diff --git "a/18198/metadata.json" "b/18198/metadata.json" new file mode 100644--- /dev/null +++ "b/18198/metadata.json" @@ -0,0 +1,60597 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "18198", + "quality_score": 0.9106, + "per_segment_quality_scores": [ + { + "start": 1.94, + "end": 3.48, + "probability": 0.0305 + }, + { + "start": 41.8, + "end": 42.68, + "probability": 0.5021 + }, + { + "start": 43.48, + "end": 44.2, + "probability": 0.6656 + }, + { + "start": 45.2, + "end": 47.76, + "probability": 0.5629 + }, + { + "start": 48.72, + "end": 52.01, + "probability": 0.788 + }, + { + "start": 52.7, + "end": 55.04, + "probability": 0.9876 + }, + { + "start": 55.18, + "end": 57.5, + "probability": 0.7038 + }, + { + "start": 58.08, + "end": 58.78, + "probability": 0.8493 + }, + { + "start": 59.72, + "end": 60.92, + "probability": 0.8813 + }, + { + "start": 61.02, + "end": 62.6, + "probability": 0.8163 + }, + { + "start": 62.98, + "end": 64.54, + "probability": 0.8803 + }, + { + "start": 64.7, + "end": 65.36, + "probability": 0.7428 + }, + { + "start": 65.38, + "end": 67.02, + "probability": 0.6503 + }, + { + "start": 67.62, + "end": 70.58, + "probability": 0.439 + }, + { + "start": 71.04, + "end": 74.96, + "probability": 0.7511 + }, + { + "start": 78.64, + "end": 80.3, + "probability": 0.505 + }, + { + "start": 80.3, + "end": 81.58, + "probability": 0.7581 + }, + { + "start": 82.08, + "end": 84.2, + "probability": 0.5164 + }, + { + "start": 84.78, + "end": 87.98, + "probability": 0.4135 + }, + { + "start": 90.86, + "end": 92.7, + "probability": 0.0188 + }, + { + "start": 92.7, + "end": 92.86, + "probability": 0.0892 + }, + { + "start": 92.86, + "end": 93.24, + "probability": 0.1809 + }, + { + "start": 93.24, + "end": 93.78, + "probability": 0.0743 + }, + { + "start": 93.9, + "end": 95.78, + "probability": 0.0818 + }, + { + "start": 95.82, + "end": 95.82, + "probability": 0.0677 + }, + { + "start": 96.38, + "end": 98.34, + "probability": 0.1055 + }, + { + "start": 101.3, + "end": 105.16, + "probability": 0.151 + }, + { + "start": 106.68, + "end": 108.66, + "probability": 0.0136 + }, + { + "start": 108.66, + "end": 112.86, + "probability": 0.0219 + }, + { + "start": 113.56, + "end": 115.74, + "probability": 0.0737 + }, + { + "start": 116.42, + "end": 119.22, + "probability": 0.0548 + }, + { + "start": 119.98, + "end": 120.9, + "probability": 0.0477 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.0, + "end": 176.0, + "probability": 0.0 + }, + { + "start": 176.16, + "end": 179.92, + "probability": 0.7313 + }, + { + "start": 180.08, + "end": 182.08, + "probability": 0.8449 + }, + { + "start": 182.68, + "end": 185.12, + "probability": 0.9315 + }, + { + "start": 185.92, + "end": 186.38, + "probability": 0.8394 + }, + { + "start": 187.42, + "end": 189.1, + "probability": 0.7459 + }, + { + "start": 190.3, + "end": 191.3, + "probability": 0.7353 + }, + { + "start": 191.56, + "end": 197.04, + "probability": 0.8658 + }, + { + "start": 197.04, + "end": 201.66, + "probability": 0.9925 + }, + { + "start": 202.62, + "end": 205.18, + "probability": 0.9736 + }, + { + "start": 205.94, + "end": 209.78, + "probability": 0.9895 + }, + { + "start": 210.24, + "end": 211.58, + "probability": 0.6097 + }, + { + "start": 211.88, + "end": 214.78, + "probability": 0.5959 + }, + { + "start": 214.96, + "end": 216.16, + "probability": 0.3597 + }, + { + "start": 216.2, + "end": 217.62, + "probability": 0.3907 + }, + { + "start": 217.72, + "end": 218.08, + "probability": 0.356 + }, + { + "start": 218.6, + "end": 219.62, + "probability": 0.7158 + }, + { + "start": 219.64, + "end": 221.31, + "probability": 0.9761 + }, + { + "start": 221.72, + "end": 222.36, + "probability": 0.7877 + }, + { + "start": 222.58, + "end": 226.06, + "probability": 0.9355 + }, + { + "start": 226.42, + "end": 227.84, + "probability": 0.9969 + }, + { + "start": 228.34, + "end": 230.21, + "probability": 0.9102 + }, + { + "start": 230.88, + "end": 232.34, + "probability": 0.902 + }, + { + "start": 232.38, + "end": 234.69, + "probability": 0.9896 + }, + { + "start": 235.24, + "end": 239.2, + "probability": 0.9427 + }, + { + "start": 239.58, + "end": 240.16, + "probability": 0.6579 + }, + { + "start": 241.02, + "end": 241.5, + "probability": 0.5938 + }, + { + "start": 242.08, + "end": 242.56, + "probability": 0.8087 + }, + { + "start": 243.38, + "end": 246.32, + "probability": 0.356 + }, + { + "start": 246.54, + "end": 247.06, + "probability": 0.6437 + }, + { + "start": 247.06, + "end": 249.16, + "probability": 0.8231 + }, + { + "start": 250.08, + "end": 252.1, + "probability": 0.9478 + }, + { + "start": 253.28, + "end": 253.58, + "probability": 0.6292 + }, + { + "start": 254.84, + "end": 256.24, + "probability": 0.5488 + }, + { + "start": 256.4, + "end": 258.98, + "probability": 0.7577 + }, + { + "start": 259.92, + "end": 260.02, + "probability": 0.8091 + }, + { + "start": 260.12, + "end": 260.38, + "probability": 0.5112 + }, + { + "start": 260.46, + "end": 261.84, + "probability": 0.9016 + }, + { + "start": 261.86, + "end": 262.48, + "probability": 0.131 + }, + { + "start": 262.48, + "end": 263.28, + "probability": 0.5578 + }, + { + "start": 263.3, + "end": 265.58, + "probability": 0.7098 + }, + { + "start": 265.58, + "end": 266.44, + "probability": 0.4778 + }, + { + "start": 267.24, + "end": 270.2, + "probability": 0.5995 + }, + { + "start": 270.2, + "end": 278.36, + "probability": 0.873 + }, + { + "start": 278.38, + "end": 281.4, + "probability": 0.7675 + }, + { + "start": 281.56, + "end": 283.38, + "probability": 0.8597 + }, + { + "start": 283.76, + "end": 284.7, + "probability": 0.9444 + }, + { + "start": 284.84, + "end": 286.78, + "probability": 0.8129 + }, + { + "start": 286.86, + "end": 287.46, + "probability": 0.8458 + }, + { + "start": 287.58, + "end": 290.04, + "probability": 0.8865 + }, + { + "start": 290.1, + "end": 290.72, + "probability": 0.9165 + }, + { + "start": 291.36, + "end": 294.28, + "probability": 0.9905 + }, + { + "start": 294.46, + "end": 296.96, + "probability": 0.6844 + }, + { + "start": 297.02, + "end": 298.64, + "probability": 0.9191 + }, + { + "start": 298.76, + "end": 302.06, + "probability": 0.1973 + }, + { + "start": 302.1, + "end": 303.0, + "probability": 0.9883 + }, + { + "start": 303.12, + "end": 303.66, + "probability": 0.8074 + }, + { + "start": 303.74, + "end": 304.35, + "probability": 0.5836 + }, + { + "start": 304.68, + "end": 304.98, + "probability": 0.8348 + }, + { + "start": 305.66, + "end": 306.54, + "probability": 0.6347 + }, + { + "start": 306.64, + "end": 307.5, + "probability": 0.8237 + }, + { + "start": 307.74, + "end": 309.2, + "probability": 0.7111 + }, + { + "start": 309.38, + "end": 309.64, + "probability": 0.533 + }, + { + "start": 309.68, + "end": 309.9, + "probability": 0.8555 + }, + { + "start": 310.8, + "end": 313.46, + "probability": 0.9325 + }, + { + "start": 313.46, + "end": 316.0, + "probability": 0.8339 + }, + { + "start": 316.18, + "end": 316.64, + "probability": 0.2638 + }, + { + "start": 316.9, + "end": 318.66, + "probability": 0.571 + }, + { + "start": 318.72, + "end": 320.52, + "probability": 0.4841 + }, + { + "start": 320.52, + "end": 323.86, + "probability": 0.8701 + }, + { + "start": 323.86, + "end": 324.82, + "probability": 0.5002 + }, + { + "start": 325.24, + "end": 328.92, + "probability": 0.6153 + }, + { + "start": 330.53, + "end": 333.68, + "probability": 0.6688 + }, + { + "start": 333.84, + "end": 336.3, + "probability": 0.9688 + }, + { + "start": 336.6, + "end": 340.72, + "probability": 0.9588 + }, + { + "start": 341.26, + "end": 342.0, + "probability": 0.8698 + }, + { + "start": 342.82, + "end": 345.48, + "probability": 0.8141 + }, + { + "start": 346.36, + "end": 347.28, + "probability": 0.9124 + }, + { + "start": 347.94, + "end": 348.84, + "probability": 0.7175 + }, + { + "start": 349.22, + "end": 349.54, + "probability": 0.3806 + }, + { + "start": 349.58, + "end": 350.44, + "probability": 0.4268 + }, + { + "start": 350.54, + "end": 353.12, + "probability": 0.7322 + }, + { + "start": 355.58, + "end": 356.62, + "probability": 0.7842 + }, + { + "start": 356.8, + "end": 357.5, + "probability": 0.9185 + }, + { + "start": 357.56, + "end": 360.06, + "probability": 0.8767 + }, + { + "start": 361.14, + "end": 362.36, + "probability": 0.9973 + }, + { + "start": 362.96, + "end": 365.5, + "probability": 0.9924 + }, + { + "start": 366.74, + "end": 368.12, + "probability": 0.7893 + }, + { + "start": 368.66, + "end": 370.64, + "probability": 0.853 + }, + { + "start": 371.64, + "end": 372.12, + "probability": 0.7112 + }, + { + "start": 373.36, + "end": 377.58, + "probability": 0.9904 + }, + { + "start": 377.82, + "end": 378.76, + "probability": 0.9742 + }, + { + "start": 380.1, + "end": 382.0, + "probability": 0.878 + }, + { + "start": 382.84, + "end": 383.94, + "probability": 0.7269 + }, + { + "start": 384.0, + "end": 384.62, + "probability": 0.8976 + }, + { + "start": 384.7, + "end": 391.02, + "probability": 0.7834 + }, + { + "start": 392.2, + "end": 395.38, + "probability": 0.9193 + }, + { + "start": 396.0, + "end": 398.48, + "probability": 0.9173 + }, + { + "start": 398.8, + "end": 399.74, + "probability": 0.9475 + }, + { + "start": 400.44, + "end": 402.42, + "probability": 0.9109 + }, + { + "start": 403.14, + "end": 403.58, + "probability": 0.9564 + }, + { + "start": 403.74, + "end": 409.3, + "probability": 0.9772 + }, + { + "start": 409.44, + "end": 412.0, + "probability": 0.9456 + }, + { + "start": 412.88, + "end": 414.0, + "probability": 0.6127 + }, + { + "start": 414.78, + "end": 417.44, + "probability": 0.7719 + }, + { + "start": 418.4, + "end": 420.06, + "probability": 0.9929 + }, + { + "start": 420.7, + "end": 422.04, + "probability": 0.9678 + }, + { + "start": 422.82, + "end": 425.8, + "probability": 0.9936 + }, + { + "start": 426.36, + "end": 427.81, + "probability": 0.9701 + }, + { + "start": 428.84, + "end": 431.16, + "probability": 0.9976 + }, + { + "start": 431.7, + "end": 433.68, + "probability": 0.9873 + }, + { + "start": 434.42, + "end": 435.92, + "probability": 0.5228 + }, + { + "start": 436.8, + "end": 438.88, + "probability": 0.6091 + }, + { + "start": 438.98, + "end": 440.02, + "probability": 0.9539 + }, + { + "start": 440.22, + "end": 440.92, + "probability": 0.8442 + }, + { + "start": 441.58, + "end": 443.58, + "probability": 0.9798 + }, + { + "start": 443.66, + "end": 445.9, + "probability": 0.9863 + }, + { + "start": 446.34, + "end": 449.06, + "probability": 0.9873 + }, + { + "start": 449.6, + "end": 452.92, + "probability": 0.3726 + }, + { + "start": 453.46, + "end": 455.98, + "probability": 0.8656 + }, + { + "start": 456.26, + "end": 458.28, + "probability": 0.9922 + }, + { + "start": 458.68, + "end": 458.98, + "probability": 0.6341 + }, + { + "start": 459.52, + "end": 462.54, + "probability": 0.9694 + }, + { + "start": 463.2, + "end": 463.46, + "probability": 0.6112 + }, + { + "start": 463.52, + "end": 463.76, + "probability": 0.8743 + }, + { + "start": 463.84, + "end": 464.64, + "probability": 0.9452 + }, + { + "start": 465.14, + "end": 466.28, + "probability": 0.9374 + }, + { + "start": 466.72, + "end": 468.82, + "probability": 0.9484 + }, + { + "start": 470.16, + "end": 472.38, + "probability": 0.8249 + }, + { + "start": 472.78, + "end": 474.8, + "probability": 0.981 + }, + { + "start": 475.08, + "end": 478.22, + "probability": 0.9312 + }, + { + "start": 478.26, + "end": 479.02, + "probability": 0.348 + }, + { + "start": 479.58, + "end": 481.62, + "probability": 0.8857 + }, + { + "start": 482.08, + "end": 482.1, + "probability": 0.4116 + }, + { + "start": 482.18, + "end": 482.68, + "probability": 0.8451 + }, + { + "start": 482.92, + "end": 483.8, + "probability": 0.9072 + }, + { + "start": 484.62, + "end": 487.0, + "probability": 0.9727 + }, + { + "start": 487.62, + "end": 489.52, + "probability": 0.9812 + }, + { + "start": 490.46, + "end": 490.74, + "probability": 0.4764 + }, + { + "start": 490.9, + "end": 491.06, + "probability": 0.5393 + }, + { + "start": 491.16, + "end": 494.22, + "probability": 0.9712 + }, + { + "start": 494.86, + "end": 498.78, + "probability": 0.9209 + }, + { + "start": 499.48, + "end": 501.42, + "probability": 0.8257 + }, + { + "start": 502.0, + "end": 504.12, + "probability": 0.9761 + }, + { + "start": 504.76, + "end": 505.6, + "probability": 0.908 + }, + { + "start": 506.0, + "end": 513.22, + "probability": 0.9873 + }, + { + "start": 514.02, + "end": 516.3, + "probability": 0.9051 + }, + { + "start": 516.88, + "end": 517.6, + "probability": 0.5306 + }, + { + "start": 517.76, + "end": 518.18, + "probability": 0.7294 + }, + { + "start": 518.18, + "end": 524.46, + "probability": 0.8309 + }, + { + "start": 524.88, + "end": 527.08, + "probability": 0.8717 + }, + { + "start": 527.54, + "end": 532.26, + "probability": 0.9663 + }, + { + "start": 533.68, + "end": 537.26, + "probability": 0.8624 + }, + { + "start": 538.16, + "end": 539.34, + "probability": 0.828 + }, + { + "start": 539.5, + "end": 539.96, + "probability": 0.8852 + }, + { + "start": 540.02, + "end": 540.4, + "probability": 0.2707 + }, + { + "start": 540.48, + "end": 540.66, + "probability": 0.8155 + }, + { + "start": 540.74, + "end": 545.2, + "probability": 0.9541 + }, + { + "start": 545.86, + "end": 549.84, + "probability": 0.8854 + }, + { + "start": 550.42, + "end": 553.31, + "probability": 0.9973 + }, + { + "start": 554.46, + "end": 557.1, + "probability": 0.9282 + }, + { + "start": 557.6, + "end": 560.11, + "probability": 0.9954 + }, + { + "start": 561.0, + "end": 562.84, + "probability": 0.8583 + }, + { + "start": 563.94, + "end": 564.72, + "probability": 0.0494 + }, + { + "start": 587.24, + "end": 588.4, + "probability": 0.1594 + }, + { + "start": 588.64, + "end": 593.4, + "probability": 0.9736 + }, + { + "start": 593.96, + "end": 594.66, + "probability": 0.4559 + }, + { + "start": 595.46, + "end": 596.78, + "probability": 0.6652 + }, + { + "start": 597.36, + "end": 599.0, + "probability": 0.978 + }, + { + "start": 599.58, + "end": 602.28, + "probability": 0.5096 + }, + { + "start": 602.44, + "end": 603.76, + "probability": 0.8345 + }, + { + "start": 604.42, + "end": 605.74, + "probability": 0.9271 + }, + { + "start": 606.04, + "end": 606.98, + "probability": 0.8503 + }, + { + "start": 608.02, + "end": 611.14, + "probability": 0.9784 + }, + { + "start": 611.4, + "end": 612.26, + "probability": 0.7978 + }, + { + "start": 612.82, + "end": 613.36, + "probability": 0.7087 + }, + { + "start": 613.72, + "end": 614.26, + "probability": 0.6556 + }, + { + "start": 614.84, + "end": 616.88, + "probability": 0.9131 + }, + { + "start": 617.3, + "end": 620.56, + "probability": 0.9764 + }, + { + "start": 620.98, + "end": 624.72, + "probability": 0.984 + }, + { + "start": 625.02, + "end": 627.74, + "probability": 0.9604 + }, + { + "start": 627.8, + "end": 629.24, + "probability": 0.9758 + }, + { + "start": 629.8, + "end": 632.08, + "probability": 0.9966 + }, + { + "start": 632.94, + "end": 633.82, + "probability": 0.3896 + }, + { + "start": 635.12, + "end": 635.98, + "probability": 0.9222 + }, + { + "start": 636.7, + "end": 638.14, + "probability": 0.9424 + }, + { + "start": 638.3, + "end": 641.34, + "probability": 0.8805 + }, + { + "start": 642.26, + "end": 644.94, + "probability": 0.9752 + }, + { + "start": 646.14, + "end": 646.84, + "probability": 0.7249 + }, + { + "start": 646.86, + "end": 646.86, + "probability": 0.5757 + }, + { + "start": 646.96, + "end": 648.1, + "probability": 0.7594 + }, + { + "start": 649.02, + "end": 649.58, + "probability": 0.7538 + }, + { + "start": 651.44, + "end": 652.0, + "probability": 0.9828 + }, + { + "start": 653.46, + "end": 655.84, + "probability": 0.9633 + }, + { + "start": 655.92, + "end": 657.42, + "probability": 0.9644 + }, + { + "start": 658.18, + "end": 661.1, + "probability": 0.7599 + }, + { + "start": 661.22, + "end": 664.66, + "probability": 0.5953 + }, + { + "start": 664.94, + "end": 666.22, + "probability": 0.8784 + }, + { + "start": 666.3, + "end": 666.51, + "probability": 0.4786 + }, + { + "start": 667.26, + "end": 668.4, + "probability": 0.9768 + }, + { + "start": 668.5, + "end": 669.48, + "probability": 0.9389 + }, + { + "start": 669.86, + "end": 672.4, + "probability": 0.9093 + }, + { + "start": 673.0, + "end": 673.4, + "probability": 0.8046 + }, + { + "start": 673.96, + "end": 676.96, + "probability": 0.896 + }, + { + "start": 677.62, + "end": 680.24, + "probability": 0.8875 + }, + { + "start": 680.66, + "end": 682.3, + "probability": 0.8191 + }, + { + "start": 682.42, + "end": 685.88, + "probability": 0.9583 + }, + { + "start": 685.92, + "end": 688.9, + "probability": 0.9467 + }, + { + "start": 690.16, + "end": 691.6, + "probability": 0.9586 + }, + { + "start": 692.54, + "end": 693.36, + "probability": 0.8008 + }, + { + "start": 693.44, + "end": 693.6, + "probability": 0.8462 + }, + { + "start": 693.7, + "end": 695.04, + "probability": 0.9656 + }, + { + "start": 695.14, + "end": 698.0, + "probability": 0.9043 + }, + { + "start": 698.12, + "end": 699.4, + "probability": 0.8223 + }, + { + "start": 699.98, + "end": 701.2, + "probability": 0.903 + }, + { + "start": 701.58, + "end": 705.9, + "probability": 0.8321 + }, + { + "start": 706.02, + "end": 707.36, + "probability": 0.998 + }, + { + "start": 707.62, + "end": 710.5, + "probability": 0.8942 + }, + { + "start": 710.62, + "end": 711.36, + "probability": 0.9477 + }, + { + "start": 711.44, + "end": 712.12, + "probability": 0.9014 + }, + { + "start": 712.2, + "end": 713.14, + "probability": 0.9219 + }, + { + "start": 713.42, + "end": 715.28, + "probability": 0.9928 + }, + { + "start": 716.28, + "end": 719.76, + "probability": 0.9962 + }, + { + "start": 720.24, + "end": 721.06, + "probability": 0.8239 + }, + { + "start": 721.94, + "end": 723.24, + "probability": 0.9915 + }, + { + "start": 724.2, + "end": 728.38, + "probability": 0.8455 + }, + { + "start": 729.28, + "end": 731.14, + "probability": 0.5677 + }, + { + "start": 731.14, + "end": 731.84, + "probability": 0.6784 + }, + { + "start": 732.28, + "end": 736.16, + "probability": 0.9794 + }, + { + "start": 736.44, + "end": 737.9, + "probability": 0.9552 + }, + { + "start": 738.52, + "end": 740.38, + "probability": 0.8503 + }, + { + "start": 740.76, + "end": 742.84, + "probability": 0.9639 + }, + { + "start": 742.92, + "end": 743.92, + "probability": 0.9471 + }, + { + "start": 744.14, + "end": 746.06, + "probability": 0.5793 + }, + { + "start": 746.64, + "end": 750.92, + "probability": 0.8443 + }, + { + "start": 752.5, + "end": 755.2, + "probability": 0.5683 + }, + { + "start": 755.28, + "end": 755.74, + "probability": 0.9799 + }, + { + "start": 756.96, + "end": 761.98, + "probability": 0.9891 + }, + { + "start": 762.38, + "end": 766.98, + "probability": 0.9902 + }, + { + "start": 766.98, + "end": 770.8, + "probability": 0.9951 + }, + { + "start": 771.76, + "end": 772.92, + "probability": 0.6694 + }, + { + "start": 773.44, + "end": 775.36, + "probability": 0.9487 + }, + { + "start": 775.9, + "end": 776.38, + "probability": 0.777 + }, + { + "start": 776.44, + "end": 776.68, + "probability": 0.9484 + }, + { + "start": 776.76, + "end": 781.16, + "probability": 0.9957 + }, + { + "start": 781.54, + "end": 783.0, + "probability": 0.9167 + }, + { + "start": 783.32, + "end": 784.08, + "probability": 0.9352 + }, + { + "start": 784.72, + "end": 785.86, + "probability": 0.9143 + }, + { + "start": 786.6, + "end": 786.94, + "probability": 0.7976 + }, + { + "start": 787.28, + "end": 789.96, + "probability": 0.9879 + }, + { + "start": 790.2, + "end": 793.4, + "probability": 0.9948 + }, + { + "start": 794.14, + "end": 794.22, + "probability": 0.1623 + }, + { + "start": 794.26, + "end": 794.66, + "probability": 0.8354 + }, + { + "start": 794.78, + "end": 797.54, + "probability": 0.9897 + }, + { + "start": 798.12, + "end": 800.28, + "probability": 0.9532 + }, + { + "start": 801.56, + "end": 802.44, + "probability": 0.7211 + }, + { + "start": 803.06, + "end": 804.7, + "probability": 0.9384 + }, + { + "start": 804.86, + "end": 806.84, + "probability": 0.6515 + }, + { + "start": 807.14, + "end": 807.86, + "probability": 0.5441 + }, + { + "start": 808.68, + "end": 809.0, + "probability": 0.7764 + }, + { + "start": 809.66, + "end": 811.52, + "probability": 0.6681 + }, + { + "start": 811.62, + "end": 812.78, + "probability": 0.8738 + }, + { + "start": 813.5, + "end": 813.76, + "probability": 0.3462 + }, + { + "start": 813.84, + "end": 814.04, + "probability": 0.845 + }, + { + "start": 814.16, + "end": 816.38, + "probability": 0.9837 + }, + { + "start": 817.24, + "end": 818.1, + "probability": 0.9671 + }, + { + "start": 819.12, + "end": 822.02, + "probability": 0.8969 + }, + { + "start": 823.0, + "end": 824.62, + "probability": 0.6299 + }, + { + "start": 825.36, + "end": 826.78, + "probability": 0.535 + }, + { + "start": 826.94, + "end": 830.84, + "probability": 0.8093 + }, + { + "start": 831.42, + "end": 832.84, + "probability": 0.8972 + }, + { + "start": 832.92, + "end": 834.18, + "probability": 0.9578 + }, + { + "start": 834.56, + "end": 838.44, + "probability": 0.9214 + }, + { + "start": 839.58, + "end": 840.62, + "probability": 0.521 + }, + { + "start": 841.18, + "end": 842.24, + "probability": 0.8211 + }, + { + "start": 842.94, + "end": 843.52, + "probability": 0.8047 + }, + { + "start": 844.3, + "end": 845.98, + "probability": 0.9067 + }, + { + "start": 846.6, + "end": 849.7, + "probability": 0.9739 + }, + { + "start": 850.18, + "end": 851.4, + "probability": 0.6563 + }, + { + "start": 851.48, + "end": 851.74, + "probability": 0.7354 + }, + { + "start": 851.82, + "end": 852.28, + "probability": 0.3946 + }, + { + "start": 853.28, + "end": 855.0, + "probability": 0.9601 + }, + { + "start": 855.12, + "end": 855.94, + "probability": 0.8635 + }, + { + "start": 856.04, + "end": 860.16, + "probability": 0.9772 + }, + { + "start": 860.32, + "end": 861.01, + "probability": 0.9727 + }, + { + "start": 861.62, + "end": 862.48, + "probability": 0.8238 + }, + { + "start": 863.56, + "end": 864.7, + "probability": 0.9746 + }, + { + "start": 864.82, + "end": 865.68, + "probability": 0.6948 + }, + { + "start": 866.14, + "end": 868.56, + "probability": 0.9872 + }, + { + "start": 868.98, + "end": 871.22, + "probability": 0.9263 + }, + { + "start": 871.52, + "end": 872.16, + "probability": 0.9106 + }, + { + "start": 873.94, + "end": 875.23, + "probability": 0.7085 + }, + { + "start": 876.5, + "end": 878.16, + "probability": 0.8808 + }, + { + "start": 879.22, + "end": 880.46, + "probability": 0.9225 + }, + { + "start": 880.68, + "end": 881.88, + "probability": 0.6883 + }, + { + "start": 882.0, + "end": 882.9, + "probability": 0.8979 + }, + { + "start": 884.22, + "end": 887.24, + "probability": 0.8012 + }, + { + "start": 889.64, + "end": 890.64, + "probability": 0.4411 + }, + { + "start": 890.64, + "end": 892.3, + "probability": 0.8017 + }, + { + "start": 892.38, + "end": 893.3, + "probability": 0.9935 + }, + { + "start": 894.08, + "end": 894.92, + "probability": 0.6958 + }, + { + "start": 895.02, + "end": 899.98, + "probability": 0.9617 + }, + { + "start": 900.62, + "end": 900.78, + "probability": 0.7121 + }, + { + "start": 901.74, + "end": 902.9, + "probability": 0.8237 + }, + { + "start": 903.46, + "end": 903.8, + "probability": 0.7455 + }, + { + "start": 903.92, + "end": 904.42, + "probability": 0.6913 + }, + { + "start": 904.56, + "end": 905.58, + "probability": 0.6482 + }, + { + "start": 905.68, + "end": 906.3, + "probability": 0.6821 + }, + { + "start": 906.96, + "end": 909.32, + "probability": 0.9652 + }, + { + "start": 909.98, + "end": 915.52, + "probability": 0.9847 + }, + { + "start": 915.56, + "end": 915.86, + "probability": 0.5255 + }, + { + "start": 916.46, + "end": 917.18, + "probability": 0.7355 + }, + { + "start": 918.26, + "end": 920.8, + "probability": 0.3391 + }, + { + "start": 921.14, + "end": 921.58, + "probability": 0.7604 + }, + { + "start": 921.9, + "end": 923.42, + "probability": 0.9705 + }, + { + "start": 923.94, + "end": 926.0, + "probability": 0.662 + }, + { + "start": 926.88, + "end": 930.22, + "probability": 0.9563 + }, + { + "start": 930.72, + "end": 931.96, + "probability": 0.8055 + }, + { + "start": 932.28, + "end": 932.8, + "probability": 0.5357 + }, + { + "start": 932.88, + "end": 934.94, + "probability": 0.98 + }, + { + "start": 935.78, + "end": 936.52, + "probability": 0.8752 + }, + { + "start": 937.42, + "end": 939.22, + "probability": 0.9531 + }, + { + "start": 940.04, + "end": 944.06, + "probability": 0.987 + }, + { + "start": 944.78, + "end": 945.3, + "probability": 0.946 + }, + { + "start": 945.4, + "end": 945.96, + "probability": 0.5819 + }, + { + "start": 945.96, + "end": 946.28, + "probability": 0.7084 + }, + { + "start": 946.5, + "end": 947.07, + "probability": 0.9683 + }, + { + "start": 947.2, + "end": 947.72, + "probability": 0.9586 + }, + { + "start": 947.82, + "end": 948.64, + "probability": 0.8681 + }, + { + "start": 948.96, + "end": 950.14, + "probability": 0.7695 + }, + { + "start": 950.4, + "end": 951.3, + "probability": 0.904 + }, + { + "start": 952.24, + "end": 954.16, + "probability": 0.9741 + }, + { + "start": 954.18, + "end": 955.24, + "probability": 0.9811 + }, + { + "start": 955.32, + "end": 955.66, + "probability": 0.7426 + }, + { + "start": 955.96, + "end": 956.78, + "probability": 0.713 + }, + { + "start": 957.6, + "end": 958.84, + "probability": 0.7342 + }, + { + "start": 958.9, + "end": 959.22, + "probability": 0.4667 + }, + { + "start": 959.4, + "end": 959.46, + "probability": 0.7994 + }, + { + "start": 959.54, + "end": 960.0, + "probability": 0.8556 + }, + { + "start": 960.0, + "end": 960.26, + "probability": 0.4407 + }, + { + "start": 961.12, + "end": 963.88, + "probability": 0.9207 + }, + { + "start": 963.94, + "end": 964.94, + "probability": 0.6709 + }, + { + "start": 965.06, + "end": 965.44, + "probability": 0.3662 + }, + { + "start": 965.48, + "end": 965.72, + "probability": 0.5285 + }, + { + "start": 965.78, + "end": 966.28, + "probability": 0.6282 + }, + { + "start": 967.22, + "end": 969.66, + "probability": 0.9306 + }, + { + "start": 970.62, + "end": 973.32, + "probability": 0.9508 + }, + { + "start": 974.86, + "end": 975.22, + "probability": 0.6986 + }, + { + "start": 975.3, + "end": 975.86, + "probability": 0.6796 + }, + { + "start": 975.88, + "end": 976.73, + "probability": 0.9746 + }, + { + "start": 977.8, + "end": 980.44, + "probability": 0.9932 + }, + { + "start": 981.66, + "end": 983.9, + "probability": 0.88 + }, + { + "start": 985.0, + "end": 987.5, + "probability": 0.8979 + }, + { + "start": 988.78, + "end": 991.7, + "probability": 0.6889 + }, + { + "start": 992.5, + "end": 994.92, + "probability": 0.891 + }, + { + "start": 995.52, + "end": 997.12, + "probability": 0.7669 + }, + { + "start": 997.64, + "end": 1000.0, + "probability": 0.804 + }, + { + "start": 1000.56, + "end": 1001.52, + "probability": 0.898 + }, + { + "start": 1002.1, + "end": 1002.58, + "probability": 0.9828 + }, + { + "start": 1003.04, + "end": 1005.88, + "probability": 0.9562 + }, + { + "start": 1006.1, + "end": 1007.3, + "probability": 0.782 + }, + { + "start": 1007.92, + "end": 1010.04, + "probability": 0.8698 + }, + { + "start": 1010.66, + "end": 1011.66, + "probability": 0.9275 + }, + { + "start": 1012.0, + "end": 1013.32, + "probability": 0.9064 + }, + { + "start": 1014.04, + "end": 1016.12, + "probability": 0.9881 + }, + { + "start": 1016.66, + "end": 1017.52, + "probability": 0.9875 + }, + { + "start": 1018.4, + "end": 1020.46, + "probability": 0.9875 + }, + { + "start": 1021.52, + "end": 1022.8, + "probability": 0.9391 + }, + { + "start": 1022.9, + "end": 1027.54, + "probability": 0.9379 + }, + { + "start": 1027.62, + "end": 1028.14, + "probability": 0.8341 + }, + { + "start": 1028.74, + "end": 1029.86, + "probability": 0.9031 + }, + { + "start": 1030.5, + "end": 1033.04, + "probability": 0.9928 + }, + { + "start": 1033.74, + "end": 1035.26, + "probability": 0.9488 + }, + { + "start": 1035.8, + "end": 1037.16, + "probability": 0.7441 + }, + { + "start": 1037.52, + "end": 1039.46, + "probability": 0.9966 + }, + { + "start": 1039.96, + "end": 1041.16, + "probability": 0.9409 + }, + { + "start": 1042.06, + "end": 1043.96, + "probability": 0.9895 + }, + { + "start": 1045.04, + "end": 1045.92, + "probability": 0.7429 + }, + { + "start": 1046.34, + "end": 1047.38, + "probability": 0.9795 + }, + { + "start": 1048.06, + "end": 1049.96, + "probability": 0.9339 + }, + { + "start": 1050.64, + "end": 1053.0, + "probability": 0.9831 + }, + { + "start": 1053.98, + "end": 1056.78, + "probability": 0.861 + }, + { + "start": 1057.54, + "end": 1058.68, + "probability": 0.7299 + }, + { + "start": 1059.36, + "end": 1064.02, + "probability": 0.9336 + }, + { + "start": 1064.76, + "end": 1067.64, + "probability": 0.6539 + }, + { + "start": 1068.52, + "end": 1069.1, + "probability": 0.5175 + }, + { + "start": 1069.18, + "end": 1070.23, + "probability": 0.6331 + }, + { + "start": 1070.44, + "end": 1071.82, + "probability": 0.6092 + }, + { + "start": 1072.22, + "end": 1072.78, + "probability": 0.5362 + }, + { + "start": 1072.88, + "end": 1073.64, + "probability": 0.6975 + }, + { + "start": 1073.92, + "end": 1074.98, + "probability": 0.8999 + }, + { + "start": 1075.46, + "end": 1077.78, + "probability": 0.9878 + }, + { + "start": 1077.78, + "end": 1081.2, + "probability": 0.7344 + }, + { + "start": 1082.34, + "end": 1084.7, + "probability": 0.9265 + }, + { + "start": 1085.12, + "end": 1085.62, + "probability": 0.653 + }, + { + "start": 1086.24, + "end": 1089.82, + "probability": 0.9014 + }, + { + "start": 1091.38, + "end": 1092.38, + "probability": 0.9565 + }, + { + "start": 1093.34, + "end": 1094.5, + "probability": 0.8757 + }, + { + "start": 1094.7, + "end": 1100.6, + "probability": 0.9086 + }, + { + "start": 1100.92, + "end": 1101.82, + "probability": 0.9365 + }, + { + "start": 1102.44, + "end": 1103.58, + "probability": 0.959 + }, + { + "start": 1104.38, + "end": 1104.56, + "probability": 0.7065 + }, + { + "start": 1104.6, + "end": 1104.9, + "probability": 0.8507 + }, + { + "start": 1105.0, + "end": 1105.93, + "probability": 0.7412 + }, + { + "start": 1106.36, + "end": 1109.3, + "probability": 0.9972 + }, + { + "start": 1110.02, + "end": 1111.56, + "probability": 0.8823 + }, + { + "start": 1112.7, + "end": 1114.72, + "probability": 0.8784 + }, + { + "start": 1115.04, + "end": 1117.08, + "probability": 0.9685 + }, + { + "start": 1117.44, + "end": 1119.06, + "probability": 0.7451 + }, + { + "start": 1119.52, + "end": 1122.5, + "probability": 0.9904 + }, + { + "start": 1122.9, + "end": 1123.8, + "probability": 0.965 + }, + { + "start": 1123.88, + "end": 1124.14, + "probability": 0.701 + }, + { + "start": 1124.32, + "end": 1124.74, + "probability": 0.7015 + }, + { + "start": 1124.88, + "end": 1125.56, + "probability": 0.7202 + }, + { + "start": 1125.92, + "end": 1127.32, + "probability": 0.9871 + }, + { + "start": 1127.6, + "end": 1127.92, + "probability": 0.7963 + }, + { + "start": 1127.94, + "end": 1128.3, + "probability": 0.569 + }, + { + "start": 1128.38, + "end": 1129.64, + "probability": 0.8271 + }, + { + "start": 1130.28, + "end": 1137.18, + "probability": 0.9097 + }, + { + "start": 1137.92, + "end": 1143.06, + "probability": 0.8082 + }, + { + "start": 1143.7, + "end": 1147.9, + "probability": 0.8449 + }, + { + "start": 1148.48, + "end": 1149.88, + "probability": 0.2132 + }, + { + "start": 1149.96, + "end": 1150.34, + "probability": 0.5111 + }, + { + "start": 1151.96, + "end": 1153.06, + "probability": 0.7782 + }, + { + "start": 1154.06, + "end": 1155.44, + "probability": 0.8605 + }, + { + "start": 1156.1, + "end": 1156.51, + "probability": 0.2193 + }, + { + "start": 1157.32, + "end": 1158.66, + "probability": 0.1524 + }, + { + "start": 1159.22, + "end": 1159.82, + "probability": 0.1311 + }, + { + "start": 1163.4, + "end": 1165.38, + "probability": 0.6036 + }, + { + "start": 1165.7, + "end": 1166.12, + "probability": 0.9047 + }, + { + "start": 1167.24, + "end": 1167.5, + "probability": 0.4847 + }, + { + "start": 1167.56, + "end": 1169.28, + "probability": 0.6147 + }, + { + "start": 1170.58, + "end": 1171.28, + "probability": 0.8014 + }, + { + "start": 1172.76, + "end": 1174.46, + "probability": 0.5387 + }, + { + "start": 1175.48, + "end": 1177.4, + "probability": 0.9912 + }, + { + "start": 1178.78, + "end": 1180.9, + "probability": 0.941 + }, + { + "start": 1181.62, + "end": 1183.9, + "probability": 0.9817 + }, + { + "start": 1184.68, + "end": 1186.54, + "probability": 0.9924 + }, + { + "start": 1187.82, + "end": 1189.58, + "probability": 0.9867 + }, + { + "start": 1190.3, + "end": 1194.62, + "probability": 0.9973 + }, + { + "start": 1195.64, + "end": 1196.14, + "probability": 0.7635 + }, + { + "start": 1196.8, + "end": 1197.38, + "probability": 0.9033 + }, + { + "start": 1199.2, + "end": 1200.66, + "probability": 0.8072 + }, + { + "start": 1202.04, + "end": 1202.18, + "probability": 0.6733 + }, + { + "start": 1202.22, + "end": 1204.72, + "probability": 0.9836 + }, + { + "start": 1204.72, + "end": 1208.26, + "probability": 0.9579 + }, + { + "start": 1208.88, + "end": 1211.32, + "probability": 0.998 + }, + { + "start": 1211.32, + "end": 1214.98, + "probability": 0.9861 + }, + { + "start": 1215.9, + "end": 1217.54, + "probability": 0.9763 + }, + { + "start": 1218.66, + "end": 1222.28, + "probability": 0.9676 + }, + { + "start": 1222.28, + "end": 1227.3, + "probability": 0.9028 + }, + { + "start": 1228.72, + "end": 1233.6, + "probability": 0.9946 + }, + { + "start": 1233.6, + "end": 1237.72, + "probability": 0.992 + }, + { + "start": 1238.08, + "end": 1238.84, + "probability": 0.8215 + }, + { + "start": 1239.6, + "end": 1243.3, + "probability": 0.9311 + }, + { + "start": 1243.3, + "end": 1245.94, + "probability": 0.984 + }, + { + "start": 1247.46, + "end": 1248.52, + "probability": 0.7423 + }, + { + "start": 1249.44, + "end": 1251.78, + "probability": 0.9037 + }, + { + "start": 1252.88, + "end": 1255.52, + "probability": 0.9282 + }, + { + "start": 1257.1, + "end": 1259.36, + "probability": 0.7579 + }, + { + "start": 1260.0, + "end": 1261.26, + "probability": 0.5477 + }, + { + "start": 1262.64, + "end": 1263.84, + "probability": 0.9963 + }, + { + "start": 1265.06, + "end": 1268.3, + "probability": 0.8631 + }, + { + "start": 1269.14, + "end": 1271.48, + "probability": 0.7237 + }, + { + "start": 1272.58, + "end": 1273.32, + "probability": 0.9879 + }, + { + "start": 1273.98, + "end": 1275.52, + "probability": 0.9065 + }, + { + "start": 1277.54, + "end": 1279.66, + "probability": 0.953 + }, + { + "start": 1280.6, + "end": 1282.0, + "probability": 0.8678 + }, + { + "start": 1282.48, + "end": 1284.22, + "probability": 0.7658 + }, + { + "start": 1285.04, + "end": 1286.78, + "probability": 0.791 + }, + { + "start": 1288.04, + "end": 1289.46, + "probability": 0.9556 + }, + { + "start": 1290.5, + "end": 1291.5, + "probability": 0.9922 + }, + { + "start": 1292.46, + "end": 1298.3, + "probability": 0.9733 + }, + { + "start": 1299.06, + "end": 1300.79, + "probability": 0.978 + }, + { + "start": 1301.96, + "end": 1303.94, + "probability": 0.7698 + }, + { + "start": 1305.0, + "end": 1306.92, + "probability": 0.8477 + }, + { + "start": 1307.78, + "end": 1309.58, + "probability": 0.9741 + }, + { + "start": 1309.98, + "end": 1310.18, + "probability": 0.6291 + }, + { + "start": 1311.08, + "end": 1312.32, + "probability": 0.9111 + }, + { + "start": 1313.32, + "end": 1316.94, + "probability": 0.9674 + }, + { + "start": 1317.86, + "end": 1318.76, + "probability": 0.9766 + }, + { + "start": 1319.5, + "end": 1321.82, + "probability": 0.9985 + }, + { + "start": 1322.36, + "end": 1323.18, + "probability": 0.7835 + }, + { + "start": 1324.26, + "end": 1327.06, + "probability": 0.9258 + }, + { + "start": 1327.7, + "end": 1329.2, + "probability": 0.7945 + }, + { + "start": 1330.4, + "end": 1331.98, + "probability": 0.7161 + }, + { + "start": 1332.94, + "end": 1334.22, + "probability": 0.9199 + }, + { + "start": 1335.02, + "end": 1336.02, + "probability": 0.8213 + }, + { + "start": 1337.16, + "end": 1340.32, + "probability": 0.9016 + }, + { + "start": 1341.3, + "end": 1344.06, + "probability": 0.9836 + }, + { + "start": 1344.94, + "end": 1349.66, + "probability": 0.7796 + }, + { + "start": 1350.44, + "end": 1351.88, + "probability": 0.9863 + }, + { + "start": 1352.84, + "end": 1354.42, + "probability": 0.9253 + }, + { + "start": 1355.2, + "end": 1355.86, + "probability": 0.8361 + }, + { + "start": 1356.68, + "end": 1360.46, + "probability": 0.9803 + }, + { + "start": 1362.2, + "end": 1364.56, + "probability": 0.9954 + }, + { + "start": 1365.12, + "end": 1366.16, + "probability": 0.9871 + }, + { + "start": 1367.16, + "end": 1367.66, + "probability": 0.9995 + }, + { + "start": 1368.8, + "end": 1369.96, + "probability": 0.9988 + }, + { + "start": 1370.86, + "end": 1371.4, + "probability": 0.9638 + }, + { + "start": 1372.48, + "end": 1374.86, + "probability": 0.9972 + }, + { + "start": 1375.82, + "end": 1378.06, + "probability": 0.8394 + }, + { + "start": 1378.88, + "end": 1379.94, + "probability": 0.9982 + }, + { + "start": 1380.72, + "end": 1382.1, + "probability": 1.0 + }, + { + "start": 1383.44, + "end": 1384.28, + "probability": 0.9989 + }, + { + "start": 1384.9, + "end": 1388.88, + "probability": 0.8569 + }, + { + "start": 1389.7, + "end": 1390.6, + "probability": 0.6347 + }, + { + "start": 1391.72, + "end": 1393.22, + "probability": 0.9969 + }, + { + "start": 1394.02, + "end": 1396.84, + "probability": 0.9884 + }, + { + "start": 1397.94, + "end": 1399.28, + "probability": 0.9551 + }, + { + "start": 1399.96, + "end": 1401.98, + "probability": 0.9625 + }, + { + "start": 1402.58, + "end": 1403.54, + "probability": 0.998 + }, + { + "start": 1404.78, + "end": 1405.5, + "probability": 0.9995 + }, + { + "start": 1406.26, + "end": 1407.5, + "probability": 0.9997 + }, + { + "start": 1409.72, + "end": 1410.6, + "probability": 0.839 + }, + { + "start": 1411.12, + "end": 1411.7, + "probability": 0.8855 + }, + { + "start": 1412.52, + "end": 1415.02, + "probability": 0.9935 + }, + { + "start": 1416.38, + "end": 1419.52, + "probability": 0.9932 + }, + { + "start": 1420.52, + "end": 1421.52, + "probability": 0.6632 + }, + { + "start": 1422.54, + "end": 1423.12, + "probability": 0.998 + }, + { + "start": 1424.06, + "end": 1425.78, + "probability": 0.6607 + }, + { + "start": 1426.42, + "end": 1427.44, + "probability": 0.5754 + }, + { + "start": 1428.24, + "end": 1430.2, + "probability": 0.9824 + }, + { + "start": 1430.84, + "end": 1432.22, + "probability": 0.925 + }, + { + "start": 1433.18, + "end": 1435.96, + "probability": 0.938 + }, + { + "start": 1436.96, + "end": 1439.8, + "probability": 0.9929 + }, + { + "start": 1441.08, + "end": 1444.42, + "probability": 0.9312 + }, + { + "start": 1445.86, + "end": 1447.48, + "probability": 0.1937 + }, + { + "start": 1448.02, + "end": 1451.26, + "probability": 0.8288 + }, + { + "start": 1451.8, + "end": 1452.86, + "probability": 0.981 + }, + { + "start": 1454.08, + "end": 1455.72, + "probability": 0.9365 + }, + { + "start": 1456.88, + "end": 1458.1, + "probability": 0.3969 + }, + { + "start": 1458.96, + "end": 1460.32, + "probability": 0.7025 + }, + { + "start": 1460.98, + "end": 1462.7, + "probability": 0.7979 + }, + { + "start": 1463.76, + "end": 1466.58, + "probability": 0.9951 + }, + { + "start": 1467.46, + "end": 1469.42, + "probability": 0.4495 + }, + { + "start": 1470.14, + "end": 1473.72, + "probability": 0.9363 + }, + { + "start": 1474.24, + "end": 1475.16, + "probability": 0.8491 + }, + { + "start": 1476.24, + "end": 1477.04, + "probability": 0.9549 + }, + { + "start": 1477.84, + "end": 1480.54, + "probability": 0.9995 + }, + { + "start": 1482.64, + "end": 1483.8, + "probability": 0.8321 + }, + { + "start": 1484.7, + "end": 1488.92, + "probability": 0.9658 + }, + { + "start": 1489.54, + "end": 1491.44, + "probability": 0.9142 + }, + { + "start": 1492.24, + "end": 1493.1, + "probability": 0.9164 + }, + { + "start": 1494.28, + "end": 1496.44, + "probability": 0.978 + }, + { + "start": 1496.66, + "end": 1498.96, + "probability": 0.7453 + }, + { + "start": 1499.88, + "end": 1501.98, + "probability": 0.9692 + }, + { + "start": 1502.64, + "end": 1503.54, + "probability": 0.7154 + }, + { + "start": 1504.42, + "end": 1505.11, + "probability": 0.7496 + }, + { + "start": 1507.1, + "end": 1510.28, + "probability": 0.9396 + }, + { + "start": 1511.38, + "end": 1514.3, + "probability": 0.8681 + }, + { + "start": 1515.52, + "end": 1516.4, + "probability": 0.8531 + }, + { + "start": 1517.12, + "end": 1520.2, + "probability": 0.991 + }, + { + "start": 1520.9, + "end": 1522.68, + "probability": 0.9959 + }, + { + "start": 1524.02, + "end": 1527.02, + "probability": 0.9329 + }, + { + "start": 1528.02, + "end": 1530.49, + "probability": 0.5833 + }, + { + "start": 1532.12, + "end": 1536.24, + "probability": 0.9167 + }, + { + "start": 1536.24, + "end": 1540.42, + "probability": 0.8241 + }, + { + "start": 1541.32, + "end": 1542.44, + "probability": 0.9938 + }, + { + "start": 1543.48, + "end": 1547.1, + "probability": 0.9463 + }, + { + "start": 1547.72, + "end": 1552.78, + "probability": 0.992 + }, + { + "start": 1553.34, + "end": 1555.2, + "probability": 0.9895 + }, + { + "start": 1555.94, + "end": 1556.55, + "probability": 0.786 + }, + { + "start": 1557.84, + "end": 1560.26, + "probability": 0.8866 + }, + { + "start": 1562.48, + "end": 1563.14, + "probability": 0.8247 + }, + { + "start": 1563.94, + "end": 1565.46, + "probability": 0.8066 + }, + { + "start": 1566.8, + "end": 1569.32, + "probability": 0.9897 + }, + { + "start": 1569.32, + "end": 1571.26, + "probability": 0.9876 + }, + { + "start": 1573.5, + "end": 1575.26, + "probability": 0.9692 + }, + { + "start": 1576.1, + "end": 1577.04, + "probability": 0.9392 + }, + { + "start": 1578.22, + "end": 1579.26, + "probability": 0.9773 + }, + { + "start": 1580.04, + "end": 1583.06, + "probability": 0.9386 + }, + { + "start": 1584.32, + "end": 1585.7, + "probability": 0.7049 + }, + { + "start": 1586.68, + "end": 1590.72, + "probability": 0.9191 + }, + { + "start": 1591.78, + "end": 1592.26, + "probability": 0.2563 + }, + { + "start": 1593.14, + "end": 1595.94, + "probability": 0.9502 + }, + { + "start": 1596.54, + "end": 1599.24, + "probability": 0.9846 + }, + { + "start": 1600.7, + "end": 1603.0, + "probability": 0.9365 + }, + { + "start": 1603.86, + "end": 1607.3, + "probability": 0.9248 + }, + { + "start": 1607.3, + "end": 1610.7, + "probability": 0.9901 + }, + { + "start": 1611.74, + "end": 1615.28, + "probability": 0.9798 + }, + { + "start": 1616.16, + "end": 1616.22, + "probability": 0.4199 + }, + { + "start": 1616.36, + "end": 1618.22, + "probability": 0.9514 + }, + { + "start": 1618.32, + "end": 1619.26, + "probability": 0.9839 + }, + { + "start": 1620.06, + "end": 1622.74, + "probability": 0.9166 + }, + { + "start": 1623.88, + "end": 1627.08, + "probability": 0.9891 + }, + { + "start": 1634.24, + "end": 1637.27, + "probability": 0.9791 + }, + { + "start": 1637.52, + "end": 1640.24, + "probability": 0.9902 + }, + { + "start": 1641.24, + "end": 1644.24, + "probability": 0.7652 + }, + { + "start": 1645.0, + "end": 1648.6, + "probability": 0.9204 + }, + { + "start": 1649.42, + "end": 1650.68, + "probability": 0.7759 + }, + { + "start": 1651.38, + "end": 1655.58, + "probability": 0.7009 + }, + { + "start": 1657.18, + "end": 1658.64, + "probability": 0.5731 + }, + { + "start": 1659.6, + "end": 1661.5, + "probability": 0.9385 + }, + { + "start": 1662.22, + "end": 1663.46, + "probability": 0.681 + }, + { + "start": 1664.48, + "end": 1665.88, + "probability": 0.9601 + }, + { + "start": 1666.96, + "end": 1670.0, + "probability": 0.9575 + }, + { + "start": 1671.08, + "end": 1673.34, + "probability": 0.7143 + }, + { + "start": 1674.6, + "end": 1675.64, + "probability": 0.991 + }, + { + "start": 1676.38, + "end": 1679.88, + "probability": 0.988 + }, + { + "start": 1681.78, + "end": 1682.72, + "probability": 0.8984 + }, + { + "start": 1683.72, + "end": 1687.6, + "probability": 0.8579 + }, + { + "start": 1688.28, + "end": 1690.38, + "probability": 0.8524 + }, + { + "start": 1691.22, + "end": 1693.4, + "probability": 0.857 + }, + { + "start": 1694.18, + "end": 1695.68, + "probability": 0.9052 + }, + { + "start": 1696.3, + "end": 1697.68, + "probability": 0.976 + }, + { + "start": 1698.24, + "end": 1701.66, + "probability": 0.9849 + }, + { + "start": 1702.34, + "end": 1707.32, + "probability": 0.9942 + }, + { + "start": 1709.26, + "end": 1712.56, + "probability": 0.9905 + }, + { + "start": 1714.0, + "end": 1715.82, + "probability": 0.9947 + }, + { + "start": 1717.06, + "end": 1718.34, + "probability": 0.9081 + }, + { + "start": 1719.48, + "end": 1721.64, + "probability": 0.9976 + }, + { + "start": 1723.16, + "end": 1725.2, + "probability": 0.9536 + }, + { + "start": 1725.3, + "end": 1725.72, + "probability": 0.9663 + }, + { + "start": 1726.7, + "end": 1729.54, + "probability": 0.9326 + }, + { + "start": 1730.1, + "end": 1731.16, + "probability": 0.9844 + }, + { + "start": 1732.18, + "end": 1732.92, + "probability": 0.8392 + }, + { + "start": 1734.14, + "end": 1736.98, + "probability": 0.9834 + }, + { + "start": 1737.8, + "end": 1739.32, + "probability": 0.6881 + }, + { + "start": 1742.16, + "end": 1745.72, + "probability": 0.9689 + }, + { + "start": 1746.96, + "end": 1747.78, + "probability": 0.941 + }, + { + "start": 1748.38, + "end": 1750.9, + "probability": 0.8582 + }, + { + "start": 1751.62, + "end": 1752.7, + "probability": 0.9128 + }, + { + "start": 1754.06, + "end": 1754.98, + "probability": 0.9318 + }, + { + "start": 1756.38, + "end": 1757.42, + "probability": 0.9119 + }, + { + "start": 1757.94, + "end": 1758.62, + "probability": 0.6462 + }, + { + "start": 1759.58, + "end": 1761.2, + "probability": 0.9441 + }, + { + "start": 1762.98, + "end": 1767.32, + "probability": 0.9812 + }, + { + "start": 1768.52, + "end": 1774.04, + "probability": 0.9338 + }, + { + "start": 1774.04, + "end": 1776.68, + "probability": 0.999 + }, + { + "start": 1777.46, + "end": 1777.68, + "probability": 0.5543 + }, + { + "start": 1777.84, + "end": 1779.4, + "probability": 0.9524 + }, + { + "start": 1779.56, + "end": 1781.28, + "probability": 0.9624 + }, + { + "start": 1782.18, + "end": 1784.64, + "probability": 0.8799 + }, + { + "start": 1785.6, + "end": 1788.02, + "probability": 0.7597 + }, + { + "start": 1788.78, + "end": 1789.94, + "probability": 0.9273 + }, + { + "start": 1790.68, + "end": 1794.12, + "probability": 0.9879 + }, + { + "start": 1794.12, + "end": 1798.86, + "probability": 0.9707 + }, + { + "start": 1799.42, + "end": 1800.28, + "probability": 0.8004 + }, + { + "start": 1803.12, + "end": 1804.28, + "probability": 0.7047 + }, + { + "start": 1804.28, + "end": 1805.08, + "probability": 0.2757 + }, + { + "start": 1806.02, + "end": 1808.0, + "probability": 0.9491 + }, + { + "start": 1808.74, + "end": 1810.68, + "probability": 0.8869 + }, + { + "start": 1811.36, + "end": 1814.56, + "probability": 0.9904 + }, + { + "start": 1814.68, + "end": 1815.34, + "probability": 0.9343 + }, + { + "start": 1816.32, + "end": 1816.56, + "probability": 0.099 + }, + { + "start": 1817.18, + "end": 1820.68, + "probability": 0.9818 + }, + { + "start": 1821.64, + "end": 1823.14, + "probability": 0.8845 + }, + { + "start": 1824.82, + "end": 1825.96, + "probability": 0.7808 + }, + { + "start": 1826.98, + "end": 1828.02, + "probability": 0.9956 + }, + { + "start": 1828.8, + "end": 1830.92, + "probability": 0.9894 + }, + { + "start": 1831.56, + "end": 1833.21, + "probability": 0.8612 + }, + { + "start": 1833.4, + "end": 1833.62, + "probability": 0.6929 + }, + { + "start": 1834.4, + "end": 1838.9, + "probability": 0.687 + }, + { + "start": 1840.34, + "end": 1842.3, + "probability": 0.9696 + }, + { + "start": 1843.92, + "end": 1844.9, + "probability": 0.9117 + }, + { + "start": 1845.66, + "end": 1847.4, + "probability": 0.9922 + }, + { + "start": 1848.28, + "end": 1848.96, + "probability": 0.9819 + }, + { + "start": 1849.4, + "end": 1853.36, + "probability": 0.9112 + }, + { + "start": 1854.1, + "end": 1855.1, + "probability": 0.8117 + }, + { + "start": 1856.32, + "end": 1860.0, + "probability": 0.9279 + }, + { + "start": 1860.8, + "end": 1861.76, + "probability": 0.971 + }, + { + "start": 1862.46, + "end": 1865.0, + "probability": 0.9915 + }, + { + "start": 1866.22, + "end": 1866.88, + "probability": 0.701 + }, + { + "start": 1868.32, + "end": 1870.52, + "probability": 0.761 + }, + { + "start": 1871.5, + "end": 1874.54, + "probability": 0.9867 + }, + { + "start": 1876.12, + "end": 1878.24, + "probability": 0.741 + }, + { + "start": 1879.3, + "end": 1881.66, + "probability": 0.6266 + }, + { + "start": 1882.38, + "end": 1883.6, + "probability": 0.7834 + }, + { + "start": 1884.72, + "end": 1885.88, + "probability": 0.9938 + }, + { + "start": 1886.92, + "end": 1888.8, + "probability": 0.9821 + }, + { + "start": 1888.86, + "end": 1891.7, + "probability": 0.7392 + }, + { + "start": 1892.52, + "end": 1896.68, + "probability": 0.9612 + }, + { + "start": 1897.2, + "end": 1898.02, + "probability": 0.9121 + }, + { + "start": 1899.1, + "end": 1900.28, + "probability": 0.8729 + }, + { + "start": 1901.48, + "end": 1902.88, + "probability": 0.9966 + }, + { + "start": 1903.48, + "end": 1908.64, + "probability": 0.9961 + }, + { + "start": 1909.18, + "end": 1910.72, + "probability": 0.9976 + }, + { + "start": 1911.54, + "end": 1912.52, + "probability": 0.7711 + }, + { + "start": 1913.6, + "end": 1918.66, + "probability": 0.9368 + }, + { + "start": 1919.48, + "end": 1920.64, + "probability": 0.8116 + }, + { + "start": 1921.44, + "end": 1923.18, + "probability": 0.6952 + }, + { + "start": 1923.24, + "end": 1924.34, + "probability": 0.7792 + }, + { + "start": 1924.84, + "end": 1926.3, + "probability": 0.976 + }, + { + "start": 1926.42, + "end": 1927.2, + "probability": 0.5537 + }, + { + "start": 1928.1, + "end": 1929.32, + "probability": 0.9487 + }, + { + "start": 1929.94, + "end": 1930.66, + "probability": 0.9133 + }, + { + "start": 1931.8, + "end": 1937.16, + "probability": 0.9678 + }, + { + "start": 1937.92, + "end": 1938.41, + "probability": 0.978 + }, + { + "start": 1939.08, + "end": 1941.22, + "probability": 0.7292 + }, + { + "start": 1942.04, + "end": 1943.72, + "probability": 0.6714 + }, + { + "start": 1945.06, + "end": 1947.42, + "probability": 0.8057 + }, + { + "start": 1948.52, + "end": 1950.68, + "probability": 0.9686 + }, + { + "start": 1951.38, + "end": 1952.34, + "probability": 0.8126 + }, + { + "start": 1952.92, + "end": 1954.42, + "probability": 0.7932 + }, + { + "start": 1954.82, + "end": 1955.52, + "probability": 0.8878 + }, + { + "start": 1956.5, + "end": 1958.28, + "probability": 0.9781 + }, + { + "start": 1958.74, + "end": 1961.9, + "probability": 0.833 + }, + { + "start": 1962.68, + "end": 1966.68, + "probability": 0.9842 + }, + { + "start": 1967.54, + "end": 1970.5, + "probability": 0.8708 + }, + { + "start": 1971.02, + "end": 1971.84, + "probability": 0.9756 + }, + { + "start": 1972.6, + "end": 1974.16, + "probability": 0.9952 + }, + { + "start": 1974.68, + "end": 1975.84, + "probability": 0.9325 + }, + { + "start": 1977.12, + "end": 1978.24, + "probability": 0.9823 + }, + { + "start": 1979.2, + "end": 1982.02, + "probability": 0.7816 + }, + { + "start": 1982.82, + "end": 1989.42, + "probability": 0.9915 + }, + { + "start": 1989.7, + "end": 1990.02, + "probability": 0.3347 + }, + { + "start": 1990.34, + "end": 1991.2, + "probability": 0.8934 + }, + { + "start": 1991.2, + "end": 1992.14, + "probability": 0.597 + }, + { + "start": 1994.88, + "end": 1996.78, + "probability": 0.9985 + }, + { + "start": 1997.9, + "end": 1999.66, + "probability": 0.9846 + }, + { + "start": 2000.54, + "end": 2001.88, + "probability": 0.7554 + }, + { + "start": 2002.7, + "end": 2005.76, + "probability": 0.9038 + }, + { + "start": 2006.42, + "end": 2011.4, + "probability": 0.9883 + }, + { + "start": 2011.9, + "end": 2012.86, + "probability": 0.8883 + }, + { + "start": 2014.02, + "end": 2014.76, + "probability": 0.998 + }, + { + "start": 2015.58, + "end": 2020.42, + "probability": 0.9946 + }, + { + "start": 2021.44, + "end": 2027.02, + "probability": 0.9956 + }, + { + "start": 2027.74, + "end": 2029.5, + "probability": 0.9988 + }, + { + "start": 2030.78, + "end": 2031.9, + "probability": 0.8131 + }, + { + "start": 2032.78, + "end": 2037.42, + "probability": 0.9139 + }, + { + "start": 2037.82, + "end": 2039.72, + "probability": 0.9883 + }, + { + "start": 2039.8, + "end": 2040.78, + "probability": 0.7676 + }, + { + "start": 2042.34, + "end": 2044.8, + "probability": 0.9805 + }, + { + "start": 2045.28, + "end": 2046.72, + "probability": 0.9842 + }, + { + "start": 2046.72, + "end": 2046.82, + "probability": 0.2109 + }, + { + "start": 2047.44, + "end": 2048.98, + "probability": 0.7373 + }, + { + "start": 2049.88, + "end": 2050.68, + "probability": 0.4265 + }, + { + "start": 2051.44, + "end": 2053.24, + "probability": 0.9963 + }, + { + "start": 2053.82, + "end": 2059.26, + "probability": 0.9701 + }, + { + "start": 2059.4, + "end": 2059.6, + "probability": 0.8364 + }, + { + "start": 2059.84, + "end": 2060.32, + "probability": 0.7798 + }, + { + "start": 2061.0, + "end": 2065.0, + "probability": 0.8491 + }, + { + "start": 2065.14, + "end": 2068.66, + "probability": 0.9232 + }, + { + "start": 2069.38, + "end": 2074.6, + "probability": 0.9719 + }, + { + "start": 2075.09, + "end": 2079.4, + "probability": 0.9871 + }, + { + "start": 2080.3, + "end": 2080.68, + "probability": 0.0729 + }, + { + "start": 2080.68, + "end": 2083.9, + "probability": 0.8717 + }, + { + "start": 2085.4, + "end": 2089.08, + "probability": 0.981 + }, + { + "start": 2091.8, + "end": 2093.06, + "probability": 0.6226 + }, + { + "start": 2094.18, + "end": 2095.06, + "probability": 0.3546 + }, + { + "start": 2095.06, + "end": 2099.68, + "probability": 0.9849 + }, + { + "start": 2099.68, + "end": 2106.6, + "probability": 0.8821 + }, + { + "start": 2106.84, + "end": 2107.1, + "probability": 0.6782 + }, + { + "start": 2108.24, + "end": 2112.04, + "probability": 0.9907 + }, + { + "start": 2113.08, + "end": 2119.26, + "probability": 0.9923 + }, + { + "start": 2119.94, + "end": 2122.12, + "probability": 0.7609 + }, + { + "start": 2122.5, + "end": 2126.16, + "probability": 0.6047 + }, + { + "start": 2126.4, + "end": 2128.1, + "probability": 0.9954 + }, + { + "start": 2128.26, + "end": 2128.34, + "probability": 0.5825 + }, + { + "start": 2128.44, + "end": 2128.7, + "probability": 0.4931 + }, + { + "start": 2128.74, + "end": 2129.26, + "probability": 0.6788 + }, + { + "start": 2129.66, + "end": 2130.38, + "probability": 0.4971 + }, + { + "start": 2130.46, + "end": 2131.78, + "probability": 0.9345 + }, + { + "start": 2131.86, + "end": 2132.96, + "probability": 0.7336 + }, + { + "start": 2133.08, + "end": 2134.26, + "probability": 0.765 + }, + { + "start": 2134.32, + "end": 2139.72, + "probability": 0.9929 + }, + { + "start": 2140.4, + "end": 2142.82, + "probability": 0.9274 + }, + { + "start": 2143.04, + "end": 2145.6, + "probability": 0.9909 + }, + { + "start": 2146.16, + "end": 2148.4, + "probability": 0.9974 + }, + { + "start": 2148.94, + "end": 2152.88, + "probability": 0.9672 + }, + { + "start": 2153.06, + "end": 2154.1, + "probability": 0.4396 + }, + { + "start": 2154.26, + "end": 2154.84, + "probability": 0.3997 + }, + { + "start": 2154.94, + "end": 2157.4, + "probability": 0.7701 + }, + { + "start": 2157.4, + "end": 2158.64, + "probability": 0.9546 + }, + { + "start": 2158.78, + "end": 2159.26, + "probability": 0.7685 + }, + { + "start": 2159.46, + "end": 2160.48, + "probability": 0.662 + }, + { + "start": 2160.56, + "end": 2161.64, + "probability": 0.4874 + }, + { + "start": 2161.66, + "end": 2162.72, + "probability": 0.6569 + }, + { + "start": 2163.04, + "end": 2165.22, + "probability": 0.5923 + }, + { + "start": 2165.22, + "end": 2165.64, + "probability": 0.1939 + }, + { + "start": 2165.72, + "end": 2167.66, + "probability": 0.7449 + }, + { + "start": 2167.66, + "end": 2168.49, + "probability": 0.7713 + }, + { + "start": 2168.74, + "end": 2170.3, + "probability": 0.9927 + }, + { + "start": 2170.68, + "end": 2172.69, + "probability": 0.9976 + }, + { + "start": 2173.44, + "end": 2176.52, + "probability": 0.989 + }, + { + "start": 2176.72, + "end": 2179.92, + "probability": 0.9932 + }, + { + "start": 2180.2, + "end": 2182.0, + "probability": 0.9883 + }, + { + "start": 2182.54, + "end": 2185.3, + "probability": 0.9961 + }, + { + "start": 2185.82, + "end": 2189.16, + "probability": 0.9324 + }, + { + "start": 2189.52, + "end": 2193.08, + "probability": 0.9935 + }, + { + "start": 2193.64, + "end": 2194.64, + "probability": 0.8565 + }, + { + "start": 2194.7, + "end": 2198.1, + "probability": 0.917 + }, + { + "start": 2198.5, + "end": 2200.08, + "probability": 0.6946 + }, + { + "start": 2200.46, + "end": 2201.0, + "probability": 0.7786 + }, + { + "start": 2201.22, + "end": 2208.4, + "probability": 0.9783 + }, + { + "start": 2208.46, + "end": 2213.1, + "probability": 0.9934 + }, + { + "start": 2213.32, + "end": 2215.22, + "probability": 0.8857 + }, + { + "start": 2215.82, + "end": 2221.14, + "probability": 0.912 + }, + { + "start": 2221.5, + "end": 2221.5, + "probability": 0.5911 + }, + { + "start": 2221.76, + "end": 2222.51, + "probability": 0.7327 + }, + { + "start": 2222.7, + "end": 2223.98, + "probability": 0.5967 + }, + { + "start": 2224.62, + "end": 2225.96, + "probability": 0.4112 + }, + { + "start": 2226.36, + "end": 2229.46, + "probability": 0.7583 + }, + { + "start": 2230.3, + "end": 2232.12, + "probability": 0.677 + }, + { + "start": 2232.5, + "end": 2234.72, + "probability": 0.011 + }, + { + "start": 2235.96, + "end": 2236.26, + "probability": 0.3769 + }, + { + "start": 2236.32, + "end": 2239.48, + "probability": 0.7195 + }, + { + "start": 2244.58, + "end": 2247.74, + "probability": 0.9609 + }, + { + "start": 2247.74, + "end": 2251.8, + "probability": 0.995 + }, + { + "start": 2251.9, + "end": 2257.04, + "probability": 0.9021 + }, + { + "start": 2257.22, + "end": 2258.64, + "probability": 0.8468 + }, + { + "start": 2258.78, + "end": 2264.32, + "probability": 0.9924 + }, + { + "start": 2265.06, + "end": 2268.32, + "probability": 0.9984 + }, + { + "start": 2268.42, + "end": 2269.82, + "probability": 0.9929 + }, + { + "start": 2270.72, + "end": 2271.44, + "probability": 0.9925 + }, + { + "start": 2272.22, + "end": 2274.7, + "probability": 0.9919 + }, + { + "start": 2275.66, + "end": 2279.36, + "probability": 0.7887 + }, + { + "start": 2279.62, + "end": 2280.76, + "probability": 0.6973 + }, + { + "start": 2280.94, + "end": 2283.06, + "probability": 0.8248 + }, + { + "start": 2283.22, + "end": 2284.14, + "probability": 0.6745 + }, + { + "start": 2284.22, + "end": 2285.04, + "probability": 0.9291 + }, + { + "start": 2285.22, + "end": 2289.08, + "probability": 0.9812 + }, + { + "start": 2289.46, + "end": 2290.38, + "probability": 0.9667 + }, + { + "start": 2290.5, + "end": 2293.5, + "probability": 0.9961 + }, + { + "start": 2294.54, + "end": 2299.66, + "probability": 0.9099 + }, + { + "start": 2300.34, + "end": 2301.3, + "probability": 0.6138 + }, + { + "start": 2301.42, + "end": 2302.14, + "probability": 0.9069 + }, + { + "start": 2302.18, + "end": 2307.92, + "probability": 0.9944 + }, + { + "start": 2308.04, + "end": 2311.86, + "probability": 0.9971 + }, + { + "start": 2311.86, + "end": 2315.8, + "probability": 0.9257 + }, + { + "start": 2316.0, + "end": 2316.84, + "probability": 0.8108 + }, + { + "start": 2317.42, + "end": 2319.34, + "probability": 0.8963 + }, + { + "start": 2319.42, + "end": 2323.68, + "probability": 0.9212 + }, + { + "start": 2323.84, + "end": 2327.16, + "probability": 0.7977 + }, + { + "start": 2327.92, + "end": 2332.74, + "probability": 0.8578 + }, + { + "start": 2333.54, + "end": 2338.46, + "probability": 0.9824 + }, + { + "start": 2338.58, + "end": 2338.88, + "probability": 0.697 + }, + { + "start": 2338.98, + "end": 2340.18, + "probability": 0.9506 + }, + { + "start": 2340.66, + "end": 2345.9, + "probability": 0.9709 + }, + { + "start": 2345.98, + "end": 2346.74, + "probability": 0.8432 + }, + { + "start": 2346.8, + "end": 2348.1, + "probability": 0.7577 + }, + { + "start": 2348.66, + "end": 2352.3, + "probability": 0.9632 + }, + { + "start": 2352.82, + "end": 2358.48, + "probability": 0.9527 + }, + { + "start": 2358.72, + "end": 2361.4, + "probability": 0.6154 + }, + { + "start": 2361.98, + "end": 2363.0, + "probability": 0.5518 + }, + { + "start": 2363.14, + "end": 2365.54, + "probability": 0.9717 + }, + { + "start": 2365.68, + "end": 2368.34, + "probability": 0.9448 + }, + { + "start": 2368.62, + "end": 2373.22, + "probability": 0.9235 + }, + { + "start": 2373.22, + "end": 2378.32, + "probability": 0.9586 + }, + { + "start": 2378.8, + "end": 2380.05, + "probability": 0.9956 + }, + { + "start": 2381.76, + "end": 2382.76, + "probability": 0.8475 + }, + { + "start": 2383.46, + "end": 2389.88, + "probability": 0.9978 + }, + { + "start": 2390.86, + "end": 2395.1, + "probability": 0.9979 + }, + { + "start": 2395.1, + "end": 2399.36, + "probability": 0.9938 + }, + { + "start": 2399.4, + "end": 2402.06, + "probability": 0.8835 + }, + { + "start": 2402.26, + "end": 2405.24, + "probability": 0.9683 + }, + { + "start": 2405.32, + "end": 2405.68, + "probability": 0.4558 + }, + { + "start": 2406.34, + "end": 2409.02, + "probability": 0.9909 + }, + { + "start": 2409.06, + "end": 2410.52, + "probability": 0.833 + }, + { + "start": 2411.26, + "end": 2416.0, + "probability": 0.9586 + }, + { + "start": 2416.52, + "end": 2421.1, + "probability": 0.9948 + }, + { + "start": 2422.92, + "end": 2429.1, + "probability": 0.9806 + }, + { + "start": 2429.36, + "end": 2432.32, + "probability": 0.9849 + }, + { + "start": 2433.68, + "end": 2439.75, + "probability": 0.7136 + }, + { + "start": 2440.58, + "end": 2444.76, + "probability": 0.9803 + }, + { + "start": 2444.84, + "end": 2448.38, + "probability": 0.955 + }, + { + "start": 2448.66, + "end": 2448.8, + "probability": 0.2822 + }, + { + "start": 2449.08, + "end": 2449.98, + "probability": 0.907 + }, + { + "start": 2450.08, + "end": 2453.32, + "probability": 0.9658 + }, + { + "start": 2453.42, + "end": 2455.98, + "probability": 0.9495 + }, + { + "start": 2455.98, + "end": 2462.6, + "probability": 0.9869 + }, + { + "start": 2462.64, + "end": 2466.9, + "probability": 0.9919 + }, + { + "start": 2467.57, + "end": 2470.06, + "probability": 0.8032 + }, + { + "start": 2470.18, + "end": 2471.16, + "probability": 0.9672 + }, + { + "start": 2471.3, + "end": 2472.28, + "probability": 0.9069 + }, + { + "start": 2473.04, + "end": 2476.22, + "probability": 0.9941 + }, + { + "start": 2476.68, + "end": 2481.54, + "probability": 0.9603 + }, + { + "start": 2481.92, + "end": 2484.38, + "probability": 0.9896 + }, + { + "start": 2484.86, + "end": 2486.46, + "probability": 0.7799 + }, + { + "start": 2486.6, + "end": 2487.8, + "probability": 0.9658 + }, + { + "start": 2488.24, + "end": 2491.42, + "probability": 0.9976 + }, + { + "start": 2491.58, + "end": 2491.84, + "probability": 0.3961 + }, + { + "start": 2491.86, + "end": 2492.46, + "probability": 0.8569 + }, + { + "start": 2492.54, + "end": 2496.2, + "probability": 0.8878 + }, + { + "start": 2496.28, + "end": 2501.56, + "probability": 0.9816 + }, + { + "start": 2501.56, + "end": 2503.62, + "probability": 0.9745 + }, + { + "start": 2503.68, + "end": 2505.66, + "probability": 0.9327 + }, + { + "start": 2505.66, + "end": 2507.38, + "probability": 0.6517 + }, + { + "start": 2507.44, + "end": 2508.2, + "probability": 0.0437 + }, + { + "start": 2508.2, + "end": 2511.12, + "probability": 0.4097 + }, + { + "start": 2511.3, + "end": 2513.64, + "probability": 0.9926 + }, + { + "start": 2513.86, + "end": 2514.6, + "probability": 0.702 + }, + { + "start": 2514.92, + "end": 2515.64, + "probability": 0.7347 + }, + { + "start": 2515.7, + "end": 2519.1, + "probability": 0.9731 + }, + { + "start": 2519.26, + "end": 2519.54, + "probability": 0.8149 + }, + { + "start": 2519.6, + "end": 2522.64, + "probability": 0.9936 + }, + { + "start": 2523.34, + "end": 2524.26, + "probability": 0.8032 + }, + { + "start": 2524.76, + "end": 2528.08, + "probability": 0.9819 + }, + { + "start": 2528.08, + "end": 2533.61, + "probability": 0.9723 + }, + { + "start": 2534.28, + "end": 2537.36, + "probability": 0.9827 + }, + { + "start": 2537.98, + "end": 2543.96, + "probability": 0.9912 + }, + { + "start": 2544.5, + "end": 2547.36, + "probability": 0.9741 + }, + { + "start": 2548.42, + "end": 2553.86, + "probability": 0.993 + }, + { + "start": 2554.3, + "end": 2559.6, + "probability": 0.9473 + }, + { + "start": 2559.68, + "end": 2562.98, + "probability": 0.9722 + }, + { + "start": 2563.02, + "end": 2565.48, + "probability": 0.9899 + }, + { + "start": 2565.9, + "end": 2566.94, + "probability": 0.7252 + }, + { + "start": 2566.98, + "end": 2569.06, + "probability": 0.9248 + }, + { + "start": 2569.6, + "end": 2570.7, + "probability": 0.998 + }, + { + "start": 2571.28, + "end": 2578.58, + "probability": 0.9766 + }, + { + "start": 2578.64, + "end": 2580.3, + "probability": 0.6358 + }, + { + "start": 2580.58, + "end": 2582.76, + "probability": 0.9983 + }, + { + "start": 2582.78, + "end": 2583.96, + "probability": 0.9321 + }, + { + "start": 2584.4, + "end": 2586.96, + "probability": 0.9873 + }, + { + "start": 2587.18, + "end": 2589.68, + "probability": 0.9875 + }, + { + "start": 2589.78, + "end": 2593.66, + "probability": 0.9141 + }, + { + "start": 2594.34, + "end": 2598.12, + "probability": 0.9832 + }, + { + "start": 2598.18, + "end": 2598.98, + "probability": 0.9432 + }, + { + "start": 2599.44, + "end": 2600.34, + "probability": 0.8807 + }, + { + "start": 2600.68, + "end": 2606.68, + "probability": 0.9832 + }, + { + "start": 2606.68, + "end": 2612.66, + "probability": 0.994 + }, + { + "start": 2612.98, + "end": 2614.9, + "probability": 0.9897 + }, + { + "start": 2615.62, + "end": 2620.16, + "probability": 0.9509 + }, + { + "start": 2620.56, + "end": 2624.54, + "probability": 0.9375 + }, + { + "start": 2625.1, + "end": 2627.56, + "probability": 0.9671 + }, + { + "start": 2627.56, + "end": 2630.84, + "probability": 0.9628 + }, + { + "start": 2630.9, + "end": 2636.42, + "probability": 0.9957 + }, + { + "start": 2636.52, + "end": 2639.94, + "probability": 0.8935 + }, + { + "start": 2640.06, + "end": 2642.42, + "probability": 0.9065 + }, + { + "start": 2642.64, + "end": 2643.34, + "probability": 0.7753 + }, + { + "start": 2643.8, + "end": 2645.96, + "probability": 0.9816 + }, + { + "start": 2647.06, + "end": 2647.84, + "probability": 0.6822 + }, + { + "start": 2647.96, + "end": 2648.88, + "probability": 0.8845 + }, + { + "start": 2649.06, + "end": 2652.1, + "probability": 0.9851 + }, + { + "start": 2652.68, + "end": 2658.34, + "probability": 0.9849 + }, + { + "start": 2658.36, + "end": 2662.02, + "probability": 0.9664 + }, + { + "start": 2662.4, + "end": 2662.5, + "probability": 0.3236 + }, + { + "start": 2662.66, + "end": 2666.52, + "probability": 0.9922 + }, + { + "start": 2666.52, + "end": 2669.76, + "probability": 0.9949 + }, + { + "start": 2669.9, + "end": 2672.64, + "probability": 0.9919 + }, + { + "start": 2672.84, + "end": 2673.72, + "probability": 0.9158 + }, + { + "start": 2673.88, + "end": 2676.36, + "probability": 0.9837 + }, + { + "start": 2676.7, + "end": 2678.48, + "probability": 0.9106 + }, + { + "start": 2678.94, + "end": 2682.88, + "probability": 0.9575 + }, + { + "start": 2683.0, + "end": 2684.6, + "probability": 0.8464 + }, + { + "start": 2685.22, + "end": 2687.6, + "probability": 0.9532 + }, + { + "start": 2688.16, + "end": 2689.62, + "probability": 0.8374 + }, + { + "start": 2689.72, + "end": 2691.62, + "probability": 0.7734 + }, + { + "start": 2691.76, + "end": 2694.18, + "probability": 0.7344 + }, + { + "start": 2694.46, + "end": 2701.08, + "probability": 0.1421 + }, + { + "start": 2701.16, + "end": 2702.74, + "probability": 0.497 + }, + { + "start": 2703.14, + "end": 2704.28, + "probability": 0.6919 + }, + { + "start": 2704.48, + "end": 2705.64, + "probability": 0.6284 + }, + { + "start": 2705.72, + "end": 2711.38, + "probability": 0.9557 + }, + { + "start": 2711.52, + "end": 2714.98, + "probability": 0.8935 + }, + { + "start": 2714.98, + "end": 2715.66, + "probability": 0.2471 + }, + { + "start": 2716.4, + "end": 2720.3, + "probability": 0.9567 + }, + { + "start": 2721.02, + "end": 2724.35, + "probability": 0.7658 + }, + { + "start": 2725.14, + "end": 2728.54, + "probability": 0.9469 + }, + { + "start": 2728.56, + "end": 2733.18, + "probability": 0.6555 + }, + { + "start": 2733.34, + "end": 2734.84, + "probability": 0.7029 + }, + { + "start": 2734.98, + "end": 2739.7, + "probability": 0.8337 + }, + { + "start": 2739.7, + "end": 2742.72, + "probability": 0.8504 + }, + { + "start": 2742.88, + "end": 2744.5, + "probability": 0.4567 + }, + { + "start": 2744.7, + "end": 2747.16, + "probability": 0.7151 + }, + { + "start": 2747.84, + "end": 2750.0, + "probability": 0.9776 + }, + { + "start": 2751.08, + "end": 2752.84, + "probability": 0.7429 + }, + { + "start": 2753.24, + "end": 2753.8, + "probability": 0.7267 + }, + { + "start": 2753.88, + "end": 2756.69, + "probability": 0.9911 + }, + { + "start": 2757.98, + "end": 2760.98, + "probability": 0.9406 + }, + { + "start": 2761.62, + "end": 2762.62, + "probability": 0.6221 + }, + { + "start": 2762.7, + "end": 2762.98, + "probability": 0.4676 + }, + { + "start": 2763.12, + "end": 2766.44, + "probability": 0.9778 + }, + { + "start": 2766.7, + "end": 2767.08, + "probability": 0.755 + }, + { + "start": 2767.16, + "end": 2769.22, + "probability": 0.9921 + }, + { + "start": 2769.36, + "end": 2772.98, + "probability": 0.9627 + }, + { + "start": 2773.52, + "end": 2778.34, + "probability": 0.9298 + }, + { + "start": 2778.54, + "end": 2779.9, + "probability": 0.8164 + }, + { + "start": 2780.26, + "end": 2781.78, + "probability": 0.99 + }, + { + "start": 2781.92, + "end": 2783.12, + "probability": 0.9485 + }, + { + "start": 2783.18, + "end": 2785.54, + "probability": 0.9784 + }, + { + "start": 2786.56, + "end": 2787.76, + "probability": 0.7455 + }, + { + "start": 2787.82, + "end": 2791.92, + "probability": 0.9767 + }, + { + "start": 2792.48, + "end": 2794.96, + "probability": 0.9453 + }, + { + "start": 2796.14, + "end": 2799.88, + "probability": 0.9813 + }, + { + "start": 2800.52, + "end": 2804.93, + "probability": 0.9942 + }, + { + "start": 2805.08, + "end": 2806.28, + "probability": 0.7015 + }, + { + "start": 2806.42, + "end": 2810.84, + "probability": 0.9941 + }, + { + "start": 2810.94, + "end": 2815.34, + "probability": 0.8293 + }, + { + "start": 2815.44, + "end": 2815.66, + "probability": 0.5924 + }, + { + "start": 2815.72, + "end": 2818.64, + "probability": 0.9901 + }, + { + "start": 2818.86, + "end": 2820.83, + "probability": 0.9951 + }, + { + "start": 2821.34, + "end": 2823.92, + "probability": 0.9934 + }, + { + "start": 2824.74, + "end": 2831.44, + "probability": 0.9868 + }, + { + "start": 2832.0, + "end": 2834.76, + "probability": 0.9062 + }, + { + "start": 2834.84, + "end": 2836.88, + "probability": 0.9048 + }, + { + "start": 2837.04, + "end": 2839.98, + "probability": 0.9939 + }, + { + "start": 2841.24, + "end": 2842.68, + "probability": 0.7841 + }, + { + "start": 2843.26, + "end": 2847.7, + "probability": 0.9895 + }, + { + "start": 2848.18, + "end": 2851.58, + "probability": 0.9942 + }, + { + "start": 2851.94, + "end": 2857.34, + "probability": 0.9991 + }, + { + "start": 2857.34, + "end": 2862.9, + "probability": 0.9978 + }, + { + "start": 2863.06, + "end": 2867.32, + "probability": 0.9985 + }, + { + "start": 2871.56, + "end": 2878.7, + "probability": 0.9069 + }, + { + "start": 2878.74, + "end": 2884.6, + "probability": 0.9902 + }, + { + "start": 2884.76, + "end": 2886.66, + "probability": 0.9941 + }, + { + "start": 2886.98, + "end": 2889.28, + "probability": 0.9469 + }, + { + "start": 2889.42, + "end": 2892.54, + "probability": 0.8707 + }, + { + "start": 2893.18, + "end": 2899.06, + "probability": 0.9722 + }, + { + "start": 2899.06, + "end": 2905.52, + "probability": 0.9902 + }, + { + "start": 2905.56, + "end": 2910.22, + "probability": 0.9695 + }, + { + "start": 2910.28, + "end": 2912.94, + "probability": 0.9717 + }, + { + "start": 2913.4, + "end": 2915.94, + "probability": 0.9499 + }, + { + "start": 2916.6, + "end": 2917.62, + "probability": 0.9528 + }, + { + "start": 2917.74, + "end": 2921.44, + "probability": 0.972 + }, + { + "start": 2921.92, + "end": 2924.24, + "probability": 0.9434 + }, + { + "start": 2924.72, + "end": 2928.36, + "probability": 0.9878 + }, + { + "start": 2928.98, + "end": 2931.02, + "probability": 0.877 + }, + { + "start": 2931.1, + "end": 2935.92, + "probability": 0.9901 + }, + { + "start": 2936.46, + "end": 2939.0, + "probability": 0.9786 + }, + { + "start": 2939.64, + "end": 2940.02, + "probability": 0.8423 + }, + { + "start": 2940.08, + "end": 2943.1, + "probability": 0.9869 + }, + { + "start": 2943.62, + "end": 2944.6, + "probability": 0.669 + }, + { + "start": 2945.06, + "end": 2946.64, + "probability": 0.9716 + }, + { + "start": 2946.82, + "end": 2949.96, + "probability": 0.9819 + }, + { + "start": 2949.96, + "end": 2954.78, + "probability": 0.9727 + }, + { + "start": 2955.48, + "end": 2959.12, + "probability": 0.9824 + }, + { + "start": 2959.12, + "end": 2963.88, + "probability": 0.984 + }, + { + "start": 2964.16, + "end": 2966.32, + "probability": 0.9921 + }, + { + "start": 2966.58, + "end": 2968.28, + "probability": 0.9842 + }, + { + "start": 2968.7, + "end": 2971.78, + "probability": 0.9949 + }, + { + "start": 2972.14, + "end": 2973.66, + "probability": 0.8526 + }, + { + "start": 2974.02, + "end": 2975.24, + "probability": 0.9761 + }, + { + "start": 2975.36, + "end": 2977.96, + "probability": 0.9698 + }, + { + "start": 2978.04, + "end": 2981.76, + "probability": 0.9603 + }, + { + "start": 2982.18, + "end": 2986.82, + "probability": 0.9883 + }, + { + "start": 2986.92, + "end": 2989.66, + "probability": 0.9956 + }, + { + "start": 2990.46, + "end": 2991.22, + "probability": 0.8588 + }, + { + "start": 2991.3, + "end": 2994.04, + "probability": 0.9919 + }, + { + "start": 2996.2, + "end": 2996.58, + "probability": 0.1766 + }, + { + "start": 2996.88, + "end": 2998.46, + "probability": 0.2315 + }, + { + "start": 2998.62, + "end": 2999.5, + "probability": 0.4083 + }, + { + "start": 2999.68, + "end": 3000.67, + "probability": 0.8833 + }, + { + "start": 3001.4, + "end": 3003.18, + "probability": 0.2716 + }, + { + "start": 3003.86, + "end": 3005.92, + "probability": 0.4492 + }, + { + "start": 3005.96, + "end": 3006.38, + "probability": 0.7341 + }, + { + "start": 3006.44, + "end": 3007.28, + "probability": 0.729 + }, + { + "start": 3007.4, + "end": 3008.68, + "probability": 0.8586 + }, + { + "start": 3008.74, + "end": 3009.24, + "probability": 0.9351 + }, + { + "start": 3009.64, + "end": 3011.5, + "probability": 0.9878 + }, + { + "start": 3011.62, + "end": 3013.36, + "probability": 0.8964 + }, + { + "start": 3013.6, + "end": 3018.5, + "probability": 0.9973 + }, + { + "start": 3018.5, + "end": 3025.02, + "probability": 0.999 + }, + { + "start": 3025.56, + "end": 3026.12, + "probability": 0.3953 + }, + { + "start": 3026.66, + "end": 3030.88, + "probability": 0.9971 + }, + { + "start": 3031.38, + "end": 3032.78, + "probability": 0.8528 + }, + { + "start": 3032.86, + "end": 3034.92, + "probability": 0.962 + }, + { + "start": 3035.56, + "end": 3036.24, + "probability": 0.9411 + }, + { + "start": 3036.92, + "end": 3042.0, + "probability": 0.9908 + }, + { + "start": 3042.94, + "end": 3045.62, + "probability": 0.7524 + }, + { + "start": 3045.8, + "end": 3047.22, + "probability": 0.7509 + }, + { + "start": 3047.44, + "end": 3050.0, + "probability": 0.9888 + }, + { + "start": 3050.46, + "end": 3051.48, + "probability": 0.7481 + }, + { + "start": 3052.04, + "end": 3053.12, + "probability": 0.8979 + }, + { + "start": 3053.52, + "end": 3053.88, + "probability": 0.9429 + }, + { + "start": 3055.62, + "end": 3056.96, + "probability": 0.7789 + }, + { + "start": 3057.54, + "end": 3058.28, + "probability": 0.6199 + }, + { + "start": 3058.88, + "end": 3060.98, + "probability": 0.8993 + }, + { + "start": 3061.2, + "end": 3064.14, + "probability": 0.9949 + }, + { + "start": 3064.14, + "end": 3067.5, + "probability": 0.9887 + }, + { + "start": 3067.56, + "end": 3069.94, + "probability": 0.9819 + }, + { + "start": 3069.94, + "end": 3073.58, + "probability": 0.9515 + }, + { + "start": 3073.9, + "end": 3076.1, + "probability": 0.9776 + }, + { + "start": 3076.82, + "end": 3080.1, + "probability": 0.9866 + }, + { + "start": 3080.66, + "end": 3083.08, + "probability": 0.9927 + }, + { + "start": 3083.2, + "end": 3083.84, + "probability": 0.7018 + }, + { + "start": 3083.94, + "end": 3086.0, + "probability": 0.693 + }, + { + "start": 3086.08, + "end": 3088.22, + "probability": 0.8166 + }, + { + "start": 3088.34, + "end": 3090.68, + "probability": 0.9756 + }, + { + "start": 3091.04, + "end": 3093.4, + "probability": 0.9355 + }, + { + "start": 3093.56, + "end": 3095.82, + "probability": 0.9722 + }, + { + "start": 3096.18, + "end": 3097.92, + "probability": 0.7136 + }, + { + "start": 3098.02, + "end": 3099.6, + "probability": 0.9839 + }, + { + "start": 3099.64, + "end": 3102.62, + "probability": 0.861 + }, + { + "start": 3102.68, + "end": 3105.88, + "probability": 0.988 + }, + { + "start": 3105.88, + "end": 3110.6, + "probability": 0.9821 + }, + { + "start": 3111.56, + "end": 3113.06, + "probability": 0.9821 + }, + { + "start": 3113.8, + "end": 3114.38, + "probability": 0.8039 + }, + { + "start": 3114.94, + "end": 3115.94, + "probability": 0.7845 + }, + { + "start": 3116.04, + "end": 3117.2, + "probability": 0.8714 + }, + { + "start": 3117.34, + "end": 3122.22, + "probability": 0.9889 + }, + { + "start": 3122.22, + "end": 3127.62, + "probability": 0.9943 + }, + { + "start": 3127.62, + "end": 3134.98, + "probability": 0.9963 + }, + { + "start": 3135.34, + "end": 3137.02, + "probability": 0.9976 + }, + { + "start": 3138.09, + "end": 3145.36, + "probability": 0.948 + }, + { + "start": 3145.38, + "end": 3145.66, + "probability": 0.6801 + }, + { + "start": 3145.78, + "end": 3146.66, + "probability": 0.508 + }, + { + "start": 3146.66, + "end": 3152.0, + "probability": 0.9941 + }, + { + "start": 3152.0, + "end": 3156.16, + "probability": 0.9925 + }, + { + "start": 3156.32, + "end": 3161.82, + "probability": 0.9839 + }, + { + "start": 3161.86, + "end": 3163.9, + "probability": 0.872 + }, + { + "start": 3164.04, + "end": 3167.18, + "probability": 0.8752 + }, + { + "start": 3167.24, + "end": 3170.42, + "probability": 0.966 + }, + { + "start": 3170.54, + "end": 3174.08, + "probability": 0.9852 + }, + { + "start": 3174.24, + "end": 3178.08, + "probability": 0.9938 + }, + { + "start": 3178.12, + "end": 3182.6, + "probability": 0.9995 + }, + { + "start": 3182.88, + "end": 3185.74, + "probability": 0.9772 + }, + { + "start": 3185.74, + "end": 3189.92, + "probability": 0.9974 + }, + { + "start": 3190.06, + "end": 3190.66, + "probability": 0.8535 + }, + { + "start": 3191.12, + "end": 3193.4, + "probability": 0.9424 + }, + { + "start": 3193.56, + "end": 3194.9, + "probability": 0.8317 + }, + { + "start": 3195.44, + "end": 3200.04, + "probability": 0.993 + }, + { + "start": 3200.04, + "end": 3203.98, + "probability": 0.9967 + }, + { + "start": 3204.02, + "end": 3204.5, + "probability": 0.7988 + }, + { + "start": 3204.66, + "end": 3205.46, + "probability": 0.7171 + }, + { + "start": 3205.52, + "end": 3208.5, + "probability": 0.9969 + }, + { + "start": 3208.5, + "end": 3212.34, + "probability": 0.9652 + }, + { + "start": 3212.92, + "end": 3215.76, + "probability": 0.8052 + }, + { + "start": 3215.92, + "end": 3219.04, + "probability": 0.9927 + }, + { + "start": 3219.36, + "end": 3222.02, + "probability": 0.9582 + }, + { + "start": 3222.16, + "end": 3224.98, + "probability": 0.9846 + }, + { + "start": 3224.98, + "end": 3229.0, + "probability": 0.718 + }, + { + "start": 3229.44, + "end": 3233.01, + "probability": 0.9956 + }, + { + "start": 3233.44, + "end": 3234.08, + "probability": 0.7234 + }, + { + "start": 3234.16, + "end": 3236.16, + "probability": 0.9677 + }, + { + "start": 3236.52, + "end": 3238.5, + "probability": 0.9972 + }, + { + "start": 3238.96, + "end": 3243.08, + "probability": 0.9756 + }, + { + "start": 3243.56, + "end": 3246.94, + "probability": 0.8543 + }, + { + "start": 3247.12, + "end": 3247.46, + "probability": 0.807 + }, + { + "start": 3247.56, + "end": 3249.96, + "probability": 0.9226 + }, + { + "start": 3250.1, + "end": 3252.18, + "probability": 0.9806 + }, + { + "start": 3252.68, + "end": 3257.0, + "probability": 0.9731 + }, + { + "start": 3257.38, + "end": 3260.06, + "probability": 0.9993 + }, + { + "start": 3260.06, + "end": 3266.26, + "probability": 0.981 + }, + { + "start": 3266.32, + "end": 3268.8, + "probability": 0.9629 + }, + { + "start": 3269.42, + "end": 3271.59, + "probability": 0.9927 + }, + { + "start": 3272.32, + "end": 3278.46, + "probability": 0.9891 + }, + { + "start": 3278.46, + "end": 3284.52, + "probability": 0.9984 + }, + { + "start": 3285.22, + "end": 3289.18, + "probability": 0.9895 + }, + { + "start": 3289.76, + "end": 3291.24, + "probability": 0.7522 + }, + { + "start": 3291.38, + "end": 3292.16, + "probability": 0.6692 + }, + { + "start": 3292.2, + "end": 3296.36, + "probability": 0.9463 + }, + { + "start": 3296.44, + "end": 3299.38, + "probability": 0.8591 + }, + { + "start": 3299.54, + "end": 3301.68, + "probability": 0.7423 + }, + { + "start": 3302.3, + "end": 3304.48, + "probability": 0.8591 + }, + { + "start": 3304.6, + "end": 3305.34, + "probability": 0.7909 + }, + { + "start": 3305.82, + "end": 3307.44, + "probability": 0.8896 + }, + { + "start": 3307.58, + "end": 3309.28, + "probability": 0.9609 + }, + { + "start": 3311.1, + "end": 3312.6, + "probability": 0.7268 + }, + { + "start": 3313.83, + "end": 3319.64, + "probability": 0.9894 + }, + { + "start": 3319.64, + "end": 3325.62, + "probability": 0.9879 + }, + { + "start": 3325.72, + "end": 3329.26, + "probability": 0.9583 + }, + { + "start": 3329.26, + "end": 3332.74, + "probability": 0.9122 + }, + { + "start": 3332.94, + "end": 3339.98, + "probability": 0.9878 + }, + { + "start": 3339.98, + "end": 3344.06, + "probability": 0.9827 + }, + { + "start": 3345.06, + "end": 3346.08, + "probability": 0.5134 + }, + { + "start": 3346.3, + "end": 3347.24, + "probability": 0.9293 + }, + { + "start": 3347.4, + "end": 3349.72, + "probability": 0.998 + }, + { + "start": 3350.68, + "end": 3354.44, + "probability": 0.9727 + }, + { + "start": 3354.44, + "end": 3357.14, + "probability": 0.9989 + }, + { + "start": 3357.2, + "end": 3361.54, + "probability": 0.9849 + }, + { + "start": 3361.64, + "end": 3364.1, + "probability": 0.9912 + }, + { + "start": 3365.2, + "end": 3370.36, + "probability": 0.9162 + }, + { + "start": 3370.36, + "end": 3377.04, + "probability": 0.8691 + }, + { + "start": 3377.18, + "end": 3377.44, + "probability": 0.6692 + }, + { + "start": 3377.52, + "end": 3379.02, + "probability": 0.9085 + }, + { + "start": 3379.18, + "end": 3380.76, + "probability": 0.8953 + }, + { + "start": 3381.4, + "end": 3382.84, + "probability": 0.8968 + }, + { + "start": 3383.1, + "end": 3389.02, + "probability": 0.9865 + }, + { + "start": 3389.5, + "end": 3394.52, + "probability": 0.9877 + }, + { + "start": 3394.68, + "end": 3398.52, + "probability": 0.9893 + }, + { + "start": 3398.52, + "end": 3400.96, + "probability": 0.9975 + }, + { + "start": 3401.36, + "end": 3406.2, + "probability": 0.9979 + }, + { + "start": 3406.54, + "end": 3408.18, + "probability": 0.9985 + }, + { + "start": 3408.46, + "end": 3409.0, + "probability": 0.7964 + }, + { + "start": 3409.58, + "end": 3410.14, + "probability": 0.5169 + }, + { + "start": 3411.1, + "end": 3415.48, + "probability": 0.9966 + }, + { + "start": 3420.56, + "end": 3424.64, + "probability": 0.9491 + }, + { + "start": 3424.64, + "end": 3427.98, + "probability": 0.9957 + }, + { + "start": 3428.56, + "end": 3433.76, + "probability": 0.9713 + }, + { + "start": 3434.4, + "end": 3436.8, + "probability": 0.9891 + }, + { + "start": 3436.8, + "end": 3440.14, + "probability": 0.9995 + }, + { + "start": 3440.2, + "end": 3443.44, + "probability": 0.9871 + }, + { + "start": 3443.86, + "end": 3447.08, + "probability": 0.8457 + }, + { + "start": 3447.64, + "end": 3449.48, + "probability": 0.9849 + }, + { + "start": 3449.6, + "end": 3451.3, + "probability": 0.3921 + }, + { + "start": 3451.32, + "end": 3453.44, + "probability": 0.5631 + }, + { + "start": 3453.5, + "end": 3457.22, + "probability": 0.9805 + }, + { + "start": 3457.64, + "end": 3458.3, + "probability": 0.7083 + }, + { + "start": 3458.36, + "end": 3461.14, + "probability": 0.9795 + }, + { + "start": 3461.9, + "end": 3463.64, + "probability": 0.9919 + }, + { + "start": 3463.74, + "end": 3464.42, + "probability": 0.9293 + }, + { + "start": 3464.66, + "end": 3464.68, + "probability": 0.9912 + }, + { + "start": 3465.3, + "end": 3468.51, + "probability": 0.9353 + }, + { + "start": 3469.32, + "end": 3471.2, + "probability": 0.9862 + }, + { + "start": 3471.66, + "end": 3476.64, + "probability": 0.9565 + }, + { + "start": 3476.72, + "end": 3482.06, + "probability": 0.9754 + }, + { + "start": 3483.48, + "end": 3487.78, + "probability": 0.9819 + }, + { + "start": 3488.46, + "end": 3490.66, + "probability": 0.9221 + }, + { + "start": 3490.8, + "end": 3492.04, + "probability": 0.7774 + }, + { + "start": 3492.32, + "end": 3494.66, + "probability": 0.9326 + }, + { + "start": 3495.28, + "end": 3499.6, + "probability": 0.9888 + }, + { + "start": 3499.67, + "end": 3501.56, + "probability": 0.998 + }, + { + "start": 3501.64, + "end": 3503.56, + "probability": 0.9943 + }, + { + "start": 3504.36, + "end": 3505.48, + "probability": 0.911 + }, + { + "start": 3505.58, + "end": 3508.14, + "probability": 0.9988 + }, + { + "start": 3508.86, + "end": 3513.5, + "probability": 0.9839 + }, + { + "start": 3515.04, + "end": 3519.16, + "probability": 0.5961 + }, + { + "start": 3519.28, + "end": 3519.92, + "probability": 0.7606 + }, + { + "start": 3520.06, + "end": 3521.7, + "probability": 0.9908 + }, + { + "start": 3522.5, + "end": 3524.14, + "probability": 0.9961 + }, + { + "start": 3524.24, + "end": 3526.9, + "probability": 0.999 + }, + { + "start": 3526.9, + "end": 3529.92, + "probability": 0.9991 + }, + { + "start": 3530.08, + "end": 3530.92, + "probability": 0.6959 + }, + { + "start": 3531.94, + "end": 3534.14, + "probability": 0.9456 + }, + { + "start": 3534.6, + "end": 3536.92, + "probability": 0.9977 + }, + { + "start": 3536.92, + "end": 3541.32, + "probability": 0.9941 + }, + { + "start": 3541.36, + "end": 3543.5, + "probability": 0.9736 + }, + { + "start": 3543.56, + "end": 3546.88, + "probability": 0.9875 + }, + { + "start": 3547.38, + "end": 3549.08, + "probability": 0.9941 + }, + { + "start": 3550.8, + "end": 3551.16, + "probability": 0.8799 + }, + { + "start": 3551.82, + "end": 3553.04, + "probability": 0.2679 + }, + { + "start": 3553.74, + "end": 3554.2, + "probability": 0.018 + }, + { + "start": 3554.2, + "end": 3554.22, + "probability": 0.1568 + }, + { + "start": 3554.22, + "end": 3555.63, + "probability": 0.9565 + }, + { + "start": 3556.56, + "end": 3557.24, + "probability": 0.4162 + }, + { + "start": 3557.4, + "end": 3558.3, + "probability": 0.7788 + }, + { + "start": 3558.56, + "end": 3559.7, + "probability": 0.6837 + }, + { + "start": 3559.88, + "end": 3560.12, + "probability": 0.9144 + }, + { + "start": 3560.84, + "end": 3563.92, + "probability": 0.6987 + }, + { + "start": 3563.92, + "end": 3565.38, + "probability": 0.9534 + }, + { + "start": 3565.74, + "end": 3565.98, + "probability": 0.6137 + }, + { + "start": 3566.0, + "end": 3566.98, + "probability": 0.5632 + }, + { + "start": 3566.98, + "end": 3568.4, + "probability": 0.4279 + }, + { + "start": 3568.56, + "end": 3573.0, + "probability": 0.9951 + }, + { + "start": 3573.1, + "end": 3574.98, + "probability": 0.9929 + }, + { + "start": 3575.54, + "end": 3579.4, + "probability": 0.7119 + }, + { + "start": 3579.54, + "end": 3579.94, + "probability": 0.6491 + }, + { + "start": 3580.02, + "end": 3580.3, + "probability": 0.7821 + }, + { + "start": 3580.52, + "end": 3580.84, + "probability": 0.3817 + }, + { + "start": 3581.06, + "end": 3582.76, + "probability": 0.7195 + }, + { + "start": 3582.84, + "end": 3588.4, + "probability": 0.854 + }, + { + "start": 3588.82, + "end": 3591.58, + "probability": 0.9419 + }, + { + "start": 3591.7, + "end": 3591.92, + "probability": 0.0036 + }, + { + "start": 3591.92, + "end": 3592.28, + "probability": 0.8525 + }, + { + "start": 3592.32, + "end": 3593.78, + "probability": 0.4502 + }, + { + "start": 3593.84, + "end": 3598.82, + "probability": 0.9795 + }, + { + "start": 3598.9, + "end": 3601.62, + "probability": 0.9924 + }, + { + "start": 3601.62, + "end": 3605.44, + "probability": 0.9639 + }, + { + "start": 3605.86, + "end": 3605.86, + "probability": 0.1154 + }, + { + "start": 3605.86, + "end": 3609.06, + "probability": 0.9424 + }, + { + "start": 3609.12, + "end": 3610.72, + "probability": 0.9308 + }, + { + "start": 3610.78, + "end": 3611.78, + "probability": 0.1906 + }, + { + "start": 3611.78, + "end": 3613.52, + "probability": 0.5653 + }, + { + "start": 3613.6, + "end": 3616.26, + "probability": 0.991 + }, + { + "start": 3617.12, + "end": 3620.32, + "probability": 0.8639 + }, + { + "start": 3620.86, + "end": 3624.92, + "probability": 0.9903 + }, + { + "start": 3625.54, + "end": 3628.8, + "probability": 0.9468 + }, + { + "start": 3629.44, + "end": 3633.92, + "probability": 0.9528 + }, + { + "start": 3635.32, + "end": 3636.84, + "probability": 0.7934 + }, + { + "start": 3637.5, + "end": 3640.78, + "probability": 0.9077 + }, + { + "start": 3641.3, + "end": 3646.8, + "probability": 0.9806 + }, + { + "start": 3648.26, + "end": 3650.66, + "probability": 0.8903 + }, + { + "start": 3651.44, + "end": 3652.4, + "probability": 0.7953 + }, + { + "start": 3652.96, + "end": 3653.78, + "probability": 0.7819 + }, + { + "start": 3654.82, + "end": 3658.14, + "probability": 0.622 + }, + { + "start": 3658.22, + "end": 3658.74, + "probability": 0.98 + }, + { + "start": 3659.64, + "end": 3663.04, + "probability": 0.901 + }, + { + "start": 3663.84, + "end": 3666.56, + "probability": 0.813 + }, + { + "start": 3667.08, + "end": 3667.92, + "probability": 0.8776 + }, + { + "start": 3670.64, + "end": 3674.06, + "probability": 0.918 + }, + { + "start": 3674.58, + "end": 3675.49, + "probability": 0.9247 + }, + { + "start": 3676.02, + "end": 3676.82, + "probability": 0.7767 + }, + { + "start": 3677.7, + "end": 3682.46, + "probability": 0.9819 + }, + { + "start": 3683.83, + "end": 3688.26, + "probability": 0.7371 + }, + { + "start": 3689.84, + "end": 3693.84, + "probability": 0.9341 + }, + { + "start": 3693.84, + "end": 3698.44, + "probability": 0.9955 + }, + { + "start": 3698.98, + "end": 3700.38, + "probability": 0.9401 + }, + { + "start": 3702.09, + "end": 3706.82, + "probability": 0.6938 + }, + { + "start": 3707.7, + "end": 3709.98, + "probability": 0.8615 + }, + { + "start": 3711.06, + "end": 3712.22, + "probability": 0.9294 + }, + { + "start": 3712.82, + "end": 3714.02, + "probability": 0.4551 + }, + { + "start": 3714.58, + "end": 3715.45, + "probability": 0.2312 + }, + { + "start": 3716.2, + "end": 3721.1, + "probability": 0.9707 + }, + { + "start": 3721.1, + "end": 3724.94, + "probability": 0.9971 + }, + { + "start": 3725.7, + "end": 3726.52, + "probability": 0.6753 + }, + { + "start": 3726.7, + "end": 3734.36, + "probability": 0.9865 + }, + { + "start": 3734.92, + "end": 3735.87, + "probability": 0.8203 + }, + { + "start": 3736.48, + "end": 3738.82, + "probability": 0.9126 + }, + { + "start": 3739.24, + "end": 3740.56, + "probability": 0.7636 + }, + { + "start": 3741.0, + "end": 3744.82, + "probability": 0.8607 + }, + { + "start": 3745.3, + "end": 3745.82, + "probability": 0.9363 + }, + { + "start": 3746.88, + "end": 3749.94, + "probability": 0.891 + }, + { + "start": 3750.6, + "end": 3754.52, + "probability": 0.9959 + }, + { + "start": 3755.2, + "end": 3756.18, + "probability": 0.9548 + }, + { + "start": 3757.08, + "end": 3760.46, + "probability": 0.9849 + }, + { + "start": 3760.9, + "end": 3762.56, + "probability": 0.9476 + }, + { + "start": 3762.96, + "end": 3767.08, + "probability": 0.8619 + }, + { + "start": 3767.72, + "end": 3770.44, + "probability": 0.9506 + }, + { + "start": 3771.0, + "end": 3776.12, + "probability": 0.9977 + }, + { + "start": 3776.12, + "end": 3781.2, + "probability": 0.9985 + }, + { + "start": 3781.6, + "end": 3782.36, + "probability": 0.4954 + }, + { + "start": 3783.3, + "end": 3783.3, + "probability": 0.0464 + }, + { + "start": 3783.3, + "end": 3788.96, + "probability": 0.4507 + }, + { + "start": 3789.58, + "end": 3794.9, + "probability": 0.632 + }, + { + "start": 3795.16, + "end": 3796.42, + "probability": 0.7947 + }, + { + "start": 3796.72, + "end": 3798.73, + "probability": 0.9945 + }, + { + "start": 3799.24, + "end": 3800.62, + "probability": 0.8506 + }, + { + "start": 3801.14, + "end": 3802.1, + "probability": 0.4817 + }, + { + "start": 3802.92, + "end": 3805.98, + "probability": 0.8736 + }, + { + "start": 3806.54, + "end": 3809.6, + "probability": 0.9949 + }, + { + "start": 3810.34, + "end": 3815.46, + "probability": 0.9892 + }, + { + "start": 3815.84, + "end": 3816.66, + "probability": 0.8363 + }, + { + "start": 3817.04, + "end": 3819.02, + "probability": 0.9902 + }, + { + "start": 3819.48, + "end": 3820.4, + "probability": 0.8598 + }, + { + "start": 3821.04, + "end": 3824.34, + "probability": 0.978 + }, + { + "start": 3824.82, + "end": 3826.22, + "probability": 0.964 + }, + { + "start": 3826.64, + "end": 3828.64, + "probability": 0.9526 + }, + { + "start": 3829.92, + "end": 3831.12, + "probability": 0.8283 + }, + { + "start": 3832.14, + "end": 3836.86, + "probability": 0.6827 + }, + { + "start": 3837.56, + "end": 3838.76, + "probability": 0.6904 + }, + { + "start": 3839.56, + "end": 3842.52, + "probability": 0.9946 + }, + { + "start": 3842.52, + "end": 3845.72, + "probability": 0.9951 + }, + { + "start": 3846.06, + "end": 3848.04, + "probability": 0.4542 + }, + { + "start": 3848.66, + "end": 3849.24, + "probability": 0.6993 + }, + { + "start": 3849.42, + "end": 3851.3, + "probability": 0.7986 + }, + { + "start": 3851.88, + "end": 3852.52, + "probability": 0.6639 + }, + { + "start": 3852.88, + "end": 3854.02, + "probability": 0.9907 + }, + { + "start": 3854.36, + "end": 3855.48, + "probability": 0.9545 + }, + { + "start": 3856.86, + "end": 3857.58, + "probability": 0.6019 + }, + { + "start": 3857.72, + "end": 3857.76, + "probability": 0.4981 + }, + { + "start": 3857.76, + "end": 3861.4, + "probability": 0.7486 + }, + { + "start": 3861.86, + "end": 3865.48, + "probability": 0.8377 + }, + { + "start": 3866.86, + "end": 3872.28, + "probability": 0.9726 + }, + { + "start": 3874.46, + "end": 3875.45, + "probability": 0.8057 + }, + { + "start": 3876.28, + "end": 3878.86, + "probability": 0.5605 + }, + { + "start": 3879.2, + "end": 3882.14, + "probability": 0.468 + }, + { + "start": 3882.14, + "end": 3884.7, + "probability": 0.9443 + }, + { + "start": 3885.38, + "end": 3887.32, + "probability": 0.9284 + }, + { + "start": 3888.04, + "end": 3888.26, + "probability": 0.4232 + }, + { + "start": 3888.6, + "end": 3891.41, + "probability": 0.8442 + }, + { + "start": 3891.8, + "end": 3892.7, + "probability": 0.9031 + }, + { + "start": 3893.3, + "end": 3895.27, + "probability": 0.8684 + }, + { + "start": 3895.52, + "end": 3898.48, + "probability": 0.958 + }, + { + "start": 3898.96, + "end": 3899.7, + "probability": 0.6186 + }, + { + "start": 3899.9, + "end": 3900.92, + "probability": 0.66 + }, + { + "start": 3900.94, + "end": 3904.2, + "probability": 0.9595 + }, + { + "start": 3904.6, + "end": 3907.35, + "probability": 0.9495 + }, + { + "start": 3907.88, + "end": 3912.96, + "probability": 0.9919 + }, + { + "start": 3913.08, + "end": 3913.96, + "probability": 0.9926 + }, + { + "start": 3914.62, + "end": 3918.64, + "probability": 0.9685 + }, + { + "start": 3919.18, + "end": 3920.12, + "probability": 0.9866 + }, + { + "start": 3920.58, + "end": 3921.68, + "probability": 0.9668 + }, + { + "start": 3921.94, + "end": 3924.72, + "probability": 0.9834 + }, + { + "start": 3925.16, + "end": 3927.02, + "probability": 0.8829 + }, + { + "start": 3927.58, + "end": 3928.86, + "probability": 0.5723 + }, + { + "start": 3930.04, + "end": 3934.48, + "probability": 0.9458 + }, + { + "start": 3935.02, + "end": 3935.92, + "probability": 0.838 + }, + { + "start": 3936.7, + "end": 3938.28, + "probability": 0.8242 + }, + { + "start": 3938.72, + "end": 3940.24, + "probability": 0.735 + }, + { + "start": 3940.54, + "end": 3942.6, + "probability": 0.8867 + }, + { + "start": 3942.94, + "end": 3945.14, + "probability": 0.8027 + }, + { + "start": 3945.14, + "end": 3947.4, + "probability": 0.8505 + }, + { + "start": 3947.62, + "end": 3949.3, + "probability": 0.7399 + }, + { + "start": 3950.12, + "end": 3951.3, + "probability": 0.5484 + }, + { + "start": 3951.6, + "end": 3954.6, + "probability": 0.9686 + }, + { + "start": 3954.96, + "end": 3955.86, + "probability": 0.586 + }, + { + "start": 3955.88, + "end": 3957.66, + "probability": 0.7964 + }, + { + "start": 3958.12, + "end": 3961.02, + "probability": 0.918 + }, + { + "start": 3963.06, + "end": 3963.62, + "probability": 0.591 + }, + { + "start": 3965.48, + "end": 3967.28, + "probability": 0.6548 + }, + { + "start": 3968.36, + "end": 3969.1, + "probability": 0.8671 + }, + { + "start": 3969.56, + "end": 3973.59, + "probability": 0.6397 + }, + { + "start": 3974.12, + "end": 3974.24, + "probability": 0.3135 + }, + { + "start": 3976.24, + "end": 3977.84, + "probability": 0.5081 + }, + { + "start": 3979.5, + "end": 3984.92, + "probability": 0.9727 + }, + { + "start": 3985.76, + "end": 3990.12, + "probability": 0.981 + }, + { + "start": 3991.46, + "end": 3992.68, + "probability": 0.5476 + }, + { + "start": 3992.68, + "end": 3999.84, + "probability": 0.9341 + }, + { + "start": 4000.3, + "end": 4001.57, + "probability": 0.9331 + }, + { + "start": 4001.96, + "end": 4003.02, + "probability": 0.8612 + }, + { + "start": 4003.34, + "end": 4004.24, + "probability": 0.9251 + }, + { + "start": 4004.46, + "end": 4005.52, + "probability": 0.5588 + }, + { + "start": 4005.66, + "end": 4006.46, + "probability": 0.7895 + }, + { + "start": 4007.12, + "end": 4008.32, + "probability": 0.7996 + }, + { + "start": 4009.12, + "end": 4010.78, + "probability": 0.6798 + }, + { + "start": 4011.66, + "end": 4011.96, + "probability": 0.702 + }, + { + "start": 4012.16, + "end": 4013.46, + "probability": 0.8912 + }, + { + "start": 4013.56, + "end": 4014.46, + "probability": 0.6238 + }, + { + "start": 4014.78, + "end": 4016.88, + "probability": 0.5064 + }, + { + "start": 4017.2, + "end": 4019.7, + "probability": 0.7429 + }, + { + "start": 4020.2, + "end": 4022.92, + "probability": 0.7428 + }, + { + "start": 4024.2, + "end": 4026.06, + "probability": 0.7833 + }, + { + "start": 4026.68, + "end": 4031.0, + "probability": 0.9102 + }, + { + "start": 4031.48, + "end": 4032.68, + "probability": 0.9321 + }, + { + "start": 4032.96, + "end": 4038.14, + "probability": 0.9562 + }, + { + "start": 4038.66, + "end": 4042.53, + "probability": 0.6158 + }, + { + "start": 4042.96, + "end": 4043.33, + "probability": 0.3161 + }, + { + "start": 4046.2, + "end": 4046.58, + "probability": 0.1952 + }, + { + "start": 4047.1, + "end": 4049.98, + "probability": 0.754 + }, + { + "start": 4050.96, + "end": 4056.6, + "probability": 0.9683 + }, + { + "start": 4057.56, + "end": 4058.86, + "probability": 0.6944 + }, + { + "start": 4060.22, + "end": 4062.88, + "probability": 0.752 + }, + { + "start": 4063.42, + "end": 4066.42, + "probability": 0.9757 + }, + { + "start": 4066.42, + "end": 4070.12, + "probability": 0.8293 + }, + { + "start": 4070.5, + "end": 4073.62, + "probability": 0.991 + }, + { + "start": 4074.08, + "end": 4075.26, + "probability": 0.984 + }, + { + "start": 4075.6, + "end": 4076.6, + "probability": 0.9686 + }, + { + "start": 4076.86, + "end": 4079.4, + "probability": 0.8475 + }, + { + "start": 4079.78, + "end": 4080.51, + "probability": 0.9657 + }, + { + "start": 4081.02, + "end": 4081.68, + "probability": 0.9695 + }, + { + "start": 4081.96, + "end": 4082.98, + "probability": 0.6011 + }, + { + "start": 4083.4, + "end": 4083.98, + "probability": 0.8413 + }, + { + "start": 4084.24, + "end": 4085.18, + "probability": 0.8641 + }, + { + "start": 4085.24, + "end": 4087.94, + "probability": 0.814 + }, + { + "start": 4088.4, + "end": 4091.94, + "probability": 0.6753 + }, + { + "start": 4092.26, + "end": 4097.24, + "probability": 0.9429 + }, + { + "start": 4097.6, + "end": 4098.38, + "probability": 0.8703 + }, + { + "start": 4098.76, + "end": 4100.2, + "probability": 0.6264 + }, + { + "start": 4100.5, + "end": 4101.53, + "probability": 0.9517 + }, + { + "start": 4102.04, + "end": 4105.02, + "probability": 0.8398 + }, + { + "start": 4106.58, + "end": 4108.66, + "probability": 0.8242 + }, + { + "start": 4109.2, + "end": 4109.96, + "probability": 0.9678 + }, + { + "start": 4110.34, + "end": 4111.54, + "probability": 0.939 + }, + { + "start": 4111.78, + "end": 4115.26, + "probability": 0.7461 + }, + { + "start": 4116.06, + "end": 4116.36, + "probability": 0.4361 + }, + { + "start": 4116.36, + "end": 4117.48, + "probability": 0.7096 + }, + { + "start": 4117.58, + "end": 4118.2, + "probability": 0.6874 + }, + { + "start": 4118.28, + "end": 4120.44, + "probability": 0.9818 + }, + { + "start": 4121.36, + "end": 4126.2, + "probability": 0.9414 + }, + { + "start": 4127.3, + "end": 4129.44, + "probability": 0.9817 + }, + { + "start": 4130.76, + "end": 4131.58, + "probability": 0.721 + }, + { + "start": 4132.18, + "end": 4133.22, + "probability": 0.9524 + }, + { + "start": 4133.68, + "end": 4135.44, + "probability": 0.8731 + }, + { + "start": 4135.7, + "end": 4136.56, + "probability": 0.7144 + }, + { + "start": 4137.08, + "end": 4138.18, + "probability": 0.9403 + }, + { + "start": 4139.8, + "end": 4140.46, + "probability": 0.7073 + }, + { + "start": 4141.54, + "end": 4142.7, + "probability": 0.9125 + }, + { + "start": 4143.08, + "end": 4144.58, + "probability": 0.9678 + }, + { + "start": 4144.86, + "end": 4146.86, + "probability": 0.6167 + }, + { + "start": 4146.9, + "end": 4147.66, + "probability": 0.8256 + }, + { + "start": 4148.02, + "end": 4151.3, + "probability": 0.8356 + }, + { + "start": 4151.58, + "end": 4152.58, + "probability": 0.6146 + }, + { + "start": 4154.1, + "end": 4159.02, + "probability": 0.8323 + }, + { + "start": 4159.02, + "end": 4161.46, + "probability": 0.6021 + }, + { + "start": 4161.88, + "end": 4162.82, + "probability": 0.748 + }, + { + "start": 4162.96, + "end": 4165.67, + "probability": 0.8072 + }, + { + "start": 4166.24, + "end": 4167.32, + "probability": 0.9961 + }, + { + "start": 4167.66, + "end": 4169.3, + "probability": 0.998 + }, + { + "start": 4169.72, + "end": 4170.66, + "probability": 0.9659 + }, + { + "start": 4171.22, + "end": 4174.04, + "probability": 0.9294 + }, + { + "start": 4174.48, + "end": 4174.8, + "probability": 0.4996 + }, + { + "start": 4175.3, + "end": 4176.02, + "probability": 0.9761 + }, + { + "start": 4176.12, + "end": 4176.48, + "probability": 0.6167 + }, + { + "start": 4176.84, + "end": 4180.44, + "probability": 0.9939 + }, + { + "start": 4181.66, + "end": 4182.37, + "probability": 0.6119 + }, + { + "start": 4182.76, + "end": 4184.6, + "probability": 0.7462 + }, + { + "start": 4185.2, + "end": 4187.3, + "probability": 0.9897 + }, + { + "start": 4187.98, + "end": 4190.46, + "probability": 0.8816 + }, + { + "start": 4191.46, + "end": 4191.84, + "probability": 0.3403 + }, + { + "start": 4191.88, + "end": 4192.52, + "probability": 0.8779 + }, + { + "start": 4193.12, + "end": 4196.1, + "probability": 0.9812 + }, + { + "start": 4196.62, + "end": 4198.54, + "probability": 0.9686 + }, + { + "start": 4198.88, + "end": 4200.32, + "probability": 0.9902 + }, + { + "start": 4200.64, + "end": 4204.38, + "probability": 0.8214 + }, + { + "start": 4204.86, + "end": 4205.74, + "probability": 0.903 + }, + { + "start": 4205.82, + "end": 4206.26, + "probability": 0.9892 + }, + { + "start": 4207.02, + "end": 4207.64, + "probability": 0.8356 + }, + { + "start": 4208.28, + "end": 4211.06, + "probability": 0.8421 + }, + { + "start": 4212.16, + "end": 4215.19, + "probability": 0.7843 + }, + { + "start": 4215.7, + "end": 4218.08, + "probability": 0.7215 + }, + { + "start": 4218.64, + "end": 4221.82, + "probability": 0.9897 + }, + { + "start": 4222.46, + "end": 4225.06, + "probability": 0.9918 + }, + { + "start": 4225.06, + "end": 4227.94, + "probability": 0.9686 + }, + { + "start": 4228.28, + "end": 4229.34, + "probability": 0.4335 + }, + { + "start": 4229.9, + "end": 4234.66, + "probability": 0.9906 + }, + { + "start": 4235.02, + "end": 4236.58, + "probability": 0.8357 + }, + { + "start": 4237.0, + "end": 4238.46, + "probability": 