diff --git "a/20043/metadata.json" "b/20043/metadata.json" new file mode 100644--- /dev/null +++ "b/20043/metadata.json" @@ -0,0 +1,35372 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "20043", + "quality_score": 0.8799, + "per_segment_quality_scores": [ + { + "start": 28.07, + "end": 29.32, + "probability": 0.0436 + }, + { + "start": 29.32, + "end": 35.26, + "probability": 0.0244 + }, + { + "start": 38.85, + "end": 40.85, + "probability": 0.0107 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 130.0, + "end": 130.0, + "probability": 0.0 + }, + { + "start": 133.9, + "end": 136.24, + "probability": 0.7669 + }, + { + "start": 137.12, + "end": 137.46, + "probability": 0.5235 + }, + { + "start": 137.52, + "end": 141.94, + "probability": 0.9412 + }, + { + "start": 142.2, + "end": 144.92, + "probability": 0.9919 + }, + { + "start": 145.72, + "end": 146.7, + "probability": 0.9023 + }, + { + "start": 146.82, + "end": 150.84, + "probability": 0.7354 + }, + { + "start": 152.46, + "end": 153.68, + "probability": 0.0904 + }, + { + "start": 153.8, + "end": 154.28, + "probability": 0.0518 + }, + { + "start": 154.72, + "end": 155.58, + "probability": 0.3526 + }, + { + "start": 155.74, + "end": 157.46, + "probability": 0.5564 + }, + { + "start": 157.8, + "end": 161.4, + "probability": 0.7584 + }, + { + "start": 161.42, + "end": 164.62, + "probability": 0.9398 + }, + { + "start": 164.62, + "end": 171.68, + "probability": 0.98 + }, + { + "start": 171.76, + "end": 174.56, + "probability": 0.8966 + }, + { + "start": 174.98, + "end": 177.0, + "probability": 0.9834 + }, + { + "start": 177.58, + "end": 179.94, + "probability": 0.9544 + }, + { + "start": 180.46, + "end": 181.34, + "probability": 0.5803 + }, + { + "start": 181.48, + "end": 182.92, + "probability": 0.7269 + }, + { + "start": 183.24, + "end": 186.92, + "probability": 0.9058 + }, + { + "start": 187.48, + "end": 188.85, + "probability": 0.6139 + }, + { + "start": 189.5, + "end": 191.3, + "probability": 0.9853 + }, + { + "start": 193.12, + "end": 193.78, + "probability": 0.8608 + }, + { + "start": 193.84, + "end": 197.64, + "probability": 0.9648 + }, + { + "start": 198.2, + "end": 200.44, + "probability": 0.7694 + }, + { + "start": 201.12, + "end": 205.52, + "probability": 0.9941 + }, + { + "start": 205.98, + "end": 206.65, + "probability": 0.9598 + }, + { + "start": 207.9, + "end": 208.96, + "probability": 0.9353 + }, + { + "start": 212.18, + "end": 213.92, + "probability": 0.7756 + }, + { + "start": 215.88, + "end": 218.92, + "probability": 0.6318 + }, + { + "start": 221.0, + "end": 222.88, + "probability": 0.9471 + }, + { + "start": 222.88, + "end": 224.48, + "probability": 0.9641 + }, + { + "start": 224.64, + "end": 228.3, + "probability": 0.9858 + }, + { + "start": 229.06, + "end": 229.82, + "probability": 0.5984 + }, + { + "start": 230.64, + "end": 231.44, + "probability": 0.8834 + }, + { + "start": 231.74, + "end": 231.84, + "probability": 0.5085 + }, + { + "start": 232.3, + "end": 234.06, + "probability": 0.6953 + }, + { + "start": 234.16, + "end": 241.64, + "probability": 0.9958 + }, + { + "start": 241.76, + "end": 241.76, + "probability": 0.016 + }, + { + "start": 241.76, + "end": 243.04, + "probability": 0.0087 + }, + { + "start": 243.12, + "end": 244.24, + "probability": 0.5538 + }, + { + "start": 244.32, + "end": 245.3, + "probability": 0.8435 + }, + { + "start": 245.52, + "end": 247.72, + "probability": 0.9803 + }, + { + "start": 247.96, + "end": 249.24, + "probability": 0.6238 + }, + { + "start": 249.24, + "end": 250.2, + "probability": 0.9803 + }, + { + "start": 251.08, + "end": 251.94, + "probability": 0.9456 + }, + { + "start": 252.32, + "end": 252.72, + "probability": 0.6646 + }, + { + "start": 252.98, + "end": 260.56, + "probability": 0.9718 + }, + { + "start": 263.82, + "end": 266.08, + "probability": 0.8447 + }, + { + "start": 267.7, + "end": 270.34, + "probability": 0.7973 + }, + { + "start": 274.6, + "end": 279.7, + "probability": 0.9767 + }, + { + "start": 279.7, + "end": 283.06, + "probability": 0.984 + }, + { + "start": 285.4, + "end": 287.84, + "probability": 0.9902 + }, + { + "start": 290.52, + "end": 290.8, + "probability": 0.8438 + }, + { + "start": 292.08, + "end": 293.42, + "probability": 0.9945 + }, + { + "start": 294.38, + "end": 295.26, + "probability": 0.967 + }, + { + "start": 295.34, + "end": 300.98, + "probability": 0.8767 + }, + { + "start": 301.16, + "end": 303.28, + "probability": 0.9946 + }, + { + "start": 303.38, + "end": 304.2, + "probability": 0.4833 + }, + { + "start": 304.26, + "end": 304.9, + "probability": 0.462 + }, + { + "start": 305.04, + "end": 305.88, + "probability": 0.3124 + }, + { + "start": 306.04, + "end": 306.78, + "probability": 0.4462 + }, + { + "start": 306.8, + "end": 308.48, + "probability": 0.9774 + }, + { + "start": 309.52, + "end": 310.5, + "probability": 0.5996 + }, + { + "start": 311.24, + "end": 314.96, + "probability": 0.9669 + }, + { + "start": 316.2, + "end": 320.36, + "probability": 0.9322 + }, + { + "start": 321.74, + "end": 323.46, + "probability": 0.9459 + }, + { + "start": 324.92, + "end": 325.9, + "probability": 0.9753 + }, + { + "start": 328.0, + "end": 328.66, + "probability": 0.8724 + }, + { + "start": 330.68, + "end": 332.52, + "probability": 0.9928 + }, + { + "start": 333.7, + "end": 334.48, + "probability": 0.9502 + }, + { + "start": 335.16, + "end": 338.24, + "probability": 0.92 + }, + { + "start": 338.94, + "end": 340.98, + "probability": 0.7287 + }, + { + "start": 341.84, + "end": 343.5, + "probability": 0.9925 + }, + { + "start": 344.14, + "end": 345.58, + "probability": 0.9646 + }, + { + "start": 346.2, + "end": 347.2, + "probability": 0.9851 + }, + { + "start": 347.42, + "end": 351.48, + "probability": 0.9812 + }, + { + "start": 352.28, + "end": 354.5, + "probability": 0.9487 + }, + { + "start": 354.82, + "end": 360.66, + "probability": 0.8941 + }, + { + "start": 361.26, + "end": 362.76, + "probability": 0.7914 + }, + { + "start": 362.94, + "end": 365.1, + "probability": 0.9849 + }, + { + "start": 369.02, + "end": 373.74, + "probability": 0.969 + }, + { + "start": 375.94, + "end": 378.8, + "probability": 0.9958 + }, + { + "start": 381.1, + "end": 384.2, + "probability": 0.9959 + }, + { + "start": 387.72, + "end": 391.9, + "probability": 0.8623 + }, + { + "start": 392.48, + "end": 393.32, + "probability": 0.599 + }, + { + "start": 394.34, + "end": 395.8, + "probability": 0.9969 + }, + { + "start": 396.78, + "end": 397.34, + "probability": 0.6974 + }, + { + "start": 397.48, + "end": 398.52, + "probability": 0.9565 + }, + { + "start": 399.14, + "end": 399.88, + "probability": 0.9319 + }, + { + "start": 401.36, + "end": 401.94, + "probability": 0.7609 + }, + { + "start": 403.08, + "end": 404.0, + "probability": 0.6774 + }, + { + "start": 404.36, + "end": 407.9, + "probability": 0.9358 + }, + { + "start": 407.98, + "end": 408.76, + "probability": 0.8507 + }, + { + "start": 409.28, + "end": 415.92, + "probability": 0.9893 + }, + { + "start": 417.06, + "end": 418.8, + "probability": 0.9937 + }, + { + "start": 420.0, + "end": 420.68, + "probability": 0.7247 + }, + { + "start": 425.98, + "end": 426.72, + "probability": 0.703 + }, + { + "start": 427.44, + "end": 427.84, + "probability": 0.4979 + }, + { + "start": 428.36, + "end": 429.08, + "probability": 0.695 + }, + { + "start": 429.2, + "end": 431.04, + "probability": 0.4233 + }, + { + "start": 431.52, + "end": 432.18, + "probability": 0.8975 + }, + { + "start": 432.74, + "end": 433.04, + "probability": 0.5155 + }, + { + "start": 433.74, + "end": 437.48, + "probability": 0.9678 + }, + { + "start": 437.5, + "end": 441.44, + "probability": 0.6411 + }, + { + "start": 442.22, + "end": 443.4, + "probability": 0.4833 + }, + { + "start": 444.13, + "end": 445.68, + "probability": 0.5016 + }, + { + "start": 445.74, + "end": 446.02, + "probability": 0.556 + }, + { + "start": 446.04, + "end": 449.3, + "probability": 0.859 + }, + { + "start": 449.34, + "end": 450.1, + "probability": 0.9718 + }, + { + "start": 451.2, + "end": 453.22, + "probability": 0.932 + }, + { + "start": 453.24, + "end": 453.56, + "probability": 0.9851 + }, + { + "start": 454.38, + "end": 458.86, + "probability": 0.7847 + }, + { + "start": 458.9, + "end": 462.43, + "probability": 0.6968 + }, + { + "start": 463.54, + "end": 465.52, + "probability": 0.851 + }, + { + "start": 466.82, + "end": 470.68, + "probability": 0.9308 + }, + { + "start": 473.4, + "end": 476.42, + "probability": 0.7271 + }, + { + "start": 478.02, + "end": 480.7, + "probability": 0.8383 + }, + { + "start": 481.46, + "end": 486.96, + "probability": 0.9972 + }, + { + "start": 487.96, + "end": 488.84, + "probability": 0.5281 + }, + { + "start": 488.94, + "end": 489.86, + "probability": 0.6929 + }, + { + "start": 490.62, + "end": 496.02, + "probability": 0.923 + }, + { + "start": 497.24, + "end": 498.98, + "probability": 0.8922 + }, + { + "start": 500.46, + "end": 506.36, + "probability": 0.7526 + }, + { + "start": 508.2, + "end": 508.64, + "probability": 0.8914 + }, + { + "start": 509.6, + "end": 511.22, + "probability": 0.9922 + }, + { + "start": 511.34, + "end": 512.44, + "probability": 0.875 + }, + { + "start": 512.56, + "end": 513.9, + "probability": 0.9965 + }, + { + "start": 515.32, + "end": 518.68, + "probability": 0.8807 + }, + { + "start": 519.94, + "end": 527.76, + "probability": 0.811 + }, + { + "start": 529.3, + "end": 530.6, + "probability": 0.8461 + }, + { + "start": 531.32, + "end": 532.96, + "probability": 0.9196 + }, + { + "start": 535.04, + "end": 537.18, + "probability": 0.8985 + }, + { + "start": 540.08, + "end": 542.26, + "probability": 0.9713 + }, + { + "start": 543.48, + "end": 545.46, + "probability": 0.8913 + }, + { + "start": 546.6, + "end": 548.44, + "probability": 0.9735 + }, + { + "start": 548.66, + "end": 550.4, + "probability": 0.9282 + }, + { + "start": 551.22, + "end": 552.38, + "probability": 0.8913 + }, + { + "start": 553.12, + "end": 555.22, + "probability": 0.6442 + }, + { + "start": 556.34, + "end": 560.1, + "probability": 0.9943 + }, + { + "start": 561.26, + "end": 561.44, + "probability": 0.5945 + }, + { + "start": 563.1, + "end": 565.94, + "probability": 0.873 + }, + { + "start": 567.3, + "end": 568.24, + "probability": 0.9594 + }, + { + "start": 568.32, + "end": 569.58, + "probability": 0.9886 + }, + { + "start": 569.92, + "end": 570.6, + "probability": 0.7542 + }, + { + "start": 571.72, + "end": 572.56, + "probability": 0.4307 + }, + { + "start": 572.72, + "end": 573.0, + "probability": 0.5348 + }, + { + "start": 573.48, + "end": 577.22, + "probability": 0.9034 + }, + { + "start": 578.62, + "end": 579.12, + "probability": 0.8926 + }, + { + "start": 579.82, + "end": 580.38, + "probability": 0.9952 + }, + { + "start": 581.46, + "end": 582.7, + "probability": 0.9883 + }, + { + "start": 583.62, + "end": 584.56, + "probability": 0.9995 + }, + { + "start": 585.34, + "end": 587.24, + "probability": 0.9989 + }, + { + "start": 587.94, + "end": 590.08, + "probability": 0.9998 + }, + { + "start": 590.8, + "end": 592.2, + "probability": 0.9859 + }, + { + "start": 592.42, + "end": 593.32, + "probability": 0.858 + }, + { + "start": 593.72, + "end": 596.2, + "probability": 0.9912 + }, + { + "start": 596.64, + "end": 601.46, + "probability": 0.9941 + }, + { + "start": 602.14, + "end": 602.52, + "probability": 0.4655 + }, + { + "start": 602.96, + "end": 605.56, + "probability": 0.8005 + }, + { + "start": 606.0, + "end": 608.54, + "probability": 0.9085 + }, + { + "start": 608.94, + "end": 610.1, + "probability": 0.849 + }, + { + "start": 610.22, + "end": 614.26, + "probability": 0.9829 + }, + { + "start": 615.22, + "end": 616.12, + "probability": 0.568 + }, + { + "start": 617.74, + "end": 619.4, + "probability": 0.0528 + }, + { + "start": 619.4, + "end": 619.92, + "probability": 0.1316 + }, + { + "start": 619.92, + "end": 621.46, + "probability": 0.2064 + }, + { + "start": 621.66, + "end": 622.74, + "probability": 0.26 + }, + { + "start": 623.82, + "end": 624.2, + "probability": 0.1372 + }, + { + "start": 624.72, + "end": 625.73, + "probability": 0.5713 + }, + { + "start": 628.42, + "end": 629.18, + "probability": 0.8674 + }, + { + "start": 629.24, + "end": 630.04, + "probability": 0.9559 + }, + { + "start": 630.28, + "end": 630.67, + "probability": 0.8938 + }, + { + "start": 631.53, + "end": 634.1, + "probability": 0.903 + }, + { + "start": 634.3, + "end": 635.15, + "probability": 0.9979 + }, + { + "start": 636.36, + "end": 638.38, + "probability": 0.9958 + }, + { + "start": 639.0, + "end": 639.46, + "probability": 0.4179 + }, + { + "start": 639.54, + "end": 640.56, + "probability": 0.5947 + }, + { + "start": 640.68, + "end": 642.58, + "probability": 0.8801 + }, + { + "start": 642.58, + "end": 643.42, + "probability": 0.2223 + }, + { + "start": 643.5, + "end": 644.32, + "probability": 0.5344 + }, + { + "start": 644.6, + "end": 645.74, + "probability": 0.2161 + }, + { + "start": 645.98, + "end": 648.7, + "probability": 0.9319 + }, + { + "start": 649.0, + "end": 649.86, + "probability": 0.9568 + }, + { + "start": 650.38, + "end": 653.94, + "probability": 0.678 + }, + { + "start": 655.04, + "end": 656.56, + "probability": 0.9854 + }, + { + "start": 657.24, + "end": 657.64, + "probability": 0.432 + }, + { + "start": 657.76, + "end": 658.42, + "probability": 0.4441 + }, + { + "start": 659.52, + "end": 662.04, + "probability": 0.8139 + }, + { + "start": 662.66, + "end": 671.84, + "probability": 0.9718 + }, + { + "start": 673.46, + "end": 676.26, + "probability": 0.8876 + }, + { + "start": 676.38, + "end": 679.62, + "probability": 0.645 + }, + { + "start": 679.62, + "end": 683.1, + "probability": 0.938 + }, + { + "start": 683.62, + "end": 683.8, + "probability": 0.1845 + }, + { + "start": 683.86, + "end": 685.58, + "probability": 0.9549 + }, + { + "start": 685.66, + "end": 687.56, + "probability": 0.8926 + }, + { + "start": 688.04, + "end": 689.84, + "probability": 0.9502 + }, + { + "start": 690.1, + "end": 692.72, + "probability": 0.5728 + }, + { + "start": 692.72, + "end": 693.7, + "probability": 0.7434 + }, + { + "start": 693.86, + "end": 696.16, + "probability": 0.8896 + }, + { + "start": 696.42, + "end": 696.78, + "probability": 0.4835 + }, + { + "start": 696.8, + "end": 696.9, + "probability": 0.707 + }, + { + "start": 696.9, + "end": 697.32, + "probability": 0.321 + }, + { + "start": 697.36, + "end": 698.86, + "probability": 0.9671 + }, + { + "start": 699.84, + "end": 703.5, + "probability": 0.446 + }, + { + "start": 704.16, + "end": 705.92, + "probability": 0.9985 + }, + { + "start": 706.04, + "end": 707.34, + "probability": 0.8591 + }, + { + "start": 707.54, + "end": 709.02, + "probability": 0.8183 + }, + { + "start": 710.16, + "end": 711.08, + "probability": 0.9906 + }, + { + "start": 712.0, + "end": 712.98, + "probability": 0.9052 + }, + { + "start": 713.6, + "end": 714.24, + "probability": 0.6841 + }, + { + "start": 715.32, + "end": 718.62, + "probability": 0.9335 + }, + { + "start": 719.26, + "end": 721.32, + "probability": 0.7975 + }, + { + "start": 721.4, + "end": 722.46, + "probability": 0.7451 + }, + { + "start": 723.76, + "end": 729.48, + "probability": 0.9369 + }, + { + "start": 729.56, + "end": 730.8, + "probability": 0.7186 + }, + { + "start": 731.36, + "end": 733.04, + "probability": 0.9719 + }, + { + "start": 733.14, + "end": 735.34, + "probability": 0.9494 + }, + { + "start": 735.48, + "end": 735.52, + "probability": 0.7656 + }, + { + "start": 736.08, + "end": 736.9, + "probability": 0.7685 + }, + { + "start": 737.06, + "end": 738.68, + "probability": 0.9858 + }, + { + "start": 739.64, + "end": 740.28, + "probability": 0.861 + }, + { + "start": 741.12, + "end": 747.08, + "probability": 0.9963 + }, + { + "start": 748.32, + "end": 748.4, + "probability": 0.6687 + }, + { + "start": 748.48, + "end": 750.68, + "probability": 0.9325 + }, + { + "start": 752.14, + "end": 753.08, + "probability": 0.9564 + }, + { + "start": 757.64, + "end": 758.24, + "probability": 0.752 + }, + { + "start": 760.62, + "end": 763.14, + "probability": 0.8043 + }, + { + "start": 765.66, + "end": 766.42, + "probability": 0.7559 + }, + { + "start": 767.88, + "end": 769.5, + "probability": 0.9939 + }, + { + "start": 769.58, + "end": 770.36, + "probability": 0.7714 + }, + { + "start": 770.46, + "end": 771.6, + "probability": 0.9985 + }, + { + "start": 773.48, + "end": 774.06, + "probability": 0.9854 + }, + { + "start": 775.56, + "end": 777.02, + "probability": 0.9965 + }, + { + "start": 779.24, + "end": 781.52, + "probability": 0.9857 + }, + { + "start": 783.88, + "end": 784.58, + "probability": 0.7494 + }, + { + "start": 785.94, + "end": 789.44, + "probability": 0.9523 + }, + { + "start": 792.24, + "end": 794.52, + "probability": 0.9634 + }, + { + "start": 795.52, + "end": 795.74, + "probability": 0.9879 + }, + { + "start": 797.94, + "end": 800.96, + "probability": 0.9862 + }, + { + "start": 802.9, + "end": 804.52, + "probability": 0.915 + }, + { + "start": 805.12, + "end": 806.18, + "probability": 0.8586 + }, + { + "start": 806.64, + "end": 809.12, + "probability": 0.9662 + }, + { + "start": 809.12, + "end": 811.58, + "probability": 0.8358 + }, + { + "start": 813.5, + "end": 816.86, + "probability": 0.9436 + }, + { + "start": 819.56, + "end": 821.3, + "probability": 0.9792 + }, + { + "start": 824.92, + "end": 828.32, + "probability": 0.9816 + }, + { + "start": 828.52, + "end": 829.46, + "probability": 0.8674 + }, + { + "start": 829.62, + "end": 830.12, + "probability": 0.5965 + }, + { + "start": 830.22, + "end": 830.74, + "probability": 0.8832 + }, + { + "start": 834.26, + "end": 835.61, + "probability": 0.9604 + }, + { + "start": 836.38, + "end": 839.29, + "probability": 0.9934 + }, + { + "start": 841.64, + "end": 843.05, + "probability": 0.9819 + }, + { + "start": 845.12, + "end": 846.1, + "probability": 0.7848 + }, + { + "start": 846.62, + "end": 847.5, + "probability": 0.441 + }, + { + "start": 848.5, + "end": 849.86, + "probability": 0.7879 + }, + { + "start": 851.98, + "end": 852.7, + "probability": 0.9543 + }, + { + "start": 853.1, + "end": 853.88, + "probability": 0.8927 + }, + { + "start": 854.88, + "end": 856.18, + "probability": 0.9339 + }, + { + "start": 860.5, + "end": 862.28, + "probability": 0.9766 + }, + { + "start": 863.92, + "end": 866.18, + "probability": 0.7677 + }, + { + "start": 866.58, + "end": 867.57, + "probability": 0.9775 + }, + { + "start": 869.7, + "end": 870.72, + "probability": 0.934 + }, + { + "start": 871.58, + "end": 871.7, + "probability": 0.151 + }, + { + "start": 872.2, + "end": 873.54, + "probability": 0.9489 + }, + { + "start": 873.62, + "end": 876.1, + "probability": 0.9941 + }, + { + "start": 880.16, + "end": 881.04, + "probability": 0.7614 + }, + { + "start": 882.84, + "end": 884.32, + "probability": 0.9907 + }, + { + "start": 885.42, + "end": 887.1, + "probability": 0.927 + }, + { + "start": 887.14, + "end": 887.98, + "probability": 0.9834 + }, + { + "start": 888.04, + "end": 889.2, + "probability": 0.894 + }, + { + "start": 890.82, + "end": 892.44, + "probability": 0.8979 + }, + { + "start": 894.44, + "end": 895.32, + "probability": 0.9222 + }, + { + "start": 898.94, + "end": 902.84, + "probability": 0.989 + }, + { + "start": 903.78, + "end": 905.92, + "probability": 0.8145 + }, + { + "start": 907.6, + "end": 909.56, + "probability": 0.6519 + }, + { + "start": 910.4, + "end": 911.2, + "probability": 0.5954 + }, + { + "start": 911.68, + "end": 912.6, + "probability": 0.8556 + }, + { + "start": 914.0, + "end": 914.52, + "probability": 0.4899 + }, + { + "start": 916.06, + "end": 919.88, + "probability": 0.9978 + }, + { + "start": 922.76, + "end": 924.0, + "probability": 0.9698 + }, + { + "start": 925.7, + "end": 926.34, + "probability": 0.3884 + }, + { + "start": 929.06, + "end": 932.42, + "probability": 0.9966 + }, + { + "start": 933.46, + "end": 935.1, + "probability": 0.7542 + }, + { + "start": 936.88, + "end": 939.3, + "probability": 0.9963 + }, + { + "start": 941.0, + "end": 942.64, + "probability": 0.8623 + }, + { + "start": 943.56, + "end": 943.98, + "probability": 0.937 + }, + { + "start": 944.98, + "end": 947.58, + "probability": 0.9733 + }, + { + "start": 948.16, + "end": 951.08, + "probability": 0.9868 + }, + { + "start": 951.38, + "end": 952.22, + "probability": 0.5848 + }, + { + "start": 952.5, + "end": 952.88, + "probability": 0.9437 + }, + { + "start": 953.38, + "end": 953.76, + "probability": 0.7317 + }, + { + "start": 953.94, + "end": 954.48, + "probability": 0.6026 + }, + { + "start": 954.56, + "end": 955.62, + "probability": 0.7374 + }, + { + "start": 956.92, + "end": 957.82, + "probability": 0.9834 + }, + { + "start": 964.18, + "end": 969.16, + "probability": 0.9819 + }, + { + "start": 973.5, + "end": 975.84, + "probability": 0.9513 + }, + { + "start": 977.7, + "end": 979.54, + "probability": 0.989 + }, + { + "start": 979.72, + "end": 980.66, + "probability": 0.9155 + }, + { + "start": 981.06, + "end": 981.62, + "probability": 0.8345 + }, + { + "start": 982.16, + "end": 983.22, + "probability": 0.9615 + }, + { + "start": 984.08, + "end": 985.13, + "probability": 0.8349 + }, + { + "start": 985.44, + "end": 986.62, + "probability": 0.9955 + }, + { + "start": 989.82, + "end": 991.18, + "probability": 0.8177 + }, + { + "start": 992.92, + "end": 994.12, + "probability": 0.939 + }, + { + "start": 995.3, + "end": 997.7, + "probability": 0.9439 + }, + { + "start": 999.78, + "end": 1001.6, + "probability": 0.8103 + }, + { + "start": 1002.66, + "end": 1004.24, + "probability": 0.8787 + }, + { + "start": 1005.92, + "end": 1007.02, + "probability": 0.9885 + }, + { + "start": 1008.18, + "end": 1010.42, + "probability": 0.8885 + }, + { + "start": 1010.42, + "end": 1012.26, + "probability": 0.9561 + }, + { + "start": 1012.38, + "end": 1013.84, + "probability": 0.7252 + }, + { + "start": 1016.94, + "end": 1017.53, + "probability": 0.9753 + }, + { + "start": 1020.84, + "end": 1025.5, + "probability": 0.9914 + }, + { + "start": 1026.44, + "end": 1030.62, + "probability": 0.9302 + }, + { + "start": 1030.82, + "end": 1032.22, + "probability": 0.581 + }, + { + "start": 1035.48, + "end": 1036.18, + "probability": 0.8071 + }, + { + "start": 1037.5, + "end": 1038.98, + "probability": 0.8624 + }, + { + "start": 1039.02, + "end": 1039.72, + "probability": 0.7033 + }, + { + "start": 1040.0, + "end": 1041.02, + "probability": 0.126 + }, + { + "start": 1041.16, + "end": 1042.64, + "probability": 0.1538 + }, + { + "start": 1042.64, + "end": 1044.94, + "probability": 0.599 + }, + { + "start": 1045.56, + "end": 1048.34, + "probability": 0.8519 + }, + { + "start": 1049.68, + "end": 1049.72, + "probability": 0.209 + }, + { + "start": 1049.72, + "end": 1051.04, + "probability": 0.7155 + }, + { + "start": 1051.44, + "end": 1055.18, + "probability": 0.8543 + }, + { + "start": 1056.44, + "end": 1059.4, + "probability": 0.8135 + }, + { + "start": 1059.7, + "end": 1062.56, + "probability": 0.904 + }, + { + "start": 1065.96, + "end": 1069.86, + "probability": 0.6939 + }, + { + "start": 1070.74, + "end": 1072.96, + "probability": 0.9764 + }, + { + "start": 1074.68, + "end": 1077.12, + "probability": 0.9938 + }, + { + "start": 1077.2, + "end": 1080.28, + "probability": 0.999 + }, + { + "start": 1081.82, + "end": 1082.1, + "probability": 0.9958 + }, + { + "start": 1082.68, + "end": 1084.08, + "probability": 0.8165 + }, + { + "start": 1084.58, + "end": 1086.78, + "probability": 0.9984 + }, + { + "start": 1087.44, + "end": 1090.8, + "probability": 0.9813 + }, + { + "start": 1091.38, + "end": 1092.2, + "probability": 0.889 + }, + { + "start": 1096.94, + "end": 1098.08, + "probability": 0.39 + }, + { + "start": 1098.08, + "end": 1099.98, + "probability": 0.834 + }, + { + "start": 1100.4, + "end": 1101.62, + "probability": 0.9546 + }, + { + "start": 1102.28, + "end": 1104.02, + "probability": 0.8331 + }, + { + "start": 1106.08, + "end": 1108.22, + "probability": 0.7769 + }, + { + "start": 1110.64, + "end": 1113.03, + "probability": 0.9935 + }, + { + "start": 1113.46, + "end": 1116.3, + "probability": 0.9541 + }, + { + "start": 1117.8, + "end": 1118.94, + "probability": 0.4653 + }, + { + "start": 1119.82, + "end": 1121.14, + "probability": 0.9744 + }, + { + "start": 1125.0, + "end": 1129.22, + "probability": 0.9703 + }, + { + "start": 1131.16, + "end": 1135.06, + "probability": 0.9253 + }, + { + "start": 1139.56, + "end": 1141.12, + "probability": 0.9229 + }, + { + "start": 1142.46, + "end": 1145.08, + "probability": 0.6781 + }, + { + "start": 1145.92, + "end": 1147.24, + "probability": 0.853 + }, + { + "start": 1147.36, + "end": 1149.62, + "probability": 0.9712 + }, + { + "start": 1151.42, + "end": 1152.96, + "probability": 0.6697 + }, + { + "start": 1153.96, + "end": 1155.57, + "probability": 0.9868 + }, + { + "start": 1156.84, + "end": 1160.68, + "probability": 0.9988 + }, + { + "start": 1160.68, + "end": 1163.52, + "probability": 0.7588 + }, + { + "start": 1163.9, + "end": 1169.64, + "probability": 0.9531 + }, + { + "start": 1171.12, + "end": 1173.68, + "probability": 0.9889 + }, + { + "start": 1174.2, + "end": 1177.28, + "probability": 0.8848 + }, + { + "start": 1177.86, + "end": 1181.46, + "probability": 0.9918 + }, + { + "start": 1181.54, + "end": 1181.96, + "probability": 0.5054 + }, + { + "start": 1182.7, + "end": 1184.94, + "probability": 0.8794 + }, + { + "start": 1185.04, + "end": 1187.96, + "probability": 0.9867 + }, + { + "start": 1188.2, + "end": 1189.48, + "probability": 0.9733 + }, + { + "start": 1189.88, + "end": 1192.6, + "probability": 0.9727 + }, + { + "start": 1192.6, + "end": 1193.81, + "probability": 0.4914 + }, + { + "start": 1194.32, + "end": 1196.93, + "probability": 0.98 + }, + { + "start": 1198.14, + "end": 1202.52, + "probability": 0.9797 + }, + { + "start": 1203.36, + "end": 1205.06, + "probability": 0.9814 + }, + { + "start": 1205.42, + "end": 1207.76, + "probability": 0.9697 + }, + { + "start": 1208.8, + "end": 1211.92, + "probability": 0.729 + }, + { + "start": 1212.18, + "end": 1213.2, + "probability": 0.9327 + }, + { + "start": 1213.68, + "end": 1215.66, + "probability": 0.9 + }, + { + "start": 1216.22, + "end": 1216.78, + "probability": 0.9199 + }, + { + "start": 1217.02, + "end": 1217.3, + "probability": 0.5507 + }, + { + "start": 1217.38, + "end": 1220.34, + "probability": 0.9658 + }, + { + "start": 1220.48, + "end": 1220.76, + "probability": 0.7783 + }, + { + "start": 1220.98, + "end": 1221.64, + "probability": 0.6391 + }, + { + "start": 1222.26, + "end": 1224.02, + "probability": 0.7286 + }, + { + "start": 1224.74, + "end": 1225.64, + "probability": 0.3792 + }, + { + "start": 1225.94, + "end": 1227.78, + "probability": 0.9743 + }, + { + "start": 1228.28, + "end": 1230.04, + "probability": 0.3034 + }, + { + "start": 1230.32, + "end": 1231.38, + "probability": 0.1761 + }, + { + "start": 1232.06, + "end": 1234.13, + "probability": 0.7995 + }, + { + "start": 1235.42, + "end": 1238.34, + "probability": 0.8295 + }, + { + "start": 1239.04, + "end": 1241.16, + "probability": 0.7685 + }, + { + "start": 1241.26, + "end": 1242.48, + "probability": 0.812 + }, + { + "start": 1244.14, + "end": 1247.8, + "probability": 0.8157 + }, + { + "start": 1248.5, + "end": 1248.72, + "probability": 0.4155 + }, + { + "start": 1249.08, + "end": 1251.22, + "probability": 0.9815 + }, + { + "start": 1251.86, + "end": 1252.5, + "probability": 0.6919 + }, + { + "start": 1253.5, + "end": 1253.94, + "probability": 0.4605 + }, + { + "start": 1254.08, + "end": 1255.28, + "probability": 0.8706 + }, + { + "start": 1255.76, + "end": 1258.14, + "probability": 0.9875 + }, + { + "start": 1259.38, + "end": 1261.4, + "probability": 0.594 + }, + { + "start": 1262.72, + "end": 1263.77, + "probability": 0.7007 + }, + { + "start": 1263.82, + "end": 1264.84, + "probability": 0.8237 + }, + { + "start": 1265.52, + "end": 1267.0, + "probability": 0.7269 + }, + { + "start": 1269.42, + "end": 1269.94, + "probability": 0.669 + }, + { + "start": 1270.44, + "end": 1271.64, + "probability": 0.7696 + }, + { + "start": 1272.88, + "end": 1274.88, + "probability": 0.7376 + }, + { + "start": 1276.88, + "end": 1278.08, + "probability": 0.6718 + }, + { + "start": 1279.14, + "end": 1280.96, + "probability": 0.9672 + }, + { + "start": 1282.82, + "end": 1284.2, + "probability": 0.9745 + }, + { + "start": 1285.56, + "end": 1287.14, + "probability": 0.9891 + }, + { + "start": 1287.24, + "end": 1288.6, + "probability": 0.9266 + }, + { + "start": 1289.0, + "end": 1290.24, + "probability": 0.9506 + }, + { + "start": 1290.46, + "end": 1292.2, + "probability": 0.6893 + }, + { + "start": 1292.66, + "end": 1292.78, + "probability": 0.8384 + }, + { + "start": 1293.36, + "end": 1297.1, + "probability": 0.9941 + }, + { + "start": 1297.58, + "end": 1299.48, + "probability": 0.9222 + }, + { + "start": 1299.86, + "end": 1303.26, + "probability": 0.8298 + }, + { + "start": 1304.26, + "end": 1307.6, + "probability": 0.917 + }, + { + "start": 1308.4, + "end": 1308.98, + "probability": 0.4354 + }, + { + "start": 1309.98, + "end": 1314.9, + "probability": 0.9943 + }, + { + "start": 1315.5, + "end": 1317.3, + "probability": 0.9952 + }, + { + "start": 1317.8, + "end": 1319.12, + "probability": 0.8324 + }, + { + "start": 1319.3, + "end": 1323.16, + "probability": 0.6039 + }, + { + "start": 1323.56, + "end": 1324.76, + "probability": 0.6349 + }, + { + "start": 1325.0, + "end": 1325.46, + "probability": 0.8126 + }, + { + "start": 1325.62, + "end": 1326.68, + "probability": 0.9218 + }, + { + "start": 1327.18, + "end": 1328.5, + "probability": 0.9474 + }, + { + "start": 1328.6, + "end": 1329.04, + "probability": 0.9298 + }, + { + "start": 1329.18, + "end": 1335.32, + "probability": 0.9318 + }, + { + "start": 1335.74, + "end": 1336.94, + "probability": 0.5368 + }, + { + "start": 1337.8, + "end": 1338.52, + "probability": 0.5616 + }, + { + "start": 1339.24, + "end": 1339.84, + "probability": 0.9067 + }, + { + "start": 1340.48, + "end": 1341.54, + "probability": 0.642 + }, + { + "start": 1342.38, + "end": 1344.54, + "probability": 0.747 + }, + { + "start": 1345.2, + "end": 1347.02, + "probability": 0.5815 + }, + { + "start": 1347.54, + "end": 1350.83, + "probability": 0.8684 + }, + { + "start": 1351.86, + "end": 1352.46, + "probability": 0.9573 + }, + { + "start": 1353.24, + "end": 1354.46, + "probability": 0.9666 + }, + { + "start": 1354.96, + "end": 1357.64, + "probability": 0.9246 + }, + { + "start": 1357.86, + "end": 1358.82, + "probability": 0.9446 + }, + { + "start": 1359.72, + "end": 1360.24, + "probability": 0.6475 + }, + { + "start": 1360.28, + "end": 1363.02, + "probability": 0.9731 + }, + { + "start": 1364.12, + "end": 1365.12, + "probability": 0.9604 + }, + { + "start": 1365.26, + "end": 1368.58, + "probability": 0.9824 + }, + { + "start": 1368.58, + "end": 1370.84, + "probability": 0.6179 + }, + { + "start": 1371.36, + "end": 1373.74, + "probability": 0.8732 + }, + { + "start": 1374.16, + "end": 1374.98, + "probability": 0.7362 + }, + { + "start": 1375.04, + "end": 1376.0, + "probability": 0.8017 + }, + { + "start": 1376.32, + "end": 1378.42, + "probability": 0.9811 + }, + { + "start": 1378.98, + "end": 1381.1, + "probability": 0.9983 + }, + { + "start": 1381.74, + "end": 1386.76, + "probability": 0.9952 + }, + { + "start": 1386.76, + "end": 1391.04, + "probability": 0.9512 + }, + { + "start": 1391.12, + "end": 1392.08, + "probability": 0.7743 + }, + { + "start": 1392.56, + "end": 1393.5, + "probability": 0.8047 + }, + { + "start": 1393.62, + "end": 1394.81, + "probability": 0.0331 + }, + { + "start": 1395.46, + "end": 1396.61, + "probability": 0.9917 + }, + { + "start": 1396.76, + "end": 1397.31, + "probability": 0.8286 + }, + { + "start": 1397.92, + "end": 1399.56, + "probability": 0.7426 + }, + { + "start": 1399.84, + "end": 1401.56, + "probability": 0.9961 + }, + { + "start": 1401.94, + "end": 1402.82, + "probability": 0.9684 + }, + { + "start": 1403.92, + "end": 1405.88, + "probability": 0.7276 + }, + { + "start": 1406.78, + "end": 1408.12, + "probability": 0.959 + }, + { + "start": 1409.28, + "end": 1416.42, + "probability": 0.9935 + }, + { + "start": 1417.38, + "end": 1421.32, + "probability": 0.9978 + }, + { + "start": 1421.9, + "end": 1424.98, + "probability": 0.9927 + }, + { + "start": 1426.0, + "end": 1427.06, + "probability": 0.8727 + }, + { + "start": 1427.4, + "end": 1429.08, + "probability": 0.7911 + }, + { + "start": 1429.38, + "end": 1430.4, + "probability": 0.6288 + }, + { + "start": 1431.16, + "end": 1432.64, + "probability": 0.9958 + }, + { + "start": 1433.24, + "end": 1435.4, + "probability": 0.9702 + }, + { + "start": 1436.02, + "end": 1440.66, + "probability": 0.9733 + }, + { + "start": 1441.24, + "end": 1443.4, + "probability": 0.8801 + }, + { + "start": 1444.14, + "end": 1447.14, + "probability": 0.7505 + }, + { + "start": 1447.92, + "end": 1448.49, + "probability": 0.7681 + }, + { + "start": 1449.0, + "end": 1450.5, + "probability": 0.9566 + }, + { + "start": 1450.86, + "end": 1454.4, + "probability": 0.9299 + }, + { + "start": 1454.96, + "end": 1456.6, + "probability": 0.6671 + }, + { + "start": 1457.42, + "end": 1460.82, + "probability": 0.9412 + }, + { + "start": 1461.44, + "end": 1462.22, + "probability": 0.9108 + }, + { + "start": 1463.18, + "end": 1465.54, + "probability": 0.9586 + }, + { + "start": 1466.16, + "end": 1468.22, + "probability": 0.9277 + }, + { + "start": 1468.66, + "end": 1472.56, + "probability": 0.7947 + }, + { + "start": 1472.56, + "end": 1473.36, + "probability": 0.5954 + }, + { + "start": 1473.66, + "end": 1474.32, + "probability": 0.5796 + }, + { + "start": 1474.44, + "end": 1476.1, + "probability": 0.5758 + }, + { + "start": 1476.42, + "end": 1477.72, + "probability": 0.9296 + }, + { + "start": 1478.96, + "end": 1481.76, + "probability": 0.9748 + }, + { + "start": 1482.08, + "end": 1483.98, + "probability": 0.9972 + }, + { + "start": 1484.54, + "end": 1487.0, + "probability": 0.8673 + }, + { + "start": 1487.04, + "end": 1489.1, + "probability": 0.9829 + }, + { + "start": 1490.1, + "end": 1491.98, + "probability": 0.8908 + }, + { + "start": 1492.54, + "end": 1493.32, + "probability": 0.9388 + }, + { + "start": 1494.16, + "end": 1498.42, + "probability": 0.6218 + }, + { + "start": 1499.1, + "end": 1500.54, + "probability": 0.9989 + }, + { + "start": 1500.96, + "end": 1503.72, + "probability": 0.9023 + }, + { + "start": 1504.06, + "end": 1504.7, + "probability": 0.8772 + }, + { + "start": 1506.2, + "end": 1509.3, + "probability": 0.6987 + }, + { + "start": 1509.76, + "end": 1515.56, + "probability": 0.936 + }, + { + "start": 1515.86, + "end": 1517.3, + "probability": 0.9502 + }, + { + "start": 1518.1, + "end": 1521.1, + "probability": 0.894 + }, + { + "start": 1521.36, + "end": 1526.46, + "probability": 0.9697 + }, + { + "start": 1526.78, + "end": 1529.74, + "probability": 0.8945 + }, + { + "start": 1529.78, + "end": 1531.6, + "probability": 0.7491 + }, + { + "start": 1531.72, + "end": 1536.0, + "probability": 0.833 + }, + { + "start": 1536.26, + "end": 1537.26, + "probability": 0.9692 + }, + { + "start": 1538.14, + "end": 1539.04, + "probability": 0.9591 + }, + { + "start": 1539.2, + "end": 1541.4, + "probability": 0.9463 + }, + { + "start": 1542.36, + "end": 1544.52, + "probability": 0.9857 + }, + { + "start": 1544.8, + "end": 1547.74, + "probability": 0.686 + }, + { + "start": 1548.26, + "end": 1553.68, + "probability": 0.9771 + }, + { + "start": 1554.44, + "end": 1555.98, + "probability": 0.6781 + }, + { + "start": 1556.58, + "end": 1560.08, + "probability": 0.9733 + }, + { + "start": 1560.92, + "end": 1561.36, + "probability": 0.9796 + }, + { + "start": 1562.24, + "end": 1562.92, + "probability": 0.7685 + }, + { + "start": 1563.5, + "end": 1565.32, + "probability": 0.8525 + }, + { + "start": 1566.06, + "end": 1567.61, + "probability": 0.9355 + }, + { + "start": 1568.1, + "end": 1570.18, + "probability": 0.7568 + }, + { + "start": 1570.3, + "end": 1572.3, + "probability": 0.8166 + }, + { + "start": 1572.46, + "end": 1573.18, + "probability": 0.8431 + }, + { + "start": 1573.72, + "end": 1575.34, + "probability": 0.949 + }, + { + "start": 1576.04, + "end": 1578.84, + "probability": 0.9524 + }, + { + "start": 1579.24, + "end": 1579.88, + "probability": 0.6142 + }, + { + "start": 1579.96, + "end": 1580.14, + "probability": 0.7761 + }, + { + "start": 1580.6, + "end": 1583.78, + "probability": 0.9843 + }, + { + "start": 1584.5, + "end": 1586.06, + "probability": 0.7755 + }, + { + "start": 1586.58, + "end": 1588.56, + "probability": 0.8457 + }, + { + "start": 1589.38, + "end": 1592.24, + "probability": 0.9658 + }, + { + "start": 1592.24, + "end": 1595.02, + "probability": 0.9401 + }, + { + "start": 1595.1, + "end": 1596.82, + "probability": 0.9065 + }, + { + "start": 1599.2, + "end": 1604.52, + "probability": 0.9987 + }, + { + "start": 1605.04, + "end": 1606.32, + "probability": 0.9685 + }, + { + "start": 1607.2, + "end": 1611.02, + "probability": 0.8915 + }, + { + "start": 1611.74, + "end": 1612.78, + "probability": 0.9631 + }, + { + "start": 1614.18, + "end": 1616.5, + "probability": 0.7204 + }, + { + "start": 1617.04, + "end": 1619.76, + "probability": 0.7581 + }, + { + "start": 1619.76, + "end": 1623.18, + "probability": 0.9912 + }, + { + "start": 1623.72, + "end": 1624.74, + "probability": 0.7417 + }, + { + "start": 1625.12, + "end": 1626.72, + "probability": 0.8457 + }, + { + "start": 1627.1, + "end": 1628.01, + "probability": 0.8716 + }, + { + "start": 1629.12, + "end": 1629.78, + "probability": 0.692 + }, + { + "start": 1630.48, + "end": 1631.94, + "probability": 0.9523 + }, + { + "start": 1632.32, + "end": 1634.58, + "probability": 0.9082 + }, + { + "start": 1634.9, + "end": 1636.6, + "probability": 0.9754 + }, + { + "start": 1636.9, + "end": 1638.3, + "probability": 0.9819 + }, + { + "start": 1638.3, + "end": 1639.34, + "probability": 0.6714 + }, + { + "start": 1639.38, + "end": 1640.38, + "probability": 0.978 + }, + { + "start": 1641.04, + "end": 1642.32, + "probability": 0.926 + }, + { + "start": 1642.7, + "end": 1644.22, + "probability": 0.7915 + }, + { + "start": 1644.56, + "end": 1646.22, + "probability": 0.9832 + }, + { + "start": 1648.08, + "end": 1650.22, + "probability": 0.896 + }, + { + "start": 1650.4, + "end": 1652.58, + "probability": 0.9176 + }, + { + "start": 1653.38, + "end": 1654.46, + "probability": 0.8575 + }, + { + "start": 1656.36, + "end": 1659.24, + "probability": 0.7682 + }, + { + "start": 1660.1, + "end": 1662.16, + "probability": 0.92 + }, + { + "start": 1662.42, + "end": 1664.64, + "probability": 0.9679 + }, + { + "start": 1665.0, + "end": 1666.54, + "probability": 0.9808 + }, + { + "start": 1666.74, + "end": 1667.4, + "probability": 0.8416 + }, + { + "start": 1667.86, + "end": 1671.2, + "probability": 0.9831 + }, + { + "start": 1672.04, + "end": 1672.92, + "probability": 0.6354 + }, + { + "start": 1673.58, + "end": 1675.46, + "probability": 0.8185 + }, + { + "start": 1675.54, + "end": 1680.12, + "probability": 0.6865 + }, + { + "start": 1681.4, + "end": 1682.14, + "probability": 0.6031 + }, + { + "start": 1682.48, + "end": 1683.6, + "probability": 0.5509 + }, + { + "start": 1683.66, + "end": 1684.14, + "probability": 0.5625 + }, + { + "start": 1685.12, + "end": 1686.12, + "probability": 0.8131 + }, + { + "start": 1686.9, + "end": 1688.0, + "probability": 0.9204 + }, + { + "start": 1688.38, + "end": 1689.96, + "probability": 0.6038 + }, + { + "start": 1690.02, + "end": 1691.88, + "probability": 0.6663 + }, + { + "start": 1692.48, + "end": 1694.36, + "probability": 0.7957 + }, + { + "start": 1695.32, + "end": 1696.96, + "probability": 0.3413 + }, + { + "start": 1697.24, + "end": 1697.68, + "probability": 0.3405 + }, + { + "start": 1697.84, + "end": 1698.26, + "probability": 0.6893 + }, + { + "start": 1698.96, + "end": 1702.8, + "probability": 0.9568 + }, + { + "start": 1703.1, + "end": 1705.24, + "probability": 0.8219 + }, + { + "start": 1705.24, + "end": 1706.4, + "probability": 0.6164 + }, + { + "start": 1707.1, + "end": 1707.14, + "probability": 0.4243 + }, + { + "start": 1707.14, + "end": 1708.06, + "probability": 0.7638 + }, + { + "start": 1708.52, + "end": 1708.98, + "probability": 0.758 + }, + { + "start": 1709.1, + "end": 1709.68, + "probability": 0.969 + }, + { + "start": 1710.5, + "end": 1711.66, + "probability": 0.9651 + }, + { + "start": 1712.52, + "end": 1713.16, + "probability": 0.0153 + }, + { + "start": 1714.78, + "end": 1717.24, + "probability": 0.0824 + }, + { + "start": 1717.56, + "end": 1718.78, + "probability": 0.8457 + }, + { + "start": 1719.1, + "end": 1719.42, + "probability": 0.6674 + }, + { + "start": 1720.58, + "end": 1726.94, + "probability": 0.9974 + }, + { + "start": 1727.62, + "end": 1730.22, + "probability": 0.9149 + }, + { + "start": 1730.34, + "end": 1730.88, + "probability": 0.7781 + }, + { + "start": 1730.94, + "end": 1731.64, + "probability": 0.798 + }, + { + "start": 1731.74, + "end": 1737.46, + "probability": 0.8808 + }, + { + "start": 1738.46, + "end": 1739.7, + "probability": 0.9594 + }, + { + "start": 1739.88, + "end": 1740.86, + "probability": 0.643 + }, + { + "start": 1741.26, + "end": 1743.02, + "probability": 0.8558 + }, + { + "start": 1743.78, + "end": 1745.7, + "probability": 0.7233 + }, + { + "start": 1746.1, + "end": 1747.42, + "probability": 0.2668 + }, + { + "start": 1747.82, + "end": 1750.0, + "probability": 0.9458 + }, + { + "start": 1750.24, + "end": 1751.16, + "probability": 0.9434 + }, + { + "start": 1752.38, + "end": 1753.3, + "probability": 0.9934 + }, + { + "start": 1753.44, + "end": 1754.3, + "probability": 0.8575 + }, + { + "start": 1754.78, + "end": 1756.16, + "probability": 0.7158 + }, + { + "start": 1756.66, + "end": 1762.66, + "probability": 0.9968 + }, + { + "start": 1763.94, + "end": 1766.08, + "probability": 0.9804 + }, + { + "start": 1766.92, + "end": 1767.46, + "probability": 0.7937 + }, + { + "start": 1767.64, + "end": 1768.7, + "probability": 0.5561 + }, + { + "start": 1768.9, + "end": 1770.14, + "probability": 0.9868 + }, + { + "start": 1770.98, + "end": 1771.64, + "probability": 0.9587 + }, + { + "start": 1772.51, + "end": 1774.92, + "probability": 0.8941 + }, + { + "start": 1776.12, + "end": 1778.18, + "probability": 0.9847 + }, + { + "start": 1779.14, + "end": 1779.74, + "probability": 0.7626 + }, + { + "start": 1780.26, + "end": 1781.6, + "probability": 0.9124 + }, + { + "start": 1782.08, + "end": 1784.26, + "probability": 0.9213 + }, + { + "start": 1785.12, + "end": 1786.38, + "probability": 0.8847 + }, + { + "start": 1787.06, + "end": 1788.24, + "probability": 0.9673 + }, + { + "start": 1788.42, + "end": 1789.32, + "probability": 0.9836 + }, + { + "start": 1790.18, + "end": 1790.98, + "probability": 0.989 + }, + { + "start": 1791.62, + "end": 1793.62, + "probability": 0.9897 + }, + { + "start": 1794.64, + "end": 1796.8, + "probability": 0.9559 + }, + { + "start": 1797.92, + "end": 1798.64, + "probability": 0.9324 + }, + { + "start": 1799.5, + "end": 1804.2, + "probability": 0.9041 + }, + { + "start": 1805.22, + "end": 