diff --git "a/1986/metadata.json" "b/1986/metadata.json" new file mode 100644--- /dev/null +++ "b/1986/metadata.json" @@ -0,0 +1,26322 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "1986", + "quality_score": 0.7622, + "per_segment_quality_scores": [ + { + "start": 30.34, + "end": 31.88, + "probability": 0.3221 + }, + { + "start": 32.58, + "end": 33.2, + "probability": 0.7244 + }, + { + "start": 34.42, + "end": 36.74, + "probability": 0.4366 + }, + { + "start": 37.6, + "end": 40.26, + "probability": 0.8948 + }, + { + "start": 40.98, + "end": 43.5, + "probability": 0.9884 + }, + { + "start": 45.08, + "end": 47.64, + "probability": 0.8806 + }, + { + "start": 47.98, + "end": 48.72, + "probability": 0.949 + }, + { + "start": 49.42, + "end": 50.7, + "probability": 0.792 + }, + { + "start": 50.8, + "end": 52.25, + "probability": 0.9928 + }, + { + "start": 52.68, + "end": 53.46, + "probability": 0.7002 + }, + { + "start": 54.24, + "end": 56.84, + "probability": 0.9534 + }, + { + "start": 58.82, + "end": 59.34, + "probability": 0.9624 + }, + { + "start": 59.34, + "end": 61.22, + "probability": 0.4287 + }, + { + "start": 61.22, + "end": 64.3, + "probability": 0.8294 + }, + { + "start": 64.46, + "end": 66.12, + "probability": 0.1629 + }, + { + "start": 66.24, + "end": 69.28, + "probability": 0.6695 + }, + { + "start": 70.2, + "end": 74.94, + "probability": 0.0638 + }, + { + "start": 75.44, + "end": 76.04, + "probability": 0.1238 + }, + { + "start": 79.38, + "end": 80.88, + "probability": 0.1046 + }, + { + "start": 81.02, + "end": 82.92, + "probability": 0.0287 + }, + { + "start": 83.68, + "end": 85.34, + "probability": 0.0235 + }, + { + "start": 85.34, + "end": 85.4, + "probability": 0.1632 + }, + { + "start": 86.7, + "end": 90.12, + "probability": 0.0432 + }, + { + "start": 90.98, + "end": 91.24, + "probability": 0.0151 + }, + { + "start": 92.28, + "end": 92.38, + "probability": 0.0629 + }, + { + "start": 93.71, + "end": 95.68, + "probability": 0.0303 + }, + { + "start": 99.3, + "end": 105.12, + "probability": 0.0366 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.0, + "end": 121.0, + "probability": 0.0 + }, + { + "start": 121.58, + "end": 123.22, + "probability": 0.0226 + }, + { + "start": 123.22, + "end": 127.68, + "probability": 0.5157 + }, + { + "start": 128.74, + "end": 131.3, + "probability": 0.454 + }, + { + "start": 132.34, + "end": 137.24, + "probability": 0.9544 + }, + { + "start": 137.64, + "end": 143.98, + "probability": 0.9888 + }, + { + "start": 144.6, + "end": 145.0, + "probability": 0.076 + }, + { + "start": 145.0, + "end": 145.06, + "probability": 0.2921 + }, + { + "start": 145.22, + "end": 146.66, + "probability": 0.873 + }, + { + "start": 147.48, + "end": 151.4, + "probability": 0.8872 + }, + { + "start": 152.8, + "end": 155.48, + "probability": 0.9058 + }, + { + "start": 156.18, + "end": 158.1, + "probability": 0.7744 + }, + { + "start": 159.4, + "end": 162.96, + "probability": 0.9354 + }, + { + "start": 164.28, + "end": 168.02, + "probability": 0.7987 + }, + { + "start": 168.32, + "end": 169.96, + "probability": 0.923 + }, + { + "start": 169.96, + "end": 172.18, + "probability": 0.915 + }, + { + "start": 172.2, + "end": 173.66, + "probability": 0.4211 + }, + { + "start": 174.22, + "end": 176.68, + "probability": 0.9899 + }, + { + "start": 176.98, + "end": 178.44, + "probability": 0.9824 + }, + { + "start": 179.44, + "end": 179.76, + "probability": 0.9218 + }, + { + "start": 179.82, + "end": 182.04, + "probability": 0.8064 + }, + { + "start": 184.38, + "end": 192.12, + "probability": 0.9921 + }, + { + "start": 192.49, + "end": 197.2, + "probability": 0.8707 + }, + { + "start": 199.14, + "end": 201.44, + "probability": 0.9207 + }, + { + "start": 203.18, + "end": 205.4, + "probability": 0.6263 + }, + { + "start": 207.58, + "end": 207.94, + "probability": 0.6106 + }, + { + "start": 208.02, + "end": 208.56, + "probability": 0.6964 + }, + { + "start": 208.7, + "end": 210.12, + "probability": 0.9956 + }, + { + "start": 210.34, + "end": 211.0, + "probability": 0.9604 + }, + { + "start": 214.36, + "end": 217.92, + "probability": 0.9906 + }, + { + "start": 220.22, + "end": 221.12, + "probability": 0.9802 + }, + { + "start": 221.68, + "end": 222.0, + "probability": 0.9384 + }, + { + "start": 223.98, + "end": 224.98, + "probability": 0.9611 + }, + { + "start": 226.62, + "end": 228.84, + "probability": 0.9922 + }, + { + "start": 229.78, + "end": 231.19, + "probability": 0.8684 + }, + { + "start": 232.28, + "end": 234.92, + "probability": 0.8649 + }, + { + "start": 237.82, + "end": 240.94, + "probability": 0.9062 + }, + { + "start": 241.62, + "end": 243.54, + "probability": 0.7956 + }, + { + "start": 245.88, + "end": 247.6, + "probability": 0.8864 + }, + { + "start": 250.0, + "end": 250.76, + "probability": 0.7425 + }, + { + "start": 254.76, + "end": 254.76, + "probability": 0.5347 + }, + { + "start": 258.2, + "end": 259.2, + "probability": 0.9444 + }, + { + "start": 260.02, + "end": 260.6, + "probability": 0.8705 + }, + { + "start": 262.08, + "end": 262.74, + "probability": 0.9638 + }, + { + "start": 263.38, + "end": 266.46, + "probability": 0.983 + }, + { + "start": 268.04, + "end": 269.9, + "probability": 0.7702 + }, + { + "start": 270.44, + "end": 272.5, + "probability": 0.9008 + }, + { + "start": 272.64, + "end": 273.44, + "probability": 0.9589 + }, + { + "start": 275.38, + "end": 278.9, + "probability": 0.7722 + }, + { + "start": 280.7, + "end": 283.18, + "probability": 0.9551 + }, + { + "start": 285.15, + "end": 286.93, + "probability": 0.9604 + }, + { + "start": 287.52, + "end": 288.58, + "probability": 0.61 + }, + { + "start": 290.66, + "end": 293.51, + "probability": 0.988 + }, + { + "start": 294.6, + "end": 294.78, + "probability": 0.84 + }, + { + "start": 297.48, + "end": 298.66, + "probability": 0.814 + }, + { + "start": 299.68, + "end": 300.98, + "probability": 0.8465 + }, + { + "start": 301.6, + "end": 304.38, + "probability": 0.651 + }, + { + "start": 306.54, + "end": 310.14, + "probability": 0.9112 + }, + { + "start": 312.66, + "end": 314.4, + "probability": 0.6769 + }, + { + "start": 315.08, + "end": 317.32, + "probability": 0.7615 + }, + { + "start": 318.72, + "end": 321.28, + "probability": 0.9808 + }, + { + "start": 321.48, + "end": 323.49, + "probability": 0.9522 + }, + { + "start": 324.6, + "end": 325.06, + "probability": 0.8735 + }, + { + "start": 325.1, + "end": 327.05, + "probability": 0.9606 + }, + { + "start": 327.8, + "end": 329.02, + "probability": 0.9283 + }, + { + "start": 329.18, + "end": 330.48, + "probability": 0.8944 + }, + { + "start": 330.94, + "end": 332.36, + "probability": 0.9082 + }, + { + "start": 334.52, + "end": 336.54, + "probability": 0.8517 + }, + { + "start": 336.92, + "end": 339.04, + "probability": 0.9547 + }, + { + "start": 340.02, + "end": 344.04, + "probability": 0.9889 + }, + { + "start": 344.8, + "end": 349.4, + "probability": 0.9521 + }, + { + "start": 350.42, + "end": 351.26, + "probability": 0.9868 + }, + { + "start": 352.88, + "end": 354.42, + "probability": 0.8302 + }, + { + "start": 356.04, + "end": 357.16, + "probability": 0.9977 + }, + { + "start": 357.88, + "end": 358.32, + "probability": 0.9045 + }, + { + "start": 360.4, + "end": 361.3, + "probability": 0.6529 + }, + { + "start": 361.84, + "end": 363.34, + "probability": 0.8252 + }, + { + "start": 368.66, + "end": 370.3, + "probability": 0.4395 + }, + { + "start": 371.46, + "end": 372.38, + "probability": 0.8459 + }, + { + "start": 373.14, + "end": 373.9, + "probability": 0.8994 + }, + { + "start": 376.02, + "end": 378.34, + "probability": 0.9125 + }, + { + "start": 379.24, + "end": 385.04, + "probability": 0.8984 + }, + { + "start": 386.4, + "end": 389.78, + "probability": 0.9194 + }, + { + "start": 390.5, + "end": 391.86, + "probability": 0.979 + }, + { + "start": 393.04, + "end": 396.42, + "probability": 0.9897 + }, + { + "start": 396.98, + "end": 398.23, + "probability": 0.913 + }, + { + "start": 398.64, + "end": 401.04, + "probability": 0.9247 + }, + { + "start": 401.46, + "end": 402.01, + "probability": 0.7927 + }, + { + "start": 404.92, + "end": 406.68, + "probability": 0.9399 + }, + { + "start": 408.42, + "end": 410.18, + "probability": 0.826 + }, + { + "start": 411.2, + "end": 413.04, + "probability": 0.8927 + }, + { + "start": 418.66, + "end": 424.5, + "probability": 0.9747 + }, + { + "start": 424.68, + "end": 425.08, + "probability": 0.6819 + }, + { + "start": 428.04, + "end": 428.84, + "probability": 0.5516 + }, + { + "start": 429.76, + "end": 431.52, + "probability": 0.9958 + }, + { + "start": 431.7, + "end": 433.76, + "probability": 0.9331 + }, + { + "start": 433.98, + "end": 434.94, + "probability": 0.9673 + }, + { + "start": 436.0, + "end": 438.12, + "probability": 0.8874 + }, + { + "start": 439.13, + "end": 442.05, + "probability": 0.9637 + }, + { + "start": 442.48, + "end": 442.48, + "probability": 0.0207 + }, + { + "start": 442.48, + "end": 442.76, + "probability": 0.4709 + }, + { + "start": 442.92, + "end": 444.24, + "probability": 0.1617 + }, + { + "start": 444.26, + "end": 444.74, + "probability": 0.0479 + }, + { + "start": 444.74, + "end": 448.13, + "probability": 0.8716 + }, + { + "start": 448.46, + "end": 449.6, + "probability": 0.539 + }, + { + "start": 450.38, + "end": 451.24, + "probability": 0.5228 + }, + { + "start": 452.3, + "end": 453.94, + "probability": 0.672 + }, + { + "start": 454.86, + "end": 457.86, + "probability": 0.3931 + }, + { + "start": 457.86, + "end": 460.84, + "probability": 0.6308 + }, + { + "start": 461.28, + "end": 462.56, + "probability": 0.4533 + }, + { + "start": 463.18, + "end": 463.72, + "probability": 0.1205 + }, + { + "start": 463.9, + "end": 465.76, + "probability": 0.7888 + }, + { + "start": 465.78, + "end": 470.6, + "probability": 0.594 + }, + { + "start": 470.8, + "end": 474.3, + "probability": 0.7594 + }, + { + "start": 474.3, + "end": 475.96, + "probability": 0.4085 + }, + { + "start": 476.12, + "end": 476.76, + "probability": 0.9256 + }, + { + "start": 478.16, + "end": 480.26, + "probability": 0.7003 + }, + { + "start": 481.34, + "end": 483.46, + "probability": 0.7519 + }, + { + "start": 484.3, + "end": 486.76, + "probability": 0.7963 + }, + { + "start": 488.24, + "end": 490.34, + "probability": 0.8676 + }, + { + "start": 491.0, + "end": 491.88, + "probability": 0.8882 + }, + { + "start": 493.42, + "end": 495.26, + "probability": 0.8329 + }, + { + "start": 496.5, + "end": 498.2, + "probability": 0.3193 + }, + { + "start": 499.04, + "end": 499.54, + "probability": 0.8423 + }, + { + "start": 501.06, + "end": 501.88, + "probability": 0.8558 + }, + { + "start": 502.7, + "end": 504.9, + "probability": 0.9595 + }, + { + "start": 505.52, + "end": 506.38, + "probability": 0.2445 + }, + { + "start": 506.38, + "end": 506.96, + "probability": 0.6677 + }, + { + "start": 507.12, + "end": 507.92, + "probability": 0.675 + }, + { + "start": 508.64, + "end": 508.98, + "probability": 0.7756 + }, + { + "start": 509.42, + "end": 510.12, + "probability": 0.6398 + }, + { + "start": 510.73, + "end": 513.04, + "probability": 0.8618 + }, + { + "start": 515.64, + "end": 518.4, + "probability": 0.2783 + }, + { + "start": 519.52, + "end": 523.78, + "probability": 0.6345 + }, + { + "start": 524.6, + "end": 525.24, + "probability": 0.8151 + }, + { + "start": 527.12, + "end": 528.22, + "probability": 0.8252 + }, + { + "start": 529.18, + "end": 530.36, + "probability": 0.7648 + }, + { + "start": 531.6, + "end": 532.84, + "probability": 0.9874 + }, + { + "start": 533.98, + "end": 540.12, + "probability": 0.9713 + }, + { + "start": 540.92, + "end": 543.6, + "probability": 0.7238 + }, + { + "start": 545.06, + "end": 548.8, + "probability": 0.7537 + }, + { + "start": 549.92, + "end": 550.52, + "probability": 0.7776 + }, + { + "start": 551.66, + "end": 555.12, + "probability": 0.997 + }, + { + "start": 556.76, + "end": 557.54, + "probability": 0.7252 + }, + { + "start": 558.38, + "end": 559.64, + "probability": 0.9697 + }, + { + "start": 561.46, + "end": 564.44, + "probability": 0.9058 + }, + { + "start": 565.8, + "end": 568.06, + "probability": 0.8742 + }, + { + "start": 568.24, + "end": 574.32, + "probability": 0.9341 + }, + { + "start": 576.4, + "end": 580.86, + "probability": 0.9672 + }, + { + "start": 581.48, + "end": 585.26, + "probability": 0.9951 + }, + { + "start": 587.66, + "end": 588.92, + "probability": 0.6801 + }, + { + "start": 589.88, + "end": 590.52, + "probability": 0.7258 + }, + { + "start": 590.58, + "end": 591.3, + "probability": 0.8426 + }, + { + "start": 591.72, + "end": 592.24, + "probability": 0.798 + }, + { + "start": 592.76, + "end": 592.96, + "probability": 0.6281 + }, + { + "start": 593.82, + "end": 595.24, + "probability": 0.9712 + }, + { + "start": 595.38, + "end": 596.22, + "probability": 0.9429 + }, + { + "start": 596.36, + "end": 597.84, + "probability": 0.6827 + }, + { + "start": 598.38, + "end": 601.58, + "probability": 0.9683 + }, + { + "start": 602.32, + "end": 604.26, + "probability": 0.993 + }, + { + "start": 606.56, + "end": 607.58, + "probability": 0.9723 + }, + { + "start": 611.06, + "end": 613.46, + "probability": 0.9971 + }, + { + "start": 614.04, + "end": 614.66, + "probability": 0.9471 + }, + { + "start": 621.84, + "end": 623.84, + "probability": 0.468 + }, + { + "start": 625.96, + "end": 628.48, + "probability": 0.9019 + }, + { + "start": 629.4, + "end": 629.88, + "probability": 0.8706 + }, + { + "start": 632.18, + "end": 634.0, + "probability": 0.8238 + }, + { + "start": 635.9, + "end": 641.95, + "probability": 0.7491 + }, + { + "start": 642.42, + "end": 644.31, + "probability": 0.965 + }, + { + "start": 645.28, + "end": 645.78, + "probability": 0.6507 + }, + { + "start": 646.42, + "end": 647.76, + "probability": 0.6586 + }, + { + "start": 647.84, + "end": 648.82, + "probability": 0.809 + }, + { + "start": 649.02, + "end": 652.34, + "probability": 0.646 + }, + { + "start": 652.72, + "end": 655.14, + "probability": 0.9196 + }, + { + "start": 655.24, + "end": 656.32, + "probability": 0.9662 + }, + { + "start": 656.46, + "end": 657.2, + "probability": 0.1724 + }, + { + "start": 657.56, + "end": 658.15, + "probability": 0.7677 + }, + { + "start": 658.58, + "end": 659.24, + "probability": 0.6467 + }, + { + "start": 659.34, + "end": 659.76, + "probability": 0.8105 + }, + { + "start": 659.9, + "end": 660.82, + "probability": 0.5847 + }, + { + "start": 660.86, + "end": 661.16, + "probability": 0.8735 + }, + { + "start": 661.24, + "end": 662.62, + "probability": 0.9236 + }, + { + "start": 662.68, + "end": 663.38, + "probability": 0.4751 + }, + { + "start": 663.48, + "end": 664.08, + "probability": 0.8155 + }, + { + "start": 664.3, + "end": 665.3, + "probability": 0.6158 + }, + { + "start": 669.14, + "end": 670.64, + "probability": 0.7967 + }, + { + "start": 670.78, + "end": 671.76, + "probability": 0.3974 + }, + { + "start": 674.5, + "end": 676.58, + "probability": 0.8923 + }, + { + "start": 678.2, + "end": 679.34, + "probability": 0.9561 + }, + { + "start": 680.12, + "end": 681.1, + "probability": 0.8514 + }, + { + "start": 681.66, + "end": 683.64, + "probability": 0.9618 + }, + { + "start": 684.62, + "end": 688.05, + "probability": 0.9353 + }, + { + "start": 689.12, + "end": 689.44, + "probability": 0.7066 + }, + { + "start": 691.12, + "end": 695.18, + "probability": 0.6973 + }, + { + "start": 696.26, + "end": 698.8, + "probability": 0.8041 + }, + { + "start": 702.86, + "end": 706.92, + "probability": 0.7909 + }, + { + "start": 707.42, + "end": 707.94, + "probability": 0.7317 + }, + { + "start": 708.02, + "end": 708.74, + "probability": 0.9401 + }, + { + "start": 709.1, + "end": 710.5, + "probability": 0.3462 + }, + { + "start": 712.12, + "end": 715.03, + "probability": 0.995 + }, + { + "start": 716.5, + "end": 717.76, + "probability": 0.661 + }, + { + "start": 717.9, + "end": 720.16, + "probability": 0.8186 + }, + { + "start": 720.98, + "end": 723.28, + "probability": 0.9925 + }, + { + "start": 723.86, + "end": 724.46, + "probability": 0.7408 + }, + { + "start": 724.92, + "end": 725.52, + "probability": 0.7972 + }, + { + "start": 726.48, + "end": 729.3, + "probability": 0.9632 + }, + { + "start": 729.9, + "end": 730.8, + "probability": 0.9763 + }, + { + "start": 731.28, + "end": 731.76, + "probability": 0.3393 + }, + { + "start": 732.4, + "end": 732.76, + "probability": 0.4951 + }, + { + "start": 733.04, + "end": 733.1, + "probability": 0.4455 + }, + { + "start": 733.1, + "end": 735.96, + "probability": 0.7311 + }, + { + "start": 736.36, + "end": 739.28, + "probability": 0.9792 + }, + { + "start": 740.56, + "end": 743.46, + "probability": 0.6283 + }, + { + "start": 744.2, + "end": 745.14, + "probability": 0.9165 + }, + { + "start": 745.74, + "end": 747.22, + "probability": 0.654 + }, + { + "start": 747.74, + "end": 748.5, + "probability": 0.9615 + }, + { + "start": 749.02, + "end": 750.76, + "probability": 0.985 + }, + { + "start": 751.68, + "end": 754.9, + "probability": 0.6644 + }, + { + "start": 756.04, + "end": 759.32, + "probability": 0.624 + }, + { + "start": 759.48, + "end": 763.08, + "probability": 0.7201 + }, + { + "start": 765.0, + "end": 765.8, + "probability": 0.9054 + }, + { + "start": 767.68, + "end": 772.18, + "probability": 0.9906 + }, + { + "start": 772.44, + "end": 773.22, + "probability": 0.9805 + }, + { + "start": 774.28, + "end": 775.48, + "probability": 0.9982 + }, + { + "start": 778.38, + "end": 781.32, + "probability": 0.9893 + }, + { + "start": 782.46, + "end": 783.22, + "probability": 0.9974 + }, + { + "start": 783.9, + "end": 785.06, + "probability": 0.6547 + }, + { + "start": 785.42, + "end": 788.22, + "probability": 0.8953 + }, + { + "start": 788.4, + "end": 792.94, + "probability": 0.9849 + }, + { + "start": 794.48, + "end": 795.22, + "probability": 0.8387 + }, + { + "start": 795.56, + "end": 796.22, + "probability": 0.9307 + }, + { + "start": 796.26, + "end": 797.08, + "probability": 0.6694 + }, + { + "start": 797.52, + "end": 797.82, + "probability": 0.5635 + }, + { + "start": 798.56, + "end": 799.74, + "probability": 0.8231 + }, + { + "start": 800.5, + "end": 801.83, + "probability": 0.9493 + }, + { + "start": 802.48, + "end": 802.48, + "probability": 0.2938 + }, + { + "start": 802.48, + "end": 802.62, + "probability": 0.8304 + }, + { + "start": 802.66, + "end": 808.62, + "probability": 0.9263 + }, + { + "start": 808.82, + "end": 809.58, + "probability": 0.701 + }, + { + "start": 810.52, + "end": 811.16, + "probability": 0.4311 + }, + { + "start": 811.78, + "end": 811.78, + "probability": 0.1683 + }, + { + "start": 811.78, + "end": 813.92, + "probability": 0.5632 + }, + { + "start": 814.9, + "end": 816.1, + "probability": 0.7894 + }, + { + "start": 817.0, + "end": 818.42, + "probability": 0.5415 + }, + { + "start": 818.5, + "end": 819.1, + "probability": 0.9525 + }, + { + "start": 819.75, + "end": 821.34, + "probability": 0.1842 + }, + { + "start": 822.48, + "end": 824.7, + "probability": 0.6489 + }, + { + "start": 825.6, + "end": 827.76, + "probability": 0.7248 + }, + { + "start": 828.28, + "end": 830.66, + "probability": 0.916 + }, + { + "start": 831.44, + "end": 831.76, + "probability": 0.8986 + }, + { + "start": 832.48, + "end": 833.06, + "probability": 0.8614 + }, + { + "start": 833.94, + "end": 834.6, + "probability": 0.6998 + }, + { + "start": 835.54, + "end": 836.52, + "probability": 0.8965 + }, + { + "start": 837.52, + "end": 838.54, + "probability": 0.9841 + }, + { + "start": 839.6, + "end": 840.92, + "probability": 0.9665 + }, + { + "start": 842.12, + "end": 842.64, + "probability": 0.7168 + }, + { + "start": 842.98, + "end": 843.18, + "probability": 0.7316 + }, + { + "start": 843.6, + "end": 845.02, + "probability": 0.9785 + }, + { + "start": 847.52, + "end": 850.98, + "probability": 0.9676 + }, + { + "start": 851.64, + "end": 855.66, + "probability": 0.9924 + }, + { + "start": 857.3, + "end": 858.22, + "probability": 0.9538 + }, + { + "start": 858.3, + "end": 859.19, + "probability": 0.9004 + }, + { + "start": 859.48, + "end": 860.54, + "probability": 0.7656 + }, + { + "start": 861.16, + "end": 862.8, + "probability": 0.8893 + }, + { + "start": 862.86, + "end": 863.7, + "probability": 0.6623 + }, + { + "start": 863.88, + "end": 865.24, + "probability": 0.9834 + }, + { + "start": 866.37, + "end": 867.88, + "probability": 0.8302 + }, + { + "start": 867.92, + "end": 870.68, + "probability": 0.9776 + }, + { + "start": 873.88, + "end": 876.02, + "probability": 0.7713 + }, + { + "start": 876.28, + "end": 879.5, + "probability": 0.8256 + }, + { + "start": 880.48, + "end": 882.0, + "probability": 0.9375 + }, + { + "start": 882.68, + "end": 884.46, + "probability": 0.1973 + }, + { + "start": 886.54, + "end": 889.44, + "probability": 0.7743 + }, + { + "start": 889.66, + "end": 890.9, + "probability": 0.8057 + }, + { + "start": 890.98, + "end": 892.04, + "probability": 0.7499 + }, + { + "start": 892.24, + "end": 892.5, + "probability": 0.5051 + }, + { + "start": 892.86, + "end": 898.24, + "probability": 0.9727 + }, + { + "start": 898.34, + "end": 899.58, + "probability": 0.5105 + }, + { + "start": 900.02, + "end": 900.02, + "probability": 0.7107 + }, + { + "start": 900.16, + "end": 900.6, + "probability": 0.9152 + }, + { + "start": 902.9, + "end": 904.18, + "probability": 0.3475 + }, + { + "start": 906.08, + "end": 908.72, + "probability": 0.7307 + }, + { + "start": 910.02, + "end": 915.36, + "probability": 0.9612 + }, + { + "start": 915.36, + "end": 916.0, + "probability": 0.5708 + }, + { + "start": 918.6, + "end": 922.28, + "probability": 0.9872 + }, + { + "start": 922.7, + "end": 923.7, + "probability": 0.2892 + }, + { + "start": 924.68, + "end": 925.36, + "probability": 0.7113 + }, + { + "start": 925.44, + "end": 926.4, + "probability": 0.8277 + }, + { + "start": 926.46, + "end": 927.24, + "probability": 0.77 + }, + { + "start": 927.7, + "end": 928.5, + "probability": 0.8008 + }, + { + "start": 928.92, + "end": 929.3, + "probability": 0.8994 + }, + { + "start": 929.86, + "end": 930.24, + "probability": 0.9929 + }, + { + "start": 931.14, + "end": 931.7, + "probability": 0.4685 + }, + { + "start": 931.76, + "end": 932.22, + "probability": 0.9609 + }, + { + "start": 932.5, + "end": 932.68, + "probability": 0.1419 + }, + { + "start": 932.82, + "end": 934.76, + "probability": 0.9587 + }, + { + "start": 934.94, + "end": 936.62, + "probability": 0.8081 + }, + { + "start": 937.26, + "end": 940.02, + "probability": 0.9985 + }, + { + "start": 940.1, + "end": 940.62, + "probability": 0.8665 + }, + { + "start": 941.14, + "end": 942.5, + "probability": 0.8754 + }, + { + "start": 942.62, + "end": 945.28, + "probability": 0.8847 + }, + { + "start": 945.66, + "end": 948.42, + "probability": 0.3245 + }, + { + "start": 948.72, + "end": 950.42, + "probability": 0.8356 + }, + { + "start": 950.52, + "end": 951.12, + "probability": 0.8415 + }, + { + "start": 951.96, + "end": 955.46, + "probability": 0.9879 + }, + { + "start": 956.74, + "end": 957.22, + "probability": 0.899 + }, + { + "start": 957.34, + "end": 959.68, + "probability": 0.9961 + }, + { + "start": 959.9, + "end": 960.5, + "probability": 0.7065 + }, + { + "start": 962.08, + "end": 962.98, + "probability": 0.787 + }, + { + "start": 965.6, + "end": 966.08, + "probability": 0.9097 + }, + { + "start": 967.74, + "end": 970.92, + "probability": 0.9584 + }, + { + "start": 972.02, + "end": 972.44, + "probability": 0.9556 + }, + { + "start": 973.86, + "end": 974.34, + "probability": 0.9609 + }, + { + "start": 974.96, + "end": 975.41, + "probability": 0.9832 + }, + { + "start": 976.06, + "end": 977.14, + "probability": 0.4743 + }, + { + "start": 978.12, + "end": 978.96, + "probability": 0.4822 + }, + { + "start": 979.06, + "end": 979.34, + "probability": 0.732 + }, + { + "start": 979.56, + "end": 980.12, + "probability": 0.4638 + }, + { + "start": 980.34, + "end": 982.22, + "probability": 0.6906 + }, + { + "start": 984.16, + "end": 985.14, + "probability": 0.6831 + }, + { + "start": 986.74, + "end": 991.9, + "probability": 0.9797 + }, + { + "start": 995.38, + "end": 997.42, + "probability": 0.9812 + }, + { + "start": 998.54, + "end": 1003.46, + "probability": 0.9374 + }, + { + "start": 1004.74, + "end": 1006.86, + "probability": 0.3041 + }, + { + "start": 1007.04, + "end": 1012.76, + "probability": 0.4717 + }, + { + "start": 1012.84, + "end": 1013.32, + "probability": 0.6913 + }, + { + "start": 1013.54, + "end": 1013.64, + "probability": 0.4813 + }, + { + "start": 1013.64, + "end": 1014.36, + "probability": 0.5959 + }, + { + "start": 1014.48, + "end": 1014.96, + "probability": 0.7828 + }, + { + "start": 1015.02, + "end": 1018.04, + "probability": 0.9813 + }, + { + "start": 1018.82, + "end": 1019.72, + "probability": 0.5758 + }, + { + "start": 1019.96, + "end": 1019.96, + "probability": 0.0952 + }, + { + "start": 1019.96, + "end": 1020.26, + "probability": 0.3087 + }, + { + "start": 1020.26, + "end": 1020.7, + "probability": 0.6062 + }, + { + "start": 1020.92, + "end": 1021.57, + "probability": 0.0601 + }, + { + "start": 1021.74, + "end": 1021.9, + "probability": 0.8372 + }, + { + "start": 1022.0, + "end": 1022.84, + "probability": 0.8973 + }, + { + "start": 1023.22, + "end": 1025.54, + "probability": 0.9562 + }, + { + "start": 1026.24, + "end": 1027.46, + "probability": 0.2404 + }, + { + "start": 1027.66, + "end": 1028.6, + "probability": 0.3921 + }, + { + "start": 1029.22, + "end": 1029.92, + "probability": 0.2004 + }, + { + "start": 1030.06, + "end": 1031.88, + "probability": 0.2951 + }, + { + "start": 1033.24, + "end": 1033.34, + "probability": 0.0065 + }, + { + "start": 1043.24, + "end": 1047.72, + "probability": 0.9211 + }, + { + "start": 1050.58, + "end": 1051.42, + "probability": 0.8962 + }, + { + "start": 1052.36, + "end": 1053.34, + "probability": 0.8945 + }, + { + "start": 1055.72, + "end": 1058.22, + "probability": 0.9275 + }, + { + "start": 1058.82, + "end": 1061.4, + "probability": 0.7046 + }, + { + "start": 1062.9, + "end": 1066.92, + "probability": 0.8344 + }, + { + "start": 1068.2, + "end": 1070.68, + "probability": 0.9946 + }, + { + "start": 1071.24, + "end": 1073.7, + "probability": 0.8832 + }, + { + "start": 1074.24, + "end": 1076.77, + "probability": 0.9689 + }, + { + "start": 1078.08, + "end": 1078.36, + "probability": 0.849 + }, + { + "start": 1078.96, + "end": 1080.3, + "probability": 0.8794 + }, + { + "start": 1081.0, + "end": 1081.22, + "probability": 0.6242 + }, + { + "start": 1082.86, + "end": 1084.2, + "probability": 0.9697 + }, + { + "start": 1085.78, + "end": 1090.14, + "probability": 0.9742 + }, + { + "start": 1091.22, + "end": 1094.16, + "probability": 0.9705 + }, + { + "start": 1094.16, + "end": 1096.9, + "probability": 0.9508 + }, + { + "start": 1098.12, + "end": 1099.64, + "probability": 0.9028 + }, + { + "start": 1101.32, + "end": 1101.72, + "probability": 0.9579 + }, + { + "start": 1103.12, + "end": 1104.48, + "probability": 0.7895 + }, + { + "start": 1105.56, + "end": 1108.21, + "probability": 0.8442 + }, + { + "start": 1109.38, + "end": 1114.36, + "probability": 0.8604 + }, + { + "start": 1114.86, + "end": 1115.94, + "probability": 0.8178 + }, + { + "start": 1116.04, + "end": 1116.7, + "probability": 0.9391 + }, + { + "start": 1117.3, + "end": 1118.82, + "probability": 0.8231 + }, + { + "start": 1120.18, + "end": 1122.92, + "probability": 0.9272 + }, + { + "start": 1122.96, + "end": 1124.08, + "probability": 0.2064 + }, + { + "start": 1129.27, + "end": 1130.66, + "probability": 0.9731 + }, + { + "start": 1132.54, + "end": 1139.74, + "probability": 0.9784 + }, + { + "start": 1140.26, + "end": 1141.42, + "probability": 0.837 + }, + { + "start": 1141.78, + "end": 1142.72, + "probability": 0.8245 + }, + { + "start": 1143.26, + "end": 1144.42, + "probability": 0.9633 + }, + { + "start": 1145.4, + "end": 1148.02, + "probability": 0.9446 + }, + { + "start": 1148.58, + "end": 1150.54, + "probability": 0.4193 + }, + { + "start": 1151.06, + "end": 1152.02, + "probability": 0.7154 + }, + { + "start": 1152.58, + "end": 1153.6, + "probability": 0.9797 + }, + { + "start": 1154.42, + "end": 1155.09, + "probability": 0.8158 + }, + { + "start": 1156.14, + "end": 1157.53, + "probability": 0.9849 + }, + { + "start": 1160.58, + "end": 1165.56, + "probability": 0.9893 + }, + { + "start": 1166.08, + "end": 1171.44, + "probability": 0.9917 + }, + { + "start": 1172.22, + "end": 1172.81, + "probability": 0.9841 + }, + { + "start": 1173.54, + "end": 1174.52, + "probability": 0.9668 + }, + { + "start": 1175.3, + "end": 1176.2, + "probability": 0.8828 + }, + { + "start": 1176.4, + "end": 1178.06, + "probability": 0.6965 + }, + { + "start": 1178.44, + "end": 1181.59, + "probability": 0.9729 + }, + { + "start": 1182.46, + "end": 1184.16, + "probability": 0.9622 + }, + { + "start": 1185.36, + "end": 1185.6, + "probability": 0.8472 + }, + { + "start": 1186.94, + "end": 1188.68, + "probability": 0.9922 + }, + { + "start": 1189.28, + "end": 1193.18, + "probability": 0.9455 + }, + { + "start": 1194.48, + "end": 1195.59, + "probability": 0.8896 + }, + { + "start": 1195.94, + "end": 1196.44, + "probability": 0.6104 + }, + { + "start": 1197.14, + "end": 1199.9, + "probability": 0.9926 + }, + { + "start": 1200.46, + "end": 1201.84, + "probability": 0.6723 + }, + { + "start": 1202.16, + "end": 1205.7, + "probability": 0.992 + }, + { + "start": 1206.26, + "end": 1207.36, + "probability": 0.9689 + }, + { + "start": 1207.76, + "end": 1209.14, + "probability": 0.9404 + }, + { + "start": 1209.66, + "end": 1212.8, + "probability": 0.9434 + }, + { + "start": 1214.18, + "end": 1216.42, + "probability": 0.7732 + }, + { + "start": 1216.88, + "end": 1218.33, + "probability": 0.5076 + }, + { + "start": 1218.5, + "end": 1218.8, + "probability": 0.8132 + }, + { + "start": 1219.18, + "end": 1221.18, + "probability": 0.7516 + }, + { + "start": 1221.18, + "end": 1223.38, + "probability": 0.7696 + }, + { + "start": 1223.38, + "end": 1226.26, + "probability": 0.3886 + }, + { + "start": 1227.44, + "end": 1227.64, + "probability": 0.0376 + }, + { + "start": 1227.64, + "end": 1229.03, + "probability": 0.7637 + }, + { + "start": 1230.24, + "end": 1231.21, + "probability": 0.5527 + }, + { + "start": 1234.18, + "end": 1234.62, + "probability": 0.7063 + }, + { + "start": 1235.02, + "end": 1235.82, + "probability": 0.5561 + }, + { + "start": 1235.86, + "end": 1239.72, + "probability": 0.7613 + }, + { + "start": 1240.56, + "end": 1240.82, + "probability": 0.1168 + }, + { + "start": 1241.64, + "end": 1243.96, + "probability": 0.0482 + }, + { + "start": 1244.96, + "end": 1247.58, + "probability": 0.0246 + }, + { + "start": 1247.58, + "end": 1247.58, + "probability": 0.0744 + }, + { + "start": 1247.58, + "end": 1251.56, + "probability": 0.5275 + }, + { + "start": 1251.62, + "end": 1252.26, + "probability": 0.6112 + }, + { + "start": 1253.74, + "end": 1254.12, + "probability": 0.6611 + }, + { + "start": 1255.16, + "end": 1256.0, + "probability": 0.1166 + }, + { + "start": 1257.46, + "end": 1258.46, + "probability": 0.9854 + }, + { + "start": 1260.67, + "end": 1262.96, + "probability": 0.7207 + }, + { + "start": 1264.72, + "end": 1272.26, + "probability": 0.9612 + }, + { + "start": 1272.84, + "end": 1275.68, + "probability": 0.5887 + }, + { + "start": 1275.68, + "end": 1278.26, + "probability": 0.9596 + }, + { + "start": 1280.26, + "end": 1280.7, + "probability": 0.8936 + }, + { + "start": 1281.36, + "end": 1281.7, + "probability": 0.0495 + }, + { + "start": 1281.7, + "end": 1282.36, + "probability": 0.0908 + }, + { + "start": 1282.54, + "end": 1283.02, + "probability": 0.0144 + }, + { + "start": 1606.14, + "end": 1608.26, + "probability": 0.9838 + }, + { + "start": 1608.94, + "end": 1610.04, + "probability": 0.8981 + }, + { + "start": 1612.42, + "end": 1613.84, + "probability": 0.9555 + }, + { + "start": 1614.02, + "end": 1617.24, + "probability": 0.9355 + }, + { + "start": 1617.38, + "end": 1622.18, + "probability": 0.9553 + }, + { + "start": 1622.42, + "end": 1623.28, + "probability": 0.9873 + }, + { + "start": 1625.2, + "end": 1626.32, + "probability": 0.9981 + }, + { + "start": 1626.9, + "end": 1628.32, + "probability": 0.7858 + }, + { + "start": 1629.1, + "end": 1630.54, + "probability": 0.9778 + }, + { + "start": 1631.72, + "end": 1633.74, + "probability": 0.8764 + }, + { + "start": 1634.34, + "end": 1636.1, + "probability": 0.7831 + }, + { + "start": 1637.22, + "end": 1638.0, + "probability": 0.7864 + }, + { + "start": 1639.54, + "end": 1640.76, + "probability": 0.7878 + }, + { + "start": 1641.82, + "end": 1643.64, + "probability": 0.4242 + }, + { + "start": 1644.7, + "end": 1646.04, + "probability": 0.8132 + }, + { + "start": 1646.58, + "end": 1647.3, + "probability": 0.5598 + }, + { + "start": 1648.12, + "end": 1652.32, + "probability": 0.994 + }, + { + "start": 1652.58, + "end": 1655.56, + "probability": 0.6724 + }, + { + "start": 1656.58, + "end": 1656.94, + "probability": 0.7345 + }, + { + "start": 1658.2, + "end": 1661.66, + "probability": 0.7721 + }, + { + "start": 1661.82, + "end": 1662.3, + "probability": 0.6592 + }, + { + "start": 1663.2, + "end": 1664.78, + "probability": 0.883 + }, + { + "start": 1665.44, + "end": 1666.9, + "probability": 0.3592 + }, + { + "start": 1667.48, + "end": 1669.78, + "probability": 0.7673 + }, + { + "start": 1670.48, + "end": 1672.12, + "probability": 0.7518 + }, + { + "start": 1673.88, + "end": 1674.08, + "probability": 0.0828 + }, + { + "start": 1674.08, + "end": 1676.07, + "probability": 0.7082 + }, + { + "start": 1676.56, + "end": 1677.68, + "probability": 0.3722 + }, + { + "start": 1677.68, + "end": 1679.58, + "probability": 0.5466 + }, + { + "start": 1679.88, + "end": 1684.16, + "probability": 0.9262 + }, + { + "start": 1684.2, + "end": 1684.62, + "probability": 0.5295 + }, + { + "start": 1685.64, + "end": 1688.76, + "probability": 0.8849 + }, + { + "start": 1690.28, + "end": 1695.06, + "probability": 0.5211 + }, + { + "start": 1695.72, + "end": 1696.52, + "probability": 0.619 + }, + { + "start": 1697.7, + "end": 1700.7, + "probability": 0.8547 + }, + { + "start": 1702.48, + "end": 1703.54, + "probability": 0.9395 + }, + { + "start": 1704.1, + "end": 1704.69, + "probability": 0.7612 + }, + { + "start": 1706.02, + "end": 1707.84, + "probability": 0.2118 + }, + { + "start": 1709.48, + "end": 1709.48, + "probability": 0.0429 + }, + { + "start": 1709.5, + "end": 1714.02, + "probability": 0.7383 + }, + { + "start": 1714.18, + "end": 1715.4, + "probability": 0.5382 + }, + { + "start": 1715.92, + "end": 1719.12, + "probability": 0.8108 + }, + { + "start": 1719.92, + "end": 1721.6, + "probability": 0.9901 + }, + { + "start": 1722.7, + "end": 1724.66, + "probability": 0.7378 + }, + { + "start": 1725.28, + "end": 1726.7, + "probability": 0.9817 + }, + { + "start": 1727.44, + "end": 1728.52, + "probability": 0.813 + }, + { + "start": 1729.12, + "end": 1731.02, + "probability": 0.9685 + }, + { + "start": 1732.3, + "end": 1734.52, + "probability": 0.995 + }, + { + "start": 1735.64, + "end": 1736.96, + "probability": 0.9577 + }, + { + "start": 1737.5, + "end": 1739.98, + "probability": 0.7578 + }, + { + "start": 1740.54, + "end": 1742.74, + "probability": 0.8389 + }, + { + "start": 1743.56, + "end": 1750.08, + "probability": 0.8878 + }, + { + "start": 1750.08, + "end": 1750.36, + "probability": 0.3847 + }, + { + "start": 1751.18, + "end": 1751.63, + "probability": 0.9624 + }, + { + "start": 1754.02, + "end": 1755.21, + "probability": 0.786 + }, + { + "start": 1756.44, + "end": 1757.5, + "probability": 0.8187 + }, + { + "start": 1759.0, + "end": 1760.68, + "probability": 0.5021 + }, + { + "start": 1761.46, + "end": 1763.12, + "probability": 0.8083 + }, + { + "start": 1764.46, + "end": 1765.2, + "probability": 0.8572 + }, + { + "start": 1765.7, + "end": 1770.5, + "probability": 0.6478 + }, + { + "start": 1771.82, + "end": 1776.84, + "probability": 0.9449 + }, + { + "start": 1777.58, + "end": 1780.42, + "probability": 0.9971 + }, + { + "start": 1781.5, + "end": 1782.92, + "probability": 0.7244 + }, + { + "start": 1784.06, + "end": 1785.36, + "probability": 0.8417 + }, + { + "start": 1786.42, + "end": 1787.62, + "probability": 0.7351 + }, + { + "start": 1788.34, + "end": 1790.5, + "probability": 0.8876 + }, + { + "start": 1791.86, + "end": 1793.86, + "probability": 0.9897 + }, + { + "start": 1794.54, + "end": 1797.1, + "probability": 0.9301 + }, + { + "start": 1798.22, + "end": 1799.1, + "probability": 0.9218 + }, + { + "start": 1799.94, + "end": 1800.92, + "probability": 0.7359 + }, + { + "start": 1801.76, + "end": 1802.78, + "probability": 0.7898 + }, + { + "start": 1804.76, + "end": 1805.7, + "probability": 0.933 + }, + { + "start": 1806.8, + "end": 1807.52, + "probability": 0.6129 + }, + { + "start": 1808.16, + "end": 1809.51, + "probability": 0.5635 + }, + { + "start": 1810.64, + "end": 1811.4, + "probability": 0.7119 + }, + { + "start": 1812.62, + "end": 1813.1, + "probability": 0.7641 + }, + { + "start": 1814.3, + "end": 1814.86, + "probability": 0.9316 + }, + { + "start": 1815.6, + "end": 1817.32, + "probability": 0.9581 + }, + { + "start": 1817.94, + "end": 1821.0, + "probability": 0.9834 + }, + { + "start": 1822.0, + "end": 1824.06, + "probability": 0.9835 + }, + { + "start": 1824.22, + "end": 1825.22, + "probability": 0.422 + }, + { + "start": 1825.32, + "end": 1826.38, + "probability": 0.5376 + }, + { + "start": 1827.16, + "end": 1828.86, + "probability": 0.7227 + }, + { + "start": 1829.84, + "end": 1831.45, + "probability": 0.9404 + }, + { + "start": 1833.02, + "end": 1836.12, + "probability": 0.8667 + }, + { + "start": 1836.88, + "end": 