diff --git "a/15922/metadata.json" "b/15922/metadata.json" new file mode 100644--- /dev/null +++ "b/15922/metadata.json" @@ -0,0 +1,25377 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "15922", + "quality_score": 0.9073, + "per_segment_quality_scores": [ + { + "start": 85.66, + "end": 86.42, + "probability": 0.1321 + }, + { + "start": 99.3, + "end": 101.32, + "probability": 0.2971 + }, + { + "start": 102.54, + "end": 104.44, + "probability": 0.509 + }, + { + "start": 105.64, + "end": 105.8, + "probability": 0.0074 + }, + { + "start": 106.36, + "end": 107.5, + "probability": 0.566 + }, + { + "start": 108.6, + "end": 110.32, + "probability": 0.7025 + }, + { + "start": 112.64, + "end": 114.28, + "probability": 0.542 + }, + { + "start": 115.24, + "end": 118.78, + "probability": 0.9965 + }, + { + "start": 118.78, + "end": 121.76, + "probability": 0.9549 + }, + { + "start": 122.32, + "end": 123.3, + "probability": 0.6271 + }, + { + "start": 124.8, + "end": 128.3, + "probability": 0.9949 + }, + { + "start": 128.96, + "end": 130.22, + "probability": 0.8786 + }, + { + "start": 130.46, + "end": 133.06, + "probability": 0.9897 + }, + { + "start": 133.82, + "end": 135.18, + "probability": 0.7369 + }, + { + "start": 135.5, + "end": 137.46, + "probability": 0.7973 + }, + { + "start": 138.12, + "end": 139.38, + "probability": 0.9103 + }, + { + "start": 140.4, + "end": 146.74, + "probability": 0.7867 + }, + { + "start": 147.52, + "end": 155.08, + "probability": 0.9775 + }, + { + "start": 156.2, + "end": 158.92, + "probability": 0.9694 + }, + { + "start": 159.56, + "end": 162.22, + "probability": 0.9982 + }, + { + "start": 163.44, + "end": 166.54, + "probability": 0.9104 + }, + { + "start": 167.84, + "end": 175.04, + "probability": 0.9771 + }, + { + "start": 175.82, + "end": 178.08, + "probability": 0.9341 + }, + { + "start": 179.24, + "end": 179.64, + "probability": 0.4389 + }, + { + "start": 179.78, + "end": 185.26, + "probability": 0.9504 + }, + { + "start": 186.94, + "end": 192.2, + "probability": 0.7432 + }, + { + "start": 193.08, + "end": 197.0, + "probability": 0.9523 + }, + { + "start": 197.38, + "end": 201.78, + "probability": 0.8553 + }, + { + "start": 202.66, + "end": 205.18, + "probability": 0.6939 + }, + { + "start": 206.12, + "end": 209.28, + "probability": 0.8834 + }, + { + "start": 211.24, + "end": 212.14, + "probability": 0.7229 + }, + { + "start": 213.1, + "end": 214.14, + "probability": 0.7688 + }, + { + "start": 214.18, + "end": 216.32, + "probability": 0.9918 + }, + { + "start": 216.88, + "end": 221.28, + "probability": 0.5813 + }, + { + "start": 221.91, + "end": 227.52, + "probability": 0.9941 + }, + { + "start": 228.1, + "end": 228.28, + "probability": 0.0068 + }, + { + "start": 228.28, + "end": 230.8, + "probability": 0.8258 + }, + { + "start": 231.38, + "end": 237.8, + "probability": 0.896 + }, + { + "start": 237.86, + "end": 238.46, + "probability": 0.4564 + }, + { + "start": 238.66, + "end": 240.96, + "probability": 0.8002 + }, + { + "start": 241.06, + "end": 243.64, + "probability": 0.9544 + }, + { + "start": 243.64, + "end": 244.4, + "probability": 0.7606 + }, + { + "start": 244.64, + "end": 245.09, + "probability": 0.6132 + }, + { + "start": 245.96, + "end": 250.42, + "probability": 0.6744 + }, + { + "start": 250.88, + "end": 251.96, + "probability": 0.9795 + }, + { + "start": 254.68, + "end": 256.94, + "probability": 0.9285 + }, + { + "start": 258.72, + "end": 260.94, + "probability": 0.9055 + }, + { + "start": 262.06, + "end": 264.22, + "probability": 0.6936 + }, + { + "start": 265.38, + "end": 268.18, + "probability": 0.9091 + }, + { + "start": 269.96, + "end": 273.18, + "probability": 0.996 + }, + { + "start": 274.82, + "end": 275.22, + "probability": 0.5661 + }, + { + "start": 275.24, + "end": 278.8, + "probability": 0.9969 + }, + { + "start": 280.94, + "end": 285.62, + "probability": 0.9939 + }, + { + "start": 285.62, + "end": 288.34, + "probability": 0.9999 + }, + { + "start": 289.72, + "end": 293.2, + "probability": 0.9849 + }, + { + "start": 294.26, + "end": 299.66, + "probability": 0.9925 + }, + { + "start": 300.26, + "end": 300.94, + "probability": 0.7871 + }, + { + "start": 302.76, + "end": 307.46, + "probability": 0.998 + }, + { + "start": 308.12, + "end": 312.8, + "probability": 0.991 + }, + { + "start": 313.54, + "end": 315.04, + "probability": 0.9329 + }, + { + "start": 315.52, + "end": 321.12, + "probability": 0.9642 + }, + { + "start": 321.86, + "end": 321.88, + "probability": 0.0376 + }, + { + "start": 323.04, + "end": 323.48, + "probability": 0.899 + }, + { + "start": 324.5, + "end": 327.44, + "probability": 0.9983 + }, + { + "start": 328.26, + "end": 329.88, + "probability": 0.7547 + }, + { + "start": 330.58, + "end": 333.28, + "probability": 0.9985 + }, + { + "start": 334.62, + "end": 338.72, + "probability": 0.9978 + }, + { + "start": 339.86, + "end": 342.82, + "probability": 0.9975 + }, + { + "start": 342.82, + "end": 345.42, + "probability": 0.9995 + }, + { + "start": 346.04, + "end": 350.24, + "probability": 0.9998 + }, + { + "start": 351.94, + "end": 355.52, + "probability": 0.9956 + }, + { + "start": 355.7, + "end": 356.52, + "probability": 0.7095 + }, + { + "start": 356.74, + "end": 357.56, + "probability": 0.8909 + }, + { + "start": 358.2, + "end": 360.58, + "probability": 0.5298 + }, + { + "start": 360.74, + "end": 363.21, + "probability": 0.9808 + }, + { + "start": 364.44, + "end": 367.5, + "probability": 0.9863 + }, + { + "start": 367.68, + "end": 370.32, + "probability": 0.9783 + }, + { + "start": 371.4, + "end": 373.12, + "probability": 0.992 + }, + { + "start": 374.02, + "end": 376.22, + "probability": 0.999 + }, + { + "start": 377.48, + "end": 378.24, + "probability": 0.7573 + }, + { + "start": 379.64, + "end": 381.1, + "probability": 0.9533 + }, + { + "start": 382.3, + "end": 384.52, + "probability": 0.9328 + }, + { + "start": 386.04, + "end": 389.2, + "probability": 0.9986 + }, + { + "start": 390.46, + "end": 391.71, + "probability": 0.9642 + }, + { + "start": 393.46, + "end": 395.6, + "probability": 0.9793 + }, + { + "start": 395.6, + "end": 398.52, + "probability": 0.9976 + }, + { + "start": 399.9, + "end": 400.38, + "probability": 0.3818 + }, + { + "start": 400.44, + "end": 403.8, + "probability": 0.9412 + }, + { + "start": 403.8, + "end": 407.32, + "probability": 0.9953 + }, + { + "start": 408.06, + "end": 408.84, + "probability": 0.8862 + }, + { + "start": 410.38, + "end": 413.02, + "probability": 0.9874 + }, + { + "start": 413.04, + "end": 415.76, + "probability": 0.9969 + }, + { + "start": 417.1, + "end": 418.72, + "probability": 0.7271 + }, + { + "start": 418.92, + "end": 421.18, + "probability": 0.9753 + }, + { + "start": 421.44, + "end": 423.14, + "probability": 0.8873 + }, + { + "start": 423.62, + "end": 425.04, + "probability": 0.3205 + }, + { + "start": 425.7, + "end": 428.56, + "probability": 0.6355 + }, + { + "start": 429.32, + "end": 434.02, + "probability": 0.9652 + }, + { + "start": 434.1, + "end": 435.26, + "probability": 0.8698 + }, + { + "start": 435.92, + "end": 436.96, + "probability": 0.9709 + }, + { + "start": 438.06, + "end": 443.58, + "probability": 0.998 + }, + { + "start": 445.28, + "end": 447.77, + "probability": 0.7026 + }, + { + "start": 448.0, + "end": 451.38, + "probability": 0.9396 + }, + { + "start": 451.44, + "end": 452.94, + "probability": 0.9036 + }, + { + "start": 453.96, + "end": 455.58, + "probability": 0.9843 + }, + { + "start": 456.62, + "end": 459.68, + "probability": 0.7645 + }, + { + "start": 459.74, + "end": 460.02, + "probability": 0.4829 + }, + { + "start": 460.66, + "end": 465.32, + "probability": 0.9987 + }, + { + "start": 465.9, + "end": 470.52, + "probability": 0.999 + }, + { + "start": 473.1, + "end": 475.68, + "probability": 0.7752 + }, + { + "start": 476.68, + "end": 477.08, + "probability": 0.9339 + }, + { + "start": 477.74, + "end": 479.22, + "probability": 0.5922 + }, + { + "start": 479.98, + "end": 481.59, + "probability": 0.6678 + }, + { + "start": 482.28, + "end": 483.0, + "probability": 0.8878 + }, + { + "start": 483.92, + "end": 489.06, + "probability": 0.9522 + }, + { + "start": 489.6, + "end": 491.04, + "probability": 0.9387 + }, + { + "start": 491.48, + "end": 492.2, + "probability": 0.5996 + }, + { + "start": 492.54, + "end": 493.42, + "probability": 0.4614 + }, + { + "start": 494.48, + "end": 496.55, + "probability": 0.7129 + }, + { + "start": 497.0, + "end": 498.86, + "probability": 0.9273 + }, + { + "start": 499.44, + "end": 500.82, + "probability": 0.939 + }, + { + "start": 501.3, + "end": 503.6, + "probability": 0.9932 + }, + { + "start": 504.42, + "end": 506.37, + "probability": 0.9517 + }, + { + "start": 507.26, + "end": 509.28, + "probability": 0.9331 + }, + { + "start": 510.12, + "end": 511.8, + "probability": 0.9973 + }, + { + "start": 512.38, + "end": 513.92, + "probability": 0.957 + }, + { + "start": 514.66, + "end": 517.1, + "probability": 0.9915 + }, + { + "start": 517.16, + "end": 520.16, + "probability": 0.9307 + }, + { + "start": 520.86, + "end": 523.74, + "probability": 0.6339 + }, + { + "start": 524.48, + "end": 525.15, + "probability": 0.9045 + }, + { + "start": 526.5, + "end": 527.76, + "probability": 0.9567 + }, + { + "start": 527.76, + "end": 531.26, + "probability": 0.9686 + }, + { + "start": 532.3, + "end": 534.3, + "probability": 0.9869 + }, + { + "start": 535.1, + "end": 537.16, + "probability": 0.9909 + }, + { + "start": 537.74, + "end": 541.5, + "probability": 0.9529 + }, + { + "start": 542.04, + "end": 542.8, + "probability": 0.7228 + }, + { + "start": 543.5, + "end": 545.38, + "probability": 0.9745 + }, + { + "start": 546.1, + "end": 548.1, + "probability": 0.9946 + }, + { + "start": 548.88, + "end": 549.82, + "probability": 0.8856 + }, + { + "start": 552.28, + "end": 554.86, + "probability": 0.9685 + }, + { + "start": 555.96, + "end": 557.35, + "probability": 0.6372 + }, + { + "start": 557.6, + "end": 560.06, + "probability": 0.7986 + }, + { + "start": 560.2, + "end": 562.88, + "probability": 0.7496 + }, + { + "start": 562.98, + "end": 563.74, + "probability": 0.8271 + }, + { + "start": 563.8, + "end": 564.72, + "probability": 0.9255 + }, + { + "start": 565.86, + "end": 571.58, + "probability": 0.9897 + }, + { + "start": 571.74, + "end": 572.54, + "probability": 0.9807 + }, + { + "start": 572.64, + "end": 573.94, + "probability": 0.9746 + }, + { + "start": 575.02, + "end": 578.4, + "probability": 0.9974 + }, + { + "start": 578.52, + "end": 580.78, + "probability": 0.9968 + }, + { + "start": 580.78, + "end": 583.06, + "probability": 0.9868 + }, + { + "start": 583.56, + "end": 586.48, + "probability": 0.8902 + }, + { + "start": 586.94, + "end": 590.1, + "probability": 0.9968 + }, + { + "start": 590.1, + "end": 592.56, + "probability": 0.9924 + }, + { + "start": 593.48, + "end": 598.28, + "probability": 0.9978 + }, + { + "start": 598.4, + "end": 600.66, + "probability": 0.9653 + }, + { + "start": 601.46, + "end": 603.22, + "probability": 0.5918 + }, + { + "start": 603.32, + "end": 604.54, + "probability": 0.9082 + }, + { + "start": 605.86, + "end": 606.22, + "probability": 0.9265 + }, + { + "start": 606.24, + "end": 610.14, + "probability": 0.9512 + }, + { + "start": 611.14, + "end": 612.84, + "probability": 0.9795 + }, + { + "start": 613.78, + "end": 616.36, + "probability": 0.9966 + }, + { + "start": 617.46, + "end": 623.28, + "probability": 0.9961 + }, + { + "start": 624.08, + "end": 625.86, + "probability": 0.9211 + }, + { + "start": 627.22, + "end": 629.18, + "probability": 0.9942 + }, + { + "start": 629.38, + "end": 631.1, + "probability": 0.9652 + }, + { + "start": 632.08, + "end": 638.14, + "probability": 0.9485 + }, + { + "start": 640.2, + "end": 643.06, + "probability": 0.8849 + }, + { + "start": 643.12, + "end": 644.18, + "probability": 0.6572 + }, + { + "start": 644.22, + "end": 645.16, + "probability": 0.8303 + }, + { + "start": 645.22, + "end": 646.36, + "probability": 0.7782 + }, + { + "start": 647.7, + "end": 650.48, + "probability": 0.977 + }, + { + "start": 651.06, + "end": 653.08, + "probability": 0.9948 + }, + { + "start": 653.68, + "end": 656.18, + "probability": 0.9674 + }, + { + "start": 657.3, + "end": 658.78, + "probability": 0.9889 + }, + { + "start": 659.9, + "end": 661.26, + "probability": 0.9812 + }, + { + "start": 662.62, + "end": 666.48, + "probability": 0.9058 + }, + { + "start": 666.54, + "end": 667.62, + "probability": 0.7672 + }, + { + "start": 668.7, + "end": 671.8, + "probability": 0.9917 + }, + { + "start": 673.42, + "end": 674.96, + "probability": 0.9167 + }, + { + "start": 675.82, + "end": 678.76, + "probability": 0.9989 + }, + { + "start": 679.92, + "end": 682.74, + "probability": 0.9935 + }, + { + "start": 682.74, + "end": 685.62, + "probability": 0.998 + }, + { + "start": 687.62, + "end": 692.08, + "probability": 0.9937 + }, + { + "start": 692.88, + "end": 695.46, + "probability": 0.6877 + }, + { + "start": 696.4, + "end": 697.96, + "probability": 0.9938 + }, + { + "start": 698.04, + "end": 699.24, + "probability": 0.9707 + }, + { + "start": 699.36, + "end": 702.14, + "probability": 0.9479 + }, + { + "start": 702.98, + "end": 705.48, + "probability": 0.976 + }, + { + "start": 706.6, + "end": 707.86, + "probability": 0.5831 + }, + { + "start": 709.94, + "end": 712.32, + "probability": 0.9451 + }, + { + "start": 712.38, + "end": 713.74, + "probability": 0.5798 + }, + { + "start": 714.8, + "end": 718.38, + "probability": 0.9962 + }, + { + "start": 718.98, + "end": 720.8, + "probability": 0.9596 + }, + { + "start": 722.26, + "end": 724.32, + "probability": 0.7756 + }, + { + "start": 725.7, + "end": 726.08, + "probability": 0.8133 + }, + { + "start": 726.24, + "end": 728.16, + "probability": 0.9358 + }, + { + "start": 728.64, + "end": 729.4, + "probability": 0.7474 + }, + { + "start": 729.56, + "end": 731.84, + "probability": 0.9839 + }, + { + "start": 733.06, + "end": 738.58, + "probability": 0.9878 + }, + { + "start": 739.76, + "end": 741.28, + "probability": 0.6658 + }, + { + "start": 742.26, + "end": 744.7, + "probability": 0.9055 + }, + { + "start": 746.08, + "end": 750.74, + "probability": 0.9904 + }, + { + "start": 750.74, + "end": 755.0, + "probability": 0.892 + }, + { + "start": 755.78, + "end": 756.71, + "probability": 0.4768 + }, + { + "start": 757.2, + "end": 759.5, + "probability": 0.3037 + }, + { + "start": 759.5, + "end": 760.52, + "probability": 0.3184 + }, + { + "start": 760.52, + "end": 763.26, + "probability": 0.3199 + }, + { + "start": 763.46, + "end": 766.92, + "probability": 0.2112 + }, + { + "start": 766.96, + "end": 768.52, + "probability": 0.0837 + }, + { + "start": 769.24, + "end": 769.42, + "probability": 0.1254 + }, + { + "start": 769.42, + "end": 770.38, + "probability": 0.1396 + }, + { + "start": 770.38, + "end": 771.76, + "probability": 0.0506 + }, + { + "start": 771.98, + "end": 771.98, + "probability": 0.4223 + }, + { + "start": 771.98, + "end": 776.25, + "probability": 0.5019 + }, + { + "start": 777.8, + "end": 779.8, + "probability": 0.737 + }, + { + "start": 779.9, + "end": 782.09, + "probability": 0.9385 + }, + { + "start": 782.28, + "end": 784.88, + "probability": 0.4845 + }, + { + "start": 784.96, + "end": 785.74, + "probability": 0.8862 + }, + { + "start": 786.86, + "end": 787.86, + "probability": 0.812 + }, + { + "start": 789.46, + "end": 792.74, + "probability": 0.9971 + }, + { + "start": 792.74, + "end": 795.88, + "probability": 0.9987 + }, + { + "start": 796.86, + "end": 797.88, + "probability": 0.9951 + }, + { + "start": 798.66, + "end": 802.48, + "probability": 0.9909 + }, + { + "start": 802.52, + "end": 802.98, + "probability": 0.5073 + }, + { + "start": 803.58, + "end": 805.42, + "probability": 0.9962 + }, + { + "start": 807.76, + "end": 809.4, + "probability": 0.7116 + }, + { + "start": 810.92, + "end": 811.9, + "probability": 0.8138 + }, + { + "start": 812.44, + "end": 814.98, + "probability": 0.9457 + }, + { + "start": 815.08, + "end": 818.77, + "probability": 0.9922 + }, + { + "start": 819.52, + "end": 822.28, + "probability": 0.9972 + }, + { + "start": 822.28, + "end": 826.32, + "probability": 0.9963 + }, + { + "start": 827.04, + "end": 830.16, + "probability": 0.9038 + }, + { + "start": 830.8, + "end": 832.68, + "probability": 0.9455 + }, + { + "start": 833.32, + "end": 835.12, + "probability": 0.9495 + }, + { + "start": 835.2, + "end": 838.62, + "probability": 0.9667 + }, + { + "start": 838.76, + "end": 839.2, + "probability": 0.7609 + }, + { + "start": 841.3, + "end": 842.48, + "probability": 0.974 + }, + { + "start": 842.58, + "end": 843.22, + "probability": 0.6299 + }, + { + "start": 843.4, + "end": 845.46, + "probability": 0.96 + }, + { + "start": 846.66, + "end": 849.36, + "probability": 0.998 + }, + { + "start": 849.4, + "end": 849.92, + "probability": 0.8532 + }, + { + "start": 850.16, + "end": 851.16, + "probability": 0.7998 + }, + { + "start": 853.42, + "end": 854.48, + "probability": 0.9839 + }, + { + "start": 856.84, + "end": 858.14, + "probability": 0.644 + }, + { + "start": 859.26, + "end": 862.66, + "probability": 0.9863 + }, + { + "start": 862.66, + "end": 863.36, + "probability": 0.5016 + }, + { + "start": 866.12, + "end": 867.6, + "probability": 0.7245 + }, + { + "start": 868.36, + "end": 871.8, + "probability": 0.9934 + }, + { + "start": 873.64, + "end": 876.94, + "probability": 0.9359 + }, + { + "start": 877.64, + "end": 880.6, + "probability": 0.96 + }, + { + "start": 883.26, + "end": 887.72, + "probability": 0.998 + }, + { + "start": 887.88, + "end": 888.56, + "probability": 0.7475 + }, + { + "start": 888.76, + "end": 889.94, + "probability": 0.885 + }, + { + "start": 890.82, + "end": 891.96, + "probability": 0.9562 + }, + { + "start": 892.98, + "end": 895.12, + "probability": 0.9896 + }, + { + "start": 895.22, + "end": 897.58, + "probability": 0.9968 + }, + { + "start": 898.3, + "end": 902.42, + "probability": 0.9983 + }, + { + "start": 903.16, + "end": 904.48, + "probability": 0.8125 + }, + { + "start": 904.5, + "end": 905.72, + "probability": 0.6682 + }, + { + "start": 905.9, + "end": 906.98, + "probability": 0.9166 + }, + { + "start": 907.12, + "end": 907.7, + "probability": 0.9888 + }, + { + "start": 908.64, + "end": 911.58, + "probability": 0.7978 + }, + { + "start": 911.68, + "end": 913.06, + "probability": 0.7515 + }, + { + "start": 914.16, + "end": 916.95, + "probability": 0.9951 + }, + { + "start": 918.0, + "end": 920.54, + "probability": 0.9651 + }, + { + "start": 921.02, + "end": 923.4, + "probability": 0.9756 + }, + { + "start": 923.48, + "end": 925.0, + "probability": 0.98 + }, + { + "start": 925.94, + "end": 927.9, + "probability": 0.995 + }, + { + "start": 928.98, + "end": 930.6, + "probability": 0.7893 + }, + { + "start": 930.72, + "end": 932.44, + "probability": 0.784 + }, + { + "start": 932.86, + "end": 937.8, + "probability": 0.9809 + }, + { + "start": 938.52, + "end": 941.12, + "probability": 0.9917 + }, + { + "start": 942.4, + "end": 945.28, + "probability": 0.931 + }, + { + "start": 946.72, + "end": 946.82, + "probability": 0.0454 + }, + { + "start": 946.82, + "end": 952.82, + "probability": 0.9953 + }, + { + "start": 952.94, + "end": 954.18, + "probability": 0.8751 + }, + { + "start": 955.56, + "end": 960.82, + "probability": 0.9915 + }, + { + "start": 962.11, + "end": 965.47, + "probability": 0.9678 + }, + { + "start": 966.16, + "end": 968.62, + "probability": 0.9956 + }, + { + "start": 968.66, + "end": 969.36, + "probability": 0.8754 + }, + { + "start": 969.44, + "end": 970.52, + "probability": 0.8213 + }, + { + "start": 971.46, + "end": 973.4, + "probability": 0.9958 + }, + { + "start": 974.62, + "end": 976.8, + "probability": 0.1838 + }, + { + "start": 977.08, + "end": 977.08, + "probability": 0.0222 + }, + { + "start": 977.08, + "end": 980.15, + "probability": 0.5058 + }, + { + "start": 980.54, + "end": 983.64, + "probability": 0.8059 + }, + { + "start": 983.88, + "end": 987.26, + "probability": 0.998 + }, + { + "start": 987.26, + "end": 991.34, + "probability": 0.9908 + }, + { + "start": 992.0, + "end": 994.02, + "probability": 0.9905 + }, + { + "start": 994.4, + "end": 995.24, + "probability": 0.8356 + }, + { + "start": 995.32, + "end": 996.44, + "probability": 0.5155 + }, + { + "start": 996.84, + "end": 999.16, + "probability": 0.9761 + }, + { + "start": 999.22, + "end": 1000.3, + "probability": 0.9368 + }, + { + "start": 1000.46, + "end": 1001.62, + "probability": 0.9219 + }, + { + "start": 1002.0, + "end": 1003.96, + "probability": 0.9972 + }, + { + "start": 1003.96, + "end": 1006.0, + "probability": 0.9942 + }, + { + "start": 1006.76, + "end": 1009.06, + "probability": 0.9902 + }, + { + "start": 1011.54, + "end": 1015.9, + "probability": 0.9961 + }, + { + "start": 1016.6, + "end": 1018.9, + "probability": 0.9967 + }, + { + "start": 1019.52, + "end": 1020.92, + "probability": 0.9954 + }, + { + "start": 1021.0, + "end": 1021.82, + "probability": 0.7529 + }, + { + "start": 1021.88, + "end": 1023.64, + "probability": 0.9562 + }, + { + "start": 1023.74, + "end": 1027.16, + "probability": 0.9661 + }, + { + "start": 1029.0, + "end": 1034.6, + "probability": 0.9878 + }, + { + "start": 1036.32, + "end": 1038.44, + "probability": 0.9783 + }, + { + "start": 1039.48, + "end": 1041.72, + "probability": 0.9987 + }, + { + "start": 1041.98, + "end": 1042.26, + "probability": 0.9806 + }, + { + "start": 1042.3, + "end": 1045.0, + "probability": 0.9946 + }, + { + "start": 1046.62, + "end": 1047.86, + "probability": 0.7932 + }, + { + "start": 1049.1, + "end": 1052.12, + "probability": 0.8401 + }, + { + "start": 1052.24, + "end": 1053.04, + "probability": 0.6235 + }, + { + "start": 1053.14, + "end": 1053.64, + "probability": 0.5321 + }, + { + "start": 1053.74, + "end": 1053.98, + "probability": 0.5051 + }, + { + "start": 1054.14, + "end": 1056.56, + "probability": 0.9636 + }, + { + "start": 1056.92, + "end": 1059.08, + "probability": 0.981 + }, + { + "start": 1059.24, + "end": 1059.44, + "probability": 0.223 + }, + { + "start": 1061.16, + "end": 1062.3, + "probability": 0.8369 + }, + { + "start": 1063.62, + "end": 1066.64, + "probability": 0.8544 + }, + { + "start": 1066.7, + "end": 1067.76, + "probability": 0.7557 + }, + { + "start": 1068.3, + "end": 1068.84, + "probability": 0.753 + }, + { + "start": 1069.0, + "end": 1069.46, + "probability": 0.9394 + }, + { + "start": 1069.8, + "end": 1070.42, + "probability": 0.939 + }, + { + "start": 1073.04, + "end": 1077.2, + "probability": 0.9963 + }, + { + "start": 1079.28, + "end": 1080.72, + "probability": 0.9977 + }, + { + "start": 1081.72, + "end": 1082.94, + "probability": 0.7989 + }, + { + "start": 1084.72, + "end": 1087.42, + "probability": 0.9993 + }, + { + "start": 1087.58, + "end": 1088.88, + "probability": 0.8349 + }, + { + "start": 1090.04, + "end": 1092.34, + "probability": 0.894 + }, + { + "start": 1092.88, + "end": 1094.18, + "probability": 0.8644 + }, + { + "start": 1095.04, + "end": 1096.62, + "probability": 0.9899 + }, + { + "start": 1096.68, + "end": 1097.92, + "probability": 0.9487 + }, + { + "start": 1099.62, + "end": 1100.96, + "probability": 0.9878 + }, + { + "start": 1101.48, + "end": 1103.54, + "probability": 0.9609 + }, + { + "start": 1104.78, + "end": 1105.88, + "probability": 0.9707 + }, + { + "start": 1105.94, + "end": 1108.0, + "probability": 0.9941 + }, + { + "start": 1108.14, + "end": 1110.16, + "probability": 0.9228 + }, + { + "start": 1111.0, + "end": 1111.9, + "probability": 0.9321 + }, + { + "start": 1113.1, + "end": 1114.8, + "probability": 0.7201 + }, + { + "start": 1115.0, + "end": 1117.52, + "probability": 0.5529 + }, + { + "start": 1120.04, + "end": 1122.66, + "probability": 0.5627 + }, + { + "start": 1124.12, + "end": 1126.2, + "probability": 0.6042 + }, + { + "start": 1126.3, + "end": 1128.96, + "probability": 0.9873 + }, + { + "start": 1129.08, + "end": 1130.46, + "probability": 0.7797 + }, + { + "start": 1130.56, + "end": 1131.2, + "probability": 0.2675 + }, + { + "start": 1131.64, + "end": 1132.08, + "probability": 0.4576 + }, + { + "start": 1132.5, + "end": 1134.52, + "probability": 0.6865 + }, + { + "start": 1134.66, + "end": 1136.1, + "probability": 0.9951 + }, + { + "start": 1136.2, + "end": 1140.04, + "probability": 0.9116 + }, + { + "start": 1140.8, + "end": 1143.68, + "probability": 0.5768 + }, + { + "start": 1143.72, + "end": 1145.6, + "probability": 0.9785 + }, + { + "start": 1146.26, + "end": 1147.24, + "probability": 0.7632 + }, + { + "start": 1147.6, + "end": 1152.24, + "probability": 0.9932 + }, + { + "start": 1152.88, + "end": 1157.18, + "probability": 0.7418 + }, + { + "start": 1158.16, + "end": 1160.82, + "probability": 0.917 + }, + { + "start": 1160.84, + "end": 1164.02, + "probability": 0.7313 + }, + { + "start": 1165.9, + "end": 1166.99, + "probability": 0.9956 + }, + { + "start": 1169.72, + "end": 1172.82, + "probability": 0.9935 + }, + { + "start": 1174.72, + "end": 1176.44, + "probability": 0.947 + }, + { + "start": 1177.08, + "end": 1178.72, + "probability": 0.7883 + }, + { + "start": 1180.22, + "end": 1182.16, + "probability": 0.9428 + }, + { + "start": 1182.48, + "end": 1183.82, + "probability": 0.9136 + }, + { + "start": 1184.46, + "end": 1187.66, + "probability": 0.9637 + }, + { + "start": 1188.4, + "end": 1191.5, + "probability": 0.9924 + }, + { + "start": 1192.24, + "end": 1193.76, + "probability": 0.9844 + }, + { + "start": 1194.32, + "end": 1197.24, + "probability": 0.9626 + }, + { + "start": 1197.38, + "end": 1198.36, + "probability": 0.9353 + }, + { + "start": 1198.5, + "end": 1200.96, + "probability": 0.9919 + }, + { + "start": 1201.5, + "end": 1202.58, + "probability": 0.9626 + }, + { + "start": 1202.68, + "end": 1204.1, + "probability": 0.9897 + }, + { + "start": 1204.18, + "end": 1205.2, + "probability": 0.9879 + }, + { + "start": 1205.76, + "end": 1206.38, + "probability": 0.5635 + }, + { + "start": 1206.94, + "end": 1210.58, + "probability": 0.9546 + }, + { + "start": 1210.98, + "end": 1211.7, + "probability": 0.8417 + }, + { + "start": 1212.1, + "end": 1213.26, + "probability": 0.9445 + }, + { + "start": 1213.68, + "end": 1214.32, + "probability": 0.7466 + }, + { + "start": 1214.44, + "end": 1216.22, + "probability": 0.9469 + }, + { + "start": 1216.28, + "end": 1217.38, + "probability": 0.9796 + }, + { + "start": 1218.94, + "end": 1220.0, + "probability": 0.881 + }, + { + "start": 1220.38, + "end": 1221.28, + "probability": 0.8073 + }, + { + "start": 1221.4, + "end": 1221.7, + "probability": 0.9062 + }, + { + "start": 1223.16, + "end": 1227.98, + "probability": 0.9564 + }, + { + "start": 1227.98, + "end": 1231.28, + "probability": 0.9927 + }, + { + "start": 1232.28, + "end": 1235.96, + "probability": 0.9973 + }, + { + "start": 1237.14, + "end": 1239.58, + "probability": 0.9898 + }, + { + "start": 1240.74, + "end": 1241.42, + "probability": 0.6908 + }, + { + "start": 1242.58, + "end": 1245.96, + "probability": 0.9728 + }, + { + "start": 1246.64, + "end": 1250.68, + "probability": 0.9882 + }, + { + "start": 1251.56, + "end": 1253.12, + "probability": 0.8433 + }, + { + "start": 1253.12, + "end": 1255.26, + "probability": 0.7131 + }, + { + "start": 1255.36, + "end": 1257.74, + "probability": 0.9958 + }, + { + "start": 1258.34, + "end": 1260.02, + "probability": 0.8873 + }, + { + "start": 1260.54, + "end": 1263.68, + "probability": 0.9393 + }, + { + "start": 1264.4, + "end": 1267.52, + "probability": 0.9915 + }, + { + "start": 1267.52, + "end": 1272.4, + "probability": 0.8867 + }, + { + "start": 1273.34, + "end": 1278.84, + "probability": 0.9689 + }, + { + "start": 1279.08, + "end": 1280.16, + "probability": 0.9604 + }, + { + "start": 1280.32, + "end": 1282.66, + "probability": 0.0556 + }, + { + "start": 1282.66, + "end": 1282.88, + "probability": 0.2178 + }, + { + "start": 1282.88, + "end": 1286.72, + "probability": 0.9941 + }, + { + "start": 1287.3, + "end": 1287.42, + "probability": 0.3213 + }, + { + "start": 1287.98, + "end": 1289.0, + "probability": 0.0086 + }, + { + "start": 1289.37, + "end": 1294.08, + "probability": 0.9849 + }, + { + "start": 1294.24, + "end": 1296.74, + "probability": 0.1913 + }, + { + "start": 1297.28, + "end": 1298.44, + "probability": 0.1811 + }, + { + "start": 1298.76, + "end": 1301.38, + "probability": 0.2183 + }, + { + "start": 1301.44, + "end": 1304.12, + "probability": 0.9711 + }, + { + "start": 1304.46, + "end": 1305.56, + "probability": 0.8017 + }, + { + "start": 1305.66, + "end": 1307.76, + "probability": 0.9578 + }, + { + "start": 1308.4, + "end": 1310.84, + "probability": 0.9897 + }, + { + "start": 1311.36, + "end": 1318.9, + "probability": 0.9095 + }, + { + "start": 1319.78, + "end": 1323.4, + "probability": 0.998 + }, + { + "start": 1323.78, + "end": 1324.6, + "probability": 0.4573 + }, + { + "start": 1324.7, + "end": 1325.18, + "probability": 0.675 + }, + { + "start": 1325.26, + "end": 1327.9, + "probability": 0.8183 + }, + { + "start": 1328.02, + "end": 1330.7, + "probability": 0.7015 + }, + { + "start": 1331.36, + "end": 1333.64, + "probability": 0.9615 + }, + { + "start": 1337.6, + "end": 1339.88, + "probability": 0.4211 + }, + { + "start": 1340.16, + "end": 1340.58, + "probability": 0.7023 + }, + { + "start": 1340.66, + "end": 1343.38, + "probability": 0.833 + }, + { + "start": 1343.46, + "end": 1344.9, + "probability": 0.9396 + }, + { + "start": 1345.2, + "end": 1346.9, + "probability": 0.9966 + }, + { + "start": 1347.08, + "end": 1348.16, + "probability": 0.8734 + }, + { + "start": 1348.54, + "end": 1351.64, + "probability": 0.9764 + }, + { + "start": 1351.96, + "end": 1353.76, + "probability": 0.9664 + }, + { + "start": 1354.14, + "end": 1355.54, + "probability": 0.5649 + }, + { + "start": 1355.9, + "end": 1358.88, + "probability": 0.872 + }, + { + "start": 1359.4, + "end": 1359.4, + "probability": 0.3747 + }, + { + "start": 1359.4, + "end": 1359.4, + "probability": 0.0226 + }, + { + "start": 1359.4, + "end": 1362.48, + "probability": 0.4132 + }, + { + "start": 1362.86, + "end": 1366.56, + "probability": 0.9569 + }, + { + "start": 1367.66, + "end": 1371.92, + "probability": 0.9756 + }, + { + "start": 1372.34, + "end": 1374.12, + "probability": 0.7575 + }, + { + "start": 1374.7, + "end": 1376.84, + "probability": 0.7979 + }, + { + "start": 1377.32, + "end": 1382.22, + "probability": 0.978 + }, + { + "start": 1382.58, + "end": 1385.9, + "probability": 0.9422 + }, + { + "start": 1386.24, + "end": 1389.36, + "probability": 0.914 + }, + { + "start": 1389.36, + "end": 1393.72, + "probability": 0.9077 + }, + { + "start": 1393.96, + "end": 1393.96, + "probability": 0.0615 + }, + { + "start": 1393.96, + "end": 1394.24, + "probability": 0.4636 + }, + { + "start": 1394.36, + "end": 1396.76, + "probability": 0.8174 + }, + { + "start": 1397.28, + "end": 1398.08, + "probability": 0.5273 + }, + { + "start": 1398.42, + "end": 1399.74, + "probability": 0.9941 + }, + { + "start": 1400.26, + "end": 1404.42, + "probability": 0.9058 + }, + { + "start": 1405.02, + "end": 1411.0, + "probability": 0.9067 + }, + { + "start": 1411.9, + "end": 1414.84, + "probability": 0.9465 + }, + { + "start": 1417.2, + "end": 1419.06, + "probability": 0.9885 + }, + { + "start": 1419.64, + "end": 1421.1, + "probability": 0.9872 + }, + { + "start": 1422.02, + "end": 1424.72, + "probability": 0.9995 + }, + { + "start": 1424.88, + "end": 1429.24, + "probability": 0.8275 + }, + { + "start": 1429.94, + "end": 1433.7, + "probability": 0.981 + }, + { + "start": 1433.9, + "end": 1436.72, + "probability": 0.9868 + }, + { + "start": 1437.3, + "end": 1439.92, + "probability": 0.9976 + }, + { + "start": 1440.74, + "end": 1446.72, + "probability": 0.9917 + }, + { + "start": 1449.01, + "end": 1455.8, + "probability": 0.9954 + }, + { + "start": 1456.16, + "end": 1457.76, + "probability": 0.9854 + }, + { + "start": 1457.84, + "end": 1460.79, + "probability": 0.9663 + }, + { + "start": 1461.3, + "end": 1463.12, + "probability": 0.9854 + }, + { + "start": 1463.84, + "end": 1465.62, + "probability": 0.998 + }, + { + "start": 1466.36, + "end": 1468.44, + "probability": 0.855 + }, + { + "start": 1469.06, + "end": 1472.32, + "probability": 0.9389 + }, + { + "start": 1472.84, + "end": 1475.9, + "probability": 0.9603 + }, + { + "start": 1476.66, + "end": 1478.32, + "probability": 0.9432 + }, + { + "start": 1478.6, + "end": 1485.8, + "probability": 0.8734 + }, + { + "start": 1486.02, + "end": 1487.9, + "probability": 0.8162 + }, + { + "start": 1488.28, + "end": 1492.44, + "probability": 0.9538 + }, + { + "start": 1492.96, + "end": 1496.62, + "probability": 0.7661 + }, + { + "start": 1497.1, + "end": 1501.06, + "probability": 0.991 + }, + { + "start": 1501.06, + "end": 1505.12, + "probability": 0.9927 + }, + { + "start": 1506.0, + "end": 1506.88, + "probability": 0.9093 + }, + { + "start": 1507.24, + "end": 1511.76, + "probability": 0.9863 + }, + { + "start": 1512.16, + "end": 1513.34, + "probability": 0.7728 + }, + { + "start": 1514.06, + "end": 1516.22, + "probability": 0.9333 + }, + { + "start": 1516.74, + "end": 1518.88, + "probability": 0.9971 + }, + { + "start": 1519.36, + "end": 1519.88, + "probability": 0.7816 + }, + { + "start": 1521.78, + "end": 1530.02, + "probability": 0.9983 + }, + { + "start": 1530.02, + "end": 1534.7, + "probability": 0.6694 + }, + { + "start": 1535.1, + "end": 1536.82, + "probability": 0.9031 + }, + { + "start": 1537.18, + "end": 1538.2, + "probability": 0.9683 + }, + { + "start": 1540.78, + "end": 1542.9, + "probability": 0.726 + }, + { + "start": 1543.28, + "end": 1549.08, + "probability": 0.9744 + }, + { + "start": 1549.4, + "end": 1550.78, + "probability": 0.9587 + }, + { + "start": 1551.12, + "end": 1553.42, + "probability": 0.9907 + }, + { + "start": 1553.42, + "end": 1556.2, + "probability": 0.9751 + }, + { + "start": 1556.58, + "end": 1557.0, + "probability": 0.7288 + }, + { + "start": 1557.04, + "end": 1564.66, + "probability": 0.9959 + }, + { + "start": 1564.66, + "end": 1569.72, + "probability": 0.9865 + }, + { + "start": 1570.3, + "end": 1571.3, + "probability": 0.7178 + }, + { + "start": 1571.72, + "end": 1574.28, + "probability": 0.8252 + }, + { + "start": 1574.66, + "end": 1576.6, + "probability": 0.8906 + }, + { + "start": 1577.02, + "end": 1580.68, + "probability": 0.9368 + }, + { + "start": 1581.2, + "end": 1583.22, + "probability": 0.998 + }, + { + "start": 1584.16, + "end": 1586.66, + "probability": 0.9956 + }, + { + "start": 1587.02, + "end": 1587.36, + "probability": 0.3366 + }, + { + "start": 1587.54, + "end": 1592.3, + "probability": 0.8385 + }, + { + "start": 1592.38, + "end": 1594.64, + "probability": 0.8223 + }, + { + "start": 1595.04, + "end": 1598.14, + "probability": 0.9337 + }, + { + "start": 1598.66, + "end": 1603.1, + "probability": 0.9425 + }, + { + "start": 1603.18, + "end": 1605.12, + "probability": 0.9615 + }, + { + "start": 1605.46, + "end": 1609.66, + "probability": 0.9944 + }, + { + "start": 1609.98, + "end": 1612.12, + "probability": 0.9604 + }, + { + "start": 1612.4, + "end": 1616.36, + "probability": 0.9962 + }, + { + "start": 1616.4, + "end": 1617.74, + "probability": 0.9655 + }, + { + "start": 1617.98, + "end": 1622.35, + "probability": 0.9954 + }, + { + "start": 1622.46, + "end": 1623.72, + "probability": 0.9883 + }, + { + "start": 1623.94, + "end": 1624.34, + "probability": 0.7314 + }, + { + "start": 1624.4, + "end": 1624.94, + "probability": 0.728 + }, + { + "start": 1624.96, + "end": 1626.54, + "probability": 0.9561 + }, + { + "start": 1627.14, + "end": 1629.52, + "probability": 0.9591 + }, + { + "start": 1629.8, + "end": 1631.18, + "probability": 0.7711 + }, + { + "start": 1631.6, + "end": 1634.92, + "probability": 0.9784 + }, + { + "start": 1634.92, + "end": 1638.68, + "probability": 0.9878 + }, + { + "start": 1638.78, + "end": 1639.2, + "probability": 0.8345 + }, + { + "start": 1639.36, + "end": 1640.86, + "probability": 0.9235 + }, + { + "start": 1641.24, + "end": 1642.92, + "probability": 0.8068 + }, + { + "start": 1643.06, + "end": 1643.66, + "probability": 0.5484 + }, + { + "start": 1643.68, + "end": 1647.8, + "probability": 0.9938 + }, + { + "start": 1648.7, + "end": 1652.08, + "probability": 0.9751 + }, + { + "start": 1652.42, + "end": 1655.12, + "probability": 0.9889 + }, + { + "start": 1655.24, + "end": 1658.72, + "probability": 0.8762 + }, + { + "start": 1659.32, + "end": 1660.04, + "probability": 0.7304 + }, + { + "start": 1660.44, + "end": 1661.46, + "probability": 0.9092 + }, + { + "start": 1661.94, + "end": 1666.19, + "probability": 0.8721 + }, + { + "start": 1667.02, + "end": 1670.54, + "probability": 0.9916 + }, + { + "start": 1671.64, + "end": 1672.38, + "probability": 0.005 + }, + { + "start": 1672.38, + "end": 1674.46, + "probability": 0.6134 + }, + { + "start": 1674.72, + "end": 1676.98, + "probability": 0.0829 + }, + { + "start": 1677.16, + "end": 1679.02, + "probability": 0.5177 + }, + { + "start": 1679.18, + "end": 1680.88, + "probability": 0.6324 + }, + { + "start": 1681.22, + "end": 1683.1, + "probability": 0.9896 + }, + { + "start": 1683.22, + "end": 1683.86, + "probability": 0.7601 + }, + { + "start": 1685.35, + "end": 1690.4, + "probability": 0.8936 + }, + { + "start": 1690.74, + "end": 1692.62, + "probability": 0.9933 + }, + { + "start": 1692.96, + "end": 1693.74, + "probability": 0.6195 + }, + { + "start": 1694.38, + "end": 1696.58, + "probability": 0.9941 + }, + { + "start": 1697.26, + "end": 1699.2, + "probability": 0.9558 + }, + { + "start": 1699.72, + "end": 1701.0, + "probability": 0.9969 + }, + { + "start": 1701.84, + "end": 1705.78, + "probability": 0.9382 + }, + { + "start": 1706.34, + "end": 1708.98, + "probability": 0.9774 + }, + { + "start": 1709.36, + "end": 1711.56, + "probability": 0.9818 + }, + { + "start": 1711.84, + "end": 1712.9, + "probability": 0.9454 + }, + { + "start": 1713.0, + "end": 1715.0, + "probability": 0.7703 + }, + { + "start": 1715.42, + "end": 1716.64, + "probability": 0.9317 + }, + { + "start": 1717.6, + "end": 1719.14, + "probability": 0.9435 + }, + { + "start": 1719.66, + "end": 1720.84, + "probability": 0.8744 + }, + { + "start": 1721.2, + "end": 1722.46, + "probability": 0.9917 + }, + { + "start": 1722.66, + "end": 1724.1, + "probability": 0.9728 + }, + { + "start": 1724.78, + "end": 1727.38, + "probability": 0.1873 + }, + { + "start": 1727.38, + "end": 1729.82, + "probability": 0.7852 + }, + { + "start": 1731.0, + "end": 1734.72, + "probability": 0.2678 + }, + { + "start": 1735.2, + "end": 1735.44, + "probability": 0.0519 + }, + { + "start": 1735.44, + "end": 1735.44, + "probability": 0.169 + }, + { + "start": 1735.44, + "end": 1735.44, + "probability": 0.2499 + }, + { + "start": 1735.44, + "end": 1744.9, + "probability": 0.979 + }, + { + "start": 1745.46, + "end": 1747.62, + "probability": 0.8513 + }, + { + "start": 1748.2, + "end": 1752.86, + "probability": 0.9966 + }, + { + "start": 1753.28, + "end": 1755.04, + "probability": 0.9854 + }, + { + "start": 1755.12, + "end": 1756.64, + "probability": 0.9954 + }, + { + "start": 1757.16, + "end": 1760.82, + "probability": 0.9884 + }, + { + "start": 1761.22, + "end": 1763.22, + "probability": 0.9843 + }, + { + "start": 1763.28, + "end": 1764.56, + "probability": 0.811 + }, + { + "start": 1764.72, + "end": 1765.76, + "probability": 0.4625 + }, + { + "start": 1765.88, + "end": 1767.0, + "probability": 0.8889 + }, + { + "start": 1767.54, + "end": 1769.22, + "probability": 0.9911 + }, + { + "start": 1769.74, + "end": 1772.7, + "probability": 0.985 + }, + { + "start": 1773.26, + "end": 1775.18, + "probability": 0.9795 + }, + { + "start": 1775.76, + "end": 1776.68, + "probability": 0.9885 + }, + { + "start": 1777.18, + "end": 1778.02, + "probability": 0.7114 + }, + { + "start": 1778.48, + "end": 1780.02, + "probability": 0.9946 + }, + { + "start": 1780.36, + "end": 1785.78, + "probability": 0.9827 + }, + { + "start": 1786.1, + "end": 1787.8, + "probability": 0.9581 + }, + { + "start": 1788.02, + "end": 1790.66, + "probability": 0.9949 + }, + { + "start": 1791.06, + "end": 1794.88, + "probability": 0.9308 + }, + { + "start": 1795.52, + "end": 1797.82, + "probability": 0.9354 + }, + { + "start": 1798.16, + "end": 1800.76, + "probability": 0.9981 + }, + { + "start": 1801.62, + "end": 1802.64, + "probability": 0.9985 + }, + { + "start": 1803.22, + "end": 1805.6, + "probability": 0.9973 + }, + { + "start": 1806.4, + "end": 1808.76, + "probability": 0.9968 + }, + { + "start": 1809.3, + "end": 1813.22, + "probability": 0.9995 + }, + { + "start": 1813.88, + "end": 1817.86, + "probability": 0.9939 + }, + { + "start": 1818.28, + "end": 1821.3, + "probability": 0.9988 + }, + { + "start": 1821.94, + "end": 1822.8, + "probability": 0.8917 + }, + { + "start": 1823.12, + "end": 1826.4, + "probability": 0.9908 + }, + { + "start": 1826.7, + "end": 1827.56, + "probability": 0.81 + }, + { + "start": 1827.64, + "end": 1830.78, + "probability": 0.7297 + }, + { + "start": 1831.66, + "end": 1835.78, + "probability": 0.8917 + }, + { + "start": 1835.98, + "end": 1840.54, + "probability": 0.7578 + }, + { + "start": 1840.6, + "end": 1841.46, + "probability": 0.4556 + }, + { + "start": 1843.32, + "end": 1845.94, + "probability": 0.9927 + }, + { + "start": 1846.6, + "end": 1849.74, + "probability": 0.9867 + }, + { + "start": 1850.06, + "end": 1851.72, + "probability": 0.9873 + }, + { + "start": 1851.82, + "end": 1853.96, + "probability": 0.9633 + }, + { + "start": 1854.24, + "end": 1855.42, + "probability": 0.5083 + }, + { + "start": 1855.88, + "end": 1857.22, + "probability": 0.7161 + }, + { + "start": 1858.04, + "end": 1858.62, + "probability": 0.8988 + }, + { + "start": 1858.7, + "end": 1862.72, + "probability": 0.8231 + }, + { + "start": 1863.1, + "end": 1864.68, + "probability": 0.9471 + }, + { + "start": 1865.14, + "end": 1866.92, + "probability": 0.9978 + }, + { + "start": 1867.24, + "end": 1871.42, + "probability": 0.9865 + }, + { + "start": 1871.48, + "end": 1872.94, + "probability": 0.7588 + }, + { + "start": 1873.28, + "end": 1875.06, + "probability": 0.9293 + }, + { + "start": 1875.44, + "end": 1877.28, + "probability": 0.998 + }, + { + "start": 1877.72, + "end": 1878.94, + "probability": 0.5817 + }, + { + "start": 1879.26, + "end": 1882.8, + "probability": 0.9559 + }, + { + "start": 1883.14, + "end": 1883.66, + "probability": 0.9701 + }, + { + "start": 1884.24, + "end": 1885.7, + "probability": 0.9941 + }, + { + "start": 1886.3, + "end": 1889.26, + "probability": 0.966 + }, + { + "start": 1889.58, + "end": 1891.54, + "probability": 0.9995 + }, + { + "start": 1892.24, + "end": 1893.26, + "probability": 0.4941 + }, + { + "start": 1893.46, + "end": 1894.88, + "probability": 0.9884 + }, + { + "start": 1895.32, + "end": 1899.42, + "probability": 0.992 + }, + { + "start": 1900.08, + "end": 1901.22, + "probability": 0.848 + }, + { + "start": 1901.8, + "end": 1905.24, + "probability": 0.9036 + }, + { + "start": 1905.24, + "end": 1909.88, + "probability": 0.9979 + }, + { + "start": 1910.4, + "end": 1913.24, + "probability": 0.9914 + }, + { + "start": 1914.12, + "end": 1918.28, + "probability": 