1806.38, + "probability": 0.7565 + }, + { + "start": 1806.64, + "end": 1808.12, + "probability": 0.996 + }, + { + "start": 1808.52, + "end": 1808.96, + "probability": 0.7482 + }, + { + "start": 1809.02, + "end": 1809.5, + "probability": 0.9272 + }, + { + "start": 1809.58, + "end": 1811.2, + "probability": 0.9111 + }, + { + "start": 1811.58, + "end": 1812.56, + "probability": 0.9422 + }, + { + "start": 1813.18, + "end": 1813.82, + "probability": 0.9502 + }, + { + "start": 1814.7, + "end": 1817.46, + "probability": 0.9906 + }, + { + "start": 1818.4, + "end": 1819.8, + "probability": 0.992 + }, + { + "start": 1820.64, + "end": 1823.52, + "probability": 0.99 + }, + { + "start": 1823.56, + "end": 1824.34, + "probability": 0.8672 + }, + { + "start": 1824.5, + "end": 1825.42, + "probability": 0.6643 + }, + { + "start": 1825.74, + "end": 1826.63, + "probability": 0.6606 + }, + { + "start": 1827.86, + "end": 1829.02, + "probability": 0.7028 + }, + { + "start": 1830.04, + "end": 1831.82, + "probability": 0.9382 + }, + { + "start": 1831.88, + "end": 1834.48, + "probability": 0.9331 + }, + { + "start": 1834.82, + "end": 1836.94, + "probability": 0.8924 + }, + { + "start": 1837.52, + "end": 1838.32, + "probability": 0.7085 + }, + { + "start": 1839.0, + "end": 1840.74, + "probability": 0.8846 + }, + { + "start": 1842.08, + "end": 1843.98, + "probability": 0.9754 + }, + { + "start": 1844.56, + "end": 1848.2, + "probability": 0.9921 + }, + { + "start": 1848.66, + "end": 1853.14, + "probability": 0.9967 + }, + { + "start": 1853.92, + "end": 1855.5, + "probability": 0.9497 + }, + { + "start": 1856.24, + "end": 1856.76, + "probability": 0.2465 + }, + { + "start": 1856.82, + "end": 1857.2, + "probability": 0.9661 + }, + { + "start": 1857.22, + "end": 1861.26, + "probability": 0.8449 + }, + { + "start": 1861.8, + "end": 1864.74, + "probability": 0.859 + }, + { + "start": 1865.18, + "end": 1866.9, + "probability": 0.7751 + }, + { + "start": 1867.0, + "end": 1868.96, + "probability": 0.9178 + }, + { + "start": 1869.96, + "end": 1871.86, + "probability": 0.4795 + }, + { + "start": 1872.56, + "end": 1874.76, + "probability": 0.6564 + }, + { + "start": 1875.38, + "end": 1877.38, + "probability": 0.9704 + }, + { + "start": 1877.94, + "end": 1880.08, + "probability": 0.9744 + }, + { + "start": 1880.6, + "end": 1881.3, + "probability": 0.5014 + }, + { + "start": 1881.32, + "end": 1882.36, + "probability": 0.6305 + }, + { + "start": 1882.8, + "end": 1884.22, + "probability": 0.8138 + }, + { + "start": 1884.68, + "end": 1886.94, + "probability": 0.7653 + }, + { + "start": 1887.44, + "end": 1890.68, + "probability": 0.8233 + }, + { + "start": 1895.4, + "end": 1897.78, + "probability": 0.6255 + }, + { + "start": 1898.82, + "end": 1905.46, + "probability": 0.9456 + }, + { + "start": 1905.46, + "end": 1909.44, + "probability": 0.6883 + }, + { + "start": 1910.14, + "end": 1913.82, + "probability": 0.9777 + }, + { + "start": 1914.38, + "end": 1916.88, + "probability": 0.9813 + }, + { + "start": 1918.12, + "end": 1925.56, + "probability": 0.9626 + }, + { + "start": 1926.36, + "end": 1927.36, + "probability": 0.9301 + }, + { + "start": 1928.7, + "end": 1930.72, + "probability": 0.9861 + }, + { + "start": 1932.32, + "end": 1933.2, + "probability": 0.6936 + }, + { + "start": 1933.24, + "end": 1938.02, + "probability": 0.9038 + }, + { + "start": 1938.16, + "end": 1941.66, + "probability": 0.9771 + }, + { + "start": 1942.42, + "end": 1948.52, + "probability": 0.9982 + }, + { + "start": 1949.4, + "end": 1954.22, + "probability": 0.757 + }, + { + "start": 1954.9, + "end": 1957.7, + "probability": 0.8079 + }, + { + "start": 1958.72, + "end": 1959.8, + "probability": 0.7338 + }, + { + "start": 1960.42, + "end": 1963.62, + "probability": 0.9811 + }, + { + "start": 1965.8, + "end": 1966.26, + "probability": 0.8121 + }, + { + "start": 1967.02, + "end": 1969.54, + "probability": 0.9501 + }, + { + "start": 1970.24, + "end": 1971.08, + "probability": 0.9969 + }, + { + "start": 1971.6, + "end": 1976.82, + "probability": 0.9924 + }, + { + "start": 1978.46, + "end": 1979.3, + "probability": 0.7729 + }, + { + "start": 1979.84, + "end": 1981.52, + "probability": 0.9333 + }, + { + "start": 1982.34, + "end": 1984.98, + "probability": 0.9888 + }, + { + "start": 1986.42, + "end": 1986.7, + "probability": 0.7109 + }, + { + "start": 1987.46, + "end": 1989.45, + "probability": 0.9873 + }, + { + "start": 1990.22, + "end": 1992.46, + "probability": 0.7702 + }, + { + "start": 1993.4, + "end": 1995.22, + "probability": 0.6614 + }, + { + "start": 1995.74, + "end": 1996.88, + "probability": 0.9949 + }, + { + "start": 1997.12, + "end": 1997.72, + "probability": 0.4597 + }, + { + "start": 1998.14, + "end": 1999.78, + "probability": 0.9194 + }, + { + "start": 2000.3, + "end": 2004.7, + "probability": 0.8895 + }, + { + "start": 2005.53, + "end": 2007.2, + "probability": 0.5107 + }, + { + "start": 2008.32, + "end": 2008.39, + "probability": 0.21 + }, + { + "start": 2008.52, + "end": 2008.86, + "probability": 0.6153 + }, + { + "start": 2010.4, + "end": 2010.58, + "probability": 0.186 + }, + { + "start": 2010.6, + "end": 2011.36, + "probability": 0.5845 + }, + { + "start": 2011.44, + "end": 2013.64, + "probability": 0.6634 + }, + { + "start": 2014.14, + "end": 2015.52, + "probability": 0.8428 + }, + { + "start": 2016.3, + "end": 2017.8, + "probability": 0.908 + }, + { + "start": 2018.52, + "end": 2021.52, + "probability": 0.8002 + }, + { + "start": 2022.18, + "end": 2025.34, + "probability": 0.6319 + }, + { + "start": 2025.66, + "end": 2027.2, + "probability": 0.6529 + }, + { + "start": 2028.58, + "end": 2029.7, + "probability": 0.0325 + }, + { + "start": 2029.7, + "end": 2032.24, + "probability": 0.4689 + }, + { + "start": 2032.28, + "end": 2032.84, + "probability": 0.3765 + }, + { + "start": 2033.44, + "end": 2034.1, + "probability": 0.3107 + }, + { + "start": 2035.02, + "end": 2036.6, + "probability": 0.2666 + }, + { + "start": 2036.98, + "end": 2039.34, + "probability": 0.8421 + }, + { + "start": 2039.46, + "end": 2040.72, + "probability": 0.3753 + }, + { + "start": 2040.84, + "end": 2043.28, + "probability": 0.6193 + }, + { + "start": 2043.38, + "end": 2044.04, + "probability": 0.7966 + }, + { + "start": 2044.24, + "end": 2050.46, + "probability": 0.7552 + }, + { + "start": 2050.46, + "end": 2055.4, + "probability": 0.9574 + }, + { + "start": 2055.54, + "end": 2056.56, + "probability": 0.7063 + }, + { + "start": 2056.62, + "end": 2058.0, + "probability": 0.9509 + }, + { + "start": 2058.48, + "end": 2063.62, + "probability": 0.9262 + }, + { + "start": 2064.76, + "end": 2067.7, + "probability": 0.7677 + }, + { + "start": 2067.76, + "end": 2068.32, + "probability": 0.6621 + }, + { + "start": 2068.76, + "end": 2073.0, + "probability": 0.5944 + }, + { + "start": 2073.56, + "end": 2074.62, + "probability": 0.9507 + }, + { + "start": 2075.5, + "end": 2076.86, + "probability": 0.8866 + }, + { + "start": 2076.96, + "end": 2081.42, + "probability": 0.9786 + }, + { + "start": 2082.18, + "end": 2084.16, + "probability": 0.838 + }, + { + "start": 2084.68, + "end": 2087.12, + "probability": 0.8346 + }, + { + "start": 2087.96, + "end": 2089.32, + "probability": 0.9562 + }, + { + "start": 2090.42, + "end": 2093.02, + "probability": 0.5771 + }, + { + "start": 2093.94, + "end": 2094.94, + "probability": 0.7852 + }, + { + "start": 2095.54, + "end": 2099.28, + "probability": 0.7658 + }, + { + "start": 2099.88, + "end": 2100.96, + "probability": 0.7037 + }, + { + "start": 2101.82, + "end": 2104.18, + "probability": 0.7153 + }, + { + "start": 2104.72, + "end": 2106.4, + "probability": 0.7601 + }, + { + "start": 2107.24, + "end": 2108.42, + "probability": 0.7031 + }, + { + "start": 2108.48, + "end": 2109.04, + "probability": 0.9277 + }, + { + "start": 2109.5, + "end": 2112.12, + "probability": 0.8322 + }, + { + "start": 2112.52, + "end": 2113.22, + "probability": 0.9037 + }, + { + "start": 2113.94, + "end": 2120.1, + "probability": 0.7976 + }, + { + "start": 2120.26, + "end": 2121.06, + "probability": 0.7812 + }, + { + "start": 2121.36, + "end": 2122.7, + "probability": 0.8117 + }, + { + "start": 2122.88, + "end": 2124.06, + "probability": 0.4044 + }, + { + "start": 2124.46, + "end": 2126.84, + "probability": 0.8635 + }, + { + "start": 2127.44, + "end": 2135.32, + "probability": 0.9957 + }, + { + "start": 2135.66, + "end": 2136.1, + "probability": 0.9402 + }, + { + "start": 2136.7, + "end": 2137.46, + "probability": 0.7481 + }, + { + "start": 2137.76, + "end": 2144.0, + "probability": 0.9706 + }, + { + "start": 2144.28, + "end": 2146.52, + "probability": 0.9034 + }, + { + "start": 2146.9, + "end": 2148.7, + "probability": 0.9406 + }, + { + "start": 2148.88, + "end": 2149.44, + "probability": 0.8936 + }, + { + "start": 2150.44, + "end": 2151.22, + "probability": 0.3667 + }, + { + "start": 2151.72, + "end": 2152.82, + "probability": 0.7524 + }, + { + "start": 2153.3, + "end": 2155.54, + "probability": 0.9492 + }, + { + "start": 2155.84, + "end": 2157.36, + "probability": 0.9052 + }, + { + "start": 2157.94, + "end": 2164.66, + "probability": 0.9085 + }, + { + "start": 2164.82, + "end": 2166.44, + "probability": 0.4692 + }, + { + "start": 2167.18, + "end": 2171.8, + "probability": 0.9965 + }, + { + "start": 2172.28, + "end": 2175.54, + "probability": 0.6685 + }, + { + "start": 2176.24, + "end": 2180.18, + "probability": 0.9209 + }, + { + "start": 2180.52, + "end": 2181.36, + "probability": 0.847 + }, + { + "start": 2181.76, + "end": 2185.4, + "probability": 0.4755 + }, + { + "start": 2185.4, + "end": 2187.5, + "probability": 0.9317 + }, + { + "start": 2187.76, + "end": 2188.32, + "probability": 0.4339 + }, + { + "start": 2188.36, + "end": 2190.2, + "probability": 0.7971 + }, + { + "start": 2191.14, + "end": 2194.8, + "probability": 0.8399 + }, + { + "start": 2195.38, + "end": 2197.54, + "probability": 0.9896 + }, + { + "start": 2198.06, + "end": 2199.38, + "probability": 0.8234 + }, + { + "start": 2199.78, + "end": 2201.24, + "probability": 0.9645 + }, + { + "start": 2201.68, + "end": 2201.76, + "probability": 0.2719 + }, + { + "start": 2201.76, + "end": 2202.02, + "probability": 0.7828 + }, + { + "start": 2202.16, + "end": 2202.38, + "probability": 0.787 + }, + { + "start": 2203.04, + "end": 2207.54, + "probability": 0.8748 + }, + { + "start": 2209.28, + "end": 2210.08, + "probability": 0.2357 + }, + { + "start": 2210.84, + "end": 2212.22, + "probability": 0.4193 + }, + { + "start": 2213.48, + "end": 2215.76, + "probability": 0.7445 + }, + { + "start": 2216.12, + "end": 2216.6, + "probability": 0.5471 + }, + { + "start": 2217.0, + "end": 2219.42, + "probability": 0.8045 + }, + { + "start": 2219.42, + "end": 2219.68, + "probability": 0.2485 + }, + { + "start": 2222.18, + "end": 2225.86, + "probability": 0.7208 + }, + { + "start": 2227.28, + "end": 2232.74, + "probability": 0.9752 + }, + { + "start": 2233.36, + "end": 2234.64, + "probability": 0.9993 + }, + { + "start": 2235.9, + "end": 2237.32, + "probability": 0.3109 + }, + { + "start": 2238.32, + "end": 2239.88, + "probability": 0.91 + }, + { + "start": 2241.74, + "end": 2243.58, + "probability": 0.9756 + }, + { + "start": 2244.18, + "end": 2244.58, + "probability": 0.6917 + }, + { + "start": 2244.82, + "end": 2247.36, + "probability": 0.9973 + }, + { + "start": 2247.66, + "end": 2250.3, + "probability": 0.9922 + }, + { + "start": 2250.4, + "end": 2250.4, + "probability": 0.3467 + }, + { + "start": 2250.4, + "end": 2253.9, + "probability": 0.6215 + }, + { + "start": 2255.0, + "end": 2258.0, + "probability": 0.7806 + }, + { + "start": 2258.6, + "end": 2260.24, + "probability": 0.9943 + }, + { + "start": 2260.92, + "end": 2262.14, + "probability": 0.8804 + }, + { + "start": 2262.54, + "end": 2264.21, + "probability": 0.7871 + }, + { + "start": 2264.96, + "end": 2266.29, + "probability": 0.9166 + }, + { + "start": 2266.48, + "end": 2269.62, + "probability": 0.83 + }, + { + "start": 2269.78, + "end": 2270.85, + "probability": 0.4114 + }, + { + "start": 2271.18, + "end": 2272.94, + "probability": 0.8538 + }, + { + "start": 2274.38, + "end": 2277.06, + "probability": 0.9236 + }, + { + "start": 2277.78, + "end": 2279.92, + "probability": 0.9404 + }, + { + "start": 2280.54, + "end": 2281.42, + "probability": 0.9504 + }, + { + "start": 2282.36, + "end": 2283.94, + "probability": 0.8023 + }, + { + "start": 2284.06, + "end": 2285.36, + "probability": 0.978 + }, + { + "start": 2286.08, + "end": 2286.68, + "probability": 0.7484 + }, + { + "start": 2286.98, + "end": 2290.74, + "probability": 0.9399 + }, + { + "start": 2291.12, + "end": 2291.12, + "probability": 0.9395 + }, + { + "start": 2291.8, + "end": 2293.48, + "probability": 0.7582 + }, + { + "start": 2294.74, + "end": 2295.4, + "probability": 0.6061 + }, + { + "start": 2296.34, + "end": 2301.34, + "probability": 0.9581 + }, + { + "start": 2301.96, + "end": 2302.46, + "probability": 0.9721 + }, + { + "start": 2302.68, + "end": 2307.14, + "probability": 0.9906 + }, + { + "start": 2307.14, + "end": 2311.1, + "probability": 0.9956 + }, + { + "start": 2311.92, + "end": 2313.9, + "probability": 0.9949 + }, + { + "start": 2314.64, + "end": 2317.08, + "probability": 0.8566 + }, + { + "start": 2317.2, + "end": 2317.96, + "probability": 0.5669 + }, + { + "start": 2318.6, + "end": 2319.44, + "probability": 0.8931 + }, + { + "start": 2320.0, + "end": 2322.0, + "probability": 0.9795 + }, + { + "start": 2322.48, + "end": 2327.52, + "probability": 0.9733 + }, + { + "start": 2328.06, + "end": 2330.72, + "probability": 0.953 + }, + { + "start": 2331.44, + "end": 2333.1, + "probability": 0.5349 + }, + { + "start": 2333.68, + "end": 2334.88, + "probability": 0.9697 + }, + { + "start": 2335.32, + "end": 2338.08, + "probability": 0.8452 + }, + { + "start": 2338.08, + "end": 2339.26, + "probability": 0.9691 + }, + { + "start": 2340.38, + "end": 2344.64, + "probability": 0.9873 + }, + { + "start": 2345.22, + "end": 2349.08, + "probability": 0.8599 + }, + { + "start": 2349.7, + "end": 2352.38, + "probability": 0.4893 + }, + { + "start": 2352.82, + "end": 2354.83, + "probability": 0.9739 + }, + { + "start": 2355.84, + "end": 2359.26, + "probability": 0.9705 + }, + { + "start": 2360.18, + "end": 2363.56, + "probability": 0.9341 + }, + { + "start": 2364.06, + "end": 2366.86, + "probability": 0.9821 + }, + { + "start": 2367.36, + "end": 2369.62, + "probability": 0.8726 + }, + { + "start": 2370.14, + "end": 2372.48, + "probability": 0.8201 + }, + { + "start": 2373.0, + "end": 2374.16, + "probability": 0.9263 + }, + { + "start": 2374.6, + "end": 2377.3, + "probability": 0.8892 + }, + { + "start": 2377.76, + "end": 2378.64, + "probability": 0.8134 + }, + { + "start": 2378.7, + "end": 2381.42, + "probability": 0.953 + }, + { + "start": 2381.92, + "end": 2385.14, + "probability": 0.7273 + }, + { + "start": 2385.3, + "end": 2386.86, + "probability": 0.7891 + }, + { + "start": 2387.22, + "end": 2389.14, + "probability": 0.9697 + }, + { + "start": 2389.24, + "end": 2389.58, + "probability": 0.7295 + }, + { + "start": 2390.32, + "end": 2390.86, + "probability": 0.9006 + }, + { + "start": 2391.52, + "end": 2392.1, + "probability": 0.502 + }, + { + "start": 2392.48, + "end": 2393.14, + "probability": 0.7838 + }, + { + "start": 2393.32, + "end": 2396.58, + "probability": 0.9889 + }, + { + "start": 2397.22, + "end": 2398.96, + "probability": 0.9884 + }, + { + "start": 2399.54, + "end": 2403.16, + "probability": 0.9613 + }, + { + "start": 2403.72, + "end": 2404.54, + "probability": 0.567 + }, + { + "start": 2404.78, + "end": 2409.14, + "probability": 0.947 + }, + { + "start": 2409.8, + "end": 2410.2, + "probability": 0.7268 + }, + { + "start": 2410.7, + "end": 2413.54, + "probability": 0.801 + }, + { + "start": 2415.74, + "end": 2419.2, + "probability": 0.9855 + }, + { + "start": 2419.76, + "end": 2420.08, + "probability": 0.8643 + }, + { + "start": 2420.82, + "end": 2422.56, + "probability": 0.876 + }, + { + "start": 2423.44, + "end": 2425.22, + "probability": 0.9168 + }, + { + "start": 2426.18, + "end": 2428.64, + "probability": 0.755 + }, + { + "start": 2429.54, + "end": 2432.5, + "probability": 0.9668 + }, + { + "start": 2432.64, + "end": 2433.32, + "probability": 0.8221 + }, + { + "start": 2434.04, + "end": 2437.94, + "probability": 0.9891 + }, + { + "start": 2438.62, + "end": 2440.26, + "probability": 0.998 + }, + { + "start": 2440.92, + "end": 2442.68, + "probability": 0.9954 + }, + { + "start": 2443.54, + "end": 2447.12, + "probability": 0.8879 + }, + { + "start": 2447.7, + "end": 2448.6, + "probability": 0.8103 + }, + { + "start": 2448.72, + "end": 2451.86, + "probability": 0.9917 + }, + { + "start": 2452.44, + "end": 2454.63, + "probability": 0.9927 + }, + { + "start": 2455.64, + "end": 2457.32, + "probability": 0.6391 + }, + { + "start": 2457.98, + "end": 2463.08, + "probability": 0.9839 + }, + { + "start": 2463.7, + "end": 2465.54, + "probability": 0.9858 + }, + { + "start": 2465.76, + "end": 2466.2, + "probability": 0.959 + }, + { + "start": 2466.62, + "end": 2467.42, + "probability": 0.922 + }, + { + "start": 2467.6, + "end": 2468.16, + "probability": 0.6276 + }, + { + "start": 2468.88, + "end": 2469.68, + "probability": 0.8682 + }, + { + "start": 2470.3, + "end": 2474.1, + "probability": 0.8754 + }, + { + "start": 2474.64, + "end": 2477.14, + "probability": 0.9641 + }, + { + "start": 2477.92, + "end": 2480.34, + "probability": 0.8455 + }, + { + "start": 2480.8, + "end": 2482.3, + "probability": 0.9841 + }, + { + "start": 2482.42, + "end": 2483.36, + "probability": 0.9375 + }, + { + "start": 2484.14, + "end": 2486.74, + "probability": 0.8664 + }, + { + "start": 2487.3, + "end": 2489.06, + "probability": 0.9987 + }, + { + "start": 2489.7, + "end": 2492.38, + "probability": 0.9977 + }, + { + "start": 2493.7, + "end": 2497.44, + "probability": 0.9785 + }, + { + "start": 2497.56, + "end": 2502.2, + "probability": 0.7883 + }, + { + "start": 2502.36, + "end": 2503.89, + "probability": 0.8088 + }, + { + "start": 2504.52, + "end": 2506.04, + "probability": 0.8301 + }, + { + "start": 2506.58, + "end": 2507.72, + "probability": 0.9945 + }, + { + "start": 2508.54, + "end": 2510.04, + "probability": 0.9025 + }, + { + "start": 2510.4, + "end": 2512.26, + "probability": 0.9944 + }, + { + "start": 2513.14, + "end": 2516.44, + "probability": 0.9515 + }, + { + "start": 2517.02, + "end": 2520.3, + "probability": 0.9272 + }, + { + "start": 2520.3, + "end": 2524.14, + "probability": 0.9785 + }, + { + "start": 2524.9, + "end": 2528.06, + "probability": 0.994 + }, + { + "start": 2528.68, + "end": 2534.96, + "probability": 0.9812 + }, + { + "start": 2535.06, + "end": 2538.7, + "probability": 0.8118 + }, + { + "start": 2539.24, + "end": 2543.14, + "probability": 0.9579 + }, + { + "start": 2544.62, + "end": 2546.32, + "probability": 0.9429 + }, + { + "start": 2547.24, + "end": 2549.26, + "probability": 0.6836 + }, + { + "start": 2549.98, + "end": 2554.22, + "probability": 0.9823 + }, + { + "start": 2554.42, + "end": 2558.42, + "probability": 0.9951 + }, + { + "start": 2558.94, + "end": 2560.18, + "probability": 0.9992 + }, + { + "start": 2560.96, + "end": 2562.98, + "probability": 0.9772 + }, + { + "start": 2563.02, + "end": 2563.56, + "probability": 0.9252 + }, + { + "start": 2563.72, + "end": 2564.49, + "probability": 0.9653 + }, + { + "start": 2565.64, + "end": 2567.84, + "probability": 0.9971 + }, + { + "start": 2568.48, + "end": 2571.46, + "probability": 0.9706 + }, + { + "start": 2572.3, + "end": 2574.32, + "probability": 0.8747 + }, + { + "start": 2574.48, + "end": 2575.28, + "probability": 0.9569 + }, + { + "start": 2575.78, + "end": 2578.96, + "probability": 0.9827 + }, + { + "start": 2579.64, + "end": 2581.16, + "probability": 0.8445 + }, + { + "start": 2581.92, + "end": 2582.58, + "probability": 0.8893 + }, + { + "start": 2583.14, + "end": 2583.82, + "probability": 0.7278 + }, + { + "start": 2584.44, + "end": 2587.18, + "probability": 0.984 + }, + { + "start": 2587.32, + "end": 2591.5, + "probability": 0.9406 + }, + { + "start": 2591.62, + "end": 2592.22, + "probability": 0.986 + }, + { + "start": 2592.6, + "end": 2599.82, + "probability": 0.988 + }, + { + "start": 2599.98, + "end": 2603.14, + "probability": 0.9859 + }, + { + "start": 2604.0, + "end": 2606.1, + "probability": 0.8268 + }, + { + "start": 2607.08, + "end": 2610.58, + "probability": 0.8519 + }, + { + "start": 2611.64, + "end": 2615.88, + "probability": 0.9943 + }, + { + "start": 2616.18, + "end": 2619.0, + "probability": 0.9988 + }, + { + "start": 2619.56, + "end": 2619.56, + "probability": 0.1638 + }, + { + "start": 2619.56, + "end": 2622.18, + "probability": 0.9883 + }, + { + "start": 2622.46, + "end": 2623.02, + "probability": 0.8594 + }, + { + "start": 2623.58, + "end": 2624.56, + "probability": 0.8428 + }, + { + "start": 2624.62, + "end": 2627.34, + "probability": 0.9916 + }, + { + "start": 2628.8, + "end": 2630.3, + "probability": 0.7477 + }, + { + "start": 2630.54, + "end": 2632.62, + "probability": 0.9406 + }, + { + "start": 2632.84, + "end": 2633.44, + "probability": 0.4503 + }, + { + "start": 2634.2, + "end": 2635.56, + "probability": 0.8948 + }, + { + "start": 2635.7, + "end": 2637.04, + "probability": 0.9257 + }, + { + "start": 2637.52, + "end": 2639.66, + "probability": 0.9769 + }, + { + "start": 2639.74, + "end": 2640.28, + "probability": 0.7827 + }, + { + "start": 2640.38, + "end": 2642.74, + "probability": 0.9746 + }, + { + "start": 2642.86, + "end": 2643.52, + "probability": 0.4592 + }, + { + "start": 2643.62, + "end": 2644.44, + "probability": 0.8075 + }, + { + "start": 2644.96, + "end": 2646.76, + "probability": 0.8318 + }, + { + "start": 2647.02, + "end": 2647.98, + "probability": 0.8159 + }, + { + "start": 2648.28, + "end": 2648.74, + "probability": 0.9745 + }, + { + "start": 2649.38, + "end": 2651.08, + "probability": 0.8703 + }, + { + "start": 2651.7, + "end": 2653.1, + "probability": 0.8501 + }, + { + "start": 2653.84, + "end": 2656.46, + "probability": 0.9704 + }, + { + "start": 2656.6, + "end": 2660.72, + "probability": 0.818 + }, + { + "start": 2661.36, + "end": 2664.82, + "probability": 0.9891 + }, + { + "start": 2665.16, + "end": 2665.32, + "probability": 0.725 + }, + { + "start": 2665.8, + "end": 2668.38, + "probability": 0.9397 + }, + { + "start": 2668.84, + "end": 2670.42, + "probability": 0.3982 + }, + { + "start": 2670.97, + "end": 2673.7, + "probability": 0.8301 + }, + { + "start": 2685.44, + "end": 2686.12, + "probability": 0.5183 + }, + { + "start": 2686.38, + "end": 2688.6, + "probability": 0.8318 + }, + { + "start": 2688.82, + "end": 2690.66, + "probability": 0.921 + }, + { + "start": 2690.76, + "end": 2691.96, + "probability": 0.7 + }, + { + "start": 2693.42, + "end": 2696.52, + "probability": 0.9305 + }, + { + "start": 2698.7, + "end": 2700.5, + "probability": 0.8337 + }, + { + "start": 2702.54, + "end": 2703.36, + "probability": 0.9208 + }, + { + "start": 2703.64, + "end": 2705.46, + "probability": 0.8679 + }, + { + "start": 2705.52, + "end": 2707.42, + "probability": 0.9868 + }, + { + "start": 2709.12, + "end": 2712.52, + "probability": 0.6393 + }, + { + "start": 2713.36, + "end": 2714.84, + "probability": 0.6305 + }, + { + "start": 2715.48, + "end": 2716.78, + "probability": 0.67 + }, + { + "start": 2716.92, + "end": 2720.58, + "probability": 0.9565 + }, + { + "start": 2720.68, + "end": 2722.06, + "probability": 0.6885 + }, + { + "start": 2722.86, + "end": 2723.0, + "probability": 0.3999 + }, + { + "start": 2723.0, + "end": 2725.56, + "probability": 0.5537 + }, + { + "start": 2726.12, + "end": 2726.12, + "probability": 0.2686 + }, + { + "start": 2727.58, + "end": 2728.94, + "probability": 0.6888 + }, + { + "start": 2729.12, + "end": 2731.15, + "probability": 0.859 + }, + { + "start": 2731.36, + "end": 2733.34, + "probability": 0.9382 + }, + { + "start": 2733.92, + "end": 2734.42, + "probability": 0.9288 + }, + { + "start": 2735.36, + "end": 2736.26, + "probability": 0.7224 + }, + { + "start": 2736.26, + "end": 2736.47, + "probability": 0.2976 + }, + { + "start": 2737.32, + "end": 2738.68, + "probability": 0.7156 + }, + { + "start": 2739.36, + "end": 2743.1, + "probability": 0.7159 + }, + { + "start": 2743.18, + "end": 2743.84, + "probability": 0.3124 + }, + { + "start": 2743.94, + "end": 2744.98, + "probability": 0.7956 + }, + { + "start": 2745.32, + "end": 2745.66, + "probability": 0.8846 + }, + { + "start": 2746.22, + "end": 2748.18, + "probability": 0.9419 + }, + { + "start": 2749.78, + "end": 2753.48, + "probability": 0.7066 + }, + { + "start": 2754.88, + "end": 2757.76, + "probability": 0.9953 + }, + { + "start": 2757.98, + "end": 2759.13, + "probability": 0.8291 + }, + { + "start": 2760.24, + "end": 2765.18, + "probability": 0.9308 + }, + { + "start": 2765.68, + "end": 2768.78, + "probability": 0.9386 + }, + { + "start": 2768.94, + "end": 2771.74, + "probability": 0.7093 + }, + { + "start": 2771.96, + "end": 2772.68, + "probability": 0.3914 + }, + { + "start": 2772.82, + "end": 2775.78, + "probability": 0.8804 + }, + { + "start": 2776.26, + "end": 2777.05, + "probability": 0.9676 + }, + { + "start": 2777.8, + "end": 2780.58, + "probability": 0.8 + }, + { + "start": 2780.76, + "end": 2782.34, + "probability": 0.8804 + }, + { + "start": 2783.3, + "end": 2785.32, + "probability": 0.979 + }, + { + "start": 2786.02, + "end": 2787.06, + "probability": 0.3958 + }, + { + "start": 2788.0, + "end": 2789.14, + "probability": 0.8111 + }, + { + "start": 2789.24, + "end": 2790.02, + "probability": 0.8129 + }, + { + "start": 2790.32, + "end": 2797.88, + "probability": 0.6671 + }, + { + "start": 2797.94, + "end": 2798.7, + "probability": 0.8707 + }, + { + "start": 2798.88, + "end": 2800.29, + "probability": 0.9941 + }, + { + "start": 2800.74, + "end": 2802.82, + "probability": 0.9139 + }, + { + "start": 2804.04, + "end": 2805.14, + "probability": 0.949 + }, + { + "start": 2805.42, + "end": 2808.84, + "probability": 0.9631 + }, + { + "start": 2808.94, + "end": 2809.58, + "probability": 0.6551 + }, + { + "start": 2811.24, + "end": 2812.84, + "probability": 0.8579 + }, + { + "start": 2815.32, + "end": 2818.72, + "probability": 0.6769 + }, + { + "start": 2819.28, + "end": 2821.72, + "probability": 0.7768 + }, + { + "start": 2823.58, + "end": 2825.7, + "probability": 0.8233 + }, + { + "start": 2826.38, + "end": 2827.2, + "probability": 0.527 + }, + { + "start": 2827.36, + "end": 2834.32, + "probability": 0.978 + }, + { + "start": 2835.64, + "end": 2838.92, + "probability": 0.9924 + }, + { + "start": 2838.92, + "end": 2845.02, + "probability": 0.6761 + }, + { + "start": 2845.14, + "end": 2846.0, + "probability": 0.7273 + }, + { + "start": 2846.18, + "end": 2849.14, + "probability": 0.7465 + }, + { + "start": 2850.08, + "end": 2852.06, + "probability": 0.6348 + }, + { + "start": 2852.92, + "end": 2855.4, + "probability": 0.7344 + }, + { + "start": 2856.7, + "end": 2859.58, + "probability": 0.8194 + }, + { + "start": 2860.02, + "end": 2860.26, + "probability": 0.8607 + }, + { + "start": 2860.72, + "end": 2864.88, + "probability": 0.8265 + }, + { + "start": 2865.02, + "end": 2866.32, + "probability": 0.9668 + }, + { + "start": 2867.16, + "end": 2867.58, + "probability": 0.4471 + }, + { + "start": 2868.14, + "end": 2869.98, + "probability": 0.8254 + }, + { + "start": 2870.42, + "end": 2871.24, + "probability": 0.8026 + }, + { + "start": 2871.32, + "end": 2872.2, + "probability": 0.6641 + }, + { + "start": 2872.52, + "end": 2874.94, + "probability": 0.9586 + }, + { + "start": 2876.18, + "end": 2877.98, + "probability": 0.6859 + }, + { + "start": 2878.06, + "end": 2878.94, + "probability": 0.8411 + }, + { + "start": 2879.68, + "end": 2882.0, + "probability": 0.7001 + }, + { + "start": 2883.76, + "end": 2883.98, + "probability": 0.2933 + }, + { + "start": 2884.12, + "end": 2884.84, + "probability": 0.635 + }, + { + "start": 2885.04, + "end": 2885.66, + "probability": 0.8658 + }, + { + "start": 2885.92, + "end": 2886.94, + "probability": 0.922 + }, + { + "start": 2887.16, + "end": 2888.02, + "probability": 0.9773 + }, + { + "start": 2889.72, + "end": 2894.88, + "probability": 0.9454 + }, + { + "start": 2895.68, + "end": 2900.9, + "probability": 0.9961 + }, + { + "start": 2901.72, + "end": 2905.52, + "probability": 0.9915 + }, + { + "start": 2906.72, + "end": 2910.72, + "probability": 0.927 + }, + { + "start": 2911.26, + "end": 2914.28, + "probability": 0.8447 + }, + { + "start": 2915.02, + "end": 2917.64, + "probability": 0.8296 + }, + { + "start": 2918.54, + "end": 2921.38, + "probability": 0.7923 + }, + { + "start": 2922.16, + "end": 2927.58, + "probability": 0.9941 + }, + { + "start": 2928.36, + "end": 2933.68, + "probability": 0.9668 + }, + { + "start": 2934.32, + "end": 2939.28, + "probability": 0.9867 + }, + { + "start": 2939.28, + "end": 2944.24, + "probability": 0.9991 + }, + { + "start": 2944.76, + "end": 2946.32, + "probability": 0.7651 + }, + { + "start": 2947.06, + "end": 2947.98, + "probability": 0.978 + }, + { + "start": 2949.32, + "end": 2954.06, + "probability": 0.9979 + }, + { + "start": 2954.06, + "end": 2957.72, + "probability": 0.9976 + }, + { + "start": 2958.82, + "end": 2961.92, + "probability": 0.9421 + }, + { + "start": 2962.62, + "end": 2964.48, + "probability": 0.9986 + }, + { + "start": 2965.14, + "end": 2971.78, + "probability": 0.9979 + }, + { + "start": 2972.4, + "end": 2976.58, + "probability": 0.8614 + }, + { + "start": 2977.64, + "end": 2982.86, + "probability": 0.9963 + }, + { + "start": 2983.34, + "end": 2985.6, + "probability": 0.7195 + }, + { + "start": 2986.6, + "end": 2991.94, + "probability": 0.9922 + }, + { + "start": 2991.94, + "end": 2996.76, + "probability": 0.997 + }, + { + "start": 2996.76, + "end": 3001.74, + "probability": 0.9742 + }, + { + "start": 3002.96, + "end": 3007.52, + "probability": 0.8615 + }, + { + "start": 3008.68, + "end": 3012.74, + "probability": 0.8126 + }, + { + "start": 3013.72, + "end": 3019.04, + "probability": 0.9873 + }, + { + "start": 3019.74, + "end": 3022.76, + "probability": 0.8371 + }, + { + "start": 3023.6, + "end": 3024.92, + "probability": 0.582 + }, + { + "start": 3025.82, + "end": 3033.48, + "probability": 0.9945 + }, + { + "start": 3034.06, + "end": 3037.08, + "probability": 0.9665 + }, + { + "start": 3038.32, + "end": 3041.72, + "probability": 0.9963 + }, + { + "start": 3042.32, + "end": 3043.7, + "probability": 0.9603 + }, + { + "start": 3044.74, + "end": 3044.96, + "probability": 0.4231 + }, + { + "start": 3045.36, + "end": 3050.5, + "probability": 0.9785 + }, + { + "start": 3050.72, + "end": 3052.54, + "probability": 0.8621 + }, + { + "start": 3053.02, + "end": 3054.18, + "probability": 0.9204 + }, + { + "start": 3054.64, + "end": 3057.1, + "probability": 0.9455 + }, + { + "start": 3057.32, + "end": 3058.3, + "probability": 0.945 + }, + { + "start": 3059.74, + "end": 3062.36, + "probability": 0.54 + }, + { + "start": 3062.48, + "end": 3063.84, + "probability": 0.8875 + }, + { + "start": 3064.02, + "end": 3066.58, + "probability": 0.9351 + }, + { + "start": 3066.58, + "end": 3069.48, + "probability": 0.97 + }, + { + "start": 3069.9, + "end": 3072.76, + "probability": 0.9943 + }, + { + "start": 3073.5, + "end": 3077.21, + "probability": 0.978 + }, + { + "start": 3077.48, + "end": 3079.76, + "probability": 0.9988 + }, + { + "start": 3080.44, + "end": 3083.38, + "probability": 0.8622 + }, + { + "start": 3083.96, + "end": 3085.74, + "probability": 0.9903 + }, + { + "start": 3086.18, + "end": 3091.12, + "probability": 0.9964 + }, + { + "start": 3091.64, + "end": 3094.3, + "probability": 0.9956 + }, + { + "start": 3094.54, + "end": 3097.2, + "probability": 0.9344 + }, + { + "start": 3097.64, + "end": 3097.9, + "probability": 0.4055 + }, + { + "start": 3098.08, + "end": 3098.4, + "probability": 0.9132 + }, + { + "start": 3098.82, + "end": 3100.18, + "probability": 0.936 + }, + { + "start": 3100.36, + "end": 3100.58, + "probability": 0.78 + }, + { + "start": 3100.62, + "end": 3102.72, + "probability": 0.9852 + }, + { + "start": 3103.46, + "end": 3105.82, + "probability": 0.9961 + }, + { + "start": 3106.22, + "end": 3106.66, + "probability": 0.5026 + }, + { + "start": 3106.76, + "end": 3107.1, + "probability": 0.9003 + }, + { + "start": 3122.2, + "end": 3123.8, + "probability": 0.6094 + }, + { + "start": 3126.08, + "end": 3126.5, + "probability": 0.8679 + }, + { + "start": 3128.54, + "end": 3129.32, + "probability": 0.9364 + }, + { + "start": 3131.5, + "end": 3133.78, + "probability": 0.9272 + }, + { + "start": 3134.66, + "end": 3140.54, + "probability": 0.9948 + }, + { + "start": 3142.72, + "end": 3144.06, + "probability": 0.797 + }, + { + "start": 3145.16, + "end": 3146.28, + "probability": 0.6713 + }, + { + "start": 3148.92, + "end": 3153.76, + "probability": 0.8068 + }, + { + "start": 3154.84, + "end": 3156.92, + "probability": 0.9253 + }, + { + "start": 3157.54, + "end": 3158.28, + "probability": 0.8681 + }, + { + "start": 3158.46, + "end": 3158.64, + "probability": 0.8617 + }, + { + "start": 3158.74, + "end": 3164.48, + "probability": 0.9177 + }, + { + "start": 3165.6, + "end": 3169.5, + "probability": 0.5424 + }, + { + "start": 3170.24, + "end": 3170.54, + "probability": 0.9424 + }, + { + "start": 3173.16, + "end": 3177.64, + "probability": 0.8156 + }, + { + "start": 3178.38, + "end": 3179.68, + "probability": 0.9478 + }, + { + "start": 3180.78, + "end": 3184.02, + "probability": 0.951 + }, + { + "start": 3185.78, + "end": 3187.06, + "probability": 0.6552 + }, + { + "start": 3187.92, + "end": 3190.36, + "probability": 0.9863 + }, + { + "start": 3191.18, + "end": 3191.98, + "probability": 0.5126 + }, + { + "start": 3193.14, + "end": 3194.04, + "probability": 0.8319 + }, + { + "start": 3195.22, + "end": 3198.3, + "probability": 0.9923 + }, + { + "start": 3201.02, + "end": 3204.34, + "probability": 0.9988 + }, + { + "start": 3205.18, + "end": 3206.14, + "probability": 0.7427 + }, + { + "start": 3207.94, + "end": 3209.84, + "probability": 0.8446 + }, + { + "start": 3211.44, + "end": 3216.86, + "probability": 0.9132 + }, + { + "start": 3216.86, + "end": 3220.7, + "probability": 0.985 + }, + { + "start": 3222.52, + "end": 3227.08, + "probability": 0.937 + }, + { + "start": 3227.88, + "end": 3230.56, + "probability": 0.9839 + }, + { + "start": 3231.26, + "end": 3232.22, + "probability": 0.9124 + }, + { + "start": 3234.04, + "end": 3238.46, + "probability": 0.991 + }, + { + "start": 3239.46, + "end": 3240.32, + "probability": 0.9735 + }, + { + "start": 3241.5, + "end": 3241.82, + "probability": 0.7224 + }, + { + "start": 3244.04, + "end": 3245.34, + "probability": 0.9849 + }, + { + "start": 3246.46, + "end": 3250.04, + "probability": 0.9286 + }, + { + "start": 3251.22, + "end": 3252.5, + "probability": 0.8535 + }, + { + "start": 3254.36, + "end": 3256.18, + "probability": 0.8113 + }, + { + "start": 3257.7, + "end": 3262.3, + "probability": 0.7479 + }, + { + "start": 3263.24, + "end": 3264.82, + "probability": 0.9912 + }, + { + "start": 3265.4, + "end": 3266.3, + "probability": 0.9417 + }, + { + "start": 3266.62, + "end": 3268.14, + "probability": 0.695 + }, + { + "start": 3269.24, + "end": 3273.04, + "probability": 0.9518 + }, + { + "start": 3274.34, + "end": 3276.39, + "probability": 0.9987 + }, + { + "start": 3277.32, + "end": 3280.84, + "probability": 0.9773 + }, + { + "start": 3281.68, + "end": 3284.24, + "probability": 0.7913 + }, + { + "start": 3286.44, + "end": 3290.12, + "probability": 0.8984 + }, + { + "start": 3290.92, + "end": 3292.7, + "probability": 0.9989 + }, + { + "start": 3295.58, + "end": 3297.48, + "probability": 0.9079 + }, + { + "start": 3300.14, + "end": 3301.61, + "probability": 0.9734 + }, + { + "start": 3302.8, + "end": 3303.96, + "probability": 0.9806 + }, + { + "start": 3304.68, + "end": 3305.45, + "probability": 0.9961 + }, + { + "start": 3308.66, + "end": 3311.82, + "probability": 0.9404 + }, + { + "start": 3311.82, + "end": 3315.2, + "probability": 0.9845 + }, + { + "start": 3315.24, + "end": 3316.17, + "probability": 0.7739 + }, + { + "start": 3316.26, + "end": 3316.99, + "probability": 0.9387 + }, + { + "start": 3317.5, + "end": 3318.54, + "probability": 0.8582 + }, + { + "start": 3318.9, + "end": 3319.62, + "probability": 0.2475 + }, + { + "start": 3319.7, + "end": 3321.26, + "probability": 0.9541 + }, + { + "start": 3322.14, + "end": 3324.22, + "probability": 0.9227 + }, + { + "start": 3324.8, + "end": 3325.32, + "probability": 0.8466 + }, + { + "start": 3326.28, + "end": 3328.37, + "probability": 0.8361 + }, + { + "start": 3330.32, + "end": 3333.76, + "probability": 0.9986 + }, + { + "start": 3334.01, + "end": 3337.74, + "probability": 0.8958 + }, + { + "start": 3339.04, + "end": 3339.98, + "probability": 0.612 + }, + { + "start": 3340.49, + "end": 3344.98, + "probability": 0.9595 + }, + { + "start": 3345.1, + "end": 3345.7, + "probability": 0.8428 + }, + { + "start": 3346.2, + "end": 3348.84, + "probability": 0.9053 + }, + { + "start": 3348.98, + "end": 3349.88, + "probability": 0.9336 + }, + { + "start": 3350.64, + "end": 3353.28, + "probability": 0.99 + }, + { + "start": 3353.66, + "end": 3356.1, + "probability": 0.995 + }, + { + "start": 3356.1, + "end": 3358.48, + "probability": 0.9989 + }, + { + "start": 3358.86, + "end": 3360.22, + "probability": 0.7218 + }, + { + "start": 3360.26, + "end": 3361.16, + "probability": 0.8066 + }, + { + "start": 3361.18, + "end": 3361.82, + "probability": 0.7124 + }, + { + "start": 3362.62, + "end": 3365.46, + "probability": 0.975 + }, + { + "start": 3366.18, + "end": 3367.82, + "probability": 0.9855 + }, + { + "start": 3368.84, + "end": 3374.34, + "probability": 0.9611 + }, + { + "start": 3375.12, + "end": 3375.7, + "probability": 0.9763 + }, + { + "start": 3376.24, + "end": 3376.86, + "probability": 0.8889 + }, + { + "start": 3376.98, + "end": 3382.0, + "probability": 0.978 + }, + { + "start": 3382.36, + "end": 3384.78, + "probability": 0.997 + }, + { + "start": 3384.86, + "end": 3387.96, + "probability": 0.9917 + }, + { + "start": 3387.96, + "end": 3391.82, + "probability": 0.924 + }, + { + "start": 3392.04, + "end": 3394.1, + "probability": 0.9349 + }, + { + "start": 3394.74, + "end": 3399.44, + "probability": 0.9749 + }, + { + "start": 3399.76, + "end": 3402.34, + "probability": 0.9909 + }, + { + "start": 3402.5, + "end": 3404.1, + "probability": 0.967 + }, + { + "start": 3404.28, + "end": 3404.9, + "probability": 0.8204 + }, + { + "start": 3405.24, + "end": 3406.66, + "probability": 0.9961 + }, + { + "start": 3407.02, + "end": 3407.88, + "probability": 0.9573 + }, + { + "start": 3408.16, + "end": 3409.58, + "probability": 0.8953 + }, + { + "start": 3411.06, + "end": 3414.98, + "probability": 0.941 + }, + { + "start": 3415.7, + "end": 3416.98, + "probability": 0.8833 + }, + { + "start": 3417.58, + "end": 3420.24, + "probability": 0.8624 + }, + { + "start": 3420.92, + "end": 3425.52, + "probability": 0.9787 + }, + { + "start": 3425.94, + "end": 3427.92, + "probability": 0.905 + }, + { + "start": 3428.52, + "end": 3433.48, + "probability": 0.9144 + }, + { + "start": 3433.56, + "end": 3433.82, + "probability": 0.5464 + }, + { + "start": 3433.88, + "end": 3435.34, + "probability": 0.9749 + }, + { + "start": 3435.94, + "end": 3437.24, + "probability": 0.8807 + }, + { + "start": 3439.32, + "end": 3441.0, + "probability": 0.8632 + }, + { + "start": 3441.92, + "end": 3445.08, + "probability": 0.9238 + }, + { + "start": 3446.16, + "end": 3446.46, + "probability": 0.1405 + }, + { + "start": 3447.52, + "end": 3448.2, + "probability": 0.3631 + }, + { + "start": 3450.48, + "end": 3454.08, + "probability": 0.7741 + }, + { + "start": 3455.14, + "end": 3455.46, + "probability": 0.9092 + }, + { + "start": 3457.1, + "end": 3459.24, + "probability": 0.904 + }, + { + "start": 3460.08, + "end": 3460.92, + "probability": 0.9684 + }, + { + "start": 3461.34, + "end": 3464.96, + "probability": 0.9943 + }, + { + "start": 3464.96, + "end": 3467.54, + "probability": 0.99 + }, + { + "start": 3467.72, + "end": 3468.3, + "probability": 0.7747 + }, + { + "start": 3468.68, + "end": 3469.98, + "probability": 0.9017 + }, + { + "start": 3470.36, + "end": 3475.08, + "probability": 0.8851 + }, + { + "start": 3475.6, + "end": 3477.82, + "probability": 0.5806 + }, + { + "start": 3478.86, + "end": 3479.48, + "probability": 0.9539 + }, + { + "start": 3480.44, + "end": 3482.1, + "probability": 0.6963 + }, + { + "start": 3482.28, + "end": 3486.28, + "probability": 0.994 + }, + { + "start": 3487.56, + "end": 3493.9, + "probability": 0.999 + }, + { + "start": 3493.9, + "end": 3500.84, + "probability": 0.9993 + }, + { + "start": 3501.3, + "end": 3501.74, + "probability": 0.8796 + }, + { + "start": 3502.12, + "end": 3502.34, + "probability": 0.8675 + }, + { + "start": 3502.4, + "end": 3504.9, + "probability": 0.9985 + }, + { + "start": 3505.06, + "end": 3508.02, + "probability": 0.9579 + }, + { + "start": 3509.06, + "end": 3510.6, + "probability": 0.9819 + }, + { + "start": 3512.0, + "end": 3512.18, + "probability": 0.7551 + }, + { + "start": 3512.22, + "end": 3512.96, + "probability": 0.9242 + }, + { + "start": 3513.04, + "end": 3514.7, + "probability": 0.9336 + }, + { + "start": 3514.9, + "end": 3516.3, + "probability": 0.9279 + }, + { + "start": 3517.22, + "end": 3519.23, + "probability": 0.854 + }, + { + "start": 3519.78, + "end": 3520.1, + "probability": 0.5295 + }, + { + "start": 3520.18, + "end": 3524.56, + "probability": 0.9772 + }, + { + "start": 3525.96, + "end": 3530.9, + "probability": 0.9965 + }, + { + "start": 3531.36, + "end": 3535.12, + "probability": 0.998 + }, + { + "start": 3536.7, + "end": 3538.36, + "probability": 0.9645 + }, + { + "start": 3538.56, + "end": 3540.28, + "probability": 0.9583 + }, + { + "start": 3540.94, + "end": 3546.46, + "probability": 0.9963 + }, + { + "start": 3546.74, + "end": 3548.58, + "probability": 0.9626 + }, + { + "start": 3549.06, + "end": 3549.69, + "probability": 0.8999 + }, + { + "start": 3550.1, + "end": 3551.46, + "probability": 0.9471 + }, + { + "start": 3551.68, + "end": 3552.04, + "probability": 0.6917 + }, + { + "start": 3552.12, + "end": 3553.0, + "probability": 0.988 + }, + { + "start": 3553.7, + "end": 3554.06, + "probability": 0.9087 + }, + { + "start": 3554.8, + "end": 3557.24, + "probability": 0.9907 + }, + { + "start": 3557.54, + "end": 3559.64, + "probability": 0.9972 + }, + { + "start": 3559.68, + "end": 3562.0, + "probability": 0.94 + }, + { + "start": 3563.74, + "end": 3564.42, + "probability": 0.9017 + }, + { + "start": 3564.98, + "end": 3566.07, + "probability": 0.9893 + }, + { + "start": 3566.36, + "end": 3569.7, + "probability": 0.9964 + }, + { + "start": 3570.14, + "end": 3574.1, + "probability": 0.9858 + }, + { + "start": 3574.66, + "end": 3577.36, + "probability": 0.995 + }, + { + "start": 3577.36, + "end": 3580.34, + "probability": 0.9765 + }, + { + "start": 3581.48, + "end": 3582.68, + "probability": 0.9928 + }, + { + "start": 3583.24, + "end": 3585.04, + "probability": 0.9561 + }, + { + "start": 3586.24, + "end": 3587.6, + "probability": 