0.701 + }, + { + "start": 4239.1, + "end": 4240.38, + "probability": 0.8758 + }, + { + "start": 4240.5, + "end": 4240.84, + "probability": 0.2057 + }, + { + "start": 4240.88, + "end": 4242.54, + "probability": 0.7423 + }, + { + "start": 4242.78, + "end": 4244.69, + "probability": 0.8051 + }, + { + "start": 4245.1, + "end": 4249.99, + "probability": 0.8888 + }, + { + "start": 4250.74, + "end": 4253.58, + "probability": 0.898 + }, + { + "start": 4253.92, + "end": 4256.66, + "probability": 0.5045 + }, + { + "start": 4257.12, + "end": 4259.34, + "probability": 0.6446 + }, + { + "start": 4259.9, + "end": 4260.62, + "probability": 0.8774 + }, + { + "start": 4260.98, + "end": 4261.82, + "probability": 0.9321 + }, + { + "start": 4262.08, + "end": 4266.56, + "probability": 0.7651 + }, + { + "start": 4267.46, + "end": 4268.2, + "probability": 0.6312 + }, + { + "start": 4268.26, + "end": 4268.98, + "probability": 0.9647 + }, + { + "start": 4269.3, + "end": 4270.5, + "probability": 0.9035 + }, + { + "start": 4271.08, + "end": 4271.18, + "probability": 0.4508 + }, + { + "start": 4272.06, + "end": 4276.06, + "probability": 0.7386 + }, + { + "start": 4276.38, + "end": 4277.72, + "probability": 0.8428 + }, + { + "start": 4277.98, + "end": 4278.86, + "probability": 0.7287 + }, + { + "start": 4279.08, + "end": 4280.74, + "probability": 0.6053 + }, + { + "start": 4280.8, + "end": 4282.5, + "probability": 0.5788 + }, + { + "start": 4282.6, + "end": 4284.98, + "probability": 0.9935 + }, + { + "start": 4286.22, + "end": 4287.88, + "probability": 0.8404 + }, + { + "start": 4293.84, + "end": 4295.6, + "probability": 0.7686 + }, + { + "start": 4296.16, + "end": 4296.92, + "probability": 0.9746 + }, + { + "start": 4298.38, + "end": 4299.32, + "probability": 0.858 + }, + { + "start": 4300.36, + "end": 4303.61, + "probability": 0.9162 + }, + { + "start": 4305.32, + "end": 4305.98, + "probability": 0.7322 + }, + { + "start": 4307.02, + "end": 4309.92, + "probability": 0.7572 + }, + { + "start": 4310.9, + "end": 4312.48, + "probability": 0.9844 + }, + { + "start": 4313.52, + "end": 4315.72, + "probability": 0.7121 + }, + { + "start": 4316.52, + "end": 4320.38, + "probability": 0.9847 + }, + { + "start": 4320.88, + "end": 4321.56, + "probability": 0.8054 + }, + { + "start": 4321.72, + "end": 4322.24, + "probability": 0.8712 + }, + { + "start": 4322.88, + "end": 4325.12, + "probability": 0.9928 + }, + { + "start": 4336.92, + "end": 4340.62, + "probability": 0.0987 + }, + { + "start": 4341.56, + "end": 4342.88, + "probability": 0.029 + }, + { + "start": 4342.88, + "end": 4342.88, + "probability": 0.0825 + }, + { + "start": 4342.88, + "end": 4342.94, + "probability": 0.0584 + }, + { + "start": 4342.94, + "end": 4342.94, + "probability": 0.0445 + }, + { + "start": 4342.94, + "end": 4347.14, + "probability": 0.0764 + }, + { + "start": 4347.78, + "end": 4349.36, + "probability": 0.2235 + }, + { + "start": 4349.74, + "end": 4353.74, + "probability": 0.9564 + }, + { + "start": 4354.14, + "end": 4356.9, + "probability": 0.9091 + }, + { + "start": 4357.54, + "end": 4358.58, + "probability": 0.7289 + }, + { + "start": 4359.12, + "end": 4360.64, + "probability": 0.9365 + }, + { + "start": 4361.24, + "end": 4362.15, + "probability": 0.8862 + }, + { + "start": 4363.29, + "end": 4365.67, + "probability": 0.8455 + }, + { + "start": 4366.7, + "end": 4368.04, + "probability": 0.714 + }, + { + "start": 4368.38, + "end": 4372.28, + "probability": 0.9326 + }, + { + "start": 4373.02, + "end": 4374.36, + "probability": 0.7932 + }, + { + "start": 4374.9, + "end": 4376.08, + "probability": 0.6427 + }, + { + "start": 4376.84, + "end": 4383.56, + "probability": 0.9854 + }, + { + "start": 4383.76, + "end": 4384.6, + "probability": 0.9419 + }, + { + "start": 4385.24, + "end": 4388.1, + "probability": 0.9785 + }, + { + "start": 4388.86, + "end": 4389.68, + "probability": 0.7837 + }, + { + "start": 4389.74, + "end": 4392.94, + "probability": 0.9306 + }, + { + "start": 4393.0, + "end": 4393.8, + "probability": 0.8584 + }, + { + "start": 4394.12, + "end": 4397.4, + "probability": 0.958 + }, + { + "start": 4397.84, + "end": 4401.14, + "probability": 0.9323 + }, + { + "start": 4401.72, + "end": 4405.38, + "probability": 0.9644 + }, + { + "start": 4406.14, + "end": 4409.24, + "probability": 0.8909 + }, + { + "start": 4409.84, + "end": 4409.84, + "probability": 0.3432 + }, + { + "start": 4409.86, + "end": 4410.42, + "probability": 0.679 + }, + { + "start": 4411.03, + "end": 4414.37, + "probability": 0.921 + }, + { + "start": 4414.72, + "end": 4416.42, + "probability": 0.9843 + }, + { + "start": 4417.39, + "end": 4419.24, + "probability": 0.6668 + }, + { + "start": 4419.62, + "end": 4421.94, + "probability": 0.5563 + }, + { + "start": 4422.2, + "end": 4425.06, + "probability": 0.9963 + }, + { + "start": 4425.28, + "end": 4427.74, + "probability": 0.765 + }, + { + "start": 4428.17, + "end": 4431.56, + "probability": 0.9744 + }, + { + "start": 4431.94, + "end": 4433.14, + "probability": 0.998 + }, + { + "start": 4433.34, + "end": 4433.7, + "probability": 0.624 + }, + { + "start": 4433.92, + "end": 4434.98, + "probability": 0.5128 + }, + { + "start": 4435.54, + "end": 4439.91, + "probability": 0.7783 + }, + { + "start": 4440.88, + "end": 4443.82, + "probability": 0.871 + }, + { + "start": 4444.98, + "end": 4448.46, + "probability": 0.6145 + }, + { + "start": 4449.92, + "end": 4453.82, + "probability": 0.8393 + }, + { + "start": 4454.18, + "end": 4454.9, + "probability": 0.7749 + }, + { + "start": 4455.52, + "end": 4456.7, + "probability": 0.5122 + }, + { + "start": 4457.6, + "end": 4461.76, + "probability": 0.9521 + }, + { + "start": 4461.8, + "end": 4465.26, + "probability": 0.9849 + }, + { + "start": 4465.5, + "end": 4468.86, + "probability": 0.108 + }, + { + "start": 4478.46, + "end": 4481.32, + "probability": 0.0166 + }, + { + "start": 4481.32, + "end": 4481.32, + "probability": 0.0181 + }, + { + "start": 4481.32, + "end": 4484.48, + "probability": 0.1159 + }, + { + "start": 4484.52, + "end": 4492.05, + "probability": 0.9458 + }, + { + "start": 4493.67, + "end": 4497.16, + "probability": 0.7671 + }, + { + "start": 4497.76, + "end": 4500.68, + "probability": 0.966 + }, + { + "start": 4501.5, + "end": 4505.04, + "probability": 0.8185 + }, + { + "start": 4505.52, + "end": 4506.07, + "probability": 0.9641 + }, + { + "start": 4506.7, + "end": 4509.4, + "probability": 0.9514 + }, + { + "start": 4510.48, + "end": 4515.04, + "probability": 0.6842 + }, + { + "start": 4515.42, + "end": 4516.14, + "probability": 0.8138 + }, + { + "start": 4516.54, + "end": 4520.08, + "probability": 0.8856 + }, + { + "start": 4520.7, + "end": 4523.44, + "probability": 0.9453 + }, + { + "start": 4523.84, + "end": 4527.1, + "probability": 0.9888 + }, + { + "start": 4527.72, + "end": 4530.92, + "probability": 0.9215 + }, + { + "start": 4531.28, + "end": 4536.3, + "probability": 0.9183 + }, + { + "start": 4536.94, + "end": 4543.06, + "probability": 0.5513 + }, + { + "start": 4543.7, + "end": 4544.64, + "probability": 0.7127 + }, + { + "start": 4545.44, + "end": 4546.59, + "probability": 0.5038 + }, + { + "start": 4547.22, + "end": 4548.6, + "probability": 0.9485 + }, + { + "start": 4549.44, + "end": 4551.7, + "probability": 0.7995 + }, + { + "start": 4552.08, + "end": 4557.76, + "probability": 0.7468 + }, + { + "start": 4557.76, + "end": 4564.44, + "probability": 0.9795 + }, + { + "start": 4564.52, + "end": 4565.16, + "probability": 0.6043 + }, + { + "start": 4566.1, + "end": 4568.12, + "probability": 0.6327 + }, + { + "start": 4568.68, + "end": 4571.4, + "probability": 0.844 + }, + { + "start": 4572.04, + "end": 4574.5, + "probability": 0.8516 + }, + { + "start": 4577.28, + "end": 4580.44, + "probability": 0.9826 + }, + { + "start": 4581.72, + "end": 4582.66, + "probability": 0.7781 + }, + { + "start": 4583.34, + "end": 4583.94, + "probability": 0.8248 + }, + { + "start": 4584.78, + "end": 4588.92, + "probability": 0.9776 + }, + { + "start": 4588.96, + "end": 4590.02, + "probability": 0.7472 + }, + { + "start": 4591.14, + "end": 4594.98, + "probability": 0.9098 + }, + { + "start": 4595.3, + "end": 4597.4, + "probability": 0.9601 + }, + { + "start": 4598.5, + "end": 4603.3, + "probability": 0.9576 + }, + { + "start": 4604.54, + "end": 4605.44, + "probability": 0.768 + }, + { + "start": 4606.38, + "end": 4609.78, + "probability": 0.9609 + }, + { + "start": 4610.52, + "end": 4611.98, + "probability": 0.9844 + }, + { + "start": 4612.98, + "end": 4614.06, + "probability": 0.9824 + }, + { + "start": 4615.0, + "end": 4615.52, + "probability": 0.9351 + }, + { + "start": 4616.1, + "end": 4617.62, + "probability": 0.8598 + }, + { + "start": 4618.1, + "end": 4619.02, + "probability": 0.7401 + }, + { + "start": 4619.14, + "end": 4626.44, + "probability": 0.7147 + }, + { + "start": 4626.44, + "end": 4628.78, + "probability": 0.9558 + }, + { + "start": 4628.9, + "end": 4629.74, + "probability": 0.6935 + }, + { + "start": 4629.74, + "end": 4631.76, + "probability": 0.8182 + }, + { + "start": 4631.76, + "end": 4633.1, + "probability": 0.5626 + }, + { + "start": 4633.1, + "end": 4634.5, + "probability": 0.9226 + }, + { + "start": 4634.78, + "end": 4636.74, + "probability": 0.5032 + }, + { + "start": 4637.1, + "end": 4637.82, + "probability": 0.6611 + }, + { + "start": 4637.9, + "end": 4643.26, + "probability": 0.9854 + }, + { + "start": 4643.82, + "end": 4646.74, + "probability": 0.9692 + }, + { + "start": 4647.04, + "end": 4651.32, + "probability": 0.9683 + }, + { + "start": 4651.88, + "end": 4654.48, + "probability": 0.9753 + }, + { + "start": 4654.9, + "end": 4659.18, + "probability": 0.9986 + }, + { + "start": 4659.34, + "end": 4661.44, + "probability": 0.8571 + }, + { + "start": 4662.2, + "end": 4665.1, + "probability": 0.9245 + }, + { + "start": 4667.22, + "end": 4668.62, + "probability": 0.1154 + }, + { + "start": 4668.68, + "end": 4669.32, + "probability": 0.3303 + }, + { + "start": 4669.36, + "end": 4669.88, + "probability": 0.6124 + }, + { + "start": 4670.0, + "end": 4670.5, + "probability": 0.3996 + }, + { + "start": 4670.7, + "end": 4672.0, + "probability": 0.4324 + }, + { + "start": 4672.72, + "end": 4673.48, + "probability": 0.1615 + }, + { + "start": 4673.58, + "end": 4675.04, + "probability": 0.2939 + }, + { + "start": 4675.34, + "end": 4681.08, + "probability": 0.6811 + }, + { + "start": 4681.6, + "end": 4683.9, + "probability": 0.9195 + }, + { + "start": 4684.32, + "end": 4688.6, + "probability": 0.9459 + }, + { + "start": 4689.88, + "end": 4690.56, + "probability": 0.7441 + }, + { + "start": 4691.6, + "end": 4694.72, + "probability": 0.9967 + }, + { + "start": 4695.52, + "end": 4698.02, + "probability": 0.9588 + }, + { + "start": 4698.86, + "end": 4700.44, + "probability": 0.8521 + }, + { + "start": 4701.24, + "end": 4701.54, + "probability": 0.7417 + }, + { + "start": 4702.88, + "end": 4704.48, + "probability": 0.9828 + }, + { + "start": 4705.34, + "end": 4711.24, + "probability": 0.9769 + }, + { + "start": 4712.38, + "end": 4713.04, + "probability": 0.7661 + }, + { + "start": 4713.82, + "end": 4714.84, + "probability": 0.8726 + }, + { + "start": 4715.62, + "end": 4719.1, + "probability": 0.8406 + }, + { + "start": 4719.22, + "end": 4719.96, + "probability": 0.8547 + }, + { + "start": 4720.5, + "end": 4725.22, + "probability": 0.6738 + }, + { + "start": 4725.58, + "end": 4727.52, + "probability": 0.8847 + }, + { + "start": 4727.88, + "end": 4729.66, + "probability": 0.95 + }, + { + "start": 4730.4, + "end": 4731.04, + "probability": 0.9459 + }, + { + "start": 4731.86, + "end": 4732.66, + "probability": 0.9705 + }, + { + "start": 4734.68, + "end": 4736.22, + "probability": 0.9128 + }, + { + "start": 4737.48, + "end": 4739.98, + "probability": 0.993 + }, + { + "start": 4740.08, + "end": 4743.14, + "probability": 0.9479 + }, + { + "start": 4745.18, + "end": 4747.24, + "probability": 0.9929 + }, + { + "start": 4748.14, + "end": 4749.9, + "probability": 0.9932 + }, + { + "start": 4751.44, + "end": 4753.28, + "probability": 0.9941 + }, + { + "start": 4753.88, + "end": 4757.82, + "probability": 0.7217 + }, + { + "start": 4758.72, + "end": 4760.38, + "probability": 0.9961 + }, + { + "start": 4761.28, + "end": 4762.72, + "probability": 0.9982 + }, + { + "start": 4763.42, + "end": 4766.14, + "probability": 0.9846 + }, + { + "start": 4767.18, + "end": 4770.46, + "probability": 0.9893 + }, + { + "start": 4770.96, + "end": 4771.98, + "probability": 0.9365 + }, + { + "start": 4772.16, + "end": 4772.96, + "probability": 0.7175 + }, + { + "start": 4773.56, + "end": 4776.74, + "probability": 0.9696 + }, + { + "start": 4777.46, + "end": 4780.7, + "probability": 0.9473 + }, + { + "start": 4781.38, + "end": 4782.0, + "probability": 0.7111 + }, + { + "start": 4782.72, + "end": 4783.64, + "probability": 0.8549 + }, + { + "start": 4784.18, + "end": 4786.84, + "probability": 0.9984 + }, + { + "start": 4787.88, + "end": 4790.96, + "probability": 0.9872 + }, + { + "start": 4791.84, + "end": 4796.58, + "probability": 0.6406 + }, + { + "start": 4797.84, + "end": 4799.7, + "probability": 0.3273 + }, + { + "start": 4799.7, + "end": 4804.44, + "probability": 0.9857 + }, + { + "start": 4805.22, + "end": 4808.7, + "probability": 0.9798 + }, + { + "start": 4809.16, + "end": 4811.94, + "probability": 0.8205 + }, + { + "start": 4812.34, + "end": 4814.06, + "probability": 0.9927 + }, + { + "start": 4814.36, + "end": 4815.34, + "probability": 0.5057 + }, + { + "start": 4815.7, + "end": 4816.28, + "probability": 0.7468 + }, + { + "start": 4816.68, + "end": 4817.2, + "probability": 0.8875 + }, + { + "start": 4817.66, + "end": 4822.46, + "probability": 0.9803 + }, + { + "start": 4823.2, + "end": 4828.46, + "probability": 0.8105 + }, + { + "start": 4829.14, + "end": 4830.1, + "probability": 0.5092 + }, + { + "start": 4830.76, + "end": 4832.0, + "probability": 0.8637 + }, + { + "start": 4832.38, + "end": 4834.04, + "probability": 0.9633 + }, + { + "start": 4834.34, + "end": 4837.14, + "probability": 0.4618 + }, + { + "start": 4837.7, + "end": 4839.32, + "probability": 0.8995 + }, + { + "start": 4840.24, + "end": 4841.22, + "probability": 0.6638 + }, + { + "start": 4841.52, + "end": 4844.12, + "probability": 0.7563 + }, + { + "start": 4844.84, + "end": 4846.32, + "probability": 0.9678 + }, + { + "start": 4846.8, + "end": 4847.46, + "probability": 0.7991 + }, + { + "start": 4848.38, + "end": 4850.22, + "probability": 0.9599 + }, + { + "start": 4850.54, + "end": 4850.92, + "probability": 0.9767 + }, + { + "start": 4851.94, + "end": 4856.68, + "probability": 0.6425 + }, + { + "start": 4857.64, + "end": 4858.86, + "probability": 0.9148 + }, + { + "start": 4859.1, + "end": 4865.54, + "probability": 0.9535 + }, + { + "start": 4865.62, + "end": 4867.48, + "probability": 0.9608 + }, + { + "start": 4867.64, + "end": 4868.14, + "probability": 0.6084 + }, + { + "start": 4868.28, + "end": 4868.68, + "probability": 0.9597 + }, + { + "start": 4869.08, + "end": 4871.54, + "probability": 0.952 + }, + { + "start": 4871.8, + "end": 4873.0, + "probability": 0.8291 + }, + { + "start": 4873.52, + "end": 4875.7, + "probability": 0.9554 + }, + { + "start": 4876.08, + "end": 4876.18, + "probability": 0.4041 + }, + { + "start": 4876.74, + "end": 4877.62, + "probability": 0.7727 + }, + { + "start": 4878.52, + "end": 4880.18, + "probability": 0.9972 + }, + { + "start": 4881.14, + "end": 4882.58, + "probability": 0.9312 + }, + { + "start": 4883.82, + "end": 4885.18, + "probability": 0.9852 + }, + { + "start": 4886.02, + "end": 4887.72, + "probability": 0.9641 + }, + { + "start": 4888.3, + "end": 4888.84, + "probability": 0.9727 + }, + { + "start": 4889.6, + "end": 4891.98, + "probability": 0.5481 + }, + { + "start": 4892.74, + "end": 4896.84, + "probability": 0.9976 + }, + { + "start": 4896.92, + "end": 4897.66, + "probability": 0.9581 + }, + { + "start": 4899.78, + "end": 4904.62, + "probability": 0.5645 + }, + { + "start": 4905.64, + "end": 4907.1, + "probability": 0.6833 + }, + { + "start": 4909.52, + "end": 4913.26, + "probability": 0.7939 + }, + { + "start": 4914.56, + "end": 4916.34, + "probability": 0.9949 + }, + { + "start": 4917.54, + "end": 4918.98, + "probability": 0.2066 + }, + { + "start": 4919.74, + "end": 4920.64, + "probability": 0.8906 + }, + { + "start": 4921.7, + "end": 4926.94, + "probability": 0.9948 + }, + { + "start": 4927.32, + "end": 4928.08, + "probability": 0.4939 + }, + { + "start": 4928.62, + "end": 4930.32, + "probability": 0.9272 + }, + { + "start": 4930.76, + "end": 4932.22, + "probability": 0.8966 + }, + { + "start": 4932.3, + "end": 4934.4, + "probability": 0.7979 + }, + { + "start": 4934.64, + "end": 4937.26, + "probability": 0.6762 + }, + { + "start": 4937.4, + "end": 4938.38, + "probability": 0.8175 + }, + { + "start": 4938.9, + "end": 4941.94, + "probability": 0.8003 + }, + { + "start": 4942.34, + "end": 4942.94, + "probability": 0.9153 + }, + { + "start": 4943.54, + "end": 4948.12, + "probability": 0.9748 + }, + { + "start": 4948.88, + "end": 4950.92, + "probability": 0.9771 + }, + { + "start": 4951.86, + "end": 4952.24, + "probability": 0.3472 + }, + { + "start": 4952.96, + "end": 4955.58, + "probability": 0.855 + }, + { + "start": 4957.36, + "end": 4960.6, + "probability": 0.8758 + }, + { + "start": 4960.98, + "end": 4969.38, + "probability": 0.9027 + }, + { + "start": 4969.74, + "end": 4971.88, + "probability": 0.9376 + }, + { + "start": 4972.04, + "end": 4972.5, + "probability": 0.2994 + }, + { + "start": 4972.62, + "end": 4973.0, + "probability": 0.8369 + }, + { + "start": 4973.14, + "end": 4974.8, + "probability": 0.8328 + }, + { + "start": 4975.14, + "end": 4976.48, + "probability": 0.9756 + }, + { + "start": 4977.12, + "end": 4978.32, + "probability": 0.8759 + }, + { + "start": 4978.8, + "end": 4981.88, + "probability": 0.9765 + }, + { + "start": 4982.86, + "end": 4983.54, + "probability": 0.9478 + }, + { + "start": 4983.58, + "end": 4984.46, + "probability": 0.9642 + }, + { + "start": 4984.52, + "end": 4990.56, + "probability": 0.9908 + }, + { + "start": 4990.96, + "end": 4993.72, + "probability": 0.9597 + }, + { + "start": 4995.0, + "end": 4996.82, + "probability": 0.9736 + }, + { + "start": 4997.36, + "end": 5000.22, + "probability": 0.6547 + }, + { + "start": 5000.6, + "end": 5008.14, + "probability": 0.9492 + }, + { + "start": 5008.52, + "end": 5009.01, + "probability": 0.8883 + }, + { + "start": 5009.84, + "end": 5010.02, + "probability": 0.209 + }, + { + "start": 5010.02, + "end": 5011.28, + "probability": 0.6882 + }, + { + "start": 5011.66, + "end": 5014.28, + "probability": 0.735 + }, + { + "start": 5014.42, + "end": 5015.24, + "probability": 0.4306 + }, + { + "start": 5015.54, + "end": 5019.18, + "probability": 0.9277 + }, + { + "start": 5019.7, + "end": 5020.92, + "probability": 0.948 + }, + { + "start": 5021.18, + "end": 5026.2, + "probability": 0.7725 + }, + { + "start": 5026.76, + "end": 5028.82, + "probability": 0.8113 + }, + { + "start": 5029.4, + "end": 5030.54, + "probability": 0.6659 + }, + { + "start": 5032.48, + "end": 5033.38, + "probability": 0.9976 + }, + { + "start": 5034.9, + "end": 5036.64, + "probability": 0.7795 + }, + { + "start": 5037.2, + "end": 5039.1, + "probability": 0.9608 + }, + { + "start": 5039.54, + "end": 5041.12, + "probability": 0.6337 + }, + { + "start": 5041.5, + "end": 5042.18, + "probability": 0.7909 + }, + { + "start": 5043.5, + "end": 5044.52, + "probability": 0.863 + }, + { + "start": 5046.18, + "end": 5047.46, + "probability": 0.9438 + }, + { + "start": 5048.38, + "end": 5052.92, + "probability": 0.7833 + }, + { + "start": 5053.92, + "end": 5054.92, + "probability": 0.937 + }, + { + "start": 5056.0, + "end": 5058.84, + "probability": 0.8675 + }, + { + "start": 5059.44, + "end": 5062.1, + "probability": 0.7753 + }, + { + "start": 5063.1, + "end": 5063.9, + "probability": 0.9212 + }, + { + "start": 5064.18, + "end": 5066.5, + "probability": 0.9795 + }, + { + "start": 5068.04, + "end": 5068.54, + "probability": 0.9382 + }, + { + "start": 5069.08, + "end": 5071.27, + "probability": 0.9478 + }, + { + "start": 5071.4, + "end": 5074.48, + "probability": 0.959 + }, + { + "start": 5074.6, + "end": 5076.36, + "probability": 0.9829 + }, + { + "start": 5076.64, + "end": 5076.9, + "probability": 0.6956 + }, + { + "start": 5076.98, + "end": 5080.64, + "probability": 0.8598 + }, + { + "start": 5080.7, + "end": 5082.8, + "probability": 0.9211 + }, + { + "start": 5083.4, + "end": 5088.56, + "probability": 0.8149 + }, + { + "start": 5089.18, + "end": 5095.1, + "probability": 0.99 + }, + { + "start": 5095.2, + "end": 5096.08, + "probability": 0.7522 + }, + { + "start": 5096.42, + "end": 5097.28, + "probability": 0.5799 + }, + { + "start": 5097.68, + "end": 5099.48, + "probability": 0.8584 + }, + { + "start": 5099.94, + "end": 5102.18, + "probability": 0.9237 + }, + { + "start": 5102.7, + "end": 5103.6, + "probability": 0.8927 + }, + { + "start": 5104.0, + "end": 5105.38, + "probability": 0.9943 + }, + { + "start": 5105.8, + "end": 5108.44, + "probability": 0.9886 + }, + { + "start": 5109.04, + "end": 5110.1, + "probability": 0.5882 + }, + { + "start": 5110.72, + "end": 5112.64, + "probability": 0.9662 + }, + { + "start": 5113.16, + "end": 5115.84, + "probability": 0.833 + }, + { + "start": 5116.26, + "end": 5117.4, + "probability": 0.6326 + }, + { + "start": 5119.06, + "end": 5120.12, + "probability": 0.1645 + }, + { + "start": 5120.44, + "end": 5121.66, + "probability": 0.6785 + }, + { + "start": 5121.72, + "end": 5125.88, + "probability": 0.915 + }, + { + "start": 5126.2, + "end": 5128.88, + "probability": 0.8843 + }, + { + "start": 5129.3, + "end": 5130.16, + "probability": 0.7719 + }, + { + "start": 5130.72, + "end": 5131.92, + "probability": 0.9307 + }, + { + "start": 5132.68, + "end": 5134.52, + "probability": 0.8442 + }, + { + "start": 5135.72, + "end": 5136.32, + "probability": 0.8573 + }, + { + "start": 5137.22, + "end": 5139.42, + "probability": 0.8745 + }, + { + "start": 5140.06, + "end": 5140.72, + "probability": 0.8109 + }, + { + "start": 5141.72, + "end": 5147.98, + "probability": 0.9311 + }, + { + "start": 5149.86, + "end": 5152.36, + "probability": 0.9162 + }, + { + "start": 5152.92, + "end": 5154.66, + "probability": 0.9556 + }, + { + "start": 5155.22, + "end": 5157.58, + "probability": 0.9951 + }, + { + "start": 5159.08, + "end": 5160.48, + "probability": 0.7385 + }, + { + "start": 5160.7, + "end": 5162.8, + "probability": 0.7791 + }, + { + "start": 5163.02, + "end": 5164.1, + "probability": 0.8424 + }, + { + "start": 5166.24, + "end": 5168.7, + "probability": 0.881 + }, + { + "start": 5169.24, + "end": 5173.14, + "probability": 0.9882 + }, + { + "start": 5173.64, + "end": 5176.64, + "probability": 0.773 + }, + { + "start": 5176.7, + "end": 5179.8, + "probability": 0.7805 + }, + { + "start": 5180.44, + "end": 5181.84, + "probability": 0.9242 + }, + { + "start": 5182.74, + "end": 5184.98, + "probability": 0.9253 + }, + { + "start": 5185.54, + "end": 5187.6, + "probability": 0.7812 + }, + { + "start": 5188.16, + "end": 5189.64, + "probability": 0.8071 + }, + { + "start": 5190.02, + "end": 5190.99, + "probability": 0.8921 + }, + { + "start": 5191.76, + "end": 5198.24, + "probability": 0.6548 + }, + { + "start": 5199.06, + "end": 5200.34, + "probability": 0.7566 + }, + { + "start": 5200.36, + "end": 5200.5, + "probability": 0.6694 + }, + { + "start": 5201.16, + "end": 5202.14, + "probability": 0.8716 + }, + { + "start": 5203.8, + "end": 5206.7, + "probability": 0.9814 + }, + { + "start": 5207.52, + "end": 5209.9, + "probability": 0.9204 + }, + { + "start": 5211.0, + "end": 5211.92, + "probability": 0.489 + }, + { + "start": 5212.32, + "end": 5216.08, + "probability": 0.9699 + }, + { + "start": 5216.72, + "end": 5218.04, + "probability": 0.9844 + }, + { + "start": 5218.62, + "end": 5219.14, + "probability": 0.3822 + }, + { + "start": 5219.22, + "end": 5219.7, + "probability": 0.4949 + }, + { + "start": 5220.12, + "end": 5220.78, + "probability": 0.9435 + }, + { + "start": 5220.9, + "end": 5221.46, + "probability": 0.6173 + }, + { + "start": 5221.82, + "end": 5222.66, + "probability": 0.9127 + }, + { + "start": 5222.98, + "end": 5223.54, + "probability": 0.4039 + }, + { + "start": 5223.9, + "end": 5228.12, + "probability": 0.9227 + }, + { + "start": 5228.44, + "end": 5230.58, + "probability": 0.9663 + }, + { + "start": 5231.44, + "end": 5232.9, + "probability": 0.7197 + }, + { + "start": 5233.42, + "end": 5235.0, + "probability": 0.9771 + }, + { + "start": 5235.52, + "end": 5237.94, + "probability": 0.9872 + }, + { + "start": 5238.28, + "end": 5240.58, + "probability": 0.989 + }, + { + "start": 5242.14, + "end": 5245.12, + "probability": 0.9326 + }, + { + "start": 5246.58, + "end": 5247.9, + "probability": 0.7232 + }, + { + "start": 5248.04, + "end": 5250.96, + "probability": 0.9832 + }, + { + "start": 5251.6, + "end": 5254.12, + "probability": 0.9608 + }, + { + "start": 5255.1, + "end": 5257.42, + "probability": 0.8761 + }, + { + "start": 5258.4, + "end": 5261.48, + "probability": 0.8405 + }, + { + "start": 5261.9, + "end": 5262.7, + "probability": 0.9757 + }, + { + "start": 5262.86, + "end": 5264.52, + "probability": 0.8197 + }, + { + "start": 5265.3, + "end": 5267.96, + "probability": 0.7366 + }, + { + "start": 5268.16, + "end": 5268.95, + "probability": 0.8938 + }, + { + "start": 5269.64, + "end": 5270.2, + "probability": 0.8404 + }, + { + "start": 5271.16, + "end": 5276.58, + "probability": 0.8188 + }, + { + "start": 5276.92, + "end": 5280.92, + "probability": 0.9775 + }, + { + "start": 5281.9, + "end": 5285.38, + "probability": 0.9705 + }, + { + "start": 5286.06, + "end": 5290.22, + "probability": 0.874 + }, + { + "start": 5291.08, + "end": 5296.44, + "probability": 0.9818 + }, + { + "start": 5296.86, + "end": 5298.7, + "probability": 0.717 + }, + { + "start": 5300.44, + "end": 5300.82, + "probability": 0.8856 + }, + { + "start": 5301.4, + "end": 5303.6, + "probability": 0.7739 + }, + { + "start": 5304.58, + "end": 5307.54, + "probability": 0.9365 + }, + { + "start": 5308.04, + "end": 5308.74, + "probability": 0.5964 + }, + { + "start": 5309.08, + "end": 5310.64, + "probability": 0.8223 + }, + { + "start": 5311.08, + "end": 5313.18, + "probability": 0.7542 + }, + { + "start": 5313.7, + "end": 5315.16, + "probability": 0.9613 + }, + { + "start": 5317.02, + "end": 5319.94, + "probability": 0.9283 + }, + { + "start": 5320.88, + "end": 5324.68, + "probability": 0.9048 + }, + { + "start": 5325.98, + "end": 5330.12, + "probability": 0.9878 + }, + { + "start": 5330.94, + "end": 5334.3, + "probability": 0.7184 + }, + { + "start": 5335.72, + "end": 5340.2, + "probability": 0.9971 + }, + { + "start": 5340.2, + "end": 5345.14, + "probability": 0.9955 + }, + { + "start": 5347.36, + "end": 5348.02, + "probability": 0.8134 + }, + { + "start": 5348.58, + "end": 5350.62, + "probability": 0.9058 + }, + { + "start": 5351.04, + "end": 5352.74, + "probability": 0.9976 + }, + { + "start": 5353.26, + "end": 5354.52, + "probability": 0.8638 + }, + { + "start": 5355.34, + "end": 5358.98, + "probability": 0.981 + }, + { + "start": 5359.9, + "end": 5363.42, + "probability": 0.9984 + }, + { + "start": 5364.12, + "end": 5365.46, + "probability": 0.9934 + }, + { + "start": 5366.0, + "end": 5367.84, + "probability": 0.9976 + }, + { + "start": 5368.36, + "end": 5370.7, + "probability": 0.8525 + }, + { + "start": 5371.28, + "end": 5375.06, + "probability": 0.7467 + }, + { + "start": 5375.6, + "end": 5379.44, + "probability": 0.8923 + }, + { + "start": 5379.44, + "end": 5382.26, + "probability": 0.9603 + }, + { + "start": 5382.46, + "end": 5382.98, + "probability": 0.8393 + }, + { + "start": 5383.42, + "end": 5384.06, + "probability": 0.7838 + }, + { + "start": 5384.4, + "end": 5384.62, + "probability": 0.4824 + }, + { + "start": 5384.68, + "end": 5386.1, + "probability": 0.9131 + }, + { + "start": 5386.3, + "end": 5387.82, + "probability": 0.9915 + }, + { + "start": 5388.22, + "end": 5394.84, + "probability": 0.9758 + }, + { + "start": 5395.52, + "end": 5397.06, + "probability": 0.7211 + }, + { + "start": 5397.6, + "end": 5398.68, + "probability": 0.7735 + }, + { + "start": 5398.8, + "end": 5399.22, + "probability": 0.6413 + }, + { + "start": 5399.76, + "end": 5401.88, + "probability": 0.9733 + }, + { + "start": 5402.4, + "end": 5404.24, + "probability": 0.9123 + }, + { + "start": 5404.92, + "end": 5405.55, + "probability": 0.7088 + }, + { + "start": 5406.24, + "end": 5407.22, + "probability": 0.5839 + }, + { + "start": 5407.72, + "end": 5410.02, + "probability": 0.0511 + }, + { + "start": 5410.02, + "end": 5411.22, + "probability": 0.4551 + }, + { + "start": 5411.7, + "end": 5412.36, + "probability": 0.7586 + }, + { + "start": 5412.4, + "end": 5414.04, + "probability": 0.4007 + }, + { + "start": 5414.36, + "end": 5415.08, + "probability": 0.8296 + }, + { + "start": 5415.44, + "end": 5416.56, + "probability": 0.7277 + }, + { + "start": 5416.74, + "end": 5419.82, + "probability": 0.9502 + }, + { + "start": 5419.82, + "end": 5420.42, + "probability": 0.8476 + }, + { + "start": 5420.5, + "end": 5420.88, + "probability": 0.791 + }, + { + "start": 5420.94, + "end": 5421.06, + "probability": 0.6578 + }, + { + "start": 5421.62, + "end": 5424.55, + "probability": 0.4953 + }, + { + "start": 5425.0, + "end": 5428.54, + "probability": 0.7006 + }, + { + "start": 5428.82, + "end": 5430.58, + "probability": 0.8245 + }, + { + "start": 5430.66, + "end": 5431.26, + "probability": 0.8262 + }, + { + "start": 5431.9, + "end": 5434.82, + "probability": 0.9528 + }, + { + "start": 5434.94, + "end": 5436.2, + "probability": 0.9723 + }, + { + "start": 5436.94, + "end": 5439.14, + "probability": 0.9937 + }, + { + "start": 5440.4, + "end": 5441.7, + "probability": 0.8368 + }, + { + "start": 5442.38, + "end": 5443.72, + "probability": 0.7583 + }, + { + "start": 5444.92, + "end": 5445.92, + "probability": 0.9552 + }, + { + "start": 5446.4, + "end": 5448.8, + "probability": 0.974 + }, + { + "start": 5449.28, + "end": 5453.78, + "probability": 0.9189 + }, + { + "start": 5454.32, + "end": 5454.56, + "probability": 0.7218 + }, + { + "start": 5454.66, + "end": 5457.22, + "probability": 0.7559 + }, + { + "start": 5457.38, + "end": 5459.48, + "probability": 0.5786 + }, + { + "start": 5460.34, + "end": 5461.12, + "probability": 0.7037 + }, + { + "start": 5461.26, + "end": 5462.86, + "probability": 0.9736 + }, + { + "start": 5463.2, + "end": 5464.38, + "probability": 0.8006 + }, + { + "start": 5464.76, + "end": 5466.68, + "probability": 0.7867 + }, + { + "start": 5467.68, + "end": 5468.36, + "probability": 0.9673 + }, + { + "start": 5469.34, + "end": 5471.94, + "probability": 0.7224 + }, + { + "start": 5472.6, + "end": 5474.32, + "probability": 0.9595 + }, + { + "start": 5474.42, + "end": 5480.71, + "probability": 0.9674 + }, + { + "start": 5481.36, + "end": 5481.9, + "probability": 0.528 + }, + { + "start": 5482.06, + "end": 5483.86, + "probability": 0.9368 + }, + { + "start": 5484.34, + "end": 5489.3, + "probability": 0.9939 + }, + { + "start": 5490.4, + "end": 5493.18, + "probability": 0.6656 + }, + { + "start": 5493.86, + "end": 5497.02, + "probability": 0.9727 + }, + { + "start": 5500.38, + "end": 5504.08, + "probability": 0.139 + }, + { + "start": 5504.84, + "end": 5505.74, + "probability": 0.9702 + }, + { + "start": 5506.82, + "end": 5510.08, + "probability": 0.9814 + }, + { + "start": 5510.84, + "end": 5511.66, + "probability": 0.5338 + }, + { + "start": 5512.42, + "end": 5515.14, + "probability": 0.9834 + }, + { + "start": 5515.76, + "end": 5518.14, + "probability": 0.9992 + }, + { + "start": 5518.76, + "end": 5519.22, + "probability": 0.703 + }, + { + "start": 5519.36, + "end": 5523.58, + "probability": 0.694 + }, + { + "start": 5523.98, + "end": 5525.44, + "probability": 0.7079 + }, + { + "start": 5526.02, + "end": 5534.72, + "probability": 0.9219 + }, + { + "start": 5535.26, + "end": 5536.2, + "probability": 0.4921 + }, + { + "start": 5536.46, + "end": 5537.4, + "probability": 0.9976 + }, + { + "start": 5538.2, + "end": 5540.24, + "probability": 0.7221 + }, + { + "start": 5540.58, + "end": 5544.25, + "probability": 0.969 + }, + { + "start": 5544.78, + "end": 5546.3, + "probability": 0.8495 + }, + { + "start": 5546.64, + "end": 5547.76, + "probability": 0.9736 + }, + { + "start": 5548.26, + "end": 5549.1, + "probability": 0.9382 + }, + { + "start": 5549.66, + "end": 5553.14, + "probability": 0.9771 + }, + { + "start": 5553.66, + "end": 5558.7, + "probability": 0.9491 + }, + { + "start": 5558.96, + "end": 5561.7, + "probability": 0.9822 + }, + { + "start": 5562.12, + "end": 5564.28, + "probability": 0.9963 + }, + { + "start": 5565.12, + "end": 5566.04, + "probability": 0.9778 + }, + { + "start": 5566.16, + "end": 5566.86, + "probability": 0.8966 + }, + { + "start": 5566.9, + "end": 5567.4, + "probability": 0.952 + }, + { + "start": 5567.84, + "end": 5570.0, + "probability": 0.5436 + }, + { + "start": 5570.56, + "end": 5571.12, + "probability": 0.4647 + }, + { + "start": 5571.74, + "end": 5572.3, + "probability": 0.606 + }, + { + "start": 5574.84, + "end": 5575.62, + "probability": 0.9222 + }, + { + "start": 5575.86, + "end": 5577.08, + "probability": 0.9569 + }, + { + "start": 5577.24, + "end": 5578.5, + "probability": 0.9302 + }, + { + "start": 5579.68, + "end": 5582.54, + "probability": 0.7545 + }, + { + "start": 5582.72, + "end": 5583.2, + "probability": 0.6462 + }, + { + "start": 5583.28, + "end": 5583.86, + "probability": 0.9653 + }, + { + "start": 5586.18, + "end": 5586.74, + "probability": 0.7596 + }, + { + "start": 5587.28, + "end": 5590.84, + "probability": 0.8449 + }, + { + "start": 5591.02, + "end": 5591.66, + "probability": 0.6014 + }, + { + "start": 5591.72, + "end": 5594.54, + "probability": 0.8344 + }, + { + "start": 5596.1, + "end": 5598.68, + "probability": 0.9782 + }, + { + "start": 5601.42, + "end": 5602.98, + "probability": 0.957 + }, + { + "start": 5604.41, + "end": 5609.06, + "probability": 0.9323 + }, + { + "start": 5609.94, + "end": 5611.52, + "probability": 0.8744 + }, + { + "start": 5612.32, + "end": 5617.82, + "probability": 0.9454 + }, + { + "start": 5619.24, + "end": 5622.02, + "probability": 0.9686 + }, + { + "start": 5623.54, + "end": 5625.44, + "probability": 0.8387 + }, + { + "start": 5626.4, + "end": 5627.02, + "probability": 0.9174 + }, + { + "start": 5627.9, + "end": 5635.36, + "probability": 0.9151 + }, + { + "start": 5636.3, + "end": 5639.92, + "probability": 0.9962 + }, + { + "start": 5640.48, + "end": 5641.6, + "probability": 0.9021 + }, + { + "start": 5641.76, + "end": 5644.96, + "probability": 0.9914 + }, + { + "start": 5645.34, + "end": 5647.02, + "probability": 0.8594 + }, + { + "start": 5647.5, + "end": 5648.1, + "probability": 0.524 + }, + { + "start": 5648.18, + "end": 5649.9, + "probability": 0.9237 + }, + { + "start": 5650.64, + "end": 5653.38, + "probability": 0.9673 + }, + { + "start": 5653.7, + "end": 5655.06, + "probability": 0.9957 + }, + { + "start": 5655.36, + "end": 5656.5, + "probability": 0.7314 + }, + { + "start": 5656.7, + "end": 5657.46, + "probability": 0.9011 + }, + { + "start": 5657.88, + "end": 5662.94, + "probability": 0.9945 + }, + { + "start": 5664.36, + "end": 5669.06, + "probability": 0.9983 + }, + { + "start": 5669.7, + "end": 5674.32, + "probability": 0.796 + }, + { + "start": 5674.72, + "end": 5679.6, + "probability": 0.7322 + }, + { + "start": 5680.88, + "end": 5682.03, + "probability": 0.6172 + }, + { + "start": 5682.82, + "end": 5685.48, + "probability": 0.8398 + }, + { + "start": 5686.46, + "end": 5687.82, + "probability": 0.9631 + }, + { + "start": 5688.56, + "end": 5691.14, + "probability": 0.4952 + }, + { + "start": 5691.78, + "end": 5694.46, + "probability": 0.9951 + }, + { + "start": 5695.48, + "end": 5697.16, + "probability": 0.0125 + }, + { + "start": 5697.16, + "end": 5697.39, + "probability": 0.5324 + }, + { + "start": 5699.34, + "end": 5704.78, + "probability": 0.8079 + }, + { + "start": 5705.34, + "end": 5706.98, + "probability": 0.8602 + }, + { + "start": 5707.62, + "end": 5709.02, + "probability": 0.9764 + }, + { + "start": 5709.64, + "end": 5711.7, + "probability": 0.9806 + }, + { + "start": 5713.08, + "end": 5713.72, + "probability": 0.6015 + }, + { + "start": 5714.92, + "end": 5716.34, + "probability": 0.8208 + }, + { + "start": 5717.6, + "end": 5719.56, + "probability": 0.8215 + }, + { + "start": 5720.24, + "end": 5721.72, + "probability": 0.8195 + }, + { + "start": 5722.92, + "end": 5727.54, + "probability": 0.9819 + }, + { + "start": 5727.54, + "end": 5733.36, + "probability": 0.933 + }, + { + "start": 5733.4, + "end": 5733.82, + "probability": 0.6042 + }, + { + "start": 5733.86, + "end": 5736.78, + "probability": 0.9917 + }, + { + "start": 5736.78, + "end": 5737.28, + "probability": 0.0959 + }, + { + "start": 5737.98, + "end": 5743.92, + "probability": 0.9226 + }, + { + "start": 5745.06, + "end": 5749.04, + "probability": 0.9811 + }, + { + "start": 5749.4, + "end": 5750.36, + "probability": 0.8008 + }, + { + "start": 5751.24, + "end": 5754.92, + "probability": 0.9464 + }, + { + "start": 5755.28, + "end": 5755.54, + "probability": 0.5708 + }, + { + "start": 5757.32, + "end": 5758.06, + "probability": 0.795 + }, + { + "start": 5759.48, + "end": 5761.32, + "probability": 0.9933 + }, + { + "start": 5762.28, + "end": 5764.06, + "probability": 0.9946 + }, + { + "start": 5764.78, + "end": 5768.1, + "probability": 0.569 + }, + { + "start": 5769.16, + "end": 5773.5, + "probability": 0.9929 + }, + { + "start": 5774.06, + "end": 5775.28, + "probability": 0.9705 + }, + { + "start": 5776.52, + "end": 5779.54, + "probability": 0.9968 + }, + { + "start": 5780.3, + "end": 5781.74, + "probability": 0.8426 + }, + { + "start": 5782.26, + "end": 5783.5, + "probability": 0.9389 + }, + { + "start": 5784.18, + "end": 5786.9, + "probability": 0.9941 + }, + { + "start": 5787.5, + "end": 5789.14, + "probability": 0.9473 + }, + { + "start": 5789.86, + "end": 5792.78, + "probability": 0.9927 + }, + { + "start": 5793.14, + "end": 5795.38, + "probability": 0.9702 + }, + { + "start": 5796.24, + "end": 5797.92, + "probability": 0.9935 + }, + { + "start": 5798.72, + "end": 5804.4, + "probability": 0.9321 + }, + { + "start": 5804.6, + "end": 5805.04, + "probability": 0.9432 + }, + { + "start": 5805.76, + "end": 5806.96, + "probability": 0.9719 + }, + { + "start": 5807.82, + "end": 5811.52, + "probability": 0.8886 + }, + { + "start": 5811.66, + "end": 5812.54, + "probability": 0.7236 + }, + { + "start": 5812.86, + "end": 5813.74, + "probability": 0.5517 + }, + { + "start": 5813.8, + "end": 5814.8, + "probability": 0.8982 + }, + { + "start": 5815.78, + "end": 5816.82, + "probability": 0.9291 + }, + { + "start": 5818.44, + "end": 5819.76, + "probability": 0.9237 + }, + { + "start": 5821.48, + "end": 5826.96, + "probability": 0.854 + }, + { + "start": 5828.02, + "end": 5828.04, + "probability": 0.9468 + }, + { + "start": 5828.86, + "end": 5830.4, + "probability": 0.9195 + }, + { + "start": 5831.12, + "end": 5831.92, + "probability": 0.8973 + }, + { + "start": 5832.54, + "end": 5833.22, + "probability": 0.6345 + }, + { + "start": 5833.86, + "end": 5836.22, + "probability": 0.8394 + }, + { + "start": 5837.04, + "end": 5840.56, + "probability": 0.9794 + }, + { + "start": 5841.28, + "end": 5845.1, + "probability": 0.9717 + }, + { + "start": 5845.78, + "end": 5846.78, + "probability": 0.472 + }, + { + "start": 5846.9, + "end": 5849.8, + "probability": 0.7887 + }, + { + "start": 5850.28, + "end": 5851.5, + "probability": 0.8588 + }, + { + "start": 5852.04, + "end": 5853.08, + "probability": 0.9794 + }, + { + "start": 5853.36, + "end": 5854.78, + "probability": 0.9636 + }, + { + "start": 5855.38, + "end": 5858.36, + "probability": 0.9464 + }, + { + "start": 5858.88, + "end": 5862.58, + "probability": 0.9215 + }, + { + "start": 5863.14, + "end": 5865.52, + "probability": 0.9101 + }, + { + "start": 5865.68, + "end": 5870.22, + "probability": 0.9862 + }, + { + "start": 5870.22, + "end": 5875.9, + "probability": 0.9954 + }, + { + "start": 5876.4, + "end": 5877.58, + "probability": 0.8384 + }, + { + "start": 5877.74, + "end": 5881.23, + "probability": 0.6402 + }, + { + "start": 5881.78, + "end": 5883.9, + "probability": 0.903 + }, + { + "start": 5884.8, + "end": 5885.43, + "probability": 0.7236 + }, + { + "start": 5885.88, + "end": 5886.74, + "probability": 0.9702 + }, + { + "start": 5887.4, + "end": 5888.16, + "probability": 0.7318 + }, + { + "start": 5888.4, + "end": 5889.0, + "probability": 0.8866 + }, + { + "start": 5890.06, + "end": 5891.06, + "probability": 0.7572 + }, + { + "start": 5891.84, + "end": 5892.86, + "probability": 0.9028 + }, + { + "start": 5893.72, + "end": 5894.38, + "probability": 0.979 + }, + { + "start": 5895.16, + "end": 5896.56, + "probability": 0.431 + }, + { + "start": 5896.58, + "end": 5896.86, + "probability": 0.3668 + }, + { + "start": 5897.52, + "end": 5901.06, + "probability": 0.9094 + }, + { + "start": 5901.44, + "end": 5902.62, + "probability": 0.9855 + }, + { + "start": 5903.54, + "end": 5906.96, + "probability": 0.931 + }, + { + "start": 5907.42, + "end": 5908.86, + "probability": 0.86 + }, + { + "start": 5909.06, + "end": 5911.2, + "probability": 0.9595 + }, + { + "start": 5911.58, + "end": 5912.94, + "probability": 0.8824 + }, + { + "start": 5914.7, + "end": 5918.1, + "probability": 0.8628 + }, + { + "start": 5918.72, + "end": 5925.74, + "probability": 0.9517 + }, + { + "start": 5926.28, + "end": 5927.88, + "probability": 0.7271 + }, + { + "start": 5928.36, + "end": 5930.7, + "probability": 0.9221 + }, + { + "start": 5931.12, + "end": 5932.44, + "probability": 0.7818 + }, + { + "start": 5932.96, + "end": 5933.52, + "probability": 0.8438 + }, + { + "start": 5933.7, + "end": 5934.34, + "probability": 0.9535 + }, + { + "start": 5935.0, + "end": 5935.94, + "probability": 0.9608 + }, + { + "start": 5936.38, + "end": 5937.46, + "probability": 0.8892 + }, + { + "start": 5937.54, + "end": 5938.3, + "probability": 0.8901 + }, + { + "start": 5938.72, + "end": 5941.78, + "probability": 0.8992 + }, + { + "start": 5942.26, + "end": 5943.56, + "probability": 0.9878 + }, + { + "start": 5944.14, + "end": 5945.2, + "probability": 0.5011 + }, + { + "start": 5945.58, + "end": 5951.36, + "probability": 0.9397 + }, + { + "start": 5951.46, + "end": 5953.8, + "probability": 0.9883 + }, + { + "start": 5954.1, + "end": 5955.44, + "probability": 0.9832 + }, + { + "start": 5956.0, + "end": 5956.96, + "probability": 0.9616 + }, + { + "start": 5957.38, + "end": 5959.62, + "probability": 0.9811 + }, + { + "start": 5960.0, + "end": 5961.96, + "probability": 0.9757 + }, + { + "start": 5962.62, + "end": 5965.02, + "probability": 0.8999 + }, + { + "start": 5965.76, + "end": 5969.7, + "probability": 0.9863 + }, + { + "start": 5969.82, + "end": 5972.24, + "probability": 0.9784 + }, + { + "start": 5972.74, + "end": 5974.38, + "probability": 0.9587 + }, + { + "start": 5974.84, + "end": 5977.5, + "probability": 0.9604 + }, + { + "start": 5977.6, + "end": 5979.74, + "probability": 0.8989 + }, + { + "start": 5980.14, + "end": 5980.88, + "probability": 0.7128 + }, + { + "start": 5981.2, + "end": 5981.96, + "probability": 0.8716 + }, + { + "start": 5982.04, + "end": 5982.7, + "probability": 0.9346 + }, + { + "start": 5983.16, + "end": 5985.1, + "probability": 0.9679 + }, + { + "start": 5985.98, + "end": 5986.76, + "probability": 0.8521 + }, + { + "start": 5987.52, + "end": 5988.28, + "probability": 0.5677 + }, + { + "start": 5988.96, + "end": 5991.28, + "probability": 0.4994 + }, + { + "start": 5992.72, + "end": 5993.06, + "probability": 0.033 + }, + { + "start": 5993.06, + "end": 5993.26, + "probability": 0.2617 + }, + { + "start": 5993.26, + "end": 5993.74, + "probability": 0.1953 + }, + { + "start": 5993.74, + "end": 5993.76, + "probability": 0.6756 + }, + { + "start": 5993.76, + "end": 5994.28, + "probability": 0.6639 + }, + { + "start": 5994.5, + "end": 5996.64, + "probability": 0.7834 + }, + { + "start": 5996.92, + "end": 6000.4, + "probability": 0.7842 + }, + { + "start": 6000.4, + "end": 6001.08, + "probability": 0.4935 + }, + { + "start": 6001.08, + "end": 6002.62, + "probability": 0.5804 + }, + { + "start": 6003.44, + "end": 6004.62, + "probability": 0.5064 + }, + { + "start": 6004.68, + "end": 6005.44, + "probability": 0.4003 + }, + { + "start": 6005.52, + "end": 6009.32, + "probability": 0.7905 + }, + { + "start": 6009.76, + "end": 6015.18, + "probability": 0.5176 + }, + { + "start": 6015.82, + "end": 6016.56, + "probability": 0.8739 + }, + { + "start": 6016.62, + "end": 6017.52, + "probability": 0.9494 + }, + { + "start": 6018.02, + "end": 6023.12, + "probability": 0.9482 + }, + { + "start": 6023.16, + "end": 6024.6, + "probability": 0.8455 + }, + { + "start": 6024.96, + "end": 6025.64, + "probability": 0.5496 + }, + { + "start": 6025.84, + "end": 6028.22, + "probability": 0.8673 + }, + { + "start": 6028.54, + "end": 6031.28, + "probability": 0.9771 + }, + { + "start": 6031.68, + "end": 6033.24, + "probability": 0.9051 + }, + { + "start": 6033.6, + "end": 6034.58, + "probability": 0.8096 + }, + { + "start": 6035.0, + "end": 6035.86, + "probability": 0.8194 + }, + { + "start": 6036.28, + "end": 6037.2, + "probability": 0.7224 + }, + { + "start": 6037.82, + "end": 6039.8, + "probability": 0.7758 + }, + { + "start": 6040.12, + "end": 6041.16, + "probability": 0.2599 + }, + { + "start": 6041.22, + "end": 6043.52, + "probability": 0.1629 + }, + { + "start": 6043.82, + "end": 6044.17, + "probability": 0.6455 + }, + { + "start": 6044.64, + "end": 6047.12, + "probability": 0.9591 + }, + { + "start": 6047.42, + "end": 6050.92, + "probability": 0.9799 + }, + { + "start": 6051.12, + "end": 6053.3, + "probability": 0.9213 + }, + { + "start": 6053.56, + "end": 6055.76, + "probability": 0.6883 + }, + { + "start": 6056.16, + "end": 6060.12, + "probability": 0.972 + }, + { + "start": 6060.2, + "end": 6061.0, + "probability": 0.9552 + }, + { + "start": 6061.56, + "end": 6062.38, + "probability": 0.9751 + }, + { + "start": 6062.8, + "end": 6065.68, + "probability": 0.7576 + }, + { + "start": 6065.86, + "end": 6069.74, + "probability": 0.9883 + }, + { + "start": 6069.96, + "end": 6071.04, + "probability": 0.6648 + }, + { + "start": 6071.04, + "end": 6076.7, + "probability": 0.7379 + }, + { + "start": 6076.92, + "end": 6079.44, + "probability": 0.971 + }, + { + "start": 6079.6, + "end": 6080.06, + "probability": 0.6049 + }, + { + "start": 6080.54, + "end": 6083.64, + "probability": 0.998 + }, + { + "start": 6083.72, + "end": 6084.18, + "probability": 0.6476 + }, + { + "start": 6084.28, + "end": 6086.62, + "probability": 0.7722 + }, + { + "start": 6086.8, + "end": 6088.08, + "probability": 0.7652 + }, + { + "start": 6088.12, + "end": 6090.24, + "probability": 0.6116 + }, + { + "start": 6090.7, + "end": 6092.44, + "probability": 0.9756 + }, + { + "start": 6093.34, + "end": 6093.5, + "probability": 0.0298 + }, + { + "start": 6093.5, + "end": 6093.6, + "probability": 0.4495 + }, + { + "start": 6094.58, + "end": 6095.5, + "probability": 0.7664 + }, + { + "start": 6095.62, + "end": 6096.02, + "probability": 0.0147 + }, + { + "start": 6096.64, + "end": 6098.84, + "probability": 0.8608 + }, + { + "start": 6098.84, + "end": 6099.54, + "probability": 0.873 + }, + { + "start": 6099.56, + "end": 6103.54, + "probability": 0.8457 + }, + { + "start": 6104.34, + "end": 6104.36, + "probability": 0.543 + }, + { + "start": 6105.8, + "end": 6109.6, + "probability": 0.6935 + }, + { + "start": 6110.2, + "end": 6112.26, + "probability": 0.8357 + }, + { + "start": 6112.76, + "end": 6114.34, + "probability": 0.9626 + }, + { + "start": 6114.6, + "end": 6115.7, + "probability": 0.8586 + }, + { + "start": 6116.02, + "end": 6117.52, + "probability": 0.9939 + }, + { + "start": 6118.08, + "end": 6120.86, + "probability": 0.9833 + }, + { + "start": 6120.92, + "end": 6122.86, + "probability": 0.8809 + }, + { + "start": 6122.96, + "end": 6123.7, + "probability": 0.7258 + }, + { + "start": 6123.9, + "end": 6123.92, + "probability": 0.7077 + }, + { + "start": 6123.92, + "end": 6124.46, + "probability": 0.963 + }, + { + "start": 6124.98, + "end": 6126.96, + "probability": 0.8426 + }, + { + "start": 6127.14, + "end": 6129.06, + "probability": 0.9609 + }, + { + "start": 6129.74, + "end": 6134.5, + "probability": 0.8033 + }, + { + "start": 6134.54, + "end": 6135.3, + "probability": 0.8017 + }, + { + "start": 6136.08, + "end": 6137.04, + "probability": 0.6535 + }, + { + "start": 6137.16, + "end": 6139.3, + "probability": 0.7944 + }, + { + "start": 6139.62, + "end": 6140.7, + "probability": 0.7727 + }, + { + "start": 6140.96, + "end": 6141.18, + "probability": 0.7258 + }, + { + "start": 6141.68, + "end": 6147.16, + "probability": 0.8677 + }, + { + "start": 6148.08, + "end": 6148.98, + "probability": 0.8383 + }, + { + "start": 6150.64, + "end": 6152.56, + "probability": 0.9471 + }, + { + "start": 6155.18, + "end": 6156.24, + "probability": 0.5325 + }, + { + "start": 6156.46, + "end": 6157.22, + "probability": 0.3921 + }, + { + "start": 6157.22, + "end": 6157.74, + "probability": 0.5147 + }, + { + "start": 6157.9, + "end": 6158.56, + "probability": 0.3469 + }, + { + "start": 6160.42, + "end": 6160.88, + "probability": 0.9547 + }, + { + "start": 6161.08, + "end": 6164.56, + "probability": 0.7656 + }, + { + "start": 6165.94, + "end": 6170.3, + "probability": 0.823 + }, + { + "start": 6171.3, + "end": 6177.12, + "probability": 0.9748 + }, + { + "start": 6178.4, + "end": 6180.56, + "probability": 0.9614 + }, + { + "start": 6180.66, + "end": 6182.54, + "probability": 0.9865 + }, + { + "start": 6183.34, + "end": 6187.08, + "probability": 0.9849 + }, + { + "start": 6188.0, + "end": 6188.9, + "probability": 0.8669 + }, + { + "start": 6189.5, + "end": 6190.9, + "probability": 0.9647 + }, + { + "start": 6191.7, + "end": 6193.32, + "probability": 0.9879 + }, + { + "start": 6193.86, + "end": 6195.9, + "probability": 0.8558 + }, + { + "start": 6197.26, + "end": 6198.72, + "probability": 0.9072 + }, + { + "start": 6200.38, + "end": 6200.38, + "probability": 0.4703 + }, + { + "start": 6200.38, + "end": 6201.36, + "probability": 0.7223 + }, + { + "start": 6201.6, + "end": 6202.7, + "probability": 0.9158 + }, + { + "start": 6203.34, + "end": 6203.48, + "probability": 0.0822 + }, + { + "start": 6203.52, + "end": 6204.74, + "probability": 0.9956 + }, + { + "start": 6205.56, + "end": 6207.42, + "probability": 0.9894 + }, + { + "start": 6208.12, + "end": 6212.52, + "probability": 0.9985 + }, + { + "start": 6212.94, + "end": 6214.48, + "probability": 0.737 + }, + { + "start": 6214.92, + "end": 6217.18, + "probability": 0.9961 + }, + { + "start": 6218.18, + "end": 6219.31, + "probability": 0.9917 + }, + { + "start": 6220.24, + "end": 6225.28, + "probability": 0.994 + }, + { + "start": 6226.68, + "end": 6228.74, + "probability": 0.898 + }, + { + "start": 6229.7, + "end": 6230.48, + "probability": 0.9893 + }, + { + "start": 6231.64, + "end": 6234.48, + "probability": 0.9951 + }, + { + "start": 6235.12, + "end": 6235.5, + "probability": 0.6009 + }, + { + "start": 6236.8, + "end": 6241.3, + "probability": 0.9351 + }, + { + "start": 6241.86, + "end": 6243.38, + "probability": 0.9753 + }, + { + "start": 6244.24, + "end": 6248.86, + "probability": 0.9725 + }, + { + "start": 6249.9, + "end": 6252.08, + "probability": 0.9695 + }, + { + "start": 6253.02, + "end": 6258.92, + "probability": 0.9938 + }, + { + "start": 6259.62, + "end": 6260.72, + "probability": 0.7239 + }, + { + "start": 6261.42, + "end": 6263.7, + "probability": 0.8788 + }, + { + "start": 6266.02, + "end": 6267.31, + "probability": 0.9912 + }, + { + "start": 6268.76, + "end": 6268.86, + "probability": 0.1009 + }, + { + "start": 6268.86, + "end": 6269.28, + "probability": 0.6163 + }, + { + "start": 6270.38, + "end": 6270.92, + "probability": 0.5362 + }, + { + "start": 6271.92, + "end": 6272.7, + "probability": 0.7639 + }, + { + "start": 6273.66, + "end": 6274.28, + "probability": 0.9408 + }, + { + "start": 6276.5, + "end": 6279.76, + "probability": 0.623 + }, + { + "start": 6280.44, + "end": 6283.08, + "probability": 0.9895 + }, + { + "start": 6284.26, + "end": 6286.78, + "probability": 0.9221 + }, + { + "start": 6287.52, + "end": 6289.98, + "probability": 0.9216 + }, + { + "start": 6290.92, + "end": 6291.62, + "probability": 0.8643 + }, + { + "start": 6292.74, + "end": 6297.52, + "probability": 0.9469 + }, + { + "start": 6298.08, + "end": 6300.2, + "probability": 0.9265 + }, + { + "start": 6300.96, + "end": 6303.48, + "probability": 0.9857 + }, + { + "start": 6304.06, + "end": 6304.66, + "probability": 0.5001 + }, + { + "start": 6305.56, + "end": 6308.68, + "probability": 0.7847 + }, + { + "start": 6309.68, + "end": 6315.12, + "probability": 0.9932 + }, + { + "start": 6316.1, + "end": 6318.98, + "probability": 0.9795 + }, + { + "start": 6320.26, + "end": 6321.92, + "probability": 0.9661 + }, + { + "start": 6322.88, + "end": 6326.54, + "probability": 0.9885 + }, + { + "start": 6327.32, + "end": 6333.74, + "probability": 0.8657 + }, + { + "start": 6333.74, + "end": 6335.74, + "probability": 0.795 + }, + { + "start": 6336.22, + "end": 6337.16, + "probability": 0.9297 + }, + { + "start": 6338.42, + "end": 6339.68, + "probability": 0.9724 + }, + { + "start": 6340.78, + "end": 6342.31, + "probability": 0.9788 + }, + { + "start": 6343.54, + "end": 6344.78, + "probability": 0.973 + }, + { + "start": 6345.6, + "end": 6348.56, + "probability": 0.9524 + }, + { + "start": 6349.12, + "end": 6351.16, + "probability": 0.8595 + }, + { + "start": 6352.08, + "end": 6356.16, + "probability": 0.9894 + }, + { + "start": 6356.94, + "end": 6359.6, + "probability": 0.936 + }, + { + "start": 6360.18, + "end": 6362.5, + "probability": 0.9762 + }, + { + "start": 6363.16, + "end": 6363.7, + "probability": 0.6158 + }, + { + "start": 6363.78, + "end": 6364.5, + "probability": 0.7172 + }, + { + "start": 6365.3, + "end": 6366.3, + "probability": 0.8986 + }, + { + "start": 6367.0, + "end": 6368.82, + "probability": 0.9316 + }, + { + "start": 6369.14, + "end": 6370.24, + "probability": 0.7997 + }, + { + "start": 6370.82, + "end": 6372.44, + "probability": 0.9867 + }, + { + "start": 6373.3, + "end": 6375.07, + "probability": 0.9977 + }, + { + "start": 6375.88, + "end": 6378.06, + "probability": 0.9915 + }, + { + "start": 6378.5, + "end": 6382.12, + "probability": 0.9756 + }, + { + "start": 6382.58, + "end": 6385.64, + "probability": 0.9982 + }, + { + "start": 6386.62, + "end": 6388.22, + "probability": 0.711 + }, + { + "start": 6388.88, + "end": 6390.12, + "probability": 0.953 + }, + { + "start": 6390.88, + "end": 6393.46, + "probability": 0.9307 + }, + { + "start": 6394.12, + "end": 6394.94, + "probability": 0.9941 + }, + { + "start": 6395.46, + "end": 6396.32, + "probability": 0.7033 + }, + { + "start": 6397.58, + "end": 6398.72, + "probability": 0.8755 + }, + { + "start": 6399.62, + "end": 6400.9, + "probability": 0.8651 + }, + { + "start": 6401.52, + "end": 6402.86, + "probability": 0.9549 + }, + { + "start": 6403.46, + "end": 6406.78, + "probability": 0.9834 + }, + { + "start": 6407.02, + "end": 6407.24, + "probability": 0.8509 + }, + { + "start": 6407.46, + "end": 6408.46, + "probability": 0.5881 + }, + { + "start": 6409.16, + "end": 6411.92, + "probability": 0.9417 + }, + { + "start": 6412.7, + "end": 6413.3, + "probability": 0.778 + }, + { + "start": 6415.3, + "end": 6417.44, + "probability": 0.6717 + }, + { + "start": 6418.0, + "end": 6418.56, + "probability": 0.7993 + }, + { + "start": 6418.86, + "end": 6420.56, + "probability": 0.9496 + }, + { + "start": 6421.2, + "end": 6422.56, + "probability": 0.9881 + }, + { + "start": 6422.58, + "end": 6422.72, + "probability": 0.8164 + }, + { + "start": 6422.84, + "end": 6423.94, + "probability": 0.892 + }, + { + "start": 6424.5, + "end": 6425.94, + "probability": 0.8373 + }, + { + "start": 6427.46, + "end": 6429.84, + "probability": 0.9611 + }, + { + "start": 6429.92, + "end": 6429.92, + "probability": 0.1326 + }, + { + "start": 6430.46, + "end": 6431.78, + "probability": 0.9969 + }, + { + "start": 6432.42, + "end": 6433.34, + "probability": 0.7092 + }, + { + "start": 6435.6, + "end": 6436.58, + "probability": 0.8932 + }, + { + "start": 6437.1, + "end": 6437.86, + "probability": 0.8447 + }, + { + "start": 6440.5, + "end": 6441.8, + "probability": 0.9587 + }, + { + "start": 6442.9, + "end": 6443.46, + "probability": 0.8447 + }, + { + "start": 6443.48, + "end": 6445.22, + "probability": 0.9137 + }, + { + "start": 6446.7, + "end": 6449.7, + "probability": 0.301 + }, + { + "start": 6449.86, + "end": 6450.12, + "probability": 0.0176 + }, + { + "start": 6450.12, + "end": 6450.24, + "probability": 0.0296 + }, + { + "start": 6451.7, + "end": 6453.18, + "probability": 0.9959 + }, + { + "start": 6454.72, + "end": 6457.1, + "probability": 0.991 + }, + { + "start": 6458.94, + "end": 6459.38, + "probability": 0.7285 + }, + { + "start": 6459.5, + "end": 6464.26, + "probability": 0.994 + }, + { + "start": 6466.94, + "end": 6468.24, + "probability": 0.3557 + }, + { + "start": 6469.72, + "end": 6470.84, + "probability": 0.7765 + }, + { + "start": 6472.6, + "end": 6472.68, + "probability": 0.3377 + }, + { + "start": 6472.68, + "end": 6472.68, + "probability": 0.8135 + }, + { + "start": 6472.68, + "end": 6474.18, + "probability": 0.7698 + }, + { + "start": 6475.54, + "end": 6476.46, + "probability": 0.8348 + }, + { + "start": 6477.3, + "end": 6477.5, + "probability": 0.0726 + }, + { + "start": 6477.5, + "end": 6478.4, + "probability": 0.6467 + }, + { + "start": 6479.0, + "end": 6481.06, + "probability": 0.9985 + }, + { + "start": 6482.12, + "end": 6485.98, + "probability": 0.9982 + }, + { + "start": 6486.44, + "end": 6487.72, + "probability": 0.8765 + }, + { + "start": 6488.06, + "end": 6488.48, + "probability": 0.1416 + }, + { + "start": 6488.76, + "end": 6490.44, + "probability": 0.1626 + }, + { + "start": 6490.5, + "end": 6490.8, + "probability": 0.2322 + }, + { + "start": 6490.89, + "end": 6493.14, + "probability": 0.3455 + }, + { + "start": 6493.36, + "end": 6494.56, + "probability": 0.6742 + }, + { + "start": 6494.94, + "end": 6495.14, + "probability": 0.04 + }, + { + "start": 6495.14, + "end": 6496.06, + "probability": 0.3226 + }, + { + "start": 6496.38, + "end": 6499.14, + "probability": 0.8308 + }, + { + "start": 6500.28, + "end": 6502.92, + "probability": 0.6149 + }, + { + "start": 6502.96, + "end": 6504.0, + "probability": 0.7216 + }, + { + "start": 6504.12, + "end": 6507.9, + "probability": 0.9974 + }, + { + "start": 6509.74, + "end": 6511.98, + "probability": 0.5729 + }, + { + "start": 6512.04, + "end": 6512.68, + "probability": 0.7046 + }, + { + "start": 6512.94, + "end": 6514.58, + "probability": 0.4464 + }, + { + "start": 6514.68, + "end": 6515.96, + "probability": 0.8442 + }, + { + "start": 6516.24, + "end": 6521.82, + "probability": 0.9873 + }, + { + "start": 6522.98, + "end": 6524.62, + "probability": 0.4647 + }, + { + "start": 6524.62, + "end": 6527.5, + "probability": 0.9235 + }, + { + "start": 6527.98, + "end": 6530.02, + "probability": 0.9534 + }, + { + "start": 6530.86, + "end": 6530.98, + "probability": 0.1557 + }, + { + "start": 6531.24, + "end": 6532.68, + "probability": 0.6358 + }, + { + "start": 6532.82, + "end": 6533.48, + "probability": 0.5273 + }, + { + "start": 6533.58, + "end": 6536.29, + "probability": 0.9094 + }, + { + "start": 6538.16, + "end": 6539.24, + "probability": 0.06 + }, + { + "start": 6539.72, + "end": 6539.72, + "probability": 0.0627 + }, + { + "start": 6539.72, + "end": 6539.72, + "probability": 0.0139 + }, + { + "start": 6539.72, + "end": 6540.44, + "probability": 0.6959 + }, + { + "start": 6540.62, + "end": 6541.42, + "probability": 0.9166 + }, + { + "start": 6542.26, + "end": 6544.42, + "probability": 0.9926 + }, + { + "start": 6545.68, + "end": 6550.08, + "probability": 0.9019 + }, + { + "start": 6550.86, + "end": 6553.2, + "probability": 0.8547 + }, + { + "start": 6553.62, + "end": 6554.08, + "probability": 0.2792 + }, + { + "start": 6554.36, + "end": 6554.78, + "probability": 0.2939 + }, + { + "start": 6554.78, + "end": 6561.12, + "probability": 0.9744 + }, + { + "start": 6561.9, + "end": 6563.91, + "probability": 0.9502 + }, + { + "start": 6564.86, + "end": 6565.92, + "probability": 0.0152 + }, + { + "start": 6566.02, + "end": 6566.46, + "probability": 0.0634 + }, + { + "start": 6566.46, + "end": 6566.46, + "probability": 0.2827 + }, + { + "start": 6566.46, + "end": 6566.46, + "probability": 0.3146 + }, + { + "start": 6566.46, + "end": 6570.52, + "probability": 0.7738 + }, + { + "start": 6571.44, + "end": 6574.76, + "probability": 0.8879 + }, + { + "start": 6575.48, + "end": 6577.56, + "probability": 0.4529 + }, + { + "start": 6577.84, + "end": 6578.82, + "probability": 0.1104 + }, + { + "start": 6578.98, + "end": 6579.85, + "probability": 0.7471 + }, + { + "start": 6580.0, + "end": 6581.44, + "probability": 0.1342 + }, + { + "start": 6581.44, + "end": 6583.96, + "probability": 0.5185 + }, + { + "start": 6584.28, + "end": 6589.22, + "probability": 0.753 + }, + { + "start": 6589.34, + "end": 6590.22, + "probability": 0.1201 + }, + { + "start": 6590.24, + "end": 6592.7, + "probability": 0.6691 + }, + { + "start": 6593.48, + "end": 6598.14, + "probability": 0.9866 + }, + { + "start": 6598.62, + "end": 6600.52, + "probability": 0.9296 + }, + { + "start": 6601.0, + "end": 6604.88, + "probability": 0.998 + }, + { + "start": 6604.88, + "end": 6608.36, + "probability": 0.9821 + }, + { + "start": 6608.8, + "end": 6613.18, + "probability": 0.998 + }, + { + "start": 6613.54, + "end": 6615.53, + "probability": 0.9909 + }, + { + "start": 6615.96, + "end": 6617.7, + "probability": 0.9812 + }, + { + "start": 6618.1, + "end": 6619.7, + "probability": 0.843 + }, + { + "start": 6620.98, + "end": 6623.51, + "probability": 0.0293 + }, + { + "start": 6642.42, + "end": 6645.4, + "probability": 0.6226 + }, + { + "start": 6645.94, + "end": 6646.98, + "probability": 0.7672 + }, + { + "start": 6648.32, + "end": 6650.38, + "probability": 0.109 + }, + { + "start": 6659.31, + "end": 6665.3, + "probability": 0.1616 + }, + { + "start": 6665.3, + "end": 6667.61, + "probability": 0.0362 + }, + { + "start": 6669.16, + "end": 6669.66, + "probability": 0.07 + }, + { + "start": 6669.66, + "end": 6670.84, + "probability": 0.1006 + }, + { + "start": 6670.84, + "end": 6671.12, + "probability": 0.0557 + }, + { + "start": 6671.12, + "end": 6671.24, + "probability": 0.1677 + }, + { + "start": 6672.28, + "end": 6674.76, + "probability": 0.2144 + }, + { + "start": 6679.58, + "end": 6679.58, + "probability": 0.0699 + }, + { + "start": 6679.58, + "end": 6680.26, + "probability": 0.1216 + }, + { + "start": 6680.26, + "end": 6680.6, + "probability": 0.0588 + }, + { + "start": 6680.6, + "end": 6680.6, + "probability": 0.0851 + }, + { + "start": 6680.6, + "end": 6681.32, + "probability": 0.0386 + }, + { + "start": 6684.42, + "end": 6688.74, + "probability": 0.0135 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.0, + "end": 6721.0, + "probability": 0.0 + }, + { + "start": 6721.16, + "end": 6721.3, + "probability": 0.0495 + }, + { + "start": 6721.3, + "end": 6722.28, + "probability": 0.127 + }, + { + "start": 6723.22, + "end": 6723.66, + "probability": 0.6268 + }, + { + "start": 6723.9, + "end": 6724.92, + "probability": 0.5193 + }, + { + "start": 6731.6, + "end": 6734.48, + "probability": 0.1523 + }, + { + "start": 6734.48, + "end": 6734.48, + "probability": 0.1402 + }, + { + "start": 6734.48, + "end": 6736.82, + "probability": 0.5538 + }, + { + "start": 6737.16, + "end": 6738.14, + "probability": 0.8235 + }, + { + "start": 6738.16, + "end": 6738.64, + "probability": 0.9789 + }, + { + "start": 6740.24, + "end": 6740.98, + "probability": 0.7494 + }, + { + "start": 6742.3, + "end": 6744.14, + "probability": 0.3162 + }, + { + "start": 6749.18, + "end": 6751.02, + "probability": 0.7779 + }, + { + "start": 6752.14, + "end": 6757.66, + "probability": 0.8473 + }, + { + "start": 6758.78, + "end": 6761.16, + "probability": 0.8204 + }, + { + "start": 6761.76, + "end": 6764.42, + "probability": 0.4794 + }, + { + "start": 6765.84, + "end": 6765.94, + "probability": 0.7451 + }, + { + "start": 6766.94, + "end": 6767.1, + "probability": 0.0793 + }, + { + "start": 6767.1, + "end": 6767.1, + "probability": 0.0141 + }, + { + "start": 6767.1, + "end": 6768.22, + "probability": 0.0707 + }, + { + "start": 6768.5, + "end": 6770.54, + "probability": 0.6358 + }, + { + "start": 6771.44, + "end": 6773.74, + "probability": 0.7573 + }, + { + "start": 6774.4, + "end": 6777.02, + "probability": 0.7522 + }, + { + "start": 6778.62, + "end": 6781.72, + "probability": 0.9959 + }, + { + "start": 6782.52, + "end": 6785.46, + "probability": 0.9928 + }, + { + "start": 6785.72, + "end": 6785.98, + "probability": 0.4041 + }, + { + "start": 6786.08, + "end": 6788.34, + "probability": 0.8531 + }, + { + "start": 6789.02, + "end": 6790.88, + "probability": 0.6999 + }, + { + "start": 6790.96, + "end": 6791.64, + "probability": 0.7741 + }, + { + "start": 6791.72, + "end": 6793.14, + "probability": 0.7749 + }, + { + "start": 6793.2, + "end": 6795.88, + "probability": 0.981 + }, + { + "start": 6796.62, + "end": 6799.14, + "probability": 0.9948 + }, + { + "start": 6800.18, + "end": 6803.34, + "probability": 0.9252 + }, + { + "start": 6803.42, + "end": 6805.86, + "probability": 0.9741 + }, + { + "start": 6806.04, + "end": 6808.12, + "probability": 0.9976 + }, + { + "start": 6808.9, + "end": 6814.06, + "probability": 0.8899 + }, + { + "start": 6814.52, + "end": 6814.7, + "probability": 0.5361 + }, + { + "start": 6814.86, + "end": 6815.24, + "probability": 0.8565 + }, + { + "start": 6815.28, + "end": 6817.78, + "probability": 0.9839 + }, + { + "start": 6817.86, + "end": 6819.52, + "probability": 0.9489 + }, + { + "start": 6819.62, + "end": 6820.98, + "probability": 0.8667 + }, + { + "start": 6821.74, + "end": 6825.46, + "probability": 0.9954 + }, + { + "start": 6825.64, + "end": 6826.16, + "probability": 0.7545 + }, + { + "start": 6826.2, + "end": 6826.58, + "probability": 0.9376 + }, + { + "start": 6827.14, + "end": 6827.74, + "probability": 0.7029 + }, + { + "start": 6827.92, + "end": 6830.22, + "probability": 0.7613 + }, + { + "start": 6831.18, + "end": 6832.08, + "probability": 0.853 + }, + { + "start": 6832.12, + "end": 6835.9, + "probability": 0.9484 + }, + { + "start": 6836.7, + "end": 6837.84, + "probability": 0.9762 + }, + { + "start": 6837.96, + "end": 6839.34, + "probability": 0.9741 + }, + { + "start": 6839.76, + "end": 6841.14, + "probability": 0.7437 + }, + { + "start": 6842.06, + "end": 6845.18, + "probability": 0.9968 + }, + { + "start": 6845.18, + "end": 6850.44, + "probability": 0.9712 + }, + { + "start": 6850.58, + "end": 6852.04, + "probability": 0.9455 + }, + { + "start": 6852.9, + "end": 6853.46, + "probability": 0.6836 + }, + { + "start": 6854.08, + "end": 6856.64, + "probability": 0.9695 + }, + { + "start": 6856.78, + "end": 6859.42, + "probability": 0.9914 + }, + { + "start": 6860.06, + "end": 6864.92, + "probability": 0.9015 + }, + { + "start": 6865.68, + "end": 6869.2, + "probability": 0.987 + }, + { + "start": 6869.92, + "end": 6874.64, + "probability": 0.79 + }, + { + "start": 6875.1, + "end": 6878.08, + "probability": 0.9289 + }, + { + "start": 6879.0, + "end": 6879.78, + "probability": 0.855 + }, + { + "start": 6880.04, + "end": 6881.08, + "probability": 0.8795 + }, + { + "start": 6881.14, + "end": 6884.88, + "probability": 0.9738 + }, + { + "start": 6885.16, + "end": 6885.96, + "probability": 0.5529 + }, + { + "start": 6886.72, + "end": 6889.4, + "probability": 0.8833 + }, + { + "start": 6890.04, + "end": 6895.36, + "probability": 0.9792 + }, + { + "start": 6896.02, + "end": 6899.92, + "probability": 0.9725 + }, + { + "start": 6900.44, + "end": 6902.78, + "probability": 0.9223 + }, + { + "start": 6903.02, + "end": 6906.06, + "probability": 0.9576 + }, + { + "start": 6907.72, + "end": 6910.98, + "probability": 0.9944 + }, + { + "start": 6913.14, + "end": 6915.28, + "probability": 0.9872 + }, + { + "start": 6915.8, + "end": 6920.5, + "probability": 0.998 + }, + { + "start": 6922.32, + "end": 6924.84, + "probability": 0.9595 + }, + { + "start": 6924.98, + "end": 6928.78, + "probability": 0.9706 + }, + { + "start": 6928.98, + "end": 6929.66, + "probability": 0.7325 + }, + { + "start": 6929.72, + "end": 6930.94, + "probability": 0.8688 + }, + { + "start": 6931.1, + "end": 6933.92, + "probability": 0.9933 + }, + { + "start": 6933.92, + "end": 6937.44, + "probability": 0.9685 + }, + { + "start": 6938.08, + "end": 6940.44, + "probability": 0.9565 + }, + { + "start": 6940.54, + "end": 6945.08, + "probability": 0.9863 + }, + { + "start": 6945.94, + "end": 6947.86, + "probability": 0.9678 + }, + { + "start": 6948.44, + "end": 6949.14, + "probability": 0.9102 + }, + { + "start": 6949.38, + "end": 6950.58, + "probability": 0.9327 + }, + { + "start": 6950.74, + "end": 6955.86, + "probability": 0.954 + }, + { + "start": 6956.9, + "end": 6957.0, + "probability": 0.0358 + }, + { + "start": 6957.0, + "end": 6958.6, + "probability": 0.6126 + }, + { + "start": 6958.72, + "end": 6962.26, + "probability": 0.9559 + }, + { + "start": 6962.36, + "end": 6964.34, + "probability": 0.9464 + }, + { + "start": 6964.82, + "end": 6967.68, + "probability": 0.9897 + }, + { + "start": 6968.04, + "end": 6971.76, + "probability": 0.9895 + }, + { + "start": 6973.04, + "end": 6974.94, + "probability": 0.9993 + }, + { + "start": 6975.26, + "end": 6976.4, + "probability": 0.5252 + }, + { + "start": 6976.96, + "end": 6981.42, + "probability": 0.9056 + }, + { + "start": 6982.06, + "end": 6983.06, + "probability": 0.7523 + }, + { + "start": 6984.36, + "end": 6985.1, + "probability": 0.572 + }, + { + "start": 6985.1, + "end": 6986.6, + "probability": 0.8096 + }, + { + "start": 6987.86, + "end": 6989.28, + "probability": 0.6498 + }, + { + "start": 6989.36, + "end": 6990.1, + "probability": 0.6812 + }, + { + "start": 6990.64, + "end": 6993.94, + "probability": 0.6045 + }, + { + "start": 6994.08, + "end": 6995.16, + "probability": 0.7132 + }, + { + "start": 6995.32, + "end": 6995.32, + "probability": 0.6725 + }, + { + "start": 6995.32, + "end": 6996.72, + "probability": 0.6252 + }, + { + "start": 6996.9, + "end": 6999.12, + "probability": 0.692 + }, + { + "start": 6999.12, + "end": 7000.74, + "probability": 0.8596 + }, + { + "start": 7000.8, + "end": 7005.12, + "probability": 0.9642 + }, + { + "start": 7006.72, + "end": 7012.7, + "probability": 0.957 + }, + { + "start": 7013.52, + "end": 7014.8, + "probability": 0.676 + }, + { + "start": 7015.08, + "end": 7016.38, + "probability": 0.7409 + }, + { + "start": 7018.56, + "end": 7019.98, + "probability": 0.9774 + }, + { + "start": 7020.04, + "end": 7025.51, + "probability": 0.975 + }, + { + "start": 7026.64, + "end": 7028.14, + "probability": 0.8434 + }, + { + "start": 7028.9, + "end": 7031.14, + "probability": 0.8969 + }, + { + "start": 7031.54, + "end": 7034.82, + "probability": 0.8964 + }, + { + "start": 7034.88, + "end": 7035.28, + "probability": 0.5056 + }, + { + "start": 7035.32, + "end": 7036.37, + "probability": 0.9319 + }, + { + "start": 7036.84, + "end": 7038.08, + "probability": 0.9697 + }, + { + "start": 7038.26, + "end": 7042.24, + "probability": 0.9645 + }, + { + "start": 7042.78, + "end": 7045.18, + "probability": 0.7034 + }, + { + "start": 7046.52, + "end": 7047.64, + "probability": 0.9202 + }, + { + "start": 7047.72, + "end": 7049.38, + "probability": 0.8945 + }, + { + "start": 7049.46, + "end": 7054.0, + "probability": 0.9637 + }, + { + "start": 7054.0, + "end": 7057.48, + "probability": 0.929 + }, + { + "start": 7057.72, + "end": 7058.35, + "probability": 0.748 + }, + { + "start": 7058.38, + "end": 7059.22, + "probability": 0.7332 + }, + { + "start": 7059.48, + "end": 7060.54, + "probability": 0.9097 + }, + { + "start": 7060.68, + "end": 7061.14, + "probability": 0.8326 + }, + { + "start": 7061.66, + "end": 7065.14, + "probability": 0.9525 + }, + { + "start": 7065.32, + "end": 7067.16, + "probability": 0.9047 + }, + { + "start": 7067.56, + "end": 7068.4, + "probability": 0.8916 + }, + { + "start": 7068.98, + "end": 7069.61, + "probability": 0.9795 + }, + { + "start": 7070.98, + "end": 7073.0, + "probability": 0.8188 + }, + { + "start": 7074.56, + "end": 7077.64, + "probability": 0.8057 + }, + { + "start": 7077.84, + "end": 7079.54, + "probability": 0.8659 + }, + { + "start": 7081.14, + "end": 7083.66, + "probability": 0.891 + }, + { + "start": 7084.62, + "end": 7085.92, + "probability": 0.832 + }, + { + "start": 7088.6, + "end": 7091.66, + "probability": 0.8508 + }, + { + "start": 7092.74, + "end": 7095.9, + "probability": 0.9771 + }, + { + "start": 7096.64, + "end": 7097.42, + "probability": 0.5973 + }, + { + "start": 7100.08, + "end": 7101.52, + "probability": 0.5332 + }, + { + "start": 7102.14, + "end": 7106.76, + "probability": 0.842 + }, + { + "start": 7107.14, + "end": 7107.82, + "probability": 0.7774 + }, + { + "start": 7108.1, + "end": 7108.24, + "probability": 0.5117 + }, + { + "start": 7108.38, + "end": 7109.16, + "probability": 0.9988 + }, + { + "start": 7110.02, + "end": 7114.72, + "probability": 0.9927 + }, + { + "start": 7115.34, + "end": 7116.06, + "probability": 0.6769 + }, + { + "start": 7116.62, + "end": 7116.84, + "probability": 0.5114 + }, + { + "start": 7117.42, + "end": 7117.76, + "probability": 0.9483 + }, + { + "start": 7118.52, + "end": 7119.98, + "probability": 0.5885 + }, + { + "start": 7120.94, + "end": 7123.4, + "probability": 0.8153 + }, + { + "start": 7123.52, + "end": 7125.24, + "probability": 0.8467 + }, + { + "start": 7126.12, + "end": 7127.3, + "probability": 0.8828 + }, + { + "start": 7127.42, + "end": 7130.72, + "probability": 0.9141 + }, + { + "start": 7131.2, + "end": 7135.36, + "probability": 0.8863 + }, + { + "start": 7136.04, + "end": 7140.56, + "probability": 0.9455 + }, + { + "start": 7140.94, + "end": 7142.5, + "probability": 0.864 + }, + { + "start": 7142.88, + "end": 7143.79, + "probability": 0.9368 + }, + { + "start": 7144.3, + "end": 7145.2, + "probability": 0.777 + }, + { + "start": 7145.92, + "end": 7148.58, + "probability": 0.9862 + }, + { + "start": 7149.9, + "end": 7152.72, + "probability": 0.8938 + }, + { + "start": 7153.92, + "end": 7155.68, + "probability": 0.8127 + }, + { + "start": 7156.52, + "end": 7157.18, + "probability": 0.9434 + }, + { + "start": 7157.8, + "end": 7160.68, + "probability": 0.952 + }, + { + "start": 7161.1, + "end": 7161.78, + "probability": 0.981 + }, + { + "start": 7162.86, + "end": 7165.18, + "probability": 0.9818 + }, + { + "start": 7167.42, + "end": 7168.68, + "probability": 0.812 + }, + { + "start": 7169.42, + "end": 7172.48, + "probability": 0.9718 + }, + { + "start": 7172.82, + "end": 7175.08, + "probability": 0.9544 + }, + { + "start": 7175.22, + "end": 7175.88, + "probability": 0.9159 + }, + { + "start": 7176.02, + "end": 7176.4, + "probability": 0.7908 + }, + { + "start": 7176.92, + "end": 7178.08, + "probability": 0.9658 + }, + { + "start": 7178.88, + "end": 7180.14, + "probability": 0.9816 + }, + { + "start": 7180.48, + "end": 7181.36, + "probability": 0.954 + }, + { + "start": 7181.74, + "end": 7182.4, + "probability": 0.7591 + }, + { + "start": 7182.42, + "end": 7183.16, + "probability": 0.5212 + }, + { + "start": 7184.5, + "end": 7185.72, + "probability": 0.7282 + }, + { + "start": 7186.32, + "end": 7186.86, + "probability": 0.6973 + }, + { + "start": 7187.08, + "end": 7188.28, + "probability": 0.9147 + }, + { + "start": 7189.18, + "end": 7191.28, + "probability": 0.953 + }, + { + "start": 7191.84, + "end": 7194.94, + "probability": 0.9713 + }, + { + "start": 7195.86, + "end": 7197.14, + "probability": 0.9789 + }, + { + "start": 7199.06, + "end": 7202.44, + "probability": 0.9868 + }, + { + "start": 7202.86, + "end": 7204.26, + "probability": 0.9514 + }, + { + "start": 7205.18, + "end": 7207.18, + "probability": 0.9378 + }, + { + "start": 7207.26, + "end": 7208.42, + "probability": 0.6699 + }, + { + "start": 7209.42, + "end": 7211.57, + "probability": 0.9979 + }, + { + "start": 7212.34, + "end": 7214.64, + "probability": 0.8066 + }, + { + "start": 7215.16, + "end": 7216.88, + "probability": 0.8085 + }, + { + "start": 7217.74, + "end": 7218.78, + "probability": 0.6732 + }, + { + "start": 7219.78, + "end": 7221.82, + "probability": 0.8534 + }, + { + "start": 7221.86, + "end": 7225.26, + "probability": 0.6541 + }, + { + "start": 7227.6, + "end": 7229.36, + "probability": 0.9596 + }, + { + "start": 7230.04, + "end": 7230.56, + "probability": 0.983 + }, + { + "start": 7234.68, + "end": 7235.8, + "probability": 0.6145 + }, + { + "start": 7236.98, + "end": 7238.72, + "probability": 0.7402 + }, + { + "start": 7239.06, + "end": 7239.06, + "probability": 0.36 + }, + { + "start": 7239.06, + "end": 7239.74, + "probability": 0.8582 + }, + { + "start": 7239.76, + "end": 7240.46, + "probability": 0.741 + }, + { + "start": 7240.88, + "end": 7243.68, + "probability": 0.7166 + }, + { + "start": 7244.84, + "end": 7245.16, + "probability": 0.8489 + }, + { + "start": 7245.2, + "end": 7246.23, + "probability": 0.9255 + }, + { + "start": 7246.28, + "end": 7247.28, + "probability": 0.1853 + }, + { + "start": 7247.44, + "end": 7250.08, + "probability": 0.8644 + }, + { + "start": 7250.16, + "end": 7252.42, + "probability": 0.688 + }, + { + "start": 7252.46, + "end": 7253.58, + "probability": 0.8264 + }, + { + "start": 7254.7, + "end": 7255.53, + "probability": 0.9475 + }, + { + "start": 7256.6, + "end": 7257.78, + "probability": 0.7738 + }, + { + "start": 7258.48, + "end": 7264.26, + "probability": 0.8867 + }, + { + "start": 7265.16, + "end": 7265.86, + "probability": 0.7424 + }, + { + "start": 7266.16, + "end": 7267.6, + "probability": 0.662 + }, + { + "start": 7268.34, + "end": 7269.22, + "probability": 0.7886 + }, + { + "start": 7269.26, + "end": 7269.88, + "probability": 0.9459 + }, + { + "start": 7270.48, + "end": 7272.64, + "probability": 0.8618 + }, + { + "start": 7273.54, + "end": 7275.48, + "probability": 0.7263 + }, + { + "start": 7276.77, + "end": 7279.02, + "probability": 0.9487 + }, + { + "start": 7279.3, + "end": 7285.18, + "probability": 0.976 + }, + { + "start": 7285.26, + "end": 7286.54, + "probability": 0.9139 + }, + { + "start": 7287.16, + "end": 7293.9, + "probability": 0.744 + }, + { + "start": 7294.02, + "end": 7294.86, + "probability": 0.6392 + }, + { + "start": 7295.72, + "end": 7299.9, + "probability": 0.6005 + }, + { + "start": 7299.9, + "end": 7300.84, + "probability": 0.2636 + }, + { + "start": 7301.28, + "end": 7302.12, + "probability": 0.5686 + }, + { + "start": 7302.48, + "end": 7303.14, + "probability": 0.3366 + }, + { + "start": 7303.67, + "end": 7306.43, + "probability": 0.9946 + }, + { + "start": 7307.14, + "end": 7312.24, + "probability": 0.9177 + }, + { + "start": 7312.46, + "end": 7314.9, + "probability": 0.8992 + }, + { + "start": 7315.64, + "end": 7317.17, + "probability": 0.9971 + }, + { + "start": 7318.1, + "end": 7318.76, + "probability": 0.9236 + }, + { + "start": 7319.52, + "end": 7325.04, + "probability": 0.7505 + }, + { + "start": 7325.04, + "end": 7326.36, + "probability": 0.8771 + }, + { + "start": 7327.24, + "end": 7328.46, + "probability": 0.2416 + }, + { + "start": 7328.64, + "end": 7329.18, + "probability": 0.7471 + }, + { + "start": 7329.26, + "end": 7330.14, + "probability": 0.9515 + }, + { + "start": 7330.18, + "end": 7331.7, + "probability": 0.7022 + }, + { + "start": 7332.8, + "end": 7339.52, + "probability": 0.9733 + }, + { + "start": 7339.52, + "end": 7342.18, + "probability": 0.9524 + }, + { + "start": 7342.34, + "end": 7343.4, + "probability": 0.3444 + }, + { + "start": 7343.52, + "end": 7347.38, + "probability": 0.8834 + }, + { + "start": 7347.44, + "end": 7348.22, + "probability": 0.953 + }, + { + "start": 7349.22, + "end": 7351.7, + "probability": 0.9856 + }, + { + "start": 7351.9, + "end": 7354.02, + "probability": 0.9527 + }, + { + "start": 7354.78, + "end": 7355.66, + "probability": 0.8711 + }, + { + "start": 7355.92, + "end": 7356.6, + "probability": 0.8736 + }, + { + "start": 7358.02, + "end": 7360.5, + "probability": 0.9447 + }, + { + "start": 7361.2, + "end": 7368.04, + "probability": 0.8953 + }, + { + "start": 7368.74, + "end": 7370.26, + "probability": 0.8431 + }, + { + "start": 7371.1, + "end": 7373.94, + "probability": 0.7932 + }, + { + "start": 7375.6, + "end": 7378.08, + "probability": 0.9922 + }, + { + "start": 7379.48, + "end": 7384.7, + "probability": 0.9883 + }, + { + "start": 7385.4, + "end": 7389.02, + "probability": 0.9922 + }, + { + "start": 7390.82, + "end": 7392.23, + "probability": 0.9932 + }, + { + "start": 7393.0, + "end": 7393.88, + "probability": 0.9517 + }, + { + "start": 7393.98, + "end": 7396.02, + "probability": 0.7827 + }, + { + "start": 7397.34, + "end": 7401.26, + "probability": 0.9768 + }, + { + "start": 7401.8, + "end": 7402.84, + "probability": 0.7444 + }, + { + "start": 7402.9, + "end": 7404.6, + "probability": 0.9972 + }, + { + "start": 7405.5, + "end": 7406.94, + "probability": 0.8054 + }, + { + "start": 7407.12, + "end": 7410.46, + "probability": 0.8212 + }, + { + "start": 7411.46, + "end": 7413.98, + "probability": 0.8836 + }, + { + "start": 7414.68, + "end": 7417.02, + "probability": 0.9902 + }, + { + "start": 7418.76, + "end": 7421.12, + "probability": 0.5591 + }, + { + "start": 7421.14, + "end": 7421.76, + "probability": 0.7288 + }, + { + "start": 7421.82, + "end": 7424.54, + "probability": 0.9609 + }, + { + "start": 7425.26, + "end": 7426.38, + "probability": 0.9373 + }, + { + "start": 7426.4, + "end": 7427.2, + "probability": 0.9821 + }, + { + "start": 7427.26, + "end": 7431.5, + "probability": 0.8625 + }, + { + "start": 7431.7, + "end": 7434.3, + "probability": 0.7885 + }, + { + "start": 7435.74, + "end": 7438.08, + "probability": 0.8988 + }, + { + "start": 7438.38, + "end": 7440.2, + "probability": 0.9185 + }, + { + "start": 7441.52, + "end": 7443.64, + "probability": 0.9644 + }, + { + "start": 7443.78, + "end": 7447.12, + "probability": 0.9885 + }, + { + "start": 7450.24, + "end": 7450.24, + "probability": 0.3102 + }, + { + "start": 7450.24, + "end": 7451.68, + "probability": 0.5032 + }, + { + "start": 7451.82, + "end": 7454.94, + "probability": 0.9432 + }, + { + "start": 7455.04, + "end": 7455.22, + "probability": 0.9189 + }, + { + "start": 7455.56, + "end": 7457.97, + "probability": 0.9579 + }, + { + "start": 7458.86, + "end": 7462.66, + "probability": 0.8555 + }, + { + "start": 7462.86, + "end": 7467.1, + "probability": 0.988 + }, + { + "start": 7467.3, + "end": 7471.26, + "probability": 0.9912 + }, + { + "start": 7471.8, + "end": 7472.48, + "probability": 0.5506 + }, + { + "start": 7472.56, + "end": 7473.54, + "probability": 0.7541 + }, + { + "start": 7473.62, + "end": 7474.52, + "probability": 0.9326 + }, + { + "start": 7475.76, + "end": 7476.87, + "probability": 0.9746 + }, + { + "start": 7477.9, + "end": 7480.54, + "probability": 0.9928 + }, + { + "start": 7481.9, + "end": 7483.12, + "probability": 0.6801 + }, + { + "start": 7483.52, + "end": 7486.53, + "probability": 0.9243 + }, + { + "start": 7486.9, + "end": 7488.56, + "probability": 0.806 + }, + { + "start": 7489.72, + "end": 7490.08, + "probability": 0.5814 + }, + { + "start": 7490.16, + "end": 7490.92, + "probability": 0.3724 + }, + { + "start": 7492.14, + "end": 7494.08, + "probability": 0.9004 + }, + { + "start": 7495.38, + "end": 7495.54, + "probability": 0.8837 + }, + { + "start": 7495.64, + "end": 7497.08, + "probability": 0.8332 + }, + { + "start": 7497.52, + "end": 7498.98, + "probability": 0.9498 + }, + { + "start": 7500.26, + "end": 7503.16, + "probability": 0.9751 + }, + { + "start": 7504.4, + "end": 7508.44, + "probability": 0.8755 + }, + { + "start": 7509.5, + "end": 7509.9, + "probability": 0.4735 + }, + { + "start": 7510.44, + "end": 7512.76, + "probability": 0.8717 + }, + { + "start": 7516.3, + "end": 7517.16, + "probability": 0.8611 + }, + { + "start": 7517.24, + "end": 7518.0, + "probability": 0.762 + }, + { + "start": 7518.08, + "end": 7518.56, + "probability": 0.9156 + }, + { + "start": 7518.62, + "end": 7519.54, + "probability": 0.8327 + }, + { + "start": 7519.68, + "end": 7520.24, + "probability": 0.6304 + }, + { + "start": 7520.32, + "end": 7520.6, + "probability": 0.4526 + }, + { + "start": 7520.7, + "end": 7521.32, + "probability": 0.8428 + }, + { + "start": 7521.84, + "end": 7522.54, + "probability": 0.5218 + }, + { + "start": 7523.72, + "end": 7525.15, + "probability": 0.7257 + }, + { + "start": 7526.44, + "end": 7527.84, + "probability": 0.8523 + }, + { + "start": 7528.88, + "end": 7530.02, + "probability": 0.9644 + }, + { + "start": 7530.42, + "end": 7532.16, + "probability": 0.9868 + }, + { + "start": 7532.84, + "end": 7536.08, + "probability": 0.9863 + }, + { + "start": 7536.44, + "end": 7537.68, + "probability": 0.9958 + }, + { + "start": 7537.88, + "end": 7542.06, + "probability": 0.9814 + }, + { + "start": 7542.56, + "end": 7543.66, + "probability": 0.8855 + }, + { + "start": 7543.96, + "end": 7545.14, + "probability": 0.9722 + }, + { + "start": 7545.7, + "end": 7546.36, + "probability": 0.9916 + }, + { + "start": 7547.0, + "end": 7548.64, + "probability": 0.9491 + }, + { + "start": 7549.16, + "end": 7552.52, + "probability": 0.993 + }, + { + "start": 7552.86, + "end": 7553.54, + "probability": 0.5222 + }, + { + "start": 7553.64, + "end": 7558.24, + "probability": 0.9258 + }, + { + "start": 7558.8, + "end": 7559.98, + "probability": 0.6409 + }, + { + "start": 7560.78, + "end": 7563.1, + "probability": 0.9124 + }, + { + "start": 7563.28, + "end": 7568.22, + "probability": 0.991 + }, + { + "start": 7568.44, + "end": 7568.84, + "probability": 0.7802 + }, + { + "start": 7574.68, + "end": 7574.68, + "probability": 0.376 + }, + { + "start": 7574.68, + "end": 7576.06, + "probability": 0.5101 + }, + { + "start": 7577.4, + "end": 7578.06, + "probability": 0.7643 + }, + { + "start": 7582.26, + "end": 7583.02, + "probability": 0.903 + }, + { + "start": 7585.42, + "end": 7588.7, + "probability": 0.9354 + }, + { + "start": 7589.7, + "end": 7592.14, + "probability": 0.8028 + }, + { + "start": 7592.54, + "end": 7592.64, + "probability": 0.4531 + }, + { + "start": 7594.04, + "end": 7596.6, + "probability": 0.6253 + }, + { + "start": 7597.4, + "end": 7598.26, + "probability": 0.5404 + }, + { + "start": 7599.16, + "end": 7602.8, + "probability": 0.8051 + }, + { + "start": 7603.5, + "end": 7604.98, + "probability": 0.8595 + }, + { + "start": 7606.1, + "end": 7610.36, + "probability": 0.9369 + }, + { + "start": 7611.52, + "end": 7614.86, + "probability": 0.9912 + }, + { + "start": 7615.52, + "end": 7616.32, + "probability": 0.6808 + }, + { + "start": 7616.6, + "end": 7618.42, + "probability": 0.9833 + }, + { + "start": 7618.9, + "end": 7619.7, + "probability": 0.568 + }, + { + "start": 7620.42, + "end": 7626.58, + "probability": 0.9399 + }, + { + "start": 7626.86, + "end": 7627.58, + "probability": 0.7754 + }, + { + "start": 7627.88, + "end": 7628.82, + "probability": 0.8097 + }, + { + "start": 7629.32, + "end": 7630.02, + "probability": 0.5791 + }, + { + "start": 7630.04, + "end": 7630.98, + "probability": 0.8468 + }, + { + "start": 7631.46, + "end": 7637.8, + "probability": 0.9258 + }, + { + "start": 7637.8, + "end": 7641.72, + "probability": 0.9285 + }, + { + "start": 7642.76, + "end": 7645.24, + "probability": 0.5604 + }, + { + "start": 7646.32, + "end": 7650.84, + "probability": 0.8669 + }, + { + "start": 7651.42, + "end": 7654.4, + "probability": 0.739 + }, + { + "start": 7654.94, + "end": 7656.78, + "probability": 0.8073 + }, + { + "start": 7657.38, + "end": 7659.9, + "probability": 0.9905 + }, + { + "start": 7660.3, + "end": 7662.94, + "probability": 0.9495 + }, + { + "start": 7663.76, + "end": 7664.78, + "probability": 0.5192 + }, + { + "start": 7664.84, + "end": 7665.78, + "probability": 0.6956 + }, + { + "start": 7665.86, + "end": 7668.7, + "probability": 0.9598 + }, + { + "start": 7668.78, + "end": 7669.83, + "probability": 0.884 + }, + { + "start": 7669.96, + "end": 7671.36, + "probability": 0.4616 + }, + { + "start": 7671.36, + "end": 7671.78, + "probability": 0.2668 + }, + { + "start": 7672.5, + "end": 7673.32, + "probability": 0.988 + }, + { + "start": 7674.1, + "end": 7678.32, + "probability": 0.9514 + }, + { + "start": 7678.32, + "end": 7683.84, + "probability": 0.9878 + }, + { + "start": 7684.7, + "end": 7685.3, + "probability": 0.7884 + }, + { + "start": 7685.46, + "end": 7686.32, + "probability": 0.8011 + }, + { + "start": 7686.5, + "end": 7689.84, + "probability": 0.708 + }, + { + "start": 7690.34, + "end": 7694.18, + "probability": 0.5581 + }, + { + "start": 7696.86, + "end": 7697.98, + "probability": 0.7326 + }, + { + "start": 7699.14, + "end": 7702.68, + "probability": 0.4885 + }, + { + "start": 7704.48, + "end": 7709.14, + "probability": 0.7371 + }, + { + "start": 7710.92, + "end": 7713.78, + "probability": 0.682 + }, + { + "start": 7714.26, + "end": 7716.98, + "probability": 0.887 + }, + { + "start": 7717.46, + "end": 7719.1, + "probability": 0.8159 + }, + { + "start": 7719.1, + "end": 7720.0, + "probability": 0.3979 + }, + { + "start": 7721.32, + "end": 7723.93, + "probability": 0.4563 + }, + { + "start": 7724.46, + "end": 7725.87, + "probability": 0.2734 + }, + { + "start": 7726.18, + "end": 7727.62, + "probability": 0.4834 + }, + { + "start": 7728.08, + "end": 7730.5, + "probability": 0.7727 + }, + { + "start": 7730.8, + "end": 7732.78, + "probability": 0.7357 + }, + { + "start": 7733.06, + "end": 7734.18, + "probability": 0.7269 + }, + { + "start": 7735.57, + "end": 7741.48, + "probability": 0.9691 + }, + { + "start": 7741.94, + "end": 7746.8, + "probability": 0.8416 + }, + { + "start": 7747.54, + "end": 7748.41, + "probability": 0.9911 + }, + { + "start": 7749.39, + "end": 7749.92, + "probability": 0.515 + }, + { + "start": 7750.44, + "end": 7751.58, + "probability": 0.6947 + }, + { + "start": 7753.08, + "end": 7758.56, + "probability": 0.9583 + }, + { + "start": 7758.74, + "end": 7760.92, + "probability": 0.8358 + }, + { + "start": 7762.02, + "end": 7762.82, + "probability": 0.2656 + }, + { + "start": 7764.76, + "end": 7766.32, + "probability": 0.7979 + }, + { + "start": 7767.28, + "end": 7770.28, + "probability": 0.7966 + }, + { + "start": 7770.32, + "end": 7771.16, + "probability": 0.6701 + }, + { + "start": 7772.34, + "end": 7775.02, + "probability": 0.9344 + }, + { + "start": 7776.4, + "end": 7777.16, + "probability": 0.9039 + }, + { + "start": 7779.98, + "end": 7781.3, + "probability": 0.741 + }, + { + "start": 7781.54, + "end": 7781.54, + "probability": 0.2659 + }, + { + "start": 7781.54, + "end": 7782.26, + "probability": 0.6615 + }, + { + "start": 7782.44, + "end": 7783.64, + "probability": 0.7079 + }, + { + "start": 7784.16, + "end": 7790.44, + "probability": 0.985 + }, + { + "start": 7791.44, + "end": 7796.74, + "probability": 0.8652 + }, + { + "start": 7796.74, + "end": 7801.88, + "probability": 0.997 + }, + { + "start": 7802.94, + "end": 7806.96, + "probability": 0.9675 + }, + { + "start": 7807.86, + "end": 7814.96, + "probability": 0.8473 + }, + { + "start": 7815.24, + "end": 7819.38, + "probability": 0.9808 + }, + { + "start": 7819.6, + "end": 7822.5, + "probability": 0.9371 + }, + { + "start": 7822.7, + "end": 7825.7, + "probability": 0.8634 + }, + { + "start": 7826.5, + "end": 7832.16, + "probability": 0.9854 + }, + { + "start": 7832.76, + "end": 7837.84, + "probability": 0.953 + }, + { + "start": 7839.26, + "end": 7841.36, + "probability": 0.7423 + }, + { + "start": 7841.52, + "end": 7842.26, + "probability": 0.882 + }, + { + "start": 7842.68, + "end": 7844.82, + "probability": 0.9694 + }, + { + "start": 7844.9, + "end": 7846.84, + "probability": 0.9863 + }, + { + "start": 7848.16, + "end": 7850.18, + "probability": 0.9932 + }, + { + "start": 7850.26, + "end": 7853.9, + "probability": 0.9699 + }, + { + "start": 7854.2, + "end": 7855.48, + "probability": 0.7314 + }, + { + "start": 7855.94, + "end": 7860.24, + "probability": 0.9639 + }, + { + "start": 7860.36, + "end": 7861.83, + "probability": 0.4769 + }, + { + "start": 7862.16, + "end": 7866.82, + "probability": 0.8049 + }, + { + "start": 7867.36, + "end": 7871.7, + "probability": 0.9694 + }, + { + "start": 7871.86, + "end": 7875.64, + "probability": 0.9533 + }, + { + "start": 7875.64, + "end": 7879.66, + "probability": 0.9196 + }, + { + "start": 7879.86, + "end": 7886.98, + "probability": 0.9673 + }, + { + "start": 7887.06, + "end": 7889.76, + "probability": 0.9922 + }, + { + "start": 7890.08, + "end": 7890.52, + "probability": 0.6598 + }, + { + "start": 7890.58, + "end": 7890.8, + "probability": 0.7335 + }, + { + "start": 7890.84, + "end": 7894.94, + "probability": 0.968 + }, + { + "start": 7895.68, + "end": 7899.06, + "probability": 0.9658 + }, + { + "start": 7899.18, + "end": 7900.92, + "probability": 0.8646 + }, + { + "start": 7901.32, + "end": 7905.06, + "probability": 0.9759 + }, + { + "start": 7905.06, + "end": 7909.34, + "probability": 0.9781 + }, + { + "start": 7909.52, + "end": 7911.9, + "probability": 0.9398 + }, + { + "start": 7912.34, + "end": 7914.26, + "probability": 0.9921 + }, + { + "start": 7914.26, + "end": 7916.92, + "probability": 0.9474 + }, + { + "start": 7917.2, + "end": 7919.64, + "probability": 0.8567 + }, + { + "start": 7919.86, + "end": 7922.14, + "probability": 0.8813 + }, + { + "start": 7922.66, + "end": 7925.9, + "probability": 0.9893 + }, + { + "start": 7925.9, + "end": 7930.3, + "probability": 0.9784 + }, + { + "start": 7930.84, + "end": 7934.72, + "probability": 0.859 + }, + { + "start": 7935.72, + "end": 7937.4, + "probability": 0.8445 + }, + { + "start": 7937.98, + "end": 7939.98, + "probability": 0.0637 + }, + { + "start": 7939.98, + "end": 7941.84, + "probability": 0.7749 + }, + { + "start": 7942.28, + "end": 7945.42, + "probability": 0.9302 + }, + { + "start": 7946.44, + "end": 7947.78, + "probability": 0.8074 + }, + { + "start": 7948.0, + "end": 7951.9, + "probability": 0.9764 + }, + { + "start": 7952.56, + "end": 7953.98, + "probability": 0.5639 + }, + { + "start": 7954.34, + "end": 7959.56, + "probability": 0.9631 + }, + { + "start": 7960.96, + "end": 7964.7, + "probability": 0.9431 + }, + { + "start": 7964.7, + "end": 7967.44, + "probability": 0.9503 + }, + { + "start": 7967.7, + "end": 7974.8, + "probability": 0.9912 + }, + { + "start": 7975.78, + "end": 7981.68, + "probability": 0.995 + }, + { + "start": 7981.9, + "end": 7982.3, + "probability": 0.7941 + }, + { + "start": 7982.68, + "end": 7983.6, + "probability": 0.675 + }, + { + "start": 7984.2, + "end": 7988.53, + "probability": 0.8964 + }, + { + "start": 7989.74, + "end": 7990.82, + "probability": 0.726 + }, + { + "start": 7991.82, + "end": 7992.56, + "probability": 0.6212 + }, + { + "start": 7996.23, + "end": 7998.4, + "probability": 0.7055 + }, + { + "start": 7999.2, + "end": 8001.0, + "probability": 0.8608 + }, + { + "start": 8002.32, + "end": 8004.6, + "probability": 0.7765 + }, + { + "start": 8012.58, + "end": 8013.92, + "probability": 0.7181 + }, + { + "start": 8014.18, + "end": 8014.2, + "probability": 0.3437 + }, + { + "start": 8014.2, + "end": 8014.82, + "probability": 0.8008 + }, + { + "start": 8014.92, + "end": 8016.32, + "probability": 0.8555 + }, + { + "start": 8016.64, + "end": 8018.16, + "probability": 0.9785 + }, + { + "start": 8018.46, + "end": 8020.34, + "probability": 0.9053 + }, + { + "start": 8021.52, + "end": 8025.42, + "probability": 0.9968 + }, + { + "start": 8025.94, + "end": 8031.46, + "probability": 0.9722 + }, + { + "start": 8031.98, + "end": 8036.22, + "probability": 0.9463 + }, + { + "start": 8036.9, + "end": 8038.86, + "probability": 0.9347 + }, + { + "start": 8039.5, + "end": 8041.64, + "probability": 0.9852 + }, + { + "start": 8042.8, + "end": 8046.36, + "probability": 0.9842 + }, + { + "start": 8046.56, + "end": 8048.65, + "probability": 0.9844 + }, + { + "start": 8049.02, + "end": 8050.78, + "probability": 0.9988 + }, + { + "start": 8051.54, + "end": 8054.52, + "probability": 0.9777 + }, + { + "start": 8055.0, + "end": 8058.36, + "probability": 0.9228 + }, + { + "start": 8059.52, + "end": 8061.78, + "probability": 0.9554 + }, + { + "start": 8062.46, + "end": 8063.36, + "probability": 0.6032 + }, + { + "start": 8063.48, + "end": 8067.76, + "probability": 0.9946 + }, + { + "start": 8067.76, + "end": 8070.6, + "probability": 0.9855 + }, + { + "start": 8071.44, + "end": 8076.76, + "probability": 0.9619 + }, + { + "start": 8077.62, + "end": 8079.61, + "probability": 0.7794 + }, + { + "start": 8080.26, + "end": 8085.44, + "probability": 0.9941 + }, + { + "start": 8085.54, + "end": 8090.06, + "probability": 0.9761 + }, + { + "start": 8090.58, + "end": 8093.28, + "probability": 0.8642 + }, + { + "start": 8093.78, + "end": 8095.12, + "probability": 0.9749 + }, + { + "start": 8095.28, + "end": 8095.84, + "probability": 0.9203 + }, + { + "start": 8096.26, + "end": 8102.44, + "probability": 0.9137 + }, + { + "start": 8102.94, + "end": 8105.4, + "probability": 0.9443 + }, + { + "start": 8106.46, + "end": 8110.02, + "probability": 0.8722 + }, + { + "start": 8111.2, + "end": 8116.06, + "probability": 0.9924 + }, + { + "start": 8116.66, + "end": 8118.54, + "probability": 0.988 + }, + { + "start": 8118.86, + "end": 8119.34, + "probability": 0.8235 + }, + { + "start": 8119.44, + "end": 8120.52, + "probability": 0.8584 + }, + { + "start": 8121.48, + "end": 8122.86, + "probability": 0.8418 + }, + { + "start": 8123.66, + "end": 8126.26, + "probability": 0.7924 + }, + { + "start": 8127.68, + "end": 8130.94, + "probability": 0.9886 + }, + { + "start": 8130.94, + "end": 8133.54, + "probability": 0.9741 + }, + { + "start": 8134.24, + "end": 8137.5, + "probability": 0.9783 + }, + { + "start": 8137.98, + "end": 8140.96, + "probability": 0.9712 + }, + { + "start": 8141.4, + "end": 8141.86, + "probability": 0.7986 + }, + { + "start": 8141.98, + "end": 8143.32, + "probability": 0.9775 + }, + { + "start": 8144.02, + "end": 8148.24, + "probability": 0.9824 + }, + { + "start": 8149.06, + "end": 8151.88, + "probability": 0.9829 + }, + { + "start": 8152.08, + "end": 8154.1, + "probability": 0.7104 + }, + { + "start": 8155.0, + "end": 8157.0, + "probability": 0.9429 + }, + { + "start": 8157.06, + "end": 8158.68, + "probability": 0.9939 + }, + { + "start": 8158.76, + "end": 8159.7, + "probability": 0.9369 + }, + { + "start": 8161.04, + "end": 8166.14, + "probability": 0.9874 + }, + { + "start": 8166.68, + "end": 8169.08, + "probability": 0.9922 + }, + { + "start": 8170.36, + "end": 8173.46, + "probability": 0.9927 + }, + { + "start": 8174.96, + "end": 8178.02, + "probability": 0.9735 + }, + { + "start": 8178.02, + "end": 8180.2, + "probability": 0.7728 + }, + { + "start": 8180.54, + "end": 8182.1, + "probability": 0.9544 + }, + { + "start": 8182.44, + "end": 8184.92, + "probability": 0.7874 + }, + { + "start": 8186.1, + "end": 8190.54, + "probability": 0.9517 + }, + { + "start": 8191.12, + "end": 8193.98, + "probability": 0.7951 + }, + { + "start": 8194.38, + "end": 8196.91, + "probability": 0.9834 + }, + { + "start": 8197.8, + "end": 8202.03, + "probability": 0.7542 + }, + { + "start": 8203.16, + "end": 8204.08, + "probability": 0.925 + }, + { + "start": 8204.18, + "end": 8205.24, + "probability": 0.8683 + }, + { + "start": 8206.14, + "end": 8209.64, + "probability": 0.886 + }, + { + "start": 8209.78, + "end": 8210.7, + "probability": 0.9117 + }, + { + "start": 8210.8, + "end": 8211.62, + "probability": 0.8325 + }, + { + "start": 8211.76, + "end": 8216.48, + "probability": 0.9907 + }, + { + "start": 8217.52, + "end": 8224.26, + "probability": 0.8469 + }, + { + "start": 8224.64, + "end": 8227.86, + "probability": 0.9741 + }, + { + "start": 8228.18, + "end": 8230.0, + "probability": 0.9474 + }, + { + "start": 8230.2, + "end": 8231.79, + "probability": 0.9453 + }, + { + "start": 8233.56, + "end": 8235.42, + "probability": 0.9701 + }, + { + "start": 8235.84, + "end": 8238.0, + "probability": 0.9707 + }, + { + "start": 8238.62, + "end": 8239.68, + "probability": 0.9123 + }, + { + "start": 8239.84, + "end": 8242.7, + "probability": 0.8194 + }, + { + "start": 8243.1, + "end": 8244.46, + "probability": 0.8861 + }, + { + "start": 8245.3, + "end": 8249.28, + "probability": 0.9948 + }, + { + "start": 8249.98, + "end": 8252.98, + "probability": 0.9714 + }, + { + "start": 8252.98, + "end": 8257.48, + "probability": 0.9988 + }, + { + "start": 8257.56, + "end": 8260.3, + "probability": 0.9266 + }, + { + "start": 8260.86, + "end": 8261.74, + "probability": 0.6836 + }, + { + "start": 8261.88, + "end": 8262.82, + "probability": 0.8576 + }, + { + "start": 8263.0, + "end": 8264.87, + "probability": 0.9395 + }, + { + "start": 8265.46, + "end": 8267.72, + "probability": 0.9695 + }, + { + "start": 8267.72, + "end": 8268.38, + "probability": 0.5172 + }, + { + "start": 8268.7, + "end": 8270.98, + "probability": 0.9854 + }, + { + "start": 8271.8, + "end": 8278.5, + "probability": 0.9829 + }, + { + "start": 8278.5, + "end": 8282.5, + "probability": 0.8721 + }, + { + "start": 8282.64, + "end": 8283.4, + "probability": 0.7738 + }, + { + "start": 8285.42, + "end": 8286.72, + "probability": 0.7835 + }, + { + "start": 8287.46, + "end": 8289.04, + "probability": 0.7497 + }, + { + "start": 8290.74, + "end": 8292.34, + "probability": 0.6634 + }, + { + "start": 8293.28, + "end": 8296.72, + "probability": 0.6269 + }, + { + "start": 8297.46, + "end": 8300.24, + "probability": 0.9733 + }, + { + "start": 8300.87, + "end": 8307.38, + "probability": 0.9585 + }, + { + "start": 8308.42, + "end": 8311.24, + "probability": 0.8118 + }, + { + "start": 8312.0, + "end": 8317.66, + "probability": 0.9803 + }, + { + "start": 8318.46, + "end": 8325.24, + "probability": 0.9968 + }, + { + "start": 8326.0, + "end": 8334.98, + "probability": 0.9953 + }, + { + "start": 8334.98, + "end": 8342.28, + "probability": 0.9995 + }, + { + "start": 8343.06, + "end": 8347.6, + "probability": 0.88 + }, + { + "start": 8348.06, + "end": 8349.84, + "probability": 0.9976 + }, + { + "start": 8350.44, + "end": 8352.78, + "probability": 0.943 + }, + { + "start": 8353.64, + "end": 8356.18, + "probability": 0.9661 + }, + { + "start": 8357.4, + "end": 8362.96, + "probability": 0.9525 + }, + { + "start": 8362.96, + "end": 8366.4, + "probability": 0.9692 + }, + { + "start": 8366.9, + "end": 8370.26, + "probability": 0.9102 + }, + { + "start": 8370.96, + "end": 8372.98, + "probability": 0.9268 + }, + { + "start": 8373.78, + "end": 8378.84, + "probability": 0.996 + }, + { + "start": 8379.04, + "end": 8379.68, + "probability": 0.6938 + }, + { + "start": 8380.2, + "end": 8384.56, + "probability": 0.9911 + }, + { + "start": 8384.72, + "end": 8385.68, + "probability": 0.8859 + }, + { + "start": 8385.78, + "end": 8386.22, + "probability": 0.8794 + }, + { + "start": 8386.3, + "end": 8386.84, + "probability": 0.7397 + }, + { + "start": 8386.98, + "end": 8392.7, + "probability": 0.9951 + }, + { + "start": 8393.1, + "end": 8396.6, + "probability": 0.9816 + }, + { + "start": 8396.6, + "end": 8399.94, + "probability": 0.998 + }, + { + "start": 8400.14, + "end": 8402.88, + "probability": 0.9893 + }, + { + "start": 8404.02, + "end": 8405.42, + "probability": 0.5262 + }, + { + "start": 8405.82, + "end": 8407.42, + "probability": 0.937 + }, + { + "start": 8407.9, + "end": 8412.64, + "probability": 0.9878 + }, + { + "start": 8412.76, + "end": 8413.56, + "probability": 0.9743 + }, + { + "start": 8413.68, + "end": 8414.7, + "probability": 0.9167 + }, + { + "start": 8414.98, + "end": 8415.8, + "probability": 0.7827 + }, + { + "start": 8415.9, + "end": 8419.02, + "probability": 0.9729 + }, + { + "start": 8419.76, + "end": 8421.94, + "probability": 0.8704 + }, + { + "start": 8422.1, + "end": 8423.66, + "probability": 0.876 + }, + { + "start": 8424.08, + "end": 8426.52, + "probability": 0.9909 + }, + { + "start": 8426.8, + "end": 8428.4, + "probability": 0.9467 + }, + { + "start": 8428.54, + "end": 8435.08, + "probability": 0.9635 + }, + { + "start": 8436.3, + "end": 8438.92, + "probability": 0.9429 + }, + { + "start": 8439.08, + "end": 8440.14, + "probability": 0.9795 + }, + { + "start": 8440.74, + "end": 8441.46, + "probability": 0.7554 + }, + { + "start": 8441.62, + "end": 8443.5, + "probability": 0.9274 + }, + { + "start": 8443.94, + "end": 8446.72, + "probability": 0.9733 + }, + { + "start": 8447.78, + "end": 8453.16, + "probability": 0.9507 + }, + { + "start": 8453.16, + "end": 8456.82, + "probability": 0.9971 + }, + { + "start": 8457.22, + "end": 8459.36, + "probability": 0.9565 + }, + { + "start": 8459.42, + "end": 8460.55, + "probability": 0.7137 + }, + { + "start": 8461.4, + "end": 8462.88, + "probability": 0.9605 + }, + { + "start": 8463.26, + "end": 8466.22, + "probability": 0.9567 + }, + { + "start": 8466.56, + "end": 8468.18, + "probability": 0.9687 + }, + { + "start": 8468.28, + "end": 8470.64, + "probability": 0.9697 + }, + { + "start": 8471.02, + "end": 8471.84, + "probability": 0.6563 + }, + { + "start": 