0.9987 + }, + { + "start": 1918.64, + "end": 1919.02, + "probability": 0.9546 + }, + { + "start": 1920.38, + "end": 1923.08, + "probability": 0.8451 + }, + { + "start": 1923.5, + "end": 1924.7, + "probability": 0.8272 + }, + { + "start": 1924.78, + "end": 1927.4, + "probability": 0.9585 + }, + { + "start": 1928.02, + "end": 1928.44, + "probability": 0.2258 + }, + { + "start": 1928.44, + "end": 1929.66, + "probability": 0.5067 + }, + { + "start": 1929.82, + "end": 1933.4, + "probability": 0.9478 + }, + { + "start": 1933.76, + "end": 1936.62, + "probability": 0.3223 + }, + { + "start": 1936.64, + "end": 1939.46, + "probability": 0.8539 + }, + { + "start": 1939.6, + "end": 1940.73, + "probability": 0.9447 + }, + { + "start": 1941.14, + "end": 1943.44, + "probability": 0.7068 + }, + { + "start": 1944.68, + "end": 1945.24, + "probability": 0.8667 + }, + { + "start": 1946.1, + "end": 1946.72, + "probability": 0.8694 + }, + { + "start": 1946.72, + "end": 1947.92, + "probability": 0.7034 + }, + { + "start": 1948.26, + "end": 1949.38, + "probability": 0.7345 + }, + { + "start": 1949.5, + "end": 1950.5, + "probability": 0.5622 + }, + { + "start": 1950.8, + "end": 1951.42, + "probability": 0.5053 + }, + { + "start": 1951.82, + "end": 1954.14, + "probability": 0.9041 + }, + { + "start": 1954.38, + "end": 1955.0, + "probability": 0.1528 + }, + { + "start": 1955.06, + "end": 1957.06, + "probability": 0.3824 + }, + { + "start": 1957.18, + "end": 1960.02, + "probability": 0.6167 + }, + { + "start": 1960.8, + "end": 1963.7, + "probability": 0.9346 + }, + { + "start": 1965.22, + "end": 1968.1, + "probability": 0.9177 + }, + { + "start": 1969.08, + "end": 1971.08, + "probability": 0.9746 + }, + { + "start": 1971.62, + "end": 1973.14, + "probability": 0.9139 + }, + { + "start": 1973.2, + "end": 1975.84, + "probability": 0.673 + }, + { + "start": 1975.9, + "end": 1976.42, + "probability": 0.789 + }, + { + "start": 1976.82, + "end": 1978.8, + "probability": 0.9932 + }, + { + "start": 1979.42, + "end": 1980.88, + "probability": 0.9946 + }, + { + "start": 1981.06, + "end": 1983.96, + "probability": 0.9098 + }, + { + "start": 1984.3, + "end": 1988.14, + "probability": 0.9563 + }, + { + "start": 1989.06, + "end": 1992.74, + "probability": 0.9984 + }, + { + "start": 1992.74, + "end": 1997.76, + "probability": 0.9851 + }, + { + "start": 1998.5, + "end": 2000.91, + "probability": 0.9937 + }, + { + "start": 2001.32, + "end": 2004.7, + "probability": 0.998 + }, + { + "start": 2004.7, + "end": 2008.78, + "probability": 0.9956 + }, + { + "start": 2009.52, + "end": 2012.18, + "probability": 0.8713 + }, + { + "start": 2013.44, + "end": 2013.9, + "probability": 0.588 + }, + { + "start": 2013.96, + "end": 2014.34, + "probability": 0.8313 + }, + { + "start": 2014.4, + "end": 2018.86, + "probability": 0.9404 + }, + { + "start": 2019.2, + "end": 2020.58, + "probability": 0.9435 + }, + { + "start": 2021.48, + "end": 2024.74, + "probability": 0.9189 + }, + { + "start": 2025.32, + "end": 2027.38, + "probability": 0.7502 + }, + { + "start": 2027.38, + "end": 2030.66, + "probability": 0.9932 + }, + { + "start": 2031.1, + "end": 2032.04, + "probability": 0.8971 + }, + { + "start": 2032.4, + "end": 2034.5, + "probability": 0.9891 + }, + { + "start": 2034.58, + "end": 2035.99, + "probability": 0.9851 + }, + { + "start": 2036.2, + "end": 2040.29, + "probability": 0.9895 + }, + { + "start": 2040.62, + "end": 2042.9, + "probability": 0.9369 + }, + { + "start": 2043.8, + "end": 2046.44, + "probability": 0.8447 + }, + { + "start": 2047.24, + "end": 2050.56, + "probability": 0.973 + }, + { + "start": 2050.6, + "end": 2054.68, + "probability": 0.9188 + }, + { + "start": 2055.06, + "end": 2057.36, + "probability": 0.9721 + }, + { + "start": 2058.94, + "end": 2062.0, + "probability": 0.9871 + }, + { + "start": 2062.06, + "end": 2065.8, + "probability": 0.8289 + }, + { + "start": 2066.64, + "end": 2070.46, + "probability": 0.9271 + }, + { + "start": 2070.5, + "end": 2073.52, + "probability": 0.9722 + }, + { + "start": 2073.9, + "end": 2074.32, + "probability": 0.7826 + }, + { + "start": 2074.4, + "end": 2079.14, + "probability": 0.9967 + }, + { + "start": 2079.52, + "end": 2082.84, + "probability": 0.9954 + }, + { + "start": 2083.38, + "end": 2086.7, + "probability": 0.9683 + }, + { + "start": 2086.72, + "end": 2090.38, + "probability": 0.9979 + }, + { + "start": 2091.12, + "end": 2092.06, + "probability": 0.9922 + }, + { + "start": 2092.9, + "end": 2096.38, + "probability": 0.9472 + }, + { + "start": 2096.84, + "end": 2097.48, + "probability": 0.5918 + }, + { + "start": 2100.66, + "end": 2102.99, + "probability": 0.6382 + }, + { + "start": 2103.58, + "end": 2106.72, + "probability": 0.9851 + }, + { + "start": 2106.94, + "end": 2107.81, + "probability": 0.9307 + }, + { + "start": 2108.04, + "end": 2110.88, + "probability": 0.9973 + }, + { + "start": 2111.26, + "end": 2111.96, + "probability": 0.7277 + }, + { + "start": 2112.04, + "end": 2112.64, + "probability": 0.7154 + }, + { + "start": 2113.3, + "end": 2115.86, + "probability": 0.7995 + }, + { + "start": 2116.26, + "end": 2117.9, + "probability": 0.9986 + }, + { + "start": 2118.34, + "end": 2122.3, + "probability": 0.998 + }, + { + "start": 2122.3, + "end": 2124.64, + "probability": 0.9988 + }, + { + "start": 2125.6, + "end": 2128.38, + "probability": 0.8597 + }, + { + "start": 2129.14, + "end": 2134.04, + "probability": 0.968 + }, + { + "start": 2134.34, + "end": 2137.54, + "probability": 0.9912 + }, + { + "start": 2137.82, + "end": 2138.91, + "probability": 0.9966 + }, + { + "start": 2139.16, + "end": 2141.24, + "probability": 0.9443 + }, + { + "start": 2141.24, + "end": 2141.88, + "probability": 0.0655 + }, + { + "start": 2141.88, + "end": 2145.28, + "probability": 0.8679 + }, + { + "start": 2145.32, + "end": 2146.14, + "probability": 0.5073 + }, + { + "start": 2146.24, + "end": 2147.04, + "probability": 0.5874 + }, + { + "start": 2147.2, + "end": 2148.08, + "probability": 0.9317 + }, + { + "start": 2149.02, + "end": 2152.02, + "probability": 0.9834 + }, + { + "start": 2152.38, + "end": 2153.01, + "probability": 0.9786 + }, + { + "start": 2153.82, + "end": 2154.37, + "probability": 0.9906 + }, + { + "start": 2155.1, + "end": 2155.6, + "probability": 0.9751 + }, + { + "start": 2156.28, + "end": 2161.16, + "probability": 0.9 + }, + { + "start": 2161.54, + "end": 2165.74, + "probability": 0.9893 + }, + { + "start": 2166.08, + "end": 2168.22, + "probability": 0.9873 + }, + { + "start": 2169.22, + "end": 2172.08, + "probability": 0.998 + }, + { + "start": 2172.54, + "end": 2176.94, + "probability": 0.99 + }, + { + "start": 2177.5, + "end": 2180.86, + "probability": 0.9951 + }, + { + "start": 2181.28, + "end": 2185.78, + "probability": 0.9775 + }, + { + "start": 2185.88, + "end": 2186.52, + "probability": 0.5943 + }, + { + "start": 2186.56, + "end": 2187.92, + "probability": 0.8662 + }, + { + "start": 2188.46, + "end": 2188.9, + "probability": 0.8492 + }, + { + "start": 2188.96, + "end": 2189.87, + "probability": 0.9642 + }, + { + "start": 2190.18, + "end": 2192.34, + "probability": 0.9819 + }, + { + "start": 2192.72, + "end": 2195.97, + "probability": 0.9669 + }, + { + "start": 2196.16, + "end": 2198.82, + "probability": 0.6841 + }, + { + "start": 2199.28, + "end": 2203.28, + "probability": 0.7656 + }, + { + "start": 2203.58, + "end": 2203.68, + "probability": 0.3944 + }, + { + "start": 2203.76, + "end": 2205.44, + "probability": 0.9882 + }, + { + "start": 2205.52, + "end": 2206.62, + "probability": 0.7634 + }, + { + "start": 2206.72, + "end": 2207.66, + "probability": 0.9152 + }, + { + "start": 2208.18, + "end": 2208.38, + "probability": 0.2708 + }, + { + "start": 2208.38, + "end": 2209.9, + "probability": 0.9203 + }, + { + "start": 2212.14, + "end": 2218.6, + "probability": 0.6904 + }, + { + "start": 2219.26, + "end": 2220.32, + "probability": 0.9658 + }, + { + "start": 2221.08, + "end": 2222.72, + "probability": 0.7244 + }, + { + "start": 2224.16, + "end": 2224.52, + "probability": 0.7669 + }, + { + "start": 2225.76, + "end": 2228.78, + "probability": 0.0509 + }, + { + "start": 2229.04, + "end": 2231.6, + "probability": 0.2888 + }, + { + "start": 2232.8, + "end": 2237.94, + "probability": 0.7009 + }, + { + "start": 2239.92, + "end": 2240.96, + "probability": 0.9046 + }, + { + "start": 2241.1, + "end": 2244.12, + "probability": 0.8523 + }, + { + "start": 2244.46, + "end": 2247.68, + "probability": 0.8389 + }, + { + "start": 2253.7, + "end": 2256.2, + "probability": 0.7561 + }, + { + "start": 2256.76, + "end": 2258.22, + "probability": 0.5933 + }, + { + "start": 2258.3, + "end": 2261.74, + "probability": 0.9918 + }, + { + "start": 2261.74, + "end": 2265.02, + "probability": 0.8814 + }, + { + "start": 2265.7, + "end": 2269.44, + "probability": 0.9895 + }, + { + "start": 2269.64, + "end": 2270.92, + "probability": 0.0654 + }, + { + "start": 2271.28, + "end": 2277.88, + "probability": 0.8337 + }, + { + "start": 2277.98, + "end": 2278.36, + "probability": 0.649 + }, + { + "start": 2279.24, + "end": 2282.2, + "probability": 0.6122 + }, + { + "start": 2282.34, + "end": 2285.14, + "probability": 0.9659 + }, + { + "start": 2285.58, + "end": 2286.7, + "probability": 0.5908 + }, + { + "start": 2287.02, + "end": 2288.76, + "probability": 0.8812 + }, + { + "start": 2289.0, + "end": 2289.3, + "probability": 0.9444 + }, + { + "start": 2290.08, + "end": 2291.08, + "probability": 0.721 + }, + { + "start": 2291.24, + "end": 2295.4, + "probability": 0.981 + }, + { + "start": 2295.58, + "end": 2297.42, + "probability": 0.7657 + }, + { + "start": 2297.5, + "end": 2298.43, + "probability": 0.5488 + }, + { + "start": 2298.64, + "end": 2300.26, + "probability": 0.9365 + }, + { + "start": 2301.04, + "end": 2302.36, + "probability": 0.9563 + }, + { + "start": 2302.82, + "end": 2304.4, + "probability": 0.6225 + }, + { + "start": 2305.2, + "end": 2306.82, + "probability": 0.7686 + }, + { + "start": 2307.36, + "end": 2309.48, + "probability": 0.9629 + }, + { + "start": 2310.32, + "end": 2313.5, + "probability": 0.9451 + }, + { + "start": 2313.62, + "end": 2318.54, + "probability": 0.9904 + }, + { + "start": 2319.56, + "end": 2320.12, + "probability": 0.2913 + }, + { + "start": 2320.78, + "end": 2322.76, + "probability": 0.8304 + }, + { + "start": 2322.94, + "end": 2323.34, + "probability": 0.3455 + }, + { + "start": 2323.34, + "end": 2324.12, + "probability": 0.7144 + }, + { + "start": 2324.14, + "end": 2326.6, + "probability": 0.8455 + }, + { + "start": 2326.8, + "end": 2328.26, + "probability": 0.9648 + }, + { + "start": 2329.02, + "end": 2331.88, + "probability": 0.7462 + }, + { + "start": 2332.02, + "end": 2332.82, + "probability": 0.7626 + }, + { + "start": 2333.18, + "end": 2334.76, + "probability": 0.8857 + }, + { + "start": 2334.88, + "end": 2335.82, + "probability": 0.9251 + }, + { + "start": 2336.12, + "end": 2337.5, + "probability": 0.9114 + }, + { + "start": 2338.12, + "end": 2339.58, + "probability": 0.8054 + }, + { + "start": 2340.16, + "end": 2340.88, + "probability": 0.8318 + }, + { + "start": 2341.12, + "end": 2346.22, + "probability": 0.8216 + }, + { + "start": 2347.12, + "end": 2351.93, + "probability": 0.9758 + }, + { + "start": 2352.98, + "end": 2356.88, + "probability": 0.9456 + }, + { + "start": 2359.26, + "end": 2364.3, + "probability": 0.9916 + }, + { + "start": 2364.72, + "end": 2365.68, + "probability": 0.8818 + }, + { + "start": 2365.82, + "end": 2367.22, + "probability": 0.8851 + }, + { + "start": 2367.96, + "end": 2368.68, + "probability": 0.7445 + }, + { + "start": 2369.6, + "end": 2371.54, + "probability": 0.9606 + }, + { + "start": 2372.14, + "end": 2376.3, + "probability": 0.9957 + }, + { + "start": 2377.78, + "end": 2379.22, + "probability": 0.9912 + }, + { + "start": 2380.82, + "end": 2381.98, + "probability": 0.7319 + }, + { + "start": 2382.94, + "end": 2387.58, + "probability": 0.9658 + }, + { + "start": 2387.89, + "end": 2392.02, + "probability": 0.909 + }, + { + "start": 2392.58, + "end": 2394.12, + "probability": 0.904 + }, + { + "start": 2395.36, + "end": 2396.7, + "probability": 0.9135 + }, + { + "start": 2397.94, + "end": 2397.94, + "probability": 0.0295 + }, + { + "start": 2397.94, + "end": 2399.16, + "probability": 0.7222 + }, + { + "start": 2399.86, + "end": 2406.44, + "probability": 0.9212 + }, + { + "start": 2406.88, + "end": 2408.5, + "probability": 0.8701 + }, + { + "start": 2408.94, + "end": 2412.14, + "probability": 0.9705 + }, + { + "start": 2412.76, + "end": 2415.34, + "probability": 0.7827 + }, + { + "start": 2415.74, + "end": 2417.02, + "probability": 0.1937 + }, + { + "start": 2417.66, + "end": 2419.46, + "probability": 0.5633 + }, + { + "start": 2422.56, + "end": 2422.62, + "probability": 0.1051 + }, + { + "start": 2422.62, + "end": 2422.62, + "probability": 0.144 + }, + { + "start": 2422.62, + "end": 2423.36, + "probability": 0.7811 + }, + { + "start": 2424.0, + "end": 2424.62, + "probability": 0.9293 + }, + { + "start": 2425.16, + "end": 2426.32, + "probability": 0.896 + }, + { + "start": 2427.18, + "end": 2428.88, + "probability": 0.9331 + }, + { + "start": 2429.52, + "end": 2430.15, + "probability": 0.3165 + }, + { + "start": 2430.36, + "end": 2430.56, + "probability": 0.5716 + }, + { + "start": 2430.74, + "end": 2432.48, + "probability": 0.9114 + }, + { + "start": 2432.6, + "end": 2433.12, + "probability": 0.8674 + }, + { + "start": 2433.56, + "end": 2435.14, + "probability": 0.9434 + }, + { + "start": 2435.34, + "end": 2437.62, + "probability": 0.7954 + }, + { + "start": 2437.94, + "end": 2441.22, + "probability": 0.937 + }, + { + "start": 2441.64, + "end": 2442.8, + "probability": 0.9397 + }, + { + "start": 2443.14, + "end": 2448.0, + "probability": 0.9818 + }, + { + "start": 2448.22, + "end": 2451.34, + "probability": 0.7703 + }, + { + "start": 2451.42, + "end": 2453.44, + "probability": 0.5065 + }, + { + "start": 2453.86, + "end": 2456.12, + "probability": 0.9752 + }, + { + "start": 2456.36, + "end": 2459.92, + "probability": 0.988 + }, + { + "start": 2460.04, + "end": 2461.04, + "probability": 0.4621 + }, + { + "start": 2461.76, + "end": 2462.76, + "probability": 0.4297 + }, + { + "start": 2463.32, + "end": 2464.94, + "probability": 0.9783 + }, + { + "start": 2465.0, + "end": 2465.98, + "probability": 0.7747 + }, + { + "start": 2467.25, + "end": 2468.8, + "probability": 0.7496 + }, + { + "start": 2470.44, + "end": 2473.36, + "probability": 0.7087 + }, + { + "start": 2474.14, + "end": 2479.56, + "probability": 0.5678 + }, + { + "start": 2480.22, + "end": 2485.74, + "probability": 0.7295 + }, + { + "start": 2486.44, + "end": 2489.8, + "probability": 0.9927 + }, + { + "start": 2490.42, + "end": 2491.26, + "probability": 0.419 + }, + { + "start": 2492.18, + "end": 2497.5, + "probability": 0.9892 + }, + { + "start": 2497.58, + "end": 2499.5, + "probability": 0.762 + }, + { + "start": 2500.36, + "end": 2502.32, + "probability": 0.9797 + }, + { + "start": 2502.54, + "end": 2503.64, + "probability": 0.9871 + }, + { + "start": 2503.72, + "end": 2505.56, + "probability": 0.816 + }, + { + "start": 2505.88, + "end": 2506.9, + "probability": 0.7939 + }, + { + "start": 2507.0, + "end": 2510.24, + "probability": 0.9871 + }, + { + "start": 2510.42, + "end": 2511.7, + "probability": 0.8489 + }, + { + "start": 2511.76, + "end": 2512.31, + "probability": 0.8164 + }, + { + "start": 2512.94, + "end": 2514.78, + "probability": 0.9614 + }, + { + "start": 2514.82, + "end": 2515.6, + "probability": 0.8348 + }, + { + "start": 2515.98, + "end": 2519.66, + "probability": 0.8981 + }, + { + "start": 2519.74, + "end": 2521.37, + "probability": 0.5554 + }, + { + "start": 2521.52, + "end": 2522.68, + "probability": 0.7124 + }, + { + "start": 2522.68, + "end": 2523.16, + "probability": 0.2403 + }, + { + "start": 2523.62, + "end": 2525.4, + "probability": 0.9712 + }, + { + "start": 2525.7, + "end": 2526.04, + "probability": 0.108 + }, + { + "start": 2526.6, + "end": 2528.64, + "probability": 0.9373 + }, + { + "start": 2528.68, + "end": 2531.9, + "probability": 0.8983 + }, + { + "start": 2532.46, + "end": 2536.12, + "probability": 0.9551 + }, + { + "start": 2537.38, + "end": 2539.02, + "probability": 0.8671 + }, + { + "start": 2540.14, + "end": 2541.92, + "probability": 0.8854 + }, + { + "start": 2542.04, + "end": 2542.52, + "probability": 0.8669 + }, + { + "start": 2542.98, + "end": 2543.64, + "probability": 0.9902 + }, + { + "start": 2543.8, + "end": 2544.28, + "probability": 0.6148 + }, + { + "start": 2544.42, + "end": 2546.66, + "probability": 0.9851 + }, + { + "start": 2547.24, + "end": 2550.84, + "probability": 0.9929 + }, + { + "start": 2551.42, + "end": 2554.88, + "probability": 0.7462 + }, + { + "start": 2555.24, + "end": 2557.94, + "probability": 0.9956 + }, + { + "start": 2558.68, + "end": 2559.62, + "probability": 0.7659 + }, + { + "start": 2559.82, + "end": 2562.82, + "probability": 0.9385 + }, + { + "start": 2563.4, + "end": 2563.64, + "probability": 0.0264 + }, + { + "start": 2564.84, + "end": 2573.12, + "probability": 0.9855 + }, + { + "start": 2573.54, + "end": 2579.88, + "probability": 0.9847 + }, + { + "start": 2580.38, + "end": 2584.2, + "probability": 0.9124 + }, + { + "start": 2584.48, + "end": 2587.06, + "probability": 0.9334 + }, + { + "start": 2587.82, + "end": 2590.34, + "probability": 0.5737 + }, + { + "start": 2591.22, + "end": 2592.08, + "probability": 0.5299 + }, + { + "start": 2592.16, + "end": 2595.86, + "probability": 0.946 + }, + { + "start": 2596.4, + "end": 2599.86, + "probability": 0.9017 + }, + { + "start": 2600.65, + "end": 2603.61, + "probability": 0.6833 + }, + { + "start": 2604.8, + "end": 2606.68, + "probability": 0.9097 + }, + { + "start": 2607.16, + "end": 2610.35, + "probability": 0.8736 + }, + { + "start": 2612.56, + "end": 2615.12, + "probability": 0.9255 + }, + { + "start": 2615.68, + "end": 2620.6, + "probability": 0.925 + }, + { + "start": 2621.68, + "end": 2621.78, + "probability": 0.8793 + }, + { + "start": 2623.0, + "end": 2624.44, + "probability": 0.9769 + }, + { + "start": 2624.7, + "end": 2628.82, + "probability": 0.9503 + }, + { + "start": 2628.9, + "end": 2631.32, + "probability": 0.8967 + }, + { + "start": 2631.82, + "end": 2633.82, + "probability": 0.8613 + }, + { + "start": 2633.94, + "end": 2635.5, + "probability": 0.9813 + }, + { + "start": 2638.66, + "end": 2638.72, + "probability": 0.1549 + }, + { + "start": 2638.72, + "end": 2639.82, + "probability": 0.8054 + }, + { + "start": 2640.28, + "end": 2640.28, + "probability": 0.0237 + }, + { + "start": 2640.28, + "end": 2640.28, + "probability": 0.5297 + }, + { + "start": 2640.28, + "end": 2641.76, + "probability": 0.9558 + }, + { + "start": 2641.76, + "end": 2644.34, + "probability": 0.8082 + }, + { + "start": 2644.38, + "end": 2645.1, + "probability": 0.6377 + }, + { + "start": 2645.3, + "end": 2650.86, + "probability": 0.9876 + }, + { + "start": 2651.4, + "end": 2653.26, + "probability": 0.7654 + }, + { + "start": 2653.68, + "end": 2657.16, + "probability": 0.7091 + }, + { + "start": 2657.16, + "end": 2660.4, + "probability": 0.9904 + }, + { + "start": 2660.84, + "end": 2661.3, + "probability": 0.5738 + }, + { + "start": 2662.32, + "end": 2666.22, + "probability": 0.9929 + }, + { + "start": 2667.06, + "end": 2669.58, + "probability": 0.9873 + }, + { + "start": 2669.88, + "end": 2671.86, + "probability": 0.9985 + }, + { + "start": 2672.3, + "end": 2674.8, + "probability": 0.865 + }, + { + "start": 2675.32, + "end": 2676.33, + "probability": 0.7292 + }, + { + "start": 2676.48, + "end": 2677.04, + "probability": 0.7362 + }, + { + "start": 2677.7, + "end": 2680.32, + "probability": 0.9865 + }, + { + "start": 2680.78, + "end": 2683.46, + "probability": 0.9902 + }, + { + "start": 2683.46, + "end": 2687.18, + "probability": 0.8604 + }, + { + "start": 2687.34, + "end": 2691.56, + "probability": 0.9601 + }, + { + "start": 2691.84, + "end": 2695.52, + "probability": 0.7568 + }, + { + "start": 2695.52, + "end": 2697.5, + "probability": 0.9708 + }, + { + "start": 2697.88, + "end": 2699.42, + "probability": 0.5079 + }, + { + "start": 2699.54, + "end": 2703.48, + "probability": 0.9868 + }, + { + "start": 2703.88, + "end": 2705.54, + "probability": 0.9785 + }, + { + "start": 2706.1, + "end": 2709.08, + "probability": 0.999 + }, + { + "start": 2709.54, + "end": 2710.78, + "probability": 0.9834 + }, + { + "start": 2711.1, + "end": 2716.28, + "probability": 0.9429 + }, + { + "start": 2716.68, + "end": 2719.8, + "probability": 0.9863 + }, + { + "start": 2720.64, + "end": 2722.76, + "probability": 0.9918 + }, + { + "start": 2723.8, + "end": 2724.56, + "probability": 0.6456 + }, + { + "start": 2724.78, + "end": 2725.16, + "probability": 0.3464 + }, + { + "start": 2725.26, + "end": 2725.96, + "probability": 0.819 + }, + { + "start": 2726.04, + "end": 2731.22, + "probability": 0.9871 + }, + { + "start": 2731.56, + "end": 2733.1, + "probability": 0.9147 + }, + { + "start": 2733.82, + "end": 2737.96, + "probability": 0.7993 + }, + { + "start": 2738.04, + "end": 2738.58, + "probability": 0.983 + }, + { + "start": 2739.06, + "end": 2739.76, + "probability": 0.6704 + }, + { + "start": 2739.98, + "end": 2740.92, + "probability": 0.7448 + }, + { + "start": 2741.04, + "end": 2741.32, + "probability": 0.9009 + }, + { + "start": 2741.36, + "end": 2742.2, + "probability": 0.9446 + }, + { + "start": 2742.56, + "end": 2745.74, + "probability": 0.9879 + }, + { + "start": 2746.26, + "end": 2747.62, + "probability": 0.9602 + }, + { + "start": 2748.12, + "end": 2748.78, + "probability": 0.2771 + }, + { + "start": 2748.84, + "end": 2750.38, + "probability": 0.8428 + }, + { + "start": 2750.7, + "end": 2752.4, + "probability": 0.7469 + }, + { + "start": 2752.82, + "end": 2753.46, + "probability": 0.9269 + }, + { + "start": 2754.54, + "end": 2758.22, + "probability": 0.8627 + }, + { + "start": 2758.68, + "end": 2758.94, + "probability": 0.0776 + }, + { + "start": 2758.94, + "end": 2758.94, + "probability": 0.0264 + }, + { + "start": 2758.94, + "end": 2762.98, + "probability": 0.986 + }, + { + "start": 2762.98, + "end": 2767.08, + "probability": 0.7925 + }, + { + "start": 2767.74, + "end": 2769.67, + "probability": 0.9893 + }, + { + "start": 2769.86, + "end": 2771.46, + "probability": 0.9588 + }, + { + "start": 2771.82, + "end": 2772.92, + "probability": 0.9634 + }, + { + "start": 2773.2, + "end": 2774.24, + "probability": 0.8796 + }, + { + "start": 2774.84, + "end": 2778.34, + "probability": 0.9627 + }, + { + "start": 2778.46, + "end": 2780.62, + "probability": 0.9932 + }, + { + "start": 2781.46, + "end": 2783.34, + "probability": 0.9852 + }, + { + "start": 2783.82, + "end": 2784.34, + "probability": 0.6552 + }, + { + "start": 2784.42, + "end": 2786.02, + "probability": 0.9858 + }, + { + "start": 2786.26, + "end": 2787.29, + "probability": 0.9783 + }, + { + "start": 2788.24, + "end": 2793.09, + "probability": 0.9971 + }, + { + "start": 2793.22, + "end": 2796.04, + "probability": 0.7594 + }, + { + "start": 2796.68, + "end": 2801.56, + "probability": 0.9847 + }, + { + "start": 2801.82, + "end": 2803.44, + "probability": 0.8833 + }, + { + "start": 2803.5, + "end": 2804.86, + "probability": 0.7534 + }, + { + "start": 2805.06, + "end": 2808.72, + "probability": 0.7276 + }, + { + "start": 2808.78, + "end": 2809.16, + "probability": 0.8707 + }, + { + "start": 2809.7, + "end": 2810.94, + "probability": 0.8999 + }, + { + "start": 2811.16, + "end": 2812.38, + "probability": 0.9878 + }, + { + "start": 2812.7, + "end": 2812.92, + "probability": 0.556 + }, + { + "start": 2813.56, + "end": 2818.6, + "probability": 0.9705 + }, + { + "start": 2819.14, + "end": 2821.52, + "probability": 0.2742 + }, + { + "start": 2821.96, + "end": 2823.12, + "probability": 0.8893 + }, + { + "start": 2823.24, + "end": 2824.64, + "probability": 0.7333 + }, + { + "start": 2825.18, + "end": 2825.34, + "probability": 0.016 + }, + { + "start": 2825.34, + "end": 2825.34, + "probability": 0.0042 + }, + { + "start": 2825.34, + "end": 2828.2, + "probability": 0.9604 + }, + { + "start": 2828.5, + "end": 2834.56, + "probability": 0.98 + }, + { + "start": 2834.58, + "end": 2834.68, + "probability": 0.0663 + }, + { + "start": 2834.72, + "end": 2835.38, + "probability": 0.6842 + }, + { + "start": 2835.5, + "end": 2839.42, + "probability": 0.974 + }, + { + "start": 2840.32, + "end": 2841.82, + "probability": 0.9877 + }, + { + "start": 2842.0, + "end": 2843.96, + "probability": 0.9755 + }, + { + "start": 2844.34, + "end": 2845.32, + "probability": 0.7957 + }, + { + "start": 2845.94, + "end": 2847.82, + "probability": 0.9034 + }, + { + "start": 2847.9, + "end": 2849.72, + "probability": 0.5762 + }, + { + "start": 2849.8, + "end": 2851.8, + "probability": 0.9688 + }, + { + "start": 2851.88, + "end": 2855.24, + "probability": 0.9786 + }, + { + "start": 2857.96, + "end": 2860.38, + "probability": 0.0236 + }, + { + "start": 2860.38, + "end": 2860.4, + "probability": 0.1993 + }, + { + "start": 2860.4, + "end": 2860.4, + "probability": 0.0603 + }, + { + "start": 2860.4, + "end": 2860.4, + "probability": 0.0728 + }, + { + "start": 2860.4, + "end": 2860.7, + "probability": 0.0813 + }, + { + "start": 2861.24, + "end": 2863.56, + "probability": 0.4365 + }, + { + "start": 2864.1, + "end": 2864.84, + "probability": 0.3115 + }, + { + "start": 2864.84, + "end": 2864.86, + "probability": 0.3945 + }, + { + "start": 2864.86, + "end": 2869.08, + "probability": 0.4726 + }, + { + "start": 2869.08, + "end": 2870.38, + "probability": 0.5782 + }, + { + "start": 2870.5, + "end": 2871.56, + "probability": 0.3182 + }, + { + "start": 2871.56, + "end": 2872.32, + "probability": 0.733 + }, + { + "start": 2873.44, + "end": 2873.46, + "probability": 0.4769 + }, + { + "start": 2873.46, + "end": 2874.5, + "probability": 0.6932 + }, + { + "start": 2874.5, + "end": 2877.28, + "probability": 0.7359 + }, + { + "start": 2877.3, + "end": 2878.34, + "probability": 0.0933 + }, + { + "start": 2878.38, + "end": 2879.34, + "probability": 0.2948 + }, + { + "start": 2879.98, + "end": 2881.22, + "probability": 0.843 + }, + { + "start": 2881.3, + "end": 2884.78, + "probability": 0.9635 + }, + { + "start": 2884.96, + "end": 2884.98, + "probability": 0.0878 + }, + { + "start": 2884.98, + "end": 2885.12, + "probability": 0.1304 + }, + { + "start": 2885.57, + "end": 2887.8, + "probability": 0.8478 + }, + { + "start": 2887.98, + "end": 2890.1, + "probability": 0.7727 + }, + { + "start": 2890.12, + "end": 2890.55, + "probability": 0.1909 + }, + { + "start": 2891.2, + "end": 2891.58, + "probability": 0.7158 + }, + { + "start": 2891.64, + "end": 2894.18, + "probability": 0.9883 + }, + { + "start": 2895.22, + "end": 2897.34, + "probability": 0.7004 + }, + { + "start": 2897.46, + "end": 2898.54, + "probability": 0.9456 + }, + { + "start": 2899.04, + "end": 2900.16, + "probability": 0.8369 + }, + { + "start": 2900.58, + "end": 2901.18, + "probability": 0.9365 + }, + { + "start": 2901.84, + "end": 2902.58, + "probability": 0.737 + }, + { + "start": 2902.86, + "end": 2907.14, + "probability": 0.9895 + }, + { + "start": 2907.14, + "end": 2911.4, + "probability": 0.9782 + }, + { + "start": 2911.4, + "end": 2912.94, + "probability": 0.5081 + }, + { + "start": 2913.32, + "end": 2917.54, + "probability": 0.9971 + }, + { + "start": 2918.06, + "end": 2919.12, + "probability": 0.8411 + }, + { + "start": 2919.48, + "end": 2922.2, + "probability": 0.8971 + }, + { + "start": 2923.3, + "end": 2923.72, + "probability": 0.783 + }, + { + "start": 2924.06, + "end": 2926.56, + "probability": 0.9666 + }, + { + "start": 2926.74, + "end": 2928.99, + "probability": 0.9866 + }, + { + "start": 2929.16, + "end": 2934.12, + "probability": 0.8003 + }, + { + "start": 2934.22, + "end": 2935.3, + "probability": 0.879 + }, + { + "start": 2935.7, + "end": 2938.68, + "probability": 0.9961 + }, + { + "start": 2939.7, + "end": 2941.72, + "probability": 0.9967 + }, + { + "start": 2942.38, + "end": 2942.78, + "probability": 0.8629 + }, + { + "start": 2943.4, + "end": 2943.52, + "probability": 0.1923 + }, + { + "start": 2943.54, + "end": 2943.54, + "probability": 0.399 + }, + { + "start": 2943.54, + "end": 2944.6, + "probability": 0.9012 + }, + { + "start": 2944.68, + "end": 2945.66, + "probability": 0.8047 + }, + { + "start": 2945.78, + "end": 2947.36, + "probability": 0.687 + }, + { + "start": 2947.54, + "end": 2948.18, + "probability": 0.8205 + }, + { + "start": 2949.38, + "end": 2951.92, + "probability": 0.6708 + }, + { + "start": 2953.36, + "end": 2957.54, + "probability": 0.9863 + }, + { + "start": 2958.04, + "end": 2960.8, + "probability": 0.9811 + }, + { + "start": 2961.2, + "end": 2968.04, + "probability": 0.9885 + }, + { + "start": 2968.88, + "end": 2969.06, + "probability": 0.3863 + }, + { + "start": 2971.62, + "end": 2973.34, + "probability": 0.9961 + }, + { + "start": 2973.42, + "end": 2974.98, + "probability": 0.8682 + }, + { + "start": 2975.66, + "end": 2976.42, + "probability": 0.9258 + }, + { + "start": 2977.56, + "end": 2980.54, + "probability": 0.998 + }, + { + "start": 2980.54, + "end": 2984.5, + "probability": 0.9351 + }, + { + "start": 2984.66, + "end": 2985.22, + "probability": 0.6008 + }, + { + "start": 2985.24, + "end": 2987.84, + "probability": 0.9917 + }, + { + "start": 2988.3, + "end": 2991.98, + "probability": 0.9987 + }, + { + "start": 2992.62, + "end": 2993.16, + "probability": 0.8373 + }, + { + "start": 2993.58, + "end": 2998.84, + "probability": 0.9855 + }, + { + "start": 2999.82, + "end": 3003.52, + "probability": 0.9697 + }, + { + "start": 3004.32, + "end": 3006.12, + "probability": 0.916 + }, + { + "start": 3006.18, + "end": 3007.68, + "probability": 0.9643 + }, + { + "start": 3008.36, + "end": 3009.22, + "probability": 0.9873 + }, + { + "start": 3009.98, + "end": 3014.54, + "probability": 0.97 + }, + { + "start": 3014.64, + "end": 3015.01, + "probability": 0.8792 + }, + { + "start": 3015.5, + "end": 3018.06, + "probability": 0.7693 + }, + { + "start": 3018.12, + "end": 3018.9, + "probability": 0.8216 + }, + { + "start": 3020.22, + "end": 3025.06, + "probability": 0.9859 + }, + { + "start": 3025.61, + "end": 3029.22, + "probability": 0.8038 + }, + { + "start": 3029.62, + "end": 3032.84, + "probability": 0.618 + }, + { + "start": 3032.84, + "end": 3032.98, + "probability": 0.1043 + }, + { + "start": 3033.38, + "end": 3035.29, + "probability": 0.7319 + }, + { + "start": 3035.36, + "end": 3036.22, + "probability": 0.5903 + }, + { + "start": 3036.8, + "end": 3039.88, + "probability": 0.9823 + }, + { + "start": 3040.34, + "end": 3041.14, + "probability": 0.849 + }, + { + "start": 3041.52, + "end": 3044.34, + "probability": 0.9214 + }, + { + "start": 3044.72, + "end": 3047.22, + "probability": 0.9441 + }, + { + "start": 3048.32, + "end": 3050.7, + "probability": 0.9543 + }, + { + "start": 3050.86, + "end": 3055.92, + "probability": 0.9769 + }, + { + "start": 3056.06, + "end": 3056.34, + "probability": 0.4638 + }, + { + "start": 3057.58, + "end": 3058.84, + "probability": 0.7517 + }, + { + "start": 3059.56, + "end": 3063.89, + "probability": 0.4781 + }, + { + "start": 3065.0, + "end": 3066.9, + "probability": 0.6335 + }, + { + "start": 3068.24, + "end": 3070.7, + "probability": 0.8421 + }, + { + "start": 3070.96, + "end": 3074.32, + "probability": 0.9968 + }, + { + "start": 3075.86, + "end": 3076.42, + "probability": 0.52 + }, + { + "start": 3077.4, + "end": 3078.32, + "probability": 0.4413 + }, + { + "start": 3078.64, + "end": 3080.52, + "probability": 0.8111 + }, + { + "start": 3080.56, + "end": 3081.92, + "probability": 0.9416 + }, + { + "start": 3082.54, + "end": 3084.15, + "probability": 0.8726 + }, + { + "start": 3085.13, + "end": 3086.1, + "probability": 0.8694 + }, + { + "start": 3086.16, + "end": 3086.62, + "probability": 0.8538 + }, + { + "start": 3086.72, + "end": 3087.12, + "probability": 0.5492 + }, + { + "start": 3087.5, + "end": 3090.8, + "probability": 0.9651 + }, + { + "start": 3091.04, + "end": 3091.26, + "probability": 0.6218 + }, + { + "start": 3091.36, + "end": 3092.48, + "probability": 0.9902 + }, + { + "start": 3092.64, + "end": 3094.16, + "probability": 0.9307 + }, + { + "start": 3094.26, + "end": 3095.8, + "probability": 0.9276 + }, + { + "start": 3096.22, + "end": 3096.28, + "probability": 0.417 + }, + { + "start": 3096.28, + "end": 3096.28, + "probability": 0.3786 + }, + { + "start": 3096.28, + "end": 3096.64, + "probability": 0.6773 + }, + { + "start": 3096.84, + "end": 3102.86, + "probability": 0.7983 + }, + { + "start": 3103.06, + "end": 3106.22, + "probability": 0.7719 + }, + { + "start": 3107.06, + "end": 3109.19, + "probability": 0.9987 + }, + { + "start": 3109.96, + "end": 3112.82, + "probability": 0.9983 + }, + { + "start": 3113.5, + "end": 3114.68, + "probability": 0.5754 + }, + { + "start": 3115.88, + "end": 3121.12, + "probability": 0.9476 + }, + { + "start": 3121.84, + "end": 3122.86, + "probability": 0.7272 + }, + { + "start": 3123.18, + "end": 3124.4, + "probability": 0.8537 + }, + { + "start": 3124.58, + "end": 3125.4, + "probability": 0.7512 + }, + { + "start": 3125.46, + "end": 3131.54, + "probability": 0.9102 + }, + { + "start": 3132.84, + "end": 3134.16, + "probability": 0.8704 + }, + { + "start": 3134.44, + "end": 3134.92, + "probability": 0.542 + }, + { + "start": 3135.04, + "end": 3136.66, + "probability": 0.5037 + }, + { + "start": 3136.66, + "end": 3136.84, + "probability": 0.0772 + }, + { + "start": 3137.68, + "end": 3140.62, + "probability": 0.3498 + }, + { + "start": 3142.0, + "end": 3142.42, + "probability": 0.5098 + }, + { + "start": 3143.92, + "end": 3145.34, + "probability": 0.2245 + }, + { + "start": 3145.5, + "end": 3146.18, + "probability": 0.9269 + }, + { + "start": 3146.84, + "end": 3148.7, + "probability": 0.9985 + }, + { + "start": 3148.76, + "end": 3149.9, + "probability": 0.5661 + }, + { + "start": 3150.0, + "end": 3150.3, + "probability": 0.6518 + }, + { + "start": 3150.32, + "end": 3150.72, + "probability": 0.1972 + }, + { + "start": 3150.82, + "end": 3151.58, + "probability": 0.1614 + }, + { + "start": 3151.74, + "end": 3154.54, + "probability": 0.9766 + }, + { + "start": 3154.76, + "end": 3157.1, + "probability": 0.3781 + }, + { + "start": 3157.86, + "end": 3157.93, + "probability": 0.2159 + }, + { + "start": 3158.3, + "end": 3159.34, + "probability": 0.7389 + }, + { + "start": 3159.6, + "end": 3162.36, + "probability": 0.9765 + }, + { + "start": 3162.36, + "end": 3164.6, + "probability": 0.9952 + }, + { + "start": 3165.24, + "end": 3169.98, + "probability": 0.9906 + }, + { + "start": 3170.66, + "end": 3171.82, + "probability": 0.7661 + }, + { + "start": 3171.88, + "end": 3173.0, + "probability": 0.1306 + }, + { + "start": 3173.66, + "end": 3176.04, + "probability": 0.7378 + }, + { + "start": 3176.22, + "end": 3177.72, + "probability": 0.5793 + }, + { + "start": 3177.78, + "end": 3178.8, + "probability": 0.6644 + }, + { + "start": 3178.94, + "end": 3180.58, + "probability": 0.9988 + }, + { + "start": 3181.82, + "end": 3183.06, + "probability": 0.9739 + }, + { + "start": 3183.4, + "end": 3185.16, + "probability": 0.9905 + }, + { + "start": 3185.39, + "end": 3187.88, + "probability": 0.921 + }, + { + "start": 3188.1, + "end": 3188.56, + "probability": 0.2153 + }, + { + "start": 3189.3, + "end": 3189.78, + "probability": 0.2312 + }, + { + "start": 3190.14, + "end": 3190.96, + "probability": 0.6743 + }, + { + "start": 3191.0, + "end": 3191.51, + "probability": 0.5118 + }, + { + "start": 3191.68, + "end": 3193.52, + "probability": 0.6662 + }, + { + "start": 3193.52, + "end": 3196.14, + "probability": 0.4327 + }, + { + "start": 3196.28, + "end": 3197.64, + "probability": 0.9976 + }, + { + "start": 3198.24, + "end": 3198.91, + "probability": 0.4687 + }, + { + "start": 3199.3, + "end": 3201.28, + "probability": 0.9644 + }, + { + "start": 3201.42, + "end": 3204.06, + "probability": 0.9907 + }, + { + "start": 3204.86, + "end": 3206.84, + "probability": 0.9966 + }, + { + "start": 3206.84, + "end": 3210.24, + "probability": 0.9865 + }, + { + "start": 3210.24, + "end": 3213.04, + "probability": 0.2117 + }, + { + "start": 3213.04, + "end": 3213.04, + "probability": 0.0293 + }, + { + "start": 3213.04, + "end": 3213.78, + "probability": 0.0804 + }, + { + "start": 3215.24, + "end": 3216.78, + "probability": 0.9181 + }, + { + "start": 3217.1, + "end": 3217.48, + "probability": 0.8809 + }, + { + "start": 3218.56, + "end": 3219.2, + "probability": 0.6034 + }, + { + "start": 3219.34, + "end": 3221.06, + "probability": 0.8724 + }, + { + "start": 3221.06, + "end": 3221.84, + "probability": 0.9035 + }, + { + "start": 3222.08, + "end": 3227.34, + "probability": 0.9957 + }, + { + "start": 3227.4, + "end": 3231.62, + "probability": 0.9918 + }, + { + "start": 3231.9, + "end": 3232.0, + "probability": 0.3978 + }, + { + "start": 3232.62, + "end": 3234.06, + "probability": 0.939 + }, + { + "start": 3234.96, + "end": 3235.78, + "probability": 0.992 + }, + { + "start": 3236.98, + "end": 3240.32, + "probability": 0.8891 + }, + { + "start": 3240.92, + "end": 3243.18, + "probability": 0.9631 + }, + { + "start": 3243.22, + "end": 3245.32, + "probability": 0.7724 + }, + { + "start": 3246.98, + "end": 3252.52, + "probability": 0.908 + }, + { + "start": 3253.12, + "end": 3253.5, + "probability": 0.8466 + }, + { + "start": 3254.28, + "end": 3257.78, + "probability": 0.9977 + }, + { + "start": 3258.84, + "end": 3260.92, + "probability": 0.962 + }, + { + "start": 3261.54, + "end": 3263.02, + "probability": 0.8892 + }, + { + "start": 3263.5, + "end": 3265.0, + "probability": 0.762 + }, + { + "start": 3265.36, + "end": 3266.28, + "probability": 0.9268 + }, + { + "start": 3266.36, + "end": 3268.8, + "probability": 0.9409 + }, + { + "start": 3269.28, + "end": 3271.44, + "probability": 0.8853 + }, + { + "start": 3271.6, + "end": 3273.8, + "probability": 0.9482 + }, + { + "start": 3273.96, + "end": 3277.54, + "probability": 0.8448 + }, + { + "start": 3277.68, + "end": 3279.68, + "probability": 0.8612 + }, + { + "start": 3280.2, + "end": 3281.94, + "probability": 0.8148 + }, + { + "start": 3282.12, + "end": 3282.8, + "probability": 0.7777 + }, + { + "start": 3282.94, + "end": 3283.64, + "probability": 0.5422 + }, + { + "start": 3284.08, + "end": 3285.82, + "probability": 0.8988 + }, + { + "start": 3286.08, + "end": 3290.16, + "probability": 0.8877 + }, + { + "start": 3290.66, + "end": 3293.62, + "probability": 0.9681 + }, + { + "start": 3294.32, + "end": 3296.27, + "probability": 0.9732 + }, + { + "start": 3298.08, + "end": 3300.86, + "probability": 0.9372 + }, + { + "start": 3301.68, + "end": 3307.6, + "probability": 0.9941 + }, + { + "start": 3309.08, + "end": 3314.02, + "probability": 0.9976 + }, + { + "start": 3314.56, + "end": 3316.28, + "probability": 0.9976 + }, + { + "start": 3316.88, + "end": 3317.62, + "probability": 0.9612 + }, + { + "start": 3317.74, + "end": 3318.18, + "probability": 0.8685 + }, + { + "start": 3318.4, + "end": 3321.8, + "probability": 0.8384 + }, + { + "start": 3322.36, + "end": 3325.18, + "probability": 0.6095 + }, + { + "start": 3325.18, + "end": 3327.6, + "probability": 0.8494 + }, + { + "start": 3327.6, + "end": 3329.72, + "probability": 0.9846 + }, + { + "start": 3330.02, + "end": 3331.12, + "probability": 0.7794 + }, + { + "start": 3331.92, + "end": 3332.52, + "probability": 0.5518 + }, + { + "start": 3332.7, + "end": 3333.76, + "probability": 0.7585 + }, + { + "start": 3334.38, + "end": 3336.68, + "probability": 0.8432 + }, + { + "start": 3337.52, + "end": 3340.66, + "probability": 0.6005 + }, + { + "start": 3341.52, + "end": 3343.86, + "probability": 0.522 + }, + { + "start": 3344.06, + "end": 3346.14, + "probability": 0.9506 + }, + { + "start": 3349.03, + "end": 3349.62, + "probability": 0.2469 + }, + { + "start": 3349.62, + "end": 3352.42, + "probability": 0.6241 + }, + { + "start": 3353.3, + "end": 3356.64, + "probability": 0.9613 + }, + { + "start": 3356.64, + "end": 3356.71, + "probability": 0.2533 + }, + { + "start": 3359.22, + "end": 3359.78, + "probability": 0.5509 + }, + { + "start": 3359.9, + "end": 3360.6, + "probability": 0.4785 + }, + { + "start": 3360.78, + "end": 3362.76, + "probability": 0.6711 + }, + { + "start": 3363.08, + "end": 3366.42, + "probability": 0.9854 + }, + { + "start": 3366.7, + "end": 3369.9, + "probability": 0.9535 + }, + { + "start": 3370.04, + "end": 3373.08, + "probability": 0.9973 + }, + { + "start": 3373.22, + "end": 3378.26, + "probability": 0.9626 + }, + { + "start": 3378.88, + "end": 3385.1, + "probability": 0.9683 + }, + { + "start": 3385.52, + "end": 3386.02, + "probability": 0.7405 + }, + { + "start": 3386.44, + "end": 3387.98, + "probability": 0.7151 + }, + { + "start": 3388.38, + "end": 3390.94, + "probability": 0.9953 + }, + { + "start": 3391.68, + "end": 3394.62, + "probability": 0.8433 + }, + { + "start": 3395.52, + "end": 3398.44, + "probability": 0.9707 + }, + { + "start": 3398.64, + "end": 3400.2, + "probability": 0.9359 + }, + { + "start": 3400.32, + "end": 3401.28, + "probability": 0.8312 + }, + { + "start": 3401.76, + "end": 3402.24, + "probability": 0.5083 + }, + { + "start": 3402.3, + "end": 3403.0, + "probability": 0.8728 + }, + { + "start": 3403.36, + "end": 3405.08, + "probability": 0.9786 + }, + { + "start": 3405.38, + "end": 3408.72, + "probability": 0.765 + }, + { + "start": 3409.08, + "end": 3409.7, + "probability": 0.7438 + }, + { + "start": 3409.78, + "end": 3410.9, + "probability": 0.9771 + }, + { + "start": 3410.96, + "end": 3414.24, + "probability": 0.9733 + }, + { + "start": 3414.52, + "end": 3417.68, + "probability": 0.9961 + }, + { + "start": 3418.14, + "end": 3420.96, + "probability": 0.9929 + }, + { + "start": 3421.56, + "end": 3422.06, + "probability": 0.8488 + }, + { + "start": 3422.16, + "end": 3424.88, + "probability": 0.9673 + }, + { + "start": 3425.66, + "end": 3429.02, + "probability": 0.9687 + }, + { + "start": 3429.6, + "end": 3431.62, + "probability": 0.9832 + }, + { + "start": 3431.8, + "end": 3433.6, + "probability": 0.9541 + }, + { + "start": 3433.72, + "end": 3436.9, + "probability": 0.9544 + }, + { + "start": 3437.36, + "end": 3442.28, + "probability": 0.9929 + }, + { + "start": 3442.82, + "end": 3445.54, + "probability": 0.9465 + }, + { + "start": 3446.0, + "end": 3450.88, + "probability": 0.9761 + }, + { + "start": 3451.0, + "end": 3452.52, + "probability": 0.9328 + }, + { + "start": 3452.84, + "end": 3454.36, + "probability": 0.976 + }, + { + "start": 3454.46, + "end": 3459.6, + "probability": 0.8739 + }, + { + "start": 3459.8, + "end": 3460.48, + "probability": 0.9038 + }, + { + "start": 3461.1, + "end": 3464.0, + "probability": 0.8656 + }, + { + "start": 3464.32, + "end": 3464.46, + "probability": 0.6595 + }, + { + "start": 3464.54, + "end": 3465.14, + "probability": 0.8788 + }, + { + "start": 3465.5, + "end": 3466.0, + "probability": 0.3934 + }, + { + "start": 3466.04, + "end": 3469.12, + "probability": 0.9932 + }, + { + "start": 3469.66, + "end": 3470.86, + "probability": 0.695 + }, + { + "start": 3471.16, + "end": 3475.5, + "probability": 