probability": 0.672 + }, + { + "start": 7085.39, + "end": 7089.25, + "probability": 0.9882 + }, + { + "start": 7090.17, + "end": 7092.11, + "probability": 0.8901 + }, + { + "start": 7092.33, + "end": 7095.93, + "probability": 0.9924 + }, + { + "start": 7097.39, + "end": 7097.95, + "probability": 0.7395 + }, + { + "start": 7098.35, + "end": 7105.79, + "probability": 0.9921 + }, + { + "start": 7106.77, + "end": 7111.89, + "probability": 0.9943 + }, + { + "start": 7112.57, + "end": 7115.41, + "probability": 0.9993 + }, + { + "start": 7115.83, + "end": 7122.51, + "probability": 0.9951 + }, + { + "start": 7122.57, + "end": 7123.89, + "probability": 0.7392 + }, + { + "start": 7124.19, + "end": 7127.95, + "probability": 0.9923 + }, + { + "start": 7129.15, + "end": 7129.99, + "probability": 0.9878 + }, + { + "start": 7130.89, + "end": 7135.23, + "probability": 0.9867 + }, + { + "start": 7135.95, + "end": 7136.93, + "probability": 0.6922 + }, + { + "start": 7137.77, + "end": 7142.43, + "probability": 0.989 + }, + { + "start": 7142.99, + "end": 7143.55, + "probability": 0.8372 + }, + { + "start": 7143.93, + "end": 7150.69, + "probability": 0.9981 + }, + { + "start": 7151.23, + "end": 7154.55, + "probability": 0.9973 + }, + { + "start": 7154.91, + "end": 7158.01, + "probability": 0.9305 + }, + { + "start": 7158.47, + "end": 7161.25, + "probability": 0.9897 + }, + { + "start": 7161.79, + "end": 7162.43, + "probability": 0.9636 + }, + { + "start": 7162.63, + "end": 7164.57, + "probability": 0.9897 + }, + { + "start": 7164.97, + "end": 7166.61, + "probability": 0.9919 + }, + { + "start": 7167.17, + "end": 7169.41, + "probability": 0.9824 + }, + { + "start": 7170.35, + "end": 7172.15, + "probability": 0.9942 + }, + { + "start": 7172.21, + "end": 7174.65, + "probability": 0.983 + }, + { + "start": 7175.61, + "end": 7182.27, + "probability": 0.938 + }, + { + "start": 7183.35, + "end": 7185.69, + "probability": 0.8962 + }, + { + "start": 7186.03, + "end": 7189.41, + "probability": 0.9944 + }, + { + "start": 7191.73, + "end": 7194.47, + "probability": 0.9413 + }, + { + "start": 7195.05, + "end": 7198.33, + "probability": 0.8775 + }, + { + "start": 7199.23, + "end": 7202.57, + "probability": 0.8804 + }, + { + "start": 7203.23, + "end": 7205.45, + "probability": 0.9792 + }, + { + "start": 7206.01, + "end": 7208.77, + "probability": 0.9561 + }, + { + "start": 7209.69, + "end": 7211.27, + "probability": 0.9924 + }, + { + "start": 7212.37, + "end": 7216.61, + "probability": 0.9973 + }, + { + "start": 7216.61, + "end": 7221.79, + "probability": 0.8591 + }, + { + "start": 7221.83, + "end": 7223.03, + "probability": 0.803 + }, + { + "start": 7223.09, + "end": 7224.27, + "probability": 0.9394 + }, + { + "start": 7224.69, + "end": 7226.29, + "probability": 0.9984 + }, + { + "start": 7227.13, + "end": 7230.11, + "probability": 0.9574 + }, + { + "start": 7231.65, + "end": 7232.93, + "probability": 0.9915 + }, + { + "start": 7233.67, + "end": 7236.79, + "probability": 0.9883 + }, + { + "start": 7238.31, + "end": 7246.45, + "probability": 0.9455 + }, + { + "start": 7246.79, + "end": 7247.35, + "probability": 0.9939 + }, + { + "start": 7248.83, + "end": 7252.75, + "probability": 0.9018 + }, + { + "start": 7254.53, + "end": 7257.61, + "probability": 0.9666 + }, + { + "start": 7258.47, + "end": 7259.43, + "probability": 0.9946 + }, + { + "start": 7260.17, + "end": 7261.27, + "probability": 0.9862 + }, + { + "start": 7261.63, + "end": 7262.21, + "probability": 0.9604 + }, + { + "start": 7262.37, + "end": 7264.83, + "probability": 0.9844 + }, + { + "start": 7265.15, + "end": 7265.43, + "probability": 0.8311 + }, + { + "start": 7266.89, + "end": 7271.75, + "probability": 0.9351 + }, + { + "start": 7272.29, + "end": 7273.45, + "probability": 0.9902 + }, + { + "start": 7273.51, + "end": 7274.99, + "probability": 0.5892 + }, + { + "start": 7275.05, + "end": 7276.59, + "probability": 0.9861 + }, + { + "start": 7278.93, + "end": 7280.27, + "probability": 0.8413 + }, + { + "start": 7292.95, + "end": 7295.05, + "probability": 0.6479 + }, + { + "start": 7296.17, + "end": 7298.29, + "probability": 0.5644 + }, + { + "start": 7298.49, + "end": 7300.37, + "probability": 0.9922 + }, + { + "start": 7302.01, + "end": 7304.71, + "probability": 0.7581 + }, + { + "start": 7305.51, + "end": 7312.87, + "probability": 0.8822 + }, + { + "start": 7312.89, + "end": 7313.97, + "probability": 0.9956 + }, + { + "start": 7314.99, + "end": 7317.41, + "probability": 0.8094 + }, + { + "start": 7318.09, + "end": 7320.09, + "probability": 0.8141 + }, + { + "start": 7320.87, + "end": 7322.35, + "probability": 0.939 + }, + { + "start": 7322.97, + "end": 7325.27, + "probability": 0.9957 + }, + { + "start": 7325.93, + "end": 7328.41, + "probability": 0.9341 + }, + { + "start": 7328.89, + "end": 7330.24, + "probability": 0.9917 + }, + { + "start": 7331.11, + "end": 7331.51, + "probability": 0.8948 + }, + { + "start": 7332.59, + "end": 7335.65, + "probability": 0.9728 + }, + { + "start": 7336.79, + "end": 7339.65, + "probability": 0.9854 + }, + { + "start": 7341.23, + "end": 7343.67, + "probability": 0.9893 + }, + { + "start": 7344.75, + "end": 7345.79, + "probability": 0.9268 + }, + { + "start": 7346.87, + "end": 7349.87, + "probability": 0.8876 + }, + { + "start": 7351.11, + "end": 7353.83, + "probability": 0.9423 + }, + { + "start": 7354.77, + "end": 7356.95, + "probability": 0.8754 + }, + { + "start": 7357.19, + "end": 7359.43, + "probability": 0.9905 + }, + { + "start": 7359.63, + "end": 7359.93, + "probability": 0.71 + }, + { + "start": 7360.19, + "end": 7361.27, + "probability": 0.9345 + }, + { + "start": 7361.43, + "end": 7362.19, + "probability": 0.8725 + }, + { + "start": 7362.89, + "end": 7366.17, + "probability": 0.9756 + }, + { + "start": 7366.93, + "end": 7368.73, + "probability": 0.9387 + }, + { + "start": 7369.93, + "end": 7372.17, + "probability": 0.9871 + }, + { + "start": 7372.87, + "end": 7374.77, + "probability": 0.8828 + }, + { + "start": 7375.31, + "end": 7376.43, + "probability": 0.9817 + }, + { + "start": 7377.15, + "end": 7378.17, + "probability": 0.9194 + }, + { + "start": 7378.73, + "end": 7382.37, + "probability": 0.9982 + }, + { + "start": 7383.35, + "end": 7384.09, + "probability": 0.5309 + }, + { + "start": 7384.95, + "end": 7388.25, + "probability": 0.9976 + }, + { + "start": 7388.85, + "end": 7392.17, + "probability": 0.9885 + }, + { + "start": 7393.07, + "end": 7396.95, + "probability": 0.9086 + }, + { + "start": 7398.45, + "end": 7400.31, + "probability": 0.9956 + }, + { + "start": 7400.51, + "end": 7402.59, + "probability": 0.9601 + }, + { + "start": 7403.11, + "end": 7405.69, + "probability": 0.8833 + }, + { + "start": 7406.43, + "end": 7408.41, + "probability": 0.9037 + }, + { + "start": 7409.01, + "end": 7412.31, + "probability": 0.9535 + }, + { + "start": 7412.31, + "end": 7417.27, + "probability": 0.993 + }, + { + "start": 7417.37, + "end": 7418.23, + "probability": 0.7894 + }, + { + "start": 7418.61, + "end": 7419.59, + "probability": 0.9296 + }, + { + "start": 7420.05, + "end": 7421.71, + "probability": 0.8502 + }, + { + "start": 7421.79, + "end": 7422.35, + "probability": 0.8691 + }, + { + "start": 7422.85, + "end": 7424.71, + "probability": 0.7498 + }, + { + "start": 7425.27, + "end": 7427.29, + "probability": 0.9561 + }, + { + "start": 7428.13, + "end": 7430.27, + "probability": 0.9022 + }, + { + "start": 7434.23, + "end": 7436.15, + "probability": 0.2576 + }, + { + "start": 7440.75, + "end": 7444.01, + "probability": 0.3768 + }, + { + "start": 7444.03, + "end": 7445.09, + "probability": 0.5765 + }, + { + "start": 7446.39, + "end": 7447.75, + "probability": 0.9863 + }, + { + "start": 7448.81, + "end": 7449.99, + "probability": 0.8886 + }, + { + "start": 7450.97, + "end": 7454.99, + "probability": 0.8628 + }, + { + "start": 7455.51, + "end": 7456.21, + "probability": 0.5116 + }, + { + "start": 7456.89, + "end": 7457.69, + "probability": 0.746 + }, + { + "start": 7458.41, + "end": 7459.01, + "probability": 0.481 + }, + { + "start": 7459.91, + "end": 7461.79, + "probability": 0.9743 + }, + { + "start": 7462.93, + "end": 7465.49, + "probability": 0.9929 + }, + { + "start": 7465.49, + "end": 7469.43, + "probability": 0.9832 + }, + { + "start": 7470.67, + "end": 7472.03, + "probability": 0.8274 + }, + { + "start": 7472.97, + "end": 7476.45, + "probability": 0.9856 + }, + { + "start": 7477.35, + "end": 7481.71, + "probability": 0.9946 + }, + { + "start": 7482.71, + "end": 7485.53, + "probability": 0.9958 + }, + { + "start": 7486.33, + "end": 7488.53, + "probability": 0.9494 + }, + { + "start": 7491.11, + "end": 7493.45, + "probability": 0.7637 + }, + { + "start": 7494.21, + "end": 7497.67, + "probability": 0.9247 + }, + { + "start": 7499.75, + "end": 7500.77, + "probability": 0.881 + }, + { + "start": 7501.81, + "end": 7505.89, + "probability": 0.9714 + }, + { + "start": 7505.89, + "end": 7512.09, + "probability": 0.9719 + }, + { + "start": 7512.93, + "end": 7517.11, + "probability": 0.9688 + }, + { + "start": 7518.93, + "end": 7525.17, + "probability": 0.9934 + }, + { + "start": 7525.67, + "end": 7530.95, + "probability": 0.7991 + }, + { + "start": 7531.87, + "end": 7533.99, + "probability": 0.9565 + }, + { + "start": 7535.17, + "end": 7536.25, + "probability": 0.9993 + }, + { + "start": 7537.69, + "end": 7538.31, + "probability": 0.9979 + }, + { + "start": 7539.91, + "end": 7540.77, + "probability": 0.9775 + }, + { + "start": 7543.53, + "end": 7543.97, + "probability": 0.6537 + }, + { + "start": 7545.6, + "end": 7552.09, + "probability": 0.6497 + }, + { + "start": 7552.55, + "end": 7555.57, + "probability": 0.9591 + }, + { + "start": 7556.51, + "end": 7557.49, + "probability": 0.8909 + }, + { + "start": 7558.33, + "end": 7559.39, + "probability": 0.9767 + }, + { + "start": 7560.57, + "end": 7561.37, + "probability": 0.9692 + }, + { + "start": 7562.19, + "end": 7564.13, + "probability": 0.9873 + }, + { + "start": 7564.25, + "end": 7565.49, + "probability": 0.8583 + }, + { + "start": 7565.57, + "end": 7568.23, + "probability": 0.9575 + }, + { + "start": 7568.63, + "end": 7572.65, + "probability": 0.9928 + }, + { + "start": 7574.79, + "end": 7575.53, + "probability": 0.8212 + }, + { + "start": 7575.61, + "end": 7576.25, + "probability": 0.9517 + }, + { + "start": 7576.29, + "end": 7578.87, + "probability": 0.9972 + }, + { + "start": 7580.07, + "end": 7580.91, + "probability": 0.8746 + }, + { + "start": 7581.65, + "end": 7582.69, + "probability": 0.9022 + }, + { + "start": 7583.41, + "end": 7586.73, + "probability": 0.9922 + }, + { + "start": 7587.75, + "end": 7590.83, + "probability": 0.9688 + }, + { + "start": 7591.59, + "end": 7598.81, + "probability": 0.9822 + }, + { + "start": 7600.37, + "end": 7607.49, + "probability": 0.9971 + }, + { + "start": 7608.27, + "end": 7610.17, + "probability": 0.9832 + }, + { + "start": 7610.75, + "end": 7612.41, + "probability": 0.9978 + }, + { + "start": 7612.97, + "end": 7614.49, + "probability": 0.9889 + }, + { + "start": 7615.19, + "end": 7618.19, + "probability": 0.7319 + }, + { + "start": 7618.63, + "end": 7619.65, + "probability": 0.912 + }, + { + "start": 7620.13, + "end": 7624.31, + "probability": 0.9712 + }, + { + "start": 7624.47, + "end": 7624.89, + "probability": 0.7022 + }, + { + "start": 7626.65, + "end": 7627.79, + "probability": 0.7592 + }, + { + "start": 7627.85, + "end": 7629.33, + "probability": 0.9713 + }, + { + "start": 7631.39, + "end": 7633.55, + "probability": 0.8172 + }, + { + "start": 7645.87, + "end": 7649.97, + "probability": 0.6677 + }, + { + "start": 7651.41, + "end": 7654.55, + "probability": 0.9226 + }, + { + "start": 7656.47, + "end": 7659.45, + "probability": 0.9895 + }, + { + "start": 7660.49, + "end": 7662.47, + "probability": 0.9318 + }, + { + "start": 7663.65, + "end": 7666.25, + "probability": 0.9761 + }, + { + "start": 7666.93, + "end": 7668.51, + "probability": 0.9341 + }, + { + "start": 7668.95, + "end": 7671.31, + "probability": 0.9512 + }, + { + "start": 7674.59, + "end": 7678.85, + "probability": 0.8409 + }, + { + "start": 7680.21, + "end": 7689.63, + "probability": 0.9891 + }, + { + "start": 7691.13, + "end": 7694.39, + "probability": 0.9855 + }, + { + "start": 7695.03, + "end": 7700.21, + "probability": 0.9987 + }, + { + "start": 7700.31, + "end": 7702.43, + "probability": 0.9942 + }, + { + "start": 7703.07, + "end": 7709.33, + "probability": 0.9782 + }, + { + "start": 7711.29, + "end": 7716.29, + "probability": 0.8216 + }, + { + "start": 7718.21, + "end": 7719.39, + "probability": 0.8611 + }, + { + "start": 7720.83, + "end": 7723.69, + "probability": 0.9797 + }, + { + "start": 7724.35, + "end": 7726.31, + "probability": 0.8453 + }, + { + "start": 7730.63, + "end": 7732.89, + "probability": 0.5522 + }, + { + "start": 7733.97, + "end": 7737.29, + "probability": 0.9971 + }, + { + "start": 7738.17, + "end": 7741.03, + "probability": 0.9595 + }, + { + "start": 7742.51, + "end": 7745.35, + "probability": 0.9958 + }, + { + "start": 7748.81, + "end": 7753.15, + "probability": 0.9959 + }, + { + "start": 7753.43, + "end": 7756.29, + "probability": 0.978 + }, + { + "start": 7758.93, + "end": 7762.03, + "probability": 0.9776 + }, + { + "start": 7762.93, + "end": 7764.33, + "probability": 0.7564 + }, + { + "start": 7767.55, + "end": 7772.49, + "probability": 0.9749 + }, + { + "start": 7775.77, + "end": 7778.13, + "probability": 0.8957 + }, + { + "start": 7778.91, + "end": 7780.89, + "probability": 0.9564 + }, + { + "start": 7782.55, + "end": 7786.15, + "probability": 0.989 + }, + { + "start": 7788.09, + "end": 7790.41, + "probability": 0.978 + }, + { + "start": 7790.61, + "end": 7792.71, + "probability": 0.9924 + }, + { + "start": 7795.03, + "end": 7797.09, + "probability": 0.784 + }, + { + "start": 7797.41, + "end": 7799.44, + "probability": 0.981 + }, + { + "start": 7800.87, + "end": 7805.49, + "probability": 0.9957 + }, + { + "start": 7807.29, + "end": 7813.17, + "probability": 0.9373 + }, + { + "start": 7813.91, + "end": 7816.55, + "probability": 0.9619 + }, + { + "start": 7817.11, + "end": 7817.83, + "probability": 0.3898 + }, + { + "start": 7818.75, + "end": 7819.63, + "probability": 0.9014 + }, + { + "start": 7821.53, + "end": 7824.15, + "probability": 0.9867 + }, + { + "start": 7825.91, + "end": 7829.77, + "probability": 0.949 + }, + { + "start": 7830.31, + "end": 7830.87, + "probability": 0.9119 + }, + { + "start": 7832.97, + "end": 7834.71, + "probability": 0.9153 + }, + { + "start": 7838.13, + "end": 7839.39, + "probability": 0.5076 + }, + { + "start": 7840.45, + "end": 7841.41, + "probability": 0.9976 + }, + { + "start": 7842.35, + "end": 7844.25, + "probability": 0.985 + }, + { + "start": 7845.23, + "end": 7846.13, + "probability": 0.4786 + }, + { + "start": 7847.71, + "end": 7849.19, + "probability": 0.9221 + }, + { + "start": 7850.85, + "end": 7855.03, + "probability": 0.8145 + }, + { + "start": 7855.15, + "end": 7856.45, + "probability": 0.7408 + }, + { + "start": 7856.51, + "end": 7858.73, + "probability": 0.8129 + }, + { + "start": 7860.01, + "end": 7864.99, + "probability": 0.7175 + }, + { + "start": 7865.43, + "end": 7866.63, + "probability": 0.746 + }, + { + "start": 7866.85, + "end": 7866.85, + "probability": 0.5949 + }, + { + "start": 7866.93, + "end": 7869.55, + "probability": 0.9852 + }, + { + "start": 7870.45, + "end": 7871.89, + "probability": 0.8275 + }, + { + "start": 7872.73, + "end": 7873.37, + "probability": 0.9608 + }, + { + "start": 7878.91, + "end": 7881.69, + "probability": 0.5816 + }, + { + "start": 7883.07, + "end": 7888.03, + "probability": 0.9334 + }, + { + "start": 7888.91, + "end": 7889.39, + "probability": 0.4976 + }, + { + "start": 7890.97, + "end": 7892.69, + "probability": 0.9806 + }, + { + "start": 7892.81, + "end": 7893.75, + "probability": 0.9725 + }, + { + "start": 7894.15, + "end": 7895.31, + "probability": 0.8003 + }, + { + "start": 7895.77, + "end": 7897.72, + "probability": 0.8553 + }, + { + "start": 7899.97, + "end": 7902.19, + "probability": 0.9845 + }, + { + "start": 7902.41, + "end": 7904.01, + "probability": 0.4896 + }, + { + "start": 7904.05, + "end": 7905.66, + "probability": 0.9741 + }, + { + "start": 7906.81, + "end": 7909.01, + "probability": 0.9958 + }, + { + "start": 7911.79, + "end": 7913.19, + "probability": 0.9989 + }, + { + "start": 7915.89, + "end": 7920.09, + "probability": 0.8771 + }, + { + "start": 7920.73, + "end": 7922.91, + "probability": 0.9771 + }, + { + "start": 7922.99, + "end": 7925.27, + "probability": 0.9976 + }, + { + "start": 7926.89, + "end": 7927.41, + "probability": 0.9141 + }, + { + "start": 7927.43, + "end": 7928.33, + "probability": 0.9806 + }, + { + "start": 7928.39, + "end": 7930.14, + "probability": 0.9929 + }, + { + "start": 7933.47, + "end": 7934.68, + "probability": 0.9045 + }, + { + "start": 7936.09, + "end": 7937.57, + "probability": 0.9558 + }, + { + "start": 7938.93, + "end": 7940.31, + "probability": 0.9701 + }, + { + "start": 7942.41, + "end": 7943.47, + "probability": 0.573 + }, + { + "start": 7943.49, + "end": 7944.95, + "probability": 0.9788 + }, + { + "start": 7945.81, + "end": 7947.59, + "probability": 0.908 + }, + { + "start": 7947.63, + "end": 7952.43, + "probability": 0.9935 + }, + { + "start": 7953.63, + "end": 7955.33, + "probability": 0.967 + }, + { + "start": 7955.87, + "end": 7957.09, + "probability": 0.9914 + }, + { + "start": 7958.03, + "end": 7959.27, + "probability": 0.8813 + }, + { + "start": 7960.41, + "end": 7961.97, + "probability": 0.9505 + }, + { + "start": 7963.57, + "end": 7965.13, + "probability": 0.9734 + }, + { + "start": 7966.87, + "end": 7968.05, + "probability": 0.9604 + }, + { + "start": 7968.83, + "end": 7969.39, + "probability": 0.8457 + }, + { + "start": 7970.61, + "end": 7972.19, + "probability": 0.9963 + }, + { + "start": 7973.53, + "end": 7975.01, + "probability": 0.9934 + }, + { + "start": 7977.27, + "end": 7979.57, + "probability": 0.917 + }, + { + "start": 7980.71, + "end": 7982.67, + "probability": 0.9844 + }, + { + "start": 7985.47, + "end": 7986.77, + "probability": 0.6313 + }, + { + "start": 7988.09, + "end": 7990.75, + "probability": 0.7941 + }, + { + "start": 7991.83, + "end": 7993.25, + "probability": 0.8351 + }, + { + "start": 7994.27, + "end": 7995.59, + "probability": 0.9941 + }, + { + "start": 7996.53, + "end": 7999.45, + "probability": 0.9951 + }, + { + "start": 8002.45, + "end": 8007.61, + "probability": 0.9938 + }, + { + "start": 8008.75, + "end": 8011.43, + "probability": 0.9716 + }, + { + "start": 8014.29, + "end": 8019.53, + "probability": 0.9617 + }, + { + "start": 8020.55, + "end": 8022.15, + "probability": 0.994 + }, + { + "start": 8023.66, + "end": 8027.67, + "probability": 0.8503 + }, + { + "start": 8030.27, + "end": 8031.61, + "probability": 0.9777 + }, + { + "start": 8031.77, + "end": 8032.79, + "probability": 0.9265 + }, + { + "start": 8033.19, + "end": 8034.85, + "probability": 0.9773 + }, + { + "start": 8034.99, + "end": 8036.49, + "probability": 0.962 + }, + { + "start": 8037.65, + "end": 8038.11, + "probability": 0.8455 + }, + { + "start": 8038.39, + "end": 8038.81, + "probability": 0.9518 + }, + { + "start": 8038.85, + "end": 8042.75, + "probability": 0.9935 + }, + { + "start": 8043.93, + "end": 8044.97, + "probability": 0.6592 + }, + { + "start": 8045.83, + "end": 8047.63, + "probability": 0.9287 + }, + { + "start": 8048.39, + "end": 8051.49, + "probability": 0.9083 + }, + { + "start": 8052.43, + "end": 8054.33, + "probability": 0.8683 + }, + { + "start": 8054.99, + "end": 8056.61, + "probability": 0.98 + }, + { + "start": 8057.41, + "end": 8059.35, + "probability": 0.7688 + }, + { + "start": 8060.71, + "end": 8064.47, + "probability": 0.8799 + }, + { + "start": 8065.51, + "end": 8066.69, + "probability": 0.8037 + }, + { + "start": 8068.73, + "end": 8070.75, + "probability": 0.6884 + }, + { + "start": 8071.57, + "end": 8074.27, + "probability": 0.8773 + }, + { + "start": 8076.09, + "end": 8077.03, + "probability": 0.9898 + }, + { + "start": 8077.95, + "end": 8081.43, + "probability": 0.9923 + }, + { + "start": 8081.53, + "end": 8082.53, + "probability": 0.9492 + }, + { + "start": 8082.69, + "end": 8083.25, + "probability": 0.855 + }, + { + "start": 8084.25, + "end": 8086.11, + "probability": 0.7031 + }, + { + "start": 8086.19, + "end": 8087.75, + "probability": 0.8409 + }, + { + "start": 8088.71, + "end": 8096.01, + "probability": 0.9978 + }, + { + "start": 8096.19, + "end": 8099.87, + "probability": 0.9925 + }, + { + "start": 8100.61, + "end": 8102.85, + "probability": 0.8527 + }, + { + "start": 8103.63, + "end": 8104.67, + "probability": 0.4054 + }, + { + "start": 8105.09, + "end": 8105.43, + "probability": 0.7484 + }, + { + "start": 8106.35, + "end": 8106.79, + "probability": 0.4837 + }, + { + "start": 8106.95, + "end": 8107.51, + "probability": 0.528 + }, + { + "start": 8107.53, + "end": 8109.23, + "probability": 0.7058 + }, + { + "start": 8110.55, + "end": 8111.73, + "probability": 0.8268 + }, + { + "start": 8114.77, + "end": 8116.19, + "probability": 0.8198 + }, + { + "start": 8126.01, + "end": 8128.21, + "probability": 0.6464 + }, + { + "start": 8130.13, + "end": 8134.23, + "probability": 0.8601 + }, + { + "start": 8136.01, + "end": 8138.51, + "probability": 0.9954 + }, + { + "start": 8140.99, + "end": 8147.15, + "probability": 0.9043 + }, + { + "start": 8148.35, + "end": 8149.65, + "probability": 0.9392 + }, + { + "start": 8151.97, + "end": 8154.51, + "probability": 0.6661 + }, + { + "start": 8155.39, + "end": 8161.15, + "probability": 0.5525 + }, + { + "start": 8163.01, + "end": 8165.83, + "probability": 0.9923 + }, + { + "start": 8167.19, + "end": 8168.55, + "probability": 0.704 + }, + { + "start": 8169.35, + "end": 8173.71, + "probability": 0.7494 + }, + { + "start": 8174.49, + "end": 8175.49, + "probability": 0.7706 + }, + { + "start": 8176.61, + "end": 8178.57, + "probability": 0.9379 + }, + { + "start": 8179.85, + "end": 8180.65, + "probability": 0.6888 + }, + { + "start": 8181.29, + "end": 8182.43, + "probability": 0.9536 + }, + { + "start": 8183.79, + "end": 8185.99, + "probability": 0.8835 + }, + { + "start": 8187.49, + "end": 8187.95, + "probability": 0.8511 + }, + { + "start": 8189.77, + "end": 8190.91, + "probability": 0.9058 + }, + { + "start": 8191.53, + "end": 8194.23, + "probability": 0.994 + }, + { + "start": 8195.33, + "end": 8199.79, + "probability": 0.9976 + }, + { + "start": 8200.79, + "end": 8201.77, + "probability": 0.977 + }, + { + "start": 8203.11, + "end": 8207.59, + "probability": 0.9869 + }, + { + "start": 8209.55, + "end": 8216.23, + "probability": 0.9899 + }, + { + "start": 8217.97, + "end": 8220.41, + "probability": 0.9588 + }, + { + "start": 8222.51, + "end": 8223.45, + "probability": 0.6844 + }, + { + "start": 8225.09, + "end": 8228.89, + "probability": 0.9829 + }, + { + "start": 8230.03, + "end": 8232.43, + "probability": 0.9644 + }, + { + "start": 8233.99, + "end": 8234.69, + "probability": 0.9327 + }, + { + "start": 8237.91, + "end": 8238.81, + "probability": 0.9131 + }, + { + "start": 8240.85, + "end": 8244.35, + "probability": 0.9868 + }, + { + "start": 8247.87, + "end": 8252.67, + "probability": 0.9901 + }, + { + "start": 8254.95, + "end": 8255.73, + "probability": 0.8755 + }, + { + "start": 8257.11, + "end": 8259.11, + "probability": 0.9976 + }, + { + "start": 8260.81, + "end": 8262.43, + "probability": 0.8587 + }, + { + "start": 8264.77, + "end": 8267.63, + "probability": 0.7922 + }, + { + "start": 8269.09, + "end": 8271.45, + "probability": 0.908 + }, + { + "start": 8272.31, + "end": 8273.87, + "probability": 0.9678 + }, + { + "start": 8275.81, + "end": 8278.59, + "probability": 0.9714 + }, + { + "start": 8280.09, + "end": 8281.85, + "probability": 0.978 + }, + { + "start": 8283.93, + "end": 8284.83, + "probability": 0.4342 + }, + { + "start": 8285.85, + "end": 8286.69, + "probability": 0.5078 + }, + { + "start": 8287.47, + "end": 8290.61, + "probability": 0.9501 + }, + { + "start": 8293.33, + "end": 8294.73, + "probability": 0.9849 + }, + { + "start": 8296.73, + "end": 8297.27, + "probability": 0.4788 + }, + { + "start": 8299.97, + "end": 8304.73, + "probability": 0.9629 + }, + { + "start": 8306.07, + "end": 8306.85, + "probability": 0.7532 + }, + { + "start": 8307.01, + "end": 8307.38, + "probability": 0.6455 + }, + { + "start": 8308.13, + "end": 8308.91, + "probability": 0.9104 + }, + { + "start": 8308.91, + "end": 8309.27, + "probability": 0.9548 + }, + { + "start": 8310.83, + "end": 8312.63, + "probability": 0.9352 + }, + { + "start": 8315.23, + "end": 8316.23, + "probability": 0.4188 + }, + { + "start": 8321.01, + "end": 8321.85, + "probability": 0.8895 + }, + { + "start": 8322.45, + "end": 8323.53, + "probability": 0.8027 + }, + { + "start": 8331.45, + "end": 8336.49, + "probability": 0.7125 + }, + { + "start": 8337.45, + "end": 8338.86, + "probability": 0.9994 + }, + { + "start": 8339.95, + "end": 8340.63, + "probability": 0.9338 + }, + { + "start": 8342.39, + "end": 8343.47, + "probability": 0.9116 + }, + { + "start": 8344.89, + "end": 8346.57, + "probability": 0.9968 + }, + { + "start": 8346.81, + "end": 8350.19, + "probability": 0.9824 + }, + { + "start": 8351.19, + "end": 8354.04, + "probability": 0.9282 + }, + { + "start": 8354.83, + "end": 8356.17, + "probability": 0.7176 + }, + { + "start": 8358.59, + "end": 8362.55, + "probability": 0.9235 + }, + { + "start": 8364.49, + "end": 8366.25, + "probability": 0.9443 + }, + { + "start": 8366.93, + "end": 8368.23, + "probability": 0.9858 + }, + { + "start": 8370.11, + "end": 8371.57, + "probability": 0.9985 + }, + { + "start": 8373.01, + "end": 8374.21, + "probability": 0.9941 + }, + { + "start": 8374.25, + "end": 8375.54, + "probability": 0.8146 + }, + { + "start": 8376.69, + "end": 8378.41, + "probability": 0.865 + }, + { + "start": 8379.55, + "end": 8381.79, + "probability": 0.9918 + }, + { + "start": 8383.35, + "end": 8384.59, + "probability": 0.8672 + }, + { + "start": 8385.57, + "end": 8386.87, + "probability": 0.4939 + }, + { + "start": 8390.03, + "end": 8391.33, + "probability": 0.7857 + }, + { + "start": 8393.27, + "end": 8394.33, + "probability": 0.7969 + }, + { + "start": 8395.79, + "end": 8397.35, + "probability": 0.3937 + }, + { + "start": 8398.05, + "end": 8399.63, + "probability": 0.6074 + }, + { + "start": 8401.33, + "end": 8404.25, + "probability": 0.6805 + }, + { + "start": 8405.51, + "end": 8406.41, + "probability": 0.8963 + }, + { + "start": 8406.47, + "end": 8407.33, + "probability": 0.9625 + }, + { + "start": 8408.47, + "end": 8409.75, + "probability": 0.9966 + }, + { + "start": 8411.27, + "end": 8415.79, + "probability": 0.983 + }, + { + "start": 8416.97, + "end": 8418.31, + "probability": 0.9628 + }, + { + "start": 8419.21, + "end": 8420.47, + "probability": 0.9827 + }, + { + "start": 8421.75, + "end": 8424.65, + "probability": 0.9971 + }, + { + "start": 8426.27, + "end": 8426.95, + "probability": 0.7261 + }, + { + "start": 8429.23, + "end": 8431.05, + "probability": 0.9822 + }, + { + "start": 8434.03, + "end": 8434.59, + "probability": 0.6259 + }, + { + "start": 8437.27, + "end": 8438.71, + "probability": 0.9963 + }, + { + "start": 8440.79, + "end": 8443.53, + "probability": 0.9816 + }, + { + "start": 8444.27, + "end": 8445.11, + "probability": 0.8251 + }, + { + "start": 8446.15, + "end": 8450.65, + "probability": 0.9807 + }, + { + "start": 8451.41, + "end": 8451.83, + "probability": 0.9891 + }, + { + "start": 8452.57, + "end": 8457.69, + "probability": 0.912 + }, + { + "start": 8457.97, + "end": 8459.59, + "probability": 0.8504 + }, + { + "start": 8460.31, + "end": 8461.15, + "probability": 0.7123 + }, + { + "start": 8461.85, + "end": 8462.87, + "probability": 0.8037 + }, + { + "start": 8463.39, + "end": 8464.52, + "probability": 0.9966 + }, + { + "start": 8465.21, + "end": 8467.79, + "probability": 0.9875 + }, + { + "start": 8468.75, + "end": 8469.29, + "probability": 0.866 + }, + { + "start": 8469.49, + "end": 8469.95, + "probability": 0.9639 + }, + { + "start": 8470.85, + "end": 8472.33, + "probability": 0.7589 + }, + { + "start": 8475.09, + "end": 8478.33, + "probability": 0.9472 + }, + { + "start": 8481.21, + "end": 8483.27, + "probability": 0.8683 + }, + { + "start": 8494.21, + "end": 8494.75, + "probability": 0.3286 + }, + { + "start": 8494.75, + "end": 8497.95, + "probability": 0.718 + }, + { + "start": 8499.75, + "end": 8505.27, + "probability": 0.9829 + }, + { + "start": 8505.27, + "end": 8508.47, + "probability": 0.9972 + }, + { + "start": 8509.39, + "end": 8511.85, + "probability": 0.9657 + }, + { + "start": 8512.69, + "end": 8516.11, + "probability": 0.9616 + }, + { + "start": 8516.23, + "end": 8520.95, + "probability": 0.5465 + }, + { + "start": 8523.35, + "end": 8528.05, + "probability": 0.9412 + }, + { + "start": 8529.17, + "end": 8530.74, + "probability": 0.9902 + }, + { + "start": 8532.33, + "end": 8532.35, + "probability": 0.2767 + }, + { + "start": 8532.35, + "end": 8532.59, + "probability": 0.4953 + }, + { + "start": 8532.69, + "end": 8535.95, + "probability": 0.9714 + }, + { + "start": 8537.13, + "end": 8538.91, + "probability": 0.9302 + }, + { + "start": 8540.01, + "end": 8547.49, + "probability": 0.9644 + }, + { + "start": 8548.19, + "end": 8550.65, + "probability": 0.9664 + }, + { + "start": 8550.77, + "end": 8552.37, + "probability": 0.5887 + }, + { + "start": 8552.83, + "end": 8553.65, + "probability": 0.5197 + }, + { + "start": 8554.19, + "end": 8556.91, + "probability": 0.9401 + }, + { + "start": 8557.45, + "end": 8560.19, + "probability": 0.9938 + }, + { + "start": 8561.11, + "end": 8562.08, + "probability": 0.9946 + }, + { + "start": 8563.79, + "end": 8565.61, + "probability": 0.8136 + }, + { + "start": 8566.19, + "end": 8567.15, + "probability": 0.9703 + }, + { + "start": 8568.41, + "end": 8573.63, + "probability": 0.8523 + }, + { + "start": 8575.97, + "end": 8577.99, + "probability": 0.7369 + }, + { + "start": 8578.45, + "end": 8579.31, + "probability": 0.6467 + }, + { + "start": 8579.35, + "end": 8580.19, + "probability": 0.7363 + }, + { + "start": 8581.09, + "end": 8584.49, + "probability": 0.8306 + }, + { + "start": 8585.39, + "end": 8587.92, + "probability": 0.9644 + }, + { + "start": 8588.25, + "end": 8588.69, + "probability": 0.9604 + }, + { + "start": 8589.41, + "end": 8591.81, + "probability": 0.9868 + }, + { + "start": 8592.51, + "end": 8593.89, + "probability": 0.8955 + }, + { + "start": 8594.59, + "end": 8596.67, + "probability": 0.8906 + }, + { + "start": 8597.37, + "end": 8599.21, + "probability": 0.9893 + }, + { + "start": 8599.57, + "end": 8604.23, + "probability": 0.9963 + }, + { + "start": 8604.81, + "end": 8605.59, + "probability": 0.9678 + }, + { + "start": 8606.69, + "end": 8607.01, + "probability": 0.9532 + }, + { + "start": 8607.15, + "end": 8611.68, + "probability": 0.9799 + }, + { + "start": 8612.49, + "end": 8613.28, + "probability": 0.9266 + }, + { + "start": 8615.25, + "end": 8617.41, + "probability": 0.8827 + }, + { + "start": 8617.97, + "end": 8618.67, + "probability": 0.9705 + }, + { + "start": 8619.57, + "end": 8622.21, + "probability": 0.9922 + }, + { + "start": 8623.03, + "end": 8628.35, + "probability": 0.9297 + }, + { + "start": 8628.83, + "end": 8630.23, + "probability": 0.5244 + }, + { + "start": 8630.31, + "end": 8630.89, + "probability": 0.4078 + }, + { + "start": 8631.73, + "end": 8633.68, + "probability": 0.958 + }, + { + "start": 8634.43, + "end": 8637.23, + "probability": 0.5586 + }, + { + "start": 8637.63, + "end": 8638.39, + "probability": 0.7897 + }, + { + "start": 8638.63, + "end": 8640.75, + "probability": 0.9633 + }, + { + "start": 8641.15, + "end": 8642.49, + "probability": 0.9795 + }, + { + "start": 8642.57, + "end": 8644.65, + "probability": 0.9337 + }, + { + "start": 8645.41, + "end": 8646.81, + "probability": 0.853 + }, + { + "start": 8646.93, + "end": 8648.63, + "probability": 0.9722 + }, + { + "start": 8650.77, + "end": 8651.86, + "probability": 0.8806 + }, + { + "start": 8652.09, + "end": 8652.89, + "probability": 0.9448 + }, + { + "start": 8653.27, + "end": 8654.69, + "probability": 0.951 + }, + { + "start": 8654.71, + "end": 8655.61, + "probability": 0.8085 + }, + { + "start": 8656.25, + "end": 8656.99, + "probability": 0.7408 + }, + { + "start": 8657.07, + "end": 8658.83, + "probability": 0.9089 + }, + { + "start": 8659.25, + "end": 8661.53, + "probability": 0.8314 + }, + { + "start": 8662.07, + "end": 8664.85, + "probability": 0.963 + }, + { + "start": 8664.97, + "end": 8668.77, + "probability": 0.9329 + }, + { + "start": 8668.89, + "end": 8669.79, + "probability": 0.7565 + }, + { + "start": 8670.09, + "end": 8670.93, + "probability": 0.9802 + }, + { + "start": 8671.99, + "end": 8672.11, + "probability": 0.5421 + }, + { + "start": 8672.21, + "end": 8673.35, + "probability": 0.7858 + }, + { + "start": 8673.43, + "end": 8675.77, + "probability": 0.971 + }, + { + "start": 8676.87, + "end": 8678.45, + "probability": 0.9702 + }, + { + "start": 8680.03, + "end": 8680.91, + "probability": 0.2051 + }, + { + "start": 8681.67, + "end": 8682.13, + "probability": 0.4909 + }, + { + "start": 8683.63, + "end": 8684.51, + "probability": 0.7456 + }, + { + "start": 8686.15, + "end": 8687.71, + "probability": 0.8506 + }, + { + "start": 8688.89, + "end": 8689.59, + "probability": 0.7039 + }, + { + "start": 8690.49, + "end": 8691.39, + "probability": 0.872 + }, + { + "start": 8692.99, + "end": 8692.99, + "probability": 0.4648 + }, + { + "start": 8693.07, + "end": 8695.41, + "probability": 0.7169 + }, + { + "start": 8696.33, + "end": 8698.89, + "probability": 0.9819 + }, + { + "start": 8699.89, + "end": 8703.69, + "probability": 0.9877 + }, + { + "start": 8703.87, + "end": 8705.09, + "probability": 0.8748 + }, + { + "start": 8705.89, + "end": 8708.59, + "probability": 0.8451 + }, + { + "start": 8709.55, + "end": 8714.27, + "probability": 0.9559 + }, + { + "start": 8715.51, + "end": 8723.59, + "probability": 0.998 + }, + { + "start": 8725.33, + "end": 8726.74, + "probability": 0.9438 + }, + { + "start": 8726.97, + "end": 8728.47, + "probability": 0.8512 + }, + { + "start": 8729.97, + "end": 8736.27, + "probability": 0.9939 + }, + { + "start": 8736.27, + "end": 8743.25, + "probability": 0.9733 + }, + { + "start": 8743.29, + "end": 8743.73, + "probability": 0.3362 + }, + { + "start": 8744.73, + "end": 8750.31, + "probability": 0.9788 + }, + { + "start": 8751.45, + "end": 8753.93, + "probability": 0.9841 + }, + { + "start": 8755.01, + "end": 8756.07, + "probability": 0.9762 + }, + { + "start": 8757.03, + "end": 8759.75, + "probability": 0.8376 + }, + { + "start": 8760.65, + "end": 8761.69, + "probability": 0.9884 + }, + { + "start": 8762.87, + "end": 8763.49, + "probability": 0.537 + }, + { + "start": 8764.47, + "end": 8766.77, + "probability": 0.9989 + }, + { + "start": 8766.93, + "end": 8767.59, + "probability": 0.6487 + }, + { + "start": 8768.79, + "end": 8770.99, + "probability": 0.9978 + }, + { + "start": 8771.81, + "end": 8772.8, + "probability": 0.96 + }, + { + "start": 8774.35, + "end": 8776.75, + "probability": 0.8894 + }, + { + "start": 8777.61, + "end": 8782.77, + "probability": 0.7854 + }, + { + "start": 8783.75, + "end": 8785.17, + "probability": 0.6158 + }, + { + "start": 8785.33, + "end": 8786.29, + "probability": 0.9274 + }, + { + "start": 8786.41, + "end": 8790.83, + "probability": 0.7672 + }, + { + "start": 8792.23, + "end": 8795.79, + "probability": 0.9972 + }, + { + "start": 8796.45, + "end": 8803.21, + "probability": 0.9743 + }, + { + "start": 8803.25, + "end": 8804.85, + "probability": 0.8787 + }, + { + "start": 8805.33, + "end": 8808.97, + "probability": 0.8925 + }, + { + "start": 8810.53, + "end": 8813.01, + "probability": 0.8127 + }, + { + "start": 8813.39, + "end": 8815.51, + "probability": 0.9882 + }, + { + "start": 8816.37, + "end": 8821.81, + "probability": 0.996 + }, + { + "start": 8823.63, + "end": 8825.11, + "probability": 0.6264 + }, + { + "start": 8825.15, + "end": 8825.69, + "probability": 0.5574 + }, + { + "start": 8827.41, + "end": 8829.99, + "probability": 0.9686 + }, + { + "start": 8834.49, + "end": 8836.09, + "probability": 0.6994 + }, + { + "start": 8836.15, + "end": 8836.65, + "probability": 0.829 + }, + { + "start": 8837.69, + "end": 8840.95, + "probability": 0.9871 + }, + { + "start": 8840.95, + "end": 8844.35, + "probability": 0.999 + }, + { + "start": 8845.17, + "end": 8849.05, + "probability": 0.9966 + }, + { + "start": 8850.09, + "end": 8852.41, + "probability": 0.9982 + }, + { + "start": 8854.15, + "end": 8856.77, + "probability": 0.9465 + }, + { + "start": 8857.43, + "end": 8861.45, + "probability": 0.9963 + }, + { + "start": 8863.41, + "end": 8871.49, + "probability": 0.9946 + }, + { + "start": 8872.21, + "end": 8874.39, + "probability": 0.856 + }, + { + "start": 8875.03, + "end": 8879.11, + "probability": 0.9696 + }, + { + "start": 8879.83, + "end": 8881.33, + "probability": 0.9027 + }, + { + "start": 8882.07, + "end": 8883.79, + "probability": 0.9967 + }, + { + "start": 8886.13, + "end": 8887.31, + "probability": 0.8235 + }, + { + "start": 8887.59, + "end": 8892.81, + "probability": 0.6649 + }, + { + "start": 8893.47, + "end": 8895.33, + "probability": 0.7402 + }, + { + "start": 8895.45, + "end": 8895.93, + "probability": 0.293 + }, + { + "start": 8895.93, + "end": 8897.65, + "probability": 0.7502 + }, + { + "start": 8897.73, + "end": 8901.47, + "probability": 0.7745 + }, + { + "start": 8901.67, + "end": 8902.21, + "probability": 0.5045 + }, + { + "start": 8902.35, + "end": 8903.63, + "probability": 0.8878 + }, + { + "start": 8913.15, + "end": 8915.59, + "probability": 0.567 + }, + { + "start": 8917.19, + "end": 8917.39, + "probability": 0.3513 + }, + { + "start": 8917.47, + "end": 8918.45, + "probability": 0.7415 + }, + { + "start": 8918.61, + "end": 8920.25, + "probability": 0.9089 + }, + { + "start": 8920.39, + "end": 8921.29, + "probability": 0.8673 + }, + { + "start": 8921.29, + "end": 8922.11, + "probability": 0.8734 + }, + { + "start": 8922.57, + "end": 8926.29, + "probability": 0.9884 + }, + { + "start": 8927.09, + "end": 8928.99, + "probability": 0.9922 + }, + { + "start": 8929.23, + "end": 8931.15, + "probability": 0.8108 + }, + { + "start": 8931.21, + "end": 8933.31, + "probability": 0.9348 + }, + { + "start": 8933.61, + "end": 8935.97, + "probability": 0.9852 + }, + { + "start": 8935.99, + "end": 8936.09, + "probability": 0.9825 + }, + { + "start": 8936.39, + "end": 8937.09, + "probability": 0.9527 + }, + { + "start": 8937.23, + "end": 8939.27, + "probability": 0.9919 + }, + { + "start": 8940.05, + "end": 8945.09, + "probability": 0.9976 + }, + { + "start": 8945.09, + "end": 8951.81, + "probability": 0.997 + }, + { + "start": 8952.27, + "end": 8956.01, + "probability": 0.9897 + }, + { + "start": 8956.19, + "end": 8957.33, + "probability": 0.9977 + }, + { + "start": 8958.27, + "end": 8959.77, + "probability": 0.9956 + }, + { + "start": 8959.95, + "end": 8963.37, + "probability": 0.9929 + }, + { + "start": 8964.35, + "end": 8968.59, + "probability": 0.9899 + }, + { + "start": 8968.65, + "end": 8969.99, + "probability": 0.8702 + }, + { + "start": 8970.55, + "end": 8972.67, + "probability": 0.9981 + }, + { + "start": 8972.79, + "end": 8975.21, + "probability": 0.9878 + }, + { + "start": 8975.95, + "end": 8977.11, + "probability": 0.8384 + }, + { + "start": 8977.31, + "end": 8978.83, + "probability": 0.8698 + }, + { + "start": 8978.97, + "end": 8982.15, + "probability": 0.9473 + }, + { + "start": 8982.23, + "end": 8985.55, + "probability": 0.98 + }, + { + "start": 8985.83, + "end": 8986.65, + "probability": 0.8677 + }, + { + "start": 8987.13, + "end": 8989.35, + "probability": 0.8646 + }, + { + "start": 8989.45, + "end": 8992.15, + "probability": 0.9941 + }, + { + "start": 8992.55, + "end": 8994.49, + "probability": 0.9966 + }, + { + "start": 8994.87, + "end": 8997.67, + "probability": 0.9832 + }, + { + "start": 8998.15, + "end": 8999.81, + "probability": 0.9904 + }, + { + "start": 9001.07, + "end": 9004.71, + "probability": 0.9183 + }, + { + "start": 9004.83, + "end": 9007.05, + "probability": 0.7691 + }, + { + "start": 9008.19, + "end": 9010.39, + "probability": 0.9546 + }, + { + "start": 9011.21, + "end": 9015.85, + "probability": 0.9658 + }, + { + "start": 9015.89, + "end": 9016.89, + "probability": 0.8612 + }, + { + "start": 9017.23, + "end": 9019.19, + "probability": 0.7039 + }, + { + "start": 9019.19, + "end": 9019.87, + "probability": 0.8111 + }, + { + "start": 9019.91, + "end": 9022.69, + "probability": 0.9402 + }, + { + "start": 9022.79, + "end": 9023.49, + "probability": 0.9559 + }, + { + "start": 9024.11, + "end": 9028.35, + "probability": 0.9968 + }, + { + "start": 9028.37, + "end": 9029.55, + "probability": 0.8452 + }, + { + "start": 9029.91, + "end": 9033.05, + "probability": 0.9765 + }, + { + "start": 9033.05, + "end": 9036.27, + "probability": 0.992 + }, + { + "start": 9036.45, + "end": 9038.49, + "probability": 0.9871 + }, + { + "start": 9038.53, + "end": 9042.83, + "probability": 0.9816 + }, + { + "start": 9043.35, + "end": 9044.81, + "probability": 0.9318 + }, + { + "start": 9045.23, + "end": 9045.69, + "probability": 0.7384 + }, + { + "start": 9046.87, + "end": 9049.55, + "probability": 0.7069 + }, + { + "start": 9049.65, + "end": 9051.77, + "probability": 0.9822 + }, + { + "start": 9052.89, + "end": 9054.25, + "probability": 0.7927 + }, + { + "start": 9055.65, + "end": 9057.87, + "probability": 0.4812 + }, + { + "start": 9064.97, + "end": 9068.45, + "probability": 0.971 + }, + { + "start": 9070.25, + "end": 9070.55, + "probability": 0.1421 + }, + { + "start": 9070.63, + "end": 9072.49, + "probability": 0.9898 + }, + { + "start": 9072.53, + "end": 9072.91, + "probability": 0.6164 + }, + { + "start": 9072.99, + "end": 9074.67, + "probability": 0.955 + }, + { + "start": 9074.69, + "end": 9079.43, + "probability": 0.8882 + }, + { + "start": 9079.43, + "end": 9079.69, + "probability": 0.0717 + }, + { + "start": 9079.69, + "end": 9079.69, + "probability": 0.2751 + }, + { + "start": 9079.69, + "end": 9079.83, + "probability": 0.7309 + }, + { + "start": 9080.45, + "end": 9081.15, + "probability": 0.6808 + }, + { + "start": 9081.95, + "end": 9083.07, + "probability": 0.0358 + }, + { + "start": 9085.85, + "end": 9085.97, + "probability": 0.0946 + }, + { + "start": 9085.97, + "end": 9085.97, + "probability": 0.2042 + }, + { + "start": 9085.97, + "end": 9085.97, + "probability": 0.1323 + }, + { + "start": 9085.97, + "end": 9087.03, + "probability": 0.5256 + }, + { + "start": 9087.05, + "end": 9090.99, + "probability": 0.7358 + }, + { + "start": 9091.15, + "end": 9092.45, + "probability": 0.9785 + }, + { + "start": 9092.57, + "end": 9093.39, + "probability": 0.8872 + }, + { + "start": 9093.61, + "end": 9096.03, + "probability": 0.9795 + }, + { + "start": 9096.11, + "end": 9097.47, + "probability": 0.7189 + }, + { + "start": 9098.17, + "end": 9101.47, + "probability": 0.8957 + }, + { + "start": 9102.41, + "end": 9105.03, + "probability": 0.9992 + }, + { + "start": 9105.71, + "end": 9108.23, + "probability": 0.9668 + }, + { + "start": 9108.85, + "end": 9111.05, + "probability": 0.9897 + }, + { + "start": 9111.79, + "end": 9115.95, + "probability": 0.9663 + }, + { + "start": 9116.29, + "end": 9116.91, + "probability": 0.3801 + }, + { + "start": 9117.11, + "end": 9117.81, + "probability": 0.9329 + }, + { + "start": 9117.87, + "end": 9118.47, + "probability": 0.9409 + }, + { + "start": 9118.63, + "end": 9123.73, + "probability": 0.786 + }, + { + "start": 9124.13, + "end": 9124.93, + "probability": 0.7876 + }, + { + "start": 9124.95, + "end": 9126.19, + "probability": 0.9504 + }, + { + "start": 9126.67, + "end": 9131.89, + "probability": 0.9985 + }, + { + "start": 9132.43, + "end": 9133.51, + "probability": 0.7879 + }, + { + "start": 9133.93, + "end": 9135.27, + "probability": 0.9382 + }, + { + "start": 9135.53, + "end": 9137.55, + "probability": 0.9928 + }, + { + "start": 9137.93, + "end": 9139.42, + "probability": 0.9968 + }, + { + "start": 9140.07, + "end": 9141.39, + "probability": 0.5977 + }, + { + "start": 9141.79, + "end": 9143.01, + "probability": 0.7348 + }, + { + "start": 9143.73, + "end": 9146.71, + "probability": 0.9691 + }, + { + "start": 9146.87, + "end": 9148.91, + "probability": 0.9921 + }, + { + "start": 9149.05, + "end": 9150.09, + "probability": 0.9658 + }, + { + "start": 9150.47, + "end": 9154.53, + "probability": 0.9915 + }, + { + "start": 9154.53, + "end": 9160.09, + "probability": 0.9053 + }, + { + "start": 9160.81, + "end": 9161.35, + "probability": 0.6609 + }, + { + "start": 9162.03, + "end": 9166.23, + "probability": 0.85 + }, + { + "start": 9166.41, + "end": 9171.53, + "probability": 0.9226 + }, + { + "start": 9171.69, + "end": 9174.37, + "probability": 0.9142 + }, + { + "start": 9174.41, + "end": 9175.49, + "probability": 0.9636 + }, + { + "start": 9175.53, + "end": 9178.79, + "probability": 0.9772 + }, + { + "start": 9179.67, + "end": 9183.34, + "probability": 0.9993 + }, + { + "start": 9185.27, + "end": 9187.39, + "probability": 0.6211 + }, + { + "start": 9187.81, + "end": 9189.33, + "probability": 0.8315 + }, + { + "start": 9189.47, + "end": 9191.47, + "probability": 0.9806 + }, + { + "start": 9191.63, + "end": 9194.21, + "probability": 0.9012 + }, + { + "start": 9195.23, + "end": 9197.01, + "probability": 0.9784 + }, + { + "start": 9197.65, + "end": 9200.87, + "probability": 0.9497 + }, + { + "start": 9201.03, + "end": 9203.17, + "probability": 0.801 + }, + { + "start": 9203.43, + "end": 9204.75, + "probability": 0.9796 + }, + { + "start": 9205.51, + "end": 9210.53, + "probability": 0.9956 + }, + { + "start": 9210.81, + "end": 9213.89, + "probability": 0.9958 + }, + { + "start": 9213.89, + "end": 9219.43, + "probability": 0.8765 + }, + { + "start": 9219.53, + "end": 9224.41, + "probability": 0.9712 + }, + { + "start": 9225.21, + "end": 9227.41, + "probability": 0.6044 + }, + { + "start": 9227.41, + "end": 9229.3, + "probability": 0.221 + }, + { + "start": 9229.39, + "end": 9229.53, + "probability": 0.4583 + }, + { + "start": 9229.53, + "end": 9231.69, + "probability": 0.9013 + }, + { + "start": 9231.73, + "end": 9234.23, + "probability": 0.926 + }, + { + "start": 9234.27, + "end": 9236.85, + "probability": 0.5063 + }, + { + "start": 9236.91, + "end": 9240.05, + "probability": 0.9751 + }, + { + "start": 9240.05, + "end": 9242.87, + "probability": 0.993 + }, + { + "start": 9242.99, + "end": 9243.19, + "probability": 0.7124 + }, + { + "start": 9243.23, + "end": 9244.87, + "probability": 0.995 + }, + { + "start": 9245.25, + "end": 9246.05, + "probability": 0.5294 + }, + { + "start": 9246.73, + "end": 9248.45, + "probability": 0.8321 + }, + { + "start": 9248.81, + "end": 9250.91, + "probability": 0.9862 + }, + { + "start": 9251.01, + "end": 9252.25, + "probability": 0.8975 + }, + { + "start": 9253.45, + "end": 9257.17, + "probability": 0.965 + }, + { + "start": 9257.55, + "end": 9259.54, + "probability": 0.9969 + }, + { + "start": 9260.09, + "end": 9261.29, + "probability": 0.8455 + }, + { + "start": 9261.39, + "end": 9262.43, + "probability": 0.953 + }, + { + "start": 9262.87, + "end": 9263.31, + "probability": 0.9309 + }, + { + "start": 9263.41, + "end": 9266.71, + "probability": 0.9915 + }, + { + "start": 9266.71, + "end": 9269.69, + "probability": 0.8577 + }, + { + "start": 9270.19, + "end": 9273.79, + "probability": 0.9465 + }, + { + "start": 9275.07, + "end": 9275.65, + "probability": 0.2691 + }, + { + "start": 9275.65, + "end": 9276.71, + "probability": 0.8915 + }, + { + "start": 9276.87, + "end": 9278.47, + "probability": 0.8767 + }, + { + "start": 9278.95, + "end": 9280.51, + "probability": 0.9672 + }, + { + "start": 9280.91, + "end": 9282.35, + "probability": 0.9135 + }, + { + "start": 9283.11, + "end": 9284.55, + "probability": 0.9833 + }, + { + "start": 9284.83, + "end": 9286.05, + "probability": 0.7806 + }, + { + "start": 9287.13, + "end": 9289.25, + "probability": 0.7644 + }, + { + "start": 9289.37, + "end": 9290.49, + "probability": 0.87 + }, + { + "start": 9291.49, + "end": 9293.75, + "probability": 0.7214 + }, + { + "start": 9296.71, + "end": 9301.77, + "probability": 0.9943 + }, + { + "start": 9303.03, + "end": 9303.65, + "probability": 0.8131 + }, + { + "start": 9305.73, + "end": 9306.39, + "probability": 0.9412 + }, + { + "start": 9313.73, + "end": 9319.97, + "probability": 0.9198 + }, + { + "start": 9320.87, + "end": 9323.83, + "probability": 0.9946 + }, + { + "start": 9325.45, + "end": 9326.03, + "probability": 0.5242 + }, + { + "start": 9326.27, + "end": 9328.13, + "probability": 0.989 + }, + { + "start": 9328.19, + "end": 9329.57, + "probability": 0.8737 + }, + { + "start": 9330.07, + "end": 9332.81, + "probability": 0.9855 + }, + { + "start": 9332.91, + "end": 9333.55, + "probability": 0.5555 + }, + { + "start": 9334.11, + "end": 9337.32, + "probability": 0.9971 + }, + { + "start": 9337.53, + "end": 9341.43, + "probability": 0.9945 + }, + { + "start": 9341.63, + "end": 9345.41, + "probability": 0.9778 + }, + { + "start": 9346.47, + "end": 9351.03, + "probability": 0.7428 + }, + { + "start": 9351.47, + "end": 9353.93, + "probability": 0.9329 + }, + { + "start": 9354.67, + "end": 9359.33, + "probability": 0.924 + }, + { + "start": 9359.41, + "end": 9363.61, + "probability": 0.9871 + }, + { + "start": 9364.55, + "end": 9370.55, + "probability": 0.9949 + }, + { + "start": 9370.65, + "end": 9372.61, + "probability": 0.9953 + }, + { + "start": 9373.25, + "end": 9375.93, + "probability": 0.8693 + }, + { + "start": 9376.67, + "end": 9381.49, + "probability": 0.993 + }, + { + "start": 9382.19, + "end": 9386.49, + "probability": 0.9961 + }, + { + "start": 9388.09, + "end": 9393.77, + "probability": 0.9938 + }, + { + "start": 9393.77, + "end": 9397.81, + "probability": 0.9954 + }, + { + "start": 9398.43, + "end": 9402.55, + "probability": 0.979 + }, + { + "start": 9403.39, + "end": 9410.27, + "probability": 0.9971 + }, + { + "start": 9411.67, + "end": 9417.11, + "probability": 0.9183 + }, + { + "start": 9417.45, + "end": 9419.01, + "probability": 0.911 + }, + { + "start": 9419.79, + "end": 9426.03, + "probability": 0.9984 + }, + { + "start": 9426.73, + "end": 9430.31, + "probability": 0.9474 + }, + { + "start": 9431.45, + "end": 9436.65, + "probability": 0.9739 + }, + { + "start": 9436.65, + "end": 9443.47, + "probability": 0.9985 + }, + { + "start": 9443.47, + "end": 9449.61, + "probability": 0.9988 + }, + { + "start": 9450.29, + "end": 9451.71, + "probability": 0.9341 + }, + { + "start": 9452.91, + "end": 9455.85, + "probability": 0.9816 + }, + { + "start": 9457.05, + "end": 9458.81, + "probability": 0.8734 + }, + { + "start": 9459.17, + "end": 9460.07, + "probability": 0.8159 + }, + { + "start": 9460.37, + "end": 9460.91, + "probability": 0.8807 + }, + { + "start": 9461.19, + "end": 9464.07, + "probability": 0.983 + }, + { + "start": 9465.05, + "end": 9466.11, + "probability": 0.9208 + }, + { + "start": 9466.35, + "end": 9468.19, + "probability": 0.9856 + }, + { + "start": 9468.37, + "end": 9470.83, + "probability": 0.9729 + }, + { + "start": 9472.17, + "end": 9475.97, + "probability": 0.9963 + }, + { + "start": 9477.71, + "end": 9481.47, + "probability": 0.9933 + }, + { + "start": 9481.69, + "end": 9482.57, + "probability": 0.9346 + }, + { + "start": 9483.33, + "end": 9484.75, + "probability": 0.9931 + }, + { + "start": 9486.51, + "end": 9490.77, + "probability": 0.9658 + }, + { + "start": 9492.09, + "end": 9494.91, + "probability": 0.8417 + }, + { + "start": 9496.07, + "end": 9504.11, + "probability": 0.9922 + }, + { + "start": 9505.31, + "end": 9505.77, + "probability": 0.4271 + }, + { + "start": 9506.05, + "end": 9511.07, + "probability": 0.9897 + }, + { + "start": 9511.85, + "end": 9514.01, + "probability": 0.9086 + }, + { + "start": 9514.09, + "end": 9516.67, + "probability": 0.9883 + }, + { + "start": 9517.73, + "end": 9519.09, + "probability": 0.8635 + }, + { + "start": 9520.03, + "end": 9522.77, + "probability": 0.9624 + }, + { + "start": 9524.61, + "end": 9526.01, + "probability": 0.9187 + }, + { + "start": 9528.73, + "end": 9529.98, + "probability": 0.9734 + }, + { + "start": 9538.99, + "end": 9542.63, + "probability": 0.734 + }, + { + "start": 9543.03, + "end": 9548.97, + "probability": 0.7116 + }, + { + "start": 9549.77, + "end": 9550.73, + "probability": 0.8827 + }, + { + "start": 9550.73, + "end": 9556.51, + "probability": 0.8415 + }, + { + "start": 9557.01, + "end": 9558.35, + "probability": 0.998 + }, + { + "start": 9559.79, + "end": 9561.35, + "probability": 0.9663 + }, + { + "start": 9561.95, + "end": 9562.37, + "probability": 0.8145 + }, + { + "start": 9562.97, + "end": 9564.25, + "probability": 0.998 + }, + { + "start": 9564.29, + "end": 9565.25, + "probability": 0.7366 + }, + { + "start": 9565.37, + "end": 9566.05, + "probability": 0.7295 + }, + { + "start": 9566.99, + "end": 9568.93, + "probability": 0.9873 + }, + { + "start": 9569.81, + "end": 9570.13, + "probability": 0.005 + }, + { + "start": 9570.51, + "end": 9572.71, + "probability": 0.7319 + }, + { + "start": 9573.79, + "end": 9574.99, + "probability": 0.8227 + }, + { + "start": 9576.53, + "end": 9580.11, + "probability": 0.855 + }, + { + "start": 9580.23, + "end": 9580.65, + "probability": 0.8076 + }, + { + "start": 9583.13, + "end": 9584.09, + "probability": 0.9097 + }, + { + "start": 9584.29, + "end": 9584.75, + "probability": 0.7524 + }, + { + "start": 9584.81, + "end": 9585.67, + "probability": 0.8472 + }, + { + "start": 9585.79, + "end": 9589.41, + "probability": 0.974 + }, + { + "start": 9589.59, + "end": 9590.77, + "probability": 0.9336 + }, + { + "start": 9590.83, + "end": 9591.61, + "probability": 0.5852 + }, + { + "start": 9592.41, + "end": 9595.37, + "probability": 0.9023 + }, + { + "start": 9595.37, + "end": 9598.25, + "probability": 0.9974 + }, + { + "start": 9599.13, + "end": 9602.99, + "probability": 0.9461 + }, + { + "start": 9604.21, + "end": 9605.21, + "probability": 0.9526 + }, + { + "start": 9605.75, + "end": 9608.67, + "probability": 0.9953 + }, + { + "start": 9609.33, + "end": 9613.55, + "probability": 0.9083 + }, + { + "start": 9613.61, + "end": 9617.49, + "probability": 0.9341 + }, + { + "start": 9617.69, + "end": 9619.31, + "probability": 0.9933 + }, + { + "start": 9621.23, + "end": 9622.59, + "probability": 0.7434 + }, + { + "start": 9622.73, + "end": 9623.15, + "probability": 0.4582 + }, + { + "start": 9623.17, + "end": 9624.81, + "probability": 0.9631 + }, + { + "start": 9625.51, + "end": 9626.11, + "probability": 0.8245 + }, + { + "start": 9626.19, + "end": 9626.65, + "probability": 0.9604 + }, + { + "start": 9626.79, + "end": 9628.17, + "probability": 0.7869 + }, + { + "start": 9628.21, + "end": 9629.13, + "probability": 0.9395 + }, + { + "start": 9629.65, + "end": 9633.09, + "probability": 0.9829 + }, + { + "start": 9633.29, + "end": 9635.51, + "probability": 0.9043 + }, + { + "start": 9636.49, + "end": 9638.33, + "probability": 0.9789 + }, + { + "start": 9638.54, + "end": 9638.99, + "probability": 0.9465 + }, + { + "start": 9639.89, + "end": 9642.59, + "probability": 0.9517 + }, + { + "start": 9645.98, + "end": 9646.19, + "probability": 0.1771 + }, + { + "start": 9646.19, + "end": 9646.87, + "probability": 0.4283 + }, + { + "start": 9646.99, + "end": 9648.25, + "probability": 0.7283 + }, + { + "start": 9648.33, + "end": 9649.35, + "probability": 0.9085 + }, + { + "start": 9650.95, + "end": 9653.23, + "probability": 0.9682 + }, + { + "start": 9654.47, + "end": 9654.85, + "probability": 0.5558 + }, + { + "start": 9654.89, + "end": 9655.45, + "probability": 0.955 + }, + { + "start": 9655.55, + "end": 9657.67, + "probability": 0.9603 + }, + { + "start": 9658.23, + "end": 9661.43, + "probability": 0.9984 + }, + { + "start": 9661.49, + "end": 9662.43, + "probability": 0.9132 + }, + { + "start": 9662.91, + "end": 9665.35, + "probability": 0.9727 + }, + { + "start": 9665.95, + "end": 9667.03, + "probability": 0.9796 + }, + { + "start": 9667.17, + "end": 9669.27, + "probability": 0.9832 + }, + { + "start": 9670.03, + "end": 9671.53, + "probability": 0.9723 + }, + { + "start": 9671.65, + "end": 9672.27, + "probability": 0.4524 + }, + { + "start": 9672.31, + "end": 9672.89, + "probability": 0.9829 + }, + { + "start": 9673.03, + "end": 9674.71, + "probability": 0.9809 + }, + { + "start": 9675.39, + "end": 9676.89, + "probability": 0.9546 + }, + { + "start": 9677.49, + "end": 9679.77, + "probability": 0.9792 + }, + { + "start": 9679.87, + "end": 9681.31, + "probability": 0.9379 + }, + { + "start": 9681.63, + "end": 9683.03, + "probability": 0.9671 + }, + { + "start": 9683.71, + "end": 9686.69, + "probability": 0.9664 + }, + { + "start": 9687.31, + "end": 9691.37, + "probability": 0.9531 + }, + { + "start": 9691.55, + "end": 9692.19, + "probability": 0.8245 + }, + { + "start": 9692.29, + "end": 9693.23, + "probability": 0.7627 + }, + { + "start": 9693.27, + "end": 9693.75, + "probability": 0.7734 + }, + { + "start": 9693.83, + "end": 9694.77, + "probability": 0.7314 + }, + { + "start": 9695.81, + "end": 9697.77, + "probability": 0.7256 + }, + { + "start": 9698.43, + "end": 9699.11, + "probability": 0.5949 + }, + { + "start": 9699.37, + "end": 9700.15, + "probability": 0.9218 + }, + { + "start": 9700.61, + "end": 9702.87, + "probability": 0.9683 + }, + { + "start": 9702.95, + "end": 9704.05, + "probability": 0.9836 + }, + { + "start": 9704.97, + "end": 9707.73, + "probability": 0.6451 + }, + { + "start": 9708.13, + "end": 9710.05, + "probability": 0.991 + }, + { + "start": 9710.19, + "end": 9712.07, + "probability": 0.9635 + }, + { + "start": 9712.51, + "end": 9713.61, + "probability": 0.988 + }, + { + "start": 9713.69, + "end": 9714.11, + "probability": 0.9056 + }, + { + "start": 9714.11, + "end": 9714.67, + "probability": 0.9767 + }, + { + "start": 9714.71, + "end": 9715.15, + "probability": 0.9863 + }, + { + "start": 9715.19, + "end": 9716.37, + "probability": 0.8854 + }, + { + "start": 9716.55, + "end": 9716.91, + "probability": 0.3308 + }, + { + "start": 9717.01, + "end": 9717.71, + "probability": 0.9761 + }, + { + "start": 9718.87, + "end": 9720.67, + "probability": 0.8614 + }, + { + "start": 9720.81, + "end": 9721.73, + "probability": 0.9485 + }, + { + "start": 9722.41, + "end": 9723.19, + "probability": 0.8715 + }, + { + "start": 9723.29, + "end": 9723.57, + "probability": 0.8734 + }, + { + "start": 9723.69, + "end": 9724.11, + "probability": 0.6815 + }, + { + "start": 9724.21, + "end": 9726.15, + "probability": 0.9784 + }, + { + "start": 9726.27, + "end": 9728.37, + "probability": 0.9799 + }, + { + "start": 9729.03, + "end": 9730.05, + "probability": 0.7613 + }, + { + "start": 9730.61, + "end": 9734.29, + "probability": 0.9669 + }, + { + "start": 9734.99, + "end": 9736.39, + "probability": 0.9796 + }, + { + "start": 9736.61, + "end": 9737.46, + "probability": 0.666 + }, + { + "start": 9737.55, + "end": 9740.61, + "probability": 0.991 + }, + { + "start": 9740.69, + "end": 9741.49, + "probability": 0.7437 + }, + { + "start": 9741.69, + "end": 9741.87, + "probability": 0.7903 + }, + { + "start": 9742.77, + "end": 9744.57, + "probability": 0.9556 + }, + { + "start": 9745.11, + "end": 9746.55, + "probability": 0.959 + }, + { + "start": 9747.31, + "end": 9749.33, + "probability": 0.9896 + }, + { + "start": 9749.39, + "end": 9751.29, + "probability": 0.9638 + }, + { + "start": 9751.87, + "end": 9754.35, + "probability": 0.9915 + }, + { + "start": 9755.59, + "end": 9756.53, + "probability": 0.8117 + }, + { + "start": 9757.07, + "end": 9759.33, + "probability": 0.9143 + }, + { + "start": 9759.81, + "end": 9763.05, + "probability": 0.9861 + }, + { + "start": 9763.45, + "end": 9763.93, + "probability": 0.9053 + }, + { + "start": 9763.93, + "end": 9764.91, + "probability": 0.5483 + }, + { + "start": 9765.37, + "end": 9767.49, + "probability": 0.9932 + }, + { + "start": 9767.57, + "end": 9768.33, + "probability": 0.8998 + }, + { + "start": 9768.75, + "end": 9772.87, + "probability": 0.8848 + }, + { + "start": 9772.95, + "end": 9776.23, + "probability": 0.9985 + }, + { + "start": 9776.67, + "end": 9779.77, + "probability": 0.8718 + }, + { + "start": 9780.57, + "end": 9781.05, + "probability": 0.7838 + }, + { + "start": 9782.23, + "end": 9783.79, + "probability": 0.633 + }, + { + "start": 9784.27, + "end": 9786.95, + "probability": 0.9838 + }, + { + "start": 9787.33, + "end": 9791.29, + "probability": 0.9634 + }, + { + "start": 9791.43, + "end": 9793.03, + "probability": 0.6375 + }, + { + "start": 9793.13, + "end": 9795.66, + "probability": 0.9844 + }, + { + "start": 9796.17, + "end": 9798.55, + "probability": 0.8711 + }, + { + "start": 9798.95, + "end": 9801.69, + "probability": 0.982 + }, + { + "start": 9802.81, + "end": 9805.67, + "probability": 0.7556 + }, + { + "start": 9805.77, + "end": 9807.75, + "probability": 0.9927 + }, + { + "start": 9808.35, + "end": 9809.77, + "probability": 0.8813 + }, + { + "start": 9810.53, + "end": 9811.09, + "probability": 0.3037 + }, + { + "start": 9812.97, + "end": 9815.37, + "probability": 0.6389 + }, + { + "start": 9816.01, + "end": 9817.19, + "probability": 0.3489 + }, + { + "start": 9817.41, + "end": 9819.19, + "probability": 0.8201 + }, + { + "start": 9819.47, + "end": 9822.71, + "probability": 0.9949 + }, + { + "start": 9822.77, + "end": 9825.89, + "probability": 0.9068 + }, + { + "start": 9826.27, + "end": 9826.93, + "probability": 0.7034 + }, + { + "start": 9827.47, + "end": 9830.15, + "probability": 0.8808 + }, + { + "start": 9830.57, + "end": 9833.31, + "probability": 0.9902 + }, + { + "start": 9833.37, + "end": 9835.37, + "probability": 0.6667 + }, + { + "start": 9835.45, + "end": 9836.07, + "probability": 0.5367 + }, + { + "start": 9837.31, + "end": 9839.09, + "probability": 0.9854 + }, + { + "start": 9839.15, + "end": 9841.17, + "probability": 0.7595 + }, + { + "start": 9841.51, + "end": 9844.09, + "probability": 0.9364 + }, + { + "start": 9844.31, + "end": 9848.85, + "probability": 0.9687 + }, + { + "start": 9849.41, + "end": 9851.47, + "probability": 0.7332 + }, + { + "start": 9853.05, + "end": 9854.73, + "probability": 0.9729 + }, + { + "start": 9854.79, + "end": 9857.41, + "probability": 0.5004 + }, + { + "start": 9857.51, + "end": 9858.99, + "probability": 0.6258 + }, + { + "start": 9859.71, + "end": 9860.33, + "probability": 0.7277 + }, + { + "start": 9860.87, + "end": 9861.69, + "probability": 0.8608 + }, + { + "start": 9862.37, + "end": 9865.21, + "probability": 0.919 + }, + { + "start": 9865.33, + "end": 9868.79, + "probability": 0.8891 + }, + { + "start": 9868.97, + "end": 9872.11, + "probability": 0.9684 + }, + { + "start": 9872.63, + "end": 9875.29, + "probability": 0.7607 + }, + { + "start": 9876.75, + "end": 9877.29, + "probability": 0.6804 + }, + { + "start": 9877.35, + "end": 9877.81, + "probability": 0.2094 + }, + { + "start": 9877.91, + "end": 9879.61, + "probability": 0.9922 + }, + { + "start": 9879.77, + "end": 9880.55, + "probability": 0.82 + }, + { + "start": 9880.93, + "end": 9885.27, + "probability": 0.9038 + }, + { + "start": 9885.81, + "end": 9887.89, + "probability": 0.9855 + }, + { + "start": 9888.11, + "end": 9890.19, + "probability": 0.8139 + }, + { + "start": 9890.33, + "end": 9892.33, + "probability": 0.749 + }, + { + "start": 9892.41, + "end": 9893.49, + "probability": 0.769 + }, + { + "start": 9894.47, + "end": 9896.53, + "probability": 0.9126 + }, + { + "start": 9897.07, + "end": 9901.45, + "probability": 0.9655 + }, + { + "start": 9901.49, + "end": 9901.83, + "probability": 0.6874 + }, + { + "start": 9902.19, + "end": 9903.93, + "probability": 0.9907 + }, + { + "start": 9905.03, + "end": 9906.78, + "probability": 0.5204 + }, + { + "start": 9907.31, + "end": 9910.11, + "probability": 0.857 + }, + { + "start": 9910.21, + "end": 9915.95, + "probability": 0.9893 + }, + { + "start": 9916.63, + "end": 9919.41, + "probability": 0.9685 + }, + { + "start": 9919.97, + "end": 9923.19, + "probability": 0.9917 + }, + { + "start": 9923.39, + "end": 9925.51, + "probability": 0.9067 + }, + { + "start": 9925.61, + "end": 9927.35, + "probability": 0.7547 + }, + { + "start": 9927.85, + "end": 9929.81, + "probability": 0.9672 + }, + { + "start": 9930.97, + "end": 9935.33, + "probability": 0.9928 + }, + { + "start": 9936.61, + "end": 9937.85, + "probability": 0.8034 + }, + { + "start": 9938.47, + "end": 9940.71, + "probability": 0.7165 + }, + { + "start": 9941.21, + "end": 9941.53, + "probability": 0.4254 + }, + { + "start": 9941.61, + "end": 9942.25, + "probability": 0.4734 + }, + { + "start": 9942.33, + "end": 9943.17, + "probability": 0.8749 + }, + { + "start": 9943.75, + "end": 9946.41, + "probability": 0.9035 + }, + { + "start": 9947.97, + "end": 9951.63, + "probability": 0.8203 + }, + { + "start": 9952.53, + "end": 9956.87, + "probability": 0.9656 + }, + { + "start": 9958.09, + "end": 9961.91, + "probability": 0.9974 + }, + { + "start": 9962.73, + "end": 9965.17, + "probability": 0.626 + }, + { + "start": 9966.77, + "end": 9972.09, + "probability": 0.9803 + }, + { + "start": 9974.27, + "end": 9977.93, + "probability": 0.9984 + }, + { + "start": 9979.43, + "end": 9980.39, + "probability": 0.917 + }, + { + "start": 9981.05, + "end": 9981.81, + "probability": 0.525 + }, + { + "start": 9982.83, + "end": 9984.06, + "probability": 0.9985 + }, + { + "start": 9984.81, + "end": 9987.95, + "probability": 0.677 + }, + { + "start": 9989.49, + "end": 9991.43, + "probability": 0.999 + }, + { + "start": 9992.03, + "end": 9993.33, + "probability": 0.9934 + }, + { + "start": 9993.91, + "end": 9995.55, + "probability": 0.1139 + }, + { + "start": 9995.81, + "end": 9999.23, + "probability": 0.8116 + }, + { + "start": 10000.13, + "end": 10003.63, + "probability": 0.9115 + }, + { + "start": 10004.73, + "end": 10005.11, + "probability": 0.5123 + }, + { + "start": 10005.11, + "end": 10007.41, + "probability": 0.9945 + }, + { + "start": 10007.99, + "end": 10008.37, + "probability": 0.3875 + }, + { + "start": 10008.37, + "end": 10010.13, + "probability": 0.8937 + }, + { + "start": 10010.21, + "end": 10011.77, + "probability": 0.9893 + }, + { + "start": 10012.67, + "end": 10015.47, + "probability": 0.8076 + }, + { + "start": 10019.47, + "end": 10019.47, + "probability": 0.2323 + }, + { + "start": 10038.99, + "end": 10041.63, + "probability": 0.3418 + }, + { + "start": 10042.01, + "end": 10042.95, + "probability": 0.6167 + }, + { + "start": 10043.45, + "end": 10052.71, + "probability": 0.9451 + }, + { + "start": 10053.19, + "end": 10054.33, + "probability": 0.8096 + }, + { + "start": 10054.85, + "end": 10055.61, + "probability": 0.8394 + }, + { + "start": 10056.59, + "end": 10058.51, + "probability": 0.6904 + }, + { + "start": 10058.69, + "end": 10060.55, + "probability": 0.8737 + }, + { + "start": 10060.63, + "end": 10061.63, + "probability": 0.6801 + }, + { + "start": 10061.91, + "end": 10064.01, + "probability": 0.4599 + }, + { + "start": 10064.23, + "end": 10065.57, + "probability": 0.6048 + }, + { + "start": 10065.75, + "end": 10066.35, + "probability": 0.5441 + }, + { + "start": 10066.41, + "end": 10066.65, + "probability": 0.8912 + }, + { + "start": 10066.73, + "end": 10067.79, + "probability": 0.8378 + }, + { + "start": 10067.83, + "end": 10068.77, + "probability": 0.9253 + }, + { + "start": 10069.35, + "end": 10070.95, + "probability": 0.8146 + }, + { + "start": 10071.35, + "end": 10071.99, + "probability": 0.9245 + }, + { + "start": 10072.09, + "end": 10075.27, + "probability": 0.8638 + }, + { + "start": 10076.43, + "end": 10077.06, + "probability": 0.9577 + }, + { + "start": 10078.23, + "end": 10082.61, + "probability": 0.9971 + }, + { + "start": 10082.83, + "end": 10086.63, + "probability": 0.9953 + }, + { + "start": 10086.73, + "end": 10087.39, + "probability": 0.7593 + }, + { + "start": 10087.45, + "end": 10088.05, + "probability": 0.8462 + }, + { + "start": 10088.19, + "end": 10089.69, + "probability": 0.9128 + }, + { + "start": 10090.55, + "end": 10092.13, + "probability": 0.7538 + }, + { + "start": 10092.55, + "end": 10094.71, + "probability": 0.8859 + }, + { + "start": 10094.77, + "end": 10099.57, + "probability": 0.9639 + }, + { + "start": 10099.75, + "end": 10104.43, + "probability": 0.9954 + }, + { + "start": 10105.25, + "end": 10107.08, + "probability": 0.8522 + }, + { + "start": 10108.27, + "end": 10108.69, + "probability": 0.4998 + }, + { + "start": 10108.69, + "end": 10109.25, + "probability": 0.9616 + }, + { + "start": 10109.45, + "end": 10112.91, + "probability": 0.7874 + }, + { + "start": 10113.35, + "end": 10116.03, + "probability": 0.9738 + }, + { + "start": 10116.75, + "end": 10118.97, + "probability": 0.7406 + }, + { + "start": 10119.77, + "end": 10120.51, + "probability": 0.9912 + }, + { + "start": 10121.09, + "end": 10123.93, + "probability": 0.9288 + }, + { + "start": 10123.99, + "end": 10128.83, + "probability": 0.9966 + }, + { + "start": 10128.89, + "end": 10130.35, + "probability": 0.9827 + }, + { + "start": 10130.43, + "end": 10131.79, + "probability": 0.9917 + }, + { + "start": 10131.87, + "end": 10132.73, + "probability": 0.7449 + }, + { + "start": 10135.93, + "end": 10138.71, + "probability": 0.9921 + }, + { + "start": 10139.53, + "end": 10141.03, + "probability": 0.5926 + }, + { + "start": 10141.27, + "end": 10141.91, + "probability": 0.8077 + }, + { + "start": 10142.51, + "end": 10143.26, + "probability": 0.5522 + }, + { + "start": 10146.05, + "end": 10148.35, + "probability": 0.9543 + }, + { + "start": 10148.95, + "end": 10151.67, + "probability": 0.9457 + }, + { + "start": 10151.73, + "end": 10152.24, + "probability": 0.7697 + }, + { + "start": 10153.59, + "end": 10154.95, + "probability": 0.3835 + }, + { + "start": 10155.43, + "end": 10156.93, + "probability": 0.6384 + }, + { + "start": 10159.47, + "end": 10160.87, + "probability": 0.9399 + }, + { + "start": 10161.45, + "end": 10162.21, + "probability": 0.9808 + }, + { + "start": 10162.27, + "end": 10162.41, + "probability": 0.837 + }, + { + "start": 10162.53, + "end": 10165.4, + "probability": 0.8514 + }, + { + "start": 10166.81, + "end": 10168.69, + "probability": 0.9415 + }, + { + "start": 10169.57, + "end": 10172.15, + "probability": 0.9382 + }, + { + "start": 10173.57, + "end": 10174.84, + "probability": 0.9978 + }, + { + "start": 10174.97, + "end": 10176.81, + "probability": 0.667 + }, + { + "start": 10176.89, + "end": 10177.97, + "probability": 0.9771 + }, + { + "start": 10178.05, + "end": 10179.99, + "probability": 0.9948 + }, + { + "start": 10180.81, + "end": 10182.67, + "probability": 0.9064 + }, + { + "start": 10183.69, + "end": 10186.55, + "probability": 0.9813 + }, + { + "start": 10187.13, + "end": 10187.13, + "probability": 0.2182 + }, + { + "start": 10187.13, + "end": 10188.57, + "probability": 0.5455 + }, + { + "start": 10188.69, + "end": 10189.53, + "probability": 0.655 + }, + { + "start": 10189.53, + "end": 10190.99, + "probability": 0.608 + }, + { + "start": 10191.15, + "end": 10192.09, + "probability": 0.782 + }, + { + "start": 10193.25, + "end": 10197.43, + "probability": 0.9745 + }, + { + "start": 10197.51, + "end": 10203.91, + "probability": 0.9708 + }, + { + "start": 10204.61, + "end": 10205.37, + "probability": 0.5765 + }, + { + "start": 10205.53, + "end": 10207.43, + "probability": 0.8003 + }, + { + "start": 10208.21, + "end": 10211.37, + "probability": 0.9882 + }, + { + "start": 10213.83, + "end": 10218.57, + "probability": 0.9504 + }, + { + "start": 10219.19, + "end": 10221.01, + "probability": 0.9974 + }, + { + "start": 10221.93, + "end": 10223.81, + "probability": 0.9976 + }, + { + "start": 10224.89, + "end": 10226.95, + "probability": 0.7493 + }, + { + "start": 10227.17, + "end": 10230.45, + "probability": 0.7525 + }, + { + "start": 10230.53, + "end": 10230.95, + "probability": 0.6245 + }, + { + "start": 10231.07, + "end": 10233.11, + "probability": 0.9637 + }, + { + "start": 10233.25, + "end": 10236.31, + "probability": 0.892 + }, + { + "start": 10237.49, + "end": 10238.93, + "probability": 0.9282 + }, + { + "start": 10239.41, + "end": 10241.51, + "probability": 0.8005 + }, + { + "start": 10241.53, + "end": 10241.53, + "probability": 0.4784 + }, + { + "start": 10241.53, + "end": 10242.9, + "probability": 0.7856 + }, + { + "start": 10244.61, + "end": 10247.01, + "probability": 0.99 + }, + { + "start": 10247.39, + "end": 10251.03, + "probability": 0.9949 + }, + { + "start": 10251.37, + "end": 10251.85, + "probability": 0.5734 + }, + { + "start": 10251.87, + "end": 10252.57, + "probability": 0.8901 + }, + { + "start": 10253.13, + "end": 10254.99, + "probability": 0.6123 + }, + { + "start": 10262.45, + "end": 10263.89, + "probability": 0.7381 + }, + { + "start": 10269.73, + "end": 10271.11, + "probability": 0.7032 + }, + { + "start": 10271.53, + "end": 10275.33, + "probability": 0.7173 + }, + { + "start": 10276.25, + "end": 10280.77, + "probability": 0.9864 + }, + { + "start": 10281.53, + "end": 10287.01, + "probability": 0.9539 + }, + { + "start": 10288.43, + "end": 10292.01, + "probability": 0.9264 + }, + { + "start": 10292.01, + "end": 10295.87, + "probability": 0.989 + }, + { + "start": 10296.53, + "end": 10300.51, + "probability": 0.9231 + }, + { + "start": 10301.67, + "end": 10303.45, + "probability": 0.9432 + }, + { + "start": 10304.05, + "end": 10306.03, + "probability": 0.9005 + }, + { + "start": 10306.61, + "end": 10307.79, + "probability": 0.9655 + }, + { + "start": 10307.97, + "end": 10308.73, + "probability": 0.8852 + }, + { + "start": 10309.21, + "end": 10311.49, + "probability": 0.9586 + }, + { + "start": 10311.91, + "end": 10312.61, + "probability": 0.856 + }, + { + "start": 10313.13, + "end": 10315.45, + "probability": 0.869 + }, + { + "start": 10316.73, + "end": 10318.43, + "probability": 0.9851 + }, + { + "start": 10318.47, + "end": 10319.15, + "probability": 0.9009 + }, + { + "start": 10319.33, + "end": 10320.69, + "probability": 0.9945 + }, + { + "start": 10321.15, + "end": 10324.35, + "probability": 0.9951 + }, + { + "start": 10325.43, + "end": 10326.25, + "probability": 0.5663 + }, + { + "start": 10326.63, + "end": 10327.49, + "probability": 0.9811 + }, + { + "start": 10329.11, + "end": 10333.07, + "probability": 0.9709 + }, + { + "start": 10333.81, + "end": 10336.49, + "probability": 0.9762 + }, + { + "start": 10337.27, + "end": 10339.45, + "probability": 0.577 + }, + { + "start": 10339.81, + "end": 10341.01, + "probability": 0.9834 + }, + { + "start": 10341.77, + "end": 10343.49, + "probability": 0.952 + }, + { + "start": 10344.31, + "end": 10346.81, + "probability": 0.8977 + }, + { + "start": 10347.19, + "end": 10349.37, + "probability": 0.9298 + }, + { + "start": 10350.27, + "end": 10350.65, + "probability": 0.8049 + }, + { + "start": 10351.19, + "end": 10352.11, + "probability": 0.9374 + }, + { + "start": 10353.29, + "end": 10355.05, + "probability": 0.8173 + }, + { + "start": 10355.61, + "end": 10357.41, + "probability": 0.984 + }, + { + "start": 10357.93, + "end": 10358.97, + "probability": 0.993 + }, + { + "start": 10359.19, + "end": 10360.31, + "probability": 0.9757 + }, + { + "start": 10360.73, + "end": 10361.63, + "probability": 0.9364 + }, + { + "start": 10362.27, + "end": 10364.45, + "probability": 0.9738 + }, + { + "start": 10364.99, + "end": 10367.45, + "probability": 0.9662 + }, + { + "start": 10368.87, + "end": 10373.82, + "probability": 0.9957 + }, + { + "start": 10374.83, + "end": 10375.31, + "probability": 0.4499 + }, + { + "start": 10375.59, + "end": 10379.13, + "probability": 0.9668 + }, + { + "start": 10379.95, + "end": 10381.35, + "probability": 0.877 + }, + { + "start": 10381.79, + "end": 10382.97, + "probability": 0.9867 + }, + { + "start": 10383.07, + "end": 10383.57, + "probability": 0.8557 + }, + { + "start": 10383.83, + "end": 10386.05, + "probability": 0.9948 + }, + { + "start": 10387.01, + "end": 10388.75, + "probability": 0.8278 + }, + { + "start": 10390.03, + "end": 10391.41, + "probability": 0.9887 + }, + { + "start": 10391.77, + "end": 10392.8, + "probability": 0.9636 + }, + { + "start": 10393.19, + "end": 10395.27, + "probability": 0.9808 + }, + { + "start": 10397.25, + "end": 10401.17, + "probability": 0.9757 + }, + { + "start": 10401.83, + "end": 10405.78, + "probability": 0.9868 + }, + { + "start": 10405.79, + "end": 10409.87, + "probability": 0.9835 + }, + { + "start": 10410.61, + "end": 10412.97, + "probability": 0.9734 + }, + { + "start": 10413.29, + "end": 10414.63, + "probability": 0.7991 + }, + { + "start": 10415.17, + "end": 10417.25, + "probability": 0.9959 + }, + { + "start": 10418.61, + "end": 10421.61, + "probability": 0.0806 + }, + { + "start": 10421.81, + "end": 10423.19, + "probability": 0.7311 + }, + { + "start": 10423.37, + "end": 10424.73, + "probability": 0.6254 + }, + { + "start": 10424.89, + "end": 10428.83, + "probability": 0.961 + }, + { + "start": 10428.87, + "end": 10434.17, + "probability": 0.5844 + }, + { + "start": 10435.01, + "end": 10438.39, + "probability": 0.9557 + }, + { + "start": 10438.79, + "end": 10441.25, + "probability": 0.984 + }, + { + "start": 10441.41, + "end": 10442.13, + "probability": 0.9841 + }, + { + "start": 10442.95, + "end": 10443.37, + "probability": 0.8595 + }, + { + "start": 10443.93, + "end": 10446.39, + "probability": 0.8551 + }, + { + "start": 10446.79, + "end": 10448.43, + "probability": 0.9907 + }, + { + "start": 10448.85, + "end": 10452.77, + "probability": 0.9937 + }, + { + "start": 10453.99, + "end": 10458.49, + "probability": 0.9962 + }, + { + "start": 10459.31, + "end": 10463.17, + "probability": 0.998 + }, + { + "start": 10463.93, + "end": 10467.79, + "probability": 0.9756 + }, + { + "start": 10468.29, + "end": 10470.31, + "probability": 0.8193 + }, + { + "start": 10470.47, + "end": 10473.61, + "probability": 0.9858 + }, + { + "start": 10474.67, + "end": 10476.79, + "probability": 0.7479 + }, + { + "start": 10477.43, + "end": 10479.91, + "probability": 0.9782 + }, + { + "start": 10480.65, + "end": 10482.83, + "probability": 0.928 + }, + { + "start": 10484.05, + "end": 10486.61, + "probability": 0.0183 + }, + { + "start": 10499.99, + "end": 10503.27, + "probability": 0.5751 + }, + { + "start": 10504.37, + "end": 10508.89, + "probability": 0.9977 + }, + { + "start": 10509.79, + "end": 10514.97, + "probability": 0.9753 + }, + { + "start": 10514.97, + "end": 10519.79, + "probability": 0.9993 + }, + { + "start": 10522.07, + "end": 10524.63, + "probability": 0.998 + }, + { + "start": 10525.29, + "end": 10531.05, + "probability": 0.9556 + }, + { + "start": 10533.19, + "end": 10536.77, + "probability": 0.9974 + }, + { + "start": 10536.91, + "end": 10538.31, + "probability": 0.5653 + }, + { + "start": 10539.01, + "end": 10542.95, + "probability": 0.9795 + }, + { + "start": 10544.47, + "end": 10547.57, + "probability": 0.9564 + }, + { + "start": 10547.87, + "end": 10549.71, + "probability": 0.9836 + }, + { + "start": 10550.39, + "end": 10554.85, + "probability": 0.9946 + }, + { + "start": 10555.67, + "end": 10558.05, + "probability": 0.8641 + }, + { + "start": 10559.21, + "end": 10562.82, + "probability": 0.933 + }, + { + "start": 10563.89, + "end": 10566.93, + "probability": 0.9969 + }, + { + "start": 10567.81, + "end": 10569.95, + "probability": 0.9926 + }, + { + "start": 10570.11, + "end": 10571.45, + "probability": 0.8793 + }, + { + "start": 10572.21, + "end": 10574.67, + "probability": 0.5841 + }, + { + "start": 10576.03, + "end": 10580.73, + "probability": 0.9969 + }, + { + "start": 10581.29, + "end": 10582.71, + "probability": 0.955 + }, + { + "start": 10585.21, + "end": 10585.23, + "probability": 0.1482 + }, + { + "start": 10586.03, + "end": 10588.79, + "probability": 0.9839 + }, + { + "start": 10589.39, + "end": 10591.69, + "probability": 0.9946 + }, + { + "start": 10591.69, + "end": 10595.27, + "probability": 0.9419 + }, + { + "start": 10595.85, + "end": 10598.27, + "probability": 0.8728 + }, + { + "start": 10598.71, + "end": 10601.67, + "probability": 0.9726 + }, + { + "start": 10602.49, + "end": 10606.61, + "probability": 0.9901 + }, + { + "start": 10607.19, + "end": 10610.05, + "probability": 0.9659 + }, + { + "start": 10611.23, + "end": 10614.26, + "probability": 0.8535 + }, + { + "start": 10616.13, + "end": 10618.99, + "probability": 0.9567 + }, + { + "start": 10619.25, + "end": 10623.03, + "probability": 0.9988 + }, + { + "start": 10623.03, + "end": 10626.73, + "probability": 0.9905 + }, + { + "start": 10627.73, + "end": 10632.33, + "probability": 0.9995 + }, + { + "start": 10633.26, + "end": 10636.97, + "probability": 0.9982 + }, + { + "start": 10637.09, + "end": 10639.59, + "probability": 0.998 + }, + { + "start": 10639.97, + "end": 10641.37, + "probability": 0.8141 + }, + { + "start": 10641.39, + "end": 10642.87, + "probability": 0.8968 + }, + { + "start": 10642.95, + "end": 10644.41, + "probability": 0.9872 + }, + { + "start": 10646.23, + "end": 10650.75, + "probability": 0.9939 + }, + { + "start": 10651.77, + "end": 10654.73, + "probability": 0.8935 + }, + { + "start": 10655.17, + "end": 10657.91, + "probability": 0.9229 + }, + { + "start": 10658.65, + "end": 10660.63, + "probability": 0.958 + }, + { + "start": 10661.59, + "end": 10663.33, + "probability": 0.97 + }, + { + "start": 10664.67, + "end": 10669.25, + "probability": 0.9927 + }, + { + "start": 10670.53, + "end": 10672.95, + "probability": 0.8829 + }, + { + "start": 10674.11, + "end": 10675.49, + "probability": 0.685 + }, + { + "start": 10676.59, + "end": 10678.59, + "probability": 0.9966 + }, + { + "start": 10679.21, + "end": 10680.61, + "probability": 0.9761 + }, + { + "start": 10681.05, + "end": 10684.85, + "probability": 0.9983 + }, + { + "start": 10685.37, + "end": 10686.87, + "probability": 0.9883 + }, + { + "start": 10687.53, + "end": 10688.39, + "probability": 0.4583 + }, + { + "start": 10689.25, + "end": 10691.79, + "probability": 0.9867 + }, + { + "start": 10692.61, + "end": 10693.47, + "probability": 0.7796 + }, + { + "start": 10693.97, + "end": 10694.79, + "probability": 0.8604 + }, + { + "start": 10695.15, + "end": 10699.63, + "probability": 0.998 + }, + { + "start": 10699.73, + "end": 10702.87, + "probability": 0.7084 + }, + { + "start": 10703.01, + "end": 10703.52, + "probability": 0.2081 + }, + { + "start": 10705.01, + "end": 10705.67, + "probability": 0.3408 + }, + { + "start": 10705.77, + "end": 10707.09, + "probability": 0.9497 + }, + { + "start": 10712.65, + "end": 10715.47, + "probability": 0.5669 + }, + { + "start": 10715.63, + "end": 10716.99, + "probability": 0.6158 + }, + { + "start": 10718.49, + "end": 10722.63, + "probability": 0.9918 + }, + { + "start": 10722.77, + "end": 10725.17, + "probability": 0.9906 + }, + { + "start": 10726.11, + "end": 10728.41, + "probability": 0.9399 + }, + { + "start": 10729.25, + "end": 10731.91, + "probability": 0.9897 + }, + { + "start": 10732.93, + "end": 10736.27, + "probability": 0.8226 + }, + { + "start": 10737.03, + "end": 10740.07, + "probability": 0.8403 + }, + { + "start": 10741.35, + "end": 10743.11, + "probability": 0.9882 + }, + { + "start": 10743.23, + "end": 10745.89, + "probability": 0.9961 + }, + { + "start": 10746.65, + "end": 10747.91, + "probability": 0.9567 + }, + { + "start": 10748.49, + "end": 10749.65, + "probability": 0.6695 + }, + { + "start": 10750.25, + "end": 10755.19, + "probability": 0.8479 + }, + { + "start": 10755.19, + "end": 10759.31, + "probability": 0.9485 + }, + { + "start": 10760.07, + "end": 10762.41, + "probability": 0.9757 + }, + { + "start": 10762.93, + "end": 10765.57, + "probability": 0.7521 + }, + { + "start": 10765.65, + "end": 10766.97, + "probability": 0.951 + }, + { + "start": 10767.93, + "end": 10770.95, + "probability": 0.7706 + }, + { + "start": 10772.25, + "end": 10773.55, + "probability": 0.9128 + }, + { + "start": 10774.43, + "end": 10776.47, + "probability": 0.7945 + }, + { + "start": 10777.09, + "end": 10779.91, + "probability": 0.998 + }, + { + "start": 10780.23, + "end": 10782.97, + "probability": 0.9837 + }, + { + "start": 10783.49, + "end": 10785.36, + "probability": 0.9922 + }, + { + "start": 10785.81, + "end": 10786.63, + "probability": 0.9832 + }, + { + "start": 10787.05, + "end": 10787.39, + "probability": 0.3299 + }, + { + "start": 10788.41, + "end": 10792.49, + "probability": 0.9024 + }, + { + "start": 10793.09, + "end": 10798.33, + "probability": 0.7871 + }, + { + "start": 10798.61, + "end": 10800.23, + "probability": 0.0325 + }, + { + "start": 10800.51, + "end": 10803.65, + "probability": 0.7702 + }, + { + "start": 10804.15, + "end": 10804.93, + "probability": 0.4263 + }, + { + "start": 10805.01, + "end": 10807.25, + "probability": 0.7379 + }, + { + "start": 10807.59, + "end": 10809.13, + "probability": 0.7322 + }, + { + "start": 10809.23, + "end": 10812.15, + "probability": 0.9055 + }, + { + "start": 10812.47, + "end": 10813.43, + "probability": 0.8837 + }, + { + "start": 10814.09, + "end": 10816.15, + "probability": 0.9251 + }, + { + "start": 10816.61, + "end": 10817.69, + "probability": 0.6319 + }, + { + "start": 10817.77, + "end": 10821.73, + "probability": 0.9297 + }, + { + "start": 10822.21, + "end": 10823.89, + "probability": 0.9954 + }, + { + "start": 10824.71, + "end": 10827.29, + "probability": 0.9884 + }, + { + "start": 10827.33, + "end": 10829.43, + "probability": 0.5914 + }, + { + "start": 10829.95, + "end": 10831.74, + "probability": 0.8802 + }, + { + "start": 10832.39, + "end": 10833.11, + "probability": 0.4124 + }, + { + "start": 10833.11, + "end": 10833.11, + "probability": 0.2708 + }, + { + "start": 10833.21, + "end": 10834.43, + "probability": 0.7032 + }, + { + "start": 10834.51, + "end": 10835.07, + "probability": 0.9355 + }, + { + "start": 10835.67, + "end": 10838.59, + "probability": 0.7496 + }, + { + "start": 10839.41, + "end": 10842.91, + "probability": 0.4761 + }, + { + "start": 10843.19, + "end": 10844.83, + "probability": 0.9875 + }, + { + "start": 10845.29, + "end": 10849.27, + "probability": 0.991 + }, + { + "start": 10850.09, + "end": 10851.01, + "probability": 0.8125 + }, + { + "start": 10851.85, + "end": 10853.53, + "probability": 0.9927 + }, + { + "start": 10854.51, + "end": 10854.67, + "probability": 0.8469 + }, + { + "start": 10855.95, + "end": 10856.85, + "probability": 0.9698 + }, + { + "start": 10857.81, + "end": 10859.03, + "probability": 0.8681 + }, + { + "start": 10859.95, + "end": 10863.43, + "probability": 0.9941 + }, + { + "start": 10864.23, + "end": 10864.57, + "probability": 0.7028 + }, + { + "start": 10865.13, + "end": 10866.03, + "probability": 0.7173 + }, + { + "start": 10866.65, + "end": 10869.29, + "probability": 0.9383 + }, + { + "start": 10869.57, + "end": 10871.89, + "probability": 0.9849 + }, + { + "start": 10872.21, + "end": 10875.17, + "probability": 0.8271 + }, + { + "start": 10875.77, + "end": 10876.59, + "probability": 0.0713 + }, + { + "start": 10876.93, + "end": 10878.03, + "probability": 0.6852 + }, + { + "start": 10878.93, + "end": 10882.29, + "probability": 0.8467 + }, + { + "start": 10883.27, + "end": 10884.95, + "probability": 0.9902 + }, + { + "start": 10885.57, + "end": 10888.85, + "probability": 0.9365 + }, + { + "start": 10889.87, + "end": 10891.51, + "probability": 0.8077 + }, + { + "start": 10891.67, + "end": 10892.57, + "probability": 0.9438 + }, + { + "start": 10892.77, + "end": 10894.53, + "probability": 0.7676 + }, + { + "start": 10894.93, + "end": 10898.31, + "probability": 0.9111 + }, + { + "start": 10898.87, + "end": 10901.81, + "probability": 0.878 + }, + { + "start": 10902.49, + "end": 10903.47, + "probability": 0.8841 + }, + { + "start": 10904.39, + "end": 10906.79, + "probability": 0.975 + }, + { + "start": 10907.95, + "end": 10909.03, + "probability": 0.8669 + }, + { + "start": 10909.47, + "end": 10912.89, + "probability": 0.8434 + }, + { + "start": 10913.41, + "end": 10914.07, + "probability": 0.8789 + }, + { + "start": 10915.35, + "end": 10916.29, + "probability": 0.902 + }, + { + "start": 10916.71, + "end": 10920.93, + "probability": 0.9824 + }, + { + "start": 10922.45, + "end": 10925.69, + "probability": 0.8535 + }, + { + "start": 10926.61, + "end": 10927.51, + "probability": 0.5301 + }, + { + "start": 10927.85, + "end": 10928.53, + "probability": 0.7167 + }, + { + "start": 10928.93, + "end": 10933.53, + "probability": 0.9934 + }, + { + "start": 10933.97, + "end": 10934.71, + "probability": 0.8029 + }, + { + "start": 10934.91, + "end": 10935.41, + "probability": 0.7643 + }, + { + "start": 10936.25, + "end": 10937.01, + "probability": 0.6084 + }, + { + "start": 10937.29, + "end": 10939.95, + "probability": 0.9741 + }, + { + "start": 10940.29, + "end": 10940.93, + "probability": 0.662 + }, + { + "start": 10941.05, + "end": 10941.59, + "probability": 0.5158 + }, + { + "start": 10942.21, + "end": 10943.23, + "probability": 0.2282 + }, + { + "start": 10943.37, + "end": 10949.29, + "probability": 0.6495 + }, + { + "start": 10950.01, + "end": 10952.63, + "probability": 0.9575 + }, + { + "start": 10954.37, + "end": 10958.19, + "probability": 0.994 + }, + { + "start": 10958.19, + "end": 10961.73, + "probability": 0.9383 + }, + { + "start": 10962.83, + "end": 10965.27, + "probability": 0.8571 + }, + { + "start": 10965.83, + "end": 10966.53, + "probability": 0.9628 + }, + { + "start": 10968.71, + "end": 10971.81, + "probability": 0.8838 + }, + { + "start": 10972.37, + "end": 10973.95, + "probability": 0.9902 + }, + { + "start": 10974.99, + "end": 10976.81, + "probability": 0.978 + }, + { + "start": 10977.17, + "end": 10977.71, + "probability": 0.3087 + }, + { + "start": 10978.07, + "end": 10980.76, + "probability": 0.9946 + }, + { + "start": 10982.23, + "end": 10986.23, + "probability": 0.9765 + }, + { + "start": 10988.19, + "end": 10989.19, + "probability": 0.9111 + }, + { + "start": 10989.29, + "end": 10990.17, + "probability": 0.6893 + }, + { + "start": 10990.29, + "end": 10991.01, + "probability": 0.9664 + }, + { + "start": 10991.11, + "end": 10992.65, + "probability": 0.9786 + }, + { + "start": 10992.71, + "end": 10993.29, + "probability": 0.9545 + }, + { + "start": 10994.47, + "end": 10996.19, + "probability": 0.9709 + }, + { + "start": 10996.31, + "end": 10996.93, + "probability": 0.7015 + }, + { + "start": 10997.09, + "end": 10997.79, + "probability": 0.8906 + }, + { + "start": 10997.95, + "end": 10998.55, + "probability": 0.6789 + }, + { + "start": 10999.73, + "end": 11001.73, + "probability": 0.9994 + }, + { + "start": 11003.65, + "end": 11005.81, + "probability": 0.9952 + }, + { + "start": 11006.57, + "end": 11007.91, + "probability": 0.8639 + }, + { + "start": 11008.91, + "end": 11009.73, + "probability": 0.9012 + }, + { + "start": 11010.95, + "end": 11013.57, + "probability": 0.8133 + }, + { + "start": 11016.07, + "end": 11016.61, + "probability": 0.7088 + }, + { + "start": 11018.57, + "end": 11020.53, + "probability": 0.9585 + }, + { + "start": 11020.57, + "end": 11022.37, + "probability": 0.998 + }, + { + "start": 11023.39, + "end": 11028.33, + "probability": 0.9926 + }, + { + "start": 11028.93, + "end": 11030.11, + "probability": 0.8998 + }, + { + "start": 11030.39, + "end": 11031.47, + "probability": 0.5989 + }, + { + "start": 11031.65, + "end": 11033.49, + "probability": 0.7386 + }, + { + "start": 11033.99, + "end": 11035.47, + "probability": 0.949 + }, + { + "start": 11036.27, + "end": 11038.63, + "probability": 0.9956 + }, + { + "start": 11040.11, + "end": 11041.67, + "probability": 0.9883 + }, + { + "start": 11044.77, + "end": 11045.4, + "probability": 0.9166 + }, + { + "start": 11045.71, + "end": 11046.95, + "probability": 0.6279 + }, + { + "start": 11047.89, + "end": 11048.59, + "probability": 0.895 + }, + { + "start": 11049.09, + "end": 11051.05, + "probability": 0.4552 + }, + { + "start": 11052.29, + "end": 11053.27, + "probability": 0.9182 + }, + { + "start": 11053.47, + "end": 11054.21, + "probability": 0.9768 + }, + { + "start": 11054.57, + "end": 11055.11, + "probability": 0.6705 + }, + { + "start": 11056.17, + "end": 11056.83, + "probability": 0.9728 + }, + { + "start": 11057.05, + "end": 11057.77, + "probability": 0.9928 + }, + { + "start": 11057.77, + "end": 11060.13, + "probability": 0.9997 + }, + { + "start": 11060.87, + "end": 11062.47, + "probability": 0.9903 + }, + { + "start": 11063.03, + "end": 11063.91, + "probability": 0.8626 + }, + { + "start": 11064.05, + "end": 11064.85, + "probability": 0.9112 + }, + { + "start": 11064.95, + "end": 11066.85, + "probability": 0.9829 + }, + { + "start": 11068.11, + "end": 11073.71, + "probability": 0.9896 + }, + { + "start": 11073.77, + "end": 11077.21, + "probability": 0.9503 + }, + { + "start": 11078.27, + "end": 11081.35, + "probability": 0.9984 + }, + { + "start": 11081.35, + "end": 11084.71, + "probability": 0.9707 + }, + { + "start": 11085.59, + "end": 11086.25, + "probability": 0.8137 + }, + { + "start": 11086.83, + "end": 11091.97, + "probability": 0.9819 + }, + { + "start": 11092.75, + "end": 11093.77, + "probability": 0.7481 + }, + { + "start": 11094.29, + "end": 11095.81, + "probability": 0.9924 + }, + { + "start": 11097.31, + "end": 11097.91, + "probability": 0.9849 + }, + { + "start": 11098.35, + "end": 11101.31, + "probability": 0.9932 + }, + { + "start": 11101.39, + "end": 11102.09, + "probability": 0.7799 + }, + { + "start": 11102.51, + "end": 11103.59, + "probability": 0.9738 + }, + { + "start": 11103.89, + "end": 11104.67, + "probability": 0.9713 + }, + { + "start": 11104.79, + "end": 11105.51, + "probability": 0.8839 + }, + { + "start": 11105.93, + "end": 11106.93, + "probability": 0.9641 + }, + { + "start": 11109.33, + "end": 11112.81, + "probability": 0.9982 + }, + { + "start": 11112.87, + "end": 11113.51, + "probability": 0.8097 + }, + { + "start": 11114.27, + "end": 11116.35, + "probability": 0.9538 + }, + { + "start": 11117.13, + "end": 11118.55, + "probability": 0.9933 + }, + { + "start": 11121.99, + "end": 11125.39, + "probability": 0.9811 + }, + { + "start": 11125.89, + "end": 11127.93, + "probability": 0.8467 + }, + { + "start": 11128.33, + "end": 11131.43, + "probability": 0.9709 + }, + { + "start": 11132.03, + "end": 11134.65, + "probability": 0.9006 + }, + { + "start": 11135.11, + "end": 11135.91, + "probability": 0.9264 + }, + { + "start": 11136.05, + "end": 11136.71, + "probability": 0.4141 + }, + { + "start": 11138.35, + "end": 11140.91, + "probability": 0.9843 + }, + { + "start": 11141.93, + "end": 11144.46, + "probability": 0.8615 + }, + { + "start": 11145.35, + "end": 11146.99, + "probability": 0.9971 + }, + { + "start": 11147.09, + "end": 11147.91, + "probability": 0.649 + }, + { + "start": 11148.29, + "end": 11148.98, + "probability": 0.9529 + }, + { + "start": 11149.37, + "end": 11150.07, + "probability": 0.224 + }, + { + "start": 11150.19, + "end": 11153.05, + "probability": 0.994 + }, + { + "start": 11154.15, + "end": 11155.65, + "probability": 0.9586 + }, + { + "start": 11155.81, + "end": 11155.93, + "probability": 0.5925 + }, + { + "start": 11156.03, + "end": 11156.35, + "probability": 0.2681 + }, + { + "start": 11158.59, + "end": 11160.11, + "probability": 0.3806 + }, + { + "start": 11168.23, + "end": 11169.39, + "probability": 0.7662 + }, + { + "start": 11169.81, + "end": 11170.95, + "probability": 0.9888 + }, + { + "start": 11178.05, + "end": 11180.53, + "probability": 0.0329 + }, + { + "start": 11181.15, + "end": 11183.39, + "probability": 0.5879 + }, + { + "start": 11183.57, + "end": 11185.14, + "probability": 0.7444 + }, + { + "start": 11185.7, + "end": 11193.45, + "probability": 0.9981 + }, + { + "start": 11194.17, + "end": 11196.29, + "probability": 0.9347 + }, + { + "start": 11197.43, + "end": 11203.91, + "probability": 0.9944 + }, + { + "start": 11204.07, + "end": 11205.45, + "probability": 0.8056 + }, + { + "start": 11206.45, + "end": 11207.81, + "probability": 0.9622 + }, + { + "start": 11208.19, + "end": 11212.19, + "probability": 0.9966 + }, + { + "start": 11212.81, + "end": 11214.81, + "probability": 0.9932 + }, + { + "start": 11216.63, + "end": 11220.93, + "probability": 0.7548 + }, + { + "start": 11221.71, + "end": 11225.85, + "probability": 0.9909 + }, + { + "start": 11226.35, + "end": 11227.75, + "probability": 0.8669 + }, + { + "start": 11227.87, + "end": 11228.96, + "probability": 0.9819 + }, + { + "start": 11229.51, + "end": 11231.21, + "probability": 0.9054 + }, + { + "start": 11231.63, + "end": 11234.49, + "probability": 0.9654 + }, + { + "start": 11235.49, + "end": 11237.75, + "probability": 0.9725 + }, + { + "start": 11238.33, + "end": 11239.25, + "probability": 0.5767 + }, + { + "start": 11240.07, + "end": 11242.67, + "probability": 0.9117 + }, + { + "start": 11243.17, + "end": 11250.39, + "probability": 0.9844 + }, + { + "start": 11250.85, + "end": 11253.55, + "probability": 0.994 + }, + { + "start": 11254.57, + "end": 11257.79, + "probability": 0.9023 + }, + { + "start": 11257.91, + "end": 11259.85, + "probability": 0.9069 + }, + { + "start": 11259.99, + "end": 11262.01, + "probability": 0.9807 + }, + { + "start": 11262.45, + "end": 11266.75, + "probability": 0.991 + }, + { + "start": 11267.97, + "end": 11269.09, + "probability": 0.9341 + }, + { + "start": 11269.59, + "end": 11274.87, + "probability": 0.9963 + }, + { + "start": 11276.13, + "end": 11280.15, + "probability": 0.9914 + }, + { + "start": 11280.29, + "end": 11281.81, + "probability": 0.8261 + }, + { + "start": 11282.35, + "end": 11284.83, + "probability": 0.8336 + }, + { + "start": 11285.45, + "end": 11286.66, + "probability": 0.969 + }, + { + "start": 11287.31, + "end": 11287.73, + "probability": 0.9917 + }, + { + "start": 11288.75, + "end": 11290.01, + "probability": 0.7632 + }, + { + "start": 11291.55, + "end": 11293.52, + "probability": 0.9708 + }, + { + "start": 11295.05, + "end": 11295.96, + "probability": 0.9409 + }, + { + "start": 11296.91, + "end": 11299.59, + "probability": 0.9907 + }, + { + "start": 11300.33, + "end": 11301.16, + "probability": 0.9916 + }, + { + "start": 11302.33, + "end": 11305.37, + "probability": 0.9902 + }, + { + "start": 11305.89, + "end": 11307.89, + "probability": 0.8875 + }, + { + "start": 11308.25, + "end": 11309.73, + "probability": 0.9907 + }, + { + "start": 11310.09, + "end": 11311.33, + "probability": 0.9561 + }, + { + "start": 11311.73, + "end": 11313.27, + "probability": 0.9956 + }, + { + "start": 11313.57, + "end": 11316.13, + "probability": 0.9907 + }, + { + "start": 11316.59, + "end": 11321.31, + "probability": 0.9943 + }, + { + "start": 11321.63, + "end": 11321.93, + "probability": 0.8313 + }, + { + "start": 11322.39, + "end": 11323.19, + "probability": 0.6267 + }, + { + "start": 11323.37, + "end": 11326.47, + "probability": 0.8409 + }, + { + "start": 11335.03, + "end": 11338.59, + "probability": 0.5802 + }, + { + "start": 11339.03, + "end": 11340.69, + "probability": 0.798 + }, + { + "start": 11342.81, + "end": 11345.13, + "probability": 0.9437 + }, + { + "start": 11345.55, + "end": 11349.59, + "probability": 0.9586 + }, + { + "start": 11349.71, + "end": 11350.07, + "probability": 0.9486 + }, + { + "start": 11350.13, + "end": 11350.53, + "probability": 0.9666 + }, + { + "start": 11350.63, + "end": 11351.09, + "probability": 0.9866 + }, + { + "start": 11351.19, + "end": 11351.77, + "probability": 0.8133 + }, + { + "start": 11352.15, + "end": 11353.49, + "probability": 0.9786 + }, + { + "start": 11353.79, + "end": 11356.39, + "probability": 0.9865 + }, + { + "start": 11357.09, + "end": 11358.08, + "probability": 0.876 + }, + { + "start": 11358.57, + "end": 11362.29, + "probability": 0.9843 + }, + { + "start": 11363.59, + "end": 11366.15, + "probability": 0.9854 + }, + { + "start": 11366.67, + "end": 11369.27, + "probability": 0.5005 + }, + { + "start": 11369.91, + "end": 11371.85, + "probability": 0.8369 + }, + { + "start": 11373.19, + "end": 11374.67, + "probability": 0.9048 + }, + { + "start": 11374.83, + "end": 11377.59, + "probability": 0.551 + }, + { + "start": 11378.29, + "end": 11379.97, + "probability": 0.988 + }, + { + "start": 11380.65, + "end": 11382.49, + "probability": 0.9828 + }, + { + "start": 11383.15, + "end": 11385.37, + "probability": 0.9739 + }, + { + "start": 11386.19, + "end": 11389.07, + "probability": 0.3734 + }, + { + "start": 11389.13, + "end": 11389.13, + "probability": 0.1789 + }, + { + "start": 11389.13, + "end": 11389.13, + "probability": 0.0145 + }, + { + "start": 11389.13, + "end": 11389.79, + "probability": 0.9429 + }, + { + "start": 11389.97, + "end": 11391.26, + "probability": 0.7676 + }, + { + "start": 11391.45, + "end": 11394.19, + "probability": 0.9945 + }, + { + "start": 11394.77, + "end": 11395.83, + "probability": 0.9601 + }, + { + "start": 11395.83, + "end": 11396.31, + "probability": 0.7766 + }, + { + "start": 11396.43, + "end": 11397.61, + "probability": 0.9423 + }, + { + "start": 11398.03, + "end": 11399.61, + "probability": 0.9978 + }, + { + "start": 11399.79, + "end": 11400.07, + "probability": 0.9878 + }, + { + "start": 11400.79, + "end": 11402.07, + "probability": 0.9631 + }, + { + "start": 11402.35, + "end": 11403.61, + "probability": 0.6845 + }, + { + "start": 