1837.76, + "probability": 0.6274 + }, + { + "start": 1839.24, + "end": 1843.1, + "probability": 0.747 + }, + { + "start": 1843.54, + "end": 1843.66, + "probability": 0.0336 + }, + { + "start": 1843.84, + "end": 1844.54, + "probability": 0.5449 + }, + { + "start": 1845.1, + "end": 1849.8, + "probability": 0.7997 + }, + { + "start": 1850.42, + "end": 1851.76, + "probability": 0.7304 + }, + { + "start": 1853.36, + "end": 1854.08, + "probability": 0.2278 + }, + { + "start": 1856.28, + "end": 1858.38, + "probability": 0.9923 + }, + { + "start": 1858.84, + "end": 1859.56, + "probability": 0.8552 + }, + { + "start": 1861.72, + "end": 1862.74, + "probability": 0.8812 + }, + { + "start": 1864.12, + "end": 1867.26, + "probability": 0.8274 + }, + { + "start": 1868.7, + "end": 1872.96, + "probability": 0.9707 + }, + { + "start": 1873.3, + "end": 1878.02, + "probability": 0.9983 + }, + { + "start": 1879.88, + "end": 1880.96, + "probability": 0.9186 + }, + { + "start": 1881.7, + "end": 1884.62, + "probability": 0.9926 + }, + { + "start": 1885.94, + "end": 1888.16, + "probability": 0.9971 + }, + { + "start": 1891.08, + "end": 1891.9, + "probability": 0.5111 + }, + { + "start": 1893.98, + "end": 1895.2, + "probability": 0.4307 + }, + { + "start": 1899.06, + "end": 1901.34, + "probability": 0.3939 + }, + { + "start": 1903.18, + "end": 1904.34, + "probability": 0.6047 + }, + { + "start": 1912.36, + "end": 1915.62, + "probability": 0.3121 + }, + { + "start": 1917.22, + "end": 1918.84, + "probability": 0.9905 + }, + { + "start": 1920.1, + "end": 1922.38, + "probability": 0.7034 + }, + { + "start": 1923.92, + "end": 1926.5, + "probability": 0.9734 + }, + { + "start": 1927.66, + "end": 1928.86, + "probability": 0.8733 + }, + { + "start": 1929.7, + "end": 1931.0, + "probability": 0.9822 + }, + { + "start": 1931.94, + "end": 1933.86, + "probability": 0.9117 + }, + { + "start": 1935.52, + "end": 1936.6, + "probability": 0.9135 + }, + { + "start": 1938.54, + "end": 1941.0, + "probability": 0.9626 + }, + { + "start": 1941.64, + "end": 1942.78, + "probability": 0.9741 + }, + { + "start": 1942.92, + "end": 1943.74, + "probability": 0.7885 + }, + { + "start": 1944.22, + "end": 1945.0, + "probability": 0.5426 + }, + { + "start": 1945.2, + "end": 1946.42, + "probability": 0.3684 + }, + { + "start": 1946.74, + "end": 1948.52, + "probability": 0.8147 + }, + { + "start": 1949.04, + "end": 1951.06, + "probability": 0.8944 + }, + { + "start": 1952.44, + "end": 1953.9, + "probability": 0.8757 + }, + { + "start": 1954.02, + "end": 1954.6, + "probability": 0.9635 + }, + { + "start": 1955.2, + "end": 1955.88, + "probability": 0.9625 + }, + { + "start": 1957.0, + "end": 1958.7, + "probability": 0.2513 + }, + { + "start": 1959.1, + "end": 1959.52, + "probability": 0.2854 + }, + { + "start": 1959.68, + "end": 1961.94, + "probability": 0.9676 + }, + { + "start": 1963.3, + "end": 1964.12, + "probability": 0.8149 + }, + { + "start": 1964.94, + "end": 1967.26, + "probability": 0.7251 + }, + { + "start": 1968.0, + "end": 1969.26, + "probability": 0.8455 + }, + { + "start": 1969.58, + "end": 1970.76, + "probability": 0.9604 + }, + { + "start": 1973.64, + "end": 1976.52, + "probability": 0.7799 + }, + { + "start": 1978.24, + "end": 1980.4, + "probability": 0.9369 + }, + { + "start": 1980.4, + "end": 1984.04, + "probability": 0.9153 + }, + { + "start": 1985.04, + "end": 1986.39, + "probability": 0.9797 + }, + { + "start": 1987.76, + "end": 1989.04, + "probability": 0.6387 + }, + { + "start": 1991.04, + "end": 1992.38, + "probability": 0.9082 + }, + { + "start": 1993.62, + "end": 1996.92, + "probability": 0.8167 + }, + { + "start": 1997.58, + "end": 1998.04, + "probability": 0.6889 + }, + { + "start": 1999.58, + "end": 2003.54, + "probability": 0.6775 + }, + { + "start": 2003.82, + "end": 2004.04, + "probability": 0.5626 + }, + { + "start": 2004.06, + "end": 2005.18, + "probability": 0.9707 + }, + { + "start": 2005.24, + "end": 2006.24, + "probability": 0.617 + }, + { + "start": 2006.4, + "end": 2006.58, + "probability": 0.7522 + }, + { + "start": 2007.5, + "end": 2012.74, + "probability": 0.8262 + }, + { + "start": 2014.24, + "end": 2015.48, + "probability": 0.5681 + }, + { + "start": 2016.4, + "end": 2018.24, + "probability": 0.7336 + }, + { + "start": 2018.94, + "end": 2019.6, + "probability": 0.6446 + }, + { + "start": 2020.74, + "end": 2021.18, + "probability": 0.9422 + }, + { + "start": 2022.14, + "end": 2023.26, + "probability": 0.9318 + }, + { + "start": 2023.5, + "end": 2024.76, + "probability": 0.4534 + }, + { + "start": 2024.8, + "end": 2030.7, + "probability": 0.8455 + }, + { + "start": 2032.31, + "end": 2033.55, + "probability": 0.6639 + }, + { + "start": 2034.74, + "end": 2035.46, + "probability": 0.8429 + }, + { + "start": 2036.12, + "end": 2037.84, + "probability": 0.9954 + }, + { + "start": 2038.96, + "end": 2039.86, + "probability": 0.9639 + }, + { + "start": 2040.98, + "end": 2042.22, + "probability": 0.9414 + }, + { + "start": 2043.74, + "end": 2046.08, + "probability": 0.9881 + }, + { + "start": 2048.24, + "end": 2049.62, + "probability": 0.7358 + }, + { + "start": 2051.16, + "end": 2052.58, + "probability": 0.669 + }, + { + "start": 2054.64, + "end": 2057.14, + "probability": 0.8293 + }, + { + "start": 2058.1, + "end": 2059.78, + "probability": 0.8174 + }, + { + "start": 2060.72, + "end": 2062.5, + "probability": 0.6838 + }, + { + "start": 2063.38, + "end": 2064.2, + "probability": 0.827 + }, + { + "start": 2065.06, + "end": 2066.58, + "probability": 0.7875 + }, + { + "start": 2067.64, + "end": 2068.66, + "probability": 0.9306 + }, + { + "start": 2069.06, + "end": 2069.92, + "probability": 0.9138 + }, + { + "start": 2069.98, + "end": 2070.76, + "probability": 0.5842 + }, + { + "start": 2071.14, + "end": 2072.16, + "probability": 0.9312 + }, + { + "start": 2072.84, + "end": 2074.2, + "probability": 0.9099 + }, + { + "start": 2075.02, + "end": 2075.72, + "probability": 0.651 + }, + { + "start": 2076.12, + "end": 2079.14, + "probability": 0.9424 + }, + { + "start": 2079.4, + "end": 2080.36, + "probability": 0.8549 + }, + { + "start": 2080.86, + "end": 2081.9, + "probability": 0.98 + }, + { + "start": 2084.32, + "end": 2086.34, + "probability": 0.9982 + }, + { + "start": 2087.28, + "end": 2090.1, + "probability": 0.6768 + }, + { + "start": 2091.62, + "end": 2091.62, + "probability": 0.4173 + }, + { + "start": 2091.64, + "end": 2094.76, + "probability": 0.9653 + }, + { + "start": 2095.5, + "end": 2097.54, + "probability": 0.5788 + }, + { + "start": 2098.16, + "end": 2098.98, + "probability": 0.7967 + }, + { + "start": 2101.36, + "end": 2101.96, + "probability": 0.9098 + }, + { + "start": 2104.42, + "end": 2107.38, + "probability": 0.9921 + }, + { + "start": 2108.16, + "end": 2108.68, + "probability": 0.8584 + }, + { + "start": 2111.42, + "end": 2112.12, + "probability": 0.6175 + }, + { + "start": 2112.66, + "end": 2113.5, + "probability": 0.892 + }, + { + "start": 2115.04, + "end": 2116.38, + "probability": 0.8004 + }, + { + "start": 2116.94, + "end": 2118.84, + "probability": 0.7382 + }, + { + "start": 2119.44, + "end": 2120.72, + "probability": 0.9192 + }, + { + "start": 2123.15, + "end": 2125.56, + "probability": 0.9543 + }, + { + "start": 2126.08, + "end": 2126.6, + "probability": 0.98 + }, + { + "start": 2126.94, + "end": 2128.2, + "probability": 0.9282 + }, + { + "start": 2128.52, + "end": 2128.68, + "probability": 0.6378 + }, + { + "start": 2130.14, + "end": 2132.7, + "probability": 0.8493 + }, + { + "start": 2133.46, + "end": 2134.64, + "probability": 0.8584 + }, + { + "start": 2136.14, + "end": 2138.08, + "probability": 0.6223 + }, + { + "start": 2138.6, + "end": 2140.34, + "probability": 0.3587 + }, + { + "start": 2140.98, + "end": 2142.62, + "probability": 0.9886 + }, + { + "start": 2143.24, + "end": 2143.94, + "probability": 0.7486 + }, + { + "start": 2144.72, + "end": 2146.1, + "probability": 0.9976 + }, + { + "start": 2146.58, + "end": 2149.58, + "probability": 0.6588 + }, + { + "start": 2149.72, + "end": 2150.76, + "probability": 0.9019 + }, + { + "start": 2151.66, + "end": 2152.36, + "probability": 0.4518 + }, + { + "start": 2153.44, + "end": 2156.3, + "probability": 0.9243 + }, + { + "start": 2157.64, + "end": 2160.25, + "probability": 0.7305 + }, + { + "start": 2161.66, + "end": 2162.9, + "probability": 0.9144 + }, + { + "start": 2164.28, + "end": 2164.28, + "probability": 0.0212 + }, + { + "start": 2164.28, + "end": 2164.38, + "probability": 0.0698 + }, + { + "start": 2166.76, + "end": 2167.5, + "probability": 0.7968 + }, + { + "start": 2171.9, + "end": 2178.22, + "probability": 0.7789 + }, + { + "start": 2178.74, + "end": 2182.38, + "probability": 0.5604 + }, + { + "start": 2185.72, + "end": 2193.98, + "probability": 0.6426 + }, + { + "start": 2194.32, + "end": 2195.98, + "probability": 0.061 + }, + { + "start": 2200.3, + "end": 2204.22, + "probability": 0.2791 + }, + { + "start": 2204.4, + "end": 2206.52, + "probability": 0.9608 + }, + { + "start": 2207.16, + "end": 2210.32, + "probability": 0.514 + }, + { + "start": 2210.7, + "end": 2211.44, + "probability": 0.4277 + }, + { + "start": 2211.56, + "end": 2213.42, + "probability": 0.2937 + }, + { + "start": 2215.0, + "end": 2220.48, + "probability": 0.8879 + }, + { + "start": 2221.18, + "end": 2223.06, + "probability": 0.2721 + }, + { + "start": 2224.36, + "end": 2226.96, + "probability": 0.9233 + }, + { + "start": 2227.34, + "end": 2228.94, + "probability": 0.8104 + }, + { + "start": 2229.9, + "end": 2231.28, + "probability": 0.7058 + }, + { + "start": 2234.38, + "end": 2234.82, + "probability": 0.4078 + }, + { + "start": 2234.96, + "end": 2237.42, + "probability": 0.7577 + }, + { + "start": 2238.68, + "end": 2240.28, + "probability": 0.3333 + }, + { + "start": 2242.0, + "end": 2245.36, + "probability": 0.7052 + }, + { + "start": 2246.64, + "end": 2249.12, + "probability": 0.9773 + }, + { + "start": 2249.26, + "end": 2249.54, + "probability": 0.7488 + }, + { + "start": 2249.64, + "end": 2250.1, + "probability": 0.9553 + }, + { + "start": 2251.22, + "end": 2251.98, + "probability": 0.9937 + }, + { + "start": 2252.88, + "end": 2253.9, + "probability": 0.5253 + }, + { + "start": 2254.78, + "end": 2256.56, + "probability": 0.6567 + }, + { + "start": 2257.5, + "end": 2259.04, + "probability": 0.7189 + }, + { + "start": 2260.08, + "end": 2261.3, + "probability": 0.5636 + }, + { + "start": 2261.56, + "end": 2262.99, + "probability": 0.6665 + }, + { + "start": 2263.9, + "end": 2264.92, + "probability": 0.6588 + }, + { + "start": 2267.22, + "end": 2269.88, + "probability": 0.6957 + }, + { + "start": 2269.98, + "end": 2271.04, + "probability": 0.7011 + }, + { + "start": 2271.16, + "end": 2273.28, + "probability": 0.8848 + }, + { + "start": 2274.08, + "end": 2275.34, + "probability": 0.8448 + }, + { + "start": 2275.84, + "end": 2278.66, + "probability": 0.8729 + }, + { + "start": 2279.54, + "end": 2281.14, + "probability": 0.8312 + }, + { + "start": 2282.34, + "end": 2283.52, + "probability": 0.846 + }, + { + "start": 2283.6, + "end": 2284.6, + "probability": 0.7917 + }, + { + "start": 2285.38, + "end": 2287.96, + "probability": 0.7849 + }, + { + "start": 2288.18, + "end": 2290.38, + "probability": 0.7017 + }, + { + "start": 2290.82, + "end": 2297.36, + "probability": 0.9932 + }, + { + "start": 2297.62, + "end": 2301.92, + "probability": 0.2161 + }, + { + "start": 2302.0, + "end": 2302.54, + "probability": 0.2468 + }, + { + "start": 2302.8, + "end": 2303.38, + "probability": 0.6887 + }, + { + "start": 2303.78, + "end": 2306.42, + "probability": 0.9219 + }, + { + "start": 2307.16, + "end": 2309.32, + "probability": 0.9136 + }, + { + "start": 2309.44, + "end": 2311.48, + "probability": 0.6714 + }, + { + "start": 2311.64, + "end": 2314.56, + "probability": 0.8589 + }, + { + "start": 2315.28, + "end": 2319.7, + "probability": 0.9534 + }, + { + "start": 2320.4, + "end": 2323.78, + "probability": 0.7563 + }, + { + "start": 2324.52, + "end": 2329.18, + "probability": 0.958 + }, + { + "start": 2329.18, + "end": 2332.36, + "probability": 0.9865 + }, + { + "start": 2332.9, + "end": 2338.46, + "probability": 0.9933 + }, + { + "start": 2338.9, + "end": 2339.86, + "probability": 0.6685 + }, + { + "start": 2340.26, + "end": 2342.96, + "probability": 0.5447 + }, + { + "start": 2343.06, + "end": 2347.26, + "probability": 0.8858 + }, + { + "start": 2347.44, + "end": 2354.76, + "probability": 0.9934 + }, + { + "start": 2355.1, + "end": 2357.06, + "probability": 0.9719 + }, + { + "start": 2357.28, + "end": 2359.72, + "probability": 0.9817 + }, + { + "start": 2359.9, + "end": 2360.42, + "probability": 0.0815 + }, + { + "start": 2361.02, + "end": 2362.52, + "probability": 0.9385 + }, + { + "start": 2362.64, + "end": 2363.4, + "probability": 0.8617 + }, + { + "start": 2363.5, + "end": 2365.28, + "probability": 0.7589 + }, + { + "start": 2366.02, + "end": 2371.08, + "probability": 0.8594 + }, + { + "start": 2371.82, + "end": 2373.46, + "probability": 0.6232 + }, + { + "start": 2374.44, + "end": 2376.46, + "probability": 0.8988 + }, + { + "start": 2376.74, + "end": 2377.64, + "probability": 0.6067 + }, + { + "start": 2378.66, + "end": 2381.32, + "probability": 0.877 + }, + { + "start": 2381.68, + "end": 2382.66, + "probability": 0.8626 + }, + { + "start": 2382.74, + "end": 2383.92, + "probability": 0.6778 + }, + { + "start": 2384.12, + "end": 2385.64, + "probability": 0.4558 + }, + { + "start": 2386.6, + "end": 2387.62, + "probability": 0.7369 + }, + { + "start": 2388.78, + "end": 2390.08, + "probability": 0.5134 + }, + { + "start": 2390.2, + "end": 2391.52, + "probability": 0.9473 + }, + { + "start": 2391.56, + "end": 2393.38, + "probability": 0.9482 + }, + { + "start": 2394.16, + "end": 2395.62, + "probability": 0.9941 + }, + { + "start": 2396.46, + "end": 2397.62, + "probability": 0.9648 + }, + { + "start": 2399.32, + "end": 2400.72, + "probability": 0.4985 + }, + { + "start": 2400.8, + "end": 2403.94, + "probability": 0.9888 + }, + { + "start": 2404.12, + "end": 2406.44, + "probability": 0.9808 + }, + { + "start": 2407.62, + "end": 2411.06, + "probability": 0.9966 + }, + { + "start": 2412.5, + "end": 2415.32, + "probability": 0.6124 + }, + { + "start": 2415.38, + "end": 2416.58, + "probability": 0.7687 + }, + { + "start": 2416.66, + "end": 2416.98, + "probability": 0.6548 + }, + { + "start": 2417.3, + "end": 2421.08, + "probability": 0.9867 + }, + { + "start": 2422.16, + "end": 2424.3, + "probability": 0.9305 + }, + { + "start": 2424.6, + "end": 2425.5, + "probability": 0.8687 + }, + { + "start": 2425.74, + "end": 2426.26, + "probability": 0.9535 + }, + { + "start": 2427.5, + "end": 2428.82, + "probability": 0.8112 + }, + { + "start": 2430.24, + "end": 2432.52, + "probability": 0.9727 + }, + { + "start": 2432.52, + "end": 2434.56, + "probability": 0.8568 + }, + { + "start": 2434.7, + "end": 2436.78, + "probability": 0.9459 + }, + { + "start": 2437.6, + "end": 2440.98, + "probability": 0.9607 + }, + { + "start": 2443.2, + "end": 2447.64, + "probability": 0.9844 + }, + { + "start": 2449.0, + "end": 2451.64, + "probability": 0.9425 + }, + { + "start": 2452.32, + "end": 2454.46, + "probability": 0.931 + }, + { + "start": 2455.44, + "end": 2457.2, + "probability": 0.7762 + }, + { + "start": 2457.48, + "end": 2458.44, + "probability": 0.5872 + }, + { + "start": 2458.96, + "end": 2460.2, + "probability": 0.8582 + }, + { + "start": 2461.0, + "end": 2462.18, + "probability": 0.959 + }, + { + "start": 2462.34, + "end": 2467.24, + "probability": 0.3924 + }, + { + "start": 2468.22, + "end": 2468.38, + "probability": 0.3835 + }, + { + "start": 2468.54, + "end": 2471.52, + "probability": 0.8918 + }, + { + "start": 2472.8, + "end": 2475.18, + "probability": 0.9927 + }, + { + "start": 2475.3, + "end": 2475.74, + "probability": 0.8662 + }, + { + "start": 2476.24, + "end": 2477.04, + "probability": 0.8059 + }, + { + "start": 2477.24, + "end": 2477.96, + "probability": 0.7789 + }, + { + "start": 2478.6, + "end": 2479.32, + "probability": 0.5184 + }, + { + "start": 2480.1, + "end": 2482.24, + "probability": 0.8347 + }, + { + "start": 2482.24, + "end": 2484.96, + "probability": 0.9959 + }, + { + "start": 2485.1, + "end": 2485.78, + "probability": 0.8366 + }, + { + "start": 2486.08, + "end": 2486.9, + "probability": 0.8349 + }, + { + "start": 2488.1, + "end": 2490.53, + "probability": 0.6808 + }, + { + "start": 2491.1, + "end": 2493.26, + "probability": 0.621 + }, + { + "start": 2494.48, + "end": 2496.04, + "probability": 0.6222 + }, + { + "start": 2498.6, + "end": 2499.82, + "probability": 0.6731 + }, + { + "start": 2500.66, + "end": 2502.62, + "probability": 0.9724 + }, + { + "start": 2506.36, + "end": 2506.94, + "probability": 0.0149 + }, + { + "start": 2506.94, + "end": 2506.94, + "probability": 0.212 + }, + { + "start": 2506.94, + "end": 2506.94, + "probability": 0.0123 + }, + { + "start": 2506.94, + "end": 2508.48, + "probability": 0.1965 + }, + { + "start": 2509.6, + "end": 2511.08, + "probability": 0.1729 + }, + { + "start": 2511.32, + "end": 2511.88, + "probability": 0.1003 + }, + { + "start": 2511.88, + "end": 2513.66, + "probability": 0.3169 + }, + { + "start": 2513.66, + "end": 2513.92, + "probability": 0.2733 + }, + { + "start": 2514.06, + "end": 2514.52, + "probability": 0.6193 + }, + { + "start": 2514.84, + "end": 2516.78, + "probability": 0.6064 + }, + { + "start": 2517.04, + "end": 2517.82, + "probability": 0.0158 + }, + { + "start": 2517.82, + "end": 2517.96, + "probability": 0.1288 + }, + { + "start": 2518.06, + "end": 2519.26, + "probability": 0.7213 + }, + { + "start": 2520.96, + "end": 2522.02, + "probability": 0.5376 + }, + { + "start": 2522.92, + "end": 2523.58, + "probability": 0.7291 + }, + { + "start": 2523.96, + "end": 2526.4, + "probability": 0.1019 + }, + { + "start": 2526.4, + "end": 2527.48, + "probability": 0.2135 + }, + { + "start": 2529.06, + "end": 2530.36, + "probability": 0.4504 + }, + { + "start": 2530.6, + "end": 2532.12, + "probability": 0.3148 + }, + { + "start": 2532.12, + "end": 2533.84, + "probability": 0.1109 + }, + { + "start": 2533.9, + "end": 2535.12, + "probability": 0.4388 + }, + { + "start": 2535.42, + "end": 2536.2, + "probability": 0.6683 + }, + { + "start": 2536.28, + "end": 2537.1, + "probability": 0.5765 + }, + { + "start": 2537.1, + "end": 2537.82, + "probability": 0.378 + }, + { + "start": 2538.14, + "end": 2540.12, + "probability": 0.6017 + }, + { + "start": 2543.0, + "end": 2545.88, + "probability": 0.978 + }, + { + "start": 2546.72, + "end": 2549.04, + "probability": 0.9587 + }, + { + "start": 2549.96, + "end": 2552.7, + "probability": 0.9243 + }, + { + "start": 2552.7, + "end": 2555.92, + "probability": 0.9699 + }, + { + "start": 2556.98, + "end": 2558.62, + "probability": 0.9491 + }, + { + "start": 2558.72, + "end": 2560.92, + "probability": 0.5814 + }, + { + "start": 2561.34, + "end": 2561.76, + "probability": 0.8361 + }, + { + "start": 2562.5, + "end": 2565.32, + "probability": 0.8995 + }, + { + "start": 2566.46, + "end": 2570.56, + "probability": 0.9126 + }, + { + "start": 2571.46, + "end": 2572.72, + "probability": 0.9213 + }, + { + "start": 2572.84, + "end": 2574.66, + "probability": 0.9653 + }, + { + "start": 2575.14, + "end": 2575.28, + "probability": 0.0515 + }, + { + "start": 2576.86, + "end": 2579.26, + "probability": 0.9932 + }, + { + "start": 2579.32, + "end": 2582.52, + "probability": 0.7992 + }, + { + "start": 2583.08, + "end": 2584.78, + "probability": 0.9178 + }, + { + "start": 2584.82, + "end": 2587.44, + "probability": 0.9647 + }, + { + "start": 2588.66, + "end": 2592.06, + "probability": 0.8781 + }, + { + "start": 2592.9, + "end": 2599.58, + "probability": 0.7032 + }, + { + "start": 2600.18, + "end": 2602.04, + "probability": 0.8829 + }, + { + "start": 2602.12, + "end": 2603.0, + "probability": 0.716 + }, + { + "start": 2603.08, + "end": 2604.12, + "probability": 0.4122 + }, + { + "start": 2610.14, + "end": 2612.94, + "probability": 0.8582 + }, + { + "start": 2615.38, + "end": 2615.7, + "probability": 0.4065 + }, + { + "start": 2616.44, + "end": 2617.24, + "probability": 0.832 + }, + { + "start": 2617.48, + "end": 2619.26, + "probability": 0.6202 + }, + { + "start": 2619.36, + "end": 2619.46, + "probability": 0.6788 + }, + { + "start": 2620.32, + "end": 2620.58, + "probability": 0.1007 + }, + { + "start": 2620.58, + "end": 2622.62, + "probability": 0.6867 + }, + { + "start": 2623.16, + "end": 2624.76, + "probability": 0.4358 + }, + { + "start": 2624.76, + "end": 2624.98, + "probability": 0.016 + }, + { + "start": 2624.98, + "end": 2625.18, + "probability": 0.6359 + }, + { + "start": 2625.92, + "end": 2627.58, + "probability": 0.781 + }, + { + "start": 2629.06, + "end": 2630.44, + "probability": 0.5213 + }, + { + "start": 2631.0, + "end": 2635.32, + "probability": 0.7768 + }, + { + "start": 2636.4, + "end": 2638.18, + "probability": 0.3025 + }, + { + "start": 2648.24, + "end": 2650.82, + "probability": 0.0771 + }, + { + "start": 2650.82, + "end": 2650.82, + "probability": 0.0769 + }, + { + "start": 2651.8, + "end": 2652.2, + "probability": 0.0082 + }, + { + "start": 2652.44, + "end": 2654.4, + "probability": 0.5887 + }, + { + "start": 2654.4, + "end": 2654.81, + "probability": 0.0183 + }, + { + "start": 2655.04, + "end": 2655.74, + "probability": 0.0526 + }, + { + "start": 2656.09, + "end": 2656.83, + "probability": 0.0667 + }, + { + "start": 2657.08, + "end": 2658.6, + "probability": 0.2717 + }, + { + "start": 2659.28, + "end": 2661.68, + "probability": 0.085 + }, + { + "start": 2664.46, + "end": 2669.77, + "probability": 0.0395 + }, + { + "start": 2674.72, + "end": 2675.3, + "probability": 0.0043 + }, + { + "start": 2677.08, + "end": 2677.68, + "probability": 0.1725 + }, + { + "start": 2678.06, + "end": 2679.66, + "probability": 0.0265 + }, + { + "start": 2679.7, + "end": 2679.94, + "probability": 0.2724 + }, + { + "start": 2681.49, + "end": 2682.46, + "probability": 0.0884 + }, + { + "start": 2682.98, + "end": 2685.46, + "probability": 0.143 + }, + { + "start": 2685.9, + "end": 2687.42, + "probability": 0.1244 + }, + { + "start": 2687.42, + "end": 2690.62, + "probability": 0.0193 + }, + { + "start": 2690.62, + "end": 2690.72, + "probability": 0.2846 + }, + { + "start": 2691.38, + "end": 2691.9, + "probability": 0.1213 + }, + { + "start": 2692.4, + "end": 2693.6, + "probability": 0.0979 + }, + { + "start": 2695.9, + "end": 2698.82, + "probability": 0.0164 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2699.0, + "end": 2699.0, + "probability": 0.0 + }, + { + "start": 2700.08, + "end": 2700.68, + "probability": 0.0371 + }, + { + "start": 2700.72, + "end": 2700.82, + "probability": 0.1026 + }, + { + "start": 2700.82, + "end": 2702.28, + "probability": 0.0296 + }, + { + "start": 2702.8, + "end": 2704.16, + "probability": 0.8667 + }, + { + "start": 2704.26, + "end": 2705.26, + "probability": 0.3277 + }, + { + "start": 2706.0, + "end": 2706.88, + "probability": 0.4226 + }, + { + "start": 2707.54, + "end": 2709.04, + "probability": 0.7268 + }, + { + "start": 2709.56, + "end": 2710.54, + "probability": 0.1075 + }, + { + "start": 2710.58, + "end": 2714.34, + "probability": 0.6495 + }, + { + "start": 2714.38, + "end": 2714.96, + "probability": 0.3636 + }, + { + "start": 2715.04, + "end": 2716.64, + "probability": 0.8581 + }, + { + "start": 2716.96, + "end": 2718.12, + "probability": 0.0897 + }, + { + "start": 2718.12, + "end": 2718.64, + "probability": 0.611 + }, + { + "start": 2719.16, + "end": 2720.26, + "probability": 0.6271 + }, + { + "start": 2720.34, + "end": 2721.06, + "probability": 0.9087 + }, + { + "start": 2721.38, + "end": 2722.1, + "probability": 0.5325 + }, + { + "start": 2722.44, + "end": 2723.58, + "probability": 0.0658 + }, + { + "start": 2724.02, + "end": 2725.62, + "probability": 0.6887 + }, + { + "start": 2725.62, + "end": 2727.98, + "probability": 0.6581 + }, + { + "start": 2730.04, + "end": 2730.6, + "probability": 0.0053 + }, + { + "start": 2730.62, + "end": 2731.78, + "probability": 0.5969 + }, + { + "start": 2732.24, + "end": 2736.12, + "probability": 0.8527 + }, + { + "start": 2736.46, + "end": 2740.78, + "probability": 0.7751 + }, + { + "start": 2741.32, + "end": 2742.1, + "probability": 0.4185 + }, + { + "start": 2742.58, + "end": 2744.52, + "probability": 0.6867 + }, + { + "start": 2745.2, + "end": 2745.77, + "probability": 0.3599 + }, + { + "start": 2746.48, + "end": 2748.54, + "probability": 0.184 + }, + { + "start": 2748.62, + "end": 2750.42, + "probability": 0.8704 + }, + { + "start": 2751.2, + "end": 2754.98, + "probability": 0.8407 + }, + { + "start": 2755.7, + "end": 2757.8, + "probability": 0.4836 + }, + { + "start": 2759.97, + "end": 2767.56, + "probability": 0.1928 + }, + { + "start": 2767.98, + "end": 2769.6, + "probability": 0.3044 + }, + { + "start": 2769.6, + "end": 2769.6, + "probability": 0.0099 + }, + { + "start": 2769.6, + "end": 2770.34, + "probability": 0.0838 + }, + { + "start": 2772.62, + "end": 2774.22, + "probability": 0.2649 + }, + { + "start": 2775.0, + "end": 2777.33, + "probability": 0.3706 + }, + { + "start": 2781.21, + "end": 2783.91, + "probability": 0.4299 + }, + { + "start": 2784.74, + "end": 2786.04, + "probability": 0.665 + }, + { + "start": 2786.22, + "end": 2787.54, + "probability": 0.7646 + }, + { + "start": 2787.88, + "end": 2788.98, + "probability": 0.076 + }, + { + "start": 2789.72, + "end": 2790.21, + "probability": 0.8008 + }, + { + "start": 2791.38, + "end": 2792.94, + "probability": 0.7611 + }, + { + "start": 2793.44, + "end": 2796.52, + "probability": 0.6122 + }, + { + "start": 2796.68, + "end": 2798.8, + "probability": 0.4797 + }, + { + "start": 2799.39, + "end": 2800.56, + "probability": 0.5836 + }, + { + "start": 2800.68, + "end": 2801.66, + "probability": 0.6378 + }, + { + "start": 2801.84, + "end": 2805.08, + "probability": 0.4807 + }, + { + "start": 2805.22, + "end": 2806.5, + "probability": 0.4073 + }, + { + "start": 2806.98, + "end": 2807.16, + "probability": 0.1948 + }, + { + "start": 2807.96, + "end": 2809.66, + "probability": 0.9257 + }, + { + "start": 2809.82, + "end": 2814.14, + "probability": 0.951 + }, + { + "start": 2814.32, + "end": 2815.36, + "probability": 0.7669 + }, + { + "start": 2815.84, + "end": 2815.98, + "probability": 0.6142 + }, + { + "start": 2816.32, + "end": 2820.78, + "probability": 0.7331 + }, + { + "start": 2822.64, + "end": 2823.77, + "probability": 0.8343 + }, + { + "start": 2824.52, + "end": 2826.02, + "probability": 0.9584 + }, + { + "start": 2827.06, + "end": 2831.12, + "probability": 0.9871 + }, + { + "start": 2832.3, + "end": 2833.16, + "probability": 0.2473 + }, + { + "start": 2833.22, + "end": 2834.04, + "probability": 0.5815 + }, + { + "start": 2834.46, + "end": 2836.16, + "probability": 0.9216 + }, + { + "start": 2836.36, + "end": 2838.16, + "probability": 0.9966 + }, + { + "start": 2839.1, + "end": 2840.88, + "probability": 0.9036 + }, + { + "start": 2841.66, + "end": 2842.62, + "probability": 0.9911 + }, + { + "start": 2843.66, + "end": 2846.0, + "probability": 0.9459 + }, + { + "start": 2846.64, + "end": 2847.18, + "probability": 0.735 + }, + { + "start": 2847.82, + "end": 2851.8, + "probability": 0.7519 + }, + { + "start": 2860.78, + "end": 2861.7, + "probability": 0.7353 + }, + { + "start": 2861.84, + "end": 2862.69, + "probability": 0.9177 + }, + { + "start": 2863.16, + "end": 2864.0, + "probability": 0.8972 + }, + { + "start": 2864.84, + "end": 2868.68, + "probability": 0.8967 + }, + { + "start": 2869.0, + "end": 2869.64, + "probability": 0.6071 + }, + { + "start": 2869.64, + "end": 2870.24, + "probability": 0.5077 + }, + { + "start": 2871.92, + "end": 2874.38, + "probability": 0.3443 + }, + { + "start": 2874.9, + "end": 2875.38, + "probability": 0.2243 + }, + { + "start": 2879.24, + "end": 2879.92, + "probability": 0.2207 + }, + { + "start": 2886.06, + "end": 2887.74, + "probability": 0.444 + }, + { + "start": 2888.3, + "end": 2888.7, + "probability": 0.5654 + }, + { + "start": 2890.32, + "end": 2890.96, + "probability": 0.1692 + }, + { + "start": 2891.54, + "end": 2891.8, + "probability": 0.098 + }, + { + "start": 2901.82, + "end": 2903.44, + "probability": 0.3156 + }, + { + "start": 2904.48, + "end": 2905.94, + "probability": 0.6024 + }, + { + "start": 2906.54, + "end": 2911.66, + "probability": 0.9792 + }, + { + "start": 2911.9, + "end": 2917.24, + "probability": 0.9915 + }, + { + "start": 2918.77, + "end": 2924.44, + "probability": 0.73 + }, + { + "start": 2925.0, + "end": 2928.78, + "probability": 0.8216 + }, + { + "start": 2929.14, + "end": 2931.88, + "probability": 0.9295 + }, + { + "start": 2934.17, + "end": 2937.44, + "probability": 0.6697 + }, + { + "start": 2943.22, + "end": 2948.04, + "probability": 0.7786 + }, + { + "start": 2948.52, + "end": 2951.76, + "probability": 0.7211 + }, + { + "start": 2951.76, + "end": 2956.82, + "probability": 0.9951 + }, + { + "start": 2956.86, + "end": 2963.7, + "probability": 0.9663 + }, + { + "start": 2964.08, + "end": 2964.82, + "probability": 0.7496 + }, + { + "start": 2965.38, + "end": 2968.84, + "probability": 0.8612 + }, + { + "start": 2969.44, + "end": 2971.66, + "probability": 0.8567 + }, + { + "start": 2972.98, + "end": 2975.28, + "probability": 0.9851 + }, + { + "start": 2976.14, + "end": 2980.02, + "probability": 0.9938 + }, + { + "start": 2980.84, + "end": 2984.3, + "probability": 0.9985 + }, + { + "start": 2985.2, + "end": 2989.14, + "probability": 0.907 + }, + { + "start": 2989.2, + "end": 2991.94, + "probability": 0.9489 + }, + { + "start": 2993.1, + "end": 2995.38, + "probability": 0.99 + }, + { + "start": 2996.3, + "end": 3002.06, + "probability": 0.9889 + }, + { + "start": 3002.06, + "end": 3006.34, + "probability": 0.9805 + }, + { + "start": 3007.4, + "end": 3011.28, + "probability": 0.9173 + }, + { + "start": 3011.94, + "end": 3016.16, + "probability": 0.9956 + }, + { + "start": 3016.8, + "end": 3018.0, + "probability": 0.9777 + }, + { + "start": 3019.4, + "end": 3021.1, + "probability": 0.9475 + }, + { + "start": 3021.64, + "end": 3026.8, + "probability": 0.4385 + }, + { + "start": 3026.98, + "end": 3028.84, + "probability": 0.7572 + }, + { + "start": 3031.28, + "end": 3036.64, + "probability": 0.7678 + }, + { + "start": 3038.42, + "end": 3040.22, + "probability": 0.7324 + }, + { + "start": 3040.3, + "end": 3042.8, + "probability": 0.927 + }, + { + "start": 3043.64, + "end": 3048.04, + "probability": 0.9827 + }, + { + "start": 3048.84, + "end": 3051.84, + "probability": 0.9937 + }, + { + "start": 3052.28, + "end": 3055.9, + "probability": 0.9939 + }, + { + "start": 3056.44, + "end": 3057.8, + "probability": 0.8696 + }, + { + "start": 3058.3, + "end": 3060.28, + "probability": 0.5464 + }, + { + "start": 3061.06, + "end": 3063.14, + "probability": 0.861 + }, + { + "start": 3063.38, + "end": 3069.92, + "probability": 0.977 + }, + { + "start": 3070.8, + "end": 3071.32, + "probability": 0.9989 + }, + { + "start": 3072.26, + "end": 3074.74, + "probability": 0.9896 + }, + { + "start": 3075.12, + "end": 3079.6, + "probability": 0.998 + }, + { + "start": 3080.12, + "end": 3082.44, + "probability": 0.9287 + }, + { + "start": 3082.62, + "end": 3082.84, + "probability": 0.4076 + }, + { + "start": 3083.02, + "end": 3085.32, + "probability": 0.9548 + }, + { + "start": 3085.94, + "end": 3090.2, + "probability": 0.9952 + }, + { + "start": 3090.24, + "end": 3094.68, + "probability": 0.9989 + }, + { + "start": 3095.26, + "end": 3098.24, + "probability": 0.806 + }, + { + "start": 3098.24, + "end": 3099.03, + "probability": 0.8284 + }, + { + "start": 3099.62, + "end": 3101.12, + "probability": 0.8015 + }, + { + "start": 3102.66, + "end": 3104.2, + "probability": 0.9312 + }, + { + "start": 3104.34, + "end": 3106.02, + "probability": 0.4554 + }, + { + "start": 3106.44, + "end": 3110.7, + "probability": 0.9478 + }, + { + "start": 3112.44, + "end": 3114.1, + "probability": 0.6321 + }, + { + "start": 3114.66, + "end": 3115.0, + "probability": 0.8301 + }, + { + "start": 3116.6, + "end": 3122.28, + "probability": 0.9489 + }, + { + "start": 3123.04, + "end": 3124.0, + "probability": 0.7857 + }, + { + "start": 3124.12, + "end": 3129.16, + "probability": 0.9984 + }, + { + "start": 3129.16, + "end": 3133.2, + "probability": 0.9709 + }, + { + "start": 3134.68, + "end": 3138.78, + "probability": 0.9957 + }, + { + "start": 3139.38, + "end": 3142.6, + "probability": 0.9955 + }, + { + "start": 3143.24, + "end": 3150.74, + "probability": 0.9934 + }, + { + "start": 3151.5, + "end": 3155.38, + "probability": 0.9962 + }, + { + "start": 3155.62, + "end": 3161.86, + "probability": 0.9922 + }, + { + "start": 3162.36, + "end": 3169.92, + "probability": 0.9909 + }, + { + "start": 3169.92, + "end": 3175.56, + "probability": 0.8987 + }, + { + "start": 3176.44, + "end": 3183.24, + "probability": 0.9802 + }, + { + "start": 3183.46, + "end": 3189.48, + "probability": 0.9896 + }, + { + "start": 3189.78, + "end": 3193.06, + "probability": 0.9878 + }, + { + "start": 3193.68, + "end": 3196.6, + "probability": 0.9983 + }, + { + "start": 3196.7, + "end": 3200.88, + "probability": 0.9938 + }, + { + "start": 3200.88, + "end": 3206.0, + "probability": 0.9913 + }, + { + "start": 3206.12, + "end": 3207.96, + "probability": 0.8763 + }, + { + "start": 3208.16, + "end": 3209.26, + "probability": 0.9981 + }, + { + "start": 3209.94, + "end": 3210.78, + "probability": 0.9912 + }, + { + "start": 3211.4, + "end": 3216.14, + "probability": 0.9771 + }, + { + "start": 3216.64, + "end": 3220.56, + "probability": 0.9992 + }, + { + "start": 3221.16, + "end": 3224.64, + "probability": 0.9954 + }, + { + "start": 3224.82, + "end": 3226.28, + "probability": 0.7509 + }, + { + "start": 3226.44, + "end": 3229.8, + "probability": 0.9965 + }, + { + "start": 3230.02, + "end": 3233.74, + "probability": 0.8381 + }, + { + "start": 3234.3, + "end": 3235.8, + "probability": 0.6379 + }, + { + "start": 3236.08, + "end": 3237.94, + "probability": 0.9695 + }, + { + "start": 3238.52, + "end": 3242.16, + "probability": 0.9968 + }, + { + "start": 3242.72, + "end": 3244.72, + "probability": 0.9852 + }, + { + "start": 3245.06, + "end": 3247.7, + "probability": 0.8706 + }, + { + "start": 3248.32, + "end": 3254.96, + "probability": 0.946 + }, + { + "start": 3256.24, + "end": 3261.78, + "probability": 0.973 + }, + { + "start": 3262.3, + "end": 3269.1, + "probability": 0.9948 + }, + { + "start": 3269.8, + "end": 3272.26, + "probability": 0.998 + }, + { + "start": 3272.4, + "end": 3275.29, + "probability": 0.9946 + }, + { + "start": 3276.54, + "end": 3280.58, + "probability": 0.99 + }, + { + "start": 3281.2, + "end": 3283.5, + "probability": 0.7666 + }, + { + "start": 3284.3, + "end": 3289.5, + "probability": 0.9946 + }, + { + "start": 3290.1, + "end": 3292.12, + "probability": 0.8811 + }, + { + "start": 3292.6, + "end": 3297.14, + "probability": 0.9556 + }, + { + "start": 3297.82, + "end": 3301.92, + "probability": 0.9637 + }, + { + "start": 3302.12, + "end": 3309.34, + "probability": 0.9911 + }, + { + "start": 3309.34, + "end": 3313.86, + "probability": 0.9742 + }, + { + "start": 3314.5, + "end": 3316.8, + "probability": 0.997 + }, + { + "start": 3316.86, + "end": 3320.28, + "probability": 0.9923 + }, + { + "start": 3320.84, + "end": 3325.28, + "probability": 0.991 + }, + { + "start": 3325.44, + "end": 3326.92, + "probability": 0.9865 + }, + { + "start": 3327.0, + "end": 3333.72, + "probability": 0.9855 + }, + { + "start": 3333.92, + "end": 3341.46, + "probability": 0.9641 + }, + { + "start": 3341.9, + "end": 3347.08, + "probability": 0.9852 + }, + { + "start": 3347.08, + "end": 3352.06, + "probability": 0.9923 + }, + { + "start": 3352.6, + "end": 3355.12, + "probability": 0.9937 + }, + { + "start": 3355.22, + "end": 3361.42, + "probability": 0.9915 + }, + { + "start": 3361.6, + "end": 3367.0, + "probability": 0.9844 + }, + { + "start": 3367.0, + "end": 3372.3, + "probability": 0.9927 + }, + { + "start": 3372.64, + "end": 3373.02, + "probability": 0.3892 + }, + { + "start": 3373.44, + "end": 3374.76, + "probability": 0.9875 + }, + { + "start": 3374.98, + "end": 3377.92, + "probability": 0.9912 + }, + { + "start": 3378.18, + "end": 3381.94, + "probability": 0.9702 + }, + { + "start": 3382.04, + "end": 3385.18, + "probability": 0.9978 + }, + { + "start": 3385.34, + "end": 3388.3, + "probability": 0.9957 + }, + { + "start": 3389.66, + "end": 3393.1, + "probability": 0.9688 + }, + { + "start": 3393.1, + "end": 3397.44, + "probability": 0.9989 + }, + { + "start": 3398.0, + "end": 3402.7, + "probability": 0.9962 + }, + { + "start": 3402.8, + "end": 3406.14, + "probability": 0.9933 + }, + { + "start": 3406.68, + "end": 3407.44, + "probability": 0.8198 + }, + { + "start": 3407.94, + "end": 3409.81, + "probability": 0.9825 + }, + { + "start": 3410.04, + "end": 3411.2, + "probability": 0.9781 + }, + { + "start": 3411.32, + "end": 3412.82, + "probability": 0.9883 + }, + { + "start": 3413.2, + "end": 3414.08, + "probability": 0.8143 + }, + { + "start": 3414.72, + "end": 3420.16, + "probability": 0.9458 + }, + { + "start": 3420.78, + "end": 3424.06, + "probability": 0.9972 + }, + { + "start": 3424.1, + "end": 3429.83, + "probability": 0.9631 + }, + { + "start": 3430.18, + "end": 3434.46, + "probability": 0.996 + }, + { + "start": 3434.68, + "end": 3439.44, + "probability": 0.9974 + }, + { + "start": 3439.92, + "end": 3442.2, + "probability": 0.9137 + }, + { + "start": 3442.28, + "end": 3447.02, + "probability": 0.9281 + }, + { + "start": 3447.02, + "end": 3453.08, + "probability": 0.9766 + }, + { + "start": 3453.26, + "end": 3453.96, + "probability": 0.9701 + }, + { + "start": 