0.9963 + }, + { + "start": 3476.2, + "end": 3476.99, + "probability": 0.7118 + }, + { + "start": 3477.06, + "end": 3478.54, + "probability": 0.8541 + }, + { + "start": 3478.6, + "end": 3481.8, + "probability": 0.8608 + }, + { + "start": 3482.0, + "end": 3484.98, + "probability": 0.9907 + }, + { + "start": 3485.08, + "end": 3488.12, + "probability": 0.9961 + }, + { + "start": 3488.52, + "end": 3489.58, + "probability": 0.7586 + }, + { + "start": 3489.7, + "end": 3490.12, + "probability": 0.1421 + }, + { + "start": 3490.38, + "end": 3490.56, + "probability": 0.1586 + }, + { + "start": 3490.56, + "end": 3491.38, + "probability": 0.8599 + }, + { + "start": 3491.5, + "end": 3491.7, + "probability": 0.3976 + }, + { + "start": 3491.7, + "end": 3493.6, + "probability": 0.8129 + }, + { + "start": 3494.02, + "end": 3495.18, + "probability": 0.8383 + }, + { + "start": 3495.74, + "end": 3497.46, + "probability": 0.9429 + }, + { + "start": 3497.76, + "end": 3498.17, + "probability": 0.5415 + }, + { + "start": 3498.64, + "end": 3501.76, + "probability": 0.9778 + }, + { + "start": 3501.82, + "end": 3506.54, + "probability": 0.9868 + }, + { + "start": 3506.86, + "end": 3508.86, + "probability": 0.9655 + }, + { + "start": 3509.8, + "end": 3514.42, + "probability": 0.9375 + }, + { + "start": 3514.62, + "end": 3517.0, + "probability": 0.6991 + }, + { + "start": 3517.02, + "end": 3518.46, + "probability": 0.7021 + }, + { + "start": 3518.66, + "end": 3519.04, + "probability": 0.5508 + }, + { + "start": 3519.04, + "end": 3519.62, + "probability": 0.4 + }, + { + "start": 3520.22, + "end": 3523.52, + "probability": 0.9682 + }, + { + "start": 3524.44, + "end": 3526.7, + "probability": 0.8795 + }, + { + "start": 3527.26, + "end": 3529.18, + "probability": 0.8206 + }, + { + "start": 3529.48, + "end": 3531.04, + "probability": 0.7663 + }, + { + "start": 3532.54, + "end": 3534.32, + "probability": 0.7421 + }, + { + "start": 3535.22, + "end": 3538.16, + "probability": 0.8916 + }, + { + "start": 3538.62, + "end": 3538.8, + "probability": 0.5596 + }, + { + "start": 3538.84, + "end": 3539.37, + "probability": 0.8467 + }, + { + "start": 3540.02, + "end": 3541.84, + "probability": 0.6788 + }, + { + "start": 3542.66, + "end": 3544.56, + "probability": 0.9601 + }, + { + "start": 3545.1, + "end": 3549.6, + "probability": 0.6033 + }, + { + "start": 3549.7, + "end": 3550.2, + "probability": 0.6676 + }, + { + "start": 3550.44, + "end": 3550.44, + "probability": 0.8657 + }, + { + "start": 3551.28, + "end": 3553.72, + "probability": 0.9698 + }, + { + "start": 3554.42, + "end": 3558.24, + "probability": 0.9706 + }, + { + "start": 3558.98, + "end": 3561.28, + "probability": 0.9937 + }, + { + "start": 3561.8, + "end": 3564.46, + "probability": 0.9345 + }, + { + "start": 3565.1, + "end": 3566.3, + "probability": 0.831 + }, + { + "start": 3566.82, + "end": 3568.64, + "probability": 0.9981 + }, + { + "start": 3569.22, + "end": 3570.54, + "probability": 0.864 + }, + { + "start": 3571.06, + "end": 3571.98, + "probability": 0.7861 + }, + { + "start": 3572.1, + "end": 3572.68, + "probability": 0.8268 + }, + { + "start": 3572.8, + "end": 3575.86, + "probability": 0.957 + }, + { + "start": 3576.64, + "end": 3581.04, + "probability": 0.9973 + }, + { + "start": 3581.62, + "end": 3582.28, + "probability": 0.7793 + }, + { + "start": 3582.92, + "end": 3588.56, + "probability": 0.9926 + }, + { + "start": 3588.58, + "end": 3592.62, + "probability": 0.9495 + }, + { + "start": 3593.34, + "end": 3598.5, + "probability": 0.9611 + }, + { + "start": 3598.78, + "end": 3599.9, + "probability": 0.9797 + }, + { + "start": 3600.04, + "end": 3601.24, + "probability": 0.8855 + }, + { + "start": 3601.74, + "end": 3606.18, + "probability": 0.9525 + }, + { + "start": 3606.52, + "end": 3607.6, + "probability": 0.875 + }, + { + "start": 3607.72, + "end": 3607.88, + "probability": 0.6584 + }, + { + "start": 3608.54, + "end": 3611.64, + "probability": 0.7292 + }, + { + "start": 3612.0, + "end": 3613.28, + "probability": 0.9775 + }, + { + "start": 3614.26, + "end": 3614.84, + "probability": 0.576 + }, + { + "start": 3614.9, + "end": 3615.74, + "probability": 0.5372 + }, + { + "start": 3615.74, + "end": 3618.04, + "probability": 0.9341 + }, + { + "start": 3618.1, + "end": 3619.14, + "probability": 0.9704 + }, + { + "start": 3619.18, + "end": 3621.56, + "probability": 0.798 + }, + { + "start": 3622.04, + "end": 3623.49, + "probability": 0.9775 + }, + { + "start": 3624.3, + "end": 3628.92, + "probability": 0.9565 + }, + { + "start": 3629.34, + "end": 3630.0, + "probability": 0.8888 + }, + { + "start": 3631.42, + "end": 3633.88, + "probability": 0.9504 + }, + { + "start": 3634.12, + "end": 3637.26, + "probability": 0.9884 + }, + { + "start": 3637.74, + "end": 3641.74, + "probability": 0.9913 + }, + { + "start": 3642.12, + "end": 3643.44, + "probability": 0.6878 + }, + { + "start": 3643.94, + "end": 3649.86, + "probability": 0.9852 + }, + { + "start": 3650.42, + "end": 3655.0, + "probability": 0.9104 + }, + { + "start": 3655.48, + "end": 3656.1, + "probability": 0.658 + }, + { + "start": 3656.18, + "end": 3659.7, + "probability": 0.7245 + }, + { + "start": 3660.02, + "end": 3663.74, + "probability": 0.9939 + }, + { + "start": 3664.0, + "end": 3666.14, + "probability": 0.9435 + }, + { + "start": 3666.54, + "end": 3667.4, + "probability": 0.6058 + }, + { + "start": 3667.46, + "end": 3667.72, + "probability": 0.7456 + }, + { + "start": 3667.98, + "end": 3669.38, + "probability": 0.9937 + }, + { + "start": 3670.44, + "end": 3674.34, + "probability": 0.9668 + }, + { + "start": 3675.56, + "end": 3676.88, + "probability": 0.9065 + }, + { + "start": 3677.36, + "end": 3680.54, + "probability": 0.9429 + }, + { + "start": 3681.0, + "end": 3684.1, + "probability": 0.9851 + }, + { + "start": 3684.68, + "end": 3685.02, + "probability": 0.8526 + }, + { + "start": 3686.0, + "end": 3686.64, + "probability": 0.5213 + }, + { + "start": 3686.64, + "end": 3688.2, + "probability": 0.5824 + }, + { + "start": 3688.3, + "end": 3694.66, + "probability": 0.9585 + }, + { + "start": 3696.16, + "end": 3697.58, + "probability": 0.9971 + }, + { + "start": 3699.3, + "end": 3704.0, + "probability": 0.9559 + }, + { + "start": 3704.92, + "end": 3707.0, + "probability": 0.0696 + }, + { + "start": 3707.64, + "end": 3707.78, + "probability": 0.2724 + }, + { + "start": 3709.3, + "end": 3709.72, + "probability": 0.0324 + }, + { + "start": 3709.72, + "end": 3713.02, + "probability": 0.9443 + }, + { + "start": 3713.24, + "end": 3715.01, + "probability": 0.916 + }, + { + "start": 3715.68, + "end": 3716.98, + "probability": 0.9951 + }, + { + "start": 3718.66, + "end": 3722.12, + "probability": 0.9663 + }, + { + "start": 3722.58, + "end": 3722.94, + "probability": 0.0308 + }, + { + "start": 3724.14, + "end": 3727.42, + "probability": 0.1448 + }, + { + "start": 3727.52, + "end": 3729.54, + "probability": 0.4512 + }, + { + "start": 3729.72, + "end": 3733.4, + "probability": 0.5165 + }, + { + "start": 3733.58, + "end": 3734.68, + "probability": 0.4435 + }, + { + "start": 3734.78, + "end": 3735.48, + "probability": 0.6808 + }, + { + "start": 3735.58, + "end": 3737.7, + "probability": 0.9829 + }, + { + "start": 3738.36, + "end": 3740.1, + "probability": 0.9871 + }, + { + "start": 3740.2, + "end": 3741.88, + "probability": 0.4626 + }, + { + "start": 3742.3, + "end": 3742.3, + "probability": 0.0022 + }, + { + "start": 3742.84, + "end": 3743.24, + "probability": 0.1041 + }, + { + "start": 3743.9, + "end": 3745.48, + "probability": 0.7889 + }, + { + "start": 3745.62, + "end": 3746.88, + "probability": 0.9799 + }, + { + "start": 3746.98, + "end": 3747.72, + "probability": 0.88 + }, + { + "start": 3747.88, + "end": 3749.16, + "probability": 0.9722 + }, + { + "start": 3749.44, + "end": 3750.02, + "probability": 0.8149 + }, + { + "start": 3751.24, + "end": 3752.42, + "probability": 0.6855 + }, + { + "start": 3752.9, + "end": 3754.2, + "probability": 0.8712 + }, + { + "start": 3754.28, + "end": 3755.84, + "probability": 0.9802 + }, + { + "start": 3757.88, + "end": 3761.46, + "probability": 0.8071 + }, + { + "start": 3761.66, + "end": 3762.38, + "probability": 0.5617 + }, + { + "start": 3762.76, + "end": 3763.15, + "probability": 0.8451 + }, + { + "start": 3763.68, + "end": 3764.48, + "probability": 0.9478 + }, + { + "start": 3764.94, + "end": 3766.24, + "probability": 0.9385 + }, + { + "start": 3766.42, + "end": 3766.72, + "probability": 0.2863 + }, + { + "start": 3767.58, + "end": 3769.64, + "probability": 0.7076 + }, + { + "start": 3770.8, + "end": 3775.48, + "probability": 0.3355 + }, + { + "start": 3775.48, + "end": 3775.88, + "probability": 0.381 + }, + { + "start": 3776.28, + "end": 3777.28, + "probability": 0.0317 + }, + { + "start": 3777.28, + "end": 3778.12, + "probability": 0.8385 + }, + { + "start": 3778.14, + "end": 3780.08, + "probability": 0.6649 + }, + { + "start": 3780.22, + "end": 3783.5, + "probability": 0.6606 + }, + { + "start": 3784.84, + "end": 3788.06, + "probability": 0.6707 + }, + { + "start": 3788.12, + "end": 3789.54, + "probability": 0.9387 + }, + { + "start": 3789.98, + "end": 3792.3, + "probability": 0.9698 + }, + { + "start": 3792.42, + "end": 3793.12, + "probability": 0.7138 + }, + { + "start": 3793.34, + "end": 3794.08, + "probability": 0.6787 + }, + { + "start": 3794.3, + "end": 3798.02, + "probability": 0.9668 + }, + { + "start": 3799.32, + "end": 3800.48, + "probability": 0.9184 + }, + { + "start": 3800.68, + "end": 3802.32, + "probability": 0.6213 + }, + { + "start": 3802.44, + "end": 3804.76, + "probability": 0.974 + }, + { + "start": 3805.64, + "end": 3807.74, + "probability": 0.9495 + }, + { + "start": 3807.96, + "end": 3808.36, + "probability": 0.699 + }, + { + "start": 3808.56, + "end": 3809.68, + "probability": 0.9609 + }, + { + "start": 3810.16, + "end": 3813.62, + "probability": 0.9855 + }, + { + "start": 3813.88, + "end": 3814.9, + "probability": 0.8145 + }, + { + "start": 3815.16, + "end": 3816.24, + "probability": 0.9519 + }, + { + "start": 3816.62, + "end": 3817.88, + "probability": 0.8417 + }, + { + "start": 3818.34, + "end": 3819.56, + "probability": 0.8038 + }, + { + "start": 3820.2, + "end": 3821.72, + "probability": 0.8566 + }, + { + "start": 3822.24, + "end": 3825.24, + "probability": 0.9932 + }, + { + "start": 3825.24, + "end": 3827.98, + "probability": 0.9966 + }, + { + "start": 3828.56, + "end": 3832.02, + "probability": 0.9929 + }, + { + "start": 3832.52, + "end": 3834.99, + "probability": 0.9854 + }, + { + "start": 3835.72, + "end": 3839.0, + "probability": 0.9743 + }, + { + "start": 3839.38, + "end": 3840.94, + "probability": 0.9949 + }, + { + "start": 3841.02, + "end": 3842.54, + "probability": 0.9866 + }, + { + "start": 3842.82, + "end": 3843.26, + "probability": 0.9314 + }, + { + "start": 3844.0, + "end": 3846.66, + "probability": 0.9956 + }, + { + "start": 3847.58, + "end": 3851.04, + "probability": 0.9797 + }, + { + "start": 3851.23, + "end": 3854.02, + "probability": 0.9945 + }, + { + "start": 3854.14, + "end": 3854.22, + "probability": 0.2846 + }, + { + "start": 3854.58, + "end": 3854.76, + "probability": 0.4545 + }, + { + "start": 3855.22, + "end": 3857.88, + "probability": 0.9744 + }, + { + "start": 3858.48, + "end": 3860.88, + "probability": 0.8837 + }, + { + "start": 3861.16, + "end": 3864.42, + "probability": 0.9751 + }, + { + "start": 3864.64, + "end": 3868.56, + "probability": 0.982 + }, + { + "start": 3869.04, + "end": 3869.94, + "probability": 0.7851 + }, + { + "start": 3870.56, + "end": 3873.2, + "probability": 0.9919 + }, + { + "start": 3873.2, + "end": 3875.86, + "probability": 0.999 + }, + { + "start": 3876.6, + "end": 3878.34, + "probability": 0.96 + }, + { + "start": 3878.74, + "end": 3879.78, + "probability": 0.8448 + }, + { + "start": 3880.16, + "end": 3881.56, + "probability": 0.7926 + }, + { + "start": 3882.08, + "end": 3883.62, + "probability": 0.9351 + }, + { + "start": 3884.24, + "end": 3885.98, + "probability": 0.9901 + }, + { + "start": 3886.7, + "end": 3889.9, + "probability": 0.9954 + }, + { + "start": 3891.1, + "end": 3892.38, + "probability": 0.9855 + }, + { + "start": 3892.92, + "end": 3894.06, + "probability": 0.975 + }, + { + "start": 3894.44, + "end": 3896.86, + "probability": 0.9891 + }, + { + "start": 3897.26, + "end": 3898.98, + "probability": 0.991 + }, + { + "start": 3899.16, + "end": 3903.1, + "probability": 0.9865 + }, + { + "start": 3903.1, + "end": 3906.96, + "probability": 0.9979 + }, + { + "start": 3907.7, + "end": 3909.08, + "probability": 0.9863 + }, + { + "start": 3910.86, + "end": 3912.82, + "probability": 0.9987 + }, + { + "start": 3913.16, + "end": 3914.32, + "probability": 0.6669 + }, + { + "start": 3914.46, + "end": 3915.22, + "probability": 0.5941 + }, + { + "start": 3915.58, + "end": 3917.34, + "probability": 0.9861 + }, + { + "start": 3917.98, + "end": 3919.22, + "probability": 0.9695 + }, + { + "start": 3919.68, + "end": 3921.14, + "probability": 0.6805 + }, + { + "start": 3921.54, + "end": 3924.96, + "probability": 0.7055 + }, + { + "start": 3926.28, + "end": 3929.46, + "probability": 0.9788 + }, + { + "start": 3930.12, + "end": 3931.18, + "probability": 0.6512 + }, + { + "start": 3931.3, + "end": 3931.9, + "probability": 0.7415 + }, + { + "start": 3932.34, + "end": 3933.3, + "probability": 0.8188 + }, + { + "start": 3933.38, + "end": 3935.28, + "probability": 0.7897 + }, + { + "start": 3935.74, + "end": 3937.08, + "probability": 0.9164 + }, + { + "start": 3937.62, + "end": 3940.66, + "probability": 0.7373 + }, + { + "start": 3941.56, + "end": 3944.26, + "probability": 0.8535 + }, + { + "start": 3944.7, + "end": 3945.92, + "probability": 0.9456 + }, + { + "start": 3946.26, + "end": 3948.63, + "probability": 0.8643 + }, + { + "start": 3949.3, + "end": 3951.78, + "probability": 0.8792 + }, + { + "start": 3952.18, + "end": 3953.06, + "probability": 0.8161 + }, + { + "start": 3953.1, + "end": 3953.48, + "probability": 0.9138 + }, + { + "start": 3955.59, + "end": 3956.36, + "probability": 0.2156 + }, + { + "start": 3957.6, + "end": 3958.26, + "probability": 0.2071 + }, + { + "start": 3969.16, + "end": 3969.54, + "probability": 0.0315 + }, + { + "start": 3969.64, + "end": 3972.38, + "probability": 0.5304 + }, + { + "start": 3973.08, + "end": 3977.02, + "probability": 0.7983 + }, + { + "start": 3977.08, + "end": 3977.42, + "probability": 0.4964 + }, + { + "start": 3977.8, + "end": 3979.74, + "probability": 0.8343 + }, + { + "start": 3980.2, + "end": 3981.24, + "probability": 0.9775 + }, + { + "start": 3981.7, + "end": 3982.12, + "probability": 0.8519 + }, + { + "start": 3982.56, + "end": 3986.36, + "probability": 0.7765 + }, + { + "start": 3986.74, + "end": 3987.08, + "probability": 0.6723 + }, + { + "start": 3987.22, + "end": 3988.54, + "probability": 0.7834 + }, + { + "start": 3989.16, + "end": 3992.36, + "probability": 0.9302 + }, + { + "start": 3992.8, + "end": 3996.48, + "probability": 0.9694 + }, + { + "start": 3996.54, + "end": 4000.08, + "probability": 0.9957 + }, + { + "start": 4000.7, + "end": 4002.0, + "probability": 0.8315 + }, + { + "start": 4002.22, + "end": 4003.5, + "probability": 0.6837 + }, + { + "start": 4003.66, + "end": 4004.62, + "probability": 0.7028 + }, + { + "start": 4005.08, + "end": 4007.78, + "probability": 0.7284 + }, + { + "start": 4007.86, + "end": 4010.02, + "probability": 0.3927 + }, + { + "start": 4011.42, + "end": 4012.72, + "probability": 0.7937 + }, + { + "start": 4012.96, + "end": 4015.6, + "probability": 0.816 + }, + { + "start": 4016.18, + "end": 4019.96, + "probability": 0.509 + }, + { + "start": 4020.12, + "end": 4020.22, + "probability": 0.4992 + }, + { + "start": 4021.64, + "end": 4024.82, + "probability": 0.8041 + }, + { + "start": 4025.34, + "end": 4028.7, + "probability": 0.9784 + }, + { + "start": 4029.02, + "end": 4031.8, + "probability": 0.8594 + }, + { + "start": 4032.3, + "end": 4034.34, + "probability": 0.9937 + }, + { + "start": 4034.66, + "end": 4035.12, + "probability": 0.6135 + }, + { + "start": 4035.16, + "end": 4038.06, + "probability": 0.5982 + }, + { + "start": 4038.5, + "end": 4039.6, + "probability": 0.6158 + }, + { + "start": 4039.68, + "end": 4039.68, + "probability": 0.2862 + }, + { + "start": 4039.68, + "end": 4040.12, + "probability": 0.6357 + }, + { + "start": 4040.24, + "end": 4041.2, + "probability": 0.8371 + }, + { + "start": 4041.3, + "end": 4044.04, + "probability": 0.9716 + }, + { + "start": 4044.04, + "end": 4047.3, + "probability": 0.9969 + }, + { + "start": 4047.82, + "end": 4049.2, + "probability": 0.8868 + }, + { + "start": 4049.3, + "end": 4052.48, + "probability": 0.9835 + }, + { + "start": 4052.74, + "end": 4052.98, + "probability": 0.674 + }, + { + "start": 4053.2, + "end": 4054.88, + "probability": 0.8079 + }, + { + "start": 4055.6, + "end": 4056.8, + "probability": 0.1298 + }, + { + "start": 4059.3, + "end": 4059.94, + "probability": 0.198 + }, + { + "start": 4060.98, + "end": 4065.16, + "probability": 0.9768 + }, + { + "start": 4065.72, + "end": 4068.14, + "probability": 0.9904 + }, + { + "start": 4068.32, + "end": 4069.16, + "probability": 0.0059 + }, + { + "start": 4069.52, + "end": 4070.98, + "probability": 0.5637 + }, + { + "start": 4073.34, + "end": 4074.07, + "probability": 0.0109 + }, + { + "start": 4080.0, + "end": 4081.02, + "probability": 0.0524 + }, + { + "start": 4081.02, + "end": 4081.88, + "probability": 0.1171 + }, + { + "start": 4082.58, + "end": 4086.12, + "probability": 0.0532 + }, + { + "start": 4096.62, + "end": 4099.58, + "probability": 0.1984 + }, + { + "start": 4100.82, + "end": 4102.08, + "probability": 0.5898 + }, + { + "start": 4112.62, + "end": 4117.78, + "probability": 0.2039 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4171.0, + "end": 4171.0, + "probability": 0.0 + }, + { + "start": 4173.72, + "end": 4173.88, + "probability": 0.0079 + }, + { + "start": 4173.88, + "end": 4173.96, + "probability": 0.0602 + }, + { + "start": 4173.96, + "end": 4173.96, + "probability": 0.0553 + }, + { + "start": 4173.96, + "end": 4174.9, + "probability": 0.1448 + }, + { + "start": 4175.9, + "end": 4178.9, + "probability": 0.6154 + }, + { + "start": 4178.96, + "end": 4181.32, + "probability": 0.7689 + }, + { + "start": 4182.5, + "end": 4189.32, + "probability": 0.9863 + }, + { + "start": 4189.64, + "end": 4190.36, + "probability": 0.9562 + }, + { + "start": 4192.92, + "end": 4193.63, + "probability": 0.8081 + }, + { + "start": 4194.4, + "end": 4196.1, + "probability": 0.7615 + }, + { + "start": 4196.66, + "end": 4199.36, + "probability": 0.7442 + }, + { + "start": 4199.92, + "end": 4200.96, + "probability": 0.6018 + }, + { + "start": 4201.5, + "end": 4203.96, + "probability": 0.9128 + }, + { + "start": 4204.68, + "end": 4205.16, + "probability": 0.0623 + }, + { + "start": 4205.16, + "end": 4206.14, + "probability": 0.8326 + }, + { + "start": 4206.62, + "end": 4207.44, + "probability": 0.6793 + }, + { + "start": 4207.72, + "end": 4208.86, + "probability": 0.8723 + }, + { + "start": 4208.98, + "end": 4212.04, + "probability": 0.9531 + }, + { + "start": 4212.18, + "end": 4212.53, + "probability": 0.0539 + }, + { + "start": 4213.64, + "end": 4215.44, + "probability": 0.7228 + }, + { + "start": 4215.5, + "end": 4216.5, + "probability": 0.9464 + }, + { + "start": 4216.58, + "end": 4216.92, + "probability": 0.4849 + }, + { + "start": 4216.94, + "end": 4217.46, + "probability": 0.5857 + }, + { + "start": 4218.74, + "end": 4220.04, + "probability": 0.9321 + }, + { + "start": 4220.1, + "end": 4223.74, + "probability": 0.8851 + }, + { + "start": 4224.22, + "end": 4225.36, + "probability": 0.9203 + }, + { + "start": 4226.02, + "end": 4226.56, + "probability": 0.4668 + }, + { + "start": 4226.7, + "end": 4231.34, + "probability": 0.9634 + }, + { + "start": 4232.12, + "end": 4233.4, + "probability": 0.9912 + }, + { + "start": 4234.26, + "end": 4235.9, + "probability": 0.8895 + }, + { + "start": 4237.68, + "end": 4240.18, + "probability": 0.9866 + }, + { + "start": 4240.28, + "end": 4244.0, + "probability": 0.9558 + }, + { + "start": 4244.7, + "end": 4246.64, + "probability": 0.984 + }, + { + "start": 4247.94, + "end": 4248.92, + "probability": 0.6384 + }, + { + "start": 4250.62, + "end": 4252.32, + "probability": 0.9899 + }, + { + "start": 4252.9, + "end": 4254.86, + "probability": 0.8741 + }, + { + "start": 4255.82, + "end": 4258.6, + "probability": 0.9766 + }, + { + "start": 4259.42, + "end": 4264.74, + "probability": 0.7739 + }, + { + "start": 4265.16, + "end": 4266.28, + "probability": 0.4033 + }, + { + "start": 4267.38, + "end": 4269.82, + "probability": 0.8927 + }, + { + "start": 4270.38, + "end": 4272.02, + "probability": 0.7304 + }, + { + "start": 4273.2, + "end": 4278.52, + "probability": 0.9951 + }, + { + "start": 4279.78, + "end": 4280.98, + "probability": 0.9874 + }, + { + "start": 4282.04, + "end": 4283.46, + "probability": 0.6326 + }, + { + "start": 4283.6, + "end": 4284.62, + "probability": 0.717 + }, + { + "start": 4285.02, + "end": 4290.56, + "probability": 0.6536 + }, + { + "start": 4291.18, + "end": 4292.24, + "probability": 0.9724 + }, + { + "start": 4292.94, + "end": 4294.3, + "probability": 0.9925 + }, + { + "start": 4294.68, + "end": 4295.74, + "probability": 0.9458 + }, + { + "start": 4296.18, + "end": 4300.04, + "probability": 0.9913 + }, + { + "start": 4301.0, + "end": 4302.54, + "probability": 0.8378 + }, + { + "start": 4304.1, + "end": 4304.7, + "probability": 0.7873 + }, + { + "start": 4305.4, + "end": 4307.68, + "probability": 0.9037 + }, + { + "start": 4308.36, + "end": 4310.56, + "probability": 0.8474 + }, + { + "start": 4312.26, + "end": 4316.48, + "probability": 0.9947 + }, + { + "start": 4317.1, + "end": 4318.56, + "probability": 0.7668 + }, + { + "start": 4319.22, + "end": 4321.94, + "probability": 0.8136 + }, + { + "start": 4322.58, + "end": 4324.74, + "probability": 0.9913 + }, + { + "start": 4325.9, + "end": 4327.9, + "probability": 0.9829 + }, + { + "start": 4328.76, + "end": 4331.08, + "probability": 0.8388 + }, + { + "start": 4332.26, + "end": 4338.32, + "probability": 0.9963 + }, + { + "start": 4339.56, + "end": 4341.26, + "probability": 0.8149 + }, + { + "start": 4342.04, + "end": 4343.14, + "probability": 0.7643 + }, + { + "start": 4343.92, + "end": 4344.7, + "probability": 0.8921 + }, + { + "start": 4345.26, + "end": 4348.34, + "probability": 0.85 + }, + { + "start": 4349.46, + "end": 4353.18, + "probability": 0.9925 + }, + { + "start": 4354.38, + "end": 4355.46, + "probability": 0.976 + }, + { + "start": 4356.4, + "end": 4359.12, + "probability": 0.9982 + }, + { + "start": 4359.78, + "end": 4360.7, + "probability": 0.6421 + }, + { + "start": 4361.16, + "end": 4365.8, + "probability": 0.9546 + }, + { + "start": 4366.5, + "end": 4368.72, + "probability": 0.9956 + }, + { + "start": 4369.5, + "end": 4370.3, + "probability": 0.9136 + }, + { + "start": 4370.42, + "end": 4375.56, + "probability": 0.9876 + }, + { + "start": 4376.28, + "end": 4378.78, + "probability": 0.9427 + }, + { + "start": 4381.04, + "end": 4381.7, + "probability": 0.8143 + }, + { + "start": 4382.58, + "end": 4385.86, + "probability": 0.8222 + }, + { + "start": 4386.5, + "end": 4387.5, + "probability": 0.9507 + }, + { + "start": 4387.62, + "end": 4388.9, + "probability": 0.7878 + }, + { + "start": 4389.2, + "end": 4390.08, + "probability": 0.8125 + }, + { + "start": 4390.28, + "end": 4392.78, + "probability": 0.9945 + }, + { + "start": 4393.3, + "end": 4396.98, + "probability": 0.9883 + }, + { + "start": 4397.26, + "end": 4397.72, + "probability": 0.9912 + }, + { + "start": 4398.04, + "end": 4399.56, + "probability": 0.742 + }, + { + "start": 4399.92, + "end": 4400.52, + "probability": 0.5084 + }, + { + "start": 4400.56, + "end": 4403.06, + "probability": 0.8818 + }, + { + "start": 4403.22, + "end": 4405.62, + "probability": 0.5366 + }, + { + "start": 4406.68, + "end": 4408.4, + "probability": 0.9862 + }, + { + "start": 4410.14, + "end": 4412.78, + "probability": 0.8556 + }, + { + "start": 4413.86, + "end": 4418.9, + "probability": 0.9624 + }, + { + "start": 4419.78, + "end": 4421.4, + "probability": 0.932 + }, + { + "start": 4421.72, + "end": 4425.44, + "probability": 0.9643 + }, + { + "start": 4425.84, + "end": 4427.8, + "probability": 0.9906 + }, + { + "start": 4429.22, + "end": 4434.28, + "probability": 0.9329 + }, + { + "start": 4434.9, + "end": 4439.9, + "probability": 0.7801 + }, + { + "start": 4440.9, + "end": 4444.14, + "probability": 0.9735 + }, + { + "start": 4444.64, + "end": 4445.14, + "probability": 0.9565 + }, + { + "start": 4445.24, + "end": 4447.0, + "probability": 0.9263 + }, + { + "start": 4447.06, + "end": 4448.54, + "probability": 0.752 + }, + { + "start": 4449.04, + "end": 4452.92, + "probability": 0.9863 + }, + { + "start": 4453.26, + "end": 4454.8, + "probability": 0.671 + }, + { + "start": 4455.28, + "end": 4458.28, + "probability": 0.8984 + }, + { + "start": 4458.64, + "end": 4460.44, + "probability": 0.7074 + }, + { + "start": 4460.96, + "end": 4463.32, + "probability": 0.957 + }, + { + "start": 4464.54, + "end": 4469.52, + "probability": 0.9634 + }, + { + "start": 4469.74, + "end": 4470.76, + "probability": 0.8999 + }, + { + "start": 4471.52, + "end": 4474.9, + "probability": 0.8513 + }, + { + "start": 4475.5, + "end": 4478.0, + "probability": 0.6368 + }, + { + "start": 4478.42, + "end": 4480.32, + "probability": 0.8468 + }, + { + "start": 4480.7, + "end": 4482.76, + "probability": 0.7833 + }, + { + "start": 4483.2, + "end": 4485.28, + "probability": 0.9568 + }, + { + "start": 4485.72, + "end": 4488.82, + "probability": 0.9924 + }, + { + "start": 4489.38, + "end": 4491.37, + "probability": 0.9023 + }, + { + "start": 4492.12, + "end": 4492.62, + "probability": 0.7234 + }, + { + "start": 4492.78, + "end": 4497.42, + "probability": 0.6646 + }, + { + "start": 4497.7, + "end": 4499.01, + "probability": 0.9115 + }, + { + "start": 4499.42, + "end": 4500.46, + "probability": 0.9808 + }, + { + "start": 4500.82, + "end": 4501.62, + "probability": 0.7941 + }, + { + "start": 4502.46, + "end": 4509.26, + "probability": 0.9789 + }, + { + "start": 4509.9, + "end": 4510.44, + "probability": 0.5542 + }, + { + "start": 4510.66, + "end": 4514.52, + "probability": 0.9652 + }, + { + "start": 4514.96, + "end": 4518.24, + "probability": 0.9509 + }, + { + "start": 4518.76, + "end": 4522.98, + "probability": 0.6548 + }, + { + "start": 4523.3, + "end": 4523.98, + "probability": 0.6736 + }, + { + "start": 4524.24, + "end": 4525.22, + "probability": 0.9958 + }, + { + "start": 4525.52, + "end": 4526.82, + "probability": 0.9906 + }, + { + "start": 4526.9, + "end": 4527.9, + "probability": 0.9915 + }, + { + "start": 4528.14, + "end": 4529.26, + "probability": 0.9871 + }, + { + "start": 4529.7, + "end": 4530.33, + "probability": 0.9771 + }, + { + "start": 4531.0, + "end": 4533.94, + "probability": 0.8663 + }, + { + "start": 4534.52, + "end": 4537.7, + "probability": 0.7093 + }, + { + "start": 4538.1, + "end": 4539.16, + "probability": 0.9628 + }, + { + "start": 4539.78, + "end": 4540.54, + "probability": 0.7525 + }, + { + "start": 4540.78, + "end": 4544.48, + "probability": 0.786 + }, + { + "start": 4545.24, + "end": 4546.88, + "probability": 0.9601 + }, + { + "start": 4547.34, + "end": 4547.42, + "probability": 0.2778 + }, + { + "start": 4547.46, + "end": 4549.68, + "probability": 0.9941 + }, + { + "start": 4550.14, + "end": 4553.88, + "probability": 0.9966 + }, + { + "start": 4554.42, + "end": 4555.08, + "probability": 0.8604 + }, + { + "start": 4555.74, + "end": 4558.72, + "probability": 0.7981 + }, + { + "start": 4559.34, + "end": 4560.94, + "probability": 0.7171 + }, + { + "start": 4561.68, + "end": 4565.02, + "probability": 0.9323 + }, + { + "start": 4565.44, + "end": 4567.6, + "probability": 0.9837 + }, + { + "start": 4568.3, + "end": 4570.86, + "probability": 0.7356 + }, + { + "start": 4571.28, + "end": 4572.08, + "probability": 0.9187 + }, + { + "start": 4572.32, + "end": 4573.2, + "probability": 0.9321 + }, + { + "start": 4573.68, + "end": 4577.84, + "probability": 0.973 + }, + { + "start": 4578.3, + "end": 4579.9, + "probability": 0.6158 + }, + { + "start": 4580.72, + "end": 4582.46, + "probability": 0.9834 + }, + { + "start": 4582.8, + "end": 4584.5, + "probability": 0.9022 + }, + { + "start": 4584.9, + "end": 4587.84, + "probability": 0.8448 + }, + { + "start": 4587.98, + "end": 4593.28, + "probability": 0.9348 + }, + { + "start": 4593.96, + "end": 4595.86, + "probability": 0.7374 + }, + { + "start": 4596.26, + "end": 4600.14, + "probability": 0.5511 + }, + { + "start": 4600.64, + "end": 4601.35, + "probability": 0.9854 + }, + { + "start": 4601.89, + "end": 4603.79, + "probability": 0.8359 + }, + { + "start": 4604.15, + "end": 4606.73, + "probability": 0.7807 + }, + { + "start": 4607.05, + "end": 4607.79, + "probability": 0.9587 + }, + { + "start": 4608.43, + "end": 4609.25, + "probability": 0.7865 + }, + { + "start": 4610.81, + "end": 4613.35, + "probability": 0.9783 + }, + { + "start": 4614.01, + "end": 4614.49, + "probability": 0.7709 + }, + { + "start": 4614.57, + "end": 4615.37, + "probability": 0.7783 + }, + { + "start": 4615.55, + "end": 4619.07, + "probability": 0.6011 + }, + { + "start": 4619.41, + "end": 4620.09, + "probability": 0.8599 + }, + { + "start": 4620.85, + "end": 4623.55, + "probability": 0.342 + }, + { + "start": 4623.55, + "end": 4626.99, + "probability": 0.8951 + }, + { + "start": 4629.33, + "end": 4630.59, + "probability": 0.0054 + }, + { + "start": 4645.17, + "end": 4645.35, + "probability": 0.8848 + }, + { + "start": 4646.63, + "end": 4647.03, + "probability": 0.2023 + }, + { + "start": 4647.49, + "end": 4647.91, + "probability": 0.0232 + }, + { + "start": 4648.75, + "end": 4649.25, + "probability": 0.0025 + }, + { + "start": 4649.83, + "end": 4651.23, + "probability": 0.0305 + }, + { + "start": 4651.23, + "end": 4651.23, + "probability": 0.0158 + }, + { + "start": 4651.23, + "end": 4651.37, + "probability": 0.1784 + }, + { + "start": 4651.69, + "end": 4651.69, + "probability": 0.0457 + }, + { + "start": 4651.99, + "end": 4653.39, + "probability": 0.2174 + }, + { + "start": 4654.5, + "end": 4657.85, + "probability": 0.095 + }, + { + "start": 4659.13, + "end": 4659.63, + "probability": 0.1029 + }, + { + "start": 4661.71, + "end": 4662.91, + "probability": 0.0102 + }, + { + "start": 4691.33, + "end": 4693.63, + "probability": 0.1115 + }, + { + "start": 4694.77, + "end": 4695.65, + "probability": 0.6049 + }, + { + "start": 4697.77, + "end": 4699.87, + "probability": 0.0264 + }, + { + "start": 4699.87, + "end": 4699.87, + "probability": 0.1588 + }, + { + "start": 4700.01, + "end": 4700.01, + "probability": 0.3181 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.0, + "end": 4723.0, + "probability": 0.0 + }, + { + "start": 4723.32, + "end": 4724.78, + "probability": 0.0072 + }, + { + "start": 4725.34, + "end": 4727.64, + "probability": 0.3225 + }, + { + "start": 4728.44, + "end": 4734.54, + "probability": 0.0621 + }, + { + "start": 4738.44, + "end": 4742.1, + "probability": 0.5476 + }, + { + "start": 4743.54, + "end": 4744.34, + "probability": 0.044 + }, + { + "start": 4745.34, + "end": 4752.84, + "probability": 0.3191 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.0, + "end": 4868.0, + "probability": 0.0 + }, + { + "start": 4868.08, + "end": 4868.08, + "probability": 0.0144 + }, + { + "start": 4868.08, + "end": 4868.08, + "probability": 0.1881 + }, + { + "start": 4868.08, + "end": 4868.08, + "probability": 0.0349 + }, + { + "start": 4868.08, + "end": 4868.46, + "probability": 0.1227 + }, + { + "start": 4868.98, + "end": 4870.76, + "probability": 0.7817 + }, + { + "start": 4871.1, + "end": 4873.08, + "probability": 0.6125 + }, + { + "start": 4874.0, + "end": 4879.1, + "probability": 0.834 + }, + { + "start": 4879.96, + "end": 4881.1, + "probability": 0.915 + }, + { + "start": 4881.64, + "end": 4882.8, + "probability": 0.8722 + }, + { + "start": 4883.12, + "end": 4884.7, + "probability": 0.4938 + }, + { + "start": 4885.18, + "end": 4887.2, + "probability": 0.8553 + }, + { + "start": 4887.36, + "end": 4888.2, + "probability": 0.4687 + }, + { + "start": 4888.58, + "end": 4888.7, + "probability": 0.6179 + }, + { + "start": 4888.78, + "end": 4889.56, + "probability": 0.8658 + }, + { + "start": 4889.6, + "end": 4893.11, + "probability": 0.8405 + }, + { + "start": 4893.46, + "end": 4894.46, + "probability": 0.9875 + }, + { + "start": 4894.68, + "end": 4895.24, + "probability": 0.5771 + }, + { + "start": 4895.5, + "end": 4896.78, + "probability": 0.841 + }, + { + "start": 4896.86, + "end": 4897.3, + "probability": 0.8051 + }, + { + "start": 4897.68, + "end": 4900.63, + "probability": 0.9836 + }, + { + "start": 4916.88, + "end": 4917.04, + "probability": 0.296 + }, + { + "start": 4922.32, + "end": 4926.62, + "probability": 0.2027 + }, + { + "start": 4926.92, + "end": 4927.98, + "probability": 0.2798 + }, + { + "start": 4927.98, + "end": 4932.98, + "probability": 0.9583 + }, + { + "start": 4949.96, + "end": 4951.92, + "probability": 0.9097 + }, + { + "start": 4952.54, + "end": 4953.6, + "probability": 0.8551 + }, + { + "start": 4954.42, + "end": 4955.9, + "probability": 0.924 + }, + { + "start": 4956.2, + "end": 4959.32, + "probability": 0.961 + }, + { + "start": 4959.86, + "end": 4960.48, + "probability": 0.5992 + }, + { + "start": 4960.68, + "end": 4964.5, + "probability": 0.9604 + }, + { + "start": 4965.06, + "end": 4966.78, + "probability": 0.9284 + }, + { + "start": 4967.34, + "end": 4967.56, + "probability": 0.4987 + }, + { + "start": 4967.68, + "end": 4967.96, + "probability": 0.8897 + }, + { + "start": 4968.04, + "end": 4970.84, + "probability": 0.9167 + }, + { + "start": 4971.1, + "end": 4972.24, + "probability": 0.9785 + }, + { + "start": 4972.74, + "end": 4973.52, + "probability": 0.8367 + }, + { + "start": 4974.04, + "end": 4975.48, + "probability": 0.6814 + }, + { + "start": 4975.52, + "end": 4978.62, + "probability": 0.9797 + }, + { + "start": 4978.74, + "end": 4979.86, + "probability": 0.6598 + }, + { + "start": 4980.2, + "end": 4980.68, + "probability": 0.7286 + }, + { + "start": 4980.78, + "end": 4981.5, + "probability": 0.8646 + }, + { + "start": 4982.24, + "end": 4984.04, + "probability": 0.8757 + }, + { + "start": 4984.16, + "end": 4984.6, + "probability": 0.4697 + }, + { + "start": 4984.72, + "end": 4985.72, + "probability": 0.9307 + }, + { + "start": 4985.8, + "end": 4986.42, + "probability": 0.8311 + }, + { + "start": 4987.44, + "end": 4989.22, + "probability": 0.7957 + }, + { + "start": 4989.38, + "end": 4992.5, + "probability": 0.9604 + }, + { + "start": 4992.5, + "end": 4996.06, + "probability": 0.9893 + }, + { + "start": 4996.16, + "end": 4998.16, + "probability": 0.9589 + }, + { + "start": 4998.92, + "end": 5002.02, + "probability": 0.9717 + }, + { + "start": 5002.74, + "end": 5003.74, + "probability": 0.5735 + }, + { + "start": 5003.9, + "end": 5006.3, + "probability": 0.7888 + }, + { + "start": 5007.08, + "end": 5007.3, + "probability": 0.5587 + }, + { + "start": 5007.98, + "end": 5010.06, + "probability": 0.822 + }, + { + "start": 5010.18, + "end": 5010.98, + "probability": 0.8193 + }, + { + "start": 5011.28, + "end": 5011.64, + "probability": 0.874 + }, + { + "start": 5013.18, + "end": 5016.6, + "probability": 0.9092 + }, + { + "start": 5017.74, + "end": 5019.88, + "probability": 0.9439 + }, + { + "start": 5023.16, + "end": 5025.52, + "probability": 0.9744 + }, + { + "start": 5025.52, + "end": 5028.32, + "probability": 0.999 + }, + { + "start": 5028.88, + "end": 5032.32, + "probability": 0.9913 + }, + { + "start": 5033.12, + "end": 5035.68, + "probability": 0.9987 + }, + { + "start": 5035.68, + "end": 5039.2, + "probability": 0.9975 + }, + { + "start": 5040.24, + "end": 5042.32, + "probability": 0.9976 + }, + { + "start": 5042.44, + "end": 5042.96, + "probability": 0.6637 + }, + { + "start": 5043.28, + "end": 5044.2, + "probability": 0.9853 + }, + { + "start": 5044.4, + "end": 5046.34, + "probability": 0.7497 + }, + { + "start": 5046.38, + "end": 5046.48, + "probability": 0.8708 + }, + { + "start": 5046.98, + "end": 5047.92, + "probability": 0.807 + }, + { + "start": 5048.22, + "end": 5050.16, + "probability": 0.8491 + }, + { + "start": 5051.52, + "end": 5052.0, + "probability": 0.3965 + }, + { + "start": 5052.14, + "end": 5053.68, + "probability": 0.8051 + }, + { + "start": 5053.72, + "end": 5056.6, + "probability": 0.9632 + }, + { + "start": 5057.56, + "end": 5060.72, + "probability": 0.9878 + }, + { + "start": 5060.72, + "end": 5063.9, + "probability": 0.8363 + }, + { + "start": 5064.64, + "end": 5067.78, + "probability": 0.7064 + }, + { + "start": 5068.52, + "end": 5070.7, + "probability": 0.936 + }, + { + "start": 5070.82, + "end": 5071.26, + "probability": 0.9343 + }, + { + "start": 5071.42, + "end": 5071.78, + "probability": 0.6136 + }, + { + "start": 5072.06, + "end": 5072.7, + "probability": 0.6797 + }, + { + "start": 5072.78, + "end": 5073.14, + "probability": 0.9234 + }, + { + "start": 5073.24, + "end": 5075.36, + "probability": 0.9766 + }, + { + "start": 5076.1, + "end": 5079.84, + "probability": 0.9557 + }, + { + "start": 5081.0, + "end": 5084.34, + "probability": 0.9438 + }, + { + "start": 5085.34, + "end": 5086.22, + "probability": 0.6803 + }, + { + "start": 5086.32, + "end": 5086.72, + "probability": 0.6886 + }, + { + "start": 5086.84, + "end": 5088.04, + "probability": 0.8979 + }, + { + "start": 5088.42, + "end": 5090.68, + "probability": 0.9708 + }, + { + "start": 5091.32, + "end": 5092.24, + "probability": 0.8497 + }, + { + "start": 5093.0, + "end": 5093.98, + "probability": 0.8348 + }, + { + "start": 5094.06, + "end": 5094.32, + "probability": 0.9715 + }, + { + "start": 5094.42, + "end": 5095.24, + "probability": 0.6681 + }, + { + "start": 5095.28, + "end": 5096.2, + "probability": 0.8426 + }, + { + "start": 5097.56, + "end": 5098.44, + "probability": 0.8304 + }, + { + "start": 5099.48, + "end": 5100.2, + "probability": 0.4968 + }, + { + "start": 5100.46, + "end": 5102.41, + "probability": 0.98 + }, + { + "start": 5102.5, + "end": 5104.78, + "probability": 0.974 + }, + { + "start": 5104.78, + "end": 5106.96, + "probability": 0.9873 + }, + { + "start": 5107.64, + "end": 5107.86, + "probability": 0.3854 + }, + { + "start": 5107.94, + "end": 5109.32, + "probability": 0.9113 + }, + { + "start": 5109.44, + "end": 5110.46, + "probability": 0.9142 + }, + { + "start": 5111.04, + "end": 5112.76, + "probability": 0.9819 + }, + { + "start": 5113.64, + "end": 5116.9, + "probability": 0.9909 + }, + { + "start": 5116.9, + "end": 5120.36, + "probability": 0.9368 + }, + { + "start": 5121.5, + "end": 5122.18, + "probability": 0.9092 + }, + { + "start": 5122.3, + "end": 5127.0, + "probability": 0.9575 + }, + { + "start": 5127.14, + "end": 5129.86, + "probability": 0.7043 + }, + { + "start": 5131.3, + "end": 5132.68, + "probability": 0.8398 + }, + { + "start": 5135.14, + "end": 5136.14, + "probability": 0.5607 + }, + { + "start": 5137.26, + "end": 5137.76, + "probability": 0.6529 + }, + { + "start": 5137.88, + "end": 5138.14, + "probability": 0.8221 + }, + { + "start": 5138.28, + "end": 5139.22, + "probability": 0.959 + }, + { + "start": 5139.28, + "end": 5140.62, + "probability": 0.9307 + }, + { + "start": 5140.92, + "end": 5141.96, + "probability": 0.9337 + }, + { + "start": 5142.24, + "end": 5145.72, + "probability": 0.9662 + }, + { + "start": 5146.36, + "end": 5149.7, + "probability": 0.6699 + }, + { + "start": 5149.76, + "end": 5150.8, + "probability": 0.7089 + }, + { + "start": 5151.6, + "end": 5154.86, + "probability": 0.9788 + }, + { + "start": 5154.94, + "end": 5156.98, + "probability": 0.8909 + }, + { + "start": 5157.12, + "end": 5159.64, + "probability": 0.8755 + }, + { + "start": 5160.08, + "end": 5160.86, + "probability": 0.7013 + }, + { + "start": 5160.98, + "end": 5161.7, + "probability": 0.9658 + }, + { + "start": 5162.18, + "end": 5162.28, + "probability": 0.7815 + }, + { + "start": 5162.56, + "end": 5163.3, + "probability": 0.8232 + }, + { + "start": 5163.66, + "end": 5164.04, + "probability": 0.9377 + }, + { + "start": 5164.1, + "end": 5166.66, + "probability": 0.8117 + }, + { + "start": 5167.16, + "end": 5168.12, + "probability": 0.9849 + }, + { + "start": 5168.72, + "end": 5170.46, + "probability": 0.9299 + }, + { + "start": 5171.0, + "end": 5173.1, + "probability": 0.997 + }, + { + "start": 5173.38, + "end": 5175.7, + "probability": 0.9818 + }, + { + "start": 5175.8, + "end": 5176.04, + "probability": 0.7063 + }, + { + "start": 5176.78, + "end": 5177.56, + "probability": 0.8896 + }, + { + "start": 5177.66, + "end": 5178.18, + "probability": 0.6187 + }, + { + "start": 5178.86, + "end": 5179.38, + "probability": 0.4113 + }, + { + "start": 5179.42, + "end": 5181.66, + "probability": 0.9115 + }, + { + "start": 5181.82, + "end": 5182.18, + "probability": 0.8035 + }, + { + "start": 5182.22, + "end": 5182.76, + "probability": 0.3816 + }, + { + "start": 5183.32, + "end": 5187.08, + "probability": 0.9291 + }, + { + "start": 5187.94, + "end": 5190.68, + "probability": 0.9566 + }, + { + "start": 5190.96, + "end": 5192.88, + "probability": 0.9756 + }, + { + "start": 5193.54, + "end": 5196.46, + "probability": 0.9927 + }, + { + "start": 5196.46, + "end": 5198.3, + "probability": 0.9985 + }, + { + "start": 5199.08, + "end": 5201.64, + "probability": 0.9895 + }, + { + "start": 5202.36, + "end": 5204.64, + "probability": 0.9976 + }, + { + "start": 5204.64, + "end": 5207.58, + "probability": 0.994 + }, + { + "start": 5208.24, + "end": 5209.06, + "probability": 0.9761 + }, + { + "start": 5210.2, + "end": 5213.82, + "probability": 0.819 + }, + { + "start": 5214.26, + "end": 5215.52, + "probability": 0.9501 + }, + { + "start": 5215.68, + "end": 5216.9, + "probability": 0.9958 + }, + { + "start": 5217.48, + "end": 5217.92, + "probability": 0.8262 + }, + { + "start": 5218.0, + "end": 5218.6, + "probability": 0.9116 + }, + { + "start": 5218.84, + "end": 5221.7, + "probability": 0.9122 + }, + { + "start": 5222.58, + "end": 5224.68, + "probability": 0.8708 + }, + { + "start": 5225.66, + "end": 5228.17, + "probability": 0.7954 + }, + { + "start": 5228.48, + "end": 5229.54, + "probability": 0.7761 + }, + { + "start": 5229.7, + "end": 5231.76, + "probability": 0.9954 + }, + { + "start": 5232.54, + "end": 5233.52, + "probability": 0.9588 + }, + { + "start": 5234.44, + "end": 5235.54, + "probability": 0.9528 + }, + { + "start": 5235.8, + "end": 5238.76, + "probability": 0.9934 + }, + { + "start": 5238.76, + "end": 5241.04, + "probability": 0.8656 + }, + { + "start": 5241.9, + "end": 5243.51, + "probability": 0.9188 + }, + { + "start": 5244.58, + "end": 5248.42, + "probability": 0.9822 + }, + { + "start": 5250.56, + "end": 5251.3, + "probability": 0.7299 + }, + { + "start": 5251.82, + "end": 5254.76, + "probability": 0.9906 + }, + { + "start": 5255.46, + "end": 5258.02, + "probability": 0.9746 + }, + { + "start": 5258.76, + "end": 5261.9, + "probability": 0.991 + }, + { + "start": 5262.88, + "end": 5262.98, + "probability": 