11403.65, + "end": 11407.47, + "probability": 0.5936 + }, + { + "start": 11407.67, + "end": 11408.27, + "probability": 0.9742 + }, + { + "start": 11408.55, + "end": 11410.01, + "probability": 0.9257 + }, + { + "start": 11410.21, + "end": 11410.83, + "probability": 0.7644 + }, + { + "start": 11411.89, + "end": 11412.79, + "probability": 0.7472 + }, + { + "start": 11412.93, + "end": 11415.72, + "probability": 0.9966 + }, + { + "start": 11416.31, + "end": 11418.69, + "probability": 0.9983 + }, + { + "start": 11419.33, + "end": 11423.47, + "probability": 0.9856 + }, + { + "start": 11423.55, + "end": 11424.81, + "probability": 0.7578 + }, + { + "start": 11425.41, + "end": 11426.49, + "probability": 0.972 + }, + { + "start": 11427.19, + "end": 11430.47, + "probability": 0.989 + }, + { + "start": 11430.91, + "end": 11432.83, + "probability": 0.9838 + }, + { + "start": 11432.93, + "end": 11434.11, + "probability": 0.8144 + }, + { + "start": 11434.23, + "end": 11437.31, + "probability": 0.9682 + }, + { + "start": 11437.59, + "end": 11440.53, + "probability": 0.993 + }, + { + "start": 11440.59, + "end": 11441.23, + "probability": 0.5178 + }, + { + "start": 11441.59, + "end": 11442.85, + "probability": 0.8551 + }, + { + "start": 11443.53, + "end": 11444.94, + "probability": 0.9808 + }, + { + "start": 11445.03, + "end": 11448.13, + "probability": 0.9552 + }, + { + "start": 11448.49, + "end": 11451.63, + "probability": 0.9663 + }, + { + "start": 11451.71, + "end": 11457.04, + "probability": 0.9307 + }, + { + "start": 11457.75, + "end": 11462.11, + "probability": 0.9942 + }, + { + "start": 11462.11, + "end": 11467.15, + "probability": 0.999 + }, + { + "start": 11467.15, + "end": 11470.75, + "probability": 0.9974 + }, + { + "start": 11471.31, + "end": 11472.37, + "probability": 0.8005 + }, + { + "start": 11473.25, + "end": 11475.15, + "probability": 0.8932 + }, + { + "start": 11476.39, + "end": 11478.58, + "probability": 0.6967 + }, + { + "start": 11479.57, + "end": 11480.37, + "probability": 0.9888 + }, + { + "start": 11480.79, + "end": 11483.75, + "probability": 0.931 + }, + { + "start": 11484.05, + "end": 11484.87, + "probability": 0.9924 + }, + { + "start": 11485.83, + "end": 11486.21, + "probability": 0.6855 + }, + { + "start": 11486.31, + "end": 11487.17, + "probability": 0.5742 + }, + { + "start": 11487.33, + "end": 11490.29, + "probability": 0.9177 + }, + { + "start": 11490.37, + "end": 11491.55, + "probability": 0.9567 + }, + { + "start": 11491.83, + "end": 11493.23, + "probability": 0.9247 + }, + { + "start": 11493.43, + "end": 11495.05, + "probability": 0.9956 + }, + { + "start": 11495.17, + "end": 11495.79, + "probability": 0.9621 + }, + { + "start": 11495.81, + "end": 11498.79, + "probability": 0.9956 + }, + { + "start": 11498.79, + "end": 11501.61, + "probability": 0.9026 + }, + { + "start": 11501.93, + "end": 11506.63, + "probability": 0.9889 + }, + { + "start": 11507.15, + "end": 11508.01, + "probability": 0.8117 + }, + { + "start": 11508.59, + "end": 11509.33, + "probability": 0.9128 + }, + { + "start": 11509.85, + "end": 11511.35, + "probability": 0.9951 + }, + { + "start": 11511.53, + "end": 11512.19, + "probability": 0.2659 + }, + { + "start": 11512.49, + "end": 11513.29, + "probability": 0.9334 + }, + { + "start": 11513.45, + "end": 11513.63, + "probability": 0.4701 + }, + { + "start": 11513.73, + "end": 11514.22, + "probability": 0.9619 + }, + { + "start": 11514.93, + "end": 11515.68, + "probability": 0.9859 + }, + { + "start": 11515.81, + "end": 11516.87, + "probability": 0.9752 + }, + { + "start": 11517.69, + "end": 11521.95, + "probability": 0.9948 + }, + { + "start": 11521.95, + "end": 11527.33, + "probability": 0.9969 + }, + { + "start": 11527.55, + "end": 11527.81, + "probability": 0.8536 + }, + { + "start": 11528.47, + "end": 11528.79, + "probability": 0.4485 + }, + { + "start": 11528.83, + "end": 11532.93, + "probability": 0.8696 + }, + { + "start": 11533.13, + "end": 11534.95, + "probability": 0.9742 + }, + { + "start": 11554.43, + "end": 11556.51, + "probability": 0.7279 + }, + { + "start": 11557.51, + "end": 11563.67, + "probability": 0.922 + }, + { + "start": 11564.03, + "end": 11567.01, + "probability": 0.9609 + }, + { + "start": 11567.77, + "end": 11569.17, + "probability": 0.9073 + }, + { + "start": 11571.33, + "end": 11573.61, + "probability": 0.1849 + }, + { + "start": 11573.61, + "end": 11573.73, + "probability": 0.1184 + }, + { + "start": 11573.95, + "end": 11575.27, + "probability": 0.4873 + }, + { + "start": 11575.27, + "end": 11579.23, + "probability": 0.9612 + }, + { + "start": 11579.81, + "end": 11580.71, + "probability": 0.8569 + }, + { + "start": 11581.19, + "end": 11585.25, + "probability": 0.7842 + }, + { + "start": 11585.47, + "end": 11585.47, + "probability": 0.1283 + }, + { + "start": 11585.47, + "end": 11585.47, + "probability": 0.0035 + }, + { + "start": 11585.47, + "end": 11585.91, + "probability": 0.249 + }, + { + "start": 11586.39, + "end": 11589.11, + "probability": 0.9094 + }, + { + "start": 11590.03, + "end": 11591.27, + "probability": 0.3986 + }, + { + "start": 11591.31, + "end": 11595.55, + "probability": 0.8885 + }, + { + "start": 11596.53, + "end": 11599.01, + "probability": 0.956 + }, + { + "start": 11600.41, + "end": 11602.91, + "probability": 0.8219 + }, + { + "start": 11603.27, + "end": 11604.65, + "probability": 0.9782 + }, + { + "start": 11605.15, + "end": 11606.12, + "probability": 0.5789 + }, + { + "start": 11606.43, + "end": 11607.43, + "probability": 0.9171 + }, + { + "start": 11608.53, + "end": 11610.03, + "probability": 0.9814 + }, + { + "start": 11610.11, + "end": 11611.42, + "probability": 0.997 + }, + { + "start": 11612.11, + "end": 11615.75, + "probability": 0.9814 + }, + { + "start": 11616.59, + "end": 11617.74, + "probability": 0.8609 + }, + { + "start": 11619.13, + "end": 11621.45, + "probability": 0.9978 + }, + { + "start": 11622.01, + "end": 11622.65, + "probability": 0.7523 + }, + { + "start": 11623.41, + "end": 11628.29, + "probability": 0.9839 + }, + { + "start": 11629.71, + "end": 11632.03, + "probability": 0.9731 + }, + { + "start": 11632.15, + "end": 11632.74, + "probability": 0.8711 + }, + { + "start": 11633.97, + "end": 11634.41, + "probability": 0.9531 + }, + { + "start": 11634.51, + "end": 11634.89, + "probability": 0.6774 + }, + { + "start": 11634.97, + "end": 11635.73, + "probability": 0.7414 + }, + { + "start": 11635.81, + "end": 11637.09, + "probability": 0.6944 + }, + { + "start": 11637.55, + "end": 11639.24, + "probability": 0.951 + }, + { + "start": 11639.35, + "end": 11641.11, + "probability": 0.8933 + }, + { + "start": 11641.23, + "end": 11642.51, + "probability": 0.8517 + }, + { + "start": 11642.95, + "end": 11647.67, + "probability": 0.986 + }, + { + "start": 11648.27, + "end": 11651.01, + "probability": 0.9993 + }, + { + "start": 11651.01, + "end": 11654.31, + "probability": 0.9781 + }, + { + "start": 11655.39, + "end": 11660.57, + "probability": 0.9985 + }, + { + "start": 11661.39, + "end": 11663.53, + "probability": 0.9899 + }, + { + "start": 11663.53, + "end": 11667.19, + "probability": 0.9991 + }, + { + "start": 11667.93, + "end": 11669.63, + "probability": 0.9953 + }, + { + "start": 11670.59, + "end": 11673.57, + "probability": 0.9985 + }, + { + "start": 11674.27, + "end": 11678.39, + "probability": 0.9955 + }, + { + "start": 11678.67, + "end": 11679.99, + "probability": 0.9586 + }, + { + "start": 11680.61, + "end": 11681.89, + "probability": 0.6676 + }, + { + "start": 11682.11, + "end": 11686.39, + "probability": 0.991 + }, + { + "start": 11687.25, + "end": 11691.39, + "probability": 0.9692 + }, + { + "start": 11691.39, + "end": 11697.01, + "probability": 0.9971 + }, + { + "start": 11697.61, + "end": 11704.83, + "probability": 0.8818 + }, + { + "start": 11705.87, + "end": 11707.62, + "probability": 0.998 + }, + { + "start": 11708.55, + "end": 11714.63, + "probability": 0.9889 + }, + { + "start": 11715.47, + "end": 11718.27, + "probability": 0.7558 + }, + { + "start": 11718.85, + "end": 11720.32, + "probability": 0.8261 + }, + { + "start": 11721.63, + "end": 11723.16, + "probability": 0.7299 + }, + { + "start": 11724.03, + "end": 11727.69, + "probability": 0.9983 + }, + { + "start": 11727.69, + "end": 11731.93, + "probability": 0.9971 + }, + { + "start": 11732.47, + "end": 11732.91, + "probability": 0.8497 + }, + { + "start": 11733.27, + "end": 11733.75, + "probability": 0.5995 + }, + { + "start": 11733.97, + "end": 11736.27, + "probability": 0.8739 + }, + { + "start": 11737.11, + "end": 11739.09, + "probability": 0.7957 + }, + { + "start": 11740.01, + "end": 11740.97, + "probability": 0.6807 + }, + { + "start": 11741.05, + "end": 11741.97, + "probability": 0.4775 + }, + { + "start": 11742.01, + "end": 11743.17, + "probability": 0.5937 + }, + { + "start": 11743.23, + "end": 11744.49, + "probability": 0.9739 + }, + { + "start": 11745.37, + "end": 11747.59, + "probability": 0.6632 + }, + { + "start": 11747.63, + "end": 11748.67, + "probability": 0.3319 + }, + { + "start": 11748.81, + "end": 11750.35, + "probability": 0.9893 + }, + { + "start": 11750.93, + "end": 11753.79, + "probability": 0.6774 + }, + { + "start": 11754.55, + "end": 11755.53, + "probability": 0.9789 + }, + { + "start": 11755.77, + "end": 11757.19, + "probability": 0.9865 + }, + { + "start": 11757.89, + "end": 11758.39, + "probability": 0.4483 + }, + { + "start": 11758.43, + "end": 11760.59, + "probability": 0.9421 + }, + { + "start": 11760.71, + "end": 11762.03, + "probability": 0.8991 + }, + { + "start": 11762.09, + "end": 11762.85, + "probability": 0.8369 + }, + { + "start": 11763.39, + "end": 11763.79, + "probability": 0.889 + }, + { + "start": 11764.27, + "end": 11767.65, + "probability": 0.9697 + }, + { + "start": 11767.71, + "end": 11769.13, + "probability": 0.6678 + }, + { + "start": 11769.35, + "end": 11771.31, + "probability": 0.6359 + }, + { + "start": 11772.77, + "end": 11773.09, + "probability": 0.1771 + }, + { + "start": 11773.13, + "end": 11775.31, + "probability": 0.944 + }, + { + "start": 11775.31, + "end": 11777.61, + "probability": 0.975 + }, + { + "start": 11777.69, + "end": 11778.65, + "probability": 0.8898 + }, + { + "start": 11778.85, + "end": 11780.93, + "probability": 0.8611 + }, + { + "start": 11780.97, + "end": 11781.65, + "probability": 0.4961 + }, + { + "start": 11782.27, + "end": 11782.87, + "probability": 0.5963 + }, + { + "start": 11782.91, + "end": 11785.07, + "probability": 0.8895 + }, + { + "start": 11786.15, + "end": 11786.99, + "probability": 0.7391 + }, + { + "start": 11787.45, + "end": 11788.37, + "probability": 0.8685 + }, + { + "start": 11789.17, + "end": 11789.67, + "probability": 0.9371 + }, + { + "start": 11811.87, + "end": 11813.05, + "probability": 0.3979 + }, + { + "start": 11814.83, + "end": 11820.65, + "probability": 0.7196 + }, + { + "start": 11821.77, + "end": 11829.01, + "probability": 0.9783 + }, + { + "start": 11830.65, + "end": 11833.29, + "probability": 0.683 + }, + { + "start": 11835.29, + "end": 11841.29, + "probability": 0.9897 + }, + { + "start": 11843.43, + "end": 11847.87, + "probability": 0.9915 + }, + { + "start": 11847.87, + "end": 11856.29, + "probability": 0.9965 + }, + { + "start": 11857.57, + "end": 11860.91, + "probability": 0.9889 + }, + { + "start": 11863.13, + "end": 11864.09, + "probability": 0.3629 + }, + { + "start": 11865.65, + "end": 11872.97, + "probability": 0.9027 + }, + { + "start": 11874.59, + "end": 11876.37, + "probability": 0.8755 + }, + { + "start": 11877.99, + "end": 11880.53, + "probability": 0.9973 + }, + { + "start": 11882.99, + "end": 11885.27, + "probability": 0.9979 + }, + { + "start": 11886.41, + "end": 11888.05, + "probability": 0.7682 + }, + { + "start": 11889.23, + "end": 11890.25, + "probability": 0.771 + }, + { + "start": 11890.95, + "end": 11897.41, + "probability": 0.992 + }, + { + "start": 11897.41, + "end": 11906.23, + "probability": 0.9881 + }, + { + "start": 11907.43, + "end": 11908.33, + "probability": 0.6715 + }, + { + "start": 11910.27, + "end": 11911.33, + "probability": 0.6624 + }, + { + "start": 11913.11, + "end": 11915.67, + "probability": 0.9966 + }, + { + "start": 11916.89, + "end": 11918.01, + "probability": 0.979 + }, + { + "start": 11918.79, + "end": 11923.41, + "probability": 0.9868 + }, + { + "start": 11923.61, + "end": 11924.93, + "probability": 0.9462 + }, + { + "start": 11926.23, + "end": 11927.61, + "probability": 0.9695 + }, + { + "start": 11929.23, + "end": 11932.63, + "probability": 0.7686 + }, + { + "start": 11934.21, + "end": 11938.15, + "probability": 0.9805 + }, + { + "start": 11939.41, + "end": 11948.55, + "probability": 0.9873 + }, + { + "start": 11950.69, + "end": 11952.41, + "probability": 0.687 + }, + { + "start": 11954.71, + "end": 11956.85, + "probability": 0.9471 + }, + { + "start": 11957.77, + "end": 11958.91, + "probability": 0.7586 + }, + { + "start": 11960.63, + "end": 11963.81, + "probability": 0.8648 + }, + { + "start": 11965.19, + "end": 11966.57, + "probability": 0.9954 + }, + { + "start": 11967.97, + "end": 11971.97, + "probability": 0.8174 + }, + { + "start": 11973.51, + "end": 11975.23, + "probability": 0.9065 + }, + { + "start": 11976.85, + "end": 11981.09, + "probability": 0.9646 + }, + { + "start": 11981.67, + "end": 11987.47, + "probability": 0.996 + }, + { + "start": 11988.17, + "end": 11992.01, + "probability": 0.9305 + }, + { + "start": 11994.73, + "end": 11998.37, + "probability": 0.9964 + }, + { + "start": 11998.37, + "end": 12002.91, + "probability": 0.9434 + }, + { + "start": 12003.79, + "end": 12005.93, + "probability": 0.648 + }, + { + "start": 12006.59, + "end": 12007.95, + "probability": 0.8946 + }, + { + "start": 12008.47, + "end": 12010.21, + "probability": 0.5581 + }, + { + "start": 12010.91, + "end": 12012.47, + "probability": 0.7336 + }, + { + "start": 12012.87, + "end": 12015.81, + "probability": 0.9912 + }, + { + "start": 12016.11, + "end": 12016.73, + "probability": 0.6205 + }, + { + "start": 12017.89, + "end": 12018.61, + "probability": 0.4667 + }, + { + "start": 12018.65, + "end": 12020.57, + "probability": 0.9572 + }, + { + "start": 12021.45, + "end": 12022.49, + "probability": 0.6237 + }, + { + "start": 12022.77, + "end": 12024.01, + "probability": 0.9926 + }, + { + "start": 12025.17, + "end": 12026.07, + "probability": 0.5378 + }, + { + "start": 12026.45, + "end": 12027.13, + "probability": 0.0273 + }, + { + "start": 12027.13, + "end": 12027.43, + "probability": 0.3358 + }, + { + "start": 12027.79, + "end": 12029.15, + "probability": 0.0014 + }, + { + "start": 12030.31, + "end": 12030.69, + "probability": 0.0084 + }, + { + "start": 12031.39, + "end": 12032.83, + "probability": 0.1833 + }, + { + "start": 12032.93, + "end": 12033.89, + "probability": 0.8171 + }, + { + "start": 12034.41, + "end": 12035.21, + "probability": 0.9954 + }, + { + "start": 12035.35, + "end": 12036.75, + "probability": 0.9476 + }, + { + "start": 12036.87, + "end": 12040.49, + "probability": 0.9787 + }, + { + "start": 12040.49, + "end": 12042.19, + "probability": 0.9497 + }, + { + "start": 12042.73, + "end": 12044.39, + "probability": 0.9803 + }, + { + "start": 12046.01, + "end": 12046.83, + "probability": 0.9365 + }, + { + "start": 12047.25, + "end": 12049.03, + "probability": 0.6923 + }, + { + "start": 12049.17, + "end": 12049.37, + "probability": 0.0067 + }, + { + "start": 12049.37, + "end": 12050.61, + "probability": 0.9813 + }, + { + "start": 12050.77, + "end": 12051.47, + "probability": 0.2382 + }, + { + "start": 12052.95, + "end": 12055.67, + "probability": 0.9051 + }, + { + "start": 12056.47, + "end": 12057.23, + "probability": 0.8272 + }, + { + "start": 12057.65, + "end": 12060.53, + "probability": 0.9861 + }, + { + "start": 12060.59, + "end": 12062.01, + "probability": 0.9748 + }, + { + "start": 12062.91, + "end": 12063.83, + "probability": 0.813 + }, + { + "start": 12064.51, + "end": 12065.77, + "probability": 0.8353 + }, + { + "start": 12067.29, + "end": 12071.75, + "probability": 0.9941 + }, + { + "start": 12071.75, + "end": 12076.15, + "probability": 0.9943 + }, + { + "start": 12076.63, + "end": 12077.62, + "probability": 0.784 + }, + { + "start": 12077.83, + "end": 12078.49, + "probability": 0.9109 + }, + { + "start": 12078.95, + "end": 12079.99, + "probability": 0.9756 + }, + { + "start": 12080.09, + "end": 12081.27, + "probability": 0.7517 + }, + { + "start": 12081.65, + "end": 12084.31, + "probability": 0.6436 + }, + { + "start": 12085.16, + "end": 12085.23, + "probability": 0.678 + }, + { + "start": 12085.23, + "end": 12085.65, + "probability": 0.4697 + }, + { + "start": 12086.25, + "end": 12088.03, + "probability": 0.4782 + }, + { + "start": 12088.35, + "end": 12090.55, + "probability": 0.0622 + }, + { + "start": 12090.61, + "end": 12090.61, + "probability": 0.2776 + }, + { + "start": 12090.69, + "end": 12090.69, + "probability": 0.2101 + }, + { + "start": 12090.69, + "end": 12092.77, + "probability": 0.9738 + }, + { + "start": 12094.27, + "end": 12095.25, + "probability": 0.8435 + }, + { + "start": 12095.89, + "end": 12098.23, + "probability": 0.0499 + }, + { + "start": 12100.01, + "end": 12100.17, + "probability": 0.3794 + }, + { + "start": 12100.17, + "end": 12100.17, + "probability": 0.0595 + }, + { + "start": 12100.17, + "end": 12100.17, + "probability": 0.0361 + }, + { + "start": 12100.17, + "end": 12100.17, + "probability": 0.2288 + }, + { + "start": 12100.17, + "end": 12100.47, + "probability": 0.7835 + }, + { + "start": 12101.57, + "end": 12102.77, + "probability": 0.924 + }, + { + "start": 12104.17, + "end": 12104.59, + "probability": 0.9653 + }, + { + "start": 12104.73, + "end": 12105.15, + "probability": 0.1091 + }, + { + "start": 12108.3, + "end": 12109.25, + "probability": 0.037 + }, + { + "start": 12109.25, + "end": 12109.77, + "probability": 0.1968 + }, + { + "start": 12110.77, + "end": 12111.85, + "probability": 0.991 + }, + { + "start": 12112.73, + "end": 12112.81, + "probability": 0.6654 + }, + { + "start": 12112.91, + "end": 12117.41, + "probability": 0.9773 + }, + { + "start": 12117.47, + "end": 12119.41, + "probability": 0.9893 + }, + { + "start": 12120.39, + "end": 12122.41, + "probability": 0.9858 + }, + { + "start": 12123.13, + "end": 12129.67, + "probability": 0.9859 + }, + { + "start": 12130.31, + "end": 12133.95, + "probability": 0.9967 + }, + { + "start": 12134.69, + "end": 12139.11, + "probability": 0.9888 + }, + { + "start": 12139.59, + "end": 12140.03, + "probability": 0.9565 + }, + { + "start": 12140.77, + "end": 12143.33, + "probability": 0.8711 + }, + { + "start": 12143.45, + "end": 12144.37, + "probability": 0.9736 + }, + { + "start": 12145.19, + "end": 12146.29, + "probability": 0.9739 + }, + { + "start": 12147.17, + "end": 12148.31, + "probability": 0.9863 + }, + { + "start": 12148.75, + "end": 12150.69, + "probability": 0.9922 + }, + { + "start": 12151.71, + "end": 12153.99, + "probability": 0.9565 + }, + { + "start": 12154.87, + "end": 12158.61, + "probability": 0.9595 + }, + { + "start": 12159.31, + "end": 12161.45, + "probability": 0.5993 + }, + { + "start": 12162.11, + "end": 12163.23, + "probability": 0.6683 + }, + { + "start": 12163.39, + "end": 12163.97, + "probability": 0.715 + }, + { + "start": 12165.19, + "end": 12166.39, + "probability": 0.6923 + }, + { + "start": 12167.45, + "end": 12172.61, + "probability": 0.9753 + }, + { + "start": 12173.51, + "end": 12177.89, + "probability": 0.8584 + }, + { + "start": 12178.77, + "end": 12178.77, + "probability": 0.0538 + }, + { + "start": 12178.77, + "end": 12179.63, + "probability": 0.8672 + }, + { + "start": 12180.85, + "end": 12184.01, + "probability": 0.9058 + }, + { + "start": 12184.15, + "end": 12186.99, + "probability": 0.9525 + }, + { + "start": 12187.49, + "end": 12188.69, + "probability": 0.8896 + }, + { + "start": 12190.21, + "end": 12194.61, + "probability": 0.907 + }, + { + "start": 12195.23, + "end": 12198.09, + "probability": 0.9294 + }, + { + "start": 12198.09, + "end": 12201.33, + "probability": 0.9935 + }, + { + "start": 12202.01, + "end": 12206.13, + "probability": 0.9953 + }, + { + "start": 12206.19, + "end": 12206.57, + "probability": 0.618 + }, + { + "start": 12207.07, + "end": 12208.15, + "probability": 0.7069 + }, + { + "start": 12209.11, + "end": 12212.13, + "probability": 0.9807 + }, + { + "start": 12212.91, + "end": 12216.25, + "probability": 0.9993 + }, + { + "start": 12217.03, + "end": 12218.19, + "probability": 0.9985 + }, + { + "start": 12218.99, + "end": 12223.05, + "probability": 0.8355 + }, + { + "start": 12223.55, + "end": 12224.65, + "probability": 0.9685 + }, + { + "start": 12225.53, + "end": 12231.51, + "probability": 0.9966 + }, + { + "start": 12232.17, + "end": 12236.91, + "probability": 0.9893 + }, + { + "start": 12237.47, + "end": 12238.43, + "probability": 0.769 + }, + { + "start": 12239.23, + "end": 12240.43, + "probability": 0.7283 + }, + { + "start": 12241.15, + "end": 12245.71, + "probability": 0.9966 + }, + { + "start": 12245.71, + "end": 12251.55, + "probability": 0.998 + }, + { + "start": 12251.67, + "end": 12259.45, + "probability": 0.9922 + }, + { + "start": 12259.53, + "end": 12262.97, + "probability": 0.9984 + }, + { + "start": 12263.07, + "end": 12264.03, + "probability": 0.9855 + }, + { + "start": 12264.45, + "end": 12265.7, + "probability": 0.9721 + }, + { + "start": 12265.85, + "end": 12266.23, + "probability": 0.9046 + }, + { + "start": 12266.59, + "end": 12267.17, + "probability": 0.5216 + }, + { + "start": 12267.29, + "end": 12269.05, + "probability": 0.727 + }, + { + "start": 12269.87, + "end": 12270.73, + "probability": 0.5798 + }, + { + "start": 12270.83, + "end": 12273.65, + "probability": 0.972 + }, + { + "start": 12280.55, + "end": 12280.57, + "probability": 0.152 + }, + { + "start": 12280.57, + "end": 12280.57, + "probability": 0.1837 + }, + { + "start": 12280.57, + "end": 12280.57, + "probability": 0.0612 + }, + { + "start": 12280.57, + "end": 12280.67, + "probability": 0.0387 + }, + { + "start": 12305.21, + "end": 12307.41, + "probability": 0.1345 + }, + { + "start": 12308.99, + "end": 12314.21, + "probability": 0.819 + }, + { + "start": 12315.29, + "end": 12319.35, + "probability": 0.8482 + }, + { + "start": 12319.39, + "end": 12323.13, + "probability": 0.9106 + }, + { + "start": 12323.79, + "end": 12325.53, + "probability": 0.8952 + }, + { + "start": 12326.57, + "end": 12329.79, + "probability": 0.909 + }, + { + "start": 12330.41, + "end": 12330.85, + "probability": 0.5095 + }, + { + "start": 12331.13, + "end": 12336.57, + "probability": 0.7867 + }, + { + "start": 12336.91, + "end": 12339.43, + "probability": 0.9937 + }, + { + "start": 12339.83, + "end": 12341.27, + "probability": 0.9965 + }, + { + "start": 12341.77, + "end": 12342.19, + "probability": 0.6842 + }, + { + "start": 12342.25, + "end": 12342.63, + "probability": 0.4733 + }, + { + "start": 12342.87, + "end": 12346.39, + "probability": 0.9267 + }, + { + "start": 12347.25, + "end": 12351.75, + "probability": 0.8466 + }, + { + "start": 12352.27, + "end": 12352.98, + "probability": 0.9463 + }, + { + "start": 12353.27, + "end": 12355.99, + "probability": 0.9906 + }, + { + "start": 12357.21, + "end": 12358.49, + "probability": 0.7517 + }, + { + "start": 12359.13, + "end": 12361.99, + "probability": 0.9907 + }, + { + "start": 12362.73, + "end": 12365.81, + "probability": 0.9819 + }, + { + "start": 12367.15, + "end": 12370.79, + "probability": 0.9811 + }, + { + "start": 12370.87, + "end": 12376.73, + "probability": 0.8521 + }, + { + "start": 12377.11, + "end": 12378.47, + "probability": 0.7501 + }, + { + "start": 12379.11, + "end": 12384.25, + "probability": 0.9037 + }, + { + "start": 12384.81, + "end": 12386.19, + "probability": 0.8533 + }, + { + "start": 12386.27, + "end": 12390.07, + "probability": 0.9356 + }, + { + "start": 12390.07, + "end": 12395.11, + "probability": 0.9902 + }, + { + "start": 12396.37, + "end": 12402.31, + "probability": 0.9741 + }, + { + "start": 12403.67, + "end": 12409.97, + "probability": 0.8299 + }, + { + "start": 12409.97, + "end": 12412.97, + "probability": 0.9834 + }, + { + "start": 12414.17, + "end": 12419.83, + "probability": 0.9906 + }, + { + "start": 12419.83, + "end": 12426.15, + "probability": 0.9711 + }, + { + "start": 12427.67, + "end": 12432.11, + "probability": 0.9982 + }, + { + "start": 12432.27, + "end": 12435.95, + "probability": 0.8445 + }, + { + "start": 12436.65, + "end": 12442.15, + "probability": 0.9307 + }, + { + "start": 12443.07, + "end": 12445.39, + "probability": 0.9608 + }, + { + "start": 12445.95, + "end": 12446.77, + "probability": 0.8257 + }, + { + "start": 12447.23, + "end": 12452.63, + "probability": 0.9454 + }, + { + "start": 12453.07, + "end": 12454.89, + "probability": 0.8769 + }, + { + "start": 12455.29, + "end": 12457.85, + "probability": 0.9616 + }, + { + "start": 12459.51, + "end": 12462.91, + "probability": 0.9844 + }, + { + "start": 12462.91, + "end": 12466.53, + "probability": 0.9849 + }, + { + "start": 12467.21, + "end": 12471.99, + "probability": 0.9313 + }, + { + "start": 12472.27, + "end": 12474.79, + "probability": 0.983 + }, + { + "start": 12474.79, + "end": 12478.93, + "probability": 0.9988 + }, + { + "start": 12479.85, + "end": 12484.99, + "probability": 0.9238 + }, + { + "start": 12485.49, + "end": 12488.87, + "probability": 0.9827 + }, + { + "start": 12488.87, + "end": 12494.29, + "probability": 0.9635 + }, + { + "start": 12494.85, + "end": 12497.55, + "probability": 0.8075 + }, + { + "start": 12498.07, + "end": 12499.89, + "probability": 0.9535 + }, + { + "start": 12500.49, + "end": 12501.03, + "probability": 0.5597 + }, + { + "start": 12501.13, + "end": 12502.57, + "probability": 0.99 + }, + { + "start": 12502.57, + "end": 12506.77, + "probability": 0.9421 + }, + { + "start": 12507.15, + "end": 12507.81, + "probability": 0.6186 + }, + { + "start": 12507.93, + "end": 12510.17, + "probability": 0.6955 + }, + { + "start": 12510.45, + "end": 12513.07, + "probability": 0.956 + }, + { + "start": 12513.91, + "end": 12515.31, + "probability": 0.4045 + }, + { + "start": 12516.77, + "end": 12516.91, + "probability": 0.2899 + }, + { + "start": 12533.35, + "end": 12535.07, + "probability": 0.2164 + }, + { + "start": 12535.61, + "end": 12536.89, + "probability": 0.8582 + }, + { + "start": 12537.09, + "end": 12539.96, + "probability": 0.9877 + }, + { + "start": 12541.17, + "end": 12546.19, + "probability": 0.8473 + }, + { + "start": 12547.11, + "end": 12550.23, + "probability": 0.9937 + }, + { + "start": 12550.93, + "end": 12553.71, + "probability": 0.5167 + }, + { + "start": 12554.63, + "end": 12556.51, + "probability": 0.9951 + }, + { + "start": 12556.67, + "end": 12559.77, + "probability": 0.9992 + }, + { + "start": 12559.77, + "end": 12561.89, + "probability": 0.9985 + }, + { + "start": 12562.73, + "end": 12566.11, + "probability": 0.9793 + }, + { + "start": 12566.17, + "end": 12572.95, + "probability": 0.9799 + }, + { + "start": 12574.19, + "end": 12574.47, + "probability": 0.7237 + }, + { + "start": 12574.55, + "end": 12574.95, + "probability": 0.7532 + }, + { + "start": 12575.39, + "end": 12577.31, + "probability": 0.9 + }, + { + "start": 12577.43, + "end": 12578.73, + "probability": 0.9475 + }, + { + "start": 12579.03, + "end": 12581.71, + "probability": 0.9847 + }, + { + "start": 12582.43, + "end": 12582.43, + "probability": 0.0536 + }, + { + "start": 12582.43, + "end": 12582.87, + "probability": 0.3255 + }, + { + "start": 12583.99, + "end": 12585.89, + "probability": 0.9967 + }, + { + "start": 12586.59, + "end": 12591.23, + "probability": 0.8953 + }, + { + "start": 12592.05, + "end": 12595.75, + "probability": 0.8906 + }, + { + "start": 12596.29, + "end": 12597.05, + "probability": 0.756 + }, + { + "start": 12597.35, + "end": 12598.47, + "probability": 0.9892 + }, + { + "start": 12598.71, + "end": 12600.43, + "probability": 0.9384 + }, + { + "start": 12601.37, + "end": 12606.53, + "probability": 0.9632 + }, + { + "start": 12607.13, + "end": 12610.27, + "probability": 0.9911 + }, + { + "start": 12611.09, + "end": 12611.57, + "probability": 0.4905 + }, + { + "start": 12612.37, + "end": 12613.85, + "probability": 0.8034 + }, + { + "start": 12613.93, + "end": 12616.79, + "probability": 0.9775 + }, + { + "start": 12616.89, + "end": 12618.05, + "probability": 0.588 + }, + { + "start": 12618.15, + "end": 12624.03, + "probability": 0.9906 + }, + { + "start": 12624.11, + "end": 12628.81, + "probability": 0.9489 + }, + { + "start": 12630.21, + "end": 12634.61, + "probability": 0.9976 + }, + { + "start": 12634.95, + "end": 12637.17, + "probability": 0.9991 + }, + { + "start": 12637.71, + "end": 12639.95, + "probability": 0.9603 + }, + { + "start": 12640.23, + "end": 12643.83, + "probability": 0.9799 + }, + { + "start": 12644.45, + "end": 12647.13, + "probability": 0.9727 + }, + { + "start": 12647.33, + "end": 12650.73, + "probability": 0.9922 + }, + { + "start": 12651.33, + "end": 12655.41, + "probability": 0.9975 + }, + { + "start": 12656.01, + "end": 12657.55, + "probability": 0.9918 + }, + { + "start": 12657.75, + "end": 12660.35, + "probability": 0.9598 + }, + { + "start": 12660.41, + "end": 12661.41, + "probability": 0.7342 + }, + { + "start": 12661.97, + "end": 12666.19, + "probability": 0.9933 + }, + { + "start": 12666.31, + "end": 12666.99, + "probability": 0.9338 + }, + { + "start": 12667.09, + "end": 12667.67, + "probability": 0.8193 + }, + { + "start": 12668.29, + "end": 12669.29, + "probability": 0.928 + }, + { + "start": 12669.81, + "end": 12670.51, + "probability": 0.8897 + }, + { + "start": 12670.59, + "end": 12671.93, + "probability": 0.948 + }, + { + "start": 12672.05, + "end": 12672.37, + "probability": 0.8209 + }, + { + "start": 12672.45, + "end": 12673.23, + "probability": 0.8037 + }, + { + "start": 12673.59, + "end": 12674.37, + "probability": 0.6304 + }, + { + "start": 12674.45, + "end": 12676.99, + "probability": 0.917 + }, + { + "start": 12677.35, + "end": 12677.35, + "probability": 0.0844 + }, + { + "start": 12678.09, + "end": 12678.21, + "probability": 0.0006 + }, + { + "start": 12678.21, + "end": 12679.35, + "probability": 0.4532 + }, + { + "start": 12679.87, + "end": 12679.91, + "probability": 0.1507 + }, + { + "start": 12679.91, + "end": 12681.49, + "probability": 0.7713 + }, + { + "start": 12681.55, + "end": 12684.01, + "probability": 0.1155 + }, + { + "start": 12684.39, + "end": 12686.22, + "probability": 0.0105 + }, + { + "start": 12687.45, + "end": 12688.23, + "probability": 0.2383 + }, + { + "start": 12688.51, + "end": 12688.51, + "probability": 0.0674 + }, + { + "start": 12688.51, + "end": 12688.51, + "probability": 0.0176 + }, + { + "start": 12688.51, + "end": 12690.87, + "probability": 0.604 + }, + { + "start": 12691.25, + "end": 12692.51, + "probability": 0.3698 + }, + { + "start": 12692.99, + "end": 12694.16, + "probability": 0.4873 + }, + { + "start": 12694.41, + "end": 12694.93, + "probability": 0.7334 + }, + { + "start": 12695.05, + "end": 12695.63, + "probability": 0.672 + }, + { + "start": 12695.71, + "end": 12695.91, + "probability": 0.2399 + }, + { + "start": 12695.99, + "end": 12696.21, + "probability": 0.0607 + }, + { + "start": 12696.37, + "end": 12698.27, + "probability": 0.5123 + }, + { + "start": 12698.43, + "end": 12699.22, + "probability": 0.7183 + }, + { + "start": 12699.41, + "end": 12699.97, + "probability": 0.3853 + }, + { + "start": 12701.01, + "end": 12702.15, + "probability": 0.5047 + }, + { + "start": 12702.45, + "end": 12702.47, + "probability": 0.1383 + }, + { + "start": 12702.47, + "end": 12703.21, + "probability": 0.0266 + }, + { + "start": 12703.35, + "end": 12704.27, + "probability": 0.0737 + }, + { + "start": 12704.29, + "end": 12706.17, + "probability": 0.5329 + }, + { + "start": 12707.13, + "end": 12708.09, + "probability": 0.3289 + }, + { + "start": 12708.09, + "end": 12709.29, + "probability": 0.6998 + }, + { + "start": 12709.75, + "end": 12712.13, + "probability": 0.9638 + }, + { + "start": 12712.49, + "end": 12717.21, + "probability": 0.9864 + }, + { + "start": 12717.55, + "end": 12719.95, + "probability": 0.7409 + }, + { + "start": 12720.01, + "end": 12720.93, + "probability": 0.5365 + }, + { + "start": 12721.07, + "end": 12722.55, + "probability": 0.9459 + }, + { + "start": 12722.69, + "end": 12726.35, + "probability": 0.996 + }, + { + "start": 12726.35, + "end": 12728.95, + "probability": 0.9985 + }, + { + "start": 12729.33, + "end": 12730.43, + "probability": 0.4082 + }, + { + "start": 12730.47, + "end": 12733.73, + "probability": 0.9813 + }, + { + "start": 12733.89, + "end": 12736.65, + "probability": 0.9814 + }, + { + "start": 12736.87, + "end": 12738.25, + "probability": 0.9172 + }, + { + "start": 12738.45, + "end": 12738.45, + "probability": 0.0907 + }, + { + "start": 12738.45, + "end": 12742.13, + "probability": 0.6303 + }, + { + "start": 12742.25, + "end": 12742.87, + "probability": 0.4177 + }, + { + "start": 12742.93, + "end": 12744.23, + "probability": 0.171 + }, + { + "start": 12744.23, + "end": 12744.27, + "probability": 0.6023 + }, + { + "start": 12744.43, + "end": 12744.99, + "probability": 0.573 + }, + { + "start": 12745.41, + "end": 12746.89, + "probability": 0.4978 + }, + { + "start": 12746.99, + "end": 12749.29, + "probability": 0.9229 + }, + { + "start": 12749.55, + "end": 12753.53, + "probability": 0.998 + }, + { + "start": 12753.72, + "end": 12754.99, + "probability": 0.8387 + }, + { + "start": 12755.13, + "end": 12755.93, + "probability": 0.8485 + }, + { + "start": 12756.11, + "end": 12760.41, + "probability": 0.9956 + }, + { + "start": 12760.51, + "end": 12763.42, + "probability": 0.6342 + }, + { + "start": 12764.45, + "end": 12765.11, + "probability": 0.578 + }, + { + "start": 12765.19, + "end": 12767.97, + "probability": 0.7743 + }, + { + "start": 12768.09, + "end": 12768.35, + "probability": 0.2759 + }, + { + "start": 12768.39, + "end": 12768.49, + "probability": 0.2523 + }, + { + "start": 12768.49, + "end": 12769.13, + "probability": 0.8044 + }, + { + "start": 12769.71, + "end": 12770.93, + "probability": 0.8497 + }, + { + "start": 12772.49, + "end": 12772.63, + "probability": 0.1689 + }, + { + "start": 12772.63, + "end": 12774.39, + "probability": 0.7436 + }, + { + "start": 12775.23, + "end": 12778.83, + "probability": 0.8453 + }, + { + "start": 12787.21, + "end": 12790.53, + "probability": 0.6647 + }, + { + "start": 12791.47, + "end": 12793.47, + "probability": 0.9944 + }, + { + "start": 12794.41, + "end": 12796.51, + "probability": 0.9692 + }, + { + "start": 12797.27, + "end": 12797.41, + "probability": 0.1037 + }, + { + "start": 12797.41, + "end": 12800.01, + "probability": 0.9899 + }, + { + "start": 12800.63, + "end": 12802.01, + "probability": 0.8858 + }, + { + "start": 12802.09, + "end": 12805.03, + "probability": 0.1128 + }, + { + "start": 12805.59, + "end": 12805.59, + "probability": 0.5066 + }, + { + "start": 12805.61, + "end": 12807.97, + "probability": 0.34 + }, + { + "start": 12807.99, + "end": 12810.15, + "probability": 0.7831 + }, + { + "start": 12810.53, + "end": 12812.43, + "probability": 0.1564 + }, + { + "start": 12812.67, + "end": 12818.97, + "probability": 0.7652 + }, + { + "start": 12819.99, + "end": 12821.13, + "probability": 0.9002 + }, + { + "start": 12821.67, + "end": 12824.15, + "probability": 0.7516 + }, + { + "start": 12824.19, + "end": 12825.05, + "probability": 0.1017 + }, + { + "start": 12825.07, + "end": 12825.07, + "probability": 0.2677 + }, + { + "start": 12825.19, + "end": 12825.41, + "probability": 0.4902 + }, + { + "start": 12825.41, + "end": 12827.87, + "probability": 0.1406 + }, + { + "start": 12828.37, + "end": 12829.73, + "probability": 0.4241 + }, + { + "start": 12830.09, + "end": 12832.61, + "probability": 0.1271 + }, + { + "start": 12832.77, + "end": 12834.64, + "probability": 0.1213 + }, + { + "start": 12834.99, + "end": 12837.91, + "probability": 0.2164 + }, + { + "start": 12838.36, + "end": 12840.65, + "probability": 0.0536 + }, + { + "start": 12844.75, + "end": 12846.47, + "probability": 0.435 + }, + { + "start": 12848.21, + "end": 12848.79, + "probability": 0.035 + }, + { + "start": 12848.79, + "end": 12848.79, + "probability": 0.265 + }, + { + "start": 12848.79, + "end": 12850.13, + "probability": 0.6739 + }, + { + "start": 12851.39, + "end": 12854.23, + "probability": 0.1707 + }, + { + "start": 12856.23, + "end": 12856.99, + "probability": 0.1294 + }, + { + "start": 12859.21, + "end": 12866.51, + "probability": 0.1315 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12876.0, + "end": 12876.0, + "probability": 0.0 + }, + { + "start": 12877.58, + "end": 12877.68, + "probability": 0.042 + }, + { + "start": 12877.68, + "end": 12878.24, + "probability": 0.8094 + }, + { + "start": 12878.64, + "end": 12880.26, + "probability": 0.146 + }, + { + "start": 12880.44, + "end": 12881.2, + "probability": 0.961 + }, + { + "start": 12882.3, + "end": 12883.02, + "probability": 0.864 + }, + { + "start": 12883.04, + "end": 12884.82, + "probability": 0.5601 + }, + { + "start": 12885.04, + "end": 12885.22, + "probability": 0.1989 + }, + { + "start": 12885.84, + "end": 12886.02, + "probability": 0.2675 + }, + { + "start": 12886.02, + "end": 12886.22, + "probability": 0.2346 + }, + { + "start": 12886.68, + "end": 12887.46, + "probability": 0.8726 + }, + { + "start": 12887.48, + "end": 12891.6, + "probability": 0.8018 + }, + { + "start": 12891.82, + "end": 12895.3, + "probability": 0.9412 + }, + { + "start": 12895.32, + "end": 12900.5, + "probability": 0.9667 + }, + { + "start": 12901.32, + "end": 12907.66, + "probability": 0.9951 + }, + { + "start": 12907.74, + "end": 12909.58, + "probability": 0.7856 + }, + { + "start": 12910.06, + "end": 12913.76, + "probability": 0.9343 + }, + { + "start": 12914.34, + "end": 12914.92, + "probability": 0.9806 + }, + { + "start": 12915.72, + "end": 12916.74, + "probability": 0.9144 + }, + { + "start": 12917.46, + "end": 12923.12, + "probability": 0.9893 + }, + { + "start": 12924.04, + "end": 12928.3, + "probability": 0.9888 + }, + { + "start": 12929.02, + "end": 12929.7, + "probability": 0.8137 + }, + { + "start": 12930.24, + "end": 12933.4, + "probability": 0.9318 + }, + { + "start": 12933.62, + "end": 12934.06, + "probability": 0.8491 + }, + { + "start": 12934.54, + "end": 12935.16, + "probability": 0.6071 + }, + { + "start": 12935.16, + "end": 12937.14, + "probability": 0.7466 + }, + { + "start": 12937.42, + "end": 12938.5, + "probability": 0.025 + }, + { + "start": 12941.9, + "end": 12943.42, + "probability": 0.1505 + }, + { + "start": 12944.02, + "end": 12945.18, + "probability": 0.0012 + }, + { + "start": 12950.8, + "end": 12951.86, + "probability": 0.6565 + }, + { + "start": 12952.0, + "end": 12953.6, + "probability": 0.804 + }, + { + "start": 12953.68, + "end": 12955.68, + "probability": 0.4586 + }, + { + "start": 12956.72, + "end": 12958.54, + "probability": 0.9655 + }, + { + "start": 12958.72, + "end": 12959.54, + "probability": 0.9585 + }, + { + "start": 12959.76, + "end": 12960.9, + "probability": 0.9287 + }, + { + "start": 12960.96, + "end": 12962.14, + "probability": 0.6003 + }, + { + "start": 12962.94, + "end": 12966.32, + "probability": 0.9119 + }, + { + "start": 12967.12, + "end": 12973.22, + "probability": 0.9917 + }, + { + "start": 12974.12, + "end": 12976.36, + "probability": 0.2478 + }, + { + "start": 12976.52, + "end": 12980.46, + "probability": 0.9332 + }, + { + "start": 12980.46, + "end": 12986.28, + "probability": 0.9343 + }, + { + "start": 12986.94, + "end": 12988.52, + "probability": 0.8844 + }, + { + "start": 12988.68, + "end": 12994.78, + "probability": 0.9886 + }, + { + "start": 12994.92, + "end": 12995.56, + "probability": 0.8653 + }, + { + "start": 12996.48, + "end": 12998.68, + "probability": 0.993 + }, + { + "start": 12999.36, + "end": 13002.14, + "probability": 0.9745 + }, + { + "start": 13002.78, + "end": 13003.9, + "probability": 0.7202 + }, + { + "start": 13004.44, + "end": 13005.36, + "probability": 0.7748 + }, + { + "start": 13005.88, + "end": 13006.86, + "probability": 0.5984 + }, + { + "start": 13007.36, + "end": 13012.24, + "probability": 0.9711 + }, + { + "start": 13012.26, + "end": 13012.88, + "probability": 0.3627 + }, + { + "start": 13013.66, + "end": 13014.5, + "probability": 0.2447 + }, + { + "start": 13014.5, + "end": 13014.5, + "probability": 0.2012 + }, + { + "start": 13014.5, + "end": 13014.5, + "probability": 0.3027 + }, + { + "start": 13014.5, + "end": 13015.9, + "probability": 0.3314 + }, + { + "start": 13016.5, + "end": 13020.36, + "probability": 0.9449 + }, + { + "start": 13020.9, + "end": 13022.6, + "probability": 0.9955 + }, + { + "start": 13022.72, + "end": 13023.34, + "probability": 0.8248 + }, + { + "start": 13023.62, + "end": 13024.94, + "probability": 0.9155 + }, + { + "start": 13025.32, + "end": 13026.9, + "probability": 0.9324 + }, + { + "start": 13027.02, + "end": 13028.16, + "probability": 0.9493 + }, + { + "start": 13028.2, + "end": 13028.48, + "probability": 0.8628 + }, + { + "start": 13028.54, + "end": 13031.98, + "probability": 0.9829 + }, + { + "start": 13032.6, + "end": 13036.48, + "probability": 0.9277 + }, + { + "start": 13037.02, + "end": 13040.14, + "probability": 0.9792 + }, + { + "start": 13040.66, + "end": 13043.3, + "probability": 0.9266 + }, + { + "start": 13044.06, + "end": 13047.44, + "probability": 0.9492 + }, + { + "start": 13048.14, + "end": 13049.62, + "probability": 0.9251 + }, + { + "start": 13050.08, + "end": 13052.34, + "probability": 0.983 + }, + { + "start": 13052.38, + "end": 13053.76, + "probability": 0.9906 + }, + { + "start": 13053.9, + "end": 13055.8, + "probability": 0.9722 + }, + { + "start": 13056.3, + "end": 13057.38, + "probability": 0.6369 + }, + { + "start": 13057.7, + "end": 13058.44, + "probability": 0.8873 + }, + { + "start": 13058.74, + "end": 13059.44, + "probability": 0.4669 + }, + { + "start": 13059.98, + "end": 13061.0, + "probability": 0.956 + }, + { + "start": 13061.1, + "end": 13063.1, + "probability": 0.9452 + }, + { + "start": 13063.28, + "end": 13064.31, + "probability": 0.9922 + }, + { + "start": 13064.9, + "end": 13067.64, + "probability": 0.9851 + }, + { + "start": 13068.1, + "end": 13070.18, + "probability": 0.9971 + }, + { + "start": 13070.84, + "end": 13073.66, + "probability": 0.9946 + }, + { + "start": 13074.04, + "end": 13076.64, + "probability": 0.988 + }, + { + "start": 13076.64, + "end": 13078.98, + "probability": 0.8994 + }, + { + "start": 13079.36, + "end": 13081.16, + "probability": 0.9963 + }, + { + "start": 13081.3, + "end": 13081.78, + "probability": 0.551 + }, + { + "start": 13082.2, + "end": 13085.2, + "probability": 0.6412 + }, + { + "start": 13085.76, + "end": 13086.93, + "probability": 0.7069 + }, + { + "start": 13087.6, + "end": 13088.36, + "probability": 0.8923 + }, + { + "start": 13088.44, + "end": 13088.88, + "probability": 0.9775 + }, + { + "start": 13088.98, + "end": 13089.52, + "probability": 0.7643 + }, + { + "start": 13089.9, + "end": 13092.71, + "probability": 0.9948 + }, + { + "start": 13093.44, + "end": 13094.64, + "probability": 0.9805 + }, + { + "start": 13095.14, + "end": 13100.92, + "probability": 0.9958 + }, + { + "start": 13101.04, + "end": 13105.08, + "probability": 0.9808 + }, + { + "start": 13105.68, + "end": 13108.8, + "probability": 0.9644 + }, + { + "start": 13109.36, + "end": 13110.24, + "probability": 0.7178 + }, + { + "start": 13110.32, + "end": 13111.1, + "probability": 0.812 + }, + { + "start": 13111.62, + "end": 13113.5, + "probability": 0.9814 + }, + { + "start": 13113.92, + "end": 13120.64, + "probability": 0.9614 + }, + { + "start": 13121.34, + "end": 13124.08, + "probability": 0.9944 + }, + { + "start": 13124.86, + "end": 13125.42, + "probability": 0.5531 + }, + { + "start": 13125.6, + "end": 13128.52, + "probability": 0.9385 + }, + { + "start": 13141.12, + "end": 13142.34, + "probability": 0.7248 + }, + { + "start": 13143.52, + "end": 13144.48, + "probability": 0.8424 + }, + { + "start": 13145.08, + "end": 13147.28, + "probability": 0.9846 + }, + { + "start": 13147.5, + "end": 13149.32, + "probability": 0.9958 + }, + { + "start": 13150.02, + "end": 13154.86, + "probability": 0.9972 + }, + { + "start": 13155.06, + "end": 13155.34, + "probability": 0.7199 + }, + { + "start": 13155.34, + "end": 13156.98, + "probability": 0.9593 + }, + { + "start": 13157.04, + "end": 13158.76, + "probability": 0.906 + }, + { + "start": 13158.8, + "end": 13162.58, + "probability": 0.8511 + }, + { + "start": 13163.18, + "end": 13167.1, + "probability": 0.9888 + }, + { + "start": 13168.36, + "end": 13169.84, + "probability": 0.7896 + }, + { + "start": 13171.0, + "end": 13171.52, + "probability": 0.5035 + }, + { + "start": 13171.7, + "end": 13176.28, + "probability": 0.9829 + }, + { + "start": 13176.42, + "end": 13177.88, + "probability": 0.8025 + }, + { + "start": 13179.26, + "end": 13179.8, + "probability": 0.9109 + }, + { + "start": 13179.94, + "end": 13181.72, + "probability": 0.9835 + }, + { + "start": 13181.78, + "end": 13182.78, + "probability": 0.8537 + }, + { + "start": 13183.1, + "end": 13183.93, + "probability": 0.9932 + }, + { + "start": 13184.16, + "end": 13185.02, + "probability": 0.9653 + }, + { + "start": 13185.94, + "end": 13190.34, + "probability": 0.9136 + }, + { + "start": 13190.48, + "end": 13191.32, + "probability": 0.6882 + }, + { + "start": 13192.24, + "end": 13192.98, + "probability": 0.9331 + }, + { + "start": 13193.1, + "end": 13194.98, + "probability": 0.8618 + }, + { + "start": 13195.06, + "end": 13196.52, + "probability": 0.9489 + }, + { + "start": 13196.6, + "end": 13199.7, + "probability": 0.9963 + }, + { + "start": 13199.8, + "end": 13200.4, + "probability": 0.5465 + }, + { + "start": 13200.5, + "end": 13202.22, + "probability": 0.9875 + }, + { + "start": 13203.12, + "end": 13204.18, + "probability": 0.3373 + }, + { + "start": 13204.82, + "end": 13208.14, + "probability": 0.9654 + }, + { + "start": 13208.82, + "end": 13214.1, + "probability": 0.9622 + }, + { + "start": 13214.82, + "end": 13217.38, + "probability": 0.9744 + }, + { + "start": 13217.64, + "end": 13219.58, + "probability": 0.9851 + }, + { + "start": 13219.6, + "end": 13223.42, + "probability": 0.9988 + }, + { + "start": 13224.32, + "end": 13227.72, + "probability": 0.9056 + }, + { + "start": 13228.44, + "end": 13229.3, + "probability": 0.9696 + }, + { + "start": 13229.84, + "end": 13235.24, + "probability": 0.9784 + }, + { + "start": 13235.86, + "end": 13238.8, + "probability": 0.9158 + }, + { + "start": 13239.66, + "end": 13242.72, + "probability": 0.9163 + }, + { + "start": 13242.78, + "end": 13244.45, + "probability": 0.9161 + }, + { + "start": 13244.54, + "end": 13244.72, + "probability": 0.5468 + }, + { + "start": 13244.72, + "end": 13246.4, + "probability": 0.8209 + }, + { + "start": 13246.52, + "end": 13249.58, + "probability": 0.9392 + }, + { + "start": 13250.08, + "end": 13252.0, + "probability": 0.9854 + }, + { + "start": 13252.1, + "end": 13252.89, + "probability": 0.6133 + }, + { + "start": 13253.3, + "end": 13253.92, + "probability": 0.8846 + }, + { + "start": 13254.34, + "end": 13255.1, + "probability": 0.9199 + }, + { + "start": 13255.48, + "end": 13257.4, + "probability": 0.9946 + }, + { + "start": 13257.82, + "end": 13259.02, + "probability": 0.9834 + }, + { + "start": 13259.56, + "end": 13260.16, + "probability": 0.7727 + }, + { + "start": 13260.32, + "end": 13262.92, + "probability": 0.9896 + }, + { + "start": 13263.24, + "end": 13266.46, + "probability": 0.9834 + }, + { + "start": 13266.46, + "end": 13266.96, + "probability": 0.563 + }, + { + "start": 13267.08, + "end": 13267.5, + "probability": 0.7173 + }, + { + "start": 13267.86, + "end": 13272.08, + "probability": 0.9982 + }, + { + "start": 13272.7, + "end": 13273.56, + "probability": 0.5462 + }, + { + "start": 13273.7, + "end": 13276.08, + "probability": 0.9554 + }, + { + "start": 13276.14, + "end": 13277.18, + "probability": 0.9304 + }, + { + "start": 13277.9, + "end": 13280.34, + "probability": 0.9139 + }, + { + "start": 13281.38, + "end": 13283.04, + "probability": 0.7604 + }, + { + "start": 13283.32, + "end": 13285.92, + "probability": 0.9888 + }, + { + "start": 13286.02, + "end": 13287.0, + "probability": 0.729 + }, + { + "start": 13287.16, + "end": 13289.58, + "probability": 0.9916 + }, + { + "start": 13290.02, + "end": 13291.75, + "probability": 0.8605 + }, + { + "start": 13292.22, + "end": 13296.32, + "probability": 0.9724 + }, + { + "start": 13296.98, + "end": 13298.26, + "probability": 0.8521 + }, + { + "start": 13298.42, + "end": 13299.58, + "probability": 0.6721 + }, + { + "start": 13299.66, + "end": 13301.7, + "probability": 0.9563 + }, + { + "start": 13302.26, + "end": 13304.2, + "probability": 0.9909 + }, + { + "start": 13304.68, + "end": 13307.9, + "probability": 0.9939 + }, + { + "start": 13308.64, + "end": 13309.64, + "probability": 0.9717 + }, + { + "start": 13310.1, + "end": 13313.62, + "probability": 0.9917 + }, + { + "start": 13314.7, + "end": 13315.34, + "probability": 0.8928 + }, + { + "start": 13315.68, + "end": 13317.11, + "probability": 0.4963 + }, + { + "start": 13317.8, + "end": 13320.2, + "probability": 0.9926 + }, + { + "start": 13320.68, + "end": 13322.58, + "probability": 0.7704 + }, + { + "start": 13322.92, + "end": 13323.62, + "probability": 0.9415 + }, + { + "start": 13324.18, + "end": 13326.2, + "probability": 0.9919 + }, + { + "start": 13326.78, + "end": 13328.72, + "probability": 0.9927 + }, + { + "start": 13328.76, + "end": 13331.66, + "probability": 0.988 + }, + { + "start": 13332.1, + "end": 13332.76, + "probability": 0.497 + }, + { + "start": 13332.9, + "end": 13333.82, + "probability": 0.9529 + }, + { + "start": 13334.36, + "end": 13335.82, + "probability": 0.8821 + }, + { + "start": 13336.08, + "end": 13337.99, + "probability": 0.9746 + }, + { + "start": 13338.52, + "end": 13339.6, + "probability": 0.9841 + }, + { + "start": 13339.76, + "end": 13341.22, + "probability": 0.9699 + }, + { + "start": 13341.52, + "end": 13343.06, + "probability": 0.9434 + }, + { + "start": 13343.5, + "end": 13345.0, + "probability": 0.9427 + }, + { + "start": 13345.04, + "end": 13347.44, + "probability": 0.4809 + }, + { + "start": 13347.86, + "end": 13349.3, + "probability": 0.0476 + }, + { + "start": 13349.56, + "end": 13351.56, + "probability": 0.9606 + }, + { + "start": 13351.64, + "end": 13352.64, + "probability": 0.8831 + }, + { + "start": 13353.3, + "end": 13354.62, + "probability": 0.84 + }, + { + "start": 13354.66, + "end": 13356.42, + "probability": 0.9618 + }, + { + "start": 13356.64, + "end": 13357.18, + "probability": 0.9926 + }, + { + "start": 13357.76, + "end": 13359.5, + "probability": 0.9092 + }, + { + "start": 13359.74, + "end": 13360.76, + "probability": 0.802 + }, + { + "start": 13360.84, + "end": 13362.52, + "probability": 0.9549 + }, + { + "start": 13362.94, + "end": 13366.4, + "probability": 0.9294 + }, + { + "start": 13366.88, + "end": 13369.34, + "probability": 0.9893 + }, + { + "start": 13369.8, + "end": 13373.6, + "probability": 0.9831 + }, + { + "start": 13374.2, + "end": 13376.9, + "probability": 0.893 + }, + { + "start": 13377.3, + "end": 13377.98, + "probability": 0.8533 + }, + { + "start": 13378.12, + "end": 13379.22, + "probability": 0.7735 + }, + { + "start": 13379.26, + "end": 13379.38, + "probability": 0.3381 + }, + { + "start": 13379.38, + "end": 13379.38, + "probability": 0.1483 + }, + { + "start": 13379.38, + "end": 13379.38, + "probability": 0.1822 + }, + { + "start": 13379.38, + "end": 13381.4, + "probability": 0.7501 + }, + { + "start": 13381.42, + "end": 13384.1, + "probability": 0.8286 + }, + { + "start": 13384.2, + "end": 13385.86, + "probability": 0.9396 + }, + { + "start": 13385.86, + "end": 13386.96, + "probability": 0.6167 + }, + { + "start": 13387.14, + "end": 13388.06, + "probability": 0.9401 + }, + { + "start": 13406.98, + "end": 13410.96, + "probability": 0.6131 + }, + { + "start": 13411.04, + "end": 13412.46, + "probability": 0.9115 + }, + { + "start": 13412.5, + "end": 13413.68, + "probability": 0.6831 + }, + { + "start": 13414.32, + "end": 13416.32, + "probability": 0.8844 + }, + { + "start": 13416.88, + "end": 13418.56, + "probability": 0.9342 + }, + { + "start": 13418.8, + "end": 13420.28, + "probability": 0.708 + }, + { + "start": 13420.46, + "end": 13423.04, + "probability": 0.9074 + }, + { + "start": 13423.18, + "end": 13424.52, + "probability": 0.9888 + }, + { + "start": 13424.68, + "end": 13425.57, + "probability": 0.9336 + }, + { + "start": 13425.94, + "end": 13427.22, + "probability": 0.1412 + }, + { + "start": 13427.42, + "end": 13430.6, + "probability": 0.9611 + }, + { + "start": 13431.88, + "end": 13433.88, + "probability": 0.9941 + }, + { + "start": 13434.26, + "end": 13434.26, + "probability": 0.2244 + }, + { + "start": 13434.62, + "end": 13435.52, + "probability": 0.8521 + }, + { + "start": 13435.66, + "end": 13436.16, + "probability": 0.4647 + }, + { + "start": 13436.16, + "end": 13437.2, + "probability": 0.9666 + }, + { + "start": 13437.72, + "end": 13439.76, + "probability": 0.9897 + }, + { + "start": 13439.88, + "end": 13443.22, + "probability": 0.8649 + }, + { + "start": 13443.34, + "end": 13444.42, + "probability": 0.6118 + }, + { + "start": 13444.52, + "end": 13445.56, + "probability": 0.9668 + }, + { + "start": 13446.34, + "end": 13447.02, + "probability": 0.5288 + }, + { + "start": 13447.1, + "end": 13447.76, + "probability": 0.5721 + }, + { + "start": 13447.84, + "end": 13448.78, + "probability": 0.6363 + }, + { + "start": 13449.42, + "end": 13452.22, + "probability": 0.7772 + }, + { + "start": 13453.18, + "end": 13455.97, + "probability": 0.9207 + }, + { + "start": 13456.24, + "end": 13457.84, + "probability": 0.5503 + }, + { + "start": 13461.13, + "end": 13461.82, + "probability": 0.1501 + }, + { + "start": 13462.01, + "end": 13462.36, + "probability": 0.1288 + }, + { + "start": 13462.36, + "end": 13463.34, + "probability": 0.8889 + }, + { + "start": 13463.46, + "end": 13464.12, + "probability": 0.9333 + }, + { + "start": 13464.3, + "end": 13465.3, + "probability": 0.6777 + }, + { + "start": 13465.34, + "end": 13466.36, + "probability": 0.9248 + }, + { + "start": 13466.44, + "end": 13466.82, + "probability": 0.394 + }, + { + "start": 13466.82, + "end": 13466.92, + "probability": 0.5704 + }, + { + "start": 13467.02, + "end": 13467.38, + "probability": 0.7192 + }, + { + "start": 13467.82, + "end": 13471.42, + "probability": 0.9952 + }, + { + "start": 13471.86, + "end": 13472.06, + "probability": 0.5701 + }, + { + "start": 13472.26, + "end": 13472.71, + "probability": 0.9371 + }, + { + "start": 13473.46, + "end": 13475.34, + "probability": 0.9504 + }, + { + "start": 13475.52, + "end": 13477.53, + "probability": 0.95 + }, + { + "start": 13478.12, + "end": 13481.16, + "probability": 0.707 + }, + { + "start": 13481.28, + "end": 13482.12, + "probability": 0.9382 + }, + { + "start": 13482.84, + "end": 13483.77, + "probability": 0.9983 + }, + { + "start": 13484.82, + "end": 13485.86, + "probability": 0.9995 + }, + { + "start": 13486.06, + "end": 13486.9, + "probability": 0.6822 + }, + { + "start": 13486.94, + "end": 13487.82, + "probability": 0.9355 + }, + { + "start": 13487.9, + "end": 13488.84, + "probability": 0.9674 + }, + { + "start": 13488.88, + "end": 13489.92, + "probability": 0.9414 + }, + { + "start": 13490.26, + "end": 13494.66, + "probability": 0.9981 + }, + { + "start": 13495.16, + "end": 13499.42, + "probability": 0.9992 + }, + { + "start": 13499.9, + "end": 13500.86, + "probability": 0.8022 + }, + { + "start": 13501.06, + "end": 13503.12, + "probability": 0.6847 + }, + { + "start": 13503.74, + "end": 13505.7, + "probability": 0.8566 + }, + { + "start": 13506.32, + "end": 13507.11, + "probability": 0.9133 + }, + { + "start": 13507.88, + "end": 13510.38, + "probability": 0.8471 + }, + { + "start": 13510.82, + "end": 13512.44, + "probability": 0.9668 + }, + { + "start": 13512.58, + "end": 13515.04, + "probability": 0.9834 + }, + { + "start": 13515.08, + "end": 13516.82, + "probability": 0.8058 + }, + { + "start": 13517.22, + "end": 13518.72, + "probability": 0.871 + }, + { + "start": 13519.46, + "end": 13520.21, + "probability": 0.6777 + }, + { + "start": 13520.66, + "end": 13523.7, + "probability": 0.9919 + }, + { + "start": 13524.2, + "end": 13525.34, + "probability": 0.0065 + }, + { + "start": 13526.5, + "end": 13526.98, + "probability": 0.8414 + }, + { + "start": 13527.0, + "end": 13527.65, + "probability": 0.6279 + }, + { + "start": 13528.2, + "end": 13529.88, + "probability": 0.6614 + }, + { + "start": 13530.02, + "end": 13530.38, + "probability": 0.2873 + }, + { + "start": 13530.74, + "end": 13532.72, + "probability": 0.7504 + }, + { + "start": 13533.48, + "end": 13534.92, + "probability": 0.8169 + }, + { + "start": 13534.96, + "end": 13537.34, + "probability": 0.9806 + }, + { + "start": 13537.4, + "end": 13539.88, + "probability": 0.9688 + }, + { + "start": 13540.22, + "end": 13541.12, + "probability": 0.848 + }, + { + "start": 13541.52, + "end": 13543.74, + "probability": 0.9844 + }, + { + "start": 13544.38, + "end": 13545.92, + "probability": 0.9869 + }, + { + "start": 13546.54, + "end": 13546.68, + "probability": 0.8782 + }, + { + "start": 13547.76, + "end": 13548.22, + "probability": 0.4822 + }, + { + "start": 13550.78, + "end": 13553.18, + "probability": 0.9469 + }, + { + "start": 13553.76, + "end": 13554.28, + "probability": 0.9775 + }, + { + "start": 13555.04, + "end": 13555.78, + "probability": 0.953 + }, + { + "start": 13556.04, + "end": 13557.7, + "probability": 0.9863 + }, + { + "start": 13558.0, + "end": 13559.32, + "probability": 0.7101 + }, + { + "start": 13560.14, + "end": 13560.24, + "probability": 0.2635 + }, + { + "start": 13560.54, + "end": 13561.56, + "probability": 0.9153 + }, + { + "start": 13561.82, + "end": 13566.54, + "probability": 0.9701 + }, + { + "start": 13566.78, + "end": 13567.55, + "probability": 0.9307 + }, + { + "start": 13569.44, + "end": 13570.64, + "probability": 0.6948 + }, + { + "start": 13571.18, + "end": 13574.24, + "probability": 0.9291 + }, + { + "start": 13574.96, + "end": 13580.1, + "probability": 0.8553 + }, + { + "start": 13580.2, + "end": 13580.5, + "probability": 0.8846 + }, + { + "start": 13581.08, + "end": 13581.8, + "probability": 0.986 + }, + { + "start": 13582.64, + "end": 13585.62, + "probability": 0.9554 + }, + { + "start": 13586.52, + "end": 13590.24, + "probability": 0.8992 + }, + { + "start": 13590.36, + "end": 13590.85, + "probability": 0.922 + }, + { + "start": 13591.0, + "end": 13591.46, + "probability": 0.7847 + }, + { + "start": 13591.48, + "end": 13593.66, + "probability": 0.9255 + }, + { + "start": 13594.4, + "end": 13595.84, + "probability": 0.9742 + }, + { + "start": 13595.94, + "end": 13597.6, + "probability": 0.8918 + }, + { + "start": 13597.9, + "end": 13600.42, + "probability": 0.9764 + }, + { + "start": 13600.86, + "end": 13602.7, + "probability": 0.9775 + }, + { + "start": 13603.1, + "end": 13604.72, + "probability": 0.807 + }, + { + "start": 13605.38, + "end": 13606.58, + "probability": 0.9917 + }, + { + "start": 13606.7, + "end": 13607.38, + "probability": 0.8661 + }, + { + "start": 13607.46, + "end": 13608.36, + "probability": 0.8818 + }, + { + "start": 13608.44, + "end": 13609.38, + "probability": 0.9641 + }, + { + "start": 13609.82, + "end": 13610.6, + "probability": 0.9663 + }, + { + "start": 13610.66, + "end": 13611.36, + "probability": 0.9834 + }, + { + "start": 13611.58, + "end": 13612.16, + "probability": 0.939 + }, + { + "start": 13612.8, + "end": 13616.36, + "probability": 0.9847 + }, + { + "start": 13616.5, + "end": 13621.66, + "probability": 0.7632 + }, + { + "start": 13622.22, + "end": 13623.73, + "probability": 0.5594 + }, + { + "start": 13624.4, + "end": 13626.02, + "probability": 0.1355 + }, + { + "start": 13627.06, + "end": 13627.46, + "probability": 0.0498 + }, + { + "start": 13627.46, + "end": 13627.82, + "probability": 0.0465 + }, + { + "start": 13627.82, + "end": 13627.82, + "probability": 0.0923 + }, + { + "start": 13627.82, + "end": 13628.1, + "probability": 0.2917 + }, + { + "start": 13628.78, + "end": 13629.34, + "probability": 0.7482 + }, + { + "start": 13629.44, + "end": 13629.64, + "probability": 0.4765 + }, + { + "start": 13629.64, + "end": 13630.43, + "probability": 0.7299 + }, + { + "start": 13630.74, + "end": 13632.12, + "probability": 0.9376 + }, + { + "start": 13632.22, + "end": 13633.14, + "probability": 0.8046 + }, + { + "start": 13633.36, + "end": 13637.18, + "probability": 0.9931 + }, + { + "start": 13637.66, + "end": 13639.32, + "probability": 0.9777 + }, + { + "start": 13639.66, + "end": 13643.74, + "probability": 0.1525 + }, + { + "start": 13643.74, + "end": 13644.96, + "probability": 0.2838 + }, + { + "start": 13647.18, + "end": 13647.32, + "probability": 0.0228 + }, + { + "start": 13647.32, + "end": 13647.38, + "probability": 0.0985 + }, + { + "start": 13647.38, + "end": 13647.38, + "probability": 0.0468 + }, + { + "start": 13647.38, + "end": 13647.38, + "probability": 0.1215 + }, + { + "start": 13647.38, + "end": 13648.7, + "probability": 0.0871 + }, + { + "start": 13649.04, + "end": 13651.48, + "probability": 0.4 + }, + { + "start": 13651.58, + "end": 13651.6, + "probability": 0.3297 + }, + { + "start": 13651.6, + "end": 13652.54, + "probability": 0.5823 + }, + { + "start": 13652.74, + "end": 13654.34, + "probability": 0.6322 + }, + { + "start": 13654.36, + "end": 13657.04, + "probability": 0.9729 + }, + { + "start": 13657.18, + "end": 13658.8, + "probability": 0.9961 + }, + { + "start": 13658.98, + "end": 13660.7, + "probability": 0.5458 + }, + { + "start": 13660.94, + "end": 13663.16, + "probability": 0.9976 + }, + { + "start": 13663.56, + "end": 13667.06, + "probability": 0.9934 + }, + { + "start": 13667.98, + "end": 13668.52, + "probability": 0.7534 + }, + { + "start": 13668.98, + "end": 13669.72, + "probability": 0.6714 + }, + { + "start": 13670.02, + "end": 13672.42, + "probability": 0.9304 + }, + { + "start": 13697.66, + "end": 13698.76, + "probability": 0.6495 + }, + { + "start": 13698.82, + "end": 13699.84, + "probability": 0.8575 + }, + { + "start": 13700.34, + "end": 13702.18, + "probability": 0.9397 + }, + { + "start": 13702.72, + "end": 13703.84, + "probability": 0.762 + }, + { + "start": 13704.18, + "end": 13704.18, + "probability": 0.5717 + }, + { + "start": 13704.32, + "end": 13706.48, + "probability": 0.8834 + }, + { + "start": 13707.74, + "end": 13711.62, + "probability": 0.988 + }, + { + "start": 13712.26, + "end": 13713.78, + "probability": 0.9722 + }, + { + "start": 13714.82, + "end": 13716.7, + "probability": 0.8687 + }, + { + "start": 13717.32, + "end": 13718.0, + "probability": 0.1034 + }, + { + "start": 13718.12, + "end": 13721.48, + "probability": 0.9888 + }, + { + "start": 13722.14, + "end": 13726.6, + "probability": 0.9327 + }, + { + "start": 13726.86, + "end": 13728.96, + "probability": 0.7048 + }, + { + "start": 13729.34, + "end": 13729.58, + "probability": 0.7803 + }, + { + "start": 13730.98, + "end": 13733.82, + "probability": 0.9968 + }, + { + "start": 13733.82, + "end": 13738.48, + "probability": 0.9958 + }, + { + "start": 13739.74, + "end": 13743.38, + "probability": 0.9982 + }, + { + "start": 13743.96, + "end": 13746.5, + "probability": 0.9947 + }, + { + "start": 13747.52, + "end": 13749.66, + "probability": 0.8174 + }, + { + "start": 13750.36, + "end": 13753.02, + "probability": 0.8192 + }, + { + "start": 13753.88, + "end": 13757.7, + "probability": 0.9975 + }, + { + "start": 13758.18, + "end": 13761.78, + "probability": 0.9972 + }, + { + "start": 13762.84, + "end": 13767.36, + "probability": 0.9981 + }, + { + "start": 13768.0, + "end": 13772.1, + "probability": 0.9702 + }, + { + "start": 13773.12, + "end": 13776.94, + "probability": 0.9964 + }, + { + "start": 13778.66, + "end": 13781.26, + "probability": 0.9883 + }, + { + "start": 13781.26, + "end": 13785.4, + "probability": 0.9988 + }, + { + "start": 13787.76, + "end": 13788.26, + "probability": 0.6925 + }, + { + "start": 13789.4, + "end": 13792.4, + "probability": 0.9863 + }, + { + "start": 13793.08, + "end": 13794.54, + "probability": 0.9185 + }, + { + "start": 13794.74, + "end": 13795.78, + "probability": 0.9931 + }, + { + "start": 13795.88, + "end": 13797.52, + "probability": 0.9885 + }, + { + "start": 13798.26, + "end": 13801.16, + "probability": 0.9962 + }, + { + "start": 13801.16, + "end": 13805.4, + "probability": 0.9935 + }, + { + "start": 13805.98, + "end": 13809.48, + "probability": 0.9889 + }, + { + "start": 13809.48, + "end": 13812.9, + "probability": 0.9988 + }, + { + "start": 13813.62, + "end": 13814.22, + "probability": 0.8719 + }, + { + "start": 13814.76, + "end": 13816.92, + "probability": 0.9827 + }, + { + "start": 13817.68, + "end": 13824.16, + "probability": 0.9982 + }, + { + "start": 13825.7, + "end": 13827.58, + "probability": 0.9929 + }, + { + "start": 13828.5, + "end": 13833.14, + "probability": 0.9926 + }, + { + "start": 13834.32, + "end": 13839.02, + "probability": 0.9984 + }, + { + "start": 13840.36, + "end": 13843.42, + "probability": 0.9958 + }, + { + "start": 13844.02, + "end": 13848.46, + "probability": 0.9964 + }, + { + "start": 13849.16, + "end": 13852.08, + "probability": 0.9908 + }, + { + "start": 13852.08, + "end": 13856.16, + "probability": 0.9963 + }, + { + "start": 13857.2, + "end": 13857.74, + "probability": 0.9723 + }, + { + "start": 13858.78, + "end": 13858.78, + "probability": 0.0032 + }, + { + "start": 13858.78, + "end": 13858.78, + "probability": 0.0321 + }, + { + "start": 13858.78, + "end": 13862.68, + "probability": 0.9683 + }, + { + "start": 13863.64, + "end": 13864.52, + "probability": 0.7506 + }, + { + "start": 13864.52, + "end": 13864.52, + "probability": 0.6173 + }, + { + "start": 13864.54, + "end": 13864.86, + "probability": 0.7778 + }, + { + "start": 13864.98, + "end": 13867.12, + "probability": 0.844 + }, + { + "start": 13867.42, + "end": 13870.54, + "probability": 0.7953 + }, + { + "start": 13873.0, + "end": 13873.28, + "probability": 0.0078 + }, + { + "start": 13873.28, + "end": 13873.28, + "probability": 0.0259 + }, + { + "start": 13873.28, + "end": 13873.86, + "probability": 0.3281 + }, + { + "start": 13874.22, + "end": 13874.22, + "probability": 0.4286 + }, + { + "start": 13874.22, + "end": 13877.64, + "probability": 0.9951 + }, + { + "start": 13878.3, + "end": 13880.46, + "probability": 0.6303 + }, + { + "start": 13880.5, + "end": 13882.02, + "probability": 0.6462 + }, + { + "start": 13882.26, + "end": 13883.54, + "probability": 0.9722 + }, + { + "start": 13883.76, + "end": 13884.32, + "probability": 0.7189 + }, + { + "start": 13884.72, + "end": 13885.48, + "probability": 0.7147 + }, + { + "start": 13885.58, + "end": 13888.42, + "probability": 0.88 + }, + { + "start": 13888.66, + "end": 13889.6, + "probability": 0.7827 + }, + { + "start": 13890.1, + "end": 13892.44, + "probability": 0.9807 + }, + { + "start": 13892.62, + "end": 13893.46, + "probability": 0.3719 + }, + { + "start": 13893.68, + "end": 13895.8, + "probability": 0.9718 + }, + { + "start": 13898.5, + "end": 13898.66, + "probability": 0.0473 + }, + { + "start": 13906.52, + "end": 13907.38, + "probability": 0.2773 + }, + { + "start": 13909.86, + "end": 13910.86, + "probability": 0.3441 + }, + { + "start": 13911.2, + "end": 13913.7, + "probability": 0.7249 + }, + { + "start": 13913.8, + "end": 13914.72, + "probability": 0.9907 + }, + { + "start": 13916.1, + "end": 13920.58, + "probability": 0.7696 + }, + { + "start": 13923.45, + "end": 13925.54, + "probability": 0.8896 + }, + { + "start": 13925.64, + "end": 13926.86, + "probability": 0.6007 + }, + { + "start": 13927.04, + "end": 13927.78, + "probability": 0.8062 + }, + { + "start": 13927.84, + "end": 13932.74, + "probability": 0.9892 + }, + { + "start": 13933.5, + "end": 13934.7, + "probability": 0.9907 + }, + { + "start": 13935.7, + "end": 13937.26, + "probability": 0.7788 + }, + { + "start": 13940.18, + "end": 13941.6, + "probability": 0.902 + }, + { + "start": 13943.18, + "end": 13945.02, + "probability": 0.6685 + }, + { + "start": 13946.86, + "end": 13951.08, + "probability": 0.9987 + }, + { + "start": 13951.3, + "end": 13953.66, + "probability": 0.749 + }, + { + "start": 13954.82, + "end": 13957.33, + "probability": 0.6929 + }, + { + "start": 13958.14, + "end": 13958.98, + "probability": 0.9539 + }, + { + "start": 13959.76, + "end": 13960.64, + "probability": 0.8074 + }, + { + "start": 13961.24, + "end": 13962.48, + "probability": 0.9734 + }, + { + "start": 13963.04, + "end": 13964.61, + "probability": 0.9506 + }, + { + "start": 13964.98, + "end": 13966.26, + "probability": 0.9198 + }, + { + "start": 13967.96, + "end": 13971.44, + "probability": 0.9987 + }, + { + "start": 13973.68, + "end": 13977.12, + "probability": 0.9976 + }, + { + "start": 13979.02, + "end": 13982.24, + "probability": 0.9746 + }, + { + "start": 13982.98, + "end": 13984.5, + "probability": 0.7407 + }, + { + "start": 13985.58, + "end": 13987.98, + "probability": 0.8362 + }, + { + "start": 13991.27, + "end": 13993.94, + "probability": 0.9966 + }, + { + "start": 13995.98, + "end": 13999.74, + "probability": 0.8794 + }, + { + "start": 14002.36, + "end": 14006.6, + "probability": 0.9982 + }, + { + "start": 14007.62, + "end": 14008.5, + "probability": 0.9817 + }, + { + "start": 14010.04, + "end": 14012.56, + "probability": 0.9895 + }, + { + "start": 14015.0, + "end": 14015.76, + "probability": 0.9745 + }, + { + "start": 14016.24, + "end": 14016.98, + "probability": 0.8861 + }, + { + "start": 14017.06, + "end": 14018.4, + "probability": 0.9574 + }, + { + "start": 14019.66, + "end": 14020.31, + "probability": 0.9669 + }, + { + "start": 14022.52, + "end": 14023.06, + "probability": 0.979 + }, + { + "start": 14025.46, + "end": 14026.54, + "probability": 0.9973 + }, + { + "start": 14028.68, + "end": 14029.66, + "probability": 0.8319 + }, + { + "start": 14030.62, + "end": 14031.48, + "probability": 0.7979 + }, + { + "start": 14032.98, + "end": 14035.24, + "probability": 0.9899 + }, + { + "start": 14035.82, + "end": 14037.6, + "probability": 0.9749 + }, + { + "start": 14039.0, + "end": 14040.3, + "probability": 0.7995 + }, + { + "start": 14041.18, + "end": 14041.98, + "probability": 0.9028 + }, + { + "start": 14043.32, + "end": 14044.12, + "probability": 0.9528 + }, + { + "start": 14046.56, + "end": 14050.38, + "probability": 0.9854 + }, + { + "start": 14053.26, + "end": 14053.62, + "probability": 0.8296 + }, + { + "start": 14053.68, + "end": 14056.08, + "probability": 0.7933 + }, + { + "start": 14056.24, + "end": 14057.08, + "probability": 0.6779 + }, + { + "start": 14057.9, + "end": 14059.82, + "probability": 0.9443 + }, + { + "start": 14061.24, + "end": 14061.66, + "probability": 0.5625 + }, + { + "start": 14063.7, + "end": 14064.76, + "probability": 0.9313 + }, + { + "start": 14065.72, + "end": 14066.66, + "probability": 0.9766 + }, + { + "start": 14069.66, + "end": 14072.94, + "probability": 0.9661 + }, + { + "start": 14072.96, + "end": 14074.09, + "probability": 0.9128 + }, + { + "start": 14075.38, + "end": 14075.8, + "probability": 0.7208 + }, + { + "start": 14077.92, + "end": 14078.12, + "probability": 0.8345 + }, + { + "start": 14078.18, + "end": 14079.0, + "probability": 0.7537 + }, + { + "start": 14079.16, + "end": 14080.68, + "probability": 0.9957 + }, + { + "start": 14081.02, + "end": 14082.58, + "probability": 0.8573 + }, + { + "start": 14082.62, + "end": 14083.53, + "probability": 0.9677 + }, + { + "start": 14084.12, + "end": 14087.26, + "probability": 0.9502 + }, + { + "start": 14088.0, + "end": 14088.38, + "probability": 0.5174 + }, + { + "start": 14088.56, + "end": 14089.62, + "probability": 0.9451 + }, + { + "start": 14090.18, + "end": 14091.84, + "probability": 0.7448 + }, + { + "start": 14092.16, + "end": 14092.57, + "probability": 0.9893 + }, + { + "start": 14093.66, + "end": 14094.38, + "probability": 0.7678 + }, + { + "start": 14095.48, + "end": 14097.44, + "probability": 0.9352 + }, + { + "start": 14098.06, + "end": 14098.9, + "probability": 0.9932 + }, + { + "start": 14099.56, + "end": 14101.42, + "probability": 0.9934 + }, + { + "start": 14102.0, + "end": 14105.4, + "probability": 0.9568 + }, + { + "start": 14105.76, + "end": 14108.68, + "probability": 0.9976 + }, + { + "start": 14109.68, + "end": 14109.94, + "probability": 0.7789 + }, + { + "start": 14111.24, + "end": 14111.8, + "probability": 0.609 + }, + { + "start": 14111.9, + "end": 14113.46, + "probability": 0.9393 + }, + { + "start": 14113.62, + "end": 14114.22, + "probability": 0.7319 + }, + { + "start": 14114.46, + "end": 14115.7, + "probability": 0.8624 + }, + { + "start": 14116.66, + "end": 14118.44, + "probability": 0.6744 + }, + { + "start": 14119.08, + "end": 14121.96, + "probability": 0.971 + }, + { + "start": 14135.06, + "end": 14137.4, + "probability": 0.7519 + }, + { + "start": 14138.1, + "end": 14141.42, + "probability": 0.9852 + }, + { + "start": 14142.44, + "end": 14146.72, + "probability": 0.9948 + }, + { + "start": 14147.86, + "end": 14151.9, + "probability": 0.995 + }, + { + "start": 14152.48, + "end": 14156.0, + "probability": 0.9979 + }, + { + "start": 14156.56, + "end": 14159.46, + "probability": 0.9849 + }, + { + "start": 14160.62, + "end": 14162.44, + "probability": 0.9691 + }, + { + "start": 14162.66, + "end": 14166.42, + "probability": 0.9848 + }, + { + "start": 14167.02, + "end": 14170.96, + "probability": 0.9961 + }, + { + "start": 14171.54, + "end": 14173.76, + "probability": 0.9902 + }, + { + "start": 14173.96, + "end": 14178.14, + "probability": 0.9988 + }, + { + "start": 14179.1, + "end": 14184.56, + "probability": 0.9951 + }, + { + "start": 14185.58, + "end": 14186.58, + "probability": 0.7588 + }, + { + "start": 14187.2, + "end": 14188.88, + "probability": 0.7895 + }, + { + "start": 14189.1, + "end": 14189.44, + "probability": 0.7013 + }, + { + "start": 14189.98, + "end": 14191.08, + "probability": 0.824 + }, + { + "start": 14191.86, + "end": 14196.62, + "probability": 0.9785 + }, + { + "start": 14197.64, + "end": 14202.06, + "probability": 0.9844 + }, + { + "start": 14202.86, + "end": 14203.3, + "probability": 0.7378 + }, + { + "start": 14203.78, + "end": 14204.82, + "probability": 0.5543 + }, + { + "start": 14205.22, + "end": 14208.04, + "probability": 0.8649 + }, + { + "start": 14208.44, + "end": 14210.0, + "probability": 0.7152 + }, + { + "start": 14211.56, + "end": 14212.92, + "probability": 0.883 + }, + { + "start": 14213.74, + "end": 14217.22, + "probability": 0.9597 + }, + { + "start": 14217.74, + "end": 14219.42, + "probability": 0.8088 + }, + { + "start": 14220.36, + "end": 14225.0, + "probability": 0.9858 + }, + { + "start": 14225.44, + "end": 14229.5, + "probability": 0.9957 + }, + { + "start": 14230.2, + "end": 14236.62, + "probability": 0.955 + }, + { + "start": 14237.26, + "end": 14241.14, + "probability": 0.9326 + }, + { + "start": 14241.7, + "end": 14242.9, + "probability": 0.7142 + }, + { + "start": 14243.04, + "end": 14246.78, + "probability": 0.9919 + }, + { + "start": 14247.66, + "end": 14249.66, + "probability": 0.8257 + }, + { + "start": 14250.56, + "end": 14253.4, + "probability": 0.9952 + }, + { + "start": 14253.96, + "end": 14258.12, + "probability": 0.897 + }, + { + "start": 14259.0, + "end": 14261.88, + "probability": 0.9387 + }, + { + "start": 14262.8, + "end": 14264.28, + "probability": 0.9702 + }, + { + "start": 14265.28, + "end": 14267.0, + "probability": 0.9634 + }, + { + "start": 14267.78, + "end": 14269.56, + "probability": 0.9789 + }, + { + "start": 14270.24, + "end": 14274.38, + "probability": 0.9832 + }, + { + "start": 14275.94, + "end": 14279.5, + "probability": 0.9738 + }, + { + "start": 14280.32, + "end": 14284.96, + "probability": 0.9594 + }, + { + "start": 14287.06, + "end": 14290.3, + "probability": 0.9835 + }, + { + "start": 14290.54, + "end": 14293.74, + "probability": 0.9946 + }, + { + "start": 14294.14, + "end": 14296.56, + "probability": 0.7428 + }, + { + "start": 14296.74, + "end": 14300.66, + "probability": 0.9965 + }, + { + "start": 14300.66, + "end": 14304.16, + "probability": 0.9777 + }, + { + "start": 14304.76, + "end": 14309.04, + "probability": 0.9101 + }, + { + "start": 14309.88, + "end": 14310.46, + "probability": 0.8866 + }, + { + "start": 14311.34, + "end": 14312.14, + "probability": 0.7501 + }, + { + "start": 14312.7, + "end": 14314.76, + "probability": 0.9097 + }, + { + "start": 14315.26, + "end": 14318.3, + "probability": 0.9929 + }, + { + "start": 14318.46, + "end": 14319.56, + "probability": 0.8101 + }, + { + "start": 14319.82, + "end": 14321.24, + "probability": 0.4061 + }, + { + "start": 14322.32, + "end": 14324.52, + "probability": 0.8288 + }, + { + "start": 14325.3, + "end": 14330.3, + "probability": 0.9729 + }, + { + "start": 14331.06, + "end": 14336.62, + "probability": 0.9888 + }, + { + "start": 14337.36, + "end": 14337.96, + "probability": 0.5002 + }, + { + "start": 14338.08, + "end": 14339.52, + "probability": 0.8957 + }, + { + "start": 14340.84, + "end": 14341.82, + "probability": 0.0229 + }, + { + "start": 14342.94, + "end": 14343.98, + "probability": 0.7607 + }, + { + "start": 14344.18, + "end": 14345.0, + "probability": 0.6998 + }, + { + "start": 14345.78, + "end": 14349.66, + "probability": 0.4586 + }, + { + "start": 14349.94, + "end": 14351.9, + "probability": 0.4504 + }, + { + "start": 14352.34, + "end": 14354.8, + "probability": 0.9939 + }, + { + "start": 14354.94, + "end": 14355.32, + "probability": 0.3428 + }, + { + "start": 14355.48, + "end": 14356.2, + "probability": 0.6257 + }, + { + "start": 14356.2, + "end": 14356.5, + "probability": 0.7426 + }, + { + "start": 14356.54, + "end": 14358.76, + "probability": 0.9301 + }, + { + "start": 14358.78, + "end": 14360.3, + "probability": 0.6766 + }, + { + "start": 14362.0, + "end": 14366.24, + "probability": 0.9912 + }, + { + "start": 14367.1, + "end": 14367.48, + "probability": 0.8784 + }, + { + "start": 14367.72, + "end": 14367.94, + "probability": 0.2981 + }, + { + "start": 14367.94, + "end": 14368.54, + "probability": 0.3187 + }, + { + "start": 14369.14, + "end": 14369.34, + "probability": 0.0109 + }, + { + "start": 14369.34, + "end": 14369.64, + "probability": 0.6603 + }, + { + "start": 14372.28, + "end": 14375.38, + "probability": 0.2594 + }, + { + "start": 14375.66, + "end": 14376.42, + "probability": 0.9357 + }, + { + "start": 14377.24, + "end": 14378.28, + "probability": 0.6208 + }, + { + "start": 14378.42, + "end": 14380.54, + "probability": 0.5893 + }, + { + "start": 14383.58, + "end": 14385.88, + "probability": 0.6659 + }, + { + "start": 14385.88, + "end": 14386.3, + "probability": 0.7852 + }, + { + "start": 14386.9, + "end": 14387.74, + "probability": 0.5294 + }, + { + "start": 14387.88, + "end": 14389.35, + "probability": 0.7912 + }, + { + "start": 14392.64, + "end": 14395.2, + "probability": 0.9089 + }, + { + "start": 14395.78, + "end": 14397.14, + "probability": 0.6189 + }, + { + "start": 14398.04, + "end": 14398.66, + "probability": 0.5047 + }, + { + "start": 14398.66, + "end": 14398.84, + "probability": 0.2343 + }, + { + "start": 14398.84, + "end": 14398.96, + "probability": 0.4923 + }, + { + "start": 14398.96, + "end": 14398.96, + "probability": 0.5437 + }, + { + "start": 14398.96, + "end": 14404.33, + "probability": 0.9802 + }, + { + "start": 14404.56, + "end": 14409.66, + "probability": 0.9982 + }, + { + "start": 14410.36, + "end": 14412.0, + "probability": 0.7569 + }, + { + "start": 14412.14, + "end": 14415.88, + "probability": 0.9922 + }, + { + "start": 14416.46, + "end": 14417.26, + "probability": 0.8567 + }, + { + "start": 14418.06, + "end": 14420.76, + "probability": 0.9875 + }, + { + "start": 14420.76, + "end": 14424.52, + "probability": 0.9925 + }, + { + "start": 14425.14, + "end": 14427.94, + "probability": 0.8754 + }, + { + "start": 14428.2, + "end": 14428.76, + "probability": 0.8724 + }, + { + "start": 14429.0, + "end": 14433.98, + "probability": 0.9683 + }, + { + "start": 14435.06, + "end": 14438.06, + "probability": 0.8696 + }, + { + "start": 14438.86, + "end": 14445.22, + "probability": 0.9966 + }, + { + "start": 14446.04, + "end": 14450.38, + "probability": 0.998 + }, + { + "start": 14450.78, + "end": 14452.12, + "probability": 0.8706 + }, + { + "start": 14452.3, + "end": 14453.46, + "probability": 0.9124 + }, + { + "start": 14453.9, + "end": 14459.2, + "probability": 0.9929 + }, + { + "start": 14459.68, + "end": 14465.1, + "probability": 0.9974 + }, + { + "start": 14465.98, + "end": 14466.6, + "probability": 0.6324 + }, + { + "start": 14466.72, + "end": 14467.56, + "probability": 0.8586 + }, + { + "start": 14467.92, + "end": 14474.82, + "probability": 0.9972 + }, + { + "start": 14475.64, + "end": 14480.8, + "probability": 0.9917 + }, + { + "start": 14481.36, + "end": 14487.96, + "probability": 0.9938 + }, + { + "start": 14488.8, + "end": 14493.8, + "probability": 0.9972 + }, + { + "start": 14493.8, + "end": 14499.9, + "probability": 0.997 + }, + { + "start": 14500.58, + "end": 14502.26, + "probability": 0.8213 + }, + { + "start": 14502.86, + "end": 14505.2, + "probability": 0.998 + }, + { + "start": 14506.28, + "end": 14508.04, + "probability": 0.9459 + }, + { + "start": 14508.16, + "end": 14509.78, + "probability": 0.9728 + }, + { + "start": 14510.14, + "end": 14511.2, + "probability": 0.9631 + }, + { + "start": 14512.32, + "end": 14512.76, + "probability": 0.1968 + }, + { + "start": 14513.4, + "end": 14519.9, + "probability": 0.9945 + }, + { + "start": 14519.9, + "end": 14526.06, + "probability": 0.9956 + }, + { + "start": 14526.92, + "end": 14527.72, + "probability": 0.416 + }, + { + "start": 14528.2, + "end": 14531.62, + "probability": 0.9949 + }, + { + "start": 14532.1, + "end": 14536.3, + "probability": 0.8604 + }, + { + "start": 14536.8, + "end": 14537.46, + "probability": 0.9461 + }, + { + "start": 14537.6, + "end": 14539.16, + "probability": 0.9632 + }, + { + "start": 14539.96, + "end": 14545.04, + "probability": 0.9799 + }, + { + "start": 14545.68, + "end": 14546.22, + "probability": 0.618 + }, + { + "start": 14546.34, + "end": 14551.32, + "probability": 0.9465 + }, + { + "start": 14552.14, + "end": 14555.08, + "probability": 0.8827 + }, + { + "start": 14555.76, + "end": 14561.24, + "probability": 0.9917 + }, + { + "start": 14561.78, + "end": 14563.28, + "probability": 0.9772 + }, + { + "start": 14564.36, + "end": 14565.24, + "probability": 0.8534 + }, + { + "start": 14565.3, + "end": 14568.64, + "probability": 0.9779 + }, + { + "start": 14569.22, + "end": 14571.4, + "probability": 0.6774 + }, + { + "start": 14572.44, + "end": 14573.34, + "probability": 0.7504 + }, + { + "start": 14573.98, + "end": 14577.64, + "probability": 0.9886 + }, + { + "start": 14578.12, + "end": 14580.1, + "probability": 0.9751 + }, + { + "start": 14580.36, + "end": 14581.46, + "probability": 0.9725 + }, + { + "start": 14582.14, + "end": 14584.32, + "probability": 0.5204 + }, + { + "start": 14584.34, + "end": 14584.84, + "probability": 0.4957 + }, + { + "start": 14585.02, + "end": 14588.1, + "probability": 0.8472 + }, + { + "start": 14588.72, + "end": 14591.92, + "probability": 0.9673 + }, + { + "start": 14592.6, + "end": 14596.06, + "probability": 0.9151 + }, + { + "start": 14596.14, + "end": 14596.66, + "probability": 0.7676 + }, + { + "start": 14596.72, + "end": 14598.56, + "probability": 0.7939 + }, + { + "start": 14599.18, + "end": 14601.14, + "probability": 0.9935 + }, + { + "start": 14602.34, + "end": 14603.04, + "probability": 0.6321 + }, + { + "start": 14603.22, + "end": 14604.06, + "probability": 0.7601 + }, + { + "start": 14604.5, + "end": 14608.22, + "probability": 0.9832 + }, + { + "start": 14608.72, + "end": 14611.5, + "probability": 0.951 + }, + { + "start": 14611.92, + "end": 14616.18, + "probability": 0.9981 + }, + { + "start": 14616.88, + "end": 14620.46, + "probability": 0.8333 + }, + { + "start": 14620.56, + "end": 14620.84, + "probability": 0.1756 + }, + { + "start": 14620.84, + "end": 14620.92, + "probability": 0.3098 + }, + { + "start": 14620.94, + "end": 14623.76, + "probability": 0.969 + }, + { + "start": 14624.4, + "end": 14624.78, + "probability": 0.9955 + }, + { + "start": 14624.88, + "end": 14625.4, + "probability": 0.7056 + }, + { + "start": 14625.5, + "end": 14627.76, + "probability": 0.9636 + }, + { + "start": 14628.58, + "end": 14629.57, + "probability": 0.1144 + }, + { + "start": 14636.52, + "end": 14636.54, + "probability": 0.1099 + }, + { + "start": 14636.54, + "end": 14636.54, + "probability": 0.1809 + }, + { + "start": 14636.54, + "end": 14636.54, + "probability": 0.1407 + }, + { + "start": 14636.54, + "end": 14637.2, + "probability": 0.0241 + }, + { + "start": 14638.3, + "end": 14638.84, + "probability": 0.1785 + }, + { + "start": 14670.5, + "end": 14671.52, + "probability": 0.425 + }, + { + "start": 14673.4, + "end": 14677.16, + "probability": 0.8882 + }, + { + "start": 14678.28, + "end": 14680.06, + "probability": 0.9613 + }, + { + "start": 14681.88, + "end": 14684.7, + "probability": 0.9971 + }, + { + "start": 14685.84, + "end": 14692.76, + "probability": 0.987 + }, + { + "start": 14695.48, + "end": 14697.46, + "probability": 0.7044 + }, + { + "start": 14702.3, + "end": 14703.94, + "probability": 0.6616 + }, + { + "start": 14704.04, + "end": 14704.54, + "probability": 0.1693 + }, + { + "start": 14704.6, + "end": 14706.12, + "probability": 0.4542 + }, + { + "start": 14706.88, + "end": 14707.7, + "probability": 0.943 + }, + { + "start": 14711.6, + "end": 14717.08, + "probability": 0.9484 + }, + { + "start": 14718.14, + "end": 14720.26, + "probability": 0.9395 + }, + { + "start": 14721.22, + "end": 14723.86, + "probability": 0.9917 + }, + { + "start": 14723.96, + "end": 14726.48, + "probability": 0.949 + }, + { + "start": 14726.52, + "end": 14727.56, + "probability": 0.8252 + }, + { + "start": 14728.46, + "end": 14731.02, + "probability": 0.9936 + }, + { + "start": 14732.72, + "end": 14733.5, + "probability": 0.8254 + }, + { + "start": 14734.16, + "end": 14735.96, + "probability": 0.999 + }, + { + "start": 14736.92, + "end": 14739.62, + "probability": 0.9954 + }, + { + "start": 14739.74, + "end": 14741.78, + "probability": 0.8091 + }, + { + "start": 14743.02, + "end": 14745.86, + "probability": 0.9905 + }, + { + "start": 14746.72, + "end": 14748.76, + "probability": 0.9382 + }, + { + "start": 14749.44, + "end": 14754.52, + "probability": 0.998 + }, + { + "start": 14756.5, + "end": 14760.08, + "probability": 0.9805 + }, + { + "start": 14760.14, + "end": 14762.66, + "probability": 0.8019 + }, + { + "start": 14763.82, + "end": 14766.72, + "probability": 0.9951 + }, + { + "start": 14766.82, + "end": 14767.74, + "probability": 0.5185 + }, + { + "start": 14768.98, + "end": 14771.8, + "probability": 0.9956 + }, + { + "start": 14772.9, + "end": 14775.2, + "probability": 0.9693 + }, + { + "start": 14775.9, + "end": 14777.56, + "probability": 0.9562 + }, + { + "start": 14779.08, + "end": 14784.04, + "probability": 0.9819 + }, + { + "start": 14784.2, + "end": 14785.34, + "probability": 0.9934 + }, + { + "start": 14785.82, + "end": 14787.12, + "probability": 0.8919 + }, + { + "start": 14787.18, + "end": 14790.18, + "probability": 0.974 + }, + { + "start": 14790.8, + "end": 14791.88, + "probability": 0.936 + }, + { + "start": 14793.16, + "end": 14793.68, + "probability": 0.8813 + }, + { + "start": 14794.48, + "end": 14798.32, + "probability": 0.9963 + }, + { + "start": 14799.06, + "end": 14800.14, + "probability": 0.9883 + }, + { + "start": 14801.72, + "end": 14804.12, + "probability": 0.8101 + }, + { + "start": 14804.86, + "end": 14807.86, + "probability": 0.9686 + }, + { + "start": 14809.06, + "end": 14814.18, + "probability": 0.9973 + }, + { + "start": 14815.44, + "end": 14816.88, + "probability": 0.8964 + }, + { + "start": 14817.68, + "end": 14820.96, + "probability": 0.9895 + }, + { + "start": 14822.2, + "end": 14824.16, + "probability": 0.9888 + }, + { + "start": 14824.7, + "end": 14827.64, + "probability": 0.8035 + }, + { + "start": 14828.6, + "end": 14831.64, + "probability": 0.9733 + }, + { + "start": 14831.82, + "end": 14834.0, + "probability": 0.903 + }, + { + "start": 14835.52, + "end": 14836.02, + "probability": 0.8264 + }, + { + "start": 14837.08, + "end": 14840.78, + "probability": 0.7418 + }, + { + "start": 14841.58, + "end": 14844.14, + "probability": 0.8462 + }, + { + "start": 14845.28, + "end": 14847.8, + "probability": 0.9603 + }, + { + "start": 14848.8, + "end": 14854.86, + "probability": 0.8202 + }, + { + "start": 14855.98, + "end": 14858.66, + "probability": 0.8777 + }, + { + "start": 14859.96, + "end": 14862.92, + "probability": 0.828 + }, + { + "start": 14864.16, + "end": 14867.42, + "probability": 0.9941 + }, + { + "start": 14868.8, + "end": 14873.52, + "probability": 0.7164 + }, + { + "start": 14875.16, + "end": 14878.06, + "probability": 0.9966 + }, + { + "start": 14878.6, + "end": 14879.46, + "probability": 0.9617 + }, + { + "start": 14880.5, + "end": 14882.44, + "probability": 0.9095 + }, + { + "start": 14882.98, + "end": 14885.44, + "probability": 0.9987 + }, + { + "start": 14886.4, + "end": 14888.84, + "probability": 0.9639 + }, + { + "start": 14889.88, + "end": 14892.64, + "probability": 0.9405 + }, + { + "start": 14893.74, + "end": 14895.06, + "probability": 0.9953 + }, + { + "start": 14895.74, + "end": 14896.52, + "probability": 0.8662 + }, + { + "start": 14897.08, + "end": 14901.22, + "probability": 0.9956 + }, + { + "start": 14902.12, + "end": 14903.72, + "probability": 0.8416 + }, + { + "start": 14904.86, + "end": 14906.64, + "probability": 0.991 + }, + { + "start": 14907.62, + "end": 14909.42, + "probability": 0.8372 + }, + { + "start": 14910.2, + "end": 14912.52, + "probability": 0.9859 + }, + { + "start": 14913.28, + "end": 14915.98, + "probability": 0.9826 + }, + { + "start": 14916.78, + "end": 14918.66, + "probability": 0.9946 + }, + { + "start": 14919.62, + "end": 14920.94, + "probability": 0.9707 + }, + { + "start": 14922.28, + "end": 14922.92, + "probability": 0.8203 + }, + { + "start": 14925.76, + "end": 14927.7, + "probability": 0.9476 + }, + { + "start": 14929.56, + "end": 14929.6, + "probability": 0.2723 + }, + { + "start": 14937.64, + "end": 14937.74, + "probability": 0.1212 + }, + { + "start": 14938.18, + "end": 14939.3, + "probability": 0.2138 + }, + { + "start": 14939.3, + "end": 14939.4, + "probability": 0.0287 + }, + { + "start": 14939.4, + "end": 14939.64, + "probability": 0.0057 + }, + { + "start": 14939.66, + "end": 14940.86, + "probability": 0.0451 + }, + { + "start": 14941.51, + "end": 14942.0, + "probability": 0.0308 + }, + { + "start": 14942.7, + "end": 14943.24, + "probability": 0.1185 + }, + { + "start": 14965.62, + "end": 14968.38, + "probability": 0.9656 + }, + { + "start": 14969.48, + "end": 14971.52, + "probability": 0.761 + }, + { + "start": 14972.18, + "end": 14976.62, + "probability": 0.9065 + }, + { + "start": 14976.62, + "end": 14981.62, + "probability": 0.9924 + }, + { + "start": 14983.32, + "end": 14987.3, + "probability": 0.9907 + }, + { + "start": 14988.08, + "end": 14990.52, + "probability": 0.9505 + }, + { + "start": 14991.9, + "end": 14994.7, + "probability": 0.9272 + }, + { + "start": 14995.3, + "end": 14999.94, + "probability": 0.9399 + }, + { + "start": 15001.46, + "end": 15005.68, + "probability": 0.9961 + }, + { + "start": 15005.84, + "end": 15008.0, + "probability": 0.9514 + }, + { + "start": 15009.82, + "end": 15011.48, + "probability": 0.8975 + }, + { + "start": 15012.14, + "end": 15014.02, + "probability": 0.9976 + }, + { + "start": 15014.8, + "end": 15016.28, + "probability": 0.9326 + }, + { + "start": 15016.48, + "end": 15018.12, + "probability": 0.8242 + }, + { + "start": 15018.24, + "end": 15019.18, + "probability": 0.8583 + }, + { + "start": 15019.66, + "end": 15022.82, + "probability": 0.9836 + }, + { + "start": 15023.92, + "end": 15027.92, + "probability": 0.9827 + }, + { + "start": 15029.16, + "end": 15029.46, + "probability": 0.518 + }, + { + "start": 15029.66, + "end": 15030.08, + "probability": 0.9025 + }, + { + "start": 15030.14, + "end": 15032.7, + "probability": 0.9848 + }, + { + "start": 15032.9, + "end": 15034.62, + "probability": 0.9806 + }, + { + "start": 15036.3, + "end": 15041.08, + "probability": 0.9707 + }, + { + "start": 15041.74, + "end": 15044.18, + "probability": 0.9855 + }, + { + "start": 15045.42, + "end": 15047.96, + "probability": 0.9956 + }, + { + "start": 15048.54, + "end": 15050.66, + "probability": 0.9873 + }, + { + "start": 15051.92, + "end": 15053.2, + "probability": 0.9966 + }, + { + "start": 15053.74, + "end": 15056.78, + "probability": 0.9934 + }, + { + "start": 15057.42, + "end": 15062.16, + "probability": 0.998 + }, + { + "start": 15063.3, + "end": 15068.06, + "probability": 0.9976 + }, + { + "start": 15069.62, + "end": 15072.56, + "probability": 0.9863 + }, + { + "start": 15074.02, + "end": 15078.14, + "probability": 0.9692 + }, + { + "start": 15078.14, + "end": 15081.54, + "probability": 0.9993 + }, + { + "start": 15082.4, + "end": 15084.82, + "probability": 0.9559 + }, + { + "start": 15085.68, + "end": 15090.4, + "probability": 0.982 + }, + { + "start": 15091.06, + "end": 15094.3, + "probability": 0.9997 + }, + { + "start": 15095.04, + "end": 15098.6, + "probability": 0.9938 + }, + { + "start": 15100.36, + "end": 15104.18, + "probability": 0.999 + }, + { + "start": 15104.92, + "end": 15105.68, + "probability": 0.982 + }, + { + "start": 15105.86, + "end": 15106.61, + "probability": 0.9185 + }, + { + "start": 15106.9, + "end": 15107.62, + "probability": 0.381 + }, + { + "start": 15107.76, + "end": 15108.32, + "probability": 0.5987 + }, + { + "start": 15108.4, + "end": 15109.24, + "probability": 0.8515 + }, + { + "start": 15109.34, + "end": 15109.9, + "probability": 0.963 + }, + { + "start": 15111.26, + "end": 15114.48, + "probability": 0.9819 + }, + { + "start": 15115.92, + "end": 15118.34, + "probability": 0.9543 + }, + { + "start": 15118.42, + "end": 15119.34, + "probability": 0.948 + }, + { + "start": 15119.52, + "end": 15120.42, + "probability": 0.947 + }, + { + "start": 15120.46, + "end": 15121.58, + "probability": 0.9945 + }, + { + "start": 15122.86, + "end": 15126.46, + "probability": 0.9904 + }, + { + "start": 15126.86, + "end": 15131.28, + "probability": 0.999 + }, + { + "start": 15132.12, + "end": 15135.32, + "probability": 0.9968 + }, + { + "start": 15135.98, + "end": 15137.43, + "probability": 0.9985 + }, + { + "start": 15138.03, + "end": 15141.39, + "probability": 0.998 + }, + { + "start": 15142.43, + "end": 15142.73, + "probability": 0.9186 + }, + { + "start": 15143.27, + "end": 15145.97, + "probability": 0.8791 + }, + { + "start": 15147.09, + "end": 15148.09, + "probability": 0.7975 + }, + { + "start": 15148.51, + "end": 15149.73, + "probability": 0.9641 + }, + { + "start": 15149.79, + "end": 15152.41, + "probability": 0.9844 + }, + { + "start": 15153.35, + "end": 15157.53, + "probability": 0.9516 + }, + { + "start": 15158.33, + "end": 15159.87, + "probability": 0.9984 + }, + { + "start": 15161.25, + "end": 15161.73, + "probability": 0.6843 + }, + { + "start": 15161.77, + "end": 15162.43, + "probability": 0.8052 + }, + { + "start": 15162.53, + "end": 15162.85, + "probability": 0.7544 + }, + { + "start": 15163.27, + "end": 15164.39, + "probability": 0.9911 + }, + { + "start": 15169.77, + "end": 15170.19, + "probability": 0.784 + }, + { + "start": 15170.25, + "end": 15171.31, + "probability": 0.8895 + }, + { + "start": 15171.45, + "end": 15171.75, + "probability": 0.6272 + }, + { + "start": 15171.89, + "end": 15173.35, + "probability": 0.913 + }, + { + "start": 15173.37, + "end": 15176.15, + "probability": 0.9894 + }, + { + "start": 15176.83, + "end": 15178.21, + "probability": 0.8647 + }, + { + "start": 15178.25, + "end": 15178.79, + "probability": 0.045 + }, + { + "start": 15179.59, + "end": 15181.5, + "probability": 0.098 + }, + { + "start": 15183.19, + "end": 15184.69, + "probability": 0.9778 + }, + { + "start": 15184.77, + "end": 15186.75, + "probability": 0.8687 + }, + { + "start": 15187.39, + "end": 15188.15, + "probability": 0.0664 + }, + { + "start": 15188.51, + "end": 15190.83, + "probability": 0.4175 + }, + { + "start": 15190.95, + "end": 15200.01, + "probability": 0.2736 + }, + { + "start": 15204.19, + "end": 15205.65, + "probability": 0.7987 + }, + { + "start": 15205.97, + "end": 15206.11, + "probability": 0.1552 + }, + { + "start": 15208.11, + "end": 15209.53, + "probability": 0.0542 + }, + { + "start": 15211.56, + "end": 15216.93, + "probability": 0.0453 + }, + { + "start": 15216.93, + "end": 15216.95, + "probability": 0.0255 + }, + { + "start": 15216.95, + "end": 15216.95, + "probability": 0.0398 + }, + { + "start": 15216.95, + "end": 15220.27, + "probability": 0.0499 + }, + { + "start": 15226.29, + "end": 15229.33, + "probability": 0.1113 + }, + { + "start": 15233.65, + "end": 15234.33, + "probability": 0.0078 + }, + { + "start": 15234.41, + "end": 15234.71, + "probability": 0.2744 + }, + { + "start": 15234.71, + "end": 15234.85, + "probability": 0.1742 + }, + { + "start": 15235.43, + "end": 15235.53, + "probability": 0.2104 + }, + { + "start": 15235.53, + "end": 15235.53, + "probability": 0.0865 + }, + { + "start": 15235.53, + "end": 15237.79, + "probability": 0.1589 + }, + { + "start": 15239.35, + "end": 15239.35, + "probability": 0.0705 + }, + { + "start": 15239.35, + "end": 15241.25, + "probability": 0.1553 + }, + { + "start": 15241.87, + "end": 15244.43, + "probability": 0.092 + }, + { + "start": 15259.0, + "end": 15259.0, + "probability": 0.0 + }, + { + "start": 15259.0, + "end": 15259.0, + "probability": 0.0 + }, + { + "start": 15259.0, + "end": 15259.0, + "probability": 0.0 + }, + { + "start": 15259.0, + "end": 15259.0, + "probability": 0.0 + }, + { + "start": 15259.0, + "end": 15259.0, + "probability": 0.0 + }, + { + "start": 15259.0, + "end": 15259.0, + "probability": 0.0 + }, + { + "start": 15259.0, + "end": 15259.0, + "probability": 0.0 + }, + { + "start": 15259.0, + "end": 15259.0, + "probability": 0.0 + }, + { + "start": 15259.0, + "end": 15259.0, + "probability": 0.0 + }, + { + "start": 15259.2, + "end": 15259.2, + "probability": 0.0239 + }, + { + "start": 15259.2, + "end": 15259.2, + "probability": 0.1143 + }, + { + "start": 15259.2, + "end": 15259.24, + "probability": 0.092 + }, + { + "start": 15259.24, + "end": 15259.78, + "probability": 0.0394 + }, + { + "start": 15260.52, + "end": 15262.15, + "probability": 0.3728 + }, + { + "start": 15262.68, + "end": 15262.68, + "probability": 0.1729 + }, + { + "start": 15262.68, + "end": 15267.58, + "probability": 0.9626 + }, + { + "start": 15267.76, + "end": 15268.25, + "probability": 0.8404 + }, + { + "start": 15268.76, + "end": 15270.66, + "probability": 0.8671 + }, + { + "start": 15271.04, + "end": 15273.88, + "probability": 0.4261 + }, + { + "start": 15278.32, + "end": 15279.62, + "probability": 0.0143 + }, + { + "start": 15279.62, + "end": 15279.62, + "probability": 0.005 + }, + { + "start": 15279.62, + "end": 15280.74, + "probability": 0.1144 + }, + { + "start": 15281.2, + "end": 15281.24, + "probability": 0.5134 + }, + { + "start": 15281.24, + "end": 15283.66, + "probability": 0.9246 + }, + { + "start": 15283.66, + "end": 15286.98, + "probability": 0.9828 + }, + { + "start": 15287.56, + "end": 15291.18, + "probability": 0.9893 + }, + { + "start": 15292.76, + "end": 15295.08, + "probability": 0.8861 + }, + { + "start": 15295.08, + "end": 15298.08, + "probability": 0.9773 + }, + { + "start": 15298.54, + "end": 15302.44, + "probability": 0.9817 + }, + { + "start": 15302.84, + "end": 15304.68, + "probability": 0.9038 + }, + { + "start": 15305.24, + "end": 15307.84, + "probability": 0.9891 + }, + { + "start": 15308.7, + "end": 15309.36, + "probability": 0.648 + }, + { + "start": 15310.64, + "end": 15313.46, + "probability": 0.7505 + }, + { + "start": 15314.36, + "end": 15315.32, + "probability": 0.8453 + }, + { + "start": 15315.94, + "end": 15317.3, + "probability": 0.9608 + }, + { + "start": 15318.1, + "end": 15321.24, + "probability": 0.9219 + }, + { + "start": 15322.18, + "end": 15322.22, + "probability": 0.3752 + }, + { + "start": 15322.3, + "end": 15322.42, + "probability": 0.6527 + }, + { + "start": 15322.42, + "end": 15324.08, + "probability": 0.9408 + }, + { + "start": 15324.24, + "end": 15324.84, + "probability": 0.5242 + }, + { + "start": 15324.94, + "end": 15326.2, + "probability": 0.9276 + }, + { + "start": 15326.26, + "end": 15326.9, + "probability": 0.7786 + }, + { + "start": 15327.72, + "end": 15328.36, + "probability": 0.57 + }, + { + "start": 15328.76, + "end": 15331.26, + "probability": 0.9777 + }, + { + "start": 15332.62, + "end": 15333.66, + "probability": 0.8965 + }, + { + "start": 15334.64, + "end": 15336.36, + "probability": 0.9911 + }, + { + "start": 15337.02, + "end": 15337.88, + "probability": 0.9895 + }, + { + "start": 15338.56, + "end": 15340.9, + "probability": 0.9935 + }, + { + "start": 15341.5, + "end": 15345.74, + "probability": 0.8663 + }, + { + "start": 