3454.62, + "end": 3456.08, + "probability": 0.992 + }, + { + "start": 3456.6, + "end": 3458.78, + "probability": 0.7656 + }, + { + "start": 3459.16, + "end": 3460.06, + "probability": 0.9665 + }, + { + "start": 3460.14, + "end": 3460.94, + "probability": 0.9144 + }, + { + "start": 3461.38, + "end": 3464.32, + "probability": 0.7806 + }, + { + "start": 3464.64, + "end": 3468.1, + "probability": 0.9228 + }, + { + "start": 3468.6, + "end": 3469.5, + "probability": 0.6051 + }, + { + "start": 3470.02, + "end": 3474.34, + "probability": 0.8444 + }, + { + "start": 3474.74, + "end": 3476.32, + "probability": 0.8613 + }, + { + "start": 3477.58, + "end": 3480.63, + "probability": 0.6184 + }, + { + "start": 3481.36, + "end": 3485.08, + "probability": 0.9863 + }, + { + "start": 3485.24, + "end": 3490.9, + "probability": 0.7454 + }, + { + "start": 3490.9, + "end": 3494.04, + "probability": 0.8408 + }, + { + "start": 3494.52, + "end": 3498.86, + "probability": 0.804 + }, + { + "start": 3498.86, + "end": 3502.8, + "probability": 0.9683 + }, + { + "start": 3502.86, + "end": 3509.22, + "probability": 0.9907 + }, + { + "start": 3509.82, + "end": 3514.86, + "probability": 0.9942 + }, + { + "start": 3515.32, + "end": 3518.1, + "probability": 0.7908 + }, + { + "start": 3518.84, + "end": 3520.42, + "probability": 0.9376 + }, + { + "start": 3522.18, + "end": 3524.28, + "probability": 0.8288 + }, + { + "start": 3524.78, + "end": 3528.04, + "probability": 0.7751 + }, + { + "start": 3528.14, + "end": 3530.56, + "probability": 0.9125 + }, + { + "start": 3530.96, + "end": 3532.84, + "probability": 0.8308 + }, + { + "start": 3533.1, + "end": 3539.52, + "probability": 0.7622 + }, + { + "start": 3539.6, + "end": 3540.66, + "probability": 0.7811 + }, + { + "start": 3540.82, + "end": 3542.52, + "probability": 0.9805 + }, + { + "start": 3543.0, + "end": 3548.18, + "probability": 0.6845 + }, + { + "start": 3548.9, + "end": 3551.73, + "probability": 0.7892 + }, + { + "start": 3552.52, + "end": 3553.94, + "probability": 0.9594 + }, + { + "start": 3554.14, + "end": 3554.72, + "probability": 0.8918 + }, + { + "start": 3555.0, + "end": 3556.36, + "probability": 0.9637 + }, + { + "start": 3556.88, + "end": 3558.24, + "probability": 0.6075 + }, + { + "start": 3559.26, + "end": 3564.38, + "probability": 0.9965 + }, + { + "start": 3564.8, + "end": 3565.32, + "probability": 0.3907 + }, + { + "start": 3565.38, + "end": 3566.56, + "probability": 0.9777 + }, + { + "start": 3566.88, + "end": 3570.14, + "probability": 0.939 + }, + { + "start": 3571.32, + "end": 3571.6, + "probability": 0.4953 + }, + { + "start": 3571.78, + "end": 3572.3, + "probability": 0.627 + }, + { + "start": 3572.64, + "end": 3577.52, + "probability": 0.905 + }, + { + "start": 3578.26, + "end": 3578.5, + "probability": 0.9119 + }, + { + "start": 3578.8, + "end": 3579.82, + "probability": 0.6794 + }, + { + "start": 3580.06, + "end": 3581.98, + "probability": 0.9867 + }, + { + "start": 3582.7, + "end": 3584.18, + "probability": 0.9982 + }, + { + "start": 3584.38, + "end": 3585.93, + "probability": 0.9778 + }, + { + "start": 3586.46, + "end": 3586.64, + "probability": 0.683 + }, + { + "start": 3588.44, + "end": 3589.52, + "probability": 0.806 + }, + { + "start": 3590.71, + "end": 3592.0, + "probability": 0.4997 + }, + { + "start": 3592.0, + "end": 3596.26, + "probability": 0.9854 + }, + { + "start": 3596.67, + "end": 3599.94, + "probability": 0.8212 + }, + { + "start": 3600.1, + "end": 3603.04, + "probability": 0.8892 + }, + { + "start": 3603.2, + "end": 3604.34, + "probability": 0.9902 + }, + { + "start": 3605.12, + "end": 3610.06, + "probability": 0.9981 + }, + { + "start": 3610.16, + "end": 3611.06, + "probability": 0.7639 + }, + { + "start": 3613.3, + "end": 3613.5, + "probability": 0.0132 + }, + { + "start": 3613.5, + "end": 3613.5, + "probability": 0.1848 + }, + { + "start": 3613.5, + "end": 3613.82, + "probability": 0.3363 + }, + { + "start": 3613.98, + "end": 3615.88, + "probability": 0.9585 + }, + { + "start": 3616.04, + "end": 3618.38, + "probability": 0.877 + }, + { + "start": 3618.48, + "end": 3624.42, + "probability": 0.8735 + }, + { + "start": 3624.86, + "end": 3627.76, + "probability": 0.5603 + }, + { + "start": 3627.86, + "end": 3628.98, + "probability": 0.9829 + }, + { + "start": 3629.5, + "end": 3631.44, + "probability": 0.9406 + }, + { + "start": 3631.48, + "end": 3632.44, + "probability": 0.8599 + }, + { + "start": 3632.6, + "end": 3633.62, + "probability": 0.4348 + }, + { + "start": 3633.74, + "end": 3637.92, + "probability": 0.9807 + }, + { + "start": 3638.86, + "end": 3642.88, + "probability": 0.9833 + }, + { + "start": 3643.58, + "end": 3646.56, + "probability": 0.9552 + }, + { + "start": 3646.56, + "end": 3651.1, + "probability": 0.9596 + }, + { + "start": 3652.08, + "end": 3652.94, + "probability": 0.8358 + }, + { + "start": 3653.26, + "end": 3659.26, + "probability": 0.9254 + }, + { + "start": 3659.76, + "end": 3661.84, + "probability": 0.86 + }, + { + "start": 3662.42, + "end": 3665.98, + "probability": 0.9851 + }, + { + "start": 3666.74, + "end": 3669.32, + "probability": 0.9884 + }, + { + "start": 3669.86, + "end": 3672.06, + "probability": 0.9567 + }, + { + "start": 3672.34, + "end": 3672.54, + "probability": 0.4407 + }, + { + "start": 3675.0, + "end": 3678.56, + "probability": 0.8337 + }, + { + "start": 3679.32, + "end": 3681.46, + "probability": 0.9286 + }, + { + "start": 3681.56, + "end": 3683.5, + "probability": 0.8324 + }, + { + "start": 3684.0, + "end": 3685.34, + "probability": 0.8949 + }, + { + "start": 3685.4, + "end": 3686.12, + "probability": 0.857 + }, + { + "start": 3686.56, + "end": 3686.82, + "probability": 0.4928 + }, + { + "start": 3688.46, + "end": 3689.88, + "probability": 0.1138 + }, + { + "start": 3689.88, + "end": 3689.88, + "probability": 0.0525 + }, + { + "start": 3689.88, + "end": 3690.36, + "probability": 0.4546 + }, + { + "start": 3691.36, + "end": 3693.94, + "probability": 0.6852 + }, + { + "start": 3694.96, + "end": 3695.88, + "probability": 0.6064 + }, + { + "start": 3696.88, + "end": 3699.0, + "probability": 0.3691 + }, + { + "start": 3699.3, + "end": 3700.74, + "probability": 0.6446 + }, + { + "start": 3701.7, + "end": 3703.6, + "probability": 0.9236 + }, + { + "start": 3704.46, + "end": 3706.68, + "probability": 0.9784 + }, + { + "start": 3708.77, + "end": 3709.86, + "probability": 0.2474 + }, + { + "start": 3710.6, + "end": 3711.64, + "probability": 0.0776 + }, + { + "start": 3713.52, + "end": 3715.86, + "probability": 0.3513 + }, + { + "start": 3716.24, + "end": 3717.22, + "probability": 0.5801 + }, + { + "start": 3717.3, + "end": 3722.72, + "probability": 0.956 + }, + { + "start": 3724.38, + "end": 3724.94, + "probability": 0.5954 + }, + { + "start": 3725.56, + "end": 3728.1, + "probability": 0.8768 + }, + { + "start": 3728.62, + "end": 3731.2, + "probability": 0.7723 + }, + { + "start": 3732.06, + "end": 3733.96, + "probability": 0.8632 + }, + { + "start": 3743.34, + "end": 3745.6, + "probability": 0.3151 + }, + { + "start": 3745.64, + "end": 3748.32, + "probability": 0.7036 + }, + { + "start": 3748.78, + "end": 3749.37, + "probability": 0.9968 + }, + { + "start": 3750.36, + "end": 3751.26, + "probability": 0.9613 + }, + { + "start": 3752.54, + "end": 3753.4, + "probability": 0.5319 + }, + { + "start": 3754.78, + "end": 3756.42, + "probability": 0.8692 + }, + { + "start": 3757.04, + "end": 3758.28, + "probability": 0.9619 + }, + { + "start": 3759.04, + "end": 3760.82, + "probability": 0.6142 + }, + { + "start": 3761.48, + "end": 3762.52, + "probability": 0.8157 + }, + { + "start": 3763.02, + "end": 3769.28, + "probability": 0.8969 + }, + { + "start": 3770.4, + "end": 3773.52, + "probability": 0.8752 + }, + { + "start": 3773.64, + "end": 3777.08, + "probability": 0.8504 + }, + { + "start": 3777.88, + "end": 3779.94, + "probability": 0.6661 + }, + { + "start": 3781.48, + "end": 3782.34, + "probability": 0.9259 + }, + { + "start": 3784.2, + "end": 3785.4, + "probability": 0.9788 + }, + { + "start": 3786.2, + "end": 3788.5, + "probability": 0.5687 + }, + { + "start": 3788.66, + "end": 3792.9, + "probability": 0.9945 + }, + { + "start": 3793.4, + "end": 3794.39, + "probability": 0.5811 + }, + { + "start": 3794.64, + "end": 3797.18, + "probability": 0.2689 + }, + { + "start": 3797.66, + "end": 3799.35, + "probability": 0.2712 + }, + { + "start": 3800.1, + "end": 3802.3, + "probability": 0.7462 + }, + { + "start": 3802.3, + "end": 3807.04, + "probability": 0.9373 + }, + { + "start": 3807.28, + "end": 3808.6, + "probability": 0.8323 + }, + { + "start": 3811.24, + "end": 3814.72, + "probability": 0.983 + }, + { + "start": 3816.62, + "end": 3820.6, + "probability": 0.6847 + }, + { + "start": 3821.12, + "end": 3822.2, + "probability": 0.771 + }, + { + "start": 3823.58, + "end": 3825.46, + "probability": 0.9856 + }, + { + "start": 3827.6, + "end": 3832.8, + "probability": 0.8371 + }, + { + "start": 3834.02, + "end": 3834.86, + "probability": 0.9598 + }, + { + "start": 3836.48, + "end": 3838.06, + "probability": 0.8621 + }, + { + "start": 3839.34, + "end": 3840.48, + "probability": 0.9868 + }, + { + "start": 3842.96, + "end": 3844.64, + "probability": 0.9329 + }, + { + "start": 3845.36, + "end": 3849.06, + "probability": 0.981 + }, + { + "start": 3850.12, + "end": 3851.58, + "probability": 0.9214 + }, + { + "start": 3853.02, + "end": 3856.0, + "probability": 0.9919 + }, + { + "start": 3857.88, + "end": 3858.9, + "probability": 0.8353 + }, + { + "start": 3859.56, + "end": 3861.32, + "probability": 0.9875 + }, + { + "start": 3862.28, + "end": 3867.14, + "probability": 0.9958 + }, + { + "start": 3868.24, + "end": 3872.78, + "probability": 0.979 + }, + { + "start": 3873.02, + "end": 3874.5, + "probability": 0.7469 + }, + { + "start": 3874.8, + "end": 3878.36, + "probability": 0.9731 + }, + { + "start": 3879.38, + "end": 3882.96, + "probability": 0.9968 + }, + { + "start": 3884.94, + "end": 3884.94, + "probability": 0.7769 + }, + { + "start": 3886.0, + "end": 3889.62, + "probability": 0.7239 + }, + { + "start": 3889.68, + "end": 3890.04, + "probability": 0.7713 + }, + { + "start": 3891.14, + "end": 3896.2, + "probability": 0.532 + }, + { + "start": 3897.22, + "end": 3898.18, + "probability": 0.8892 + }, + { + "start": 3899.48, + "end": 3902.2, + "probability": 0.9748 + }, + { + "start": 3902.24, + "end": 3903.48, + "probability": 0.9822 + }, + { + "start": 3904.48, + "end": 3904.52, + "probability": 0.3843 + }, + { + "start": 3905.98, + "end": 3907.54, + "probability": 0.9776 + }, + { + "start": 3908.9, + "end": 3911.36, + "probability": 0.9529 + }, + { + "start": 3912.56, + "end": 3913.58, + "probability": 0.9806 + }, + { + "start": 3915.48, + "end": 3917.58, + "probability": 0.9879 + }, + { + "start": 3919.52, + "end": 3921.54, + "probability": 0.9957 + }, + { + "start": 3922.68, + "end": 3925.78, + "probability": 0.9971 + }, + { + "start": 3927.92, + "end": 3928.42, + "probability": 0.7732 + }, + { + "start": 3929.02, + "end": 3929.5, + "probability": 0.9256 + }, + { + "start": 3929.62, + "end": 3932.76, + "probability": 0.988 + }, + { + "start": 3933.22, + "end": 3934.64, + "probability": 0.815 + }, + { + "start": 3936.3, + "end": 3939.53, + "probability": 0.9932 + }, + { + "start": 3940.22, + "end": 3941.44, + "probability": 0.9971 + }, + { + "start": 3943.02, + "end": 3945.26, + "probability": 0.9915 + }, + { + "start": 3946.9, + "end": 3948.1, + "probability": 0.7712 + }, + { + "start": 3949.62, + "end": 3952.58, + "probability": 0.9929 + }, + { + "start": 3953.36, + "end": 3958.72, + "probability": 0.9939 + }, + { + "start": 3959.7, + "end": 3960.96, + "probability": 0.9355 + }, + { + "start": 3962.64, + "end": 3965.88, + "probability": 0.9424 + }, + { + "start": 3966.02, + "end": 3968.26, + "probability": 0.9954 + }, + { + "start": 3971.02, + "end": 3971.46, + "probability": 0.6955 + }, + { + "start": 3973.84, + "end": 3981.28, + "probability": 0.9988 + }, + { + "start": 3982.26, + "end": 3983.92, + "probability": 0.9408 + }, + { + "start": 3986.2, + "end": 3990.94, + "probability": 0.9905 + }, + { + "start": 3991.8, + "end": 3992.08, + "probability": 0.9469 + }, + { + "start": 3992.72, + "end": 3996.36, + "probability": 0.994 + }, + { + "start": 3996.58, + "end": 3997.48, + "probability": 0.7571 + }, + { + "start": 4000.32, + "end": 4007.18, + "probability": 0.9538 + }, + { + "start": 4007.76, + "end": 4010.82, + "probability": 0.7646 + }, + { + "start": 4011.12, + "end": 4012.42, + "probability": 0.9312 + }, + { + "start": 4012.46, + "end": 4013.3, + "probability": 0.6676 + }, + { + "start": 4013.58, + "end": 4015.78, + "probability": 0.9934 + }, + { + "start": 4017.47, + "end": 4020.48, + "probability": 0.9385 + }, + { + "start": 4021.22, + "end": 4021.7, + "probability": 0.6092 + }, + { + "start": 4021.82, + "end": 4025.5, + "probability": 0.9673 + }, + { + "start": 4026.62, + "end": 4030.72, + "probability": 0.9851 + }, + { + "start": 4031.5, + "end": 4034.2, + "probability": 0.906 + }, + { + "start": 4034.46, + "end": 4036.6, + "probability": 0.9985 + }, + { + "start": 4036.74, + "end": 4037.7, + "probability": 0.8774 + }, + { + "start": 4038.36, + "end": 4039.88, + "probability": 0.9738 + }, + { + "start": 4041.76, + "end": 4042.46, + "probability": 0.6454 + }, + { + "start": 4043.28, + "end": 4046.47, + "probability": 0.7627 + }, + { + "start": 4048.52, + "end": 4052.78, + "probability": 0.9968 + }, + { + "start": 4054.28, + "end": 4055.38, + "probability": 0.9103 + }, + { + "start": 4056.5, + "end": 4058.26, + "probability": 0.8837 + }, + { + "start": 4059.34, + "end": 4062.0, + "probability": 0.7539 + }, + { + "start": 4062.36, + "end": 4063.98, + "probability": 0.8534 + }, + { + "start": 4064.06, + "end": 4065.48, + "probability": 0.8481 + }, + { + "start": 4065.8, + "end": 4067.38, + "probability": 0.9238 + }, + { + "start": 4067.52, + "end": 4070.52, + "probability": 0.9219 + }, + { + "start": 4071.32, + "end": 4072.1, + "probability": 0.0387 + }, + { + "start": 4072.64, + "end": 4073.34, + "probability": 0.1683 + }, + { + "start": 4074.31, + "end": 4075.4, + "probability": 0.9712 + }, + { + "start": 4079.78, + "end": 4079.82, + "probability": 0.4319 + }, + { + "start": 4082.8, + "end": 4086.88, + "probability": 0.9988 + }, + { + "start": 4088.5, + "end": 4092.62, + "probability": 0.9633 + }, + { + "start": 4094.68, + "end": 4099.06, + "probability": 0.9982 + }, + { + "start": 4099.82, + "end": 4100.7, + "probability": 0.7611 + }, + { + "start": 4100.8, + "end": 4107.06, + "probability": 0.8816 + }, + { + "start": 4109.28, + "end": 4110.72, + "probability": 0.9021 + }, + { + "start": 4112.62, + "end": 4113.28, + "probability": 0.7831 + }, + { + "start": 4113.82, + "end": 4114.68, + "probability": 0.9383 + }, + { + "start": 4115.66, + "end": 4116.96, + "probability": 0.8458 + }, + { + "start": 4117.9, + "end": 4121.48, + "probability": 0.9808 + }, + { + "start": 4121.8, + "end": 4123.13, + "probability": 0.9023 + }, + { + "start": 4125.18, + "end": 4127.46, + "probability": 0.8507 + }, + { + "start": 4129.34, + "end": 4130.28, + "probability": 0.7392 + }, + { + "start": 4133.28, + "end": 4133.76, + "probability": 0.8573 + }, + { + "start": 4133.82, + "end": 4140.92, + "probability": 0.995 + }, + { + "start": 4142.48, + "end": 4148.06, + "probability": 0.995 + }, + { + "start": 4149.44, + "end": 4152.98, + "probability": 0.9802 + }, + { + "start": 4155.52, + "end": 4157.28, + "probability": 0.998 + }, + { + "start": 4157.88, + "end": 4160.78, + "probability": 0.996 + }, + { + "start": 4162.38, + "end": 4163.44, + "probability": 0.9904 + }, + { + "start": 4163.6, + "end": 4164.16, + "probability": 0.9753 + }, + { + "start": 4164.3, + "end": 4171.6, + "probability": 0.9688 + }, + { + "start": 4171.64, + "end": 4172.86, + "probability": 0.9927 + }, + { + "start": 4173.28, + "end": 4174.12, + "probability": 0.9837 + }, + { + "start": 4180.34, + "end": 4181.25, + "probability": 0.854 + }, + { + "start": 4181.84, + "end": 4184.16, + "probability": 0.9475 + }, + { + "start": 4185.78, + "end": 4190.54, + "probability": 0.9971 + }, + { + "start": 4191.44, + "end": 4192.92, + "probability": 0.9856 + }, + { + "start": 4193.76, + "end": 4196.9, + "probability": 0.9977 + }, + { + "start": 4199.7, + "end": 4201.6, + "probability": 0.8474 + }, + { + "start": 4203.14, + "end": 4206.14, + "probability": 0.9854 + }, + { + "start": 4206.28, + "end": 4207.24, + "probability": 0.9734 + }, + { + "start": 4207.32, + "end": 4208.54, + "probability": 0.9761 + }, + { + "start": 4209.84, + "end": 4212.82, + "probability": 0.996 + }, + { + "start": 4212.82, + "end": 4215.92, + "probability": 0.9919 + }, + { + "start": 4217.0, + "end": 4221.64, + "probability": 0.9953 + }, + { + "start": 4222.66, + "end": 4224.68, + "probability": 0.9477 + }, + { + "start": 4225.26, + "end": 4229.92, + "probability": 0.9611 + }, + { + "start": 4230.04, + "end": 4230.32, + "probability": 0.8101 + }, + { + "start": 4230.54, + "end": 4232.58, + "probability": 0.7254 + }, + { + "start": 4232.94, + "end": 4234.6, + "probability": 0.7671 + }, + { + "start": 4235.1, + "end": 4237.0, + "probability": 0.8907 + }, + { + "start": 4237.1, + "end": 4241.56, + "probability": 0.972 + }, + { + "start": 4242.26, + "end": 4245.88, + "probability": 0.9922 + }, + { + "start": 4247.78, + "end": 4250.11, + "probability": 0.9907 + }, + { + "start": 4251.04, + "end": 4251.64, + "probability": 0.2645 + }, + { + "start": 4253.62, + "end": 4256.48, + "probability": 0.9917 + }, + { + "start": 4256.7, + "end": 4258.54, + "probability": 0.9811 + }, + { + "start": 4259.3, + "end": 4263.94, + "probability": 0.9377 + }, + { + "start": 4266.0, + "end": 4269.52, + "probability": 0.8799 + }, + { + "start": 4272.72, + "end": 4273.8, + "probability": 0.6895 + }, + { + "start": 4274.74, + "end": 4275.64, + "probability": 0.8324 + }, + { + "start": 4277.18, + "end": 4281.1, + "probability": 0.503 + }, + { + "start": 4281.26, + "end": 4284.36, + "probability": 0.8767 + }, + { + "start": 4285.16, + "end": 4287.86, + "probability": 0.9568 + }, + { + "start": 4288.46, + "end": 4291.36, + "probability": 0.6024 + }, + { + "start": 4291.36, + "end": 4294.22, + "probability": 0.9904 + }, + { + "start": 4294.74, + "end": 4301.36, + "probability": 0.999 + }, + { + "start": 4301.94, + "end": 4306.78, + "probability": 0.9972 + }, + { + "start": 4307.74, + "end": 4310.18, + "probability": 0.8208 + }, + { + "start": 4312.22, + "end": 4314.56, + "probability": 0.107 + }, + { + "start": 4314.64, + "end": 4321.18, + "probability": 0.9929 + }, + { + "start": 4321.68, + "end": 4324.66, + "probability": 0.8365 + }, + { + "start": 4325.28, + "end": 4327.9, + "probability": 0.9939 + }, + { + "start": 4330.95, + "end": 4331.52, + "probability": 0.1873 + }, + { + "start": 4331.75, + "end": 4331.96, + "probability": 0.0264 + }, + { + "start": 4331.96, + "end": 4332.42, + "probability": 0.6463 + }, + { + "start": 4332.44, + "end": 4335.5, + "probability": 0.5843 + }, + { + "start": 4335.62, + "end": 4344.02, + "probability": 0.993 + }, + { + "start": 4344.58, + "end": 4347.58, + "probability": 0.9852 + }, + { + "start": 4348.38, + "end": 4350.3, + "probability": 0.9855 + }, + { + "start": 4351.04, + "end": 4355.74, + "probability": 0.9834 + }, + { + "start": 4356.46, + "end": 4364.94, + "probability": 0.9779 + }, + { + "start": 4365.44, + "end": 4368.28, + "probability": 0.9747 + }, + { + "start": 4371.67, + "end": 4376.44, + "probability": 0.7685 + }, + { + "start": 4377.66, + "end": 4380.86, + "probability": 0.9896 + }, + { + "start": 4381.04, + "end": 4384.92, + "probability": 0.4331 + }, + { + "start": 4384.94, + "end": 4387.96, + "probability": 0.1952 + }, + { + "start": 4388.3, + "end": 4389.98, + "probability": 0.6633 + }, + { + "start": 4390.06, + "end": 4391.02, + "probability": 0.8958 + }, + { + "start": 4392.56, + "end": 4393.56, + "probability": 0.999 + }, + { + "start": 4395.2, + "end": 4404.48, + "probability": 0.9959 + }, + { + "start": 4405.74, + "end": 4408.0, + "probability": 0.9856 + }, + { + "start": 4408.76, + "end": 4413.66, + "probability": 0.9944 + }, + { + "start": 4415.12, + "end": 4415.76, + "probability": 0.8475 + }, + { + "start": 4416.64, + "end": 4417.12, + "probability": 0.7966 + }, + { + "start": 4417.66, + "end": 4420.84, + "probability": 0.9607 + }, + { + "start": 4421.62, + "end": 4422.24, + "probability": 0.3959 + }, + { + "start": 4424.1, + "end": 4425.38, + "probability": 0.5961 + }, + { + "start": 4425.38, + "end": 4426.6, + "probability": 0.8297 + }, + { + "start": 4428.46, + "end": 4428.68, + "probability": 0.1424 + }, + { + "start": 4428.68, + "end": 4433.1, + "probability": 0.9956 + }, + { + "start": 4434.28, + "end": 4435.42, + "probability": 0.9063 + }, + { + "start": 4436.2, + "end": 4437.56, + "probability": 0.9512 + }, + { + "start": 4438.42, + "end": 4441.84, + "probability": 0.9479 + }, + { + "start": 4442.62, + "end": 4448.16, + "probability": 0.9945 + }, + { + "start": 4448.48, + "end": 4448.86, + "probability": 0.77 + }, + { + "start": 4449.7, + "end": 4451.18, + "probability": 0.8945 + }, + { + "start": 4451.44, + "end": 4451.72, + "probability": 0.7206 + }, + { + "start": 4452.88, + "end": 4455.74, + "probability": 0.8411 + }, + { + "start": 4455.82, + "end": 4457.24, + "probability": 0.9722 + }, + { + "start": 4457.56, + "end": 4458.04, + "probability": 0.6013 + }, + { + "start": 4459.24, + "end": 4460.96, + "probability": 0.1661 + }, + { + "start": 4465.66, + "end": 4467.22, + "probability": 0.7107 + }, + { + "start": 4468.7, + "end": 4470.22, + "probability": 0.8397 + }, + { + "start": 4470.32, + "end": 4475.7, + "probability": 0.9818 + }, + { + "start": 4475.8, + "end": 4479.96, + "probability": 0.9259 + }, + { + "start": 4481.28, + "end": 4481.28, + "probability": 0.0307 + }, + { + "start": 4481.28, + "end": 4485.95, + "probability": 0.8968 + }, + { + "start": 4486.74, + "end": 4488.04, + "probability": 0.631 + }, + { + "start": 4488.98, + "end": 4492.18, + "probability": 0.7512 + }, + { + "start": 4493.94, + "end": 4496.84, + "probability": 0.0474 + }, + { + "start": 4497.2, + "end": 4498.04, + "probability": 0.0428 + }, + { + "start": 4498.52, + "end": 4500.22, + "probability": 0.7742 + }, + { + "start": 4500.67, + "end": 4505.64, + "probability": 0.6778 + }, + { + "start": 4505.66, + "end": 4506.38, + "probability": 0.5346 + }, + { + "start": 4506.52, + "end": 4511.74, + "probability": 0.9731 + }, + { + "start": 4512.26, + "end": 4514.18, + "probability": 0.3413 + }, + { + "start": 4514.4, + "end": 4515.44, + "probability": 0.5624 + }, + { + "start": 4515.62, + "end": 4517.42, + "probability": 0.7371 + }, + { + "start": 4517.84, + "end": 4518.68, + "probability": 0.1513 + }, + { + "start": 4518.8, + "end": 4522.74, + "probability": 0.9409 + }, + { + "start": 4523.72, + "end": 4527.01, + "probability": 0.7482 + }, + { + "start": 4527.7, + "end": 4530.86, + "probability": 0.9875 + }, + { + "start": 4531.4, + "end": 4533.6, + "probability": 0.9688 + }, + { + "start": 4533.86, + "end": 4537.8, + "probability": 0.6628 + }, + { + "start": 4538.68, + "end": 4540.62, + "probability": 0.7576 + }, + { + "start": 4540.9, + "end": 4543.84, + "probability": 0.9377 + }, + { + "start": 4544.06, + "end": 4551.14, + "probability": 0.9965 + }, + { + "start": 4551.54, + "end": 4557.52, + "probability": 0.9991 + }, + { + "start": 4558.21, + "end": 4566.6, + "probability": 0.9898 + }, + { + "start": 4567.66, + "end": 4573.4, + "probability": 0.9928 + }, + { + "start": 4573.44, + "end": 4577.38, + "probability": 0.9946 + }, + { + "start": 4577.86, + "end": 4581.96, + "probability": 0.9632 + }, + { + "start": 4582.44, + "end": 4585.46, + "probability": 0.9383 + }, + { + "start": 4585.86, + "end": 4586.35, + "probability": 0.9585 + }, + { + "start": 4587.14, + "end": 4588.84, + "probability": 0.3139 + }, + { + "start": 4589.04, + "end": 4589.22, + "probability": 0.4113 + }, + { + "start": 4589.22, + "end": 4590.71, + "probability": 0.7489 + }, + { + "start": 4591.92, + "end": 4593.64, + "probability": 0.8163 + }, + { + "start": 4594.8, + "end": 4597.14, + "probability": 0.9464 + }, + { + "start": 4597.64, + "end": 4598.24, + "probability": 0.9468 + }, + { + "start": 4598.76, + "end": 4601.34, + "probability": 0.7999 + }, + { + "start": 4602.0, + "end": 4604.84, + "probability": 0.8204 + }, + { + "start": 4605.74, + "end": 4608.52, + "probability": 0.8348 + }, + { + "start": 4608.94, + "end": 4609.92, + "probability": 0.876 + }, + { + "start": 4610.0, + "end": 4611.18, + "probability": 0.973 + }, + { + "start": 4611.3, + "end": 4612.8, + "probability": 0.9074 + }, + { + "start": 4614.7, + "end": 4619.16, + "probability": 0.9064 + }, + { + "start": 4620.01, + "end": 4626.92, + "probability": 0.9888 + }, + { + "start": 4627.4, + "end": 4630.81, + "probability": 0.9904 + }, + { + "start": 4631.38, + "end": 4631.66, + "probability": 0.7413 + }, + { + "start": 4631.72, + "end": 4632.98, + "probability": 0.9437 + }, + { + "start": 4633.06, + "end": 4634.12, + "probability": 0.7362 + }, + { + "start": 4634.54, + "end": 4637.78, + "probability": 0.9893 + }, + { + "start": 4637.78, + "end": 4641.2, + "probability": 0.8141 + }, + { + "start": 4642.18, + "end": 4642.88, + "probability": 0.3601 + }, + { + "start": 4643.46, + "end": 4647.58, + "probability": 0.9491 + }, + { + "start": 4648.02, + "end": 4650.44, + "probability": 0.9937 + }, + { + "start": 4650.68, + "end": 4653.36, + "probability": 0.9978 + }, + { + "start": 4654.06, + "end": 4657.7, + "probability": 0.8945 + }, + { + "start": 4658.02, + "end": 4661.98, + "probability": 0.9163 + }, + { + "start": 4662.04, + "end": 4662.52, + "probability": 0.8217 + }, + { + "start": 4662.82, + "end": 4666.86, + "probability": 0.9863 + }, + { + "start": 4667.38, + "end": 4669.68, + "probability": 0.9724 + }, + { + "start": 4670.42, + "end": 4673.68, + "probability": 0.9915 + }, + { + "start": 4674.16, + "end": 4678.66, + "probability": 0.9871 + }, + { + "start": 4678.9, + "end": 4679.94, + "probability": 0.856 + }, + { + "start": 4680.04, + "end": 4680.82, + "probability": 0.6191 + }, + { + "start": 4681.28, + "end": 4684.28, + "probability": 0.8529 + }, + { + "start": 4684.48, + "end": 4685.82, + "probability": 0.6836 + }, + { + "start": 4686.12, + "end": 4689.1, + "probability": 0.987 + }, + { + "start": 4689.26, + "end": 4690.37, + "probability": 0.3767 + }, + { + "start": 4690.76, + "end": 4693.28, + "probability": 0.0244 + }, + { + "start": 4694.0, + "end": 4698.62, + "probability": 0.7951 + }, + { + "start": 4698.96, + "end": 4701.86, + "probability": 0.9531 + }, + { + "start": 4702.38, + "end": 4702.7, + "probability": 0.7836 + }, + { + "start": 4702.84, + "end": 4706.16, + "probability": 0.9277 + }, + { + "start": 4706.46, + "end": 4708.04, + "probability": 0.9301 + }, + { + "start": 4708.94, + "end": 4709.92, + "probability": 0.8598 + }, + { + "start": 4710.06, + "end": 4711.08, + "probability": 0.8921 + }, + { + "start": 4711.32, + "end": 4712.26, + "probability": 0.8816 + }, + { + "start": 4712.76, + "end": 4718.52, + "probability": 0.9862 + }, + { + "start": 4719.04, + "end": 4720.92, + "probability": 0.9971 + }, + { + "start": 4721.5, + "end": 4728.06, + "probability": 0.9938 + }, + { + "start": 4728.16, + "end": 4732.6, + "probability": 0.9958 + }, + { + "start": 4733.34, + "end": 4737.56, + "probability": 0.848 + }, + { + "start": 4737.74, + "end": 4740.32, + "probability": 0.9578 + }, + { + "start": 4740.52, + "end": 4743.44, + "probability": 0.9598 + }, + { + "start": 4743.84, + "end": 4747.76, + "probability": 0.8698 + }, + { + "start": 4748.44, + "end": 4749.84, + "probability": 0.949 + }, + { + "start": 4750.56, + "end": 4753.96, + "probability": 0.9879 + }, + { + "start": 4754.04, + "end": 4756.72, + "probability": 0.9893 + }, + { + "start": 4756.8, + "end": 4761.18, + "probability": 0.9946 + }, + { + "start": 4761.18, + "end": 4765.1, + "probability": 0.9766 + }, + { + "start": 4765.6, + "end": 4770.14, + "probability": 0.9962 + }, + { + "start": 4770.64, + "end": 4772.96, + "probability": 0.9986 + }, + { + "start": 4773.04, + "end": 4777.36, + "probability": 0.9884 + }, + { + "start": 4777.44, + "end": 4779.86, + "probability": 0.9946 + }, + { + "start": 4780.48, + "end": 4785.24, + "probability": 0.7015 + }, + { + "start": 4785.44, + "end": 4786.62, + "probability": 0.8311 + }, + { + "start": 4787.22, + "end": 4787.98, + "probability": 0.9056 + }, + { + "start": 4788.4, + "end": 4791.22, + "probability": 0.6182 + }, + { + "start": 4791.22, + "end": 4793.64, + "probability": 0.7476 + }, + { + "start": 4793.94, + "end": 4799.54, + "probability": 0.9969 + }, + { + "start": 4799.8, + "end": 4806.7, + "probability": 0.991 + }, + { + "start": 4808.26, + "end": 4810.38, + "probability": 0.8578 + }, + { + "start": 4810.5, + "end": 4813.1, + "probability": 0.9946 + }, + { + "start": 4813.96, + "end": 4815.38, + "probability": 0.4966 + }, + { + "start": 4815.92, + "end": 4816.72, + "probability": 0.7682 + }, + { + "start": 4818.5, + "end": 4824.38, + "probability": 0.7176 + }, + { + "start": 4824.7, + "end": 4824.72, + "probability": 0.0894 + }, + { + "start": 4824.72, + "end": 4825.52, + "probability": 0.6186 + }, + { + "start": 4825.98, + "end": 4828.56, + "probability": 0.9414 + }, + { + "start": 4829.02, + "end": 4830.2, + "probability": 0.8309 + }, + { + "start": 4831.98, + "end": 4834.52, + "probability": 0.5394 + }, + { + "start": 4835.22, + "end": 4836.78, + "probability": 0.7164 + }, + { + "start": 4837.18, + "end": 4841.22, + "probability": 0.9268 + }, + { + "start": 4842.02, + "end": 4846.0, + "probability": 0.9907 + }, + { + "start": 4847.08, + "end": 4850.82, + "probability": 0.5551 + }, + { + "start": 4851.56, + "end": 4853.5, + "probability": 0.6212 + }, + { + "start": 4853.88, + "end": 4855.7, + "probability": 0.8313 + }, + { + "start": 4856.04, + "end": 4856.54, + "probability": 0.8225 + }, + { + "start": 4857.14, + "end": 4857.96, + "probability": 0.9526 + }, + { + "start": 4858.84, + "end": 4860.56, + "probability": 0.7474 + }, + { + "start": 4861.0, + "end": 4864.42, + "probability": 0.87 + }, + { + "start": 4864.54, + "end": 4865.38, + "probability": 0.5434 + }, + { + "start": 4865.6, + "end": 4865.74, + "probability": 0.2114 + }, + { + "start": 4866.4, + "end": 4869.42, + "probability": 0.7776 + }, + { + "start": 4869.94, + "end": 4870.42, + "probability": 0.8066 + }, + { + "start": 4871.02, + "end": 4876.24, + "probability": 0.9872 + }, + { + "start": 4876.24, + "end": 4878.94, + "probability": 0.9919 + }, + { + "start": 4880.58, + "end": 4883.9, + "probability": 0.9893 + }, + { + "start": 4884.98, + "end": 4885.2, + "probability": 0.6289 + }, + { + "start": 4886.62, + "end": 4887.06, + "probability": 0.4888 + }, + { + "start": 4887.36, + "end": 4888.44, + "probability": 0.5235 + }, + { + "start": 4888.64, + "end": 4892.26, + "probability": 0.6527 + }, + { + "start": 4892.9, + "end": 4894.3, + "probability": 0.3397 + }, + { + "start": 4894.84, + "end": 4897.58, + "probability": 0.5584 + }, + { + "start": 4899.78, + "end": 4903.4, + "probability": 0.9768 + }, + { + "start": 4917.2, + "end": 4921.19, + "probability": 0.3949 + }, + { + "start": 4923.58, + "end": 4925.24, + "probability": 0.3886 + }, + { + "start": 4926.02, + "end": 4928.08, + "probability": 0.7417 + }, + { + "start": 4929.68, + "end": 4932.22, + "probability": 0.993 + }, + { + "start": 4934.78, + "end": 4937.54, + "probability": 0.5177 + }, + { + "start": 4937.56, + "end": 4940.48, + "probability": 0.7337 + }, + { + "start": 4947.68, + "end": 4948.92, + "probability": 0.6677 + }, + { + "start": 4948.92, + "end": 4950.58, + "probability": 0.7107 + }, + { + "start": 4957.0, + "end": 4959.86, + "probability": 0.154 + }, + { + "start": 4964.12, + "end": 4967.02, + "probability": 0.8544 + }, + { + "start": 4973.64, + "end": 4976.2, + "probability": 0.8418 + }, + { + "start": 4976.4, + "end": 4977.08, + "probability": 0.6102 + }, + { + "start": 4977.12, + "end": 4977.22, + "probability": 0.8339 + }, + { + "start": 4977.7, + "end": 4977.94, + "probability": 0.5534 + }, + { + "start": 4978.0, + "end": 4978.68, + "probability": 0.5308 + }, + { + "start": 4978.9, + "end": 4979.6, + "probability": 0.6328 + }, + { + "start": 4979.6, + "end": 4980.42, + "probability": 0.3802 + }, + { + "start": 4981.34, + "end": 4984.62, + "probability": 0.9094 + }, + { + "start": 4984.92, + "end": 4988.62, + "probability": 0.9329 + }, + { + "start": 4989.46, + "end": 4992.74, + "probability": 0.9977 + }, + { + "start": 4992.74, + "end": 4996.68, + "probability": 0.8386 + }, + { + "start": 4996.68, + "end": 5000.02, + "probability": 0.9918 + }, + { + "start": 5000.84, + "end": 5004.32, + "probability": 0.9803 + }, + { + "start": 5005.14, + "end": 5008.04, + "probability": 0.9976 + }, + { + "start": 5008.04, + "end": 5011.04, + "probability": 0.9989 + }, + { + "start": 5011.28, + "end": 5012.94, + "probability": 0.75 + }, + { + "start": 5013.44, + "end": 5014.18, + "probability": 0.9451 + }, + { + "start": 5014.42, + "end": 5016.5, + "probability": 0.7877 + }, + { + "start": 5016.88, + "end": 5018.22, + "probability": 0.8462 + }, + { + "start": 5018.86, + "end": 5021.38, + "probability": 0.9857 + }, + { + "start": 5021.38, + "end": 5024.34, + "probability": 0.9978 + }, + { + "start": 5024.96, + "end": 5025.48, + "probability": 0.7068 + }, + { + "start": 5026.24, + "end": 5026.82, + "probability": 0.8631 + }, + { + "start": 5027.5, + "end": 5028.56, + "probability": 0.824 + }, + { + "start": 5031.12, + "end": 5032.02, + "probability": 0.8549 + }, + { + "start": 5037.78, + "end": 5039.0, + "probability": 0.6413 + }, + { + "start": 5041.56, + "end": 5042.56, + "probability": 0.8642 + }, + { + "start": 5044.06, + "end": 5049.36, + "probability": 0.9829 + }, + { + "start": 5050.24, + "end": 5052.3, + "probability": 0.9839 + }, + { + "start": 5052.82, + "end": 5056.22, + "probability": 0.9965 + }, + { + "start": 5056.22, + "end": 5060.06, + "probability": 0.995 + }, + { + "start": 5061.48, + "end": 5063.62, + "probability": 0.9884 + }, + { + "start": 5064.14, + "end": 5065.08, + "probability": 0.7314 + }, + { + "start": 5066.2, + "end": 5069.6, + "probability": 0.9255 + }, + { + "start": 5070.22, + "end": 5075.1, + "probability": 0.9955 + }, + { + "start": 5075.1, + "end": 5079.4, + "probability": 0.9943 + }, + { + "start": 5080.0, + "end": 5084.8, + "probability": 0.9585 + }, + { + "start": 5086.46, + "end": 5089.34, + "probability": 0.976 + }, + { + "start": 5089.9, + "end": 5091.08, + "probability": 0.9908 + }, + { + "start": 5092.22, + "end": 5094.56, + "probability": 0.886 + }, + { + "start": 5095.08, + "end": 5097.05, + "probability": 0.9951 + }, + { + "start": 5099.66, + "end": 5105.48, + "probability": 0.9784 + }, + { + "start": 5105.8, + "end": 5107.16, + "probability": 0.043 + }, + { + "start": 5107.56, + "end": 5112.04, + "probability": 0.2595 + }, + { + "start": 5112.04, + "end": 5113.17, + "probability": 0.7627 + }, + { + "start": 5114.72, + "end": 5118.36, + "probability": 0.9917 + }, + { + "start": 5119.18, + "end": 5122.9, + "probability": 0.998 + }, + { + "start": 5122.9, + "end": 5127.62, + "probability": 0.9984 + }, + { + "start": 5127.84, + "end": 5132.78, + "probability": 0.9961 + }, + { + "start": 5133.3, + "end": 5134.22, + "probability": 0.6361 + }, + { + "start": 5135.74, + "end": 5135.74, + "probability": 0.456 + }, + { + "start": 5135.74, + "end": 5137.84, + "probability": 0.4813 + }, + { + "start": 5138.58, + "end": 5141.62, + "probability": 0.6012 + }, + { + "start": 5141.66, + "end": 5142.18, + "probability": 0.922 + }, + { + "start": 5142.76, + "end": 5143.82, + "probability": 0.0134 + }, + { + "start": 5146.54, + "end": 5147.6, + "probability": 0.6712 + }, + { + "start": 5147.74, + "end": 5149.64, + "probability": 0.6588 + }, + { + "start": 5156.26, + "end": 5161.0, + "probability": 0.9398 + }, + { + "start": 5161.86, + "end": 5162.4, + "probability": 0.6317 + }, + { + "start": 5162.93, + "end": 5163.77, + "probability": 0.263 + }, + { + "start": 5163.92, + "end": 5164.36, + "probability": 0.8213 + }, + { + "start": 5165.2, + "end": 5166.8, + "probability": 0.9327 + }, + { + "start": 5167.7, + "end": 5172.3, + "probability": 0.9582 + }, + { + "start": 5173.52, + "end": 5176.2, + "probability": 0.9281 + }, + { + "start": 5176.2, + "end": 5179.28, + "probability": 0.9748 + }, + { + "start": 5180.32, + "end": 5185.6, + "probability": 0.9713 + }, + { + "start": 5189.74, + "end": 5192.16, + "probability": 0.7869 + }, + { + "start": 5192.88, + "end": 5195.5, + "probability": 0.5787 + }, + { + "start": 5198.4, + "end": 5201.28, + "probability": 0.3017 + }, + { + "start": 5207.32, + "end": 5213.72, + "probability": 0.0883 + }, + { + "start": 5214.48, + "end": 5216.94, + "probability": 0.1587 + }, + { + "start": 5217.06, + "end": 5218.16, + "probability": 0.3041 + }, + { + "start": 5219.94, + "end": 5221.64, + "probability": 0.4419 + }, + { + "start": 5222.5, + "end": 5223.14, + "probability": 0.0346 + }, + { + "start": 5230.84, + "end": 5232.28, + "probability": 0.1486 + }, + { + "start": 5236.51, + "end": 5237.78, + "probability": 0.8906 + }, + { + "start": 5249.42, + "end": 5254.44, + "probability": 0.7781 + }, + { + "start": 5254.72, + "end": 5256.64, + "probability": 0.9384 + }, + { + "start": 5257.42, + "end": 5260.98, + "probability": 0.9449 + }, + { + "start": 5261.86, + "end": 5263.56, + "probability": 0.9532 + }, + { + "start": 5263.78, + "end": 5265.74, + "probability": 0.9976 + }, + { + "start": 5266.36, + "end": 5267.19, + "probability": 0.9764 + }, + { + "start": 