0.3802 + }, + { + "start": 5263.06, + "end": 5263.58, + "probability": 0.5747 + }, + { + "start": 5263.64, + "end": 5263.96, + "probability": 0.9627 + }, + { + "start": 5264.2, + "end": 5265.86, + "probability": 0.8562 + }, + { + "start": 5267.28, + "end": 5270.12, + "probability": 0.9907 + }, + { + "start": 5270.14, + "end": 5271.28, + "probability": 0.9764 + }, + { + "start": 5271.32, + "end": 5273.68, + "probability": 0.9949 + }, + { + "start": 5273.92, + "end": 5275.28, + "probability": 0.9902 + }, + { + "start": 5275.86, + "end": 5276.66, + "probability": 0.9532 + }, + { + "start": 5277.7, + "end": 5277.98, + "probability": 0.7631 + }, + { + "start": 5278.46, + "end": 5280.6, + "probability": 0.9932 + }, + { + "start": 5280.68, + "end": 5283.54, + "probability": 0.9803 + }, + { + "start": 5284.0, + "end": 5285.4, + "probability": 0.874 + }, + { + "start": 5286.18, + "end": 5287.72, + "probability": 0.8168 + }, + { + "start": 5287.82, + "end": 5290.06, + "probability": 0.9608 + }, + { + "start": 5290.72, + "end": 5291.58, + "probability": 0.959 + }, + { + "start": 5292.4, + "end": 5293.98, + "probability": 0.7493 + }, + { + "start": 5294.14, + "end": 5294.44, + "probability": 0.7835 + }, + { + "start": 5294.54, + "end": 5297.06, + "probability": 0.9604 + }, + { + "start": 5297.48, + "end": 5299.38, + "probability": 0.9302 + }, + { + "start": 5300.36, + "end": 5302.48, + "probability": 0.9212 + }, + { + "start": 5302.48, + "end": 5303.26, + "probability": 0.7387 + }, + { + "start": 5303.36, + "end": 5304.7, + "probability": 0.9561 + }, + { + "start": 5305.0, + "end": 5305.64, + "probability": 0.881 + }, + { + "start": 5305.68, + "end": 5305.96, + "probability": 0.743 + }, + { + "start": 5306.7, + "end": 5309.04, + "probability": 0.9702 + }, + { + "start": 5309.88, + "end": 5312.82, + "probability": 0.8485 + }, + { + "start": 5313.68, + "end": 5315.0, + "probability": 0.9971 + }, + { + "start": 5315.9, + "end": 5317.44, + "probability": 0.884 + }, + { + "start": 5317.64, + "end": 5319.86, + "probability": 0.996 + }, + { + "start": 5319.86, + "end": 5321.91, + "probability": 0.998 + }, + { + "start": 5323.44, + "end": 5326.48, + "probability": 0.9839 + }, + { + "start": 5327.46, + "end": 5329.06, + "probability": 0.9639 + }, + { + "start": 5329.06, + "end": 5330.1, + "probability": 0.914 + }, + { + "start": 5330.56, + "end": 5332.3, + "probability": 0.811 + }, + { + "start": 5332.38, + "end": 5333.4, + "probability": 0.8412 + }, + { + "start": 5333.88, + "end": 5335.54, + "probability": 0.7612 + }, + { + "start": 5336.62, + "end": 5338.68, + "probability": 0.8618 + }, + { + "start": 5339.6, + "end": 5340.1, + "probability": 0.5469 + }, + { + "start": 5340.42, + "end": 5345.58, + "probability": 0.9833 + }, + { + "start": 5346.1, + "end": 5347.78, + "probability": 0.972 + }, + { + "start": 5348.16, + "end": 5349.62, + "probability": 0.9912 + }, + { + "start": 5350.86, + "end": 5353.86, + "probability": 0.9712 + }, + { + "start": 5353.94, + "end": 5356.46, + "probability": 0.992 + }, + { + "start": 5357.42, + "end": 5361.34, + "probability": 0.988 + }, + { + "start": 5362.38, + "end": 5363.66, + "probability": 0.9395 + }, + { + "start": 5364.3, + "end": 5364.9, + "probability": 0.9386 + }, + { + "start": 5365.08, + "end": 5366.06, + "probability": 0.8931 + }, + { + "start": 5366.56, + "end": 5368.64, + "probability": 0.9827 + }, + { + "start": 5369.5, + "end": 5369.88, + "probability": 0.7935 + }, + { + "start": 5371.34, + "end": 5372.58, + "probability": 0.7822 + }, + { + "start": 5372.7, + "end": 5373.72, + "probability": 0.9177 + }, + { + "start": 5374.16, + "end": 5374.3, + "probability": 0.3863 + }, + { + "start": 5374.7, + "end": 5375.44, + "probability": 0.9448 + }, + { + "start": 5375.58, + "end": 5376.28, + "probability": 0.8436 + }, + { + "start": 5376.32, + "end": 5376.66, + "probability": 0.9889 + }, + { + "start": 5376.76, + "end": 5377.58, + "probability": 0.8982 + }, + { + "start": 5377.74, + "end": 5378.0, + "probability": 0.8134 + }, + { + "start": 5378.1, + "end": 5378.72, + "probability": 0.8484 + }, + { + "start": 5379.4, + "end": 5381.5, + "probability": 0.9558 + }, + { + "start": 5382.08, + "end": 5383.48, + "probability": 0.9143 + }, + { + "start": 5384.08, + "end": 5386.36, + "probability": 0.9868 + }, + { + "start": 5386.36, + "end": 5388.73, + "probability": 0.9959 + }, + { + "start": 5389.86, + "end": 5390.66, + "probability": 0.8864 + }, + { + "start": 5390.76, + "end": 5393.12, + "probability": 0.9707 + }, + { + "start": 5393.44, + "end": 5394.72, + "probability": 0.8415 + }, + { + "start": 5395.1, + "end": 5395.6, + "probability": 0.7648 + }, + { + "start": 5396.4, + "end": 5398.36, + "probability": 0.9399 + }, + { + "start": 5398.5, + "end": 5398.98, + "probability": 0.9399 + }, + { + "start": 5399.48, + "end": 5402.24, + "probability": 0.9845 + }, + { + "start": 5402.82, + "end": 5403.88, + "probability": 0.8216 + }, + { + "start": 5404.88, + "end": 5405.45, + "probability": 0.9871 + }, + { + "start": 5407.28, + "end": 5408.68, + "probability": 0.9459 + }, + { + "start": 5408.76, + "end": 5409.58, + "probability": 0.7465 + }, + { + "start": 5409.62, + "end": 5413.16, + "probability": 0.9678 + }, + { + "start": 5413.26, + "end": 5415.24, + "probability": 0.9387 + }, + { + "start": 5416.16, + "end": 5418.1, + "probability": 0.7069 + }, + { + "start": 5418.96, + "end": 5421.88, + "probability": 0.9678 + }, + { + "start": 5422.64, + "end": 5425.52, + "probability": 0.9793 + }, + { + "start": 5426.66, + "end": 5430.28, + "probability": 0.9352 + }, + { + "start": 5431.0, + "end": 5435.34, + "probability": 0.9959 + }, + { + "start": 5435.46, + "end": 5436.9, + "probability": 0.9662 + }, + { + "start": 5437.84, + "end": 5438.32, + "probability": 0.8314 + }, + { + "start": 5438.38, + "end": 5440.74, + "probability": 0.9831 + }, + { + "start": 5442.3, + "end": 5442.92, + "probability": 0.4845 + }, + { + "start": 5443.08, + "end": 5443.64, + "probability": 0.7553 + }, + { + "start": 5443.8, + "end": 5444.92, + "probability": 0.9696 + }, + { + "start": 5445.02, + "end": 5447.56, + "probability": 0.8598 + }, + { + "start": 5448.24, + "end": 5449.8, + "probability": 0.9878 + }, + { + "start": 5451.02, + "end": 5451.62, + "probability": 0.9023 + }, + { + "start": 5452.36, + "end": 5455.14, + "probability": 0.9611 + }, + { + "start": 5455.7, + "end": 5456.1, + "probability": 0.7665 + }, + { + "start": 5456.18, + "end": 5456.98, + "probability": 0.5316 + }, + { + "start": 5457.3, + "end": 5457.76, + "probability": 0.7544 + }, + { + "start": 5457.82, + "end": 5458.54, + "probability": 0.9688 + }, + { + "start": 5458.62, + "end": 5459.84, + "probability": 0.9419 + }, + { + "start": 5460.14, + "end": 5461.44, + "probability": 0.9795 + }, + { + "start": 5462.1, + "end": 5465.5, + "probability": 0.921 + }, + { + "start": 5466.12, + "end": 5468.2, + "probability": 0.8678 + }, + { + "start": 5468.5, + "end": 5470.7, + "probability": 0.9161 + }, + { + "start": 5471.78, + "end": 5475.72, + "probability": 0.8582 + }, + { + "start": 5476.28, + "end": 5478.78, + "probability": 0.8457 + }, + { + "start": 5479.72, + "end": 5481.86, + "probability": 0.7857 + }, + { + "start": 5482.64, + "end": 5483.3, + "probability": 0.8609 + }, + { + "start": 5483.42, + "end": 5483.84, + "probability": 0.9489 + }, + { + "start": 5483.92, + "end": 5485.8, + "probability": 0.9241 + }, + { + "start": 5485.8, + "end": 5488.42, + "probability": 0.9927 + }, + { + "start": 5489.02, + "end": 5490.64, + "probability": 0.9717 + }, + { + "start": 5491.58, + "end": 5494.33, + "probability": 0.991 + }, + { + "start": 5495.26, + "end": 5497.06, + "probability": 0.7802 + }, + { + "start": 5497.58, + "end": 5500.1, + "probability": 0.9922 + }, + { + "start": 5500.1, + "end": 5503.22, + "probability": 0.9983 + }, + { + "start": 5504.16, + "end": 5506.76, + "probability": 0.8785 + }, + { + "start": 5506.96, + "end": 5507.68, + "probability": 0.9706 + }, + { + "start": 5507.76, + "end": 5508.5, + "probability": 0.9695 + }, + { + "start": 5509.0, + "end": 5511.42, + "probability": 0.9789 + }, + { + "start": 5511.42, + "end": 5514.12, + "probability": 0.9816 + }, + { + "start": 5514.68, + "end": 5515.36, + "probability": 0.5962 + }, + { + "start": 5515.48, + "end": 5515.76, + "probability": 0.8567 + }, + { + "start": 5515.8, + "end": 5516.86, + "probability": 0.8346 + }, + { + "start": 5517.34, + "end": 5520.68, + "probability": 0.9507 + }, + { + "start": 5520.9, + "end": 5521.0, + "probability": 0.3686 + }, + { + "start": 5521.72, + "end": 5523.46, + "probability": 0.9727 + }, + { + "start": 5524.38, + "end": 5524.8, + "probability": 0.2703 + }, + { + "start": 5524.84, + "end": 5527.02, + "probability": 0.9948 + }, + { + "start": 5527.02, + "end": 5530.56, + "probability": 0.5137 + }, + { + "start": 5530.6, + "end": 5531.3, + "probability": 0.7625 + }, + { + "start": 5531.72, + "end": 5534.32, + "probability": 0.9233 + }, + { + "start": 5534.92, + "end": 5535.54, + "probability": 0.863 + }, + { + "start": 5536.46, + "end": 5539.04, + "probability": 0.995 + }, + { + "start": 5539.4, + "end": 5540.22, + "probability": 0.9307 + }, + { + "start": 5541.18, + "end": 5541.5, + "probability": 0.8548 + }, + { + "start": 5542.2, + "end": 5542.86, + "probability": 0.9279 + }, + { + "start": 5543.12, + "end": 5546.22, + "probability": 0.9919 + }, + { + "start": 5546.86, + "end": 5549.68, + "probability": 0.9227 + }, + { + "start": 5550.54, + "end": 5551.48, + "probability": 0.9812 + }, + { + "start": 5552.74, + "end": 5554.08, + "probability": 0.8507 + }, + { + "start": 5554.18, + "end": 5554.34, + "probability": 0.4274 + }, + { + "start": 5554.58, + "end": 5555.68, + "probability": 0.8289 + }, + { + "start": 5555.92, + "end": 5556.42, + "probability": 0.8502 + }, + { + "start": 5557.24, + "end": 5558.28, + "probability": 0.5577 + }, + { + "start": 5558.34, + "end": 5558.58, + "probability": 0.1979 + }, + { + "start": 5558.9, + "end": 5560.06, + "probability": 0.311 + }, + { + "start": 5560.14, + "end": 5560.14, + "probability": 0.243 + }, + { + "start": 5560.14, + "end": 5560.32, + "probability": 0.7226 + }, + { + "start": 5561.89, + "end": 5565.16, + "probability": 0.8098 + }, + { + "start": 5565.26, + "end": 5567.6, + "probability": 0.9976 + }, + { + "start": 5568.2, + "end": 5571.58, + "probability": 0.9328 + }, + { + "start": 5571.94, + "end": 5575.74, + "probability": 0.9844 + }, + { + "start": 5575.76, + "end": 5579.36, + "probability": 0.9968 + }, + { + "start": 5580.14, + "end": 5581.7, + "probability": 0.9819 + }, + { + "start": 5581.76, + "end": 5584.82, + "probability": 0.9845 + }, + { + "start": 5585.02, + "end": 5585.4, + "probability": 0.5002 + }, + { + "start": 5585.46, + "end": 5588.42, + "probability": 0.9559 + }, + { + "start": 5589.1, + "end": 5591.16, + "probability": 0.9314 + }, + { + "start": 5591.22, + "end": 5591.98, + "probability": 0.9757 + }, + { + "start": 5592.76, + "end": 5593.72, + "probability": 0.8595 + }, + { + "start": 5594.5, + "end": 5597.48, + "probability": 0.9703 + }, + { + "start": 5599.36, + "end": 5602.18, + "probability": 0.9948 + }, + { + "start": 5602.72, + "end": 5604.76, + "probability": 0.9982 + }, + { + "start": 5605.4, + "end": 5606.9, + "probability": 0.9404 + }, + { + "start": 5607.32, + "end": 5609.96, + "probability": 0.8149 + }, + { + "start": 5610.32, + "end": 5610.83, + "probability": 0.9531 + }, + { + "start": 5611.26, + "end": 5612.06, + "probability": 0.9527 + }, + { + "start": 5612.74, + "end": 5613.3, + "probability": 0.7656 + }, + { + "start": 5614.22, + "end": 5616.66, + "probability": 0.917 + }, + { + "start": 5616.66, + "end": 5619.18, + "probability": 0.9882 + }, + { + "start": 5619.84, + "end": 5620.7, + "probability": 0.6504 + }, + { + "start": 5620.84, + "end": 5624.34, + "probability": 0.8271 + }, + { + "start": 5624.94, + "end": 5626.04, + "probability": 0.964 + }, + { + "start": 5626.58, + "end": 5626.78, + "probability": 0.7776 + }, + { + "start": 5627.4, + "end": 5627.58, + "probability": 0.7271 + }, + { + "start": 5628.86, + "end": 5630.24, + "probability": 0.9751 + }, + { + "start": 5630.9, + "end": 5634.7, + "probability": 0.9544 + }, + { + "start": 5635.58, + "end": 5638.96, + "probability": 0.1252 + }, + { + "start": 5639.6, + "end": 5640.18, + "probability": 0.2386 + }, + { + "start": 5640.18, + "end": 5644.4, + "probability": 0.1125 + }, + { + "start": 5646.7, + "end": 5649.99, + "probability": 0.0299 + }, + { + "start": 5651.16, + "end": 5652.44, + "probability": 0.0481 + }, + { + "start": 5653.26, + "end": 5654.18, + "probability": 0.0092 + }, + { + "start": 5654.5, + "end": 5655.06, + "probability": 0.0873 + }, + { + "start": 5656.0, + "end": 5658.74, + "probability": 0.9724 + }, + { + "start": 5659.34, + "end": 5661.16, + "probability": 0.1552 + }, + { + "start": 5664.96, + "end": 5667.52, + "probability": 0.2478 + }, + { + "start": 5668.72, + "end": 5670.58, + "probability": 0.8809 + }, + { + "start": 5671.22, + "end": 5675.76, + "probability": 0.9946 + }, + { + "start": 5676.36, + "end": 5676.64, + "probability": 0.9954 + }, + { + "start": 5677.24, + "end": 5680.02, + "probability": 0.9985 + }, + { + "start": 5680.44, + "end": 5681.74, + "probability": 0.6257 + }, + { + "start": 5682.1, + "end": 5684.02, + "probability": 0.9446 + }, + { + "start": 5684.74, + "end": 5687.24, + "probability": 0.1227 + }, + { + "start": 5688.1, + "end": 5688.22, + "probability": 0.5405 + }, + { + "start": 5688.34, + "end": 5689.06, + "probability": 0.6783 + }, + { + "start": 5689.08, + "end": 5690.62, + "probability": 0.9412 + }, + { + "start": 5690.68, + "end": 5692.84, + "probability": 0.9351 + }, + { + "start": 5693.42, + "end": 5695.96, + "probability": 0.9621 + }, + { + "start": 5696.86, + "end": 5698.1, + "probability": 0.7189 + }, + { + "start": 5699.2, + "end": 5701.8, + "probability": 0.9316 + }, + { + "start": 5702.64, + "end": 5706.88, + "probability": 0.9172 + }, + { + "start": 5708.58, + "end": 5709.44, + "probability": 0.5594 + }, + { + "start": 5709.52, + "end": 5709.62, + "probability": 0.5873 + }, + { + "start": 5710.12, + "end": 5710.82, + "probability": 0.9406 + }, + { + "start": 5710.9, + "end": 5711.78, + "probability": 0.6459 + }, + { + "start": 5711.98, + "end": 5714.22, + "probability": 0.7321 + }, + { + "start": 5714.68, + "end": 5715.64, + "probability": 0.9751 + }, + { + "start": 5716.34, + "end": 5717.54, + "probability": 0.4878 + }, + { + "start": 5718.1, + "end": 5718.68, + "probability": 0.7249 + }, + { + "start": 5720.12, + "end": 5721.76, + "probability": 0.6231 + }, + { + "start": 5722.18, + "end": 5723.03, + "probability": 0.8881 + }, + { + "start": 5723.22, + "end": 5723.98, + "probability": 0.7572 + }, + { + "start": 5724.36, + "end": 5724.5, + "probability": 0.2183 + }, + { + "start": 5724.68, + "end": 5725.8, + "probability": 0.953 + }, + { + "start": 5726.22, + "end": 5728.22, + "probability": 0.9063 + }, + { + "start": 5728.26, + "end": 5728.63, + "probability": 0.9265 + }, + { + "start": 5730.25, + "end": 5732.0, + "probability": 0.3401 + }, + { + "start": 5733.26, + "end": 5734.69, + "probability": 0.7853 + }, + { + "start": 5735.58, + "end": 5739.48, + "probability": 0.9988 + }, + { + "start": 5740.04, + "end": 5741.98, + "probability": 0.9938 + }, + { + "start": 5741.98, + "end": 5744.86, + "probability": 0.9756 + }, + { + "start": 5745.26, + "end": 5745.54, + "probability": 0.8208 + }, + { + "start": 5747.0, + "end": 5747.35, + "probability": 0.6812 + }, + { + "start": 5747.54, + "end": 5749.78, + "probability": 0.9843 + }, + { + "start": 5750.22, + "end": 5751.08, + "probability": 0.9722 + }, + { + "start": 5751.62, + "end": 5752.24, + "probability": 0.7039 + }, + { + "start": 5753.1, + "end": 5754.67, + "probability": 0.9863 + }, + { + "start": 5756.38, + "end": 5758.2, + "probability": 0.9517 + }, + { + "start": 5760.4, + "end": 5761.7, + "probability": 0.7753 + }, + { + "start": 5761.8, + "end": 5763.24, + "probability": 0.9884 + }, + { + "start": 5764.5, + "end": 5765.52, + "probability": 0.9449 + }, + { + "start": 5766.12, + "end": 5766.66, + "probability": 0.8876 + }, + { + "start": 5767.24, + "end": 5767.84, + "probability": 0.9642 + }, + { + "start": 5768.86, + "end": 5771.34, + "probability": 0.9881 + }, + { + "start": 5771.68, + "end": 5774.48, + "probability": 0.9364 + }, + { + "start": 5776.48, + "end": 5778.2, + "probability": 0.8651 + }, + { + "start": 5778.88, + "end": 5781.5, + "probability": 0.9863 + }, + { + "start": 5781.5, + "end": 5785.64, + "probability": 0.994 + }, + { + "start": 5787.26, + "end": 5790.5, + "probability": 0.9491 + }, + { + "start": 5791.78, + "end": 5792.26, + "probability": 0.624 + }, + { + "start": 5794.42, + "end": 5797.0, + "probability": 0.6534 + }, + { + "start": 5797.82, + "end": 5798.34, + "probability": 0.8926 + }, + { + "start": 5798.4, + "end": 5799.0, + "probability": 0.8697 + }, + { + "start": 5799.06, + "end": 5800.95, + "probability": 0.6318 + }, + { + "start": 5803.28, + "end": 5806.24, + "probability": 0.8044 + }, + { + "start": 5806.52, + "end": 5808.1, + "probability": 0.9743 + }, + { + "start": 5808.78, + "end": 5811.74, + "probability": 0.8452 + }, + { + "start": 5813.1, + "end": 5816.1, + "probability": 0.993 + }, + { + "start": 5816.1, + "end": 5820.34, + "probability": 0.9994 + }, + { + "start": 5821.18, + "end": 5824.98, + "probability": 0.9939 + }, + { + "start": 5825.76, + "end": 5828.25, + "probability": 0.8272 + }, + { + "start": 5829.98, + "end": 5832.8, + "probability": 0.9766 + }, + { + "start": 5832.8, + "end": 5835.66, + "probability": 0.899 + }, + { + "start": 5835.82, + "end": 5836.8, + "probability": 0.5346 + }, + { + "start": 5836.88, + "end": 5837.46, + "probability": 0.6222 + }, + { + "start": 5837.58, + "end": 5839.42, + "probability": 0.7747 + }, + { + "start": 5840.54, + "end": 5844.5, + "probability": 0.9927 + }, + { + "start": 5844.5, + "end": 5848.88, + "probability": 0.9004 + }, + { + "start": 5850.48, + "end": 5850.96, + "probability": 0.4629 + }, + { + "start": 5851.1, + "end": 5851.65, + "probability": 0.8683 + }, + { + "start": 5851.88, + "end": 5852.42, + "probability": 0.5058 + }, + { + "start": 5852.64, + "end": 5857.4, + "probability": 0.9635 + }, + { + "start": 5858.62, + "end": 5860.8, + "probability": 0.9707 + }, + { + "start": 5861.76, + "end": 5862.46, + "probability": 0.5916 + }, + { + "start": 5863.0, + "end": 5865.11, + "probability": 0.9724 + }, + { + "start": 5866.0, + "end": 5869.18, + "probability": 0.9803 + }, + { + "start": 5869.82, + "end": 5871.92, + "probability": 0.9886 + }, + { + "start": 5873.92, + "end": 5875.68, + "probability": 0.9294 + }, + { + "start": 5875.94, + "end": 5877.82, + "probability": 0.1092 + }, + { + "start": 5878.94, + "end": 5882.22, + "probability": 0.7952 + }, + { + "start": 5882.58, + "end": 5883.08, + "probability": 0.761 + }, + { + "start": 5883.1, + "end": 5885.24, + "probability": 0.9051 + }, + { + "start": 5886.04, + "end": 5890.04, + "probability": 0.9492 + }, + { + "start": 5892.22, + "end": 5892.68, + "probability": 0.6979 + }, + { + "start": 5893.16, + "end": 5893.9, + "probability": 0.8306 + }, + { + "start": 5894.26, + "end": 5897.18, + "probability": 0.9078 + }, + { + "start": 5897.26, + "end": 5900.96, + "probability": 0.9744 + }, + { + "start": 5901.6, + "end": 5903.7, + "probability": 0.983 + }, + { + "start": 5904.88, + "end": 5908.42, + "probability": 0.9403 + }, + { + "start": 5909.36, + "end": 5912.24, + "probability": 0.95 + }, + { + "start": 5913.68, + "end": 5916.93, + "probability": 0.8569 + }, + { + "start": 5919.44, + "end": 5921.22, + "probability": 0.7837 + }, + { + "start": 5922.1, + "end": 5924.62, + "probability": 0.6959 + }, + { + "start": 5924.62, + "end": 5926.94, + "probability": 0.9587 + }, + { + "start": 5927.86, + "end": 5933.08, + "probability": 0.9107 + }, + { + "start": 5933.14, + "end": 5933.96, + "probability": 0.7729 + }, + { + "start": 5935.52, + "end": 5940.06, + "probability": 0.8522 + }, + { + "start": 5940.38, + "end": 5941.5, + "probability": 0.7243 + }, + { + "start": 5942.76, + "end": 5945.0, + "probability": 0.7966 + }, + { + "start": 5945.08, + "end": 5945.54, + "probability": 0.494 + }, + { + "start": 5945.6, + "end": 5947.14, + "probability": 0.7998 + }, + { + "start": 5947.94, + "end": 5953.16, + "probability": 0.978 + }, + { + "start": 5953.38, + "end": 5953.46, + "probability": 0.5853 + }, + { + "start": 5953.46, + "end": 5956.42, + "probability": 0.576 + }, + { + "start": 5956.42, + "end": 5958.8, + "probability": 0.928 + }, + { + "start": 5958.82, + "end": 5962.02, + "probability": 0.9458 + }, + { + "start": 5962.78, + "end": 5964.88, + "probability": 0.7361 + }, + { + "start": 5965.2, + "end": 5967.34, + "probability": 0.9871 + }, + { + "start": 5967.5, + "end": 5968.0, + "probability": 0.0248 + }, + { + "start": 5968.0, + "end": 5968.08, + "probability": 0.5907 + }, + { + "start": 5968.08, + "end": 5968.08, + "probability": 0.2681 + }, + { + "start": 5968.08, + "end": 5969.12, + "probability": 0.8949 + }, + { + "start": 5969.84, + "end": 5970.42, + "probability": 0.2983 + }, + { + "start": 5970.56, + "end": 5970.56, + "probability": 0.2324 + }, + { + "start": 5970.84, + "end": 5973.04, + "probability": 0.5687 + }, + { + "start": 5973.24, + "end": 5976.86, + "probability": 0.7167 + }, + { + "start": 5977.0, + "end": 5978.24, + "probability": 0.8461 + }, + { + "start": 5978.4, + "end": 5980.24, + "probability": 0.7263 + }, + { + "start": 5981.46, + "end": 5984.92, + "probability": 0.9443 + }, + { + "start": 5985.28, + "end": 5988.24, + "probability": 0.9907 + }, + { + "start": 5988.68, + "end": 5989.06, + "probability": 0.6087 + }, + { + "start": 5989.24, + "end": 5990.02, + "probability": 0.9424 + }, + { + "start": 5991.18, + "end": 5995.66, + "probability": 0.9951 + }, + { + "start": 5996.46, + "end": 5999.14, + "probability": 0.9895 + }, + { + "start": 5999.56, + "end": 6000.42, + "probability": 0.9275 + }, + { + "start": 6000.64, + "end": 6000.84, + "probability": 0.6209 + }, + { + "start": 6000.96, + "end": 6002.31, + "probability": 0.9878 + }, + { + "start": 6002.84, + "end": 6003.9, + "probability": 0.7095 + }, + { + "start": 6003.9, + "end": 6004.96, + "probability": 0.4801 + }, + { + "start": 6005.26, + "end": 6008.56, + "probability": 0.7794 + }, + { + "start": 6008.66, + "end": 6012.72, + "probability": 0.78 + }, + { + "start": 6013.32, + "end": 6015.49, + "probability": 0.4601 + }, + { + "start": 6016.94, + "end": 6019.0, + "probability": 0.9036 + }, + { + "start": 6019.02, + "end": 6020.06, + "probability": 0.399 + }, + { + "start": 6020.24, + "end": 6022.16, + "probability": 0.9915 + }, + { + "start": 6023.16, + "end": 6023.9, + "probability": 0.6456 + }, + { + "start": 6024.28, + "end": 6026.48, + "probability": 0.8979 + }, + { + "start": 6027.4, + "end": 6029.54, + "probability": 0.8758 + }, + { + "start": 6030.46, + "end": 6031.38, + "probability": 0.8798 + }, + { + "start": 6031.44, + "end": 6031.82, + "probability": 0.4836 + }, + { + "start": 6031.82, + "end": 6033.9, + "probability": 0.8534 + }, + { + "start": 6034.42, + "end": 6036.16, + "probability": 0.8959 + }, + { + "start": 6036.82, + "end": 6038.74, + "probability": 0.9792 + }, + { + "start": 6038.96, + "end": 6041.04, + "probability": 0.6528 + }, + { + "start": 6041.3, + "end": 6042.28, + "probability": 0.7981 + }, + { + "start": 6044.4, + "end": 6048.44, + "probability": 0.9689 + }, + { + "start": 6048.98, + "end": 6050.06, + "probability": 0.9426 + }, + { + "start": 6050.34, + "end": 6052.44, + "probability": 0.9256 + }, + { + "start": 6053.74, + "end": 6056.44, + "probability": 0.9771 + }, + { + "start": 6056.88, + "end": 6059.44, + "probability": 0.8586 + }, + { + "start": 6060.62, + "end": 6063.38, + "probability": 0.9972 + }, + { + "start": 6064.38, + "end": 6066.72, + "probability": 0.9661 + }, + { + "start": 6066.72, + "end": 6069.74, + "probability": 0.9967 + }, + { + "start": 6070.66, + "end": 6071.88, + "probability": 0.7237 + }, + { + "start": 6079.72, + "end": 6081.2, + "probability": 0.7721 + }, + { + "start": 6082.7, + "end": 6083.76, + "probability": 0.8175 + }, + { + "start": 6085.92, + "end": 6087.53, + "probability": 0.7798 + }, + { + "start": 6088.5, + "end": 6088.72, + "probability": 0.7948 + }, + { + "start": 6090.2, + "end": 6092.38, + "probability": 0.9342 + }, + { + "start": 6092.86, + "end": 6093.68, + "probability": 0.8167 + }, + { + "start": 6095.3, + "end": 6097.2, + "probability": 0.8235 + }, + { + "start": 6098.02, + "end": 6099.12, + "probability": 0.6559 + }, + { + "start": 6099.68, + "end": 6100.94, + "probability": 0.7598 + }, + { + "start": 6101.18, + "end": 6103.32, + "probability": 0.8528 + }, + { + "start": 6104.76, + "end": 6106.32, + "probability": 0.8069 + }, + { + "start": 6106.32, + "end": 6108.6, + "probability": 0.9766 + }, + { + "start": 6109.54, + "end": 6112.88, + "probability": 0.9933 + }, + { + "start": 6113.96, + "end": 6117.1, + "probability": 0.7918 + }, + { + "start": 6117.46, + "end": 6119.06, + "probability": 0.9658 + }, + { + "start": 6119.64, + "end": 6121.32, + "probability": 0.4758 + }, + { + "start": 6121.42, + "end": 6123.28, + "probability": 0.8144 + }, + { + "start": 6124.82, + "end": 6125.78, + "probability": 0.6947 + }, + { + "start": 6125.88, + "end": 6128.66, + "probability": 0.9281 + }, + { + "start": 6128.74, + "end": 6129.86, + "probability": 0.7646 + }, + { + "start": 6130.74, + "end": 6135.56, + "probability": 0.9468 + }, + { + "start": 6136.52, + "end": 6138.64, + "probability": 0.9915 + }, + { + "start": 6138.64, + "end": 6141.62, + "probability": 0.9946 + }, + { + "start": 6142.32, + "end": 6142.78, + "probability": 0.7001 + }, + { + "start": 6143.74, + "end": 6145.56, + "probability": 0.9802 + }, + { + "start": 6146.4, + "end": 6147.94, + "probability": 0.5134 + }, + { + "start": 6148.08, + "end": 6149.88, + "probability": 0.9149 + }, + { + "start": 6149.98, + "end": 6151.52, + "probability": 0.7479 + }, + { + "start": 6152.6, + "end": 6155.12, + "probability": 0.745 + }, + { + "start": 6155.72, + "end": 6156.32, + "probability": 0.6984 + }, + { + "start": 6157.04, + "end": 6157.96, + "probability": 0.6299 + }, + { + "start": 6158.3, + "end": 6160.18, + "probability": 0.6492 + }, + { + "start": 6160.52, + "end": 6161.48, + "probability": 0.7478 + }, + { + "start": 6162.02, + "end": 6162.86, + "probability": 0.9677 + }, + { + "start": 6163.12, + "end": 6163.88, + "probability": 0.9426 + }, + { + "start": 6165.04, + "end": 6167.42, + "probability": 0.8791 + }, + { + "start": 6167.84, + "end": 6169.5, + "probability": 0.9744 + }, + { + "start": 6170.3, + "end": 6172.72, + "probability": 0.9946 + }, + { + "start": 6173.24, + "end": 6174.84, + "probability": 0.7954 + }, + { + "start": 6175.44, + "end": 6178.34, + "probability": 0.7304 + }, + { + "start": 6178.86, + "end": 6179.6, + "probability": 0.9746 + }, + { + "start": 6180.68, + "end": 6181.1, + "probability": 0.7477 + }, + { + "start": 6181.24, + "end": 6182.3, + "probability": 0.8888 + }, + { + "start": 6183.84, + "end": 6185.0, + "probability": 0.6979 + }, + { + "start": 6186.76, + "end": 6187.7, + "probability": 0.3821 + }, + { + "start": 6187.84, + "end": 6188.12, + "probability": 0.1724 + }, + { + "start": 6189.12, + "end": 6189.32, + "probability": 0.4753 + }, + { + "start": 6189.38, + "end": 6191.78, + "probability": 0.8046 + }, + { + "start": 6192.32, + "end": 6194.78, + "probability": 0.8683 + }, + { + "start": 6195.46, + "end": 6196.62, + "probability": 0.6654 + }, + { + "start": 6196.84, + "end": 6197.88, + "probability": 0.461 + }, + { + "start": 6198.14, + "end": 6198.96, + "probability": 0.6372 + }, + { + "start": 6199.38, + "end": 6201.7, + "probability": 0.6654 + }, + { + "start": 6206.48, + "end": 6207.16, + "probability": 0.7459 + }, + { + "start": 6207.88, + "end": 6208.58, + "probability": 0.8394 + }, + { + "start": 6209.32, + "end": 6211.36, + "probability": 0.8843 + }, + { + "start": 6211.38, + "end": 6212.18, + "probability": 0.9451 + }, + { + "start": 6213.48, + "end": 6220.32, + "probability": 0.9856 + }, + { + "start": 6220.56, + "end": 6222.62, + "probability": 0.9854 + }, + { + "start": 6222.9, + "end": 6223.8, + "probability": 0.9286 + }, + { + "start": 6224.08, + "end": 6228.56, + "probability": 0.9922 + }, + { + "start": 6229.28, + "end": 6231.2, + "probability": 0.5029 + }, + { + "start": 6231.8, + "end": 6232.6, + "probability": 0.7842 + }, + { + "start": 6233.16, + "end": 6236.56, + "probability": 0.9935 + }, + { + "start": 6236.62, + "end": 6241.58, + "probability": 0.998 + }, + { + "start": 6241.88, + "end": 6244.0, + "probability": 0.9744 + }, + { + "start": 6244.52, + "end": 6246.84, + "probability": 0.9972 + }, + { + "start": 6247.24, + "end": 6248.24, + "probability": 0.7518 + }, + { + "start": 6248.76, + "end": 6254.14, + "probability": 0.9038 + }, + { + "start": 6254.66, + "end": 6256.76, + "probability": 0.8431 + }, + { + "start": 6257.36, + "end": 6260.4, + "probability": 0.8242 + }, + { + "start": 6260.96, + "end": 6261.66, + "probability": 0.8255 + }, + { + "start": 6262.18, + "end": 6263.52, + "probability": 0.814 + }, + { + "start": 6264.24, + "end": 6267.22, + "probability": 0.9858 + }, + { + "start": 6267.58, + "end": 6270.16, + "probability": 0.9786 + }, + { + "start": 6270.5, + "end": 6271.82, + "probability": 0.9948 + }, + { + "start": 6272.34, + "end": 6274.04, + "probability": 0.7522 + }, + { + "start": 6274.64, + "end": 6275.98, + "probability": 0.9735 + }, + { + "start": 6276.1, + "end": 6276.44, + "probability": 0.6593 + }, + { + "start": 6277.06, + "end": 6278.1, + "probability": 0.6087 + }, + { + "start": 6278.38, + "end": 6279.14, + "probability": 0.7649 + }, + { + "start": 6279.78, + "end": 6280.1, + "probability": 0.5788 + }, + { + "start": 6284.96, + "end": 6286.16, + "probability": 0.554 + }, + { + "start": 6287.44, + "end": 6290.34, + "probability": 0.9436 + }, + { + "start": 6290.7, + "end": 6293.48, + "probability": 0.8162 + }, + { + "start": 6294.08, + "end": 6300.0, + "probability": 0.9614 + }, + { + "start": 6300.6, + "end": 6303.38, + "probability": 0.9814 + }, + { + "start": 6303.58, + "end": 6307.24, + "probability": 0.8278 + }, + { + "start": 6307.86, + "end": 6309.04, + "probability": 0.9649 + }, + { + "start": 6309.14, + "end": 6310.08, + "probability": 0.4324 + }, + { + "start": 6310.32, + "end": 6311.13, + "probability": 0.9377 + }, + { + "start": 6311.42, + "end": 6311.5, + "probability": 0.8726 + }, + { + "start": 6312.3, + "end": 6313.16, + "probability": 0.7743 + }, + { + "start": 6314.92, + "end": 6316.52, + "probability": 0.9941 + }, + { + "start": 6316.68, + "end": 6319.34, + "probability": 0.8864 + }, + { + "start": 6320.28, + "end": 6324.76, + "probability": 0.9898 + }, + { + "start": 6325.64, + "end": 6328.6, + "probability": 0.7881 + }, + { + "start": 6329.26, + "end": 6333.52, + "probability": 0.6939 + }, + { + "start": 6334.04, + "end": 6336.08, + "probability": 0.8701 + }, + { + "start": 6336.28, + "end": 6340.72, + "probability": 0.991 + }, + { + "start": 6341.16, + "end": 6343.56, + "probability": 0.9897 + }, + { + "start": 6343.96, + "end": 6345.39, + "probability": 0.9767 + }, + { + "start": 6346.82, + "end": 6348.34, + "probability": 0.5918 + }, + { + "start": 6348.54, + "end": 6351.2, + "probability": 0.918 + }, + { + "start": 6351.26, + "end": 6353.16, + "probability": 0.9712 + }, + { + "start": 6353.92, + "end": 6356.32, + "probability": 0.9093 + }, + { + "start": 6356.48, + "end": 6360.3, + "probability": 0.9741 + }, + { + "start": 6360.76, + "end": 6361.96, + "probability": 0.9819 + }, + { + "start": 6362.44, + "end": 6366.14, + "probability": 0.9573 + }, + { + "start": 6366.26, + "end": 6367.7, + "probability": 0.9817 + }, + { + "start": 6367.94, + "end": 6369.2, + "probability": 0.9937 + }, + { + "start": 6369.34, + "end": 6370.58, + "probability": 0.9365 + }, + { + "start": 6370.88, + "end": 6373.16, + "probability": 0.8841 + }, + { + "start": 6373.5, + "end": 6374.89, + "probability": 0.9313 + }, + { + "start": 6375.52, + "end": 6379.0, + "probability": 0.8127 + }, + { + "start": 6379.14, + "end": 6380.54, + "probability": 0.7786 + }, + { + "start": 6380.58, + "end": 6381.37, + "probability": 0.6855 + }, + { + "start": 6382.14, + "end": 6385.74, + "probability": 0.9928 + }, + { + "start": 6386.26, + "end": 6391.76, + "probability": 0.9108 + }, + { + "start": 6392.32, + "end": 6397.54, + "probability": 0.9845 + }, + { + "start": 6397.64, + "end": 6398.53, + "probability": 0.9622 + }, + { + "start": 6399.28, + "end": 6405.48, + "probability": 0.9863 + }, + { + "start": 6405.5, + "end": 6407.22, + "probability": 0.9767 + }, + { + "start": 6407.62, + "end": 6409.2, + "probability": 0.9565 + }, + { + "start": 6409.56, + "end": 6411.7, + "probability": 0.8726 + }, + { + "start": 6412.26, + "end": 6415.96, + "probability": 0.9561 + }, + { + "start": 6415.96, + "end": 6419.58, + "probability": 0.9437 + }, + { + "start": 6419.98, + "end": 6421.44, + "probability": 0.9352 + }, + { + "start": 6421.58, + "end": 6426.86, + "probability": 0.9658 + }, + { + "start": 6427.46, + "end": 6432.82, + "probability": 0.837 + }, + { + "start": 6433.32, + "end": 6434.8, + "probability": 0.9985 + }, + { + "start": 6435.32, + "end": 6439.66, + "probability": 0.7609 + }, + { + "start": 6440.14, + "end": 6441.78, + "probability": 0.9695 + }, + { + "start": 6442.22, + "end": 6446.64, + "probability": 0.9835 + }, + { + "start": 6446.98, + "end": 6447.6, + "probability": 0.7266 + }, + { + "start": 6448.04, + "end": 6448.36, + "probability": 0.3859 + }, + { + "start": 6448.44, + "end": 6450.2, + "probability": 0.9788 + }, + { + "start": 6451.0, + "end": 6454.74, + "probability": 0.9696 + }, + { + "start": 6455.02, + "end": 6456.7, + "probability": 0.9845 + }, + { + "start": 6457.12, + "end": 6459.7, + "probability": 0.958 + }, + { + "start": 6459.98, + "end": 6462.3, + "probability": 0.9277 + }, + { + "start": 6462.74, + "end": 6464.28, + "probability": 0.9427 + }, + { + "start": 6464.62, + "end": 6466.84, + "probability": 0.8389 + }, + { + "start": 6467.38, + "end": 6471.1, + "probability": 0.9747 + }, + { + "start": 6471.1, + "end": 6472.16, + "probability": 0.8027 + }, + { + "start": 6472.24, + "end": 6473.28, + "probability": 0.9703 + }, + { + "start": 6473.38, + "end": 6474.32, + "probability": 0.7566 + }, + { + "start": 6474.64, + "end": 6478.6, + "probability": 0.9969 + }, + { + "start": 6478.7, + "end": 6479.2, + "probability": 0.8781 + }, + { + "start": 6479.84, + "end": 6483.78, + "probability": 0.7651 + }, + { + "start": 6483.84, + "end": 6483.84, + "probability": 0.0672 + }, + { + "start": 6483.84, + "end": 6485.68, + "probability": 0.6502 + }, + { + "start": 6485.7, + "end": 6485.84, + "probability": 0.698 + }, + { + "start": 6486.98, + "end": 6489.15, + "probability": 0.9528 + }, + { + "start": 6489.74, + "end": 6491.34, + "probability": 0.686 + }, + { + "start": 6493.14, + "end": 6494.68, + "probability": 0.1303 + }, + { + "start": 6501.04, + "end": 6502.76, + "probability": 0.1259 + }, + { + "start": 6503.46, + "end": 6506.38, + "probability": 0.0243 + }, + { + "start": 6507.24, + "end": 6511.46, + "probability": 0.2853 + }, + { + "start": 6511.86, + "end": 6515.42, + "probability": 0.8782 + }, + { + "start": 6515.62, + "end": 6518.7, + "probability": 0.7507 + }, + { + "start": 6518.8, + "end": 6522.62, + "probability": 0.9085 + }, + { + "start": 6523.56, + "end": 6525.74, + "probability": 0.5035 + }, + { + "start": 6525.9, + "end": 6527.06, + "probability": 0.4976 + }, + { + "start": 6527.62, + "end": 6528.56, + "probability": 0.5509 + }, + { + "start": 6531.14, + "end": 6539.1, + "probability": 0.8019 + }, + { + "start": 6539.14, + "end": 6540.62, + "probability": 0.4463 + }, + { + "start": 6541.78, + "end": 6544.68, + "probability": 0.6514 + }, + { + "start": 6544.8, + "end": 6548.68, + "probability": 0.9536 + }, + { + "start": 6548.68, + "end": 6553.9, + "probability": 0.9894 + }, + { + "start": 6554.8, + "end": 6554.84, + "probability": 0.0293 + }, + { + "start": 6554.86, + "end": 6557.4, + "probability": 0.6582 + }, + { + "start": 6558.46, + "end": 6560.56, + "probability": 0.6368 + }, + { + "start": 6561.82, + "end": 6563.38, + "probability": 0.6008 + }, + { + "start": 6573.2, + "end": 6573.2, + "probability": 0.1743 + }, + { + "start": 6573.2, + "end": 6573.2, + "probability": 0.0883 + }, + { + "start": 6573.2, + "end": 6573.2, + "probability": 0.107 + }, + { + "start": 6573.2, + "end": 6573.2, + "probability": 0.0666 + }, + { + "start": 6573.2, + "end": 6573.2, + "probability": 0.0497 + }, + { + "start": 6605.36, + "end": 6608.02, + "probability": 0.8451 + }, + { + "start": 6609.54, + "end": 6611.48, + "probability": 0.9972 + }, + { + "start": 6612.56, + "end": 6613.82, + "probability": 0.8323 + }, + { + "start": 6615.16, + "end": 6620.9, + "probability": 0.9293 + }, + { + "start": 6623.12, + "end": 6624.32, + "probability": 0.7412 + }, + { + "start": 6625.12, + "end": 6626.3, + "probability": 0.9108 + }, + { + "start": 6627.98, + "end": 6629.1, + "probability": 0.4971 + }, + { + "start": 6629.98, + "end": 6631.46, + "probability": 0.9043 + }, + { + "start": 6631.94, + "end": 6634.54, + "probability": 0.989 + }, + { + "start": 6635.12, + "end": 6640.36, + "probability": 0.887 + }, + { + "start": 6640.8, + "end": 6641.82, + "probability": 0.9489 + }, + { + "start": 6642.44, + "end": 6642.88, + "probability": 0.7575 + }, + { + "start": 6644.22, + "end": 6646.24, + "probability": 0.9922 + }, + { + "start": 6647.38, + "end": 6651.38, + "probability": 0.8413 + }, + { + "start": 6651.88, + "end": 6655.98, + "probability": 0.9927 + }, + { + "start": 6656.58, + "end": 6657.48, + "probability": 0.8211 + }, + { + "start": 6658.46, + "end": 6661.64, + "probability": 0.9895 + }, + { + "start": 6661.94, + "end": 6665.74, + "probability": 0.945 + }, + { + "start": 6666.2, + "end": 6667.08, + "probability": 0.9875 + }, + { + "start": 6667.46, + "end": 6671.34, + "probability": 0.8869 + }, + { + "start": 6672.26, + "end": 6674.54, + "probability": 0.9133 + }, + { + "start": 6675.12, + "end": 6678.66, + "probability": 0.7545 + }, + { + "start": 6679.04, + "end": 6679.99, + "probability": 0.8823 + }, + { + "start": 6683.15, + "end": 6688.4, + "probability": 0.8343 + }, + { + "start": 6689.42, + "end": 6690.28, + "probability": 0.6955 + }, + { + "start": 6691.5, + "end": 6693.3, + "probability": 0.9987 + }, + { + "start": 6694.1, + "end": 6696.73, + "probability": 0.9927 + }, + { + "start": 6697.48, + "end": 6698.63, + "probability": 0.8019 + }, + { + "start": 6699.6, + "end": 6701.38, + "probability": 0.9515 + }, + { + "start": 6702.18, + "end": 6704.34, + "probability": 0.9806 + }, + { + "start": 6705.6, + "end": 6707.58, + "probability": 0.5718 + }, + { + "start": 6708.12, + "end": 6709.18, + "probability": 0.8164 + }, + { + "start": 6710.8, + "end": 6712.32, + "probability": 0.7761 + }, + { + "start": 6713.4, + "end": 6717.82, + "probability": 0.9885 + }, + { + "start": 6718.7, + "end": 6719.88, + "probability": 0.9311 + }, + { + "start": 6720.36, + "end": 6725.08, + "probability": 0.9917 + }, + { + "start": 6725.08, + "end": 6729.3, + "probability": 0.9246 + }, + { + "start": 6729.62, + "end": 6730.4, + "probability": 0.9319 + }, + { + "start": 6731.54, + "end": 6735.54, + "probability": 0.7199 + }, + { + "start": 6735.9, + "end": 6738.76, + "probability": 0.9823 + }, + { + "start": 6739.24, + "end": 6740.72, + "probability": 0.9536 + }, + { + "start": 6741.06, + "end": 6742.34, + "probability": 0.5876 + }, + { + "start": 6743.4, + "end": 6745.94, + "probability": 0.9332 + }, + { + "start": 6746.56, + "end": 6750.84, + "probability": 0.9741 + }, + { + "start": 6752.2, + "end": 6753.88, + "probability": 0.5543 + }, + { + "start": 6754.48, + "end": 6756.16, + "probability": 0.9747 + }, + { + "start": 6756.24, + "end": 6756.86, + "probability": 0.2505 + }, + { + "start": 6757.76, + "end": 6760.4, + "probability": 0.9398 + }, + { + "start": 6761.18, + "end": 6764.48, + "probability": 0.9008 + }, + { + "start": 6764.84, + "end": 6769.76, + "probability": 0.8562 + }, + { + "start": 6770.76, + "end": 6772.22, + "probability": 0.9932 + }, + { + "start": 6772.8, + "end": 6774.02, + "probability": 0.6552 + }, + { + "start": 6774.54, + "end": 6776.2, + "probability": 0.999 + }, + { + "start": 6776.82, + "end": 6778.08, + "probability": 0.8683 + }, + { + "start": 6778.8, + "end": 6779.62, + "probability": 0.4412 + }, + { + "start": 6780.38, + "end": 6780.86, + "probability": 0.7169 + }, + { + "start": 6782.34, + "end": 6786.1, + "probability": 0.9162 + }, + { + "start": 6787.56, + "end": 6788.74, + "probability": 0.9097 + }, + { + "start": 6789.16, + "end": 6789.92, + "probability": 0.7727 + }, + { + "start": 6790.16, + "end": 6795.82, + "probability": 0.9478 + }, + { + "start": 6796.12, + "end": 6797.4, + "probability": 0.7851 + }, + { + "start": 6797.46, + "end": 6800.64, + "probability": 0.8923 + }, + { + "start": 6800.94, + "end": 6802.94, + "probability": 0.9824 + }, + { + "start": 6803.76, + "end": 6805.54, + "probability": 0.8013 + }, + { + "start": 6806.56, + "end": 6808.22, + "probability": 0.8625 + }, + { + "start": 6809.9, + "end": 6811.94, + "probability": 0.9777 + }, + { + "start": 6812.6, + "end": 6812.82, + "probability": 0.8151 + }, + { + "start": 6814.92, + "end": 6815.96, + "probability": 0.7494 + }, + { + "start": 6816.5, + "end": 6824.24, + "probability": 0.9861 + }, + { + "start": 6825.66, + "end": 6829.52, + "probability": 0.9072 + }, + { + "start": 6830.14, + "end": 6831.2, + "probability": 0.9446 + }, + { + "start": 6831.82, + "end": 6832.48, + "probability": 0.9886 + }, + { + "start": 6834.6, + "end": 6836.22, + "probability": 0.9477 + }, + { + "start": 6837.06, + "end": 6840.92, + "probability": 0.9846 + }, + { + "start": 6841.62, + "end": 6846.38, + "probability": 0.9928 + }, + { + "start": 6846.68, + "end": 6847.64, + "probability": 0.7286 + }, + { + "start": 6847.86, + "end": 6849.42, + "probability": 0.9609 + }, + { + "start": 6849.78, + "end": 6850.73, + "probability": 0.9772 + }, + { + "start": 6851.26, + "end": 6852.32, + "probability": 0.8914 + }, + { + "start": 6852.84, + "end": 6855.5, + "probability": 0.5434 + }, + { + "start": 6855.5, + "end": 6857.24, + "probability": 0.7031 + }, + { + "start": 6858.54, + "end": 6861.28, + "probability": 0.9919 + }, + { + "start": 6861.36, + "end": 6861.68, + "probability": 0.8014 + }, + { + "start": 6863.02, + "end": 6863.72, + "probability": 0.9076 + }, + { + "start": 6864.74, + "end": 6865.42, + "probability": 0.9811 + }, + { + "start": 6865.54, + "end": 6866.2, + "probability": 0.9705 + }, + { + "start": 6866.42, + "end": 6867.54, + "probability": 0.9538 + }, + { + "start": 6867.68, + "end": 6869.26, + "probability": 0.8735 + }, + { + "start": 6869.36, + "end": 6870.34, + "probability": 0.9197 + }, + { + "start": 6871.46, + "end": 6877.1, + "probability": 0.99 + }, + { + "start": 6877.94, + "end": 6879.54, + "probability": 