8472.4, + "end": 8473.3, + "probability": 0.8495 + }, + { + "start": 8473.92, + "end": 8478.56, + "probability": 0.9949 + }, + { + "start": 8479.86, + "end": 8480.98, + "probability": 0.9287 + }, + { + "start": 8482.1, + "end": 8486.66, + "probability": 0.9918 + }, + { + "start": 8486.66, + "end": 8490.18, + "probability": 0.9578 + }, + { + "start": 8490.4, + "end": 8494.14, + "probability": 0.9583 + }, + { + "start": 8494.42, + "end": 8495.86, + "probability": 0.8277 + }, + { + "start": 8496.02, + "end": 8499.24, + "probability": 0.9073 + }, + { + "start": 8499.3, + "end": 8502.29, + "probability": 0.9491 + }, + { + "start": 8502.78, + "end": 8505.66, + "probability": 0.9932 + }, + { + "start": 8506.5, + "end": 8514.78, + "probability": 0.9785 + }, + { + "start": 8514.94, + "end": 8519.86, + "probability": 0.988 + }, + { + "start": 8520.62, + "end": 8524.72, + "probability": 0.8963 + }, + { + "start": 8525.42, + "end": 8527.56, + "probability": 0.8754 + }, + { + "start": 8528.12, + "end": 8528.7, + "probability": 0.697 + }, + { + "start": 8528.82, + "end": 8530.06, + "probability": 0.9689 + }, + { + "start": 8530.2, + "end": 8530.9, + "probability": 0.9502 + }, + { + "start": 8531.16, + "end": 8532.46, + "probability": 0.9052 + }, + { + "start": 8532.54, + "end": 8532.84, + "probability": 0.6554 + }, + { + "start": 8532.9, + "end": 8533.94, + "probability": 0.5172 + }, + { + "start": 8534.76, + "end": 8538.1, + "probability": 0.8259 + }, + { + "start": 8539.98, + "end": 8542.06, + "probability": 0.7548 + }, + { + "start": 8543.4, + "end": 8544.14, + "probability": 0.7046 + }, + { + "start": 8544.28, + "end": 8545.22, + "probability": 0.7892 + }, + { + "start": 8545.3, + "end": 8547.68, + "probability": 0.7061 + }, + { + "start": 8549.44, + "end": 8552.22, + "probability": 0.9762 + }, + { + "start": 8552.58, + "end": 8553.2, + "probability": 0.9095 + }, + { + "start": 8555.04, + "end": 8555.2, + "probability": 0.9532 + }, + { + "start": 8555.8, + "end": 8556.33, + "probability": 0.4824 + }, + { + "start": 8558.94, + "end": 8564.3, + "probability": 0.9983 + }, + { + "start": 8565.24, + "end": 8566.48, + "probability": 0.9362 + }, + { + "start": 8566.64, + "end": 8571.9, + "probability": 0.8353 + }, + { + "start": 8572.04, + "end": 8573.96, + "probability": 0.9966 + }, + { + "start": 8574.64, + "end": 8576.64, + "probability": 0.9814 + }, + { + "start": 8578.02, + "end": 8579.76, + "probability": 0.8226 + }, + { + "start": 8580.9, + "end": 8583.02, + "probability": 0.981 + }, + { + "start": 8584.54, + "end": 8586.28, + "probability": 0.7398 + }, + { + "start": 8588.86, + "end": 8591.94, + "probability": 0.9653 + }, + { + "start": 8591.98, + "end": 8592.54, + "probability": 0.9363 + }, + { + "start": 8592.64, + "end": 8593.56, + "probability": 0.7023 + }, + { + "start": 8593.58, + "end": 8593.8, + "probability": 0.4803 + }, + { + "start": 8593.88, + "end": 8594.04, + "probability": 0.2694 + }, + { + "start": 8594.08, + "end": 8596.14, + "probability": 0.6837 + }, + { + "start": 8596.16, + "end": 8596.88, + "probability": 0.5166 + }, + { + "start": 8596.98, + "end": 8601.24, + "probability": 0.9438 + }, + { + "start": 8601.36, + "end": 8601.76, + "probability": 0.6935 + }, + { + "start": 8602.04, + "end": 8602.78, + "probability": 0.9707 + }, + { + "start": 8603.86, + "end": 8608.04, + "probability": 0.9424 + }, + { + "start": 8608.68, + "end": 8613.38, + "probability": 0.9679 + }, + { + "start": 8614.34, + "end": 8617.52, + "probability": 0.9413 + }, + { + "start": 8618.32, + "end": 8622.54, + "probability": 0.8445 + }, + { + "start": 8623.12, + "end": 8627.48, + "probability": 0.9794 + }, + { + "start": 8630.2, + "end": 8632.5, + "probability": 0.8923 + }, + { + "start": 8633.62, + "end": 8637.6, + "probability": 0.8791 + }, + { + "start": 8638.28, + "end": 8641.3, + "probability": 0.9989 + }, + { + "start": 8641.72, + "end": 8642.34, + "probability": 0.6282 + }, + { + "start": 8642.56, + "end": 8644.6, + "probability": 0.701 + }, + { + "start": 8644.62, + "end": 8646.41, + "probability": 0.6543 + }, + { + "start": 8646.5, + "end": 8649.82, + "probability": 0.6824 + }, + { + "start": 8649.98, + "end": 8651.92, + "probability": 0.7356 + }, + { + "start": 8652.46, + "end": 8654.74, + "probability": 0.8569 + }, + { + "start": 8654.74, + "end": 8655.4, + "probability": 0.9885 + }, + { + "start": 8655.56, + "end": 8656.7, + "probability": 0.9775 + }, + { + "start": 8658.0, + "end": 8659.94, + "probability": 0.9512 + }, + { + "start": 8660.08, + "end": 8660.88, + "probability": 0.8141 + }, + { + "start": 8661.72, + "end": 8663.22, + "probability": 0.4548 + }, + { + "start": 8665.44, + "end": 8667.14, + "probability": 0.7662 + }, + { + "start": 8667.2, + "end": 8671.62, + "probability": 0.8861 + }, + { + "start": 8671.94, + "end": 8672.48, + "probability": 0.8333 + }, + { + "start": 8673.0, + "end": 8674.04, + "probability": 0.7639 + }, + { + "start": 8674.46, + "end": 8675.84, + "probability": 0.8004 + }, + { + "start": 8676.84, + "end": 8678.56, + "probability": 0.3199 + }, + { + "start": 8679.08, + "end": 8680.32, + "probability": 0.9599 + }, + { + "start": 8681.68, + "end": 8683.02, + "probability": 0.6769 + }, + { + "start": 8683.52, + "end": 8687.86, + "probability": 0.7665 + }, + { + "start": 8688.38, + "end": 8690.7, + "probability": 0.8678 + }, + { + "start": 8691.24, + "end": 8693.62, + "probability": 0.8904 + }, + { + "start": 8695.0, + "end": 8697.02, + "probability": 0.9878 + }, + { + "start": 8697.62, + "end": 8702.14, + "probability": 0.9863 + }, + { + "start": 8702.84, + "end": 8708.94, + "probability": 0.9549 + }, + { + "start": 8709.5, + "end": 8712.28, + "probability": 0.9639 + }, + { + "start": 8712.92, + "end": 8714.06, + "probability": 0.9631 + }, + { + "start": 8714.48, + "end": 8715.88, + "probability": 0.5504 + }, + { + "start": 8716.0, + "end": 8716.92, + "probability": 0.6226 + }, + { + "start": 8717.42, + "end": 8718.44, + "probability": 0.854 + }, + { + "start": 8719.77, + "end": 8722.5, + "probability": 0.788 + }, + { + "start": 8722.96, + "end": 8723.76, + "probability": 0.8545 + }, + { + "start": 8724.18, + "end": 8725.84, + "probability": 0.7459 + }, + { + "start": 8726.14, + "end": 8728.88, + "probability": 0.9322 + }, + { + "start": 8729.22, + "end": 8730.66, + "probability": 0.9883 + }, + { + "start": 8730.94, + "end": 8735.0, + "probability": 0.9508 + }, + { + "start": 8735.46, + "end": 8735.95, + "probability": 0.8739 + }, + { + "start": 8737.2, + "end": 8739.24, + "probability": 0.8608 + }, + { + "start": 8739.42, + "end": 8739.62, + "probability": 0.7558 + }, + { + "start": 8739.66, + "end": 8741.38, + "probability": 0.8988 + }, + { + "start": 8742.02, + "end": 8743.02, + "probability": 0.6589 + }, + { + "start": 8744.12, + "end": 8745.09, + "probability": 0.98 + }, + { + "start": 8745.96, + "end": 8749.84, + "probability": 0.9753 + }, + { + "start": 8750.08, + "end": 8750.92, + "probability": 0.9823 + }, + { + "start": 8751.46, + "end": 8752.43, + "probability": 0.8987 + }, + { + "start": 8752.92, + "end": 8754.8, + "probability": 0.8365 + }, + { + "start": 8755.84, + "end": 8758.92, + "probability": 0.866 + }, + { + "start": 8759.02, + "end": 8759.71, + "probability": 0.8928 + }, + { + "start": 8760.0, + "end": 8764.04, + "probability": 0.9758 + }, + { + "start": 8764.42, + "end": 8766.7, + "probability": 0.995 + }, + { + "start": 8767.06, + "end": 8768.98, + "probability": 0.9667 + }, + { + "start": 8769.06, + "end": 8770.78, + "probability": 0.9966 + }, + { + "start": 8771.16, + "end": 8773.92, + "probability": 0.8348 + }, + { + "start": 8774.34, + "end": 8775.54, + "probability": 0.9236 + }, + { + "start": 8775.78, + "end": 8776.15, + "probability": 0.8906 + }, + { + "start": 8776.86, + "end": 8777.94, + "probability": 0.7343 + }, + { + "start": 8778.2, + "end": 8779.9, + "probability": 0.6221 + }, + { + "start": 8780.26, + "end": 8781.18, + "probability": 0.8483 + }, + { + "start": 8781.3, + "end": 8781.64, + "probability": 0.8816 + }, + { + "start": 8781.7, + "end": 8783.96, + "probability": 0.6902 + }, + { + "start": 8784.08, + "end": 8786.7, + "probability": 0.9561 + }, + { + "start": 8787.26, + "end": 8788.3, + "probability": 0.3555 + }, + { + "start": 8788.72, + "end": 8789.84, + "probability": 0.9871 + }, + { + "start": 8790.24, + "end": 8791.28, + "probability": 0.7925 + }, + { + "start": 8791.28, + "end": 8791.44, + "probability": 0.0168 + }, + { + "start": 8791.46, + "end": 8792.14, + "probability": 0.6892 + }, + { + "start": 8792.16, + "end": 8793.22, + "probability": 0.6943 + }, + { + "start": 8793.5, + "end": 8793.9, + "probability": 0.5201 + }, + { + "start": 8793.92, + "end": 8794.76, + "probability": 0.5784 + }, + { + "start": 8794.98, + "end": 8795.2, + "probability": 0.5775 + }, + { + "start": 8795.32, + "end": 8795.52, + "probability": 0.1749 + }, + { + "start": 8795.52, + "end": 8796.3, + "probability": 0.6716 + }, + { + "start": 8796.34, + "end": 8797.9, + "probability": 0.8651 + }, + { + "start": 8798.02, + "end": 8798.02, + "probability": 0.5163 + }, + { + "start": 8798.02, + "end": 8798.02, + "probability": 0.2661 + }, + { + "start": 8798.02, + "end": 8798.62, + "probability": 0.9429 + }, + { + "start": 8799.18, + "end": 8800.0, + "probability": 0.4989 + }, + { + "start": 8800.02, + "end": 8800.68, + "probability": 0.6211 + }, + { + "start": 8800.84, + "end": 8804.32, + "probability": 0.9049 + }, + { + "start": 8804.46, + "end": 8805.3, + "probability": 0.7173 + }, + { + "start": 8806.0, + "end": 8808.98, + "probability": 0.5517 + }, + { + "start": 8810.78, + "end": 8813.92, + "probability": 0.9465 + }, + { + "start": 8815.84, + "end": 8818.82, + "probability": 0.7976 + }, + { + "start": 8818.9, + "end": 8819.16, + "probability": 0.7151 + }, + { + "start": 8819.56, + "end": 8821.42, + "probability": 0.9414 + }, + { + "start": 8822.02, + "end": 8823.92, + "probability": 0.9467 + }, + { + "start": 8824.0, + "end": 8826.48, + "probability": 0.6354 + }, + { + "start": 8832.22, + "end": 8833.16, + "probability": 0.7942 + }, + { + "start": 8833.42, + "end": 8835.0, + "probability": 0.9364 + }, + { + "start": 8835.08, + "end": 8836.56, + "probability": 0.4922 + }, + { + "start": 8836.94, + "end": 8837.36, + "probability": 0.5506 + }, + { + "start": 8837.5, + "end": 8843.1, + "probability": 0.9028 + }, + { + "start": 8843.7, + "end": 8844.98, + "probability": 0.7191 + }, + { + "start": 8846.0, + "end": 8848.16, + "probability": 0.9014 + }, + { + "start": 8849.94, + "end": 8851.1, + "probability": 0.9536 + }, + { + "start": 8851.8, + "end": 8854.56, + "probability": 0.9672 + }, + { + "start": 8858.7, + "end": 8859.8, + "probability": 0.9271 + }, + { + "start": 8860.86, + "end": 8864.5, + "probability": 0.9579 + }, + { + "start": 8865.68, + "end": 8868.74, + "probability": 0.9844 + }, + { + "start": 8870.04, + "end": 8873.68, + "probability": 0.8254 + }, + { + "start": 8875.2, + "end": 8878.78, + "probability": 0.9678 + }, + { + "start": 8880.32, + "end": 8882.16, + "probability": 0.7685 + }, + { + "start": 8882.26, + "end": 8883.8, + "probability": 0.9667 + }, + { + "start": 8885.52, + "end": 8887.32, + "probability": 0.8431 + }, + { + "start": 8888.94, + "end": 8890.58, + "probability": 0.9314 + }, + { + "start": 8892.16, + "end": 8894.26, + "probability": 0.9944 + }, + { + "start": 8897.08, + "end": 8900.32, + "probability": 0.8961 + }, + { + "start": 8902.36, + "end": 8903.32, + "probability": 0.8061 + }, + { + "start": 8904.44, + "end": 8906.26, + "probability": 0.967 + }, + { + "start": 8907.22, + "end": 8908.68, + "probability": 0.8516 + }, + { + "start": 8910.06, + "end": 8911.32, + "probability": 0.951 + }, + { + "start": 8911.42, + "end": 8911.92, + "probability": 0.5975 + }, + { + "start": 8912.2, + "end": 8913.42, + "probability": 0.9731 + }, + { + "start": 8913.56, + "end": 8914.18, + "probability": 0.9551 + }, + { + "start": 8915.14, + "end": 8915.48, + "probability": 0.9928 + }, + { + "start": 8916.58, + "end": 8923.16, + "probability": 0.9983 + }, + { + "start": 8924.28, + "end": 8926.66, + "probability": 0.9917 + }, + { + "start": 8928.68, + "end": 8932.4, + "probability": 0.9995 + }, + { + "start": 8933.9, + "end": 8935.3, + "probability": 0.9263 + }, + { + "start": 8939.8, + "end": 8943.48, + "probability": 0.9905 + }, + { + "start": 8945.1, + "end": 8945.46, + "probability": 0.4632 + }, + { + "start": 8946.2, + "end": 8947.6, + "probability": 0.8236 + }, + { + "start": 8948.3, + "end": 8951.54, + "probability": 0.8387 + }, + { + "start": 8954.66, + "end": 8961.84, + "probability": 0.9124 + }, + { + "start": 8962.14, + "end": 8962.86, + "probability": 0.7847 + }, + { + "start": 8964.78, + "end": 8969.42, + "probability": 0.9958 + }, + { + "start": 8971.2, + "end": 8973.6, + "probability": 0.9824 + }, + { + "start": 8975.8, + "end": 8976.48, + "probability": 0.6495 + }, + { + "start": 8976.64, + "end": 8979.3, + "probability": 0.9474 + }, + { + "start": 8979.58, + "end": 8981.74, + "probability": 0.961 + }, + { + "start": 8983.14, + "end": 8986.22, + "probability": 0.9717 + }, + { + "start": 8986.36, + "end": 8990.6, + "probability": 0.9233 + }, + { + "start": 8992.04, + "end": 8997.5, + "probability": 0.9881 + }, + { + "start": 8998.94, + "end": 9004.72, + "probability": 0.5921 + }, + { + "start": 9004.82, + "end": 9005.58, + "probability": 0.9004 + }, + { + "start": 9005.86, + "end": 9006.9, + "probability": 0.9319 + }, + { + "start": 9007.06, + "end": 9011.43, + "probability": 0.9048 + }, + { + "start": 9011.86, + "end": 9012.2, + "probability": 0.8545 + }, + { + "start": 9014.22, + "end": 9015.48, + "probability": 0.8038 + }, + { + "start": 9017.16, + "end": 9017.78, + "probability": 0.0709 + }, + { + "start": 9018.16, + "end": 9019.54, + "probability": 0.7055 + }, + { + "start": 9019.82, + "end": 9020.68, + "probability": 0.6685 + }, + { + "start": 9020.9, + "end": 9021.94, + "probability": 0.4247 + }, + { + "start": 9022.2, + "end": 9022.78, + "probability": 0.419 + }, + { + "start": 9023.76, + "end": 9027.22, + "probability": 0.2645 + }, + { + "start": 9027.64, + "end": 9028.04, + "probability": 0.6004 + }, + { + "start": 9028.68, + "end": 9029.0, + "probability": 0.2031 + }, + { + "start": 9029.0, + "end": 9031.72, + "probability": 0.4333 + }, + { + "start": 9033.46, + "end": 9037.18, + "probability": 0.7528 + }, + { + "start": 9037.24, + "end": 9039.54, + "probability": 0.9337 + }, + { + "start": 9039.94, + "end": 9040.64, + "probability": 0.7668 + }, + { + "start": 9041.34, + "end": 9046.46, + "probability": 0.7913 + }, + { + "start": 9048.02, + "end": 9048.46, + "probability": 0.5312 + }, + { + "start": 9049.9, + "end": 9052.72, + "probability": 0.9689 + }, + { + "start": 9054.34, + "end": 9055.32, + "probability": 0.5084 + }, + { + "start": 9055.32, + "end": 9058.34, + "probability": 0.5839 + }, + { + "start": 9059.9, + "end": 9062.4, + "probability": 0.8056 + }, + { + "start": 9064.08, + "end": 9068.2, + "probability": 0.6816 + }, + { + "start": 9069.52, + "end": 9074.26, + "probability": 0.7567 + }, + { + "start": 9075.12, + "end": 9076.38, + "probability": 0.9147 + }, + { + "start": 9076.94, + "end": 9079.2, + "probability": 0.8699 + }, + { + "start": 9079.92, + "end": 9081.46, + "probability": 0.8633 + }, + { + "start": 9082.0, + "end": 9084.62, + "probability": 0.7634 + }, + { + "start": 9084.8, + "end": 9085.92, + "probability": 0.9866 + }, + { + "start": 9086.2, + "end": 9090.22, + "probability": 0.9854 + }, + { + "start": 9090.32, + "end": 9091.02, + "probability": 0.7903 + }, + { + "start": 9091.72, + "end": 9096.34, + "probability": 0.9877 + }, + { + "start": 9096.58, + "end": 9098.46, + "probability": 0.7824 + }, + { + "start": 9098.82, + "end": 9101.66, + "probability": 0.9858 + }, + { + "start": 9101.98, + "end": 9107.78, + "probability": 0.9928 + }, + { + "start": 9108.1, + "end": 9110.12, + "probability": 0.9486 + }, + { + "start": 9110.48, + "end": 9114.08, + "probability": 0.9193 + }, + { + "start": 9114.3, + "end": 9114.78, + "probability": 0.3578 + }, + { + "start": 9115.44, + "end": 9120.66, + "probability": 0.9448 + }, + { + "start": 9120.66, + "end": 9121.7, + "probability": 0.7663 + }, + { + "start": 9122.4, + "end": 9124.5, + "probability": 0.6792 + }, + { + "start": 9125.48, + "end": 9126.6, + "probability": 0.625 + }, + { + "start": 9127.22, + "end": 9131.56, + "probability": 0.9844 + }, + { + "start": 9131.64, + "end": 9132.42, + "probability": 0.9477 + }, + { + "start": 9133.48, + "end": 9134.77, + "probability": 0.9905 + }, + { + "start": 9135.5, + "end": 9137.34, + "probability": 0.7737 + }, + { + "start": 9137.7, + "end": 9140.5, + "probability": 0.6655 + }, + { + "start": 9140.6, + "end": 9140.6, + "probability": 0.2168 + }, + { + "start": 9140.6, + "end": 9140.6, + "probability": 0.1372 + }, + { + "start": 9140.6, + "end": 9140.6, + "probability": 0.1999 + }, + { + "start": 9140.6, + "end": 9141.36, + "probability": 0.5464 + }, + { + "start": 9141.48, + "end": 9145.44, + "probability": 0.9669 + }, + { + "start": 9145.44, + "end": 9151.28, + "probability": 0.7855 + }, + { + "start": 9152.34, + "end": 9154.96, + "probability": 0.9868 + }, + { + "start": 9155.64, + "end": 9158.3, + "probability": 0.9102 + }, + { + "start": 9158.48, + "end": 9163.94, + "probability": 0.986 + }, + { + "start": 9164.46, + "end": 9167.38, + "probability": 0.8659 + }, + { + "start": 9167.94, + "end": 9170.3, + "probability": 0.6027 + }, + { + "start": 9170.96, + "end": 9174.98, + "probability": 0.9928 + }, + { + "start": 9175.88, + "end": 9178.16, + "probability": 0.2334 + }, + { + "start": 9178.18, + "end": 9179.66, + "probability": 0.7397 + }, + { + "start": 9179.76, + "end": 9181.54, + "probability": 0.98 + }, + { + "start": 9181.6, + "end": 9186.57, + "probability": 0.8791 + }, + { + "start": 9186.75, + "end": 9192.82, + "probability": 0.9878 + }, + { + "start": 9192.86, + "end": 9193.58, + "probability": 0.6897 + }, + { + "start": 9193.84, + "end": 9196.04, + "probability": 0.5176 + }, + { + "start": 9196.1, + "end": 9199.58, + "probability": 0.9597 + }, + { + "start": 9200.24, + "end": 9206.72, + "probability": 0.9269 + }, + { + "start": 9207.2, + "end": 9210.8, + "probability": 0.9902 + }, + { + "start": 9211.44, + "end": 9214.1, + "probability": 0.796 + }, + { + "start": 9214.14, + "end": 9217.12, + "probability": 0.9917 + }, + { + "start": 9217.38, + "end": 9224.86, + "probability": 0.9934 + }, + { + "start": 9224.86, + "end": 9229.46, + "probability": 0.9976 + }, + { + "start": 9230.12, + "end": 9231.52, + "probability": 0.833 + }, + { + "start": 9231.7, + "end": 9234.14, + "probability": 0.4972 + }, + { + "start": 9234.85, + "end": 9236.84, + "probability": 0.7734 + }, + { + "start": 9236.9, + "end": 9241.1, + "probability": 0.669 + }, + { + "start": 9241.26, + "end": 9241.38, + "probability": 0.4232 + }, + { + "start": 9241.38, + "end": 9245.04, + "probability": 0.9551 + }, + { + "start": 9245.04, + "end": 9249.92, + "probability": 0.9971 + }, + { + "start": 9250.32, + "end": 9252.86, + "probability": 0.9972 + }, + { + "start": 9253.4, + "end": 9256.7, + "probability": 0.9869 + }, + { + "start": 9257.72, + "end": 9258.8, + "probability": 0.7732 + }, + { + "start": 9259.4, + "end": 9260.36, + "probability": 0.8239 + }, + { + "start": 9260.66, + "end": 9265.3, + "probability": 0.8777 + }, + { + "start": 9266.12, + "end": 9274.4, + "probability": 0.9693 + }, + { + "start": 9275.24, + "end": 9276.98, + "probability": 0.9414 + }, + { + "start": 9277.2, + "end": 9280.22, + "probability": 0.9182 + }, + { + "start": 9280.46, + "end": 9282.1, + "probability": 0.9578 + }, + { + "start": 9282.22, + "end": 9285.74, + "probability": 0.9757 + }, + { + "start": 9285.84, + "end": 9286.66, + "probability": 0.9602 + }, + { + "start": 9287.0, + "end": 9290.34, + "probability": 0.9785 + }, + { + "start": 9290.34, + "end": 9293.84, + "probability": 0.9619 + }, + { + "start": 9294.94, + "end": 9300.04, + "probability": 0.9787 + }, + { + "start": 9300.04, + "end": 9302.7, + "probability": 0.9937 + }, + { + "start": 9302.88, + "end": 9307.42, + "probability": 0.9919 + }, + { + "start": 9307.5, + "end": 9310.47, + "probability": 0.9954 + }, + { + "start": 9310.62, + "end": 9313.04, + "probability": 0.9473 + }, + { + "start": 9313.4, + "end": 9317.98, + "probability": 0.9487 + }, + { + "start": 9318.58, + "end": 9324.74, + "probability": 0.9611 + }, + { + "start": 9325.5, + "end": 9327.12, + "probability": 0.8273 + }, + { + "start": 9327.24, + "end": 9328.98, + "probability": 0.9155 + }, + { + "start": 9330.44, + "end": 9337.0, + "probability": 0.9825 + }, + { + "start": 9337.66, + "end": 9340.6, + "probability": 0.9959 + }, + { + "start": 9340.6, + "end": 9342.86, + "probability": 0.8723 + }, + { + "start": 9343.32, + "end": 9346.09, + "probability": 0.9382 + }, + { + "start": 9346.28, + "end": 9348.18, + "probability": 0.9785 + }, + { + "start": 9348.94, + "end": 9353.22, + "probability": 0.9924 + }, + { + "start": 9353.22, + "end": 9360.24, + "probability": 0.9974 + }, + { + "start": 9361.24, + "end": 9364.22, + "probability": 0.9976 + }, + { + "start": 9364.9, + "end": 9368.66, + "probability": 0.9971 + }, + { + "start": 9368.66, + "end": 9373.54, + "probability": 0.9983 + }, + { + "start": 9373.54, + "end": 9378.8, + "probability": 0.9504 + }, + { + "start": 9379.56, + "end": 9382.04, + "probability": 0.998 + }, + { + "start": 9382.04, + "end": 9384.12, + "probability": 0.8372 + }, + { + "start": 9384.3, + "end": 9389.36, + "probability": 0.9414 + }, + { + "start": 9390.68, + "end": 9395.5, + "probability": 0.9402 + }, + { + "start": 9396.52, + "end": 9399.84, + "probability": 0.9959 + }, + { + "start": 9399.84, + "end": 9404.4, + "probability": 0.9983 + }, + { + "start": 9404.88, + "end": 9410.88, + "probability": 0.9846 + }, + { + "start": 9410.88, + "end": 9415.5, + "probability": 0.999 + }, + { + "start": 9415.92, + "end": 9417.22, + "probability": 0.6919 + }, + { + "start": 9417.68, + "end": 9422.08, + "probability": 0.9932 + }, + { + "start": 9422.26, + "end": 9424.02, + "probability": 0.9836 + }, + { + "start": 9424.82, + "end": 9425.74, + "probability": 0.7432 + }, + { + "start": 9425.88, + "end": 9431.46, + "probability": 0.9698 + }, + { + "start": 9431.46, + "end": 9435.32, + "probability": 0.998 + }, + { + "start": 9435.6, + "end": 9440.62, + "probability": 0.9816 + }, + { + "start": 9441.6, + "end": 9446.76, + "probability": 0.915 + }, + { + "start": 9446.94, + "end": 9449.9, + "probability": 0.8997 + }, + { + "start": 9449.96, + "end": 9453.14, + "probability": 0.8937 + }, + { + "start": 9453.8, + "end": 9455.2, + "probability": 0.6644 + }, + { + "start": 9455.62, + "end": 9457.4, + "probability": 0.9767 + }, + { + "start": 9457.48, + "end": 9459.14, + "probability": 0.9775 + }, + { + "start": 9459.32, + "end": 9462.84, + "probability": 0.8094 + }, + { + "start": 9462.94, + "end": 9464.6, + "probability": 0.9139 + }, + { + "start": 9464.6, + "end": 9467.46, + "probability": 0.8222 + }, + { + "start": 9468.16, + "end": 9471.54, + "probability": 0.9885 + }, + { + "start": 9471.96, + "end": 9472.88, + "probability": 0.4555 + }, + { + "start": 9472.88, + "end": 9477.64, + "probability": 0.7906 + }, + { + "start": 9477.76, + "end": 9478.64, + "probability": 0.8933 + }, + { + "start": 9478.68, + "end": 9479.32, + "probability": 0.546 + }, + { + "start": 9479.42, + "end": 9481.54, + "probability": 0.9895 + }, + { + "start": 9481.54, + "end": 9484.32, + "probability": 0.9932 + }, + { + "start": 9484.88, + "end": 9486.78, + "probability": 0.6085 + }, + { + "start": 9487.0, + "end": 9488.06, + "probability": 0.6587 + }, + { + "start": 9488.1, + "end": 9488.1, + "probability": 0.4211 + }, + { + "start": 9488.22, + "end": 9488.6, + "probability": 0.1995 + }, + { + "start": 9488.76, + "end": 9493.36, + "probability": 0.9868 + }, + { + "start": 9493.36, + "end": 9496.96, + "probability": 0.9996 + }, + { + "start": 9497.02, + "end": 9500.92, + "probability": 0.9963 + }, + { + "start": 9501.5, + "end": 9506.64, + "probability": 0.9956 + }, + { + "start": 9506.64, + "end": 9511.68, + "probability": 0.9985 + }, + { + "start": 9512.1, + "end": 9514.26, + "probability": 0.9881 + }, + { + "start": 9514.54, + "end": 9515.16, + "probability": 0.8346 + }, + { + "start": 9515.4, + "end": 9516.14, + "probability": 0.9356 + }, + { + "start": 9516.26, + "end": 9517.94, + "probability": 0.7901 + }, + { + "start": 9518.24, + "end": 9520.94, + "probability": 0.743 + }, + { + "start": 9521.02, + "end": 9524.48, + "probability": 0.9921 + }, + { + "start": 9524.98, + "end": 9529.62, + "probability": 0.8789 + }, + { + "start": 9529.72, + "end": 9530.84, + "probability": 0.7079 + }, + { + "start": 9530.92, + "end": 9535.12, + "probability": 0.9904 + }, + { + "start": 9535.12, + "end": 9539.08, + "probability": 0.9897 + }, + { + "start": 9539.52, + "end": 9541.38, + "probability": 0.7576 + }, + { + "start": 9541.5, + "end": 9542.02, + "probability": 0.6799 + }, + { + "start": 9542.16, + "end": 9546.3, + "probability": 0.9604 + }, + { + "start": 9546.58, + "end": 9550.92, + "probability": 0.9331 + }, + { + "start": 9552.74, + "end": 9558.36, + "probability": 0.9698 + }, + { + "start": 9558.5, + "end": 9561.18, + "probability": 0.9982 + }, + { + "start": 9561.84, + "end": 9567.54, + "probability": 0.9966 + }, + { + "start": 9567.86, + "end": 9568.8, + "probability": 0.7394 + }, + { + "start": 9568.98, + "end": 9572.5, + "probability": 0.9784 + }, + { + "start": 9573.1, + "end": 9577.56, + "probability": 0.9749 + }, + { + "start": 9577.7, + "end": 9578.02, + "probability": 0.572 + }, + { + "start": 9578.32, + "end": 9580.76, + "probability": 0.9831 + }, + { + "start": 9581.3, + "end": 9582.26, + "probability": 0.846 + }, + { + "start": 9582.38, + "end": 9584.76, + "probability": 0.9946 + }, + { + "start": 9586.2, + "end": 9587.58, + "probability": 0.5783 + }, + { + "start": 9588.12, + "end": 9589.88, + "probability": 0.6316 + }, + { + "start": 9590.0, + "end": 9592.48, + "probability": 0.946 + }, + { + "start": 9593.42, + "end": 9594.5, + "probability": 0.9034 + }, + { + "start": 9599.58, + "end": 9600.72, + "probability": 0.5161 + }, + { + "start": 9602.18, + "end": 9603.48, + "probability": 0.9521 + }, + { + "start": 9604.3, + "end": 9605.2, + "probability": 0.7561 + }, + { + "start": 9606.14, + "end": 9610.8, + "probability": 0.8834 + }, + { + "start": 9611.48, + "end": 9616.38, + "probability": 0.8528 + }, + { + "start": 9617.18, + "end": 9621.36, + "probability": 0.9869 + }, + { + "start": 9622.26, + "end": 9626.5, + "probability": 0.9989 + }, + { + "start": 9627.44, + "end": 9630.12, + "probability": 0.9949 + }, + { + "start": 9630.82, + "end": 9631.88, + "probability": 0.5029 + }, + { + "start": 9632.7, + "end": 9634.15, + "probability": 0.938 + }, + { + "start": 9635.08, + "end": 9636.68, + "probability": 0.3332 + }, + { + "start": 9636.92, + "end": 9639.88, + "probability": 0.9673 + }, + { + "start": 9640.54, + "end": 9643.94, + "probability": 0.6888 + }, + { + "start": 9644.56, + "end": 9648.56, + "probability": 0.8913 + }, + { + "start": 9648.74, + "end": 9650.88, + "probability": 0.9409 + }, + { + "start": 9651.02, + "end": 9655.5, + "probability": 0.785 + }, + { + "start": 9656.08, + "end": 9657.54, + "probability": 0.732 + }, + { + "start": 9658.44, + "end": 9671.0, + "probability": 0.9792 + }, + { + "start": 9672.72, + "end": 9673.72, + "probability": 0.8645 + }, + { + "start": 9674.96, + "end": 9677.68, + "probability": 0.8031 + }, + { + "start": 9678.46, + "end": 9680.84, + "probability": 0.7935 + }, + { + "start": 9682.3, + "end": 9684.76, + "probability": 0.9577 + }, + { + "start": 9685.56, + "end": 9688.87, + "probability": 0.9271 + }, + { + "start": 9689.56, + "end": 9690.84, + "probability": 0.7832 + }, + { + "start": 9691.36, + "end": 9695.18, + "probability": 0.8731 + }, + { + "start": 9695.94, + "end": 9697.64, + "probability": 0.9829 + }, + { + "start": 9698.48, + "end": 9699.7, + "probability": 0.9695 + }, + { + "start": 9700.5, + "end": 9705.9, + "probability": 0.9963 + }, + { + "start": 9706.18, + "end": 9707.26, + "probability": 0.9552 + }, + { + "start": 9707.92, + "end": 9712.46, + "probability": 0.8391 + }, + { + "start": 9713.58, + "end": 9714.62, + "probability": 0.9881 + }, + { + "start": 9715.86, + "end": 9718.94, + "probability": 0.9482 + }, + { + "start": 9720.18, + "end": 9721.34, + "probability": 0.95 + }, + { + "start": 9721.9, + "end": 9726.24, + "probability": 0.9141 + }, + { + "start": 9727.88, + "end": 9728.92, + "probability": 0.5868 + }, + { + "start": 9729.78, + "end": 9732.78, + "probability": 0.8828 + }, + { + "start": 9733.32, + "end": 9734.3, + "probability": 0.9749 + }, + { + "start": 9734.82, + "end": 9737.66, + "probability": 0.9909 + }, + { + "start": 9738.62, + "end": 9739.44, + "probability": 0.9462 + }, + { + "start": 9739.98, + "end": 9742.16, + "probability": 0.867 + }, + { + "start": 9742.84, + "end": 9746.32, + "probability": 0.8318 + }, + { + "start": 9746.38, + "end": 9748.39, + "probability": 0.845 + }, + { + "start": 9750.28, + "end": 9752.68, + "probability": 0.9547 + }, + { + "start": 9753.38, + "end": 9753.96, + "probability": 0.7901 + }, + { + "start": 9754.36, + "end": 9757.06, + "probability": 0.9854 + }, + { + "start": 9757.94, + "end": 9758.94, + "probability": 0.8903 + }, + { + "start": 9759.68, + "end": 9762.12, + "probability": 0.9354 + }, + { + "start": 9762.28, + "end": 9764.38, + "probability": 0.9226 + }, + { + "start": 9765.06, + "end": 9767.76, + "probability": 0.9739 + }, + { + "start": 9768.44, + "end": 9769.68, + "probability": 0.9481 + }, + { + "start": 9770.7, + "end": 9771.28, + "probability": 0.6032 + }, + { + "start": 9771.86, + "end": 9775.1, + "probability": 0.9468 + }, + { + "start": 9775.7, + "end": 9776.88, + "probability": 0.9329 + }, + { + "start": 9777.56, + "end": 9779.68, + "probability": 0.8683 + }, + { + "start": 9780.28, + "end": 9783.24, + "probability": 0.7716 + }, + { + "start": 9784.38, + "end": 9785.54, + "probability": 0.6722 + }, + { + "start": 9787.44, + "end": 9790.98, + "probability": 0.979 + }, + { + "start": 9791.32, + "end": 9792.88, + "probability": 0.983 + }, + { + "start": 9793.5, + "end": 9797.97, + "probability": 0.9901 + }, + { + "start": 9798.14, + "end": 9802.68, + "probability": 0.9941 + }, + { + "start": 9802.92, + "end": 9807.92, + "probability": 0.8029 + }, + { + "start": 9808.26, + "end": 9809.36, + "probability": 0.8025 + }, + { + "start": 9809.42, + "end": 9810.78, + "probability": 0.7378 + }, + { + "start": 9811.4, + "end": 9814.18, + "probability": 0.989 + }, + { + "start": 9814.52, + "end": 9815.66, + "probability": 0.708 + }, + { + "start": 9815.78, + "end": 9817.0, + "probability": 0.9775 + }, + { + "start": 9817.76, + "end": 9818.56, + "probability": 0.3789 + }, + { + "start": 9819.32, + "end": 9820.18, + "probability": 0.7585 + }, + { + "start": 9820.94, + "end": 9823.44, + "probability": 0.9019 + }, + { + "start": 9824.3, + "end": 9829.6, + "probability": 0.9727 + }, + { + "start": 9830.68, + "end": 9831.32, + "probability": 0.9801 + }, + { + "start": 9832.2, + "end": 9834.46, + "probability": 0.9947 + }, + { + "start": 9835.3, + "end": 9838.94, + "probability": 0.997 + }, + { + "start": 9839.82, + "end": 9841.2, + "probability": 0.7649 + }, + { + "start": 9842.26, + "end": 9842.8, + "probability": 0.8643 + }, + { + "start": 9845.6, + "end": 9848.43, + "probability": 0.9987 + }, + { + "start": 9849.3, + "end": 9853.9, + "probability": 0.9634 + }, + { + "start": 9854.11, + "end": 9857.54, + "probability": 0.9745 + }, + { + "start": 9857.92, + "end": 9859.1, + "probability": 0.9438 + }, + { + "start": 9860.0, + "end": 9866.22, + "probability": 0.9935 + }, + { + "start": 9866.94, + "end": 9870.58, + "probability": 0.9977 + }, + { + "start": 9871.48, + "end": 9872.36, + "probability": 0.998 + }, + { + "start": 9873.06, + "end": 9876.14, + "probability": 0.9375 + }, + { + "start": 9876.84, + "end": 9880.38, + "probability": 0.9058 + }, + { + "start": 9880.44, + "end": 9881.38, + "probability": 0.9049 + }, + { + "start": 9881.46, + "end": 9887.8, + "probability": 0.9909 + }, + { + "start": 9888.18, + "end": 9889.1, + "probability": 0.7955 + }, + { + "start": 9890.48, + "end": 9892.58, + "probability": 0.8913 + }, + { + "start": 9892.88, + "end": 9894.4, + "probability": 0.7771 + }, + { + "start": 9895.12, + "end": 9901.46, + "probability": 0.9864 + }, + { + "start": 9902.26, + "end": 9907.66, + "probability": 0.9712 + }, + { + "start": 9908.2, + "end": 9911.88, + "probability": 0.7852 + }, + { + "start": 9912.16, + "end": 9912.54, + "probability": 0.0695 + }, + { + "start": 9913.54, + "end": 9915.76, + "probability": 0.4555 + }, + { + "start": 9917.14, + "end": 9920.28, + "probability": 0.0749 + }, + { + "start": 9920.54, + "end": 9924.38, + "probability": 0.4764 + }, + { + "start": 9925.76, + "end": 9929.78, + "probability": 0.7422 + }, + { + "start": 9930.34, + "end": 9930.7, + "probability": 0.8727 + }, + { + "start": 9931.2, + "end": 9932.3, + "probability": 0.8397 + }, + { + "start": 9933.24, + "end": 9935.0, + "probability": 0.924 + }, + { + "start": 9935.61, + "end": 9940.02, + "probability": 0.9115 + }, + { + "start": 9940.04, + "end": 9940.6, + "probability": 0.7628 + }, + { + "start": 9941.0, + "end": 9945.6, + "probability": 0.9782 + }, + { + "start": 9945.88, + "end": 9949.85, + "probability": 0.9543 + }, + { + "start": 9950.64, + "end": 9953.26, + "probability": 0.901 + }, + { + "start": 9953.56, + "end": 9955.06, + "probability": 0.968 + }, + { + "start": 9955.96, + "end": 9958.23, + "probability": 0.9904 + }, + { + "start": 9958.42, + "end": 9959.4, + "probability": 0.7371 + }, + { + "start": 9959.98, + "end": 9959.98, + "probability": 0.7779 + }, + { + "start": 9960.0, + "end": 9961.5, + "probability": 0.7201 + }, + { + "start": 9961.52, + "end": 9964.16, + "probability": 0.9733 + }, + { + "start": 9964.48, + "end": 9964.68, + "probability": 0.6642 + }, + { + "start": 9964.84, + "end": 9965.18, + "probability": 0.9263 + }, + { + "start": 9965.62, + "end": 9967.32, + "probability": 0.8531 + }, + { + "start": 9967.82, + "end": 9973.08, + "probability": 0.9948 + }, + { + "start": 9974.0, + "end": 9976.22, + "probability": 0.8779 + }, + { + "start": 9976.72, + "end": 9977.62, + "probability": 0.9347 + }, + { + "start": 9977.82, + "end": 9979.16, + "probability": 0.6105 + }, + { + "start": 9979.3, + "end": 9981.28, + "probability": 0.9043 + }, + { + "start": 9982.28, + "end": 9983.44, + "probability": 0.9907 + }, + { + "start": 9984.72, + "end": 9988.9, + "probability": 0.9894 + }, + { + "start": 9989.24, + "end": 9994.16, + "probability": 0.9805 + }, + { + "start": 9994.74, + "end": 9996.74, + "probability": 0.9906 + }, + { + "start": 9997.24, + "end": 9999.14, + "probability": 0.0323 + }, + { + "start": 9999.14, + "end": 9999.84, + "probability": 0.4491 + }, + { + "start": 10000.28, + "end": 10002.88, + "probability": 0.4813 + }, + { + "start": 10003.0, + "end": 10004.46, + "probability": 0.1075 + }, + { + "start": 10005.5, + "end": 10007.16, + "probability": 0.0126 + }, + { + "start": 10007.16, + "end": 10008.22, + "probability": 0.0659 + }, + { + "start": 10008.66, + "end": 10010.1, + "probability": 0.4698 + }, + { + "start": 10010.26, + "end": 10010.34, + "probability": 0.9535 + }, + { + "start": 10010.34, + "end": 10011.86, + "probability": 0.684 + }, + { + "start": 10012.84, + "end": 10014.54, + "probability": 0.8102 + }, + { + "start": 10015.16, + "end": 10016.66, + "probability": 0.8549 + }, + { + "start": 10017.24, + "end": 10018.5, + "probability": 0.2321 + }, + { + "start": 10018.62, + "end": 10020.34, + "probability": 0.5884 + }, + { + "start": 10020.96, + "end": 10022.26, + "probability": 0.4006 + }, + { + "start": 10022.28, + "end": 10024.16, + "probability": 0.5563 + }, + { + "start": 10024.34, + "end": 10025.48, + "probability": 0.8794 + }, + { + "start": 10026.36, + "end": 10030.4, + "probability": 0.9432 + }, + { + "start": 10030.4, + "end": 10033.14, + "probability": 0.998 + }, + { + "start": 10034.26, + "end": 10041.19, + "probability": 0.9629 + }, + { + "start": 10042.19, + "end": 10050.02, + "probability": 0.8853 + }, + { + "start": 10050.16, + "end": 10053.82, + "probability": 0.9645 + }, + { + "start": 10053.9, + "end": 10055.63, + "probability": 0.9116 + }, + { + "start": 10056.84, + "end": 10063.14, + "probability": 0.9728 + }, + { + "start": 10063.72, + "end": 10066.14, + "probability": 0.7195 + }, + { + "start": 10066.74, + "end": 10069.04, + "probability": 0.9148 + }, + { + "start": 10069.74, + "end": 10072.54, + "probability": 0.9904 + }, + { + "start": 10072.84, + "end": 10073.24, + "probability": 0.6308 + }, + { + "start": 10073.32, + "end": 10073.8, + "probability": 0.9451 + }, + { + "start": 10073.9, + "end": 10074.88, + "probability": 0.7241 + }, + { + "start": 10075.28, + "end": 10077.58, + "probability": 0.9444 + }, + { + "start": 10077.76, + "end": 10081.83, + "probability": 0.9678 + }, + { + "start": 10082.9, + "end": 10084.7, + "probability": 0.8773 + }, + { + "start": 10090.88, + "end": 10091.92, + "probability": 0.6344 + }, + { + "start": 10092.1, + "end": 10095.92, + "probability": 0.888 + }, + { + "start": 10096.66, + "end": 10098.34, + "probability": 0.9312 + }, + { + "start": 10099.0, + "end": 10104.84, + "probability": 0.9793 + }, + { + "start": 10105.52, + "end": 10107.22, + "probability": 0.7821 + }, + { + "start": 10108.6, + "end": 10113.84, + "probability": 0.4518 + }, + { + "start": 10114.74, + "end": 10116.52, + "probability": 0.9956 + }, + { + "start": 10117.4, + "end": 10119.12, + "probability": 0.8813 + }, + { + "start": 10119.7, + "end": 10123.54, + "probability": 0.9712 + }, + { + "start": 10123.96, + "end": 10125.96, + "probability": 0.6768 + }, + { + "start": 10126.3, + "end": 10128.38, + "probability": 0.8239 + }, + { + "start": 10129.06, + "end": 10131.62, + "probability": 0.9487 + }, + { + "start": 10132.26, + "end": 10136.24, + "probability": 0.8883 + }, + { + "start": 10136.6, + "end": 10137.84, + "probability": 0.5615 + }, + { + "start": 10138.32, + "end": 10139.46, + "probability": 0.8292 + }, + { + "start": 10139.52, + "end": 10142.0, + "probability": 0.7326 + }, + { + "start": 10143.06, + "end": 10148.66, + "probability": 0.7051 + }, + { + "start": 10149.56, + "end": 10151.08, + "probability": 0.5984 + }, + { + "start": 10152.32, + "end": 10154.48, + "probability": 0.855 + }, + { + "start": 10155.14, + "end": 10158.22, + "probability": 0.8125 + }, + { + "start": 10158.82, + "end": 10164.2, + "probability": 0.8748 + }, + { + "start": 10164.32, + "end": 10168.08, + "probability": 0.9939 + }, + { + "start": 10168.94, + "end": 10172.9, + "probability": 0.5822 + }, + { + "start": 10173.02, + "end": 10173.86, + "probability": 0.764 + }, + { + "start": 10174.34, + "end": 10182.56, + "probability": 0.068 + }, + { + "start": 10190.42, + "end": 10194.68, + "probability": 0.6222 + }, + { + "start": 10195.26, + "end": 10196.98, + "probability": 0.8782 + }, + { + "start": 10197.26, + "end": 10201.18, + "probability": 0.9368 + }, + { + "start": 10202.12, + "end": 10203.26, + "probability": 0.8799 + }, + { + "start": 10203.82, + "end": 10204.56, + "probability": 0.5608 + }, + { + "start": 10205.2, + "end": 10209.08, + "probability": 0.9054 + }, + { + "start": 10209.18, + "end": 10211.98, + "probability": 0.7161 + }, + { + "start": 10212.74, + "end": 10214.34, + "probability": 0.536 + }, + { + "start": 10214.4, + "end": 10214.92, + "probability": 0.5294 + }, + { + "start": 10214.92, + "end": 10215.78, + "probability": 0.6922 + }, + { + "start": 10215.78, + "end": 10218.74, + "probability": 0.0604 + }, + { + "start": 10221.74, + "end": 10223.62, + "probability": 0.0817 + }, + { + "start": 10226.92, + "end": 10229.58, + "probability": 0.0429 + }, + { + "start": 10232.76, + "end": 10233.98, + "probability": 0.3582 + }, + { + "start": 10234.88, + "end": 10238.86, + "probability": 0.5361 + }, + { + "start": 10239.44, + "end": 10245.78, + "probability": 0.9128 + }, + { + "start": 10246.16, + "end": 10247.58, + "probability": 0.9129 + }, + { + "start": 10249.4, + "end": 10252.82, + "probability": 0.9358 + }, + { + "start": 10253.2, + "end": 10254.22, + "probability": 0.6126 + }, + { + "start": 10254.66, + "end": 10258.76, + "probability": 0.9891 + }, + { + "start": 10259.14, + "end": 10262.5, + "probability": 0.8231 + }, + { + "start": 10262.56, + "end": 10264.06, + "probability": 0.7124 + }, + { + "start": 10264.46, + "end": 10265.1, + "probability": 0.5999 + }, + { + "start": 10265.18, + "end": 10265.74, + "probability": 0.7389 + }, + { + "start": 10266.08, + "end": 10266.34, + "probability": 0.3719 + }, + { + "start": 10266.46, + "end": 10266.9, + "probability": 0.0016 + }, + { + "start": 10270.62, + "end": 10274.03, + "probability": 0.0228 + }, + { + "start": 10283.0, + "end": 10283.68, + "probability": 0.0633 + }, + { + "start": 10283.68, + "end": 10284.5, + "probability": 0.4494 + }, + { + "start": 10285.18, + "end": 10291.0, + "probability": 0.9036 + }, + { + "start": 10291.56, + "end": 10293.06, + "probability": 0.3875 + }, + { + "start": 10293.34, + "end": 10294.62, + "probability": 0.6066 + }, + { + "start": 10294.7, + "end": 10297.74, + "probability": 0.4037 + }, + { + "start": 10297.74, + "end": 10300.16, + "probability": 0.3158 + }, + { + "start": 10300.76, + "end": 10301.98, + "probability": 0.7794 + }, + { + "start": 10302.46, + "end": 10304.48, + "probability": 0.7494 + }, + { + "start": 10310.08, + "end": 10311.52, + "probability": 0.7281 + }, + { + "start": 10311.52, + "end": 10315.54, + "probability": 0.958 + }, + { + "start": 10318.72, + "end": 10323.54, + "probability": 0.9028 + }, + { + "start": 10323.54, + "end": 10324.52, + "probability": 0.5735 + }, + { + "start": 10325.14, + "end": 10327.76, + "probability": 0.9489 + }, + { + "start": 10327.92, + "end": 10329.4, + "probability": 0.7233 + }, + { + "start": 10329.66, + "end": 10330.94, + "probability": 0.8098 + }, + { + "start": 10331.02, + "end": 10332.16, + "probability": 0.3728 + }, + { + "start": 10332.64, + "end": 10335.88, + "probability": 0.8052 + }, + { + "start": 10336.0, + "end": 10336.96, + "probability": 0.8807 + }, + { + "start": 10338.06, + "end": 10338.66, + "probability": 0.773 + }, + { + "start": 10338.82, + "end": 10339.58, + "probability": 0.7762 + }, + { + "start": 10339.7, + "end": 10340.9, + "probability": 0.6297 + }, + { + "start": 10341.02, + "end": 10344.22, + "probability": 0.9879 + }, + { + "start": 10344.22, + "end": 10348.16, + "probability": 0.4904 + }, + { + "start": 10348.18, + "end": 10353.18, + "probability": 0.8629 + }, + { + "start": 10353.28, + "end": 10355.1, + "probability": 0.5101 + }, + { + "start": 10355.28, + "end": 10360.06, + "probability": 0.9775 + }, + { + "start": 10360.4, + "end": 10362.62, + "probability": 0.9867 + }, + { + "start": 10362.62, + "end": 10366.06, + "probability": 0.9528 + }, + { + "start": 10366.56, + "end": 10366.96, + "probability": 0.5708 + }, + { + "start": 10367.18, + "end": 10370.22, + "probability": 0.9761 + }, + { + "start": 10370.22, + "end": 10373.7, + "probability": 0.9669 + }, + { + "start": 10374.62, + "end": 10376.64, + "probability": 0.9655 + }, + { + "start": 10377.04, + "end": 10381.36, + "probability": 0.9956 + }, + { + "start": 10381.72, + "end": 10386.38, + "probability": 0.8736 + }, + { + "start": 10386.74, + "end": 10388.5, + "probability": 0.8876 + }, + { + "start": 10388.88, + "end": 10391.76, + "probability": 0.9358 + }, + { + "start": 10393.4, + "end": 10393.94, + "probability": 0.8709 + }, + { + "start": 10393.94, + "end": 10397.76, + "probability": 0.9487 + }, + { + "start": 10398.24, + "end": 10398.88, + "probability": 0.517 + }, + { + "start": 10399.52, + "end": 10400.54, + "probability": 0.5766 + }, + { + "start": 10400.6, + "end": 10401.7, + "probability": 0.8374 + }, + { + "start": 10402.26, + "end": 10404.06, + "probability": 0.9775 + }, + { + "start": 10404.08, + "end": 10404.94, + "probability": 0.9042 + }, + { + "start": 10405.56, + "end": 10406.84, + "probability": 0.8964 + }, + { + "start": 10407.36, + "end": 10414.98, + "probability": 0.7738 + }, + { + "start": 10416.1, + "end": 10417.12, + "probability": 0.0244 + }, + { + "start": 10417.96, + "end": 10418.54, + "probability": 0.3258 + }, + { + "start": 10418.54, + "end": 10419.02, + "probability": 0.5442 + }, + { + "start": 10419.02, + "end": 10419.44, + "probability": 0.7575 + }, + { + "start": 10421.14, + "end": 10425.76, + "probability": 0.0013 + }, + { + "start": 10433.6, + "end": 10434.62, + "probability": 0.081 + }, + { + "start": 10434.79, + "end": 10438.48, + "probability": 0.7853 + }, + { + "start": 10439.0, + "end": 10439.66, + "probability": 0.3154 + }, + { + "start": 10439.66, + "end": 10442.96, + "probability": 0.9795 + }, + { + "start": 10443.82, + "end": 10444.76, + "probability": 0.7568 + }, + { + "start": 10445.38, + "end": 10448.32, + "probability": 0.9546 + }, + { + "start": 10448.92, + "end": 10450.44, + "probability": 0.7997 + }, + { + "start": 10450.96, + "end": 10453.44, + "probability": 0.6292 + }, + { + "start": 10453.94, + "end": 10459.32, + "probability": 0.6841 + }, + { + "start": 10461.58, + "end": 10462.58, + "probability": 0.6057 + }, + { + "start": 10462.58, + "end": 10462.96, + "probability": 0.7537 + }, + { + "start": 10466.12, + "end": 10468.52, + "probability": 0.1318 + }, + { + "start": 10468.52, + "end": 10470.92, + "probability": 0.6291 + }, + { + "start": 10470.92, + "end": 10471.16, + "probability": 0.0603 + }, + { + "start": 10472.84, + "end": 10472.84, + "probability": 0.1232 + }, + { + "start": 10475.14, + "end": 10478.46, + "probability": 0.6989 + }, + { + "start": 10478.6, + "end": 10483.7, + "probability": 0.9031 + }, + { + "start": 10483.7, + "end": 10489.14, + "probability": 0.9364 + }, + { + "start": 10489.6, + "end": 10490.97, + "probability": 0.8325 + }, + { + "start": 10492.04, + "end": 10494.36, + "probability": 0.511 + }, + { + "start": 10494.42, + "end": 10494.96, + "probability": 0.913 + }, + { + "start": 10495.44, + "end": 10499.62, + "probability": 0.7371 + }, + { + "start": 10499.78, + "end": 10500.64, + "probability": 0.7967 + }, + { + "start": 10501.2, + "end": 10507.72, + "probability": 0.9794 + }, + { + "start": 10508.14, + "end": 10511.32, + "probability": 0.9728 + }, + { + "start": 10511.52, + "end": 10514.02, + "probability": 0.7698 + }, + { + "start": 10514.12, + "end": 10516.5, + "probability": 0.84 + }, + { + "start": 10520.86, + "end": 10521.78, + "probability": 0.6926 + }, + { + "start": 10522.38, + "end": 10522.66, + "probability": 0.1374 + }, + { + "start": 10522.78, + "end": 10522.88, + "probability": 0.3774 + }, + { + "start": 10523.28, + "end": 10524.38, + "probability": 0.7704 + }, + { + "start": 10524.8, + "end": 10526.04, + "probability": 0.8584 + }, + { + "start": 10526.46, + "end": 10531.98, + "probability": 0.9355 + }, + { + "start": 10532.5, + "end": 10533.3, + "probability": 0.7792 + }, + { + "start": 10533.4, + "end": 10535.16, + "probability": 0.2716 + }, + { + "start": 10535.42, + "end": 10537.18, + "probability": 0.9804 + }, + { + "start": 10537.92, + "end": 10539.18, + "probability": 0.9945 + }, + { + "start": 10539.22, + "end": 10542.44, + "probability": 0.5435 + }, + { + "start": 10542.88, + "end": 10545.58, + "probability": 0.9739 + }, + { + "start": 10545.58, + "end": 10549.88, + "probability": 0.9624 + }, + { + "start": 10550.36, + "end": 10552.94, + "probability": 0.99 + }, + { + "start": 10552.94, + "end": 10555.68, + "probability": 0.9208 + }, + { + "start": 10556.2, + "end": 10556.93, + "probability": 0.9341 + }, + { + "start": 10557.5, + "end": 10558.64, + "probability": 0.7721 + }, + { + "start": 10559.08, + "end": 10564.48, + "probability": 0.9416 + }, + { + "start": 10564.48, + "end": 10569.78, + "probability": 0.9946 + }, + { + "start": 10570.8, + "end": 10573.94, + "probability": 0.8712 + }, + { + "start": 10573.94, + "end": 10577.08, + "probability": 0.7107 + }, + { + "start": 10577.38, + "end": 10578.44, + "probability": 0.9132 + }, + { + "start": 10578.98, + "end": 10583.76, + "probability": 0.8143 + }, + { + "start": 10584.28, + "end": 10589.28, + "probability": 0.9883 + }, + { + "start": 10589.72, + "end": 10594.2, + "probability": 0.9327 + }, + { + "start": 10594.6, + "end": 10597.22, + "probability": 0.9663 + }, + { + "start": 10598.02, + "end": 10603.14, + "probability": 0.9943 + }, + { + "start": 10603.72, + "end": 10608.54, + "probability": 0.9925 + }, + { + "start": 10609.04, + "end": 10612.2, + "probability": 0.9824 + }, + { + "start": 10612.2, + "end": 10617.04, + "probability": 0.9913 + }, + { + "start": 10617.38, + "end": 10620.82, + "probability": 0.996 + }, + { + "start": 10621.28, + "end": 10624.1, + "probability": 0.9749 + }, + { + "start": 10624.52, + "end": 10627.33, + "probability": 0.9805 + }, + { + "start": 10627.72, + "end": 10629.64, + "probability": 0.9705 + }, + { + "start": 10630.24, + "end": 10633.12, + "probability": 0.9943 + }, + { + "start": 10633.62, + "end": 10634.86, + "probability": 0.7083 + }, + { + "start": 10634.86, + "end": 10635.78, + "probability": 0.9119 + }, + { + "start": 10635.84, + "end": 10636.34, + "probability": 0.6138 + }, + { + "start": 10636.58, + "end": 10638.1, + "probability": 0.9431 + }, + { + "start": 10638.18, + "end": 10639.88, + "probability": 0.9359 + }, + { + "start": 10640.0, + "end": 10640.64, + "probability": 0.6808 + }, + { + "start": 10641.0, + "end": 10642.44, + "probability": 0.6836 + }, + { + "start": 10642.9, + "end": 10643.56, + "probability": 0.7261 + }, + { + "start": 10643.62, + "end": 10646.2, + "probability": 0.9828 + }, + { + "start": 10646.52, + "end": 10649.44, + "probability": 0.9896 + }, + { + "start": 10649.78, + "end": 10650.14, + "probability": 0.3909 + }, + { + "start": 10651.52, + "end": 10654.12, + "probability": 0.8687 + }, + { + "start": 10655.16, + "end": 10658.64, + "probability": 0.893 + }, + { + "start": 10659.38, + "end": 10664.98, + "probability": 0.9844 + }, + { + "start": 10665.96, + "end": 10666.46, + "probability": 0.7466 + }, + { + "start": 10668.1, + "end": 10670.38, + "probability": 0.7842 + }, + { + "start": 10671.56, + "end": 10675.38, + "probability": 0.6464 + }, + { + "start": 10675.56, + "end": 10676.52, + "probability": 0.7111 + }, + { + "start": 10676.94, + "end": 10677.64, + "probability": 0.5761 + }, + { + "start": 10677.78, + "end": 10678.34, + "probability": 0.5046 + }, + { + "start": 10678.38, + "end": 10679.86, + "probability": 0.5278 + }, + { + "start": 10680.28, + "end": 10680.72, + "probability": 0.5708 + }, + { + "start": 10680.74, + "end": 10681.58, + "probability": 0.0137 + }, + { + "start": 10690.4, + "end": 10691.84, + "probability": 0.0778 + }, + { + "start": 10695.3, + "end": 10697.86, + "probability": 0.6827 + }, + { + "start": 10698.44, + "end": 10702.42, + "probability": 0.9896 + }, + { + "start": 10702.6, + "end": 10707.52, + "probability": 0.9873 + }, + { + "start": 10707.94, + "end": 10710.04, + "probability": 0.9795 + }, + { + "start": 10710.58, + "end": 10711.5, + "probability": 0.5441 + }, + { + "start": 10712.08, + "end": 10714.96, + "probability": 0.5777 + }, + { + "start": 10715.36, + "end": 10715.98, + "probability": 0.0295 + }, + { + "start": 10715.98, + "end": 10716.34, + "probability": 0.383 + }, + { + "start": 10716.48, + "end": 10716.92, + "probability": 0.5553 + }, + { + "start": 10716.94, + "end": 10717.42, + "probability": 0.7393 + }, + { + "start": 10717.42, + "end": 10727.86, + "probability": 0.2667 + }, + { + "start": 10728.4, + "end": 10729.32, + "probability": 0.0621 + }, + { + "start": 10732.28, + "end": 10736.44, + "probability": 0.5849 + }, + { + "start": 10736.96, + "end": 10740.88, + "probability": 0.9181 + }, + { + "start": 10740.94, + "end": 10743.94, + "probability": 0.9972 + }, + { + "start": 10744.46, + "end": 10747.54, + "probability": 0.6624 + }, + { + "start": 10748.98, + "end": 10749.83, + "probability": 0.3189 + }, + { + "start": 10750.02, + "end": 10752.14, + "probability": 0.7889 + }, + { + "start": 10752.54, + "end": 10762.08, + "probability": 0.9406 + }, + { + "start": 10762.64, + "end": 10763.96, + "probability": 0.7257 + }, + { + "start": 10763.98, + "end": 10767.04, + "probability": 0.9709 + }, + { + "start": 10767.04, + "end": 10767.54, + "probability": 0.5896 + }, + { + "start": 10768.06, + "end": 10769.7, + "probability": 0.5821 + }, + { + "start": 10770.34, + "end": 10773.3, + "probability": 0.9854 + }, + { + "start": 10774.18, + "end": 10775.65, + "probability": 0.5946 + }, + { + "start": 10776.08, + "end": 10781.28, + "probability": 0.9119 + }, + { + "start": 10781.94, + "end": 10785.32, + "probability": 0.9607 + }, + { + "start": 10785.9, + "end": 10788.3, + "probability": 0.3237 + }, + { + "start": 10788.78, + "end": 10795.32, + "probability": 0.9779 + }, + { + "start": 10795.74, + "end": 10797.02, + "probability": 0.9293 + }, + { + "start": 10798.32, + "end": 10802.34, + "probability": 0.8322 + }, + { + "start": 10802.36, + "end": 10806.38, + "probability": 0.9932 + }, + { + "start": 10806.86, + "end": 10810.4, + "probability": 0.9656 + }, + { + "start": 10810.4, + "end": 10814.44, + "probability": 0.9965 + }, + { + "start": 10814.52, + "end": 10818.28, + "probability": 0.8953 + }, + { + "start": 10818.28, + "end": 10823.24, + "probability": 0.9891 + }, + { + "start": 10823.62, + "end": 10829.34, + "probability": 0.9857 + }, + { + "start": 10830.02, + "end": 10833.1, + "probability": 0.8606 + }, + { + "start": 10833.98, + "end": 10838.5, + "probability": 0.8739 + }, + { + "start": 10839.02, + "end": 10844.78, + "probability": 0.993 + }, + { + "start": 10844.78, + "end": 10852.52, + "probability": 0.9943 + }, + { + "start": 10853.04, + "end": 10855.92, + "probability": 0.9008 + }, + { + "start": 10856.48, + "end": 10860.62, + "probability": 0.6439 + }, + { + "start": 10860.62, + "end": 10866.68, + "probability": 0.954 + }, + { + "start": 10868.1, + "end": 10871.06, + "probability": 0.9399 + }, + { + "start": 10871.06, + "end": 10876.25, + "probability": 0.7505 + }, + { + "start": 10877.36, + "end": 10879.1, + "probability": 0.9328 + }, + { + "start": 10879.38, + "end": 10884.5, + "probability": 0.9465 + }, + { + "start": 10884.94, + "end": 10887.72, + "probability": 0.8578 + }, + { + "start": 10888.08, + "end": 10892.62, + "probability": 0.8087 + }, + { + "start": 10893.22, + "end": 10901.04, + "probability": 0.9663 + }, + { + "start": 10901.38, + "end": 10903.58, + "probability": 0.9774 + }, + { + "start": 10903.98, + "end": 10906.42, + "probability": 0.9132 + }, + { + "start": 10906.96, + "end": 10911.5, + "probability": 0.9442 + }, + { + "start": 10911.74, + "end": 10912.4, + "probability": 0.5967 + }, + { + "start": 10914.46, + "end": 10916.94, + "probability": 0.7394 + }, + { + "start": 10917.28, + "end": 10921.04, + "probability": 0.9585 + }, + { + "start": 10921.04, + "end": 10926.96, + "probability": 0.95 + }, + { + "start": 10927.1, + "end": 10928.48, + "probability": 0.8221 + }, + { + "start": 10929.06, + "end": 10932.36, + "probability": 0.9868 + }, + { + "start": 10932.74, + "end": 10938.58, + "probability": 0.974 + }, + { + "start": 10938.58, + "end": 10945.78, + "probability": 0.9865 + }, + { + "start": 10946.08, + "end": 10947.36, + "probability": 0.8719 + }, + { + "start": 10947.72, + "end": 10948.7, + "probability": 0.6739 + }, + { + "start": 10949.12, + "end": 10953.12, + "probability": 0.9379 + }, + { + "start": 10953.92, + "end": 10955.94, + "probability": 0.894 + }, + { + "start": 10955.94, + "end": 10960.32, + "probability": 0.8846 + }, + { + "start": 10960.86, + "end": 10964.3, + "probability": 0.6655 + }, + { + "start": 10964.3, + "end": 10967.6, + "probability": 0.9837 + }, + { + "start": 10968.12, + "end": 10972.34, + "probability": 0.9755 + }, + { + "start": 10972.72, + "end": 10974.82, + "probability": 0.9646 + }, + { + "start": 10975.28, + "end": 10976.98, + "probability": 0.8829 + }, + { + "start": 10977.2, + "end": 10981.72, + "probability": 0.9949 + }, + { + "start": 10982.16, + "end": 10984.28, + "probability": 0.8477 + }, + { + "start": 10984.98, + "end": 10989.72, + "probability": 0.8199 + }, + { + "start": 10992.94, + "end": 10999.02, + "probability": 0.9827 + }, + { + "start": 10999.06, + "end": 10999.54, + "probability": 0.8398 + }, + { + "start": 11000.08, + "end": 11004.2, + "probability": 0.9634 + }, + { + "start": 11004.2, + "end": 11008.92, + "probability": 0.9864 + }, + { + "start": 11009.58, + "end": 11010.22, + "probability": 0.8128 + }, + { + "start": 11011.18, + "end": 11014.0, + "probability": 0.8912 + }, + { + "start": 11014.0, + "end": 11018.36, + "probability": 0.958 + }, + { + "start": 11018.78, + "end": 11019.62, + "probability": 0.0002 + }, + { + "start": 11020.26, + "end": 11026.04, + "probability": 0.8854 + }, + { + "start": 11026.06, + "end": 11029.84, + "probability": 0.8373 + }, + { + "start": 11029.94, + "end": 11033.48, + "probability": 0.8905 + }, + { + "start": 11033.68, + "end": 11034.34, + "probability": 0.6613 + }, + { + "start": 11034.68, + "end": 11038.5, + "probability": 0.6534 + }, + { + "start": 11038.9, + "end": 11043.38, + "probability": 0.9437 + }, + { + "start": 11043.5, + "end": 11048.5, + "probability": 0.6323 + }, + { + "start": 11048.5, + "end": 11050.48, + "probability": 0.9968 + }, + { + "start": 11051.5, + "end": 11052.94, + "probability": 0.6868 + }, + { + "start": 11053.26, + "end": 11054.12, + "probability": 0.9675 + }, + { + "start": 11054.18, + "end": 11055.5, + "probability": 0.7939 + }, + { + "start": 11055.7, + "end": 11056.62, + "probability": 0.9313 + }, + { + "start": 11056.94, + "end": 11058.86, + "probability": 0.5475 + }, + { + "start": 11059.02, + "end": 11059.58, + "probability": 0.6169 + }, + { + "start": 11059.66, + "end": 11062.02, + "probability": 0.79 + }, + { + "start": 11062.06, + "end": 11066.52, + "probability": 0.9481 + }, + { + "start": 11066.8, + "end": 11070.92, + "probability": 0.9941 + }, + { + "start": 11070.92, + "end": 11075.02, + "probability": 0.9862 + }, + { + "start": 11075.4, + "end": 11078.38, + "probability": 0.9839 + }, + { + "start": 11078.46, + "end": 11079.5, + "probability": 0.6084 + }, + { + "start": 11080.24, + "end": 11080.86, + "probability": 0.6781 + }, + { + "start": 11081.14, + "end": 11082.4, + "probability": 0.8836 + }, + { + "start": 11082.64, + "end": 11088.0, + "probability": 0.9542 + }, + { + "start": 11088.82, + "end": 11089.78, + "probability": 0.9824 + }, + { + "start": 11089.86, + "end": 11090.22, + "probability": 0.6361 + }, + { + "start": 11090.56, + "end": 11097.7, + "probability": 0.6842 + }, + { + "start": 11097.72, + "end": 11103.2, + "probability": 0.6597 + }, + { + "start": 11103.92, + "end": 11105.92, + "probability": 0.9724 + }, + { + "start": 11106.7, + "end": 11106.76, + "probability": 0.2305 + }, + { + "start": 11106.88, + "end": 11107.22, + "probability": 0.3023 + }, + { + "start": 11107.22, + "end": 11107.89, + "probability": 0.228 + }, + { + "start": 11109.08, + "end": 11109.7, + "probability": 0.4221 + }, + { + "start": 11109.72, + "end": 11111.34, + "probability": 0.8659 + }, + { + "start": 11112.36, + "end": 11115.08, + "probability": 0.7014 + }, + { + "start": 11115.82, + "end": 11119.54, + "probability": 0.6904 + }, + { + "start": 11120.06, + "end": 11121.94, + "probability": 0.9889 + }, + { + "start": 11121.94, + "end": 11123.2, + "probability": 0.565 + }, + { + "start": 11123.2, + "end": 11123.92, + "probability": 0.6555 + }, + { + "start": 11124.28, + "end": 11125.98, + "probability": 0.5208 + }, + { + "start": 11126.0, + "end": 11127.24, + "probability": 0.9059 + }, + { + "start": 11127.82, + "end": 11130.4, + "probability": 0.7759 + }, + { + "start": 11130.74, + "end": 11132.5, + "probability": 0.8756 + }, + { + "start": 11133.16, + "end": 11134.18, + "probability": 0.9229 + }, + { + "start": 11135.18, + "end": 11136.72, + "probability": 0.6895 + }, + { + "start": 11136.72, + "end": 11136.74, + "probability": 0.015 + }, + { + "start": 11136.74, + "end": 11136.96, + "probability": 0.6372 + }, + { + "start": 11137.0, + "end": 11137.52, + "probability": 0.6738 + }, + { + "start": 11138.12, + "end": 11140.52, + "probability": 0.9866 + }, + { + "start": 11140.78, + "end": 11141.9, + "probability": 0.9524 + }, + { + "start": 11142.32, + "end": 11143.94, + "probability": 0.3191 + }, + { + "start": 11145.7, + "end": 11149.06, + "probability": 0.1807 + }, + { + "start": 11149.12, + "end": 11149.36, + "probability": 0.0169 + }, + { + "start": 11149.36, + "end": 11149.36, + "probability": 0.0178 + }, + { + "start": 11149.36, + "end": 11149.36, + "probability": 0.0505 + }, + { + "start": 11149.36, + "end": 11149.36, + "probability": 0.036 + }, + { + "start": 11149.36, + "end": 11151.08, + "probability": 0.8853 + }, + { + "start": 11151.14, + "end": 11152.7, + "probability": 0.6805 + }, + { + "start": 11153.04, + "end": 11154.3, + "probability": 0.9679 + }, + { + "start": 11154.48, + "end": 11156.12, + "probability": 0.8638 + }, + { + "start": 11156.14, + "end": 11156.76, + "probability": 0.259 + }, + { + "start": 11156.86, + "end": 11157.5, + "probability": 0.8179 + }, + { + "start": 11157.6, + "end": 11158.18, + "probability": 0.584 + }, + { + "start": 11159.8, + "end": 11162.8, + "probability": 0.5447 + }, + { + "start": 11163.0, + "end": 11163.48, + "probability": 0.6882 + }, + { + "start": 11163.94, + "end": 11164.52, + "probability": 0.6788 + }, + { + "start": 11164.66, + "end": 11169.4, + "probability": 0.6646 + }, + { + "start": 11169.4, + "end": 11172.12, + "probability": 0.3739 + }, + { + "start": 11172.12, + "end": 11174.32, + "probability": 0.7585 + }, + { + "start": 11174.34, + "end": 11174.98, + "probability": 0.5887 + }, + { + "start": 11175.06, + "end": 11175.62, + "probability": 0.7488 + }, + { + "start": 11175.72, + "end": 11176.18, + "probability": 0.3647 + }, + { + "start": 11176.26, + "end": 11176.86, + "probability": 0.5983 + }, + { + "start": 11177.52, + "end": 11179.0, + "probability": 0.5891 + }, + { + "start": 11179.8, + "end": 11180.88, + "probability": 0.0013 + }, + { + "start": 11183.7, + "end": 11184.96, + "probability": 0.0777 + }, + { + "start": 11187.78, + "end": 11189.67, + "probability": 0.8278 + }, + { + "start": 11192.5, + "end": 11196.32, + "probability": 0.6035 + }, + { + "start": 11196.76, + "end": 11198.12, + "probability": 0.9729 + }, + { + "start": 11198.16, + "end": 11199.52, + "probability": 0.8984 + }, + { + "start": 11199.54, + "end": 11200.48, + "probability": 0.7583 + }, + { + "start": 11200.72, + "end": 11200.98, + "probability": 0.4846 + }, + { + "start": 11201.04, + "end": 11202.28, + "probability": 0.7429 + }, + { + "start": 11202.9, + "end": 11205.26, + "probability": 0.9933 + }, + { + "start": 11205.26, + "end": 11208.36, + "probability": 0.5223 + }, + { + "start": 11214.3, + "end": 11215.0, + "probability": 0.4554 + }, + { + "start": 11215.8, + "end": 11217.68, + "probability": 0.261 + }, + { + "start": 11217.96, + "end": 11219.1, + "probability": 0.0552 + }, + { + "start": 11219.4, + "end": 11219.4, + "probability": 0.0978 + }, + { + "start": 11219.64, + "end": 11221.96, + "probability": 0.5724 + }, + { + "start": 11222.26, + "end": 11225.28, + "probability": 0.9906 + }, + { + "start": 11225.52, + "end": 11228.46, + "probability": 0.4035 + }, + { + "start": 11229.46, + "end": 11231.94, + "probability": 0.994 + }, + { + "start": 11232.3, + "end": 11236.6, + "probability": 0.9859 + }, + { + "start": 11237.12, + "end": 11239.9, + "probability": 0.991 + }, + { + "start": 11241.04, + "end": 11241.82, + "probability": 0.5035 + }, + { + "start": 11241.94, + "end": 11242.78, + "probability": 0.6122 + }, + { + "start": 11243.08, + "end": 11244.74, + "probability": 0.9812 + }, + { + "start": 11244.92, + "end": 11247.1, + "probability": 0.9803 + }, + { + "start": 11248.1, + "end": 11251.47, + "probability": 0.9116 + }, + { + "start": 11252.52, + "end": 11254.54, + "probability": 0.9547 + }, + { + "start": 11255.16, + "end": 11258.78, + "probability": 0.9575 + }, + { + "start": 11259.48, + "end": 11264.56, + "probability": 0.9896 + }, + { + "start": 11265.14, + "end": 11266.18, + "probability": 0.8661 + }, + { + "start": 11266.44, + "end": 11267.02, + "probability": 0.8342 + }, + { + "start": 11267.06, + "end": 11268.42, + "probability": 0.9795 + }, + { + "start": 11269.16, + "end": 11271.54, + "probability": 0.8521 + }, + { + "start": 11272.04, + "end": 11272.84, + "probability": 0.957 + }, + { + "start": 11272.92, + "end": 11274.5, + "probability": 0.9646 + }, + { + "start": 11274.9, + "end": 11276.02, + "probability": 0.9764 + }, + { + "start": 11276.62, + "end": 11277.44, + "probability": 0.7443 + }, + { + "start": 11277.8, + "end": 11280.36, + "probability": 0.9421 + }, + { + "start": 11280.46, + "end": 11281.08, + "probability": 0.9922 + }, + { + "start": 11281.36, + "end": 11284.84, + "probability": 0.9569 + }, + { + "start": 11285.02, + "end": 11285.9, + "probability": 0.7859 + }, + { + "start": 11285.98, + "end": 11287.68, + "probability": 0.9691 + }, + { + "start": 11288.26, + "end": 11290.74, + "probability": 0.967 + }, + { + "start": 11291.64, + "end": 11293.5, + "probability": 0.7211 + }, + { + "start": 11293.62, + "end": 11296.26, + "probability": 0.9365 + }, + { + "start": 11296.88, + "end": 11299.18, + "probability": 0.801 + }, + { + "start": 11299.64, + "end": 11300.64, + "probability": 0.9666 + }, + { + "start": 11300.72, + "end": 11301.7, + "probability": 0.9044 + }, + { + "start": 11302.06, + "end": 11305.02, + "probability": 0.9956 + }, + { + "start": 11305.4, + "end": 11308.1, + "probability": 0.8427 + }, + { + "start": 11308.66, + "end": 11309.54, + "probability": 0.8157 + }, + { + "start": 11310.24, + "end": 11312.54, + "probability": 0.8604 + }, + { + "start": 11312.74, + "end": 11313.78, + "probability": 0.9265 + }, + { + "start": 11314.14, + "end": 11315.06, + "probability": 0.9463 + }, + { + "start": 11315.7, + "end": 11318.22, + "probability": 0.9757 + }, + { + "start": 11318.28, + "end": 11319.64, + "probability": 0.998 + }, + { + "start": 11320.1, + "end": 11321.98, + "probability": 0.9238 + }, + { + "start": 11322.72, + "end": 11324.7, + "probability": 0.9912 + }, + { + "start": 11324.94, + "end": 11325.34, + "probability": 0.7437 + }, + { + "start": 11325.72, + "end": 11326.93, + "probability": 0.8882 + }, + { + "start": 11327.2, + "end": 11329.86, + "probability": 0.7265 + }, + { + "start": 11329.98, + "end": 11330.44, + "probability": 0.8523 + }, + { + "start": 11331.02, + "end": 11332.84, + "probability": 0.9958 + }, + { + "start": 11333.48, + "end": 11337.89, + "probability": 0.9863 + }, + { + "start": 11338.6, + "end": 11340.0, + "probability": 0.352 + }, + { + "start": 11340.16, + "end": 11341.11, + "probability": 0.4927 + }, + { + "start": 11341.6, + "end": 11343.6, + "probability": 0.9553 + }, + { + "start": 11343.94, + "end": 11344.78, + "probability": 0.8726 + }, + { + "start": 11344.82, + "end": 11345.26, + "probability": 0.951 + }, + { + "start": 11346.66, + "end": 11347.58, + "probability": 0.5267 + }, + { + "start": 11347.74, + "end": 11348.54, + "probability": 0.959 + }, + { + "start": 11348.88, + "end": 11349.38, + "probability": 0.1032 + }, + { + "start": 11349.48, + "end": 11350.22, + "probability": 0.9552 + }, + { + "start": 11365.48, + "end": 11366.34, + "probability": 0.6538 + }, + { + "start": 11367.64, + "end": 11369.72, + "probability": 0.7192 + }, + { + "start": 11370.7, + "end": 11373.68, + "probability": 0.9932 + }, + { + "start": 11374.48, + "end": 11376.76, + "probability": 0.8124 + }, + { + "start": 11377.3, + "end": 11378.0, + "probability": 0.0108 + }, + { + "start": 11379.12, + "end": 11384.08, + "probability": 0.7837 + }, + { + "start": 11384.34, + "end": 11385.36, + "probability": 0.9309 + }, + { + "start": 11386.1, + "end": 11388.82, + "probability": 0.9785 + }, + { + "start": 11388.82, + "end": 11393.24, + "probability": 0.7425 + }, + { + "start": 11393.38, + "end": 11399.38, + "probability": 0.7634 + }, + { + "start": 11399.38, + "end": 11408.96, + "probability": 0.9841 + }, + { + "start": 11409.58, + "end": 11410.48, + "probability": 0.6888 + }, + { + "start": 11410.62, + "end": 11411.94, + "probability": 0.8057 + }, + { + "start": 11412.08, + "end": 11414.36, + "probability": 0.7804 + }, + { + "start": 11414.88, + "end": 11417.22, + "probability": 0.8554 + }, + { + "start": 11418.28, + "end": 11418.64, + "probability": 0.5419 + }, + { + "start": 11418.64, + "end": 11423.18, + "probability": 0.9541 + }, + { + "start": 11423.18, + "end": 11428.34, + "probability": 0.99 + }, + { + "start": 11428.34, + "end": 11433.1, + "probability": 0.9921 + }, + { + "start": 11434.1, + "end": 11438.4, + "probability": 0.9737 + }, + { + "start": 11438.4, + "end": 11440.52, + "probability": 0.9084 + }, + { + "start": 11441.8, + "end": 11443.98, + "probability": 0.8025 + }, + { + "start": 11444.56, + "end": 11446.42, + "probability": 0.9224 + }, + { + "start": 11446.5, + "end": 11449.78, + "probability": 0.9684 + }, + { + "start": 11449.78, + "end": 11454.18, + "probability": 0.7319 + }, + { + "start": 11454.68, + "end": 11457.32, + "probability": 0.9451 + }, + { + "start": 11457.32, + "end": 11458.54, + "probability": 0.7131 + }, + { + "start": 11459.0, + "end": 11460.8, + "probability": 0.9227 + }, + { + "start": 11461.1, + "end": 11464.54, + "probability": 0.8195 + }, + { + "start": 11465.32, + "end": 11468.84, + "probability": 0.8703 + }, + { + "start": 11468.88, + "end": 11469.66, + "probability": 0.9034 + }, + { + "start": 11470.08, + "end": 11472.5, + "probability": 0.9774 + }, + { + "start": 11472.5, + "end": 11476.52, + "probability": 0.9175 + }, + { + "start": 11476.6, + "end": 11478.94, + "probability": 0.8372 + }, + { + "start": 11479.06, + "end": 11482.6, + "probability": 0.9934 + }, + { + "start": 11482.68, + "end": 11483.14, + "probability": 0.7386 + }, + { + "start": 11485.88, + "end": 11486.62, + "probability": 0.5082 + }, + { + "start": 11486.64, + "end": 11487.58, + "probability": 0.7702 + }, + { + "start": 11488.3, + "end": 11493.88, + "probability": 0.995 + }, + { + "start": 11494.04, + "end": 11498.84, + "probability": 0.9469 + }, + { + "start": 11499.84, + "end": 11501.66, + "probability": 0.7691 + }, + { + "start": 11501.7, + "end": 11502.5, + "probability": 0.6693 + }, + { + "start": 11503.12, + "end": 11503.62, + "probability": 0.4395 + }, + { + "start": 11503.8, + "end": 11504.36, + "probability": 0.679 + }, + { + "start": 11504.38, + "end": 11504.88, + "probability": 0.6762 + }, + { + "start": 11515.26, + "end": 11517.66, + "probability": 0.0046 + }, + { + "start": 11518.76, + "end": 11520.92, + "probability": 0.4312 + }, + { + "start": 11521.04, + "end": 11524.34, + "probability": 0.9489 + }, + { + "start": 11524.34, + "end": 11527.1, + "probability": 0.886 + }, + { + "start": 11527.16, + "end": 11529.5, + "probability": 0.7779 + }, + { + "start": 11529.88, + "end": 11529.88, + "probability": 0.2187 + }, + { + "start": 11529.96, + "end": 11533.04, + "probability": 0.845 + }, + { + "start": 11533.44, + "end": 11535.22, + "probability": 0.8359 + }, + { + "start": 11535.72, + "end": 11536.26, + "probability": 0.6952 + }, + { + "start": 11536.36, + "end": 11536.9, + "probability": 0.7038 + }, + { + "start": 11536.92, + "end": 11537.5, + "probability": 0.7065 + }, + { + "start": 11537.5, + "end": 11538.24, + "probability": 0.4683 + }, + { + "start": 11540.6, + "end": 11545.8, + "probability": 0.7791 + }, + { + "start": 11553.31, + "end": 11554.12, + "probability": 0.0218 + }, + { + "start": 11554.12, + "end": 11555.84, + "probability": 0.4053 + }, + { + "start": 11556.0, + "end": 11560.04, + "probability": 0.9298 + }, + { + "start": 11560.72, + "end": 11561.88, + "probability": 0.991 + }, + { + "start": 11561.98, + "end": 11565.24, + "probability": 0.9811 + }, + { + "start": 11565.92, + "end": 11568.46, + "probability": 0.6455 + }, + { + "start": 11568.98, + "end": 11569.96, + "probability": 0.9921 + }, + { + "start": 11570.6, + "end": 11570.6, + "probability": 0.222 + }, + { + "start": 11570.62, + "end": 11575.1, + "probability": 0.9854 + }, + { + "start": 11576.04, + "end": 11576.18, + "probability": 0.6403 + }, + { + "start": 11576.22, + "end": 11580.04, + "probability": 0.6358 + }, + { + "start": 11580.04, + "end": 11583.52, + "probability": 0.7054 + }, + { + "start": 11583.52, + "end": 11584.43, + "probability": 0.7871 + }, + { + "start": 11584.98, + "end": 11585.52, + "probability": 0.6468 + }, + { + "start": 11585.52, + "end": 11586.36, + "probability": 0.7427 + }, + { + "start": 11586.7, + "end": 11587.7, + "probability": 0.853 + }, + { + "start": 11588.52, + "end": 11589.44, + "probability": 0.9738 + }, + { + "start": 11592.39, + "end": 11595.44, + "probability": 0.7428 + }, + { + "start": 11596.1, + "end": 11598.78, + "probability": 0.9909 + }, + { + "start": 11598.78, + "end": 11602.24, + "probability": 0.5914 + }, + { + "start": 11602.58, + "end": 11603.98, + "probability": 0.3172 + }, + { + "start": 11604.16, + "end": 11605.24, + "probability": 0.8434 + }, + { + "start": 11605.78, + "end": 11608.62, + "probability": 0.9922 + }, + { + "start": 11608.92, + "end": 11610.3, + "probability": 0.7172 + }, + { + "start": 11610.62, + "end": 11613.54, + "probability": 0.7915 + }, + { + "start": 11613.94, + "end": 11614.74, + "probability": 0.9614 + }, + { + "start": 11614.86, + "end": 11616.02, + "probability": 0.9873 + }, + { + "start": 11616.12, + "end": 11618.16, + "probability": 0.9643 + }, + { + "start": 11618.38, + "end": 11621.48, + "probability": 0.8456 + }, + { + "start": 11621.82, + "end": 11626.44, + "probability": 0.9505 + }, + { + "start": 11626.44, + "end": 11631.18, + "probability": 0.8309 + }, + { + "start": 11631.82, + "end": 11638.34, + "probability": 0.9328 + }, + { + "start": 11638.82, + "end": 11639.74, + "probability": 0.6388 + }, + { + "start": 11639.94, + "end": 11640.68, + "probability": 0.5048 + }, + { + "start": 11640.76, + "end": 11644.46, + "probability": 0.9805 + }, + { + "start": 11644.48, + "end": 11647.2, + "probability": 0.8706 + }, + { + "start": 11647.5, + "end": 11649.5, + "probability": 0.6145 + }, + { + "start": 11649.84, + "end": 11651.78, + "probability": 0.9506 + }, + { + "start": 11651.98, + "end": 11657.96, + "probability": 0.7876 + }, + { + "start": 11658.36, + "end": 11660.4, + "probability": 0.7676 + }, + { + "start": 11662.49, + "end": 11667.18, + "probability": 0.6059 + }, + { + "start": 11667.18, + "end": 11670.74, + "probability": 0.952 + }, + { + "start": 11671.04, + "end": 11675.16, + "probability": 0.9659 + }, + { + "start": 11675.42, + "end": 11681.45, + "probability": 0.9907 + }, + { + "start": 11681.54, + "end": 11686.08, + "probability": 0.9814 + }, + { + "start": 11686.46, + "end": 11688.8, + "probability": 0.8604 + }, + { + "start": 11689.82, + "end": 11691.5, + "probability": 0.9259 + }, + { + "start": 11691.82, + "end": 11698.02, + "probability": 0.9506 + }, + { + "start": 11698.02, + "end": 11702.14, + "probability": 0.9652 + }, + { + "start": 11702.56, + "end": 11705.92, + "probability": 0.9881 + }, + { + "start": 11705.92, + "end": 11709.38, + "probability": 0.8623 + }, + { + "start": 11709.5, + "end": 11710.1, + "probability": 0.7052 + }, + { + "start": 11710.72, + "end": 11712.32, + "probability": 0.4875 + }, + { + "start": 11713.16, + "end": 11713.7, + "probability": 0.1108 + }, + { + "start": 11714.02, + "end": 11716.94, + "probability": 0.9604 + }, + { + "start": 11716.94, + "end": 11719.92, + "probability": 0.921 + }, + { + "start": 11720.12, + "end": 11720.26, + "probability": 0.6604 + }, + { + "start": 11721.08, + "end": 11722.46, + "probability": 0.4706 + }, + { + "start": 11723.12, + "end": 11725.88, + "probability": 0.7967 + }, + { + "start": 11726.68, + "end": 11732.68, + "probability": 0.9888 + }, + { + "start": 11733.48, + "end": 11737.44, + "probability": 0.614 + }, + { + "start": 11737.76, + "end": 11739.58, + "probability": 0.4342 + }, + { + "start": 11739.58, + "end": 11740.1, + "probability": 0.6335 + }, + { + "start": 11740.24, + "end": 11740.72, + "probability": 0.6611 + }, + { + "start": 11740.76, + "end": 11741.26, + "probability": 0.729 + }, + { + "start": 11745.81, + "end": 11746.16, + "probability": 0.0003 + }, + { + "start": 11749.76, + "end": 11751.04, + "probability": 0.0531 + }, + { + "start": 11755.32, + "end": 11757.44, + "probability": 0.3562 + }, + { + "start": 11757.88, + "end": 11760.28, + "probability": 0.9833 + }, + { + "start": 11760.36, + "end": 11763.14, + "probability": 0.7731 + }, + { + "start": 11763.44, + "end": 11767.24, + "probability": 0.9908 + }, + { + "start": 11767.7, + "end": 11767.7, + "probability": 0.0339 + }, + { + "start": 11767.7, + "end": 11767.7, + "probability": 0.3004 + }, + { + "start": 11767.7, + "end": 11768.28, + "probability": 0.3574 + }, + { + "start": 11768.28, + "end": 11768.92, + "probability": 0.6668 + }, + { + "start": 11768.92, + "end": 11769.42, + "probability": 0.7494 + }, + { + "start": 11785.8, + "end": 11790.04, + "probability": 0.8928 + }, + { + "start": 11790.04, + "end": 11792.14, + "probability": 0.612 + }, + { + "start": 11792.6, + "end": 11794.38, + "probability": 0.4684 + }, + { + "start": 11797.84, + "end": 11798.86, + "probability": 0.1138 + }, + { + "start": 11799.76, + "end": 11803.9, + "probability": 0.0955 + }, + { + "start": 11810.47, + "end": 11811.74, + "probability": 0.143 + }, + { + "start": 11811.74, + "end": 11812.24, + "probability": 0.0402 + }, + { + "start": 11816.44, + "end": 11816.84, + "probability": 0.033 + }, + { + "start": 11818.16, + "end": 11819.76, + "probability": 0.0982 + }, + { + "start": 11821.4, + "end": 11821.84, + "probability": 0.0098 + }, + { + "start": 11822.18, + "end": 11822.4, + "probability": 0.1518 + }, + { + "start": 11834.16, + "end": 11837.06, + "probability": 0.8141 + }, + { + "start": 11837.06, + "end": 11841.94, + "probability": 0.1643 + }, + { + "start": 11842.04, + "end": 11843.37, + "probability": 0.0366 + }, + { + "start": 11845.23, + "end": 11846.54, + "probability": 0.1682 + }, + { + "start": 11846.98, + "end": 11850.34, + "probability": 0.0616 + }, + { + "start": 11853.71, + "end": 11854.98, + "probability": 0.1333 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.0, + "end": 11855.0, + "probability": 0.0 + }, + { + "start": 11855.52, + "end": 11861.94, + "probability": 0.9345 + }, + { + "start": 11863.66, + "end": 11864.76, + "probability": 0.7825 + }, + { + "start": 11864.86, + "end": 11869.56, + "probability": 0.9688 + }, + { + "start": 11869.72, + "end": 11869.9, + "probability": 0.7689 + }, + { + "start": 11870.62, + "end": 11872.2, + "probability": 0.91 + }, + { + "start": 11873.86, + "end": 11875.1, + "probability": 0.9709 + }, + { + "start": 11875.4, + "end": 11875.98, + "probability": 0.4706 + }, + { + "start": 11876.06, + "end": 11880.42, + "probability": 0.8892 + }, + { + "start": 11882.6, + "end": 11888.06, + "probability": 0.9533 + }, + { + "start": 11888.3, + "end": 11890.1, + "probability": 0.6603 + }, + { + "start": 11890.16, + "end": 11892.92, + "probability": 0.9275 + }, + { + "start": 11893.36, + "end": 11896.96, + "probability": 0.9731 + }, + { + "start": 11896.96, + "end": 11899.88, + "probability": 0.9609 + }, + { + "start": 11900.64, + "end": 11904.1, + "probability": 0.9658 + }, + { + "start": 11904.1, + "end": 11909.58, + "probability": 0.8903 + }, + { + "start": 11909.58, + "end": 11909.88, + "probability": 0.0973 + }, + { + "start": 11909.96, + "end": 11911.13, + "probability": 0.9204 + }, + { + "start": 11911.64, + "end": 11912.96, + "probability": 0.9954 + }, + { + "start": 11915.44, + "end": 11917.28, + "probability": 0.8948 + }, + { + "start": 11917.94, + "end": 11919.5, + "probability": 0.168 + }, + { + "start": 11920.26, + "end": 11922.38, + "probability": 0.7209 + }, + { + "start": 11922.38, + "end": 11922.92, + "probability": 0.3208 + }, + { + "start": 11924.48, + "end": 11927.38, + "probability": 0.7818 + }, + { + "start": 11927.56, + "end": 11927.96, + "probability": 0.648 + }, + { + "start": 11928.12, + "end": 11931.06, + "probability": 0.9878 + }, + { + "start": 11931.72, + "end": 11933.04, + "probability": 0.7786 + }, + { + "start": 11933.12, + "end": 11935.7, + "probability": 0.989 + }, + { + "start": 11935.7, + "end": 11939.28, + "probability": 0.8857 + }, + { + "start": 11939.54, + "end": 11942.84, + "probability": 0.9364 + }, + { + "start": 11942.92, + "end": 11944.24, + "probability": 0.9188 + }, + { + "start": 11946.16, + "end": 11947.16, + "probability": 0.8962 + }, + { + "start": 11947.24, + "end": 11950.02, + "probability": 0.9399 + }, + { + "start": 11950.18, + "end": 11952.28, + "probability": 0.9095 + }, + { + "start": 11952.36, + "end": 11953.64, + "probability": 0.807 + }, + { + "start": 11954.06, + "end": 11956.64, + "probability": 0.9668 + }, + { + "start": 11956.64, + "end": 11960.08, + "probability": 0.9229 + }, + { + "start": 11960.3, + "end": 11963.4, + "probability": 0.8623 + }, + { + "start": 11964.68, + "end": 11966.5, + "probability": 0.6222 + }, + { + "start": 11966.94, + "end": 11969.62, + "probability": 0.9562 + }, + { + "start": 11970.22, + "end": 11970.64, + "probability": 0.5399 + }, + { + "start": 11970.66, + "end": 11973.84, + "probability": 0.9626 + }, + { + "start": 11973.84, + "end": 11977.74, + "probability": 0.9932 + }, + { + "start": 11977.92, + "end": 11980.22, + "probability": 0.9048 + }, + { + "start": 11981.1, + "end": 11981.28, + "probability": 0.4637 + }, + { + "start": 11981.36, + "end": 11983.74, + "probability": 0.8255 + }, + { + "start": 11983.8, + "end": 11986.75, + "probability": 0.9739 + }, + { + "start": 11987.2, + "end": 11988.98, + "probability": 0.6911 + }, + { + "start": 11988.98, + "end": 11991.12, + "probability": 0.6855 + }, + { + "start": 11991.24, + "end": 11992.24, + "probability": 0.8484 + }, + { + "start": 11993.3, + "end": 11995.12, + "probability": 0.9252 + }, + { + "start": 11995.68, + "end": 11999.12, + "probability": 0.9284 + }, + { + "start": 11999.18, + "end": 12000.6, + "probability": 0.7528 + }, + { + "start": 12000.68, + "end": 12001.39, + "probability": 0.9124 + }, + { + "start": 12001.92, + "end": 12008.04, + "probability": 0.9634 + }, + { + "start": 12008.56, + "end": 12008.76, + "probability": 0.0255 + }, + { + "start": 12009.64, + "end": 12010.8, + "probability": 0.1912 + }, + { + "start": 12011.36, + "end": 12011.84, + "probability": 0.4499 + }, + { + "start": 12011.98, + "end": 12013.24, + "probability": 0.521 + }, + { + "start": 12013.24, + "end": 12013.74, + "probability": 0.5778 + }, + { + "start": 12013.74, + "end": 12014.28, + "probability": 0.7615 + }, + { + "start": 12014.84, + "end": 12016.68, + "probability": 0.9844 + }, + { + "start": 12018.02, + "end": 12018.8, + "probability": 0.9733 + }, + { + "start": 12019.24, + "end": 12019.6, + "probability": 0.5305 + }, + { + "start": 12019.72, + "end": 12020.14, + "probability": 0.8735 + }, + { + "start": 12029.22, + "end": 12029.32, + "probability": 0.0029 + }, + { + "start": 12029.32, + "end": 12029.9, + "probability": 0.3159 + }, + { + "start": 12029.9, + "end": 12033.12, + "probability": 0.9155 + }, + { + "start": 12033.52, + "end": 12034.1, + "probability": 0.7304 + }, + { + "start": 12034.2, + "end": 12034.74, + "probability": 0.5557 + }, + { + "start": 12034.88, + "end": 12037.2, + "probability": 0.9866 + }, + { + "start": 12037.2, + "end": 12040.56, + "probability": 0.5174 + }, + { + "start": 12040.6, + "end": 12042.14, + "probability": 0.8329 + }, + { + "start": 12042.72, + "end": 12045.48, + "probability": 0.9952 + }, + { + "start": 12045.48, + "end": 12048.98, + "probability": 0.7089 + }, + { + "start": 12049.44, + "end": 12050.48, + "probability": 0.6466 + }, + { + "start": 12050.68, + "end": 12050.9, + "probability": 0.165 + }, + { + "start": 12050.9, + "end": 12051.42, + "probability": 0.2959 + }, + { + "start": 12051.42, + "end": 12051.68, + "probability": 0.4568 + }, + { + "start": 12065.72, + "end": 12065.78, + "probability": 0.0393 + }, + { + "start": 12065.78, + "end": 12065.78, + "probability": 0.1006 + }, + { + "start": 12065.78, + "end": 12065.78, + "probability": 0.1133 + }, + { + "start": 12065.78, + "end": 12066.9, + "probability": 0.2563 + }, + { + "start": 12066.98, + "end": 12070.54, + "probability": 0.9264 + }, + { + "start": 12071.05, + "end": 12073.98, + "probability": 0.6873 + }, + { + "start": 12074.4, + "end": 12077.06, + "probability": 0.9973 + }, + { + "start": 12077.38, + "end": 12080.02, + "probability": 0.9985 + }, + { + "start": 12080.34, + "end": 12082.5, + "probability": 0.8779 + }, + { + "start": 12082.64, + "end": 12083.44, + "probability": 0.9443 + }, + { + "start": 12083.9, + "end": 12086.5, + "probability": 0.9794 + }, + { + "start": 12088.0, + "end": 12089.12, + "probability": 0.2577 + }, + { + "start": 12090.4, + "end": 12093.06, + "probability": 0.8318 + }, + { + "start": 12093.3, + "end": 12093.92, + "probability": 0.7212 + }, + { + "start": 12094.16, + "end": 12094.78, + "probability": 0.6162 + }, + { + "start": 12095.36, + "end": 12097.28, + "probability": 0.7432 + }, + { + "start": 12098.08, + "end": 12098.84, + "probability": 0.7689 + }, + { + "start": 12099.42, + "end": 12100.2, + "probability": 0.9805 + }, + { + "start": 12100.3, + "end": 12102.32, + "probability": 0.9492 + }, + { + "start": 12102.48, + "end": 12105.14, + "probability": 0.9692 + }, + { + "start": 12105.62, + "end": 12108.14, + "probability": 0.7841 + }, + { + "start": 12108.22, + "end": 12111.06, + "probability": 0.9653 + }, + { + "start": 12111.1, + "end": 12115.1, + "probability": 0.9976 + }, + { + "start": 12115.6, + "end": 12118.78, + "probability": 0.639 + }, + { + "start": 12119.4, + "end": 12121.86, + "probability": 0.9146 + }, + { + "start": 12121.86, + "end": 12124.64, + "probability": 0.9873 + }, + { + "start": 12124.68, + "end": 12127.46, + "probability": 0.9556 + }, + { + "start": 12127.46, + "end": 12131.34, + "probability": 0.972 + }, + { + "start": 12131.96, + "end": 12134.9, + "probability": 0.875 + }, + { + "start": 12134.92, + "end": 12139.18, + "probability": 0.7042 + }, + { + "start": 12139.3, + "end": 12140.62, + "probability": 0.9312 + }, + { + "start": 12141.28, + "end": 12144.74, + "probability": 0.9474 + }, + { + "start": 12144.8, + "end": 12147.82, + "probability": 0.958 + }, + { + "start": 12147.82, + "end": 12150.5, + "probability": 0.8435 + }, + { + "start": 12150.6, + "end": 12154.44, + "probability": 0.9624 + }, + { + "start": 12155.0, + "end": 12159.22, + "probability": 0.9561 + }, + { + "start": 12159.94, + "end": 12161.22, + "probability": 0.6967 + }, + { + "start": 12161.32, + "end": 12164.4, + "probability": 0.8519 + }, + { + "start": 12165.08, + "end": 12166.74, + "probability": 0.7769 + }, + { + "start": 12166.8, + "end": 12167.82, + "probability": 0.8766 + }, + { + "start": 12167.82, + "end": 12169.46, + "probability": 0.8369 + }, + { + "start": 12169.56, + "end": 12171.8, + "probability": 0.9402 + }, + { + "start": 12172.2, + "end": 12173.82, + "probability": 0.8444 + }, + { + "start": 12174.08, + "end": 12175.72, + "probability": 0.7694 + }, + { + "start": 12176.86, + "end": 12177.02, + "probability": 0.4442 + }, + { + "start": 12177.14, + "end": 12179.42, + "probability": 0.9285 + }, + { + "start": 12179.42, + "end": 12181.72, + "probability": 0.8826 + }, + { + "start": 12181.76, + "end": 12183.18, + "probability": 0.9637 + }, + { + "start": 12184.82, + "end": 12185.48, + "probability": 0.5168 + }, + { + "start": 12185.54, + "end": 12188.94, + "probability": 0.9756 + }, + { + "start": 12188.94, + "end": 12192.6, + "probability": 0.8845 + }, + { + "start": 12193.2, + "end": 12193.62, + "probability": 0.8206 + }, + { + "start": 12193.76, + "end": 12196.16, + "probability": 0.8198 + }, + { + "start": 12196.18, + "end": 12198.46, + "probability": 0.9835 + }, + { + "start": 12198.94, + "end": 12201.18, + "probability": 0.9714 + }, + { + "start": 12202.24, + "end": 12205.28, + "probability": 0.9893 + }, + { + "start": 12205.28, + "end": 12208.86, + "probability": 0.9823 + }, + { + "start": 12209.24, + "end": 12213.1, + "probability": 0.9937 + }, + { + "start": 12213.66, + "end": 12216.6, + "probability": 0.9826 + }, + { + "start": 12216.6, + "end": 12218.98, + "probability": 0.5809 + }, + { + "start": 12218.98, + "end": 12220.96, + "probability": 0.7933 + }, + { + "start": 12221.6, + "end": 12223.74, + "probability": 0.8121 + }, + { + "start": 12224.6, + "end": 12225.78, + "probability": 0.57 + }, + { + "start": 12226.0, + "end": 12230.44, + "probability": 0.7439 + }, + { + "start": 12230.8, + "end": 12232.78, + "probability": 0.9772 + }, + { + "start": 12233.26, + "end": 12235.32, + "probability": 0.99 + }, + { + "start": 12235.48, + "end": 12237.88, + "probability": 0.906 + }, + { + "start": 12237.88, + "end": 12241.14, + "probability": 0.8907 + }, + { + "start": 12241.76, + "end": 12242.22, + "probability": 0.7176 + }, + { + "start": 12242.4, + "end": 12246.9, + "probability": 0.8711 + }, + { + "start": 12247.26, + "end": 12249.56, + "probability": 0.9374 + }, + { + "start": 12250.12, + "end": 12253.82, + "probability": 0.9381 + }, + { + "start": 12253.86, + "end": 12257.31, + "probability": 0.7815 + }, + { + "start": 12257.94, + "end": 12260.3, + "probability": 0.9951 + }, + { + "start": 12260.42, + "end": 12261.28, + "probability": 0.6858 + }, + { + "start": 12261.3, + "end": 12262.08, + "probability": 0.7815 + }, + { + "start": 12262.54, + "end": 12264.52, + "probability": 0.7178 + }, + { + "start": 12265.14, + "end": 12267.26, + "probability": 0.9968 + }, + { + "start": 12267.68, + "end": 12269.14, + "probability": 0.9988 + }, + { + "start": 12269.76, + "end": 12271.18, + "probability": 0.8684 + }, + { + "start": 12271.82, + "end": 12272.16, + "probability": 0.8651 + }, + { + "start": 12273.2, + "end": 12274.74, + "probability": 0.7136 + }, + { + "start": 12275.9, + "end": 12278.54, + "probability": 0.9683 + }, + { + "start": 12280.0, + "end": 12282.28, + "probability": 0.9288 + }, + { + "start": 12282.82, + "end": 12283.7, + "probability": 0.9575 + }, + { + "start": 12284.48, + "end": 12284.82, + "probability": 0.3726 + }, + { + "start": 12286.92, + "end": 12287.94, + "probability": 0.6268 + }, + { + "start": 12289.0, + "end": 12290.16, + "probability": 0.8935 + }, + { + "start": 12291.14, + "end": 12293.62, + "probability": 0.5866 + }, + { + "start": 12293.78, + "end": 12297.3, + "probability": 0.9849 + }, + { + "start": 12297.32, + "end": 12300.16, + "probability": 0.8313 + }, + { + "start": 12300.66, + "end": 12301.58, + "probability": 0.4985 + }, + { + "start": 12301.58, + "end": 12301.6, + "probability": 0.0567 + }, + { + "start": 12301.6, + "end": 12301.78, + "probability": 0.4648 + }, + { + "start": 12301.78, + "end": 12302.98, + "probability": 0.5258 + }, + { + "start": 12306.86, + "end": 12307.96, + "probability": 0.6199 + }, + { + "start": 12308.16, + "end": 12309.24, + "probability": 0.8104 + }, + { + "start": 12309.58, + "end": 12310.08, + "probability": 0.487 + }, + { + "start": 12310.08, + "end": 12311.14, + "probability": 0.7004 + }, + { + "start": 12312.74, + "end": 12314.22, + "probability": 0.7188 + }, + { + "start": 12314.42, + "end": 12314.52, + "probability": 0.4632 + }, + { + "start": 12315.6, + "end": 12316.82, + "probability": 0.2922 + }, + { + "start": 12316.86, + "end": 12318.6, + "probability": 0.6975 + }, + { + "start": 12318.6, + "end": 12319.0, + "probability": 0.68 + }, + { + "start": 12319.18, + "end": 12321.16, + "probability": 0.6525 + }, + { + "start": 12323.32, + "end": 12328.66, + "probability": 0.6601 + }, + { + "start": 12329.56, + "end": 12332.8, + "probability": 0.9574 + }, + { + "start": 12333.4, + "end": 12334.86, + "probability": 0.9697 + }, + { + "start": 12336.0, + "end": 12340.82, + "probability": 0.9965 + }, + { + "start": 12343.48, + "end": 12345.92, + "probability": 0.9027 + }, + { + "start": 12346.9, + "end": 12347.96, + "probability": 0.6909 + }, + { + "start": 12348.16, + "end": 12349.22, + "probability": 0.9767 + }, + { + "start": 12349.28, + "end": 12354.98, + "probability": 0.9922 + }, + { + "start": 12355.76, + "end": 12361.6, + "probability": 0.9229 + }, + { + "start": 12363.94, + "end": 12365.42, + "probability": 0.9325 + }, + { + "start": 12365.66, + "end": 12373.6, + "probability": 0.9954 + }, + { + "start": 12373.6, + "end": 12380.86, + "probability": 0.9966 + }, + { + "start": 12382.06, + "end": 12386.7, + "probability": 0.9928 + }, + { + "start": 12387.68, + "end": 12392.76, + "probability": 0.9797 + }, + { + "start": 12392.78, + "end": 12393.56, + "probability": 0.6622 + }, + { + "start": 12393.76, + "end": 12400.16, + "probability": 0.9932 + }, + { + "start": 12400.2, + "end": 12403.22, + "probability": 0.8264 + }, + { + "start": 12403.24, + "end": 12406.6, + "probability": 0.9467 + }, + { + "start": 12407.46, + "end": 12411.4, + "probability": 0.7909 + }, + { + "start": 12411.78, + "end": 12412.6, + "probability": 0.846 + }, + { + "start": 12412.92, + "end": 12415.2, + "probability": 0.9297 + }, + { + "start": 12415.2, + "end": 12417.82, + "probability": 0.9443 + }, + { + "start": 12418.24, + "end": 12426.26, + "probability": 0.9927 + }, + { + "start": 12426.94, + "end": 12429.28, + "probability": 0.9047 + }, + { + "start": 12429.92, + "end": 12430.3, + "probability": 0.6399 + }, + { + "start": 12430.64, + "end": 12432.44, + "probability": 0.9617 + }, + { + "start": 12432.9, + "end": 12436.86, + "probability": 0.8181 + }, + { + "start": 12436.86, + "end": 12439.34, + "probability": 0.7914 + }, + { + "start": 12439.56, + "end": 12445.38, + "probability": 0.8899 + }, + { + "start": 12446.08, + "end": 12447.24, + "probability": 0.995 + }, + { + "start": 12447.78, + "end": 12448.32, + "probability": 0.7286 + }, + { + "start": 12448.36, + "end": 12448.72, + "probability": 0.822 + }, + { + "start": 12448.78, + "end": 12449.58, + "probability": 0.7516 + }, + { + "start": 12449.66, + "end": 12451.74, + "probability": 0.8822 + }, + { + "start": 12451.86, + "end": 12454.08, + "probability": 0.7179 + }, + { + "start": 12454.12, + "end": 12454.68, + "probability": 0.8728 + }, + { + "start": 12454.9, + "end": 12458.46, + "probability": 0.9694 + }, + { + "start": 12459.22, + "end": 12462.46, + "probability": 0.8467 + }, + { + "start": 12463.04, + "end": 12464.12, + "probability": 0.5082 + }, + { + "start": 12464.38, + "end": 12464.82, + "probability": 0.5355 + }, + { + "start": 12468.54, + "end": 12469.68, + "probability": 0.0444 + }, + { + "start": 12469.68, + "end": 12469.68, + "probability": 0.0151 + }, + { + "start": 12469.68, + "end": 12475.92, + "probability": 0.8725 + }, + { + "start": 12475.96, + "end": 12479.84, + "probability": 0.9812 + }, + { + "start": 12481.32, + "end": 12484.44, + "probability": 0.8493 + }, + { + "start": 12487.64, + "end": 12489.02, + "probability": 0.8076 + }, + { + "start": 12489.22, + "end": 12490.38, + "probability": 0.7442 + }, + { + "start": 12490.46, + "end": 12493.34, + "probability": 0.9816 + }, + { + "start": 12493.78, + "end": 12494.52, + "probability": 0.3752 + }, + { + "start": 12494.68, + "end": 12496.88, + "probability": 0.9444 + }, + { + "start": 12496.98, + "end": 12504.24, + "probability": 0.9961 + }, + { + "start": 12504.26, + "end": 12506.26, + "probability": 0.8582 + }, + { + "start": 12506.4, + "end": 12511.22, + "probability": 0.9263 + }, + { + "start": 12512.06, + "end": 12514.18, + "probability": 0.8601 + }, + { + "start": 12514.48, + "end": 12516.57, + "probability": 0.8816 + }, + { + "start": 12516.98, + "end": 12517.88, + "probability": 0.6352 + }, + { + "start": 12517.96, + "end": 12519.16, + "probability": 0.9333 + }, + { + "start": 12519.32, + "end": 12520.62, + "probability": 0.6925 + }, + { + "start": 12520.7, + "end": 12522.02, + "probability": 0.9308 + }, + { + "start": 12522.04, + "end": 12523.1, + "probability": 0.8584 + }, + { + "start": 12523.28, + "end": 12524.0, + "probability": 0.2517 + }, + { + "start": 12524.0, + "end": 12524.4, + "probability": 0.3707 + }, + { + "start": 12524.56, + "end": 12524.64, + "probability": 0.508 + }, + { + "start": 12524.9, + "end": 12525.72, + "probability": 0.6943 + }, + { + "start": 12525.84, + "end": 12526.44, + "probability": 0.595 + }, + { + "start": 12526.52, + "end": 12529.1, + "probability": 0.7627 + }, + { + "start": 12529.7, + "end": 12530.26, + "probability": 0.1258 + }, + { + "start": 12531.6, + "end": 12532.82, + "probability": 0.196 + }, + { + "start": 12533.36, + "end": 12537.78, + "probability": 0.3794 + }, + { + "start": 12538.24, + "end": 12538.81, + "probability": 0.0198 + }, + { + "start": 12541.56, + "end": 12545.5, + "probability": 0.3687 + }, + { + "start": 12545.56, + "end": 12546.8, + "probability": 0.7578 + }, + { + "start": 12547.28, + "end": 12549.46, + "probability": 0.9828 + }, + { + "start": 12549.48, + "end": 12552.1, + "probability": 0.9966 + }, + { + "start": 12553.0, + "end": 12555.56, + "probability": 0.8282 + }, + { + "start": 12555.62, + "end": 12555.92, + "probability": 0.721 + }, + { + "start": 12556.86, + "end": 12557.58, + "probability": 0.7894 + }, + { + "start": 12557.76, + "end": 12561.68, + "probability": 0.7747 + }, + { + "start": 12561.68, + "end": 12564.12, + "probability": 0.0927 + }, + { + "start": 12564.56, + "end": 12565.94, + "probability": 0.8513 + }, + { + "start": 12566.32, + "end": 12567.5, + "probability": 0.3408 + }, + { + "start": 12567.76, + "end": 12571.22, + "probability": 0.1285 + }, + { + "start": 12571.22, + "end": 12572.7, + "probability": 0.0382 + }, + { + "start": 12572.7, + "end": 12575.62, + "probability": 0.2854 + }, + { + "start": 12575.7, + "end": 12578.34, + "probability": 0.5087 + }, + { + "start": 12578.64, + "end": 12582.02, + "probability": 0.9787 + }, + { + "start": 12582.02, + "end": 12587.6, + "probability": 0.9966 + }, + { + "start": 12587.6, + "end": 12594.68, + "probability": 0.9985 + }, + { + "start": 12594.82, + "end": 12596.24, + "probability": 0.9993 + }, + { + "start": 12596.32, + "end": 12596.73, + "probability": 0.8403 + }, + { + "start": 12598.42, + "end": 12599.32, + "probability": 0.7072 + }, + { + "start": 12599.78, + "end": 12601.44, + "probability": 0.9941 + }, + { + "start": 12601.58, + "end": 12603.27, + "probability": 0.7285 + }, + { + "start": 12604.06, + "end": 12607.24, + "probability": 0.9845 + }, + { + "start": 12607.46, + "end": 12608.0, + "probability": 0.4339 + }, + { + "start": 12608.28, + "end": 12612.36, + "probability": 0.9963 + }, + { + "start": 12612.68, + "end": 12614.92, + "probability": 0.9106 + }, + { + "start": 12615.54, + "end": 12616.38, + "probability": 0.6965 + }, + { + "start": 12616.56, + "end": 12617.78, + "probability": 0.9592 + }, + { + "start": 12618.0, + "end": 12620.14, + "probability": 0.7081 + }, + { + "start": 12620.24, + "end": 12622.06, + "probability": 0.9844 + }, + { + "start": 12622.56, + "end": 12624.84, + "probability": 0.9192 + }, + { + "start": 12624.92, + "end": 12628.1, + "probability": 0.9912 + }, + { + "start": 12628.1, + "end": 12631.14, + "probability": 0.9981 + }, + { + "start": 12631.5, + "end": 12635.2, + "probability": 0.9973 + }, + { + "start": 12635.76, + "end": 12639.28, + "probability": 0.9243 + }, + { + "start": 12639.54, + "end": 12644.9, + "probability": 0.9936 + }, + { + "start": 12644.9, + "end": 12650.52, + "probability": 0.9914 + }, + { + "start": 12651.2, + "end": 12652.54, + "probability": 0.7085 + }, + { + "start": 12652.86, + "end": 12653.24, + "probability": 0.7212 + }, + { + "start": 12653.42, + "end": 12657.52, + "probability": 0.9694 + }, + { + "start": 12657.7, + "end": 12658.72, + "probability": 0.8039 + }, + { + "start": 12659.02, + "end": 12660.02, + "probability": 0.9199 + }, + { + "start": 12660.84, + "end": 12665.38, + "probability": 0.9932 + }, + { + "start": 12665.78, + "end": 12669.62, + "probability": 0.9847 + }, + { + "start": 12669.72, + "end": 12671.6, + "probability": 0.9128 + }, + { + "start": 12671.98, + "end": 12674.1, + "probability": 0.9845 + }, + { + "start": 12674.54, + "end": 12677.82, + "probability": 0.942 + }, + { + "start": 12677.82, + "end": 12682.0, + "probability": 0.9535 + }, + { + "start": 12682.44, + "end": 12689.6, + "probability": 0.9976 + }, + { + "start": 12691.16, + "end": 12694.8, + "probability": 0.5096 + }, + { + "start": 12695.08, + "end": 12695.54, + "probability": 0.694 + }, + { + "start": 12696.2, + "end": 12700.66, + "probability": 0.996 + }, + { + "start": 12701.14, + "end": 12706.62, + "probability": 0.9898 + }, + { + "start": 12707.3, + "end": 12710.76, + "probability": 0.8049 + }, + { + "start": 12711.48, + "end": 12713.76, + "probability": 0.9913 + }, + { + "start": 12713.98, + "end": 12716.44, + "probability": 0.729 + }, + { + "start": 12716.56, + "end": 12717.92, + "probability": 0.8442 + }, + { + "start": 12718.24, + "end": 12719.32, + "probability": 0.4541 + }, + { + "start": 12719.44, + "end": 12720.16, + "probability": 0.4469 + }, + { + "start": 12720.2, + "end": 12721.34, + "probability": 0.6943 + }, + { + "start": 12721.44, + "end": 12721.58, + "probability": 0.244 + }, + { + "start": 12721.82, + "end": 12722.24, + "probability": 0.6618 + }, + { + "start": 12722.66, + "end": 12725.76, + "probability": 0.7256 + }, + { + "start": 12725.94, + "end": 12730.5, + "probability": 0.4875 + }, + { + "start": 12730.5, + "end": 12730.94, + "probability": 0.4613 + }, + { + "start": 12730.94, + "end": 12731.36, + "probability": 0.5475 + }, + { + "start": 12731.36, + "end": 12734.58, + "probability": 0.7297 + }, + { + "start": 12734.92, + "end": 12735.36, + "probability": 0.435 + }, + { + "start": 12735.54, + "end": 12736.64, + "probability": 0.2991 + }, + { + "start": 12736.82, + "end": 12737.0, + "probability": 0.8264 + }, + { + "start": 12737.1, + "end": 12737.2, + "probability": 0.1777 + }, + { + "start": 12737.38, + "end": 12740.12, + "probability": 0.8381 + }, + { + "start": 12740.24, + "end": 12743.92, + "probability": 0.9865 + }, + { + "start": 12744.44, + "end": 12744.74, + "probability": 0.2052 + }, + { + "start": 12746.88, + "end": 12747.26, + "probability": 0.0687 + }, + { + "start": 12747.26, + "end": 12748.74, + "probability": 0.05 + }, + { + "start": 12748.74, + "end": 12752.06, + "probability": 0.9926 + }, + { + "start": 12752.24, + "end": 12752.92, + "probability": 0.9328 + }, + { + "start": 12753.5, + "end": 12755.0, + "probability": 0.9969 + }, + { + "start": 12755.06, + "end": 12758.98, + "probability": 0.8428 + }, + { + "start": 12758.98, + "end": 12765.58, + "probability": 0.9585 + }, + { + "start": 12765.76, + "end": 12767.4, + "probability": 0.9856 + }, + { + "start": 12768.0, + "end": 12772.14, + "probability": 0.983 + }, + { + "start": 12772.14, + "end": 12776.54, + "probability": 0.9939 + }, + { + "start": 12776.72, + "end": 12779.18, + "probability": 0.9926 + }, + { + "start": 12779.72, + "end": 12781.02, + "probability": 0.9799 + }, + { + "start": 12781.2, + "end": 12786.5, + "probability": 0.9966 + }, + { + "start": 12787.52, + "end": 12792.62, + "probability": 0.9961 + }, + { + "start": 12792.74, + "end": 12795.68, + "probability": 0.9967 + }, + { + "start": 12796.24, + "end": 12800.6, + "probability": 0.9861 + }, + { + "start": 12800.74, + "end": 12803.48, + "probability": 0.9955 + }, + { + "start": 12804.06, + "end": 12806.88, + "probability": 0.9179 + }, + { + "start": 12807.44, + "end": 12812.86, + "probability": 0.9744 + }, + { + "start": 12813.1, + "end": 12814.56, + "probability": 0.8943 + }, + { + "start": 12814.64, + "end": 12817.82, + "probability": 0.9943 + }, + { + "start": 12818.44, + "end": 12819.26, + "probability": 0.9027 + }, + { + "start": 12819.52, + "end": 12819.8, + "probability": 0.8784 + }, + { + "start": 12820.0, + "end": 12823.22, + "probability": 0.9886 + }, + { + "start": 12823.22, + "end": 12827.74, + "probability": 0.9444 + }, + { + "start": 12827.86, + "end": 12829.18, + "probability": 0.5965 + }, + { + "start": 12829.22, + "end": 12832.5, + "probability": 0.9565 + }, + { + "start": 12832.58, + "end": 12833.75, + "probability": 0.9012 + }, + { + "start": 12834.82, + "end": 12837.12, + "probability": 0.9233 + }, + { + "start": 12837.42, + "end": 12839.06, + "probability": 0.925 + }, + { + "start": 12839.14, + "end": 12842.18, + "probability": 0.9935 + }, + { + "start": 12842.18, + "end": 12846.14, + "probability": 0.9751 + }, + { + "start": 12847.8, + "end": 12854.68, + "probability": 0.9817 + }, + { + "start": 12855.52, + "end": 12856.16, + "probability": 0.0142 + }, + { + "start": 12856.46, + "end": 12856.72, + "probability": 0.2518 + }, + { + "start": 12857.48, + "end": 12858.12, + "probability": 0.5747 + }, + { + "start": 12859.22, + "end": 12861.06, + "probability": 0.5887 + }, + { + "start": 12861.44, + "end": 12863.58, + "probability": 0.8874 + }, + { + "start": 12863.88, + "end": 12865.45, + "probability": 0.968 + }, + { + "start": 12866.36, + "end": 12870.9, + "probability": 0.9651 + }, + { + "start": 12871.62, + "end": 12873.34, + "probability": 0.9651 + }, + { + "start": 