5268.02, + "end": 5271.08, + "probability": 0.9928 + }, + { + "start": 5271.08, + "end": 5274.16, + "probability": 0.9678 + }, + { + "start": 5274.24, + "end": 5277.32, + "probability": 0.8151 + }, + { + "start": 5277.86, + "end": 5278.24, + "probability": 0.9801 + }, + { + "start": 5278.88, + "end": 5279.36, + "probability": 0.9938 + }, + { + "start": 5280.22, + "end": 5285.28, + "probability": 0.9883 + }, + { + "start": 5286.38, + "end": 5289.22, + "probability": 0.9912 + }, + { + "start": 5289.66, + "end": 5289.94, + "probability": 0.7855 + }, + { + "start": 5290.3, + "end": 5292.08, + "probability": 0.9064 + }, + { + "start": 5292.78, + "end": 5298.72, + "probability": 0.7552 + }, + { + "start": 5299.38, + "end": 5300.58, + "probability": 0.2746 + }, + { + "start": 5301.06, + "end": 5302.26, + "probability": 0.0041 + }, + { + "start": 5305.33, + "end": 5308.06, + "probability": 0.9976 + }, + { + "start": 5313.38, + "end": 5316.44, + "probability": 0.9083 + }, + { + "start": 5324.1, + "end": 5325.18, + "probability": 0.2839 + }, + { + "start": 5325.54, + "end": 5327.72, + "probability": 0.8167 + }, + { + "start": 5328.34, + "end": 5332.46, + "probability": 0.9184 + }, + { + "start": 5332.86, + "end": 5333.98, + "probability": 0.4223 + }, + { + "start": 5334.79, + "end": 5337.86, + "probability": 0.4636 + }, + { + "start": 5341.04, + "end": 5342.02, + "probability": 0.3206 + }, + { + "start": 5343.19, + "end": 5344.52, + "probability": 0.8596 + }, + { + "start": 5345.58, + "end": 5347.5, + "probability": 0.9697 + }, + { + "start": 5348.0, + "end": 5352.12, + "probability": 0.8136 + }, + { + "start": 5352.26, + "end": 5353.38, + "probability": 0.9044 + }, + { + "start": 5353.5, + "end": 5356.08, + "probability": 0.9868 + }, + { + "start": 5357.1, + "end": 5359.26, + "probability": 0.8645 + }, + { + "start": 5359.76, + "end": 5361.38, + "probability": 0.7351 + }, + { + "start": 5362.0, + "end": 5363.84, + "probability": 0.484 + }, + { + "start": 5364.08, + "end": 5365.82, + "probability": 0.3016 + }, + { + "start": 5365.94, + "end": 5368.98, + "probability": 0.9842 + }, + { + "start": 5371.22, + "end": 5373.4, + "probability": 0.7742 + }, + { + "start": 5374.74, + "end": 5377.1, + "probability": 0.9863 + }, + { + "start": 5377.1, + "end": 5380.56, + "probability": 0.9971 + }, + { + "start": 5381.46, + "end": 5386.26, + "probability": 0.9875 + }, + { + "start": 5387.02, + "end": 5391.84, + "probability": 0.9575 + }, + { + "start": 5392.38, + "end": 5396.32, + "probability": 0.9792 + }, + { + "start": 5396.94, + "end": 5398.92, + "probability": 0.9911 + }, + { + "start": 5400.14, + "end": 5404.56, + "probability": 0.9805 + }, + { + "start": 5405.06, + "end": 5408.14, + "probability": 0.8869 + }, + { + "start": 5408.14, + "end": 5412.4, + "probability": 0.9349 + }, + { + "start": 5412.8, + "end": 5416.54, + "probability": 0.9513 + }, + { + "start": 5417.54, + "end": 5420.94, + "probability": 0.8812 + }, + { + "start": 5421.34, + "end": 5427.62, + "probability": 0.9991 + }, + { + "start": 5428.78, + "end": 5429.32, + "probability": 0.5657 + }, + { + "start": 5430.6, + "end": 5437.36, + "probability": 0.4385 + }, + { + "start": 5438.58, + "end": 5438.66, + "probability": 0.364 + }, + { + "start": 5438.66, + "end": 5440.68, + "probability": 0.0547 + }, + { + "start": 5441.52, + "end": 5441.66, + "probability": 0.066 + }, + { + "start": 5453.12, + "end": 5459.34, + "probability": 0.5319 + }, + { + "start": 5459.38, + "end": 5460.08, + "probability": 0.2875 + }, + { + "start": 5460.18, + "end": 5461.98, + "probability": 0.9624 + }, + { + "start": 5463.2, + "end": 5463.82, + "probability": 0.7642 + }, + { + "start": 5463.86, + "end": 5464.48, + "probability": 0.7005 + }, + { + "start": 5464.64, + "end": 5465.7, + "probability": 0.6473 + }, + { + "start": 5465.86, + "end": 5468.78, + "probability": 0.9795 + }, + { + "start": 5468.78, + "end": 5471.94, + "probability": 0.9865 + }, + { + "start": 5472.64, + "end": 5474.44, + "probability": 0.9725 + }, + { + "start": 5475.1, + "end": 5478.28, + "probability": 0.8228 + }, + { + "start": 5479.08, + "end": 5482.28, + "probability": 0.9246 + }, + { + "start": 5483.54, + "end": 5487.74, + "probability": 0.9876 + }, + { + "start": 5487.74, + "end": 5492.34, + "probability": 0.9993 + }, + { + "start": 5493.26, + "end": 5500.62, + "probability": 0.9985 + }, + { + "start": 5501.36, + "end": 5506.86, + "probability": 0.9749 + }, + { + "start": 5507.72, + "end": 5511.44, + "probability": 0.9766 + }, + { + "start": 5511.44, + "end": 5514.42, + "probability": 0.998 + }, + { + "start": 5515.1, + "end": 5516.66, + "probability": 0.7271 + }, + { + "start": 5517.06, + "end": 5519.8, + "probability": 0.9966 + }, + { + "start": 5520.52, + "end": 5525.72, + "probability": 0.9945 + }, + { + "start": 5525.9, + "end": 5526.3, + "probability": 0.7815 + }, + { + "start": 5526.56, + "end": 5527.08, + "probability": 0.5363 + }, + { + "start": 5527.66, + "end": 5531.12, + "probability": 0.9004 + }, + { + "start": 5543.26, + "end": 5544.2, + "probability": 0.623 + }, + { + "start": 5545.1, + "end": 5549.92, + "probability": 0.9849 + }, + { + "start": 5551.12, + "end": 5556.56, + "probability": 0.9861 + }, + { + "start": 5557.08, + "end": 5561.82, + "probability": 0.9919 + }, + { + "start": 5561.82, + "end": 5567.06, + "probability": 0.9987 + }, + { + "start": 5567.98, + "end": 5572.52, + "probability": 0.9985 + }, + { + "start": 5573.26, + "end": 5577.58, + "probability": 0.9939 + }, + { + "start": 5578.52, + "end": 5583.72, + "probability": 0.9987 + }, + { + "start": 5584.24, + "end": 5587.74, + "probability": 0.9814 + }, + { + "start": 5588.0, + "end": 5588.22, + "probability": 0.6896 + }, + { + "start": 5588.46, + "end": 5590.86, + "probability": 0.981 + }, + { + "start": 5591.4, + "end": 5595.68, + "probability": 0.9115 + }, + { + "start": 5606.14, + "end": 5609.0, + "probability": 0.8638 + }, + { + "start": 5610.02, + "end": 5612.3, + "probability": 0.0293 + }, + { + "start": 5623.76, + "end": 5627.26, + "probability": 0.6706 + }, + { + "start": 5627.4, + "end": 5630.26, + "probability": 0.925 + }, + { + "start": 5632.82, + "end": 5635.28, + "probability": 0.9983 + }, + { + "start": 5635.28, + "end": 5639.44, + "probability": 0.9855 + }, + { + "start": 5640.02, + "end": 5642.62, + "probability": 0.9967 + }, + { + "start": 5644.4, + "end": 5648.44, + "probability": 0.9897 + }, + { + "start": 5648.6, + "end": 5652.18, + "probability": 0.9375 + }, + { + "start": 5654.18, + "end": 5657.54, + "probability": 0.9964 + }, + { + "start": 5657.7, + "end": 5658.94, + "probability": 0.9542 + }, + { + "start": 5659.32, + "end": 5662.02, + "probability": 0.9564 + }, + { + "start": 5662.7, + "end": 5663.56, + "probability": 0.9615 + }, + { + "start": 5665.32, + "end": 5668.16, + "probability": 0.7477 + }, + { + "start": 5668.92, + "end": 5671.8, + "probability": 0.8727 + }, + { + "start": 5672.84, + "end": 5674.1, + "probability": 0.6541 + }, + { + "start": 5674.92, + "end": 5677.12, + "probability": 0.8875 + }, + { + "start": 5678.44, + "end": 5679.04, + "probability": 0.5686 + }, + { + "start": 5680.06, + "end": 5681.5, + "probability": 0.7591 + }, + { + "start": 5700.06, + "end": 5700.66, + "probability": 0.101 + }, + { + "start": 5700.66, + "end": 5701.36, + "probability": 0.4094 + }, + { + "start": 5702.46, + "end": 5704.56, + "probability": 0.8063 + }, + { + "start": 5705.16, + "end": 5706.74, + "probability": 0.921 + }, + { + "start": 5707.84, + "end": 5716.08, + "probability": 0.7235 + }, + { + "start": 5716.14, + "end": 5716.84, + "probability": 0.4082 + }, + { + "start": 5717.28, + "end": 5717.94, + "probability": 0.6861 + }, + { + "start": 5728.4, + "end": 5728.4, + "probability": 0.0488 + }, + { + "start": 5728.42, + "end": 5728.42, + "probability": 0.0002 + }, + { + "start": 5737.68, + "end": 5741.96, + "probability": 0.4586 + }, + { + "start": 5742.48, + "end": 5744.02, + "probability": 0.8552 + }, + { + "start": 5745.52, + "end": 5749.76, + "probability": 0.0035 + }, + { + "start": 5750.48, + "end": 5754.46, + "probability": 0.9675 + }, + { + "start": 5755.8, + "end": 5756.66, + "probability": 0.8897 + }, + { + "start": 5758.28, + "end": 5762.78, + "probability": 0.5754 + }, + { + "start": 5762.88, + "end": 5763.42, + "probability": 0.3634 + }, + { + "start": 5784.06, + "end": 5784.2, + "probability": 0.0664 + }, + { + "start": 5784.2, + "end": 5787.4, + "probability": 0.4922 + }, + { + "start": 5787.46, + "end": 5788.84, + "probability": 0.8318 + }, + { + "start": 5789.56, + "end": 5791.66, + "probability": 0.9814 + }, + { + "start": 5793.14, + "end": 5793.98, + "probability": 0.661 + }, + { + "start": 5794.04, + "end": 5794.76, + "probability": 0.7629 + }, + { + "start": 5795.68, + "end": 5796.4, + "probability": 0.4603 + }, + { + "start": 5797.22, + "end": 5799.4, + "probability": 0.1955 + }, + { + "start": 5810.92, + "end": 5811.56, + "probability": 0.036 + }, + { + "start": 5811.56, + "end": 5812.18, + "probability": 0.4406 + }, + { + "start": 5813.04, + "end": 5815.22, + "probability": 0.5154 + }, + { + "start": 5815.62, + "end": 5817.14, + "probability": 0.8084 + }, + { + "start": 5818.18, + "end": 5822.94, + "probability": 0.6589 + }, + { + "start": 5823.0, + "end": 5823.62, + "probability": 0.658 + }, + { + "start": 5824.28, + "end": 5824.9, + "probability": 0.4729 + }, + { + "start": 5830.82, + "end": 5831.86, + "probability": 0.7401 + }, + { + "start": 5833.71, + "end": 5841.8, + "probability": 0.1822 + }, + { + "start": 5843.6, + "end": 5845.08, + "probability": 0.3611 + }, + { + "start": 5845.68, + "end": 5847.78, + "probability": 0.7608 + }, + { + "start": 5848.24, + "end": 5849.7, + "probability": 0.9609 + }, + { + "start": 5850.6, + "end": 5852.66, + "probability": 0.7201 + }, + { + "start": 5854.0, + "end": 5854.58, + "probability": 0.5826 + }, + { + "start": 5855.18, + "end": 5856.5, + "probability": 0.3891 + }, + { + "start": 5856.5, + "end": 5857.36, + "probability": 0.8021 + }, + { + "start": 5876.54, + "end": 5877.42, + "probability": 0.079 + }, + { + "start": 5877.42, + "end": 5877.52, + "probability": 0.3839 + }, + { + "start": 5878.88, + "end": 5881.22, + "probability": 0.6433 + }, + { + "start": 5881.34, + "end": 5882.48, + "probability": 0.9355 + }, + { + "start": 5883.7, + "end": 5887.1, + "probability": 0.9832 + }, + { + "start": 5888.94, + "end": 5889.68, + "probability": 0.6178 + }, + { + "start": 5890.58, + "end": 5891.42, + "probability": 0.7424 + }, + { + "start": 5891.48, + "end": 5895.86, + "probability": 0.7422 + }, + { + "start": 5897.38, + "end": 5905.04, + "probability": 0.1055 + }, + { + "start": 5907.46, + "end": 5911.22, + "probability": 0.6488 + }, + { + "start": 5911.34, + "end": 5913.02, + "probability": 0.826 + }, + { + "start": 5914.3, + "end": 5915.42, + "probability": 0.841 + }, + { + "start": 5916.72, + "end": 5918.38, + "probability": 0.7836 + }, + { + "start": 5918.72, + "end": 5921.26, + "probability": 0.8937 + }, + { + "start": 5922.34, + "end": 5924.0, + "probability": 0.5415 + }, + { + "start": 5924.58, + "end": 5924.96, + "probability": 0.1446 + }, + { + "start": 5925.76, + "end": 5929.32, + "probability": 0.9521 + }, + { + "start": 5929.88, + "end": 5933.56, + "probability": 0.5879 + }, + { + "start": 5944.78, + "end": 5950.58, + "probability": 0.8079 + }, + { + "start": 5951.62, + "end": 5953.06, + "probability": 0.8816 + }, + { + "start": 5966.36, + "end": 5969.32, + "probability": 0.5758 + }, + { + "start": 5970.3, + "end": 5970.7, + "probability": 0.9089 + }, + { + "start": 5972.16, + "end": 5973.88, + "probability": 0.7532 + }, + { + "start": 5975.36, + "end": 5977.3, + "probability": 0.7677 + }, + { + "start": 5978.4, + "end": 5979.64, + "probability": 0.9499 + }, + { + "start": 5980.84, + "end": 5982.06, + "probability": 0.7138 + }, + { + "start": 5982.52, + "end": 5984.32, + "probability": 0.8334 + }, + { + "start": 5985.12, + "end": 5986.88, + "probability": 0.9649 + }, + { + "start": 5987.54, + "end": 5989.32, + "probability": 0.895 + }, + { + "start": 5990.46, + "end": 5992.8, + "probability": 0.6002 + }, + { + "start": 5993.46, + "end": 5995.03, + "probability": 0.3491 + }, + { + "start": 5999.36, + "end": 6000.66, + "probability": 0.7204 + }, + { + "start": 6003.24, + "end": 6004.9, + "probability": 0.7594 + }, + { + "start": 6006.24, + "end": 6008.4, + "probability": 0.9677 + }, + { + "start": 6008.96, + "end": 6009.18, + "probability": 0.1061 + }, + { + "start": 6010.22, + "end": 6011.38, + "probability": 0.8177 + }, + { + "start": 6012.3, + "end": 6014.96, + "probability": 0.4866 + }, + { + "start": 6016.24, + "end": 6020.46, + "probability": 0.4365 + }, + { + "start": 6020.52, + "end": 6025.4, + "probability": 0.9199 + }, + { + "start": 6025.4, + "end": 6030.77, + "probability": 0.8537 + }, + { + "start": 6031.72, + "end": 6035.16, + "probability": 0.9905 + }, + { + "start": 6036.5, + "end": 6038.26, + "probability": 0.9877 + }, + { + "start": 6039.1, + "end": 6042.4, + "probability": 0.9607 + }, + { + "start": 6043.3, + "end": 6048.7, + "probability": 0.9927 + }, + { + "start": 6048.7, + "end": 6055.1, + "probability": 0.995 + }, + { + "start": 6056.26, + "end": 6057.06, + "probability": 0.8351 + }, + { + "start": 6057.96, + "end": 6059.32, + "probability": 0.9944 + }, + { + "start": 6059.96, + "end": 6063.88, + "probability": 0.9936 + }, + { + "start": 6064.06, + "end": 6068.68, + "probability": 0.9966 + }, + { + "start": 6069.52, + "end": 6074.1, + "probability": 0.995 + }, + { + "start": 6075.44, + "end": 6077.46, + "probability": 0.8551 + }, + { + "start": 6079.56, + "end": 6081.26, + "probability": 0.9573 + }, + { + "start": 6082.24, + "end": 6085.04, + "probability": 0.9382 + }, + { + "start": 6085.04, + "end": 6088.54, + "probability": 0.9667 + }, + { + "start": 6089.36, + "end": 6090.78, + "probability": 0.8892 + }, + { + "start": 6091.38, + "end": 6093.08, + "probability": 0.7918 + }, + { + "start": 6093.66, + "end": 6098.64, + "probability": 0.7733 + }, + { + "start": 6099.34, + "end": 6100.6, + "probability": 0.8545 + }, + { + "start": 6101.32, + "end": 6104.88, + "probability": 0.939 + }, + { + "start": 6105.98, + "end": 6109.6, + "probability": 0.6953 + }, + { + "start": 6110.66, + "end": 6113.14, + "probability": 0.9523 + }, + { + "start": 6113.98, + "end": 6120.4, + "probability": 0.9969 + }, + { + "start": 6121.14, + "end": 6124.8, + "probability": 0.9424 + }, + { + "start": 6125.6, + "end": 6128.52, + "probability": 0.9946 + }, + { + "start": 6130.12, + "end": 6130.82, + "probability": 0.643 + }, + { + "start": 6131.76, + "end": 6136.22, + "probability": 0.99 + }, + { + "start": 6136.24, + "end": 6140.38, + "probability": 0.9774 + }, + { + "start": 6141.2, + "end": 6143.18, + "probability": 0.8118 + }, + { + "start": 6144.18, + "end": 6149.5, + "probability": 0.998 + }, + { + "start": 6150.28, + "end": 6152.48, + "probability": 0.9991 + }, + { + "start": 6152.7, + "end": 6155.38, + "probability": 0.9818 + }, + { + "start": 6156.64, + "end": 6161.66, + "probability": 0.9944 + }, + { + "start": 6162.54, + "end": 6166.76, + "probability": 0.8734 + }, + { + "start": 6167.62, + "end": 6173.24, + "probability": 0.985 + }, + { + "start": 6174.36, + "end": 6175.02, + "probability": 0.789 + }, + { + "start": 6175.7, + "end": 6178.6, + "probability": 0.9984 + }, + { + "start": 6179.34, + "end": 6181.38, + "probability": 0.9928 + }, + { + "start": 6182.54, + "end": 6184.74, + "probability": 0.9557 + }, + { + "start": 6185.56, + "end": 6189.04, + "probability": 0.9972 + }, + { + "start": 6189.84, + "end": 6192.4, + "probability": 0.9792 + }, + { + "start": 6193.08, + "end": 6197.2, + "probability": 0.9219 + }, + { + "start": 6197.92, + "end": 6201.64, + "probability": 0.9819 + }, + { + "start": 6202.36, + "end": 6205.64, + "probability": 0.8835 + }, + { + "start": 6206.0, + "end": 6206.74, + "probability": 0.829 + }, + { + "start": 6207.74, + "end": 6209.06, + "probability": 0.5372 + }, + { + "start": 6209.62, + "end": 6211.49, + "probability": 0.3007 + }, + { + "start": 6213.06, + "end": 6214.2, + "probability": 0.9618 + }, + { + "start": 6214.66, + "end": 6215.44, + "probability": 0.8165 + }, + { + "start": 6216.26, + "end": 6219.58, + "probability": 0.9626 + }, + { + "start": 6221.02, + "end": 6223.68, + "probability": 0.8946 + }, + { + "start": 6224.42, + "end": 6227.28, + "probability": 0.9856 + }, + { + "start": 6227.96, + "end": 6228.94, + "probability": 0.9268 + }, + { + "start": 6229.82, + "end": 6232.88, + "probability": 0.5949 + }, + { + "start": 6233.18, + "end": 6234.72, + "probability": 0.9678 + }, + { + "start": 6235.4, + "end": 6238.28, + "probability": 0.695 + }, + { + "start": 6238.8, + "end": 6239.24, + "probability": 0.9204 + }, + { + "start": 6239.66, + "end": 6239.92, + "probability": 0.8773 + }, + { + "start": 6251.5, + "end": 6255.24, + "probability": 0.7758 + }, + { + "start": 6256.86, + "end": 6261.78, + "probability": 0.9012 + }, + { + "start": 6262.82, + "end": 6266.36, + "probability": 0.9906 + }, + { + "start": 6267.22, + "end": 6269.58, + "probability": 0.9888 + }, + { + "start": 6270.4, + "end": 6274.22, + "probability": 0.9512 + }, + { + "start": 6274.98, + "end": 6278.86, + "probability": 0.8106 + }, + { + "start": 6280.54, + "end": 6282.68, + "probability": 0.9038 + }, + { + "start": 6283.78, + "end": 6284.78, + "probability": 0.876 + }, + { + "start": 6284.94, + "end": 6286.62, + "probability": 0.9897 + }, + { + "start": 6286.78, + "end": 6288.14, + "probability": 0.9963 + }, + { + "start": 6289.2, + "end": 6289.92, + "probability": 0.928 + }, + { + "start": 6290.48, + "end": 6291.56, + "probability": 0.7358 + }, + { + "start": 6292.0, + "end": 6295.52, + "probability": 0.9583 + }, + { + "start": 6295.98, + "end": 6296.94, + "probability": 0.9167 + }, + { + "start": 6298.04, + "end": 6305.86, + "probability": 0.989 + }, + { + "start": 6306.38, + "end": 6306.94, + "probability": 0.9263 + }, + { + "start": 6307.06, + "end": 6308.1, + "probability": 0.9832 + }, + { + "start": 6308.32, + "end": 6309.71, + "probability": 0.9854 + }, + { + "start": 6310.84, + "end": 6311.44, + "probability": 0.7699 + }, + { + "start": 6311.9, + "end": 6315.84, + "probability": 0.9907 + }, + { + "start": 6317.38, + "end": 6321.34, + "probability": 0.9855 + }, + { + "start": 6322.29, + "end": 6326.36, + "probability": 0.9807 + }, + { + "start": 6328.02, + "end": 6329.98, + "probability": 0.7369 + }, + { + "start": 6330.84, + "end": 6333.84, + "probability": 0.997 + }, + { + "start": 6334.62, + "end": 6338.9, + "probability": 0.9603 + }, + { + "start": 6339.46, + "end": 6341.52, + "probability": 0.9882 + }, + { + "start": 6342.54, + "end": 6344.2, + "probability": 0.9849 + }, + { + "start": 6344.76, + "end": 6348.42, + "probability": 0.9893 + }, + { + "start": 6349.86, + "end": 6352.6, + "probability": 0.4953 + }, + { + "start": 6353.72, + "end": 6355.7, + "probability": 0.9941 + }, + { + "start": 6356.68, + "end": 6359.36, + "probability": 0.9845 + }, + { + "start": 6360.42, + "end": 6361.3, + "probability": 0.8745 + }, + { + "start": 6361.94, + "end": 6364.72, + "probability": 0.9922 + }, + { + "start": 6365.32, + "end": 6367.48, + "probability": 0.9948 + }, + { + "start": 6367.96, + "end": 6370.94, + "probability": 0.9945 + }, + { + "start": 6373.16, + "end": 6376.3, + "probability": 0.9967 + }, + { + "start": 6377.26, + "end": 6380.14, + "probability": 0.999 + }, + { + "start": 6381.76, + "end": 6382.6, + "probability": 0.81 + }, + { + "start": 6382.82, + "end": 6386.4, + "probability": 0.9987 + }, + { + "start": 6386.4, + "end": 6390.98, + "probability": 0.9971 + }, + { + "start": 6392.18, + "end": 6398.28, + "probability": 0.9969 + }, + { + "start": 6398.38, + "end": 6399.56, + "probability": 0.8644 + }, + { + "start": 6399.94, + "end": 6401.72, + "probability": 0.9481 + }, + { + "start": 6402.58, + "end": 6404.82, + "probability": 0.9832 + }, + { + "start": 6405.42, + "end": 6407.66, + "probability": 0.9849 + }, + { + "start": 6408.24, + "end": 6411.04, + "probability": 0.9632 + }, + { + "start": 6411.62, + "end": 6412.54, + "probability": 0.7512 + }, + { + "start": 6412.62, + "end": 6413.34, + "probability": 0.972 + }, + { + "start": 6413.42, + "end": 6415.48, + "probability": 0.9922 + }, + { + "start": 6416.46, + "end": 6417.0, + "probability": 0.7203 + }, + { + "start": 6417.54, + "end": 6420.06, + "probability": 0.9202 + }, + { + "start": 6420.84, + "end": 6424.48, + "probability": 0.9046 + }, + { + "start": 6425.44, + "end": 6426.5, + "probability": 0.8261 + }, + { + "start": 6427.02, + "end": 6430.76, + "probability": 0.9928 + }, + { + "start": 6431.72, + "end": 6437.98, + "probability": 0.9582 + }, + { + "start": 6437.98, + "end": 6441.44, + "probability": 0.9963 + }, + { + "start": 6442.2, + "end": 6442.96, + "probability": 0.0319 + }, + { + "start": 6448.42, + "end": 6449.58, + "probability": 0.683 + }, + { + "start": 6449.94, + "end": 6452.96, + "probability": 0.9754 + }, + { + "start": 6454.34, + "end": 6455.14, + "probability": 0.729 + }, + { + "start": 6455.14, + "end": 6455.61, + "probability": 0.9768 + }, + { + "start": 6455.9, + "end": 6456.02, + "probability": 0.6029 + }, + { + "start": 6456.02, + "end": 6456.8, + "probability": 0.7003 + }, + { + "start": 6456.88, + "end": 6457.3, + "probability": 0.6684 + }, + { + "start": 6457.36, + "end": 6459.26, + "probability": 0.9788 + }, + { + "start": 6460.36, + "end": 6461.62, + "probability": 0.8054 + }, + { + "start": 6462.24, + "end": 6467.24, + "probability": 0.9956 + }, + { + "start": 6468.1, + "end": 6470.42, + "probability": 0.9133 + }, + { + "start": 6470.92, + "end": 6474.1, + "probability": 0.9766 + }, + { + "start": 6474.74, + "end": 6476.36, + "probability": 0.8622 + }, + { + "start": 6476.88, + "end": 6479.94, + "probability": 0.9169 + }, + { + "start": 6481.04, + "end": 6481.54, + "probability": 0.8081 + }, + { + "start": 6481.68, + "end": 6484.48, + "probability": 0.9922 + }, + { + "start": 6484.58, + "end": 6485.66, + "probability": 0.6317 + }, + { + "start": 6485.84, + "end": 6485.94, + "probability": 0.1124 + }, + { + "start": 6485.96, + "end": 6486.88, + "probability": 0.5699 + }, + { + "start": 6488.0, + "end": 6489.38, + "probability": 0.9412 + }, + { + "start": 6490.04, + "end": 6492.5, + "probability": 0.9995 + }, + { + "start": 6493.28, + "end": 6495.7, + "probability": 0.7334 + }, + { + "start": 6496.5, + "end": 6499.06, + "probability": 0.9922 + }, + { + "start": 6499.86, + "end": 6501.78, + "probability": 0.9951 + }, + { + "start": 6501.84, + "end": 6504.6, + "probability": 0.9795 + }, + { + "start": 6505.1, + "end": 6506.32, + "probability": 0.9945 + }, + { + "start": 6507.04, + "end": 6507.88, + "probability": 0.9366 + }, + { + "start": 6508.42, + "end": 6510.8, + "probability": 0.9014 + }, + { + "start": 6511.18, + "end": 6512.36, + "probability": 0.965 + }, + { + "start": 6513.08, + "end": 6516.34, + "probability": 0.9933 + }, + { + "start": 6516.44, + "end": 6519.34, + "probability": 0.993 + }, + { + "start": 6520.22, + "end": 6521.16, + "probability": 0.9273 + }, + { + "start": 6521.64, + "end": 6525.32, + "probability": 0.9825 + }, + { + "start": 6525.64, + "end": 6530.4, + "probability": 0.9954 + }, + { + "start": 6530.8, + "end": 6531.92, + "probability": 0.9831 + }, + { + "start": 6532.08, + "end": 6532.42, + "probability": 0.7808 + }, + { + "start": 6533.08, + "end": 6535.12, + "probability": 0.8063 + }, + { + "start": 6536.04, + "end": 6538.84, + "probability": 0.9812 + }, + { + "start": 6539.68, + "end": 6540.74, + "probability": 0.6984 + }, + { + "start": 6541.36, + "end": 6541.76, + "probability": 0.4759 + }, + { + "start": 6542.58, + "end": 6544.3, + "probability": 0.8364 + }, + { + "start": 6545.2, + "end": 6545.98, + "probability": 0.865 + }, + { + "start": 6547.06, + "end": 6548.28, + "probability": 0.9799 + }, + { + "start": 6548.9, + "end": 6550.02, + "probability": 0.938 + }, + { + "start": 6551.46, + "end": 6553.32, + "probability": 0.9927 + }, + { + "start": 6555.98, + "end": 6557.92, + "probability": 0.739 + }, + { + "start": 6559.1, + "end": 6559.85, + "probability": 0.0484 + }, + { + "start": 6563.26, + "end": 6565.94, + "probability": 0.806 + }, + { + "start": 6569.92, + "end": 6572.2, + "probability": 0.8569 + }, + { + "start": 6573.5, + "end": 6575.94, + "probability": 0.9867 + }, + { + "start": 6577.48, + "end": 6578.88, + "probability": 0.6919 + }, + { + "start": 6578.98, + "end": 6580.56, + "probability": 0.6533 + }, + { + "start": 6581.14, + "end": 6583.34, + "probability": 0.8903 + }, + { + "start": 6585.62, + "end": 6586.88, + "probability": 0.9984 + }, + { + "start": 6587.62, + "end": 6588.48, + "probability": 0.912 + }, + { + "start": 6589.08, + "end": 6591.08, + "probability": 0.7281 + }, + { + "start": 6592.42, + "end": 6594.0, + "probability": 0.2792 + }, + { + "start": 6594.86, + "end": 6595.66, + "probability": 0.5379 + }, + { + "start": 6598.22, + "end": 6599.72, + "probability": 0.0409 + }, + { + "start": 6599.9, + "end": 6600.26, + "probability": 0.2795 + }, + { + "start": 6600.58, + "end": 6601.56, + "probability": 0.5242 + }, + { + "start": 6602.7, + "end": 6603.34, + "probability": 0.6786 + }, + { + "start": 6603.72, + "end": 6606.38, + "probability": 0.6978 + }, + { + "start": 6607.64, + "end": 6608.02, + "probability": 0.28 + }, + { + "start": 6608.14, + "end": 6608.56, + "probability": 0.6725 + }, + { + "start": 6608.56, + "end": 6608.86, + "probability": 0.2666 + }, + { + "start": 6609.04, + "end": 6613.28, + "probability": 0.9257 + }, + { + "start": 6620.52, + "end": 6620.64, + "probability": 0.076 + }, + { + "start": 6633.98, + "end": 6635.14, + "probability": 0.3611 + }, + { + "start": 6635.92, + "end": 6639.26, + "probability": 0.5864 + }, + { + "start": 6641.08, + "end": 6641.76, + "probability": 0.7558 + }, + { + "start": 6643.22, + "end": 6645.58, + "probability": 0.9338 + }, + { + "start": 6646.76, + "end": 6649.48, + "probability": 0.8658 + }, + { + "start": 6650.86, + "end": 6653.98, + "probability": 0.9845 + }, + { + "start": 6654.86, + "end": 6657.46, + "probability": 0.487 + }, + { + "start": 6658.34, + "end": 6659.26, + "probability": 0.9715 + }, + { + "start": 6660.64, + "end": 6662.52, + "probability": 0.8914 + }, + { + "start": 6663.78, + "end": 6668.28, + "probability": 0.8866 + }, + { + "start": 6669.62, + "end": 6671.72, + "probability": 0.9691 + }, + { + "start": 6673.08, + "end": 6674.18, + "probability": 0.9877 + }, + { + "start": 6675.18, + "end": 6676.04, + "probability": 0.921 + }, + { + "start": 6677.22, + "end": 6679.74, + "probability": 0.984 + }, + { + "start": 6680.62, + "end": 6683.16, + "probability": 0.9991 + }, + { + "start": 6687.86, + "end": 6689.0, + "probability": 0.9092 + }, + { + "start": 6689.1, + "end": 6689.58, + "probability": 0.6069 + }, + { + "start": 6691.22, + "end": 6694.98, + "probability": 0.8625 + }, + { + "start": 6695.66, + "end": 6697.54, + "probability": 0.9043 + }, + { + "start": 6699.16, + "end": 6701.26, + "probability": 0.9132 + }, + { + "start": 6701.58, + "end": 6703.46, + "probability": 0.7964 + }, + { + "start": 6704.02, + "end": 6705.74, + "probability": 0.9467 + }, + { + "start": 6706.94, + "end": 6709.28, + "probability": 0.9463 + }, + { + "start": 6710.06, + "end": 6711.78, + "probability": 0.9773 + }, + { + "start": 6712.64, + "end": 6713.6, + "probability": 0.9858 + }, + { + "start": 6714.46, + "end": 6715.32, + "probability": 0.9036 + }, + { + "start": 6715.86, + "end": 6718.24, + "probability": 0.9967 + }, + { + "start": 6719.1, + "end": 6722.06, + "probability": 0.9925 + }, + { + "start": 6722.78, + "end": 6723.82, + "probability": 0.8258 + }, + { + "start": 6723.94, + "end": 6724.72, + "probability": 0.5868 + }, + { + "start": 6725.38, + "end": 6725.66, + "probability": 0.6921 + }, + { + "start": 6726.66, + "end": 6727.64, + "probability": 0.9871 + }, + { + "start": 6728.6, + "end": 6731.02, + "probability": 0.9144 + }, + { + "start": 6731.62, + "end": 6733.4, + "probability": 0.8532 + }, + { + "start": 6733.54, + "end": 6734.58, + "probability": 0.9907 + }, + { + "start": 6735.54, + "end": 6739.58, + "probability": 0.9883 + }, + { + "start": 6740.3, + "end": 6743.44, + "probability": 0.9412 + }, + { + "start": 6745.18, + "end": 6746.26, + "probability": 0.9326 + }, + { + "start": 6747.12, + "end": 6751.18, + "probability": 0.9849 + }, + { + "start": 6751.9, + "end": 6754.16, + "probability": 0.974 + }, + { + "start": 6754.8, + "end": 6755.46, + "probability": 0.9883 + }, + { + "start": 6756.06, + "end": 6760.0, + "probability": 0.9134 + }, + { + "start": 6760.0, + "end": 6765.28, + "probability": 0.9989 + }, + { + "start": 6765.38, + "end": 6766.36, + "probability": 0.8916 + }, + { + "start": 6767.5, + "end": 6771.42, + "probability": 0.9929 + }, + { + "start": 6771.94, + "end": 6773.44, + "probability": 0.9912 + }, + { + "start": 6774.54, + "end": 6775.5, + "probability": 0.9485 + }, + { + "start": 6776.68, + "end": 6777.42, + "probability": 0.6463 + }, + { + "start": 6777.52, + "end": 6778.46, + "probability": 0.856 + }, + { + "start": 6778.5, + "end": 6780.52, + "probability": 0.9562 + }, + { + "start": 6781.8, + "end": 6783.8, + "probability": 0.9272 + }, + { + "start": 6784.1, + "end": 6784.34, + "probability": 0.8011 + }, + { + "start": 6785.72, + "end": 6787.92, + "probability": 0.9653 + }, + { + "start": 6789.08, + "end": 6791.66, + "probability": 0.9251 + }, + { + "start": 6794.74, + "end": 6796.4, + "probability": 0.9165 + }, + { + "start": 6801.26, + "end": 6801.36, + "probability": 0.1084 + }, + { + "start": 6801.36, + "end": 6804.36, + "probability": 0.7144 + }, + { + "start": 6805.48, + "end": 6806.72, + "probability": 0.5694 + }, + { + "start": 6807.24, + "end": 6808.5, + "probability": 0.5928 + }, + { + "start": 6808.6, + "end": 6810.46, + "probability": 0.8818 + }, + { + "start": 6811.66, + "end": 6815.72, + "probability": 0.8847 + }, + { + "start": 6816.7, + "end": 6820.78, + "probability": 0.8727 + }, + { + "start": 6821.32, + "end": 6822.18, + "probability": 0.6773 + }, + { + "start": 6822.32, + "end": 6824.24, + "probability": 0.965 + }, + { + "start": 6825.92, + "end": 6828.06, + "probability": 0.8473 + }, + { + "start": 6829.2, + "end": 6830.32, + "probability": 0.946 + }, + { + "start": 6830.54, + "end": 6831.76, + "probability": 0.8331 + }, + { + "start": 6831.98, + "end": 6836.9, + "probability": 0.9558 + }, + { + "start": 6837.72, + "end": 6838.88, + "probability": 0.807 + }, + { + "start": 6839.48, + "end": 6840.25, + "probability": 0.4876 + }, + { + "start": 6840.52, + "end": 6841.92, + "probability": 0.9851 + }, + { + "start": 6842.7, + "end": 6843.4, + "probability": 0.8031 + }, + { + "start": 6843.44, + "end": 6848.8, + "probability": 0.9786 + }, + { + "start": 6849.56, + "end": 6850.9, + "probability": 0.8467 + }, + { + "start": 6851.82, + "end": 6854.66, + "probability": 0.9967 + }, + { + "start": 6855.38, + "end": 6857.13, + "probability": 0.938 + }, + { + "start": 6858.84, + "end": 6859.16, + "probability": 0.7357 + }, + { + "start": 6859.58, + "end": 6861.26, + "probability": 0.9606 + }, + { + "start": 6861.32, + "end": 6864.42, + "probability": 0.8022 + }, + { + "start": 6864.42, + "end": 6866.18, + "probability": 0.9867 + }, + { + "start": 6867.52, + "end": 6871.18, + "probability": 0.9946 + }, + { + "start": 6872.54, + "end": 6876.64, + "probability": 0.9223 + }, + { + "start": 6877.78, + "end": 6879.1, + "probability": 0.9973 + }, + { + "start": 6879.42, + "end": 6881.12, + "probability": 0.9922 + }, + { + "start": 6882.06, + "end": 6884.72, + "probability": 0.8578 + }, + { + "start": 6885.26, + "end": 6886.04, + "probability": 0.5237 + }, + { + "start": 6886.7, + "end": 6889.76, + "probability": 0.9774 + }, + { + "start": 6890.8, + "end": 6892.58, + "probability": 0.9086 + }, + { + "start": 6893.94, + "end": 6895.26, + "probability": 0.8845 + }, + { + "start": 6895.88, + "end": 6897.66, + "probability": 0.9423 + }, + { + "start": 6898.96, + "end": 6899.88, + "probability": 0.9515 + }, + { + "start": 6900.12, + "end": 6900.66, + "probability": 0.6412 + }, + { + "start": 6900.78, + "end": 6901.0, + "probability": 0.811 + }, + { + "start": 6901.1, + "end": 6901.86, + "probability": 0.7734 + }, + { + "start": 6902.0, + "end": 6903.42, + "probability": 0.9231 + }, + { + "start": 6903.46, + "end": 6905.24, + "probability": 0.9963 + }, + { + "start": 6907.52, + "end": 6909.12, + "probability": 0.7966 + }, + { + "start": 6910.28, + "end": 6911.7, + "probability": 0.9963 + }, + { + "start": 6911.74, + "end": 6912.38, + "probability": 0.4722 + }, + { + "start": 6912.72, + "end": 6913.34, + "probability": 0.6698 + }, + { + "start": 6913.9, + "end": 6914.6, + "probability": 0.7596 + }, + { + "start": 6916.8, + "end": 6921.46, + "probability": 0.9954 + }, + { + "start": 6922.7, + "end": 6926.78, + "probability": 0.8986 + }, + { + "start": 6927.42, + "end": 6928.32, + "probability": 0.8805 + }, + { + "start": 6929.04, + "end": 6930.7, + "probability": 0.9228 + }, + { + "start": 6931.24, + "end": 6932.6, + "probability": 0.8611 + }, + { + "start": 6933.7, + "end": 6935.02, + "probability": 0.9758 + }, + { + "start": 6935.06, + "end": 6936.48, + "probability": 0.9861 + }, + { + "start": 6937.02, + "end": 6937.89, + "probability": 0.6807 + }, + { + "start": 6938.14, + "end": 6939.36, + "probability": 0.7978 + }, + { + "start": 6939.54, + "end": 6940.21, + "probability": 0.9849 + }, + { + "start": 6941.12, + "end": 6943.7, + "probability": 0.9766 + }, + { + "start": 6944.82, + "end": 6950.16, + "probability": 0.9731 + }, + { + "start": 6950.24, + "end": 6954.06, + "probability": 0.7436 + }, + { + "start": 6954.6, + "end": 6955.46, + "probability": 0.7279 + }, + { + "start": 6955.92, + "end": 6956.94, + "probability": 0.6738 + }, + { + "start": 6957.18, + "end": 6957.74, + "probability": 0.6781 + }, + { + "start": 6958.68, + "end": 6960.54, + "probability": 0.9027 + }, + { + "start": 6961.44, + "end": 6963.46, + "probability": 0.9932 + }, + { + "start": 6964.3, + "end": 6965.2, + "probability": 0.8103 + }, + { + "start": 6965.86, + "end": 6969.5, + "probability": 0.8899 + }, + { + "start": 6970.56, + "end": 6973.02, + "probability": 0.8791 + }, + { + "start": 6973.72, + "end": 6977.12, + "probability": 0.9681 + }, + { + "start": 6977.56, + "end": 6978.8, + "probability": 0.9512 + }, + { + "start": 6979.16, + "end": 6979.56, + "probability": 0.758 + }, + { + "start": 6980.24, + "end": 6982.28, + "probability": 0.9661 + }, + { + "start": 6983.24, + "end": 6986.16, + "probability": 0.8832 + }, + { + "start": 6987.08, + "end": 6989.82, + "probability": 0.9425 + }, + { + "start": 6990.14, + "end": 6991.56, + "probability": 0.4296 + }, + { + "start": 6992.3, + "end": 6993.16, + "probability": 0.1067 + }, + { + "start": 6993.16, + "end": 6993.16, + "probability": 0.2798 + }, + { + "start": 6993.16, + "end": 6994.44, + "probability": 0.802 + }, + { + "start": 6994.92, + "end": 6997.16, + "probability": 0.9872 + }, + { + "start": 6997.88, + "end": 6999.08, + "probability": 0.9702 + }, + { + "start": 7000.0, + "end": 7002.54, + "probability": 0.9968 + }, + { + "start": 7003.22, + "end": 7004.42, + "probability": 0.9966 + }, + { + "start": 7006.48, + "end": 7008.5, + "probability": 0.6333 + }, + { + "start": 7008.5, + "end": 7011.16, + "probability": 0.9972 + }, + { + "start": 7011.88, + "end": 7013.73, + "probability": 0.8903 + }, + { + "start": 7015.6, + "end": 7017.3, + "probability": 0.8287 + }, + { + "start": 7017.86, + "end": 7019.46, + "probability": 0.9843 + }, + { + "start": 7020.4, + "end": 7021.1, + "probability": 0.6149 + }, + { + "start": 7021.18, + "end": 7022.34, + "probability": 0.7168 + }, + { + "start": 7022.34, + "end": 7024.06, + "probability": 0.994 + }, + { + "start": 7024.78, + "end": 7027.48, + "probability": 0.9888 + }, + { + "start": 7028.24, + "end": 7033.44, + "probability": 0.8563 + }, + { + "start": 7034.26, + "end": 7035.96, + "probability": 0.7537 + }, + { + "start": 7035.98, + "end": 7036.98, + "probability": 0.9377 + }, + { + "start": 7037.62, + "end": 7039.98, + "probability": 0.9694 + }, + { + "start": 7040.08, + "end": 7041.0, + "probability": 0.9746 + }, + { + "start": 7041.06, + "end": 7041.54, + "probability": 0.7675 + }, + { + "start": 7042.06, + "end": 7045.98, + "probability": 0.9448 + }, + { + "start": 7046.8, + "end": 7047.48, + "probability": 0.1073 + }, + { + "start": 7047.48, + "end": 7047.73, + "probability": 0.1869 + }, + { + "start": 7048.1, + "end": 7049.44, + "probability": 0.7122 + }, + { + "start": 7050.18, + "end": 7051.74, + "probability": 0.8731 + }, + { + "start": 7052.14, + "end": 7055.62, + "probability": 0.6705 + }, + { + "start": 7056.76, + "end": 7060.32, + "probability": 0.8184 + }, + { + "start": 7061.36, + "end": 7063.26, + "probability": 0.9321 + }, + { + "start": 7069.36, + "end": 7071.0, + "probability": 0.9087 + }, + { + "start": 7073.48, + "end": 7074.68, + "probability": 0.7534 + }, + { + "start": 7076.14, + "end": 7078.9, + "probability": 0.7961 + }, + { + "start": 7080.1, + "end": 7083.14, + "probability": 0.7874 + }, + { + "start": 7084.34, + "end": 7086.94, + "probability": 0.9797 + }, + { + "start": 7088.08, + "end": 7090.7, + "probability": 0.9651 + }, + { + "start": 7091.28, + "end": 7094.46, + "probability": 0.9147 + }, + { + "start": 7095.54, + "end": 7097.01, + "probability": 0.9403 + }, + { + "start": 7097.62, + "end": 7098.4, + "probability": 0.909 + }, + { + "start": 7104.03, + "end": 7106.98, + "probability": 0.9939 + }, + { + "start": 7108.06, + "end": 7109.28, + "probability": 0.7477 + }, + { + "start": 