0.6949 + }, + { + "start": 6880.42, + "end": 6880.9, + "probability": 0.8069 + }, + { + "start": 6881.34, + "end": 6881.97, + "probability": 0.9937 + }, + { + "start": 6882.76, + "end": 6883.86, + "probability": 0.7986 + }, + { + "start": 6885.38, + "end": 6887.48, + "probability": 0.983 + }, + { + "start": 6888.02, + "end": 6891.68, + "probability": 0.991 + }, + { + "start": 6892.56, + "end": 6895.08, + "probability": 0.9832 + }, + { + "start": 6896.62, + "end": 6900.24, + "probability": 0.8065 + }, + { + "start": 6900.6, + "end": 6901.26, + "probability": 0.9039 + }, + { + "start": 6901.7, + "end": 6902.66, + "probability": 0.9711 + }, + { + "start": 6902.78, + "end": 6904.18, + "probability": 0.8273 + }, + { + "start": 6905.02, + "end": 6905.96, + "probability": 0.9914 + }, + { + "start": 6906.4, + "end": 6907.78, + "probability": 0.978 + }, + { + "start": 6909.24, + "end": 6909.62, + "probability": 0.9909 + }, + { + "start": 6910.16, + "end": 6913.5, + "probability": 0.908 + }, + { + "start": 6913.56, + "end": 6914.4, + "probability": 0.8876 + }, + { + "start": 6914.72, + "end": 6915.73, + "probability": 0.9395 + }, + { + "start": 6916.14, + "end": 6917.04, + "probability": 0.9158 + }, + { + "start": 6917.12, + "end": 6917.84, + "probability": 0.8378 + }, + { + "start": 6917.94, + "end": 6918.58, + "probability": 0.6258 + }, + { + "start": 6919.22, + "end": 6920.08, + "probability": 0.9668 + }, + { + "start": 6920.74, + "end": 6921.91, + "probability": 0.9717 + }, + { + "start": 6922.5, + "end": 6924.58, + "probability": 0.8814 + }, + { + "start": 6925.64, + "end": 6926.54, + "probability": 0.8957 + }, + { + "start": 6926.82, + "end": 6927.62, + "probability": 0.8167 + }, + { + "start": 6927.94, + "end": 6929.03, + "probability": 0.6997 + }, + { + "start": 6930.16, + "end": 6932.34, + "probability": 0.9181 + }, + { + "start": 6933.32, + "end": 6936.88, + "probability": 0.9824 + }, + { + "start": 6937.34, + "end": 6938.68, + "probability": 0.9803 + }, + { + "start": 6939.08, + "end": 6945.12, + "probability": 0.9951 + }, + { + "start": 6945.7, + "end": 6946.48, + "probability": 0.6292 + }, + { + "start": 6947.02, + "end": 6948.06, + "probability": 0.9292 + }, + { + "start": 6949.06, + "end": 6950.48, + "probability": 0.7997 + }, + { + "start": 6952.22, + "end": 6957.16, + "probability": 0.9221 + }, + { + "start": 6958.28, + "end": 6959.62, + "probability": 0.8813 + }, + { + "start": 6960.24, + "end": 6960.48, + "probability": 0.9676 + }, + { + "start": 6963.18, + "end": 6963.18, + "probability": 0.5519 + }, + { + "start": 6963.18, + "end": 6966.01, + "probability": 0.9658 + }, + { + "start": 6967.38, + "end": 6968.04, + "probability": 0.8761 + }, + { + "start": 6968.94, + "end": 6969.36, + "probability": 0.1076 + }, + { + "start": 6973.28, + "end": 6974.36, + "probability": 0.099 + }, + { + "start": 6974.36, + "end": 6974.36, + "probability": 0.0136 + }, + { + "start": 6974.36, + "end": 6974.86, + "probability": 0.5366 + }, + { + "start": 6975.0, + "end": 6975.96, + "probability": 0.8656 + }, + { + "start": 6976.92, + "end": 6980.74, + "probability": 0.8335 + }, + { + "start": 6981.68, + "end": 6982.32, + "probability": 0.1712 + }, + { + "start": 6982.32, + "end": 6982.6, + "probability": 0.2732 + }, + { + "start": 6983.62, + "end": 6984.3, + "probability": 0.8523 + }, + { + "start": 6985.58, + "end": 6986.3, + "probability": 0.9082 + }, + { + "start": 6986.72, + "end": 6987.35, + "probability": 0.9804 + }, + { + "start": 6988.94, + "end": 6992.16, + "probability": 0.9372 + }, + { + "start": 6993.1, + "end": 6993.44, + "probability": 0.8985 + }, + { + "start": 6994.72, + "end": 6995.62, + "probability": 0.7597 + }, + { + "start": 6995.98, + "end": 6998.5, + "probability": 0.9756 + }, + { + "start": 6998.92, + "end": 7002.16, + "probability": 0.9676 + }, + { + "start": 7002.7, + "end": 7003.5, + "probability": 0.8198 + }, + { + "start": 7004.56, + "end": 7005.5, + "probability": 0.9558 + }, + { + "start": 7005.88, + "end": 7007.42, + "probability": 0.9907 + }, + { + "start": 7008.16, + "end": 7012.3, + "probability": 0.9878 + }, + { + "start": 7015.52, + "end": 7016.1, + "probability": 0.5311 + }, + { + "start": 7017.52, + "end": 7018.66, + "probability": 0.4297 + }, + { + "start": 7019.08, + "end": 7022.62, + "probability": 0.6747 + }, + { + "start": 7023.18, + "end": 7024.52, + "probability": 0.5433 + }, + { + "start": 7025.12, + "end": 7025.59, + "probability": 0.5006 + }, + { + "start": 7025.94, + "end": 7026.71, + "probability": 0.5918 + }, + { + "start": 7026.8, + "end": 7027.04, + "probability": 0.4862 + }, + { + "start": 7027.12, + "end": 7027.86, + "probability": 0.8695 + }, + { + "start": 7027.98, + "end": 7028.46, + "probability": 0.8617 + }, + { + "start": 7028.84, + "end": 7032.76, + "probability": 0.637 + }, + { + "start": 7033.38, + "end": 7034.34, + "probability": 0.4 + }, + { + "start": 7034.46, + "end": 7036.1, + "probability": 0.7969 + }, + { + "start": 7036.8, + "end": 7039.58, + "probability": 0.9521 + }, + { + "start": 7040.46, + "end": 7042.12, + "probability": 0.9818 + }, + { + "start": 7043.24, + "end": 7047.28, + "probability": 0.9961 + }, + { + "start": 7047.34, + "end": 7049.4, + "probability": 0.9341 + }, + { + "start": 7050.24, + "end": 7051.42, + "probability": 0.9741 + }, + { + "start": 7051.62, + "end": 7054.84, + "probability": 0.7638 + }, + { + "start": 7054.96, + "end": 7057.26, + "probability": 0.9675 + }, + { + "start": 7057.74, + "end": 7058.52, + "probability": 0.0166 + }, + { + "start": 7058.6, + "end": 7059.5, + "probability": 0.6665 + }, + { + "start": 7059.88, + "end": 7060.97, + "probability": 0.2754 + }, + { + "start": 7061.46, + "end": 7062.56, + "probability": 0.8172 + }, + { + "start": 7063.18, + "end": 7066.96, + "probability": 0.9886 + }, + { + "start": 7067.66, + "end": 7068.84, + "probability": 0.7505 + }, + { + "start": 7068.92, + "end": 7072.84, + "probability": 0.9899 + }, + { + "start": 7073.26, + "end": 7074.36, + "probability": 0.9844 + }, + { + "start": 7074.44, + "end": 7075.58, + "probability": 0.8862 + }, + { + "start": 7076.36, + "end": 7078.18, + "probability": 0.5583 + }, + { + "start": 7078.38, + "end": 7079.98, + "probability": 0.9757 + }, + { + "start": 7080.88, + "end": 7081.94, + "probability": 0.7545 + }, + { + "start": 7082.7, + "end": 7083.8, + "probability": 0.9989 + }, + { + "start": 7084.46, + "end": 7085.48, + "probability": 0.9753 + }, + { + "start": 7085.76, + "end": 7087.18, + "probability": 0.7982 + }, + { + "start": 7087.26, + "end": 7090.14, + "probability": 0.9525 + }, + { + "start": 7090.22, + "end": 7090.96, + "probability": 0.9871 + }, + { + "start": 7092.0, + "end": 7092.82, + "probability": 0.9983 + }, + { + "start": 7093.82, + "end": 7095.38, + "probability": 0.9451 + }, + { + "start": 7096.8, + "end": 7098.58, + "probability": 0.9894 + }, + { + "start": 7098.98, + "end": 7100.76, + "probability": 0.9585 + }, + { + "start": 7101.28, + "end": 7103.1, + "probability": 0.7848 + }, + { + "start": 7103.38, + "end": 7104.36, + "probability": 0.9076 + }, + { + "start": 7107.75, + "end": 7108.74, + "probability": 0.1244 + }, + { + "start": 7108.74, + "end": 7109.93, + "probability": 0.8792 + }, + { + "start": 7110.16, + "end": 7110.56, + "probability": 0.5401 + }, + { + "start": 7110.86, + "end": 7111.7, + "probability": 0.7951 + }, + { + "start": 7112.38, + "end": 7117.52, + "probability": 0.9919 + }, + { + "start": 7117.94, + "end": 7120.46, + "probability": 0.9517 + }, + { + "start": 7121.22, + "end": 7123.06, + "probability": 0.8415 + }, + { + "start": 7123.5, + "end": 7125.2, + "probability": 0.9429 + }, + { + "start": 7125.72, + "end": 7126.22, + "probability": 0.9633 + }, + { + "start": 7128.02, + "end": 7130.74, + "probability": 0.7165 + }, + { + "start": 7131.4, + "end": 7132.82, + "probability": 0.9924 + }, + { + "start": 7133.18, + "end": 7133.64, + "probability": 0.5522 + }, + { + "start": 7134.42, + "end": 7136.92, + "probability": 0.9857 + }, + { + "start": 7137.02, + "end": 7137.48, + "probability": 0.7476 + }, + { + "start": 7138.52, + "end": 7140.86, + "probability": 0.8047 + }, + { + "start": 7141.2, + "end": 7142.52, + "probability": 0.9741 + }, + { + "start": 7143.08, + "end": 7147.32, + "probability": 0.9946 + }, + { + "start": 7147.44, + "end": 7148.12, + "probability": 0.9208 + }, + { + "start": 7149.5, + "end": 7150.5, + "probability": 0.8249 + }, + { + "start": 7151.34, + "end": 7154.36, + "probability": 0.0431 + }, + { + "start": 7154.5, + "end": 7155.55, + "probability": 0.9932 + }, + { + "start": 7155.92, + "end": 7157.97, + "probability": 0.4955 + }, + { + "start": 7158.26, + "end": 7160.62, + "probability": 0.9754 + }, + { + "start": 7160.76, + "end": 7161.48, + "probability": 0.7134 + }, + { + "start": 7161.96, + "end": 7163.98, + "probability": 0.9875 + }, + { + "start": 7164.24, + "end": 7165.92, + "probability": 0.8985 + }, + { + "start": 7166.54, + "end": 7169.7, + "probability": 0.9419 + }, + { + "start": 7169.78, + "end": 7170.6, + "probability": 0.9351 + }, + { + "start": 7171.14, + "end": 7173.09, + "probability": 0.9861 + }, + { + "start": 7173.66, + "end": 7176.42, + "probability": 0.967 + }, + { + "start": 7176.78, + "end": 7178.4, + "probability": 0.7881 + }, + { + "start": 7179.26, + "end": 7182.52, + "probability": 0.9134 + }, + { + "start": 7183.26, + "end": 7184.04, + "probability": 0.9356 + }, + { + "start": 7184.58, + "end": 7186.84, + "probability": 0.9777 + }, + { + "start": 7187.24, + "end": 7188.16, + "probability": 0.9132 + }, + { + "start": 7188.2, + "end": 7189.08, + "probability": 0.9736 + }, + { + "start": 7189.18, + "end": 7190.68, + "probability": 0.9917 + }, + { + "start": 7191.2, + "end": 7191.68, + "probability": 0.779 + }, + { + "start": 7192.04, + "end": 7192.93, + "probability": 0.8253 + }, + { + "start": 7193.7, + "end": 7196.22, + "probability": 0.8745 + }, + { + "start": 7196.22, + "end": 7197.28, + "probability": 0.5254 + }, + { + "start": 7198.8, + "end": 7198.8, + "probability": 0.0792 + }, + { + "start": 7198.8, + "end": 7200.08, + "probability": 0.0519 + }, + { + "start": 7200.08, + "end": 7204.22, + "probability": 0.6299 + }, + { + "start": 7204.42, + "end": 7205.1, + "probability": 0.4057 + }, + { + "start": 7205.3, + "end": 7205.92, + "probability": 0.1676 + }, + { + "start": 7205.92, + "end": 7206.14, + "probability": 0.2202 + }, + { + "start": 7206.38, + "end": 7206.52, + "probability": 0.0059 + }, + { + "start": 7209.76, + "end": 7213.0, + "probability": 0.6736 + }, + { + "start": 7213.0, + "end": 7214.48, + "probability": 0.3106 + }, + { + "start": 7214.56, + "end": 7215.2, + "probability": 0.6067 + }, + { + "start": 7215.32, + "end": 7217.54, + "probability": 0.7949 + }, + { + "start": 7217.64, + "end": 7219.18, + "probability": 0.3633 + }, + { + "start": 7219.28, + "end": 7223.1, + "probability": 0.9774 + }, + { + "start": 7223.34, + "end": 7226.29, + "probability": 0.9829 + }, + { + "start": 7227.14, + "end": 7227.14, + "probability": 0.042 + }, + { + "start": 7227.14, + "end": 7227.99, + "probability": 0.7012 + }, + { + "start": 7228.3, + "end": 7228.94, + "probability": 0.8148 + }, + { + "start": 7229.18, + "end": 7230.74, + "probability": 0.7521 + }, + { + "start": 7230.74, + "end": 7232.3, + "probability": 0.9647 + }, + { + "start": 7232.38, + "end": 7233.73, + "probability": 0.7554 + }, + { + "start": 7234.46, + "end": 7235.38, + "probability": 0.9272 + }, + { + "start": 7235.62, + "end": 7236.36, + "probability": 0.4685 + }, + { + "start": 7236.62, + "end": 7237.33, + "probability": 0.8758 + }, + { + "start": 7237.88, + "end": 7239.02, + "probability": 0.9237 + }, + { + "start": 7239.4, + "end": 7242.16, + "probability": 0.6418 + }, + { + "start": 7243.16, + "end": 7245.3, + "probability": 0.9746 + }, + { + "start": 7246.16, + "end": 7247.42, + "probability": 0.7134 + }, + { + "start": 7247.46, + "end": 7250.44, + "probability": 0.9971 + }, + { + "start": 7251.18, + "end": 7251.54, + "probability": 0.2589 + }, + { + "start": 7252.02, + "end": 7252.6, + "probability": 0.7137 + }, + { + "start": 7253.34, + "end": 7253.64, + "probability": 0.9191 + }, + { + "start": 7253.98, + "end": 7254.18, + "probability": 0.8632 + }, + { + "start": 7255.16, + "end": 7256.42, + "probability": 0.9341 + }, + { + "start": 7257.1, + "end": 7259.18, + "probability": 0.9482 + }, + { + "start": 7272.18, + "end": 7274.4, + "probability": 0.6469 + }, + { + "start": 7275.44, + "end": 7283.72, + "probability": 0.9017 + }, + { + "start": 7283.78, + "end": 7284.72, + "probability": 0.9891 + }, + { + "start": 7284.82, + "end": 7287.46, + "probability": 0.9973 + }, + { + "start": 7288.08, + "end": 7291.76, + "probability": 0.9926 + }, + { + "start": 7292.46, + "end": 7293.75, + "probability": 0.988 + }, + { + "start": 7294.14, + "end": 7294.82, + "probability": 0.8235 + }, + { + "start": 7295.0, + "end": 7296.5, + "probability": 0.9354 + }, + { + "start": 7297.54, + "end": 7299.26, + "probability": 0.7193 + }, + { + "start": 7299.42, + "end": 7300.26, + "probability": 0.8428 + }, + { + "start": 7300.36, + "end": 7305.76, + "probability": 0.972 + }, + { + "start": 7306.34, + "end": 7308.14, + "probability": 0.9053 + }, + { + "start": 7309.0, + "end": 7312.74, + "probability": 0.9917 + }, + { + "start": 7313.22, + "end": 7316.1, + "probability": 0.9081 + }, + { + "start": 7316.38, + "end": 7317.28, + "probability": 0.7148 + }, + { + "start": 7317.36, + "end": 7321.02, + "probability": 0.9901 + }, + { + "start": 7322.38, + "end": 7324.76, + "probability": 0.7048 + }, + { + "start": 7325.9, + "end": 7327.2, + "probability": 0.7972 + }, + { + "start": 7327.64, + "end": 7330.64, + "probability": 0.8801 + }, + { + "start": 7332.14, + "end": 7334.82, + "probability": 0.79 + }, + { + "start": 7335.58, + "end": 7336.46, + "probability": 0.9231 + }, + { + "start": 7336.9, + "end": 7339.36, + "probability": 0.9009 + }, + { + "start": 7339.46, + "end": 7340.32, + "probability": 0.9715 + }, + { + "start": 7341.06, + "end": 7341.62, + "probability": 0.979 + }, + { + "start": 7342.2, + "end": 7342.76, + "probability": 0.8157 + }, + { + "start": 7344.98, + "end": 7347.76, + "probability": 0.9858 + }, + { + "start": 7348.8, + "end": 7349.98, + "probability": 0.9896 + }, + { + "start": 7350.8, + "end": 7352.72, + "probability": 0.9443 + }, + { + "start": 7353.06, + "end": 7354.42, + "probability": 0.9793 + }, + { + "start": 7354.62, + "end": 7356.8, + "probability": 0.958 + }, + { + "start": 7357.66, + "end": 7360.66, + "probability": 0.9825 + }, + { + "start": 7361.56, + "end": 7362.12, + "probability": 0.4874 + }, + { + "start": 7362.18, + "end": 7363.92, + "probability": 0.9053 + }, + { + "start": 7364.68, + "end": 7366.82, + "probability": 0.8512 + }, + { + "start": 7367.4, + "end": 7369.14, + "probability": 0.9769 + }, + { + "start": 7369.18, + "end": 7371.5, + "probability": 0.9935 + }, + { + "start": 7372.14, + "end": 7373.84, + "probability": 0.728 + }, + { + "start": 7373.84, + "end": 7376.04, + "probability": 0.6455 + }, + { + "start": 7377.08, + "end": 7377.28, + "probability": 0.6812 + }, + { + "start": 7378.78, + "end": 7380.56, + "probability": 0.9956 + }, + { + "start": 7382.08, + "end": 7383.37, + "probability": 0.7082 + }, + { + "start": 7385.72, + "end": 7388.66, + "probability": 0.9067 + }, + { + "start": 7389.86, + "end": 7391.04, + "probability": 0.8427 + }, + { + "start": 7392.82, + "end": 7394.7, + "probability": 0.979 + }, + { + "start": 7396.3, + "end": 7399.2, + "probability": 0.8071 + }, + { + "start": 7400.24, + "end": 7404.36, + "probability": 0.7156 + }, + { + "start": 7405.62, + "end": 7412.16, + "probability": 0.9631 + }, + { + "start": 7412.16, + "end": 7418.06, + "probability": 0.9907 + }, + { + "start": 7418.94, + "end": 7419.06, + "probability": 0.3191 + }, + { + "start": 7419.14, + "end": 7419.92, + "probability": 0.9326 + }, + { + "start": 7420.04, + "end": 7424.47, + "probability": 0.9919 + }, + { + "start": 7425.04, + "end": 7428.49, + "probability": 0.9824 + }, + { + "start": 7429.06, + "end": 7433.02, + "probability": 0.9521 + }, + { + "start": 7433.06, + "end": 7433.74, + "probability": 0.7913 + }, + { + "start": 7435.28, + "end": 7437.14, + "probability": 0.9508 + }, + { + "start": 7438.12, + "end": 7442.2, + "probability": 0.9732 + }, + { + "start": 7443.02, + "end": 7446.28, + "probability": 0.9471 + }, + { + "start": 7447.9, + "end": 7450.48, + "probability": 0.8767 + }, + { + "start": 7451.84, + "end": 7452.6, + "probability": 0.7686 + }, + { + "start": 7453.24, + "end": 7453.92, + "probability": 0.9548 + }, + { + "start": 7454.36, + "end": 7455.78, + "probability": 0.8841 + }, + { + "start": 7456.26, + "end": 7459.92, + "probability": 0.9483 + }, + { + "start": 7460.88, + "end": 7463.56, + "probability": 0.9893 + }, + { + "start": 7464.06, + "end": 7464.64, + "probability": 0.4766 + }, + { + "start": 7464.78, + "end": 7470.0, + "probability": 0.9718 + }, + { + "start": 7470.5, + "end": 7471.43, + "probability": 0.9796 + }, + { + "start": 7471.86, + "end": 7472.44, + "probability": 0.5894 + }, + { + "start": 7472.54, + "end": 7476.16, + "probability": 0.9899 + }, + { + "start": 7477.1, + "end": 7479.21, + "probability": 0.9988 + }, + { + "start": 7479.66, + "end": 7481.28, + "probability": 0.9896 + }, + { + "start": 7481.34, + "end": 7482.66, + "probability": 0.9691 + }, + { + "start": 7483.7, + "end": 7485.3, + "probability": 0.9797 + }, + { + "start": 7486.04, + "end": 7486.8, + "probability": 0.872 + }, + { + "start": 7487.0, + "end": 7488.06, + "probability": 0.8165 + }, + { + "start": 7488.1, + "end": 7490.58, + "probability": 0.9635 + }, + { + "start": 7491.02, + "end": 7493.34, + "probability": 0.9927 + }, + { + "start": 7493.92, + "end": 7495.72, + "probability": 0.9152 + }, + { + "start": 7496.72, + "end": 7497.82, + "probability": 0.9709 + }, + { + "start": 7498.12, + "end": 7499.38, + "probability": 0.9987 + }, + { + "start": 7501.04, + "end": 7501.4, + "probability": 0.9912 + }, + { + "start": 7501.92, + "end": 7502.86, + "probability": 0.9983 + }, + { + "start": 7504.28, + "end": 7506.12, + "probability": 0.9246 + }, + { + "start": 7506.7, + "end": 7509.92, + "probability": 0.9849 + }, + { + "start": 7510.88, + "end": 7511.36, + "probability": 0.2872 + }, + { + "start": 7512.1, + "end": 7516.56, + "probability": 0.9964 + }, + { + "start": 7517.54, + "end": 7521.08, + "probability": 0.9995 + }, + { + "start": 7521.8, + "end": 7522.0, + "probability": 0.9052 + }, + { + "start": 7522.42, + "end": 7522.64, + "probability": 0.8994 + }, + { + "start": 7522.68, + "end": 7523.81, + "probability": 0.9937 + }, + { + "start": 7523.92, + "end": 7527.04, + "probability": 0.979 + }, + { + "start": 7527.22, + "end": 7529.88, + "probability": 0.9647 + }, + { + "start": 7535.3, + "end": 7536.58, + "probability": 0.999 + }, + { + "start": 7538.1, + "end": 7539.53, + "probability": 0.999 + }, + { + "start": 7540.82, + "end": 7542.94, + "probability": 0.959 + }, + { + "start": 7543.92, + "end": 7548.4, + "probability": 0.995 + }, + { + "start": 7549.5, + "end": 7554.46, + "probability": 0.9848 + }, + { + "start": 7555.58, + "end": 7555.96, + "probability": 0.7893 + }, + { + "start": 7557.42, + "end": 7560.32, + "probability": 0.997 + }, + { + "start": 7560.48, + "end": 7561.12, + "probability": 0.8793 + }, + { + "start": 7561.18, + "end": 7562.48, + "probability": 0.9621 + }, + { + "start": 7562.78, + "end": 7565.62, + "probability": 0.9949 + }, + { + "start": 7566.58, + "end": 7567.78, + "probability": 0.8975 + }, + { + "start": 7568.98, + "end": 7572.24, + "probability": 0.966 + }, + { + "start": 7573.12, + "end": 7573.68, + "probability": 0.6241 + }, + { + "start": 7574.04, + "end": 7576.56, + "probability": 0.9629 + }, + { + "start": 7577.2, + "end": 7578.94, + "probability": 0.8623 + }, + { + "start": 7579.4, + "end": 7581.12, + "probability": 0.9872 + }, + { + "start": 7583.28, + "end": 7586.89, + "probability": 0.9924 + }, + { + "start": 7588.88, + "end": 7591.02, + "probability": 0.999 + }, + { + "start": 7591.02, + "end": 7593.98, + "probability": 0.9755 + }, + { + "start": 7595.98, + "end": 7600.24, + "probability": 0.988 + }, + { + "start": 7600.38, + "end": 7607.28, + "probability": 0.9455 + }, + { + "start": 7607.82, + "end": 7609.16, + "probability": 0.9764 + }, + { + "start": 7611.76, + "end": 7615.34, + "probability": 0.9106 + }, + { + "start": 7616.74, + "end": 7620.4, + "probability": 0.8954 + }, + { + "start": 7621.0, + "end": 7623.0, + "probability": 0.9275 + }, + { + "start": 7623.1, + "end": 7623.44, + "probability": 0.4839 + }, + { + "start": 7624.26, + "end": 7626.76, + "probability": 0.9948 + }, + { + "start": 7627.0, + "end": 7627.46, + "probability": 0.8447 + }, + { + "start": 7628.1, + "end": 7630.77, + "probability": 0.9904 + }, + { + "start": 7630.92, + "end": 7632.18, + "probability": 0.9928 + }, + { + "start": 7632.42, + "end": 7633.28, + "probability": 0.6465 + }, + { + "start": 7633.96, + "end": 7634.58, + "probability": 0.8995 + }, + { + "start": 7636.16, + "end": 7636.2, + "probability": 0.96 + }, + { + "start": 7637.38, + "end": 7639.47, + "probability": 0.8764 + }, + { + "start": 7640.22, + "end": 7642.68, + "probability": 0.856 + }, + { + "start": 7642.78, + "end": 7644.78, + "probability": 0.897 + }, + { + "start": 7645.34, + "end": 7650.8, + "probability": 0.916 + }, + { + "start": 7651.24, + "end": 7651.8, + "probability": 0.9387 + }, + { + "start": 7652.26, + "end": 7656.08, + "probability": 0.9922 + }, + { + "start": 7656.18, + "end": 7658.78, + "probability": 0.9795 + }, + { + "start": 7660.8, + "end": 7661.76, + "probability": 0.708 + }, + { + "start": 7663.32, + "end": 7664.22, + "probability": 0.947 + }, + { + "start": 7666.92, + "end": 7667.42, + "probability": 0.9783 + }, + { + "start": 7668.5, + "end": 7669.36, + "probability": 0.971 + }, + { + "start": 7670.2, + "end": 7671.26, + "probability": 0.8583 + }, + { + "start": 7671.76, + "end": 7673.16, + "probability": 0.9905 + }, + { + "start": 7673.5, + "end": 7674.24, + "probability": 0.9863 + }, + { + "start": 7674.32, + "end": 7678.02, + "probability": 0.9639 + }, + { + "start": 7678.76, + "end": 7679.08, + "probability": 0.8138 + }, + { + "start": 7679.54, + "end": 7682.96, + "probability": 0.9541 + }, + { + "start": 7683.54, + "end": 7685.7, + "probability": 0.9296 + }, + { + "start": 7687.16, + "end": 7688.84, + "probability": 0.913 + }, + { + "start": 7688.86, + "end": 7694.08, + "probability": 0.5059 + }, + { + "start": 7694.08, + "end": 7694.82, + "probability": 0.318 + }, + { + "start": 7695.86, + "end": 7697.42, + "probability": 0.9833 + }, + { + "start": 7697.88, + "end": 7705.04, + "probability": 0.9881 + }, + { + "start": 7705.4, + "end": 7706.02, + "probability": 0.9873 + }, + { + "start": 7706.12, + "end": 7707.06, + "probability": 0.9883 + }, + { + "start": 7707.76, + "end": 7710.64, + "probability": 0.9389 + }, + { + "start": 7711.18, + "end": 7711.9, + "probability": 0.8987 + }, + { + "start": 7712.82, + "end": 7714.82, + "probability": 0.9557 + }, + { + "start": 7716.1, + "end": 7717.58, + "probability": 0.771 + }, + { + "start": 7718.76, + "end": 7720.92, + "probability": 0.9612 + }, + { + "start": 7721.28, + "end": 7723.08, + "probability": 0.9932 + }, + { + "start": 7724.12, + "end": 7725.04, + "probability": 0.7778 + }, + { + "start": 7725.56, + "end": 7729.96, + "probability": 0.8004 + }, + { + "start": 7733.18, + "end": 7736.02, + "probability": 0.9988 + }, + { + "start": 7736.36, + "end": 7737.98, + "probability": 0.7957 + }, + { + "start": 7738.78, + "end": 7741.32, + "probability": 0.8993 + }, + { + "start": 7741.9, + "end": 7743.4, + "probability": 0.7103 + }, + { + "start": 7744.44, + "end": 7748.88, + "probability": 0.9526 + }, + { + "start": 7749.4, + "end": 7752.36, + "probability": 0.953 + }, + { + "start": 7755.14, + "end": 7758.44, + "probability": 0.8908 + }, + { + "start": 7759.38, + "end": 7760.98, + "probability": 0.4142 + }, + { + "start": 7762.64, + "end": 7764.4, + "probability": 0.9246 + }, + { + "start": 7764.64, + "end": 7766.46, + "probability": 0.9893 + }, + { + "start": 7766.96, + "end": 7769.6, + "probability": 0.9969 + }, + { + "start": 7770.48, + "end": 7771.42, + "probability": 0.9805 + }, + { + "start": 7772.66, + "end": 7779.08, + "probability": 0.9774 + }, + { + "start": 7779.08, + "end": 7783.22, + "probability": 0.9974 + }, + { + "start": 7785.26, + "end": 7786.8, + "probability": 0.9981 + }, + { + "start": 7788.94, + "end": 7789.48, + "probability": 0.8765 + }, + { + "start": 7790.28, + "end": 7795.24, + "probability": 0.9582 + }, + { + "start": 7795.98, + "end": 7799.12, + "probability": 0.9443 + }, + { + "start": 7799.9, + "end": 7801.14, + "probability": 0.9448 + }, + { + "start": 7802.48, + "end": 7803.3, + "probability": 0.5416 + }, + { + "start": 7803.84, + "end": 7806.78, + "probability": 0.9647 + }, + { + "start": 7807.18, + "end": 7809.94, + "probability": 0.9927 + }, + { + "start": 7810.46, + "end": 7812.9, + "probability": 0.9916 + }, + { + "start": 7813.96, + "end": 7815.22, + "probability": 0.9338 + }, + { + "start": 7816.7, + "end": 7819.54, + "probability": 0.8333 + }, + { + "start": 7820.48, + "end": 7823.32, + "probability": 0.9238 + }, + { + "start": 7824.38, + "end": 7825.34, + "probability": 0.8504 + }, + { + "start": 7826.0, + "end": 7829.28, + "probability": 0.9651 + }, + { + "start": 7829.64, + "end": 7831.03, + "probability": 0.9932 + }, + { + "start": 7831.82, + "end": 7832.04, + "probability": 0.8848 + }, + { + "start": 7832.1, + "end": 7836.74, + "probability": 0.9867 + }, + { + "start": 7837.28, + "end": 7840.38, + "probability": 0.9518 + }, + { + "start": 7840.88, + "end": 7841.48, + "probability": 0.9144 + }, + { + "start": 7841.66, + "end": 7844.34, + "probability": 0.9939 + }, + { + "start": 7844.56, + "end": 7846.5, + "probability": 0.9688 + }, + { + "start": 7848.4, + "end": 7850.5, + "probability": 0.874 + }, + { + "start": 7850.74, + "end": 7853.54, + "probability": 0.9742 + }, + { + "start": 7853.86, + "end": 7858.54, + "probability": 0.9761 + }, + { + "start": 7858.72, + "end": 7859.81, + "probability": 0.9722 + }, + { + "start": 7861.1, + "end": 7862.62, + "probability": 0.9882 + }, + { + "start": 7864.32, + "end": 7866.28, + "probability": 0.9947 + }, + { + "start": 7867.02, + "end": 7869.26, + "probability": 0.7617 + }, + { + "start": 7870.56, + "end": 7872.22, + "probability": 0.9786 + }, + { + "start": 7872.56, + "end": 7875.9, + "probability": 0.8413 + }, + { + "start": 7875.92, + "end": 7877.36, + "probability": 0.9301 + }, + { + "start": 7877.5, + "end": 7878.96, + "probability": 0.6859 + }, + { + "start": 7880.86, + "end": 7882.24, + "probability": 0.8882 + }, + { + "start": 7884.58, + "end": 7884.84, + "probability": 0.9006 + }, + { + "start": 7885.86, + "end": 7886.38, + "probability": 0.9826 + }, + { + "start": 7887.22, + "end": 7887.8, + "probability": 0.89 + }, + { + "start": 7889.12, + "end": 7889.98, + "probability": 0.773 + }, + { + "start": 7891.12, + "end": 7893.54, + "probability": 0.9907 + }, + { + "start": 7893.54, + "end": 7896.09, + "probability": 0.9938 + }, + { + "start": 7897.18, + "end": 7899.86, + "probability": 0.6938 + }, + { + "start": 7900.26, + "end": 7902.7, + "probability": 0.8698 + }, + { + "start": 7903.08, + "end": 7904.96, + "probability": 0.9653 + }, + { + "start": 7905.48, + "end": 7906.51, + "probability": 0.9613 + }, + { + "start": 7906.98, + "end": 7909.98, + "probability": 0.9744 + }, + { + "start": 7910.28, + "end": 7913.18, + "probability": 0.999 + }, + { + "start": 7914.74, + "end": 7916.02, + "probability": 0.6513 + }, + { + "start": 7916.86, + "end": 7918.78, + "probability": 0.9439 + }, + { + "start": 7920.66, + "end": 7921.24, + "probability": 0.8626 + }, + { + "start": 7922.07, + "end": 7924.64, + "probability": 0.9974 + }, + { + "start": 7925.76, + "end": 7928.52, + "probability": 0.9877 + }, + { + "start": 7928.68, + "end": 7928.98, + "probability": 0.6846 + }, + { + "start": 7929.68, + "end": 7931.66, + "probability": 0.8812 + }, + { + "start": 7933.8, + "end": 7934.74, + "probability": 0.9113 + }, + { + "start": 7936.46, + "end": 7939.2, + "probability": 0.9926 + }, + { + "start": 7939.2, + "end": 7942.68, + "probability": 0.8795 + }, + { + "start": 7943.78, + "end": 7946.04, + "probability": 0.9873 + }, + { + "start": 7946.66, + "end": 7949.46, + "probability": 0.9949 + }, + { + "start": 7949.46, + "end": 7952.52, + "probability": 0.9941 + }, + { + "start": 7953.08, + "end": 7953.58, + "probability": 0.6238 + }, + { + "start": 7954.62, + "end": 7958.52, + "probability": 0.9847 + }, + { + "start": 7959.04, + "end": 7959.22, + "probability": 0.582 + }, + { + "start": 7959.34, + "end": 7960.98, + "probability": 0.7957 + }, + { + "start": 7962.14, + "end": 7962.64, + "probability": 0.7105 + }, + { + "start": 7970.44, + "end": 7971.84, + "probability": 0.0032 + }, + { + "start": 7978.58, + "end": 7981.23, + "probability": 0.7414 + }, + { + "start": 7982.42, + "end": 7984.88, + "probability": 0.4887 + }, + { + "start": 7984.9, + "end": 7985.72, + "probability": 0.736 + }, + { + "start": 7986.18, + "end": 7987.18, + "probability": 0.9163 + }, + { + "start": 7987.28, + "end": 7988.26, + "probability": 0.8553 + }, + { + "start": 7988.38, + "end": 7988.76, + "probability": 0.547 + }, + { + "start": 7988.9, + "end": 7990.92, + "probability": 0.9396 + }, + { + "start": 7993.34, + "end": 7997.14, + "probability": 0.952 + }, + { + "start": 7997.22, + "end": 8001.2, + "probability": 0.7935 + }, + { + "start": 8001.52, + "end": 8003.32, + "probability": 0.9773 + }, + { + "start": 8003.56, + "end": 8007.06, + "probability": 0.9966 + }, + { + "start": 8007.82, + "end": 8008.62, + "probability": 0.814 + }, + { + "start": 8010.38, + "end": 8011.7, + "probability": 0.9479 + }, + { + "start": 8012.48, + "end": 8013.15, + "probability": 0.7732 + }, + { + "start": 8013.24, + "end": 8016.12, + "probability": 0.8918 + }, + { + "start": 8017.23, + "end": 8018.56, + "probability": 0.9597 + }, + { + "start": 8020.02, + "end": 8025.02, + "probability": 0.9258 + }, + { + "start": 8025.62, + "end": 8029.8, + "probability": 0.8763 + }, + { + "start": 8030.08, + "end": 8031.54, + "probability": 0.9805 + }, + { + "start": 8032.7, + "end": 8033.74, + "probability": 0.6257 + }, + { + "start": 8033.84, + "end": 8035.19, + "probability": 0.8901 + }, + { + "start": 8035.4, + "end": 8039.88, + "probability": 0.9456 + }, + { + "start": 8039.98, + "end": 8042.6, + "probability": 0.9717 + }, + { + "start": 8043.54, + "end": 8048.14, + "probability": 0.9126 + }, + { + "start": 8049.38, + "end": 8051.4, + "probability": 0.9459 + }, + { + "start": 8052.32, + "end": 8052.94, + "probability": 0.3296 + }, + { + "start": 8053.18, + "end": 8055.74, + "probability": 0.6513 + }, + { + "start": 8056.06, + "end": 8057.88, + "probability": 0.9668 + }, + { + "start": 8058.02, + "end": 8060.46, + "probability": 0.6915 + }, + { + "start": 8060.84, + "end": 8066.98, + "probability": 0.9915 + }, + { + "start": 8067.46, + "end": 8068.12, + "probability": 0.9527 + }, + { + "start": 8069.1, + "end": 8072.04, + "probability": 0.992 + }, + { + "start": 8072.12, + "end": 8074.84, + "probability": 0.9863 + }, + { + "start": 8075.36, + "end": 8077.44, + "probability": 0.7963 + }, + { + "start": 8078.56, + "end": 8079.43, + "probability": 0.9487 + }, + { + "start": 8082.2, + "end": 8086.58, + "probability": 0.7589 + }, + { + "start": 8086.82, + "end": 8093.32, + "probability": 0.9642 + }, + { + "start": 8094.34, + "end": 8096.14, + "probability": 0.9855 + }, + { + "start": 8096.24, + "end": 8098.04, + "probability": 0.9172 + }, + { + "start": 8098.66, + "end": 8099.1, + "probability": 0.6733 + }, + { + "start": 8099.16, + "end": 8103.28, + "probability": 0.908 + }, + { + "start": 8103.34, + "end": 8105.72, + "probability": 0.9479 + }, + { + "start": 8105.88, + "end": 8107.96, + "probability": 0.9454 + }, + { + "start": 8109.26, + "end": 8110.5, + "probability": 0.9951 + }, + { + "start": 8111.26, + "end": 8112.24, + "probability": 0.9246 + }, + { + "start": 8112.74, + "end": 8115.72, + "probability": 0.9984 + }, + { + "start": 8115.72, + "end": 8118.46, + "probability": 0.9961 + }, + { + "start": 8119.36, + "end": 8119.78, + "probability": 0.7542 + }, + { + "start": 8120.36, + "end": 8121.54, + "probability": 0.9896 + }, + { + "start": 8123.12, + "end": 8126.96, + "probability": 0.9922 + }, + { + "start": 8127.98, + "end": 8132.12, + "probability": 0.9163 + }, + { + "start": 8132.18, + "end": 8135.52, + "probability": 0.9976 + }, + { + "start": 8135.94, + "end": 8137.8, + "probability": 0.9153 + }, + { + "start": 8138.22, + "end": 8140.82, + "probability": 0.9977 + }, + { + "start": 8143.36, + "end": 8144.64, + "probability": 0.9893 + }, + { + "start": 8144.8, + "end": 8145.52, + "probability": 0.6552 + }, + { + "start": 8145.8, + "end": 8146.8, + "probability": 0.6451 + }, + { + "start": 8146.98, + "end": 8147.64, + "probability": 0.8091 + }, + { + "start": 8147.84, + "end": 8148.44, + "probability": 0.6533 + }, + { + "start": 8148.86, + "end": 8150.28, + "probability": 0.9702 + }, + { + "start": 8150.4, + "end": 8152.32, + "probability": 0.9231 + }, + { + "start": 8153.02, + "end": 8156.2, + "probability": 0.9581 + }, + { + "start": 8158.44, + "end": 8159.24, + "probability": 0.9846 + }, + { + "start": 8159.38, + "end": 8161.34, + "probability": 0.9105 + }, + { + "start": 8161.62, + "end": 8162.46, + "probability": 0.9428 + }, + { + "start": 8163.16, + "end": 8163.86, + "probability": 0.6895 + }, + { + "start": 8164.02, + "end": 8164.58, + "probability": 0.9537 + }, + { + "start": 8165.02, + "end": 8165.24, + "probability": 0.6901 + }, + { + "start": 8165.7, + "end": 8169.22, + "probability": 0.9762 + }, + { + "start": 8169.44, + "end": 8170.12, + "probability": 0.9378 + }, + { + "start": 8170.4, + "end": 8171.8, + "probability": 0.8358 + }, + { + "start": 8171.9, + "end": 8172.02, + "probability": 0.2985 + }, + { + "start": 8172.36, + "end": 8173.02, + "probability": 0.6807 + }, + { + "start": 8174.08, + "end": 8178.5, + "probability": 0.981 + }, + { + "start": 8178.58, + "end": 8179.82, + "probability": 0.8745 + }, + { + "start": 8180.52, + "end": 8183.18, + "probability": 0.9967 + }, + { + "start": 8183.3, + "end": 8184.27, + "probability": 0.9551 + }, + { + "start": 8187.1, + "end": 8190.02, + "probability": 0.8397 + }, + { + "start": 8190.3, + "end": 8191.12, + "probability": 0.8522 + }, + { + "start": 8191.38, + "end": 8191.54, + "probability": 0.7465 + }, + { + "start": 8192.04, + "end": 8192.16, + "probability": 0.759 + }, + { + "start": 8194.52, + "end": 8194.86, + "probability": 0.917 + }, + { + "start": 8195.2, + "end": 8195.94, + "probability": 0.9675 + }, + { + "start": 8196.42, + "end": 8197.9, + "probability": 0.9253 + }, + { + "start": 8198.12, + "end": 8199.36, + "probability": 0.7529 + }, + { + "start": 8199.5, + "end": 8203.76, + "probability": 0.9917 + }, + { + "start": 8204.86, + "end": 8206.92, + "probability": 0.9971 + }, + { + "start": 8207.12, + "end": 8207.68, + "probability": 0.5064 + }, + { + "start": 8208.06, + "end": 8209.56, + "probability": 0.8657 + }, + { + "start": 8209.88, + "end": 8210.56, + "probability": 0.9941 + }, + { + "start": 8211.12, + "end": 8212.28, + "probability": 0.9938 + }, + { + "start": 8212.48, + "end": 8213.48, + "probability": 0.7211 + }, + { + "start": 8213.58, + "end": 8214.98, + "probability": 0.8237 + }, + { + "start": 8215.1, + "end": 8217.2, + "probability": 0.7776 + }, + { + "start": 8218.36, + "end": 8222.78, + "probability": 0.9138 + }, + { + "start": 8223.6, + "end": 8225.94, + "probability": 0.8656 + }, + { + "start": 8227.04, + "end": 8229.38, + "probability": 0.9672 + }, + { + "start": 8231.8, + "end": 8234.22, + "probability": 0.9467 + }, + { + "start": 8235.42, + "end": 8238.46, + "probability": 0.976 + }, + { + "start": 8238.58, + "end": 8239.12, + "probability": 0.6179 + }, + { + "start": 8240.1, + "end": 8241.74, + "probability": 0.8659 + }, + { + "start": 8242.72, + "end": 8244.38, + "probability": 0.9984 + }, + { + "start": 8244.52, + "end": 8248.0, + "probability": 0.9863 + }, + { + "start": 8249.24, + "end": 8250.16, + "probability": 0.9269 + }, + { + "start": 8250.28, + "end": 8253.33, + "probability": 0.9858 + }, + { + "start": 8253.56, + "end": 8256.74, + "probability": 0.9764 + }, + { + "start": 8257.06, + "end": 8258.54, + "probability": 0.8267 + }, + { + "start": 8258.62, + "end": 8259.34, + "probability": 0.9553 + }, + { + "start": 8260.3, + "end": 8264.0, + "probability": 0.9305 + }, + { + "start": 8264.72, + "end": 8268.22, + "probability": 0.8459 + }, + { + "start": 8269.32, + "end": 8272.12, + "probability": 0.6484 + }, + { + "start": 8272.26, + "end": 8274.02, + "probability": 0.9826 + }, + { + "start": 8275.02, + "end": 8275.74, + "probability": 0.8387 + }, + { + "start": 8276.62, + "end": 8280.12, + "probability": 0.9963 + }, + { + "start": 8280.84, + "end": 8282.9, + "probability": 0.972 + }, + { + "start": 8282.98, + "end": 8284.59, + "probability": 0.9888 + }, + { + "start": 8284.74, + "end": 8285.54, + "probability": 0.8972 + }, + { + "start": 8286.16, + "end": 8287.82, + "probability": 0.9944 + }, + { + "start": 8288.32, + "end": 8295.06, + "probability": 0.9345 + }, + { + "start": 8295.48, + "end": 8300.32, + "probability": 0.9968 + }, + { + "start": 8301.46, + "end": 8303.04, + "probability": 0.9861 + }, + { + "start": 8303.16, + "end": 8307.48, + "probability": 0.9769 + }, + { + "start": 8310.08, + "end": 8311.36, + "probability": 0.958 + }, + { + "start": 8311.44, + "end": 8313.78, + "probability": 0.9722 + }, + { + "start": 8314.38, + "end": 8315.62, + "probability": 0.5584 + }, + { + "start": 8315.7, + "end": 8318.32, + "probability": 0.9778 + }, + { + "start": 8319.36, + "end": 8319.66, + "probability": 0.561 + }, + { + "start": 8320.46, + "end": 8325.47, + "probability": 0.6881 + }, + { + "start": 8325.94, + "end": 8328.34, + "probability": 0.9895 + }, + { + "start": 8330.26, + "end": 8332.72, + "probability": 0.9868 + }, + { + "start": 8333.02, + "end": 8339.97, + "probability": 0.8965 + }, + { + "start": 8340.28, + "end": 8343.06, + "probability": 0.9245 + }, + { + "start": 8343.22, + "end": 8344.39, + "probability": 0.5376 + }, + { + "start": 8344.68, + "end": 8346.38, + "probability": 0.8078 + }, + { + "start": 8346.92, + "end": 8347.98, + "probability": 0.9795 + }, + { + "start": 8348.44, + "end": 8351.42, + "probability": 0.9771 + }, + { + "start": 8352.04, + "end": 8353.42, + "probability": 0.9502 + }, + { + "start": 8353.46, + "end": 8353.68, + "probability": 0.8294 + }, + { + "start": 8355.02, + "end": 8358.52, + "probability": 0.9736 + }, + { + "start": 8358.52, + "end": 8362.64, + "probability": 0.7996 + }, + { + "start": 8362.68, + "end": 8366.3, + "probability": 0.993 + }, + { + "start": 8366.58, + "end": 8368.7, + "probability": 0.9048 + }, + { + "start": 8369.12, + "end": 8370.82, + "probability": 0.744 + }, + { + "start": 8371.6, + "end": 8373.46, + "probability": 0.9528 + }, + { + "start": 8373.56, + "end": 8374.14, + "probability": 0.8246 + }, + { + "start": 8374.2, + "end": 8374.86, + "probability": 0.9346 + }, + { + "start": 8374.94, + "end": 8375.18, + "probability": 0.8042 + }, + { + "start": 8375.82, + "end": 8378.08, + "probability": 0.9965 + }, + { + "start": 8386.39, + "end": 8390.22, + "probability": 0.5589 + }, + { + "start": 8390.86, + "end": 8394.48, + "probability": 0.9954 + }, + { + "start": 8394.48, + "end": 8397.08, + "probability": 0.9916 + }, + { + "start": 8397.2, + "end": 8399.94, + "probability": 0.7521 + }, + { + "start": 8400.04, + "end": 8400.66, + "probability": 0.6468 + }, + { + "start": 8401.36, + "end": 8402.68, + "probability": 0.9922 + }, + { + "start": 8402.78, + "end": 8404.04, + "probability": 0.9938 + }, + { + "start": 8404.08, + "end": 8406.16, + "probability": 0.9674 + }, + { + "start": 8406.74, + "end": 8407.36, + "probability": 0.696 + }, + { + "start": 8408.02, + "end": 8414.08, + "probability": 0.9771 + }, + { + "start": 8417.9, + "end": 8420.46, + "probability": 0.8828 + }, + { + "start": 8421.72, + "end": 8423.56, + "probability": 0.9827 + }, + { + "start": 8423.96, + "end": 8427.14, + "probability": 0.6934 + }, + { + "start": 8428.18, + "end": 8433.2, + "probability": 0.9826 + }, + { + "start": 8433.52, + "end": 8435.82, + "probability": 0.9785 + }, + { + "start": 8436.28, + "end": 8437.59, + "probability": 0.7933 + }, + { + "start": 8437.96, + "end": 8440.4, + "probability": 0.958 + }, + { + "start": 8441.32, + "end": 8443.32, + "probability": 0.7466 + }, + { + "start": 8443.72, + "end": 8444.49, + "probability": 0.8247 + }, + { + "start": 8444.84, + "end": 8447.92, + "probability": 0.9519 + }, + { + "start": 8448.22, + "end": 8449.44, + "probability": 0.7625 + }, + { + "start": 8450.24, + "end": 8453.86, + "probability": 0.8489 + }, + { + "start": 8455.5, + "end": 8459.0, + "probability": 0.6754 + }, + { + "start": 8459.6, + "end": 8460.2, + "probability": 0.5675 + }, + { + "start": 8460.3, + "end": 8463.98, + "probability": 0.9827 + }, + { + "start": 8464.58, + "end": 8467.32, + "probability": 0.8972 + }, + { + "start": 8467.36, + "end": 8468.76, + "probability": 0.6715 + }, + { + "start": 8469.22, + "end": 8470.22, + "probability": 0.8296 + }, + { + "start": 8471.4, + "end": 8471.84, + "probability": 0.7866 + }, + { + "start": 8472.38, + "end": 8474.32, + "probability": 0.9386 + }, + { + "start": 8475.04, + "end": 8475.74, + "probability": 0.719 + }, + { + "start": 8475.84, + "end": 8477.08, + "probability": 0.8715 + }, + { + "start": 8477.68, + "end": 8477.94, + "probability": 0.7903 + }, + { + "start": 8478.04, + "end": 8482.36, + "probability": 0.9557 + }, + { + "start": 8482.94, + "end": 8486.28, + "probability": 0.8984 + }, + { + "start": 8486.44, + "end": 8488.4, + "probability": 0.9653 + }, + { + "start": 8488.52, + "end": 8491.85, + "probability": 0.8821 + }, + { + "start": 8492.1, + "end": 8493.0, + "probability": 0.427 + }, + { + "start": 8495.96, + "end": 8500.48, + "probability": 0.9922 + }, + { + "start": 8501.75, + "end": 8502.52, + "probability": 0.6986 + }, + { + "start": 8502.62, + "end": 8504.74, + "probability": 0.9153 + }, + { + "start": 8505.1, + "end": 8507.44, + "probability": 0.8189 + }, + { + "start": 8508.76, + "end": 8511.12, + "probability": 0.9531 + }, + { + "start": 8512.12, + "end": 8512.62, + "probability": 0.8602 + }, + { + "start": 8514.12, + "end": 8514.24, + "probability": 0.1531 + }, + { + "start": 8514.36, + "end": 8519.14, + "probability": 0.9763 + }, + { + "start": 8519.82, + "end": 8521.34, + "probability": 0.9071 + }, + { + "start": 8521.48, + "end": 8522.62, + "probability": 0.9542 + }, + { + "start": 8522.78, + "end": 8523.48, + "probability": 0.962 + }, + { + "start": 8524.04, + "end": 8524.48, + "probability": 0.8011 + }, + { + "start": 8525.0, + "end": 8526.16, + "probability": 0.9589 + }, + { + "start": 8526.5, + "end": 8529.78, + "probability": 0.9941 + }, + { + "start": 