12873.64, + "end": 12875.42, + "probability": 0.9976 + }, + { + "start": 12875.98, + "end": 12879.1, + "probability": 0.9515 + }, + { + "start": 12879.28, + "end": 12881.98, + "probability": 0.991 + }, + { + "start": 12882.4, + "end": 12884.94, + "probability": 0.997 + }, + { + "start": 12885.08, + "end": 12888.24, + "probability": 0.9979 + }, + { + "start": 12888.56, + "end": 12890.23, + "probability": 0.9959 + }, + { + "start": 12892.32, + "end": 12893.84, + "probability": 0.8941 + }, + { + "start": 12894.46, + "end": 12897.09, + "probability": 0.9551 + }, + { + "start": 12898.64, + "end": 12901.0, + "probability": 0.8226 + }, + { + "start": 12901.82, + "end": 12907.5, + "probability": 0.9734 + }, + { + "start": 12908.3, + "end": 12912.66, + "probability": 0.9478 + }, + { + "start": 12913.0, + "end": 12917.4, + "probability": 0.8178 + }, + { + "start": 12918.32, + "end": 12922.48, + "probability": 0.9765 + }, + { + "start": 12922.48, + "end": 12925.96, + "probability": 0.9647 + }, + { + "start": 12926.78, + "end": 12929.16, + "probability": 0.9725 + }, + { + "start": 12930.0, + "end": 12936.98, + "probability": 0.9904 + }, + { + "start": 12937.88, + "end": 12938.82, + "probability": 0.8934 + }, + { + "start": 12938.92, + "end": 12940.02, + "probability": 0.6366 + }, + { + "start": 12940.36, + "end": 12943.4, + "probability": 0.9712 + }, + { + "start": 12943.88, + "end": 12945.53, + "probability": 0.936 + }, + { + "start": 12946.74, + "end": 12950.86, + "probability": 0.9864 + }, + { + "start": 12951.72, + "end": 12953.76, + "probability": 0.9534 + }, + { + "start": 12954.28, + "end": 12959.12, + "probability": 0.9421 + }, + { + "start": 12959.5, + "end": 12961.88, + "probability": 0.9927 + }, + { + "start": 12961.94, + "end": 12962.96, + "probability": 0.6208 + }, + { + "start": 12965.96, + "end": 12966.48, + "probability": 0.2393 + }, + { + "start": 12966.48, + "end": 12966.66, + "probability": 0.0143 + }, + { + "start": 12966.66, + "end": 12968.36, + "probability": 0.2001 + }, + { + "start": 12968.64, + "end": 12969.88, + "probability": 0.2973 + }, + { + "start": 12969.92, + "end": 12971.44, + "probability": 0.389 + }, + { + "start": 12971.76, + "end": 12975.52, + "probability": 0.6758 + }, + { + "start": 12975.76, + "end": 12975.76, + "probability": 0.2871 + }, + { + "start": 12975.76, + "end": 12978.24, + "probability": 0.8531 + }, + { + "start": 12978.3, + "end": 12978.94, + "probability": 0.5583 + }, + { + "start": 12979.38, + "end": 12981.38, + "probability": 0.9227 + }, + { + "start": 12981.52, + "end": 12981.72, + "probability": 0.3098 + }, + { + "start": 12981.72, + "end": 12983.48, + "probability": 0.81 + }, + { + "start": 12983.48, + "end": 12986.22, + "probability": 0.4691 + }, + { + "start": 12986.88, + "end": 12990.8, + "probability": 0.7522 + }, + { + "start": 12991.24, + "end": 12992.88, + "probability": 0.9234 + }, + { + "start": 12992.96, + "end": 12993.86, + "probability": 0.728 + }, + { + "start": 12993.96, + "end": 12994.44, + "probability": 0.7389 + }, + { + "start": 12994.52, + "end": 12995.0, + "probability": 0.2888 + }, + { + "start": 12995.68, + "end": 12997.48, + "probability": 0.9568 + }, + { + "start": 12997.64, + "end": 12998.52, + "probability": 0.7119 + }, + { + "start": 12998.7, + "end": 13000.0, + "probability": 0.7648 + }, + { + "start": 13000.48, + "end": 13004.6, + "probability": 0.9551 + }, + { + "start": 13004.6, + "end": 13007.66, + "probability": 0.9956 + }, + { + "start": 13007.66, + "end": 13009.8, + "probability": 0.0098 + }, + { + "start": 13009.8, + "end": 13012.14, + "probability": 0.0916 + }, + { + "start": 13012.14, + "end": 13013.76, + "probability": 0.0953 + }, + { + "start": 13014.36, + "end": 13015.18, + "probability": 0.344 + }, + { + "start": 13015.22, + "end": 13015.62, + "probability": 0.3503 + }, + { + "start": 13015.74, + "end": 13016.5, + "probability": 0.0404 + }, + { + "start": 13016.52, + "end": 13017.26, + "probability": 0.0728 + }, + { + "start": 13017.6, + "end": 13019.72, + "probability": 0.3019 + }, + { + "start": 13020.84, + "end": 13023.36, + "probability": 0.5122 + }, + { + "start": 13023.48, + "end": 13025.31, + "probability": 0.5463 + }, + { + "start": 13025.8, + "end": 13027.64, + "probability": 0.0486 + }, + { + "start": 13027.66, + "end": 13028.48, + "probability": 0.3212 + }, + { + "start": 13028.8, + "end": 13030.16, + "probability": 0.2999 + }, + { + "start": 13031.12, + "end": 13031.12, + "probability": 0.247 + }, + { + "start": 13031.12, + "end": 13031.72, + "probability": 0.4271 + }, + { + "start": 13032.1, + "end": 13035.64, + "probability": 0.3559 + }, + { + "start": 13035.74, + "end": 13036.51, + "probability": 0.2565 + }, + { + "start": 13036.94, + "end": 13037.28, + "probability": 0.0508 + }, + { + "start": 13038.26, + "end": 13040.06, + "probability": 0.1788 + }, + { + "start": 13041.92, + "end": 13043.74, + "probability": 0.3521 + }, + { + "start": 13044.58, + "end": 13046.32, + "probability": 0.0413 + }, + { + "start": 13046.32, + "end": 13046.52, + "probability": 0.0606 + }, + { + "start": 13046.52, + "end": 13046.52, + "probability": 0.0738 + }, + { + "start": 13046.52, + "end": 13048.64, + "probability": 0.2023 + }, + { + "start": 13049.32, + "end": 13049.48, + "probability": 0.0391 + }, + { + "start": 13049.48, + "end": 13051.4, + "probability": 0.7544 + }, + { + "start": 13052.0, + "end": 13052.34, + "probability": 0.0595 + }, + { + "start": 13052.34, + "end": 13054.74, + "probability": 0.9414 + }, + { + "start": 13054.96, + "end": 13055.54, + "probability": 0.8062 + }, + { + "start": 13055.98, + "end": 13056.58, + "probability": 0.7135 + }, + { + "start": 13056.92, + "end": 13058.28, + "probability": 0.8321 + }, + { + "start": 13058.4, + "end": 13058.78, + "probability": 0.5713 + }, + { + "start": 13059.0, + "end": 13061.3, + "probability": 0.6758 + }, + { + "start": 13061.3, + "end": 13061.5, + "probability": 0.2443 + }, + { + "start": 13061.78, + "end": 13062.56, + "probability": 0.2862 + }, + { + "start": 13062.78, + "end": 13063.74, + "probability": 0.9307 + }, + { + "start": 13064.08, + "end": 13068.4, + "probability": 0.6366 + }, + { + "start": 13068.54, + "end": 13069.04, + "probability": 0.1711 + }, + { + "start": 13069.04, + "end": 13070.24, + "probability": 0.7616 + }, + { + "start": 13070.38, + "end": 13071.28, + "probability": 0.8276 + }, + { + "start": 13071.4, + "end": 13073.7, + "probability": 0.9752 + }, + { + "start": 13073.84, + "end": 13074.86, + "probability": 0.7588 + }, + { + "start": 13075.0, + "end": 13077.52, + "probability": 0.9631 + }, + { + "start": 13077.92, + "end": 13081.22, + "probability": 0.8999 + }, + { + "start": 13081.84, + "end": 13082.48, + "probability": 0.7261 + }, + { + "start": 13083.28, + "end": 13083.42, + "probability": 0.0278 + }, + { + "start": 13083.54, + "end": 13085.42, + "probability": 0.5795 + }, + { + "start": 13085.58, + "end": 13086.36, + "probability": 0.8435 + }, + { + "start": 13086.68, + "end": 13087.54, + "probability": 0.8811 + }, + { + "start": 13088.14, + "end": 13089.1, + "probability": 0.4531 + }, + { + "start": 13089.82, + "end": 13092.12, + "probability": 0.9655 + }, + { + "start": 13093.08, + "end": 13097.74, + "probability": 0.9977 + }, + { + "start": 13098.2, + "end": 13099.5, + "probability": 0.9932 + }, + { + "start": 13100.42, + "end": 13102.98, + "probability": 0.9844 + }, + { + "start": 13102.98, + "end": 13106.22, + "probability": 0.9956 + }, + { + "start": 13106.76, + "end": 13108.56, + "probability": 0.8807 + }, + { + "start": 13108.74, + "end": 13110.14, + "probability": 0.9872 + }, + { + "start": 13110.16, + "end": 13111.76, + "probability": 0.9929 + }, + { + "start": 13111.78, + "end": 13112.9, + "probability": 0.3656 + }, + { + "start": 13113.08, + "end": 13113.44, + "probability": 0.8503 + }, + { + "start": 13113.54, + "end": 13113.92, + "probability": 0.4441 + }, + { + "start": 13113.92, + "end": 13115.2, + "probability": 0.3846 + }, + { + "start": 13115.2, + "end": 13117.94, + "probability": 0.9214 + }, + { + "start": 13118.34, + "end": 13118.88, + "probability": 0.0641 + }, + { + "start": 13119.48, + "end": 13122.88, + "probability": 0.9355 + }, + { + "start": 13123.06, + "end": 13128.38, + "probability": 0.9971 + }, + { + "start": 13128.38, + "end": 13135.16, + "probability": 0.8535 + }, + { + "start": 13135.22, + "end": 13139.26, + "probability": 0.8354 + }, + { + "start": 13139.68, + "end": 13142.06, + "probability": 0.6014 + }, + { + "start": 13142.1, + "end": 13143.16, + "probability": 0.9956 + }, + { + "start": 13143.7, + "end": 13146.42, + "probability": 0.9729 + }, + { + "start": 13147.0, + "end": 13149.26, + "probability": 0.8484 + }, + { + "start": 13149.58, + "end": 13153.24, + "probability": 0.8707 + }, + { + "start": 13154.08, + "end": 13156.22, + "probability": 0.8082 + }, + { + "start": 13156.28, + "end": 13157.96, + "probability": 0.9983 + }, + { + "start": 13158.14, + "end": 13158.64, + "probability": 0.8568 + }, + { + "start": 13158.82, + "end": 13161.5, + "probability": 0.9716 + }, + { + "start": 13161.98, + "end": 13162.42, + "probability": 0.0124 + }, + { + "start": 13163.78, + "end": 13164.06, + "probability": 0.0032 + }, + { + "start": 13164.14, + "end": 13165.42, + "probability": 0.2769 + }, + { + "start": 13166.44, + "end": 13167.94, + "probability": 0.9065 + }, + { + "start": 13168.02, + "end": 13168.56, + "probability": 0.0166 + }, + { + "start": 13168.72, + "end": 13170.26, + "probability": 0.1693 + }, + { + "start": 13170.78, + "end": 13173.28, + "probability": 0.9938 + }, + { + "start": 13173.36, + "end": 13173.6, + "probability": 0.1342 + }, + { + "start": 13176.26, + "end": 13178.16, + "probability": 0.5134 + }, + { + "start": 13179.02, + "end": 13181.42, + "probability": 0.1554 + }, + { + "start": 13181.42, + "end": 13181.98, + "probability": 0.0566 + }, + { + "start": 13182.14, + "end": 13182.22, + "probability": 0.064 + }, + { + "start": 13182.36, + "end": 13185.41, + "probability": 0.6675 + }, + { + "start": 13185.7, + "end": 13188.54, + "probability": 0.6237 + }, + { + "start": 13188.74, + "end": 13190.02, + "probability": 0.9431 + }, + { + "start": 13190.18, + "end": 13191.0, + "probability": 0.7372 + }, + { + "start": 13191.36, + "end": 13195.91, + "probability": 0.6393 + }, + { + "start": 13196.28, + "end": 13199.3, + "probability": 0.9934 + }, + { + "start": 13199.52, + "end": 13200.84, + "probability": 0.5405 + }, + { + "start": 13201.02, + "end": 13205.08, + "probability": 0.9863 + }, + { + "start": 13205.7, + "end": 13209.46, + "probability": 0.9964 + }, + { + "start": 13209.64, + "end": 13210.5, + "probability": 0.7395 + }, + { + "start": 13210.78, + "end": 13213.12, + "probability": 0.7489 + }, + { + "start": 13213.64, + "end": 13214.7, + "probability": 0.582 + }, + { + "start": 13215.28, + "end": 13217.74, + "probability": 0.7778 + }, + { + "start": 13219.99, + "end": 13220.9, + "probability": 0.0895 + }, + { + "start": 13220.9, + "end": 13221.56, + "probability": 0.0345 + }, + { + "start": 13221.68, + "end": 13221.96, + "probability": 0.3736 + }, + { + "start": 13222.02, + "end": 13227.14, + "probability": 0.9412 + }, + { + "start": 13227.2, + "end": 13231.14, + "probability": 0.8076 + }, + { + "start": 13231.76, + "end": 13232.8, + "probability": 0.8792 + }, + { + "start": 13235.65, + "end": 13237.98, + "probability": 0.6741 + }, + { + "start": 13238.68, + "end": 13243.06, + "probability": 0.7202 + }, + { + "start": 13243.64, + "end": 13243.64, + "probability": 0.13 + }, + { + "start": 13243.76, + "end": 13243.88, + "probability": 0.4161 + }, + { + "start": 13243.96, + "end": 13246.78, + "probability": 0.7198 + }, + { + "start": 13248.28, + "end": 13250.82, + "probability": 0.7458 + }, + { + "start": 13251.0, + "end": 13252.3, + "probability": 0.6037 + }, + { + "start": 13252.48, + "end": 13252.82, + "probability": 0.8689 + }, + { + "start": 13252.82, + "end": 13253.76, + "probability": 0.8356 + }, + { + "start": 13253.88, + "end": 13254.1, + "probability": 0.8383 + }, + { + "start": 13254.48, + "end": 13256.54, + "probability": 0.9675 + }, + { + "start": 13257.28, + "end": 13258.16, + "probability": 0.7412 + }, + { + "start": 13259.28, + "end": 13260.5, + "probability": 0.9293 + }, + { + "start": 13261.0, + "end": 13263.54, + "probability": 0.8622 + }, + { + "start": 13264.5, + "end": 13267.91, + "probability": 0.9818 + }, + { + "start": 13269.14, + "end": 13274.08, + "probability": 0.991 + }, + { + "start": 13275.32, + "end": 13278.08, + "probability": 0.8583 + }, + { + "start": 13279.88, + "end": 13284.02, + "probability": 0.9685 + }, + { + "start": 13284.18, + "end": 13289.18, + "probability": 0.908 + }, + { + "start": 13289.62, + "end": 13291.22, + "probability": 0.9149 + }, + { + "start": 13291.56, + "end": 13292.97, + "probability": 0.9919 + }, + { + "start": 13293.08, + "end": 13295.32, + "probability": 0.682 + }, + { + "start": 13295.72, + "end": 13298.74, + "probability": 0.9587 + }, + { + "start": 13298.94, + "end": 13299.62, + "probability": 0.8299 + }, + { + "start": 13299.98, + "end": 13300.86, + "probability": 0.9184 + }, + { + "start": 13301.44, + "end": 13306.16, + "probability": 0.9747 + }, + { + "start": 13306.54, + "end": 13307.68, + "probability": 0.7325 + }, + { + "start": 13307.96, + "end": 13312.3, + "probability": 0.993 + }, + { + "start": 13312.3, + "end": 13314.9, + "probability": 0.9304 + }, + { + "start": 13315.0, + "end": 13316.9, + "probability": 0.7504 + }, + { + "start": 13317.42, + "end": 13318.87, + "probability": 0.7131 + }, + { + "start": 13319.28, + "end": 13319.38, + "probability": 0.0071 + }, + { + "start": 13319.38, + "end": 13320.16, + "probability": 0.8333 + }, + { + "start": 13320.2, + "end": 13320.42, + "probability": 0.6305 + }, + { + "start": 13321.0, + "end": 13321.66, + "probability": 0.3479 + }, + { + "start": 13321.78, + "end": 13324.62, + "probability": 0.6987 + }, + { + "start": 13324.78, + "end": 13325.26, + "probability": 0.3623 + }, + { + "start": 13325.4, + "end": 13326.2, + "probability": 0.6649 + }, + { + "start": 13326.3, + "end": 13327.56, + "probability": 0.8746 + }, + { + "start": 13327.78, + "end": 13329.72, + "probability": 0.7583 + }, + { + "start": 13329.82, + "end": 13331.2, + "probability": 0.8084 + }, + { + "start": 13331.2, + "end": 13332.72, + "probability": 0.9048 + }, + { + "start": 13333.08, + "end": 13333.08, + "probability": 0.1192 + }, + { + "start": 13333.08, + "end": 13334.66, + "probability": 0.8404 + }, + { + "start": 13334.94, + "end": 13336.45, + "probability": 0.8335 + }, + { + "start": 13336.8, + "end": 13338.64, + "probability": 0.8615 + }, + { + "start": 13338.94, + "end": 13339.38, + "probability": 0.5819 + }, + { + "start": 13339.48, + "end": 13339.58, + "probability": 0.4061 + }, + { + "start": 13339.76, + "end": 13345.58, + "probability": 0.7932 + }, + { + "start": 13345.84, + "end": 13347.12, + "probability": 0.9536 + }, + { + "start": 13347.66, + "end": 13347.84, + "probability": 0.9647 + }, + { + "start": 13347.94, + "end": 13354.06, + "probability": 0.9865 + }, + { + "start": 13354.62, + "end": 13356.58, + "probability": 0.7822 + }, + { + "start": 13357.2, + "end": 13360.08, + "probability": 0.6339 + }, + { + "start": 13360.38, + "end": 13361.02, + "probability": 0.5243 + }, + { + "start": 13361.54, + "end": 13365.58, + "probability": 0.9857 + }, + { + "start": 13365.98, + "end": 13368.64, + "probability": 0.8447 + }, + { + "start": 13369.4, + "end": 13370.74, + "probability": 0.9709 + }, + { + "start": 13370.92, + "end": 13374.12, + "probability": 0.8742 + }, + { + "start": 13374.38, + "end": 13377.52, + "probability": 0.9537 + }, + { + "start": 13377.58, + "end": 13377.84, + "probability": 0.5115 + }, + { + "start": 13377.94, + "end": 13379.84, + "probability": 0.8168 + }, + { + "start": 13380.4, + "end": 13382.76, + "probability": 0.9111 + }, + { + "start": 13382.9, + "end": 13385.38, + "probability": 0.6206 + }, + { + "start": 13386.38, + "end": 13387.06, + "probability": 0.6123 + }, + { + "start": 13387.08, + "end": 13388.1, + "probability": 0.8692 + }, + { + "start": 13388.14, + "end": 13389.86, + "probability": 0.4925 + }, + { + "start": 13389.92, + "end": 13389.92, + "probability": 0.4875 + }, + { + "start": 13390.12, + "end": 13394.76, + "probability": 0.9977 + }, + { + "start": 13395.22, + "end": 13396.68, + "probability": 0.5626 + }, + { + "start": 13396.68, + "end": 13398.54, + "probability": 0.5011 + }, + { + "start": 13398.68, + "end": 13401.68, + "probability": 0.8229 + }, + { + "start": 13401.82, + "end": 13405.16, + "probability": 0.982 + }, + { + "start": 13405.8, + "end": 13409.7, + "probability": 0.991 + }, + { + "start": 13410.12, + "end": 13411.04, + "probability": 0.9722 + }, + { + "start": 13411.34, + "end": 13412.24, + "probability": 0.7891 + }, + { + "start": 13412.46, + "end": 13413.88, + "probability": 0.9897 + }, + { + "start": 13414.9, + "end": 13414.98, + "probability": 0.8013 + }, + { + "start": 13415.14, + "end": 13415.4, + "probability": 0.8418 + }, + { + "start": 13415.54, + "end": 13418.76, + "probability": 0.9657 + }, + { + "start": 13418.82, + "end": 13419.72, + "probability": 0.981 + }, + { + "start": 13420.08, + "end": 13420.6, + "probability": 0.9639 + }, + { + "start": 13420.72, + "end": 13421.08, + "probability": 0.751 + }, + { + "start": 13421.18, + "end": 13421.92, + "probability": 0.9745 + }, + { + "start": 13422.24, + "end": 13423.64, + "probability": 0.8289 + }, + { + "start": 13424.04, + "end": 13425.18, + "probability": 0.8021 + }, + { + "start": 13425.46, + "end": 13430.36, + "probability": 0.9814 + }, + { + "start": 13430.68, + "end": 13431.02, + "probability": 0.6013 + }, + { + "start": 13431.04, + "end": 13431.34, + "probability": 0.7894 + }, + { + "start": 13431.48, + "end": 13433.36, + "probability": 0.9937 + }, + { + "start": 13433.52, + "end": 13434.84, + "probability": 0.6608 + }, + { + "start": 13435.02, + "end": 13435.58, + "probability": 0.8035 + }, + { + "start": 13435.72, + "end": 13436.21, + "probability": 0.7827 + }, + { + "start": 13437.46, + "end": 13438.04, + "probability": 0.5237 + }, + { + "start": 13438.46, + "end": 13440.12, + "probability": 0.9453 + }, + { + "start": 13440.18, + "end": 13441.84, + "probability": 0.8181 + }, + { + "start": 13441.88, + "end": 13444.41, + "probability": 0.9519 + }, + { + "start": 13445.38, + "end": 13447.97, + "probability": 0.9555 + }, + { + "start": 13448.5, + "end": 13452.76, + "probability": 0.8105 + }, + { + "start": 13453.74, + "end": 13454.46, + "probability": 0.9055 + }, + { + "start": 13454.88, + "end": 13456.16, + "probability": 0.9546 + }, + { + "start": 13456.4, + "end": 13459.54, + "probability": 0.9988 + }, + { + "start": 13459.88, + "end": 13461.78, + "probability": 0.9527 + }, + { + "start": 13462.3, + "end": 13464.56, + "probability": 0.9937 + }, + { + "start": 13464.76, + "end": 13467.83, + "probability": 0.9857 + }, + { + "start": 13469.06, + "end": 13471.26, + "probability": 0.988 + }, + { + "start": 13471.34, + "end": 13472.68, + "probability": 0.9142 + }, + { + "start": 13473.42, + "end": 13475.6, + "probability": 0.9946 + }, + { + "start": 13475.78, + "end": 13479.76, + "probability": 0.8697 + }, + { + "start": 13479.94, + "end": 13480.24, + "probability": 0.6765 + }, + { + "start": 13480.32, + "end": 13483.4, + "probability": 0.9619 + }, + { + "start": 13483.64, + "end": 13484.16, + "probability": 0.7903 + }, + { + "start": 13484.3, + "end": 13484.52, + "probability": 0.1263 + }, + { + "start": 13484.64, + "end": 13486.3, + "probability": 0.7759 + }, + { + "start": 13487.9, + "end": 13488.58, + "probability": 0.5634 + }, + { + "start": 13489.02, + "end": 13491.89, + "probability": 0.9866 + }, + { + "start": 13492.58, + "end": 13494.0, + "probability": 0.9309 + }, + { + "start": 13494.58, + "end": 13496.01, + "probability": 0.8877 + }, + { + "start": 13496.9, + "end": 13501.56, + "probability": 0.9833 + }, + { + "start": 13502.06, + "end": 13505.48, + "probability": 0.9826 + }, + { + "start": 13505.66, + "end": 13507.02, + "probability": 0.7944 + }, + { + "start": 13507.42, + "end": 13510.04, + "probability": 0.6944 + }, + { + "start": 13510.04, + "end": 13511.22, + "probability": 0.8773 + }, + { + "start": 13511.64, + "end": 13513.0, + "probability": 0.6876 + }, + { + "start": 13515.02, + "end": 13515.24, + "probability": 0.0457 + }, + { + "start": 13515.24, + "end": 13515.24, + "probability": 0.1801 + }, + { + "start": 13515.24, + "end": 13518.36, + "probability": 0.6074 + }, + { + "start": 13518.92, + "end": 13521.18, + "probability": 0.9718 + }, + { + "start": 13521.9, + "end": 13523.56, + "probability": 0.9108 + }, + { + "start": 13523.72, + "end": 13524.54, + "probability": 0.758 + }, + { + "start": 13525.12, + "end": 13530.32, + "probability": 0.9946 + }, + { + "start": 13530.74, + "end": 13533.68, + "probability": 0.9082 + }, + { + "start": 13533.72, + "end": 13534.3, + "probability": 0.8601 + }, + { + "start": 13534.36, + "end": 13535.2, + "probability": 0.9721 + }, + { + "start": 13535.62, + "end": 13540.48, + "probability": 0.9854 + }, + { + "start": 13540.78, + "end": 13541.84, + "probability": 0.5791 + }, + { + "start": 13541.86, + "end": 13544.62, + "probability": 0.8741 + }, + { + "start": 13544.78, + "end": 13545.68, + "probability": 0.8389 + }, + { + "start": 13545.82, + "end": 13547.6, + "probability": 0.8607 + }, + { + "start": 13547.9, + "end": 13548.14, + "probability": 0.8282 + }, + { + "start": 13548.14, + "end": 13551.09, + "probability": 0.9875 + }, + { + "start": 13551.46, + "end": 13552.08, + "probability": 0.8644 + }, + { + "start": 13552.6, + "end": 13553.12, + "probability": 0.4388 + }, + { + "start": 13553.5, + "end": 13557.8, + "probability": 0.8167 + }, + { + "start": 13557.8, + "end": 13560.42, + "probability": 0.8732 + }, + { + "start": 13560.7, + "end": 13562.18, + "probability": 0.9888 + }, + { + "start": 13562.22, + "end": 13562.65, + "probability": 0.8043 + }, + { + "start": 13563.22, + "end": 13565.12, + "probability": 0.9957 + }, + { + "start": 13565.76, + "end": 13566.12, + "probability": 0.3506 + }, + { + "start": 13566.16, + "end": 13569.7, + "probability": 0.9775 + }, + { + "start": 13570.28, + "end": 13572.72, + "probability": 0.9863 + }, + { + "start": 13572.8, + "end": 13575.58, + "probability": 0.9505 + }, + { + "start": 13575.66, + "end": 13578.41, + "probability": 0.9159 + }, + { + "start": 13579.23, + "end": 13580.94, + "probability": 0.9167 + }, + { + "start": 13581.58, + "end": 13581.9, + "probability": 0.3545 + }, + { + "start": 13583.1, + "end": 13587.63, + "probability": 0.8765 + }, + { + "start": 13588.5, + "end": 13588.5, + "probability": 0.3845 + }, + { + "start": 13588.5, + "end": 13588.84, + "probability": 0.6507 + }, + { + "start": 13588.94, + "end": 13590.5, + "probability": 0.9897 + }, + { + "start": 13590.56, + "end": 13594.02, + "probability": 0.9894 + }, + { + "start": 13594.12, + "end": 13594.9, + "probability": 0.6136 + }, + { + "start": 13595.22, + "end": 13599.08, + "probability": 0.941 + }, + { + "start": 13599.08, + "end": 13599.32, + "probability": 0.757 + }, + { + "start": 13599.38, + "end": 13599.74, + "probability": 0.8997 + }, + { + "start": 13600.98, + "end": 13602.86, + "probability": 0.9702 + }, + { + "start": 13604.76, + "end": 13605.54, + "probability": 0.7515 + }, + { + "start": 13606.16, + "end": 13608.14, + "probability": 0.9937 + }, + { + "start": 13608.16, + "end": 13616.06, + "probability": 0.9938 + }, + { + "start": 13616.34, + "end": 13618.46, + "probability": 0.9471 + }, + { + "start": 13618.62, + "end": 13619.06, + "probability": 0.8899 + }, + { + "start": 13619.6, + "end": 13620.06, + "probability": 0.7554 + }, + { + "start": 13620.88, + "end": 13623.5, + "probability": 0.8392 + }, + { + "start": 13625.22, + "end": 13628.46, + "probability": 0.7087 + }, + { + "start": 13629.0, + "end": 13629.02, + "probability": 0.8813 + }, + { + "start": 13629.64, + "end": 13630.8, + "probability": 0.6858 + }, + { + "start": 13630.86, + "end": 13633.94, + "probability": 0.8054 + }, + { + "start": 13634.06, + "end": 13634.67, + "probability": 0.6873 + }, + { + "start": 13635.14, + "end": 13635.93, + "probability": 0.9785 + }, + { + "start": 13636.32, + "end": 13637.08, + "probability": 0.7719 + }, + { + "start": 13637.5, + "end": 13642.34, + "probability": 0.9403 + }, + { + "start": 13642.52, + "end": 13644.4, + "probability": 0.7331 + }, + { + "start": 13644.4, + "end": 13646.88, + "probability": 0.9858 + }, + { + "start": 13646.92, + "end": 13648.54, + "probability": 0.9004 + }, + { + "start": 13648.94, + "end": 13650.2, + "probability": 0.9626 + }, + { + "start": 13650.4, + "end": 13650.54, + "probability": 0.3701 + }, + { + "start": 13650.68, + "end": 13653.36, + "probability": 0.9077 + }, + { + "start": 13653.36, + "end": 13656.44, + "probability": 0.8653 + }, + { + "start": 13656.52, + "end": 13658.96, + "probability": 0.9318 + }, + { + "start": 13659.22, + "end": 13660.72, + "probability": 0.9531 + }, + { + "start": 13661.34, + "end": 13663.68, + "probability": 0.6394 + }, + { + "start": 13664.1, + "end": 13665.66, + "probability": 0.6855 + }, + { + "start": 13666.2, + "end": 13669.72, + "probability": 0.958 + }, + { + "start": 13669.8, + "end": 13671.04, + "probability": 0.9873 + }, + { + "start": 13671.46, + "end": 13673.4, + "probability": 0.9019 + }, + { + "start": 13673.4, + "end": 13674.74, + "probability": 0.8862 + }, + { + "start": 13675.28, + "end": 13676.08, + "probability": 0.5242 + }, + { + "start": 13676.18, + "end": 13676.64, + "probability": 0.8427 + }, + { + "start": 13676.74, + "end": 13677.1, + "probability": 0.8606 + }, + { + "start": 13677.48, + "end": 13679.92, + "probability": 0.9874 + }, + { + "start": 13679.92, + "end": 13684.18, + "probability": 0.9523 + }, + { + "start": 13684.6, + "end": 13685.84, + "probability": 0.9902 + }, + { + "start": 13686.62, + "end": 13687.74, + "probability": 0.9915 + }, + { + "start": 13687.8, + "end": 13688.1, + "probability": 0.4882 + }, + { + "start": 13688.24, + "end": 13688.74, + "probability": 0.7329 + }, + { + "start": 13688.94, + "end": 13690.36, + "probability": 0.6817 + }, + { + "start": 13690.44, + "end": 13692.02, + "probability": 0.9839 + }, + { + "start": 13692.44, + "end": 13693.7, + "probability": 0.9066 + }, + { + "start": 13693.82, + "end": 13695.7, + "probability": 0.9344 + }, + { + "start": 13696.04, + "end": 13697.18, + "probability": 0.9805 + }, + { + "start": 13697.58, + "end": 13701.02, + "probability": 0.9754 + }, + { + "start": 13701.88, + "end": 13702.28, + "probability": 0.6598 + }, + { + "start": 13702.9, + "end": 13704.16, + "probability": 0.7933 + }, + { + "start": 13706.28, + "end": 13714.98, + "probability": 0.9198 + }, + { + "start": 13715.46, + "end": 13723.64, + "probability": 0.972 + }, + { + "start": 13724.32, + "end": 13729.22, + "probability": 0.8848 + }, + { + "start": 13729.22, + "end": 13729.22, + "probability": 0.0666 + }, + { + "start": 13729.22, + "end": 13732.36, + "probability": 0.6522 + }, + { + "start": 13732.7, + "end": 13733.58, + "probability": 0.7897 + }, + { + "start": 13734.0, + "end": 13738.56, + "probability": 0.9916 + }, + { + "start": 13738.98, + "end": 13741.46, + "probability": 0.9609 + }, + { + "start": 13741.92, + "end": 13743.44, + "probability": 0.8699 + }, + { + "start": 13743.56, + "end": 13745.26, + "probability": 0.6762 + }, + { + "start": 13745.44, + "end": 13747.14, + "probability": 0.9604 + }, + { + "start": 13747.44, + "end": 13748.88, + "probability": 0.9753 + }, + { + "start": 13748.96, + "end": 13749.42, + "probability": 0.8258 + }, + { + "start": 13749.46, + "end": 13749.64, + "probability": 0.7374 + }, + { + "start": 13749.7, + "end": 13752.16, + "probability": 0.9808 + }, + { + "start": 13752.82, + "end": 13753.04, + "probability": 0.9225 + }, + { + "start": 13753.14, + "end": 13756.16, + "probability": 0.9761 + }, + { + "start": 13756.64, + "end": 13757.66, + "probability": 0.9189 + }, + { + "start": 13757.86, + "end": 13761.06, + "probability": 0.6186 + }, + { + "start": 13761.58, + "end": 13763.28, + "probability": 0.4635 + }, + { + "start": 13763.9, + "end": 13765.58, + "probability": 0.4798 + }, + { + "start": 13766.2, + "end": 13767.28, + "probability": 0.2923 + }, + { + "start": 13767.3, + "end": 13768.32, + "probability": 0.5599 + }, + { + "start": 13769.1, + "end": 13772.64, + "probability": 0.988 + }, + { + "start": 13772.74, + "end": 13773.48, + "probability": 0.8751 + }, + { + "start": 13773.62, + "end": 13774.1, + "probability": 0.7526 + }, + { + "start": 13774.96, + "end": 13776.52, + "probability": 0.9067 + }, + { + "start": 13776.7, + "end": 13778.5, + "probability": 0.8436 + }, + { + "start": 13778.92, + "end": 13785.28, + "probability": 0.9878 + }, + { + "start": 13786.02, + "end": 13787.74, + "probability": 0.9403 + }, + { + "start": 13787.78, + "end": 13790.6, + "probability": 0.9895 + }, + { + "start": 13791.08, + "end": 13794.84, + "probability": 0.9893 + }, + { + "start": 13795.16, + "end": 13802.9, + "probability": 0.9241 + }, + { + "start": 13803.32, + "end": 13804.58, + "probability": 0.7893 + }, + { + "start": 13806.16, + "end": 13809.04, + "probability": 0.5863 + }, + { + "start": 13809.04, + "end": 13810.45, + "probability": 0.4823 + }, + { + "start": 13811.12, + "end": 13812.14, + "probability": 0.1552 + }, + { + "start": 13812.16, + "end": 13813.7, + "probability": 0.6423 + }, + { + "start": 13814.02, + "end": 13814.04, + "probability": 0.3528 + }, + { + "start": 13814.04, + "end": 13814.85, + "probability": 0.7274 + }, + { + "start": 13815.32, + "end": 13817.62, + "probability": 0.0427 + }, + { + "start": 13817.62, + "end": 13820.9, + "probability": 0.6558 + }, + { + "start": 13822.14, + "end": 13825.64, + "probability": 0.9775 + }, + { + "start": 13826.18, + "end": 13829.24, + "probability": 0.8351 + }, + { + "start": 13829.84, + "end": 13831.86, + "probability": 0.9956 + }, + { + "start": 13832.34, + "end": 13835.44, + "probability": 0.8323 + }, + { + "start": 13835.82, + "end": 13836.12, + "probability": 0.5801 + }, + { + "start": 13836.12, + "end": 13837.68, + "probability": 0.8306 + }, + { + "start": 13838.02, + "end": 13840.1, + "probability": 0.9905 + }, + { + "start": 13840.1, + "end": 13840.58, + "probability": 0.777 + }, + { + "start": 13840.66, + "end": 13841.06, + "probability": 0.3536 + }, + { + "start": 13841.34, + "end": 13843.5, + "probability": 0.7519 + }, + { + "start": 13843.5, + "end": 13843.52, + "probability": 0.2085 + }, + { + "start": 13843.58, + "end": 13843.84, + "probability": 0.8349 + }, + { + "start": 13843.94, + "end": 13846.34, + "probability": 0.99 + }, + { + "start": 13846.42, + "end": 13847.48, + "probability": 0.8592 + }, + { + "start": 13847.56, + "end": 13848.93, + "probability": 0.3394 + }, + { + "start": 13849.28, + "end": 13856.8, + "probability": 0.9254 + }, + { + "start": 13857.3, + "end": 13859.16, + "probability": 0.8692 + }, + { + "start": 13859.68, + "end": 13861.5, + "probability": 0.8412 + }, + { + "start": 13861.76, + "end": 13863.34, + "probability": 0.7653 + }, + { + "start": 13864.02, + "end": 13870.28, + "probability": 0.9812 + }, + { + "start": 13870.4, + "end": 13871.89, + "probability": 0.9893 + }, + { + "start": 13872.28, + "end": 13873.26, + "probability": 0.7755 + }, + { + "start": 13873.64, + "end": 13877.18, + "probability": 0.9767 + }, + { + "start": 13877.3, + "end": 13877.4, + "probability": 0.3486 + }, + { + "start": 13877.44, + "end": 13878.86, + "probability": 0.6622 + }, + { + "start": 13878.94, + "end": 13882.72, + "probability": 0.9927 + }, + { + "start": 13882.98, + "end": 13883.74, + "probability": 0.9902 + }, + { + "start": 13883.78, + "end": 13884.18, + "probability": 0.6127 + }, + { + "start": 13884.4, + "end": 13885.28, + "probability": 0.6937 + }, + { + "start": 13888.78, + "end": 13891.8, + "probability": 0.8906 + }, + { + "start": 13892.52, + "end": 13894.74, + "probability": 0.8752 + }, + { + "start": 13895.42, + "end": 13899.54, + "probability": 0.9491 + }, + { + "start": 13900.08, + "end": 13901.64, + "probability": 0.7975 + }, + { + "start": 13901.78, + "end": 13903.92, + "probability": 0.9608 + }, + { + "start": 13904.58, + "end": 13905.84, + "probability": 0.773 + }, + { + "start": 13906.18, + "end": 13909.48, + "probability": 0.9172 + }, + { + "start": 13909.82, + "end": 13910.86, + "probability": 0.9451 + }, + { + "start": 13911.54, + "end": 13912.2, + "probability": 0.7836 + }, + { + "start": 13912.3, + "end": 13917.42, + "probability": 0.9946 + }, + { + "start": 13917.94, + "end": 13920.0, + "probability": 0.9932 + }, + { + "start": 13920.56, + "end": 13922.38, + "probability": 0.9912 + }, + { + "start": 13922.54, + "end": 13927.22, + "probability": 0.9829 + }, + { + "start": 13927.64, + "end": 13930.12, + "probability": 0.9833 + }, + { + "start": 13930.18, + "end": 13931.7, + "probability": 0.7231 + }, + { + "start": 13932.28, + "end": 13934.3, + "probability": 0.8394 + }, + { + "start": 13934.62, + "end": 13936.1, + "probability": 0.8276 + }, + { + "start": 13937.92, + "end": 13939.94, + "probability": 0.6215 + }, + { + "start": 13940.68, + "end": 13944.09, + "probability": 0.9478 + }, + { + "start": 13945.28, + "end": 13946.12, + "probability": 0.7789 + }, + { + "start": 13947.36, + "end": 13950.54, + "probability": 0.8134 + }, + { + "start": 13950.74, + "end": 13950.74, + "probability": 0.2474 + }, + { + "start": 13950.86, + "end": 13952.44, + "probability": 0.7552 + }, + { + "start": 13954.4, + "end": 13955.54, + "probability": 0.9968 + }, + { + "start": 13956.06, + "end": 13961.04, + "probability": 0.959 + }, + { + "start": 13961.06, + "end": 13965.44, + "probability": 0.9933 + }, + { + "start": 13966.88, + "end": 13969.22, + "probability": 0.9953 + }, + { + "start": 13970.1, + "end": 13971.52, + "probability": 0.9854 + }, + { + "start": 13973.32, + "end": 13973.9, + "probability": 0.7887 + }, + { + "start": 13973.9, + "end": 13974.02, + "probability": 0.7447 + }, + { + "start": 13974.46, + "end": 13975.78, + "probability": 0.9644 + }, + { + "start": 13975.92, + "end": 13977.34, + "probability": 0.9229 + }, + { + "start": 13978.34, + "end": 13983.4, + "probability": 0.994 + }, + { + "start": 13985.34, + "end": 13985.86, + "probability": 0.82 + }, + { + "start": 13985.9, + "end": 13986.42, + "probability": 0.8066 + }, + { + "start": 13986.82, + "end": 13991.22, + "probability": 0.9773 + }, + { + "start": 13991.78, + "end": 13994.42, + "probability": 0.8341 + }, + { + "start": 13994.48, + "end": 13995.2, + "probability": 0.9945 + }, + { + "start": 13995.62, + "end": 13999.3, + "probability": 0.9287 + }, + { + "start": 14000.66, + "end": 14004.3, + "probability": 0.8298 + }, + { + "start": 14004.44, + "end": 14005.89, + "probability": 0.8751 + }, + { + "start": 14006.1, + "end": 14006.3, + "probability": 0.0758 + }, + { + "start": 14006.3, + "end": 14006.9, + "probability": 0.3673 + }, + { + "start": 14006.9, + "end": 14008.62, + "probability": 0.6025 + }, + { + "start": 14008.64, + "end": 14008.99, + "probability": 0.8062 + }, + { + "start": 14009.3, + "end": 14010.54, + "probability": 0.6232 + }, + { + "start": 14010.6, + "end": 14013.2, + "probability": 0.4762 + }, + { + "start": 14013.94, + "end": 14015.5, + "probability": 0.6714 + }, + { + "start": 14015.56, + "end": 14015.86, + "probability": 0.5447 + }, + { + "start": 14016.04, + "end": 14016.76, + "probability": 0.3377 + }, + { + "start": 14016.92, + "end": 14018.22, + "probability": 0.7611 + }, + { + "start": 14018.24, + "end": 14020.42, + "probability": 0.7612 + }, + { + "start": 14020.62, + "end": 14021.9, + "probability": 0.4618 + }, + { + "start": 14021.98, + "end": 14022.18, + "probability": 0.1219 + }, + { + "start": 14022.18, + "end": 14025.92, + "probability": 0.9256 + }, + { + "start": 14026.64, + "end": 14031.4, + "probability": 0.9435 + }, + { + "start": 14031.56, + "end": 14032.02, + "probability": 0.4324 + }, + { + "start": 14032.3, + "end": 14034.6, + "probability": 0.9712 + }, + { + "start": 14035.2, + "end": 14035.24, + "probability": 0.2694 + }, + { + "start": 14035.28, + "end": 14036.3, + "probability": 0.5402 + }, + { + "start": 14036.4, + "end": 14038.36, + "probability": 0.8537 + }, + { + "start": 14038.42, + "end": 14038.76, + "probability": 0.2857 + }, + { + "start": 14038.76, + "end": 14039.14, + "probability": 0.3775 + }, + { + "start": 14039.14, + "end": 14042.26, + "probability": 0.7414 + }, + { + "start": 14042.38, + "end": 14043.82, + "probability": 0.9755 + }, + { + "start": 14043.96, + "end": 14044.44, + "probability": 0.8217 + }, + { + "start": 14044.52, + "end": 14045.22, + "probability": 0.5511 + }, + { + "start": 14045.4, + "end": 14047.78, + "probability": 0.9398 + }, + { + "start": 14047.78, + "end": 14050.86, + "probability": 0.5501 + }, + { + "start": 14050.94, + "end": 14052.81, + "probability": 0.6926 + }, + { + "start": 14053.6, + "end": 14055.2, + "probability": 0.8622 + }, + { + "start": 14055.88, + "end": 14059.7, + "probability": 0.6782 + }, + { + "start": 14059.98, + "end": 14061.02, + "probability": 0.6691 + }, + { + "start": 14061.52, + "end": 14065.64, + "probability": 0.8385 + }, + { + "start": 14066.18, + "end": 14069.72, + "probability": 0.9956 + }, + { + "start": 14069.94, + "end": 14071.1, + "probability": 0.3227 + }, + { + "start": 14071.5, + "end": 14071.58, + "probability": 0.1746 + }, + { + "start": 14071.58, + "end": 14073.94, + "probability": 0.042 + }, + { + "start": 14073.98, + "end": 14074.94, + "probability": 0.0263 + }, + { + "start": 14075.26, + "end": 14079.02, + "probability": 0.6892 + }, + { + "start": 14079.06, + "end": 14079.26, + "probability": 0.5768 + }, + { + "start": 14079.48, + "end": 14080.7, + "probability": 0.8181 + }, + { + "start": 14080.7, + "end": 14082.58, + "probability": 0.6337 + }, + { + "start": 14082.68, + "end": 14083.8, + "probability": 0.9146 + }, + { + "start": 14083.88, + "end": 14085.42, + "probability": 0.4631 + }, + { + "start": 14086.0, + "end": 14088.54, + "probability": 0.6174 + }, + { + "start": 14089.02, + "end": 14089.96, + "probability": 0.5724 + }, + { + "start": 14090.42, + "end": 14094.76, + "probability": 0.9766 + }, + { + "start": 14095.64, + "end": 14097.58, + "probability": 0.9347 + }, + { + "start": 14098.54, + "end": 14098.54, + "probability": 0.0229 + }, + { + "start": 14098.54, + "end": 14099.04, + "probability": 0.4127 + }, + { + "start": 14099.22, + "end": 14100.24, + "probability": 0.4436 + }, + { + "start": 14100.3, + "end": 14103.44, + "probability": 0.8145 + }, + { + "start": 14104.26, + "end": 14105.24, + "probability": 0.972 + }, + { + "start": 14106.22, + "end": 14107.88, + "probability": 0.8744 + }, + { + "start": 14109.06, + "end": 14110.64, + "probability": 0.6051 + }, + { + "start": 14112.22, + "end": 14113.46, + "probability": 0.9901 + }, + { + "start": 14113.84, + "end": 14116.66, + "probability": 0.9949 + }, + { + "start": 14117.72, + "end": 14119.96, + "probability": 0.9049 + }, + { + "start": 14120.14, + "end": 14123.04, + "probability": 0.9964 + }, + { + "start": 14123.48, + "end": 14125.14, + "probability": 0.9915 + }, + { + "start": 14126.28, + "end": 14127.74, + "probability": 0.9775 + }, + { + "start": 14128.22, + "end": 14129.01, + "probability": 0.9338 + }, + { + "start": 14131.5, + "end": 14132.38, + "probability": 0.9526 + }, + { + "start": 14132.62, + "end": 14132.94, + "probability": 0.9604 + }, + { + "start": 14133.38, + "end": 14136.54, + "probability": 0.9946 + }, + { + "start": 14136.9, + "end": 14139.26, + "probability": 0.9483 + }, + { + "start": 14140.24, + "end": 14141.1, + "probability": 0.8597 + }, + { + "start": 14141.14, + "end": 14142.37, + "probability": 0.9932 + }, + { + "start": 14143.78, + "end": 14145.6, + "probability": 0.9861 + }, + { + "start": 14145.78, + "end": 14147.66, + "probability": 0.9971 + }, + { + "start": 14148.5, + "end": 14149.72, + "probability": 0.0298 + }, + { + "start": 14150.14, + "end": 14150.14, + "probability": 0.5687 + }, + { + "start": 14150.24, + "end": 14151.03, + "probability": 0.907 + }, + { + "start": 14151.14, + "end": 14153.04, + "probability": 0.8878 + }, + { + "start": 14153.26, + "end": 14154.22, + "probability": 0.8711 + }, + { + "start": 14154.66, + "end": 14155.7, + "probability": 0.9307 + }, + { + "start": 14155.76, + "end": 14157.14, + "probability": 0.9514 + }, + { + "start": 14157.56, + "end": 14161.42, + "probability": 0.9633 + }, + { + "start": 14161.86, + "end": 14162.14, + "probability": 0.7317 + }, + { + "start": 14162.26, + "end": 14162.42, + "probability": 0.3022 + }, + { + "start": 14162.54, + "end": 14165.18, + "probability": 0.9468 + }, + { + "start": 14165.18, + "end": 14169.72, + "probability": 0.9966 + }, + { + "start": 14169.9, + "end": 14174.28, + "probability": 0.9072 + }, + { + "start": 14174.84, + "end": 14180.06, + "probability": 0.8592 + }, + { + "start": 14181.08, + "end": 14183.44, + "probability": 0.6448 + }, + { + "start": 14183.54, + "end": 14184.78, + "probability": 0.9878 + }, + { + "start": 14185.08, + "end": 14186.12, + "probability": 0.8524 + }, + { + "start": 14186.22, + "end": 14192.3, + "probability": 0.9503 + }, + { + "start": 14192.88, + "end": 14194.42, + "probability": 0.7649 + }, + { + "start": 14195.14, + "end": 14200.62, + "probability": 0.6583 + }, + { + "start": 14201.16, + "end": 14204.36, + "probability": 0.9932 + }, + { + "start": 14204.36, + "end": 14209.92, + "probability": 0.7588 + }, + { + "start": 14210.88, + "end": 14216.0, + "probability": 0.9854 + }, + { + "start": 14216.4, + "end": 14217.5, + "probability": 0.4707 + }, + { + "start": 14217.56, + "end": 14219.6, + "probability": 0.9412 + }, + { + "start": 14220.2, + "end": 14221.04, + "probability": 0.777 + }, + { + "start": 14221.5, + "end": 14222.76, + "probability": 0.7883 + }, + { + "start": 14223.64, + "end": 14224.72, + "probability": 0.7454 + }, + { + "start": 14225.34, + "end": 14227.0, + "probability": 0.9185 + }, + { + "start": 14227.96, + "end": 14228.62, + "probability": 0.6542 + }, + { + "start": 14228.84, + "end": 14230.48, + "probability": 0.8845 + }, + { + "start": 14231.08, + "end": 14232.76, + "probability": 0.977 + }, + { + "start": 14232.82, + "end": 14233.58, + "probability": 0.741 + }, + { + "start": 14233.98, + "end": 14235.0, + "probability": 0.7683 + }, + { + "start": 14235.02, + "end": 14235.56, + "probability": 0.725 + }, + { + "start": 14235.98, + "end": 14236.7, + "probability": 0.7905 + }, + { + "start": 14241.76, + "end": 14242.24, + "probability": 0.4128 + }, + { + "start": 14242.58, + "end": 14244.42, + "probability": 0.5456 + }, + { + "start": 14244.64, + "end": 14245.24, + "probability": 0.8289 + }, + { + "start": 14245.72, + "end": 14247.46, + "probability": 0.2731 + }, + { + "start": 14249.78, + "end": 14250.62, + "probability": 0.8987 + }, + { + "start": 14250.62, + "end": 14255.12, + "probability": 0.9199 + }, + { + "start": 14255.46, + "end": 14256.56, + "probability": 0.7567 + }, + { + "start": 14257.08, + "end": 14260.02, + "probability": 0.9797 + }, + { + "start": 14260.44, + "end": 14262.54, + "probability": 0.5488 + }, + { + "start": 14263.02, + "end": 14264.7, + "probability": 0.6952 + }, + { + "start": 14265.26, + "end": 14267.12, + "probability": 0.6786 + }, + { + "start": 14267.52, + "end": 14268.74, + "probability": 0.525 + }, + { + "start": 14284.78, + "end": 14285.28, + "probability": 0.0607 + }, + { + "start": 14285.28, + "end": 14287.6, + "probability": 0.6562 + }, + { + "start": 14288.02, + "end": 14292.54, + "probability": 0.8974 + }, + { + "start": 14292.6, + "end": 14293.38, + "probability": 0.9427 + }, + { + "start": 14293.88, + "end": 14296.42, + "probability": 0.8464 + }, + { + "start": 14296.46, + "end": 14296.86, + "probability": 0.6292 + }, + { + "start": 14297.0, + "end": 14299.24, + "probability": 0.8398 + }, + { + "start": 14299.32, + "end": 14300.66, + "probability": 0.467 + }, + { + "start": 14300.7, + "end": 14300.98, + "probability": 0.3654 + }, + { + "start": 14301.3, + "end": 14303.16, + "probability": 0.5462 + }, + { + "start": 14303.44, + "end": 14304.8, + "probability": 0.8086 + }, + { + "start": 14305.22, + "end": 14306.32, + "probability": 0.7532 + }, + { + "start": 14306.32, + "end": 14306.92, + "probability": 0.6593 + }, + { + "start": 14306.92, + "end": 14307.48, + "probability": 0.8514 + }, + { + "start": 14308.02, + "end": 14308.68, + "probability": 0.3065 + }, + { + "start": 14309.4, + "end": 14310.18, + "probability": 0.4491 + }, + { + "start": 14322.04, + "end": 14322.04, + "probability": 0.2087 + }, + { + "start": 14322.04, + "end": 14325.46, + "probability": 0.6127 + }, + { + "start": 14325.54, + "end": 14328.74, + "probability": 0.9134 + }, + { + "start": 14329.28, + "end": 14331.78, + "probability": 0.9961 + }, + { + "start": 14332.56, + "end": 14335.88, + "probability": 0.6488 + }, + { + "start": 14335.88, + "end": 14336.26, + "probability": 0.3206 + }, + { + "start": 14336.36, + "end": 14336.86, + "probability": 0.5393 + }, + { + "start": 14337.3, + "end": 14338.14, + "probability": 0.6167 + }, + { + "start": 14339.82, + "end": 14340.96, + "probability": 0.7823 + }, + { + "start": 14352.5, + "end": 14352.54, + "probability": 0.3496 + }, + { + "start": 14352.54, + "end": 14352.7, + "probability": 0.3504 + }, + { + "start": 14352.7, + "end": 14354.72, + "probability": 0.5918 + }, + { + "start": 14355.12, + "end": 14357.2, + "probability": 0.8108 + }, + { + "start": 14357.76, + "end": 14358.38, + "probability": 0.8577 + }, + { + "start": 14358.52, + "end": 14360.12, + "probability": 0.6933 + }, + { + "start": 14360.36, + "end": 14361.68, + "probability": 0.3864 + }, + { + "start": 14361.72, + "end": 14364.52, + "probability": 0.9585 + }, + { + "start": 14364.8, + "end": 14368.12, + "probability": 0.8368 + }, + { + "start": 14368.46, + "end": 14373.36, + "probability": 0.8451 + }, + { + "start": 14373.4, + "end": 14374.22, + "probability": 0.6682 + }, + { + "start": 14391.44, + "end": 14391.94, + "probability": 0.3592 + }, + { + "start": 14391.94, + "end": 14394.76, + "probability": 0.6726 + }, + { + "start": 14394.86, + "end": 14398.5, + "probability": 0.7832 + }, + { + "start": 14399.04, + "end": 14400.32, + "probability": 0.903 + }, + { + "start": 14400.94, + "end": 14401.88, + "probability": 0.7624 + }, + { + "start": 14401.9, + "end": 14405.5, + "probability": 0.958 + }, + { + "start": 14405.92, + "end": 14408.5, + "probability": 0.6111 + }, + { + "start": 14408.54, + "end": 14412.2, + "probability": 0.8843 + }, + { + "start": 14412.72, + "end": 14413.06, + "probability": 0.6312 + }, + { + "start": 14413.32, + "end": 14414.6, + "probability": 0.7904 + }, + { + "start": 14415.48, + "end": 14418.72, + "probability": 0.9648 + }, + { + "start": 14419.1, + "end": 14419.2, + "probability": 0.5968 + }, + { + "start": 14419.36, + "end": 14419.36, + "probability": 0.2139 + }, + { + "start": 14419.36, + "end": 14420.18, + "probability": 0.9453 + }, + { + "start": 14421.06, + "end": 14423.06, + "probability": 0.8937 + }, + { + "start": 14423.56, + "end": 14425.06, + "probability": 0.9829 + }, + { + "start": 14425.56, + "end": 14427.02, + "probability": 0.9447 + }, + { + "start": 14427.48, + "end": 14428.5, + "probability": 0.3257 + }, + { + "start": 14428.52, + "end": 14428.9, + "probability": 0.4441 + }, + { + "start": 14428.9, + "end": 14429.42, + "probability": 0.6326 + }, + { + "start": 14430.18, + "end": 14432.24, + "probability": 0.6649 + }, + { + "start": 14432.84, + "end": 14433.32, + "probability": 0.3442 + }, + { + "start": 14434.06, + "end": 14435.12, + "probability": 0.7985 + }, + { + "start": 14436.58, + "end": 14439.28, + "probability": 0.3166 + }, + { + "start": 14442.06, + "end": 14442.44, + "probability": 0.0363 + }, + { + "start": 14442.44, + "end": 14444.8, + "probability": 0.6746 + }, + { + "start": 14445.26, + "end": 14447.86, + "probability": 0.9914 + }, + { + "start": 14448.3, + "end": 14451.08, + "probability": 0.9863 + }, + { + "start": 14451.86, + "end": 14452.62, + "probability": 0.6843 + }, + { + "start": 14453.08, + "end": 14454.42, + "probability": 0.8818 + }, + { + "start": 14455.06, + "end": 14457.54, + "probability": 0.4844 + }, + { + "start": 14458.38, + "end": 14461.4, + "probability": 0.6404 + }, + { + "start": 14462.22, + "end": 14462.8, + "probability": 0.8735 + }, + { + "start": 14463.74, + "end": 14466.28, + "probability": 0.8936 + }, + { + "start": 14466.7, + "end": 14468.72, + "probability": 0.8007 + }, + { + "start": 14468.84, + "end": 14469.78, + "probability": 0.9561 + }, + { + "start": 14470.22, + "end": 14476.26, + "probability": 0.9945 + }, + { + "start": 14477.14, + "end": 14478.22, + "probability": 0.8049 + }, + { + "start": 14478.38, + "end": 14479.24, + "probability": 0.742 + }, + { + "start": 14479.32, + "end": 14483.22, + "probability": 0.8574 + }, + { + "start": 14489.26, + "end": 14492.44, + "probability": 0.5717 + }, + { + "start": 14492.84, + "end": 14498.6, + "probability": 0.9938 + }, + { + "start": 14499.22, + "end": 14499.5, + "probability": 0.78 + }, + { + "start": 14500.06, + "end": 14500.96, + "probability": 0.5554 + }, + { + "start": 14501.02, + "end": 14501.02, + "probability": 0.2747 + }, + { + "start": 14501.02, + "end": 14501.84, + "probability": 0.6454 + }, + { + "start": 14502.02, + "end": 14504.66, + "probability": 0.9751 + }, + { + "start": 14505.82, + "end": 14507.62, + "probability": 0.7575 + }, + { + "start": 14508.62, + "end": 14512.18, + "probability": 0.9773 + }, + { + "start": 14512.18, + "end": 14516.16, + "probability": 0.9818 + }, + { + "start": 14516.16, + "end": 14519.9, + "probability": 0.8748 + }, + { + "start": 14520.3, + "end": 14522.06, + "probability": 0.6667 + }, + { + "start": 14522.88, + "end": 14527.26, + "probability": 0.9695 + }, + { + "start": 14527.26, + "end": 14531.4, + "probability": 0.989 + }, + { + "start": 14532.22, + "end": 14534.82, + "probability": 0.7585 + }, + { + "start": 14535.06, + "end": 14537.4, + "probability": 0.9787 + }, + { + "start": 14539.34, + "end": 14539.76, + "probability": 0.5654 + }, + { + "start": 14539.76, + "end": 14540.24, + "probability": 0.7241 + }, + { + "start": 14540.34, + "end": 14545.2, + "probability": 0.9637 + }, + { + "start": 14546.58, + "end": 14547.8, + "probability": 0.723 + }, + { + "start": 14548.06, + "end": 14550.94, + "probability": 0.9087 + }, + { + "start": 14551.56, + "end": 14552.98, + "probability": 0.7823 + }, + { + "start": 14553.04, + "end": 14556.83, + "probability": 0.6499 + }, + { + "start": 14557.44, + "end": 14558.48, + "probability": 0.28 + }, + { + "start": 14559.66, + "end": 14562.92, + "probability": 0.7735 + }, + { + "start": 14563.58, + "end": 14565.82, + "probability": 0.9855 + }, + { + "start": 14566.08, + "end": 14567.18, + "probability": 0.8496 + }, + { + "start": 14568.3, + "end": 14572.96, + "probability": 0.8839 + }, + { + "start": 14573.0, + "end": 14576.24, + "probability": 0.9506 + }, + { + "start": 14576.24, + "end": 14579.68, + "probability": 0.9856 + }, + { + "start": 14580.38, + "end": 14584.46, + "probability": 0.9066 + }, + { + "start": 14584.96, + "end": 14587.58, + "probability": 0.9399 + }, + { + "start": 14587.58, + "end": 14590.74, + "probability": 0.9766 + }, + { + "start": 14591.6, + "end": 14594.16, + "probability": 0.9785 + }, + { + "start": 14594.8, + "end": 14598.48, + "probability": 0.9951 + }, + { + "start": 14598.54, + "end": 14601.28, + "probability": 0.7645 + }, + { + "start": 14601.8, + "end": 14603.65, + "probability": 0.8015 + }, + { + "start": 14604.68, + "end": 14609.02, + "probability": 0.8817 + }, + { + "start": 14609.1, + "end": 14613.56, + "probability": 0.8574 + }, + { + "start": 14615.18, + "end": 14616.08, + "probability": 0.7591 + }, + { + "start": 14616.12, + "end": 14620.72, + "probability": 0.991 + }, + { + "start": 14621.42, + "end": 14626.08, + "probability": 0.9436 + }, + { + "start": 14626.9, + "end": 14628.8, + "probability": 0.6052 + }, + { + "start": 14629.1, + "end": 14630.66, + "probability": 0.9104 + }, + { + "start": 14630.66, + "end": 14633.5, + "probability": 0.9205 + }, + { + "start": 14634.42, + "end": 14635.34, + "probability": 0.7545 + }, + { + "start": 14635.44, + "end": 14635.9, + "probability": 0.299 + }, + { + "start": 14635.98, + "end": 14636.5, + "probability": 0.4741 + }, + { + "start": 14636.54, + "end": 14639.46, + "probability": 0.7936 + }, + { + "start": 14639.46, + "end": 14643.22, + "probability": 0.9938 + }, + { + "start": 14644.08, + "end": 14645.62, + "probability": 0.9702 + }, + { + "start": 14645.9, + "end": 14648.56, + "probability": 0.9718 + }, + { + "start": 14648.56, + "end": 14652.72, + "probability": 0.9601 + }, + { + "start": 14653.42, + "end": 14654.48, + "probability": 0.4811 + }, + { + "start": 14654.54, + "end": 14658.8, + "probability": 0.733 + }, + { + "start": 14658.92, + "end": 14662.36, + "probability": 0.8582 + }, + { + "start": 14663.42, + "end": 14669.1, + "probability": 0.761 + }, + { + "start": 14669.68, + "end": 14671.72, + "probability": 0.8499 + }, + { + "start": 14671.88, + "end": 14675.56, + "probability": 0.8709 + }, + { + "start": 14677.5, + "end": 14679.14, + "probability": 0.7899 + }, + { + "start": 14679.24, + "end": 14683.84, + "probability": 0.9332 + }, + { + "start": 14684.98, + "end": 14687.02, + "probability": 0.9507 + }, + { + "start": 14687.78, + "end": 14688.92, + "probability": 0.8594 + }, + { + "start": 14689.0, + "end": 14691.84, + "probability": 0.6531 + }, + { + "start": 14692.26, + "end": 14695.75, + "probability": 0.0412 + }, + { + "start": 14696.46, + "end": 14701.84, + "probability": 0.6399 + }, + { + "start": 14701.84, + "end": 14705.34, + "probability": 0.9628 + }, + { + "start": 14706.0, + "end": 14710.42, + "probability": 0.9934 + }, + { + "start": 14711.24, + "end": 14712.86, + "probability": 0.8459 + }, + { + "start": 14713.54, + "end": 14717.96, + "probability": 0.965 + }, + { + "start": 14718.5, + "end": 14722.04, + "probability": 0.9185 + }, + { + "start": 14722.64, + "end": 14723.46, + "probability": 0.5479 + }, + { + "start": 14723.5, + "end": 14728.16, + "probability": 0.8477 + }, + { + "start": 14728.35, + "end": 14733.8, + "probability": 0.9889 + }, + { + "start": 14734.44, + "end": 14736.28, + "probability": 0.93 + }, + { + "start": 14736.32, + "end": 14736.52, + "probability": 0.3463 + }, + { + "start": 14736.66, + "end": 14741.14, + "probability": 0.9735 + }, + { + "start": 14742.94, + "end": 14744.28, + "probability": 0.6974 + }, + { + "start": 14744.4, + "end": 14748.6, + "probability": 0.9272 + }, + { + "start": 14749.24, + "end": 14750.14, + "probability": 0.7959 + }, + { + "start": 14750.2, + "end": 14752.92, + "probability": 0.8586 + }, + { + "start": 14752.92, + "end": 14755.94, + "probability": 0.9677 + }, + { + "start": 14756.66, + "end": 14759.38, + "probability": 0.8846 + }, + { + "start": 14759.42, + "end": 14763.22, + "probability": 0.9648 + }, + { + "start": 14763.22, + "end": 14767.58, + "probability": 0.8986 + }, + { + "start": 14768.66, + "end": 14769.2, + "probability": 0.4751 + }, + { + "start": 14769.26, + "end": 14770.0, + "probability": 0.75 + }, + { + "start": 14770.1, + "end": 14772.88, + "probability": 0.9565 + }, + { + "start": 14772.88, + "end": 14775.78, + "probability": 0.8646 + }, + { + "start": 14775.9, + "end": 14776.68, + "probability": 0.9984 + }, + { + "start": 14777.72, + "end": 14778.44, + "probability": 0.7289 + }, + { + "start": 14778.5, + "end": 14779.56, + "probability": 0.6718 + }, + { + "start": 14779.68, + "end": 14780.8, + "probability": 0.4932 + }, + { + "start": 14780.8, + "end": 14781.44, + "probability": 0.2493 + }, + { + "start": 14781.76, + "end": 14783.24, + "probability": 0.4632 + }, + { + "start": 14783.3, + "end": 14783.74, + "probability": 0.8464 + }, + { + "start": 14783.94, + "end": 14786.78, + "probability": 0.7269 + }, + { + "start": 14787.54, + "end": 14789.08, + "probability": 0.9884 + }, + { + "start": 14789.22, + "end": 14789.92, + "probability": 0.4776 + }, + { + "start": 14790.24, + "end": 14791.88, + "probability": 0.9031 + }, + { + "start": 14792.04, + "end": 14794.08, + "probability": 0.9083 + }, + { + "start": 14794.26, + "end": 14794.4, + "probability": 0.4472 + }, + { + "start": 14795.26, + "end": 14796.34, + "probability": 0.7262 + }, + { + "start": 14796.68, + "end": 14799.16, + "probability": 0.9656 + }, + { + "start": 14800.42, + "end": 14800.82, + "probability": 0.3895 + }, + { + "start": 14800.86, + "end": 14802.52, + "probability": 0.8435 + }, + { + "start": 14802.88, + "end": 14807.18, + "probability": 0.972 + }, + { + "start": 14807.66, + "end": 14808.06, + "probability": 0.2955 + }, + { + "start": 14808.14, + "end": 14808.54, + "probability": 0.4517 + }, + { + "start": 14808.62, + "end": 14809.48, + "probability": 0.8026 + }, + { + "start": 14809.58, + "end": 14810.38, + "probability": 0.8504 + }, + { + "start": 14812.12, + "end": 14815.5, + "probability": 0.9601 + }, + { + "start": 14816.2, + "end": 14817.38, + "probability": 0.8211 + }, + { + "start": 14817.46, + "end": 14818.04, + "probability": 0.7638 + }, + { + "start": 14818.36, + "end": 14818.82, + "probability": 0.8569 + }, + { + "start": 14832.06, + "end": 14836.86, + "probability": 0.4254 + }, + { + "start": 14837.4, + "end": 14838.6, + "probability": 0.091 + }, + { + "start": 14838.62, + "end": 14839.54, + "probability": 0.6102 + }, + { + "start": 14840.02, + "end": 14843.2, + "probability": 0.1778 + }, + { + "start": 14844.96, + "end": 14845.0, + "probability": 0.0 + }, + { + "start": 14845.78, + "end": 14846.6, + "probability": 0.0846 + }, + { + "start": 14847.02, + "end": 14850.12, + "probability": 0.0165 + }, + { + "start": 14850.12, + "end": 14852.44, + "probability": 0.0719 + }, + { + "start": 14854.79, + "end": 14855.58, + "probability": 0.1422 + }, + { + "start": 14856.94, + "end": 14858.56, + "probability": 0.1298 + }, + { + "start": 14859.56, + "end": 14859.58, + "probability": 0.0467 + }, + { + "start": 14859.58, + "end": 14859.58, + "probability": 0.0322 + }, + { + "start": 14859.58, + "end": 14859.58, + "probability": 0.1399 + }, + { + "start": 14859.58, + "end": 14863.54, + "probability": 0.3501 + }, + { + "start": 14864.24, + "end": 14864.32, + "probability": 0.0044 + }, + { + "start": 14864.76, + "end": 14864.76, + "probability": 0.2448 + }, + { + "start": 14864.76, + "end": 14864.76, + "probability": 0.038 + }, + { + "start": 14864.76, + "end": 14864.76, + "probability": 0.1186 + }, + { + "start": 14864.76, + "end": 14864.76, + "probability": 0.1523 + }, + { + "start": 14864.76, + "end": 14864.76, + "probability": 0.3921 + }, + { + "start": 14864.76, + "end": 14872.3, + "probability": 0.71 + }, + { + "start": 14873.22, + "end": 14874.74, + "probability": 0.8167 + }, + { + "start": 14875.6, + "end": 14877.22, + "probability": 0.742 + }, + { + "start": 14877.48, + "end": 14880.92, + "probability": 0.8634 + }, + { + "start": 14881.0, + "end": 14882.66, + "probability": 0.9953 + }, + { + "start": 14883.3, + "end": 14887.02, + "probability": 0.9016 + }, + { + "start": 14887.6, + "end": 14889.72, + "probability": 0.9347 + }, + { + "start": 14890.16, + "end": 14895.56, + "probability": 0.8604 + }, + { + "start": 14896.06, + "end": 14898.22, + "probability": 0.9492 + }, + { + "start": 14899.04, + "end": 14901.05, + "probability": 0.9971 + }, + { + "start": 14902.48, + "end": 14904.8, + "probability": 0.9933 + }, + { + "start": 14905.22, + "end": 14906.34, + "probability": 0.76 + }, + { + "start": 14906.6, + "end": 14907.88, + "probability": 0.807 + }, + { + "start": 14908.34, + "end": 14909.52, + "probability": 0.3132 + }, + { + "start": 14909.54, + "end": 14914.2, + "probability": 0.7579 + }, + { + "start": 14914.88, + "end": 14915.0, + "probability": 0.4841 + }, + { + "start": 14915.32, + "end": 14916.02, + "probability": 0.8831 + }, + { + "start": 14916.14, + "end": 14917.81, + "probability": 0.9893 + }, + { + "start": 14918.34, + "end": 14920.8, + "probability": 0.8118 + }, + { + "start": 14920.98, + "end": 14921.5, + "probability": 0.6489 + }, + { + "start": 14921.82, + "end": 14923.14, + "probability": 0.9644 + }, + { + "start": 14924.7, + "end": 14925.38, + "probability": 0.5685 + }, + { + "start": 14925.64, + "end": 14929.5, + "probability": 0.7675 + }, + { + "start": 14930.2, + "end": 14932.74, + "probability": 0.938 + }, + { + "start": 14932.88, + "end": 14933.56, + "probability": 0.9404 + }, + { + "start": 14934.36, + "end": 14935.82, + "probability": 0.812 + }, + { + "start": 14935.86, + "end": 14937.94, + "probability": 0.7331 + }, + { + "start": 14938.42, + "end": 14941.1, + "probability": 0.9917 + }, + { + "start": 14941.48, + "end": 14945.48, + "probability": 0.9527 + }, + { + "start": 14946.14, + "end": 14949.13, + "probability": 0.9964 + }, + { + "start": 14949.34, + "end": 14950.1, + "probability": 0.3358 + }, + { + "start": 14950.72, + "end": 14951.72, + "probability": 0.7781 + }, + { + "start": 14951.94, + "end": 14953.68, + "probability": 0.4845 + }, + { + "start": 14954.1, + "end": 14957.84, + "probability": 0.8916 + }, + { + "start": 14957.86, + "end": 14958.88, + "probability": 0.0515 + }, + { + "start": 14959.14, + "end": 14960.48, + "probability": 0.6781 + }, + { + "start": 14960.82, + "end": 14966.36, + "probability": 0.9403 + }, + { + "start": 14966.76, + "end": 14967.24, + "probability": 0.8104 + }, + { + "start": 14967.34, + "end": 14968.0, + "probability": 0.8771 + }, + { + "start": 14968.06, + "end": 14969.86, + "probability": 0.9026 + }, + { + "start": 14970.48, + "end": 14972.06, + "probability": 0.99 + }, + { + "start": 14973.1, + "end": 14973.4, + "probability": 0.5609 + }, + { + "start": 14973.42, + "end": 14976.28, + "probability": 0.8153 + }, + { + "start": 14977.12, + "end": 14980.4, + "probability": 0.7761 + }, + { + "start": 14980.87, + "end": 14980.94, + "probability": 0.8338 + }, + { + "start": 14981.22, + "end": 14987.82, + "probability": 0.7321 + }, + { + "start": 14987.82, + "end": 14990.0, + "probability": 0.0279 + }, + { + "start": 14990.0, + "end": 14990.0, + "probability": 0.1448 + }, + { + "start": 14990.02, + "end": 14990.38, + "probability": 0.2104 + }, + { + "start": 14990.58, + "end": 14992.24, + "probability": 0.7715 + }, + { + "start": 14992.38, + "end": 14993.36, + "probability": 0.7967 + }, + { + "start": 14993.84, + "end": 14995.22, + "probability": 0.9192 + }, + { + "start": 14995.58, + "end": 14996.58, + "probability": 0.8708 + }, + { + "start": 14996.7, + "end": 14999.6, + "probability": 0.816 + }, + { + "start": 14999.6, + "end": 14999.94, + "probability": 0.947 + }, + { + "start": 15000.44, + "end": 15001.58, + "probability": 0.6362 + }, + { + "start": 15001.68, + "end": 15002.76, + "probability": 0.7989 + }, + { + "start": 15004.04, + "end": 15006.46, + "probability": 0.1053 + }, + { + "start": 15008.08, + "end": 15011.2, + "probability": 0.6782 + }, + { + "start": 15011.5, + "end": 15015.58, + "probability": 0.9658 + }, + { + "start": 15015.6, + "end": 15017.32, + "probability": 0.7017 + }, + { + "start": 15017.32, + "end": 15020.58, + "probability": 0.6084 + }, + { + "start": 15020.84, + "end": 15026.04, + "probability": 0.8387 + }, + { + "start": 15026.04, + "end": 15029.16, + "probability": 0.5111 + }, + { + "start": 15029.16, + "end": 15031.32, + "probability": 0.728 + }, + { + "start": 15031.82, + "end": 15034.36, + "probability": 0.9387 + }, + { + "start": 15034.88, + "end": 15035.96, + "probability": 0.9126 + }, + { + "start": 15036.26, + "end": 15037.64, + "probability": 0.985 + }, + { + "start": 15037.74, + "end": 15037.84, + "probability": 0.527 + }, + { + "start": 15037.94, + "end": 15040.72, + "probability": 0.9097 + }, + { + "start": 15041.24, + "end": 15042.32, + "probability": 0.8125 + }, + { + "start": 15042.4, + "end": 15043.56, + "probability": 0.7081 + }, + { + "start": 15043.98, + "end": 15045.32, + "probability": 0.9592 + }, + { + "start": 15045.58, + "end": 15046.18, + "probability": 0.7299 + }, + { + "start": 15046.52, + "end": 15047.8, + "probability": 0.3129 + }, + { + "start": 15048.02, + "end": 15049.16, + "probability": 0.5159 + }, + { + "start": 15050.54, + "end": 15052.25, + "probability": 0.5902 + }, + { + "start": 15052.34, + "end": 15053.67, + "probability": 0.7434 + }, + { + "start": 15054.48, + "end": 15056.58, + "probability": 0.8232 + }, + { + "start": 15057.18, + "end": 15057.8, + "probability": 0.8857 + }, + { + "start": 15057.86, + "end": 15058.78, + "probability": 0.1671 + }, + { + "start": 15060.1, + "end": 15060.1, + "probability": 0.517 + }, + { + "start": 15060.1, + "end": 15061.14, + "probability": 0.7246 + }, + { + "start": 15062.66, + "end": 15062.78, + "probability": 0.0031 + }, + { + "start": 15062.78, + "end": 15063.44, + "probability": 0.5745 + }, + { + "start": 15064.24, + "end": 15065.12, + "probability": 0.8975 + }, + { + "start": 15065.4, + "end": 15072.56, + "probability": 0.7445 + }, + { + "start": 15072.94, + "end": 15074.22, + "probability": 0.3512 + }, + { + "start": 15074.38, + "end": 15079.36, + "probability": 0.7533 + }, + { + "start": 15079.58, + "end": 15080.96, + "probability": 0.9487 + }, + { + "start": 15081.26, + "end": 15083.58, + "probability": 0.6761 + }, + { + "start": 15084.14, + "end": 15087.7, + "probability": 0.9496 + }, + { + "start": 15087.78, + "end": 15089.78, + "probability": 0.2261 + }, + { + "start": 15090.3, + "end": 15091.58, + "probability": 0.9167 + }, + { + "start": 15092.04, + "end": 15092.88, + "probability": 0.9086 + }, + { + "start": 15093.3, + "end": 15094.54, + "probability": 0.5094 + }, + { + "start": 15094.7, + "end": 15097.18, + "probability": 0.8851 + }, + { + "start": 15097.26, + "end": 15098.34, + "probability": 0.8261 + }, + { + "start": 15098.84, + "end": 15099.98, + "probability": 0.6311 + }, + { + "start": 15100.14, + "end": 15101.54, + "probability": 0.8046 + }, + { + "start": 15101.92, + "end": 15102.94, + "probability": 0.8569 + }, + { + "start": 15103.18, + "end": 15103.98, + "probability": 0.8548 + }, + { + "start": 15104.82, + "end": 15108.84, + "probability": 0.9443 + }, + { + "start": 15109.78, + "end": 15111.7, + "probability": 0.5545 + }, + { + "start": 15112.42, + "end": 15113.46, + "probability": 0.9931 + }, + { + "start": 15115.14, + "end": 15118.78, + "probability": 0.8845 + }, + { + "start": 15119.6, + "end": 15121.18, + "probability": 0.6525 + }, + { + "start": 15123.42, + "end": 15124.26, + "probability": 0.7323 + }, + { + "start": 15125.1, + "end": 15127.12, + "probability": 0.9261 + }, + { + "start": 15128.46, + "end": 15130.52, + "probability": 0.9104 + }, + { + "start": 15132.38, + "end": 15134.8, + "probability": 0.8823 + }, + { + "start": 15136.56, + "end": 15137.82, + "probability": 0.9246 + }, + { + "start": 15138.48, + "end": 15139.68, + "probability": 0.9407 + }, + { + "start": 15140.44, + "end": 15142.72, + "probability": 0.6645 + }, + { + "start": 15144.04, + "end": 15145.68, + "probability": 0.845 + }, + { + "start": 15146.58, + "end": 15149.36, + "probability": 0.9697 + }, + { + "start": 15150.16, + "end": 15153.55, + "probability": 0.5368 + }, + { + "start": 15154.26, + "end": 15155.26, + "probability": 0.8174 + }, + { + "start": 15155.52, + "end": 15159.1, + "probability": 0.9313 + }, + { + "start": 15159.1, + "end": 15162.46, + "probability": 0.979 + }, + { + "start": 15163.08, + "end": 15168.34, + "probability": 0.9304 + }, + { + "start": 15169.22, + "end": 15172.52, + "probability": 0.985 + }, + { + "start": 15173.28, + "end": 15179.48, + "probability": 0.984 + }, + { + "start": 15180.22, + "end": 15181.64, + "probability": 0.7214 + }, + { + "start": 15182.92, + "end": 15185.72, + "probability": 0.6595 + }, + { + "start": 15185.82, + "end": 15191.2, + "probability": 0.9296 + }, + { + "start": 15192.16, + "end": 15193.7, + "probability": 0.9823 + }, + { + "start": 15194.34, + "end": 15196.47, + "probability": 0.9783 + }, + { + "start": 15197.1, + "end": 15201.48, + "probability": 0.9899 + }, + { + "start": 15202.66, + "end": 15205.9, + "probability": 0.781 + }, + { + "start": 15206.48, + "end": 15214.64, + "probability": 0.9946 + }, + { + "start": 15215.86, + "end": 15220.12, + "probability": 0.8388 + }, + { + "start": 15220.94, + "end": 15224.48, + "probability": 0.7527 + }, + { + "start": 15225.76, + "end": 15226.2, + "probability": 0.5241 + }, + { + "start": 15226.22, + "end": 15228.14, + "probability": 0.8164 + }, + { + "start": 15228.56, + "end": 15230.4, + "probability": 0.9692 + }, + { + "start": 15231.2, + "end": 15234.5, + "probability": 0.9922 + }, + { + "start": 15234.5, + "end": 15238.22, + "probability": 0.8899 + }, + { + "start": 15239.12, + "end": 15241.64, + "probability": 0.8431 + }, + { + "start": 15242.1, + "end": 15246.12, + "probability": 0.9727 + }, + { + "start": 15246.82, + "end": 15247.24, + "probability": 0.4482 + }, + { + "start": 15247.34, + "end": 15251.34, + "probability": 0.9757 + }, + { + "start": 15251.34, + "end": 15257.08, + "probability": 0.8774 + }, + { + "start": 15257.78, + "end": 15263.06, + "probability": 0.9667 + }, + { + "start": 15263.98, + "end": 15268.68, + "probability": 0.9857 + }, + { + "start": 15268.68, + "end": 15272.54, + "probability": 0.9671 + }, + { + "start": 15272.98, + "end": 15277.06, + "probability": 0.9622 + }, + { + "start": 15278.22, + "end": 15278.6, + "probability": 0.6616 + }, + { + "start": 15278.64, + "end": 15283.0, + "probability": 0.9785 + }, + { + "start": 15283.66, + "end": 15290.82, + "probability": 0.8912 + }, + { + "start": 15290.94, + "end": 15296.84, + "probability": 0.9746 + }, + { + "start": 15297.66, + "end": 15303.5, + "probability": 0.7855 + }, + { + "start": 15304.46, + "end": 15308.52, + "probability": 0.6577 + }, + { + "start": 15308.52, + "end": 15312.76, + "probability": 0.9941 + }, + { + "start": 15312.77, + "end": 15316.94, + "probability": 0.9541 + }, + { + "start": 15316.94, + "end": 15321.8, + "probability": 0.9967 + }, + { + "start": 15322.3, + "end": 15326.06, + "probability": 0.9277 + }, + { + "start": 15326.7, + "end": 15328.28, + "probability": 0.8859 + }, + { + "start": 15328.9, + "end": 15333.26, + "probability": 0.9588 + }, + { + "start": 15333.4, + "end": 15337.94, + "probability": 0.9985 + }, + { + "start": 15338.02, + "end": 15342.52, + "probability": 0.9842 + }, + { + "start": 15343.3, + "end": 15344.36, + "probability": 0.3872 + }, + { + "start": 15344.44, + "end": 15350.56, + "probability": 0.814 + }, + { + "start": 15350.9, + "end": 15352.1, + "probability": 0.9078 + }, + { + "start": 15352.3, + "end": 15357.0, + "probability": 0.9907 + }, + { + "start": 15357.62, + "end": 15359.94, + "probability": 0.8109 + }, + { + "start": 15361.64, + "end": 15362.66, + "probability": 0.74 + }, + { + "start": 15363.28, + "end": 15363.64, + "probability": 0.2742 + }, + { + "start": 15364.18, + "end": 15365.86, + "probability": 0.9585 + }, + { + "start": 15366.32, + "end": 15368.5, + "probability": 0.7973 + }, + { + "start": 15368.84, + "end": 15372.7, + "probability": 0.6076 + }, + { + "start": 15372.96, + "end": 15374.08, + "probability": 0.9466 + }, + { + "start": 15374.1, + "end": 15374.84, + "probability": 0.9336 + }, + { + "start": 15374.92, + "end": 15379.16, + "probability": 0.4127 + }, + { + "start": 15379.16, + "end": 15379.54, + "probability": 0.4577 + }, + { + "start": 15379.66, + "end": 15382.68, + "probability": 0.8934 + }, + { + "start": 15382.92, + "end": 15386.34, + "probability": 0.9526 + }, + { + "start": 15386.64, + "end": 15389.0, + "probability": 0.8818 + }, + { + "start": 15389.32, + "end": 15390.08, + "probability": 0.6979 + }, + { + "start": 15390.38, + "end": 15396.42, + "probability": 0.6606 + }, + { + "start": 15396.82, + "end": 15400.26, + "probability": 0.941 + }, + { + "start": 15400.26, + "end": 15404.4, + "probability": 0.9725 + }, + { + "start": 15404.4, + "end": 15408.62, + "probability": 0.8458 + }, + { + "start": 15408.74, + "end": 15411.58, + "probability": 0.6316 + }, + { + "start": 15411.58, + "end": 15414.84, + "probability": 0.9928 + }, + { + "start": 15415.32, + "end": 15416.9, + "probability": 0.953 + }, + { + "start": 15417.5, + "end": 15417.66, + "probability": 0.5619 + }, + { + "start": 15417.66, + "end": 15418.46, + "probability": 0.5882 + }, + { + "start": 15418.96, + "end": 15423.5, + "probability": 0.9885 + }, + { + "start": 15423.5, + "end": 15428.2, + "probability": 0.8049 + }, + { + "start": 15428.26, + "end": 15428.72, + "probability": 0.7479 + }, + { + "start": 15429.54, + "end": 15430.16, + "probability": 0.7374 + }, + { + "start": 15430.84, + "end": 15432.36, + "probability": 0.8953 + }, + { + "start": 15432.64, + "end": 15434.26, + "probability": 0.9095 + }, + { + "start": 15434.88, + "end": 15436.6, + "probability": 0.808 + }, + { + "start": 15437.78, + "end": 15438.33, + "probability": 0.8447 + }, + { + "start": 15438.88, + "end": 15440.94, + "probability": 0.9672 + }, + { + "start": 15441.06, + "end": 15441.68, + "probability": 0.6645 + }, + { + "start": 15441.76, + "end": 15443.6, + "probability": 0.9369 + }, + { + "start": 15451.96, + "end": 15452.06, + "probability": 0.5842 + }, + { + "start": 15453.92, + "end": 15455.82, + "probability": 0.6954 + }, + { + "start": 15455.98, + "end": 15456.0, + "probability": 0.3987 + }, + { + "start": 15456.0, + "end": 15456.6, + "probability": 0.8556 + }, + { + "start": 15456.72, + "end": 15457.98, + "probability": 0.7274 + }, + { + "start": 15459.18, + "end": 15462.34, + "probability": 0.9837 + }, + { + "start": 15463.28, + "end": 15464.38, + "probability": 0.8774 + }, + { + "start": 15464.46, + "end": 15465.58, + "probability": 0.9873 + }, + { + "start": 15465.74, + "end": 15468.9, + "probability": 0.9978 + }, + { + "start": 15469.82, + "end": 15473.44, + "probability": 0.9944 + }, + { + "start": 15473.44, + "end": 15480.3, + "probability": 0.9763 + }, + { + "start": 15481.9, + "end": 15485.96, + "probability": 0.9978 + }, + { + "start": 15486.82, + "end": 15490.54, + "probability": 0.9816 + }, + { + "start": 15491.18, + "end": 15494.74, + "probability": 0.96 + }, + { + "start": 15495.12, + "end": 15496.14, + "probability": 0.9911 + }, + { + "start": 15496.9, + "end": 15499.8, + "probability": 0.9785 + }, + { + "start": 15500.18, + "end": 15504.64, + "probability": 0.901 + }, + { + "start": 15504.98, + "end": 15505.06, + "probability": 0.8678 + }, + { + "start": 15505.06, + "end": 15506.32, + "probability": 0.8224 + }, + { + "start": 15507.0, + "end": 15508.58, + "probability": 0.9355 + }, + { + "start": 15508.84, + "end": 15510.42, + "probability": 0.9875 + }, + { + "start": 15510.56, + "end": 15512.32, + "probability": 0.8072 + }, + { + "start": 15512.94, + "end": 15516.29, + "probability": 0.7112 + }, + { + "start": 15517.12, + "end": 15521.96, + "probability": 0.9532 + }, + { + "start": 15522.08, + "end": 15524.0, + "probability": 0.9376 + }, + { + "start": 15524.38, + "end": 15528.38, + "probability": 0.9886 + }, + { + "start": 15528.46, + "end": 15529.16, + "probability": 0.989 + }, + { + "start": 15529.28, + "end": 15530.04, + "probability": 0.8991 + }, + { + "start": 15530.86, + "end": 15533.48, + "probability": 0.7558 + }, + { + "start": 15535.64, + "end": 15535.66, + "probability": 0.3885 + }, + { + "start": 15535.82, + "end": 15536.96, + "probability": 0.806 + }, + { + "start": 15537.04, + "end": 15541.16, + "probability": 0.991 + }, + { + "start": 15541.16, + "end": 15543.6, + "probability": 0.9924 + }, + { + "start": 15544.88, + "end": 15551.16, + "probability": 0.9976 + }, + { + "start": 15551.82, + "end": 15556.58, + "probability": 0.9959 + }, + { + "start": 15557.18, + "end": 15560.14, + "probability": 0.9868 + }, + { + "start": 15560.66, + "end": 15561.92, + "probability": 0.461 + }, + { + "start": 15563.14, + "end": 15566.56, + "probability": 0.9331 + }, + { + "start": 15567.16, + "end": 15570.32, + "probability": 0.9766 + }, + { + "start": 15570.86, + "end": 15575.13, + "probability": 0.8679 + }, + { + "start": 15577.2, + "end": 15578.9, + "probability": 0.7836 + }, + { + "start": 15578.98, + "end": 15583.0, + "probability": 0.9946 + }, + { + "start": 15583.76, + "end": 15589.12, + "probability": 0.9957 + }, + { + "start": 15591.14, + "end": 15592.92, + "probability": 0.9882 + }, + { + "start": 15593.0, + "end": 15597.0, + "probability": 0.9889 + }, + { + "start": 15597.0, + "end": 15600.6, + "probability": 0.9929 + }, + { + "start": 15601.94, + "end": 15606.16, + "probability": 0.873 + }, + { + "start": 15606.32, + "end": 15608.86, + "probability": 0.9913 + }, + { + "start": 15610.06, + "end": 15611.02, + "probability": 0.6244 + }, + { + "start": 15611.18, + "end": 15612.34, + "probability": 0.9052 + }, + { + "start": 15612.58, + "end": 15616.46, + "probability": 0.9691 + }, + { + "start": 15616.96, + "end": 15619.62, + "probability": 0.9028 + }, + { + "start": 15620.3, + "end": 15622.68, + "probability": 0.9973 + }, + { + "start": 15623.04, + "end": 15625.68, + "probability": 0.9811 + }, + { + "start": 15626.32, + "end": 15626.81, + "probability": 0.675 + }, + { + "start": 15628.1, + "end": 15628.66, + "probability": 0.9246 + }, + { + "start": 15628.76, + "end": 15635.8, + "probability": 0.9822 + }, + { + "start": 15636.9, + "end": 15639.78, + "probability": 0.9987 + }, + { + "start": 15640.4, + "end": 15643.8, + "probability": 0.9955 + }, + { + "start": 15644.92, + "end": 15647.68, + "probability": 0.7766 + }, + { + "start": 15649.66, + "end": 15653.6, + "probability": 0.9952 + }, + { + "start": 15654.88, + "end": 15664.12, + "probability": 0.9876 + }, + { + "start": 15665.62, + "end": 15666.36, + "probability": 0.56 + }, + { + "start": 15666.92, + "end": 15673.36, + "probability": 0.9759 + }, + { + "start": 15674.34, + "end": 15675.56, + "probability": 0.8729 + }, + { + "start": 15677.22, + "end": 15680.86, + "probability": 0.9771 + }, + { + "start": 15681.9, + "end": 15686.88, + "probability": 0.9798 + }, + { + "start": 15687.02, + "end": 15689.46, + "probability": 0.9459 + }, + { + "start": 15689.88, + "end": 15691.4, + "probability": 0.9749 + }, + { + "start": 15691.68, + "end": 15694.44, + "probability": 0.9805 + }, + { + "start": 15695.76, + "end": 15698.84, + "probability": 0.9689 + }, + { + "start": 15700.78, + "end": 15703.7, + "probability": 0.8562 + }, + { + "start": 15705.36, + "end": 15709.3, + "probability": 0.8785 + }, + { + "start": 15709.64, + "end": 15713.26, + "probability": 0.9958 + }, + { + "start": 15713.26, + "end": 15719.86, + "probability": 0.9834 + }, + { + "start": 15720.76, + "end": 15721.94, + "probability": 0.874 + }, + { + "start": 15722.4, + "end": 15725.06, + "probability": 0.8847 + }, + { + "start": 15725.52, + "end": 15730.72, + "probability": 0.9915 + }, + { + "start": 15731.34, + "end": 15736.24, + "probability": 0.9771 + }, + { + "start": 15736.24, + "end": 15740.64, + "probability": 0.9955 + }, + { + "start": 15741.34, + "end": 15742.66, + "probability": 0.6932 + }, + { + "start": 15743.16, + "end": 15747.02, + "probability": 0.9228 + }, + { + "start": 15748.44, + "end": 15752.44, + "probability": 0.9983 + }, + { + "start": 15753.48, + "end": 15757.82, + "probability": 0.9961 + }, + { + "start": 15758.92, + "end": 15762.78, + "probability": 0.947 + }, + { + "start": 15764.04, + "end": 15764.34, + "probability": 0.2517 + }, + { + "start": 15764.48, + "end": 15765.58, + "probability": 0.856 + }, + { + "start": 15765.72, + "end": 15769.22, + "probability": 0.9949 + }, + { + "start": 15770.1, + "end": 15770.32, + "probability": 0.8899 + }, + { + "start": 15770.42, + "end": 15771.48, + "probability": 0.9769 + }, + { + "start": 15771.48, + "end": 15777.42, + "probability": 0.998 + }, + { + "start": 15778.3, + "end": 15780.2, + "probability": 0.9751 + }, + { + "start": 15780.92, + "end": 15782.07, + "probability": 0.9244 + }, + { + "start": 15783.22, + "end": 15787.68, + "probability": 0.984 + }, + { + "start": 15787.98, + "end": 15789.74, + "probability": 0.9985 + }, + { + "start": 15790.04, + "end": 15791.4, + "probability": 0.9968 + }, + { + "start": 15792.62, + "end": 15795.83, + "probability": 0.9834 + }, + { + "start": 15795.94, + "end": 15800.48, + "probability": 0.9771 + }, + { + "start": 15801.48, + "end": 15808.36, + "probability": 0.9638 + }, + { + "start": 15808.58, + "end": 15809.02, + "probability": 0.7244 + }, + { + "start": 15809.54, + "end": 15811.04, + "probability": 0.8135 + }, + { + "start": 15811.22, + "end": 15813.1, + "probability": 0.7449 + }, + { + "start": 15813.68, + "end": 15815.24, + "probability": 0.6917 + }, + { + "start": 15823.42, + "end": 15824.22, + "probability": 0.5369 + }, + { + "start": 15826.04, + "end": 15826.46, + "probability": 0.6334 + }, + { + "start": 15826.5, + "end": 15826.96, + "probability": 0.6149 + }, + { + "start": 15827.2, + "end": 15828.44, + "probability": 0.6331 + }, + { + "start": 15828.82, + "end": 15830.02, + "probability": 0.9281 + }, + { + "start": 15830.76, + "end": 15833.56, + "probability": 0.9584 + }, + { + "start": 15834.18, + "end": 15837.34, + "probability": 0.88 + }, + { + "start": 15837.9, + "end": 15839.18, + "probability": 0.7245 + }, + { + "start": 15840.11, + "end": 15841.8, + "probability": 0.2955 + }, + { + "start": 15842.46, + "end": 15842.66, + "probability": 0.2046 + }, + { + "start": 15842.66, + "end": 15848.4, + "probability": 0.9013 + }, + { + "start": 15849.56, + "end": 15851.54, + "probability": 0.6442 + }, + { + "start": 15851.78, + "end": 15852.12, + "probability": 0.5576 + }, + { + "start": 15852.16, + "end": 15855.36, + "probability": 0.9225 + }, + { + "start": 15855.94, + "end": 15858.62, + "probability": 0.9975 + }, + { + "start": 15859.38, + "end": 15861.42, + "probability": 0.9781 + }, + { + "start": 15862.26, + "end": 15869.6, + "probability": 0.9342 + }, + { + "start": 15870.12, + "end": 15875.42, + "probability": 0.9799 + }, + { + "start": 15876.04, + "end": 15880.94, + "probability": 0.9938 + }, + { + "start": 15881.02, + "end": 15881.34, + "probability": 0.5747 + }, + { + "start": 15881.46, + "end": 15881.76, + "probability": 0.8051 + }, + { + "start": 15881.92, + "end": 15882.84, + "probability": 0.9888 + }, + { + "start": 15883.42, + "end": 15886.16, + "probability": 0.9386 + }, + { + "start": 15886.7, + "end": 15887.26, + "probability": 0.9426 + }, + { + "start": 15887.3, + "end": 15887.54, + "probability": 0.8841 + }, + { + "start": 15887.58, + "end": 15892.42, + "probability": 0.9927 + }, + { + "start": 15892.56, + "end": 15894.18, + "probability": 0.9492 + }, + { + "start": 15894.22, + "end": 15897.58, + "probability": 0.9949 + }, + { + "start": 15898.06, + "end": 15899.98, + "probability": 0.9937 + }, + { + "start": 15900.52, + "end": 15902.0, + "probability": 0.9211 + }, + { + "start": 15902.06, + "end": 15904.16, + "probability": 0.9969 + }, + { + "start": 15905.18, + "end": 15906.46, + "probability": 0.9178 + }, + { + "start": 15906.88, + "end": 15910.84, + "probability": 0.9667 + }, + { + "start": 15911.42, + "end": 15918.0, + "probability": 0.9977 + }, + { + "start": 15918.42, + "end": 15920.18, + "probability": 0.7653 + }, + { + "start": 15920.4, + "end": 15921.5, + "probability": 0.967 + }, + { + "start": 15921.6, + "end": 15923.02, + "probability": 0.6735 + }, + { + "start": 15923.5, + "end": 15924.7, + "probability": 0.979 + }, + { + "start": 15924.76, + "end": 15925.68, + "probability": 0.9702 + }, + { + "start": 15926.4, + "end": 15926.61, + "probability": 0.6606 + }, + { + "start": 15928.16, + "end": 15930.22, + "probability": 0.8755 + }, + { + "start": 15930.42, + "end": 15932.74, + "probability": 0.6854 + }, + { + "start": 15933.18, + "end": 15936.26, + "probability": 0.9816 + }, + { + "start": 15936.3, + "end": 15937.32, + "probability": 0.9239 + }, + { + "start": 15937.68, + "end": 15940.21, + "probability": 0.9871 + }, + { + "start": 15940.84, + "end": 15941.54, + "probability": 0.7067 + }, + { + "start": 15941.64, + "end": 15944.3, + "probability": 0.912 + }, + { + "start": 15944.88, + "end": 15948.8, + "probability": 0.9366 + }, + { + "start": 15949.08, + "end": 15952.32, + "probability": 0.9494 + }, + { + "start": 15952.5, + "end": 15956.24, + "probability": 0.9907 + }, + { + "start": 15956.24, + "end": 15960.24, + "probability": 0.9331 + }, + { + "start": 15960.84, + "end": 15963.76, + "probability": 0.913 + }, + { + "start": 15964.36, + "end": 15967.72, + "probability": 0.9418 + }, + { + "start": 15968.0, + "end": 15969.3, + "probability": 0.8787 + }, + { + "start": 15969.93, + "end": 15972.24, + "probability": 0.9532 + }, + { + "start": 15972.38, + "end": 15974.62, + "probability": 0.8402 + }, + { + "start": 15975.14, + "end": 15977.02, + "probability": 0.9847 + }, + { + "start": 15977.1, + "end": 15977.48, + "probability": 0.5203 + }, + { + "start": 15977.54, + "end": 15977.64, + "probability": 0.833 + }, + { + "start": 15977.72, + "end": 15981.58, + "probability": 0.9617 + }, + { + "start": 15981.94, + "end": 15984.86, + "probability": 0.9984 + }, + { + "start": 15985.36, + "end": 15985.86, + "probability": 0.6133 + }, + { + "start": 15986.02, + "end": 15991.84, + "probability": 0.9412 + }, + { + "start": 15991.92, + "end": 15995.38, + "probability": 0.9785 + }, + { + "start": 15996.22, + "end": 16001.34, + "probability": 0.9845 + }, + { + "start": 16001.34, + "end": 16004.16, + "probability": 0.9453 + }, + { + "start": 16004.76, + "end": 16009.16, + "probability": 0.9824 + }, + { + "start": 16009.52, + "end": 16012.82, + "probability": 0.9852 + }, + { + "start": 16013.3, + "end": 16014.46, + "probability": 0.9429 + }, + { + "start": 16014.68, + "end": 16014.8, + "probability": 0.8586 + }, + { + "start": 16014.88, + "end": 16018.02, + "probability": 0.9348 + }, + { + "start": 16018.02, + "end": 16021.42, + "probability": 0.9702 + }, + { + "start": 16022.06, + "end": 16023.2, + "probability": 0.8675 + }, + { + "start": 16024.04, + "end": 16027.76, + "probability": 0.9816 + }, + { + "start": 16028.28, + "end": 16030.89, + "probability": 0.9124 + }, + { + "start": 16031.42, + "end": 16032.76, + "probability": 0.963 + }, + { + "start": 16033.12, + "end": 16036.22, + "probability": 0.9873 + }, + { + "start": 16037.9, + "end": 16042.04, + "probability": 0.9777 + }, + { + "start": 16042.14, + "end": 16042.44, + "probability": 0.8215 + }, + { + "start": 16042.5, + "end": 16047.64, + "probability": 0.9901 + }, + { + "start": 16047.64, + "end": 16051.86, + "probability": 0.9983 + }, + { + "start": 16052.06, + "end": 16053.78, + "probability": 0.9952 + }, + { + "start": 16054.12, + "end": 16055.1, + "probability": 0.909 + }, + { + "start": 16055.52, + "end": 16058.44, + "probability": 0.9941 + }, + { + "start": 16058.78, + "end": 16064.3, + "probability": 0.9466 + }, + { + "start": 16064.74, + "end": 16067.33, + "probability": 0.9972 + }, + { + "start": 16067.54, + "end": 16067.78, + "probability": 0.7737 + }, + { + "start": 16068.72, + "end": 16069.02, + "probability": 0.5383 + }, + { + "start": 16069.41, + "end": 16072.08, + "probability": 0.6757 + }, + { + "start": 16072.34, + "end": 16073.6, + "probability": 0.6951 + }, + { + "start": 16074.2, + "end": 16074.64, + "probability": 0.237 + }, + { + "start": 16076.36, + "end": 16077.28, + "probability": 0.4916 + }, + { + "start": 16079.06, + "end": 16081.36, + "probability": 0.7647 + }, + { + "start": 16082.14, + "end": 16083.72, + "probability": 0.9694 + }, + { + "start": 16096.34, + "end": 16099.58, + "probability": 0.7239 + }, + { + "start": 16099.58, + "end": 16105.06, + "probability": 0.8938 + }, + { + "start": 16105.06, + "end": 16113.86, + "probability": 0.985 + }, + { + "start": 16114.42, + "end": 16115.94, + "probability": 0.9907 + }, + { + "start": 16117.22, + "end": 16118.86, + "probability": 0.7782 + }, + { + "start": 16120.02, + "end": 16124.96, + "probability": 0.2427 + }, + { + "start": 16124.96, + "end": 16125.67, + "probability": 0.173 + }, + { + "start": 16126.14, + "end": 16126.74, + "probability": 0.0932 + }, + { + "start": 16127.46, + "end": 16127.84, + "probability": 0.4822 + }, + { + "start": 16127.92, + "end": 16128.38, + "probability": 0.6012 + }, + { + "start": 16128.42, + "end": 16131.88, + "probability": 0.967 + }, + { + "start": 16132.6, + "end": 16134.48, + "probability": 0.8958 + }, + { + "start": 16135.34, + "end": 16137.74, + "probability": 0.9468 + }, + { + "start": 16138.88, + "end": 16139.84, + "probability": 0.7542 + }, + { + "start": 16140.42, + "end": 16142.59, + "probability": 0.0098 + }, + { + "start": 16143.26, + "end": 16144.55, + "probability": 0.7774 + }, + { + "start": 16146.84, + "end": 16149.14, + "probability": 0.8242 + }, + { + "start": 16150.6, + "end": 16152.34, + "probability": 0.7443 + }, + { + "start": 16155.95, + "end": 16159.5, + "probability": 0.8033 + }, + { + "start": 16159.84, + "end": 16162.16, + "probability": 0.8303 + }, + { + "start": 16163.56, + "end": 16164.6, + "probability": 0.8973 + }, + { + "start": 16165.4, + "end": 16166.72, + "probability": 0.6279 + }, + { + "start": 16167.08, + "end": 16167.93, + "probability": 0.0454 + }, + { + "start": 16168.78, + "end": 16169.18, + "probability": 0.0629 + }, + { + "start": 16169.18, + "end": 16171.48, + "probability": 0.288 + }, + { + "start": 16171.58, + "end": 16172.06, + "probability": 0.2431 + }, + { + "start": 16172.14, + "end": 16172.82, + "probability": 0.3591 + }, + { + "start": 16173.78, + "end": 16177.7, + "probability": 0.9886 + }, + { + "start": 16178.5, + "end": 16182.56, + "probability": 0.6813 + }, + { + "start": 16183.16, + "end": 16188.28, + "probability": 0.8582 + }, + { + "start": 16188.84, + "end": 16189.64, + "probability": 0.3516 + }, + { + "start": 16189.66, + "end": 16190.22, + "probability": 0.8887 + }, + { + "start": 16190.32, + "end": 16191.5, + "probability": 0.7582 + }, + { + "start": 16192.18, + "end": 16193.7, + "probability": 0.5062 + }, + { + "start": 16193.86, + "end": 16198.24, + "probability": 0.6736 + }, + { + "start": 16198.32, + "end": 16199.0, + "probability": 0.4071 + }, + { + "start": 16199.42, + "end": 16200.08, + "probability": 0.3397 + }, + { + "start": 16200.5, + "end": 16202.38, + "probability": 0.7514 + }, + { + "start": 16202.78, + "end": 16207.46, + "probability": 0.801 + }, + { + "start": 16207.46, + "end": 16210.82, + "probability": 0.9932 + }, + { + "start": 16211.14, + "end": 16214.04, + "probability": 0.9699 + }, + { + "start": 16214.4, + "end": 16215.68, + "probability": 0.804 + }, + { + "start": 16215.94, + "end": 16218.58, + "probability": 0.989 + }, + { + "start": 16218.96, + "end": 16220.8, + "probability": 0.9846 + }, + { + "start": 16220.8, + "end": 16223.3, + "probability": 0.9811 + }, + { + "start": 16223.34, + "end": 16223.48, + "probability": 0.6274 + }, + { + "start": 16224.8, + "end": 16226.34, + "probability": 0.7527 + }, + { + "start": 16227.36, + "end": 16232.76, + "probability": 0.8874 + }, + { + "start": 16232.88, + "end": 16233.7, + "probability": 0.8184 + }, + { + "start": 16233.82, + "end": 16234.82, + "probability": 0.9665 + }, + { + "start": 16234.94, + "end": 16237.2, + "probability": 0.3823 + }, + { + "start": 16238.14, + "end": 16240.78, + "probability": 0.6963 + }, + { + "start": 16240.84, + "end": 16247.7, + "probability": 0.5203 + }, + { + "start": 16247.82, + "end": 16248.36, + "probability": 0.9456 + }, + { + "start": 16248.68, + "end": 16254.04, + "probability": 0.7708 + }, + { + "start": 16254.9, + "end": 16255.88, + "probability": 0.8127 + }, + { + "start": 16255.96, + "end": 16256.34, + "probability": 0.9174 + }, + { + "start": 16256.82, + "end": 16257.96, + "probability": 0.3379 + }, + { + "start": 16259.8, + "end": 16269.58, + "probability": 0.845 + }, + { + "start": 16271.02, + "end": 16272.34, + "probability": 0.0242 + }, + { + "start": 16273.94, + "end": 16276.42, + "probability": 0.513 + }, + { + "start": 16276.5, + "end": 16276.96, + "probability": 0.6547 + }, + { + "start": 16277.5, + "end": 16280.29, + "probability": 0.7757 + }, + { + "start": 16281.28, + "end": 16281.88, + "probability": 0.8142 + }, + { + "start": 16281.92, + "end": 16282.18, + "probability": 0.6904 + }, + { + "start": 16282.24, + "end": 16282.6, + "probability": 0.7201 + }, + { + "start": 16282.6, + "end": 16284.78, + "probability": 0.8782 + }, + { + "start": 16285.3, + "end": 16287.12, + "probability": 0.9372 + }, + { + "start": 16287.16, + "end": 16288.5, + "probability": 0.5695 + }, + { + "start": 16288.56, + "end": 16289.98, + "probability": 0.6586 + }, + { + "start": 16290.06, + "end": 16291.0, + "probability": 0.9372 + }, + { + "start": 16291.32, + "end": 16294.82, + "probability": 0.063 + }, + { + "start": 16305.18, + "end": 16306.48, + "probability": 0.0088 + }, + { + "start": 16307.98, + "end": 16308.78, + "probability": 0.061 + }, + { + "start": 16308.78, + "end": 16309.34, + "probability": 0.2307 + }, + { + "start": 16310.48, + "end": 16315.94, + "probability": 0.2562 + }, + { + "start": 16316.12, + "end": 16318.1, + "probability": 0.8988 + }, + { + "start": 16318.2, + "end": 16321.6, + "probability": 0.7471 + }, + { + "start": 16322.04, + "end": 16323.28, + "probability": 0.632 + }, + { + "start": 16323.3, + "end": 16323.78, + "probability": 0.4882 + }, + { + "start": 16323.8, + "end": 16324.58, + "probability": 0.3708 + }, + { + "start": 16326.68, + "end": 16328.5, + "probability": 0.3649 + }, + { + "start": 16330.31, + "end": 16332.58, + "probability": 0.1925 + }, + { + "start": 16333.66, + "end": 16333.86, + "probability": 0.0067 + }, + { + "start": 16334.44, + "end": 16340.86, + "probability": 0.0593 + }, + { + "start": 16340.9, + "end": 16343.84, + "probability": 0.3825 + }, + { + "start": 16343.88, + "end": 16346.0, + "probability": 0.7471 + }, + { + "start": 16346.52, + "end": 16349.36, + "probability": 0.8467 + }, + { + "start": 16349.46, + "end": 16355.04, + "probability": 0.9642 + }, + { + "start": 16355.5, + "end": 16356.44, + "probability": 0.6072 + }, + { + "start": 16356.54, + "end": 16357.02, + "probability": 0.5925 + }, + { + "start": 16357.1, + "end": 16357.62, + "probability": 0.6785 + }, + { + "start": 16357.68, + "end": 16358.12, + "probability": 0.764 + }, + { + "start": 16364.36, + "end": 16365.72, + "probability": 0.3591 + }, + { + "start": 16377.96, + "end": 16377.96, + "probability": 0.0809 + }, + { + "start": 16377.96, + "end": 16380.98, + "probability": 0.6226 + }, + { + "start": 16380.98, + "end": 16381.48, + "probability": 0.6484 + }, + { + "start": 16382.44, + "end": 16386.84, + "probability": 0.9417 + }, + { + "start": 16388.0, + "end": 16392.44, + "probability": 0.9512 + }, + { + "start": 16393.08, + "end": 16393.3, + "probability": 0.6696 + }, + { + "start": 16393.44, + "end": 16394.0, + "probability": 0.6627 + }, + { + "start": 16394.14, + "end": 16395.6, + "probability": 0.9855 + }, + { + "start": 16396.02, + "end": 16397.32, + "probability": 0.5199 + }, + { + "start": 16397.9, + "end": 16399.98, + "probability": 0.6679 + }, + { + "start": 16400.18, + "end": 16400.6, + "probability": 0.2597 + }, + { + "start": 16400.68, + "end": 16401.16, + "probability": 0.5296 + }, + { + "start": 16401.34, + "end": 16403.1, + "probability": 0.369 + }, + { + "start": 16403.58, + "end": 16403.86, + "probability": 0.345 + }, + { + "start": 16403.86, + "end": 16404.28, + "probability": 0.0377 + }, + { + "start": 16406.58, + "end": 16411.22, + "probability": 0.191 + }, + { + "start": 16411.96, + "end": 16416.54, + "probability": 0.11 + }, + { + "start": 16420.74, + "end": 16423.24, + "probability": 0.5647 + }, + { + "start": 16423.3, + "end": 16423.58, + "probability": 0.1547 + }, + { + "start": 16423.66, + "end": 16425.68, + "probability": 0.2774 + }, + { + "start": 16425.76, + "end": 16427.12, + "probability": 0.1041 + }, + { + "start": 16427.88, + "end": 16433.0, + "probability": 0.9874 + }, + { + "start": 16433.88, + "end": 16435.42, + "probability": 0.8845 + }, + { + "start": 16440.32, + "end": 16443.74, + "probability": 0.608 + }, + { + "start": 16443.94, + "end": 16444.54, + "probability": 0.0307 + }, + { + "start": 16444.68, + "end": 16445.94, + "probability": 0.8412 + }, + { + "start": 16446.78, + "end": 16448.78, + "probability": 0.8018 + }, + { + "start": 16448.9, + "end": 16449.7, + "probability": 0.7685 + }, + { + "start": 16449.78, + "end": 16450.8, + "probability": 0.7014 + }, + { + "start": 16450.8, + "end": 16451.24, + "probability": 0.6587 + }, + { + "start": 16452.66, + "end": 16454.06, + "probability": 0.8926 + }, + { + "start": 16454.72, + "end": 16454.82, + "probability": 0.208 + }, + { + "start": 16457.04, + "end": 16457.66, + "probability": 0.0299 + }, + { + "start": 16459.44, + "end": 16460.06, + "probability": 0.0084 + }, + { + "start": 16460.64, + "end": 16463.7, + "probability": 0.7465 + }, + { + "start": 16471.22, + "end": 16471.82, + "probability": 0.5487 + }, + { + "start": 16472.14, + "end": 16472.14, + "probability": 0.2156 + }, + { + "start": 16472.14, + "end": 16472.7, + "probability": 0.7836 + }, + { + "start": 16472.8, + "end": 16473.88, + "probability": 0.895 + }, + { + "start": 16474.58, + "end": 16475.4, + "probability": 0.9654 + }, + { + "start": 16477.18, + "end": 16479.44, + "probability": 0.6608 + }, + { + "start": 16479.54, + "end": 16486.4, + "probability": 0.6665 + }, + { + "start": 16486.57, + "end": 16490.98, + "probability": 0.9749 + }, + { + "start": 16491.6, + "end": 16495.44, + "probability": 0.4766 + }, + { + "start": 16496.08, + "end": 16500.64, + "probability": 0.9912 + }, + { + "start": 16500.64, + "end": 16503.74, + "probability": 0.9918 + }, + { + "start": 16504.32, + "end": 16507.86, + "probability": 0.9774 + }, + { + "start": 16507.94, + "end": 16512.6, + "probability": 0.9715 + }, + { + "start": 16513.34, + "end": 16514.36, + "probability": 0.8931 + }, + { + "start": 16514.46, + "end": 16516.28, + "probability": 0.9841 + }, + { + "start": 16517.9, + "end": 16520.78, + "probability": 0.9302 + }, + { + "start": 16521.6, + "end": 16524.54, + "probability": 0.9705 + }, + { + "start": 16524.64, + "end": 16527.98, + "probability": 0.9237 + }, + { + "start": 16528.48, + "end": 16531.71, + "probability": 0.8659 + }, + { + "start": 16531.94, + "end": 16535.6, + "probability": 0.969 + }, + { + "start": 16536.14, + "end": 16537.28, + "probability": 0.865 + }, + { + "start": 16537.56, + "end": 16541.74, + "probability": 0.8615 + }, + { + "start": 16542.5, + "end": 16545.98, + "probability": 0.9978 + }, + { + "start": 16545.98, + "end": 16549.48, + "probability": 0.996 + }, + { + "start": 16549.64, + "end": 16551.98, + "probability": 0.9547 + }, + { + "start": 16552.08, + "end": 16555.26, + "probability": 0.5679 + }, + { + "start": 16555.9, + "end": 16556.78, + "probability": 0.8994 + }, + { + "start": 16556.92, + "end": 16563.32, + "probability": 0.8945 + }, + { + "start": 16563.82, + "end": 16564.38, + "probability": 0.8575 + }, + { + "start": 16564.4, + "end": 16568.64, + "probability": 0.8191 + }, + { + "start": 16570.0, + "end": 16572.18, + "probability": 0.984 + }, + { + "start": 16572.72, + "end": 16577.06, + "probability": 0.9893 + }, + { + "start": 16577.58, + "end": 16580.78, + "probability": 0.8609 + }, + { + "start": 16580.78, + "end": 16584.66, + "probability": 0.9739 + }, + { + "start": 16585.36, + "end": 16589.1, + "probability": 0.9941 + }, + { + "start": 16589.3, + "end": 16593.56, + "probability": 0.9878 + }, + { + "start": 16594.22, + "end": 16598.26, + "probability": 0.9471 + }, + { + "start": 16598.26, + "end": 16603.24, + "probability": 0.8707 + }, + { + "start": 16603.86, + "end": 16604.8, + "probability": 0.6681 + }, + { + "start": 16604.86, + "end": 16605.76, + "probability": 0.5028 + }, + { + "start": 16605.86, + "end": 16609.24, + "probability": 0.6379 + }, + { + "start": 16609.24, + "end": 16609.66, + "probability": 0.4888 + }, + { + "start": 16609.72, + "end": 16610.94, + "probability": 0.8695 + }, + { + "start": 16611.04, + "end": 16612.78, + "probability": 0.6812 + }, + { + "start": 16612.78, + "end": 16614.92, + "probability": 0.7787 + }, + { + "start": 16615.0, + "end": 16617.12, + "probability": 0.7938 + }, + { + "start": 16617.56, + "end": 16619.34, + "probability": 0.6391 + }, + { + "start": 16619.46, + "end": 16620.74, + "probability": 0.871 + }, + { + "start": 16622.88, + "end": 16624.14, + "probability": 0.8466 + }, + { + "start": 16625.26, + "end": 16628.78, + "probability": 0.8718 + }, + { + "start": 16628.84, + "end": 16629.94, + "probability": 0.765 + }, + { + "start": 16629.98, + "end": 16631.68, + "probability": 0.9293 + }, + { + "start": 16633.41, + "end": 16636.66, + "probability": 0.8879 + }, + { + "start": 16637.0, + "end": 16637.72, + "probability": 0.5342 + }, + { + "start": 16637.78, + "end": 16638.48, + "probability": 0.906 + }, + { + "start": 16638.64, + "end": 16640.56, + "probability": 0.7943 + }, + { + "start": 16640.66, + "end": 16641.74, + "probability": 0.8042 + }, + { + "start": 16643.08, + "end": 16645.66, + "probability": 0.7139 + }, + { + "start": 16647.18, + "end": 16648.16, + "probability": 0.8525 + }, + { + "start": 16656.2, + "end": 16657.32, + "probability": 0.5195 + }, + { + "start": 16665.18, + "end": 16669.4, + "probability": 0.6125 + }, + { + "start": 16671.14, + "end": 16676.52, + "probability": 0.9857 + }, + { + "start": 16677.68, + "end": 16681.14, + "probability": 0.9628 + }, + { + "start": 16681.34, + "end": 16684.5, + "probability": 0.9764 + }, + { + "start": 16684.5, + "end": 16687.94, + "probability": 0.9761 + }, + { + "start": 16689.28, + "end": 16692.56, + "probability": 0.9705 + }, + { + "start": 16693.38, + "end": 16694.43, + "probability": 0.6614 + }, + { + "start": 16695.66, + "end": 16698.4, + "probability": 0.9941 + }, + { + "start": 16699.04, + "end": 16700.12, + "probability": 0.9188 + }, + { + "start": 16701.22, + "end": 16708.06, + "probability": 0.9408 + }, + { + "start": 16709.4, + "end": 16712.74, + "probability": 0.841 + }, + { + "start": 16713.76, + "end": 16719.24, + "probability": 0.9819 + }, + { + "start": 16719.6, + "end": 16722.28, + "probability": 0.9404 + }, + { + "start": 16723.7, + "end": 16726.38, + "probability": 0.9917 + }, + { + "start": 16727.12, + "end": 16730.78, + "probability": 0.9814 + }, + { + "start": 16730.94, + "end": 16731.7, + "probability": 0.8573 + }, + { + "start": 16731.82, + "end": 16732.72, + "probability": 0.9671 + }, + { + "start": 16733.08, + "end": 16733.84, + "probability": 0.9041 + }, + { + "start": 16734.9, + "end": 16742.22, + "probability": 0.995 + }, + { + "start": 16742.56, + "end": 16746.04, + "probability": 0.9827 + }, + { + "start": 16746.76, + "end": 16749.64, + "probability": 0.9828 + }, + { + "start": 16751.02, + "end": 16751.4, + "probability": 0.6169 + }, + { + "start": 16751.5, + "end": 16752.54, + "probability": 0.6414 + }, + { + "start": 16752.54, + "end": 16759.46, + "probability": 0.9585 + }, + { + "start": 16760.24, + "end": 16766.82, + "probability": 0.9711 + }, + { + "start": 16766.88, + "end": 16768.16, + "probability": 0.8842 + }, + { + "start": 16768.44, + "end": 16768.98, + "probability": 0.6647 + }, + { + "start": 16770.28, + "end": 16774.74, + "probability": 0.9966 + }, + { + "start": 16775.46, + "end": 16776.74, + "probability": 0.9536 + }, + { + "start": 16776.86, + "end": 16781.64, + "probability": 0.9783 + }, + { + "start": 16782.4, + "end": 16788.18, + "probability": 0.9749 + }, + { + "start": 16790.62, + "end": 16794.86, + "probability": 0.9866 + }, + { + "start": 16795.7, + "end": 16796.82, + "probability": 0.9063 + }, + { + "start": 16798.04, + "end": 16799.88, + "probability": 0.8363 + }, + { + "start": 16801.32, + "end": 16803.02, + "probability": 0.5868 + }, + { + "start": 16803.64, + "end": 16808.9, + "probability": 0.9851 + }, + { + "start": 16808.9, + "end": 16812.82, + "probability": 0.9886 + }, + { + "start": 16812.94, + "end": 16814.04, + "probability": 0.9839 + }, + { + "start": 16814.82, + "end": 16817.96, + "probability": 0.9799 + }, + { + "start": 16819.42, + "end": 16823.06, + "probability": 0.9513 + }, + { + "start": 16824.5, + "end": 16835.48, + "probability": 0.9792 + }, + { + "start": 16836.64, + "end": 16844.2, + "probability": 0.9972 + }, + { + "start": 16844.34, + "end": 16845.38, + "probability": 0.751 + }, + { + "start": 16846.2, + "end": 16852.8, + "probability": 0.9979 + }, + { + "start": 16853.86, + "end": 16856.88, + "probability": 0.9404 + }, + { + "start": 16858.36, + "end": 16864.5, + "probability": 0.9741 + }, + { + "start": 16864.5, + "end": 16869.2, + "probability": 0.9364 + }, + { + "start": 16871.54, + "end": 16874.42, + "probability": 0.7516 + }, + { + "start": 16874.58, + "end": 16877.78, + "probability": 0.9971 + }, + { + "start": 16878.6, + "end": 16883.12, + "probability": 0.994 + }, + { + "start": 16883.82, + "end": 16887.12, + "probability": 0.9615 + }, + { + "start": 16887.32, + "end": 16888.34, + "probability": 0.7488 + }, + { + "start": 16888.76, + "end": 16889.98, + "probability": 0.8316 + }, + { + "start": 16891.44, + "end": 16894.12, + "probability": 0.9583 + }, + { + "start": 16894.98, + "end": 16895.8, + "probability": 0.8252 + }, + { + "start": 16896.56, + "end": 16896.82, + "probability": 0.5485 + }, + { + "start": 16896.92, + "end": 16900.08, + "probability": 0.9933 + }, + { + "start": 16901.0, + "end": 