15346.42, + "end": 15348.88, + "probability": 0.9876 + }, + { + "start": 15349.22, + "end": 15351.46, + "probability": 0.9985 + }, + { + "start": 15352.36, + "end": 15353.34, + "probability": 0.8543 + }, + { + "start": 15353.4, + "end": 15354.02, + "probability": 0.5971 + }, + { + "start": 15354.08, + "end": 15355.32, + "probability": 0.9232 + }, + { + "start": 15355.36, + "end": 15357.66, + "probability": 0.9879 + }, + { + "start": 15357.78, + "end": 15360.94, + "probability": 0.8864 + }, + { + "start": 15361.02, + "end": 15361.02, + "probability": 0.4873 + }, + { + "start": 15361.06, + "end": 15361.06, + "probability": 0.0903 + }, + { + "start": 15361.06, + "end": 15363.4, + "probability": 0.9305 + }, + { + "start": 15363.72, + "end": 15366.54, + "probability": 0.9949 + }, + { + "start": 15366.54, + "end": 15370.7, + "probability": 0.7507 + }, + { + "start": 15370.76, + "end": 15372.3, + "probability": 0.9823 + }, + { + "start": 15372.78, + "end": 15372.82, + "probability": 0.0556 + }, + { + "start": 15372.82, + "end": 15372.82, + "probability": 0.059 + }, + { + "start": 15372.82, + "end": 15373.82, + "probability": 0.656 + }, + { + "start": 15373.96, + "end": 15374.4, + "probability": 0.6253 + }, + { + "start": 15374.5, + "end": 15377.86, + "probability": 0.9785 + }, + { + "start": 15378.44, + "end": 15382.14, + "probability": 0.9902 + }, + { + "start": 15382.7, + "end": 15384.24, + "probability": 0.9736 + }, + { + "start": 15385.32, + "end": 15386.42, + "probability": 0.983 + }, + { + "start": 15386.56, + "end": 15386.74, + "probability": 0.7537 + }, + { + "start": 15386.82, + "end": 15389.48, + "probability": 0.8348 + }, + { + "start": 15390.1, + "end": 15393.14, + "probability": 0.9705 + }, + { + "start": 15393.52, + "end": 15394.34, + "probability": 0.422 + }, + { + "start": 15395.1, + "end": 15395.81, + "probability": 0.8841 + }, + { + "start": 15396.62, + "end": 15397.33, + "probability": 0.9811 + }, + { + "start": 15398.12, + "end": 15400.92, + "probability": 0.9803 + }, + { + "start": 15401.78, + "end": 15402.76, + "probability": 0.9004 + }, + { + "start": 15403.92, + "end": 15409.78, + "probability": 0.9553 + }, + { + "start": 15409.78, + "end": 15413.94, + "probability": 0.9913 + }, + { + "start": 15414.3, + "end": 15415.32, + "probability": 0.9982 + }, + { + "start": 15416.04, + "end": 15417.74, + "probability": 0.9912 + }, + { + "start": 15417.92, + "end": 15418.42, + "probability": 0.7899 + }, + { + "start": 15418.72, + "end": 15419.28, + "probability": 0.6278 + }, + { + "start": 15419.38, + "end": 15422.5, + "probability": 0.7061 + }, + { + "start": 15423.86, + "end": 15425.02, + "probability": 0.6359 + }, + { + "start": 15425.66, + "end": 15427.06, + "probability": 0.0618 + }, + { + "start": 15427.12, + "end": 15430.16, + "probability": 0.8198 + }, + { + "start": 15430.34, + "end": 15431.43, + "probability": 0.5876 + }, + { + "start": 15449.62, + "end": 15454.68, + "probability": 0.6767 + }, + { + "start": 15455.92, + "end": 15458.32, + "probability": 0.776 + }, + { + "start": 15460.14, + "end": 15463.12, + "probability": 0.9918 + }, + { + "start": 15464.56, + "end": 15465.28, + "probability": 0.9742 + }, + { + "start": 15466.7, + "end": 15474.48, + "probability": 0.9769 + }, + { + "start": 15476.54, + "end": 15481.64, + "probability": 0.9969 + }, + { + "start": 15482.5, + "end": 15486.52, + "probability": 0.9919 + }, + { + "start": 15486.8, + "end": 15491.16, + "probability": 0.998 + }, + { + "start": 15492.22, + "end": 15492.76, + "probability": 0.8892 + }, + { + "start": 15492.94, + "end": 15495.54, + "probability": 0.9921 + }, + { + "start": 15496.02, + "end": 15496.88, + "probability": 0.7794 + }, + { + "start": 15498.18, + "end": 15500.48, + "probability": 0.9819 + }, + { + "start": 15501.24, + "end": 15503.2, + "probability": 0.9966 + }, + { + "start": 15504.0, + "end": 15505.98, + "probability": 0.7003 + }, + { + "start": 15506.9, + "end": 15513.44, + "probability": 0.985 + }, + { + "start": 15513.44, + "end": 15517.9, + "probability": 0.6579 + }, + { + "start": 15518.58, + "end": 15520.9, + "probability": 0.8874 + }, + { + "start": 15522.26, + "end": 15523.1, + "probability": 0.9673 + }, + { + "start": 15523.22, + "end": 15524.82, + "probability": 0.8431 + }, + { + "start": 15524.94, + "end": 15526.82, + "probability": 0.9629 + }, + { + "start": 15527.5, + "end": 15531.24, + "probability": 0.9956 + }, + { + "start": 15531.28, + "end": 15535.0, + "probability": 0.9763 + }, + { + "start": 15535.12, + "end": 15536.54, + "probability": 0.9727 + }, + { + "start": 15536.84, + "end": 15538.8, + "probability": 0.9902 + }, + { + "start": 15540.58, + "end": 15544.14, + "probability": 0.9952 + }, + { + "start": 15545.08, + "end": 15548.36, + "probability": 0.9959 + }, + { + "start": 15549.08, + "end": 15549.78, + "probability": 0.9277 + }, + { + "start": 15551.14, + "end": 15555.96, + "probability": 0.9661 + }, + { + "start": 15556.66, + "end": 15560.7, + "probability": 0.9565 + }, + { + "start": 15561.36, + "end": 15566.42, + "probability": 0.8306 + }, + { + "start": 15566.96, + "end": 15568.28, + "probability": 0.9692 + }, + { + "start": 15568.84, + "end": 15571.46, + "probability": 0.9417 + }, + { + "start": 15572.72, + "end": 15575.14, + "probability": 0.9177 + }, + { + "start": 15575.98, + "end": 15577.82, + "probability": 0.7651 + }, + { + "start": 15579.16, + "end": 15581.51, + "probability": 0.8475 + }, + { + "start": 15582.16, + "end": 15583.5, + "probability": 0.8393 + }, + { + "start": 15583.62, + "end": 15584.66, + "probability": 0.6719 + }, + { + "start": 15585.66, + "end": 15586.66, + "probability": 0.9739 + }, + { + "start": 15587.36, + "end": 15588.6, + "probability": 0.9951 + }, + { + "start": 15589.26, + "end": 15590.74, + "probability": 0.9933 + }, + { + "start": 15591.18, + "end": 15592.18, + "probability": 0.7396 + }, + { + "start": 15592.28, + "end": 15594.4, + "probability": 0.834 + }, + { + "start": 15595.82, + "end": 15596.69, + "probability": 0.9871 + }, + { + "start": 15597.16, + "end": 15599.54, + "probability": 0.9944 + }, + { + "start": 15600.32, + "end": 15604.74, + "probability": 0.9844 + }, + { + "start": 15606.04, + "end": 15606.7, + "probability": 0.9753 + }, + { + "start": 15607.36, + "end": 15608.72, + "probability": 0.9272 + }, + { + "start": 15609.26, + "end": 15611.28, + "probability": 0.8398 + }, + { + "start": 15612.36, + "end": 15614.4, + "probability": 0.9587 + }, + { + "start": 15614.8, + "end": 15616.0, + "probability": 0.8169 + }, + { + "start": 15616.62, + "end": 15618.9, + "probability": 0.9267 + }, + { + "start": 15620.46, + "end": 15624.85, + "probability": 0.9867 + }, + { + "start": 15626.16, + "end": 15628.04, + "probability": 0.9834 + }, + { + "start": 15628.78, + "end": 15630.58, + "probability": 0.9794 + }, + { + "start": 15630.94, + "end": 15632.52, + "probability": 0.6718 + }, + { + "start": 15633.96, + "end": 15640.18, + "probability": 0.9869 + }, + { + "start": 15640.96, + "end": 15643.24, + "probability": 0.9454 + }, + { + "start": 15643.34, + "end": 15645.1, + "probability": 0.9532 + }, + { + "start": 15645.84, + "end": 15646.61, + "probability": 0.9819 + }, + { + "start": 15648.62, + "end": 15650.06, + "probability": 0.8483 + }, + { + "start": 15650.06, + "end": 15651.28, + "probability": 0.9706 + }, + { + "start": 15651.68, + "end": 15653.24, + "probability": 0.8806 + }, + { + "start": 15653.32, + "end": 15656.08, + "probability": 0.9577 + }, + { + "start": 15656.54, + "end": 15661.16, + "probability": 0.9771 + }, + { + "start": 15661.66, + "end": 15662.2, + "probability": 0.5645 + }, + { + "start": 15662.48, + "end": 15663.51, + "probability": 0.5503 + }, + { + "start": 15664.08, + "end": 15666.42, + "probability": 0.9941 + }, + { + "start": 15666.8, + "end": 15668.13, + "probability": 0.625 + }, + { + "start": 15668.34, + "end": 15668.4, + "probability": 0.642 + }, + { + "start": 15668.52, + "end": 15672.02, + "probability": 0.9438 + }, + { + "start": 15679.6, + "end": 15680.8, + "probability": 0.9683 + }, + { + "start": 15682.74, + "end": 15683.06, + "probability": 0.2601 + }, + { + "start": 15683.6, + "end": 15685.38, + "probability": 0.1565 + }, + { + "start": 15685.38, + "end": 15686.04, + "probability": 0.0328 + }, + { + "start": 15703.66, + "end": 15705.96, + "probability": 0.775 + }, + { + "start": 15706.56, + "end": 15711.14, + "probability": 0.9666 + }, + { + "start": 15711.64, + "end": 15712.66, + "probability": 0.6519 + }, + { + "start": 15713.28, + "end": 15715.64, + "probability": 0.8544 + }, + { + "start": 15715.84, + "end": 15716.16, + "probability": 0.9428 + }, + { + "start": 15721.06, + "end": 15721.08, + "probability": 0.2098 + }, + { + "start": 15721.08, + "end": 15723.06, + "probability": 0.0461 + }, + { + "start": 15723.58, + "end": 15725.62, + "probability": 0.8722 + }, + { + "start": 15726.36, + "end": 15728.66, + "probability": 0.9172 + }, + { + "start": 15729.24, + "end": 15734.06, + "probability": 0.9951 + }, + { + "start": 15734.5, + "end": 15737.1, + "probability": 0.936 + }, + { + "start": 15737.56, + "end": 15740.86, + "probability": 0.9131 + }, + { + "start": 15741.6, + "end": 15747.04, + "probability": 0.9902 + }, + { + "start": 15747.34, + "end": 15751.06, + "probability": 0.9893 + }, + { + "start": 15751.06, + "end": 15754.56, + "probability": 0.9983 + }, + { + "start": 15755.0, + "end": 15758.2, + "probability": 0.819 + }, + { + "start": 15758.58, + "end": 15758.86, + "probability": 0.3834 + }, + { + "start": 15759.22, + "end": 15762.74, + "probability": 0.9312 + }, + { + "start": 15763.54, + "end": 15765.35, + "probability": 0.8861 + }, + { + "start": 15766.02, + "end": 15766.84, + "probability": 0.787 + }, + { + "start": 15767.26, + "end": 15769.46, + "probability": 0.9436 + }, + { + "start": 15769.84, + "end": 15772.34, + "probability": 0.582 + }, + { + "start": 15772.46, + "end": 15778.0, + "probability": 0.9888 + }, + { + "start": 15778.56, + "end": 15779.38, + "probability": 0.9159 + }, + { + "start": 15779.98, + "end": 15780.63, + "probability": 0.8689 + }, + { + "start": 15781.24, + "end": 15784.38, + "probability": 0.9667 + }, + { + "start": 15784.44, + "end": 15785.9, + "probability": 0.8312 + }, + { + "start": 15786.42, + "end": 15787.15, + "probability": 0.835 + }, + { + "start": 15788.16, + "end": 15789.7, + "probability": 0.993 + }, + { + "start": 15790.06, + "end": 15791.92, + "probability": 0.5375 + }, + { + "start": 15792.42, + "end": 15796.76, + "probability": 0.9954 + }, + { + "start": 15797.34, + "end": 15802.2, + "probability": 0.9951 + }, + { + "start": 15802.9, + "end": 15804.82, + "probability": 0.9751 + }, + { + "start": 15805.56, + "end": 15808.2, + "probability": 0.9768 + }, + { + "start": 15809.56, + "end": 15813.54, + "probability": 0.6879 + }, + { + "start": 15813.68, + "end": 15817.02, + "probability": 0.991 + }, + { + "start": 15817.48, + "end": 15818.82, + "probability": 0.833 + }, + { + "start": 15819.4, + "end": 15820.54, + "probability": 0.9459 + }, + { + "start": 15821.0, + "end": 15821.8, + "probability": 0.8814 + }, + { + "start": 15822.46, + "end": 15824.06, + "probability": 0.8836 + }, + { + "start": 15824.36, + "end": 15829.6, + "probability": 0.9764 + }, + { + "start": 15830.06, + "end": 15831.18, + "probability": 0.6733 + }, + { + "start": 15832.24, + "end": 15835.44, + "probability": 0.9326 + }, + { + "start": 15835.78, + "end": 15836.16, + "probability": 0.708 + }, + { + "start": 15836.24, + "end": 15837.5, + "probability": 0.8159 + }, + { + "start": 15837.9, + "end": 15843.62, + "probability": 0.9443 + }, + { + "start": 15844.46, + "end": 15845.34, + "probability": 0.6314 + }, + { + "start": 15845.88, + "end": 15847.1, + "probability": 0.9684 + }, + { + "start": 15847.4, + "end": 15848.03, + "probability": 0.9351 + }, + { + "start": 15849.1, + "end": 15851.02, + "probability": 0.9932 + }, + { + "start": 15851.72, + "end": 15854.48, + "probability": 0.8858 + }, + { + "start": 15854.6, + "end": 15858.98, + "probability": 0.9844 + }, + { + "start": 15859.3, + "end": 15861.14, + "probability": 0.9868 + }, + { + "start": 15862.34, + "end": 15867.06, + "probability": 0.9932 + }, + { + "start": 15867.64, + "end": 15869.78, + "probability": 0.9822 + }, + { + "start": 15870.4, + "end": 15871.41, + "probability": 0.8369 + }, + { + "start": 15872.06, + "end": 15872.54, + "probability": 0.9819 + }, + { + "start": 15872.68, + "end": 15873.2, + "probability": 0.9537 + }, + { + "start": 15873.52, + "end": 15874.54, + "probability": 0.8913 + }, + { + "start": 15874.56, + "end": 15877.16, + "probability": 0.8698 + }, + { + "start": 15877.56, + "end": 15877.56, + "probability": 0.0169 + }, + { + "start": 15877.56, + "end": 15877.56, + "probability": 0.1563 + }, + { + "start": 15877.56, + "end": 15878.52, + "probability": 0.3922 + }, + { + "start": 15878.86, + "end": 15881.98, + "probability": 0.9454 + }, + { + "start": 15883.2, + "end": 15885.1, + "probability": 0.8521 + }, + { + "start": 15885.68, + "end": 15887.92, + "probability": 0.9725 + }, + { + "start": 15888.16, + "end": 15891.16, + "probability": 0.9984 + }, + { + "start": 15891.86, + "end": 15894.4, + "probability": 0.9146 + }, + { + "start": 15894.94, + "end": 15898.5, + "probability": 0.8716 + }, + { + "start": 15898.72, + "end": 15898.8, + "probability": 0.5543 + }, + { + "start": 15898.86, + "end": 15900.88, + "probability": 0.9355 + }, + { + "start": 15900.96, + "end": 15901.38, + "probability": 0.7943 + }, + { + "start": 15901.44, + "end": 15903.54, + "probability": 0.8389 + }, + { + "start": 15903.56, + "end": 15905.11, + "probability": 0.775 + }, + { + "start": 15905.74, + "end": 15909.6, + "probability": 0.7892 + }, + { + "start": 15909.6, + "end": 15913.48, + "probability": 0.7705 + }, + { + "start": 15914.14, + "end": 15916.82, + "probability": 0.9921 + }, + { + "start": 15916.96, + "end": 15917.08, + "probability": 0.6677 + }, + { + "start": 15917.2, + "end": 15917.2, + "probability": 0.1455 + }, + { + "start": 15917.2, + "end": 15919.18, + "probability": 0.6917 + }, + { + "start": 15919.64, + "end": 15923.44, + "probability": 0.9755 + }, + { + "start": 15923.6, + "end": 15924.06, + "probability": 0.7269 + }, + { + "start": 15924.16, + "end": 15925.4, + "probability": 0.9549 + }, + { + "start": 15928.92, + "end": 15929.96, + "probability": 0.9827 + }, + { + "start": 15951.96, + "end": 15953.22, + "probability": 0.6703 + }, + { + "start": 15954.46, + "end": 15958.18, + "probability": 0.8885 + }, + { + "start": 15959.48, + "end": 15964.02, + "probability": 0.9745 + }, + { + "start": 15965.12, + "end": 15970.34, + "probability": 0.8477 + }, + { + "start": 15971.14, + "end": 15972.74, + "probability": 0.6926 + }, + { + "start": 15973.28, + "end": 15975.06, + "probability": 0.7537 + }, + { + "start": 15976.98, + "end": 15981.02, + "probability": 0.9595 + }, + { + "start": 15982.64, + "end": 15985.04, + "probability": 0.8621 + }, + { + "start": 15986.28, + "end": 15990.76, + "probability": 0.7139 + }, + { + "start": 15991.82, + "end": 15993.34, + "probability": 0.9385 + }, + { + "start": 15993.56, + "end": 15994.26, + "probability": 0.9741 + }, + { + "start": 15994.56, + "end": 15994.86, + "probability": 0.4498 + }, + { + "start": 15995.28, + "end": 16000.44, + "probability": 0.9722 + }, + { + "start": 16000.58, + "end": 16002.06, + "probability": 0.9883 + }, + { + "start": 16003.48, + "end": 16010.46, + "probability": 0.987 + }, + { + "start": 16011.42, + "end": 16016.38, + "probability": 0.9012 + }, + { + "start": 16018.6, + "end": 16021.28, + "probability": 0.9937 + }, + { + "start": 16022.64, + "end": 16023.26, + "probability": 0.8481 + }, + { + "start": 16023.36, + "end": 16025.0, + "probability": 0.9547 + }, + { + "start": 16025.08, + "end": 16026.22, + "probability": 0.9607 + }, + { + "start": 16026.6, + "end": 16031.39, + "probability": 0.8056 + }, + { + "start": 16032.02, + "end": 16033.08, + "probability": 0.7605 + }, + { + "start": 16034.08, + "end": 16036.02, + "probability": 0.9199 + }, + { + "start": 16036.08, + "end": 16037.14, + "probability": 0.9546 + }, + { + "start": 16037.62, + "end": 16039.07, + "probability": 0.9383 + }, + { + "start": 16039.7, + "end": 16040.59, + "probability": 0.9815 + }, + { + "start": 16041.26, + "end": 16042.1, + "probability": 0.9526 + }, + { + "start": 16043.9, + "end": 16044.55, + "probability": 0.9565 + }, + { + "start": 16044.7, + "end": 16046.54, + "probability": 0.9263 + }, + { + "start": 16046.78, + "end": 16048.64, + "probability": 0.9712 + }, + { + "start": 16049.0, + "end": 16051.2, + "probability": 0.9839 + }, + { + "start": 16051.68, + "end": 16052.29, + "probability": 0.9878 + }, + { + "start": 16053.66, + "end": 16055.04, + "probability": 0.6473 + }, + { + "start": 16055.38, + "end": 16057.86, + "probability": 0.9934 + }, + { + "start": 16058.76, + "end": 16060.04, + "probability": 0.751 + }, + { + "start": 16060.42, + "end": 16065.69, + "probability": 0.9863 + }, + { + "start": 16066.08, + "end": 16068.8, + "probability": 0.9778 + }, + { + "start": 16069.22, + "end": 16069.66, + "probability": 0.5228 + }, + { + "start": 16069.76, + "end": 16072.26, + "probability": 0.6484 + }, + { + "start": 16072.54, + "end": 16074.96, + "probability": 0.7257 + }, + { + "start": 16075.32, + "end": 16076.18, + "probability": 0.9289 + }, + { + "start": 16076.28, + "end": 16077.38, + "probability": 0.9951 + }, + { + "start": 16077.78, + "end": 16078.58, + "probability": 0.9954 + }, + { + "start": 16079.14, + "end": 16084.6, + "probability": 0.9384 + }, + { + "start": 16085.34, + "end": 16087.08, + "probability": 0.975 + }, + { + "start": 16087.6, + "end": 16093.92, + "probability": 0.9919 + }, + { + "start": 16094.3, + "end": 16096.05, + "probability": 0.8785 + }, + { + "start": 16096.24, + "end": 16098.48, + "probability": 0.9127 + }, + { + "start": 16098.8, + "end": 16102.68, + "probability": 0.9611 + }, + { + "start": 16102.68, + "end": 16106.34, + "probability": 0.8337 + }, + { + "start": 16106.66, + "end": 16107.56, + "probability": 0.8992 + }, + { + "start": 16107.98, + "end": 16109.0, + "probability": 0.945 + }, + { + "start": 16109.74, + "end": 16111.64, + "probability": 0.8549 + }, + { + "start": 16111.96, + "end": 16112.72, + "probability": 0.8903 + }, + { + "start": 16113.12, + "end": 16114.82, + "probability": 0.9823 + }, + { + "start": 16115.1, + "end": 16115.7, + "probability": 0.9214 + }, + { + "start": 16115.9, + "end": 16116.5, + "probability": 0.6165 + }, + { + "start": 16116.56, + "end": 16119.26, + "probability": 0.9218 + }, + { + "start": 16121.02, + "end": 16123.54, + "probability": 0.1408 + }, + { + "start": 16124.02, + "end": 16127.56, + "probability": 0.5413 + }, + { + "start": 16128.7, + "end": 16130.9, + "probability": 0.974 + }, + { + "start": 16130.92, + "end": 16133.58, + "probability": 0.3416 + }, + { + "start": 16133.76, + "end": 16135.66, + "probability": 0.5064 + }, + { + "start": 16139.52, + "end": 16141.5, + "probability": 0.6612 + }, + { + "start": 16141.52, + "end": 16142.46, + "probability": 0.6128 + }, + { + "start": 16143.82, + "end": 16148.04, + "probability": 0.9935 + }, + { + "start": 16148.67, + "end": 16153.28, + "probability": 0.8714 + }, + { + "start": 16154.08, + "end": 16156.66, + "probability": 0.9165 + }, + { + "start": 16157.54, + "end": 16158.04, + "probability": 0.9434 + }, + { + "start": 16159.08, + "end": 16162.16, + "probability": 0.973 + }, + { + "start": 16163.66, + "end": 16165.66, + "probability": 0.9606 + }, + { + "start": 16165.72, + "end": 16166.96, + "probability": 0.9653 + }, + { + "start": 16167.02, + "end": 16171.93, + "probability": 0.7443 + }, + { + "start": 16173.6, + "end": 16175.26, + "probability": 0.7167 + }, + { + "start": 16175.78, + "end": 16176.38, + "probability": 0.4793 + }, + { + "start": 16176.54, + "end": 16179.82, + "probability": 0.8264 + }, + { + "start": 16180.54, + "end": 16180.84, + "probability": 0.6702 + }, + { + "start": 16181.68, + "end": 16184.76, + "probability": 0.9509 + }, + { + "start": 16185.32, + "end": 16186.74, + "probability": 0.9823 + }, + { + "start": 16188.34, + "end": 16190.12, + "probability": 0.7947 + }, + { + "start": 16190.96, + "end": 16196.72, + "probability": 0.9969 + }, + { + "start": 16196.76, + "end": 16200.5, + "probability": 0.8842 + }, + { + "start": 16200.5, + "end": 16203.78, + "probability": 0.9971 + }, + { + "start": 16204.18, + "end": 16204.6, + "probability": 0.5116 + }, + { + "start": 16205.2, + "end": 16208.96, + "probability": 0.9882 + }, + { + "start": 16208.96, + "end": 16212.68, + "probability": 0.9886 + }, + { + "start": 16213.12, + "end": 16213.61, + "probability": 0.5596 + }, + { + "start": 16214.4, + "end": 16218.28, + "probability": 0.9173 + }, + { + "start": 16218.68, + "end": 16220.18, + "probability": 0.9458 + }, + { + "start": 16220.48, + "end": 16221.5, + "probability": 0.9859 + }, + { + "start": 16221.8, + "end": 16224.4, + "probability": 0.9736 + }, + { + "start": 16224.4, + "end": 16227.16, + "probability": 0.8 + }, + { + "start": 16227.52, + "end": 16227.78, + "probability": 0.6458 + }, + { + "start": 16228.44, + "end": 16232.7, + "probability": 0.9844 + }, + { + "start": 16232.98, + "end": 16234.2, + "probability": 0.9933 + }, + { + "start": 16234.58, + "end": 16236.08, + "probability": 0.9782 + }, + { + "start": 16237.08, + "end": 16237.91, + "probability": 0.6473 + }, + { + "start": 16238.44, + "end": 16241.88, + "probability": 0.9276 + }, + { + "start": 16242.34, + "end": 16244.22, + "probability": 0.979 + }, + { + "start": 16244.22, + "end": 16244.7, + "probability": 0.7854 + }, + { + "start": 16245.24, + "end": 16246.34, + "probability": 0.7705 + }, + { + "start": 16246.68, + "end": 16250.52, + "probability": 0.9846 + }, + { + "start": 16250.98, + "end": 16253.6, + "probability": 0.9111 + }, + { + "start": 16253.66, + "end": 16254.82, + "probability": 0.9547 + }, + { + "start": 16255.32, + "end": 16257.06, + "probability": 0.9254 + }, + { + "start": 16257.58, + "end": 16258.1, + "probability": 0.7434 + }, + { + "start": 16258.48, + "end": 16259.16, + "probability": 0.6101 + }, + { + "start": 16259.18, + "end": 16260.4, + "probability": 0.9513 + }, + { + "start": 16272.88, + "end": 16273.52, + "probability": 0.1851 + }, + { + "start": 16273.52, + "end": 16273.52, + "probability": 0.0811 + }, + { + "start": 16273.52, + "end": 16274.4, + "probability": 0.4251 + }, + { + "start": 16274.4, + "end": 16275.18, + "probability": 0.2143 + }, + { + "start": 16275.2, + "end": 16279.51, + "probability": 0.915 + }, + { + "start": 16283.94, + "end": 16284.44, + "probability": 0.0517 + }, + { + "start": 16287.39, + "end": 16288.6, + "probability": 0.0842 + }, + { + "start": 16288.94, + "end": 16288.94, + "probability": 0.1128 + }, + { + "start": 16288.94, + "end": 16288.94, + "probability": 0.152 + }, + { + "start": 16288.94, + "end": 16288.94, + "probability": 0.4094 + }, + { + "start": 16289.02, + "end": 16292.48, + "probability": 0.5112 + }, + { + "start": 16292.96, + "end": 16293.66, + "probability": 0.2478 + }, + { + "start": 16294.26, + "end": 16296.66, + "probability": 0.7546 + }, + { + "start": 16296.98, + "end": 16298.06, + "probability": 0.875 + }, + { + "start": 16298.2, + "end": 16299.24, + "probability": 0.6744 + }, + { + "start": 16299.34, + "end": 16300.78, + "probability": 0.4261 + }, + { + "start": 16300.78, + "end": 16303.82, + "probability": 0.7267 + }, + { + "start": 16304.02, + "end": 16305.08, + "probability": 0.1032 + }, + { + "start": 16306.14, + "end": 16306.14, + "probability": 0.1842 + }, + { + "start": 16306.14, + "end": 16306.26, + "probability": 0.0567 + }, + { + "start": 16306.26, + "end": 16306.26, + "probability": 0.186 + }, + { + "start": 16306.26, + "end": 16309.58, + "probability": 0.0437 + }, + { + "start": 16309.64, + "end": 16310.86, + "probability": 0.3514 + }, + { + "start": 16311.06, + "end": 16314.04, + "probability": 0.4684 + }, + { + "start": 16314.18, + "end": 16315.92, + "probability": 0.9126 + }, + { + "start": 16317.54, + "end": 16319.62, + "probability": 0.8155 + }, + { + "start": 16319.66, + "end": 16322.16, + "probability": 0.9763 + }, + { + "start": 16322.28, + "end": 16323.9, + "probability": 0.7182 + }, + { + "start": 16325.12, + "end": 16331.28, + "probability": 0.9824 + }, + { + "start": 16331.4, + "end": 16332.88, + "probability": 0.7921 + }, + { + "start": 16333.54, + "end": 16335.4, + "probability": 0.639 + }, + { + "start": 16336.06, + "end": 16337.1, + "probability": 0.9169 + }, + { + "start": 16337.44, + "end": 16342.46, + "probability": 0.7807 + }, + { + "start": 16342.92, + "end": 16346.34, + "probability": 0.9915 + }, + { + "start": 16346.74, + "end": 16348.38, + "probability": 0.9913 + }, + { + "start": 16348.46, + "end": 16349.84, + "probability": 0.9218 + }, + { + "start": 16350.28, + "end": 16350.86, + "probability": 0.4812 + }, + { + "start": 16350.94, + "end": 16353.42, + "probability": 0.8799 + }, + { + "start": 16353.96, + "end": 16356.98, + "probability": 0.9056 + }, + { + "start": 16357.58, + "end": 16361.4, + "probability": 0.9988 + }, + { + "start": 16361.98, + "end": 16364.92, + "probability": 0.9927 + }, + { + "start": 16365.24, + "end": 16367.1, + "probability": 0.9927 + }, + { + "start": 16367.68, + "end": 16367.88, + "probability": 0.9167 + }, + { + "start": 16368.76, + "end": 16372.44, + "probability": 0.8668 + }, + { + "start": 16372.96, + "end": 16376.46, + "probability": 0.8974 + }, + { + "start": 16376.68, + "end": 16377.88, + "probability": 0.8096 + }, + { + "start": 16378.52, + "end": 16383.22, + "probability": 0.9894 + }, + { + "start": 16383.9, + "end": 16387.86, + "probability": 0.995 + }, + { + "start": 16388.92, + "end": 16395.28, + "probability": 0.9967 + }, + { + "start": 16395.84, + "end": 16400.8, + "probability": 0.9794 + }, + { + "start": 16401.32, + "end": 16405.7, + "probability": 0.9932 + }, + { + "start": 16405.7, + "end": 16410.68, + "probability": 0.9945 + }, + { + "start": 16411.48, + "end": 16413.26, + "probability": 0.6913 + }, + { + "start": 16413.64, + "end": 16415.7, + "probability": 0.8867 + }, + { + "start": 16416.02, + "end": 16419.4, + "probability": 0.8957 + }, + { + "start": 16419.9, + "end": 16420.76, + "probability": 0.6998 + }, + { + "start": 16421.34, + "end": 16422.44, + "probability": 0.7865 + }, + { + "start": 16422.46, + "end": 16426.14, + "probability": 0.9333 + }, + { + "start": 16427.32, + "end": 16429.98, + "probability": 0.9897 + }, + { + "start": 16430.48, + "end": 16432.64, + "probability": 0.9139 + }, + { + "start": 16433.12, + "end": 16436.54, + "probability": 0.9977 + }, + { + "start": 16436.96, + "end": 16442.46, + "probability": 0.9657 + }, + { + "start": 16442.46, + "end": 16447.16, + "probability": 0.9636 + }, + { + "start": 16447.96, + "end": 16449.6, + "probability": 0.6116 + }, + { + "start": 16449.68, + "end": 16451.86, + "probability": 0.7912 + }, + { + "start": 16451.96, + "end": 16453.02, + "probability": 0.8729 + }, + { + "start": 16453.44, + "end": 16454.52, + "probability": 0.5395 + }, + { + "start": 16455.24, + "end": 16458.14, + "probability": 0.9842 + }, + { + "start": 16458.76, + "end": 16460.98, + "probability": 0.9896 + }, + { + "start": 16461.02, + "end": 16461.74, + "probability": 0.9684 + }, + { + "start": 16462.1, + "end": 16464.96, + "probability": 0.8352 + }, + { + "start": 16465.54, + "end": 16468.32, + "probability": 0.9806 + }, + { + "start": 16469.1, + "end": 16469.84, + "probability": 0.8953 + }, + { + "start": 16470.32, + "end": 16471.52, + "probability": 0.9616 + }, + { + "start": 16471.8, + "end": 16475.14, + "probability": 0.9972 + }, + { + "start": 16475.26, + "end": 16478.98, + "probability": 0.9789 + }, + { + "start": 16479.64, + "end": 16481.48, + "probability": 0.9958 + }, + { + "start": 16481.56, + "end": 16484.46, + "probability": 0.9253 + }, + { + "start": 16484.5, + "end": 16484.88, + "probability": 0.7566 + }, + { + "start": 16485.64, + "end": 16486.26, + "probability": 0.624 + }, + { + "start": 16488.24, + "end": 16489.96, + "probability": 0.6957 + }, + { + "start": 16493.11, + "end": 16497.03, + "probability": 0.4038 + }, + { + "start": 16505.22, + "end": 16507.82, + "probability": 0.9974 + }, + { + "start": 16508.8, + "end": 16509.42, + "probability": 0.9282 + }, + { + "start": 16509.9, + "end": 16510.58, + "probability": 0.9887 + }, + { + "start": 16511.22, + "end": 16512.04, + "probability": 0.9097 + }, + { + "start": 16512.88, + "end": 16515.02, + "probability": 0.8839 + }, + { + "start": 16515.64, + "end": 16517.24, + "probability": 0.999 + }, + { + "start": 16517.8, + "end": 16522.14, + "probability": 0.9996 + }, + { + "start": 16522.64, + "end": 16523.89, + "probability": 0.7065 + }, + { + "start": 16524.04, + "end": 16524.89, + "probability": 0.9719 + }, + { + "start": 16525.89, + "end": 16533.84, + "probability": 0.9907 + }, + { + "start": 16534.77, + "end": 16540.1, + "probability": 0.9543 + }, + { + "start": 16541.06, + "end": 16542.82, + "probability": 0.0907 + }, + { + "start": 16542.82, + "end": 16542.82, + "probability": 0.148 + }, + { + "start": 16542.82, + "end": 16542.82, + "probability": 0.1239 + }, + { + "start": 16542.82, + "end": 16542.82, + "probability": 0.0487 + }, + { + "start": 16542.82, + "end": 16542.96, + "probability": 0.1654 + }, + { + "start": 16543.68, + "end": 16547.54, + "probability": 0.7224 + }, + { + "start": 16548.24, + "end": 16550.78, + "probability": 0.9827 + }, + { + "start": 16551.4, + "end": 16555.26, + "probability": 0.9342 + }, + { + "start": 16555.62, + "end": 16556.94, + "probability": 0.7843 + }, + { + "start": 16557.54, + "end": 16560.08, + "probability": 0.9819 + }, + { + "start": 16560.08, + "end": 16564.98, + "probability": 0.8638 + }, + { + "start": 16565.32, + "end": 16567.46, + "probability": 0.999 + }, + { + "start": 16567.46, + "end": 16571.2, + "probability": 0.9925 + }, + { + "start": 16571.42, + "end": 16571.94, + "probability": 0.6333 + }, + { + "start": 16571.98, + "end": 16573.02, + "probability": 0.8057 + }, + { + "start": 16573.36, + "end": 16576.77, + "probability": 0.9956 + }, + { + "start": 16577.12, + "end": 16578.04, + "probability": 0.7855 + }, + { + "start": 16578.18, + "end": 16579.14, + "probability": 0.9324 + }, + { + "start": 16579.6, + "end": 16581.5, + "probability": 0.9883 + }, + { + "start": 16581.56, + "end": 16582.64, + "probability": 0.9884 + }, + { + "start": 16583.42, + "end": 16586.92, + "probability": 0.9796 + }, + { + "start": 16587.46, + "end": 16588.28, + "probability": 0.8062 + }, + { + "start": 16588.4, + "end": 16588.98, + "probability": 0.8889 + }, + { + "start": 16589.06, + "end": 16589.58, + "probability": 0.8065 + }, + { + "start": 16589.72, + "end": 16592.36, + "probability": 0.8218 + }, + { + "start": 16592.48, + "end": 16595.58, + "probability": 0.9479 + }, + { + "start": 16595.98, + "end": 16598.9, + "probability": 0.8707 + }, + { + "start": 16599.1, + "end": 16601.1, + "probability": 0.8109 + }, + { + "start": 16601.38, + "end": 16602.56, + "probability": 0.8664 + }, + { + "start": 16604.06, + "end": 16609.54, + "probability": 0.9965 + }, + { + "start": 16610.22, + "end": 16611.04, + "probability": 0.5927 + }, + { + "start": 16611.78, + "end": 16612.96, + "probability": 0.8722 + }, + { + "start": 16613.62, + "end": 16618.44, + "probability": 0.9197 + }, + { + "start": 16618.6, + "end": 16620.06, + "probability": 0.9242 + }, + { + "start": 16620.7, + "end": 16624.02, + "probability": 0.9624 + }, + { + "start": 16624.98, + "end": 16625.78, + "probability": 0.8848 + }, + { + "start": 16625.98, + "end": 16627.92, + "probability": 0.9834 + }, + { + "start": 16628.26, + "end": 16633.3, + "probability": 0.7792 + }, + { + "start": 16633.46, + "end": 16634.56, + "probability": 0.9189 + }, + { + "start": 16634.66, + "end": 16635.54, + "probability": 0.865 + }, + { + "start": 16635.76, + "end": 16636.26, + "probability": 0.9203 + }, + { + "start": 16636.74, + "end": 16638.06, + "probability": 0.9508 + }, + { + "start": 16638.4, + "end": 16641.08, + "probability": 0.9886 + }, + { + "start": 16641.58, + "end": 16646.68, + "probability": 0.9674 + }, + { + "start": 16647.02, + "end": 16649.74, + "probability": 0.9538 + }, + { + "start": 16649.74, + "end": 16653.42, + "probability": 0.9397 + }, + { + "start": 16653.58, + "end": 16653.84, + "probability": 0.7067 + }, + { + "start": 16654.16, + "end": 16657.54, + "probability": 0.9289 + }, + { + "start": 16657.54, + "end": 16660.68, + "probability": 0.752 + }, + { + "start": 16661.24, + "end": 16661.44, + "probability": 0.7101 + }, + { + "start": 16661.48, + "end": 16662.7, + "probability": 0.5916 + }, + { + "start": 16662.92, + "end": 16664.74, + "probability": 0.9907 + }, + { + "start": 16664.86, + "end": 16669.42, + "probability": 0.8737 + }, + { + "start": 16670.38, + "end": 16671.1, + "probability": 0.7331 + }, + { + "start": 16671.2, + "end": 16676.18, + "probability": 0.9874 + }, + { + "start": 16676.7, + "end": 16679.3, + "probability": 0.9548 + }, + { + "start": 16679.56, + "end": 16680.06, + "probability": 0.5424 + }, + { + "start": 16680.16, + "end": 16680.34, + "probability": 0.8095 + }, + { + "start": 16680.4, + "end": 16682.12, + "probability": 0.9435 + }, + { + "start": 16682.4, + "end": 16683.34, + "probability": 0.7917 + }, + { + "start": 16683.34, + "end": 16683.84, + "probability": 0.4805 + }, + { + "start": 16683.84, + "end": 16685.38, + "probability": 0.9926 + }, + { + "start": 16685.98, + "end": 16686.6, + "probability": 0.846 + }, + { + "start": 16687.06, + "end": 16688.06, + "probability": 0.9116 + }, + { + "start": 16688.12, + "end": 16688.66, + "probability": 0.9783 + }, + { + "start": 16688.7, + "end": 16689.1, + "probability": 0.8011 + }, + { + "start": 16689.16, + "end": 16690.2, + "probability": 0.7792 + }, + { + "start": 16690.26, + "end": 16692.3, + "probability": 0.7063 + }, + { + "start": 16692.36, + "end": 16692.98, + "probability": 0.975 + }, + { + "start": 16693.0, + "end": 16696.86, + "probability": 0.8355 + }, + { + "start": 16697.16, + "end": 16697.48, + "probability": 0.6496 + }, + { + "start": 16697.56, + "end": 16698.08, + "probability": 0.7832 + }, + { + "start": 16698.12, + "end": 16698.8, + "probability": 0.3869 + }, + { + "start": 16698.92, + "end": 16701.66, + "probability": 0.9293 + }, + { + "start": 16701.66, + "end": 16705.1, + "probability": 0.9972 + }, + { + "start": 16706.06, + "end": 16706.2, + "probability": 0.4499 + }, + { + "start": 16706.2, + "end": 16708.68, + "probability": 0.7611 + }, + { + "start": 16708.78, + "end": 16712.6, + "probability": 0.9834 + }, + { + "start": 16712.96, + "end": 16714.02, + "probability": 0.7118 + }, + { + "start": 16714.42, + "end": 16716.32, + "probability": 0.9121 + }, + { + "start": 16716.7, + "end": 16717.24, + "probability": 0.838 + }, + { + "start": 16717.34, + "end": 16720.66, + "probability": 0.9417 + }, + { + "start": 16720.91, + "end": 16722.92, + "probability": 0.8721 + }, + { + "start": 16723.18, + "end": 16724.82, + "probability": 0.8972 + }, + { + "start": 16725.12, + "end": 16729.36, + "probability": 0.9916 + }, + { + "start": 16729.86, + "end": 16731.04, + "probability": 0.8319 + }, + { + "start": 16731.1, + "end": 16732.7, + "probability": 0.7056 + }, + { + "start": 16732.86, + "end": 16733.2, + "probability": 0.8032 + }, + { + "start": 16733.28, + "end": 16734.92, + "probability": 0.9725 + }, + { + "start": 16735.16, + "end": 16736.3, + "probability": 0.9708 + }, + { + "start": 16736.6, + "end": 16737.8, + "probability": 0.7385 + }, + { + "start": 16738.12, + "end": 16738.82, + "probability": 0.9844 + }, + { + "start": 16739.14, + "end": 16739.8, + "probability": 0.7754 + }, + { + "start": 16740.14, + "end": 16743.74, + "probability": 0.9692 + }, + { + "start": 16744.34, + "end": 16744.74, + "probability": 0.4204 + }, + { + "start": 16744.76, + "end": 16745.5, + "probability": 0.6033 + }, + { + "start": 16745.56, + "end": 16747.58, + "probability": 0.9397 + }, + { + "start": 16747.74, + "end": 16751.02, + "probability": 0.717 + }, + { + "start": 16751.48, + "end": 16752.8, + "probability": 0.9011 + }, + { + "start": 16753.18, + "end": 16753.66, + "probability": 0.6996 + }, + { + "start": 16754.92, + "end": 16755.12, + "probability": 0.0302 + }, + { + "start": 16756.18, + "end": 16757.38, + "probability": 0.3459 + }, + { + "start": 16757.8, + "end": 16759.9, + "probability": 0.4155 + }, + { + "start": 16760.22, + "end": 16760.79, + "probability": 0.3638 + }, + { + "start": 16761.4, + "end": 16768.26, + "probability": 0.3465 + }, + { + "start": 16770.62, + "end": 16776.51, + "probability": 0.6575 + }, + { + "start": 16777.18, + "end": 16780.62, + "probability": 0.981 + }, + { + "start": 16786.94, + "end": 16786.94, + "probability": 0.1617 + }, + { + "start": 16786.94, + "end": 16788.06, + "probability": 0.5429 + }, + { + "start": 16789.12, + "end": 16789.6, + "probability": 0.7508 + }, + { + "start": 16792.0, + "end": 16793.54, + "probability": 0.8825 + }, + { + "start": 16794.14, + "end": 16798.0, + "probability": 0.8279 + }, + { + "start": 16798.64, + "end": 16799.16, + "probability": 0.7774 + }, + { + "start": 16800.04, + "end": 16802.62, + "probability": 0.8044 + }, + { + "start": 16803.74, + "end": 16804.92, + "probability": 0.999 + }, + { + "start": 16806.08, + "end": 16807.86, + "probability": 0.915 + }, + { + "start": 16808.52, + "end": 16809.78, + "probability": 0.8689 + }, + { + "start": 16810.44, + "end": 16815.94, + "probability": 0.9878 + }, + { + "start": 16816.68, + "end": 16818.34, + "probability": 0.9849 + }, + { + "start": 16818.94, + "end": 16820.84, + "probability": 0.9575 + }, + { + "start": 16821.38, + "end": 16822.96, + "probability": 0.9793 + }, + { + "start": 16824.22, + "end": 16828.26, + "probability": 0.9897 + }, + { + "start": 16829.18, + "end": 16831.24, + "probability": 0.8813 + }, + { + "start": 16831.34, + "end": 16833.12, + "probability": 0.8929 + }, + { + "start": 16834.26, + "end": 16835.82, + "probability": 0.9785 + }, + { + "start": 16837.02, + "end": 16844.16, + "probability": 0.9958 + }, + { + "start": 16845.12, + "end": 16846.82, + "probability": 0.7158 + }, + { + "start": 16847.44, + "end": 16848.38, + "probability": 0.8851 + }, + { + "start": 16848.82, + "end": 16851.2, + "probability": 0.9971 + }, + { + "start": 16852.18, + "end": 16857.62, + "probability": 0.9934 + }, + { + "start": 16858.38, + "end": 16860.94, + "probability": 0.7571 + }, + { + "start": 16860.94, + "end": 16866.14, + "probability": 0.8814 + }, + { + "start": 16866.36, + "end": 16867.36, + "probability": 0.955 + }, + { + "start": 16867.36, + "end": 16867.8, + "probability": 0.1102 + }, + { + "start": 16867.8, + "end": 16868.54, + "probability": 0.7633 + }, + { + "start": 16869.22, + "end": 16871.62, + "probability": 0.9603 + }, + { + "start": 16872.32, + "end": 16877.31, + "probability": 0.9925 + }, + { + "start": 16877.98, + "end": 16885.04, + "probability": 0.9683 + }, + { + "start": 16886.14, + "end": 16889.08, + "probability": 0.8928 + }, + { + "start": 16889.84, + "end": 16892.52, + "probability": 0.9573 + }, + { + "start": 16893.58, + "end": 16895.9, + "probability": 0.9589 + }, + { + "start": 16896.66, + "end": 16900.16, + "probability": 0.9917 + }, + { + "start": 16900.16, + "end": 16905.24, + "probability": 0.9978 + }, + { + "start": 16905.78, + "end": 16906.52, + "probability": 0.8183 + }, + { + "start": 16907.08, + "end": 16908.64, + "probability": 0.9703 + }, + { + "start": 16909.16, + "end": 16913.16, + "probability": 0.9209 + }, + { + "start": 16913.6, + "end": 16915.86, + "probability": 0.8532 + }, + { + "start": 16916.5, + "end": 16921.66, + "probability": 0.9069 + }, + { + "start": 16922.16, + "end": 16924.62, + "probability": 0.9299 + }, + { + "start": 16924.74, + "end": 16926.48, + "probability": 0.2577 + }, + { + "start": 16926.62, + "end": 16927.74, + "probability": 0.0995 + }, + { + "start": 16929.26, + "end": 16931.08, + "probability": 0.813 + }, + { + "start": 16933.54, + "end": 16934.88, + "probability": 0.5385 + }, + { + "start": 16935.9, + "end": 16938.06, + "probability": 0.8223 + }, + { + "start": 16938.92, + "end": 16941.56, + "probability": 0.7807 + }, + { + "start": 16942.1, + "end": 16943.3, + "probability": 0.9755 + }, + { + "start": 16943.76, + "end": 16946.12, + "probability": 0.9685 + }, + { + "start": 16947.02, + "end": 16951.9, + "probability": 0.9741 + }, + { + "start": 16952.36, + "end": 16956.26, + "probability": 0.9392 + }, + { + "start": 16956.64, + "end": 16957.22, + "probability": 0.5941 + }, + { + "start": 16957.7, + "end": 16961.28, + "probability": 0.8112 + }, + { + "start": 16962.14, + "end": 16963.98, + "probability": 0.9735 + }, + { + "start": 16964.48, + "end": 16966.8, + "probability": 0.963 + }, + { + "start": 16967.22, + "end": 16969.6, + "probability": 0.8725 + }, + { + "start": 16970.14, + "end": 16971.24, + "probability": 0.8167 + }, + { + "start": 16971.84, + "end": 16976.34, + "probability": 0.9001 + }, + { + "start": 16977.36, + "end": 16980.48, + "probability": 0.9839 + }, + { + "start": 16981.26, + "end": 16983.3, + "probability": 0.8003 + }, + { + "start": 16983.92, + "end": 16984.79, + "probability": 0.9845 + }, + { + "start": 16985.52, + "end": 16986.54, + "probability": 0.6052 + }, + { + "start": 16987.2, + "end": 16993.2, + "probability": 0.9624 + }, + { + "start": 16993.94, + "end": 16995.44, + "probability": 0.8924 + }, + { + "start": 16995.9, + "end": 16998.64, + "probability": 0.9705 + }, + { + "start": 16999.34, + "end": 17000.22, + "probability": 0.9436 + }, + { + "start": 17000.76, + "end": 17002.0, + "probability": 0.9885 + }, + { + "start": 17002.36, + "end": 17003.72, + "probability": 0.9631 + }, + { + "start": 17004.24, + "end": 17005.28, + "probability": 0.8137 + }, + { + "start": 17005.7, + "end": 17008.48, + "probability": 0.73 + }, + { + "start": 17008.9, + "end": 17013.0, + "probability": 0.9189 + }, + { + "start": 17013.48, + "end": 17014.3, + "probability": 0.6327 + }, + { + "start": 17014.86, + "end": 17017.66, + "probability": 0.9798 + }, + { + "start": 17018.2, + "end": 17019.54, + "probability": 0.8149 + }, + { + "start": 17019.92, + "end": 17020.64, + "probability": 0.7784 + }, + { + "start": 17021.3, + "end": 17026.06, + "probability": 0.9493 + }, + { + "start": 17028.68, + "end": 17029.06, + "probability": 0.1787 + }, + { + "start": 17033.74, + "end": 17035.06, + "probability": 0.2008 + }, + { + "start": 17035.66, + "end": 17035.9, + "probability": 0.1687 + }, + { + "start": 17037.26, + "end": 17039.66, + "probability": 0.053 + }, + { + "start": 17059.24, + "end": 17062.64, + "probability": 0.721 + }, + { + "start": 17062.78, + "end": 17065.1, + "probability": 0.7905 + }, + { + "start": 17065.28, + "end": 17066.42, + "probability": 0.647 + }, + { + "start": 17067.0, + "end": 17071.32, + "probability": 0.997 + }, + { + "start": 17071.62, + "end": 17073.36, + "probability": 0.951 + }, + { + "start": 17073.44, + "end": 17074.6, + "probability": 0.7343 + }, + { + "start": 17075.3, + "end": 17076.46, + "probability": 0.7739 + }, + { + "start": 17077.18, + "end": 17079.92, + "probability": 0.9222 + }, + { + "start": 17080.96, + "end": 17081.82, + "probability": 0.4238 + }, + { + "start": 17082.34, + "end": 17085.3, + "probability": 0.9954 + }, + { + "start": 17085.72, + "end": 17089.42, + "probability": 0.578 + }, + { + "start": 17090.0, + "end": 17092.42, + "probability": 0.7559 + }, + { + "start": 17093.42, + "end": 17095.0, + "probability": 0.9155 + }, + { + "start": 17095.08, + "end": 17098.24, + "probability": 0.9334 + }, + { + "start": 17098.66, + "end": 17100.38, + "probability": 0.9867 + }, + { + "start": 17100.6, + "end": 17102.78, + "probability": 0.9637 + }, + { + "start": 17103.3, + "end": 17107.28, + "probability": 0.9528 + }, + { + "start": 17107.86, + "end": 17110.84, + "probability": 0.9214 + }, + { + "start": 17111.02, + "end": 17111.2, + "probability": 0.7112 + }, + { + "start": 17111.28, + "end": 17111.8, + "probability": 0.8352 + }, + { + "start": 17112.0, + "end": 17112.58, + "probability": 0.9093 + }, + { + "start": 17112.68, + "end": 17114.74, + "probability": 0.9723 + }, + { + "start": 17114.8, + "end": 17114.96, + "probability": 0.5 + }, + { + "start": 17115.72, + "end": 17118.02, + "probability": 0.9648 + }, + { + "start": 17118.3, + "end": 17119.04, + "probability": 0.9161 + }, + { + "start": 17119.16, + "end": 17119.64, + "probability": 0.8789 + }, + { + "start": 17119.64, + "end": 17120.22, + "probability": 0.64 + }, + { + "start": 17120.56, + "end": 17123.28, + "probability": 0.9155 + }, + { + "start": 17124.78, + "end": 17129.78, + "probability": 0.9963 + }, + { + "start": 17129.86, + "end": 17131.03, + "probability": 0.8799 + }, + { + "start": 17131.12, + "end": 17131.82, + "probability": 0.6722 + }, + { + "start": 17132.24, + "end": 17133.65, + "probability": 0.8481 + }, + { + "start": 17135.64, + "end": 17142.54, + "probability": 0.7398 + }, + { + "start": 17142.54, + "end": 17145.05, + "probability": 0.6511 + }, + { + "start": 17145.58, + "end": 17148.84, + "probability": 0.1851 + }, + { + "start": 17148.84, + "end": 17149.66, + "probability": 0.1599 + }, + { + "start": 17149.72, + "end": 17149.98, + "probability": 0.4324 + }, + { + "start": 17149.98, + "end": 17149.98, + "probability": 0.4067 + }, + { + "start": 17151.0, + "end": 17153.42, + "probability": 0.8064 + }, + { + "start": 17156.58, + "end": 17158.98, + "probability": 0.9941 + }, + { + "start": 17158.98, + "end": 17159.86, + "probability": 0.5582 + }, + { + "start": 17159.96, + "end": 17161.9, + "probability": 0.9238 + }, + { + "start": 17162.0, + "end": 17162.12, + "probability": 0.1245 + }, + { + "start": 17162.12, + "end": 17164.4, + "probability": 0.9565 + }, + { + "start": 17164.5, + "end": 17164.82, + "probability": 0.4027 + }, + { + "start": 17167.46, + "end": 17169.6, + "probability": 0.6746 + }, + { + "start": 17169.72, + "end": 17169.72, + "probability": 0.0676 + }, + { + "start": 17169.72, + "end": 17169.72, + "probability": 0.192 + }, + { + "start": 17169.72, + "end": 17171.08, + "probability": 0.7032 + }, + { + "start": 17171.22, + "end": 17172.82, + "probability": 0.9873 + }, + { + "start": 17173.84, + "end": 17175.68, + "probability": 0.8281 + }, + { + "start": 17177.83, + "end": 17179.31, + "probability": 0.2514 + }, + { + "start": 17186.1, + "end": 17188.94, + "probability": 0.8066 + }, + { + "start": 17190.12, + "end": 17190.78, + "probability": 0.0087 + }, + { + "start": 17190.84, + "end": 17193.68, + "probability": 0.0773 + }, + { + "start": 17193.68, + "end": 17197.4, + "probability": 0.2028 + }, + { + "start": 17197.4, + "end": 17198.18, + "probability": 0.0907 + }, + { + "start": 17198.56, + "end": 17200.3, + "probability": 0.1735 + }, + { + "start": 17200.32, + "end": 17201.08, + "probability": 0.0246 + }, + { + "start": 17201.3, + "end": 17201.38, + "probability": 0.2705 + }, + { + "start": 17202.0, + "end": 17202.68, + "probability": 0.0413 + }, + { + "start": 17202.84, + "end": 17203.0, + "probability": 0.2522 + }, + { + "start": 17203.0, + "end": 17203.46, + "probability": 0.0699 + }, + { + "start": 17203.46, + "end": 17203.46, + "probability": 0.0819 + }, + { + "start": 17203.46, + "end": 17204.16, + "probability": 0.0278 + }, + { + "start": 17207.3, + "end": 17211.64, + "probability": 0.0389 + }, + { + "start": 17211.64, + "end": 17213.32, + "probability": 0.0471 + }, + { + "start": 17213.32, + "end": 17213.6, + "probability": 0.1371 + }, + { + "start": 17213.6, + "end": 17214.3, + "probability": 0.0924 + }, + { + "start": 17214.98, + "end": 17216.92, + "probability": 0.142 + }, + { + "start": 17218.82, + "end": 17221.01, + "probability": 0.0754 + }, + { + "start": 17223.46, + "end": 17223.46, + "probability": 0.1053 + }, + { + "start": 17223.9, + "end": 17224.14, + "probability": 0.0032 + }, + { + "start": 17225.88, + "end": 17226.92, + "probability": 0.0675 + }, + { + "start": 17228.27, + "end": 17228.84, + "probability": 0.0056 + }, + { + "start": 17229.28, + "end": 17229.7, + "probability": 0.0243 + }, + { + "start": 17230.04, + "end": 17231.1, + "probability": 0.0399 + }, + { + "start": 17231.1, + "end": 17231.52, + "probability": 0.0202 + }, + { + "start": 17231.72, + "end": 17231.9, + "probability": 0.1162 + }, + { + "start": 17232.88, + "end": 17233.92, + "probability": 0.1465 + }, + { + "start": 17236.74, + "end": 17236.94, + "probability": 0.2269 + }, + { + "start": 17236.94, + "end": 17237.94, + "probability": 0.0295 + }, + { + "start": 17238.74, + "end": 17238.98, + "probability": 0.365 + }, + { + "start": 17239.0, + "end": 17239.0, + "probability": 0.0 + }, + { + "start": 17239.0, + "end": 17239.0, + "probability": 0.0 + }, + { + "start": 17239.0, + "end": 17239.0, + "probability": 0.0 + }, + { + "start": 17239.45, + "end": 17240.67, + "probability": 0.0578 + }, + { + "start": 17242.36, + "end": 17246.38, + "probability": 0.7498 + }, + { + "start": 17247.14, + "end": 17249.56, + "probability": 0.9777 + }, + { + "start": 17249.66, + "end": 17251.2, + "probability": 0.9076 + }, + { + "start": 17251.78, + "end": 17253.78, + "probability": 0.5657 + }, + { + "start": 17253.84, + "end": 17255.46, + "probability": 0.9779 + }, + { + "start": 17255.56, + "end": 17258.8, + "probability": 0.998 + }, + { + "start": 17258.8, + "end": 17261.1, + "probability": 0.999 + }, + { + "start": 17261.16, + "end": 17261.68, + "probability": 0.7304 + }, + { + "start": 17261.8, + "end": 17262.66, + "probability": 0.7219 + }, + { + "start": 17263.94, + "end": 17265.55, + "probability": 0.8072 + }, + { + "start": 17266.22, + "end": 17268.66, + "probability": 0.9943 + }, + { + "start": 17270.6, + "end": 17273.24, + "probability": 0.1499 + }, + { + "start": 17273.24, + "end": 17274.58, + "probability": 0.7858 + }, + { + "start": 17279.02, + "end": 17280.94, + "probability": 0.8528 + }, + { + "start": 17281.32, + "end": 17281.88, + "probability": 0.5988 + }, + { + "start": 17281.94, + "end": 17283.06, + "probability": 0.4953 + }, + { + "start": 17285.06, + "end": 17286.78, + "probability": 0.315 + }, + { + "start": 17287.18, + "end": 17287.78, + "probability": 0.6318 + }, + { + "start": 17288.4, + "end": 17290.96, + "probability": 0.76 + }, + { + "start": 17292.76, + "end": 17293.76, + "probability": 0.3278 + }, + { + "start": 17293.78, + "end": 17296.4, + "probability": 0.9897 + }, + { + "start": 17297.24, + "end": 17301.08, + "probability": 0.8233 + }, + { + "start": 17301.82, + "end": 17303.02, + "probability": 0.631 + }, + { + "start": 17303.82, + "end": 17304.8, + "probability": 0.9675 + }, + { + "start": 17304.82, + "end": 17307.31, + "probability": 0.995 + }, + { + "start": 17307.48, + "end": 17308.28, + "probability": 0.9128 + }, + { + "start": 17308.42, + "end": 17308.94, + "probability": 0.8674 + }, + { + "start": 17309.06, + "end": 17310.46, + "probability": 0.9375 + }, + { + "start": 17311.56, + "end": 17313.16, + "probability": 0.9519 + }, + { + "start": 17313.68, + "end": 17314.82, + "probability": 0.9653 + }, + { + "start": 17316.3, + "end": 17318.9, + "probability": 0.9917 + }, + { + "start": 17319.62, + "end": 17323.64, + "probability": 0.5925 + }, + { + "start": 17324.18, + "end": 17324.88, + "probability": 0.5725 + }, + { + "start": 17325.0, + "end": 17333.28, + "probability": 0.9704 + }, + { + "start": 17333.4, + "end": 17334.26, + "probability": 0.8874 + }, + { + "start": 17334.28, + "end": 17336.56, + "probability": 0.6792 + }, + { + "start": 17337.34, + "end": 17339.46, + "probability": 0.9811 + }, + { + "start": 17339.96, + "end": 17343.86, + "probability": 0.9878 + }, + { + "start": 17344.34, + "end": 17345.86, + "probability": 0.9455 + }, + { + "start": 17345.98, + "end": 17347.92, + "probability": 0.9361 + }, + { + "start": 17348.71, + "end": 17351.38, + "probability": 0.9897 + }, + { + "start": 17351.46, + "end": 17354.78, + "probability": 0.875 + }, + { + "start": 17355.14, + "end": 17355.34, + "probability": 0.7307 + }, + { + "start": 17355.42, + "end": 17356.36, + "probability": 0.7495 + }, + { + "start": 17356.54, + "end": 17360.12, + "probability": 0.9858 + }, + { + "start": 17361.36, + "end": 17365.46, + "probability": 0.8664 + }, + { + "start": 17366.2, + "end": 17369.22, + "probability": 0.9773 + }, + { + "start": 17370.06, + "end": 17373.4, + "probability": 0.9983 + }, + { + "start": 17375.02, + "end": 17378.52, + "probability": 0.7055 + }, + { + "start": 17379.56, + "end": 17384.84, + "probability": 0.9879 + }, + { + "start": 17385.72, + "end": 17386.86, + "probability": 0.9142 + }, + { + "start": 17388.2, + "end": 17390.72, + "probability": 0.9919 + }, + { + "start": 17391.16, + "end": 17394.82, + "probability": 0.9873 + }, + { + "start": 17395.5, + "end": 17399.22, + "probability": 0.9175 + }, + { + "start": 17400.56, + "end": 17401.8, + "probability": 0.7491 + }, + { + "start": 17401.98, + "end": 17406.8, + "probability": 0.9823 + }, + { + "start": 17407.04, + "end": 17407.92, + "probability": 0.4554 + }, + { + "start": 17407.96, + "end": 17408.12, + "probability": 0.886 + }, + { + "start": 17408.24, + "end": 17408.68, + "probability": 0.7373 + }, + { + "start": 17408.74, + "end": 17409.54, + "probability": 0.7171 + }, + { + "start": 17410.3, + "end": 17411.58, + "probability": 0.8565 + }, + { + "start": 17412.1, + "end": 17415.86, + "probability": 0.9884 + }, + { + "start": 17416.56, + "end": 17419.14, + "probability": 0.8892 + }, + { + "start": 17419.98, + "end": 17422.52, + "probability": 0.9819 + }, + { + "start": 17423.34, + "end": 17425.12, + "probability": 0.7463 + }, + { + "start": 17425.8, + "end": 17427.4, + "probability": 0.9419 + }, + { + "start": 17428.08, + "end": 17430.76, + "probability": 0.5617 + }, + { + "start": 17430.86, + "end": 17432.34, + "probability": 0.9901 + }, + { + "start": 17432.46, + "end": 17433.82, + "probability": 0.8264 + }, + { + "start": 17433.98, + "end": 17437.2, + "probability": 0.9395 + }, + { + "start": 17438.06, + "end": 17439.7, + "probability": 0.9562 + }, + { + "start": 17440.55, + "end": 17443.48, + "probability": 0.6894 + }, + { + "start": 17443.5, + "end": 17444.14, + "probability": 0.761 + }, + { + "start": 17444.62, + "end": 17449.2, + "probability": 0.9611 + }, + { + "start": 17450.18, + "end": 17451.18, + "probability": 0.8092 + }, + { + "start": 17451.54, + "end": 17452.24, + "probability": 0.777 + }, + { + "start": 17452.32, + "end": 17452.6, + "probability": 0.6204 + }, + { + "start": 17452.7, + "end": 17452.92, + "probability": 0.9928 + }, + { + "start": 17453.0, + "end": 17454.12, + "probability": 0.7265 + }, + { + "start": 17454.44, + "end": 17459.14, + "probability": 0.996 + }, + { + "start": 17459.82, + "end": 17461.08, + "probability": 0.5301 + }, + { + "start": 17462.06, + "end": 17466.32, + "probability": 0.7364 + }, + { + "start": 17467.28, + "end": 17474.72, + "probability": 0.8501 + }, + { + "start": 17475.28, + "end": 17477.14, + "probability": 0.9813 + }, + { + "start": 17478.16, + "end": 17480.06, + "probability": 0.9333 + }, + { + "start": 17480.66, + "end": 17482.68, + "probability": 0.9996 + }, + { + "start": 17483.08, + "end": 17485.12, + "probability": 0.9977 + }, + { + "start": 17485.26, + "end": 17487.12, + "probability": 0.8079 + }, + { + "start": 17487.64, + "end": 17489.08, + "probability": 0.6696 + }, + { + "start": 17489.82, + "end": 17491.12, + "probability": 0.9637 + }, + { + "start": 17491.68, + "end": 17494.84, + "probability": 0.9267 + }, + { + "start": 17495.07, + "end": 17495.14, + "probability": 0.4582 + }, + { + "start": 17495.14, + "end": 17496.72, + "probability": 0.6523 + }, + { + "start": 17497.32, + "end": 17497.62, + "probability": 0.3544 + }, + { + "start": 17497.86, + "end": 17500.66, + "probability": 0.6316 + }, + { + "start": 17501.06, + "end": 17503.53, + "probability": 0.2234 + }, + { + "start": 17503.66, + "end": 17508.1, + "probability": 0.9497 + }, + { + "start": 17508.66, + "end": 17510.32, + "probability": 0.7804 + }, + { + "start": 17510.56, + "end": 17513.64, + "probability": 0.9343 + }, + { + "start": 17514.08, + "end": 17514.62, + "probability": 0.7798 + }, + { + "start": 17514.66, + "end": 17515.12, + "probability": 0.8455 + }, + { + "start": 17515.48, + "end": 17519.14, + "probability": 0.8972 + }, + { + "start": 17519.28, + "end": 17521.94, + "probability": 0.9722 + }, + { + "start": 17521.94, + "end": 17526.04, + "probability": 0.8795 + }, + { + "start": 17526.86, + "end": 17527.5, + "probability": 0.829 + }, + { + "start": 17527.9, + "end": 17529.64, + "probability": 0.9995 + }, + { + "start": 17530.02, + "end": 17531.8, + "probability": 0.9937 + }, + { + "start": 17533.13, + "end": 17536.66, + "probability": 0.9937 + }, + { + "start": 17536.66, + "end": 17537.28, + "probability": 0.0255 + }, + { + "start": 17537.76, + "end": 17537.82, + "probability": 0.4478 + }, + { + "start": 17537.82, + "end": 17538.76, + "probability": 0.7597 + }, + { + "start": 17539.34, + "end": 17540.7, + "probability": 0.7927 + }, + { + "start": 17541.1, + "end": 17543.34, + "probability": 0.8191 + }, + { + "start": 17544.38, + "end": 17546.58, + "probability": 0.9962 + }, + { + "start": 17547.66, + "end": 17551.92, + "probability": 0.956 + }, + { + "start": 17552.6, + "end": 17554.2, + "probability": 0.951 + }, + { + "start": 17555.02, + "end": 17557.2, + "probability": 0.9968 + }, + { + "start": 17557.64, + "end": 17561.5, + "probability": 0.9775 + }, + { + "start": 17562.1, + "end": 17565.04, + "probability": 0.9822 + }, + { + "start": 17565.66, + "end": 17567.18, + "probability": 0.9922 + }, + { + "start": 17567.24, + "end": 17569.24, + "probability": 0.9954 + }, + { + "start": 17569.56, + "end": 17570.14, + "probability": 0.8901 + }, + { + "start": 17570.44, + "end": 17573.46, + "probability": 0.9963 + }, + { + "start": 17574.24, + "end": 17575.12, + "probability": 0.981 + }, + { + "start": 17575.14, + "end": 17579.54, + "probability": 0.9454 + }, + { + "start": 17580.64, + "end": 17583.66, + "probability": 0.9146 + }, + { + "start": 17584.16, + "end": 17587.02, + "probability": 0.9792 + }, + { + "start": 17587.06, + "end": 17590.86, + "probability": 0.975 + }, + { + "start": 17591.0, + "end": 17592.28, + "probability": 0.0448 + }, + { + "start": 17592.28, + "end": 17597.72, + "probability": 0.9633 + }, + { + "start": 17597.92, + "end": 17601.42, + "probability": 0.8482 + }, + { + "start": 17601.96, + "end": 17605.06, + "probability": 0.9802 + }, + { + "start": 17607.87, + "end": 17610.45, + "probability": 0.9492 + }, + { + "start": 17611.12, + "end": 17613.74, + "probability": 0.9333 + }, + { + "start": 17614.28, + "end": 17616.02, + "probability": 0.9927 + }, + { + "start": 17616.6, + "end": 17619.46, + "probability": 0.9995 + }, + { + "start": 17621.08, + "end": 17624.18, + "probability": 0.8937 + }, + { + "start": 17624.94, + "end": 17628.5, + "probability": 0.9988 + }, + { + "start": 17628.5, + "end": 17632.12, + "probability": 0.7328 + }, + { + "start": 17632.58, + "end": 17634.57, + "probability": 0.9491 + }, + { + "start": 17635.54, + "end": 17638.52, + "probability": 0.9551 + }, + { + "start": 17639.14, + "end": 17640.5, + "probability": 0.9688 + }, + { + "start": 17640.6, + "end": 17641.46, + "probability": 0.7699 + }, + { + "start": 17641.76, + "end": 17642.6, + "probability": 0.8496 + }, + { + "start": 17642.9, + "end": 17643.94, + "probability": 0.8348 + }, + { + "start": 17644.0, + "end": 17644.4, + "probability": 0.8556 + }, + { + "start": 17644.82, + "end": 17646.48, + "probability": 0.8686 + }, + { + "start": 17646.84, + "end": 17650.82, + "probability": 0.9102 + }, + { + "start": 17659.9, + "end": 17660.78, + "probability": 0.728 + }, + { + "start": 17661.46, + "end": 17665.32, + "probability": 0.9974 + }, + { + "start": 17667.0, + "end": 17669.38, + "probability": 0.9797 + }, + { + "start": 17669.44, + "end": 17670.59, + "probability": 0.8832 + }, + { + "start": 17672.12, + "end": 17676.4, + "probability": 0.9956 + }, + { + "start": 17676.4, + "end": 17680.22, + "probability": 0.9859 + }, + { + "start": 17681.14, + "end": 17681.6, + "probability": 0.6901 + }, + { + "start": 17681.7, + "end": 17685.42, + "probability": 0.8944 + }, + { + "start": 17685.46, + "end": 17686.84, + "probability": 0.8725 + }, + { + "start": 17687.5, + "end": 17688.12, + "probability": 0.8701 + }, + { + "start": 17688.2, + "end": 17690.72, + "probability": 0.9745 + }, + { + "start": 17691.54, + "end": 17694.46, + "probability": 0.9605 + }, + { + "start": 17695.58, + "end": 17698.22, + "probability": 0.9961 + }, + { + "start": 17699.08, + "end": 17699.98, + "probability": 0.8513 + }, + { + "start": 17700.6, + "end": 17703.5, + "probability": 0.7618 + }, + { + "start": 17704.16, + "end": 17704.84, + "probability": 0.9186 + }, + { + "start": 17705.1, + "end": 17707.22, + "probability": 0.9238 + }, + { + "start": 17707.86, + "end": 17712.3, + "probability": 0.9241 + }, + { + "start": 17713.96, + "end": 17714.9, + "probability": 0.6416 + }, + { + "start": 17716.55, + "end": 17718.62, + "probability": 0.7983 + }, + { + "start": 17720.08, + "end": 17721.44, + "probability": 0.0498 + }, + { + "start": 17724.78, + "end": 17725.92, + "probability": 0.5491 + }, + { + "start": 17726.44, + "end": 17727.17, + "probability": 0.1987 + }, + { + "start": 17727.8, + "end": 17729.74, + "probability": 0.8279 + }, + { + "start": 17730.12, + "end": 17731.85, + "probability": 0.9019 + }, + { + "start": 17733.72, + "end": 17736.68, + "probability": 0.2865 + }, + { + "start": 17737.26, + "end": 17737.42, + "probability": 0.0273 + }, + { + "start": 17741.72, + "end": 17742.68, + "probability": 0.3793 + }, + { + "start": 17743.2, + "end": 17743.56, + "probability": 0.569 + }, + { + "start": 17744.18, + "end": 17746.1, + "probability": 0.5703 + }, + { + "start": 17746.16, + "end": 17746.3, + "probability": 0.5043 + }, + { + "start": 17746.72, + "end": 17748.54, + "probability": 0.5188 + }, + { + "start": 17750.6, + "end": 17751.38, + "probability": 0.9599 + }, + { + "start": 17755.42, + "end": 17756.22, + "probability": 0.5501 + }, + { + "start": 17756.22, + "end": 17756.82, + "probability": 0.5866 + }, + { + "start": 17756.92, + "end": 17762.12, + "probability": 0.9957 + }, + { + "start": 17762.12, + "end": 17766.4, + "probability": 0.9993 + }, + { + "start": 17767.6, + "end": 17773.62, + "probability": 0.9901 + }, + { + "start": 17773.7, + "end": 17777.96, + "probability": 0.9587 + }, + { + "start": 17778.42, + "end": 17779.58, + "probability": 0.9787 + }, + { + "start": 17779.66, + "end": 17780.46, + "probability": 0.9491 + }, + { + "start": 17780.52, + "end": 17781.44, + "probability": 0.8125 + }, + { + "start": 17781.95, + "end": 17783.15, + "probability": 0.9379 + }, + { + "start": 17783.5, + "end": 17786.3, + "probability": 0.9717 + }, + { + "start": 17786.82, + "end": 17790.38, + "probability": 0.8049 + }, + { + "start": 17791.32, + "end": 17792.54, + "probability": 0.9026 + }, + { + "start": 17792.72, + "end": 17794.64, + "probability": 0.9968 + }, + { + "start": 17794.64, + "end": 17795.56, + "probability": 0.998 + }, + { + "start": 17795.92, + "end": 17796.78, + "probability": 0.8757 + }, + { + "start": 17797.12, + "end": 17801.04, + "probability": 0.9823 + }, + { + "start": 17801.7, + "end": 17804.42, + "probability": 0.9956 + }, + { + "start": 17806.9, + "end": 17808.56, + "probability": 0.9717 + }, + { + "start": 17810.3, + "end": 17817.1, + "probability": 0.9963 + }, + { + "start": 17817.1, + "end": 17820.96, + "probability": 0.9747 + }, + { + "start": 17822.92, + "end": 17824.6, + "probability": 0.883 + }, + { + "start": 17826.34, + "end": 17829.42, + "probability": 0.9414 + }, + { + "start": 17829.46, + "end": 17831.04, + "probability": 0.9303 + }, + { + "start": 17832.58, + "end": 17834.74, + "probability": 0.9705 + }, + { + "start": 17837.68, + "end": 17843.58, + "probability": 0.9138 + }, + { + "start": 17844.26, + "end": 17847.14, + "probability": 0.999 + }, + { + "start": 17848.2, + "end": 17848.76, + "probability": 0.8085 + }, + { + "start": 17849.67, + "end": 17854.78, + "probability": 0.8276 + }, + { + "start": 17855.57, + "end": 17857.27, + "probability": 0.9438 + }, + { + "start": 17857.54, + "end": 17858.12, + "probability": 0.2918 + }, + { + "start": 17858.38, + "end": 17858.98, + "probability": 0.5724 + }, + { + "start": 17859.1, + "end": 17859.55, + "probability": 0.747 + }, + { + "start": 17860.2, + "end": 17863.12, + "probability": 0.7743 + }, + { + "start": 17865.39, + "end": 17869.44, + "probability": 0.9904 + }, + { + "start": 17872.34, + "end": 17874.42, + "probability": 0.1879 + }, + { + "start": 17874.92, + "end": 17877.02, + "probability": 0.9161 + }, + { + "start": 17877.96, + "end": 17884.8, + "probability": 0.9746 + }, + { + "start": 17889.59, + "end": 17896.08, + "probability": 0.5201 + }, + { + "start": 17896.26, + "end": 17898.36, + "probability": 0.8899 + }, + { + "start": 17898.79, + "end": 17900.71, + "probability": 0.9351 + }, + { + "start": 17901.88, + "end": 17903.96, + "probability": 0.9748 + }, + { + "start": 17904.16, + "end": 17908.62, + "probability": 0.9797 + }, + { + "start": 17910.0, + "end": 17912.28, + "probability": 0.307 + }, + { + "start": 17912.42, + "end": 17919.88, + "probability": 0.985 + }, + { + "start": 17920.9, + "end": 17923.21, + "probability": 0.6893 + }, + { + "start": 17925.58, + "end": 17929.02, + "probability": 0.9829 + }, + { + "start": 17929.72, + "end": 17931.94, + "probability": 0.9821 + }, + { + "start": 17933.02, + "end": 17935.1, + "probability": 0.9904 + }, + { + "start": 17935.68, + "end": 17936.94, + "probability": 0.877 + }, + { + "start": 17937.58, + "end": 17938.58, + "probability": 0.8782 + }, + { + "start": 17939.46, + "end": 17941.68, + "probability": 0.9826 + }, + { + "start": 17942.3, + "end": 17943.4, + "probability": 0.7709 + }, + { + "start": 17944.02, + "end": 17945.14, + "probability": 0.8633 + }, + { + "start": 17945.7, + "end": 17947.76, + "probability": 0.9004 + }, + { + "start": 17948.42, + "end": 17950.94, + "probability": 0.917 + }, + { + "start": 17951.16, + "end": 17952.14, + "probability": 0.9932 + }, + { + "start": 17952.22, + "end": 17953.54, + "probability": 0.7849 + }, + { + "start": 17953.68, + "end": 17954.34, + "probability": 0.654 + }, + { + "start": 17954.56, + "end": 17957.6, + "probability": 0.0632 + }, + { + "start": 17961.9, + "end": 17962.2, + "probability": 0.4214 + }, + { + "start": 17962.4, + "end": 17963.72, + "probability": 0.7975 + }, + { + "start": 17965.25, + "end": 17967.36, + "probability": 0.9991 + }, + { + "start": 17967.44, + "end": 17968.98, + "probability": 0.9671 + }, + { + "start": 17969.26, + "end": 17973.54, + "probability": 0.9971 + }, + { + "start": 17973.64, + "end": 17976.06, + "probability": 0.9878 + }, + { + "start": 17977.7, + "end": 17980.26, + "probability": 0.0572 + }, + { + "start": 17980.4, + "end": 17981.54, + "probability": 0.1674 + }, + { + "start": 17982.78, + "end": 17984.66, + "probability": 0.0548 + }, + { + "start": 17985.56, + "end": 17987.32, + "probability": 0.0708 + }, + { + "start": 17988.38, + "end": 17990.46, + "probability": 0.9631 + }, + { + "start": 17991.22, + "end": 17991.7, + "probability": 0.9604 + }, + { + "start": 17995.66, + "end": 17996.12, + "probability": 0.7109 + }, + { + "start": 17998.08, + "end": 17999.4, + "probability": 0.7641 + }, + { + "start": 18000.52, + "end": 18002.62, + "probability": 0.9927 + }, + { + "start": 18002.98, + "end": 18004.12, + "probability": 0.5153 + }, + { + "start": 18004.2, + "end": 18004.46, + "probability": 0.8883 + }, + { + "start": 18004.48, + "end": 18004.48, + "probability": 0.5531 + }, + { + "start": 18004.48, + "end": 18007.25, + "probability": 0.3045 + }, + { + "start": 18007.54, + "end": 18009.04, + "probability": 0.824 + }, + { + "start": 18010.9, + "end": 18013.4, + "probability": 0.8147 + }, + { + "start": 18013.4, + "end": 18016.46, + "probability": 0.849 + }, + { + "start": 18017.58, + "end": 18022.08, + "probability": 0.9766 + }, + { + "start": 18022.5, + "end": 18025.28, + "probability": 0.9902 + }, + { + "start": 18026.06, + "end": 18030.82, + "probability": 0.8185 + }, + { + "start": 18031.7, + "end": 18035.72, + "probability": 0.7464 + }, + { + "start": 18037.82, + "end": 18039.14, + "probability": 0.9773 + }, + { + "start": 18041.8, + "end": 18044.16, + "probability": 0.1272 + }, + { + "start": 18044.16, + "end": 18045.32, + "probability": 0.649 + }, + { + "start": 18048.11, + "end": 18050.66, + "probability": 0.0157 + }, + { + "start": 18050.74, + "end": 18050.74, + "probability": 0.0266 + }, + { + "start": 18051.12, + "end": 18052.44, + "probability": 0.2772 + }, + { + "start": 18059.03, + "end": 18061.5, + "probability": 0.3029 + }, + { + "start": 18061.95, + "end": 18062.85, + "probability": 0.8535 + }, + { + "start": 18063.49, + "end": 18065.99, + "probability": 0.5893 + }, + { + "start": 18066.67, + "end": 18072.21, + "probability": 0.9836 + }, + { + "start": 18072.31, + "end": 18073.03, + "probability": 0.8097 + }, + { + "start": 18073.09, + "end": 18074.22, + "probability": 0.7425 + }, + { + "start": 18074.31, + "end": 18074.45, + "probability": 0.4768 + }, + { + "start": 18074.61, + "end": 18075.37, + "probability": 0.9561 + }, + { + "start": 18075.49, + "end": 18078.07, + "probability": 0.9825 + }, + { + "start": 18078.13, + "end": 18078.67, + "probability": 0.7744 + }, + { + "start": 18079.27, + "end": 18081.11, + "probability": 0.9899 + }, + { + "start": 18081.17, + "end": 18081.75, + "probability": 0.6582 + }, + { + "start": 18081.89, + "end": 18082.44, + "probability": 0.8818 + }, + { + "start": 18083.73, + "end": 18088.63, + "probability": 0.9878 + }, + { + "start": 18090.21, + "end": 18093.62, + "probability": 0.9973 + }, + { + "start": 18097.15, + "end": 18102.67, + "probability": 0.9577 + }, + { + "start": 18103.63, + "end": 18109.63, + "probability": 0.8926 + }, + { + "start": 18109.85, + "end": 18110.77, + "probability": 0.9619 + }, + { + "start": 18111.57, + "end": 18114.77, + "probability": 0.9928 + }, + { + "start": 18114.77, + "end": 18118.85, + "probability": 0.9702 + }, + { + "start": 18119.15, + "end": 18121.19, + "probability": 0.9486 + }, + { + "start": 18121.19, + "end": 18126.57, + "probability": 0.8874 + }, + { + "start": 18126.63, + "end": 18128.33, + "probability": 0.7708 + }, + { + "start": 18131.25, + "end": 18135.31, + "probability": 0.804 + }, + { + "start": 18136.55, + "end": 18140.33, + "probability": 0.5947 + }, + { + "start": 18141.71, + "end": 18147.27, + "probability": 0.9959 + }, + { + "start": 18149.59, + "end": 18153.71, + "probability": 0.8536 + }, + { + "start": 18154.41, + "end": 18156.95, + "probability": 0.9855 + }, + { + "start": 18157.51, + "end": 18161.11, + "probability": 0.9995 + }, + { + "start": 18161.11, + "end": 18167.63, + "probability": 0.9946 + }, + { + "start": 18168.41, + "end": 18172.59, + "probability": 0.9981 + }, + { + "start": 18173.21, + "end": 18176.11, + "probability": 0.9546 + }, + { + "start": 18176.95, + "end": 18183.95, + "probability": 0.9197 + }, + { + "start": 18184.61, + "end": 18186.49, + "probability": 0.9465 + }, + { + "start": 18187.09, + "end": 18190.67, + "probability": 0.9948 + }, + { + "start": 18192.19, + "end": 18195.54, + "probability": 0.9954 + }, + { + "start": 18196.15, + "end": 18203.89, + "probability": 0.984 + }, + { + "start": 18203.99, + "end": 18205.51, + "probability": 0.752 + }, + { + "start": 18205.75, + "end": 18207.27, + "probability": 0.9071 + }, + { + "start": 18207.43, + "end": 18215.61, + "probability": 0.997 + }, + { + "start": 18216.99, + "end": 18224.87, + "probability": 0.9944 + }, + { + "start": 18225.41, + "end": 18227.33, + "probability": 0.9925 + }, + { + "start": 18227.87, + "end": 18229.47, + "probability": 0.8259 + }, + { + "start": 18229.55, + "end": 18232.11, + "probability": 0.9933 + }, + { + "start": 18232.79, + "end": 18238.75, + "probability": 0.9493 + }, + { + "start": 18241.55, + "end": 18244.23, + "probability": 0.8457 + }, + { + "start": 18249.05, + "end": 18250.35, + "probability": 0.6109 + }, + { + "start": 18250.35, + "end": 18253.13, + "probability": 0.7605 + }, + { + "start": 18254.07, + "end": 18254.51, + "probability": 0.9509 + }, + { + "start": 18259.17, + "end": 18260.17, + "probability": 0.3994 + }, + { + "start": 18260.95, + "end": 18261.77, + "probability": 0.5865 + }, + { + "start": 18268.27, + "end": 18272.09, + "probability": 0.9897 + }, + { + "start": 18273.59, + "end": 18274.87, + "probability": 0.9634 + }, + { + "start": 18275.47, + "end": 18279.67, + "probability": 0.9825 + }, + { + "start": 18279.67, + "end": 18282.17, + "probability": 0.9975 + }, + { + "start": 18282.99, + "end": 18285.89, + "probability": 0.9921 + }, + { + "start": 18286.69, + "end": 18288.79, + "probability": 0.9954 + }, + { + "start": 18289.43, + "end": 18290.95, + "probability": 0.9615 + }, + { + "start": 18291.75, + "end": 18294.97, + "probability": 0.9675 + }, + { + "start": 18296.23, + "end": 18299.01, + "probability": 0.8916 + }, + { + "start": 18300.49, + "end": 18305.87, + "probability": 0.9946 + }, + { + "start": 18305.97, + "end": 18307.51, + "probability": 0.8054 + }, + { + "start": 18308.37, + "end": 18312.57, + "probability": 0.9083 + }, + { + "start": 18313.19, + "end": 18317.15, + "probability": 0.9581 + }, + { + "start": 18317.79, + "end": 18323.89, + "probability": 0.9541 + }, + { + "start": 18323.89, + "end": 18327.51, + "probability": 0.9108 + }, + { + "start": 18328.03, + "end": 18333.43, + "probability": 0.9959 + }, + { + "start": 18333.97, + "end": 18339.95, + "probability": 0.9985 + }, + { + "start": 18340.95, + "end": 18346.49, + "probability": 0.9969 + }, + { + "start": 18346.49, + "end": 18353.27, + "probability": 0.9988 + }, + { + "start": 18353.99, + "end": 18355.75, + "probability": 0.8333 + }, + { + "start": 18355.79, + "end": 18356.39, + "probability": 0.729 + }, + { + "start": 18356.45, + "end": 18357.93, + "probability": 0.9964 + }, + { + "start": 18358.19, + "end": 18362.65, + "probability": 0.7884 + }, + { + "start": 18362.81, + "end": 18365.73, + "probability": 0.9031 + }, + { + "start": 18372.43, + "end": 18374.05, + "probability": 0.7787 + }, + { + "start": 18374.29, + "end": 18378.27, + "probability": 0.6781 + }, + { + "start": 18378.85, + "end": 18379.17, + "probability": 0.4983 + }, + { + "start": 18379.73, + "end": 18382.91, + "probability": 0.7966 + }, + { + "start": 18384.45, + "end": 18385.97, + "probability": 0.635 + }, + { + "start": 18389.91, + "end": 18390.49, + "probability": 0.0864 + }, + { + "start": 18391.21, + "end": 18394.75, + "probability": 0.1132 + }, + { + "start": 18395.37, + "end": 18396.73, + "probability": 0.101 + }, + { + "start": 18399.11, + "end": 18400.09, + "probability": 0.0686 + }, + { + "start": 18400.93, + "end": 18402.69, + "probability": 0.5496 + }, + { + "start": 18403.27, + "end": 18407.49, + "probability": 0.714 + }, + { + "start": 18407.89, + "end": 18411.95, + "probability": 0.9238 + }, + { + "start": 18413.95, + "end": 18416.71, + "probability": 0.2785 + }, + { + "start": 18417.33, + "end": 18420.11, + "probability": 0.8807 + }, + { + "start": 18420.19, + "end": 18422.01, + "probability": 0.9766 + }, + { + "start": 18422.29, + "end": 18423.25, + "probability": 0.9281 + }, + { + "start": 18423.55, + "end": 18425.85, + "probability": 0.7699 + }, + { + "start": 18427.03, + "end": 18428.47, + "probability": 0.6932 + }, + { + "start": 18429.13, + "end": 18431.13, + "probability": 0.9461 + }, + { + "start": 18432.4, + "end": 18435.66, + "probability": 0.96 + }, + { + "start": 18438.6, + "end": 18443.11, + "probability": 0.8887 + }, + { + "start": 18446.89, + "end": 18447.63, + "probability": 0.4688 + }, + { + "start": 18448.17, + "end": 18449.29, + "probability": 0.9257 + }, + { + "start": 18469.67, + "end": 18470.57, + "probability": 0.5951 + }, + { + "start": 18470.67, + "end": 18475.01, + "probability": 0.9827 + }, + { + "start": 18475.01, + "end": 18481.25, + "probability": 0.9796 + }, + { + "start": 18482.29, + "end": 18484.35, + "probability": 0.9835 + }, + { + "start": 18484.53, + "end": 18484.81, + "probability": 0.6233 + }, + { + "start": 18485.01, + "end": 18486.45, + "probability": 0.9609 + }, + { + "start": 18486.65, + "end": 18491.02, + "probability": 0.9951 + }, + { + "start": 18491.75, + "end": 18495.77, + "probability": 0.9651 + }, + { + "start": 18495.77, + "end": 18498.65, + "probability": 0.9558 + }, + { + "start": 18499.21, + "end": 18500.63, + "probability": 0.675 + }, + { + "start": 18501.45, + "end": 18502.47, + "probability": 0.9893 + }, + { + "start": 18503.03, + "end": 18504.13, + "probability": 0.7119 + }, + { + "start": 18504.49, + "end": 18507.47, + "probability": 0.9916 + }, + { + "start": 18508.37, + "end": 18511.03, + "probability": 0.9387 + }, + { + "start": 18512.21, + "end": 18513.85, + "probability": 0.9902 + }, + { + "start": 18514.47, + "end": 18515.55, + "probability": 0.9362 + }, + { + "start": 18515.77, + "end": 18520.67, + "probability": 0.9963 + }, + { + "start": 18521.19, + "end": 18522.71, + "probability": 0.9827 + }, + { + "start": 18523.55, + "end": 18528.41, + "probability": 0.9934 + }, + { + "start": 18528.51, + "end": 18530.45, + "probability": 0.7396 + }, + { + "start": 18530.87, + "end": 18531.13, + "probability": 0.7472 + }, + { + "start": 18531.85, + "end": 18533.67, + "probability": 0.9085 + }, + { + "start": 18533.97, + "end": 18539.61, + "probability": 0.9747 + }, + { + "start": 18539.77, + "end": 18542.35, + "probability": 0.9863 + }, + { + "start": 18542.79, + "end": 18548.65, + "probability": 0.9961 + }, + { + "start": 18549.19, + "end": 18553.97, + "probability": 0.998 + }, + { + "start": 18554.59, + "end": 18557.83, + "probability": 0.9678 + }, + { + "start": 18558.01, + "end": 18558.95, + "probability": 0.8236 + }, + { + "start": 18560.57, + "end": 18565.27, + "probability": 0.9735 + }, + { + "start": 18565.27, + "end": 18568.83, + "probability": 0.8125 + }, + { + "start": 18570.41, + "end": 18578.01, + "probability": 0.9758 + }, + { + "start": 18579.55, + "end": 18584.19, + "probability": 0.9939 + }, + { + "start": 18584.31, + "end": 18586.89, + "probability": 0.9977 + }, + { + "start": 18587.63, + "end": 18592.63, + "probability": 0.8019 + }, + { + "start": 18593.13, + "end": 18601.01, + "probability": 0.9464 + }, + { + "start": 18601.57, + "end": 18606.51, + "probability": 0.9819 + }, + { + "start": 18606.99, + "end": 18611.39, + "probability": 0.9778 + }, + { + "start": 18611.95, + "end": 18615.89, + "probability": 0.9951 + }, + { + "start": 18616.43, + "end": 18621.67, + "probability": 0.9977 + }, + { + "start": 18622.27, + "end": 18624.85, + "probability": 0.9557 + }, + { + "start": 18625.25, + "end": 18628.17, + "probability": 0.9883 + }, + { + "start": 18628.39, + "end": 18630.99, + "probability": 0.9966 + }, + { + "start": 18632.17, + "end": 18636.03, + "probability": 0.7618 + }, + { + "start": 18637.21, + "end": 18639.27, + "probability": 0.7519 + }, + { + "start": 18642.31, + "end": 18644.59, + "probability": 0.9907 + }, + { + "start": 18644.93, + "end": 18646.6, + "probability": 0.8345 + }, + { + "start": 18647.19, + "end": 18647.77, + "probability": 0.0337 + }, + { + "start": 18648.35, + "end": 18649.19, + "probability": 0.9727 + }, + { + "start": 18650.29, + "end": 18653.85, + "probability": 0.9539 + }, + { + "start": 18654.91, + "end": 18659.39, + "probability": 0.8599 + }, + { + "start": 18660.23, + "end": 18664.47, + "probability": 0.956 + }, + { + "start": 18666.5, + "end": 18669.25, + "probability": 0.9972 + }, + { + "start": 18669.97, + "end": 18672.89, + "probability": 0.9711 + }, + { + "start": 18673.95, + "end": 18674.88, + "probability": 0.9609 + }, + { + "start": 18675.07, + "end": 18677.97, + "probability": 0.1853 + }, + { + "start": 18677.97, + "end": 18679.56, + "probability": 0.6427 + }, + { + "start": 18680.39, + "end": 18682.05, + "probability": 0.8217 + }, + { + "start": 18682.13, + "end": 18684.11, + "probability": 0.9628 + }, + { + "start": 18684.75, + "end": 18688.09, + "probability": 0.9893 + }, + { + "start": 18688.41, + "end": 18689.87, + "probability": 0.9366 + }, + { + "start": 18691.11, + "end": 18695.19, + "probability": 0.9698 + }, + { + "start": 18700.71, + "end": 18701.59, + "probability": 0.1371 + }, + { + "start": 18701.77, + "end": 18702.65, + "probability": 0.5699 + }, + { + "start": 18702.65, + "end": 18703.39, + "probability": 0.8101 + }, + { + "start": 18709.13, + "end": 18713.03, + "probability": 0.9976 + }, + { + "start": 18714.01, + "end": 18714.99, + "probability": 0.6836 + }, + { + "start": 18715.53, + "end": 18717.93, + "probability": 0.7374 + }, + { + "start": 18719.07, + "end": 18723.29, + "probability": 0.9927 + }, + { + "start": 18723.91, + "end": 18726.77, + "probability": 0.6626 + }, + { + "start": 18728.0, + "end": 18733.79, + "probability": 0.9871 + }, + { + "start": 18734.15, + "end": 18736.41, + "probability": 0.9934 + }, + { + "start": 18736.49, + "end": 18740.51, + "probability": 0.9994 + }, + { + "start": 18740.71, + "end": 18742.37, + "probability": 0.9823 + }, + { + "start": 18742.61, + "end": 18743.37, + "probability": 0.8355 + }, + { + "start": 18744.45, + "end": 18745.36, + "probability": 0.8903 + }, + { + "start": 18745.69, + "end": 18747.05, + "probability": 0.6857 + }, + { + "start": 18747.93, + "end": 18749.97, + "probability": 0.8692 + }, + { + "start": 18750.07, + "end": 18751.53, + "probability": 0.95 + }, + { + "start": 18751.63, + "end": 18752.75, + "probability": 0.7272 + }, + { + "start": 18752.79, + "end": 18754.69, + "probability": 0.8883 + }, + { + "start": 18755.99, + "end": 18757.37, + "probability": 0.9761 + }, + { + "start": 18758.35, + "end": 18762.59, + "probability": 0.8299 + }, + { + "start": 18763.51, + "end": 18765.93, + "probability": 0.9205 + }, + { + "start": 18766.75, + "end": 18773.99, + "probability": 0.9788 + }, + { + "start": 18774.73, + "end": 18780.13, + "probability": 0.6573 + }, + { + "start": 18780.13, + "end": 18780.19, + "probability": 0.1047 + }, + { + "start": 18780.19, + "end": 18780.93, + "probability": 0.0509 + }, + { + "start": 18781.59, + "end": 18784.23, + "probability": 0.965 + }, + { + "start": 18784.81, + "end": 18786.41, + "probability": 0.9185 + }, + { + "start": 18787.31, + "end": 18789.63, + "probability": 0.8552 + }, + { + "start": 18789.83, + "end": 18794.3, + "probability": 0.1558 + }, + { + "start": 18795.51, + "end": 18796.03, + "probability": 0.4769 + }, + { + "start": 18796.03, + "end": 18800.89, + "probability": 0.9062 + }, + { + "start": 18800.99, + "end": 18801.61, + "probability": 0.8111 + }, + { + "start": 18802.49, + "end": 18806.95, + "probability": 0.9884 + }, + { + "start": 18807.75, + "end": 18808.79, + "probability": 0.4786 + }, + { + "start": 18809.21, + "end": 18811.79, + "probability": 0.9873 + }, + { + "start": 18812.73, + "end": 18815.05, + "probability": 0.8052 + }, + { + "start": 18816.17, + "end": 18821.99, + "probability": 0.9672 + }, + { + "start": 18822.91, + "end": 18823.85, + "probability": 0.7497 + }, + { + "start": 18824.65, + "end": 18828.3, + "probability": 0.962 + }, + { + "start": 18828.67, + "end": 18830.39, + "probability": 0.9759 + }, + { + "start": 18831.05, + "end": 18839.09, + "probability": 0.977 + }, + { + "start": 18839.87, + "end": 18843.01, + "probability": 0.9928 + }, + { + "start": 18843.19, + "end": 18851.35, + "probability": 0.9962 + }, + { + "start": 18852.17, + "end": 18854.29, + "probability": 0.9572 + }, + { + "start": 18854.33, + "end": 18855.21, + "probability": 0.9545 + }, + { + "start": 18855.57, + "end": 18857.03, + "probability": 0.9273 + }, + { + "start": 18857.45, + "end": 18860.47, + "probability": 0.995 + }, + { + "start": 18861.93, + "end": 18865.57, + "probability": 0.2365 + }, + { + "start": 18866.77, + "end": 18868.65, + "probability": 0.7004 + }, + { + "start": 18869.21, + "end": 18876.43, + "probability": 0.9933 + }, + { + "start": 18876.43, + "end": 18880.77, + "probability": 0.9968 + }, + { + "start": 18881.43, + "end": 18887.83, + "probability": 0.9956 + }, + { + "start": 18888.21, + "end": 18889.75, + "probability": 0.8401 + }, + { + "start": 18889.87, + "end": 18889.91, + "probability": 0.1952 + }, + { + "start": 18890.45, + "end": 18890.65, + "probability": 0.7863 + }, + { + "start": 18892.01, + "end": 18896.29, + "probability": 0.9814 + }, + { + "start": 18896.29, + "end": 18900.05, + "probability": 0.9956 + }, + { + "start": 18901.25, + "end": 18902.63, + "probability": 0.9736 + }, + { + "start": 18903.25, + "end": 18905.79, + "probability": 0.9907 + }, + { + "start": 18906.35, + "end": 18909.89, + "probability": 0.9976 + }, + { + "start": 18909.89, + "end": 18912.99, + "probability": 0.9967 + }, + { + "start": 18913.81, + "end": 18914.51, + "probability": 0.3815 + }, + { + "start": 18915.09, + "end": 18916.23, + "probability": 0.9595 + }, + { + "start": 18917.47, + "end": 18919.89, + "probability": 0.9951 + }, + { + "start": 18920.01, + "end": 18920.71, + "probability": 0.5165 + }, + { + "start": 18921.03, + "end": 18924.85, + "probability": 0.9849 + }, + { + "start": 18924.95, + "end": 18925.85, + "probability": 0.5366 + }, + { + "start": 18926.31, + "end": 18928.61, + "probability": 0.9865 + }, + { + "start": 18929.31, + "end": 18934.13, + "probability": 0.9856 + }, + { + "start": 18934.13, + "end": 18939.11, + "probability": 0.9972 + }, + { + "start": 18939.85, + "end": 18945.97, + "probability": 0.9771 + }, + { + "start": 18945.97, + "end": 18951.39, + "probability": 0.9935 + }, + { + "start": 18951.93, + "end": 18955.49, + "probability": 0.99 + }, + { + "start": 18956.03, + "end": 18961.11, + "probability": 0.9993 + }, + { + "start": 18961.11, + "end": 18965.29, + "probability": 0.9993 + }, + { + "start": 18965.85, + "end": 18971.87, + "probability": 0.9989 + }, + { + "start": 18971.87, + "end": 18977.83, + "probability": 0.9951 + }, + { + "start": 18978.59, + "end": 18980.11, + "probability": 0.8276 + }, + { + "start": 18981.17, + "end": 18982.55, + "probability": 0.6814 + }, + { + "start": 18983.09, + "end": 18984.73, + "probability": 0.9543 + }, + { + "start": 18985.39, + "end": 18987.95, + "probability": 0.971 + }, + { + "start": 18988.45, + "end": 18992.65, + "probability": 0.9985 + }, + { + "start": 18993.25, + "end": 18993.71, + "probability": 0.9554 + }, + { + "start": 18994.37, + "end": 19000.71, + "probability": 0.9962 + }, + { + "start": 19001.19, + "end": 19003.51, + "probability": 0.9873 + }, + { + "start": 19004.09, + "end": 19006.51, + "probability": 0.9978 + }, + { + "start": 19007.05, + "end": 19008.81, + "probability": 0.999 + }, + { + "start": 19009.23, + "end": 19012.71, + "probability": 0.9214 + }, + { + "start": 19013.29, + "end": 19015.29, + "probability": 0.927 + }, + { + "start": 19015.83, + "end": 19016.25, + "probability": 0.8972 + }, + { + "start": 19016.31, + "end": 19017.11, + "probability": 0.8492 + }, + { + "start": 19017.23, + "end": 19020.03, + "probability": 0.8488 + }, + { + "start": 19020.03, + "end": 19021.73, + "probability": 0.9456 + }, + { + "start": 19022.03, + "end": 19024.31, + "probability": 0.9831 + }, + { + "start": 19024.73, + "end": 19026.95, + "probability": 0.8819 + }, + { + "start": 19027.49, + "end": 19027.97, + "probability": 0.2529 + }, + { + "start": 19027.97, + "end": 19027.97, + "probability": 0.2667 + }, + { + "start": 19027.97, + "end": 19028.81, + "probability": 0.5202 + }, + { + "start": 19029.63, + "end": 19031.63, + "probability": 0.4988 + }, + { + "start": 19031.63, + "end": 19031.93, + "probability": 0.4192 + }, + { + "start": 19032.57, + "end": 19032.73, + "probability": 0.3367 + }, + { + "start": 19033.27, + "end": 19035.69, + "probability": 0.9622 + }, + { + "start": 19036.09, + "end": 19038.43, + "probability": 0.9918 + }, + { + "start": 19038.89, + "end": 19039.77, + "probability": 0.0537 + }, + { + "start": 19039.77, + "end": 19039.77, + "probability": 0.077 + }, + { + "start": 19039.77, + "end": 19040.61, + "probability": 0.6677 + }, + { + "start": 19040.61, + "end": 19045.11, + "probability": 0.9945 + }, + { + "start": 19045.43, + "end": 19046.51, + "probability": 0.9938 + }, + { + "start": 19046.75, + "end": 19047.71, + "probability": 0.9099 + }, + { + "start": 19047.77, + "end": 19048.25, + "probability": 0.4685 + }, + { + "start": 19048.25, + "end": 19053.71, + "probability": 0.9948 + }, + { + "start": 19054.39, + "end": 19057.63, + "probability": 0.6692 + }, + { + "start": 19058.03, + "end": 19058.73, + "probability": 0.9421 + }, + { + "start": 19059.97, + "end": 19065.19, + "probability": 0.9585 + }, + { + "start": 19065.89, + "end": 19067.57, + "probability": 0.9033 + }, + { + "start": 19067.99, + "end": 19069.95, + "probability": 0.9991 + }, + { + "start": 19070.39, + "end": 19071.37, + "probability": 0.874 + }, + { + "start": 19072.21, + "end": 19074.25, + "probability": 0.8708 + }, + { + "start": 19075.01, + "end": 19079.29, + "probability": 0.9866 + }, + { + "start": 19081.69, + "end": 19085.35, + "probability": 0.9852 + }, + { + "start": 19085.93, + "end": 19086.55, + "probability": 0.9482 + }, + { + "start": 19086.61, + "end": 19087.57, + "probability": 0.7519 + }, + { + "start": 19087.93, + "end": 19089.45, + "probability": 0.988 + }, + { + "start": 19089.85, + "end": 19095.13, + "probability": 0.9727 + }, + { + "start": 19095.19, + "end": 19096.27, + "probability": 0.8601 + }, + { + "start": 19096.89, + "end": 19100.67, + "probability": 0.9082 + }, + { + "start": 19101.37, + "end": 19103.09, + "probability": 0.9968 + }, + { + "start": 19103.61, + "end": 19108.75, + "probability": 0.9525 + }, + { + "start": 19109.91, + "end": 19109.91, + "probability": 0.4001 + }, + { + "start": 19109.91, + "end": 19115.0, + "probability": 0.9071 + }, + { + "start": 19115.63, + "end": 19116.55, + "probability": 0.6832 + }, + { + "start": 19117.33, + "end": 19118.48, + "probability": 0.8999 + }, + { + "start": 19119.55, + "end": 19124.31, + "probability": 0.9972 + }, + { + "start": 19124.31, + "end": 19129.15, + "probability": 0.9858 + }, + { + "start": 19129.69, + "end": 19131.71, + "probability": 0.9448 + }, + { + "start": 19132.17, + "end": 19133.07, + "probability": 0.5619 + }, + { + "start": 19133.07, + "end": 19133.31, + "probability": 0.0287 + }, + { + "start": 19133.73, + "end": 19136.37, + "probability": 0.8816 + }, + { + "start": 19136.51, + "end": 19139.81, + "probability": 0.9676 + }, + { + "start": 19139.91, + "end": 19141.41, + "probability": 0.8896 + }, + { + "start": 19142.45, + "end": 19142.85, + "probability": 0.7446 + }, + { + "start": 19143.73, + "end": 19147.25, + "probability": 0.8007 + }, + { + "start": 19148.45, + "end": 19149.85, + "probability": 0.5265 + }, + { + "start": 19149.97, + "end": 19151.05, + "probability": 0.9964 + }, + { + "start": 19151.35, + "end": 19155.23, + "probability": 0.9814 + }, + { + "start": 19155.65, + "end": 19156.33, + "probability": 0.6784 + }, + { + "start": 19156.35, + "end": 19157.84, + "probability": 0.532 + }, + { + "start": 19161.96, + "end": 19165.41, + "probability": 0.8751 + }, + { + "start": 19165.49, + "end": 19166.23, + "probability": 0.8219 + }, + { + "start": 19179.28, + "end": 19181.79, + "probability": 0.7197 + }, + { + "start": 19182.87, + "end": 19185.17, + "probability": 0.5919 + }, + { + "start": 19185.45, + "end": 19187.05, + "probability": 0.9865 + }, + { + "start": 19187.11, + "end": 19187.33, + "probability": 0.9268 + }, + { + "start": 19190.09, + "end": 19192.53, + "probability": 0.7985 + }, + { + "start": 19192.53, + "end": 19193.33, + "probability": 0.6515 + }, + { + "start": 19193.91, + "end": 19196.15, + "probability": 0.9941 + }, + { + "start": 19196.15, + "end": 19199.27, + "probability": 0.91 + }, + { + "start": 19199.37, + "end": 19200.25, + "probability": 0.841 + }, + { + "start": 19200.31, + "end": 19200.87, + "probability": 0.9369 + }, + { + "start": 19200.95, + "end": 19201.51, + "probability": 0.9196 + }, + { + "start": 19201.69, + "end": 19202.29, + "probability": 0.8615 + }, + { + "start": 19202.43, + "end": 19205.35, + "probability": 0.9536 + }, + { + "start": 19205.87, + "end": 19208.11, + "probability": 0.9198 + }, + { + "start": 19208.11, + "end": 19211.23, + "probability": 0.8326 + }, + { + "start": 19211.37, + "end": 19215.23, + "probability": 0.8448 + }, + { + "start": 19215.65, + "end": 19217.13, + "probability": 0.7056 + }, + { + "start": 19217.6, + "end": 19220.65, + "probability": 0.8357 + }, + { + "start": 19222.26, + "end": 19225.37, + "probability": 0.9598 + }, + { + "start": 19225.37, + "end": 19225.57, + "probability": 0.9905 + }, + { + "start": 19234.07, + "end": 19234.73, + "probability": 0.1474 + }, + { + "start": 19234.97, + "end": 19239.63, + "probability": 0.6175 + }, + { + "start": 19239.67, + "end": 19242.45, + "probability": 0.8921 + }, + { + "start": 19242.45, + "end": 19244.61, + "probability": 0.996 + }, + { + "start": 19245.31, + "end": 19246.07, + "probability": 0.3527 + }, + { + "start": 19246.07, + "end": 19246.97, + "probability": 0.2427 + }, + { + "start": 19247.19, + "end": 19250.37, + "probability": 0.9156 + }, + { + "start": 19250.93, + "end": 19254.53, + "probability": 0.9826 + }, + { + "start": 19254.65, + "end": 19255.17, + "probability": 0.656 + }, + { + "start": 19275.65, + "end": 19278.01, + "probability": 0.6014 + }, + { + "start": 19281.47, + "end": 19283.99, + "probability": 0.9802 + }, + { + "start": 19285.75, + "end": 19288.05, + "probability": 0.8994 + }, + { + "start": 19289.15, + "end": 19290.69, + "probability": 0.8708 + }, + { + "start": 19290.81, + "end": 19292.49, + "probability": 0.8945 + }, + { + "start": 19293.25, + "end": 19299.35, + "probability": 0.9323 + }, + { + "start": 19300.77, + "end": 19306.49, + "probability": 0.849 + }, + { + "start": 19306.67, + "end": 19311.71, + "probability": 0.9759 + }, + { + "start": 19312.57, + "end": 19318.21, + "probability": 0.973 + }, + { + "start": 19318.99, + "end": 19323.67, + "probability": 0.9585 + }, + { + "start": 19323.67, + "end": 19328.13, + "probability": 0.9951 + }, + { + "start": 19328.67, + "end": 19332.09, + "probability": 0.9074 + }, + { + "start": 19332.85, + "end": 19335.43, + "probability": 0.9653 + }, + { + "start": 19335.73, + "end": 19341.09, + "probability": 0.9884 + }, + { + "start": 19341.83, + "end": 19348.55, + "probability": 0.9736 + }, + { + "start": 19350.35, + "end": 19354.97, + "probability": 0.9875 + }, + { + "start": 19354.97, + "end": 19360.57, + "probability": 0.9915 + }, + { + "start": 19361.31, + "end": 19365.23, + "probability": 0.9861 + }, + { + "start": 19365.41, + "end": 19366.51, + "probability": 0.8456 + }, + { + "start": 19366.85, + "end": 19367.89, + "probability": 0.6627 + }, + { + "start": 19368.11, + "end": 19368.33, + "probability": 0.725 + }, + { + "start": 19368.41, + "end": 19369.19, + "probability": 0.7219 + }, + { + "start": 19369.63, + "end": 19372.25, + "probability": 0.3348 + }, + { + "start": 19375.23, + "end": 19377.29, + "probability": 0.7494 + }, + { + "start": 19378.31, + "end": 19381.43, + "probability": 0.8233 + }, + { + "start": 19381.43, + "end": 19384.05, + "probability": 0.7443 + }, + { + "start": 19384.17, + "end": 19385.27, + "probability": 0.9331 + }, + { + "start": 19385.91, + "end": 19387.01, + "probability": 0.8075 + }, + { + "start": 19389.25, + "end": 19392.83, + "probability": 0.9216 + }, + { + "start": 19393.53, + "end": 19396.47, + "probability": 0.7625 + }, + { + "start": 19397.37, + "end": 19399.69, + "probability": 0.9659 + }, + { + "start": 19400.39, + "end": 19401.63, + "probability": 0.9612 + }, + { + "start": 19402.39, + "end": 19405.33, + "probability": 0.9514 + }, + { + "start": 19405.91, + "end": 19409.65, + "probability": 0.9943 + }, + { + "start": 19410.29, + "end": 19415.33, + "probability": 0.9814 + }, + { + "start": 19415.93, + "end": 19418.77, + "probability": 0.9749 + }, + { + "start": 19419.31, + "end": 19423.01, + "probability": 0.9945 + }, + { + "start": 19424.43, + "end": 19426.71, + "probability": 0.9357 + }, + { + "start": 19427.85, + "end": 19430.83, + "probability": 0.9821 + }, + { + "start": 19431.33, + "end": 19434.71, + "probability": 0.998 + }, + { + "start": 19435.41, + "end": 19437.47, + "probability": 0.7306 + }, + { + "start": 19438.39, + "end": 19441.7, + "probability": 0.9768 + }, + { + "start": 19442.43, + "end": 19444.23, + "probability": 0.9954 + }, + { + "start": 19446.25, + "end": 19450.93, + "probability": 0.7513 + }, + { + "start": 19450.93, + "end": 19454.87, + "probability": 0.9797 + }, + { + "start": 19455.77, + "end": 19456.47, + "probability": 0.7197 + }, + { + "start": 19456.49, + "end": 19458.57, + "probability": 0.7467 + }, + { + "start": 19459.07, + "end": 19460.07, + "probability": 0.6672 + }, + { + "start": 19460.15, + "end": 19460.79, + "probability": 0.7982 + }, + { + "start": 19461.61, + "end": 19463.79, + "probability": 0.8962 + }, + { + "start": 19464.37, + "end": 19467.99, + "probability": 0.8981 + }, + { + "start": 19467.99, + "end": 19471.99, + "probability": 0.9816 + }, + { + "start": 19472.71, + "end": 19478.93, + "probability": 0.9764 + }, + { + "start": 19480.77, + "end": 19484.71, + "probability": 0.9739 + }, + { + "start": 19485.33, + "end": 19491.09, + "probability": 0.9966 + }, + { + "start": 19491.09, + "end": 19495.33, + "probability": 0.9813 + }, + { + "start": 19495.81, + "end": 19497.85, + "probability": 0.9661 + }, + { + "start": 19498.37, + "end": 19500.55, + "probability": 0.8796 + }, + { + "start": 19500.71, + "end": 19502.21, + "probability": 0.4434 + }, + { + "start": 19502.21, + "end": 19507.33, + "probability": 0.8869 + }, + { + "start": 19507.33, + "end": 19510.25, + "probability": 0.9888 + }, + { + "start": 19511.31, + "end": 19516.17, + "probability": 0.9639 + }, + { + "start": 19516.97, + "end": 19520.43, + "probability": 0.9944 + }, + { + "start": 19520.43, + "end": 19524.61, + "probability": 0.9968 + }, + { + "start": 19525.15, + "end": 19529.05, + "probability": 0.9896 + }, + { + "start": 19529.49, + "end": 19532.8, + "probability": 0.8538 + }, + { + "start": 19534.43, + "end": 19535.87, + "probability": 0.9265 + }, + { + "start": 19536.47, + "end": 19538.29, + "probability": 0.9985 + }, + { + "start": 19538.83, + "end": 19542.32, + "probability": 0.8082 + }, + { + "start": 19542.95, + "end": 19544.01, + "probability": 0.6699 + }, + { + "start": 19544.79, + "end": 19547.15, + "probability": 0.9188 + }, + { + "start": 19548.87, + "end": 19550.13, + "probability": 0.9767 + }, + { + "start": 19550.41, + "end": 19552.99, + "probability": 0.7189 + }, + { + "start": 19553.29, + "end": 19555.31, + "probability": 0.9932 + }, + { + "start": 19555.97, + "end": 19556.93, + "probability": 0.9935 + }, + { + "start": 19557.23, + "end": 19557.79, + "probability": 0.9083 + }, + { + "start": 19559.83, + "end": 19561.53, + "probability": 0.9972 + }, + { + "start": 19561.63, + "end": 19563.35, + "probability": 0.9266 + }, + { + "start": 19564.03, + "end": 19569.53, + "probability": 0.973 + }, + { + "start": 19570.23, + "end": 19576.05, + "probability": 0.825 + }, + { + "start": 19576.11, + "end": 19578.55, + "probability": 0.9903 + }, + { + "start": 19578.71, + "end": 19579.75, + "probability": 0.8642 + }, + { + "start": 19580.47, + "end": 19581.13, + "probability": 0.6589 + }, + { + "start": 19581.41, + "end": 19586.61, + "probability": 0.8815 + }, + { + "start": 19587.23, + "end": 19589.95, + "probability": 0.9703 + }, + { + "start": 19590.55, + "end": 19593.39, + "probability": 0.8395 + }, + { + "start": 19593.99, + "end": 19594.95, + "probability": 0.828 + }, + { + "start": 19595.55, + "end": 19598.37, + "probability": 0.7288 + }, + { + "start": 19599.09, + "end": 19600.75, + "probability": 0.6221 + }, + { + "start": 19601.23, + "end": 19602.58, + "probability": 0.9731 + }, + { + "start": 19603.21, + "end": 19604.33, + "probability": 0.6889 + }, + { + "start": 19604.85, + "end": 19606.91, + "probability": 0.878 + }, + { + "start": 19607.53, + "end": 19612.45, + "probability": 0.9492 + }, + { + "start": 19614.05, + "end": 19617.75, + "probability": 0.9882 + }, + { + "start": 19618.39, + "end": 19621.61, + "probability": 0.9026 + }, + { + "start": 19622.33, + "end": 19627.25, + "probability": 0.988 + }, + { + "start": 19627.87, + "end": 19630.45, + "probability": 0.9675 + }, + { + "start": 19630.99, + "end": 19632.6, + "probability": 0.8164 + }, + { + "start": 19633.09, + "end": 19635.29, + "probability": 0.9702 + }, + { + "start": 19635.79, + "end": 19636.27, + "probability": 0.7906 + }, + { + "start": 19636.63, + "end": 19637.91, + "probability": 0.9649 + }, + { + "start": 19638.01, + "end": 19638.65, + "probability": 0.4832 + }, + { + "start": 19639.87, + "end": 19641.69, + "probability": 0.9016 + }, + { + "start": 19652.97, + "end": 19654.57, + "probability": 0.673 + }, + { + "start": 19655.41, + "end": 19660.31, + "probability": 0.8074 + }, + { + "start": 19660.37, + "end": 19663.05, + "probability": 0.8954 + }, + { + "start": 19663.09, + "end": 19667.13, + "probability": 0.9634 + }, + { + "start": 