8529.78, + "end": 8535.48, + "probability": 0.9833 + }, + { + "start": 8535.98, + "end": 8537.5, + "probability": 0.9407 + }, + { + "start": 8538.18, + "end": 8544.26, + "probability": 0.9018 + }, + { + "start": 8544.48, + "end": 8545.18, + "probability": 0.5122 + }, + { + "start": 8545.38, + "end": 8546.0, + "probability": 0.7021 + }, + { + "start": 8546.4, + "end": 8546.54, + "probability": 0.4692 + }, + { + "start": 8546.66, + "end": 8548.22, + "probability": 0.927 + }, + { + "start": 8548.38, + "end": 8548.46, + "probability": 0.6243 + }, + { + "start": 8548.56, + "end": 8549.58, + "probability": 0.8302 + }, + { + "start": 8550.14, + "end": 8551.94, + "probability": 0.7805 + }, + { + "start": 8552.12, + "end": 8552.84, + "probability": 0.6813 + }, + { + "start": 8553.2, + "end": 8554.8, + "probability": 0.8042 + }, + { + "start": 8555.4, + "end": 8558.0, + "probability": 0.9397 + }, + { + "start": 8558.92, + "end": 8559.44, + "probability": 0.8341 + }, + { + "start": 8559.66, + "end": 8560.32, + "probability": 0.7652 + }, + { + "start": 8560.74, + "end": 8563.36, + "probability": 0.7242 + }, + { + "start": 8563.86, + "end": 8564.99, + "probability": 0.7059 + }, + { + "start": 8565.08, + "end": 8565.62, + "probability": 0.7836 + }, + { + "start": 8566.88, + "end": 8569.68, + "probability": 0.7997 + }, + { + "start": 8569.68, + "end": 8571.3, + "probability": 0.0532 + }, + { + "start": 8571.98, + "end": 8576.6, + "probability": 0.9065 + }, + { + "start": 8577.1, + "end": 8578.16, + "probability": 0.7057 + }, + { + "start": 8578.36, + "end": 8583.1, + "probability": 0.6907 + }, + { + "start": 8583.18, + "end": 8583.74, + "probability": 0.5983 + }, + { + "start": 8583.88, + "end": 8585.26, + "probability": 0.8945 + }, + { + "start": 8586.16, + "end": 8586.3, + "probability": 0.6577 + }, + { + "start": 8588.72, + "end": 8590.12, + "probability": 0.1599 + }, + { + "start": 8590.12, + "end": 8590.12, + "probability": 0.0792 + }, + { + "start": 8590.18, + "end": 8590.24, + "probability": 0.1265 + }, + { + "start": 8590.24, + "end": 8590.24, + "probability": 0.3349 + }, + { + "start": 8590.24, + "end": 8591.22, + "probability": 0.6284 + }, + { + "start": 8591.5, + "end": 8591.98, + "probability": 0.825 + }, + { + "start": 8591.98, + "end": 8597.76, + "probability": 0.8626 + }, + { + "start": 8597.76, + "end": 8598.12, + "probability": 0.7504 + }, + { + "start": 8599.0, + "end": 8599.7, + "probability": 0.5204 + }, + { + "start": 8600.68, + "end": 8600.78, + "probability": 0.7203 + }, + { + "start": 8601.86, + "end": 8603.96, + "probability": 0.7817 + }, + { + "start": 8605.08, + "end": 8608.7, + "probability": 0.9957 + }, + { + "start": 8609.4, + "end": 8612.34, + "probability": 0.9899 + }, + { + "start": 8612.34, + "end": 8616.74, + "probability": 0.9835 + }, + { + "start": 8616.82, + "end": 8617.32, + "probability": 0.131 + }, + { + "start": 8617.44, + "end": 8617.78, + "probability": 0.5428 + }, + { + "start": 8617.96, + "end": 8621.98, + "probability": 0.978 + }, + { + "start": 8622.4, + "end": 8622.78, + "probability": 0.9253 + }, + { + "start": 8623.46, + "end": 8624.0, + "probability": 0.938 + }, + { + "start": 8624.64, + "end": 8625.4, + "probability": 0.7056 + }, + { + "start": 8626.86, + "end": 8627.42, + "probability": 0.7196 + }, + { + "start": 8627.66, + "end": 8628.22, + "probability": 0.4866 + }, + { + "start": 8628.24, + "end": 8632.4, + "probability": 0.9604 + }, + { + "start": 8633.8, + "end": 8636.86, + "probability": 0.999 + }, + { + "start": 8637.5, + "end": 8639.54, + "probability": 0.6761 + }, + { + "start": 8639.68, + "end": 8640.38, + "probability": 0.9146 + }, + { + "start": 8640.5, + "end": 8641.24, + "probability": 0.8971 + }, + { + "start": 8641.86, + "end": 8642.24, + "probability": 0.5043 + }, + { + "start": 8642.86, + "end": 8647.52, + "probability": 0.9184 + }, + { + "start": 8649.28, + "end": 8650.48, + "probability": 0.9844 + }, + { + "start": 8651.62, + "end": 8654.22, + "probability": 0.7718 + }, + { + "start": 8654.56, + "end": 8658.1, + "probability": 0.989 + }, + { + "start": 8658.76, + "end": 8659.14, + "probability": 0.7335 + }, + { + "start": 8659.94, + "end": 8660.48, + "probability": 0.4218 + }, + { + "start": 8660.54, + "end": 8661.25, + "probability": 0.834 + }, + { + "start": 8661.54, + "end": 8665.1, + "probability": 0.7023 + }, + { + "start": 8665.78, + "end": 8667.7, + "probability": 0.9209 + }, + { + "start": 8668.62, + "end": 8671.7, + "probability": 0.8983 + }, + { + "start": 8672.26, + "end": 8673.64, + "probability": 0.639 + }, + { + "start": 8674.3, + "end": 8675.38, + "probability": 0.9438 + }, + { + "start": 8675.64, + "end": 8676.92, + "probability": 0.8982 + }, + { + "start": 8677.74, + "end": 8679.52, + "probability": 0.9525 + }, + { + "start": 8679.56, + "end": 8680.4, + "probability": 0.7705 + }, + { + "start": 8680.5, + "end": 8681.49, + "probability": 0.8711 + }, + { + "start": 8681.9, + "end": 8683.0, + "probability": 0.9932 + }, + { + "start": 8685.04, + "end": 8685.77, + "probability": 0.1009 + }, + { + "start": 8685.96, + "end": 8686.03, + "probability": 0.3668 + }, + { + "start": 8686.64, + "end": 8687.46, + "probability": 0.0515 + }, + { + "start": 8687.66, + "end": 8688.64, + "probability": 0.267 + }, + { + "start": 8688.82, + "end": 8689.18, + "probability": 0.7482 + }, + { + "start": 8689.6, + "end": 8692.94, + "probability": 0.9219 + }, + { + "start": 8692.94, + "end": 8694.8, + "probability": 0.9279 + }, + { + "start": 8695.16, + "end": 8695.26, + "probability": 0.1903 + }, + { + "start": 8695.26, + "end": 8696.18, + "probability": 0.6294 + }, + { + "start": 8696.22, + "end": 8699.8, + "probability": 0.9771 + }, + { + "start": 8699.84, + "end": 8701.12, + "probability": 0.0239 + }, + { + "start": 8701.34, + "end": 8701.44, + "probability": 0.0412 + }, + { + "start": 8702.7, + "end": 8705.66, + "probability": 0.9915 + }, + { + "start": 8706.18, + "end": 8707.8, + "probability": 0.9052 + }, + { + "start": 8708.36, + "end": 8708.36, + "probability": 0.0225 + }, + { + "start": 8708.36, + "end": 8710.94, + "probability": 0.8107 + }, + { + "start": 8711.3, + "end": 8712.02, + "probability": 0.6869 + }, + { + "start": 8712.04, + "end": 8713.08, + "probability": 0.9337 + }, + { + "start": 8713.4, + "end": 8715.92, + "probability": 0.5284 + }, + { + "start": 8715.92, + "end": 8718.96, + "probability": 0.89 + }, + { + "start": 8719.6, + "end": 8722.58, + "probability": 0.9522 + }, + { + "start": 8723.52, + "end": 8725.5, + "probability": 0.9966 + }, + { + "start": 8725.58, + "end": 8726.26, + "probability": 0.8875 + }, + { + "start": 8727.18, + "end": 8728.56, + "probability": 0.0212 + }, + { + "start": 8728.68, + "end": 8728.88, + "probability": 0.0192 + }, + { + "start": 8729.64, + "end": 8733.86, + "probability": 0.0468 + }, + { + "start": 8733.86, + "end": 8733.86, + "probability": 0.1698 + }, + { + "start": 8733.86, + "end": 8734.42, + "probability": 0.2439 + }, + { + "start": 8734.56, + "end": 8735.14, + "probability": 0.6954 + }, + { + "start": 8735.22, + "end": 8736.94, + "probability": 0.7813 + }, + { + "start": 8739.12, + "end": 8739.34, + "probability": 0.1308 + }, + { + "start": 8739.48, + "end": 8740.52, + "probability": 0.8656 + }, + { + "start": 8740.62, + "end": 8741.19, + "probability": 0.6257 + }, + { + "start": 8741.44, + "end": 8742.14, + "probability": 0.5529 + }, + { + "start": 8742.38, + "end": 8744.26, + "probability": 0.9062 + }, + { + "start": 8744.38, + "end": 8744.45, + "probability": 0.108 + }, + { + "start": 8744.5, + "end": 8746.02, + "probability": 0.9736 + }, + { + "start": 8746.6, + "end": 8749.54, + "probability": 0.7238 + }, + { + "start": 8750.04, + "end": 8752.58, + "probability": 0.9967 + }, + { + "start": 8753.16, + "end": 8753.88, + "probability": 0.9725 + }, + { + "start": 8754.0, + "end": 8755.42, + "probability": 0.6548 + }, + { + "start": 8756.53, + "end": 8759.64, + "probability": 0.7118 + }, + { + "start": 8760.28, + "end": 8762.08, + "probability": 0.8008 + }, + { + "start": 8762.74, + "end": 8763.3, + "probability": 0.969 + }, + { + "start": 8764.56, + "end": 8766.28, + "probability": 0.6573 + }, + { + "start": 8767.52, + "end": 8769.14, + "probability": 0.9887 + }, + { + "start": 8770.08, + "end": 8772.14, + "probability": 0.8826 + }, + { + "start": 8772.24, + "end": 8772.72, + "probability": 0.6259 + }, + { + "start": 8773.04, + "end": 8773.52, + "probability": 0.8099 + }, + { + "start": 8774.12, + "end": 8777.7, + "probability": 0.9978 + }, + { + "start": 8778.92, + "end": 8779.76, + "probability": 0.7231 + }, + { + "start": 8780.84, + "end": 8783.04, + "probability": 0.9963 + }, + { + "start": 8783.52, + "end": 8785.42, + "probability": 0.9837 + }, + { + "start": 8785.98, + "end": 8787.18, + "probability": 0.7619 + }, + { + "start": 8788.32, + "end": 8789.44, + "probability": 0.7441 + }, + { + "start": 8790.06, + "end": 8791.06, + "probability": 0.9077 + }, + { + "start": 8791.24, + "end": 8794.28, + "probability": 0.8708 + }, + { + "start": 8794.38, + "end": 8798.28, + "probability": 0.9664 + }, + { + "start": 8798.8, + "end": 8804.54, + "probability": 0.9637 + }, + { + "start": 8804.92, + "end": 8810.89, + "probability": 0.9951 + }, + { + "start": 8811.45, + "end": 8812.76, + "probability": 0.7279 + }, + { + "start": 8813.5, + "end": 8815.31, + "probability": 0.9956 + }, + { + "start": 8815.54, + "end": 8819.66, + "probability": 0.5154 + }, + { + "start": 8819.66, + "end": 8820.94, + "probability": 0.1418 + }, + { + "start": 8820.94, + "end": 8823.04, + "probability": 0.9826 + }, + { + "start": 8823.96, + "end": 8829.1, + "probability": 0.9958 + }, + { + "start": 8829.44, + "end": 8830.4, + "probability": 0.4827 + }, + { + "start": 8830.4, + "end": 8830.68, + "probability": 0.4625 + }, + { + "start": 8830.68, + "end": 8830.68, + "probability": 0.0289 + }, + { + "start": 8830.68, + "end": 8833.78, + "probability": 0.9834 + }, + { + "start": 8834.0, + "end": 8836.25, + "probability": 0.6443 + }, + { + "start": 8836.94, + "end": 8840.43, + "probability": 0.8001 + }, + { + "start": 8851.22, + "end": 8854.74, + "probability": 0.6374 + }, + { + "start": 8856.66, + "end": 8861.32, + "probability": 0.9536 + }, + { + "start": 8861.32, + "end": 8864.9, + "probability": 0.917 + }, + { + "start": 8865.46, + "end": 8866.22, + "probability": 0.9833 + }, + { + "start": 8866.82, + "end": 8867.12, + "probability": 0.719 + }, + { + "start": 8867.76, + "end": 8870.24, + "probability": 0.906 + }, + { + "start": 8870.92, + "end": 8870.92, + "probability": 0.005 + }, + { + "start": 8872.0, + "end": 8876.84, + "probability": 0.7872 + }, + { + "start": 8877.08, + "end": 8877.08, + "probability": 0.1369 + }, + { + "start": 8877.28, + "end": 8881.36, + "probability": 0.938 + }, + { + "start": 8881.6, + "end": 8881.6, + "probability": 0.2446 + }, + { + "start": 8881.7, + "end": 8882.32, + "probability": 0.8085 + }, + { + "start": 8882.84, + "end": 8885.32, + "probability": 0.9941 + }, + { + "start": 8885.92, + "end": 8887.64, + "probability": 0.9342 + }, + { + "start": 8888.28, + "end": 8889.72, + "probability": 0.437 + }, + { + "start": 8890.38, + "end": 8892.22, + "probability": 0.7441 + }, + { + "start": 8892.64, + "end": 8893.74, + "probability": 0.9946 + }, + { + "start": 8894.14, + "end": 8898.32, + "probability": 0.9382 + }, + { + "start": 8898.5, + "end": 8899.0, + "probability": 0.6852 + }, + { + "start": 8899.64, + "end": 8900.14, + "probability": 0.7476 + }, + { + "start": 8900.22, + "end": 8902.76, + "probability": 0.9819 + }, + { + "start": 8902.84, + "end": 8906.76, + "probability": 0.7897 + }, + { + "start": 8907.2, + "end": 8909.62, + "probability": 0.9546 + }, + { + "start": 8910.82, + "end": 8912.38, + "probability": 0.5267 + }, + { + "start": 8912.76, + "end": 8914.78, + "probability": 0.7609 + }, + { + "start": 8914.96, + "end": 8919.1, + "probability": 0.8282 + }, + { + "start": 8919.92, + "end": 8921.22, + "probability": 0.9647 + }, + { + "start": 8921.74, + "end": 8923.14, + "probability": 0.8235 + }, + { + "start": 8923.56, + "end": 8924.42, + "probability": 0.8725 + }, + { + "start": 8925.12, + "end": 8926.5, + "probability": 0.7469 + }, + { + "start": 8926.94, + "end": 8927.78, + "probability": 0.9746 + }, + { + "start": 8928.12, + "end": 8932.68, + "probability": 0.9543 + }, + { + "start": 8933.98, + "end": 8936.38, + "probability": 0.8453 + }, + { + "start": 8936.98, + "end": 8937.86, + "probability": 0.7663 + }, + { + "start": 8938.0, + "end": 8941.1, + "probability": 0.9915 + }, + { + "start": 8941.1, + "end": 8944.62, + "probability": 0.9903 + }, + { + "start": 8945.44, + "end": 8946.58, + "probability": 0.9497 + }, + { + "start": 8946.94, + "end": 8950.14, + "probability": 0.915 + }, + { + "start": 8951.04, + "end": 8953.02, + "probability": 0.8977 + }, + { + "start": 8953.84, + "end": 8955.6, + "probability": 0.9513 + }, + { + "start": 8956.04, + "end": 8958.72, + "probability": 0.853 + }, + { + "start": 8959.08, + "end": 8959.84, + "probability": 0.9275 + }, + { + "start": 8960.14, + "end": 8965.64, + "probability": 0.9819 + }, + { + "start": 8966.16, + "end": 8969.74, + "probability": 0.8097 + }, + { + "start": 8970.26, + "end": 8970.5, + "probability": 0.6523 + }, + { + "start": 8971.52, + "end": 8973.38, + "probability": 0.7727 + }, + { + "start": 8973.6, + "end": 8975.36, + "probability": 0.8905 + }, + { + "start": 8976.14, + "end": 8977.12, + "probability": 0.9597 + }, + { + "start": 8980.4, + "end": 8981.48, + "probability": 0.5455 + }, + { + "start": 8981.72, + "end": 8981.76, + "probability": 0.5438 + }, + { + "start": 8981.76, + "end": 8985.5, + "probability": 0.9825 + }, + { + "start": 8986.02, + "end": 8990.3, + "probability": 0.9946 + }, + { + "start": 8990.84, + "end": 8991.72, + "probability": 0.5283 + }, + { + "start": 8992.2, + "end": 8995.28, + "probability": 0.9967 + }, + { + "start": 8995.28, + "end": 8998.92, + "probability": 0.9953 + }, + { + "start": 8999.54, + "end": 9002.5, + "probability": 0.8356 + }, + { + "start": 9003.0, + "end": 9005.58, + "probability": 0.9836 + }, + { + "start": 9005.98, + "end": 9007.42, + "probability": 0.9527 + }, + { + "start": 9007.64, + "end": 9008.24, + "probability": 0.6465 + }, + { + "start": 9008.3, + "end": 9009.44, + "probability": 0.7793 + }, + { + "start": 9009.88, + "end": 9012.98, + "probability": 0.9927 + }, + { + "start": 9013.16, + "end": 9014.66, + "probability": 0.9892 + }, + { + "start": 9015.06, + "end": 9016.26, + "probability": 0.9373 + }, + { + "start": 9016.7, + "end": 9017.62, + "probability": 0.9075 + }, + { + "start": 9017.76, + "end": 9018.84, + "probability": 0.9569 + }, + { + "start": 9019.22, + "end": 9022.26, + "probability": 0.9939 + }, + { + "start": 9022.54, + "end": 9024.24, + "probability": 0.998 + }, + { + "start": 9024.42, + "end": 9025.45, + "probability": 0.9371 + }, + { + "start": 9026.14, + "end": 9027.64, + "probability": 0.9904 + }, + { + "start": 9028.08, + "end": 9029.28, + "probability": 0.9368 + }, + { + "start": 9029.64, + "end": 9031.38, + "probability": 0.9976 + }, + { + "start": 9031.38, + "end": 9034.36, + "probability": 0.8608 + }, + { + "start": 9034.56, + "end": 9035.9, + "probability": 0.9949 + }, + { + "start": 9036.64, + "end": 9041.82, + "probability": 0.8508 + }, + { + "start": 9042.5, + "end": 9045.4, + "probability": 0.7576 + }, + { + "start": 9045.44, + "end": 9045.99, + "probability": 0.8086 + }, + { + "start": 9046.5, + "end": 9047.3, + "probability": 0.7532 + }, + { + "start": 9047.74, + "end": 9049.48, + "probability": 0.8906 + }, + { + "start": 9049.96, + "end": 9051.76, + "probability": 0.8103 + }, + { + "start": 9052.36, + "end": 9055.78, + "probability": 0.972 + }, + { + "start": 9056.32, + "end": 9057.54, + "probability": 0.9961 + }, + { + "start": 9058.14, + "end": 9059.46, + "probability": 0.8962 + }, + { + "start": 9059.86, + "end": 9062.28, + "probability": 0.7465 + }, + { + "start": 9062.34, + "end": 9063.26, + "probability": 0.6138 + }, + { + "start": 9063.8, + "end": 9064.9, + "probability": 0.9521 + }, + { + "start": 9065.14, + "end": 9065.92, + "probability": 0.8013 + }, + { + "start": 9065.96, + "end": 9067.68, + "probability": 0.6411 + }, + { + "start": 9068.1, + "end": 9069.9, + "probability": 0.712 + }, + { + "start": 9069.96, + "end": 9070.72, + "probability": 0.8064 + }, + { + "start": 9071.02, + "end": 9072.2, + "probability": 0.9805 + }, + { + "start": 9072.32, + "end": 9073.72, + "probability": 0.7194 + }, + { + "start": 9074.0, + "end": 9075.9, + "probability": 0.9028 + }, + { + "start": 9077.0, + "end": 9080.24, + "probability": 0.8957 + }, + { + "start": 9080.68, + "end": 9082.96, + "probability": 0.7986 + }, + { + "start": 9083.0, + "end": 9084.2, + "probability": 0.7397 + }, + { + "start": 9084.64, + "end": 9086.1, + "probability": 0.8415 + }, + { + "start": 9086.4, + "end": 9087.48, + "probability": 0.9001 + }, + { + "start": 9087.58, + "end": 9087.92, + "probability": 0.3358 + }, + { + "start": 9088.06, + "end": 9088.9, + "probability": 0.9929 + }, + { + "start": 9089.48, + "end": 9092.26, + "probability": 0.9953 + }, + { + "start": 9092.42, + "end": 9094.88, + "probability": 0.9913 + }, + { + "start": 9095.3, + "end": 9096.58, + "probability": 0.766 + }, + { + "start": 9096.84, + "end": 9098.98, + "probability": 0.9039 + }, + { + "start": 9099.02, + "end": 9099.42, + "probability": 0.8103 + }, + { + "start": 9099.92, + "end": 9101.32, + "probability": 0.7361 + }, + { + "start": 9101.36, + "end": 9103.74, + "probability": 0.8895 + }, + { + "start": 9105.38, + "end": 9105.58, + "probability": 0.4036 + }, + { + "start": 9105.58, + "end": 9106.98, + "probability": 0.4781 + }, + { + "start": 9107.96, + "end": 9109.14, + "probability": 0.8677 + }, + { + "start": 9109.86, + "end": 9110.86, + "probability": 0.5501 + }, + { + "start": 9110.92, + "end": 9111.32, + "probability": 0.5384 + }, + { + "start": 9111.42, + "end": 9111.82, + "probability": 0.6479 + }, + { + "start": 9111.86, + "end": 9112.58, + "probability": 0.8562 + }, + { + "start": 9126.9, + "end": 9126.9, + "probability": 0.1633 + }, + { + "start": 9126.9, + "end": 9129.16, + "probability": 0.287 + }, + { + "start": 9129.34, + "end": 9129.54, + "probability": 0.3196 + }, + { + "start": 9129.64, + "end": 9132.7, + "probability": 0.9243 + }, + { + "start": 9132.8, + "end": 9135.88, + "probability": 0.9653 + }, + { + "start": 9136.66, + "end": 9140.46, + "probability": 0.9951 + }, + { + "start": 9140.64, + "end": 9141.58, + "probability": 0.4419 + }, + { + "start": 9142.5, + "end": 9146.44, + "probability": 0.9742 + }, + { + "start": 9146.56, + "end": 9149.52, + "probability": 0.9727 + }, + { + "start": 9151.12, + "end": 9153.94, + "probability": 0.7061 + }, + { + "start": 9154.08, + "end": 9155.28, + "probability": 0.6053 + }, + { + "start": 9156.92, + "end": 9158.32, + "probability": 0.7177 + }, + { + "start": 9158.86, + "end": 9161.7, + "probability": 0.7963 + }, + { + "start": 9162.24, + "end": 9165.06, + "probability": 0.878 + }, + { + "start": 9166.36, + "end": 9170.54, + "probability": 0.9989 + }, + { + "start": 9170.66, + "end": 9171.96, + "probability": 0.6003 + }, + { + "start": 9172.38, + "end": 9177.72, + "probability": 0.93 + }, + { + "start": 9178.64, + "end": 9181.1, + "probability": 0.821 + }, + { + "start": 9181.62, + "end": 9183.82, + "probability": 0.9964 + }, + { + "start": 9185.18, + "end": 9189.34, + "probability": 0.4716 + }, + { + "start": 9192.29, + "end": 9196.36, + "probability": 0.6311 + }, + { + "start": 9197.38, + "end": 9199.88, + "probability": 0.7622 + }, + { + "start": 9200.58, + "end": 9200.68, + "probability": 0.0228 + }, + { + "start": 9200.94, + "end": 9202.9, + "probability": 0.1722 + }, + { + "start": 9203.3, + "end": 9206.82, + "probability": 0.9839 + }, + { + "start": 9207.24, + "end": 9208.02, + "probability": 0.8698 + }, + { + "start": 9208.4, + "end": 9211.14, + "probability": 0.8724 + }, + { + "start": 9212.04, + "end": 9213.34, + "probability": 0.7577 + }, + { + "start": 9213.64, + "end": 9217.48, + "probability": 0.0175 + }, + { + "start": 9224.28, + "end": 9224.88, + "probability": 0.0006 + }, + { + "start": 9226.82, + "end": 9228.02, + "probability": 0.003 + }, + { + "start": 9232.8, + "end": 9234.36, + "probability": 0.136 + }, + { + "start": 9238.68, + "end": 9240.04, + "probability": 0.0857 + }, + { + "start": 9240.86, + "end": 9243.58, + "probability": 0.0854 + }, + { + "start": 9244.72, + "end": 9246.34, + "probability": 0.0258 + }, + { + "start": 9251.34, + "end": 9252.24, + "probability": 0.0108 + }, + { + "start": 9252.24, + "end": 9258.42, + "probability": 0.2736 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9295.0, + "end": 9295.0, + "probability": 0.0 + }, + { + "start": 9296.16, + "end": 9296.18, + "probability": 0.1672 + }, + { + "start": 9296.18, + "end": 9302.26, + "probability": 0.9886 + }, + { + "start": 9302.42, + "end": 9305.74, + "probability": 0.9779 + }, + { + "start": 9306.52, + "end": 9309.16, + "probability": 0.9847 + }, + { + "start": 9309.16, + "end": 9312.2, + "probability": 0.988 + }, + { + "start": 9313.2, + "end": 9315.21, + "probability": 0.9768 + }, + { + "start": 9316.16, + "end": 9318.28, + "probability": 0.9284 + }, + { + "start": 9319.08, + "end": 9324.48, + "probability": 0.9955 + }, + { + "start": 9325.6, + "end": 9329.26, + "probability": 0.9823 + }, + { + "start": 9329.4, + "end": 9330.14, + "probability": 0.7614 + }, + { + "start": 9331.12, + "end": 9337.74, + "probability": 0.9814 + }, + { + "start": 9338.26, + "end": 9340.46, + "probability": 0.9769 + }, + { + "start": 9341.42, + "end": 9343.98, + "probability": 0.9946 + }, + { + "start": 9344.24, + "end": 9348.76, + "probability": 0.9893 + }, + { + "start": 9348.76, + "end": 9352.68, + "probability": 0.9843 + }, + { + "start": 9354.44, + "end": 9355.86, + "probability": 0.8564 + }, + { + "start": 9356.02, + "end": 9361.22, + "probability": 0.8488 + }, + { + "start": 9362.72, + "end": 9364.6, + "probability": 0.7966 + }, + { + "start": 9365.44, + "end": 9366.08, + "probability": 0.9058 + }, + { + "start": 9367.62, + "end": 9372.48, + "probability": 0.9827 + }, + { + "start": 9373.7, + "end": 9375.18, + "probability": 0.9184 + }, + { + "start": 9376.42, + "end": 9378.52, + "probability": 0.977 + }, + { + "start": 9378.6, + "end": 9383.0, + "probability": 0.9794 + }, + { + "start": 9384.04, + "end": 9385.88, + "probability": 0.9546 + }, + { + "start": 9387.04, + "end": 9390.04, + "probability": 0.9857 + }, + { + "start": 9390.14, + "end": 9391.68, + "probability": 0.9775 + }, + { + "start": 9391.78, + "end": 9394.52, + "probability": 0.8327 + }, + { + "start": 9394.58, + "end": 9398.46, + "probability": 0.8653 + }, + { + "start": 9399.22, + "end": 9403.42, + "probability": 0.9926 + }, + { + "start": 9404.7, + "end": 9406.08, + "probability": 0.9922 + }, + { + "start": 9407.17, + "end": 9412.14, + "probability": 0.8193 + }, + { + "start": 9413.52, + "end": 9416.56, + "probability": 0.6017 + }, + { + "start": 9417.24, + "end": 9420.9, + "probability": 0.9971 + }, + { + "start": 9422.08, + "end": 9423.66, + "probability": 0.9309 + }, + { + "start": 9424.0, + "end": 9425.92, + "probability": 0.8925 + }, + { + "start": 9425.98, + "end": 9429.24, + "probability": 0.9243 + }, + { + "start": 9430.62, + "end": 9431.94, + "probability": 0.487 + }, + { + "start": 9432.94, + "end": 9435.48, + "probability": 0.7936 + }, + { + "start": 9436.72, + "end": 9438.04, + "probability": 0.1568 + }, + { + "start": 9438.42, + "end": 9441.88, + "probability": 0.79 + }, + { + "start": 9441.94, + "end": 9442.86, + "probability": 0.5275 + }, + { + "start": 9442.9, + "end": 9443.5, + "probability": 0.8699 + }, + { + "start": 9445.54, + "end": 9446.38, + "probability": 0.1182 + }, + { + "start": 9452.86, + "end": 9457.2, + "probability": 0.9769 + }, + { + "start": 9457.4, + "end": 9463.08, + "probability": 0.9469 + }, + { + "start": 9463.08, + "end": 9466.06, + "probability": 0.7256 + }, + { + "start": 9467.22, + "end": 9469.06, + "probability": 0.7413 + }, + { + "start": 9469.16, + "end": 9470.28, + "probability": 0.7326 + }, + { + "start": 9470.48, + "end": 9471.18, + "probability": 0.2151 + }, + { + "start": 9471.22, + "end": 9474.92, + "probability": 0.5346 + }, + { + "start": 9475.84, + "end": 9478.74, + "probability": 0.9379 + }, + { + "start": 9480.23, + "end": 9483.72, + "probability": 0.9908 + }, + { + "start": 9483.72, + "end": 9486.22, + "probability": 0.9256 + }, + { + "start": 9487.0, + "end": 9489.04, + "probability": 0.8637 + }, + { + "start": 9489.22, + "end": 9489.6, + "probability": 0.8235 + }, + { + "start": 9489.88, + "end": 9491.02, + "probability": 0.9958 + }, + { + "start": 9492.28, + "end": 9493.52, + "probability": 0.92 + }, + { + "start": 9494.16, + "end": 9495.58, + "probability": 0.6607 + }, + { + "start": 9495.72, + "end": 9496.86, + "probability": 0.9336 + }, + { + "start": 9496.94, + "end": 9500.12, + "probability": 0.9883 + }, + { + "start": 9500.88, + "end": 9502.18, + "probability": 0.8623 + }, + { + "start": 9503.12, + "end": 9504.22, + "probability": 0.7561 + }, + { + "start": 9505.32, + "end": 9509.02, + "probability": 0.9727 + }, + { + "start": 9509.02, + "end": 9513.84, + "probability": 0.9888 + }, + { + "start": 9515.32, + "end": 9518.6, + "probability": 0.9924 + }, + { + "start": 9520.0, + "end": 9521.28, + "probability": 0.9215 + }, + { + "start": 9521.96, + "end": 9523.31, + "probability": 0.9961 + }, + { + "start": 9524.28, + "end": 9527.16, + "probability": 0.864 + }, + { + "start": 9529.4, + "end": 9532.58, + "probability": 0.844 + }, + { + "start": 9533.54, + "end": 9534.02, + "probability": 0.5891 + }, + { + "start": 9534.64, + "end": 9535.78, + "probability": 0.8262 + }, + { + "start": 9537.82, + "end": 9541.86, + "probability": 0.979 + }, + { + "start": 9543.84, + "end": 9547.59, + "probability": 0.9922 + }, + { + "start": 9547.81, + "end": 9550.64, + "probability": 0.999 + }, + { + "start": 9551.74, + "end": 9555.02, + "probability": 0.9851 + }, + { + "start": 9556.04, + "end": 9558.66, + "probability": 0.9957 + }, + { + "start": 9559.24, + "end": 9560.36, + "probability": 0.9933 + }, + { + "start": 9560.96, + "end": 9566.18, + "probability": 0.9796 + }, + { + "start": 9566.22, + "end": 9569.26, + "probability": 0.9361 + }, + { + "start": 9570.24, + "end": 9577.12, + "probability": 0.9589 + }, + { + "start": 9581.44, + "end": 9583.7, + "probability": 0.8228 + }, + { + "start": 9585.12, + "end": 9587.54, + "probability": 0.6034 + }, + { + "start": 9588.3, + "end": 9594.58, + "probability": 0.9982 + }, + { + "start": 9594.7, + "end": 9597.32, + "probability": 0.7886 + }, + { + "start": 9598.3, + "end": 9600.66, + "probability": 0.9503 + }, + { + "start": 9601.56, + "end": 9606.16, + "probability": 0.9392 + }, + { + "start": 9607.76, + "end": 9608.18, + "probability": 0.8159 + }, + { + "start": 9608.3, + "end": 9612.66, + "probability": 0.9937 + }, + { + "start": 9612.66, + "end": 9618.16, + "probability": 0.8682 + }, + { + "start": 9618.66, + "end": 9619.42, + "probability": 0.8812 + }, + { + "start": 9620.3, + "end": 9624.98, + "probability": 0.942 + }, + { + "start": 9627.28, + "end": 9630.1, + "probability": 0.9792 + }, + { + "start": 9630.22, + "end": 9635.98, + "probability": 0.993 + }, + { + "start": 9637.3, + "end": 9644.18, + "probability": 0.9597 + }, + { + "start": 9645.48, + "end": 9648.74, + "probability": 0.7491 + }, + { + "start": 9649.94, + "end": 9651.08, + "probability": 0.981 + }, + { + "start": 9652.26, + "end": 9652.68, + "probability": 0.5507 + }, + { + "start": 9653.6, + "end": 9658.4, + "probability": 0.7913 + }, + { + "start": 9659.28, + "end": 9661.56, + "probability": 0.9534 + }, + { + "start": 9662.78, + "end": 9665.68, + "probability": 0.9365 + }, + { + "start": 9666.54, + "end": 9668.48, + "probability": 0.581 + }, + { + "start": 9670.18, + "end": 9672.08, + "probability": 0.8392 + }, + { + "start": 9672.22, + "end": 9672.52, + "probability": 0.5054 + }, + { + "start": 9673.04, + "end": 9676.06, + "probability": 0.9673 + }, + { + "start": 9676.3, + "end": 9677.62, + "probability": 0.9961 + }, + { + "start": 9680.88, + "end": 9681.98, + "probability": 0.9324 + }, + { + "start": 9682.74, + "end": 9683.68, + "probability": 0.9192 + }, + { + "start": 9686.88, + "end": 9689.72, + "probability": 0.9972 + }, + { + "start": 9691.44, + "end": 9692.5, + "probability": 0.6028 + }, + { + "start": 9693.18, + "end": 9699.5, + "probability": 0.9609 + }, + { + "start": 9700.12, + "end": 9703.04, + "probability": 0.9617 + }, + { + "start": 9703.8, + "end": 9705.44, + "probability": 0.959 + }, + { + "start": 9705.54, + "end": 9706.3, + "probability": 0.8975 + }, + { + "start": 9706.34, + "end": 9707.08, + "probability": 0.8164 + }, + { + "start": 9707.14, + "end": 9707.88, + "probability": 0.8941 + }, + { + "start": 9711.62, + "end": 9713.98, + "probability": 0.9309 + }, + { + "start": 9715.72, + "end": 9717.42, + "probability": 0.9218 + }, + { + "start": 9718.24, + "end": 9719.7, + "probability": 0.9824 + }, + { + "start": 9720.62, + "end": 9723.18, + "probability": 0.7284 + }, + { + "start": 9723.22, + "end": 9725.84, + "probability": 0.9292 + }, + { + "start": 9727.22, + "end": 9729.22, + "probability": 0.9836 + }, + { + "start": 9729.48, + "end": 9730.94, + "probability": 0.9818 + }, + { + "start": 9734.28, + "end": 9734.82, + "probability": 0.601 + }, + { + "start": 9737.3, + "end": 9739.9, + "probability": 0.9623 + }, + { + "start": 9743.16, + "end": 9747.42, + "probability": 0.9892 + }, + { + "start": 9747.64, + "end": 9748.42, + "probability": 0.9493 + }, + { + "start": 9749.66, + "end": 9753.44, + "probability": 0.9723 + }, + { + "start": 9754.72, + "end": 9761.38, + "probability": 0.9587 + }, + { + "start": 9761.38, + "end": 9766.76, + "probability": 0.979 + }, + { + "start": 9767.02, + "end": 9768.56, + "probability": 0.9655 + }, + { + "start": 9773.54, + "end": 9776.0, + "probability": 0.9971 + }, + { + "start": 9776.88, + "end": 9780.24, + "probability": 0.9873 + }, + { + "start": 9783.48, + "end": 9784.12, + "probability": 0.8193 + }, + { + "start": 9784.98, + "end": 9785.4, + "probability": 0.3366 + }, + { + "start": 9785.94, + "end": 9790.7, + "probability": 0.8665 + }, + { + "start": 9791.0, + "end": 9793.36, + "probability": 0.9501 + }, + { + "start": 9793.94, + "end": 9797.8, + "probability": 0.9771 + }, + { + "start": 9797.86, + "end": 9798.42, + "probability": 0.8192 + }, + { + "start": 9798.52, + "end": 9798.96, + "probability": 0.8746 + }, + { + "start": 9799.06, + "end": 9799.68, + "probability": 0.5931 + }, + { + "start": 9801.24, + "end": 9806.8, + "probability": 0.8747 + }, + { + "start": 9808.18, + "end": 9808.72, + "probability": 0.7812 + }, + { + "start": 9809.49, + "end": 9810.02, + "probability": 0.8149 + }, + { + "start": 9810.76, + "end": 9811.64, + "probability": 0.8835 + }, + { + "start": 9812.76, + "end": 9816.88, + "probability": 0.9699 + }, + { + "start": 9818.92, + "end": 9819.76, + "probability": 0.7986 + }, + { + "start": 9820.48, + "end": 9822.54, + "probability": 0.7471 + }, + { + "start": 9823.12, + "end": 9825.26, + "probability": 0.8003 + }, + { + "start": 9825.76, + "end": 9832.12, + "probability": 0.9385 + }, + { + "start": 9832.62, + "end": 9834.24, + "probability": 0.8724 + }, + { + "start": 9836.9, + "end": 9837.64, + "probability": 0.4571 + }, + { + "start": 9837.76, + "end": 9838.72, + "probability": 0.9394 + }, + { + "start": 9840.52, + "end": 9840.68, + "probability": 0.3441 + }, + { + "start": 9840.9, + "end": 9849.1, + "probability": 0.839 + }, + { + "start": 9850.16, + "end": 9852.5, + "probability": 0.9918 + }, + { + "start": 9853.3, + "end": 9855.54, + "probability": 0.9951 + }, + { + "start": 9856.74, + "end": 9857.56, + "probability": 0.95 + }, + { + "start": 9857.86, + "end": 9859.62, + "probability": 0.9147 + }, + { + "start": 9859.88, + "end": 9861.46, + "probability": 0.9961 + }, + { + "start": 9863.38, + "end": 9866.0, + "probability": 0.6672 + }, + { + "start": 9866.56, + "end": 9868.66, + "probability": 0.938 + }, + { + "start": 9869.46, + "end": 9871.64, + "probability": 0.7976 + }, + { + "start": 9874.16, + "end": 9877.94, + "probability": 0.9653 + }, + { + "start": 9878.62, + "end": 9883.4, + "probability": 0.9435 + }, + { + "start": 9885.9, + "end": 9889.36, + "probability": 0.8046 + }, + { + "start": 9890.24, + "end": 9890.24, + "probability": 0.8413 + }, + { + "start": 9890.84, + "end": 9891.86, + "probability": 0.9072 + }, + { + "start": 9893.22, + "end": 9896.72, + "probability": 0.9828 + }, + { + "start": 9897.42, + "end": 9899.84, + "probability": 0.9937 + }, + { + "start": 9902.02, + "end": 9903.46, + "probability": 0.865 + }, + { + "start": 9904.6, + "end": 9906.12, + "probability": 0.9976 + }, + { + "start": 9907.22, + "end": 9908.09, + "probability": 0.9847 + }, + { + "start": 9909.26, + "end": 9909.98, + "probability": 0.9862 + }, + { + "start": 9910.68, + "end": 9911.38, + "probability": 0.9918 + }, + { + "start": 9912.48, + "end": 9912.9, + "probability": 0.8007 + }, + { + "start": 9914.28, + "end": 9914.54, + "probability": 0.9933 + }, + { + "start": 9915.78, + "end": 9917.46, + "probability": 0.9969 + }, + { + "start": 9917.78, + "end": 9918.2, + "probability": 0.6743 + }, + { + "start": 9918.3, + "end": 9919.38, + "probability": 0.911 + }, + { + "start": 9920.38, + "end": 9923.24, + "probability": 0.959 + }, + { + "start": 9924.0, + "end": 9925.18, + "probability": 0.8154 + }, + { + "start": 9926.04, + "end": 9927.06, + "probability": 0.8947 + }, + { + "start": 9927.62, + "end": 9929.54, + "probability": 0.759 + }, + { + "start": 9930.16, + "end": 9936.18, + "probability": 0.9167 + }, + { + "start": 9936.82, + "end": 9940.28, + "probability": 0.8256 + }, + { + "start": 9940.66, + "end": 9944.22, + "probability": 0.8244 + }, + { + "start": 9944.3, + "end": 9946.38, + "probability": 0.9385 + }, + { + "start": 9947.5, + "end": 9949.2, + "probability": 0.9874 + }, + { + "start": 9950.42, + "end": 9950.62, + "probability": 0.148 + }, + { + "start": 9950.64, + "end": 9951.92, + "probability": 0.8503 + }, + { + "start": 9954.12, + "end": 9955.84, + "probability": 0.6958 + }, + { + "start": 9956.86, + "end": 9958.16, + "probability": 0.9968 + }, + { + "start": 9959.04, + "end": 9961.46, + "probability": 0.8222 + }, + { + "start": 9962.2, + "end": 9963.22, + "probability": 0.8964 + }, + { + "start": 9963.92, + "end": 9966.76, + "probability": 0.8406 + }, + { + "start": 9967.56, + "end": 9968.18, + "probability": 0.49 + }, + { + "start": 9968.24, + "end": 9969.64, + "probability": 0.8012 + }, + { + "start": 9969.74, + "end": 9970.46, + "probability": 0.5511 + }, + { + "start": 9970.76, + "end": 9972.6, + "probability": 0.6866 + }, + { + "start": 9972.82, + "end": 9974.44, + "probability": 0.6409 + }, + { + "start": 9974.54, + "end": 9975.1, + "probability": 0.8198 + }, + { + "start": 9975.16, + "end": 9978.5, + "probability": 0.8554 + }, + { + "start": 9978.5, + "end": 9979.34, + "probability": 0.0137 + }, + { + "start": 9986.5, + "end": 9987.64, + "probability": 0.3787 + }, + { + "start": 9992.1, + "end": 9993.56, + "probability": 0.0037 + }, + { + "start": 9996.44, + "end": 9998.02, + "probability": 0.0331 + }, + { + "start": 10012.44, + "end": 10013.0, + "probability": 0.0022 + }, + { + "start": 10016.08, + "end": 10019.58, + "probability": 0.1598 + }, + { + "start": 10019.58, + "end": 10019.86, + "probability": 0.1174 + }, + { + "start": 10021.1, + "end": 10023.68, + "probability": 0.4946 + }, + { + "start": 10023.7, + "end": 10024.5, + "probability": 0.4388 + }, + { + "start": 10025.38, + "end": 10025.7, + "probability": 0.24 + }, + { + "start": 10025.78, + "end": 10026.7, + "probability": 0.0967 + }, + { + "start": 10031.44, + "end": 10031.8, + "probability": 0.3858 + }, + { + "start": 10032.66, + "end": 10032.78, + "probability": 0.1732 + }, + { + "start": 10033.06, + "end": 10033.34, + "probability": 0.2937 + }, + { + "start": 10033.34, + "end": 10034.02, + "probability": 0.4035 + }, + { + "start": 10034.56, + "end": 10034.56, + "probability": 0.0035 + }, + { + "start": 10034.56, + "end": 10035.24, + "probability": 0.2435 + }, + { + "start": 10036.78, + "end": 10037.24, + "probability": 0.2727 + }, + { + "start": 10037.24, + "end": 10037.8, + "probability": 0.0607 + }, + { + "start": 10041.56, + "end": 10045.36, + "probability": 0.5729 + }, + { + "start": 10045.66, + "end": 10046.66, + "probability": 0.5548 + }, + { + "start": 10046.94, + "end": 10047.94, + "probability": 0.7292 + }, + { + "start": 10048.24, + "end": 10048.46, + "probability": 0.2966 + }, + { + "start": 10048.94, + "end": 10050.82, + "probability": 0.8132 + }, + { + "start": 10053.22, + "end": 10053.77, + "probability": 0.5935 + }, + { + "start": 10061.56, + "end": 10063.44, + "probability": 0.0618 + }, + { + "start": 10069.06, + "end": 10070.42, + "probability": 0.1957 + }, + { + "start": 10070.92, + "end": 10071.38, + "probability": 0.4797 + }, + { + "start": 10071.58, + "end": 10072.94, + "probability": 0.46 + }, + { + "start": 10073.04, + "end": 10074.19, + "probability": 0.6451 + }, + { + "start": 10075.04, + "end": 10075.8, + "probability": 0.9219 + }, + { + "start": 10075.8, + "end": 10076.38, + "probability": 0.1206 + }, + { + "start": 10076.58, + "end": 10080.1, + "probability": 0.0698 + }, + { + "start": 10080.66, + "end": 10081.46, + "probability": 0.4225 + }, + { + "start": 10081.46, + "end": 10082.18, + "probability": 0.2182 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10196.0, + "end": 10196.0, + "probability": 0.0 + }, + { + "start": 10199.78, + "end": 10201.4, + "probability": 0.5953 + }, + { + "start": 10204.78, + "end": 10205.88, + "probability": 0.5857 + }, + { + "start": 10207.38, + "end": 10209.82, + "probability": 0.1282 + }, + { + "start": 10209.82, + "end": 10210.7, + "probability": 0.0525 + }, + { + "start": 10212.08, + "end": 10212.22, + "probability": 0.1718 + }, + { + "start": 10212.26, + "end": 10212.3, + "probability": 0.1042 + }, + { + "start": 10212.62, + "end": 10213.16, + "probability": 0.0852 + }, + { + "start": 10213.48, + "end": 10222.8, + "probability": 0.165 + }, + { + "start": 10223.82, + "end": 10226.6, + "probability": 0.3896 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10328.0, + "end": 10328.0, + "probability": 0.0 + }, + { + "start": 10329.48, + "end": 10331.68, + "probability": 0.0691 + }, + { + "start": 10332.4, + "end": 10335.22, + "probability": 0.1977 + }, + { + "start": 10335.22, + "end": 10336.72, + "probability": 0.1351 + }, + { + "start": 10340.28, + "end": 10341.56, + "probability": 0.0416 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10462.0, + "end": 10462.0, + "probability": 0.0 + }, + { + "start": 10463.32, + "end": 10463.32, + "probability": 0.0109 + }, + { + "start": 10463.32, + "end": 10463.32, + "probability": 0.0171 + }, + { + "start": 10463.32, + "end": 10463.32, + "probability": 0.1741 + }, + { + "start": 10463.32, + "end": 10465.88, + "probability": 0.8538 + }, + { + "start": 10468.06, + "end": 10474.62, + "probability": 0.9573 + }, + { + "start": 10475.06, + "end": 10475.72, + "probability": 0.7014 + }, + { + "start": 10476.86, + "end": 10478.26, + "probability": 0.6942 + }, + { + "start": 10478.8, + "end": 10480.6, + "probability": 0.9913 + }, + { + "start": 10480.86, + "end": 10481.8, + "probability": 0.9905 + }, + { + "start": 10482.74, + "end": 10486.34, + "probability": 0.9646 + }, + { + "start": 10486.86, + "end": 10489.44, + "probability": 0.9894 + }, + { + "start": 10491.44, + "end": 10493.48, + "probability": 0.8992 + }, + { + "start": 10495.74, + "end": 10499.86, + "probability": 0.8501 + }, + { + "start": 10500.88, + "end": 10503.07, + "probability": 0.8662 + }, + { + "start": 10504.12, + "end": 10507.22, + "probability": 0.9678 + }, + { + "start": 10508.38, + "end": 10512.98, + "probability": 0.9651 + }, + { + "start": 10514.14, + "end": 10516.64, + "probability": 0.9987 + }, + { + "start": 10517.6, + "end": 10519.66, + "probability": 0.9954 + }, + { + "start": 10520.3, + "end": 10520.74, + "probability": 0.8231 + }, + { + "start": 10521.26, + "end": 10521.74, + "probability": 0.4497 + }, + { + "start": 10522.18, + "end": 10525.14, + "probability": 0.9902 + }, + { + "start": 10526.66, + "end": 10529.98, + "probability": 0.9972 + }, + { + "start": 10530.48, + "end": 10531.54, + "probability": 0.8503 + }, + { + "start": 10531.66, + "end": 10533.22, + "probability": 0.9921 + }, + { + "start": 10533.8, + "end": 10534.24, + "probability": 0.9975 + }, + { + "start": 10534.9, + "end": 10536.18, + "probability": 0.9004 + }, + { + "start": 10539.08, + "end": 10541.18, + "probability": 0.9275 + }, + { + "start": 10542.24, + "end": 10542.86, + "probability": 0.7672 + }, + { + "start": 10543.52, + "end": 10544.12, + "probability": 0.9107 + }, + { + "start": 10544.7, + "end": 10545.42, + "probability": 0.6444 + }, + { + "start": 10546.18, + "end": 10546.46, + "probability": 0.9492 + }, + { + "start": 10549.12, + "end": 10551.78, + "probability": 0.9668 + }, + { + "start": 10553.08, + "end": 10555.04, + "probability": 0.8483 + }, + { + "start": 10555.44, + "end": 10556.32, + "probability": 0.7318 + }, + { + "start": 10557.2, + "end": 10558.82, + "probability": 0.9942 + }, + { + "start": 10560.2, + "end": 10564.12, + "probability": 0.9675 + }, + { + "start": 10565.26, + "end": 10567.06, + "probability": 0.9876 + }, + { + "start": 10567.92, + "end": 10570.06, + "probability": 0.9637 + }, + { + "start": 10571.8, + "end": 10574.3, + "probability": 0.9358 + }, + { + "start": 10575.34, + "end": 10577.24, + "probability": 0.9595 + }, + { + "start": 10577.96, + "end": 10579.82, + "probability": 0.8637 + }, + { + "start": 10580.4, + "end": 10582.42, + "probability": 0.9441 + }, + { + "start": 10583.9, + "end": 10584.74, + "probability": 0.7676 + }, + { + "start": 10584.86, + "end": 10586.46, + "probability": 0.8657 + }, + { + "start": 10586.66, + "end": 10587.66, + "probability": 0.3932 + }, + { + "start": 10588.34, + "end": 10589.54, + "probability": 0.9067 + }, + { + "start": 10591.1, + "end": 10593.22, + "probability": 0.947 + }, + { + "start": 10595.3, + "end": 10596.48, + "probability": 0.7212 + }, + { + "start": 10597.24, + "end": 10602.72, + "probability": 0.7746 + }, + { + "start": 10603.48, + "end": 10605.46, + "probability": 0.9489 + }, + { + "start": 10606.68, + "end": 10607.34, + "probability": 0.5984 + }, + { + "start": 10608.04, + "end": 10611.84, + "probability": 0.5967 + }, + { + "start": 10612.78, + "end": 10613.76, + "probability": 0.8031 + }, + { + "start": 10615.12, + "end": 10617.78, + "probability": 0.8507 + }, + { + "start": 10620.42, + "end": 10621.8, + "probability": 0.7943 + }, + { + "start": 10622.64, + "end": 10623.88, + "probability": 0.9662 + }, + { + "start": 10625.28, + "end": 10629.78, + "probability": 0.9862 + }, + { + "start": 10630.16, + "end": 10632.06, + "probability": 0.9676 + }, + { + "start": 10635.8, + "end": 10637.5, + "probability": 0.9852 + }, + { + "start": 