7110.7, + "end": 7111.72, + "probability": 0.6869 + }, + { + "start": 7115.41, + "end": 7115.41, + "probability": 0.0015 + }, + { + "start": 7117.09, + "end": 7117.38, + "probability": 0.8045 + }, + { + "start": 7118.91, + "end": 7124.99, + "probability": 0.996 + }, + { + "start": 7125.83, + "end": 7130.0, + "probability": 0.7776 + }, + { + "start": 7131.58, + "end": 7138.19, + "probability": 0.9921 + }, + { + "start": 7139.27, + "end": 7142.49, + "probability": 0.7162 + }, + { + "start": 7143.25, + "end": 7144.58, + "probability": 0.9963 + }, + { + "start": 7145.27, + "end": 7149.13, + "probability": 0.9902 + }, + { + "start": 7149.49, + "end": 7150.85, + "probability": 0.9888 + }, + { + "start": 7151.61, + "end": 7154.03, + "probability": 0.999 + }, + { + "start": 7154.91, + "end": 7157.11, + "probability": 0.7855 + }, + { + "start": 7157.65, + "end": 7158.73, + "probability": 0.9578 + }, + { + "start": 7159.61, + "end": 7163.55, + "probability": 0.9814 + }, + { + "start": 7164.71, + "end": 7167.05, + "probability": 0.9902 + }, + { + "start": 7167.57, + "end": 7170.82, + "probability": 0.82 + }, + { + "start": 7171.45, + "end": 7177.37, + "probability": 0.9211 + }, + { + "start": 7177.41, + "end": 7180.59, + "probability": 0.9775 + }, + { + "start": 7181.11, + "end": 7184.79, + "probability": 0.8512 + }, + { + "start": 7186.23, + "end": 7186.95, + "probability": 0.647 + }, + { + "start": 7187.57, + "end": 7188.97, + "probability": 0.6377 + }, + { + "start": 7190.15, + "end": 7197.19, + "probability": 0.9898 + }, + { + "start": 7198.39, + "end": 7199.31, + "probability": 0.6449 + }, + { + "start": 7199.95, + "end": 7206.19, + "probability": 0.9964 + }, + { + "start": 7206.81, + "end": 7207.77, + "probability": 0.7257 + }, + { + "start": 7208.49, + "end": 7209.67, + "probability": 0.9102 + }, + { + "start": 7209.79, + "end": 7219.15, + "probability": 0.9507 + }, + { + "start": 7220.03, + "end": 7224.57, + "probability": 0.9918 + }, + { + "start": 7225.51, + "end": 7225.89, + "probability": 0.6484 + }, + { + "start": 7226.05, + "end": 7227.23, + "probability": 0.7137 + }, + { + "start": 7227.71, + "end": 7228.55, + "probability": 0.8784 + }, + { + "start": 7229.47, + "end": 7232.77, + "probability": 0.9741 + }, + { + "start": 7233.29, + "end": 7234.37, + "probability": 0.9941 + }, + { + "start": 7235.19, + "end": 7238.77, + "probability": 0.9274 + }, + { + "start": 7239.91, + "end": 7243.81, + "probability": 0.7922 + }, + { + "start": 7244.43, + "end": 7248.39, + "probability": 0.7475 + }, + { + "start": 7249.07, + "end": 7251.17, + "probability": 0.9531 + }, + { + "start": 7251.87, + "end": 7252.93, + "probability": 0.8683 + }, + { + "start": 7253.29, + "end": 7261.28, + "probability": 0.9712 + }, + { + "start": 7262.83, + "end": 7264.63, + "probability": 0.8431 + }, + { + "start": 7264.99, + "end": 7266.45, + "probability": 0.5901 + }, + { + "start": 7267.61, + "end": 7268.53, + "probability": 0.2605 + }, + { + "start": 7279.63, + "end": 7280.93, + "probability": 0.0039 + }, + { + "start": 7281.15, + "end": 7282.25, + "probability": 0.0004 + }, + { + "start": 7324.67, + "end": 7325.91, + "probability": 0.093 + }, + { + "start": 7330.55, + "end": 7330.57, + "probability": 0.0199 + }, + { + "start": 7770.0, + "end": 7770.0, + "probability": 0.0 + }, + { + "start": 7770.0, + "end": 7770.0, + "probability": 0.0 + }, + { + "start": 7770.0, + "end": 7770.0, + "probability": 0.0 + }, + { + "start": 7770.0, + "end": 7770.0, + "probability": 0.0 + }, + { + "start": 7770.0, + "end": 7770.0, + "probability": 0.0 + }, + { + "start": 7770.0, + "end": 7770.0, + "probability": 0.0 + }, + { + "start": 7861.43, + "end": 7863.33, + "probability": 0.061 + }, + { + "start": 7864.32, + "end": 7866.84, + "probability": 0.0479 + }, + { + "start": 7867.48, + "end": 7868.02, + "probability": 0.0894 + }, + { + "start": 7869.06, + "end": 7872.06, + "probability": 0.0545 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7901.0, + "end": 7901.0, + "probability": 0.0 + }, + { + "start": 7902.76, + "end": 7904.56, + "probability": 0.059 + }, + { + "start": 7905.52, + "end": 7907.84, + "probability": 0.1322 + }, + { + "start": 7907.84, + "end": 7908.96, + "probability": 0.0449 + }, + { + "start": 7909.54, + "end": 7910.98, + "probability": 0.0504 + }, + { + "start": 7911.78, + "end": 7913.22, + "probability": 0.0203 + }, + { + "start": 7913.28, + "end": 7916.72, + "probability": 0.081 + }, + { + "start": 7916.8, + "end": 7918.8, + "probability": 0.108 + }, + { + "start": 7919.0, + "end": 7923.94, + "probability": 0.0643 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.0, + "end": 8023.0, + "probability": 0.0 + }, + { + "start": 8023.24, + "end": 8026.4, + "probability": 0.3201 + }, + { + "start": 8026.88, + "end": 8028.74, + "probability": 0.2763 + }, + { + "start": 8029.1, + "end": 8031.28, + "probability": 0.8202 + }, + { + "start": 8031.48, + "end": 8036.0, + "probability": 0.8581 + }, + { + "start": 8036.44, + "end": 8039.64, + "probability": 0.9565 + }, + { + "start": 8040.26, + "end": 8041.14, + "probability": 0.873 + }, + { + "start": 8041.26, + "end": 8042.77, + "probability": 0.752 + }, + { + "start": 8043.14, + "end": 8048.02, + "probability": 0.807 + }, + { + "start": 8048.1, + "end": 8051.12, + "probability": 0.6304 + }, + { + "start": 8051.44, + "end": 8053.74, + "probability": 0.9978 + }, + { + "start": 8054.14, + "end": 8055.72, + "probability": 0.88 + }, + { + "start": 8056.82, + "end": 8058.7, + "probability": 0.6736 + }, + { + "start": 8059.16, + "end": 8060.18, + "probability": 0.7819 + }, + { + "start": 8060.62, + "end": 8061.38, + "probability": 0.6765 + }, + { + "start": 8061.4, + "end": 8063.94, + "probability": 0.9012 + }, + { + "start": 8076.42, + "end": 8077.24, + "probability": 0.4913 + }, + { + "start": 8077.42, + "end": 8078.5, + "probability": 0.9058 + }, + { + "start": 8078.62, + "end": 8080.3, + "probability": 0.9932 + }, + { + "start": 8080.52, + "end": 8084.76, + "probability": 0.9854 + }, + { + "start": 8085.72, + "end": 8088.46, + "probability": 0.9966 + }, + { + "start": 8089.02, + "end": 8092.42, + "probability": 0.9962 + }, + { + "start": 8093.84, + "end": 8099.76, + "probability": 0.9907 + }, + { + "start": 8100.7, + "end": 8104.22, + "probability": 0.985 + }, + { + "start": 8104.22, + "end": 8109.64, + "probability": 0.9984 + }, + { + "start": 8111.02, + "end": 8111.88, + "probability": 0.4623 + }, + { + "start": 8112.12, + "end": 8113.62, + "probability": 0.8055 + }, + { + "start": 8114.08, + "end": 8116.68, + "probability": 0.9844 + }, + { + "start": 8117.56, + "end": 8118.9, + "probability": 0.878 + }, + { + "start": 8119.6, + "end": 8121.76, + "probability": 0.9776 + }, + { + "start": 8121.8, + "end": 8123.06, + "probability": 0.9484 + }, + { + "start": 8123.18, + "end": 8124.86, + "probability": 0.995 + }, + { + "start": 8125.38, + "end": 8126.86, + "probability": 0.9103 + }, + { + "start": 8127.98, + "end": 8128.0, + "probability": 0.3737 + }, + { + "start": 8128.14, + "end": 8129.28, + "probability": 0.7975 + }, + { + "start": 8129.76, + "end": 8134.52, + "probability": 0.9915 + }, + { + "start": 8135.5, + "end": 8137.28, + "probability": 0.9969 + }, + { + "start": 8138.32, + "end": 8141.16, + "probability": 0.9976 + }, + { + "start": 8142.94, + "end": 8149.5, + "probability": 0.998 + }, + { + "start": 8150.26, + "end": 8152.34, + "probability": 0.999 + }, + { + "start": 8153.1, + "end": 8157.18, + "probability": 0.9971 + }, + { + "start": 8157.18, + "end": 8160.7, + "probability": 0.9976 + }, + { + "start": 8161.58, + "end": 8162.64, + "probability": 0.5331 + }, + { + "start": 8162.7, + "end": 8165.58, + "probability": 0.9831 + }, + { + "start": 8166.24, + "end": 8168.02, + "probability": 0.7768 + }, + { + "start": 8168.54, + "end": 8169.71, + "probability": 0.9985 + }, + { + "start": 8170.86, + "end": 8173.44, + "probability": 0.9973 + }, + { + "start": 8174.38, + "end": 8176.16, + "probability": 0.9199 + }, + { + "start": 8177.08, + "end": 8184.0, + "probability": 0.9772 + }, + { + "start": 8184.84, + "end": 8189.98, + "probability": 0.9997 + }, + { + "start": 8190.64, + "end": 8194.14, + "probability": 0.9827 + }, + { + "start": 8195.0, + "end": 8198.42, + "probability": 0.993 + }, + { + "start": 8198.92, + "end": 8202.62, + "probability": 0.9967 + }, + { + "start": 8203.34, + "end": 8207.24, + "probability": 0.9995 + }, + { + "start": 8207.96, + "end": 8210.28, + "probability": 0.9944 + }, + { + "start": 8210.7, + "end": 8211.77, + "probability": 0.8185 + }, + { + "start": 8212.44, + "end": 8214.38, + "probability": 0.9765 + }, + { + "start": 8215.1, + "end": 8218.72, + "probability": 0.8867 + }, + { + "start": 8219.24, + "end": 8222.12, + "probability": 0.8564 + }, + { + "start": 8222.14, + "end": 8222.44, + "probability": 0.7428 + }, + { + "start": 8223.02, + "end": 8225.34, + "probability": 0.5406 + }, + { + "start": 8226.4, + "end": 8227.26, + "probability": 0.983 + }, + { + "start": 8227.8, + "end": 8230.02, + "probability": 0.7096 + }, + { + "start": 8230.1, + "end": 8231.62, + "probability": 0.7325 + }, + { + "start": 8231.82, + "end": 8234.74, + "probability": 0.9675 + }, + { + "start": 8242.34, + "end": 8242.84, + "probability": 0.4725 + }, + { + "start": 8242.88, + "end": 8243.82, + "probability": 0.631 + }, + { + "start": 8245.66, + "end": 8246.78, + "probability": 0.8224 + }, + { + "start": 8247.88, + "end": 8249.76, + "probability": 0.7087 + }, + { + "start": 8250.68, + "end": 8251.51, + "probability": 0.958 + }, + { + "start": 8252.88, + "end": 8257.12, + "probability": 0.6383 + }, + { + "start": 8258.6, + "end": 8262.66, + "probability": 0.8248 + }, + { + "start": 8263.62, + "end": 8264.46, + "probability": 0.9927 + }, + { + "start": 8266.02, + "end": 8267.0, + "probability": 0.7246 + }, + { + "start": 8267.5, + "end": 8269.34, + "probability": 0.9777 + }, + { + "start": 8270.22, + "end": 8270.8, + "probability": 0.9917 + }, + { + "start": 8272.0, + "end": 8276.58, + "probability": 0.9983 + }, + { + "start": 8279.88, + "end": 8287.79, + "probability": 0.9941 + }, + { + "start": 8289.24, + "end": 8291.09, + "probability": 0.9985 + }, + { + "start": 8292.96, + "end": 8295.0, + "probability": 0.9126 + }, + { + "start": 8295.84, + "end": 8297.44, + "probability": 0.6653 + }, + { + "start": 8297.96, + "end": 8298.31, + "probability": 0.5583 + }, + { + "start": 8298.98, + "end": 8302.34, + "probability": 0.9272 + }, + { + "start": 8302.5, + "end": 8303.92, + "probability": 0.6259 + }, + { + "start": 8304.66, + "end": 8306.06, + "probability": 0.905 + }, + { + "start": 8306.6, + "end": 8307.58, + "probability": 0.7578 + }, + { + "start": 8308.72, + "end": 8310.3, + "probability": 0.8855 + }, + { + "start": 8310.96, + "end": 8312.01, + "probability": 0.7319 + }, + { + "start": 8312.46, + "end": 8312.52, + "probability": 0.355 + }, + { + "start": 8312.52, + "end": 8313.48, + "probability": 0.6679 + }, + { + "start": 8313.88, + "end": 8315.32, + "probability": 0.9875 + }, + { + "start": 8316.06, + "end": 8317.3, + "probability": 0.7646 + }, + { + "start": 8318.7, + "end": 8319.56, + "probability": 0.5984 + }, + { + "start": 8320.46, + "end": 8321.08, + "probability": 0.7924 + }, + { + "start": 8322.3, + "end": 8324.66, + "probability": 0.8366 + }, + { + "start": 8325.54, + "end": 8326.3, + "probability": 0.9653 + }, + { + "start": 8326.46, + "end": 8330.6, + "probability": 0.9619 + }, + { + "start": 8330.82, + "end": 8331.76, + "probability": 0.9296 + }, + { + "start": 8332.68, + "end": 8335.16, + "probability": 0.8055 + }, + { + "start": 8336.2, + "end": 8337.0, + "probability": 0.4071 + }, + { + "start": 8337.1, + "end": 8340.32, + "probability": 0.7851 + }, + { + "start": 8340.94, + "end": 8341.94, + "probability": 0.5205 + }, + { + "start": 8342.16, + "end": 8345.2, + "probability": 0.9731 + }, + { + "start": 8345.48, + "end": 8348.66, + "probability": 0.8594 + }, + { + "start": 8349.2, + "end": 8351.46, + "probability": 0.9786 + }, + { + "start": 8352.02, + "end": 8354.42, + "probability": 0.8617 + }, + { + "start": 8354.48, + "end": 8355.42, + "probability": 0.8713 + }, + { + "start": 8355.88, + "end": 8356.86, + "probability": 0.7363 + }, + { + "start": 8357.66, + "end": 8359.8, + "probability": 0.9963 + }, + { + "start": 8359.9, + "end": 8360.5, + "probability": 0.8735 + }, + { + "start": 8360.92, + "end": 8362.14, + "probability": 0.8523 + }, + { + "start": 8362.2, + "end": 8367.34, + "probability": 0.9954 + }, + { + "start": 8367.78, + "end": 8369.02, + "probability": 0.6326 + }, + { + "start": 8369.42, + "end": 8370.4, + "probability": 0.6594 + }, + { + "start": 8370.52, + "end": 8372.78, + "probability": 0.986 + }, + { + "start": 8373.42, + "end": 8375.66, + "probability": 0.9587 + }, + { + "start": 8375.76, + "end": 8377.28, + "probability": 0.7183 + }, + { + "start": 8377.84, + "end": 8378.88, + "probability": 0.976 + }, + { + "start": 8379.6, + "end": 8381.5, + "probability": 0.5797 + }, + { + "start": 8381.94, + "end": 8383.22, + "probability": 0.9225 + }, + { + "start": 8383.3, + "end": 8385.6, + "probability": 0.7015 + }, + { + "start": 8385.78, + "end": 8386.02, + "probability": 0.9405 + }, + { + "start": 8387.36, + "end": 8388.2, + "probability": 0.9174 + }, + { + "start": 8388.3, + "end": 8389.5, + "probability": 0.9663 + }, + { + "start": 8389.78, + "end": 8391.4, + "probability": 0.9747 + }, + { + "start": 8391.78, + "end": 8394.46, + "probability": 0.8797 + }, + { + "start": 8394.68, + "end": 8394.96, + "probability": 0.6251 + }, + { + "start": 8395.4, + "end": 8396.32, + "probability": 0.7698 + }, + { + "start": 8396.74, + "end": 8397.4, + "probability": 0.9142 + }, + { + "start": 8397.72, + "end": 8399.48, + "probability": 0.8678 + }, + { + "start": 8399.56, + "end": 8400.0, + "probability": 0.8172 + }, + { + "start": 8400.84, + "end": 8404.16, + "probability": 0.89 + }, + { + "start": 8404.24, + "end": 8404.52, + "probability": 0.9039 + }, + { + "start": 8405.64, + "end": 8407.68, + "probability": 0.9848 + }, + { + "start": 8408.5, + "end": 8408.96, + "probability": 0.5604 + }, + { + "start": 8409.52, + "end": 8410.92, + "probability": 0.8544 + }, + { + "start": 8411.76, + "end": 8413.56, + "probability": 0.9937 + }, + { + "start": 8414.86, + "end": 8416.2, + "probability": 0.4474 + }, + { + "start": 8416.26, + "end": 8419.78, + "probability": 0.9738 + }, + { + "start": 8420.18, + "end": 8421.18, + "probability": 0.8121 + }, + { + "start": 8421.64, + "end": 8424.98, + "probability": 0.8896 + }, + { + "start": 8424.98, + "end": 8428.66, + "probability": 0.8127 + }, + { + "start": 8429.02, + "end": 8431.84, + "probability": 0.9863 + }, + { + "start": 8432.38, + "end": 8432.8, + "probability": 0.9322 + }, + { + "start": 8433.9, + "end": 8438.32, + "probability": 0.2908 + }, + { + "start": 8438.74, + "end": 8439.06, + "probability": 0.8161 + }, + { + "start": 8439.96, + "end": 8441.9, + "probability": 0.9264 + }, + { + "start": 8442.26, + "end": 8442.44, + "probability": 0.8398 + }, + { + "start": 8442.9, + "end": 8444.88, + "probability": 0.7707 + }, + { + "start": 8445.78, + "end": 8448.6, + "probability": 0.9849 + }, + { + "start": 8448.86, + "end": 8449.32, + "probability": 0.5032 + }, + { + "start": 8450.44, + "end": 8451.78, + "probability": 0.7017 + }, + { + "start": 8452.56, + "end": 8454.6, + "probability": 0.7254 + }, + { + "start": 8455.36, + "end": 8456.34, + "probability": 0.8141 + }, + { + "start": 8456.9, + "end": 8457.68, + "probability": 0.8493 + }, + { + "start": 8458.6, + "end": 8461.32, + "probability": 0.9922 + }, + { + "start": 8461.96, + "end": 8463.64, + "probability": 0.9917 + }, + { + "start": 8465.38, + "end": 8467.48, + "probability": 0.5846 + }, + { + "start": 8470.7, + "end": 8472.58, + "probability": 0.9066 + }, + { + "start": 8473.72, + "end": 8474.62, + "probability": 0.6678 + }, + { + "start": 8475.64, + "end": 8476.7, + "probability": 0.9416 + }, + { + "start": 8477.56, + "end": 8480.44, + "probability": 0.9829 + }, + { + "start": 8481.36, + "end": 8484.14, + "probability": 0.9867 + }, + { + "start": 8485.2, + "end": 8486.78, + "probability": 0.9907 + }, + { + "start": 8487.8, + "end": 8490.72, + "probability": 0.9778 + }, + { + "start": 8492.0, + "end": 8493.47, + "probability": 0.5992 + }, + { + "start": 8495.24, + "end": 8496.2, + "probability": 0.9844 + }, + { + "start": 8497.04, + "end": 8500.32, + "probability": 0.8672 + }, + { + "start": 8501.3, + "end": 8502.66, + "probability": 0.9832 + }, + { + "start": 8503.6, + "end": 8504.92, + "probability": 0.88 + }, + { + "start": 8505.52, + "end": 8510.04, + "probability": 0.6628 + }, + { + "start": 8510.9, + "end": 8512.92, + "probability": 0.698 + }, + { + "start": 8516.34, + "end": 8520.6, + "probability": 0.5345 + }, + { + "start": 8522.48, + "end": 8525.46, + "probability": 0.6458 + }, + { + "start": 8526.04, + "end": 8527.43, + "probability": 0.9683 + }, + { + "start": 8528.84, + "end": 8530.5, + "probability": 0.9846 + }, + { + "start": 8531.14, + "end": 8535.94, + "probability": 0.9763 + }, + { + "start": 8536.62, + "end": 8538.1, + "probability": 0.7471 + }, + { + "start": 8539.42, + "end": 8542.38, + "probability": 0.9972 + }, + { + "start": 8542.84, + "end": 8543.14, + "probability": 0.7018 + }, + { + "start": 8544.42, + "end": 8545.1, + "probability": 0.7315 + }, + { + "start": 8545.66, + "end": 8548.06, + "probability": 0.8966 + }, + { + "start": 8548.86, + "end": 8550.34, + "probability": 0.827 + }, + { + "start": 8552.16, + "end": 8555.5, + "probability": 0.9726 + }, + { + "start": 8556.92, + "end": 8557.74, + "probability": 0.9868 + }, + { + "start": 8558.1, + "end": 8558.49, + "probability": 0.9951 + }, + { + "start": 8559.62, + "end": 8560.52, + "probability": 0.9226 + }, + { + "start": 8561.58, + "end": 8563.5, + "probability": 0.9016 + }, + { + "start": 8564.26, + "end": 8568.1, + "probability": 0.997 + }, + { + "start": 8568.96, + "end": 8572.02, + "probability": 0.7882 + }, + { + "start": 8573.48, + "end": 8575.04, + "probability": 0.7453 + }, + { + "start": 8577.54, + "end": 8579.84, + "probability": 0.9674 + }, + { + "start": 8581.04, + "end": 8581.56, + "probability": 0.3909 + }, + { + "start": 8582.98, + "end": 8586.36, + "probability": 0.7425 + }, + { + "start": 8587.0, + "end": 8588.28, + "probability": 0.7384 + }, + { + "start": 8588.8, + "end": 8591.42, + "probability": 0.4777 + }, + { + "start": 8591.98, + "end": 8594.0, + "probability": 0.794 + }, + { + "start": 8594.54, + "end": 8597.53, + "probability": 0.7383 + }, + { + "start": 8598.84, + "end": 8600.94, + "probability": 0.9917 + }, + { + "start": 8601.78, + "end": 8602.98, + "probability": 0.2346 + }, + { + "start": 8603.36, + "end": 8604.54, + "probability": 0.8685 + }, + { + "start": 8605.1, + "end": 8609.62, + "probability": 0.9067 + }, + { + "start": 8610.36, + "end": 8612.36, + "probability": 0.8913 + }, + { + "start": 8612.86, + "end": 8615.96, + "probability": 0.96 + }, + { + "start": 8616.36, + "end": 8617.06, + "probability": 0.623 + }, + { + "start": 8617.66, + "end": 8618.96, + "probability": 0.9565 + }, + { + "start": 8626.36, + "end": 8628.32, + "probability": 0.9707 + }, + { + "start": 8630.12, + "end": 8630.84, + "probability": 0.4199 + }, + { + "start": 8631.18, + "end": 8632.24, + "probability": 0.6195 + }, + { + "start": 8632.4, + "end": 8633.38, + "probability": 0.96 + }, + { + "start": 8633.46, + "end": 8634.08, + "probability": 0.8686 + }, + { + "start": 8636.02, + "end": 8637.66, + "probability": 0.97 + }, + { + "start": 8638.54, + "end": 8639.72, + "probability": 0.9937 + }, + { + "start": 8640.4, + "end": 8642.36, + "probability": 0.7655 + }, + { + "start": 8643.34, + "end": 8644.54, + "probability": 0.6702 + }, + { + "start": 8645.64, + "end": 8650.52, + "probability": 0.9011 + }, + { + "start": 8651.42, + "end": 8656.52, + "probability": 0.9907 + }, + { + "start": 8657.54, + "end": 8657.92, + "probability": 0.5792 + }, + { + "start": 8659.36, + "end": 8663.82, + "probability": 0.9908 + }, + { + "start": 8664.52, + "end": 8665.84, + "probability": 0.9786 + }, + { + "start": 8666.4, + "end": 8667.4, + "probability": 0.9378 + }, + { + "start": 8669.03, + "end": 8677.08, + "probability": 0.9855 + }, + { + "start": 8678.26, + "end": 8680.44, + "probability": 0.7162 + }, + { + "start": 8681.52, + "end": 8682.66, + "probability": 0.6293 + }, + { + "start": 8683.83, + "end": 8688.48, + "probability": 0.7855 + }, + { + "start": 8689.68, + "end": 8690.78, + "probability": 0.5933 + }, + { + "start": 8691.34, + "end": 8691.82, + "probability": 0.812 + }, + { + "start": 8692.42, + "end": 8693.9, + "probability": 0.9771 + }, + { + "start": 8694.78, + "end": 8699.94, + "probability": 0.9231 + }, + { + "start": 8700.6, + "end": 8702.46, + "probability": 0.9914 + }, + { + "start": 8703.2, + "end": 8706.76, + "probability": 0.9392 + }, + { + "start": 8707.38, + "end": 8708.34, + "probability": 0.4663 + }, + { + "start": 8708.46, + "end": 8711.74, + "probability": 0.9871 + }, + { + "start": 8711.9, + "end": 8718.0, + "probability": 0.9615 + }, + { + "start": 8718.66, + "end": 8720.64, + "probability": 0.9668 + }, + { + "start": 8722.64, + "end": 8723.54, + "probability": 0.8424 + }, + { + "start": 8724.16, + "end": 8728.28, + "probability": 0.974 + }, + { + "start": 8728.8, + "end": 8731.46, + "probability": 0.8722 + }, + { + "start": 8732.52, + "end": 8734.7, + "probability": 0.9823 + }, + { + "start": 8734.78, + "end": 8737.96, + "probability": 0.9556 + }, + { + "start": 8739.18, + "end": 8741.3, + "probability": 0.9641 + }, + { + "start": 8741.34, + "end": 8742.74, + "probability": 0.9644 + }, + { + "start": 8742.86, + "end": 8744.5, + "probability": 0.9949 + }, + { + "start": 8745.86, + "end": 8748.34, + "probability": 0.9766 + }, + { + "start": 8749.32, + "end": 8754.02, + "probability": 0.8179 + }, + { + "start": 8755.54, + "end": 8757.9, + "probability": 0.9823 + }, + { + "start": 8759.1, + "end": 8760.36, + "probability": 0.7684 + }, + { + "start": 8760.5, + "end": 8763.84, + "probability": 0.9861 + }, + { + "start": 8764.6, + "end": 8769.08, + "probability": 0.9977 + }, + { + "start": 8769.66, + "end": 8772.22, + "probability": 0.8257 + }, + { + "start": 8773.92, + "end": 8779.62, + "probability": 0.9424 + }, + { + "start": 8779.66, + "end": 8781.74, + "probability": 0.8896 + }, + { + "start": 8781.98, + "end": 8782.28, + "probability": 0.7144 + }, + { + "start": 8782.6, + "end": 8784.08, + "probability": 0.8125 + }, + { + "start": 8785.34, + "end": 8788.22, + "probability": 0.9956 + }, + { + "start": 8788.9, + "end": 8790.2, + "probability": 0.5659 + }, + { + "start": 8790.74, + "end": 8793.06, + "probability": 0.9643 + }, + { + "start": 8793.28, + "end": 8794.45, + "probability": 0.9548 + }, + { + "start": 8795.12, + "end": 8797.4, + "probability": 0.6381 + }, + { + "start": 8799.94, + "end": 8801.22, + "probability": 0.5979 + }, + { + "start": 8801.78, + "end": 8803.04, + "probability": 0.9265 + }, + { + "start": 8803.78, + "end": 8804.26, + "probability": 0.5147 + }, + { + "start": 8804.42, + "end": 8804.9, + "probability": 0.4791 + }, + { + "start": 8805.46, + "end": 8807.76, + "probability": 0.8592 + }, + { + "start": 8808.08, + "end": 8809.26, + "probability": 0.9968 + }, + { + "start": 8810.0, + "end": 8814.72, + "probability": 0.6576 + }, + { + "start": 8814.72, + "end": 8817.92, + "probability": 0.998 + }, + { + "start": 8818.52, + "end": 8819.26, + "probability": 0.8475 + }, + { + "start": 8820.44, + "end": 8820.88, + "probability": 0.52 + }, + { + "start": 8821.12, + "end": 8823.76, + "probability": 0.9958 + }, + { + "start": 8824.38, + "end": 8825.82, + "probability": 0.7345 + }, + { + "start": 8825.92, + "end": 8827.78, + "probability": 0.9276 + }, + { + "start": 8828.64, + "end": 8830.41, + "probability": 0.9746 + }, + { + "start": 8830.62, + "end": 8831.64, + "probability": 0.7903 + }, + { + "start": 8831.7, + "end": 8832.48, + "probability": 0.998 + }, + { + "start": 8833.78, + "end": 8835.96, + "probability": 0.867 + }, + { + "start": 8836.72, + "end": 8838.56, + "probability": 0.9661 + }, + { + "start": 8838.78, + "end": 8841.76, + "probability": 0.9834 + }, + { + "start": 8842.16, + "end": 8842.88, + "probability": 0.4178 + }, + { + "start": 8842.88, + "end": 8843.7, + "probability": 0.4901 + }, + { + "start": 8843.72, + "end": 8843.86, + "probability": 0.8193 + }, + { + "start": 8843.86, + "end": 8845.38, + "probability": 0.5033 + }, + { + "start": 8845.54, + "end": 8847.35, + "probability": 0.9312 + }, + { + "start": 8848.32, + "end": 8849.46, + "probability": 0.9003 + }, + { + "start": 8849.64, + "end": 8853.06, + "probability": 0.5895 + }, + { + "start": 8853.84, + "end": 8856.02, + "probability": 0.9272 + }, + { + "start": 8856.5, + "end": 8856.6, + "probability": 0.2177 + }, + { + "start": 8856.68, + "end": 8857.4, + "probability": 0.465 + }, + { + "start": 8857.44, + "end": 8859.72, + "probability": 0.6646 + }, + { + "start": 8860.38, + "end": 8861.36, + "probability": 0.8665 + }, + { + "start": 8862.54, + "end": 8862.96, + "probability": 0.5469 + }, + { + "start": 8863.04, + "end": 8863.2, + "probability": 0.7056 + }, + { + "start": 8863.48, + "end": 8866.96, + "probability": 0.7918 + }, + { + "start": 8867.74, + "end": 8869.14, + "probability": 0.8176 + }, + { + "start": 8869.32, + "end": 8869.32, + "probability": 0.062 + }, + { + "start": 8869.32, + "end": 8871.1, + "probability": 0.6974 + }, + { + "start": 8871.14, + "end": 8873.82, + "probability": 0.9932 + }, + { + "start": 8874.6, + "end": 8876.28, + "probability": 0.9464 + }, + { + "start": 8876.48, + "end": 8876.76, + "probability": 0.9521 + }, + { + "start": 8877.26, + "end": 8878.22, + "probability": 0.973 + }, + { + "start": 8879.44, + "end": 8881.28, + "probability": 0.7372 + }, + { + "start": 8882.3, + "end": 8884.62, + "probability": 0.6991 + }, + { + "start": 8884.82, + "end": 8885.94, + "probability": 0.9685 + }, + { + "start": 8885.98, + "end": 8887.6, + "probability": 0.8962 + }, + { + "start": 8887.64, + "end": 8888.35, + "probability": 0.846 + }, + { + "start": 8889.46, + "end": 8890.71, + "probability": 0.8599 + }, + { + "start": 8892.06, + "end": 8892.56, + "probability": 0.5715 + }, + { + "start": 8892.84, + "end": 8894.04, + "probability": 0.782 + }, + { + "start": 8894.04, + "end": 8896.32, + "probability": 0.5004 + }, + { + "start": 8896.36, + "end": 8896.82, + "probability": 0.7603 + }, + { + "start": 8896.92, + "end": 8897.06, + "probability": 0.8024 + }, + { + "start": 8897.78, + "end": 8898.66, + "probability": 0.9834 + }, + { + "start": 8898.96, + "end": 8901.24, + "probability": 0.7036 + }, + { + "start": 8901.32, + "end": 8902.62, + "probability": 0.9929 + }, + { + "start": 8903.54, + "end": 8906.18, + "probability": 0.9569 + }, + { + "start": 8907.1, + "end": 8909.05, + "probability": 0.9614 + }, + { + "start": 8910.27, + "end": 8911.8, + "probability": 0.9462 + }, + { + "start": 8912.06, + "end": 8914.08, + "probability": 0.7178 + }, + { + "start": 8915.02, + "end": 8916.6, + "probability": 0.8032 + }, + { + "start": 8916.76, + "end": 8918.42, + "probability": 0.9064 + }, + { + "start": 8918.64, + "end": 8919.58, + "probability": 0.7837 + }, + { + "start": 8920.42, + "end": 8922.46, + "probability": 0.9254 + }, + { + "start": 8923.36, + "end": 8924.14, + "probability": 0.8633 + }, + { + "start": 8925.12, + "end": 8926.94, + "probability": 0.8757 + }, + { + "start": 8927.26, + "end": 8928.94, + "probability": 0.8654 + }, + { + "start": 8930.36, + "end": 8932.98, + "probability": 0.8306 + }, + { + "start": 8934.56, + "end": 8936.7, + "probability": 0.7809 + }, + { + "start": 8937.86, + "end": 8940.26, + "probability": 0.7548 + }, + { + "start": 8940.82, + "end": 8942.14, + "probability": 0.9868 + }, + { + "start": 8942.62, + "end": 8944.44, + "probability": 0.7753 + }, + { + "start": 8945.1, + "end": 8947.16, + "probability": 0.8203 + }, + { + "start": 8947.88, + "end": 8951.44, + "probability": 0.8092 + }, + { + "start": 8951.78, + "end": 8953.68, + "probability": 0.9857 + }, + { + "start": 8953.84, + "end": 8954.45, + "probability": 0.8784 + }, + { + "start": 8955.26, + "end": 8957.22, + "probability": 0.9692 + }, + { + "start": 8957.74, + "end": 8959.66, + "probability": 0.6171 + }, + { + "start": 8959.82, + "end": 8960.46, + "probability": 0.058 + }, + { + "start": 8960.76, + "end": 8961.32, + "probability": 0.4033 + }, + { + "start": 8961.8, + "end": 8962.46, + "probability": 0.6356 + }, + { + "start": 8962.6, + "end": 8964.38, + "probability": 0.675 + }, + { + "start": 8964.5, + "end": 8964.85, + "probability": 0.6058 + }, + { + "start": 8967.77, + "end": 8971.1, + "probability": 0.8207 + }, + { + "start": 8971.26, + "end": 8972.46, + "probability": 0.9326 + }, + { + "start": 8973.08, + "end": 8975.62, + "probability": 0.9198 + }, + { + "start": 8976.2, + "end": 8977.96, + "probability": 0.945 + }, + { + "start": 8978.22, + "end": 8978.92, + "probability": 0.8235 + }, + { + "start": 8979.8, + "end": 8980.87, + "probability": 0.8667 + }, + { + "start": 8982.24, + "end": 8984.3, + "probability": 0.6903 + }, + { + "start": 8984.96, + "end": 8988.14, + "probability": 0.79 + }, + { + "start": 8989.24, + "end": 8994.1, + "probability": 0.8536 + }, + { + "start": 8994.26, + "end": 8995.34, + "probability": 0.7444 + }, + { + "start": 8996.06, + "end": 8997.72, + "probability": 0.5626 + }, + { + "start": 8997.86, + "end": 8998.16, + "probability": 0.8626 + }, + { + "start": 8998.82, + "end": 9001.32, + "probability": 0.7842 + }, + { + "start": 9002.2, + "end": 9004.3, + "probability": 0.9795 + }, + { + "start": 9005.18, + "end": 9006.62, + "probability": 0.9629 + }, + { + "start": 9006.78, + "end": 9007.7, + "probability": 0.8558 + }, + { + "start": 9007.88, + "end": 9008.44, + "probability": 0.8539 + }, + { + "start": 9009.44, + "end": 9012.96, + "probability": 0.7965 + }, + { + "start": 9013.52, + "end": 9015.02, + "probability": 0.5848 + }, + { + "start": 9015.74, + "end": 9018.24, + "probability": 0.8036 + }, + { + "start": 9019.1, + "end": 9021.42, + "probability": 0.8861 + }, + { + "start": 9022.0, + "end": 9023.9, + "probability": 0.8859 + }, + { + "start": 9024.66, + "end": 9026.32, + "probability": 0.7305 + }, + { + "start": 9026.68, + "end": 9028.26, + "probability": 0.8543 + }, + { + "start": 9028.72, + "end": 9030.38, + "probability": 0.9292 + }, + { + "start": 9031.14, + "end": 9031.94, + "probability": 0.4427 + }, + { + "start": 9032.44, + "end": 9037.32, + "probability": 0.8719 + }, + { + "start": 9038.45, + "end": 9040.86, + "probability": 0.827 + }, + { + "start": 9041.38, + "end": 9043.31, + "probability": 0.5384 + }, + { + "start": 9043.64, + "end": 9045.44, + "probability": 0.891 + }, + { + "start": 9045.48, + "end": 9047.08, + "probability": 0.9722 + }, + { + "start": 9047.28, + "end": 9049.12, + "probability": 0.8647 + }, + { + "start": 9049.8, + "end": 9050.6, + "probability": 0.9806 + }, + { + "start": 9051.14, + "end": 9053.52, + "probability": 0.8677 + }, + { + "start": 9055.42, + "end": 9057.68, + "probability": 0.971 + }, + { + "start": 9057.94, + "end": 9059.1, + "probability": 0.8271 + }, + { + "start": 9059.32, + "end": 9061.16, + "probability": 0.7544 + }, + { + "start": 9061.2, + "end": 9062.36, + "probability": 0.8449 + }, + { + "start": 9067.24, + "end": 9068.98, + "probability": 0.8208 + }, + { + "start": 9074.2, + "end": 9075.2, + "probability": 0.7454 + }, + { + "start": 9075.86, + "end": 9077.64, + "probability": 0.903 + }, + { + "start": 9078.46, + "end": 9079.3, + "probability": 0.7893 + }, + { + "start": 9080.2, + "end": 9082.78, + "probability": 0.9946 + }, + { + "start": 9083.62, + "end": 9084.42, + "probability": 0.9437 + }, + { + "start": 9085.38, + "end": 9090.94, + "probability": 0.7983 + }, + { + "start": 9091.9, + "end": 9092.42, + "probability": 0.2742 + }, + { + "start": 9093.86, + "end": 9095.72, + "probability": 0.8857 + }, + { + "start": 9097.54, + "end": 9098.8, + "probability": 0.7495 + }, + { + "start": 9099.64, + "end": 9103.84, + "probability": 0.9656 + }, + { + "start": 9105.5, + "end": 9110.2, + "probability": 0.9899 + }, + { + "start": 9110.2, + "end": 9115.76, + "probability": 0.9846 + }, + { + "start": 9117.52, + "end": 9119.88, + "probability": 0.4892 + }, + { + "start": 9119.92, + "end": 9122.16, + "probability": 0.9941 + }, + { + "start": 9122.28, + "end": 9125.06, + "probability": 0.8255 + }, + { + "start": 9126.5, + "end": 9127.88, + "probability": 0.4806 + }, + { + "start": 9129.12, + "end": 9131.12, + "probability": 0.6569 + }, + { + "start": 9131.82, + "end": 9132.8, + "probability": 0.9727 + }, + { + "start": 9134.04, + "end": 9136.66, + "probability": 0.9675 + }, + { + "start": 9137.66, + "end": 9139.54, + "probability": 0.9926 + }, + { + "start": 9139.8, + "end": 9141.56, + "probability": 0.9979 + }, + { + "start": 9142.3, + "end": 9145.74, + "probability": 0.7437 + }, + { + "start": 9146.54, + "end": 9150.44, + "probability": 0.9896 + }, + { + "start": 9150.78, + "end": 9151.52, + "probability": 0.5016 + }, + { + "start": 9153.58, + "end": 9158.02, + "probability": 0.8875 + }, + { + "start": 9158.2, + "end": 9159.62, + "probability": 0.5778 + }, + { + "start": 9159.68, + "end": 9160.7, + "probability": 0.8928 + }, + { + "start": 9160.9, + "end": 9161.52, + "probability": 0.6917 + }, + { + "start": 9162.2, + "end": 9163.8, + "probability": 0.9583 + }, + { + "start": 9164.32, + "end": 9165.14, + "probability": 0.7971 + }, + { + "start": 9166.14, + "end": 9168.48, + "probability": 0.979 + }, + { + "start": 9168.94, + "end": 9170.66, + "probability": 0.8212 + }, + { + "start": 9172.72, + "end": 9176.2, + "probability": 0.8735 + }, + { + "start": 9176.32, + "end": 9176.81, + "probability": 0.6321 + }, + { + "start": 9178.44, + "end": 9184.38, + "probability": 0.7467 + }, + { + "start": 9185.36, + "end": 9187.14, + "probability": 0.971 + }, + { + "start": 9188.42, + "end": 9190.34, + "probability": 0.8475 + }, + { + "start": 9192.45, + "end": 9195.04, + "probability": 0.8211 + }, + { + "start": 9195.1, + "end": 9196.73, + "probability": 0.789 + }, + { + "start": 9196.92, + "end": 9199.0, + "probability": 0.8273 + }, + { + "start": 9199.56, + "end": 9202.38, + "probability": 0.6397 + }, + { + "start": 9203.46, + "end": 9207.02, + "probability": 0.9463 + }, + { + "start": 9207.72, + "end": 9208.98, + "probability": 0.6548 + }, + { + "start": 9209.96, + "end": 9213.02, + "probability": 0.957 + }, + { + "start": 9213.8, + "end": 9214.6, + "probability": 0.8715 + }, + { + "start": 9215.6, + "end": 9219.66, + "probability": 0.7102 + }, + { + "start": 9220.16, + "end": 9221.36, + "probability": 0.7424 + }, + { + "start": 9221.44, + "end": 9223.14, + "probability": 0.5734 + }, + { + "start": 9223.62, + "end": 9224.98, + "probability": 0.8605 + }, + { + "start": 9226.04, + "end": 9230.66, + "probability": 0.976 + }, + { + "start": 9232.0, + "end": 9241.14, + "probability": 0.9943 + }, + { + "start": 9241.64, + "end": 9243.62, + "probability": 0.9967 + }, + { + "start": 9244.34, + "end": 9250.5, + "probability": 0.9949 + }, + { + "start": 9251.24, + "end": 9253.42, + "probability": 0.7711 + }, + { + "start": 9253.58, + "end": 9253.62, + "probability": 0.3727 + }, + { + "start": 9253.62, + "end": 9256.76, + "probability": 0.6695 + }, + { + "start": 9256.88, + "end": 9259.92, + "probability": 0.9854 + }, + { + "start": 9260.4, + "end": 9261.06, + "probability": 0.685 + }, + { + "start": 9261.64, + "end": 9264.18, + "probability": 0.9642 + }, + { + "start": 9265.98, + "end": 9269.58, + "probability": 0.9858 + }, + { + "start": 9270.18, + "end": 9271.92, + "probability": 0.5631 + }, + { + "start": 9277.54, + "end": 9278.9, + "probability": 0.8159 + }, + { + "start": 9282.74, + "end": 9284.62, + "probability": 0.7322 + }, + { + "start": 9285.48, + "end": 9287.3, + "probability": 0.9094 + }, + { + "start": 9288.76, + "end": 9293.18, + "probability": 0.9271 + }, + { + "start": 9294.1, + "end": 9296.38, + "probability": 0.906 + }, + { + "start": 9297.5, + "end": 9299.94, + "probability": 0.6509 + }, + { + "start": 9300.82, + "end": 9302.46, + "probability": 0.9891 + }, + { + "start": 9304.0, + "end": 9305.29, + "probability": 0.9396 + }, + { + "start": 9306.48, + "end": 9308.4, + "probability": 0.8607 + }, + { + "start": 9309.0, + "end": 9314.2, + "probability": 0.9312 + }, + { + "start": 9315.38, + "end": 9317.21, + "probability": 0.6966 + }, + { + "start": 9317.54, + "end": 9323.0, + "probability": 0.7236 + }, + { + "start": 9323.64, + "end": 9325.36, + "probability": 0.9889 + }, + { + "start": 9326.6, + "end": 9334.18, + "probability": 0.9968 + }, + { + "start": 9335.36, + "end": 9337.2, + "probability": 0.9093 + }, + { + "start": 9338.2, + "end": 9340.72, + "probability": 0.9807 + }, + { + "start": 9342.04, + "end": 9345.0, + "probability": 0.9718 + }, + { + "start": 9345.68, + "end": 9347.12, + "probability": 0.9973 + }, + { + "start": 9347.8, + "end": 9350.76, + "probability": 0.8373 + }, + { + "start": 9351.7, + "end": 9354.7, + "probability": 0.912 + }, + { + "start": 9355.9, + "end": 9358.16, + "probability": 0.9108 + }, + { + "start": 9359.38, + "end": 9361.14, + "probability": 0.4981 + }, + { + "start": 9361.9, + "end": 9364.92, + "probability": 0.8147 + }, + { + "start": 9367.46, + "end": 9369.46, + "probability": 0.9868 + }, + { + "start": 9370.06, + "end": 9371.08, + "probability": 0.9465 + }, + { + "start": 9371.14, + "end": 9377.16, + "probability": 0.8062 + }, + { + "start": 9378.82, + "end": 9379.9, + "probability": 0.7453 + }, + { + "start": 9380.54, + "end": 9381.58, + "probability": 0.8441 + }, + { + "start": 9382.58, + "end": 9386.5, + "probability": 0.8979 + }, + { + "start": 9387.38, + "end": 9393.32, + "probability": 0.8424 + }, + { + "start": 9394.1, + "end": 9397.48, + "probability": 0.9016 + }, + { + "start": 9398.3, + "end": 9401.1, + "probability": 0.6539 + }, + { + "start": 9402.34, + "end": 9403.76, + "probability": 0.9691 + }, + { + "start": 9404.5, + "end": 9405.58, + "probability": 0.3825 + }, + { + "start": 9406.28, + "end": 9407.56, + "probability": 0.7495 + }, + { + "start": 9408.1, + "end": 9410.48, + "probability": 0.9295 + }, + { + "start": 9411.0, + "end": 9413.33, + "probability": 0.9043 + }, + { + "start": 9413.76, + "end": 9415.22, + "probability": 0.8213 + }, + { + "start": 9416.14, + "end": 9418.86, + "probability": 0.9903 + }, + { + "start": 9419.72, + "end": 9424.16, + "probability": 0.7194 + }, + { + "start": 9424.3, + "end": 9427.94, + "probability": 0.9907 + }, + { + "start": 9427.96, + "end": 9432.7, + "probability": 0.9637 + }, + { + "start": 9433.54, + "end": 9436.2, + "probability": 0.689 + }, + { + "start": 9436.42, + "end": 9437.7, + "probability": 0.7328 + }, + { + "start": 9438.44, + "end": 9440.4, + "probability": 0.8063 + }, + { + "start": 9440.48, + "end": 9441.1, + "probability": 0.9032 + }, + { + "start": 9441.64, + "end": 9445.16, + "probability": 0.9675 + }, + { + "start": 9445.9, + "end": 9447.44, + "probability": 0.7952 + }, + { + "start": 9447.52, + "end": 9449.66, + "probability": 0.9071 + }, + { + "start": 9449.72, + "end": 9450.52, + "probability": 0.8882 + }, + { + "start": 9451.22, + "end": 9455.8, + "probability": 0.862 + }, + { + "start": 9456.22, + "end": 9457.26, + "probability": 0.8413 + }, + { + "start": 9457.66, + "end": 9459.74, + "probability": 0.9465 + }, + { + "start": 9460.12, + "end": 9462.02, + "probability": 0.988 + }, + { + "start": 9463.06, + "end": 9465.14, + "probability": 0.6628 + }, + { + "start": 9465.62, + "end": 9468.76, + "probability": 0.8486 + }, + { + "start": 9469.8, + "end": 9470.38, + "probability": 0.5978 + }, + { + "start": 9471.0, + "end": 9472.24, + "probability": 0.9111 + }, + { + "start": 9474.34, + "end": 9475.52, + "probability": 0.6395 + }, + { + "start": 9476.22, + "end": 9477.8, + "probability": 0.8784 + }, + { + "start": 9478.78, + "end": 9479.7, + "probability": 0.9153 + }, + { + "start": 9481.06, + "end": 9483.24, + "probability": 0.9196 + }, + { + "start": 9484.0, + "end": 9488.76, + "probability": 0.9342 + }, + { + "start": 9489.52, + "end": 9492.23, + "probability": 0.69 + }, + { + "start": 9493.0, + "end": 9494.58, + "probability": 0.9351 + }, + { + "start": 9494.92, + "end": 9495.94, + "probability": 0.8604 + }, + { + "start": 9496.06, + "end": 9498.02, + "probability": 0.8484 + }, + { + "start": 9498.54, + "end": 9499.12, + "probability": 0.7619 + }, + { + "start": 9499.7, + "end": 9502.38, + "probability": 0.9922 + }, + { + "start": 9503.14, + "end": 9506.26, + "probability": 0.7922 + }, + { + "start": 9507.18, + "end": 9508.6, + "probability": 0.9474 + }, + { + "start": 9508.9, + "end": 9510.8, + "probability": 0.8975 + }, + { + "start": 9510.9, + "end": 9511.52, + "probability": 0.9045 + }, + { + "start": 9511.98, + "end": 9512.8, + "probability": 0.749 + }, + { + "start": 9512.88, + "end": 9515.12, + "probability": 0.9653 + }, + { + "start": 9515.32, + "end": 9516.6, + "probability": 0.9795 + }, + { + "start": 9517.14, + "end": 9519.68, + "probability": 0.7919 + }, + { + "start": 9519.7, + "end": 9520.2, + "probability": 0.5256 + }, + { + "start": 9520.6, + "end": 9523.64, + "probability": 0.9456 + }, + { + "start": 9523.68, + "end": 9524.48, + "probability": 0.9533 + }, + { + "start": 9525.38, + "end": 9526.06, + "probability": 0.9639 + }, + { + "start": 9526.6, + "end": 9528.44, + "probability": 0.8351 + }, + { + "start": 9528.62, + "end": 9531.74, + "probability": 0.7646 + }, + { + "start": 9532.78, + "end": 9534.74, + "probability": 0.9678 + }, + { + "start": 9535.4, + "end": 9537.5, + "probability": 0.9805 + }, + { + "start": 9537.96, + "end": 9540.66, + "probability": 0.9046 + }, + { + "start": 9541.04, + "end": 9541.7, + "probability": 0.5469 + }, + { + "start": 9541.82, + "end": 9542.62, + "probability": 0.8511 + }, + { + "start": 9543.18, + "end": 9543.8, + "probability": 0.9546 + }, + { + "start": 9544.38, + "end": 9545.06, + "probability": 0.707 + }, + { + "start": 9545.26, + "end": 9546.4, + "probability": 0.9175 + }, + { + "start": 9546.72, + "end": 9548.04, + "probability": 0.8253 + }, + { + "start": 9548.1, + "end": 9549.02, + "probability": 0.7957 + }, + { + "start": 9549.1, + "end": 9549.78, + "probability": 0.5772 + }, + { + "start": 9550.26, + "end": 9550.65, + "probability": 0.8778 + }, + { + "start": 9551.56, + "end": 9553.18, + "probability": 0.9648 + }, + { + "start": 9553.96, + "end": 9554.78, + "probability": 0.9983 + }, + { + "start": 9555.34, + "end": 9556.16, + "probability": 0.875 + }, + { + "start": 9556.24, + "end": 9558.64, + "probability": 0.9839 + }, + { + "start": 9559.16, + "end": 9560.58, + "probability": 0.6795 + }, + { + "start": 9561.08, + "end": 9562.6, + "probability": 0.804 + }, + { + "start": 9562.82, + "end": 9563.26, + "probability": 0.6092 + }, + { + "start": 9563.72, + "end": 9566.32, + "probability": 0.9691 + }, + { + "start": 9566.72, + "end": 9568.64, + "probability": 0.8212 + }, + { + "start": 9569.1, + "end": 9572.68, + "probability": 0.8475 + }, + { + "start": 9573.0, + "end": 9574.96, + "probability": 0.8784 + }, + { + "start": 9575.48, + "end": 9576.52, + "probability": 0.5242 + }, + { + "start": 9576.96, + "end": 9578.08, + "probability": 0.9064 + }, + { + "start": 9578.44, + "end": 9579.94, + "probability": 0.9327 + }, + { + "start": 9580.32, + "end": 9582.56, + "probability": 0.8472 + }, + { + "start": 9582.94, + "end": 9585.58, + "probability": 0.71 + }, + { + "start": 9585.66, + "end": 9586.32, + "probability": 0.8495 + }, + { + "start": 9586.98, + "end": 9588.94, + "probability": 0.7008 + }, + { + "start": 9589.78, + "end": 9592.22, + "probability": 0.8858 + }, + { + "start": 9593.62, + "end": 9596.06, + "probability": 0.9595 + }, + { + "start": 9602.94, + "end": 9604.48, + "probability": 0.6715 + }, + { + "start": 9605.42, + "end": 9608.5, + "probability": 0.8668 + }, + { + "start": 9608.8, + "end": 9610.72, + "probability": 0.955 + }, + { + "start": 9612.02, + "end": 9614.72, + "probability": 0.9458 + }, + { + "start": 9615.42, + "end": 9617.06, + "probability": 0.9886 + }, + { + "start": 9617.69, + "end": 9621.1, + "probability": 0.8326 + }, + { + "start": 9621.84, + "end": 9622.74, + "probability": 0.9863 + }, + { + "start": 9623.38, + "end": 9624.42, + "probability": 0.9124 + }, + { + "start": 9625.18, + "end": 9629.84, + "probability": 0.7743 + }, + { + "start": 9631.04, + "end": 9633.02, + "probability": 0.7925 + }, + { + "start": 9633.68, + "end": 9636.28, + "probability": 0.9525 + }, + { + "start": 9637.12, + "end": 9639.64, + "probability": 0.938 + }, + { + "start": 9640.42, + "end": 9641.2, + "probability": 0.8561 + }, + { + "start": 9641.84, + "end": 9642.28, + "probability": 0.5147 + }, + { + "start": 9642.94, + "end": 9644.14, + "probability": 0.7533 + }, + { + "start": 9644.64, + "end": 9648.24, + "probability": 0.7922 + }, + { + "start": 9649.6, + "end": 9651.48, + "probability": 0.8203 + }, + { + "start": 9654.26, + "end": 9654.84, + "probability": 0.4941 + }, + { + "start": 9655.0, + "end": 9656.52, + "probability": 0.1104 + }, + { + "start": 9657.88, + "end": 9659.24, + "probability": 0.5806 + }, + { + "start": 9659.56, + "end": 9665.48, + "probability": 0.7778 + }, + { + "start": 9666.26, + "end": 9667.64, + "probability": 0.7159 + }, + { + "start": 9669.4, + "end": 9670.66, + "probability": 0.7929 + }, + { + "start": 9671.8, + "end": 9673.16, + "probability": 0.6273 + }, + { + "start": 9673.4, + "end": 9679.38, + "probability": 0.8616 + }, + { + "start": 9680.14, + "end": 9684.42, + "probability": 0.9977 + }, + { + "start": 9684.9, + "end": 9692.18, + "probability": 0.9506 + }, + { + "start": 9692.82, + "end": 9695.74, + "probability": 0.7584 + }, + { + "start": 9696.36, + "end": 9697.42, + "probability": 0.5683 + }, + { + "start": 9698.02, + "end": 9701.86, + "probability": 0.9956 + }, + { + "start": 9703.46, + "end": 9707.84, + "probability": 0.839 + }, + { + "start": 9708.28, + "end": 9712.54, + "probability": 0.9927 + }, + { + "start": 9713.36, + "end": 9715.7, + "probability": 0.9917 + }, + { + "start": 9715.7, + "end": 9719.66, + "probability": 0.9924 + }, + { + "start": 9719.98, + "end": 9720.94, + "probability": 0.6616 + }, + { + "start": 9721.48, + "end": 9721.94, + "probability": 0.5363 + }, + { + "start": 9724.6, + "end": 9726.38, + "probability": 0.5932 + }, + { + "start": 9727.2, + "end": 9727.72, + "probability": 0.4149 + }, + { + "start": 9728.4, + "end": 9731.34, + "probability": 0.9832 + }, + { + "start": 9731.88, + "end": 9734.44, + "probability": 0.5908 + }, + { + "start": 9734.96, + "end": 9737.88, + "probability": 0.9888 + }, + { + "start": 9738.48, + "end": 9739.44, + "probability": 0.6772 + }, + { + "start": 9739.96, + "end": 9741.94, + "probability": 0.9886 + }, + { + "start": 9742.3, + "end": 9743.04, + "probability": 0.5848 + }, + { + "start": 9743.38, + "end": 9745.0, + "probability": 0.7079 + }, + { + "start": 9745.32, + "end": 9748.34, + "probability": 0.7433 + }, + { + "start": 9748.45, + "end": 9751.34, + "probability": 0.5812 + }, + { + "start": 9752.44, + "end": 9754.78, + "probability": 0.7846 + }, + { + "start": 9759.2, + "end": 9765.0, + "probability": 0.8506 + }, + { + "start": 9765.74, + "end": 9768.02, + "probability": 0.9403 + }, + { + "start": 9768.4, + "end": 9774.14, + "probability": 0.7951 + }, + { + "start": 9774.66, + "end": 9778.14, + "probability": 0.6606 + }, + { + "start": 9778.14, + "end": 9782.2, + "probability": 0.9897 + }, + { + "start": 9782.58, + "end": 9788.58, + "probability": 0.9782 + }, + { + "start": 9788.74, + "end": 9791.92, + "probability": 0.7436 + }, + { + "start": 9793.16, + "end": 9796.36, + "probability": 0.7896 + }, + { + "start": 9797.26, + "end": 9799.65, + "probability": 0.6886 + }, + { + "start": 9802.52, + "end": 9808.48, + "probability": 0.5054 + }, + { + "start": 9811.0, + "end": 9815.82, + "probability": 0.6845 + }, + { + "start": 9819.26, + "end": 9821.42, + "probability": 0.9019 + }, + { + "start": 9821.62, + "end": 9824.74, + "probability": 0.7028 + }, + { + "start": 9825.18, + "end": 9827.92, + "probability": 0.6502 + }, + { + "start": 9828.5, + "end": 9831.94, + "probability": 0.4983 + }, + { + "start": 9832.72, + "end": 9833.42, + "probability": 0.5198 + }, + { + "start": 9834.08, + "end": 9834.48, + "probability": 0.6411 + }, + { + "start": 9839.04, + "end": 9839.6, + "probability": 0.2534 + }, + { + "start": 9842.8, + "end": 9844.35, + "probability": 0.2239 + }, + { + "start": 9847.28, + "end": 9847.98, + "probability": 0.0135 + }, + { + "start": 9847.98, + "end": 9852.22, + "probability": 0.0885 + }, + { + "start": 9853.48, + "end": 9854.12, + "probability": 0.211 + }, + { + "start": 9854.64, + "end": 9854.88, + "probability": 0.2654 + }, + { + "start": 9854.88, + "end": 9856.7, + "probability": 0.2254 + }, + { + "start": 9856.7, + "end": 9858.19, + "probability": 0.4833 + }, + { + "start": 9858.92, + "end": 9863.02, + "probability": 0.6595 + }, + { + "start": 9863.48, + "end": 9864.46, + "probability": 0.7244 + }, + { + "start": 9865.76, + "end": 9868.02, + "probability": 0.8001 + }, + { + "start": 9868.12, + "end": 9869.86, + "probability": 0.7282 + }, + { + "start": 9870.22, + "end": 9871.3, + "probability": 0.6476 + }, + { + "start": 9871.86, + "end": 9872.34, + "probability": 0.5137 + }, + { + "start": 9872.48, + "end": 9877.78, + "probability": 0.836 + }, + { + "start": 9877.78, + "end": 9880.4, + "probability": 0.6547 + }, + { + "start": 9881.12, + "end": 9884.26, + "probability": 0.4404 + }, + { + "start": 9884.76, + "end": 9888.5, + "probability": 0.2977 + }, + { + "start": 9888.98, + "end": 9889.88, + "probability": 0.7312 + }, + { + "start": 9892.09, + "end": 9893.34, + "probability": 0.1334 + }, + { + "start": 9894.7, + "end": 9897.58, + "probability": 0.0618 + }, + { + "start": 9899.38, + "end": 9899.8, + "probability": 0.0001 + }, + { + "start": 9902.86, + "end": 9904.0, + "probability": 0.0494 + }, + { + "start": 9904.0, + "end": 9904.24, + "probability": 0.0515 + }, + { + "start": 9904.78, + "end": 9905.98, + "probability": 0.072 + }, + { + "start": 9906.28, + "end": 9906.46, + "probability": 0.0171 + }, + { + "start": 9907.08, + "end": 9907.54, + "probability": 0.0262 + }, + { + "start": 9908.47, + "end": 9909.38, + "probability": 0.1259 + }, + { + "start": 9909.38, + "end": 9909.84, + "probability": 0.0477 + }, + { + "start": 9909.92, + "end": 9909.98, + "probability": 0.293 + }, + { + "start": 9913.62, + "end": 9915.24, + "probability": 0.1733 + }, + { + "start": 9915.42, + "end": 9916.22, + "probability": 0.2008 + }, + { + "start": 9931.0, + "end": 9933.58, + "probability": 0.692 + }, + { + "start": 9933.68, + "end": 9938.76, + "probability": 0.9016 + }, + { + "start": 9940.26, + "end": 9941.62, + "probability": 0.0985 + }, + { + "start": 9941.82, + "end": 9942.32, + "probability": 0.3559 + }, + { + "start": 9942.65, + "end": 9944.52, + "probability": 0.647 + }, + { + "start": 9944.58, + "end": 9945.66, + "probability": 0.4355 + }, + { + "start": 9947.14, + "end": 9947.9, + "probability": 0.1221 + }, + { + "start": 9948.72, + "end": 9950.04, + "probability": 0.5838 + }, + { + "start": 9950.9, + "end": 9956.08, + "probability": 0.6529 + }, + { + "start": 9956.8, + "end": 9957.0, + "probability": 0.0138 + }, + { + "start": 9957.54, + "end": 9960.36, + "probability": 0.5489 + }, + { + "start": 9960.84, + "end": 9963.08, + "probability": 0.9922 + }, + { + "start": 9963.88, + "end": 9966.62, + "probability": 0.7643 + }, + { + "start": 9967.28, + "end": 9968.92, + "probability": 0.8622 + }, + { + "start": 9970.08, + "end": 9971.9, + "probability": 0.591 + }, + { + "start": 9974.34, + "end": 9974.94, + "probability": 0.031 + }, + { + "start": 9980.92, + "end": 9982.96, + "probability": 0.1129 + }, + { + "start": 9983.46, + "end": 9986.6, + "probability": 0.7473 + }, + { + "start": 9986.84, + "end": 9991.34, + "probability": 0.9871 + }, + { + "start": 9992.66, + "end": 9995.26, + "probability": 0.8049 + }, + { + "start": 9995.52, + "end": 9999.1, + "probability": 0.7473 + }, + { + "start": 10000.04, + "end": 10002.88, + "probability": 0.981 + }, + { + "start": 10003.46, + "end": 10003.86, + "probability": 0.8102 + }, + { + "start": 10005.0, + "end": 10005.14, + "probability": 0.3228 + }, + { + "start": 10009.48, + "end": 10011.62, + "probability": 0.4057 + }, + { + "start": 10012.64, + "end": 10016.52, + "probability": 0.9409 + }, + { + "start": 10017.72, + "end": 10018.96, + "probability": 0.2643 + }, + { + "start": 10020.18, + "end": 10021.06, + "probability": 0.6425 + }, + { + "start": 10021.68, + "end": 10021.98, + "probability": 0.196 + }, + { + "start": 10022.88, + "end": 10024.9, + "probability": 0.9262 + }, + { + "start": 10025.18, + "end": 10025.78, + "probability": 0.8026 + }, + { + "start": 10029.74, + "end": 10032.22, + "probability": 0.5317 + }, + { + "start": 10033.7, + "end": 10036.7, + "probability": 0.7832 + }, + { + "start": 10036.96, + "end": 10039.12, + "probability": 0.2776 + }, + { + "start": 10040.02, + "end": 10044.4, + "probability": 0.9878 + }, + { + "start": 10045.08, + "end": 10046.16, + "probability": 0.9041 + }, + { + "start": 10047.1, + "end": 10047.44, + "probability": 0.7786 + }, + { + "start": 10048.5, + "end": 10049.16, + "probability": 0.4744 + }, + { + "start": 10049.32, + "end": 10054.34, + "probability": 0.8846 + }, + { + "start": 10054.34, + "end": 10059.52, + "probability": 0.9795 + }, + { + "start": 10060.62, + "end": 10061.52, + "probability": 0.9151 + }, + { + "start": 10061.8, + "end": 10062.54, + "probability": 0.9395 + }, + { + "start": 10063.06, + "end": 10066.12, + "probability": 0.9995 + }, + { + "start": 10066.86, + "end": 10071.84, + "probability": 0.9954 + }, + { + "start": 10071.84, + "end": 10078.14, + "probability": 0.9395 + }, + { + "start": 10079.22, + "end": 10083.12, + "probability": 0.8635 + }, + { + "start": 10084.32, + "end": 10086.78, + "probability": 0.6272 + }, + { + "start": 10087.82, + "end": 10096.32, + "probability": 0.8193 + }, + { + "start": 10096.38, + "end": 10101.0, + "probability": 0.968 + }, + { + "start": 10101.76, + "end": 10112.0, + "probability": 0.9277 + }, + { + "start": 10114.86, + "end": 10115.08, + "probability": 0.0043 + }, + { + "start": 10115.08, + "end": 10118.42, + "probability": 0.9542 + }, + { + "start": 10118.42, + "end": 10121.66, + "probability": 0.9729 + }, + { + "start": 10122.48, + "end": 10122.84, + "probability": 0.3399 + }, + { + "start": 10124.1, + "end": 10126.24, + "probability": 0.995 + }, + { + "start": 10126.24, + "end": 10129.14, + "probability": 0.853 + }, + { + "start": 10129.44, + "end": 10129.86, + "probability": 0.513 + }, + { + "start": 10130.98, + "end": 10132.84, + "probability": 0.9976 + }, + { + "start": 10132.84, + "end": 10135.64, + "probability": 0.9935 + }, + { + "start": 10136.28, + "end": 10138.7, + "probability": 0.9831 + }, + { + "start": 10139.96, + "end": 10144.66, + "probability": 0.9924 + }, + { + "start": 10145.5, + "end": 10149.68, + "probability": 0.9672 + }, + { + "start": 10150.26, + "end": 10154.1, + "probability": 0.9873 + }, + { + "start": 10154.92, + "end": 10157.12, + "probability": 0.9765 + }, + { + "start": 10157.34, + "end": 10159.2, + "probability": 0.8903 + }, + { + "start": 10160.0, + "end": 10160.52, + "probability": 0.9716 + }, + { + "start": 10162.26, + "end": 10163.98, + "probability": 0.9023 + }, + { + "start": 10164.08, + "end": 10167.76, + "probability": 0.9911 + }, + { + "start": 10168.58, + "end": 10170.64, + "probability": 0.9656 + }, + { + "start": 10171.54, + "end": 10176.12, + "probability": 0.9907 + }, + { + "start": 10176.38, + "end": 10179.32, + "probability": 0.8802 + }, + { + "start": 10179.44, + "end": 10179.68, + "probability": 0.573 + }, + { + "start": 10180.38, + "end": 10185.04, + "probability": 0.7713 + }, + { + "start": 10186.08, + "end": 10188.78, + "probability": 0.9963 + }, + { + "start": 10189.16, + "end": 10191.5, + "probability": 0.9761 + }, + { + "start": 10192.24, + "end": 10192.86, + "probability": 0.5811 + }, + { + "start": 10193.48, + "end": 10195.6, + "probability": 0.686 + }, + { + "start": 10199.6, + "end": 10202.16, + "probability": 0.498 + }, + { + "start": 10217.18, + "end": 10218.8, + "probability": 0.4045 + }, + { + "start": 10218.88, + "end": 10220.1, + "probability": 0.6442 + }, + { + "start": 10220.46, + "end": 10222.52, + "probability": 0.9057 + }, + { + "start": 10224.18, + "end": 10225.76, + "probability": 0.7989 + }, + { + "start": 10226.4, + "end": 10228.96, + "probability": 0.9119 + }, + { + "start": 10230.4, + "end": 10232.04, + "probability": 0.8267 + }, + { + "start": 10234.32, + "end": 10236.8, + "probability": 0.7997 + }, + { + "start": 10237.02, + "end": 10237.96, + "probability": 0.3551 + }, + { + "start": 10238.06, + "end": 10241.02, + "probability": 0.7245 + }, + { + "start": 10241.88, + "end": 10243.68, + "probability": 0.8652 + }, + { + "start": 10245.08, + "end": 10250.11, + "probability": 0.9721 + }, + { + "start": 10251.96, + "end": 10256.04, + "probability": 0.9961 + }, + { + "start": 10256.16, + "end": 10256.68, + "probability": 0.3002 + }, + { + "start": 10257.12, + "end": 10260.46, + "probability": 0.8815 + }, + { + "start": 10261.88, + "end": 10263.58, + "probability": 0.9896 + }, + { + "start": 10263.66, + "end": 10266.0, + "probability": 0.7007 + }, + { + "start": 10266.98, + "end": 10268.22, + "probability": 0.6948 + }, + { + "start": 10269.14, + "end": 10271.76, + "probability": 0.8329 + }, + { + "start": 10272.72, + "end": 10275.68, + "probability": 0.9926 + }, + { + "start": 10277.66, + "end": 10278.12, + "probability": 0.6612 + }, + { + "start": 10278.36, + "end": 10279.24, + "probability": 0.9537 + }, + { + "start": 10279.54, + "end": 10280.08, + "probability": 0.5967 + }, + { + "start": 10280.44, + "end": 10283.3, + "probability": 0.9633 + }, + { + "start": 10284.1, + "end": 10286.72, + "probability": 0.9157 + }, + { + "start": 10286.86, + "end": 10287.6, + "probability": 0.9326 + }, + { + "start": 10287.68, + "end": 10288.06, + "probability": 0.8919 + }, + { + "start": 10288.14, + "end": 10288.86, + "probability": 0.8995 + }, + { + "start": 10290.14, + "end": 10295.5, + "probability": 0.9879 + }, + { + "start": 10295.88, + "end": 10296.44, + "probability": 0.8796 + }, + { + "start": 10296.84, + "end": 10297.04, + "probability": 0.7645 + }, + { + "start": 10297.14, + "end": 10297.9, + "probability": 0.9375 + }, + { + "start": 10299.58, + "end": 10304.3, + "probability": 0.8734 + }, + { + "start": 10305.72, + "end": 10308.46, + "probability": 0.6575 + }, + { + "start": 10309.02, + "end": 10309.76, + "probability": 0.8033 + }, + { + "start": 10310.7, + "end": 10316.14, + "probability": 0.9966 + }, + { + "start": 10316.26, + "end": 10321.42, + "probability": 0.9022 + }, + { + "start": 10322.56, + "end": 10323.68, + "probability": 0.8398 + }, + { + "start": 10324.66, + "end": 10325.74, + "probability": 0.8587 + }, + { + "start": 10326.6, + "end": 10326.94, + "probability": 0.7317 + }, + { + "start": 10327.66, + "end": 10329.3, + "probability": 0.9609 + }, + { + "start": 10330.24, + "end": 10331.5, + "probability": 0.9136 + }, + { + "start": 10331.66, + "end": 10332.76, + "probability": 0.9316 + }, + { + "start": 10332.8, + "end": 10333.59, + "probability": 0.9371 + }, + { + "start": 10335.02, + "end": 10339.98, + "probability": 0.9645 + }, + { + "start": 10340.14, + "end": 10342.3, + "probability": 0.7425 + }, + { + "start": 10342.86, + "end": 10344.54, + "probability": 0.6517 + }, + { + "start": 10345.2, + "end": 10347.8, + "probability": 0.7831 + }, + { + "start": 10348.12, + "end": 10348.12, + "probability": 0.054 + }, + { + "start": 10349.54, + "end": 10350.9, + "probability": 0.8976 + }, + { + "start": 10351.82, + "end": 10356.52, + "probability": 0.7359 + }, + { + "start": 10356.68, + "end": 10357.28, + "probability": 0.77 + }, + { + "start": 10357.98, + "end": 10360.64, + "probability": 0.5451 + }, + { + "start": 10361.38, + "end": 10362.86, + "probability": 0.7878 + }, + { + "start": 10363.7, + "end": 10366.94, + "probability": 0.9826 + }, + { + "start": 10367.42, + "end": 10368.0, + "probability": 0.8195 + }, + { + "start": 10368.28, + "end": 10368.64, + "probability": 0.9826 + }, + { + "start": 10369.5, + "end": 10371.18, + "probability": 0.9682 + }, + { + "start": 10372.0, + "end": 10376.01, + "probability": 0.7465 + }, + { + "start": 10376.24, + "end": 10376.98, + "probability": 0.7581 + }, + { + "start": 10377.12, + "end": 10377.46, + "probability": 0.9019 + }, + { + "start": 10379.02, + "end": 10379.74, + "probability": 0.8557 + }, + { + "start": 10379.76, + "end": 10380.8, + "probability": 0.9356 + }, + { + "start": 10380.92, + "end": 10381.72, + "probability": 0.871 + }, + { + "start": 10381.84, + "end": 10383.79, + "probability": 0.9915 + }, + { + "start": 10385.62, + "end": 10387.42, + "probability": 0.978 + }, + { + "start": 10387.48, + "end": 10389.56, + "probability": 0.9243 + }, + { + "start": 10390.56, + "end": 10391.62, + "probability": 0.8959 + }, + { + "start": 10393.06, + "end": 10394.9, + "probability": 0.946 + }, + { + "start": 10396.18, + "end": 10400.84, + "probability": 0.9987 + }, + { + "start": 10402.84, + "end": 10404.94, + "probability": 0.9669 + }, + { + "start": 10405.2, + "end": 10407.08, + "probability": 0.958 + }, + { + "start": 10407.3, + "end": 10409.54, + "probability": 0.5161 + }, + { + "start": 10410.54, + "end": 10411.3, + "probability": 0.67 + }, + { + "start": 10413.93, + "end": 10417.28, + "probability": 0.9478 + }, + { + "start": 10417.32, + "end": 10420.24, + "probability": 0.9825 + }, + { + "start": 10424.26, + "end": 10427.38, + "probability": 0.3554 + }, + { + "start": 10428.42, + "end": 10430.14, + "probability": 0.985 + }, + { + "start": 10432.24, + "end": 10435.6, + "probability": 0.5335 + }, + { + "start": 10435.6, + "end": 10439.16, + "probability": 0.3903 + }, + { + "start": 10439.44, + "end": 10441.21, + "probability": 0.9331 + }, + { + "start": 10441.6, + "end": 10441.8, + "probability": 0.0055 + }, + { + "start": 10441.8, + "end": 10445.4, + "probability": 0.3982 + }, + { + "start": 10446.44, + "end": 10447.18, + "probability": 0.777 + }, + { + "start": 10447.72, + "end": 10450.78, + "probability": 0.9941 + }, + { + "start": 10450.92, + "end": 10453.04, + "probability": 0.8018 + }, + { + "start": 10453.62, + "end": 10456.42, + "probability": 0.8192 + }, + { + "start": 10456.82, + "end": 10457.04, + "probability": 0.5817 + }, + { + "start": 10457.4, + "end": 10459.44, + "probability": 0.987 + }, + { + "start": 10460.1, + "end": 10462.7, + "probability": 0.6392 + }, + { + "start": 10462.7, + "end": 10465.96, + "probability": 0.7897 + }, + { + "start": 10467.28, + "end": 10468.7, + "probability": 0.9252 + }, + { + "start": 10469.64, + "end": 10471.26, + "probability": 0.9345 + }, + { + "start": 10472.72, + "end": 10474.78, + "probability": 0.732 + }, + { + "start": 10475.36, + "end": 10478.12, + "probability": 0.8983 + }, + { + "start": 10479.6, + "end": 10480.0, + "probability": 0.6244 + }, + { + "start": 10480.54, + "end": 10485.02, + "probability": 0.5449 + }, + { + "start": 10485.18, + "end": 10486.58, + "probability": 0.5631 + }, + { + "start": 10489.3, + "end": 10491.3, + "probability": 0.791 + }, + { + "start": 10493.1, + "end": 10494.28, + "probability": 0.824 + }, + { + "start": 10494.48, + "end": 10494.52, + "probability": 0.28 + }, + { + "start": 10494.52, + "end": 10495.02, + "probability": 0.7006 + }, + { + "start": 10495.12, + "end": 10496.22, + "probability": 0.8721 + }, + { + "start": 10497.36, + "end": 10498.5, + "probability": 0.9941 + }, + { + "start": 10499.18, + "end": 10502.64, + "probability": 0.9969 + }, + { + "start": 10503.58, + "end": 10506.84, + "probability": 0.7296 + }, + { + "start": 10507.5, + "end": 10509.38, + "probability": 0.9851 + }, + { + "start": 10510.72, + "end": 10512.94, + "probability": 0.9909 + }, + { + "start": 10512.94, + "end": 10515.72, + "probability": 0.9849 + }, + { + "start": 10516.94, + "end": 10520.66, + "probability": 0.9638 + }, + { + "start": 10521.7, + "end": 10526.84, + "probability": 0.9963 + }, + { + "start": 10527.6, + "end": 10531.64, + "probability": 0.9963 + }, + { + "start": 10532.32, + "end": 10534.86, + "probability": 0.9626 + }, + { + "start": 10535.96, + "end": 10536.84, + "probability": 0.7339 + }, + { + "start": 10537.7, + "end": 10540.52, + "probability": 0.9007 + }, + { + "start": 10541.0, + "end": 10542.64, + "probability": 0.6897 + }, + { + "start": 10543.38, + "end": 10545.56, + "probability": 0.9648 + }, + { + "start": 10545.7, + "end": 10546.25, + "probability": 0.8574 + }, + { + "start": 10546.96, + "end": 10547.72, + "probability": 0.9758 + }, + { + "start": 10548.2, + "end": 10550.9, + "probability": 0.9897 + }, + { + "start": 10550.9, + "end": 10554.1, + "probability": 0.9445 + }, + { + "start": 10554.16, + "end": 10556.28, + "probability": 0.9991 + }, + { + "start": 10557.12, + "end": 10559.74, + "probability": 0.8693 + }, + { + "start": 10559.86, + "end": 10562.32, + "probability": 0.9906 + }, + { + "start": 10563.7, + "end": 10567.8, + "probability": 0.9418 + }, + { + "start": 10569.4, + "end": 10570.64, + "probability": 0.503 + }, + { + "start": 10570.74, + "end": 10573.56, + "probability": 0.7576 + }, + { + "start": 10574.08, + "end": 10575.58, + "probability": 0.7854 + }, + { + "start": 10576.46, + "end": 10578.02, + "probability": 0.9914 + }, + { + "start": 10578.7, + "end": 10579.56, + "probability": 0.8952 + }, + { + "start": 10580.38, + "end": 10582.22, + "probability": 0.9194 + }, + { + "start": 10582.82, + "end": 10585.2, + "probability": 0.9688 + }, + { + "start": 10586.12, + "end": 10588.06, + "probability": 0.4329 + }, + { + "start": 10588.86, + "end": 10591.52, + "probability": 0.9545 + }, + { + "start": 10592.78, + "end": 10595.4, + "probability": 0.8389 + }, + { + "start": 10596.26, + "end": 10596.74, + "probability": 0.7563 + }, + { + "start": 10597.48, + "end": 10601.4, + "probability": 0.9367 + }, + { + "start": 10602.16, + "end": 10605.76, + "probability": 0.9922 + }, + { + "start": 10607.04, + "end": 10609.06, + "probability": 0.8081 + }, + { + "start": 10609.16, + "end": 10612.86, + "probability": 0.9943 + }, + { + "start": 10613.32, + "end": 10614.86, + "probability": 0.7162 + }, + { + "start": 10615.02, + "end": 10616.12, + "probability": 0.7085 + }, + { + "start": 10617.02, + "end": 10619.5, + "probability": 0.9966 + }, + { + "start": 10619.62, + "end": 10624.44, + "probability": 0.6659 + }, + { + "start": 10624.44, + "end": 10625.44, + "probability": 0.5405 + }, + { + "start": 10626.0, + "end": 10627.66, + "probability": 0.9545 + }, + { + "start": 10628.36, + "end": 10629.64, + "probability": 0.9385 + }, + { + "start": 10630.38, + "end": 10634.36, + "probability": 0.9894 + }, + { + "start": 10634.64, + "end": 10638.6, + "probability": 0.9816 + }, + { + "start": 10639.58, + "end": 10642.52, + "probability": 0.9915 + }, + { + "start": 10642.64, + "end": 10644.46, + "probability": 0.8892 + }, + { + "start": 10644.92, + "end": 10646.16, + "probability": 0.9848 + }, + { + "start": 10646.34, + "end": 10649.52, + "probability": 0.9988 + }, + { + "start": 10650.6, + "end": 10653.46, + "probability": 0.9409 + }, + { + "start": 10654.14, + "end": 10656.1, + "probability": 0.9238 + }, + { + "start": 10656.88, + "end": 10658.52, + "probability": 0.9757 + }, + { + "start": 10659.08, + "end": 10660.56, + "probability": 0.871 + }, + { + "start": 10661.28, + "end": 10662.22, + "probability": 0.957 + }, + { + "start": 10662.46, + "end": 10664.84, + "probability": 0.9526 + }, + { + "start": 10665.36, + "end": 10668.14, + "probability": 0.9905 + }, + { + "start": 10668.14, + "end": 10670.6, + "probability": 0.9797 + }, + { + "start": 10671.08, + "end": 10672.56, + "probability": 0.7008 + }, + { + "start": 10673.18, + "end": 10676.74, + "probability": 0.9902 + }, + { + "start": 10677.08, + "end": 10681.5, + "probability": 0.9867 + }, + { + "start": 10681.74, + "end": 10682.04, + "probability": 0.8211 + }, + { + "start": 10701.74, + "end": 10705.62, + "probability": 0.4821 + }, + { + "start": 10706.62, + "end": 10706.62, + "probability": 0.48 + }, + { + "start": 10706.62, + "end": 10707.92, + "probability": 0.4302 + }, + { + "start": 10708.88, + "end": 10709.3, + "probability": 0.63 + }, + { + "start": 10709.38, + "end": 10712.72, + "probability": 0.76 + }, + { + "start": 10713.52, + "end": 10714.92, + "probability": 0.9573 + }, + { + "start": 10715.66, + "end": 10716.12, + "probability": 0.9339 + }, + { + "start": 10717.4, + "end": 10717.62, + "probability": 0.5103 + }, + { + "start": 10717.62, + "end": 10718.28, + "probability": 0.3855 + }, + { + "start": 10718.28, + "end": 10719.7, + "probability": 0.8486 + }, + { + "start": 10721.0, + "end": 10722.82, + "probability": 0.023 + }, + { + "start": 10724.88, + "end": 10725.96, + "probability": 0.1771 + }, + { + "start": 10726.32, + "end": 10727.24, + "probability": 0.8104 + }, + { + "start": 10728.55, + "end": 10731.6, + "probability": 0.9561 + }, + { + "start": 10731.66, + "end": 10732.52, + "probability": 0.9448 + }, + { + "start": 10733.08, + "end": 10735.62, + "probability": 0.9948 + }, + { + "start": 10736.56, + "end": 10739.4, + "probability": 0.8148 + }, + { + "start": 10740.26, + "end": 10741.04, + "probability": 0.7284 + }, + { + "start": 10741.08, + "end": 10742.46, + "probability": 0.9424 + }, + { + "start": 10742.58, + "end": 10744.9, + "probability": 0.9254 + }, + { + "start": 10745.64, + "end": 10748.9, + "probability": 0.9445 + }, + { + "start": 10749.74, + "end": 10750.46, + "probability": 0.968 + }, + { + "start": 10752.36, + "end": 10755.47, + "probability": 0.9954 + }, + { + "start": 10756.12, + "end": 10757.8, + "probability": 0.69 + }, + { + "start": 10758.66, + "end": 10761.14, + "probability": 0.7592 + }, + { + "start": 10761.16, + "end": 10762.76, + "probability": 0.3602 + }, + { + "start": 10763.24, + "end": 10764.94, + "probability": 0.9142 + }, + { + "start": 10765.74, + "end": 10768.48, + "probability": 0.8099 + }, + { + "start": 10770.08, + "end": 10773.62, + "probability": 0.9751 + }, + { + "start": 10774.52, + "end": 10777.54, + "probability": 0.5989 + }, + { + "start": 10778.18, + "end": 10779.07, + "probability": 0.9736 + }, + { + "start": 10779.76, + "end": 10780.0, + "probability": 0.909 + }, + { + "start": 10780.94, + "end": 10786.74, + "probability": 0.8895 + }, + { + "start": 10787.56, + "end": 10790.78, + "probability": 0.95 + }, + { + "start": 10792.64, + "end": 10794.1, + "probability": 0.9257 + }, + { + "start": 10795.12, + "end": 10798.7, + "probability": 0.8898 + }, + { + "start": 10798.86, + "end": 10801.78, + "probability": 0.9911 + }, + { + "start": 10802.4, + "end": 10803.42, + "probability": 0.5443 + }, + { + "start": 10804.32, + "end": 10804.58, + "probability": 0.7109 + }, + { + "start": 10805.48, + "end": 10808.25, + "probability": 0.8824 + }, + { + "start": 10809.66, + "end": 10812.4, + "probability": 0.9757 + }, + { + "start": 10813.66, + "end": 10814.24, + "probability": 0.6151 + }, + { + "start": 10814.88, + "end": 10817.49, + "probability": 0.9481 + }, + { + "start": 10818.3, + "end": 10819.04, + "probability": 0.9067 + }, + { + "start": 10819.32, + "end": 10820.66, + "probability": 0.9604 + }, + { + "start": 10821.06, + "end": 10821.78, + "probability": 0.4081 + }, + { + "start": 10822.0, + "end": 10825.3, + "probability": 0.4729 + }, + { + "start": 10825.9, + "end": 10830.78, + "probability": 0.8842 + }, + { + "start": 10830.94, + "end": 10831.71, + "probability": 0.3939 + }, + { + "start": 10831.9, + "end": 10833.42, + "probability": 0.6809 + }, + { + "start": 10833.56, + "end": 10835.44, + "probability": 0.9353 + }, + { + "start": 10848.26, + "end": 10848.82, + "probability": 0.0259 + }, + { + "start": 10848.82, + "end": 10848.82, + "probability": 0.0606 + }, + { + "start": 10848.82, + "end": 10848.82, + "probability": 0.0862 + }, + { + "start": 10848.82, + "end": 10848.82, + "probability": 0.1137 + }, + { + "start": 10848.82, + "end": 10850.39, + "probability": 0.3437 + }, + { + "start": 10850.94, + "end": 10857.48, + "probability": 0.7498 + }, + { + "start": 10857.48, + "end": 10859.48, + "probability": 0.7816 + }, + { + "start": 10860.42, + "end": 10865.34, + "probability": 0.7463 + }, + { + "start": 10866.43, + "end": 10871.76, + "probability": 0.8308 + }, + { + "start": 10871.76, + "end": 10874.3, + "probability": 0.9952 + }, + { + "start": 10874.44, + "end": 10878.94, + "probability": 0.9733 + }, + { + "start": 10879.54, + "end": 10880.4, + "probability": 0.7334 + }, + { + "start": 10880.88, + "end": 10881.96, + "probability": 0.4027 + }, + { + "start": 10882.42, + "end": 10883.24, + "probability": 0.6505 + }, + { + "start": 10883.6, + "end": 10884.88, + "probability": 0.7683 + }, + { + "start": 10885.58, + "end": 10887.02, + "probability": 0.8931 + }, + { + "start": 10887.62, + "end": 10888.19, + "probability": 0.8488 + }, + { + "start": 10888.82, + "end": 10891.3, + "probability": 0.7498 + }, + { + "start": 10894.38, + "end": 10899.36, + "probability": 0.9348 + }, + { + "start": 10899.78, + "end": 10901.74, + "probability": 0.9943 + }, + { + "start": 10903.14, + "end": 10904.72, + "probability": 0.9587 + }, + { + "start": 10905.04, + "end": 10905.26, + "probability": 0.8727 + }, + { + "start": 10905.84, + "end": 10908.76, + "probability": 0.6529 + }, + { + "start": 10909.84, + "end": 10911.92, + "probability": 0.9896 + }, + { + "start": 10912.82, + "end": 10916.06, + "probability": 0.725 + }, + { + "start": 10923.16, + "end": 10924.84, + "probability": 0.4223 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11130.0, + "end": 11130.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11269.0, + "end": 11269.