19667.71, + "end": 19670.11, + "probability": 0.9288 + }, + { + "start": 19670.11, + "end": 19671.99, + "probability": 0.8472 + }, + { + "start": 19672.15, + "end": 19673.65, + "probability": 0.4693 + }, + { + "start": 19673.65, + "end": 19676.01, + "probability": 0.8215 + }, + { + "start": 19676.17, + "end": 19676.47, + "probability": 0.5897 + }, + { + "start": 19676.57, + "end": 19677.29, + "probability": 0.2602 + }, + { + "start": 19677.29, + "end": 19677.63, + "probability": 0.2347 + }, + { + "start": 19677.81, + "end": 19680.17, + "probability": 0.8971 + }, + { + "start": 19681.55, + "end": 19686.49, + "probability": 0.998 + }, + { + "start": 19687.15, + "end": 19693.27, + "probability": 0.9953 + }, + { + "start": 19693.27, + "end": 19698.61, + "probability": 0.9818 + }, + { + "start": 19699.33, + "end": 19703.33, + "probability": 0.9917 + }, + { + "start": 19704.33, + "end": 19706.89, + "probability": 0.914 + }, + { + "start": 19707.63, + "end": 19708.31, + "probability": 0.9437 + }, + { + "start": 19709.19, + "end": 19710.63, + "probability": 0.9239 + }, + { + "start": 19711.51, + "end": 19714.17, + "probability": 0.8147 + }, + { + "start": 19714.69, + "end": 19715.51, + "probability": 0.9296 + }, + { + "start": 19715.63, + "end": 19716.55, + "probability": 0.8008 + }, + { + "start": 19716.67, + "end": 19717.51, + "probability": 0.9678 + }, + { + "start": 19717.87, + "end": 19718.77, + "probability": 0.7125 + }, + { + "start": 19718.95, + "end": 19722.87, + "probability": 0.9911 + }, + { + "start": 19723.01, + "end": 19726.11, + "probability": 0.9963 + }, + { + "start": 19726.79, + "end": 19728.53, + "probability": 0.8626 + }, + { + "start": 19728.71, + "end": 19730.91, + "probability": 0.9365 + }, + { + "start": 19731.35, + "end": 19732.63, + "probability": 0.9215 + }, + { + "start": 19732.77, + "end": 19737.05, + "probability": 0.9421 + }, + { + "start": 19737.47, + "end": 19739.81, + "probability": 0.9522 + }, + { + "start": 19739.83, + "end": 19740.55, + "probability": 0.8328 + }, + { + "start": 19740.99, + "end": 19744.23, + "probability": 0.8079 + }, + { + "start": 19744.31, + "end": 19747.99, + "probability": 0.9855 + }, + { + "start": 19748.03, + "end": 19748.49, + "probability": 0.7685 + }, + { + "start": 19749.35, + "end": 19750.49, + "probability": 0.3711 + }, + { + "start": 19750.55, + "end": 19751.91, + "probability": 0.6377 + }, + { + "start": 19752.97, + "end": 19753.11, + "probability": 0.4112 + }, + { + "start": 19759.27, + "end": 19760.77, + "probability": 0.8112 + }, + { + "start": 19760.93, + "end": 19765.99, + "probability": 0.9921 + }, + { + "start": 19767.15, + "end": 19770.39, + "probability": 0.7847 + }, + { + "start": 19777.77, + "end": 19777.77, + "probability": 0.0892 + }, + { + "start": 19777.77, + "end": 19777.79, + "probability": 0.068 + }, + { + "start": 19777.79, + "end": 19777.79, + "probability": 0.2086 + }, + { + "start": 19777.79, + "end": 19777.87, + "probability": 0.0974 + }, + { + "start": 19784.47, + "end": 19784.47, + "probability": 0.0297 + }, + { + "start": 19784.47, + "end": 19784.47, + "probability": 0.0407 + }, + { + "start": 19784.47, + "end": 19784.47, + "probability": 0.1692 + }, + { + "start": 19818.49, + "end": 19820.93, + "probability": 0.5815 + }, + { + "start": 19823.35, + "end": 19826.65, + "probability": 0.9003 + }, + { + "start": 19827.99, + "end": 19831.51, + "probability": 0.8165 + }, + { + "start": 19833.15, + "end": 19835.07, + "probability": 0.9987 + }, + { + "start": 19836.93, + "end": 19841.01, + "probability": 0.9788 + }, + { + "start": 19841.57, + "end": 19845.25, + "probability": 0.9822 + }, + { + "start": 19846.65, + "end": 19850.65, + "probability": 0.9814 + }, + { + "start": 19851.89, + "end": 19854.81, + "probability": 0.9609 + }, + { + "start": 19855.43, + "end": 19857.43, + "probability": 0.7787 + }, + { + "start": 19858.31, + "end": 19858.75, + "probability": 0.5933 + }, + { + "start": 19860.05, + "end": 19862.49, + "probability": 0.9917 + }, + { + "start": 19864.43, + "end": 19865.41, + "probability": 0.7482 + }, + { + "start": 19866.43, + "end": 19870.17, + "probability": 0.9525 + }, + { + "start": 19871.61, + "end": 19873.25, + "probability": 0.9906 + }, + { + "start": 19874.47, + "end": 19880.51, + "probability": 0.9934 + }, + { + "start": 19881.55, + "end": 19883.09, + "probability": 0.9219 + }, + { + "start": 19885.01, + "end": 19886.99, + "probability": 0.6736 + }, + { + "start": 19888.03, + "end": 19892.35, + "probability": 0.9809 + }, + { + "start": 19892.51, + "end": 19894.61, + "probability": 0.9504 + }, + { + "start": 19894.73, + "end": 19895.83, + "probability": 0.9811 + }, + { + "start": 19896.97, + "end": 19898.31, + "probability": 0.8997 + }, + { + "start": 19898.53, + "end": 19899.47, + "probability": 0.8403 + }, + { + "start": 19899.75, + "end": 19900.57, + "probability": 0.6454 + }, + { + "start": 19900.77, + "end": 19901.83, + "probability": 0.7612 + }, + { + "start": 19901.99, + "end": 19903.09, + "probability": 0.2332 + }, + { + "start": 19904.79, + "end": 19905.53, + "probability": 0.5807 + }, + { + "start": 19905.75, + "end": 19906.31, + "probability": 0.8311 + }, + { + "start": 19906.33, + "end": 19907.93, + "probability": 0.9773 + }, + { + "start": 19908.05, + "end": 19909.69, + "probability": 0.8335 + }, + { + "start": 19910.61, + "end": 19912.53, + "probability": 0.8745 + }, + { + "start": 19913.19, + "end": 19917.27, + "probability": 0.9966 + }, + { + "start": 19918.05, + "end": 19919.95, + "probability": 0.8842 + }, + { + "start": 19920.67, + "end": 19920.91, + "probability": 0.3221 + }, + { + "start": 19921.45, + "end": 19925.97, + "probability": 0.9132 + }, + { + "start": 19928.87, + "end": 19929.39, + "probability": 0.5483 + }, + { + "start": 19930.51, + "end": 19932.79, + "probability": 0.2529 + }, + { + "start": 19934.33, + "end": 19935.71, + "probability": 0.8459 + }, + { + "start": 19937.23, + "end": 19940.19, + "probability": 0.9199 + }, + { + "start": 19942.41, + "end": 19943.73, + "probability": 0.9363 + }, + { + "start": 19945.09, + "end": 19952.69, + "probability": 0.9675 + }, + { + "start": 19953.97, + "end": 19955.69, + "probability": 0.7941 + }, + { + "start": 19956.73, + "end": 19959.81, + "probability": 0.9845 + }, + { + "start": 19960.83, + "end": 19965.29, + "probability": 0.9972 + }, + { + "start": 19966.87, + "end": 19967.99, + "probability": 0.9054 + }, + { + "start": 19968.93, + "end": 19975.87, + "probability": 0.9654 + }, + { + "start": 19976.61, + "end": 19979.77, + "probability": 0.9505 + }, + { + "start": 19982.23, + "end": 19984.39, + "probability": 0.9966 + }, + { + "start": 19985.05, + "end": 19985.67, + "probability": 0.6787 + }, + { + "start": 19986.99, + "end": 19989.35, + "probability": 0.5333 + }, + { + "start": 19989.35, + "end": 19992.73, + "probability": 0.7076 + }, + { + "start": 19993.39, + "end": 19994.71, + "probability": 0.8778 + }, + { + "start": 19994.93, + "end": 20000.07, + "probability": 0.9775 + }, + { + "start": 20000.19, + "end": 20003.19, + "probability": 0.9148 + }, + { + "start": 20003.63, + "end": 20009.23, + "probability": 0.9899 + }, + { + "start": 20009.37, + "end": 20013.17, + "probability": 0.8896 + }, + { + "start": 20014.09, + "end": 20017.73, + "probability": 0.969 + }, + { + "start": 20017.87, + "end": 20018.83, + "probability": 0.7951 + }, + { + "start": 20019.65, + "end": 20022.57, + "probability": 0.9224 + }, + { + "start": 20023.19, + "end": 20024.81, + "probability": 0.9796 + }, + { + "start": 20027.83, + "end": 20029.53, + "probability": 0.6089 + }, + { + "start": 20029.99, + "end": 20034.39, + "probability": 0.9791 + }, + { + "start": 20040.03, + "end": 20041.93, + "probability": 0.7031 + }, + { + "start": 20042.95, + "end": 20045.39, + "probability": 0.9725 + }, + { + "start": 20046.07, + "end": 20047.71, + "probability": 0.9961 + }, + { + "start": 20048.73, + "end": 20054.07, + "probability": 0.981 + }, + { + "start": 20054.07, + "end": 20057.21, + "probability": 0.8174 + }, + { + "start": 20057.61, + "end": 20059.19, + "probability": 0.9961 + }, + { + "start": 20059.75, + "end": 20063.15, + "probability": 0.9913 + }, + { + "start": 20063.67, + "end": 20068.23, + "probability": 0.9879 + }, + { + "start": 20068.79, + "end": 20070.15, + "probability": 0.7673 + }, + { + "start": 20070.23, + "end": 20070.75, + "probability": 0.7558 + }, + { + "start": 20071.33, + "end": 20071.95, + "probability": 0.6206 + }, + { + "start": 20072.09, + "end": 20075.25, + "probability": 0.9973 + }, + { + "start": 20075.25, + "end": 20077.85, + "probability": 0.993 + }, + { + "start": 20078.33, + "end": 20079.65, + "probability": 0.6425 + }, + { + "start": 20080.41, + "end": 20081.75, + "probability": 0.7165 + }, + { + "start": 20082.55, + "end": 20083.39, + "probability": 0.7908 + }, + { + "start": 20083.91, + "end": 20085.79, + "probability": 0.0274 + }, + { + "start": 20085.79, + "end": 20087.39, + "probability": 0.0604 + }, + { + "start": 20088.95, + "end": 20089.99, + "probability": 0.0397 + }, + { + "start": 20092.33, + "end": 20093.09, + "probability": 0.1444 + }, + { + "start": 20094.61, + "end": 20098.49, + "probability": 0.0569 + }, + { + "start": 20099.53, + "end": 20102.69, + "probability": 0.8468 + }, + { + "start": 20102.79, + "end": 20104.61, + "probability": 0.7754 + }, + { + "start": 20105.15, + "end": 20105.25, + "probability": 0.613 + }, + { + "start": 20107.25, + "end": 20113.15, + "probability": 0.9863 + }, + { + "start": 20114.13, + "end": 20118.13, + "probability": 0.9568 + }, + { + "start": 20118.77, + "end": 20120.63, + "probability": 0.9858 + }, + { + "start": 20120.79, + "end": 20122.43, + "probability": 0.7518 + }, + { + "start": 20122.49, + "end": 20123.35, + "probability": 0.2728 + }, + { + "start": 20124.19, + "end": 20126.55, + "probability": 0.9604 + }, + { + "start": 20126.55, + "end": 20129.01, + "probability": 0.9679 + }, + { + "start": 20129.49, + "end": 20131.39, + "probability": 0.9344 + }, + { + "start": 20131.5, + "end": 20133.91, + "probability": 0.7086 + }, + { + "start": 20134.27, + "end": 20135.21, + "probability": 0.2942 + }, + { + "start": 20135.79, + "end": 20138.12, + "probability": 0.9357 + }, + { + "start": 20138.65, + "end": 20139.33, + "probability": 0.6188 + }, + { + "start": 20143.53, + "end": 20143.63, + "probability": 0.2691 + }, + { + "start": 20151.93, + "end": 20152.65, + "probability": 0.4817 + }, + { + "start": 20155.58, + "end": 20159.46, + "probability": 0.6781 + }, + { + "start": 20159.5, + "end": 20160.44, + "probability": 0.3121 + }, + { + "start": 20162.17, + "end": 20166.05, + "probability": 0.4809 + }, + { + "start": 20168.65, + "end": 20170.54, + "probability": 0.0582 + }, + { + "start": 20170.54, + "end": 20173.86, + "probability": 0.0644 + }, + { + "start": 20177.44, + "end": 20181.86, + "probability": 0.0894 + }, + { + "start": 20185.02, + "end": 20186.18, + "probability": 0.0392 + }, + { + "start": 20186.18, + "end": 20187.84, + "probability": 0.1762 + }, + { + "start": 20197.46, + "end": 20199.56, + "probability": 0.4081 + }, + { + "start": 20200.16, + "end": 20203.32, + "probability": 0.1491 + }, + { + "start": 20204.12, + "end": 20209.0, + "probability": 0.1038 + }, + { + "start": 20209.0, + "end": 20209.7, + "probability": 0.0558 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.0, + "end": 20273.0, + "probability": 0.0 + }, + { + "start": 20273.3, + "end": 20274.82, + "probability": 0.5974 + }, + { + "start": 20275.26, + "end": 20278.94, + "probability": 0.9535 + }, + { + "start": 20278.94, + "end": 20285.82, + "probability": 0.9896 + }, + { + "start": 20285.82, + "end": 20289.04, + "probability": 0.986 + }, + { + "start": 20289.2, + "end": 20289.56, + "probability": 0.8664 + }, + { + "start": 20290.08, + "end": 20292.86, + "probability": 0.9994 + }, + { + "start": 20292.86, + "end": 20297.78, + "probability": 0.9985 + }, + { + "start": 20298.2, + "end": 20300.28, + "probability": 0.9304 + }, + { + "start": 20300.38, + "end": 20303.04, + "probability": 0.8603 + }, + { + "start": 20303.04, + "end": 20305.86, + "probability": 0.9951 + }, + { + "start": 20306.44, + "end": 20308.76, + "probability": 0.9952 + }, + { + "start": 20309.08, + "end": 20309.76, + "probability": 0.8708 + }, + { + "start": 20309.88, + "end": 20310.84, + "probability": 0.9263 + }, + { + "start": 20311.18, + "end": 20311.52, + "probability": 0.4156 + }, + { + "start": 20311.64, + "end": 20314.18, + "probability": 0.9727 + }, + { + "start": 20314.62, + "end": 20317.44, + "probability": 0.9116 + }, + { + "start": 20317.84, + "end": 20322.04, + "probability": 0.9769 + }, + { + "start": 20322.38, + "end": 20325.58, + "probability": 0.9926 + }, + { + "start": 20325.58, + "end": 20329.36, + "probability": 0.9873 + }, + { + "start": 20329.72, + "end": 20332.4, + "probability": 0.6679 + }, + { + "start": 20332.42, + "end": 20336.26, + "probability": 0.9573 + }, + { + "start": 20336.36, + "end": 20336.78, + "probability": 0.77 + }, + { + "start": 20337.38, + "end": 20337.88, + "probability": 0.5968 + }, + { + "start": 20337.92, + "end": 20339.12, + "probability": 0.9729 + }, + { + "start": 20339.2, + "end": 20342.04, + "probability": 0.7499 + }, + { + "start": 20342.5, + "end": 20343.48, + "probability": 0.6335 + }, + { + "start": 20345.14, + "end": 20345.88, + "probability": 0.5357 + }, + { + "start": 20347.74, + "end": 20348.24, + "probability": 0.8431 + }, + { + "start": 20348.76, + "end": 20349.08, + "probability": 0.3298 + }, + { + "start": 20361.97, + "end": 20365.88, + "probability": 0.7563 + }, + { + "start": 20367.52, + "end": 20370.22, + "probability": 0.9585 + }, + { + "start": 20370.42, + "end": 20372.81, + "probability": 0.9825 + }, + { + "start": 20373.36, + "end": 20375.26, + "probability": 0.5731 + }, + { + "start": 20375.32, + "end": 20377.6, + "probability": 0.9792 + }, + { + "start": 20377.66, + "end": 20378.52, + "probability": 0.9061 + }, + { + "start": 20378.8, + "end": 20380.16, + "probability": 0.7861 + }, + { + "start": 20380.18, + "end": 20380.64, + "probability": 0.7962 + }, + { + "start": 20382.3, + "end": 20384.72, + "probability": 0.8477 + }, + { + "start": 20385.48, + "end": 20389.06, + "probability": 0.981 + }, + { + "start": 20390.16, + "end": 20391.96, + "probability": 0.9414 + }, + { + "start": 20393.02, + "end": 20393.84, + "probability": 0.9151 + }, + { + "start": 20394.24, + "end": 20397.58, + "probability": 0.9987 + }, + { + "start": 20398.56, + "end": 20400.82, + "probability": 0.9998 + }, + { + "start": 20401.74, + "end": 20405.74, + "probability": 0.9883 + }, + { + "start": 20406.3, + "end": 20411.44, + "probability": 0.9938 + }, + { + "start": 20411.92, + "end": 20413.4, + "probability": 0.9939 + }, + { + "start": 20413.44, + "end": 20418.16, + "probability": 0.9961 + }, + { + "start": 20418.74, + "end": 20419.52, + "probability": 0.8649 + }, + { + "start": 20419.68, + "end": 20420.34, + "probability": 0.9075 + }, + { + "start": 20420.72, + "end": 20423.34, + "probability": 0.9542 + }, + { + "start": 20423.68, + "end": 20424.42, + "probability": 0.5273 + }, + { + "start": 20424.84, + "end": 20425.36, + "probability": 0.9032 + }, + { + "start": 20425.92, + "end": 20427.13, + "probability": 0.9031 + }, + { + "start": 20429.24, + "end": 20433.1, + "probability": 0.8625 + }, + { + "start": 20433.4, + "end": 20438.7, + "probability": 0.9627 + }, + { + "start": 20439.22, + "end": 20441.98, + "probability": 0.6103 + }, + { + "start": 20443.26, + "end": 20444.4, + "probability": 0.926 + }, + { + "start": 20444.56, + "end": 20445.02, + "probability": 0.6702 + }, + { + "start": 20445.08, + "end": 20445.32, + "probability": 0.9144 + }, + { + "start": 20445.42, + "end": 20446.66, + "probability": 0.8724 + }, + { + "start": 20446.74, + "end": 20447.02, + "probability": 0.835 + }, + { + "start": 20447.28, + "end": 20447.56, + "probability": 0.7281 + }, + { + "start": 20447.9, + "end": 20449.7, + "probability": 0.9182 + }, + { + "start": 20450.16, + "end": 20451.02, + "probability": 0.9728 + }, + { + "start": 20451.12, + "end": 20456.98, + "probability": 0.9847 + }, + { + "start": 20457.28, + "end": 20461.12, + "probability": 0.9891 + }, + { + "start": 20461.54, + "end": 20463.38, + "probability": 0.9971 + }, + { + "start": 20464.4, + "end": 20465.62, + "probability": 0.9484 + }, + { + "start": 20466.04, + "end": 20468.34, + "probability": 0.9797 + }, + { + "start": 20468.84, + "end": 20470.98, + "probability": 0.8246 + }, + { + "start": 20471.58, + "end": 20472.94, + "probability": 0.999 + }, + { + "start": 20473.72, + "end": 20475.68, + "probability": 0.9473 + }, + { + "start": 20476.32, + "end": 20477.62, + "probability": 0.9915 + }, + { + "start": 20478.56, + "end": 20478.84, + "probability": 0.5684 + }, + { + "start": 20479.5, + "end": 20480.94, + "probability": 0.9198 + }, + { + "start": 20481.54, + "end": 20483.76, + "probability": 0.9956 + }, + { + "start": 20496.06, + "end": 20497.28, + "probability": 0.1859 + }, + { + "start": 20497.28, + "end": 20497.28, + "probability": 0.1355 + }, + { + "start": 20497.28, + "end": 20497.28, + "probability": 0.0938 + }, + { + "start": 20497.28, + "end": 20499.7, + "probability": 0.3963 + }, + { + "start": 20500.12, + "end": 20506.88, + "probability": 0.918 + }, + { + "start": 20508.8, + "end": 20513.72, + "probability": 0.9946 + }, + { + "start": 20514.24, + "end": 20515.56, + "probability": 0.9275 + }, + { + "start": 20515.68, + "end": 20519.04, + "probability": 0.9846 + }, + { + "start": 20519.44, + "end": 20520.4, + "probability": 0.6729 + }, + { + "start": 20520.96, + "end": 20522.84, + "probability": 0.9966 + }, + { + "start": 20523.38, + "end": 20525.4, + "probability": 0.8255 + }, + { + "start": 20526.2, + "end": 20528.32, + "probability": 0.9219 + }, + { + "start": 20531.68, + "end": 20532.24, + "probability": 0.366 + }, + { + "start": 20532.26, + "end": 20533.46, + "probability": 0.6103 + }, + { + "start": 20535.22, + "end": 20536.06, + "probability": 0.7579 + }, + { + "start": 20536.62, + "end": 20539.62, + "probability": 0.8271 + }, + { + "start": 20559.46, + "end": 20560.36, + "probability": 0.5948 + }, + { + "start": 20560.7, + "end": 20562.1, + "probability": 0.7661 + }, + { + "start": 20564.03, + "end": 20568.28, + "probability": 0.6536 + }, + { + "start": 20568.34, + "end": 20570.54, + "probability": 0.9969 + }, + { + "start": 20570.54, + "end": 20574.88, + "probability": 0.9917 + }, + { + "start": 20575.64, + "end": 20578.62, + "probability": 0.9731 + }, + { + "start": 20579.38, + "end": 20581.0, + "probability": 0.8737 + }, + { + "start": 20581.92, + "end": 20585.32, + "probability": 0.9741 + }, + { + "start": 20585.32, + "end": 20589.5, + "probability": 0.9876 + }, + { + "start": 20589.58, + "end": 20590.12, + "probability": 0.5249 + }, + { + "start": 20590.12, + "end": 20590.9, + "probability": 0.913 + }, + { + "start": 20591.62, + "end": 20594.34, + "probability": 0.9867 + }, + { + "start": 20594.8, + "end": 20596.34, + "probability": 0.9905 + }, + { + "start": 20596.82, + "end": 20602.32, + "probability": 0.9939 + }, + { + "start": 20602.96, + "end": 20603.86, + "probability": 0.7415 + }, + { + "start": 20604.02, + "end": 20605.14, + "probability": 0.9961 + }, + { + "start": 20605.5, + "end": 20608.0, + "probability": 0.9698 + }, + { + "start": 20608.7, + "end": 20610.06, + "probability": 0.6353 + }, + { + "start": 20610.6, + "end": 20613.66, + "probability": 0.9581 + }, + { + "start": 20614.34, + "end": 20615.66, + "probability": 0.8596 + }, + { + "start": 20616.18, + "end": 20617.28, + "probability": 0.9464 + }, + { + "start": 20618.38, + "end": 20618.86, + "probability": 0.4043 + }, + { + "start": 20619.26, + "end": 20621.3, + "probability": 0.7706 + }, + { + "start": 20621.76, + "end": 20623.87, + "probability": 0.9141 + }, + { + "start": 20624.48, + "end": 20626.8, + "probability": 0.9325 + }, + { + "start": 20627.22, + "end": 20629.38, + "probability": 0.9481 + }, + { + "start": 20630.0, + "end": 20631.52, + "probability": 0.8899 + }, + { + "start": 20632.06, + "end": 20632.66, + "probability": 0.8235 + }, + { + "start": 20632.88, + "end": 20634.66, + "probability": 0.9918 + }, + { + "start": 20635.0, + "end": 20636.2, + "probability": 0.9884 + }, + { + "start": 20636.66, + "end": 20639.47, + "probability": 0.9393 + }, + { + "start": 20640.16, + "end": 20642.96, + "probability": 0.9632 + }, + { + "start": 20643.36, + "end": 20648.04, + "probability": 0.9849 + }, + { + "start": 20648.48, + "end": 20650.84, + "probability": 0.8981 + }, + { + "start": 20651.6, + "end": 20653.28, + "probability": 0.6726 + }, + { + "start": 20653.82, + "end": 20655.18, + "probability": 0.8022 + }, + { + "start": 20655.64, + "end": 20656.36, + "probability": 0.8999 + }, + { + "start": 20656.84, + "end": 20658.58, + "probability": 0.9545 + }, + { + "start": 20658.94, + "end": 20661.34, + "probability": 0.9963 + }, + { + "start": 20661.86, + "end": 20663.13, + "probability": 0.9741 + }, + { + "start": 20663.64, + "end": 20664.52, + "probability": 0.8497 + }, + { + "start": 20664.94, + "end": 20665.68, + "probability": 0.9849 + }, + { + "start": 20666.62, + "end": 20668.06, + "probability": 0.683 + }, + { + "start": 20668.54, + "end": 20670.72, + "probability": 0.8684 + }, + { + "start": 20671.32, + "end": 20672.88, + "probability": 0.9503 + }, + { + "start": 20673.36, + "end": 20675.52, + "probability": 0.9473 + }, + { + "start": 20675.96, + "end": 20678.86, + "probability": 0.906 + }, + { + "start": 20678.86, + "end": 20682.58, + "probability": 0.9579 + }, + { + "start": 20683.06, + "end": 20684.04, + "probability": 0.7671 + }, + { + "start": 20684.2, + "end": 20685.26, + "probability": 0.8028 + }, + { + "start": 20686.5, + "end": 20687.84, + "probability": 0.7026 + }, + { + "start": 20688.2, + "end": 20693.48, + "probability": 0.9867 + }, + { + "start": 20694.04, + "end": 20698.36, + "probability": 0.953 + }, + { + "start": 20698.94, + "end": 20699.46, + "probability": 0.8354 + }, + { + "start": 20700.1, + "end": 20704.72, + "probability": 0.9087 + }, + { + "start": 20705.22, + "end": 20708.22, + "probability": 0.959 + }, + { + "start": 20708.7, + "end": 20709.83, + "probability": 0.9478 + }, + { + "start": 20710.34, + "end": 20712.64, + "probability": 0.9751 + }, + { + "start": 20713.2, + "end": 20715.7, + "probability": 0.9358 + }, + { + "start": 20716.1, + "end": 20717.42, + "probability": 0.998 + }, + { + "start": 20718.16, + "end": 20718.6, + "probability": 0.7289 + }, + { + "start": 20718.92, + "end": 20723.0, + "probability": 0.9443 + }, + { + "start": 20723.4, + "end": 20724.34, + "probability": 0.8441 + }, + { + "start": 20724.76, + "end": 20727.0, + "probability": 0.934 + }, + { + "start": 20727.6, + "end": 20731.12, + "probability": 0.9901 + }, + { + "start": 20731.12, + "end": 20734.56, + "probability": 0.9995 + }, + { + "start": 20735.1, + "end": 20738.18, + "probability": 0.9917 + }, + { + "start": 20738.66, + "end": 20743.42, + "probability": 0.9681 + }, + { + "start": 20744.04, + "end": 20747.38, + "probability": 0.8097 + }, + { + "start": 20748.02, + "end": 20750.38, + "probability": 0.6042 + }, + { + "start": 20751.56, + "end": 20752.26, + "probability": 0.8055 + }, + { + "start": 20752.8, + "end": 20754.18, + "probability": 0.746 + }, + { + "start": 20754.4, + "end": 20758.26, + "probability": 0.9438 + }, + { + "start": 20758.86, + "end": 20762.12, + "probability": 0.8638 + }, + { + "start": 20762.84, + "end": 20764.9, + "probability": 0.8121 + }, + { + "start": 20765.3, + "end": 20767.56, + "probability": 0.9751 + }, + { + "start": 20768.26, + "end": 20768.58, + "probability": 0.6231 + }, + { + "start": 20768.94, + "end": 20770.06, + "probability": 0.9897 + }, + { + "start": 20770.52, + "end": 20772.28, + "probability": 0.8448 + }, + { + "start": 20772.84, + "end": 20775.26, + "probability": 0.8984 + }, + { + "start": 20775.78, + "end": 20776.92, + "probability": 0.8789 + }, + { + "start": 20777.28, + "end": 20781.66, + "probability": 0.9651 + }, + { + "start": 20781.8, + "end": 20781.92, + "probability": 0.7289 + }, + { + "start": 20782.38, + "end": 20782.74, + "probability": 0.82 + }, + { + "start": 20783.98, + "end": 20784.06, + "probability": 0.5974 + }, + { + "start": 20784.14, + "end": 20787.66, + "probability": 0.8272 + }, + { + "start": 20787.98, + "end": 20792.62, + "probability": 0.8792 + }, + { + "start": 20792.98, + "end": 20795.62, + "probability": 0.9555 + }, + { + "start": 20796.72, + "end": 20797.08, + "probability": 0.2593 + }, + { + "start": 20799.5, + "end": 20799.76, + "probability": 0.6841 + }, + { + "start": 20812.36, + "end": 20812.54, + "probability": 0.0303 + }, + { + "start": 20812.54, + "end": 20812.54, + "probability": 0.1339 + }, + { + "start": 20812.54, + "end": 20813.6, + "probability": 0.6873 + }, + { + "start": 20815.76, + "end": 20817.1, + "probability": 0.591 + }, + { + "start": 20817.28, + "end": 20819.78, + "probability": 0.5172 + }, + { + "start": 20820.58, + "end": 20824.24, + "probability": 0.8529 + }, + { + "start": 20825.16, + "end": 20827.04, + "probability": 0.9868 + }, + { + "start": 20828.26, + "end": 20829.5, + "probability": 0.8098 + }, + { + "start": 20830.14, + "end": 20835.42, + "probability": 0.9841 + }, + { + "start": 20836.1, + "end": 20837.06, + "probability": 0.8821 + }, + { + "start": 20837.64, + "end": 20838.38, + "probability": 0.469 + }, + { + "start": 20839.32, + "end": 20841.4, + "probability": 0.5951 + }, + { + "start": 20844.04, + "end": 20845.94, + "probability": 0.9646 + }, + { + "start": 20848.3, + "end": 20851.0, + "probability": 0.3165 + }, + { + "start": 20851.9, + "end": 20852.32, + "probability": 0.954 + }, + { + "start": 20853.12, + "end": 20854.34, + "probability": 0.9872 + }, + { + "start": 20855.22, + "end": 20856.82, + "probability": 0.9937 + }, + { + "start": 20857.0, + "end": 20858.7, + "probability": 0.9824 + }, + { + "start": 20859.7, + "end": 20862.62, + "probability": 0.9779 + }, + { + "start": 20863.72, + "end": 20866.74, + "probability": 0.9736 + }, + { + "start": 20868.2, + "end": 20871.36, + "probability": 0.998 + }, + { + "start": 20872.26, + "end": 20872.96, + "probability": 0.8906 + }, + { + "start": 20874.44, + "end": 20877.65, + "probability": 0.9658 + }, + { + "start": 20878.64, + "end": 20880.5, + "probability": 0.993 + }, + { + "start": 20881.66, + "end": 20886.8, + "probability": 0.9762 + }, + { + "start": 20887.98, + "end": 20894.8, + "probability": 0.9896 + }, + { + "start": 20895.84, + "end": 20896.34, + "probability": 0.3634 + }, + { + "start": 20897.18, + "end": 20899.34, + "probability": 0.9682 + }, + { + "start": 20900.12, + "end": 20902.94, + "probability": 0.8397 + }, + { + "start": 20904.12, + "end": 20906.8, + "probability": 0.6293 + }, + { + "start": 20907.36, + "end": 20913.92, + "probability": 0.87 + }, + { + "start": 20915.68, + "end": 20917.04, + "probability": 0.7199 + }, + { + "start": 20919.3, + "end": 20929.6, + "probability": 0.9817 + }, + { + "start": 20930.62, + "end": 20933.04, + "probability": 0.9515 + }, + { + "start": 20933.92, + "end": 20935.32, + "probability": 0.8255 + }, + { + "start": 20936.4, + "end": 20937.92, + "probability": 0.8937 + }, + { + "start": 20939.12, + "end": 20942.1, + "probability": 0.9798 + }, + { + "start": 20942.62, + "end": 20945.9, + "probability": 0.9222 + }, + { + "start": 20946.72, + "end": 20953.36, + "probability": 0.927 + }, + { + "start": 20954.08, + "end": 20955.28, + "probability": 0.7503 + }, + { + "start": 20955.36, + "end": 20959.36, + "probability": 0.9766 + }, + { + "start": 20959.44, + "end": 20962.0, + "probability": 0.9847 + }, + { + "start": 20964.28, + "end": 20968.06, + "probability": 0.9464 + }, + { + "start": 20969.62, + "end": 20972.46, + "probability": 0.9199 + }, + { + "start": 20973.62, + "end": 20975.0, + "probability": 0.9916 + }, + { + "start": 20976.08, + "end": 20979.3, + "probability": 0.2549 + }, + { + "start": 20979.3, + "end": 20982.74, + "probability": 0.8719 + }, + { + "start": 20983.44, + "end": 20984.54, + "probability": 0.9418 + }, + { + "start": 20985.46, + "end": 20987.48, + "probability": 0.9872 + }, + { + "start": 20988.0, + "end": 20992.2, + "probability": 0.9698 + }, + { + "start": 20993.54, + "end": 20996.1, + "probability": 0.9517 + }, + { + "start": 20997.16, + "end": 20998.38, + "probability": 0.9791 + }, + { + "start": 20998.92, + "end": 21001.02, + "probability": 0.846 + }, + { + "start": 21001.06, + "end": 21001.58, + "probability": 0.7718 + }, + { + "start": 21001.82, + "end": 21002.18, + "probability": 0.2724 + }, + { + "start": 21002.18, + "end": 21003.0, + "probability": 0.7112 + }, + { + "start": 21023.16, + "end": 21024.22, + "probability": 0.4731 + }, + { + "start": 21024.28, + "end": 21025.62, + "probability": 0.7337 + }, + { + "start": 21025.78, + "end": 21030.04, + "probability": 0.6372 + }, + { + "start": 21030.9, + "end": 21033.08, + "probability": 0.8272 + }, + { + "start": 21034.1, + "end": 21034.86, + "probability": 0.9444 + }, + { + "start": 21037.76, + "end": 21041.1, + "probability": 0.8981 + }, + { + "start": 21042.2, + "end": 21042.38, + "probability": 0.4959 + }, + { + "start": 21042.9, + "end": 21046.96, + "probability": 0.9941 + }, + { + "start": 21046.96, + "end": 21052.74, + "probability": 0.9858 + }, + { + "start": 21053.6, + "end": 21055.82, + "probability": 0.9941 + }, + { + "start": 21055.84, + "end": 21056.74, + "probability": 0.6249 + }, + { + "start": 21056.88, + "end": 21063.52, + "probability": 0.9862 + }, + { + "start": 21063.8, + "end": 21065.54, + "probability": 0.9734 + }, + { + "start": 21067.56, + "end": 21069.86, + "probability": 0.705 + }, + { + "start": 21071.22, + "end": 21073.5, + "probability": 0.9187 + }, + { + "start": 21074.92, + "end": 21082.56, + "probability": 0.867 + }, + { + "start": 21083.54, + "end": 21088.08, + "probability": 0.9657 + }, + { + "start": 21090.32, + "end": 21095.24, + "probability": 0.9033 + }, + { + "start": 21095.28, + "end": 21098.18, + "probability": 0.8409 + }, + { + "start": 21099.34, + "end": 21100.92, + "probability": 0.88 + }, + { + "start": 21101.74, + "end": 21106.1, + "probability": 0.9738 + }, + { + "start": 21107.22, + "end": 21108.8, + "probability": 0.8853 + }, + { + "start": 21109.26, + "end": 21113.44, + "probability": 0.8903 + }, + { + "start": 21114.56, + "end": 21117.72, + "probability": 0.984 + }, + { + "start": 21118.96, + "end": 21122.84, + "probability": 0.9664 + }, + { + "start": 21123.7, + "end": 21124.26, + "probability": 0.8296 + }, + { + "start": 21124.38, + "end": 21127.62, + "probability": 0.861 + }, + { + "start": 21127.92, + "end": 21128.26, + "probability": 0.0654 + }, + { + "start": 21129.68, + "end": 21134.16, + "probability": 0.9889 + }, + { + "start": 21134.9, + "end": 21138.56, + "probability": 0.9948 + }, + { + "start": 21139.46, + "end": 21143.42, + "probability": 0.9712 + }, + { + "start": 21145.1, + "end": 21148.62, + "probability": 0.9199 + }, + { + "start": 21150.1, + "end": 21152.66, + "probability": 0.7894 + }, + { + "start": 21153.46, + "end": 21155.54, + "probability": 0.9711 + }, + { + "start": 21156.44, + "end": 21157.28, + "probability": 0.8881 + }, + { + "start": 21158.32, + "end": 21160.02, + "probability": 0.9484 + }, + { + "start": 21161.02, + "end": 21167.18, + "probability": 0.9744 + }, + { + "start": 21168.02, + "end": 21170.52, + "probability": 0.9918 + }, + { + "start": 21172.8, + "end": 21177.6, + "probability": 0.8826 + }, + { + "start": 21180.0, + "end": 21181.02, + "probability": 0.9818 + }, + { + "start": 21181.06, + "end": 21182.68, + "probability": 0.7964 + }, + { + "start": 21182.8, + "end": 21185.58, + "probability": 0.6169 + }, + { + "start": 21185.58, + "end": 21189.24, + "probability": 0.1374 + }, + { + "start": 21189.44, + "end": 21190.48, + "probability": 0.0822 + }, + { + "start": 21191.52, + "end": 21192.16, + "probability": 0.0352 + }, + { + "start": 21192.16, + "end": 21192.3, + "probability": 0.1339 + }, + { + "start": 21192.3, + "end": 21193.68, + "probability": 0.3871 + }, + { + "start": 21193.92, + "end": 21194.72, + "probability": 0.1695 + }, + { + "start": 21194.74, + "end": 21198.12, + "probability": 0.8156 + }, + { + "start": 21198.38, + "end": 21199.78, + "probability": 0.2743 + }, + { + "start": 21199.86, + "end": 21200.51, + "probability": 0.0942 + }, + { + "start": 21201.18, + "end": 21203.98, + "probability": 0.9987 + }, + { + "start": 21204.5, + "end": 21205.46, + "probability": 0.3648 + }, + { + "start": 21205.5, + "end": 21205.6, + "probability": 0.4899 + }, + { + "start": 21205.7, + "end": 21205.86, + "probability": 0.2846 + }, + { + "start": 21205.9, + "end": 21208.6, + "probability": 0.853 + }, + { + "start": 21208.6, + "end": 21209.5, + "probability": 0.202 + }, + { + "start": 21209.5, + "end": 21210.24, + "probability": 0.4168 + }, + { + "start": 21210.36, + "end": 21215.56, + "probability": 0.9941 + }, + { + "start": 21215.74, + "end": 21216.48, + "probability": 0.9202 + }, + { + "start": 21216.66, + "end": 21217.48, + "probability": 0.9561 + }, + { + "start": 21217.68, + "end": 21220.88, + "probability": 0.9661 + }, + { + "start": 21221.54, + "end": 21223.24, + "probability": 0.9 + }, + { + "start": 21224.66, + "end": 21225.92, + "probability": 0.2608 + }, + { + "start": 21225.92, + "end": 21228.92, + "probability": 0.9668 + }, + { + "start": 21229.2, + "end": 21233.11, + "probability": 0.0805 + }, + { + "start": 21238.0, + "end": 21239.68, + "probability": 0.2361 + }, + { + "start": 21239.68, + "end": 21239.68, + "probability": 0.0014 + }, + { + "start": 21239.68, + "end": 21239.68, + "probability": 0.1565 + }, + { + "start": 21239.68, + "end": 21239.68, + "probability": 0.0416 + }, + { + "start": 21239.68, + "end": 21240.84, + "probability": 0.162 + }, + { + "start": 21241.16, + "end": 21241.16, + "probability": 0.0424 + }, + { + "start": 21243.66, + "end": 21245.14, + "probability": 0.7584 + }, + { + "start": 21246.34, + "end": 21247.92, + "probability": 0.5042 + }, + { + "start": 21249.08, + "end": 21251.96, + "probability": 0.9406 + }, + { + "start": 21252.72, + "end": 21254.76, + "probability": 0.7377 + }, + { + "start": 21255.78, + "end": 21256.7, + "probability": 0.8263 + }, + { + "start": 21257.6, + "end": 21258.6, + "probability": 0.6459 + }, + { + "start": 21259.14, + "end": 21259.82, + "probability": 0.9663 + }, + { + "start": 21260.8, + "end": 21261.32, + "probability": 0.8985 + }, + { + "start": 21261.56, + "end": 21262.1, + "probability": 0.3475 + }, + { + "start": 21262.1, + "end": 21263.24, + "probability": 0.8525 + }, + { + "start": 21287.28, + "end": 21288.38, + "probability": 0.7303 + }, + { + "start": 21289.7, + "end": 21290.62, + "probability": 0.805 + }, + { + "start": 21292.22, + "end": 21293.64, + "probability": 0.9777 + }, + { + "start": 21294.8, + "end": 21295.9, + "probability": 0.9139 + }, + { + "start": 21297.8, + "end": 21298.7, + "probability": 0.8007 + }, + { + "start": 21300.97, + "end": 21301.04, + "probability": 0.1412 + }, + { + "start": 21301.08, + "end": 21302.2, + "probability": 0.8991 + }, + { + "start": 21302.56, + "end": 21304.7, + "probability": 0.981 + }, + { + "start": 21304.86, + "end": 21306.98, + "probability": 0.6457 + }, + { + "start": 21308.58, + "end": 21310.6, + "probability": 0.9878 + }, + { + "start": 21310.6, + "end": 21311.98, + "probability": 0.1175 + }, + { + "start": 21312.06, + "end": 21312.84, + "probability": 0.4153 + }, + { + "start": 21312.9, + "end": 21313.9, + "probability": 0.2764 + }, + { + "start": 21314.16, + "end": 21317.9, + "probability": 0.8447 + }, + { + "start": 21318.04, + "end": 21320.33, + "probability": 0.3184 + }, + { + "start": 21322.78, + "end": 21324.8, + "probability": 0.1474 + }, + { + "start": 21325.06, + "end": 21325.26, + "probability": 0.6017 + }, + { + "start": 21325.32, + "end": 21326.44, + "probability": 0.499 + }, + { + "start": 21327.63, + "end": 21329.44, + "probability": 0.0185 + }, + { + "start": 21330.3, + "end": 21331.14, + "probability": 0.0912 + }, + { + "start": 21331.14, + "end": 21331.66, + "probability": 0.0035 + }, + { + "start": 21332.26, + "end": 21333.76, + "probability": 0.4878 + }, + { + "start": 21335.86, + "end": 21338.04, + "probability": 0.1132 + }, + { + "start": 21338.14, + "end": 21339.58, + "probability": 0.0703 + }, + { + "start": 21340.76, + "end": 21341.46, + "probability": 0.1996 + }, + { + "start": 21342.13, + "end": 21342.94, + "probability": 0.0224 + }, + { + "start": 21342.94, + "end": 21343.24, + "probability": 0.0739 + }, + { + "start": 21344.1, + "end": 21345.74, + "probability": 0.4147 + }, + { + "start": 21347.8, + "end": 21349.12, + "probability": 0.5009 + }, + { + "start": 21349.12, + "end": 21351.28, + "probability": 0.0532 + }, + { + "start": 21351.34, + "end": 21351.62, + "probability": 0.0955 + }, + { + "start": 21351.62, + "end": 21351.62, + "probability": 0.0095 + }, + { + "start": 21351.62, + "end": 21351.62, + "probability": 0.078 + }, + { + "start": 21351.62, + "end": 21352.36, + "probability": 0.5132 + }, + { + "start": 21353.54, + "end": 21353.54, + "probability": 0.2533 + }, + { + "start": 21353.54, + "end": 21354.14, + "probability": 0.4069 + }, + { + "start": 21354.88, + "end": 21354.88, + "probability": 0.1876 + }, + { + "start": 21354.88, + "end": 21354.98, + "probability": 0.0938 + }, + { + "start": 21354.98, + "end": 21356.93, + "probability": 0.6612 + }, + { + "start": 21358.12, + "end": 21358.62, + "probability": 0.6248 + }, + { + "start": 21358.62, + "end": 21358.72, + "probability": 0.6101 + }, + { + "start": 21358.72, + "end": 21358.9, + "probability": 0.2074 + }, + { + "start": 21358.9, + "end": 21364.04, + "probability": 0.9287 + }, + { + "start": 21364.34, + "end": 21367.86, + "probability": 0.1604 + }, + { + "start": 21368.04, + "end": 21372.02, + "probability": 0.6129 + }, + { + "start": 21372.16, + "end": 21372.18, + "probability": 0.0493 + }, + { + "start": 21372.18, + "end": 21374.08, + "probability": 0.9173 + }, + { + "start": 21374.12, + "end": 21376.28, + "probability": 0.9894 + }, + { + "start": 21376.4, + "end": 21378.94, + "probability": 0.9479 + }, + { + "start": 21379.24, + "end": 21382.66, + "probability": 0.9821 + }, + { + "start": 21383.24, + "end": 21383.34, + "probability": 0.3097 + }, + { + "start": 21383.34, + "end": 21385.66, + "probability": 0.8088 + }, + { + "start": 21387.38, + "end": 21389.56, + "probability": 0.9734 + }, + { + "start": 21390.62, + "end": 21392.52, + "probability": 0.9785 + }, + { + "start": 21394.34, + "end": 21397.26, + "probability": 0.9979 + }, + { + "start": 21400.68, + "end": 21401.38, + "probability": 0.4849 + }, + { + "start": 21405.08, + "end": 21405.7, + "probability": 0.6905 + }, + { + "start": 21406.36, + "end": 21407.52, + "probability": 0.8488 + }, + { + "start": 21408.18, + "end": 21409.56, + "probability": 0.8133 + }, + { + "start": 21410.34, + "end": 21411.08, + "probability": 0.9089 + }, + { + "start": 21412.92, + "end": 21417.58, + "probability": 0.9564 + }, + { + "start": 21419.24, + "end": 21420.62, + "probability": 0.8153 + }, + { + "start": 21421.58, + "end": 21423.96, + "probability": 0.9634 + }, + { + "start": 21426.52, + "end": 21427.03, + "probability": 0.9038 + }, + { + "start": 21429.1, + "end": 21430.46, + "probability": 0.9961 + }, + { + "start": 21432.68, + "end": 21434.06, + "probability": 0.8749 + }, + { + "start": 21435.62, + "end": 21439.92, + "probability": 0.873 + }, + { + "start": 21441.6, + "end": 21443.28, + "probability": 0.9976 + }, + { + "start": 21446.34, + "end": 21452.16, + "probability": 0.9716 + }, + { + "start": 21453.02, + "end": 21456.3, + "probability": 0.7758 + }, + { + "start": 21457.46, + "end": 21459.0, + "probability": 0.9978 + }, + { + "start": 21460.5, + "end": 21461.36, + "probability": 0.979 + }, + { + "start": 21464.4, + "end": 21465.3, + "probability": 0.9976 + }, + { + "start": 21469.82, + "end": 21471.34, + "probability": 0.7926 + }, + { + "start": 21473.76, + "end": 21475.36, + "probability": 0.9976 + }, + { + "start": 21476.56, + "end": 21480.88, + "probability": 0.9889 + }, + { + "start": 21481.68, + "end": 21483.22, + "probability": 0.9316 + }, + { + "start": 21485.66, + "end": 21487.27, + "probability": 0.9658 + }, + { + "start": 21489.14, + "end": 21490.22, + "probability": 0.9663 + }, + { + "start": 21491.64, + "end": 21492.64, + "probability": 0.7081 + }, + { + "start": 21494.06, + "end": 21495.0, + "probability": 0.9385 + }, + { + "start": 21496.76, + "end": 21499.18, + "probability": 0.9924 + }, + { + "start": 21501.24, + "end": 21501.84, + "probability": 0.8042 + }, + { + "start": 21503.84, + "end": 21505.28, + "probability": 0.9937 + }, + { + "start": 21508.76, + "end": 21511.38, + "probability": 0.9634 + }, + { + "start": 21513.6, + "end": 21516.2, + "probability": 0.9773 + }, + { + "start": 21518.14, + "end": 21519.8, + "probability": 0.8838 + }, + { + "start": 21520.66, + "end": 21521.32, + "probability": 0.9162 + }, + { + "start": 21521.88, + "end": 21523.72, + "probability": 0.7374 + }, + { + "start": 21525.12, + "end": 21527.34, + "probability": 0.8638 + }, + { + "start": 21527.44, + "end": 21528.6, + "probability": 0.9556 + }, + { + "start": 21529.26, + "end": 21530.2, + "probability": 0.7709 + }, + { + "start": 21531.26, + "end": 21532.82, + "probability": 0.9947 + }, + { + "start": 21533.54, + "end": 21534.72, + "probability": 0.9231 + }, + { + "start": 21535.46, + "end": 21536.68, + "probability": 0.9575 + }, + { + "start": 21538.14, + "end": 21542.38, + "probability": 0.9729 + }, + { + "start": 21544.26, + "end": 21546.36, + "probability": 0.995 + }, + { + "start": 21546.72, + "end": 21547.94, + "probability": 0.9897 + }, + { + "start": 21549.06, + "end": 21551.44, + "probability": 0.9302 + }, + { + "start": 21552.4, + "end": 21553.64, + "probability": 0.8028 + }, + { + "start": 21554.5, + "end": 21555.68, + "probability": 0.96 + }, + { + "start": 21556.14, + "end": 21559.68, + "probability": 0.9009 + }, + { + "start": 21559.76, + "end": 21560.78, + "probability": 0.9402 + }, + { + "start": 21561.44, + "end": 21563.28, + "probability": 0.9863 + }, + { + "start": 21564.0, + "end": 21565.46, + "probability": 0.813 + }, + { + "start": 21565.92, + "end": 21566.68, + "probability": 0.9769 + }, + { + "start": 21567.18, + "end": 21568.12, + "probability": 0.7316 + }, + { + "start": 21568.94, + "end": 21570.88, + "probability": 0.8588 + }, + { + "start": 21592.28, + "end": 21593.76, + "probability": 0.4315 + }, + { + "start": 21594.38, + "end": 21596.46, + "probability": 0.8171 + }, + { + "start": 21597.76, + "end": 21599.55, + "probability": 0.9625 + }, + { + "start": 21600.82, + "end": 21602.74, + "probability": 0.9524 + }, + { + "start": 21602.82, + "end": 21605.48, + "probability": 0.995 + }, + { + "start": 21605.7, + "end": 21609.58, + "probability": 0.8705 + }, + { + "start": 21611.06, + "end": 21615.26, + "probability": 0.9865 + }, + { + "start": 21616.54, + "end": 21618.28, + "probability": 0.851 + }, + { + "start": 21618.76, + "end": 21621.24, + "probability": 0.7994 + }, + { + "start": 21622.4, + "end": 21624.02, + "probability": 0.998 + }, + { + "start": 21625.2, + "end": 21630.12, + "probability": 0.9353 + }, + { + "start": 21630.54, + "end": 21632.08, + "probability": 0.9921 + }, + { + "start": 21632.42, + "end": 21635.04, + "probability": 0.985 + }, + { + "start": 21635.56, + "end": 21636.18, + "probability": 0.6018 + }, + { + "start": 21636.26, + "end": 21637.7, + "probability": 0.8333 + }, + { + "start": 21638.02, + "end": 21639.08, + "probability": 0.9447 + }, + { + "start": 21639.38, + "end": 21640.12, + "probability": 0.7703 + }, + { + "start": 21640.22, + "end": 21640.72, + "probability": 0.1723 + }, + { + "start": 21641.78, + "end": 21643.46, + "probability": 0.9054 + }, + { + "start": 21644.42, + "end": 21645.58, + "probability": 0.7058 + }, + { + "start": 21645.72, + "end": 21646.62, + "probability": 0.6732 + }, + { + "start": 21647.0, + "end": 21648.22, + "probability": 0.8153 + }, + { + "start": 21648.32, + "end": 21649.76, + "probability": 0.8622 + }, + { + "start": 21649.9, + "end": 21649.96, + "probability": 0.7168 + }, + { + "start": 21650.08, + "end": 21650.2, + "probability": 0.4742 + }, + { + "start": 21650.2, + "end": 21650.72, + "probability": 0.7192 + }, + { + "start": 21650.82, + "end": 21654.22, + "probability": 0.7512 + }, + { + "start": 21654.22, + "end": 21657.7, + "probability": 0.995 + }, + { + "start": 21658.74, + "end": 21661.54, + "probability": 0.9323 + }, + { + "start": 21662.9, + "end": 21665.64, + "probability": 0.9096 + }, + { + "start": 21665.78, + "end": 21667.42, + "probability": 0.5945 + }, + { + "start": 21667.52, + "end": 21668.14, + "probability": 0.8576 + }, + { + "start": 21668.16, + "end": 21668.58, + "probability": 0.6441 + }, + { + "start": 21668.64, + "end": 21669.26, + "probability": 0.9155 + }, + { + "start": 21669.92, + "end": 21671.42, + "probability": 0.9717 + }, + { + "start": 21672.1, + "end": 21675.38, + "probability": 0.921 + }, + { + "start": 21676.24, + "end": 21680.36, + "probability": 0.8774 + }, + { + "start": 21682.7, + "end": 21684.92, + "probability": 0.9846 + }, + { + "start": 21685.76, + "end": 21689.24, + "probability": 0.9814 + }, + { + "start": 21690.94, + "end": 21696.38, + "probability": 0.9142 + }, + { + "start": 21698.38, + "end": 21699.38, + "probability": 0.8799 + }, + { + "start": 21699.54, + "end": 21701.62, + "probability": 0.9601 + }, + { + "start": 21701.9, + "end": 21705.7, + "probability": 0.8681 + }, + { + "start": 21706.48, + "end": 21707.12, + "probability": 0.8086 + }, + { + "start": 21708.36, + "end": 21709.42, + "probability": 0.9899 + }, + { + "start": 21710.18, + "end": 21710.9, + "probability": 0.9591 + }, + { + "start": 21711.8, + "end": 21712.38, + "probability": 0.3356 + }, + { + "start": 21712.54, + "end": 21717.14, + "probability": 0.9 + }, + { + "start": 21717.72, + "end": 21718.72, + "probability": 0.4727 + }, + { + "start": 21719.8, + "end": 21724.14, + "probability": 0.9501 + }, + { + "start": 21724.14, + "end": 21726.94, + "probability": 0.9824 + }, + { + "start": 21727.46, + "end": 21730.22, + "probability": 0.8798 + }, + { + "start": 21730.34, + "end": 21731.04, + "probability": 0.9229 + }, + { + "start": 21731.56, + "end": 21734.36, + "probability": 0.9817 + }, + { + "start": 21735.12, + "end": 21736.9, + "probability": 0.8066 + }, + { + "start": 21739.96, + "end": 21740.8, + "probability": 0.8435 + }, + { + "start": 21741.48, + "end": 21746.06, + "probability": 0.8123 + }, + { + "start": 21746.88, + "end": 21747.8, + "probability": 0.9905 + }, + { + "start": 21749.74, + "end": 21751.0, + "probability": 0.962 + }, + { + "start": 21752.56, + "end": 21753.24, + "probability": 0.7821 + }, + { + "start": 21753.68, + "end": 21756.08, + "probability": 0.5793 + }, + { + "start": 21757.86, + "end": 21760.68, + "probability": 0.8111 + }, + { + "start": 21760.7, + "end": 21761.52, + "probability": 0.7783 + }, + { + "start": 21761.9, + "end": 21763.8, + "probability": 0.9356 + }, + { + "start": 21765.5, + "end": 21767.8, + "probability": 0.9846 + }, + { + "start": 21767.84, + "end": 21769.34, + "probability": 0.8228 + }, + { + "start": 21769.9, + "end": 21771.34, + "probability": 0.9753 + }, + { + "start": 21771.76, + "end": 21774.6, + "probability": 0.98 + }, + { + "start": 21774.68, + "end": 21775.68, + "probability": 0.9019 + }, + { + "start": 21775.78, + "end": 21776.0, + "probability": 0.8447 + }, + { + "start": 21776.92, + "end": 21778.6, + "probability": 0.8585 + }, + { + "start": 21779.2, + "end": 21779.9, + "probability": 0.5679 + }, + { + "start": 21780.58, + "end": 21783.3, + "probability": 0.8516 + }, + { + "start": 21784.12, + "end": 21786.58, + "probability": 0.9858 + }, + { + "start": 21787.64, + "end": 21788.94, + "probability": 0.978 + }, + { + "start": 21789.26, + "end": 21793.08, + "probability": 0.8599 + }, + { + "start": 21793.08, + "end": 21797.78, + "probability": 0.9653 + }, + { + "start": 21798.1, + "end": 21799.28, + "probability": 0.9267 + }, + { + "start": 21800.2, + "end": 21800.58, + "probability": 0.44 + }, + { + "start": 21800.84, + "end": 21801.78, + "probability": 0.5702 + }, + { + "start": 21801.88, + "end": 21804.18, + "probability": 0.995 + }, + { + "start": 21804.84, + "end": 21807.74, + "probability": 0.8891 + }, + { + "start": 21807.74, + "end": 21807.74, + "probability": 0.1202 + }, + { + "start": 21807.74, + "end": 21808.34, + "probability": 0.5544 + }, + { + "start": 21808.6, + "end": 21810.5, + "probability": 0.1875 + }, + { + "start": 21811.04, + "end": 21811.84, + "probability": 0.6732 + }, + { + "start": 21812.0, + "end": 21812.78, + "probability": 0.9642 + }, + { + "start": 21813.08, + "end": 21814.62, + "probability": 0.6417 + }, + { + "start": 21814.64, + "end": 21815.12, + "probability": 0.7489 + }, + { + "start": 21815.18, + "end": 21815.96, + "probability": 0.5599 + }, + { + "start": 21816.16, + "end": 21816.76, + "probability": 0.6954 + }, + { + "start": 21817.12, + "end": 21818.7, + "probability": 0.8973 + }, + { + "start": 21819.22, + "end": 21820.22, + "probability": 0.9314 + }, + { + "start": 21822.6, + "end": 21824.91, + "probability": 0.2105 + }, + { + "start": 21839.68, + "end": 21840.44, + "probability": 0.56 + }, + { + "start": 21842.38, + "end": 21843.9, + "probability": 0.9762 + }, + { + "start": 21844.08, + "end": 21845.22, + "probability": 0.9221 + }, + { + "start": 21845.46, + "end": 21847.26, + "probability": 0.9399 + }, + { + "start": 21848.88, + "end": 21849.6, + "probability": 0.8121 + }, + { + "start": 21851.42, + "end": 21860.4, + "probability": 0.981 + }, + { + "start": 21861.16, + "end": 21865.3, + "probability": 0.9912 + }, + { + "start": 21867.54, + "end": 21868.94, + "probability": 0.9429 + }, + { + "start": 21870.72, + "end": 21872.52, + "probability": 0.9874 + }, + { + "start": 21874.66, + "end": 21878.98, + "probability": 0.9509 + }, + { + "start": 21879.56, + "end": 21880.82, + "probability": 0.8042 + }, + { + "start": 21883.4, + "end": 21884.98, + "probability": 0.9928 + }, + { + "start": 21886.78, + "end": 21896.78, + "probability": 0.9806 + }, + { + "start": 21898.6, + "end": 21902.18, + "probability": 0.9749 + }, + { + "start": 21904.08, + "end": 21906.8, + "probability": 0.9064 + }, + { + "start": 21907.98, + "end": 21913.68, + "probability": 0.9698 + }, + { + "start": 21916.1, + "end": 21919.42, + "probability": 0.8041 + }, + { + "start": 21920.7, + "end": 21925.62, + "probability": 0.995 + }, + { + "start": 21927.64, + "end": 21929.8, + "probability": 0.9635 + }, + { + "start": 21932.66, + "end": 21933.66, + "probability": 0.8771 + }, + { + "start": 21935.28, + "end": 21941.3, + "probability": 0.8116 + }, + { + "start": 21941.36, + "end": 21942.66, + "probability": 0.9067 + }, + { + "start": 21944.32, + "end": 21945.3, + "probability": 0.9897 + }, + { + "start": 21946.86, + "end": 21952.36, + "probability": 0.9028 + }, + { + "start": 21953.48, + "end": 21954.52, + "probability": 0.5387 + }, + { + "start": 21955.36, + "end": 21956.7, + "probability": 0.9296 + }, + { + "start": 21957.56, + "end": 21962.68, + "probability": 0.979 + }, + { + "start": 21963.94, + "end": 21968.16, + "probability": 0.7242 + }, + { + "start": 21968.96, + "end": 21971.2, + "probability": 0.9886 + }, + { + "start": 21971.66, + "end": 21974.38, + "probability": 0.9945 + }, + { + "start": 21974.58, + "end": 21975.3, + "probability": 0.4163 + }, + { + "start": 21976.76, + "end": 21981.86, + "probability": 0.845 + }, + { + "start": 21983.26, + "end": 21984.34, + "probability": 0.8796 + }, + { + "start": 21986.46, + "end": 21989.32, + "probability": 0.7498 + }, + { + "start": 21990.34, + "end": 21993.04, + "probability": 0.9034 + }, + { + "start": 21993.74, + "end": 21995.0, + "probability": 0.9206 + }, + { + "start": 21995.9, + "end": 21996.84, + "probability": 0.9896 + }, + { + "start": 21997.44, + "end": 21999.26, + "probability": 0.839 + }, + { + "start": 22000.4, + "end": 22001.8, + "probability": 0.9856 + }, + { + "start": 22002.78, + "end": 22004.34, + "probability": 0.9743 + }, + { + "start": 22005.12, + "end": 22008.36, + "probability": 0.9961 + }, + { + "start": 22009.1, + "end": 22010.03, + "probability": 0.9938 + }, + { + "start": 22011.76, + "end": 22014.36, + "probability": 0.9983 + }, + { + "start": 22015.12, + "end": 22015.76, + "probability": 0.6038 + }, + { + "start": 22016.3, + "end": 22019.84, + "probability": 0.8981 + }, + { + "start": 22020.42, + "end": 22022.58, + "probability": 0.9697 + }, + { + "start": 22023.56, + "end": 22024.18, + "probability": 0.748 + }, + { + "start": 22024.64, + "end": 22030.98, + "probability": 0.9574 + }, + { + "start": 22031.46, + "end": 22036.89, + "probability": 0.9981 + }, + { + "start": 22038.18, + "end": 22040.42, + "probability": 0.7992 + }, + { + "start": 22040.48, + "end": 22043.42, + "probability": 0.9951 + }, + { + "start": 22044.2, + "end": 22044.5, + "probability": 0.3095 + }, + { + "start": 22044.56, + "end": 22045.62, + "probability": 0.8039 + }, + { + "start": 22060.42, + "end": 22062.54, + "probability": 0.5978 + }, + { + "start": 22063.24, + "end": 22063.96, + "probability": 0.8331 + }, + { + "start": 22064.22, + "end": 22066.26, + "probability": 0.9873 + }, + { + "start": 22066.44, + "end": 22069.12, + "probability": 0.8684 + }, + { + "start": 22070.28, + "end": 22072.58, + "probability": 0.9076 + }, + { + "start": 22073.34, + "end": 22079.04, + "probability": 0.9936 + }, + { + "start": 22079.38, + "end": 22081.08, + "probability": 0.7722 + }, + { + "start": 22082.0, + "end": 22086.94, + "probability": 0.9916 + }, + { + "start": 22086.94, + "end": 22091.72, + "probability": 0.9504 + }, + { + "start": 22092.66, + "end": 22095.32, + "probability": 0.9983 + }, + { + "start": 22096.02, + "end": 22101.38, + "probability": 0.9841 + }, + { + "start": 22101.46, + "end": 22106.66, + "probability": 0.9922 + }, + { + "start": 22107.58, + "end": 22109.46, + "probability": 0.9417 + }, + { + "start": 22110.06, + "end": 22111.54, + "probability": 0.8402 + }, + { + "start": 22112.24, + "end": 22115.5, + "probability": 0.8016 + }, + { + "start": 22116.12, + "end": 22119.48, + "probability": 0.9878 + }, + { + "start": 22120.44, + "end": 22123.32, + "probability": 0.999 + }, + { + "start": 22123.9, + "end": 22125.66, + "probability": 0.9312 + }, + { + "start": 22126.36, + "end": 22127.22, + "probability": 0.7741 + }, + { + "start": 22127.5, + "end": 22132.48, + "probability": 0.8641 + }, + { + "start": 22132.72, + "end": 22135.42, + "probability": 0.9932 + }, + { + "start": 22135.9, + "end": 22138.6, + "probability": 0.9945 + }, + { + "start": 22139.14, + "end": 22140.38, + "probability": 0.5026 + }, + { + "start": 22140.48, + "end": 22144.02, + "probability": 0.9926 + }, + { + "start": 22144.56, + "end": 22148.24, + "probability": 0.9795 + }, + { + "start": 22148.9, + "end": 22151.52, + "probability": 0.9767 + }, + { + "start": 22152.14, + "end": 22155.96, + "probability": 0.9875 + }, + { + "start": 22156.5, + "end": 22157.66, + "probability": 0.8215 + }, + { + "start": 22158.76, + "end": 22159.64, + "probability": 0.8293 + }, + { + "start": 22160.82, + "end": 22164.6, + "probability": 0.9884 + }, + { + "start": 22165.12, + "end": 22167.82, + "probability": 0.9505 + }, + { + "start": 22168.2, + "end": 22169.5, + "probability": 0.8713 + }, + { + "start": 22169.6, + "end": 22170.92, + "probability": 0.9873 + }, + { + "start": 22171.9, + "end": 22175.94, + "probability": 0.9871 + }, + { + "start": 22176.54, + "end": 22179.82, + "probability": 0.8876 + }, + { + "start": 22180.3, + "end": 22180.94, + "probability": 0.8734 + }, + { + "start": 22181.82, + "end": 22183.08, + "probability": 0.9259 + }, + { + "start": 22183.64, + "end": 22188.88, + "probability": 0.9946 + }, + { + "start": 22190.58, + "end": 22193.04, + "probability": 0.9948 + }, + { + "start": 22193.56, + "end": 22197.66, + "probability": 0.9648 + }, + { + "start": 22198.2, + "end": 22202.9, + "probability": 0.9769 + }, + { + "start": 22204.02, + "end": 22205.16, + "probability": 0.9132 + }, + { + "start": 22205.8, + "end": 22209.42, + "probability": 0.9972 + }, + { + "start": 22210.02, + "end": 22214.22, + "probability": 0.9978 + }, + { + "start": 22215.22, + "end": 22217.06, + "probability": 0.9521 + }, + { + "start": 22217.6, + "end": 22219.58, + "probability": 0.912 + }, + { + "start": 22220.4, + "end": 22221.44, + "probability": 0.4385 + }, + { + "start": 22221.96, + "end": 22228.26, + "probability": 0.9406 + }, + { + "start": 22228.66, + "end": 22230.54, + "probability": 0.9263 + }, + { + "start": 22231.12, + "end": 22231.78, + "probability": 0.7931 + }, + { + "start": 22232.62, + "end": 22240.68, + "probability": 0.9797 + }, + { + "start": 22241.06, + "end": 22243.88, + "probability": 0.9627 + }, + { + "start": 22245.78, + "end": 22247.14, + "probability": 0.8553 + }, + { + "start": 22247.28, + "end": 22247.98, + "probability": 0.7713 + }, + { + "start": 22248.14, + "end": 22251.59, + "probability": 0.9346 + }, + { + "start": 22253.16, + "end": 22253.52, + "probability": 0.3124 + }, + { + "start": 22253.56, + "end": 22254.98, + "probability": 0.8309 + }, + { + "start": 22269.22, + "end": 22271.24, + "probability": 0.6304 + }, + { + "start": 22271.56, + "end": 22272.88, + "probability": 0.6905 + }, + { + "start": 22273.52, + "end": 22278.96, + "probability": 0.9919 + }, + { + "start": 22280.1, + "end": 22282.1, + "probability": 0.9703 + }, + { + "start": 22282.2, + "end": 22283.48, + "probability": 0.9966 + }, + { + "start": 22283.6, + "end": 22285.74, + "probability": 0.9927 + }, + { + "start": 22286.42, + "end": 22287.8, + "probability": 0.9993 + }, + { + "start": 22288.78, + "end": 22290.38, + "probability": 0.8778 + }, + { + "start": 22293.2, + "end": 22300.52, + "probability": 0.9869 + }, + { + "start": 22301.56, + "end": 22303.76, + "probability": 0.9971 + }, + { + "start": 22303.76, + "end": 22307.66, + "probability": 0.998 + }, + { + "start": 22307.74, + "end": 22310.54, + "probability": 0.9441 + }, + { + "start": 22311.16, + "end": 22313.28, + "probability": 0.8767 + }, + { + "start": 22314.1, + "end": 22315.04, + "probability": 0.7991 + }, + { + "start": 22316.26, + "end": 22322.5, + "probability": 0.9854 + }, + { + "start": 22323.98, + "end": 22325.3, + "probability": 0.9119 + }, + { + "start": 22325.9, + "end": 22328.12, + "probability": 0.9912 + }, + { + "start": 22328.18, + "end": 22330.42, + "probability": 0.9878 + }, + { + "start": 22330.68, + "end": 22331.78, + "probability": 0.8909 + }, + { + "start": 22333.21, + "end": 22335.42, + "probability": 0.9943 + }, + { + "start": 22336.4, + "end": 22340.94, + "probability": 0.9962 + }, + { + "start": 22341.08, + "end": 22343.2, + "probability": 0.9621 + }, + { + "start": 22344.22, + "end": 22345.08, + "probability": 0.6431 + }, + { + "start": 22345.22, + "end": 22347.06, + "probability": 0.8251 + }, + { + "start": 22347.22, + "end": 22349.68, + "probability": 0.993 + }, + { + "start": 22349.76, + "end": 22354.14, + "probability": 0.9984 + }, + { + "start": 22354.28, + "end": 22356.58, + "probability": 0.9964 + }, + { + "start": 22357.46, + "end": 22361.56, + "probability": 0.9969 + }, + { + "start": 22362.16, + "end": 22364.42, + "probability": 0.9985 + }, + { + "start": 22365.12, + "end": 22366.6, + "probability": 0.838 + }, + { + "start": 22366.68, + "end": 22366.96, + "probability": 0.8381 + }, + { + "start": 22367.06, + "end": 22367.98, + "probability": 0.9581 + }, + { + "start": 22369.12, + "end": 22371.62, + "probability": 0.8951 + }, + { + "start": 22372.22, + "end": 22375.22, + "probability": 0.986 + }, + { + "start": 22375.38, + "end": 22376.44, + "probability": 0.7757 + }, + { + "start": 22376.52, + "end": 22378.84, + "probability": 0.9674 + }, + { + "start": 22378.98, + "end": 22382.1, + "probability": 0.979 + }, + { + "start": 22382.2, + "end": 22384.78, + "probability": 0.9951 + }, + { + "start": 22385.64, + "end": 22388.1, + "probability": 0.9653 + }, + { + "start": 22388.62, + "end": 22391.22, + "probability": 0.9941 + }, + { + "start": 22391.84, + "end": 22393.94, + "probability": 0.9967 + }, + { + "start": 22393.98, + "end": 22394.86, + "probability": 0.9755 + }, + { + "start": 22395.28, + "end": 22396.82, + "probability": 0.9984 + }, + { + "start": 22397.46, + "end": 22399.56, + "probability": 0.9924 + }, + { + "start": 22399.7, + "end": 22401.56, + "probability": 0.9751 + }, + { + "start": 22402.22, + "end": 22403.78, + "probability": 0.9862 + }, + { + "start": 22405.24, + "end": 22407.6, + "probability": 0.9631 + }, + { + "start": 22407.88, + "end": 22410.82, + "probability": 0.929 + }, + { + "start": 22411.64, + "end": 22412.72, + "probability": 0.9653 + }, + { + "start": 22413.8, + "end": 22414.36, + "probability": 0.7793 + }, + { + "start": 22415.06, + "end": 22422.06, + "probability": 0.9897 + }, + { + "start": 22422.92, + "end": 22426.58, + "probability": 0.9866 + }, + { + "start": 22427.5, + "end": 22432.7, + "probability": 0.9967 + }, + { + "start": 22433.84, + "end": 22440.02, + "probability": 0.9843 + }, + { + "start": 22440.2, + "end": 22443.31, + "probability": 0.9936 + }, + { + "start": 22443.46, + "end": 22444.34, + "probability": 0.99 + }, + { + "start": 22444.46, + "end": 22446.06, + "probability": 0.9837 + }, + { + "start": 22447.28, + "end": 22450.4, + "probability": 0.9582 + }, + { + "start": 22451.16, + "end": 22453.08, + "probability": 0.9988 + }, + { + "start": 22453.54, + "end": 22454.22, + "probability": 0.7251 + }, + { + "start": 22454.28, + "end": 22456.76, + "probability": 0.9772 + }, + { + "start": 22457.08, + "end": 22458.4, + "probability": 0.9935 + }, + { + "start": 22460.44, + "end": 22462.5, + "probability": 0.4288 + }, + { + "start": 22462.64, + "end": 22463.92, + "probability": 0.958 + }, + { + "start": 22464.04, + "end": 22465.26, + "probability": 0.9492 + }, + { + "start": 22465.3, + "end": 22465.64, + "probability": 0.9487 + }, + { + "start": 22465.68, + "end": 22468.14, + "probability": 0.9868 + }, + { + "start": 22469.52, + "end": 22471.34, + "probability": 0.8929 + }, + { + "start": 22472.02, + "end": 22475.04, + "probability": 0.9934 + }, + { + "start": 22475.64, + "end": 22480.03, + "probability": 0.7707 + }, + { + "start": 22480.94, + "end": 22488.0, + "probability": 0.98 + }, + { + "start": 22488.42, + "end": 22491.38, + "probability": 0.9993 + }, + { + "start": 22491.38, + "end": 22494.68, + "probability": 0.9985 + }, + { + "start": 22495.22, + "end": 22497.12, + "probability": 0.879 + }, + { + "start": 22497.42, + "end": 22497.86, + "probability": 0.8088 + }, + { + "start": 22498.4, + "end": 22498.66, + "probability": 0.2653 + }, + { + "start": 22498.66, + "end": 22499.5, + "probability": 0.8826 + }, + { + "start": 22502.56, + "end": 22502.78, + "probability": 0.2621 + }, + { + "start": 22520.82, + "end": 22522.16, + "probability": 0.4938 + }, + { + "start": 22523.96, + "end": 22526.02, + "probability": 0.999 + }, + { + "start": 22526.54, + "end": 22529.24, + "probability": 0.9941 + }, + { + "start": 22530.12, + "end": 22533.88, + "probability": 0.9976 + }, + { + "start": 22534.66, + "end": 22535.7, + "probability": 0.9232 + }, + { + "start": 22535.82, + "end": 22539.66, + "probability": 0.9338 + }, + { + "start": 22541.38, + "end": 22544.76, + "probability": 0.9097 + }, + { + "start": 22545.6, + "end": 22550.48, + "probability": 0.9963 + }, + { + "start": 22551.4, + "end": 22554.96, + "probability": 0.9633 + }, + { + "start": 22556.5, + "end": 22560.02, + "probability": 0.9642 + }, + { + "start": 22560.9, + "end": 22565.7, + "probability": 0.9771 + }, + { + "start": 22566.36, + "end": 22572.54, + "probability": 0.9879 + }, + { + "start": 22572.74, + "end": 22578.72, + "probability": 0.9843 + }, + { + "start": 22579.34, + "end": 22586.76, + "probability": 0.9955 + }, + { + "start": 22587.32, + "end": 22590.1, + "probability": 0.9964 + }, + { + "start": 22590.98, + "end": 22593.2, + "probability": 0.7677 + }, + { + "start": 22593.32, + "end": 22595.71, + "probability": 0.9155 + }, + { + "start": 22597.16, + "end": 22602.48, + "probability": 0.967 + }, + { + "start": 22603.38, + "end": 22607.66, + "probability": 0.9964 + }, + { + "start": 22607.66, + "end": 22611.44, + "probability": 0.9972 + }, + { + "start": 22612.4, + "end": 22616.32, + "probability": 0.9816 + }, + { + "start": 22616.98, + "end": 22622.88, + "probability": 0.998 + }, + { + "start": 22623.2, + "end": 22626.58, + "probability": 0.9915 + }, + { + "start": 22627.24, + "end": 22628.34, + "probability": 0.7335 + }, + { + "start": 22629.3, + "end": 22630.82, + "probability": 0.9993 + }, + { + "start": 22631.96, + "end": 22636.42, + "probability": 0.8224 + }, + { + "start": 22637.56, + "end": 22641.44, + "probability": 0.9946 + }, + { + "start": 22642.02, + "end": 22643.3, + "probability": 0.8425 + }, + { + "start": 22643.48, + "end": 22645.5, + "probability": 0.9045 + }, + { + "start": 22646.06, + "end": 22647.44, + "probability": 0.9971 + }, + { + "start": 22648.08, + "end": 22649.64, + "probability": 0.831 + }, + { + "start": 22650.74, + "end": 22652.92, + "probability": 0.998 + }, + { + "start": 22653.0, + "end": 22653.9, + "probability": 0.7013 + }, + { + "start": 22654.54, + "end": 22655.2, + "probability": 0.5825 + }, + { + "start": 22655.52, + "end": 22660.54, + "probability": 0.894 + }, + { + "start": 22660.72, + "end": 22661.64, + "probability": 0.9698 + }, + { + "start": 22661.7, + "end": 22662.46, + "probability": 0.9583 + }, + { + "start": 22663.4, + "end": 22666.84, + "probability": 0.963 + }, + { + "start": 22667.68, + "end": 22672.32, + "probability": 0.9735 + }, + { + "start": 22672.84, + "end": 22674.18, + "probability": 0.9417 + }, + { + "start": 22674.46, + "end": 22676.86, + "probability": 0.7527 + }, + { + "start": 22677.36, + "end": 22683.72, + "probability": 0.9948 + }, + { + "start": 22684.16, + "end": 22687.84, + "probability": 0.9954 + }, + { + "start": 22687.84, + "end": 22691.78, + "probability": 0.999 + }, + { + "start": 22692.94, + "end": 22696.64, + "probability": 0.998 + }, + { + "start": 22696.8, + "end": 22697.46, + "probability": 0.8265 + }, + { + "start": 22697.58, + "end": 22699.37, + "probability": 0.9985 + }, + { + "start": 22701.28, + "end": 22704.92, + "probability": 0.9839 + }, + { + "start": 22706.8, + "end": 22707.22, + "probability": 0.2432 + }, + { + "start": 22707.22, + "end": 22708.08, + "probability": 0.6481 + }, + { + "start": 22729.02, + "end": 22729.02, + "probability": 0.151 + }, + { + "start": 22729.02, + "end": 22729.02, + "probability": 0.3457 + }, + { + "start": 22729.02, + "end": 22729.02, + "probability": 0.1729 + }, + { + "start": 22729.02, + "end": 22729.04, + "probability": 0.0739 + }, + { + "start": 22729.04, + "end": 22729.04, + "probability": 0.1267 + }, + { + "start": 22750.76, + "end": 22752.3, + "probability": 0.3383 + }, + { + "start": 22754.58, + "end": 22757.2, + "probability": 0.9971 + }, + { + "start": 22757.26, + "end": 22759.88, + "probability": 0.9394 + }, + { + "start": 22762.46, + "end": 22766.16, + "probability": 0.9913 + }, + { + "start": 22766.4, + "end": 22770.68, + "probability": 0.9893 + }, + { + "start": 22771.54, + "end": 22773.38, + "probability": 0.9522 + }, + { + "start": 22773.54, + "end": 22774.96, + "probability": 0.9941 + }, + { + "start": 22775.04, + "end": 22780.52, + "probability": 0.9992 + }, + { + "start": 22781.46, + "end": 22784.68, + "probability": 0.9718 + }, + { + "start": 22786.14, + "end": 22788.94, + "probability": 0.9872 + }, + { + "start": 22789.32, + "end": 22790.6, + "probability": 0.8766 + }, + { + "start": 22790.7, + "end": 22791.61, + "probability": 0.8638 + }, + { + "start": 22792.38, + "end": 22793.78, + "probability": 0.9805 + }, + { + "start": 22794.72, + "end": 22800.56, + "probability": 0.9632 + }, + { + "start": 22801.2, + "end": 22804.14, + "probability": 0.9558 + }, + { + "start": 22804.72, + "end": 22805.16, + "probability": 0.7065 + }, + { + "start": 22805.95, + "end": 22807.06, + "probability": 0.7712 + }, + { + "start": 22807.58, + "end": 22808.78, + "probability": 0.9927 + }, + { + "start": 22809.34, + "end": 22812.34, + "probability": 0.9958 + }, + { + "start": 22812.6, + "end": 22813.09, + "probability": 0.9971 + }, + { + "start": 22814.26, + "end": 22816.86, + "probability": 0.6642 + }, + { + "start": 22818.5, + "end": 22820.68, + "probability": 0.9976 + }, + { + "start": 22820.84, + "end": 22823.1, + "probability": 0.9907 + }, + { + "start": 22823.22, + "end": 22825.14, + "probability": 0.9001 + }, + { + "start": 22825.56, + "end": 22826.46, + "probability": 0.9701 + }, + { + "start": 22827.2, + "end": 22828.0, + "probability": 0.9874 + }, + { + "start": 22828.88, + "end": 22832.38, + "probability": 0.9839 + }, + { + "start": 22833.06, + "end": 22833.62, + "probability": 0.8153 + }, + { + "start": 22834.82, + "end": 22836.52, + "probability": 0.6577 + }, + { + "start": 22836.54, + "end": 22837.28, + "probability": 0.7641 + }, + { + "start": 22837.38, + "end": 22838.58, + "probability": 0.9088 + }, + { + "start": 22839.32, + "end": 22840.48, + "probability": 0.8064 + }, + { + "start": 22841.96, + "end": 22844.1, + "probability": 0.8732 + }, + { + "start": 22844.7, + "end": 22846.68, + "probability": 0.8434 + }, + { + "start": 22847.28, + "end": 22849.05, + "probability": 0.8649 + }, + { + "start": 22850.78, + "end": 22853.3, + "probability": 0.9528 + }, + { + "start": 22854.02, + "end": 22854.28, + "probability": 0.4152 + }, + { + "start": 22854.34, + "end": 22859.06, + "probability": 0.9913 + }, + { + "start": 22859.06, + "end": 22862.92, + "probability": 0.9953 + }, + { + "start": 22863.42, + "end": 22864.06, + "probability": 0.827 + }, + { + "start": 22865.18, + "end": 22868.34, + "probability": 0.9598 + }, + { + "start": 22868.58, + "end": 22870.0, + "probability": 0.9966 + }, + { + "start": 22873.06, + "end": 22873.7, + "probability": 0.8948 + }, + { + "start": 22874.46, + "end": 22877.48, + "probability": 0.9736 + }, + { + "start": 22878.24, + "end": 22881.44, + "probability": 0.9917 + }, + { + "start": 22882.24, + "end": 22883.98, + "probability": 0.9887 + }, + { + "start": 22884.56, + "end": 22887.3, + "probability": 0.9968 + }, + { + "start": 22888.3, + "end": 22891.8, + "probability": 0.9982 + }, + { + "start": 22892.84, + "end": 22896.92, + "probability": 0.9632 + }, + { + "start": 22898.28, + "end": 22901.34, + "probability": 0.99 + }, + { + "start": 22901.54, + "end": 22904.5, + "probability": 0.996 + }, + { + "start": 22905.1, + "end": 22905.46, + "probability": 0.6815 + }, + { + "start": 22905.56, + "end": 22906.02, + "probability": 0.7599 + }, + { + "start": 22906.06, + "end": 22909.62, + "probability": 0.9985 + }, + { + "start": 22910.46, + "end": 22913.86, + "probability": 0.9802 + }, + { + "start": 22914.34, + "end": 22915.46, + "probability": 0.9827 + }, + { + "start": 22915.62, + "end": 22916.5, + "probability": 0.7034 + }, + { + "start": 22917.04, + "end": 22917.56, + "probability": 0.9899 + }, + { + "start": 22917.9, + "end": 22918.66, + "probability": 0.7842 + }, + { + "start": 22918.66, + "end": 22918.82, + "probability": 0.3357 + }, + { + "start": 22919.36, + "end": 22924.74, + "probability": 0.9819 + }, + { + "start": 22924.94, + "end": 22925.18, + "probability": 0.7977 + }, + { + "start": 22926.82, + "end": 22927.34, + "probability": 0.5835 + }, + { + "start": 22927.34, + "end": 22928.3, + "probability": 0.7524 + }, + { + "start": 22944.1, + "end": 22947.02, + "probability": 0.7817 + }, + { + "start": 22948.84, + "end": 22950.5, + "probability": 0.9969 + }, + { + "start": 22951.26, + "end": 22954.44, + "probability": 0.9958 + }, + { + "start": 22954.52, + "end": 22958.4, + "probability": 0.8755 + }, + { + "start": 22960.82, + "end": 22962.76, + "probability": 0.4241 + }, + { + "start": 22963.84, + "end": 22965.7, + "probability": 0.1419 + }, + { + "start": 22965.7, + "end": 22967.02, + "probability": 0.0027 + }, + { + "start": 22967.1, + "end": 22969.94, + "probability": 0.9914 + }, + { + "start": 22969.94, + "end": 22974.3, + "probability": 0.9958 + }, + { + "start": 22974.56, + "end": 22975.26, + "probability": 0.8764 + }, + { + "start": 22976.6, + "end": 22977.52, + "probability": 0.9054 + }, + { + "start": 22979.12, + "end": 22980.32, + "probability": 0.9815 + }, + { + "start": 22980.54, + "end": 22981.3, + "probability": 0.8837 + }, + { + "start": 22981.68, + "end": 22984.16, + "probability": 0.9089 + }, + { + "start": 22985.6, + "end": 22988.25, + "probability": 0.9858 + }, + { + "start": 22991.2, + "end": 22991.92, + "probability": 0.9413 + }, + { + "start": 22993.52, + "end": 22994.92, + "probability": 0.7468 + }, + { + "start": 22996.48, + "end": 22997.72, + "probability": 0.9868 + }, + { + "start": 22999.06, + "end": 23000.22, + "probability": 0.4582 + }, + { + "start": 23000.94, + "end": 23004.36, + "probability": 0.9872 + }, + { + "start": 23005.5, + "end": 23009.36, + "probability": 0.6693 + }, + { + "start": 23010.93, + "end": 23016.14, + "probability": 0.8564 + }, + { + "start": 23017.69, + "end": 23022.84, + "probability": 0.9956 + }, + { + "start": 23023.38, + "end": 23025.82, + "probability": 0.9766 + }, + { + "start": 23027.46, + "end": 23030.1, + "probability": 0.9565 + }, + { + "start": 23033.8, + "end": 23034.72, + "probability": 0.4382 + }, + { + "start": 23036.3, + "end": 23039.18, + "probability": 0.9629 + }, + { + "start": 23040.72, + "end": 23041.06, + "probability": 0.8729 + }, + { + "start": 23041.14, + "end": 23045.44, + "probability": 0.9979 + }, + { + "start": 23047.68, + "end": 23048.9, + "probability": 0.9978 + }, + { + "start": 23050.58, + "end": 23052.58, + "probability": 0.9979 + }, + { + "start": 23052.74, + "end": 23053.54, + "probability": 0.9287 + }, + { + "start": 23055.2, + "end": 23058.58, + "probability": 0.9932 + }, + { + "start": 23061.34, + "end": 23064.04, + "probability": 0.9856 + }, + { + "start": 23065.78, + "end": 23067.44, + "probability": 0.5167 + }, + { + "start": 23070.16, + "end": 23072.58, + "probability": 0.9898 + }, + { + "start": 23073.96, + "end": 23077.22, + "probability": 0.9988 + }, + { + "start": 23078.94, + "end": 23079.14, + "probability": 0.6357 + }, + { + "start": 23079.38, + "end": 23082.24, + "probability": 0.7976 + }, + { + "start": 23082.62, + "end": 23085.68, + "probability": 0.0499 + }, + { + "start": 23085.68, + "end": 23086.68, + "probability": 0.6904 + }, + { + "start": 23088.24, + "end": 23089.42, + "probability": 0.7521 + }, + { + "start": 23090.24, + "end": 23093.77, + "probability": 0.9973 + }, + { + "start": 23096.02, + "end": 23101.5, + "probability": 0.9974 + }, + { + "start": 23102.06, + "end": 23103.36, + "probability": 0.6906 + }, + { + "start": 23104.2, + "end": 23105.26, + "probability": 0.6768 + }, + { + "start": 23105.3, + "end": 23107.58, + "probability": 0.9504 + }, + { + "start": 23108.1, + "end": 23110.68, + "probability": 0.9467 + }, + { + "start": 23112.06, + "end": 23112.72, + "probability": 0.8789 + }, + { + "start": 23113.9, + "end": 23115.78, + "probability": 0.6885 + }, + { + "start": 23116.76, + "end": 23119.58, + "probability": 0.9972 + }, + { + "start": 23122.72, + "end": 23126.0, + "probability": 0.9875 + }, + { + "start": 23126.92, + "end": 23130.02, + "probability": 0.9989 + }, + { + "start": 23130.72, + "end": 23132.34, + "probability": 0.95 + }, + { + "start": 23132.94, + "end": 23137.4, + "probability": 0.9961 + }, + { + "start": 23138.16, + "end": 23140.38, + "probability": 0.9784 + }, + { + "start": 23140.94, + "end": 23145.74, + "probability": 0.8479 + }, + { + "start": 23148.2, + "end": 23149.1, + "probability": 0.9001 + }, + { + "start": 23150.22, + "end": 23156.12, + "probability": 0.9979 + }, + { + "start": 23156.32, + "end": 23156.92, + "probability": 0.7485 + }, + { + "start": 23157.02, + "end": 23157.38, + "probability": 0.5016 + }, + { + "start": 23157.7, + "end": 23160.8, + "probability": 0.954 + }, + { + "start": 23161.28, + "end": 23162.7, + "probability": 0.9941 + }, + { + "start": 23162.84, + "end": 23164.92, + "probability": 0.929 + }, + { + "start": 23166.26, + "end": 23170.38, + "probability": 0.9896 + }, + { + "start": 23171.7, + "end": 23174.48, + "probability": 0.1121 + }, + { + "start": 23176.86, + "end": 23176.86, + "probability": 0.1499 + }, + { + "start": 23181.2, + "end": 23182.94, + "probability": 0.3461 + }, + { + "start": 23184.18, + "end": 23186.42, + "probability": 0.0609 + }, + { + "start": 23186.66, + "end": 23188.36, + "probability": 0.1552 + }, + { + "start": 23188.9, + "end": 23191.36, + "probability": 0.2001 + }, + { + "start": 23193.18, + "end": 23193.6, + "probability": 0.0275 + }, + { + "start": 23193.92, + "end": 23197.3, + "probability": 0.194 + }, + { + "start": 23198.22, + "end": 23200.62, + "probability": 0.9893 + }, + { + "start": 23200.86, + "end": 23201.74, + "probability": 0.684 + }, + { + "start": 23208.84, + "end": 23210.78, + "probability": 0.6668 + }, + { + "start": 23212.1, + "end": 23215.86, + "probability": 0.7804 + }, + { + "start": 23215.92, + "end": 23218.78, + "probability": 0.9963 + }, + { + "start": 23220.1, + "end": 23221.22, + "probability": 0.9665 + }, + { + "start": 23222.6, + "end": 23228.28, + "probability": 0.9505 + }, + { + "start": 23229.0, + "end": 23232.34, + "probability": 0.9358 + }, + { + "start": 23233.66, + "end": 23235.3, + "probability": 0.9655 + }, + { + "start": 23237.3, + "end": 23240.3, + "probability": 0.7087 + }, + { + "start": 23242.02, + "end": 23248.42, + "probability": 0.9961 + }, + { + "start": 23249.2, + "end": 23250.21, + "probability": 0.6391 + }, + { + "start": 23252.3, + "end": 23252.54, + "probability": 0.0682 + }, + { + "start": 23252.54, + "end": 23255.44, + "probability": 0.9966 + }, + { + "start": 23256.44, + "end": 23260.0, + "probability": 0.9837 + }, + { + "start": 23260.32, + "end": 23261.22, + "probability": 0.6385 + }, + { + "start": 23261.32, + "end": 23262.14, + "probability": 0.5186 + }, + { + "start": 23263.32, + "end": 23266.72, + "probability": 0.991 + }, + { + "start": 23267.64, + "end": 23267.86, + "probability": 0.7424 + }, + { + "start": 23271.0, + "end": 23275.74, + "probability": 0.9978 + }, + { + "start": 23276.74, + "end": 23279.38, + "probability": 0.979 + }, + { + "start": 23279.66, + "end": 23284.82, + "probability": 0.9959 + }, + { + "start": 23287.4, + "end": 23291.22, + "probability": 0.9957 + }, + { + "start": 23291.22, + "end": 23294.26, + "probability": 0.9939 + }, + { + "start": 23295.14, + "end": 23296.2, + "probability": 0.7474 + }, + { + "start": 23297.58, + "end": 23301.66, + "probability": 0.986 + }, + { + "start": 23302.38, + "end": 23303.48, + "probability": 0.9819 + }, + { + "start": 23304.36, + "end": 23308.4, + "probability": 0.9938 + }, + { + "start": 23308.4, + "end": 23310.6, + "probability": 0.7251 + }, + { + "start": 23310.64, + "end": 23313.04, + "probability": 0.9941 + }, + { + "start": 23313.94, + "end": 23315.88, + "probability": 0.7986 + }, + { + "start": 23317.08, + "end": 23318.66, + "probability": 0.9476 + }, + { + "start": 23318.86, + "end": 23319.4, + "probability": 0.8225 + }, + { + "start": 23319.46, + "end": 23320.5, + "probability": 0.938 + }, + { + "start": 23322.18, + "end": 23324.44, + "probability": 0.9931 + }, + { + "start": 23326.02, + "end": 23327.22, + "probability": 0.9314 + }, + { + "start": 23327.42, + "end": 23327.64, + "probability": 0.8475 + }, + { + "start": 23330.14, + "end": 23331.8, + "probability": 0.1077 + }, + { + "start": 23333.14, + "end": 23336.26, + "probability": 0.7327 + }, + { + "start": 23337.36, + "end": 23339.64, + "probability": 0.9623 + }, + { + "start": 23339.76, + "end": 23341.08, + "probability": 0.9531 + }, + { + "start": 23341.82, + "end": 23345.15, + "probability": 0.9964 + }, + { + "start": 23345.96, + "end": 23349.04, + "probability": 0.9972 + }, + { + "start": 23349.1, + "end": 23351.14, + "probability": 0.8548 + }, + { + "start": 23351.66, + "end": 23357.96, + "probability": 0.9434 + }, + { + "start": 23358.66, + "end": 23362.84, + "probability": 0.7241 + }, + { + "start": 23363.32, + "end": 23366.76, + "probability": 0.9886 + }, + { + "start": 23370.06, + "end": 23370.96, + "probability": 0.5226 + }, + { + "start": 23372.52, + "end": 23373.78, + "probability": 0.9962 + }, + { + "start": 23374.56, + "end": 23375.12, + "probability": 0.9951 + }, + { + "start": 23375.8, + "end": 23377.3, + "probability": 0.938 + }, + { + "start": 23378.2, + "end": 23381.56, + "probability": 0.9817 + }, + { + "start": 23383.14, + "end": 23386.88, + "probability": 0.9821 + }, + { + "start": 23387.54, + "end": 23393.32, + "probability": 0.9947 + }, + { + "start": 23393.94, + "end": 23395.54, + "probability": 0.9972 + }, + { + "start": 23395.84, + "end": 23396.64, + "probability": 0.897 + }, + { + "start": 23396.98, + "end": 23396.98, + "probability": 0.5164 + }, + { + "start": 23397.24, + "end": 23397.94, + "probability": 0.8569 + }, + { + "start": 23399.28, + "end": 23399.72, + "probability": 0.3776 + }, + { + "start": 23418.94, + "end": 23419.9, + "probability": 0.4832 + }, + { + "start": 23420.0, + "end": 23422.84, + "probability": 0.7606 + }, + { + "start": 23424.12, + "end": 23426.7, + "probability": 0.6567 + }, + { + "start": 23427.96, + "end": 23432.08, + "probability": 0.969 + }, + { + "start": 23433.52, + "end": 23434.62, + "probability": 0.8686 + }, + { + "start": 23434.98, + "end": 23438.26, + "probability": 0.9541 + }, + { + "start": 23438.7, + "end": 23441.94, + "probability": 0.7919 + }, + { + "start": 23442.62, + "end": 23443.58, + "probability": 0.999 + }, + { + "start": 23444.58, + "end": 23445.22, + "probability": 0.9578 + }, + { + "start": 23445.98, + "end": 23450.52, + "probability": 0.9926 + }, + { + "start": 23451.56, + "end": 23454.56, + "probability": 0.9846 + }, + { + "start": 23455.48, + "end": 23458.74, + "probability": 0.9882 + }, + { + "start": 23459.6, + "end": 23460.52, + "probability": 0.6758 + }, + { + "start": 23461.36, + "end": 23462.46, + "probability": 0.7579 + }, + { + "start": 23463.48, + "end": 23463.86, + "probability": 0.602 + }, + { + "start": 23464.78, + "end": 23469.12, + "probability": 0.9945 + }, + { + "start": 23469.74, + "end": 23471.62, + "probability": 0.9923 + }, + { + "start": 23472.68, + "end": 23473.26, + "probability": 0.9554 + }, + { + "start": 23474.62, + "end": 23475.42, + "probability": 0.9932 + }, + { + "start": 23475.98, + "end": 23476.5, + "probability": 0.8687 + }, + { + "start": 23476.72, + "end": 23480.18, + "probability": 0.9939 + }, + { + "start": 23480.68, + "end": 23484.04, + "probability": 0.9912 + }, + { + "start": 23485.0, + "end": 23485.78, + "probability": 0.5598 + }, + { + "start": 23486.86, + "end": 23490.2, + "probability": 0.8407 + }, + { + "start": 23490.92, + "end": 23495.14, + "probability": 0.9936 + }, + { + "start": 23495.74, + "end": 23497.18, + "probability": 0.9485 + }, + { + "start": 23498.2, + "end": 23503.62, + "probability": 0.9327 + }, + { + "start": 23504.04, + "end": 23504.54, + "probability": 0.6643 + }, + { + "start": 23505.28, + "end": 23506.34, + "probability": 0.8699 + }, + { + "start": 23507.22, + "end": 23510.8, + "probability": 0.9209 + }, + { + "start": 23511.42, + "end": 23512.54, + "probability": 0.8751 + }, + { + "start": 23513.24, + "end": 23514.18, + "probability": 0.8922 + }, + { + "start": 23515.44, + "end": 23516.04, + "probability": 0.8387 + }, + { + "start": 23517.46, + "end": 23521.68, + "probability": 0.9957 + }, + { + "start": 23522.44, + "end": 23523.73, + "probability": 0.9906 + }, + { + "start": 23524.9, + "end": 23527.26, + "probability": 0.9955 + }, + { + "start": 23527.78, + "end": 23532.96, + "probability": 0.9982 + }, + { + "start": 23533.84, + "end": 23534.84, + "probability": 0.7763 + }, + { + "start": 23535.62, + "end": 23543.24, + "probability": 0.9662 + }, + { + "start": 23544.02, + "end": 23547.54, + "probability": 0.748 + }, + { + "start": 23548.12, + "end": 23548.98, + "probability": 0.8891 + }, + { + "start": 23549.62, + "end": 23550.48, + "probability": 0.9072 + }, + { + "start": 23551.78, + "end": 23552.74, + "probability": 0.686 + }, + { + "start": 23554.4, + "end": 23557.0, + "probability": 0.9718 + }, + { + "start": 23558.36, + "end": 23560.5, + "probability": 0.9961 + }, + { + "start": 23561.5, + "end": 23565.02, + "probability": 0.9841 + }, + { + "start": 23565.74, + "end": 23571.28, + "probability": 0.9848 + }, + { + "start": 23571.7, + "end": 23572.78, + "probability": 0.7267 + }, + { + "start": 23573.48, + "end": 23575.68, + "probability": 0.9769 + }, + { + "start": 23576.08, + "end": 23577.18, + "probability": 0.9805 + }, + { + "start": 23578.24, + "end": 23580.04, + "probability": 0.989 + }, + { + "start": 23580.68, + "end": 23587.08, + "probability": 0.9897 + }, + { + "start": 23587.32, + "end": 23590.38, + "probability": 0.9626 + }, + { + "start": 23590.98, + "end": 23591.9, + "probability": 0.8386 + }, + { + "start": 23592.44, + "end": 23594.6, + "probability": 0.9051 + }, + { + "start": 23595.76, + "end": 23596.88, + "probability": 0.8918 + }, + { + "start": 23603.82, + "end": 23605.3, + "probability": 0.1633 + }, + { + "start": 23606.78, + "end": 23608.84, + "probability": 0.0963 + }, + { + "start": 23609.4, + "end": 23610.44, + "probability": 0.0556 + }, + { + "start": 23612.77, + "end": 23613.58, + "probability": 0.0683 + }, + { + "start": 23613.58, + "end": 23614.92, + "probability": 0.072 + }, + { + "start": 23645.68, + "end": 23654.18, + "probability": 0.9927 + }, + { + "start": 23654.34, + "end": 23655.38, + "probability": 0.873 + }, + { + "start": 23655.96, + "end": 23657.04, + "probability": 0.8752 + }, + { + "start": 23657.76, + "end": 23658.92, + "probability": 0.7668 + }, + { + "start": 23659.46, + "end": 23664.82, + "probability": 0.9855 + }, + { + "start": 23665.54, + "end": 23666.28, + "probability": 0.6481 + }, + { + "start": 23667.0, + "end": 23669.7, + "probability": 0.9871 + }, + { + "start": 23671.32, + "end": 23672.48, + "probability": 0.8706 + }, + { + "start": 23673.78, + "end": 23676.18, + "probability": 0.9746 + }, + { + "start": 23676.72, + "end": 23679.06, + "probability": 0.9841 + }, + { + "start": 23679.62, + "end": 23682.28, + "probability": 0.9963 + }, + { + "start": 23683.58, + "end": 23684.1, + "probability": 0.7308 + }, + { + "start": 23684.92, + "end": 23686.5, + "probability": 0.8819 + }, + { + "start": 23687.56, + "end": 23688.48, + "probability": 0.924 + }, + { + "start": 23688.98, + "end": 23690.4, + "probability": 0.9983 + }, + { + "start": 23690.98, + "end": 23694.04, + "probability": 0.984 + }, + { + "start": 23695.7, + "end": 23699.56, + "probability": 0.9891 + }, + { + "start": 23700.26, + "end": 23701.14, + "probability": 0.7922 + }, + { + "start": 23701.9, + "end": 23709.56, + "probability": 0.9859 + }, + { + "start": 23711.22, + "end": 23711.84, + "probability": 0.8771 + }, + { + "start": 23712.62, + "end": 23715.26, + "probability": 0.9618 + }, + { + "start": 23715.96, + "end": 23718.3, + "probability": 0.9799 + }, + { + "start": 23719.36, + "end": 23720.54, + "probability": 0.9995 + }, + { + "start": 23721.12, + "end": 23725.0, + "probability": 0.9877 + }, + { + "start": 23726.84, + "end": 23728.32, + "probability": 0.9566 + }, + { + "start": 23729.12, + "end": 23732.48, + "probability": 0.9513 + }, + { + "start": 23734.1, + "end": 23740.86, + "probability": 0.9969 + }, + { + "start": 23742.98, + "end": 23746.9, + "probability": 0.9988 + }, + { + "start": 23746.9, + "end": 23753.08, + "probability": 0.9791 + }, + { + "start": 23753.17, + "end": 23758.4, + "probability": 0.9356 + }, + { + "start": 23759.26, + "end": 23761.38, + "probability": 0.9981 + }, + { + "start": 23761.9, + "end": 23769.08, + "probability": 0.9952 + }, + { + "start": 23770.04, + "end": 23773.88, + "probability": 0.9321 + }, + { + "start": 23775.28, + "end": 23775.44, + "probability": 0.3626 + }, + { + "start": 23776.12, + "end": 23778.2, + "probability": 0.9848 + }, + { + "start": 23778.92, + "end": 23780.0, + "probability": 0.4578 + }, + { + "start": 23780.62, + "end": 23782.28, + "probability": 0.9592 + }, + { + "start": 23783.7, + "end": 23788.32, + "probability": 0.9902 + }, + { + "start": 23789.04, + "end": 23792.94, + "probability": 0.9943 + }, + { + "start": 23793.58, + "end": 23794.68, + "probability": 0.9221 + }, + { + "start": 23794.86, + "end": 23795.51, + "probability": 0.9248 + }, + { + "start": 23795.88, + "end": 23797.36, + "probability": 0.9551 + }, + { + "start": 23799.26, + "end": 23803.86, + "probability": 0.9629 + }, + { + "start": 23804.76, + "end": 23806.04, + "probability": 0.9979 + }, + { + "start": 23807.1, + "end": 23809.16, + "probability": 0.9736 + }, + { + "start": 23809.28, + "end": 23811.33, + "probability": 0.9966 + }, + { + "start": 23812.7, + "end": 23813.2, + "probability": 0.3415 + }, + { + "start": 23813.3, + "end": 23814.58, + "probability": 0.8065 + }, + { + "start": 23814.8, + "end": 23816.62, + "probability": 0.9601 + }, + { + "start": 23816.74, + "end": 23818.38, + "probability": 0.8687 + }, + { + "start": 23818.76, + "end": 23820.28, + "probability": 0.9626 + }, + { + "start": 23820.58, + "end": 23820.58, + "probability": 0.254 + }, + { + "start": 23820.64, + "end": 23821.72, + "probability": 0.7779 + }, + { + "start": 23823.34, + "end": 23828.04, + "probability": 0.997 + }, + { + "start": 23828.06, + "end": 23832.18, + "probability": 0.9976 + }, + { + "start": 23832.9, + "end": 23836.88, + "probability": 0.9976 + }, + { + "start": 23837.74, + "end": 23838.1, + "probability": 0.6749 + }, + { + "start": 23838.32, + "end": 23838.64, + "probability": 0.7365 + }, + { + "start": 23838.88, + "end": 23839.86, + "probability": 0.6213 + }, + { + "start": 23850.12, + "end": 23850.3, + "probability": 0.4879 + }, + { + "start": 23850.36, + "end": 23852.56, + "probability": 0.7356 + }, + { + "start": 23853.24, + "end": 23853.76, + "probability": 0.8602 + }, + { + "start": 23853.94, + "end": 23855.18, + "probability": 0.9504 + }, + { + "start": 23855.26, + "end": 23857.88, + "probability": 0.8444 + }, + { + "start": 23858.3, + "end": 23860.78, + "probability": 0.8997 + }, + { + "start": 23861.04, + "end": 23862.86, + "probability": 0.9097 + }, + { + "start": 23863.9, + "end": 23866.64, + "probability": 0.975 + }, + { + "start": 23867.0, + "end": 23867.28, + "probability": 0.8442 + }, + { + "start": 23867.38, + "end": 23870.86, + "probability": 0.9221 + }, + { + "start": 23871.62, + "end": 23871.8, + "probability": 0.675 + }, + { + "start": 23871.96, + "end": 23872.64, + "probability": 0.4622 + }, + { + "start": 23872.74, + "end": 23873.77, + "probability": 0.978 + }, + { + "start": 23874.66, + "end": 23875.08, + "probability": 0.8068 + }, + { + "start": 23875.16, + "end": 23877.06, + "probability": 0.9814 + }, + { + "start": 23877.52, + "end": 23879.38, + "probability": 0.9918 + }, + { + "start": 23880.0, + "end": 23882.4, + "probability": 0.9886 + }, + { + "start": 23883.26, + "end": 23884.02, + "probability": 0.6902 + }, + { + "start": 23884.16, + "end": 23885.6, + "probability": 0.9932 + }, + { + "start": 23886.0, + "end": 23888.96, + "probability": 0.8132 + }, + { + "start": 23889.24, + "end": 23890.6, + "probability": 0.7598 + }, + { + "start": 23891.02, + "end": 23893.8, + "probability": 0.9946 + }, + { + "start": 23893.8, + "end": 23899.08, + "probability": 0.9946 + }, + { + "start": 23899.68, + "end": 23901.4, + "probability": 0.6674 + }, + { + "start": 23901.5, + "end": 23903.84, + "probability": 0.9929 + }, + { + "start": 23904.4, + "end": 23906.98, + "probability": 0.9902 + }, + { + "start": 23907.46, + "end": 23908.76, + "probability": 0.8092 + }, + { + "start": 23909.2, + "end": 23913.88, + "probability": 0.9443 + }, + { + "start": 23914.52, + "end": 23916.16, + "probability": 0.9751 + }, + { + "start": 23916.32, + "end": 23918.4, + "probability": 0.7612 + }, + { + "start": 23919.71, + "end": 23923.18, + "probability": 0.9844 + }, + { + "start": 23923.44, + "end": 23925.42, + "probability": 0.9976 + }, + { + "start": 23925.84, + "end": 23927.64, + "probability": 0.999 + }, + { + "start": 23928.44, + "end": 23930.2, + "probability": 0.9055 + }, + { + "start": 23930.94, + "end": 23933.46, + "probability": 0.9229 + }, + { + "start": 23934.8, + "end": 23937.88, + "probability": 0.8551 + }, + { + "start": 23938.56, + "end": 23940.74, + "probability": 0.9954 + }, + { + "start": 23941.6, + "end": 23943.32, + "probability": 0.7683 + }, + { + "start": 23944.24, + "end": 23945.2, + "probability": 0.9651 + }, + { + "start": 23945.9, + "end": 23946.96, + "probability": 0.5148 + }, + { + "start": 23947.84, + "end": 23954.58, + "probability": 0.7105 + }, + { + "start": 23954.98, + "end": 23959.84, + "probability": 0.9978 + }, + { + "start": 23960.54, + "end": 23960.76, + "probability": 0.8452 + }, + { + "start": 23961.4, + "end": 23962.94, + "probability": 0.9528 + }, + { + "start": 23964.06, + "end": 23968.48, + "probability": 0.9658 + }, + { + "start": 23968.9, + "end": 23969.44, + "probability": 0.8186 + }, + { + "start": 23970.8, + "end": 23973.14, + "probability": 0.9961 + }, + { + "start": 23973.88, + "end": 23976.52, + "probability": 0.9893 + }, + { + "start": 23977.88, + "end": 23981.0, + "probability": 0.9747 + }, + { + "start": 23982.0, + "end": 23984.74, + "probability": 0.9889 + }, + { + "start": 23985.2, + "end": 23986.57, + "probability": 0.7007 + }, + { + "start": 23987.56, + "end": 23989.56, + "probability": 0.6405 + }, + { + "start": 23990.12, + "end": 23992.14, + "probability": 0.9551 + }, + { + "start": 23992.92, + "end": 23994.66, + "probability": 0.953 + }, + { + "start": 23995.32, + "end": 23998.64, + "probability": 0.9849 + }, + { + "start": 24003.98, + "end": 24005.64, + "probability": 0.3891 + }, + { + "start": 24006.18, + "end": 24009.0, + "probability": 0.9546 + }, + { + "start": 24009.0, + "end": 24012.76, + "probability": 0.9664 + }, + { + "start": 24013.12, + "end": 24014.3, + "probability": 0.6301 + }, + { + "start": 24014.3, + "end": 24017.94, + "probability": 0.8473 + }, + { + "start": 24018.52, + "end": 24020.92, + "probability": 0.6674 + }, + { + "start": 24021.16, + "end": 24023.4, + "probability": 0.908 + }, + { + "start": 24023.42, + "end": 24023.84, + "probability": 0.4391 + }, + { + "start": 24023.92, + "end": 24027.64, + "probability": 0.8027 + }, + { + "start": 24027.74, + "end": 24029.0, + "probability": 0.7375 + }, + { + "start": 24029.2, + "end": 24030.6, + "probability": 0.4447 + }, + { + "start": 24033.12, + "end": 24033.84, + "probability": 0.0588 + }, + { + "start": 24033.84, + "end": 24033.84, + "probability": 0.2214 + }, + { + "start": 24033.84, + "end": 24035.2, + "probability": 0.899 + }, + { + "start": 24035.36, + "end": 24037.12, + "probability": 0.8835 + }, + { + "start": 24037.2, + "end": 24038.7, + "probability": 0.9741 + }, + { + "start": 24039.84, + "end": 24040.68, + "probability": 0.5134 + }, + { + "start": 24040.7, + "end": 24041.5, + "probability": 0.6457 + }, + { + "start": 24041.74, + "end": 24044.45, + "probability": 0.9622 + }, + { + "start": 24045.4, + "end": 24048.7, + "probability": 0.5643 + }, + { + "start": 24049.4, + "end": 24052.1, + "probability": 0.6918 + }, + { + "start": 24052.78, + "end": 24057.24, + "probability": 0.9802 + }, + { + "start": 24057.82, + "end": 24059.68, + "probability": 0.9594 + }, + { + "start": 24060.28, + "end": 24061.0, + "probability": 0.8787 + }, + { + "start": 24061.52, + "end": 24063.78, + "probability": 0.8877 + }, + { + "start": 24064.0, + "end": 24064.34, + "probability": 0.8788 + }, + { + "start": 24064.44, + "end": 24064.82, + "probability": 0.3244 + }, + { + "start": 24064.82, + "end": 24065.88, + "probability": 0.9144 + }, + { + "start": 24067.18, + "end": 24068.9, + "probability": 0.4155 + }, + { + "start": 24078.14, + "end": 24082.46, + "probability": 0.6801 + }, + { + "start": 24083.6, + "end": 24085.7, + "probability": 0.9957 + }, + { + "start": 24086.72, + "end": 24088.76, + "probability": 0.7704 + }, + { + "start": 24088.82, + "end": 24091.42, + "probability": 0.7259 + }, + { + "start": 24091.54, + "end": 24092.8, + "probability": 0.8877 + }, + { + "start": 24093.58, + "end": 24094.74, + "probability": 0.9147 + }, + { + "start": 24094.92, + "end": 24100.6, + "probability": 0.9951 + }, + { + "start": 24100.6, + "end": 24107.22, + "probability": 0.9985 + }, + { + "start": 24108.1, + "end": 24110.66, + "probability": 0.8748 + }, + { + "start": 24112.06, + "end": 24115.34, + "probability": 0.9959 + }, + { + "start": 24116.16, + "end": 24118.46, + "probability": 0.9943 + }, + { + "start": 24119.2, + "end": 24123.1, + "probability": 0.9922 + }, + { + "start": 24124.16, + "end": 24125.52, + "probability": 0.966 + }, + { + "start": 24126.1, + "end": 24129.28, + "probability": 0.9989 + }, + { + "start": 24129.84, + "end": 24131.04, + "probability": 0.963 + }, + { + "start": 24131.5, + "end": 24131.96, + "probability": 0.9645 + }, + { + "start": 24132.04, + "end": 24133.04, + "probability": 0.8691 + }, + { + "start": 24133.14, + "end": 24136.7, + "probability": 0.9789 + }, + { + "start": 24137.02, + "end": 24140.42, + "probability": 0.8982 + }, + { + "start": 24141.16, + "end": 24142.05, + "probability": 0.9102 + }, + { + "start": 24143.32, + "end": 24144.86, + "probability": 0.6357 + }, + { + "start": 24145.48, + "end": 24147.02, + "probability": 0.957 + }, + { + "start": 24148.78, + "end": 24150.1, + "probability": 0.8767 + }, + { + "start": 24150.64, + "end": 24154.9, + "probability": 0.9974 + }, + { + "start": 24155.68, + "end": 24156.82, + "probability": 0.9956 + }, + { + "start": 24158.16, + "end": 24161.92, + "probability": 0.9982 + }, + { + "start": 24163.02, + "end": 24164.7, + "probability": 0.9559 + }, + { + "start": 24165.94, + "end": 24168.84, + "probability": 0.995 + }, + { + "start": 24169.86, + "end": 24171.9, + "probability": 0.9723 + }, + { + "start": 24173.12, + "end": 24176.36, + "probability": 0.9718 + }, + { + "start": 24176.98, + "end": 24182.5, + "probability": 0.9989 + }, + { + "start": 24183.62, + "end": 24185.94, + "probability": 0.9921 + }, + { + "start": 24187.18, + "end": 24189.88, + "probability": 0.9889 + }, + { + "start": 24190.54, + "end": 24196.06, + "probability": 0.9955 + }, + { + "start": 24196.76, + "end": 24204.78, + "probability": 0.9961 + }, + { + "start": 24205.36, + "end": 24208.22, + "probability": 0.998 + }, + { + "start": 24208.96, + "end": 24214.2, + "probability": 0.998 + }, + { + "start": 24215.0, + "end": 24219.26, + "probability": 0.9938 + }, + { + "start": 24220.04, + "end": 24223.06, + "probability": 0.8296 + }, + { + "start": 24223.2, + "end": 24225.99, + "probability": 0.9917 + }, + { + "start": 24226.96, + "end": 24229.12, + "probability": 0.9918 + }, + { + "start": 24229.86, + "end": 24235.7, + "probability": 0.9966 + }, + { + "start": 24236.1, + "end": 24236.9, + "probability": 0.2567 + }, + { + "start": 24237.4, + "end": 24239.64, + "probability": 0.9792 + }, + { + "start": 24240.04, + "end": 24245.5, + "probability": 0.9903 + }, + { + "start": 24247.36, + "end": 24247.9, + "probability": 0.4797 + }, + { + "start": 24248.34, + "end": 24249.08, + "probability": 0.9662 + }, + { + "start": 24250.26, + "end": 24253.26, + "probability": 0.9977 + }, + { + "start": 24254.1, + "end": 24254.92, + "probability": 0.6669 + }, + { + "start": 24255.54, + "end": 24259.96, + "probability": 0.9961 + }, + { + "start": 24260.62, + "end": 24266.58, + "probability": 0.9763 + }, + { + "start": 24267.28, + "end": 24271.32, + "probability": 0.9004 + }, + { + "start": 24271.9, + "end": 24272.12, + "probability": 0.6515 + }, + { + "start": 24275.28, + "end": 24276.68, + "probability": 0.7849 + }, + { + "start": 24293.74, + "end": 24294.06, + "probability": 0.4705 + }, + { + "start": 24294.06, + "end": 24294.86, + "probability": 0.6949 + }, + { + "start": 24296.34, + "end": 24297.84, + "probability": 0.8209 + }, + { + "start": 24299.61, + "end": 24303.7, + "probability": 0.9336 + }, + { + "start": 24304.38, + "end": 24306.4, + "probability": 0.9867 + }, + { + "start": 24306.6, + "end": 24309.42, + "probability": 0.843 + }, + { + "start": 24310.58, + "end": 24312.66, + "probability": 0.9369 + }, + { + "start": 24313.4, + "end": 24314.04, + "probability": 0.4937 + }, + { + "start": 24314.18, + "end": 24315.31, + "probability": 0.9917 + }, + { + "start": 24316.1, + "end": 24321.18, + "probability": 0.993 + }, + { + "start": 24321.44, + "end": 24322.76, + "probability": 0.8126 + }, + { + "start": 24322.92, + "end": 24323.62, + "probability": 0.7394 + }, + { + "start": 24323.68, + "end": 24325.12, + "probability": 0.8705 + }, + { + "start": 24325.2, + "end": 24327.68, + "probability": 0.8885 + }, + { + "start": 24328.98, + "end": 24333.9, + "probability": 0.9763 + }, + { + "start": 24333.9, + "end": 24338.24, + "probability": 0.999 + }, + { + "start": 24338.32, + "end": 24340.3, + "probability": 0.9375 + }, + { + "start": 24340.46, + "end": 24342.2, + "probability": 0.8936 + }, + { + "start": 24342.32, + "end": 24343.52, + "probability": 