10639.54, + "end": 10639.99, + "probability": 0.9807 + }, + { + "start": 10641.0, + "end": 10643.62, + "probability": 0.9639 + }, + { + "start": 10645.4, + "end": 10647.36, + "probability": 0.8713 + }, + { + "start": 10648.04, + "end": 10648.72, + "probability": 0.4571 + }, + { + "start": 10649.34, + "end": 10650.49, + "probability": 0.6836 + }, + { + "start": 10652.14, + "end": 10655.54, + "probability": 0.6669 + }, + { + "start": 10656.84, + "end": 10659.2, + "probability": 0.9795 + }, + { + "start": 10659.72, + "end": 10660.32, + "probability": 0.6667 + }, + { + "start": 10661.06, + "end": 10662.28, + "probability": 0.957 + }, + { + "start": 10663.12, + "end": 10665.02, + "probability": 0.6925 + }, + { + "start": 10665.34, + "end": 10666.38, + "probability": 0.8364 + }, + { + "start": 10666.86, + "end": 10669.16, + "probability": 0.8014 + }, + { + "start": 10670.0, + "end": 10672.72, + "probability": 0.9604 + }, + { + "start": 10673.64, + "end": 10675.64, + "probability": 0.9467 + }, + { + "start": 10676.44, + "end": 10680.3, + "probability": 0.9737 + }, + { + "start": 10681.84, + "end": 10687.26, + "probability": 0.9948 + }, + { + "start": 10689.14, + "end": 10689.4, + "probability": 0.7537 + }, + { + "start": 10690.32, + "end": 10690.52, + "probability": 0.7806 + }, + { + "start": 10691.62, + "end": 10693.97, + "probability": 0.8723 + }, + { + "start": 10694.96, + "end": 10700.2, + "probability": 0.9882 + }, + { + "start": 10703.68, + "end": 10704.26, + "probability": 0.7844 + }, + { + "start": 10704.98, + "end": 10707.54, + "probability": 0.8251 + }, + { + "start": 10708.26, + "end": 10709.9, + "probability": 0.8619 + }, + { + "start": 10711.16, + "end": 10713.08, + "probability": 0.597 + }, + { + "start": 10713.58, + "end": 10715.38, + "probability": 0.9773 + }, + { + "start": 10715.56, + "end": 10716.04, + "probability": 0.6616 + }, + { + "start": 10716.4, + "end": 10718.02, + "probability": 0.949 + }, + { + "start": 10720.06, + "end": 10724.38, + "probability": 0.9751 + }, + { + "start": 10724.54, + "end": 10725.78, + "probability": 0.9881 + }, + { + "start": 10727.46, + "end": 10731.04, + "probability": 0.8063 + }, + { + "start": 10731.64, + "end": 10735.56, + "probability": 0.9974 + }, + { + "start": 10735.84, + "end": 10736.7, + "probability": 0.967 + }, + { + "start": 10737.16, + "end": 10739.96, + "probability": 0.9851 + }, + { + "start": 10740.62, + "end": 10742.2, + "probability": 0.7602 + }, + { + "start": 10743.52, + "end": 10745.42, + "probability": 0.8081 + }, + { + "start": 10745.86, + "end": 10748.14, + "probability": 0.9103 + }, + { + "start": 10750.0, + "end": 10751.62, + "probability": 0.5802 + }, + { + "start": 10753.12, + "end": 10754.32, + "probability": 0.9583 + }, + { + "start": 10754.64, + "end": 10759.06, + "probability": 0.9324 + }, + { + "start": 10760.78, + "end": 10762.04, + "probability": 0.816 + }, + { + "start": 10763.06, + "end": 10765.88, + "probability": 0.9874 + }, + { + "start": 10766.4, + "end": 10768.0, + "probability": 0.9987 + }, + { + "start": 10768.68, + "end": 10769.58, + "probability": 0.7402 + }, + { + "start": 10769.7, + "end": 10773.1, + "probability": 0.644 + }, + { + "start": 10774.16, + "end": 10777.12, + "probability": 0.9644 + }, + { + "start": 10777.62, + "end": 10778.36, + "probability": 0.9822 + }, + { + "start": 10778.6, + "end": 10779.1, + "probability": 0.9397 + }, + { + "start": 10779.32, + "end": 10779.84, + "probability": 0.9252 + }, + { + "start": 10780.06, + "end": 10780.6, + "probability": 0.8612 + }, + { + "start": 10780.68, + "end": 10781.14, + "probability": 0.9767 + }, + { + "start": 10781.18, + "end": 10781.74, + "probability": 0.8647 + }, + { + "start": 10783.3, + "end": 10786.13, + "probability": 0.9927 + }, + { + "start": 10786.2, + "end": 10787.32, + "probability": 0.9954 + }, + { + "start": 10789.12, + "end": 10790.62, + "probability": 0.8028 + }, + { + "start": 10791.8, + "end": 10792.88, + "probability": 0.5552 + }, + { + "start": 10794.0, + "end": 10794.88, + "probability": 0.1332 + }, + { + "start": 10794.88, + "end": 10795.44, + "probability": 0.5326 + }, + { + "start": 10795.64, + "end": 10797.92, + "probability": 0.8405 + }, + { + "start": 10799.38, + "end": 10802.5, + "probability": 0.9729 + }, + { + "start": 10802.72, + "end": 10805.8, + "probability": 0.7153 + }, + { + "start": 10807.0, + "end": 10809.12, + "probability": 0.8956 + }, + { + "start": 10809.84, + "end": 10811.14, + "probability": 0.9577 + }, + { + "start": 10811.94, + "end": 10813.44, + "probability": 0.9495 + }, + { + "start": 10814.02, + "end": 10816.6, + "probability": 0.9951 + }, + { + "start": 10818.0, + "end": 10819.84, + "probability": 0.9728 + }, + { + "start": 10820.16, + "end": 10821.58, + "probability": 0.9436 + }, + { + "start": 10822.28, + "end": 10824.26, + "probability": 0.7292 + }, + { + "start": 10825.16, + "end": 10826.06, + "probability": 0.7193 + }, + { + "start": 10826.76, + "end": 10828.58, + "probability": 0.9689 + }, + { + "start": 10828.62, + "end": 10832.92, + "probability": 0.8812 + }, + { + "start": 10833.46, + "end": 10837.12, + "probability": 0.9821 + }, + { + "start": 10837.58, + "end": 10841.12, + "probability": 0.8154 + }, + { + "start": 10842.13, + "end": 10848.18, + "probability": 0.8716 + }, + { + "start": 10849.36, + "end": 10853.34, + "probability": 0.9985 + }, + { + "start": 10853.54, + "end": 10857.16, + "probability": 0.9956 + }, + { + "start": 10857.28, + "end": 10860.16, + "probability": 0.9896 + }, + { + "start": 10861.06, + "end": 10865.96, + "probability": 0.9918 + }, + { + "start": 10866.26, + "end": 10866.38, + "probability": 0.6488 + }, + { + "start": 10867.42, + "end": 10867.84, + "probability": 0.8514 + }, + { + "start": 10868.68, + "end": 10870.46, + "probability": 0.5514 + }, + { + "start": 10871.42, + "end": 10872.96, + "probability": 0.4985 + }, + { + "start": 10885.18, + "end": 10885.66, + "probability": 0.4457 + }, + { + "start": 10897.42, + "end": 10897.7, + "probability": 0.3232 + }, + { + "start": 10897.7, + "end": 10899.3, + "probability": 0.7149 + }, + { + "start": 10900.42, + "end": 10901.44, + "probability": 0.6233 + }, + { + "start": 10902.02, + "end": 10902.74, + "probability": 0.8037 + }, + { + "start": 10903.84, + "end": 10905.08, + "probability": 0.9304 + }, + { + "start": 10905.64, + "end": 10912.3, + "probability": 0.9155 + }, + { + "start": 10912.44, + "end": 10915.84, + "probability": 0.7509 + }, + { + "start": 10916.02, + "end": 10916.32, + "probability": 0.8655 + }, + { + "start": 10917.02, + "end": 10917.81, + "probability": 0.8696 + }, + { + "start": 10918.88, + "end": 10922.4, + "probability": 0.9851 + }, + { + "start": 10924.5, + "end": 10928.66, + "probability": 0.9921 + }, + { + "start": 10929.6, + "end": 10930.22, + "probability": 0.9583 + }, + { + "start": 10931.0, + "end": 10934.14, + "probability": 0.9569 + }, + { + "start": 10935.8, + "end": 10938.8, + "probability": 0.9709 + }, + { + "start": 10940.0, + "end": 10942.04, + "probability": 0.4777 + }, + { + "start": 10942.64, + "end": 10947.52, + "probability": 0.4069 + }, + { + "start": 10948.14, + "end": 10949.22, + "probability": 0.9137 + }, + { + "start": 10950.02, + "end": 10953.12, + "probability": 0.8557 + }, + { + "start": 10954.04, + "end": 10959.38, + "probability": 0.995 + }, + { + "start": 10960.16, + "end": 10961.38, + "probability": 0.9746 + }, + { + "start": 10962.18, + "end": 10963.68, + "probability": 0.998 + }, + { + "start": 10965.24, + "end": 10969.08, + "probability": 0.968 + }, + { + "start": 10969.8, + "end": 10970.3, + "probability": 0.8346 + }, + { + "start": 10970.98, + "end": 10971.58, + "probability": 0.9977 + }, + { + "start": 10972.62, + "end": 10973.46, + "probability": 0.9972 + }, + { + "start": 10974.86, + "end": 10978.02, + "probability": 0.884 + }, + { + "start": 10978.9, + "end": 10979.9, + "probability": 0.8647 + }, + { + "start": 10980.58, + "end": 10982.3, + "probability": 0.9754 + }, + { + "start": 10983.24, + "end": 10984.04, + "probability": 0.9775 + }, + { + "start": 10985.28, + "end": 10988.14, + "probability": 0.9793 + }, + { + "start": 10989.84, + "end": 10993.04, + "probability": 0.9526 + }, + { + "start": 10993.6, + "end": 10997.62, + "probability": 0.9757 + }, + { + "start": 10998.6, + "end": 11002.6, + "probability": 0.974 + }, + { + "start": 11003.24, + "end": 11010.1, + "probability": 0.9942 + }, + { + "start": 11010.94, + "end": 11011.4, + "probability": 0.8024 + }, + { + "start": 11012.54, + "end": 11013.7, + "probability": 0.8808 + }, + { + "start": 11014.66, + "end": 11016.24, + "probability": 0.9631 + }, + { + "start": 11017.1, + "end": 11018.86, + "probability": 0.7133 + }, + { + "start": 11019.64, + "end": 11020.68, + "probability": 0.927 + }, + { + "start": 11023.54, + "end": 11023.92, + "probability": 0.5526 + }, + { + "start": 11025.24, + "end": 11026.6, + "probability": 0.9949 + }, + { + "start": 11028.04, + "end": 11029.68, + "probability": 0.9854 + }, + { + "start": 11030.3, + "end": 11030.78, + "probability": 0.9856 + }, + { + "start": 11031.44, + "end": 11032.72, + "probability": 0.9917 + }, + { + "start": 11033.5, + "end": 11034.62, + "probability": 0.3359 + }, + { + "start": 11035.46, + "end": 11035.94, + "probability": 0.8107 + }, + { + "start": 11036.7, + "end": 11038.28, + "probability": 0.912 + }, + { + "start": 11039.34, + "end": 11044.38, + "probability": 0.9489 + }, + { + "start": 11045.26, + "end": 11046.9, + "probability": 0.6309 + }, + { + "start": 11047.52, + "end": 11048.22, + "probability": 0.7206 + }, + { + "start": 11048.74, + "end": 11050.16, + "probability": 0.9655 + }, + { + "start": 11050.98, + "end": 11051.88, + "probability": 0.8772 + }, + { + "start": 11052.88, + "end": 11058.34, + "probability": 0.9879 + }, + { + "start": 11058.34, + "end": 11063.12, + "probability": 0.9939 + }, + { + "start": 11065.32, + "end": 11066.8, + "probability": 0.9925 + }, + { + "start": 11068.1, + "end": 11069.28, + "probability": 0.962 + }, + { + "start": 11070.06, + "end": 11071.53, + "probability": 0.6149 + }, + { + "start": 11072.48, + "end": 11076.76, + "probability": 0.8865 + }, + { + "start": 11077.48, + "end": 11078.7, + "probability": 0.812 + }, + { + "start": 11079.68, + "end": 11082.54, + "probability": 0.9922 + }, + { + "start": 11083.26, + "end": 11084.06, + "probability": 0.9929 + }, + { + "start": 11085.56, + "end": 11087.2, + "probability": 0.9393 + }, + { + "start": 11088.32, + "end": 11090.0, + "probability": 0.8055 + }, + { + "start": 11090.62, + "end": 11092.46, + "probability": 0.9701 + }, + { + "start": 11093.9, + "end": 11098.2, + "probability": 0.9027 + }, + { + "start": 11099.24, + "end": 11099.64, + "probability": 0.7067 + }, + { + "start": 11100.48, + "end": 11102.68, + "probability": 0.7363 + }, + { + "start": 11103.66, + "end": 11109.5, + "probability": 0.9438 + }, + { + "start": 11110.12, + "end": 11115.88, + "probability": 0.835 + }, + { + "start": 11116.94, + "end": 11117.8, + "probability": 0.9632 + }, + { + "start": 11118.98, + "end": 11121.3, + "probability": 0.9847 + }, + { + "start": 11122.28, + "end": 11124.7, + "probability": 0.9742 + }, + { + "start": 11125.5, + "end": 11130.34, + "probability": 0.8959 + }, + { + "start": 11131.06, + "end": 11132.42, + "probability": 0.5159 + }, + { + "start": 11133.28, + "end": 11133.86, + "probability": 0.6096 + }, + { + "start": 11134.74, + "end": 11143.14, + "probability": 0.9785 + }, + { + "start": 11144.32, + "end": 11145.48, + "probability": 0.4999 + }, + { + "start": 11146.24, + "end": 11147.42, + "probability": 0.6858 + }, + { + "start": 11148.12, + "end": 11150.36, + "probability": 0.9528 + }, + { + "start": 11150.92, + "end": 11153.7, + "probability": 0.7819 + }, + { + "start": 11154.44, + "end": 11161.22, + "probability": 0.9677 + }, + { + "start": 11161.96, + "end": 11163.98, + "probability": 0.9995 + }, + { + "start": 11164.64, + "end": 11167.14, + "probability": 0.9932 + }, + { + "start": 11167.68, + "end": 11168.06, + "probability": 0.494 + }, + { + "start": 11168.22, + "end": 11171.3, + "probability": 0.9947 + }, + { + "start": 11171.42, + "end": 11174.58, + "probability": 0.6846 + }, + { + "start": 11175.26, + "end": 11181.98, + "probability": 0.9212 + }, + { + "start": 11182.46, + "end": 11185.76, + "probability": 0.9772 + }, + { + "start": 11186.26, + "end": 11190.62, + "probability": 0.9927 + }, + { + "start": 11191.48, + "end": 11193.66, + "probability": 0.8952 + }, + { + "start": 11194.32, + "end": 11195.64, + "probability": 0.8906 + }, + { + "start": 11196.38, + "end": 11197.2, + "probability": 0.9702 + }, + { + "start": 11198.24, + "end": 11200.06, + "probability": 0.9965 + }, + { + "start": 11200.9, + "end": 11202.78, + "probability": 0.8251 + }, + { + "start": 11203.82, + "end": 11204.84, + "probability": 0.9747 + }, + { + "start": 11206.18, + "end": 11207.18, + "probability": 0.84 + }, + { + "start": 11208.0, + "end": 11209.44, + "probability": 0.9348 + }, + { + "start": 11210.22, + "end": 11211.45, + "probability": 0.9609 + }, + { + "start": 11212.22, + "end": 11214.62, + "probability": 0.4795 + }, + { + "start": 11215.26, + "end": 11217.18, + "probability": 0.9605 + }, + { + "start": 11217.72, + "end": 11222.06, + "probability": 0.8271 + }, + { + "start": 11222.6, + "end": 11223.86, + "probability": 0.5631 + }, + { + "start": 11224.5, + "end": 11225.34, + "probability": 0.8848 + }, + { + "start": 11225.92, + "end": 11226.82, + "probability": 0.8689 + }, + { + "start": 11228.08, + "end": 11233.1, + "probability": 0.8643 + }, + { + "start": 11233.22, + "end": 11236.92, + "probability": 0.9185 + }, + { + "start": 11237.48, + "end": 11242.78, + "probability": 0.9022 + }, + { + "start": 11242.92, + "end": 11248.29, + "probability": 0.9981 + }, + { + "start": 11249.32, + "end": 11249.76, + "probability": 0.8808 + }, + { + "start": 11251.62, + "end": 11252.56, + "probability": 0.5886 + }, + { + "start": 11252.74, + "end": 11253.36, + "probability": 0.8013 + }, + { + "start": 11254.1, + "end": 11255.22, + "probability": 0.9839 + }, + { + "start": 11255.34, + "end": 11256.7, + "probability": 0.9435 + }, + { + "start": 11257.96, + "end": 11260.56, + "probability": 0.8781 + }, + { + "start": 11261.96, + "end": 11263.7, + "probability": 0.5654 + }, + { + "start": 11264.66, + "end": 11265.66, + "probability": 0.9458 + }, + { + "start": 11266.42, + "end": 11267.38, + "probability": 0.5665 + }, + { + "start": 11267.8, + "end": 11268.5, + "probability": 0.8578 + }, + { + "start": 11268.54, + "end": 11273.66, + "probability": 0.9679 + }, + { + "start": 11274.42, + "end": 11275.94, + "probability": 0.9076 + }, + { + "start": 11276.42, + "end": 11277.5, + "probability": 0.916 + }, + { + "start": 11277.56, + "end": 11279.0, + "probability": 0.6381 + }, + { + "start": 11279.96, + "end": 11281.12, + "probability": 0.5667 + }, + { + "start": 11281.72, + "end": 11285.24, + "probability": 0.9899 + }, + { + "start": 11285.24, + "end": 11289.82, + "probability": 0.9918 + }, + { + "start": 11291.18, + "end": 11293.13, + "probability": 0.7077 + }, + { + "start": 11294.08, + "end": 11294.26, + "probability": 0.6853 + }, + { + "start": 11295.14, + "end": 11297.16, + "probability": 0.312 + }, + { + "start": 11297.86, + "end": 11303.22, + "probability": 0.7959 + }, + { + "start": 11303.78, + "end": 11306.12, + "probability": 0.9989 + }, + { + "start": 11306.92, + "end": 11307.46, + "probability": 0.6917 + }, + { + "start": 11309.24, + "end": 11311.78, + "probability": 0.9176 + }, + { + "start": 11313.46, + "end": 11315.3, + "probability": 0.8624 + }, + { + "start": 11316.5, + "end": 11321.18, + "probability": 0.996 + }, + { + "start": 11321.94, + "end": 11324.0, + "probability": 0.9055 + }, + { + "start": 11324.94, + "end": 11326.0, + "probability": 0.7615 + }, + { + "start": 11326.12, + "end": 11326.6, + "probability": 0.7649 + }, + { + "start": 11327.08, + "end": 11332.2, + "probability": 0.9657 + }, + { + "start": 11332.88, + "end": 11335.3, + "probability": 0.9159 + }, + { + "start": 11337.2, + "end": 11338.76, + "probability": 0.9951 + }, + { + "start": 11339.6, + "end": 11342.96, + "probability": 0.8167 + }, + { + "start": 11343.84, + "end": 11345.5, + "probability": 0.9409 + }, + { + "start": 11346.34, + "end": 11349.92, + "probability": 0.9608 + }, + { + "start": 11350.94, + "end": 11351.65, + "probability": 0.853 + }, + { + "start": 11352.4, + "end": 11353.3, + "probability": 0.8414 + }, + { + "start": 11353.96, + "end": 11356.6, + "probability": 0.8844 + }, + { + "start": 11357.24, + "end": 11358.86, + "probability": 0.8695 + }, + { + "start": 11360.26, + "end": 11361.1, + "probability": 0.9635 + }, + { + "start": 11362.44, + "end": 11363.44, + "probability": 0.8879 + }, + { + "start": 11365.22, + "end": 11367.46, + "probability": 0.8691 + }, + { + "start": 11369.29, + "end": 11371.52, + "probability": 0.9315 + }, + { + "start": 11372.38, + "end": 11373.44, + "probability": 0.7458 + }, + { + "start": 11374.76, + "end": 11375.92, + "probability": 0.9292 + }, + { + "start": 11376.82, + "end": 11378.38, + "probability": 0.8197 + }, + { + "start": 11379.2, + "end": 11381.6, + "probability": 0.7747 + }, + { + "start": 11382.4, + "end": 11383.18, + "probability": 0.8751 + }, + { + "start": 11383.78, + "end": 11386.2, + "probability": 0.9716 + }, + { + "start": 11387.56, + "end": 11389.32, + "probability": 0.9799 + }, + { + "start": 11391.22, + "end": 11398.06, + "probability": 0.9926 + }, + { + "start": 11399.46, + "end": 11400.66, + "probability": 0.6647 + }, + { + "start": 11401.4, + "end": 11404.14, + "probability": 0.9338 + }, + { + "start": 11405.42, + "end": 11407.34, + "probability": 0.7697 + }, + { + "start": 11408.68, + "end": 11409.74, + "probability": 0.8968 + }, + { + "start": 11410.62, + "end": 11411.34, + "probability": 0.9829 + }, + { + "start": 11412.42, + "end": 11415.51, + "probability": 0.9857 + }, + { + "start": 11417.02, + "end": 11419.64, + "probability": 0.9365 + }, + { + "start": 11420.62, + "end": 11423.72, + "probability": 0.7796 + }, + { + "start": 11424.98, + "end": 11427.16, + "probability": 0.978 + }, + { + "start": 11428.18, + "end": 11429.14, + "probability": 0.8555 + }, + { + "start": 11430.22, + "end": 11433.36, + "probability": 0.7159 + }, + { + "start": 11434.74, + "end": 11436.96, + "probability": 0.7355 + }, + { + "start": 11439.06, + "end": 11440.22, + "probability": 0.8859 + }, + { + "start": 11441.54, + "end": 11443.26, + "probability": 0.9918 + }, + { + "start": 11443.94, + "end": 11448.94, + "probability": 0.8745 + }, + { + "start": 11449.48, + "end": 11451.18, + "probability": 0.9777 + }, + { + "start": 11453.54, + "end": 11455.7, + "probability": 0.447 + }, + { + "start": 11456.98, + "end": 11458.42, + "probability": 0.7939 + }, + { + "start": 11460.44, + "end": 11461.36, + "probability": 0.9772 + }, + { + "start": 11462.22, + "end": 11463.54, + "probability": 0.5505 + }, + { + "start": 11464.22, + "end": 11468.3, + "probability": 0.9235 + }, + { + "start": 11469.74, + "end": 11474.76, + "probability": 0.9891 + }, + { + "start": 11476.36, + "end": 11477.0, + "probability": 0.9439 + }, + { + "start": 11478.7, + "end": 11479.5, + "probability": 0.7808 + }, + { + "start": 11480.16, + "end": 11482.3, + "probability": 0.6662 + }, + { + "start": 11483.24, + "end": 11488.96, + "probability": 0.9852 + }, + { + "start": 11489.56, + "end": 11493.06, + "probability": 0.9885 + }, + { + "start": 11495.76, + "end": 11497.42, + "probability": 0.9591 + }, + { + "start": 11498.24, + "end": 11499.82, + "probability": 0.8589 + }, + { + "start": 11500.84, + "end": 11501.84, + "probability": 0.91 + }, + { + "start": 11502.8, + "end": 11508.64, + "probability": 0.9938 + }, + { + "start": 11509.54, + "end": 11511.16, + "probability": 0.9185 + }, + { + "start": 11512.52, + "end": 11514.86, + "probability": 0.992 + }, + { + "start": 11515.72, + "end": 11517.32, + "probability": 0.9828 + }, + { + "start": 11519.1, + "end": 11522.22, + "probability": 0.9975 + }, + { + "start": 11523.78, + "end": 11523.78, + "probability": 0.853 + }, + { + "start": 11524.9, + "end": 11525.2, + "probability": 0.9888 + }, + { + "start": 11525.74, + "end": 11529.52, + "probability": 0.9894 + }, + { + "start": 11530.06, + "end": 11530.96, + "probability": 0.9837 + }, + { + "start": 11531.52, + "end": 11532.24, + "probability": 0.6823 + }, + { + "start": 11534.04, + "end": 11536.74, + "probability": 0.8342 + }, + { + "start": 11538.02, + "end": 11540.82, + "probability": 0.7284 + }, + { + "start": 11541.6, + "end": 11543.08, + "probability": 0.9191 + }, + { + "start": 11543.7, + "end": 11545.04, + "probability": 0.9829 + }, + { + "start": 11545.18, + "end": 11546.54, + "probability": 0.9854 + }, + { + "start": 11546.64, + "end": 11548.92, + "probability": 0.5401 + }, + { + "start": 11549.9, + "end": 11550.72, + "probability": 0.9206 + }, + { + "start": 11552.38, + "end": 11553.44, + "probability": 0.8458 + }, + { + "start": 11555.14, + "end": 11556.12, + "probability": 0.8582 + }, + { + "start": 11558.38, + "end": 11559.6, + "probability": 0.7113 + }, + { + "start": 11560.68, + "end": 11561.76, + "probability": 0.688 + }, + { + "start": 11563.34, + "end": 11565.14, + "probability": 0.9973 + }, + { + "start": 11566.38, + "end": 11567.74, + "probability": 0.6866 + }, + { + "start": 11569.2, + "end": 11571.22, + "probability": 0.9871 + }, + { + "start": 11572.04, + "end": 11573.0, + "probability": 0.7464 + }, + { + "start": 11574.14, + "end": 11577.3, + "probability": 0.9938 + }, + { + "start": 11577.9, + "end": 11580.94, + "probability": 0.6704 + }, + { + "start": 11581.5, + "end": 11586.08, + "probability": 0.9675 + }, + { + "start": 11587.48, + "end": 11588.12, + "probability": 0.855 + }, + { + "start": 11589.74, + "end": 11595.12, + "probability": 0.993 + }, + { + "start": 11596.26, + "end": 11597.94, + "probability": 0.8965 + }, + { + "start": 11599.04, + "end": 11599.88, + "probability": 0.9441 + }, + { + "start": 11601.14, + "end": 11604.24, + "probability": 1.0 + }, + { + "start": 11604.88, + "end": 11610.3, + "probability": 0.9508 + }, + { + "start": 11610.7, + "end": 11611.82, + "probability": 0.7286 + }, + { + "start": 11612.64, + "end": 11614.34, + "probability": 0.781 + }, + { + "start": 11615.16, + "end": 11618.38, + "probability": 0.9777 + }, + { + "start": 11618.94, + "end": 11622.1, + "probability": 0.9846 + }, + { + "start": 11623.48, + "end": 11625.75, + "probability": 0.9124 + }, + { + "start": 11627.24, + "end": 11629.08, + "probability": 0.6254 + }, + { + "start": 11629.78, + "end": 11631.68, + "probability": 0.9314 + }, + { + "start": 11632.24, + "end": 11635.4, + "probability": 0.9681 + }, + { + "start": 11636.04, + "end": 11641.6, + "probability": 0.9681 + }, + { + "start": 11642.94, + "end": 11643.18, + "probability": 0.6985 + }, + { + "start": 11646.7, + "end": 11646.8, + "probability": 0.0889 + }, + { + "start": 11647.32, + "end": 11647.88, + "probability": 0.7387 + }, + { + "start": 11648.06, + "end": 11648.46, + "probability": 0.4062 + }, + { + "start": 11648.62, + "end": 11649.46, + "probability": 0.2654 + }, + { + "start": 11649.48, + "end": 11650.38, + "probability": 0.1268 + }, + { + "start": 11652.12, + "end": 11652.3, + "probability": 0.4723 + }, + { + "start": 11652.3, + "end": 11653.58, + "probability": 0.632 + }, + { + "start": 11653.6, + "end": 11654.68, + "probability": 0.9961 + }, + { + "start": 11654.72, + "end": 11656.5, + "probability": 0.9971 + }, + { + "start": 11656.56, + "end": 11658.08, + "probability": 0.9943 + }, + { + "start": 11658.14, + "end": 11658.76, + "probability": 0.6615 + }, + { + "start": 11661.22, + "end": 11663.94, + "probability": 0.8501 + }, + { + "start": 11664.42, + "end": 11666.42, + "probability": 0.7997 + }, + { + "start": 11666.52, + "end": 11670.92, + "probability": 0.9438 + }, + { + "start": 11671.64, + "end": 11673.48, + "probability": 0.9559 + }, + { + "start": 11674.2, + "end": 11677.08, + "probability": 0.8117 + }, + { + "start": 11677.74, + "end": 11681.86, + "probability": 0.9704 + }, + { + "start": 11682.8, + "end": 11689.04, + "probability": 0.9217 + }, + { + "start": 11691.14, + "end": 11693.82, + "probability": 0.2683 + }, + { + "start": 11694.32, + "end": 11695.34, + "probability": 0.5677 + }, + { + "start": 11695.36, + "end": 11696.58, + "probability": 0.9247 + }, + { + "start": 11696.66, + "end": 11697.24, + "probability": 0.6255 + }, + { + "start": 11697.38, + "end": 11698.04, + "probability": 0.411 + }, + { + "start": 11698.3, + "end": 11699.92, + "probability": 0.4641 + }, + { + "start": 11699.96, + "end": 11700.86, + "probability": 0.1883 + }, + { + "start": 11701.44, + "end": 11702.28, + "probability": 0.9499 + }, + { + "start": 11702.4, + "end": 11703.5, + "probability": 0.9839 + }, + { + "start": 11703.82, + "end": 11707.04, + "probability": 0.8672 + }, + { + "start": 11707.26, + "end": 11710.88, + "probability": 0.9872 + }, + { + "start": 11711.02, + "end": 11711.86, + "probability": 0.9937 + }, + { + "start": 11712.68, + "end": 11714.22, + "probability": 0.7035 + }, + { + "start": 11714.38, + "end": 11715.28, + "probability": 0.6919 + }, + { + "start": 11718.32, + "end": 11718.98, + "probability": 0.3257 + }, + { + "start": 11719.3, + "end": 11721.0, + "probability": 0.9069 + }, + { + "start": 11721.26, + "end": 11722.54, + "probability": 0.9586 + }, + { + "start": 11722.96, + "end": 11726.78, + "probability": 0.9939 + }, + { + "start": 11726.9, + "end": 11728.38, + "probability": 0.9883 + }, + { + "start": 11729.16, + "end": 11731.88, + "probability": 0.9313 + }, + { + "start": 11732.12, + "end": 11733.24, + "probability": 0.5284 + }, + { + "start": 11733.5, + "end": 11734.56, + "probability": 0.5921 + }, + { + "start": 11735.12, + "end": 11737.82, + "probability": 0.5776 + }, + { + "start": 11738.42, + "end": 11739.1, + "probability": 0.401 + }, + { + "start": 11739.3, + "end": 11740.26, + "probability": 0.2393 + }, + { + "start": 11741.16, + "end": 11742.72, + "probability": 0.5493 + }, + { + "start": 11744.16, + "end": 11746.52, + "probability": 0.9958 + }, + { + "start": 11746.9, + "end": 11747.66, + "probability": 0.7091 + }, + { + "start": 11747.96, + "end": 11752.32, + "probability": 0.999 + }, + { + "start": 11753.68, + "end": 11753.9, + "probability": 0.957 + }, + { + "start": 11754.74, + "end": 11758.92, + "probability": 0.7737 + }, + { + "start": 11759.76, + "end": 11761.4, + "probability": 0.8594 + }, + { + "start": 11762.62, + "end": 11764.04, + "probability": 0.7679 + }, + { + "start": 11764.66, + "end": 11765.34, + "probability": 0.9591 + }, + { + "start": 11765.96, + "end": 11769.12, + "probability": 0.9533 + }, + { + "start": 11769.2, + "end": 11772.7, + "probability": 0.8872 + }, + { + "start": 11773.32, + "end": 11775.47, + "probability": 0.9905 + }, + { + "start": 11776.1, + "end": 11781.16, + "probability": 0.9888 + }, + { + "start": 11781.42, + "end": 11784.54, + "probability": 0.607 + }, + { + "start": 11785.54, + "end": 11786.88, + "probability": 0.8765 + }, + { + "start": 11789.26, + "end": 11789.6, + "probability": 0.3561 + }, + { + "start": 11790.12, + "end": 11790.92, + "probability": 0.1626 + }, + { + "start": 11791.5, + "end": 11795.24, + "probability": 0.6569 + }, + { + "start": 11795.36, + "end": 11795.99, + "probability": 0.4399 + }, + { + "start": 11796.18, + "end": 11797.28, + "probability": 0.5985 + }, + { + "start": 11797.28, + "end": 11798.7, + "probability": 0.3861 + }, + { + "start": 11799.18, + "end": 11799.58, + "probability": 0.7301 + }, + { + "start": 11800.32, + "end": 11800.9, + "probability": 0.7416 + }, + { + "start": 11801.1, + "end": 11802.8, + "probability": 0.5513 + }, + { + "start": 11802.96, + "end": 11805.62, + "probability": 0.9454 + }, + { + "start": 11806.26, + "end": 11808.64, + "probability": 0.8599 + }, + { + "start": 11809.0, + "end": 11811.98, + "probability": 0.9689 + }, + { + "start": 11813.18, + "end": 11815.52, + "probability": 0.7931 + }, + { + "start": 11816.22, + "end": 11819.5, + "probability": 0.852 + }, + { + "start": 11820.44, + "end": 11822.8, + "probability": 0.9905 + }, + { + "start": 11823.48, + "end": 11824.58, + "probability": 0.9492 + }, + { + "start": 11825.82, + "end": 11826.36, + "probability": 0.8758 + }, + { + "start": 11826.9, + "end": 11827.9, + "probability": 0.8263 + }, + { + "start": 11828.46, + "end": 11830.22, + "probability": 0.915 + }, + { + "start": 11830.86, + "end": 11833.72, + "probability": 0.9741 + }, + { + "start": 11834.28, + "end": 11838.1, + "probability": 0.9559 + }, + { + "start": 11839.02, + "end": 11843.14, + "probability": 0.7902 + }, + { + "start": 11843.72, + "end": 11850.02, + "probability": 0.9964 + }, + { + "start": 11850.66, + "end": 11851.06, + "probability": 0.9718 + }, + { + "start": 11852.06, + "end": 11852.76, + "probability": 0.9937 + }, + { + "start": 11854.74, + "end": 11858.18, + "probability": 0.9521 + }, + { + "start": 11858.8, + "end": 11863.7, + "probability": 0.9565 + }, + { + "start": 11864.32, + "end": 11865.66, + "probability": 0.6418 + }, + { + "start": 11866.4, + "end": 11867.14, + "probability": 0.7678 + }, + { + "start": 11868.74, + "end": 11870.48, + "probability": 0.9902 + }, + { + "start": 11872.14, + "end": 11872.76, + "probability": 0.962 + }, + { + "start": 11873.58, + "end": 11875.36, + "probability": 0.7401 + }, + { + "start": 11876.12, + "end": 11878.62, + "probability": 0.8757 + }, + { + "start": 11879.34, + "end": 11881.12, + "probability": 0.7742 + }, + { + "start": 11882.12, + "end": 11885.28, + "probability": 0.9003 + }, + { + "start": 11885.44, + "end": 11888.12, + "probability": 0.9895 + }, + { + "start": 11888.76, + "end": 11889.98, + "probability": 0.9674 + }, + { + "start": 11891.54, + "end": 11892.84, + "probability": 0.9742 + }, + { + "start": 11893.4, + "end": 11895.34, + "probability": 0.8461 + }, + { + "start": 11896.36, + "end": 11897.2, + "probability": 0.896 + }, + { + "start": 11898.04, + "end": 11900.34, + "probability": 0.9188 + }, + { + "start": 11901.42, + "end": 11902.48, + "probability": 0.8343 + }, + { + "start": 11903.02, + "end": 11904.08, + "probability": 0.6198 + }, + { + "start": 11904.54, + "end": 11909.78, + "probability": 0.8245 + }, + { + "start": 11910.94, + "end": 11912.36, + "probability": 0.9613 + }, + { + "start": 11912.58, + "end": 11914.02, + "probability": 0.9971 + }, + { + "start": 11915.86, + "end": 11918.5, + "probability": 0.9108 + }, + { + "start": 11918.72, + "end": 11920.0, + "probability": 0.9858 + }, + { + "start": 11921.49, + "end": 11923.94, + "probability": 0.8633 + }, + { + "start": 11924.48, + "end": 11926.72, + "probability": 0.7969 + }, + { + "start": 11927.94, + "end": 11929.84, + "probability": 0.9991 + }, + { + "start": 11930.36, + "end": 11931.5, + "probability": 0.9946 + }, + { + "start": 11932.2, + "end": 11935.38, + "probability": 0.9536 + }, + { + "start": 11936.1, + "end": 11938.96, + "probability": 0.9905 + }, + { + "start": 11939.68, + "end": 11941.08, + "probability": 0.9692 + }, + { + "start": 11941.16, + "end": 11942.34, + "probability": 0.975 + }, + { + "start": 11942.96, + "end": 11944.66, + "probability": 0.4929 + }, + { + "start": 11945.68, + "end": 11946.66, + "probability": 0.8297 + }, + { + "start": 11947.3, + "end": 11948.28, + "probability": 0.8934 + }, + { + "start": 11948.8, + "end": 11951.14, + "probability": 0.9182 + }, + { + "start": 11951.76, + "end": 11952.44, + "probability": 0.9716 + }, + { + "start": 11953.46, + "end": 11955.82, + "probability": 0.9785 + }, + { + "start": 11956.58, + "end": 11957.3, + "probability": 0.834 + }, + { + "start": 11958.88, + "end": 11959.72, + "probability": 0.9873 + }, + { + "start": 11961.16, + "end": 11966.16, + "probability": 0.7847 + }, + { + "start": 11969.1, + "end": 11969.82, + "probability": 0.8568 + }, + { + "start": 11970.66, + "end": 11974.24, + "probability": 0.9795 + }, + { + "start": 11974.9, + "end": 11977.46, + "probability": 0.7291 + }, + { + "start": 11978.46, + "end": 11980.04, + "probability": 0.8367 + }, + { + "start": 11981.3, + "end": 11984.36, + "probability": 0.9106 + }, + { + "start": 11985.12, + "end": 11986.02, + "probability": 0.9626 + }, + { + "start": 11987.46, + "end": 11989.96, + "probability": 0.9621 + }, + { + "start": 11990.58, + "end": 11995.02, + "probability": 0.9839 + }, + { + "start": 11995.86, + "end": 11996.46, + "probability": 0.9976 + }, + { + "start": 11996.98, + "end": 11998.04, + "probability": 0.9135 + }, + { + "start": 11999.37, + "end": 12001.6, + "probability": 0.8917 + }, + { + "start": 12002.6, + "end": 12010.2, + "probability": 0.895 + }, + { + "start": 12010.66, + "end": 12012.12, + "probability": 0.8848 + }, + { + "start": 12013.26, + "end": 12013.74, + "probability": 0.5682 + }, + { + "start": 12014.6, + "end": 12016.78, + "probability": 0.9552 + }, + { + "start": 12017.54, + "end": 12017.96, + "probability": 0.7244 + }, + { + "start": 12019.46, + "end": 12023.48, + "probability": 0.9592 + }, + { + "start": 12024.36, + "end": 12030.46, + "probability": 0.9937 + }, + { + "start": 12031.1, + "end": 12036.0, + "probability": 0.8073 + }, + { + "start": 12037.18, + "end": 12038.32, + "probability": 0.8914 + }, + { + "start": 12039.5, + "end": 12040.04, + "probability": 0.6122 + }, + { + "start": 12040.7, + "end": 12042.94, + "probability": 0.9508 + }, + { + "start": 12043.86, + "end": 12044.64, + "probability": 0.2244 + }, + { + "start": 12045.64, + "end": 12048.64, + "probability": 0.902 + }, + { + "start": 12049.74, + "end": 12053.5, + "probability": 0.9238 + }, + { + "start": 12054.94, + "end": 12060.02, + "probability": 0.9595 + }, + { + "start": 12060.6, + "end": 12061.5, + "probability": 0.8958 + }, + { + "start": 12062.32, + "end": 12063.84, + "probability": 0.4918 + }, + { + "start": 12064.04, + "end": 12064.74, + "probability": 0.9772 + }, + { + "start": 12065.44, + "end": 12065.96, + "probability": 0.9319 + }, + { + "start": 12067.34, + "end": 12068.58, + "probability": 0.9703 + }, + { + "start": 12068.72, + "end": 12069.28, + "probability": 0.7529 + }, + { + "start": 12069.86, + "end": 12073.32, + "probability": 0.9897 + }, + { + "start": 12074.0, + "end": 12074.16, + "probability": 0.9927 + }, + { + "start": 12075.06, + "end": 12075.52, + "probability": 0.86 + }, + { + "start": 12077.3, + "end": 12078.6, + "probability": 0.8195 + }, + { + "start": 12079.8, + "end": 12083.22, + "probability": 0.9131 + }, + { + "start": 12084.14, + "end": 12085.18, + "probability": 0.9011 + }, + { + "start": 12085.8, + "end": 12088.58, + "probability": 0.8509 + }, + { + "start": 12089.44, + "end": 12092.31, + "probability": 0.991 + }, + { + "start": 12093.4, + "end": 12094.42, + "probability": 0.4892 + }, + { + "start": 12094.96, + "end": 12095.36, + "probability": 0.9233 + }, + { + "start": 12097.16, + "end": 12098.22, + "probability": 0.8552 + }, + { + "start": 12099.14, + "end": 12104.6, + "probability": 0.9948 + }, + { + "start": 12105.88, + "end": 12108.22, + "probability": 0.9172 + }, + { + "start": 12109.42, + "end": 12111.28, + "probability": 0.9816 + }, + { + "start": 12112.52, + "end": 12115.42, + "probability": 0.9933 + }, + { + "start": 12116.7, + "end": 12119.96, + "probability": 0.9802 + }, + { + "start": 12121.14, + "end": 12122.18, + "probability": 0.8972 + }, + { + "start": 12123.62, + "end": 12124.16, + "probability": 0.8319 + }, + { + "start": 12124.88, + "end": 12131.4, + "probability": 0.9946 + }, + { + "start": 12131.54, + "end": 12132.56, + "probability": 0.8582 + }, + { + "start": 12133.06, + "end": 12133.93, + "probability": 0.998 + }, + { + "start": 12134.82, + "end": 12136.18, + "probability": 0.912 + }, + { + "start": 12136.9, + "end": 12138.0, + "probability": 0.8845 + }, + { + "start": 12139.46, + "end": 12140.52, + "probability": 0.9385 + }, + { + "start": 12142.3, + "end": 12142.96, + "probability": 0.0571 + }, + { + "start": 12143.62, + "end": 12145.44, + "probability": 0.9768 + }, + { + "start": 12146.3, + "end": 12146.82, + "probability": 0.6955 + }, + { + "start": 12148.74, + "end": 12149.26, + "probability": 0.1035 + }, + { + "start": 12150.26, + "end": 12151.88, + "probability": 0.7932 + }, + { + "start": 12152.76, + "end": 12156.02, + "probability": 0.9925 + }, + { + "start": 12157.1, + "end": 12157.72, + "probability": 0.733 + }, + { + "start": 12158.26, + "end": 12160.4, + "probability": 0.9556 + }, + { + "start": 12161.36, + "end": 12161.84, + "probability": 0.8697 + }, + { + "start": 12162.96, + "end": 12163.8, + "probability": 0.7344 + }, + { + "start": 12164.8, + "end": 12165.76, + "probability": 0.7296 + }, + { + "start": 12166.74, + "end": 12167.84, + "probability": 0.8696 + }, + { + "start": 12168.42, + "end": 12168.9, + "probability": 0.5278 + }, + { + "start": 12171.34, + "end": 12172.4, + "probability": 0.7908 + }, + { + "start": 12173.3, + "end": 12174.22, + "probability": 0.8463 + }, + { + "start": 12174.86, + "end": 12175.9, + "probability": 0.7344 + }, + { + "start": 12176.84, + "end": 12176.84, + "probability": 0.729 + }, + { + "start": 12177.84, + "end": 12178.88, + "probability": 0.946 + }, + { + "start": 12179.72, + "end": 12181.02, + "probability": 0.9861 + }, + { + "start": 12181.62, + "end": 12183.3, + "probability": 0.9956 + }, + { + "start": 12184.7, + "end": 12188.46, + "probability": 0.9756 + }, + { + "start": 12190.38, + "end": 12190.86, + "probability": 0.7561 + }, + { + "start": 12191.76, + "end": 12193.06, + "probability": 0.9569 + }, + { + "start": 12194.1, + "end": 12195.68, + "probability": 0.7964 + }, + { + "start": 12197.22, + "end": 12198.64, + "probability": 0.9851 + }, + { + "start": 12199.04, + "end": 12201.46, + "probability": 0.9957 + }, + { + "start": 12202.6, + "end": 12209.64, + "probability": 0.9418 + }, + { + "start": 12210.34, + "end": 12210.8, + "probability": 0.3933 + }, + { + "start": 12210.98, + "end": 12214.1, + "probability": 0.8284 + }, + { + "start": 12214.54, + "end": 12215.28, + "probability": 0.8615 + }, + { + "start": 12215.58, + "end": 12216.76, + "probability": 0.9375 + }, + { + "start": 12217.28, + "end": 12220.95, + "probability": 0.9736 + }, + { + "start": 12221.62, + "end": 12222.64, + "probability": 0.8295 + }, + { + "start": 12223.16, + "end": 12226.28, + "probability": 0.8644 + }, + { + "start": 12226.72, + "end": 12231.58, + "probability": 0.5259 + }, + { + "start": 12231.76, + "end": 12233.14, + "probability": 0.127 + }, + { + "start": 12234.5, + "end": 12238.88, + "probability": 0.8279 + }, + { + "start": 12239.42, + "end": 12239.62, + "probability": 0.9792 + }, + { + "start": 12240.6, + "end": 12242.72, + "probability": 0.9769 + }, + { + "start": 12244.02, + "end": 12246.02, + "probability": 0.8734 + }, + { + "start": 12246.34, + "end": 12247.32, + "probability": 0.8865 + }, + { + "start": 12247.44, + "end": 12249.44, + "probability": 0.9673 + }, + { + "start": 12250.44, + "end": 12256.86, + "probability": 0.9461 + }, + { + "start": 12258.0, + "end": 12261.96, + "probability": 0.8732 + }, + { + "start": 12262.4, + "end": 12264.88, + "probability": 0.9974 + }, + { + "start": 12265.84, + "end": 12267.96, + "probability": 0.7684 + }, + { + "start": 12268.78, + "end": 12270.7, + "probability": 0.7593 + }, + { + "start": 12272.0, + "end": 12272.74, + "probability": 0.9191 + }, + { + "start": 12273.32, + "end": 12275.64, + "probability": 0.9611 + }, + { + "start": 12277.08, + "end": 12278.2, + "probability": 0.9969 + }, + { + "start": 12279.48, + "end": 12281.0, + "probability": 0.7543 + }, + { + "start": 12284.04, + "end": 12286.46, + "probability": 0.7941 + }, + { + "start": 12287.08, + "end": 12289.4, + "probability": 0.8974 + }, + { + "start": 12290.18, + "end": 12292.84, + "probability": 0.9941 + }, + { + "start": 12293.48, + "end": 12299.8, + "probability": 0.9343 + }, + { + "start": 12300.16, + "end": 12302.18, + "probability": 0.9856 + }, + { + "start": 12303.76, + "end": 12306.96, + "probability": 0.9891 + }, + { + "start": 12307.88, + "end": 12308.72, + "probability": 0.6532 + }, + { + "start": 12310.24, + "end": 12312.12, + "probability": 0.7544 + }, + { + "start": 12312.68, + "end": 12312.86, + "probability": 0.5929 + }, + { + "start": 12312.94, + "end": 12314.78, + "probability": 0.9398 + }, + { + "start": 12315.82, + "end": 12317.76, + "probability": 0.9091 + }, + { + "start": 12318.02, + "end": 12320.54, + "probability": 0.9925 + }, + { + "start": 12321.2, + "end": 12321.76, + "probability": 0.5366 + }, + { + "start": 12322.78, + "end": 12325.36, + "probability": 0.9082 + }, + { + "start": 12325.88, + "end": 12328.44, + "probability": 0.974 + }, + { + "start": 12329.14, + "end": 12332.42, + "probability": 0.8315 + }, + { + "start": 12332.7, + "end": 12335.2, + "probability": 0.7824 + }, + { + "start": 12336.34, + "end": 12338.2, + "probability": 0.7486 + }, + { + "start": 12339.46, + "end": 12339.84, + "probability": 0.5835 + }, + { + "start": 12340.86, + "end": 12341.4, + "probability": 0.5487 + }, + { + "start": 12342.6, + "end": 12344.52, + "probability": 0.9286 + }, + { + "start": 12345.54, + "end": 12347.1, + "probability": 0.7622 + }, + { + "start": 12348.16, + "end": 12349.16, + "probability": 0.8892 + }, + { + "start": 12350.8, + "end": 12353.96, + "probability": 0.8424 + }, + { + "start": 12354.46, + "end": 12356.74, + "probability": 0.8577 + }, + { + "start": 12357.48, + "end": 12359.83, + "probability": 0.8486 + }, + { + "start": 12360.58, + "end": 12361.22, + "probability": 0.9729 + }, + { + "start": 12361.76, + "end": 12365.32, + "probability": 0.9982 + }, + { + "start": 12367.36, + "end": 12368.66, + "probability": 0.999 + }, + { + "start": 12369.64, + "end": 12372.84, + "probability": 0.999 + }, + { + "start": 12374.8, + "end": 12376.72, + "probability": 0.6735 + }, + { + "start": 12378.18, + "end": 12380.86, + "probability": 0.762 + }, + { + "start": 12381.38, + "end": 12383.3, + "probability": 0.7397 + }, + { + "start": 12383.84, + "end": 12384.92, + "probability": 0.9959 + }, + { + "start": 12385.74, + "end": 12390.06, + "probability": 0.9973 + }, + { + "start": 12390.58, + "end": 12393.58, + "probability": 0.9206 + }, + { + "start": 12394.88, + "end": 12400.4, + "probability": 0.9945 + }, + { + "start": 12401.5, + "end": 12402.64, + "probability": 0.4598 + }, + { + "start": 12402.92, + "end": 12403.24, + "probability": 0.7721 + }, + { + "start": 12404.46, + "end": 12404.86, + "probability": 0.8071 + }, + { + "start": 12405.58, + "end": 12409.0, + "probability": 0.79 + }, + { + "start": 12410.6, + "end": 12414.47, + "probability": 0.9189 + }, + { + "start": 12415.18, + "end": 12420.26, + "probability": 0.8856 + }, + { + "start": 12420.86, + "end": 12420.98, + "probability": 0.0245 + }, + { + "start": 12421.96, + "end": 12423.23, + "probability": 0.8364 + }, + { + "start": 12424.62, + "end": 12425.6, + "probability": 0.8068 + }, + { + "start": 12426.26, + "end": 12426.96, + "probability": 0.9746 + }, + { + "start": 12427.58, + "end": 12427.82, + "probability": 0.9979 + }, + { + "start": 12428.38, + "end": 12432.46, + "probability": 0.989 + }, + { + "start": 12434.58, + "end": 