0.8991 + }, + { + "start": 3588.72, + "end": 3594.22, + "probability": 0.8086 + }, + { + "start": 3594.46, + "end": 3597.36, + "probability": 0.8945 + }, + { + "start": 3599.44, + "end": 3599.78, + "probability": 0.7441 + }, + { + "start": 3600.98, + "end": 3602.84, + "probability": 0.9112 + }, + { + "start": 3603.38, + "end": 3604.2, + "probability": 0.7665 + }, + { + "start": 3604.26, + "end": 3605.66, + "probability": 0.9611 + }, + { + "start": 3606.78, + "end": 3610.0, + "probability": 0.9941 + }, + { + "start": 3610.12, + "end": 3612.1, + "probability": 0.9911 + }, + { + "start": 3612.6, + "end": 3615.64, + "probability": 0.9966 + }, + { + "start": 3616.68, + "end": 3617.14, + "probability": 0.7207 + }, + { + "start": 3618.14, + "end": 3625.1, + "probability": 0.9917 + }, + { + "start": 3626.12, + "end": 3630.06, + "probability": 0.988 + }, + { + "start": 3630.88, + "end": 3631.32, + "probability": 0.909 + }, + { + "start": 3632.28, + "end": 3633.9, + "probability": 0.9985 + }, + { + "start": 3634.94, + "end": 3636.68, + "probability": 0.9927 + }, + { + "start": 3637.22, + "end": 3639.18, + "probability": 0.9945 + }, + { + "start": 3639.54, + "end": 3641.2, + "probability": 0.9995 + }, + { + "start": 3642.14, + "end": 3642.96, + "probability": 0.9767 + }, + { + "start": 3643.34, + "end": 3644.42, + "probability": 0.8109 + }, + { + "start": 3644.74, + "end": 3651.22, + "probability": 0.9744 + }, + { + "start": 3652.04, + "end": 3654.38, + "probability": 0.9456 + }, + { + "start": 3654.9, + "end": 3656.94, + "probability": 0.77 + }, + { + "start": 3656.94, + "end": 3657.01, + "probability": 0.5375 + }, + { + "start": 3657.34, + "end": 3658.42, + "probability": 0.1749 + }, + { + "start": 3658.5, + "end": 3659.84, + "probability": 0.8018 + }, + { + "start": 3660.36, + "end": 3663.72, + "probability": 0.8705 + }, + { + "start": 3663.8, + "end": 3664.36, + "probability": 0.4607 + }, + { + "start": 3664.46, + "end": 3664.68, + "probability": 0.58 + }, + { + "start": 3664.74, + "end": 3667.48, + "probability": 0.8223 + }, + { + "start": 3668.04, + "end": 3670.3, + "probability": 0.9678 + }, + { + "start": 3670.54, + "end": 3673.3, + "probability": 0.9718 + }, + { + "start": 3673.86, + "end": 3676.48, + "probability": 0.9843 + }, + { + "start": 3676.62, + "end": 3679.24, + "probability": 0.9995 + }, + { + "start": 3679.54, + "end": 3681.32, + "probability": 0.9295 + }, + { + "start": 3681.84, + "end": 3685.12, + "probability": 0.9958 + }, + { + "start": 3685.44, + "end": 3686.08, + "probability": 0.9804 + }, + { + "start": 3686.28, + "end": 3687.02, + "probability": 0.9925 + }, + { + "start": 3687.1, + "end": 3687.68, + "probability": 0.8567 + }, + { + "start": 3687.74, + "end": 3688.36, + "probability": 0.9175 + }, + { + "start": 3688.62, + "end": 3689.92, + "probability": 0.9385 + }, + { + "start": 3690.24, + "end": 3690.32, + "probability": 0.2967 + }, + { + "start": 3690.32, + "end": 3691.24, + "probability": 0.725 + }, + { + "start": 3691.54, + "end": 3692.48, + "probability": 0.7279 + }, + { + "start": 3693.08, + "end": 3694.14, + "probability": 0.8679 + }, + { + "start": 3694.86, + "end": 3697.02, + "probability": 0.9965 + }, + { + "start": 3697.62, + "end": 3698.16, + "probability": 0.8898 + }, + { + "start": 3698.24, + "end": 3700.6, + "probability": 0.998 + }, + { + "start": 3700.7, + "end": 3701.3, + "probability": 0.9676 + }, + { + "start": 3701.56, + "end": 3701.86, + "probability": 0.6745 + }, + { + "start": 3702.28, + "end": 3703.16, + "probability": 0.4876 + }, + { + "start": 3703.28, + "end": 3703.52, + "probability": 0.8356 + }, + { + "start": 3704.02, + "end": 3704.7, + "probability": 0.8633 + }, + { + "start": 3705.78, + "end": 3710.42, + "probability": 0.9626 + }, + { + "start": 3710.92, + "end": 3711.02, + "probability": 0.621 + }, + { + "start": 3712.02, + "end": 3712.96, + "probability": 0.5607 + }, + { + "start": 3713.46, + "end": 3713.66, + "probability": 0.8574 + }, + { + "start": 3714.46, + "end": 3714.78, + "probability": 0.3174 + }, + { + "start": 3714.82, + "end": 3717.14, + "probability": 0.7271 + }, + { + "start": 3718.26, + "end": 3718.78, + "probability": 0.4294 + }, + { + "start": 3718.84, + "end": 3719.38, + "probability": 0.7697 + }, + { + "start": 3719.76, + "end": 3723.04, + "probability": 0.5377 + }, + { + "start": 3723.72, + "end": 3724.22, + "probability": 0.5052 + }, + { + "start": 3724.7, + "end": 3726.34, + "probability": 0.6864 + }, + { + "start": 3727.12, + "end": 3730.3, + "probability": 0.9396 + }, + { + "start": 3730.62, + "end": 3731.46, + "probability": 0.6312 + }, + { + "start": 3739.44, + "end": 3740.48, + "probability": 0.7299 + }, + { + "start": 3743.28, + "end": 3745.52, + "probability": 0.3426 + }, + { + "start": 3746.86, + "end": 3747.9, + "probability": 0.9888 + }, + { + "start": 3751.12, + "end": 3752.98, + "probability": 0.6906 + }, + { + "start": 3754.84, + "end": 3757.32, + "probability": 0.785 + }, + { + "start": 3757.84, + "end": 3759.76, + "probability": 0.6672 + }, + { + "start": 3761.04, + "end": 3761.46, + "probability": 0.5632 + }, + { + "start": 3763.1, + "end": 3764.52, + "probability": 0.9302 + }, + { + "start": 3765.4, + "end": 3765.92, + "probability": 0.7898 + }, + { + "start": 3766.36, + "end": 3766.95, + "probability": 0.6705 + }, + { + "start": 3767.24, + "end": 3767.58, + "probability": 0.4112 + }, + { + "start": 3767.82, + "end": 3767.94, + "probability": 0.6425 + }, + { + "start": 3767.96, + "end": 3768.56, + "probability": 0.8331 + }, + { + "start": 3768.66, + "end": 3769.48, + "probability": 0.6519 + }, + { + "start": 3769.52, + "end": 3772.08, + "probability": 0.9583 + }, + { + "start": 3772.4, + "end": 3773.48, + "probability": 0.9988 + }, + { + "start": 3774.24, + "end": 3775.2, + "probability": 0.6068 + }, + { + "start": 3776.56, + "end": 3779.59, + "probability": 0.7562 + }, + { + "start": 3780.8, + "end": 3785.8, + "probability": 0.9248 + }, + { + "start": 3786.94, + "end": 3787.68, + "probability": 0.6595 + }, + { + "start": 3789.42, + "end": 3792.84, + "probability": 0.971 + }, + { + "start": 3793.82, + "end": 3794.58, + "probability": 0.9971 + }, + { + "start": 3795.24, + "end": 3801.1, + "probability": 0.6536 + }, + { + "start": 3802.44, + "end": 3804.6, + "probability": 0.5649 + }, + { + "start": 3805.7, + "end": 3810.56, + "probability": 0.9097 + }, + { + "start": 3811.6, + "end": 3812.22, + "probability": 0.7368 + }, + { + "start": 3813.24, + "end": 3815.92, + "probability": 0.7535 + }, + { + "start": 3817.08, + "end": 3818.3, + "probability": 0.9693 + }, + { + "start": 3818.9, + "end": 3819.88, + "probability": 0.3864 + }, + { + "start": 3820.44, + "end": 3820.79, + "probability": 0.332 + }, + { + "start": 3822.14, + "end": 3822.44, + "probability": 0.607 + }, + { + "start": 3822.96, + "end": 3824.72, + "probability": 0.9146 + }, + { + "start": 3825.6, + "end": 3828.34, + "probability": 0.9697 + }, + { + "start": 3829.54, + "end": 3833.12, + "probability": 0.9819 + }, + { + "start": 3834.3, + "end": 3836.24, + "probability": 0.9966 + }, + { + "start": 3836.94, + "end": 3838.08, + "probability": 0.8208 + }, + { + "start": 3838.46, + "end": 3840.24, + "probability": 0.9828 + }, + { + "start": 3841.1, + "end": 3843.73, + "probability": 0.8914 + }, + { + "start": 3844.44, + "end": 3845.86, + "probability": 0.5857 + }, + { + "start": 3846.52, + "end": 3849.36, + "probability": 0.973 + }, + { + "start": 3850.64, + "end": 3851.88, + "probability": 0.8545 + }, + { + "start": 3852.9, + "end": 3855.16, + "probability": 0.8269 + }, + { + "start": 3856.02, + "end": 3857.4, + "probability": 0.8928 + }, + { + "start": 3858.32, + "end": 3860.36, + "probability": 0.9786 + }, + { + "start": 3861.24, + "end": 3863.36, + "probability": 0.8243 + }, + { + "start": 3863.92, + "end": 3865.5, + "probability": 0.9572 + }, + { + "start": 3866.92, + "end": 3873.18, + "probability": 0.9528 + }, + { + "start": 3875.38, + "end": 3877.28, + "probability": 0.999 + }, + { + "start": 3877.98, + "end": 3878.94, + "probability": 0.8577 + }, + { + "start": 3880.12, + "end": 3881.84, + "probability": 0.5831 + }, + { + "start": 3882.74, + "end": 3883.76, + "probability": 0.709 + }, + { + "start": 3885.7, + "end": 3887.38, + "probability": 0.9836 + }, + { + "start": 3889.16, + "end": 3892.24, + "probability": 0.7816 + }, + { + "start": 3893.76, + "end": 3895.7, + "probability": 0.996 + }, + { + "start": 3896.76, + "end": 3899.12, + "probability": 0.9953 + }, + { + "start": 3900.2, + "end": 3902.14, + "probability": 0.9524 + }, + { + "start": 3903.28, + "end": 3905.28, + "probability": 0.9309 + }, + { + "start": 3906.2, + "end": 3908.3, + "probability": 0.9585 + }, + { + "start": 3909.4, + "end": 3915.32, + "probability": 0.9962 + }, + { + "start": 3916.76, + "end": 3918.82, + "probability": 0.9875 + }, + { + "start": 3919.66, + "end": 3922.84, + "probability": 0.9156 + }, + { + "start": 3924.46, + "end": 3926.98, + "probability": 0.9972 + }, + { + "start": 3927.78, + "end": 3931.34, + "probability": 0.9582 + }, + { + "start": 3931.98, + "end": 3933.4, + "probability": 0.9275 + }, + { + "start": 3934.02, + "end": 3935.43, + "probability": 0.8572 + }, + { + "start": 3936.46, + "end": 3940.35, + "probability": 0.8783 + }, + { + "start": 3941.26, + "end": 3942.6, + "probability": 0.559 + }, + { + "start": 3943.32, + "end": 3944.86, + "probability": 0.8046 + }, + { + "start": 3945.34, + "end": 3946.65, + "probability": 0.9268 + }, + { + "start": 3948.6, + "end": 3952.54, + "probability": 0.9406 + }, + { + "start": 3953.1, + "end": 3955.26, + "probability": 0.8182 + }, + { + "start": 3956.0, + "end": 3958.1, + "probability": 0.9536 + }, + { + "start": 3958.72, + "end": 3959.74, + "probability": 0.8898 + }, + { + "start": 3960.3, + "end": 3964.76, + "probability": 0.9835 + }, + { + "start": 3965.42, + "end": 3967.36, + "probability": 0.7114 + }, + { + "start": 3967.52, + "end": 3968.4, + "probability": 0.9135 + }, + { + "start": 3968.52, + "end": 3970.34, + "probability": 0.9604 + }, + { + "start": 3970.6, + "end": 3971.16, + "probability": 0.8032 + }, + { + "start": 3971.78, + "end": 3972.77, + "probability": 0.7535 + }, + { + "start": 3973.44, + "end": 3974.63, + "probability": 0.9707 + }, + { + "start": 3975.36, + "end": 3977.16, + "probability": 0.9121 + }, + { + "start": 3977.78, + "end": 3980.13, + "probability": 0.8047 + }, + { + "start": 3981.32, + "end": 3984.82, + "probability": 0.8148 + }, + { + "start": 3985.42, + "end": 3986.74, + "probability": 0.8534 + }, + { + "start": 3987.46, + "end": 3988.36, + "probability": 0.3419 + }, + { + "start": 3988.8, + "end": 3991.34, + "probability": 0.9246 + }, + { + "start": 3991.56, + "end": 3995.56, + "probability": 0.9695 + }, + { + "start": 3995.78, + "end": 3996.26, + "probability": 0.8466 + }, + { + "start": 3996.34, + "end": 3997.62, + "probability": 0.9674 + }, + { + "start": 3998.24, + "end": 3998.94, + "probability": 0.7539 + }, + { + "start": 3998.96, + "end": 4001.2, + "probability": 0.785 + }, + { + "start": 4001.7, + "end": 4003.0, + "probability": 0.9836 + }, + { + "start": 4022.98, + "end": 4025.82, + "probability": 0.856 + }, + { + "start": 4026.7, + "end": 4028.56, + "probability": 0.9241 + }, + { + "start": 4029.22, + "end": 4030.5, + "probability": 0.9473 + }, + { + "start": 4031.52, + "end": 4033.52, + "probability": 0.9785 + }, + { + "start": 4033.96, + "end": 4034.66, + "probability": 0.9801 + }, + { + "start": 4034.76, + "end": 4035.42, + "probability": 0.7831 + }, + { + "start": 4035.96, + "end": 4036.48, + "probability": 0.6823 + }, + { + "start": 4037.56, + "end": 4039.86, + "probability": 0.993 + }, + { + "start": 4039.98, + "end": 4040.6, + "probability": 0.8746 + }, + { + "start": 4041.52, + "end": 4044.28, + "probability": 0.8571 + }, + { + "start": 4045.28, + "end": 4047.8, + "probability": 0.9525 + }, + { + "start": 4048.32, + "end": 4049.4, + "probability": 0.9126 + }, + { + "start": 4050.02, + "end": 4051.48, + "probability": 0.9023 + }, + { + "start": 4052.08, + "end": 4053.76, + "probability": 0.9434 + }, + { + "start": 4053.94, + "end": 4054.7, + "probability": 0.7423 + }, + { + "start": 4054.98, + "end": 4055.8, + "probability": 0.7339 + }, + { + "start": 4056.18, + "end": 4057.08, + "probability": 0.9067 + }, + { + "start": 4057.18, + "end": 4058.12, + "probability": 0.862 + }, + { + "start": 4058.24, + "end": 4060.24, + "probability": 0.9072 + }, + { + "start": 4060.72, + "end": 4062.38, + "probability": 0.9951 + }, + { + "start": 4062.58, + "end": 4063.42, + "probability": 0.9478 + }, + { + "start": 4064.02, + "end": 4066.12, + "probability": 0.9902 + }, + { + "start": 4066.68, + "end": 4069.16, + "probability": 0.9468 + }, + { + "start": 4069.24, + "end": 4070.86, + "probability": 0.509 + }, + { + "start": 4070.86, + "end": 4072.16, + "probability": 0.8815 + }, + { + "start": 4072.9, + "end": 4073.92, + "probability": 0.9594 + }, + { + "start": 4074.48, + "end": 4075.32, + "probability": 0.9983 + }, + { + "start": 4076.08, + "end": 4077.62, + "probability": 0.9396 + }, + { + "start": 4078.34, + "end": 4081.08, + "probability": 0.9352 + }, + { + "start": 4081.68, + "end": 4082.8, + "probability": 0.9551 + }, + { + "start": 4083.24, + "end": 4087.28, + "probability": 0.9876 + }, + { + "start": 4088.02, + "end": 4088.58, + "probability": 0.9313 + }, + { + "start": 4089.38, + "end": 4089.94, + "probability": 0.7632 + }, + { + "start": 4090.82, + "end": 4092.6, + "probability": 0.9113 + }, + { + "start": 4093.54, + "end": 4094.13, + "probability": 0.9614 + }, + { + "start": 4094.9, + "end": 4096.38, + "probability": 0.7744 + }, + { + "start": 4096.96, + "end": 4097.62, + "probability": 0.982 + }, + { + "start": 4098.2, + "end": 4099.78, + "probability": 0.7932 + }, + { + "start": 4099.84, + "end": 4100.5, + "probability": 0.7505 + }, + { + "start": 4100.68, + "end": 4101.72, + "probability": 0.968 + }, + { + "start": 4102.42, + "end": 4103.76, + "probability": 0.8875 + }, + { + "start": 4104.52, + "end": 4107.46, + "probability": 0.955 + }, + { + "start": 4108.1, + "end": 4110.68, + "probability": 0.7805 + }, + { + "start": 4111.68, + "end": 4112.84, + "probability": 0.5962 + }, + { + "start": 4113.7, + "end": 4115.02, + "probability": 0.9576 + }, + { + "start": 4115.72, + "end": 4117.98, + "probability": 0.96 + }, + { + "start": 4118.54, + "end": 4119.88, + "probability": 0.9688 + }, + { + "start": 4120.32, + "end": 4123.68, + "probability": 0.9188 + }, + { + "start": 4124.28, + "end": 4125.36, + "probability": 0.8678 + }, + { + "start": 4125.9, + "end": 4126.82, + "probability": 0.8794 + }, + { + "start": 4127.4, + "end": 4129.82, + "probability": 0.9961 + }, + { + "start": 4130.38, + "end": 4133.12, + "probability": 0.9876 + }, + { + "start": 4134.1, + "end": 4137.58, + "probability": 0.9832 + }, + { + "start": 4138.14, + "end": 4139.58, + "probability": 0.9608 + }, + { + "start": 4140.24, + "end": 4140.94, + "probability": 0.5814 + }, + { + "start": 4141.48, + "end": 4142.48, + "probability": 0.4329 + }, + { + "start": 4143.02, + "end": 4146.36, + "probability": 0.9872 + }, + { + "start": 4146.98, + "end": 4147.9, + "probability": 0.6387 + }, + { + "start": 4148.58, + "end": 4149.54, + "probability": 0.9489 + }, + { + "start": 4150.3, + "end": 4152.12, + "probability": 0.9276 + }, + { + "start": 4153.06, + "end": 4153.88, + "probability": 0.9891 + }, + { + "start": 4154.38, + "end": 4154.87, + "probability": 0.936 + }, + { + "start": 4155.52, + "end": 4157.02, + "probability": 0.9914 + }, + { + "start": 4157.08, + "end": 4158.64, + "probability": 0.8662 + }, + { + "start": 4159.52, + "end": 4161.7, + "probability": 0.8752 + }, + { + "start": 4161.84, + "end": 4163.64, + "probability": 0.9922 + }, + { + "start": 4164.18, + "end": 4167.36, + "probability": 0.9195 + }, + { + "start": 4167.94, + "end": 4169.72, + "probability": 0.9807 + }, + { + "start": 4169.74, + "end": 4173.12, + "probability": 0.9985 + }, + { + "start": 4173.48, + "end": 4174.88, + "probability": 0.8604 + }, + { + "start": 4175.28, + "end": 4177.4, + "probability": 0.8808 + }, + { + "start": 4177.7, + "end": 4182.02, + "probability": 0.9178 + }, + { + "start": 4182.58, + "end": 4184.2, + "probability": 0.9897 + }, + { + "start": 4185.22, + "end": 4185.32, + "probability": 0.7304 + }, + { + "start": 4185.52, + "end": 4187.36, + "probability": 0.5004 + }, + { + "start": 4187.5, + "end": 4188.4, + "probability": 0.9661 + }, + { + "start": 4188.68, + "end": 4190.48, + "probability": 0.9934 + }, + { + "start": 4191.02, + "end": 4193.5, + "probability": 0.6466 + }, + { + "start": 4193.7, + "end": 4198.26, + "probability": 0.9875 + }, + { + "start": 4198.82, + "end": 4203.84, + "probability": 0.9489 + }, + { + "start": 4203.98, + "end": 4206.24, + "probability": 0.9171 + }, + { + "start": 4206.38, + "end": 4207.14, + "probability": 0.9111 + }, + { + "start": 4208.02, + "end": 4211.92, + "probability": 0.9749 + }, + { + "start": 4212.38, + "end": 4213.98, + "probability": 0.9963 + }, + { + "start": 4214.0, + "end": 4215.17, + "probability": 0.9556 + }, + { + "start": 4215.72, + "end": 4216.96, + "probability": 0.4992 + }, + { + "start": 4217.24, + "end": 4219.7, + "probability": 0.9531 + }, + { + "start": 4219.8, + "end": 4220.82, + "probability": 0.9087 + }, + { + "start": 4220.96, + "end": 4221.2, + "probability": 0.2727 + }, + { + "start": 4221.7, + "end": 4225.0, + "probability": 0.8359 + }, + { + "start": 4225.04, + "end": 4225.44, + "probability": 0.4623 + }, + { + "start": 4226.24, + "end": 4227.9, + "probability": 0.7253 + }, + { + "start": 4228.44, + "end": 4230.78, + "probability": 0.8636 + }, + { + "start": 4231.52, + "end": 4233.86, + "probability": 0.978 + }, + { + "start": 4234.6, + "end": 4236.02, + "probability": 0.9928 + }, + { + "start": 4236.7, + "end": 4238.4, + "probability": 0.9605 + }, + { + "start": 4238.86, + "end": 4240.2, + "probability": 0.9414 + }, + { + "start": 4240.8, + "end": 4241.76, + "probability": 0.836 + }, + { + "start": 4242.44, + "end": 4243.54, + "probability": 0.99 + }, + { + "start": 4243.78, + "end": 4245.54, + "probability": 0.9883 + }, + { + "start": 4245.92, + "end": 4247.84, + "probability": 0.9902 + }, + { + "start": 4247.98, + "end": 4252.1, + "probability": 0.9933 + }, + { + "start": 4252.1, + "end": 4255.26, + "probability": 0.9985 + }, + { + "start": 4255.78, + "end": 4258.84, + "probability": 0.9605 + }, + { + "start": 4259.44, + "end": 4260.2, + "probability": 0.8424 + }, + { + "start": 4260.24, + "end": 4261.94, + "probability": 0.9306 + }, + { + "start": 4262.08, + "end": 4263.52, + "probability": 0.894 + }, + { + "start": 4264.0, + "end": 4266.76, + "probability": 0.9989 + }, + { + "start": 4267.36, + "end": 4270.64, + "probability": 0.9474 + }, + { + "start": 4271.14, + "end": 4272.78, + "probability": 0.9241 + }, + { + "start": 4273.26, + "end": 4274.58, + "probability": 0.8327 + }, + { + "start": 4275.12, + "end": 4280.2, + "probability": 0.9624 + }, + { + "start": 4280.7, + "end": 4281.9, + "probability": 0.8317 + }, + { + "start": 4282.44, + "end": 4287.17, + "probability": 0.9937 + }, + { + "start": 4287.66, + "end": 4290.16, + "probability": 0.9133 + }, + { + "start": 4290.7, + "end": 4292.88, + "probability": 0.7723 + }, + { + "start": 4293.32, + "end": 4295.46, + "probability": 0.9744 + }, + { + "start": 4297.16, + "end": 4298.34, + "probability": 0.2112 + }, + { + "start": 4299.4, + "end": 4303.94, + "probability": 0.7582 + }, + { + "start": 4303.94, + "end": 4304.62, + "probability": 0.1891 + }, + { + "start": 4305.6, + "end": 4306.85, + "probability": 0.7708 + }, + { + "start": 4307.26, + "end": 4309.55, + "probability": 0.8137 + }, + { + "start": 4310.44, + "end": 4312.26, + "probability": 0.9827 + }, + { + "start": 4312.26, + "end": 4313.68, + "probability": 0.0246 + }, + { + "start": 4313.68, + "end": 4314.97, + "probability": 0.8681 + }, + { + "start": 4317.16, + "end": 4317.16, + "probability": 0.2339 + }, + { + "start": 4317.16, + "end": 4318.82, + "probability": 0.8867 + }, + { + "start": 4320.98, + "end": 4322.76, + "probability": 0.8269 + }, + { + "start": 4324.04, + "end": 4329.46, + "probability": 0.9767 + }, + { + "start": 4330.14, + "end": 4331.26, + "probability": 0.751 + }, + { + "start": 4331.32, + "end": 4333.46, + "probability": 0.9842 + }, + { + "start": 4335.48, + "end": 4339.19, + "probability": 0.9246 + }, + { + "start": 4339.92, + "end": 4342.63, + "probability": 0.9067 + }, + { + "start": 4348.16, + "end": 4350.28, + "probability": 0.7994 + }, + { + "start": 4351.68, + "end": 4352.66, + "probability": 0.9746 + }, + { + "start": 4353.5, + "end": 4354.64, + "probability": 0.9019 + }, + { + "start": 4354.68, + "end": 4357.54, + "probability": 0.8789 + }, + { + "start": 4357.64, + "end": 4358.22, + "probability": 0.8914 + }, + { + "start": 4358.92, + "end": 4362.92, + "probability": 0.9262 + }, + { + "start": 4362.98, + "end": 4363.4, + "probability": 0.8735 + }, + { + "start": 4364.06, + "end": 4365.68, + "probability": 0.8632 + }, + { + "start": 4367.68, + "end": 4368.62, + "probability": 0.7703 + }, + { + "start": 4370.04, + "end": 4370.9, + "probability": 0.9587 + }, + { + "start": 4372.14, + "end": 4374.6, + "probability": 0.4985 + }, + { + "start": 4375.18, + "end": 4376.74, + "probability": 0.0398 + }, + { + "start": 4376.82, + "end": 4378.2, + "probability": 0.7833 + }, + { + "start": 4379.62, + "end": 4382.86, + "probability": 0.9755 + }, + { + "start": 4384.28, + "end": 4385.54, + "probability": 0.9613 + }, + { + "start": 4387.18, + "end": 4388.6, + "probability": 0.8814 + }, + { + "start": 4390.48, + "end": 4393.7, + "probability": 0.9356 + }, + { + "start": 4394.62, + "end": 4395.7, + "probability": 0.786 + }, + { + "start": 4396.44, + "end": 4397.5, + "probability": 0.8255 + }, + { + "start": 4398.56, + "end": 4399.68, + "probability": 0.9299 + }, + { + "start": 4400.86, + "end": 4401.74, + "probability": 0.974 + }, + { + "start": 4402.72, + "end": 4403.78, + "probability": 0.9333 + }, + { + "start": 4404.86, + "end": 4406.52, + "probability": 0.9802 + }, + { + "start": 4411.28, + "end": 4412.18, + "probability": 0.7978 + }, + { + "start": 4414.8, + "end": 4416.96, + "probability": 0.9348 + }, + { + "start": 4417.72, + "end": 4418.34, + "probability": 0.9634 + }, + { + "start": 4420.14, + "end": 4425.6, + "probability": 0.8989 + }, + { + "start": 4427.26, + "end": 4428.52, + "probability": 0.9992 + }, + { + "start": 4429.98, + "end": 4435.14, + "probability": 0.997 + }, + { + "start": 4436.2, + "end": 4437.76, + "probability": 0.9995 + }, + { + "start": 4438.78, + "end": 4442.78, + "probability": 0.9485 + }, + { + "start": 4444.22, + "end": 4446.2, + "probability": 0.7903 + }, + { + "start": 4448.54, + "end": 4450.54, + "probability": 0.9951 + }, + { + "start": 4452.82, + "end": 4458.08, + "probability": 0.9966 + }, + { + "start": 4459.78, + "end": 4462.62, + "probability": 0.9395 + }, + { + "start": 4464.7, + "end": 4469.36, + "probability": 0.9979 + }, + { + "start": 4470.16, + "end": 4472.08, + "probability": 0.9665 + }, + { + "start": 4473.12, + "end": 4475.8, + "probability": 0.9093 + }, + { + "start": 4478.72, + "end": 4481.82, + "probability": 0.5023 + }, + { + "start": 4482.8, + "end": 4486.84, + "probability": 0.9045 + }, + { + "start": 4487.16, + "end": 4489.28, + "probability": 0.5613 + }, + { + "start": 4489.9, + "end": 4493.78, + "probability": 0.8079 + }, + { + "start": 4496.58, + "end": 4497.02, + "probability": 0.8767 + }, + { + "start": 4497.72, + "end": 4498.84, + "probability": 0.8813 + }, + { + "start": 4499.02, + "end": 4499.64, + "probability": 0.8442 + }, + { + "start": 4500.96, + "end": 4503.8, + "probability": 0.9473 + }, + { + "start": 4504.64, + "end": 4506.16, + "probability": 0.8935 + }, + { + "start": 4507.3, + "end": 4511.52, + "probability": 0.8532 + }, + { + "start": 4515.82, + "end": 4516.56, + "probability": 0.8283 + }, + { + "start": 4518.3, + "end": 4521.52, + "probability": 0.9857 + }, + { + "start": 4521.84, + "end": 4523.4, + "probability": 0.6637 + }, + { + "start": 4523.4, + "end": 4524.72, + "probability": 0.2244 + }, + { + "start": 4525.96, + "end": 4527.62, + "probability": 0.4559 + }, + { + "start": 4527.86, + "end": 4530.24, + "probability": 0.14 + }, + { + "start": 4531.28, + "end": 4531.36, + "probability": 0.1495 + }, + { + "start": 4531.42, + "end": 4532.66, + "probability": 0.5537 + }, + { + "start": 4532.66, + "end": 4533.68, + "probability": 0.6583 + }, + { + "start": 4534.04, + "end": 4538.2, + "probability": 0.7691 + }, + { + "start": 4538.28, + "end": 4543.12, + "probability": 0.9219 + }, + { + "start": 4544.32, + "end": 4545.42, + "probability": 0.9447 + }, + { + "start": 4545.5, + "end": 4546.46, + "probability": 0.4328 + }, + { + "start": 4547.74, + "end": 4551.66, + "probability": 0.9445 + }, + { + "start": 4553.04, + "end": 4554.02, + "probability": 0.9575 + }, + { + "start": 4555.18, + "end": 4558.35, + "probability": 0.9414 + }, + { + "start": 4558.8, + "end": 4559.26, + "probability": 0.9774 + }, + { + "start": 4559.3, + "end": 4560.42, + "probability": 0.9389 + }, + { + "start": 4561.54, + "end": 4564.64, + "probability": 0.81 + }, + { + "start": 4566.28, + "end": 4567.42, + "probability": 0.8126 + }, + { + "start": 4567.54, + "end": 4571.74, + "probability": 0.9421 + }, + { + "start": 4572.92, + "end": 4573.66, + "probability": 0.9257 + }, + { + "start": 4573.68, + "end": 4574.52, + "probability": 0.9214 + }, + { + "start": 4575.0, + "end": 4577.14, + "probability": 0.9453 + }, + { + "start": 4578.06, + "end": 4579.82, + "probability": 0.1075 + }, + { + "start": 4580.14, + "end": 4581.68, + "probability": 0.5023 + }, + { + "start": 4581.68, + "end": 4583.4, + "probability": 0.4235 + }, + { + "start": 4584.5, + "end": 4584.66, + "probability": 0.0034 + }, + { + "start": 4584.66, + "end": 4584.92, + "probability": 0.2824 + }, + { + "start": 4585.1, + "end": 4586.1, + "probability": 0.9551 + }, + { + "start": 4586.76, + "end": 4587.44, + "probability": 0.7885 + }, + { + "start": 4587.62, + "end": 4588.2, + "probability": 0.1932 + }, + { + "start": 4588.4, + "end": 4589.78, + "probability": 0.8999 + }, + { + "start": 4589.82, + "end": 4591.74, + "probability": 0.8444 + }, + { + "start": 4591.86, + "end": 4595.48, + "probability": 0.8595 + }, + { + "start": 4595.64, + "end": 4595.76, + "probability": 0.1289 + }, + { + "start": 4595.8, + "end": 4596.94, + "probability": 0.2756 + }, + { + "start": 4597.32, + "end": 4601.46, + "probability": 0.9737 + }, + { + "start": 4601.98, + "end": 4605.34, + "probability": 0.9958 + }, + { + "start": 4605.82, + "end": 4606.26, + "probability": 0.9091 + }, + { + "start": 4607.04, + "end": 4610.74, + "probability": 0.9204 + }, + { + "start": 4610.74, + "end": 4611.42, + "probability": 0.2936 + }, + { + "start": 4611.62, + "end": 4612.04, + "probability": 0.0477 + }, + { + "start": 4612.18, + "end": 4613.06, + "probability": 0.3747 + }, + { + "start": 4613.3, + "end": 4614.84, + "probability": 0.3356 + }, + { + "start": 4614.96, + "end": 4617.78, + "probability": 0.7593 + }, + { + "start": 4618.18, + "end": 4619.62, + "probability": 0.7481 + }, + { + "start": 4619.8, + "end": 4620.02, + "probability": 0.9036 + }, + { + "start": 4620.34, + "end": 4620.82, + "probability": 0.7786 + }, + { + "start": 4621.5, + "end": 4622.88, + "probability": 0.6015 + }, + { + "start": 4622.98, + "end": 4628.12, + "probability": 0.9963 + }, + { + "start": 4628.66, + "end": 4630.4, + "probability": 0.8331 + }, + { + "start": 4631.08, + "end": 4634.28, + "probability": 0.9648 + }, + { + "start": 4634.88, + "end": 4637.56, + "probability": 0.9462 + }, + { + "start": 4638.2, + "end": 4639.64, + "probability": 0.8399 + }, + { + "start": 4640.28, + "end": 4640.82, + "probability": 0.861 + }, + { + "start": 4641.82, + "end": 4649.44, + "probability": 0.9741 + }, + { + "start": 4649.8, + "end": 4653.3, + "probability": 0.9966 + }, + { + "start": 4653.82, + "end": 4655.42, + "probability": 0.8411 + }, + { + "start": 4655.94, + "end": 4660.74, + "probability": 0.7675 + }, + { + "start": 4661.7, + "end": 4664.06, + "probability": 0.855 + }, + { + "start": 4665.1, + "end": 4667.22, + "probability": 0.9717 + }, + { + "start": 4668.54, + "end": 4670.54, + "probability": 0.9541 + }, + { + "start": 4671.22, + "end": 4675.06, + "probability": 0.9941 + }, + { + "start": 4676.12, + "end": 4678.82, + "probability": 0.9668 + }, + { + "start": 4680.5, + "end": 4682.04, + "probability": 0.7276 + }, + { + "start": 4683.0, + "end": 4684.92, + "probability": 0.9819 + }, + { + "start": 4687.76, + "end": 4689.76, + "probability": 0.7959 + }, + { + "start": 4691.34, + "end": 4693.74, + "probability": 0.9974 + }, + { + "start": 4696.0, + "end": 4697.04, + "probability": 0.9401 + }, + { + "start": 4700.7, + "end": 4703.27, + "probability": 0.9033 + }, + { + "start": 4704.34, + "end": 4705.88, + "probability": 0.9262 + }, + { + "start": 4707.82, + "end": 4710.28, + "probability": 0.9868 + }, + { + "start": 4712.62, + "end": 4715.4, + "probability": 0.9641 + }, + { + "start": 4717.76, + "end": 4720.37, + "probability": 0.9875 + }, + { + "start": 4720.7, + "end": 4721.36, + "probability": 0.7384 + }, + { + "start": 4722.24, + "end": 4723.16, + "probability": 0.9275 + }, + { + "start": 4724.08, + "end": 4726.54, + "probability": 0.9944 + }, + { + "start": 4726.72, + "end": 4727.84, + "probability": 0.8785 + }, + { + "start": 4728.7, + "end": 4730.88, + "probability": 0.9864 + }, + { + "start": 4731.54, + "end": 4732.42, + "probability": 0.9097 + }, + { + "start": 4732.62, + "end": 4734.2, + "probability": 0.9656 + }, + { + "start": 4734.66, + "end": 4735.2, + "probability": 0.3812 + }, + { + "start": 4735.38, + "end": 4737.6, + "probability": 0.8977 + }, + { + "start": 4743.65, + "end": 4745.49, + "probability": 0.5766 + }, + { + "start": 4746.3, + "end": 4748.25, + "probability": 0.5041 + }, + { + "start": 4748.76, + "end": 4751.98, + "probability": 0.6498 + }, + { + "start": 4752.49, + "end": 4754.71, + "probability": 0.2315 + }, + { + "start": 4754.81, + "end": 4756.21, + "probability": 0.1366 + }, + { + "start": 4756.63, + "end": 4758.76, + "probability": 0.8909 + }, + { + "start": 4759.27, + "end": 4764.51, + "probability": 0.701 + }, + { + "start": 4764.85, + "end": 4765.53, + "probability": 0.7749 + }, + { + "start": 4765.67, + "end": 4768.18, + "probability": 0.9856 + }, + { + "start": 4769.75, + "end": 4772.75, + "probability": 0.9438 + }, + { + "start": 4773.29, + "end": 4774.99, + "probability": 0.9974 + }, + { + "start": 4775.41, + "end": 4776.97, + "probability": 0.9342 + }, + { + "start": 4777.41, + "end": 4781.59, + "probability": 0.9197 + }, + { + "start": 4781.69, + "end": 4786.35, + "probability": 0.9243 + }, + { + "start": 4786.97, + "end": 4788.23, + "probability": 0.6664 + }, + { + "start": 4788.29, + "end": 4788.49, + "probability": 0.2602 + }, + { + "start": 4788.55, + "end": 4791.49, + "probability": 0.9141 + }, + { + "start": 4791.85, + "end": 4794.4, + "probability": 0.7128 + }, + { + "start": 4795.11, + "end": 4798.21, + "probability": 0.769 + }, + { + "start": 4798.9, + "end": 4800.89, + "probability": 0.9379 + }, + { + "start": 4801.29, + "end": 4801.39, + "probability": 0.0686 + }, + { + "start": 4801.43, + "end": 4803.19, + "probability": 0.9105 + }, + { + "start": 4803.27, + "end": 4806.41, + "probability": 0.8028 + }, + { + "start": 4807.53, + "end": 4810.23, + "probability": 0.9301 + }, + { + "start": 4812.61, + "end": 4814.45, + "probability": 0.9541 + }, + { + "start": 4816.65, + "end": 4819.53, + "probability": 0.9918 + }, + { + "start": 4821.05, + "end": 4821.73, + "probability": 0.528 + }, + { + "start": 4823.23, + "end": 4825.27, + "probability": 0.9735 + }, + { + "start": 4825.33, + "end": 4829.35, + "probability": 0.9859 + }, + { + "start": 4830.21, + "end": 4830.77, + "probability": 0.9038 + }, + { + "start": 4832.43, + "end": 4835.35, + "probability": 0.9966 + }, + { + "start": 4836.69, + "end": 4837.55, + "probability": 0.967 + }, + { + "start": 4837.71, + "end": 4841.15, + "probability": 0.9166 + }, + { + "start": 4843.33, + "end": 4844.41, + "probability": 0.7946 + }, + { + "start": 4846.07, + "end": 4847.89, + "probability": 0.9982 + }, + { + "start": 4848.59, + "end": 4851.77, + "probability": 0.9987 + }, + { + "start": 4852.93, + "end": 4853.89, + "probability": 0.8565 + }, + { + "start": 4856.41, + "end": 4861.79, + "probability": 0.9555 + }, + { + "start": 4863.01, + "end": 4863.95, + "probability": 0.5915 + }, + { + "start": 4866.63, + "end": 4867.61, + "probability": 0.8792 + }, + { + "start": 4868.87, + "end": 4872.13, + "probability": 0.9769 + }, + { + "start": 4874.79, + "end": 4882.35, + "probability": 0.9979 + }, + { + "start": 4883.53, + "end": 4886.47, + "probability": 0.9995 + }, + { + "start": 4888.01, + "end": 4892.77, + "probability": 0.999 + }, + { + "start": 4893.37, + "end": 4894.65, + "probability": 0.9618 + }, + { + "start": 4895.21, + "end": 4897.55, + "probability": 0.7932 + }, + { + "start": 4897.57, + "end": 4898.27, + "probability": 0.6473 + }, + { + "start": 4898.63, + "end": 4900.83, + "probability": 0.9368 + }, + { + "start": 4901.11, + "end": 4901.27, + "probability": 0.0582 + }, + { + "start": 4901.35, + "end": 4901.41, + "probability": 0.1603 + }, + { + "start": 4901.41, + "end": 4902.13, + "probability": 0.4518 + }, + { + "start": 4902.31, + "end": 4903.21, + "probability": 0.7119 + }, + { + "start": 4903.23, + "end": 4903.99, + "probability": 0.5428 + }, + { + "start": 4904.21, + "end": 4904.51, + "probability": 0.9421 + }, + { + "start": 4905.23, + "end": 4907.09, + "probability": 0.957 + }, + { + "start": 4907.21, + "end": 4911.83, + "probability": 0.6855 + }, + { + "start": 4911.85, + "end": 4914.51, + "probability": 0.8978 + }, + { + "start": 4914.63, + "end": 4915.85, + "probability": 0.8984 + }, + { + "start": 4916.59, + "end": 4918.51, + "probability": 0.971 + }, + { + "start": 4919.41, + "end": 4920.79, + "probability": 0.9779 + }, + { + "start": 4921.49, + "end": 4926.79, + "probability": 0.9426 + }, + { + "start": 4928.23, + "end": 4932.34, + "probability": 0.9923 + }, + { + "start": 4932.79, + "end": 4933.41, + "probability": 0.684 + }, + { + "start": 4933.57, + "end": 4935.12, + "probability": 0.6887 + }, + { + "start": 4935.67, + "end": 4937.83, + "probability": 0.8365 + }, + { + "start": 4937.87, + "end": 4942.13, + "probability": 0.9917 + }, + { + "start": 4942.23, + "end": 4946.93, + "probability": 0.8076 + }, + { + "start": 4947.13, + "end": 4949.31, + "probability": 0.6435 + }, + { + "start": 4950.39, + "end": 4950.47, + "probability": 0.0442 + }, + { + "start": 4950.47, + "end": 4951.24, + "probability": 0.5831 + }, + { + "start": 4952.19, + "end": 4954.99, + "probability": 0.856 + }, + { + "start": 4955.15, + "end": 4957.35, + "probability": 0.8071 + }, + { + "start": 4957.99, + "end": 4959.61, + "probability": 0.5003 + }, + { + "start": 4960.59, + "end": 4962.87, + "probability": 0.9773 + }, + { + "start": 4963.69, + "end": 4964.51, + "probability": 0.9805 + }, + { + "start": 4965.49, + "end": 4968.43, + "probability": 0.9952 + }, + { + "start": 4968.43, + "end": 4972.97, + "probability": 0.981 + }, + { + "start": 4974.25, + "end": 4975.13, + "probability": 0.5673 + }, + { + "start": 4976.81, + "end": 4978.23, + "probability": 0.8559 + }, + { + "start": 4978.49, + "end": 4983.47, + "probability": 0.9948 + }, + { + "start": 4984.17, + "end": 4985.87, + "probability": 0.9657 + }, + { + "start": 4986.51, + "end": 4989.49, + "probability": 0.9671 + }, + { + "start": 4989.71, + "end": 4990.19, + "probability": 0.5579 + }, + { + "start": 4990.75, + "end": 4993.39, + "probability": 0.8322 + }, + { + "start": 4995.87, + "end": 5006.27, + "probability": 0.9688 + }, + { + "start": 5008.37, + "end": 5009.75, + "probability": 0.5759 + }, + { + "start": 5012.11, + "end": 5012.89, + "probability": 0.9132 + }, + { + "start": 5015.07, + "end": 5016.49, + "probability": 0.9804 + }, + { + "start": 5019.43, + "end": 5021.35, + "probability": 0.6717 + }, + { + "start": 5022.93, + "end": 5024.87, + "probability": 0.9895 + }, + { + "start": 5026.37, + "end": 5028.37, + "probability": 0.8857 + }, + { + "start": 5030.63, + "end": 5033.89, + "probability": 0.9957 + }, + { + "start": 5034.25, + "end": 5035.43, + "probability": 0.9409 + }, + { + "start": 5036.45, + "end": 5036.67, + "probability": 0.3779 + }, + { + "start": 5036.83, + "end": 5039.95, + "probability": 0.9901 + }, + { + "start": 5040.57, + "end": 5042.07, + "probability": 0.8295 + }, + { + "start": 5043.63, + "end": 5046.19, + "probability": 0.9986 + }, + { + "start": 5049.05, + "end": 5050.39, + "probability": 0.9922 + }, + { + "start": 5051.51, + "end": 5054.47, + "probability": 0.7983 + }, + { + "start": 5056.11, + "end": 5057.87, + "probability": 0.9567 + }, + { + "start": 5058.55, + "end": 5061.53, + "probability": 0.9897 + }, + { + "start": 5062.69, + "end": 5065.23, + "probability": 0.9916 + }, + { + "start": 5067.29, + "end": 5067.65, + "probability": 0.6459 + }, + { + "start": 5067.69, + "end": 5071.15, + "probability": 0.9458 + }, + { + "start": 5071.29, + "end": 5073.07, + "probability": 0.9691 + }, + { + "start": 5073.15, + "end": 5074.63, + "probability": 0.9636 + }, + { + "start": 5075.71, + "end": 5077.83, + "probability": 0.9961 + }, + { + "start": 5078.73, + "end": 5079.53, + "probability": 0.5279 + }, + { + "start": 5079.67, + "end": 5081.15, + "probability": 0.7045 + }, + { + "start": 5081.27, + "end": 5082.71, + "probability": 0.6708 + }, + { + "start": 5083.63, + "end": 5084.81, + "probability": 0.8284 + }, + { + "start": 5086.21, + "end": 5087.55, + "probability": 0.9829 + }, + { + "start": 5088.55, + "end": 5089.09, + "probability": 0.8386 + }, + { + "start": 5090.05, + "end": 5097.09, + "probability": 0.9538 + }, + { + "start": 5097.59, + "end": 5100.49, + "probability": 0.8941 + }, + { + "start": 5101.31, + "end": 5103.67, + "probability": 0.9987 + }, + { + "start": 5104.51, + "end": 5106.81, + "probability": 0.6462 + }, + { + "start": 5108.97, + "end": 5112.29, + "probability": 0.9873 + }, + { + "start": 5113.51, + "end": 5115.05, + "probability": 0.9588 + }, + { + "start": 5116.03, + "end": 5118.59, + "probability": 0.6704 + }, + { + "start": 5120.27, + "end": 5121.57, + "probability": 0.9775 + }, + { + "start": 5121.67, + "end": 5122.33, + "probability": 0.9503 + }, + { + "start": 5122.79, + "end": 5125.21, + "probability": 0.9974 + }, + { + "start": 5126.05, + "end": 5128.55, + "probability": 0.9901 + }, + { + "start": 5129.63, + "end": 5131.67, + "probability": 0.8787 + }, + { + "start": 5132.95, + "end": 5134.53, + "probability": 0.7982 + }, + { + "start": 5136.37, + "end": 5138.83, + "probability": 0.9976 + }, + { + "start": 5139.37, + "end": 5140.95, + "probability": 0.994 + }, + { + "start": 5142.29, + "end": 5143.41, + "probability": 0.5011 + }, + { + "start": 5143.53, + "end": 5144.03, + "probability": 0.5889 + }, + { + "start": 5145.03, + "end": 5146.47, + "probability": 0.5728 + }, + { + "start": 5147.99, + "end": 5150.47, + "probability": 0.8766 + }, + { + "start": 5151.89, + "end": 5153.71, + "probability": 0.8575 + }, + { + "start": 5155.15, + "end": 5157.95, + "probability": 0.5002 + }, + { + "start": 5159.35, + "end": 5165.03, + "probability": 0.9811 + }, + { + "start": 5165.09, + "end": 5166.15, + "probability": 0.8251 + }, + { + "start": 5166.29, + "end": 5167.41, + "probability": 0.8804 + }, + { + "start": 5168.15, + "end": 5170.95, + "probability": 0.9795 + }, + { + "start": 5172.03, + "end": 5174.11, + "probability": 0.9901 + }, + { + "start": 5174.83, + "end": 5176.35, + "probability": 0.9483 + }, + { + "start": 5176.37, + "end": 5179.01, + "probability": 0.9922 + }, + { + "start": 5179.61, + "end": 5182.45, + "probability": 0.8006 + }, + { + "start": 5183.13, + "end": 5183.79, + "probability": 0.428 + }, + { + "start": 5183.85, + "end": 5184.19, + "probability": 0.0608 + }, + { + "start": 5184.23, + "end": 5184.23, + "probability": 0.2496 + }, + { + "start": 5184.23, + "end": 5191.57, + "probability": 0.7244 + }, + { + "start": 5191.79, + "end": 5195.87, + "probability": 0.6652 + }, + { + "start": 5197.93, + "end": 5199.25, + "probability": 0.4606 + }, + { + "start": 5199.77, + "end": 5202.93, + "probability": 0.9678 + }, + { + "start": 5203.17, + "end": 5203.87, + "probability": 0.7739 + }, + { + "start": 5203.89, + "end": 5203.91, + "probability": 0.0442 + }, + { + "start": 5203.91, + "end": 5205.46, + "probability": 0.5044 + }, + { + "start": 5205.51, + "end": 5205.89, + "probability": 0.833 + }, + { + "start": 5206.07, + "end": 5208.79, + "probability": 0.8475 + }, + { + "start": 5208.99, + "end": 5210.23, + "probability": 0.5616 + }, + { + "start": 5211.41, + "end": 5216.51, + "probability": 0.8518 + }, + { + "start": 5216.59, + "end": 5218.23, + "probability": 0.8748 + }, + { + "start": 5218.77, + "end": 5222.17, + "probability": 0.9003 + }, + { + "start": 5222.23, + "end": 5224.46, + "probability": 0.8506 + }, + { + "start": 5226.73, + "end": 5229.65, + "probability": 0.9932 + }, + { + "start": 5229.87, + "end": 5231.37, + "probability": 0.9399 + }, + { + "start": 5231.65, + "end": 5234.23, + "probability": 0.9614 + }, + { + "start": 5234.65, + "end": 5234.97, + "probability": 0.6331 + }, + { + "start": 5234.99, + "end": 5236.21, + "probability": 0.9723 + }, + { + "start": 5236.37, + "end": 5237.25, + "probability": 0.9292 + }, + { + "start": 5237.47, + "end": 5237.97, + "probability": 0.7262 + }, + { + "start": 5238.43, + "end": 5240.63, + "probability": 0.9589 + }, + { + "start": 5241.23, + "end": 5244.53, + "probability": 0.809 + }, + { + "start": 5244.61, + "end": 5245.91, + "probability": 0.5075 + }, + { + "start": 5246.45, + "end": 5249.25, + "probability": 0.8438 + }, + { + "start": 5249.65, + "end": 5252.11, + "probability": 0.9058 + }, + { + "start": 5252.59, + "end": 5257.47, + "probability": 0.996 + }, + { + "start": 5257.95, + "end": 5258.49, + "probability": 0.6084 + }, + { + "start": 5258.61, + "end": 5259.17, + "probability": 0.6921 + }, + { + "start": 5259.27, + "end": 5259.79, + "probability": 0.8135 + }, + { + "start": 5259.87, + "end": 5260.71, + "probability": 0.7622 + }, + { + "start": 5261.55, + "end": 5263.93, + "probability": 0.7746 + }, + { + "start": 5265.91, + "end": 5266.15, + "probability": 0.0471 + }, + { + "start": 5266.89, + "end": 5272.69, + "probability": 0.0425 + }, + { + "start": 5275.91, + "end": 5277.19, + "probability": 0.8598 + }, + { + "start": 5277.97, + "end": 5279.03, + "probability": 0.5335 + }, + { + "start": 5279.69, + "end": 5280.51, + "probability": 0.7099 + }, + { + "start": 5280.79, + "end": 5286.49, + "probability": 0.9596 + }, + { + "start": 5287.15, + "end": 5287.85, + "probability": 0.831 + }, + { + "start": 5288.79, + "end": 5290.47, + "probability": 0.9482 + }, + { + "start": 5290.53, + "end": 5291.53, + "probability": 0.8459 + }, + { + "start": 5291.61, + "end": 5293.41, + "probability": 0.5792 + }, + { + "start": 5293.95, + "end": 5300.25, + "probability": 0.8169 + }, + { + "start": 5301.81, + "end": 5303.41, + "probability": 0.0403 + }, + { + "start": 5304.15, + "end": 5304.35, + "probability": 0.0096 + }, + { + "start": 5305.73, + "end": 5306.73, + "probability": 0.708 + }, + { + "start": 5306.81, + "end": 5312.31, + "probability": 0.978 + }, + { + "start": 5313.38, + "end": 5318.31, + "probability": 0.9893 + }, + { + "start": 5319.55, + "end": 5320.27, + "probability": 0.6682 + }, + { + "start": 5320.49, + "end": 5321.71, + "probability": 0.8697 + }, + { + "start": 5321.79, + "end": 5322.57, + "probability": 0.9147 + }, + { + "start": 5322.73, + "end": 5325.09, + "probability": 0.9333 + }, + { + "start": 5326.11, + "end": 5326.15, + "probability": 0.4734 + }, + { + "start": 5326.31, + "end": 5327.97, + "probability": 0.9266 + }, + { + "start": 5328.35, + "end": 5329.81, + "probability": 0.8784 + }, + { + "start": 5332.03, + "end": 5332.09, + "probability": 0.0254 + }, + { + "start": 5332.09, + "end": 5334.49, + "probability": 0.6667 + }, + { + "start": 5335.17, + "end": 5336.23, + "probability": 0.5122 + }, + { + "start": 5337.55, + "end": 5338.47, + "probability": 0.9235 + }, + { + "start": 5339.53, + "end": 5341.23, + "probability": 0.8252 + }, + { + "start": 5342.41, + "end": 5345.81, + "probability": 0.9634 + }, + { + "start": 5347.97, + "end": 5351.29, + "probability": 0.3231 + }, + { + "start": 5352.23, + "end": 5355.85, + "probability": 0.8779 + }, + { + "start": 5357.09, + "end": 5361.01, + "probability": 0.8457 + }, + { + "start": 5363.83, + "end": 5368.19, + "probability": 0.6654 + }, + { + "start": 5368.19, + "end": 5371.19, + "probability": 0.9245 + }, + { + "start": 5372.03, + "end": 5372.05, + "probability": 0.0552 + }, + { + "start": 5372.05, + "end": 5374.99, + "probability": 0.9432 + }, + { + "start": 5375.15, + "end": 5376.59, + "probability": 0.8457 + }, + { + "start": 5377.29, + "end": 5378.31, + "probability": 0.9819 + }, + { + "start": 5379.55, + "end": 5381.33, + "probability": 0.7359 + }, + { + "start": 5381.99, + "end": 5386.63, + "probability": 0.9304 + }, + { + "start": 5387.63, + "end": 5390.61, + "probability": 0.5295 + }, + { + "start": 5391.09, + "end": 5391.09, + "probability": 0.9185 + }, + { + "start": 5392.45, + "end": 5395.55, + "probability": 0.4638 + }, + { + "start": 5396.15, + "end": 5404.69, + "probability": 0.9783 + }, + { + "start": 5406.21, + "end": 5406.83, + "probability": 0.7036 + }, + { + "start": 5407.53, + "end": 5409.23, + "probability": 0.9149 + }, + { + "start": 5410.95, + "end": 5414.61, + "probability": 0.967 + }, + { + "start": 5414.81, + "end": 5415.27, + "probability": 0.8658 + }, + { + "start": 5417.17, + "end": 5419.07, + "probability": 0.7483 + }, + { + "start": 5419.77, + "end": 5420.87, + "probability": 0.8696 + }, + { + "start": 5421.33, + "end": 5423.97, + "probability": 0.9634 + }, + { + "start": 5425.61, + "end": 5426.45, + "probability": 0.937 + }, + { + "start": 5427.49, + "end": 5431.91, + "probability": 0.7748 + }, + { + "start": 5431.91, + "end": 5435.11, + "probability": 0.4674 + }, + { + "start": 5435.37, + "end": 5435.37, + "probability": 0.1779 + }, + { + "start": 5435.37, + "end": 5437.27, + "probability": 0.5311 + }, + { + "start": 5438.51, + "end": 5439.77, + "probability": 0.911 + }, + { + "start": 5440.49, + "end": 5445.72, + "probability": 0.8904 + }, + { + "start": 5448.11, + "end": 5450.09, + "probability": 0.9644 + }, + { + "start": 5450.57, + "end": 5451.23, + "probability": 0.4536 + }, + { + "start": 5451.43, + "end": 5455.19, + "probability": 0.3434 + }, + { + "start": 5455.99, + "end": 5457.71, + "probability": 0.7906 + }, + { + "start": 5457.71, + "end": 5458.13, + "probability": 0.457 + }, + { + "start": 5458.13, + "end": 5458.25, + "probability": 0.0834 + }, + { + "start": 5458.31, + "end": 5463.59, + "probability": 0.9531 + }, + { + "start": 5463.59, + "end": 5468.39, + "probability": 0.9651 + }, + { + "start": 5468.89, + "end": 5471.85, + "probability": 0.9974 + }, + { + "start": 5472.47, + "end": 5474.61, + "probability": 0.9229 + }, + { + "start": 5474.69, + "end": 5476.95, + "probability": 0.9923 + }, + { + "start": 5477.31, + "end": 5480.51, + "probability": 0.9511 + }, + { + "start": 5481.86, + "end": 5490.63, + "probability": 0.9927 + }, + { + "start": 5490.77, + "end": 5496.03, + "probability": 0.9788 + }, + { + "start": 5496.57, + "end": 5502.07, + "probability": 0.9652 + }, + { + "start": 5502.23, + "end": 5505.91, + "probability": 0.7583 + }, + { + "start": 5506.63, + "end": 5507.91, + "probability": 0.8387 + }, + { + "start": 5508.07, + "end": 5509.67, + "probability": 0.996 + }, + { + "start": 5510.05, + "end": 5511.97, + "probability": 0.9056 + }, + { + "start": 5512.47, + "end": 5516.55, + "probability": 0.9348 + }, + { + "start": 5516.85, + "end": 5518.27, + "probability": 0.958 + }, + { + "start": 5518.97, + "end": 5521.03, + "probability": 0.8506 + }, + { + "start": 5521.15, + "end": 5523.29, + "probability": 0.9895 + }, + { + "start": 5524.97, + "end": 5528.15, + "probability": 0.7162 + }, + { + "start": 5528.15, + "end": 5528.25, + "probability": 0.3123 + }, + { + "start": 5528.97, + "end": 5529.7, + "probability": 0.6721 + }, + { + "start": 5529.87, + "end": 5530.55, + "probability": 0.535 + }, + { + "start": 5530.55, + "end": 5531.71, + "probability": 0.8872 + }, + { + "start": 5532.11, + "end": 5532.29, + "probability": 0.7498 + }, + { + "start": 5532.41, + "end": 5532.8, + "probability": 0.7822 + }, + { + "start": 5533.15, + "end": 5538.73, + "probability": 0.9391 + }, + { + "start": 5539.55, + "end": 5540.77, + "probability": 0.9751 + }, + { + "start": 5541.59, + "end": 5543.67, + "probability": 0.9256 + }, + { + "start": 5544.21, + "end": 5547.37, + "probability": 0.8344 + }, + { + "start": 5547.67, + "end": 5551.23, + "probability": 0.9405 + }, + { + "start": 5552.17, + "end": 5555.83, + "probability": 0.9951 + }, + { + "start": 5555.83, + "end": 5560.23, + "probability": 0.9971 + }, + { + "start": 5560.57, + "end": 5564.15, + "probability": 0.9702 + }, + { + "start": 5564.85, + "end": 5566.43, + "probability": 0.0588 + }, + { + "start": 5568.15, + "end": 5568.57, + "probability": 0.0053 + }, + { + "start": 5568.57, + "end": 5569.55, + "probability": 0.0179 + }, + { + "start": 5569.55, + "end": 5570.65, + "probability": 0.4184 + }, + { + "start": 5570.93, + "end": 5573.63, + "probability": 0.2852 + }, + { + "start": 5576.89, + "end": 5577.09, + "probability": 0.0516 + }, + { + "start": 5577.09, + "end": 5577.57, + "probability": 0.0789 + }, + { + "start": 5577.57, + "end": 5578.53, + "probability": 0.3887 + }, + { + "start": 5580.33, + "end": 5580.33, + "probability": 0.0001 + }, + { + "start": 5581.29, + "end": 5581.49, + "probability": 0.0361 + }, + { + "start": 5581.49, + "end": 5581.49, + "probability": 0.254 + }, + { + "start": 5581.49, + "end": 5581.49, + "probability": 0.2899 + }, + { + "start": 5581.49, + "end": 5581.49, + "probability": 0.0517 + }, + { + "start": 5581.49, + "end": 5582.63, + "probability": 0.2646 + }, + { + "start": 5582.87, + "end": 5586.47, + "probability": 0.6617 + }, + { + "start": 5586.51, + "end": 5588.89, + "probability": 0.9404 + }, + { + "start": 5589.95, + "end": 5594.53, + "probability": 0.9189 + }, + { + "start": 5595.83, + "end": 5595.89, + "probability": 0.1513 + }, + { + "start": 5595.89, + "end": 5597.95, + "probability": 0.3525 + }, + { + "start": 5598.21, + "end": 5599.63, + "probability": 0.1247 + }, + { + "start": 5600.89, + "end": 5600.93, + "probability": 0.0451 + }, + { + "start": 5601.59, + "end": 5601.89, + "probability": 0.127 + }, + { + "start": 5601.89, + "end": 5601.89, + "probability": 0.2554 + }, + { + "start": 5601.89, + "end": 5601.89, + "probability": 0.0729 + }, + { + "start": 5601.89, + "end": 5603.27, + "probability": 0.1768 + }, + { + "start": 5603.29, + "end": 5603.29, + "probability": 0.0993 + }, + { + "start": 5603.29, + "end": 5606.21, + "probability": 0.5144 + }, + { + "start": 5606.21, + "end": 5606.21, + "probability": 0.1466 + }, + { + "start": 5606.21, + "end": 5606.73, + "probability": 0.653 + }, + { + "start": 5607.15, + "end": 5610.17, + "probability": 0.7196 + }, + { + "start": 5610.89, + "end": 5611.81, + "probability": 0.2631 + }, + { + "start": 5612.33, + "end": 5612.35, + "probability": 0.2219 + }, + { + "start": 5612.35, + "end": 5615.71, + "probability": 0.9197 + }, + { + "start": 5616.35, + "end": 5620.79, + "probability": 0.5077 + }, + { + "start": 5620.81, + "end": 5623.57, + "probability": 0.7791 + }, + { + "start": 5623.93, + "end": 5624.21, + "probability": 0.0657 + }, + { + "start": 5624.21, + "end": 5627.81, + "probability": 0.9892 + }, + { + "start": 5628.43, + "end": 5630.31, + "probability": 0.8849 + }, + { + "start": 5630.85, + "end": 5631.93, + "probability": 0.6278 + }, + { + "start": 5632.63, + "end": 5635.39, + "probability": 0.9908 + }, + { + "start": 5635.45, + "end": 5635.86, + "probability": 0.8717 + }, + { + "start": 5636.49, + "end": 5639.23, + "probability": 0.9915 + }, + { + "start": 5639.51, + "end": 5640.05, + "probability": 0.9006 + }, + { + "start": 5640.59, + "end": 5641.07, + "probability": 0.9682 + }, + { + "start": 5641.83, + "end": 5643.67, + "probability": 0.8769 + }, + { + "start": 5644.35, + "end": 5647.57, + "probability": 0.9786 + }, + { + "start": 5647.95, + "end": 5649.33, + "probability": 0.9448 + }, + { + "start": 5649.85, + "end": 5650.09, + "probability": 0.7798 + }, + { + "start": 5650.79, + "end": 5651.23, + "probability": 0.6474 + }, + { + "start": 5651.61, + "end": 5653.51, + "probability": 0.9964 + }, + { + "start": 5654.25, + "end": 5659.85, + "probability": 0.9933 + }, + { + "start": 5660.41, + "end": 5661.67, + "probability": 0.7104 + }, + { + "start": 5662.95, + "end": 5668.05, + "probability": 0.8925 + }, + { + "start": 5668.19, + "end": 5669.45, + "probability": 0.9956 + }, + { + "start": 5670.45, + "end": 5671.81, + "probability": 0.9985 + }, + { + "start": 5672.55, + "end": 5673.87, + "probability": 0.846 + }, + { + "start": 5674.53, + "end": 5681.71, + "probability": 0.9846 + }, + { + "start": 5682.29, + "end": 5683.27, + "probability": 0.8844 + }, + { + "start": 5684.45, + "end": 5684.89, + "probability": 0.5483 + }, + { + "start": 5685.4, + "end": 5687.45, + "probability": 0.9988 + }, + { + "start": 5688.25, + "end": 5690.19, + "probability": 0.9315 + }, + { + "start": 5690.93, + "end": 5691.47, + "probability": 0.7975 + }, + { + "start": 5691.77, + "end": 5694.39, + "probability": 0.9609 + }, + { + "start": 5694.73, + "end": 5695.59, + "probability": 0.7122 + }, + { + "start": 5695.89, + "end": 5697.75, + "probability": 0.6849 + }, + { + "start": 5699.77, + "end": 5700.67, + "probability": 0.0252 + }, + { + "start": 5700.67, + "end": 5700.67, + "probability": 0.0809 + }, + { + "start": 5700.67, + "end": 5702.66, + "probability": 0.1097 + }, + { + "start": 5703.79, + "end": 5708.77, + "probability": 0.4436 + }, + { + "start": 5710.81, + "end": 5713.25, + "probability": 0.5635 + }, + { + "start": 5713.91, + "end": 5714.71, + "probability": 0.5202 + }, + { + "start": 5715.21, + "end": 5715.91, + "probability": 0.9517 + }, + { + "start": 5715.99, + "end": 5717.21, + "probability": 0.923 + }, + { + "start": 5717.29, + "end": 5717.57, + "probability": 0.4904 + }, + { + "start": 5718.49, + "end": 5719.25, + "probability": 0.8041 + }, + { + "start": 5720.11, + "end": 5722.49, + "probability": 0.8093 + }, + { + "start": 5723.15, + "end": 5725.87, + "probability": 0.9863 + }, + { + "start": 5725.87, + "end": 5729.49, + "probability": 0.7358 + }, + { + "start": 5730.03, + "end": 5731.87, + "probability": 0.0782 + }, + { + "start": 5732.17, + "end": 5733.53, + "probability": 0.0801 + }, + { + "start": 5733.73, + "end": 5734.55, + "probability": 0.7553 + }, + { + "start": 5735.33, + "end": 5736.89, + "probability": 0.7097 + }, + { + "start": 5737.47, + "end": 5742.75, + "probability": 0.9558 + }, + { + "start": 5743.27, + "end": 5747.13, + "probability": 0.9792 + }, + { + "start": 5747.69, + "end": 5749.91, + "probability": 0.9932 + }, + { + "start": 5750.43, + "end": 5752.89, + "probability": 0.9727 + }, + { + "start": 5753.51, + "end": 5757.21, + "probability": 0.9883 + }, + { + "start": 5757.69, + "end": 5759.05, + "probability": 0.8238 + }, + { + "start": 5759.59, + "end": 5764.09, + "probability": 0.8164 + }, + { + "start": 5764.63, + "end": 5769.77, + "probability": 0.9972 + }, + { + "start": 5770.23, + "end": 5775.01, + "probability": 0.9937 + }, + { + "start": 5775.55, + "end": 5780.11, + "probability": 0.9736 + }, + { + "start": 5780.47, + "end": 5784.31, + "probability": 0.8562 + }, + { + "start": 5785.07, + "end": 5787.57, + "probability": 0.9905 + }, + { + "start": 5787.57, + "end": 5790.83, + "probability": 0.9906 + }, + { + "start": 5791.17, + "end": 5793.3, + "probability": 0.9922 + }, + { + "start": 5793.67, + "end": 5796.21, + "probability": 0.9737 + }, + { + "start": 5796.85, + "end": 5799.77, + "probability": 0.8749 + }, + { + "start": 5800.27, + "end": 5804.29, + "probability": 0.9661 + }, + { + "start": 5804.75, + "end": 5805.99, + "probability": 0.5596 + }, + { + "start": 5806.75, + "end": 5807.59, + "probability": 0.6147 + }, + { + "start": 5808.01, + "end": 5813.11, + "probability": 0.4879 + }, + { + "start": 5813.51, + "end": 5814.95, + "probability": 0.9954 + }, + { + "start": 5819.17, + "end": 5821.43, + "probability": 0.7015 + }, + { + "start": 5821.91, + "end": 5822.49, + "probability": 0.4744 + }, + { + "start": 5822.63, + "end": 5825.59, + "probability": 0.8493 + }, + { + "start": 5825.91, + "end": 5826.35, + "probability": 0.3939 + }, + { + "start": 5826.59, + "end": 5828.11, + "probability": 0.5648 + }, + { + "start": 5828.47, + "end": 5829.49, + "probability": 0.8552 + }, + { + "start": 5829.89, + "end": 5830.51, + "probability": 0.5389 + }, + { + "start": 5830.63, + "end": 5834.93, + "probability": 0.978 + }, + { + "start": 5835.25, + "end": 5840.79, + "probability": 0.9442 + }, + { + "start": 5841.97, + "end": 5845.83, + "probability": 0.9956 + }, + { + "start": 5845.83, + "end": 5852.09, + "probability": 0.9388 + }, + { + "start": 5852.57, + "end": 5854.59, + "probability": 0.9336 + }, + { + "start": 5855.23, + "end": 5859.17, + "probability": 0.972 + }, + { + "start": 5859.17, + "end": 5862.49, + "probability": 0.9665 + }, + { + "start": 5863.03, + "end": 5867.89, + "probability": 0.9895 + }, + { + "start": 5867.89, + "end": 5872.61, + "probability": 0.9525 + }, + { + "start": 5872.97, + "end": 5876.21, + "probability": 0.9498 + }, + { + "start": 5876.21, + "end": 5880.09, + "probability": 0.7832 + }, + { + "start": 5880.65, + "end": 5881.15, + "probability": 0.7666 + }, + { + "start": 5881.65, + "end": 5886.35, + "probability": 0.8805 + }, + { + "start": 5886.87, + "end": 5891.37, + "probability": 0.8925 + }, + { + "start": 5891.75, + "end": 5895.07, + "probability": 0.7911 + }, + { + "start": 5895.55, + "end": 5897.65, + "probability": 0.9088 + }, + { + "start": 5897.97, + "end": 5898.61, + "probability": 0.7282 + }, + { + "start": 5898.73, + "end": 5899.73, + "probability": 0.3777 + }, + { + "start": 5900.19, + "end": 5902.87, + "probability": 0.9761 + }, + { + "start": 5902.87, + "end": 5904.79, + "probability": 0.9874 + }, + { + "start": 5905.73, + "end": 5907.61, + "probability": 0.7349 + }, + { + "start": 5907.67, + "end": 5909.34, + "probability": 0.8472 + }, + { + "start": 5910.65, + "end": 5912.47, + "probability": 0.895 + }, + { + "start": 5913.31, + "end": 5914.01, + "probability": 0.6697 + }, + { + "start": 5929.23, + "end": 5929.23, + "probability": 0.211 + }, + { + "start": 5929.23, + "end": 5930.29, + "probability": 0.1545 + }, + { + "start": 5930.53, + "end": 5930.95, + "probability": 0.7869 + }, + { + "start": 5930.95, + "end": 5932.15, + "probability": 0.7291 + }, + { + "start": 5932.47, + "end": 5933.35, + "probability": 0.7239 + }, + { + "start": 5934.39, + "end": 5938.93, + "probability": 0.7859 + }, + { + "start": 5939.45, + "end": 5941.77, + "probability": 0.9663 + }, + { + "start": 5943.39, + "end": 5945.87, + "probability": 0.9946 + }, + { + "start": 5946.53, + "end": 5947.83, + "probability": 0.9169 + }, + { + "start": 5948.03, + "end": 5949.03, + "probability": 0.9502 + }, + { + "start": 5949.17, + "end": 5950.45, + "probability": 0.9567 + }, + { + "start": 5951.19, + "end": 5953.57, + "probability": 0.9976 + }, + { + "start": 5953.75, + "end": 5957.33, + "probability": 0.9803 + }, + { + "start": 5958.45, + "end": 5961.65, + "probability": 0.9977 + }, + { + "start": 5961.71, + "end": 5962.68, + "probability": 0.9927 + }, + { + "start": 5963.01, + "end": 5964.65, + "probability": 0.9908 + }, + { + "start": 5965.21, + "end": 5969.99, + "probability": 0.9899 + }, + { + "start": 5969.99, + "end": 5974.23, + "probability": 0.9896 + }, + { + "start": 5974.33, + "end": 5975.65, + "probability": 0.9068 + }, + { + "start": 5976.55, + "end": 5978.75, + "probability": 0.9983 + }, + { + "start": 5978.97, + "end": 5983.17, + "probability": 0.9689 + }, + { + "start": 5983.83, + "end": 5985.11, + "probability": 0.6318 + }, + { + "start": 5985.33, + "end": 5990.49, + "probability": 0.9932 + }, + { + "start": 5991.07, + "end": 5995.19, + "probability": 0.9987 + }, + { + "start": 5995.19, + "end": 6000.49, + "probability": 0.9755 + }, + { + "start": 6001.89, + "end": 6005.63, + "probability": 0.987 + }, + { + "start": 6005.69, + "end": 6007.61, + "probability": 0.9984 + }, + { + "start": 6008.49, + "end": 6012.33, + "probability": 0.9521 + }, + { + "start": 6012.89, + "end": 6014.45, + "probability": 0.7699 + }, + { + "start": 6015.63, + "end": 6016.77, + "probability": 0.5406 + }, + { + "start": 6016.87, + "end": 6018.35, + "probability": 0.9666 + }, + { + "start": 6019.27, + "end": 6021.69, + "probability": 0.9932 + }, + { + "start": 6023.73, + "end": 6025.39, + "probability": 0.9946 + }, + { + "start": 6026.05, + "end": 6027.79, + "probability": 0.9038 + }, + { + "start": 6028.45, + "end": 6029.75, + "probability": 0.9756 + }, + { + "start": 6030.19, + "end": 6032.09, + "probability": 0.6689 + }, + { + "start": 6032.35, + "end": 6033.11, + "probability": 0.9656 + }, + { + "start": 6033.13, + "end": 6034.01, + "probability": 0.8128 + }, + { + "start": 6034.51, + "end": 6037.77, + "probability": 0.9826 + }, + { + "start": 6038.89, + "end": 6039.09, + "probability": 0.7722 + }, + { + "start": 6039.37, + "end": 6040.11, + "probability": 0.9364 + }, + { + "start": 6040.11, + "end": 6040.75, + "probability": 0.9317 + }, + { + "start": 6041.25, + "end": 6043.19, + "probability": 0.804 + }, + { + "start": 6044.13, + "end": 6051.83, + "probability": 0.9947 + }, + { + "start": 6052.33, + "end": 6052.87, + "probability": 0.8451 + }, + { + "start": 6053.03, + "end": 6054.27, + "probability": 0.8566 + }, + { + "start": 6054.93, + "end": 6056.09, + "probability": 0.8407 + }, + { + "start": 6058.03, + "end": 6059.01, + "probability": 0.639 + }, + { + "start": 6059.37, + "end": 6063.27, + "probability": 0.9408 + }, + { + "start": 6063.47, + "end": 6064.21, + "probability": 0.91 + }, + { + "start": 6064.27, + "end": 6064.99, + "probability": 0.6844 + }, + { + "start": 6065.11, + "end": 6067.91, + "probability": 0.7528 + }, + { + "start": 6068.91, + "end": 6070.23, + "probability": 0.8633 + }, + { + "start": 6070.81, + "end": 6072.93, + "probability": 0.9431 + }, + { + "start": 6074.09, + "end": 6076.61, + "probability": 0.9947 + }, + { + "start": 6076.85, + "end": 6079.39, + "probability": 0.9965 + }, + { + "start": 6079.91, + "end": 6080.59, + "probability": 0.7518 + }, + { + "start": 6080.75, + "end": 6081.67, + "probability": 0.5923 + }, + { + "start": 6081.81, + "end": 6083.57, + "probability": 0.895 + }, + { + "start": 6084.37, + "end": 6085.88, + "probability": 0.933 + }, + { + "start": 6086.63, + "end": 6087.89, + "probability": 0.3521 + }, + { + "start": 6087.89, + "end": 6088.53, + "probability": 0.5763 + }, + { + "start": 6088.53, + "end": 6089.51, + "probability": 0.9572 + }, + { + "start": 6089.55, + "end": 6093.31, + "probability": 0.9741 + }, + { + "start": 6094.57, + "end": 6095.91, + "probability": 0.3547 + }, + { + "start": 6095.91, + "end": 6098.19, + "probability": 0.132 + }, + { + "start": 6098.85, + "end": 6099.99, + "probability": 0.8371 + }, + { + "start": 6100.85, + "end": 6102.75, + "probability": 0.9897 + }, + { + "start": 6103.01, + "end": 6107.01, + "probability": 0.9901 + }, + { + "start": 6107.59, + "end": 6107.97, + "probability": 0.8491 + }, + { + "start": 6108.79, + "end": 6116.89, + "probability": 0.9844 + }, + { + "start": 6117.79, + "end": 6119.37, + "probability": 0.9956 + }, + { + "start": 6119.73, + "end": 6121.69, + "probability": 0.768 + }, + { + "start": 6121.77, + "end": 6123.09, + "probability": 0.7678 + }, + { + "start": 6124.09, + "end": 6126.1, + "probability": 0.8094 + }, + { + "start": 6127.07, + "end": 6129.41, + "probability": 0.9781 + }, + { + "start": 6129.41, + "end": 6130.89, + "probability": 0.9232 + }, + { + "start": 6132.33, + "end": 6138.61, + "probability": 0.9746 + }, + { + "start": 6139.39, + "end": 6142.97, + "probability": 0.8924 + }, + { + "start": 6143.51, + "end": 6144.75, + "probability": 0.9879 + }, + { + "start": 6144.85, + "end": 6148.53, + "probability": 0.7274 + }, + { + "start": 6149.33, + "end": 6151.21, + "probability": 0.7578 + }, + { + "start": 6151.41, + "end": 6153.69, + "probability": 0.5939 + }, + { + "start": 6153.85, + "end": 6155.51, + "probability": 0.9557 + }, + { + "start": 6155.59, + "end": 6157.59, + "probability": 0.9819 + }, + { + "start": 6159.32, + "end": 6160.11, + "probability": 0.0775 + }, + { + "start": 6160.11, + "end": 6162.51, + "probability": 0.8838 + }, + { + "start": 6163.39, + "end": 6164.97, + "probability": 0.8641 + }, + { + "start": 6165.07, + "end": 6167.55, + "probability": 0.9966 + }, + { + "start": 6167.55, + "end": 6171.93, + "probability": 0.983 + }, + { + "start": 6172.79, + "end": 6174.25, + "probability": 0.7632 + }, + { + "start": 6174.99, + "end": 6176.89, + "probability": 0.9175 + }, + { + "start": 6177.09, + "end": 6178.59, + "probability": 0.8269 + }, + { + "start": 6178.67, + "end": 6179.27, + "probability": 0.6333 + }, + { + "start": 6179.79, + "end": 6181.59, + "probability": 0.8602 + }, + { + "start": 6181.69, + "end": 6182.25, + "probability": 0.7237 + }, + { + "start": 6182.55, + "end": 6183.55, + "probability": 0.9641 + }, + { + "start": 6184.33, + "end": 6189.11, + "probability": 0.9857 + }, + { + "start": 6189.51, + "end": 6192.83, + "probability": 0.9568 + }, + { + "start": 6193.23, + "end": 6195.79, + "probability": 0.9973 + }, + { + "start": 6196.55, + "end": 6198.77, + "probability": 0.8904 + }, + { + "start": 6199.57, + "end": 6203.21, + "probability": 0.9932 + }, + { + "start": 6203.87, + "end": 6207.63, + "probability": 0.9973 + }, + { + "start": 6208.17, + "end": 6210.79, + "probability": 0.8269 + }, + { + "start": 6210.91, + "end": 6213.55, + "probability": 0.8647 + }, + { + "start": 6213.69, + "end": 6214.77, + "probability": 0.6978 + }, + { + "start": 6215.73, + "end": 6217.89, + "probability": 0.9819 + }, + { + "start": 6218.07, + "end": 6219.87, + "probability": 0.9929 + }, + { + "start": 6219.89, + "end": 6221.69, + "probability": 0.8608 + }, + { + "start": 6221.83, + "end": 6223.43, + "probability": 0.9927 + }, + { + "start": 6224.15, + "end": 6228.83, + "probability": 0.9497 + }, + { + "start": 6229.13, + "end": 6231.53, + "probability": 0.9868 + }, + { + "start": 6231.83, + "end": 6235.03, + "probability": 0.7805 + }, + { + "start": 6235.13, + "end": 6235.59, + "probability": 0.7935 + }, + { + "start": 6236.99, + "end": 6241.07, + "probability": 0.9922 + }, + { + "start": 6241.15, + "end": 6242.39, + "probability": 0.9501 + }, + { + "start": 6243.31, + "end": 6247.43, + "probability": 0.9701 + }, + { + "start": 6248.61, + "end": 6254.49, + "probability": 0.9863 + }, + { + "start": 6255.19, + "end": 6256.68, + "probability": 0.8877 + }, + { + "start": 6257.41, + "end": 6260.69, + "probability": 0.7428 + }, + { + "start": 6261.15, + "end": 6263.19, + "probability": 0.9911 + }, + { + "start": 6265.42, + "end": 6266.33, + "probability": 0.037 + }, + { + "start": 6266.33, + "end": 6271.19, + "probability": 0.9654 + }, + { + "start": 6271.19, + "end": 6275.91, + "probability": 0.9849 + }, + { + "start": 6276.61, + "end": 6278.03, + "probability": 0.9132 + }, + { + "start": 6278.49, + "end": 6279.09, + "probability": 0.5646 + }, + { + "start": 6279.45, + "end": 6281.21, + "probability": 0.9445 + }, + { + "start": 6281.49, + "end": 6282.32, + "probability": 0.8754 + }, + { + "start": 6283.31, + "end": 6289.87, + "probability": 0.9961 + }, + { + "start": 6289.9, + "end": 6294.59, + "probability": 0.9927 + }, + { + "start": 6294.81, + "end": 6295.15, + "probability": 0.754 + }, + { + "start": 6296.01, + "end": 6296.65, + "probability": 0.5677 + }, + { + "start": 6296.69, + "end": 6298.37, + "probability": 0.8091 + }, + { + "start": 6298.59, + "end": 6299.77, + "probability": 0.9295 + }, + { + "start": 6300.01, + "end": 6301.03, + "probability": 0.9779 + }, + { + "start": 6301.37, + "end": 6302.89, + "probability": 0.7347 + }, + { + "start": 6303.49, + "end": 6307.67, + "probability": 0.976 + }, + { + "start": 6308.59, + "end": 6310.21, + "probability": 0.896 + }, + { + "start": 6314.31, + "end": 6314.31, + "probability": 0.0538 + }, + { + "start": 6314.31, + "end": 6316.69, + "probability": 0.5939 + }, + { + "start": 6317.57, + "end": 6318.53, + "probability": 0.6244 + }, + { + "start": 6318.65, + "end": 6319.61, + "probability": 0.7434 + }, + { + "start": 6321.01, + "end": 6323.27, + "probability": 0.653 + }, + { + "start": 6328.59, + "end": 6331.41, + "probability": 0.8041 + }, + { + "start": 6331.97, + "end": 6334.69, + "probability": 0.7956 + }, + { + "start": 6335.65, + "end": 6336.33, + "probability": 0.6552 + }, + { + "start": 6337.57, + "end": 6338.17, + "probability": 0.739 + }, + { + "start": 6340.3, + "end": 6345.55, + "probability": 0.8981 + }, + { + "start": 6348.91, + "end": 6350.61, + "probability": 0.515 + }, + { + "start": 6350.63, + "end": 6351.93, + "probability": 0.8733 + }, + { + "start": 6352.55, + "end": 6353.07, + "probability": 0.6167 + }, + { + "start": 6354.47, + "end": 6357.27, + "probability": 0.9924 + }, + { + "start": 6358.35, + "end": 6362.69, + "probability": 0.9942 + }, + { + "start": 6363.05, + "end": 6368.13, + "probability": 0.9695 + }, + { + "start": 6368.13, + "end": 6373.05, + "probability": 0.9773 + }, + { + "start": 6374.27, + "end": 6378.43, + "probability": 0.9424 + }, + { + "start": 6379.69, + "end": 6380.13, + "probability": 0.5263 + }, + { + "start": 6380.27, + "end": 6381.35, + "probability": 0.667 + }, + { + "start": 6381.63, + "end": 6386.13, + "probability": 0.7312 + }, + { + "start": 6386.27, + "end": 6386.47, + "probability": 0.3361 + }, + { + "start": 6386.91, + "end": 6387.29, + "probability": 0.9648 + }, + { + "start": 6387.63, + "end": 6388.29, + "probability": 0.8767 + }, + { + "start": 6388.51, + "end": 6390.15, + "probability": 0.4648 + }, + { + "start": 6390.43, + "end": 6392.63, + "probability": 0.8719 + }, + { + "start": 6392.67, + "end": 6393.73, + "probability": 0.9978 + }, + { + "start": 6394.53, + "end": 6396.59, + "probability": 0.9684 + }, + { + "start": 6398.19, + "end": 6404.37, + "probability": 0.9827 + }, + { + "start": 6405.91, + "end": 6411.05, + "probability": 0.9761 + }, + { + "start": 6411.67, + "end": 6414.31, + "probability": 0.9758 + }, + { + "start": 6414.37, + "end": 6416.17, + "probability": 0.8688 + }, + { + "start": 6416.77, + "end": 6422.13, + "probability": 0.8089 + }, + { + "start": 6423.39, + "end": 6424.03, + "probability": 0.5337 + }, + { + "start": 6424.23, + "end": 6426.65, + "probability": 0.9958 + }, + { + "start": 6426.65, + "end": 6431.17, + "probability": 0.9979 + }, + { + "start": 6431.73, + "end": 6433.79, + "probability": 0.9993 + }, + { + "start": 6433.95, + "end": 6434.29, + "probability": 0.5882 + }, + { + "start": 6434.59, + "end": 6437.04, + "probability": 0.7341 + }, + { + "start": 6437.33, + "end": 6442.77, + "probability": 0.9897 + }, + { + "start": 6443.35, + "end": 6444.27, + "probability": 0.8523 + }, + { + "start": 6446.07, + "end": 6448.97, + "probability": 0.856 + }, + { + "start": 6450.05, + "end": 6453.41, + "probability": 0.979 + }, + { + "start": 6454.97, + "end": 6459.99, + "probability": 0.9475 + }, + { + "start": 6460.05, + "end": 6460.97, + "probability": 0.5802 + }, + { + "start": 6461.23, + "end": 6461.53, + "probability": 0.5632 + }, + { + "start": 6461.67, + "end": 6467.27, + "probability": 0.9917 + }, + { + "start": 6467.95, + "end": 6470.45, + "probability": 0.9296 + }, + { + "start": 6471.39, + "end": 6472.21, + "probability": 0.6711 + }, + { + "start": 6472.29, + "end": 6472.47, + "probability": 0.7454 + }, + { + "start": 6472.81, + "end": 6475.91, + "probability": 0.876 + }, + { + "start": 6476.51, + "end": 6477.23, + "probability": 0.9964 + }, + { + "start": 6477.91, + "end": 6480.33, + "probability": 0.8716 + }, + { + "start": 6481.13, + "end": 6481.97, + "probability": 0.8264 + }, + { + "start": 6482.59, + "end": 6487.47, + "probability": 0.9742 + }, + { + "start": 6489.21, + "end": 6491.05, + "probability": 0.9951 + }, + { + "start": 6491.81, + "end": 6492.07, + "probability": 0.9927 + }, + { + "start": 6495.13, + "end": 6496.27, + "probability": 0.7697 + }, + { + "start": 6496.43, + "end": 6498.93, + "probability": 0.9968 + }, + { + "start": 6499.17, + "end": 6502.61, + "probability": 0.8402 + }, + { + "start": 6504.19, + "end": 6505.53, + "probability": 0.9767 + }, + { + "start": 6505.61, + "end": 6507.03, + "probability": 0.8413 + }, + { + "start": 6507.69, + "end": 6510.47, + "probability": 0.7969 + }, + { + "start": 6512.41, + "end": 6514.05, + "probability": 0.6447 + }, + { + "start": 6515.69, + "end": 6517.93, + "probability": 0.9614 + }, + { + "start": 6520.23, + "end": 6521.87, + "probability": 0.9976 + }, + { + "start": 6523.23, + "end": 6524.59, + "probability": 0.9779 + }, + { + "start": 6524.63, + "end": 6527.33, + "probability": 0.9964 + }, + { + "start": 6527.37, + "end": 6527.87, + "probability": 0.5926 + }, + { + "start": 6528.33, + "end": 6530.57, + "probability": 0.996 + }, + { + "start": 6533.33, + "end": 6534.13, + "probability": 0.7221 + }, + { + "start": 6534.73, + "end": 6536.29, + "probability": 0.9 + }, + { + "start": 6537.23, + "end": 6539.13, + "probability": 0.9321 + }, + { + "start": 6539.55, + "end": 6540.13, + "probability": 0.63 + }, + { + "start": 6541.59, + "end": 6544.66, + "probability": 0.9863 + }, + { + "start": 6545.79, + "end": 6552.43, + "probability": 0.9782 + }, + { + "start": 6553.95, + "end": 6557.31, + "probability": 0.9684 + }, + { + "start": 6558.91, + "end": 6560.05, + "probability": 0.87 + }, + { + "start": 6560.16, + "end": 6560.77, + "probability": 0.6856 + }, + { + "start": 6561.05, + "end": 6564.19, + "probability": 0.9897 + }, + { + "start": 6564.99, + "end": 6566.13, + "probability": 0.9973 + }, + { + "start": 6569.81, + "end": 6574.87, + "probability": 0.9958 + }, + { + "start": 6575.03, + "end": 6578.39, + "probability": 0.8784 + }, + { + "start": 6582.07, + "end": 6584.05, + "probability": 0.8413 + }, + { + "start": 6584.67, + "end": 6590.49, + "probability": 0.9876 + }, + { + "start": 6594.31, + "end": 6594.97, + "probability": 0.7942 + }, + { + "start": 6595.13, + "end": 6595.81, + "probability": 0.9008 + }, + { + "start": 6595.91, + "end": 6595.97, + "probability": 0.7998 + }, + { + "start": 6596.07, + "end": 6596.75, + "probability": 0.734 + }, + { + "start": 6596.91, + "end": 6598.35, + "probability": 0.9856 + }, + { + "start": 6598.71, + "end": 6600.39, + "probability": 0.8194 + }, + { + "start": 6601.61, + "end": 6602.25, + "probability": 0.8696 + }, + { + "start": 6603.23, + "end": 6604.41, + "probability": 0.9637 + }, + { + "start": 6605.47, + "end": 6611.63, + "probability": 0.9732 + }, + { + "start": 6612.65, + "end": 6615.11, + "probability": 0.8718 + }, + { + "start": 6615.69, + "end": 6616.41, + "probability": 0.8258 + }, + { + "start": 6618.94, + "end": 6623.91, + "probability": 0.9862 + }, + { + "start": 6624.59, + "end": 6628.71, + "probability": 0.7304 + }, + { + "start": 6629.51, + "end": 6633.33, + "probability": 0.8459 + }, + { + "start": 6634.77, + "end": 6637.89, + "probability": 0.9528 + }, + { + "start": 6638.69, + "end": 6643.43, + "probability": 0.709 + }, + { + "start": 6643.93, + "end": 6648.23, + "probability": 0.9844 + }, + { + "start": 6648.83, + "end": 6653.67, + "probability": 0.9985 + }, + { + "start": 6654.23, + "end": 6654.91, + "probability": 0.853 + }, + { + "start": 6655.55, + "end": 6656.95, + "probability": 0.949 + }, + { + "start": 6657.97, + "end": 6659.9, + "probability": 0.9063 + }, + { + "start": 6660.23, + "end": 6661.93, + "probability": 0.8329 + }, + { + "start": 6662.59, + "end": 6665.33, + "probability": 0.7789 + }, + { + "start": 6665.55, + "end": 6666.83, + "probability": 0.8995 + }, + { + "start": 6666.93, + "end": 6667.39, + "probability": 0.5902 + }, + { + "start": 6667.95, + "end": 6668.61, + "probability": 0.639 + }, + { + "start": 6668.63, + "end": 6670.57, + "probability": 0.8966 + }, + { + "start": 6670.71, + "end": 6676.97, + "probability": 0.7559 + }, + { + "start": 6677.41, + "end": 6677.95, + "probability": 0.7468 + }, + { + "start": 6678.47, + "end": 6681.7, + "probability": 0.7196 + }, + { + "start": 6683.25, + "end": 6685.37, + "probability": 0.9966 + }, + { + "start": 6685.73, + "end": 6686.55, + "probability": 0.6727 + }, + { + "start": 6686.57, + "end": 6687.45, + "probability": 0.9705 + }, + { + "start": 6687.75, + "end": 6688.07, + "probability": 0.8397 + }, + { + "start": 6699.81, + "end": 6701.93, + "probability": 0.8811 + }, + { + "start": 6703.77, + "end": 6706.79, + "probability": 0.6474 + }, + { + "start": 6707.85, + "end": 6711.91, + "probability": 0.9942 + }, + { + "start": 6713.47, + "end": 6717.77, + "probability": 0.8888 + }, + { + "start": 6718.69, + "end": 6719.13, + "probability": 0.4955 + }, + { + "start": 6721.37, + "end": 6723.33, + "probability": 0.8998 + }, + { + "start": 6724.39, + "end": 6725.15, + "probability": 0.8398 + }, + { + "start": 6725.77, + "end": 6726.53, + "probability": 0.4419 + }, + { + "start": 6728.03, + "end": 6730.53, + "probability": 0.9659 + }, + { + "start": 6731.41, + "end": 6733.83, + "probability": 0.9822 + }, + { + "start": 6734.27, + "end": 6735.06, + "probability": 0.9744 + }, + { + "start": 6735.47, + "end": 6736.87, + "probability": 0.9565 + }, + { + "start": 6738.67, + "end": 6742.95, + "probability": 0.9656 + }, + { + "start": 6744.09, + "end": 6745.73, + "probability": 0.9974 + }, + { + "start": 6746.41, + "end": 6747.13, + "probability": 0.8133 + }, + { + "start": 6747.59, + "end": 6748.27, + "probability": 0.7381 + }, + { + "start": 6748.87, + "end": 6750.53, + "probability": 0.9579 + }, + { + "start": 6751.51, + "end": 6753.65, + "probability": 0.9771 + }, + { + "start": 6754.03, + "end": 6756.79, + "probability": 0.9746 + }, + { + "start": 6757.75, + "end": 6758.49, + "probability": 0.8629 + }, + { + "start": 6758.79, + "end": 6760.49, + "probability": 0.9063 + }, + { + "start": 6760.69, + "end": 6763.35, + "probability": 0.9221 + }, + { + "start": 6764.05, + "end": 6766.39, + "probability": 0.992 + }, + { + "start": 6767.79, + "end": 6769.03, + "probability": 0.9971 + }, + { + "start": 6769.91, + "end": 6772.55, + "probability": 0.9945 + }, + { + "start": 6773.71, + "end": 6775.63, + "probability": 0.9814 + }, + { + "start": 6776.45, + "end": 6778.21, + "probability": 0.9805 + }, + { + "start": 6778.39, + "end": 6782.39, + "probability": 0.9204 + }, + { + "start": 6782.93, + "end": 6784.81, + "probability": 0.9701 + }, + { + "start": 6786.35, + "end": 6789.67, + "probability": 0.9287 + }, + { + "start": 6790.91, + "end": 6793.99, + "probability": 0.9973 + }, + { + "start": 6795.25, + "end": 6795.99, + "probability": 0.6492 + }, + { + "start": 6797.77, + "end": 6801.47, + "probability": 0.996 + }, + { + "start": 6802.01, + "end": 6803.07, + "probability": 0.8091 + }, + { + "start": 6804.25, + "end": 6807.99, + "probability": 0.9124 + }, + { + "start": 6808.85, + "end": 6810.63, + "probability": 0.9146 + }, + { + "start": 6811.11, + "end": 6814.33, + "probability": 0.9323 + }, + { + "start": 6815.11, + "end": 6816.54, + "probability": 0.9421 + }, + { + "start": 6817.07, + "end": 6820.83, + "probability": 0.8687 + }, + { + "start": 6821.35, + "end": 6821.63, + "probability": 0.8205 + }, + { + "start": 6823.79, + "end": 6826.21, + "probability": 0.9597 + }, + { + "start": 6826.29, + "end": 6827.75, + "probability": 0.8931 + }, + { + "start": 6828.25, + "end": 6831.49, + "probability": 0.9904 + }, + { + "start": 6833.67, + "end": 6836.16, + "probability": 0.9032 + }, + { + "start": 6836.89, + "end": 6838.57, + "probability": 0.9095 + }, + { + "start": 6839.55, + "end": 6840.05, + "probability": 0.6133 + }, + { + "start": 6841.91, + "end": 6842.77, + "probability": 0.0879 + }, + { + "start": 6842.77, + "end": 6844.95, + "probability": 0.8582 + }, + { + "start": 6846.63, + "end": 6848.99, + "probability": 0.2164 + }, + { + "start": 6849.43, + "end": 6850.23, + "probability": 0.047 + }, + { + "start": 6850.23, + "end": 6851.07, + "probability": 0.0316 + }, + { + "start": 6851.65, + "end": 6852.89, + "probability": 0.8563 + }, + { + "start": 6855.63, + "end": 6859.83, + "probability": 0.7802 + }, + { + "start": 6859.87, + "end": 6861.29, + "probability": 0.9562 + }, + { + "start": 6862.63, + "end": 6867.85, + "probability": 0.9966 + }, + { + "start": 6868.05, + "end": 6870.37, + "probability": 0.9938 + }, + { + "start": 6871.03, + "end": 6874.05, + "probability": 0.8984 + }, + { + "start": 6875.47, + "end": 6878.11, + "probability": 0.9937 + }, + { + "start": 6878.21, + "end": 6880.55, + "probability": 0.9976 + }, + { + "start": 6880.91, + "end": 6884.71, + "probability": 0.9624 + }, + { + "start": 6885.61, + "end": 6889.01, + "probability": 0.9938 + }, + { + "start": 6889.79, + "end": 6891.87, + "probability": 0.8831 + }, + { + "start": 6893.03, + "end": 6896.87, + "probability": 0.9875 + }, + { + "start": 6897.01, + "end": 6898.39, + "probability": 0.9657 + }, + { + "start": 6899.21, + "end": 6899.47, + "probability": 0.9462 + }, + { + "start": 6899.57, + "end": 6904.47, + "probability": 0.9871 + }, + { + "start": 6905.45, + "end": 6907.33, + "probability": 0.9976 + }, + { + "start": 6908.09, + "end": 6912.68, + "probability": 0.9971 + }, + { + "start": 6912.75, + "end": 6917.15, + "probability": 0.9992 + }, + { + "start": 6917.93, + "end": 6919.09, + "probability": 0.8105 + }, + { + "start": 6919.71, + "end": 6924.21, + "probability": 0.9984 + }, + { + "start": 6924.57, + "end": 6926.59, + "probability": 0.9249 + }, + { + "start": 6927.05, + "end": 6931.43, + "probability": 0.9542 + }, + { + "start": 6932.59, + "end": 6933.99, + "probability": 0.9757 + }, + { + "start": 6934.75, + "end": 6935.47, + "probability": 0.9795 + }, + { + "start": 6935.67, + "end": 6937.61, + "probability": 0.9974 + }, + { + "start": 6938.05, + "end": 6945.29, + "probability": 0.9981 + }, + { + "start": 6945.95, + "end": 6949.65, + "probability": 0.998 + }, + { + "start": 6950.09, + "end": 6954.33, + "probability": 0.9831 + }, + { + "start": 6954.41, + "end": 6955.33, + "probability": 0.9861 + }, + { + "start": 6955.53, + "end": 6956.26, + "probability": 0.9891 + }, + { + "start": 6956.65, + "end": 6958.11, + "probability": 0.9966 + }, + { + "start": 6958.45, + "end": 6959.65, + "probability": 0.9628 + }, + { + "start": 6959.77, + "end": 6961.01, + "probability": 0.9888 + }, + { + "start": 6961.53, + "end": 6963.03, + "probability": 0.8649 + }, + { + "start": 6963.09, + "end": 6966.31, + "probability": 0.9886 + }, + { + "start": 6966.61, + "end": 6967.49, + "probability": 0.8752 + }, + { + "start": 6968.13, + "end": 6970.89, + "probability": 0.9753 + }, + { + "start": 6971.31, + "end": 6975.95, + "probability": 0.9958 + }, + { + "start": 6976.99, + "end": 6978.23, + "probability": 0.962 + }, + { + "start": 6978.79, + "end": 6981.63, + "probability": 0.9729 + }, + { + "start": 6982.93, + "end": 6985.05, + "probability": 0.8891 + }, + { + "start": 6986.11, + "end": 6989.93, + "probability": 0.9967 + }, + { + "start": 6990.79, + "end": 6992.43, + "probability": 0.9717 + }, + { + "start": 6993.29, + "end": 6994.57, + "probability": 0.9924 + }, + { + "start": 6994.71, + "end": 6996.59, + "probability": 0.9871 + }, + { + "start": 6997.63, + "end": 6999.59, + "probability": 0.9279 + }, + { + "start": 7000.45, + "end": 7002.53, + "probability": 0.8696 + }, + { + "start": 7002.85, + "end": 7006.05, + "probability": 0.9653 + }, + { + "start": 7006.45, + "end": 7008.92, + "probability": 0.9836 + }, + { + "start": 7009.33, + "end": 7010.71, + "probability": 0.9122 + }, + { + "start": 7011.07, + "end": 7017.13, + "probability": 0.9478 + }, + { + "start": 7017.61, + "end": 7018.77, + "probability": 0.7975 + }, + { + "start": 7019.83, + "end": 7021.27, + "probability": 0.9825 + }, + { + "start": 7022.23, + "end": 7023.09, + "probability": 0.9697 + }, + { + "start": 7023.81, + "end": 7027.25, + "probability": 0.9104 + }, + { + "start": 7027.99, + "end": 7028.57, + "probability": 0.8697 + }, + { + "start": 7028.83, + "end": 7029.25, + "probability": 0.8335 + }, + { + "start": 7029.59, + "end": 7031.44, + "probability": 0.8607 + }, + { + "start": 7031.55, + "end": 7035.97, + "probability": 0.9739 + }, + { + "start": 7037.01, + "end": 7039.03, + "probability": 0.9092 + }, + { + "start": 7039.43, + "end": 7055.99, + "probability": 0.646 + }, + { + "start": 7056.61, + "end": 7056.69, + "probability": 0.532 + }, + { + "start": 7056.69, + "end": 7057.39, + "probability": 0.1665 + }, + { + "start": 7058.55, + "end": 7059.83, + "probability": 0.7227 + }, + { + "start": 7061.01, + "end": 7063.45, + "probability": 0.9773 + }, + { + "start": 7064.49, + "end": 7067.53, + "probability": 0.976 + }, + { + "start": 7068.75, + "end": 7070.91, + "probability": 0.9951 + }, + { + "start": 7070.98, + "end": 7074.61, + "probability": 0.9942 + }, + { + "start": 7074.65, + "end": 7075.79, + "probability": 0.894 + }, + { + "start": 7076.51, + "end": 7077.18, + "probability": 0.9805 + }, + { + "start": 7077.73, + "end": 7080.63, + "probability": 0.9408 + }, + { + "start": 7080.75, + "end": 7082.01, + "probability": 0.9805 + }, + { + "start": 7082.91, + "end": 7084.26, + "probability": 0.9932 + }, + { + "start": 7085.33, + "end": 7088.17, + "probability": 0.9324 + }, + { + "start": 7088.91, + "end": 7090.47, + "probability": 0.9183 + }, + { + "start": 7091.67, + "end": 7093.73, + "probability": 0.9336 + }, + { + "start": 7095.74, + "end": 7098.69, + "probability": 0.9958 + }, + { + "start": 7098.81, + "end": 7100.02, + "probability": 0.7223 + }, + { + "start": 7100.91, + "end": 7101.93, + "probability": 0.7141 + }, + { + "start": 7102.27, + "end": 7104.14, + "probability": 0.9367 + }, + { + "start": 7105.29, + "end": 7105.71, + "probability": 0.8947 + }, + { + "start": 