16902.76, + "probability": 0.9649 + }, + { + "start": 16903.68, + "end": 16907.86, + "probability": 0.9952 + }, + { + "start": 16908.0, + "end": 16910.02, + "probability": 0.9794 + }, + { + "start": 16910.06, + "end": 16913.9, + "probability": 0.9885 + }, + { + "start": 16914.88, + "end": 16917.14, + "probability": 0.9944 + }, + { + "start": 16917.26, + "end": 16918.38, + "probability": 0.9377 + }, + { + "start": 16919.26, + "end": 16922.8, + "probability": 0.9914 + }, + { + "start": 16924.8, + "end": 16928.52, + "probability": 0.9806 + }, + { + "start": 16928.6, + "end": 16930.72, + "probability": 0.9977 + }, + { + "start": 16930.84, + "end": 16935.96, + "probability": 0.9937 + }, + { + "start": 16936.58, + "end": 16938.34, + "probability": 0.9871 + }, + { + "start": 16939.6, + "end": 16942.96, + "probability": 0.971 + }, + { + "start": 16942.96, + "end": 16947.22, + "probability": 0.9962 + }, + { + "start": 16948.88, + "end": 16950.22, + "probability": 0.9751 + }, + { + "start": 16950.96, + "end": 16951.26, + "probability": 0.4881 + }, + { + "start": 16952.12, + "end": 16953.4, + "probability": 0.7867 + }, + { + "start": 16954.14, + "end": 16958.42, + "probability": 0.9106 + }, + { + "start": 16958.42, + "end": 16963.8, + "probability": 0.9906 + }, + { + "start": 16963.9, + "end": 16964.8, + "probability": 0.8054 + }, + { + "start": 16966.36, + "end": 16971.62, + "probability": 0.9431 + }, + { + "start": 16973.92, + "end": 16975.68, + "probability": 0.8794 + }, + { + "start": 16976.0, + "end": 16978.5, + "probability": 0.9171 + }, + { + "start": 16979.32, + "end": 16981.24, + "probability": 0.8785 + }, + { + "start": 16981.4, + "end": 16983.12, + "probability": 0.7503 + }, + { + "start": 16984.46, + "end": 16988.2, + "probability": 0.9841 + }, + { + "start": 16988.94, + "end": 16995.34, + "probability": 0.9674 + }, + { + "start": 16996.6, + "end": 16997.96, + "probability": 0.9647 + }, + { + "start": 16998.7, + "end": 16999.46, + "probability": 0.8224 + }, + { + "start": 17000.34, + "end": 17003.38, + "probability": 0.9843 + }, + { + "start": 17004.2, + "end": 17007.18, + "probability": 0.9969 + }, + { + "start": 17009.04, + "end": 17016.34, + "probability": 0.981 + }, + { + "start": 17016.34, + "end": 17023.4, + "probability": 0.9934 + }, + { + "start": 17023.5, + "end": 17024.98, + "probability": 0.9865 + }, + { + "start": 17026.78, + "end": 17028.94, + "probability": 0.9983 + }, + { + "start": 17030.98, + "end": 17031.64, + "probability": 0.6348 + }, + { + "start": 17031.76, + "end": 17035.74, + "probability": 0.9941 + }, + { + "start": 17036.48, + "end": 17042.14, + "probability": 0.9626 + }, + { + "start": 17042.84, + "end": 17047.68, + "probability": 0.9785 + }, + { + "start": 17048.28, + "end": 17050.28, + "probability": 0.8467 + }, + { + "start": 17050.82, + "end": 17050.96, + "probability": 0.4359 + }, + { + "start": 17050.96, + "end": 17052.8, + "probability": 0.7178 + }, + { + "start": 17056.34, + "end": 17061.34, + "probability": 0.9928 + }, + { + "start": 17061.44, + "end": 17065.32, + "probability": 0.9326 + }, + { + "start": 17067.82, + "end": 17072.68, + "probability": 0.989 + }, + { + "start": 17073.54, + "end": 17078.2, + "probability": 0.9976 + }, + { + "start": 17078.2, + "end": 17082.62, + "probability": 0.9537 + }, + { + "start": 17082.96, + "end": 17083.8, + "probability": 0.9191 + }, + { + "start": 17084.42, + "end": 17085.78, + "probability": 0.7598 + }, + { + "start": 17087.04, + "end": 17090.98, + "probability": 0.6121 + }, + { + "start": 17092.0, + "end": 17093.32, + "probability": 0.9148 + }, + { + "start": 17093.46, + "end": 17096.12, + "probability": 0.9912 + }, + { + "start": 17099.1, + "end": 17101.9, + "probability": 0.8864 + }, + { + "start": 17103.02, + "end": 17103.72, + "probability": 0.9336 + }, + { + "start": 17103.8, + "end": 17108.48, + "probability": 0.9346 + }, + { + "start": 17110.76, + "end": 17113.76, + "probability": 0.9768 + }, + { + "start": 17116.14, + "end": 17118.72, + "probability": 0.8271 + }, + { + "start": 17119.62, + "end": 17120.4, + "probability": 0.9143 + }, + { + "start": 17120.48, + "end": 17124.52, + "probability": 0.9513 + }, + { + "start": 17125.72, + "end": 17127.76, + "probability": 0.7095 + }, + { + "start": 17127.98, + "end": 17133.84, + "probability": 0.98 + }, + { + "start": 17136.98, + "end": 17138.02, + "probability": 0.691 + }, + { + "start": 17138.24, + "end": 17143.4, + "probability": 0.9808 + }, + { + "start": 17144.62, + "end": 17146.86, + "probability": 0.9928 + }, + { + "start": 17146.86, + "end": 17152.18, + "probability": 0.8203 + }, + { + "start": 17153.06, + "end": 17154.9, + "probability": 0.9976 + }, + { + "start": 17156.86, + "end": 17163.46, + "probability": 0.9708 + }, + { + "start": 17163.46, + "end": 17166.64, + "probability": 0.9937 + }, + { + "start": 17167.4, + "end": 17170.38, + "probability": 0.9979 + }, + { + "start": 17170.92, + "end": 17177.16, + "probability": 0.9893 + }, + { + "start": 17177.82, + "end": 17178.44, + "probability": 0.671 + }, + { + "start": 17178.56, + "end": 17178.92, + "probability": 0.8914 + }, + { + "start": 17179.02, + "end": 17179.98, + "probability": 0.9601 + }, + { + "start": 17180.08, + "end": 17181.44, + "probability": 0.9589 + }, + { + "start": 17181.86, + "end": 17183.44, + "probability": 0.9549 + }, + { + "start": 17183.9, + "end": 17184.86, + "probability": 0.7963 + }, + { + "start": 17185.1, + "end": 17186.52, + "probability": 0.9619 + }, + { + "start": 17186.74, + "end": 17187.92, + "probability": 0.6168 + }, + { + "start": 17188.62, + "end": 17192.94, + "probability": 0.9872 + }, + { + "start": 17193.36, + "end": 17194.26, + "probability": 0.8048 + }, + { + "start": 17194.64, + "end": 17203.6, + "probability": 0.9676 + }, + { + "start": 17203.96, + "end": 17206.26, + "probability": 0.9953 + }, + { + "start": 17208.08, + "end": 17208.48, + "probability": 0.6074 + }, + { + "start": 17208.6, + "end": 17209.56, + "probability": 0.8724 + }, + { + "start": 17209.68, + "end": 17210.88, + "probability": 0.9224 + }, + { + "start": 17211.0, + "end": 17212.12, + "probability": 0.9309 + }, + { + "start": 17212.3, + "end": 17212.75, + "probability": 0.881 + }, + { + "start": 17213.88, + "end": 17218.24, + "probability": 0.9888 + }, + { + "start": 17218.76, + "end": 17223.62, + "probability": 0.9797 + }, + { + "start": 17225.24, + "end": 17231.1, + "probability": 0.8547 + }, + { + "start": 17231.64, + "end": 17233.58, + "probability": 0.5528 + }, + { + "start": 17235.74, + "end": 17237.82, + "probability": 0.7869 + }, + { + "start": 17237.9, + "end": 17244.46, + "probability": 0.994 + }, + { + "start": 17244.72, + "end": 17247.92, + "probability": 0.9851 + }, + { + "start": 17248.72, + "end": 17252.82, + "probability": 0.9885 + }, + { + "start": 17253.08, + "end": 17256.43, + "probability": 0.893 + }, + { + "start": 17257.2, + "end": 17258.4, + "probability": 0.9833 + }, + { + "start": 17258.54, + "end": 17258.96, + "probability": 0.8483 + }, + { + "start": 17259.86, + "end": 17261.56, + "probability": 0.6408 + }, + { + "start": 17262.36, + "end": 17265.17, + "probability": 0.7756 + }, + { + "start": 17279.26, + "end": 17279.91, + "probability": 0.4367 + }, + { + "start": 17280.3, + "end": 17284.22, + "probability": 0.9143 + }, + { + "start": 17284.76, + "end": 17286.42, + "probability": 0.9922 + }, + { + "start": 17287.82, + "end": 17292.78, + "probability": 0.9886 + }, + { + "start": 17293.3, + "end": 17293.78, + "probability": 0.8394 + }, + { + "start": 17296.18, + "end": 17297.26, + "probability": 0.6424 + }, + { + "start": 17298.16, + "end": 17300.52, + "probability": 0.5709 + }, + { + "start": 17300.54, + "end": 17305.98, + "probability": 0.8218 + }, + { + "start": 17306.74, + "end": 17311.14, + "probability": 0.8512 + }, + { + "start": 17313.22, + "end": 17313.36, + "probability": 0.0018 + }, + { + "start": 17313.36, + "end": 17316.72, + "probability": 0.8712 + }, + { + "start": 17317.36, + "end": 17319.16, + "probability": 0.923 + }, + { + "start": 17319.76, + "end": 17322.44, + "probability": 0.9917 + }, + { + "start": 17323.28, + "end": 17324.48, + "probability": 0.9508 + }, + { + "start": 17324.66, + "end": 17325.55, + "probability": 0.5881 + }, + { + "start": 17325.78, + "end": 17330.04, + "probability": 0.7323 + }, + { + "start": 17330.58, + "end": 17331.86, + "probability": 0.9233 + }, + { + "start": 17332.42, + "end": 17334.8, + "probability": 0.9811 + }, + { + "start": 17334.82, + "end": 17335.77, + "probability": 0.8698 + }, + { + "start": 17337.04, + "end": 17337.2, + "probability": 0.8505 + }, + { + "start": 17337.38, + "end": 17341.8, + "probability": 0.9155 + }, + { + "start": 17342.26, + "end": 17345.02, + "probability": 0.9961 + }, + { + "start": 17345.08, + "end": 17347.1, + "probability": 0.9961 + }, + { + "start": 17347.94, + "end": 17350.48, + "probability": 0.9933 + }, + { + "start": 17351.2, + "end": 17354.24, + "probability": 0.7347 + }, + { + "start": 17355.4, + "end": 17361.4, + "probability": 0.9785 + }, + { + "start": 17361.76, + "end": 17362.44, + "probability": 0.8095 + }, + { + "start": 17362.56, + "end": 17363.56, + "probability": 0.9775 + }, + { + "start": 17364.24, + "end": 17366.3, + "probability": 0.9937 + }, + { + "start": 17366.96, + "end": 17370.12, + "probability": 0.9741 + }, + { + "start": 17370.28, + "end": 17374.64, + "probability": 0.9736 + }, + { + "start": 17374.82, + "end": 17375.76, + "probability": 0.9376 + }, + { + "start": 17376.66, + "end": 17378.16, + "probability": 0.9268 + }, + { + "start": 17378.76, + "end": 17379.28, + "probability": 0.8223 + }, + { + "start": 17379.82, + "end": 17380.0, + "probability": 0.5106 + }, + { + "start": 17380.1, + "end": 17383.08, + "probability": 0.9747 + }, + { + "start": 17383.5, + "end": 17387.5, + "probability": 0.9827 + }, + { + "start": 17387.56, + "end": 17388.02, + "probability": 0.7216 + }, + { + "start": 17388.82, + "end": 17393.74, + "probability": 0.9663 + }, + { + "start": 17393.74, + "end": 17398.32, + "probability": 0.9668 + }, + { + "start": 17398.68, + "end": 17402.44, + "probability": 0.7993 + }, + { + "start": 17403.04, + "end": 17403.9, + "probability": 0.9277 + }, + { + "start": 17404.76, + "end": 17405.12, + "probability": 0.5208 + }, + { + "start": 17405.16, + "end": 17405.48, + "probability": 0.3517 + }, + { + "start": 17405.52, + "end": 17406.84, + "probability": 0.9165 + }, + { + "start": 17406.84, + "end": 17410.05, + "probability": 0.8075 + }, + { + "start": 17410.56, + "end": 17413.59, + "probability": 0.9268 + }, + { + "start": 17414.18, + "end": 17416.9, + "probability": 0.9149 + }, + { + "start": 17417.18, + "end": 17417.52, + "probability": 0.9729 + }, + { + "start": 17417.6, + "end": 17419.34, + "probability": 0.571 + }, + { + "start": 17419.4, + "end": 17420.96, + "probability": 0.986 + }, + { + "start": 17421.42, + "end": 17424.84, + "probability": 0.9787 + }, + { + "start": 17425.28, + "end": 17426.38, + "probability": 0.8144 + }, + { + "start": 17426.64, + "end": 17427.7, + "probability": 0.9489 + }, + { + "start": 17427.72, + "end": 17433.12, + "probability": 0.9104 + }, + { + "start": 17433.82, + "end": 17437.16, + "probability": 0.9892 + }, + { + "start": 17437.66, + "end": 17438.74, + "probability": 0.5735 + }, + { + "start": 17439.1, + "end": 17440.86, + "probability": 0.0307 + }, + { + "start": 17441.02, + "end": 17441.26, + "probability": 0.4426 + }, + { + "start": 17441.26, + "end": 17442.88, + "probability": 0.7133 + }, + { + "start": 17443.25, + "end": 17446.94, + "probability": 0.8257 + }, + { + "start": 17447.28, + "end": 17448.22, + "probability": 0.5155 + }, + { + "start": 17448.36, + "end": 17448.7, + "probability": 0.9805 + }, + { + "start": 17449.22, + "end": 17450.11, + "probability": 0.9976 + }, + { + "start": 17450.56, + "end": 17452.88, + "probability": 0.9966 + }, + { + "start": 17453.26, + "end": 17454.38, + "probability": 0.8872 + }, + { + "start": 17455.14, + "end": 17456.58, + "probability": 0.881 + }, + { + "start": 17456.68, + "end": 17457.48, + "probability": 0.8315 + }, + { + "start": 17457.94, + "end": 17460.3, + "probability": 0.8195 + }, + { + "start": 17460.6, + "end": 17467.42, + "probability": 0.8671 + }, + { + "start": 17467.96, + "end": 17469.54, + "probability": 0.8596 + }, + { + "start": 17469.7, + "end": 17470.28, + "probability": 0.9395 + }, + { + "start": 17470.7, + "end": 17471.72, + "probability": 0.8096 + }, + { + "start": 17472.16, + "end": 17475.98, + "probability": 0.8684 + }, + { + "start": 17476.54, + "end": 17477.08, + "probability": 0.3902 + }, + { + "start": 17477.22, + "end": 17484.04, + "probability": 0.8924 + }, + { + "start": 17484.66, + "end": 17485.8, + "probability": 0.7522 + }, + { + "start": 17485.94, + "end": 17486.4, + "probability": 0.6514 + }, + { + "start": 17487.06, + "end": 17487.8, + "probability": 0.8725 + }, + { + "start": 17488.06, + "end": 17491.34, + "probability": 0.9761 + }, + { + "start": 17491.52, + "end": 17494.6, + "probability": 0.9781 + }, + { + "start": 17494.98, + "end": 17495.6, + "probability": 0.5934 + }, + { + "start": 17495.84, + "end": 17497.28, + "probability": 0.9324 + }, + { + "start": 17497.54, + "end": 17497.76, + "probability": 0.7741 + }, + { + "start": 17498.6, + "end": 17500.02, + "probability": 0.6234 + }, + { + "start": 17500.28, + "end": 17500.88, + "probability": 0.722 + }, + { + "start": 17501.0, + "end": 17501.96, + "probability": 0.79 + }, + { + "start": 17502.02, + "end": 17503.94, + "probability": 0.9538 + }, + { + "start": 17504.16, + "end": 17505.24, + "probability": 0.1671 + }, + { + "start": 17508.3, + "end": 17510.02, + "probability": 0.2987 + }, + { + "start": 17510.02, + "end": 17511.98, + "probability": 0.6157 + }, + { + "start": 17513.18, + "end": 17517.06, + "probability": 0.89 + }, + { + "start": 17517.22, + "end": 17519.7, + "probability": 0.5365 + }, + { + "start": 17520.18, + "end": 17521.16, + "probability": 0.8513 + }, + { + "start": 17521.8, + "end": 17523.6, + "probability": 0.8006 + }, + { + "start": 17524.42, + "end": 17525.6, + "probability": 0.9326 + }, + { + "start": 17525.72, + "end": 17528.92, + "probability": 0.9351 + }, + { + "start": 17529.04, + "end": 17529.58, + "probability": 0.5524 + }, + { + "start": 17530.14, + "end": 17530.7, + "probability": 0.6904 + }, + { + "start": 17531.22, + "end": 17532.28, + "probability": 0.7595 + }, + { + "start": 17549.96, + "end": 17549.96, + "probability": 0.1496 + }, + { + "start": 17549.96, + "end": 17552.04, + "probability": 0.4341 + }, + { + "start": 17552.16, + "end": 17555.76, + "probability": 0.9764 + }, + { + "start": 17556.24, + "end": 17561.18, + "probability": 0.8806 + }, + { + "start": 17561.24, + "end": 17562.1, + "probability": 0.7599 + }, + { + "start": 17562.18, + "end": 17563.52, + "probability": 0.3113 + }, + { + "start": 17564.32, + "end": 17568.94, + "probability": 0.9094 + }, + { + "start": 17569.1, + "end": 17569.58, + "probability": 0.4428 + }, + { + "start": 17570.24, + "end": 17571.38, + "probability": 0.7266 + }, + { + "start": 17578.35, + "end": 17584.24, + "probability": 0.1093 + }, + { + "start": 17585.62, + "end": 17586.98, + "probability": 0.0105 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17693.0, + "end": 17693.0, + "probability": 0.0 + }, + { + "start": 17697.7, + "end": 17699.74, + "probability": 0.9428 + }, + { + "start": 17699.92, + "end": 17701.88, + "probability": 0.622 + }, + { + "start": 17702.54, + "end": 17704.2, + "probability": 0.7393 + }, + { + "start": 17726.89, + "end": 17728.08, + "probability": 0.0511 + }, + { + "start": 17728.08, + "end": 17728.34, + "probability": 0.1687 + }, + { + "start": 17728.34, + "end": 17728.76, + "probability": 0.0135 + }, + { + "start": 17729.48, + "end": 17731.32, + "probability": 0.2326 + }, + { + "start": 17732.38, + "end": 17733.06, + "probability": 0.342 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17826.0, + "end": 17826.0, + "probability": 0.0 + }, + { + "start": 17832.28, + "end": 17832.28, + "probability": 0.0423 + }, + { + "start": 17832.28, + "end": 17834.44, + "probability": 0.4937 + }, + { + "start": 17834.56, + "end": 17837.58, + "probability": 0.8321 + }, + { + "start": 17838.24, + "end": 17839.54, + "probability": 0.4122 + }, + { + "start": 17840.16, + "end": 17843.29, + "probability": 0.8258 + }, + { + "start": 17844.46, + "end": 17847.92, + "probability": 0.7198 + }, + { + "start": 17848.52, + "end": 17850.8, + "probability": 0.7087 + }, + { + "start": 17850.88, + "end": 17852.22, + "probability": 0.4229 + }, + { + "start": 17852.32, + "end": 17856.72, + "probability": 0.8374 + }, + { + "start": 17857.0, + "end": 17861.86, + "probability": 0.9857 + }, + { + "start": 17862.02, + "end": 17862.72, + "probability": 0.7525 + }, + { + "start": 17863.14, + "end": 17865.38, + "probability": 0.8644 + }, + { + "start": 17865.9, + "end": 17872.08, + "probability": 0.9711 + }, + { + "start": 17872.08, + "end": 17872.36, + "probability": 0.7728 + }, + { + "start": 17873.68, + "end": 17875.52, + "probability": 0.7788 + }, + { + "start": 17875.64, + "end": 17880.88, + "probability": 0.6538 + }, + { + "start": 17880.94, + "end": 17882.78, + "probability": 0.033 + }, + { + "start": 17883.18, + "end": 17884.96, + "probability": 0.8739 + }, + { + "start": 17885.48, + "end": 17886.4, + "probability": 0.998 + }, + { + "start": 17886.94, + "end": 17889.3, + "probability": 0.7145 + }, + { + "start": 17889.3, + "end": 17890.14, + "probability": 0.6332 + }, + { + "start": 17891.14, + "end": 17891.92, + "probability": 0.4765 + }, + { + "start": 17892.24, + "end": 17892.94, + "probability": 0.357 + }, + { + "start": 17908.56, + "end": 17910.06, + "probability": 0.6339 + }, + { + "start": 17910.92, + "end": 17913.46, + "probability": 0.7206 + }, + { + "start": 17914.34, + "end": 17915.24, + "probability": 0.8828 + }, + { + "start": 17915.34, + "end": 17918.16, + "probability": 0.9609 + }, + { + "start": 17918.16, + "end": 17921.1, + "probability": 0.6208 + }, + { + "start": 17921.16, + "end": 17925.0, + "probability": 0.6231 + }, + { + "start": 17925.14, + "end": 17929.44, + "probability": 0.9917 + }, + { + "start": 17929.44, + "end": 17935.5, + "probability": 0.98 + }, + { + "start": 17935.5, + "end": 17940.28, + "probability": 0.9875 + }, + { + "start": 17940.86, + "end": 17944.66, + "probability": 0.9723 + }, + { + "start": 17945.32, + "end": 17947.78, + "probability": 0.7107 + }, + { + "start": 17948.36, + "end": 17951.66, + "probability": 0.8704 + }, + { + "start": 17953.22, + "end": 17957.02, + "probability": 0.9832 + }, + { + "start": 17957.1, + "end": 17957.8, + "probability": 0.7752 + }, + { + "start": 17957.9, + "end": 17958.72, + "probability": 0.8294 + }, + { + "start": 17958.82, + "end": 17963.58, + "probability": 0.998 + }, + { + "start": 17963.58, + "end": 17967.3, + "probability": 0.9881 + }, + { + "start": 17967.88, + "end": 17968.1, + "probability": 0.2138 + }, + { + "start": 17968.14, + "end": 17969.92, + "probability": 0.9934 + }, + { + "start": 17970.0, + "end": 17972.72, + "probability": 0.8838 + }, + { + "start": 17972.88, + "end": 17973.22, + "probability": 0.7999 + }, + { + "start": 17973.26, + "end": 17975.6, + "probability": 0.9941 + }, + { + "start": 17976.36, + "end": 17977.94, + "probability": 0.8944 + }, + { + "start": 17989.05, + "end": 17992.12, + "probability": 0.3594 + }, + { + "start": 17992.12, + "end": 17994.48, + "probability": 0.999 + }, + { + "start": 17994.9, + "end": 17997.1, + "probability": 0.9883 + }, + { + "start": 17997.1, + "end": 18000.48, + "probability": 0.9844 + }, + { + "start": 18002.06, + "end": 18004.64, + "probability": 0.9957 + }, + { + "start": 18004.64, + "end": 18007.06, + "probability": 0.9963 + }, + { + "start": 18007.5, + "end": 18008.74, + "probability": 0.69 + }, + { + "start": 18008.8, + "end": 18011.34, + "probability": 0.8679 + }, + { + "start": 18011.9, + "end": 18014.0, + "probability": 0.7638 + }, + { + "start": 18014.12, + "end": 18016.0, + "probability": 0.6891 + }, + { + "start": 18016.08, + "end": 18017.56, + "probability": 0.9435 + }, + { + "start": 18018.2, + "end": 18022.18, + "probability": 0.9928 + }, + { + "start": 18022.3, + "end": 18024.24, + "probability": 0.9233 + }, + { + "start": 18024.42, + "end": 18026.6, + "probability": 0.9843 + }, + { + "start": 18027.08, + "end": 18030.22, + "probability": 0.9928 + }, + { + "start": 18030.62, + "end": 18032.96, + "probability": 0.7255 + }, + { + "start": 18033.86, + "end": 18036.56, + "probability": 0.993 + }, + { + "start": 18036.72, + "end": 18037.64, + "probability": 0.8766 + }, + { + "start": 18038.3, + "end": 18040.7, + "probability": 0.9307 + }, + { + "start": 18040.76, + "end": 18043.9, + "probability": 0.9959 + }, + { + "start": 18044.58, + "end": 18045.98, + "probability": 0.6781 + }, + { + "start": 18046.82, + "end": 18048.4, + "probability": 0.9451 + }, + { + "start": 18048.92, + "end": 18052.2, + "probability": 0.907 + }, + { + "start": 18052.38, + "end": 18059.2, + "probability": 0.9194 + }, + { + "start": 18059.9, + "end": 18063.72, + "probability": 0.9657 + }, + { + "start": 18063.72, + "end": 18066.3, + "probability": 0.9928 + }, + { + "start": 18066.92, + "end": 18067.26, + "probability": 0.2775 + }, + { + "start": 18068.82, + "end": 18070.54, + "probability": 0.5431 + }, + { + "start": 18070.88, + "end": 18073.94, + "probability": 0.8197 + }, + { + "start": 18075.28, + "end": 18080.38, + "probability": 0.5738 + }, + { + "start": 18081.54, + "end": 18085.42, + "probability": 0.7385 + }, + { + "start": 18092.38, + "end": 18093.32, + "probability": 0.7303 + }, + { + "start": 18093.48, + "end": 18094.88, + "probability": 0.9115 + }, + { + "start": 18095.16, + "end": 18099.22, + "probability": 0.9948 + }, + { + "start": 18099.22, + "end": 18104.56, + "probability": 0.9924 + }, + { + "start": 18104.78, + "end": 18108.26, + "probability": 0.9964 + }, + { + "start": 18109.62, + "end": 18118.08, + "probability": 0.9011 + }, + { + "start": 18118.42, + "end": 18121.88, + "probability": 0.9915 + }, + { + "start": 18122.56, + "end": 18127.14, + "probability": 0.9875 + }, + { + "start": 18127.4, + "end": 18128.08, + "probability": 0.7579 + }, + { + "start": 18128.72, + "end": 18131.0, + "probability": 0.9891 + }, + { + "start": 18131.96, + "end": 18135.12, + "probability": 0.9815 + }, + { + "start": 18135.42, + "end": 18141.38, + "probability": 0.9878 + }, + { + "start": 18142.22, + "end": 18145.26, + "probability": 0.8534 + }, + { + "start": 18146.24, + "end": 18151.32, + "probability": 0.9795 + }, + { + "start": 18151.96, + "end": 18154.42, + "probability": 0.9302 + }, + { + "start": 18155.2, + "end": 18157.8, + "probability": 0.9951 + }, + { + "start": 18157.98, + "end": 18162.96, + "probability": 0.9908 + }, + { + "start": 18163.84, + "end": 18167.06, + "probability": 0.9976 + }, + { + "start": 18167.06, + "end": 18171.38, + "probability": 0.9976 + }, + { + "start": 18172.16, + "end": 18177.14, + "probability": 0.9956 + }, + { + "start": 18177.44, + "end": 18178.12, + "probability": 0.7566 + }, + { + "start": 18178.72, + "end": 18181.66, + "probability": 0.9954 + }, + { + "start": 18181.66, + "end": 18185.38, + "probability": 0.988 + }, + { + "start": 18186.36, + "end": 18187.62, + "probability": 0.7945 + }, + { + "start": 18187.68, + "end": 18189.54, + "probability": 0.8177 + }, + { + "start": 18190.28, + "end": 18196.78, + "probability": 0.9744 + }, + { + "start": 18197.34, + "end": 18200.3, + "probability": 0.9492 + }, + { + "start": 18201.04, + "end": 18202.16, + "probability": 0.7611 + }, + { + "start": 18202.61, + "end": 18208.82, + "probability": 0.9928 + }, + { + "start": 18208.96, + "end": 18210.16, + "probability": 0.8157 + }, + { + "start": 18210.72, + "end": 18217.04, + "probability": 0.9712 + }, + { + "start": 18217.88, + "end": 18220.72, + "probability": 0.9596 + }, + { + "start": 18220.96, + "end": 18222.74, + "probability": 0.9497 + }, + { + "start": 18223.02, + "end": 18223.82, + "probability": 0.6914 + }, + { + "start": 18224.66, + "end": 18227.04, + "probability": 0.9521 + }, + { + "start": 18227.06, + "end": 18228.78, + "probability": 0.7285 + }, + { + "start": 18229.08, + "end": 18230.08, + "probability": 0.8843 + }, + { + "start": 18230.46, + "end": 18235.96, + "probability": 0.9707 + }, + { + "start": 18236.74, + "end": 18239.24, + "probability": 0.7244 + }, + { + "start": 18239.62, + "end": 18246.4, + "probability": 0.8162 + }, + { + "start": 18246.64, + "end": 18249.58, + "probability": 0.9848 + }, + { + "start": 18249.76, + "end": 18253.08, + "probability": 0.9822 + }, + { + "start": 18253.26, + "end": 18253.6, + "probability": 0.4055 + }, + { + "start": 18253.7, + "end": 18254.94, + "probability": 0.7361 + }, + { + "start": 18255.66, + "end": 18258.98, + "probability": 0.9919 + }, + { + "start": 18258.98, + "end": 18262.34, + "probability": 0.9983 + }, + { + "start": 18263.22, + "end": 18263.48, + "probability": 0.6136 + }, + { + "start": 18263.7, + "end": 18264.58, + "probability": 0.8186 + }, + { + "start": 18264.98, + "end": 18268.54, + "probability": 0.9596 + }, + { + "start": 18269.3, + "end": 18269.92, + "probability": 0.7487 + }, + { + "start": 18270.08, + "end": 18272.64, + "probability": 0.8235 + }, + { + "start": 18272.82, + "end": 18277.62, + "probability": 0.9032 + }, + { + "start": 18278.48, + "end": 18281.14, + "probability": 0.7881 + }, + { + "start": 18282.6, + "end": 18283.7, + "probability": 0.7145 + }, + { + "start": 18284.26, + "end": 18286.38, + "probability": 0.9148 + }, + { + "start": 18287.02, + "end": 18291.24, + "probability": 0.9471 + }, + { + "start": 18291.7, + "end": 18294.6, + "probability": 0.938 + }, + { + "start": 18295.32, + "end": 18301.64, + "probability": 0.9802 + }, + { + "start": 18302.06, + "end": 18304.76, + "probability": 0.9771 + }, + { + "start": 18306.14, + "end": 18307.16, + "probability": 0.6895 + }, + { + "start": 18307.22, + "end": 18307.86, + "probability": 0.7303 + }, + { + "start": 18308.32, + "end": 18313.44, + "probability": 0.9791 + }, + { + "start": 18313.5, + "end": 18313.9, + "probability": 0.7378 + }, + { + "start": 18313.96, + "end": 18315.02, + "probability": 0.8865 + }, + { + "start": 18315.62, + "end": 18319.32, + "probability": 0.9927 + }, + { + "start": 18319.92, + "end": 18323.72, + "probability": 0.9297 + }, + { + "start": 18325.37, + "end": 18329.84, + "probability": 0.9977 + }, + { + "start": 18331.4, + "end": 18336.74, + "probability": 0.973 + }, + { + "start": 18337.22, + "end": 18340.04, + "probability": 0.9761 + }, + { + "start": 18340.04, + "end": 18342.8, + "probability": 0.9927 + }, + { + "start": 18343.74, + "end": 18347.04, + "probability": 0.8885 + }, + { + "start": 18347.04, + "end": 18350.66, + "probability": 0.826 + }, + { + "start": 18350.76, + "end": 18352.54, + "probability": 0.7551 + }, + { + "start": 18353.12, + "end": 18356.84, + "probability": 0.987 + }, + { + "start": 18357.4, + "end": 18358.66, + "probability": 0.9907 + }, + { + "start": 18359.34, + "end": 18363.64, + "probability": 0.9982 + }, + { + "start": 18363.64, + "end": 18368.14, + "probability": 0.998 + }, + { + "start": 18368.36, + "end": 18370.88, + "probability": 0.9966 + }, + { + "start": 18371.36, + "end": 18374.02, + "probability": 0.9989 + }, + { + "start": 18374.02, + "end": 18376.94, + "probability": 0.9967 + }, + { + "start": 18377.62, + "end": 18378.12, + "probability": 0.3206 + }, + { + "start": 18378.16, + "end": 18379.56, + "probability": 0.7238 + }, + { + "start": 18379.6, + "end": 18383.42, + "probability": 0.987 + }, + { + "start": 18383.98, + "end": 18387.38, + "probability": 0.9503 + }, + { + "start": 18388.22, + "end": 18391.86, + "probability": 0.9058 + }, + { + "start": 18392.16, + "end": 18393.54, + "probability": 0.9696 + }, + { + "start": 18393.68, + "end": 18395.44, + "probability": 0.8219 + }, + { + "start": 18395.78, + "end": 18396.52, + "probability": 0.5227 + }, + { + "start": 18396.56, + "end": 18397.24, + "probability": 0.7546 + }, + { + "start": 18398.42, + "end": 18401.88, + "probability": 0.9819 + }, + { + "start": 18402.62, + "end": 18405.4, + "probability": 0.946 + }, + { + "start": 18405.6, + "end": 18409.26, + "probability": 0.9689 + }, + { + "start": 18409.6, + "end": 18411.72, + "probability": 0.9871 + }, + { + "start": 18412.26, + "end": 18414.98, + "probability": 0.9412 + }, + { + "start": 18416.3, + "end": 18418.52, + "probability": 0.8765 + }, + { + "start": 18418.6, + "end": 18420.14, + "probability": 0.9619 + }, + { + "start": 18420.74, + "end": 18423.06, + "probability": 0.9866 + }, + { + "start": 18423.62, + "end": 18424.76, + "probability": 0.8405 + }, + { + "start": 18424.84, + "end": 18427.74, + "probability": 0.9763 + }, + { + "start": 18428.16, + "end": 18431.38, + "probability": 0.9891 + }, + { + "start": 18432.12, + "end": 18434.3, + "probability": 0.9971 + }, + { + "start": 18434.82, + "end": 18437.12, + "probability": 0.9202 + }, + { + "start": 18437.6, + "end": 18438.64, + "probability": 0.4989 + }, + { + "start": 18439.34, + "end": 18445.08, + "probability": 0.988 + }, + { + "start": 18445.56, + "end": 18449.76, + "probability": 0.9928 + }, + { + "start": 18450.14, + "end": 18452.28, + "probability": 0.8838 + }, + { + "start": 18452.4, + "end": 18455.26, + "probability": 0.974 + }, + { + "start": 18456.46, + "end": 18458.44, + "probability": 0.9733 + }, + { + "start": 18458.58, + "end": 18460.38, + "probability": 0.9768 + }, + { + "start": 18460.84, + "end": 18463.63, + "probability": 0.6794 + }, + { + "start": 18463.94, + "end": 18466.88, + "probability": 0.9524 + }, + { + "start": 18467.44, + "end": 18468.1, + "probability": 0.7303 + }, + { + "start": 18468.18, + "end": 18469.9, + "probability": 0.8372 + }, + { + "start": 18470.04, + "end": 18475.48, + "probability": 0.9775 + }, + { + "start": 18475.82, + "end": 18478.52, + "probability": 0.973 + }, + { + "start": 18479.14, + "end": 18479.84, + "probability": 0.9695 + }, + { + "start": 18479.94, + "end": 18480.75, + "probability": 0.9951 + }, + { + "start": 18481.66, + "end": 18485.02, + "probability": 0.7871 + }, + { + "start": 18485.02, + "end": 18488.52, + "probability": 0.9316 + }, + { + "start": 18489.28, + "end": 18490.04, + "probability": 0.781 + }, + { + "start": 18490.38, + "end": 18494.24, + "probability": 0.8088 + }, + { + "start": 18494.36, + "end": 18495.3, + "probability": 0.9053 + }, + { + "start": 18495.38, + "end": 18496.36, + "probability": 0.9519 + }, + { + "start": 18497.24, + "end": 18498.18, + "probability": 0.8301 + }, + { + "start": 18498.64, + "end": 18500.02, + "probability": 0.8128 + }, + { + "start": 18500.16, + "end": 18503.36, + "probability": 0.8802 + }, + { + "start": 18503.42, + "end": 18504.34, + "probability": 0.8283 + }, + { + "start": 18505.68, + "end": 18509.74, + "probability": 0.8593 + }, + { + "start": 18509.74, + "end": 18512.72, + "probability": 0.9905 + }, + { + "start": 18513.44, + "end": 18514.06, + "probability": 0.8797 + }, + { + "start": 18514.88, + "end": 18515.02, + "probability": 0.2917 + }, + { + "start": 18515.02, + "end": 18517.58, + "probability": 0.9807 + }, + { + "start": 18517.58, + "end": 18521.58, + "probability": 0.9153 + }, + { + "start": 18521.96, + "end": 18526.4, + "probability": 0.9966 + }, + { + "start": 18527.1, + "end": 18529.48, + "probability": 0.978 + }, + { + "start": 18529.56, + "end": 18531.84, + "probability": 0.9966 + }, + { + "start": 18532.66, + "end": 18534.58, + "probability": 0.694 + }, + { + "start": 18534.88, + "end": 18536.56, + "probability": 0.7996 + }, + { + "start": 18536.62, + "end": 18542.04, + "probability": 0.9159 + }, + { + "start": 18542.12, + "end": 18543.48, + "probability": 0.9023 + }, + { + "start": 18543.96, + "end": 18545.4, + "probability": 0.9937 + }, + { + "start": 18546.28, + "end": 18548.0, + "probability": 0.791 + }, + { + "start": 18549.18, + "end": 18551.9, + "probability": 0.9912 + }, + { + "start": 18552.38, + "end": 18556.54, + "probability": 0.824 + }, + { + "start": 18556.94, + "end": 18561.12, + "probability": 0.9876 + }, + { + "start": 18561.12, + "end": 18567.2, + "probability": 0.9994 + }, + { + "start": 18567.7, + "end": 18568.46, + "probability": 0.8047 + }, + { + "start": 18568.56, + "end": 18569.38, + "probability": 0.4763 + }, + { + "start": 18570.26, + "end": 18570.92, + "probability": 0.5287 + }, + { + "start": 18570.98, + "end": 18574.06, + "probability": 0.7671 + }, + { + "start": 18574.38, + "end": 18579.7, + "probability": 0.9866 + }, + { + "start": 18580.02, + "end": 18583.34, + "probability": 0.9545 + }, + { + "start": 18584.02, + "end": 18587.98, + "probability": 0.908 + }, + { + "start": 18589.26, + "end": 18590.78, + "probability": 0.6638 + }, + { + "start": 18592.02, + "end": 18594.02, + "probability": 0.8696 + }, + { + "start": 18594.92, + "end": 18598.12, + "probability": 0.9941 + }, + { + "start": 18598.12, + "end": 18600.94, + "probability": 0.9705 + }, + { + "start": 18601.8, + "end": 18606.52, + "probability": 0.9718 + }, + { + "start": 18607.0, + "end": 18607.53, + "probability": 0.6092 + }, + { + "start": 18609.38, + "end": 18611.58, + "probability": 0.9856 + }, + { + "start": 18612.22, + "end": 18613.36, + "probability": 0.8828 + }, + { + "start": 18613.76, + "end": 18616.94, + "probability": 0.9791 + }, + { + "start": 18617.42, + "end": 18618.46, + "probability": 0.7465 + }, + { + "start": 18619.06, + "end": 18622.22, + "probability": 0.9927 + }, + { + "start": 18622.62, + "end": 18625.0, + "probability": 0.9126 + }, + { + "start": 18626.08, + "end": 18628.82, + "probability": 0.8928 + }, + { + "start": 18629.9, + "end": 18630.96, + "probability": 0.7684 + }, + { + "start": 18631.8, + "end": 18634.04, + "probability": 0.9954 + }, + { + "start": 18634.6, + "end": 18638.36, + "probability": 0.8818 + }, + { + "start": 18638.9, + "end": 18641.24, + "probability": 0.9976 + }, + { + "start": 18641.24, + "end": 18644.44, + "probability": 0.9956 + }, + { + "start": 18644.96, + "end": 18647.4, + "probability": 0.8221 + }, + { + "start": 18648.34, + "end": 18649.4, + "probability": 0.9008 + }, + { + "start": 18649.56, + "end": 18650.84, + "probability": 0.82 + }, + { + "start": 18651.34, + "end": 18652.38, + "probability": 0.8728 + }, + { + "start": 18652.56, + "end": 18653.82, + "probability": 0.572 + }, + { + "start": 18654.52, + "end": 18658.56, + "probability": 0.9963 + }, + { + "start": 18658.56, + "end": 18663.18, + "probability": 0.9899 + }, + { + "start": 18663.18, + "end": 18667.7, + "probability": 0.9528 + }, + { + "start": 18668.84, + "end": 18670.86, + "probability": 0.6619 + }, + { + "start": 18671.7, + "end": 18675.14, + "probability": 0.9854 + }, + { + "start": 18675.56, + "end": 18679.78, + "probability": 0.9849 + }, + { + "start": 18679.84, + "end": 18683.76, + "probability": 0.9977 + }, + { + "start": 18684.08, + "end": 18687.78, + "probability": 0.9834 + }, + { + "start": 18688.72, + "end": 18694.98, + "probability": 0.9619 + }, + { + "start": 18695.34, + "end": 18697.08, + "probability": 0.5452 + }, + { + "start": 18697.56, + "end": 18702.7, + "probability": 0.9731 + }, + { + "start": 18703.2, + "end": 18706.12, + "probability": 0.9786 + }, + { + "start": 18706.92, + "end": 18707.32, + "probability": 0.4121 + }, + { + "start": 18707.36, + "end": 18708.64, + "probability": 0.7232 + }, + { + "start": 18709.06, + "end": 18710.84, + "probability": 0.9963 + }, + { + "start": 18711.34, + "end": 18717.06, + "probability": 0.9827 + }, + { + "start": 18717.7, + "end": 18720.2, + "probability": 0.8618 + }, + { + "start": 18720.92, + "end": 18725.84, + "probability": 0.9681 + }, + { + "start": 18726.02, + "end": 18726.8, + "probability": 0.7136 + }, + { + "start": 18727.86, + "end": 18729.24, + "probability": 0.6726 + }, + { + "start": 18729.7, + "end": 18734.56, + "probability": 0.9933 + }, + { + "start": 18738.34, + "end": 18739.86, + "probability": 0.7134 + }, + { + "start": 18743.34, + "end": 18744.46, + "probability": 0.8429 + }, + { + "start": 18744.56, + "end": 18746.08, + "probability": 0.8453 + }, + { + "start": 18747.4, + "end": 18747.56, + "probability": 0.7466 + }, + { + "start": 18748.92, + "end": 18751.02, + "probability": 0.1711 + }, + { + "start": 18751.02, + "end": 18751.12, + "probability": 0.0113 + }, + { + "start": 18751.12, + "end": 18752.78, + "probability": 0.6054 + }, + { + "start": 18753.54, + "end": 18757.8, + "probability": 0.9966 + }, + { + "start": 18758.52, + "end": 18762.34, + "probability": 0.9346 + }, + { + "start": 18762.46, + "end": 18763.74, + "probability": 0.8185 + }, + { + "start": 18764.62, + "end": 18769.04, + "probability": 0.9973 + }, + { + "start": 18769.62, + "end": 18773.36, + "probability": 0.9769 + }, + { + "start": 18773.9, + "end": 18775.4, + "probability": 0.9917 + }, + { + "start": 18776.06, + "end": 18778.96, + "probability": 0.9976 + }, + { + "start": 18779.28, + "end": 18781.1, + "probability": 0.9753 + }, + { + "start": 18781.4, + "end": 18783.24, + "probability": 0.9203 + }, + { + "start": 18783.86, + "end": 18791.94, + "probability": 0.9856 + }, + { + "start": 18792.32, + "end": 18798.5, + "probability": 0.9524 + }, + { + "start": 18798.7, + "end": 18799.82, + "probability": 0.9207 + }, + { + "start": 18800.4, + "end": 18803.48, + "probability": 0.995 + }, + { + "start": 18803.88, + "end": 18810.56, + "probability": 0.9453 + }, + { + "start": 18810.68, + "end": 18813.02, + "probability": 0.9674 + }, + { + "start": 18813.1, + "end": 18814.14, + "probability": 0.8522 + }, + { + "start": 18814.62, + "end": 18815.44, + "probability": 0.6373 + }, + { + "start": 18816.06, + "end": 18819.12, + "probability": 0.9702 + }, + { + "start": 18819.12, + "end": 18823.86, + "probability": 0.9958 + }, + { + "start": 18824.5, + "end": 18832.02, + "probability": 0.9778 + }, + { + "start": 18832.76, + "end": 18834.06, + "probability": 0.8608 + }, + { + "start": 18834.62, + "end": 18837.32, + "probability": 0.9573 + }, + { + "start": 18837.76, + "end": 18838.58, + "probability": 0.9342 + }, + { + "start": 18838.64, + "end": 18839.6, + "probability": 0.8682 + }, + { + "start": 18840.2, + "end": 18842.48, + "probability": 0.8967 + }, + { + "start": 18842.54, + "end": 18845.08, + "probability": 0.868 + }, + { + "start": 18845.14, + "end": 18845.4, + "probability": 0.4669 + }, + { + "start": 18845.5, + "end": 18845.58, + "probability": 0.635 + }, + { + "start": 18845.68, + "end": 18849.9, + "probability": 0.9711 + }, + { + "start": 18850.24, + "end": 18852.57, + "probability": 0.9271 + }, + { + "start": 18852.94, + "end": 18856.1, + "probability": 0.989 + }, + { + "start": 18856.14, + "end": 18856.94, + "probability": 0.8308 + }, + { + "start": 18857.14, + "end": 18858.72, + "probability": 0.7757 + }, + { + "start": 18858.8, + "end": 18859.46, + "probability": 0.8351 + }, + { + "start": 18859.6, + "end": 18860.78, + "probability": 0.8643 + }, + { + "start": 18861.0, + "end": 18863.48, + "probability": 0.953 + }, + { + "start": 18863.9, + "end": 18868.52, + "probability": 0.9467 + }, + { + "start": 18869.18, + "end": 18873.8, + "probability": 0.9868 + }, + { + "start": 18874.31, + "end": 18877.98, + "probability": 0.9988 + }, + { + "start": 18878.52, + "end": 18883.44, + "probability": 0.9966 + }, + { + "start": 18883.64, + "end": 18885.08, + "probability": 0.9542 + }, + { + "start": 18886.0, + "end": 18887.3, + "probability": 0.9102 + }, + { + "start": 18887.66, + "end": 18891.36, + "probability": 0.81 + }, + { + "start": 18891.98, + "end": 18896.78, + "probability": 0.9966 + }, + { + "start": 18898.21, + "end": 18902.0, + "probability": 0.9831 + }, + { + "start": 18902.42, + "end": 18910.02, + "probability": 0.9856 + }, + { + "start": 18910.34, + "end": 18914.78, + "probability": 0.9893 + }, + { + "start": 18915.06, + "end": 18915.54, + "probability": 0.8102 + }, + { + "start": 18915.72, + "end": 18917.96, + "probability": 0.9245 + }, + { + "start": 18918.0, + "end": 18919.96, + "probability": 0.9958 + }, + { + "start": 18920.6, + "end": 18923.0, + "probability": 0.9698 + }, + { + "start": 18925.8, + "end": 18926.12, + "probability": 0.6357 + }, + { + "start": 18926.7, + "end": 18926.7, + "probability": 0.1542 + }, + { + "start": 18926.7, + "end": 18928.8, + "probability": 0.8112 + }, + { + "start": 18929.44, + "end": 18930.66, + "probability": 0.8211 + }, + { + "start": 18930.92, + "end": 18934.14, + "probability": 0.9917 + }, + { + "start": 18934.52, + "end": 18935.52, + "probability": 0.9771 + }, + { + "start": 18935.74, + "end": 18936.98, + "probability": 0.9388 + }, + { + "start": 18937.44, + "end": 18942.6, + "probability": 0.9885 + }, + { + "start": 18942.74, + "end": 18943.9, + "probability": 0.8375 + }, + { + "start": 18943.9, + "end": 18946.7, + "probability": 0.9904 + }, + { + "start": 18947.76, + "end": 18950.26, + "probability": 0.8371 + }, + { + "start": 18950.62, + "end": 18955.42, + "probability": 0.9665 + }, + { + "start": 18955.56, + "end": 18957.36, + "probability": 0.9871 + }, + { + "start": 18958.0, + "end": 18960.56, + "probability": 0.9981 + }, + { + "start": 18961.02, + "end": 18961.83, + "probability": 0.5139 + }, + { + "start": 18962.64, + "end": 18963.54, + "probability": 0.8262 + }, + { + "start": 18963.58, + "end": 18964.24, + "probability": 0.7845 + }, + { + "start": 18964.34, + "end": 18965.76, + "probability": 0.9644 + }, + { + "start": 18966.26, + "end": 18967.76, + "probability": 0.7468 + }, + { + "start": 18968.46, + "end": 18971.26, + "probability": 0.9938 + }, + { + "start": 18971.56, + "end": 18974.71, + "probability": 0.9976 + }, + { + "start": 18974.98, + "end": 18977.78, + "probability": 0.9917 + }, + { + "start": 18977.78, + "end": 18980.76, + "probability": 0.996 + }, + { + "start": 18981.28, + "end": 18984.64, + "probability": 0.9943 + }, + { + "start": 18985.7, + "end": 18990.24, + "probability": 0.791 + }, + { + "start": 18991.04, + "end": 18993.48, + "probability": 0.9873 + }, + { + "start": 18994.5, + "end": 19000.72, + "probability": 0.9982 + }, + { + "start": 19000.76, + "end": 19005.6, + "probability": 0.9954 + }, + { + "start": 19006.0, + "end": 19008.5, + "probability": 0.9909 + }, + { + "start": 19009.02, + "end": 19012.22, + "probability": 0.9951 + }, + { + "start": 19012.54, + "end": 19013.94, + "probability": 0.9937 + }, + { + "start": 19014.38, + "end": 19015.82, + "probability": 0.9941 + }, + { + "start": 19015.9, + "end": 19017.19, + "probability": 0.8853 + }, + { + "start": 19017.86, + "end": 19021.68, + "probability": 0.9784 + }, + { + "start": 19023.52, + "end": 19025.14, + "probability": 0.6648 + }, + { + "start": 19025.5, + "end": 19030.42, + "probability": 0.9972 + }, + { + "start": 19030.82, + "end": 19031.86, + "probability": 0.9435 + }, + { + "start": 19031.98, + "end": 19033.98, + "probability": 0.9853 + }, + { + "start": 19034.28, + "end": 19034.66, + "probability": 0.8719 + }, + { + "start": 19034.76, + "end": 19038.2, + "probability": 0.9535 + }, + { + "start": 19038.28, + "end": 19040.36, + "probability": 0.7646 + }, + { + "start": 19040.88, + "end": 19041.22, + "probability": 0.2065 + }, + { + "start": 19042.59, + "end": 19044.12, + "probability": 0.9459 + }, + { + "start": 19044.28, + "end": 19045.08, + "probability": 0.8093 + }, + { + "start": 19045.16, + "end": 19045.58, + "probability": 0.8381 + }, + { + "start": 19046.68, + "end": 19053.26, + "probability": 0.9084 + }, + { + "start": 19054.1, + "end": 19055.6, + "probability": 0.9049 + }, + { + "start": 19056.84, + "end": 19057.27, + "probability": 0.0002 + }, + { + "start": 19057.98, + "end": 19058.8, + "probability": 0.2498 + }, + { + "start": 19059.2, + "end": 19059.95, + "probability": 0.895 + }, + { + "start": 19060.2, + "end": 19062.7, + "probability": 0.8167 + }, + { + "start": 19063.2, + "end": 19064.88, + "probability": 0.814 + }, + { + "start": 19064.92, + "end": 19067.5, + "probability": 0.9913 + }, + { + "start": 19067.62, + "end": 19069.54, + "probability": 0.9974 + }, + { + "start": 19070.2, + "end": 19073.66, + "probability": 0.9956 + }, + { + "start": 19074.06, + "end": 19079.21, + "probability": 0.9547 + }, + { + "start": 19079.7, + "end": 19082.3, + "probability": 0.9745 + }, + { + "start": 19082.66, + "end": 19083.9, + "probability": 0.8469 + }, + { + "start": 19084.28, + "end": 19087.92, + "probability": 0.9934 + }, + { + "start": 19088.06, + "end": 19091.48, + "probability": 0.9913 + }, + { + "start": 19092.12, + "end": 19094.44, + "probability": 0.9829 + }, + { + "start": 19101.48, + "end": 19105.58, + "probability": 0.9545 + }, + { + "start": 19105.8, + "end": 19106.12, + "probability": 0.8739 + }, + { + "start": 19106.3, + "end": 19106.8, + "probability": 0.8798 + }, + { + "start": 19106.9, + "end": 19107.94, + "probability": 0.8921 + }, + { + "start": 19109.66, + "end": 19111.3, + "probability": 0.7272 + }, + { + "start": 19111.4, + "end": 19114.34, + "probability": 0.8407 + }, + { + "start": 19115.08, + "end": 19117.62, + "probability": 0.5873 + }, + { + "start": 19117.8, + "end": 19122.8, + "probability": 0.9771 + }, + { + "start": 19123.22, + "end": 19126.54, + "probability": 0.8366 + }, + { + "start": 19126.64, + "end": 19129.0, + "probability": 0.6908 + }, + { + "start": 19129.02, + "end": 19130.3, + "probability": 0.9288 + }, + { + "start": 19130.76, + "end": 19133.82, + "probability": 0.9154 + }, + { + "start": 19133.98, + "end": 19140.36, + "probability": 0.9694 + }, + { + "start": 19140.44, + "end": 19144.3, + "probability": 0.9406 + }, + { + "start": 19144.56, + "end": 19147.42, + "probability": 0.9471 + }, + { + "start": 19147.58, + "end": 19153.3, + "probability": 0.745 + }, + { + "start": 19153.36, + "end": 19156.42, + "probability": 0.6825 + }, + { + "start": 19156.78, + "end": 19158.28, + "probability": 0.9461 + }, + { + "start": 19158.36, + "end": 19160.12, + "probability": 0.9955 + }, + { + "start": 19160.54, + "end": 19165.46, + "probability": 0.9928 + }, + { + "start": 19165.66, + "end": 19166.7, + "probability": 0.9167 + }, + { + "start": 19167.34, + "end": 19171.68, + "probability": 0.9863 + }, + { + "start": 19171.68, + "end": 19175.72, + "probability": 0.9996 + }, + { + "start": 19176.54, + "end": 19179.42, + "probability": 0.9938 + }, + { + "start": 19180.2, + "end": 19180.78, + "probability": 0.6429 + }, + { + "start": 19181.82, + "end": 19183.48, + "probability": 0.8379 + }, + { + "start": 19183.94, + "end": 19186.38, + "probability": 0.9977 + }, + { + "start": 19186.63, + "end": 19187.22, + "probability": 0.9712 + }, + { + "start": 19187.46, + "end": 19190.02, + "probability": 0.237 + }, + { + "start": 19190.98, + "end": 19198.54, + "probability": 0.8586 + }, + { + "start": 19198.78, + "end": 19200.56, + "probability": 0.7507 + }, + { + "start": 19200.94, + "end": 19202.82, + "probability": 0.9061 + }, + { + "start": 19202.82, + "end": 19205.76, + "probability": 0.9792 + }, + { + "start": 19206.62, + "end": 19207.54, + "probability": 0.9187 + }, + { + "start": 19208.1, + "end": 19208.1, + "probability": 0.0152 + }, + { + "start": 19208.1, + "end": 19209.8, + "probability": 0.9064 + }, + { + "start": 19209.86, + "end": 19211.37, + "probability": 0.9705 + }, + { + "start": 19211.66, + "end": 19213.96, + "probability": 0.887 + }, + { + "start": 19214.02, + "end": 19215.66, + "probability": 0.9689 + }, + { + "start": 19216.12, + "end": 19216.82, + "probability": 0.709 + }, + { + "start": 19216.9, + "end": 19218.02, + "probability": 0.8718 + }, + { + "start": 19218.5, + "end": 19221.9, + "probability": 0.992 + }, + { + "start": 19221.9, + "end": 19225.62, + "probability": 0.9029 + }, + { + "start": 19225.92, + "end": 19228.04, + "probability": 0.9932 + }, + { + "start": 19228.4, + "end": 19231.68, + "probability": 0.9954 + }, + { + "start": 19231.82, + "end": 19232.86, + "probability": 0.8028 + }, + { + "start": 19233.32, + "end": 19237.06, + "probability": 0.974 + }, + { + "start": 19238.42, + "end": 19243.28, + "probability": 0.9459 + }, + { + "start": 19243.74, + "end": 19245.1, + "probability": 0.7506 + }, + { + "start": 19246.0, + "end": 19249.62, + "probability": 0.9344 + }, + { + "start": 19249.76, + "end": 19253.22, + "probability": 0.9919 + }, + { + "start": 19253.56, + "end": 19259.88, + "probability": 0.9912 + }, + { + "start": 19260.18, + "end": 19262.64, + "probability": 0.9971 + }, + { + "start": 19264.55, + "end": 19268.98, + "probability": 0.9419 + }, + { + "start": 19269.48, + "end": 19270.0, + "probability": 0.7965 + }, + { + "start": 19270.26, + "end": 19271.22, + "probability": 0.9861 + }, + { + "start": 19271.6, + "end": 19279.86, + "probability": 0.9141 + }, + { + "start": 19280.24, + "end": 19282.3, + "probability": 0.8566 + }, + { + "start": 19282.82, + "end": 19285.74, + "probability": 0.8171 + }, + { + "start": 19285.78, + "end": 19286.44, + "probability": 0.9224 + }, + { + "start": 19286.52, + "end": 19287.52, + "probability": 0.7486 + }, + { + "start": 19287.94, + "end": 19288.38, + "probability": 0.9784 + }, + { + "start": 19289.28, + "end": 19292.08, + "probability": 0.8843 + }, + { + "start": 19292.6, + "end": 19293.56, + "probability": 0.6395 + }, + { + "start": 19293.72, + "end": 19299.22, + "probability": 0.5458 + }, + { + "start": 19300.2, + "end": 19303.38, + "probability": 0.52 + }, + { + "start": 19303.84, + "end": 19307.62, + "probability": 0.8855 + }, + { + "start": 19308.12, + "end": 19310.59, + "probability": 0.9976 + }, + { + "start": 19312.2, + "end": 19315.14, + "probability": 0.9504 + }, + { + "start": 19315.24, + "end": 19315.5, + "probability": 0.8151 + }, + { + "start": 19316.42, + "end": 19317.3, + "probability": 0.5431 + }, + { + "start": 19318.3, + "end": 19320.06, + "probability": 0.8862 + }, + { + "start": 19320.58, + "end": 19321.94, + "probability": 0.7997 + }, + { + "start": 19325.16, + "end": 19327.9, + "probability": 0.6567 + }, + { + "start": 19328.26, + "end": 19329.74, + "probability": 0.4426 + }, + { + "start": 19329.76, + "end": 19331.4, + "probability": 0.7884 + }, + { + "start": 19331.88, + "end": 19337.1, + "probability": 0.9724 + }, + { + "start": 19338.4, + "end": 19339.22, + "probability": 0.9469 + }, + { + "start": 19339.36, + "end": 19346.86, + "probability": 0.9119 + }, + { + "start": 19347.9, + "end": 19349.74, + "probability": 0.9444 + }, + { + "start": 19350.78, + "end": 19356.1, + "probability": 0.7253 + }, + { + "start": 19356.54, + "end": 19360.96, + "probability": 0.9653 + }, + { + "start": 19361.72, + "end": 19363.88, + "probability": 0.9889 + }, + { + "start": 19364.44, + "end": 19365.56, + "probability": 0.981 + }, + { + "start": 19367.82, + "end": 19369.95, + "probability": 0.9628 + }, + { + "start": 19370.82, + "end": 19373.36, + "probability": 0.875 + }, + { + "start": 19374.54, + "end": 19376.86, + "probability": 0.952 + }, + { + "start": 19377.02, + "end": 19381.04, + "probability": 0.59 + }, + { + "start": 19382.34, + "end": 19384.4, + "probability": 0.6582 + }, + { + "start": 19385.22, + "end": 19390.94, + "probability": 0.7306 + }, + { + "start": 19394.2, + "end": 19395.06, + "probability": 0.7043 + }, + { + "start": 19395.08, + "end": 19397.12, + "probability": 0.7423 + }, + { + "start": 19397.14, + "end": 19397.9, + "probability": 0.8065 + }, + { + "start": 19398.61, + "end": 19400.12, + "probability": 0.7217 + }, + { + "start": 19401.1, + "end": 19406.4, + "probability": 0.9735 + }, + { + "start": 19407.5, + "end": 19411.8, + "probability": 0.9637 + }, + { + "start": 19412.42, + "end": 19415.78, + "probability": 0.9725 + }, + { + "start": 19416.44, + "end": 19418.74, + "probability": 0.8625 + }, + { + "start": 19419.06, + "end": 19419.62, + "probability": 0.9551 + }, + { + "start": 19419.7, + "end": 19426.32, + "probability": 0.9882 + }, + { + "start": 19427.24, + "end": 19432.22, + "probability": 0.9672 + }, + { + "start": 19432.76, + "end": 19433.8, + "probability": 0.486 + }, + { + "start": 19434.32, + "end": 19436.84, + "probability": 0.9878 + }, + { + "start": 19437.24, + "end": 19440.32, + "probability": 0.6454 + }, + { + "start": 19440.48, + "end": 19444.56, + "probability": 0.9358 + }, + { + "start": 19445.0, + "end": 19448.2, + "probability": 0.9886 + }, + { + "start": 19448.2, + "end": 19453.92, + "probability": 0.5158 + }, + { + "start": 19454.6, + "end": 19457.2, + "probability": 0.9736 + }, + { + "start": 19457.54, + "end": 19458.06, + "probability": 0.55 + }, + { + "start": 19458.84, + "end": 19462.76, + "probability": 0.9819 + }, + { + "start": 19463.52, + "end": 19464.78, + "probability": 0.5314 + }, + { + "start": 19465.52, + "end": 19468.1, + "probability": 0.9589 + }, + { + "start": 19468.4, + "end": 19473.92, + "probability": 0.8706 + }, + { + "start": 19474.18, + "end": 19479.5, + "probability": 0.8267 + }, + { + "start": 19479.82, + "end": 19483.44, + "probability": 0.9703 + }, + { + "start": 19484.6, + "end": 19488.78, + "probability": 0.7207 + }, + { + "start": 19490.9, + "end": 19492.56, + "probability": 0.5185 + }, + { + "start": 19493.44, + "end": 19496.02, + "probability": 0.9966 + }, + { + "start": 19496.14, + "end": 19500.33, + "probability": 0.9429 + }, + { + "start": 19500.72, + "end": 19505.96, + "probability": 0.9251 + }, + { + "start": 19506.24, + "end": 19506.9, + "probability": 0.8384 + }, + { + "start": 19508.0, + "end": 19515.22, + "probability": 0.8458 + }, + { + "start": 19515.22, + "end": 19520.42, + "probability": 0.947 + }, + { + "start": 19522.1, + "end": 19523.94, + "probability": 0.7749 + }, + { + "start": 19524.7, + "end": 19526.64, + "probability": 0.913 + }, + { + "start": 19532.14, + "end": 19534.18, + "probability": 0.5949 + }, + { + "start": 19535.26, + "end": 19536.64, + "probability": 0.7563 + }, + { + "start": 19537.3, + "end": 19538.92, + "probability": 0.6485 + }, + { + "start": 19539.6, + "end": 19540.84, + "probability": 0.7085 + }, + { + "start": 19541.0, + "end": 19542.42, + "probability": 0.9443 + }, + { + "start": 19542.54, + "end": 19545.96, + "probability": 0.874 + }, + { + "start": 19546.3, + "end": 19546.84, + "probability": 0.4884 + }, + { + "start": 19546.96, + "end": 19547.24, + "probability": 0.5542 + }, + { + "start": 19547.62, + "end": 19548.5, + "probability": 0.451 + }, + { + "start": 19549.14, + "end": 19549.14, + "probability": 0.0996 + }, + { + "start": 19549.14, + "end": 19551.67, + "probability": 0.5615 + }, + { + "start": 19552.2, + "end": 19555.82, + "probability": 0.9598 + }, + { + "start": 19556.7, + "end": 19556.78, + "probability": 0.3774 + }, + { + "start": 19556.84, + "end": 19557.58, + "probability": 0.6187 + }, + { + "start": 19557.64, + "end": 19559.62, + "probability": 0.8998 + }, + { + "start": 19560.38, + "end": 19562.22, + "probability": 0.7442 + }, + { + "start": 19562.84, + "end": 19564.82, + "probability": 0.9963 + }, + { + "start": 19565.24, + "end": 19566.88, + "probability": 0.8378 + }, + { + "start": 19569.66, + "end": 19571.64, + "probability": 0.6836 + }, + { + "start": 19572.18, + "end": 19573.98, + "probability": 0.8613 + }, + { + "start": 19574.22, + "end": 19576.24, + "probability": 0.9951 + }, + { + "start": 19576.84, + "end": 19578.1, + "probability": 0.7221 + }, + { + "start": 19578.42, + "end": 19582.84, + "probability": 0.7341 + }, + { + "start": 19583.16, + "end": 19584.02, + "probability": 0.9579 + }, + { + "start": 19584.3, + "end": 19587.88, + "probability": 0.8201 + }, + { + "start": 19587.98, + "end": 19588.96, + "probability": 0.9764 + }, + { + "start": 19589.98, + "end": 19592.36, + "probability": 0.4983 + }, + { + "start": 19593.94, + "end": 19596.76, + "probability": 0.5724 + }, + { + "start": 19597.46, + "end": 19598.48, + "probability": 0.7372 + }, + { + "start": 19598.62, + "end": 19603.32, + "probability": 0.8273 + }, + { + "start": 19604.9, + "end": 19605.6, + "probability": 0.6063 + }, + { + "start": 19606.1, + "end": 19608.44, + "probability": 0.8219 + }, + { + "start": 19609.22, + "end": 19613.67, + "probability": 0.9392 + }, + { + "start": 19614.48, + "end": 19616.78, + "probability": 0.9966 + }, + { + "start": 19617.6, + "end": 19620.44, + "probability": 0.9604 + }, + { + "start": 19621.02, + "end": 19626.26, + "probability": 0.7467 + }, + { + "start": 19626.84, + "end": 19631.46, + "probability": 0.8593 + }, + { + "start": 19632.0, + "end": 19638.16, + "probability": 0.6688 + }, + { + "start": 19639.8, + "end": 19640.98, + "probability": 0.9498 + }, + { + "start": 19641.26, + "end": 19642.24, + "probability": 0.6622 + }, + { + "start": 19642.82, + "end": 19648.9, + "probability": 0.9556 + }, + { + "start": 19648.94, + "end": 19652.22, + "probability": 0.9484 + }, + { + "start": 19652.72, + "end": 19653.34, + "probability": 0.8818 + }, + { + "start": 19653.68, + "end": 19655.14, + "probability": 0.8454 + }, + { + "start": 19655.22, + "end": 19656.12, + "probability": 0.8384 + }, + { + "start": 19656.38, + "end": 19657.16, + "probability": 0.5821 + }, + { + "start": 19657.16, + "end": 19660.74, + "probability": 0.8896 + }, + { + "start": 19660.74, + "end": 19663.66, + "probability": 0.8625 + }, + { + "start": 19663.8, + "end": 19664.54, + "probability": 0.5983 + }, + { + "start": 19665.02, + "end": 19666.08, + "probability": 0.5574 + }, + { + "start": 19666.52, + "end": 19670.52, + "probability": 0.748 + }, + { + "start": 19670.52, + "end": 19675.48, + "probability": 0.8828 + }, + { + "start": 19675.76, + "end": 19677.39, + "probability": 0.4893 + }, + { + "start": 19677.76, + "end": 19678.4, + "probability": 0.5522 + }, + { + "start": 19678.98, + "end": 19679.62, + "probability": 0.759 + }, + { + "start": 19680.78, + "end": 19681.68, + "probability": 0.5941 + }, + { + "start": 19682.44, + "end": 19684.14, + "probability": 0.8284 + }, + { + "start": 19685.18, + "end": 19687.64, + "probability": 0.9845 + }, + { + "start": 19694.2, + "end": 19696.6, + "probability": 0.6136 + }, + { + "start": 19697.42, + "end": 19697.42, + "probability": 0.0203 + }, + { + "start": 19697.42, + "end": 19701.14, + "probability": 0.5999 + }, + { + "start": 19701.84, + "end": 19702.46, + "probability": 0.6132 + }, + { + "start": 19702.8, + "end": 19703.87, + "probability": 0.5969 + }, + { + "start": 19704.38, + "end": 19707.64, + "probability": 0.8888 + }, + { + "start": 19707.8, + "end": 19710.24, + "probability": 0.4184 + }, + { + "start": 19711.5, + "end": 19714.42, + "probability": 0.6523 + }, + { + "start": 19715.8, + "end": 19722.5, + "probability": 0.7557 + }, + { + "start": 19723.2, + "end": 19724.5, + "probability": 0.6835 + }, + { + "start": 19725.02, + "end": 19728.7, + "probability": 0.8486 + }, + { + "start": 19729.06, + "end": 19731.52, + "probability": 0.8193 + }, + { + "start": 19731.78, + "end": 19739.28, + "probability": 0.9085 + }, + { + "start": 19739.9, + "end": 19742.72, + "probability": 0.9564 + }, + { + "start": 19743.24, + "end": 19746.96, + "probability": 0.9097 + }, + { + "start": 19748.02, + "end": 19748.82, + "probability": 0.3508 + }, + { + "start": 19748.82, + "end": 19749.58, + "probability": 0.6441 + }, + { + "start": 19749.74, + "end": 19750.5, + "probability": 0.6996 + }, + { + "start": 19750.62, + "end": 19751.46, + "probability": 0.6096 + }, + { + "start": 19751.62, + "end": 19751.82, + "probability": 0.6725 + }, + { + "start": 19751.92, + "end": 19753.48, + "probability": 0.798 + }, + { + "start": 19753.96, + "end": 19758.86, + "probability": 0.9255 + }, + { + "start": 19759.36, + "end": 19760.82, + "probability": 0.3704 + }, + { + "start": 19760.96, + "end": 19765.08, + "probability": 0.8517 + }, + { + "start": 19765.14, + "end": 19766.02, + "probability": 0.9344 + }, + { + "start": 19766.6, + "end": 19767.12, + "probability": 0.4785 + }, + { + "start": 19767.7, + "end": 19773.96, + "probability": 0.9551 + }, + { + "start": 19774.36, + "end": 19777.94, + "probability": 0.8533 + }, + { + "start": 19778.1, + "end": 19782.28, + "probability": 0.8177 + }, + { + "start": 19782.36, + "end": 19786.01, + "probability": 0.6643 + }, + { + "start": 19786.72, + "end": 19787.26, + "probability": 0.7219 + }, + { + "start": 19787.76, + "end": 19792.54, + "probability": 0.9746 + }, + { + "start": 19793.26, + "end": 19794.28, + "probability": 0.8036 + }, + { + "start": 19795.18, + "end": 19798.04, + "probability": 0.7232 + }, + { + "start": 19799.1, + "end": 19799.6, + "probability": 0.6868 + }, + { + "start": 19807.8, + "end": 19809.1, + "probability": 0.5226 + }, + { + "start": 19810.7, + "end": 19811.36, + "probability": 0.6437 + }, + { + "start": 19813.18, + "end": 19817.1, + "probability": 0.7155 + }, + { + "start": 19817.16, + "end": 19820.2, + "probability": 0.5536 + }, + { + "start": 19821.02, + "end": 19822.02, + "probability": 0.7346 + }, + { + "start": 19822.14, + "end": 19824.76, + "probability": 0.8809 + }, + { + "start": 19825.68, + "end": 19831.5, + "probability": 0.8339 + }, + { + "start": 19831.94, + "end": 19832.96, + "probability": 0.6607 + }, + { + "start": 19833.86, + "end": 19838.08, + "probability": 0.9635 + }, + { + "start": 19839.26, + "end": 19845.68, + "probability": 0.9778 + }, + { + "start": 19848.54, + "end": 19851.68, + "probability": 0.2809 + }, + { + "start": 19852.34, + "end": 19852.82, + "probability": 0.6419 + }, + { + "start": 19853.66, + "end": 19854.24, + "probability": 0.7833 + }, + { + "start": 19854.56, + "end": 19859.04, + "probability": 0.8451 + }, + { + "start": 19859.34, + "end": 19860.16, + "probability": 0.9422 + }, + { + "start": 19860.94, + "end": 19866.2, + "probability": 0.7925 + }, + { + "start": 19866.36, + "end": 19867.34, + "probability": 0.663 + }, + { + "start": 19867.74, + "end": 19870.66, + "probability": 0.929 + }, + { + "start": 19870.92, + "end": 19871.62, + "probability": 0.7666 + }, + { + "start": 19872.46, + "end": 19874.34, + "probability": 0.7484 + }, + { + "start": 19874.46, + "end": 19876.26, + "probability": 0.9883 + }, + { + "start": 19877.26, + "end": 19879.84, + "probability": 0.9704 + }, + { + "start": 19881.26, + "end": 19884.4, + "probability": 0.9576 + }, + { + "start": 19890.92, + "end": 19892.06, + "probability": 0.7037 + }, + { + "start": 19892.84, + "end": 19894.9, + "probability": 0.7577 + }, + { + "start": 19900.74, + "end": 19904.2, + "probability": 0.9789 + }, + { + "start": 19905.54, + "end": 19907.54, + "probability": 0.9893 + }, + { + "start": 19909.44, + "end": 19911.74, + "probability": 0.8653 + }, + { + "start": 19912.48, + "end": 19919.48, + "probability": 0.9867 + }, + { + "start": 19920.44, + "end": 19921.32, + "probability": 0.936 + }, + { + "start": 19923.1, + "end": 19924.74, + "probability": 0.8748 + }, + { + "start": 19925.36, + "end": 19926.48, + "probability": 0.8963 + }, + { + "start": 19926.96, + "end": 19929.34, + "probability": 0.9006 + }, + { + "start": 19930.22, + "end": 19931.96, + "probability": 0.9715 + }, + { + "start": 19932.56, + "end": 19935.52, + "probability": 0.9423 + }, + { + "start": 19935.98, + "end": 19939.56, + "probability": 0.9863 + }, + { + "start": 19942.16, + "end": 19943.85, + "probability": 0.9377 + }, + { + "start": 19945.4, + "end": 19947.28, + "probability": 0.8948 + }, + { + "start": 19948.28, + "end": 19953.36, + "probability": 0.9951 + }, + { + "start": 19954.42, + "end": 19958.34, + "probability": 0.9946 + }, + { + "start": 19959.02, + "end": 19960.36, + "probability": 0.9896 + }, + { + "start": 19960.86, + "end": 19962.12, + "probability": 0.9116 + }, + { + "start": 19962.48, + "end": 19965.86, + "probability": 0.9564 + }, + { + "start": 19966.88, + "end": 19968.14, + "probability": 0.9517 + }, + { + "start": 19969.28, + "end": 19971.25, + "probability": 0.9865 + }, + { + "start": 19973.3, + "end": 19974.88, + "probability": 0.9937 + }, + { + "start": 19977.18, + "end": 19977.84, + "probability": 0.4307 + }, + { + "start": 19978.67, + "end": 19983.12, + "probability": 0.9231 + }, + { + "start": 19983.76, + "end": 19988.38, + "probability": 0.6847 + }, + { + "start": 19989.12, + "end": 19990.4, + "probability": 0.4153 + }, + { + "start": 19991.6, + "end": 19994.86, + "probability": 0.8293 + }, + { + "start": 19995.42, + "end": 19998.16, + "probability": 0.9744 + }, + { + "start": 20000.07, + "end": 20009.68, + "probability": 0.9868 + }, + { + "start": 20011.04, + "end": 20011.98, + "probability": 0.8539 + }, + { + "start": 20012.98, + "end": 20016.7, + "probability": 0.8586 + }, + { + "start": 20016.76, + "end": 20017.56, + "probability": 0.7455 + }, + { + "start": 20017.64, + "end": 20018.74, + "probability": 0.9748 + }, + { + "start": 20019.5, + "end": 20021.42, + "probability": 0.8783 + }, + { + "start": 20022.02, + "end": 20026.52, + "probability": 0.9844 + }, + { + "start": 20026.94, + "end": 20031.34, + "probability": 0.9932 + }, + { + "start": 20032.76, + "end": 20033.78, + "probability": 0.7938 + }, + { + "start": 20035.26, + "end": 20036.98, + "probability": 0.9234 + }, + { + "start": 20037.62, + "end": 20038.62, + "probability": 0.4622 + }, + { + "start": 20041.18, + "end": 20042.62, + "probability": 0.7944 + }, + { + "start": 20043.07, + "end": 20048.2, + "probability": 0.9804 + }, + { + "start": 20049.34, + "end": 20051.3, + "probability": 0.8992 + }, + { + "start": 20052.02, + "end": 20055.26, + "probability": 0.9963 + }, + { + "start": 20056.54, + "end": 20058.22, + "probability": 0.9844 + }, + { + "start": 20059.48, + "end": 20063.48, + "probability": 0.7844 + }, + { + "start": 20064.28, + "end": 20066.18, + "probability": 0.9946 + }, + { + "start": 20066.18, + "end": 20066.57, + "probability": 0.4066 + }, + { + "start": 20067.66, + "end": 20068.38, + "probability": 0.9409 + }, + { + "start": 20068.7, + "end": 20069.88, + "probability": 0.768 + }, + { + "start": 20070.14, + "end": 20070.5, + "probability": 0.3619 + }, + { + "start": 20070.8, + "end": 20072.32, + "probability": 0.8412 + }, + { + "start": 20072.42, + "end": 20073.74, + "probability": 0.9524 + }, + { + "start": 20073.8, + "end": 20074.78, + "probability": 0.8704 + }, + { + "start": 20075.28, + "end": 20077.27, + "probability": 0.6145 + }, + { + "start": 20077.4, + "end": 20079.38, + "probability": 0.7344 + }, + { + "start": 20079.74, + "end": 20081.48, + "probability": 0.9662 + }, + { + "start": 20081.62, + "end": 20081.8, + "probability": 0.7459 + }, + { + "start": 20082.34, + "end": 20082.9, + "probability": 0.6573 + }, + { + "start": 20083.24, + "end": 20086.1, + "probability": 0.9354 + }, + { + "start": 20087.0, + "end": 20089.64, + "probability": 0.7076 + }, + { + "start": 20090.28, + "end": 20090.5, + "probability": 0.002 + }, + { + "start": 20090.5, + "end": 20094.36, + "probability": 0.1132 + }, + { + "start": 20094.8, + "end": 20095.22, + "probability": 0.9332 + }, + { + "start": 20095.26, + "end": 20097.8, + "probability": 0.6694 + }, + { + "start": 20099.1, + "end": 20102.24, + "probability": 0.9781 + }, + { + "start": 20102.24, + "end": 20102.94, + "probability": 0.8408 + }, + { + "start": 20103.24, + "end": 20105.98, + "probability": 0.9288 + }, + { + "start": 20108.13, + "end": 20111.22, + "probability": 0.8433 + }, + { + "start": 20112.22, + "end": 20113.11, + "probability": 0.835 + }, + { + "start": 20114.38, + "end": 20115.9, + "probability": 0.1522 + }, + { + "start": 20118.04, + "end": 20119.34, + "probability": 0.2513 + }, + { + "start": 20132.36, + "end": 20133.46, + "probability": 0.6482 + }, + { + "start": 20136.42, + "end": 20136.52, + "probability": 0.0279 + }, + { + "start": 20136.52, + "end": 20136.52, + "probability": 0.0 + }, + { + "start": 20137.16, + "end": 20138.22, + "probability": 0.2072 + }, + { + "start": 20138.78, + "end": 20141.68, + "probability": 0.7906 + }, + { + "start": 20142.34, + "end": 20143.04, + "probability": 0.339 + }, + { + "start": 20143.38, + "end": 20145.66, + "probability": 0.6856 + }, + { + "start": 20145.66, + "end": 20149.58, + "probability": 0.9517 + }, + { + "start": 20160.52, + "end": 20161.99, + "probability": 0.6999 + }, + { + "start": 20163.16, + "end": 20163.84, + "probability": 0.9179 + }, + { + "start": 20164.04, + "end": 20168.88, + "probability": 0.9565 + }, + { + "start": 20171.92, + "end": 20172.42, + "probability": 0.0446 + }, + { + "start": 20182.78, + "end": 20184.82, + "probability": 0.7226 + }, + { + "start": 20184.92, + "end": 20187.38, + "probability": 0.9218 + }, + { + "start": 20188.04, + "end": 20191.66, + "probability": 0.9717 + }, + { + "start": 20192.86, + "end": 20194.2, + "probability": 0.4936 + }, + { + "start": 20198.26, + "end": 20199.14, + "probability": 0.1553 + }, + { + "start": 20199.14, + "end": 20199.36, + "probability": 0.251 + }, + { + "start": 20199.36, + "end": 20199.54, + "probability": 0.0849 + }, + { + "start": 20202.04, + "end": 20202.66, + "probability": 0.027 + }, + { + "start": 20208.88, + "end": 20209.02, + "probability": 0.3704 + }, + { + "start": 20209.02, + "end": 20210.9, + "probability": 0.5179 + }, + { + "start": 20211.46, + "end": 20217.32, + "probability": 0.8538 + }, + { + "start": 20217.86, + "end": 20219.3, + "probability": 0.933 + }, + { + "start": 20219.44, + "end": 20220.3, + "probability": 0.224 + }, + { + "start": 20220.46, + "end": 20220.98, + "probability": 0.9036 + }, + { + "start": 20221.54, + "end": 20222.42, + "probability": 0.9577 + }, + { + "start": 20222.56, + "end": 20223.96, + "probability": 0.9977 + }, + { + "start": 20224.1, + "end": 20224.5, + "probability": 0.6538 + }, + { + "start": 20224.6, + "end": 20224.94, + "probability": 0.9016 + }, + { + "start": 20225.48, + "end": 20226.54, + "probability": 0.7739 + }, + { + "start": 20227.56, + "end": 20232.74, + "probability": 0.3395 + }, + { + "start": 20232.88, + "end": 20234.2, + "probability": 0.8022 + }, + { + "start": 20251.26, + "end": 20251.9, + "probability": 0.8226 + }, + { + "start": 20259.4, + "end": 20260.44, + "probability": 0.065 + }, + { + "start": 20261.12, + "end": 20262.04, + "probability": 0.6943 + }, + { + "start": 20262.12, + "end": 20262.32, + "probability": 0.4263 + }, + { + "start": 20262.56, + "end": 20262.88, + "probability": 0.3901 + }, + { + "start": 20263.32, + "end": 20264.36, + "probability": 0.9047 + }, + { + "start": 20266.04, + "end": 20266.54, + "probability": 0.0205 + }, + { + "start": 20266.95, + "end": 20268.18, + "probability": 0.167 + }, + { + "start": 20268.34, + "end": 20268.44, + "probability": 0.1065 + }, + { + "start": 20270.58, + "end": 20271.3, + "probability": 0.6632 + }, + { + "start": 20272.9, + "end": 20274.74, + "probability": 0.1749 + }, + { + "start": 20274.74, + "end": 20276.4, + "probability": 0.0213 + }, + { + "start": 20278.26, + "end": 20282.33, + "probability": 0.1126 + }, + { + "start": 20291.0, + "end": 20291.0, + "probability": 0.0 + }, + { + "start": 20291.0, + "end": 20291.0, + "probability": 0.0 + }, + { + "start": 20291.0, + "end": 20291.0, + "probability": 0.0 + }, + { + "start": 20291.0, + "end": 20291.0, + "probability": 0.0 + }, + { + "start": 20291.0, + "end": 20291.0, + "probability": 0.0 + }, + { + "start": 20292.69, + "end": 20293.36, + "probability": 0.0519 + }, + { + "start": 20293.38, + "end": 20294.18, + "probability": 0.1831 + }, + { + "start": 20294.2, + "end": 20294.98, + "probability": 0.0787 + }, + { + "start": 20295.67, + "end": 20296.73, + "probability": 0.0159 + }, + { + "start": 20298.48, + "end": 20300.14, + "probability": 0.3403 + }, + { + "start": 20301.08, + "end": 20301.08, + "probability": 0.0497 + }, + { + "start": 20301.08, + "end": 20301.24, + "probability": 0.0308 + }, + { + "start": 20301.24, + "end": 20302.58, + "probability": 0.2985 + }, + { + "start": 20302.92, + "end": 20305.74, + "probability": 0.8557 + }, + { + "start": 20306.54, + "end": 20307.14, + "probability": 0.5877 + }, + { + "start": 20307.32, + "end": 20307.44, + "probability": 0.5284 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.0, + "end": 20411.0, + "probability": 0.0 + }, + { + "start": 20411.12, + "end": 20412.24, + "probability": 0.0225 + }, + { + "start": 20416.12, + "end": 20416.46, + "probability": 0.0427 + }, + { + "start": 20431.28, + "end": 20432.16, + "probability": 0.1863 + }, + { + "start": 20432.16, + "end": 20435.66, + "probability": 0.9475 + }, + { + "start": 20436.32, + "end": 20438.44, + "probability": 0.9041 + }, + { + "start": 20440.0, + "end": 20442.52, + "probability": 0.8079 + }, + { + "start": 20443.52, + "end": 20446.1, + "probability": 0.964 + }, + { + "start": 20447.17, + "end": 20450.44, + "probability": 0.4474 + }, + { + "start": 20451.4, + "end": 20453.22, + "probability": 0.2979 + }, + { + "start": 20453.82, + "end": 20455.44, + "probability": 0.9627 + }, + { + "start": 20455.6, + "end": 20456.86, + "probability": 0.9976 + }, + { + "start": 20457.68, + "end": 20460.18, + "probability": 0.7057 + }, + { + "start": 20460.22, + "end": 20461.38, + "probability": 0.7152 + }, + { + "start": 20461.44, + "end": 20462.08, + "probability": 0.7283 + }, + { + "start": 20485.86, + "end": 20486.6, + "probability": 0.6159 + }, + { + "start": 20487.54, + "end": 20489.34, + "probability": 0.8726 + }, + { + "start": 20490.96, + "end": 20495.12, + "probability": 0.9097 + }, + { + "start": 20495.12, + "end": 20501.5, + "probability": 0.6403 + }, + { + "start": 20502.42, + "end": 20505.42, + "probability": 0.6307 + }, + { + "start": 20506.58, + "end": 20510.78, + "probability": 0.9774 + }, + { + "start": 20511.42, + "end": 20515.36, + "probability": 0.9894 + }, + { + "start": 20516.18, + "end": 20518.68, + "probability": 0.6648 + }, + { + "start": 20519.22, + "end": 20524.5, + "probability": 0.9314 + }, + { + "start": 20525.36, + "end": 20528.26, + "probability": 0.9901 + }, + { + "start": 20529.14, + "end": 20535.04, + "probability": 0.9702 + }, + { + "start": 20536.06, + "end": 20540.46, + "probability": 0.9783 + }, + { + "start": 20540.96, + "end": 20543.14, + "probability": 0.9521 + }, + { + "start": 20543.66, + "end": 20546.64, + "probability": 0.9812 + }, + { + "start": 20548.16, + "end": 20553.26, + "probability": 0.9891 + }, + { + "start": 20553.26, + "end": 20557.36, + "probability": 0.9978 + }, + { + "start": 20558.22, + "end": 20562.56, + "probability": 0.9084 + }, + { + "start": 20563.24, + "end": 20568.84, + "probability": 0.9867 + }, + { + "start": 20569.96, + "end": 20573.12, + "probability": 0.9521 + }, + { + "start": 20574.1, + "end": 20577.02, + "probability": 0.9953 + }, + { + "start": 20577.5, + "end": 20583.14, + "probability": 0.994 + }, + { + "start": 20583.68, + "end": 20584.76, + "probability": 0.9105 + }, + { + "start": 20585.24, + "end": 20585.38, + "probability": 0.305 + }, + { + "start": 20585.44, + "end": 20586.08, + "probability": 0.8749 + }, + { + "start": 20586.52, + "end": 20591.6, + "probability": 0.9937 + }, + { + "start": 20592.28, + "end": 20597.04, + "probability": 0.9971 + }, + { + "start": 20597.54, + "end": 20603.2, + "probability": 0.989 + }, + { + "start": 20603.2, + "end": 20609.92, + "probability": 0.9874 + }, + { + "start": 20611.06, + "end": 20614.2, + "probability": 0.5898 + }, + { + "start": 20614.66, + "end": 20617.42, + "probability": 0.9944 + }, + { + "start": 20617.94, + "end": 20621.84, + "probability": 0.9873 + }, + { + "start": 20622.64, + "end": 20628.36, + "probability": 0.9036 + }, + { + "start": 20629.14, + "end": 20630.74, + "probability": 0.8875 + }, + { + "start": 20631.22, + "end": 20634.18, + "probability": 0.9231 + }, + { + "start": 20634.82, + "end": 20639.74, + "probability": 0.9763 + }, + { + "start": 20640.3, + "end": 20648.44, + "probability": 0.9844 + }, + { + "start": 20652.44, + "end": 20656.6, + "probability": 0.9581 + }, + { + "start": 20656.6, + "end": 20661.8, + "probability": 0.9972 + }, + { + "start": 20662.2, + "end": 20667.3, + "probability": 0.9182 + }, + { + "start": 20668.2, + "end": 20670.6, + "probability": 0.669 + }, + { + "start": 20670.6, + "end": 20674.46, + "probability": 0.9899 + }, + { + "start": 20675.04, + "end": 20681.1, + "probability": 0.8204 + }, + { + "start": 20681.66, + "end": 20684.64, + "probability": 0.6741 + }, + { + "start": 20684.9, + "end": 20687.08, + "probability": 0.9296 + }, + { + "start": 20687.32, + "end": 20692.64, + "probability": 0.8569 + }, + { + "start": 20692.96, + "end": 20693.32, + "probability": 0.4393 + }, + { + "start": 20693.46, + "end": 20699.04, + "probability": 0.9512 + }, + { + "start": 20699.7, + "end": 20702.14, + "probability": 0.6127 + }, + { + "start": 20702.28, + "end": 20702.8, + "probability": 0.7654 + }, + { + "start": 20703.12, + "end": 20705.26, + "probability": 0.7686 + }, + { + "start": 20706.1, + "end": 20710.58, + "probability": 0.9612 + }, + { + "start": 20711.3, + "end": 20711.48, + "probability": 0.5235 + }, + { + "start": 20711.6, + "end": 20716.96, + "probability": 0.9661 + }, + { + "start": 20717.18, + "end": 20720.1, + "probability": 0.9439 + }, + { + "start": 20721.46, + "end": 20724.16, + "probability": 0.9545 + }, + { + "start": 20724.16, + "end": 20728.4, + "probability": 0.997 + }, + { + "start": 20728.66, + "end": 20730.78, + "probability": 0.9697 + }, + { + "start": 20731.04, + "end": 20733.5, + "probability": 0.9449 + }, + { + "start": 20734.1, + "end": 20740.62, + "probability": 0.8913 + }, + { + "start": 20741.06, + "end": 20744.02, + "probability": 0.9918 + }, + { + "start": 20744.48, + "end": 20748.56, + "probability": 0.9517 + }, + { + "start": 20749.04, + "end": 20750.2, + "probability": 0.7944 + }, + { + "start": 20750.34, + "end": 20754.64, + "probability": 0.9844 + }, + { + "start": 20754.64, + "end": 20758.22, + "probability": 0.9691 + }, + { + "start": 20758.22, + "end": 20762.36, + "probability": 0.9963 + }, + { + "start": 20762.96, + "end": 20768.46, + "probability": 0.8801 + }, + { + "start": 20768.86, + "end": 20772.31, + "probability": 0.9523 + }, + { + "start": 20772.82, + "end": 20776.94, + "probability": 0.844 + }, + { + "start": 20777.32, + "end": 20777.72, + "probability": 0.5734 + }, + { + "start": 20777.84, + "end": 20779.92, + "probability": 0.8277 + }, + { + "start": 20780.18, + "end": 20784.52, + "probability": 0.9569 + }, + { + "start": 20785.22, + "end": 20788.54, + "probability": 0.8712 + }, + { + "start": 20788.78, + "end": 20791.62, + "probability": 0.9316 + }, + { + "start": 20792.24, + "end": 20797.56, + "probability": 0.9168 + }, + { + "start": 20797.56, + "end": 20803.44, + "probability": 0.9636 + }, + { + "start": 20804.04, + "end": 20807.82, + "probability": 0.9097 + }, + { + "start": 20808.05, + "end": 20814.04, + "probability": 0.9993 + }, + { + "start": 20814.04, + "end": 20818.58, + "probability": 0.9746 + }, + { + "start": 20819.82, + "end": 20822.36, + "probability": 0.9637 + }, + { + "start": 20822.48, + "end": 20826.18, + "probability": 0.8147 + }, + { + "start": 20826.78, + "end": 20827.0, + "probability": 0.2011 + }, + { + "start": 20827.04, + "end": 20830.64, + "probability": 0.9723 + }, + { + "start": 20831.08, + "end": 20831.64, + "probability": 0.3422 + }, + { + "start": 20831.66, + "end": 20832.4, + "probability": 0.6662 + }, + { + "start": 20832.56, + "end": 20835.48, + "probability": 0.8492 + }, + { + "start": 20835.48, + "end": 20839.18, + "probability": 0.9919 + }, + { + "start": 20840.56, + "end": 20845.94, + "probability": 0.9622 + }, + { + "start": 20845.94, + "end": 20849.66, + "probability": 0.9858 + }, + { + "start": 20849.66, + "end": 20855.8, + "probability": 0.9309 + }, + { + "start": 20856.08, + "end": 20858.78, + "probability": 0.8174 + }, + { + "start": 20859.52, + "end": 20864.56, + "probability": 0.9736 + }, + { + "start": 20864.9, + "end": 20868.38, + "probability": 0.8099 + }, + { + "start": 20868.9, + "end": 20874.32, + "probability": 0.9785 + }, + { + "start": 20874.54, + "end": 20875.08, + "probability": 0.8657 + }, + { + "start": 20875.18, + "end": 20876.08, + "probability": 0.9202 + }, + { + "start": 20876.42, + "end": 20880.74, + "probability": 0.9556 + }, + { + "start": 20881.36, + "end": 20882.15, + "probability": 0.8273 + }, + { + "start": 20883.06, + "end": 20888.06, + "probability": 0.9628 + }, + { + "start": 20888.27, + "end": 20892.8, + "probability": 0.7695 + }, + { + "start": 20893.24, + "end": 20899.6, + "probability": 0.8753 + }, + { + "start": 20899.6, + "end": 20903.24, + "probability": 0.9609 + }, + { + "start": 20903.24, + "end": 20907.86, + "probability": 0.954 + }, + { + "start": 20908.3, + "end": 20912.4, + "probability": 0.9064 + }, + { + "start": 20912.4, + "end": 20916.04, + "probability": 0.9406 + }, + { + "start": 20916.68, + "end": 20918.48, + "probability": 0.743 + }, + { + "start": 20919.02, + "end": 20923.3, + "probability": 0.9301 + }, + { + "start": 20923.62, + "end": 20927.64, + "probability": 0.9824 + }, + { + "start": 20927.64, + "end": 20931.98, + "probability": 0.9972 + }, + { + "start": 20932.62, + "end": 20933.52, + "probability": 0.4318 + }, + { + "start": 20934.78, + "end": 20937.42, + "probability": 0.7551 + }, + { + "start": 20939.14, + "end": 20941.32, + "probability": 0.7454 + }, + { + "start": 20942.22, + "end": 20944.66, + "probability": 0.7539 + }, + { + "start": 20960.78, + "end": 20963.8, + "probability": 0.5878 + }, + { + "start": 20966.23, + "end": 20967.98, + "probability": 0.2946 + }, + { + "start": 20968.32, + "end": 20973.02, + "probability": 0.5105 + }, + { + "start": 20973.1, + "end": 20974.84, + "probability": 0.8429 + }, + { + "start": 20975.78, + "end": 20979.64, + "probability": 0.9347 + }, + { + "start": 20980.12, + "end": 20983.0, + "probability": 0.8468 + }, + { + "start": 20983.08, + "end": 20984.74, + "probability": 0.5886 + }, + { + "start": 20984.74, + "end": 20986.24, + "probability": 0.1392 + }, + { + "start": 20986.6, + "end": 20989.1, + "probability": 0.6375 + }, + { + "start": 20989.32, + "end": 20992.25, + "probability": 0.7794 + }, + { + "start": 20993.26, + "end": 20994.7, + "probability": 0.5645 + }, + { + "start": 20994.92, + "end": 20997.24, + "probability": 0.1757 + }, + { + "start": 20997.4, + "end": 20999.46, + "probability": 0.8209 + }, + { + "start": 21000.04, + "end": 21000.84, + "probability": 0.5381 + }, + { + "start": 21001.12, + "end": 21002.9, + "probability": 0.7903 + }, + { + "start": 21004.34, + "end": 21005.34, + "probability": 0.0009 + }, + { + "start": 21006.86, + "end": 21009.46, + "probability": 0.9801 + }, + { + "start": 21009.88, + "end": 21011.78, + "probability": 0.9615 + }, + { + "start": 21015.69, + "end": 21020.2, + "probability": 0.301 + }, + { + "start": 21020.3, + "end": 21021.88, + "probability": 0.3746 + }, + { + "start": 21024.38, + "end": 21027.9, + "probability": 0.979 + }, + { + "start": 21027.9, + "end": 21031.28, + "probability": 0.8552 + }, + { + "start": 21031.4, + "end": 21031.4, + "probability": 0.0032 + }, + { + "start": 21031.44, + "end": 21032.48, + "probability": 0.9091 + }, + { + "start": 21032.74, + "end": 21036.84, + "probability": 0.9888 + }, + { + "start": 21036.84, + "end": 21040.24, + "probability": 0.9801 + }, + { + "start": 21041.55, + "end": 21044.56, + "probability": 0.7283 + }, + { + "start": 21044.7, + "end": 21045.38, + "probability": 0.7577 + }, + { + "start": 21045.74, + "end": 21047.26, + "probability": 0.5289 + }, + { + "start": 21047.68, + "end": 21048.58, + "probability": 0.8637 + }, + { + "start": 21048.64, + "end": 21051.64, + "probability": 0.7778 + }, + { + "start": 21051.72, + "end": 21054.08, + "probability": 0.926 + }, + { + "start": 21054.5, + "end": 21058.16, + "probability": 0.6835 + }, + { + "start": 21059.52, + "end": 21059.84, + "probability": 0.3678 + }, + { + "start": 21059.98, + "end": 21064.28, + "probability": 0.9763 + }, + { + "start": 21064.46, + "end": 21070.76, + "probability": 0.9909 + }, + { + "start": 21070.84, + "end": 21072.1, + "probability": 0.8777 + }, + { + "start": 21073.84, + "end": 21075.34, + "probability": 0.8587 + }, + { + "start": 21076.18, + "end": 21080.12, + "probability": 0.9915 + }, + { + "start": 21081.3, + "end": 21082.3, + "probability": 0.9828 + }, + { + "start": 21083.34, + "end": 21084.13, + "probability": 0.896 + }, + { + "start": 21086.38, + "end": 21087.16, + "probability": 0.7219 + }, + { + "start": 21087.26, + "end": 21091.58, + "probability": 0.9747 + }, + { + "start": 21092.46, + "end": 21093.08, + "probability": 0.9841 + }, + { + "start": 21093.7, + "end": 21094.36, + "probability": 0.8654 + }, + { + "start": 21094.44, + "end": 21095.34, + "probability": 0.6135 + }, + { + "start": 21095.42, + "end": 21096.26, + "probability": 0.7976 + }, + { + "start": 21096.36, + "end": 21096.78, + "probability": 0.8204 + }, + { + "start": 21096.88, + "end": 21097.22, + "probability": 0.7436 + }, + { + "start": 21097.28, + "end": 21100.5, + "probability": 0.8368 + }, + { + "start": 21100.58, + "end": 21102.14, + "probability": 0.9758 + }, + { + "start": 21102.24, + "end": 21103.46, + "probability": 0.8086 + }, + { + "start": 21103.5, + "end": 21105.74, + "probability": 0.7465 + }, + { + "start": 21106.46, + "end": 21112.46, + "probability": 0.9979 + }, + { + "start": 21112.46, + "end": 21118.9, + "probability": 0.9918 + }, + { + "start": 21121.34, + "end": 21123.18, + "probability": 0.9982 + }, + { + "start": 21126.52, + "end": 21134.98, + "probability": 0.9967 + }, + { + "start": 21136.76, + "end": 21142.54, + "probability": 0.9867 + }, + { + "start": 21143.98, + "end": 21147.8, + "probability": 0.9901 + }, + { + "start": 21149.3, + "end": 21152.92, + "probability": 0.9935 + }, + { + "start": 21152.92, + "end": 21156.78, + "probability": 0.9969 + }, + { + "start": 21160.64, + "end": 21168.54, + "probability": 0.988 + }, + { + "start": 21168.96, + "end": 21172.68, + "probability": 0.9189 + }, + { + "start": 21173.36, + "end": 21180.1, + "probability": 0.9723 + }, + { + "start": 21182.06, + "end": 21184.88, + "probability": 0.8027 + }, + { + "start": 21186.08, + "end": 21188.44, + "probability": 0.9961 + }, + { + "start": 21188.68, + "end": 21192.38, + "probability": 0.9966 + }, + { + "start": 21193.2, + "end": 21195.64, + "probability": 0.8126 + }, + { + "start": 21196.48, + "end": 21197.06, + "probability": 0.8613 + }, + { + "start": 21198.36, + "end": 21201.38, + "probability": 0.8789 + }, + { + "start": 21203.3, + "end": 21208.76, + "probability": 0.9944 + }, + { + "start": 21208.96, + "end": 21214.2, + "probability": 0.8746 + }, + { + "start": 21215.08, + "end": 21222.78, + "probability": 0.9838 + }, + { + "start": 21223.36, + "end": 21223.96, + "probability": 0.5225 + }, + { + "start": 21224.54, + "end": 21225.76, + "probability": 0.9924 + }, + { + "start": 21227.48, + "end": 21228.5, + "probability": 0.8759 + }, + { + "start": 21229.68, + "end": 21235.1, + "probability": 0.9632 + }, + { + "start": 21237.12, + "end": 21242.22, + "probability": 0.8954 + }, + { + "start": 21243.14, + "end": 21252.94, + "probability": 0.9872 + }, + { + "start": 21253.54, + "end": 21254.82, + "probability": 0.9492 + }, + { + "start": 21255.64, + "end": 21258.34, + "probability": 0.9115 + }, + { + "start": 21259.0, + "end": 21260.06, + "probability": 0.6708 + }, + { + "start": 21263.24, + "end": 21269.58, + "probability": 0.9084 + }, + { + "start": 21270.72, + "end": 21271.76, + "probability": 0.9637 + }, + { + "start": 21273.36, + "end": 21280.6, + "probability": 0.9702 + }, + { + "start": 21281.82, + "end": 21283.72, + "probability": 0.637 + }, + { + "start": 21284.7, + "end": 21286.6, + "probability": 0.8428 + }, + { + "start": 21287.6, + "end": 21289.26, + "probability": 0.9446 + }, + { + "start": 21291.14, + "end": 21292.64, + "probability": 0.6394 + }, + { + "start": 21293.16, + "end": 21294.32, + "probability": 0.7779 + }, + { + "start": 21294.4, + "end": 21295.74, + "probability": 0.8937 + }, + { + "start": 21296.1, + "end": 21301.34, + "probability": 0.9358 + }, + { + "start": 21302.3, + "end": 21305.88, + "probability": 0.9891 + }, + { + "start": 21307.32, + "end": 21308.81, + "probability": 0.9349 + }, + { + "start": 21309.52, + "end": 21310.4, + "probability": 0.5799 + }, + { + "start": 21311.44, + "end": 21313.48, + "probability": 0.9879 + }, + { + "start": 21314.02, + "end": 21315.28, + "probability": 0.9081 + }, + { + "start": 21316.0, + "end": 21317.12, + "probability": 0.8709 + }, + { + "start": 21319.36, + "end": 21320.68, + "probability": 0.7304 + }, + { + "start": 21321.16, + "end": 21329.2, + "probability": 0.9893 + }, + { + "start": 21330.7, + "end": 21337.52, + "probability": 0.9919 + }, + { + "start": 21339.26, + "end": 21341.12, + "probability": 0.643 + }, + { + "start": 21341.88, + "end": 21344.0, + "probability": 0.9025 + }, + { + "start": 21346.26, + "end": 21353.52, + "probability": 0.9904 + }, + { + "start": 21354.26, + "end": 21354.84, + "probability": 0.8066 + }, + { + "start": 21355.82, + "end": 21358.36, + "probability": 0.9185 + }, + { + "start": 21359.46, + "end": 21362.76, + "probability": 0.9351 + }, + { + "start": 21363.04, + "end": 21365.24, + "probability": 0.9923 + }, + { + "start": 21366.74, + "end": 21375.94, + "probability": 0.9878 + }, + { + "start": 21377.82, + "end": 21382.12, + "probability": 0.7975 + }, + { + "start": 21382.12, + "end": 21385.9, + "probability": 0.984 + }, + { + "start": 21388.12, + "end": 21389.3, + "probability": 0.7034 + }, + { + "start": 21389.4, + "end": 21395.38, + "probability": 0.9175 + }, + { + "start": 21395.38, + "end": 21401.94, + "probability": 0.9896 + }, + { + "start": 21403.46, + "end": 21404.36, + "probability": 0.7875 + }, + { + "start": 21404.54, + "end": 21405.62, + "probability": 0.7082 + }, + { + "start": 21405.72, + "end": 21409.62, + "probability": 0.9797 + }, + { + "start": 21410.76, + "end": 21414.61, + "probability": 0.9834 + }, + { + "start": 21414.86, + "end": 21416.1, + "probability": 0.978 + }, + { + "start": 21416.58, + "end": 21417.92, + "probability": 0.9783 + }, + { + "start": 21418.44, + "end": 21427.06, + "probability": 0.9924 + }, + { + "start": 21427.16, + "end": 21429.04, + "probability": 0.9748 + }, + { + "start": 21431.92, + "end": 21433.68, + "probability": 0.666 + }, + { + "start": 21434.08, + "end": 21438.84, + "probability": 0.9958 + }, + { + "start": 21440.48, + "end": 21445.5, + "probability": 0.9878 + }, + { + "start": 21446.54, + "end": 21448.69, + "probability": 0.9805 + }, + { + "start": 21449.96, + "end": 21452.84, + "probability": 0.9829 + }, + { + "start": 21454.18, + "end": 21458.94, + "probability": 0.9478 + }, + { + "start": 21459.06, + "end": 21459.64, + "probability": 0.5334 + }, + { + "start": 21459.7, + "end": 21461.14, + "probability": 0.8575 + }, + { + "start": 21462.28, + "end": 21464.6, + "probability": 0.9815 + }, + { + "start": 21466.44, + "end": 21468.6, + "probability": 0.98 + }, + { + "start": 21470.46, + "end": 21474.04, + "probability": 0.9966 + }, + { + "start": 21475.17, + "end": 21481.78, + "probability": 0.1246 + }, + { + "start": 21481.78, + "end": 21482.72, + "probability": 0.0433 + }, + { + "start": 21482.72, + "end": 21486.22, + "probability": 0.6649 + }, + { + "start": 21487.0, + "end": 21494.56, + "probability": 0.9933 + }, + { + "start": 21495.68, + "end": 21499.38, + "probability": 0.9889 + }, + { + "start": 21501.38, + "end": 21505.08, + "probability": 0.7762 + }, + { + "start": 21505.24, + "end": 21506.72, + "probability": 0.9194 + }, + { + "start": 21506.82, + "end": 21508.02, + "probability": 0.9028 + }, + { + "start": 21508.5, + "end": 21509.76, + "probability": 0.8501 + }, + { + "start": 21512.9, + "end": 21518.06, + "probability": 0.9901 + }, + { + "start": 21518.54, + "end": 21520.94, + "probability": 0.9048 + }, + { + "start": 21521.52, + "end": 21522.46, + "probability": 0.9746 + }, + { + "start": 21525.44, + "end": 21529.74, + "probability": 0.9859 + }, + { + "start": 21530.96, + "end": 21534.6, + "probability": 0.9794 + }, + { + "start": 21536.0, + "end": 21539.58, + "probability": 0.9921 + }, + { + "start": 21541.68, + "end": 21545.08, + "probability": 0.8492 + }, + { + "start": 21545.1, + "end": 21545.66, + "probability": 0.8412 + }, + { + "start": 21545.92, + "end": 21548.58, + "probability": 0.9946 + }, + { + "start": 21549.22, + "end": 21550.88, + "probability": 0.8561 + }, + { + "start": 21553.08, + "end": 21556.66, + "probability": 0.9907 + }, + { + "start": 21558.46, + "end": 21562.18, + "probability": 0.995 + }, + { + "start": 21563.76, + "end": 21564.46, + "probability": 0.9149 + }, + { + "start": 21565.42, + "end": 21571.38, + "probability": 0.9871 + }, + { + "start": 21572.66, + "end": 21574.88, + "probability": 0.9369 + }, + { + "start": 21575.46, + "end": 21576.74, + "probability": 0.9647 + }, + { + "start": 21577.94, + "end": 21585.84, + "probability": 0.8548 + }, + { + "start": 21586.26, + "end": 21593.62, + "probability": 0.9637 + }, + { + "start": 21594.96, + "end": 21597.7, + "probability": 0.8788 + }, + { + "start": 21598.84, + "end": 21600.78, + "probability": 0.9795 + }, + { + "start": 21602.4, + "end": 21604.54, + "probability": 0.9651 + }, + { + "start": 21605.94, + "end": 21607.62, + "probability": 0.8442 + }, + { + "start": 21607.7, + "end": 21609.7, + "probability": 0.9898 + }, + { + "start": 21609.76, + "end": 21610.98, + "probability": 0.9316 + }, + { + "start": 21614.06, + "end": 21619.96, + "probability": 0.7463 + }, + { + "start": 21620.4, + "end": 21621.94, + "probability": 0.7887 + }, + { + "start": 21622.56, + "end": 21628.02, + "probability": 0.9941 + }, + { + "start": 21628.62, + "end": 21631.0, + "probability": 0.8965 + }, + { + "start": 21633.28, + "end": 21641.12, + "probability": 0.9922 + }, + { + "start": 21642.3, + "end": 21646.08, + "probability": 0.9155 + }, + { + "start": 21647.2, + "end": 21648.68, + "probability": 0.709 + }, + { + "start": 21649.42, + "end": 21652.79, + "probability": 0.9636 + }, + { + "start": 21653.5, + "end": 21656.4, + "probability": 0.9596 + }, + { + "start": 21657.52, + "end": 21659.78, + "probability": 0.8504 + }, + { + "start": 21660.84, + "end": 21661.86, + "probability": 0.953 + }, + { + "start": 21662.52, + "end": 21663.28, + "probability": 0.9859 + }, + { + "start": 21664.8, + "end": 21666.46, + "probability": 0.8051 + }, + { + "start": 21669.02, + "end": 21675.22, + "probability": 0.9545 + }, + { + "start": 21675.3, + "end": 21676.64, + "probability": 0.9324 + }, + { + "start": 21677.54, + "end": 21678.54, + "probability": 0.949 + }, + { + "start": 21681.26, + "end": 21684.38, + "probability": 0.9934 + }, + { + "start": 21685.0, + "end": 21690.72, + "probability": 0.9975 + }, + { + "start": 21690.72, + "end": 21697.4, + "probability": 0.9953 + }, + { + "start": 21700.66, + "end": 21706.0, + "probability": 0.9508 + }, + { + "start": 21707.88, + "end": 21710.92, + "probability": 0.9287 + }, + { + "start": 21711.88, + "end": 21713.9, + "probability": 0.6837 + }, + { + "start": 21714.9, + "end": 21716.56, + "probability": 0.9733 + }, + { + "start": 21718.9, + "end": 21723.6, + "probability": 0.9376 + }, + { + "start": 21723.66, + "end": 21725.42, + "probability": 0.8544 + }, + { + "start": 21727.8, + "end": 21729.36, + "probability": 0.9558 + }, + { + "start": 21731.3, + "end": 21732.4, + "probability": 0.9077 + }, + { + "start": 21732.46, + "end": 21737.12, + "probability": 0.9602 + }, + { + "start": 21737.9, + "end": 21745.96, + "probability": 0.9976 + }, + { + "start": 21746.96, + "end": 21747.78, + "probability": 0.8179 + }, + { + "start": 21747.88, + "end": 21750.18, + "probability": 0.9675 + }, + { + "start": 21750.9, + "end": 21754.04, + "probability": 0.9714 + }, + { + "start": 21755.5, + "end": 21759.78, + "probability": 0.9948 + }, + { + "start": 21760.2, + "end": 21764.3, + "probability": 0.9924 + }, + { + "start": 21767.0, + "end": 21773.0, + "probability": 0.9974 + }, + { + "start": 21775.68, + "end": 21777.94, + "probability": 0.7891 + }, + { + "start": 21779.26, + "end": 21782.6, + "probability": 0.9966 + }, + { + "start": 21784.82, + "end": 21786.52, + "probability": 0.969 + }, + { + "start": 21787.1, + "end": 21791.82, + "probability": 0.9677 + }, + { + "start": 21794.24, + "end": 21800.66, + "probability": 0.9932 + }, + { + "start": 21801.1, + "end": 21802.44, + "probability": 0.7504 + }, + { + "start": 21802.96, + "end": 21805.94, + "probability": 0.995 + }, + { + "start": 21807.78, + "end": 21809.74, + "probability": 0.7957 + }, + { + "start": 21811.12, + "end": 21813.52, + "probability": 0.999 + }, + { + "start": 21814.86, + "end": 21816.48, + "probability": 0.9807 + }, + { + "start": 21817.48, + "end": 21818.76, + "probability": 0.9927 + }, + { + "start": 21819.72, + "end": 21821.08, + "probability": 0.9219 + }, + { + "start": 21821.9, + "end": 21824.4, + "probability": 0.9924 + }, + { + "start": 21827.9, + "end": 21829.84, + "probability": 0.0821 + }, + { + "start": 21831.36, + "end": 21831.96, + "probability": 0.1761 + }, + { + "start": 21831.96, + "end": 21831.96, + "probability": 0.0323 + }, + { + "start": 21831.96, + "end": 21831.96, + "probability": 0.0296 + }, + { + "start": 21831.96, + "end": 21833.56, + "probability": 0.1944 + }, + { + "start": 21833.56, + "end": 21836.86, + "probability": 0.8748 + }, + { + "start": 21838.92, + "end": 21845.56, + "probability": 0.9937 + }, + { + "start": 21855.94, + "end": 21855.94, + "probability": 0.1 + }, + { + "start": 21855.94, + "end": 21858.84, + "probability": 0.8255 + }, + { + "start": 21859.02, + "end": 21859.42, + "probability": 0.6456 + }, + { + "start": 21859.5, + "end": 21860.49, + "probability": 0.9863 + }, + { + "start": 21860.64, + "end": 21863.12, + "probability": 0.9585 + }, + { + "start": 21863.46, + "end": 21864.08, + "probability": 0.3015 + }, + { + "start": 21864.52, + "end": 21866.58, + "probability": 0.9895 + }, + { + "start": 21866.68, + "end": 21868.4, + "probability": 0.9884 + }, + { + "start": 21868.48, + "end": 21869.0, + "probability": 0.8182 + }, + { + "start": 21872.66, + "end": 21876.96, + "probability": 0.9023 + }, + { + "start": 21879.74, + "end": 21883.9, + "probability": 0.9731 + }, + { + "start": 21884.94, + "end": 21888.9, + "probability": 0.9922 + }, + { + "start": 21890.22, + "end": 21893.72, + "probability": 0.9961 + }, + { + "start": 21895.92, + "end": 21903.36, + "probability": 0.9584 + }, + { + "start": 21910.7, + "end": 21911.22, + "probability": 0.3823 + }, + { + "start": 21911.8, + "end": 21914.86, + "probability": 0.6746 + }, + { + "start": 21916.0, + "end": 21918.62, + "probability": 0.9674 + }, + { + "start": 21919.7, + "end": 21921.44, + "probability": 0.9699 + }, + { + "start": 21922.32, + "end": 21923.42, + "probability": 0.7615 + }, + { + "start": 21923.5, + "end": 21927.38, + "probability": 0.967 + }, + { + "start": 21927.6, + "end": 21928.64, + "probability": 0.6405 + }, + { + "start": 21928.8, + "end": 21931.78, + "probability": 0.951 + }, + { + "start": 21933.94, + "end": 21934.46, + "probability": 0.8493 + }, + { + "start": 21934.58, + "end": 21934.92, + "probability": 0.6816 + }, + { + "start": 21935.0, + "end": 21937.16, + "probability": 0.9751 + }, + { + "start": 21937.16, + "end": 21940.99, + "probability": 0.9912 + }, + { + "start": 21941.76, + "end": 21948.76, + "probability": 0.9894 + }, + { + "start": 21951.32, + "end": 21952.0, + "probability": 0.5636 + }, + { + "start": 21952.8, + "end": 21954.9, + "probability": 0.9984 + }, + { + "start": 21954.96, + "end": 21956.34, + "probability": 0.9954 + }, + { + "start": 21957.94, + "end": 21961.66, + "probability": 0.9885 + }, + { + "start": 21962.2, + "end": 21963.16, + "probability": 0.9717 + }, + { + "start": 21964.1, + "end": 21967.7, + "probability": 0.9961 + }, + { + "start": 21968.72, + "end": 21971.6, + "probability": 0.9676 + }, + { + "start": 21974.88, + "end": 21978.02, + "probability": 0.8409 + }, + { + "start": 21979.14, + "end": 21984.24, + "probability": 0.996 + }, + { + "start": 21984.94, + "end": 21986.12, + "probability": 0.8459 + }, + { + "start": 21987.8, + "end": 21990.02, + "probability": 0.9907 + }, + { + "start": 21990.88, + "end": 21992.98, + "probability": 0.9914 + }, + { + "start": 21993.68, + "end": 21994.12, + "probability": 0.9223 + }, + { + "start": 21996.28, + "end": 22002.64, + "probability": 0.9918 + }, + { + "start": 22002.64, + "end": 22009.38, + "probability": 0.996 + }, + { + "start": 22009.48, + "end": 22012.72, + "probability": 0.9862 + }, + { + "start": 22012.72, + "end": 22014.96, + "probability": 0.8457 + }, + { + "start": 22016.34, + "end": 22021.82, + "probability": 0.9913 + }, + { + "start": 22022.38, + "end": 22027.62, + "probability": 0.9973 + }, + { + "start": 22028.42, + "end": 22030.54, + "probability": 0.6584 + }, + { + "start": 22031.06, + "end": 22033.3, + "probability": 0.9749 + }, + { + "start": 22034.82, + "end": 22035.5, + "probability": 0.5467 + }, + { + "start": 22036.42, + "end": 22037.24, + "probability": 0.9213 + }, + { + "start": 22039.12, + "end": 22042.46, + "probability": 0.9862 + }, + { + "start": 22043.56, + "end": 22047.32, + "probability": 0.9937 + }, + { + "start": 22048.7, + "end": 22053.46, + "probability": 0.8838 + }, + { + "start": 22054.2, + "end": 22057.16, + "probability": 0.9513 + }, + { + "start": 22057.16, + "end": 22061.06, + "probability": 0.9956 + }, + { + "start": 22062.74, + "end": 22066.2, + "probability": 0.9735 + }, + { + "start": 22067.08, + "end": 22073.38, + "probability": 0.9831 + }, + { + "start": 22076.64, + "end": 22079.66, + "probability": 0.9883 + }, + { + "start": 22079.84, + "end": 22081.22, + "probability": 0.9894 + }, + { + "start": 22081.94, + "end": 22082.76, + "probability": 0.6558 + }, + { + "start": 22085.52, + "end": 22086.18, + "probability": 0.6269 + }, + { + "start": 22086.26, + "end": 22087.32, + "probability": 0.8441 + }, + { + "start": 22087.5, + "end": 22089.8, + "probability": 0.96 + }, + { + "start": 22090.48, + "end": 22091.54, + "probability": 0.9792 + }, + { + "start": 22092.66, + "end": 22093.98, + "probability": 0.7943 + }, + { + "start": 22094.08, + "end": 22095.5, + "probability": 0.9766 + }, + { + "start": 22095.76, + "end": 22098.56, + "probability": 0.9692 + }, + { + "start": 22099.9, + "end": 22103.48, + "probability": 0.9758 + }, + { + "start": 22103.8, + "end": 22104.58, + "probability": 0.5729 + }, + { + "start": 22104.6, + "end": 22105.94, + "probability": 0.9529 + }, + { + "start": 22107.02, + "end": 22109.9, + "probability": 0.9976 + }, + { + "start": 22113.22, + "end": 22116.25, + "probability": 0.7596 + }, + { + "start": 22117.3, + "end": 22119.0, + "probability": 0.9593 + }, + { + "start": 22119.22, + "end": 22122.04, + "probability": 0.6994 + }, + { + "start": 22122.14, + "end": 22123.4, + "probability": 0.9937 + }, + { + "start": 22123.68, + "end": 22128.44, + "probability": 0.9915 + }, + { + "start": 22128.52, + "end": 22129.04, + "probability": 0.5179 + }, + { + "start": 22129.06, + "end": 22131.86, + "probability": 0.9842 + }, + { + "start": 22131.86, + "end": 22133.06, + "probability": 0.9153 + }, + { + "start": 22135.24, + "end": 22139.17, + "probability": 0.9951 + }, + { + "start": 22140.6, + "end": 22147.56, + "probability": 0.984 + }, + { + "start": 22149.32, + "end": 22149.6, + "probability": 0.5056 + }, + { + "start": 22149.72, + "end": 22150.48, + "probability": 0.7268 + }, + { + "start": 22150.6, + "end": 22155.34, + "probability": 0.9964 + }, + { + "start": 22155.96, + "end": 22157.58, + "probability": 0.8603 + }, + { + "start": 22158.3, + "end": 22161.16, + "probability": 0.846 + }, + { + "start": 22161.86, + "end": 22164.78, + "probability": 0.9865 + }, + { + "start": 22165.04, + "end": 22166.1, + "probability": 0.9609 + }, + { + "start": 22167.58, + "end": 22170.94, + "probability": 0.9878 + }, + { + "start": 22171.88, + "end": 22174.72, + "probability": 0.9966 + }, + { + "start": 22174.72, + "end": 22177.38, + "probability": 0.9974 + }, + { + "start": 22177.98, + "end": 22178.82, + "probability": 0.9256 + }, + { + "start": 22180.42, + "end": 22180.96, + "probability": 0.4986 + }, + { + "start": 22180.96, + "end": 22182.0, + "probability": 0.5623 + }, + { + "start": 22182.04, + "end": 22182.92, + "probability": 0.9316 + }, + { + "start": 22183.04, + "end": 22186.4, + "probability": 0.9466 + }, + { + "start": 22187.74, + "end": 22192.92, + "probability": 0.8865 + }, + { + "start": 22195.64, + "end": 22198.1, + "probability": 0.9445 + }, + { + "start": 22198.18, + "end": 22199.56, + "probability": 0.8171 + }, + { + "start": 22200.26, + "end": 22201.26, + "probability": 0.4034 + }, + { + "start": 22201.68, + "end": 22202.5, + "probability": 0.8301 + }, + { + "start": 22203.18, + "end": 22205.7, + "probability": 0.9463 + }, + { + "start": 22207.0, + "end": 22212.22, + "probability": 0.9961 + }, + { + "start": 22212.4, + "end": 22216.68, + "probability": 0.893 + }, + { + "start": 22216.88, + "end": 22217.66, + "probability": 0.5683 + }, + { + "start": 22219.12, + "end": 22219.62, + "probability": 0.7798 + }, + { + "start": 22219.74, + "end": 22220.12, + "probability": 0.5479 + }, + { + "start": 22220.12, + "end": 22220.19, + "probability": 0.5319 + }, + { + "start": 22221.08, + "end": 22222.96, + "probability": 0.9966 + }, + { + "start": 22225.5, + "end": 22226.92, + "probability": 0.6725 + }, + { + "start": 22227.1, + "end": 22228.95, + "probability": 0.6778 + }, + { + "start": 22229.3, + "end": 22231.14, + "probability": 0.9045 + }, + { + "start": 22231.24, + "end": 22233.07, + "probability": 0.9785 + }, + { + "start": 22234.82, + "end": 22237.2, + "probability": 0.8486 + }, + { + "start": 22238.5, + "end": 22239.72, + "probability": 0.9945 + }, + { + "start": 22240.46, + "end": 22242.62, + "probability": 0.9967 + }, + { + "start": 22243.0, + "end": 22248.06, + "probability": 0.9944 + }, + { + "start": 22248.9, + "end": 22250.52, + "probability": 0.8395 + }, + { + "start": 22250.84, + "end": 22253.78, + "probability": 0.8441 + }, + { + "start": 22253.9, + "end": 22255.3, + "probability": 0.8671 + }, + { + "start": 22256.2, + "end": 22259.34, + "probability": 0.9592 + }, + { + "start": 22259.88, + "end": 22261.0, + "probability": 0.7443 + }, + { + "start": 22262.34, + "end": 22263.62, + "probability": 0.6353 + }, + { + "start": 22264.14, + "end": 22267.42, + "probability": 0.7801 + }, + { + "start": 22268.12, + "end": 22270.16, + "probability": 0.9738 + }, + { + "start": 22270.26, + "end": 22272.4, + "probability": 0.8263 + }, + { + "start": 22274.66, + "end": 22277.55, + "probability": 0.9609 + }, + { + "start": 22277.7, + "end": 22278.54, + "probability": 0.8367 + }, + { + "start": 22278.58, + "end": 22279.68, + "probability": 0.8934 + }, + { + "start": 22279.86, + "end": 22281.24, + "probability": 0.8301 + }, + { + "start": 22281.5, + "end": 22286.98, + "probability": 0.9566 + }, + { + "start": 22290.26, + "end": 22293.7, + "probability": 0.786 + }, + { + "start": 22294.34, + "end": 22297.06, + "probability": 0.9883 + }, + { + "start": 22297.18, + "end": 22298.48, + "probability": 0.583 + }, + { + "start": 22299.28, + "end": 22302.08, + "probability": 0.9989 + }, + { + "start": 22302.66, + "end": 22304.9, + "probability": 0.9163 + }, + { + "start": 22305.2, + "end": 22308.26, + "probability": 0.8236 + }, + { + "start": 22308.78, + "end": 22314.98, + "probability": 0.999 + }, + { + "start": 22315.14, + "end": 22317.08, + "probability": 0.8399 + }, + { + "start": 22318.74, + "end": 22321.42, + "probability": 0.9928 + }, + { + "start": 22322.12, + "end": 22325.4, + "probability": 0.9961 + }, + { + "start": 22325.4, + "end": 22329.88, + "probability": 0.9971 + }, + { + "start": 22330.66, + "end": 22335.23, + "probability": 0.9753 + }, + { + "start": 22335.86, + "end": 22336.32, + "probability": 0.8502 + }, + { + "start": 22336.58, + "end": 22337.22, + "probability": 0.7825 + }, + { + "start": 22339.06, + "end": 22342.56, + "probability": 0.9148 + }, + { + "start": 22343.24, + "end": 22344.34, + "probability": 0.8672 + }, + { + "start": 22344.46, + "end": 22346.45, + "probability": 0.9907 + }, + { + "start": 22346.62, + "end": 22347.46, + "probability": 0.8017 + }, + { + "start": 22347.84, + "end": 22350.4, + "probability": 0.9924 + }, + { + "start": 22350.92, + "end": 22351.84, + "probability": 0.7362 + }, + { + "start": 22355.4, + "end": 22361.02, + "probability": 0.9923 + }, + { + "start": 22361.36, + "end": 22362.1, + "probability": 0.8804 + }, + { + "start": 22363.24, + "end": 22366.58, + "probability": 0.998 + }, + { + "start": 22366.58, + "end": 22373.12, + "probability": 0.9945 + }, + { + "start": 22375.32, + "end": 22378.66, + "probability": 0.9576 + }, + { + "start": 22380.06, + "end": 22382.34, + "probability": 0.8703 + }, + { + "start": 22383.28, + "end": 22391.38, + "probability": 0.986 + }, + { + "start": 22391.74, + "end": 22392.58, + "probability": 0.1591 + }, + { + "start": 22396.28, + "end": 22397.44, + "probability": 0.8427 + }, + { + "start": 22397.46, + "end": 22400.76, + "probability": 0.9266 + }, + { + "start": 22401.46, + "end": 22403.42, + "probability": 0.9702 + }, + { + "start": 22404.84, + "end": 22407.56, + "probability": 0.9937 + }, + { + "start": 22409.94, + "end": 22412.92, + "probability": 0.9913 + }, + { + "start": 22413.34, + "end": 22413.78, + "probability": 0.5473 + }, + { + "start": 22414.42, + "end": 22418.43, + "probability": 0.9889 + }, + { + "start": 22419.56, + "end": 22420.61, + "probability": 0.9429 + }, + { + "start": 22421.92, + "end": 22422.6, + "probability": 0.7908 + }, + { + "start": 22423.76, + "end": 22424.45, + "probability": 0.9575 + }, + { + "start": 22424.92, + "end": 22429.92, + "probability": 0.9321 + }, + { + "start": 22430.58, + "end": 22434.86, + "probability": 0.983 + }, + { + "start": 22435.82, + "end": 22436.8, + "probability": 0.9023 + }, + { + "start": 22437.4, + "end": 22438.44, + "probability": 0.6991 + }, + { + "start": 22438.6, + "end": 22441.26, + "probability": 0.88 + }, + { + "start": 22442.98, + "end": 22444.92, + "probability": 0.9966 + }, + { + "start": 22445.8, + "end": 22446.56, + "probability": 0.8791 + }, + { + "start": 22448.02, + "end": 22448.88, + "probability": 0.9897 + }, + { + "start": 22449.98, + "end": 22450.8, + "probability": 0.8574 + }, + { + "start": 22451.16, + "end": 22456.8, + "probability": 0.9784 + }, + { + "start": 22458.58, + "end": 22459.38, + "probability": 0.7606 + }, + { + "start": 22459.56, + "end": 22460.38, + "probability": 0.9688 + }, + { + "start": 22460.52, + "end": 22463.22, + "probability": 0.9887 + }, + { + "start": 22464.44, + "end": 22466.06, + "probability": 0.9673 + }, + { + "start": 22467.24, + "end": 22471.38, + "probability": 0.9912 + }, + { + "start": 22471.38, + "end": 22475.76, + "probability": 0.9961 + }, + { + "start": 22477.16, + "end": 22479.16, + "probability": 0.8613 + }, + { + "start": 22479.8, + "end": 22482.14, + "probability": 0.7616 + }, + { + "start": 22482.56, + "end": 22484.06, + "probability": 0.642 + }, + { + "start": 22484.74, + "end": 22486.46, + "probability": 0.9907 + }, + { + "start": 22489.24, + "end": 22492.44, + "probability": 0.8557 + }, + { + "start": 22493.4, + "end": 22497.42, + "probability": 0.9879 + }, + { + "start": 22497.42, + "end": 22505.08, + "probability": 0.9971 + }, + { + "start": 22507.72, + "end": 22509.02, + "probability": 0.8324 + }, + { + "start": 22509.92, + "end": 22513.31, + "probability": 0.9534 + }, + { + "start": 22514.26, + "end": 22516.32, + "probability": 0.9824 + }, + { + "start": 22518.82, + "end": 22522.58, + "probability": 0.9869 + }, + { + "start": 22524.6, + "end": 22527.04, + "probability": 0.9976 + }, + { + "start": 22527.1, + "end": 22528.06, + "probability": 0.9712 + }, + { + "start": 22528.72, + "end": 22531.32, + "probability": 0.9735 + }, + { + "start": 22533.74, + "end": 22534.12, + "probability": 0.9434 + }, + { + "start": 22534.22, + "end": 22537.08, + "probability": 0.9913 + }, + { + "start": 22538.08, + "end": 22538.86, + "probability": 0.9693 + }, + { + "start": 22539.64, + "end": 22542.36, + "probability": 0.96 + }, + { + "start": 22542.36, + "end": 22546.7, + "probability": 0.9973 + }, + { + "start": 22547.78, + "end": 22549.1, + "probability": 0.9983 + }, + { + "start": 22549.12, + "end": 22550.22, + "probability": 0.8806 + }, + { + "start": 22550.28, + "end": 22550.8, + "probability": 0.8134 + }, + { + "start": 22552.8, + "end": 22555.08, + "probability": 0.9492 + }, + { + "start": 22556.38, + "end": 22558.88, + "probability": 0.9697 + }, + { + "start": 22559.46, + "end": 22561.34, + "probability": 0.8766 + }, + { + "start": 22562.62, + "end": 22569.32, + "probability": 0.8718 + }, + { + "start": 22570.54, + "end": 22572.36, + "probability": 0.9916 + }, + { + "start": 22573.18, + "end": 22578.6, + "probability": 0.9941 + }, + { + "start": 22582.34, + "end": 22584.6, + "probability": 0.9619 + }, + { + "start": 22585.54, + "end": 22588.24, + "probability": 0.985 + }, + { + "start": 22589.08, + "end": 22592.16, + "probability": 0.9833 + }, + { + "start": 22594.14, + "end": 22596.36, + "probability": 0.9896 + }, + { + "start": 22596.82, + "end": 22598.52, + "probability": 0.9953 + }, + { + "start": 22600.4, + "end": 22605.36, + "probability": 0.9978 + }, + { + "start": 22606.14, + "end": 22610.86, + "probability": 0.9972 + }, + { + "start": 22611.76, + "end": 22614.8, + "probability": 0.9459 + }, + { + "start": 22616.36, + "end": 22616.82, + "probability": 0.8657 + }, + { + "start": 22616.96, + "end": 22618.08, + "probability": 0.9318 + }, + { + "start": 22618.22, + "end": 22620.12, + "probability": 0.8782 + }, + { + "start": 22620.2, + "end": 22623.16, + "probability": 0.9251 + }, + { + "start": 22624.02, + "end": 22624.72, + "probability": 0.9552 + }, + { + "start": 22625.64, + "end": 22630.62, + "probability": 0.9622 + }, + { + "start": 22630.98, + "end": 22635.02, + "probability": 0.9971 + }, + { + "start": 22636.46, + "end": 22638.74, + "probability": 0.9987 + }, + { + "start": 22640.78, + "end": 22643.42, + "probability": 0.9961 + }, + { + "start": 22643.54, + "end": 22647.42, + "probability": 0.8645 + }, + { + "start": 22647.5, + "end": 22649.2, + "probability": 0.9875 + }, + { + "start": 22649.78, + "end": 22651.46, + "probability": 0.9965 + }, + { + "start": 22653.36, + "end": 22654.3, + "probability": 0.8438 + }, + { + "start": 22655.6, + "end": 22660.4, + "probability": 0.9957 + }, + { + "start": 22663.8, + "end": 22666.74, + "probability": 0.9985 + }, + { + "start": 22667.5, + "end": 22669.82, + "probability": 0.9991 + }, + { + "start": 22670.56, + "end": 22674.54, + "probability": 0.9973 + }, + { + "start": 22677.86, + "end": 22678.54, + "probability": 0.5841 + }, + { + "start": 22679.1, + "end": 22683.22, + "probability": 0.9941 + }, + { + "start": 22684.48, + "end": 22686.44, + "probability": 0.9882 + }, + { + "start": 22687.8, + "end": 22692.36, + "probability": 0.9874 + }, + { + "start": 22693.88, + "end": 22697.84, + "probability": 0.9299 + }, + { + "start": 22698.78, + "end": 22700.66, + "probability": 0.9623 + }, + { + "start": 22701.58, + "end": 22702.24, + "probability": 0.9536 + }, + { + "start": 22703.72, + "end": 22704.38, + "probability": 0.973 + }, + { + "start": 22706.74, + "end": 22707.38, + "probability": 0.9282 + }, + { + "start": 22709.14, + "end": 22709.82, + "probability": 0.9586 + }, + { + "start": 22711.86, + "end": 22713.76, + "probability": 0.9928 + }, + { + "start": 22714.86, + "end": 22715.66, + "probability": 0.6801 + }, + { + "start": 22715.96, + "end": 22718.54, + "probability": 0.9901 + }, + { + "start": 22719.28, + "end": 22722.7, + "probability": 0.9893 + }, + { + "start": 22724.7, + "end": 22725.76, + "probability": 0.9141 + }, + { + "start": 22726.64, + "end": 22732.86, + "probability": 0.989 + }, + { + "start": 22736.5, + "end": 22738.8, + "probability": 0.9398 + }, + { + "start": 22739.5, + "end": 22743.62, + "probability": 0.9958 + }, + { + "start": 22747.86, + "end": 22751.36, + "probability": 0.9946 + }, + { + "start": 22753.2, + "end": 22757.64, + "probability": 0.9958 + }, + { + "start": 22757.64, + "end": 22763.02, + "probability": 0.9922 + }, + { + "start": 22763.7, + "end": 22766.04, + "probability": 0.9968 + }, + { + "start": 22767.9, + "end": 22775.76, + "probability": 0.9919 + }, + { + "start": 22775.84, + "end": 22776.92, + "probability": 0.9555 + }, + { + "start": 22781.02, + "end": 22782.96, + "probability": 0.7615 + }, + { + "start": 22783.86, + "end": 22788.54, + "probability": 0.9677 + }, + { + "start": 22790.1, + "end": 22790.28, + "probability": 0.3775 + }, + { + "start": 22790.28, + "end": 22792.36, + "probability": 0.9613 + }, + { + "start": 22792.48, + "end": 22793.52, + "probability": 0.5006 + }, + { + "start": 22793.54, + "end": 22794.54, + "probability": 0.0718 + }, + { + "start": 22794.94, + "end": 22795.72, + "probability": 0.8818 + }, + { + "start": 22795.8, + "end": 22796.78, + "probability": 0.5518 + }, + { + "start": 22796.92, + "end": 22797.24, + "probability": 0.1615 + }, + { + "start": 22797.56, + "end": 22798.8, + "probability": 0.8188 + }, + { + "start": 22799.3, + "end": 22799.92, + "probability": 0.4999 + }, + { + "start": 22800.14, + "end": 22801.02, + "probability": 0.5163 + }, + { + "start": 22801.1, + "end": 22801.64, + "probability": 0.4141 + }, + { + "start": 22801.72, + "end": 22802.34, + "probability": 0.4052 + }, + { + "start": 22802.34, + "end": 22802.85, + "probability": 0.5996 + }, + { + "start": 22803.08, + "end": 22803.64, + "probability": 0.2041 + }, + { + "start": 22804.1, + "end": 22805.24, + "probability": 0.9753 + }, + { + "start": 22805.24, + "end": 22806.34, + "probability": 0.6568 + }, + { + "start": 22808.14, + "end": 22808.9, + "probability": 0.099 + }, + { + "start": 22810.56, + "end": 22814.1, + "probability": 0.8728 + }, + { + "start": 22815.36, + "end": 22816.26, + "probability": 0.9862 + }, + { + "start": 22817.18, + "end": 22820.08, + "probability": 0.9115 + }, + { + "start": 22821.32, + "end": 22822.72, + "probability": 0.9528 + }, + { + "start": 22823.5, + "end": 22829.22, + "probability": 0.9927 + }, + { + "start": 22829.88, + "end": 22831.4, + "probability": 0.507 + }, + { + "start": 22834.92, + "end": 22836.3, + "probability": 0.7668 + }, + { + "start": 22838.44, + "end": 22846.54, + "probability": 0.9966 + }, + { + "start": 22848.2, + "end": 22852.12, + "probability": 0.9902 + }, + { + "start": 22853.56, + "end": 22855.1, + "probability": 0.9927 + }, + { + "start": 22856.36, + "end": 22856.9, + "probability": 0.6522 + }, + { + "start": 22857.02, + "end": 22858.04, + "probability": 0.8691 + }, + { + "start": 22858.22, + "end": 22859.64, + "probability": 0.923 + }, + { + "start": 22859.68, + "end": 22865.3, + "probability": 0.9217 + }, + { + "start": 22866.76, + "end": 22872.16, + "probability": 0.9922 + }, + { + "start": 22873.84, + "end": 22878.22, + "probability": 0.9751 + }, + { + "start": 22879.82, + "end": 22881.28, + "probability": 0.8472 + }, + { + "start": 22882.28, + "end": 22885.28, + "probability": 0.3914 + }, + { + "start": 22887.3, + "end": 22888.6, + "probability": 0.6996 + }, + { + "start": 22888.7, + "end": 22894.62, + "probability": 0.9838 + }, + { + "start": 22894.62, + "end": 22899.86, + "probability": 0.9862 + }, + { + "start": 22902.2, + "end": 22904.96, + "probability": 0.9514 + }, + { + "start": 22906.34, + "end": 22906.72, + "probability": 0.6705 + }, + { + "start": 22906.78, + "end": 22910.42, + "probability": 0.9966 + }, + { + "start": 22912.58, + "end": 22918.56, + "probability": 0.988 + }, + { + "start": 22919.92, + "end": 22927.1, + "probability": 0.951 + }, + { + "start": 22928.88, + "end": 22934.06, + "probability": 0.993 + }, + { + "start": 22937.68, + "end": 22938.44, + "probability": 0.688 + }, + { + "start": 22938.68, + "end": 22942.9, + "probability": 0.9536 + }, + { + "start": 22946.34, + "end": 22948.46, + "probability": 0.9891 + }, + { + "start": 22950.58, + "end": 22952.92, + "probability": 0.9343 + }, + { + "start": 22953.62, + "end": 22957.1, + "probability": 0.9299 + }, + { + "start": 22959.62, + "end": 22959.72, + "probability": 0.2229 + }, + { + "start": 22959.72, + "end": 22959.74, + "probability": 0.4051 + }, + { + "start": 22959.74, + "end": 22961.04, + "probability": 0.467 + }, + { + "start": 22961.58, + "end": 22962.86, + "probability": 0.6345 + }, + { + "start": 22963.0, + "end": 22964.0, + "probability": 0.947 + }, + { + "start": 22967.12, + "end": 22967.26, + "probability": 0.2387 + }, + { + "start": 22967.26, + "end": 22967.26, + "probability": 0.4081 + }, + { + "start": 22967.26, + "end": 22968.52, + "probability": 0.7358 + }, + { + "start": 22970.04, + "end": 22971.62, + "probability": 0.8363 + }, + { + "start": 22972.12, + "end": 22975.5, + "probability": 0.9612 + }, + { + "start": 22977.6, + "end": 22983.56, + "probability": 0.993 + }, + { + "start": 22983.71, + "end": 22987.4, + "probability": 0.967 + }, + { + "start": 22988.52, + "end": 22991.86, + "probability": 0.8535 + }, + { + "start": 22993.32, + "end": 22997.66, + "probability": 0.9406 + }, + { + "start": 22998.32, + "end": 23001.56, + "probability": 0.9348 + }, + { + "start": 23002.7, + "end": 23004.76, + "probability": 0.9959 + }, + { + "start": 23004.82, + "end": 23006.36, + "probability": 0.9431 + }, + { + "start": 23007.6, + "end": 23012.6, + "probability": 0.9816 + }, + { + "start": 23013.16, + "end": 23015.22, + "probability": 0.7481 + }, + { + "start": 23017.15, + "end": 23021.96, + "probability": 0.9219 + }, + { + "start": 23022.6, + "end": 23029.98, + "probability": 0.9701 + }, + { + "start": 23030.78, + "end": 23032.18, + "probability": 0.9754 + }, + { + "start": 23033.64, + "end": 23034.7, + "probability": 0.8772 + }, + { + "start": 23035.22, + "end": 23036.48, + "probability": 0.9368 + }, + { + "start": 23037.66, + "end": 23039.12, + "probability": 0.9486 + }, + { + "start": 23040.26, + "end": 23041.56, + "probability": 0.9961 + }, + { + "start": 23042.64, + "end": 23043.38, + "probability": 0.8883 + }, + { + "start": 23045.18, + "end": 23046.56, + "probability": 0.91 + }, + { + "start": 23046.84, + "end": 23052.32, + "probability": 0.9774 + }, + { + "start": 23052.86, + "end": 23056.86, + "probability": 0.9816 + }, + { + "start": 23058.87, + "end": 23062.62, + "probability": 0.9084 + }, + { + "start": 23063.32, + "end": 23067.24, + "probability": 0.9067 + }, + { + "start": 23067.24, + "end": 23071.46, + "probability": 0.8118 + }, + { + "start": 23073.96, + "end": 23077.48, + "probability": 0.9775 + }, + { + "start": 23079.02, + "end": 23082.64, + "probability": 0.9922 + }, + { + "start": 23085.1, + "end": 23089.98, + "probability": 0.9956 + }, + { + "start": 23091.1, + "end": 23100.32, + "probability": 0.9554 + }, + { + "start": 23102.36, + "end": 23105.98, + "probability": 0.8234 + }, + { + "start": 23107.82, + "end": 23110.56, + "probability": 0.9838 + }, + { + "start": 23111.76, + "end": 23113.7, + "probability": 0.7828 + }, + { + "start": 23114.66, + "end": 23120.22, + "probability": 0.9833 + }, + { + "start": 23120.98, + "end": 23125.32, + "probability": 0.9927 + }, + { + "start": 23126.46, + "end": 23130.44, + "probability": 0.9622 + }, + { + "start": 23130.44, + "end": 23133.86, + "probability": 0.8866 + }, + { + "start": 23135.04, + "end": 23137.88, + "probability": 0.9203 + }, + { + "start": 23139.22, + "end": 23141.88, + "probability": 0.9709 + }, + { + "start": 23142.74, + "end": 23146.64, + "probability": 0.9889 + }, + { + "start": 23146.64, + "end": 23152.02, + "probability": 0.9894 + }, + { + "start": 23152.1, + "end": 23152.32, + "probability": 0.6845 + }, + { + "start": 23152.46, + "end": 23152.68, + "probability": 0.7032 + }, + { + "start": 23152.84, + "end": 23156.88, + "probability": 0.9902 + }, + { + "start": 23157.6, + "end": 23160.52, + "probability": 0.9985 + }, + { + "start": 23160.52, + "end": 23163.8, + "probability": 0.9946 + }, + { + "start": 23165.02, + "end": 23171.28, + "probability": 0.9948 + }, + { + "start": 23171.34, + "end": 23176.62, + "probability": 0.9973 + }, + { + "start": 23177.78, + "end": 23180.56, + "probability": 0.9842 + }, + { + "start": 23181.76, + "end": 23184.26, + "probability": 0.843 + }, + { + "start": 23184.82, + "end": 23189.3, + "probability": 0.9896 + }, + { + "start": 23189.96, + "end": 23193.42, + "probability": 0.9838 + }, + { + "start": 23193.42, + "end": 23196.96, + "probability": 0.9914 + }, + { + "start": 23197.86, + "end": 23200.34, + "probability": 0.5248 + }, + { + "start": 23201.62, + "end": 23206.1, + "probability": 0.5641 + }, + { + "start": 23206.26, + "end": 23208.64, + "probability": 0.9661 + }, + { + "start": 23209.52, + "end": 23213.46, + "probability": 0.9954 + }, + { + "start": 23213.46, + "end": 23217.8, + "probability": 0.9893 + }, + { + "start": 23217.8, + "end": 23221.92, + "probability": 0.9883 + }, + { + "start": 23222.5, + "end": 23225.48, + "probability": 0.9978 + }, + { + "start": 23225.48, + "end": 23229.34, + "probability": 0.9983 + }, + { + "start": 23229.9, + "end": 23231.53, + "probability": 0.9573 + }, + { + "start": 23232.62, + "end": 23234.7, + "probability": 0.8631 + }, + { + "start": 23235.12, + "end": 23240.28, + "probability": 0.8596 + }, + { + "start": 23240.4, + "end": 23245.9, + "probability": 0.9888 + }, + { + "start": 23245.9, + "end": 23249.75, + "probability": 0.9951 + }, + { + "start": 23250.16, + "end": 23253.56, + "probability": 0.9674 + }, + { + "start": 23254.86, + "end": 23258.6, + "probability": 0.9715 + }, + { + "start": 23258.72, + "end": 23262.52, + "probability": 0.9165 + }, + { + "start": 23262.56, + "end": 23264.78, + "probability": 0.9708 + }, + { + "start": 23264.78, + "end": 23268.32, + "probability": 0.9934 + }, + { + "start": 23268.74, + "end": 23271.88, + "probability": 0.9977 + }, + { + "start": 23271.88, + "end": 23274.52, + "probability": 0.9614 + }, + { + "start": 23275.68, + "end": 23278.6, + "probability": 0.8307 + }, + { + "start": 23280.64, + "end": 23283.8, + "probability": 0.953 + }, + { + "start": 23284.48, + "end": 23286.76, + "probability": 0.9648 + }, + { + "start": 23287.52, + "end": 23290.44, + "probability": 0.9856 + }, + { + "start": 23292.1, + "end": 23294.0, + "probability": 0.8703 + }, + { + "start": 23294.3, + "end": 23296.68, + "probability": 0.9875 + }, + { + "start": 23298.02, + "end": 23301.38, + "probability": 0.9439 + }, + { + "start": 23302.2, + "end": 23304.06, + "probability": 0.9838 + }, + { + "start": 23304.46, + "end": 23304.8, + "probability": 0.8222 + }, + { + "start": 23304.88, + "end": 23309.38, + "probability": 0.9905 + }, + { + "start": 23309.38, + "end": 23316.84, + "probability": 0.9992 + }, + { + "start": 23317.64, + "end": 23319.8, + "probability": 0.9793 + }, + { + "start": 23319.98, + "end": 23322.16, + "probability": 0.948 + }, + { + "start": 23322.32, + "end": 23325.1, + "probability": 0.9141 + }, + { + "start": 23325.26, + "end": 23325.26, + "probability": 0.0 + }, + { + "start": 23326.42, + "end": 23327.43, + "probability": 0.4987 + }, + { + "start": 23328.97, + "end": 23329.88, + "probability": 0.013 + }, + { + "start": 23329.88, + "end": 23329.88, + "probability": 0.0821 + }, + { + "start": 23329.88, + "end": 23331.8, + "probability": 0.5274 + }, + { + "start": 23332.3, + "end": 23335.66, + "probability": 0.2601 + }, + { + "start": 23335.86, + "end": 23336.14, + "probability": 0.2521 + }, + { + "start": 23336.72, + "end": 23338.1, + "probability": 0.895 + }, + { + "start": 23338.58, + "end": 23341.96, + "probability": 0.6264 + }, + { + "start": 23345.78, + "end": 23348.86, + "probability": 0.1074 + }, + { + "start": 23348.94, + "end": 23348.94, + "probability": 0.7568 + }, + { + "start": 23349.42, + "end": 23353.0, + "probability": 0.9747 + }, + { + "start": 23353.0, + "end": 23354.28, + "probability": 0.0733 + }, + { + "start": 23356.48, + "end": 23356.48, + "probability": 0.0358 + }, + { + "start": 23357.26, + "end": 23358.14, + "probability": 0.0623 + }, + { + "start": 23358.14, + "end": 23359.36, + "probability": 0.5934 + }, + { + "start": 23359.54, + "end": 23361.94, + "probability": 0.7809 + }, + { + "start": 23362.08, + "end": 23363.5, + "probability": 0.9647 + }, + { + "start": 23365.0, + "end": 23367.26, + "probability": 0.4354 + }, + { + "start": 23367.58, + "end": 23371.28, + "probability": 0.3572 + }, + { + "start": 23371.34, + "end": 23378.2, + "probability": 0.9278 + }, + { + "start": 23379.46, + "end": 23382.78, + "probability": 0.9298 + }, + { + "start": 23382.78, + "end": 23386.62, + "probability": 0.9843 + }, + { + "start": 23387.46, + "end": 23389.78, + "probability": 0.9917 + }, + { + "start": 23389.88, + "end": 23393.82, + "probability": 0.9997 + }, + { + "start": 23395.44, + "end": 23401.94, + "probability": 0.9629 + }, + { + "start": 23401.94, + "end": 23408.2, + "probability": 0.9786 + }, + { + "start": 23409.52, + "end": 23414.16, + "probability": 0.9944 + }, + { + "start": 23415.1, + "end": 23417.96, + "probability": 0.9935 + }, + { + "start": 23418.5, + "end": 23424.28, + "probability": 0.9882 + }, + { + "start": 23425.82, + "end": 23435.02, + "probability": 0.9929 + }, + { + "start": 23435.36, + "end": 23438.12, + "probability": 0.9856 + }, + { + "start": 23439.59, + "end": 23444.0, + "probability": 0.9917 + }, + { + "start": 23445.34, + "end": 23449.02, + "probability": 0.9869 + }, + { + "start": 23449.38, + "end": 23454.82, + "probability": 0.9915 + }, + { + "start": 23455.01, + "end": 23462.6, + "probability": 0.9116 + }, + { + "start": 23465.08, + "end": 23468.64, + "probability": 0.886 + }, + { + "start": 23468.9, + "end": 23475.7, + "probability": 0.9731 + }, + { + "start": 23475.98, + "end": 23478.0, + "probability": 0.9584 + }, + { + "start": 23478.6, + "end": 23481.66, + "probability": 0.9873 + }, + { + "start": 23483.14, + "end": 23487.42, + "probability": 0.9878 + }, + { + "start": 23487.42, + "end": 23493.26, + "probability": 0.9585 + }, + { + "start": 23495.78, + "end": 23497.92, + "probability": 0.9474 + }, + { + "start": 23498.14, + "end": 23505.98, + "probability": 0.964 + }, + { + "start": 23506.02, + "end": 23507.74, + "probability": 0.4902 + }, + { + "start": 23507.86, + "end": 23511.94, + "probability": 0.9792 + }, + { + "start": 23512.38, + "end": 23514.28, + "probability": 0.9372 + }, + { + "start": 23514.68, + "end": 23518.66, + "probability": 0.9177 + }, + { + "start": 23518.66, + "end": 23521.72, + "probability": 0.9829 + }, + { + "start": 23522.52, + "end": 23525.04, + "probability": 0.7471 + }, + { + "start": 23525.74, + "end": 23534.06, + "probability": 0.8935 + }, + { + "start": 23537.82, + "end": 23544.56, + "probability": 0.9865 + }, + { + "start": 23544.56, + "end": 23549.36, + "probability": 0.8108 + }, + { + "start": 23549.78, + "end": 23555.94, + "probability": 0.9971 + }, + { + "start": 23557.88, + "end": 23561.62, + "probability": 0.9847 + }, + { + "start": 23562.0, + "end": 23564.76, + "probability": 0.9874 + }, + { + "start": 23567.01, + "end": 23572.24, + "probability": 0.9323 + }, + { + "start": 23572.38, + "end": 23575.3, + "probability": 0.9583 + }, + { + "start": 23575.3, + "end": 23579.04, + "probability": 0.857 + }, + { + "start": 23580.34, + "end": 23583.08, + "probability": 0.9884 + }, + { + "start": 23584.0, + "end": 23589.56, + "probability": 0.9982 + }, + { + "start": 23590.4, + "end": 23598.08, + "probability": 0.9941 + }, + { + "start": 23599.0, + "end": 23603.14, + "probability": 0.9816 + }, + { + "start": 23603.3, + "end": 23605.28, + "probability": 0.7705 + }, + { + "start": 23605.36, + "end": 23606.88, + "probability": 0.7891 + }, + { + "start": 23609.34, + "end": 23613.28, + "probability": 0.9889 + }, + { + "start": 23613.4, + "end": 23615.76, + "probability": 0.9738 + }, + { + "start": 23616.08, + "end": 23618.54, + "probability": 0.7001 + }, + { + "start": 23618.96, + "end": 23625.18, + "probability": 0.9792 + }, + { + "start": 23627.68, + "end": 23633.12, + "probability": 0.9977 + }, + { + "start": 23634.36, + "end": 23637.34, + "probability": 0.9976 + }, + { + "start": 23637.34, + "end": 23642.26, + "probability": 0.9183 + }, + { + "start": 23643.1, + "end": 23646.7, + "probability": 0.9722 + }, + { + "start": 23651.66, + "end": 23653.34, + "probability": 0.788 + }, + { + "start": 23653.44, + "end": 23657.72, + "probability": 0.8088 + }, + { + "start": 23661.96, + "end": 23667.38, + "probability": 0.9962 + }, + { + "start": 23667.38, + "end": 23673.88, + "probability": 0.9669 + }, + { + "start": 23675.56, + "end": 23678.9, + "probability": 0.9422 + }, + { + "start": 23678.9, + "end": 23682.96, + "probability": 0.9841 + }, + { + "start": 23685.08, + "end": 23688.34, + "probability": 0.9917 + }, + { + "start": 23688.74, + "end": 23693.54, + "probability": 0.9463 + }, + { + "start": 23693.9, + "end": 23694.98, + "probability": 0.9602 + }, + { + "start": 23696.28, + "end": 23701.52, + "probability": 0.9794 + }, + { + "start": 23702.56, + "end": 23705.86, + "probability": 0.9955 + }, + { + "start": 23706.6, + "end": 23708.0, + "probability": 0.9917 + }, + { + "start": 23708.12, + "end": 23711.68, + "probability": 0.9928 + }, + { + "start": 23711.86, + "end": 23713.32, + "probability": 0.8813 + }, + { + "start": 23713.48, + "end": 23714.6, + "probability": 0.9692 + }, + { + "start": 23714.78, + "end": 23715.36, + "probability": 0.8955 + }, + { + "start": 23715.76, + "end": 23718.76, + "probability": 0.9634 + }, + { + "start": 23725.94, + "end": 23727.66, + "probability": 0.7284 + }, + { + "start": 23729.2, + "end": 23737.3, + "probability": 0.997 + }, + { + "start": 23740.28, + "end": 23742.46, + "probability": 0.8475 + }, + { + "start": 23743.9, + "end": 23749.62, + "probability": 0.9304 + }, + { + "start": 23750.3, + "end": 23754.06, + "probability": 0.9968 + }, + { + "start": 23754.48, + "end": 23760.64, + "probability": 0.6301 + }, + { + "start": 23760.7, + "end": 23762.06, + "probability": 0.6424 + }, + { + "start": 23762.18, + "end": 23767.8, + "probability": 0.8494 + }, + { + "start": 23767.9, + "end": 23771.1, + "probability": 0.984 + }, + { + "start": 23771.46, + "end": 23772.78, + "probability": 0.7918 + }, + { + "start": 23772.92, + "end": 23776.5, + "probability": 0.9562 + }, + { + "start": 23776.7, + "end": 23779.38, + "probability": 0.9954 + }, + { + "start": 23780.76, + "end": 23783.46, + "probability": 0.9247 + }, + { + "start": 23783.46, + "end": 23786.24, + "probability": 0.9912 + }, + { + "start": 23786.94, + "end": 23789.58, + "probability": 0.9824 + }, + { + "start": 23789.74, + "end": 23796.36, + "probability": 0.9934 + }, + { + "start": 23796.42, + "end": 23797.6, + "probability": 0.6522 + }, + { + "start": 23797.72, + "end": 23798.2, + "probability": 0.8557 + }, + { + "start": 23798.74, + "end": 23802.92, + "probability": 0.9751 + }, + { + "start": 23802.92, + "end": 23808.48, + "probability": 0.9241 + }, + { + "start": 23808.58, + "end": 23810.84, + "probability": 0.991 + }, + { + "start": 23811.6, + "end": 23812.26, + "probability": 0.446 + }, + { + "start": 23813.0, + "end": 23815.74, + "probability": 0.9785 + }, + { + "start": 23815.98, + "end": 23816.66, + "probability": 0.8408 + }, + { + "start": 23817.14, + "end": 23819.12, + "probability": 0.7122 + }, + { + "start": 23819.52, + "end": 23820.58, + "probability": 0.8377 + }, + { + "start": 23821.68, + "end": 23824.2, + "probability": 0.7385 + }, + { + "start": 23824.26, + "end": 23828.18, + "probability": 0.9876 + }, + { + "start": 23828.7, + "end": 23831.46, + "probability": 0.4926 + }, + { + "start": 23831.6, + "end": 23835.04, + "probability": 0.5428 + }, + { + "start": 23835.54, + "end": 23836.9, + "probability": 0.7993 + }, + { + "start": 23837.08, + "end": 23837.28, + "probability": 0.6836 + }, + { + "start": 23837.28, + "end": 23837.92, + "probability": 0.1156 + }, + { + "start": 23837.92, + "end": 23839.06, + "probability": 0.5843 + }, + { + "start": 23839.22, + "end": 23841.14, + "probability": 0.6765 + }, + { + "start": 23842.58, + "end": 23843.08, + "probability": 0.6558 + }, + { + "start": 23843.22, + "end": 23844.4, + "probability": 0.8376 + }, + { + "start": 23844.8, + "end": 23849.6, + "probability": 0.9519 + }, + { + "start": 23849.8, + "end": 23850.48, + "probability": 0.9526 + }, + { + "start": 23850.98, + "end": 23852.28, + "probability": 0.8763 + }, + { + "start": 23853.2, + "end": 23855.12, + "probability": 0.3036 + }, + { + "start": 23855.98, + "end": 23857.04, + "probability": 0.9195 + }, + { + "start": 23857.42, + "end": 23861.52, + "probability": 0.9966 + }, + { + "start": 23862.98, + "end": 23864.26, + "probability": 0.8311 + }, + { + "start": 23865.48, + "end": 23868.94, + "probability": 0.8877 + }, + { + "start": 23869.12, + "end": 23870.74, + "probability": 0.9723 + }, + { + "start": 23870.84, + "end": 23872.98, + "probability": 0.9929 + }, + { + "start": 23873.14, + "end": 23876.92, + "probability": 0.9536 + }, + { + "start": 23877.86, + "end": 23879.84, + "probability": 0.8423 + }, + { + "start": 23879.88, + "end": 23880.78, + "probability": 0.8257 + }, + { + "start": 23880.92, + "end": 23882.46, + "probability": 0.9985 + }, + { + "start": 23882.5, + "end": 23887.3, + "probability": 0.9841 + }, + { + "start": 23888.66, + "end": 23892.2, + "probability": 0.7814 + }, + { + "start": 23892.26, + "end": 23895.56, + "probability": 0.9934 + }, + { + "start": 23895.56, + "end": 23900.38, + "probability": 0.9952 + }, + { + "start": 23903.94, + "end": 23909.04, + "probability": 0.9879 + }, + { + "start": 23913.06, + "end": 23913.88, + "probability": 0.2084 + }, + { + "start": 23921.92, + "end": 23922.62, + "probability": 0.7191 + }, + { + "start": 23924.18, + "end": 23924.42, + "probability": 0.284 + }, + { + "start": 23933.74, + "end": 23935.38, + "probability": 0.9768 + }, + { + "start": 23939.2, + "end": 23942.28, + "probability": 0.9889 + }, + { + "start": 23943.06, + "end": 23946.46, + "probability": 0.9019 + }, + { + "start": 23946.74, + "end": 23950.66, + "probability": 0.9412 + }, + { + "start": 23950.66, + "end": 23954.04, + "probability": 0.9927 + }, + { + "start": 23954.22, + "end": 23957.96, + "probability": 0.8582 + }, + { + "start": 23958.22, + "end": 23962.36, + "probability": 0.9974 + }, + { + "start": 23963.39, + "end": 23969.0, + "probability": 0.9859 + }, + { + "start": 23969.36, + "end": 23971.76, + "probability": 0.9907 + }, + { + "start": 23972.54, + "end": 23975.36, + "probability": 0.9695 + }, + { + "start": 23976.2, + "end": 23981.98, + "probability": 0.9926 + }, + { + "start": 23983.3, + "end": 23985.34, + "probability": 0.9893 + }, + { + "start": 23986.38, + "end": 23990.34, + "probability": 0.9983 + }, + { + "start": 23991.76, + "end": 23993.04, + "probability": 0.8624 + }, + { + "start": 23994.06, + "end": 23996.22, + "probability": 0.9949 + }, + { + "start": 23998.88, + "end": 24002.42, + "probability": 0.9774 + }, + { + "start": 24003.04, + "end": 24004.6, + "probability": 0.994 + }, + { + "start": 24005.28, + "end": 24008.02, + "probability": 0.9984 + }, + { + "start": 24008.18, + "end": 24011.6, + "probability": 0.9246 + }, + { + "start": 24012.42, + "end": 24014.0, + "probability": 0.7815 + }, + { + "start": 24014.12, + "end": 24020.76, + "probability": 0.988 + }, + { + "start": 24021.7, + "end": 24023.51, + "probability": 0.9492 + }, + { + "start": 24024.54, + "end": 24030.76, + "probability": 0.9784 + }, + { + "start": 24031.02, + "end": 24032.98, + "probability": 0.894 + }, + { + "start": 24033.12, + "end": 24034.86, + "probability": 0.9424 + }, + { + "start": 24035.0, + "end": 24036.02, + "probability": 0.5806 + }, + { + "start": 24036.1, + "end": 24041.14, + "probability": 0.9813 + }, + { + "start": 24042.88, + "end": 24043.34, + "probability": 0.3014 + }, + { + "start": 24043.44, + "end": 24044.31, + "probability": 0.3951 + }, + { + "start": 24044.54, + "end": 24046.44, + "probability": 0.0545 + }, + { + "start": 24048.14, + "end": 24049.22, + "probability": 0.6586 + }, + { + "start": 24049.88, + "end": 24049.96, + "probability": 0.1493 + }, + { + "start": 24049.96, + "end": 24053.56, + "probability": 0.6657 + }, + { + "start": 24053.7, + "end": 24054.7, + "probability": 0.8433 + }, + { + "start": 24055.64, + "end": 24056.66, + "probability": 0.8157 + }, + { + "start": 24056.7, + "end": 24057.8, + "probability": 0.9252 + }, + { + "start": 24057.9, + "end": 24058.44, + "probability": 0.4482 + }, + { + "start": 24058.5, + "end": 24058.5, + "probability": 0.462 + }, + { + "start": 24058.5, + "end": 24059.98, + "probability": 0.9634 + }, + { + "start": 24060.04, + "end": 24063.64, + "probability": 0.9419 + }, + { + "start": 24063.86, + "end": 24064.72, + "probability": 0.7026 + }, + { + "start": 24064.74, + "end": 24065.34, + "probability": 0.3412 + }, + { + "start": 24065.4, + "end": 24065.54, + "probability": 0.2536 + }, + { + "start": 24065.78, + "end": 24065.92, + "probability": 0.291 + }, + { + "start": 24065.92, + "end": 24066.32, + "probability": 0.2799 + }, + { + "start": 24067.0, + "end": 24071.46, + "probability": 0.936 + }, + { + "start": 24071.68, + "end": 24072.48, + "probability": 0.9976 + }, + { + "start": 24072.82, + "end": 24074.04, + "probability": 0.6775 + }, + { + "start": 24074.72, + "end": 24079.7, + "probability": 0.8993 + }, + { + "start": 24080.12, + "end": 24085.62, + "probability": 0.9911 + }, + { + "start": 24085.7, + "end": 24086.77, + "probability": 0.9465 + }, + { + "start": 24087.4, + "end": 24091.18, + "probability": 0.9745 + }, + { + "start": 24091.82, + "end": 24095.22, + "probability": 0.9619 + }, + { + "start": 24095.7, + "end": 24097.08, + "probability": 0.8661 + }, + { + "start": 24097.32, + "end": 24097.9, + "probability": 0.6493 + }, + { + "start": 24097.94, + "end": 24098.96, + "probability": 0.9469 + }, + { + "start": 24099.06, + "end": 24100.7, + "probability": 0.9048 + }, + { + "start": 24100.76, + "end": 24101.88, + "probability": 0.8884 + }, + { + "start": 24102.12, + "end": 24103.2, + "probability": 0.9185 + }, + { + "start": 24103.46, + "end": 24106.04, + "probability": 0.8994 + }, + { + "start": 24106.84, + "end": 24107.57, + "probability": 0.4841 + }, + { + "start": 24108.62, + "end": 24110.22, + "probability": 0.9036 + }, + { + "start": 24110.28, + "end": 24112.74, + "probability": 0.9706 + }, + { + "start": 24113.04, + "end": 24114.58, + "probability": 0.9561 + }, + { + "start": 24114.82, + "end": 24115.74, + "probability": 0.8995 + }, + { + "start": 24115.84, + "end": 24116.86, + "probability": 0.9322 + }, + { + "start": 24117.3, + "end": 24119.56, + "probability": 0.3587 + }, + { + "start": 24119.56, + "end": 24119.88, + "probability": 0.013 + }, + { + "start": 24120.0, + "end": 24122.36, + "probability": 0.8273 + }, + { + "start": 24122.94, + "end": 24125.62, + "probability": 0.9985 + }, + { + "start": 24126.06, + "end": 24127.58, + "probability": 0.8457 + }, + { + "start": 24127.62, + "end": 24128.88, + "probability": 0.8313 + }, + { + "start": 24129.4, + "end": 24131.28, + "probability": 0.9929 + }, + { + "start": 24131.6, + "end": 24133.54, + "probability": 0.8845 + }, + { + "start": 24133.6, + "end": 24138.54, + "probability": 0.8897 + }, + { + "start": 24138.88, + "end": 24139.8, + "probability": 0.2878 + }, + { + "start": 24139.98, + "end": 24141.42, + "probability": 0.9622 + }, + { + "start": 24141.86, + "end": 24143.98, + "probability": 0.9765 + }, + { + "start": 24144.34, + "end": 24145.54, + "probability": 0.8936 + }, + { + "start": 24145.56, + "end": 24147.16, + "probability": 0.7906 + }, + { + "start": 24147.46, + "end": 24151.96, + "probability": 0.9058 + }, + { + "start": 24152.38, + "end": 24152.8, + "probability": 0.8251 + }, + { + "start": 24152.82, + "end": 24155.66, + "probability": 0.9419 + }, + { + "start": 24156.5, + "end": 24157.04, + "probability": 0.75 + }, + { + "start": 24157.7, + "end": 24161.14, + "probability": 0.9746 + }, + { + "start": 24161.72, + "end": 24162.84, + "probability": 0.5399 + }, + { + "start": 24163.54, + "end": 24164.13, + "probability": 0.149 + }, + { + "start": 24164.62, + "end": 24166.66, + "probability": 0.5608 + }, + { + "start": 24167.56, + "end": 24168.64, + "probability": 0.8159 + }, + { + "start": 24169.36, + "end": 24170.02, + "probability": 0.0692 + }, + { + "start": 24170.02, + "end": 24170.02, + "probability": 0.0232 + }, + { + "start": 24170.02, + "end": 24170.02, + "probability": 0.1764 + }, + { + "start": 24170.02, + "end": 24173.5, + "probability": 0.9338 + }, + { + "start": 24174.52, + "end": 24176.56, + "probability": 0.9869 + }, + { + "start": 24177.24, + "end": 24179.8, + "probability": 0.9821 + }, + { + "start": 24179.9, + "end": 24180.96, + "probability": 0.9648 + }, + { + "start": 24181.0, + "end": 24181.98, + "probability": 0.8277 + }, + { + "start": 24182.58, + "end": 24185.74, + "probability": 0.9277 + }, + { + "start": 24186.6, + "end": 24188.12, + "probability": 0.9992 + }, + { + "start": 24188.28, + "end": 24190.94, + "probability": 0.9673 + }, + { + "start": 24192.02, + "end": 24192.81, + "probability": 0.9774 + }, + { + "start": 24193.06, + "end": 24194.06, + "probability": 0.9869 + }, + { + "start": 24194.16, + "end": 24200.58, + "probability": 0.9969 + }, + { + "start": 24200.64, + "end": 24205.06, + "probability": 0.9983 + }, + { + "start": 24205.2, + "end": 24206.32, + "probability": 0.8403 + }, + { + "start": 24206.42, + "end": 24207.66, + "probability": 0.9888 + }, + { + "start": 24208.06, + "end": 24208.3, + "probability": 0.6521 + }, + { + "start": 24208.42, + "end": 24212.04, + "probability": 0.9954 + }, + { + "start": 24212.04, + "end": 24215.74, + "probability": 0.8357 + }, + { + "start": 24216.16, + "end": 24217.12, + "probability": 0.9293 + }, + { + "start": 24217.78, + "end": 24219.23, + "probability": 0.9966 + }, + { + "start": 24220.32, + "end": 24223.16, + "probability": 0.9696 + }, + { + "start": 24223.22, + "end": 24224.35, + "probability": 0.9326 + }, + { + "start": 24224.68, + "end": 24227.02, + "probability": 0.9981 + }, + { + "start": 24227.46, + "end": 24228.46, + "probability": 0.7729 + }, + { + "start": 24229.2, + "end": 24230.34, + "probability": 0.9342 + }, + { + "start": 24230.94, + "end": 24234.78, + "probability": 0.9946 + }, + { + "start": 24234.96, + "end": 24235.32, + "probability": 0.516 + }, + { + "start": 24235.38, + "end": 24235.96, + "probability": 0.7185 + }, + { + "start": 24236.08, + "end": 24237.78, + "probability": 0.9948 + }, + { + "start": 24238.74, + "end": 24241.44, + "probability": 0.9918 + }, + { + "start": 24242.22, + "end": 24247.6, + "probability": 0.8001 + }, + { + "start": 24248.0, + "end": 24249.84, + "probability": 0.949 + }, + { + "start": 24250.0, + "end": 24251.0, + "probability": 0.9077 + }, + { + "start": 24251.34, + "end": 24254.55, + "probability": 0.9854 + }, + { + "start": 24256.16, + "end": 24259.4, + "probability": 0.8539 + }, + { + "start": 24260.38, + "end": 24262.32, + "probability": 0.8376 + }, + { + "start": 24263.4, + "end": 24266.44, + "probability": 0.9916 + }, + { + "start": 24266.44, + "end": 24272.0, + "probability": 0.9648 + }, + { + "start": 24272.4, + "end": 24273.34, + "probability": 0.8799 + }, + { + "start": 24273.4, + "end": 24274.3, + "probability": 0.7399 + }, + { + "start": 24274.36, + "end": 24275.35, + "probability": 0.9971 + }, + { + "start": 24277.44, + "end": 24279.0, + "probability": 0.9964 + }, + { + "start": 24280.14, + "end": 24281.33, + "probability": 0.9987 + }, + { + "start": 24281.48, + "end": 24283.56, + "probability": 0.9932 + }, + { + "start": 24284.12, + "end": 24289.7, + "probability": 0.9954 + }, + { + "start": 24290.28, + "end": 24292.68, + "probability": 0.9949 + }, + { + "start": 24295.54, + "end": 24296.82, + "probability": 0.9032 + }, + { + "start": 24296.96, + "end": 24298.06, + "probability": 0.9612 + }, + { + "start": 24298.74, + "end": 24300.34, + "probability": 0.984 + }, + { + "start": 24300.7, + "end": 24302.4, + "probability": 0.99 + }, + { + "start": 24302.54, + "end": 24303.9, + "probability": 0.9777 + }, + { + "start": 24304.1, + "end": 24309.02, + "probability": 0.9787 + }, + { + "start": 24309.84, + "end": 24311.42, + "probability": 0.7866 + }, + { + "start": 24311.6, + "end": 24313.05, + "probability": 0.9443 + }, + { + "start": 24313.22, + "end": 24316.86, + "probability": 0.9705 + }, + { + "start": 24317.9, + "end": 24319.36, + "probability": 0.5015 + }, + { + "start": 24319.94, + "end": 24321.86, + "probability": 0.4108 + }, + { + "start": 24322.06, + "end": 24323.9, + "probability": 0.9031 + }, + { + "start": 24323.96, + "end": 24325.3, + "probability": 0.87 + }, + { + "start": 24325.78, + "end": 24326.34, + "probability": 0.6333 + }, + { + "start": 24326.62, + "end": 24326.76, + "probability": 0.3123 + }, + { + "start": 24326.92, + "end": 24327.94, + "probability": 0.5734 + }, + { + "start": 24327.96, + "end": 24328.76, + "probability": 0.8459 + }, + { + "start": 24329.69, + "end": 24334.3, + "probability": 0.0536 + }, + { + "start": 24334.92, + "end": 24334.92, + "probability": 0.0181 + }, + { + "start": 24334.92, + "end": 24335.04, + "probability": 0.2499 + }, + { + "start": 24335.04, + "end": 24335.04, + "probability": 0.1372 + }, + { + "start": 24335.04, + "end": 24335.38, + "probability": 0.3961 + }, + { + "start": 24335.38, + "end": 24336.08, + "probability": 0.1827 + }, + { + "start": 24336.26, + "end": 24337.33, + "probability": 0.875 + }, + { + "start": 24339.97, + "end": 24341.12, + "probability": 0.8872 + }, + { + "start": 24341.66, + "end": 24342.16, + "probability": 0.0774 + }, + { + "start": 24342.73, + "end": 24343.36, + "probability": 0.0274 + }, + { + "start": 24343.36, + "end": 24343.54, + "probability": 0.0559 + }, + { + "start": 24343.54, + "end": 24343.7, + "probability": 0.05 + }, + { + "start": 24343.7, + "end": 24344.8, + "probability": 0.6637 + }, + { + "start": 24345.14, + "end": 24346.86, + "probability": 0.7326 + }, + { + "start": 24347.02, + "end": 24348.86, + "probability": 0.9771 + }, + { + "start": 24349.78, + "end": 24349.86, + "probability": 0.049 + }, + { + "start": 24349.86, + "end": 24349.98, + "probability": 0.2533 + }, + { + "start": 24350.28, + "end": 24351.4, + "probability": 0.8008 + }, + { + "start": 24351.5, + "end": 24355.02, + "probability": 0.9944 + }, + { + "start": 24355.02, + "end": 24357.3, + "probability": 0.8948 + }, + { + "start": 24357.54, + "end": 24359.36, + "probability": 0.854 + }, + { + "start": 24360.1, + "end": 24361.0, + "probability": 0.8342 + }, + { + "start": 24361.44, + "end": 24361.88, + "probability": 0.8737 + }, + { + "start": 24361.9, + "end": 24363.82, + "probability": 0.9363 + }, + { + "start": 24363.88, + "end": 24365.62, + "probability": 0.7085 + }, + { + "start": 24366.0, + "end": 24367.2, + "probability": 0.7986 + }, + { + "start": 24367.6, + "end": 24370.18, + "probability": 0.973 + }, + { + "start": 24371.18, + "end": 24373.21, + "probability": 0.7554 + }, + { + "start": 24374.4, + "end": 24378.38, + "probability": 0.9656 + }, + { + "start": 24379.02, + "end": 24381.0, + "probability": 0.9073 + }, + { + "start": 24381.42, + "end": 24382.56, + "probability": 0.9314 + }, + { + "start": 24383.34, + "end": 24384.54, + "probability": 0.9723 + }, + { + "start": 24384.88, + "end": 24385.87, + "probability": 0.9792 + }, + { + "start": 24386.44, + "end": 24388.0, + "probability": 0.9757 + }, + { + "start": 24388.42, + "end": 24389.74, + "probability": 0.7585 + }, + { + "start": 24389.84, + "end": 24390.8, + "probability": 0.6589 + }, + { + "start": 24390.88, + "end": 24391.4, + "probability": 0.5394 + }, + { + "start": 24392.06, + "end": 24392.96, + "probability": 0.9846 + }, + { + "start": 24394.62, + "end": 24395.88, + "probability": 0.7174 + }, + { + "start": 24396.0, + "end": 24399.76, + "probability": 0.926 + }, + { + "start": 24400.2, + "end": 24401.74, + "probability": 0.9943 + }, + { + "start": 24402.18, + "end": 24402.84, + "probability": 0.8416 + }, + { + "start": 24403.3, + "end": 24404.54, + "probability": 0.7793 + }, + { + "start": 24404.68, + "end": 24405.1, + "probability": 0.7161 + }, + { + "start": 24405.16, + "end": 24405.82, + "probability": 0.9757 + }, + { + "start": 24405.9, + "end": 24407.14, + "probability": 0.9688 + }, + { + "start": 24407.44, + "end": 24407.72, + "probability": 0.2867 + }, + { + "start": 24407.86, + "end": 24409.48, + "probability": 0.9268 + }, + { + "start": 24409.88, + "end": 24413.16, + "probability": 0.8641 + }, + { + "start": 24413.18, + "end": 24415.32, + "probability": 0.9403 + }, + { + "start": 24416.3, + "end": 24419.5, + "probability": 0.5594 + }, + { + "start": 24419.78, + "end": 24420.06, + "probability": 0.8807 + }, + { + "start": 24420.28, + "end": 24421.66, + "probability": 0.5313 + }, + { + "start": 24421.76, + "end": 24424.46, + "probability": 0.8738 + }, + { + "start": 24425.44, + "end": 24427.7, + "probability": 0.724 + }, + { + "start": 24427.82, + "end": 24428.76, + "probability": 0.4496 + }, + { + "start": 24428.78, + "end": 24431.6, + "probability": 0.6542 + }, + { + "start": 24432.14, + "end": 24434.14, + "probability": 0.9983 + }, + { + "start": 24434.74, + "end": 24436.46, + "probability": 0.9333 + }, + { + "start": 24437.44, + "end": 24444.02, + "probability": 0.9888 + }, + { + "start": 24444.2, + "end": 24444.58, + "probability": 0.9365 + }, + { + "start": 24445.28, + "end": 24449.18, + "probability": 0.8224 + }, + { + "start": 24449.32, + "end": 24451.54, + "probability": 0.7407 + }, + { + "start": 24451.56, + "end": 24452.18, + "probability": 0.8102 + }, + { + "start": 24452.54, + "end": 24453.36, + "probability": 0.5865 + }, + { + "start": 24453.46, + "end": 24454.5, + "probability": 0.839 + }, + { + "start": 24454.96, + "end": 24455.16, + "probability": 0.2228 + }, + { + "start": 24455.16, + "end": 24455.56, + "probability": 0.7866 + }, + { + "start": 24455.64, + "end": 24459.62, + "probability": 0.745 + }, + { + "start": 24459.68, + "end": 24461.78, + "probability": 0.9882 + }, + { + "start": 24462.2, + "end": 24463.66, + "probability": 0.8778 + }, + { + "start": 24464.2, + "end": 24467.38, + "probability": 0.6304 + }, + { + "start": 24467.64, + "end": 24468.26, + "probability": 0.0731 + }, + { + "start": 24468.9, + "end": 24473.58, + "probability": 0.9592 + }, + { + "start": 24474.66, + "end": 24474.66, + "probability": 0.0857 + }, + { + "start": 24474.66, + "end": 24475.54, + "probability": 0.3204 + }, + { + "start": 24475.74, + "end": 24484.62, + "probability": 0.9462 + }, + { + "start": 24484.66, + "end": 24486.53, + "probability": 0.9946 + }, + { + "start": 24486.9, + "end": 24489.94, + "probability": 0.9141 + }, + { + "start": 24490.38, + "end": 24491.68, + "probability": 0.8896 + }, + { + "start": 24492.34, + "end": 24493.04, + "probability": 0.6433 + }, + { + "start": 24493.18, + "end": 24493.96, + "probability": 0.9066 + }, + { + "start": 24494.2, + "end": 24497.48, + "probability": 0.9493 + }, + { + "start": 24497.66, + "end": 24501.14, + "probability": 0.9189 + }, + { + "start": 24502.36, + "end": 24504.36, + "probability": 0.8672 + }, + { + "start": 24504.86, + "end": 24505.82, + "probability": 0.9274 + }, + { + "start": 24506.06, + "end": 24506.74, + "probability": 0.8345 + }, + { + "start": 24506.82, + "end": 24507.64, + "probability": 0.9802 + }, + { + "start": 24507.76, + "end": 24509.16, + "probability": 0.9631 + }, + { + "start": 24509.28, + "end": 24512.2, + "probability": 0.9896 + }, + { + "start": 24512.66, + "end": 24513.26, + "probability": 0.7321 + }, + { + "start": 24513.26, + "end": 24516.1, + "probability": 0.9688 + }, + { + "start": 24516.24, + "end": 24517.31, + "probability": 0.9971 + }, + { + "start": 24517.8, + "end": 24520.1, + "probability": 0.8536 + }, + { + "start": 24520.5, + "end": 24522.62, + "probability": 0.7898 + }, + { + "start": 24522.76, + "end": 24523.86, + "probability": 0.9519 + }, + { + "start": 24524.16, + "end": 24524.96, + "probability": 0.72 + }, + { + "start": 24525.16, + "end": 24526.36, + "probability": 0.8459 + }, + { + "start": 24526.6, + "end": 24529.03, + "probability": 0.9123 + }, + { + "start": 24529.88, + "end": 24534.9, + "probability": 0.929 + }, + { + "start": 24535.2, + "end": 24536.4, + "probability": 0.9956 + }, + { + "start": 24536.72, + "end": 24537.38, + "probability": 0.3929 + }, + { + "start": 24537.54, + "end": 24539.66, + "probability": 0.9954 + }, + { + "start": 24539.66, + "end": 24542.72, + "probability": 0.7842 + }, + { + "start": 24542.84, + "end": 24543.54, + "probability": 0.75 + }, + { + "start": 24543.66, + "end": 24547.9, + "probability": 0.9596 + }, + { + "start": 24548.64, + "end": 24553.0, + "probability": 0.9504 + }, + { + "start": 24553.92, + "end": 24556.5, + "probability": 0.9879 + }, + { + "start": 24557.82, + "end": 24561.12, + "probability": 0.9959 + }, + { + "start": 24561.76, + "end": 24573.03, + "probability": 0.9126 + }, + { + "start": 24575.4, + "end": 24577.72, + "probability": 0.423 + }, + { + "start": 24577.98, + "end": 24581.18, + "probability": 0.9734 + }, + { + "start": 24583.25, + "end": 24589.78, + "probability": 0.7274 + }, + { + "start": 24591.6, + "end": 24592.4, + "probability": 0.322 + }, + { + "start": 24593.3, + "end": 24596.0, + "probability": 0.9766 + }, + { + "start": 24596.24, + "end": 24603.28, + "probability": 0.9155 + }, + { + "start": 24604.04, + "end": 24606.34, + "probability": 0.4074 + }, + { + "start": 24607.1, + "end": 24609.6, + "probability": 0.4618 + }, + { + "start": 24611.76, + "end": 24612.84, + "probability": 0.9248 + }, + { + "start": 24615.3, + "end": 24616.27, + "probability": 0.991 + }, + { + "start": 24616.42, + "end": 24618.48, + "probability": 0.9955 + }, + { + "start": 24618.7, + "end": 24619.62, + "probability": 0.9341 + }, + { + "start": 24620.0, + "end": 24622.6, + "probability": 0.902 + }, + { + "start": 24623.08, + "end": 24623.88, + "probability": 0.9263 + }, + { + "start": 24624.14, + "end": 24625.64, + "probability": 0.8965 + }, + { + "start": 24626.1, + "end": 24628.3, + "probability": 0.9821 + }, + { + "start": 24628.92, + "end": 24630.32, + "probability": 0.9917 + }, + { + "start": 24630.44, + "end": 24633.36, + "probability": 0.992 + }, + { + "start": 24633.78, + "end": 24636.02, + "probability": 0.9121 + }, + { + "start": 24636.16, + "end": 24637.48, + "probability": 0.9667 + }, + { + "start": 24638.88, + "end": 24639.84, + "probability": 0.9631 + }, + { + "start": 24639.98, + "end": 24641.18, + "probability": 0.9738 + }, + { + "start": 24641.78, + "end": 24642.7, + "probability": 0.9941 + }, + { + "start": 24643.12, + "end": 24645.68, + "probability": 0.9954 + }, + { + "start": 24645.7, + "end": 24646.64, + "probability": 0.9822 + }, + { + "start": 24646.68, + "end": 24647.74, + "probability": 0.8818 + }, + { + "start": 24648.08, + "end": 24648.58, + "probability": 0.2113 + }, + { + "start": 24648.62, + "end": 24650.22, + "probability": 0.873 + }, + { + "start": 24651.9, + "end": 24653.1, + "probability": 0.8317 + }, + { + "start": 24653.38, + "end": 24654.76, + "probability": 0.8736 + }, + { + "start": 24655.2, + "end": 24656.0, + "probability": 0.957 + }, + { + "start": 24656.12, + "end": 24657.02, + "probability": 0.9712 + }, + { + "start": 24657.24, + "end": 24659.28, + "probability": 0.9579 + }, + { + "start": 24659.58, + "end": 24661.72, + "probability": 0.7364 + }, + { + "start": 24664.39, + "end": 24665.76, + "probability": 0.5181 + }, + { + "start": 24666.88, + "end": 24668.34, + "probability": 0.8812 + }, + { + "start": 24668.92, + "end": 24671.1, + "probability": 0.7668 + }, + { + "start": 24671.76, + "end": 24672.5, + "probability": 0.5754 + }, + { + "start": 24673.46, + "end": 24676.14, + "probability": 0.5323 + }, + { + "start": 24677.6, + "end": 24679.76, + "probability": 0.7193 + }, + { + "start": 24679.88, + "end": 24681.4, + "probability": 0.7629 + }, + { + "start": 24681.98, + "end": 24686.48, + "probability": 0.7478 + }, + { + "start": 24687.24, + "end": 24689.36, + "probability": 0.9963 + }, + { + "start": 24689.48, + "end": 24694.54, + "probability": 0.9596 + }, + { + "start": 24694.66, + "end": 24695.54, + "probability": 0.5998 + }, + { + "start": 24696.18, + "end": 24701.16, + "probability": 0.879 + }, + { + "start": 24701.88, + "end": 24704.04, + "probability": 0.9646 + }, + { + "start": 24704.08, + "end": 24705.88, + "probability": 0.984 + }, + { + "start": 24706.0, + "end": 24706.9, + "probability": 0.9431 + }, + { + "start": 24707.16, + "end": 24707.61, + "probability": 0.9192 + }, + { + "start": 24707.96, + "end": 24709.52, + "probability": 0.8474 + }, + { + "start": 24710.1, + "end": 24710.42, + "probability": 0.9633 + }, + { + "start": 24711.62, + "end": 24712.66, + "probability": 0.9556 + }, + { + "start": 24713.28, + "end": 24714.94, + "probability": 0.593 + }, + { + "start": 24715.64, + "end": 24720.56, + "probability": 0.7891 + }, + { + "start": 24720.96, + "end": 24721.48, + "probability": 0.9387 + }, + { + "start": 24723.84, + "end": 24724.86, + "probability": 0.7632 + }, + { + "start": 24724.86, + "end": 24725.24, + "probability": 0.1885 + }, + { + "start": 24725.32, + "end": 24727.4, + "probability": 0.8734 + }, + { + "start": 24727.94, + "end": 24728.86, + "probability": 0.5025 + }, + { + "start": 24728.94, + "end": 24732.82, + "probability": 0.8904 + }, + { + "start": 24734.4, + "end": 24739.2, + "probability": 0.9833 + }, + { + "start": 24739.96, + "end": 24742.2, + "probability": 0.7106 + }, + { + "start": 24742.74, + "end": 24743.78, + "probability": 0.6962 + }, + { + "start": 24744.82, + "end": 24745.66, + "probability": 0.9389 + }, + { + "start": 24745.8, + "end": 24748.04, + "probability": 0.9969 + }, + { + "start": 24748.76, + "end": 24750.46, + "probability": 0.9922 + }, + { + "start": 24751.06, + "end": 24753.5, + "probability": 0.8281 + }, + { + "start": 24754.18, + "end": 24757.68, + "probability": 0.9769 + }, + { + "start": 24757.76, + "end": 24759.88, + "probability": 0.7745 + }, + { + "start": 24760.06, + "end": 24762.4, + "probability": 0.5498 + }, + { + "start": 24762.48, + "end": 24763.58, + "probability": 0.6164 + }, + { + "start": 24765.68, + "end": 24768.82, + "probability": 0.7399 + }, + { + "start": 24768.92, + "end": 24771.62, + "probability": 0.9932 + }, + { + "start": 24771.7, + "end": 24772.58, + "probability": 0.7391 + }, + { + "start": 24773.28, + "end": 24774.4, + "probability": 0.4123 + }, + { + "start": 24776.16, + "end": 24778.52, + "probability": 0.9751 + }, + { + "start": 24778.68, + "end": 24779.75, + "probability": 0.9932 + }, + { + "start": 24779.98, + "end": 24781.48, + "probability": 0.9607 + }, + { + "start": 24781.52, + "end": 24785.16, + "probability": 0.9962 + }, + { + "start": 24785.16, + "end": 24790.48, + "probability": 0.9982 + }, + { + "start": 24791.04, + "end": 24794.66, + "probability": 0.9975 + }, + { + "start": 24795.42, + "end": 24797.54, + "probability": 0.6802 + }, + { + "start": 24797.78, + "end": 24799.38, + "probability": 0.9985 + }, + { + "start": 24799.78, + "end": 24804.62, + "probability": 0.9711 + }, + { + "start": 24804.84, + "end": 24807.82, + "probability": 0.9894 + }, + { + "start": 24809.26, + "end": 24813.3, + "probability": 0.9894 + }, + { + "start": 24813.48, + "end": 24814.74, + "probability": 0.8838 + }, + { + "start": 24815.2, + "end": 24816.82, + "probability": 0.7487 + }, + { + "start": 24817.58, + "end": 24819.64, + "probability": 0.9922 + }, + { + "start": 24821.36, + "end": 24822.34, + "probability": 0.2195 + }, + { + "start": 24825.16, + "end": 24825.56, + "probability": 0.066 + }, + { + "start": 24825.56, + "end": 24825.56, + "probability": 0.3894 + }, + { + "start": 24825.56, + "end": 24825.56, + "probability": 0.1244 + }, + { + "start": 24825.56, + "end": 24828.08, + "probability": 0.9658 + }, + { + "start": 24829.26, + "end": 24835.16, + "probability": 0.9834 + }, + { + "start": 24836.6, + "end": 24841.32, + "probability": 0.9965 + }, + { + "start": 24842.54, + "end": 24843.04, + "probability": 0.4006 + }, + { + "start": 24843.06, + "end": 24843.92, + "probability": 0.5127 + }, + { + "start": 24844.18, + "end": 24848.55, + "probability": 0.9475 + }, + { + "start": 24849.62, + "end": 24850.62, + "probability": 0.7939 + }, + { + "start": 24850.68, + "end": 24854.28, + "probability": 0.9611 + }, + { + "start": 24855.44, + "end": 24858.0, + "probability": 0.9657 + }, + { + "start": 24858.0, + "end": 24865.12, + "probability": 0.8763 + }, + { + "start": 24865.2, + "end": 24866.25, + "probability": 0.81 + }, + { + "start": 24868.12, + "end": 24868.72, + "probability": 0.7198 + }, + { + "start": 24868.94, + "end": 24870.72, + "probability": 0.8404 + }, + { + "start": 24870.78, + "end": 24871.72, + "probability": 0.9366 + }, + { + "start": 24872.14, + "end": 24873.04, + "probability": 0.7626 + }, + { + "start": 24873.16, + "end": 24874.02, + "probability": 0.5623 + }, + { + "start": 24874.52, + "end": 24877.26, + "probability": 0.9894 + }, + { + "start": 24877.26, + "end": 24883.94, + "probability": 0.9973 + }, + { + "start": 24884.38, + "end": 24884.68, + "probability": 0.7754 + }, + { + "start": 24884.74, + "end": 24890.76, + "probability": 0.9952 + }, + { + "start": 24890.76, + "end": 24896.12, + "probability": 0.9592 + }, + { + "start": 24897.32, + "end": 24902.92, + "probability": 0.9943 + }, + { + "start": 24902.92, + "end": 24910.54, + "probability": 0.7817 + }, + { + "start": 24911.42, + "end": 24916.94, + "probability": 0.951 + }, + { + "start": 24917.92, + "end": 24925.48, + "probability": 0.9687 + }, + { + "start": 24925.48, + "end": 24926.74, + "probability": 0.7417 + }, + { + "start": 24927.7, + "end": 24929.46, + "probability": 0.8345 + }, + { + "start": 24929.86, + "end": 24930.8, + "probability": 0.8454 + }, + { + "start": 24930.88, + "end": 24938.04, + "probability": 0.9905 + }, + { + "start": 24938.22, + "end": 24938.92, + "probability": 0.8164 + }, + { + "start": 24939.14, + "end": 24940.5, + "probability": 0.8857 + }, + { + "start": 24941.74, + "end": 24944.86, + "probability": 0.9443 + }, + { + "start": 24945.64, + "end": 24953.02, + "probability": 0.9579 + }, + { + "start": 24953.64, + "end": 24954.36, + "probability": 0.8484 + }, + { + "start": 24954.48, + "end": 24956.66, + "probability": 0.8656 + }, + { + "start": 24956.92, + "end": 24957.54, + "probability": 0.6204 + }, + { + "start": 24957.64, + "end": 24959.96, + "probability": 0.9027 + }, + { + "start": 24960.32, + "end": 24962.66, + "probability": 0.9939 + }, + { + "start": 24962.74, + "end": 24963.4, + "probability": 0.9264 + }, + { + "start": 24964.02, + "end": 24965.9, + "probability": 0.811 + }, + { + "start": 24965.92, + "end": 24973.26, + "probability": 0.9832 + }, + { + "start": 24973.94, + "end": 24975.96, + "probability": 0.6169 + }, + { + "start": 24976.75, + "end": 24983.98, + "probability": 0.9602 + }, + { + "start": 24985.98, + "end": 24991.96, + "probability": 0.8378 + }, + { + "start": 24992.28, + "end": 24992.88, + "probability": 0.6673 + }, + { + "start": 24993.08, + "end": 24996.24, + "probability": 0.8581 + }, + { + "start": 24998.82, + "end": 24999.94, + "probability": 0.679 + }, + { + "start": 24999.96, + "end": 25006.0, + "probability": 0.8849 + }, + { + "start": 25006.0, + "end": 25009.92, + "probability": 0.9619 + }, + { + "start": 25011.42, + "end": 25018.48, + "probability": 0.93 + }, + { + "start": 25018.9, + "end": 25025.46, + "probability": 0.9229 + }, + { + "start": 25025.98, + "end": 25027.92, + "probability": 0.991 + }, + { + "start": 25028.2, + "end": 25029.32, + "probability": 0.6215 + }, + { + "start": 25029.48, + "end": 25034.52, + "probability": 0.9835 + }, + { + "start": 25034.6, + "end": 25035.8, + "probability": 0.994 + }, + { + "start": 25035.9, + "end": 25037.84, + "probability": 0.8713 + }, + { + "start": 25037.84, + "end": 25038.4, + "probability": 0.8408 + }, + { + "start": 25038.66, + "end": 25040.64, + "probability": 0.9081 + }, + { + "start": 25041.3, + "end": 25046.48, + "probability": 0.9762 + }, + { + "start": 25047.92, + "end": 25049.79, + "probability": 0.7719 + }, + { + "start": 25050.78, + "end": 25057.16, + "probability": 0.8393 + }, + { + "start": 25057.82, + "end": 25064.4, + "probability": 0.8519 + }, + { + "start": 25066.12, + "end": 25068.04, + "probability": 0.2371 + }, + { + "start": 25069.0, + "end": 25073.12, + "probability": 0.9377 + }, + { + "start": 25073.12, + "end": 25076.36, + "probability": 0.929 + }, + { + "start": 25078.41, + "end": 25085.9, + "probability": 0.9955 + }, + { + "start": 25085.9, + "end": 25090.78, + "probability": 0.9986 + }, + { + "start": 25091.06, + "end": 25091.42, + "probability": 0.1008 + }, + { + "start": 25093.7, + "end": 25094.24, + "probability": 0.7798 + }, + { + "start": 25094.5, + "end": 25095.94, + "probability": 0.8939 + }, + { + "start": 25099.72, + "end": 25105.3, + "probability": 0.6199 + }, + { + "start": 25105.48, + "end": 25108.64, + "probability": 0.5396 + }, + { + "start": 25110.28, + "end": 25110.98, + "probability": 0.0928 + }, + { + "start": 25110.98, + "end": 25110.98, + "probability": 0.092 + }, + { + "start": 25110.98, + "end": 25110.98, + "probability": 0.143 + }, + { + "start": 25110.98, + "end": 25112.8, + "probability": 0.4243 + }, + { + "start": 25113.04, + "end": 25117.22, + "probability": 0.8162 + }, + { + "start": 25117.72, + "end": 25119.42, + "probability": 0.8794 + }, + { + "start": 25121.12, + "end": 25123.78, + "probability": 0.804 + }, + { + "start": 25127.44, + "end": 25132.9, + "probability": 0.9988 + }, + { + "start": 25133.0, + "end": 25134.04, + "probability": 0.9581 + }, + { + "start": 25134.6, + "end": 25137.32, + "probability": 0.932 + }, + { + "start": 25138.84, + "end": 25141.52, + "probability": 0.9987 + }, + { + "start": 25142.66, + "end": 25149.24, + "probability": 0.8695 + }, + { + "start": 25150.9, + "end": 25156.38, + "probability": 0.9953 + }, + { + "start": 25156.38, + "end": 25160.7, + "probability": 0.9971 + }, + { + "start": 25162.14, + "end": 25162.18, + "probability": 0.0755 + }, + { + "start": 25162.32, + "end": 25163.28, + "probability": 0.8309 + }, + { + "start": 25163.38, + "end": 25168.04, + "probability": 0.9927 + }, + { + "start": 25168.34, + "end": 25170.38, + "probability": 0.9679 + }, + { + "start": 25172.24, + "end": 25174.18, + "probability": 0.8412 + }, + { + "start": 25175.1, + "end": 25178.14, + "probability": 0.9973 + }, + { + "start": 25178.72, + "end": 25183.84, + "probability": 0.9731 + }, + { + "start": 25184.44, + "end": 25185.63, + "probability": 0.9135 + }, + { + "start": 25185.88, + "end": 25187.88, + "probability": 0.9898 + }, + { + "start": 25188.3, + "end": 25190.52, + "probability": 0.9081 + }, + { + "start": 25192.06, + "end": 25194.8, + "probability": 0.9934 + }, + { + "start": 25198.32, + "end": 25207.82, + "probability": 0.9492 + }, + { + "start": 25208.76, + "end": 25211.44, + "probability": 0.8791 + }, + { + "start": 25212.36, + "end": 25217.26, + "probability": 0.9897 + }, + { + "start": 25218.06, + "end": 25220.9, + "probability": 0.9575 + }, + { + "start": 25221.72, + "end": 25222.72, + "probability": 0.6596 + }, + { + "start": 25222.8, + "end": 25226.56, + "probability": 0.9936 + }, + { + "start": 25227.1, + "end": 25230.54, + "probability": 0.9894 + }, + { + "start": 25230.94, + "end": 25237.6, + "probability": 0.9959 + }, + { + "start": 25238.38, + "end": 25244.46, + "probability": 0.985 + }, + { + "start": 25245.1, + "end": 25246.41, + "probability": 0.9627 + }, + { + "start": 25248.18, + "end": 25249.26, + "probability": 0.907 + }, + { + "start": 25249.72, + "end": 25250.92, + "probability": 0.9738 + }, + { + "start": 25251.64, + "end": 25253.94, + "probability": 0.9375 + }, + { + "start": 25254.76, + "end": 25255.56, + "probability": 0.9873 + }, + { + "start": 25255.82, + "end": 25256.72, + "probability": 0.8206 + }, + { + "start": 25257.18, + "end": 25261.06, + "probability": 0.9774 + }, + { + "start": 25261.58, + "end": 25267.92, + "probability": 0.9904 + }, + { + "start": 25269.54, + "end": 25274.06, + "probability": 0.9978 + }, + { + "start": 25277.36, + "end": 25287.28, + "probability": 0.9728 + }, + { + "start": 25288.5, + "end": 25290.66, + "probability": 0.9827 + }, + { + "start": 25290.8, + "end": 25294.68, + "probability": 0.9976 + }, + { + "start": 25294.68, + "end": 25298.06, + "probability": 0.9986 + }, + { + "start": 25298.26, + "end": 25303.04, + "probability": 0.99 + }, + { + "start": 25303.82, + "end": 25310.38, + "probability": 0.9886 + }, + { + "start": 25311.46, + "end": 25317.3, + "probability": 0.9868 + }, + { + "start": 25317.45, + "end": 25321.98, + "probability": 0.9966 + }, + { + "start": 25322.6, + "end": 25327.36, + "probability": 0.995 + }, + { + "start": 25327.56, + "end": 25328.38, + "probability": 0.4615 + }, + { + "start": 25328.52, + "end": 25331.44, + "probability": 0.9589 + }, + { + "start": 25331.9, + "end": 25339.76, + "probability": 0.9819 + }, + { + "start": 25340.16, + "end": 25343.14, + "probability": 0.9139 + }, + { + "start": 25344.33, + "end": 25345.8, + "probability": 0.3213 + }, + { + "start": 25345.8, + "end": 25347.9, + "probability": 0.9797 + }, + { + "start": 25347.9, + "end": 25351.36, + "probability": 0.9944 + }, + { + "start": 25352.44, + "end": 25352.96, + "probability": 0.3869 + }, + { + "start": 25353.18, + "end": 25356.66, + "probability": 0.9294 + }, + { + "start": 25356.66, + "end": 25360.04, + "probability": 0.9829 + }, + { + "start": 25360.38, + "end": 25361.06, + "probability": 0.8337 + }, + { + "start": 25361.2, + "end": 25362.08, + "probability": 0.8982 + }, + { + "start": 25362.48, + "end": 25366.8, + "probability": 0.9647 + }, + { + "start": 25371.34, + "end": 25376.84, + "probability": 0.9699 + }, + { + "start": 25376.84, + "end": 25381.81, + "probability": 0.9757 + }, + { + "start": 25383.16, + "end": 25384.0, + "probability": 0.4673 + }, + { + "start": 25385.59, + "end": 25397.12, + "probability": 0.9964 + }, + { + "start": 25398.08, + "end": 25402.02, + "probability": 0.3045 + }, + { + "start": 25402.22, + "end": 25405.24, + "probability": 0.6844 + }, + { + "start": 25407.26, + "end": 25408.8, + "probability": 0.9944 + }, + { + "start": 25408.92, + "end": 25411.16, + "probability": 0.9856 + }, + { + "start": 25411.38, + "end": 25412.56, + "probability": 0.9995 + }, + { + "start": 25413.2, + "end": 25415.52, + "probability": 0.9657 + }, + { + "start": 25415.74, + "end": 25418.59, + "probability": 0.8579 + }, + { + "start": 25419.74, + "end": 25420.49, + "probability": 0.638 + }, + { + "start": 25421.52, + "end": 25428.22, + "probability": 0.9587 + }, + { + "start": 25428.9, + "end": 25431.82, + "probability": 0.9987 + }, + { + "start": 25433.32, + "end": 25437.7, + "probability": 0.9959 + }, + { + "start": 25440.1, + "end": 25441.12, + "probability": 0.5425 + }, + { + "start": 25441.12, + "end": 25441.24, + "probability": 0.1459 + }, + { + "start": 25441.24, + "end": 25443.35, + "probability": 0.6289 + }, + { + "start": 25444.96, + "end": 25452.27, + "probability": 0.9795 + }, + { + "start": 25453.28, + "end": 25454.32, + "probability": 0.9797 + }, + { + "start": 25454.64, + "end": 25459.53, + "probability": 0.9225 + }, + { + "start": 25459.86, + "end": 25460.22, + "probability": 0.7188 + }, + { + "start": 25460.4, + "end": 25461.2, + "probability": 0.831 + }, + { + "start": 25461.46, + "end": 25466.08, + "probability": 0.9326 + }, + { + "start": 25466.84, + "end": 25472.1, + "probability": 0.9873 + }, + { + "start": 25472.28, + "end": 25475.42, + "probability": 0.9778 + }, + { + "start": 25477.94, + "end": 25480.02, + "probability": 0.1831 + }, + { + "start": 25480.02, + "end": 25480.24, + "probability": 0.1269 + }, + { + "start": 25480.44, + "end": 25482.46, + "probability": 0.9822 + }, + { + "start": 25483.04, + "end": 25487.94, + "probability": 0.9788 + }, + { + "start": 25488.82, + "end": 25492.66, + "probability": 0.9067 + }, + { + "start": 25492.76, + "end": 25493.38, + "probability": 0.616 + }, + { + "start": 25494.59, + "end": 25496.88, + "probability": 0.6307 + }, + { + "start": 25498.82, + "end": 25501.58, + "probability": 0.9443 + }, + { + "start": 25501.78, + "end": 25502.68, + "probability": 0.625 + }, + { + "start": 25505.02, + "end": 25506.46, + "probability": 0.0258 + }, + { + "start": 25507.35, + "end": 25509.94, + "probability": 0.4965 + }, + { + "start": 25509.94, + "end": 25511.0, + "probability": 0.2522 + }, + { + "start": 25511.46, + "end": 25513.46, + "probability": 0.5472 + }, + { + "start": 25513.68, + "end": 25516.76, + "probability": 0.473 + }, + { + "start": 25516.9, + "end": 25519.08, + "probability": 0.9912 + }, + { + "start": 25519.1, + "end": 25522.86, + "probability": 0.9712 + }, + { + "start": 25522.88, + "end": 25524.21, + "probability": 0.8687 + }, + { + "start": 25525.54, + "end": 25527.0, + "probability": 0.2356 + }, + { + "start": 25527.7, + "end": 25530.28, + "probability": 0.4715 + }, + { + "start": 25530.4, + "end": 25531.08, + "probability": 0.7286 + }, + { + "start": 25531.12, + "end": 25532.23, + "probability": 0.9846 + }, + { + "start": 25534.48, + "end": 25538.26, + "probability": 0.6798 + }, + { + "start": 25539.56, + "end": 25540.3, + "probability": 0.0041 + }, + { + "start": 25540.3, + "end": 25540.9, + "probability": 0.5689 + }, + { + "start": 25540.9, + "end": 25542.91, + "probability": 0.4705 + }, + { + "start": 25543.1, + "end": 25544.88, + "probability": 0.6568 + }, + { + "start": 25544.88, + "end": 25545.6, + "probability": 0.822 + }, + { + "start": 25551.94, + "end": 25552.5, + "probability": 0.426 + }, + { + "start": 25553.02, + "end": 25555.92, + "probability": 0.9651 + }, + { + "start": 25556.5, + "end": 25558.82, + "probability": 0.8672 + }, + { + "start": 25561.0, + "end": 25570.34, + "probability": 0.9943 + }, + { + "start": 25570.34, + "end": 25575.52, + "probability": 0.9988 + }, + { + "start": 25576.58, + "end": 25578.7, + "probability": 0.9551 + }, + { + "start": 25578.8, + "end": 25581.36, + "probability": 0.8937 + }, + { + "start": 25581.76, + "end": 25586.98, + "probability": 0.9653 + }, + { + "start": 25587.34, + "end": 25588.88, + "probability": 0.9967 + }, + { + "start": 25589.12, + "end": 25591.2, + "probability": 0.822 + }, + { + "start": 25591.94, + "end": 25592.75, + "probability": 0.8259 + }, + { + "start": 25593.46, + "end": 25595.02, + "probability": 0.8537 + }, + { + "start": 25595.14, + "end": 25596.06, + "probability": 0.8763 + }, + { + "start": 25596.64, + "end": 25599.06, + "probability": 0.9869 + }, + { + "start": 25599.58, + "end": 25601.8, + "probability": 0.9858 + }, + { + "start": 25601.92, + "end": 25603.66, + "probability": 0.835 + }, + { + "start": 25604.34, + "end": 25605.98, + "probability": 0.9547 + }, + { + "start": 25606.08, + "end": 25607.12, + "probability": 0.9814 + }, + { + "start": 25607.6, + "end": 25610.82, + "probability": 0.9871 + }, + { + "start": 25610.92, + "end": 25613.4, + "probability": 0.6692 + }, + { + "start": 25613.46, + "end": 25615.09, + "probability": 0.9865 + }, + { + "start": 25615.56, + "end": 25618.67, + "probability": 0.9918 + }, + { + "start": 25618.74, + "end": 25618.98, + "probability": 0.7969 + }, + { + "start": 25621.43, + "end": 25627.9, + "probability": 0.9973 + }, + { + "start": 25628.94, + "end": 25634.28, + "probability": 0.966 + }, + { + "start": 25634.28, + "end": 25638.14, + "probability": 0.9977 + }, + { + "start": 25638.72, + "end": 25647.06, + "probability": 0.9961 + }, + { + "start": 25647.06, + "end": 25651.26, + "probability": 0.9988 + }, + { + "start": 25651.46, + "end": 25653.26, + "probability": 0.7447 + }, + { + "start": 25654.22, + "end": 25654.56, + "probability": 0.6145 + }, + { + "start": 25654.82, + "end": 25656.72, + "probability": 0.9836 + }, + { + "start": 25656.82, + "end": 25660.46, + "probability": 0.9961 + }, + { + "start": 25661.46, + "end": 25662.54, + "probability": 0.8046 + }, + { + "start": 25662.76, + "end": 25665.34, + "probability": 0.9963 + }, + { + "start": 25666.12, + "end": 25668.82, + "probability": 0.9142 + }, + { + "start": 25669.06, + "end": 25669.8, + "probability": 0.8696 + }, + { + "start": 25669.88, + "end": 25671.38, + "probability": 0.8226 + }, + { + "start": 25671.96, + "end": 25674.06, + "probability": 0.9892 + }, + { + "start": 25674.1, + "end": 25677.96, + "probability": 0.9696 + }, + { + "start": 25678.1, + "end": 25681.2, + "probability": 0.9943 + }, + { + "start": 25681.82, + "end": 25685.46, + "probability": 0.9907 + }, + { + "start": 25685.8, + "end": 25690.96, + "probability": 0.888 + }, + { + "start": 25691.8, + "end": 25694.9, + "probability": 0.9829 + }, + { + "start": 25694.98, + "end": 25695.98, + "probability": 0.6051 + }, + { + "start": 25696.08, + "end": 25698.38, + "probability": 0.4632 + }, + { + "start": 25698.5, + "end": 25699.74, + "probability": 0.88 + }, + { + "start": 25699.9, + "end": 25700.54, + "probability": 0.7919 + }, + { + "start": 25700.6, + "end": 25702.86, + "probability": 0.9347 + }, + { + "start": 25702.98, + "end": 25705.73, + "probability": 0.9702 + }, + { + "start": 25706.52, + "end": 25709.16, + "probability": 0.8376 + }, + { + "start": 25709.76, + "end": 25716.46, + "probability": 0.902 + }, + { + "start": 25716.6, + "end": 25718.52, + "probability": 0.9958 + }, + { + "start": 25719.32, + "end": 25721.48, + "probability": 0.9581 + }, + { + "start": 25721.76, + "end": 25723.88, + "probability": 0.9729 + }, + { + "start": 25724.0, + "end": 25725.1, + "probability": 0.7133 + }, + { + "start": 25725.48, + "end": 25727.2, + "probability": 0.9556 + }, + { + "start": 25727.3, + "end": 25731.24, + "probability": 0.9934 + }, + { + "start": 25731.24, + "end": 25737.04, + "probability": 0.9727 + }, + { + "start": 25739.48, + "end": 25743.28, + "probability": 0.8086 + }, + { + "start": 25743.28, + "end": 25748.62, + "probability": 0.9681 + }, + { + "start": 25749.22, + "end": 25754.22, + "probability": 0.9952 + }, + { + "start": 25754.22, + "end": 25758.56, + "probability": 0.9926 + }, + { + "start": 25758.67, + "end": 25761.76, + "probability": 0.7219 + }, + { + "start": 25763.2, + "end": 25766.88, + "probability": 0.9717 + }, + { + "start": 25768.16, + "end": 25768.66, + "probability": 0.8312 + }, + { + "start": 25768.74, + "end": 25774.58, + "probability": 0.8721 + }, + { + "start": 25774.58, + "end": 25778.48, + "probability": 0.9956 + }, + { + "start": 25778.48, + "end": 25784.04, + "probability": 0.9971 + }, + { + "start": 25785.34, + "end": 25791.4, + "probability": 0.991 + }, + { + "start": 25792.16, + "end": 25793.58, + "probability": 0.9242 + }, + { + "start": 25794.4, + "end": 25797.32, + "probability": 0.9871 + }, + { + "start": 25797.38, + "end": 25799.92, + "probability": 0.9744 + }, + { + "start": 25800.04, + "end": 25804.38, + "probability": 0.9373 + }, + { + "start": 25804.84, + "end": 25809.54, + "probability": 0.9949 + }, + { + "start": 25810.92, + "end": 25813.26, + "probability": 0.9208 + }, + { + "start": 25813.32, + "end": 25815.02, + "probability": 0.1611 + }, + { + "start": 25815.63, + "end": 25821.86, + "probability": 0.9496 + }, + { + "start": 25821.86, + "end": 25826.72, + "probability": 0.9901 + }, + { + "start": 25826.86, + "end": 25829.96, + "probability": 0.9581 + }, + { + "start": 25830.28, + "end": 25833.68, + "probability": 0.8657 + }, + { + "start": 25833.96, + "end": 25834.34, + "probability": 0.4871 + }, + { + "start": 25835.16, + "end": 25835.92, + "probability": 0.8251 + }, + { + "start": 25836.04, + "end": 25836.56, + "probability": 0.7517 + }, + { + "start": 25836.68, + "end": 25839.3, + "probability": 0.9977 + }, + { + "start": 25839.4, + "end": 25842.74, + "probability": 0.8777 + }, + { + "start": 25842.74, + "end": 25844.38, + "probability": 0.9937 + }, + { + "start": 25845.34, + "end": 25848.9, + "probability": 0.9985 + }, + { + "start": 25849.44, + "end": 25850.02, + "probability": 0.7701 + }, + { + "start": 25850.52, + "end": 25853.24, + "probability": 0.9808 + }, + { + "start": 25854.14, + "end": 25855.7, + "probability": 0.967 + }, + { + "start": 25856.29, + "end": 25856.9, + "probability": 0.9955 + }, + { + "start": 25858.08, + "end": 25859.44, + "probability": 0.9941 + }, + { + "start": 25859.6, + "end": 25861.86, + "probability": 0.9682 + }, + { + "start": 25862.36, + "end": 25863.84, + "probability": 0.9601 + }, + { + "start": 25864.0, + "end": 25866.32, + "probability": 0.9958 + }, + { + "start": 25866.74, + "end": 25868.12, + "probability": 0.911 + }, + { + "start": 25868.66, + "end": 25873.12, + "probability": 0.9661 + }, + { + "start": 25873.12, + "end": 25875.26, + "probability": 0.986 + }, + { + "start": 25875.84, + "end": 25879.88, + "probability": 0.9772 + }, + { + "start": 25880.0, + "end": 25883.83, + "probability": 0.9658 + }, + { + "start": 25884.86, + "end": 25886.58, + "probability": 0.957 + }, + { + "start": 25888.18, + "end": 25888.96, + "probability": 0.4396 + }, + { + "start": 25890.6, + "end": 25891.22, + "probability": 0.3846 + }, + { + "start": 25891.3, + "end": 25892.82, + "probability": 0.697 + }, + { + "start": 25892.9, + "end": 25898.84, + "probability": 0.9242 + }, + { + "start": 25898.94, + "end": 25902.66, + "probability": 0.9944 + }, + { + "start": 25903.36, + "end": 25905.18, + "probability": 0.8738 + }, + { + "start": 25905.26, + "end": 25909.5, + "probability": 0.7922 + }, + { + "start": 25910.14, + "end": 25913.26, + "probability": 0.998 + }, + { + "start": 25914.04, + "end": 25917.12, + "probability": 0.8705 + }, + { + "start": 25917.12, + "end": 25920.66, + "probability": 0.9644 + }, + { + "start": 25921.54, + "end": 25925.36, + "probability": 0.9414 + }, + { + "start": 25925.6, + "end": 25925.88, + "probability": 0.6151 + }, + { + "start": 25926.0, + "end": 25930.9, + "probability": 0.9775 + }, + { + "start": 25932.26, + "end": 25933.38, + "probability": 0.9679 + }, + { + "start": 25934.28, + "end": 25935.26, + "probability": 0.5206 + }, + { + "start": 25935.92, + "end": 25936.94, + "probability": 0.9068 + }, + { + "start": 25937.62, + "end": 25943.94, + "probability": 0.9948 + }, + { + "start": 25945.08, + "end": 25946.86, + "probability": 0.9334 + }, + { + "start": 25948.36, + "end": 25951.36, + "probability": 0.8966 + }, + { + "start": 25952.5, + "end": 25955.62, + "probability": 0.9763 + }, + { + "start": 25956.26, + "end": 25960.44, + "probability": 0.9477 + }, + { + "start": 25960.8, + "end": 25965.4, + "probability": 0.9555 + }, + { + "start": 25967.06, + "end": 25970.16, + "probability": 0.9813 + }, + { + "start": 25970.92, + "end": 25971.82, + "probability": 0.9655 + }, + { + "start": 25973.12, + "end": 25976.32, + "probability": 0.9927 + }, + { + "start": 25977.28, + "end": 25979.88, + "probability": 0.9966 + }, + { + "start": 25979.88, + "end": 25984.38, + "probability": 0.994 + }, + { + "start": 25985.54, + "end": 25987.68, + "probability": 0.7175 + }, + { + "start": 25988.42, + "end": 25990.64, + "probability": 0.8731 + }, + { + "start": 25991.4, + "end": 25995.88, + "probability": 0.8513 + }, + { + "start": 25997.44, + "end": 26001.8, + "probability": 0.9417 + }, + { + "start": 26002.8, + "end": 26007.04, + "probability": 0.9922 + }, + { + "start": 26008.14, + "end": 26014.86, + "probability": 0.9967 + }, + { + "start": 26015.64, + "end": 26020.24, + "probability": 0.9917 + }, + { + "start": 26020.86, + "end": 26024.26, + "probability": 0.9896 + }, + { + "start": 26024.7, + "end": 26026.24, + "probability": 0.9937 + }, + { + "start": 26026.52, + "end": 26026.9, + "probability": 0.7368 + }, + { + "start": 26028.0, + "end": 26032.16, + "probability": 0.7829 + }, + { + "start": 26032.3, + "end": 26033.14, + "probability": 0.9 + }, + { + "start": 26033.32, + "end": 26034.09, + "probability": 0.9484 + }, + { + "start": 26034.8, + "end": 26036.02, + "probability": 0.8948 + }, + { + "start": 26037.0, + "end": 26042.44, + "probability": 0.9921 + }, + { + "start": 26043.38, + "end": 26049.26, + "probability": 0.9916 + }, + { + "start": 26049.58, + "end": 26050.12, + "probability": 0.7445 + }, + { + "start": 26050.48, + "end": 26052.44, + "probability": 0.9813 + }, + { + "start": 26054.02, + "end": 26057.7, + "probability": 0.8618 + }, + { + "start": 26058.48, + "end": 26061.82, + "probability": 0.9975 + }, + { + "start": 26062.34, + "end": 26064.6, + "probability": 0.9855 + }, + { + "start": 26065.1, + "end": 26068.38, + "probability": 0.9988 + }, + { + "start": 26068.38, + "end": 26071.92, + "probability": 0.9994 + }, + { + "start": 26073.0, + "end": 26074.68, + "probability": 0.9197 + }, + { + "start": 26075.2, + "end": 26079.18, + "probability": 0.9517 + }, + { + "start": 26080.12, + "end": 26081.7, + "probability": 0.9478 + }, + { + "start": 26082.36, + "end": 26085.36, + "probability": 0.988 + }, + { + "start": 26085.82, + "end": 26088.84, + "probability": 0.9932 + }, + { + "start": 26089.2, + "end": 26090.28, + "probability": 0.9932 + }, + { + "start": 26090.36, + "end": 26091.62, + "probability": 0.9036 + }, + { + "start": 26091.92, + "end": 26092.74, + "probability": 0.9905 + }, + { + "start": 26093.5, + "end": 26094.98, + "probability": 0.773 + }, + { + "start": 26096.0, + "end": 26099.64, + "probability": 0.9334 + }, + { + "start": 26103.62, + "end": 26106.58, + "probability": 0.8125 + }, + { + "start": 26106.7, + "end": 26107.9, + "probability": 0.6895 + }, + { + "start": 26108.72, + "end": 26110.56, + "probability": 0.8064 + }, + { + "start": 26111.48, + "end": 26114.64, + "probability": 0.6053 + }, + { + "start": 26117.3, + "end": 26118.8, + "probability": 0.8337 + }, + { + "start": 26121.18, + "end": 26124.08, + "probability": 0.7922 + }, + { + "start": 26125.2, + "end": 26127.26, + "probability": 0.6998 + }, + { + "start": 26128.12, + "end": 26131.18, + "probability": 0.983 + }, + { + "start": 26131.18, + "end": 26133.66, + "probability": 0.9967 + }, + { + "start": 26135.24, + "end": 26137.96, + "probability": 0.998 + }, + { + "start": 26138.7, + "end": 26141.74, + "probability": 0.999 + }, + { + "start": 26142.98, + "end": 26147.12, + "probability": 0.9837 + }, + { + "start": 26147.24, + "end": 26154.84, + "probability": 0.9641 + }, + { + "start": 26155.76, + "end": 26161.58, + "probability": 0.9774 + }, + { + "start": 26162.76, + "end": 26165.86, + "probability": 0.7783 + }, + { + "start": 26165.94, + "end": 26169.16, + "probability": 0.9914 + }, + { + "start": 26169.76, + "end": 26170.7, + "probability": 0.8017 + }, + { + "start": 26172.08, + "end": 26174.34, + "probability": 0.975 + }, + { + "start": 26175.0, + "end": 26176.94, + "probability": 0.8636 + }, + { + "start": 26177.04, + "end": 26178.08, + "probability": 0.9642 + }, + { + "start": 26178.22, + "end": 26183.48, + "probability": 0.9714 + }, + { + "start": 26184.32, + "end": 26187.7, + "probability": 0.8738 + }, + { + "start": 26188.4, + "end": 26192.84, + "probability": 0.9939 + }, + { + "start": 26193.4, + "end": 26195.76, + "probability": 0.9875 + }, + { + "start": 26196.44, + "end": 26199.9, + "probability": 0.958 + }, + { + "start": 26201.58, + "end": 26203.16, + "probability": 0.7492 + }, + { + "start": 26203.96, + "end": 26205.72, + "probability": 0.9392 + }, + { + "start": 26206.64, + "end": 26211.16, + "probability": 0.9814 + }, + { + "start": 26211.32, + "end": 26214.7, + "probability": 0.9917 + }, + { + "start": 26216.04, + "end": 26222.12, + "probability": 0.9499 + }, + { + "start": 26224.36, + "end": 26230.44, + "probability": 0.9948 + }, + { + "start": 26231.9, + "end": 26238.1, + "probability": 0.9896 + }, + { + "start": 26238.1, + "end": 26242.6, + "probability": 0.9992 + }, + { + "start": 26244.7, + "end": 26246.14, + "probability": 0.8598 + }, + { + "start": 26248.3, + "end": 26255.18, + "probability": 0.9858 + }, + { + "start": 26255.9, + "end": 26260.72, + "probability": 0.9248 + }, + { + "start": 26262.8, + "end": 26265.32, + "probability": 0.9553 + }, + { + "start": 26265.98, + "end": 26267.42, + "probability": 0.9547 + }, + { + "start": 26267.96, + "end": 26269.5, + "probability": 0.8724 + }, + { + "start": 26270.44, + "end": 26274.22, + "probability": 0.9297 + }, + { + "start": 26275.56, + "end": 26280.65, + "probability": 0.9766 + }, + { + "start": 26281.46, + "end": 26284.94, + "probability": 0.9887 + }, + { + "start": 26286.24, + "end": 26288.24, + "probability": 0.9775 + }, + { + "start": 26288.4, + "end": 26290.38, + "probability": 0.8932 + }, + { + "start": 26293.2, + "end": 26298.04, + "probability": 0.9928 + }, + { + "start": 26298.5, + "end": 26300.1, + "probability": 0.8908 + }, + { + "start": 26300.86, + "end": 26302.02, + "probability": 0.9077 + }, + { + "start": 26303.44, + "end": 26304.72, + "probability": 0.8845 + }, + { + "start": 26306.16, + "end": 26310.6, + "probability": 0.9908 + }, + { + "start": 26311.3, + "end": 26318.4, + "probability": 0.9944 + }, + { + "start": 26318.74, + "end": 26320.32, + "probability": 0.998 + }, + { + "start": 26322.5, + "end": 26324.08, + "probability": 0.7388 + }, + { + "start": 26325.1, + "end": 26330.74, + "probability": 0.9692 + }, + { + "start": 26331.14, + "end": 26332.3, + "probability": 0.5982 + }, + { + "start": 26333.14, + "end": 26334.92, + "probability": 0.8901 + }, + { + "start": 26335.42, + "end": 26338.52, + "probability": 0.8647 + }, + { + "start": 26339.04, + "end": 26339.34, + "probability": 0.7252 + }, + { + "start": 26340.32, + "end": 26343.42, + "probability": 0.9785 + }, + { + "start": 26344.42, + "end": 26345.4, + "probability": 0.8984 + }, + { + "start": 26345.54, + "end": 26346.84, + "probability": 0.9429 + }, + { + "start": 26346.86, + "end": 26349.32, + "probability": 0.9915 + }, + { + "start": 26349.48, + "end": 26350.44, + "probability": 0.7802 + }, + { + "start": 26351.58, + "end": 26352.88, + "probability": 0.9767 + }, + { + "start": 26355.45, + "end": 26358.26, + "probability": 0.9478 + }, + { + "start": 26359.52, + "end": 26360.04, + "probability": 0.5592 + }, + { + "start": 26360.78, + "end": 26362.46, + "probability": 0.2545 + }, + { + "start": 26363.46, + "end": 26364.78, + "probability": 0.9226 + }, + { + "start": 26367.84, + "end": 26370.08, + "probability": 0.8131 + }, + { + "start": 26371.98, + "end": 26377.54, + "probability": 0.9879 + }, + { + "start": 26378.02, + "end": 26378.54, + "probability": 0.4262 + }, + { + "start": 26383.26, + "end": 26384.06, + "probability": 0.0634 + }, + { + "start": 26387.19, + "end": 26391.02, + "probability": 0.7384 + }, + { + "start": 26392.0, + "end": 26394.6, + "probability": 0.9492 + }, + { + "start": 26395.16, + "end": 26395.91, + "probability": 0.9545 + }, + { + "start": 26396.16, + "end": 26397.26, + "probability": 0.7486 + }, + { + "start": 26397.46, + "end": 26400.76, + "probability": 0.9965 + }, + { + "start": 26401.12, + "end": 26405.5, + "probability": 0.9712 + }, + { + "start": 26405.56, + "end": 26405.78, + "probability": 0.4492 + }, + { + "start": 26405.78, + "end": 26407.42, + "probability": 0.9407 + }, + { + "start": 26408.32, + "end": 26409.24, + "probability": 0.8459 + }, + { + "start": 26409.34, + "end": 26413.94, + "probability": 0.9764 + }, + { + "start": 26414.16, + "end": 26416.6, + "probability": 0.9865 + }, + { + "start": 26417.06, + "end": 26421.36, + "probability": 0.9974 + }, + { + "start": 26421.56, + "end": 26422.78, + "probability": 0.8696 + }, + { + "start": 26423.04, + "end": 26426.22, + "probability": 0.998 + }, + { + "start": 26430.38, + "end": 26430.46, + "probability": 0.0774 + }, + { + "start": 26430.46, + "end": 26431.02, + "probability": 0.2556 + }, + { + "start": 26431.02, + "end": 26431.02, + "probability": 0.6488 + }, + { + "start": 26431.08, + "end": 26432.9, + "probability": 0.9091 + }, + { + "start": 26433.12, + "end": 26433.56, + "probability": 0.7343 + }, + { + "start": 26434.52, + "end": 26435.5, + "probability": 0.9563 + }, + { + "start": 26435.62, + "end": 26437.66, + "probability": 0.9866 + }, + { + "start": 26437.66, + "end": 26441.22, + "probability": 0.3685 + }, + { + "start": 26441.76, + "end": 26442.72, + "probability": 0.4214 + }, + { + "start": 26442.72, + "end": 26442.72, + "probability": 0.7488 + }, + { + "start": 26442.72, + "end": 26443.34, + "probability": 0.3254 + }, + { + "start": 26443.86, + "end": 26444.46, + "probability": 0.9474 + }, + { + "start": 26444.64, + "end": 26446.02, + "probability": 0.9526 + }, + { + "start": 26446.38, + "end": 26447.78, + "probability": 0.9897 + }, + { + "start": 26448.4, + "end": 26450.98, + "probability": 0.9943 + }, + { + "start": 26451.12, + "end": 26451.72, + "probability": 0.5489 + }, + { + "start": 26451.8, + "end": 26452.82, + "probability": 0.969 + }, + { + "start": 26452.96, + "end": 26454.82, + "probability": 0.8359 + }, + { + "start": 26455.14, + "end": 26456.5, + "probability": 0.6216 + }, + { + "start": 26457.2, + "end": 26461.4, + "probability": 0.98 + }, + { + "start": 26461.48, + "end": 26461.68, + "probability": 0.8951 + }, + { + "start": 26463.1, + "end": 26463.36, + "probability": 0.6541 + }, + { + "start": 26463.64, + "end": 26466.04, + "probability": 0.9904 + }, + { + "start": 26466.58, + "end": 26468.34, + "probability": 0.8698 + }, + { + "start": 26468.76, + "end": 26470.88, + "probability": 0.8523 + }, + { + "start": 26471.04, + "end": 26472.47, + "probability": 0.9106 + }, + { + "start": 26472.72, + "end": 26474.7, + "probability": 0.9536 + }, + { + "start": 26475.0, + "end": 26475.28, + "probability": 0.5712 + }, + { + "start": 26475.4, + "end": 26476.08, + "probability": 0.7075 + }, + { + "start": 26477.12, + "end": 26478.44, + "probability": 0.9145 + }, + { + "start": 26491.18, + "end": 26492.76, + "probability": 0.9746 + }, + { + "start": 26492.76, + "end": 26494.08, + "probability": 0.0728 + }, + { + "start": 26494.08, + "end": 26494.28, + "probability": 0.1606 + }, + { + "start": 26494.28, + "end": 26494.28, + "probability": 0.1017 + }, + { + "start": 26494.28, + "end": 26494.28, + "probability": 0.0348 + }, + { + "start": 26494.28, + "end": 26494.38, + "probability": 0.1369 + }, + { + "start": 26495.0, + "end": 26497.65, + "probability": 0.6171 + }, + { + "start": 26498.24, + "end": 26500.02, + "probability": 0.0497 + }, + { + "start": 26502.5, + "end": 26507.18, + "probability": 0.461 + }, + { + "start": 26507.54, + "end": 26510.02, + "probability": 0.9462 + }, + { + "start": 26510.18, + "end": 26511.4, + "probability": 0.5424 + }, + { + "start": 26511.78, + "end": 26514.88, + "probability": 0.1809 + }, + { + "start": 26515.12, + "end": 26517.9, + "probability": 0.6858 + }, + { + "start": 26518.68, + "end": 26519.28, + "probability": 0.6185 + }, + { + "start": 26519.74, + "end": 26520.84, + "probability": 0.7799 + }, + { + "start": 26521.12, + "end": 26522.45, + "probability": 0.9296 + }, + { + "start": 26523.55, + "end": 26526.68, + "probability": 0.8109 + }, + { + "start": 26526.98, + "end": 26530.66, + "probability": 0.9928 + }, + { + "start": 26530.76, + "end": 26531.68, + "probability": 0.6858 + }, + { + "start": 26532.04, + "end": 26534.08, + "probability": 0.7174 + }, + { + "start": 26534.24, + "end": 26535.46, + "probability": 0.9854 + }, + { + "start": 26535.62, + "end": 26537.92, + "probability": 0.7823 + }, + { + "start": 26538.44, + "end": 26542.24, + "probability": 0.9988 + }, + { + "start": 26542.78, + "end": 26546.16, + "probability": 0.926 + }, + { + "start": 26546.78, + "end": 26552.44, + "probability": 0.9978 + }, + { + "start": 26552.56, + "end": 26554.5, + "probability": 0.9871 + }, + { + "start": 26554.84, + "end": 26556.76, + "probability": 0.8882 + }, + { + "start": 26557.34, + "end": 26558.12, + "probability": 0.7847 + }, + { + "start": 26558.5, + "end": 26560.28, + "probability": 0.8124 + }, + { + "start": 26561.0, + "end": 26563.68, + "probability": 0.9611 + }, + { + "start": 26563.84, + "end": 26566.06, + "probability": 0.9224 + }, + { + "start": 26566.44, + "end": 26568.14, + "probability": 0.8792 + }, + { + "start": 26568.6, + "end": 26569.06, + "probability": 0.4145 + }, + { + "start": 26569.56, + "end": 26574.88, + "probability": 0.9828 + }, + { + "start": 26575.06, + "end": 26575.8, + "probability": 0.8103 + }, + { + "start": 26575.8, + "end": 26577.1, + "probability": 0.5276 + }, + { + "start": 26577.1, + "end": 26578.68, + "probability": 0.7023 + }, + { + "start": 26579.22, + "end": 26583.64, + "probability": 0.8316 + }, + { + "start": 26584.1, + "end": 26586.52, + "probability": 0.7127 + }, + { + "start": 26587.52, + "end": 26590.64, + "probability": 0.6794 + }, + { + "start": 26591.42, + "end": 26593.4, + "probability": 0.8615 + }, + { + "start": 26593.4, + "end": 26593.4, + "probability": 0.1279 + }, + { + "start": 26593.4, + "end": 26594.64, + "probability": 0.8938 + }, + { + "start": 26595.1, + "end": 26598.22, + "probability": 0.7983 + }, + { + "start": 26598.34, + "end": 26598.92, + "probability": 0.512 + }, + { + "start": 26598.96, + "end": 26600.56, + "probability": 0.9878 + }, + { + "start": 26600.94, + "end": 26602.56, + "probability": 0.9692 + }, + { + "start": 26603.02, + "end": 26604.72, + "probability": 0.8542 + }, + { + "start": 26604.86, + "end": 26606.14, + "probability": 0.9966 + }, + { + "start": 26606.2, + "end": 26607.66, + "probability": 0.891 + }, + { + "start": 26608.14, + "end": 26608.78, + "probability": 0.9641 + }, + { + "start": 26609.12, + "end": 26611.08, + "probability": 0.8432 + }, + { + "start": 26611.72, + "end": 26616.68, + "probability": 0.9487 + }, + { + "start": 26618.04, + "end": 26620.08, + "probability": 0.9382 + }, + { + "start": 26620.58, + "end": 26622.75, + "probability": 0.9927 + }, + { + "start": 26623.46, + "end": 26625.9, + "probability": 0.9808 + }, + { + "start": 26625.9, + "end": 26628.94, + "probability": 0.9978 + }, + { + "start": 26629.52, + "end": 26632.82, + "probability": 0.9961 + }, + { + "start": 26633.24, + "end": 26634.04, + "probability": 0.6615 + }, + { + "start": 26634.1, + "end": 26634.6, + "probability": 0.6448 + }, + { + "start": 26634.66, + "end": 26636.68, + "probability": 0.7766 + }, + { + "start": 26636.82, + "end": 26637.5, + "probability": 0.9231 + }, + { + "start": 26638.54, + "end": 26639.67, + "probability": 0.9971 + }, + { + "start": 26640.4, + "end": 26640.72, + "probability": 0.98 + }, + { + "start": 26642.2, + "end": 26646.24, + "probability": 0.9962 + }, + { + "start": 26647.0, + "end": 26650.78, + "probability": 0.7838 + }, + { + "start": 26650.94, + "end": 26651.8, + "probability": 0.9152 + }, + { + "start": 26652.82, + "end": 26655.52, + "probability": 0.9541 + }, + { + "start": 26656.18, + "end": 26656.76, + "probability": 0.719 + }, + { + "start": 26656.76, + "end": 26657.24, + "probability": 0.4133 + }, + { + "start": 26657.62, + "end": 26659.96, + "probability": 0.9667 + }, + { + "start": 26660.6, + "end": 26662.28, + "probability": 0.9819 + }, + { + "start": 26662.34, + "end": 26663.36, + "probability": 0.9512 + }, + { + "start": 26664.5, + "end": 26665.91, + "probability": 0.9453 + }, + { + "start": 26666.84, + "end": 26667.53, + "probability": 0.9685 + }, + { + "start": 26667.74, + "end": 26667.84, + "probability": 0.1439 + }, + { + "start": 26667.84, + "end": 26668.62, + "probability": 0.8755 + }, + { + "start": 26668.76, + "end": 26671.42, + "probability": 0.975 + }, + { + "start": 26671.98, + "end": 26673.48, + "probability": 0.9455 + }, + { + "start": 26673.56, + "end": 26675.02, + "probability": 0.9241 + }, + { + "start": 26675.58, + "end": 26676.3, + "probability": 0.7799 + }, + { + "start": 26676.58, + "end": 26679.38, + "probability": 0.7029 + }, + { + "start": 26680.12, + "end": 26680.7, + "probability": 0.6907 + }, + { + "start": 26681.42, + "end": 26683.42, + "probability": 0.8067 + }, + { + "start": 26684.2, + "end": 26684.64, + "probability": 0.8708 + }, + { + "start": 26685.1, + "end": 26687.92, + "probability": 0.9475 + }, + { + "start": 26688.0, + "end": 26689.54, + "probability": 0.5775 + }, + { + "start": 26689.62, + "end": 26690.64, + "probability": 0.6705 + }, + { + "start": 26691.14, + "end": 26691.9, + "probability": 0.9271 + }, + { + "start": 26692.68, + "end": 26693.94, + "probability": 0.7565 + }, + { + "start": 26694.44, + "end": 26696.32, + "probability": 0.5556 + }, + { + "start": 26697.28, + "end": 26699.06, + "probability": 0.896 + }, + { + "start": 26699.2, + "end": 26699.96, + "probability": 0.9155 + }, + { + "start": 26700.52, + "end": 26703.5, + "probability": 0.9949 + }, + { + "start": 26703.5, + "end": 26706.26, + "probability": 0.9062 + }, + { + "start": 26707.02, + "end": 26707.62, + "probability": 0.6295 + }, + { + "start": 26707.9, + "end": 26708.72, + "probability": 0.9316 + }, + { + "start": 26709.48, + "end": 26714.26, + "probability": 0.9961 + }, + { + "start": 26714.54, + "end": 26716.4, + "probability": 0.6899 + }, + { + "start": 26716.88, + "end": 26717.62, + "probability": 0.679 + }, + { + "start": 26717.78, + "end": 26718.54, + "probability": 0.9784 + }, + { + "start": 26719.24, + "end": 26719.72, + "probability": 0.7546 + }, + { + "start": 26720.42, + "end": 26723.04, + "probability": 0.9504 + }, + { + "start": 26723.52, + "end": 26723.66, + "probability": 0.329 + }, + { + "start": 26723.76, + "end": 26724.06, + "probability": 0.8779 + }, + { + "start": 26724.1, + "end": 26725.02, + "probability": 0.846 + }, + { + "start": 26726.0, + "end": 26728.9, + "probability": 0.8586 + }, + { + "start": 26729.0, + "end": 26729.4, + "probability": 0.8981 + }, + { + "start": 26729.5, + "end": 26730.52, + "probability": 0.9223 + }, + { + "start": 26730.58, + "end": 26731.94, + "probability": 0.9949 + }, + { + "start": 26732.14, + "end": 26733.22, + "probability": 0.7722 + }, + { + "start": 26733.66, + "end": 26734.0, + "probability": 0.4793 + }, + { + "start": 26734.04, + "end": 26736.06, + "probability": 0.7876 + }, + { + "start": 26736.56, + "end": 26736.96, + "probability": 0.5977 + }, + { + "start": 26737.22, + "end": 26737.54, + "probability": 0.7932 + }, + { + "start": 26737.74, + "end": 26738.26, + "probability": 0.9697 + }, + { + "start": 26738.3, + "end": 26738.8, + "probability": 0.6399 + }, + { + "start": 26739.42, + "end": 26743.7, + "probability": 0.9839 + }, + { + "start": 26744.34, + "end": 26750.44, + "probability": 0.9905 + }, + { + "start": 26751.34, + "end": 26754.74, + "probability": 0.999 + }, + { + "start": 26755.44, + "end": 26755.78, + "probability": 0.5758 + }, + { + "start": 26755.98, + "end": 26757.8, + "probability": 0.9888 + }, + { + "start": 26757.86, + "end": 26759.3, + "probability": 0.9472 + }, + { + "start": 26760.08, + "end": 26762.28, + "probability": 0.8602 + }, + { + "start": 26762.96, + "end": 26763.38, + "probability": 0.9648 + }, + { + "start": 26764.34, + "end": 26767.16, + "probability": 0.9954 + }, + { + "start": 26767.76, + "end": 26767.98, + "probability": 0.5335 + }, + { + "start": 26768.06, + "end": 26774.28, + "probability": 0.9868 + }, + { + "start": 26774.38, + "end": 26774.74, + "probability": 0.7672 + }, + { + "start": 26774.84, + "end": 26781.04, + "probability": 0.8765 + }, + { + "start": 26781.28, + "end": 26783.28, + "probability": 0.9577 + }, + { + "start": 26784.0, + "end": 26785.12, + "probability": 0.7986 + }, + { + "start": 26785.22, + "end": 26787.04, + "probability": 0.9916 + }, + { + "start": 26787.12, + "end": 26787.96, + "probability": 0.9702 + }, + { + "start": 26788.1, + "end": 26789.32, + "probability": 0.9706 + }, + { + "start": 26789.82, + "end": 26791.34, + "probability": 0.8858 + }, + { + "start": 26791.86, + "end": 26792.99, + "probability": 0.9919 + }, + { + "start": 26793.52, + "end": 26794.86, + "probability": 0.9612 + }, + { + "start": 26795.2, + "end": 26797.26, + "probability": 0.8572 + }, + { + "start": 26797.8, + "end": 26798.86, + "probability": 0.9451 + }, + { + "start": 26799.0, + "end": 26801.9, + "probability": 0.9127 + }, + { + "start": 26802.54, + "end": 26803.24, + "probability": 0.9668 + }, + { + "start": 26803.78, + "end": 26806.4, + "probability": 0.974 + }, + { + "start": 26807.62, + "end": 26810.76, + "probability": 0.9054 + }, + { + "start": 26811.44, + "end": 26812.52, + "probability": 0.939 + }, + { + "start": 26812.64, + "end": 26816.1, + "probability": 0.9922 + }, + { + "start": 26817.1, + "end": 26817.6, + "probability": 0.8762 + }, + { + "start": 26820.5, + "end": 26824.76, + "probability": 0.9514 + }, + { + "start": 26825.1, + "end": 26826.84, + "probability": 0.9988 + }, + { + "start": 26826.84, + "end": 26829.16, + "probability": 0.981 + }, + { + "start": 26830.28, + "end": 26832.8, + "probability": 0.8925 + }, + { + "start": 26834.32, + "end": 26836.24, + "probability": 0.9001 + }, + { + "start": 26836.86, + "end": 26839.94, + "probability": 0.9954 + }, + { + "start": 26840.12, + "end": 26841.2, + "probability": 0.8552 + }, + { + "start": 26841.56, + "end": 26842.72, + "probability": 0.9503 + }, + { + "start": 26843.18, + "end": 26845.14, + "probability": 0.9553 + }, + { + "start": 26845.22, + "end": 26846.8, + "probability": 0.9206 + }, + { + "start": 26846.98, + "end": 26847.96, + "probability": 0.918 + }, + { + "start": 26848.04, + "end": 26851.3, + "probability": 0.9953 + }, + { + "start": 26853.5, + "end": 26855.5, + "probability": 0.7206 + }, + { + "start": 26856.24, + "end": 26859.22, + "probability": 0.9902 + }, + { + "start": 26859.9, + "end": 26861.44, + "probability": 0.9878 + }, + { + "start": 26861.64, + "end": 26863.65, + "probability": 0.9281 + }, + { + "start": 26863.88, + "end": 26865.26, + "probability": 0.8359 + }, + { + "start": 26865.88, + "end": 26867.4, + "probability": 0.9473 + }, + { + "start": 26867.84, + "end": 26868.77, + "probability": 0.7565 + }, + { + "start": 26869.02, + "end": 26869.55, + "probability": 0.9105 + }, + { + "start": 26870.68, + "end": 26872.66, + "probability": 0.9539 + }, + { + "start": 26873.08, + "end": 26875.18, + "probability": 0.9834 + }, + { + "start": 26875.22, + "end": 26876.58, + "probability": 0.9801 + }, + { + "start": 26876.84, + "end": 26877.86, + "probability": 0.8135 + }, + { + "start": 26878.18, + "end": 26880.06, + "probability": 0.8683 + }, + { + "start": 26880.46, + "end": 26880.78, + "probability": 0.7766 + }, + { + "start": 26880.86, + "end": 26883.02, + "probability": 0.9453 + }, + { + "start": 26883.18, + "end": 26884.24, + "probability": 0.9275 + }, + { + "start": 26884.3, + "end": 26884.8, + "probability": 0.7562 + }, + { + "start": 26885.32, + "end": 26887.84, + "probability": 0.9565 + }, + { + "start": 26888.18, + "end": 26891.28, + "probability": 0.9873 + }, + { + "start": 26891.32, + "end": 26893.98, + "probability": 0.9874 + }, + { + "start": 26894.64, + "end": 26898.14, + "probability": 0.9966 + }, + { + "start": 26898.78, + "end": 26899.64, + "probability": 0.6895 + }, + { + "start": 26900.34, + "end": 26905.32, + "probability": 0.9939 + }, + { + "start": 26906.26, + "end": 26907.8, + "probability": 0.9932 + }, + { + "start": 26908.18, + "end": 26909.6, + "probability": 0.958 + }, + { + "start": 26909.66, + "end": 26911.42, + "probability": 0.9888 + }, + { + "start": 26912.28, + "end": 26917.6, + "probability": 0.9951 + }, + { + "start": 26918.36, + "end": 26921.66, + "probability": 