12435.76, + "probability": 0.9932 + }, + { + "start": 12436.5, + "end": 12437.68, + "probability": 0.8414 + }, + { + "start": 12438.4, + "end": 12439.88, + "probability": 0.9821 + }, + { + "start": 12441.02, + "end": 12445.64, + "probability": 0.9172 + }, + { + "start": 12446.3, + "end": 12450.6, + "probability": 0.9966 + }, + { + "start": 12452.0, + "end": 12453.18, + "probability": 0.8065 + }, + { + "start": 12455.06, + "end": 12457.94, + "probability": 0.9396 + }, + { + "start": 12460.42, + "end": 12461.66, + "probability": 0.9927 + }, + { + "start": 12463.08, + "end": 12464.54, + "probability": 0.9307 + }, + { + "start": 12466.16, + "end": 12466.7, + "probability": 0.5808 + }, + { + "start": 12467.22, + "end": 12468.0, + "probability": 0.9524 + }, + { + "start": 12468.88, + "end": 12470.1, + "probability": 0.6342 + }, + { + "start": 12471.64, + "end": 12472.2, + "probability": 0.4879 + }, + { + "start": 12473.46, + "end": 12476.98, + "probability": 0.9565 + }, + { + "start": 12478.12, + "end": 12479.08, + "probability": 0.8947 + }, + { + "start": 12479.78, + "end": 12480.42, + "probability": 0.3296 + }, + { + "start": 12481.98, + "end": 12483.86, + "probability": 0.8987 + }, + { + "start": 12485.66, + "end": 12486.66, + "probability": 0.7006 + }, + { + "start": 12487.24, + "end": 12492.72, + "probability": 0.8388 + }, + { + "start": 12493.3, + "end": 12495.0, + "probability": 0.7676 + }, + { + "start": 12496.74, + "end": 12499.32, + "probability": 0.878 + }, + { + "start": 12500.22, + "end": 12500.86, + "probability": 0.4847 + }, + { + "start": 12502.04, + "end": 12503.58, + "probability": 0.9756 + }, + { + "start": 12504.1, + "end": 12504.88, + "probability": 0.7413 + }, + { + "start": 12505.68, + "end": 12507.82, + "probability": 0.9253 + }, + { + "start": 12508.56, + "end": 12512.86, + "probability": 0.9735 + }, + { + "start": 12513.32, + "end": 12515.06, + "probability": 0.9361 + }, + { + "start": 12515.66, + "end": 12516.74, + "probability": 0.3422 + }, + { + "start": 12518.16, + "end": 12523.82, + "probability": 0.8567 + }, + { + "start": 12524.74, + "end": 12526.14, + "probability": 0.6238 + }, + { + "start": 12526.72, + "end": 12529.0, + "probability": 0.7654 + }, + { + "start": 12529.8, + "end": 12530.48, + "probability": 0.9871 + }, + { + "start": 12531.0, + "end": 12532.36, + "probability": 0.9566 + }, + { + "start": 12533.16, + "end": 12538.36, + "probability": 0.9982 + }, + { + "start": 12539.12, + "end": 12540.0, + "probability": 0.7924 + }, + { + "start": 12540.76, + "end": 12543.34, + "probability": 0.9727 + }, + { + "start": 12544.44, + "end": 12546.52, + "probability": 0.9585 + }, + { + "start": 12547.7, + "end": 12548.38, + "probability": 0.8049 + }, + { + "start": 12548.62, + "end": 12550.54, + "probability": 0.844 + }, + { + "start": 12550.68, + "end": 12554.02, + "probability": 0.8948 + }, + { + "start": 12557.34, + "end": 12559.44, + "probability": 0.9165 + }, + { + "start": 12561.74, + "end": 12562.22, + "probability": 0.8452 + }, + { + "start": 12563.23, + "end": 12563.68, + "probability": 0.8944 + }, + { + "start": 12566.76, + "end": 12570.5, + "probability": 0.9913 + }, + { + "start": 12571.54, + "end": 12573.58, + "probability": 0.9922 + }, + { + "start": 12574.14, + "end": 12575.88, + "probability": 0.8657 + }, + { + "start": 12577.26, + "end": 12578.7, + "probability": 0.911 + }, + { + "start": 12579.4, + "end": 12581.3, + "probability": 0.9777 + }, + { + "start": 12581.48, + "end": 12584.24, + "probability": 0.9925 + }, + { + "start": 12585.32, + "end": 12591.54, + "probability": 0.9229 + }, + { + "start": 12591.64, + "end": 12594.2, + "probability": 0.984 + }, + { + "start": 12595.08, + "end": 12595.7, + "probability": 0.7683 + }, + { + "start": 12597.6, + "end": 12600.42, + "probability": 0.2195 + }, + { + "start": 12601.0, + "end": 12602.18, + "probability": 0.6538 + }, + { + "start": 12602.78, + "end": 12605.46, + "probability": 0.592 + }, + { + "start": 12605.68, + "end": 12609.34, + "probability": 0.1209 + }, + { + "start": 12609.76, + "end": 12611.28, + "probability": 0.3551 + }, + { + "start": 12611.44, + "end": 12612.9, + "probability": 0.1753 + }, + { + "start": 12614.6, + "end": 12615.32, + "probability": 0.4707 + }, + { + "start": 12615.36, + "end": 12615.46, + "probability": 0.0272 + }, + { + "start": 12616.36, + "end": 12619.18, + "probability": 0.9829 + }, + { + "start": 12619.58, + "end": 12620.68, + "probability": 0.7684 + }, + { + "start": 12621.36, + "end": 12622.48, + "probability": 0.9558 + }, + { + "start": 12622.7, + "end": 12623.57, + "probability": 0.6967 + }, + { + "start": 12624.0, + "end": 12624.66, + "probability": 0.9761 + }, + { + "start": 12625.32, + "end": 12626.52, + "probability": 0.818 + }, + { + "start": 12627.48, + "end": 12630.66, + "probability": 0.7879 + }, + { + "start": 12631.84, + "end": 12634.1, + "probability": 0.9422 + }, + { + "start": 12634.68, + "end": 12636.2, + "probability": 0.916 + }, + { + "start": 12637.14, + "end": 12642.64, + "probability": 0.9144 + }, + { + "start": 12643.22, + "end": 12647.04, + "probability": 0.9665 + }, + { + "start": 12647.56, + "end": 12653.9, + "probability": 0.8962 + }, + { + "start": 12654.44, + "end": 12657.5, + "probability": 0.9308 + }, + { + "start": 12657.96, + "end": 12658.94, + "probability": 0.9229 + }, + { + "start": 12659.22, + "end": 12660.04, + "probability": 0.9484 + }, + { + "start": 12660.46, + "end": 12660.74, + "probability": 0.8846 + }, + { + "start": 12661.96, + "end": 12664.0, + "probability": 0.7029 + }, + { + "start": 12664.72, + "end": 12666.16, + "probability": 0.6536 + }, + { + "start": 12666.9, + "end": 12668.12, + "probability": 0.7095 + }, + { + "start": 12669.08, + "end": 12671.16, + "probability": 0.801 + }, + { + "start": 12671.74, + "end": 12677.28, + "probability": 0.6512 + }, + { + "start": 12677.92, + "end": 12678.86, + "probability": 0.8226 + }, + { + "start": 12679.28, + "end": 12679.91, + "probability": 0.9367 + }, + { + "start": 12680.1, + "end": 12680.9, + "probability": 0.945 + }, + { + "start": 12681.4, + "end": 12683.4, + "probability": 0.9777 + }, + { + "start": 12683.4, + "end": 12685.7, + "probability": 0.9282 + }, + { + "start": 12685.88, + "end": 12686.54, + "probability": 0.9178 + }, + { + "start": 12687.46, + "end": 12688.8, + "probability": 0.8811 + }, + { + "start": 12689.52, + "end": 12690.89, + "probability": 0.9414 + }, + { + "start": 12691.92, + "end": 12692.0, + "probability": 0.9272 + }, + { + "start": 12694.64, + "end": 12697.36, + "probability": 0.9883 + }, + { + "start": 12698.5, + "end": 12699.02, + "probability": 0.8579 + }, + { + "start": 12699.56, + "end": 12700.38, + "probability": 0.9977 + }, + { + "start": 12701.66, + "end": 12705.08, + "probability": 0.9743 + }, + { + "start": 12706.92, + "end": 12709.44, + "probability": 0.9907 + }, + { + "start": 12710.2, + "end": 12713.78, + "probability": 0.9921 + }, + { + "start": 12715.08, + "end": 12715.44, + "probability": 0.9396 + }, + { + "start": 12716.94, + "end": 12717.82, + "probability": 0.6594 + }, + { + "start": 12718.62, + "end": 12720.34, + "probability": 0.6702 + }, + { + "start": 12721.58, + "end": 12727.06, + "probability": 0.7435 + }, + { + "start": 12727.58, + "end": 12729.08, + "probability": 0.8034 + }, + { + "start": 12729.56, + "end": 12730.7, + "probability": 0.7192 + }, + { + "start": 12730.76, + "end": 12733.04, + "probability": 0.9828 + }, + { + "start": 12733.76, + "end": 12736.96, + "probability": 0.9777 + }, + { + "start": 12737.72, + "end": 12742.62, + "probability": 0.913 + }, + { + "start": 12744.1, + "end": 12747.36, + "probability": 0.9204 + }, + { + "start": 12748.72, + "end": 12750.68, + "probability": 0.5248 + }, + { + "start": 12752.08, + "end": 12752.33, + "probability": 0.707 + }, + { + "start": 12753.59, + "end": 12758.3, + "probability": 0.9037 + }, + { + "start": 12759.01, + "end": 12762.2, + "probability": 0.8178 + }, + { + "start": 12762.36, + "end": 12763.79, + "probability": 0.6973 + }, + { + "start": 12764.28, + "end": 12767.4, + "probability": 0.4905 + }, + { + "start": 12768.18, + "end": 12772.76, + "probability": 0.6529 + }, + { + "start": 12772.9, + "end": 12776.74, + "probability": 0.9535 + }, + { + "start": 12777.46, + "end": 12780.22, + "probability": 0.7123 + }, + { + "start": 12780.76, + "end": 12783.44, + "probability": 0.9785 + }, + { + "start": 12783.54, + "end": 12783.92, + "probability": 0.6653 + }, + { + "start": 12784.1, + "end": 12784.38, + "probability": 0.7944 + }, + { + "start": 12787.04, + "end": 12787.82, + "probability": 0.838 + }, + { + "start": 12788.02, + "end": 12788.44, + "probability": 0.9168 + }, + { + "start": 12788.6, + "end": 12790.04, + "probability": 0.7906 + }, + { + "start": 12790.12, + "end": 12791.06, + "probability": 0.8571 + }, + { + "start": 12791.14, + "end": 12794.5, + "probability": 0.9812 + }, + { + "start": 12797.65, + "end": 12800.51, + "probability": 0.9937 + }, + { + "start": 12801.7, + "end": 12805.62, + "probability": 0.9544 + }, + { + "start": 12806.18, + "end": 12809.02, + "probability": 0.9989 + }, + { + "start": 12809.84, + "end": 12813.52, + "probability": 0.9982 + }, + { + "start": 12814.3, + "end": 12815.48, + "probability": 0.7223 + }, + { + "start": 12815.56, + "end": 12818.5, + "probability": 0.991 + }, + { + "start": 12820.44, + "end": 12821.3, + "probability": 0.9896 + }, + { + "start": 12821.62, + "end": 12822.3, + "probability": 0.9072 + }, + { + "start": 12822.86, + "end": 12824.04, + "probability": 0.7866 + }, + { + "start": 12824.2, + "end": 12825.0, + "probability": 0.7296 + }, + { + "start": 12825.12, + "end": 12825.86, + "probability": 0.2182 + }, + { + "start": 12827.02, + "end": 12829.52, + "probability": 0.975 + }, + { + "start": 12830.22, + "end": 12830.34, + "probability": 0.6379 + }, + { + "start": 12830.52, + "end": 12833.62, + "probability": 0.9931 + }, + { + "start": 12834.5, + "end": 12838.42, + "probability": 0.9956 + }, + { + "start": 12838.82, + "end": 12841.54, + "probability": 0.9082 + }, + { + "start": 12842.26, + "end": 12843.68, + "probability": 0.5946 + }, + { + "start": 12844.14, + "end": 12847.44, + "probability": 0.9229 + }, + { + "start": 12847.76, + "end": 12848.86, + "probability": 0.9471 + }, + { + "start": 12849.34, + "end": 12850.3, + "probability": 0.7613 + }, + { + "start": 12850.92, + "end": 12852.84, + "probability": 0.9616 + }, + { + "start": 12853.48, + "end": 12855.68, + "probability": 0.9252 + }, + { + "start": 12856.44, + "end": 12858.46, + "probability": 0.5271 + }, + { + "start": 12859.28, + "end": 12860.04, + "probability": 0.4683 + }, + { + "start": 12860.18, + "end": 12860.82, + "probability": 0.8223 + }, + { + "start": 12861.16, + "end": 12861.86, + "probability": 0.6768 + }, + { + "start": 12862.34, + "end": 12865.6, + "probability": 0.8976 + }, + { + "start": 12866.74, + "end": 12867.98, + "probability": 0.6484 + }, + { + "start": 12868.08, + "end": 12871.13, + "probability": 0.8857 + }, + { + "start": 12872.24, + "end": 12874.22, + "probability": 0.7263 + }, + { + "start": 12875.82, + "end": 12881.56, + "probability": 0.9595 + }, + { + "start": 12882.22, + "end": 12884.68, + "probability": 0.9697 + }, + { + "start": 12884.68, + "end": 12887.78, + "probability": 0.9462 + }, + { + "start": 12888.64, + "end": 12893.22, + "probability": 0.6869 + }, + { + "start": 12893.44, + "end": 12894.22, + "probability": 0.689 + }, + { + "start": 12894.7, + "end": 12897.6, + "probability": 0.9818 + }, + { + "start": 12898.22, + "end": 12901.28, + "probability": 0.5129 + }, + { + "start": 12901.64, + "end": 12902.82, + "probability": 0.7482 + }, + { + "start": 12903.22, + "end": 12904.72, + "probability": 0.8611 + }, + { + "start": 12905.38, + "end": 12907.0, + "probability": 0.6814 + }, + { + "start": 12907.52, + "end": 12909.22, + "probability": 0.6468 + }, + { + "start": 12909.58, + "end": 12912.48, + "probability": 0.9259 + }, + { + "start": 12912.88, + "end": 12915.16, + "probability": 0.9465 + }, + { + "start": 12915.52, + "end": 12919.08, + "probability": 0.8239 + }, + { + "start": 12919.58, + "end": 12920.84, + "probability": 0.7569 + }, + { + "start": 12921.2, + "end": 12926.68, + "probability": 0.8587 + }, + { + "start": 12927.22, + "end": 12930.01, + "probability": 0.805 + }, + { + "start": 12932.3, + "end": 12932.7, + "probability": 0.8206 + }, + { + "start": 12933.22, + "end": 12935.24, + "probability": 0.7476 + }, + { + "start": 12936.16, + "end": 12936.84, + "probability": 0.7405 + }, + { + "start": 12937.86, + "end": 12938.35, + "probability": 0.6791 + }, + { + "start": 12939.5, + "end": 12944.16, + "probability": 0.856 + }, + { + "start": 12944.92, + "end": 12945.86, + "probability": 0.9865 + }, + { + "start": 12946.52, + "end": 12951.84, + "probability": 0.9109 + }, + { + "start": 12951.98, + "end": 12952.96, + "probability": 0.6597 + }, + { + "start": 12953.14, + "end": 12953.26, + "probability": 0.6229 + }, + { + "start": 12954.46, + "end": 12956.84, + "probability": 0.9528 + }, + { + "start": 12957.42, + "end": 12958.3, + "probability": 0.9857 + }, + { + "start": 12958.88, + "end": 12959.72, + "probability": 0.9899 + }, + { + "start": 12960.76, + "end": 12967.5, + "probability": 0.9333 + }, + { + "start": 12967.66, + "end": 12968.72, + "probability": 0.9291 + }, + { + "start": 12969.2, + "end": 12971.56, + "probability": 0.7848 + }, + { + "start": 12971.88, + "end": 12972.24, + "probability": 0.6793 + }, + { + "start": 12974.38, + "end": 12978.06, + "probability": 0.9312 + }, + { + "start": 12978.3, + "end": 12978.56, + "probability": 0.9302 + }, + { + "start": 12979.9, + "end": 12981.78, + "probability": 0.8995 + }, + { + "start": 12984.02, + "end": 12985.2, + "probability": 0.7593 + }, + { + "start": 12986.5, + "end": 12987.74, + "probability": 0.9951 + }, + { + "start": 12988.7, + "end": 12989.78, + "probability": 0.9753 + }, + { + "start": 12991.56, + "end": 12993.43, + "probability": 0.63 + }, + { + "start": 12994.22, + "end": 12996.08, + "probability": 0.8453 + }, + { + "start": 12996.96, + "end": 12998.46, + "probability": 0.9608 + }, + { + "start": 12999.1, + "end": 13002.32, + "probability": 0.9911 + }, + { + "start": 13003.38, + "end": 13005.7, + "probability": 0.8947 + }, + { + "start": 13006.46, + "end": 13011.88, + "probability": 0.9874 + }, + { + "start": 13012.68, + "end": 13013.36, + "probability": 0.9298 + }, + { + "start": 13013.74, + "end": 13015.82, + "probability": 0.9561 + }, + { + "start": 13015.84, + "end": 13018.26, + "probability": 0.9775 + }, + { + "start": 13018.76, + "end": 13020.77, + "probability": 0.9951 + }, + { + "start": 13022.02, + "end": 13023.86, + "probability": 0.6713 + }, + { + "start": 13024.66, + "end": 13026.78, + "probability": 0.802 + }, + { + "start": 13026.9, + "end": 13027.58, + "probability": 0.5014 + }, + { + "start": 13028.22, + "end": 13030.25, + "probability": 0.651 + }, + { + "start": 13030.88, + "end": 13034.86, + "probability": 0.8343 + }, + { + "start": 13035.24, + "end": 13038.96, + "probability": 0.8958 + }, + { + "start": 13039.7, + "end": 13043.36, + "probability": 0.7005 + }, + { + "start": 13045.12, + "end": 13047.34, + "probability": 0.8464 + }, + { + "start": 13048.28, + "end": 13050.44, + "probability": 0.6025 + }, + { + "start": 13051.76, + "end": 13052.36, + "probability": 0.9596 + }, + { + "start": 13053.4, + "end": 13054.76, + "probability": 0.8507 + }, + { + "start": 13055.2, + "end": 13056.2, + "probability": 0.9814 + }, + { + "start": 13056.9, + "end": 13058.96, + "probability": 0.9664 + }, + { + "start": 13059.76, + "end": 13062.38, + "probability": 0.7707 + }, + { + "start": 13062.64, + "end": 13064.22, + "probability": 0.825 + }, + { + "start": 13064.88, + "end": 13066.66, + "probability": 0.9239 + }, + { + "start": 13066.74, + "end": 13067.8, + "probability": 0.9604 + }, + { + "start": 13069.72, + "end": 13072.16, + "probability": 0.593 + }, + { + "start": 13072.74, + "end": 13074.86, + "probability": 0.9671 + }, + { + "start": 13074.88, + "end": 13075.44, + "probability": 0.3304 + }, + { + "start": 13075.54, + "end": 13076.78, + "probability": 0.5113 + }, + { + "start": 13076.98, + "end": 13081.04, + "probability": 0.5866 + }, + { + "start": 13081.72, + "end": 13084.1, + "probability": 0.8596 + }, + { + "start": 13084.24, + "end": 13086.1, + "probability": 0.714 + }, + { + "start": 13086.22, + "end": 13088.98, + "probability": 0.498 + }, + { + "start": 13089.26, + "end": 13089.88, + "probability": 0.681 + }, + { + "start": 13089.96, + "end": 13091.42, + "probability": 0.9326 + }, + { + "start": 13091.8, + "end": 13096.32, + "probability": 0.8748 + }, + { + "start": 13096.96, + "end": 13098.28, + "probability": 0.9272 + }, + { + "start": 13098.34, + "end": 13100.46, + "probability": 0.8291 + }, + { + "start": 13100.58, + "end": 13101.12, + "probability": 0.9248 + }, + { + "start": 13101.28, + "end": 13103.18, + "probability": 0.7072 + }, + { + "start": 13104.66, + "end": 13107.86, + "probability": 0.674 + }, + { + "start": 13109.87, + "end": 13112.96, + "probability": 0.667 + }, + { + "start": 13114.5, + "end": 13117.54, + "probability": 0.8002 + }, + { + "start": 13117.64, + "end": 13121.62, + "probability": 0.9521 + }, + { + "start": 13123.32, + "end": 13125.0, + "probability": 0.7443 + }, + { + "start": 13125.02, + "end": 13127.12, + "probability": 0.808 + }, + { + "start": 13127.4, + "end": 13127.74, + "probability": 0.195 + }, + { + "start": 13128.1, + "end": 13128.74, + "probability": 0.6991 + }, + { + "start": 13129.72, + "end": 13130.3, + "probability": 0.1259 + }, + { + "start": 13131.36, + "end": 13133.04, + "probability": 0.6153 + }, + { + "start": 13133.73, + "end": 13136.56, + "probability": 0.9156 + }, + { + "start": 13136.56, + "end": 13137.72, + "probability": 0.563 + }, + { + "start": 13138.0, + "end": 13138.88, + "probability": 0.7427 + }, + { + "start": 13139.88, + "end": 13144.1, + "probability": 0.7569 + }, + { + "start": 13144.2, + "end": 13146.82, + "probability": 0.7617 + }, + { + "start": 13147.8, + "end": 13149.37, + "probability": 0.5429 + }, + { + "start": 13149.8, + "end": 13150.72, + "probability": 0.848 + }, + { + "start": 13150.72, + "end": 13151.47, + "probability": 0.8749 + }, + { + "start": 13152.28, + "end": 13154.2, + "probability": 0.7831 + }, + { + "start": 13155.15, + "end": 13158.0, + "probability": 0.6054 + }, + { + "start": 13158.66, + "end": 13160.44, + "probability": 0.7877 + }, + { + "start": 13160.84, + "end": 13167.68, + "probability": 0.9798 + }, + { + "start": 13167.88, + "end": 13171.48, + "probability": 0.9447 + }, + { + "start": 13171.64, + "end": 13171.74, + "probability": 0.4211 + }, + { + "start": 13172.1, + "end": 13173.12, + "probability": 0.8796 + }, + { + "start": 13173.76, + "end": 13174.02, + "probability": 0.4677 + }, + { + "start": 13174.1, + "end": 13174.78, + "probability": 0.7651 + }, + { + "start": 13174.88, + "end": 13179.6, + "probability": 0.9871 + }, + { + "start": 13180.22, + "end": 13183.02, + "probability": 0.9616 + }, + { + "start": 13184.2, + "end": 13185.0, + "probability": 0.9331 + }, + { + "start": 13185.96, + "end": 13187.16, + "probability": 0.8982 + }, + { + "start": 13188.0, + "end": 13189.12, + "probability": 0.9832 + }, + { + "start": 13190.05, + "end": 13190.74, + "probability": 0.73 + }, + { + "start": 13192.1, + "end": 13192.44, + "probability": 0.7472 + }, + { + "start": 13193.2, + "end": 13193.56, + "probability": 0.8048 + }, + { + "start": 13194.12, + "end": 13197.46, + "probability": 0.8076 + }, + { + "start": 13198.26, + "end": 13204.22, + "probability": 0.9393 + }, + { + "start": 13204.62, + "end": 13205.48, + "probability": 0.9349 + }, + { + "start": 13205.94, + "end": 13211.08, + "probability": 0.8745 + }, + { + "start": 13212.34, + "end": 13215.78, + "probability": 0.9551 + }, + { + "start": 13216.68, + "end": 13218.68, + "probability": 0.9985 + }, + { + "start": 13218.86, + "end": 13221.45, + "probability": 0.9788 + }, + { + "start": 13221.66, + "end": 13222.9, + "probability": 0.9427 + }, + { + "start": 13224.06, + "end": 13229.6, + "probability": 0.8855 + }, + { + "start": 13229.72, + "end": 13230.48, + "probability": 0.9429 + }, + { + "start": 13230.58, + "end": 13232.84, + "probability": 0.9858 + }, + { + "start": 13232.96, + "end": 13237.62, + "probability": 0.9852 + }, + { + "start": 13239.14, + "end": 13241.88, + "probability": 0.9615 + }, + { + "start": 13241.92, + "end": 13242.18, + "probability": 0.5312 + }, + { + "start": 13242.2, + "end": 13243.18, + "probability": 0.9297 + }, + { + "start": 13243.66, + "end": 13245.14, + "probability": 0.9932 + }, + { + "start": 13245.22, + "end": 13246.88, + "probability": 0.872 + }, + { + "start": 13247.36, + "end": 13248.14, + "probability": 0.8304 + }, + { + "start": 13248.22, + "end": 13249.08, + "probability": 0.4413 + }, + { + "start": 13249.18, + "end": 13250.44, + "probability": 0.974 + }, + { + "start": 13251.24, + "end": 13253.64, + "probability": 0.2764 + }, + { + "start": 13253.82, + "end": 13254.66, + "probability": 0.6746 + }, + { + "start": 13255.22, + "end": 13256.44, + "probability": 0.498 + }, + { + "start": 13256.54, + "end": 13257.42, + "probability": 0.8313 + }, + { + "start": 13263.56, + "end": 13263.96, + "probability": 0.5357 + }, + { + "start": 13264.62, + "end": 13265.6, + "probability": 0.667 + }, + { + "start": 13266.74, + "end": 13268.72, + "probability": 0.9307 + }, + { + "start": 13269.48, + "end": 13271.58, + "probability": 0.777 + }, + { + "start": 13273.02, + "end": 13276.86, + "probability": 0.8838 + }, + { + "start": 13277.12, + "end": 13279.16, + "probability": 0.9419 + }, + { + "start": 13280.16, + "end": 13283.88, + "probability": 0.9802 + }, + { + "start": 13285.44, + "end": 13287.52, + "probability": 0.8437 + }, + { + "start": 13288.36, + "end": 13290.46, + "probability": 0.9052 + }, + { + "start": 13291.12, + "end": 13291.78, + "probability": 0.7043 + }, + { + "start": 13292.02, + "end": 13292.92, + "probability": 0.8218 + }, + { + "start": 13293.7, + "end": 13296.38, + "probability": 0.9663 + }, + { + "start": 13297.02, + "end": 13297.77, + "probability": 0.9116 + }, + { + "start": 13298.82, + "end": 13300.26, + "probability": 0.5487 + }, + { + "start": 13300.44, + "end": 13301.94, + "probability": 0.8236 + }, + { + "start": 13302.44, + "end": 13304.62, + "probability": 0.9521 + }, + { + "start": 13305.24, + "end": 13308.1, + "probability": 0.9421 + }, + { + "start": 13308.84, + "end": 13310.12, + "probability": 0.6641 + }, + { + "start": 13310.88, + "end": 13311.48, + "probability": 0.8672 + }, + { + "start": 13312.22, + "end": 13312.64, + "probability": 0.8587 + }, + { + "start": 13313.54, + "end": 13316.06, + "probability": 0.9819 + }, + { + "start": 13316.6, + "end": 13318.54, + "probability": 0.9859 + }, + { + "start": 13319.46, + "end": 13321.98, + "probability": 0.7175 + }, + { + "start": 13322.44, + "end": 13323.78, + "probability": 0.701 + }, + { + "start": 13324.5, + "end": 13328.96, + "probability": 0.9548 + }, + { + "start": 13329.8, + "end": 13332.52, + "probability": 0.7638 + }, + { + "start": 13333.22, + "end": 13336.58, + "probability": 0.7573 + }, + { + "start": 13337.44, + "end": 13339.02, + "probability": 0.7806 + }, + { + "start": 13339.64, + "end": 13340.76, + "probability": 0.9684 + }, + { + "start": 13341.14, + "end": 13343.0, + "probability": 0.9431 + }, + { + "start": 13343.46, + "end": 13346.56, + "probability": 0.9862 + }, + { + "start": 13347.38, + "end": 13351.98, + "probability": 0.8992 + }, + { + "start": 13352.54, + "end": 13353.64, + "probability": 0.8965 + }, + { + "start": 13354.16, + "end": 13356.38, + "probability": 0.9467 + }, + { + "start": 13357.28, + "end": 13361.94, + "probability": 0.9479 + }, + { + "start": 13363.04, + "end": 13365.18, + "probability": 0.1534 + }, + { + "start": 13365.18, + "end": 13366.26, + "probability": 0.9775 + }, + { + "start": 13366.54, + "end": 13369.56, + "probability": 0.9434 + }, + { + "start": 13372.18, + "end": 13373.24, + "probability": 0.1717 + }, + { + "start": 13373.88, + "end": 13377.68, + "probability": 0.6687 + }, + { + "start": 13378.44, + "end": 13382.38, + "probability": 0.6194 + }, + { + "start": 13385.08, + "end": 13385.34, + "probability": 0.0887 + }, + { + "start": 13385.34, + "end": 13386.33, + "probability": 0.4987 + }, + { + "start": 13386.98, + "end": 13387.02, + "probability": 0.1064 + }, + { + "start": 13387.02, + "end": 13389.08, + "probability": 0.2393 + }, + { + "start": 13389.2, + "end": 13389.2, + "probability": 0.2627 + }, + { + "start": 13389.2, + "end": 13392.18, + "probability": 0.7686 + }, + { + "start": 13392.18, + "end": 13393.01, + "probability": 0.3428 + }, + { + "start": 13393.98, + "end": 13396.86, + "probability": 0.6867 + }, + { + "start": 13397.04, + "end": 13398.34, + "probability": 0.1145 + }, + { + "start": 13398.46, + "end": 13399.0, + "probability": 0.4554 + }, + { + "start": 13399.16, + "end": 13409.7, + "probability": 0.9951 + }, + { + "start": 13410.04, + "end": 13410.44, + "probability": 0.7185 + }, + { + "start": 13411.1, + "end": 13412.06, + "probability": 0.9875 + }, + { + "start": 13412.76, + "end": 13413.88, + "probability": 0.9913 + }, + { + "start": 13415.34, + "end": 13421.36, + "probability": 0.9457 + }, + { + "start": 13421.64, + "end": 13425.9, + "probability": 0.9982 + }, + { + "start": 13426.78, + "end": 13427.56, + "probability": 0.0004 + }, + { + "start": 13429.64, + "end": 13434.46, + "probability": 0.9976 + }, + { + "start": 13434.92, + "end": 13438.74, + "probability": 0.8357 + }, + { + "start": 13439.4, + "end": 13440.76, + "probability": 0.7884 + }, + { + "start": 13440.88, + "end": 13445.64, + "probability": 0.7681 + }, + { + "start": 13445.74, + "end": 13446.02, + "probability": 0.9414 + }, + { + "start": 13447.5, + "end": 13448.6, + "probability": 0.6753 + }, + { + "start": 13450.43, + "end": 13455.08, + "probability": 0.7897 + }, + { + "start": 13455.92, + "end": 13457.18, + "probability": 0.8342 + }, + { + "start": 13457.86, + "end": 13459.05, + "probability": 0.8445 + }, + { + "start": 13460.42, + "end": 13462.9, + "probability": 0.9641 + }, + { + "start": 13463.0, + "end": 13464.3, + "probability": 0.9868 + }, + { + "start": 13464.74, + "end": 13465.6, + "probability": 0.9875 + }, + { + "start": 13465.72, + "end": 13468.47, + "probability": 0.9826 + }, + { + "start": 13468.54, + "end": 13468.78, + "probability": 0.4111 + }, + { + "start": 13468.78, + "end": 13469.72, + "probability": 0.7735 + }, + { + "start": 13470.24, + "end": 13473.26, + "probability": 0.9475 + }, + { + "start": 13474.08, + "end": 13475.26, + "probability": 0.9958 + }, + { + "start": 13476.22, + "end": 13476.46, + "probability": 0.3428 + }, + { + "start": 13476.64, + "end": 13479.16, + "probability": 0.6238 + }, + { + "start": 13479.6, + "end": 13481.0, + "probability": 0.2778 + }, + { + "start": 13481.02, + "end": 13484.5, + "probability": 0.9525 + }, + { + "start": 13484.8, + "end": 13489.9, + "probability": 0.7922 + }, + { + "start": 13491.6, + "end": 13491.6, + "probability": 0.2405 + }, + { + "start": 13491.62, + "end": 13491.62, + "probability": 0.2201 + }, + { + "start": 13491.62, + "end": 13491.82, + "probability": 0.4995 + }, + { + "start": 13492.8, + "end": 13496.89, + "probability": 0.6613 + }, + { + "start": 13497.44, + "end": 13498.28, + "probability": 0.6211 + }, + { + "start": 13498.42, + "end": 13498.96, + "probability": 0.8406 + }, + { + "start": 13499.26, + "end": 13502.16, + "probability": 0.9337 + }, + { + "start": 13502.98, + "end": 13504.36, + "probability": 0.8047 + }, + { + "start": 13505.84, + "end": 13507.62, + "probability": 0.8418 + }, + { + "start": 13508.7, + "end": 13508.8, + "probability": 0.6636 + }, + { + "start": 13509.58, + "end": 13511.52, + "probability": 0.5321 + }, + { + "start": 13511.64, + "end": 13512.62, + "probability": 0.4887 + }, + { + "start": 13513.0, + "end": 13515.12, + "probability": 0.9951 + }, + { + "start": 13515.12, + "end": 13518.08, + "probability": 0.7904 + }, + { + "start": 13519.02, + "end": 13523.48, + "probability": 0.8054 + }, + { + "start": 13523.56, + "end": 13524.57, + "probability": 0.8916 + }, + { + "start": 13524.84, + "end": 13527.48, + "probability": 0.8608 + }, + { + "start": 13529.78, + "end": 13530.4, + "probability": 0.0879 + }, + { + "start": 13530.4, + "end": 13530.94, + "probability": 0.2951 + }, + { + "start": 13531.44, + "end": 13533.68, + "probability": 0.9126 + }, + { + "start": 13534.94, + "end": 13538.18, + "probability": 0.9528 + }, + { + "start": 13538.52, + "end": 13541.26, + "probability": 0.8809 + }, + { + "start": 13541.62, + "end": 13542.7, + "probability": 0.6705 + }, + { + "start": 13543.99, + "end": 13548.98, + "probability": 0.8981 + }, + { + "start": 13549.92, + "end": 13551.28, + "probability": 0.8995 + }, + { + "start": 13551.82, + "end": 13553.38, + "probability": 0.1633 + }, + { + "start": 13554.06, + "end": 13555.28, + "probability": 0.7785 + }, + { + "start": 13555.54, + "end": 13559.6, + "probability": 0.7579 + }, + { + "start": 13560.14, + "end": 13561.23, + "probability": 0.7799 + }, + { + "start": 13562.4, + "end": 13562.88, + "probability": 0.838 + }, + { + "start": 13564.36, + "end": 13567.74, + "probability": 0.9723 + }, + { + "start": 13568.46, + "end": 13570.22, + "probability": 0.8622 + }, + { + "start": 13570.88, + "end": 13571.34, + "probability": 0.9489 + }, + { + "start": 13572.34, + "end": 13576.04, + "probability": 0.7788 + }, + { + "start": 13576.7, + "end": 13577.94, + "probability": 0.5857 + }, + { + "start": 13578.82, + "end": 13579.52, + "probability": 0.3288 + }, + { + "start": 13580.18, + "end": 13581.42, + "probability": 0.2839 + }, + { + "start": 13582.26, + "end": 13588.46, + "probability": 0.9486 + }, + { + "start": 13589.06, + "end": 13590.18, + "probability": 0.6494 + }, + { + "start": 13591.18, + "end": 13593.08, + "probability": 0.7566 + }, + { + "start": 13593.54, + "end": 13595.04, + "probability": 0.9381 + }, + { + "start": 13595.5, + "end": 13596.86, + "probability": 0.9955 + }, + { + "start": 13597.74, + "end": 13598.92, + "probability": 0.9438 + }, + { + "start": 13599.42, + "end": 13600.86, + "probability": 0.9331 + }, + { + "start": 13601.8, + "end": 13602.78, + "probability": 0.8831 + }, + { + "start": 13603.62, + "end": 13605.66, + "probability": 0.9292 + }, + { + "start": 13606.18, + "end": 13607.62, + "probability": 0.6854 + }, + { + "start": 13607.98, + "end": 13609.34, + "probability": 0.9559 + }, + { + "start": 13610.8, + "end": 13616.88, + "probability": 0.9937 + }, + { + "start": 13617.2, + "end": 13617.34, + "probability": 0.3066 + }, + { + "start": 13617.46, + "end": 13619.32, + "probability": 0.8833 + }, + { + "start": 13622.04, + "end": 13622.54, + "probability": 0.2726 + }, + { + "start": 13623.58, + "end": 13623.6, + "probability": 0.1584 + }, + { + "start": 13623.6, + "end": 13623.6, + "probability": 0.256 + }, + { + "start": 13623.6, + "end": 13624.62, + "probability": 0.492 + }, + { + "start": 13632.06, + "end": 13634.6, + "probability": 0.0318 + }, + { + "start": 13636.32, + "end": 13638.82, + "probability": 0.2054 + }, + { + "start": 13640.79, + "end": 13641.94, + "probability": 0.1059 + }, + { + "start": 13642.86, + "end": 13644.86, + "probability": 0.0187 + }, + { + "start": 13648.78, + "end": 13649.46, + "probability": 0.132 + }, + { + "start": 13649.46, + "end": 13652.5, + "probability": 0.1142 + }, + { + "start": 13653.1, + "end": 13653.1, + "probability": 0.0446 + }, + { + "start": 13653.1, + "end": 13653.1, + "probability": 0.0668 + }, + { + "start": 13653.1, + "end": 13653.52, + "probability": 0.0478 + }, + { + "start": 13660.62, + "end": 13660.88, + "probability": 0.0423 + }, + { + "start": 13661.55, + "end": 13662.04, + "probability": 0.7156 + }, + { + "start": 13662.04, + "end": 13662.8, + "probability": 0.0193 + }, + { + "start": 13669.38, + "end": 13669.46, + "probability": 0.2055 + }, + { + "start": 13669.46, + "end": 13671.16, + "probability": 0.0302 + }, + { + "start": 13671.16, + "end": 13672.52, + "probability": 0.0244 + }, + { + "start": 13672.58, + "end": 13676.46, + "probability": 0.022 + }, + { + "start": 13709.0, + "end": 13709.0, + "probability": 0.0 + }, + { + "start": 13709.0, + "end": 13709.0, + "probability": 0.0 + }, + { + "start": 13709.0, + "end": 13709.0, + "probability": 0.0 + }, + { + "start": 13709.0, + "end": 13709.0, + "probability": 0.0 + }, + { + "start": 13709.0, + "end": 13709.0, + "probability": 0.0 + }, + { + "start": 13709.14, + "end": 13709.78, + "probability": 0.2409 + }, + { + "start": 13710.4, + "end": 13711.76, + "probability": 0.018 + }, + { + "start": 13711.86, + "end": 13711.86, + "probability": 0.035 + }, + { + "start": 13711.86, + "end": 13711.86, + "probability": 0.0298 + }, + { + "start": 13711.86, + "end": 13713.42, + "probability": 0.6664 + }, + { + "start": 13713.42, + "end": 13713.78, + "probability": 0.4556 + }, + { + "start": 13713.98, + "end": 13714.86, + "probability": 0.5853 + }, + { + "start": 13715.2, + "end": 13716.64, + "probability": 0.674 + }, + { + "start": 13716.74, + "end": 13719.82, + "probability": 0.9697 + }, + { + "start": 13720.1, + "end": 13721.7, + "probability": 0.7509 + }, + { + "start": 13721.7, + "end": 13724.08, + "probability": 0.8333 + }, + { + "start": 13724.3, + "end": 13724.42, + "probability": 0.707 + }, + { + "start": 13725.1, + "end": 13725.6, + "probability": 0.8035 + }, + { + "start": 13726.66, + "end": 13726.76, + "probability": 0.7179 + }, + { + "start": 13728.74, + "end": 13729.58, + "probability": 0.8823 + }, + { + "start": 13730.9, + "end": 13731.58, + "probability": 0.979 + }, + { + "start": 13732.66, + "end": 13733.94, + "probability": 0.9388 + }, + { + "start": 13735.06, + "end": 13736.46, + "probability": 0.9971 + }, + { + "start": 13737.04, + "end": 13738.28, + "probability": 0.9747 + }, + { + "start": 13738.94, + "end": 13740.14, + "probability": 0.8298 + }, + { + "start": 13741.26, + "end": 13743.92, + "probability": 0.951 + }, + { + "start": 13744.36, + "end": 13744.68, + "probability": 0.6334 + }, + { + "start": 13745.48, + "end": 13746.3, + "probability": 0.8693 + }, + { + "start": 13747.14, + "end": 13748.26, + "probability": 0.9785 + }, + { + "start": 13750.08, + "end": 13755.32, + "probability": 0.9941 + }, + { + "start": 13756.12, + "end": 13757.86, + "probability": 0.9692 + }, + { + "start": 13758.62, + "end": 13761.24, + "probability": 0.9989 + }, + { + "start": 13761.92, + "end": 13765.16, + "probability": 0.7152 + }, + { + "start": 13765.66, + "end": 13767.06, + "probability": 0.9956 + }, + { + "start": 13767.82, + "end": 13767.82, + "probability": 0.0963 + }, + { + "start": 13767.82, + "end": 13774.52, + "probability": 0.9919 + }, + { + "start": 13777.3, + "end": 13781.54, + "probability": 0.7008 + }, + { + "start": 13782.34, + "end": 13784.54, + "probability": 0.9162 + }, + { + "start": 13785.22, + "end": 13788.72, + "probability": 0.9814 + }, + { + "start": 13789.5, + "end": 13792.24, + "probability": 0.823 + }, + { + "start": 13792.84, + "end": 13794.12, + "probability": 0.9941 + }, + { + "start": 13794.78, + "end": 13795.88, + "probability": 0.9137 + }, + { + "start": 13796.5, + "end": 13798.94, + "probability": 0.8721 + }, + { + "start": 13799.62, + "end": 13802.46, + "probability": 0.9039 + }, + { + "start": 13803.54, + "end": 13804.68, + "probability": 0.9597 + }, + { + "start": 13805.3, + "end": 13809.5, + "probability": 0.9627 + }, + { + "start": 13810.12, + "end": 13813.8, + "probability": 0.8738 + }, + { + "start": 13814.98, + "end": 13821.64, + "probability": 0.9075 + }, + { + "start": 13822.06, + "end": 13822.91, + "probability": 0.5222 + }, + { + "start": 13823.52, + "end": 13824.68, + "probability": 0.9889 + }, + { + "start": 13824.74, + "end": 13825.22, + "probability": 0.5771 + }, + { + "start": 13826.04, + "end": 13830.4, + "probability": 0.7773 + }, + { + "start": 13830.4, + "end": 13830.5, + "probability": 0.6354 + }, + { + "start": 13830.66, + "end": 13832.52, + "probability": 0.9249 + }, + { + "start": 13833.08, + "end": 13834.56, + "probability": 0.4895 + }, + { + "start": 13834.68, + "end": 13839.06, + "probability": 0.7979 + }, + { + "start": 13839.14, + "end": 13840.7, + "probability": 0.9849 + }, + { + "start": 13841.24, + "end": 13841.78, + "probability": 0.8652 + }, + { + "start": 13841.83, + "end": 13844.24, + "probability": 0.9941 + }, + { + "start": 13845.1, + "end": 13845.94, + "probability": 0.5049 + }, + { + "start": 13846.74, + "end": 13847.02, + "probability": 0.3906 + }, + { + "start": 13848.1, + "end": 13852.08, + "probability": 0.7451 + }, + { + "start": 13852.88, + "end": 13854.46, + "probability": 0.9138 + }, + { + "start": 13854.84, + "end": 13855.35, + "probability": 0.5635 + }, + { + "start": 13856.52, + "end": 13861.46, + "probability": 0.8415 + }, + { + "start": 13862.14, + "end": 13864.54, + "probability": 0.5138 + }, + { + "start": 13864.54, + "end": 13867.04, + "probability": 0.8179 + }, + { + "start": 13867.22, + "end": 13867.4, + "probability": 0.4853 + }, + { + "start": 13867.42, + "end": 13871.18, + "probability": 0.8491 + }, + { + "start": 13871.26, + "end": 13872.7, + "probability": 0.9929 + }, + { + "start": 13873.52, + "end": 13875.8, + "probability": 0.5749 + }, + { + "start": 13876.14, + "end": 13880.24, + "probability": 0.6725 + }, + { + "start": 13880.66, + "end": 13882.18, + "probability": 0.1641 + }, + { + "start": 13883.84, + "end": 13886.74, + "probability": 0.445 + }, + { + "start": 13886.82, + "end": 13890.58, + "probability": 0.9927 + }, + { + "start": 13890.7, + "end": 13894.02, + "probability": 0.9834 + }, + { + "start": 13894.54, + "end": 13895.68, + "probability": 0.6787 + }, + { + "start": 13896.04, + "end": 13897.36, + "probability": 0.3495 + }, + { + "start": 13897.52, + "end": 13899.6, + "probability": 0.0149 + }, + { + "start": 13899.64, + "end": 13900.2, + "probability": 0.1063 + }, + { + "start": 13900.2, + "end": 13901.8, + "probability": 0.5075 + }, + { + "start": 13903.62, + "end": 13905.6, + "probability": 0.7463 + }, + { + "start": 13906.7, + "end": 13907.34, + "probability": 0.0216 + }, + { + "start": 13907.62, + "end": 13908.06, + "probability": 0.2478 + }, + { + "start": 13908.06, + "end": 13908.9, + "probability": 0.1092 + }, + { + "start": 13909.02, + "end": 13909.92, + "probability": 0.6077 + }, + { + "start": 13910.08, + "end": 13910.2, + "probability": 0.2533 + }, + { + "start": 13910.2, + "end": 13910.68, + "probability": 0.4692 + }, + { + "start": 13911.04, + "end": 13913.7, + "probability": 0.3234 + }, + { + "start": 13913.8, + "end": 13914.46, + "probability": 0.3098 + }, + { + "start": 13914.7, + "end": 13916.98, + "probability": 0.9693 + }, + { + "start": 13917.6, + "end": 13919.6, + "probability": 0.6666 + }, + { + "start": 13919.64, + "end": 13920.15, + "probability": 0.5955 + }, + { + "start": 13920.32, + "end": 13920.55, + "probability": 0.634 + }, + { + "start": 13921.06, + "end": 13921.66, + "probability": 0.5594 + }, + { + "start": 13921.72, + "end": 13922.02, + "probability": 0.8053 + }, + { + "start": 13923.34, + "end": 13923.84, + "probability": 0.6943 + }, + { + "start": 13924.06, + "end": 13924.06, + "probability": 0.3185 + }, + { + "start": 13924.16, + "end": 13924.82, + "probability": 0.4724 + }, + { + "start": 13924.86, + "end": 13925.56, + "probability": 0.5248 + }, + { + "start": 13925.56, + "end": 13926.3, + "probability": 0.6084 + }, + { + "start": 13926.42, + "end": 13927.04, + "probability": 0.3855 + }, + { + "start": 13927.3, + "end": 13927.88, + "probability": 0.9355 + }, + { + "start": 13928.22, + "end": 13928.46, + "probability": 0.7798 + }, + { + "start": 13928.88, + "end": 13929.14, + "probability": 0.397 + }, + { + "start": 13929.58, + "end": 13930.04, + "probability": 0.6317 + }, + { + "start": 13930.1, + "end": 13931.28, + "probability": 0.4875 + }, + { + "start": 13931.96, + "end": 13934.98, + "probability": 0.8682 + }, + { + "start": 13935.06, + "end": 13935.69, + "probability": 0.8833 + }, + { + "start": 13936.38, + "end": 13937.08, + "probability": 0.7825 + }, + { + "start": 13937.14, + "end": 13937.38, + "probability": 0.2914 + }, + { + "start": 13937.46, + "end": 13939.62, + "probability": 0.6377 + }, + { + "start": 13939.96, + "end": 13940.45, + "probability": 0.9565 + }, + { + "start": 13940.76, + "end": 13947.08, + "probability": 0.934 + }, + { + "start": 13947.08, + "end": 13953.14, + "probability": 0.9951 + }, + { + "start": 13953.44, + "end": 13954.06, + "probability": 0.5263 + }, + { + "start": 13954.1, + "end": 13954.9, + "probability": 0.6778 + }, + { + "start": 13954.96, + "end": 13955.62, + "probability": 0.6147 + }, + { + "start": 13956.14, + "end": 13956.52, + "probability": 0.2006 + }, + { + "start": 13956.64, + "end": 13957.24, + "probability": 0.3022 + }, + { + "start": 13957.44, + "end": 13958.46, + "probability": 0.6345 + }, + { + "start": 13960.02, + "end": 13961.02, + "probability": 0.9606 + }, + { + "start": 13962.06, + "end": 13964.6, + "probability": 0.1394 + }, + { + "start": 13968.88, + "end": 13970.72, + "probability": 0.1203 + }, + { + "start": 13971.38, + "end": 13971.84, + "probability": 0.0707 + }, + { + "start": 13973.46, + "end": 13975.02, + "probability": 0.5298 + }, + { + "start": 13975.1, + "end": 13979.44, + "probability": 0.9825 + }, + { + "start": 13982.0, + "end": 13983.8, + "probability": 0.5209 + }, + { + "start": 13984.28, + "end": 13987.17, + "probability": 0.4695 + }, + { + "start": 13989.66, + "end": 13990.54, + "probability": 0.6748 + }, + { + "start": 13992.36, + "end": 13994.92, + "probability": 0.9271 + }, + { + "start": 13995.96, + "end": 13997.04, + "probability": 0.1503 + }, + { + "start": 13997.04, + "end": 13998.1, + "probability": 0.6838 + }, + { + "start": 13998.22, + "end": 13999.42, + "probability": 0.6364 + }, + { + "start": 13999.54, + "end": 14003.62, + "probability": 0.9857 + }, + { + "start": 14004.26, + "end": 14006.34, + "probability": 0.8454 + }, + { + "start": 14008.7, + "end": 14010.0, + "probability": 0.3591 + }, + { + "start": 14011.32, + "end": 14011.52, + "probability": 0.6916 + }, + { + "start": 14012.2, + "end": 14012.76, + "probability": 0.528 + }, + { + "start": 14013.22, + "end": 14016.14, + "probability": 0.9089 + }, + { + "start": 14016.78, + "end": 14019.32, + "probability": 0.7406 + }, + { + "start": 14019.72, + "end": 14020.62, + "probability": 0.9881 + }, + { + "start": 14021.46, + "end": 14026.85, + "probability": 0.6536 + }, + { + "start": 14027.56, + "end": 14029.82, + "probability": 0.6165 + }, + { + "start": 14030.0, + "end": 14032.06, + "probability": 0.8743 + }, + { + "start": 14032.56, + "end": 14034.64, + "probability": 0.9753 + }, + { + "start": 14042.7, + "end": 14042.74, + "probability": 0.0095 + } + ], + "segments_count": 5072, + "words_count": 24866, + "avg_words_per_segment": 4.9026, + "avg_segment_duration": 1.9408, + "avg_words_per_minute": 106.0642, + "plenum_id": "15922", + "duration": 14066.57, + "title": null, + "plenum_date": "2011-09-19" +} \ No newline at end of file