7105.73, + "end": 7106.67, + "probability": 0.6818 + }, + { + "start": 7107.09, + "end": 7109.57, + "probability": 0.9471 + }, + { + "start": 7109.77, + "end": 7110.83, + "probability": 0.7297 + }, + { + "start": 7111.37, + "end": 7112.49, + "probability": 0.988 + }, + { + "start": 7113.25, + "end": 7114.23, + "probability": 0.4669 + }, + { + "start": 7114.33, + "end": 7115.7, + "probability": 0.9614 + }, + { + "start": 7116.03, + "end": 7116.7, + "probability": 0.9927 + }, + { + "start": 7118.09, + "end": 7118.52, + "probability": 0.9494 + }, + { + "start": 7118.85, + "end": 7119.63, + "probability": 0.9668 + }, + { + "start": 7120.33, + "end": 7121.25, + "probability": 0.6933 + }, + { + "start": 7121.91, + "end": 7123.63, + "probability": 0.8592 + }, + { + "start": 7123.67, + "end": 7124.67, + "probability": 0.9097 + }, + { + "start": 7124.81, + "end": 7125.63, + "probability": 0.8188 + }, + { + "start": 7126.51, + "end": 7127.25, + "probability": 0.9896 + }, + { + "start": 7128.03, + "end": 7130.97, + "probability": 0.998 + }, + { + "start": 7131.61, + "end": 7132.61, + "probability": 0.8813 + }, + { + "start": 7133.39, + "end": 7136.77, + "probability": 0.9798 + }, + { + "start": 7137.67, + "end": 7140.0, + "probability": 0.7798 + }, + { + "start": 7140.89, + "end": 7144.51, + "probability": 0.9963 + }, + { + "start": 7144.89, + "end": 7144.95, + "probability": 0.5187 + }, + { + "start": 7145.09, + "end": 7145.89, + "probability": 0.9622 + }, + { + "start": 7146.61, + "end": 7149.79, + "probability": 0.9921 + }, + { + "start": 7150.79, + "end": 7153.89, + "probability": 0.9756 + }, + { + "start": 7154.09, + "end": 7154.49, + "probability": 0.9262 + }, + { + "start": 7155.13, + "end": 7156.33, + "probability": 0.9897 + }, + { + "start": 7157.67, + "end": 7160.75, + "probability": 0.6659 + }, + { + "start": 7161.45, + "end": 7165.83, + "probability": 0.8725 + }, + { + "start": 7166.59, + "end": 7167.91, + "probability": 0.9239 + }, + { + "start": 7168.59, + "end": 7172.19, + "probability": 0.9915 + }, + { + "start": 7172.89, + "end": 7174.17, + "probability": 0.9673 + }, + { + "start": 7174.27, + "end": 7176.29, + "probability": 0.9849 + }, + { + "start": 7177.37, + "end": 7179.31, + "probability": 0.9709 + }, + { + "start": 7179.45, + "end": 7182.51, + "probability": 0.7301 + }, + { + "start": 7183.03, + "end": 7185.45, + "probability": 0.9629 + }, + { + "start": 7185.59, + "end": 7186.58, + "probability": 0.9824 + }, + { + "start": 7186.73, + "end": 7187.39, + "probability": 0.2955 + }, + { + "start": 7187.47, + "end": 7187.77, + "probability": 0.4228 + }, + { + "start": 7187.89, + "end": 7188.77, + "probability": 0.8247 + }, + { + "start": 7189.19, + "end": 7189.93, + "probability": 0.5331 + }, + { + "start": 7189.97, + "end": 7191.17, + "probability": 0.994 + }, + { + "start": 7191.53, + "end": 7192.73, + "probability": 0.9166 + }, + { + "start": 7192.81, + "end": 7194.85, + "probability": 0.9874 + }, + { + "start": 7195.51, + "end": 7199.83, + "probability": 0.9627 + }, + { + "start": 7200.57, + "end": 7200.95, + "probability": 0.8063 + }, + { + "start": 7201.15, + "end": 7204.36, + "probability": 0.8937 + }, + { + "start": 7204.85, + "end": 7206.94, + "probability": 0.8273 + }, + { + "start": 7207.35, + "end": 7209.15, + "probability": 0.9617 + }, + { + "start": 7209.69, + "end": 7211.27, + "probability": 0.9408 + }, + { + "start": 7212.35, + "end": 7214.89, + "probability": 0.9346 + }, + { + "start": 7216.03, + "end": 7219.57, + "probability": 0.9797 + }, + { + "start": 7220.09, + "end": 7223.33, + "probability": 0.996 + }, + { + "start": 7223.67, + "end": 7226.31, + "probability": 0.8715 + }, + { + "start": 7227.13, + "end": 7229.65, + "probability": 0.9499 + }, + { + "start": 7231.32, + "end": 7234.29, + "probability": 0.9786 + }, + { + "start": 7235.47, + "end": 7236.03, + "probability": 0.9844 + }, + { + "start": 7236.79, + "end": 7239.15, + "probability": 0.9907 + }, + { + "start": 7239.95, + "end": 7241.17, + "probability": 0.905 + }, + { + "start": 7242.03, + "end": 7242.99, + "probability": 0.4676 + }, + { + "start": 7243.61, + "end": 7245.91, + "probability": 0.7218 + }, + { + "start": 7246.53, + "end": 7248.49, + "probability": 0.9722 + }, + { + "start": 7248.65, + "end": 7251.25, + "probability": 0.8133 + }, + { + "start": 7252.27, + "end": 7255.09, + "probability": 0.9502 + }, + { + "start": 7256.07, + "end": 7259.31, + "probability": 0.974 + }, + { + "start": 7260.67, + "end": 7266.41, + "probability": 0.9469 + }, + { + "start": 7267.09, + "end": 7269.53, + "probability": 0.9629 + }, + { + "start": 7270.21, + "end": 7271.77, + "probability": 0.9973 + }, + { + "start": 7272.09, + "end": 7273.53, + "probability": 0.9807 + }, + { + "start": 7274.33, + "end": 7277.75, + "probability": 0.9198 + }, + { + "start": 7277.91, + "end": 7279.63, + "probability": 0.9689 + }, + { + "start": 7280.45, + "end": 7283.73, + "probability": 0.8259 + }, + { + "start": 7284.71, + "end": 7287.49, + "probability": 0.995 + }, + { + "start": 7288.71, + "end": 7291.21, + "probability": 0.9971 + }, + { + "start": 7291.55, + "end": 7292.52, + "probability": 0.8585 + }, + { + "start": 7293.95, + "end": 7295.57, + "probability": 0.9866 + }, + { + "start": 7296.47, + "end": 7298.27, + "probability": 0.937 + }, + { + "start": 7298.39, + "end": 7302.33, + "probability": 0.9502 + }, + { + "start": 7303.05, + "end": 7309.41, + "probability": 0.9547 + }, + { + "start": 7309.41, + "end": 7315.07, + "probability": 0.9452 + }, + { + "start": 7315.65, + "end": 7317.97, + "probability": 0.9976 + }, + { + "start": 7318.21, + "end": 7319.83, + "probability": 0.7814 + }, + { + "start": 7320.43, + "end": 7322.03, + "probability": 0.8327 + }, + { + "start": 7322.77, + "end": 7323.33, + "probability": 0.8149 + }, + { + "start": 7323.87, + "end": 7324.97, + "probability": 0.9498 + }, + { + "start": 7325.57, + "end": 7329.19, + "probability": 0.9106 + }, + { + "start": 7329.61, + "end": 7331.81, + "probability": 0.9646 + }, + { + "start": 7332.43, + "end": 7335.31, + "probability": 0.9912 + }, + { + "start": 7336.14, + "end": 7338.22, + "probability": 0.8636 + }, + { + "start": 7338.79, + "end": 7341.19, + "probability": 0.9054 + }, + { + "start": 7341.27, + "end": 7342.49, + "probability": 0.8472 + }, + { + "start": 7342.99, + "end": 7344.07, + "probability": 0.9279 + }, + { + "start": 7344.19, + "end": 7345.05, + "probability": 0.8854 + }, + { + "start": 7345.59, + "end": 7347.79, + "probability": 0.9971 + }, + { + "start": 7347.99, + "end": 7349.5, + "probability": 0.8809 + }, + { + "start": 7349.91, + "end": 7350.91, + "probability": 0.9088 + }, + { + "start": 7351.67, + "end": 7354.93, + "probability": 0.9927 + }, + { + "start": 7355.05, + "end": 7357.01, + "probability": 0.9993 + }, + { + "start": 7357.33, + "end": 7358.49, + "probability": 0.8685 + }, + { + "start": 7358.57, + "end": 7359.27, + "probability": 0.757 + }, + { + "start": 7359.41, + "end": 7360.21, + "probability": 0.7981 + }, + { + "start": 7360.51, + "end": 7362.33, + "probability": 0.5928 + }, + { + "start": 7363.41, + "end": 7364.7, + "probability": 0.3176 + }, + { + "start": 7365.47, + "end": 7366.37, + "probability": 0.5471 + }, + { + "start": 7366.53, + "end": 7369.15, + "probability": 0.9769 + }, + { + "start": 7369.23, + "end": 7369.73, + "probability": 0.8369 + }, + { + "start": 7369.95, + "end": 7372.74, + "probability": 0.8838 + }, + { + "start": 7373.07, + "end": 7376.53, + "probability": 0.7909 + }, + { + "start": 7377.23, + "end": 7380.47, + "probability": 0.92 + }, + { + "start": 7380.47, + "end": 7383.21, + "probability": 0.2967 + }, + { + "start": 7383.31, + "end": 7385.45, + "probability": 0.1742 + }, + { + "start": 7386.05, + "end": 7387.35, + "probability": 0.7016 + }, + { + "start": 7388.27, + "end": 7390.95, + "probability": 0.9881 + }, + { + "start": 7391.79, + "end": 7393.45, + "probability": 0.9777 + }, + { + "start": 7393.57, + "end": 7396.83, + "probability": 0.9708 + }, + { + "start": 7397.43, + "end": 7398.05, + "probability": 0.7629 + }, + { + "start": 7398.65, + "end": 7399.61, + "probability": 0.8052 + }, + { + "start": 7400.51, + "end": 7400.65, + "probability": 0.071 + }, + { + "start": 7416.87, + "end": 7417.46, + "probability": 0.3929 + }, + { + "start": 7417.81, + "end": 7419.31, + "probability": 0.3647 + }, + { + "start": 7419.63, + "end": 7423.47, + "probability": 0.96 + }, + { + "start": 7424.09, + "end": 7424.85, + "probability": 0.9277 + }, + { + "start": 7425.11, + "end": 7425.63, + "probability": 0.9265 + }, + { + "start": 7425.75, + "end": 7427.83, + "probability": 0.9834 + }, + { + "start": 7428.31, + "end": 7431.51, + "probability": 0.9536 + }, + { + "start": 7431.57, + "end": 7432.23, + "probability": 0.7059 + }, + { + "start": 7432.31, + "end": 7433.69, + "probability": 0.4732 + }, + { + "start": 7434.29, + "end": 7435.85, + "probability": 0.5997 + }, + { + "start": 7436.61, + "end": 7438.01, + "probability": 0.9945 + }, + { + "start": 7438.75, + "end": 7440.75, + "probability": 0.9213 + }, + { + "start": 7441.15, + "end": 7441.71, + "probability": 0.4571 + }, + { + "start": 7441.85, + "end": 7442.05, + "probability": 0.7406 + }, + { + "start": 7455.33, + "end": 7455.33, + "probability": 0.0812 + }, + { + "start": 7455.33, + "end": 7456.53, + "probability": 0.3866 + }, + { + "start": 7458.41, + "end": 7459.47, + "probability": 0.3246 + }, + { + "start": 7460.09, + "end": 7462.05, + "probability": 0.9876 + }, + { + "start": 7462.63, + "end": 7465.76, + "probability": 0.9247 + }, + { + "start": 7466.43, + "end": 7469.49, + "probability": 0.9131 + }, + { + "start": 7470.05, + "end": 7474.52, + "probability": 0.3754 + }, + { + "start": 7481.29, + "end": 7482.13, + "probability": 0.3823 + }, + { + "start": 7485.57, + "end": 7487.27, + "probability": 0.289 + }, + { + "start": 7487.27, + "end": 7488.97, + "probability": 0.9949 + }, + { + "start": 7489.53, + "end": 7490.75, + "probability": 0.8157 + }, + { + "start": 7491.57, + "end": 7494.35, + "probability": 0.9788 + }, + { + "start": 7495.59, + "end": 7496.43, + "probability": 0.7491 + }, + { + "start": 7496.51, + "end": 7498.03, + "probability": 0.7834 + }, + { + "start": 7498.81, + "end": 7515.51, + "probability": 0.9568 + }, + { + "start": 7515.51, + "end": 7515.51, + "probability": 0.6929 + }, + { + "start": 7515.51, + "end": 7517.01, + "probability": 0.5365 + }, + { + "start": 7518.38, + "end": 7521.45, + "probability": 0.3206 + }, + { + "start": 7522.23, + "end": 7526.05, + "probability": 0.9158 + }, + { + "start": 7526.71, + "end": 7529.69, + "probability": 0.9804 + }, + { + "start": 7529.85, + "end": 7531.43, + "probability": 0.9219 + }, + { + "start": 7532.11, + "end": 7532.91, + "probability": 0.5835 + }, + { + "start": 7533.51, + "end": 7534.17, + "probability": 0.518 + }, + { + "start": 7547.83, + "end": 7547.97, + "probability": 0.0825 + }, + { + "start": 7547.97, + "end": 7549.47, + "probability": 0.4966 + }, + { + "start": 7552.63, + "end": 7553.59, + "probability": 0.2746 + }, + { + "start": 7553.77, + "end": 7556.79, + "probability": 0.8508 + }, + { + "start": 7556.95, + "end": 7560.5, + "probability": 0.9253 + }, + { + "start": 7561.37, + "end": 7562.05, + "probability": 0.4096 + }, + { + "start": 7562.21, + "end": 7562.67, + "probability": 0.684 + }, + { + "start": 7564.75, + "end": 7566.51, + "probability": 0.4343 + }, + { + "start": 7576.83, + "end": 7576.87, + "probability": 0.1375 + }, + { + "start": 7576.87, + "end": 7582.91, + "probability": 0.5269 + }, + { + "start": 7582.91, + "end": 7585.65, + "probability": 0.9556 + }, + { + "start": 7585.79, + "end": 7587.41, + "probability": 0.8118 + }, + { + "start": 7588.11, + "end": 7591.07, + "probability": 0.7509 + }, + { + "start": 7593.31, + "end": 7597.49, + "probability": 0.7637 + }, + { + "start": 7597.49, + "end": 7599.89, + "probability": 0.466 + }, + { + "start": 7600.27, + "end": 7604.75, + "probability": 0.426 + }, + { + "start": 7604.87, + "end": 7605.29, + "probability": 0.8872 + }, + { + "start": 7606.67, + "end": 7607.25, + "probability": 0.0326 + }, + { + "start": 7619.95, + "end": 7619.95, + "probability": 0.0264 + }, + { + "start": 7619.95, + "end": 7619.95, + "probability": 0.0319 + }, + { + "start": 7619.95, + "end": 7620.03, + "probability": 0.1155 + }, + { + "start": 7620.03, + "end": 7621.49, + "probability": 0.2501 + }, + { + "start": 7623.37, + "end": 7625.15, + "probability": 0.3046 + }, + { + "start": 7625.15, + "end": 7628.29, + "probability": 0.9363 + }, + { + "start": 7629.65, + "end": 7631.73, + "probability": 0.9998 + }, + { + "start": 7632.01, + "end": 7633.93, + "probability": 0.8302 + }, + { + "start": 7633.93, + "end": 7636.79, + "probability": 0.5472 + }, + { + "start": 7636.87, + "end": 7640.35, + "probability": 0.8766 + }, + { + "start": 7640.63, + "end": 7641.99, + "probability": 0.0774 + }, + { + "start": 7642.15, + "end": 7646.29, + "probability": 0.8117 + }, + { + "start": 7646.93, + "end": 7647.47, + "probability": 0.2239 + }, + { + "start": 7647.47, + "end": 7650.01, + "probability": 0.9779 + }, + { + "start": 7663.23, + "end": 7665.47, + "probability": 0.7101 + }, + { + "start": 7668.21, + "end": 7670.83, + "probability": 0.4507 + }, + { + "start": 7671.11, + "end": 7671.11, + "probability": 0.4341 + }, + { + "start": 7671.15, + "end": 7671.65, + "probability": 0.8246 + }, + { + "start": 7671.81, + "end": 7672.81, + "probability": 0.9064 + }, + { + "start": 7673.37, + "end": 7677.15, + "probability": 0.9883 + }, + { + "start": 7678.23, + "end": 7678.69, + "probability": 0.2738 + }, + { + "start": 7678.85, + "end": 7682.29, + "probability": 0.98 + }, + { + "start": 7682.41, + "end": 7684.37, + "probability": 0.1461 + }, + { + "start": 7685.05, + "end": 7686.73, + "probability": 0.8179 + }, + { + "start": 7687.27, + "end": 7690.67, + "probability": 0.841 + }, + { + "start": 7692.29, + "end": 7702.65, + "probability": 0.9861 + }, + { + "start": 7703.33, + "end": 7707.67, + "probability": 0.9989 + }, + { + "start": 7707.75, + "end": 7709.89, + "probability": 0.9019 + }, + { + "start": 7710.61, + "end": 7714.23, + "probability": 0.992 + }, + { + "start": 7715.65, + "end": 7717.05, + "probability": 0.9508 + }, + { + "start": 7718.91, + "end": 7723.07, + "probability": 0.9727 + }, + { + "start": 7723.97, + "end": 7731.33, + "probability": 0.9914 + }, + { + "start": 7731.33, + "end": 7737.01, + "probability": 0.9967 + }, + { + "start": 7737.93, + "end": 7742.41, + "probability": 0.9937 + }, + { + "start": 7742.93, + "end": 7743.87, + "probability": 0.7518 + }, + { + "start": 7744.03, + "end": 7745.27, + "probability": 0.7979 + }, + { + "start": 7745.49, + "end": 7747.07, + "probability": 0.9523 + }, + { + "start": 7747.81, + "end": 7750.35, + "probability": 0.9331 + }, + { + "start": 7750.91, + "end": 7752.91, + "probability": 0.9691 + }, + { + "start": 7753.51, + "end": 7757.73, + "probability": 0.9967 + }, + { + "start": 7757.73, + "end": 7761.41, + "probability": 0.9084 + }, + { + "start": 7762.41, + "end": 7767.33, + "probability": 0.7364 + }, + { + "start": 7768.73, + "end": 7769.79, + "probability": 0.6929 + }, + { + "start": 7770.33, + "end": 7772.65, + "probability": 0.9906 + }, + { + "start": 7773.25, + "end": 7777.05, + "probability": 0.9297 + }, + { + "start": 7777.43, + "end": 7779.37, + "probability": 0.9731 + }, + { + "start": 7780.33, + "end": 7782.07, + "probability": 0.877 + }, + { + "start": 7782.65, + "end": 7786.47, + "probability": 0.9992 + }, + { + "start": 7787.11, + "end": 7788.39, + "probability": 0.9992 + }, + { + "start": 7788.91, + "end": 7790.79, + "probability": 0.4999 + }, + { + "start": 7791.47, + "end": 7795.37, + "probability": 0.9256 + }, + { + "start": 7796.11, + "end": 7803.05, + "probability": 0.9079 + }, + { + "start": 7804.49, + "end": 7810.33, + "probability": 0.9935 + }, + { + "start": 7811.53, + "end": 7812.31, + "probability": 0.9512 + }, + { + "start": 7812.85, + "end": 7815.81, + "probability": 0.9929 + }, + { + "start": 7815.91, + "end": 7819.95, + "probability": 0.9951 + }, + { + "start": 7820.51, + "end": 7823.83, + "probability": 0.8015 + }, + { + "start": 7824.57, + "end": 7830.01, + "probability": 0.9975 + }, + { + "start": 7830.21, + "end": 7832.15, + "probability": 0.7676 + }, + { + "start": 7832.23, + "end": 7833.1, + "probability": 0.9753 + }, + { + "start": 7833.91, + "end": 7839.55, + "probability": 0.9915 + }, + { + "start": 7841.17, + "end": 7842.43, + "probability": 0.6082 + }, + { + "start": 7843.99, + "end": 7845.87, + "probability": 0.981 + }, + { + "start": 7846.45, + "end": 7848.41, + "probability": 0.9663 + }, + { + "start": 7849.05, + "end": 7850.21, + "probability": 0.9849 + }, + { + "start": 7851.53, + "end": 7855.39, + "probability": 0.9816 + }, + { + "start": 7856.57, + "end": 7857.61, + "probability": 0.9751 + }, + { + "start": 7858.75, + "end": 7860.63, + "probability": 0.8221 + }, + { + "start": 7861.31, + "end": 7863.47, + "probability": 0.9903 + }, + { + "start": 7864.03, + "end": 7864.93, + "probability": 0.9976 + }, + { + "start": 7866.19, + "end": 7867.19, + "probability": 0.998 + }, + { + "start": 7868.27, + "end": 7871.97, + "probability": 0.9982 + }, + { + "start": 7873.09, + "end": 7876.53, + "probability": 0.9708 + }, + { + "start": 7877.51, + "end": 7879.25, + "probability": 0.9856 + }, + { + "start": 7879.93, + "end": 7883.91, + "probability": 0.9459 + }, + { + "start": 7885.19, + "end": 7888.39, + "probability": 0.819 + }, + { + "start": 7889.43, + "end": 7892.03, + "probability": 0.98 + }, + { + "start": 7892.59, + "end": 7895.05, + "probability": 0.8244 + }, + { + "start": 7896.57, + "end": 7900.61, + "probability": 0.9943 + }, + { + "start": 7900.61, + "end": 7904.43, + "probability": 0.9875 + }, + { + "start": 7905.53, + "end": 7906.57, + "probability": 0.8014 + }, + { + "start": 7907.85, + "end": 7908.61, + "probability": 0.5231 + }, + { + "start": 7909.31, + "end": 7910.67, + "probability": 0.9898 + }, + { + "start": 7911.81, + "end": 7915.87, + "probability": 0.995 + }, + { + "start": 7915.95, + "end": 7916.55, + "probability": 0.7359 + }, + { + "start": 7917.53, + "end": 7919.15, + "probability": 0.9824 + }, + { + "start": 7920.11, + "end": 7922.11, + "probability": 0.9871 + }, + { + "start": 7922.91, + "end": 7924.35, + "probability": 0.9983 + }, + { + "start": 7925.77, + "end": 7926.43, + "probability": 0.9465 + }, + { + "start": 7927.07, + "end": 7929.31, + "probability": 0.7373 + }, + { + "start": 7930.93, + "end": 7931.33, + "probability": 0.946 + }, + { + "start": 7931.43, + "end": 7932.43, + "probability": 0.9926 + }, + { + "start": 7932.49, + "end": 7936.21, + "probability": 0.9388 + }, + { + "start": 7936.95, + "end": 7940.19, + "probability": 0.9349 + }, + { + "start": 7940.71, + "end": 7946.41, + "probability": 0.9971 + }, + { + "start": 7946.49, + "end": 7948.05, + "probability": 0.9245 + }, + { + "start": 7948.57, + "end": 7949.51, + "probability": 0.9933 + }, + { + "start": 7950.31, + "end": 7952.41, + "probability": 0.7496 + }, + { + "start": 7953.19, + "end": 7954.73, + "probability": 0.9114 + }, + { + "start": 7955.89, + "end": 7959.89, + "probability": 0.992 + }, + { + "start": 7959.89, + "end": 7964.59, + "probability": 0.9979 + }, + { + "start": 7965.31, + "end": 7970.15, + "probability": 0.9812 + }, + { + "start": 7970.15, + "end": 7975.15, + "probability": 0.9982 + }, + { + "start": 7976.51, + "end": 7984.57, + "probability": 0.917 + }, + { + "start": 7984.91, + "end": 7988.53, + "probability": 0.9958 + }, + { + "start": 7989.21, + "end": 7989.57, + "probability": 0.7974 + }, + { + "start": 7989.73, + "end": 7990.59, + "probability": 0.3025 + }, + { + "start": 7990.59, + "end": 7992.67, + "probability": 0.8301 + }, + { + "start": 7992.81, + "end": 7999.25, + "probability": 0.9051 + }, + { + "start": 7999.59, + "end": 8000.22, + "probability": 0.9716 + }, + { + "start": 8001.07, + "end": 8002.91, + "probability": 0.9836 + }, + { + "start": 8003.31, + "end": 8004.17, + "probability": 0.7279 + }, + { + "start": 8004.71, + "end": 8007.99, + "probability": 0.8764 + }, + { + "start": 8008.57, + "end": 8013.11, + "probability": 0.9918 + }, + { + "start": 8013.13, + "end": 8018.75, + "probability": 0.9992 + }, + { + "start": 8018.75, + "end": 8022.05, + "probability": 0.8187 + }, + { + "start": 8022.61, + "end": 8023.19, + "probability": 0.6533 + }, + { + "start": 8023.51, + "end": 8024.21, + "probability": 0.7231 + }, + { + "start": 8025.09, + "end": 8028.91, + "probability": 0.9927 + }, + { + "start": 8029.95, + "end": 8035.31, + "probability": 0.8113 + }, + { + "start": 8036.25, + "end": 8038.83, + "probability": 0.9756 + }, + { + "start": 8039.55, + "end": 8041.73, + "probability": 0.9943 + }, + { + "start": 8042.49, + "end": 8043.71, + "probability": 0.9827 + }, + { + "start": 8044.85, + "end": 8045.85, + "probability": 0.9942 + }, + { + "start": 8046.51, + "end": 8047.29, + "probability": 0.7875 + }, + { + "start": 8048.01, + "end": 8052.17, + "probability": 0.9761 + }, + { + "start": 8052.17, + "end": 8055.65, + "probability": 0.99 + }, + { + "start": 8056.57, + "end": 8057.13, + "probability": 0.9327 + }, + { + "start": 8057.65, + "end": 8063.49, + "probability": 0.9852 + }, + { + "start": 8063.49, + "end": 8068.39, + "probability": 0.9987 + }, + { + "start": 8069.21, + "end": 8072.95, + "probability": 0.8793 + }, + { + "start": 8073.28, + "end": 8077.37, + "probability": 0.9741 + }, + { + "start": 8078.05, + "end": 8082.15, + "probability": 0.9966 + }, + { + "start": 8083.71, + "end": 8089.19, + "probability": 0.9183 + }, + { + "start": 8089.29, + "end": 8094.29, + "probability": 0.9954 + }, + { + "start": 8094.79, + "end": 8095.83, + "probability": 0.9326 + }, + { + "start": 8096.37, + "end": 8098.49, + "probability": 0.9477 + }, + { + "start": 8099.15, + "end": 8099.71, + "probability": 0.8018 + }, + { + "start": 8100.13, + "end": 8100.33, + "probability": 0.9116 + }, + { + "start": 8100.51, + "end": 8101.63, + "probability": 0.9785 + }, + { + "start": 8102.11, + "end": 8107.69, + "probability": 0.9736 + }, + { + "start": 8108.07, + "end": 8110.11, + "probability": 0.9841 + }, + { + "start": 8110.61, + "end": 8114.73, + "probability": 0.9894 + }, + { + "start": 8115.95, + "end": 8117.29, + "probability": 0.9182 + }, + { + "start": 8117.89, + "end": 8120.87, + "probability": 0.7686 + }, + { + "start": 8121.73, + "end": 8121.85, + "probability": 0.8901 + }, + { + "start": 8122.65, + "end": 8124.19, + "probability": 0.9741 + }, + { + "start": 8124.71, + "end": 8127.25, + "probability": 0.9239 + }, + { + "start": 8128.85, + "end": 8131.33, + "probability": 0.9821 + }, + { + "start": 8131.97, + "end": 8136.99, + "probability": 0.9901 + }, + { + "start": 8137.31, + "end": 8140.61, + "probability": 0.9954 + }, + { + "start": 8142.89, + "end": 8146.51, + "probability": 0.999 + }, + { + "start": 8147.05, + "end": 8147.79, + "probability": 0.9971 + }, + { + "start": 8148.37, + "end": 8152.33, + "probability": 0.9955 + }, + { + "start": 8153.73, + "end": 8157.43, + "probability": 0.9902 + }, + { + "start": 8158.09, + "end": 8161.51, + "probability": 0.998 + }, + { + "start": 8162.15, + "end": 8164.73, + "probability": 0.99 + }, + { + "start": 8165.29, + "end": 8166.03, + "probability": 0.9484 + }, + { + "start": 8166.55, + "end": 8170.21, + "probability": 0.9889 + }, + { + "start": 8170.75, + "end": 8175.77, + "probability": 0.9537 + }, + { + "start": 8175.91, + "end": 8176.19, + "probability": 0.7693 + }, + { + "start": 8177.09, + "end": 8179.84, + "probability": 0.8108 + }, + { + "start": 8180.17, + "end": 8182.68, + "probability": 0.7267 + }, + { + "start": 8183.37, + "end": 8184.15, + "probability": 0.8979 + }, + { + "start": 8184.25, + "end": 8185.29, + "probability": 0.8448 + }, + { + "start": 8189.31, + "end": 8193.51, + "probability": 0.9689 + }, + { + "start": 8193.82, + "end": 8196.27, + "probability": 0.9927 + }, + { + "start": 8197.57, + "end": 8198.43, + "probability": 0.1953 + }, + { + "start": 8200.35, + "end": 8201.63, + "probability": 0.2135 + }, + { + "start": 8202.17, + "end": 8203.32, + "probability": 0.2837 + }, + { + "start": 8203.61, + "end": 8204.24, + "probability": 0.874 + }, + { + "start": 8204.29, + "end": 8205.15, + "probability": 0.7826 + }, + { + "start": 8205.31, + "end": 8208.57, + "probability": 0.953 + }, + { + "start": 8209.11, + "end": 8210.13, + "probability": 0.6623 + }, + { + "start": 8210.17, + "end": 8210.33, + "probability": 0.6194 + }, + { + "start": 8210.35, + "end": 8213.39, + "probability": 0.8049 + }, + { + "start": 8214.77, + "end": 8218.49, + "probability": 0.9883 + }, + { + "start": 8219.61, + "end": 8220.59, + "probability": 0.092 + }, + { + "start": 8220.71, + "end": 8223.33, + "probability": 0.6894 + }, + { + "start": 8223.59, + "end": 8227.77, + "probability": 0.9929 + }, + { + "start": 8228.77, + "end": 8235.35, + "probability": 0.9913 + }, + { + "start": 8236.17, + "end": 8238.57, + "probability": 0.9289 + }, + { + "start": 8239.73, + "end": 8240.59, + "probability": 0.993 + }, + { + "start": 8241.19, + "end": 8242.99, + "probability": 0.9587 + }, + { + "start": 8243.73, + "end": 8247.17, + "probability": 0.9797 + }, + { + "start": 8247.89, + "end": 8248.87, + "probability": 0.6954 + }, + { + "start": 8249.39, + "end": 8250.95, + "probability": 0.9323 + }, + { + "start": 8251.63, + "end": 8252.59, + "probability": 0.7787 + }, + { + "start": 8253.79, + "end": 8254.97, + "probability": 0.9624 + }, + { + "start": 8256.11, + "end": 8258.07, + "probability": 0.9941 + }, + { + "start": 8259.31, + "end": 8261.85, + "probability": 0.9806 + }, + { + "start": 8262.55, + "end": 8263.97, + "probability": 0.9575 + }, + { + "start": 8264.73, + "end": 8265.77, + "probability": 0.9968 + }, + { + "start": 8266.67, + "end": 8269.17, + "probability": 0.9963 + }, + { + "start": 8270.39, + "end": 8275.47, + "probability": 0.9786 + }, + { + "start": 8276.23, + "end": 8277.86, + "probability": 0.9785 + }, + { + "start": 8279.19, + "end": 8280.03, + "probability": 0.9695 + }, + { + "start": 8281.25, + "end": 8285.69, + "probability": 0.9438 + }, + { + "start": 8287.17, + "end": 8289.71, + "probability": 0.4498 + }, + { + "start": 8290.41, + "end": 8295.47, + "probability": 0.7444 + }, + { + "start": 8296.11, + "end": 8297.53, + "probability": 0.9631 + }, + { + "start": 8297.73, + "end": 8301.09, + "probability": 0.8862 + }, + { + "start": 8302.53, + "end": 8307.05, + "probability": 0.8635 + }, + { + "start": 8307.61, + "end": 8309.09, + "probability": 0.9249 + }, + { + "start": 8309.53, + "end": 8313.83, + "probability": 0.9388 + }, + { + "start": 8313.87, + "end": 8314.35, + "probability": 0.7934 + }, + { + "start": 8315.09, + "end": 8317.45, + "probability": 0.9442 + }, + { + "start": 8319.07, + "end": 8322.69, + "probability": 0.979 + }, + { + "start": 8323.79, + "end": 8328.75, + "probability": 0.9612 + }, + { + "start": 8329.69, + "end": 8335.59, + "probability": 0.988 + }, + { + "start": 8336.37, + "end": 8338.33, + "probability": 0.8373 + }, + { + "start": 8338.87, + "end": 8341.81, + "probability": 0.9675 + }, + { + "start": 8344.99, + "end": 8348.01, + "probability": 0.9587 + }, + { + "start": 8348.69, + "end": 8350.25, + "probability": 0.5049 + }, + { + "start": 8350.93, + "end": 8355.45, + "probability": 0.9175 + }, + { + "start": 8356.29, + "end": 8358.59, + "probability": 0.9237 + }, + { + "start": 8358.69, + "end": 8360.31, + "probability": 0.6631 + }, + { + "start": 8360.93, + "end": 8361.89, + "probability": 0.8689 + }, + { + "start": 8362.51, + "end": 8366.49, + "probability": 0.9888 + }, + { + "start": 8366.95, + "end": 8367.11, + "probability": 0.393 + }, + { + "start": 8367.23, + "end": 8368.59, + "probability": 0.9834 + }, + { + "start": 8369.09, + "end": 8370.45, + "probability": 0.8132 + }, + { + "start": 8370.73, + "end": 8372.09, + "probability": 0.977 + }, + { + "start": 8372.17, + "end": 8373.13, + "probability": 0.9696 + }, + { + "start": 8373.51, + "end": 8374.23, + "probability": 0.7713 + }, + { + "start": 8374.77, + "end": 8375.45, + "probability": 0.7266 + }, + { + "start": 8375.53, + "end": 8375.81, + "probability": 0.9443 + }, + { + "start": 8375.91, + "end": 8376.35, + "probability": 0.9489 + }, + { + "start": 8376.79, + "end": 8378.35, + "probability": 0.9111 + }, + { + "start": 8378.79, + "end": 8381.65, + "probability": 0.8795 + }, + { + "start": 8382.21, + "end": 8384.53, + "probability": 0.8408 + }, + { + "start": 8384.97, + "end": 8386.49, + "probability": 0.8483 + }, + { + "start": 8387.07, + "end": 8387.87, + "probability": 0.7903 + }, + { + "start": 8388.45, + "end": 8389.77, + "probability": 0.967 + }, + { + "start": 8390.63, + "end": 8393.79, + "probability": 0.9668 + }, + { + "start": 8394.63, + "end": 8395.17, + "probability": 0.9443 + }, + { + "start": 8395.33, + "end": 8395.71, + "probability": 0.4346 + }, + { + "start": 8395.81, + "end": 8396.37, + "probability": 0.8973 + }, + { + "start": 8396.77, + "end": 8397.45, + "probability": 0.8878 + }, + { + "start": 8397.93, + "end": 8400.61, + "probability": 0.9527 + }, + { + "start": 8401.39, + "end": 8403.79, + "probability": 0.9582 + }, + { + "start": 8403.85, + "end": 8404.63, + "probability": 0.9137 + }, + { + "start": 8405.09, + "end": 8406.99, + "probability": 0.9517 + }, + { + "start": 8407.63, + "end": 8407.97, + "probability": 0.8295 + }, + { + "start": 8409.41, + "end": 8413.33, + "probability": 0.6991 + }, + { + "start": 8414.59, + "end": 8416.97, + "probability": 0.7431 + }, + { + "start": 8417.49, + "end": 8419.85, + "probability": 0.7477 + }, + { + "start": 8420.37, + "end": 8421.27, + "probability": 0.8417 + }, + { + "start": 8422.01, + "end": 8423.37, + "probability": 0.8128 + }, + { + "start": 8423.91, + "end": 8424.13, + "probability": 0.4752 + }, + { + "start": 8424.39, + "end": 8427.97, + "probability": 0.9773 + }, + { + "start": 8428.27, + "end": 8432.17, + "probability": 0.9855 + }, + { + "start": 8432.29, + "end": 8432.69, + "probability": 0.7352 + }, + { + "start": 8432.71, + "end": 8433.35, + "probability": 0.6802 + }, + { + "start": 8433.43, + "end": 8434.66, + "probability": 0.9304 + }, + { + "start": 8434.83, + "end": 8437.13, + "probability": 0.7622 + }, + { + "start": 8437.23, + "end": 8439.49, + "probability": 0.9003 + }, + { + "start": 8440.25, + "end": 8441.76, + "probability": 0.9165 + }, + { + "start": 8442.15, + "end": 8443.91, + "probability": 0.8272 + }, + { + "start": 8445.21, + "end": 8447.09, + "probability": 0.832 + }, + { + "start": 8447.23, + "end": 8449.02, + "probability": 0.7881 + }, + { + "start": 8449.09, + "end": 8450.45, + "probability": 0.9925 + }, + { + "start": 8450.51, + "end": 8453.03, + "probability": 0.955 + }, + { + "start": 8454.49, + "end": 8456.01, + "probability": 0.3712 + }, + { + "start": 8456.27, + "end": 8457.05, + "probability": 0.5248 + }, + { + "start": 8457.05, + "end": 8461.13, + "probability": 0.896 + }, + { + "start": 8462.27, + "end": 8462.37, + "probability": 0.0225 + }, + { + "start": 8462.49, + "end": 8464.05, + "probability": 0.8506 + }, + { + "start": 8464.13, + "end": 8466.21, + "probability": 0.7981 + }, + { + "start": 8467.15, + "end": 8469.17, + "probability": 0.9604 + }, + { + "start": 8469.31, + "end": 8472.67, + "probability": 0.9765 + }, + { + "start": 8473.23, + "end": 8475.73, + "probability": 0.9863 + }, + { + "start": 8476.01, + "end": 8476.75, + "probability": 0.8829 + }, + { + "start": 8476.93, + "end": 8477.55, + "probability": 0.8773 + }, + { + "start": 8478.57, + "end": 8481.37, + "probability": 0.9856 + }, + { + "start": 8481.37, + "end": 8484.29, + "probability": 0.9938 + }, + { + "start": 8484.45, + "end": 8488.93, + "probability": 0.9974 + }, + { + "start": 8489.67, + "end": 8489.77, + "probability": 0.4686 + }, + { + "start": 8489.83, + "end": 8491.81, + "probability": 0.9244 + }, + { + "start": 8491.95, + "end": 8492.45, + "probability": 0.7163 + }, + { + "start": 8492.51, + "end": 8498.11, + "probability": 0.9325 + }, + { + "start": 8498.19, + "end": 8499.13, + "probability": 0.9729 + }, + { + "start": 8500.37, + "end": 8505.73, + "probability": 0.9854 + }, + { + "start": 8505.93, + "end": 8508.83, + "probability": 0.9933 + }, + { + "start": 8509.69, + "end": 8512.25, + "probability": 0.9867 + }, + { + "start": 8512.93, + "end": 8514.61, + "probability": 0.9543 + }, + { + "start": 8515.21, + "end": 8517.17, + "probability": 0.6214 + }, + { + "start": 8517.31, + "end": 8519.83, + "probability": 0.7526 + }, + { + "start": 8520.43, + "end": 8523.57, + "probability": 0.8011 + }, + { + "start": 8524.13, + "end": 8530.35, + "probability": 0.9865 + }, + { + "start": 8531.19, + "end": 8535.15, + "probability": 0.9964 + }, + { + "start": 8535.19, + "end": 8536.49, + "probability": 0.9961 + }, + { + "start": 8537.13, + "end": 8538.14, + "probability": 0.9985 + }, + { + "start": 8538.37, + "end": 8542.21, + "probability": 0.9965 + }, + { + "start": 8542.81, + "end": 8543.51, + "probability": 0.9116 + }, + { + "start": 8544.05, + "end": 8549.29, + "probability": 0.9793 + }, + { + "start": 8549.45, + "end": 8550.31, + "probability": 0.6839 + }, + { + "start": 8550.91, + "end": 8552.45, + "probability": 0.9956 + }, + { + "start": 8552.45, + "end": 8554.69, + "probability": 0.9902 + }, + { + "start": 8554.79, + "end": 8557.05, + "probability": 0.9831 + }, + { + "start": 8557.05, + "end": 8560.97, + "probability": 0.9806 + }, + { + "start": 8561.45, + "end": 8565.11, + "probability": 0.9953 + }, + { + "start": 8565.57, + "end": 8566.23, + "probability": 0.5654 + }, + { + "start": 8566.39, + "end": 8567.07, + "probability": 0.8996 + }, + { + "start": 8567.55, + "end": 8571.69, + "probability": 0.7859 + }, + { + "start": 8571.85, + "end": 8573.14, + "probability": 0.6047 + }, + { + "start": 8573.95, + "end": 8576.97, + "probability": 0.9984 + }, + { + "start": 8577.25, + "end": 8578.85, + "probability": 0.9265 + }, + { + "start": 8579.17, + "end": 8580.23, + "probability": 0.924 + }, + { + "start": 8580.25, + "end": 8581.03, + "probability": 0.8337 + }, + { + "start": 8581.25, + "end": 8583.75, + "probability": 0.9717 + }, + { + "start": 8583.85, + "end": 8584.17, + "probability": 0.4381 + }, + { + "start": 8584.19, + "end": 8586.07, + "probability": 0.5374 + }, + { + "start": 8587.73, + "end": 8587.73, + "probability": 0.1232 + }, + { + "start": 8587.73, + "end": 8587.73, + "probability": 0.0248 + }, + { + "start": 8587.73, + "end": 8587.73, + "probability": 0.1326 + }, + { + "start": 8587.73, + "end": 8587.73, + "probability": 0.2364 + }, + { + "start": 8587.73, + "end": 8587.73, + "probability": 0.301 + }, + { + "start": 8587.73, + "end": 8588.35, + "probability": 0.4644 + }, + { + "start": 8588.79, + "end": 8589.05, + "probability": 0.206 + }, + { + "start": 8589.05, + "end": 8590.98, + "probability": 0.5336 + }, + { + "start": 8592.03, + "end": 8597.13, + "probability": 0.9194 + }, + { + "start": 8598.39, + "end": 8602.71, + "probability": 0.9933 + }, + { + "start": 8602.87, + "end": 8605.93, + "probability": 0.9939 + }, + { + "start": 8606.57, + "end": 8610.29, + "probability": 0.9767 + }, + { + "start": 8610.97, + "end": 8616.56, + "probability": 0.8893 + }, + { + "start": 8617.09, + "end": 8618.15, + "probability": 0.7109 + }, + { + "start": 8618.23, + "end": 8620.63, + "probability": 0.9952 + }, + { + "start": 8620.69, + "end": 8621.57, + "probability": 0.8591 + }, + { + "start": 8622.49, + "end": 8623.61, + "probability": 0.9761 + }, + { + "start": 8623.89, + "end": 8624.97, + "probability": 0.9916 + }, + { + "start": 8625.17, + "end": 8626.43, + "probability": 0.9282 + }, + { + "start": 8626.63, + "end": 8627.87, + "probability": 0.8851 + }, + { + "start": 8628.37, + "end": 8631.37, + "probability": 0.9854 + }, + { + "start": 8632.55, + "end": 8635.85, + "probability": 0.8699 + }, + { + "start": 8636.47, + "end": 8637.57, + "probability": 0.9357 + }, + { + "start": 8637.79, + "end": 8640.27, + "probability": 0.9167 + }, + { + "start": 8640.37, + "end": 8640.83, + "probability": 0.7695 + }, + { + "start": 8641.47, + "end": 8643.19, + "probability": 0.9805 + }, + { + "start": 8643.39, + "end": 8645.03, + "probability": 0.5864 + }, + { + "start": 8645.13, + "end": 8647.31, + "probability": 0.9908 + }, + { + "start": 8648.23, + "end": 8649.29, + "probability": 0.9854 + }, + { + "start": 8649.45, + "end": 8649.87, + "probability": 0.7555 + }, + { + "start": 8649.91, + "end": 8652.23, + "probability": 0.9346 + }, + { + "start": 8652.35, + "end": 8656.43, + "probability": 0.8018 + }, + { + "start": 8656.67, + "end": 8658.33, + "probability": 0.6774 + }, + { + "start": 8658.57, + "end": 8658.91, + "probability": 0.8727 + }, + { + "start": 8669.61, + "end": 8672.57, + "probability": 0.7535 + }, + { + "start": 8673.25, + "end": 8678.22, + "probability": 0.9772 + }, + { + "start": 8679.29, + "end": 8685.83, + "probability": 0.9941 + }, + { + "start": 8686.59, + "end": 8688.91, + "probability": 0.7464 + }, + { + "start": 8689.43, + "end": 8690.47, + "probability": 0.783 + }, + { + "start": 8691.23, + "end": 8692.89, + "probability": 0.9928 + }, + { + "start": 8693.45, + "end": 8695.85, + "probability": 0.7957 + }, + { + "start": 8696.11, + "end": 8697.03, + "probability": 0.8287 + }, + { + "start": 8697.63, + "end": 8700.77, + "probability": 0.9823 + }, + { + "start": 8700.87, + "end": 8701.35, + "probability": 0.9753 + }, + { + "start": 8702.29, + "end": 8703.95, + "probability": 0.8294 + }, + { + "start": 8704.01, + "end": 8704.75, + "probability": 0.9894 + }, + { + "start": 8705.53, + "end": 8706.39, + "probability": 0.8937 + }, + { + "start": 8706.81, + "end": 8709.41, + "probability": 0.7518 + }, + { + "start": 8710.11, + "end": 8711.45, + "probability": 0.8502 + }, + { + "start": 8712.13, + "end": 8712.95, + "probability": 0.9834 + }, + { + "start": 8713.03, + "end": 8713.99, + "probability": 0.6521 + }, + { + "start": 8714.05, + "end": 8714.53, + "probability": 0.7792 + }, + { + "start": 8715.21, + "end": 8715.63, + "probability": 0.563 + }, + { + "start": 8716.57, + "end": 8718.59, + "probability": 0.9963 + }, + { + "start": 8719.31, + "end": 8720.33, + "probability": 0.9001 + }, + { + "start": 8720.49, + "end": 8721.55, + "probability": 0.9015 + }, + { + "start": 8721.79, + "end": 8723.01, + "probability": 0.8801 + }, + { + "start": 8723.71, + "end": 8725.35, + "probability": 0.9614 + }, + { + "start": 8725.79, + "end": 8726.67, + "probability": 0.9839 + }, + { + "start": 8727.23, + "end": 8729.31, + "probability": 0.7988 + }, + { + "start": 8730.01, + "end": 8731.61, + "probability": 0.9988 + }, + { + "start": 8731.73, + "end": 8733.59, + "probability": 0.8737 + }, + { + "start": 8734.05, + "end": 8735.59, + "probability": 0.7979 + }, + { + "start": 8735.71, + "end": 8738.93, + "probability": 0.9956 + }, + { + "start": 8739.43, + "end": 8739.95, + "probability": 0.9783 + }, + { + "start": 8740.43, + "end": 8742.31, + "probability": 0.7642 + }, + { + "start": 8742.91, + "end": 8743.97, + "probability": 0.7995 + }, + { + "start": 8744.03, + "end": 8747.85, + "probability": 0.9813 + }, + { + "start": 8749.27, + "end": 8752.01, + "probability": 0.9343 + }, + { + "start": 8752.59, + "end": 8753.75, + "probability": 0.8613 + }, + { + "start": 8754.27, + "end": 8754.55, + "probability": 0.7898 + }, + { + "start": 8755.55, + "end": 8758.63, + "probability": 0.9644 + }, + { + "start": 8759.27, + "end": 8762.69, + "probability": 0.9458 + }, + { + "start": 8762.85, + "end": 8763.47, + "probability": 0.884 + }, + { + "start": 8764.15, + "end": 8764.93, + "probability": 0.9577 + }, + { + "start": 8766.15, + "end": 8768.97, + "probability": 0.8266 + }, + { + "start": 8770.19, + "end": 8771.21, + "probability": 0.6841 + }, + { + "start": 8771.83, + "end": 8774.41, + "probability": 0.7702 + }, + { + "start": 8775.21, + "end": 8776.45, + "probability": 0.9814 + }, + { + "start": 8777.09, + "end": 8777.31, + "probability": 0.3321 + }, + { + "start": 8777.31, + "end": 8778.21, + "probability": 0.3418 + }, + { + "start": 8778.95, + "end": 8785.21, + "probability": 0.9868 + }, + { + "start": 8785.53, + "end": 8787.15, + "probability": 0.9051 + }, + { + "start": 8787.55, + "end": 8789.13, + "probability": 0.9895 + }, + { + "start": 8789.71, + "end": 8791.29, + "probability": 0.7795 + }, + { + "start": 8791.89, + "end": 8794.25, + "probability": 0.8746 + }, + { + "start": 8795.25, + "end": 8797.49, + "probability": 0.9474 + }, + { + "start": 8798.73, + "end": 8802.33, + "probability": 0.998 + }, + { + "start": 8802.33, + "end": 8806.45, + "probability": 0.9689 + }, + { + "start": 8807.33, + "end": 8810.37, + "probability": 0.986 + }, + { + "start": 8811.25, + "end": 8813.17, + "probability": 0.9839 + }, + { + "start": 8813.89, + "end": 8816.75, + "probability": 0.9621 + }, + { + "start": 8817.23, + "end": 8818.07, + "probability": 0.9819 + }, + { + "start": 8818.47, + "end": 8819.55, + "probability": 0.966 + }, + { + "start": 8820.01, + "end": 8821.49, + "probability": 0.7284 + }, + { + "start": 8822.03, + "end": 8823.75, + "probability": 0.9939 + }, + { + "start": 8824.77, + "end": 8827.31, + "probability": 0.581 + }, + { + "start": 8828.15, + "end": 8828.65, + "probability": 0.7465 + }, + { + "start": 8830.11, + "end": 8832.73, + "probability": 0.751 + }, + { + "start": 8833.35, + "end": 8834.58, + "probability": 0.957 + }, + { + "start": 8835.19, + "end": 8839.37, + "probability": 0.9779 + }, + { + "start": 8840.07, + "end": 8844.95, + "probability": 0.9784 + }, + { + "start": 8845.39, + "end": 8847.37, + "probability": 0.8792 + }, + { + "start": 8848.05, + "end": 8853.92, + "probability": 0.9893 + }, + { + "start": 8854.65, + "end": 8858.29, + "probability": 0.8859 + }, + { + "start": 8859.29, + "end": 8861.69, + "probability": 0.964 + }, + { + "start": 8862.29, + "end": 8866.09, + "probability": 0.9969 + }, + { + "start": 8866.25, + "end": 8866.53, + "probability": 0.7067 + }, + { + "start": 8866.87, + "end": 8868.99, + "probability": 0.5823 + }, + { + "start": 8869.09, + "end": 8872.71, + "probability": 0.98 + }, + { + "start": 8873.29, + "end": 8873.57, + "probability": 0.5546 + }, + { + "start": 8874.13, + "end": 8874.59, + "probability": 0.3923 + }, + { + "start": 8874.69, + "end": 8877.29, + "probability": 0.8646 + }, + { + "start": 8877.91, + "end": 8880.99, + "probability": 0.4473 + }, + { + "start": 8881.07, + "end": 8882.11, + "probability": 0.612 + }, + { + "start": 8882.99, + "end": 8884.98, + "probability": 0.9321 + }, + { + "start": 8885.31, + "end": 8886.43, + "probability": 0.8763 + }, + { + "start": 8886.71, + "end": 8889.09, + "probability": 0.234 + }, + { + "start": 8902.69, + "end": 8902.69, + "probability": 0.3554 + }, + { + "start": 8902.69, + "end": 8903.37, + "probability": 0.9253 + }, + { + "start": 8903.65, + "end": 8904.99, + "probability": 0.7212 + }, + { + "start": 8905.51, + "end": 8910.07, + "probability": 0.107 + }, + { + "start": 8912.91, + "end": 8912.91, + "probability": 0.0 + }, + { + "start": 8916.27, + "end": 8917.23, + "probability": 0.008 + }, + { + "start": 