0.9646 + }, + { + "start": 24344.1, + "end": 24345.26, + "probability": 0.9897 + }, + { + "start": 24345.6, + "end": 24346.44, + "probability": 0.9702 + }, + { + "start": 24346.56, + "end": 24348.06, + "probability": 0.9896 + }, + { + "start": 24348.84, + "end": 24350.86, + "probability": 0.9333 + }, + { + "start": 24352.3, + "end": 24356.22, + "probability": 0.9874 + }, + { + "start": 24357.64, + "end": 24358.54, + "probability": 0.9412 + }, + { + "start": 24358.72, + "end": 24359.26, + "probability": 0.6896 + }, + { + "start": 24359.28, + "end": 24360.92, + "probability": 0.9375 + }, + { + "start": 24361.12, + "end": 24362.52, + "probability": 0.0242 + }, + { + "start": 24362.58, + "end": 24362.58, + "probability": 0.2812 + }, + { + "start": 24363.38, + "end": 24364.22, + "probability": 0.6993 + }, + { + "start": 24364.38, + "end": 24367.32, + "probability": 0.8271 + }, + { + "start": 24368.2, + "end": 24370.34, + "probability": 0.9626 + }, + { + "start": 24370.84, + "end": 24371.42, + "probability": 0.0759 + }, + { + "start": 24371.42, + "end": 24371.8, + "probability": 0.3254 + }, + { + "start": 24372.22, + "end": 24373.64, + "probability": 0.4561 + }, + { + "start": 24373.74, + "end": 24374.92, + "probability": 0.5892 + }, + { + "start": 24375.38, + "end": 24376.44, + "probability": 0.0346 + }, + { + "start": 24377.56, + "end": 24379.18, + "probability": 0.5812 + }, + { + "start": 24379.22, + "end": 24380.6, + "probability": 0.6514 + }, + { + "start": 24380.76, + "end": 24382.48, + "probability": 0.8411 + }, + { + "start": 24382.52, + "end": 24383.24, + "probability": 0.8797 + }, + { + "start": 24383.7, + "end": 24384.38, + "probability": 0.7944 + }, + { + "start": 24384.76, + "end": 24386.54, + "probability": 0.5496 + }, + { + "start": 24387.02, + "end": 24389.62, + "probability": 0.7402 + }, + { + "start": 24389.92, + "end": 24391.72, + "probability": 0.9425 + }, + { + "start": 24392.22, + "end": 24394.04, + "probability": 0.8342 + }, + { + "start": 24394.28, + "end": 24398.42, + "probability": 0.9873 + }, + { + "start": 24398.42, + "end": 24402.2, + "probability": 0.9813 + }, + { + "start": 24403.0, + "end": 24404.92, + "probability": 0.4525 + }, + { + "start": 24404.98, + "end": 24405.54, + "probability": 0.439 + }, + { + "start": 24405.72, + "end": 24409.64, + "probability": 0.9984 + }, + { + "start": 24409.64, + "end": 24413.52, + "probability": 0.9053 + }, + { + "start": 24414.0, + "end": 24415.22, + "probability": 0.8565 + }, + { + "start": 24415.38, + "end": 24418.04, + "probability": 0.955 + }, + { + "start": 24418.38, + "end": 24418.82, + "probability": 0.3129 + }, + { + "start": 24418.88, + "end": 24419.23, + "probability": 0.8368 + }, + { + "start": 24419.52, + "end": 24421.23, + "probability": 0.9727 + }, + { + "start": 24422.3, + "end": 24423.6, + "probability": 0.8931 + }, + { + "start": 24423.78, + "end": 24426.7, + "probability": 0.7654 + }, + { + "start": 24428.94, + "end": 24432.88, + "probability": 0.9927 + }, + { + "start": 24432.88, + "end": 24434.42, + "probability": 0.5068 + }, + { + "start": 24434.52, + "end": 24435.1, + "probability": 0.7119 + }, + { + "start": 24435.16, + "end": 24437.08, + "probability": 0.6908 + }, + { + "start": 24437.38, + "end": 24438.66, + "probability": 0.981 + }, + { + "start": 24439.2, + "end": 24442.36, + "probability": 0.9951 + }, + { + "start": 24443.36, + "end": 24443.8, + "probability": 0.8317 + }, + { + "start": 24443.8, + "end": 24445.5, + "probability": 0.9808 + }, + { + "start": 24445.92, + "end": 24447.86, + "probability": 0.793 + }, + { + "start": 24447.92, + "end": 24448.27, + "probability": 0.9038 + }, + { + "start": 24448.52, + "end": 24450.72, + "probability": 0.8562 + }, + { + "start": 24451.34, + "end": 24451.95, + "probability": 0.9171 + }, + { + "start": 24452.3, + "end": 24454.22, + "probability": 0.9534 + }, + { + "start": 24454.68, + "end": 24457.47, + "probability": 0.7478 + }, + { + "start": 24458.72, + "end": 24464.44, + "probability": 0.9681 + }, + { + "start": 24465.22, + "end": 24467.86, + "probability": 0.9971 + }, + { + "start": 24467.92, + "end": 24469.96, + "probability": 0.9597 + }, + { + "start": 24470.28, + "end": 24473.01, + "probability": 0.9547 + }, + { + "start": 24473.44, + "end": 24477.3, + "probability": 0.9665 + }, + { + "start": 24477.3, + "end": 24479.91, + "probability": 0.9033 + }, + { + "start": 24480.1, + "end": 24480.92, + "probability": 0.7121 + }, + { + "start": 24481.14, + "end": 24481.14, + "probability": 0.5769 + }, + { + "start": 24481.14, + "end": 24485.62, + "probability": 0.8407 + }, + { + "start": 24486.1, + "end": 24486.96, + "probability": 0.5022 + }, + { + "start": 24487.38, + "end": 24490.66, + "probability": 0.9954 + }, + { + "start": 24491.0, + "end": 24492.16, + "probability": 0.9453 + }, + { + "start": 24492.42, + "end": 24495.24, + "probability": 0.8526 + }, + { + "start": 24495.52, + "end": 24495.82, + "probability": 0.9226 + }, + { + "start": 24496.06, + "end": 24496.42, + "probability": 0.3975 + }, + { + "start": 24496.42, + "end": 24497.5, + "probability": 0.7995 + }, + { + "start": 24508.32, + "end": 24508.9, + "probability": 0.5093 + }, + { + "start": 24509.34, + "end": 24510.96, + "probability": 0.9059 + }, + { + "start": 24512.04, + "end": 24512.98, + "probability": 0.3687 + }, + { + "start": 24515.18, + "end": 24515.88, + "probability": 0.5835 + }, + { + "start": 24517.16, + "end": 24521.42, + "probability": 0.7947 + }, + { + "start": 24522.1, + "end": 24522.58, + "probability": 0.9688 + }, + { + "start": 24524.28, + "end": 24525.06, + "probability": 0.9018 + }, + { + "start": 24526.4, + "end": 24528.54, + "probability": 0.9366 + }, + { + "start": 24529.52, + "end": 24532.4, + "probability": 0.9612 + }, + { + "start": 24533.92, + "end": 24535.18, + "probability": 0.7385 + }, + { + "start": 24536.34, + "end": 24540.86, + "probability": 0.9769 + }, + { + "start": 24541.34, + "end": 24542.74, + "probability": 0.8428 + }, + { + "start": 24543.3, + "end": 24544.8, + "probability": 0.9382 + }, + { + "start": 24547.74, + "end": 24548.54, + "probability": 0.9734 + }, + { + "start": 24549.16, + "end": 24550.16, + "probability": 0.1865 + }, + { + "start": 24550.94, + "end": 24553.22, + "probability": 0.9284 + }, + { + "start": 24554.48, + "end": 24557.26, + "probability": 0.6876 + }, + { + "start": 24558.2, + "end": 24559.44, + "probability": 0.8218 + }, + { + "start": 24559.74, + "end": 24561.7, + "probability": 0.7061 + }, + { + "start": 24562.6, + "end": 24563.68, + "probability": 0.9994 + }, + { + "start": 24565.6, + "end": 24568.32, + "probability": 0.9325 + }, + { + "start": 24569.82, + "end": 24569.82, + "probability": 0.8428 + }, + { + "start": 24572.87, + "end": 24576.96, + "probability": 0.9961 + }, + { + "start": 24577.93, + "end": 24579.27, + "probability": 0.998 + }, + { + "start": 24579.51, + "end": 24581.15, + "probability": 0.8817 + }, + { + "start": 24581.15, + "end": 24581.74, + "probability": 0.9784 + }, + { + "start": 24582.03, + "end": 24582.88, + "probability": 0.9264 + }, + { + "start": 24584.45, + "end": 24586.09, + "probability": 0.9937 + }, + { + "start": 24586.39, + "end": 24588.53, + "probability": 0.6592 + }, + { + "start": 24589.63, + "end": 24590.61, + "probability": 0.9791 + }, + { + "start": 24592.39, + "end": 24596.99, + "probability": 0.9971 + }, + { + "start": 24597.97, + "end": 24599.75, + "probability": 0.999 + }, + { + "start": 24599.89, + "end": 24601.11, + "probability": 0.9991 + }, + { + "start": 24601.23, + "end": 24602.43, + "probability": 0.9814 + }, + { + "start": 24602.95, + "end": 24603.77, + "probability": 0.9956 + }, + { + "start": 24604.83, + "end": 24605.05, + "probability": 0.7071 + }, + { + "start": 24605.05, + "end": 24609.43, + "probability": 0.9683 + }, + { + "start": 24610.97, + "end": 24613.55, + "probability": 0.8003 + }, + { + "start": 24613.99, + "end": 24617.25, + "probability": 0.9543 + }, + { + "start": 24618.35, + "end": 24622.89, + "probability": 0.2106 + }, + { + "start": 24623.07, + "end": 24625.57, + "probability": 0.7979 + }, + { + "start": 24626.17, + "end": 24627.59, + "probability": 0.9197 + }, + { + "start": 24628.79, + "end": 24631.21, + "probability": 0.9581 + }, + { + "start": 24631.21, + "end": 24633.63, + "probability": 0.9424 + }, + { + "start": 24634.65, + "end": 24636.55, + "probability": 0.7831 + }, + { + "start": 24637.03, + "end": 24642.07, + "probability": 0.8949 + }, + { + "start": 24642.13, + "end": 24642.99, + "probability": 0.804 + }, + { + "start": 24643.71, + "end": 24645.47, + "probability": 0.9926 + }, + { + "start": 24646.49, + "end": 24646.97, + "probability": 0.5394 + }, + { + "start": 24647.05, + "end": 24648.83, + "probability": 0.6601 + }, + { + "start": 24649.97, + "end": 24654.61, + "probability": 0.8938 + }, + { + "start": 24654.71, + "end": 24655.65, + "probability": 0.7271 + }, + { + "start": 24656.17, + "end": 24658.93, + "probability": 0.893 + }, + { + "start": 24658.97, + "end": 24660.63, + "probability": 0.998 + }, + { + "start": 24663.07, + "end": 24667.07, + "probability": 0.9147 + }, + { + "start": 24667.39, + "end": 24668.19, + "probability": 0.0211 + }, + { + "start": 24668.61, + "end": 24670.84, + "probability": 0.9976 + }, + { + "start": 24671.05, + "end": 24671.49, + "probability": 0.7521 + }, + { + "start": 24671.74, + "end": 24674.93, + "probability": 0.8682 + }, + { + "start": 24675.63, + "end": 24678.42, + "probability": 0.7654 + }, + { + "start": 24678.99, + "end": 24680.69, + "probability": 0.8676 + }, + { + "start": 24681.61, + "end": 24683.39, + "probability": 0.9095 + }, + { + "start": 24683.71, + "end": 24685.81, + "probability": 0.7476 + }, + { + "start": 24686.29, + "end": 24691.19, + "probability": 0.9264 + }, + { + "start": 24691.63, + "end": 24692.75, + "probability": 0.9966 + }, + { + "start": 24692.85, + "end": 24694.27, + "probability": 0.9688 + }, + { + "start": 24694.29, + "end": 24695.95, + "probability": 0.7537 + }, + { + "start": 24696.03, + "end": 24697.97, + "probability": 0.9882 + }, + { + "start": 24698.81, + "end": 24699.45, + "probability": 0.5393 + }, + { + "start": 24700.29, + "end": 24700.87, + "probability": 0.4784 + }, + { + "start": 24701.51, + "end": 24702.81, + "probability": 0.9594 + }, + { + "start": 24704.91, + "end": 24704.97, + "probability": 0.0089 + }, + { + "start": 24704.97, + "end": 24707.85, + "probability": 0.6398 + }, + { + "start": 24709.05, + "end": 24709.57, + "probability": 0.3509 + }, + { + "start": 24711.81, + "end": 24717.67, + "probability": 0.9328 + }, + { + "start": 24717.83, + "end": 24718.51, + "probability": 0.845 + }, + { + "start": 24718.65, + "end": 24719.23, + "probability": 0.7224 + }, + { + "start": 24719.45, + "end": 24723.73, + "probability": 0.9933 + }, + { + "start": 24723.97, + "end": 24723.97, + "probability": 0.0978 + }, + { + "start": 24723.97, + "end": 24724.35, + "probability": 0.5957 + }, + { + "start": 24724.47, + "end": 24726.99, + "probability": 0.5093 + }, + { + "start": 24727.11, + "end": 24728.57, + "probability": 0.8083 + }, + { + "start": 24751.21, + "end": 24752.71, + "probability": 0.6294 + }, + { + "start": 24754.07, + "end": 24757.17, + "probability": 0.9901 + }, + { + "start": 24758.45, + "end": 24762.71, + "probability": 0.9763 + }, + { + "start": 24763.43, + "end": 24768.71, + "probability": 0.8632 + }, + { + "start": 24769.83, + "end": 24773.71, + "probability": 0.9085 + }, + { + "start": 24774.61, + "end": 24780.89, + "probability": 0.9729 + }, + { + "start": 24782.13, + "end": 24788.33, + "probability": 0.9225 + }, + { + "start": 24789.19, + "end": 24791.55, + "probability": 0.8359 + }, + { + "start": 24792.59, + "end": 24793.49, + "probability": 0.8485 + }, + { + "start": 24794.31, + "end": 24796.83, + "probability": 0.9644 + }, + { + "start": 24797.75, + "end": 24802.31, + "probability": 0.9619 + }, + { + "start": 24802.93, + "end": 24806.45, + "probability": 0.9111 + }, + { + "start": 24807.17, + "end": 24808.67, + "probability": 0.984 + }, + { + "start": 24809.45, + "end": 24813.19, + "probability": 0.9605 + }, + { + "start": 24813.79, + "end": 24816.03, + "probability": 0.998 + }, + { + "start": 24816.85, + "end": 24819.71, + "probability": 0.946 + }, + { + "start": 24820.49, + "end": 24821.71, + "probability": 0.8626 + }, + { + "start": 24822.83, + "end": 24824.83, + "probability": 0.9739 + }, + { + "start": 24825.31, + "end": 24827.91, + "probability": 0.6852 + }, + { + "start": 24828.61, + "end": 24830.43, + "probability": 0.6748 + }, + { + "start": 24831.31, + "end": 24833.13, + "probability": 0.7898 + }, + { + "start": 24833.81, + "end": 24836.23, + "probability": 0.887 + }, + { + "start": 24836.37, + "end": 24836.77, + "probability": 0.8041 + }, + { + "start": 24836.77, + "end": 24839.97, + "probability": 0.9694 + }, + { + "start": 24841.33, + "end": 24843.67, + "probability": 0.9377 + }, + { + "start": 24843.85, + "end": 24844.71, + "probability": 0.3003 + }, + { + "start": 24844.77, + "end": 24845.41, + "probability": 0.6709 + }, + { + "start": 24846.03, + "end": 24846.97, + "probability": 0.9695 + }, + { + "start": 24847.55, + "end": 24852.09, + "probability": 0.9969 + }, + { + "start": 24853.03, + "end": 24853.73, + "probability": 0.9961 + }, + { + "start": 24854.65, + "end": 24861.85, + "probability": 0.9619 + }, + { + "start": 24862.53, + "end": 24863.75, + "probability": 0.915 + }, + { + "start": 24864.59, + "end": 24867.41, + "probability": 0.8046 + }, + { + "start": 24867.73, + "end": 24871.33, + "probability": 0.9481 + }, + { + "start": 24872.35, + "end": 24874.19, + "probability": 0.9949 + }, + { + "start": 24875.01, + "end": 24877.53, + "probability": 0.9581 + }, + { + "start": 24878.17, + "end": 24881.31, + "probability": 0.9772 + }, + { + "start": 24881.81, + "end": 24882.77, + "probability": 0.5437 + }, + { + "start": 24883.71, + "end": 24885.17, + "probability": 0.9978 + }, + { + "start": 24885.87, + "end": 24889.33, + "probability": 0.8137 + }, + { + "start": 24889.91, + "end": 24894.87, + "probability": 0.973 + }, + { + "start": 24895.43, + "end": 24896.65, + "probability": 0.7261 + }, + { + "start": 24897.05, + "end": 24897.93, + "probability": 0.8725 + }, + { + "start": 24898.97, + "end": 24900.09, + "probability": 0.9265 + }, + { + "start": 24901.01, + "end": 24902.81, + "probability": 0.932 + }, + { + "start": 24903.35, + "end": 24904.59, + "probability": 0.6309 + }, + { + "start": 24905.41, + "end": 24906.31, + "probability": 0.9401 + }, + { + "start": 24906.41, + "end": 24909.01, + "probability": 0.9736 + }, + { + "start": 24909.89, + "end": 24911.17, + "probability": 0.9274 + }, + { + "start": 24911.91, + "end": 24914.73, + "probability": 0.8447 + }, + { + "start": 24915.19, + "end": 24916.07, + "probability": 0.9299 + }, + { + "start": 24916.53, + "end": 24917.23, + "probability": 0.8468 + }, + { + "start": 24917.35, + "end": 24918.39, + "probability": 0.9963 + }, + { + "start": 24919.31, + "end": 24923.43, + "probability": 0.9749 + }, + { + "start": 24924.25, + "end": 24925.45, + "probability": 0.7554 + }, + { + "start": 24926.27, + "end": 24929.69, + "probability": 0.826 + }, + { + "start": 24930.31, + "end": 24932.39, + "probability": 0.9056 + }, + { + "start": 24933.05, + "end": 24934.13, + "probability": 0.7688 + }, + { + "start": 24934.39, + "end": 24937.63, + "probability": 0.8887 + }, + { + "start": 24938.13, + "end": 24941.49, + "probability": 0.4696 + }, + { + "start": 24942.01, + "end": 24942.59, + "probability": 0.0275 + }, + { + "start": 24943.27, + "end": 24943.43, + "probability": 0.0918 + }, + { + "start": 24943.43, + "end": 24943.43, + "probability": 0.034 + }, + { + "start": 24943.43, + "end": 24943.43, + "probability": 0.3684 + }, + { + "start": 24943.43, + "end": 24945.39, + "probability": 0.3553 + }, + { + "start": 24945.57, + "end": 24946.33, + "probability": 0.2635 + }, + { + "start": 24946.33, + "end": 24947.06, + "probability": 0.1086 + }, + { + "start": 24947.37, + "end": 24952.73, + "probability": 0.9736 + }, + { + "start": 24953.23, + "end": 24958.53, + "probability": 0.993 + }, + { + "start": 24959.03, + "end": 24959.41, + "probability": 0.7787 + }, + { + "start": 24959.63, + "end": 24959.91, + "probability": 0.382 + }, + { + "start": 24959.93, + "end": 24961.41, + "probability": 0.5912 + }, + { + "start": 24981.87, + "end": 24982.81, + "probability": 0.6006 + }, + { + "start": 24982.93, + "end": 24984.09, + "probability": 0.754 + }, + { + "start": 24985.09, + "end": 24988.89, + "probability": 0.9946 + }, + { + "start": 24988.93, + "end": 24989.95, + "probability": 0.6954 + }, + { + "start": 24990.67, + "end": 24992.93, + "probability": 0.9937 + }, + { + "start": 24993.67, + "end": 24995.73, + "probability": 0.1987 + }, + { + "start": 24995.87, + "end": 24997.25, + "probability": 0.3828 + }, + { + "start": 24997.25, + "end": 24998.29, + "probability": 0.4254 + }, + { + "start": 24999.07, + "end": 25001.79, + "probability": 0.7319 + }, + { + "start": 25001.79, + "end": 25004.29, + "probability": 0.9874 + }, + { + "start": 25004.65, + "end": 25008.67, + "probability": 0.9841 + }, + { + "start": 25008.89, + "end": 25010.39, + "probability": 0.993 + }, + { + "start": 25010.73, + "end": 25013.61, + "probability": 0.9513 + }, + { + "start": 25013.71, + "end": 25015.15, + "probability": 0.9684 + }, + { + "start": 25015.27, + "end": 25016.24, + "probability": 0.8634 + }, + { + "start": 25016.79, + "end": 25017.55, + "probability": 0.6996 + }, + { + "start": 25018.07, + "end": 25019.59, + "probability": 0.9933 + }, + { + "start": 25020.07, + "end": 25021.85, + "probability": 0.8449 + }, + { + "start": 25022.07, + "end": 25023.75, + "probability": 0.9796 + }, + { + "start": 25024.29, + "end": 25028.51, + "probability": 0.9016 + }, + { + "start": 25028.67, + "end": 25029.56, + "probability": 0.9851 + }, + { + "start": 25030.19, + "end": 25031.79, + "probability": 0.7661 + }, + { + "start": 25032.33, + "end": 25033.39, + "probability": 0.7653 + }, + { + "start": 25033.81, + "end": 25037.49, + "probability": 0.9735 + }, + { + "start": 25038.17, + "end": 25038.87, + "probability": 0.8954 + }, + { + "start": 25039.27, + "end": 25039.43, + "probability": 0.8215 + }, + { + "start": 25039.93, + "end": 25044.55, + "probability": 0.9892 + }, + { + "start": 25044.89, + "end": 25045.51, + "probability": 0.9583 + }, + { + "start": 25045.59, + "end": 25045.95, + "probability": 0.8134 + }, + { + "start": 25045.97, + "end": 25047.32, + "probability": 0.5519 + }, + { + "start": 25048.43, + "end": 25050.79, + "probability": 0.9447 + }, + { + "start": 25050.81, + "end": 25052.71, + "probability": 0.8911 + }, + { + "start": 25052.81, + "end": 25053.13, + "probability": 0.4944 + }, + { + "start": 25053.13, + "end": 25055.27, + "probability": 0.7662 + }, + { + "start": 25055.51, + "end": 25055.85, + "probability": 0.8991 + }, + { + "start": 25055.91, + "end": 25059.05, + "probability": 0.9775 + }, + { + "start": 25059.07, + "end": 25059.27, + "probability": 0.6686 + }, + { + "start": 25059.35, + "end": 25060.05, + "probability": 0.5181 + }, + { + "start": 25060.39, + "end": 25060.97, + "probability": 0.5351 + }, + { + "start": 25061.01, + "end": 25061.79, + "probability": 0.1028 + }, + { + "start": 25061.79, + "end": 25062.53, + "probability": 0.5651 + }, + { + "start": 25062.59, + "end": 25063.41, + "probability": 0.3897 + }, + { + "start": 25063.61, + "end": 25065.55, + "probability": 0.6391 + }, + { + "start": 25065.63, + "end": 25066.47, + "probability": 0.6152 + }, + { + "start": 25066.51, + "end": 25067.35, + "probability": 0.0269 + }, + { + "start": 25067.45, + "end": 25071.07, + "probability": 0.0764 + }, + { + "start": 25071.11, + "end": 25071.59, + "probability": 0.1531 + }, + { + "start": 25071.59, + "end": 25072.17, + "probability": 0.1631 + }, + { + "start": 25072.27, + "end": 25073.63, + "probability": 0.9611 + }, + { + "start": 25073.85, + "end": 25076.65, + "probability": 0.9066 + }, + { + "start": 25076.87, + "end": 25079.29, + "probability": 0.8979 + }, + { + "start": 25079.35, + "end": 25080.15, + "probability": 0.7579 + }, + { + "start": 25080.41, + "end": 25081.25, + "probability": 0.7059 + }, + { + "start": 25081.47, + "end": 25082.27, + "probability": 0.8555 + }, + { + "start": 25082.37, + "end": 25083.31, + "probability": 0.5914 + }, + { + "start": 25083.39, + "end": 25084.47, + "probability": 0.6858 + }, + { + "start": 25084.55, + "end": 25087.03, + "probability": 0.9173 + }, + { + "start": 25087.21, + "end": 25087.49, + "probability": 0.8998 + }, + { + "start": 25088.43, + "end": 25089.55, + "probability": 0.896 + }, + { + "start": 25089.65, + "end": 25091.63, + "probability": 0.9944 + }, + { + "start": 25091.95, + "end": 25096.01, + "probability": 0.9482 + }, + { + "start": 25096.11, + "end": 25099.19, + "probability": 0.926 + }, + { + "start": 25099.19, + "end": 25099.31, + "probability": 0.0074 + }, + { + "start": 25099.31, + "end": 25099.31, + "probability": 0.4004 + }, + { + "start": 25099.31, + "end": 25099.31, + "probability": 0.1401 + }, + { + "start": 25099.31, + "end": 25099.31, + "probability": 0.2136 + }, + { + "start": 25099.31, + "end": 25100.19, + "probability": 0.4337 + }, + { + "start": 25100.23, + "end": 25102.29, + "probability": 0.8164 + }, + { + "start": 25102.37, + "end": 25107.31, + "probability": 0.9914 + }, + { + "start": 25107.31, + "end": 25110.67, + "probability": 0.9878 + }, + { + "start": 25110.77, + "end": 25111.25, + "probability": 0.5394 + }, + { + "start": 25111.35, + "end": 25112.43, + "probability": 0.5609 + }, + { + "start": 25112.97, + "end": 25113.87, + "probability": 0.5382 + }, + { + "start": 25114.19, + "end": 25115.0, + "probability": 0.3232 + }, + { + "start": 25115.21, + "end": 25115.21, + "probability": 0.459 + }, + { + "start": 25115.21, + "end": 25116.99, + "probability": 0.5084 + }, + { + "start": 25117.61, + "end": 25118.03, + "probability": 0.3551 + }, + { + "start": 25118.63, + "end": 25118.65, + "probability": 0.0993 + }, + { + "start": 25118.65, + "end": 25118.67, + "probability": 0.0237 + }, + { + "start": 25118.67, + "end": 25118.67, + "probability": 0.2109 + }, + { + "start": 25118.67, + "end": 25118.67, + "probability": 0.2031 + }, + { + "start": 25118.67, + "end": 25119.82, + "probability": 0.0871 + }, + { + "start": 25120.11, + "end": 25121.29, + "probability": 0.8428 + }, + { + "start": 25121.49, + "end": 25122.73, + "probability": 0.8183 + }, + { + "start": 25122.93, + "end": 25127.4, + "probability": 0.9427 + }, + { + "start": 25127.99, + "end": 25129.81, + "probability": 0.7485 + }, + { + "start": 25130.33, + "end": 25132.51, + "probability": 0.9679 + }, + { + "start": 25132.59, + "end": 25134.29, + "probability": 0.9017 + }, + { + "start": 25134.57, + "end": 25137.07, + "probability": 0.9748 + }, + { + "start": 25137.59, + "end": 25140.35, + "probability": 0.9613 + }, + { + "start": 25140.45, + "end": 25140.97, + "probability": 0.7632 + }, + { + "start": 25141.09, + "end": 25142.19, + "probability": 0.7225 + }, + { + "start": 25142.91, + "end": 25144.11, + "probability": 0.8452 + }, + { + "start": 25144.23, + "end": 25145.43, + "probability": 0.8961 + }, + { + "start": 25145.85, + "end": 25147.39, + "probability": 0.165 + }, + { + "start": 25148.45, + "end": 25150.15, + "probability": 0.7735 + }, + { + "start": 25150.53, + "end": 25151.77, + "probability": 0.9419 + }, + { + "start": 25151.79, + "end": 25154.61, + "probability": 0.9846 + }, + { + "start": 25155.11, + "end": 25158.65, + "probability": 0.9982 + }, + { + "start": 25159.11, + "end": 25159.49, + "probability": 0.9795 + }, + { + "start": 25160.53, + "end": 25160.91, + "probability": 0.1303 + }, + { + "start": 25160.91, + "end": 25162.93, + "probability": 0.6254 + }, + { + "start": 25167.38, + "end": 25169.37, + "probability": 0.081 + }, + { + "start": 25169.69, + "end": 25170.41, + "probability": 0.2122 + }, + { + "start": 25170.41, + "end": 25171.57, + "probability": 0.6077 + }, + { + "start": 25171.71, + "end": 25172.39, + "probability": 0.0286 + }, + { + "start": 25172.61, + "end": 25172.91, + "probability": 0.08 + }, + { + "start": 25172.91, + "end": 25173.91, + "probability": 0.5287 + }, + { + "start": 25173.97, + "end": 25175.47, + "probability": 0.3524 + }, + { + "start": 25175.91, + "end": 25178.97, + "probability": 0.0095 + }, + { + "start": 25179.15, + "end": 25179.59, + "probability": 0.2063 + }, + { + "start": 25180.65, + "end": 25182.61, + "probability": 0.036 + }, + { + "start": 25182.61, + "end": 25182.61, + "probability": 0.0961 + }, + { + "start": 25182.61, + "end": 25183.57, + "probability": 0.2606 + }, + { + "start": 25183.89, + "end": 25185.79, + "probability": 0.4392 + }, + { + "start": 25185.79, + "end": 25187.71, + "probability": 0.0404 + }, + { + "start": 25188.57, + "end": 25188.83, + "probability": 0.0605 + }, + { + "start": 25188.91, + "end": 25190.29, + "probability": 0.6875 + }, + { + "start": 25192.35, + "end": 25192.57, + "probability": 0.0296 + }, + { + "start": 25192.57, + "end": 25194.13, + "probability": 0.2331 + }, + { + "start": 25194.77, + "end": 25195.41, + "probability": 0.3558 + }, + { + "start": 25195.81, + "end": 25196.47, + "probability": 0.4227 + }, + { + "start": 25196.53, + "end": 25197.36, + "probability": 0.8481 + }, + { + "start": 25197.85, + "end": 25198.13, + "probability": 0.7916 + }, + { + "start": 25198.47, + "end": 25199.45, + "probability": 0.8577 + }, + { + "start": 25199.63, + "end": 25200.29, + "probability": 0.6407 + }, + { + "start": 25200.43, + "end": 25201.51, + "probability": 0.7454 + }, + { + "start": 25201.67, + "end": 25203.73, + "probability": 0.9915 + }, + { + "start": 25204.35, + "end": 25205.51, + "probability": 0.8175 + }, + { + "start": 25206.59, + "end": 25207.47, + "probability": 0.9551 + }, + { + "start": 25208.29, + "end": 25210.07, + "probability": 0.9447 + }, + { + "start": 25210.95, + "end": 25213.99, + "probability": 0.9937 + }, + { + "start": 25214.99, + "end": 25215.95, + "probability": 0.7497 + }, + { + "start": 25216.53, + "end": 25218.01, + "probability": 0.9153 + }, + { + "start": 25218.99, + "end": 25222.93, + "probability": 0.9844 + }, + { + "start": 25223.59, + "end": 25225.81, + "probability": 0.9751 + }, + { + "start": 25226.43, + "end": 25227.81, + "probability": 0.9894 + }, + { + "start": 25228.55, + "end": 25232.61, + "probability": 0.991 + }, + { + "start": 25233.33, + "end": 25234.41, + "probability": 0.8856 + }, + { + "start": 25234.91, + "end": 25236.67, + "probability": 0.8454 + }, + { + "start": 25236.73, + "end": 25238.71, + "probability": 0.9178 + }, + { + "start": 25239.59, + "end": 25242.03, + "probability": 0.9971 + }, + { + "start": 25242.15, + "end": 25242.81, + "probability": 0.7361 + }, + { + "start": 25243.55, + "end": 25245.15, + "probability": 0.9677 + }, + { + "start": 25245.53, + "end": 25246.15, + "probability": 0.3028 + }, + { + "start": 25246.63, + "end": 25248.05, + "probability": 0.9492 + }, + { + "start": 25248.67, + "end": 25252.03, + "probability": 0.9161 + }, + { + "start": 25252.83, + "end": 25253.03, + "probability": 0.8281 + }, + { + "start": 25253.97, + "end": 25254.41, + "probability": 0.2265 + }, + { + "start": 25255.17, + "end": 25256.49, + "probability": 0.9526 + }, + { + "start": 25257.11, + "end": 25259.67, + "probability": 0.9805 + }, + { + "start": 25260.15, + "end": 25263.31, + "probability": 0.976 + }, + { + "start": 25263.69, + "end": 25266.05, + "probability": 0.9409 + }, + { + "start": 25266.39, + "end": 25267.63, + "probability": 0.8204 + }, + { + "start": 25267.77, + "end": 25268.69, + "probability": 0.79 + }, + { + "start": 25268.87, + "end": 25270.31, + "probability": 0.9739 + }, + { + "start": 25270.83, + "end": 25272.03, + "probability": 0.9928 + }, + { + "start": 25272.77, + "end": 25274.73, + "probability": 0.9819 + }, + { + "start": 25274.79, + "end": 25276.99, + "probability": 0.8206 + }, + { + "start": 25277.11, + "end": 25279.55, + "probability": 0.8595 + }, + { + "start": 25280.21, + "end": 25281.47, + "probability": 0.9976 + }, + { + "start": 25282.23, + "end": 25283.41, + "probability": 0.9736 + }, + { + "start": 25283.85, + "end": 25286.39, + "probability": 0.995 + }, + { + "start": 25286.39, + "end": 25290.07, + "probability": 0.953 + }, + { + "start": 25290.61, + "end": 25295.67, + "probability": 0.9941 + }, + { + "start": 25296.13, + "end": 25297.21, + "probability": 0.9885 + }, + { + "start": 25298.25, + "end": 25298.71, + "probability": 0.8706 + }, + { + "start": 25299.55, + "end": 25302.41, + "probability": 0.9944 + }, + { + "start": 25303.43, + "end": 25307.63, + "probability": 0.9516 + }, + { + "start": 25307.85, + "end": 25309.81, + "probability": 0.9221 + }, + { + "start": 25309.91, + "end": 25310.17, + "probability": 0.8376 + }, + { + "start": 25310.25, + "end": 25312.01, + "probability": 0.9955 + }, + { + "start": 25313.29, + "end": 25315.39, + "probability": 0.9352 + }, + { + "start": 25315.93, + "end": 25318.13, + "probability": 0.8245 + }, + { + "start": 25318.81, + "end": 25321.64, + "probability": 0.968 + }, + { + "start": 25322.07, + "end": 25323.61, + "probability": 0.9898 + }, + { + "start": 25323.71, + "end": 25326.45, + "probability": 0.9914 + }, + { + "start": 25327.31, + "end": 25331.79, + "probability": 0.9888 + }, + { + "start": 25332.51, + "end": 25334.73, + "probability": 0.9034 + }, + { + "start": 25335.29, + "end": 25339.93, + "probability": 0.9823 + }, + { + "start": 25341.23, + "end": 25341.63, + "probability": 0.5828 + }, + { + "start": 25343.17, + "end": 25345.01, + "probability": 0.9978 + }, + { + "start": 25345.67, + "end": 25349.95, + "probability": 0.9971 + }, + { + "start": 25350.91, + "end": 25354.43, + "probability": 0.8026 + }, + { + "start": 25355.13, + "end": 25356.25, + "probability": 0.9498 + }, + { + "start": 25357.05, + "end": 25359.61, + "probability": 0.9941 + }, + { + "start": 25359.61, + "end": 25362.93, + "probability": 0.9832 + }, + { + "start": 25364.03, + "end": 25365.23, + "probability": 0.9605 + }, + { + "start": 25365.35, + "end": 25367.67, + "probability": 0.989 + }, + { + "start": 25368.71, + "end": 25370.07, + "probability": 0.9712 + }, + { + "start": 25370.77, + "end": 25373.43, + "probability": 0.9769 + }, + { + "start": 25374.35, + "end": 25378.53, + "probability": 0.9833 + }, + { + "start": 25379.41, + "end": 25380.99, + "probability": 0.9992 + }, + { + "start": 25381.63, + "end": 25382.59, + "probability": 0.99 + }, + { + "start": 25383.31, + "end": 25384.09, + "probability": 0.5578 + }, + { + "start": 25384.71, + "end": 25385.79, + "probability": 0.7639 + }, + { + "start": 25386.41, + "end": 25388.17, + "probability": 0.9797 + }, + { + "start": 25388.83, + "end": 25389.23, + "probability": 0.8353 + }, + { + "start": 25390.97, + "end": 25392.97, + "probability": 0.8872 + }, + { + "start": 25393.27, + "end": 25394.61, + "probability": 0.8359 + }, + { + "start": 25396.03, + "end": 25396.89, + "probability": 0.3709 + }, + { + "start": 25397.81, + "end": 25400.15, + "probability": 0.9087 + }, + { + "start": 25400.25, + "end": 25401.45, + "probability": 0.81 + }, + { + "start": 25418.73, + "end": 25418.73, + "probability": 0.6744 + }, + { + "start": 25418.73, + "end": 25418.89, + "probability": 0.4712 + }, + { + "start": 25420.67, + "end": 25422.95, + "probability": 0.7446 + }, + { + "start": 25424.15, + "end": 25430.45, + "probability": 0.9419 + }, + { + "start": 25431.43, + "end": 25434.55, + "probability": 0.9767 + }, + { + "start": 25435.77, + "end": 25436.43, + "probability": 0.9171 + }, + { + "start": 25436.43, + "end": 25437.23, + "probability": 0.8667 + }, + { + "start": 25437.33, + "end": 25437.95, + "probability": 0.9064 + }, + { + "start": 25438.07, + "end": 25438.67, + "probability": 0.7909 + }, + { + "start": 25438.81, + "end": 25444.19, + "probability": 0.956 + }, + { + "start": 25445.05, + "end": 25450.99, + "probability": 0.9392 + }, + { + "start": 25452.35, + "end": 25454.17, + "probability": 0.845 + }, + { + "start": 25454.47, + "end": 25459.87, + "probability": 0.9891 + }, + { + "start": 25460.99, + "end": 25466.79, + "probability": 0.9785 + }, + { + "start": 25467.71, + "end": 25471.57, + "probability": 0.9899 + }, + { + "start": 25472.53, + "end": 25475.19, + "probability": 0.7014 + }, + { + "start": 25475.81, + "end": 25477.15, + "probability": 0.8673 + }, + { + "start": 25477.33, + "end": 25478.13, + "probability": 0.7223 + }, + { + "start": 25478.61, + "end": 25479.43, + "probability": 0.7629 + }, + { + "start": 25479.87, + "end": 25480.59, + "probability": 0.7167 + }, + { + "start": 25480.67, + "end": 25482.51, + "probability": 0.8636 + }, + { + "start": 25483.55, + "end": 25486.97, + "probability": 0.9373 + }, + { + "start": 25487.45, + "end": 25489.39, + "probability": 0.9069 + }, + { + "start": 25489.55, + "end": 25493.19, + "probability": 0.9857 + }, + { + "start": 25494.07, + "end": 25494.91, + "probability": 0.7691 + }, + { + "start": 25495.01, + "end": 25498.83, + "probability": 0.9731 + }, + { + "start": 25499.21, + "end": 25502.89, + "probability": 0.9851 + }, + { + "start": 25504.61, + "end": 25510.99, + "probability": 0.9184 + }, + { + "start": 25512.45, + "end": 25516.63, + "probability": 0.9915 + }, + { + "start": 25517.27, + "end": 25522.27, + "probability": 0.9486 + }, + { + "start": 25524.63, + "end": 25525.79, + "probability": 0.9209 + }, + { + "start": 25528.01, + "end": 25530.29, + "probability": 0.9954 + }, + { + "start": 25530.71, + "end": 25535.13, + "probability": 0.9834 + }, + { + "start": 25536.19, + "end": 25541.63, + "probability": 0.9868 + }, + { + "start": 25541.81, + "end": 25542.74, + "probability": 0.3628 + }, + { + "start": 25544.11, + "end": 25545.61, + "probability": 0.8214 + }, + { + "start": 25546.27, + "end": 25547.27, + "probability": 0.5369 + }, + { + "start": 25548.57, + "end": 25551.03, + "probability": 0.9062 + }, + { + "start": 25551.69, + "end": 25553.05, + "probability": 0.7194 + }, + { + "start": 25553.07, + "end": 25556.25, + "probability": 0.96 + }, + { + "start": 25557.33, + "end": 25560.67, + "probability": 0.8439 + }, + { + "start": 25560.89, + "end": 25566.69, + "probability": 0.9968 + }, + { + "start": 25567.59, + "end": 25572.19, + "probability": 0.9814 + }, + { + "start": 25572.27, + "end": 25573.25, + "probability": 0.8739 + }, + { + "start": 25573.89, + "end": 25575.4, + "probability": 0.9785 + }, + { + "start": 25577.39, + "end": 25580.51, + "probability": 0.9751 + }, + { + "start": 25580.75, + "end": 25585.01, + "probability": 0.8662 + }, + { + "start": 25585.77, + "end": 25587.45, + "probability": 0.9886 + }, + { + "start": 25589.17, + "end": 25593.13, + "probability": 0.978 + }, + { + "start": 25593.31, + "end": 25595.19, + "probability": 0.8804 + }, + { + "start": 25595.35, + "end": 25599.07, + "probability": 0.9318 + }, + { + "start": 25599.91, + "end": 25600.17, + "probability": 0.6777 + }, + { + "start": 25601.83, + "end": 25605.47, + "probability": 0.9951 + }, + { + "start": 25606.31, + "end": 25609.55, + "probability": 0.9822 + }, + { + "start": 25609.55, + "end": 25614.15, + "probability": 0.9924 + }, + { + "start": 25615.27, + "end": 25618.53, + "probability": 0.8436 + }, + { + "start": 25618.77, + "end": 25621.75, + "probability": 0.9759 + }, + { + "start": 25622.93, + "end": 25626.85, + "probability": 0.9749 + }, + { + "start": 25626.91, + "end": 25630.01, + "probability": 0.9957 + }, + { + "start": 25631.61, + "end": 25633.95, + "probability": 0.7562 + }, + { + "start": 25634.49, + "end": 25636.41, + "probability": 0.5313 + }, + { + "start": 25637.67, + "end": 25638.49, + "probability": 0.4227 + }, + { + "start": 25639.51, + "end": 25640.95, + "probability": 0.9224 + }, + { + "start": 25642.23, + "end": 25645.21, + "probability": 0.7366 + }, + { + "start": 25645.35, + "end": 25646.93, + "probability": 0.8147 + }, + { + "start": 25653.53, + "end": 25653.55, + "probability": 0.392 + }, + { + "start": 25653.55, + "end": 25653.55, + "probability": 0.0757 + }, + { + "start": 25664.97, + "end": 25667.51, + "probability": 0.9937 + }, + { + "start": 25668.53, + "end": 25672.87, + "probability": 0.998 + }, + { + "start": 25674.25, + "end": 25677.01, + "probability": 0.998 + }, + { + "start": 25677.27, + "end": 25678.39, + "probability": 0.9778 + }, + { + "start": 25678.69, + "end": 25679.97, + "probability": 0.9808 + }, + { + "start": 25680.09, + "end": 25681.39, + "probability": 0.9583 + }, + { + "start": 25681.87, + "end": 25684.75, + "probability": 0.8981 + }, + { + "start": 25684.99, + "end": 25686.11, + "probability": 0.9492 + }, + { + "start": 25686.21, + "end": 25688.89, + "probability": 0.9578 + }, + { + "start": 25689.67, + "end": 25691.93, + "probability": 0.967 + }, + { + "start": 25692.05, + "end": 25693.07, + "probability": 0.9697 + }, + { + "start": 25694.35, + "end": 25699.05, + "probability": 0.9915 + }, + { + "start": 25699.35, + "end": 25702.49, + "probability": 0.663 + }, + { + "start": 25702.63, + "end": 25703.21, + "probability": 0.3986 + }, + { + "start": 25703.65, + "end": 25704.89, + "probability": 0.7113 + }, + { + "start": 25704.93, + "end": 25707.53, + "probability": 0.9756 + }, + { + "start": 25708.43, + "end": 25712.67, + "probability": 0.7986 + }, + { + "start": 25713.09, + "end": 25713.35, + "probability": 0.7243 + }, + { + "start": 25713.41, + "end": 25715.37, + "probability": 0.8784 + }, + { + "start": 25715.85, + "end": 25716.49, + "probability": 0.7224 + }, + { + "start": 25716.51, + "end": 25717.35, + "probability": 0.95 + }, + { + "start": 25717.43, + "end": 25719.27, + "probability": 0.9744 + }, + { + "start": 25720.57, + "end": 25724.41, + "probability": 0.8022 + }, + { + "start": 25724.87, + "end": 25728.89, + "probability": 0.9064 + }, + { + "start": 25728.99, + "end": 25731.71, + "probability": 0.8184 + }, + { + "start": 25732.25, + "end": 25736.45, + "probability": 0.9077 + }, + { + "start": 25736.97, + "end": 25737.93, + "probability": 0.8752 + }, + { + "start": 25738.01, + "end": 25739.17, + "probability": 0.8665 + }, + { + "start": 25739.57, + "end": 25742.31, + "probability": 0.7672 + }, + { + "start": 25742.43, + "end": 25744.79, + "probability": 0.7495 + }, + { + "start": 25745.41, + "end": 25749.93, + "probability": 0.9571 + }, + { + "start": 25750.57, + "end": 25752.69, + "probability": 0.9441 + }, + { + "start": 25753.79, + "end": 25757.39, + "probability": 0.8259 + }, + { + "start": 25757.91, + "end": 25758.96, + "probability": 0.9025 + }, + { + "start": 25759.61, + "end": 25760.46, + "probability": 0.8329 + }, + { + "start": 25760.61, + "end": 25761.65, + "probability": 0.7495 + }, + { + "start": 25762.61, + "end": 25763.71, + "probability": 0.9218 + }, + { + "start": 25764.69, + "end": 25766.11, + "probability": 0.8395 + }, + { + "start": 25766.67, + "end": 25769.45, + "probability": 0.9519 + }, + { + "start": 25770.13, + "end": 25771.53, + "probability": 0.8093 + }, + { + "start": 25771.57, + "end": 25778.85, + "probability": 0.9324 + }, + { + "start": 25779.49, + "end": 25780.51, + "probability": 0.5402 + }, + { + "start": 25781.23, + "end": 25784.71, + "probability": 0.6586 + }, + { + "start": 25785.17, + "end": 25787.79, + "probability": 0.8817 + }, + { + "start": 25788.33, + "end": 25789.53, + "probability": 0.9761 + }, + { + "start": 25790.15, + "end": 25795.51, + "probability": 0.9325 + }, + { + "start": 25796.43, + "end": 25802.35, + "probability": 0.7506 + }, + { + "start": 25802.95, + "end": 25808.97, + "probability": 0.9863 + }, + { + "start": 25810.88, + "end": 25815.51, + "probability": 0.9652 + }, + { + "start": 25816.15, + "end": 25819.95, + "probability": 0.7317 + }, + { + "start": 25820.87, + "end": 25825.67, + "probability": 0.8042 + }, + { + "start": 25827.61, + "end": 25828.59, + "probability": 0.8621 + }, + { + "start": 25829.43, + "end": 25833.65, + "probability": 0.981 + }, + { + "start": 25834.47, + "end": 25835.95, + "probability": 0.9771 + }, + { + "start": 25836.65, + "end": 25837.63, + "probability": 0.6571 + }, + { + "start": 25838.27, + "end": 25840.53, + "probability": 0.9895 + }, + { + "start": 25841.03, + "end": 25842.05, + "probability": 0.709 + }, + { + "start": 25842.15, + "end": 25842.67, + "probability": 0.4939 + }, + { + "start": 25842.77, + "end": 25845.31, + "probability": 0.9815 + }, + { + "start": 25845.71, + "end": 25847.35, + "probability": 0.8479 + }, + { + "start": 25847.71, + "end": 25850.13, + "probability": 0.8787 + }, + { + "start": 25850.23, + "end": 25850.67, + "probability": 0.8345 + }, + { + "start": 25851.59, + "end": 25853.73, + "probability": 0.6527 + }, + { + "start": 25853.81, + "end": 25857.17, + "probability": 0.8384 + }, + { + "start": 25857.39, + "end": 25859.83, + "probability": 0.9882 + }, + { + "start": 25860.55, + "end": 25861.27, + "probability": 0.3805 + }, + { + "start": 25863.47, + "end": 25867.49, + "probability": 0.9646 + }, + { + "start": 25869.27, + "end": 25872.11, + "probability": 0.9417 + }, + { + "start": 25886.09, + "end": 25889.63, + "probability": 0.9251 + }, + { + "start": 25890.49, + "end": 25892.63, + "probability": 0.8362 + }, + { + "start": 25894.28, + "end": 25896.87, + "probability": 0.9381 + }, + { + "start": 25897.73, + "end": 25898.71, + "probability": 0.91 + }, + { + "start": 25899.57, + "end": 25900.45, + "probability": 0.9458 + }, + { + "start": 25903.84, + "end": 25906.85, + "probability": 0.7381 + }, + { + "start": 25907.83, + "end": 25909.37, + "probability": 0.9313 + }, + { + "start": 25910.81, + "end": 25911.35, + "probability": 0.6207 + }, + { + "start": 25911.65, + "end": 25912.79, + "probability": 0.6899 + }, + { + "start": 25913.11, + "end": 25914.15, + "probability": 0.1428 + }, + { + "start": 25914.47, + "end": 25916.11, + "probability": 0.9907 + }, + { + "start": 25916.61, + "end": 25917.13, + "probability": 0.5447 + }, + { + "start": 25917.25, + "end": 25918.25, + "probability": 0.4956 + }, + { + "start": 25918.75, + "end": 25919.89, + "probability": 0.7281 + }, + { + "start": 25919.97, + "end": 25920.31, + "probability": 0.8507 + }, + { + "start": 25939.01, + "end": 25944.61, + "probability": 0.561 + }, + { + "start": 25944.93, + "end": 25946.35, + "probability": 0.6559 + }, + { + "start": 25947.67, + "end": 25950.19, + "probability": 0.7905 + }, + { + "start": 25950.85, + "end": 25955.47, + "probability": 0.9486 + }, + { + "start": 25956.55, + "end": 25959.47, + "probability": 0.2243 + }, + { + "start": 25959.47, + "end": 25959.51, + "probability": 0.2541 + }, + { + "start": 25959.51, + "end": 25959.51, + "probability": 0.3887 + }, + { + "start": 25959.51, + "end": 25960.53, + "probability": 0.6457 + }, + { + "start": 25961.17, + "end": 25962.37, + "probability": 0.72 + }, + { + "start": 25962.75, + "end": 25963.65, + "probability": 0.9248 + }, + { + "start": 25964.17, + "end": 25965.03, + "probability": 0.5424 + }, + { + "start": 25965.49, + "end": 25966.85, + "probability": 0.8782 + }, + { + "start": 25966.89, + "end": 25967.97, + "probability": 0.5327 + }, + { + "start": 25968.75, + "end": 25972.13, + "probability": 0.9831 + }, + { + "start": 25972.31, + "end": 25976.73, + "probability": 0.9683 + }, + { + "start": 25976.75, + "end": 25976.93, + "probability": 0.6821 + }, + { + "start": 25976.93, + "end": 25977.55, + "probability": 0.5046 + }, + { + "start": 25977.69, + "end": 25979.11, + "probability": 0.9963 + }, + { + "start": 25979.19, + "end": 25980.23, + "probability": 0.9981 + }, + { + "start": 25982.67, + "end": 25983.93, + "probability": 0.8806 + }, + { + "start": 25985.09, + "end": 25986.17, + "probability": 0.8397 + }, + { + "start": 25987.01, + "end": 25988.71, + "probability": 0.9312 + }, + { + "start": 25989.27, + "end": 25990.35, + "probability": 0.9972 + }, + { + "start": 25990.61, + "end": 25991.63, + "probability": 0.8826 + }, + { + "start": 25992.29, + "end": 25995.81, + "probability": 0.2863 + }, + { + "start": 25997.04, + "end": 26000.27, + "probability": 0.1282 + }, + { + "start": 26000.27, + "end": 26001.17, + "probability": 0.1769 + }, + { + "start": 26001.17, + "end": 26001.8, + "probability": 0.676 + }, + { + "start": 26003.21, + "end": 26004.53, + "probability": 0.6267 + }, + { + "start": 26005.35, + "end": 26011.37, + "probability": 0.963 + }, + { + "start": 26012.03, + "end": 26013.39, + "probability": 0.6011 + }, + { + "start": 26014.01, + "end": 26015.07, + "probability": 0.9162 + }, + { + "start": 26015.19, + "end": 26015.57, + "probability": 0.5931 + }, + { + "start": 26015.65, + "end": 26017.01, + "probability": 0.9796 + }, + { + "start": 26017.11, + "end": 26018.62, + "probability": 0.7446 + }, + { + "start": 26019.15, + "end": 26020.31, + "probability": 0.9976 + }, + { + "start": 26020.85, + "end": 26022.34, + "probability": 0.9951 + }, + { + "start": 26023.77, + "end": 26023.97, + "probability": 0.0643 + }, + { + "start": 26023.97, + "end": 26023.97, + "probability": 0.0697 + }, + { + "start": 26023.97, + "end": 26023.97, + "probability": 0.4001 + }, + { + "start": 26023.97, + "end": 26024.25, + "probability": 0.2944 + }, + { + "start": 26025.27, + "end": 26026.87, + "probability": 0.6521 + }, + { + "start": 26026.95, + "end": 26027.69, + "probability": 0.9438 + }, + { + "start": 26027.75, + "end": 26028.01, + "probability": 0.9685 + }, + { + "start": 26028.07, + "end": 26028.63, + "probability": 0.5903 + }, + { + "start": 26029.27, + "end": 26031.05, + "probability": 0.5668 + }, + { + "start": 26031.69, + "end": 26034.79, + "probability": 0.999 + }, + { + "start": 26035.31, + "end": 26038.77, + "probability": 0.9128 + }, + { + "start": 26039.43, + "end": 26042.75, + "probability": 0.8487 + }, + { + "start": 26043.25, + "end": 26045.45, + "probability": 0.8861 + }, + { + "start": 26045.87, + "end": 26048.03, + "probability": 0.7546 + }, + { + "start": 26048.91, + "end": 26049.95, + "probability": 0.7729 + }, + { + "start": 26050.09, + "end": 26050.91, + "probability": 0.7143 + }, + { + "start": 26051.31, + "end": 26053.79, + "probability": 0.9894 + }, + { + "start": 26054.19, + "end": 26055.95, + "probability": 0.9507 + }, + { + "start": 26055.99, + "end": 26057.01, + "probability": 0.6069 + }, + { + "start": 26057.25, + "end": 26058.95, + "probability": 0.973 + }, + { + "start": 26059.43, + "end": 26060.07, + "probability": 0.7909 + }, + { + "start": 26060.07, + "end": 26065.89, + "probability": 0.9255 + }, + { + "start": 26066.29, + "end": 26067.49, + "probability": 0.9724 + }, + { + "start": 26069.47, + "end": 26071.17, + "probability": 0.8478 + }, + { + "start": 26071.53, + "end": 26072.77, + "probability": 0.9633 + }, + { + "start": 26074.01, + "end": 26075.35, + "probability": 0.7308 + }, + { + "start": 26075.83, + "end": 26077.43, + "probability": 0.982 + }, + { + "start": 26101.95, + "end": 26101.95, + "probability": 0.7747 + }, + { + "start": 26101.95, + "end": 26103.06, + "probability": 0.8481 + }, + { + "start": 26103.99, + "end": 26105.45, + "probability": 0.7603 + }, + { + "start": 26107.33, + "end": 26110.29, + "probability": 0.9945 + }, + { + "start": 26112.35, + "end": 26115.51, + "probability": 0.9958 + }, + { + "start": 26116.73, + "end": 26118.61, + "probability": 0.998 + }, + { + "start": 26119.93, + "end": 26122.95, + "probability": 0.9964 + }, + { + "start": 26123.83, + "end": 26124.97, + "probability": 0.9081 + }, + { + "start": 26125.25, + "end": 26130.01, + "probability": 0.9926 + }, + { + "start": 26130.99, + "end": 26134.45, + "probability": 0.9889 + }, + { + "start": 26136.57, + "end": 26137.31, + "probability": 0.7142 + }, + { + "start": 26137.37, + "end": 26137.83, + "probability": 0.7633 + }, + { + "start": 26137.91, + "end": 26140.35, + "probability": 0.9813 + }, + { + "start": 26142.17, + "end": 26145.27, + "probability": 0.9938 + }, + { + "start": 26145.99, + "end": 26151.55, + "probability": 0.9947 + }, + { + "start": 26152.35, + "end": 26153.77, + "probability": 0.7446 + }, + { + "start": 26153.89, + "end": 26157.11, + "probability": 0.9853 + }, + { + "start": 26157.11, + "end": 26160.49, + "probability": 0.9955 + }, + { + "start": 26162.19, + "end": 26162.79, + "probability": 0.5151 + }, + { + "start": 26163.03, + "end": 26166.39, + "probability": 0.9968 + }, + { + "start": 26167.11, + "end": 26169.49, + "probability": 0.9706 + }, + { + "start": 26170.05, + "end": 26176.35, + "probability": 0.9876 + }, + { + "start": 26177.39, + "end": 26179.05, + "probability": 0.9974 + }, + { + "start": 26179.97, + "end": 26183.75, + "probability": 0.998 + }, + { + "start": 26184.69, + "end": 26188.01, + "probability": 0.9871 + }, + { + "start": 26188.55, + "end": 26189.19, + "probability": 0.8582 + }, + { + "start": 26189.99, + "end": 26196.53, + "probability": 0.9802 + }, + { + "start": 26197.49, + "end": 26202.39, + "probability": 0.9995 + }, + { + "start": 26202.39, + "end": 26205.95, + "probability": 0.9973 + }, + { + "start": 26206.89, + "end": 26208.31, + "probability": 0.8247 + }, + { + "start": 26208.99, + "end": 26210.57, + "probability": 0.9681 + }, + { + "start": 26210.71, + "end": 26213.17, + "probability": 0.9836 + }, + { + "start": 26214.95, + "end": 26217.89, + "probability": 0.9962 + }, + { + "start": 26217.89, + "end": 26220.61, + "probability": 0.9914 + }, + { + "start": 26221.61, + "end": 26224.75, + "probability": 0.9922 + }, + { + "start": 26225.31, + "end": 26230.91, + "probability": 0.9932 + }, + { + "start": 26231.77, + "end": 26234.47, + "probability": 0.9976 + }, + { + "start": 26235.17, + "end": 26238.21, + "probability": 0.9853 + }, + { + "start": 26238.35, + "end": 26241.27, + "probability": 0.9929 + }, + { + "start": 26242.07, + "end": 26244.49, + "probability": 0.9849 + }, + { + "start": 26245.07, + "end": 26247.23, + "probability": 0.996 + }, + { + "start": 26247.75, + "end": 26250.39, + "probability": 0.9963 + }, + { + "start": 26250.99, + "end": 26254.07, + "probability": 0.9969 + }, + { + "start": 26254.07, + "end": 26257.75, + "probability": 0.9722 + }, + { + "start": 26259.41, + "end": 26266.27, + "probability": 0.9932 + }, + { + "start": 26266.99, + "end": 26269.77, + "probability": 0.9983 + }, + { + "start": 26269.77, + "end": 26273.73, + "probability": 0.998 + }, + { + "start": 26274.39, + "end": 26278.11, + "probability": 0.9836 + }, + { + "start": 26281.25, + "end": 26282.93, + "probability": 0.1582 + }, + { + "start": 26283.21, + "end": 26285.93, + "probability": 0.4859 + }, + { + "start": 26286.37, + "end": 26288.23, + "probability": 0.0966 + }, + { + "start": 26288.96, + "end": 26289.59, + "probability": 0.0284 + }, + { + "start": 26290.59, + "end": 26291.15, + "probability": 0.0323 + }, + { + "start": 26293.35, + "end": 26294.67, + "probability": 0.3017 + }, + { + "start": 26295.83, + "end": 26298.04, + "probability": 0.502 + }, + { + "start": 26298.19, + "end": 26299.37, + "probability": 0.3027 + }, + { + "start": 26300.81, + "end": 26302.85, + "probability": 0.0739 + }, + { + "start": 26303.95, + "end": 26306.05, + "probability": 0.065 + }, + { + "start": 26306.55, + "end": 26307.62, + "probability": 0.0382 + }, + { + "start": 26310.27, + "end": 26311.81, + "probability": 0.2818 + }, + { + "start": 26311.97, + "end": 26312.65, + "probability": 0.7034 + }, + { + "start": 26313.25, + "end": 26315.29, + "probability": 0.696 + }, + { + "start": 26315.33, + "end": 26320.19, + "probability": 0.6426 + }, + { + "start": 26320.87, + "end": 26322.47, + "probability": 0.8994 + }, + { + "start": 26322.71, + "end": 26324.51, + "probability": 0.6451 + }, + { + "start": 26324.95, + "end": 26325.49, + "probability": 0.9654 + }, + { + "start": 26325.77, + "end": 26326.37, + "probability": 0.0793 + }, + { + "start": 26326.59, + "end": 26327.49, + "probability": 0.823 + }, + { + "start": 26327.63, + "end": 26330.25, + "probability": 0.5083 + }, + { + "start": 26330.33, + "end": 26331.49, + "probability": 0.6371 + }, + { + "start": 26336.87, + "end": 26336.89, + "probability": 0.5461 + }, + { + "start": 26336.89, + "end": 26336.89, + "probability": 0.5096 + }, + { + "start": 26336.89, + "end": 26339.54, + "probability": 0.2247 + }, + { + "start": 26340.09, + "end": 26341.73, + "probability": 0.6535 + }, + { + "start": 26341.83, + "end": 26342.19, + "probability": 0.6547 + }, + { + "start": 26342.35, + "end": 26343.73, + "probability": 0.6735 + }, + { + "start": 26346.4, + "end": 26347.63, + "probability": 0.7975 + }, + { + "start": 26348.29, + "end": 26349.11, + "probability": 0.3765 + }, + { + "start": 26349.31, + "end": 26351.47, + "probability": 0.9802 + }, + { + "start": 26351.83, + "end": 26352.31, + "probability": 0.5147 + }, + { + "start": 26352.41, + "end": 26353.13, + "probability": 0.7548 + }, + { + "start": 26353.41, + "end": 26354.35, + "probability": 0.934 + }, + { + "start": 26354.39, + "end": 26355.53, + "probability": 0.8706 + }, + { + "start": 26356.27, + "end": 26357.51, + "probability": 0.9177 + }, + { + "start": 26357.53, + "end": 26360.62, + "probability": 0.4754 + }, + { + "start": 26360.85, + "end": 26361.77, + "probability": 0.6421 + }, + { + "start": 26361.93, + "end": 26362.33, + "probability": 0.8018 + }, + { + "start": 26362.39, + "end": 26362.69, + "probability": 0.6642 + }, + { + "start": 26362.73, + "end": 26365.51, + "probability": 0.0123 + }, + { + "start": 26366.33, + "end": 26368.07, + "probability": 0.8062 + }, + { + "start": 26368.21, + "end": 26368.63, + "probability": 0.8781 + }, + { + "start": 26368.79, + "end": 26371.91, + "probability": 0.7053 + }, + { + "start": 26372.03, + "end": 26373.57, + "probability": 0.544 + }, + { + "start": 26373.59, + "end": 26374.67, + "probability": 0.6011 + }, + { + "start": 26375.23, + "end": 26375.75, + "probability": 0.6068 + }, + { + "start": 26377.93, + "end": 26378.53, + "probability": 0.599 + }, + { + "start": 26378.53, + "end": 26383.89, + "probability": 0.979 + }, + { + "start": 26385.19, + "end": 26387.39, + "probability": 0.8201 + }, + { + "start": 26390.19, + "end": 26391.07, + "probability": 0.7183 + }, + { + "start": 26392.47, + "end": 26394.95, + "probability": 0.9916 + }, + { + "start": 26397.17, + "end": 26400.14, + "probability": 0.9453 + }, + { + "start": 26401.95, + "end": 26402.77, + "probability": 0.6971 + }, + { + "start": 26403.75, + "end": 26404.93, + "probability": 0.6814 + }, + { + "start": 26407.21, + "end": 26409.55, + "probability": 0.8167 + }, + { + "start": 26412.75, + "end": 26415.45, + "probability": 0.9937 + }, + { + "start": 26416.71, + "end": 26418.81, + "probability": 0.9557 + }, + { + "start": 26421.49, + "end": 26422.13, + "probability": 0.59 + }, + { + "start": 26423.15, + "end": 26424.53, + "probability": 0.7414 + }, + { + "start": 26425.93, + "end": 26427.51, + "probability": 0.9937 + }, + { + "start": 26429.83, + "end": 26430.85, + "probability": 0.8936 + }, + { + "start": 26432.85, + "end": 26433.99, + "probability": 0.8972 + }, + { + "start": 26434.79, + "end": 26435.75, + "probability": 0.6975 + }, + { + "start": 26438.01, + "end": 26439.45, + "probability": 0.8346 + }, + { + "start": 26440.47, + "end": 26441.49, + "probability": 0.941 + }, + { + "start": 26442.25, + "end": 26443.05, + "probability": 0.8695 + }, + { + "start": 26444.53, + "end": 26446.19, + "probability": 0.2132 + }, + { + "start": 26446.49, + "end": 26447.41, + "probability": 0.9734 + }, + { + "start": 26448.55, + "end": 26449.37, + "probability": 0.8683 + }, + { + "start": 26449.63, + "end": 26450.45, + "probability": 0.0162 + }, + { + "start": 26450.45, + "end": 26453.03, + "probability": 0.3798 + }, + { + "start": 26453.11, + "end": 26453.77, + "probability": 0.6358 + }, + { + "start": 26454.75, + "end": 26456.63, + "probability": 0.7239 + }, + { + "start": 26457.03, + "end": 26458.02, + "probability": 0.9786 + }, + { + "start": 26459.43, + "end": 26461.79, + "probability": 0.9316 + }, + { + "start": 26463.07, + "end": 26463.63, + "probability": 0.6088 + }, + { + "start": 26464.99, + "end": 26467.39, + "probability": 0.9641 + }, + { + "start": 26468.61, + "end": 26470.79, + "probability": 0.9632 + }, + { + "start": 26471.87, + "end": 26473.99, + "probability": 0.9975 + }, + { + "start": 26475.07, + "end": 26481.45, + "probability": 0.9565 + }, + { + "start": 26481.49, + "end": 26482.71, + "probability": 0.998 + }, + { + "start": 26483.69, + "end": 26484.71, + "probability": 0.8815 + }, + { + "start": 26484.93, + "end": 26486.23, + "probability": 0.9961 + }, + { + "start": 26487.75, + "end": 26489.41, + "probability": 0.9359 + }, + { + "start": 26490.59, + "end": 26493.51, + "probability": 0.8898 + }, + { + "start": 26494.51, + "end": 26495.15, + "probability": 0.9636 + }, + { + "start": 26497.39, + "end": 26499.09, + "probability": 0.997 + }, + { + "start": 26501.37, + "end": 26502.29, + "probability": 0.7501 + }, + { + "start": 26504.35, + "end": 26506.27, + "probability": 0.8506 + }, + { + "start": 26507.19, + "end": 26509.43, + "probability": 0.7679 + }, + { + "start": 26511.43, + "end": 26513.95, + "probability": 0.9211 + }, + { + "start": 26514.97, + "end": 26518.13, + "probability": 0.8581 + }, + { + "start": 26520.05, + "end": 26523.05, + "probability": 0.8989 + }, + { + "start": 26526.29, + "end": 26529.81, + "probability": 0.9938 + }, + { + "start": 26530.77, + "end": 26532.07, + "probability": 0.9237 + }, + { + "start": 26532.91, + "end": 26534.37, + "probability": 0.9095 + }, + { + "start": 26535.19, + "end": 26538.65, + "probability": 0.9975 + }, + { + "start": 26539.51, + "end": 26539.83, + "probability": 0.8695 + }, + { + "start": 26540.29, + "end": 26540.59, + "probability": 0.8153 + }, + { + "start": 26541.91, + "end": 26545.05, + "probability": 0.8292 + }, + { + "start": 26545.25, + "end": 26547.01, + "probability": 0.9085 + }, + { + "start": 26560.29, + "end": 26562.53, + "probability": 0.6441 + }, + { + "start": 26565.21, + "end": 26572.37, + "probability": 0.9147 + }, + { + "start": 26574.29, + "end": 26577.17, + "probability": 0.7515 + }, + { + "start": 26579.39, + "end": 26580.49, + "probability": 0.9237 + }, + { + "start": 26580.61, + "end": 26582.91, + "probability": 0.799 + }, + { + "start": 26582.93, + "end": 26584.31, + "probability": 0.9904 + }, + { + "start": 26586.17, + "end": 26587.49, + "probability": 0.9689 + }, + { + "start": 26589.07, + "end": 26589.83, + "probability": 0.7388 + }, + { + "start": 26590.83, + "end": 26592.91, + "probability": 0.687 + }, + { + "start": 26594.33, + "end": 26595.03, + "probability": 0.9961 + }, + { + "start": 26596.71, + "end": 26600.89, + "probability": 0.9538 + }, + { + "start": 26601.45, + "end": 26602.49, + "probability": 0.9845 + }, + { + "start": 26603.85, + "end": 26605.25, + "probability": 0.962 + }, + { + "start": 26607.11, + "end": 26610.13, + "probability": 0.7216 + }, + { + "start": 26611.29, + "end": 26611.89, + "probability": 0.8153 + }, + { + "start": 26612.65, + "end": 26613.97, + "probability": 0.9946 + }, + { + "start": 26615.97, + "end": 26617.09, + "probability": 0.5818 + }, + { + "start": 26620.03, + "end": 26621.67, + "probability": 0.9301 + }, + { + "start": 26622.83, + "end": 26624.35, + "probability": 0.9976 + }, + { + "start": 26626.25, + "end": 26629.29, + "probability": 0.8982 + }, + { + "start": 26630.25, + "end": 26635.85, + "probability": 0.925 + }, + { + "start": 26637.17, + "end": 26639.43, + "probability": 0.9973 + }, + { + "start": 26640.51, + "end": 26642.33, + "probability": 0.9819 + }, + { + "start": 26643.33, + "end": 26644.49, + "probability": 0.999 + }, + { + "start": 26646.87, + "end": 26649.07, + "probability": 0.9637 + }, + { + "start": 26650.19, + "end": 26651.46, + "probability": 0.9562 + }, + { + "start": 26653.21, + "end": 26654.63, + "probability": 0.9927 + }, + { + "start": 26655.77, + "end": 26657.31, + "probability": 0.9962 + }, + { + "start": 26658.73, + "end": 26661.13, + "probability": 0.8383 + }, + { + "start": 26661.45, + "end": 26664.53, + "probability": 0.9589 + }, + { + "start": 26665.23, + "end": 26667.2, + "probability": 0.9985 + }, + { + "start": 26668.63, + "end": 26671.63, + "probability": 0.9705 + }, + { + "start": 26672.39, + "end": 26672.85, + "probability": 0.9747 + }, + { + "start": 26673.41, + "end": 26673.97, + "probability": 0.691 + }, + { + "start": 26675.57, + "end": 26680.35, + "probability": 0.9891 + }, + { + "start": 26681.19, + "end": 26683.21, + "probability": 0.9697 + }, + { + "start": 26684.99, + "end": 26686.17, + "probability": 0.999 + }, + { + "start": 26687.19, + "end": 26689.41, + "probability": 0.999 + }, + { + "start": 26689.55, + "end": 26690.27, + "probability": 0.959 + }, + { + "start": 26691.61, + "end": 26692.63, + "probability": 0.9258 + }, + { + "start": 26693.95, + "end": 26697.33, + "probability": 0.9873 + }, + { + "start": 26698.27, + "end": 26700.17, + "probability": 0.8731 + }, + { + "start": 26700.93, + "end": 26701.59, + "probability": 0.6804 + }, + { + "start": 26701.89, + "end": 26703.27, + "probability": 0.968 + }, + { + "start": 26703.69, + "end": 26704.95, + "probability": 0.9739 + }, + { + "start": 26705.31, + "end": 26706.89, + "probability": 0.9467 + }, + { + "start": 26707.01, + "end": 26707.67, + "probability": 0.8518 + }, + { + "start": 26708.73, + "end": 26709.49, + "probability": 0.908 + }, + { + "start": 26710.11, + "end": 26713.17, + "probability": 0.9636 + }, + { + "start": 26714.89, + "end": 26715.51, + "probability": 0.6936 + }, + { + "start": 26716.45, + "end": 26719.43, + "probability": 0.6866 + }, + { + "start": 26720.79, + "end": 26724.51, + "probability": 0.9849 + }, + { + "start": 26724.65, + "end": 26726.17, + "probability": 0.9114 + }, + { + "start": 26726.67, + "end": 26728.03, + "probability": 0.9888 + }, + { + "start": 26728.71, + "end": 26729.89, + "probability": 0.6264 + }, + { + "start": 26730.35, + "end": 26731.87, + "probability": 0.9136 + }, + { + "start": 26732.63, + "end": 26733.61, + "probability": 0.9373 + }, + { + "start": 26734.35, + "end": 26735.39, + "probability": 0.9868 + }, + { + "start": 26735.87, + "end": 26737.67, + "probability": 0.9822 + }, + { + "start": 26740.31, + "end": 26742.15, + "probability": 0.8014 + }, + { + "start": 26742.31, + "end": 26744.17, + "probability": 0.803 + }, + { + "start": 26745.83, + "end": 26746.55, + "probability": 0.2614 + }, + { + "start": 26746.81, + "end": 26748.99, + "probability": 0.7348 + }, + { + "start": 26768.71, + "end": 26769.85, + "probability": 0.4943 + }, + { + "start": 26769.95, + "end": 26771.03, + "probability": 0.8063 + }, + { + "start": 26771.25, + "end": 26772.79, + "probability": 0.915 + }, + { + "start": 26773.03, + "end": 26773.03, + "probability": 0.2663 + }, + { + "start": 26773.03, + "end": 26775.33, + "probability": 0.9321 + }, + { + "start": 26776.25, + "end": 26781.69, + "probability": 0.9849 + }, + { + "start": 26783.11, + "end": 26785.11, + "probability": 0.9695 + }, + { + "start": 26785.95, + "end": 26789.93, + "probability": 0.9973 + }, + { + "start": 26789.93, + "end": 26793.35, + "probability": 0.7265 + }, + { + "start": 26794.83, + "end": 26797.47, + "probability": 0.989 + }, + { + "start": 26797.59, + "end": 26798.17, + "probability": 0.6675 + }, + { + "start": 26798.69, + "end": 26799.27, + "probability": 0.9392 + }, + { + "start": 26801.22, + "end": 26804.65, + "probability": 0.9414 + }, + { + "start": 26805.19, + "end": 26808.77, + "probability": 0.9811 + }, + { + "start": 26808.93, + "end": 26811.81, + "probability": 0.9945 + }, + { + "start": 26811.89, + "end": 26812.25, + "probability": 0.5642 + }, + { + "start": 26812.27, + "end": 26813.49, + "probability": 0.9293 + }, + { + "start": 26814.33, + "end": 26816.01, + "probability": 0.9932 + }, + { + "start": 26816.23, + "end": 26818.89, + "probability": 0.9834 + }, + { + "start": 26818.89, + "end": 26819.47, + "probability": 0.57 + }, + { + "start": 26820.15, + "end": 26821.65, + "probability": 0.9614 + }, + { + "start": 26822.71, + "end": 26825.09, + "probability": 0.9971 + }, + { + "start": 26825.61, + "end": 26825.83, + "probability": 0.3983 + }, + { + "start": 26826.01, + "end": 26830.05, + "probability": 0.9868 + }, + { + "start": 26830.17, + "end": 26832.99, + "probability": 0.9917 + }, + { + "start": 26833.19, + "end": 26836.11, + "probability": 0.9884 + }, + { + "start": 26836.25, + "end": 26837.47, + "probability": 0.9888 + }, + { + "start": 26837.91, + "end": 26842.39, + "probability": 0.9818 + }, + { + "start": 26843.15, + "end": 26844.27, + "probability": 0.9333 + }, + { + "start": 26844.35, + "end": 26845.43, + "probability": 0.9874 + }, + { + "start": 26845.75, + "end": 26846.77, + "probability": 0.802 + }, + { + "start": 26847.47, + "end": 26851.35, + "probability": 0.9459 + }, + { + "start": 26851.45, + "end": 26856.47, + "probability": 0.9924 + }, + { + "start": 26856.69, + "end": 26859.19, + "probability": 0.952 + }, + { + "start": 26859.69, + "end": 26861.41, + "probability": 0.9854 + }, + { + "start": 26861.85, + "end": 26865.27, + "probability": 0.9955 + }, + { + "start": 26865.71, + "end": 26867.13, + "probability": 0.9619 + }, + { + "start": 26867.49, + "end": 26869.53, + "probability": 0.7546 + }, + { + "start": 26870.41, + "end": 26872.93, + "probability": 0.972 + }, + { + "start": 26873.47, + "end": 26877.49, + "probability": 0.945 + }, + { + "start": 26878.25, + "end": 26880.62, + "probability": 0.985 + }, + { + "start": 26881.23, + "end": 26883.72, + "probability": 0.9801 + }, + { + "start": 26884.69, + "end": 26886.77, + "probability": 0.9797 + }, + { + "start": 26887.95, + "end": 26890.75, + "probability": 0.7416 + }, + { + "start": 26891.07, + "end": 26891.63, + "probability": 0.6714 + }, + { + "start": 26892.53, + "end": 26893.23, + "probability": 0.9116 + }, + { + "start": 26894.07, + "end": 26896.87, + "probability": 0.9851 + }, + { + "start": 26896.97, + "end": 26897.98, + "probability": 0.9811 + }, + { + "start": 26898.77, + "end": 26900.35, + "probability": 0.9966 + }, + { + "start": 26900.47, + "end": 26903.23, + "probability": 0.9866 + }, + { + "start": 26903.33, + "end": 26903.95, + "probability": 0.6589 + }, + { + "start": 26904.03, + "end": 26905.79, + "probability": 0.8726 + }, + { + "start": 26906.41, + "end": 26910.65, + "probability": 0.9805 + }, + { + "start": 26910.67, + "end": 26914.21, + "probability": 0.9852 + }, + { + "start": 26914.25, + "end": 26916.73, + "probability": 0.9072 + }, + { + "start": 26916.85, + "end": 26919.5, + "probability": 0.9858 + }, + { + "start": 26920.05, + "end": 26923.55, + "probability": 0.9965 + }, + { + "start": 26923.67, + "end": 26925.95, + "probability": 0.988 + }, + { + "start": 26926.01, + "end": 26927.23, + "probability": 0.9083 + }, + { + "start": 26927.83, + "end": 26929.59, + "probability": 0.9772 + }, + { + "start": 26929.79, + "end": 26935.43, + "probability": 0.9971 + }, + { + "start": 26935.71, + "end": 26938.75, + "probability": 0.9941 + }, + { + "start": 26939.21, + "end": 26942.11, + "probability": 0.9901 + }, + { + "start": 26942.11, + "end": 26945.05, + "probability": 0.9985 + }, + { + "start": 26945.17, + "end": 26948.67, + "probability": 0.9738 + }, + { + "start": 26948.73, + "end": 26953.73, + "probability": 0.9817 + }, + { + "start": 26953.99, + "end": 26955.53, + "probability": 0.9983 + }, + { + "start": 26956.57, + "end": 26961.27, + "probability": 0.9973 + }, + { + "start": 26961.29, + "end": 26961.75, + "probability": 0.867 + }, + { + "start": 26961.83, + "end": 26965.23, + "probability": 0.9987 + }, + { + "start": 26965.59, + "end": 26967.87, + "probability": 0.9385 + }, + { + "start": 26968.37, + "end": 26971.97, + "probability": 0.8046 + }, + { + "start": 26972.35, + "end": 26974.51, + "probability": 0.9983 + }, + { + "start": 26974.69, + "end": 26975.25, + "probability": 0.9203 + }, + { + "start": 26975.81, + "end": 26977.99, + "probability": 0.6917 + }, + { + "start": 26978.17, + "end": 26979.93, + "probability": 0.8127 + }, + { + "start": 26980.79, + "end": 26983.73, + "probability": 0.9873 + }, + { + "start": 26983.77, + "end": 26984.53, + "probability": 0.4679 + }, + { + "start": 26985.91, + "end": 26988.88, + "probability": 0.2499 + }, + { + "start": 26989.03, + "end": 26989.81, + "probability": 0.353 + }, + { + "start": 26989.85, + "end": 26990.23, + "probability": 0.5184 + }, + { + "start": 26990.31, + "end": 26990.97, + "probability": 0.5492 + }, + { + "start": 26991.05, + "end": 26991.51, + "probability": 0.774 + }, + { + "start": 26992.51, + "end": 26993.77, + "probability": 0.8977 + }, + { + "start": 26996.12, + "end": 26997.39, + "probability": 0.9524 + }, + { + "start": 26997.39, + "end": 26999.69, + "probability": 0.9785 + }, + { + "start": 27000.57, + "end": 27001.17, + "probability": 0.9319 + }, + { + "start": 27003.35, + "end": 27005.62, + "probability": 0.7629 + }, + { + "start": 27006.19, + "end": 27007.65, + "probability": 0.8135 + }, + { + "start": 27008.85, + "end": 27011.59, + "probability": 0.9256 + }, + { + "start": 27012.47, + "end": 27014.59, + "probability": 0.8948 + }, + { + "start": 27016.19, + "end": 27020.25, + "probability": 0.9949 + }, + { + "start": 27021.09, + "end": 27024.09, + "probability": 0.9985 + }, + { + "start": 27024.73, + "end": 27026.43, + "probability": 0.811 + }, + { + "start": 27027.51, + "end": 27030.29, + "probability": 0.9888 + }, + { + "start": 27030.93, + "end": 27034.49, + "probability": 0.9896 + }, + { + "start": 27035.51, + "end": 27038.55, + "probability": 0.9824 + }, + { + "start": 27039.27, + "end": 27041.39, + "probability": 0.9789 + }, + { + "start": 27041.93, + "end": 27046.63, + "probability": 0.9948 + }, + { + "start": 27047.43, + "end": 27054.99, + "probability": 0.9947 + }, + { + "start": 27055.91, + "end": 27061.31, + "probability": 0.9972 + }, + { + "start": 27062.47, + "end": 27065.83, + "probability": 0.9715 + }, + { + "start": 27066.57, + "end": 27074.09, + "probability": 0.9966 + }, + { + "start": 27074.09, + "end": 27082.27, + "probability": 0.9989 + }, + { + "start": 27083.67, + "end": 27089.39, + "probability": 0.9985 + }, + { + "start": 27090.15, + "end": 27092.57, + "probability": 0.8547 + }, + { + "start": 27093.35, + "end": 27097.79, + "probability": 0.9984 + }, + { + "start": 27098.99, + "end": 27100.73, + "probability": 0.9753 + }, + { + "start": 27101.57, + "end": 27106.01, + "probability": 0.9967 + }, + { + "start": 27106.01, + "end": 27108.47, + "probability": 0.2177 + }, + { + "start": 27108.71, + "end": 27113.33, + "probability": 0.703 + }, + { + "start": 27114.03, + "end": 27123.55, + "probability": 0.989 + }, + { + "start": 27124.81, + "end": 27126.99, + "probability": 0.7518 + }, + { + "start": 27128.13, + "end": 27128.79, + "probability": 0.9796 + }, + { + "start": 27129.43, + "end": 27137.17, + "probability": 0.9958 + }, + { + "start": 27137.79, + "end": 27142.69, + "probability": 0.9909 + }, + { + "start": 27142.69, + "end": 27147.65, + "probability": 0.999 + }, + { + "start": 27149.21, + "end": 27150.49, + "probability": 0.9983 + }, + { + "start": 27151.25, + "end": 27158.95, + "probability": 0.999 + }, + { + "start": 27158.95, + "end": 27166.43, + "probability": 0.9989 + }, + { + "start": 27167.29, + "end": 27171.59, + "probability": 0.8899 + }, + { + "start": 27172.47, + "end": 27176.57, + "probability": 0.996 + }, + { + "start": 27177.33, + "end": 27179.05, + "probability": 0.8636 + }, + { + "start": 27179.37, + "end": 27180.92, + "probability": 0.8867 + }, + { + "start": 27182.3, + "end": 27182.85, + "probability": 0.1659 + }, + { + "start": 27182.97, + "end": 27184.21, + "probability": 0.8931 + }, + { + "start": 27185.19, + "end": 27186.71, + "probability": 0.8285 + }, + { + "start": 27187.53, + "end": 27189.39, + "probability": 0.9967 + }, + { + "start": 27190.17, + "end": 27192.89, + "probability": 0.9983 + }, + { + "start": 27193.45, + "end": 27197.85, + "probability": 0.9227 + }, + { + "start": 27198.67, + "end": 27200.75, + "probability": 0.997 + }, + { + "start": 27201.61, + "end": 27202.99, + "probability": 0.9604 + }, + { + "start": 27203.47, + "end": 27208.07, + "probability": 0.9847 + }, + { + "start": 27208.69, + "end": 27213.71, + "probability": 0.998 + }, + { + "start": 27213.71, + "end": 27217.41, + "probability": 0.9895 + }, + { + "start": 27217.59, + "end": 27221.77, + "probability": 0.8915 + }, + { + "start": 27222.15, + "end": 27224.17, + "probability": 0.7952 + }, + { + "start": 27224.31, + "end": 27225.71, + "probability": 0.8554 + }, + { + "start": 27226.53, + "end": 27226.99, + "probability": 0.2247 + }, + { + "start": 27227.11, + "end": 27228.31, + "probability": 0.8513 + }, + { + "start": 27228.41, + "end": 27229.27, + "probability": 0.1267 + }, + { + "start": 27229.27, + "end": 27230.63, + "probability": 0.1263 + }, + { + "start": 27232.51, + "end": 27237.77, + "probability": 0.1424 + }, + { + "start": 27238.59, + "end": 27242.67, + "probability": 0.0831 + }, + { + "start": 27252.45, + "end": 27252.57, + "probability": 0.2646 + }, + { + "start": 27252.57, + "end": 27256.75, + "probability": 0.3253 + }, + { + "start": 27274.01, + "end": 27274.73, + "probability": 0.5433 + }, + { + "start": 27276.43, + "end": 27279.37, + "probability": 0.8677 + }, + { + "start": 27280.39, + "end": 27282.81, + "probability": 0.908 + }, + { + "start": 27282.91, + "end": 27283.59, + "probability": 0.7928 + }, + { + "start": 27283.67, + "end": 27284.25, + "probability": 0.8268 + }, + { + "start": 27284.45, + "end": 27285.69, + "probability": 0.7191 + }, + { + "start": 27287.23, + "end": 27289.47, + "probability": 0.9792 + }, + { + "start": 27290.29, + "end": 27295.63, + "probability": 0.9979 + }, + { + "start": 27296.47, + "end": 27302.11, + "probability": 0.9941 + }, + { + "start": 27302.79, + "end": 27305.73, + "probability": 0.9921 + }, + { + "start": 27307.05, + "end": 27307.77, + "probability": 0.8794 + }, + { + "start": 27309.87, + "end": 27312.29, + "probability": 0.9964 + }, + { + "start": 27313.09, + "end": 27318.73, + "probability": 0.9844 + }, + { + "start": 27319.55, + "end": 27322.59, + "probability": 0.9943 + }, + { + "start": 27322.59, + "end": 27325.81, + "probability": 0.9985 + }, + { + "start": 27328.95, + "end": 27329.65, + "probability": 0.9001 + }, + { + "start": 27330.59, + "end": 27333.75, + "probability": 0.9075 + }, + { + "start": 27334.53, + "end": 27340.01, + "probability": 0.9584 + }, + { + "start": 27340.91, + "end": 27344.15, + "probability": 0.9969 + }, + { + "start": 27346.97, + "end": 27350.03, + "probability": 0.8402 + }, + { + "start": 27353.15, + "end": 27354.07, + "probability": 0.9427 + }, + { + "start": 27354.15, + "end": 27356.89, + "probability": 0.9366 + }, + { + "start": 27358.27, + "end": 27363.03, + "probability": 0.7636 + }, + { + "start": 27363.55, + "end": 27365.93, + "probability": 0.9948 + }, + { + "start": 27366.85, + "end": 27374.67, + "probability": 0.9727 + }, + { + "start": 27374.99, + "end": 27375.69, + "probability": 0.9803 + }, + { + "start": 27378.03, + "end": 27378.71, + "probability": 0.4774 + }, + { + "start": 27381.57, + "end": 27386.31, + "probability": 0.6768 + }, + { + "start": 27386.43, + "end": 27388.99, + "probability": 0.9009 + }, + { + "start": 27389.95, + "end": 27392.69, + "probability": 0.9963 + }, + { + "start": 27392.81, + "end": 27394.89, + "probability": 0.9984 + }, + { + "start": 27397.45, + "end": 27400.35, + "probability": 0.9163 + }, + { + "start": 27401.69, + "end": 27405.19, + "probability": 0.9166 + }, + { + "start": 27407.59, + "end": 27407.69, + "probability": 0.901 + }, + { + "start": 27409.27, + "end": 27411.49, + "probability": 0.9067 + }, + { + "start": 27413.75, + "end": 27415.85, + "probability": 0.7685 + }, + { + "start": 27416.69, + "end": 27420.71, + "probability": 0.9726 + }, + { + "start": 27421.25, + "end": 27424.23, + "probability": 0.9679 + }, + { + "start": 27424.89, + "end": 27431.45, + "probability": 0.9829 + }, + { + "start": 27432.25, + "end": 27434.35, + "probability": 0.9944 + }, + { + "start": 27434.83, + "end": 27437.09, + "probability": 0.9978 + }, + { + "start": 27437.63, + "end": 27440.51, + "probability": 0.9393 + }, + { + "start": 27441.07, + "end": 27442.07, + "probability": 0.9812 + }, + { + "start": 27443.55, + "end": 27449.25, + "probability": 0.9377 + }, + { + "start": 27451.47, + "end": 27453.95, + "probability": 0.8755 + }, + { + "start": 27454.37, + "end": 27455.15, + "probability": 0.7661 + }, + { + "start": 27455.69, + "end": 27462.07, + "probability": 0.9685 + }, + { + "start": 27462.75, + "end": 27465.13, + "probability": 0.99 + }, + { + "start": 27466.35, + "end": 27467.89, + "probability": 0.7591 + }, + { + "start": 27468.13, + "end": 27469.65, + "probability": 0.8263 + }, + { + "start": 27469.75, + "end": 27470.33, + "probability": 0.5291 + }, + { + "start": 27470.51, + "end": 27471.89, + "probability": 0.7106 + }, + { + "start": 27473.01, + "end": 27473.55, + "probability": 0.5367 + }, + { + "start": 27474.07, + "end": 27476.85, + "probability": 0.8242 + }, + { + "start": 27477.53, + "end": 27479.95, + "probability": 0.8186 + }, + { + "start": 27480.67, + "end": 27482.47, + "probability": 0.9348 + }, + { + "start": 27483.25, + "end": 27484.55, + "probability": 0.8529 + }, + { + "start": 27486.37, + "end": 27487.05, + "probability": 0.6311 + }, + { + "start": 27487.61, + "end": 27488.97, + "probability": 0.7506 + }, + { + "start": 27489.75, + "end": 27491.49, + "probability": 0.5648 + }, + { + "start": 27492.31, + "end": 27492.87, + "probability": 0.4338 + }, + { + "start": 27518.31, + "end": 27519.61, + "probability": 0.7518 + }, + { + "start": 27519.99, + "end": 27522.37, + "probability": 0.872 + }, + { + "start": 27522.37, + "end": 27522.61, + "probability": 0.3998 + }, + { + "start": 27522.73, + "end": 27524.25, + "probability": 0.9741 + }, + { + "start": 27524.67, + "end": 27526.13, + "probability": 0.9679 + }, + { + "start": 27526.57, + "end": 27527.46, + "probability": 0.9769 + }, + { + "start": 27527.57, + "end": 27529.81, + "probability": 0.9954 + }, + { + "start": 27529.99, + "end": 27531.07, + "probability": 0.9805 + }, + { + "start": 27531.21, + "end": 27532.14, + "probability": 0.998 + }, + { + "start": 27532.71, + "end": 27533.77, + "probability": 0.9678 + }, + { + "start": 27534.45, + "end": 27535.17, + "probability": 0.9664 + }, + { + "start": 27535.47, + "end": 27536.27, + "probability": 0.9663 + }, + { + "start": 27536.51, + "end": 27544.99, + "probability": 0.985 + }, + { + "start": 27545.39, + "end": 27548.07, + "probability": 0.7827 + }, + { + "start": 27548.15, + "end": 27549.59, + "probability": 0.8796 + }, + { + "start": 27549.79, + "end": 27551.33, + "probability": 0.9733 + }, + { + "start": 27551.83, + "end": 27556.37, + "probability": 0.9054 + }, + { + "start": 27556.47, + "end": 27557.49, + "probability": 0.401 + }, + { + "start": 27557.81, + "end": 27561.43, + "probability": 0.9324 + }, + { + "start": 27561.89, + "end": 27564.57, + "probability": 0.9865 + }, + { + "start": 27565.07, + "end": 27565.86, + "probability": 0.9951 + }, + { + "start": 27566.01, + "end": 27567.14, + "probability": 0.9595 + }, + { + "start": 27567.39, + "end": 27568.71, + "probability": 0.9787 + }, + { + "start": 27568.81, + "end": 27571.23, + "probability": 0.9579 + }, + { + "start": 27571.67, + "end": 27574.39, + "probability": 0.8833 + }, + { + "start": 27574.55, + "end": 27575.55, + "probability": 0.0669 + }, + { + "start": 27575.55, + "end": 27579.07, + "probability": 0.7182 + }, + { + "start": 27579.31, + "end": 27580.61, + "probability": 0.9011 + }, + { + "start": 27581.05, + "end": 27584.05, + "probability": 0.8544 + }, + { + "start": 27584.05, + "end": 27585.69, + "probability": 0.1319 + }, + { + "start": 27585.95, + "end": 27586.23, + "probability": 0.2698 + }, + { + "start": 27586.77, + "end": 27587.21, + "probability": 0.8398 + }, + { + "start": 27587.23, + "end": 27589.05, + "probability": 0.3076 + }, + { + "start": 27589.47, + "end": 27590.05, + "probability": 0.3211 + }, + { + "start": 27591.71, + "end": 27591.87, + "probability": 0.1596 + }, + { + "start": 27591.87, + "end": 27591.87, + "probability": 0.0762 + }, + { + "start": 27591.87, + "end": 27591.87, + "probability": 0.106 + }, + { + "start": 27591.87, + "end": 27591.87, + "probability": 0.0414 + }, + { + "start": 27591.87, + "end": 27593.27, + "probability": 0.3901 + }, + { + "start": 27593.53, + "end": 27594.13, + "probability": 0.5899 + }, + { + "start": 27594.31, + "end": 27596.47, + "probability": 0.968 + }, + { + "start": 27597.35, + "end": 27600.39, + "probability": 0.9694 + }, + { + "start": 27600.79, + "end": 27603.45, + "probability": 0.9764 + }, + { + "start": 27603.57, + "end": 27604.77, + "probability": 0.9718 + }, + { + "start": 27605.09, + "end": 27606.59, + "probability": 0.9971 + }, + { + "start": 27607.39, + "end": 27613.65, + "probability": 0.9655 + }, + { + "start": 27614.61, + "end": 27618.09, + "probability": 0.9621 + }, + { + "start": 27618.23, + "end": 27619.48, + "probability": 0.9912 + }, + { + "start": 27620.34, + "end": 27620.41, + "probability": 0.0226 + }, + { + "start": 27620.41, + "end": 27623.93, + "probability": 0.9607 + }, + { + "start": 27624.87, + "end": 27627.81, + "probability": 0.9478 + }, + { + "start": 27628.27, + "end": 27631.61, + "probability": 0.9877 + }, + { + "start": 27631.69, + "end": 27633.25, + "probability": 0.886 + }, + { + "start": 27633.57, + "end": 27634.77, + "probability": 0.9826 + }, + { + "start": 27635.07, + "end": 27636.77, + "probability": 0.9229 + }, + { + "start": 27637.05, + "end": 27639.67, + "probability": 0.9479 + }, + { + "start": 27640.33, + "end": 27641.85, + "probability": 0.812 + }, + { + "start": 27641.85, + "end": 27642.13, + "probability": 0.5541 + }, + { + "start": 27642.21, + "end": 27642.9, + "probability": 0.981 + }, + { + "start": 27643.15, + "end": 27645.49, + "probability": 0.9157 + }, + { + "start": 27645.83, + "end": 27648.15, + "probability": 0.8872 + }, + { + "start": 27648.71, + "end": 27649.21, + "probability": 0.4648 + }, + { + "start": 27649.47, + "end": 27652.61, + "probability": 0.98 + }, + { + "start": 27652.61, + "end": 27657.07, + "probability": 0.9971 + }, + { + "start": 27657.43, + "end": 27659.01, + "probability": 0.9917 + }, + { + "start": 27659.21, + "end": 27662.19, + "probability": 0.9665 + }, + { + "start": 27662.71, + "end": 27663.49, + "probability": 0.726 + }, + { + "start": 27663.69, + "end": 27667.73, + "probability": 0.9894 + }, + { + "start": 27668.05, + "end": 27668.84, + "probability": 0.9614 + }, + { + "start": 27669.39, + "end": 27671.17, + "probability": 0.9868 + }, + { + "start": 27672.63, + "end": 27673.65, + "probability": 0.882 + }, + { + "start": 27673.99, + "end": 27674.79, + "probability": 0.9478 + }, + { + "start": 27675.15, + "end": 27679.73, + "probability": 0.9968 + }, + { + "start": 27679.73, + "end": 27683.41, + "probability": 0.9912 + }, + { + "start": 27684.09, + "end": 27685.03, + "probability": 0.9498 + }, + { + "start": 27685.31, + "end": 27686.89, + "probability": 0.925 + }, + { + "start": 27687.27, + "end": 27687.37, + "probability": 0.124 + }, + { + "start": 27687.37, + "end": 27687.37, + "probability": 0.0174 + }, + { + "start": 27687.37, + "end": 27690.05, + "probability": 0.8646 + }, + { + "start": 27690.05, + "end": 27694.25, + "probability": 0.9839 + }, + { + "start": 27694.75, + "end": 27697.03, + "probability": 0.2042 + }, + { + "start": 27697.33, + "end": 27700.27, + "probability": 0.4486 + }, + { + "start": 27700.45, + "end": 27701.51, + "probability": 0.122 + }, + { + "start": 27701.51, + "end": 27701.51, + "probability": 0.0198 + }, + { + "start": 27701.51, + "end": 27701.51, + "probability": 0.046 + }, + { + "start": 27701.51, + "end": 27701.51, + "probability": 0.601 + }, + { + "start": 27701.51, + "end": 27708.01, + "probability": 0.9937 + }, + { + "start": 27708.27, + "end": 27712.13, + "probability": 0.9358 + }, + { + "start": 27712.27, + "end": 27712.35, + "probability": 0.4005 + }, + { + "start": 27712.37, + "end": 27713.03, + "probability": 0.6099 + }, + { + "start": 27713.13, + "end": 27715.55, + "probability": 0.9883 + }, + { + "start": 27715.79, + "end": 27718.79, + "probability": 0.9242 + }, + { + "start": 27718.79, + "end": 27719.19, + "probability": 0.7794 + }, + { + "start": 27719.41, + "end": 27720.87, + "probability": 0.9969 + }, + { + "start": 27721.39, + "end": 27724.07, + "probability": 0.9595 + }, + { + "start": 27724.09, + "end": 27729.15, + "probability": 0.9575 + }, + { + "start": 27729.33, + "end": 27730.03, + "probability": 0.4258 + }, + { + "start": 27730.03, + "end": 27730.33, + "probability": 0.4987 + }, + { + "start": 27730.35, + "end": 27730.35, + "probability": 0.4539 + }, + { + "start": 27730.35, + "end": 27730.35, + "probability": 0.3869 + }, + { + "start": 27730.35, + "end": 27731.35, + "probability": 0.6982 + }, + { + "start": 27732.01, + "end": 27732.65, + "probability": 0.6852 + }, + { + "start": 27733.13, + "end": 27735.31, + "probability": 0.9526 + }, + { + "start": 27736.99, + "end": 27737.09, + "probability": 0.1697 + }, + { + "start": 27737.09, + "end": 27737.48, + "probability": 0.1325 + }, + { + "start": 27738.33, + "end": 27740.79, + "probability": 0.5515 + }, + { + "start": 27740.91, + "end": 27741.47, + "probability": 0.5982 + }, + { + "start": 27741.55, + "end": 27743.53, + "probability": 0.7947 + }, + { + "start": 27743.97, + "end": 27745.51, + "probability": 0.0423 + }, + { + "start": 27747.01, + "end": 27749.83, + "probability": 0.1585 + }, + { + "start": 27749.83, + "end": 27749.99, + "probability": 0.0554 + }, + { + "start": 27749.99, + "end": 27749.99, + "probability": 0.3465 + }, + { + "start": 27749.99, + "end": 27749.99, + "probability": 0.0599 + }, + { + "start": 27749.99, + "end": 27749.99, + "probability": 0.197 + }, + { + "start": 27749.99, + "end": 27750.31, + "probability": 0.1207 + }, + { + "start": 27750.31, + "end": 27752.03, + "probability": 0.5129 + }, + { + "start": 27753.28, + "end": 27754.81, + "probability": 0.3029 + }, + { + "start": 27754.81, + "end": 27756.23, + "probability": 0.3611 + }, + { + "start": 27756.45, + "end": 27758.55, + "probability": 0.2637 + }, + { + "start": 27758.79, + "end": 27760.37, + "probability": 0.1219 + }, + { + "start": 27760.53, + "end": 27761.65, + "probability": 0.9106 + }, + { + "start": 27761.77, + "end": 27763.5, + "probability": 0.8734 + }, + { + "start": 27764.07, + "end": 27764.81, + "probability": 0.1821 + }, + { + "start": 27764.95, + "end": 27765.39, + "probability": 0.062 + }, + { + "start": 27765.39, + "end": 27765.69, + "probability": 0.6586 + }, + { + "start": 27767.97, + "end": 27770.39, + "probability": 0.4599 + }, + { + "start": 27770.43, + "end": 27770.85, + "probability": 0.7709 + }, + { + "start": 27772.65, + "end": 27774.79, + "probability": 0.9706 + }, + { + "start": 27777.25, + "end": 27781.87, + "probability": 0.9971 + }, + { + "start": 27783.73, + "end": 27785.71, + "probability": 0.8043 + }, + { + "start": 27787.51, + "end": 27791.21, + "probability": 0.7829 + }, + { + "start": 27792.45, + "end": 27799.6, + "probability": 0.9973 + }, + { + "start": 27800.07, + "end": 27800.77, + "probability": 0.6217 + }, + { + "start": 27801.35, + "end": 27801.37, + "probability": 0.0292 + }, + { + "start": 27801.37, + "end": 27801.37, + "probability": 0.0396 + }, + { + "start": 27801.37, + "end": 27801.69, + "probability": 0.2976 + }, + { + "start": 27801.77, + "end": 27803.67, + "probability": 0.9893 + }, + { + "start": 27803.99, + "end": 27804.51, + "probability": 0.2915 + }, + { + "start": 27804.51, + "end": 27804.69, + "probability": 0.3465 + }, + { + "start": 27804.69, + "end": 27805.29, + "probability": 0.4021 + }, + { + "start": 27806.11, + "end": 27806.69, + "probability": 0.2537 + }, + { + "start": 27807.53, + "end": 27808.61, + "probability": 0.1597 + }, + { + "start": 27808.69, + "end": 27808.69, + "probability": 0.1268 + }, + { + "start": 27808.69, + "end": 27809.97, + "probability": 0.3327 + }, + { + "start": 27809.97, + "end": 27810.79, + "probability": 0.7316 + }, + { + "start": 27810.91, + "end": 27811.09, + "probability": 0.8156 + }, + { + "start": 27813.15, + "end": 27815.15, + "probability": 0.0448 + }, + { + "start": 27815.57, + "end": 27816.39, + "probability": 0.0186 + }, + { + "start": 27818.25, + "end": 27818.55, + "probability": 0.0915 + }, + { + "start": 27818.55, + "end": 27819.11, + "probability": 0.236 + }, + { + "start": 27819.19, + "end": 27819.45, + "probability": 0.3647 + }, + { + "start": 27820.27, + "end": 27821.61, + "probability": 0.651 + }, + { + "start": 27822.23, + "end": 27824.39, + "probability": 0.9725 + }, + { + "start": 27824.53, + "end": 27825.67, + "probability": 0.7837 + }, + { + "start": 27825.75, + "end": 27825.75, + "probability": 0.6465 + }, + { + "start": 27825.75, + "end": 27826.09, + "probability": 0.7331 + }, + { + "start": 27842.31, + "end": 27842.55, + "probability": 0.7642 + }, + { + "start": 27844.57, + "end": 27844.79, + "probability": 0.0353 + }, + { + "start": 27844.79, + "end": 27844.79, + "probability": 0.1447 + }, + { + "start": 27844.79, + "end": 27846.31, + "probability": 0.0482 + }, + { + "start": 27847.09, + "end": 27848.77, + "probability": 0.6776 + }, + { + "start": 27848.99, + "end": 27851.75, + "probability": 0.8483 + }, + { + "start": 27852.59, + "end": 27856.73, + "probability": 0.9645 + }, + { + "start": 27856.73, + "end": 27860.17, + "probability": 0.9911 + }, + { + "start": 27860.79, + "end": 27862.23, + "probability": 0.9945 + }, + { + "start": 27862.79, + "end": 27864.77, + "probability": 0.9963 + }, + { + "start": 27865.97, + "end": 27868.77, + "probability": 0.9569 + }, + { + "start": 27870.63, + "end": 27871.47, + "probability": 0.7273 + }, + { + "start": 27872.19, + "end": 27872.79, + "probability": 0.891 + }, + { + "start": 27873.89, + "end": 27874.61, + "probability": 0.9705 + }, + { + "start": 27875.81, + "end": 27879.67, + "probability": 0.9969 + }, + { + "start": 27881.07, + "end": 27883.55, + "probability": 0.9974 + }, + { + "start": 27884.09, + "end": 27887.91, + "probability": 0.9972 + }, + { + "start": 27888.61, + "end": 27893.31, + "probability": 0.9921 + }, + { + "start": 27893.93, + "end": 27895.51, + "probability": 0.9697 + }, + { + "start": 27896.21, + "end": 27903.09, + "probability": 0.9842 + }, + { + "start": 27903.13, + "end": 27904.01, + "probability": 0.7681 + }, + { + "start": 27904.73, + "end": 27904.77, + "probability": 0.0805 + }, + { + "start": 27904.77, + "end": 27904.77, + "probability": 0.0936 + }, + { + "start": 27904.77, + "end": 27905.11, + "probability": 0.4524 + }, + { + "start": 27905.47, + "end": 27905.47, + "probability": 0.2458 + }, + { + "start": 27905.47, + "end": 27905.47, + "probability": 0.2513 + }, + { + "start": 27905.47, + "end": 27905.47, + "probability": 0.2156 + }, + { + "start": 27905.47, + "end": 27905.65, + "probability": 0.6829 + }, + { + "start": 27905.69, + "end": 27906.95, + "probability": 0.8818 + }, + { + "start": 27907.09, + "end": 27908.25, + "probability": 0.9692 + }, + { + "start": 27908.33, + "end": 27909.29, + "probability": 0.9672 + }, + { + "start": 27909.29, + "end": 27913.43, + "probability": 0.9959 + }, + { + "start": 27915.75, + "end": 27917.77, + "probability": 0.9993 + }, + { + "start": 27919.27, + "end": 27920.95, + "probability": 0.7536 + }, + { + "start": 27920.95, + "end": 27920.95, + "probability": 0.6418 + }, + { + "start": 27920.95, + "end": 27921.89, + "probability": 0.9216 + }, + { + "start": 27921.99, + "end": 27923.05, + "probability": 0.9708 + }, + { + "start": 27923.09, + "end": 27924.25, + "probability": 0.996 + }, + { + "start": 27924.41, + "end": 27925.89, + "probability": 0.9024 + }, + { + "start": 27926.25, + "end": 27927.03, + "probability": 0.5568 + }, + { + "start": 27927.43, + "end": 27933.59, + "probability": 0.9832 + }, + { + "start": 27937.43, + "end": 27940.01, + "probability": 0.9525 + }, + { + "start": 27940.45, + "end": 27948.11, + "probability": 0.979 + }, + { + "start": 27949.39, + "end": 27950.95, + "probability": 0.9469 + }, + { + "start": 27951.49, + "end": 27953.99, + "probability": 0.8772 + }, + { + "start": 27954.81, + "end": 27958.01, + "probability": 0.9838 + }, + { + "start": 27959.79, + "end": 27964.71, + "probability": 0.9811 + }, + { + "start": 27966.85, + "end": 27972.11, + "probability": 0.9858 + }, + { + "start": 27972.63, + "end": 27973.99, + "probability": 0.9385 + }, + { + "start": 27975.37, + "end": 27977.28, + "probability": 0.9152 + }, + { + "start": 27978.39, + "end": 27980.11, + "probability": 0.9926 + }, + { + "start": 27981.77, + "end": 27987.81, + "probability": 0.998 + }, + { + "start": 27989.23, + "end": 27990.31, + "probability": 0.9622 + }, + { + "start": 27990.89, + "end": 27991.37, + "probability": 0.9969 + }, + { + "start": 27992.51, + "end": 27997.93, + "probability": 0.999 + }, + { + "start": 27999.39, + "end": 28001.45, + "probability": 0.9954 + }, + { + "start": 28002.61, + "end": 28004.93, + "probability": 0.9821 + }, + { + "start": 28007.51, + "end": 28008.95, + "probability": 0.629 + }, + { + "start": 28009.13, + "end": 28010.17, + "probability": 0.8294 + }, + { + "start": 28017.81, + "end": 28017.95, + "probability": 0.253 + }, + { + "start": 28025.07, + "end": 28030.35, + "probability": 0.2588 + }, + { + "start": 28032.45, + "end": 28032.97, + "probability": 0.3545 + }, + { + "start": 28033.55, + "end": 28033.55, + "probability": 0.398 + }, + { + "start": 28033.55, + "end": 28033.83, + "probability": 0.5259 + }, + { + "start": 28033.99, + "end": 28035.03, + "probability": 0.9538 + }, + { + "start": 28035.37, + "end": 28035.47, + "probability": 0.6919 + }, + { + "start": 28036.47, + "end": 28037.07, + "probability": 0.7255 + }, + { + "start": 28037.11, + "end": 28037.57, + "probability": 0.4238 + }, + { + "start": 28037.69, + "end": 28039.33, + "probability": 0.7881 + }, + { + "start": 28039.47, + "end": 28041.97, + "probability": 0.9569 + }, + { + "start": 28044.73, + "end": 28046.49, + "probability": 0.9638 + }, + { + "start": 28047.09, + "end": 28049.95, + "probability": 0.0519 + }, + { + "start": 28050.77, + "end": 28052.19, + "probability": 0.019 + }, + { + "start": 28052.61, + "end": 28053.55, + "probability": 0.7386 + }, + { + "start": 28054.11, + "end": 28055.41, + "probability": 0.9865 + }, + { + "start": 28058.13, + "end": 28059.11, + "probability": 0.3358 + }, + { + "start": 28059.93, + "end": 28062.58, + "probability": 0.8807 + }, + { + "start": 28064.19, + "end": 28067.05, + "probability": 0.9991 + }, + { + "start": 28068.41, + "end": 28068.79, + "probability": 0.968 + }, + { + "start": 28070.37, + "end": 28071.29, + "probability": 0.6842 + }, + { + "start": 28071.93, + "end": 28075.07, + "probability": 0.882 + }, + { + "start": 28075.45, + "end": 28075.83, + "probability": 0.7341 + }, + { + "start": 28076.77, + "end": 28077.47, + "probability": 0.9229 + }, + { + "start": 28080.97, + "end": 28082.71, + "probability": 0.999 + }, + { + "start": 28084.09, + "end": 28086.05, + "probability": 0.8709 + }, + { + "start": 28088.65, + "end": 28091.07, + "probability": 0.9917 + }, + { + "start": 28092.57, + "end": 28096.35, + "probability": 0.9622 + }, + { + "start": 28098.67, + "end": 28101.35, + "probability": 0.98 + }, + { + "start": 28104.27, + "end": 28104.27, + "probability": 0.8123 + }, + { + "start": 28104.27, + "end": 28105.69, + "probability": 0.95 + }, + { + "start": 28107.33, + "end": 28109.61, + "probability": 0.9917 + }, + { + "start": 28109.61, + "end": 28112.35, + "probability": 0.9995 + }, + { + "start": 28113.77, + "end": 28114.79, + "probability": 0.9524 + }, + { + "start": 28115.81, + "end": 28119.79, + "probability": 0.9486 + }, + { + "start": 28120.59, + "end": 28122.23, + "probability": 0.9253 + }, + { + "start": 28122.59, + "end": 28124.71, + "probability": 0.9843 + }, + { + "start": 28125.19, + "end": 28127.17, + "probability": 0.9985 + }, + { + "start": 28128.87, + "end": 28130.97, + "probability": 0.9924 + }, + { + "start": 28131.85, + "end": 28134.74, + "probability": 0.9405 + }, + { + "start": 28136.59, + "end": 28137.47, + "probability": 0.5949 + }, + { + "start": 28138.99, + "end": 28141.49, + "probability": 0.5997 + }, + { + "start": 28142.25, + "end": 28150.19, + "probability": 0.1897 + }, + { + "start": 28151.89, + "end": 28152.79, + "probability": 0.4157 + }, + { + "start": 28152.79, + "end": 28152.79, + "probability": 0.4745 + }, + { + "start": 28152.79, + "end": 28153.65, + "probability": 0.3588 + }, + { + "start": 28154.67, + "end": 28155.17, + "probability": 0.5816 + }, + { + "start": 28156.23, + "end": 28158.57, + "probability": 0.9771 + }, + { + "start": 28159.05, + "end": 28159.81, + "probability": 0.4902 + }, + { + "start": 28160.25, + "end": 28161.65, + "probability": 0.9961 + }, + { + "start": 28163.11, + "end": 28163.8, + "probability": 0.4921 + }, + { + "start": 28163.99, + "end": 28168.53, + "probability": 0.9539 + }, + { + "start": 28168.71, + "end": 28169.64, + "probability": 0.9951 + }, + { + "start": 28170.57, + "end": 28171.51, + "probability": 0.8997 + }, + { + "start": 28172.81, + "end": 28173.69, + "probability": 0.9499 + }, + { + "start": 28175.15, + "end": 28176.27, + "probability": 0.9792 + }, + { + "start": 28177.21, + "end": 28180.25, + "probability": 0.7757 + }, + { + "start": 28181.19, + "end": 28184.21, + "probability": 0.1937 + }, + { + "start": 28184.65, + "end": 28189.09, + "probability": 0.687 + }, + { + "start": 28189.83, + "end": 28193.25, + "probability": 0.998 + }, + { + "start": 28195.03, + "end": 28197.93, + "probability": 0.9904 + }, + { + "start": 28199.61, + "end": 28202.31, + "probability": 0.9551 + }, + { + "start": 28202.95, + "end": 28205.21, + "probability": 0.9976 + }, + { + "start": 28206.05, + "end": 28207.39, + "probability": 0.9371 + }, + { + "start": 28208.51, + "end": 28209.43, + "probability": 0.8009 + }, + { + "start": 28210.09, + "end": 28212.77, + "probability": 0.9976 + }, + { + "start": 28213.57, + "end": 28218.61, + "probability": 0.8345 + }, + { + "start": 28219.45, + "end": 28221.99, + "probability": 0.9762 + }, + { + "start": 28222.71, + "end": 28224.25, + "probability": 0.9976 + }, + { + "start": 28224.83, + "end": 28226.37, + "probability": 0.9618 + }, + { + "start": 28226.89, + "end": 28228.13, + "probability": 0.8619 + }, + { + "start": 28228.17, + "end": 28232.24, + "probability": 0.8345 + }, + { + "start": 28232.43, + "end": 28233.51, + "probability": 0.7489 + }, + { + "start": 28233.67, + "end": 28233.87, + "probability": 0.2918 + }, + { + "start": 28233.93, + "end": 28234.11, + "probability": 0.3382 + }, + { + "start": 28234.67, + "end": 28237.43, + "probability": 0.9233 + }, + { + "start": 28237.57, + "end": 28239.65, + "probability": 0.8515 + }, + { + "start": 28239.71, + "end": 28241.79, + "probability": 0.7303 + }, + { + "start": 28246.11, + "end": 28248.16, + "probability": 0.0669 + }, + { + "start": 28255.56, + "end": 28257.59, + "probability": 0.7385 + }, + { + "start": 28257.99, + "end": 28258.87, + "probability": 0.8872 + }, + { + "start": 28264.29, + "end": 28266.71, + "probability": 0.7215 + }, + { + "start": 28266.79, + "end": 28267.99, + "probability": 0.8179 + }, + { + "start": 28268.17, + "end": 28269.01, + "probability": 0.8586 + }, + { + "start": 28269.13, + "end": 28270.87, + "probability": 0.9961 + }, + { + "start": 28270.97, + "end": 28271.85, + "probability": 0.7307 + }, + { + "start": 28272.53, + "end": 28274.23, + "probability": 0.7456 + }, + { + "start": 28274.31, + "end": 28274.95, + "probability": 0.9414 + }, + { + "start": 28276.03, + "end": 28278.69, + "probability": 0.993 + }, + { + "start": 28278.77, + "end": 28281.57, + "probability": 0.917 + }, + { + "start": 28282.11, + "end": 28284.85, + "probability": 0.8662 + }, + { + "start": 28285.49, + "end": 28288.01, + "probability": 0.9316 + }, + { + "start": 28288.35, + "end": 28291.67, + "probability": 0.9971 + }, + { + "start": 28291.67, + "end": 28293.93, + "probability": 0.891 + }, + { + "start": 28294.01, + "end": 28294.67, + "probability": 0.3538 + }, + { + "start": 28295.03, + "end": 28295.47, + "probability": 0.3633 + }, + { + "start": 28295.51, + "end": 28295.91, + "probability": 0.8482 + }, + { + "start": 28295.93, + "end": 28297.65, + "probability": 0.6315 + }, + { + "start": 28297.95, + "end": 28298.93, + "probability": 0.8289 + }, + { + "start": 28299.65, + "end": 28305.19, + "probability": 0.9528 + }, + { + "start": 28305.47, + "end": 28309.43, + "probability": 0.9813 + }, + { + "start": 28309.71, + "end": 28310.21, + "probability": 0.0504 + }, + { + "start": 28310.21, + "end": 28314.81, + "probability": 0.8816 + }, + { + "start": 28315.13, + "end": 28318.17, + "probability": 0.7909 + }, + { + "start": 28318.25, + "end": 28318.82, + "probability": 0.6448 + }, + { + "start": 28318.99, + "end": 28319.79, + "probability": 0.3571 + }, + { + "start": 28320.19, + "end": 28321.59, + "probability": 0.1656 + }, + { + "start": 28321.93, + "end": 28326.13, + "probability": 0.8831 + }, + { + "start": 28326.31, + "end": 28326.98, + "probability": 0.8607 + }, + { + "start": 28327.97, + "end": 28331.33, + "probability": 0.9061 + }, + { + "start": 28331.63, + "end": 28332.01, + "probability": 0.8877 + }, + { + "start": 28332.15, + "end": 28334.51, + "probability": 