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11405.0, + "end": 11405.0, + "probability": 0.0 + }, + { + "start": 11482.58, + "end": 11485.76, + "probability": 0.0801 + }, + { + "start": 11487.22, + "end": 11491.76, + "probability": 0.1114 + }, + { + "start": 11498.96, + "end": 11499.56, + "probability": 0.0408 + }, + { + "start": 11499.56, + "end": 11500.84, + "probability": 0.0257 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11527.0, + "end": 11527.0, + "probability": 0.0 + }, + { + "start": 11537.4, + "end": 11538.9, + "probability": 0.0004 + }, + { + "start": 11552.18, + "end": 11553.26, + "probability": 0.0977 + }, + { + "start": 11555.7, + "end": 11556.94, + "probability": 0.0274 + }, + { + "start": 11560.08, + "end": 11560.2, + "probability": 0.0015 + }, + { + "start": 11562.76, + "end": 11563.44, + "probability": 0.3288 + }, + { + "start": 11567.22, + "end": 11570.58, + "probability": 0.0343 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11651.0, + "end": 11651.0, + "probability": 0.0 + }, + { + "start": 11674.9, + "end": 11676.0, + "probability": 0.0294 + }, + { + "start": 11676.34, + "end": 11681.52, + "probability": 0.0109 + }, + { + "start": 11702.02, + "end": 11705.16, + "probability": 0.0671 + }, + { + "start": 11706.42, + "end": 11713.76, + "probability": 0.0984 + }, + { + "start": 11719.32, + "end": 11721.4, + "probability": 0.0603 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.0, + "end": 11791.0, + "probability": 0.0 + }, + { + "start": 11791.22, + "end": 11793.98, + "probability": 0.025 + }, + { + "start": 11794.44, + "end": 11796.22, + "probability": 0.0975 + }, + { + "start": 11797.5, + "end": 11804.82, + "probability": 0.0327 + }, + { + "start": 11806.38, + "end": 11809.38, + "probability": 0.2279 + }, + { + "start": 11809.38, + "end": 11816.05, + "probability": 0.0333 + }, + { + "start": 11817.52, + "end": 11818.1, + "probability": 0.2934 + }, + { + "start": 11819.4, + "end": 11820.02, + "probability": 0.0634 + }, + { + "start": 11820.66, + "end": 11820.72, + "probability": 0.0288 + }, + { + "start": 11820.72, + "end": 11821.72, + "probability": 0.0483 + }, + { + "start": 11821.84, + "end": 11824.54, + "probability": 0.099 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.0, + "end": 12128.0, + "probability": 0.0 + }, + { + "start": 12128.62, + "end": 12130.28, + "probability": 0.1651 + }, + { + "start": 12132.8, + "end": 12132.86, + "probability": 0.0218 + }, + { + "start": 12132.88, + "end": 12132.9, + "probability": 0.0201 + }, + { + "start": 12451.82, + "end": 12454.14, + "probability": 0.0218 + }, + { + "start": 12454.24, + "end": 12455.0, + "probability": 0.0081 + }, + { + "start": 12455.64, + "end": 12459.98, + "probability": 0.0523 + }, + { + "start": 12465.3, + "end": 12465.64, + "probability": 0.0232 + }, + { + "start": 12467.17, + "end": 12470.4, + "probability": 0.019 + }, + { + "start": 12470.8, + "end": 12473.48, + "probability": 0.0551 + }, + { + "start": 12473.83, + "end": 12475.34, + "probability": 0.0899 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.0, + "probability": 0.0 + }, + { + "start": 12558.0, + "end": 12558.28, + "probability": 0.0111 + }, + { + "start": 12558.28, + "end": 12558.28, + "probability": 0.1776 + }, + { + "start": 12558.28, + "end": 12558.28, + "probability": 0.1538 + }, + { + "start": 12558.28, + "end": 12563.8, + "probability": 0.1859 + }, + { + "start": 12564.4, + "end": 12566.5, + "probability": 0.9906 + }, + { + "start": 12566.62, + "end": 12568.22, + "probability": 0.9994 + }, + { + "start": 12568.76, + "end": 12570.1, + "probability": 0.9548 + }, + { + "start": 12570.16, + "end": 12572.7, + "probability": 0.9928 + }, + { + "start": 12572.7, + "end": 12576.98, + "probability": 0.9684 + }, + { + "start": 12577.62, + "end": 12579.68, + "probability": 0.9946 + }, + { + "start": 12580.3, + "end": 12583.64, + "probability": 0.9935 + }, + { + "start": 12583.7, + "end": 12584.8, + "probability": 0.8843 + }, + { + "start": 12585.72, + "end": 12585.78, + "probability": 0.4904 + }, + { + "start": 12585.88, + "end": 12586.34, + "probability": 0.8584 + }, + { + "start": 12586.38, + "end": 12588.56, + "probability": 0.9772 + }, + { + "start": 12588.56, + "end": 12590.94, + "probability": 0.9956 + }, + { + "start": 12591.34, + "end": 12594.76, + "probability": 0.976 + }, + { + "start": 12595.4, + "end": 12595.5, + "probability": 0.4927 + }, + { + "start": 12596.3, + "end": 12596.84, + "probability": 0.9053 + }, + { + "start": 12597.78, + "end": 12599.5, + "probability": 0.9965 + }, + { + "start": 12600.24, + "end": 12605.63, + "probability": 0.9966 + }, + { + "start": 12607.2, + "end": 12608.96, + "probability": 0.7705 + }, + { + "start": 12609.56, + "end": 12614.58, + "probability": 0.548 + }, + { + "start": 12614.58, + "end": 12617.68, + "probability": 0.9982 + }, + { + "start": 12617.88, + "end": 12620.3, + "probability": 0.9827 + }, + { + "start": 12621.36, + "end": 12624.32, + "probability": 0.9932 + }, + { + "start": 12625.04, + "end": 12627.5, + "probability": 0.9481 + }, + { + "start": 12627.66, + "end": 12630.2, + "probability": 0.9972 + }, + { + "start": 12631.06, + "end": 12632.14, + "probability": 0.5731 + }, + { + "start": 12632.34, + "end": 12636.52, + "probability": 0.9814 + }, + { + "start": 12636.74, + "end": 12638.3, + "probability": 0.7659 + }, + { + "start": 12638.84, + "end": 12640.34, + "probability": 0.9847 + }, + { + "start": 12640.98, + "end": 12641.32, + "probability": 0.6772 + }, + { + "start": 12641.7, + "end": 12644.0, + "probability": 0.9705 + }, + { + "start": 12644.7, + "end": 12647.34, + "probability": 0.9543 + }, + { + "start": 12647.98, + "end": 12650.82, + "probability": 0.1907 + }, + { + "start": 12650.82, + "end": 12650.82, + "probability": 0.6522 + }, + { + "start": 12650.82, + "end": 12650.82, + "probability": 0.438 + }, + { + "start": 12650.82, + "end": 12650.82, + "probability": 0.5103 + }, + { + "start": 12650.82, + "end": 12651.32, + "probability": 0.5947 + }, + { + "start": 12651.4, + "end": 12654.34, + "probability": 0.8135 + }, + { + "start": 12663.12, + "end": 12664.48, + "probability": 0.5389 + }, + { + "start": 12665.14, + "end": 12667.48, + "probability": 0.76 + }, + { + "start": 12669.56, + "end": 12671.1, + "probability": 0.7041 + }, + { + "start": 12671.34, + "end": 12675.3, + "probability": 0.8319 + }, + { + "start": 12676.78, + "end": 12677.26, + "probability": 0.6285 + }, + { + "start": 12677.44, + "end": 12677.58, + "probability": 0.9173 + }, + { + "start": 12677.74, + "end": 12680.26, + "probability": 0.9399 + }, + { + "start": 12681.5, + "end": 12684.38, + "probability": 0.9995 + }, + { + "start": 12685.14, + "end": 12685.78, + "probability": 0.7276 + }, + { + "start": 12685.92, + "end": 12689.93, + "probability": 0.9905 + }, + { + "start": 12690.42, + "end": 12691.58, + "probability": 0.4998 + }, + { + "start": 12691.96, + "end": 12693.84, + "probability": 0.9784 + }, + { + "start": 12695.68, + "end": 12695.68, + "probability": 0.7997 + }, + { + "start": 12695.68, + "end": 12700.16, + "probability": 0.8081 + }, + { + "start": 12700.3, + "end": 12701.82, + "probability": 0.9704 + }, + { + "start": 12702.52, + "end": 12706.24, + "probability": 0.8065 + }, + { + "start": 12707.4, + "end": 12708.48, + "probability": 0.9945 + }, + { + "start": 12708.62, + "end": 12711.29, + "probability": 0.9915 + }, + { + "start": 12714.58, + "end": 12715.12, + "probability": 0.6937 + }, + { + "start": 12715.3, + "end": 12715.98, + "probability": 0.8153 + }, + { + "start": 12716.16, + "end": 12720.38, + "probability": 0.7526 + }, + { + "start": 12720.84, + "end": 12723.65, + "probability": 0.7186 + }, + { + "start": 12725.44, + "end": 12725.48, + "probability": 0.0212 + }, + { + "start": 12725.48, + "end": 12726.1, + "probability": 0.3714 + }, + { + "start": 12726.1, + "end": 12727.33, + "probability": 0.6254 + }, + { + "start": 12728.0, + "end": 12731.8, + "probability": 0.9037 + }, + { + "start": 12732.4, + "end": 12734.92, + "probability": 0.7656 + }, + { + "start": 12735.98, + "end": 12737.34, + "probability": 0.9885 + }, + { + "start": 12738.04, + "end": 12740.02, + "probability": 0.8557 + }, + { + "start": 12740.72, + "end": 12742.84, + "probability": 0.964 + }, + { + "start": 12743.32, + "end": 12745.2, + "probability": 0.766 + }, + { + "start": 12745.48, + "end": 12746.22, + "probability": 0.9603 + }, + { + "start": 12746.48, + "end": 12747.58, + "probability": 0.8663 + }, + { + "start": 12748.22, + "end": 12748.79, + "probability": 0.7329 + }, + { + "start": 12750.06, + "end": 12752.54, + "probability": 0.7282 + }, + { + "start": 12753.58, + "end": 12758.2, + "probability": 0.7019 + }, + { + "start": 12758.88, + "end": 12759.36, + "probability": 0.2668 + }, + { + "start": 12759.76, + "end": 12760.86, + "probability": 0.5573 + }, + { + "start": 12760.92, + "end": 12761.82, + "probability": 0.9868 + }, + { + "start": 12762.78, + "end": 12763.88, + "probability": 0.9478 + }, + { + "start": 12764.58, + "end": 12766.26, + "probability": 0.9116 + }, + { + "start": 12766.34, + "end": 12767.7, + "probability": 0.9204 + }, + { + "start": 12767.76, + "end": 12768.8, + "probability": 0.931 + }, + { + "start": 12768.98, + "end": 12770.92, + "probability": 0.1386 + }, + { + "start": 12770.92, + "end": 12771.28, + "probability": 0.4435 + }, + { + "start": 12771.4, + "end": 12771.82, + "probability": 0.6777 + }, + { + "start": 12772.16, + "end": 12772.92, + "probability": 0.7643 + }, + { + "start": 12773.76, + "end": 12774.24, + "probability": 0.8174 + }, + { + "start": 12774.95, + "end": 12777.75, + "probability": 0.751 + }, + { + "start": 12778.56, + "end": 12780.76, + "probability": 0.974 + }, + { + "start": 12781.64, + "end": 12782.52, + "probability": 0.7402 + }, + { + "start": 12783.48, + "end": 12786.48, + "probability": 0.9589 + }, + { + "start": 12786.66, + "end": 12787.72, + "probability": 0.9607 + }, + { + "start": 12788.06, + "end": 12789.58, + "probability": 0.967 + }, + { + "start": 12789.76, + "end": 12790.28, + "probability": 0.4692 + }, + { + "start": 12790.56, + "end": 12791.46, + "probability": 0.7978 + }, + { + "start": 12792.06, + "end": 12792.48, + "probability": 0.8153 + }, + { + "start": 12793.06, + "end": 12794.66, + "probability": 0.9241 + }, + { + "start": 12794.78, + "end": 12795.88, + "probability": 0.8662 + }, + { + "start": 12796.0, + "end": 12796.3, + "probability": 0.8188 + }, + { + "start": 12797.08, + "end": 12798.18, + "probability": 0.765 + }, + { + "start": 12799.16, + "end": 12800.7, + "probability": 0.6567 + }, + { + "start": 12800.9, + "end": 12801.62, + "probability": 0.6895 + }, + { + "start": 12801.74, + "end": 12808.66, + "probability": 0.8796 + }, + { + "start": 12808.92, + "end": 12810.52, + "probability": 0.9158 + }, + { + "start": 12812.12, + "end": 12814.24, + "probability": 0.7752 + }, + { + "start": 12814.8, + "end": 12815.4, + "probability": 0.9454 + }, + { + "start": 12816.78, + "end": 12819.8, + "probability": 0.9726 + }, + { + "start": 12821.04, + "end": 12822.12, + "probability": 0.4371 + }, + { + "start": 12822.36, + "end": 12823.68, + "probability": 0.8694 + }, + { + "start": 12824.06, + "end": 12825.9, + "probability": 0.8232 + }, + { + "start": 12826.02, + "end": 12827.94, + "probability": 0.9434 + }, + { + "start": 12828.96, + "end": 12835.32, + "probability": 0.7953 + }, + { + "start": 12836.3, + "end": 12838.32, + "probability": 0.7792 + }, + { + "start": 12840.78, + "end": 12843.46, + "probability": 0.817 + }, + { + "start": 12844.34, + "end": 12846.0, + "probability": 0.6191 + }, + { + "start": 12847.58, + "end": 12849.82, + "probability": 0.8085 + }, + { + "start": 12850.2, + "end": 12853.3, + "probability": 0.5627 + }, + { + "start": 12853.8, + "end": 12859.08, + "probability": 0.8992 + }, + { + "start": 12860.34, + "end": 12862.48, + "probability": 0.6594 + }, + { + "start": 12863.68, + "end": 12866.24, + "probability": 0.7688 + }, + { + "start": 12866.52, + "end": 12868.84, + "probability": 0.9992 + }, + { + "start": 12869.68, + "end": 12873.37, + "probability": 0.9241 + }, + { + "start": 12874.14, + "end": 12876.18, + "probability": 0.8505 + }, + { + "start": 12877.3, + "end": 12882.62, + "probability": 0.7447 + }, + { + "start": 12883.4, + "end": 12885.68, + "probability": 0.9712 + }, + { + "start": 12886.54, + "end": 12888.78, + "probability": 0.9525 + }, + { + "start": 12889.36, + "end": 12891.62, + "probability": 0.6091 + }, + { + "start": 12892.34, + "end": 12893.08, + "probability": 0.7286 + }, + { + "start": 12893.88, + "end": 12894.08, + "probability": 0.0897 + }, + { + "start": 12894.68, + "end": 12894.8, + "probability": 0.0098 + }, + { + "start": 12894.8, + "end": 12894.8, + "probability": 0.1798 + }, + { + "start": 12894.8, + "end": 12895.5, + "probability": 0.7113 + }, + { + "start": 12895.58, + "end": 12896.87, + "probability": 0.9946 + }, + { + "start": 12897.02, + "end": 12898.06, + "probability": 0.9536 + }, + { + "start": 12898.06, + "end": 12898.96, + "probability": 0.56 + }, + { + "start": 12898.96, + "end": 12900.84, + "probability": 0.1719 + }, + { + "start": 12901.4, + "end": 12901.94, + "probability": 0.4782 + }, + { + "start": 12902.24, + "end": 12902.5, + "probability": 0.8806 + }, + { + "start": 12903.2, + "end": 12905.39, + "probability": 0.981 + }, + { + "start": 12905.96, + "end": 12907.28, + "probability": 0.7007 + }, + { + "start": 12908.68, + "end": 12909.16, + "probability": 0.2551 + }, + { + "start": 12909.16, + "end": 12909.16, + "probability": 0.7268 + }, + { + "start": 12909.16, + "end": 12910.86, + "probability": 0.6565 + }, + { + "start": 12912.94, + "end": 12916.02, + "probability": 0.9902 + }, + { + "start": 12926.8, + "end": 12931.32, + "probability": 0.7195 + }, + { + "start": 12932.88, + "end": 12934.52, + "probability": 0.9902 + }, + { + "start": 12935.04, + "end": 12935.94, + "probability": 0.9472 + }, + { + "start": 12937.32, + "end": 12939.22, + "probability": 0.9992 + }, + { + "start": 12939.76, + "end": 12941.78, + "probability": 0.9954 + }, + { + "start": 12942.52, + "end": 12948.96, + "probability": 0.9749 + }, + { + "start": 12950.08, + "end": 12952.62, + "probability": 0.9207 + }, + { + "start": 12956.04, + "end": 12956.04, + "probability": 0.0225 + }, + { + "start": 12956.04, + "end": 12957.28, + "probability": 0.5735 + }, + { + "start": 12958.38, + "end": 12960.38, + "probability": 0.9816 + }, + { + "start": 12960.86, + "end": 12963.32, + "probability": 0.9834 + }, + { + "start": 12963.98, + "end": 12965.42, + "probability": 0.923 + }, + { + "start": 12966.58, + "end": 12967.72, + "probability": 0.9395 + }, + { + "start": 12967.94, + "end": 12970.38, + "probability": 0.9795 + }, + { + "start": 12970.54, + "end": 12972.34, + "probability": 0.9961 + }, + { + "start": 12973.12, + "end": 12973.96, + "probability": 0.9132 + }, + { + "start": 12975.0, + "end": 12978.78, + "probability": 0.964 + }, + { + "start": 12979.06, + "end": 12981.04, + "probability": 0.6927 + }, + { + "start": 12981.6, + "end": 12982.12, + "probability": 0.9336 + }, + { + "start": 12983.26, + "end": 12984.6, + "probability": 0.9507 + }, + { + "start": 12985.64, + "end": 12987.62, + "probability": 0.9973 + }, + { + "start": 12988.24, + "end": 12989.04, + "probability": 0.8922 + }, + { + "start": 12989.82, + "end": 12990.36, + "probability": 0.9947 + }, + { + "start": 12992.8, + "end": 12995.68, + "probability": 0.9992 + }, + { + "start": 12996.88, + "end": 12997.5, + "probability": 0.6477 + }, + { + "start": 12997.56, + "end": 13000.54, + "probability": 0.9255 + }, + { + "start": 13001.16, + "end": 13001.6, + "probability": 0.7891 + }, + { + "start": 13002.32, + "end": 13002.99, + "probability": 0.877 + }, + { + "start": 13004.0, + "end": 13007.34, + "probability": 0.9907 + }, + { + "start": 13008.96, + "end": 13011.62, + "probability": 0.9486 + }, + { + "start": 13012.28, + "end": 13014.0, + "probability": 0.986 + }, + { + "start": 13015.14, + "end": 13016.08, + "probability": 0.7902 + }, + { + "start": 13017.36, + "end": 13020.04, + "probability": 0.9539 + }, + { + "start": 13021.68, + "end": 13024.34, + "probability": 0.9585 + }, + { + "start": 13024.96, + "end": 13025.94, + "probability": 0.8684 + }, + { + "start": 13026.92, + "end": 13030.14, + "probability": 0.7857 + }, + { + "start": 13030.5, + "end": 13031.52, + "probability": 0.8175 + }, + { + "start": 13032.64, + "end": 13034.36, + "probability": 0.6178 + }, + { + "start": 13034.54, + "end": 13037.9, + "probability": 0.9893 + }, + { + "start": 13038.02, + "end": 13038.3, + "probability": 0.4071 + }, + { + "start": 13038.46, + "end": 13042.22, + "probability": 0.9841 + }, + { + "start": 13042.54, + "end": 13044.58, + "probability": 0.8181 + }, + { + "start": 13045.26, + "end": 13047.32, + "probability": 0.9851 + }, + { + "start": 13048.36, + "end": 13051.7, + "probability": 0.9966 + }, + { + "start": 13052.54, + "end": 13056.8, + "probability": 0.9896 + }, + { + "start": 13058.12, + "end": 13059.75, + "probability": 0.8523 + }, + { + "start": 13061.7, + "end": 13062.26, + "probability": 0.7877 + }, + { + "start": 13062.88, + "end": 13064.38, + "probability": 0.965 + }, + { + "start": 13064.52, + "end": 13068.2, + "probability": 0.9366 + }, + { + "start": 13069.14, + "end": 13074.86, + "probability": 0.9926 + }, + { + "start": 13075.66, + "end": 13081.26, + "probability": 0.9792 + }, + { + "start": 13082.24, + "end": 13084.78, + "probability": 0.9922 + }, + { + "start": 13085.78, + "end": 13088.1, + "probability": 0.9949 + }, + { + "start": 13089.1, + "end": 13091.34, + "probability": 0.981 + }, + { + "start": 13092.56, + "end": 13095.5, + "probability": 0.9558 + }, + { + "start": 13096.12, + "end": 13098.68, + "probability": 0.9146 + }, + { + "start": 13099.36, + "end": 13104.76, + "probability": 0.9883 + }, + { + "start": 13105.26, + "end": 13105.72, + "probability": 0.8849 + }, + { + "start": 13106.44, + "end": 13108.16, + "probability": 0.8789 + }, + { + "start": 13108.56, + "end": 13109.24, + "probability": 0.7602 + }, + { + "start": 13110.26, + "end": 13112.68, + "probability": 0.7325 + }, + { + "start": 13113.78, + "end": 13115.68, + "probability": 0.9918 + }, + { + "start": 13116.34, + "end": 13117.18, + "probability": 0.936 + }, + { + "start": 13117.96, + "end": 13119.76, + "probability": 0.9774 + }, + { + "start": 13120.28, + "end": 13120.9, + "probability": 0.7098 + }, + { + "start": 13121.74, + "end": 13123.9, + "probability": 0.8184 + }, + { + "start": 13124.48, + "end": 13126.7, + "probability": 0.5845 + }, + { + "start": 13129.38, + "end": 13131.26, + "probability": 0.8127 + }, + { + "start": 13131.98, + "end": 13132.22, + "probability": 0.779 + }, + { + "start": 13141.99, + "end": 13146.02, + "probability": 0.6327 + }, + { + "start": 13147.06, + "end": 13148.68, + "probability": 0.93 + }, + { + "start": 13150.7, + "end": 13151.68, + "probability": 0.7368 + }, + { + "start": 13152.12, + "end": 13155.76, + "probability": 0.6642 + }, + { + "start": 13156.66, + "end": 13156.72, + "probability": 0.2062 + }, + { + "start": 13156.72, + "end": 13157.32, + "probability": 0.6166 + }, + { + "start": 13158.18, + "end": 13159.08, + "probability": 0.5352 + }, + { + "start": 13159.7, + "end": 13162.61, + "probability": 0.7994 + }, + { + "start": 13162.82, + "end": 13162.92, + "probability": 0.202 + }, + { + "start": 13163.7, + "end": 13164.06, + "probability": 0.2073 + }, + { + "start": 13164.1, + "end": 13164.42, + "probability": 0.4283 + }, + { + "start": 13164.54, + "end": 13164.66, + "probability": 0.8227 + }, + { + "start": 13165.58, + "end": 13166.58, + "probability": 0.9613 + }, + { + "start": 13167.52, + "end": 13170.36, + "probability": 0.9675 + }, + { + "start": 13170.9, + "end": 13171.22, + "probability": 0.8276 + }, + { + "start": 13172.66, + "end": 13174.62, + "probability": 0.9863 + }, + { + "start": 13175.52, + "end": 13176.16, + "probability": 0.7677 + }, + { + "start": 13177.5, + "end": 13180.4, + "probability": 0.9094 + }, + { + "start": 13181.66, + "end": 13183.3, + "probability": 0.9678 + }, + { + "start": 13183.9, + "end": 13184.94, + "probability": 0.9852 + }, + { + "start": 13185.96, + "end": 13186.47, + "probability": 0.9575 + }, + { + "start": 13187.34, + "end": 13187.78, + "probability": 0.5028 + }, + { + "start": 13188.44, + "end": 13188.94, + "probability": 0.9226 + }, + { + "start": 13190.3, + "end": 13193.16, + "probability": 0.7166 + }, + { + "start": 13194.3, + "end": 13197.4, + "probability": 0.9981 + }, + { + "start": 13197.52, + "end": 13198.82, + "probability": 0.8806 + }, + { + "start": 13199.26, + "end": 13200.38, + "probability": 0.9949 + }, + { + "start": 13200.42, + "end": 13202.6, + "probability": 0.8347 + }, + { + "start": 13203.54, + "end": 13203.96, + "probability": 0.9839 + }, + { + "start": 13204.96, + "end": 13207.96, + "probability": 0.9485 + }, + { + "start": 13209.24, + "end": 13212.12, + "probability": 0.9901 + }, + { + "start": 13214.22, + "end": 13216.6, + "probability": 0.9453 + }, + { + "start": 13217.14, + "end": 13221.06, + "probability": 0.9882 + }, + { + "start": 13223.44, + "end": 13223.66, + "probability": 0.5874 + }, + { + "start": 13224.18, + "end": 13225.12, + "probability": 0.8149 + }, + { + "start": 13225.9, + "end": 13228.72, + "probability": 0.573 + }, + { + "start": 13229.64, + "end": 13232.91, + "probability": 0.9954 + }, + { + "start": 13234.68, + "end": 13235.82, + "probability": 0.4261 + }, + { + "start": 13236.34, + "end": 13237.52, + "probability": 0.9097 + }, + { + "start": 13238.34, + "end": 13239.8, + "probability": 0.7619 + }, + { + "start": 13240.62, + "end": 13241.68, + "probability": 0.865 + }, + { + "start": 13243.24, + "end": 13245.54, + "probability": 0.9981 + }, + { + "start": 13246.4, + "end": 13249.48, + "probability": 0.963 + }, + { + "start": 13250.2, + "end": 13253.26, + "probability": 0.9623 + }, + { + "start": 13254.16, + "end": 13258.1, + "probability": 0.9861 + }, + { + "start": 13260.06, + "end": 13262.54, + "probability": 0.6972 + }, + { + "start": 13263.3, + "end": 13266.84, + "probability": 0.9209 + }, + { + "start": 13267.52, + "end": 13270.46, + "probability": 0.9946 + }, + { + "start": 13271.56, + "end": 13276.09, + "probability": 0.9902 + }, + { + "start": 13276.9, + "end": 13277.47, + "probability": 0.9014 + }, + { + "start": 13277.88, + "end": 13278.36, + "probability": 0.2795 + }, + { + "start": 13278.4, + "end": 13278.86, + "probability": 0.7359 + }, + { + "start": 13279.54, + "end": 13280.52, + "probability": 0.5581 + }, + { + "start": 13281.02, + "end": 13286.22, + "probability": 0.9724 + }, + { + "start": 13286.28, + "end": 13286.82, + "probability": 0.5895 + }, + { + "start": 13286.94, + "end": 13287.9, + "probability": 0.3352 + }, + { + "start": 13288.59, + "end": 13289.1, + "probability": 0.0198 + }, + { + "start": 13289.12, + "end": 13289.32, + "probability": 0.1489 + }, + { + "start": 13289.34, + "end": 13291.56, + "probability": 0.8901 + }, + { + "start": 13292.06, + "end": 13295.68, + "probability": 0.9191 + }, + { + "start": 13296.06, + "end": 13297.3, + "probability": 0.9802 + }, + { + "start": 13298.08, + "end": 13302.59, + "probability": 0.9863 + }, + { + "start": 13303.0, + "end": 13304.6, + "probability": 0.9771 + }, + { + "start": 13305.42, + "end": 13306.82, + "probability": 0.8331 + }, + { + "start": 13307.46, + "end": 13312.72, + "probability": 0.7642 + }, + { + "start": 13313.64, + "end": 13316.56, + "probability": 0.9759 + }, + { + "start": 13317.38, + "end": 13318.32, + "probability": 0.7037 + }, + { + "start": 13318.48, + "end": 13322.22, + "probability": 0.8692 + }, + { + "start": 13323.22, + "end": 13326.4, + "probability": 0.7085 + }, + { + "start": 13326.76, + "end": 13328.42, + "probability": 0.9639 + }, + { + "start": 13328.52, + "end": 13329.0, + "probability": 0.8621 + }, + { + "start": 13329.12, + "end": 13330.82, + "probability": 0.8492 + }, + { + "start": 13331.48, + "end": 13334.44, + "probability": 0.7593 + }, + { + "start": 13334.78, + "end": 13335.5, + "probability": 0.7189 + }, + { + "start": 13336.22, + "end": 13338.99, + "probability": 0.9489 + }, + { + "start": 13339.86, + "end": 13342.72, + "probability": 0.9093 + }, + { + "start": 13345.4, + "end": 13347.5, + "probability": 0.2206 + }, + { + "start": 13348.12, + "end": 13349.62, + "probability": 0.9412 + }, + { + "start": 13350.32, + "end": 13351.54, + "probability": 0.6674 + }, + { + "start": 13352.24, + "end": 13354.0, + "probability": 0.6779 + }, + { + "start": 13355.08, + "end": 13356.84, + "probability": 0.9343 + }, + { + "start": 13357.7, + "end": 13358.42, + "probability": 0.922 + }, + { + "start": 13360.93, + "end": 13363.12, + "probability": 0.9434 + }, + { + "start": 13363.22, + "end": 13365.44, + "probability": 0.9229 + }, + { + "start": 13366.7, + "end": 13367.64, + "probability": 0.976 + }, + { + "start": 13368.2, + "end": 13369.58, + "probability": 0.7053 + }, + { + "start": 13371.32, + "end": 13374.65, + "probability": 0.9954 + }, + { + "start": 13375.2, + "end": 13377.46, + "probability": 0.9937 + }, + { + "start": 13378.32, + "end": 13381.9, + "probability": 0.9829 + }, + { + "start": 13382.48, + "end": 13383.72, + "probability": 0.933 + }, + { + "start": 13384.6, + "end": 13387.18, + "probability": 0.8102 + }, + { + "start": 13388.66, + "end": 13392.28, + "probability": 0.9446 + }, + { + "start": 13392.46, + "end": 13394.76, + "probability": 0.9745 + }, + { + "start": 13395.7, + "end": 13396.82, + "probability": 0.9425 + }, + { + "start": 13397.4, + "end": 13399.8, + "probability": 0.998 + }, + { + "start": 13400.52, + "end": 13401.26, + "probability": 0.9235 + }, + { + "start": 13402.26, + "end": 13403.38, + "probability": 0.9819 + }, + { + "start": 13404.14, + "end": 13404.79, + "probability": 0.8584 + }, + { + "start": 13406.24, + "end": 13409.2, + "probability": 0.9568 + }, + { + "start": 13409.36, + "end": 13410.06, + "probability": 0.4443 + }, + { + "start": 13410.92, + "end": 13414.82, + "probability": 0.9729 + }, + { + "start": 13415.66, + "end": 13417.26, + "probability": 0.9724 + }, + { + "start": 13418.1, + "end": 13418.78, + "probability": 0.8187 + }, + { + "start": 13419.06, + "end": 13419.4, + "probability": 0.8601 + }, + { + "start": 13419.68, + "end": 13420.8, + "probability": 0.5701 + }, + { + "start": 13421.02, + "end": 13422.7, + "probability": 0.9963 + }, + { + "start": 13423.52, + "end": 13423.68, + "probability": 0.4444 + }, + { + "start": 13423.78, + "end": 13424.18, + "probability": 0.9595 + }, + { + "start": 13424.22, + "end": 13425.08, + "probability": 0.8991 + }, + { + "start": 13425.52, + "end": 13427.14, + "probability": 0.7161 + }, + { + "start": 13428.06, + "end": 13430.46, + "probability": 0.8907 + }, + { + "start": 13431.32, + "end": 13435.08, + "probability": 0.8493 + }, + { + "start": 13435.74, + "end": 13436.72, + "probability": 0.4025 + }, + { + "start": 13437.98, + "end": 13441.15, + "probability": 0.9961 + }, + { + "start": 13441.2, + "end": 13442.18, + "probability": 0.9966 + }, + { + "start": 13443.18, + "end": 13444.7, + "probability": 0.9039 + }, + { + "start": 13445.36, + "end": 13446.2, + "probability": 0.9449 + }, + { + "start": 13446.52, + "end": 13446.84, + "probability": 0.4198 + }, + { + "start": 13447.3, + "end": 13449.2, + "probability": 0.9011 + }, + { + "start": 13449.26, + "end": 13451.08, + "probability": 0.4922 + }, + { + "start": 13451.84, + "end": 13452.52, + "probability": 0.9893 + }, + { + "start": 13453.24, + "end": 13453.88, + "probability": 0.807 + }, + { + "start": 13454.76, + "end": 13459.2, + "probability": 0.8836 + }, + { + "start": 13460.26, + "end": 13461.24, + "probability": 0.8247 + }, + { + "start": 13461.92, + "end": 13466.2, + "probability": 0.9737 + }, + { + "start": 13467.34, + "end": 13468.04, + "probability": 0.5052 + }, + { + "start": 13470.34, + "end": 13471.34, + "probability": 0.0921 + }, + { + "start": 13471.98, + "end": 13472.92, + "probability": 0.7179 + }, + { + "start": 13473.04, + "end": 13474.76, + "probability": 0.9102 + }, + { + "start": 13475.5, + "end": 13476.72, + "probability": 0.3261 + }, + { + "start": 13476.72, + "end": 13477.98, + "probability": 0.6354 + }, + { + "start": 13478.52, + "end": 13481.5, + "probability": 0.4188 + }, + { + "start": 13482.24, + "end": 13483.84, + "probability": 0.6282 + }, + { + "start": 13490.34, + "end": 13493.6, + "probability": 0.58 + }, + { + "start": 13497.78, + "end": 13499.16, + "probability": 0.4808 + }, + { + "start": 13499.8, + "end": 13500.46, + "probability": 0.791 + }, + { + "start": 13501.5, + "end": 13503.32, + "probability": 0.7817 + }, + { + "start": 13504.56, + "end": 13507.96, + "probability": 0.8284 + }, + { + "start": 13509.14, + "end": 13511.52, + "probability": 0.9862 + }, + { + "start": 13511.98, + "end": 13516.62, + "probability": 0.9141 + }, + { + "start": 13518.19, + "end": 13522.9, + "probability": 0.9484 + }, + { + "start": 13523.9, + "end": 13524.36, + "probability": 0.8639 + }, + { + "start": 13526.32, + "end": 13526.86, + "probability": 0.9081 + }, + { + "start": 13527.5, + "end": 13529.18, + "probability": 0.6342 + }, + { + "start": 13530.14, + "end": 13531.34, + "probability": 0.5515 + }, + { + "start": 13531.82, + "end": 13533.0, + "probability": 0.6268 + }, + { + "start": 13533.09, + "end": 13536.12, + "probability": 0.9937 + }, + { + "start": 13536.95, + "end": 13539.06, + "probability": 0.7943 + }, + { + "start": 13539.68, + "end": 13540.22, + "probability": 0.8028 + }, + { + "start": 13540.26, + "end": 13541.34, + "probability": 0.9641 + }, + { + "start": 13541.82, + "end": 13545.5, + "probability": 0.9746 + }, + { + "start": 13546.44, + "end": 13547.3, + "probability": 0.8072 + }, + { + "start": 13547.52, + "end": 13548.1, + "probability": 0.8275 + }, + { + "start": 13548.22, + "end": 13548.52, + "probability": 0.9292 + }, + { + "start": 13549.0, + "end": 13550.82, + "probability": 0.9186 + }, + { + "start": 13551.46, + "end": 13553.54, + "probability": 0.9117 + }, + { + "start": 13553.62, + "end": 13555.82, + "probability": 0.9066 + }, + { + "start": 13556.38, + "end": 13559.92, + "probability": 0.9865 + }, + { + "start": 13560.28, + "end": 13561.96, + "probability": 0.9681 + }, + { + "start": 13563.09, + "end": 13565.54, + "probability": 0.9929 + }, + { + "start": 13566.42, + "end": 13568.42, + "probability": 0.9965 + }, + { + "start": 13568.74, + "end": 13570.05, + "probability": 0.7988 + }, + { + "start": 13570.66, + "end": 13571.93, + "probability": 0.9779 + }, + { + "start": 13572.62, + "end": 13575.92, + "probability": 0.9373 + }, + { + "start": 13577.02, + "end": 13579.28, + "probability": 0.8546 + }, + { + "start": 13580.87, + "end": 13582.76, + "probability": 0.49 + }, + { + "start": 13582.76, + "end": 13586.8, + "probability": 0.9753 + }, + { + "start": 13586.84, + "end": 13587.88, + "probability": 0.9168 + }, + { + "start": 13588.38, + "end": 13589.42, + "probability": 0.9611 + }, + { + "start": 13589.54, + "end": 13590.44, + "probability": 0.9788 + }, + { + "start": 13590.96, + "end": 13593.94, + "probability": 0.9317 + }, + { + "start": 13594.58, + "end": 13595.5, + "probability": 0.8074 + }, + { + "start": 13595.64, + "end": 13596.46, + "probability": 0.8149 + }, + { + "start": 13596.52, + "end": 13597.1, + "probability": 0.7247 + }, + { + "start": 13597.26, + "end": 13599.56, + "probability": 0.8252 + }, + { + "start": 13599.66, + "end": 13601.14, + "probability": 0.9708 + }, + { + "start": 13601.76, + "end": 13607.1, + "probability": 0.9778 + }, + { + "start": 13607.34, + "end": 13616.7, + "probability": 0.959 + }, + { + "start": 13617.24, + "end": 13618.58, + "probability": 0.9459 + }, + { + "start": 13619.2, + "end": 13621.82, + "probability": 0.8586 + }, + { + "start": 13622.58, + "end": 13623.96, + "probability": 0.9949 + }, + { + "start": 13624.3, + "end": 13624.82, + "probability": 0.5617 + }, + { + "start": 13624.9, + "end": 13625.74, + "probability": 0.7632 + }, + { + "start": 13626.14, + "end": 13627.28, + "probability": 0.5177 + }, + { + "start": 13627.38, + "end": 13628.17, + "probability": 0.6761 + }, + { + "start": 13628.8, + "end": 13630.56, + "probability": 0.8076 + }, + { + "start": 13630.76, + "end": 13631.64, + "probability": 0.9651 + }, + { + "start": 13632.16, + "end": 13633.84, + "probability": 0.9933 + }, + { + "start": 13634.4, + "end": 13638.28, + "probability": 0.7499 + }, + { + "start": 13638.9, + "end": 13643.48, + "probability": 0.9939 + }, + { + "start": 13643.84, + "end": 13644.28, + "probability": 0.9614 + }, + { + "start": 13645.18, + "end": 13647.02, + "probability": 0.8309 + }, + { + "start": 13647.58, + "end": 13652.36, + "probability": 0.9608 + }, + { + "start": 13652.8, + "end": 13654.76, + "probability": 0.992 + }, + { + "start": 13654.98, + "end": 13655.76, + "probability": 0.5158 + }, + { + "start": 13656.24, + "end": 13657.18, + "probability": 0.9145 + }, + { + "start": 13657.26, + "end": 13658.2, + "probability": 0.8679 + }, + { + "start": 13658.7, + "end": 13660.86, + "probability": 0.9888 + }, + { + "start": 13661.74, + "end": 13661.94, + "probability": 0.8128 + }, + { + "start": 13662.2, + "end": 13664.4, + "probability": 0.9763 + }, + { + "start": 13665.14, + "end": 13666.28, + "probability": 0.8659 + }, + { + "start": 13667.26, + "end": 13668.74, + "probability": 0.5289 + }, + { + "start": 13669.64, + "end": 13672.3, + "probability": 0.722 + }, + { + "start": 13672.88, + "end": 13673.34, + "probability": 0.6785 + }, + { + "start": 13674.54, + "end": 13675.26, + "probability": 0.6238 + }, + { + "start": 13676.02, + "end": 13677.32, + "probability": 0.907 + }, + { + "start": 13677.9, + "end": 13679.52, + "probability": 0.9916 + }, + { + "start": 13680.26, + "end": 13684.3, + "probability": 0.9473 + }, + { + "start": 13684.98, + "end": 13686.96, + "probability": 0.8223 + }, + { + "start": 13687.1, + "end": 13687.9, + "probability": 0.9225 + }, + { + "start": 13689.32, + "end": 13694.72, + "probability": 0.9905 + }, + { + "start": 13695.38, + "end": 13697.3, + "probability": 0.9646 + }, + { + "start": 13698.28, + "end": 13699.82, + "probability": 0.8713 + }, + { + "start": 13699.94, + "end": 13702.66, + "probability": 0.9541 + }, + { + "start": 13702.82, + "end": 13703.44, + "probability": 0.8778 + }, + { + "start": 13704.56, + "end": 13705.56, + "probability": 0.9923 + }, + { + "start": 13709.78, + "end": 13711.24, + "probability": 0.9296 + }, + { + "start": 13712.56, + "end": 13713.94, + "probability": 0.9138 + }, + { + "start": 13714.8, + "end": 13716.18, + "probability": 0.5523 + }, + { + "start": 13717.52, + "end": 13720.98, + "probability": 0.867 + }, + { + "start": 13721.7, + "end": 13722.24, + "probability": 0.5077 + }, + { + "start": 13723.29, + "end": 13725.32, + "probability": 0.8875 + }, + { + "start": 13726.4, + "end": 13726.88, + "probability": 0.7953 + }, + { + "start": 13727.02, + "end": 13729.32, + "probability": 0.9457 + }, + { + "start": 13729.48, + "end": 13730.58, + "probability": 0.9946 + }, + { + "start": 13730.7, + "end": 13731.62, + "probability": 0.8225 + }, + { + "start": 13731.82, + "end": 13733.24, + "probability": 0.8826 + }, + { + "start": 13733.48, + "end": 13733.84, + "probability": 0.8282 + }, + { + "start": 13734.84, + "end": 13738.28, + "probability": 0.9261 + }, + { + "start": 13738.7, + "end": 13739.62, + "probability": 0.87 + }, + { + "start": 13741.1, + "end": 13745.42, + "probability": 0.9235 + }, + { + "start": 13746.22, + "end": 13747.38, + "probability": 0.7045 + }, + { + "start": 13748.54, + "end": 13749.16, + "probability": 0.7456 + }, + { + "start": 13749.24, + "end": 13752.1, + "probability": 0.7724 + }, + { + "start": 13752.6, + "end": 13753.32, + "probability": 0.1812 + }, + { + "start": 13754.12, + "end": 13756.6, + "probability": 0.9831 + }, + { + "start": 13756.72, + "end": 13759.28, + "probability": 0.8777 + }, + { + "start": 13760.26, + "end": 13767.12, + "probability": 0.9192 + }, + { + "start": 13767.32, + "end": 13770.48, + "probability": 0.9844 + }, + { + "start": 13771.4, + "end": 13773.7, + "probability": 0.5913 + }, + { + "start": 13773.9, + "end": 13774.85, + "probability": 0.7896 + }, + { + "start": 13775.36, + "end": 13775.7, + "probability": 0.8889 + }, + { + "start": 13776.26, + "end": 13777.12, + "probability": 0.3662 + }, + { + "start": 13777.72, + "end": 13778.52, + "probability": 0.7854 + }, + { + "start": 13778.68, + "end": 13779.62, + "probability": 0.7006 + }, + { + "start": 13780.06, + "end": 13781.42, + "probability": 0.7088 + }, + { + "start": 13781.82, + "end": 13784.22, + "probability": 0.6017 + }, + { + "start": 13784.22, + "end": 13784.48, + "probability": 0.4383 + }, + { + "start": 13784.56, + "end": 13786.98, + "probability": 0.9877 + }, + { + "start": 13786.98, + "end": 13789.54, + "probability": 0.8916 + }, + { + "start": 13789.78, + "end": 13790.21, + "probability": 0.8242 + }, + { + "start": 13790.88, + "end": 13793.16, + "probability": 0.9681 + }, + { + "start": 13793.84, + "end": 13795.02, + "probability": 0.9958 + }, + { + "start": 13795.06, + "end": 13797.7, + "probability": 0.9457 + }, + { + "start": 13797.7, + "end": 13800.66, + "probability": 0.9854 + }, + { + "start": 13801.32, + "end": 13804.78, + "probability": 0.9587 + }, + { + "start": 13805.2, + "end": 13805.94, + "probability": 0.8995 + }, + { + "start": 13806.28, + "end": 13806.66, + "probability": 0.829 + }, + { + "start": 13807.38, + "end": 13807.94, + "probability": 0.7631 + }, + { + "start": 13808.58, + "end": 13809.28, + "probability": 0.9128 + }, + { + "start": 13810.1, + "end": 13810.83, + "probability": 0.9866 + }, + { + "start": 13811.5, + "end": 13812.34, + "probability": 0.9882 + }, + { + "start": 13812.5, + "end": 13813.13, + "probability": 0.667 + }, + { + "start": 13813.26, + "end": 13813.74, + "probability": 0.8315 + }, + { + "start": 13813.86, + "end": 13814.18, + "probability": 0.8135 + }, + { + "start": 13814.66, + "end": 13816.28, + "probability": 0.5499 + }, + { + "start": 13817.64, + "end": 13818.92, + "probability": 0.3149 + }, + { + "start": 13819.2, + "end": 13819.2, + "probability": 0.4902 + }, + { + "start": 13819.7, + "end": 13821.16, + "probability": 0.4773 + }, + { + "start": 13821.34, + "end": 13822.68, + "probability": 0.8992 + }, + { + "start": 13823.72, + "end": 13826.5, + "probability": 0.9549 + }, + { + "start": 13827.26, + "end": 13830.24, + "probability": 0.407 + }, + { + "start": 13830.48, + "end": 13832.1, + "probability": 0.7068 + }, + { + "start": 13832.72, + "end": 13835.24, + "probability": 0.3948 + }, + { + "start": 13836.16, + "end": 13837.93, + "probability": 0.624 + }, + { + "start": 13838.68, + "end": 13839.56, + "probability": 0.7511 + }, + { + "start": 13840.91, + "end": 13842.17, + "probability": 0.6786 + }, + { + "start": 13843.08, + "end": 13845.08, + "probability": 0.9756 + }, + { + "start": 13845.68, + "end": 13849.14, + "probability": 0.9624 + }, + { + "start": 13849.42, + "end": 13850.2, + "probability": 0.605 + }, + { + "start": 13850.26, + "end": 13850.42, + "probability": 0.6828 + }, + { + "start": 13851.02, + "end": 