8917.25, + "end": 8918.23, + "probability": 0.0233 + }, + { + "start": 8920.65, + "end": 8927.43, + "probability": 0.037 + }, + { + "start": 8928.81, + "end": 8929.15, + "probability": 0.0215 + }, + { + "start": 8930.43, + "end": 8930.77, + "probability": 0.1473 + }, + { + "start": 8941.45, + "end": 8942.67, + "probability": 0.0372 + }, + { + "start": 8942.67, + "end": 8943.62, + "probability": 0.0432 + }, + { + "start": 8943.91, + "end": 8948.43, + "probability": 0.2847 + }, + { + "start": 8948.43, + "end": 8954.67, + "probability": 0.3047 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.0, + "end": 8972.0, + "probability": 0.0 + }, + { + "start": 8972.28, + "end": 8972.68, + "probability": 0.0367 + }, + { + "start": 8972.68, + "end": 8972.68, + "probability": 0.0369 + }, + { + "start": 8972.68, + "end": 8972.72, + "probability": 0.0619 + }, + { + "start": 8972.9, + "end": 8974.3, + "probability": 0.8621 + }, + { + "start": 8974.94, + "end": 8976.52, + "probability": 0.9188 + }, + { + "start": 8976.82, + "end": 8977.02, + "probability": 0.5624 + }, + { + "start": 8980.56, + "end": 8981.24, + "probability": 0.6522 + }, + { + "start": 8981.36, + "end": 8983.82, + "probability": 0.9478 + }, + { + "start": 8983.84, + "end": 8987.14, + "probability": 0.7241 + }, + { + "start": 8987.2, + "end": 8992.02, + "probability": 0.8022 + }, + { + "start": 8992.42, + "end": 8994.36, + "probability": 0.1507 + }, + { + "start": 8994.48, + "end": 8997.82, + "probability": 0.7325 + }, + { + "start": 8998.36, + "end": 8998.42, + "probability": 0.0803 + }, + { + "start": 8998.42, + "end": 9001.24, + "probability": 0.9783 + }, + { + "start": 9001.6, + "end": 9005.34, + "probability": 0.7074 + }, + { + "start": 9006.48, + "end": 9006.48, + "probability": 0.0036 + }, + { + "start": 9007.02, + "end": 9008.96, + "probability": 0.9308 + }, + { + "start": 9009.54, + "end": 9012.0, + "probability": 0.4397 + }, + { + "start": 9012.8, + "end": 9013.32, + "probability": 0.8246 + }, + { + "start": 9014.4, + "end": 9015.12, + "probability": 0.7216 + }, + { + "start": 9017.66, + "end": 9023.1, + "probability": 0.9955 + }, + { + "start": 9024.14, + "end": 9026.76, + "probability": 0.9945 + }, + { + "start": 9028.86, + "end": 9029.69, + "probability": 0.671 + }, + { + "start": 9030.66, + "end": 9035.6, + "probability": 0.995 + }, + { + "start": 9036.46, + "end": 9039.8, + "probability": 0.9937 + }, + { + "start": 9040.4, + "end": 9041.94, + "probability": 0.8751 + }, + { + "start": 9042.98, + "end": 9046.44, + "probability": 0.9985 + }, + { + "start": 9047.34, + "end": 9050.8, + "probability": 0.9971 + }, + { + "start": 9051.98, + "end": 9054.72, + "probability": 0.9832 + }, + { + "start": 9057.26, + "end": 9060.62, + "probability": 0.9523 + }, + { + "start": 9061.96, + "end": 9063.56, + "probability": 0.9645 + }, + { + "start": 9065.66, + "end": 9066.42, + "probability": 0.8104 + }, + { + "start": 9066.94, + "end": 9075.76, + "probability": 0.9852 + }, + { + "start": 9076.16, + "end": 9081.98, + "probability": 0.7537 + }, + { + "start": 9082.8, + "end": 9088.4, + "probability": 0.9839 + }, + { + "start": 9089.0, + "end": 9090.96, + "probability": 0.7942 + }, + { + "start": 9092.4, + "end": 9096.58, + "probability": 0.7712 + }, + { + "start": 9098.98, + "end": 9101.52, + "probability": 0.9926 + }, + { + "start": 9102.14, + "end": 9102.82, + "probability": 0.8779 + }, + { + "start": 9104.58, + "end": 9106.98, + "probability": 0.9956 + }, + { + "start": 9108.0, + "end": 9111.08, + "probability": 0.9941 + }, + { + "start": 9112.86, + "end": 9114.5, + "probability": 0.8713 + }, + { + "start": 9114.68, + "end": 9116.38, + "probability": 0.8353 + }, + { + "start": 9117.34, + "end": 9121.7, + "probability": 0.5043 + }, + { + "start": 9124.34, + "end": 9128.22, + "probability": 0.9915 + }, + { + "start": 9128.22, + "end": 9132.8, + "probability": 0.9952 + }, + { + "start": 9132.8, + "end": 9136.9, + "probability": 0.9831 + }, + { + "start": 9137.48, + "end": 9140.14, + "probability": 0.9946 + }, + { + "start": 9142.2, + "end": 9146.06, + "probability": 0.9829 + }, + { + "start": 9146.72, + "end": 9147.48, + "probability": 0.8811 + }, + { + "start": 9147.72, + "end": 9153.06, + "probability": 0.9552 + }, + { + "start": 9153.9, + "end": 9159.8, + "probability": 0.9863 + }, + { + "start": 9162.64, + "end": 9163.42, + "probability": 0.3169 + }, + { + "start": 9163.53, + "end": 9166.74, + "probability": 0.8392 + }, + { + "start": 9166.8, + "end": 9167.62, + "probability": 0.2345 + }, + { + "start": 9168.14, + "end": 9170.47, + "probability": 0.6599 + }, + { + "start": 9171.06, + "end": 9175.48, + "probability": 0.7686 + }, + { + "start": 9176.18, + "end": 9178.9, + "probability": 0.8817 + }, + { + "start": 9181.88, + "end": 9183.54, + "probability": 0.6685 + }, + { + "start": 9192.44, + "end": 9195.94, + "probability": 0.5481 + }, + { + "start": 9197.18, + "end": 9201.72, + "probability": 0.0297 + }, + { + "start": 9204.52, + "end": 9205.42, + "probability": 0.0219 + }, + { + "start": 9213.36, + "end": 9220.4, + "probability": 0.89 + }, + { + "start": 9220.44, + "end": 9223.84, + "probability": 0.9211 + }, + { + "start": 9223.9, + "end": 9224.26, + "probability": 0.7632 + }, + { + "start": 9224.84, + "end": 9225.72, + "probability": 0.6171 + }, + { + "start": 9226.92, + "end": 9230.86, + "probability": 0.9633 + }, + { + "start": 9231.94, + "end": 9234.38, + "probability": 0.9075 + }, + { + "start": 9235.3, + "end": 9236.74, + "probability": 0.9428 + }, + { + "start": 9237.88, + "end": 9240.68, + "probability": 0.8973 + }, + { + "start": 9241.68, + "end": 9243.18, + "probability": 0.9097 + }, + { + "start": 9243.4, + "end": 9245.76, + "probability": 0.9107 + }, + { + "start": 9245.96, + "end": 9247.92, + "probability": 0.8994 + }, + { + "start": 9248.76, + "end": 9258.0, + "probability": 0.9715 + }, + { + "start": 9258.6, + "end": 9259.5, + "probability": 0.9036 + }, + { + "start": 9260.8, + "end": 9265.58, + "probability": 0.7702 + }, + { + "start": 9266.34, + "end": 9268.54, + "probability": 0.9884 + }, + { + "start": 9272.92, + "end": 9274.08, + "probability": 0.6729 + }, + { + "start": 9274.62, + "end": 9275.74, + "probability": 0.9895 + }, + { + "start": 9278.58, + "end": 9283.12, + "probability": 0.9946 + }, + { + "start": 9283.32, + "end": 9290.74, + "probability": 0.9722 + }, + { + "start": 9290.78, + "end": 9291.6, + "probability": 0.9469 + }, + { + "start": 9291.68, + "end": 9292.74, + "probability": 0.5435 + }, + { + "start": 9293.54, + "end": 9294.74, + "probability": 0.8729 + }, + { + "start": 9295.74, + "end": 9298.52, + "probability": 0.901 + }, + { + "start": 9299.52, + "end": 9301.86, + "probability": 0.8439 + }, + { + "start": 9302.8, + "end": 9306.5, + "probability": 0.9616 + }, + { + "start": 9307.26, + "end": 9310.52, + "probability": 0.9894 + }, + { + "start": 9311.48, + "end": 9312.68, + "probability": 0.879 + }, + { + "start": 9313.78, + "end": 9314.28, + "probability": 0.079 + }, + { + "start": 9314.28, + "end": 9315.07, + "probability": 0.8293 + }, + { + "start": 9315.96, + "end": 9320.55, + "probability": 0.8779 + }, + { + "start": 9320.76, + "end": 9323.62, + "probability": 0.2059 + }, + { + "start": 9323.62, + "end": 9325.16, + "probability": 0.5524 + }, + { + "start": 9325.98, + "end": 9328.32, + "probability": 0.9891 + }, + { + "start": 9329.48, + "end": 9335.4, + "probability": 0.8969 + }, + { + "start": 9336.7, + "end": 9338.84, + "probability": 0.7756 + }, + { + "start": 9339.12, + "end": 9342.0, + "probability": 0.9777 + }, + { + "start": 9342.02, + "end": 9343.56, + "probability": 0.8169 + }, + { + "start": 9343.83, + "end": 9346.56, + "probability": 0.8231 + }, + { + "start": 9347.72, + "end": 9351.12, + "probability": 0.8201 + }, + { + "start": 9351.34, + "end": 9351.86, + "probability": 0.8737 + }, + { + "start": 9351.88, + "end": 9352.56, + "probability": 0.9261 + }, + { + "start": 9353.2, + "end": 9354.3, + "probability": 0.6812 + }, + { + "start": 9355.92, + "end": 9358.76, + "probability": 0.9958 + }, + { + "start": 9359.28, + "end": 9361.8, + "probability": 0.9964 + }, + { + "start": 9362.3, + "end": 9363.18, + "probability": 0.7411 + }, + { + "start": 9363.36, + "end": 9363.78, + "probability": 0.7211 + }, + { + "start": 9364.0, + "end": 9364.54, + "probability": 0.6391 + }, + { + "start": 9364.94, + "end": 9365.8, + "probability": 0.9566 + }, + { + "start": 9365.98, + "end": 9368.06, + "probability": 0.6667 + }, + { + "start": 9368.18, + "end": 9368.78, + "probability": 0.9613 + }, + { + "start": 9368.92, + "end": 9369.32, + "probability": 0.8722 + }, + { + "start": 9370.14, + "end": 9371.84, + "probability": 0.5425 + }, + { + "start": 9372.04, + "end": 9373.94, + "probability": 0.6532 + }, + { + "start": 9374.24, + "end": 9377.16, + "probability": 0.9637 + }, + { + "start": 9377.32, + "end": 9382.02, + "probability": 0.7384 + }, + { + "start": 9382.16, + "end": 9384.7, + "probability": 0.9219 + }, + { + "start": 9385.16, + "end": 9387.49, + "probability": 0.9937 + }, + { + "start": 9388.68, + "end": 9394.38, + "probability": 0.979 + }, + { + "start": 9395.36, + "end": 9396.61, + "probability": 0.1701 + }, + { + "start": 9397.62, + "end": 9398.58, + "probability": 0.8245 + }, + { + "start": 9399.46, + "end": 9399.56, + "probability": 0.7461 + }, + { + "start": 9400.02, + "end": 9401.58, + "probability": 0.7585 + }, + { + "start": 9402.4, + "end": 9406.7, + "probability": 0.3981 + }, + { + "start": 9407.2, + "end": 9410.84, + "probability": 0.3727 + }, + { + "start": 9411.38, + "end": 9412.3, + "probability": 0.4405 + }, + { + "start": 9418.56, + "end": 9419.71, + "probability": 0.6443 + }, + { + "start": 9419.88, + "end": 9421.96, + "probability": 0.4196 + }, + { + "start": 9422.63, + "end": 9429.88, + "probability": 0.9619 + }, + { + "start": 9430.04, + "end": 9432.64, + "probability": 0.7947 + }, + { + "start": 9434.52, + "end": 9436.42, + "probability": 0.499 + }, + { + "start": 9436.96, + "end": 9438.42, + "probability": 0.981 + }, + { + "start": 9440.38, + "end": 9445.94, + "probability": 0.9026 + }, + { + "start": 9447.92, + "end": 9448.5, + "probability": 0.7308 + }, + { + "start": 9449.78, + "end": 9454.04, + "probability": 0.9792 + }, + { + "start": 9456.52, + "end": 9459.98, + "probability": 0.9775 + }, + { + "start": 9463.8, + "end": 9465.4, + "probability": 0.8777 + }, + { + "start": 9465.44, + "end": 9467.94, + "probability": 0.9713 + }, + { + "start": 9469.24, + "end": 9473.32, + "probability": 0.9597 + }, + { + "start": 9475.34, + "end": 9478.21, + "probability": 0.9651 + }, + { + "start": 9481.88, + "end": 9482.42, + "probability": 0.3803 + }, + { + "start": 9483.62, + "end": 9485.02, + "probability": 0.8022 + }, + { + "start": 9486.58, + "end": 9487.28, + "probability": 0.8268 + }, + { + "start": 9487.82, + "end": 9489.2, + "probability": 0.7722 + }, + { + "start": 9491.12, + "end": 9491.76, + "probability": 0.9651 + }, + { + "start": 9495.04, + "end": 9497.12, + "probability": 0.7614 + }, + { + "start": 9498.86, + "end": 9501.42, + "probability": 0.9052 + }, + { + "start": 9501.72, + "end": 9502.72, + "probability": 0.9941 + }, + { + "start": 9503.68, + "end": 9506.48, + "probability": 0.9767 + }, + { + "start": 9508.38, + "end": 9509.2, + "probability": 0.849 + }, + { + "start": 9511.18, + "end": 9513.4, + "probability": 0.8719 + }, + { + "start": 9516.12, + "end": 9519.47, + "probability": 0.6465 + }, + { + "start": 9521.34, + "end": 9525.5, + "probability": 0.9695 + }, + { + "start": 9528.12, + "end": 9528.48, + "probability": 0.4222 + }, + { + "start": 9529.48, + "end": 9531.15, + "probability": 0.7982 + }, + { + "start": 9532.64, + "end": 9535.22, + "probability": 0.8651 + }, + { + "start": 9535.32, + "end": 9536.28, + "probability": 0.7632 + }, + { + "start": 9536.9, + "end": 9539.42, + "probability": 0.8563 + }, + { + "start": 9540.56, + "end": 9540.56, + "probability": 0.8774 + }, + { + "start": 9543.3, + "end": 9545.8, + "probability": 0.5725 + }, + { + "start": 9546.88, + "end": 9549.48, + "probability": 0.992 + }, + { + "start": 9549.72, + "end": 9550.67, + "probability": 0.7568 + }, + { + "start": 9552.52, + "end": 9554.66, + "probability": 0.8996 + }, + { + "start": 9554.72, + "end": 9555.58, + "probability": 0.7886 + }, + { + "start": 9555.74, + "end": 9558.08, + "probability": 0.9745 + }, + { + "start": 9558.22, + "end": 9559.14, + "probability": 0.6475 + }, + { + "start": 9559.86, + "end": 9562.88, + "probability": 0.9087 + }, + { + "start": 9564.7, + "end": 9568.96, + "probability": 0.9287 + }, + { + "start": 9570.32, + "end": 9572.1, + "probability": 0.9675 + }, + { + "start": 9573.64, + "end": 9574.6, + "probability": 0.9515 + }, + { + "start": 9575.2, + "end": 9576.44, + "probability": 0.9829 + }, + { + "start": 9577.62, + "end": 9579.54, + "probability": 0.8951 + }, + { + "start": 9581.74, + "end": 9582.5, + "probability": 0.3712 + }, + { + "start": 9582.62, + "end": 9584.23, + "probability": 0.7368 + }, + { + "start": 9585.54, + "end": 9587.26, + "probability": 0.7533 + }, + { + "start": 9588.18, + "end": 9589.45, + "probability": 0.97 + }, + { + "start": 9590.42, + "end": 9592.9, + "probability": 0.915 + }, + { + "start": 9593.94, + "end": 9596.24, + "probability": 0.5983 + }, + { + "start": 9597.22, + "end": 9600.66, + "probability": 0.2721 + }, + { + "start": 9600.94, + "end": 9602.0, + "probability": 0.2127 + }, + { + "start": 9602.52, + "end": 9603.38, + "probability": 0.8563 + }, + { + "start": 9603.52, + "end": 9604.5, + "probability": 0.3151 + }, + { + "start": 9604.8, + "end": 9607.96, + "probability": 0.6607 + }, + { + "start": 9608.48, + "end": 9610.4, + "probability": 0.4869 + }, + { + "start": 9610.4, + "end": 9613.26, + "probability": 0.651 + }, + { + "start": 9613.9, + "end": 9614.66, + "probability": 0.4948 + }, + { + "start": 9615.7, + "end": 9616.64, + "probability": 0.8724 + }, + { + "start": 9618.48, + "end": 9619.7, + "probability": 0.8929 + }, + { + "start": 9620.04, + "end": 9622.32, + "probability": 0.7005 + }, + { + "start": 9623.68, + "end": 9624.82, + "probability": 0.7261 + }, + { + "start": 9624.86, + "end": 9625.8, + "probability": 0.8375 + }, + { + "start": 9626.64, + "end": 9629.0, + "probability": 0.946 + }, + { + "start": 9629.08, + "end": 9630.18, + "probability": 0.9447 + }, + { + "start": 9630.88, + "end": 9632.76, + "probability": 0.8126 + }, + { + "start": 9633.72, + "end": 9636.28, + "probability": 0.8226 + }, + { + "start": 9636.48, + "end": 9637.16, + "probability": 0.5136 + }, + { + "start": 9637.46, + "end": 9637.52, + "probability": 0.2203 + }, + { + "start": 9637.52, + "end": 9639.19, + "probability": 0.6955 + }, + { + "start": 9639.92, + "end": 9640.06, + "probability": 0.0545 + }, + { + "start": 9640.06, + "end": 9641.44, + "probability": 0.1602 + }, + { + "start": 9641.86, + "end": 9643.04, + "probability": 0.2226 + }, + { + "start": 9643.48, + "end": 9645.06, + "probability": 0.0777 + }, + { + "start": 9645.38, + "end": 9646.84, + "probability": 0.2311 + }, + { + "start": 9647.14, + "end": 9647.42, + "probability": 0.1375 + }, + { + "start": 9647.42, + "end": 9648.14, + "probability": 0.1558 + }, + { + "start": 9648.22, + "end": 9649.32, + "probability": 0.9054 + }, + { + "start": 9649.54, + "end": 9650.26, + "probability": 0.936 + }, + { + "start": 9650.44, + "end": 9650.62, + "probability": 0.3865 + }, + { + "start": 9650.64, + "end": 9651.58, + "probability": 0.962 + }, + { + "start": 9652.14, + "end": 9652.14, + "probability": 0.9194 + }, + { + "start": 9652.9, + "end": 9653.56, + "probability": 0.9827 + }, + { + "start": 9655.2, + "end": 9658.3, + "probability": 0.2643 + }, + { + "start": 9658.3, + "end": 9658.3, + "probability": 0.0087 + }, + { + "start": 9658.3, + "end": 9658.3, + "probability": 0.1356 + }, + { + "start": 9658.3, + "end": 9658.91, + "probability": 0.2606 + }, + { + "start": 9660.08, + "end": 9662.64, + "probability": 0.7886 + }, + { + "start": 9663.62, + "end": 9665.7, + "probability": 0.9753 + }, + { + "start": 9666.04, + "end": 9666.32, + "probability": 0.8436 + }, + { + "start": 9666.82, + "end": 9671.42, + "probability": 0.9596 + }, + { + "start": 9671.66, + "end": 9673.74, + "probability": 0.9944 + }, + { + "start": 9674.6, + "end": 9675.0, + "probability": 0.6227 + }, + { + "start": 9675.04, + "end": 9675.78, + "probability": 0.9113 + }, + { + "start": 9676.36, + "end": 9677.96, + "probability": 0.8718 + }, + { + "start": 9679.26, + "end": 9681.96, + "probability": 0.9956 + }, + { + "start": 9682.04, + "end": 9682.7, + "probability": 0.9717 + }, + { + "start": 9683.34, + "end": 9683.92, + "probability": 0.9537 + }, + { + "start": 9684.76, + "end": 9687.82, + "probability": 0.8578 + }, + { + "start": 9688.44, + "end": 9691.4, + "probability": 0.9546 + }, + { + "start": 9691.72, + "end": 9692.44, + "probability": 0.7123 + }, + { + "start": 9692.48, + "end": 9693.66, + "probability": 0.7622 + }, + { + "start": 9693.7, + "end": 9695.12, + "probability": 0.8882 + }, + { + "start": 9695.26, + "end": 9697.06, + "probability": 0.9797 + }, + { + "start": 9699.08, + "end": 9699.98, + "probability": 0.9896 + }, + { + "start": 9701.8, + "end": 9702.8, + "probability": 0.7026 + }, + { + "start": 9702.96, + "end": 9705.3, + "probability": 0.8911 + }, + { + "start": 9705.5, + "end": 9706.44, + "probability": 0.6521 + }, + { + "start": 9706.5, + "end": 9709.0, + "probability": 0.9181 + }, + { + "start": 9711.16, + "end": 9711.38, + "probability": 0.2661 + }, + { + "start": 9712.26, + "end": 9712.98, + "probability": 0.3833 + }, + { + "start": 9733.5, + "end": 9734.26, + "probability": 0.9167 + }, + { + "start": 9734.5, + "end": 9736.24, + "probability": 0.6122 + }, + { + "start": 9737.4, + "end": 9738.24, + "probability": 0.9105 + }, + { + "start": 9738.32, + "end": 9742.84, + "probability": 0.9461 + }, + { + "start": 9743.92, + "end": 9751.36, + "probability": 0.9719 + }, + { + "start": 9752.4, + "end": 9754.98, + "probability": 0.9325 + }, + { + "start": 9758.76, + "end": 9759.7, + "probability": 0.7449 + }, + { + "start": 9760.6, + "end": 9765.24, + "probability": 0.9991 + }, + { + "start": 9765.42, + "end": 9766.06, + "probability": 0.8323 + }, + { + "start": 9766.86, + "end": 9768.62, + "probability": 0.6848 + }, + { + "start": 9769.42, + "end": 9770.25, + "probability": 0.9539 + }, + { + "start": 9771.6, + "end": 9774.02, + "probability": 0.7441 + }, + { + "start": 9775.32, + "end": 9776.4, + "probability": 0.8905 + }, + { + "start": 9777.28, + "end": 9782.1, + "probability": 0.902 + }, + { + "start": 9782.1, + "end": 9784.56, + "probability": 0.9289 + }, + { + "start": 9785.16, + "end": 9788.42, + "probability": 0.9979 + }, + { + "start": 9789.02, + "end": 9791.54, + "probability": 0.9902 + }, + { + "start": 9792.24, + "end": 9794.89, + "probability": 0.9888 + }, + { + "start": 9796.86, + "end": 9798.28, + "probability": 0.9647 + }, + { + "start": 9799.14, + "end": 9801.88, + "probability": 0.6685 + }, + { + "start": 9802.94, + "end": 9806.68, + "probability": 0.9762 + }, + { + "start": 9807.82, + "end": 9809.48, + "probability": 0.8815 + }, + { + "start": 9809.84, + "end": 9811.0, + "probability": 0.9667 + }, + { + "start": 9811.44, + "end": 9812.9, + "probability": 0.9805 + }, + { + "start": 9814.12, + "end": 9815.64, + "probability": 0.9973 + }, + { + "start": 9815.72, + "end": 9817.26, + "probability": 0.8894 + }, + { + "start": 9818.2, + "end": 9820.18, + "probability": 0.9359 + }, + { + "start": 9821.02, + "end": 9822.12, + "probability": 0.7047 + }, + { + "start": 9823.04, + "end": 9823.52, + "probability": 0.4914 + }, + { + "start": 9824.4, + "end": 9826.1, + "probability": 0.9617 + }, + { + "start": 9826.72, + "end": 9830.0, + "probability": 0.7426 + }, + { + "start": 9830.64, + "end": 9831.9, + "probability": 0.8328 + }, + { + "start": 9832.6, + "end": 9833.1, + "probability": 0.394 + }, + { + "start": 9834.04, + "end": 9834.94, + "probability": 0.8296 + }, + { + "start": 9835.7, + "end": 9837.06, + "probability": 0.9491 + }, + { + "start": 9837.6, + "end": 9840.66, + "probability": 0.9822 + }, + { + "start": 9841.28, + "end": 9842.94, + "probability": 0.8712 + }, + { + "start": 9843.62, + "end": 9845.86, + "probability": 0.9333 + }, + { + "start": 9846.5, + "end": 9848.04, + "probability": 0.7609 + }, + { + "start": 9851.42, + "end": 9853.6, + "probability": 0.6598 + }, + { + "start": 9853.74, + "end": 9859.06, + "probability": 0.5021 + }, + { + "start": 9859.2, + "end": 9864.02, + "probability": 0.7472 + }, + { + "start": 9864.16, + "end": 9865.68, + "probability": 0.2049 + }, + { + "start": 9865.78, + "end": 9868.1, + "probability": 0.6888 + }, + { + "start": 9868.6, + "end": 9868.74, + "probability": 0.4333 + }, + { + "start": 9868.74, + "end": 9869.56, + "probability": 0.3751 + }, + { + "start": 9876.08, + "end": 9878.42, + "probability": 0.9648 + }, + { + "start": 9878.42, + "end": 9878.62, + "probability": 0.1131 + }, + { + "start": 9879.02, + "end": 9880.14, + "probability": 0.0224 + }, + { + "start": 9889.46, + "end": 9891.48, + "probability": 0.9254 + }, + { + "start": 9904.88, + "end": 9906.5, + "probability": 0.2093 + }, + { + "start": 9912.28, + "end": 9912.86, + "probability": 0.0006 + }, + { + "start": 9915.62, + "end": 9918.12, + "probability": 0.0391 + }, + { + "start": 9921.44, + "end": 9924.8, + "probability": 0.042 + }, + { + "start": 9926.86, + "end": 9930.98, + "probability": 0.423 + }, + { + "start": 9941.81, + "end": 9943.98, + "probability": 0.0753 + }, + { + "start": 9943.98, + "end": 9945.8, + "probability": 0.1747 + }, + { + "start": 9946.06, + "end": 9946.06, + "probability": 0.0261 + }, + { + "start": 9946.68, + "end": 9947.48, + "probability": 0.1922 + }, + { + "start": 9947.48, + "end": 9950.9, + "probability": 0.3756 + }, + { + "start": 9951.88, + "end": 9956.88, + "probability": 0.1113 + }, + { + "start": 9957.58, + "end": 9960.86, + "probability": 0.4517 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10087.0, + "end": 10087.0, + "probability": 0.0 + }, + { + "start": 10100.05, + "end": 10102.88, + "probability": 0.0506 + }, + { + "start": 10105.04, + "end": 10107.78, + "probability": 0.0122 + }, + { + "start": 10109.28, + "end": 10111.3, + "probability": 0.0305 + }, + { + "start": 10112.77, + "end": 10113.81, + "probability": 0.1314 + }, + { + "start": 10116.11, + "end": 10117.0, + "probability": 0.0343 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.0, + "end": 10210.0, + "probability": 0.0 + }, + { + "start": 10210.14, + "end": 10210.28, + "probability": 0.1564 + }, + { + "start": 10210.28, + "end": 10210.28, + "probability": 0.1309 + }, + { + "start": 10210.28, + "end": 10214.3, + "probability": 0.6725 + }, + { + "start": 10216.22, + "end": 10222.16, + "probability": 0.922 + }, + { + "start": 10222.42, + "end": 10224.68, + "probability": 0.9717 + }, + { + "start": 10225.08, + "end": 10228.36, + "probability": 0.9933 + }, + { + "start": 10228.46, + "end": 10231.64, + "probability": 0.959 + }, + { + "start": 10231.82, + "end": 10233.18, + "probability": 0.8117 + }, + { + "start": 10233.98, + "end": 10235.38, + "probability": 0.5311 + }, + { + "start": 10235.54, + "end": 10235.9, + "probability": 0.4282 + }, + { + "start": 10235.96, + "end": 10237.8, + "probability": 0.9453 + }, + { + "start": 10237.88, + "end": 10242.46, + "probability": 0.9785 + }, + { + "start": 10242.58, + "end": 10244.04, + "probability": 0.9172 + }, + { + "start": 10244.38, + "end": 10248.3, + "probability": 0.8302 + }, + { + "start": 10250.12, + "end": 10250.36, + "probability": 0.0864 + }, + { + "start": 10250.36, + "end": 10250.92, + "probability": 0.5939 + }, + { + "start": 10251.06, + "end": 10251.38, + "probability": 0.38 + }, + { + "start": 10251.86, + "end": 10252.63, + "probability": 0.7009 + }, + { + "start": 10252.9, + "end": 10259.26, + "probability": 0.9263 + }, + { + "start": 10259.74, + "end": 10263.1, + "probability": 0.9641 + }, + { + "start": 10263.96, + "end": 10268.92, + "probability": 0.9692 + }, + { + "start": 10269.4, + "end": 10269.5, + "probability": 0.3931 + }, + { + "start": 10269.54, + "end": 10270.08, + "probability": 0.854 + }, + { + "start": 10270.24, + "end": 10270.66, + "probability": 0.6785 + }, + { + "start": 10270.74, + "end": 10274.16, + "probability": 0.8843 + }, + { + "start": 10274.18, + "end": 10276.0, + "probability": 0.9912 + }, + { + "start": 10276.12, + "end": 10276.4, + "probability": 0.362 + }, + { + "start": 10276.4, + "end": 10277.54, + "probability": 0.9556 + }, + { + "start": 10278.06, + "end": 10280.88, + "probability": 0.9945 + }, + { + "start": 10280.9, + "end": 10285.88, + "probability": 0.9762 + }, + { + "start": 10286.22, + "end": 10288.2, + "probability": 0.9287 + }, + { + "start": 10288.88, + "end": 10293.46, + "probability": 0.9441 + }, + { + "start": 10293.56, + "end": 10293.76, + "probability": 0.7813 + }, + { + "start": 10294.14, + "end": 10295.57, + "probability": 0.7295 + }, + { + "start": 10295.58, + "end": 10296.92, + "probability": 0.7106 + }, + { + "start": 10296.94, + "end": 10298.87, + "probability": 0.8115 + }, + { + "start": 10299.4, + "end": 10304.3, + "probability": 0.9717 + }, + { + "start": 10304.74, + "end": 10308.7, + "probability": 0.9323 + }, + { + "start": 10308.98, + "end": 10309.63, + "probability": 0.2122 + }, + { + "start": 10310.62, + "end": 10315.52, + "probability": 0.9929 + }, + { + "start": 10315.52, + "end": 10319.64, + "probability": 0.9514 + }, + { + "start": 10319.88, + "end": 10321.82, + "probability": 0.8021 + }, + { + "start": 10322.64, + "end": 10323.94, + "probability": 0.7693 + }, + { + "start": 10324.08, + "end": 10325.16, + "probability": 0.8625 + }, + { + "start": 10325.2, + "end": 10327.02, + "probability": 0.9904 + }, + { + "start": 10328.2, + "end": 10328.74, + "probability": 0.6484 + }, + { + "start": 10330.04, + "end": 10330.82, + "probability": 0.8925 + }, + { + "start": 10331.5, + "end": 10332.82, + "probability": 0.6879 + }, + { + "start": 10333.42, + "end": 10335.3, + "probability": 0.9194 + }, + { + "start": 10335.84, + "end": 10340.1, + "probability": 0.9427 + }, + { + "start": 10341.16, + "end": 10342.58, + "probability": 0.7006 + }, + { + "start": 10343.54, + "end": 10343.58, + "probability": 0.2342 + }, + { + "start": 10343.58, + "end": 10344.38, + "probability": 0.7939 + }, + { + "start": 10344.38, + "end": 10344.94, + "probability": 0.2821 + }, + { + "start": 10346.94, + "end": 10348.61, + "probability": 0.0512 + }, + { + "start": 10349.1, + "end": 10349.9, + "probability": 0.0928 + }, + { + "start": 10349.92, + "end": 10350.38, + "probability": 0.6983 + }, + { + "start": 10350.66, + "end": 10351.82, + "probability": 0.3577 + }, + { + "start": 10351.88, + "end": 10352.6, + "probability": 0.4894 + }, + { + "start": 10353.28, + "end": 10353.36, + "probability": 0.1689 + }, + { + "start": 10353.36, + "end": 10354.92, + "probability": 0.7387 + }, + { + "start": 10354.98, + "end": 10356.54, + "probability": 0.968 + }, + { + "start": 10357.46, + "end": 10358.72, + "probability": 0.9854 + }, + { + "start": 10358.86, + "end": 10359.72, + "probability": 0.5515 + }, + { + "start": 10359.88, + "end": 10361.34, + "probability": 0.7159 + }, + { + "start": 10361.62, + "end": 10362.5, + "probability": 0.7792 + }, + { + "start": 10362.62, + "end": 10368.92, + "probability": 0.9646 + }, + { + "start": 10369.48, + "end": 10373.08, + "probability": 0.9851 + }, + { + "start": 10373.94, + "end": 10375.5, + "probability": 0.9977 + }, + { + "start": 10376.76, + "end": 10379.64, + "probability": 0.8573 + }, + { + "start": 10379.7, + "end": 10381.6, + "probability": 0.5929 + }, + { + "start": 10382.1, + "end": 10384.0, + "probability": 0.9858 + }, + { + "start": 10384.06, + "end": 10386.36, + "probability": 0.994 + }, + { + "start": 10386.5, + "end": 10387.18, + "probability": 0.594 + }, + { + "start": 10387.4, + "end": 10388.08, + "probability": 0.8009 + }, + { + "start": 10388.68, + "end": 10391.08, + "probability": 0.9829 + }, + { + "start": 10391.66, + "end": 10394.54, + "probability": 0.96 + }, + { + "start": 10395.24, + "end": 10397.76, + "probability": 0.9937 + }, + { + "start": 10397.98, + "end": 10399.26, + "probability": 0.9918 + }, + { + "start": 10400.04, + "end": 10403.42, + "probability": 0.9935 + }, + { + "start": 10404.18, + "end": 10405.46, + "probability": 0.8941 + }, + { + "start": 10405.58, + "end": 10408.12, + "probability": 0.9895 + }, + { + "start": 10408.62, + "end": 10410.94, + "probability": 0.9929 + }, + { + "start": 10411.62, + "end": 10418.24, + "probability": 0.9598 + }, + { + "start": 10418.5, + "end": 10421.88, + "probability": 0.8064 + }, + { + "start": 10421.94, + "end": 10424.14, + "probability": 0.8772 + }, + { + "start": 10424.72, + "end": 10426.76, + "probability": 0.9733 + }, + { + "start": 10427.42, + "end": 10431.12, + "probability": 0.9972 + }, + { + "start": 10432.06, + "end": 10435.16, + "probability": 0.9983 + }, + { + "start": 10435.44, + "end": 10442.24, + "probability": 0.9966 + }, + { + "start": 10442.9, + "end": 10447.34, + "probability": 0.869 + }, + { + "start": 10447.4, + "end": 10451.66, + "probability": 0.776 + }, + { + "start": 10452.22, + "end": 10455.72, + "probability": 0.9731 + }, + { + "start": 10456.72, + "end": 10459.38, + "probability": 0.8876 + }, + { + "start": 10459.94, + "end": 10464.86, + "probability": 0.9782 + }, + { + "start": 10464.88, + "end": 10469.78, + "probability": 0.8496 + }, + { + "start": 10470.44, + "end": 10471.8, + "probability": 0.5542 + }, + { + "start": 10475.08, + "end": 10475.62, + "probability": 0.7067 + }, + { + "start": 10476.14, + "end": 10480.52, + "probability": 0.9966 + }, + { + "start": 10481.16, + "end": 10485.76, + "probability": 0.9492 + }, + { + "start": 10486.22, + "end": 10489.48, + "probability": 0.9595 + }, + { + "start": 10489.48, + "end": 10492.6, + "probability": 0.959 + }, + { + "start": 10492.78, + "end": 10493.44, + "probability": 0.7397 + }, + { + "start": 10493.82, + "end": 10497.88, + "probability": 0.9604 + }, + { + "start": 10498.46, + "end": 10502.7, + "probability": 0.9922 + }, + { + "start": 10502.82, + "end": 10503.32, + "probability": 0.858 + }, + { + "start": 10503.7, + "end": 10505.7, + "probability": 0.5776 + }, + { + "start": 10505.92, + "end": 10508.5, + "probability": 0.7288 + }, + { + "start": 10511.14, + "end": 10513.56, + "probability": 0.9658 + }, + { + "start": 10521.7, + "end": 10526.96, + "probability": 0.9438 + }, + { + "start": 10527.22, + "end": 10527.78, + "probability": 0.9438 + }, + { + "start": 10528.08, + "end": 10528.28, + "probability": 0.3625 + }, + { + "start": 10528.34, + "end": 10530.64, + "probability": 0.0278 + }, + { + "start": 10530.64, + "end": 10532.06, + "probability": 0.9113 + }, + { + "start": 10532.28, + "end": 10533.91, + "probability": 0.9464 + }, + { + "start": 10535.18, + "end": 10536.32, + "probability": 0.6764 + }, + { + "start": 10536.32, + "end": 10537.36, + "probability": 0.8066 + }, + { + "start": 10537.36, + "end": 10540.86, + "probability": 0.7421 + }, + { + "start": 10542.38, + "end": 10544.4, + "probability": 0.9228 + }, + { + "start": 10545.78, + "end": 10550.46, + "probability": 0.8926 + }, + { + "start": 10551.28, + "end": 10553.34, + "probability": 0.9702 + }, + { + "start": 10554.04, + "end": 10557.11, + "probability": 0.9956 + }, + { + "start": 10557.89, + "end": 10559.7, + "probability": 0.9848 + }, + { + "start": 10561.16, + "end": 10562.2, + "probability": 0.9229 + }, + { + "start": 10563.08, + "end": 10564.24, + "probability": 0.953 + }, + { + "start": 10565.52, + "end": 10566.8, + "probability": 0.9893 + }, + { + "start": 10567.4, + "end": 10568.56, + "probability": 0.948 + }, + { + "start": 10568.94, + "end": 10570.26, + "probability": 0.9719 + }, + { + "start": 10571.68, + "end": 10573.8, + "probability": 0.7844 + }, + { + "start": 10574.32, + "end": 10574.76, + "probability": 0.7509 + }, + { + "start": 10575.36, + "end": 10579.06, + "probability": 0.9847 + }, + { + "start": 10579.7, + "end": 10581.07, + "probability": 0.8861 + }, + { + "start": 10582.68, + "end": 10584.42, + "probability": 0.259 + }, + { + "start": 10584.42, + "end": 10584.42, + "probability": 0.0256 + }, + { + "start": 10584.42, + "end": 10585.0, + "probability": 0.9185 + }, + { + "start": 10586.44, + "end": 10587.14, + "probability": 0.9154 + }, + { + "start": 10588.14, + "end": 10589.99, + "probability": 0.9943 + }, + { + "start": 10590.96, + "end": 10592.32, + "probability": 0.9347 + }, + { + "start": 10592.36, + "end": 10593.06, + "probability": 0.9912 + }, + { + "start": 10594.32, + "end": 10595.58, + "probability": 0.6846 + }, + { + "start": 10596.42, + "end": 10598.44, + "probability": 0.7661 + }, + { + "start": 10598.86, + "end": 10600.72, + "probability": 0.9958 + }, + { + "start": 10601.22, + "end": 10604.09, + "probability": 0.994 + }, + { + "start": 10604.9, + "end": 10605.2, + "probability": 0.0497 + }, + { + "start": 10605.86, + "end": 10610.14, + "probability": 0.7633 + }, + { + "start": 10610.32, + "end": 10611.18, + "probability": 0.9067 + }, + { + "start": 10612.22, + "end": 10612.98, + "probability": 0.9521 + }, + { + "start": 10613.2, + "end": 10614.18, + "probability": 0.7231 + }, + { + "start": 10615.6, + "end": 10618.94, + "probability": 0.9957 + }, + { + "start": 10619.56, + "end": 10619.88, + "probability": 0.3158 + }, + { + "start": 10620.2, + "end": 10621.06, + "probability": 0.5537 + }, + { + "start": 10622.06, + "end": 10623.1, + "probability": 0.8818 + }, + { + "start": 10623.44, + "end": 10625.64, + "probability": 0.8508 + }, + { + "start": 10625.88, + "end": 10628.62, + "probability": 0.9186 + }, + { + "start": 10629.82, + "end": 10629.82, + "probability": 0.4484 + }, + { + "start": 10629.96, + "end": 10630.92, + "probability": 0.9822 + }, + { + "start": 10631.16, + "end": 10632.82, + "probability": 0.4116 + }, + { + "start": 10633.54, + "end": 10636.6, + "probability": 0.9453 + }, + { + "start": 10637.92, + "end": 10639.9, + "probability": 0.955 + }, + { + "start": 10641.4, + "end": 10643.76, + "probability": 0.9932 + }, + { + "start": 10644.52, + "end": 10646.04, + "probability": 0.9995 + }, + { + "start": 10647.16, + "end": 10648.3, + "probability": 0.9381 + }, + { + "start": 10649.04, + "end": 10651.76, + "probability": 0.9911 + }, + { + "start": 10652.16, + "end": 10653.94, + "probability": 0.9985 + }, + { + "start": 10654.06, + "end": 10655.72, + "probability": 0.9585 + }, + { + "start": 10656.64, + "end": 10658.06, + "probability": 0.9993 + }, + { + "start": 10660.88, + "end": 10661.74, + "probability": 0.9826 + }, + { + "start": 10661.96, + "end": 10663.18, + "probability": 0.8302 + }, + { + "start": 10663.24, + "end": 10664.1, + "probability": 0.9597 + }, + { + "start": 10665.84, + "end": 10668.56, + "probability": 0.9837 + }, + { + "start": 10669.6, + "end": 10671.69, + "probability": 0.9981 + }, + { + "start": 10673.0, + "end": 10674.58, + "probability": 0.8055 + }, + { + "start": 10675.86, + "end": 10676.38, + "probability": 0.4991 + }, + { + "start": 10676.96, + "end": 10677.02, + "probability": 0.2421 + }, + { + "start": 10677.02, + "end": 10680.22, + "probability": 0.9922 + }, + { + "start": 10680.9, + "end": 10681.8, + "probability": 0.9156 + }, + { + "start": 10683.18, + "end": 10684.38, + "probability": 0.9733 + }, + { + "start": 10686.0, + "end": 10687.34, + "probability": 0.9526 + }, + { + "start": 10688.26, + "end": 10690.18, + "probability": 0.9638 + }, + { + "start": 10691.24, + "end": 10693.44, + "probability": 0.9901 + }, + { + "start": 10694.2, + "end": 10695.3, + "probability": 0.9729 + }, + { + "start": 10695.4, + "end": 10699.5, + "probability": 0.9873 + }, + { + "start": 10699.82, + "end": 10700.2, + "probability": 0.3408 + }, + { + "start": 10700.32, + "end": 10706.56, + "probability": 0.6543 + }, + { + "start": 10706.6, + "end": 10709.18, + "probability": 0.7973 + }, + { + "start": 10709.74, + "end": 10711.28, + "probability": 0.9297 + }, + { + "start": 10712.76, + "end": 10715.9, + "probability": 0.9966 + }, + { + "start": 10716.96, + "end": 10719.28, + "probability": 0.9946 + }, + { + "start": 10720.04, + "end": 10722.24, + "probability": 0.9829 + }, + { + "start": 10723.6, + "end": 10724.5, + "probability": 0.9675 + }, + { + "start": 10725.02, + "end": 10730.06, + "probability": 0.9978 + }, + { + "start": 10731.32, + "end": 10736.62, + "probability": 0.9963 + }, + { + "start": 10737.98, + "end": 10738.96, + "probability": 0.7608 + }, + { + "start": 10741.12, + "end": 10741.9, + "probability": 0.761 + }, + { + "start": 10742.8, + "end": 10743.7, + "probability": 0.7639 + }, + { + "start": 10746.52, + "end": 10749.28, + "probability": 0.5388 + }, + { + "start": 10750.24, + "end": 10751.62, + "probability": 0.7283 + }, + { + "start": 10752.62, + "end": 10753.68, + "probability": 0.9092 + }, + { + "start": 10754.5, + "end": 10755.44, + "probability": 0.8395 + }, + { + "start": 10757.58, + "end": 10759.34, + "probability": 0.9839 + }, + { + "start": 10761.02, + "end": 10763.12, + "probability": 0.9935 + }, + { + "start": 10765.56, + "end": 10766.16, + "probability": 0.9866 + }, + { + "start": 10767.36, + "end": 10770.74, + "probability": 0.9991 + }, + { + "start": 10772.24, + "end": 10773.28, + "probability": 0.999 + }, + { + "start": 10775.06, + "end": 10776.52, + "probability": 0.9243 + }, + { + "start": 10777.38, + "end": 10784.14, + "probability": 0.9675 + }, + { + "start": 10784.24, + "end": 10784.5, + "probability": 0.6137 + }, + { + "start": 10786.14, + "end": 10786.66, + "probability": 0.1666 + }, + { + "start": 10786.66, + "end": 10788.7, + "probability": 0.8494 + }, + { + "start": 10788.84, + "end": 10790.18, + "probability": 0.5529 + }, + { + "start": 10791.48, + "end": 10792.9, + "probability": 0.8254 + }, + { + "start": 10793.56, + "end": 10793.72, + "probability": 0.1752 + }, + { + "start": 10793.86, + "end": 10795.52, + "probability": 0.9938 + }, + { + "start": 10797.18, + "end": 10800.18, + "probability": 0.8391 + }, + { + "start": 10801.7, + "end": 10804.3, + "probability": 0.9987 + }, + { + "start": 10804.3, + "end": 10807.52, + "probability": 0.9868 + }, + { + "start": 10809.04, + "end": 10810.94, + "probability": 0.9429 + }, + { + "start": 10811.36, + "end": 10811.36, + "probability": 0.0142 + }, + { + "start": 10812.5, + "end": 10814.24, + "probability": 0.6143 + }, + { + "start": 10814.34, + "end": 10814.88, + "probability": 0.6998 + }, + { + "start": 10815.5, + "end": 10816.88, + "probability": 0.8083 + }, + { + "start": 10818.36, + "end": 10819.54, + "probability": 0.9661 + }, + { + "start": 10820.48, + "end": 10824.36, + "probability": 0.8584 + }, + { + "start": 10825.52, + "end": 10827.46, + "probability": 0.6507 + }, + { + "start": 10828.98, + "end": 10830.88, + "probability": 0.7223 + }, + { + "start": 10831.32, + "end": 10832.9, + "probability": 0.8562 + }, + { + "start": 10833.42, + "end": 10833.74, + "probability": 0.0536 + }, + { + "start": 10833.74, + "end": 10835.78, + "probability": 0.9612 + }, + { + "start": 10836.02, + "end": 10836.52, + "probability": 0.2352 + }, + { + "start": 10836.94, + "end": 10837.94, + "probability": 0.8184 + }, + { + "start": 10838.02, + "end": 10838.48, + "probability": 0.7998 + }, + { + "start": 10839.06, + "end": 10842.0, + "probability": 0.6206 + }, + { + "start": 10842.1, + "end": 10843.64, + "probability": 0.7584 + }, + { + "start": 10843.78, + "end": 10845.04, + "probability": 0.673 + }, + { + "start": 10845.12, + "end": 10847.41, + "probability": 0.9292 + }, + { + "start": 10847.56, + "end": 10851.44, + "probability": 0.8234 + }, + { + "start": 10851.6, + "end": 10853.62, + "probability": 0.9624 + }, + { + "start": 10854.28, + "end": 10855.86, + "probability": 0.9834 + }, + { + "start": 10856.12, + "end": 10857.92, + "probability": 0.1017 + }, + { + "start": 10858.62, + "end": 10861.58, + "probability": 0.8073 + }, + { + "start": 10862.74, + "end": 10863.74, + "probability": 0.9976 + }, + { + "start": 10864.26, + "end": 10866.64, + "probability": 0.9935 + }, + { + "start": 10867.58, + "end": 10872.8, + "probability": 0.9962 + }, + { + "start": 10873.96, + "end": 10874.84, + "probability": 0.743 + }, + { + "start": 10875.76, + "end": 10878.6, + "probability": 0.967 + }, + { + "start": 10878.88, + "end": 10880.4, + "probability": 0.7825 + }, + { + "start": 10880.48, + "end": 10881.08, + "probability": 0.8879 + }, + { + "start": 10881.8, + "end": 10883.5, + "probability": 0.9794 + }, + { + "start": 10883.5, + "end": 10886.1, + "probability": 0.7584 + }, + { + "start": 10887.22, + "end": 10888.32, + "probability": 0.9513 + }, + { + "start": 10888.8, + "end": 10891.0, + "probability": 0.9594 + }, + { + "start": 10891.6, + "end": 10895.08, + "probability": 0.9954 + }, + { + "start": 10895.66, + "end": 10897.52, + "probability": 0.9168 + }, + { + "start": 10898.24, + "end": 10901.48, + "probability": 0.9994 + }, + { + "start": 10902.26, + "end": 10904.36, + "probability": 0.8821 + }, + { + "start": 10905.38, + "end": 10907.22, + "probability": 0.9462 + }, + { + "start": 10907.84, + "end": 10908.94, + "probability": 0.9528 + }, + { + "start": 10910.14, + "end": 10910.9, + "probability": 0.9844 + }, + { + "start": 10911.16, + "end": 10912.5, + "probability": 0.8979 + }, + { + "start": 10913.6, + "end": 10916.08, + "probability": 0.9912 + }, + { + "start": 10916.9, + "end": 10919.12, + "probability": 0.9636 + }, + { + "start": 10919.96, + "end": 10925.4, + "probability": 0.7893 + }, + { + "start": 10925.78, + "end": 10929.5, + "probability": 0.8382 + }, + { + "start": 10930.44, + "end": 10933.34, + "probability": 0.9581 + }, + { + "start": 10934.14, + "end": 10935.86, + "probability": 0.9213 + }, + { + "start": 10936.28, + "end": 10936.6, + "probability": 0.6915 + }, + { + "start": 10936.72, + "end": 10938.0, + "probability": 0.9052 + }, + { + "start": 10938.08, + "end": 10939.14, + "probability": 0.8844 + }, + { + "start": 10939.2, + "end": 10939.76, + "probability": 0.7557 + }, + { + "start": 10939.88, + "end": 10940.86, + "probability": 0.3145 + }, + { + "start": 10940.92, + "end": 10941.53, + "probability": 0.7247 + }, + { + "start": 10941.98, + "end": 10944.52, + "probability": 0.763 + }, + { + "start": 10944.74, + "end": 10946.64, + "probability": 0.7394 + }, + { + "start": 10946.82, + "end": 10946.82, + "probability": 0.1493 + }, + { + "start": 10946.84, + "end": 10947.86, + "probability": 0.5083 + }, + { + "start": 10947.9, + "end": 10950.16, + "probability": 0.7465 + }, + { + "start": 10950.62, + "end": 10951.66, + "probability": 0.9932 + }, + { + "start": 10951.94, + "end": 10952.76, + "probability": 0.0984 + }, + { + "start": 10953.76, + "end": 10954.9, + "probability": 0.5152 + }, + { + "start": 10954.98, + "end": 10958.56, + "probability": 0.0771 + }, + { + "start": 10959.18, + "end": 10959.6, + "probability": 0.1269 + }, + { + "start": 10959.66, + "end": 10961.38, + "probability": 0.8602 + }, + { + "start": 10961.56, + "end": 10962.64, + "probability": 0.5625 + }, + { + "start": 10962.78, + "end": 10968.42, + "probability": 0.6695 + }, + { + "start": 