0.5464 + }, + { + "start": 28334.65, + "end": 28336.05, + "probability": 0.4582 + }, + { + "start": 28336.21, + "end": 28337.15, + "probability": 0.7532 + }, + { + "start": 28337.15, + "end": 28337.55, + "probability": 0.4228 + }, + { + "start": 28337.57, + "end": 28339.49, + "probability": 0.9597 + }, + { + "start": 28339.49, + "end": 28345.93, + "probability": 0.9784 + }, + { + "start": 28345.93, + "end": 28346.91, + "probability": 0.5327 + }, + { + "start": 28347.47, + "end": 28348.44, + "probability": 0.7786 + }, + { + "start": 28349.17, + "end": 28352.15, + "probability": 0.875 + }, + { + "start": 28352.15, + "end": 28353.37, + "probability": 0.2444 + }, + { + "start": 28353.65, + "end": 28354.19, + "probability": 0.2861 + }, + { + "start": 28354.83, + "end": 28357.79, + "probability": 0.5257 + }, + { + "start": 28357.93, + "end": 28359.01, + "probability": 0.4338 + }, + { + "start": 28359.76, + "end": 28362.07, + "probability": 0.8482 + }, + { + "start": 28362.07, + "end": 28364.25, + "probability": 0.4422 + }, + { + "start": 28364.37, + "end": 28365.51, + "probability": 0.8092 + }, + { + "start": 28365.51, + "end": 28368.12, + "probability": 0.5687 + }, + { + "start": 28368.71, + "end": 28370.29, + "probability": 0.9486 + }, + { + "start": 28370.39, + "end": 28372.85, + "probability": 0.8534 + }, + { + "start": 28372.89, + "end": 28374.81, + "probability": 0.4532 + }, + { + "start": 28374.93, + "end": 28375.05, + "probability": 0.5112 + }, + { + "start": 28375.05, + "end": 28376.41, + "probability": 0.6193 + }, + { + "start": 28376.79, + "end": 28380.93, + "probability": 0.7564 + }, + { + "start": 28381.27, + "end": 28381.43, + "probability": 0.5292 + }, + { + "start": 28381.53, + "end": 28382.79, + "probability": 0.822 + }, + { + "start": 28382.97, + "end": 28389.23, + "probability": 0.9416 + }, + { + "start": 28389.53, + "end": 28391.65, + "probability": 0.9051 + }, + { + "start": 28392.07, + "end": 28396.39, + "probability": 0.9963 + }, + { + "start": 28396.81, + "end": 28397.92, + "probability": 0.9642 + }, + { + "start": 28398.45, + "end": 28399.89, + "probability": 0.9871 + }, + { + "start": 28400.47, + "end": 28401.73, + "probability": 0.709 + }, + { + "start": 28402.09, + "end": 28403.67, + "probability": 0.693 + }, + { + "start": 28405.31, + "end": 28409.97, + "probability": 0.4674 + }, + { + "start": 28410.53, + "end": 28410.95, + "probability": 0.0376 + }, + { + "start": 28410.95, + "end": 28412.71, + "probability": 0.5539 + }, + { + "start": 28413.13, + "end": 28422.15, + "probability": 0.4104 + }, + { + "start": 28423.08, + "end": 28423.47, + "probability": 0.0194 + }, + { + "start": 28423.47, + "end": 28423.47, + "probability": 0.0416 + }, + { + "start": 28423.47, + "end": 28425.49, + "probability": 0.1943 + }, + { + "start": 28425.55, + "end": 28429.57, + "probability": 0.9126 + }, + { + "start": 28429.89, + "end": 28432.05, + "probability": 0.7235 + }, + { + "start": 28432.53, + "end": 28434.83, + "probability": 0.7268 + }, + { + "start": 28435.17, + "end": 28438.57, + "probability": 0.9966 + }, + { + "start": 28439.53, + "end": 28442.17, + "probability": 0.6403 + }, + { + "start": 28442.31, + "end": 28445.81, + "probability": 0.8135 + }, + { + "start": 28445.97, + "end": 28448.35, + "probability": 0.7289 + }, + { + "start": 28449.19, + "end": 28449.95, + "probability": 0.9517 + }, + { + "start": 28449.99, + "end": 28450.35, + "probability": 0.2757 + }, + { + "start": 28450.95, + "end": 28453.35, + "probability": 0.8596 + }, + { + "start": 28454.03, + "end": 28456.65, + "probability": 0.801 + }, + { + "start": 28456.65, + "end": 28456.72, + "probability": 0.1859 + }, + { + "start": 28458.19, + "end": 28458.47, + "probability": 0.1578 + }, + { + "start": 28460.03, + "end": 28467.35, + "probability": 0.5733 + }, + { + "start": 28467.35, + "end": 28469.27, + "probability": 0.0084 + }, + { + "start": 28473.71, + "end": 28477.95, + "probability": 0.4372 + }, + { + "start": 28478.81, + "end": 28482.33, + "probability": 0.8385 + }, + { + "start": 28482.51, + "end": 28485.47, + "probability": 0.8889 + }, + { + "start": 28485.75, + "end": 28486.61, + "probability": 0.1294 + }, + { + "start": 28486.61, + "end": 28486.71, + "probability": 0.6752 + }, + { + "start": 28486.71, + "end": 28492.83, + "probability": 0.5421 + }, + { + "start": 28495.73, + "end": 28497.05, + "probability": 0.6726 + }, + { + "start": 28498.83, + "end": 28503.05, + "probability": 0.3562 + }, + { + "start": 28503.89, + "end": 28507.15, + "probability": 0.816 + }, + { + "start": 28507.51, + "end": 28510.41, + "probability": 0.8864 + }, + { + "start": 28510.75, + "end": 28511.09, + "probability": 0.2051 + }, + { + "start": 28511.21, + "end": 28511.21, + "probability": 0.293 + }, + { + "start": 28511.21, + "end": 28512.19, + "probability": 0.8704 + }, + { + "start": 28512.33, + "end": 28513.59, + "probability": 0.9803 + }, + { + "start": 28513.63, + "end": 28514.73, + "probability": 0.7013 + }, + { + "start": 28514.73, + "end": 28518.99, + "probability": 0.9675 + }, + { + "start": 28519.15, + "end": 28519.82, + "probability": 0.9182 + }, + { + "start": 28520.37, + "end": 28523.43, + "probability": 0.1898 + }, + { + "start": 28523.43, + "end": 28524.69, + "probability": 0.9649 + }, + { + "start": 28524.75, + "end": 28525.83, + "probability": 0.9268 + }, + { + "start": 28525.93, + "end": 28526.85, + "probability": 0.9323 + }, + { + "start": 28526.91, + "end": 28527.59, + "probability": 0.7568 + }, + { + "start": 28529.03, + "end": 28529.03, + "probability": 0.1118 + }, + { + "start": 28529.03, + "end": 28534.69, + "probability": 0.5403 + }, + { + "start": 28534.89, + "end": 28536.99, + "probability": 0.0101 + }, + { + "start": 28536.99, + "end": 28539.4, + "probability": 0.0425 + }, + { + "start": 28540.69, + "end": 28541.23, + "probability": 0.3832 + }, + { + "start": 28548.19, + "end": 28550.05, + "probability": 0.2987 + }, + { + "start": 28550.83, + "end": 28551.17, + "probability": 0.0887 + }, + { + "start": 28551.51, + "end": 28552.6, + "probability": 0.1572 + }, + { + "start": 28554.83, + "end": 28557.29, + "probability": 0.0451 + }, + { + "start": 28557.35, + "end": 28558.87, + "probability": 0.2406 + }, + { + "start": 28559.59, + "end": 28560.85, + "probability": 0.7003 + }, + { + "start": 28561.59, + "end": 28561.87, + "probability": 0.11 + }, + { + "start": 28563.74, + "end": 28567.73, + "probability": 0.918 + }, + { + "start": 28568.07, + "end": 28568.39, + "probability": 0.2102 + }, + { + "start": 28568.41, + "end": 28569.01, + "probability": 0.3939 + }, + { + "start": 28569.15, + "end": 28570.31, + "probability": 0.9574 + }, + { + "start": 28570.33, + "end": 28573.82, + "probability": 0.8901 + }, + { + "start": 28573.97, + "end": 28575.25, + "probability": 0.4987 + }, + { + "start": 28575.37, + "end": 28575.49, + "probability": 0.2526 + }, + { + "start": 28576.01, + "end": 28576.15, + "probability": 0.0827 + }, + { + "start": 28576.31, + "end": 28578.49, + "probability": 0.2193 + }, + { + "start": 28578.67, + "end": 28578.81, + "probability": 0.199 + }, + { + "start": 28578.81, + "end": 28578.81, + "probability": 0.2912 + }, + { + "start": 28578.81, + "end": 28578.85, + "probability": 0.7717 + }, + { + "start": 28579.11, + "end": 28580.01, + "probability": 0.5662 + }, + { + "start": 28580.13, + "end": 28580.97, + "probability": 0.6316 + }, + { + "start": 28581.03, + "end": 28582.29, + "probability": 0.8835 + }, + { + "start": 28582.39, + "end": 28584.71, + "probability": 0.7619 + }, + { + "start": 28584.91, + "end": 28588.97, + "probability": 0.5933 + }, + { + "start": 28589.93, + "end": 28591.33, + "probability": 0.7725 + }, + { + "start": 28591.37, + "end": 28591.93, + "probability": 0.8723 + }, + { + "start": 28591.95, + "end": 28592.39, + "probability": 0.7163 + }, + { + "start": 28592.91, + "end": 28595.81, + "probability": 0.2618 + }, + { + "start": 28595.97, + "end": 28598.37, + "probability": 0.7181 + }, + { + "start": 28598.89, + "end": 28600.39, + "probability": 0.73 + }, + { + "start": 28600.92, + "end": 28602.59, + "probability": 0.9119 + }, + { + "start": 28604.53, + "end": 28604.65, + "probability": 0.0336 + }, + { + "start": 28604.65, + "end": 28606.31, + "probability": 0.8117 + }, + { + "start": 28606.71, + "end": 28608.35, + "probability": 0.6887 + }, + { + "start": 28609.31, + "end": 28612.07, + "probability": 0.7338 + }, + { + "start": 28612.57, + "end": 28615.43, + "probability": 0.7188 + }, + { + "start": 28615.53, + "end": 28618.47, + "probability": 0.8779 + }, + { + "start": 28619.39, + "end": 28621.07, + "probability": 0.076 + }, + { + "start": 28621.07, + "end": 28622.69, + "probability": 0.6838 + }, + { + "start": 28623.99, + "end": 28630.93, + "probability": 0.4761 + }, + { + "start": 28631.01, + "end": 28631.96, + "probability": 0.5474 + }, + { + "start": 28634.45, + "end": 28634.53, + "probability": 0.3164 + }, + { + "start": 28637.21, + "end": 28638.41, + "probability": 0.1885 + }, + { + "start": 28638.61, + "end": 28640.39, + "probability": 0.3901 + }, + { + "start": 28640.43, + "end": 28641.61, + "probability": 0.6297 + }, + { + "start": 28641.97, + "end": 28643.55, + "probability": 0.7546 + }, + { + "start": 28643.55, + "end": 28644.04, + "probability": 0.5485 + }, + { + "start": 28644.69, + "end": 28646.15, + "probability": 0.5446 + }, + { + "start": 28646.17, + "end": 28648.99, + "probability": 0.5686 + }, + { + "start": 28649.63, + "end": 28650.31, + "probability": 0.0029 + }, + { + "start": 28650.59, + "end": 28651.65, + "probability": 0.3892 + }, + { + "start": 28651.89, + "end": 28652.45, + "probability": 0.2667 + }, + { + "start": 28652.59, + "end": 28657.05, + "probability": 0.6252 + }, + { + "start": 28657.49, + "end": 28658.6, + "probability": 0.9193 + }, + { + "start": 28659.46, + "end": 28662.02, + "probability": 0.2672 + }, + { + "start": 28662.1, + "end": 28665.68, + "probability": 0.9912 + }, + { + "start": 28666.12, + "end": 28673.46, + "probability": 0.9346 + }, + { + "start": 28673.6, + "end": 28674.42, + "probability": 0.9993 + }, + { + "start": 28675.36, + "end": 28679.2, + "probability": 0.575 + }, + { + "start": 28679.4, + "end": 28681.34, + "probability": 0.2817 + }, + { + "start": 28681.72, + "end": 28684.12, + "probability": 0.9946 + }, + { + "start": 28684.38, + "end": 28690.7, + "probability": 0.8008 + }, + { + "start": 28691.48, + "end": 28693.28, + "probability": 0.9534 + }, + { + "start": 28693.38, + "end": 28697.16, + "probability": 0.9106 + }, + { + "start": 28697.66, + "end": 28699.82, + "probability": 0.999 + }, + { + "start": 28700.04, + "end": 28703.54, + "probability": 0.9523 + }, + { + "start": 28703.56, + "end": 28706.06, + "probability": 0.8247 + }, + { + "start": 28708.06, + "end": 28711.82, + "probability": 0.0222 + }, + { + "start": 28712.14, + "end": 28712.56, + "probability": 0.0598 + }, + { + "start": 28712.56, + "end": 28713.2, + "probability": 0.0419 + }, + { + "start": 28714.87, + "end": 28717.02, + "probability": 0.5524 + }, + { + "start": 28717.1, + "end": 28717.5, + "probability": 0.8244 + }, + { + "start": 28717.66, + "end": 28721.68, + "probability": 0.9363 + }, + { + "start": 28721.74, + "end": 28728.2, + "probability": 0.1397 + }, + { + "start": 28729.2, + "end": 28731.12, + "probability": 0.2062 + }, + { + "start": 28734.46, + "end": 28734.56, + "probability": 0.0173 + }, + { + "start": 28735.32, + "end": 28738.76, + "probability": 0.4157 + }, + { + "start": 28739.3, + "end": 28740.28, + "probability": 0.007 + }, + { + "start": 28741.08, + "end": 28742.9, + "probability": 0.1001 + }, + { + "start": 28743.66, + "end": 28745.42, + "probability": 0.0314 + }, + { + "start": 28747.19, + "end": 28751.56, + "probability": 0.3076 + }, + { + "start": 28762.18, + "end": 28762.78, + "probability": 0.0507 + }, + { + "start": 28762.78, + "end": 28764.7, + "probability": 0.2887 + }, + { + "start": 28764.7, + "end": 28764.7, + "probability": 0.4125 + }, + { + "start": 28764.98, + "end": 28766.55, + "probability": 0.008 + }, + { + "start": 28773.14, + "end": 28774.68, + "probability": 0.0996 + }, + { + "start": 28774.86, + "end": 28775.97, + "probability": 0.0886 + }, + { + "start": 28776.42, + "end": 28777.44, + "probability": 0.0319 + }, + { + "start": 28777.5, + "end": 28777.94, + "probability": 0.0645 + }, + { + "start": 28779.2, + "end": 28782.9, + "probability": 0.067 + }, + { + "start": 28782.9, + "end": 28782.92, + "probability": 0.0263 + }, + { + "start": 28782.92, + "end": 28782.92, + "probability": 0.0068 + }, + { + "start": 28782.98, + "end": 28784.86, + "probability": 0.1644 + }, + { + "start": 28785.08, + "end": 28785.54, + "probability": 0.0426 + }, + { + "start": 28786.0, + "end": 28786.0, + "probability": 0.0 + }, + { + "start": 28786.0, + "end": 28786.0, + "probability": 0.0 + }, + { + "start": 28786.0, + "end": 28786.0, + "probability": 0.0 + }, + { + "start": 28786.0, + "end": 28786.0, + "probability": 0.0 + }, + { + "start": 28786.0, + "end": 28786.0, + "probability": 0.0 + }, + { + "start": 28786.0, + "end": 28786.0, + "probability": 0.0 + }, + { + "start": 28786.0, + "end": 28786.0, + "probability": 0.0 + }, + { + "start": 28786.0, + "end": 28786.0, + "probability": 0.0 + }, + { + "start": 28786.0, + "end": 28786.0, + "probability": 0.0 + }, + { + "start": 28786.38, + "end": 28786.38, + "probability": 0.2273 + }, + { + "start": 28786.38, + "end": 28786.38, + "probability": 0.0691 + }, + { + "start": 28786.38, + "end": 28786.48, + "probability": 0.1239 + }, + { + "start": 28787.1, + "end": 28789.0, + "probability": 0.0305 + }, + { + "start": 28789.3, + "end": 28790.14, + "probability": 0.6638 + }, + { + "start": 28790.26, + "end": 28795.7, + "probability": 0.899 + }, + { + "start": 28795.7, + "end": 28797.7, + "probability": 0.8396 + }, + { + "start": 28797.7, + "end": 28799.78, + "probability": 0.9303 + }, + { + "start": 28800.3, + "end": 28802.26, + "probability": 0.6553 + }, + { + "start": 28802.4, + "end": 28804.17, + "probability": 0.211 + }, + { + "start": 28805.82, + "end": 28806.16, + "probability": 0.3583 + }, + { + "start": 28806.16, + "end": 28807.86, + "probability": 0.731 + }, + { + "start": 28808.38, + "end": 28811.0, + "probability": 0.7947 + }, + { + "start": 28811.08, + "end": 28811.48, + "probability": 0.877 + }, + { + "start": 28811.6, + "end": 28814.1, + "probability": 0.8516 + }, + { + "start": 28814.48, + "end": 28820.27, + "probability": 0.9877 + }, + { + "start": 28822.72, + "end": 28823.52, + "probability": 0.3738 + }, + { + "start": 28826.6, + "end": 28829.08, + "probability": 0.6182 + }, + { + "start": 28829.08, + "end": 28830.1, + "probability": 0.3978 + }, + { + "start": 28830.1, + "end": 28830.1, + "probability": 0.7136 + }, + { + "start": 28830.1, + "end": 28830.1, + "probability": 0.4632 + }, + { + "start": 28830.12, + "end": 28831.0, + "probability": 0.7481 + }, + { + "start": 28831.2, + "end": 28832.02, + "probability": 0.6839 + }, + { + "start": 28832.12, + "end": 28833.36, + "probability": 0.8374 + }, + { + "start": 28833.64, + "end": 28834.2, + "probability": 0.5302 + }, + { + "start": 28834.28, + "end": 28834.94, + "probability": 0.6122 + }, + { + "start": 28835.14, + "end": 28835.76, + "probability": 0.7349 + }, + { + "start": 28836.4, + "end": 28836.66, + "probability": 0.0635 + }, + { + "start": 28836.66, + "end": 28836.66, + "probability": 0.6061 + }, + { + "start": 28836.66, + "end": 28836.66, + "probability": 0.6385 + }, + { + "start": 28836.66, + "end": 28836.66, + "probability": 0.6655 + }, + { + "start": 28836.66, + "end": 28838.0, + "probability": 0.5503 + }, + { + "start": 28838.08, + "end": 28839.2, + "probability": 0.7583 + }, + { + "start": 28839.28, + "end": 28839.62, + "probability": 0.876 + }, + { + "start": 28840.1, + "end": 28842.01, + "probability": 0.0357 + }, + { + "start": 28842.04, + "end": 28845.12, + "probability": 0.5142 + }, + { + "start": 28846.72, + "end": 28849.9, + "probability": 0.8858 + }, + { + "start": 28850.52, + "end": 28853.32, + "probability": 0.9589 + }, + { + "start": 28853.52, + "end": 28856.44, + "probability": 0.9418 + }, + { + "start": 28856.58, + "end": 28858.22, + "probability": 0.7751 + }, + { + "start": 28858.22, + "end": 28864.19, + "probability": 0.9856 + }, + { + "start": 28864.57, + "end": 28868.39, + "probability": 0.75 + }, + { + "start": 28868.95, + "end": 28871.87, + "probability": 0.922 + }, + { + "start": 28871.95, + "end": 28872.51, + "probability": 0.7777 + }, + { + "start": 28873.09, + "end": 28874.57, + "probability": 0.8548 + }, + { + "start": 28874.71, + "end": 28875.91, + "probability": 0.9744 + }, + { + "start": 28875.91, + "end": 28878.49, + "probability": 0.9965 + }, + { + "start": 28878.97, + "end": 28881.87, + "probability": 0.7038 + }, + { + "start": 28882.31, + "end": 28883.08, + "probability": 0.4818 + }, + { + "start": 28884.05, + "end": 28885.75, + "probability": 0.7668 + }, + { + "start": 28886.17, + "end": 28886.81, + "probability": 0.0944 + }, + { + "start": 28888.49, + "end": 28889.85, + "probability": 0.1049 + }, + { + "start": 28890.31, + "end": 28890.79, + "probability": 0.712 + }, + { + "start": 28891.43, + "end": 28892.31, + "probability": 0.3382 + }, + { + "start": 28892.41, + "end": 28893.43, + "probability": 0.894 + }, + { + "start": 28894.03, + "end": 28895.23, + "probability": 0.8295 + }, + { + "start": 28895.27, + "end": 28898.01, + "probability": 0.6312 + }, + { + "start": 28906.67, + "end": 28912.91, + "probability": 0.6746 + }, + { + "start": 28912.91, + "end": 28919.15, + "probability": 0.598 + }, + { + "start": 28919.25, + "end": 28920.71, + "probability": 0.146 + }, + { + "start": 28920.79, + "end": 28921.51, + "probability": 0.7942 + }, + { + "start": 28921.75, + "end": 28922.25, + "probability": 0.4477 + }, + { + "start": 28922.47, + "end": 28925.17, + "probability": 0.1134 + }, + { + "start": 28925.17, + "end": 28927.41, + "probability": 0.4655 + }, + { + "start": 28928.47, + "end": 28930.45, + "probability": 0.5253 + }, + { + "start": 28930.47, + "end": 28931.67, + "probability": 0.5713 + }, + { + "start": 28931.69, + "end": 28933.55, + "probability": 0.6135 + }, + { + "start": 28937.77, + "end": 28937.99, + "probability": 0.4767 + }, + { + "start": 28937.99, + "end": 28943.91, + "probability": 0.4342 + }, + { + "start": 28946.29, + "end": 28949.23, + "probability": 0.0535 + }, + { + "start": 28954.81, + "end": 28957.93, + "probability": 0.0557 + }, + { + "start": 28958.97, + "end": 28960.43, + "probability": 0.1044 + }, + { + "start": 28960.45, + "end": 28961.75, + "probability": 0.0339 + }, + { + "start": 28962.89, + "end": 28962.89, + "probability": 0.0977 + }, + { + "start": 28962.89, + "end": 28962.89, + "probability": 0.1203 + }, + { + "start": 28963.25, + "end": 28966.89, + "probability": 0.0081 + }, + { + "start": 28966.89, + "end": 28967.33, + "probability": 0.0867 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.0, + "end": 28986.0, + "probability": 0.0 + }, + { + "start": 28986.14, + "end": 28987.82, + "probability": 0.9098 + }, + { + "start": 28990.46, + "end": 28992.68, + "probability": 0.2462 + }, + { + "start": 28997.56, + "end": 28998.58, + "probability": 0.3652 + }, + { + "start": 28998.88, + "end": 29000.18, + "probability": 0.3184 + }, + { + "start": 29001.3, + "end": 29003.68, + "probability": 0.4821 + }, + { + "start": 29008.34, + "end": 29011.88, + "probability": 0.8851 + }, + { + "start": 29012.02, + "end": 29015.26, + "probability": 0.9927 + }, + { + "start": 29015.3, + "end": 29019.78, + "probability": 0.9944 + }, + { + "start": 29019.9, + "end": 29020.28, + "probability": 0.7566 + }, + { + "start": 29023.94, + "end": 29024.28, + "probability": 0.1133 + }, + { + "start": 29024.28, + "end": 29025.34, + "probability": 0.746 + }, + { + "start": 29025.52, + "end": 29027.46, + "probability": 0.6823 + }, + { + "start": 29027.6, + "end": 29033.04, + "probability": 0.7504 + }, + { + "start": 29036.8, + "end": 29037.0, + "probability": 0.0017 + }, + { + "start": 29037.2, + "end": 29040.74, + "probability": 0.6789 + }, + { + "start": 29040.86, + "end": 29043.58, + "probability": 0.9668 + }, + { + "start": 29043.66, + "end": 29044.26, + "probability": 0.6935 + }, + { + "start": 29044.46, + "end": 29046.88, + "probability": 0.5691 + }, + { + "start": 29047.5, + "end": 29049.16, + "probability": 0.9468 + }, + { + "start": 29049.3, + "end": 29050.62, + "probability": 0.7667 + }, + { + "start": 29050.72, + "end": 29051.3, + "probability": 0.5506 + }, + { + "start": 29051.8, + "end": 29054.24, + "probability": 0.7546 + }, + { + "start": 29054.32, + "end": 29056.58, + "probability": 0.8692 + }, + { + "start": 29056.66, + "end": 29057.34, + "probability": 0.8163 + }, + { + "start": 29057.34, + "end": 29060.83, + "probability": 0.1407 + }, + { + "start": 29061.04, + "end": 29061.18, + "probability": 0.1674 + }, + { + "start": 29062.14, + "end": 29067.12, + "probability": 0.632 + }, + { + "start": 29067.48, + "end": 29068.0, + "probability": 0.1077 + }, + { + "start": 29068.0, + "end": 29069.62, + "probability": 0.1773 + }, + { + "start": 29069.7, + "end": 29072.4, + "probability": 0.0798 + }, + { + "start": 29072.48, + "end": 29072.8, + "probability": 0.2598 + }, + { + "start": 29073.38, + "end": 29076.24, + "probability": 0.0843 + }, + { + "start": 29081.44, + "end": 29084.42, + "probability": 0.008 + }, + { + "start": 29090.98, + "end": 29094.96, + "probability": 0.1537 + }, + { + "start": 29095.24, + "end": 29096.26, + "probability": 0.1372 + }, + { + "start": 29096.52, + "end": 29097.74, + "probability": 0.1045 + }, + { + "start": 29097.74, + "end": 29102.84, + "probability": 0.0436 + }, + { + "start": 29105.6, + "end": 29110.48, + "probability": 0.0313 + }, + { + "start": 29110.48, + "end": 29111.32, + "probability": 0.0065 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.0, + "probability": 0.0 + }, + { + "start": 29117.0, + "end": 29117.18, + "probability": 0.1146 + }, + { + "start": 29117.18, + "end": 29117.2, + "probability": 0.09 + }, + { + "start": 29117.2, + "end": 29117.2, + "probability": 0.0603 + }, + { + "start": 29117.2, + "end": 29118.02, + "probability": 0.3084 + }, + { + "start": 29119.34, + "end": 29119.7, + "probability": 0.1409 + }, + { + "start": 29120.62, + "end": 29122.8, + "probability": 0.3953 + }, + { + "start": 29123.24, + "end": 29126.48, + "probability": 0.7147 + }, + { + "start": 29126.74, + "end": 29126.8, + "probability": 0.6519 + }, + { + "start": 29127.0, + "end": 29127.26, + "probability": 0.7417 + }, + { + "start": 29127.64, + "end": 29128.64, + "probability": 0.5571 + }, + { + "start": 29128.74, + "end": 29129.4, + "probability": 0.2584 + }, + { + "start": 29129.5, + "end": 29132.12, + "probability": 0.2834 + }, + { + "start": 29133.18, + "end": 29134.14, + "probability": 0.4749 + }, + { + "start": 29134.14, + "end": 29137.94, + "probability": 0.7806 + }, + { + "start": 29138.3, + "end": 29141.28, + "probability": 0.8787 + }, + { + "start": 29141.36, + "end": 29142.84, + "probability": 0.7952 + }, + { + "start": 29143.1, + "end": 29144.42, + "probability": 0.6171 + }, + { + "start": 29145.32, + "end": 29145.44, + "probability": 0.2186 + }, + { + "start": 29145.48, + "end": 29145.82, + "probability": 0.5772 + }, + { + "start": 29146.08, + "end": 29147.94, + "probability": 0.4928 + }, + { + "start": 29148.04, + "end": 29149.84, + "probability": 0.9041 + }, + { + "start": 29153.84, + "end": 29155.38, + "probability": 0.7268 + }, + { + "start": 29155.54, + "end": 29156.44, + "probability": 0.6067 + }, + { + "start": 29156.54, + "end": 29157.18, + "probability": 0.5374 + }, + { + "start": 29157.26, + "end": 29157.82, + "probability": 0.6193 + }, + { + "start": 29158.66, + "end": 29159.88, + "probability": 0.738 + }, + { + "start": 29161.08, + "end": 29162.46, + "probability": 0.8582 + }, + { + "start": 29163.4, + "end": 29166.1, + "probability": 0.2344 + }, + { + "start": 29168.02, + "end": 29171.88, + "probability": 0.3897 + }, + { + "start": 29171.88, + "end": 29175.2, + "probability": 0.3226 + }, + { + "start": 29175.42, + "end": 29176.48, + "probability": 0.8744 + }, + { + "start": 29177.44, + "end": 29178.34, + "probability": 0.1231 + }, + { + "start": 29178.78, + "end": 29179.92, + "probability": 0.223 + }, + { + "start": 29180.0, + "end": 29182.94, + "probability": 0.6951 + }, + { + "start": 29183.3, + "end": 29184.04, + "probability": 0.2178 + }, + { + "start": 29184.2, + "end": 29191.4, + "probability": 0.9254 + }, + { + "start": 29191.52, + "end": 29192.22, + "probability": 0.8006 + }, + { + "start": 29193.32, + "end": 29196.54, + "probability": 0.7084 + }, + { + "start": 29197.12, + "end": 29200.02, + "probability": 0.8431 + }, + { + "start": 29200.06, + "end": 29201.26, + "probability": 0.4267 + }, + { + "start": 29202.58, + "end": 29204.76, + "probability": 0.2874 + }, + { + "start": 29204.78, + "end": 29207.54, + "probability": 0.5231 + }, + { + "start": 29207.64, + "end": 29208.66, + "probability": 0.4663 + }, + { + "start": 29208.92, + "end": 29211.32, + "probability": 0.0274 + }, + { + "start": 29213.64, + "end": 29214.76, + "probability": 0.0923 + }, + { + "start": 29215.36, + "end": 29216.78, + "probability": 0.0893 + }, + { + "start": 29217.1, + "end": 29221.08, + "probability": 0.039 + }, + { + "start": 29221.08, + "end": 29223.08, + "probability": 0.5836 + }, + { + "start": 29223.14, + "end": 29223.88, + "probability": 0.6627 + }, + { + "start": 29223.9, + "end": 29224.64, + "probability": 0.1928 + }, + { + "start": 29224.9, + "end": 29226.56, + "probability": 0.4364 + }, + { + "start": 29226.68, + "end": 29232.08, + "probability": 0.5827 + }, + { + "start": 29232.44, + "end": 29235.32, + "probability": 0.9844 + }, + { + "start": 29235.46, + "end": 29237.4, + "probability": 0.8791 + }, + { + "start": 29237.48, + "end": 29237.98, + "probability": 0.9487 + }, + { + "start": 29238.32, + "end": 29238.8, + "probability": 0.1229 + }, + { + "start": 29238.8, + "end": 29239.32, + "probability": 0.9365 + }, + { + "start": 29239.58, + "end": 29240.56, + "probability": 0.8719 + }, + { + "start": 29240.56, + "end": 29241.54, + "probability": 0.8355 + }, + { + "start": 29241.64, + "end": 29242.88, + "probability": 0.9653 + }, + { + "start": 29243.02, + "end": 29243.82, + "probability": 0.673 + }, + { + "start": 29243.96, + "end": 29244.8, + "probability": 0.5695 + }, + { + "start": 29246.0, + "end": 29247.76, + "probability": 0.6808 + }, + { + "start": 29248.08, + "end": 29249.38, + "probability": 0.2416 + }, + { + "start": 29249.38, + "end": 29251.52, + "probability": 0.272 + }, + { + "start": 29251.52, + "end": 29252.34, + "probability": 0.6248 + }, + { + "start": 29254.17, + "end": 29256.66, + "probability": 0.8905 + }, + { + "start": 29256.98, + "end": 29257.36, + "probability": 0.0262 + }, + { + "start": 29258.04, + "end": 29258.24, + "probability": 0.0332 + }, + { + "start": 29258.24, + "end": 29259.46, + "probability": 0.6918 + }, + { + "start": 29259.46, + "end": 29259.65, + "probability": 0.4204 + }, + { + "start": 29260.18, + "end": 29262.46, + "probability": 0.484 + }, + { + "start": 29262.88, + "end": 29264.64, + "probability": 0.393 + }, + { + "start": 29264.74, + "end": 29265.14, + "probability": 0.5227 + }, + { + "start": 29265.14, + "end": 29265.72, + "probability": 0.0302 + }, + { + "start": 29266.24, + "end": 29267.94, + "probability": 0.9084 + }, + { + "start": 29268.44, + "end": 29269.46, + "probability": 0.596 + }, + { + "start": 29269.56, + "end": 29270.34, + "probability": 0.7604 + }, + { + "start": 29270.4, + "end": 29270.96, + "probability": 0.3895 + }, + { + "start": 29272.83, + "end": 29278.3, + "probability": 0.9779 + }, + { + "start": 29279.84, + "end": 29281.5, + "probability": 0.8012 + }, + { + "start": 29281.96, + "end": 29282.92, + "probability": 0.7188 + }, + { + "start": 29283.04, + "end": 29285.66, + "probability": 0.8505 + }, + { + "start": 29288.48, + "end": 29293.2, + "probability": 0.9958 + }, + { + "start": 29293.2, + "end": 29298.92, + "probability": 0.998 + }, + { + "start": 29299.9, + "end": 29304.88, + "probability": 0.9423 + }, + { + "start": 29304.94, + "end": 29308.44, + "probability": 0.9742 + }, + { + "start": 29309.61, + "end": 29310.32, + "probability": 0.615 + }, + { + "start": 29311.86, + "end": 29317.24, + "probability": 0.9931 + }, + { + "start": 29317.3, + "end": 29318.88, + "probability": 0.832 + }, + { + "start": 29319.38, + "end": 29319.68, + "probability": 0.0555 + }, + { + "start": 29319.74, + "end": 29320.04, + "probability": 0.3032 + }, + { + "start": 29320.46, + "end": 29320.46, + "probability": 0.3097 + }, + { + "start": 29320.88, + "end": 29324.08, + "probability": 0.9477 + }, + { + "start": 29324.98, + "end": 29326.12, + "probability": 0.0334 + }, + { + "start": 29326.12, + "end": 29328.72, + "probability": 0.0984 + }, + { + "start": 29328.84, + "end": 29329.8, + "probability": 0.7811 + }, + { + "start": 29330.88, + "end": 29333.96, + "probability": 0.8178 + }, + { + "start": 29335.3, + "end": 29337.72, + "probability": 0.8635 + }, + { + "start": 29338.3, + "end": 29340.78, + "probability": 0.9401 + }, + { + "start": 29341.1, + "end": 29343.92, + "probability": 0.1903 + }, + { + "start": 29344.08, + "end": 29344.3, + "probability": 0.7324 + }, + { + "start": 29344.36, + "end": 29346.02, + "probability": 0.835 + }, + { + "start": 29346.16, + "end": 29348.88, + "probability": 0.4167 + }, + { + "start": 29349.0, + "end": 29349.5, + "probability": 0.3211 + }, + { + "start": 29349.76, + "end": 29353.8, + "probability": 0.7444 + }, + { + "start": 29353.86, + "end": 29354.84, + "probability": 0.8178 + }, + { + "start": 29354.94, + "end": 29356.08, + "probability": 0.5497 + }, + { + "start": 29356.38, + "end": 29358.14, + "probability": 0.6554 + }, + { + "start": 29358.36, + "end": 29359.48, + "probability": 0.8335 + }, + { + "start": 29359.6, + "end": 29361.8, + "probability": 0.5982 + }, + { + "start": 29361.96, + "end": 29363.4, + "probability": 0.3114 + }, + { + "start": 29363.52, + "end": 29364.18, + "probability": 0.7175 + }, + { + "start": 29364.2, + "end": 29364.64, + "probability": 0.5048 + }, + { + "start": 29365.34, + "end": 29365.36, + "probability": 0.0337 + }, + { + "start": 29365.36, + "end": 29365.36, + "probability": 0.2168 + }, + { + "start": 29365.36, + "end": 29365.36, + "probability": 0.4605 + }, + { + "start": 29365.36, + "end": 29368.78, + "probability": 0.5922 + }, + { + "start": 29369.4, + "end": 29370.16, + "probability": 0.6347 + }, + { + "start": 29370.26, + "end": 29371.82, + "probability": 0.5785 + }, + { + "start": 29371.84, + "end": 29373.76, + "probability": 0.8958 + }, + { + "start": 29374.18, + "end": 29375.22, + "probability": 0.1152 + }, + { + "start": 29375.28, + "end": 29375.78, + "probability": 0.4908 + }, + { + "start": 29376.42, + "end": 29378.28, + "probability": 0.1242 + }, + { + "start": 29379.46, + "end": 29379.92, + "probability": 0.0346 + }, + { + "start": 29379.92, + "end": 29380.28, + "probability": 0.0044 + }, + { + "start": 29380.54, + "end": 29380.98, + "probability": 0.0414 + }, + { + "start": 29380.98, + "end": 29381.3, + "probability": 0.0474 + }, + { + "start": 29381.3, + "end": 29381.3, + "probability": 0.0657 + }, + { + "start": 29381.3, + "end": 29381.84, + "probability": 0.0742 + }, + { + "start": 29382.02, + "end": 29385.14, + "probability": 0.2707 + }, + { + "start": 29385.14, + "end": 29385.14, + "probability": 0.5194 + }, + { + "start": 29385.14, + "end": 29386.34, + "probability": 0.3205 + }, + { + "start": 29387.72, + "end": 29390.4, + "probability": 0.6316 + }, + { + "start": 29390.86, + "end": 29392.5, + "probability": 0.9492 + }, + { + "start": 29392.72, + "end": 29393.42, + "probability": 0.1603 + }, + { + "start": 29393.98, + "end": 29396.58, + "probability": 0.8865 + }, + { + "start": 29447.0, + "end": 29447.0, + "probability": 0.0 + }, + { + "start": 29447.0, + "end": 29447.0, + "probability": 0.0 + }, + { + "start": 29447.0, + "end": 29447.0, + "probability": 0.0 + }, + { + "start": 29447.0, + "end": 29447.0, + "probability": 0.0 + }, + { + "start": 29447.0, + "end": 29447.0, + "probability": 0.0 + }, + { + "start": 29447.0, + "end": 29447.0, + "probability": 0.0 + }, + { + "start": 29447.0, + "end": 29447.0, + "probability": 0.0 + }, + { + "start": 29447.0, + "end": 29447.0, + "probability": 0.0 + }, + { + "start": 29447.0, + "end": 29447.0, + "probability": 0.0 + }, + { + "start": 29447.0, + "end": 29447.0, + "probability": 0.0 + }, + { + "start": 29447.0, + "end": 29447.0, + "probability": 0.0 + }, + { + "start": 29460.41, + "end": 29461.06, + "probability": 0.0259 + }, + { + "start": 29461.8, + "end": 29463.54, + "probability": 0.0931 + }, + { + "start": 29464.38, + "end": 29464.74, + "probability": 0.0386 + }, + { + "start": 29464.74, + "end": 29465.5, + "probability": 0.0131 + }, + { + "start": 29465.96, + "end": 29468.34, + "probability": 0.1034 + }, + { + "start": 29468.88, + "end": 29471.32, + "probability": 0.0779 + }, + { + "start": 29471.32, + "end": 29471.36, + "probability": 0.0349 + }, + { + "start": 29473.18, + "end": 29473.54, + "probability": 0.068 + }, + { + "start": 29474.28, + "end": 29476.14, + "probability": 0.162 + }, + { + "start": 29476.14, + "end": 29476.46, + "probability": 0.0548 + }, + { + "start": 29476.74, + "end": 29477.72, + "probability": 0.3365 + }, + { + "start": 29478.66, + "end": 29479.02, + "probability": 0.1815 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0137 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.0545 + }, + { + "start": 29578.0, + "end": 29578.0, + "probability": 0.056 + }, + { + "start": 29578.0, + "end": 29579.37, + "probability": 0.0854 + }, + { + "start": 29579.94, + "end": 29581.14, + "probability": 0.826 + }, + { + "start": 29581.22, + "end": 29582.34, + "probability": 0.9404 + }, + { + "start": 29582.76, + "end": 29584.62, + "probability": 0.7113 + }, + { + "start": 29585.06, + "end": 29587.82, + "probability": 0.897 + }, + { + "start": 29588.0, + "end": 29590.3, + "probability": 0.9901 + }, + { + "start": 29590.84, + "end": 29591.44, + "probability": 0.9531 + }, + { + "start": 29591.54, + "end": 29592.1, + "probability": 0.9375 + }, + { + "start": 29592.18, + "end": 29593.44, + "probability": 0.9712 + }, + { + "start": 29593.76, + "end": 29594.86, + "probability": 0.9015 + }, + { + "start": 29595.16, + "end": 29599.0, + "probability": 0.9701 + }, + { + "start": 29599.5, + "end": 29602.2, + "probability": 0.9921 + }, + { + "start": 29602.58, + "end": 29604.82, + "probability": 0.9985 + }, + { + "start": 29605.04, + "end": 29608.5, + "probability": 0.9839 + }, + { + "start": 29608.68, + "end": 29609.14, + "probability": 0.7513 + }, + { + "start": 29609.6, + "end": 29611.06, + "probability": 0.9928 + }, + { + "start": 29611.7, + "end": 29612.88, + "probability": 0.8059 + }, + { + "start": 29615.19, + "end": 29615.7, + "probability": 0.2601 + }, + { + "start": 29616.2, + "end": 29616.84, + "probability": 0.4785 + }, + { + "start": 29617.0, + "end": 29617.85, + "probability": 0.6613 + }, + { + "start": 29618.04, + "end": 29619.4, + "probability": 0.5124 + }, + { + "start": 29619.78, + "end": 29620.02, + "probability": 0.5166 + }, + { + "start": 29620.08, + "end": 29620.17, + "probability": 0.7055 + }, + { + "start": 29620.5, + "end": 29621.38, + "probability": 0.9679 + }, + { + "start": 29621.52, + "end": 29622.69, + "probability": 0.9762 + }, + { + "start": 29624.37, + "end": 29626.42, + "probability": 0.6474 + }, + { + "start": 29626.48, + "end": 29626.54, + "probability": 0.1984 + }, + { + "start": 29626.64, + "end": 29629.66, + "probability": 0.1239 + }, + { + "start": 29629.66, + "end": 29630.58, + "probability": 0.5234 + }, + { + "start": 29631.5, + "end": 29632.46, + "probability": 0.2995 + }, + { + "start": 29632.6, + "end": 29633.3, + "probability": 0.7072 + }, + { + "start": 29633.3, + "end": 29633.48, + "probability": 0.024 + }, + { + "start": 29633.48, + "end": 29634.64, + "probability": 0.3078 + }, + { + "start": 29635.0, + "end": 29636.9, + "probability": 0.5169 + }, + { + "start": 29637.14, + "end": 29639.22, + "probability": 0.7171 + }, + { + "start": 29639.72, + "end": 29641.44, + "probability": 0.8124 + }, + { + "start": 29641.5, + "end": 29646.84, + "probability": 0.9347 + }, + { + "start": 29647.08, + "end": 29648.12, + "probability": 0.9502 + }, + { + "start": 29648.34, + "end": 29654.04, + "probability": 0.1171 + }, + { + "start": 29654.34, + "end": 29654.98, + "probability": 0.1733 + }, + { + "start": 29654.98, + "end": 29656.42, + "probability": 0.5859 + }, + { + "start": 29656.68, + "end": 29657.69, + "probability": 0.875 + }, + { + "start": 29658.68, + "end": 29659.58, + "probability": 0.771 + }, + { + "start": 29659.64, + "end": 29661.15, + "probability": 0.9545 + }, + { + "start": 29661.7, + "end": 29663.04, + "probability": 0.5691 + }, + { + "start": 29663.44, + "end": 29663.52, + "probability": 0.1337 + }, + { + "start": 29663.52, + "end": 29663.52, + "probability": 0.0206 + }, + { + "start": 29663.52, + "end": 29664.54, + "probability": 0.5296 + }, + { + "start": 29664.56, + "end": 29665.62, + "probability": 0.6175 + }, + { + "start": 29665.76, + "end": 29667.96, + "probability": 0.854 + }, + { + "start": 29668.02, + "end": 29668.42, + "probability": 0.5472 + }, + { + "start": 29668.84, + "end": 29669.1, + "probability": 0.1096 + }, + { + "start": 29669.38, + "end": 29671.2, + "probability": 0.7681 + }, + { + "start": 29671.24, + "end": 29672.28, + "probability": 0.7048 + }, + { + "start": 29672.62, + "end": 29674.6, + "probability": 0.5967 + }, + { + "start": 29674.8, + "end": 29675.24, + "probability": 0.488 + }, + { + "start": 29675.24, + "end": 29675.48, + "probability": 0.0473 + }, + { + "start": 29676.14, + "end": 29678.74, + "probability": 0.2991 + }, + { + "start": 29678.74, + "end": 29680.32, + "probability": 0.2998 + }, + { + "start": 29680.78, + "end": 29680.82, + "probability": 0.0813 + }, + { + "start": 29680.82, + "end": 29681.94, + "probability": 0.0735 + }, + { + "start": 29684.7, + "end": 29686.42, + "probability": 0.1459 + }, + { + "start": 29686.42, + "end": 29686.66, + "probability": 0.1597 + }, + { + "start": 29686.9, + "end": 29687.84, + "probability": 0.1354 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.0, + "end": 29770.0, + "probability": 0.0 + }, + { + "start": 29770.32, + "end": 29770.44, + "probability": 0.1587 + }, + { + "start": 29770.86, + "end": 29771.98, + "probability": 0.4834 + }, + { + "start": 29774.9, + "end": 29776.61, + "probability": 0.4643 + }, + { + "start": 29779.3, + "end": 29781.34, + "probability": 0.1246 + }, + { + "start": 29781.46, + "end": 29781.72, + "probability": 0.4108 + }, + { + "start": 29781.72, + "end": 29782.32, + "probability": 0.1248 + }, + { + "start": 29784.98, + "end": 29786.2, + "probability": 0.2126 + }, + { + "start": 29786.54, + "end": 29790.3, + "probability": 0.1307 + }, + { + "start": 29790.42, + "end": 29793.38, + "probability": 0.047 + }, + { + "start": 29793.38, + "end": 29796.44, + "probability": 0.2829 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.0, + "end": 29904.0, + "probability": 0.0 + }, + { + "start": 29904.1, + "end": 29904.26, + "probability": 0.1991 + }, + { + "start": 29904.26, + "end": 29904.26, + "probability": 0.0744 + }, + { + "start": 29904.26, + "end": 29904.4, + "probability": 0.6087 + }, + { + "start": 29904.94, + "end": 29905.22, + "probability": 0.447 + }, + { + "start": 29905.84, + "end": 29906.18, + "probability": 0.7177 + }, + { + "start": 29907.4, + "end": 29910.32, + "probability": 0.7945 + }, + { + "start": 29911.24, + "end": 29914.76, + "probability": 0.6612 + }, + { + "start": 29915.68, + "end": 29922.64, + "probability": 0.9906 + }, + { + "start": 29923.18, + "end": 29923.92, + "probability": 0.9525 + }, + { + "start": 29925.54, + "end": 29926.8, + "probability": 0.9608 + }, + { + "start": 29927.92, + "end": 29929.56, + "probability": 0.8506 + }, + { + "start": 29931.56, + "end": 29932.62, + "probability": 0.787 + }, + { + "start": 29933.5, + "end": 29935.48, + "probability": 0.9829 + }, + { + "start": 29936.5, + "end": 29937.9, + "probability": 0.9789 + }, + { + "start": 29939.14, + "end": 29940.7, + "probability": 0.9736 + }, + { + "start": 29941.44, + "end": 29944.5, + "probability": 0.9951 + }, + { + "start": 29945.16, + "end": 29947.24, + "probability": 0.9914 + }, + { + "start": 29947.64, + "end": 29952.78, + "probability": 0.9866 + }, + { + "start": 29953.76, + "end": 29957.64, + "probability": 0.9792 + }, + { + "start": 29959.9, + "end": 29963.2, + "probability": 0.9764 + }, + { + "start": 29964.02, + "end": 29969.2, + "probability": 0.9934 + }, + { + "start": 29970.14, + "end": 29974.24, + "probability": 0.9979 + }, + { + "start": 29975.28, + "end": 29978.06, + "probability": 0.5685 + }, + { + "start": 29979.78, + "end": 29981.34, + "probability": 0.8492 + }, + { + "start": 29982.52, + "end": 29986.38, + "probability": 0.9924 + }, + { + "start": 29987.7, + "end": 29991.9, + "probability": 0.771 + }, + { + "start": 29994.3, + "end": 29995.64, + "probability": 0.6589 + }, + { + "start": 29995.66, + "end": 29999.86, + "probability": 0.9524 + }, + { + "start": 30000.1, + "end": 30000.9, + "probability": 0.9178 + }, + { + "start": 30000.96, + "end": 30002.74, + "probability": 0.8563 + }, + { + "start": 30005.02, + "end": 30007.54, + "probability": 0.9627 + }, + { + "start": 30008.24, + "end": 30010.32, + "probability": 0.9229 + }, + { + "start": 30010.86, + "end": 30011.52, + "probability": 0.3634 + }, + { + "start": 30013.08, + "end": 30017.32, + "probability": 0.9805 + }, + { + "start": 30018.6, + "end": 30019.54, + "probability": 0.7347 + }, + { + "start": 30020.92, + "end": 30023.78, + "probability": 0.9622 + }, + { + "start": 30026.42, + "end": 30030.7, + "probability": 0.9938 + }, + { + "start": 30031.6, + "end": 30032.72, + "probability": 0.5303 + }, + { + "start": 30035.76, + "end": 30038.36, + "probability": 0.9166 + }, + { + "start": 30039.18, + "end": 30040.8, + "probability": 0.863 + }, + { + "start": 30041.78, + "end": 30045.66, + "probability": 0.8753 + }, + { + "start": 30047.36, + "end": 30049.02, + "probability": 0.8845 + }, + { + "start": 30049.98, + "end": 30051.19, + "probability": 0.9302 + }, + { + "start": 30052.86, + "end": 30055.36, + "probability": 0.8266 + }, + { + "start": 30056.6, + "end": 30060.64, + "probability": 0.9568 + }, + { + "start": 30061.32, + "end": 30062.04, + "probability": 0.8858 + }, + { + "start": 30063.48, + "end": 30066.32, + "probability": 0.8696 + }, + { + "start": 30066.68, + "end": 30067.96, + "probability": 0.8564 + }, + { + "start": 30068.72, + "end": 30070.56, + "probability": 0.8912 + }, + { + "start": 30071.46, + "end": 30075.32, + "probability": 0.985 + }, + { + "start": 30075.92, + "end": 30080.12, + "probability": 0.0481 + }, + { + "start": 30080.12, + "end": 30080.12, + "probability": 0.4259 + }, + { + "start": 30080.38, + "end": 30082.24, + "probability": 0.8707 + }, + { + "start": 30082.7, + "end": 30085.42, + "probability": 0.452 + }, + { + "start": 30087.06, + "end": 30089.88, + "probability": 0.4734 + }, + { + "start": 30091.08, + "end": 30092.74, + "probability": 0.7179 + }, + { + "start": 30093.34, + "end": 30093.9, + "probability": 0.1092 + }, + { + "start": 30094.64, + "end": 30095.22, + "probability": 0.4999 + }, + { + "start": 30095.42, + "end": 30095.68, + "probability": 0.9196 + }, + { + "start": 30095.72, + "end": 30096.42, + "probability": 0.5435 + }, + { + "start": 30097.06, + "end": 30098.06, + "probability": 0.374 + }, + { + "start": 30100.44, + "end": 30100.88, + "probability": 0.7065 + }, + { + "start": 30100.88, + "end": 30102.04, + "probability": 0.989 + }, + { + "start": 30102.1, + "end": 30102.74, + "probability": 0.7009 + }, + { + "start": 30102.78, + "end": 30104.18, + "probability": 0.9277 + }, + { + "start": 30105.1, + "end": 30106.0, + "probability": 0.738 + }, + { + "start": 30106.08, + "end": 30107.42, + "probability": 0.0106 + }, + { + "start": 30107.52, + "end": 30108.82, + "probability": 0.14 + }, + { + "start": 30108.96, + "end": 30110.02, + "probability": 0.8611 + }, + { + "start": 30111.54, + "end": 30114.28, + "probability": 0.9136 + }, + { + "start": 30114.38, + "end": 30115.4, + "probability": 0.9867 + }, + { + "start": 30125.96, + "end": 30129.84, + "probability": 0.7738 + }, + { + "start": 30130.28, + "end": 30131.54, + "probability": 0.9636 + }, + { + "start": 30132.76, + "end": 30136.82, + "probability": 0.9872 + }, + { + "start": 30137.28, + "end": 30139.68, + "probability": 0.9926 + }, + { + "start": 30140.68, + "end": 30141.86, + "probability": 0.9713 + }, + { + "start": 30142.26, + "end": 30143.78, + "probability": 0.9928 + }, + { + "start": 30144.38, + "end": 30147.56, + "probability": 0.9603 + }, + { + "start": 30148.84, + "end": 30153.36, + "probability": 0.8309 + }, + { + "start": 30154.28, + "end": 30157.14, + "probability": 0.64 + }, + { + "start": 30157.58, + "end": 30157.94, + "probability": 0.6168 + }, + { + "start": 30158.48, + "end": 30159.36, + "probability": 0.7329 + }, + { + "start": 30160.2, + "end": 30162.13, + "probability": 0.992 + }, + { + "start": 30162.36, + "end": 30164.32, + "probability": 0.8088 + }, + { + "start": 30164.78, + "end": 30165.8, + "probability": 0.9312 + }, + { + "start": 30166.26, + "end": 30167.62, + "probability": 0.9496 + }, + { + "start": 30167.82, + "end": 30171.5, + "probability": 0.9874 + }, + { + "start": 30171.9, + "end": 30173.02, + "probability": 0.5038 + }, + { + "start": 30173.56, + "end": 30175.42, + "probability": 0.8367 + }, + { + "start": 30176.22, + "end": 30181.08, + "probability": 0.7453 + }, + { + "start": 30181.94, + "end": 30183.38, + "probability": 0.9597 + }, + { + "start": 30184.5, + "end": 30188.28, + "probability": 0.9913 + }, + { + "start": 30189.18, + "end": 30190.36, + "probability": 0.8118 + }, + { + "start": 30190.52, + "end": 30191.12, + "probability": 0.8296 + }, + { + "start": 30191.32, + "end": 30194.4, + "probability": 0.3524 + }, + { + "start": 30194.48, + "end": 30195.06, + "probability": 0.6938 + }, + { + "start": 30195.06, + "end": 30197.08, + "probability": 0.6796 + }, + { + "start": 30197.76, + "end": 30198.99, + "probability": 0.9641 + }, + { + "start": 30199.42, + "end": 30199.78, + "probability": 0.2499 + }, + { + "start": 30200.47, + "end": 30201.4, + "probability": 0.6929 + }, + { + "start": 30202.32, + "end": 30203.36, + "probability": 0.9192 + }, + { + "start": 30204.04, + "end": 30205.06, + "probability": 0.9233 + }, + { + "start": 30205.68, + "end": 30208.26, + "probability": 0.937 + }, + { + "start": 30210.02, + "end": 30211.1, + "probability": 0.7627 + }, + { + "start": 30211.2, + "end": 30214.74, + "probability": 0.7179 + }, + { + "start": 30214.74, + "end": 30215.92, + "probability": 0.8986 + }, + { + "start": 30227.08, + "end": 30227.78, + "probability": 0.6876 + }, + { + "start": 30228.54, + "end": 30228.82, + "probability": 0.0874 + }, + { + "start": 30228.82, + "end": 30230.3, + "probability": 0.9092 + }, + { + "start": 30233.24, + "end": 30234.38, + "probability": 0.8262 + }, + { + "start": 30236.02, + "end": 30236.97, + "probability": 0.8987 + }, + { + "start": 30237.74, + "end": 30238.42, + "probability": 0.9823 + }, + { + "start": 30238.54, + "end": 30239.6, + "probability": 0.9607 + }, + { + "start": 30240.96, + "end": 30242.92, + "probability": 0.6805 + }, + { + "start": 30243.12, + "end": 30244.16, + "probability": 0.5027 + }, + { + "start": 30244.16, + "end": 30245.0, + "probability": 0.2548 + }, + { + "start": 30245.08, + "end": 30246.18, + "probability": 0.9761 + }, + { + "start": 30246.36, + "end": 30247.54, + "probability": 0.7402 + }, + { + "start": 30247.75, + "end": 30248.56, + "probability": 0.9288 + }, + { + "start": 30249.84, + "end": 30251.04, + "probability": 0.9568 + }, + { + "start": 30251.8, + "end": 30252.28, + "probability": 0.9359 + }, + { + "start": 30253.12, + "end": 30253.98, + "probability": 0.9938 + }, + { + "start": 30256.54, + "end": 30259.6, + "probability": 0.653 + }, + { + "start": 30260.16, + "end": 30260.16, + "probability": 0.1591 + }, + { + "start": 30260.16, + "end": 30260.98, + "probability": 0.3475 + }, + { + "start": 30261.08, + "end": 30263.74, + "probability": 0.5137 + }, + { + "start": 30263.82, + "end": 30263.82, + "probability": 0.3319 + }, + { + "start": 30263.82, + "end": 30264.78, + "probability": 0.6235 + }, + { + "start": 30264.96, + "end": 30265.94, + "probability": 0.9517 + }, + { + "start": 30266.28, + "end": 30266.3, + "probability": 0.1969 + }, + { + "start": 30266.3, + "end": 30267.24, + "probability": 0.2931 + }, + { + "start": 30267.56, + "end": 30270.5, + "probability": 0.4467 + }, + { + "start": 30270.5, + "end": 30271.14, + "probability": 0.2985 + }, + { + "start": 30272.0, + "end": 30278.46, + "probability": 0.9941 + }, + { + "start": 30279.82, + "end": 30283.23, + "probability": 0.8615 + }, + { + "start": 30284.8, + "end": 30286.4, + "probability": 0.9819 + }, + { + "start": 30288.26, + "end": 30289.08, + "probability": 0.7006 + }, + { + "start": 30290.2, + "end": 30291.94, + "probability": 0.7887 + }, + { + "start": 30293.08, + "end": 30295.52, + "probability": 0.9922 + }, + { + "start": 30297.18, + "end": 30299.05, + "probability": 0.9638 + }, + { + "start": 30300.88, + "end": 30303.88, + "probability": 0.9979 + }, + { + "start": 30303.88, + "end": 30307.14, + "probability": 0.9979 + }, + { + "start": 30308.86, + "end": 30314.5, + "probability": 0.9646 + }, + { + "start": 30315.06, + "end": 30316.22, + "probability": 0.999 + }, + { + "start": 30317.52, + "end": 30319.01, + "probability": 0.9976 + }, + { + "start": 30322.32, + "end": 30323.68, + "probability": 0.9845 + }, + { + "start": 30324.38, + "end": 30326.4, + "probability": 0.9963 + }, + { + "start": 30326.54, + "end": 30326.66, + "probability": 0.7458 + }, + { + "start": 30326.76, + "end": 30327.9, + "probability": 0.7907 + }, + { + "start": 30328.62, + "end": 30331.08, + "probability": 0.9953 + }, + { + "start": 30333.16, + "end": 30336.74, + "probability": 0.8863 + }, + { + "start": 30338.06, + "end": 30340.46, + "probability": 0.9563 + }, + { + "start": 30340.64, + "end": 30341.68, + "probability": 0.9575 + }, + { + "start": 30342.32, + "end": 30343.33, + "probability": 0.9766 + }, + { + "start": 30344.46, + "end": 30345.25, + "probability": 0.9399 + }, + { + "start": 30347.36, + "end": 30347.9, + "probability": 0.9823 + }, + { + "start": 30349.34, + "end": 30349.84, + "probability": 0.2082 + }, + { + "start": 30349.84, + "end": 30352.2, + "probability": 0.637 + }, + { + "start": 30353.0, + "end": 30355.42, + "probability": 0.9597 + }, + { + "start": 30356.24, + "end": 30358.3, + "probability": 0.8362 + }, + { + "start": 30359.44, + "end": 30361.08, + "probability": 0.8032 + }, + { + "start": 30361.32, + "end": 30362.12, + "probability": 0.1844 + }, + { + "start": 30362.26, + "end": 30363.98, + "probability": 0.9729 + }, + { + "start": 30364.78, + "end": 30367.0, + "probability": 0.979 + }, + { + "start": 30367.54, + "end": 30373.86, + "probability": 0.9992 + }, + { + "start": 30374.94, + "end": 30377.05, + "probability": 0.9249 + }, + { + "start": 30378.08, + "end": 30379.78, + "probability": 0.9423 + }, + { + "start": 30381.38, + "end": 30385.0, + "probability": 0.8279 + }, + { + "start": 30388.7, + "end": 30392.2, + "probability": 0.996 + }, + { + "start": 30392.96, + "end": 30400.06, + "probability": 0.9934 + }, + { + "start": 30401.24, + "end": 30403.14, + "probability": 0.8336 + }, + { + "start": 30404.9, + "end": 30409.14, + "probability": 0.5982 + }, + { + "start": 30410.22, + "end": 30413.38, + "probability": 0.994 + }, + { + "start": 30414.02, + "end": 30416.76, + "probability": 0.9429 + }, + { + "start": 30417.38, + "end": 30418.4, + "probability": 0.8028 + }, + { + "start": 30419.12, + "end": 30422.68, + "probability": 0.941 + }, + { + "start": 30423.48, + "end": 30425.44, + "probability": 0.8832 + }, + { + "start": 30426.3, + "end": 30431.4, + "probability": 0.9728 + }, + { + "start": 30431.62, + "end": 30433.74, + "probability": 0.9862 + }, + { + "start": 30434.12, + "end": 30436.04, + "probability": 0.8557 + }, + { + "start": 30436.2, + "end": 30437.56, + "probability": 0.8965 + }, + { + "start": 30437.62, + "end": 30438.2, + "probability": 0.393 + }, + { + "start": 30438.34, + "end": 30439.48, + "probability": 0.8105 + }, + { + "start": 30440.42, + "end": 30441.3, + "probability": 0.4535 + }, + { + "start": 30441.3, + "end": 30442.12, + "probability": 0.8224 + }, + { + "start": 30457.38, + "end": 30458.04, + "probability": 0.6951 + }, + { + "start": 30462.84, + "end": 30464.16, + "probability": 0.6521 + }, + { + "start": 30464.26, + "end": 30466.72, + "probability": 0.9108 + }, + { + "start": 30467.58, + "end": 30470.66, + "probability": 0.9851 + }, + { + "start": 30471.26, + "end": 30471.84, + "probability": 0.911 + }, + { + "start": 30472.58, + "end": 30473.76, + "probability": 0.964 + }, + { + "start": 30474.3, + "end": 30476.84, + "probability": 0.9944 + }, + { + "start": 30476.86, + "end": 30480.26, + "probability": 0.986 + }, + { + "start": 30481.0, + "end": 30483.14, + "probability": 0.9972 + }, + { + "start": 30483.6, + "end": 30488.04, + "probability": 0.9978 + }, + { + "start": 30488.82, + "end": 30490.44, + "probability": 0.9565 + }, + { + "start": 30490.96, + "end": 30491.58, + "probability": 0.9807 + }, + { + "start": 30492.64, + "end": 30493.5, + "probability": 0.8813 + }, + { + "start": 30493.58, + "end": 30494.4, + "probability": 0.5621 + }, + { + "start": 30494.42, + "end": 30494.6, + "probability": 0.3233 + }, + { + "start": 30494.84, + "end": 30496.02, + "probability": 0.6996 + }, + { + "start": 30496.32, + "end": 30498.92, + "probability": 0.9813 + }, + { + "start": 30499.02, + "end": 30502.34, + "probability": 0.9807 + }, + { + "start": 30502.94, + "end": 30505.0, + "probability": 0.9943 + }, + { + "start": 30506.8, + "end": 30509.64, + "probability": 0.5167 + }, + { + "start": 30510.5, + "end": 30515.02, + "probability": 0.9924 + }, + { + "start": 30515.16, + "end": 30517.46, + "probability": 0.9951 + }, + { + "start": 30518.22, + "end": 30524.04, + "probability": 0.9959 + }, + { + "start": 30524.86, + "end": 30527.92, + "probability": 0.9888 + }, + { + "start": 30527.92, + "end": 30530.56, + "probability": 0.957 + }, + { + "start": 30530.66, + "end": 30532.84, + "probability": 0.9867 + }, + { + "start": 30532.94, + "end": 30534.08, + "probability": 0.7127 + }, + { + "start": 30534.3, + "end": 30534.8, + "probability": 0.8046 + }, + { + "start": 30534.94, + "end": 30535.78, + "probability": 0.2688 + }, + { + "start": 30535.86, + "end": 30537.5, + "probability": 0.6324 + }, + { + "start": 30537.58, + "end": 30538.54, + "probability": 0.3023 + }, + { + "start": 30538.54, + "end": 30539.36, + "probability": 0.1524 + }, + { + "start": 30539.4, + "end": 30540.5, + "probability": 0.119 + }, + { + "start": 30540.75, + "end": 30541.36, + "probability": 0.0846 + }, + { + "start": 30541.46, + "end": 30544.14, + "probability": 0.8271 + }, + { + "start": 30544.38, + "end": 30550.2, + "probability": 0.9929 + }, + { + "start": 30550.28, + "end": 30551.44, + "probability": 0.869 + }, + { + "start": 30552.04, + "end": 30553.16, + "probability": 0.9696 + }, + { + "start": 30553.24, + "end": 30554.58, + "probability": 0.9842 + }, + { + "start": 30555.41, + "end": 30558.62, + "probability": 0.6667 + }, + { + "start": 30558.72, + "end": 30559.58, + "probability": 0.9524 + }, + { + "start": 30559.88, + "end": 30561.26, + "probability": 0.9934 + }, + { + "start": 30561.92, + "end": 30565.06, + "probability": 0.9681 + }, + { + "start": 30565.16, + "end": 30566.6, + "probability": 0.9878 + }, + { + "start": 30566.7, + "end": 30568.98, + "probability": 0.9923 + }, + { + "start": 30569.5, + "end": 30570.76, + "probability": 0.8976 + }, + { + "start": 30570.88, + "end": 30575.24, + "probability": 0.9926 + }, + { + "start": 30575.68, + "end": 30577.64, + "probability": 0.7881 + }, + { + "start": 30577.82, + "end": 30579.9, + "probability": 0.9785 + }, + { + "start": 30580.3, + "end": 30586.04, + "probability": 0.9956 + }, + { + "start": 30586.04, + "end": 30591.28, + "probability": 0.997 + }, + { + "start": 30591.72, + "end": 30593.7, + "probability": 0.9622 + }, + { + "start": 30594.16, + "end": 30597.58, + "probability": 0.8093 + }, + { + "start": 30597.84, + "end": 30600.3, + "probability": 0.8327 + }, + { + "start": 30600.56, + "end": 30602.36, + "probability": 0.9946 + }, + { + "start": 30602.68, + "end": 30605.86, + "probability": 0.9935 + }, + { + "start": 30605.86, + "end": 30609.06, + "probability": 0.998 + }, + { + "start": 30609.42, + "end": 30612.32, + "probability": 0.8547 + }, + { + "start": 30612.48, + "end": 30613.7, + "probability": 0.756 + }, + { + "start": 30613.82, + "end": 30615.12, + "probability": 0.7382 + }, + { + "start": 30615.46, + "end": 30617.06, + "probability": 0.9985 + }, + { + "start": 30617.5, + "end": 30620.3, + "probability": 0.9901 + }, + { + "start": 30620.3, + "end": 30623.98, + "probability": 0.9406 + }, + { + "start": 30624.04, + "end": 30625.18, + "probability": 0.8569 + }, + { + "start": 30625.3, + "end": 30626.2, + "probability": 0.8903 + }, + { + "start": 30626.8, + "end": 30627.31, + "probability": 0.981 + }, + { + "start": 30629.54, + "end": 30631.2, + "probability": 0.7579 + }, + { + "start": 30631.6, + "end": 30633.16, + "probability": 0.7325 + }, + { + "start": 30641.16, + "end": 30641.7, + "probability": 0.3289 + }, + { + "start": 30641.8, + "end": 30643.1, + "probability": 0.6581 + }, + { + "start": 30643.3, + "end": 30644.56, + "probability": 0.8614 + }, + { + "start": 30644.82, + "end": 30647.82, + "probability": 0.8394 + }, + { + "start": 30648.5, + "end": 30651.14, + "probability": 0.4983 + }, + { + "start": 30652.94, + "end": 30654.08, + "probability": 0.7002 + }, + { + "start": 30654.46, + "end": 30657.1, + "probability": 0.8301 + }, + { + "start": 30657.44, + "end": 30660.36, + "probability": 0.6785 + }, + { + "start": 30662.16, + "end": 30663.06, + "probability": 0.3071 + }, + { + "start": 30668.64, + "end": 30670.86, + "probability": 0.8996 + }, + { + "start": 30671.22, + "end": 30672.48, + "probability": 0.4961 + }, + { + "start": 30672.6, + "end": 30674.6, + "probability": 0.9801 + }, + { + "start": 30674.78, + "end": 30675.94, + "probability": 0.7015 + }, + { + "start": 30676.76, + "end": 30678.54, + "probability": 0.9925 + }, + { + "start": 30679.0, + "end": 30680.97, + "probability": 0.9985 + }, + { + "start": 30681.4, + "end": 30682.26, + "probability": 0.9397 + }, + { + "start": 30683.1, + "end": 30685.46, + "probability": 0.9836 + }, + { + "start": 30686.62, + "end": 30686.96, + "probability": 0.3109 + }, + { + "start": 30687.34, + "end": 30689.18, + "probability": 0.9428 + }, + { + "start": 30689.98, + "end": 30693.4, + "probability": 0.8862 + }, + { + "start": 30694.6, + "end": 30697.5, + "probability": 0.9434 + }, + { + "start": 30698.34, + "end": 30700.34, + "probability": 0.9858 + }, + { + "start": 30700.46, + "end": 30700.9, + "probability": 0.6187 + }, + { + "start": 30701.32, + "end": 30701.62, + "probability": 0.6509 + }, + { + "start": 30702.2, + "end": 30702.76, + "probability": 0.3746 + }, + { + "start": 30702.96, + "end": 30703.74, + "probability": 0.9442 + }, + { + "start": 30703.86, + "end": 30704.7, + "probability": 0.855 + }, + { + "start": 30706.0, + "end": 30712.0, + "probability": 0.28 + }, + { + "start": 30712.14, + "end": 30712.68, + "probability": 0.5668 + }, + { + "start": 30712.8, + "end": 30713.14, + "probability": 0.9186 + }, + { + "start": 30717.0, + "end": 30719.46, + "probability": 0.888 + }, + { + "start": 30720.36, + "end": 30722.32, + "probability": 0.9143 + }, + { + "start": 30723.1, + "end": 30726.06, + "probability": 0.9457 + }, + { + "start": 30726.56, + "end": 30728.0, + "probability": 0.928 + }, + { + "start": 30728.12, + "end": 30728.28, + "probability": 0.4107 + }, + { + "start": 30728.36, + "end": 30729.22, + "probability": 0.9768 + }, + { + "start": 30729.72, + "end": 30732.46, + "probability": 0.9074 + }, + { + "start": 30732.78, + "end": 30734.28, + "probability": 0.9985 + }, + { + "start": 30734.96, + "end": 30735.16, + "probability": 0.5747 + }, + { + "start": 30735.18, + "end": 30735.54, + "probability": 0.5219 + }, + { + "start": 30735.76, + "end": 30738.88, + "probability": 0.8613 + }, + { + "start": 30739.48, + "end": 30740.83, + "probability": 0.8543 + }, + { + "start": 30740.92, + "end": 30742.2, + "probability": 0.8407 + }, + { + "start": 30742.26, + "end": 30743.07, + "probability": 0.9697 + }, + { + "start": 30743.78, + "end": 30744.48, + "probability": 0.438 + }, + { + "start": 30745.48, + "end": 30747.82, + "probability": 0.777 + }, + { + "start": 30748.52, + "end": 30750.26, + "probability": 0.8293 + }, + { + "start": 30750.88, + "end": 30752.14, + "probability": 0.9828 + }, + { + "start": 30752.24, + "end": 30753.1, + "probability": 0.7391 + }, + { + "start": 30753.52, + "end": 30755.2, + "probability": 0.7869 + }, + { + "start": 30755.96, + "end": 30760.24, + "probability": 0.9763 + }, + { + "start": 30761.16, + "end": 30764.1, + "probability": 0.9961 + }, + { + "start": 30764.42, + "end": 30765.44, + "probability": 0.8864 + }, + { + "start": 30766.08, + "end": 30768.88, + "probability": 0.7764 + }, + { + "start": 30769.56, + "end": 30770.58, + "probability": 0.6967 + }, + { + "start": 30770.86, + "end": 30771.28, + "probability": 0.9356 + }, + { + "start": 30771.74, + "end": 30772.58, + "probability": 0.9596 + }, + { + "start": 30772.98, + "end": 30773.68, + "probability": 0.9507 + }, + { + "start": 30773.72, + "end": 30776.0, + "probability": 0.9075 + }, + { + "start": 30776.72, + "end": 30778.2, + "probability": 0.9995 + }, + { + "start": 30778.52, + "end": 30780.28, + "probability": 0.8617 + }, + { + "start": 30780.88, + "end": 30782.18, + "probability": 0.9053 + }, + { + "start": 30782.86, + "end": 30787.6, + "probability": 0.9814 + }, + { + "start": 30787.72, + "end": 30788.18, + "probability": 0.8945 + }, + { + "start": 30788.28, + "end": 30790.22, + "probability": 0.9307 + }, + { + "start": 30790.78, + "end": 30794.2, + "probability": 0.9941 + }, + { + "start": 30794.72, + "end": 30796.68, + "probability": 0.9946 + }, + { + "start": 30797.08, + "end": 30800.88, + "probability": 0.9736 + }, + { + "start": 30801.74, + "end": 30803.46, + "probability": 0.9953 + }, + { + "start": 30803.86, + "end": 30810.28, + "probability": 0.9969 + }, + { + "start": 30810.5, + "end": 30811.64, + "probability": 0.9874 + }, + { + "start": 30812.26, + "end": 30812.84, + "probability": 0.819 + }, + { + "start": 30812.92, + "end": 30818.12, + "probability": 0.9867 + }, + { + "start": 30818.66, + "end": 30820.18, + "probability": 0.7419 + }, + { + "start": 30820.66, + "end": 30822.74, + "probability": 0.8976 + }, + { + "start": 30823.2, + "end": 30824.08, + "probability": 0.9663 + }, + { + "start": 30824.92, + "end": 30826.07, + "probability": 0.6902 + }, + { + "start": 30826.56, + "end": 30827.68, + "probability": 0.9948 + }, + { + "start": 30828.74, + "end": 30832.62, + "probability": 0.9961 + }, + { + "start": 30833.36, + "end": 30835.4, + "probability": 0.7932 + }, + { + "start": 30836.2, + "end": 30837.6, + "probability": 0.9522 + }, + { + "start": 30838.34, + "end": 30839.28, + "probability": 0.982 + }, + { + "start": 30840.14, + "end": 30842.5, + "probability": 0.9551 + }, + { + "start": 30842.96, + "end": 30848.02, + "probability": 0.9868 + }, + { + "start": 30848.5, + "end": 30849.5, + "probability": 0.9791 + }, + { + "start": 30850.58, + "end": 30850.92, + "probability": 0.7778 + }, + { + "start": 30852.0, + "end": 30853.5, + "probability": 0.9851 + }, + { + "start": 30854.42, + "end": 30855.12, + "probability": 0.6686 + }, + { + "start": 30855.38, + "end": 30856.27, + "probability": 0.8009 + }, + { + "start": 30856.88, + "end": 30858.28, + "probability": 0.8429 + }, + { + "start": 30858.42, + "end": 30859.32, + "probability": 0.8335 + }, + { + "start": 30860.0, + "end": 30862.4, + "probability": 0.967 + }, + { + "start": 30862.7, + "end": 30867.68, + "probability": 0.9945 + }, + { + "start": 30867.78, + "end": 30868.0, + "probability": 0.7378 + }, + { + "start": 30868.18, + "end": 30872.34, + "probability": 0.7527 + }, + { + "start": 30873.0, + "end": 30873.6, + "probability": 0.7392 + }, + { + "start": 30873.66, + "end": 30874.74, + "probability": 0.8458 + }, + { + "start": 30874.76, + "end": 30875.04, + "probability": 0.7141 + }, + { + "start": 30875.04, + "end": 30875.2, + "probability": 0.1581 + }, + { + "start": 30875.2, + "end": 30876.04, + "probability": 0.4433 + }, + { + "start": 30876.24, + "end": 30878.38, + "probability": 0.978 + }, + { + "start": 30878.62, + "end": 30878.62, + "probability": 0.3276 + }, + { + "start": 30878.62, + "end": 30880.2, + "probability": 0.7974 + }, + { + "start": 30880.76, + "end": 30881.8, + "probability": 0.519 + }, + { + "start": 30883.36, + "end": 30886.98, + "probability": 0.9578 + }, + { + "start": 30887.62, + "end": 30888.76, + "probability": 0.0822 + }, + { + "start": 30889.0, + "end": 30889.3, + "probability": 0.6786 + }, + { + "start": 30890.87, + "end": 30892.98, + "probability": 0.9315 + }, + { + "start": 30893.92, + "end": 30895.86, + "probability": 0.7896 + }, + { + "start": 30896.38, + "end": 30897.7, + "probability": 0.6799 + }, + { + "start": 30898.26, + "end": 30899.22, + "probability": 0.6718 + }, + { + "start": 30905.74, + "end": 30906.68, + "probability": 0.7682 + }, + { + "start": 30906.78, + "end": 30907.12, + "probability": 0.7906 + }, + { + "start": 30907.16, + "end": 30908.76, + "probability": 0.9314 + }, + { + "start": 30910.8, + "end": 30913.6, + "probability": 0.951 + }, + { + "start": 30913.68, + "end": 30914.86, + "probability": 0.9383 + }, + { + "start": 30916.34, + "end": 30917.4, + "probability": 0.9661 + }, + { + "start": 30919.22, + "end": 30919.92, + "probability": 0.5232 + }, + { + "start": 30920.5, + "end": 30923.46, + "probability": 0.9866 + }, + { + "start": 30923.52, + "end": 30926.0, + "probability": 0.4795 + }, + { + "start": 30926.36, + "end": 30926.68, + "probability": 0.1538 + }, + { + "start": 30927.62, + "end": 30928.78, + "probability": 0.7207 + }, + { + "start": 30929.78, + "end": 30931.34, + "probability": 0.7961 + }, + { + "start": 30932.12, + "end": 30933.62, + "probability": 0.7957 + }, + { + "start": 30934.74, + "end": 30936.32, + "probability": 0.9899 + }, + { + "start": 30937.16, + "end": 30941.14, + "probability": 0.8387 + }, + { + "start": 30942.0, + "end": 30945.6, + "probability": 0.9779 + }, + { + "start": 30945.68, + "end": 30946.98, + "probability": 0.7864 + }, + { + "start": 30947.88, + "end": 30952.48, + "probability": 0.9431 + }, + { + "start": 30953.18, + "end": 30958.74, + "probability": 0.979 + }, + { + "start": 30959.4, + "end": 30961.42, + "probability": 0.855 + }, + { + "start": 30962.16, + "end": 30962.94, + "probability": 0.767 + }, + { + "start": 30963.48, + "end": 30964.3, + "probability": 0.9609 + }, + { + "start": 30964.82, + "end": 30966.08, + "probability": 0.8438 + }, + { + "start": 30966.56, + "end": 30967.94, + "probability": 0.9381 + }, + { + "start": 30968.76, + "end": 30974.52, + "probability": 0.9929 + }, + { + "start": 30975.12, + "end": 30979.52, + "probability": 0.9851 + }, + { + "start": 30979.52, + "end": 30983.78, + "probability": 0.9985 + }, + { + "start": 30985.3, + "end": 30986.02, + "probability": 0.7524 + }, + { + "start": 30986.68, + "end": 30988.4, + "probability": 0.9714 + }, + { + "start": 30989.12, + "end": 30996.2, + "probability": 0.688 + }, + { + "start": 30997.26, + "end": 30998.98, + "probability": 0.9636 + }, + { + "start": 30999.78, + "end": 31002.3, + "probability": 0.9655 + }, + { + "start": 31003.02, + "end": 31009.98, + "probability": 0.9789 + }, + { + "start": 31010.56, + "end": 31011.5, + "probability": 0.987 + }, + { + "start": 31012.04, + "end": 31017.64, + "probability": 0.9889 + }, + { + "start": 31018.64, + "end": 31021.86, + "probability": 0.9507 + }, + { + "start": 31022.5, + "end": 31024.34, + "probability": 0.9933 + }, + { + "start": 31024.96, + "end": 31028.16, + "probability": 0.6107 + }, + { + "start": 31029.14, + "end": 31029.6, + "probability": 0.7696 + }, + { + "start": 31030.48, + "end": 31032.3, + "probability": 0.8987 + }, + { + "start": 31032.66, + "end": 31037.48, + "probability": 0.8848 + }, + { + "start": 31037.6, + "end": 31038.54, + "probability": 0.689 + }, + { + "start": 31039.3, + "end": 31042.14, + "probability": 0.993 + }, + { + "start": 31043.02, + "end": 31046.88, + "probability": 0.9915 + }, + { + "start": 31046.88, + "end": 31049.88, + "probability": 0.857 + }, + { + "start": 31050.32, + "end": 31053.04, + "probability": 0.8324 + }, + { + "start": 31053.5, + "end": 31056.58, + "probability": 0.9917 + }, + { + "start": 31057.24, + "end": 31059.2, + "probability": 0.9884 + }, + { + "start": 31059.92, + "end": 31060.76, + "probability": 0.9563 + }, + { + "start": 31061.3, + "end": 31063.46, + "probability": 0.7048 + }, + { + "start": 31064.26, + "end": 31066.76, + "probability": 0.9147 + }, + { + "start": 31067.36, + "end": 31068.54, + "probability": 0.9176 + }, + { + "start": 31068.68, + "end": 31071.48, + "probability": 0.9907 + }, + { + "start": 31072.44, + "end": 31073.78, + "probability": 0.998 + }, + { + "start": 31074.54, + "end": 31075.52, + "probability": 0.9126 + }, + { + "start": 31076.12, + "end": 31078.26, + "probability": 0.8595 + }, + { + "start": 31078.84, + "end": 31079.64, + "probability": 0.7878 + }, + { + "start": 31080.16, + "end": 31081.12, + "probability": 0.9484 + }, + { + "start": 31081.28, + "end": 31086.02, + "probability": 0.8837 + }, + { + "start": 31086.66, + "end": 31089.56, + "probability": 0.9971 + }, + { + "start": 31090.28, + "end": 31091.18, + "probability": 0.9822 + }, + { + "start": 31091.28, + "end": 31091.56, + "probability": 0.5377 + }, + { + "start": 31093.42, + "end": 31095.42, + "probability": 0.7862 + }, + { + "start": 31095.48, + "end": 31096.88, + "probability": 0.781 + }, + { + "start": 31096.94, + "end": 31097.6, + "probability": 0.5701 + }, + { + "start": 31097.78, + "end": 31099.28, + "probability": 0.8137 + }, + { + "start": 31100.08, + "end": 31100.96, + "probability": 0.7942 + }, + { + "start": 31101.28, + "end": 31103.78, + "probability": 0.7589 + }, + { + "start": 31109.86, + "end": 31109.86, + "probability": 0.2575 + }, + { + "start": 31109.86, + "end": 31109.86, + "probability": 0.1739 + }, + { + "start": 31109.86, + "end": 31109.86, + "probability": 0.3028 + }, + { + "start": 31109.86, + "end": 31109.86, + "probability": 0.1163 + }, + { + "start": 31109.86, + "end": 31109.86, + "probability": 0.0302 + }, + { + "start": 31109.86, + "end": 31109.86, + "probability": 0.0626 + }, + { + "start": 31109.86, + "end": 31109.86, + "probability": 0.0349 + }, + { + "start": 31109.9, + "end": 31109.92, + "probability": 0.0531 + }, + { + "start": 31140.04, + "end": 31143.34, + "probability": 0.3528 + }, + { + "start": 31144.17, + "end": 31147.18, + "probability": 0.7079 + }, + { + "start": 31148.46, + "end": 31150.04, + "probability": 0.2768 + }, + { + "start": 31150.04, + "end": 31150.04, + "probability": 0.7597 + }, + { + "start": 31150.04, + "end": 31151.38, + "probability": 0.1135 + }, + { + "start": 31151.6, + "end": 31153.68, + "probability": 0.2548 + }, + { + "start": 31153.84, + "end": 31157.2, + "probability": 0.3039 + }, + { + "start": 31158.28, + "end": 31161.34, + "probability": 0.3057 + }, + { + "start": 31161.38, + "end": 31162.44, + "probability": 0.5965 + }, + { + "start": 31162.5, + "end": 31164.4, + "probability": 0.606 + }, + { + "start": 31164.48, + "end": 31165.18, + "probability": 0.3989 + }, + { + "start": 31165.5, + "end": 31168.46, + "probability": 0.9312 + }, + { + "start": 31172.12, + "end": 31175.36, + "probability": 0.8092 + }, + { + "start": 31175.46, + "end": 31177.41, + "probability": 0.9021 + }, + { + "start": 31178.04, + "end": 31180.52, + "probability": 0.8693 + }, + { + "start": 31180.52, + "end": 31182.18, + "probability": 0.9927 + }, + { + "start": 31182.38, + "end": 31183.64, + "probability": 0.7405 + }, + { + "start": 31183.9, + "end": 31187.26, + "probability": 0.9364 + }, + { + "start": 31187.36, + "end": 31188.06, + "probability": 0.0717 + }, + { + "start": 31188.12, + "end": 31190.5, + "probability": 0.4526 + }, + { + "start": 31190.52, + "end": 31191.62, + "probability": 0.3116 + }, + { + "start": 31191.72, + "end": 31192.42, + "probability": 0.4409 + }, + { + "start": 31192.52, + "end": 31193.66, + "probability": 0.6196 + }, + { + "start": 31193.98, + "end": 31196.28, + "probability": 0.9705 + }, + { + "start": 31196.98, + "end": 31197.68, + "probability": 0.5949 + }, + { + "start": 31197.96, + "end": 31201.22, + "probability": 0.9391 + }, + { + "start": 31201.28, + "end": 31202.57, + "probability": 0.939 + }, + { + "start": 31203.44, + "end": 31205.0, + "probability": 0.8882 + }, + { + "start": 31205.18, + "end": 31205.48, + "probability": 0.9366 + }, + { + "start": 31205.5, + "end": 31210.12, + "probability": 0.9699 + }, + { + "start": 31210.84, + "end": 31211.7, + "probability": 0.8892 + }, + { + "start": 31212.84, + "end": 31214.95, + "probability": 0.411 + }, + { + "start": 31215.28, + "end": 31218.7, + "probability": 0.9701 + }, + { + "start": 31218.8, + "end": 31220.28, + "probability": 0.7692 + }, + { + "start": 31220.68, + "end": 31223.56, + "probability": 0.881 + }, + { + "start": 31223.92, + "end": 31224.96, + "probability": 0.9531 + }, + { + "start": 31225.26, + "end": 31226.74, + "probability": 0.8882 + }, + { + "start": 31227.9, + "end": 31230.5, + "probability": 0.7552 + }, + { + "start": 31231.02, + "end": 31232.4, + "probability": 0.9541 + }, + { + "start": 31232.6, + "end": 31234.28, + "probability": 0.9011 + }, + { + "start": 31235.12, + "end": 31238.28, + "probability": 0.9703 + }, + { + "start": 31238.54, + "end": 31240.86, + "probability": 0.9893 + }, + { + "start": 31240.86, + "end": 31246.72, + "probability": 0.9006 + }, + { + "start": 31246.86, + "end": 31248.24, + "probability": 0.8763 + }, + { + "start": 31248.64, + "end": 31249.48, + "probability": 0.8595 + }, + { + "start": 31250.12, + "end": 31252.38, + "probability": 0.9987 + }, + { + "start": 31252.68, + "end": 31254.34, + "probability": 0.805 + }, + { + "start": 31254.52, + "end": 31255.7, + "probability": 0.9872 + }, + { + "start": 31256.12, + "end": 31258.7, + "probability": 0.9844 + }, + { + "start": 31258.7, + "end": 31260.39, + "probability": 0.9761 + }, + { + "start": 31261.08, + "end": 31262.08, + "probability": 0.7691 + }, + { + "start": 31262.38, + "end": 31264.34, + "probability": 0.8619 + }, + { + "start": 31264.78, + "end": 31265.94, + "probability": 0.9927 + }, + { + "start": 31266.34, + "end": 31268.93, + "probability": 0.6464 + }, + { + "start": 31269.7, + "end": 31272.56, + "probability": 0.8972 + }, + { + "start": 31272.6, + "end": 31273.36, + "probability": 0.8802 + }, + { + "start": 31273.72, + "end": 31276.66, + "probability": 0.915 + }, + { + "start": 31277.58, + "end": 31281.0, + "probability": 0.9857 + }, + { + "start": 31282.05, + "end": 31286.66, + "probability": 0.933 + }, + { + "start": 31287.42, + "end": 31287.94, + "probability": 0.7502 + }, + { + "start": 31288.52, + "end": 31293.14, + "probability": 0.9811 + }, + { + "start": 31293.68, + "end": 31294.9, + "probability": 0.9702 + }, + { + "start": 31295.66, + "end": 31298.49, + "probability": 0.8987 + }, + { + "start": 31299.0, + "end": 31303.0, + "probability": 0.9731 + }, + { + "start": 31303.88, + "end": 31307.76, + "probability": 0.9778 + }, + { + "start": 31307.98, + "end": 31308.84, + "probability": 0.8655 + }, + { + "start": 31309.18, + "end": 31311.64, + "probability": 0.9634 + }, + { + "start": 31312.8, + "end": 31316.92, + "probability": 0.8826 + }, + { + "start": 31317.36, + "end": 31318.08, + "probability": 0.7791 + }, + { + "start": 31318.52, + "end": 31323.06, + "probability": 0.9731 + }, + { + "start": 31323.1, + "end": 31328.44, + "probability": 0.8455 + }, + { + "start": 31328.92, + "end": 31329.3, + "probability": 0.7765 + }, + { + "start": 31329.42, + "end": 31333.62, + "probability": 0.9672 + }, + { + "start": 31334.18, + "end": 31334.18, + "probability": 0.2981 + }, + { + "start": 31334.18, + "end": 31337.32, + "probability": 0.9346 + }, + { + "start": 31339.18, + "end": 31340.44, + "probability": 0.7364 + }, + { + "start": 31340.78, + "end": 31347.4, + "probability": 0.9272 + }, + { + "start": 31348.04, + "end": 31349.88, + "probability": 0.979 + }, + { + "start": 31350.64, + "end": 31356.28, + "probability": 0.9528 + }, + { + "start": 31356.8, + "end": 31361.58, + "probability": 0.9964 + }, + { + "start": 31361.86, + "end": 31363.96, + "probability": 0.9659 + }, + { + "start": 31364.78, + "end": 31366.62, + "probability": 0.8863 + }, + { + "start": 31367.54, + "end": 31370.6, + "probability": 0.9388 + }, + { + "start": 31370.98, + "end": 31376.55, + "probability": 0.991 + }, + { + "start": 31376.68, + "end": 31380.18, + "probability": 0.9643 + }, + { + "start": 31380.96, + "end": 31382.0, + "probability": 0.5814 + }, + { + "start": 31382.5, + "end": 31382.78, + "probability": 0.7509 + }, + { + "start": 31382.86, + "end": 31384.96, + "probability": 0.8985 + }, + { + "start": 31385.44, + "end": 31386.84, + "probability": 0.9727 + }, + { + "start": 31386.94, + "end": 31387.58, + "probability": 0.8794 + }, + { + "start": 31387.94, + "end": 31388.22, + "probability": 0.8785 + }, + { + "start": 31388.82, + "end": 31390.81, + "probability": 0.5923 + }, + { + "start": 31391.28, + "end": 31392.76, + "probability": 0.9208 + }, + { + "start": 31392.84, + "end": 31393.4, + "probability": 0.306 + }, + { + "start": 31393.54, + "end": 31394.88, + "probability": 0.9339 + }, + { + "start": 31395.48, + "end": 31397.96, + "probability": 0.9198 + }, + { + "start": 31399.1, + "end": 31400.66, + "probability": 0.6989 + }, + { + "start": 31400.66, + "end": 31403.12, + "probability": 0.8141 + }, + { + "start": 31403.2, + "end": 31403.56, + "probability": 0.8218 + }, + { + "start": 31405.8, + "end": 31409.18, + "probability": 0.8739 + }, + { + "start": 31411.27, + "end": 31414.26, + "probability": 0.9855 + }, + { + "start": 31414.34, + "end": 31415.26, + "probability": 0.9245 + }, + { + "start": 31415.64, + "end": 31416.2, + "probability": 0.7331 + }, + { + "start": 31416.52, + "end": 31416.52, + "probability": 0.0105 + }, + { + "start": 31416.52, + "end": 31416.6, + "probability": 0.3972 + }, + { + "start": 31416.7, + "end": 31417.99, + "probability": 0.9673 + }, + { + "start": 31418.26, + "end": 31418.98, + "probability": 0.6874 + }, + { + "start": 31419.94, + "end": 31421.4, + "probability": 0.5339 + }, + { + "start": 31421.54, + "end": 31422.42, + "probability": 0.4603 + }, + { + "start": 31422.52, + "end": 31423.96, + "probability": 0.9622 + }, + { + "start": 31424.02, + "end": 31428.28, + "probability": 0.7057 + }, + { + "start": 31428.28, + "end": 31428.8, + "probability": 0.1288 + }, + { + "start": 31429.86, + "end": 31430.42, + "probability": 0.907 + }, + { + "start": 31430.92, + "end": 31436.0, + "probability": 0.9443 + }, + { + "start": 31436.12, + "end": 31439.48, + "probability": 0.8846 + }, + { + "start": 31439.52, + "end": 31441.4, + "probability": 0.561 + }, + { + "start": 31441.5, + "end": 31442.66, + "probability": 0.7276 + }, + { + "start": 31442.74, + "end": 31443.76, + "probability": 0.7184 + }, + { + "start": 31444.64, + "end": 31447.86, + "probability": 0.8227 + }, + { + "start": 31447.92, + "end": 31448.34, + "probability": 0.9665 + }, + { + "start": 31448.62, + "end": 31449.58, + "probability": 0.9275 + }, + { + "start": 31449.96, + "end": 31451.2, + "probability": 0.7307 + }, + { + "start": 31451.32, + "end": 31451.82, + "probability": 0.7455 + }, + { + "start": 31451.92, + "end": 31452.94, + "probability": 0.8827 + }, + { + "start": 31453.06, + "end": 31458.64, + "probability": 0.9829 + }, + { + "start": 31458.76, + "end": 31460.66, + "probability": 0.9049 + }, + { + "start": 31461.24, + "end": 31464.98, + "probability": 0.9474 + }, + { + "start": 31465.02, + "end": 31467.48, + "probability": 0.9704 + }, + { + "start": 31467.68, + "end": 31469.78, + "probability": 0.9909 + }, + { + "start": 31470.52, + "end": 31471.77, + "probability": 0.9961 + }, + { + "start": 31473.7, + "end": 31480.24, + "probability": 0.989 + }, + { + "start": 31480.52, + "end": 31481.48, + "probability": 0.9439 + }, + { + "start": 31481.56, + "end": 31482.18, + "probability": 0.9937 + }, + { + "start": 31482.98, + "end": 31484.18, + "probability": 0.9634 + }, + { + "start": 31484.78, + "end": 31486.6, + "probability": 0.9926 + }, + { + "start": 31487.36, + "end": 31495.95, + "probability": 0.9973 + }, + { + "start": 31498.18, + "end": 31498.64, + "probability": 0.946 + }, + { + "start": 31499.42, + "end": 31503.58, + "probability": 0.9971 + }, + { + "start": 31504.83, + "end": 31506.12, + "probability": 0.9246 + }, + { + "start": 31507.12, + "end": 31508.02, + "probability": 0.9829 + }, + { + "start": 31508.24, + "end": 31512.06, + "probability": 0.606 + }, + { + "start": 31512.96, + "end": 31515.22, + "probability": 0.9146 + }, + { + "start": 31515.36, + "end": 31517.58, + "probability": 0.9927 + }, + { + "start": 31519.28, + "end": 31525.1, + "probability": 0.9396 + }, + { + "start": 31526.16, + "end": 31528.26, + "probability": 0.9749 + }, + { + "start": 31528.68, + "end": 31529.58, + "probability": 0.957 + }, + { + "start": 31529.72, + "end": 31531.16, + "probability": 0.8511 + }, + { + "start": 31531.7, + "end": 31534.4, + "probability": 0.9697 + }, + { + "start": 31534.94, + "end": 31535.92, + "probability": 0.939 + }, + { + "start": 31536.76, + "end": 31537.74, + "probability": 0.98 + }, + { + "start": 31538.66, + "end": 31540.16, + "probability": 0.9077 + }, + { + "start": 31541.52, + "end": 31543.1, + "probability": 0.4888 + }, + { + "start": 31543.18, + "end": 31544.48, + "probability": 0.9789 + }, + { + "start": 31544.6, + "end": 31545.82, + "probability": 0.9746 + }, + { + "start": 31546.72, + "end": 31548.62, + "probability": 0.9829 + }, + { + "start": 31549.3, + "end": 31549.48, + "probability": 0.9391 + }, + { + "start": 31549.54, + "end": 31550.44, + "probability": 0.9277 + }, + { + "start": 31551.24, + "end": 31554.88, + "probability": 0.9933 + }, + { + "start": 31555.86, + "end": 31557.36, + "probability": 0.9871 + }, + { + "start": 31557.92, + "end": 31562.04, + "probability": 0.9634 + }, + { + "start": 31563.04, + "end": 31566.3, + "probability": 0.9983 + }, + { + "start": 31567.46, + "end": 31567.8, + "probability": 0.7937 + }, + { + "start": 31568.86, + "end": 31569.44, + "probability": 0.7283 + }, + { + "start": 31570.6, + "end": 31574.14, + "probability": 0.9202 + }, + { + "start": 31575.2, + "end": 31579.44, + "probability": 0.8944 + }, + { + "start": 31579.48, + "end": 31580.43, + "probability": 0.7553 + }, + { + "start": 31581.9, + "end": 31585.08, + "probability": 0.9939 + }, + { + "start": 31587.32, + "end": 31589.0, + "probability": 0.802 + }, + { + "start": 31590.06, + "end": 31593.68, + "probability": 0.9967 + }, + { + "start": 31594.8, + "end": 31596.18, + "probability": 0.968 + }, + { + "start": 31596.92, + "end": 31598.72, + "probability": 0.9978 + }, + { + "start": 31599.26, + "end": 31603.66, + "probability": 0.9823 + }, + { + "start": 31604.6, + "end": 31609.8, + "probability": 0.9819 + }, + { + "start": 31609.9, + "end": 31613.5, + "probability": 0.9872 + }, + { + "start": 31614.56, + "end": 31616.66, + "probability": 0.9984 + }, + { + "start": 31617.8, + "end": 31619.72, + "probability": 0.9474 + }, + { + "start": 31620.0, + "end": 31622.48, + "probability": 0.9946 + }, + { + "start": 31623.48, + "end": 31626.5, + "probability": 0.3263 + }, + { + "start": 31626.98, + "end": 31629.54, + "probability": 0.6443 + }, + { + "start": 31629.54, + "end": 31630.08, + "probability": 0.0179 + }, + { + "start": 31630.08, + "end": 31630.5, + "probability": 0.3284 + }, + { + "start": 31633.1, + "end": 31633.34, + "probability": 0.6704 + }, + { + "start": 31633.34, + "end": 31634.56, + "probability": 0.6095 + }, + { + "start": 31634.78, + "end": 31637.1, + "probability": 0.9495 + }, + { + "start": 31637.34, + "end": 31640.7, + "probability": 0.9973 + }, + { + "start": 31641.8, + "end": 31647.34, + "probability": 0.9668 + }, + { + "start": 31647.44, + "end": 31648.72, + "probability": 0.9926 + }, + { + "start": 31648.94, + "end": 31649.16, + "probability": 0.7173 + }, + { + "start": 31649.94, + "end": 31651.56, + "probability": 0.8739 + }, + { + "start": 31651.74, + "end": 31653.6, + "probability": 0.7161 + }, + { + "start": 31653.7, + "end": 31655.66, + "probability": 0.7242 + }, + { + "start": 31656.66, + "end": 31656.66, + "probability": 0.2053 + }, + { + "start": 31656.66, + "end": 31659.86, + "probability": 0.6471 + }, + { + "start": 31661.42, + "end": 31661.62, + "probability": 0.2745 + }, + { + "start": 31661.7, + "end": 31662.1, + "probability": 0.8967 + }, + { + "start": 31662.5, + "end": 31663.0, + "probability": 0.0434 + }, + { + "start": 31663.92, + "end": 31664.88, + "probability": 0.2497 + }, + { + "start": 31665.92, + "end": 31665.92, + "probability": 0.0027 + }, + { + "start": 31666.6, + "end": 31668.9, + "probability": 0.5141 + }, + { + "start": 31669.06, + "end": 31669.81, + "probability": 0.7279 + }, + { + "start": 31695.16, + "end": 31697.19, + "probability": 0.1403 + }, + { + "start": 31697.88, + "end": 31698.02, + "probability": 0.1527 + }, + { + "start": 31698.02, + "end": 31699.26, + "probability": 0.0639 + }, + { + "start": 31729.2, + "end": 31731.2, + "probability": 0.1643 + }, + { + "start": 31733.88, + "end": 31736.45, + "probability": 0.999 + }, + { + "start": 31737.64, + "end": 31739.38, + "probability": 0.998 + }, + { + "start": 31739.9, + "end": 31743.35, + "probability": 0.9956 + }, + { + "start": 31743.86, + "end": 31748.78, + "probability": 0.9965 + }, + { + "start": 31749.56, + "end": 31750.6, + "probability": 0.8517 + }, + { + "start": 31751.14, + "end": 31754.82, + "probability": 0.9937 + }, + { + "start": 31755.9, + "end": 31757.92, + "probability": 0.9961 + }, + { + "start": 31758.5, + "end": 31764.78, + "probability": 0.9987 + }, + { + "start": 31765.5, + "end": 31767.62, + "probability": 0.9819 + }, + { + "start": 31768.42, + "end": 31769.72, + "probability": 0.8718 + }, + { + "start": 31770.26, + "end": 31771.86, + "probability": 0.784 + }, + { + "start": 31773.02, + "end": 31775.3, + "probability": 0.9536 + }, + { + "start": 31776.24, + "end": 31779.1, + "probability": 0.9311 + }, + { + "start": 31779.78, + "end": 31782.72, + "probability": 0.9492 + }, + { + "start": 31783.5, + "end": 31785.56, + "probability": 0.9026 + }, + { + "start": 31786.72, + "end": 31791.68, + "probability": 0.9954 + }, + { + "start": 31791.7, + "end": 31796.38, + "probability": 0.9414 + }, + { + "start": 31797.14, + "end": 31798.42, + "probability": 0.9971 + }, + { + "start": 31798.9, + "end": 31800.68, + "probability": 0.9904 + }, + { + "start": 31801.94, + "end": 31804.9, + "probability": 0.9993 + }, + { + "start": 31804.9, + "end": 31808.76, + "probability": 0.9852 + }, + { + "start": 31809.04, + "end": 31810.68, + "probability": 0.9645 + }, + { + "start": 31811.52, + "end": 31814.78, + "probability": 0.9977 + }, + { + "start": 31815.7, + "end": 31818.84, + "probability": 0.998 + }, + { + "start": 31819.78, + "end": 31822.9, + "probability": 0.9064 + }, + { + "start": 31824.38, + "end": 31826.96, + "probability": 0.9982 + }, + { + "start": 31827.5, + "end": 31828.92, + "probability": 0.9038 + }, + { + "start": 31829.22, + "end": 31830.3, + "probability": 0.879 + }, + { + "start": 31830.46, + "end": 31831.33, + "probability": 0.938 + }, + { + "start": 31831.84, + "end": 31832.36, + "probability": 0.8229 + }, + { + "start": 31832.52, + "end": 31833.1, + "probability": 0.416 + }, + { + "start": 31833.96, + "end": 31838.4, + "probability": 0.9946 + }, + { + "start": 31839.08, + "end": 31841.04, + "probability": 0.9222 + }, + { + "start": 31841.58, + "end": 31842.6, + "probability": 0.767 + }, + { + "start": 31843.5, + "end": 31846.9, + "probability": 0.9981 + }, + { + "start": 31847.3, + "end": 31852.84, + "probability": 0.9957 + }, + { + "start": 31853.9, + "end": 31858.3, + "probability": 0.9688 + }, + { + "start": 31858.68, + "end": 31861.1, + "probability": 0.9755 + }, + { + "start": 31862.22, + "end": 31864.76, + "probability": 0.9982 + }, + { + "start": 31864.76, + "end": 31868.34, + "probability": 0.996 + }, + { + "start": 31868.96, + "end": 31872.24, + "probability": 0.9971 + }, + { + "start": 31873.16, + "end": 31875.98, + "probability": 0.9911 + }, + { + "start": 31877.42, + "end": 31881.38, + "probability": 0.9943 + }, + { + "start": 31881.84, + "end": 31884.4, + "probability": 0.9798 + }, + { + "start": 31885.52, + "end": 31887.62, + "probability": 0.9973 + }, + { + "start": 31887.62, + "end": 31890.88, + "probability": 0.9976 + }, + { + "start": 31891.56, + "end": 31893.6, + "probability": 0.9439 + }, + { + "start": 31894.3, + "end": 31899.4, + "probability": 0.9954 + }, + { + "start": 31899.86, + "end": 31901.08, + "probability": 0.9641 + }, + { + "start": 31901.68, + "end": 31903.86, + "probability": 0.9954 + }, + { + "start": 31907.16, + "end": 31909.14, + "probability": 0.631 + }, + { + "start": 31909.22, + "end": 31910.78, + "probability": 0.8748 + }, + { + "start": 31928.62, + "end": 31929.87, + "probability": 0.7289 + }, + { + "start": 31931.48, + "end": 31935.84, + "probability": 0.9989 + }, + { + "start": 31936.68, + "end": 31938.14, + "probability": 0.9971 + }, + { + "start": 31939.18, + "end": 31940.46, + "probability": 0.7473 + }, + { + "start": 31940.5, + "end": 31943.74, + "probability": 0.9678 + }, + { + "start": 31944.24, + "end": 31945.16, + "probability": 0.8984 + }, + { + "start": 31945.82, + "end": 31950.58, + "probability": 0.8217 + }, + { + "start": 31951.72, + "end": 31952.98, + "probability": 0.9956 + }, + { + "start": 31956.09, + "end": 31958.28, + "probability": 0.8513 + }, + { + "start": 31958.88, + "end": 31960.68, + "probability": 0.524 + }, + { + "start": 31961.36, + "end": 31964.56, + "probability": 0.8782 + }, + { + "start": 31965.84, + "end": 31968.22, + "probability": 0.7112 + }, + { + "start": 31968.88, + "end": 31970.24, + "probability": 0.9966 + }, + { + "start": 31972.18, + "end": 31975.36, + "probability": 0.9885 + }, + { + "start": 31975.48, + "end": 31976.42, + "probability": 0.6345 + }, + { + "start": 31976.6, + "end": 31978.58, + "probability": 0.9634 + }, + { + "start": 31980.88, + "end": 31982.8, + "probability": 0.9526 + }, + { + "start": 31984.08, + "end": 31987.42, + "probability": 0.9985 + }, + { + "start": 31987.52, + "end": 31988.76, + "probability": 0.8955 + }, + { + "start": 31989.84, + "end": 31990.94, + "probability": 0.9766 + }, + { + "start": 31991.16, + "end": 31991.74, + "probability": 0.3479 + }, + { + "start": 31991.8, + "end": 31994.42, + "probability": 0.9883 + }, + { + "start": 31995.36, + "end": 31995.82, + "probability": 0.817 + }, + { + "start": 31997.14, + "end": 32001.62, + "probability": 0.9733 + }, + { + "start": 32002.52, + "end": 32003.5, + "probability": 0.7372 + }, + { + "start": 32004.38, + "end": 32008.14, + "probability": 0.9208 + }, + { + "start": 32009.2, + "end": 32016.82, + "probability": 0.94 + }, + { + "start": 32017.9, + "end": 32019.34, + "probability": 0.48 + }, + { + "start": 32020.62, + "end": 32021.74, + "probability": 0.9668 + }, + { + "start": 32023.72, + "end": 32025.44, + "probability": 0.7239 + }, + { + "start": 32025.98, + "end": 32028.74, + "probability": 0.9056 + }, + { + "start": 32028.88, + "end": 32031.14, + "probability": 0.9969 + }, + { + "start": 32032.94, + "end": 32037.8, + "probability": 0.9951 + }, + { + "start": 32038.36, + "end": 32039.74, + "probability": 0.9707 + }, + { + "start": 32040.34, + "end": 32041.44, + "probability": 0.9664 + }, + { + "start": 32042.06, + "end": 32043.06, + "probability": 0.9934 + }, + { + "start": 32043.72, + "end": 32044.64, + "probability": 0.9927 + }, + { + "start": 32045.48, + "end": 32048.92, + "probability": 0.9847 + }, + { + "start": 32049.84, + "end": 32051.14, + "probability": 0.8367 + }, + { + "start": 32053.5, + "end": 32055.68, + "probability": 0.8906 + }, + { + "start": 32056.4, + "end": 32058.57, + "probability": 0.9518 + }, + { + "start": 32059.3, + "end": 32060.76, + "probability": 0.9943 + }, + { + "start": 32061.18, + "end": 32062.52, + "probability": 0.9113 + }, + { + "start": 32063.24, + "end": 32065.94, + "probability": 0.9266 + }, + { + "start": 32066.8, + "end": 32069.88, + "probability": 0.8202 + }, + { + "start": 32070.5, + "end": 32073.27, + "probability": 0.9717 + }, + { + "start": 32073.78, + "end": 32076.3, + "probability": 0.96 + }, + { + "start": 32076.64, + "end": 32077.92, + "probability": 0.9821 + }, + { + "start": 32078.4, + "end": 32081.46, + "probability": 0.9883 + }, + { + "start": 32081.46, + "end": 32085.24, + "probability": 0.9946 + }, + { + "start": 32085.66, + "end": 32087.38, + "probability": 0.8833 + }, + { + "start": 32087.68, + "end": 32088.76, + "probability": 0.9314 + }, + { + "start": 32089.3, + "end": 32090.12, + "probability": 0.8745 + }, + { + "start": 32090.6, + "end": 32091.13, + "probability": 0.7959 + }, + { + "start": 32092.14, + "end": 32095.82, + "probability": 0.9984 + }, + { + "start": 32096.2, + "end": 32100.86, + "probability": 0.998 + }, + { + "start": 32101.28, + "end": 32103.58, + "probability": 0.8635 + }, + { + "start": 32104.1, + "end": 32105.42, + "probability": 0.8887 + }, + { + "start": 32105.76, + "end": 32107.1, + "probability": 0.9362 + }, + { + "start": 32107.46, + "end": 32109.18, + "probability": 0.9723 + }, + { + "start": 32109.56, + "end": 32111.74, + "probability": 0.9969 + }, + { + "start": 32112.08, + "end": 32113.29, + "probability": 0.9922 + }, + { + "start": 32113.62, + "end": 32114.72, + "probability": 0.986 + }, + { + "start": 32115.2, + "end": 32117.0, + "probability": 0.9401 + }, + { + "start": 32117.54, + "end": 32118.56, + "probability": 0.7825 + }, + { + "start": 32119.06, + "end": 32121.9, + "probability": 0.9619 + }, + { + "start": 32122.3, + "end": 32122.62, + "probability": 0.9262 + }, + { + "start": 32123.54, + "end": 32126.2, + "probability": 0.9087 + }, + { + "start": 32126.94, + "end": 32128.42, + "probability": 0.9841 + }, + { + "start": 32129.0, + "end": 32131.88, + "probability": 0.8449 + }, + { + "start": 32132.44, + "end": 32135.56, + "probability": 0.7945 + }, + { + "start": 32136.18, + "end": 32138.04, + "probability": 0.9663 + }, + { + "start": 32138.36, + "end": 32139.7, + "probability": 0.9891 + }, + { + "start": 32139.98, + "end": 32141.2, + "probability": 0.9184 + }, + { + "start": 32141.22, + "end": 32141.92, + "probability": 0.8656 + }, + { + "start": 32142.24, + "end": 32142.46, + "probability": 0.8259 + }, + { + "start": 32144.16, + "end": 32145.7, + "probability": 0.8363 + }, + { + "start": 32145.9, + "end": 32147.16, + "probability": 0.9458 + }, + { + "start": 32156.28, + "end": 32160.95, + "probability": 0.8562 + }, + { + "start": 32162.54, + "end": 32163.12, + "probability": 0.2783 + }, + { + "start": 32166.22, + "end": 32168.2, + "probability": 0.6759 + }, + { + "start": 32168.72, + "end": 32170.06, + "probability": 0.9985 + }, + { + "start": 32170.6, + "end": 32172.35, + "probability": 0.9878 + }, + { + "start": 32172.64, + "end": 32173.92, + "probability": 0.9531 + }, + { + "start": 32176.64, + "end": 32179.62, + "probability": 0.9948 + }, + { + "start": 32181.68, + "end": 32188.36, + "probability": 0.9602 + }, + { + "start": 32189.04, + "end": 32191.66, + "probability": 0.4412 + }, + { + "start": 32192.08, + "end": 32195.54, + "probability": 0.9963 + }, + { + "start": 32196.2, + "end": 32201.86, + "probability": 0.9807 + }, + { + "start": 32201.94, + "end": 32202.2, + "probability": 0.5344 + }, + { + "start": 32202.22, + "end": 32204.2, + "probability": 0.9055 + }, + { + "start": 32205.04, + "end": 32208.24, + "probability": 0.9975 + }, + { + "start": 32209.3, + "end": 32215.18, + "probability": 0.9808 + }, + { + "start": 32216.1, + "end": 32220.48, + "probability": 0.8789 + }, + { + "start": 32221.62, + "end": 32223.48, + "probability": 0.9888 + }, + { + "start": 32224.4, + "end": 32226.5, + "probability": 0.8258 + }, + { + "start": 32227.5, + "end": 32228.62, + "probability": 0.6582 + }, + { + "start": 32228.78, + "end": 32230.98, + "probability": 0.6702 + }, + { + "start": 32231.28, + "end": 32232.98, + "probability": 0.9954 + }, + { + "start": 32233.52, + "end": 32236.46, + "probability": 0.9813 + }, + { + "start": 32236.46, + "end": 32238.72, + "probability": 0.9839 + }, + { + "start": 32239.66, + "end": 32241.76, + "probability": 0.9581 + }, + { + "start": 32242.26, + "end": 32246.56, + "probability": 0.8609 + }, + { + "start": 32247.26, + "end": 32250.9, + "probability": 0.8956 + }, + { + "start": 32251.16, + "end": 32251.94, + "probability": 0.9382 + }, + { + "start": 32252.06, + "end": 32253.1, + "probability": 0.9884 + }, + { + "start": 32253.88, + "end": 32255.24, + "probability": 0.9941 + }, + { + "start": 32255.56, + "end": 32259.64, + "probability": 0.9979 + }, + { + "start": 32259.94, + "end": 32261.28, + "probability": 0.4787 + }, + { + "start": 32261.68, + "end": 32263.52, + "probability": 0.9761 + }, + { + "start": 32263.72, + "end": 32264.4, + "probability": 0.9546 + }, + { + "start": 32264.54, + "end": 32265.16, + "probability": 0.9056 + }, + { + "start": 32266.04, + "end": 32267.84, + "probability": 0.8496 + }, + { + "start": 32268.02, + "end": 32274.22, + "probability": 0.9833 + }, + { + "start": 32274.98, + "end": 32279.32, + "probability": 0.9961 + }, + { + "start": 32279.96, + "end": 32282.08, + "probability": 0.9852 + }, + { + "start": 32282.5, + "end": 32288.04, + "probability": 0.9537 + }, + { + "start": 32288.1, + "end": 32290.58, + "probability": 0.9906 + }, + { + "start": 32290.82, + "end": 32292.1, + "probability": 0.9988 + }, + { + "start": 32292.62, + "end": 32293.48, + "probability": 0.9396 + }, + { + "start": 32294.14, + "end": 32298.16, + "probability": 0.988 + }, + { + "start": 32298.44, + "end": 32302.1, + "probability": 0.9609 + }, + { + "start": 32307.04, + "end": 32308.48, + "probability": 0.4826 + }, + { + "start": 32308.62, + "end": 32310.1, + "probability": 0.2248 + }, + { + "start": 32311.14, + "end": 32321.58, + "probability": 0.2512 + }, + { + "start": 32336.06, + "end": 32341.42, + "probability": 0.9949 + }, + { + "start": 32341.76, + "end": 32342.76, + "probability": 0.9614 + }, + { + "start": 32343.3, + "end": 32344.54, + "probability": 0.8612 + }, + { + "start": 32345.44, + "end": 32347.08, + "probability": 0.9912 + }, + { + "start": 32347.14, + "end": 32348.56, + "probability": 0.7777 + }, + { + "start": 32349.02, + "end": 32349.94, + "probability": 0.936 + }, + { + "start": 32350.04, + "end": 32354.06, + "probability": 0.9653 + }, + { + "start": 32354.12, + "end": 32355.02, + "probability": 0.9905 + }, + { + "start": 32356.12, + "end": 32358.08, + "probability": 0.7942 + }, + { + "start": 32358.36, + "end": 32359.6, + "probability": 0.8008 + }, + { + "start": 32359.9, + "end": 32364.74, + "probability": 0.9278 + }, + { + "start": 32364.94, + "end": 32367.62, + "probability": 0.9951 + }, + { + "start": 32368.54, + "end": 32369.32, + "probability": 0.6047 + }, + { + "start": 32369.68, + "end": 32370.16, + "probability": 0.2477 + }, + { + "start": 32370.16, + "end": 32370.16, + "probability": 0.4855 + }, + { + "start": 32370.16, + "end": 32371.78, + "probability": 0.3559 + }, + { + "start": 32371.88, + "end": 32372.5, + "probability": 0.6057 + }, + { + "start": 32372.54, + "end": 32374.08, + "probability": 0.6106 + }, + { + "start": 32374.44, + "end": 32377.02, + "probability": 0.9933 + }, + { + "start": 32377.16, + "end": 32379.92, + "probability": 0.0461 + }, + { + "start": 32379.92, + "end": 32381.3, + "probability": 0.5129 + }, + { + "start": 32381.82, + "end": 32381.82, + "probability": 0.024 + }, + { + "start": 32382.16, + "end": 32383.22, + "probability": 0.6611 + }, + { + "start": 32383.36, + "end": 32385.7, + "probability": 0.3089 + }, + { + "start": 32386.08, + "end": 32391.54, + "probability": 0.9886 + }, + { + "start": 32391.54, + "end": 32394.68, + "probability": 0.2368 + }, + { + "start": 32394.68, + "end": 32394.68, + "probability": 0.1219 + }, + { + "start": 32394.94, + "end": 32397.19, + "probability": 0.7433 + }, + { + "start": 32397.54, + "end": 32398.12, + "probability": 0.3686 + }, + { + "start": 32398.22, + "end": 32399.34, + "probability": 0.6278 + }, + { + "start": 32399.64, + "end": 32403.34, + "probability": 0.9778 + }, + { + "start": 32403.88, + "end": 32404.51, + "probability": 0.5236 + }, + { + "start": 32405.12, + "end": 32408.42, + "probability": 0.7846 + }, + { + "start": 32408.42, + "end": 