13854.52, + "probability": 0.9708 + }, + { + "start": 13855.62, + "end": 13859.96, + "probability": 0.7896 + }, + { + "start": 13860.42, + "end": 13861.9, + "probability": 0.7069 + }, + { + "start": 13862.6, + "end": 13863.7, + "probability": 0.9322 + }, + { + "start": 13863.78, + "end": 13864.78, + "probability": 0.7791 + }, + { + "start": 13865.08, + "end": 13865.96, + "probability": 0.8416 + }, + { + "start": 13866.0, + "end": 13866.8, + "probability": 0.9873 + }, + { + "start": 13866.92, + "end": 13867.74, + "probability": 0.8924 + }, + { + "start": 13868.08, + "end": 13868.58, + "probability": 0.7361 + }, + { + "start": 13869.02, + "end": 13872.36, + "probability": 0.9774 + }, + { + "start": 13873.36, + "end": 13874.78, + "probability": 0.5486 + }, + { + "start": 13874.88, + "end": 13877.2, + "probability": 0.417 + }, + { + "start": 13877.42, + "end": 13880.58, + "probability": 0.9937 + }, + { + "start": 13881.04, + "end": 13881.34, + "probability": 0.6705 + }, + { + "start": 13881.42, + "end": 13881.98, + "probability": 0.577 + }, + { + "start": 13882.04, + "end": 13884.36, + "probability": 0.8015 + }, + { + "start": 13884.88, + "end": 13886.36, + "probability": 0.6585 + }, + { + "start": 13886.36, + "end": 13886.78, + "probability": 0.2597 + }, + { + "start": 13887.8, + "end": 13888.78, + "probability": 0.2612 + }, + { + "start": 13890.98, + "end": 13894.94, + "probability": 0.5511 + }, + { + "start": 13895.08, + "end": 13897.5, + "probability": 0.978 + }, + { + "start": 13898.4, + "end": 13900.94, + "probability": 0.9248 + }, + { + "start": 13901.26, + "end": 13903.88, + "probability": 0.9204 + }, + { + "start": 13906.1, + "end": 13908.58, + "probability": 0.7931 + }, + { + "start": 13909.02, + "end": 13911.36, + "probability": 0.9905 + }, + { + "start": 13911.64, + "end": 13912.24, + "probability": 0.8096 + }, + { + "start": 13912.8, + "end": 13915.38, + "probability": 0.565 + }, + { + "start": 13915.98, + "end": 13916.3, + "probability": 0.4571 + }, + { + "start": 13916.48, + "end": 13921.3, + "probability": 0.7266 + }, + { + "start": 13921.38, + "end": 13923.12, + "probability": 0.9298 + }, + { + "start": 13923.38, + "end": 13924.66, + "probability": 0.9552 + }, + { + "start": 13925.36, + "end": 13926.34, + "probability": 0.7507 + }, + { + "start": 13927.4, + "end": 13927.72, + "probability": 0.0247 + }, + { + "start": 13928.04, + "end": 13930.68, + "probability": 0.9602 + }, + { + "start": 13931.3, + "end": 13932.86, + "probability": 0.1486 + }, + { + "start": 13933.42, + "end": 13935.02, + "probability": 0.5718 + }, + { + "start": 13936.34, + "end": 13938.94, + "probability": 0.7569 + }, + { + "start": 13939.34, + "end": 13940.66, + "probability": 0.619 + }, + { + "start": 13941.44, + "end": 13944.3, + "probability": 0.9145 + }, + { + "start": 13944.86, + "end": 13948.8, + "probability": 0.7078 + }, + { + "start": 13949.0, + "end": 13949.3, + "probability": 0.4942 + }, + { + "start": 13950.54, + "end": 13951.62, + "probability": 0.9296 + }, + { + "start": 13952.36, + "end": 13953.73, + "probability": 0.9736 + }, + { + "start": 13953.76, + "end": 13955.5, + "probability": 0.7415 + }, + { + "start": 13955.5, + "end": 13959.22, + "probability": 0.9203 + }, + { + "start": 13959.46, + "end": 13961.34, + "probability": 0.9651 + }, + { + "start": 13961.94, + "end": 13963.6, + "probability": 0.7533 + }, + { + "start": 13966.0, + "end": 13966.64, + "probability": 0.2956 + }, + { + "start": 13966.64, + "end": 13966.66, + "probability": 0.705 + }, + { + "start": 13966.66, + "end": 13970.56, + "probability": 0.4187 + }, + { + "start": 13978.22, + "end": 13979.2, + "probability": 0.6054 + }, + { + "start": 13980.64, + "end": 13982.98, + "probability": 0.9928 + }, + { + "start": 13983.68, + "end": 13985.38, + "probability": 0.4215 + }, + { + "start": 13985.5, + "end": 13985.84, + "probability": 0.8079 + }, + { + "start": 13986.64, + "end": 13990.06, + "probability": 0.7639 + }, + { + "start": 13991.36, + "end": 13995.84, + "probability": 0.84 + }, + { + "start": 13997.34, + "end": 13998.28, + "probability": 0.9134 + }, + { + "start": 13999.82, + "end": 14001.8, + "probability": 0.9945 + }, + { + "start": 14002.48, + "end": 14003.18, + "probability": 0.9681 + }, + { + "start": 14003.96, + "end": 14008.38, + "probability": 0.8932 + }, + { + "start": 14009.4, + "end": 14011.4, + "probability": 0.965 + }, + { + "start": 14012.0, + "end": 14014.0, + "probability": 0.9017 + }, + { + "start": 14014.1, + "end": 14015.08, + "probability": 0.7852 + }, + { + "start": 14015.9, + "end": 14018.08, + "probability": 0.3091 + }, + { + "start": 14019.14, + "end": 14022.2, + "probability": 0.8958 + }, + { + "start": 14022.8, + "end": 14025.47, + "probability": 0.9341 + }, + { + "start": 14026.46, + "end": 14029.1, + "probability": 0.8722 + }, + { + "start": 14029.66, + "end": 14031.6, + "probability": 0.6214 + }, + { + "start": 14031.9, + "end": 14032.84, + "probability": 0.6829 + }, + { + "start": 14032.84, + "end": 14033.98, + "probability": 0.7874 + }, + { + "start": 14034.08, + "end": 14035.08, + "probability": 0.6417 + }, + { + "start": 14036.08, + "end": 14038.08, + "probability": 0.8068 + }, + { + "start": 14038.32, + "end": 14039.8, + "probability": 0.7144 + }, + { + "start": 14040.74, + "end": 14044.16, + "probability": 0.6899 + }, + { + "start": 14044.48, + "end": 14045.64, + "probability": 0.7518 + }, + { + "start": 14045.7, + "end": 14046.4, + "probability": 0.6931 + }, + { + "start": 14047.18, + "end": 14050.62, + "probability": 0.8905 + }, + { + "start": 14051.32, + "end": 14051.38, + "probability": 0.0972 + }, + { + "start": 14051.38, + "end": 14052.8, + "probability": 0.4797 + }, + { + "start": 14052.96, + "end": 14055.66, + "probability": 0.9873 + }, + { + "start": 14057.28, + "end": 14060.62, + "probability": 0.5148 + }, + { + "start": 14061.28, + "end": 14066.04, + "probability": 0.9832 + }, + { + "start": 14066.2, + "end": 14070.3, + "probability": 0.9159 + }, + { + "start": 14070.88, + "end": 14073.5, + "probability": 0.8906 + }, + { + "start": 14074.24, + "end": 14076.16, + "probability": 0.6969 + }, + { + "start": 14076.36, + "end": 14077.88, + "probability": 0.598 + }, + { + "start": 14078.32, + "end": 14081.9, + "probability": 0.691 + }, + { + "start": 14082.02, + "end": 14082.86, + "probability": 0.6512 + }, + { + "start": 14083.64, + "end": 14085.76, + "probability": 0.8398 + }, + { + "start": 14085.94, + "end": 14086.1, + "probability": 0.7195 + }, + { + "start": 14086.54, + "end": 14088.18, + "probability": 0.666 + }, + { + "start": 14088.26, + "end": 14090.78, + "probability": 0.7288 + }, + { + "start": 14092.26, + "end": 14094.48, + "probability": 0.699 + }, + { + "start": 14098.9, + "end": 14101.88, + "probability": 0.8547 + }, + { + "start": 14102.74, + "end": 14106.54, + "probability": 0.612 + }, + { + "start": 14107.14, + "end": 14107.46, + "probability": 0.6845 + }, + { + "start": 14108.06, + "end": 14108.76, + "probability": 0.6791 + }, + { + "start": 14108.82, + "end": 14109.16, + "probability": 0.1793 + }, + { + "start": 14109.52, + "end": 14110.42, + "probability": 0.7085 + }, + { + "start": 14110.88, + "end": 14112.14, + "probability": 0.7223 + }, + { + "start": 14113.1, + "end": 14113.54, + "probability": 0.6339 + }, + { + "start": 14113.64, + "end": 14115.82, + "probability": 0.9983 + }, + { + "start": 14116.74, + "end": 14121.3, + "probability": 0.9952 + }, + { + "start": 14121.88, + "end": 14123.76, + "probability": 0.4683 + }, + { + "start": 14124.42, + "end": 14124.98, + "probability": 0.5396 + }, + { + "start": 14125.66, + "end": 14128.4, + "probability": 0.8546 + }, + { + "start": 14129.02, + "end": 14130.6, + "probability": 0.7277 + }, + { + "start": 14131.98, + "end": 14134.06, + "probability": 0.8815 + }, + { + "start": 14134.6, + "end": 14136.44, + "probability": 0.9734 + }, + { + "start": 14137.34, + "end": 14140.46, + "probability": 0.7555 + }, + { + "start": 14140.58, + "end": 14141.76, + "probability": 0.9819 + }, + { + "start": 14142.62, + "end": 14143.76, + "probability": 0.993 + }, + { + "start": 14144.54, + "end": 14145.62, + "probability": 0.8522 + }, + { + "start": 14146.06, + "end": 14147.84, + "probability": 0.978 + }, + { + "start": 14148.48, + "end": 14149.95, + "probability": 0.8823 + }, + { + "start": 14150.74, + "end": 14154.16, + "probability": 0.9726 + }, + { + "start": 14154.7, + "end": 14157.63, + "probability": 0.9802 + }, + { + "start": 14158.26, + "end": 14160.7, + "probability": 0.9263 + }, + { + "start": 14161.52, + "end": 14162.46, + "probability": 0.7511 + }, + { + "start": 14163.06, + "end": 14165.76, + "probability": 0.7438 + }, + { + "start": 14166.04, + "end": 14166.9, + "probability": 0.9883 + }, + { + "start": 14167.62, + "end": 14168.64, + "probability": 0.6503 + }, + { + "start": 14169.32, + "end": 14169.32, + "probability": 0.7915 + }, + { + "start": 14173.77, + "end": 14174.99, + "probability": 0.7826 + }, + { + "start": 14175.45, + "end": 14175.49, + "probability": 0.0658 + }, + { + "start": 14175.49, + "end": 14178.56, + "probability": 0.9678 + }, + { + "start": 14179.19, + "end": 14180.07, + "probability": 0.5253 + }, + { + "start": 14180.17, + "end": 14180.81, + "probability": 0.8737 + }, + { + "start": 14181.05, + "end": 14182.35, + "probability": 0.6954 + }, + { + "start": 14182.35, + "end": 14186.19, + "probability": 0.598 + }, + { + "start": 14186.35, + "end": 14189.73, + "probability": 0.5396 + }, + { + "start": 14189.87, + "end": 14190.92, + "probability": 0.7565 + }, + { + "start": 14191.29, + "end": 14195.41, + "probability": 0.7966 + }, + { + "start": 14196.31, + "end": 14197.03, + "probability": 0.4937 + }, + { + "start": 14197.99, + "end": 14200.01, + "probability": 0.7489 + }, + { + "start": 14200.23, + "end": 14200.83, + "probability": 0.1366 + }, + { + "start": 14200.83, + "end": 14201.57, + "probability": 0.5087 + }, + { + "start": 14202.33, + "end": 14204.69, + "probability": 0.344 + }, + { + "start": 14205.35, + "end": 14208.29, + "probability": 0.9237 + }, + { + "start": 14208.87, + "end": 14209.63, + "probability": 0.6831 + }, + { + "start": 14210.21, + "end": 14212.83, + "probability": 0.9189 + }, + { + "start": 14213.35, + "end": 14215.89, + "probability": 0.9156 + }, + { + "start": 14216.41, + "end": 14220.91, + "probability": 0.9528 + }, + { + "start": 14221.37, + "end": 14221.37, + "probability": 0.0779 + }, + { + "start": 14221.39, + "end": 14224.95, + "probability": 0.9654 + }, + { + "start": 14225.57, + "end": 14227.19, + "probability": 0.6674 + }, + { + "start": 14227.47, + "end": 14229.62, + "probability": 0.9487 + }, + { + "start": 14229.79, + "end": 14234.11, + "probability": 0.5006 + }, + { + "start": 14234.79, + "end": 14236.09, + "probability": 0.6509 + }, + { + "start": 14236.63, + "end": 14238.55, + "probability": 0.6739 + }, + { + "start": 14239.11, + "end": 14242.15, + "probability": 0.9284 + }, + { + "start": 14242.59, + "end": 14245.47, + "probability": 0.8519 + }, + { + "start": 14245.49, + "end": 14246.83, + "probability": 0.9199 + }, + { + "start": 14247.31, + "end": 14249.45, + "probability": 0.8778 + }, + { + "start": 14249.49, + "end": 14250.27, + "probability": 0.6462 + }, + { + "start": 14250.71, + "end": 14252.59, + "probability": 0.7544 + }, + { + "start": 14253.03, + "end": 14257.35, + "probability": 0.8392 + }, + { + "start": 14259.09, + "end": 14262.65, + "probability": 0.119 + }, + { + "start": 14262.89, + "end": 14264.41, + "probability": 0.6411 + }, + { + "start": 14264.85, + "end": 14265.41, + "probability": 0.3708 + }, + { + "start": 14265.49, + "end": 14266.47, + "probability": 0.0305 + }, + { + "start": 14267.05, + "end": 14269.67, + "probability": 0.7082 + }, + { + "start": 14269.77, + "end": 14270.03, + "probability": 0.9376 + }, + { + "start": 14270.37, + "end": 14272.41, + "probability": 0.4961 + }, + { + "start": 14272.63, + "end": 14275.43, + "probability": 0.6927 + }, + { + "start": 14276.21, + "end": 14276.35, + "probability": 0.6003 + }, + { + "start": 14278.67, + "end": 14282.65, + "probability": 0.755 + }, + { + "start": 14283.37, + "end": 14287.35, + "probability": 0.6611 + }, + { + "start": 14287.61, + "end": 14288.53, + "probability": 0.4459 + }, + { + "start": 14290.75, + "end": 14294.09, + "probability": 0.0664 + }, + { + "start": 14310.67, + "end": 14311.43, + "probability": 0.0001 + }, + { + "start": 14313.25, + "end": 14314.39, + "probability": 0.063 + }, + { + "start": 14315.09, + "end": 14321.13, + "probability": 0.7117 + }, + { + "start": 14321.93, + "end": 14323.55, + "probability": 0.1302 + }, + { + "start": 14323.55, + "end": 14323.55, + "probability": 0.6129 + }, + { + "start": 14323.55, + "end": 14323.55, + "probability": 0.0076 + }, + { + "start": 14323.55, + "end": 14324.47, + "probability": 0.1878 + }, + { + "start": 14324.47, + "end": 14325.13, + "probability": 0.4632 + }, + { + "start": 14325.55, + "end": 14327.01, + "probability": 0.3388 + }, + { + "start": 14328.87, + "end": 14329.63, + "probability": 0.7656 + }, + { + "start": 14330.77, + "end": 14333.41, + "probability": 0.4206 + }, + { + "start": 14334.11, + "end": 14338.61, + "probability": 0.8411 + }, + { + "start": 14339.23, + "end": 14342.95, + "probability": 0.4942 + }, + { + "start": 14343.65, + "end": 14349.45, + "probability": 0.9514 + }, + { + "start": 14349.65, + "end": 14351.83, + "probability": 0.6799 + }, + { + "start": 14360.49, + "end": 14363.87, + "probability": 0.8392 + }, + { + "start": 14364.69, + "end": 14368.09, + "probability": 0.9551 + }, + { + "start": 14368.77, + "end": 14371.28, + "probability": 0.8915 + }, + { + "start": 14372.47, + "end": 14373.69, + "probability": 0.785 + }, + { + "start": 14375.89, + "end": 14377.59, + "probability": 0.991 + }, + { + "start": 14382.23, + "end": 14385.09, + "probability": 0.7622 + }, + { + "start": 14388.75, + "end": 14392.85, + "probability": 0.9955 + }, + { + "start": 14393.21, + "end": 14398.87, + "probability": 0.8584 + }, + { + "start": 14399.41, + "end": 14405.89, + "probability": 0.989 + }, + { + "start": 14405.89, + "end": 14408.65, + "probability": 0.9997 + }, + { + "start": 14409.51, + "end": 14413.63, + "probability": 0.9949 + }, + { + "start": 14414.97, + "end": 14417.53, + "probability": 0.9906 + }, + { + "start": 14418.91, + "end": 14419.91, + "probability": 0.8599 + }, + { + "start": 14420.51, + "end": 14424.48, + "probability": 0.9231 + }, + { + "start": 14425.29, + "end": 14427.97, + "probability": 0.9907 + }, + { + "start": 14429.33, + "end": 14433.45, + "probability": 0.8841 + }, + { + "start": 14434.17, + "end": 14436.25, + "probability": 0.9871 + }, + { + "start": 14436.41, + "end": 14437.41, + "probability": 0.9561 + }, + { + "start": 14438.11, + "end": 14441.17, + "probability": 0.957 + }, + { + "start": 14443.09, + "end": 14445.95, + "probability": 0.952 + }, + { + "start": 14446.63, + "end": 14449.19, + "probability": 0.9929 + }, + { + "start": 14449.83, + "end": 14451.35, + "probability": 0.9941 + }, + { + "start": 14452.53, + "end": 14457.65, + "probability": 0.9152 + }, + { + "start": 14458.67, + "end": 14460.11, + "probability": 0.621 + }, + { + "start": 14461.83, + "end": 14463.11, + "probability": 0.9425 + }, + { + "start": 14463.69, + "end": 14466.61, + "probability": 0.9967 + }, + { + "start": 14466.61, + "end": 14470.43, + "probability": 0.9982 + }, + { + "start": 14470.43, + "end": 14473.45, + "probability": 0.9786 + }, + { + "start": 14475.11, + "end": 14478.57, + "probability": 0.9926 + }, + { + "start": 14479.49, + "end": 14485.27, + "probability": 0.7558 + }, + { + "start": 14486.25, + "end": 14489.49, + "probability": 0.989 + }, + { + "start": 14489.51, + "end": 14493.79, + "probability": 0.9956 + }, + { + "start": 14494.59, + "end": 14496.99, + "probability": 0.8109 + }, + { + "start": 14496.99, + "end": 14499.69, + "probability": 0.9353 + }, + { + "start": 14500.71, + "end": 14503.69, + "probability": 0.9886 + }, + { + "start": 14503.83, + "end": 14506.65, + "probability": 0.9337 + }, + { + "start": 14506.77, + "end": 14510.55, + "probability": 0.9754 + }, + { + "start": 14512.35, + "end": 14515.71, + "probability": 0.7304 + }, + { + "start": 14515.71, + "end": 14517.91, + "probability": 0.9406 + }, + { + "start": 14519.25, + "end": 14523.09, + "probability": 0.978 + }, + { + "start": 14524.21, + "end": 14527.55, + "probability": 0.9522 + }, + { + "start": 14528.35, + "end": 14532.21, + "probability": 0.8711 + }, + { + "start": 14532.83, + "end": 14536.69, + "probability": 0.6236 + }, + { + "start": 14539.89, + "end": 14542.93, + "probability": 0.9749 + }, + { + "start": 14544.43, + "end": 14549.69, + "probability": 0.9698 + }, + { + "start": 14550.53, + "end": 14551.81, + "probability": 0.7207 + }, + { + "start": 14552.49, + "end": 14555.79, + "probability": 0.9827 + }, + { + "start": 14556.61, + "end": 14558.57, + "probability": 0.7929 + }, + { + "start": 14558.71, + "end": 14562.13, + "probability": 0.9539 + }, + { + "start": 14562.27, + "end": 14565.65, + "probability": 0.9952 + }, + { + "start": 14566.59, + "end": 14571.21, + "probability": 0.9918 + }, + { + "start": 14572.01, + "end": 14573.59, + "probability": 0.9263 + }, + { + "start": 14573.79, + "end": 14576.41, + "probability": 0.7475 + }, + { + "start": 14576.59, + "end": 14577.57, + "probability": 0.8922 + }, + { + "start": 14579.25, + "end": 14581.83, + "probability": 0.9733 + }, + { + "start": 14582.09, + "end": 14584.05, + "probability": 0.9911 + }, + { + "start": 14584.71, + "end": 14587.23, + "probability": 0.9629 + }, + { + "start": 14587.47, + "end": 14589.47, + "probability": 0.9615 + }, + { + "start": 14591.53, + "end": 14593.83, + "probability": 0.4564 + }, + { + "start": 14594.23, + "end": 14595.17, + "probability": 0.6088 + }, + { + "start": 14595.43, + "end": 14596.41, + "probability": 0.8465 + }, + { + "start": 14596.81, + "end": 14600.21, + "probability": 0.9779 + }, + { + "start": 14601.25, + "end": 14604.67, + "probability": 0.8793 + }, + { + "start": 14606.17, + "end": 14610.79, + "probability": 0.6188 + }, + { + "start": 14611.37, + "end": 14617.03, + "probability": 0.9431 + }, + { + "start": 14617.67, + "end": 14618.53, + "probability": 0.9187 + }, + { + "start": 14618.63, + "end": 14619.39, + "probability": 0.5706 + }, + { + "start": 14620.47, + "end": 14623.55, + "probability": 0.6008 + }, + { + "start": 14624.49, + "end": 14627.27, + "probability": 0.9822 + }, + { + "start": 14628.75, + "end": 14631.05, + "probability": 0.9667 + }, + { + "start": 14632.47, + "end": 14632.99, + "probability": 0.6017 + }, + { + "start": 14635.55, + "end": 14636.19, + "probability": 0.8184 + }, + { + "start": 14641.99, + "end": 14644.03, + "probability": 0.8576 + }, + { + "start": 14644.59, + "end": 14647.03, + "probability": 0.9875 + }, + { + "start": 14648.27, + "end": 14650.93, + "probability": 0.3896 + }, + { + "start": 14651.23, + "end": 14652.77, + "probability": 0.9946 + }, + { + "start": 14653.39, + "end": 14655.32, + "probability": 0.8994 + }, + { + "start": 14655.53, + "end": 14656.25, + "probability": 0.9084 + }, + { + "start": 14657.29, + "end": 14662.69, + "probability": 0.7983 + }, + { + "start": 14663.75, + "end": 14665.35, + "probability": 0.9895 + }, + { + "start": 14666.07, + "end": 14667.99, + "probability": 0.9928 + }, + { + "start": 14667.99, + "end": 14670.97, + "probability": 0.9805 + }, + { + "start": 14671.85, + "end": 14675.91, + "probability": 0.9844 + }, + { + "start": 14676.63, + "end": 14679.27, + "probability": 0.2421 + }, + { + "start": 14679.39, + "end": 14685.51, + "probability": 0.9505 + }, + { + "start": 14686.43, + "end": 14687.71, + "probability": 0.9085 + }, + { + "start": 14688.33, + "end": 14693.01, + "probability": 0.8214 + }, + { + "start": 14694.35, + "end": 14696.33, + "probability": 0.9954 + }, + { + "start": 14696.45, + "end": 14701.01, + "probability": 0.9801 + }, + { + "start": 14701.09, + "end": 14703.47, + "probability": 0.9924 + }, + { + "start": 14703.47, + "end": 14706.43, + "probability": 0.9983 + }, + { + "start": 14706.85, + "end": 14707.28, + "probability": 0.9669 + }, + { + "start": 14707.43, + "end": 14708.95, + "probability": 0.9685 + }, + { + "start": 14709.51, + "end": 14709.87, + "probability": 0.349 + }, + { + "start": 14709.97, + "end": 14712.79, + "probability": 0.9979 + }, + { + "start": 14712.79, + "end": 14716.53, + "probability": 0.9983 + }, + { + "start": 14716.75, + "end": 14718.93, + "probability": 0.9807 + }, + { + "start": 14719.07, + "end": 14720.15, + "probability": 0.6476 + }, + { + "start": 14720.27, + "end": 14720.75, + "probability": 0.543 + }, + { + "start": 14721.17, + "end": 14722.37, + "probability": 0.9828 + }, + { + "start": 14722.53, + "end": 14723.67, + "probability": 0.8339 + }, + { + "start": 14724.09, + "end": 14725.95, + "probability": 0.3148 + }, + { + "start": 14725.99, + "end": 14726.57, + "probability": 0.5731 + }, + { + "start": 14726.69, + "end": 14729.57, + "probability": 0.7595 + }, + { + "start": 14729.65, + "end": 14730.45, + "probability": 0.8143 + }, + { + "start": 14731.59, + "end": 14732.09, + "probability": 0.2468 + }, + { + "start": 14732.09, + "end": 14735.89, + "probability": 0.8526 + }, + { + "start": 14735.89, + "end": 14738.19, + "probability": 0.8969 + }, + { + "start": 14738.23, + "end": 14740.89, + "probability": 0.9226 + }, + { + "start": 14741.77, + "end": 14744.71, + "probability": 0.9487 + }, + { + "start": 14744.83, + "end": 14748.13, + "probability": 0.9863 + }, + { + "start": 14748.65, + "end": 14750.17, + "probability": 0.9863 + }, + { + "start": 14751.17, + "end": 14753.41, + "probability": 0.9697 + }, + { + "start": 14753.61, + "end": 14755.13, + "probability": 0.7975 + }, + { + "start": 14756.53, + "end": 14758.05, + "probability": 0.9694 + }, + { + "start": 14759.67, + "end": 14760.57, + "probability": 0.9939 + }, + { + "start": 14761.09, + "end": 14762.73, + "probability": 0.5048 + }, + { + "start": 14763.49, + "end": 14764.57, + "probability": 0.9304 + }, + { + "start": 14765.21, + "end": 14768.23, + "probability": 0.9839 + }, + { + "start": 14768.39, + "end": 14772.91, + "probability": 0.9504 + }, + { + "start": 14774.91, + "end": 14775.73, + "probability": 0.2934 + }, + { + "start": 14775.73, + "end": 14776.99, + "probability": 0.7332 + }, + { + "start": 14778.17, + "end": 14779.73, + "probability": 0.7902 + }, + { + "start": 14783.99, + "end": 14786.89, + "probability": 0.7559 + }, + { + "start": 14787.69, + "end": 14790.57, + "probability": 0.8792 + }, + { + "start": 14791.37, + "end": 14791.95, + "probability": 0.9011 + }, + { + "start": 14793.51, + "end": 14796.41, + "probability": 0.7004 + }, + { + "start": 14797.15, + "end": 14802.21, + "probability": 0.8188 + }, + { + "start": 14803.69, + "end": 14807.61, + "probability": 0.8522 + }, + { + "start": 14807.75, + "end": 14809.98, + "probability": 0.6969 + }, + { + "start": 14810.79, + "end": 14811.33, + "probability": 0.7853 + }, + { + "start": 14811.37, + "end": 14813.23, + "probability": 0.9914 + }, + { + "start": 14814.39, + "end": 14816.95, + "probability": 0.5852 + }, + { + "start": 14819.31, + "end": 14824.69, + "probability": 0.7888 + }, + { + "start": 14824.83, + "end": 14825.31, + "probability": 0.6283 + }, + { + "start": 14826.53, + "end": 14829.05, + "probability": 0.6247 + }, + { + "start": 14830.95, + "end": 14832.61, + "probability": 0.8705 + }, + { + "start": 14832.61, + "end": 14836.05, + "probability": 0.8135 + }, + { + "start": 14836.59, + "end": 14838.21, + "probability": 0.9844 + }, + { + "start": 14839.83, + "end": 14841.07, + "probability": 0.8321 + }, + { + "start": 14842.99, + "end": 14844.81, + "probability": 0.6498 + }, + { + "start": 14844.97, + "end": 14846.35, + "probability": 0.7568 + }, + { + "start": 14846.87, + "end": 14849.29, + "probability": 0.9868 + }, + { + "start": 14851.79, + "end": 14852.19, + "probability": 0.3636 + }, + { + "start": 14852.23, + "end": 14855.07, + "probability": 0.3073 + }, + { + "start": 14855.17, + "end": 14858.33, + "probability": 0.9878 + }, + { + "start": 14859.39, + "end": 14860.63, + "probability": 0.9761 + }, + { + "start": 14860.83, + "end": 14861.73, + "probability": 0.9956 + }, + { + "start": 14861.87, + "end": 14862.41, + "probability": 0.8793 + }, + { + "start": 14863.39, + "end": 14864.62, + "probability": 0.9804 + }, + { + "start": 14866.05, + "end": 14868.75, + "probability": 0.6395 + }, + { + "start": 14868.75, + "end": 14871.35, + "probability": 0.9943 + }, + { + "start": 14872.71, + "end": 14873.93, + "probability": 0.9744 + }, + { + "start": 14875.65, + "end": 14884.09, + "probability": 0.9927 + }, + { + "start": 14884.37, + "end": 14888.71, + "probability": 0.1791 + }, + { + "start": 14888.97, + "end": 14892.79, + "probability": 0.7959 + }, + { + "start": 14894.11, + "end": 14897.25, + "probability": 0.8721 + }, + { + "start": 14898.41, + "end": 14899.51, + "probability": 0.9948 + }, + { + "start": 14899.53, + "end": 14900.69, + "probability": 0.7524 + }, + { + "start": 14901.63, + "end": 14902.69, + "probability": 0.9482 + }, + { + "start": 14903.83, + "end": 14905.4, + "probability": 0.9319 + }, + { + "start": 14905.73, + "end": 14910.43, + "probability": 0.9922 + }, + { + "start": 14911.41, + "end": 14912.32, + "probability": 0.8659 + }, + { + "start": 14914.11, + "end": 14918.69, + "probability": 0.8668 + }, + { + "start": 14919.13, + "end": 14920.89, + "probability": 0.9362 + }, + { + "start": 14921.67, + "end": 14927.17, + "probability": 0.3453 + }, + { + "start": 14927.95, + "end": 14929.51, + "probability": 0.5143 + }, + { + "start": 14929.53, + "end": 14932.13, + "probability": 0.3461 + }, + { + "start": 14932.65, + "end": 14936.45, + "probability": 0.8466 + }, + { + "start": 14937.39, + "end": 14942.69, + "probability": 0.9443 + }, + { + "start": 14943.75, + "end": 14947.09, + "probability": 0.9994 + }, + { + "start": 14947.69, + "end": 14952.21, + "probability": 0.9951 + }, + { + "start": 14953.65, + "end": 14956.15, + "probability": 0.9819 + }, + { + "start": 14964.01, + "end": 14964.59, + "probability": 0.5779 + }, + { + "start": 14965.17, + "end": 14966.15, + "probability": 0.5383 + }, + { + "start": 14966.17, + "end": 14967.91, + "probability": 0.5384 + }, + { + "start": 14969.69, + "end": 14969.69, + "probability": 0.2446 + }, + { + "start": 14969.69, + "end": 14969.69, + "probability": 0.7683 + }, + { + "start": 14969.71, + "end": 14971.26, + "probability": 0.1396 + }, + { + "start": 14971.61, + "end": 14972.91, + "probability": 0.253 + }, + { + "start": 14976.23, + "end": 14976.97, + "probability": 0.6859 + }, + { + "start": 14977.25, + "end": 14979.19, + "probability": 0.6056 + }, + { + "start": 14980.25, + "end": 14981.55, + "probability": 0.7669 + }, + { + "start": 14982.87, + "end": 14984.65, + "probability": 0.6358 + }, + { + "start": 14984.69, + "end": 14988.15, + "probability": 0.9966 + }, + { + "start": 14988.69, + "end": 14989.23, + "probability": 0.5065 + }, + { + "start": 14989.77, + "end": 14990.39, + "probability": 0.3844 + }, + { + "start": 14990.39, + "end": 14995.42, + "probability": 0.9849 + }, + { + "start": 14995.83, + "end": 14999.65, + "probability": 0.9154 + }, + { + "start": 15000.17, + "end": 15001.33, + "probability": 0.7283 + }, + { + "start": 15001.39, + "end": 15002.41, + "probability": 0.9178 + }, + { + "start": 15003.13, + "end": 15006.69, + "probability": 0.9873 + }, + { + "start": 15007.13, + "end": 15007.89, + "probability": 0.8452 + }, + { + "start": 15008.43, + "end": 15009.63, + "probability": 0.6868 + }, + { + "start": 15010.21, + "end": 15011.86, + "probability": 0.9094 + }, + { + "start": 15012.27, + "end": 15013.67, + "probability": 0.9873 + }, + { + "start": 15014.43, + "end": 15015.27, + "probability": 0.9392 + }, + { + "start": 15015.35, + "end": 15016.06, + "probability": 0.4968 + }, + { + "start": 15016.11, + "end": 15017.43, + "probability": 0.8842 + }, + { + "start": 15018.19, + "end": 15021.03, + "probability": 0.9727 + }, + { + "start": 15022.03, + "end": 15022.81, + "probability": 0.9652 + }, + { + "start": 15023.73, + "end": 15027.03, + "probability": 0.9762 + }, + { + "start": 15027.71, + "end": 15029.19, + "probability": 0.4967 + }, + { + "start": 15029.75, + "end": 15031.07, + "probability": 0.5103 + }, + { + "start": 15031.49, + "end": 15033.28, + "probability": 0.751 + }, + { + "start": 15034.03, + "end": 15034.29, + "probability": 0.533 + }, + { + "start": 15034.63, + "end": 15038.01, + "probability": 0.9647 + }, + { + "start": 15039.69, + "end": 15041.23, + "probability": 0.9614 + }, + { + "start": 15041.45, + "end": 15044.29, + "probability": 0.7045 + }, + { + "start": 15044.77, + "end": 15045.95, + "probability": 0.9681 + }, + { + "start": 15046.77, + "end": 15048.43, + "probability": 0.9227 + }, + { + "start": 15048.59, + "end": 15049.33, + "probability": 0.8068 + }, + { + "start": 15049.39, + "end": 15050.15, + "probability": 0.9804 + }, + { + "start": 15050.95, + "end": 15052.25, + "probability": 0.9528 + }, + { + "start": 15053.19, + "end": 15056.05, + "probability": 0.9731 + }, + { + "start": 15056.55, + "end": 15057.45, + "probability": 0.9017 + }, + { + "start": 15058.99, + "end": 15060.73, + "probability": 0.7421 + }, + { + "start": 15061.01, + "end": 15062.97, + "probability": 0.7527 + }, + { + "start": 15063.49, + "end": 15065.03, + "probability": 0.9525 + }, + { + "start": 15065.17, + "end": 15067.03, + "probability": 0.5146 + }, + { + "start": 15067.09, + "end": 15069.13, + "probability": 0.8401 + }, + { + "start": 15069.67, + "end": 15072.39, + "probability": 0.8216 + }, + { + "start": 15072.51, + "end": 15073.31, + "probability": 0.6939 + }, + { + "start": 15073.85, + "end": 15075.21, + "probability": 0.882 + }, + { + "start": 15075.71, + "end": 15076.81, + "probability": 0.866 + }, + { + "start": 15076.91, + "end": 15077.73, + "probability": 0.9249 + }, + { + "start": 15078.15, + "end": 15078.71, + "probability": 0.9443 + }, + { + "start": 15078.85, + "end": 15080.05, + "probability": 0.5535 + }, + { + "start": 15080.15, + "end": 15081.33, + "probability": 0.8921 + }, + { + "start": 15082.42, + "end": 15083.25, + "probability": 0.7805 + }, + { + "start": 15084.07, + "end": 15085.43, + "probability": 0.7876 + }, + { + "start": 15087.29, + "end": 15091.27, + "probability": 0.9313 + }, + { + "start": 15091.83, + "end": 15092.61, + "probability": 0.9321 + }, + { + "start": 15092.85, + "end": 15096.57, + "probability": 0.9733 + }, + { + "start": 15096.73, + "end": 15098.11, + "probability": 0.5784 + }, + { + "start": 15098.17, + "end": 15098.73, + "probability": 0.9305 + }, + { + "start": 15099.13, + "end": 15100.49, + "probability": 0.8111 + }, + { + "start": 15100.75, + "end": 15101.21, + "probability": 0.3846 + }, + { + "start": 15101.25, + "end": 15102.18, + "probability": 0.8033 + }, + { + "start": 15102.45, + "end": 15103.23, + "probability": 0.7889 + }, + { + "start": 15103.65, + "end": 15106.27, + "probability": 0.8972 + }, + { + "start": 15106.69, + "end": 15108.25, + "probability": 0.7093 + }, + { + "start": 15108.29, + "end": 15111.37, + "probability": 0.9861 + }, + { + "start": 15111.57, + "end": 15113.67, + "probability": 0.7369 + }, + { + "start": 15114.25, + "end": 15115.35, + "probability": 0.9441 + }, + { + "start": 15115.41, + "end": 15116.65, + "probability": 0.7393 + }, + { + "start": 15120.09, + "end": 15122.69, + "probability": 0.8576 + }, + { + "start": 15123.41, + "end": 15125.07, + "probability": 0.6238 + }, + { + "start": 15125.69, + "end": 15126.85, + "probability": 0.8472 + }, + { + "start": 15127.19, + "end": 15127.64, + "probability": 0.981 + }, + { + "start": 15127.87, + "end": 15128.51, + "probability": 0.8623 + }, + { + "start": 15128.75, + "end": 15129.31, + "probability": 0.7507 + }, + { + "start": 15129.45, + "end": 15130.17, + "probability": 0.8905 + }, + { + "start": 15130.61, + "end": 15131.77, + "probability": 0.9725 + }, + { + "start": 15134.53, + "end": 15135.37, + "probability": 0.7715 + }, + { + "start": 15135.71, + "end": 15137.13, + "probability": 0.9819 + }, + { + "start": 15137.23, + "end": 15137.47, + "probability": 0.7557 + }, + { + "start": 15138.13, + "end": 15138.89, + "probability": 0.8621 + }, + { + "start": 15139.15, + "end": 15140.89, + "probability": 0.6985 + }, + { + "start": 15140.95, + "end": 15143.71, + "probability": 0.7751 + }, + { + "start": 15145.63, + "end": 15147.33, + "probability": 0.9837 + }, + { + "start": 15148.19, + "end": 15148.85, + "probability": 0.8903 + }, + { + "start": 15149.71, + "end": 15151.75, + "probability": 0.8533 + }, + { + "start": 15153.25, + "end": 15158.35, + "probability": 0.9773 + }, + { + "start": 15159.71, + "end": 15159.91, + "probability": 0.4443 + }, + { + "start": 15159.91, + "end": 15160.68, + "probability": 0.619 + }, + { + "start": 15160.87, + "end": 15161.83, + "probability": 0.7671 + }, + { + "start": 15162.95, + "end": 15163.65, + "probability": 0.3929 + }, + { + "start": 15164.25, + "end": 15168.07, + "probability": 0.1408 + }, + { + "start": 15168.33, + "end": 15172.23, + "probability": 0.7568 + }, + { + "start": 15172.41, + "end": 15173.37, + "probability": 0.4984 + }, + { + "start": 15178.37, + "end": 15180.69, + "probability": 0.643 + }, + { + "start": 15180.75, + "end": 15184.77, + "probability": 0.89 + }, + { + "start": 15185.63, + "end": 15186.43, + "probability": 0.1257 + }, + { + "start": 15186.61, + "end": 15186.69, + "probability": 0.6235 + }, + { + "start": 15191.8, + "end": 15191.8, + "probability": 0.3272 + }, + { + "start": 15191.8, + "end": 15191.98, + "probability": 0.7442 + }, + { + "start": 15192.08, + "end": 15194.71, + "probability": 0.9707 + }, + { + "start": 15195.0, + "end": 15196.16, + "probability": 0.9808 + }, + { + "start": 15196.72, + "end": 15198.32, + "probability": 0.889 + }, + { + "start": 15199.15, + "end": 15200.91, + "probability": 0.7432 + }, + { + "start": 15201.6, + "end": 15202.94, + "probability": 0.8678 + }, + { + "start": 15203.08, + "end": 15205.3, + "probability": 0.9812 + }, + { + "start": 15205.7, + "end": 15207.1, + "probability": 0.9406 + }, + { + "start": 15208.06, + "end": 15211.44, + "probability": 0.9814 + }, + { + "start": 15211.5, + "end": 15212.42, + "probability": 0.7628 + }, + { + "start": 15212.86, + "end": 15215.2, + "probability": 0.8779 + }, + { + "start": 15215.38, + "end": 15217.84, + "probability": 0.9781 + }, + { + "start": 15217.84, + "end": 15220.18, + "probability": 0.9609 + }, + { + "start": 15220.32, + "end": 15220.98, + "probability": 0.9166 + }, + { + "start": 15221.26, + "end": 15222.48, + "probability": 0.9456 + }, + { + "start": 15222.58, + "end": 15222.98, + "probability": 0.697 + }, + { + "start": 15223.06, + "end": 15224.14, + "probability": 0.7264 + }, + { + "start": 15224.88, + "end": 15225.39, + "probability": 0.6345 + }, + { + "start": 15226.2, + "end": 15228.86, + "probability": 0.894 + }, + { + "start": 15229.78, + "end": 15233.2, + "probability": 0.8957 + }, + { + "start": 15233.66, + "end": 15235.26, + "probability": 0.8328 + }, + { + "start": 15235.4, + "end": 15235.86, + "probability": 0.6262 + }, + { + "start": 15236.16, + "end": 15236.86, + "probability": 0.9532 + }, + { + "start": 15242.92, + "end": 15246.15, + "probability": 0.9686 + }, + { + "start": 15246.76, + "end": 15254.08, + "probability": 0.9146 + }, + { + "start": 15254.08, + "end": 15257.3, + "probability": 0.7597 + }, + { + "start": 15257.54, + "end": 15259.62, + "probability": 0.6643 + }, + { + "start": 15260.38, + "end": 15263.48, + "probability": 0.6874 + }, + { + "start": 15263.48, + "end": 15268.12, + "probability": 0.9244 + }, + { + "start": 15268.78, + "end": 15270.18, + "probability": 0.3301 + }, + { + "start": 15270.86, + "end": 15271.86, + "probability": 0.7172 + }, + { + "start": 15272.48, + "end": 15273.14, + "probability": 0.6764 + }, + { + "start": 15273.78, + "end": 15274.56, + "probability": 0.756 + }, + { + "start": 15278.6, + "end": 15279.72, + "probability": 0.3982 + }, + { + "start": 15287.08, + "end": 15287.98, + "probability": 0.1568 + }, + { + "start": 15289.47, + "end": 15290.12, + "probability": 0.0418 + }, + { + "start": 15290.96, + "end": 15290.96, + "probability": 0.0 + }, + { + "start": 15291.62, + "end": 15292.66, + "probability": 0.0314 + }, + { + "start": 15295.12, + "end": 15295.84, + "probability": 0.1038 + }, + { + "start": 15296.24, + "end": 15296.78, + "probability": 0.3095 + }, + { + "start": 15297.62, + "end": 15298.24, + "probability": 0.1823 + }, + { + "start": 15299.46, + "end": 15300.62, + "probability": 0.4102 + }, + { + "start": 15301.5, + "end": 15303.51, + "probability": 0.6356 + }, + { + "start": 15304.18, + "end": 15304.76, + "probability": 0.7347 + }, + { + "start": 15305.28, + "end": 15307.18, + "probability": 0.3832 + }, + { + "start": 15307.7, + "end": 15310.22, + "probability": 0.354 + }, + { + "start": 15310.9, + "end": 15312.84, + "probability": 0.702 + }, + { + "start": 15313.34, + "end": 15314.6, + "probability": 0.5186 + }, + { + "start": 15314.62, + "end": 15315.26, + "probability": 0.7406 + }, + { + "start": 15315.7, + "end": 15317.3, + "probability": 0.8809 + }, + { + "start": 15317.92, + "end": 15319.98, + "probability": 0.261 + }, + { + "start": 15320.4, + "end": 15321.28, + "probability": 0.9523 + }, + { + "start": 15323.38, + "end": 15323.74, + "probability": 0.1368 + } + ], + "segments_count": 5261, + "words_count": 26498, + "avg_words_per_segment": 5.0367, + "avg_segment_duration": 1.7007, + "avg_words_per_minute": 103.6966, + "plenum_id": "1986", + "duration": 15332.04, + "title": null, + "plenum_date": "2009-05-18" +} \ No newline at end of file