10968.46, + "end": 10971.42, + "probability": 0.9963 + }, + { + "start": 10972.32, + "end": 10974.06, + "probability": 0.9995 + }, + { + "start": 10974.72, + "end": 10976.23, + "probability": 0.9497 + }, + { + "start": 10977.26, + "end": 10979.68, + "probability": 0.8678 + }, + { + "start": 10979.78, + "end": 10984.84, + "probability": 0.9829 + }, + { + "start": 10985.08, + "end": 10986.4, + "probability": 0.9067 + }, + { + "start": 10987.3, + "end": 10989.14, + "probability": 0.9333 + }, + { + "start": 10990.32, + "end": 10993.58, + "probability": 0.6322 + }, + { + "start": 10995.68, + "end": 10997.05, + "probability": 0.2751 + }, + { + "start": 10997.46, + "end": 10998.25, + "probability": 0.191 + }, + { + "start": 10998.44, + "end": 11000.56, + "probability": 0.7345 + }, + { + "start": 11005.98, + "end": 11008.44, + "probability": 0.4684 + }, + { + "start": 11008.54, + "end": 11010.14, + "probability": 0.9273 + }, + { + "start": 11010.22, + "end": 11011.5, + "probability": 0.5593 + }, + { + "start": 11011.68, + "end": 11013.28, + "probability": 0.624 + }, + { + "start": 11013.5, + "end": 11016.1, + "probability": 0.845 + }, + { + "start": 11017.04, + "end": 11017.96, + "probability": 0.8144 + }, + { + "start": 11018.08, + "end": 11020.06, + "probability": 0.6876 + }, + { + "start": 11020.5, + "end": 11021.99, + "probability": 0.9059 + }, + { + "start": 11022.12, + "end": 11023.2, + "probability": 0.7132 + }, + { + "start": 11023.9, + "end": 11027.16, + "probability": 0.8669 + }, + { + "start": 11028.06, + "end": 11030.14, + "probability": 0.9488 + }, + { + "start": 11030.24, + "end": 11032.42, + "probability": 0.8815 + }, + { + "start": 11032.7, + "end": 11034.52, + "probability": 0.9816 + }, + { + "start": 11035.24, + "end": 11038.76, + "probability": 0.9972 + }, + { + "start": 11039.3, + "end": 11041.38, + "probability": 0.9971 + }, + { + "start": 11041.52, + "end": 11041.92, + "probability": 0.778 + }, + { + "start": 11043.08, + "end": 11043.8, + "probability": 0.8353 + }, + { + "start": 11043.9, + "end": 11044.72, + "probability": 0.5638 + }, + { + "start": 11044.74, + "end": 11046.61, + "probability": 0.8833 + }, + { + "start": 11047.04, + "end": 11048.04, + "probability": 0.6306 + }, + { + "start": 11048.18, + "end": 11051.3, + "probability": 0.9954 + }, + { + "start": 11051.3, + "end": 11054.56, + "probability": 0.6515 + }, + { + "start": 11054.98, + "end": 11057.28, + "probability": 0.1732 + }, + { + "start": 11057.56, + "end": 11058.28, + "probability": 0.7461 + }, + { + "start": 11058.76, + "end": 11059.4, + "probability": 0.4338 + }, + { + "start": 11059.54, + "end": 11060.7, + "probability": 0.9664 + }, + { + "start": 11061.28, + "end": 11062.82, + "probability": 0.0023 + }, + { + "start": 11064.8, + "end": 11065.98, + "probability": 0.0002 + }, + { + "start": 11068.12, + "end": 11068.56, + "probability": 0.132 + }, + { + "start": 11074.68, + "end": 11075.02, + "probability": 0.2617 + }, + { + "start": 11078.92, + "end": 11079.12, + "probability": 0.012 + }, + { + "start": 11079.2, + "end": 11079.64, + "probability": 0.2177 + }, + { + "start": 11079.96, + "end": 11080.32, + "probability": 0.5217 + }, + { + "start": 11080.36, + "end": 11083.0, + "probability": 0.8795 + }, + { + "start": 11083.28, + "end": 11085.58, + "probability": 0.7178 + }, + { + "start": 11085.6, + "end": 11086.78, + "probability": 0.921 + }, + { + "start": 11086.8, + "end": 11087.86, + "probability": 0.7285 + }, + { + "start": 11088.7, + "end": 11093.14, + "probability": 0.8406 + }, + { + "start": 11094.68, + "end": 11097.72, + "probability": 0.1672 + }, + { + "start": 11101.46, + "end": 11105.56, + "probability": 0.1137 + }, + { + "start": 11107.34, + "end": 11109.8, + "probability": 0.344 + }, + { + "start": 11110.44, + "end": 11112.12, + "probability": 0.7593 + }, + { + "start": 11112.26, + "end": 11116.0, + "probability": 0.78 + }, + { + "start": 11116.16, + "end": 11117.8, + "probability": 0.5503 + }, + { + "start": 11118.24, + "end": 11119.94, + "probability": 0.6233 + }, + { + "start": 11120.12, + "end": 11122.05, + "probability": 0.9971 + }, + { + "start": 11122.82, + "end": 11127.22, + "probability": 0.8417 + }, + { + "start": 11127.98, + "end": 11129.82, + "probability": 0.8289 + }, + { + "start": 11129.9, + "end": 11131.26, + "probability": 0.8752 + }, + { + "start": 11131.36, + "end": 11133.88, + "probability": 0.837 + }, + { + "start": 11134.1, + "end": 11135.88, + "probability": 0.8793 + }, + { + "start": 11136.5, + "end": 11139.78, + "probability": 0.7045 + }, + { + "start": 11140.54, + "end": 11142.74, + "probability": 0.2355 + }, + { + "start": 11143.42, + "end": 11146.46, + "probability": 0.7299 + }, + { + "start": 11147.28, + "end": 11150.0, + "probability": 0.967 + }, + { + "start": 11150.18, + "end": 11152.74, + "probability": 0.8093 + }, + { + "start": 11152.9, + "end": 11154.72, + "probability": 0.297 + }, + { + "start": 11155.14, + "end": 11156.5, + "probability": 0.5099 + }, + { + "start": 11156.62, + "end": 11157.38, + "probability": 0.5849 + }, + { + "start": 11163.82, + "end": 11166.86, + "probability": 0.981 + }, + { + "start": 11167.14, + "end": 11170.4, + "probability": 0.6748 + }, + { + "start": 11170.82, + "end": 11172.6, + "probability": 0.1204 + }, + { + "start": 11173.18, + "end": 11174.46, + "probability": 0.7133 + }, + { + "start": 11175.28, + "end": 11179.16, + "probability": 0.9844 + }, + { + "start": 11180.02, + "end": 11184.76, + "probability": 0.878 + }, + { + "start": 11185.02, + "end": 11185.34, + "probability": 0.2441 + }, + { + "start": 11185.38, + "end": 11189.9, + "probability": 0.955 + }, + { + "start": 11190.3, + "end": 11191.98, + "probability": 0.6413 + }, + { + "start": 11192.12, + "end": 11192.36, + "probability": 0.7226 + }, + { + "start": 11217.24, + "end": 11219.12, + "probability": 0.6614 + }, + { + "start": 11219.24, + "end": 11221.72, + "probability": 0.7925 + }, + { + "start": 11223.33, + "end": 11225.58, + "probability": 0.8086 + }, + { + "start": 11243.84, + "end": 11244.38, + "probability": 0.5004 + }, + { + "start": 11245.2, + "end": 11245.36, + "probability": 0.0131 + }, + { + "start": 11251.3, + "end": 11252.92, + "probability": 0.1067 + }, + { + "start": 11253.46, + "end": 11256.38, + "probability": 0.6967 + }, + { + "start": 11259.34, + "end": 11260.31, + "probability": 0.0419 + }, + { + "start": 11261.1, + "end": 11263.24, + "probability": 0.5946 + }, + { + "start": 11264.58, + "end": 11265.86, + "probability": 0.9155 + }, + { + "start": 11265.92, + "end": 11268.98, + "probability": 0.9952 + }, + { + "start": 11268.98, + "end": 11272.0, + "probability": 0.7729 + }, + { + "start": 11273.32, + "end": 11274.06, + "probability": 0.6445 + }, + { + "start": 11274.28, + "end": 11276.64, + "probability": 0.372 + }, + { + "start": 11279.26, + "end": 11281.86, + "probability": 0.9797 + }, + { + "start": 11282.74, + "end": 11284.48, + "probability": 0.5997 + }, + { + "start": 11285.74, + "end": 11287.78, + "probability": 0.9105 + }, + { + "start": 11287.78, + "end": 11289.78, + "probability": 0.9468 + }, + { + "start": 11289.84, + "end": 11293.08, + "probability": 0.4268 + }, + { + "start": 11293.12, + "end": 11295.88, + "probability": 0.4462 + }, + { + "start": 11296.72, + "end": 11297.64, + "probability": 0.9624 + }, + { + "start": 11297.74, + "end": 11299.62, + "probability": 0.9807 + }, + { + "start": 11299.64, + "end": 11302.06, + "probability": 0.9074 + }, + { + "start": 11302.2, + "end": 11303.74, + "probability": 0.8687 + }, + { + "start": 11304.46, + "end": 11305.66, + "probability": 0.9685 + }, + { + "start": 11305.8, + "end": 11307.86, + "probability": 0.834 + }, + { + "start": 11308.36, + "end": 11310.26, + "probability": 0.832 + }, + { + "start": 11310.86, + "end": 11310.98, + "probability": 0.0582 + }, + { + "start": 11311.16, + "end": 11314.0, + "probability": 0.1694 + }, + { + "start": 11314.3, + "end": 11316.14, + "probability": 0.9741 + }, + { + "start": 11316.14, + "end": 11319.6, + "probability": 0.9897 + }, + { + "start": 11321.38, + "end": 11324.88, + "probability": 0.9637 + }, + { + "start": 11324.88, + "end": 11328.46, + "probability": 0.9951 + }, + { + "start": 11329.18, + "end": 11331.84, + "probability": 0.9985 + }, + { + "start": 11331.84, + "end": 11335.04, + "probability": 0.9866 + }, + { + "start": 11335.82, + "end": 11340.22, + "probability": 0.9967 + }, + { + "start": 11340.22, + "end": 11342.96, + "probability": 0.9613 + }, + { + "start": 11343.02, + "end": 11344.99, + "probability": 0.7773 + }, + { + "start": 11346.06, + "end": 11348.98, + "probability": 0.9927 + }, + { + "start": 11348.98, + "end": 11353.24, + "probability": 0.7983 + }, + { + "start": 11353.34, + "end": 11354.74, + "probability": 0.7684 + }, + { + "start": 11355.24, + "end": 11357.5, + "probability": 0.8727 + }, + { + "start": 11359.5, + "end": 11362.56, + "probability": 0.9506 + }, + { + "start": 11363.89, + "end": 11365.98, + "probability": 0.9482 + }, + { + "start": 11365.98, + "end": 11368.8, + "probability": 0.9841 + }, + { + "start": 11368.94, + "end": 11369.98, + "probability": 0.7744 + }, + { + "start": 11370.08, + "end": 11373.32, + "probability": 0.943 + }, + { + "start": 11374.12, + "end": 11380.08, + "probability": 0.9829 + }, + { + "start": 11380.08, + "end": 11382.94, + "probability": 0.8761 + }, + { + "start": 11383.02, + "end": 11385.34, + "probability": 0.9822 + }, + { + "start": 11385.34, + "end": 11388.06, + "probability": 0.8913 + }, + { + "start": 11388.12, + "end": 11390.92, + "probability": 0.7872 + }, + { + "start": 11391.68, + "end": 11393.16, + "probability": 0.9561 + }, + { + "start": 11394.0, + "end": 11396.74, + "probability": 0.9575 + }, + { + "start": 11396.84, + "end": 11397.4, + "probability": 0.9824 + }, + { + "start": 11398.2, + "end": 11399.64, + "probability": 0.9219 + }, + { + "start": 11399.64, + "end": 11402.38, + "probability": 0.9982 + }, + { + "start": 11402.56, + "end": 11403.46, + "probability": 0.9668 + }, + { + "start": 11405.32, + "end": 11408.46, + "probability": 0.9871 + }, + { + "start": 11408.46, + "end": 11413.11, + "probability": 0.992 + }, + { + "start": 11413.36, + "end": 11413.86, + "probability": 0.5396 + }, + { + "start": 11414.12, + "end": 11417.4, + "probability": 0.8258 + }, + { + "start": 11417.4, + "end": 11422.02, + "probability": 0.9514 + }, + { + "start": 11422.84, + "end": 11423.56, + "probability": 0.4796 + }, + { + "start": 11423.64, + "end": 11424.34, + "probability": 0.7102 + }, + { + "start": 11424.4, + "end": 11427.54, + "probability": 0.973 + }, + { + "start": 11427.54, + "end": 11431.92, + "probability": 0.96 + }, + { + "start": 11432.54, + "end": 11434.9, + "probability": 0.8761 + }, + { + "start": 11434.9, + "end": 11437.64, + "probability": 0.9935 + }, + { + "start": 11438.76, + "end": 11441.86, + "probability": 0.9577 + }, + { + "start": 11442.96, + "end": 11444.68, + "probability": 0.9811 + }, + { + "start": 11444.68, + "end": 11447.44, + "probability": 0.9965 + }, + { + "start": 11448.32, + "end": 11450.88, + "probability": 0.8958 + }, + { + "start": 11452.0, + "end": 11453.4, + "probability": 0.9933 + }, + { + "start": 11454.2, + "end": 11456.68, + "probability": 0.9822 + }, + { + "start": 11456.68, + "end": 11459.46, + "probability": 0.9829 + }, + { + "start": 11459.54, + "end": 11461.78, + "probability": 0.9875 + }, + { + "start": 11461.78, + "end": 11464.6, + "probability": 0.9723 + }, + { + "start": 11465.48, + "end": 11467.1, + "probability": 0.6679 + }, + { + "start": 11467.28, + "end": 11469.04, + "probability": 0.7716 + }, + { + "start": 11469.18, + "end": 11469.18, + "probability": 0.0018 + }, + { + "start": 11470.1, + "end": 11474.5, + "probability": 0.952 + }, + { + "start": 11474.5, + "end": 11477.84, + "probability": 0.971 + }, + { + "start": 11478.74, + "end": 11481.22, + "probability": 0.9678 + }, + { + "start": 11481.22, + "end": 11484.87, + "probability": 0.9971 + }, + { + "start": 11485.0, + "end": 11489.68, + "probability": 0.9946 + }, + { + "start": 11489.7, + "end": 11494.02, + "probability": 0.9951 + }, + { + "start": 11494.64, + "end": 11497.82, + "probability": 0.9882 + }, + { + "start": 11499.82, + "end": 11500.5, + "probability": 0.8662 + }, + { + "start": 11500.96, + "end": 11504.6, + "probability": 0.933 + }, + { + "start": 11504.6, + "end": 11509.86, + "probability": 0.9946 + }, + { + "start": 11509.94, + "end": 11511.82, + "probability": 0.9948 + }, + { + "start": 11511.86, + "end": 11516.06, + "probability": 0.9878 + }, + { + "start": 11516.52, + "end": 11516.94, + "probability": 0.7178 + }, + { + "start": 11517.28, + "end": 11520.54, + "probability": 0.9563 + }, + { + "start": 11521.1, + "end": 11523.24, + "probability": 0.8489 + }, + { + "start": 11524.84, + "end": 11526.38, + "probability": 0.3515 + }, + { + "start": 11536.33, + "end": 11538.0, + "probability": 0.3615 + }, + { + "start": 11539.16, + "end": 11542.41, + "probability": 0.0299 + }, + { + "start": 11543.98, + "end": 11543.98, + "probability": 0.1304 + }, + { + "start": 11544.26, + "end": 11544.34, + "probability": 0.2144 + }, + { + "start": 11544.34, + "end": 11545.26, + "probability": 0.1052 + }, + { + "start": 11545.66, + "end": 11545.66, + "probability": 0.1211 + }, + { + "start": 11545.66, + "end": 11547.12, + "probability": 0.0354 + }, + { + "start": 11547.9, + "end": 11549.0, + "probability": 0.1442 + }, + { + "start": 11550.94, + "end": 11552.24, + "probability": 0.1248 + }, + { + "start": 11553.04, + "end": 11554.5, + "probability": 0.0543 + }, + { + "start": 11554.78, + "end": 11555.26, + "probability": 0.4406 + }, + { + "start": 11555.34, + "end": 11557.1, + "probability": 0.3213 + }, + { + "start": 11557.2, + "end": 11557.64, + "probability": 0.0266 + }, + { + "start": 11557.66, + "end": 11557.76, + "probability": 0.2208 + }, + { + "start": 11557.84, + "end": 11558.14, + "probability": 0.1155 + }, + { + "start": 11558.54, + "end": 11560.72, + "probability": 0.0972 + }, + { + "start": 11561.82, + "end": 11562.34, + "probability": 0.0793 + }, + { + "start": 11562.74, + "end": 11562.8, + "probability": 0.1434 + }, + { + "start": 11562.8, + "end": 11562.8, + "probability": 0.0338 + }, + { + "start": 11562.8, + "end": 11562.8, + "probability": 0.1407 + }, + { + "start": 11562.8, + "end": 11562.8, + "probability": 0.1304 + }, + { + "start": 11562.8, + "end": 11562.8, + "probability": 0.1934 + }, + { + "start": 11562.8, + "end": 11564.32, + "probability": 0.8675 + }, + { + "start": 11564.4, + "end": 11565.94, + "probability": 0.7771 + }, + { + "start": 11566.3, + "end": 11567.3, + "probability": 0.9676 + }, + { + "start": 11567.34, + "end": 11570.24, + "probability": 0.9645 + }, + { + "start": 11570.32, + "end": 11571.54, + "probability": 0.8108 + }, + { + "start": 11571.64, + "end": 11571.78, + "probability": 0.775 + }, + { + "start": 11572.2, + "end": 11573.16, + "probability": 0.6322 + }, + { + "start": 11573.84, + "end": 11575.8, + "probability": 0.9888 + }, + { + "start": 11576.28, + "end": 11579.48, + "probability": 0.9761 + }, + { + "start": 11580.0, + "end": 11580.84, + "probability": 0.9763 + }, + { + "start": 11580.94, + "end": 11581.88, + "probability": 0.8703 + }, + { + "start": 11582.06, + "end": 11584.94, + "probability": 0.8174 + }, + { + "start": 11585.04, + "end": 11587.3, + "probability": 0.9878 + }, + { + "start": 11587.44, + "end": 11588.6, + "probability": 0.9874 + }, + { + "start": 11590.16, + "end": 11592.84, + "probability": 0.811 + }, + { + "start": 11592.94, + "end": 11594.78, + "probability": 0.9617 + }, + { + "start": 11596.46, + "end": 11598.44, + "probability": 0.6736 + }, + { + "start": 11598.44, + "end": 11600.24, + "probability": 0.9862 + }, + { + "start": 11600.26, + "end": 11602.34, + "probability": 0.98 + }, + { + "start": 11602.34, + "end": 11605.62, + "probability": 0.9615 + }, + { + "start": 11605.76, + "end": 11609.0, + "probability": 0.9816 + }, + { + "start": 11609.62, + "end": 11612.36, + "probability": 0.9563 + }, + { + "start": 11613.14, + "end": 11613.5, + "probability": 0.311 + }, + { + "start": 11613.56, + "end": 11614.96, + "probability": 0.71 + }, + { + "start": 11615.06, + "end": 11616.55, + "probability": 0.7199 + }, + { + "start": 11617.44, + "end": 11620.54, + "probability": 0.992 + }, + { + "start": 11620.7, + "end": 11620.7, + "probability": 0.013 + }, + { + "start": 11622.0, + "end": 11622.1, + "probability": 0.0158 + }, + { + "start": 11622.1, + "end": 11622.1, + "probability": 0.0269 + }, + { + "start": 11622.1, + "end": 11623.28, + "probability": 0.5337 + }, + { + "start": 11623.42, + "end": 11624.72, + "probability": 0.906 + }, + { + "start": 11625.0, + "end": 11627.24, + "probability": 0.6702 + }, + { + "start": 11627.46, + "end": 11628.67, + "probability": 0.8853 + }, + { + "start": 11629.2, + "end": 11630.24, + "probability": 0.2582 + }, + { + "start": 11631.22, + "end": 11631.68, + "probability": 0.2062 + }, + { + "start": 11635.02, + "end": 11636.06, + "probability": 0.4969 + }, + { + "start": 11636.2, + "end": 11636.92, + "probability": 0.4535 + }, + { + "start": 11637.32, + "end": 11640.02, + "probability": 0.8411 + }, + { + "start": 11640.12, + "end": 11640.6, + "probability": 0.7297 + }, + { + "start": 11642.36, + "end": 11645.14, + "probability": 0.8897 + }, + { + "start": 11645.28, + "end": 11646.9, + "probability": 0.907 + }, + { + "start": 11647.02, + "end": 11649.04, + "probability": 0.9824 + }, + { + "start": 11649.82, + "end": 11650.9, + "probability": 0.6438 + }, + { + "start": 11651.08, + "end": 11651.4, + "probability": 0.711 + }, + { + "start": 11651.46, + "end": 11653.36, + "probability": 0.9647 + }, + { + "start": 11653.36, + "end": 11655.38, + "probability": 0.9914 + }, + { + "start": 11655.88, + "end": 11657.7, + "probability": 0.9611 + }, + { + "start": 11657.86, + "end": 11661.3, + "probability": 0.9863 + }, + { + "start": 11662.68, + "end": 11662.98, + "probability": 0.4525 + }, + { + "start": 11663.16, + "end": 11666.14, + "probability": 0.6873 + }, + { + "start": 11666.14, + "end": 11669.1, + "probability": 0.9853 + }, + { + "start": 11669.1, + "end": 11672.74, + "probability": 0.958 + }, + { + "start": 11672.84, + "end": 11673.32, + "probability": 0.6622 + }, + { + "start": 11674.3, + "end": 11679.26, + "probability": 0.7614 + }, + { + "start": 11679.26, + "end": 11684.3, + "probability": 0.9761 + }, + { + "start": 11684.4, + "end": 11686.32, + "probability": 0.9918 + }, + { + "start": 11686.84, + "end": 11688.54, + "probability": 0.9783 + }, + { + "start": 11690.56, + "end": 11692.56, + "probability": 0.9852 + }, + { + "start": 11692.56, + "end": 11695.18, + "probability": 0.9975 + }, + { + "start": 11695.32, + "end": 11699.56, + "probability": 0.8804 + }, + { + "start": 11702.16, + "end": 11702.76, + "probability": 0.8693 + }, + { + "start": 11703.34, + "end": 11705.76, + "probability": 0.88 + }, + { + "start": 11705.92, + "end": 11710.7, + "probability": 0.9613 + }, + { + "start": 11711.3, + "end": 11712.7, + "probability": 0.7498 + }, + { + "start": 11713.38, + "end": 11714.02, + "probability": 0.8772 + }, + { + "start": 11714.3, + "end": 11719.98, + "probability": 0.9876 + }, + { + "start": 11720.42, + "end": 11724.1, + "probability": 0.9827 + }, + { + "start": 11725.91, + "end": 11727.9, + "probability": 0.837 + }, + { + "start": 11728.0, + "end": 11729.1, + "probability": 0.9661 + }, + { + "start": 11730.02, + "end": 11731.28, + "probability": 0.8798 + }, + { + "start": 11731.88, + "end": 11733.38, + "probability": 0.9925 + }, + { + "start": 11733.88, + "end": 11736.05, + "probability": 0.9854 + }, + { + "start": 11737.14, + "end": 11738.9, + "probability": 0.9673 + }, + { + "start": 11739.04, + "end": 11742.42, + "probability": 0.9844 + }, + { + "start": 11742.52, + "end": 11744.66, + "probability": 0.9924 + }, + { + "start": 11745.24, + "end": 11745.8, + "probability": 0.9136 + }, + { + "start": 11745.98, + "end": 11746.8, + "probability": 0.6338 + }, + { + "start": 11746.8, + "end": 11748.12, + "probability": 0.7809 + }, + { + "start": 11748.2, + "end": 11748.82, + "probability": 0.6868 + }, + { + "start": 11749.36, + "end": 11752.1, + "probability": 0.9636 + }, + { + "start": 11752.58, + "end": 11753.04, + "probability": 0.7788 + }, + { + "start": 11753.24, + "end": 11753.58, + "probability": 0.9028 + }, + { + "start": 11753.92, + "end": 11754.86, + "probability": 0.6715 + }, + { + "start": 11754.86, + "end": 11756.64, + "probability": 0.9801 + }, + { + "start": 11756.78, + "end": 11758.12, + "probability": 0.8552 + }, + { + "start": 11758.92, + "end": 11761.56, + "probability": 0.5801 + }, + { + "start": 11763.08, + "end": 11765.73, + "probability": 0.5958 + }, + { + "start": 11767.42, + "end": 11770.26, + "probability": 0.6534 + }, + { + "start": 11771.12, + "end": 11773.02, + "probability": 0.0007 + }, + { + "start": 11783.42, + "end": 11783.82, + "probability": 0.0882 + }, + { + "start": 11785.05, + "end": 11788.38, + "probability": 0.4139 + }, + { + "start": 11788.5, + "end": 11790.66, + "probability": 0.7539 + }, + { + "start": 11790.68, + "end": 11791.8, + "probability": 0.6024 + }, + { + "start": 11792.52, + "end": 11794.54, + "probability": 0.8211 + }, + { + "start": 11794.78, + "end": 11795.82, + "probability": 0.826 + }, + { + "start": 11795.98, + "end": 11796.48, + "probability": 0.7426 + }, + { + "start": 11821.0, + "end": 11821.0, + "probability": 0.2051 + }, + { + "start": 11821.0, + "end": 11822.58, + "probability": 0.3027 + }, + { + "start": 11822.78, + "end": 11825.42, + "probability": 0.5065 + }, + { + "start": 11825.54, + "end": 11826.96, + "probability": 0.2987 + }, + { + "start": 11827.28, + "end": 11828.14, + "probability": 0.8909 + }, + { + "start": 11829.24, + "end": 11830.47, + "probability": 0.7419 + }, + { + "start": 11831.42, + "end": 11831.88, + "probability": 0.7255 + }, + { + "start": 11832.86, + "end": 11834.96, + "probability": 0.2545 + }, + { + "start": 11835.78, + "end": 11837.58, + "probability": 0.6346 + }, + { + "start": 11837.68, + "end": 11841.26, + "probability": 0.9709 + }, + { + "start": 11841.94, + "end": 11842.9, + "probability": 0.2408 + }, + { + "start": 11843.66, + "end": 11844.82, + "probability": 0.8366 + }, + { + "start": 11844.94, + "end": 11846.64, + "probability": 0.9278 + }, + { + "start": 11846.7, + "end": 11847.64, + "probability": 0.9067 + }, + { + "start": 11848.2, + "end": 11849.54, + "probability": 0.9572 + }, + { + "start": 11849.58, + "end": 11850.16, + "probability": 0.8478 + }, + { + "start": 11850.36, + "end": 11851.0, + "probability": 0.8588 + }, + { + "start": 11851.04, + "end": 11851.72, + "probability": 0.6329 + }, + { + "start": 11852.16, + "end": 11853.48, + "probability": 0.8473 + }, + { + "start": 11853.74, + "end": 11854.96, + "probability": 0.9478 + }, + { + "start": 11855.54, + "end": 11858.48, + "probability": 0.9948 + }, + { + "start": 11858.66, + "end": 11860.82, + "probability": 0.9808 + }, + { + "start": 11860.84, + "end": 11861.42, + "probability": 0.8088 + }, + { + "start": 11862.1, + "end": 11863.02, + "probability": 0.7987 + }, + { + "start": 11863.96, + "end": 11864.17, + "probability": 0.9307 + }, + { + "start": 11864.34, + "end": 11865.38, + "probability": 0.9737 + }, + { + "start": 11865.88, + "end": 11866.52, + "probability": 0.8937 + }, + { + "start": 11866.7, + "end": 11868.38, + "probability": 0.8838 + }, + { + "start": 11868.86, + "end": 11870.02, + "probability": 0.9878 + }, + { + "start": 11870.16, + "end": 11872.1, + "probability": 0.9895 + }, + { + "start": 11885.14, + "end": 11885.82, + "probability": 0.5967 + }, + { + "start": 11890.48, + "end": 11891.14, + "probability": 0.0485 + }, + { + "start": 11891.14, + "end": 11891.34, + "probability": 0.0837 + }, + { + "start": 11891.34, + "end": 11891.98, + "probability": 0.1989 + }, + { + "start": 11893.84, + "end": 11896.8, + "probability": 0.1705 + }, + { + "start": 11896.9, + "end": 11897.92, + "probability": 0.0668 + }, + { + "start": 11897.94, + "end": 11897.94, + "probability": 0.3191 + }, + { + "start": 11898.68, + "end": 11898.68, + "probability": 0.2848 + }, + { + "start": 11898.68, + "end": 11898.68, + "probability": 0.2082 + }, + { + "start": 11898.68, + "end": 11898.68, + "probability": 0.0388 + }, + { + "start": 11898.68, + "end": 11898.68, + "probability": 0.1056 + }, + { + "start": 11898.68, + "end": 11898.68, + "probability": 0.1528 + }, + { + "start": 11898.68, + "end": 11899.44, + "probability": 0.1505 + }, + { + "start": 11899.44, + "end": 11903.94, + "probability": 0.2069 + }, + { + "start": 11904.44, + "end": 11908.56, + "probability": 0.9915 + }, + { + "start": 11909.28, + "end": 11911.3, + "probability": 0.9048 + }, + { + "start": 11911.38, + "end": 11916.36, + "probability": 0.9972 + }, + { + "start": 11916.94, + "end": 11920.06, + "probability": 0.6547 + }, + { + "start": 11920.6, + "end": 11923.22, + "probability": 0.8903 + }, + { + "start": 11923.26, + "end": 11924.58, + "probability": 0.8108 + }, + { + "start": 11924.6, + "end": 11924.9, + "probability": 0.6316 + }, + { + "start": 11925.42, + "end": 11928.84, + "probability": 0.7253 + }, + { + "start": 11929.58, + "end": 11936.78, + "probability": 0.9511 + }, + { + "start": 11936.92, + "end": 11939.6, + "probability": 0.9978 + }, + { + "start": 11939.88, + "end": 11941.22, + "probability": 0.8588 + }, + { + "start": 11943.96, + "end": 11944.84, + "probability": 0.8252 + }, + { + "start": 11950.9, + "end": 11956.16, + "probability": 0.8104 + }, + { + "start": 11958.64, + "end": 11960.82, + "probability": 0.9048 + }, + { + "start": 11961.24, + "end": 11962.68, + "probability": 0.9131 + }, + { + "start": 11962.78, + "end": 11965.06, + "probability": 0.9279 + }, + { + "start": 11965.14, + "end": 11966.5, + "probability": 0.5815 + }, + { + "start": 11967.8, + "end": 11969.04, + "probability": 0.2322 + }, + { + "start": 11969.04, + "end": 11969.94, + "probability": 0.8924 + }, + { + "start": 11970.12, + "end": 11970.68, + "probability": 0.8263 + }, + { + "start": 11972.46, + "end": 11973.86, + "probability": 0.3941 + }, + { + "start": 11977.08, + "end": 11978.84, + "probability": 0.614 + }, + { + "start": 11981.82, + "end": 11982.78, + "probability": 0.7754 + }, + { + "start": 11984.38, + "end": 11986.3, + "probability": 0.9102 + }, + { + "start": 11986.44, + "end": 11988.36, + "probability": 0.2122 + }, + { + "start": 11988.46, + "end": 11990.8, + "probability": 0.9113 + }, + { + "start": 11991.98, + "end": 11992.72, + "probability": 0.5419 + }, + { + "start": 11993.54, + "end": 11994.77, + "probability": 0.8335 + }, + { + "start": 11995.5, + "end": 11997.18, + "probability": 0.6432 + }, + { + "start": 11997.18, + "end": 11999.24, + "probability": 0.7328 + }, + { + "start": 11999.92, + "end": 12001.14, + "probability": 0.609 + }, + { + "start": 12001.92, + "end": 12003.08, + "probability": 0.6605 + }, + { + "start": 12003.52, + "end": 12004.54, + "probability": 0.8221 + }, + { + "start": 12004.65, + "end": 12007.54, + "probability": 0.8754 + }, + { + "start": 12008.96, + "end": 12010.74, + "probability": 0.4013 + }, + { + "start": 12010.78, + "end": 12012.44, + "probability": 0.7785 + }, + { + "start": 12013.42, + "end": 12015.21, + "probability": 0.6984 + }, + { + "start": 12016.4, + "end": 12017.72, + "probability": 0.7972 + }, + { + "start": 12017.84, + "end": 12018.34, + "probability": 0.73 + }, + { + "start": 12018.42, + "end": 12019.32, + "probability": 0.8698 + }, + { + "start": 12020.3, + "end": 12023.66, + "probability": 0.9435 + }, + { + "start": 12023.66, + "end": 12028.08, + "probability": 0.9876 + }, + { + "start": 12028.16, + "end": 12028.71, + "probability": 0.4791 + }, + { + "start": 12029.62, + "end": 12033.34, + "probability": 0.7472 + }, + { + "start": 12034.24, + "end": 12034.94, + "probability": 0.476 + }, + { + "start": 12035.08, + "end": 12035.48, + "probability": 0.2439 + }, + { + "start": 12035.68, + "end": 12036.14, + "probability": 0.7826 + }, + { + "start": 12036.28, + "end": 12039.38, + "probability": 0.7262 + }, + { + "start": 12040.46, + "end": 12043.46, + "probability": 0.7452 + }, + { + "start": 12043.54, + "end": 12045.6, + "probability": 0.7711 + }, + { + "start": 12045.78, + "end": 12046.48, + "probability": 0.6886 + }, + { + "start": 12046.54, + "end": 12046.64, + "probability": 0.5087 + }, + { + "start": 12046.7, + "end": 12047.18, + "probability": 0.6723 + }, + { + "start": 12047.2, + "end": 12047.34, + "probability": 0.5474 + }, + { + "start": 12047.44, + "end": 12047.78, + "probability": 0.5278 + }, + { + "start": 12047.88, + "end": 12048.16, + "probability": 0.3821 + }, + { + "start": 12048.26, + "end": 12049.8, + "probability": 0.6963 + }, + { + "start": 12049.86, + "end": 12050.46, + "probability": 0.5424 + }, + { + "start": 12050.64, + "end": 12051.44, + "probability": 0.6526 + }, + { + "start": 12053.52, + "end": 12054.4, + "probability": 0.9268 + }, + { + "start": 12055.52, + "end": 12059.52, + "probability": 0.8182 + }, + { + "start": 12060.2, + "end": 12063.8, + "probability": 0.9172 + }, + { + "start": 12064.72, + "end": 12066.6, + "probability": 0.8275 + }, + { + "start": 12066.74, + "end": 12068.88, + "probability": 0.9651 + }, + { + "start": 12071.32, + "end": 12074.8, + "probability": 0.9884 + }, + { + "start": 12075.2, + "end": 12076.12, + "probability": 0.9584 + }, + { + "start": 12077.12, + "end": 12081.08, + "probability": 0.8636 + }, + { + "start": 12081.32, + "end": 12082.02, + "probability": 0.3825 + }, + { + "start": 12082.62, + "end": 12084.6, + "probability": 0.937 + }, + { + "start": 12085.52, + "end": 12085.86, + "probability": 0.269 + }, + { + "start": 12085.94, + "end": 12089.56, + "probability": 0.9539 + }, + { + "start": 12089.72, + "end": 12092.24, + "probability": 0.8092 + }, + { + "start": 12093.06, + "end": 12095.22, + "probability": 0.8349 + }, + { + "start": 12095.7, + "end": 12096.86, + "probability": 0.7177 + }, + { + "start": 12097.3, + "end": 12103.38, + "probability": 0.885 + }, + { + "start": 12103.46, + "end": 12107.4, + "probability": 0.8539 + }, + { + "start": 12107.5, + "end": 12109.74, + "probability": 0.7132 + }, + { + "start": 12110.94, + "end": 12112.4, + "probability": 0.8034 + }, + { + "start": 12112.6, + "end": 12113.41, + "probability": 0.5018 + }, + { + "start": 12114.16, + "end": 12115.08, + "probability": 0.7256 + }, + { + "start": 12115.12, + "end": 12115.4, + "probability": 0.5114 + }, + { + "start": 12115.56, + "end": 12116.54, + "probability": 0.3424 + }, + { + "start": 12117.26, + "end": 12119.98, + "probability": 0.8726 + }, + { + "start": 12120.86, + "end": 12123.24, + "probability": 0.831 + }, + { + "start": 12123.34, + "end": 12125.44, + "probability": 0.0911 + }, + { + "start": 12125.44, + "end": 12126.26, + "probability": 0.5519 + }, + { + "start": 12126.48, + "end": 12127.48, + "probability": 0.7935 + }, + { + "start": 12127.64, + "end": 12128.33, + "probability": 0.9019 + }, + { + "start": 12128.92, + "end": 12129.32, + "probability": 0.7225 + }, + { + "start": 12129.42, + "end": 12129.94, + "probability": 0.8348 + }, + { + "start": 12130.32, + "end": 12131.98, + "probability": 0.6093 + }, + { + "start": 12132.0, + "end": 12132.28, + "probability": 0.7266 + }, + { + "start": 12132.42, + "end": 12135.02, + "probability": 0.7563 + }, + { + "start": 12135.12, + "end": 12135.56, + "probability": 0.433 + }, + { + "start": 12137.35, + "end": 12140.9, + "probability": 0.7981 + }, + { + "start": 12141.06, + "end": 12141.24, + "probability": 0.677 + }, + { + "start": 12151.26, + "end": 12152.27, + "probability": 0.4149 + }, + { + "start": 12152.88, + "end": 12154.5, + "probability": 0.6401 + }, + { + "start": 12155.56, + "end": 12157.72, + "probability": 0.0626 + }, + { + "start": 12159.11, + "end": 12162.72, + "probability": 0.7594 + }, + { + "start": 12164.38, + "end": 12174.34, + "probability": 0.3635 + }, + { + "start": 12174.34, + "end": 12174.42, + "probability": 0.0286 + }, + { + "start": 12174.42, + "end": 12174.54, + "probability": 0.1251 + }, + { + "start": 12174.54, + "end": 12176.2, + "probability": 0.1374 + }, + { + "start": 12177.24, + "end": 12178.82, + "probability": 0.5139 + }, + { + "start": 12180.06, + "end": 12181.0, + "probability": 0.6507 + }, + { + "start": 12181.82, + "end": 12186.18, + "probability": 0.8783 + }, + { + "start": 12192.52, + "end": 12193.6, + "probability": 0.6408 + }, + { + "start": 12193.76, + "end": 12196.64, + "probability": 0.5483 + }, + { + "start": 12197.28, + "end": 12200.6, + "probability": 0.7833 + }, + { + "start": 12201.96, + "end": 12202.36, + "probability": 0.4504 + }, + { + "start": 12203.78, + "end": 12206.4, + "probability": 0.4298 + }, + { + "start": 12206.54, + "end": 12208.18, + "probability": 0.987 + }, + { + "start": 12208.84, + "end": 12210.0, + "probability": 0.595 + }, + { + "start": 12210.02, + "end": 12210.2, + "probability": 0.3739 + }, + { + "start": 12210.34, + "end": 12213.26, + "probability": 0.9925 + }, + { + "start": 12213.68, + "end": 12213.86, + "probability": 0.7074 + }, + { + "start": 12214.44, + "end": 12215.32, + "probability": 0.6334 + }, + { + "start": 12216.6, + "end": 12217.24, + "probability": 0.1217 + }, + { + "start": 12217.6, + "end": 12218.33, + "probability": 0.1316 + }, + { + "start": 12219.08, + "end": 12222.1, + "probability": 0.9262 + }, + { + "start": 12224.42, + "end": 12226.86, + "probability": 0.9846 + }, + { + "start": 12226.96, + "end": 12229.24, + "probability": 0.8726 + }, + { + "start": 12229.46, + "end": 12230.9, + "probability": 0.646 + }, + { + "start": 12231.08, + "end": 12231.4, + "probability": 0.9038 + }, + { + "start": 12234.58, + "end": 12235.26, + "probability": 0.4764 + }, + { + "start": 12235.38, + "end": 12236.2, + "probability": 0.7137 + }, + { + "start": 12236.26, + "end": 12237.98, + "probability": 0.9876 + }, + { + "start": 12237.98, + "end": 12240.18, + "probability": 0.9257 + }, + { + "start": 12240.28, + "end": 12245.24, + "probability": 0.9021 + }, + { + "start": 12245.24, + "end": 12249.52, + "probability": 0.999 + }, + { + "start": 12250.04, + "end": 12253.1, + "probability": 0.9957 + }, + { + "start": 12253.16, + "end": 12257.56, + "probability": 0.9688 + }, + { + "start": 12257.94, + "end": 12262.7, + "probability": 0.8735 + }, + { + "start": 12263.5, + "end": 12265.82, + "probability": 0.8925 + }, + { + "start": 12265.98, + "end": 12266.26, + "probability": 0.7414 + }, + { + "start": 12266.34, + "end": 12269.4, + "probability": 0.8328 + }, + { + "start": 12269.94, + "end": 12271.2, + "probability": 0.8015 + }, + { + "start": 12271.68, + "end": 12274.64, + "probability": 0.9683 + }, + { + "start": 12274.78, + "end": 12275.2, + "probability": 0.523 + }, + { + "start": 12275.52, + "end": 12276.52, + "probability": 0.9467 + }, + { + "start": 12277.72, + "end": 12280.88, + "probability": 0.9976 + }, + { + "start": 12281.0, + "end": 12285.06, + "probability": 0.7448 + }, + { + "start": 12285.32, + "end": 12286.8, + "probability": 0.8656 + }, + { + "start": 12287.4, + "end": 12290.48, + "probability": 0.9802 + }, + { + "start": 12291.38, + "end": 12292.64, + "probability": 0.8376 + }, + { + "start": 12292.8, + "end": 12293.5, + "probability": 0.6887 + }, + { + "start": 12293.58, + "end": 12294.28, + "probability": 0.6073 + }, + { + "start": 12296.44, + "end": 12300.22, + "probability": 0.9269 + }, + { + "start": 12300.48, + "end": 12303.24, + "probability": 0.9645 + }, + { + "start": 12304.2, + "end": 12310.84, + "probability": 0.999 + }, + { + "start": 12312.12, + "end": 12313.35, + "probability": 0.2647 + }, + { + "start": 12314.2, + "end": 12316.34, + "probability": 0.9929 + }, + { + "start": 12316.52, + "end": 12317.4, + "probability": 0.8758 + }, + { + "start": 12317.58, + "end": 12317.84, + "probability": 0.8473 + }, + { + "start": 12317.94, + "end": 12320.8, + "probability": 0.9856 + }, + { + "start": 12321.8, + "end": 12324.54, + "probability": 0.3811 + }, + { + "start": 12325.6, + "end": 12329.43, + "probability": 0.9902 + }, + { + "start": 12330.06, + "end": 12331.8, + "probability": 0.9417 + }, + { + "start": 12332.56, + "end": 12334.88, + "probability": 0.9031 + }, + { + "start": 12335.28, + "end": 12337.7, + "probability": 0.7776 + }, + { + "start": 12338.28, + "end": 12341.14, + "probability": 0.849 + }, + { + "start": 12342.04, + "end": 12344.58, + "probability": 0.9146 + }, + { + "start": 12344.68, + "end": 12345.6, + "probability": 0.7769 + }, + { + "start": 12345.84, + "end": 12347.38, + "probability": 0.3875 + }, + { + "start": 12347.94, + "end": 12348.14, + "probability": 0.0096 + }, + { + "start": 12348.14, + "end": 12348.52, + "probability": 0.2522 + }, + { + "start": 12349.04, + "end": 12350.66, + "probability": 0.9246 + }, + { + "start": 12350.86, + "end": 12352.08, + "probability": 0.9816 + }, + { + "start": 12352.58, + "end": 12355.88, + "probability": 0.9893 + }, + { + "start": 12355.88, + "end": 12358.7, + "probability": 0.9112 + }, + { + "start": 12359.16, + "end": 12361.68, + "probability": 0.9445 + }, + { + "start": 12362.42, + "end": 12364.44, + "probability": 0.9776 + }, + { + "start": 12364.78, + "end": 12367.22, + "probability": 0.8087 + }, + { + "start": 12368.22, + "end": 12370.02, + "probability": 0.9831 + }, + { + "start": 12370.56, + "end": 12371.08, + "probability": 0.7572 + }, + { + "start": 12372.3, + "end": 12375.44, + "probability": 0.9551 + }, + { + "start": 12375.94, + "end": 12376.4, + "probability": 0.7244 + }, + { + "start": 12376.78, + "end": 12381.48, + "probability": 0.9853 + }, + { + "start": 12382.1, + "end": 12385.02, + "probability": 0.8747 + }, + { + "start": 12386.08, + "end": 12386.88, + "probability": 0.7414 + }, + { + "start": 12387.6, + "end": 12388.54, + "probability": 0.6345 + }, + { + "start": 12388.9, + "end": 12391.94, + "probability": 0.6366 + }, + { + "start": 12392.62, + "end": 12396.04, + "probability": 0.7019 + }, + { + "start": 12397.44, + "end": 12400.68, + "probability": 0.7346 + }, + { + "start": 12401.36, + "end": 12403.0, + "probability": 0.823 + }, + { + "start": 12403.72, + "end": 12405.54, + "probability": 0.9185 + }, + { + "start": 12406.24, + "end": 12408.56, + "probability": 0.8784 + }, + { + "start": 12408.66, + "end": 12409.86, + "probability": 0.6108 + }, + { + "start": 12410.84, + "end": 12411.58, + "probability": 0.7804 + }, + { + "start": 12422.16, + "end": 12426.43, + "probability": 0.0836 + }, + { + "start": 12427.3, + "end": 12428.74, + "probability": 0.0176 + }, + { + "start": 12429.42, + "end": 12429.58, + "probability": 0.0512 + }, + { + "start": 12429.58, + "end": 12429.58, + "probability": 0.3696 + }, + { + "start": 12429.58, + "end": 12429.58, + "probability": 0.1705 + }, + { + "start": 12429.58, + "end": 12430.38, + "probability": 0.1394 + }, + { + "start": 12430.56, + "end": 12433.14, + "probability": 0.9186 + }, + { + "start": 12433.96, + "end": 12438.46, + "probability": 0.5379 + }, + { + "start": 12440.42, + "end": 12443.84, + "probability": 0.7581 + }, + { + "start": 12445.72, + "end": 12451.36, + "probability": 0.8641 + }, + { + "start": 12451.38, + "end": 12452.26, + "probability": 0.5559 + }, + { + "start": 12453.5, + "end": 12456.8, + "probability": 0.5948 + }, + { + "start": 12457.5, + "end": 12459.56, + "probability": 0.1889 + }, + { + "start": 12460.2, + "end": 12461.22, + "probability": 0.5352 + }, + { + "start": 12461.94, + "end": 12463.36, + "probability": 0.6624 + }, + { + "start": 12463.42, + "end": 12464.26, + "probability": 0.7828 + }, + { + "start": 12464.52, + "end": 12466.7, + "probability": 0.746 + }, + { + "start": 12467.18, + "end": 12468.26, + "probability": 0.8843 + }, + { + "start": 12468.3, + "end": 12469.86, + "probability": 0.9692 + }, + { + "start": 12470.26, + "end": 12471.7, + "probability": 0.6351 + }, + { + "start": 12471.78, + "end": 12472.04, + "probability": 0.8891 + }, + { + "start": 12478.1, + "end": 12478.3, + "probability": 0.3542 + }, + { + "start": 12478.4, + "end": 12479.98, + "probability": 0.6767 + }, + { + "start": 12481.08, + "end": 12482.68, + "probability": 0.9977 + }, + { + "start": 12483.42, + "end": 12486.22, + "probability": 0.9428 + }, + { + "start": 12486.22, + "end": 12489.72, + "probability": 0.9958 + }, + { + "start": 12491.04, + "end": 12492.6, + "probability": 0.6755 + }, + { + "start": 12493.36, + "end": 12495.82, + "probability": 0.4505 + }, + { + "start": 12496.74, + "end": 12498.96, + "probability": 0.6816 + }, + { + "start": 12499.24, + "end": 12500.94, + "probability": 0.922 + }, + { + "start": 12502.16, + "end": 12504.64, + "probability": 0.9468 + }, + { + "start": 12504.64, + "end": 12507.8, + "probability": 0.9829 + }, + { + "start": 12508.44, + "end": 12511.26, + "probability": 0.9554 + }, + { + "start": 12511.94, + "end": 12514.58, + "probability": 0.9591 + }, + { + "start": 12515.2, + "end": 12515.7, + "probability": 0.8105 + }, + { + "start": 12516.26, + "end": 12518.46, + "probability": 0.9076 + }, + { + "start": 12519.16, + "end": 12521.52, + "probability": 0.9105 + }, + { + "start": 12522.28, + "end": 12524.26, + "probability": 0.9647 + }, + { + "start": 12525.38, + "end": 12527.44, + "probability": 0.9992 + }, + { + "start": 12527.92, + "end": 12530.1, + "probability": 0.7272 + }, + { + "start": 12530.78, + "end": 12535.24, + "probability": 0.8784 + }, + { + "start": 12535.76, + "end": 12538.46, + "probability": 0.2133 + }, + { + "start": 12539.7, + "end": 12543.08, + "probability": 0.8335 + }, + { + "start": 12543.86, + "end": 12546.82, + "probability": 0.8394 + }, + { + "start": 12547.34, + "end": 12551.16, + "probability": 0.9808 + }, + { + "start": 12551.38, + "end": 12556.48, + "probability": 0.9934 + }, + { + "start": 12557.34, + "end": 12558.78, + "probability": 0.9794 + }, + { + "start": 12559.32, + "end": 12561.62, + "probability": 0.9938 + }, + { + "start": 12561.62, + "end": 12565.28, + "probability": 0.928 + }, + { + "start": 12566.1, + "end": 12570.39, + "probability": 0.9822 + }, + { + "start": 12570.54, + "end": 12573.6, + "probability": 0.9825 + }, + { + "start": 12574.06, + "end": 12574.3, + "probability": 0.8286 + }, + { + "start": 12574.88, + "end": 12575.82, + "probability": 0.5999 + }, + { + "start": 12576.02, + "end": 12579.89, + "probability": 0.8829 + }, + { + "start": 12580.92, + "end": 12582.32, + "probability": 0.871 + }, + { + "start": 12582.68, + "end": 12583.24, + "probability": 0.6876 + }, + { + "start": 12584.0, + "end": 12584.92, + "probability": 0.6603 + }, + { + "start": 12587.82, + "end": 12588.92, + "probability": 0.2095 + }, + { + "start": 12601.44, + "end": 12608.26, + "probability": 0.5022 + }, + { + "start": 12608.34, + "end": 12610.0, + "probability": 0.1247 + }, + { + "start": 12613.42, + "end": 12616.94, + "probability": 0.7745 + }, + { + "start": 12623.86, + "end": 12624.74, + "probability": 0.0309 + }, + { + "start": 12624.74, + "end": 12628.68, + "probability": 0.0473 + }, + { + "start": 12628.68, + "end": 12631.58, + "probability": 0.0904 + }, + { + "start": 12632.38, + "end": 12635.66, + "probability": 0.0092 + }, + { + "start": 12643.06, + "end": 12643.72, + "probability": 