0.9787 + }, + { + "start": 26922.48, + "end": 26927.16, + "probability": 0.9989 + }, + { + "start": 26927.28, + "end": 26929.4, + "probability": 0.4197 + }, + { + "start": 26929.58, + "end": 26930.48, + "probability": 0.927 + }, + { + "start": 26931.3, + "end": 26932.56, + "probability": 0.8379 + }, + { + "start": 26933.02, + "end": 26935.7, + "probability": 0.9908 + }, + { + "start": 26935.7, + "end": 26941.42, + "probability": 0.9945 + }, + { + "start": 26941.66, + "end": 26944.56, + "probability": 0.9364 + }, + { + "start": 26944.94, + "end": 26947.44, + "probability": 0.9971 + }, + { + "start": 26947.44, + "end": 26950.48, + "probability": 0.9996 + }, + { + "start": 26950.86, + "end": 26952.98, + "probability": 0.8524 + }, + { + "start": 26953.8, + "end": 26958.8, + "probability": 0.9523 + }, + { + "start": 26960.02, + "end": 26962.32, + "probability": 0.9811 + }, + { + "start": 26962.94, + "end": 26964.62, + "probability": 0.9946 + }, + { + "start": 26965.78, + "end": 26968.04, + "probability": 0.9979 + }, + { + "start": 26969.29, + "end": 26973.22, + "probability": 0.9989 + }, + { + "start": 26973.26, + "end": 26976.44, + "probability": 0.9971 + }, + { + "start": 26976.84, + "end": 26977.86, + "probability": 0.963 + }, + { + "start": 26977.9, + "end": 26978.94, + "probability": 0.7879 + }, + { + "start": 26979.54, + "end": 26982.8, + "probability": 0.997 + }, + { + "start": 26983.38, + "end": 26987.78, + "probability": 0.9671 + }, + { + "start": 26988.36, + "end": 26988.54, + "probability": 0.4488 + }, + { + "start": 26988.62, + "end": 26991.34, + "probability": 0.97 + }, + { + "start": 26991.34, + "end": 26994.3, + "probability": 0.9989 + }, + { + "start": 26994.64, + "end": 26997.9, + "probability": 0.9917 + }, + { + "start": 26998.5, + "end": 27000.72, + "probability": 0.9978 + }, + { + "start": 27001.32, + "end": 27003.2, + "probability": 0.9985 + }, + { + "start": 27004.58, + "end": 27008.84, + "probability": 0.9944 + }, + { + "start": 27009.66, + "end": 27009.94, + "probability": 0.3187 + }, + { + "start": 27009.94, + "end": 27010.52, + "probability": 0.3842 + }, + { + "start": 27010.56, + "end": 27011.6, + "probability": 0.869 + }, + { + "start": 27011.76, + "end": 27013.74, + "probability": 0.9936 + }, + { + "start": 27013.8, + "end": 27016.84, + "probability": 0.7856 + }, + { + "start": 27017.14, + "end": 27019.6, + "probability": 0.9842 + }, + { + "start": 27020.64, + "end": 27021.26, + "probability": 0.8678 + }, + { + "start": 27021.54, + "end": 27023.06, + "probability": 0.811 + }, + { + "start": 27023.66, + "end": 27025.86, + "probability": 0.9985 + }, + { + "start": 27026.24, + "end": 27026.86, + "probability": 0.6276 + }, + { + "start": 27027.02, + "end": 27030.46, + "probability": 0.9951 + }, + { + "start": 27030.46, + "end": 27033.88, + "probability": 0.9565 + }, + { + "start": 27034.1, + "end": 27037.08, + "probability": 0.9865 + }, + { + "start": 27037.4, + "end": 27039.8, + "probability": 0.8962 + }, + { + "start": 27039.88, + "end": 27041.88, + "probability": 0.8041 + }, + { + "start": 27042.58, + "end": 27044.14, + "probability": 0.9836 + }, + { + "start": 27044.3, + "end": 27045.94, + "probability": 0.8967 + }, + { + "start": 27046.44, + "end": 27048.94, + "probability": 0.9801 + }, + { + "start": 27049.16, + "end": 27053.42, + "probability": 0.984 + }, + { + "start": 27054.28, + "end": 27056.84, + "probability": 0.7985 + }, + { + "start": 27058.08, + "end": 27062.38, + "probability": 0.9648 + }, + { + "start": 27064.58, + "end": 27069.86, + "probability": 0.9708 + }, + { + "start": 27071.48, + "end": 27072.4, + "probability": 0.957 + }, + { + "start": 27074.16, + "end": 27075.52, + "probability": 0.9385 + }, + { + "start": 27075.94, + "end": 27077.58, + "probability": 0.8706 + }, + { + "start": 27077.8, + "end": 27077.8, + "probability": 0.5272 + }, + { + "start": 27077.8, + "end": 27078.75, + "probability": 0.52 + }, + { + "start": 27080.7, + "end": 27082.18, + "probability": 0.9971 + }, + { + "start": 27083.56, + "end": 27084.82, + "probability": 0.9767 + }, + { + "start": 27085.78, + "end": 27088.96, + "probability": 0.9983 + }, + { + "start": 27088.96, + "end": 27094.28, + "probability": 0.9865 + }, + { + "start": 27095.22, + "end": 27098.74, + "probability": 0.8744 + }, + { + "start": 27099.34, + "end": 27103.39, + "probability": 0.9528 + }, + { + "start": 27104.0, + "end": 27105.88, + "probability": 0.998 + }, + { + "start": 27107.38, + "end": 27112.52, + "probability": 0.9951 + }, + { + "start": 27113.06, + "end": 27116.24, + "probability": 0.9539 + }, + { + "start": 27116.88, + "end": 27118.16, + "probability": 0.8984 + }, + { + "start": 27121.56, + "end": 27123.3, + "probability": 0.9762 + }, + { + "start": 27124.54, + "end": 27127.86, + "probability": 0.9873 + }, + { + "start": 27129.02, + "end": 27132.14, + "probability": 0.9822 + }, + { + "start": 27132.94, + "end": 27137.44, + "probability": 0.967 + }, + { + "start": 27137.96, + "end": 27139.12, + "probability": 0.8386 + }, + { + "start": 27140.48, + "end": 27142.78, + "probability": 0.9395 + }, + { + "start": 27143.62, + "end": 27146.08, + "probability": 0.9904 + }, + { + "start": 27147.0, + "end": 27150.86, + "probability": 0.9932 + }, + { + "start": 27151.42, + "end": 27152.96, + "probability": 0.9834 + }, + { + "start": 27153.62, + "end": 27157.14, + "probability": 0.9441 + }, + { + "start": 27158.44, + "end": 27161.6, + "probability": 0.8977 + }, + { + "start": 27162.32, + "end": 27165.54, + "probability": 0.8315 + }, + { + "start": 27165.54, + "end": 27169.5, + "probability": 0.9964 + }, + { + "start": 27171.02, + "end": 27171.6, + "probability": 0.7527 + }, + { + "start": 27172.46, + "end": 27174.68, + "probability": 0.976 + }, + { + "start": 27175.5, + "end": 27177.68, + "probability": 0.9087 + }, + { + "start": 27178.26, + "end": 27179.88, + "probability": 0.988 + }, + { + "start": 27180.7, + "end": 27182.1, + "probability": 0.9895 + }, + { + "start": 27182.76, + "end": 27184.4, + "probability": 0.9601 + }, + { + "start": 27184.98, + "end": 27186.42, + "probability": 0.9775 + }, + { + "start": 27186.98, + "end": 27191.62, + "probability": 0.808 + }, + { + "start": 27191.68, + "end": 27193.82, + "probability": 0.9339 + }, + { + "start": 27194.92, + "end": 27198.44, + "probability": 0.9966 + }, + { + "start": 27200.04, + "end": 27201.42, + "probability": 0.603 + }, + { + "start": 27202.32, + "end": 27202.92, + "probability": 0.9863 + }, + { + "start": 27203.8, + "end": 27204.18, + "probability": 0.7622 + }, + { + "start": 27204.24, + "end": 27206.06, + "probability": 0.4944 + }, + { + "start": 27206.8, + "end": 27208.56, + "probability": 0.7983 + }, + { + "start": 27208.64, + "end": 27209.6, + "probability": 0.7312 + }, + { + "start": 27210.22, + "end": 27212.14, + "probability": 0.8952 + }, + { + "start": 27213.12, + "end": 27213.92, + "probability": 0.5499 + }, + { + "start": 27214.52, + "end": 27217.56, + "probability": 0.8137 + }, + { + "start": 27218.52, + "end": 27218.94, + "probability": 0.5194 + }, + { + "start": 27218.96, + "end": 27219.6, + "probability": 0.7766 + }, + { + "start": 27219.7, + "end": 27225.28, + "probability": 0.9326 + }, + { + "start": 27225.5, + "end": 27226.1, + "probability": 0.7668 + }, + { + "start": 27227.08, + "end": 27228.24, + "probability": 0.62 + }, + { + "start": 27228.3, + "end": 27233.18, + "probability": 0.9426 + }, + { + "start": 27234.08, + "end": 27236.98, + "probability": 0.5487 + }, + { + "start": 27238.31, + "end": 27241.3, + "probability": 0.7446 + }, + { + "start": 27242.1, + "end": 27244.02, + "probability": 0.2769 + }, + { + "start": 27244.66, + "end": 27245.14, + "probability": 0.4538 + }, + { + "start": 27245.14, + "end": 27245.14, + "probability": 0.6056 + }, + { + "start": 27245.18, + "end": 27246.86, + "probability": 0.6993 + }, + { + "start": 27246.92, + "end": 27249.26, + "probability": 0.7838 + }, + { + "start": 27249.64, + "end": 27253.94, + "probability": 0.9016 + }, + { + "start": 27254.7, + "end": 27255.9, + "probability": 0.8983 + }, + { + "start": 27255.96, + "end": 27259.54, + "probability": 0.9943 + }, + { + "start": 27260.3, + "end": 27263.5, + "probability": 0.9792 + }, + { + "start": 27264.6, + "end": 27269.86, + "probability": 0.9849 + }, + { + "start": 27270.6, + "end": 27271.8, + "probability": 0.7954 + }, + { + "start": 27272.74, + "end": 27277.08, + "probability": 0.9986 + }, + { + "start": 27277.08, + "end": 27279.86, + "probability": 0.8541 + }, + { + "start": 27280.4, + "end": 27282.74, + "probability": 0.9191 + }, + { + "start": 27282.74, + "end": 27282.81, + "probability": 0.6165 + }, + { + "start": 27283.34, + "end": 27283.66, + "probability": 0.6899 + }, + { + "start": 27284.04, + "end": 27284.26, + "probability": 0.7422 + }, + { + "start": 27284.36, + "end": 27286.3, + "probability": 0.9559 + }, + { + "start": 27286.64, + "end": 27287.8, + "probability": 0.8596 + }, + { + "start": 27289.18, + "end": 27295.02, + "probability": 0.9891 + }, + { + "start": 27295.26, + "end": 27296.44, + "probability": 0.7715 + }, + { + "start": 27296.5, + "end": 27298.28, + "probability": 0.8619 + }, + { + "start": 27298.76, + "end": 27301.6, + "probability": 0.7612 + }, + { + "start": 27302.2, + "end": 27304.34, + "probability": 0.8467 + }, + { + "start": 27304.68, + "end": 27305.1, + "probability": 0.9301 + }, + { + "start": 27306.02, + "end": 27306.72, + "probability": 0.7812 + }, + { + "start": 27307.92, + "end": 27308.12, + "probability": 0.1291 + }, + { + "start": 27308.12, + "end": 27308.12, + "probability": 0.2664 + }, + { + "start": 27308.12, + "end": 27308.86, + "probability": 0.1347 + }, + { + "start": 27308.96, + "end": 27310.26, + "probability": 0.4539 + }, + { + "start": 27310.26, + "end": 27310.34, + "probability": 0.2557 + }, + { + "start": 27310.34, + "end": 27310.72, + "probability": 0.5449 + }, + { + "start": 27310.98, + "end": 27311.5, + "probability": 0.0818 + }, + { + "start": 27311.74, + "end": 27312.37, + "probability": 0.3996 + }, + { + "start": 27314.34, + "end": 27319.64, + "probability": 0.9802 + }, + { + "start": 27320.18, + "end": 27320.52, + "probability": 0.6785 + }, + { + "start": 27320.54, + "end": 27321.77, + "probability": 0.7964 + }, + { + "start": 27322.34, + "end": 27323.18, + "probability": 0.6244 + }, + { + "start": 27323.38, + "end": 27326.54, + "probability": 0.3982 + }, + { + "start": 27326.96, + "end": 27327.72, + "probability": 0.573 + }, + { + "start": 27328.64, + "end": 27330.0, + "probability": 0.8675 + }, + { + "start": 27330.2, + "end": 27330.8, + "probability": 0.9466 + }, + { + "start": 27331.92, + "end": 27335.28, + "probability": 0.9332 + }, + { + "start": 27335.56, + "end": 27339.16, + "probability": 0.9541 + }, + { + "start": 27339.92, + "end": 27343.94, + "probability": 0.7079 + }, + { + "start": 27344.32, + "end": 27346.94, + "probability": 0.9976 + }, + { + "start": 27347.32, + "end": 27348.18, + "probability": 0.986 + }, + { + "start": 27348.22, + "end": 27349.2, + "probability": 0.9899 + }, + { + "start": 27349.24, + "end": 27350.42, + "probability": 0.981 + }, + { + "start": 27350.76, + "end": 27353.3, + "probability": 0.999 + }, + { + "start": 27353.38, + "end": 27355.96, + "probability": 0.992 + }, + { + "start": 27357.22, + "end": 27358.02, + "probability": 0.7209 + }, + { + "start": 27359.24, + "end": 27362.18, + "probability": 0.9528 + }, + { + "start": 27362.76, + "end": 27365.86, + "probability": 0.9874 + }, + { + "start": 27367.24, + "end": 27369.52, + "probability": 0.9934 + }, + { + "start": 27369.7, + "end": 27371.22, + "probability": 0.9917 + }, + { + "start": 27371.68, + "end": 27371.88, + "probability": 0.3834 + }, + { + "start": 27371.88, + "end": 27375.14, + "probability": 0.8269 + }, + { + "start": 27375.14, + "end": 27377.97, + "probability": 0.9897 + }, + { + "start": 27378.7, + "end": 27381.68, + "probability": 0.9897 + }, + { + "start": 27382.04, + "end": 27382.3, + "probability": 0.6678 + }, + { + "start": 27382.48, + "end": 27384.37, + "probability": 0.9946 + }, + { + "start": 27385.36, + "end": 27388.22, + "probability": 0.9495 + }, + { + "start": 27388.98, + "end": 27393.34, + "probability": 0.877 + }, + { + "start": 27394.08, + "end": 27396.36, + "probability": 0.9546 + }, + { + "start": 27397.5, + "end": 27398.68, + "probability": 0.7808 + }, + { + "start": 27400.7, + "end": 27407.24, + "probability": 0.9949 + }, + { + "start": 27407.24, + "end": 27414.04, + "probability": 0.923 + }, + { + "start": 27414.8, + "end": 27418.3, + "probability": 0.9973 + }, + { + "start": 27419.04, + "end": 27422.9, + "probability": 0.9435 + }, + { + "start": 27423.6, + "end": 27426.06, + "probability": 0.9797 + }, + { + "start": 27426.48, + "end": 27427.82, + "probability": 0.7945 + }, + { + "start": 27428.26, + "end": 27428.62, + "probability": 0.4966 + }, + { + "start": 27428.66, + "end": 27429.32, + "probability": 0.7567 + }, + { + "start": 27429.36, + "end": 27431.02, + "probability": 0.8677 + }, + { + "start": 27431.22, + "end": 27432.38, + "probability": 0.6017 + }, + { + "start": 27432.44, + "end": 27433.66, + "probability": 0.9731 + }, + { + "start": 27435.42, + "end": 27436.26, + "probability": 0.8995 + }, + { + "start": 27437.92, + "end": 27442.72, + "probability": 0.9406 + }, + { + "start": 27443.66, + "end": 27447.66, + "probability": 0.9961 + }, + { + "start": 27447.84, + "end": 27449.02, + "probability": 0.8385 + }, + { + "start": 27450.06, + "end": 27453.72, + "probability": 0.9674 + }, + { + "start": 27453.8, + "end": 27455.22, + "probability": 0.953 + }, + { + "start": 27455.54, + "end": 27456.64, + "probability": 0.7662 + }, + { + "start": 27456.86, + "end": 27460.94, + "probability": 0.9751 + }, + { + "start": 27461.52, + "end": 27461.8, + "probability": 0.5473 + }, + { + "start": 27461.86, + "end": 27462.42, + "probability": 0.9336 + }, + { + "start": 27462.62, + "end": 27464.08, + "probability": 0.8796 + }, + { + "start": 27464.24, + "end": 27464.73, + "probability": 0.5961 + }, + { + "start": 27465.9, + "end": 27467.22, + "probability": 0.7471 + }, + { + "start": 27468.22, + "end": 27471.34, + "probability": 0.7399 + }, + { + "start": 27471.94, + "end": 27474.48, + "probability": 0.9799 + }, + { + "start": 27474.64, + "end": 27477.7, + "probability": 0.9921 + }, + { + "start": 27478.48, + "end": 27480.02, + "probability": 0.8223 + }, + { + "start": 27480.48, + "end": 27482.2, + "probability": 0.8175 + }, + { + "start": 27482.3, + "end": 27483.94, + "probability": 0.8123 + }, + { + "start": 27484.14, + "end": 27485.38, + "probability": 0.9728 + }, + { + "start": 27485.78, + "end": 27485.98, + "probability": 0.498 + }, + { + "start": 27486.06, + "end": 27487.06, + "probability": 0.8763 + }, + { + "start": 27487.2, + "end": 27488.96, + "probability": 0.9855 + }, + { + "start": 27489.22, + "end": 27489.92, + "probability": 0.9863 + }, + { + "start": 27490.44, + "end": 27493.04, + "probability": 0.7489 + }, + { + "start": 27493.92, + "end": 27496.36, + "probability": 0.7483 + }, + { + "start": 27497.8, + "end": 27502.42, + "probability": 0.9763 + }, + { + "start": 27505.48, + "end": 27508.58, + "probability": 0.9801 + }, + { + "start": 27509.24, + "end": 27515.38, + "probability": 0.9744 + }, + { + "start": 27515.38, + "end": 27519.4, + "probability": 0.9614 + }, + { + "start": 27519.4, + "end": 27519.86, + "probability": 0.7379 + }, + { + "start": 27520.98, + "end": 27524.08, + "probability": 0.9766 + }, + { + "start": 27524.86, + "end": 27528.32, + "probability": 0.8558 + }, + { + "start": 27529.22, + "end": 27530.8, + "probability": 0.9951 + }, + { + "start": 27532.04, + "end": 27535.74, + "probability": 0.9538 + }, + { + "start": 27535.86, + "end": 27540.08, + "probability": 0.9954 + }, + { + "start": 27540.18, + "end": 27540.54, + "probability": 0.5744 + }, + { + "start": 27540.62, + "end": 27543.92, + "probability": 0.9766 + }, + { + "start": 27544.72, + "end": 27547.12, + "probability": 0.8306 + }, + { + "start": 27548.8, + "end": 27549.64, + "probability": 0.9175 + }, + { + "start": 27551.84, + "end": 27553.74, + "probability": 0.6751 + }, + { + "start": 27555.46, + "end": 27558.22, + "probability": 0.7908 + }, + { + "start": 27559.2, + "end": 27562.94, + "probability": 0.9965 + }, + { + "start": 27562.98, + "end": 27567.51, + "probability": 0.999 + }, + { + "start": 27569.02, + "end": 27573.56, + "probability": 0.9965 + }, + { + "start": 27573.98, + "end": 27576.38, + "probability": 0.9092 + }, + { + "start": 27577.02, + "end": 27579.76, + "probability": 0.9497 + }, + { + "start": 27580.5, + "end": 27583.2, + "probability": 0.9948 + }, + { + "start": 27585.2, + "end": 27587.52, + "probability": 0.7355 + }, + { + "start": 27587.66, + "end": 27589.94, + "probability": 0.8015 + }, + { + "start": 27590.78, + "end": 27592.38, + "probability": 0.9401 + }, + { + "start": 27593.44, + "end": 27594.92, + "probability": 0.8142 + }, + { + "start": 27595.2, + "end": 27595.78, + "probability": 0.7833 + }, + { + "start": 27595.9, + "end": 27597.02, + "probability": 0.6935 + }, + { + "start": 27597.08, + "end": 27598.2, + "probability": 0.9196 + }, + { + "start": 27598.22, + "end": 27599.32, + "probability": 0.835 + }, + { + "start": 27601.55, + "end": 27606.1, + "probability": 0.9965 + }, + { + "start": 27607.06, + "end": 27611.87, + "probability": 0.9985 + }, + { + "start": 27614.44, + "end": 27615.58, + "probability": 0.9452 + }, + { + "start": 27616.56, + "end": 27622.54, + "probability": 0.6961 + }, + { + "start": 27623.18, + "end": 27629.16, + "probability": 0.9907 + }, + { + "start": 27629.16, + "end": 27635.22, + "probability": 0.9971 + }, + { + "start": 27635.28, + "end": 27639.44, + "probability": 0.992 + }, + { + "start": 27641.88, + "end": 27646.98, + "probability": 0.9899 + }, + { + "start": 27648.7, + "end": 27649.24, + "probability": 0.385 + }, + { + "start": 27649.4, + "end": 27652.46, + "probability": 0.9961 + }, + { + "start": 27652.54, + "end": 27655.72, + "probability": 0.8887 + }, + { + "start": 27655.78, + "end": 27656.5, + "probability": 0.9084 + }, + { + "start": 27657.12, + "end": 27660.06, + "probability": 0.9595 + }, + { + "start": 27660.84, + "end": 27662.68, + "probability": 0.9188 + }, + { + "start": 27663.36, + "end": 27664.74, + "probability": 0.8486 + }, + { + "start": 27666.04, + "end": 27670.14, + "probability": 0.9972 + }, + { + "start": 27670.14, + "end": 27673.48, + "probability": 0.9785 + }, + { + "start": 27673.56, + "end": 27675.66, + "probability": 0.9826 + }, + { + "start": 27676.28, + "end": 27680.1, + "probability": 0.98 + }, + { + "start": 27680.1, + "end": 27682.18, + "probability": 0.9414 + }, + { + "start": 27683.28, + "end": 27684.58, + "probability": 0.8375 + }, + { + "start": 27685.24, + "end": 27688.18, + "probability": 0.9961 + }, + { + "start": 27688.86, + "end": 27693.6, + "probability": 0.9031 + }, + { + "start": 27694.16, + "end": 27695.82, + "probability": 0.9934 + }, + { + "start": 27700.04, + "end": 27704.02, + "probability": 0.9944 + }, + { + "start": 27704.02, + "end": 27706.73, + "probability": 0.8929 + }, + { + "start": 27707.66, + "end": 27709.24, + "probability": 0.99 + }, + { + "start": 27709.88, + "end": 27713.24, + "probability": 0.5265 + }, + { + "start": 27713.68, + "end": 27714.86, + "probability": 0.9776 + }, + { + "start": 27715.16, + "end": 27717.26, + "probability": 0.9269 + }, + { + "start": 27723.14, + "end": 27724.72, + "probability": 0.8947 + }, + { + "start": 27725.08, + "end": 27728.54, + "probability": 0.9959 + }, + { + "start": 27729.42, + "end": 27735.24, + "probability": 0.9756 + }, + { + "start": 27736.12, + "end": 27739.68, + "probability": 0.9985 + }, + { + "start": 27739.82, + "end": 27742.22, + "probability": 0.992 + }, + { + "start": 27742.42, + "end": 27747.62, + "probability": 0.9979 + }, + { + "start": 27748.48, + "end": 27750.3, + "probability": 0.9456 + }, + { + "start": 27750.46, + "end": 27755.02, + "probability": 0.9912 + }, + { + "start": 27758.16, + "end": 27761.38, + "probability": 0.9714 + }, + { + "start": 27762.64, + "end": 27767.64, + "probability": 0.8498 + }, + { + "start": 27768.06, + "end": 27770.8, + "probability": 0.9993 + }, + { + "start": 27771.94, + "end": 27774.14, + "probability": 0.9915 + }, + { + "start": 27775.06, + "end": 27777.42, + "probability": 0.7846 + }, + { + "start": 27778.04, + "end": 27780.11, + "probability": 0.9888 + }, + { + "start": 27781.1, + "end": 27785.28, + "probability": 0.9857 + }, + { + "start": 27785.5, + "end": 27788.16, + "probability": 0.998 + }, + { + "start": 27788.36, + "end": 27790.88, + "probability": 0.8421 + }, + { + "start": 27791.66, + "end": 27792.8, + "probability": 0.9451 + }, + { + "start": 27793.18, + "end": 27796.48, + "probability": 0.6107 + }, + { + "start": 27796.48, + "end": 27796.48, + "probability": 0.0582 + }, + { + "start": 27796.48, + "end": 27798.7, + "probability": 0.7856 + }, + { + "start": 27798.88, + "end": 27803.86, + "probability": 0.5027 + }, + { + "start": 27805.72, + "end": 27807.34, + "probability": 0.9243 + }, + { + "start": 27807.5, + "end": 27810.9, + "probability": 0.8129 + }, + { + "start": 27811.4, + "end": 27811.66, + "probability": 0.8331 + }, + { + "start": 27813.12, + "end": 27816.44, + "probability": 0.8939 + }, + { + "start": 27817.42, + "end": 27819.02, + "probability": 0.2145 + }, + { + "start": 27819.28, + "end": 27819.88, + "probability": 0.8071 + }, + { + "start": 27820.84, + "end": 27822.85, + "probability": 0.9702 + }, + { + "start": 27822.94, + "end": 27823.1, + "probability": 0.5165 + }, + { + "start": 27823.24, + "end": 27824.46, + "probability": 0.9197 + }, + { + "start": 27824.64, + "end": 27825.22, + "probability": 0.2656 + }, + { + "start": 27825.3, + "end": 27826.24, + "probability": 0.6787 + }, + { + "start": 27826.32, + "end": 27827.52, + "probability": 0.971 + }, + { + "start": 27827.6, + "end": 27829.94, + "probability": 0.9938 + }, + { + "start": 27830.02, + "end": 27831.14, + "probability": 0.9443 + }, + { + "start": 27831.44, + "end": 27831.78, + "probability": 0.4742 + }, + { + "start": 27833.22, + "end": 27834.58, + "probability": 0.9919 + }, + { + "start": 27835.28, + "end": 27837.92, + "probability": 0.9954 + }, + { + "start": 27838.78, + "end": 27840.12, + "probability": 0.6025 + }, + { + "start": 27840.12, + "end": 27840.72, + "probability": 0.5005 + }, + { + "start": 27840.92, + "end": 27842.74, + "probability": 0.7369 + }, + { + "start": 27842.82, + "end": 27842.94, + "probability": 0.7983 + }, + { + "start": 27843.0, + "end": 27846.74, + "probability": 0.9965 + }, + { + "start": 27846.78, + "end": 27847.55, + "probability": 0.6777 + }, + { + "start": 27847.74, + "end": 27849.7, + "probability": 0.967 + }, + { + "start": 27850.46, + "end": 27853.76, + "probability": 0.652 + }, + { + "start": 27853.82, + "end": 27855.64, + "probability": 0.997 + }, + { + "start": 27855.74, + "end": 27857.42, + "probability": 0.9769 + }, + { + "start": 27857.94, + "end": 27859.14, + "probability": 0.8892 + }, + { + "start": 27859.2, + "end": 27862.02, + "probability": 0.9189 + }, + { + "start": 27862.26, + "end": 27863.6, + "probability": 0.949 + }, + { + "start": 27864.32, + "end": 27865.98, + "probability": 0.8491 + }, + { + "start": 27866.1, + "end": 27868.66, + "probability": 0.9907 + }, + { + "start": 27868.8, + "end": 27870.76, + "probability": 0.8577 + }, + { + "start": 27871.26, + "end": 27871.81, + "probability": 0.8677 + }, + { + "start": 27872.46, + "end": 27874.9, + "probability": 0.9932 + }, + { + "start": 27875.68, + "end": 27878.12, + "probability": 0.9715 + }, + { + "start": 27878.76, + "end": 27879.56, + "probability": 0.6987 + }, + { + "start": 27880.0, + "end": 27882.79, + "probability": 0.7175 + }, + { + "start": 27883.5, + "end": 27885.94, + "probability": 0.907 + }, + { + "start": 27886.78, + "end": 27889.5, + "probability": 0.9678 + }, + { + "start": 27890.2, + "end": 27892.86, + "probability": 0.7944 + }, + { + "start": 27892.98, + "end": 27894.22, + "probability": 0.9873 + }, + { + "start": 27894.38, + "end": 27894.8, + "probability": 0.5024 + }, + { + "start": 27895.22, + "end": 27896.62, + "probability": 0.9478 + }, + { + "start": 27897.02, + "end": 27898.74, + "probability": 0.9951 + }, + { + "start": 27898.88, + "end": 27900.84, + "probability": 0.9241 + }, + { + "start": 27901.08, + "end": 27901.52, + "probability": 0.9459 + }, + { + "start": 27901.64, + "end": 27904.24, + "probability": 0.8483 + }, + { + "start": 27904.26, + "end": 27906.06, + "probability": 0.9905 + }, + { + "start": 27906.16, + "end": 27908.28, + "probability": 0.9121 + }, + { + "start": 27908.9, + "end": 27910.1, + "probability": 0.77 + }, + { + "start": 27911.52, + "end": 27914.64, + "probability": 0.9734 + }, + { + "start": 27914.8, + "end": 27916.58, + "probability": 0.9796 + }, + { + "start": 27917.24, + "end": 27919.84, + "probability": 0.9956 + }, + { + "start": 27920.72, + "end": 27923.94, + "probability": 0.6874 + }, + { + "start": 27924.32, + "end": 27928.08, + "probability": 0.9879 + }, + { + "start": 27928.32, + "end": 27932.14, + "probability": 0.9885 + }, + { + "start": 27932.7, + "end": 27936.82, + "probability": 0.993 + }, + { + "start": 27937.42, + "end": 27939.14, + "probability": 0.8595 + }, + { + "start": 27939.42, + "end": 27940.68, + "probability": 0.9841 + }, + { + "start": 27940.78, + "end": 27942.11, + "probability": 0.9851 + }, + { + "start": 27943.49, + "end": 27945.4, + "probability": 0.7875 + }, + { + "start": 27945.94, + "end": 27946.24, + "probability": 0.8971 + }, + { + "start": 27946.32, + "end": 27947.42, + "probability": 0.9863 + }, + { + "start": 27947.72, + "end": 27949.8, + "probability": 0.9896 + }, + { + "start": 27950.24, + "end": 27954.98, + "probability": 0.9595 + }, + { + "start": 27955.4, + "end": 27956.17, + "probability": 0.9883 + }, + { + "start": 27957.02, + "end": 27960.5, + "probability": 0.9797 + }, + { + "start": 27960.92, + "end": 27962.14, + "probability": 0.9663 + }, + { + "start": 27963.0, + "end": 27966.14, + "probability": 0.9867 + }, + { + "start": 27966.58, + "end": 27970.42, + "probability": 0.938 + }, + { + "start": 27970.58, + "end": 27971.8, + "probability": 0.953 + }, + { + "start": 27972.02, + "end": 27972.82, + "probability": 0.7855 + }, + { + "start": 27973.14, + "end": 27977.62, + "probability": 0.8676 + }, + { + "start": 27977.7, + "end": 27978.16, + "probability": 0.9402 + }, + { + "start": 27978.3, + "end": 27981.86, + "probability": 0.9814 + }, + { + "start": 27981.86, + "end": 27983.12, + "probability": 0.6394 + }, + { + "start": 27983.58, + "end": 27984.56, + "probability": 0.8306 + }, + { + "start": 27985.16, + "end": 27987.76, + "probability": 0.9889 + }, + { + "start": 27988.76, + "end": 27991.0, + "probability": 0.9769 + }, + { + "start": 27991.5, + "end": 27991.7, + "probability": 0.9225 + }, + { + "start": 27992.1, + "end": 27994.18, + "probability": 0.9711 + }, + { + "start": 27994.87, + "end": 27996.32, + "probability": 0.8724 + }, + { + "start": 27996.84, + "end": 27998.53, + "probability": 0.8657 + }, + { + "start": 27999.24, + "end": 28002.46, + "probability": 0.8699 + }, + { + "start": 28002.58, + "end": 28005.29, + "probability": 0.9958 + }, + { + "start": 28005.76, + "end": 28006.68, + "probability": 0.8191 + }, + { + "start": 28006.74, + "end": 28008.44, + "probability": 0.9762 + }, + { + "start": 28008.56, + "end": 28008.88, + "probability": 0.9016 + }, + { + "start": 28009.44, + "end": 28010.26, + "probability": 0.6563 + }, + { + "start": 28011.0, + "end": 28012.14, + "probability": 0.7443 + }, + { + "start": 28012.4, + "end": 28013.44, + "probability": 0.7539 + }, + { + "start": 28013.64, + "end": 28015.58, + "probability": 0.5399 + }, + { + "start": 28016.0, + "end": 28017.56, + "probability": 0.9828 + }, + { + "start": 28017.66, + "end": 28018.2, + "probability": 0.5086 + }, + { + "start": 28018.24, + "end": 28018.92, + "probability": 0.9689 + }, + { + "start": 28019.04, + "end": 28021.2, + "probability": 0.9823 + }, + { + "start": 28021.96, + "end": 28024.98, + "probability": 0.9995 + }, + { + "start": 28025.62, + "end": 28028.62, + "probability": 0.9766 + }, + { + "start": 28028.76, + "end": 28029.48, + "probability": 0.7999 + }, + { + "start": 28029.54, + "end": 28029.76, + "probability": 0.8567 + }, + { + "start": 28029.82, + "end": 28030.22, + "probability": 0.749 + }, + { + "start": 28030.7, + "end": 28032.22, + "probability": 0.9065 + }, + { + "start": 28033.72, + "end": 28035.02, + "probability": 0.9787 + }, + { + "start": 28035.54, + "end": 28039.86, + "probability": 0.9482 + }, + { + "start": 28040.42, + "end": 28043.24, + "probability": 0.944 + }, + { + "start": 28043.54, + "end": 28043.88, + "probability": 0.9473 + }, + { + "start": 28044.32, + "end": 28045.46, + "probability": 0.7861 + }, + { + "start": 28045.54, + "end": 28045.96, + "probability": 0.4438 + }, + { + "start": 28046.2, + "end": 28049.79, + "probability": 0.9641 + }, + { + "start": 28050.08, + "end": 28050.8, + "probability": 0.7671 + }, + { + "start": 28051.94, + "end": 28052.52, + "probability": 0.7732 + }, + { + "start": 28053.54, + "end": 28058.3, + "probability": 0.8354 + }, + { + "start": 28059.92, + "end": 28060.28, + "probability": 0.6003 + }, + { + "start": 28060.86, + "end": 28062.86, + "probability": 0.9871 + }, + { + "start": 28063.6, + "end": 28070.66, + "probability": 0.9144 + }, + { + "start": 28070.72, + "end": 28071.1, + "probability": 0.6918 + }, + { + "start": 28071.64, + "end": 28072.35, + "probability": 0.9847 + }, + { + "start": 28073.1, + "end": 28074.49, + "probability": 0.9976 + }, + { + "start": 28074.62, + "end": 28074.92, + "probability": 0.8459 + }, + { + "start": 28075.02, + "end": 28076.46, + "probability": 0.9895 + }, + { + "start": 28077.22, + "end": 28077.84, + "probability": 0.3528 + }, + { + "start": 28078.24, + "end": 28080.8, + "probability": 0.4538 + }, + { + "start": 28080.92, + "end": 28082.26, + "probability": 0.7925 + }, + { + "start": 28082.32, + "end": 28085.28, + "probability": 0.9837 + }, + { + "start": 28085.96, + "end": 28086.38, + "probability": 0.6415 + }, + { + "start": 28087.52, + "end": 28089.92, + "probability": 0.9964 + }, + { + "start": 28090.52, + "end": 28094.7, + "probability": 0.9931 + }, + { + "start": 28095.02, + "end": 28096.62, + "probability": 0.7598 + }, + { + "start": 28097.42, + "end": 28101.24, + "probability": 0.9912 + }, + { + "start": 28101.3, + "end": 28102.1, + "probability": 0.9099 + }, + { + "start": 28102.62, + "end": 28108.72, + "probability": 0.9174 + }, + { + "start": 28108.84, + "end": 28110.4, + "probability": 0.9937 + }, + { + "start": 28111.18, + "end": 28114.64, + "probability": 0.981 + }, + { + "start": 28114.92, + "end": 28115.46, + "probability": 0.8446 + }, + { + "start": 28115.98, + "end": 28117.22, + "probability": 0.9914 + }, + { + "start": 28117.74, + "end": 28120.56, + "probability": 0.9149 + }, + { + "start": 28121.72, + "end": 28125.76, + "probability": 0.9844 + }, + { + "start": 28126.6, + "end": 28130.16, + "probability": 0.9971 + }, + { + "start": 28131.3, + "end": 28137.9, + "probability": 0.9628 + }, + { + "start": 28138.56, + "end": 28141.76, + "probability": 0.5662 + }, + { + "start": 28142.34, + "end": 28147.64, + "probability": 0.9978 + }, + { + "start": 28147.82, + "end": 28149.62, + "probability": 0.9985 + }, + { + "start": 28150.54, + "end": 28155.54, + "probability": 0.9946 + }, + { + "start": 28156.92, + "end": 28160.8, + "probability": 0.9989 + }, + { + "start": 28161.48, + "end": 28161.68, + "probability": 0.7422 + }, + { + "start": 28162.18, + "end": 28162.58, + "probability": 0.5552 + }, + { + "start": 28163.16, + "end": 28165.0, + "probability": 0.9678 + }, + { + "start": 28165.9, + "end": 28167.6, + "probability": 0.8327 + }, + { + "start": 28173.6, + "end": 28174.42, + "probability": 0.3882 + }, + { + "start": 28176.22, + "end": 28177.74, + "probability": 0.5324 + }, + { + "start": 28188.88, + "end": 28191.64, + "probability": 0.6949 + }, + { + "start": 28193.16, + "end": 28198.06, + "probability": 0.9841 + }, + { + "start": 28199.74, + "end": 28201.06, + "probability": 0.4619 + }, + { + "start": 28201.9, + "end": 28203.88, + "probability": 0.9938 + }, + { + "start": 28204.04, + "end": 28211.42, + "probability": 0.9966 + }, + { + "start": 28211.78, + "end": 28214.28, + "probability": 0.5527 + }, + { + "start": 28214.8, + "end": 28216.5, + "probability": 0.6163 + }, + { + "start": 28217.4, + "end": 28219.08, + "probability": 0.877 + }, + { + "start": 28220.44, + "end": 28223.44, + "probability": 0.9678 + }, + { + "start": 28224.94, + "end": 28231.78, + "probability": 0.9272 + }, + { + "start": 28232.7, + "end": 28236.6, + "probability": 0.9896 + }, + { + "start": 28238.12, + "end": 28238.76, + "probability": 0.5924 + }, + { + "start": 28238.9, + "end": 28243.0, + "probability": 0.9957 + }, + { + "start": 28243.56, + "end": 28249.42, + "probability": 0.8578 + }, + { + "start": 28250.68, + "end": 28253.82, + "probability": 0.9898 + }, + { + "start": 28254.78, + "end": 28255.4, + "probability": 0.9617 + }, + { + "start": 28255.66, + "end": 28258.0, + "probability": 0.995 + }, + { + "start": 28258.2, + "end": 28261.6, + "probability": 0.819 + }, + { + "start": 28262.16, + "end": 28266.72, + "probability": 0.9009 + }, + { + "start": 28266.96, + "end": 28267.96, + "probability": 0.9553 + }, + { + "start": 28269.04, + "end": 28270.38, + "probability": 0.9949 + }, + { + "start": 28271.44, + "end": 28272.02, + "probability": 0.9442 + }, + { + "start": 28273.56, + "end": 28276.6, + "probability": 0.9526 + }, + { + "start": 28277.46, + "end": 28280.84, + "probability": 0.9978 + }, + { + "start": 28281.66, + "end": 28282.5, + "probability": 0.3397 + }, + { + "start": 28282.58, + "end": 28284.8, + "probability": 0.9372 + }, + { + "start": 28285.22, + "end": 28287.18, + "probability": 0.9518 + }, + { + "start": 28287.4, + "end": 28291.04, + "probability": 0.899 + }, + { + "start": 28291.7, + "end": 28293.82, + "probability": 0.9868 + }, + { + "start": 28293.82, + "end": 28296.78, + "probability": 0.9385 + }, + { + "start": 28297.96, + "end": 28298.26, + "probability": 0.1246 + }, + { + "start": 28298.26, + "end": 28304.18, + "probability": 0.9921 + }, + { + "start": 28304.18, + "end": 28307.72, + "probability": 0.9358 + }, + { + "start": 28308.04, + "end": 28310.34, + "probability": 0.8295 + }, + { + "start": 28311.32, + "end": 28314.22, + "probability": 0.9504 + }, + { + "start": 28314.7, + "end": 28317.48, + "probability": 0.0344 + }, + { + "start": 28317.48, + "end": 28318.88, + "probability": 0.6748 + }, + { + "start": 28319.88, + "end": 28323.3, + "probability": 0.9828 + }, + { + "start": 28323.36, + "end": 28324.46, + "probability": 0.7888 + }, + { + "start": 28325.22, + "end": 28331.74, + "probability": 0.9283 + }, + { + "start": 28331.82, + "end": 28333.9, + "probability": 0.8899 + }, + { + "start": 28334.56, + "end": 28337.68, + "probability": 0.6931 + }, + { + "start": 28338.48, + "end": 28341.92, + "probability": 0.8239 + }, + { + "start": 28342.72, + "end": 28344.42, + "probability": 0.9247 + }, + { + "start": 28345.06, + "end": 28348.6, + "probability": 0.8585 + }, + { + "start": 28350.66, + "end": 28351.21, + "probability": 0.8843 + }, + { + "start": 28352.28, + "end": 28353.24, + "probability": 0.7785 + }, + { + "start": 28353.5, + "end": 28353.99, + "probability": 0.5701 + }, + { + "start": 28355.14, + "end": 28357.3, + "probability": 0.9551 + }, + { + "start": 28357.48, + "end": 28360.3, + "probability": 0.8777 + }, + { + "start": 28360.38, + "end": 28361.44, + "probability": 0.8414 + }, + { + "start": 28362.64, + "end": 28374.18, + "probability": 0.9178 + }, + { + "start": 28375.08, + "end": 28376.78, + "probability": 0.8944 + }, + { + "start": 28376.88, + "end": 28377.6, + "probability": 0.7006 + }, + { + "start": 28377.72, + "end": 28378.82, + "probability": 0.8774 + }, + { + "start": 28379.66, + "end": 28384.28, + "probability": 0.5339 + }, + { + "start": 28385.24, + "end": 28388.76, + "probability": 0.9405 + }, + { + "start": 28389.6, + "end": 28394.3, + "probability": 0.992 + }, + { + "start": 28395.3, + "end": 28398.08, + "probability": 0.9191 + }, + { + "start": 28398.22, + "end": 28398.81, + "probability": 0.8643 + }, + { + "start": 28399.04, + "end": 28401.3, + "probability": 0.96 + }, + { + "start": 28402.08, + "end": 28403.03, + "probability": 0.8225 + }, + { + "start": 28403.72, + "end": 28405.22, + "probability": 0.8926 + }, + { + "start": 28405.8, + "end": 28406.82, + "probability": 0.9983 + }, + { + "start": 28409.18, + "end": 28412.34, + "probability": 0.9786 + }, + { + "start": 28413.58, + "end": 28414.18, + "probability": 0.5933 + }, + { + "start": 28414.9, + "end": 28418.88, + "probability": 0.9433 + }, + { + "start": 28419.94, + "end": 28423.88, + "probability": 0.9919 + }, + { + "start": 28423.98, + "end": 28425.22, + "probability": 0.8879 + }, + { + "start": 28425.86, + "end": 28430.18, + "probability": 0.9722 + }, + { + "start": 28432.52, + "end": 28433.86, + "probability": 0.764 + }, + { + "start": 28435.04, + "end": 28438.08, + "probability": 0.9893 + }, + { + "start": 28438.96, + "end": 28443.0, + "probability": 0.9872 + }, + { + "start": 28443.8, + "end": 28446.26, + "probability": 0.8652 + }, + { + "start": 28447.2, + "end": 28449.9, + "probability": 0.7574 + }, + { + "start": 28450.14, + "end": 28452.4, + "probability": 0.8567 + }, + { + "start": 28452.76, + "end": 28455.37, + "probability": 0.9779 + }, + { + "start": 28455.72, + "end": 28458.5, + "probability": 0.9901 + }, + { + "start": 28458.5, + "end": 28462.62, + "probability": 0.9879 + }, + { + "start": 28463.9, + "end": 28473.12, + "probability": 0.9938 + }, + { + "start": 28473.64, + "end": 28474.44, + "probability": 0.3046 + }, + { + "start": 28474.76, + "end": 28479.74, + "probability": 0.9889 + }, + { + "start": 28479.88, + "end": 28481.14, + "probability": 0.9951 + }, + { + "start": 28481.67, + "end": 28483.66, + "probability": 0.9854 + }, + { + "start": 28485.42, + "end": 28486.8, + "probability": 0.9951 + }, + { + "start": 28487.28, + "end": 28489.38, + "probability": 0.9868 + }, + { + "start": 28490.02, + "end": 28494.2, + "probability": 0.937 + }, + { + "start": 28495.44, + "end": 28498.9, + "probability": 0.9868 + }, + { + "start": 28499.44, + "end": 28501.7, + "probability": 0.9871 + }, + { + "start": 28502.9, + "end": 28505.36, + "probability": 0.4993 + }, + { + "start": 28507.32, + "end": 28509.1, + "probability": 0.5928 + }, + { + "start": 28509.1, + "end": 28509.1, + "probability": 0.0062 + }, + { + "start": 28509.1, + "end": 28510.51, + "probability": 0.5131 + }, + { + "start": 28511.6, + "end": 28512.32, + "probability": 0.7447 + }, + { + "start": 28512.48, + "end": 28515.68, + "probability": 0.984 + }, + { + "start": 28516.02, + "end": 28517.58, + "probability": 0.6329 + }, + { + "start": 28518.72, + "end": 28520.8, + "probability": 0.5297 + }, + { + "start": 28521.46, + "end": 28524.44, + "probability": 0.0117 + }, + { + "start": 28524.44, + "end": 28524.5, + "probability": 0.0918 + }, + { + "start": 28524.5, + "end": 28525.08, + "probability": 0.0831 + }, + { + "start": 28525.08, + "end": 28525.43, + "probability": 0.1024 + }, + { + "start": 28526.12, + "end": 28526.92, + "probability": 0.5443 + }, + { + "start": 28527.16, + "end": 28528.98, + "probability": 0.1675 + }, + { + "start": 28529.34, + "end": 28529.38, + "probability": 0.1113 + }, + { + "start": 28529.38, + "end": 28530.26, + "probability": 0.1637 + }, + { + "start": 28530.26, + "end": 28532.56, + "probability": 0.7527 + }, + { + "start": 28534.94, + "end": 28535.5, + "probability": 0.0319 + }, + { + "start": 28535.5, + "end": 28535.92, + "probability": 0.6105 + }, + { + "start": 28536.7, + "end": 28539.08, + "probability": 0.8763 + }, + { + "start": 28539.32, + "end": 28540.92, + "probability": 0.733 + }, + { + "start": 28541.06, + "end": 28542.02, + "probability": 0.5638 + }, + { + "start": 28542.18, + "end": 28544.06, + "probability": 0.9536 + }, + { + "start": 28544.62, + "end": 28545.35, + "probability": 0.8916 + }, + { + "start": 28546.36, + "end": 28548.4, + "probability": 0.6751 + }, + { + "start": 28550.25, + "end": 28553.64, + "probability": 0.6148 + }, + { + "start": 28554.72, + "end": 28557.32, + "probability": 0.9842 + }, + { + "start": 28557.74, + "end": 28562.14, + "probability": 0.9977 + }, + { + "start": 28562.66, + "end": 28565.54, + "probability": 0.9926 + }, + { + "start": 28566.1, + "end": 28568.64, + "probability": 0.9723 + }, + { + "start": 28569.42, + "end": 28570.72, + "probability": 0.9575 + }, + { + "start": 28572.14, + "end": 28576.54, + "probability": 0.9932 + }, + { + "start": 28577.74, + "end": 28583.48, + "probability": 0.9927 + }, + { + "start": 28584.32, + "end": 28585.94, + "probability": 0.6748 + }, + { + "start": 28586.12, + "end": 28590.76, + "probability": 0.9699 + }, + { + "start": 28590.76, + "end": 28593.5, + "probability": 0.9967 + }, + { + "start": 28594.58, + "end": 28598.71, + "probability": 0.9834 + }, + { + "start": 28600.32, + "end": 28601.52, + "probability": 0.7915 + }, + { + "start": 28601.72, + "end": 28602.8, + "probability": 0.9607 + }, + { + "start": 28603.08, + "end": 28603.37, + "probability": 0.3928 + }, + { + "start": 28605.4, + "end": 28606.13, + "probability": 0.8836 + }, + { + "start": 28607.58, + "end": 28609.5, + "probability": 0.8003 + }, + { + "start": 28609.7, + "end": 28610.18, + "probability": 0.8757 + }, + { + "start": 28610.74, + "end": 28612.34, + "probability": 0.9971 + }, + { + "start": 28612.38, + "end": 28615.6, + "probability": 0.8004 + }, + { + "start": 28617.23, + "end": 28619.46, + "probability": 0.9985 + }, + { + "start": 28619.6, + "end": 28621.66, + "probability": 0.9724 + }, + { + "start": 28622.66, + "end": 28625.64, + "probability": 0.9769 + }, + { + "start": 28626.42, + "end": 28627.8, + "probability": 0.939 + }, + { + "start": 28628.94, + "end": 28631.18, + "probability": 0.9717 + }, + { + "start": 28631.88, + "end": 28633.48, + "probability": 0.775 + }, + { + "start": 28634.56, + "end": 28636.48, + "probability": 0.8392 + }, + { + "start": 28638.36, + "end": 28642.02, + "probability": 0.9944 + }, + { + "start": 28642.8, + "end": 28644.3, + "probability": 0.8347 + }, + { + "start": 28645.12, + "end": 28646.38, + "probability": 0.5319 + }, + { + "start": 28646.54, + "end": 28647.82, + "probability": 0.9576 + }, + { + "start": 28648.26, + "end": 28651.34, + "probability": 0.9264 + }, + { + "start": 28651.94, + "end": 28659.2, + "probability": 0.9287 + }, + { + "start": 28659.5, + "end": 28665.22, + "probability": 0.9863 + }, + { + "start": 28665.28, + "end": 28665.32, + "probability": 0.7357 + }, + { + "start": 28665.32, + "end": 28665.56, + "probability": 0.4615 + }, + { + "start": 28665.66, + "end": 28667.82, + "probability": 0.8528 + }, + { + "start": 28668.36, + "end": 28670.84, + "probability": 0.9901 + }, + { + "start": 28671.7, + "end": 28674.72, + "probability": 0.9664 + }, + { + "start": 28675.6, + "end": 28680.46, + "probability": 0.9849 + }, + { + "start": 28681.04, + "end": 28682.32, + "probability": 0.9323 + }, + { + "start": 28682.42, + "end": 28682.84, + "probability": 0.7735 + }, + { + "start": 28682.96, + "end": 28683.26, + "probability": 0.8643 + }, + { + "start": 28683.3, + "end": 28690.04, + "probability": 0.9916 + }, + { + "start": 28691.06, + "end": 28693.84, + "probability": 0.9646 + }, + { + "start": 28694.56, + "end": 28696.98, + "probability": 0.5699 + }, + { + "start": 28697.64, + "end": 28701.97, + "probability": 0.8661 + }, + { + "start": 28702.16, + "end": 28702.56, + "probability": 0.8014 + }, + { + "start": 28702.9, + "end": 28705.56, + "probability": 0.7158 + }, + { + "start": 28706.94, + "end": 28708.18, + "probability": 0.917 + }, + { + "start": 28708.8, + "end": 28710.22, + "probability": 0.4035 + }, + { + "start": 28710.42, + "end": 28710.96, + "probability": 0.7399 + }, + { + "start": 28711.16, + "end": 28713.08, + "probability": 0.7354 + }, + { + "start": 28713.24, + "end": 28714.34, + "probability": 0.6191 + }, + { + "start": 28714.72, + "end": 28715.16, + "probability": 0.483 + }, + { + "start": 28715.64, + "end": 28716.7, + "probability": 0.9827 + }, + { + "start": 28717.26, + "end": 28720.62, + "probability": 0.7468 + }, + { + "start": 28734.4, + "end": 28736.16, + "probability": 0.57 + }, + { + "start": 28737.95, + "end": 28738.66, + "probability": 0.5035 + }, + { + "start": 28738.66, + "end": 28740.86, + "probability": 0.756 + }, + { + "start": 28742.44, + "end": 28743.62, + "probability": 0.2313 + }, + { + "start": 28744.34, + "end": 28749.94, + "probability": 0.9662 + }, + { + "start": 28751.36, + "end": 28756.42, + "probability": 0.9826 + }, + { + "start": 28756.94, + "end": 28758.32, + "probability": 0.801 + }, + { + "start": 28759.88, + "end": 28766.7, + "probability": 0.9955 + }, + { + "start": 28767.58, + "end": 28771.8, + "probability": 0.9878 + }, + { + "start": 28771.84, + "end": 28773.03, + "probability": 0.7388 + }, + { + "start": 28773.68, + "end": 28776.42, + "probability": 0.9382 + }, + { + "start": 28776.7, + "end": 28777.58, + "probability": 0.8497 + }, + { + "start": 28778.0, + "end": 28781.04, + "probability": 0.9753 + }, + { + "start": 28782.16, + "end": 28786.48, + "probability": 0.9562 + }, + { + "start": 28787.02, + "end": 28787.98, + "probability": 0.5379 + }, + { + "start": 28790.38, + "end": 28795.14, + "probability": 0.9129 + }, + { + "start": 28795.76, + "end": 28799.28, + "probability": 0.9603 + }, + { + "start": 28799.28, + "end": 28801.36, + "probability": 0.8301 + }, + { + "start": 28802.36, + "end": 28806.84, + "probability": 0.9938 + }, + { + "start": 28807.16, + "end": 28812.72, + "probability": 0.9845 + }, + { + "start": 28813.2, + "end": 28817.24, + "probability": 0.9961 + }, + { + "start": 28817.24, + "end": 28822.16, + "probability": 0.9924 + }, + { + "start": 28822.6, + "end": 28823.6, + "probability": 0.6876 + }, + { + "start": 28823.74, + "end": 28828.84, + "probability": 0.9186 + }, + { + "start": 28829.32, + "end": 28830.8, + "probability": 0.9137 + }, + { + "start": 28831.38, + "end": 28834.78, + "probability": 0.8178 + }, + { + "start": 28835.48, + "end": 28840.12, + "probability": 0.969 + }, + { + "start": 28841.5, + "end": 28843.52, + "probability": 0.8328 + }, + { + "start": 28843.52, + "end": 28846.64, + "probability": 0.996 + }, + { + "start": 28846.88, + "end": 28850.18, + "probability": 0.9728 + }, + { + "start": 28850.18, + "end": 28854.06, + "probability": 0.9962 + }, + { + "start": 28854.58, + "end": 28860.48, + "probability": 0.9688 + }, + { + "start": 28860.48, + "end": 28864.74, + "probability": 0.9967 + }, + { + "start": 28864.86, + "end": 28867.14, + "probability": 0.9875 + }, + { + "start": 28868.12, + "end": 28870.94, + "probability": 0.9447 + }, + { + "start": 28871.5, + "end": 28873.86, + "probability": 0.7043 + }, + { + "start": 28874.4, + "end": 28878.52, + "probability": 0.9905 + }, + { + "start": 28878.96, + "end": 28882.4, + "probability": 0.9951 + }, + { + "start": 28882.64, + "end": 28883.02, + "probability": 0.7654 + }, + { + "start": 28883.56, + "end": 28883.94, + "probability": 0.9553 + }, + { + "start": 28885.52, + "end": 28889.1, + "probability": 0.9658 + }, + { + "start": 28889.88, + "end": 28891.9, + "probability": 0.9891 + }, + { + "start": 28892.7, + "end": 28895.34, + "probability": 0.9828 + }, + { + "start": 28895.98, + "end": 28899.88, + "probability": 0.9728 + }, + { + "start": 28899.88, + "end": 28903.42, + "probability": 0.7124 + }, + { + "start": 28903.92, + "end": 28907.78, + "probability": 0.938 + }, + { + "start": 28907.96, + "end": 28914.14, + "probability": 0.9975 + }, + { + "start": 28915.28, + "end": 28917.66, + "probability": 0.998 + }, + { + "start": 28918.66, + "end": 28923.68, + "probability": 0.9967 + }, + { + "start": 28924.4, + "end": 28926.06, + "probability": 0.7611 + }, + { + "start": 28926.54, + "end": 28931.28, + "probability": 0.984 + }, + { + "start": 28931.84, + "end": 28935.94, + "probability": 0.8317 + }, + { + "start": 28936.18, + "end": 28939.68, + "probability": 0.993 + }, + { + "start": 28940.08, + "end": 28944.06, + "probability": 0.9691 + }, + { + "start": 28944.06, + "end": 28948.58, + "probability": 0.9637 + }, + { + "start": 28948.98, + "end": 28949.5, + "probability": 0.8824 + }, + { + "start": 28949.5, + "end": 28950.0, + "probability": 0.7906 + }, + { + "start": 28950.46, + "end": 28951.48, + "probability": 0.9393 + }, + { + "start": 28951.88, + "end": 28955.44, + "probability": 0.9693 + }, + { + "start": 28956.0, + "end": 28960.18, + "probability": 0.9343 + }, + { + "start": 28960.86, + "end": 28964.04, + "probability": 0.9922 + }, + { + "start": 28964.04, + "end": 28967.54, + "probability": 0.9982 + }, + { + "start": 28969.9, + "end": 28972.06, + "probability": 0.9575 + }, + { + "start": 28972.14, + "end": 28974.62, + "probability": 0.9548 + }, + { + "start": 28974.7, + "end": 28976.96, + "probability": 0.7739 + }, + { + "start": 28977.52, + "end": 28978.52, + "probability": 0.9172 + }, + { + "start": 28978.68, + "end": 28981.88, + "probability": 0.847 + }, + { + "start": 28981.88, + "end": 28990.18, + "probability": 0.9737 + }, + { + "start": 28992.36, + "end": 28992.46, + "probability": 0.4341 + }, + { + "start": 28992.46, + "end": 28996.4, + "probability": 0.9285 + }, + { + "start": 28996.8, + "end": 28999.16, + "probability": 0.999 + }, + { + "start": 28999.62, + "end": 29001.92, + "probability": 0.9937 + }, + { + "start": 29002.56, + "end": 29007.46, + "probability": 0.9874 + }, + { + "start": 29008.4, + "end": 29010.64, + "probability": 0.8676 + }, + { + "start": 29010.9, + "end": 29014.44, + "probability": 0.849 + }, + { + "start": 29015.12, + "end": 29019.08, + "probability": 0.8049 + }, + { + "start": 29020.04, + "end": 29023.38, + "probability": 0.9912 + }, + { + "start": 29023.38, + "end": 29028.86, + "probability": 0.9971 + }, + { + "start": 29029.46, + "end": 29030.12, + "probability": 0.9961 + }, + { + "start": 29031.32, + "end": 29032.08, + "probability": 0.7155 + }, + { + "start": 29032.18, + "end": 29037.96, + "probability": 0.934 + }, + { + "start": 29038.76, + "end": 29039.58, + "probability": 0.5359 + }, + { + "start": 29039.74, + "end": 29040.84, + "probability": 0.3904 + }, + { + "start": 29041.12, + "end": 29044.6, + "probability": 0.9742 + }, + { + "start": 29045.16, + "end": 29049.18, + "probability": 0.9485 + }, + { + "start": 29049.38, + "end": 29050.72, + "probability": 0.9388 + }, + { + "start": 29050.8, + "end": 29054.2, + "probability": 0.8183 + }, + { + "start": 29054.24, + "end": 29058.4, + "probability": 0.9717 + }, + { + "start": 29058.92, + "end": 29060.76, + "probability": 0.9633 + }, + { + "start": 29063.03, + "end": 29070.5, + "probability": 0.9987 + }, + { + "start": 29070.9, + "end": 29072.98, + "probability": 0.9735 + }, + { + "start": 29073.38, + "end": 29076.88, + "probability": 0.9799 + }, + { + "start": 29077.26, + "end": 29080.08, + "probability": 0.7349 + }, + { + "start": 29080.14, + "end": 29081.56, + "probability": 0.6638 + }, + { + "start": 29081.86, + "end": 29083.44, + "probability": 0.9615 + }, + { + "start": 29083.56, + "end": 29085.4, + "probability": 0.9113 + }, + { + "start": 29085.78, + "end": 29088.32, + "probability": 0.7016 + }, + { + "start": 29089.0, + "end": 29093.66, + "probability": 0.978 + }, + { + "start": 29093.8, + "end": 29097.76, + "probability": 0.9956 + }, + { + "start": 29099.06, + "end": 29100.72, + "probability": 0.958 + }, + { + "start": 29100.94, + "end": 29105.06, + "probability": 0.9859 + }, + { + "start": 29105.1, + "end": 29108.92, + "probability": 0.9693 + }, + { + "start": 29109.64, + "end": 29112.08, + "probability": 0.8611 + }, + { + "start": 29112.4, + "end": 29116.76, + "probability": 0.9771 + }, + { + "start": 29117.7, + "end": 29122.98, + "probability": 0.9453 + }, + { + "start": 29122.98, + "end": 29128.84, + "probability": 0.9965 + }, + { + "start": 29128.84, + "end": 29134.46, + "probability": 0.9871 + }, + { + "start": 29134.66, + "end": 29135.76, + "probability": 0.9966 + }, + { + "start": 29135.98, + "end": 29137.04, + "probability": 0.9746 + }, + { + "start": 29137.82, + "end": 29141.19, + "probability": 0.9555 + }, + { + "start": 29142.22, + "end": 29147.98, + "probability": 0.991 + }, + { + "start": 29148.06, + "end": 29149.98, + "probability": 0.9974 + }, + { + "start": 29151.18, + "end": 29155.04, + "probability": 0.9842 + }, + { + "start": 29155.18, + "end": 29156.84, + "probability": 0.8294 + }, + { + "start": 29157.6, + "end": 29161.2, + "probability": 0.9752 + }, + { + "start": 29161.36, + "end": 29165.64, + "probability": 0.9811 + }, + { + "start": 29165.78, + "end": 29167.82, + "probability": 0.902 + }, + { + "start": 29168.04, + "end": 29170.72, + "probability": 0.9702 + }, + { + "start": 29171.24, + "end": 29172.38, + "probability": 0.8127 + }, + { + "start": 29172.78, + "end": 29176.9, + "probability": 0.9857 + }, + { + "start": 29177.4, + "end": 29181.6, + "probability": 0.994 + }, + { + "start": 29181.77, + "end": 29185.28, + "probability": 0.8562 + }, + { + "start": 29185.7, + "end": 29187.34, + "probability": 0.9049 + }, + { + "start": 29187.68, + "end": 29193.59, + "probability": 0.9863 + }, + { + "start": 29195.54, + "end": 29197.94, + "probability": 0.8887 + }, + { + "start": 29198.78, + "end": 29201.54, + "probability": 0.68 + }, + { + "start": 29202.22, + "end": 29203.2, + "probability": 0.7608 + }, + { + "start": 29203.44, + "end": 29209.16, + "probability": 0.9419 + }, + { + "start": 29209.3, + "end": 29213.5, + "probability": 0.9423 + }, + { + "start": 29213.66, + "end": 29217.76, + "probability": 0.9948 + }, + { + "start": 29218.28, + "end": 29221.9, + "probability": 0.9716 + }, + { + "start": 29222.58, + "end": 29226.48, + "probability": 0.9824 + }, + { + "start": 29226.48, + "end": 29230.3, + "probability": 0.978 + }, + { + "start": 29230.82, + "end": 29232.52, + "probability": 0.7362 + }, + { + "start": 29232.58, + "end": 29234.66, + "probability": 0.7967 + }, + { + "start": 29235.0, + "end": 29239.3, + "probability": 0.9558 + }, + { + "start": 29239.76, + "end": 29246.38, + "probability": 0.9415 + }, + { + "start": 29247.57, + "end": 29249.88, + "probability": 0.9531 + }, + { + "start": 29250.72, + "end": 29253.7, + "probability": 0.7603 + }, + { + "start": 29254.08, + "end": 29255.18, + "probability": 0.9573 + }, + { + "start": 29255.24, + "end": 29263.66, + "probability": 0.9859 + }, + { + "start": 29264.14, + "end": 29265.98, + "probability": 0.7253 + }, + { + "start": 29266.84, + "end": 29277.14, + "probability": 0.9642 + }, + { + "start": 29277.64, + "end": 29278.66, + "probability": 0.8981 + }, + { + "start": 29279.36, + "end": 29282.94, + "probability": 0.9936 + }, + { + "start": 29283.48, + "end": 29288.92, + "probability": 0.8232 + }, + { + "start": 29288.92, + "end": 29294.0, + "probability": 0.9976 + }, + { + "start": 29294.62, + "end": 29302.56, + "probability": 0.9925 + }, + { + "start": 29302.84, + "end": 29305.48, + "probability": 0.9927 + }, + { + "start": 29306.16, + "end": 29309.72, + "probability": 0.9919 + }, + { + "start": 29309.94, + "end": 29311.2, + "probability": 0.9653 + }, + { + "start": 29311.6, + "end": 29315.46, + "probability": 0.9969 + }, + { + "start": 29315.96, + "end": 29316.8, + "probability": 0.829 + }, + { + "start": 29316.92, + "end": 29318.94, + "probability": 0.9297 + }, + { + "start": 29319.4, + "end": 29323.88, + "probability": 0.9922 + }, + { + "start": 29324.7, + "end": 29326.91, + "probability": 0.9742 + }, + { + "start": 29327.66, + "end": 29328.34, + "probability": 0.9779 + }, + { + "start": 29328.82, + "end": 29329.5, + "probability": 0.9898 + }, + { + "start": 29329.92, + "end": 29331.04, + "probability": 0.9012 + }, + { + "start": 29331.26, + "end": 29334.56, + "probability": 0.9808 + }, + { + "start": 29335.36, + "end": 29339.44, + "probability": 0.989 + }, + { + "start": 29340.28, + "end": 29340.92, + "probability": 0.804 + }, + { + "start": 29341.32, + "end": 29343.76, + "probability": 0.9956 + }, + { + "start": 29344.14, + "end": 29344.9, + "probability": 0.7134 + }, + { + "start": 29345.18, + "end": 29346.2, + "probability": 0.7112 + }, + { + "start": 29346.36, + "end": 29349.16, + "probability": 0.9792 + }, + { + "start": 29349.36, + "end": 29354.56, + "probability": 0.9814 + }, + { + "start": 29354.56, + "end": 29360.4, + "probability": 0.9945 + }, + { + "start": 29360.6, + "end": 29361.12, + "probability": 0.7334 + }, + { + "start": 29361.78, + "end": 29364.06, + "probability": 0.6499 + }, + { + "start": 29364.12, + "end": 29364.34, + "probability": 0.6024 + }, + { + "start": 29365.34, + "end": 29367.64, + "probability": 0.8403 + }, + { + "start": 29399.02, + "end": 29401.0, + "probability": 0.3199 + }, + { + "start": 29401.96, + "end": 29404.84, + "probability": 0.5423 + }, + { + "start": 29406.08, + "end": 29408.46, + "probability": 0.9708 + }, + { + "start": 29409.22, + "end": 29409.88, + "probability": 0.9874 + }, + { + "start": 29410.14, + "end": 29415.02, + "probability": 0.9868 + }, + { + "start": 29417.26, + "end": 29421.68, + "probability": 0.9595 + }, + { + "start": 29423.3, + "end": 29426.4, + "probability": 0.9783 + }, + { + "start": 29428.1, + "end": 29432.83, + "probability": 0.9904 + }, + { + "start": 29433.74, + "end": 29435.96, + "probability": 0.7365 + }, + { + "start": 29436.84, + "end": 29437.2, + "probability": 0.5037 + }, + { + "start": 29439.62, + "end": 29441.56, + "probability": 0.3745 + }, + { + "start": 29442.36, + "end": 29444.54, + "probability": 0.9186 + }, + { + "start": 29446.46, + "end": 29447.52, + "probability": 0.8616 + }, + { + "start": 29449.12, + "end": 29452.02, + "probability": 0.9608 + }, + { + "start": 29453.16, + "end": 29456.16, + "probability": 0.9842 + }, + { + "start": 29458.62, + "end": 29461.72, + "probability": 0.7362 + }, + { + "start": 29463.74, + "end": 29464.9, + "probability": 0.8419 + }, + { + "start": 29465.78, + "end": 29466.74, + "probability": 0.6572 + }, + { + "start": 29468.96, + "end": 29471.18, + "probability": 0.974 + }, + { + "start": 29472.56, + "end": 29480.8, + "probability": 0.9959 + }, + { + "start": 29482.46, + "end": 29483.4, + "probability": 0.9044 + }, + { + "start": 29484.8, + "end": 29488.16, + "probability": 0.6998 + }, + { + "start": 29488.88, + "end": 29489.56, + "probability": 0.7381 + }, + { + "start": 29490.36, + "end": 29493.08, + "probability": 0.8672 + }, + { + "start": 29493.96, + "end": 29495.84, + "probability": 0.9858 + }, + { + "start": 29498.34, + "end": 29503.16, + "probability": 0.9988 + }, + { + "start": 29504.06, + "end": 29504.82, + "probability": 0.8623 + }, + { + "start": 29504.96, + "end": 29505.26, + "probability": 0.8218 + }, + { + "start": 29505.4, + "end": 29506.38, + "probability": 0.9569 + }, + { + "start": 29506.44, + "end": 29510.9, + "probability": 0.9971 + }, + { + "start": 29512.26, + "end": 29513.94, + "probability": 0.8932 + }, + { + "start": 29514.86, + "end": 29518.96, + "probability": 0.9845 + }, + { + "start": 29520.32, + "end": 29525.58, + "probability": 0.9948 + }, + { + "start": 29526.48, + "end": 29527.68, + "probability": 0.98 + }, + { + "start": 29528.62, + "end": 29529.46, + "probability": 0.7655 + }, + { + "start": 29530.1, + "end": 29532.96, + "probability": 0.9585 + }, + { + "start": 29536.3, + "end": 29539.08, + "probability": 0.1919 + }, + { + "start": 29539.08, + "end": 29539.88, + "probability": 0.0296 + }, + { + "start": 29539.88, + "end": 29540.72, + "probability": 0.393 + }, + { + "start": 29541.38, + "end": 29542.12, + "probability": 0.9114 + }, + { + "start": 29542.12, + "end": 29542.12, + "probability": 0.8947 + }, + { + "start": 29542.28, + "end": 29542.88, + "probability": 0.8519 + }, + { + "start": 29543.26, + "end": 29544.2, + "probability": 0.9683 + }, + { + "start": 29548.66, + "end": 29552.62, + "probability": 0.689 + }, + { + "start": 29552.7, + "end": 29555.14, + "probability": 0.9021 + }, + { + "start": 29555.64, + "end": 29558.86, + "probability": 0.986 + }, + { + "start": 29559.44, + "end": 29560.46, + "probability": 0.9634 + }, + { + "start": 29562.06, + "end": 29563.3, + "probability": 0.723 + }, + { + "start": 29563.78, + "end": 29565.48, + "probability": 0.8123 + }, + { + "start": 29565.62, + "end": 29566.64, + "probability": 0.7041 + }, + { + "start": 29568.5, + "end": 29572.88, + "probability": 0.9201 + }, + { + "start": 29573.26, + "end": 29575.34, + "probability": 0.9906 + }, + { + "start": 29576.32, + "end": 29577.16, + "probability": 0.9145 + }, + { + "start": 29578.56, + "end": 29580.44, + "probability": 0.9448 + }, + { + "start": 29581.2, + "end": 29582.42, + "probability": 0.781 + }, + { + "start": 29584.02, + "end": 29586.16, + "probability": 0.9966 + }, + { + "start": 29587.02, + "end": 29588.21, + "probability": 0.9959 + }, + { + "start": 29589.3, + "end": 29590.06, + "probability": 0.9062 + }, + { + "start": 29591.4, + "end": 29595.26, + "probability": 0.9872 + }, + { + "start": 29595.92, + "end": 29599.52, + "probability": 0.9003 + }, + { + "start": 29599.96, + "end": 29600.16, + "probability": 0.5136 + }, + { + "start": 29600.18, + "end": 29601.02, + "probability": 0.7418 + }, + { + "start": 29602.64, + "end": 29603.68, + "probability": 0.869 + }, + { + "start": 29605.56, + "end": 29612.64, + "probability": 0.9553 + }, + { + "start": 29615.16, + "end": 29615.8, + "probability": 0.8192 + }, + { + "start": 29615.84, + "end": 29619.46, + "probability": 0.8134 + }, + { + "start": 29619.9, + "end": 29620.68, + "probability": 0.1977 + }, + { + "start": 29621.48, + "end": 29625.9, + "probability": 0.6855 + }, + { + "start": 29626.12, + "end": 29627.72, + "probability": 0.8806 + }, + { + "start": 29627.84, + "end": 29629.48, + "probability": 0.7939 + }, + { + "start": 29629.64, + "end": 29631.22, + "probability": 0.99 + }, + { + "start": 29631.5, + "end": 29633.94, + "probability": 0.9236 + }, + { + "start": 29635.5, + "end": 29639.56, + "probability": 0.9954 + }, + { + "start": 29639.56, + "end": 29643.96, + "probability": 0.9987 + }, + { + "start": 29644.08, + "end": 29646.24, + "probability": 0.8703 + }, + { + "start": 29646.92, + "end": 29649.57, + "probability": 0.9691 + }, + { + "start": 29651.32, + "end": 29654.72, + "probability": 0.9968 + }, + { + "start": 29654.72, + "end": 29658.34, + "probability": 0.9973 + }, + { + "start": 29659.02, + "end": 29662.1, + "probability": 0.8838 + }, + { + "start": 29662.24, + "end": 29663.0, + "probability": 0.6668 + }, + { + "start": 29664.1, + "end": 29667.36, + "probability": 0.7866 + }, + { + "start": 29668.16, + "end": 29669.5, + "probability": 0.906 + }, + { + "start": 29669.56, + "end": 29672.48, + "probability": 0.9685 + }, + { + "start": 29673.2, + "end": 29674.82, + "probability": 0.9841 + }, + { + "start": 29675.34, + "end": 29678.84, + "probability": 0.9668 + }, + { + "start": 29679.88, + "end": 29682.38, + "probability": 0.7695 + }, + { + "start": 29683.08, + "end": 29684.96, + "probability": 0.9885 + }, + { + "start": 29685.42, + "end": 29687.6, + "probability": 0.9839 + }, + { + "start": 29687.8, + "end": 29691.54, + "probability": 0.9972 + }, + { + "start": 29691.78, + "end": 29694.44, + "probability": 0.9745 + }, + { + "start": 29695.0, + "end": 29696.23, + "probability": 0.366 + }, + { + "start": 29698.44, + "end": 29701.8, + "probability": 0.9861 + }, + { + "start": 29702.58, + "end": 29704.54, + "probability": 0.983 + }, + { + "start": 29706.5, + "end": 29709.96, + "probability": 0.9707 + }, + { + "start": 29712.32, + "end": 29716.2, + "probability": 0.9968 + }, + { + "start": 29717.54, + "end": 29718.92, + "probability": 0.7844 + }, + { + "start": 29719.42, + "end": 29720.5, + "probability": 0.9843 + }, + { + "start": 29722.38, + "end": 29723.54, + "probability": 0.8187 + }, + { + "start": 29724.44, + "end": 29726.74, + "probability": 0.8872 + }, + { + "start": 29727.24, + "end": 29731.0, + "probability": 0.9551 + }, + { + "start": 29732.0, + "end": 29736.52, + "probability": 0.9663 + }, + { + "start": 29737.7, + "end": 29740.62, + "probability": 0.9445 + }, + { + "start": 29741.44, + "end": 29743.24, + "probability": 0.9156 + }, + { + "start": 29743.36, + "end": 29744.93, + "probability": 0.9813 + }, + { + "start": 29746.64, + "end": 29749.24, + "probability": 0.999 + }, + { + "start": 29750.3, + "end": 29752.6, + "probability": 0.5898 + }, + { + "start": 29754.24, + "end": 29757.0, + "probability": 0.819 + }, + { + "start": 29757.1, + "end": 29758.95, + "probability": 0.8864 + }, + { + "start": 29760.0, + "end": 29762.09, + "probability": 0.845 + }, + { + "start": 29762.76, + "end": 29765.02, + "probability": 0.8374 + }, + { + "start": 29765.86, + "end": 29767.78, + "probability": 0.8604 + }, + { + "start": 29769.02, + "end": 29770.5, + "probability": 0.9802 + }, + { + "start": 29770.56, + "end": 29772.02, + "probability": 0.9675 + }, + { + "start": 29772.54, + "end": 29775.3, + "probability": 0.9207 + }, + { + "start": 29775.66, + "end": 29775.88, + "probability": 0.4993 + }, + { + "start": 29776.16, + "end": 29777.36, + "probability": 0.7104 + }, + { + "start": 29778.18, + "end": 29781.2, + "probability": 0.9175 + }, + { + "start": 29781.54, + "end": 29783.12, + "probability": 0.9901 + }, + { + "start": 29783.36, + "end": 29785.68, + "probability": 0.9686 + }, + { + "start": 29786.04, + "end": 29786.88, + "probability": 0.9533 + }, + { + "start": 29787.88, + "end": 29791.32, + "probability": 0.9447 + }, + { + "start": 29792.2, + "end": 29793.4, + "probability": 0.9575 + }, + { + "start": 29793.5, + "end": 29795.8, + "probability": 0.81 + }, + { + "start": 29796.28, + "end": 29797.25, + "probability": 0.9888 + }, + { + "start": 29799.42, + "end": 29800.34, + "probability": 0.9252 + }, + { + "start": 29801.28, + "end": 29804.04, + "probability": 0.9359 + }, + { + "start": 29805.06, + "end": 29807.4, + "probability": 0.9422 + }, + { + "start": 29807.54, + "end": 29808.68, + "probability": 0.9937 + }, + { + "start": 29809.28, + "end": 29811.48, + "probability": 0.9985 + }, + { + "start": 29813.44, + "end": 29814.04, + "probability": 0.804 + }, + { + "start": 29814.2, + "end": 29817.76, + "probability": 0.9948 + }, + { + "start": 29818.66, + "end": 29819.86, + "probability": 0.9258 + }, + { + "start": 29820.04, + "end": 29820.96, + "probability": 0.7761 + }, + { + "start": 29821.06, + "end": 29821.94, + "probability": 0.9521 + }, + { + "start": 29825.24, + "end": 29833.74, + "probability": 0.9805 + }, + { + "start": 29834.04, + "end": 29837.32, + "probability": 0.9191 + }, + { + "start": 29838.5, + "end": 29838.8, + "probability": 0.7928 + }, + { + "start": 29838.94, + "end": 29840.18, + "probability": 0.9459 + }, + { + "start": 29840.22, + "end": 29842.38, + "probability": 0.7056 + }, + { + "start": 29842.54, + "end": 29842.9, + "probability": 0.4277 + }, + { + "start": 29843.72, + "end": 29845.72, + "probability": 0.9194 + }, + { + "start": 29846.9, + "end": 29848.4, + "probability": 0.7485 + }, + { + "start": 29850.86, + "end": 29851.42, + "probability": 0.7487 + }, + { + "start": 29851.56, + "end": 29855.96, + "probability": 0.9081 + }, + { + "start": 29857.34, + "end": 29862.52, + "probability": 0.9934 + }, + { + "start": 29862.62, + "end": 29864.2, + "probability": 0.9873 + }, + { + "start": 29864.34, + "end": 29865.08, + "probability": 0.9584 + }, + { + "start": 29866.56, + "end": 29869.76, + "probability": 0.7931 + }, + { + "start": 29870.3, + "end": 29874.2, + "probability": 0.9963 + }, + { + "start": 29875.68, + "end": 29877.1, + "probability": 0.9873 + }, + { + "start": 29877.38, + "end": 29882.1, + "probability": 0.9326 + }, + { + "start": 29882.6, + "end": 29883.38, + "probability": 0.994 + }, + { + "start": 29884.12, + "end": 29886.28, + "probability": 0.1235 + }, + { + "start": 29886.28, + "end": 29886.78, + "probability": 0.4466 + }, + { + "start": 29887.12, + "end": 29888.42, + "probability": 0.9854 + }, + { + "start": 29889.76, + "end": 29893.7, + "probability": 0.9897 + }, + { + "start": 29893.86, + "end": 29896.44, + "probability": 0.9914 + }, + { + "start": 29897.46, + "end": 29899.02, + "probability": 0.7526 + }, + { + "start": 29901.5, + "end": 29903.07, + "probability": 0.7426 + }, + { + "start": 29904.08, + "end": 29906.98, + "probability": 0.8384 + }, + { + "start": 29907.96, + "end": 29910.56, + "probability": 0.817 + }, + { + "start": 29911.26, + "end": 29912.48, + "probability": 0.6721 + }, + { + "start": 29915.28, + "end": 29917.78, + "probability": 0.8525 + }, + { + "start": 29919.12, + "end": 29920.24, + "probability": 0.923 + }, + { + "start": 29920.28, + "end": 29926.44, + "probability": 0.9544 + }, + { + "start": 29927.24, + "end": 29928.38, + "probability": 0.8818 + }, + { + "start": 29929.64, + "end": 29931.58, + "probability": 0.9878 + }, + { + "start": 29933.24, + "end": 29935.76, + "probability": 0.8849 + }, + { + "start": 29936.78, + "end": 29937.65, + "probability": 0.9875 + }, + { + "start": 29938.52, + "end": 29940.3, + "probability": 0.9825 + }, + { + "start": 29940.96, + "end": 29941.54, + "probability": 0.9565 + }, + { + "start": 29941.84, + "end": 29942.21, + "probability": 0.9717 + }, + { + "start": 29943.02, + "end": 29943.88, + "probability": 0.9956 + }, + { + "start": 29943.94, + "end": 29946.89, + "probability": 0.995 + }, + { + "start": 29947.24, + "end": 29952.22, + "probability": 0.9781 + }, + { + "start": 29953.36, + "end": 29954.66, + "probability": 0.9395 + }, + { + "start": 29955.4, + "end": 29959.17, + "probability": 0.8662 + }, + { + "start": 29959.58, + "end": 29961.4, + "probability": 0.8244 + }, + { + "start": 29961.98, + "end": 29964.86, + "probability": 0.7661 + }, + { + "start": 29965.48, + "end": 29966.18, + "probability": 0.8142 + }, + { + "start": 29966.26, + "end": 29967.46, + "probability": 0.9728 + }, + { + "start": 29967.56, + "end": 29968.7, + "probability": 0.9516 + }, + { + "start": 29968.82, + "end": 29969.64, + "probability": 0.9441 + }, + { + "start": 29969.64, + "end": 29975.14, + "probability": 0.9939 + }, + { + "start": 29975.84, + "end": 29977.34, + "probability": 0.5383 + }, + { + "start": 29977.58, + "end": 29978.22, + "probability": 0.979 + }, + { + "start": 29979.7, + "end": 29982.0, + "probability": 0.9617 + }, + { + "start": 29982.0, + "end": 29986.7, + "probability": 0.7717 + }, + { + "start": 29987.08, + "end": 29988.7, + "probability": 0.9789 + }, + { + "start": 29989.04, + "end": 29991.14, + "probability": 0.6655 + }, + { + "start": 29991.7, + "end": 29993.72, + "probability": 0.924 + }, + { + "start": 29993.86, + "end": 29994.52, + "probability": 0.9497 + }, + { + "start": 29995.86, + "end": 29998.1, + "probability": 0.917 + }, + { + "start": 30000.04, + "end": 30004.6, + "probability": 0.9825 + }, + { + "start": 30004.84, + "end": 30006.2, + "probability": 0.8304 + }, + { + "start": 30007.78, + "end": 30009.18, + "probability": 0.9707 + }, + { + "start": 30010.22, + "end": 30013.84, + "probability": 0.9888 + }, + { + "start": 30014.32, + "end": 30018.04, + "probability": 0.9881 + }, + { + "start": 30018.58, + "end": 30019.82, + "probability": 0.998 + }, + { + "start": 30020.52, + "end": 30024.82, + "probability": 0.9732 + }, + { + "start": 30025.46, + "end": 30029.06, + "probability": 0.9792 + }, + { + "start": 30029.36, + "end": 30031.06, + "probability": 0.9986 + }, + { + "start": 30031.12, + "end": 30031.54, + "probability": 0.8282 + }, + { + "start": 30032.18, + "end": 30035.32, + "probability": 0.8932 + }, + { + "start": 30035.4, + "end": 30036.0, + "probability": 0.9785 + }, + { + "start": 30037.16, + "end": 30038.04, + "probability": 0.7557 + }, + { + "start": 30041.14, + "end": 30044.4, + "probability": 0.8894 + }, + { + "start": 30045.75, + "end": 30048.8, + "probability": 0.8784 + }, + { + "start": 30049.62, + "end": 30051.04, + "probability": 0.8603 + }, + { + "start": 30055.7, + "end": 30057.04, + "probability": 0.7751 + }, + { + "start": 30064.02, + "end": 30065.44, + "probability": 0.027 + }, + { + "start": 30071.78, + "end": 30074.14, + "probability": 0.4075 + }, + { + "start": 30074.16, + "end": 30074.58, + "probability": 0.6321 + }, + { + "start": 30076.36, + "end": 30077.54, + "probability": 0.9155 + }, + { + "start": 30077.72, + "end": 30078.48, + "probability": 0.7024 + }, + { + "start": 30078.62, + "end": 30079.9, + "probability": 0.8013 + }, + { + "start": 30080.38, + "end": 30083.74, + "probability": 0.2483 + }, + { + "start": 30084.52, + "end": 30085.2, + "probability": 0.0903 + }, + { + "start": 30087.22, + "end": 30090.22, + "probability": 0.0803 + }, + { + "start": 30090.82, + "end": 30091.62, + "probability": 0.7212 + }, + { + "start": 30091.82, + "end": 30091.96, + "probability": 0.8503 + }, + { + "start": 30092.24, + "end": 30095.22, + "probability": 0.8879 + }, + { + "start": 30095.9, + "end": 30098.48, + "probability": 0.9419 + }, + { + "start": 30099.44, + "end": 30103.4, + "probability": 0.9872 + }, + { + "start": 30103.6, + "end": 30104.28, + "probability": 0.671 + }, + { + "start": 30105.18, + "end": 30108.56, + "probability": 0.8631 + }, + { + "start": 30109.18, + "end": 30110.72, + "probability": 0.835 + }, + { + "start": 30111.68, + "end": 30116.84, + "probability": 0.9515 + }, + { + "start": 30117.5, + "end": 30120.54, + "probability": 0.9932 + }, + { + "start": 30121.72, + "end": 30124.83, + "probability": 0.9244 + }, + { + "start": 30126.02, + "end": 30128.52, + "probability": 0.9102 + }, + { + "start": 30129.08, + "end": 30137.74, + "probability": 0.9384 + }, + { + "start": 30138.48, + "end": 30145.65, + "probability": 0.9851 + }, + { + "start": 30150.18, + "end": 30159.3, + "probability": 0.9955 + }, + { + "start": 30160.08, + "end": 30161.08, + "probability": 0.774 + }, + { + "start": 30161.14, + "end": 30164.36, + "probability": 0.6415 + }, + { + "start": 30164.86, + "end": 30168.53, + "probability": 0.9951 + }, + { + "start": 30169.58, + "end": 30170.2, + "probability": 0.3633 + }, + { + "start": 30171.14, + "end": 30174.38, + "probability": 0.9792 + }, + { + "start": 30174.86, + "end": 30178.16, + "probability": 0.8771 + }, + { + "start": 30179.18, + "end": 30183.74, + "probability": 0.9738 + }, + { + "start": 30183.74, + "end": 30187.74, + "probability": 0.9413 + }, + { + "start": 30187.98, + "end": 30188.6, + "probability": 0.9273 + }, + { + "start": 30188.74, + "end": 30191.96, + "probability": 0.9917 + }, + { + "start": 30192.06, + "end": 30193.06, + "probability": 0.7763 + }, + { + "start": 30193.84, + "end": 30197.7, + "probability": 0.8729 + }, + { + "start": 30197.7, + "end": 30204.14, + "probability": 0.9633 + }, + { + "start": 30205.2, + "end": 30207.22, + "probability": 0.9937 + }, + { + "start": 30208.04, + "end": 30210.46, + "probability": 0.9962 + }, + { + "start": 30211.44, + "end": 30213.0, + "probability": 0.9419 + }, + { + "start": 30213.98, + "end": 30219.34, + "probability": 0.9942 + }, + { + "start": 30219.5, + "end": 30222.18, + "probability": 0.7182 + }, + { + "start": 30223.16, + "end": 30224.9, + "probability": 0.3994 + }, + { + "start": 30225.4, + "end": 30226.6, + "probability": 0.7425 + }, + { + "start": 30226.88, + "end": 30227.04, + "probability": 0.3386 + }, + { + "start": 30227.48, + "end": 30227.62, + "probability": 0.378 + }, + { + "start": 30227.62, + "end": 30229.46, + "probability": 0.866 + }, + { + "start": 30230.52, + "end": 30234.96, + "probability": 0.6642 + }, + { + "start": 30235.94, + "end": 30238.16, + "probability": 0.8591 + }, + { + "start": 30238.86, + "end": 30241.94, + "probability": 0.9922 + }, + { + "start": 30242.6, + "end": 30245.64, + "probability": 0.8455 + }, + { + "start": 30246.34, + "end": 30248.6, + "probability": 0.974 + }, + { + "start": 30249.16, + "end": 30253.18, + "probability": 0.9734 + }, + { + "start": 30253.6, + "end": 30254.78, + "probability": 0.637 + }, + { + "start": 30255.08, + "end": 30255.9, + "probability": 0.6105 + }, + { + "start": 30256.86, + "end": 30261.52, + "probability": 0.5006 + }, + { + "start": 30262.44, + "end": 30265.56, + "probability": 0.7742 + }, + { + "start": 30266.18, + "end": 30268.97, + "probability": 0.9788 + }, + { + "start": 30269.2, + "end": 30272.26, + "probability": 0.8735 + }, + { + "start": 30273.2, + "end": 30275.72, + "probability": 0.8934 + }, + { + "start": 30275.86, + "end": 30279.4, + "probability": 0.981 + }, + { + "start": 30280.78, + "end": 30288.6, + "probability": 0.8096 + }, + { + "start": 30288.72, + "end": 30289.16, + "probability": 0.5599 + }, + { + "start": 30290.3, + "end": 30294.83, + "probability": 0.7292 + }, + { + "start": 30295.96, + "end": 30296.48, + "probability": 0.4552 + }, + { + "start": 30297.04, + "end": 30301.9, + "probability": 0.9851 + }, + { + "start": 30301.9, + "end": 30307.9, + "probability": 0.9921 + }, + { + "start": 30308.6, + "end": 30309.68, + "probability": 0.7405 + }, + { + "start": 30310.4, + "end": 30317.96, + "probability": 0.9851 + }, + { + "start": 30318.06, + "end": 30319.18, + "probability": 0.995 + }, + { + "start": 30319.9, + "end": 30321.86, + "probability": 0.9873 + }, + { + "start": 30322.76, + "end": 30326.12, + "probability": 0.9735 + }, + { + "start": 30326.12, + "end": 30329.31, + "probability": 0.9948 + }, + { + "start": 30330.1, + "end": 30330.78, + "probability": 0.8598 + }, + { + "start": 30331.32, + "end": 30333.44, + "probability": 0.8887 + }, + { + "start": 30335.42, + "end": 30336.9, + "probability": 0.9768 + }, + { + "start": 30337.48, + "end": 30338.4, + "probability": 0.7245 + }, + { + "start": 30338.46, + "end": 30340.7, + "probability": 0.7827 + }, + { + "start": 30341.8, + "end": 30343.28, + "probability": 0.992 + }, + { + "start": 30344.42, + "end": 30344.72, + "probability": 0.8151 + }, + { + "start": 30350.66, + "end": 30353.5, + "probability": 0.7774 + }, + { + "start": 30354.48, + "end": 30360.54, + "probability": 0.832 + }, + { + "start": 30362.06, + "end": 30367.2, + "probability": 0.8687 + }, + { + "start": 30368.14, + "end": 30371.58, + "probability": 0.9507 + }, + { + "start": 30373.38, + "end": 30378.22, + "probability": 0.9805 + }, + { + "start": 30379.76, + "end": 30383.4, + "probability": 0.9967 + }, + { + "start": 30384.56, + "end": 30386.58, + "probability": 0.9896 + }, + { + "start": 30388.7, + "end": 30390.48, + "probability": 0.9958 + }, + { + "start": 30391.34, + "end": 30393.54, + "probability": 0.685 + }, + { + "start": 30393.66, + "end": 30397.24, + "probability": 0.455 + }, + { + "start": 30398.12, + "end": 30398.96, + "probability": 0.4757 + }, + { + "start": 30399.54, + "end": 30401.2, + "probability": 0.9227 + }, + { + "start": 30401.78, + "end": 30407.06, + "probability": 0.9739 + }, + { + "start": 30408.5, + "end": 30413.64, + "probability": 0.9143 + }, + { + "start": 30415.24, + "end": 30416.66, + "probability": 0.9681 + }, + { + "start": 30417.98, + "end": 30420.94, + "probability": 0.8803 + }, + { + "start": 30421.7, + "end": 30424.48, + "probability": 0.946 + }, + { + "start": 30425.06, + "end": 30428.02, + "probability": 0.9207 + }, + { + "start": 30429.22, + "end": 30433.8, + "probability": 0.996 + }, + { + "start": 30433.8, + "end": 30440.38, + "probability": 0.6437 + }, + { + "start": 30440.82, + "end": 30442.75, + "probability": 0.9965 + }, + { + "start": 30443.94, + "end": 30444.52, + "probability": 0.3624 + }, + { + "start": 30444.76, + "end": 30446.74, + "probability": 0.7166 + }, + { + "start": 30447.16, + "end": 30449.12, + "probability": 0.9624 + }, + { + "start": 30449.5, + "end": 30451.74, + "probability": 0.9598 + }, + { + "start": 30453.64, + "end": 30456.8, + "probability": 0.8539 + }, + { + "start": 30458.1, + "end": 30462.46, + "probability": 0.9106 + }, + { + "start": 30463.44, + "end": 30466.7, + "probability": 0.902 + }, + { + "start": 30467.82, + "end": 30471.3, + "probability": 0.9171 + }, + { + "start": 30472.4, + "end": 30475.76, + "probability": 0.7985 + }, + { + "start": 30476.7, + "end": 30478.26, + "probability": 0.9956 + }, + { + "start": 30479.18, + "end": 30481.0, + "probability": 0.3962 + }, + { + "start": 30481.04, + "end": 30482.16, + "probability": 0.7852 + }, + { + "start": 30483.02, + "end": 30487.82, + "probability": 0.9954 + }, + { + "start": 30488.34, + "end": 30495.42, + "probability": 0.9917 + }, + { + "start": 30495.88, + "end": 30498.52, + "probability": 0.9982 + }, + { + "start": 30500.46, + "end": 30506.6, + "probability": 0.9518 + }, + { + "start": 30508.2, + "end": 30513.44, + "probability": 0.8666 + }, + { + "start": 30514.08, + "end": 30516.98, + "probability": 0.7053 + }, + { + "start": 30517.32, + "end": 30520.56, + "probability": 0.936 + }, + { + "start": 30520.66, + "end": 30524.34, + "probability": 0.8166 + }, + { + "start": 30525.92, + "end": 30533.54, + "probability": 0.9673 + }, + { + "start": 30534.68, + "end": 30536.42, + "probability": 0.9537 + }, + { + "start": 30538.24, + "end": 30543.0, + "probability": 0.8492 + }, + { + "start": 30543.78, + "end": 30548.32, + "probability": 0.8721 + }, + { + "start": 30549.32, + "end": 30551.48, + "probability": 0.989 + }, + { + "start": 30552.3, + "end": 30556.92, + "probability": 0.9293 + }, + { + "start": 30558.44, + "end": 30559.16, + "probability": 0.5751 + }, + { + "start": 30559.26, + "end": 30559.86, + "probability": 0.8441 + }, + { + "start": 30559.94, + "end": 30560.24, + "probability": 0.4186 + }, + { + "start": 30560.38, + "end": 30562.52, + "probability": 0.7786 + }, + { + "start": 30563.08, + "end": 30566.1, + "probability": 0.6673 + }, + { + "start": 30566.34, + "end": 30567.06, + "probability": 0.7459 + }, + { + "start": 30567.06, + "end": 30568.44, + "probability": 0.2117 + }, + { + "start": 30571.58, + "end": 30573.74, + "probability": 0.8693 + }, + { + "start": 30574.24, + "end": 30575.1, + "probability": 0.6777 + }, + { + "start": 30575.48, + "end": 30577.92, + "probability": 0.8109 + }, + { + "start": 30577.96, + "end": 30580.56, + "probability": 0.9775 + }, + { + "start": 30581.58, + "end": 30584.24, + "probability": 0.5753 + }, + { + "start": 30584.6, + "end": 30585.98, + "probability": 0.9238 + }, + { + "start": 30587.04, + "end": 30594.72, + "probability": 0.9961 + }, + { + "start": 30594.88, + "end": 30595.78, + "probability": 0.9399 + }, + { + "start": 30597.32, + "end": 30600.46, + "probability": 0.8542 + }, + { + "start": 30601.58, + "end": 30601.65, + "probability": 0.2886 + }, + { + "start": 30602.56, + "end": 30602.63, + "probability": 0.0118 + }, + { + "start": 30603.4, + "end": 30604.12, + "probability": 0.8776 + }, + { + "start": 30604.22, + "end": 30604.88, + "probability": 0.4948 + }, + { + "start": 30604.98, + "end": 30605.38, + "probability": 0.4445 + }, + { + "start": 30605.94, + "end": 30606.26, + "probability": 0.0022 + }, + { + "start": 30607.16, + "end": 30610.46, + "probability": 0.4607 + }, + { + "start": 30611.16, + "end": 30611.88, + "probability": 0.2853 + }, + { + "start": 30612.06, + "end": 30613.66, + "probability": 0.2905 + }, + { + "start": 30613.74, + "end": 30617.07, + "probability": 0.6721 + }, + { + "start": 30619.52, + "end": 30622.48, + "probability": 0.7832 + }, + { + "start": 30623.14, + "end": 30625.82, + "probability": 0.8962 + }, + { + "start": 30625.98, + "end": 30628.16, + "probability": 0.1927 + }, + { + "start": 30628.3, + "end": 30628.44, + "probability": 0.4785 + }, + { + "start": 30628.48, + "end": 30629.15, + "probability": 0.6113 + }, + { + "start": 30629.26, + "end": 30631.1, + "probability": 0.6703 + }, + { + "start": 30631.1, + "end": 30631.82, + "probability": 0.5861 + }, + { + "start": 30633.04, + "end": 30636.0, + "probability": 0.9392 + }, + { + "start": 30636.06, + "end": 30636.4, + "probability": 0.5963 + }, + { + "start": 30637.72, + "end": 30640.72, + "probability": 0.9209 + }, + { + "start": 30640.84, + "end": 30642.14, + "probability": 0.7819 + }, + { + "start": 30642.22, + "end": 30645.68, + "probability": 0.6959 + }, + { + "start": 30645.68, + "end": 30649.82, + "probability": 0.6318 + }, + { + "start": 30650.6, + "end": 30656.68, + "probability": 0.9809 + }, + { + "start": 30657.46, + "end": 30659.51, + "probability": 0.5283 + }, + { + "start": 30664.48, + "end": 30666.76, + "probability": 0.6196 + }, + { + "start": 30666.78, + "end": 30667.9, + "probability": 0.6443 + }, + { + "start": 30668.0, + "end": 30668.82, + "probability": 0.8873 + }, + { + "start": 30668.9, + "end": 30669.7, + "probability": 0.8129 + }, + { + "start": 30673.03, + "end": 30678.3, + "probability": 0.0947 + }, + { + "start": 30680.42, + "end": 30684.68, + "probability": 0.0794 + }, + { + "start": 30684.68, + "end": 30685.76, + "probability": 0.3086 + }, + { + "start": 30687.36, + "end": 30687.66, + "probability": 0.7537 + }, + { + "start": 30687.66, + "end": 30687.66, + "probability": 0.1428 + }, + { + "start": 30687.72, + "end": 30697.96, + "probability": 0.8391 + }, + { + "start": 30698.46, + "end": 30701.02, + "probability": 0.9231 + }, + { + "start": 30702.3, + "end": 30704.8, + "probability": 0.9825 + }, + { + "start": 30704.96, + "end": 30708.72, + "probability": 0.9262 + }, + { + "start": 30709.14, + "end": 30711.52, + "probability": 0.9919 + }, + { + "start": 30711.64, + "end": 30713.38, + "probability": 0.9857 + }, + { + "start": 30713.8, + "end": 30717.47, + "probability": 0.992 + }, + { + "start": 30717.8, + "end": 30718.78, + "probability": 0.8183 + }, + { + "start": 30719.02, + "end": 30720.08, + "probability": 0.8136 + }, + { + "start": 30720.42, + "end": 30725.16, + "probability": 0.9805 + }, + { + "start": 30725.58, + "end": 30729.28, + "probability": 0.8715 + }, + { + "start": 30729.8, + "end": 30731.76, + "probability": 0.7935 + }, + { + "start": 30731.84, + "end": 30732.94, + "probability": 0.6345 + }, + { + "start": 30733.32, + "end": 30733.74, + "probability": 0.6771 + }, + { + "start": 30733.88, + "end": 30734.72, + "probability": 0.7245 + }, + { + "start": 30735.3, + "end": 30735.52, + "probability": 0.7299 + }, + { + "start": 30735.6, + "end": 30736.23, + "probability": 0.8359 + }, + { + "start": 30737.04, + "end": 30740.06, + "probability": 0.8165 + }, + { + "start": 30740.2, + "end": 30743.94, + "probability": 0.8702 + }, + { + "start": 30744.26, + "end": 30745.54, + "probability": 0.7155 + }, + { + "start": 30745.78, + "end": 30749.0, + "probability": 0.9971 + }, + { + "start": 30749.3, + "end": 30750.35, + "probability": 0.9221 + }, + { + "start": 30750.56, + "end": 30751.18, + "probability": 0.0038 + }, + { + "start": 30751.26, + "end": 30752.76, + "probability": 0.9521 + }, + { + "start": 30753.1, + "end": 30754.59, + "probability": 0.9956 + }, + { + "start": 30755.22, + "end": 30755.92, + "probability": 0.7498 + }, + { + "start": 30756.0, + "end": 30759.08, + "probability": 0.9809 + }, + { + "start": 30759.44, + "end": 30761.29, + "probability": 0.9883 + }, + { + "start": 30761.6, + "end": 30762.18, + "probability": 0.9502 + }, + { + "start": 30762.54, + "end": 30763.78, + "probability": 0.5151 + }, + { + "start": 30763.84, + "end": 30765.1, + "probability": 0.8224 + }, + { + "start": 30765.28, + "end": 30766.28, + "probability": 0.8111 + }, + { + "start": 30766.52, + "end": 30767.02, + "probability": 0.2628 + }, + { + "start": 30767.02, + "end": 30767.38, + "probability": 0.3068 + }, + { + "start": 30767.64, + "end": 30769.14, + "probability": 0.5966 + }, + { + "start": 30769.18, + "end": 30771.02, + "probability": 0.9507 + }, + { + "start": 30771.14, + "end": 30773.9, + "probability": 0.4346 + }, + { + "start": 30773.92, + "end": 30775.04, + "probability": 0.5439 + }, + { + "start": 30775.26, + "end": 30776.62, + "probability": 0.7664 + }, + { + "start": 30776.72, + "end": 30777.14, + "probability": 0.6662 + }, + { + "start": 30777.2, + "end": 30780.18, + "probability": 0.4441 + }, + { + "start": 30780.36, + "end": 30782.96, + "probability": 0.7812 + }, + { + "start": 30783.38, + "end": 30786.94, + "probability": 0.7003 + }, + { + "start": 30787.4, + "end": 30787.62, + "probability": 0.9196 + }, + { + "start": 30787.86, + "end": 30789.42, + "probability": 0.8371 + }, + { + "start": 30790.0, + "end": 30793.6, + "probability": 0.5604 + }, + { + "start": 30793.82, + "end": 30796.74, + "probability": 0.9175 + }, + { + "start": 30797.62, + "end": 30799.02, + "probability": 0.189 + }, + { + "start": 30799.26, + "end": 30800.12, + "probability": 0.9075 + }, + { + "start": 30800.4, + "end": 30805.9, + "probability": 0.9759 + }, + { + "start": 30806.76, + "end": 30809.02, + "probability": 0.7188 + }, + { + "start": 30809.6, + "end": 30811.16, + "probability": 0.7756 + }, + { + "start": 30811.76, + "end": 30814.48, + "probability": 0.8824 + }, + { + "start": 30814.98, + "end": 30818.16, + "probability": 0.9854 + }, + { + "start": 30818.3, + "end": 30821.34, + "probability": 0.998 + }, + { + "start": 30821.96, + "end": 30826.08, + "probability": 0.9482 + }, + { + "start": 30826.18, + "end": 30828.36, + "probability": 0.6499 + }, + { + "start": 30829.28, + "end": 30832.18, + "probability": 0.9792 + }, + { + "start": 30832.56, + "end": 30835.64, + "probability": 0.797 + }, + { + "start": 30836.34, + "end": 30841.8, + "probability": 0.7898 + }, + { + "start": 30842.26, + "end": 30843.54, + "probability": 0.6719 + }, + { + "start": 30843.88, + "end": 30845.54, + "probability": 0.8517 + }, + { + "start": 30846.1, + "end": 30848.74, + "probability": 0.9317 + }, + { + "start": 30848.8, + "end": 30849.34, + "probability": 0.4224 + }, + { + "start": 30849.64, + "end": 30850.8, + "probability": 0.476 + }, + { + "start": 30850.84, + "end": 30852.57, + "probability": 0.7075 + }, + { + "start": 30853.86, + "end": 30854.98, + "probability": 0.341 + }, + { + "start": 30855.4, + "end": 30856.95, + "probability": 0.4256 + }, + { + "start": 30857.9, + "end": 30858.8, + "probability": 0.5375 + }, + { + "start": 30867.72, + "end": 30868.78, + "probability": 0.7834 + }, + { + "start": 30869.0, + "end": 30869.66, + "probability": 0.6516 + }, + { + "start": 30870.04, + "end": 30870.68, + "probability": 0.5262 + }, + { + "start": 30872.5, + "end": 30873.28, + "probability": 0.7477 + }, + { + "start": 30874.14, + "end": 30877.64, + "probability": 0.8723 + }, + { + "start": 30878.86, + "end": 30880.88, + "probability": 0.9321 + }, + { + "start": 30882.88, + "end": 30884.74, + "probability": 0.9443 + }, + { + "start": 30886.54, + "end": 30888.89, + "probability": 0.7497 + }, + { + "start": 30890.66, + "end": 30891.98, + "probability": 0.998 + }, + { + "start": 30892.5, + "end": 30895.14, + "probability": 0.9763 + }, + { + "start": 30897.22, + "end": 30899.26, + "probability": 0.9939 + }, + { + "start": 30900.48, + "end": 30901.35, + "probability": 0.9961 + }, + { + "start": 30903.58, + "end": 30906.46, + "probability": 0.9177 + }, + { + "start": 30908.9, + "end": 30913.88, + "probability": 0.9593 + }, + { + "start": 30915.28, + "end": 30915.86, + "probability": 0.6721 + }, + { + "start": 30917.66, + "end": 30920.18, + "probability": 0.9517 + }, + { + "start": 30921.14, + "end": 30925.29, + "probability": 0.9951 + }, + { + "start": 30926.86, + "end": 30928.3, + "probability": 0.9397 + }, + { + "start": 30929.6, + "end": 30932.74, + "probability": 0.9951 + }, + { + "start": 30934.4, + "end": 30935.2, + "probability": 0.7144 + }, + { + "start": 30936.08, + "end": 30938.12, + "probability": 0.9883 + }, + { + "start": 30939.34, + "end": 30940.76, + "probability": 0.9983 + }, + { + "start": 30942.78, + "end": 30944.7, + "probability": 0.9961 + }, + { + "start": 30947.8, + "end": 30948.94, + "probability": 0.2249 + }, + { + "start": 30950.26, + "end": 30955.48, + "probability": 0.9833 + }, + { + "start": 30957.44, + "end": 30958.24, + "probability": 0.8088 + }, + { + "start": 30959.76, + "end": 30961.4, + "probability": 0.9595 + }, + { + "start": 30962.58, + "end": 30966.0, + "probability": 0.9655 + }, + { + "start": 30967.38, + "end": 30967.9, + "probability": 0.8483 + }, + { + "start": 30967.98, + "end": 30968.58, + "probability": 0.6637 + }, + { + "start": 30969.08, + "end": 30970.0, + "probability": 0.879 + }, + { + "start": 30970.38, + "end": 30972.04, + "probability": 0.9733 + }, + { + "start": 30972.78, + "end": 30975.62, + "probability": 0.9888 + }, + { + "start": 30977.96, + "end": 30978.86, + "probability": 0.9462 + }, + { + "start": 30979.82, + "end": 30982.0, + "probability": 0.9899 + }, + { + "start": 30982.56, + "end": 30983.08, + "probability": 0.8539 + }, + { + "start": 30983.84, + "end": 30985.62, + "probability": 0.9648 + }, + { + "start": 30986.56, + "end": 30987.2, + "probability": 0.8492 + }, + { + "start": 30988.5, + "end": 30991.0, + "probability": 0.9967 + }, + { + "start": 30992.06, + "end": 30993.62, + "probability": 0.9995 + }, + { + "start": 30994.4, + "end": 30996.0, + "probability": 0.9697 + }, + { + "start": 30997.58, + "end": 31002.58, + "probability": 0.9579 + }, + { + "start": 31003.26, + "end": 31006.66, + "probability": 0.794 + }, + { + "start": 31007.66, + "end": 31010.42, + "probability": 0.8394 + }, + { + "start": 31012.76, + "end": 31014.62, + "probability": 0.9697 + }, + { + "start": 31017.06, + "end": 31025.32, + "probability": 0.9741 + }, + { + "start": 31026.62, + "end": 31027.76, + "probability": 0.8958 + }, + { + "start": 31028.04, + "end": 31028.04, + "probability": 0.0002 + }, + { + "start": 31031.28, + "end": 31031.66, + "probability": 0.1613 + }, + { + "start": 31031.66, + "end": 31031.96, + "probability": 0.5416 + }, + { + "start": 31032.64, + "end": 31033.54, + "probability": 0.9753 + }, + { + "start": 31034.06, + "end": 31039.14, + "probability": 0.9307 + }, + { + "start": 31039.82, + "end": 31040.96, + "probability": 0.9816 + }, + { + "start": 31041.98, + "end": 31047.3, + "probability": 0.9432 + }, + { + "start": 31048.28, + "end": 31050.84, + "probability": 0.8078 + }, + { + "start": 31051.74, + "end": 31058.04, + "probability": 0.9912 + }, + { + "start": 31058.74, + "end": 31062.38, + "probability": 0.9001 + }, + { + "start": 31063.14, + "end": 31064.86, + "probability": 0.9888 + }, + { + "start": 31065.96, + "end": 31068.58, + "probability": 0.8802 + }, + { + "start": 31070.06, + "end": 31071.44, + "probability": 0.9819 + }, + { + "start": 31072.38, + "end": 31077.52, + "probability": 0.952 + }, + { + "start": 31078.94, + "end": 31081.36, + "probability": 0.976 + }, + { + "start": 31081.86, + "end": 31086.4, + "probability": 0.9776 + }, + { + "start": 31088.2, + "end": 31089.62, + "probability": 0.8901 + }, + { + "start": 31090.42, + "end": 31091.32, + "probability": 0.8955 + }, + { + "start": 31091.78, + "end": 31093.14, + "probability": 0.9249 + }, + { + "start": 31094.68, + "end": 31095.74, + "probability": 0.557 + }, + { + "start": 31096.24, + "end": 31099.06, + "probability": 0.9902 + }, + { + "start": 31099.76, + "end": 31100.54, + "probability": 0.9685 + }, + { + "start": 31100.68, + "end": 31105.96, + "probability": 0.9821 + }, + { + "start": 31106.5, + "end": 31107.26, + "probability": 0.4132 + }, + { + "start": 31108.0, + "end": 31109.22, + "probability": 0.7096 + }, + { + "start": 31110.5, + "end": 31110.86, + "probability": 0.3799 + }, + { + "start": 31110.94, + "end": 31112.08, + "probability": 0.9897 + }, + { + "start": 31113.42, + "end": 31116.22, + "probability": 0.628 + }, + { + "start": 31117.98, + "end": 31121.88, + "probability": 0.9181 + }, + { + "start": 31124.3, + "end": 31130.96, + "probability": 0.9772 + }, + { + "start": 31132.18, + "end": 31133.68, + "probability": 0.6751 + }, + { + "start": 31137.18, + "end": 31139.1, + "probability": 0.9465 + }, + { + "start": 31140.1, + "end": 31140.78, + "probability": 0.9924 + }, + { + "start": 31141.22, + "end": 31142.34, + "probability": 0.6479 + }, + { + "start": 31142.46, + "end": 31143.12, + "probability": 0.6967 + }, + { + "start": 31143.46, + "end": 31144.32, + "probability": 0.9993 + }, + { + "start": 31148.8, + "end": 31151.02, + "probability": 0.885 + }, + { + "start": 31151.78, + "end": 31155.5, + "probability": 0.9852 + }, + { + "start": 31157.44, + "end": 31162.48, + "probability": 0.9958 + }, + { + "start": 31162.48, + "end": 31165.7, + "probability": 0.6801 + }, + { + "start": 31166.08, + "end": 31168.39, + "probability": 0.9897 + }, + { + "start": 31170.74, + "end": 31171.28, + "probability": 0.7304 + }, + { + "start": 31172.38, + "end": 31173.5, + "probability": 0.8187 + }, + { + "start": 31175.48, + "end": 31176.16, + "probability": 0.8829 + }, + { + "start": 31176.76, + "end": 31182.2, + "probability": 0.9986 + }, + { + "start": 31183.86, + "end": 31187.94, + "probability": 0.9756 + }, + { + "start": 31188.46, + "end": 31188.98, + "probability": 0.965 + }, + { + "start": 31190.22, + "end": 31192.32, + "probability": 0.9977 + }, + { + "start": 31193.72, + "end": 31195.36, + "probability": 0.9722 + }, + { + "start": 31197.32, + "end": 31201.98, + "probability": 0.9965 + }, + { + "start": 31201.98, + "end": 31204.72, + "probability": 0.9995 + }, + { + "start": 31207.34, + "end": 31209.18, + "probability": 0.7616 + }, + { + "start": 31209.72, + "end": 31211.58, + "probability": 0.9637 + }, + { + "start": 31212.24, + "end": 31212.74, + "probability": 0.768 + }, + { + "start": 31214.36, + "end": 31216.32, + "probability": 0.891 + }, + { + "start": 31217.76, + "end": 31219.37, + "probability": 0.9633 + }, + { + "start": 31220.76, + "end": 31225.36, + "probability": 0.9824 + }, + { + "start": 31226.32, + "end": 31227.76, + "probability": 0.9789 + }, + { + "start": 31228.62, + "end": 31230.0, + "probability": 0.5731 + }, + { + "start": 31230.6, + "end": 31232.46, + "probability": 0.886 + }, + { + "start": 31233.44, + "end": 31233.97, + "probability": 0.9871 + }, + { + "start": 31235.4, + "end": 31236.84, + "probability": 0.9939 + }, + { + "start": 31237.22, + "end": 31242.32, + "probability": 0.9751 + }, + { + "start": 31243.06, + "end": 31245.34, + "probability": 0.9966 + }, + { + "start": 31245.92, + "end": 31247.84, + "probability": 0.8015 + }, + { + "start": 31247.94, + "end": 31248.1, + "probability": 0.3627 + }, + { + "start": 31249.04, + "end": 31254.9, + "probability": 0.9871 + }, + { + "start": 31255.48, + "end": 31255.98, + "probability": 0.5403 + }, + { + "start": 31255.98, + "end": 31256.08, + "probability": 0.4483 + }, + { + "start": 31257.2, + "end": 31257.28, + "probability": 0.1262 + }, + { + "start": 31257.42, + "end": 31258.18, + "probability": 0.8611 + }, + { + "start": 31258.54, + "end": 31261.54, + "probability": 0.9213 + }, + { + "start": 31261.84, + "end": 31261.84, + "probability": 0.028 + }, + { + "start": 31261.84, + "end": 31261.84, + "probability": 0.2197 + }, + { + "start": 31261.84, + "end": 31263.26, + "probability": 0.565 + }, + { + "start": 31263.46, + "end": 31267.52, + "probability": 0.8252 + }, + { + "start": 31268.34, + "end": 31270.56, + "probability": 0.5233 + }, + { + "start": 31270.68, + "end": 31272.38, + "probability": 0.9788 + }, + { + "start": 31272.48, + "end": 31273.26, + "probability": 0.9842 + }, + { + "start": 31273.26, + "end": 31273.83, + "probability": 0.7681 + }, + { + "start": 31274.08, + "end": 31276.26, + "probability": 0.8786 + }, + { + "start": 31277.16, + "end": 31282.84, + "probability": 0.9764 + }, + { + "start": 31282.92, + "end": 31283.68, + "probability": 0.9658 + }, + { + "start": 31284.2, + "end": 31285.98, + "probability": 0.9953 + }, + { + "start": 31288.43, + "end": 31291.32, + "probability": 0.9956 + }, + { + "start": 31291.62, + "end": 31292.1, + "probability": 0.456 + }, + { + "start": 31292.14, + "end": 31293.36, + "probability": 0.9544 + }, + { + "start": 31293.62, + "end": 31294.82, + "probability": 0.9065 + }, + { + "start": 31296.1, + "end": 31297.38, + "probability": 0.6294 + }, + { + "start": 31297.52, + "end": 31298.96, + "probability": 0.9538 + }, + { + "start": 31299.04, + "end": 31301.47, + "probability": 0.917 + }, + { + "start": 31301.68, + "end": 31305.16, + "probability": 0.9579 + }, + { + "start": 31305.8, + "end": 31307.92, + "probability": 0.8668 + }, + { + "start": 31308.58, + "end": 31310.82, + "probability": 0.9951 + }, + { + "start": 31310.94, + "end": 31311.96, + "probability": 0.5913 + }, + { + "start": 31312.9, + "end": 31314.12, + "probability": 0.5204 + }, + { + "start": 31314.62, + "end": 31315.3, + "probability": 0.6935 + }, + { + "start": 31315.4, + "end": 31318.4, + "probability": 0.6871 + }, + { + "start": 31318.42, + "end": 31320.63, + "probability": 0.6383 + }, + { + "start": 31321.28, + "end": 31321.98, + "probability": 0.0766 + }, + { + "start": 31322.64, + "end": 31325.04, + "probability": 0.7615 + }, + { + "start": 31325.7, + "end": 31327.7, + "probability": 0.6987 + }, + { + "start": 31328.52, + "end": 31329.88, + "probability": 0.7139 + }, + { + "start": 31330.46, + "end": 31332.1, + "probability": 0.6436 + }, + { + "start": 31332.9, + "end": 31334.26, + "probability": 0.2727 + }, + { + "start": 31334.52, + "end": 31335.6, + "probability": 0.1494 + }, + { + "start": 31335.6, + "end": 31336.12, + "probability": 0.1544 + }, + { + "start": 31336.12, + "end": 31336.52, + "probability": 0.0389 + }, + { + "start": 31336.78, + "end": 31343.34, + "probability": 0.9548 + }, + { + "start": 31343.48, + "end": 31346.74, + "probability": 0.9045 + }, + { + "start": 31346.74, + "end": 31348.34, + "probability": 0.8268 + }, + { + "start": 31348.92, + "end": 31349.9, + "probability": 0.7992 + }, + { + "start": 31349.96, + "end": 31351.32, + "probability": 0.9357 + }, + { + "start": 31351.48, + "end": 31357.53, + "probability": 0.9844 + }, + { + "start": 31358.2, + "end": 31359.62, + "probability": 0.946 + }, + { + "start": 31359.74, + "end": 31360.96, + "probability": 0.9326 + }, + { + "start": 31361.52, + "end": 31362.3, + "probability": 0.8985 + }, + { + "start": 31362.5, + "end": 31366.44, + "probability": 0.9972 + }, + { + "start": 31367.06, + "end": 31369.3, + "probability": 0.9968 + }, + { + "start": 31369.3, + "end": 31371.94, + "probability": 0.9968 + }, + { + "start": 31373.06, + "end": 31375.24, + "probability": 0.9925 + }, + { + "start": 31375.26, + "end": 31376.26, + "probability": 0.8235 + }, + { + "start": 31376.6, + "end": 31377.98, + "probability": 0.9417 + }, + { + "start": 31378.16, + "end": 31381.42, + "probability": 0.9904 + }, + { + "start": 31381.88, + "end": 31384.92, + "probability": 0.8765 + }, + { + "start": 31385.26, + "end": 31386.4, + "probability": 0.732 + }, + { + "start": 31386.78, + "end": 31386.84, + "probability": 0.2827 + }, + { + "start": 31387.02, + "end": 31390.46, + "probability": 0.753 + }, + { + "start": 31390.62, + "end": 31393.16, + "probability": 0.6671 + }, + { + "start": 31393.18, + "end": 31394.48, + "probability": 0.0431 + }, + { + "start": 31394.58, + "end": 31395.44, + "probability": 0.8576 + }, + { + "start": 31395.52, + "end": 31396.5, + "probability": 0.9021 + }, + { + "start": 31396.58, + "end": 31403.2, + "probability": 0.98 + }, + { + "start": 31403.62, + "end": 31407.3, + "probability": 0.9141 + }, + { + "start": 31408.12, + "end": 31408.66, + "probability": 0.2621 + }, + { + "start": 31408.66, + "end": 31410.77, + "probability": 0.5966 + }, + { + "start": 31410.96, + "end": 31412.18, + "probability": 0.8159 + }, + { + "start": 31412.24, + "end": 31415.02, + "probability": 0.6429 + }, + { + "start": 31415.18, + "end": 31415.38, + "probability": 0.6464 + }, + { + "start": 31415.46, + "end": 31416.46, + "probability": 0.8488 + }, + { + "start": 31416.52, + "end": 31419.94, + "probability": 0.9893 + }, + { + "start": 31420.12, + "end": 31422.42, + "probability": 0.8592 + }, + { + "start": 31423.38, + "end": 31423.58, + "probability": 0.117 + }, + { + "start": 31423.58, + "end": 31424.12, + "probability": 0.4511 + }, + { + "start": 31424.26, + "end": 31427.64, + "probability": 0.9771 + }, + { + "start": 31427.64, + "end": 31428.12, + "probability": 0.0565 + }, + { + "start": 31428.32, + "end": 31429.44, + "probability": 0.2239 + }, + { + "start": 31430.7, + "end": 31431.92, + "probability": 0.5766 + }, + { + "start": 31432.18, + "end": 31433.74, + "probability": 0.1998 + }, + { + "start": 31434.24, + "end": 31436.68, + "probability": 0.8816 + }, + { + "start": 31437.28, + "end": 31438.42, + "probability": 0.9465 + }, + { + "start": 31438.48, + "end": 31438.98, + "probability": 0.7465 + }, + { + "start": 31439.66, + "end": 31439.66, + "probability": 0.0189 + }, + { + "start": 31439.66, + "end": 31443.24, + "probability": 0.6883 + }, + { + "start": 31443.36, + "end": 31446.62, + "probability": 0.1275 + }, + { + "start": 31446.62, + "end": 31449.75, + "probability": 0.3174 + }, + { + "start": 31451.7, + "end": 31451.7, + "probability": 0.098 + }, + { + "start": 31451.7, + "end": 31451.7, + "probability": 0.0331 + }, + { + "start": 31451.7, + "end": 31452.3, + "probability": 0.1729 + }, + { + "start": 31452.54, + "end": 31457.32, + "probability": 0.6331 + }, + { + "start": 31457.4, + "end": 31458.18, + "probability": 0.1705 + }, + { + "start": 31458.9, + "end": 31463.14, + "probability": 0.857 + }, + { + "start": 31463.3, + "end": 31463.6, + "probability": 0.6614 + }, + { + "start": 31463.9, + "end": 31464.6, + "probability": 0.4465 + }, + { + "start": 31464.6, + "end": 31464.6, + "probability": 0.4904 + }, + { + "start": 31464.6, + "end": 