32410.48, + "probability": 0.1823 + }, + { + "start": 32411.12, + "end": 32411.86, + "probability": 0.0511 + }, + { + "start": 32411.86, + "end": 32411.93, + "probability": 0.0296 + }, + { + "start": 32412.16, + "end": 32413.18, + "probability": 0.2437 + }, + { + "start": 32413.42, + "end": 32415.34, + "probability": 0.7969 + }, + { + "start": 32415.38, + "end": 32416.66, + "probability": 0.8503 + }, + { + "start": 32416.68, + "end": 32418.72, + "probability": 0.9573 + }, + { + "start": 32419.08, + "end": 32421.0, + "probability": 0.9851 + }, + { + "start": 32421.48, + "end": 32422.76, + "probability": 0.8282 + }, + { + "start": 32422.84, + "end": 32424.2, + "probability": 0.2853 + }, + { + "start": 32424.2, + "end": 32425.08, + "probability": 0.1936 + }, + { + "start": 32425.58, + "end": 32426.24, + "probability": 0.1069 + }, + { + "start": 32426.34, + "end": 32427.32, + "probability": 0.4389 + }, + { + "start": 32427.74, + "end": 32432.08, + "probability": 0.6448 + }, + { + "start": 32432.96, + "end": 32435.88, + "probability": 0.9212 + }, + { + "start": 32435.94, + "end": 32436.7, + "probability": 0.4932 + }, + { + "start": 32436.76, + "end": 32437.28, + "probability": 0.79 + }, + { + "start": 32437.28, + "end": 32439.56, + "probability": 0.981 + }, + { + "start": 32439.66, + "end": 32440.97, + "probability": 0.5903 + }, + { + "start": 32441.72, + "end": 32442.74, + "probability": 0.2403 + }, + { + "start": 32442.74, + "end": 32443.88, + "probability": 0.8224 + }, + { + "start": 32444.2, + "end": 32446.06, + "probability": 0.9361 + }, + { + "start": 32446.68, + "end": 32447.96, + "probability": 0.6652 + }, + { + "start": 32448.1, + "end": 32449.3, + "probability": 0.7494 + }, + { + "start": 32449.46, + "end": 32450.94, + "probability": 0.9644 + }, + { + "start": 32452.88, + "end": 32457.54, + "probability": 0.7437 + }, + { + "start": 32457.54, + "end": 32457.78, + "probability": 0.0421 + }, + { + "start": 32457.78, + "end": 32459.22, + "probability": 0.4098 + }, + { + "start": 32459.28, + "end": 32459.72, + "probability": 0.8867 + }, + { + "start": 32459.98, + "end": 32461.0, + "probability": 0.3919 + }, + { + "start": 32461.04, + "end": 32461.22, + "probability": 0.2538 + }, + { + "start": 32461.22, + "end": 32461.22, + "probability": 0.25 + }, + { + "start": 32461.22, + "end": 32462.04, + "probability": 0.8556 + }, + { + "start": 32462.38, + "end": 32463.62, + "probability": 0.9844 + }, + { + "start": 32463.78, + "end": 32464.08, + "probability": 0.7982 + }, + { + "start": 32464.18, + "end": 32464.94, + "probability": 0.8631 + }, + { + "start": 32465.24, + "end": 32466.34, + "probability": 0.9151 + }, + { + "start": 32468.5, + "end": 32469.36, + "probability": 0.5101 + }, + { + "start": 32469.52, + "end": 32474.26, + "probability": 0.8522 + }, + { + "start": 32475.12, + "end": 32475.56, + "probability": 0.4777 + }, + { + "start": 32475.98, + "end": 32477.48, + "probability": 0.7724 + }, + { + "start": 32477.96, + "end": 32480.1, + "probability": 0.9977 + }, + { + "start": 32480.64, + "end": 32481.18, + "probability": 0.9604 + }, + { + "start": 32481.64, + "end": 32482.1, + "probability": 0.5174 + }, + { + "start": 32482.28, + "end": 32482.86, + "probability": 0.8519 + }, + { + "start": 32482.92, + "end": 32485.86, + "probability": 0.9873 + }, + { + "start": 32485.98, + "end": 32489.32, + "probability": 0.9919 + }, + { + "start": 32489.32, + "end": 32493.7, + "probability": 0.9672 + }, + { + "start": 32494.04, + "end": 32498.68, + "probability": 0.9939 + }, + { + "start": 32498.9, + "end": 32500.22, + "probability": 0.7629 + }, + { + "start": 32500.52, + "end": 32501.4, + "probability": 0.8862 + }, + { + "start": 32501.52, + "end": 32502.18, + "probability": 0.9653 + }, + { + "start": 32502.44, + "end": 32504.46, + "probability": 0.9563 + }, + { + "start": 32504.52, + "end": 32507.32, + "probability": 0.9851 + }, + { + "start": 32507.62, + "end": 32509.96, + "probability": 0.9911 + }, + { + "start": 32510.06, + "end": 32511.08, + "probability": 0.8732 + }, + { + "start": 32512.02, + "end": 32514.3, + "probability": 0.9839 + }, + { + "start": 32515.06, + "end": 32517.3, + "probability": 0.9814 + }, + { + "start": 32518.02, + "end": 32521.56, + "probability": 0.9778 + }, + { + "start": 32522.16, + "end": 32523.26, + "probability": 0.9749 + }, + { + "start": 32523.7, + "end": 32526.74, + "probability": 0.9971 + }, + { + "start": 32526.82, + "end": 32528.32, + "probability": 0.75 + }, + { + "start": 32528.46, + "end": 32529.36, + "probability": 0.9241 + }, + { + "start": 32529.44, + "end": 32533.06, + "probability": 0.9563 + }, + { + "start": 32533.4, + "end": 32534.28, + "probability": 0.9708 + }, + { + "start": 32534.42, + "end": 32535.32, + "probability": 0.7208 + }, + { + "start": 32535.42, + "end": 32539.8, + "probability": 0.9961 + }, + { + "start": 32540.3, + "end": 32544.44, + "probability": 0.99 + }, + { + "start": 32544.82, + "end": 32545.56, + "probability": 0.7477 + }, + { + "start": 32545.74, + "end": 32548.28, + "probability": 0.8201 + }, + { + "start": 32548.36, + "end": 32550.3, + "probability": 0.8832 + }, + { + "start": 32550.78, + "end": 32552.32, + "probability": 0.9076 + }, + { + "start": 32552.92, + "end": 32554.68, + "probability": 0.8457 + }, + { + "start": 32554.76, + "end": 32555.72, + "probability": 0.9767 + }, + { + "start": 32555.76, + "end": 32558.12, + "probability": 0.987 + }, + { + "start": 32558.24, + "end": 32560.42, + "probability": 0.9944 + }, + { + "start": 32560.98, + "end": 32562.12, + "probability": 0.8512 + }, + { + "start": 32562.62, + "end": 32563.84, + "probability": 0.7427 + }, + { + "start": 32563.88, + "end": 32565.36, + "probability": 0.9697 + }, + { + "start": 32566.1, + "end": 32570.66, + "probability": 0.9329 + }, + { + "start": 32570.92, + "end": 32572.02, + "probability": 0.9609 + }, + { + "start": 32572.16, + "end": 32573.5, + "probability": 0.882 + }, + { + "start": 32573.78, + "end": 32575.18, + "probability": 0.8419 + }, + { + "start": 32575.66, + "end": 32577.62, + "probability": 0.472 + }, + { + "start": 32577.86, + "end": 32579.7, + "probability": 0.8057 + }, + { + "start": 32579.76, + "end": 32580.38, + "probability": 0.3181 + }, + { + "start": 32580.74, + "end": 32582.5, + "probability": 0.9017 + }, + { + "start": 32583.66, + "end": 32584.48, + "probability": 0.0137 + }, + { + "start": 32585.08, + "end": 32586.5, + "probability": 0.9427 + }, + { + "start": 32586.84, + "end": 32588.44, + "probability": 0.458 + }, + { + "start": 32588.44, + "end": 32588.96, + "probability": 0.5349 + }, + { + "start": 32589.46, + "end": 32591.6, + "probability": 0.951 + }, + { + "start": 32591.68, + "end": 32593.46, + "probability": 0.5299 + }, + { + "start": 32594.02, + "end": 32594.34, + "probability": 0.7523 + }, + { + "start": 32596.54, + "end": 32598.96, + "probability": 0.1172 + }, + { + "start": 32599.12, + "end": 32599.12, + "probability": 0.0598 + }, + { + "start": 32599.12, + "end": 32600.14, + "probability": 0.1355 + }, + { + "start": 32600.8, + "end": 32602.62, + "probability": 0.2261 + }, + { + "start": 32603.0, + "end": 32603.38, + "probability": 0.0393 + }, + { + "start": 32609.62, + "end": 32610.42, + "probability": 0.266 + }, + { + "start": 32610.82, + "end": 32614.08, + "probability": 0.1728 + }, + { + "start": 32616.42, + "end": 32616.94, + "probability": 0.7819 + }, + { + "start": 32616.94, + "end": 32618.34, + "probability": 0.1146 + }, + { + "start": 32619.42, + "end": 32620.02, + "probability": 0.5095 + }, + { + "start": 32621.58, + "end": 32622.36, + "probability": 0.1317 + }, + { + "start": 32622.36, + "end": 32623.66, + "probability": 0.0674 + }, + { + "start": 32623.68, + "end": 32623.68, + "probability": 0.2723 + }, + { + "start": 32623.88, + "end": 32626.78, + "probability": 0.2059 + }, + { + "start": 32628.84, + "end": 32628.84, + "probability": 0.0216 + }, + { + "start": 32628.84, + "end": 32628.84, + "probability": 0.2558 + }, + { + "start": 32632.5, + "end": 32635.24, + "probability": 0.0725 + }, + { + "start": 32636.36, + "end": 32638.29, + "probability": 0.0245 + }, + { + "start": 32639.04, + "end": 32639.76, + "probability": 0.0885 + }, + { + "start": 32639.76, + "end": 32640.39, + "probability": 0.1511 + }, + { + "start": 32642.38, + "end": 32646.98, + "probability": 0.0608 + }, + { + "start": 32646.98, + "end": 32649.08, + "probability": 0.046 + }, + { + "start": 32651.86, + "end": 32656.88, + "probability": 0.1407 + }, + { + "start": 32659.9, + "end": 32662.14, + "probability": 0.0528 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.0, + "end": 32673.0, + "probability": 0.0 + }, + { + "start": 32673.98, + "end": 32673.98, + "probability": 0.1218 + }, + { + "start": 32673.98, + "end": 32673.98, + "probability": 0.0694 + }, + { + "start": 32673.98, + "end": 32673.98, + "probability": 0.1141 + }, + { + "start": 32673.98, + "end": 32677.76, + "probability": 0.8721 + }, + { + "start": 32678.38, + "end": 32680.56, + "probability": 0.5885 + }, + { + "start": 32681.44, + "end": 32682.14, + "probability": 0.1864 + }, + { + "start": 32682.7, + "end": 32684.48, + "probability": 0.8596 + }, + { + "start": 32686.08, + "end": 32690.88, + "probability": 0.6246 + }, + { + "start": 32692.4, + "end": 32694.34, + "probability": 0.9539 + }, + { + "start": 32694.88, + "end": 32696.36, + "probability": 0.7899 + }, + { + "start": 32700.4, + "end": 32703.14, + "probability": 0.7789 + }, + { + "start": 32704.24, + "end": 32708.8, + "probability": 0.9705 + }, + { + "start": 32711.46, + "end": 32717.2, + "probability": 0.9759 + }, + { + "start": 32718.76, + "end": 32720.12, + "probability": 0.8287 + }, + { + "start": 32720.98, + "end": 32721.56, + "probability": 0.6686 + }, + { + "start": 32722.12, + "end": 32725.98, + "probability": 0.9341 + }, + { + "start": 32727.42, + "end": 32727.77, + "probability": 0.3536 + }, + { + "start": 32728.0, + "end": 32731.0, + "probability": 0.3499 + }, + { + "start": 32731.08, + "end": 32733.46, + "probability": 0.9777 + }, + { + "start": 32736.12, + "end": 32736.62, + "probability": 0.5494 + }, + { + "start": 32737.24, + "end": 32744.12, + "probability": 0.9475 + }, + { + "start": 32744.12, + "end": 32744.12, + "probability": 0.0432 + }, + { + "start": 32744.12, + "end": 32745.05, + "probability": 0.529 + }, + { + "start": 32746.66, + "end": 32749.18, + "probability": 0.8766 + }, + { + "start": 32749.7, + "end": 32754.76, + "probability": 0.9613 + }, + { + "start": 32755.94, + "end": 32757.78, + "probability": 0.9907 + }, + { + "start": 32758.76, + "end": 32760.22, + "probability": 0.8566 + }, + { + "start": 32761.88, + "end": 32764.54, + "probability": 0.86 + }, + { + "start": 32765.24, + "end": 32767.12, + "probability": 0.9984 + }, + { + "start": 32768.42, + "end": 32775.46, + "probability": 0.9618 + }, + { + "start": 32776.76, + "end": 32778.19, + "probability": 0.2088 + }, + { + "start": 32779.4, + "end": 32788.32, + "probability": 0.751 + }, + { + "start": 32789.02, + "end": 32789.6, + "probability": 0.6718 + }, + { + "start": 32790.94, + "end": 32794.54, + "probability": 0.4264 + }, + { + "start": 32795.82, + "end": 32797.42, + "probability": 0.3668 + }, + { + "start": 32797.8, + "end": 32798.54, + "probability": 0.3211 + }, + { + "start": 32798.78, + "end": 32799.2, + "probability": 0.4283 + }, + { + "start": 32799.36, + "end": 32800.94, + "probability": 0.5288 + }, + { + "start": 32801.12, + "end": 32803.39, + "probability": 0.3502 + }, + { + "start": 32803.62, + "end": 32806.62, + "probability": 0.5103 + }, + { + "start": 32806.68, + "end": 32807.18, + "probability": 0.5836 + }, + { + "start": 32807.54, + "end": 32809.7, + "probability": 0.4903 + }, + { + "start": 32809.72, + "end": 32813.02, + "probability": 0.4803 + }, + { + "start": 32813.02, + "end": 32814.46, + "probability": 0.4405 + }, + { + "start": 32814.66, + "end": 32815.22, + "probability": 0.284 + }, + { + "start": 32815.3, + "end": 32816.62, + "probability": 0.8328 + }, + { + "start": 32818.64, + "end": 32822.8, + "probability": 0.946 + }, + { + "start": 32823.7, + "end": 32825.92, + "probability": 0.8975 + }, + { + "start": 32827.76, + "end": 32828.64, + "probability": 0.743 + }, + { + "start": 32830.1, + "end": 32831.98, + "probability": 0.7999 + }, + { + "start": 32863.86, + "end": 32866.34, + "probability": 0.7646 + }, + { + "start": 32867.26, + "end": 32868.44, + "probability": 0.6388 + }, + { + "start": 32868.56, + "end": 32874.24, + "probability": 0.93 + }, + { + "start": 32875.18, + "end": 32876.98, + "probability": 0.6385 + }, + { + "start": 32877.7, + "end": 32882.68, + "probability": 0.5004 + }, + { + "start": 32883.96, + "end": 32885.08, + "probability": 0.7072 + }, + { + "start": 32885.62, + "end": 32887.12, + "probability": 0.8792 + }, + { + "start": 32887.24, + "end": 32888.74, + "probability": 0.5761 + }, + { + "start": 32889.34, + "end": 32892.84, + "probability": 0.9504 + }, + { + "start": 32893.12, + "end": 32895.74, + "probability": 0.9662 + }, + { + "start": 32896.62, + "end": 32901.58, + "probability": 0.9795 + }, + { + "start": 32903.26, + "end": 32905.42, + "probability": 0.9798 + }, + { + "start": 32906.9, + "end": 32908.02, + "probability": 0.9104 + }, + { + "start": 32908.02, + "end": 32910.36, + "probability": 0.4317 + }, + { + "start": 32910.74, + "end": 32912.66, + "probability": 0.45 + }, + { + "start": 32912.72, + "end": 32914.68, + "probability": 0.9528 + }, + { + "start": 32914.98, + "end": 32915.7, + "probability": 0.7376 + }, + { + "start": 32915.94, + "end": 32916.94, + "probability": 0.8543 + }, + { + "start": 32917.94, + "end": 32923.3, + "probability": 0.796 + }, + { + "start": 32923.36, + "end": 32924.62, + "probability": 0.3406 + }, + { + "start": 32925.7, + "end": 32928.38, + "probability": 0.9766 + }, + { + "start": 32929.36, + "end": 32931.42, + "probability": 0.8415 + }, + { + "start": 32932.48, + "end": 32936.66, + "probability": 0.9465 + }, + { + "start": 32937.34, + "end": 32940.06, + "probability": 0.862 + }, + { + "start": 32941.02, + "end": 32943.46, + "probability": 0.5137 + }, + { + "start": 32944.82, + "end": 32946.64, + "probability": 0.9832 + }, + { + "start": 32946.74, + "end": 32948.04, + "probability": 0.9655 + }, + { + "start": 32948.12, + "end": 32951.3, + "probability": 0.9752 + }, + { + "start": 32951.36, + "end": 32952.74, + "probability": 0.9652 + }, + { + "start": 32954.14, + "end": 32956.62, + "probability": 0.9685 + }, + { + "start": 32956.62, + "end": 32960.28, + "probability": 0.9871 + }, + { + "start": 32960.32, + "end": 32964.5, + "probability": 0.8924 + }, + { + "start": 32964.6, + "end": 32965.88, + "probability": 0.7335 + }, + { + "start": 32966.8, + "end": 32969.1, + "probability": 0.883 + }, + { + "start": 32969.14, + "end": 32971.42, + "probability": 0.8739 + }, + { + "start": 32972.84, + "end": 32974.0, + "probability": 0.7695 + }, + { + "start": 32974.34, + "end": 32977.98, + "probability": 0.9898 + }, + { + "start": 32978.28, + "end": 32980.46, + "probability": 0.6045 + }, + { + "start": 32980.66, + "end": 32981.31, + "probability": 0.9056 + }, + { + "start": 32982.34, + "end": 32983.82, + "probability": 0.9181 + }, + { + "start": 32984.78, + "end": 32989.0, + "probability": 0.9823 + }, + { + "start": 32989.8, + "end": 32994.1, + "probability": 0.9052 + }, + { + "start": 32994.58, + "end": 32999.51, + "probability": 0.25 + }, + { + "start": 33000.74, + "end": 33001.24, + "probability": 0.2764 + }, + { + "start": 33001.38, + "end": 33002.58, + "probability": 0.9761 + }, + { + "start": 33002.74, + "end": 33004.88, + "probability": 0.9799 + }, + { + "start": 33005.4, + "end": 33007.48, + "probability": 0.8086 + }, + { + "start": 33008.48, + "end": 33015.42, + "probability": 0.9265 + }, + { + "start": 33015.46, + "end": 33016.46, + "probability": 0.8281 + }, + { + "start": 33017.36, + "end": 33019.72, + "probability": 0.9965 + }, + { + "start": 33020.26, + "end": 33021.32, + "probability": 0.8265 + }, + { + "start": 33021.78, + "end": 33023.84, + "probability": 0.9107 + }, + { + "start": 33024.48, + "end": 33028.0, + "probability": 0.989 + }, + { + "start": 33028.72, + "end": 33030.6, + "probability": 0.9739 + }, + { + "start": 33032.18, + "end": 33036.64, + "probability": 0.5067 + }, + { + "start": 33037.04, + "end": 33039.84, + "probability": 0.9132 + }, + { + "start": 33040.82, + "end": 33044.52, + "probability": 0.7859 + }, + { + "start": 33044.68, + "end": 33049.48, + "probability": 0.9404 + }, + { + "start": 33050.56, + "end": 33056.26, + "probability": 0.9839 + }, + { + "start": 33056.68, + "end": 33057.54, + "probability": 0.9275 + }, + { + "start": 33057.68, + "end": 33061.42, + "probability": 0.9905 + }, + { + "start": 33062.18, + "end": 33064.28, + "probability": 0.9268 + }, + { + "start": 33064.52, + "end": 33066.52, + "probability": 0.978 + }, + { + "start": 33067.02, + "end": 33069.24, + "probability": 0.7877 + }, + { + "start": 33069.52, + "end": 33071.72, + "probability": 0.7033 + }, + { + "start": 33072.96, + "end": 33075.82, + "probability": 0.9567 + }, + { + "start": 33075.88, + "end": 33077.26, + "probability": 0.9247 + }, + { + "start": 33077.92, + "end": 33079.56, + "probability": 0.9937 + }, + { + "start": 33079.74, + "end": 33081.16, + "probability": 0.7316 + }, + { + "start": 33081.32, + "end": 33084.76, + "probability": 0.9127 + }, + { + "start": 33085.5, + "end": 33089.12, + "probability": 0.8766 + }, + { + "start": 33089.4, + "end": 33093.36, + "probability": 0.9634 + }, + { + "start": 33093.48, + "end": 33096.74, + "probability": 0.9922 + }, + { + "start": 33098.1, + "end": 33104.86, + "probability": 0.6294 + }, + { + "start": 33106.32, + "end": 33109.06, + "probability": 0.7383 + }, + { + "start": 33109.66, + "end": 33117.84, + "probability": 0.7784 + }, + { + "start": 33117.84, + "end": 33123.48, + "probability": 0.9959 + }, + { + "start": 33123.88, + "end": 33124.56, + "probability": 0.6371 + }, + { + "start": 33124.96, + "end": 33126.08, + "probability": 0.9501 + }, + { + "start": 33126.54, + "end": 33129.2, + "probability": 0.8057 + }, + { + "start": 33130.12, + "end": 33131.7, + "probability": 0.6547 + }, + { + "start": 33142.04, + "end": 33142.04, + "probability": 0.3581 + }, + { + "start": 33142.04, + "end": 33144.4, + "probability": 0.6894 + }, + { + "start": 33144.8, + "end": 33147.84, + "probability": 0.9629 + }, + { + "start": 33151.33, + "end": 33154.12, + "probability": 0.7361 + }, + { + "start": 33155.76, + "end": 33157.52, + "probability": 0.7988 + }, + { + "start": 33158.04, + "end": 33160.32, + "probability": 0.8854 + }, + { + "start": 33160.64, + "end": 33161.78, + "probability": 0.9606 + }, + { + "start": 33161.88, + "end": 33162.84, + "probability": 0.7376 + }, + { + "start": 33162.98, + "end": 33163.62, + "probability": 0.9235 + }, + { + "start": 33164.44, + "end": 33167.12, + "probability": 0.9639 + }, + { + "start": 33167.66, + "end": 33172.24, + "probability": 0.999 + }, + { + "start": 33173.54, + "end": 33176.88, + "probability": 0.9904 + }, + { + "start": 33177.16, + "end": 33177.8, + "probability": 0.8067 + }, + { + "start": 33178.58, + "end": 33182.74, + "probability": 0.9357 + }, + { + "start": 33183.18, + "end": 33183.82, + "probability": 0.6008 + }, + { + "start": 33183.9, + "end": 33186.57, + "probability": 0.999 + }, + { + "start": 33186.98, + "end": 33187.6, + "probability": 0.8659 + }, + { + "start": 33187.7, + "end": 33188.54, + "probability": 0.4889 + }, + { + "start": 33189.08, + "end": 33192.4, + "probability": 0.9811 + }, + { + "start": 33193.54, + "end": 33196.98, + "probability": 0.886 + }, + { + "start": 33197.02, + "end": 33202.4, + "probability": 0.992 + }, + { + "start": 33202.98, + "end": 33205.34, + "probability": 0.9374 + }, + { + "start": 33206.34, + "end": 33212.04, + "probability": 0.9994 + }, + { + "start": 33212.04, + "end": 33215.88, + "probability": 0.9995 + }, + { + "start": 33216.42, + "end": 33219.94, + "probability": 0.9849 + }, + { + "start": 33220.58, + "end": 33227.68, + "probability": 0.9916 + }, + { + "start": 33228.84, + "end": 33230.06, + "probability": 0.7218 + }, + { + "start": 33231.18, + "end": 33235.2, + "probability": 0.8927 + }, + { + "start": 33235.2, + "end": 33238.14, + "probability": 0.9956 + }, + { + "start": 33238.76, + "end": 33241.58, + "probability": 0.9719 + }, + { + "start": 33241.94, + "end": 33243.1, + "probability": 0.9965 + }, + { + "start": 33243.24, + "end": 33243.76, + "probability": 0.8136 + }, + { + "start": 33245.4, + "end": 33246.1, + "probability": 0.7452 + }, + { + "start": 33247.24, + "end": 33249.26, + "probability": 0.5045 + }, + { + "start": 33259.92, + "end": 33260.9, + "probability": 0.7044 + }, + { + "start": 33261.0, + "end": 33262.48, + "probability": 0.9106 + }, + { + "start": 33262.72, + "end": 33264.9, + "probability": 0.9946 + }, + { + "start": 33265.02, + "end": 33266.66, + "probability": 0.9693 + }, + { + "start": 33267.28, + "end": 33269.22, + "probability": 0.9795 + }, + { + "start": 33269.42, + "end": 33269.72, + "probability": 0.3073 + }, + { + "start": 33269.8, + "end": 33272.28, + "probability": 0.8186 + }, + { + "start": 33272.76, + "end": 33273.88, + "probability": 0.7717 + }, + { + "start": 33273.96, + "end": 33278.62, + "probability": 0.8152 + }, + { + "start": 33278.94, + "end": 33281.14, + "probability": 0.8244 + }, + { + "start": 33281.44, + "end": 33281.7, + "probability": 0.6701 + }, + { + "start": 33281.76, + "end": 33284.02, + "probability": 0.9458 + }, + { + "start": 33284.12, + "end": 33284.32, + "probability": 0.5733 + }, + { + "start": 33284.48, + "end": 33287.36, + "probability": 0.733 + }, + { + "start": 33287.5, + "end": 33290.68, + "probability": 0.8372 + }, + { + "start": 33291.04, + "end": 33292.34, + "probability": 0.8287 + }, + { + "start": 33292.66, + "end": 33296.08, + "probability": 0.98 + }, + { + "start": 33296.64, + "end": 33298.0, + "probability": 0.9131 + }, + { + "start": 33298.4, + "end": 33299.96, + "probability": 0.9849 + }, + { + "start": 33300.46, + "end": 33302.34, + "probability": 0.8177 + }, + { + "start": 33302.7, + "end": 33304.2, + "probability": 0.9844 + }, + { + "start": 33304.62, + "end": 33306.18, + "probability": 0.7875 + }, + { + "start": 33306.3, + "end": 33307.34, + "probability": 0.7741 + }, + { + "start": 33307.78, + "end": 33308.44, + "probability": 0.9695 + }, + { + "start": 33308.68, + "end": 33311.64, + "probability": 0.7294 + }, + { + "start": 33312.12, + "end": 33313.8, + "probability": 0.8875 + }, + { + "start": 33314.52, + "end": 33316.08, + "probability": 0.9868 + }, + { + "start": 33316.88, + "end": 33318.9, + "probability": 0.997 + }, + { + "start": 33318.9, + "end": 33323.48, + "probability": 0.9803 + }, + { + "start": 33324.1, + "end": 33327.28, + "probability": 0.9587 + }, + { + "start": 33327.8, + "end": 33332.08, + "probability": 0.9871 + }, + { + "start": 33332.64, + "end": 33333.2, + "probability": 0.5532 + }, + { + "start": 33333.76, + "end": 33337.58, + "probability": 0.787 + }, + { + "start": 33337.76, + "end": 33338.94, + "probability": 0.8572 + }, + { + "start": 33339.78, + "end": 33341.54, + "probability": 0.9594 + }, + { + "start": 33341.88, + "end": 33342.74, + "probability": 0.974 + }, + { + "start": 33342.8, + "end": 33343.96, + "probability": 0.8875 + }, + { + "start": 33344.26, + "end": 33345.24, + "probability": 0.95 + }, + { + "start": 33345.74, + "end": 33346.86, + "probability": 0.7974 + }, + { + "start": 33347.06, + "end": 33348.16, + "probability": 0.9279 + }, + { + "start": 33348.74, + "end": 33349.46, + "probability": 0.4135 + }, + { + "start": 33349.46, + "end": 33350.34, + "probability": 0.6886 + }, + { + "start": 33350.42, + "end": 33351.42, + "probability": 0.7414 + }, + { + "start": 33351.9, + "end": 33353.19, + "probability": 0.9839 + }, + { + "start": 33353.5, + "end": 33354.48, + "probability": 0.7818 + }, + { + "start": 33354.82, + "end": 33355.88, + "probability": 0.6503 + }, + { + "start": 33355.98, + "end": 33357.62, + "probability": 0.9132 + }, + { + "start": 33358.18, + "end": 33359.16, + "probability": 0.923 + }, + { + "start": 33359.22, + "end": 33360.18, + "probability": 0.9863 + }, + { + "start": 33360.3, + "end": 33361.54, + "probability": 0.7672 + }, + { + "start": 33361.88, + "end": 33362.24, + "probability": 0.5336 + }, + { + "start": 33362.36, + "end": 33363.3, + "probability": 0.8772 + }, + { + "start": 33363.66, + "end": 33365.78, + "probability": 0.9633 + }, + { + "start": 33366.26, + "end": 33366.34, + "probability": 0.801 + }, + { + "start": 33366.46, + "end": 33366.58, + "probability": 0.5117 + }, + { + "start": 33366.7, + "end": 33368.69, + "probability": 0.7619 + }, + { + "start": 33369.22, + "end": 33370.36, + "probability": 0.8363 + }, + { + "start": 33370.58, + "end": 33374.7, + "probability": 0.9403 + }, + { + "start": 33375.08, + "end": 33375.18, + "probability": 0.8752 + }, + { + "start": 33375.24, + "end": 33375.28, + "probability": 0.9375 + }, + { + "start": 33375.42, + "end": 33376.3, + "probability": 0.885 + }, + { + "start": 33376.54, + "end": 33377.32, + "probability": 0.9178 + }, + { + "start": 33377.66, + "end": 33378.82, + "probability": 0.5396 + }, + { + "start": 33379.18, + "end": 33380.8, + "probability": 0.9497 + }, + { + "start": 33381.18, + "end": 33382.28, + "probability": 0.9683 + }, + { + "start": 33382.72, + "end": 33383.9, + "probability": 0.9362 + }, + { + "start": 33384.0, + "end": 33384.1, + "probability": 0.4332 + }, + { + "start": 33384.54, + "end": 33386.02, + "probability": 0.878 + }, + { + "start": 33386.54, + "end": 33388.15, + "probability": 0.9816 + }, + { + "start": 33388.66, + "end": 33389.24, + "probability": 0.9425 + }, + { + "start": 33389.62, + "end": 33390.28, + "probability": 0.9673 + }, + { + "start": 33390.82, + "end": 33391.26, + "probability": 0.776 + }, + { + "start": 33392.04, + "end": 33393.42, + "probability": 0.7857 + }, + { + "start": 33393.48, + "end": 33400.4, + "probability": 0.9622 + }, + { + "start": 33400.92, + "end": 33405.9, + "probability": 0.9178 + }, + { + "start": 33406.42, + "end": 33407.76, + "probability": 0.8094 + }, + { + "start": 33407.88, + "end": 33410.66, + "probability": 0.999 + }, + { + "start": 33410.82, + "end": 33411.71, + "probability": 0.7448 + }, + { + "start": 33412.33, + "end": 33413.64, + "probability": 0.8939 + }, + { + "start": 33414.1, + "end": 33415.06, + "probability": 0.9296 + }, + { + "start": 33415.16, + "end": 33416.5, + "probability": 0.7963 + }, + { + "start": 33416.56, + "end": 33418.13, + "probability": 0.8945 + }, + { + "start": 33418.28, + "end": 33419.0, + "probability": 0.3674 + }, + { + "start": 33419.56, + "end": 33422.88, + "probability": 0.9559 + }, + { + "start": 33423.32, + "end": 33425.58, + "probability": 0.9554 + }, + { + "start": 33426.04, + "end": 33426.62, + "probability": 0.8933 + }, + { + "start": 33426.68, + "end": 33427.12, + "probability": 0.6669 + }, + { + "start": 33427.24, + "end": 33428.1, + "probability": 0.953 + }, + { + "start": 33428.2, + "end": 33428.46, + "probability": 0.679 + }, + { + "start": 33428.54, + "end": 33429.26, + "probability": 0.454 + }, + { + "start": 33429.3, + "end": 33430.02, + "probability": 0.7875 + }, + { + "start": 33430.52, + "end": 33431.89, + "probability": 0.995 + }, + { + "start": 33432.28, + "end": 33433.48, + "probability": 0.9204 + }, + { + "start": 33434.0, + "end": 33436.44, + "probability": 0.991 + }, + { + "start": 33437.34, + "end": 33438.62, + "probability": 0.9328 + }, + { + "start": 33438.74, + "end": 33440.86, + "probability": 0.9875 + }, + { + "start": 33441.24, + "end": 33443.66, + "probability": 0.8899 + }, + { + "start": 33443.74, + "end": 33444.86, + "probability": 0.814 + }, + { + "start": 33445.18, + "end": 33447.36, + "probability": 0.9971 + }, + { + "start": 33447.66, + "end": 33450.4, + "probability": 0.9501 + }, + { + "start": 33450.76, + "end": 33451.58, + "probability": 0.9426 + }, + { + "start": 33451.62, + "end": 33452.0, + "probability": 0.5419 + }, + { + "start": 33452.04, + "end": 33453.06, + "probability": 0.9473 + }, + { + "start": 33453.44, + "end": 33454.14, + "probability": 0.5446 + }, + { + "start": 33454.44, + "end": 33455.3, + "probability": 0.8823 + }, + { + "start": 33455.6, + "end": 33456.06, + "probability": 0.8495 + }, + { + "start": 33456.28, + "end": 33457.24, + "probability": 0.9062 + }, + { + "start": 33458.44, + "end": 33459.26, + "probability": 0.7656 + }, + { + "start": 33459.96, + "end": 33462.42, + "probability": 0.9667 + }, + { + "start": 33462.94, + "end": 33464.86, + "probability": 0.7095 + }, + { + "start": 33465.54, + "end": 33466.4, + "probability": 0.8609 + }, + { + "start": 33467.44, + "end": 33469.3, + "probability": 0.7672 + }, + { + "start": 33474.38, + "end": 33475.48, + "probability": 0.5871 + }, + { + "start": 33476.52, + "end": 33478.14, + "probability": 0.8901 + }, + { + "start": 33479.7, + "end": 33480.44, + "probability": 0.5055 + }, + { + "start": 33482.54, + "end": 33486.04, + "probability": 0.6707 + }, + { + "start": 33486.24, + "end": 33487.46, + "probability": 0.8218 + }, + { + "start": 33489.1, + "end": 33490.56, + "probability": 0.4806 + }, + { + "start": 33490.66, + "end": 33491.66, + "probability": 0.4268 + }, + { + "start": 33491.86, + "end": 33492.36, + "probability": 0.8389 + }, + { + "start": 33495.68, + "end": 33496.92, + "probability": 0.7434 + }, + { + "start": 33497.48, + "end": 33499.24, + "probability": 0.9028 + }, + { + "start": 33504.34, + "end": 33504.34, + "probability": 0.3779 + }, + { + "start": 33504.34, + "end": 33504.34, + "probability": 0.1636 + }, + { + "start": 33504.34, + "end": 33504.36, + "probability": 0.1912 + }, + { + "start": 33504.36, + "end": 33504.36, + "probability": 0.0767 + }, + { + "start": 33504.36, + "end": 33504.36, + "probability": 0.072 + }, + { + "start": 33504.36, + "end": 33504.4, + "probability": 0.117 + }, + { + "start": 33523.88, + "end": 33525.28, + "probability": 0.002 + }, + { + "start": 33526.96, + "end": 33529.38, + "probability": 0.4994 + }, + { + "start": 33530.32, + "end": 33532.56, + "probability": 0.8261 + }, + { + "start": 33533.86, + "end": 33536.06, + "probability": 0.9982 + }, + { + "start": 33536.82, + "end": 33537.62, + "probability": 0.7016 + }, + { + "start": 33538.38, + "end": 33540.76, + "probability": 0.9889 + }, + { + "start": 33541.58, + "end": 33545.32, + "probability": 0.8389 + }, + { + "start": 33546.14, + "end": 33547.16, + "probability": 0.9886 + }, + { + "start": 33547.7, + "end": 33551.4, + "probability": 0.9058 + }, + { + "start": 33552.2, + "end": 33553.54, + "probability": 0.8454 + }, + { + "start": 33554.06, + "end": 33556.1, + "probability": 0.8706 + }, + { + "start": 33557.02, + "end": 33558.84, + "probability": 0.9804 + }, + { + "start": 33559.66, + "end": 33561.64, + "probability": 0.9697 + }, + { + "start": 33562.5, + "end": 33566.12, + "probability": 0.8312 + }, + { + "start": 33566.22, + "end": 33569.74, + "probability": 0.9636 + }, + { + "start": 33569.9, + "end": 33574.38, + "probability": 0.927 + }, + { + "start": 33574.88, + "end": 33581.02, + "probability": 0.9493 + }, + { + "start": 33581.44, + "end": 33582.3, + "probability": 0.9028 + }, + { + "start": 33582.82, + "end": 33584.31, + "probability": 0.7964 + }, + { + "start": 33585.48, + "end": 33588.58, + "probability": 0.9771 + }, + { + "start": 33589.28, + "end": 33590.26, + "probability": 0.7956 + }, + { + "start": 33590.86, + "end": 33593.62, + "probability": 0.8398 + }, + { + "start": 33594.84, + "end": 33599.58, + "probability": 0.9467 + }, + { + "start": 33600.42, + "end": 33602.42, + "probability": 0.9307 + }, + { + "start": 33602.88, + "end": 33609.3, + "probability": 0.9873 + }, + { + "start": 33609.86, + "end": 33615.5, + "probability": 0.9298 + }, + { + "start": 33616.3, + "end": 33617.38, + "probability": 0.7119 + }, + { + "start": 33617.42, + "end": 33619.68, + "probability": 0.9963 + }, + { + "start": 33619.92, + "end": 33620.22, + "probability": 0.7678 + }, + { + "start": 33620.32, + "end": 33621.48, + "probability": 0.9259 + }, + { + "start": 33621.66, + "end": 33623.32, + "probability": 0.8944 + }, + { + "start": 33623.82, + "end": 33626.0, + "probability": 0.8896 + }, + { + "start": 33626.16, + "end": 33627.04, + "probability": 0.8753 + }, + { + "start": 33627.68, + "end": 33630.14, + "probability": 0.5298 + }, + { + "start": 33630.42, + "end": 33636.28, + "probability": 0.8173 + }, + { + "start": 33636.98, + "end": 33641.56, + "probability": 0.7677 + }, + { + "start": 33642.4, + "end": 33642.94, + "probability": 0.7438 + }, + { + "start": 33643.12, + "end": 33643.5, + "probability": 0.8382 + }, + { + "start": 33644.14, + "end": 33647.78, + "probability": 0.9029 + }, + { + "start": 33648.32, + "end": 33651.82, + "probability": 0.9534 + }, + { + "start": 33652.52, + "end": 33653.82, + "probability": 0.9876 + }, + { + "start": 33654.5, + "end": 33657.12, + "probability": 0.9584 + }, + { + "start": 33658.26, + "end": 33660.08, + "probability": 0.9541 + }, + { + "start": 33660.82, + "end": 33661.56, + "probability": 0.5631 + }, + { + "start": 33662.24, + "end": 33664.66, + "probability": 0.9513 + }, + { + "start": 33665.1, + "end": 33665.84, + "probability": 0.741 + }, + { + "start": 33666.0, + "end": 33668.04, + "probability": 0.6547 + }, + { + "start": 33668.16, + "end": 33671.52, + "probability": 0.9585 + }, + { + "start": 33672.28, + "end": 33672.83, + "probability": 0.5379 + }, + { + "start": 33673.74, + "end": 33674.16, + "probability": 0.6703 + }, + { + "start": 33674.16, + "end": 33679.55, + "probability": 0.9424 + }, + { + "start": 33680.0, + "end": 33684.46, + "probability": 0.8479 + }, + { + "start": 33684.96, + "end": 33688.24, + "probability": 0.7331 + }, + { + "start": 33688.66, + "end": 33693.66, + "probability": 0.9919 + }, + { + "start": 33694.18, + "end": 33695.64, + "probability": 0.8479 + }, + { + "start": 33696.2, + "end": 33699.64, + "probability": 0.9759 + }, + { + "start": 33700.02, + "end": 33700.58, + "probability": 0.7125 + }, + { + "start": 33700.66, + "end": 33702.58, + "probability": 0.9613 + }, + { + "start": 33704.84, + "end": 33707.76, + "probability": 0.5018 + }, + { + "start": 33713.03, + "end": 33715.48, + "probability": 0.6974 + }, + { + "start": 33725.0, + "end": 33726.32, + "probability": 0.3107 + }, + { + "start": 33730.78, + "end": 33731.51, + "probability": 0.4525 + }, + { + "start": 33732.44, + "end": 33733.06, + "probability": 0.0742 + }, + { + "start": 33734.28, + "end": 33738.2, + "probability": 0.1818 + }, + { + "start": 33738.38, + "end": 33738.84, + "probability": 0.1248 + }, + { + "start": 33738.84, + "end": 33743.3, + "probability": 0.4386 + }, + { + "start": 33743.5, + "end": 33745.8, + "probability": 0.8591 + }, + { + "start": 33745.9, + "end": 33746.18, + "probability": 0.7039 + }, + { + "start": 33747.06, + "end": 33747.32, + "probability": 0.5457 + }, + { + "start": 33747.64, + "end": 33749.22, + "probability": 0.6381 + }, + { + "start": 33750.17, + "end": 33750.38, + "probability": 0.0673 + }, + { + "start": 33750.38, + "end": 33751.94, + "probability": 0.7347 + }, + { + "start": 33752.38, + "end": 33752.6, + "probability": 0.5164 + }, + { + "start": 33752.78, + "end": 33753.66, + "probability": 0.798 + }, + { + "start": 33753.66, + "end": 33754.96, + "probability": 0.6391 + }, + { + "start": 33755.0, + "end": 33756.22, + "probability": 0.9156 + }, + { + "start": 33756.46, + "end": 33758.2, + "probability": 0.9487 + }, + { + "start": 33759.05, + "end": 33760.88, + "probability": 0.9795 + }, + { + "start": 33761.06, + "end": 33762.26, + "probability": 0.9912 + }, + { + "start": 33762.34, + "end": 33763.72, + "probability": 0.97 + }, + { + "start": 33764.38, + "end": 33767.29, + "probability": 0.752 + }, + { + "start": 33770.8, + "end": 33770.8, + "probability": 0.2832 + }, + { + "start": 33770.8, + "end": 33770.88, + "probability": 0.0429 + }, + { + "start": 33770.88, + "end": 33771.56, + "probability": 0.7029 + }, + { + "start": 33771.56, + "end": 33772.78, + "probability": 0.8258 + }, + { + "start": 33772.92, + "end": 33773.94, + "probability": 0.8818 + }, + { + "start": 33774.3, + "end": 33776.12, + "probability": 0.9083 + }, + { + "start": 33776.26, + "end": 33776.48, + "probability": 0.5923 + }, + { + "start": 33776.62, + "end": 33777.98, + "probability": 0.9707 + }, + { + "start": 33778.94, + "end": 33780.48, + "probability": 0.7407 + }, + { + "start": 33780.58, + "end": 33782.14, + "probability": 0.8274 + }, + { + "start": 33782.64, + "end": 33783.52, + "probability": 0.8372 + }, + { + "start": 33786.0, + "end": 33790.4, + "probability": 0.8488 + }, + { + "start": 33790.76, + "end": 33792.68, + "probability": 0.7992 + }, + { + "start": 33793.42, + "end": 33794.42, + "probability": 0.7184 + }, + { + "start": 33794.54, + "end": 33796.28, + "probability": 0.8314 + }, + { + "start": 33796.38, + "end": 33797.79, + "probability": 0.9521 + }, + { + "start": 33798.58, + "end": 33800.18, + "probability": 0.2753 + }, + { + "start": 33800.48, + "end": 33801.88, + "probability": 0.2782 + }, + { + "start": 33801.88, + "end": 33804.14, + "probability": 0.6811 + }, + { + "start": 33804.24, + "end": 33805.06, + "probability": 0.5845 + }, + { + "start": 33805.26, + "end": 33805.76, + "probability": 0.4095 + }, + { + "start": 33806.52, + "end": 33807.18, + "probability": 0.6708 + }, + { + "start": 33808.68, + "end": 33810.36, + "probability": 0.1428 + }, + { + "start": 33812.24, + "end": 33814.48, + "probability": 0.1687 + }, + { + "start": 33814.82, + "end": 33815.06, + "probability": 0.1637 + }, + { + "start": 33815.3, + "end": 33816.0, + "probability": 0.2682 + }, + { + "start": 33816.04, + "end": 33817.9, + "probability": 0.8306 + }, + { + "start": 33817.9, + "end": 33818.86, + "probability": 0.7091 + }, + { + "start": 33818.92, + "end": 33819.8, + "probability": 0.5387 + }, + { + "start": 33819.92, + "end": 33821.56, + "probability": 0.4676 + }, + { + "start": 33821.66, + "end": 33824.76, + "probability": 0.361 + }, + { + "start": 33824.86, + "end": 33826.8, + "probability": 0.3608 + }, + { + "start": 33826.94, + "end": 33827.88, + "probability": 0.4384 + }, + { + "start": 33827.9, + "end": 33829.9, + "probability": 0.7115 + }, + { + "start": 33829.92, + "end": 33832.46, + "probability": 0.9622 + }, + { + "start": 33834.15, + "end": 33836.88, + "probability": 0.9163 + }, + { + "start": 33836.92, + "end": 33838.86, + "probability": 0.9614 + }, + { + "start": 33838.96, + "end": 33841.1, + "probability": 0.9919 + }, + { + "start": 33841.56, + "end": 33842.14, + "probability": 0.2149 + }, + { + "start": 33842.34, + "end": 33845.42, + "probability": 0.9952 + }, + { + "start": 33846.97, + "end": 33849.52, + "probability": 0.8284 + }, + { + "start": 33849.6, + "end": 33853.96, + "probability": 0.8435 + }, + { + "start": 33854.24, + "end": 33855.32, + "probability": 0.9839 + }, + { + "start": 33855.44, + "end": 33858.0, + "probability": 0.6359 + }, + { + "start": 33858.14, + "end": 33860.4, + "probability": 0.6016 + }, + { + "start": 33861.24, + "end": 33863.66, + "probability": 0.9941 + }, + { + "start": 33866.8, + "end": 33870.04, + "probability": 0.3874 + }, + { + "start": 33870.12, + "end": 33870.83, + "probability": 0.4031 + }, + { + "start": 33871.88, + "end": 33873.02, + "probability": 0.2257 + }, + { + "start": 33873.24, + "end": 33876.24, + "probability": 0.1142 + }, + { + "start": 33877.08, + "end": 33879.42, + "probability": 0.3629 + }, + { + "start": 33880.2, + "end": 33881.02, + "probability": 0.8078 + }, + { + "start": 33881.76, + "end": 33884.24, + "probability": 0.7474 + }, + { + "start": 33884.88, + "end": 33885.32, + "probability": 0.079 + }, + { + "start": 33885.32, + "end": 33886.9, + "probability": 0.8026 + }, + { + "start": 33887.02, + "end": 33887.78, + "probability": 0.05 + }, + { + "start": 33888.62, + "end": 33893.82, + "probability": 0.7845 + }, + { + "start": 33894.82, + "end": 33898.18, + "probability": 0.998 + }, + { + "start": 33898.46, + "end": 33901.76, + "probability": 0.9976 + }, + { + "start": 33903.14, + "end": 33904.04, + "probability": 0.8953 + }, + { + "start": 33904.1, + "end": 33905.98, + "probability": 0.8982 + }, + { + "start": 33906.1, + "end": 33907.14, + "probability": 0.8859 + }, + { + "start": 33907.2, + "end": 33908.6, + "probability": 0.8296 + }, + { + "start": 33909.4, + "end": 33911.84, + "probability": 0.8203 + }, + { + "start": 33912.24, + "end": 33917.72, + "probability": 0.9961 + }, + { + "start": 33917.72, + "end": 33921.88, + "probability": 0.9789 + }, + { + "start": 33923.3, + "end": 33924.55, + "probability": 0.9965 + }, + { + "start": 33925.46, + "end": 33927.32, + "probability": 0.9943 + }, + { + "start": 33928.0, + "end": 33931.62, + "probability": 0.962 + }, + { + "start": 33931.74, + "end": 33932.79, + "probability": 0.5686 + }, + { + "start": 33933.68, + "end": 33934.68, + "probability": 0.9972 + }, + { + "start": 33935.44, + "end": 33939.02, + "probability": 0.9969 + }, + { + "start": 33939.6, + "end": 33940.96, + "probability": 0.9105 + }, + { + "start": 33941.68, + "end": 33949.36, + "probability": 0.9219 + }, + { + "start": 33950.04, + "end": 33954.1, + "probability": 0.9981 + }, + { + "start": 33954.1, + "end": 33957.34, + "probability": 0.9948 + }, + { + "start": 33957.36, + "end": 33959.8, + "probability": 0.8331 + }, + { + "start": 33959.94, + "end": 33960.56, + "probability": 0.4389 + }, + { + "start": 33961.36, + "end": 33962.71, + "probability": 0.9783 + }, + { + "start": 33963.38, + "end": 33964.46, + "probability": 0.998 + }, + { + "start": 33965.06, + "end": 33967.92, + "probability": 0.9973 + }, + { + "start": 33968.6, + "end": 33973.58, + "probability": 0.9988 + }, + { + "start": 33974.44, + "end": 33976.96, + "probability": 0.9974 + }, + { + "start": 33977.76, + "end": 33981.4, + "probability": 0.999 + }, + { + "start": 33982.48, + "end": 33984.2, + "probability": 0.8822 + }, + { + "start": 33984.78, + "end": 33989.12, + "probability": 0.9958 + }, + { + "start": 33989.64, + "end": 33991.28, + "probability": 0.9053 + }, + { + "start": 33991.88, + "end": 33998.58, + "probability": 0.988 + }, + { + "start": 33999.6, + "end": 34002.56, + "probability": 0.1098 + }, + { + "start": 34002.79, + "end": 34003.62, + "probability": 0.1316 + }, + { + "start": 34004.22, + "end": 34007.88, + "probability": 0.9905 + }, + { + "start": 34008.64, + "end": 34012.58, + "probability": 0.9745 + }, + { + "start": 34013.08, + "end": 34015.12, + "probability": 0.9145 + }, + { + "start": 34015.68, + "end": 34016.66, + "probability": 0.8433 + }, + { + "start": 34017.1, + "end": 34023.56, + "probability": 0.8086 + }, + { + "start": 34023.56, + "end": 34028.22, + "probability": 0.8549 + }, + { + "start": 34028.76, + "end": 34032.68, + "probability": 0.9932 + }, + { + "start": 34033.12, + "end": 34036.9, + "probability": 0.9944 + }, + { + "start": 34037.24, + "end": 34039.6, + "probability": 0.9912 + }, + { + "start": 34040.04, + "end": 34041.32, + "probability": 0.7519 + }, + { + "start": 34041.7, + "end": 34042.8, + "probability": 0.8887 + }, + { + "start": 34043.0, + "end": 34049.0, + "probability": 0.969 + }, + { + "start": 34049.4, + "end": 34052.42, + "probability": 0.981 + }, + { + "start": 34053.08, + "end": 34057.54, + "probability": 0.9956 + }, + { + "start": 34057.54, + "end": 34061.5, + "probability": 0.9993 + }, + { + "start": 34062.1, + "end": 34063.22, + "probability": 0.4875 + }, + { + "start": 34064.04, + "end": 34066.44, + "probability": 0.9506 + }, + { + "start": 34066.68, + "end": 34066.68, + "probability": 0.7243 + }, + { + "start": 34066.82, + "end": 34069.94, + "probability": 0.9314 + }, + { + "start": 34069.94, + "end": 34070.48, + "probability": 0.6904 + }, + { + "start": 34072.12, + "end": 34073.26, + "probability": 0.0406 + }, + { + "start": 34073.26, + "end": 34074.05, + "probability": 0.2442 + }, + { + "start": 34097.86, + "end": 34100.0, + "probability": 0.6887 + }, + { + "start": 34102.2, + "end": 34108.22, + "probability": 0.9978 + }, + { + "start": 34108.22, + "end": 34114.48, + "probability": 0.999 + }, + { + "start": 34116.44, + "end": 34117.84, + "probability": 0.9122 + }, + { + "start": 34119.38, + "end": 34123.42, + "probability": 0.9844 + }, + { + "start": 34125.16, + "end": 34127.24, + "probability": 0.9639 + }, + { + "start": 34129.36, + "end": 34134.7, + "probability": 0.9845 + }, + { + "start": 34134.9, + "end": 34136.66, + "probability": 0.7268 + }, + { + "start": 34138.16, + "end": 34140.26, + "probability": 0.8179 + }, + { + "start": 34141.72, + "end": 34146.5, + "probability": 0.9827 + }, + { + "start": 34147.98, + "end": 34152.66, + "probability": 0.928 + }, + { + "start": 34154.72, + "end": 34156.6, + "probability": 0.9704 + }, + { + "start": 34159.36, + "end": 34160.82, + "probability": 0.9941 + }, + { + "start": 34161.66, + "end": 34163.2, + "probability": 0.6748 + }, + { + "start": 34167.16, + "end": 34172.0, + "probability": 0.958 + }, + { + "start": 34172.34, + "end": 34174.14, + "probability": 0.7415 + }, + { + "start": 34174.24, + "end": 34177.92, + "probability": 0.9792 + }, + { + "start": 34180.22, + "end": 34181.3, + "probability": 0.8031 + }, + { + "start": 34181.48, + "end": 34185.56, + "probability": 0.9886 + }, + { + "start": 34186.48, + "end": 34188.16, + "probability": 0.9908 + }, + { + "start": 34189.14, + "end": 34190.42, + "probability": 0.9193 + }, + { + "start": 34191.64, + "end": 34193.16, + "probability": 0.9987 + }, + { + "start": 34194.84, + "end": 34196.08, + "probability": 0.758 + }, + { + "start": 34197.5, + "end": 34204.38, + "probability": 0.9941 + }, + { + "start": 34205.88, + "end": 34209.54, + "probability": 0.999 + }, + { + "start": 34210.44, + "end": 34213.0, + "probability": 0.9167 + }, + { + "start": 34213.52, + "end": 34216.44, + "probability": 0.8757 + }, + { + "start": 34216.66, + "end": 34218.22, + "probability": 0.5107 + }, + { + "start": 34218.3, + "end": 34220.14, + "probability": 0.9928 + }, + { + "start": 34222.72, + "end": 34226.36, + "probability": 0.9985 + }, + { + "start": 34226.88, + "end": 34229.1, + "probability": 0.9901 + }, + { + "start": 34230.34, + "end": 34236.5, + "probability": 0.9966 + }, + { + "start": 34236.5, + "end": 34241.16, + "probability": 0.9971 + }, + { + "start": 34241.34, + "end": 34244.06, + "probability": 0.8722 + }, + { + "start": 34245.18, + "end": 34247.9, + "probability": 0.9774 + }, + { + "start": 34248.98, + "end": 34253.14, + "probability": 0.997 + }, + { + "start": 34254.02, + "end": 34260.22, + "probability": 0.9672 + }, + { + "start": 34260.66, + "end": 34261.38, + "probability": 0.8018 + }, + { + "start": 34261.8, + "end": 34265.2, + "probability": 0.9438 + }, + { + "start": 34266.38, + "end": 34274.64, + "probability": 0.9612 + }, + { + "start": 34275.98, + "end": 34278.1, + "probability": 0.9008 + }, + { + "start": 34279.26, + "end": 34281.92, + "probability": 0.9976 + }, + { + "start": 34281.92, + "end": 34282.64, + "probability": 0.7433 + }, + { + "start": 34282.84, + "end": 34285.48, + "probability": 0.952 + }, + { + "start": 34285.86, + "end": 34286.08, + "probability": 0.7045 + }, + { + "start": 34286.08, + "end": 34286.08, + "probability": 0.5932 + }, + { + "start": 34286.28, + "end": 34288.28, + "probability": 0.8939 + }, + { + "start": 34288.36, + "end": 34288.56, + "probability": 0.7512 + }, + { + "start": 34288.56, + "end": 34292.08, + "probability": 0.9838 + }, + { + "start": 34292.72, + "end": 34295.64, + "probability": 0.8251 + }, + { + "start": 34295.84, + "end": 34297.08, + "probability": 0.5015 + }, + { + "start": 34297.16, + "end": 34297.78, + "probability": 0.5453 + }, + { + "start": 34297.9, + "end": 34299.54, + "probability": 0.8164 + }, + { + "start": 34300.2, + "end": 34301.38, + "probability": 0.9581 + }, + { + "start": 34302.0, + "end": 34304.16, + "probability": 0.9515 + }, + { + "start": 34304.7, + "end": 34307.08, + "probability": 0.9493 + }, + { + "start": 34307.72, + "end": 34310.42, + "probability": 0.8359 + }, + { + "start": 34312.33, + "end": 34315.9, + "probability": 0.6197 + }, + { + "start": 34316.58, + "end": 34318.24, + "probability": 0.9635 + }, + { + "start": 34319.0, + "end": 34326.52, + "probability": 0.0732 + }, + { + "start": 34344.47, + "end": 34351.42, + "probability": 0.9828 + }, + { + "start": 34352.64, + "end": 34353.1, + "probability": 0.9252 + }, + { + "start": 34353.2, + "end": 34354.7, + "probability": 0.974 + }, + { + "start": 34354.84, + "end": 34358.78, + "probability": 0.9443 + }, + { + "start": 34360.32, + "end": 34360.44, + "probability": 0.9084 + }, + { + "start": 34361.0, + "end": 34361.64, + "probability": 0.9538 + }, + { + "start": 34362.04, + "end": 34363.26, + "probability": 0.9695 + }, + { + "start": 34363.58, + "end": 34366.46, + "probability": 0.9718 + }, + { + "start": 34367.68, + "end": 34368.1, + "probability": 0.6492 + }, + { + "start": 34368.16, + "end": 34368.86, + "probability": 0.903 + }, + { + "start": 34368.96, + "end": 34373.36, + "probability": 0.9933 + }, + { + "start": 34373.9, + "end": 34375.08, + "probability": 0.8839 + }, + { + "start": 34376.16, + "end": 34378.48, + "probability": 0.9913 + }, + { + "start": 34379.34, + "end": 34381.16, + "probability": 0.9839 + }, + { + "start": 34383.22, + "end": 34385.48, + "probability": 0.9172 + }, + { + "start": 34386.26, + "end": 34388.98, + "probability": 0.9775 + }, + { + "start": 34389.5, + "end": 34392.36, + "probability": 0.8792 + }, + { + "start": 34393.62, + "end": 34397.16, + "probability": 0.9582 + }, + { + "start": 34397.8, + "end": 34398.86, + "probability": 0.9854 + }, + { + "start": 34399.54, + "end": 34402.0, + "probability": 0.9943 + }, + { + "start": 34402.68, + "end": 34405.28, + "probability": 0.99 + }, + { + "start": 34406.44, + "end": 34406.88, + "probability": 0.9921 + }, + { + "start": 34406.88, + "end": 34407.54, + "probability": 0.9721 + }, + { + "start": 34407.82, + "end": 34411.7, + "probability": 0.9826 + }, + { + "start": 34412.24, + "end": 34412.78, + "probability": 0.7254 + }, + { + "start": 34413.78, + "end": 34416.58, + "probability": 0.9494 + }, + { + "start": 34418.3, + "end": 34419.1, + "probability": 0.8777 + }, + { + "start": 34419.8, + "end": 34422.16, + "probability": 0.9849 + }, + { + "start": 34422.94, + "end": 34426.4, + "probability": 0.9501 + }, + { + "start": 34426.98, + "end": 34434.7, + "probability": 0.924 + }, + { + "start": 34435.34, + "end": 34435.8, + "probability": 0.5087 + }, + { + "start": 34436.34, + "end": 34436.78, + "probability": 0.8166 + }, + { + "start": 34437.9, + "end": 34443.82, + "probability": 0.9897 + }, + { + "start": 34444.64, + "end": 34447.18, + "probability": 0.9966 + }, + { + "start": 34447.24, + "end": 34452.42, + "probability": 0.9883 + }, + { + "start": 34453.6, + "end": 34457.32, + "probability": 0.8757 + }, + { + "start": 34458.46, + "end": 34460.76, + "probability": 0.9655 + }, + { + "start": 34461.36, + "end": 34462.1, + "probability": 0.9865 + }, + { + "start": 34462.14, + "end": 34462.76, + "probability": 0.9916 + }, + { + "start": 34463.26, + "end": 34465.4, + "probability": 0.7402 + }, + { + "start": 34465.54, + "end": 34466.32, + "probability": 0.9213 + }, + { + "start": 34466.68, + "end": 34469.36, + "probability": 0.9715 + }, + { + "start": 34470.02, + "end": 34472.1, + "probability": 0.8301 + }, + { + "start": 34473.04, + "end": 34476.26, + "probability": 0.8491 + }, + { + "start": 34477.08, + "end": 34480.1, + "probability": 0.9894 + }, + { + "start": 34480.78, + "end": 34484.4, + "probability": 0.9895 + }, + { + "start": 34485.64, + "end": 34486.24, + "probability": 0.8008 + }, + { + "start": 34488.12, + "end": 34490.38, + "probability": 0.5928 + }, + { + "start": 34491.73, + "end": 34494.64, + "probability": 0.7581 + }, + { + "start": 34496.46, + "end": 34498.02, + "probability": 0.9646 + }, + { + "start": 34499.16, + "end": 34500.5, + "probability": 0.3277 + }, + { + "start": 34501.58, + "end": 34502.4, + "probability": 0.7863 + }, + { + "start": 34506.76, + "end": 34507.66, + "probability": 0.6553 + }, + { + "start": 34508.36, + "end": 34509.68, + "probability": 0.6092 + }, + { + "start": 34513.04, + "end": 34513.2, + "probability": 0.406 + }, + { + "start": 34514.38, + "end": 34515.36, + "probability": 0.5642 + }, + { + "start": 34515.48, + "end": 34516.18, + "probability": 0.8402 + }, + { + "start": 34516.3, + "end": 34518.2, + "probability": 0.7954 + }, + { + "start": 34518.8, + "end": 34520.08, + "probability": 0.8492 + }, + { + "start": 34522.14, + "end": 34523.36, + "probability": 0.9606 + }, + { + "start": 34524.5, + "end": 34526.24, + "probability": 0.9946 + }, + { + "start": 34527.18, + "end": 34528.68, + "probability": 0.5374 + }, + { + "start": 34529.0, + "end": 34533.04, + "probability": 0.9575 + }, + { + "start": 34534.1, + "end": 34534.44, + "probability": 0.8273 + }, + { + "start": 34535.56, + "end": 34536.2, + "probability": 0.8684 + }, + { + "start": 34536.34, + "end": 34537.26, + "probability": 0.9379 + }, + { + "start": 34537.3, + "end": 34537.72, + "probability": 0.7098 + }, + { + "start": 34537.8, + "end": 34539.56, + "probability": 0.9961 + }, + { + "start": 34540.36, + "end": 34541.84, + "probability": 0.912 + }, + { + "start": 34543.3, + "end": 34545.06, + "probability": 0.998 + }, + { + "start": 34545.46, + "end": 34547.06, + "probability": 0.9129 + }, + { + "start": 34547.86, + "end": 34552.24, + "probability": 0.9924 + }, + { + "start": 34553.28, + "end": 34557.9, + "probability": 0.9975 + }, + { + "start": 34559.96, + "end": 34560.36, + "probability": 0.4992 + }, + { + "start": 34560.98, + "end": 34562.02, + "probability": 0.4878 + }, + { + "start": 34562.8, + "end": 34563.04, + "probability": 0.1344 + }, + { + "start": 34563.04, + "end": 34563.14, + "probability": 0.1262 + }, + { + "start": 34563.14, + "end": 34563.14, + "probability": 0.239 + }, + { + "start": 34563.14, + "end": 34567.54, + "probability": 0.891 + }, + { + "start": 34568.34, + "end": 34569.2, + "probability": 0.7581 + }, + { + "start": 34571.28, + "end": 34573.52, + "probability": 0.988 + }, + { + "start": 34574.02, + "end": 34578.48, + "probability": 0.9739 + }, + { + "start": 34579.36, + "end": 34586.22, + "probability": 0.9963 + }, + { + "start": 34586.82, + "end": 34588.1, + "probability": 0.7699 + }, + { + "start": 34589.14, + "end": 34590.72, + "probability": 0.9879 + }, + { + "start": 34591.9, + "end": 34593.12, + "probability": 0.996 + }, + { + "start": 34596.24, + "end": 34596.68, + "probability": 0.6827 + }, + { + "start": 34596.68, + "end": 34597.7, + "probability": 0.7169 + }, + { + "start": 34598.42, + "end": 34603.38, + "probability": 0.9932 + }, + { + "start": 34604.04, + "end": 34605.91, + "probability": 0.9812 + }, + { + "start": 34606.56, + "end": 34609.74, + "probability": 0.9995 + }, + { + "start": 34611.44, + "end": 34613.36, + "probability": 0.5062 + }, + { + "start": 34614.46, + "end": 34618.24, + "probability": 0.9954 + }, + { + "start": 34619.42, + "end": 34623.1, + "probability": 0.9644 + }, + { + "start": 34623.78, + "end": 34623.94, + "probability": 0.2238 + }, + { + "start": 34624.06, + "end": 34625.56, + "probability": 0.9767 + }, + { + "start": 34626.16, + "end": 34627.4, + "probability": 0.759 + }, + { + "start": 34628.82, + "end": 34630.9, + "probability": 0.8916 + }, + { + "start": 34632.66, + "end": 34634.64, + "probability": 0.9912 + }, + { + "start": 34634.92, + "end": 34635.92, + "probability": 0.0355 + }, + { + "start": 34636.0, + "end": 34636.94, + "probability": 0.0948 + }, + { + "start": 34637.38, + "end": 34640.02, + "probability": 0.9941 + }, + { + "start": 34640.64, + "end": 34642.62, + "probability": 0.9973 + }, + { + "start": 34643.12, + "end": 34644.9, + "probability": 0.9995 + }, + { + "start": 34645.22, + "end": 34646.88, + "probability": 0.9993 + }, + { + "start": 34648.02, + "end": 34649.06, + "probability": 0.937 + }, + { + "start": 34649.68, + "end": 34653.38, + "probability": 0.996 + }, + { + "start": 34654.06, + "end": 34654.58, + "probability": 0.4111 + }, + { + "start": 34654.76, + "end": 34657.62, + "probability": 0.9927 + }, + { + "start": 34658.0, + "end": 34658.58, + "probability": 0.5834 + }, + { + "start": 34658.62, + "end": 34660.72, + "probability": 0.9982 + }, + { + "start": 34661.94, + "end": 34664.58, + "probability": 0.9989 + }, + { + "start": 34664.98, + "end": 34666.5, + "probability": 0.8733 + }, + { + "start": 34667.62, + "end": 34668.6, + "probability": 0.8391 + }, + { + "start": 34669.58, + "end": 34672.26, + "probability": 0.9954 + }, + { + "start": 34673.12, + "end": 34674.68, + "probability": 0.9964 + }, + { + "start": 34674.74, + "end": 34676.04, + "probability": 0.9903 + }, + { + "start": 34676.98, + "end": 34678.56, + "probability": 0.7392 + }, + { + "start": 34679.12, + "end": 34681.24, + "probability": 0.9651 + }, + { + "start": 34681.78, + "end": 34682.33, + "probability": 0.9264 + }, + { + "start": 34682.86, + "end": 34683.6, + "probability": 0.9116 + }, + { + "start": 34684.98, + "end": 34686.34, + "probability": 0.5501 + }, + { + "start": 34687.18, + "end": 34691.16, + "probability": 0.9927 + }, + { + "start": 34693.42, + "end": 34693.46, + "probability": 0.6207 + }, + { + "start": 34693.48, + "end": 34695.76, + "probability": 0.8608 + }, + { + "start": 34696.68, + "end": 34699.92, + "probability": 0.9872 + }, + { + "start": 34699.94, + "end": 34700.24, + "probability": 0.6302 + }, + { + "start": 34703.66, + "end": 34705.0, + "probability": 0.6874 + }, + { + "start": 34705.52, + "end": 34706.28, + "probability": 0.8944 + }, + { + "start": 34706.96, + "end": 34711.44, + "probability": 0.9351 + }, + { + "start": 34712.72, + "end": 34713.94, + "probability": 0.8208 + }, + { + "start": 34719.92, + "end": 34719.92, + "probability": 0.0982 + }, + { + "start": 34719.92, + "end": 34719.92, + "probability": 0.0714 + }, + { + "start": 34719.92, + "end": 34719.92, + "probability": 0.0769 + }, + { + "start": 34719.92, + "end": 34719.94, + "probability": 0.0579 + }, + { + "start": 34719.94, + "end": 34719.94, + "probability": 0.0406 + }, + { + "start": 34719.94, + "end": 34719.94, + "probability": 0.0948 + }, + { + "start": 34727.62, + "end": 34728.62, + "probability": 0.2688 + }, + { + "start": 34729.94, + "end": 34732.88, + "probability": 0.8206 + }, + { + "start": 34733.02, + "end": 34733.02, + "probability": 0.6656 + }, + { + "start": 34733.04, + "end": 34733.04, + "probability": 0.2738 + }, + { + "start": 34733.04, + "end": 34733.04, + "probability": 0.0128 + }, + { + "start": 34733.04, + "end": 34733.04, + "probability": 0.1984 + }, + { + "start": 34733.04, + "end": 34733.5, + "probability": 0.542 + }, + { + "start": 34733.58, + "end": 34734.56, + "probability": 0.5906 + }, + { + "start": 34734.78, + "end": 34736.34, + "probability": 0.8959 + }, + { + "start": 34736.46, + "end": 34738.02, + "probability": 0.5322 + }, + { + "start": 34738.16, + "end": 34738.7, + "probability": 0.9105 + }, + { + "start": 34738.74, + "end": 34739.74, + "probability": 0.4314 + }, + { + "start": 34739.78, + "end": 34740.52, + "probability": 0.5395 + }, + { + "start": 34740.6, + "end": 34742.62, + "probability": 0.8809 + }, + { + "start": 34743.46, + "end": 34743.6, + "probability": 0.3526 + }, + { + "start": 34743.6, + "end": 34744.82, + "probability": 0.3355 + }, + { + "start": 34745.64, + "end": 34746.22, + "probability": 0.4807 + }, + { + "start": 34747.7, + "end": 34749.04, + "probability": 0.9668 + }, + { + "start": 34749.66, + "end": 34751.04, + "probability": 0.9669 + }, + { + "start": 34751.92, + "end": 34754.34, + "probability": 0.9329 + }, + { + "start": 34754.86, + "end": 34755.9, + "probability": 0.252 + }, + { + "start": 34755.92, + "end": 34756.0, + "probability": 0.5508 + }, + { + "start": 34756.0, + "end": 34757.62, + "probability": 0.287 + }, + { + "start": 34757.66, + "end": 34759.54, + "probability": 0.708 + }, + { + "start": 34759.78, + "end": 34760.1, + "probability": 0.8203 + }, + { + "start": 34760.18, + "end": 34761.62, + "probability": 0.7878 + }, + { + "start": 34761.62, + "end": 34765.46, + "probability": 0.9577 + }, + { + "start": 34765.46, + "end": 34770.14, + "probability": 0.9981 + }, + { + "start": 34770.62, + "end": 34772.16, + "probability": 0.6528 + }, + { + "start": 34772.56, + "end": 34773.3, + "probability": 0.0624 + }, + { + "start": 34774.04, + "end": 34775.52, + "probability": 0.0785 + }, + { + "start": 34775.84, + "end": 34780.34, + "probability": 0.6531 + }, + { + "start": 34781.06, + "end": 34785.62, + "probability": 0.9909 + }, + { + "start": 34786.24, + "end": 34787.48, + "probability": 0.5804 + }, + { + "start": 34788.44, + "end": 34789.76, + "probability": 0.9293 + }, + { + "start": 34790.44, + "end": 34792.36, + "probability": 0.9982 + }, + { + "start": 34793.5, + "end": 34793.68, + "probability": 0.0426 + }, + { + "start": 34793.68, + "end": 34794.64, + "probability": 0.7808 + }, + { + "start": 34795.54, + "end": 34798.3, + "probability": 0.9156 + }, + { + "start": 34799.14, + "end": 34801.96, + "probability": 0.7691 + }, + { + "start": 34802.14, + "end": 34808.32, + "probability": 0.4865 + }, + { + "start": 34809.46, + "end": 34810.14, + "probability": 0.8398 + }, + { + "start": 34811.5, + "end": 34811.76, + "probability": 0.0251 + }, + { + "start": 34811.76, + "end": 34812.4, + "probability": 0.2419 + }, + { + "start": 34812.68, + "end": 34814.64, + "probability": 0.0448 + }, + { + "start": 34814.66, + "end": 34815.7, + "probability": 0.7613 + }, + { + "start": 34816.04, + "end": 34817.74, + "probability": 0.7977 + }, + { + "start": 34817.8, + "end": 34819.0, + "probability": 0.5278 + }, + { + "start": 34819.08, + "end": 34820.18, + "probability": 0.8121 + }, + { + "start": 34820.2, + "end": 34820.66, + "probability": 0.4722 + }, + { + "start": 34820.8, + "end": 34821.52, + "probability": 0.6279 + }, + { + "start": 34821.82, + "end": 34823.28, + "probability": 0.1681 + }, + { + "start": 34823.28, + "end": 34824.02, + "probability": 0.6027 + }, + { + "start": 34824.12, + "end": 34825.1, + "probability": 0.4234 + }, + { + "start": 34825.26, + "end": 34826.19, + "probability": 0.8152 + }, + { + "start": 34826.36, + "end": 34827.54, + "probability": 0.2237 + }, + { + "start": 34827.82, + "end": 34828.48, + "probability": 0.9198 + }, + { + "start": 34828.8, + "end": 34828.94, + "probability": 0.3826 + }, + { + "start": 34829.08, + "end": 34830.08, + "probability": 0.3641 + }, + { + "start": 34830.44, + "end": 34830.92, + "probability": 0.6101 + }, + { + "start": 34831.0, + "end": 34831.48, + "probability": 0.4598 + }, + { + "start": 34831.58, + "end": 34832.41, + "probability": 0.4256 + }, + { + "start": 34832.74, + "end": 34833.08, + "probability": 0.6025 + }, + { + "start": 34833.18, + "end": 34833.92, + "probability": 0.5074 + }, + { + "start": 34834.4, + "end": 34835.46, + "probability": 0.6351 + }, + { + "start": 34835.52, + "end": 34835.82, + "probability": 0.1299 + }, + { + "start": 34835.96, + "end": 34836.92, + "probability": 0.2849 + }, + { + "start": 34837.06, + "end": 34838.14, + "probability": 0.9175 + }, + { + "start": 34838.4, + "end": 34840.52, + "probability": 0.9445 + }, + { + "start": 34840.64, + "end": 34842.96, + "probability": 0.3611 + }, + { + "start": 34843.36, + "end": 34844.93, + "probability": 0.6292 + }, + { + "start": 34845.4, + "end": 34846.87, + "probability": 0.5997 + }, + { + "start": 34847.0, + "end": 34849.18, + "probability": 0.5509 + }, + { + "start": 34849.34, + "end": 34850.9, + "probability": 0.0636 + }, + { + "start": 34851.0, + "end": 34851.1, + "probability": 0.3674 + }, + { + "start": 34851.1, + "end": 34851.1, + "probability": 0.3091 + }, + { + "start": 34851.1, + "end": 34851.1, + "probability": 0.1846 + }, + { + "start": 34851.1, + "end": 34851.2, + "probability": 0.3542 + }, + { + "start": 34851.28, + "end": 34851.73, + "probability": 0.6168 + }, + { + "start": 34852.28, + "end": 34855.84, + "probability": 0.2523 + }, + { + "start": 34855.84, + "end": 34857.1, + "probability": 0.4806 + }, + { + "start": 34857.29, + "end": 34859.04, + "probability": 0.9678 + }, + { + "start": 34859.24, + "end": 34860.01, + "probability": 0.0368 + }, + { + "start": 34860.56, + "end": 34861.46, + "probability": 0.5844 + }, + { + "start": 34861.88, + "end": 34862.22, + "probability": 0.0017 + }, + { + "start": 34862.84, + "end": 34864.46, + "probability": 0.1822 + }, + { + "start": 34864.84, + "end": 34866.26, + "probability": 0.906 + }, + { + "start": 34866.28, + "end": 34867.36, + "probability": 0.6034 + }, + { + "start": 34867.64, + "end": 34868.52, + "probability": 0.2236 + }, + { + "start": 34868.66, + "end": 34868.76, + "probability": 0.0113 + }, + { + "start": 34868.76, + "end": 34869.48, + "probability": 0.0488 + }, + { + "start": 34869.48, + "end": 34870.58, + "probability": 0.3658 + }, + { + "start": 34871.04, + "end": 34872.62, + "probability": 0.4914 + }, + { + "start": 34872.72, + "end": 34873.54, + "probability": 0.9001 + }, + { + "start": 34874.04, + "end": 34876.78, + "probability": 0.876 + }, + { + "start": 34876.86, + "end": 34877.52, + "probability": 0.7864 + }, + { + "start": 34878.02, + "end": 34878.6, + "probability": 0.4347 + }, + { + "start": 34879.06, + "end": 34881.16, + "probability": 0.476 + }, + { + "start": 34881.54, + "end": 34882.88, + "probability": 0.5789 + }, + { + "start": 34883.04, + "end": 34883.7, + "probability": 0.8931 + }, + { + "start": 34884.12, + "end": 34885.1, + "probability": 0.761 + }, + { + "start": 34885.18, + "end": 34886.38, + "probability": 0.9697 + }, + { + "start": 34886.6, + "end": 34886.9, + "probability": 0.1191 + }, + { + "start": 34886.98, + "end": 34888.11, + "probability": 0.6566 + }, + { + "start": 34888.54, + "end": 34890.3, + "probability": 0.5789 + }, + { + "start": 34890.8, + "end": 34891.61, + "probability": 0.839 + }, + { + "start": 34892.26, + "end": 34893.56, + "probability": 0.9901 + }, + { + "start": 34894.14, + "end": 34894.77, + "probability": 0.9564 + }, + { + "start": 34895.38, + "end": 34899.64, + "probability": 0.9692 + }, + { + "start": 34900.34, + "end": 34901.82, + "probability": 0.991 + }, + { + "start": 34902.42, + "end": 34905.52, + "probability": 0.9658 + }, + { + "start": 34905.62, + "end": 34906.36, + "probability": 0.4007 + }, + { + "start": 34906.54, + "end": 34907.92, + "probability": 0.976 + }, + { + "start": 34908.3, + "end": 34910.2, + "probability": 0.7676 + }, + { + "start": 34910.7, + "end": 34912.63, + "probability": 0.9141 + }, + { + "start": 34912.68, + "end": 34913.54, + "probability": 0.9882 + }, + { + "start": 34913.84, + "end": 34915.48, + "probability": 0.7688 + }, + { + "start": 34915.52, + "end": 34916.8, + "probability": 0.9966 + }, + { + "start": 34917.6, + "end": 34918.2, + "probability": 0.8293 + }, + { + "start": 34918.84, + "end": 34922.8, + "probability": 0.9682 + }, + { + "start": 34923.38, + "end": 34924.12, + "probability": 0.9834 + }, + { + "start": 34924.28, + "end": 34926.6, + "probability": 0.0339 + }, + { + "start": 34926.96, + "end": 34928.76, + "probability": 0.814 + }, + { + "start": 34929.62, + "end": 34930.72, + "probability": 0.8662 + }, + { + "start": 34930.96, + "end": 34930.96, + "probability": 0.1159 + }, + { + "start": 34935.48, + "end": 34936.8, + "probability": 0.1108 + }, + { + "start": 34936.8, + "end": 34937.66, + "probability": 0.7215 + }, + { + "start": 34937.78, + "end": 34940.74, + "probability": 0.5877 + }, + { + "start": 34941.5, + "end": 34943.38, + "probability": 0.8863 + }, + { + "start": 34944.04, + "end": 34946.02, + "probability": 0.4141 + }, + { + "start": 34946.04, + "end": 34946.3, + "probability": 0.1156 + }, + { + "start": 34946.32, + "end": 34948.0, + "probability": 0.658 + }, + { + "start": 34951.07, + "end": 34956.48, + "probability": 0.0309 + }, + { + "start": 34956.78, + "end": 34959.75, + "probability": 0.9481 + }, + { + "start": 34960.24, + "end": 34960.98, + "probability": 0.7309 + }, + { + "start": 34962.49, + "end": 34968.08, + "probability": 0.9163 + }, + { + "start": 34968.36, + "end": 34968.4, + "probability": 0.3406 + }, + { + "start": 34968.4, + "end": 34968.98, + "probability": 0.1222 + }, + { + "start": 34969.58, + "end": 34972.42, + "probability": 0.5647 + }, + { + "start": 34972.78, + "end": 34973.88, + "probability": 0.3887 + }, + { + "start": 34974.9, + "end": 34977.01, + "probability": 0.943 + }, + { + "start": 34980.74, + "end": 34981.36, + "probability": 0.2562 + }, + { + "start": 34983.66, + "end": 34985.9, + "probability": 0.1309 + }, + { + "start": 34986.84, + "end": 34987.64, + "probability": 0.0137 + }, + { + "start": 34989.06, + "end": 34992.08, + "probability": 0.4226 + }, + { + "start": 34992.3, + "end": 34993.24, + "probability": 0.9138 + }, + { + "start": 34993.24, + "end": 34993.58, + "probability": 0.0639 + }, + { + "start": 34993.58, + "end": 34994.85, + "probability": 0.313 + }, + { + "start": 34995.24, + "end": 34998.02, + "probability": 0.6299 + }, + { + "start": 34998.26, + "end": 35000.67, + "probability": 0.7661 + }, + { + "start": 35001.26, + "end": 35001.44, + "probability": 0.231 + }, + { + "start": 35001.5, + "end": 35002.56, + "probability": 0.9071 + }, + { + "start": 35002.74, + "end": 35003.18, + "probability": 0.446 + }, + { + "start": 35003.24, + "end": 35004.54, + "probability": 0.9537 + }, + { + "start": 35004.68, + "end": 35005.46, + "probability": 0.4957 + }, + { + "start": 35005.48, + "end": 35006.22, + "probability": 0.8406 + }, + { + "start": 35006.34, + "end": 35006.76, + "probability": 0.8547 + }, + { + "start": 35007.24, + "end": 35007.6, + "probability": 0.0281 + }, + { + "start": 35007.6, + "end": 35009.04, + "probability": 0.2145 + }, + { + "start": 35009.16, + "end": 35009.9, + "probability": 0.7952 + }, + { + "start": 35010.02, + "end": 35011.9, + "probability": 0.5285 + }, + { + "start": 35012.24, + "end": 35012.64, + "probability": 0.4737 + }, + { + "start": 35012.86, + "end": 35013.58, + "probability": 0.0821 + }, + { + "start": 35013.96, + "end": 35015.92, + "probability": 0.9724 + }, + { + "start": 35016.38, + "end": 35019.49, + "probability": 0.3313 + }, + { + "start": 35019.8, + "end": 35022.82, + "probability": 0.1075 + }, + { + "start": 35022.82, + "end": 35022.86, + "probability": 0.0913 + }, + { + "start": 35022.86, + "end": 35022.86, + "probability": 0.1089 + }, + { + "start": 35022.86, + "end": 35022.86, + "probability": 0.004 + }, + { + "start": 35022.86, + "end": 35023.48, + "probability": 0.0518 + }, + { + "start": 35023.66, + "end": 35024.55, + "probability": 0.0713 + }, + { + "start": 35025.14, + "end": 35029.0, + "probability": 0.805 + }, + { + "start": 35029.0, + "end": 35033.5, + "probability": 0.8115 + }, + { + "start": 35033.64, + "end": 35034.0, + "probability": 0.7023 + }, + { + "start": 35034.22, + "end": 35037.76, + "probability": 0.5654 + }, + { + "start": 35037.96, + "end": 35038.06, + "probability": 0.2556 + }, + { + "start": 35038.1, + "end": 35039.98, + "probability": 0.629 + }, + { + "start": 35039.98, + "end": 35040.4, + "probability": 0.2509 + }, + { + "start": 35040.62, + "end": 35041.38, + "probability": 0.5706 + }, + { + "start": 35041.68, + "end": 35042.02, + "probability": 0.3808 + }, + { + "start": 35042.32, + "end": 35044.16, + "probability": 0.4074 + }, + { + "start": 35044.68, + "end": 35046.17, + "probability": 0.3708 + }, + { + "start": 35047.18, + "end": 35049.94, + "probability": 0.1308 + }, + { + "start": 35049.94, + "end": 35053.76, + "probability": 0.584 + }, + { + "start": 35053.76, + "end": 35055.62, + "probability": 0.7032 + }, + { + "start": 35055.68, + "end": 35055.9, + "probability": 0.9336 + }, + { + "start": 35055.9, + "end": 35057.3, + "probability": 0.8514 + }, + { + "start": 35057.36, + "end": 35058.34, + "probability": 0.9299 + }, + { + "start": 35059.35, + "end": 35063.42, + "probability": 0.6274 + }, + { + "start": 35064.42, + "end": 35064.84, + "probability": 0.1679 + }, + { + "start": 35064.84, + "end": 35068.26, + "probability": 0.3901 + }, + { + "start": 35068.38, + "end": 35069.36, + "probability": 0.7933 + }, + { + "start": 35069.42, + "end": 35069.76, + "probability": 0.1063 + }, + { + "start": 35069.76, + "end": 35069.94, + "probability": 0.3216 + }, + { + "start": 35070.06, + "end": 35070.7, + "probability": 0.8013 + }, + { + "start": 35071.7, + "end": 35073.46, + "probability": 0.8058 + }, + { + "start": 35073.58, + "end": 35075.3, + "probability": 0.7132 + }, + { + "start": 35075.42, + "end": 35079.35, + "probability": 0.9598 + }, + { + "start": 35079.56, + "end": 35080.96, + "probability": 0.7584 + }, + { + "start": 35081.12, + "end": 35081.56, + "probability": 0.4139 + }, + { + "start": 35081.64, + "end": 35083.66, + "probability": 0.6051 + }, + { + "start": 35084.1, + "end": 35084.2, + "probability": 0.191 + }, + { + "start": 35084.2, + "end": 35085.17, + "probability": 0.562 + }, + { + "start": 35085.58, + "end": 35086.42, + "probability": 0.4753 + }, + { + "start": 35086.56, + "end": 35089.06, + "probability": 0.9376 + }, + { + "start": 35089.68, + "end": 35090.44, + "probability": 0.8383 + }, + { + "start": 35090.94, + "end": 35095.2, + "probability": 0.8301 + }, + { + "start": 35095.38, + "end": 35096.14, + "probability": 0.5699 + }, + { + "start": 35096.7, + "end": 35098.0, + "probability": 0.9927 + }, + { + "start": 35098.68, + "end": 35102.44, + "probability": 0.993 + }, + { + "start": 35103.7, + "end": 35104.06, + "probability": 0.1693 + }, + { + "start": 35104.12, + "end": 35105.94, + "probability": 0.0808 + }, + { + "start": 35105.98, + "end": 35109.14, + "probability": 0.3568 + }, + { + "start": 35109.36, + "end": 35111.3, + "probability": 0.2029 + }, + { + "start": 35111.82, + "end": 35116.3, + "probability": 0.7619 + }, + { + "start": 35116.5, + "end": 35117.62, + "probability": 0.7217 + }, + { + "start": 35118.5, + "end": 35124.74, + "probability": 0.6485 + }, + { + "start": 35124.86, + "end": 35125.4, + "probability": 0.7328 + }, + { + "start": 35125.7, + "end": 35127.38, + "probability": 0.6009 + }, + { + "start": 35128.32, + "end": 35129.4, + "probability": 0.8956 + }, + { + "start": 35129.7, + "end": 35131.41, + "probability": 0.4972 + }, + { + "start": 35132.29, + "end": 35132.66, + "probability": 0.0256 + }, + { + "start": 35132.66, + "end": 35133.66, + "probability": 0.9551 + }, + { + "start": 35134.2, + "end": 35136.54, + "probability": 0.3351 + }, + { + "start": 35136.58, + "end": 35137.62, + "probability": 0.4682 + }, + { + "start": 35137.8, + "end": 35140.46, + "probability": 0.2464 + }, + { + "start": 35140.86, + "end": 35142.44, + "probability": 0.0604 + }, + { + "start": 35142.72, + "end": 35144.52, + "probability": 0.206 + }, + { + "start": 35145.86, + "end": 35147.8, + "probability": 0.7736 + }, + { + "start": 35148.18, + "end": 35151.18, + "probability": 0.1089 + }, + { + "start": 35151.24, + "end": 35152.94, + "probability": 0.6798 + }, + { + "start": 35153.42, + "end": 35153.78, + "probability": 0.1782 + }, + { + "start": 35153.82, + "end": 35154.48, + "probability": 0.2242 + }, + { + "start": 35154.48, + "end": 35156.7, + "probability": 0.6643 + }, + { + "start": 35157.5, + "end": 35159.26, + "probability": 0.5156 + }, + { + "start": 35162.32, + "end": 35162.52, + "probability": 0.037 + }, + { + "start": 35162.52, + "end": 35162.52, + "probability": 0.1513 + }, + { + "start": 35162.52, + "end": 35164.84, + "probability": 0.0271 + }, + { + "start": 35165.04, + "end": 35166.32, + "probability": 0.0976 + }, + { + "start": 35166.5, + "end": 35168.21, + "probability": 0.6304 + }, + { + "start": 35168.88, + "end": 35170.6, + "probability": 0.231 + }, + { + "start": 35172.61, + "end": 35177.56, + "probability": 0.9855 + }, + { + "start": 35177.64, + "end": 35178.01, + "probability": 0.915 + }, + { + "start": 35178.48, + "end": 35182.22, + "probability": 0.9763 + }, + { + "start": 35182.5, + "end": 35183.1, + "probability": 0.1542 + }, + { + "start": 35183.68, + "end": 35188.34, + "probability": 0.9399 + }, + { + "start": 35188.66, + "end": 35189.12, + "probability": 0.6784 + }, + { + "start": 35189.12, + "end": 35189.94, + "probability": 0.657 + }, + { + "start": 35190.32, + "end": 35194.3, + "probability": 0.9612 + }, + { + "start": 35194.74, + "end": 35195.82, + "probability": 0.3488 + }, + { + "start": 35196.06, + "end": 35197.04, + "probability": 0.5587 + }, + { + "start": 35197.04, + "end": 35197.44, + "probability": 0.5254 + }, + { + "start": 35198.14, + "end": 35201.36, + "probability": 0.6648 + }, + { + "start": 35202.02, + "end": 35203.06, + "probability": 0.9802 + }, + { + "start": 35204.1, + "end": 35209.28, + "probability": 0.9929 + }, + { + "start": 35209.76, + "end": 35210.84, + "probability": 0.9484 + }, + { + "start": 35212.42, + "end": 35212.78, + "probability": 0.8469 + }, + { + "start": 35213.34, + "end": 35215.38, + "probability": 0.4866 + }, + { + "start": 35216.5, + "end": 35218.44, + "probability": 0.9375 + }, + { + "start": 35218.52, + "end": 35220.62, + "probability": 0.9512 + }, + { + "start": 35221.06, + "end": 35221.57, + "probability": 0.9727 + }, + { + "start": 35221.96, + "end": 35223.06, + "probability": 0.7275 + }, + { + "start": 35223.74, + "end": 35228.02, + "probability": 0.9988 + }, + { + "start": 35228.08, + "end": 35230.36, + "probability": 0.9199 + }, + { + "start": 35231.36, + "end": 35232.18, + "probability": 0.7487 + }, + { + "start": 35232.26, + "end": 35233.76, + "probability": 0.7902 + }, + { + "start": 35234.22, + "end": 35235.0, + "probability": 0.8411 + }, + { + "start": 35235.28, + "end": 35236.04, + "probability": 0.9647 + }, + { + "start": 35236.3, + "end": 35241.38, + "probability": 0.9116 + }, + { + "start": 35241.74, + "end": 35243.22, + "probability": 0.5326 + }, + { + "start": 35243.4, + "end": 35246.2, + "probability": 0.3164 + }, + { + "start": 35247.28, + "end": 35249.24, + "probability": 0.4784 + }, + { + "start": 35249.66, + "end": 35251.5, + "probability": 0.0603 + }, + { + "start": 35251.5, + "end": 35251.5, + "probability": 0.0435 + }, + { + "start": 35251.5, + "end": 35251.5, + "probability": 0.0697 + }, + { + "start": 35251.5, + "end": 35253.1, + "probability": 0.4101 + }, + { + "start": 35253.56, + "end": 35256.9, + "probability": 0.5454 + }, + { + "start": 35256.9, + "end": 35258.98, + "probability": 0.7709 + }, + { + "start": 35259.04, + "end": 35261.72, + "probability": 0.803 + }, + { + "start": 35262.08, + "end": 35268.94, + "probability": 0.9533 + }, + { + "start": 35268.94, + "end": 35275.96, + "probability": 0.8919 + }, + { + "start": 35276.12, + "end": 35278.04, + "probability": 0.4272 + }, + { + "start": 35278.44, + "end": 35280.48, + "probability": 0.7546 + }, + { + "start": 35280.58, + "end": 35282.1, + "probability": 0.9022 + }, + { + "start": 35283.28, + "end": 35285.9, + "probability": 0.7912 + }, + { + "start": 35285.96, + "end": 35288.4, + "probability": 0.8608 + }, + { + "start": 35289.31, + "end": 35291.41, + "probability": 0.45 + }, + { + "start": 35292.68, + "end": 35293.6, + "probability": 0.657 + }, + { + "start": 35294.24, + "end": 35294.5, + "probability": 0.9705 + }, + { + "start": 35295.4, + "end": 35296.32, + "probability": 0.85 + }, + { + "start": 35297.06, + "end": 35299.62, + "probability": 0.6561 + }, + { + "start": 35300.2, + "end": 35300.54, + "probability": 0.9695 + }, + { + "start": 35301.2, + "end": 35302.16, + "probability": 0.8708 + }, + { + "start": 35302.94, + "end": 35305.8, + "probability": 0.6483 + }, + { + "start": 35306.36, + "end": 35308.18, + "probability": 0.5562 + }, + { + "start": 35309.56, + "end": 35312.98, + "probability": 0.7284 + }, + { + "start": 35314.42, + "end": 35316.9, + "probability": 0.6879 + }, + { + "start": 35318.12, + "end": 35318.78, + "probability": 0.9855 + }, + { + "start": 35319.74, + "end": 35320.76, + "probability": 0.8132 + }, + { + "start": 35321.36, + "end": 35321.84, + "probability": 0.9851 + }, + { + "start": 35322.64, + "end": 35323.76, + "probability": 0.8614 + }, + { + "start": 35325.42, + "end": 35328.5, + "probability": 0.98 + }, + { + "start": 35330.26, + "end": 35332.92, + "probability": 0.749 + }, + { + "start": 35334.18, + "end": 35336.56, + "probability": 0.9915 + }, + { + "start": 35338.06, + "end": 35341.02, + "probability": 0.8103 + }, + { + "start": 35341.64, + "end": 35343.38, + "probability": 0.8966 + }, + { + "start": 35344.22, + "end": 35346.8, + "probability": 0.9233 + }, + { + "start": 35348.76, + "end": 35353.82, + "probability": 0.9763 + }, + { + "start": 35354.34, + "end": 35355.1, + "probability": 0.9222 + }, + { + "start": 35355.66, + "end": 35356.2, + "probability": 0.9795 + }, + { + "start": 35356.84, + "end": 35357.78, + "probability": 0.886 + }, + { + "start": 35358.79, + "end": 35362.58, + "probability": 0.5983 + }, + { + "start": 35363.52, + "end": 35364.04, + "probability": 0.8241 + }, + { + "start": 35364.7, + "end": 35365.7, + "probability": 0.8939 + }, + { + "start": 35367.24, + "end": 35373.98, + "probability": 0.9316 + }, + { + "start": 35374.68, + "end": 35376.8, + "probability": 0.924 + }, + { + "start": 35377.36, + "end": 35379.0, + "probability": 0.9307 + }, + { + "start": 35379.76, + "end": 35383.36, + "probability": 0.8643 + }, + { + "start": 35384.44, + "end": 35386.9, + "probability": 0.9222 + }, + { + "start": 35389.36, + "end": 35390.62, + "probability": 0.5007 + }, + { + "start": 35392.44, + "end": 35395.32, + "probability": 0.7763 + }, + { + "start": 35396.32, + "end": 35398.02, + "probability": 0.9193 + }, + { + "start": 35400.18, + "end": 35402.36, + "probability": 0.9279 + }, + { + "start": 35403.34, + "end": 35406.68, + "probability": 0.9131 + }, + { + "start": 35407.74, + "end": 35410.36, + "probability": 0.9819 + }, + { + "start": 35410.96, + "end": 35412.92, + "probability": 0.8235 + }, + { + "start": 35413.54, + "end": 35415.3, + "probability": 0.5027 + }, + { + "start": 35416.14, + "end": 35419.38, + "probability": 0.9338 + }, + { + "start": 35419.52, + "end": 35422.1, + "probability": 0.923 + }, + { + "start": 35422.26, + "end": 35423.88, + "probability": 0.8307 + }, + { + "start": 35424.5, + "end": 35429.44, + "probability": 0.7078 + }, + { + "start": 35433.9, + "end": 35434.94, + "probability": 0.7767 + }, + { + "start": 35435.68, + "end": 35436.66, + "probability": 0.6134 + }, + { + "start": 35437.4, + "end": 35438.96, + "probability": 0.8315 + }, + { + "start": 35440.22, + "end": 35444.68, + "probability": 0.4656 + }, + { + "start": 35445.8, + "end": 35447.94, + "probability": 0.8042 + }, + { + "start": 35449.26, + "end": 35452.28, + "probability": 0.7969 + }, + { + "start": 35453.72, + "end": 35455.46, + "probability": 0.6934 + }, + { + "start": 35456.38, + "end": 35459.2, + "probability": 0.6706 + }, + { + "start": 35461.72, + "end": 35464.9, + "probability": 0.8958 + }, + { + "start": 35467.06, + "end": 35467.7, + "probability": 0.4993 + }, + { + "start": 35468.28, + "end": 35470.22, + "probability": 0.9561 + }, + { + "start": 35471.38, + "end": 35475.2, + "probability": 0.8235 + }, + { + "start": 35477.2, + "end": 35480.38, + "probability": 0.967 + }, + { + "start": 35480.94, + "end": 35483.06, + "probability": 0.9836 + }, + { + "start": 35483.78, + "end": 35484.38, + "probability": 0.993 + }, + { + "start": 35486.16, + "end": 35487.24, + "probability": 0.9413 + }, + { + "start": 35488.1, + "end": 35492.68, + "probability": 0.9795 + }, + { + "start": 35493.82, + "end": 35494.38, + "probability": 0.994 + }, + { + "start": 35495.46, + "end": 35496.46, + "probability": 0.8104 + }, + { + "start": 35497.02, + "end": 35500.24, + "probability": 0.8571 + }, + { + "start": 35501.18, + "end": 35502.02, + "probability": 0.9038 + }, + { + "start": 35503.28, + "end": 35505.72, + "probability": 0.7379 + }, + { + "start": 35506.48, + "end": 35507.48, + "probability": 0.9102 + }, + { + "start": 35509.94, + "end": 35511.42, + "probability": 0.7791 + }, + { + "start": 35512.32, + "end": 35516.78, + "probability": 0.9482 + }, + { + "start": 35517.56, + "end": 35520.6, + "probability": 0.9905 + }, + { + "start": 35521.56, + "end": 35522.4, + "probability": 0.9868 + }, + { + "start": 35522.98, + "end": 35523.8, + "probability": 0.6517 + }, + { + "start": 35525.1, + "end": 35528.94, + "probability": 0.6374 + }, + { + "start": 35530.24, + "end": 35530.86, + "probability": 0.9622 + }, + { + "start": 35531.98, + "end": 35533.06, + "probability": 0.9635 + }, + { + "start": 35536.0, + "end": 35537.38, + "probability": 0.9429 + }, + { + "start": 35538.18, + "end": 35538.84, + "probability": 0.9198 + }, + { + "start": 35539.6, + "end": 35540.16, + "probability": 0.981 + }, + { + "start": 35540.9, + "end": 35542.0, + "probability": 0.8788 + }, + { + "start": 35542.72, + "end": 35543.2, + "probability": 0.9761 + }, + { + "start": 35543.76, + "end": 35544.84, + "probability": 0.8926 + }, + { + "start": 35545.56, + "end": 35546.1, + "probability": 0.9961 + }, + { + "start": 35546.7, + "end": 35547.66, + "probability": 0.8138 + }, + { + "start": 35548.68, + "end": 35552.0, + "probability": 0.7936 + }, + { + "start": 35552.68, + "end": 35553.04, + "probability": 0.7334 + }, + { + "start": 35554.1, + "end": 35555.12, + "probability": 0.5471 + }, + { + "start": 35555.78, + "end": 35556.48, + "probability": 0.7101 + }, + { + "start": 35557.0, + "end": 35558.22, + "probability": 0.8857 + }, + { + "start": 35558.8, + "end": 35560.94, + "probability": 0.9893 + }, + { + "start": 35561.8, + "end": 35563.74, + "probability": 0.9875 + }, + { + "start": 35565.4, + "end": 35566.06, + "probability": 0.9709 + }, + { + "start": 35566.68, + "end": 35568.88, + "probability": 0.9512 + }, + { + "start": 35569.74, + "end": 35570.6, + "probability": 0.8587 + }, + { + "start": 35571.4, + "end": 35571.88, + "probability": 0.9961 + }, + { + "start": 35572.76, + "end": 35573.54, + "probability": 0.9341 + }, + { + "start": 35575.98, + "end": 35579.6, + "probability": 0.6023 + }, + { + "start": 35580.84, + "end": 35583.4, + "probability": 0.7283 + }, + { + "start": 35583.66, + "end": 35590.42, + "probability": 0.832 + }, + { + "start": 35591.25, + "end": 35592.88, + "probability": 0.8877 + }, + { + "start": 35593.56, + "end": 35598.74, + "probability": 0.8079 + }, + { + "start": 35599.6, + "end": 35599.94, + "probability": 0.9929 + }, + { + "start": 35600.6, + "end": 35601.52, + "probability": 0.9593 + }, + { + "start": 35603.78, + "end": 35605.58, + "probability": 0.8672 + }, + { + "start": 35606.28, + "end": 35609.14, + "probability": 0.7221 + }, + { + "start": 35609.96, + "end": 35610.96, + "probability": 0.8774 + }, + { + "start": 35612.18, + "end": 35613.76, + "probability": 0.8821 + }, + { + "start": 35615.62, + "end": 35617.06, + "probability": 0.9115 + }, + { + "start": 35617.96, + "end": 35619.64, + "probability": 0.9266 + }, + { + "start": 35620.22, + "end": 35622.74, + "probability": 0.8481 + }, + { + "start": 35623.34, + "end": 35624.28, + "probability": 0.8549 + }, + { + "start": 35625.32, + "end": 35625.96, + "probability": 0.7036 + }, + { + "start": 35626.64, + "end": 35628.58, + "probability": 0.7202 + }, + { + "start": 35629.22, + "end": 35630.1, + "probability": 0.8385 + }, + { + "start": 35630.96, + "end": 35631.58, + "probability": 0.9974 + }, + { + "start": 35632.1, + "end": 35632.96, + "probability": 0.9673 + }, + { + "start": 35634.56, + "end": 35636.22, + "probability": 0.8735 + }, + { + "start": 35637.0, + "end": 35639.2, + "probability": 0.9646 + }, + { + "start": 35640.28, + "end": 35642.06, + "probability": 0.9458 + }, + { + "start": 35643.24, + "end": 35645.62, + "probability": 0.9219 + }, + { + "start": 35646.14, + "end": 35648.38, + "probability": 0.9966 + }, + { + "start": 35648.98, + "end": 35651.1, + "probability": 0.5164 + }, + { + "start": 35654.92, + "end": 35655.42, + "probability": 0.5764 + }, + { + "start": 35656.6, + "end": 35657.4, + "probability": 0.7055 + }, + { + "start": 35658.42, + "end": 35659.02, + "probability": 0.9222 + }, + { + "start": 35660.08, + "end": 35663.02, + "probability": 0.9539 + }, + { + "start": 35664.2, + "end": 35665.56, + "probability": 0.8904 + }, + { + "start": 35666.36, + "end": 35668.44, + "probability": 0.9897 + }, + { + "start": 35669.44, + "end": 35669.88, + "probability": 0.9949 + }, + { + "start": 35671.32, + "end": 35672.02, + "probability": 0.9615 + }, + { + "start": 35673.96, + "end": 35675.82, + "probability": 0.8235 + }, + { + "start": 35676.4, + "end": 35676.96, + "probability": 0.9775 + }, + { + "start": 35677.86, + "end": 35679.3, + "probability": 0.9669 + }, + { + "start": 35680.8, + "end": 35681.08, + "probability": 0.9943 + }, + { + "start": 35682.2, + "end": 35684.96, + "probability": 0.5428 + }, + { + "start": 35685.88, + "end": 35688.36, + "probability": 0.9483 + }, + { + "start": 35689.84, + "end": 35692.22, + "probability": 0.9709 + }, + { + "start": 35693.2, + "end": 35694.34, + "probability": 0.986 + }, + { + "start": 35695.44, + "end": 35696.16, + "probability": 0.9163 + }, + { + "start": 35696.86, + "end": 35697.26, + "probability": 0.8711 + }, + { + "start": 35698.14, + "end": 35700.8, + "probability": 0.5011 + }, + { + "start": 35702.6, + "end": 35703.46, + "probability": 0.9871 + }, + { + "start": 35704.72, + "end": 35709.2, + "probability": 0.6884 + }, + { + "start": 35709.64, + "end": 35710.62, + "probability": 0.6978 + }, + { + "start": 35711.12, + "end": 35712.62, + "probability": 0.6796 + }, + { + "start": 35712.66, + "end": 35714.24, + "probability": 0.9589 + }, + { + "start": 35714.36, + "end": 35715.0, + "probability": 0.7216 + }, + { + "start": 35715.56, + "end": 35716.54, + "probability": 0.7721 + }, + { + "start": 35718.48, + "end": 35719.88, + "probability": 0.9464 + }, + { + "start": 35721.32, + "end": 35724.0, + "probability": 0.9878 + }, + { + "start": 35724.66, + "end": 35725.52, + "probability": 0.705 + }, + { + "start": 35726.78, + "end": 35729.86, + "probability": 0.8108 + }, + { + "start": 35731.28, + "end": 35733.46, + "probability": 0.7219 + }, + { + "start": 35734.52, + "end": 35736.08, + "probability": 0.8961 + }, + { + "start": 35737.1, + "end": 35738.66, + "probability": 0.9211 + }, + { + "start": 35739.12, + "end": 35740.62, + "probability": 0.4763 + }, + { + "start": 35740.7, + "end": 35742.32, + "probability": 0.7676 + }, + { + "start": 35744.62, + "end": 35745.62, + "probability": 0.831 + }, + { + "start": 35746.18, + "end": 35747.32, + "probability": 0.6684 + }, + { + "start": 35749.24, + "end": 35750.26, + "probability": 0.7563 + }, + { + "start": 35751.0, + "end": 35751.96, + "probability": 0.8177 + }, + { + "start": 35752.74, + "end": 35755.64, + "probability": 0.127 + }, + { + "start": 35755.72, + "end": 35755.9, + "probability": 0.0134 + }, + { + "start": 35755.9, + "end": 35757.24, + "probability": 0.1819 + }, + { + "start": 35757.32, + "end": 35758.06, + "probability": 0.4956 + }, + { + "start": 35758.22, + "end": 35760.46, + "probability": 0.7192 + }, + { + "start": 35762.14, + "end": 35764.58, + "probability": 0.8898 + }, + { + "start": 35765.66, + "end": 35766.38, + "probability": 0.8074 + }, + { + "start": 35766.4, + "end": 35767.64, + "probability": 0.8142 + }, + { + "start": 35767.72, + "end": 35768.76, + "probability": 0.4881 + }, + { + "start": 35768.84, + "end": 35770.1, + "probability": 0.8544 + }, + { + "start": 35770.56, + "end": 35771.24, + "probability": 0.964 + }, + { + "start": 35772.34, + "end": 35773.08, + "probability": 0.8144 + }, + { + "start": 35774.22, + "end": 35775.9, + "probability": 0.9503 + }, + { + "start": 35776.02, + "end": 35778.18, + "probability": 0.7915 + }, + { + "start": 35778.2, + "end": 35779.64, + "probability": 0.7391 + }, + { + "start": 35780.48, + "end": 35787.74, + "probability": 0.9817 + }, + { + "start": 35790.46, + "end": 35791.72, + "probability": 0.4354 + }, + { + "start": 35791.9, + "end": 35793.46, + "probability": 0.6512 + }, + { + "start": 35796.46, + "end": 35801.24, + "probability": 0.022 + }, + { + "start": 35801.86, + "end": 35803.7, + "probability": 0.094 + }, + { + "start": 35804.64, + "end": 35808.74, + "probability": 0.0088 + }, + { + "start": 35831.9, + "end": 35832.88, + "probability": 0.0 + }, + { + "start": 35835.46, + "end": 35836.04, + "probability": 0.0289 + }, + { + "start": 35836.86, + "end": 35841.92, + "probability": 0.1354 + }, + { + "start": 35842.44, + "end": 35842.9, + "probability": 0.0527 + }, + { + "start": 35845.54, + "end": 35847.8, + "probability": 0.057 + }, + { + "start": 35847.82, + "end": 35850.8, + "probability": 0.1132 + }, + { + "start": 35851.1, + "end": 35855.7, + "probability": 0.0653 + }, + { + "start": 35906.0, + "end": 35906.0, + "probability": 0.0 + }, + { + "start": 35906.22, + "end": 35908.64, + "probability": 0.1152 + }, + { + "start": 35910.64, + "end": 35912.0, + "probability": 0.0669 + }, + { + "start": 35915.1, + "end": 35917.52, + "probability": 0.0551 + }, + { + "start": 35921.0, + "end": 35926.08, + "probability": 0.0042 + }, + { + "start": 35926.74, + "end": 35930.16, + "probability": 0.0963 + }, + { + "start": 35930.16, + "end": 35932.34, + "probability": 0.1039 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.0, + "end": 36026.0, + "probability": 0.0 + }, + { + "start": 36026.64, + "end": 36026.8, + "probability": 0.1095 + }, + { + "start": 36026.8, + "end": 36026.8, + "probability": 0.0522 + }, + { + "start": 36026.8, + "end": 36027.86, + "probability": 0.0496 + }, + { + "start": 36028.48, + "end": 36030.22, + "probability": 0.8902 + }, + { + "start": 36031.6, + "end": 36033.48, + "probability": 0.072 + }, + { + "start": 36034.04, + "end": 36035.1, + "probability": 0.1013 + }, + { + "start": 36043.56, + "end": 36044.82, + "probability": 0.0263 + }, + { + "start": 36047.8, + "end": 36048.18, + "probability": 0.0142 + }, + { + "start": 36048.92, + "end": 36049.88, + "probability": 0.2103 + }, + { + "start": 36049.9, + "end": 36051.58, + "probability": 0.0086 + }, + { + "start": 36052.08, + "end": 36052.48, + "probability": 0.1878 + }, + { + "start": 36052.54, + "end": 36053.34, + "probability": 0.325 + }, + { + "start": 36055.66, + "end": 36058.24, + "probability": 0.003 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.0, + "end": 36150.0, + "probability": 0.0 + }, + { + "start": 36150.12, + "end": 36151.6, + "probability": 0.3477 + }, + { + "start": 36151.84, + "end": 36154.66, + "probability": 0.4941 + }, + { + "start": 36154.7, + "end": 36157.22, + "probability": 0.6754 + }, + { + "start": 36157.28, + "end": 36158.8, + "probability": 0.8648 + }, + { + "start": 36159.24, + "end": 36160.74, + "probability": 0.7428 + }, + { + "start": 36160.82, + "end": 36161.9, + "probability": 0.1747 + }, + { + "start": 36162.18, + "end": 36164.5, + "probability": 0.9293 + }, + { + "start": 36164.98, + "end": 36165.08, + "probability": 0.4163 + }, + { + "start": 36165.38, + "end": 36165.38, + "probability": 0.5735 + }, + { + "start": 36165.54, + "end": 36171.92, + "probability": 0.8289 + }, + { + "start": 36171.94, + "end": 36174.62, + "probability": 0.3087 + }, + { + "start": 36175.08, + "end": 36175.1, + "probability": 0.0253 + }, + { + "start": 36175.22, + "end": 36175.22, + "probability": 0.1683 + }, + { + "start": 36175.22, + "end": 36175.22, + "probability": 0.2972 + }, + { + "start": 36175.22, + "end": 36175.22, + "probability": 0.342 + }, + { + "start": 36175.22, + "end": 36176.34, + "probability": 0.256 + }, + { + "start": 36176.48, + "end": 36178.22, + "probability": 0.4965 + }, + { + "start": 36178.9, + "end": 36179.8, + "probability": 0.3704 + }, + { + "start": 36181.36, + "end": 36182.06, + "probability": 0.3919 + }, + { + "start": 36182.26, + "end": 36182.42, + "probability": 0.5009 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.0, + "end": 36279.0, + "probability": 0.0 + }, + { + "start": 36279.04, + "end": 36279.34, + "probability": 0.0335 + }, + { + "start": 36279.34, + "end": 36280.48, + "probability": 0.3704 + }, + { + "start": 36280.88, + "end": 36281.6, + "probability": 0.7311 + }, + { + "start": 36281.72, + "end": 36281.98, + "probability": 0.0919 + }, + { + "start": 36281.98, + "end": 36284.8, + "probability": 0.4994 + }, + { + "start": 36285.52, + "end": 36287.52, + "probability": 0.0256 + }, + { + "start": 36287.72, + "end": 36291.12, + "probability": 0.7817 + }, + { + "start": 36291.3, + "end": 36292.66, + "probability": 0.1625 + }, + { + "start": 36293.08, + "end": 36294.74, + "probability": 0.8088 + }, + { + "start": 36295.79, + "end": 36299.07, + "probability": 0.9976 + }, + { + "start": 36299.76, + "end": 36302.34, + "probability": 0.7488 + }, + { + "start": 36304.02, + "end": 36308.44, + "probability": 0.0134 + }, + { + "start": 36308.58, + "end": 36312.1, + "probability": 0.0578 + }, + { + "start": 36312.1, + "end": 36313.48, + "probability": 0.4277 + }, + { + "start": 36314.14, + "end": 36314.96, + "probability": 0.1347 + }, + { + "start": 36314.96, + "end": 36316.36, + "probability": 0.7293 + }, + { + "start": 36317.68, + "end": 36319.64, + "probability": 0.7019 + }, + { + "start": 36320.52, + "end": 36325.52, + "probability": 0.0896 + }, + { + "start": 36325.52, + "end": 36335.76, + "probability": 0.0747 + }, + { + "start": 36336.94, + "end": 36341.54, + "probability": 0.2367 + }, + { + "start": 36341.54, + "end": 36343.45, + "probability": 0.5355 + }, + { + "start": 36344.14, + "end": 36347.04, + "probability": 0.1577 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.0, + "end": 36400.0, + "probability": 0.0 + }, + { + "start": 36400.24, + "end": 36401.14, + "probability": 0.1699 + }, + { + "start": 36401.14, + "end": 36403.28, + "probability": 0.753 + }, + { + "start": 36404.02, + "end": 36408.08, + "probability": 0.8309 + }, + { + "start": 36409.0, + "end": 36414.38, + "probability": 0.9642 + }, + { + "start": 36414.46, + "end": 36418.92, + "probability": 0.6207 + }, + { + "start": 36419.36, + "end": 36424.33, + "probability": 0.971 + }, + { + "start": 36424.66, + "end": 36427.34, + "probability": 0.931 + }, + { + "start": 36427.72, + "end": 36430.48, + "probability": 0.9408 + }, + { + "start": 36430.8, + "end": 36431.98, + "probability": 0.7317 + }, + { + "start": 36432.32, + "end": 36434.05, + "probability": 0.6392 + }, + { + "start": 36434.88, + "end": 36437.58, + "probability": 0.5978 + }, + { + "start": 36440.32, + "end": 36443.92, + "probability": 0.8669 + }, + { + "start": 36444.82, + "end": 36447.78, + "probability": 0.6026 + }, + { + "start": 36447.86, + "end": 36448.84, + "probability": 0.9023 + }, + { + "start": 36449.66, + "end": 36453.56, + "probability": 0.4737 + }, + { + "start": 36455.96, + "end": 36457.5, + "probability": 0.808 + }, + { + "start": 36457.84, + "end": 36461.76, + "probability": 0.851 + }, + { + "start": 36461.96, + "end": 36466.3, + "probability": 0.7076 + }, + { + "start": 36466.66, + "end": 36468.48, + "probability": 0.7718 + }, + { + "start": 36476.24, + "end": 36478.02, + "probability": 0.4427 + }, + { + "start": 36486.7, + "end": 36489.38, + "probability": 0.5146 + }, + { + "start": 36490.28, + "end": 36493.7, + "probability": 0.946 + }, + { + "start": 36496.9, + "end": 36498.98, + "probability": 0.2919 + }, + { + "start": 36499.52, + "end": 36499.8, + "probability": 0.7991 + }, + { + "start": 36500.38, + "end": 36501.9, + "probability": 0.6624 + }, + { + "start": 36501.9, + "end": 36503.86, + "probability": 0.3854 + }, + { + "start": 36504.48, + "end": 36505.94, + "probability": 0.8158 + }, + { + "start": 36506.56, + "end": 36510.04, + "probability": 0.5625 + }, + { + "start": 36510.32, + "end": 36511.82, + "probability": 0.6278 + }, + { + "start": 36513.6, + "end": 36515.16, + "probability": 0.6177 + }, + { + "start": 36517.24, + "end": 36517.34, + "probability": 0.1589 + }, + { + "start": 36517.34, + "end": 36517.34, + "probability": 0.374 + }, + { + "start": 36517.34, + "end": 36517.34, + "probability": 0.3154 + }, + { + "start": 36517.34, + "end": 36518.7, + "probability": 0.5335 + }, + { + "start": 36519.04, + "end": 36519.56, + "probability": 0.4438 + }, + { + "start": 36519.74, + "end": 36521.03, + "probability": 0.6592 + }, + { + "start": 36522.1, + "end": 36523.48, + "probability": 0.515 + }, + { + "start": 36523.56, + "end": 36525.36, + "probability": 0.76 + }, + { + "start": 36525.52, + "end": 36529.08, + "probability": 0.8775 + }, + { + "start": 36529.22, + "end": 36530.32, + "probability": 0.5674 + }, + { + "start": 36530.48, + "end": 36531.5, + "probability": 0.9153 + }, + { + "start": 36531.68, + "end": 36534.5, + "probability": 0.684 + }, + { + "start": 36534.68, + "end": 36535.9, + "probability": 0.7688 + }, + { + "start": 36536.76, + "end": 36537.54, + "probability": 0.9583 + }, + { + "start": 36537.62, + "end": 36538.9, + "probability": 0.5524 + }, + { + "start": 36538.96, + "end": 36539.5, + "probability": 0.3141 + }, + { + "start": 36539.54, + "end": 36540.58, + "probability": 0.6547 + }, + { + "start": 36542.46, + "end": 36543.62, + "probability": 0.9725 + }, + { + "start": 36544.56, + "end": 36545.44, + "probability": 0.3635 + }, + { + "start": 36545.56, + "end": 36546.76, + "probability": 0.7834 + }, + { + "start": 36546.8, + "end": 36549.16, + "probability": 0.6327 + }, + { + "start": 36550.9, + "end": 36553.5, + "probability": 0.4 + }, + { + "start": 36554.16, + "end": 36555.03, + "probability": 0.8013 + }, + { + "start": 36555.26, + "end": 36556.0, + "probability": 0.678 + }, + { + "start": 36559.06, + "end": 36561.26, + "probability": 0.0448 + }, + { + "start": 36561.54, + "end": 36563.06, + "probability": 0.8297 + }, + { + "start": 36563.08, + "end": 36566.36, + "probability": 0.5059 + }, + { + "start": 36568.3, + "end": 36569.24, + "probability": 0.6035 + }, + { + "start": 36569.3, + "end": 36571.9, + "probability": 0.9157 + }, + { + "start": 36572.5, + "end": 36573.94, + "probability": 0.222 + }, + { + "start": 36574.8, + "end": 36575.26, + "probability": 0.2111 + }, + { + "start": 36575.26, + "end": 36575.84, + "probability": 0.7063 + }, + { + "start": 36576.22, + "end": 36577.16, + "probability": 0.9728 + }, + { + "start": 36577.54, + "end": 36577.74, + "probability": 0.6038 + }, + { + "start": 36578.26, + "end": 36579.06, + "probability": 0.8655 + }, + { + "start": 36579.18, + "end": 36579.61, + "probability": 0.7026 + }, + { + "start": 36580.62, + "end": 36580.72, + "probability": 0.2928 + }, + { + "start": 36581.46, + "end": 36581.9, + "probability": 0.4094 + }, + { + "start": 36583.9, + "end": 36584.68, + "probability": 0.8954 + }, + { + "start": 36584.78, + "end": 36585.48, + "probability": 0.5816 + }, + { + "start": 36585.76, + "end": 36586.86, + "probability": 0.9322 + }, + { + "start": 36586.88, + "end": 36587.37, + "probability": 0.5061 + }, + { + "start": 36587.98, + "end": 36589.3, + "probability": 0.9005 + }, + { + "start": 36589.4, + "end": 36590.98, + "probability": 0.0156 + }, + { + "start": 36591.28, + "end": 36592.88, + "probability": 0.7846 + }, + { + "start": 36593.86, + "end": 36595.12, + "probability": 0.111 + }, + { + "start": 36595.12, + "end": 36595.56, + "probability": 0.032 + }, + { + "start": 36595.56, + "end": 36595.56, + "probability": 0.1977 + }, + { + "start": 36595.56, + "end": 36595.56, + "probability": 0.2788 + }, + { + "start": 36595.56, + "end": 36595.63, + "probability": 0.3909 + }, + { + "start": 36596.5, + "end": 36597.92, + "probability": 0.4893 + }, + { + "start": 36599.1, + "end": 36603.16, + "probability": 0.8531 + }, + { + "start": 36603.22, + "end": 36603.98, + "probability": 0.9258 + }, + { + "start": 36605.0, + "end": 36607.03, + "probability": 0.7316 + }, + { + "start": 36608.65, + "end": 36611.04, + "probability": 0.9702 + }, + { + "start": 36611.54, + "end": 36612.38, + "probability": 0.7089 + }, + { + "start": 36612.58, + "end": 36612.96, + "probability": 0.7485 + }, + { + "start": 36613.46, + "end": 36614.48, + "probability": 0.9575 + }, + { + "start": 36614.72, + "end": 36615.06, + "probability": 0.8414 + }, + { + "start": 36615.64, + "end": 36618.45, + "probability": 0.599 + }, + { + "start": 36618.62, + "end": 36619.84, + "probability": 0.0413 + }, + { + "start": 36620.52, + "end": 36621.9, + "probability": 0.0005 + }, + { + "start": 36622.04, + "end": 36622.04, + "probability": 0.0608 + }, + { + "start": 36622.04, + "end": 36622.04, + "probability": 0.0646 + }, + { + "start": 36622.04, + "end": 36622.78, + "probability": 0.1983 + }, + { + "start": 36624.64, + "end": 36626.34, + "probability": 0.0016 + }, + { + "start": 36629.3, + "end": 36630.56, + "probability": 0.039 + }, + { + "start": 36632.52, + "end": 36634.78, + "probability": 0.8202 + }, + { + "start": 36635.32, + "end": 36636.8, + "probability": 0.0206 + }, + { + "start": 36636.86, + "end": 36639.38, + "probability": 0.2957 + }, + { + "start": 36639.38, + "end": 36639.8, + "probability": 0.1792 + }, + { + "start": 36649.01, + "end": 36652.5, + "probability": 0.2587 + }, + { + "start": 36653.88, + "end": 36654.86, + "probability": 0.0112 + }, + { + "start": 36654.86, + "end": 36656.58, + "probability": 0.096 + }, + { + "start": 36658.52, + "end": 36658.94, + "probability": 0.1078 + }, + { + "start": 36659.62, + "end": 36660.06, + "probability": 0.1997 + }, + { + "start": 36660.06, + "end": 36661.85, + "probability": 0.3294 + }, + { + "start": 36664.5, + "end": 36666.16, + "probability": 0.6009 + }, + { + "start": 36667.77, + "end": 36668.48, + "probability": 0.4704 + }, + { + "start": 36669.1, + "end": 36671.02, + "probability": 0.0246 + }, + { + "start": 36671.76, + "end": 36671.94, + "probability": 0.0776 + }, + { + "start": 36672.28, + "end": 36672.76, + "probability": 0.1268 + }, + { + "start": 36674.08, + "end": 36675.84, + "probability": 0.151 + }, + { + "start": 36676.42, + "end": 36676.96, + "probability": 0.0374 + }, + { + "start": 36677.56, + "end": 36679.76, + "probability": 0.0571 + }, + { + "start": 36680.56, + "end": 36683.68, + "probability": 0.0633 + }, + { + "start": 36685.14, + "end": 36689.76, + "probability": 0.1212 + }, + { + "start": 36690.86, + "end": 36692.01, + "probability": 0.0048 + }, + { + "start": 36708.0, + "end": 36708.0, + "probability": 0.0 + }, + { + "start": 36708.0, + "end": 36708.0, + "probability": 0.0 + }, + { + "start": 36708.0, + "end": 36708.0, + "probability": 0.0 + }, + { + "start": 36708.16, + "end": 36712.42, + "probability": 0.7157 + }, + { + "start": 36712.58, + "end": 36713.9, + "probability": 0.7445 + }, + { + "start": 36714.68, + "end": 36716.68, + "probability": 0.2839 + }, + { + "start": 36716.68, + "end": 36718.02, + "probability": 0.3617 + }, + { + "start": 36718.14, + "end": 36719.52, + "probability": 0.6763 + }, + { + "start": 36720.62, + "end": 36720.76, + "probability": 0.0557 + }, + { + "start": 36720.76, + "end": 36721.28, + "probability": 0.1444 + }, + { + "start": 36722.9, + "end": 36724.28, + "probability": 0.38 + }, + { + "start": 36724.76, + "end": 36725.42, + "probability": 0.0563 + }, + { + "start": 36725.42, + "end": 36725.42, + "probability": 0.0063 + }, + { + "start": 36727.7, + "end": 36732.08, + "probability": 0.2003 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.0, + "end": 36846.0, + "probability": 0.0 + }, + { + "start": 36846.8, + "end": 36846.8, + "probability": 0.0108 + }, + { + "start": 36846.8, + "end": 36846.8, + "probability": 0.0522 + }, + { + "start": 36846.8, + "end": 36849.18, + "probability": 0.0758 + }, + { + "start": 36849.18, + "end": 36855.08, + "probability": 0.8774 + }, + { + "start": 36856.1, + "end": 36860.42, + "probability": 0.7264 + }, + { + "start": 36860.42, + "end": 36865.6, + "probability": 0.7538 + }, + { + "start": 36866.32, + "end": 36867.06, + "probability": 0.6659 + }, + { + "start": 36867.66, + "end": 36868.38, + "probability": 0.8066 + }, + { + "start": 36870.26, + "end": 36871.8, + "probability": 0.7423 + }, + { + "start": 36875.84, + "end": 36876.98, + "probability": 0.9546 + }, + { + "start": 36877.5, + "end": 36877.8, + "probability": 0.8551 + }, + { + "start": 36879.12, + "end": 36879.68, + "probability": 0.7885 + }, + { + "start": 36879.68, + "end": 36881.32, + "probability": 0.9354 + }, + { + "start": 36882.14, + "end": 36884.22, + "probability": 0.696 + }, + { + "start": 36884.8, + "end": 36888.24, + "probability": 0.9392 + }, + { + "start": 36888.69, + "end": 36891.51, + "probability": 0.7972 + }, + { + "start": 36893.3, + "end": 36898.68, + "probability": 0.1844 + }, + { + "start": 36903.72, + "end": 36904.66, + "probability": 0.6244 + }, + { + "start": 36906.94, + "end": 36909.52, + "probability": 0.3482 + }, + { + "start": 36910.14, + "end": 36911.26, + "probability": 0.6857 + }, + { + "start": 36911.38, + "end": 36912.8, + "probability": 0.5047 + }, + { + "start": 36912.8, + "end": 36918.8, + "probability": 0.9329 + }, + { + "start": 36919.46, + "end": 36922.56, + "probability": 0.9319 + }, + { + "start": 36923.04, + "end": 36923.76, + "probability": 0.92 + }, + { + "start": 36924.1, + "end": 36926.4, + "probability": 0.7571 + }, + { + "start": 36926.4, + "end": 36929.6, + "probability": 0.9977 + }, + { + "start": 36929.68, + "end": 36930.06, + "probability": 0.7985 + }, + { + "start": 36930.56, + "end": 36936.4, + "probability": 0.4861 + }, + { + "start": 36936.76, + "end": 36938.08, + "probability": 0.3498 + }, + { + "start": 36938.56, + "end": 36940.02, + "probability": 0.6475 + }, + { + "start": 36940.4, + "end": 36941.24, + "probability": 0.4803 + }, + { + "start": 36941.42, + "end": 36942.22, + "probability": 0.7463 + }, + { + "start": 36942.52, + "end": 36945.4, + "probability": 0.9165 + }, + { + "start": 36945.84, + "end": 36947.45, + "probability": 0.8137 + }, + { + "start": 36947.72, + "end": 36949.0, + "probability": 0.5428 + }, + { + "start": 36949.44, + "end": 36950.96, + "probability": 0.7104 + }, + { + "start": 36951.36, + "end": 36951.56, + "probability": 0.1776 + }, + { + "start": 36951.7, + "end": 36952.58, + "probability": 0.9663 + }, + { + "start": 36952.86, + "end": 36953.26, + "probability": 0.2685 + }, + { + "start": 36953.54, + "end": 36954.12, + "probability": 0.4733 + }, + { + "start": 36954.14, + "end": 36956.68, + "probability": 0.7538 + }, + { + "start": 36956.78, + "end": 36957.8, + "probability": 0.9799 + }, + { + "start": 36957.92, + "end": 36959.23, + "probability": 0.9758 + }, + { + "start": 36959.56, + "end": 36965.14, + "probability": 0.9824 + }, + { + "start": 36965.36, + "end": 36967.0, + "probability": 0.9809 + }, + { + "start": 36967.3, + "end": 36972.06, + "probability": 0.9392 + }, + { + "start": 36972.4, + "end": 36975.52, + "probability": 0.9967 + }, + { + "start": 36975.86, + "end": 36980.56, + "probability": 0.9802 + }, + { + "start": 36980.94, + "end": 36982.71, + "probability": 0.9447 + }, + { + "start": 36983.08, + "end": 36984.28, + "probability": 0.7867 + }, + { + "start": 36984.64, + "end": 36986.86, + "probability": 0.9839 + }, + { + "start": 36987.14, + "end": 36990.06, + "probability": 0.2614 + }, + { + "start": 36990.06, + "end": 36990.9, + "probability": 0.6711 + }, + { + "start": 36991.04, + "end": 36991.6, + "probability": 0.7339 + }, + { + "start": 36991.8, + "end": 36992.38, + "probability": 0.5966 + }, + { + "start": 36992.64, + "end": 36994.81, + "probability": 0.6195 + }, + { + "start": 36995.48, + "end": 36998.02, + "probability": 0.947 + }, + { + "start": 36998.26, + "end": 37001.52, + "probability": 0.93 + }, + { + "start": 37001.8, + "end": 37002.36, + "probability": 0.7468 + }, + { + "start": 37002.96, + "end": 37003.7, + "probability": 0.7565 + }, + { + "start": 37004.3, + "end": 37006.32, + "probability": 0.606 + }, + { + "start": 37006.6, + "end": 37009.74, + "probability": 0.0336 + }, + { + "start": 37011.32, + "end": 37012.3, + "probability": 0.0362 + }, + { + "start": 37015.24, + "end": 37016.44, + "probability": 0.0608 + }, + { + "start": 37016.44, + "end": 37016.44, + "probability": 0.0916 + }, + { + "start": 37016.44, + "end": 37016.79, + "probability": 0.2098 + }, + { + "start": 37020.58, + "end": 37021.14, + "probability": 0.1668 + }, + { + "start": 37021.28, + "end": 37021.28, + "probability": 0.3484 + }, + { + "start": 37021.28, + "end": 37026.46, + "probability": 0.3955 + }, + { + "start": 37028.18, + "end": 37029.12, + "probability": 0.0364 + }, + { + "start": 37030.02, + "end": 37031.44, + "probability": 0.0594 + }, + { + "start": 37033.34, + "end": 37035.34, + "probability": 0.591 + }, + { + "start": 37036.39, + "end": 37038.28, + "probability": 0.105 + }, + { + "start": 37038.28, + "end": 37039.86, + "probability": 0.0706 + }, + { + "start": 37039.86, + "end": 37040.84, + "probability": 0.0237 + }, + { + "start": 37041.36, + "end": 37043.72, + "probability": 0.3542 + }, + { + "start": 37044.04, + "end": 37045.06, + "probability": 0.3012 + }, + { + "start": 37049.08, + "end": 37052.48, + "probability": 0.1005 + }, + { + "start": 37053.86, + "end": 37057.56, + "probability": 0.0096 + }, + { + "start": 37057.78, + "end": 37059.14, + "probability": 0.2323 + }, + { + "start": 37059.42, + "end": 37060.12, + "probability": 0.358 + }, + { + "start": 37061.32, + "end": 37061.32, + "probability": 0.5673 + }, + { + "start": 37062.1, + "end": 37064.68, + "probability": 0.0156 + }, + { + "start": 37064.84, + "end": 37065.56, + "probability": 0.0888 + }, + { + "start": 37066.44, + "end": 37069.56, + "probability": 0.1515 + }, + { + "start": 37069.92, + "end": 37070.46, + "probability": 0.0272 + }, + { + "start": 37072.14, + "end": 37075.02, + "probability": 0.0724 + }, + { + "start": 37075.02, + "end": 37075.14, + "probability": 0.0319 + }, + { + "start": 37075.14, + "end": 37076.44, + "probability": 0.0766 + }, + { + "start": 37076.46, + "end": 37076.78, + "probability": 0.2763 + }, + { + "start": 37076.78, + "end": 37076.98, + "probability": 0.1803 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.0, + "end": 37077.0, + "probability": 0.0 + }, + { + "start": 37077.14, + "end": 37077.96, + "probability": 0.1597 + }, + { + "start": 37078.16, + "end": 37078.88, + "probability": 0.4337 + }, + { + "start": 37079.38, + "end": 37080.6, + "probability": 0.8691 + }, + { + "start": 37080.6, + "end": 37081.5, + "probability": 0.6859 + }, + { + "start": 37081.5, + "end": 37082.6, + "probability": 0.1643 + }, + { + "start": 37083.04, + "end": 37083.5, + "probability": 0.0243 + }, + { + "start": 37084.64, + "end": 37087.16, + "probability": 0.0098 + }, + { + "start": 37087.26, + "end": 37089.52, + "probability": 0.3365 + }, + { + "start": 37089.62, + "end": 37090.99, + "probability": 0.1614 + }, + { + "start": 37091.0, + "end": 37092.05, + "probability": 0.086 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.0, + "end": 37218.0, + "probability": 0.0 + }, + { + "start": 37218.08, + "end": 37218.94, + "probability": 0.0697 + }, + { + "start": 37219.34, + "end": 37220.16, + "probability": 0.034 + }, + { + "start": 37220.64, + "end": 37221.78, + "probability": 0.1735 + }, + { + "start": 37221.78, + "end": 37222.28, + "probability": 0.034 + }, + { + "start": 37222.34, + "end": 37223.4, + "probability": 0.4941 + }, + { + "start": 37223.54, + "end": 37226.8, + "probability": 0.5992 + }, + { + "start": 37226.8, + "end": 37227.02, + "probability": 0.3929 + }, + { + "start": 37228.1, + "end": 37228.52, + "probability": 0.0394 + }, + { + "start": 37230.51, + "end": 37231.0, + "probability": 0.2494 + }, + { + "start": 37231.04, + "end": 37231.44, + "probability": 0.1315 + }, + { + "start": 37231.44, + "end": 37231.44, + "probability": 0.0841 + }, + { + "start": 37231.44, + "end": 37232.1, + "probability": 0.1586 + }, + { + "start": 37233.08, + "end": 37233.08, + "probability": 0.1226 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.0, + "end": 37346.0, + "probability": 0.0 + }, + { + "start": 37346.22, + "end": 37352.26, + "probability": 0.0266 + }, + { + "start": 37353.13, + "end": 37354.1, + "probability": 0.0143 + }, + { + "start": 37355.14, + "end": 37357.22, + "probability": 0.275 + }, + { + "start": 37358.7, + "end": 37360.4, + "probability": 0.2953 + }, + { + "start": 37361.74, + "end": 37364.44, + "probability": 0.3871 + }, + { + "start": 37366.74, + "end": 37370.2, + "probability": 0.7355 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.0, + "end": 37469.0, + "probability": 0.0 + }, + { + "start": 37469.56, + "end": 37471.68, + "probability": 0.8494 + }, + { + "start": 37473.86, + "end": 37476.16, + "probability": 0.9849 + }, + { + "start": 37477.54, + "end": 37479.88, + "probability": 0.714 + }, + { + "start": 37483.24, + "end": 37485.56, + "probability": 0.9813 + }, + { + "start": 37486.14, + "end": 37488.19, + "probability": 0.958 + }, + { + "start": 37490.18, + "end": 37494.12, + "probability": 0.7821 + }, + { + "start": 37494.75, + "end": 37498.01, + "probability": 0.8442 + }, + { + "start": 37498.3, + "end": 37500.7, + "probability": 0.7661 + }, + { + "start": 37501.46, + "end": 37503.48, + "probability": 0.6544 + }, + { + "start": 37503.7, + "end": 37504.26, + "probability": 0.5739 + }, + { + "start": 37505.36, + "end": 37508.88, + "probability": 0.9807 + }, + { + "start": 37510.52, + "end": 37511.94, + "probability": 0.5725 + }, + { + "start": 37512.0, + "end": 37514.7, + "probability": 0.9625 + }, + { + "start": 37515.38, + "end": 37520.44, + "probability": 0.9861 + }, + { + "start": 37520.54, + "end": 37521.32, + "probability": 0.9832 + }, + { + "start": 37521.6, + "end": 37522.48, + "probability": 0.6362 + }, + { + "start": 37522.86, + "end": 37524.86, + "probability": 0.998 + }, + { + "start": 37525.39, + "end": 37528.18, + "probability": 0.9984 + }, + { + "start": 37528.56, + "end": 37530.46, + "probability": 0.8829 + }, + { + "start": 37531.34, + "end": 37533.02, + "probability": 0.9976 + }, + { + "start": 37533.74, + "end": 37535.54, + "probability": 0.9573 + }, + { + "start": 37535.8, + "end": 37537.74, + "probability": 0.731 + }, + { + "start": 37537.96, + "end": 37540.7, + "probability": 0.9512 + }, + { + "start": 37541.34, + "end": 37543.71, + "probability": 0.9878 + }, + { + "start": 37544.08, + "end": 37545.66, + "probability": 0.9851 + }, + { + "start": 37545.66, + "end": 37549.66, + "probability": 0.9971 + }, + { + "start": 37550.36, + "end": 37552.4, + "probability": 0.9132 + }, + { + "start": 37553.06, + "end": 37555.93, + "probability": 0.9863 + }, + { + "start": 37556.68, + "end": 37558.8, + "probability": 0.9906 + }, + { + "start": 37558.8, + "end": 37559.4, + "probability": 0.0782 + }, + { + "start": 37559.4, + "end": 37561.36, + "probability": 0.8901 + }, + { + "start": 37561.44, + "end": 37562.48, + "probability": 0.4619 + }, + { + "start": 37562.7, + "end": 37563.56, + "probability": 0.7476 + }, + { + "start": 37563.8, + "end": 37566.46, + "probability": 0.5542 + }, + { + "start": 37566.76, + "end": 37569.66, + "probability": 0.8882 + }, + { + "start": 37569.86, + "end": 37570.62, + "probability": 0.0786 + }, + { + "start": 37570.62, + "end": 37573.7, + "probability": 0.6055 + }, + { + "start": 37573.84, + "end": 37575.08, + "probability": 0.9069 + }, + { + "start": 37576.44, + "end": 37577.46, + "probability": 0.228 + }, + { + "start": 37578.04, + "end": 37578.98, + "probability": 0.8222 + }, + { + "start": 37580.28, + "end": 37580.98, + "probability": 0.8101 + }, + { + "start": 37581.52, + "end": 37582.3, + "probability": 0.606 + }, + { + "start": 37582.44, + "end": 37583.6, + "probability": 0.592 + }, + { + "start": 37583.62, + "end": 37585.38, + "probability": 0.666 + }, + { + "start": 37596.08, + "end": 37598.28, + "probability": 0.215 + }, + { + "start": 37598.54, + "end": 37600.71, + "probability": 0.3057 + }, + { + "start": 37602.8, + "end": 37603.1, + "probability": 0.5362 + }, + { + "start": 37603.14, + "end": 37604.2, + "probability": 0.4342 + }, + { + "start": 37604.7, + "end": 37609.78, + "probability": 0.9003 + }, + { + "start": 37610.78, + "end": 37613.38, + "probability": 0.9282 + }, + { + "start": 37614.02, + "end": 37617.5, + "probability": 0.9968 + }, + { + "start": 37618.0, + "end": 37621.63, + "probability": 0.7765 + }, + { + "start": 37622.44, + "end": 37626.14, + "probability": 0.9344 + }, + { + "start": 37626.44, + "end": 37627.82, + "probability": 0.7503 + }, + { + "start": 37628.26, + "end": 37630.7, + "probability": 0.9907 + }, + { + "start": 37630.9, + "end": 37632.08, + "probability": 0.96 + }, + { + "start": 37632.36, + "end": 37633.72, + "probability": 0.9769 + }, + { + "start": 37633.96, + "end": 37634.5, + "probability": 0.6258 + }, + { + "start": 37635.06, + "end": 37638.34, + "probability": 0.5982 + }, + { + "start": 37638.52, + "end": 37638.98, + "probability": 0.6262 + }, + { + "start": 37639.08, + "end": 37639.1, + "probability": 0.0567 + }, + { + "start": 37639.1, + "end": 37640.56, + "probability": 0.3151 + }, + { + "start": 37640.7, + "end": 37641.5, + "probability": 0.1035 + }, + { + "start": 37642.02, + "end": 37643.74, + "probability": 0.6287 + }, + { + "start": 37644.44, + "end": 37645.18, + "probability": 0.078 + }, + { + "start": 37645.18, + "end": 37645.18, + "probability": 0.1733 + }, + { + "start": 37645.18, + "end": 37645.72, + "probability": 0.6531 + }, + { + "start": 37645.96, + "end": 37649.68, + "probability": 0.8857 + }, + { + "start": 37650.06, + "end": 37650.36, + "probability": 0.3588 + }, + { + "start": 37652.15, + "end": 37653.3, + "probability": 0.738 + }, + { + "start": 37655.7, + "end": 37663.24, + "probability": 0.3405 + }, + { + "start": 37663.24, + "end": 37665.52, + "probability": 0.1694 + }, + { + "start": 37666.88, + "end": 37670.88, + "probability": 0.1486 + }, + { + "start": 37672.49, + "end": 37675.13, + "probability": 0.109 + }, + { + "start": 37676.88, + "end": 37676.96, + "probability": 0.0187 + }, + { + "start": 37679.92, + "end": 37682.08, + "probability": 0.792 + }, + { + "start": 37682.74, + "end": 37683.62, + "probability": 0.1795 + }, + { + "start": 37684.84, + "end": 37687.08, + "probability": 0.2601 + }, + { + "start": 37687.1, + "end": 37689.26, + "probability": 0.2664 + }, + { + "start": 37706.72, + "end": 37707.32, + "probability": 0.0816 + }, + { + "start": 37711.32, + "end": 37713.42, + "probability": 0.3736 + }, + { + "start": 37713.88, + "end": 37713.88, + "probability": 0.0524 + }, + { + "start": 37713.88, + "end": 37715.4, + "probability": 0.0337 + }, + { + "start": 37715.4, + "end": 37715.62, + "probability": 0.2077 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.0, + "end": 37738.0, + "probability": 0.0 + }, + { + "start": 37738.22, + "end": 37738.36, + "probability": 0.1214 + }, + { + "start": 37738.36, + "end": 37739.1, + "probability": 0.1858 + }, + { + "start": 37739.68, + "end": 37740.9, + "probability": 0.4671 + }, + { + "start": 37740.9, + "end": 37742.04, + "probability": 0.4538 + }, + { + "start": 37743.22, + "end": 37744.26, + "probability": 0.6288 + }, + { + "start": 37744.64, + "end": 37746.26, + "probability": 0.317 + }, + { + "start": 37754.12, + "end": 37755.32, + "probability": 0.1819 + }, + { + "start": 37758.04, + "end": 37760.9, + "probability": 0.0747 + }, + { + "start": 37761.68, + "end": 37763.78, + "probability": 0.0856 + }, + { + "start": 37765.64, + "end": 37767.02, + "probability": 0.0486 + }, + { + "start": 37768.5, + "end": 37770.54, + "probability": 0.1954 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.0, + "end": 37858.0, + "probability": 0.0 + }, + { + "start": 37858.02, + "end": 37858.18, + "probability": 0.0035 + }, + { + "start": 37858.18, + "end": 37860.76, + "probability": 0.8996 + }, + { + "start": 37860.76, + "end": 37867.94, + "probability": 0.9884 + }, + { + "start": 37868.36, + "end": 37869.62, + "probability": 0.9339 + }, + { + "start": 37870.36, + "end": 37872.98, + "probability": 0.9916 + }, + { + "start": 37873.94, + "end": 37877.62, + "probability": 0.9456 + }, + { + "start": 37878.42, + "end": 37887.26, + "probability": 0.9899 + }, + { + "start": 37887.82, + "end": 37889.3, + "probability": 0.9839 + }, + { + "start": 37889.8, + "end": 37891.4, + "probability": 0.7671 + }, + { + "start": 37892.08, + "end": 37896.94, + "probability": 0.9844 + }, + { + "start": 37898.06, + "end": 37900.1, + "probability": 0.8967 + }, + { + "start": 37901.66, + "end": 37906.34, + "probability": 0.9609 + }, + { + "start": 37906.74, + "end": 37908.7, + "probability": 0.865 + }, + { + "start": 37909.42, + "end": 37910.54, + "probability": 0.9096 + }, + { + "start": 37910.92, + "end": 37913.64, + "probability": 0.6209 + }, + { + "start": 37913.72, + "end": 37915.36, + "probability": 0.897 + }, + { + "start": 37915.36, + "end": 37921.9, + "probability": 0.9743 + }, + { + "start": 37922.48, + "end": 37926.76, + "probability": 0.9431 + }, + { + "start": 37927.08, + "end": 37928.36, + "probability": 0.9259 + }, + { + "start": 37928.46, + "end": 37930.59, + "probability": 0.991 + }, + { + "start": 37931.08, + "end": 37933.6, + "probability": 0.975 + }, + { + "start": 37934.2, + "end": 37935.68, + "probability": 0.4925 + }, + { + "start": 37936.16, + "end": 37937.32, + "probability": 0.9683 + }, + { + "start": 37937.46, + "end": 37938.52, + "probability": 0.8826 + }, + { + "start": 37938.62, + "end": 37942.96, + "probability": 0.9956 + }, + { + "start": 37943.48, + "end": 37943.88, + "probability": 0.486 + }, + { + "start": 37944.52, + "end": 37944.94, + "probability": 0.6495 + }, + { + "start": 37945.18, + "end": 37947.24, + "probability": 0.979 + }, + { + "start": 37947.62, + "end": 37950.7, + "probability": 0.9984 + }, + { + "start": 37950.98, + "end": 37952.96, + "probability": 0.7346 + }, + { + "start": 37953.04, + "end": 37953.58, + "probability": 0.0176 + }, + { + "start": 37953.6, + "end": 37957.0, + "probability": 0.9897 + }, + { + "start": 37957.44, + "end": 37962.12, + "probability": 0.9946 + }, + { + "start": 37963.14, + "end": 37964.92, + "probability": 0.5723 + }, + { + "start": 37965.44, + "end": 37967.92, + "probability": 0.9855 + }, + { + "start": 37968.18, + "end": 37969.52, + "probability": 0.9087 + }, + { + "start": 37969.96, + "end": 37974.04, + "probability": 0.9629 + }, + { + "start": 37974.62, + "end": 37981.86, + "probability": 0.9888 + }, + { + "start": 37981.92, + "end": 37982.24, + "probability": 0.2027 + }, + { + "start": 37982.26, + "end": 37986.2, + "probability": 0.8286 + }, + { + "start": 37986.3, + "end": 37988.32, + "probability": 0.9678 + }, + { + "start": 37988.36, + "end": 37988.76, + "probability": 0.5962 + }, + { + "start": 37988.76, + "end": 37991.94, + "probability": 0.96 + }, + { + "start": 37991.94, + "end": 37992.28, + "probability": 0.7492 + }, + { + "start": 37992.52, + "end": 37994.72, + "probability": 0.6038 + }, + { + "start": 37994.8, + "end": 37996.78, + "probability": 0.8221 + }, + { + "start": 37997.22, + "end": 37997.46, + "probability": 0.7578 + }, + { + "start": 37997.52, + "end": 37998.3, + "probability": 0.9293 + }, + { + "start": 38011.78, + "end": 38013.7, + "probability": 0.6843 + }, + { + "start": 38013.72, + "end": 38016.98, + "probability": 0.6673 + }, + { + "start": 38017.36, + "end": 38017.4, + "probability": 0.4062 + }, + { + "start": 38017.4, + "end": 38018.0, + "probability": 0.5708 + }, + { + "start": 38018.06, + "end": 38018.57, + "probability": 0.9131 + }, + { + "start": 38024.94, + "end": 38026.68, + "probability": 0.7546 + }, + { + "start": 38027.72, + "end": 38029.39, + "probability": 0.9594 + }, + { + "start": 38029.74, + "end": 38032.16, + "probability": 0.7806 + }, + { + "start": 38033.64, + "end": 38034.24, + "probability": 0.8001 + }, + { + "start": 38034.32, + "end": 38035.84, + "probability": 0.9941 + }, + { + "start": 38036.04, + "end": 38037.08, + "probability": 0.8363 + }, + { + "start": 38037.42, + "end": 38039.42, + "probability": 0.5699 + }, + { + "start": 38040.6, + "end": 38045.08, + "probability": 0.6801 + }, + { + "start": 38045.5, + "end": 38047.38, + "probability": 0.2642 + }, + { + "start": 38047.56, + "end": 38048.72, + "probability": 0.7695 + }, + { + "start": 38049.36, + "end": 38051.92, + "probability": 0.8956 + }, + { + "start": 38052.08, + "end": 38056.6, + "probability": 0.0846 + }, + { + "start": 38057.98, + "end": 38057.98, + "probability": 0.4967 + }, + { + "start": 38058.04, + "end": 38060.16, + "probability": 0.9032 + }, + { + "start": 38061.04, + "end": 38064.8, + "probability": 0.9895 + }, + { + "start": 38064.92, + "end": 38065.84, + "probability": 0.886 + }, + { + "start": 38066.56, + "end": 38068.32, + "probability": 0.8794 + }, + { + "start": 38069.6, + "end": 38076.22, + "probability": 0.9918 + }, + { + "start": 38077.44, + "end": 38079.68, + "probability": 0.9981 + }, + { + "start": 38080.26, + "end": 38082.66, + "probability": 0.9609 + }, + { + "start": 38083.52, + "end": 38089.8, + "probability": 0.9756 + }, + { + "start": 38090.32, + "end": 38092.16, + "probability": 0.7505 + }, + { + "start": 38092.58, + "end": 38096.9, + "probability": 0.9568 + }, + { + "start": 38096.92, + "end": 38100.26, + "probability": 0.2775 + }, + { + "start": 38100.7, + "end": 38103.02, + "probability": 0.8449 + }, + { + "start": 38104.06, + "end": 38106.38, + "probability": 0.8849 + }, + { + "start": 38106.58, + "end": 38109.6, + "probability": 0.9616 + }, + { + "start": 38109.88, + "end": 38111.9, + "probability": 0.6435 + }, + { + "start": 38112.04, + "end": 38115.76, + "probability": 0.9673 + }, + { + "start": 38116.68, + "end": 38119.24, + "probability": 0.6713 + }, + { + "start": 38120.1, + "end": 38123.08, + "probability": 0.7973 + }, + { + "start": 38123.36, + "end": 38126.14, + "probability": 0.943 + }, + { + "start": 38126.9, + "end": 38131.08, + "probability": 0.9316 + }, + { + "start": 38131.92, + "end": 38135.4, + "probability": 0.9941 + }, + { + "start": 38135.72, + "end": 38140.16, + "probability": 0.9819 + }, + { + "start": 38140.7, + "end": 38140.74, + "probability": 0.021 + }, + { + "start": 38140.74, + "end": 38141.72, + "probability": 0.0108 + }, + { + "start": 38142.32, + "end": 38147.84, + "probability": 0.9952 + }, + { + "start": 38148.1, + "end": 38150.78, + "probability": 0.957 + }, + { + "start": 38151.0, + "end": 38157.33, + "probability": 0.9984 + }, + { + "start": 38157.52, + "end": 38158.56, + "probability": 0.8491 + }, + { + "start": 38158.78, + "end": 38160.6, + "probability": 0.5119 + }, + { + "start": 38160.74, + "end": 38161.64, + "probability": 0.0863 + }, + { + "start": 38161.82, + "end": 38161.82, + "probability": 0.1609 + }, + { + "start": 38161.82, + "end": 38168.22, + "probability": 0.6501 + }, + { + "start": 38168.3, + "end": 38169.41, + "probability": 0.9045 + }, + { + "start": 38169.8, + "end": 38170.8, + "probability": 0.4735 + }, + { + "start": 38171.26, + "end": 38172.08, + "probability": 0.752 + }, + { + "start": 38176.82, + "end": 38179.08, + "probability": 0.4059 + }, + { + "start": 38179.36, + "end": 38180.4, + "probability": 0.0874 + }, + { + "start": 38181.11, + "end": 38182.74, + "probability": 0.1197 + }, + { + "start": 38182.94, + "end": 38182.94, + "probability": 0.3967 + }, + { + "start": 38182.94, + "end": 38185.26, + "probability": 0.6151 + }, + { + "start": 38185.32, + "end": 38186.8, + "probability": 0.5979 + }, + { + "start": 38187.26, + "end": 38187.76, + "probability": 0.9121 + }, + { + "start": 38189.0, + "end": 38194.48, + "probability": 0.647 + }, + { + "start": 38194.64, + "end": 38195.28, + "probability": 0.5826 + }, + { + "start": 38195.56, + "end": 38197.16, + "probability": 0.4902 + }, + { + "start": 38197.74, + "end": 38198.44, + "probability": 0.4849 + }, + { + "start": 38198.44, + "end": 38199.14, + "probability": 0.2621 + }, + { + "start": 38199.7, + "end": 38199.92, + "probability": 0.496 + }, + { + "start": 38199.96, + "end": 38200.72, + "probability": 0.6147 + }, + { + "start": 38201.26, + "end": 38203.3, + "probability": 0.3949 + }, + { + "start": 38203.5, + "end": 38204.77, + "probability": 0.9901 + }, + { + "start": 38205.0, + "end": 38207.14, + "probability": 0.8935 + }, + { + "start": 38207.4, + "end": 38209.28, + "probability": 0.585 + }, + { + "start": 38209.92, + "end": 38211.24, + "probability": 0.3576 + }, + { + "start": 38211.34, + "end": 38212.33, + "probability": 0.3579 + }, + { + "start": 38212.48, + "end": 38213.96, + "probability": 0.9189 + }, + { + "start": 38214.18, + "end": 38215.54, + "probability": 0.7606 + }, + { + "start": 38216.66, + "end": 38217.5, + "probability": 0.7839 + }, + { + "start": 38217.56, + "end": 38220.78, + "probability": 0.9402 + }, + { + "start": 38222.52, + "end": 38227.66, + "probability": 0.8477 + }, + { + "start": 38228.56, + "end": 38230.76, + "probability": 0.8754 + }, + { + "start": 38231.02, + "end": 38233.32, + "probability": 0.6174 + }, + { + "start": 38233.42, + "end": 38238.64, + "probability": 0.7322 + }, + { + "start": 38239.16, + "end": 38242.4, + "probability": 0.9553 + }, + { + "start": 38243.4, + "end": 38244.58, + "probability": 0.7201 + }, + { + "start": 38244.6, + "end": 38246.91, + "probability": 0.9971 + }, + { + "start": 38247.9, + "end": 38251.14, + "probability": 0.9443 + }, + { + "start": 38251.2, + "end": 38252.2, + "probability": 0.2833 + }, + { + "start": 38252.22, + "end": 38252.84, + "probability": 0.0594 + }, + { + "start": 38252.94, + "end": 38253.32, + "probability": 0.126 + }, + { + "start": 38253.32, + "end": 38254.48, + "probability": 0.6708 + }, + { + "start": 38255.14, + "end": 38257.08, + "probability": 0.9971 + }, + { + "start": 38257.82, + "end": 38259.71, + "probability": 0.9879 + }, + { + "start": 38260.34, + "end": 38262.96, + "probability": 0.9767 + }, + { + "start": 38263.26, + "end": 38267.22, + "probability": 0.9971 + }, + { + "start": 38267.32, + "end": 38267.32, + "probability": 0.1027 + }, + { + "start": 38267.32, + "end": 38268.62, + "probability": 0.3716 + }, + { + "start": 38269.28, + "end": 38271.2, + "probability": 0.8092 + }, + { + "start": 38271.88, + "end": 38276.96, + "probability": 0.9934 + }, + { + "start": 38277.2, + "end": 38279.78, + "probability": 0.9104 + }, + { + "start": 38280.12, + "end": 38280.92, + "probability": 0.7507 + }, + { + "start": 38281.18, + "end": 38284.88, + "probability": 0.9841 + }, + { + "start": 38285.32, + "end": 38287.3, + "probability": 0.7009 + }, + { + "start": 38287.88, + "end": 38289.96, + "probability": 0.6821 + }, + { + "start": 38290.62, + "end": 38292.88, + "probability": 0.9929 + }, + { + "start": 38293.28, + "end": 38294.52, + "probability": 0.9377 + }, + { + "start": 38295.08, + "end": 38296.56, + "probability": 0.9937 + }, + { + "start": 38296.72, + "end": 38300.6, + "probability": 0.9491 + }, + { + "start": 38300.96, + "end": 38303.38, + "probability": 0.8922 + }, + { + "start": 38303.74, + "end": 38304.42, + "probability": 0.8081 + }, + { + "start": 38304.52, + "end": 38306.5, + "probability": 0.8622 + }, + { + "start": 38306.74, + "end": 38307.76, + "probability": 0.6052 + }, + { + "start": 38307.86, + "end": 38311.08, + "probability": 0.9205 + }, + { + "start": 38311.08, + "end": 38313.84, + "probability": 0.5341 + }, + { + "start": 38313.9, + "end": 38313.9, + "probability": 0.2134 + }, + { + "start": 38314.16, + "end": 38315.86, + "probability": 0.3764 + }, + { + "start": 38315.88, + "end": 38317.22, + "probability": 0.9144 + }, + { + "start": 38317.58, + "end": 38319.66, + "probability": 0.8109 + }, + { + "start": 38319.66, + "end": 38322.88, + "probability": 0.9536 + }, + { + "start": 38323.24, + "end": 38324.76, + "probability": 0.9587 + }, + { + "start": 38325.02, + "end": 38326.76, + "probability": 0.9578 + }, + { + "start": 38326.96, + "end": 38332.8, + "probability": 0.9932 + }, + { + "start": 38333.2, + "end": 38336.38, + "probability": 0.9975 + }, + { + "start": 38336.38, + "end": 38339.22, + "probability": 0.8979 + }, + { + "start": 38339.48, + "end": 38339.72, + "probability": 0.0625 + }, + { + "start": 38339.72, + "end": 38340.21, + "probability": 0.942 + }, + { + "start": 38340.62, + "end": 38341.32, + "probability": 0.7286 + }, + { + "start": 38342.36, + "end": 38344.02, + "probability": 0.7233 + }, + { + "start": 38344.58, + "end": 38348.44, + "probability": 0.741 + }, + { + "start": 38349.04, + "end": 38351.08, + "probability": 0.7401 + }, + { + "start": 38352.4, + "end": 38353.48, + "probability": 0.6692 + }, + { + "start": 38355.32, + "end": 38358.3, + "probability": 0.6409 + }, + { + "start": 38376.64, + "end": 38378.48, + "probability": 0.7344 + }, + { + "start": 38379.06, + "end": 38380.22, + "probability": 0.786 + }, + { + "start": 38381.66, + "end": 38384.64, + "probability": 0.9852 + }, + { + "start": 38386.72, + "end": 38388.84, + "probability": 0.9257 + }, + { + "start": 38389.76, + "end": 38393.58, + "probability": 0.6663 + }, + { + "start": 38394.56, + "end": 38396.06, + "probability": 0.9372 + }, + { + "start": 38396.52, + "end": 38398.4, + "probability": 0.9852 + }, + { + "start": 38398.64, + "end": 38400.54, + "probability": 0.8312 + }, + { + "start": 38400.84, + "end": 38401.84, + "probability": 0.9233 + }, + { + "start": 38401.96, + "end": 38403.74, + "probability": 0.9615 + }, + { + "start": 38404.06, + "end": 38406.1, + "probability": 0.9654 + }, + { + "start": 38406.96, + "end": 38408.68, + "probability": 0.7572 + }, + { + "start": 38410.2, + "end": 38411.18, + "probability": 0.8663 + }, + { + "start": 38412.24, + "end": 38412.88, + "probability": 0.9783 + }, + { + "start": 38414.26, + "end": 38416.34, + "probability": 0.6916 + }, + { + "start": 38416.92, + "end": 38417.42, + "probability": 0.908 + }, + { + "start": 38418.72, + "end": 38420.3, + "probability": 0.9917 + }, + { + "start": 38421.08, + "end": 38422.24, + "probability": 0.9789 + }, + { + "start": 38422.4, + "end": 38424.72, + "probability": 0.9707 + }, + { + "start": 38425.5, + "end": 38428.22, + "probability": 0.9229 + }, + { + "start": 38428.86, + "end": 38429.74, + "probability": 0.9954 + }, + { + "start": 38430.68, + "end": 38431.3, + "probability": 0.5939 + }, + { + "start": 38431.38, + "end": 38432.94, + "probability": 0.7326 + }, + { + "start": 38433.38, + "end": 38433.92, + "probability": 0.6859 + }, + { + "start": 38434.2, + "end": 38435.93, + "probability": 0.671 + }, + { + "start": 38436.36, + "end": 38438.52, + "probability": 0.9729 + }, + { + "start": 38439.18, + "end": 38441.0, + "probability": 0.7523 + }, + { + "start": 38461.74, + "end": 38463.2, + "probability": 0.7699 + }, + { + "start": 38466.58, + "end": 38469.72, + "probability": 0.397 + }, + { + "start": 38470.54, + "end": 38472.18, + "probability": 0.995 + }, + { + "start": 38474.36, + "end": 38479.02, + "probability": 0.9912 + }, + { + "start": 38479.1, + "end": 38483.38, + "probability": 0.9915 + }, + { + "start": 38484.38, + "end": 38486.74, + "probability": 0.9993 + }, + { + "start": 38488.2, + "end": 38492.2, + "probability": 0.8747 + }, + { + "start": 38492.8, + "end": 38494.3, + "probability": 0.9241 + }, + { + "start": 38494.82, + "end": 38495.04, + "probability": 0.7688 + }, + { + "start": 38495.58, + "end": 38496.74, + "probability": 0.9496 + }, + { + "start": 38496.86, + "end": 38497.95, + "probability": 0.9771 + }, + { + "start": 38498.42, + "end": 38502.06, + "probability": 0.8848 + }, + { + "start": 38502.74, + "end": 38506.32, + "probability": 0.9945 + }, + { + "start": 38506.88, + "end": 38509.26, + "probability": 0.8226 + }, + { + "start": 38510.94, + "end": 38513.46, + "probability": 0.9557 + }, + { + "start": 38513.62, + "end": 38516.72, + "probability": 0.9951 + }, + { + "start": 38517.18, + "end": 38518.9, + "probability": 0.9548 + }, + { + "start": 38519.32, + "end": 38521.38, + "probability": 0.9982 + }, + { + "start": 38522.31, + "end": 38528.22, + "probability": 0.9961 + }, + { + "start": 38529.24, + "end": 38530.96, + "probability": 0.9984 + }, + { + "start": 38531.62, + "end": 38535.16, + "probability": 0.9901 + }, + { + "start": 38536.28, + "end": 38539.48, + "probability": 0.8909 + }, + { + "start": 38540.1, + "end": 38544.78, + "probability": 0.9884 + }, + { + "start": 38544.82, + "end": 38548.1, + "probability": 0.999 + }, + { + "start": 38549.32, + "end": 38552.68, + "probability": 0.9619 + }, + { + "start": 38553.5, + "end": 38555.34, + "probability": 0.9395 + }, + { + "start": 38555.78, + "end": 38560.12, + "probability": 0.9652 + }, + { + "start": 38561.28, + "end": 38565.04, + "probability": 0.9888 + }, + { + "start": 38565.56, + "end": 38567.78, + "probability": 0.9527 + }, + { + "start": 38568.96, + "end": 38571.88, + "probability": 0.9758 + }, + { + "start": 38572.72, + "end": 38574.12, + "probability": 0.8574 + }, + { + "start": 38575.04, + "end": 38580.32, + "probability": 0.8887 + }, + { + "start": 38581.26, + "end": 38587.1, + "probability": 0.8965 + }, + { + "start": 38588.02, + "end": 38590.4, + "probability": 0.7273 + }, + { + "start": 38590.64, + "end": 38592.08, + "probability": 0.9473 + }, + { + "start": 38593.44, + "end": 38596.34, + "probability": 0.9737 + }, + { + "start": 38597.08, + "end": 38597.84, + "probability": 0.7244 + }, + { + "start": 38598.4, + "end": 38600.6, + "probability": 0.8674 + }, + { + "start": 38610.3, + "end": 38612.88, + "probability": 0.731 + }, + { + "start": 38612.9, + "end": 38614.96, + "probability": 0.6571 + }, + { + "start": 38616.12, + "end": 38618.74, + "probability": 0.9866 + }, + { + "start": 38619.62, + "end": 38623.16, + "probability": 0.9979 + }, + { + "start": 38623.46, + "end": 38624.0, + "probability": 0.9764 + }, + { + "start": 38624.1, + "end": 38625.0, + "probability": 0.9959 + }, + { + "start": 38625.58, + "end": 38626.78, + "probability": 0.8973 + }, + { + "start": 38627.32, + "end": 38630.5, + "probability": 0.7945 + }, + { + "start": 38631.16, + "end": 38632.82, + "probability": 0.8372 + }, + { + "start": 38633.12, + "end": 38633.86, + "probability": 0.9941 + }, + { + "start": 38634.18, + "end": 38634.93, + "probability": 0.9824 + }, + { + "start": 38635.6, + "end": 38639.2, + "probability": 0.9852 + }, + { + "start": 38640.64, + "end": 38642.4, + "probability": 0.6499 + }, + { + "start": 38642.72, + "end": 38643.14, + "probability": 0.9681 + }, + { + "start": 38643.94, + "end": 38644.4, + "probability": 0.9336 + }, + { + "start": 38645.0, + "end": 38646.16, + "probability": 0.9498 + }, + { + "start": 38646.24, + "end": 38648.06, + "probability": 0.9305 + }, + { + "start": 38648.63, + "end": 38650.48, + "probability": 0.9825 + }, + { + "start": 38650.7, + "end": 38651.48, + "probability": 0.9688 + }, + { + "start": 38652.14, + "end": 38652.68, + "probability": 0.8657 + }, + { + "start": 38653.02, + "end": 38655.02, + "probability": 0.7494 + }, + { + "start": 38655.1, + "end": 38656.26, + "probability": 0.9169 + }, + { + "start": 38656.7, + "end": 38661.2, + "probability": 0.8088 + }, + { + "start": 38661.46, + "end": 38661.98, + "probability": 0.954 + }, + { + "start": 38662.96, + "end": 38663.74, + "probability": 0.7466 + }, + { + "start": 38664.28, + "end": 38666.94, + "probability": 0.958 + }, + { + "start": 38667.4, + "end": 38668.72, + "probability": 0.9847 + }, + { + "start": 38669.28, + "end": 38671.68, + "probability": 0.6299 + }, + { + "start": 38672.08, + "end": 38673.79, + "probability": 0.9429 + }, + { + "start": 38674.98, + "end": 38677.48, + "probability": 0.974 + }, + { + "start": 38678.22, + "end": 38679.7, + "probability": 0.9326 + }, + { + "start": 38680.42, + "end": 38681.74, + "probability": 0.9973 + }, + { + "start": 38682.26, + "end": 38683.3, + "probability": 0.991 + }, + { + "start": 38684.28, + "end": 38685.14, + "probability": 0.8662 + }, + { + "start": 38686.18, + "end": 38687.92, + "probability": 0.4457 + }, + { + "start": 38688.7, + "end": 38690.04, + "probability": 0.3193 + }, + { + "start": 38691.8, + "end": 38692.64, + "probability": 0.9897 + }, + { + "start": 38693.12, + "end": 38693.22, + "probability": 0.6085 + }, + { + "start": 38695.84, + "end": 38696.04, + "probability": 0.362 + }, + { + "start": 38700.78, + "end": 38703.66, + "probability": 0.4153 + }, + { + "start": 38704.32, + "end": 38707.48, + "probability": 0.9538 + }, + { + "start": 38707.5, + "end": 38710.72, + "probability": 0.839 + }, + { + "start": 38710.76, + "end": 38711.94, + "probability": 0.7548 + }, + { + "start": 38712.5, + "end": 38716.96, + "probability": 0.6709 + }, + { + "start": 38717.52, + "end": 38721.66, + "probability": 0.7056 + }, + { + "start": 38722.9, + "end": 38723.58, + "probability": 0.7092 + }, + { + "start": 38724.16, + "end": 38724.54, + "probability": 0.0647 + }, + { + "start": 38725.68, + "end": 38728.12, + "probability": 0.2178 + }, + { + "start": 38728.66, + "end": 38729.54, + "probability": 0.018 + }, + { + "start": 38737.2, + "end": 38737.8, + "probability": 0.0842 + }, + { + "start": 38738.78, + "end": 38740.84, + "probability": 0.5738 + }, + { + "start": 38741.12, + "end": 38743.72, + "probability": 0.9771 + }, + { + "start": 38744.24, + "end": 38744.9, + "probability": 0.6238 + }, + { + "start": 38744.96, + "end": 38746.28, + "probability": 0.4975 + }, + { + "start": 38746.44, + "end": 38748.24, + "probability": 0.7593 + }, + { + "start": 38748.34, + "end": 38751.82, + "probability": 0.2943 + }, + { + "start": 38755.7, + "end": 38757.78, + "probability": 0.85 + }, + { + "start": 38758.5, + "end": 38760.16, + "probability": 0.1435 + }, + { + "start": 38760.36, + "end": 38762.98, + "probability": 0.7972 + }, + { + "start": 38763.04, + "end": 38763.96, + "probability": 0.7016 + }, + { + "start": 38764.48, + "end": 38767.18, + "probability": 0.9862 + }, + { + "start": 38768.32, + "end": 38772.98, + "probability": 0.8028 + }, + { + "start": 38794.6, + "end": 38797.78, + "probability": 0.7022 + }, + { + "start": 38798.56, + "end": 38799.48, + "probability": 0.638 + }, + { + "start": 38800.9, + "end": 38801.98, + "probability": 0.0387 + }, + { + "start": 38809.33, + "end": 38811.78, + "probability": 0.8472 + }, + { + "start": 38812.24, + "end": 38815.56, + "probability": 0.5306 + }, + { + "start": 38815.7, + "end": 38818.14, + "probability": 0.5066 + }, + { + "start": 38818.24, + "end": 38820.6, + "probability": 0.8354 + }, + { + "start": 38821.36, + "end": 38823.22, + "probability": 0.8474 + }, + { + "start": 38823.32, + "end": 38824.22, + "probability": 0.7664 + }, + { + "start": 38824.5, + "end": 38825.74, + "probability": 0.9961 + }, + { + "start": 38827.28, + "end": 38829.0, + "probability": 0.9913 + }, + { + "start": 38829.58, + "end": 38830.84, + "probability": 0.5663 + }, + { + "start": 38830.94, + "end": 38833.76, + "probability": 0.9634 + }, + { + "start": 38834.14, + "end": 38837.08, + "probability": 0.9731 + }, + { + "start": 38837.08, + "end": 38839.62, + "probability": 0.981 + }, + { + "start": 38840.42, + "end": 38843.0, + "probability": 0.7037 + }, + { + "start": 38844.14, + "end": 38846.56, + "probability": 0.9706 + }, + { + "start": 38846.64, + "end": 38848.22, + "probability": 0.7942 + }, + { + "start": 38848.32, + "end": 38849.42, + "probability": 0.3783 + }, + { + "start": 38850.1, + "end": 38851.54, + "probability": 0.9066 + }, + { + "start": 38852.96, + "end": 38854.82, + "probability": 0.5663 + }, + { + "start": 38854.92, + "end": 38855.68, + "probability": 0.7654 + }, + { + "start": 38856.32, + "end": 38857.76, + "probability": 0.8417 + }, + { + "start": 38859.87, + "end": 38862.06, + "probability": 0.9672 + }, + { + "start": 38862.46, + "end": 38863.24, + "probability": 0.9928 + }, + { + "start": 38863.32, + "end": 38867.32, + "probability": 0.9661 + }, + { + "start": 38867.74, + "end": 38870.52, + "probability": 0.8175 + }, + { + "start": 38870.58, + "end": 38872.7, + "probability": 0.972 + }, + { + "start": 38872.8, + "end": 38875.1, + "probability": 0.9771 + }, + { + "start": 38876.0, + "end": 38880.04, + "probability": 0.7766 + }, + { + "start": 38881.98, + "end": 38883.38, + "probability": 0.7102 + }, + { + "start": 38883.48, + "end": 38886.06, + "probability": 0.9749 + }, + { + "start": 38886.24, + "end": 38888.02, + "probability": 0.7669 + }, + { + "start": 38888.04, + "end": 38888.7, + "probability": 0.8311 + }, + { + "start": 38888.9, + "end": 38891.82, + "probability": 0.9856 + }, + { + "start": 38891.86, + "end": 38895.78, + "probability": 0.9546 + }, + { + "start": 38896.64, + "end": 38898.42, + "probability": 0.7034 + }, + { + "start": 38898.54, + "end": 38898.74, + "probability": 0.6807 + }, + { + "start": 38898.98, + "end": 38901.18, + "probability": 0.7465 + }, + { + "start": 38901.54, + "end": 38902.2, + "probability": 0.8096 + }, + { + "start": 38902.7, + "end": 38905.9, + "probability": 0.9829 + }, + { + "start": 38906.04, + "end": 38907.82, + "probability": 0.8676 + }, + { + "start": 38907.82, + "end": 38910.28, + "probability": 0.959 + }, + { + "start": 38910.78, + "end": 38911.72, + "probability": 0.8606 + }, + { + "start": 38911.86, + "end": 38914.32, + "probability": 0.5559 + }, + { + "start": 38914.38, + "end": 38914.9, + "probability": 0.2791 + }, + { + "start": 38914.9, + "end": 38915.02, + "probability": 0.6763 + }, + { + "start": 38915.02, + "end": 38915.64, + "probability": 0.5099 + }, + { + "start": 38916.12, + "end": 38918.12, + "probability": 0.7417 + }, + { + "start": 38918.16, + "end": 38919.45, + "probability": 0.9531 + }, + { + "start": 38919.8, + "end": 38920.24, + "probability": 0.6712 + }, + { + "start": 38920.36, + "end": 38921.6, + "probability": 0.9925 + }, + { + "start": 38921.78, + "end": 38927.44, + "probability": 0.9756 + }, + { + "start": 38927.56, + "end": 38928.38, + "probability": 0.8703 + }, + { + "start": 38928.86, + "end": 38932.22, + "probability": 0.9972 + }, + { + "start": 38933.68, + "end": 38935.64, + "probability": 0.835 + }, + { + "start": 38935.64, + "end": 38936.5, + "probability": 0.4882 + }, + { + "start": 38936.82, + "end": 38938.0, + "probability": 0.8586 + }, + { + "start": 38938.44, + "end": 38940.02, + "probability": 0.9625 + }, + { + "start": 38940.12, + "end": 38941.86, + "probability": 0.9902 + }, + { + "start": 38942.16, + "end": 38946.48, + "probability": 0.9808 + }, + { + "start": 38946.86, + "end": 38947.46, + "probability": 0.9847 + }, + { + "start": 38948.14, + "end": 38949.02, + "probability": 0.9686 + }, + { + "start": 38950.96, + "end": 38954.82, + "probability": 0.9349 + }, + { + "start": 38955.2, + "end": 38956.2, + "probability": 0.8711 + }, + { + "start": 38956.62, + "end": 38958.2, + "probability": 0.8832 + }, + { + "start": 38958.7, + "end": 38960.5, + "probability": 0.936 + }, + { + "start": 38961.68, + "end": 38965.5, + "probability": 0.9425 + }, + { + "start": 38966.54, + "end": 38967.62, + "probability": 0.7836 + }, + { + "start": 38967.83, + "end": 38971.64, + "probability": 0.9638 + }, + { + "start": 38972.08, + "end": 38972.42, + "probability": 0.6594 + }, + { + "start": 38972.52, + "end": 38974.94, + "probability": 0.9427 + }, + { + "start": 38975.34, + "end": 38976.74, + "probability": 0.9287 + }, + { + "start": 38977.2, + "end": 38980.16, + "probability": 0.99 + }, + { + "start": 38980.18, + "end": 38982.0, + "probability": 0.9521 + }, + { + "start": 38982.4, + "end": 38983.74, + "probability": 0.9423 + }, + { + "start": 38984.88, + "end": 38987.36, + "probability": 0.9553 + }, + { + "start": 38989.0, + "end": 38991.72, + "probability": 0.7523 + }, + { + "start": 38993.78, + "end": 38995.78, + "probability": 0.7397 + }, + { + "start": 38995.94, + "end": 38996.92, + "probability": 0.9601 + }, + { + "start": 38997.3, + "end": 38999.04, + "probability": 0.8311 + }, + { + "start": 38999.38, + "end": 39000.62, + "probability": 0.6616 + }, + { + "start": 39000.74, + "end": 39001.54, + "probability": 0.6581 + }, + { + "start": 39001.7, + "end": 39002.28, + "probability": 0.4889 + }, + { + "start": 39002.54, + "end": 39007.76, + "probability": 0.9686 + }, + { + "start": 39007.98, + "end": 39011.38, + "probability": 0.9756 + }, + { + "start": 39011.9, + "end": 39012.76, + "probability": 0.7089 + }, + { + "start": 39013.4, + "end": 39016.0, + "probability": 0.9728 + }, + { + "start": 39016.18, + "end": 39016.92, + "probability": 0.9422 + }, + { + "start": 39017.42, + "end": 39022.88, + "probability": 0.871 + }, + { + "start": 39023.64, + "end": 39026.0, + "probability": 0.983 + }, + { + "start": 39027.66, + "end": 39030.9, + "probability": 0.9749 + }, + { + "start": 39031.26, + "end": 39035.06, + "probability": 0.9646 + }, + { + "start": 39035.34, + "end": 39038.44, + "probability": 0.9775 + }, + { + "start": 39038.58, + "end": 39041.6, + "probability": 0.7601 + }, + { + "start": 39041.7, + "end": 39042.46, + "probability": 0.9089 + }, + { + "start": 39043.0, + "end": 39044.46, + "probability": 0.9549 + }, + { + "start": 39044.46, + "end": 39048.14, + "probability": 0.9963 + }, + { + "start": 39048.26, + "end": 39049.88, + "probability": 0.9847 + }, + { + "start": 39050.02, + "end": 39051.95, + "probability": 0.9673 + }, + { + "start": 39053.16, + "end": 39054.36, + "probability": 0.8492 + }, + { + "start": 39054.46, + "end": 39057.02, + "probability": 0.976 + }, + { + "start": 39057.1, + "end": 39058.43, + "probability": 0.5637 + }, + { + "start": 39058.72, + "end": 39062.1, + "probability": 0.9708 + }, + { + "start": 39062.24, + "end": 39063.78, + "probability": 0.9641 + }, + { + "start": 39063.78, + "end": 39066.8, + "probability": 0.9937 + }, + { + "start": 39067.02, + "end": 39071.92, + "probability": 0.9544 + }, + { + "start": 39072.42, + "end": 39077.06, + "probability": 0.999 + }, + { + "start": 39077.34, + "end": 39079.2, + "probability": 0.8775 + }, + { + "start": 39079.28, + "end": 39079.7, + "probability": 0.8305 + }, + { + "start": 39080.02, + "end": 39081.1, + "probability": 0.8296 + }, + { + "start": 39081.18, + "end": 39082.42, + "probability": 0.3988 + }, + { + "start": 39082.46, + "end": 39083.8, + "probability": 0.2676 + }, + { + "start": 39085.76, + "end": 39086.94, + "probability": 0.6368 + }, + { + "start": 39088.1, + "end": 39090.04, + "probability": 0.7018 + }, + { + "start": 39090.54, + "end": 39094.06, + "probability": 0.7487 + }, + { + "start": 39094.06, + "end": 39095.04, + "probability": 0.3319 + }, + { + "start": 39095.1, + "end": 39097.3, + "probability": 0.7393 + }, + { + "start": 39097.44, + "end": 39099.34, + "probability": 0.2481 + }, + { + "start": 39099.44, + "end": 39101.96, + "probability": 0.8468 + }, + { + "start": 39103.22, + "end": 39104.82, + "probability": 0.9827 + }, + { + "start": 39104.96, + "end": 39105.16, + "probability": 0.3678 + }, + { + "start": 39105.16, + "end": 39105.84, + "probability": 0.6573 + }, + { + "start": 39105.96, + "end": 39107.02, + "probability": 0.6733 + }, + { + "start": 39107.1, + "end": 39108.84, + "probability": 0.9669 + }, + { + "start": 39109.56, + "end": 39110.9, + "probability": 0.7947 + }, + { + "start": 39113.82, + "end": 39116.18, + "probability": 0.2235 + }, + { + "start": 39118.6, + "end": 39119.34, + "probability": 0.0084 + }, + { + "start": 39121.42, + "end": 39123.26, + "probability": 0.4841 + }, + { + "start": 39123.84, + "end": 39127.82, + "probability": 0.6693 + }, + { + "start": 39128.54, + "end": 39130.28, + "probability": 0.6484 + }, + { + "start": 39130.3, + "end": 39131.06, + "probability": 0.87 + }, + { + "start": 39131.97, + "end": 39136.1, + "probability": 0.8847 + }, + { + "start": 39136.35, + "end": 39139.12, + "probability": 0.6166 + }, + { + "start": 39141.72, + "end": 39146.76, + "probability": 0.6354 + }, + { + "start": 39147.58, + "end": 39148.18, + "probability": 0.7216 + }, + { + "start": 39148.28, + "end": 39149.8, + "probability": 0.6506 + }, + { + "start": 39149.98, + "end": 39152.32, + "probability": 0.6743 + }, + { + "start": 39152.74, + "end": 39156.14, + "probability": 0.6628 + }, + { + "start": 39156.32, + "end": 39157.12, + "probability": 0.8022 + }, + { + "start": 39157.72, + "end": 39159.12, + "probability": 0.983 + }, + { + "start": 39159.88, + "end": 39163.0, + "probability": 0.8589 + }, + { + "start": 39163.12, + "end": 39163.44, + "probability": 0.5785 + }, + { + "start": 39163.74, + "end": 39165.12, + "probability": 0.8626 + }, + { + "start": 39165.38, + "end": 39165.9, + "probability": 0.5952 + }, + { + "start": 39165.94, + "end": 39167.24, + "probability": 0.6325 + }, + { + "start": 39167.3, + "end": 39167.8, + "probability": 0.8521 + }, + { + "start": 39167.96, + "end": 39170.0, + "probability": 0.937 + }, + { + "start": 39184.36, + "end": 39187.48, + "probability": 0.2977 + }, + { + "start": 39189.88, + "end": 39190.5, + "probability": 0.3468 + }, + { + "start": 39190.66, + "end": 39194.42, + "probability": 0.8605 + }, + { + "start": 39195.98, + "end": 39200.92, + "probability": 0.9863 + }, + { + "start": 39200.92, + "end": 39207.16, + "probability": 0.9853 + }, + { + "start": 39208.54, + "end": 39210.24, + "probability": 0.8185 + }, + { + "start": 39210.24, + "end": 39210.82, + "probability": 0.1195 + }, + { + "start": 39211.84, + "end": 39213.12, + "probability": 0.4437 + }, + { + "start": 39213.28, + "end": 39214.32, + "probability": 0.3863 + }, + { + "start": 39214.42, + "end": 39215.26, + "probability": 0.8079 + }, + { + "start": 39215.3, + "end": 39218.08, + "probability": 0.9679 + }, + { + "start": 39218.1, + "end": 39220.78, + "probability": 0.7242 + }, + { + "start": 39220.84, + "end": 39222.78, + "probability": 0.9256 + }, + { + "start": 39222.78, + "end": 39226.5, + "probability": 0.9807 + }, + { + "start": 39226.66, + "end": 39227.82, + "probability": 0.9847 + }, + { + "start": 39228.24, + "end": 39229.57, + "probability": 0.6332 + }, + { + "start": 39230.46, + "end": 39234.08, + "probability": 0.9948 + }, + { + "start": 39234.08, + "end": 39239.0, + "probability": 0.684 + }, + { + "start": 39239.46, + "end": 39245.58, + "probability": 0.9803 + }, + { + "start": 39246.58, + "end": 39248.02, + "probability": 0.5015 + }, + { + "start": 39248.76, + "end": 39250.3, + "probability": 0.6926 + }, + { + "start": 39250.94, + "end": 39257.34, + "probability": 0.8095 + }, + { + "start": 39257.44, + "end": 39257.72, + "probability": 0.8264 + }, + { + "start": 39258.14, + "end": 39258.58, + "probability": 0.6522 + }, + { + "start": 39258.68, + "end": 39260.44, + "probability": 0.7638 + }, + { + "start": 39260.56, + "end": 39261.28, + "probability": 0.5121 + }, + { + "start": 39261.36, + "end": 39262.82, + "probability": 0.8747 + }, + { + "start": 39263.62, + "end": 39266.58, + "probability": 0.678 + }, + { + "start": 39268.26, + "end": 39270.44, + "probability": 0.808 + }, + { + "start": 39271.42, + "end": 39271.96, + "probability": 0.6796 + }, + { + "start": 39272.24, + "end": 39273.7, + "probability": 0.8627 + }, + { + "start": 39273.8, + "end": 39274.38, + "probability": 0.9399 + }, + { + "start": 39274.42, + "end": 39275.7, + "probability": 0.9138 + }, + { + "start": 39280.3, + "end": 39281.02, + "probability": 0.935 + }, + { + "start": 39281.6, + "end": 39285.9, + "probability": 0.0237 + }, + { + "start": 39286.6, + "end": 39289.28, + "probability": 0.3633 + }, + { + "start": 39289.64, + "end": 39290.06, + "probability": 0.7903 + }, + { + "start": 39290.4, + "end": 39291.5, + "probability": 0.8853 + }, + { + "start": 39291.54, + "end": 39292.32, + "probability": 0.6067 + }, + { + "start": 39292.34, + "end": 39294.96, + "probability": 0.8113 + }, + { + "start": 39303.54, + "end": 39306.78, + "probability": 0.5755 + }, + { + "start": 39307.3, + "end": 39313.46, + "probability": 0.87 + }, + { + "start": 39314.06, + "end": 39317.84, + "probability": 0.9802 + }, + { + "start": 39318.56, + "end": 39320.44, + "probability": 0.9841 + }, + { + "start": 39321.04, + "end": 39326.74, + "probability": 0.9963 + }, + { + "start": 39327.3, + "end": 39328.82, + "probability": 0.9895 + }, + { + "start": 39329.62, + "end": 39335.56, + "probability": 0.8908 + }, + { + "start": 39335.56, + "end": 39340.12, + "probability": 0.8358 + }, + { + "start": 39340.66, + "end": 39343.32, + "probability": 0.7723 + }, + { + "start": 39343.88, + "end": 39346.86, + "probability": 0.8896 + }, + { + "start": 39347.36, + "end": 39348.34, + "probability": 0.7976 + }, + { + "start": 39348.46, + "end": 39349.05, + "probability": 0.6032 + }, + { + "start": 39350.04, + "end": 39352.98, + "probability": 0.7884 + }, + { + "start": 39353.34, + "end": 39356.26, + "probability": 0.7449 + }, + { + "start": 39356.8, + "end": 39357.72, + "probability": 0.7444 + }, + { + "start": 39358.44, + "end": 39359.38, + "probability": 0.9231 + }, + { + "start": 39360.1, + "end": 39360.38, + "probability": 0.896 + }, + { + "start": 39361.46, + "end": 39366.88, + "probability": 0.9869 + }, + { + "start": 39367.18, + "end": 39369.48, + "probability": 0.9312 + }, + { + "start": 39370.04, + "end": 39371.12, + "probability": 0.7454 + }, + { + "start": 39371.8, + "end": 39373.26, + "probability": 0.8284 + }, + { + "start": 39374.24, + "end": 39375.8, + "probability": 0.6664 + }, + { + "start": 39376.36, + "end": 39380.5, + "probability": 0.7743 + }, + { + "start": 39381.1, + "end": 39387.12, + "probability": 0.9937 + }, + { + "start": 39387.7, + "end": 39391.12, + "probability": 0.99 + }, + { + "start": 39391.46, + "end": 39392.46, + "probability": 0.5648 + }, + { + "start": 39392.64, + "end": 39395.84, + "probability": 0.3877 + }, + { + "start": 39396.24, + "end": 39398.26, + "probability": 0.9877 + }, + { + "start": 39398.68, + "end": 39400.82, + "probability": 0.9813 + }, + { + "start": 39401.68, + "end": 39405.66, + "probability": 0.9012 + }, + { + "start": 39406.0, + "end": 39407.03, + "probability": 0.5204 + }, + { + "start": 39407.42, + "end": 39408.43, + "probability": 0.9832 + }, + { + "start": 39408.74, + "end": 39410.52, + "probability": 0.7641 + }, + { + "start": 39411.02, + "end": 39414.62, + "probability": 0.8666 + }, + { + "start": 39414.62, + "end": 39418.24, + "probability": 0.9293 + }, + { + "start": 39418.94, + "end": 39423.1, + "probability": 0.9891 + }, + { + "start": 39423.1, + "end": 39426.86, + "probability": 0.9932 + }, + { + "start": 39427.38, + "end": 39431.32, + "probability": 0.9064 + }, + { + "start": 39431.76, + "end": 39436.7, + "probability": 0.9795 + }, + { + "start": 39437.24, + "end": 39437.9, + "probability": 0.5556 + }, + { + "start": 39437.9, + "end": 39439.86, + "probability": 0.6437 + }, + { + "start": 39439.96, + "end": 39440.68, + "probability": 0.6014 + }, + { + "start": 39440.74, + "end": 39443.58, + "probability": 0.7006 + }, + { + "start": 39443.64, + "end": 39445.38, + "probability": 0.5491 + }, + { + "start": 39445.46, + "end": 39447.61, + "probability": 0.8356 + }, + { + "start": 39450.14, + "end": 39452.02, + "probability": 0.3803 + }, + { + "start": 39452.02, + "end": 39452.18, + "probability": 0.4334 + }, + { + "start": 39453.13, + "end": 39455.84, + "probability": 0.7126 + }, + { + "start": 39457.08, + "end": 39460.68, + "probability": 0.8836 + }, + { + "start": 39461.54, + "end": 39465.18, + "probability": 0.0863 + }, + { + "start": 39477.2, + "end": 39479.4, + "probability": 0.9014 + }, + { + "start": 39480.82, + "end": 39485.02, + "probability": 0.8907 + }, + { + "start": 39487.02, + "end": 39488.62, + "probability": 0.8246 + }, + { + "start": 39489.4, + "end": 39492.82, + "probability": 0.9597 + }, + { + "start": 39493.54, + "end": 39493.66, + "probability": 0.1694 + }, + { + "start": 39493.66, + "end": 39494.2, + "probability": 0.8157 + }, + { + "start": 39495.22, + "end": 39497.3, + "probability": 0.8047 + }, + { + "start": 39498.48, + "end": 39499.62, + "probability": 0.9315 + }, + { + "start": 39501.8, + "end": 39506.0, + "probability": 0.9412 + }, + { + "start": 39506.18, + "end": 39507.94, + "probability": 0.9872 + }, + { + "start": 39509.06, + "end": 39514.66, + "probability": 0.9969 + }, + { + "start": 39515.08, + "end": 39516.28, + "probability": 0.6956 + }, + { + "start": 39518.14, + "end": 39520.08, + "probability": 0.9966 + }, + { + "start": 39522.08, + "end": 39523.78, + "probability": 0.7533 + }, + { + "start": 39524.78, + "end": 39527.92, + "probability": 0.9875 + }, + { + "start": 39531.02, + "end": 39531.58, + "probability": 0.8862 + }, + { + "start": 39532.92, + "end": 39534.1, + "probability": 0.9719 + }, + { + "start": 39535.76, + "end": 39540.02, + "probability": 0.9731 + }, + { + "start": 39540.06, + "end": 39543.22, + "probability": 0.997 + }, + { + "start": 39544.34, + "end": 39547.28, + "probability": 0.984 + }, + { + "start": 39547.6, + "end": 39549.24, + "probability": 0.9939 + }, + { + "start": 39549.56, + "end": 39552.5, + "probability": 0.974 + }, + { + "start": 39554.16, + "end": 39556.24, + "probability": 0.9966 + }, + { + "start": 39557.86, + "end": 39562.06, + "probability": 0.972 + }, + { + "start": 39563.2, + "end": 39564.86, + "probability": 0.999 + }, + { + "start": 39565.56, + "end": 39568.72, + "probability": 0.9255 + }, + { + "start": 39569.88, + "end": 39570.4, + "probability": 0.9064 + }, + { + "start": 39571.12, + "end": 39575.96, + "probability": 0.9931 + }, + { + "start": 39577.16, + "end": 39579.52, + "probability": 0.9556 + }, + { + "start": 39581.2, + "end": 39588.34, + "probability": 0.9559 + }, + { + "start": 39590.89, + "end": 39592.72, + "probability": 0.9286 + }, + { + "start": 39592.98, + "end": 39593.96, + "probability": 0.9897 + }, + { + "start": 39593.98, + "end": 39594.54, + "probability": 0.9366 + }, + { + "start": 39596.96, + "end": 39600.84, + "probability": 0.9882 + }, + { + "start": 39601.2, + "end": 39604.2, + "probability": 0.9749 + }, + { + "start": 39605.34, + "end": 39606.8, + "probability": 0.8915 + }, + { + "start": 39606.96, + "end": 39609.18, + "probability": 0.9319 + }, + { + "start": 39611.1, + "end": 39612.08, + "probability": 0.9829 + }, + { + "start": 39613.3, + "end": 39614.12, + "probability": 0.7886 + }, + { + "start": 39614.4, + "end": 39620.3, + "probability": 0.9713 + }, + { + "start": 39622.22, + "end": 39623.26, + "probability": 0.9702 + }, + { + "start": 39624.52, + "end": 39625.76, + "probability": 0.9216 + }, + { + "start": 39626.62, + "end": 39628.76, + "probability": 0.915 + }, + { + "start": 39630.48, + "end": 39632.1, + "probability": 0.9657 + }, + { + "start": 39632.44, + "end": 39634.42, + "probability": 0.9316 + }, + { + "start": 39635.26, + "end": 39635.76, + "probability": 0.5305 + }, + { + "start": 39635.96, + "end": 39637.21, + "probability": 0.7858 + }, + { + "start": 39637.48, + "end": 39638.7, + "probability": 0.9976 + }, + { + "start": 39641.38, + "end": 39643.92, + "probability": 0.9122 + }, + { + "start": 39646.34, + "end": 39651.86, + "probability": 0.9902 + }, + { + "start": 39652.04, + "end": 39652.74, + "probability": 0.7411 + }, + { + "start": 39654.7, + "end": 39656.42, + "probability": 0.9861 + }, + { + "start": 39656.86, + "end": 39657.2, + "probability": 0.7294 + }, + { + "start": 39657.64, + "end": 39658.38, + "probability": 0.8932 + }, + { + "start": 39658.62, + "end": 39659.86, + "probability": 0.2787 + }, + { + "start": 39660.2, + "end": 39660.24, + "probability": 0.5351 + }, + { + "start": 39660.24, + "end": 39662.28, + "probability": 0.7319 + }, + { + "start": 39663.12, + "end": 39669.18, + "probability": 0.9816 + }, + { + "start": 39669.9, + "end": 39674.68, + "probability": 0.9509 + }, + { + "start": 39675.92, + "end": 39677.26, + "probability": 0.9515 + }, + { + "start": 39678.32, + "end": 39682.62, + "probability": 0.9981 + }, + { + "start": 39683.46, + "end": 39685.48, + "probability": 0.9842 + }, + { + "start": 39686.1, + "end": 39686.96, + "probability": 0.7303 + }, + { + "start": 39687.12, + "end": 39689.7, + "probability": 0.9995 + }, + { + "start": 39690.04, + "end": 39690.28, + "probability": 0.4584 + }, + { + "start": 39690.34, + "end": 39691.06, + "probability": 0.8952 + }, + { + "start": 39691.3, + "end": 39694.52, + "probability": 0.9698 + }, + { + "start": 39695.96, + "end": 39699.26, + "probability": 0.6919 + }, + { + "start": 39700.92, + "end": 39701.02, + "probability": 0.1811 + }, + { + "start": 39701.02, + "end": 39701.38, + "probability": 0.2417 + }, + { + "start": 39704.38, + "end": 39708.2, + "probability": 0.7815 + }, + { + "start": 39708.56, + "end": 39709.64, + "probability": 0.6248 + }, + { + "start": 39711.02, + "end": 39713.08, + "probability": 0.8301 + }, + { + "start": 39713.84, + "end": 39717.86, + "probability": 0.9529 + }, + { + "start": 39718.42, + "end": 39719.99, + "probability": 0.9927 + }, + { + "start": 39720.6, + "end": 39723.2, + "probability": 0.9901 + }, + { + "start": 39723.28, + "end": 39723.88, + "probability": 0.6268 + }, + { + "start": 39724.04, + "end": 39725.26, + "probability": 0.1531 + }, + { + "start": 39725.68, + "end": 39726.28, + "probability": 0.711 + }, + { + "start": 39726.5, + "end": 39727.38, + "probability": 0.4935 + }, + { + "start": 39728.64, + "end": 39729.48, + "probability": 0.6924 + }, + { + "start": 39730.18, + "end": 39731.0, + "probability": 0.7341 + }, + { + "start": 39731.56, + "end": 39733.14, + "probability": 0.7174 + }, + { + "start": 39735.16, + "end": 39736.06, + "probability": 0.7315 + }, + { + "start": 39737.18, + "end": 39737.38, + "probability": 0.6251 + }, + { + "start": 39737.38, + "end": 39738.16, + "probability": 0.6398 + }, + { + "start": 39739.6, + "end": 39741.66, + "probability": 0.6974 + }, + { + "start": 39741.7, + "end": 39741.96, + "probability": 0.7759 + }, + { + "start": 39742.84, + "end": 39744.92, + "probability": 0.7476 + }, + { + "start": 39745.44, + "end": 39746.44, + "probability": 0.6944 + }, + { + "start": 39746.58, + "end": 39748.72, + "probability": 0.9989 + }, + { + "start": 39748.88, + "end": 39752.32, + "probability": 0.9766 + }, + { + "start": 39752.74, + "end": 39756.92, + "probability": 0.9576 + }, + { + "start": 39757.0, + "end": 39758.08, + "probability": 0.996 + }, + { + "start": 39758.18, + "end": 39763.68, + "probability": 0.9487 + }, + { + "start": 39764.06, + "end": 39764.98, + "probability": 0.9692 + }, + { + "start": 39765.26, + "end": 39766.22, + "probability": 0.9254 + }, + { + "start": 39766.62, + "end": 39767.92, + "probability": 0.7953 + }, + { + "start": 39768.26, + "end": 39773.14, + "probability": 0.9923 + }, + { + "start": 39773.82, + "end": 39777.66, + "probability": 0.9985 + }, + { + "start": 39778.04, + "end": 39781.9, + "probability": 0.9695 + }, + { + "start": 39782.62, + "end": 39784.68, + "probability": 0.9816 + }, + { + "start": 39784.72, + "end": 39786.08, + "probability": 0.5081 + }, + { + "start": 39786.86, + "end": 39790.38, + "probability": 0.8284 + }, + { + "start": 39790.92, + "end": 39795.38, + "probability": 0.9655 + }, + { + "start": 39795.74, + "end": 39798.06, + "probability": 0.9611 + }, + { + "start": 39798.48, + "end": 39802.24, + "probability": 0.9904 + }, + { + "start": 39802.48, + "end": 39803.54, + "probability": 0.7482 + }, + { + "start": 39803.86, + "end": 39804.8, + "probability": 0.8948 + }, + { + "start": 39805.26, + "end": 39807.38, + "probability": 0.9965 + }, + { + "start": 39807.68, + "end": 39810.02, + "probability": 0.9902 + }, + { + "start": 39810.34, + "end": 39812.04, + "probability": 0.9368 + }, + { + "start": 39812.26, + "end": 39813.92, + "probability": 0.8749 + }, + { + "start": 39814.04, + "end": 39814.48, + "probability": 0.3466 + }, + { + "start": 39814.58, + "end": 39815.04, + "probability": 0.7798 + }, + { + "start": 39815.64, + "end": 39816.38, + "probability": 0.7948 + }, + { + "start": 39817.3, + "end": 39819.38, + "probability": 0.9628 + }, + { + "start": 39820.2, + "end": 39822.12, + "probability": 0.9849 + }, + { + "start": 39822.56, + "end": 39823.48, + "probability": 0.9312 + }, + { + "start": 39823.66, + "end": 39824.08, + "probability": 0.539 + }, + { + "start": 39824.14, + "end": 39825.3, + "probability": 0.7067 + }, + { + "start": 39825.34, + "end": 39825.76, + "probability": 0.6049 + }, + { + "start": 39826.86, + "end": 39828.04, + "probability": 0.7338 + }, + { + "start": 39831.27, + "end": 39832.92, + "probability": 0.5835 + }, + { + "start": 39834.0, + "end": 39836.42, + "probability": 0.7305 + }, + { + "start": 39837.44, + "end": 39838.0, + "probability": 0.5199 + }, + { + "start": 39838.88, + "end": 39839.97, + "probability": 0.9797 + }, + { + "start": 39841.18, + "end": 39841.72, + "probability": 0.4753 + }, + { + "start": 39842.28, + "end": 39843.56, + "probability": 0.8753 + }, + { + "start": 39844.28, + "end": 39846.76, + "probability": 0.9767 + }, + { + "start": 39848.92, + "end": 39849.66, + "probability": 0.8637 + }, + { + "start": 39851.62, + "end": 39852.6, + "probability": 0.6314 + }, + { + "start": 39854.38, + "end": 39855.98, + "probability": 0.2209 + }, + { + "start": 39856.26, + "end": 39858.28, + "probability": 0.8041 + }, + { + "start": 39859.66, + "end": 39860.38, + "probability": 0.5428 + }, + { + "start": 39864.1, + "end": 39864.66, + "probability": 0.1666 + }, + { + "start": 39864.8, + "end": 39865.9, + "probability": 0.8035 + }, + { + "start": 39866.94, + "end": 39866.96, + "probability": 0.0384 + }, + { + "start": 39867.86, + "end": 39870.18, + "probability": 0.0074 + }, + { + "start": 39870.36, + "end": 39875.68, + "probability": 0.3042 + }, + { + "start": 39875.72, + "end": 39876.26, + "probability": 0.0058 + }, + { + "start": 39876.26, + "end": 39877.21, + "probability": 0.0988 + }, + { + "start": 39877.44, + "end": 39879.58, + "probability": 0.6536 + }, + { + "start": 39879.58, + "end": 39880.44, + "probability": 0.7856 + }, + { + "start": 39880.88, + "end": 39882.24, + "probability": 0.7005 + }, + { + "start": 39882.36, + "end": 39886.46, + "probability": 0.4745 + }, + { + "start": 39886.48, + "end": 39887.24, + "probability": 0.7371 + }, + { + "start": 39887.24, + "end": 39888.36, + "probability": 0.5784 + }, + { + "start": 39889.26, + "end": 39890.66, + "probability": 0.5566 + }, + { + "start": 39893.18, + "end": 39894.24, + "probability": 0.66 + }, + { + "start": 39896.0, + "end": 39898.08, + "probability": 0.4934 + }, + { + "start": 39898.42, + "end": 39901.21, + "probability": 0.4059 + }, + { + "start": 39901.54, + "end": 39905.48, + "probability": 0.7001 + }, + { + "start": 39905.58, + "end": 39906.5, + "probability": 0.6028 + }, + { + "start": 39906.88, + "end": 39909.22, + "probability": 0.7758 + }, + { + "start": 39909.34, + "end": 39910.88, + "probability": 0.8282 + }, + { + "start": 39911.04, + "end": 39912.91, + "probability": 0.2104 + }, + { + "start": 39913.04, + "end": 39913.74, + "probability": 0.8723 + }, + { + "start": 39915.96, + "end": 39916.54, + "probability": 0.8349 + }, + { + "start": 39916.62, + "end": 39918.32, + "probability": 0.9971 + }, + { + "start": 39918.4, + "end": 39920.4, + "probability": 0.4052 + }, + { + "start": 39920.46, + "end": 39921.84, + "probability": 0.5102 + }, + { + "start": 39922.56, + "end": 39923.22, + "probability": 0.7327 + }, + { + "start": 39925.12, + "end": 39927.26, + "probability": 0.9911 + }, + { + "start": 39928.78, + "end": 39930.06, + "probability": 0.8572 + }, + { + "start": 39931.74, + "end": 39932.6, + "probability": 0.9853 + }, + { + "start": 39933.2, + "end": 39934.98, + "probability": 0.9731 + }, + { + "start": 39935.96, + "end": 39937.32, + "probability": 0.9954 + }, + { + "start": 39937.44, + "end": 39939.72, + "probability": 0.9893 + }, + { + "start": 39941.86, + "end": 39945.12, + "probability": 0.9697 + }, + { + "start": 39945.78, + "end": 39946.04, + "probability": 0.8556 + }, + { + "start": 39946.12, + "end": 39947.14, + "probability": 0.9442 + }, + { + "start": 39947.28, + "end": 39949.12, + "probability": 0.9744 + }, + { + "start": 39949.2, + "end": 39952.8, + "probability": 0.5546 + }, + { + "start": 39952.8, + "end": 39953.64, + "probability": 0.6066 + }, + { + "start": 39954.38, + "end": 39955.58, + "probability": 0.7976 + }, + { + "start": 39955.7, + "end": 39957.86, + "probability": 0.9622 + }, + { + "start": 39958.5, + "end": 39960.3, + "probability": 0.9973 + }, + { + "start": 39961.12, + "end": 39965.26, + "probability": 0.9575 + }, + { + "start": 39965.3, + "end": 39966.0, + "probability": 0.542 + }, + { + "start": 39966.14, + "end": 39968.52, + "probability": 0.9981 + }, + { + "start": 39969.72, + "end": 39971.52, + "probability": 0.7368 + }, + { + "start": 39972.38, + "end": 39974.96, + "probability": 0.7652 + }, + { + "start": 39975.48, + "end": 39978.88, + "probability": 0.983 + }, + { + "start": 39979.9, + "end": 39982.18, + "probability": 0.8299 + }, + { + "start": 39983.08, + "end": 39984.6, + "probability": 0.8568 + }, + { + "start": 39986.26, + "end": 39988.5, + "probability": 0.3284 + }, + { + "start": 39989.88, + "end": 39992.6, + "probability": 0.9919 + }, + { + "start": 39993.42, + "end": 39995.4, + "probability": 0.9953 + }, + { + "start": 39996.72, + "end": 39997.38, + "probability": 0.6129 + }, + { + "start": 39997.52, + "end": 39998.94, + "probability": 0.6555 + }, + { + "start": 40001.64, + "end": 40003.68, + "probability": 0.8357 + }, + { + "start": 40004.64, + "end": 40005.04, + "probability": 0.34 + }, + { + "start": 40005.08, + "end": 40005.38, + "probability": 0.4192 + }, + { + "start": 40006.9, + "end": 40008.74, + "probability": 0.7317 + }, + { + "start": 40009.2, + "end": 40010.6, + "probability": 0.8406 + }, + { + "start": 40011.54, + "end": 40013.7, + "probability": 0.6306 + }, + { + "start": 40015.3, + "end": 40015.76, + "probability": 0.646 + }, + { + "start": 40016.72, + "end": 40018.3, + "probability": 0.9869 + }, + { + "start": 40019.28, + "end": 40019.82, + "probability": 0.8432 + }, + { + "start": 40020.58, + "end": 40021.68, + "probability": 0.8627 + }, + { + "start": 40021.86, + "end": 40022.46, + "probability": 0.2567 + }, + { + "start": 40022.94, + "end": 40024.3, + "probability": 0.7433 + }, + { + "start": 40025.54, + "end": 40026.32, + "probability": 0.9 + }, + { + "start": 40027.08, + "end": 40029.18, + "probability": 0.8389 + }, + { + "start": 40030.16, + "end": 40030.86, + "probability": 0.9368 + }, + { + "start": 40031.7, + "end": 40032.6, + "probability": 0.8397 + }, + { + "start": 40033.36, + "end": 40035.28, + "probability": 0.9795 + }, + { + "start": 40036.56, + "end": 40038.58, + "probability": 0.6925 + }, + { + "start": 40039.54, + "end": 40042.44, + "probability": 0.8435 + }, + { + "start": 40044.3, + "end": 40047.18, + "probability": 0.6633 + }, + { + "start": 40047.28, + "end": 40047.92, + "probability": 0.4353 + }, + { + "start": 40047.98, + "end": 40050.04, + "probability": 0.7533 + }, + { + "start": 40051.32, + "end": 40051.94, + "probability": 0.4456 + }, + { + "start": 40052.96, + "end": 40054.08, + "probability": 0.4928 + }, + { + "start": 40055.06, + "end": 40057.6, + "probability": 0.9849 + }, + { + "start": 40058.42, + "end": 40059.02, + "probability": 0.8362 + }, + { + "start": 40063.28, + "end": 40064.52, + "probability": 0.5308 + }, + { + "start": 40064.52, + "end": 40064.52, + "probability": 0.3549 + }, + { + "start": 40064.52, + "end": 40065.08, + "probability": 0.7245 + }, + { + "start": 40066.06, + "end": 40066.64, + "probability": 0.7245 + }, + { + "start": 40067.4, + "end": 40068.28, + "probability": 0.5905 + }, + { + "start": 40069.08, + "end": 40069.94, + "probability": 0.6348 + }, + { + "start": 40071.84, + "end": 40073.64, + "probability": 0.6626 + }, + { + "start": 40074.2, + "end": 40075.04, + "probability": 0.9336 + }, + { + "start": 40075.66, + "end": 40076.94, + "probability": 0.7059 + }, + { + "start": 40077.7, + "end": 40078.32, + "probability": 0.3331 + }, + { + "start": 40079.74, + "end": 40080.98, + "probability": 0.7581 + }, + { + "start": 40083.36, + "end": 40086.36, + "probability": 0.8167 + }, + { + "start": 40087.0, + "end": 40088.02, + "probability": 0.431 + }, + { + "start": 40088.6, + "end": 40091.18, + "probability": 0.9892 + }, + { + "start": 40092.56, + "end": 40096.05, + "probability": 0.6679 + }, + { + "start": 40096.98, + "end": 40099.06, + "probability": 0.8192 + }, + { + "start": 40100.32, + "end": 40102.2, + "probability": 0.6373 + }, + { + "start": 40103.88, + "end": 40106.76, + "probability": 0.8855 + }, + { + "start": 40109.98, + "end": 40112.13, + "probability": 0.6436 + }, + { + "start": 40113.44, + "end": 40114.3, + "probability": 0.8838 + }, + { + "start": 40115.68, + "end": 40117.26, + "probability": 0.748 + }, + { + "start": 40120.7, + "end": 40122.34, + "probability": 0.9395 + }, + { + "start": 40123.56, + "end": 40124.34, + "probability": 0.687 + }, + { + "start": 40124.68, + "end": 40125.1, + "probability": 0.847 + }, + { + "start": 40125.64, + "end": 40126.53, + "probability": 0.2083 + }, + { + "start": 40130.66, + "end": 40131.28, + "probability": 0.3963 + }, + { + "start": 40131.4, + "end": 40133.78, + "probability": 0.6932 + }, + { + "start": 40142.28, + "end": 40143.42, + "probability": 0.6041 + }, + { + "start": 40143.6, + "end": 40144.8, + "probability": 0.561 + }, + { + "start": 40144.92, + "end": 40146.04, + "probability": 0.6441 + }, + { + "start": 40146.82, + "end": 40151.24, + "probability": 0.9914 + }, + { + "start": 40151.24, + "end": 40155.64, + "probability": 0.991 + }, + { + "start": 40156.32, + "end": 40159.32, + "probability": 0.999 + }, + { + "start": 40159.46, + "end": 40163.12, + "probability": 0.7451 + }, + { + "start": 40163.68, + "end": 40168.62, + "probability": 0.9624 + }, + { + "start": 40169.08, + "end": 40173.66, + "probability": 0.9809 + }, + { + "start": 40173.68, + "end": 40178.42, + "probability": 0.9249 + }, + { + "start": 40178.8, + "end": 40182.92, + "probability": 0.806 + }, + { + "start": 40183.14, + "end": 40191.18, + "probability": 0.9929 + }, + { + "start": 40191.98, + "end": 40196.58, + "probability": 0.9941 + }, + { + "start": 40197.94, + "end": 40200.98, + "probability": 0.9948 + }, + { + "start": 40201.46, + "end": 40207.5, + "probability": 0.8664 + }, + { + "start": 40208.0, + "end": 40216.04, + "probability": 0.9885 + }, + { + "start": 40216.94, + "end": 40221.52, + "probability": 0.9972 + }, + { + "start": 40221.72, + "end": 40222.74, + "probability": 0.8334 + }, + { + "start": 40223.14, + "end": 40226.16, + "probability": 0.5951 + }, + { + "start": 40226.72, + "end": 40231.98, + "probability": 0.9882 + }, + { + "start": 40232.48, + "end": 40237.94, + "probability": 0.9933 + }, + { + "start": 40238.6, + "end": 40242.94, + "probability": 0.8694 + }, + { + "start": 40242.94, + "end": 40243.15, + "probability": 0.4149 + }, + { + "start": 40244.3, + "end": 40247.58, + "probability": 0.8746 + }, + { + "start": 40247.84, + "end": 40249.98, + "probability": 0.597 + }, + { + "start": 40250.86, + "end": 40256.34, + "probability": 0.9666 + }, + { + "start": 40256.34, + "end": 40260.46, + "probability": 0.9984 + }, + { + "start": 40260.98, + "end": 40265.6, + "probability": 0.9988 + }, + { + "start": 40265.6, + "end": 40271.74, + "probability": 0.9999 + }, + { + "start": 40272.14, + "end": 40272.8, + "probability": 0.8406 + }, + { + "start": 40273.1, + "end": 40274.76, + "probability": 0.7186 + }, + { + "start": 40275.06, + "end": 40278.94, + "probability": 0.9923 + }, + { + "start": 40278.94, + "end": 40282.88, + "probability": 0.999 + }, + { + "start": 40284.16, + "end": 40286.62, + "probability": 0.8073 + }, + { + "start": 40287.04, + "end": 40294.12, + "probability": 0.9819 + }, + { + "start": 40294.54, + "end": 40296.86, + "probability": 0.9961 + }, + { + "start": 40297.26, + "end": 40300.42, + "probability": 0.9919 + }, + { + "start": 40300.72, + "end": 40303.2, + "probability": 0.9849 + }, + { + "start": 40303.58, + "end": 40305.94, + "probability": 0.999 + }, + { + "start": 40306.46, + "end": 40309.1, + "probability": 0.8135 + }, + { + "start": 40309.44, + "end": 40313.58, + "probability": 0.9772 + }, + { + "start": 40314.82, + "end": 40320.14, + "probability": 0.9746 + }, + { + "start": 40320.16, + "end": 40322.42, + "probability": 0.5034 + }, + { + "start": 40322.42, + "end": 40322.54, + "probability": 0.0588 + }, + { + "start": 40322.8, + "end": 40326.42, + "probability": 0.9025 + }, + { + "start": 40326.44, + "end": 40326.44, + "probability": 0.5819 + }, + { + "start": 40326.58, + "end": 40328.97, + "probability": 0.447 + }, + { + "start": 40331.84, + "end": 40336.68, + "probability": 0.6338 + }, + { + "start": 40336.68, + "end": 40337.97, + "probability": 0.8315 + }, + { + "start": 40348.58, + "end": 40349.36, + "probability": 0.5606 + }, + { + "start": 40349.56, + "end": 40354.6, + "probability": 0.6875 + }, + { + "start": 40355.34, + "end": 40356.94, + "probability": 0.7553 + }, + { + "start": 40358.32, + "end": 40359.7, + "probability": 0.9945 + }, + { + "start": 40361.4, + "end": 40366.24, + "probability": 0.9968 + }, + { + "start": 40366.24, + "end": 40369.76, + "probability": 0.9969 + }, + { + "start": 40370.68, + "end": 40371.46, + "probability": 0.4496 + }, + { + "start": 40372.04, + "end": 40374.48, + "probability": 0.8085 + }, + { + "start": 40376.36, + "end": 40380.56, + "probability": 0.9775 + }, + { + "start": 40381.54, + "end": 40384.94, + "probability": 0.9963 + }, + { + "start": 40386.06, + "end": 40387.84, + "probability": 0.8974 + }, + { + "start": 40389.08, + "end": 40391.19, + "probability": 0.998 + }, + { + "start": 40392.22, + "end": 40397.88, + "probability": 0.9975 + }, + { + "start": 40397.88, + "end": 40403.22, + "probability": 0.9829 + }, + { + "start": 40403.58, + "end": 40403.58, + "probability": 0.0059 + }, + { + "start": 40403.6, + "end": 40403.72, + "probability": 0.5848 + }, + { + "start": 40403.88, + "end": 40404.1, + "probability": 0.4541 + }, + { + "start": 40404.16, + "end": 40411.2, + "probability": 0.9959 + }, + { + "start": 40412.12, + "end": 40413.48, + "probability": 0.9272 + }, + { + "start": 40413.48, + "end": 40414.74, + "probability": 0.335 + }, + { + "start": 40415.46, + "end": 40417.14, + "probability": 0.4096 + }, + { + "start": 40417.34, + "end": 40420.3, + "probability": 0.6836 + }, + { + "start": 40420.44, + "end": 40420.46, + "probability": 0.3287 + }, + { + "start": 40420.46, + "end": 40424.82, + "probability": 0.9969 + }, + { + "start": 40425.3, + "end": 40428.62, + "probability": 0.9506 + }, + { + "start": 40429.16, + "end": 40431.08, + "probability": 0.7686 + }, + { + "start": 40431.26, + "end": 40431.94, + "probability": 0.1512 + }, + { + "start": 40431.96, + "end": 40434.36, + "probability": 0.5115 + }, + { + "start": 40434.4, + "end": 40440.1, + "probability": 0.2382 + }, + { + "start": 40440.16, + "end": 40441.76, + "probability": 0.0693 + }, + { + "start": 40441.76, + "end": 40443.24, + "probability": 0.0735 + }, + { + "start": 40448.12, + "end": 40448.7, + "probability": 0.1832 + }, + { + "start": 40450.34, + "end": 40451.66, + "probability": 0.196 + }, + { + "start": 40451.76, + "end": 40453.58, + "probability": 0.0532 + }, + { + "start": 40453.58, + "end": 40454.44, + "probability": 0.2259 + }, + { + "start": 40454.7, + "end": 40457.56, + "probability": 0.0669 + }, + { + "start": 40457.56, + "end": 40457.88, + "probability": 0.2008 + }, + { + "start": 40458.1, + "end": 40458.62, + "probability": 0.0585 + }, + { + "start": 40458.62, + "end": 40459.14, + "probability": 0.0637 + }, + { + "start": 40463.86, + "end": 40464.02, + "probability": 0.1178 + }, + { + "start": 40464.3, + "end": 40465.28, + "probability": 0.1736 + }, + { + "start": 40465.42, + "end": 40466.68, + "probability": 0.0384 + }, + { + "start": 40466.68, + "end": 40467.62, + "probability": 0.0289 + }, + { + "start": 40467.62, + "end": 40468.07, + "probability": 0.1038 + }, + { + "start": 40469.2, + "end": 40469.2, + "probability": 0.2595 + }, + { + "start": 40469.22, + "end": 40471.14, + "probability": 0.1344 + }, + { + "start": 40471.14, + "end": 40474.06, + "probability": 0.3298 + }, + { + "start": 40474.3, + "end": 40475.38, + "probability": 0.0973 + }, + { + "start": 40476.7, + "end": 40476.84, + "probability": 0.455 + }, + { + "start": 40476.91, + "end": 40477.78, + "probability": 0.2969 + }, + { + "start": 40477.78, + "end": 40483.6, + "probability": 0.1436 + }, + { + "start": 40483.7, + "end": 40483.74, + "probability": 0.0138 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.0, + "end": 40511.0, + "probability": 0.0 + }, + { + "start": 40511.14, + "end": 40512.58, + "probability": 0.0831 + }, + { + "start": 40512.72, + "end": 40514.8, + "probability": 0.6298 + }, + { + "start": 40515.18, + "end": 40517.82, + "probability": 0.548 + }, + { + "start": 40517.82, + "end": 40521.36, + "probability": 0.5825 + }, + { + "start": 40523.64, + "end": 40527.32, + "probability": 0.8941 + }, + { + "start": 40528.48, + "end": 40532.0, + "probability": 0.7836 + }, + { + "start": 40533.32, + "end": 40534.56, + "probability": 0.5373 + }, + { + "start": 40535.26, + "end": 40536.36, + "probability": 0.7034 + }, + { + "start": 40536.54, + "end": 40539.04, + "probability": 0.6169 + }, + { + "start": 40544.46, + "end": 40546.36, + "probability": 0.7709 + }, + { + "start": 40550.12, + "end": 40551.36, + "probability": 0.8751 + }, + { + "start": 40558.18, + "end": 40559.92, + "probability": 0.3739 + }, + { + "start": 40561.12, + "end": 40562.8, + "probability": 0.7121 + }, + { + "start": 40563.44, + "end": 40566.42, + "probability": 0.3867 + }, + { + "start": 40568.46, + "end": 40568.88, + "probability": 0.8565 + }, + { + "start": 40575.28, + "end": 40576.22, + "probability": 0.7972 + }, + { + "start": 40576.78, + "end": 40577.7, + "probability": 0.7798 + }, + { + "start": 40578.42, + "end": 40581.53, + "probability": 0.8995 + }, + { + "start": 40583.96, + "end": 40585.02, + "probability": 0.8221 + }, + { + "start": 40586.7, + "end": 40588.54, + "probability": 0.9002 + }, + { + "start": 40590.38, + "end": 40591.24, + "probability": 0.0771 + }, + { + "start": 40591.82, + "end": 40593.12, + "probability": 0.0554 + }, + { + "start": 40606.52, + "end": 40610.07, + "probability": 0.9656 + }, + { + "start": 40611.8, + "end": 40613.52, + "probability": 0.9334 + }, + { + "start": 40614.16, + "end": 40616.12, + "probability": 0.9781 + }, + { + "start": 40617.09, + "end": 40619.81, + "probability": 0.9978 + }, + { + "start": 40620.16, + "end": 40622.66, + "probability": 0.0091 + }, + { + "start": 40624.62, + "end": 40625.34, + "probability": 0.6882 + }, + { + "start": 40626.62, + "end": 40627.68, + "probability": 0.9434 + }, + { + "start": 40630.16, + "end": 40632.24, + "probability": 0.732 + }, + { + "start": 40632.44, + "end": 40634.02, + "probability": 0.71 + }, + { + "start": 40634.08, + "end": 40636.78, + "probability": 0.748 + }, + { + "start": 40637.44, + "end": 40639.7, + "probability": 0.9854 + }, + { + "start": 40640.2, + "end": 40646.44, + "probability": 0.9728 + }, + { + "start": 40646.72, + "end": 40648.7, + "probability": 0.9452 + }, + { + "start": 40649.16, + "end": 40653.74, + "probability": 0.9978 + }, + { + "start": 40655.2, + "end": 40658.7, + "probability": 0.9976 + }, + { + "start": 40658.7, + "end": 40663.16, + "probability": 0.9988 + }, + { + "start": 40665.28, + "end": 40672.38, + "probability": 0.8973 + }, + { + "start": 40673.06, + "end": 40673.06, + "probability": 0.0342 + }, + { + "start": 40673.06, + "end": 40673.06, + "probability": 0.0329 + }, + { + "start": 40673.06, + "end": 40673.53, + "probability": 0.155 + }, + { + "start": 40674.22, + "end": 40676.12, + "probability": 0.1844 + }, + { + "start": 40676.12, + "end": 40677.32, + "probability": 0.1567 + }, + { + "start": 40677.6, + "end": 40677.82, + "probability": 0.1289 + }, + { + "start": 40677.82, + "end": 40681.12, + "probability": 0.9736 + }, + { + "start": 40681.12, + "end": 40685.76, + "probability": 0.9994 + }, + { + "start": 40686.8, + "end": 40687.56, + "probability": 0.8622 + }, + { + "start": 40687.64, + "end": 40688.36, + "probability": 0.934 + }, + { + "start": 40688.46, + "end": 40689.18, + "probability": 0.9744 + }, + { + "start": 40689.24, + "end": 40690.34, + "probability": 0.9756 + }, + { + "start": 40690.44, + "end": 40696.52, + "probability": 0.979 + }, + { + "start": 40696.86, + "end": 40699.08, + "probability": 0.9319 + }, + { + "start": 40700.3, + "end": 40701.34, + "probability": 0.529 + }, + { + "start": 40701.4, + "end": 40701.98, + "probability": 0.8494 + }, + { + "start": 40703.02, + "end": 40708.3, + "probability": 0.9785 + }, + { + "start": 40708.5, + "end": 40711.74, + "probability": 0.9976 + }, + { + "start": 40712.3, + "end": 40712.88, + "probability": 0.7659 + }, + { + "start": 40713.66, + "end": 40714.92, + "probability": 0.9762 + }, + { + "start": 40715.44, + "end": 40718.7, + "probability": 0.9497 + }, + { + "start": 40719.24, + "end": 40720.6, + "probability": 0.9723 + }, + { + "start": 40721.8, + "end": 40722.32, + "probability": 0.5464 + }, + { + "start": 40722.42, + "end": 40723.66, + "probability": 0.6054 + }, + { + "start": 40724.66, + "end": 40727.3, + "probability": 0.6656 + }, + { + "start": 40727.96, + "end": 40729.56, + "probability": 0.7187 + }, + { + "start": 40730.56, + "end": 40732.5, + "probability": 0.7665 + }, + { + "start": 40732.6, + "end": 40734.36, + "probability": 0.9497 + }, + { + "start": 40734.4, + "end": 40736.36, + "probability": 0.9582 + }, + { + "start": 40737.32, + "end": 40740.6, + "probability": 0.5296 + }, + { + "start": 40742.8, + "end": 40743.26, + "probability": 0.8558 + }, + { + "start": 40746.76, + "end": 40748.68, + "probability": 0.8978 + }, + { + "start": 40749.38, + "end": 40750.98, + "probability": 0.459 + }, + { + "start": 40751.18, + "end": 40753.24, + "probability": 0.5345 + }, + { + "start": 40753.54, + "end": 40754.32, + "probability": 0.4912 + }, + { + "start": 40754.42, + "end": 40756.86, + "probability": 0.7918 + }, + { + "start": 40759.36, + "end": 40763.42, + "probability": 0.3091 + }, + { + "start": 40764.06, + "end": 40767.3, + "probability": 0.5188 + }, + { + "start": 40768.44, + "end": 40769.06, + "probability": 0.8516 + }, + { + "start": 40770.38, + "end": 40771.46, + "probability": 0.2071 + }, + { + "start": 40772.34, + "end": 40772.44, + "probability": 0.1136 + }, + { + "start": 40787.46, + "end": 40788.96, + "probability": 0.3047 + }, + { + "start": 40789.0, + "end": 40790.82, + "probability": 0.3036 + }, + { + "start": 40791.46, + "end": 40793.95, + "probability": 0.5317 + }, + { + "start": 40802.08, + "end": 40804.1, + "probability": 0.6426 + }, + { + "start": 40806.84, + "end": 40806.88, + "probability": 0.0 + }, + { + "start": 40810.32, + "end": 40812.94, + "probability": 0.0589 + }, + { + "start": 40813.86, + "end": 40813.86, + "probability": 0.0001 + }, + { + "start": 40816.68, + "end": 40816.94, + "probability": 0.2248 + }, + { + "start": 40820.8, + "end": 40824.08, + "probability": 0.4701 + }, + { + "start": 40824.62, + "end": 40826.92, + "probability": 0.03 + }, + { + "start": 40827.04, + "end": 40828.52, + "probability": 0.2334 + }, + { + "start": 40829.18, + "end": 40833.98, + "probability": 0.0846 + }, + { + "start": 40834.0, + "end": 40834.0, + "probability": 0.0 + }, + { + "start": 40834.0, + "end": 40834.0, + "probability": 0.0 + }, + { + "start": 40834.0, + "end": 40834.0, + "probability": 0.0 + }, + { + "start": 40834.0, + "end": 40834.0, + "probability": 0.0 + }, + { + "start": 40834.0, + "end": 40834.0, + "probability": 0.0 + }, + { + "start": 40834.0, + "end": 40834.0, + "probability": 0.0 + }, + { + "start": 40834.0, + "end": 40834.0, + "probability": 0.0 + }, + { + "start": 40834.0, + "end": 40834.0, + "probability": 0.0 + }, + { + "start": 40850.94, + "end": 40852.38, + "probability": 0.166 + }, + { + "start": 40852.38, + "end": 40852.54, + "probability": 0.0948 + }, + { + "start": 40852.54, + "end": 40854.07, + "probability": 0.2511 + }, + { + "start": 40854.64, + "end": 40855.7, + "probability": 0.7045 + }, + { + "start": 40855.8, + "end": 40857.44, + "probability": 0.5586 + }, + { + "start": 40857.6, + "end": 40859.24, + "probability": 0.2476 + }, + { + "start": 40859.74, + "end": 40860.28, + "probability": 0.1105 + }, + { + "start": 40862.12, + "end": 40866.68, + "probability": 0.4883 + }, + { + "start": 40868.82, + "end": 40870.4, + "probability": 0.014 + }, + { + "start": 40871.6, + "end": 40873.92, + "probability": 0.0942 + }, + { + "start": 40879.68, + "end": 40881.74, + "probability": 0.0562 + }, + { + "start": 40882.22, + "end": 40884.22, + "probability": 0.0365 + }, + { + "start": 40884.42, + "end": 40885.8, + "probability": 0.1095 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.0, + "end": 40955.0, + "probability": 0.0 + }, + { + "start": 40955.36, + "end": 40955.4, + "probability": 0.0045 + }, + { + "start": 40955.4, + "end": 40959.3, + "probability": 0.8312 + }, + { + "start": 40959.3, + "end": 40963.3, + "probability": 0.9908 + }, + { + "start": 40963.76, + "end": 40967.12, + "probability": 0.9663 + }, + { + "start": 40967.12, + "end": 40969.58, + "probability": 0.92 + }, + { + "start": 40970.12, + "end": 40973.32, + "probability": 0.8285 + }, + { + "start": 40973.68, + "end": 40975.36, + "probability": 0.8967 + }, + { + "start": 40975.36, + "end": 40978.06, + "probability": 0.7532 + }, + { + "start": 40978.3, + "end": 40981.79, + "probability": 0.9321 + }, + { + "start": 40982.3, + "end": 40986.14, + "probability": 0.9783 + }, + { + "start": 40986.5, + "end": 40989.06, + "probability": 0.9111 + }, + { + "start": 40989.34, + "end": 40991.8, + "probability": 0.5465 + }, + { + "start": 40991.9, + "end": 40996.16, + "probability": 0.8028 + }, + { + "start": 40996.16, + "end": 40999.22, + "probability": 0.9468 + }, + { + "start": 40999.68, + "end": 41003.12, + "probability": 0.7535 + }, + { + "start": 41003.2, + "end": 41005.26, + "probability": 0.8731 + }, + { + "start": 41005.26, + "end": 41007.6, + "probability": 0.9715 + }, + { + "start": 41008.04, + "end": 41011.16, + "probability": 0.8533 + }, + { + "start": 41011.16, + "end": 41015.8, + "probability": 0.8799 + }, + { + "start": 41016.14, + "end": 41018.42, + "probability": 0.921 + }, + { + "start": 41018.66, + "end": 41022.02, + "probability": 0.9385 + }, + { + "start": 41022.02, + "end": 41026.12, + "probability": 0.9434 + }, + { + "start": 41027.1, + "end": 41029.7, + "probability": 0.6044 + }, + { + "start": 41029.7, + "end": 41033.2, + "probability": 0.8176 + }, + { + "start": 41033.66, + "end": 41035.58, + "probability": 0.7462 + }, + { + "start": 41036.1, + "end": 41038.08, + "probability": 0.9694 + }, + { + "start": 41038.08, + "end": 41040.96, + "probability": 0.9696 + }, + { + "start": 41041.36, + "end": 41043.3, + "probability": 0.7622 + }, + { + "start": 41044.3, + "end": 41044.86, + "probability": 0.5492 + }, + { + "start": 41045.02, + "end": 41046.46, + "probability": 0.5839 + }, + { + "start": 41046.52, + "end": 41048.68, + "probability": 0.8455 + }, + { + "start": 41048.68, + "end": 41051.76, + "probability": 0.4371 + }, + { + "start": 41052.16, + "end": 41053.38, + "probability": 0.1358 + }, + { + "start": 41054.0, + "end": 41055.26, + "probability": 0.9548 + }, + { + "start": 41055.86, + "end": 41056.18, + "probability": 0.0277 + }, + { + "start": 41067.74, + "end": 41069.18, + "probability": 0.1001 + }, + { + "start": 41069.78, + "end": 41072.12, + "probability": 0.5687 + }, + { + "start": 41072.22, + "end": 41074.58, + "probability": 0.9751 + }, + { + "start": 41075.26, + "end": 41077.5, + "probability": 0.8018 + }, + { + "start": 41077.52, + "end": 41081.88, + "probability": 0.5719 + }, + { + "start": 41082.5, + "end": 41085.0, + "probability": 0.3353 + }, + { + "start": 41087.88, + "end": 41091.92, + "probability": 0.0758 + }, + { + "start": 41091.92, + "end": 41094.5, + "probability": 0.0867 + }, + { + "start": 41094.74, + "end": 41094.88, + "probability": 0.2194 + }, + { + "start": 41099.4, + "end": 41101.92, + "probability": 0.3562 + }, + { + "start": 41101.94, + "end": 41105.46, + "probability": 0.5781 + }, + { + "start": 41105.6, + "end": 41107.1, + "probability": 0.1772 + }, + { + "start": 41107.56, + "end": 41109.4, + "probability": 0.9021 + }, + { + "start": 41109.48, + "end": 41110.04, + "probability": 0.5174 + }, + { + "start": 41110.7, + "end": 41112.18, + "probability": 0.7285 + }, + { + "start": 41116.14, + "end": 41116.86, + "probability": 0.6959 + }, + { + "start": 41117.8, + "end": 41119.12, + "probability": 0.6556 + }, + { + "start": 41119.82, + "end": 41120.26, + "probability": 0.0513 + }, + { + "start": 41120.38, + "end": 41120.38, + "probability": 0.4323 + }, + { + "start": 41120.38, + "end": 41123.04, + "probability": 0.9686 + }, + { + "start": 41124.54, + "end": 41125.7, + "probability": 0.6289 + }, + { + "start": 41126.06, + "end": 41126.64, + "probability": 0.2794 + }, + { + "start": 41127.54, + "end": 41128.44, + "probability": 0.143 + }, + { + "start": 41130.54, + "end": 41132.8, + "probability": 0.9347 + }, + { + "start": 41132.88, + "end": 41134.92, + "probability": 0.7295 + }, + { + "start": 41135.28, + "end": 41137.9, + "probability": 0.7254 + }, + { + "start": 41138.56, + "end": 41141.78, + "probability": 0.9984 + }, + { + "start": 41142.28, + "end": 41146.38, + "probability": 0.9964 + }, + { + "start": 41146.92, + "end": 41148.4, + "probability": 0.6044 + }, + { + "start": 41148.6, + "end": 41149.47, + "probability": 0.9917 + }, + { + "start": 41150.12, + "end": 41151.18, + "probability": 0.9152 + }, + { + "start": 41151.68, + "end": 41154.94, + "probability": 0.9709 + }, + { + "start": 41154.94, + "end": 41158.7, + "probability": 0.9934 + }, + { + "start": 41160.12, + "end": 41164.58, + "probability": 0.9009 + }, + { + "start": 41165.38, + "end": 41168.34, + "probability": 0.9983 + }, + { + "start": 41168.8, + "end": 41171.64, + "probability": 0.9949 + }, + { + "start": 41171.64, + "end": 41174.38, + "probability": 0.9958 + }, + { + "start": 41175.18, + "end": 41176.16, + "probability": 0.9978 + }, + { + "start": 41176.28, + "end": 41177.38, + "probability": 0.9562 + }, + { + "start": 41177.76, + "end": 41181.3, + "probability": 0.9781 + }, + { + "start": 41181.78, + "end": 41183.36, + "probability": 0.6749 + }, + { + "start": 41183.88, + "end": 41185.38, + "probability": 0.7406 + }, + { + "start": 41186.26, + "end": 41187.83, + "probability": 0.5663 + }, + { + "start": 41188.36, + "end": 41190.4, + "probability": 0.9459 + }, + { + "start": 41190.58, + "end": 41193.26, + "probability": 0.5027 + }, + { + "start": 41193.66, + "end": 41195.32, + "probability": 0.1711 + }, + { + "start": 41196.14, + "end": 41197.48, + "probability": 0.4857 + } + ], + "segments_count": 14270, + "words_count": 67891, + "avg_words_per_segment": 4.7576, + "avg_segment_duration": 1.9769, + "avg_words_per_minute": 97.9078, + "plenum_id": "131430", + "duration": 41605.04, + "title": null, + "plenum_date": "2024-11-11" +} \ No newline at end of file