31465.57, + "probability": 0.2508 + }, + { + "start": 31465.74, + "end": 31471.0, + "probability": 0.5178 + }, + { + "start": 31471.62, + "end": 31474.96, + "probability": 0.9855 + }, + { + "start": 31475.5, + "end": 31476.94, + "probability": 0.9987 + }, + { + "start": 31477.5, + "end": 31479.3, + "probability": 0.9897 + }, + { + "start": 31479.8, + "end": 31481.02, + "probability": 0.9811 + }, + { + "start": 31481.48, + "end": 31483.14, + "probability": 0.9841 + }, + { + "start": 31483.44, + "end": 31484.22, + "probability": 0.9688 + }, + { + "start": 31484.64, + "end": 31485.94, + "probability": 0.9831 + }, + { + "start": 31486.3, + "end": 31487.2, + "probability": 0.9003 + }, + { + "start": 31487.58, + "end": 31488.34, + "probability": 0.7143 + }, + { + "start": 31488.78, + "end": 31490.24, + "probability": 0.8003 + }, + { + "start": 31490.74, + "end": 31493.34, + "probability": 0.8765 + }, + { + "start": 31494.0, + "end": 31495.12, + "probability": 0.832 + }, + { + "start": 31495.88, + "end": 31497.26, + "probability": 0.8633 + }, + { + "start": 31497.96, + "end": 31499.22, + "probability": 0.9362 + }, + { + "start": 31499.9, + "end": 31501.92, + "probability": 0.9883 + }, + { + "start": 31502.44, + "end": 31508.8, + "probability": 0.9713 + }, + { + "start": 31509.4, + "end": 31510.38, + "probability": 0.968 + }, + { + "start": 31510.9, + "end": 31512.28, + "probability": 0.9983 + }, + { + "start": 31512.86, + "end": 31515.88, + "probability": 0.966 + }, + { + "start": 31516.66, + "end": 31521.4, + "probability": 0.8064 + }, + { + "start": 31521.96, + "end": 31524.44, + "probability": 0.1485 + }, + { + "start": 31524.76, + "end": 31525.48, + "probability": 0.4335 + }, + { + "start": 31525.8, + "end": 31528.34, + "probability": 0.8096 + }, + { + "start": 31528.74, + "end": 31531.34, + "probability": 0.7221 + }, + { + "start": 31532.4, + "end": 31536.5, + "probability": 0.9894 + }, + { + "start": 31537.02, + "end": 31539.14, + "probability": 0.9416 + }, + { + "start": 31539.26, + "end": 31540.1, + "probability": 0.9343 + }, + { + "start": 31540.6, + "end": 31544.22, + "probability": 0.98 + }, + { + "start": 31545.2, + "end": 31545.98, + "probability": 0.7543 + }, + { + "start": 31546.6, + "end": 31548.72, + "probability": 0.9862 + }, + { + "start": 31549.28, + "end": 31552.8, + "probability": 0.8429 + }, + { + "start": 31553.26, + "end": 31557.3, + "probability": 0.9861 + }, + { + "start": 31557.62, + "end": 31557.96, + "probability": 0.8412 + }, + { + "start": 31558.22, + "end": 31558.5, + "probability": 0.5372 + }, + { + "start": 31559.0, + "end": 31560.4, + "probability": 0.7211 + }, + { + "start": 31561.28, + "end": 31562.98, + "probability": 0.9398 + }, + { + "start": 31563.62, + "end": 31563.96, + "probability": 0.8023 + }, + { + "start": 31581.2, + "end": 31582.22, + "probability": 0.6019 + }, + { + "start": 31582.62, + "end": 31582.68, + "probability": 0.6166 + }, + { + "start": 31582.68, + "end": 31587.74, + "probability": 0.903 + }, + { + "start": 31588.54, + "end": 31588.78, + "probability": 0.6627 + }, + { + "start": 31588.78, + "end": 31589.7, + "probability": 0.8334 + }, + { + "start": 31589.72, + "end": 31591.8, + "probability": 0.9874 + }, + { + "start": 31591.92, + "end": 31592.32, + "probability": 0.5753 + }, + { + "start": 31592.42, + "end": 31592.62, + "probability": 0.5834 + }, + { + "start": 31592.82, + "end": 31596.66, + "probability": 0.9829 + }, + { + "start": 31597.24, + "end": 31598.68, + "probability": 0.51 + }, + { + "start": 31598.96, + "end": 31599.64, + "probability": 0.8077 + }, + { + "start": 31599.68, + "end": 31599.78, + "probability": 0.7958 + }, + { + "start": 31599.9, + "end": 31601.54, + "probability": 0.9464 + }, + { + "start": 31601.78, + "end": 31602.72, + "probability": 0.9897 + }, + { + "start": 31602.98, + "end": 31606.74, + "probability": 0.9587 + }, + { + "start": 31606.84, + "end": 31609.96, + "probability": 0.9789 + }, + { + "start": 31610.76, + "end": 31610.98, + "probability": 0.8694 + }, + { + "start": 31611.8, + "end": 31613.9, + "probability": 0.3662 + }, + { + "start": 31614.12, + "end": 31615.38, + "probability": 0.7786 + }, + { + "start": 31615.44, + "end": 31624.9, + "probability": 0.9929 + }, + { + "start": 31627.62, + "end": 31628.81, + "probability": 0.7686 + }, + { + "start": 31629.4, + "end": 31637.28, + "probability": 0.9831 + }, + { + "start": 31637.56, + "end": 31638.16, + "probability": 0.4833 + }, + { + "start": 31638.22, + "end": 31640.98, + "probability": 0.9341 + }, + { + "start": 31641.1, + "end": 31643.57, + "probability": 0.7999 + }, + { + "start": 31644.48, + "end": 31644.48, + "probability": 0.3486 + }, + { + "start": 31644.74, + "end": 31645.02, + "probability": 0.2378 + }, + { + "start": 31645.02, + "end": 31645.62, + "probability": 0.9274 + }, + { + "start": 31645.68, + "end": 31646.45, + "probability": 0.8668 + }, + { + "start": 31646.54, + "end": 31648.0, + "probability": 0.9869 + }, + { + "start": 31648.4, + "end": 31650.24, + "probability": 0.916 + }, + { + "start": 31650.6, + "end": 31651.5, + "probability": 0.9624 + }, + { + "start": 31651.82, + "end": 31653.34, + "probability": 0.9913 + }, + { + "start": 31653.44, + "end": 31656.56, + "probability": 0.882 + }, + { + "start": 31658.04, + "end": 31662.5, + "probability": 0.9966 + }, + { + "start": 31662.86, + "end": 31663.46, + "probability": 0.9092 + }, + { + "start": 31663.94, + "end": 31666.24, + "probability": 0.9428 + }, + { + "start": 31667.0, + "end": 31668.44, + "probability": 0.5715 + }, + { + "start": 31669.2, + "end": 31669.54, + "probability": 0.3393 + }, + { + "start": 31669.54, + "end": 31671.32, + "probability": 0.5624 + }, + { + "start": 31671.5, + "end": 31673.62, + "probability": 0.9874 + }, + { + "start": 31673.8, + "end": 31676.64, + "probability": 0.9945 + }, + { + "start": 31676.94, + "end": 31677.6, + "probability": 0.8435 + }, + { + "start": 31678.18, + "end": 31679.56, + "probability": 0.9165 + }, + { + "start": 31680.1, + "end": 31683.72, + "probability": 0.9762 + }, + { + "start": 31684.16, + "end": 31686.28, + "probability": 0.8588 + }, + { + "start": 31686.36, + "end": 31690.38, + "probability": 0.8446 + }, + { + "start": 31690.9, + "end": 31692.24, + "probability": 0.815 + }, + { + "start": 31692.76, + "end": 31693.52, + "probability": 0.7793 + }, + { + "start": 31693.58, + "end": 31694.22, + "probability": 0.8504 + }, + { + "start": 31695.06, + "end": 31698.54, + "probability": 0.9961 + }, + { + "start": 31699.0, + "end": 31701.8, + "probability": 0.9751 + }, + { + "start": 31702.06, + "end": 31704.12, + "probability": 0.601 + }, + { + "start": 31704.22, + "end": 31705.25, + "probability": 0.359 + }, + { + "start": 31706.03, + "end": 31708.1, + "probability": 0.1583 + }, + { + "start": 31708.26, + "end": 31709.62, + "probability": 0.3201 + }, + { + "start": 31709.9, + "end": 31712.26, + "probability": 0.2608 + }, + { + "start": 31712.48, + "end": 31712.52, + "probability": 0.156 + }, + { + "start": 31712.52, + "end": 31712.72, + "probability": 0.0219 + }, + { + "start": 31712.72, + "end": 31713.12, + "probability": 0.1105 + }, + { + "start": 31713.22, + "end": 31713.46, + "probability": 0.17 + }, + { + "start": 31713.46, + "end": 31714.58, + "probability": 0.3096 + }, + { + "start": 31714.72, + "end": 31715.07, + "probability": 0.2585 + }, + { + "start": 31715.34, + "end": 31715.79, + "probability": 0.4533 + }, + { + "start": 31716.02, + "end": 31717.46, + "probability": 0.6373 + }, + { + "start": 31717.56, + "end": 31723.06, + "probability": 0.9173 + }, + { + "start": 31723.42, + "end": 31726.68, + "probability": 0.879 + }, + { + "start": 31726.74, + "end": 31727.71, + "probability": 0.9818 + }, + { + "start": 31728.4, + "end": 31730.76, + "probability": 0.9965 + }, + { + "start": 31731.58, + "end": 31732.22, + "probability": 0.7038 + }, + { + "start": 31732.42, + "end": 31735.58, + "probability": 0.9613 + }, + { + "start": 31736.48, + "end": 31737.94, + "probability": 0.9887 + }, + { + "start": 31738.04, + "end": 31741.1, + "probability": 0.9454 + }, + { + "start": 31741.84, + "end": 31743.07, + "probability": 0.7466 + }, + { + "start": 31743.66, + "end": 31745.52, + "probability": 0.7904 + }, + { + "start": 31745.78, + "end": 31747.52, + "probability": 0.9067 + }, + { + "start": 31748.12, + "end": 31750.02, + "probability": 0.937 + }, + { + "start": 31750.28, + "end": 31751.54, + "probability": 0.767 + }, + { + "start": 31751.9, + "end": 31753.7, + "probability": 0.0179 + }, + { + "start": 31753.7, + "end": 31753.8, + "probability": 0.0182 + }, + { + "start": 31753.8, + "end": 31755.92, + "probability": 0.724 + }, + { + "start": 31756.18, + "end": 31757.59, + "probability": 0.3621 + }, + { + "start": 31758.14, + "end": 31760.6, + "probability": 0.7916 + }, + { + "start": 31761.06, + "end": 31764.55, + "probability": 0.7211 + }, + { + "start": 31764.96, + "end": 31766.4, + "probability": 0.4061 + }, + { + "start": 31766.64, + "end": 31766.66, + "probability": 0.0902 + }, + { + "start": 31766.66, + "end": 31766.66, + "probability": 0.0706 + }, + { + "start": 31766.66, + "end": 31769.1, + "probability": 0.8026 + }, + { + "start": 31771.82, + "end": 31774.86, + "probability": 0.3236 + }, + { + "start": 31775.14, + "end": 31776.05, + "probability": 0.6176 + }, + { + "start": 31776.7, + "end": 31780.02, + "probability": 0.6653 + }, + { + "start": 31780.24, + "end": 31783.6, + "probability": 0.4557 + }, + { + "start": 31783.86, + "end": 31785.36, + "probability": 0.556 + }, + { + "start": 31785.84, + "end": 31786.56, + "probability": 0.9789 + }, + { + "start": 31787.3, + "end": 31788.92, + "probability": 0.6367 + }, + { + "start": 31788.92, + "end": 31789.32, + "probability": 0.4658 + }, + { + "start": 31789.32, + "end": 31792.52, + "probability": 0.9701 + }, + { + "start": 31792.86, + "end": 31794.6, + "probability": 0.8328 + }, + { + "start": 31795.5, + "end": 31796.12, + "probability": 0.8255 + }, + { + "start": 31796.64, + "end": 31797.26, + "probability": 0.7634 + }, + { + "start": 31797.74, + "end": 31799.12, + "probability": 0.9695 + }, + { + "start": 31799.64, + "end": 31799.74, + "probability": 0.2435 + }, + { + "start": 31800.1, + "end": 31801.32, + "probability": 0.6138 + }, + { + "start": 31801.64, + "end": 31803.8, + "probability": 0.9367 + }, + { + "start": 31804.2, + "end": 31805.04, + "probability": 0.8057 + }, + { + "start": 31805.34, + "end": 31806.76, + "probability": 0.6865 + }, + { + "start": 31807.16, + "end": 31808.54, + "probability": 0.9497 + }, + { + "start": 31808.72, + "end": 31809.68, + "probability": 0.8989 + }, + { + "start": 31810.16, + "end": 31811.34, + "probability": 0.9763 + }, + { + "start": 31812.44, + "end": 31813.06, + "probability": 0.877 + }, + { + "start": 31813.58, + "end": 31814.64, + "probability": 0.8072 + }, + { + "start": 31815.14, + "end": 31815.6, + "probability": 0.9545 + }, + { + "start": 31815.74, + "end": 31818.22, + "probability": 0.9477 + }, + { + "start": 31818.62, + "end": 31819.88, + "probability": 0.6025 + }, + { + "start": 31820.7, + "end": 31823.04, + "probability": 0.9504 + }, + { + "start": 31823.24, + "end": 31823.46, + "probability": 0.8854 + }, + { + "start": 31823.48, + "end": 31827.56, + "probability": 0.924 + }, + { + "start": 31828.06, + "end": 31828.32, + "probability": 0.9248 + }, + { + "start": 31828.4, + "end": 31831.0, + "probability": 0.8213 + }, + { + "start": 31831.28, + "end": 31832.12, + "probability": 0.5074 + }, + { + "start": 31832.28, + "end": 31833.06, + "probability": 0.6948 + }, + { + "start": 31833.82, + "end": 31835.94, + "probability": 0.8267 + }, + { + "start": 31836.48, + "end": 31840.56, + "probability": 0.811 + }, + { + "start": 31840.56, + "end": 31844.18, + "probability": 0.9456 + }, + { + "start": 31844.28, + "end": 31845.66, + "probability": 0.646 + }, + { + "start": 31845.92, + "end": 31848.86, + "probability": 0.9563 + }, + { + "start": 31849.22, + "end": 31850.92, + "probability": 0.8709 + }, + { + "start": 31851.74, + "end": 31855.64, + "probability": 0.9763 + }, + { + "start": 31855.82, + "end": 31856.74, + "probability": 0.9432 + }, + { + "start": 31856.78, + "end": 31859.56, + "probability": 0.9942 + }, + { + "start": 31859.6, + "end": 31860.16, + "probability": 0.5662 + }, + { + "start": 31860.22, + "end": 31860.56, + "probability": 0.9535 + }, + { + "start": 31860.88, + "end": 31861.62, + "probability": 0.581 + }, + { + "start": 31861.7, + "end": 31864.82, + "probability": 0.986 + }, + { + "start": 31864.92, + "end": 31865.7, + "probability": 0.7677 + }, + { + "start": 31865.82, + "end": 31866.62, + "probability": 0.8853 + }, + { + "start": 31866.68, + "end": 31868.08, + "probability": 0.9069 + }, + { + "start": 31868.46, + "end": 31869.44, + "probability": 0.5252 + }, + { + "start": 31869.48, + "end": 31870.74, + "probability": 0.9766 + }, + { + "start": 31870.8, + "end": 31871.98, + "probability": 0.7159 + }, + { + "start": 31872.68, + "end": 31873.5, + "probability": 0.6392 + }, + { + "start": 31874.06, + "end": 31878.04, + "probability": 0.7537 + }, + { + "start": 31878.96, + "end": 31883.38, + "probability": 0.9888 + }, + { + "start": 31883.7, + "end": 31885.84, + "probability": 0.9937 + }, + { + "start": 31886.0, + "end": 31886.98, + "probability": 0.7546 + }, + { + "start": 31888.98, + "end": 31889.98, + "probability": 0.6234 + }, + { + "start": 31890.92, + "end": 31894.84, + "probability": 0.8208 + }, + { + "start": 31895.62, + "end": 31898.06, + "probability": 0.9415 + }, + { + "start": 31898.72, + "end": 31899.38, + "probability": 0.8513 + }, + { + "start": 31899.94, + "end": 31902.42, + "probability": 0.8713 + }, + { + "start": 31902.6, + "end": 31903.6, + "probability": 0.1431 + }, + { + "start": 31904.18, + "end": 31905.1, + "probability": 0.5135 + }, + { + "start": 31906.04, + "end": 31909.32, + "probability": 0.9072 + }, + { + "start": 31909.42, + "end": 31910.0, + "probability": 0.5074 + }, + { + "start": 31910.04, + "end": 31911.3, + "probability": 0.1652 + }, + { + "start": 31911.42, + "end": 31912.52, + "probability": 0.6956 + }, + { + "start": 31912.64, + "end": 31915.8, + "probability": 0.9801 + }, + { + "start": 31916.28, + "end": 31917.5, + "probability": 0.6888 + }, + { + "start": 31918.02, + "end": 31918.96, + "probability": 0.7825 + }, + { + "start": 31920.02, + "end": 31924.82, + "probability": 0.6245 + }, + { + "start": 31925.0, + "end": 31929.14, + "probability": 0.9772 + }, + { + "start": 31929.14, + "end": 31932.66, + "probability": 0.9913 + }, + { + "start": 31932.88, + "end": 31933.88, + "probability": 0.0269 + }, + { + "start": 31934.46, + "end": 31936.16, + "probability": 0.2712 + }, + { + "start": 31937.64, + "end": 31939.04, + "probability": 0.0044 + }, + { + "start": 31949.54, + "end": 31949.62, + "probability": 0.0016 + }, + { + "start": 31950.88, + "end": 31951.24, + "probability": 0.2292 + }, + { + "start": 31954.08, + "end": 31957.46, + "probability": 0.5161 + }, + { + "start": 31959.34, + "end": 31960.28, + "probability": 0.7581 + }, + { + "start": 31966.72, + "end": 31968.48, + "probability": 0.6898 + }, + { + "start": 31971.06, + "end": 31975.16, + "probability": 0.5822 + }, + { + "start": 31975.96, + "end": 31977.0, + "probability": 0.5594 + }, + { + "start": 31977.16, + "end": 31981.05, + "probability": 0.9807 + }, + { + "start": 31983.1, + "end": 31986.36, + "probability": 0.9918 + }, + { + "start": 31987.2, + "end": 31988.48, + "probability": 0.9961 + }, + { + "start": 31989.74, + "end": 31991.6, + "probability": 0.9846 + }, + { + "start": 31992.44, + "end": 31994.54, + "probability": 0.9969 + }, + { + "start": 31995.48, + "end": 32000.2, + "probability": 0.9852 + }, + { + "start": 32001.28, + "end": 32005.54, + "probability": 0.5166 + }, + { + "start": 32006.36, + "end": 32009.74, + "probability": 0.7421 + }, + { + "start": 32009.82, + "end": 32017.9, + "probability": 0.7364 + }, + { + "start": 32018.94, + "end": 32019.92, + "probability": 0.9512 + }, + { + "start": 32020.54, + "end": 32026.84, + "probability": 0.9834 + }, + { + "start": 32027.98, + "end": 32033.36, + "probability": 0.9805 + }, + { + "start": 32033.94, + "end": 32036.2, + "probability": 0.8387 + }, + { + "start": 32037.56, + "end": 32041.9, + "probability": 0.9502 + }, + { + "start": 32042.5, + "end": 32046.2, + "probability": 0.9341 + }, + { + "start": 32046.34, + "end": 32048.92, + "probability": 0.9496 + }, + { + "start": 32049.52, + "end": 32052.34, + "probability": 0.8893 + }, + { + "start": 32053.06, + "end": 32053.26, + "probability": 0.7275 + }, + { + "start": 32053.38, + "end": 32056.14, + "probability": 0.7529 + }, + { + "start": 32056.14, + "end": 32060.44, + "probability": 0.9761 + }, + { + "start": 32060.9, + "end": 32061.62, + "probability": 0.6676 + }, + { + "start": 32062.38, + "end": 32066.72, + "probability": 0.9671 + }, + { + "start": 32066.72, + "end": 32069.12, + "probability": 0.9132 + }, + { + "start": 32069.74, + "end": 32072.18, + "probability": 0.729 + }, + { + "start": 32072.74, + "end": 32075.44, + "probability": 0.9788 + }, + { + "start": 32075.86, + "end": 32076.92, + "probability": 0.9341 + }, + { + "start": 32077.26, + "end": 32079.02, + "probability": 0.9183 + }, + { + "start": 32079.44, + "end": 32081.2, + "probability": 0.9455 + }, + { + "start": 32081.32, + "end": 32082.54, + "probability": 0.9816 + }, + { + "start": 32084.46, + "end": 32086.52, + "probability": 0.1809 + }, + { + "start": 32087.14, + "end": 32090.2, + "probability": 0.4747 + }, + { + "start": 32090.64, + "end": 32094.72, + "probability": 0.7458 + }, + { + "start": 32094.72, + "end": 32094.72, + "probability": 0.3603 + }, + { + "start": 32094.72, + "end": 32095.26, + "probability": 0.607 + }, + { + "start": 32095.8, + "end": 32097.86, + "probability": 0.903 + }, + { + "start": 32097.96, + "end": 32100.86, + "probability": 0.8864 + }, + { + "start": 32100.92, + "end": 32102.62, + "probability": 0.9261 + }, + { + "start": 32103.22, + "end": 32107.76, + "probability": 0.9758 + }, + { + "start": 32108.42, + "end": 32109.38, + "probability": 0.8095 + }, + { + "start": 32109.92, + "end": 32112.52, + "probability": 0.6446 + }, + { + "start": 32113.28, + "end": 32115.52, + "probability": 0.936 + }, + { + "start": 32115.76, + "end": 32116.28, + "probability": 0.3115 + }, + { + "start": 32116.32, + "end": 32118.0, + "probability": 0.8315 + }, + { + "start": 32118.02, + "end": 32118.22, + "probability": 0.873 + }, + { + "start": 32118.66, + "end": 32121.1, + "probability": 0.9666 + }, + { + "start": 32122.52, + "end": 32123.78, + "probability": 0.8218 + }, + { + "start": 32123.84, + "end": 32127.92, + "probability": 0.7921 + }, + { + "start": 32127.94, + "end": 32129.58, + "probability": 0.5484 + }, + { + "start": 32129.66, + "end": 32132.12, + "probability": 0.5295 + }, + { + "start": 32132.18, + "end": 32132.44, + "probability": 0.4944 + }, + { + "start": 32132.5, + "end": 32132.66, + "probability": 0.7468 + }, + { + "start": 32132.66, + "end": 32135.76, + "probability": 0.6836 + }, + { + "start": 32136.24, + "end": 32138.66, + "probability": 0.996 + }, + { + "start": 32139.06, + "end": 32140.16, + "probability": 0.2527 + }, + { + "start": 32140.84, + "end": 32142.15, + "probability": 0.3856 + }, + { + "start": 32142.76, + "end": 32146.88, + "probability": 0.9851 + }, + { + "start": 32148.35, + "end": 32150.28, + "probability": 0.4747 + }, + { + "start": 32150.38, + "end": 32154.06, + "probability": 0.8564 + }, + { + "start": 32154.78, + "end": 32157.14, + "probability": 0.836 + }, + { + "start": 32157.24, + "end": 32158.82, + "probability": 0.9985 + }, + { + "start": 32159.02, + "end": 32159.12, + "probability": 0.2122 + }, + { + "start": 32160.14, + "end": 32161.47, + "probability": 0.7275 + }, + { + "start": 32161.84, + "end": 32161.84, + "probability": 0.0898 + }, + { + "start": 32161.84, + "end": 32165.62, + "probability": 0.8522 + }, + { + "start": 32166.34, + "end": 32168.28, + "probability": 0.8037 + }, + { + "start": 32170.67, + "end": 32173.56, + "probability": 0.9893 + }, + { + "start": 32173.56, + "end": 32177.52, + "probability": 0.9924 + }, + { + "start": 32177.62, + "end": 32180.06, + "probability": 0.994 + }, + { + "start": 32180.22, + "end": 32181.13, + "probability": 0.7246 + }, + { + "start": 32181.68, + "end": 32185.2, + "probability": 0.9903 + }, + { + "start": 32185.88, + "end": 32187.56, + "probability": 0.9388 + }, + { + "start": 32188.14, + "end": 32194.14, + "probability": 0.9764 + }, + { + "start": 32194.44, + "end": 32194.72, + "probability": 0.9802 + }, + { + "start": 32195.12, + "end": 32196.34, + "probability": 0.8708 + }, + { + "start": 32196.72, + "end": 32198.12, + "probability": 0.8313 + }, + { + "start": 32198.38, + "end": 32198.84, + "probability": 0.9396 + }, + { + "start": 32198.94, + "end": 32201.7, + "probability": 0.9823 + }, + { + "start": 32201.86, + "end": 32207.28, + "probability": 0.989 + }, + { + "start": 32207.66, + "end": 32210.24, + "probability": 0.7878 + }, + { + "start": 32210.82, + "end": 32212.6, + "probability": 0.985 + }, + { + "start": 32212.96, + "end": 32215.53, + "probability": 0.7946 + }, + { + "start": 32216.02, + "end": 32219.28, + "probability": 0.8222 + }, + { + "start": 32219.4, + "end": 32219.72, + "probability": 0.735 + }, + { + "start": 32219.84, + "end": 32220.4, + "probability": 0.7289 + }, + { + "start": 32220.42, + "end": 32224.3, + "probability": 0.8043 + }, + { + "start": 32224.74, + "end": 32226.96, + "probability": 0.9398 + }, + { + "start": 32227.18, + "end": 32229.54, + "probability": 0.6476 + }, + { + "start": 32229.62, + "end": 32230.9, + "probability": 0.7326 + }, + { + "start": 32230.94, + "end": 32233.64, + "probability": 0.9648 + }, + { + "start": 32234.0, + "end": 32239.4, + "probability": 0.9619 + }, + { + "start": 32239.82, + "end": 32242.08, + "probability": 0.6077 + }, + { + "start": 32242.16, + "end": 32242.46, + "probability": 0.426 + }, + { + "start": 32242.46, + "end": 32242.54, + "probability": 0.4876 + }, + { + "start": 32242.54, + "end": 32243.08, + "probability": 0.7023 + }, + { + "start": 32243.66, + "end": 32246.66, + "probability": 0.8571 + }, + { + "start": 32247.2, + "end": 32251.0, + "probability": 0.9387 + }, + { + "start": 32251.52, + "end": 32254.52, + "probability": 0.8723 + }, + { + "start": 32254.52, + "end": 32258.12, + "probability": 0.9977 + }, + { + "start": 32258.48, + "end": 32260.32, + "probability": 0.9865 + }, + { + "start": 32260.94, + "end": 32262.86, + "probability": 0.9829 + }, + { + "start": 32262.94, + "end": 32264.94, + "probability": 0.8503 + }, + { + "start": 32265.64, + "end": 32267.54, + "probability": 0.8691 + }, + { + "start": 32268.64, + "end": 32270.5, + "probability": 0.9567 + }, + { + "start": 32270.56, + "end": 32271.32, + "probability": 0.5017 + }, + { + "start": 32271.48, + "end": 32272.12, + "probability": 0.7213 + }, + { + "start": 32272.16, + "end": 32272.84, + "probability": 0.8232 + }, + { + "start": 32273.52, + "end": 32274.5, + "probability": 0.7048 + }, + { + "start": 32275.04, + "end": 32278.62, + "probability": 0.9167 + }, + { + "start": 32279.72, + "end": 32282.94, + "probability": 0.9019 + }, + { + "start": 32283.0, + "end": 32287.14, + "probability": 0.9811 + }, + { + "start": 32287.14, + "end": 32289.46, + "probability": 0.9806 + }, + { + "start": 32289.52, + "end": 32293.94, + "probability": 0.9951 + }, + { + "start": 32295.32, + "end": 32296.08, + "probability": 0.898 + }, + { + "start": 32296.68, + "end": 32301.3, + "probability": 0.9792 + }, + { + "start": 32301.57, + "end": 32306.68, + "probability": 0.9151 + }, + { + "start": 32307.04, + "end": 32308.3, + "probability": 0.8989 + }, + { + "start": 32308.6, + "end": 32313.66, + "probability": 0.9281 + }, + { + "start": 32314.5, + "end": 32316.96, + "probability": 0.9827 + }, + { + "start": 32317.66, + "end": 32318.78, + "probability": 0.8081 + }, + { + "start": 32319.04, + "end": 32320.16, + "probability": 0.6449 + }, + { + "start": 32320.28, + "end": 32321.34, + "probability": 0.8462 + }, + { + "start": 32321.68, + "end": 32322.88, + "probability": 0.9526 + }, + { + "start": 32323.12, + "end": 32323.94, + "probability": 0.9071 + }, + { + "start": 32324.56, + "end": 32325.96, + "probability": 0.9082 + }, + { + "start": 32326.2, + "end": 32327.5, + "probability": 0.8467 + }, + { + "start": 32327.8, + "end": 32329.12, + "probability": 0.8148 + }, + { + "start": 32329.54, + "end": 32334.24, + "probability": 0.9985 + }, + { + "start": 32334.56, + "end": 32335.12, + "probability": 0.7337 + }, + { + "start": 32335.22, + "end": 32336.34, + "probability": 0.7996 + }, + { + "start": 32336.52, + "end": 32337.68, + "probability": 0.5955 + }, + { + "start": 32337.8, + "end": 32339.44, + "probability": 0.9818 + }, + { + "start": 32339.56, + "end": 32342.68, + "probability": 0.8105 + }, + { + "start": 32342.68, + "end": 32346.76, + "probability": 0.9849 + }, + { + "start": 32346.94, + "end": 32350.92, + "probability": 0.9264 + }, + { + "start": 32351.34, + "end": 32353.27, + "probability": 0.9888 + }, + { + "start": 32353.52, + "end": 32354.7, + "probability": 0.8753 + }, + { + "start": 32354.86, + "end": 32356.86, + "probability": 0.9421 + }, + { + "start": 32357.14, + "end": 32359.79, + "probability": 0.981 + }, + { + "start": 32360.45, + "end": 32362.69, + "probability": 0.6042 + }, + { + "start": 32362.85, + "end": 32363.23, + "probability": 0.4669 + }, + { + "start": 32363.35, + "end": 32363.63, + "probability": 0.452 + }, + { + "start": 32363.91, + "end": 32364.65, + "probability": 0.8959 + }, + { + "start": 32365.03, + "end": 32366.85, + "probability": 0.7373 + }, + { + "start": 32367.51, + "end": 32369.01, + "probability": 0.8016 + }, + { + "start": 32369.09, + "end": 32370.89, + "probability": 0.7976 + }, + { + "start": 32371.63, + "end": 32376.73, + "probability": 0.9816 + }, + { + "start": 32377.25, + "end": 32380.03, + "probability": 0.8423 + }, + { + "start": 32380.89, + "end": 32380.89, + "probability": 0.117 + }, + { + "start": 32380.89, + "end": 32381.23, + "probability": 0.27 + }, + { + "start": 32381.73, + "end": 32384.47, + "probability": 0.9777 + }, + { + "start": 32384.49, + "end": 32385.81, + "probability": 0.4943 + }, + { + "start": 32385.93, + "end": 32385.99, + "probability": 0.7095 + }, + { + "start": 32386.09, + "end": 32386.27, + "probability": 0.4452 + }, + { + "start": 32386.33, + "end": 32387.95, + "probability": 0.8672 + }, + { + "start": 32388.01, + "end": 32390.31, + "probability": 0.8001 + }, + { + "start": 32390.95, + "end": 32391.71, + "probability": 0.5927 + }, + { + "start": 32391.77, + "end": 32393.55, + "probability": 0.4487 + }, + { + "start": 32394.13, + "end": 32397.59, + "probability": 0.4684 + }, + { + "start": 32397.59, + "end": 32398.55, + "probability": 0.2788 + }, + { + "start": 32398.55, + "end": 32399.29, + "probability": 0.2267 + }, + { + "start": 32399.59, + "end": 32399.79, + "probability": 0.6964 + }, + { + "start": 32399.89, + "end": 32400.91, + "probability": 0.2216 + }, + { + "start": 32401.03, + "end": 32404.19, + "probability": 0.9703 + }, + { + "start": 32404.73, + "end": 32406.33, + "probability": 0.9977 + }, + { + "start": 32407.25, + "end": 32408.65, + "probability": 0.6018 + }, + { + "start": 32409.21, + "end": 32411.25, + "probability": 0.8195 + }, + { + "start": 32411.47, + "end": 32412.07, + "probability": 0.2837 + }, + { + "start": 32412.99, + "end": 32416.75, + "probability": 0.5312 + }, + { + "start": 32416.85, + "end": 32417.29, + "probability": 0.0421 + }, + { + "start": 32417.71, + "end": 32418.24, + "probability": 0.5396 + }, + { + "start": 32418.43, + "end": 32418.89, + "probability": 0.4203 + }, + { + "start": 32418.89, + "end": 32421.95, + "probability": 0.8429 + }, + { + "start": 32422.13, + "end": 32422.69, + "probability": 0.3219 + }, + { + "start": 32422.89, + "end": 32423.49, + "probability": 0.4479 + }, + { + "start": 32423.61, + "end": 32426.93, + "probability": 0.8393 + }, + { + "start": 32427.07, + "end": 32427.91, + "probability": 0.1364 + }, + { + "start": 32427.91, + "end": 32429.55, + "probability": 0.9875 + }, + { + "start": 32429.57, + "end": 32432.57, + "probability": 0.8478 + }, + { + "start": 32433.11, + "end": 32435.29, + "probability": 0.6962 + }, + { + "start": 32435.76, + "end": 32439.87, + "probability": 0.1988 + }, + { + "start": 32441.47, + "end": 32441.81, + "probability": 0.1648 + }, + { + "start": 32441.81, + "end": 32443.19, + "probability": 0.0343 + }, + { + "start": 32443.23, + "end": 32443.43, + "probability": 0.5549 + }, + { + "start": 32443.43, + "end": 32443.77, + "probability": 0.1555 + }, + { + "start": 32445.61, + "end": 32446.09, + "probability": 0.0479 + }, + { + "start": 32446.09, + "end": 32447.17, + "probability": 0.0276 + }, + { + "start": 32447.51, + "end": 32449.03, + "probability": 0.0864 + }, + { + "start": 32449.31, + "end": 32452.05, + "probability": 0.2657 + }, + { + "start": 32455.25, + "end": 32455.51, + "probability": 0.0336 + }, + { + "start": 32455.93, + "end": 32459.37, + "probability": 0.5048 + }, + { + "start": 32460.37, + "end": 32461.07, + "probability": 0.3222 + }, + { + "start": 32461.73, + "end": 32462.07, + "probability": 0.0455 + }, + { + "start": 32463.65, + "end": 32466.83, + "probability": 0.1755 + }, + { + "start": 32467.31, + "end": 32470.23, + "probability": 0.0077 + }, + { + "start": 32470.23, + "end": 32471.69, + "probability": 0.0558 + }, + { + "start": 32471.69, + "end": 32472.47, + "probability": 0.1302 + }, + { + "start": 32482.65, + "end": 32483.09, + "probability": 0.1485 + }, + { + "start": 32483.09, + "end": 32485.57, + "probability": 0.0872 + }, + { + "start": 32485.57, + "end": 32488.41, + "probability": 0.0849 + }, + { + "start": 32488.41, + "end": 32488.69, + "probability": 0.0648 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32489.0, + "end": 32489.0, + "probability": 0.0 + }, + { + "start": 32497.58, + "end": 32498.26, + "probability": 0.1454 + }, + { + "start": 32499.68, + "end": 32501.3, + "probability": 0.0226 + }, + { + "start": 32502.08, + "end": 32502.82, + "probability": 0.1574 + }, + { + "start": 32503.16, + "end": 32506.62, + "probability": 0.7445 + }, + { + "start": 32506.98, + "end": 32507.71, + "probability": 0.6699 + }, + { + "start": 32508.2, + "end": 32510.38, + "probability": 0.9617 + }, + { + "start": 32510.56, + "end": 32513.14, + "probability": 0.7077 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32610.0, + "end": 32610.0, + "probability": 0.0 + }, + { + "start": 32614.56, + "end": 32617.14, + "probability": 0.9243 + }, + { + "start": 32617.74, + "end": 32621.6, + "probability": 0.9106 + }, + { + "start": 32622.42, + "end": 32623.54, + "probability": 0.6987 + }, + { + "start": 32624.64, + "end": 32624.82, + "probability": 0.1751 + }, + { + "start": 32624.82, + "end": 32627.12, + "probability": 0.9158 + }, + { + "start": 32627.86, + "end": 32630.54, + "probability": 0.9903 + }, + { + "start": 32631.26, + "end": 32635.5, + "probability": 0.8967 + }, + { + "start": 32636.38, + "end": 32639.54, + "probability": 0.9962 + }, + { + "start": 32640.36, + "end": 32644.24, + "probability": 0.991 + }, + { + "start": 32644.24, + "end": 32648.36, + "probability": 0.9816 + }, + { + "start": 32649.62, + "end": 32655.0, + "probability": 0.803 + }, + { + "start": 32655.0, + "end": 32658.88, + "probability": 0.9974 + }, + { + "start": 32659.02, + "end": 32659.68, + "probability": 0.7662 + }, + { + "start": 32659.74, + "end": 32660.4, + "probability": 0.955 + }, + { + "start": 32661.0, + "end": 32662.52, + "probability": 0.9674 + }, + { + "start": 32663.96, + "end": 32667.82, + "probability": 0.8992 + }, + { + "start": 32668.88, + "end": 32674.36, + "probability": 0.9973 + }, + { + "start": 32675.08, + "end": 32679.48, + "probability": 0.9664 + }, + { + "start": 32680.5, + "end": 32680.68, + "probability": 0.1864 + }, + { + "start": 32680.84, + "end": 32686.74, + "probability": 0.9781 + }, + { + "start": 32686.74, + "end": 32692.0, + "probability": 0.9813 + }, + { + "start": 32693.22, + "end": 32695.18, + "probability": 0.9083 + }, + { + "start": 32695.92, + "end": 32698.68, + "probability": 0.9894 + }, + { + "start": 32699.46, + "end": 32701.64, + "probability": 0.9507 + }, + { + "start": 32702.3, + "end": 32704.76, + "probability": 0.9897 + }, + { + "start": 32705.66, + "end": 32710.26, + "probability": 0.8668 + }, + { + "start": 32710.86, + "end": 32713.4, + "probability": 0.9973 + }, + { + "start": 32714.24, + "end": 32715.76, + "probability": 0.6937 + }, + { + "start": 32716.86, + "end": 32721.04, + "probability": 0.9926 + }, + { + "start": 32721.52, + "end": 32725.14, + "probability": 0.9855 + }, + { + "start": 32726.42, + "end": 32731.5, + "probability": 0.9902 + }, + { + "start": 32732.22, + "end": 32737.08, + "probability": 0.9897 + }, + { + "start": 32737.96, + "end": 32743.76, + "probability": 0.9765 + }, + { + "start": 32744.32, + "end": 32747.22, + "probability": 0.9965 + }, + { + "start": 32747.92, + "end": 32751.52, + "probability": 0.9974 + }, + { + "start": 32752.14, + "end": 32754.44, + "probability": 0.9865 + }, + { + "start": 32755.22, + "end": 32759.4, + "probability": 0.9581 + }, + { + "start": 32760.38, + "end": 32761.4, + "probability": 0.9045 + }, + { + "start": 32761.96, + "end": 32765.56, + "probability": 0.9946 + }, + { + "start": 32766.12, + "end": 32768.78, + "probability": 0.964 + }, + { + "start": 32771.18, + "end": 32772.14, + "probability": 0.1004 + }, + { + "start": 32772.14, + "end": 32774.26, + "probability": 0.3457 + }, + { + "start": 32775.34, + "end": 32775.8, + "probability": 0.0348 + }, + { + "start": 32775.8, + "end": 32775.82, + "probability": 0.0878 + }, + { + "start": 32775.82, + "end": 32776.94, + "probability": 0.1525 + }, + { + "start": 32776.94, + "end": 32777.43, + "probability": 0.1546 + }, + { + "start": 32778.26, + "end": 32780.66, + "probability": 0.5912 + }, + { + "start": 32781.02, + "end": 32783.24, + "probability": 0.9897 + }, + { + "start": 32784.3, + "end": 32784.3, + "probability": 0.1045 + }, + { + "start": 32784.3, + "end": 32785.06, + "probability": 0.9059 + }, + { + "start": 32785.12, + "end": 32785.68, + "probability": 0.1502 + }, + { + "start": 32785.76, + "end": 32787.25, + "probability": 0.6687 + }, + { + "start": 32788.0, + "end": 32789.48, + "probability": 0.9545 + }, + { + "start": 32789.7, + "end": 32791.94, + "probability": 0.8589 + }, + { + "start": 32792.08, + "end": 32793.12, + "probability": 0.0024 + }, + { + "start": 32793.12, + "end": 32796.84, + "probability": 0.33 + }, + { + "start": 32796.84, + "end": 32798.74, + "probability": 0.3702 + }, + { + "start": 32799.41, + "end": 32804.66, + "probability": 0.6489 + }, + { + "start": 32804.76, + "end": 32804.78, + "probability": 0.1611 + }, + { + "start": 32804.86, + "end": 32805.06, + "probability": 0.0888 + }, + { + "start": 32805.18, + "end": 32807.48, + "probability": 0.9085 + }, + { + "start": 32807.56, + "end": 32810.62, + "probability": 0.7005 + }, + { + "start": 32810.9, + "end": 32811.88, + "probability": 0.7727 + }, + { + "start": 32812.62, + "end": 32816.28, + "probability": 0.9114 + }, + { + "start": 32816.98, + "end": 32821.42, + "probability": 0.9578 + }, + { + "start": 32821.94, + "end": 32824.8, + "probability": 0.9365 + }, + { + "start": 32825.44, + "end": 32830.84, + "probability": 0.9915 + }, + { + "start": 32833.12, + "end": 32833.92, + "probability": 0.4251 + }, + { + "start": 32834.3, + "end": 32838.04, + "probability": 0.9943 + }, + { + "start": 32838.04, + "end": 32842.48, + "probability": 0.8867 + }, + { + "start": 32842.76, + "end": 32845.18, + "probability": 0.9764 + }, + { + "start": 32846.1, + "end": 32849.02, + "probability": 0.8478 + }, + { + "start": 32849.62, + "end": 32851.52, + "probability": 0.7414 + }, + { + "start": 32852.08, + "end": 32855.02, + "probability": 0.7881 + }, + { + "start": 32855.56, + "end": 32861.06, + "probability": 0.8329 + }, + { + "start": 32861.94, + "end": 32863.18, + "probability": 0.5399 + }, + { + "start": 32865.2, + "end": 32866.46, + "probability": 0.5057 + }, + { + "start": 32867.8, + "end": 32868.44, + "probability": 0.9391 + }, + { + "start": 32869.02, + "end": 32869.02, + "probability": 0.0675 + }, + { + "start": 32869.06, + "end": 32869.06, + "probability": 0.0744 + }, + { + "start": 32869.06, + "end": 32869.54, + "probability": 0.7229 + }, + { + "start": 32869.68, + "end": 32870.94, + "probability": 0.7716 + }, + { + "start": 32871.02, + "end": 32873.72, + "probability": 0.9233 + }, + { + "start": 32873.72, + "end": 32877.17, + "probability": 0.8767 + }, + { + "start": 32877.32, + "end": 32883.1, + "probability": 0.9119 + }, + { + "start": 32883.16, + "end": 32887.86, + "probability": 0.9653 + }, + { + "start": 32888.02, + "end": 32889.96, + "probability": 0.9819 + }, + { + "start": 32890.7, + "end": 32892.7, + "probability": 0.8186 + }, + { + "start": 32893.46, + "end": 32895.04, + "probability": 0.4952 + }, + { + "start": 32895.2, + "end": 32897.82, + "probability": 0.807 + }, + { + "start": 32898.36, + "end": 32899.08, + "probability": 0.6607 + }, + { + "start": 32899.26, + "end": 32903.26, + "probability": 0.9907 + }, + { + "start": 32903.26, + "end": 32907.9, + "probability": 0.9487 + }, + { + "start": 32908.0, + "end": 32913.26, + "probability": 0.9271 + }, + { + "start": 32913.4, + "end": 32915.62, + "probability": 0.957 + }, + { + "start": 32916.22, + "end": 32919.26, + "probability": 0.9123 + }, + { + "start": 32919.76, + "end": 32921.62, + "probability": 0.7687 + }, + { + "start": 32921.62, + "end": 32923.9, + "probability": 0.9377 + }, + { + "start": 32924.42, + "end": 32926.6, + "probability": 0.1265 + }, + { + "start": 32927.66, + "end": 32933.22, + "probability": 0.8202 + }, + { + "start": 32933.66, + "end": 32934.58, + "probability": 0.5927 + }, + { + "start": 32934.94, + "end": 32935.46, + "probability": 0.5478 + }, + { + "start": 32935.58, + "end": 32938.36, + "probability": 0.3333 + }, + { + "start": 32939.06, + "end": 32940.78, + "probability": 0.6027 + }, + { + "start": 32941.34, + "end": 32943.9, + "probability": 0.9898 + }, + { + "start": 32943.9, + "end": 32946.9, + "probability": 0.9249 + }, + { + "start": 32946.96, + "end": 32949.64, + "probability": 0.8843 + }, + { + "start": 32950.04, + "end": 32950.3, + "probability": 0.0276 + }, + { + "start": 32950.3, + "end": 32951.66, + "probability": 0.3304 + }, + { + "start": 32951.66, + "end": 32952.06, + "probability": 0.5368 + }, + { + "start": 32952.2, + "end": 32953.18, + "probability": 0.7461 + }, + { + "start": 32953.36, + "end": 32955.04, + "probability": 0.8813 + }, + { + "start": 32955.4, + "end": 32957.86, + "probability": 0.5668 + }, + { + "start": 32957.94, + "end": 32960.06, + "probability": 0.5391 + }, + { + "start": 32960.14, + "end": 32962.68, + "probability": 0.9851 + }, + { + "start": 32963.16, + "end": 32969.18, + "probability": 0.9443 + }, + { + "start": 32969.28, + "end": 32971.4, + "probability": 0.989 + }, + { + "start": 32971.96, + "end": 32974.54, + "probability": 0.8058 + }, + { + "start": 32975.08, + "end": 32976.84, + "probability": 0.9767 + }, + { + "start": 32977.22, + "end": 32979.06, + "probability": 0.6359 + }, + { + "start": 32979.52, + "end": 32985.42, + "probability": 0.9521 + }, + { + "start": 32985.42, + "end": 32989.08, + "probability": 0.9084 + }, + { + "start": 32989.52, + "end": 32992.98, + "probability": 0.8709 + }, + { + "start": 32993.78, + "end": 32994.34, + "probability": 0.2405 + }, + { + "start": 32994.34, + "end": 32997.2, + "probability": 0.4995 + }, + { + "start": 32997.2, + "end": 32997.72, + "probability": 0.4332 + }, + { + "start": 32997.74, + "end": 32998.76, + "probability": 0.7991 + }, + { + "start": 32998.82, + "end": 33001.08, + "probability": 0.8025 + }, + { + "start": 33001.54, + "end": 33002.32, + "probability": 0.423 + }, + { + "start": 33002.58, + "end": 33003.14, + "probability": 0.9194 + }, + { + "start": 33003.22, + "end": 33003.42, + "probability": 0.5746 + }, + { + "start": 33003.66, + "end": 33004.94, + "probability": 0.7546 + }, + { + "start": 33004.94, + "end": 33005.88, + "probability": 0.9726 + }, + { + "start": 33006.72, + "end": 33007.51, + "probability": 0.229 + }, + { + "start": 33008.88, + "end": 33010.08, + "probability": 0.9353 + }, + { + "start": 33012.99, + "end": 33017.7, + "probability": 0.4793 + }, + { + "start": 33017.7, + "end": 33018.0, + "probability": 0.3559 + }, + { + "start": 33018.62, + "end": 33021.08, + "probability": 0.8499 + }, + { + "start": 33021.52, + "end": 33021.52, + "probability": 0.2289 + }, + { + "start": 33021.52, + "end": 33023.02, + "probability": 0.9283 + }, + { + "start": 33023.18, + "end": 33025.92, + "probability": 0.9805 + }, + { + "start": 33026.3, + "end": 33027.76, + "probability": 0.998 + }, + { + "start": 33028.14, + "end": 33028.74, + "probability": 0.6807 + }, + { + "start": 33028.74, + "end": 33030.52, + "probability": 0.8203 + }, + { + "start": 33030.52, + "end": 33034.57, + "probability": 0.4382 + }, + { + "start": 33036.0, + "end": 33036.0, + "probability": 0.1467 + }, + { + "start": 33036.0, + "end": 33039.54, + "probability": 0.6228 + }, + { + "start": 33039.76, + "end": 33040.92, + "probability": 0.3659 + }, + { + "start": 33041.22, + "end": 33044.94, + "probability": 0.8524 + }, + { + "start": 33045.48, + "end": 33046.7, + "probability": 0.6947 + }, + { + "start": 33046.78, + "end": 33048.97, + "probability": 0.0368 + }, + { + "start": 33050.16, + "end": 33050.48, + "probability": 0.4238 + }, + { + "start": 33050.58, + "end": 33051.55, + "probability": 0.791 + }, + { + "start": 33051.86, + "end": 33053.34, + "probability": 0.7261 + }, + { + "start": 33053.34, + "end": 33054.86, + "probability": 0.8012 + }, + { + "start": 33054.86, + "end": 33058.5, + "probability": 0.8819 + }, + { + "start": 33058.5, + "end": 33063.44, + "probability": 0.7854 + }, + { + "start": 33064.04, + "end": 33064.44, + "probability": 0.6669 + }, + { + "start": 33064.58, + "end": 33070.26, + "probability": 0.9458 + }, + { + "start": 33070.4, + "end": 33071.22, + "probability": 0.8598 + }, + { + "start": 33073.16, + "end": 33073.64, + "probability": 0.7166 + }, + { + "start": 33073.94, + "end": 33075.32, + "probability": 0.7641 + }, + { + "start": 33075.32, + "end": 33083.44, + "probability": 0.7828 + }, + { + "start": 33083.68, + "end": 33084.82, + "probability": 0.8831 + }, + { + "start": 33084.96, + "end": 33087.6, + "probability": 0.9238 + }, + { + "start": 33087.96, + "end": 33091.28, + "probability": 0.9868 + }, + { + "start": 33091.28, + "end": 33094.54, + "probability": 0.966 + }, + { + "start": 33096.1, + "end": 33099.24, + "probability": 0.7991 + }, + { + "start": 33099.58, + "end": 33101.04, + "probability": 0.9774 + }, + { + "start": 33101.12, + "end": 33102.34, + "probability": 0.7191 + }, + { + "start": 33102.8, + "end": 33103.94, + "probability": 0.9976 + }, + { + "start": 33104.08, + "end": 33105.45, + "probability": 0.9905 + }, + { + "start": 33105.74, + "end": 33107.4, + "probability": 0.786 + }, + { + "start": 33107.46, + "end": 33110.66, + "probability": 0.9977 + }, + { + "start": 33111.04, + "end": 33116.2, + "probability": 0.7253 + }, + { + "start": 33116.2, + "end": 33118.3, + "probability": 0.77 + }, + { + "start": 33119.48, + "end": 33122.3, + "probability": 0.5768 + }, + { + "start": 33122.84, + "end": 33125.32, + "probability": 0.8151 + }, + { + "start": 33126.0, + "end": 33128.36, + "probability": 0.9717 + }, + { + "start": 33128.9, + "end": 33130.2, + "probability": 0.3037 + }, + { + "start": 33130.5, + "end": 33134.22, + "probability": 0.6634 + }, + { + "start": 33134.94, + "end": 33135.98, + "probability": 0.493 + }, + { + "start": 33135.98, + "end": 33137.06, + "probability": 0.5289 + }, + { + "start": 33137.08, + "end": 33137.36, + "probability": 0.8335 + }, + { + "start": 33137.72, + "end": 33138.78, + "probability": 0.9641 + }, + { + "start": 33138.84, + "end": 33142.86, + "probability": 0.5526 + }, + { + "start": 33143.18, + "end": 33143.58, + "probability": 0.2711 + }, + { + "start": 33143.58, + "end": 33145.34, + "probability": 0.4884 + }, + { + "start": 33145.94, + "end": 33148.1, + "probability": 0.404 + }, + { + "start": 33148.66, + "end": 33149.4, + "probability": 0.1607 + }, + { + "start": 33149.5, + "end": 33151.42, + "probability": 0.8077 + }, + { + "start": 33151.5, + "end": 33152.2, + "probability": 0.8598 + }, + { + "start": 33152.34, + "end": 33154.62, + "probability": 0.3106 + }, + { + "start": 33154.94, + "end": 33156.48, + "probability": 0.6325 + }, + { + "start": 33156.66, + "end": 33157.89, + "probability": 0.9946 + }, + { + "start": 33158.68, + "end": 33159.12, + "probability": 0.074 + }, + { + "start": 33159.12, + "end": 33161.01, + "probability": 0.7862 + }, + { + "start": 33161.12, + "end": 33162.68, + "probability": 0.8893 + }, + { + "start": 33162.72, + "end": 33163.28, + "probability": 0.8159 + }, + { + "start": 33163.36, + "end": 33164.56, + "probability": 0.6079 + }, + { + "start": 33165.08, + "end": 33167.8, + "probability": 0.9097 + }, + { + "start": 33167.9, + "end": 33168.9, + "probability": 0.9094 + }, + { + "start": 33169.12, + "end": 33169.74, + "probability": 0.9028 + }, + { + "start": 33170.42, + "end": 33171.46, + "probability": 0.4425 + }, + { + "start": 33172.04, + "end": 33172.08, + "probability": 0.0168 + }, + { + "start": 33172.08, + "end": 33174.12, + "probability": 0.7556 + }, + { + "start": 33174.74, + "end": 33178.28, + "probability": 0.6899 + }, + { + "start": 33178.38, + "end": 33184.1, + "probability": 0.896 + }, + { + "start": 33185.52, + "end": 33189.04, + "probability": 0.3861 + }, + { + "start": 33189.56, + "end": 33190.92, + "probability": 0.3774 + }, + { + "start": 33191.02, + "end": 33191.78, + "probability": 0.9424 + }, + { + "start": 33192.16, + "end": 33192.4, + "probability": 0.1594 + }, + { + "start": 33192.4, + "end": 33193.66, + "probability": 0.5698 + }, + { + "start": 33193.66, + "end": 33196.76, + "probability": 0.8943 + }, + { + "start": 33197.06, + "end": 33203.68, + "probability": 0.3216 + }, + { + "start": 33204.12, + "end": 33206.32, + "probability": 0.6519 + }, + { + "start": 33206.76, + "end": 33209.36, + "probability": 0.9126 + }, + { + "start": 33209.68, + "end": 33213.6, + "probability": 0.2672 + }, + { + "start": 33213.64, + "end": 33216.02, + "probability": 0.8638 + }, + { + "start": 33216.2, + "end": 33217.58, + "probability": 0.9395 + }, + { + "start": 33217.62, + "end": 33218.18, + "probability": 0.4415 + }, + { + "start": 33218.24, + "end": 33219.64, + "probability": 0.7648 + }, + { + "start": 33220.74, + "end": 33222.9, + "probability": 0.7845 + }, + { + "start": 33222.98, + "end": 33223.35, + "probability": 0.9644 + }, + { + "start": 33224.1, + "end": 33224.82, + "probability": 0.3604 + }, + { + "start": 33224.96, + "end": 33225.2, + "probability": 0.5455 + }, + { + "start": 33225.26, + "end": 33226.68, + "probability": 0.7361 + }, + { + "start": 33226.76, + "end": 33226.9, + "probability": 0.424 + }, + { + "start": 33227.02, + "end": 33227.94, + "probability": 0.9219 + }, + { + "start": 33228.1, + "end": 33236.42, + "probability": 0.9464 + }, + { + "start": 33236.6, + "end": 33237.16, + "probability": 0.5434 + }, + { + "start": 33237.16, + "end": 33237.68, + "probability": 0.6283 + }, + { + "start": 33237.68, + "end": 33237.8, + "probability": 0.3013 + }, + { + "start": 33237.96, + "end": 33239.12, + "probability": 0.5822 + }, + { + "start": 33239.98, + "end": 33240.16, + "probability": 0.1828 + }, + { + "start": 33240.36, + "end": 33241.52, + "probability": 0.8835 + }, + { + "start": 33241.74, + "end": 33244.38, + "probability": 0.571 + }, + { + "start": 33244.9, + "end": 33246.01, + "probability": 0.6044 + }, + { + "start": 33246.46, + "end": 33249.46, + "probability": 0.9824 + }, + { + "start": 33249.74, + "end": 33251.08, + "probability": 0.9971 + }, + { + "start": 33251.16, + "end": 33254.04, + "probability": 0.3936 + }, + { + "start": 33254.24, + "end": 33259.72, + "probability": 0.9377 + }, + { + "start": 33260.34, + "end": 33265.94, + "probability": 0.953 + }, + { + "start": 33266.18, + "end": 33270.18, + "probability": 0.9849 + }, + { + "start": 33270.58, + "end": 33272.7, + "probability": 0.8505 + }, + { + "start": 33272.84, + "end": 33273.46, + "probability": 0.7734 + }, + { + "start": 33273.8, + "end": 33275.94, + "probability": 0.936 + }, + { + "start": 33276.75, + "end": 33278.64, + "probability": 0.5943 + }, + { + "start": 33278.86, + "end": 33279.2, + "probability": 0.0526 + }, + { + "start": 33279.2, + "end": 33279.66, + "probability": 0.5204 + }, + { + "start": 33279.84, + "end": 33283.81, + "probability": 0.9581 + }, + { + "start": 33283.94, + "end": 33285.16, + "probability": 0.9644 + }, + { + "start": 33285.16, + "end": 33286.7, + "probability": 0.375 + }, + { + "start": 33286.86, + "end": 33288.58, + "probability": 0.8092 + }, + { + "start": 33288.7, + "end": 33290.9, + "probability": 0.8203 + }, + { + "start": 33291.06, + "end": 33293.32, + "probability": 0.847 + }, + { + "start": 33293.38, + "end": 33295.18, + "probability": 0.9034 + }, + { + "start": 33295.46, + "end": 33296.66, + "probability": 0.0363 + }, + { + "start": 33296.66, + "end": 33298.46, + "probability": 0.9487 + }, + { + "start": 33299.06, + "end": 33299.16, + "probability": 0.496 + }, + { + "start": 33299.46, + "end": 33300.12, + "probability": 0.8373 + }, + { + "start": 33300.32, + "end": 33302.14, + "probability": 0.3796 + }, + { + "start": 33302.2, + "end": 33303.82, + "probability": 0.1561 + }, + { + "start": 33303.82, + "end": 33306.28, + "probability": 0.8831 + }, + { + "start": 33306.3, + "end": 33308.0, + "probability": 0.7659 + }, + { + "start": 33311.6, + "end": 33318.19, + "probability": 0.8691 + }, + { + "start": 33318.74, + "end": 33319.52, + "probability": 0.4443 + }, + { + "start": 33319.7, + "end": 33321.2, + "probability": 0.518 + }, + { + "start": 33321.42, + "end": 33325.86, + "probability": 0.7928 + }, + { + "start": 33326.46, + "end": 33331.16, + "probability": 0.2299 + }, + { + "start": 33332.18, + "end": 33337.18, + "probability": 0.765 + }, + { + "start": 33337.62, + "end": 33339.48, + "probability": 0.9823 + }, + { + "start": 33339.92, + "end": 33343.2, + "probability": 0.9918 + }, + { + "start": 33343.42, + "end": 33344.18, + "probability": 0.5074 + }, + { + "start": 33344.28, + "end": 33347.6, + "probability": 0.6176 + }, + { + "start": 33349.62, + "end": 33351.82, + "probability": 0.7373 + }, + { + "start": 33352.76, + "end": 33353.92, + "probability": 0.6997 + }, + { + "start": 33354.52, + "end": 33358.7, + "probability": 0.4508 + }, + { + "start": 33359.28, + "end": 33362.92, + "probability": 0.9839 + }, + { + "start": 33363.04, + "end": 33366.8, + "probability": 0.5498 + }, + { + "start": 33368.62, + "end": 33368.68, + "probability": 0.504 + }, + { + "start": 33368.68, + "end": 33372.68, + "probability": 0.2531 + }, + { + "start": 33372.96, + "end": 33374.22, + "probability": 0.6562 + }, + { + "start": 33375.02, + "end": 33375.66, + "probability": 0.2604 + }, + { + "start": 33377.88, + "end": 33379.18, + "probability": 0.7349 + }, + { + "start": 33379.84, + "end": 33381.53, + "probability": 0.2793 + }, + { + "start": 33381.72, + "end": 33383.82, + "probability": 0.9771 + }, + { + "start": 33383.82, + "end": 33388.32, + "probability": 0.9871 + }, + { + "start": 33388.74, + "end": 33393.44, + "probability": 0.7252 + }, + { + "start": 33393.74, + "end": 33396.84, + "probability": 0.9064 + }, + { + "start": 33396.84, + "end": 33400.02, + "probability": 0.9897 + }, + { + "start": 33400.4, + "end": 33405.96, + "probability": 0.9681 + }, + { + "start": 33407.13, + "end": 33408.28, + "probability": 0.0264 + }, + { + "start": 33409.12, + "end": 33409.64, + "probability": 0.0442 + }, + { + "start": 33409.64, + "end": 33409.64, + "probability": 0.123 + }, + { + "start": 33409.64, + "end": 33410.78, + "probability": 0.11 + }, + { + "start": 33410.92, + "end": 33411.68, + "probability": 0.6287 + }, + { + "start": 33412.48, + "end": 33417.04, + "probability": 0.6721 + }, + { + "start": 33417.38, + "end": 33422.12, + "probability": 0.6159 + }, + { + "start": 33422.68, + "end": 33424.78, + "probability": 0.983 + }, + { + "start": 33430.12, + "end": 33432.24, + "probability": 0.3585 + }, + { + "start": 33433.06, + "end": 33435.02, + "probability": 0.2147 + }, + { + "start": 33435.02, + "end": 33436.75, + "probability": 0.1172 + }, + { + "start": 33437.66, + "end": 33437.9, + "probability": 0.0062 + }, + { + "start": 33438.42, + "end": 33438.58, + "probability": 0.2037 + }, + { + "start": 33440.76, + "end": 33445.94, + "probability": 0.0336 + }, + { + "start": 33446.96, + "end": 33449.78, + "probability": 0.4463 + }, + { + "start": 33450.06, + "end": 33450.86, + "probability": 0.1996 + }, + { + "start": 33450.86, + "end": 33454.38, + "probability": 0.824 + }, + { + "start": 33454.44, + "end": 33456.82, + "probability": 0.6324 + }, + { + "start": 33456.86, + "end": 33457.45, + "probability": 0.8846 + }, + { + "start": 33458.68, + "end": 33459.86, + "probability": 0.2622 + }, + { + "start": 33460.52, + "end": 33461.2, + "probability": 0.1522 + }, + { + "start": 33461.44, + "end": 33465.62, + "probability": 0.9137 + }, + { + "start": 33465.7, + "end": 33469.96, + "probability": 0.8798 + }, + { + "start": 33470.64, + "end": 33470.92, + "probability": 0.615 + }, + { + "start": 33471.0, + "end": 33474.96, + "probability": 0.7859 + }, + { + "start": 33475.62, + "end": 33479.33, + "probability": 0.6669 + }, + { + "start": 33480.26, + "end": 33484.7, + "probability": 0.1949 + }, + { + "start": 33486.08, + "end": 33487.92, + "probability": 0.5707 + }, + { + "start": 33488.54, + "end": 33489.52, + "probability": 0.3477 + }, + { + "start": 33492.2, + "end": 33493.08, + "probability": 0.0865 + }, + { + "start": 33493.08, + "end": 33495.13, + "probability": 0.2892 + }, + { + "start": 33496.36, + "end": 33497.72, + "probability": 0.115 + }, + { + "start": 33498.08, + "end": 33498.36, + "probability": 0.5127 + }, + { + "start": 33498.48, + "end": 33498.84, + "probability": 0.1231 + }, + { + "start": 33499.06, + "end": 33502.86, + "probability": 0.7112 + }, + { + "start": 33503.24, + "end": 33505.8, + "probability": 0.7519 + }, + { + "start": 33506.08, + "end": 33510.28, + "probability": 0.5639 + }, + { + "start": 33510.28, + "end": 33512.24, + "probability": 0.8999 + }, + { + "start": 33512.34, + "end": 33515.12, + "probability": 0.8408 + }, + { + "start": 33515.3, + "end": 33517.72, + "probability": 0.8521 + }, + { + "start": 33518.1, + "end": 33519.64, + "probability": 0.6357 + }, + { + "start": 33519.88, + "end": 33523.02, + "probability": 0.8543 + }, + { + "start": 33523.22, + "end": 33524.48, + "probability": 0.5205 + }, + { + "start": 33525.24, + "end": 33525.94, + "probability": 0.8173 + }, + { + "start": 33526.9, + "end": 33528.72, + "probability": 0.6535 + }, + { + "start": 33528.88, + "end": 33530.2, + "probability": 0.7611 + }, + { + "start": 33530.44, + "end": 33533.52, + "probability": 0.7373 + }, + { + "start": 33533.98, + "end": 33536.2, + "probability": 0.5803 + }, + { + "start": 33537.1, + "end": 33537.7, + "probability": 0.3907 + }, + { + "start": 33537.88, + "end": 33538.44, + "probability": 0.3651 + }, + { + "start": 33538.98, + "end": 33540.8, + "probability": 0.6186 + }, + { + "start": 33541.58, + "end": 33543.96, + "probability": 0.9828 + }, + { + "start": 33544.52, + "end": 33545.86, + "probability": 0.8701 + }, + { + "start": 33546.06, + "end": 33548.14, + "probability": 0.9869 + }, + { + "start": 33548.37, + "end": 33551.22, + "probability": 0.6484 + }, + { + "start": 33551.56, + "end": 33553.62, + "probability": 0.9902 + }, + { + "start": 33553.9, + "end": 33555.74, + "probability": 0.7365 + }, + { + "start": 33555.82, + "end": 33562.4, + "probability": 0.9265 + }, + { + "start": 33562.56, + "end": 33563.98, + "probability": 0.8675 + }, + { + "start": 33565.77, + "end": 33568.82, + "probability": 0.032 + }, + { + "start": 33568.82, + "end": 33568.82, + "probability": 0.3003 + }, + { + "start": 33568.82, + "end": 33574.04, + "probability": 0.9946 + }, + { + "start": 33575.02, + "end": 33577.56, + "probability": 0.5268 + }, + { + "start": 33578.28, + "end": 33581.64, + "probability": 0.7978 + }, + { + "start": 33581.76, + "end": 33583.98, + "probability": 0.9348 + }, + { + "start": 33584.6, + "end": 33586.12, + "probability": 0.6623 + }, + { + "start": 33586.18, + "end": 33588.28, + "probability": 0.7293 + }, + { + "start": 33588.88, + "end": 33590.64, + "probability": 0.1811 + }, + { + "start": 33592.28, + "end": 33594.76, + "probability": 0.5921 + }, + { + "start": 33595.3, + "end": 33597.72, + "probability": 0.2803 + }, + { + "start": 33597.72, + "end": 33603.64, + "probability": 0.6228 + }, + { + "start": 33604.08, + "end": 33606.04, + "probability": 0.4711 + }, + { + "start": 33606.14, + "end": 33608.04, + "probability": 0.5179 + }, + { + "start": 33609.76, + "end": 33610.26, + "probability": 0.7528 + }, + { + "start": 33612.08, + "end": 33612.68, + "probability": 0.5717 + }, + { + "start": 33617.02, + "end": 33620.8, + "probability": 0.5692 + }, + { + "start": 33634.2, + "end": 33638.5, + "probability": 0.9349 + }, + { + "start": 33640.77, + "end": 33643.04, + "probability": 0.1514 + }, + { + "start": 33643.6, + "end": 33646.82, + "probability": 0.6389 + }, + { + "start": 33647.34, + "end": 33651.58, + "probability": 0.3594 + }, + { + "start": 33652.58, + "end": 33655.82, + "probability": 0.1939 + }, + { + "start": 33657.69, + "end": 33659.96, + "probability": 0.7151 + }, + { + "start": 33660.12, + "end": 33661.5, + "probability": 0.5087 + }, + { + "start": 33661.52, + "end": 33661.86, + "probability": 0.4286 + }, + { + "start": 33661.86, + "end": 33662.66, + "probability": 0.3696 + }, + { + "start": 33662.68, + "end": 33663.1, + "probability": 0.8236 + }, + { + "start": 33663.32, + "end": 33663.48, + "probability": 0.2786 + }, + { + "start": 33664.16, + "end": 33665.04, + "probability": 0.8677 + }, + { + "start": 33665.08, + "end": 33667.04, + "probability": 0.4375 + }, + { + "start": 33669.07, + "end": 33672.6, + "probability": 0.9526 + }, + { + "start": 33672.68, + "end": 33677.66, + "probability": 0.9937 + }, + { + "start": 33677.8, + "end": 33678.62, + "probability": 0.6846 + }, + { + "start": 33678.68, + "end": 33679.16, + "probability": 0.4615 + }, + { + "start": 33679.73, + "end": 33682.34, + "probability": 0.5547 + }, + { + "start": 33683.42, + "end": 33687.22, + "probability": 0.8125 + }, + { + "start": 33687.8, + "end": 33690.72, + "probability": 0.8608 + }, + { + "start": 33691.22, + "end": 33691.82, + "probability": 0.8494 + }, + { + "start": 33691.86, + "end": 33693.2, + "probability": 0.7509 + }, + { + "start": 33693.2, + "end": 33695.12, + "probability": 0.992 + }, + { + "start": 33695.16, + "end": 33697.66, + "probability": 0.8896 + }, + { + "start": 33698.0, + "end": 33699.58, + "probability": 0.6546 + }, + { + "start": 33700.1, + "end": 33702.68, + "probability": 0.5965 + }, + { + "start": 33702.68, + "end": 33703.54, + "probability": 0.5595 + }, + { + "start": 33703.94, + "end": 33708.2, + "probability": 0.2847 + }, + { + "start": 33708.2, + "end": 33708.66, + "probability": 0.5711 + }, + { + "start": 33708.72, + "end": 33709.58, + "probability": 0.8396 + }, + { + "start": 33719.5, + "end": 33720.56, + "probability": 0.4482 + }, + { + "start": 33720.56, + "end": 33722.4, + "probability": 0.4624 + }, + { + "start": 33722.66, + "end": 33725.7, + "probability": 0.9458 + }, + { + "start": 33725.98, + "end": 33726.36, + "probability": 0.8281 + }, + { + "start": 33726.62, + "end": 33727.94, + "probability": 0.9717 + }, + { + "start": 33727.98, + "end": 33733.45, + "probability": 0.9604 + }, + { + "start": 33734.02, + "end": 33737.46, + "probability": 0.8284 + }, + { + "start": 33737.82, + "end": 33738.36, + "probability": 0.617 + }, + { + "start": 33738.48, + "end": 33739.06, + "probability": 0.6123 + }, + { + "start": 33739.12, + "end": 33739.66, + "probability": 0.5573 + }, + { + "start": 33739.66, + "end": 33740.26, + "probability": 0.3275 + }, + { + "start": 33743.86, + "end": 33749.96, + "probability": 0.1176 + }, + { + "start": 33754.56, + "end": 33756.12, + "probability": 0.0187 + }, + { + "start": 33756.62, + "end": 33759.24, + "probability": 0.5124 + }, + { + "start": 33759.24, + "end": 33760.46, + "probability": 0.9536 + }, + { + "start": 33760.9, + "end": 33762.66, + "probability": 0.8979 + }, + { + "start": 33763.4, + "end": 33764.64, + "probability": 0.4305 + }, + { + "start": 33764.64, + "end": 33765.92, + "probability": 0.3166 + }, + { + "start": 33766.34, + "end": 33766.64, + "probability": 0.6632 + }, + { + "start": 33767.52, + "end": 33769.44, + "probability": 0.8359 + }, + { + "start": 33769.9, + "end": 33771.5, + "probability": 0.4927 + }, + { + "start": 33775.14, + "end": 33777.88, + "probability": 0.4817 + }, + { + "start": 33780.8, + "end": 33784.43, + "probability": 0.9668 + }, + { + "start": 33784.54, + "end": 33786.56, + "probability": 0.7443 + }, + { + "start": 33786.56, + "end": 33786.56, + "probability": 0.0636 + }, + { + "start": 33786.56, + "end": 33787.8, + "probability": 0.4583 + }, + { + "start": 33790.2, + "end": 33793.12, + "probability": 0.05 + }, + { + "start": 33793.12, + "end": 33793.68, + "probability": 0.0244 + }, + { + "start": 33793.9, + "end": 33795.1, + "probability": 0.9556 + }, + { + "start": 33795.64, + "end": 33802.46, + "probability": 0.8257 + }, + { + "start": 33802.68, + "end": 33803.44, + "probability": 0.6407 + }, + { + "start": 33803.8, + "end": 33804.38, + "probability": 0.5506 + }, + { + "start": 33804.44, + "end": 33804.98, + "probability": 0.6614 + }, + { + "start": 33804.98, + "end": 33805.42, + "probability": 0.7446 + }, + { + "start": 33805.52, + "end": 33806.32, + "probability": 0.4552 + }, + { + "start": 33808.03, + "end": 33813.76, + "probability": 0.0822 + }, + { + "start": 33815.16, + "end": 33818.02, + "probability": 0.0019 + }, + { + "start": 33821.86, + "end": 33825.1, + "probability": 0.546 + }, + { + "start": 33825.48, + "end": 33832.78, + "probability": 0.8857 + }, + { + "start": 33833.3, + "end": 33833.88, + "probability": 0.9448 + }, + { + "start": 33837.14, + "end": 33838.78, + "probability": 0.9868 + }, + { + "start": 33839.18, + "end": 33840.1, + "probability": 0.7118 + }, + { + "start": 33840.16, + "end": 33842.56, + "probability": 0.9237 + }, + { + "start": 33843.16, + "end": 33846.16, + "probability": 0.715 + }, + { + "start": 33846.32, + "end": 33847.18, + "probability": 0.3704 + }, + { + "start": 33847.54, + "end": 33848.18, + "probability": 0.3885 + }, + { + "start": 33853.12, + "end": 33853.14, + "probability": 0.2302 + }, + { + "start": 33853.14, + "end": 33853.49, + "probability": 0.6487 + }, + { + "start": 33862.34, + "end": 33862.86, + "probability": 0.191 + }, + { + "start": 33862.86, + "end": 33864.9, + "probability": 0.6327 + }, + { + "start": 33865.28, + "end": 33868.52, + "probability": 0.781 + }, + { + "start": 33868.92, + "end": 33871.24, + "probability": 0.8049 + }, + { + "start": 33871.52, + "end": 33873.84, + "probability": 0.9641 + }, + { + "start": 33873.86, + "end": 33874.82, + "probability": 0.817 + }, + { + "start": 33874.94, + "end": 33875.76, + "probability": 0.8698 + }, + { + "start": 33876.12, + "end": 33879.28, + "probability": 0.8542 + }, + { + "start": 33879.32, + "end": 33879.72, + "probability": 0.3105 + }, + { + "start": 33879.8, + "end": 33880.26, + "probability": 0.612 + }, + { + "start": 33880.58, + "end": 33881.06, + "probability": 0.5295 + }, + { + "start": 33894.26, + "end": 33900.44, + "probability": 0.2206 + }, + { + "start": 33902.34, + "end": 33903.54, + "probability": 0.432 + }, + { + "start": 33904.24, + "end": 33908.08, + "probability": 0.3116 + }, + { + "start": 33908.82, + "end": 33909.08, + "probability": 0.2727 + }, + { + "start": 33909.68, + "end": 33913.42, + "probability": 0.9138 + }, + { + "start": 33918.16, + "end": 33918.56, + "probability": 0.4371 + }, + { + "start": 33920.34, + "end": 33921.58, + "probability": 0.1704 + }, + { + "start": 33921.82, + "end": 33926.32, + "probability": 0.3289 + }, + { + "start": 33929.12, + "end": 33931.08, + "probability": 0.7221 + }, + { + "start": 33931.76, + "end": 33937.84, + "probability": 0.7563 + }, + { + "start": 33938.14, + "end": 33939.8, + "probability": 0.5672 + }, + { + "start": 33939.8, + "end": 33940.32, + "probability": 0.6423 + }, + { + "start": 33940.32, + "end": 33940.8, + "probability": 0.843 + }, + { + "start": 33940.86, + "end": 33944.22, + "probability": 0.1752 + }, + { + "start": 33956.66, + "end": 33957.28, + "probability": 0.1826 + }, + { + "start": 33957.28, + "end": 33959.14, + "probability": 0.5144 + }, + { + "start": 33959.52, + "end": 33962.8, + "probability": 0.8566 + }, + { + "start": 33963.48, + "end": 33966.62, + "probability": 0.9498 + }, + { + "start": 33967.14, + "end": 33972.94, + "probability": 0.7795 + }, + { + "start": 33973.62, + "end": 33973.96, + "probability": 0.7125 + }, + { + "start": 33979.68, + "end": 33980.84, + "probability": 0.0391 + }, + { + "start": 33981.36, + "end": 33983.42, + "probability": 0.6294 + }, + { + "start": 33984.06, + "end": 33985.28, + "probability": 0.494 + }, + { + "start": 33986.96, + "end": 33989.06, + "probability": 0.7193 + }, + { + "start": 33990.26, + "end": 33991.82, + "probability": 0.5946 + }, + { + "start": 34003.52, + "end": 34006.3, + "probability": 0.7013 + }, + { + "start": 34006.62, + "end": 34010.72, + "probability": 0.758 + }, + { + "start": 34012.75, + "end": 34014.76, + "probability": 0.8298 + }, + { + "start": 34016.2, + "end": 34018.0, + "probability": 0.3712 + }, + { + "start": 34018.86, + "end": 34019.12, + "probability": 0.432 + }, + { + "start": 34019.56, + "end": 34021.16, + "probability": 0.7447 + }, + { + "start": 34028.02, + "end": 34029.08, + "probability": 0.5862 + }, + { + "start": 34029.6, + "end": 34031.56, + "probability": 0.9724 + }, + { + "start": 34035.58, + "end": 34036.88, + "probability": 0.4539 + }, + { + "start": 34037.04, + "end": 34040.1, + "probability": 0.7927 + }, + { + "start": 34040.22, + "end": 34040.54, + "probability": 0.0002 + }, + { + "start": 34045.82, + "end": 34049.56, + "probability": 0.9395 + }, + { + "start": 34050.12, + "end": 34053.84, + "probability": 0.7743 + }, + { + "start": 34053.88, + "end": 34055.58, + "probability": 0.9933 + }, + { + "start": 34055.74, + "end": 34056.8, + "probability": 0.2146 + }, + { + "start": 34060.02, + "end": 34067.04, + "probability": 0.6976 + }, + { + "start": 34067.94, + "end": 34069.84, + "probability": 0.6033 + }, + { + "start": 34069.98, + "end": 34072.38, + "probability": 0.7965 + }, + { + "start": 34072.38, + "end": 34075.96, + "probability": 0.8505 + }, + { + "start": 34076.12, + "end": 34076.48, + "probability": 0.0942 + }, + { + "start": 34077.14, + "end": 34078.18, + "probability": 0.1473 + }, + { + "start": 34078.46, + "end": 34079.04, + "probability": 0.4098 + }, + { + "start": 34079.9, + "end": 34081.84, + "probability": 0.4885 + }, + { + "start": 34081.88, + "end": 34083.36, + "probability": 0.6146 + }, + { + "start": 34083.62, + "end": 34085.08, + "probability": 0.9171 + }, + { + "start": 34085.14, + "end": 34086.32, + "probability": 0.6642 + }, + { + "start": 34086.46, + "end": 34088.04, + "probability": 0.4753 + }, + { + "start": 34088.04, + "end": 34088.64, + "probability": 0.5438 + }, + { + "start": 34089.04, + "end": 34090.4, + "probability": 0.7574 + }, + { + "start": 34090.42, + "end": 34090.94, + "probability": 0.6736 + }, + { + "start": 34091.04, + "end": 34091.16, + "probability": 0.588 + }, + { + "start": 34092.1, + "end": 34092.96, + "probability": 0.8839 + }, + { + "start": 34093.14, + "end": 34094.3, + "probability": 0.8496 + }, + { + "start": 34094.8, + "end": 34097.22, + "probability": 0.8501 + }, + { + "start": 34098.78, + "end": 34099.08, + "probability": 0.5817 + }, + { + "start": 34103.44, + "end": 34104.96, + "probability": 0.3996 + }, + { + "start": 34105.38, + "end": 34108.06, + "probability": 0.8833 + }, + { + "start": 34108.44, + "end": 34108.9, + "probability": 0.5598 + }, + { + "start": 34108.98, + "end": 34109.52, + "probability": 0.6692 + }, + { + "start": 34109.58, + "end": 34110.42, + "probability": 0.8063 + }, + { + "start": 34110.5, + "end": 34111.6, + "probability": 0.562 + }, + { + "start": 34112.2, + "end": 34117.78, + "probability": 0.659 + }, + { + "start": 34125.56, + "end": 34125.82, + "probability": 0.1064 + }, + { + "start": 34125.82, + "end": 34127.84, + "probability": 0.5818 + }, + { + "start": 34127.98, + "end": 34131.18, + "probability": 0.9373 + }, + { + "start": 34131.3, + "end": 34135.28, + "probability": 0.8417 + }, + { + "start": 34136.16, + "end": 34138.28, + "probability": 0.349 + }, + { + "start": 34138.98, + "end": 34142.9, + "probability": 0.7299 + }, + { + "start": 34142.96, + "end": 34144.76, + "probability": 0.8862 + }, + { + "start": 34144.84, + "end": 34146.58, + "probability": 0.2405 + }, + { + "start": 34147.56, + "end": 34148.64, + "probability": 0.8205 + }, + { + "start": 34148.74, + "end": 34150.76, + "probability": 0.7004 + }, + { + "start": 34150.9, + "end": 34153.82, + "probability": 0.8255 + }, + { + "start": 34154.32, + "end": 34155.08, + "probability": 0.4462 + }, + { + "start": 34155.62, + "end": 34158.78, + "probability": 0.7424 + }, + { + "start": 34159.88, + "end": 34161.25, + "probability": 0.5393 + }, + { + "start": 34161.82, + "end": 34163.89, + "probability": 0.8208 + }, + { + "start": 34166.18, + "end": 34173.22, + "probability": 0.4911 + }, + { + "start": 34173.94, + "end": 34176.72, + "probability": 0.7477 + }, + { + "start": 34177.0, + "end": 34177.58, + "probability": 0.4518 + }, + { + "start": 34177.58, + "end": 34178.84, + "probability": 0.506 + }, + { + "start": 34178.92, + "end": 34179.92, + "probability": 0.6541 + }, + { + "start": 34180.12, + "end": 34181.22, + "probability": 0.8348 + }, + { + "start": 34182.0, + "end": 34184.3, + "probability": 0.352 + }, + { + "start": 34184.3, + "end": 34184.74, + "probability": 0.5645 + }, + { + "start": 34184.74, + "end": 34185.3, + "probability": 0.5551 + }, + { + "start": 34185.44, + "end": 34185.98, + "probability": 0.6424 + }, + { + "start": 34187.42, + "end": 34192.32, + "probability": 0.0717 + }, + { + "start": 34198.74, + "end": 34201.36, + "probability": 0.82 + }, + { + "start": 34201.68, + "end": 34203.46, + "probability": 0.8488 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34343.0, + "end": 34343.0, + "probability": 0.0 + }, + { + "start": 34360.52, + "end": 34364.16, + "probability": 0.5941 + }, + { + "start": 34364.8, + "end": 34368.84, + "probability": 0.6779 + }, + { + "start": 34368.86, + "end": 34370.6, + "probability": 0.6599 + }, + { + "start": 34371.08, + "end": 34373.22, + "probability": 0.8917 + }, + { + "start": 34374.47, + "end": 34376.9, + "probability": 0.8713 + }, + { + "start": 34377.26, + "end": 34378.9, + "probability": 0.8205 + }, + { + "start": 34379.92, + "end": 34383.3, + "probability": 0.9108 + }, + { + "start": 34383.38, + "end": 34384.14, + "probability": 0.6503 + }, + { + "start": 34385.22, + "end": 34387.16, + "probability": 0.9038 + }, + { + "start": 34387.44, + "end": 34389.94, + "probability": 0.7268 + }, + { + "start": 34390.8, + "end": 34394.04, + "probability": 0.6577 + }, + { + "start": 34394.1, + "end": 34396.84, + "probability": 0.7996 + }, + { + "start": 34397.98, + "end": 34400.98, + "probability": 0.8857 + }, + { + "start": 34401.76, + "end": 34403.93, + "probability": 0.3701 + }, + { + "start": 34404.64, + "end": 34405.92, + "probability": 0.5435 + }, + { + "start": 34406.16, + "end": 34406.32, + "probability": 0.3332 + }, + { + "start": 34415.26, + "end": 34417.14, + "probability": 0.0869 + }, + { + "start": 34418.22, + "end": 34420.92, + "probability": 0.0535 + }, + { + "start": 34422.58, + "end": 34426.28, + "probability": 0.7022 + }, + { + "start": 34426.3, + "end": 34429.15, + "probability": 0.7627 + }, + { + "start": 34429.78, + "end": 34431.58, + "probability": 0.9272 + }, + { + "start": 34431.76, + "end": 34433.74, + "probability": 0.4623 + }, + { + "start": 34433.86, + "end": 34435.2, + "probability": 0.2155 + }, + { + "start": 34435.6, + "end": 34436.42, + "probability": 0.7311 + }, + { + "start": 34437.74, + "end": 34438.78, + "probability": 0.5532 + }, + { + "start": 34438.86, + "end": 34439.72, + "probability": 0.6679 + }, + { + "start": 34448.38, + "end": 34455.58, + "probability": 0.0107 + }, + { + "start": 34456.16, + "end": 34457.04, + "probability": 0.0942 + }, + { + "start": 34457.76, + "end": 34461.48, + "probability": 0.6018 + }, + { + "start": 34461.76, + "end": 34466.08, + "probability": 0.7988 + }, + { + "start": 34466.84, + "end": 34468.86, + "probability": 0.5918 + }, + { + "start": 34468.98, + "end": 34469.58, + "probability": 0.1674 + }, + { + "start": 34469.8, + "end": 34470.88, + "probability": 0.9142 + }, + { + "start": 34471.78, + "end": 34472.8, + "probability": 0.5549 + }, + { + "start": 34473.6, + "end": 34475.88, + "probability": 0.8108 + }, + { + "start": 34476.02, + "end": 34477.02, + "probability": 0.3502 + }, + { + "start": 34477.92, + "end": 34478.6, + "probability": 0.5333 + }, + { + "start": 34478.8, + "end": 34479.02, + "probability": 0.7001 + }, + { + "start": 34479.1, + "end": 34483.02, + "probability": 0.7753 + }, + { + "start": 34483.68, + "end": 34483.86, + "probability": 0.0083 + }, + { + "start": 34483.88, + "end": 34485.2, + "probability": 0.2638 + }, + { + "start": 34485.3, + "end": 34485.9, + "probability": 0.7188 + }, + { + "start": 34486.12, + "end": 34486.28, + "probability": 0.0968 + }, + { + "start": 34486.28, + "end": 34487.2, + "probability": 0.8135 + }, + { + "start": 34487.38, + "end": 34488.56, + "probability": 0.656 + }, + { + "start": 34489.08, + "end": 34492.14, + "probability": 0.7057 + }, + { + "start": 34495.4, + "end": 34495.5, + "probability": 0.34 + }, + { + "start": 34496.38, + "end": 34497.2, + "probability": 0.3194 + }, + { + "start": 34497.6, + "end": 34498.54, + "probability": 0.5987 + }, + { + "start": 34498.64, + "end": 34500.72, + "probability": 0.7914 + }, + { + "start": 34501.58, + "end": 34502.06, + "probability": 0.1692 + }, + { + "start": 34503.62, + "end": 34508.48, + "probability": 0.5444 + }, + { + "start": 34509.02, + "end": 34513.18, + "probability": 0.4699 + }, + { + "start": 34513.62, + "end": 34518.02, + "probability": 0.8221 + }, + { + "start": 34518.28, + "end": 34519.94, + "probability": 0.9554 + }, + { + "start": 34521.44, + "end": 34522.12, + "probability": 0.5457 + }, + { + "start": 34524.0, + "end": 34524.77, + "probability": 0.6273 + }, + { + "start": 34525.0, + "end": 34525.76, + "probability": 0.963 + }, + { + "start": 34527.86, + "end": 34529.48, + "probability": 0.6935 + }, + { + "start": 34529.98, + "end": 34530.72, + "probability": 0.0193 + }, + { + "start": 34531.18, + "end": 34531.34, + "probability": 0.0803 + }, + { + "start": 34531.34, + "end": 34531.34, + "probability": 0.1124 + }, + { + "start": 34531.34, + "end": 34531.34, + "probability": 0.2726 + }, + { + "start": 34531.34, + "end": 34531.94, + "probability": 0.3457 + }, + { + "start": 34532.22, + "end": 34533.74, + "probability": 0.4041 + }, + { + "start": 34534.52, + "end": 34538.17, + "probability": 0.8789 + }, + { + "start": 34538.24, + "end": 34540.34, + "probability": 0.7439 + }, + { + "start": 34541.28, + "end": 34543.48, + "probability": 0.061 + }, + { + "start": 34544.48, + "end": 34545.96, + "probability": 0.925 + }, + { + "start": 34547.04, + "end": 34549.48, + "probability": 0.698 + }, + { + "start": 34551.54, + "end": 34555.7, + "probability": 0.533 + }, + { + "start": 34556.56, + "end": 34560.44, + "probability": 0.9364 + }, + { + "start": 34560.44, + "end": 34565.22, + "probability": 0.8576 + }, + { + "start": 34565.7, + "end": 34567.7, + "probability": 0.879 + }, + { + "start": 34568.34, + "end": 34570.88, + "probability": 0.9971 + }, + { + "start": 34572.16, + "end": 34577.24, + "probability": 0.9893 + }, + { + "start": 34577.24, + "end": 34582.78, + "probability": 0.972 + }, + { + "start": 34583.54, + "end": 34584.48, + "probability": 0.5961 + }, + { + "start": 34584.94, + "end": 34587.92, + "probability": 0.971 + }, + { + "start": 34588.34, + "end": 34589.08, + "probability": 0.6665 + }, + { + "start": 34589.18, + "end": 34589.84, + "probability": 0.9769 + }, + { + "start": 34589.98, + "end": 34590.7, + "probability": 0.9274 + }, + { + "start": 34590.8, + "end": 34592.44, + "probability": 0.8324 + }, + { + "start": 34592.9, + "end": 34597.08, + "probability": 0.9704 + }, + { + "start": 34597.08, + "end": 34600.76, + "probability": 0.9644 + }, + { + "start": 34601.06, + "end": 34603.56, + "probability": 0.9309 + }, + { + "start": 34604.16, + "end": 34605.22, + "probability": 0.7579 + }, + { + "start": 34605.62, + "end": 34610.08, + "probability": 0.9545 + }, + { + "start": 34611.46, + "end": 34614.92, + "probability": 0.7671 + }, + { + "start": 34616.73, + "end": 34622.0, + "probability": 0.7524 + }, + { + "start": 34622.0, + "end": 34626.28, + "probability": 0.9662 + }, + { + "start": 34626.72, + "end": 34629.28, + "probability": 0.9886 + }, + { + "start": 34630.16, + "end": 34633.78, + "probability": 0.984 + }, + { + "start": 34634.02, + "end": 34638.14, + "probability": 0.9966 + }, + { + "start": 34638.64, + "end": 34643.84, + "probability": 0.9783 + }, + { + "start": 34644.54, + "end": 34646.04, + "probability": 0.7189 + }, + { + "start": 34647.04, + "end": 34649.3, + "probability": 0.9711 + }, + { + "start": 34649.84, + "end": 34651.2, + "probability": 0.9657 + }, + { + "start": 34651.62, + "end": 34654.06, + "probability": 0.665 + }, + { + "start": 34654.78, + "end": 34656.42, + "probability": 0.9528 + }, + { + "start": 34656.5, + "end": 34659.24, + "probability": 0.8073 + }, + { + "start": 34659.74, + "end": 34662.22, + "probability": 0.8022 + }, + { + "start": 34663.18, + "end": 34665.24, + "probability": 0.8207 + }, + { + "start": 34665.76, + "end": 34667.87, + "probability": 0.0371 + }, + { + "start": 34669.06, + "end": 34669.86, + "probability": 0.7128 + }, + { + "start": 34669.86, + "end": 34670.52, + "probability": 0.5708 + }, + { + "start": 34671.6, + "end": 34672.32, + "probability": 0.8627 + }, + { + "start": 34672.7, + "end": 34673.44, + "probability": 0.8838 + }, + { + "start": 34675.2, + "end": 34675.54, + "probability": 0.0813 + }, + { + "start": 34689.96, + "end": 34690.68, + "probability": 0.0165 + }, + { + "start": 34690.68, + "end": 34693.04, + "probability": 0.5984 + }, + { + "start": 34693.88, + "end": 34695.5, + "probability": 0.9086 + }, + { + "start": 34695.64, + "end": 34697.62, + "probability": 0.721 + }, + { + "start": 34697.78, + "end": 34697.96, + "probability": 0.0313 + }, + { + "start": 34698.5, + "end": 34701.28, + "probability": 0.8231 + }, + { + "start": 34701.92, + "end": 34705.5, + "probability": 0.634 + }, + { + "start": 34705.8, + "end": 34706.9, + "probability": 0.1333 + }, + { + "start": 34707.22, + "end": 34708.18, + "probability": 0.8067 + }, + { + "start": 34708.28, + "end": 34708.76, + "probability": 0.6826 + }, + { + "start": 34709.32, + "end": 34711.12, + "probability": 0.584 + }, + { + "start": 34716.34, + "end": 34719.98, + "probability": 0.1766 + }, + { + "start": 34725.44, + "end": 34726.56, + "probability": 0.0627 + }, + { + "start": 34726.88, + "end": 34729.16, + "probability": 0.7055 + }, + { + "start": 34729.2, + "end": 34729.28, + "probability": 0.1643 + }, + { + "start": 34729.32, + "end": 34729.62, + "probability": 0.5942 + }, + { + "start": 34729.72, + "end": 34734.92, + "probability": 0.9855 + }, + { + "start": 34736.8, + "end": 34737.94, + "probability": 0.832 + }, + { + "start": 34737.98, + "end": 34741.3, + "probability": 0.671 + }, + { + "start": 34741.88, + "end": 34746.06, + "probability": 0.5411 + }, + { + "start": 34746.18, + "end": 34749.44, + "probability": 0.6429 + }, + { + "start": 34750.4, + "end": 34754.58, + "probability": 0.8832 + }, + { + "start": 34755.34, + "end": 34755.96, + "probability": 0.3912 + }, + { + "start": 34756.14, + "end": 34756.2, + "probability": 0.5578 + }, + { + "start": 34756.2, + "end": 34758.4, + "probability": 0.8125 + }, + { + "start": 34758.56, + "end": 34760.74, + "probability": 0.6801 + }, + { + "start": 34763.56, + "end": 34765.82, + "probability": 0.8405 + }, + { + "start": 34766.38, + "end": 34769.22, + "probability": 0.8913 + }, + { + "start": 34771.4, + "end": 34774.16, + "probability": 0.1811 + }, + { + "start": 34793.5, + "end": 34799.44, + "probability": 0.8371 + }, + { + "start": 34800.1, + "end": 34801.98, + "probability": 0.6591 + }, + { + "start": 34801.98, + "end": 34804.44, + "probability": 0.6436 + }, + { + "start": 34804.54, + "end": 34808.58, + "probability": 0.6275 + }, + { + "start": 34808.6, + "end": 34809.92, + "probability": 0.6804 + }, + { + "start": 34809.98, + "end": 34813.18, + "probability": 0.9 + }, + { + "start": 34813.26, + "end": 34814.3, + "probability": 0.98 + }, + { + "start": 34815.14, + "end": 34815.98, + "probability": 0.9512 + }, + { + "start": 34816.08, + "end": 34819.78, + "probability": 0.9479 + }, + { + "start": 34819.78, + "end": 34822.1, + "probability": 0.2032 + }, + { + "start": 34824.15, + "end": 34824.56, + "probability": 0.0464 + }, + { + "start": 34824.56, + "end": 34824.94, + "probability": 0.0118 + }, + { + "start": 34825.1, + "end": 34826.38, + "probability": 0.7096 + }, + { + "start": 34827.12, + "end": 34831.6, + "probability": 0.9806 + }, + { + "start": 34832.26, + "end": 34835.42, + "probability": 0.8311 + }, + { + "start": 34836.02, + "end": 34838.26, + "probability": 0.9918 + }, + { + "start": 34838.88, + "end": 34841.66, + "probability": 0.9893 + }, + { + "start": 34841.66, + "end": 34844.74, + "probability": 0.9794 + }, + { + "start": 34845.46, + "end": 34849.1, + "probability": 0.9889 + }, + { + "start": 34850.4, + "end": 34854.22, + "probability": 0.6155 + }, + { + "start": 34854.78, + "end": 34856.86, + "probability": 0.5569 + }, + { + "start": 34858.22, + "end": 34860.28, + "probability": 0.8421 + }, + { + "start": 34861.62, + "end": 34865.64, + "probability": 0.5175 + }, + { + "start": 34866.24, + "end": 34868.72, + "probability": 0.743 + }, + { + "start": 34869.74, + "end": 34870.86, + "probability": 0.0374 + }, + { + "start": 34871.8, + "end": 34874.2, + "probability": 0.5639 + }, + { + "start": 34874.9, + "end": 34878.96, + "probability": 0.6453 + }, + { + "start": 34879.7, + "end": 34882.34, + "probability": 0.9863 + }, + { + "start": 34882.66, + "end": 34882.86, + "probability": 0.2527 + }, + { + "start": 34882.88, + "end": 34883.12, + "probability": 0.7212 + }, + { + "start": 34883.22, + "end": 34887.8, + "probability": 0.8589 + }, + { + "start": 34887.8, + "end": 34892.58, + "probability": 0.0508 + }, + { + "start": 34893.3, + "end": 34893.3, + "probability": 0.3047 + }, + { + "start": 34893.3, + "end": 34894.16, + "probability": 0.3665 + }, + { + "start": 34894.16, + "end": 34894.92, + "probability": 0.4904 + }, + { + "start": 34915.74, + "end": 34917.82, + "probability": 0.6779 + }, + { + "start": 34917.92, + "end": 34922.38, + "probability": 0.1169 + }, + { + "start": 34922.38, + "end": 34923.82, + "probability": 0.0103 + }, + { + "start": 34924.36, + "end": 34924.36, + "probability": 0.0125 + }, + { + "start": 34925.64, + "end": 34925.86, + "probability": 0.0076 + }, + { + "start": 34926.6, + "end": 34927.04, + "probability": 0.0365 + }, + { + "start": 34927.66, + "end": 34928.78, + "probability": 0.065 + }, + { + "start": 34928.78, + "end": 34932.76, + "probability": 0.0666 + }, + { + "start": 34934.62, + "end": 34936.3, + "probability": 0.0937 + }, + { + "start": 34940.3, + "end": 34941.42, + "probability": 0.1753 + }, + { + "start": 34943.18, + "end": 34944.14, + "probability": 0.04 + }, + { + "start": 34945.14, + "end": 34945.32, + "probability": 0.2445 + }, + { + "start": 34949.94, + "end": 34956.8, + "probability": 0.663 + }, + { + "start": 34957.36, + "end": 34960.44, + "probability": 0.798 + }, + { + "start": 34961.42, + "end": 34962.22, + "probability": 0.8552 + }, + { + "start": 34963.46, + "end": 34968.7, + "probability": 0.1486 + }, + { + "start": 34968.7, + "end": 34968.7, + "probability": 0.1575 + }, + { + "start": 34968.7, + "end": 34968.76, + "probability": 0.1066 + }, + { + "start": 34968.76, + "end": 34972.5, + "probability": 0.0163 + }, + { + "start": 34981.6, + "end": 34984.07, + "probability": 0.0589 + }, + { + "start": 34986.73, + "end": 34987.34, + "probability": 0.1008 + }, + { + "start": 34988.43, + "end": 34989.98, + "probability": 0.0878 + }, + { + "start": 34990.0, + "end": 34990.0, + "probability": 0.0 + }, + { + "start": 34990.0, + "end": 34990.0, + "probability": 0.0 + }, + { + "start": 34990.24, + "end": 34990.84, + "probability": 0.0883 + }, + { + "start": 34991.3, + "end": 34998.04, + "probability": 0.9466 + }, + { + "start": 34998.94, + "end": 35001.52, + "probability": 0.7826 + }, + { + "start": 35002.12, + "end": 35004.86, + "probability": 0.8338 + }, + { + "start": 35005.68, + "end": 35013.4, + "probability": 0.9685 + }, + { + "start": 35014.22, + "end": 35017.72, + "probability": 0.7992 + }, + { + "start": 35017.92, + "end": 35018.12, + "probability": 0.7381 + }, + { + "start": 35019.66, + "end": 35021.98, + "probability": 0.7969 + }, + { + "start": 35022.16, + "end": 35022.86, + "probability": 0.5741 + }, + { + "start": 35023.72, + "end": 35025.61, + "probability": 0.7076 + }, + { + "start": 35026.2, + "end": 35027.82, + "probability": 0.7978 + }, + { + "start": 35028.88, + "end": 35029.24, + "probability": 0.1376 + }, + { + "start": 35031.76, + "end": 35033.33, + "probability": 0.8337 + }, + { + "start": 35033.42, + "end": 35034.65, + "probability": 0.5417 + }, + { + "start": 35035.6, + "end": 35035.86, + "probability": 0.5265 + }, + { + "start": 35035.86, + "end": 35036.16, + "probability": 0.7704 + }, + { + "start": 35036.24, + "end": 35038.84, + "probability": 0.7499 + }, + { + "start": 35039.38, + "end": 35040.56, + "probability": 0.7453 + }, + { + "start": 35041.32, + "end": 35042.92, + "probability": 0.4164 + }, + { + "start": 35043.34, + "end": 35043.9, + "probability": 0.5474 + }, + { + "start": 35044.36, + "end": 35045.34, + "probability": 0.7353 + }, + { + "start": 35047.44, + "end": 35050.12, + "probability": 0.0832 + }, + { + "start": 35064.1, + "end": 35065.75, + "probability": 0.0216 + }, + { + "start": 35067.12, + "end": 35067.88, + "probability": 0.0119 + }, + { + "start": 35068.02, + "end": 35070.52, + "probability": 0.6037 + }, + { + "start": 35070.64, + "end": 35071.46, + "probability": 0.7749 + }, + { + "start": 35072.28, + "end": 35074.04, + "probability": 0.5001 + }, + { + "start": 35074.04, + "end": 35074.04, + "probability": 0.0673 + }, + { + "start": 35074.04, + "end": 35074.04, + "probability": 0.2203 + }, + { + "start": 35074.04, + "end": 35074.04, + "probability": 0.1411 + }, + { + "start": 35074.04, + "end": 35074.28, + "probability": 0.1527 + }, + { + "start": 35075.24, + "end": 35076.7, + "probability": 0.4562 + }, + { + "start": 35077.58, + "end": 35078.64, + "probability": 0.5051 + }, + { + "start": 35080.36, + "end": 35082.24, + "probability": 0.6682 + }, + { + "start": 35082.78, + "end": 35085.06, + "probability": 0.6339 + }, + { + "start": 35085.12, + "end": 35087.06, + "probability": 0.8102 + }, + { + "start": 35087.54, + "end": 35089.52, + "probability": 0.2869 + }, + { + "start": 35090.24, + "end": 35090.96, + "probability": 0.7352 + }, + { + "start": 35091.0, + "end": 35092.74, + "probability": 0.9844 + }, + { + "start": 35093.26, + "end": 35094.06, + "probability": 0.8621 + }, + { + "start": 35111.46, + "end": 35112.28, + "probability": 0.5204 + }, + { + "start": 35112.9, + "end": 35116.1, + "probability": 0.3561 + }, + { + "start": 35116.22, + "end": 35117.6, + "probability": 0.7227 + }, + { + "start": 35117.68, + "end": 35119.58, + "probability": 0.8694 + }, + { + "start": 35120.74, + "end": 35121.89, + "probability": 0.8163 + }, + { + "start": 35124.11, + "end": 35127.4, + "probability": 0.95 + }, + { + "start": 35128.74, + "end": 35133.19, + "probability": 0.7843 + }, + { + "start": 35134.6, + "end": 35135.88, + "probability": 0.7972 + }, + { + "start": 35136.98, + "end": 35138.0, + "probability": 0.5651 + }, + { + "start": 35140.8, + "end": 35142.94, + "probability": 0.9624 + }, + { + "start": 35143.58, + "end": 35146.2, + "probability": 0.743 + }, + { + "start": 35146.2, + "end": 35150.88, + "probability": 0.9701 + }, + { + "start": 35151.46, + "end": 35153.88, + "probability": 0.774 + }, + { + "start": 35153.88, + "end": 35157.36, + "probability": 0.8661 + }, + { + "start": 35157.42, + "end": 35158.66, + "probability": 0.9786 + }, + { + "start": 35159.24, + "end": 35161.16, + "probability": 0.9607 + }, + { + "start": 35161.86, + "end": 35162.72, + "probability": 0.9468 + }, + { + "start": 35162.9, + "end": 35163.64, + "probability": 0.8813 + }, + { + "start": 35163.72, + "end": 35164.12, + "probability": 0.2897 + }, + { + "start": 35164.22, + "end": 35168.32, + "probability": 0.9287 + }, + { + "start": 35168.32, + "end": 35170.7, + "probability": 0.9378 + }, + { + "start": 35171.36, + "end": 35173.28, + "probability": 0.8119 + }, + { + "start": 35173.44, + "end": 35174.46, + "probability": 0.779 + }, + { + "start": 35175.64, + "end": 35179.02, + "probability": 0.8808 + }, + { + "start": 35179.02, + "end": 35184.24, + "probability": 0.8512 + }, + { + "start": 35185.16, + "end": 35188.02, + "probability": 0.9953 + }, + { + "start": 35193.5, + "end": 35194.87, + "probability": 0.5616 + }, + { + "start": 35194.88, + "end": 35196.16, + "probability": 0.9675 + }, + { + "start": 35197.0, + "end": 35197.42, + "probability": 0.8263 + }, + { + "start": 35197.44, + "end": 35200.18, + "probability": 0.9333 + }, + { + "start": 35200.98, + "end": 35201.93, + "probability": 0.9831 + }, + { + "start": 35202.52, + "end": 35206.06, + "probability": 0.9948 + }, + { + "start": 35206.18, + "end": 35206.96, + "probability": 0.4481 + }, + { + "start": 35207.68, + "end": 35209.82, + "probability": 0.7406 + }, + { + "start": 35214.14, + "end": 35214.28, + "probability": 0.0024 + }, + { + "start": 35217.48, + "end": 35219.68, + "probability": 0.4434 + }, + { + "start": 35220.2, + "end": 35222.44, + "probability": 0.5684 + }, + { + "start": 35227.0, + "end": 35228.96, + "probability": 0.7745 + }, + { + "start": 35229.8, + "end": 35232.66, + "probability": 0.4988 + }, + { + "start": 35233.3, + "end": 35235.12, + "probability": 0.7694 + }, + { + "start": 35235.36, + "end": 35238.14, + "probability": 0.667 + }, + { + "start": 35238.22, + "end": 35240.28, + "probability": 0.8116 + }, + { + "start": 35240.78, + "end": 35242.46, + "probability": 0.5549 + }, + { + "start": 35242.72, + "end": 35244.26, + "probability": 0.9067 + }, + { + "start": 35255.86, + "end": 35257.9, + "probability": 0.8812 + }, + { + "start": 35258.26, + "end": 35262.36, + "probability": 0.5106 + }, + { + "start": 35263.14, + "end": 35265.76, + "probability": 0.8757 + }, + { + "start": 35265.82, + "end": 35266.76, + "probability": 0.854 + }, + { + "start": 35266.84, + "end": 35268.12, + "probability": 0.9912 + }, + { + "start": 35270.34, + "end": 35274.5, + "probability": 0.9728 + }, + { + "start": 35275.88, + "end": 35278.84, + "probability": 0.9717 + }, + { + "start": 35279.64, + "end": 35283.04, + "probability": 0.9941 + }, + { + "start": 35284.94, + "end": 35288.62, + "probability": 0.9985 + }, + { + "start": 35290.74, + "end": 35296.02, + "probability": 0.9981 + }, + { + "start": 35296.12, + "end": 35298.16, + "probability": 0.9891 + }, + { + "start": 35298.9, + "end": 35300.88, + "probability": 0.8888 + }, + { + "start": 35301.5, + "end": 35302.54, + "probability": 0.9699 + }, + { + "start": 35304.84, + "end": 35308.78, + "probability": 0.9903 + }, + { + "start": 35309.38, + "end": 35310.0, + "probability": 0.7401 + }, + { + "start": 35310.24, + "end": 35313.76, + "probability": 0.9958 + }, + { + "start": 35314.36, + "end": 35315.92, + "probability": 0.7094 + }, + { + "start": 35317.1, + "end": 35322.46, + "probability": 0.9741 + }, + { + "start": 35323.6, + "end": 35328.08, + "probability": 0.9961 + }, + { + "start": 35328.44, + "end": 35331.88, + "probability": 0.9885 + }, + { + "start": 35333.98, + "end": 35337.02, + "probability": 0.9546 + }, + { + "start": 35338.14, + "end": 35339.12, + "probability": 0.7465 + }, + { + "start": 35339.86, + "end": 35342.2, + "probability": 0.5865 + }, + { + "start": 35343.2, + "end": 35347.3, + "probability": 0.6617 + }, + { + "start": 35347.6, + "end": 35348.44, + "probability": 0.9432 + }, + { + "start": 35350.04, + "end": 35351.02, + "probability": 0.9775 + }, + { + "start": 35351.16, + "end": 35354.08, + "probability": 0.9518 + }, + { + "start": 35354.14, + "end": 35357.28, + "probability": 0.8872 + }, + { + "start": 35357.4, + "end": 35361.74, + "probability": 0.9937 + }, + { + "start": 35361.82, + "end": 35362.46, + "probability": 0.5963 + }, + { + "start": 35363.0, + "end": 35364.51, + "probability": 0.9971 + }, + { + "start": 35365.1, + "end": 35367.7, + "probability": 0.9114 + }, + { + "start": 35368.08, + "end": 35369.9, + "probability": 0.9681 + }, + { + "start": 35371.12, + "end": 35372.2, + "probability": 0.9438 + }, + { + "start": 35372.36, + "end": 35373.62, + "probability": 0.8198 + }, + { + "start": 35373.7, + "end": 35374.66, + "probability": 0.9917 + }, + { + "start": 35375.34, + "end": 35378.9, + "probability": 0.9696 + }, + { + "start": 35379.84, + "end": 35381.78, + "probability": 0.9226 + }, + { + "start": 35381.88, + "end": 35386.08, + "probability": 0.8322 + }, + { + "start": 35386.08, + "end": 35390.5, + "probability": 0.8584 + }, + { + "start": 35391.02, + "end": 35392.02, + "probability": 0.7026 + }, + { + "start": 35392.5, + "end": 35396.42, + "probability": 0.9505 + }, + { + "start": 35396.94, + "end": 35402.66, + "probability": 0.9703 + }, + { + "start": 35402.76, + "end": 35403.6, + "probability": 0.5223 + }, + { + "start": 35403.66, + "end": 35404.64, + "probability": 0.6755 + }, + { + "start": 35404.72, + "end": 35405.56, + "probability": 0.933 + }, + { + "start": 35405.64, + "end": 35405.88, + "probability": 0.8098 + }, + { + "start": 35406.26, + "end": 35408.74, + "probability": 0.8369 + }, + { + "start": 35409.12, + "end": 35409.36, + "probability": 0.2892 + }, + { + "start": 35409.38, + "end": 35409.64, + "probability": 0.7959 + }, + { + "start": 35409.74, + "end": 35413.91, + "probability": 0.9784 + }, + { + "start": 35414.78, + "end": 35415.02, + "probability": 0.0006 + }, + { + "start": 35415.98, + "end": 35418.96, + "probability": 0.171 + }, + { + "start": 35418.96, + "end": 35419.5, + "probability": 0.3592 + }, + { + "start": 35421.0, + "end": 35422.38, + "probability": 0.9167 + }, + { + "start": 35423.36, + "end": 35426.51, + "probability": 0.8403 + }, + { + "start": 35426.73, + "end": 35431.16, + "probability": 0.5287 + }, + { + "start": 35431.22, + "end": 35432.82, + "probability": 0.5466 + }, + { + "start": 35432.94, + "end": 35434.44, + "probability": 0.4386 + }, + { + "start": 35434.86, + "end": 35435.56, + "probability": 0.7963 + }, + { + "start": 35435.62, + "end": 35436.02, + "probability": 0.3166 + }, + { + "start": 35436.12, + "end": 35436.76, + "probability": 0.8524 + }, + { + "start": 35437.2, + "end": 35437.9, + "probability": 0.8182 + }, + { + "start": 35457.31, + "end": 35462.2, + "probability": 0.1704 + }, + { + "start": 35464.66, + "end": 35467.02, + "probability": 0.0871 + }, + { + "start": 35472.36, + "end": 35472.52, + "probability": 0.0 + }, + { + "start": 35477.52, + "end": 35483.86, + "probability": 0.4144 + }, + { + "start": 35484.38, + "end": 35485.82, + "probability": 0.0909 + }, + { + "start": 35486.86, + "end": 35488.32, + "probability": 0.5473 + }, + { + "start": 35488.4, + "end": 35489.18, + "probability": 0.1494 + }, + { + "start": 35489.38, + "end": 35490.16, + "probability": 0.1945 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.0, + "end": 35531.0, + "probability": 0.0 + }, + { + "start": 35531.1, + "end": 35531.1, + "probability": 0.029 + }, + { + "start": 35531.1, + "end": 35536.92, + "probability": 0.984 + }, + { + "start": 35537.16, + "end": 35543.8, + "probability": 0.9458 + }, + { + "start": 35543.8, + "end": 35548.38, + "probability": 0.9002 + }, + { + "start": 35548.38, + "end": 35551.6, + "probability": 0.9957 + }, + { + "start": 35552.06, + "end": 35554.66, + "probability": 0.9788 + }, + { + "start": 35556.12, + "end": 35558.36, + "probability": 0.8328 + }, + { + "start": 35558.56, + "end": 35564.06, + "probability": 0.9833 + }, + { + "start": 35564.84, + "end": 35571.24, + "probability": 0.9873 + }, + { + "start": 35571.36, + "end": 35575.42, + "probability": 0.9935 + }, + { + "start": 35575.42, + "end": 35579.32, + "probability": 0.9948 + }, + { + "start": 35579.84, + "end": 35580.34, + "probability": 0.6183 + }, + { + "start": 35580.42, + "end": 35581.16, + "probability": 0.7454 + }, + { + "start": 35581.56, + "end": 35583.18, + "probability": 0.9659 + }, + { + "start": 35583.44, + "end": 35587.02, + "probability": 0.9701 + }, + { + "start": 35587.62, + "end": 35591.7, + "probability": 0.9272 + }, + { + "start": 35591.8, + "end": 35592.7, + "probability": 0.9827 + }, + { + "start": 35594.43, + "end": 35595.6, + "probability": 0.2365 + }, + { + "start": 35595.6, + "end": 35596.28, + "probability": 0.6291 + }, + { + "start": 35596.35, + "end": 35599.34, + "probability": 0.9987 + }, + { + "start": 35599.58, + "end": 35603.46, + "probability": 0.9888 + }, + { + "start": 35603.72, + "end": 35605.86, + "probability": 0.7328 + }, + { + "start": 35608.56, + "end": 35608.58, + "probability": 0.1247 + }, + { + "start": 35608.58, + "end": 35609.8, + "probability": 0.6378 + }, + { + "start": 35610.22, + "end": 35613.79, + "probability": 0.9657 + }, + { + "start": 35614.46, + "end": 35617.4, + "probability": 0.9972 + }, + { + "start": 35618.08, + "end": 35621.3, + "probability": 0.9849 + }, + { + "start": 35621.66, + "end": 35623.04, + "probability": 0.9429 + }, + { + "start": 35623.58, + "end": 35628.64, + "probability": 0.9946 + }, + { + "start": 35629.34, + "end": 35629.74, + "probability": 0.7268 + }, + { + "start": 35629.82, + "end": 35630.44, + "probability": 0.778 + }, + { + "start": 35630.64, + "end": 35631.87, + "probability": 0.5864 + }, + { + "start": 35632.56, + "end": 35633.44, + "probability": 0.7217 + }, + { + "start": 35633.56, + "end": 35635.74, + "probability": 0.979 + }, + { + "start": 35635.74, + "end": 35637.96, + "probability": 0.6161 + }, + { + "start": 35638.38, + "end": 35642.46, + "probability": 0.781 + }, + { + "start": 35643.06, + "end": 35643.46, + "probability": 0.232 + }, + { + "start": 35644.2, + "end": 35646.18, + "probability": 0.7821 + }, + { + "start": 35647.08, + "end": 35650.66, + "probability": 0.9873 + }, + { + "start": 35651.44, + "end": 35653.32, + "probability": 0.7889 + }, + { + "start": 35653.68, + "end": 35656.32, + "probability": 0.9308 + }, + { + "start": 35656.32, + "end": 35660.82, + "probability": 0.572 + }, + { + "start": 35661.5, + "end": 35664.38, + "probability": 0.9966 + }, + { + "start": 35665.24, + "end": 35667.9, + "probability": 0.5494 + }, + { + "start": 35668.49, + "end": 35669.38, + "probability": 0.3672 + }, + { + "start": 35669.38, + "end": 35669.64, + "probability": 0.4043 + }, + { + "start": 35675.4, + "end": 35675.4, + "probability": 0.0226 + }, + { + "start": 35675.4, + "end": 35675.66, + "probability": 0.0331 + }, + { + "start": 35688.82, + "end": 35692.5, + "probability": 0.0103 + }, + { + "start": 35692.76, + "end": 35692.76, + "probability": 0.0332 + }, + { + "start": 35692.76, + "end": 35692.76, + "probability": 0.6186 + }, + { + "start": 35692.76, + "end": 35692.76, + "probability": 0.8008 + }, + { + "start": 35692.76, + "end": 35694.8, + "probability": 0.5429 + }, + { + "start": 35694.86, + "end": 35695.66, + "probability": 0.654 + }, + { + "start": 35695.76, + "end": 35698.76, + "probability": 0.7907 + }, + { + "start": 35698.76, + "end": 35702.06, + "probability": 0.6654 + }, + { + "start": 35702.2, + "end": 35703.3, + "probability": 0.8112 + }, + { + "start": 35704.16, + "end": 35704.76, + "probability": 0.8427 + }, + { + "start": 35705.34, + "end": 35709.34, + "probability": 0.6341 + }, + { + "start": 35711.06, + "end": 35713.86, + "probability": 0.8022 + }, + { + "start": 35714.6, + "end": 35717.5, + "probability": 0.6566 + }, + { + "start": 35717.84, + "end": 35719.52, + "probability": 0.9471 + }, + { + "start": 35720.2, + "end": 35724.28, + "probability": 0.8434 + }, + { + "start": 35724.64, + "end": 35726.18, + "probability": 0.9468 + }, + { + "start": 35727.94, + "end": 35727.94, + "probability": 0.1527 + }, + { + "start": 35727.94, + "end": 35727.94, + "probability": 0.0067 + }, + { + "start": 35728.46, + "end": 35730.88, + "probability": 0.2282 + }, + { + "start": 35730.88, + "end": 35732.86, + "probability": 0.7383 + }, + { + "start": 35734.52, + "end": 35735.28, + "probability": 0.5864 + }, + { + "start": 35735.5, + "end": 35737.1, + "probability": 0.7642 + }, + { + "start": 35737.24, + "end": 35741.28, + "probability": 0.7566 + }, + { + "start": 35741.28, + "end": 35743.82, + "probability": 0.9986 + }, + { + "start": 35743.98, + "end": 35744.98, + "probability": 0.6311 + }, + { + "start": 35745.1, + "end": 35748.18, + "probability": 0.9903 + }, + { + "start": 35748.28, + "end": 35750.78, + "probability": 0.9944 + }, + { + "start": 35750.78, + "end": 35752.86, + "probability": 0.9965 + }, + { + "start": 35753.46, + "end": 35754.04, + "probability": 0.8389 + }, + { + "start": 35754.24, + "end": 35755.64, + "probability": 0.9324 + }, + { + "start": 35755.8, + "end": 35757.54, + "probability": 0.8609 + }, + { + "start": 35758.3, + "end": 35761.18, + "probability": 0.8876 + }, + { + "start": 35761.18, + "end": 35763.94, + "probability": 0.5861 + }, + { + "start": 35764.04, + "end": 35764.9, + "probability": 0.6868 + }, + { + "start": 35765.18, + "end": 35768.32, + "probability": 0.995 + }, + { + "start": 35768.32, + "end": 35772.48, + "probability": 0.7708 + }, + { + "start": 35773.0, + "end": 35775.78, + "probability": 0.7917 + }, + { + "start": 35776.28, + "end": 35778.48, + "probability": 0.2835 + }, + { + "start": 35778.68, + "end": 35779.86, + "probability": 0.7803 + }, + { + "start": 35780.04, + "end": 35781.02, + "probability": 0.9548 + }, + { + "start": 35781.54, + "end": 35785.52, + "probability": 0.9821 + }, + { + "start": 35786.02, + "end": 35787.58, + "probability": 0.7904 + }, + { + "start": 35787.84, + "end": 35788.12, + "probability": 0.1765 + }, + { + "start": 35788.52, + "end": 35791.56, + "probability": 0.9518 + }, + { + "start": 35792.06, + "end": 35794.94, + "probability": 0.8842 + }, + { + "start": 35795.34, + "end": 35798.38, + "probability": 0.8818 + }, + { + "start": 35798.76, + "end": 35801.48, + "probability": 0.9961 + }, + { + "start": 35801.92, + "end": 35804.18, + "probability": 0.9684 + }, + { + "start": 35804.58, + "end": 35807.86, + "probability": 0.9923 + }, + { + "start": 35808.0, + "end": 35811.94, + "probability": 0.9834 + }, + { + "start": 35812.4, + "end": 35813.0, + "probability": 0.7837 + }, + { + "start": 35813.16, + "end": 35818.16, + "probability": 0.964 + }, + { + "start": 35818.6, + "end": 35819.16, + "probability": 0.6298 + }, + { + "start": 35819.3, + "end": 35822.8, + "probability": 0.9533 + }, + { + "start": 35822.8, + "end": 35827.82, + "probability": 0.9418 + }, + { + "start": 35828.16, + "end": 35831.1, + "probability": 0.9238 + }, + { + "start": 35831.72, + "end": 35833.5, + "probability": 0.8747 + }, + { + "start": 35834.06, + "end": 35837.1, + "probability": 0.8643 + }, + { + "start": 35837.84, + "end": 35839.4, + "probability": 0.155 + }, + { + "start": 35839.54, + "end": 35840.0, + "probability": 0.8231 + }, + { + "start": 35840.38, + "end": 35842.74, + "probability": 0.877 + }, + { + "start": 35842.8, + "end": 35846.54, + "probability": 0.8175 + }, + { + "start": 35848.86, + "end": 35852.46, + "probability": 0.9565 + }, + { + "start": 35852.7, + "end": 35856.28, + "probability": 0.7975 + }, + { + "start": 35857.0, + "end": 35860.7, + "probability": 0.7266 + }, + { + "start": 35861.08, + "end": 35861.84, + "probability": 0.7637 + }, + { + "start": 35869.52, + "end": 35869.54, + "probability": 0.0201 + }, + { + "start": 35869.54, + "end": 35869.7, + "probability": 0.0588 + }, + { + "start": 35879.24, + "end": 35881.64, + "probability": 0.0801 + }, + { + "start": 35885.18, + "end": 35890.8, + "probability": 0.6051 + }, + { + "start": 35893.02, + "end": 35893.32, + "probability": 0.0558 + }, + { + "start": 35893.32, + "end": 35893.92, + "probability": 0.0272 + } + ], + "segments_count": 12116, + "words_count": 62024, + "avg_words_per_segment": 5.1192, + "avg_segment_duration": 2.2379, + "avg_words_per_minute": 103.196, + "plenum_id": "18198", + "duration": 36061.88, + "title": null, + "plenum_date": "2012-01-09" +} \ No newline at end of file