0.0285 + }, + { + "start": 12644.06, + "end": 12645.42, + "probability": 0.1041 + }, + { + "start": 12645.48, + "end": 12646.4, + "probability": 0.0279 + }, + { + "start": 12647.16, + "end": 12647.78, + "probability": 0.0696 + }, + { + "start": 12649.28, + "end": 12651.3, + "probability": 0.1633 + }, + { + "start": 12652.26, + "end": 12652.3, + "probability": 0.0374 + }, + { + "start": 12652.3, + "end": 12653.73, + "probability": 0.5032 + }, + { + "start": 12654.64, + "end": 12655.02, + "probability": 0.0062 + }, + { + "start": 12656.68, + "end": 12658.52, + "probability": 0.1946 + }, + { + "start": 12659.3, + "end": 12659.74, + "probability": 0.2698 + }, + { + "start": 12659.74, + "end": 12659.86, + "probability": 0.0881 + }, + { + "start": 12660.82, + "end": 12662.15, + "probability": 0.729 + }, + { + "start": 12663.51, + "end": 12664.1, + "probability": 0.3863 + }, + { + "start": 12664.1, + "end": 12664.12, + "probability": 0.0217 + }, + { + "start": 12665.0, + "end": 12665.96, + "probability": 0.0171 + }, + { + "start": 12667.54, + "end": 12669.58, + "probability": 0.068 + }, + { + "start": 12669.58, + "end": 12669.58, + "probability": 0.0208 + }, + { + "start": 12669.58, + "end": 12669.8, + "probability": 0.098 + }, + { + "start": 12669.8, + "end": 12671.18, + "probability": 0.4719 + }, + { + "start": 12672.0, + "end": 12673.2, + "probability": 0.2599 + }, + { + "start": 12673.4, + "end": 12676.64, + "probability": 0.6872 + }, + { + "start": 12676.74, + "end": 12678.62, + "probability": 0.9692 + }, + { + "start": 12679.46, + "end": 12681.34, + "probability": 0.683 + }, + { + "start": 12682.16, + "end": 12683.5, + "probability": 0.9951 + }, + { + "start": 12684.18, + "end": 12686.1, + "probability": 0.8213 + }, + { + "start": 12686.72, + "end": 12689.28, + "probability": 0.6969 + }, + { + "start": 12690.26, + "end": 12690.64, + "probability": 0.852 + }, + { + "start": 12691.2, + "end": 12693.7, + "probability": 0.6967 + }, + { + "start": 12694.64, + "end": 12695.5, + "probability": 0.9185 + }, + { + "start": 12695.58, + "end": 12696.8, + "probability": 0.6736 + }, + { + "start": 12696.92, + "end": 12697.52, + "probability": 0.6553 + }, + { + "start": 12697.64, + "end": 12698.07, + "probability": 0.8883 + }, + { + "start": 12698.14, + "end": 12701.36, + "probability": 0.9129 + }, + { + "start": 12701.98, + "end": 12702.58, + "probability": 0.621 + }, + { + "start": 12702.66, + "end": 12704.68, + "probability": 0.5771 + }, + { + "start": 12704.88, + "end": 12705.8, + "probability": 0.8665 + }, + { + "start": 12705.94, + "end": 12706.52, + "probability": 0.5162 + }, + { + "start": 12706.62, + "end": 12707.38, + "probability": 0.8898 + }, + { + "start": 12707.56, + "end": 12708.6, + "probability": 0.8638 + }, + { + "start": 12708.6, + "end": 12710.42, + "probability": 0.8169 + }, + { + "start": 12711.85, + "end": 12713.96, + "probability": 0.6674 + }, + { + "start": 12714.28, + "end": 12717.52, + "probability": 0.9878 + }, + { + "start": 12718.38, + "end": 12719.6, + "probability": 0.9679 + }, + { + "start": 12723.82, + "end": 12725.08, + "probability": 0.7752 + }, + { + "start": 12725.84, + "end": 12726.54, + "probability": 0.9169 + }, + { + "start": 12726.92, + "end": 12729.56, + "probability": 0.9644 + }, + { + "start": 12730.36, + "end": 12735.56, + "probability": 0.9495 + }, + { + "start": 12735.56, + "end": 12738.9, + "probability": 0.9775 + }, + { + "start": 12739.66, + "end": 12744.28, + "probability": 0.9797 + }, + { + "start": 12745.42, + "end": 12748.38, + "probability": 0.8874 + }, + { + "start": 12749.26, + "end": 12752.3, + "probability": 0.9598 + }, + { + "start": 12752.58, + "end": 12755.28, + "probability": 0.9465 + }, + { + "start": 12755.94, + "end": 12759.06, + "probability": 0.8348 + }, + { + "start": 12759.94, + "end": 12764.54, + "probability": 0.9878 + }, + { + "start": 12765.28, + "end": 12770.08, + "probability": 0.9473 + }, + { + "start": 12770.88, + "end": 12776.7, + "probability": 0.876 + }, + { + "start": 12778.08, + "end": 12781.42, + "probability": 0.9231 + }, + { + "start": 12782.18, + "end": 12785.06, + "probability": 0.9941 + }, + { + "start": 12786.12, + "end": 12789.12, + "probability": 0.9695 + }, + { + "start": 12789.12, + "end": 12793.06, + "probability": 0.8946 + }, + { + "start": 12793.68, + "end": 12796.56, + "probability": 0.8251 + }, + { + "start": 12797.08, + "end": 12800.8, + "probability": 0.9695 + }, + { + "start": 12801.7, + "end": 12802.34, + "probability": 0.3888 + }, + { + "start": 12803.06, + "end": 12805.62, + "probability": 0.9406 + }, + { + "start": 12805.62, + "end": 12808.64, + "probability": 0.9656 + }, + { + "start": 12809.32, + "end": 12814.44, + "probability": 0.981 + }, + { + "start": 12815.26, + "end": 12816.06, + "probability": 0.5416 + }, + { + "start": 12816.86, + "end": 12818.68, + "probability": 0.7527 + }, + { + "start": 12819.96, + "end": 12820.76, + "probability": 0.9445 + }, + { + "start": 12821.58, + "end": 12822.2, + "probability": 0.7098 + }, + { + "start": 12822.3, + "end": 12825.92, + "probability": 0.9284 + }, + { + "start": 12826.88, + "end": 12827.24, + "probability": 0.7031 + }, + { + "start": 12827.92, + "end": 12833.6, + "probability": 0.8253 + }, + { + "start": 12834.14, + "end": 12838.6, + "probability": 0.994 + }, + { + "start": 12838.6, + "end": 12841.66, + "probability": 0.89 + }, + { + "start": 12842.3, + "end": 12844.14, + "probability": 0.5459 + }, + { + "start": 12844.7, + "end": 12847.3, + "probability": 0.9741 + }, + { + "start": 12848.04, + "end": 12851.56, + "probability": 0.8684 + }, + { + "start": 12852.18, + "end": 12853.36, + "probability": 0.6139 + }, + { + "start": 12855.02, + "end": 12859.66, + "probability": 0.8507 + }, + { + "start": 12860.2, + "end": 12861.96, + "probability": 0.6353 + }, + { + "start": 12863.0, + "end": 12866.08, + "probability": 0.9624 + }, + { + "start": 12866.66, + "end": 12869.9, + "probability": 0.9355 + }, + { + "start": 12870.16, + "end": 12870.52, + "probability": 0.7366 + }, + { + "start": 12875.34, + "end": 12877.42, + "probability": 0.493 + }, + { + "start": 12877.54, + "end": 12878.78, + "probability": 0.5663 + }, + { + "start": 12878.8, + "end": 12879.04, + "probability": 0.7297 + }, + { + "start": 12879.34, + "end": 12880.12, + "probability": 0.6561 + }, + { + "start": 12880.22, + "end": 12880.72, + "probability": 0.4907 + }, + { + "start": 12881.7, + "end": 12884.56, + "probability": 0.6461 + }, + { + "start": 12885.46, + "end": 12886.02, + "probability": 0.4948 + }, + { + "start": 12886.56, + "end": 12887.46, + "probability": 0.5585 + }, + { + "start": 12888.14, + "end": 12888.68, + "probability": 0.8445 + }, + { + "start": 12889.36, + "end": 12891.14, + "probability": 0.7509 + }, + { + "start": 12891.3, + "end": 12893.57, + "probability": 0.6002 + }, + { + "start": 12895.08, + "end": 12895.78, + "probability": 0.6329 + }, + { + "start": 12895.78, + "end": 12896.54, + "probability": 0.7356 + }, + { + "start": 12899.22, + "end": 12902.24, + "probability": 0.0357 + }, + { + "start": 12917.46, + "end": 12921.04, + "probability": 0.4796 + }, + { + "start": 12921.74, + "end": 12925.74, + "probability": 0.1281 + }, + { + "start": 12927.86, + "end": 12931.76, + "probability": 0.5539 + }, + { + "start": 12933.74, + "end": 12934.32, + "probability": 0.0319 + }, + { + "start": 12937.2, + "end": 12938.2, + "probability": 0.0417 + }, + { + "start": 12938.98, + "end": 12939.4, + "probability": 0.1092 + }, + { + "start": 12941.06, + "end": 12943.22, + "probability": 0.4707 + }, + { + "start": 12945.21, + "end": 12947.26, + "probability": 0.0292 + }, + { + "start": 12947.32, + "end": 12949.46, + "probability": 0.0151 + }, + { + "start": 12950.04, + "end": 12952.98, + "probability": 0.1439 + }, + { + "start": 12954.78, + "end": 12958.68, + "probability": 0.0843 + }, + { + "start": 12962.14, + "end": 12962.3, + "probability": 0.1995 + }, + { + "start": 12962.36, + "end": 12964.2, + "probability": 0.1362 + }, + { + "start": 12964.26, + "end": 12964.32, + "probability": 0.5537 + }, + { + "start": 12964.34, + "end": 12964.94, + "probability": 0.1362 + }, + { + "start": 12964.94, + "end": 12964.98, + "probability": 0.0175 + }, + { + "start": 12965.0, + "end": 12965.0, + "probability": 0.0 + }, + { + "start": 12965.0, + "end": 12965.0, + "probability": 0.0 + }, + { + "start": 12965.0, + "end": 12965.0, + "probability": 0.0 + }, + { + "start": 12965.0, + "end": 12965.0, + "probability": 0.0 + }, + { + "start": 12965.14, + "end": 12965.38, + "probability": 0.1274 + }, + { + "start": 12965.38, + "end": 12965.46, + "probability": 0.2038 + }, + { + "start": 12965.46, + "end": 12965.46, + "probability": 0.2571 + }, + { + "start": 12965.46, + "end": 12965.46, + "probability": 0.1043 + }, + { + "start": 12965.46, + "end": 12970.72, + "probability": 0.3428 + }, + { + "start": 12972.34, + "end": 12972.82, + "probability": 0.3554 + }, + { + "start": 12973.36, + "end": 12974.17, + "probability": 0.7458 + }, + { + "start": 12974.72, + "end": 12985.14, + "probability": 0.8569 + }, + { + "start": 12986.56, + "end": 12991.4, + "probability": 0.8615 + }, + { + "start": 12991.4, + "end": 12995.62, + "probability": 0.9596 + }, + { + "start": 12996.26, + "end": 12998.08, + "probability": 0.9977 + }, + { + "start": 12998.88, + "end": 13001.02, + "probability": 0.8364 + }, + { + "start": 13001.72, + "end": 13002.86, + "probability": 0.9222 + }, + { + "start": 13004.54, + "end": 13008.2, + "probability": 0.8078 + }, + { + "start": 13008.22, + "end": 13011.74, + "probability": 0.9867 + }, + { + "start": 13011.74, + "end": 13014.56, + "probability": 0.9938 + }, + { + "start": 13015.76, + "end": 13018.7, + "probability": 0.9004 + }, + { + "start": 13019.58, + "end": 13021.36, + "probability": 0.6821 + }, + { + "start": 13022.2, + "end": 13023.96, + "probability": 0.9944 + }, + { + "start": 13025.88, + "end": 13026.42, + "probability": 0.7149 + }, + { + "start": 13026.62, + "end": 13030.6, + "probability": 0.9922 + }, + { + "start": 13031.34, + "end": 13035.72, + "probability": 0.9844 + }, + { + "start": 13036.78, + "end": 13038.8, + "probability": 0.9309 + }, + { + "start": 13041.36, + "end": 13045.24, + "probability": 0.9971 + }, + { + "start": 13045.78, + "end": 13050.56, + "probability": 0.9933 + }, + { + "start": 13050.88, + "end": 13054.88, + "probability": 0.9663 + }, + { + "start": 13055.48, + "end": 13056.28, + "probability": 0.6687 + }, + { + "start": 13056.92, + "end": 13061.1, + "probability": 0.9956 + }, + { + "start": 13061.86, + "end": 13064.5, + "probability": 0.8745 + }, + { + "start": 13064.5, + "end": 13069.36, + "probability": 0.9794 + }, + { + "start": 13069.92, + "end": 13072.06, + "probability": 0.8986 + }, + { + "start": 13072.54, + "end": 13073.4, + "probability": 0.5083 + }, + { + "start": 13073.5, + "end": 13075.11, + "probability": 0.6979 + }, + { + "start": 13075.82, + "end": 13077.36, + "probability": 0.8056 + }, + { + "start": 13078.54, + "end": 13080.86, + "probability": 0.9632 + }, + { + "start": 13081.98, + "end": 13085.02, + "probability": 0.9218 + }, + { + "start": 13085.72, + "end": 13087.48, + "probability": 0.7497 + }, + { + "start": 13088.24, + "end": 13089.74, + "probability": 0.7415 + }, + { + "start": 13089.94, + "end": 13092.04, + "probability": 0.906 + }, + { + "start": 13103.5, + "end": 13106.92, + "probability": 0.7041 + }, + { + "start": 13111.02, + "end": 13111.75, + "probability": 0.8745 + }, + { + "start": 13112.02, + "end": 13112.64, + "probability": 0.95 + }, + { + "start": 13114.02, + "end": 13117.36, + "probability": 0.9756 + }, + { + "start": 13118.42, + "end": 13118.58, + "probability": 0.3385 + }, + { + "start": 13118.82, + "end": 13120.54, + "probability": 0.6827 + }, + { + "start": 13120.56, + "end": 13122.24, + "probability": 0.6599 + }, + { + "start": 13124.32, + "end": 13127.64, + "probability": 0.6805 + }, + { + "start": 13127.85, + "end": 13131.54, + "probability": 0.6034 + }, + { + "start": 13132.32, + "end": 13133.02, + "probability": 0.8324 + }, + { + "start": 13133.78, + "end": 13136.06, + "probability": 0.976 + }, + { + "start": 13136.7, + "end": 13138.16, + "probability": 0.7126 + }, + { + "start": 13138.94, + "end": 13140.26, + "probability": 0.9198 + }, + { + "start": 13140.3, + "end": 13144.38, + "probability": 0.9343 + }, + { + "start": 13146.1, + "end": 13146.2, + "probability": 0.7247 + }, + { + "start": 13146.28, + "end": 13147.52, + "probability": 0.3806 + }, + { + "start": 13147.7, + "end": 13148.13, + "probability": 0.9646 + }, + { + "start": 13148.54, + "end": 13151.85, + "probability": 0.9915 + }, + { + "start": 13153.68, + "end": 13155.64, + "probability": 0.9497 + }, + { + "start": 13156.18, + "end": 13157.64, + "probability": 0.874 + }, + { + "start": 13158.86, + "end": 13162.36, + "probability": 0.9141 + }, + { + "start": 13163.18, + "end": 13166.22, + "probability": 0.8408 + }, + { + "start": 13167.62, + "end": 13170.44, + "probability": 0.7186 + }, + { + "start": 13171.2, + "end": 13173.56, + "probability": 0.8452 + }, + { + "start": 13174.3, + "end": 13178.38, + "probability": 0.918 + }, + { + "start": 13179.74, + "end": 13182.9, + "probability": 0.9893 + }, + { + "start": 13184.26, + "end": 13187.1, + "probability": 0.9888 + }, + { + "start": 13188.74, + "end": 13190.54, + "probability": 0.96 + }, + { + "start": 13192.04, + "end": 13194.84, + "probability": 0.9718 + }, + { + "start": 13195.44, + "end": 13197.64, + "probability": 0.9749 + }, + { + "start": 13199.42, + "end": 13199.62, + "probability": 0.8868 + }, + { + "start": 13199.76, + "end": 13200.84, + "probability": 0.9327 + }, + { + "start": 13200.98, + "end": 13203.82, + "probability": 0.8313 + }, + { + "start": 13204.24, + "end": 13204.98, + "probability": 0.7469 + }, + { + "start": 13205.78, + "end": 13206.0, + "probability": 0.0 + }, + { + "start": 13208.8, + "end": 13209.04, + "probability": 0.1604 + }, + { + "start": 13209.04, + "end": 13209.24, + "probability": 0.0689 + }, + { + "start": 13209.24, + "end": 13209.96, + "probability": 0.5014 + }, + { + "start": 13211.63, + "end": 13214.66, + "probability": 0.9679 + }, + { + "start": 13215.7, + "end": 13216.98, + "probability": 0.9903 + }, + { + "start": 13217.76, + "end": 13219.24, + "probability": 0.9894 + }, + { + "start": 13220.06, + "end": 13221.92, + "probability": 0.7736 + }, + { + "start": 13223.64, + "end": 13224.3, + "probability": 0.6995 + }, + { + "start": 13225.26, + "end": 13225.26, + "probability": 0.1004 + }, + { + "start": 13225.26, + "end": 13225.7, + "probability": 0.6989 + }, + { + "start": 13225.7, + "end": 13226.22, + "probability": 0.2505 + }, + { + "start": 13226.54, + "end": 13227.17, + "probability": 0.1182 + }, + { + "start": 13227.58, + "end": 13228.28, + "probability": 0.0737 + }, + { + "start": 13228.4, + "end": 13229.9, + "probability": 0.102 + }, + { + "start": 13229.9, + "end": 13231.7, + "probability": 0.3123 + }, + { + "start": 13231.78, + "end": 13234.42, + "probability": 0.4292 + }, + { + "start": 13234.42, + "end": 13236.9, + "probability": 0.4908 + }, + { + "start": 13236.9, + "end": 13238.52, + "probability": 0.3613 + }, + { + "start": 13238.78, + "end": 13240.66, + "probability": 0.5462 + }, + { + "start": 13240.72, + "end": 13245.52, + "probability": 0.9468 + }, + { + "start": 13245.62, + "end": 13246.6, + "probability": 0.8535 + }, + { + "start": 13246.72, + "end": 13250.98, + "probability": 0.7546 + }, + { + "start": 13251.2, + "end": 13252.58, + "probability": 0.4726 + }, + { + "start": 13252.66, + "end": 13253.1, + "probability": 0.7612 + }, + { + "start": 13253.28, + "end": 13253.92, + "probability": 0.8674 + }, + { + "start": 13254.04, + "end": 13254.6, + "probability": 0.9023 + }, + { + "start": 13255.79, + "end": 13260.28, + "probability": 0.8234 + }, + { + "start": 13260.58, + "end": 13261.6, + "probability": 0.855 + }, + { + "start": 13262.64, + "end": 13263.3, + "probability": 0.5451 + }, + { + "start": 13263.34, + "end": 13264.0, + "probability": 0.8411 + }, + { + "start": 13281.34, + "end": 13283.62, + "probability": 0.5 + }, + { + "start": 13283.62, + "end": 13286.94, + "probability": 0.5368 + }, + { + "start": 13287.1, + "end": 13287.7, + "probability": 0.392 + }, + { + "start": 13295.28, + "end": 13296.56, + "probability": 0.2958 + }, + { + "start": 13297.16, + "end": 13298.88, + "probability": 0.9006 + }, + { + "start": 13300.56, + "end": 13300.56, + "probability": 0.0336 + }, + { + "start": 13300.56, + "end": 13303.82, + "probability": 0.0666 + }, + { + "start": 13305.0, + "end": 13305.62, + "probability": 0.5188 + }, + { + "start": 13310.28, + "end": 13312.82, + "probability": 0.0624 + }, + { + "start": 13313.68, + "end": 13314.34, + "probability": 0.0267 + }, + { + "start": 13315.14, + "end": 13316.14, + "probability": 0.2285 + }, + { + "start": 13317.47, + "end": 13319.78, + "probability": 0.0048 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.0, + "end": 13367.0, + "probability": 0.0 + }, + { + "start": 13367.16, + "end": 13367.16, + "probability": 0.3514 + }, + { + "start": 13367.16, + "end": 13369.64, + "probability": 0.7248 + }, + { + "start": 13369.64, + "end": 13373.82, + "probability": 0.877 + }, + { + "start": 13374.8, + "end": 13379.73, + "probability": 0.7621 + }, + { + "start": 13381.0, + "end": 13383.96, + "probability": 0.7526 + }, + { + "start": 13384.78, + "end": 13388.5, + "probability": 0.9831 + }, + { + "start": 13390.22, + "end": 13392.54, + "probability": 0.9395 + }, + { + "start": 13392.62, + "end": 13395.94, + "probability": 0.9888 + }, + { + "start": 13396.52, + "end": 13397.08, + "probability": 0.0345 + }, + { + "start": 13398.52, + "end": 13405.09, + "probability": 0.7866 + }, + { + "start": 13405.52, + "end": 13408.6, + "probability": 0.956 + }, + { + "start": 13408.68, + "end": 13411.16, + "probability": 0.7406 + }, + { + "start": 13411.43, + "end": 13412.88, + "probability": 0.3666 + }, + { + "start": 13412.88, + "end": 13413.84, + "probability": 0.329 + }, + { + "start": 13414.34, + "end": 13414.92, + "probability": 0.4568 + }, + { + "start": 13415.92, + "end": 13416.94, + "probability": 0.9902 + }, + { + "start": 13418.26, + "end": 13418.76, + "probability": 0.6048 + }, + { + "start": 13418.84, + "end": 13419.48, + "probability": 0.5001 + }, + { + "start": 13419.58, + "end": 13421.54, + "probability": 0.6421 + }, + { + "start": 13421.6, + "end": 13423.66, + "probability": 0.6967 + }, + { + "start": 13424.44, + "end": 13427.46, + "probability": 0.6243 + }, + { + "start": 13428.08, + "end": 13430.18, + "probability": 0.7571 + }, + { + "start": 13430.18, + "end": 13432.6, + "probability": 0.9972 + }, + { + "start": 13433.1, + "end": 13435.0, + "probability": 0.9363 + }, + { + "start": 13436.0, + "end": 13437.68, + "probability": 0.8414 + }, + { + "start": 13437.76, + "end": 13439.42, + "probability": 0.4492 + }, + { + "start": 13439.52, + "end": 13444.98, + "probability": 0.6976 + }, + { + "start": 13445.74, + "end": 13448.9, + "probability": 0.9011 + }, + { + "start": 13450.3, + "end": 13451.28, + "probability": 0.2287 + }, + { + "start": 13451.28, + "end": 13453.76, + "probability": 0.783 + }, + { + "start": 13454.1, + "end": 13456.23, + "probability": 0.8569 + }, + { + "start": 13457.14, + "end": 13461.02, + "probability": 0.8081 + }, + { + "start": 13461.4, + "end": 13464.04, + "probability": 0.9944 + }, + { + "start": 13464.58, + "end": 13468.28, + "probability": 0.9092 + }, + { + "start": 13468.28, + "end": 13474.78, + "probability": 0.9512 + }, + { + "start": 13474.86, + "end": 13476.44, + "probability": 0.8229 + }, + { + "start": 13476.62, + "end": 13480.24, + "probability": 0.8442 + }, + { + "start": 13480.76, + "end": 13482.98, + "probability": 0.9585 + }, + { + "start": 13484.46, + "end": 13486.2, + "probability": 0.8757 + }, + { + "start": 13486.4, + "end": 13488.06, + "probability": 0.9292 + }, + { + "start": 13488.36, + "end": 13493.12, + "probability": 0.9116 + }, + { + "start": 13494.64, + "end": 13495.02, + "probability": 0.5395 + }, + { + "start": 13495.08, + "end": 13497.48, + "probability": 0.871 + }, + { + "start": 13497.48, + "end": 13500.2, + "probability": 0.9028 + }, + { + "start": 13501.08, + "end": 13504.16, + "probability": 0.8389 + }, + { + "start": 13504.16, + "end": 13506.73, + "probability": 0.7915 + }, + { + "start": 13507.48, + "end": 13512.66, + "probability": 0.5807 + }, + { + "start": 13513.22, + "end": 13515.26, + "probability": 0.9903 + }, + { + "start": 13516.02, + "end": 13519.02, + "probability": 0.9419 + }, + { + "start": 13519.56, + "end": 13525.16, + "probability": 0.8826 + }, + { + "start": 13525.16, + "end": 13529.59, + "probability": 0.9884 + }, + { + "start": 13530.6, + "end": 13531.3, + "probability": 0.8742 + }, + { + "start": 13531.96, + "end": 13532.92, + "probability": 0.8502 + }, + { + "start": 13533.16, + "end": 13535.44, + "probability": 0.8486 + }, + { + "start": 13535.44, + "end": 13537.48, + "probability": 0.9469 + }, + { + "start": 13537.94, + "end": 13538.1, + "probability": 0.4409 + }, + { + "start": 13538.16, + "end": 13538.58, + "probability": 0.776 + }, + { + "start": 13539.34, + "end": 13540.42, + "probability": 0.762 + }, + { + "start": 13540.5, + "end": 13541.76, + "probability": 0.857 + }, + { + "start": 13541.9, + "end": 13543.56, + "probability": 0.9169 + }, + { + "start": 13544.04, + "end": 13545.02, + "probability": 0.887 + }, + { + "start": 13545.34, + "end": 13545.98, + "probability": 0.8787 + }, + { + "start": 13546.42, + "end": 13547.1, + "probability": 0.4436 + }, + { + "start": 13547.14, + "end": 13547.34, + "probability": 0.8697 + }, + { + "start": 13547.48, + "end": 13550.59, + "probability": 0.9184 + }, + { + "start": 13551.44, + "end": 13555.7, + "probability": 0.9067 + }, + { + "start": 13555.7, + "end": 13559.86, + "probability": 0.9814 + }, + { + "start": 13560.54, + "end": 13562.06, + "probability": 0.659 + }, + { + "start": 13562.12, + "end": 13563.7, + "probability": 0.7311 + }, + { + "start": 13563.92, + "end": 13567.3, + "probability": 0.8931 + }, + { + "start": 13567.3, + "end": 13570.14, + "probability": 0.9297 + }, + { + "start": 13571.24, + "end": 13576.28, + "probability": 0.8415 + }, + { + "start": 13577.12, + "end": 13578.5, + "probability": 0.7139 + }, + { + "start": 13578.58, + "end": 13580.52, + "probability": 0.8528 + }, + { + "start": 13581.14, + "end": 13583.82, + "probability": 0.6102 + }, + { + "start": 13584.34, + "end": 13586.18, + "probability": 0.6918 + }, + { + "start": 13586.66, + "end": 13588.84, + "probability": 0.8158 + }, + { + "start": 13588.84, + "end": 13590.98, + "probability": 0.8173 + }, + { + "start": 13592.0, + "end": 13596.86, + "probability": 0.9463 + }, + { + "start": 13597.88, + "end": 13600.74, + "probability": 0.7454 + }, + { + "start": 13601.5, + "end": 13603.28, + "probability": 0.7394 + }, + { + "start": 13603.32, + "end": 13605.7, + "probability": 0.8763 + }, + { + "start": 13605.92, + "end": 13606.46, + "probability": 0.8734 + }, + { + "start": 13607.32, + "end": 13609.54, + "probability": 0.7087 + }, + { + "start": 13609.54, + "end": 13612.22, + "probability": 0.8587 + }, + { + "start": 13612.92, + "end": 13614.08, + "probability": 0.7771 + }, + { + "start": 13616.32, + "end": 13616.96, + "probability": 0.7712 + }, + { + "start": 13616.98, + "end": 13617.56, + "probability": 0.6964 + }, + { + "start": 13617.6, + "end": 13620.0, + "probability": 0.6463 + }, + { + "start": 13620.0, + "end": 13622.58, + "probability": 0.7469 + }, + { + "start": 13622.96, + "end": 13623.5, + "probability": 0.5802 + }, + { + "start": 13623.58, + "end": 13624.16, + "probability": 0.6275 + }, + { + "start": 13624.24, + "end": 13627.86, + "probability": 0.9172 + }, + { + "start": 13628.62, + "end": 13630.56, + "probability": 0.571 + }, + { + "start": 13632.78, + "end": 13633.75, + "probability": 0.0371 + }, + { + "start": 13634.04, + "end": 13634.04, + "probability": 0.0481 + }, + { + "start": 13634.04, + "end": 13634.04, + "probability": 0.1496 + }, + { + "start": 13634.04, + "end": 13634.04, + "probability": 0.2079 + }, + { + "start": 13635.08, + "end": 13635.86, + "probability": 0.5255 + }, + { + "start": 13636.3, + "end": 13639.26, + "probability": 0.6033 + }, + { + "start": 13639.72, + "end": 13641.12, + "probability": 0.6663 + }, + { + "start": 13641.68, + "end": 13642.7, + "probability": 0.9087 + }, + { + "start": 13643.26, + "end": 13643.36, + "probability": 0.3564 + }, + { + "start": 13643.44, + "end": 13644.6, + "probability": 0.8664 + }, + { + "start": 13644.78, + "end": 13646.2, + "probability": 0.8818 + }, + { + "start": 13646.76, + "end": 13647.7, + "probability": 0.6152 + }, + { + "start": 13647.86, + "end": 13648.94, + "probability": 0.7886 + }, + { + "start": 13649.36, + "end": 13650.3, + "probability": 0.7306 + }, + { + "start": 13650.58, + "end": 13651.46, + "probability": 0.9253 + }, + { + "start": 13651.46, + "end": 13655.0, + "probability": 0.9297 + }, + { + "start": 13656.6, + "end": 13658.47, + "probability": 0.9883 + }, + { + "start": 13660.0, + "end": 13660.88, + "probability": 0.4897 + }, + { + "start": 13660.92, + "end": 13661.76, + "probability": 0.9117 + }, + { + "start": 13669.13, + "end": 13670.88, + "probability": 0.0278 + }, + { + "start": 13670.88, + "end": 13671.66, + "probability": 0.0408 + }, + { + "start": 13671.66, + "end": 13671.66, + "probability": 0.1011 + }, + { + "start": 13671.88, + "end": 13671.88, + "probability": 0.1306 + }, + { + "start": 13671.88, + "end": 13672.16, + "probability": 0.033 + }, + { + "start": 13680.39, + "end": 13684.8, + "probability": 0.5366 + }, + { + "start": 13684.9, + "end": 13686.58, + "probability": 0.1981 + }, + { + "start": 13687.14, + "end": 13688.2, + "probability": 0.7539 + }, + { + "start": 13688.6, + "end": 13690.22, + "probability": 0.8813 + }, + { + "start": 13690.84, + "end": 13693.2, + "probability": 0.7387 + }, + { + "start": 13693.36, + "end": 13694.74, + "probability": 0.9797 + }, + { + "start": 13694.78, + "end": 13696.22, + "probability": 0.7512 + }, + { + "start": 13696.42, + "end": 13697.9, + "probability": 0.4475 + }, + { + "start": 13698.94, + "end": 13700.72, + "probability": 0.9903 + }, + { + "start": 13700.78, + "end": 13701.64, + "probability": 0.6752 + }, + { + "start": 13702.96, + "end": 13708.42, + "probability": 0.6766 + }, + { + "start": 13710.31, + "end": 13715.83, + "probability": 0.9673 + }, + { + "start": 13716.68, + "end": 13718.02, + "probability": 0.6415 + }, + { + "start": 13718.18, + "end": 13721.96, + "probability": 0.9053 + }, + { + "start": 13721.96, + "end": 13724.56, + "probability": 0.9854 + }, + { + "start": 13725.82, + "end": 13730.02, + "probability": 0.1479 + }, + { + "start": 13730.96, + "end": 13732.8, + "probability": 0.742 + }, + { + "start": 13732.96, + "end": 13737.0, + "probability": 0.9944 + }, + { + "start": 13737.0, + "end": 13740.18, + "probability": 0.7349 + }, + { + "start": 13740.78, + "end": 13742.82, + "probability": 0.3279 + }, + { + "start": 13744.12, + "end": 13748.38, + "probability": 0.8333 + }, + { + "start": 13748.98, + "end": 13754.1, + "probability": 0.7502 + }, + { + "start": 13754.68, + "end": 13756.14, + "probability": 0.5334 + }, + { + "start": 13757.32, + "end": 13758.11, + "probability": 0.6679 + }, + { + "start": 13765.46, + "end": 13766.36, + "probability": 0.4825 + }, + { + "start": 13766.44, + "end": 13768.88, + "probability": 0.7321 + }, + { + "start": 13770.02, + "end": 13771.98, + "probability": 0.6871 + }, + { + "start": 13772.12, + "end": 13774.02, + "probability": 0.8232 + }, + { + "start": 13775.7, + "end": 13776.54, + "probability": 0.8045 + }, + { + "start": 13776.74, + "end": 13777.3, + "probability": 0.8317 + }, + { + "start": 13777.54, + "end": 13779.46, + "probability": 0.9546 + }, + { + "start": 13779.48, + "end": 13781.72, + "probability": 0.4896 + }, + { + "start": 13781.82, + "end": 13784.22, + "probability": 0.7569 + }, + { + "start": 13784.86, + "end": 13786.58, + "probability": 0.8511 + }, + { + "start": 13786.82, + "end": 13788.24, + "probability": 0.111 + }, + { + "start": 13788.3, + "end": 13790.38, + "probability": 0.5809 + }, + { + "start": 13790.8, + "end": 13793.26, + "probability": 0.9768 + }, + { + "start": 13793.36, + "end": 13796.02, + "probability": 0.915 + }, + { + "start": 13796.34, + "end": 13798.04, + "probability": 0.4206 + }, + { + "start": 13798.16, + "end": 13801.78, + "probability": 0.9338 + }, + { + "start": 13802.46, + "end": 13805.74, + "probability": 0.8999 + }, + { + "start": 13805.82, + "end": 13806.16, + "probability": 0.4352 + }, + { + "start": 13806.22, + "end": 13808.42, + "probability": 0.4997 + }, + { + "start": 13809.12, + "end": 13811.34, + "probability": 0.9149 + }, + { + "start": 13811.7, + "end": 13813.34, + "probability": 0.6932 + }, + { + "start": 13813.92, + "end": 13815.52, + "probability": 0.8262 + }, + { + "start": 13817.44, + "end": 13818.18, + "probability": 0.64 + }, + { + "start": 13818.32, + "end": 13821.22, + "probability": 0.7112 + }, + { + "start": 13822.2, + "end": 13825.3, + "probability": 0.6579 + }, + { + "start": 13842.0, + "end": 13842.58, + "probability": 0.0431 + }, + { + "start": 13842.58, + "end": 13842.58, + "probability": 0.1481 + }, + { + "start": 13842.58, + "end": 13843.25, + "probability": 0.3052 + }, + { + "start": 13843.56, + "end": 13846.54, + "probability": 0.859 + }, + { + "start": 13846.54, + "end": 13849.38, + "probability": 0.3717 + }, + { + "start": 13850.18, + "end": 13853.12, + "probability": 0.9834 + }, + { + "start": 13853.68, + "end": 13854.3, + "probability": 0.4528 + }, + { + "start": 13855.18, + "end": 13857.84, + "probability": 0.5444 + }, + { + "start": 13860.08, + "end": 13863.8, + "probability": 0.7122 + }, + { + "start": 13863.9, + "end": 13867.6, + "probability": 0.5771 + }, + { + "start": 13867.76, + "end": 13870.46, + "probability": 0.9286 + }, + { + "start": 13871.06, + "end": 13873.06, + "probability": 0.9257 + }, + { + "start": 13873.16, + "end": 13873.88, + "probability": 0.869 + }, + { + "start": 13886.32, + "end": 13888.28, + "probability": 0.7176 + }, + { + "start": 13889.94, + "end": 13893.12, + "probability": 0.9825 + }, + { + "start": 13893.26, + "end": 13895.18, + "probability": 0.9835 + }, + { + "start": 13895.18, + "end": 13897.76, + "probability": 0.8867 + }, + { + "start": 13900.6, + "end": 13907.12, + "probability": 0.9876 + }, + { + "start": 13907.74, + "end": 13908.66, + "probability": 0.6412 + }, + { + "start": 13909.88, + "end": 13909.98, + "probability": 0.8687 + }, + { + "start": 13910.72, + "end": 13913.8, + "probability": 0.669 + }, + { + "start": 13915.38, + "end": 13916.64, + "probability": 0.2947 + }, + { + "start": 13917.9, + "end": 13918.22, + "probability": 0.0151 + }, + { + "start": 13918.22, + "end": 13918.22, + "probability": 0.2294 + }, + { + "start": 13918.22, + "end": 13918.22, + "probability": 0.6583 + }, + { + "start": 13918.22, + "end": 13919.29, + "probability": 0.2097 + }, + { + "start": 13920.6, + "end": 13923.48, + "probability": 0.9958 + }, + { + "start": 13925.64, + "end": 13926.22, + "probability": 0.5945 + }, + { + "start": 13927.78, + "end": 13932.74, + "probability": 0.9821 + }, + { + "start": 13933.66, + "end": 13936.08, + "probability": 0.9136 + }, + { + "start": 13937.06, + "end": 13938.58, + "probability": 0.9498 + }, + { + "start": 13940.24, + "end": 13943.06, + "probability": 0.9784 + }, + { + "start": 13943.74, + "end": 13945.04, + "probability": 0.9264 + }, + { + "start": 13947.87, + "end": 13954.7, + "probability": 0.9831 + }, + { + "start": 13955.64, + "end": 13956.48, + "probability": 0.681 + }, + { + "start": 13957.88, + "end": 13963.18, + "probability": 0.9862 + }, + { + "start": 13963.28, + "end": 13964.76, + "probability": 0.9829 + }, + { + "start": 13966.96, + "end": 13968.52, + "probability": 0.7296 + }, + { + "start": 13969.92, + "end": 13972.24, + "probability": 0.7489 + }, + { + "start": 13973.72, + "end": 13974.9, + "probability": 0.8078 + }, + { + "start": 13976.1, + "end": 13978.72, + "probability": 0.9474 + }, + { + "start": 13979.28, + "end": 13982.86, + "probability": 0.9938 + }, + { + "start": 13984.02, + "end": 13986.14, + "probability": 0.987 + }, + { + "start": 13986.82, + "end": 13988.02, + "probability": 0.9487 + }, + { + "start": 13988.34, + "end": 13991.54, + "probability": 0.9701 + }, + { + "start": 13991.64, + "end": 13992.62, + "probability": 0.7025 + }, + { + "start": 13992.82, + "end": 13993.18, + "probability": 0.6328 + }, + { + "start": 13993.98, + "end": 13997.2, + "probability": 0.6842 + }, + { + "start": 13997.34, + "end": 13998.68, + "probability": 0.9021 + }, + { + "start": 13999.94, + "end": 14004.52, + "probability": 0.9411 + }, + { + "start": 14004.62, + "end": 14006.28, + "probability": 0.9971 + }, + { + "start": 14007.36, + "end": 14007.72, + "probability": 0.8388 + }, + { + "start": 14009.78, + "end": 14012.5, + "probability": 0.9538 + }, + { + "start": 14014.44, + "end": 14016.04, + "probability": 0.8959 + }, + { + "start": 14017.0, + "end": 14020.9, + "probability": 0.7407 + }, + { + "start": 14021.52, + "end": 14023.78, + "probability": 0.6147 + }, + { + "start": 14024.4, + "end": 14027.88, + "probability": 0.9648 + }, + { + "start": 14029.88, + "end": 14030.28, + "probability": 0.9967 + }, + { + "start": 14031.26, + "end": 14031.6, + "probability": 0.8588 + }, + { + "start": 14032.44, + "end": 14034.06, + "probability": 0.8938 + }, + { + "start": 14034.18, + "end": 14034.44, + "probability": 0.7858 + }, + { + "start": 14034.6, + "end": 14036.12, + "probability": 0.9896 + }, + { + "start": 14036.24, + "end": 14037.66, + "probability": 0.9782 + }, + { + "start": 14039.34, + "end": 14042.2, + "probability": 0.8784 + }, + { + "start": 14042.78, + "end": 14045.94, + "probability": 0.9689 + }, + { + "start": 14046.04, + "end": 14047.78, + "probability": 0.4078 + }, + { + "start": 14047.96, + "end": 14050.88, + "probability": 0.6829 + }, + { + "start": 14050.9, + "end": 14054.64, + "probability": 0.9157 + }, + { + "start": 14055.64, + "end": 14059.3, + "probability": 0.9927 + }, + { + "start": 14059.76, + "end": 14060.79, + "probability": 0.9922 + }, + { + "start": 14060.98, + "end": 14061.5, + "probability": 0.7872 + }, + { + "start": 14061.92, + "end": 14064.29, + "probability": 0.8696 + }, + { + "start": 14064.64, + "end": 14064.64, + "probability": 0.3554 + }, + { + "start": 14064.64, + "end": 14065.52, + "probability": 0.9951 + }, + { + "start": 14065.94, + "end": 14066.42, + "probability": 0.8693 + }, + { + "start": 14066.94, + "end": 14068.94, + "probability": 0.9277 + }, + { + "start": 14069.24, + "end": 14072.14, + "probability": 0.9915 + }, + { + "start": 14072.34, + "end": 14073.32, + "probability": 0.9219 + }, + { + "start": 14073.96, + "end": 14074.84, + "probability": 0.9841 + }, + { + "start": 14075.0, + "end": 14076.02, + "probability": 0.8491 + }, + { + "start": 14076.56, + "end": 14079.62, + "probability": 0.9135 + }, + { + "start": 14080.1, + "end": 14080.56, + "probability": 0.7664 + }, + { + "start": 14080.72, + "end": 14085.52, + "probability": 0.9437 + }, + { + "start": 14087.24, + "end": 14090.44, + "probability": 0.9915 + }, + { + "start": 14092.08, + "end": 14094.44, + "probability": 0.9471 + }, + { + "start": 14095.16, + "end": 14097.56, + "probability": 0.7706 + }, + { + "start": 14098.46, + "end": 14100.52, + "probability": 0.9983 + }, + { + "start": 14101.86, + "end": 14105.26, + "probability": 0.9976 + }, + { + "start": 14106.18, + "end": 14107.64, + "probability": 0.9844 + }, + { + "start": 14109.6, + "end": 14112.72, + "probability": 0.3941 + }, + { + "start": 14113.62, + "end": 14114.46, + "probability": 0.7312 + }, + { + "start": 14114.68, + "end": 14115.42, + "probability": 0.6413 + }, + { + "start": 14116.04, + "end": 14120.5, + "probability": 0.8228 + }, + { + "start": 14120.64, + "end": 14120.94, + "probability": 0.6828 + }, + { + "start": 14121.5, + "end": 14122.78, + "probability": 0.7656 + }, + { + "start": 14123.04, + "end": 14124.16, + "probability": 0.4452 + }, + { + "start": 14126.64, + "end": 14129.02, + "probability": 0.0128 + }, + { + "start": 14129.06, + "end": 14129.06, + "probability": 0.2259 + }, + { + "start": 14129.06, + "end": 14129.06, + "probability": 0.4033 + }, + { + "start": 14129.06, + "end": 14129.06, + "probability": 0.177 + }, + { + "start": 14129.06, + "end": 14129.06, + "probability": 0.5141 + }, + { + "start": 14129.06, + "end": 14129.82, + "probability": 0.5009 + }, + { + "start": 14129.86, + "end": 14130.14, + "probability": 0.2304 + }, + { + "start": 14130.3, + "end": 14133.12, + "probability": 0.6778 + }, + { + "start": 14135.82, + "end": 14138.74, + "probability": 0.8413 + }, + { + "start": 14140.12, + "end": 14146.46, + "probability": 0.2754 + }, + { + "start": 14146.82, + "end": 14149.7, + "probability": 0.1263 + }, + { + "start": 14156.82, + "end": 14157.94, + "probability": 0.0659 + }, + { + "start": 14158.02, + "end": 14161.58, + "probability": 0.2425 + }, + { + "start": 14161.8, + "end": 14163.16, + "probability": 0.0519 + }, + { + "start": 14166.34, + "end": 14171.5, + "probability": 0.6847 + }, + { + "start": 14175.01, + "end": 14179.0, + "probability": 0.0976 + }, + { + "start": 14179.0, + "end": 14179.4, + "probability": 0.4575 + }, + { + "start": 14183.54, + "end": 14185.68, + "probability": 0.0228 + }, + { + "start": 14186.44, + "end": 14188.42, + "probability": 0.0455 + }, + { + "start": 14189.6, + "end": 14190.0, + "probability": 0.1559 + }, + { + "start": 14190.0, + "end": 14190.72, + "probability": 0.1322 + }, + { + "start": 14198.04, + "end": 14200.62, + "probability": 0.1712 + }, + { + "start": 14200.8, + "end": 14201.98, + "probability": 0.1225 + }, + { + "start": 14201.98, + "end": 14203.78, + "probability": 0.1664 + }, + { + "start": 14204.34, + "end": 14205.36, + "probability": 0.442 + }, + { + "start": 14206.12, + "end": 14208.52, + "probability": 0.1307 + }, + { + "start": 14208.88, + "end": 14209.98, + "probability": 0.1982 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14254.0, + "end": 14254.0, + "probability": 0.0 + }, + { + "start": 14256.58, + "end": 14260.72, + "probability": 0.5282 + }, + { + "start": 14261.5, + "end": 14263.78, + "probability": 0.7247 + }, + { + "start": 14264.34, + "end": 14266.58, + "probability": 0.9133 + }, + { + "start": 14267.14, + "end": 14270.36, + "probability": 0.9898 + }, + { + "start": 14270.9, + "end": 14273.22, + "probability": 0.9163 + }, + { + "start": 14274.04, + "end": 14278.78, + "probability": 0.9893 + }, + { + "start": 14278.78, + "end": 14282.46, + "probability": 0.9978 + }, + { + "start": 14284.64, + "end": 14289.52, + "probability": 0.9705 + }, + { + "start": 14290.06, + "end": 14294.16, + "probability": 0.9924 + }, + { + "start": 14294.72, + "end": 14298.6, + "probability": 0.9866 + }, + { + "start": 14298.6, + "end": 14302.76, + "probability": 0.9964 + }, + { + "start": 14303.36, + "end": 14303.7, + "probability": 0.4344 + }, + { + "start": 14303.82, + "end": 14306.64, + "probability": 0.9716 + }, + { + "start": 14306.68, + "end": 14309.02, + "probability": 0.8691 + }, + { + "start": 14309.68, + "end": 14311.32, + "probability": 0.5629 + }, + { + "start": 14311.72, + "end": 14313.56, + "probability": 0.8908 + }, + { + "start": 14313.64, + "end": 14314.36, + "probability": 0.7579 + }, + { + "start": 14314.9, + "end": 14316.64, + "probability": 0.7883 + }, + { + "start": 14317.3, + "end": 14317.74, + "probability": 0.3556 + }, + { + "start": 14317.76, + "end": 14321.76, + "probability": 0.9926 + }, + { + "start": 14321.76, + "end": 14325.74, + "probability": 0.7712 + }, + { + "start": 14326.38, + "end": 14330.02, + "probability": 0.9827 + }, + { + "start": 14330.82, + "end": 14331.24, + "probability": 0.5275 + }, + { + "start": 14331.26, + "end": 14335.2, + "probability": 0.8963 + }, + { + "start": 14336.06, + "end": 14337.9, + "probability": 0.9242 + }, + { + "start": 14338.06, + "end": 14338.42, + "probability": 0.9591 + }, + { + "start": 14339.1, + "end": 14343.82, + "probability": 0.9969 + }, + { + "start": 14343.82, + "end": 14348.06, + "probability": 0.9902 + }, + { + "start": 14348.58, + "end": 14351.1, + "probability": 0.9854 + }, + { + "start": 14351.48, + "end": 14355.99, + "probability": 0.7304 + }, + { + "start": 14356.12, + "end": 14359.78, + "probability": 0.8609 + }, + { + "start": 14360.64, + "end": 14365.98, + "probability": 0.9938 + }, + { + "start": 14367.06, + "end": 14370.66, + "probability": 0.8195 + }, + { + "start": 14370.98, + "end": 14371.86, + "probability": 0.7834 + }, + { + "start": 14372.0, + "end": 14374.18, + "probability": 0.7997 + }, + { + "start": 14374.38, + "end": 14374.88, + "probability": 0.6673 + }, + { + "start": 14375.26, + "end": 14377.86, + "probability": 0.8482 + }, + { + "start": 14377.98, + "end": 14379.08, + "probability": 0.8403 + }, + { + "start": 14379.64, + "end": 14381.32, + "probability": 0.9967 + }, + { + "start": 14381.48, + "end": 14385.28, + "probability": 0.8226 + }, + { + "start": 14385.42, + "end": 14385.96, + "probability": 0.7649 + }, + { + "start": 14386.26, + "end": 14387.42, + "probability": 0.4886 + }, + { + "start": 14388.25, + "end": 14391.16, + "probability": 0.8418 + }, + { + "start": 14391.74, + "end": 14393.1, + "probability": 0.5234 + }, + { + "start": 14393.74, + "end": 14395.76, + "probability": 0.9972 + }, + { + "start": 14396.52, + "end": 14399.66, + "probability": 0.8197 + }, + { + "start": 14400.2, + "end": 14401.64, + "probability": 0.8966 + }, + { + "start": 14402.66, + "end": 14403.76, + "probability": 0.6307 + }, + { + "start": 14403.76, + "end": 14404.8, + "probability": 0.897 + }, + { + "start": 14406.3, + "end": 14406.58, + "probability": 0.0452 + }, + { + "start": 14406.58, + "end": 14407.18, + "probability": 0.2944 + }, + { + "start": 14407.96, + "end": 14409.1, + "probability": 0.5393 + }, + { + "start": 14409.32, + "end": 14412.16, + "probability": 0.8014 + }, + { + "start": 14413.08, + "end": 14413.74, + "probability": 0.5199 + }, + { + "start": 14414.56, + "end": 14414.64, + "probability": 0.5984 + }, + { + "start": 14430.3, + "end": 14430.54, + "probability": 0.2418 + }, + { + "start": 14430.54, + "end": 14432.46, + "probability": 0.0038 + }, + { + "start": 14432.46, + "end": 14433.67, + "probability": 0.5361 + }, + { + "start": 14434.84, + "end": 14438.22, + "probability": 0.501 + }, + { + "start": 14438.56, + "end": 14439.78, + "probability": 0.0888 + }, + { + "start": 14439.94, + "end": 14441.04, + "probability": 0.9668 + }, + { + "start": 14445.71, + "end": 14449.28, + "probability": 0.6598 + }, + { + "start": 14451.14, + "end": 14451.92, + "probability": 0.0252 + }, + { + "start": 14452.28, + "end": 14454.1, + "probability": 0.168 + }, + { + "start": 14465.89, + "end": 14468.34, + "probability": 0.145 + }, + { + "start": 14468.34, + "end": 14468.34, + "probability": 0.0759 + }, + { + "start": 14468.36, + "end": 14471.96, + "probability": 0.0669 + }, + { + "start": 14474.04, + "end": 14475.08, + "probability": 0.1292 + }, + { + "start": 14476.12, + "end": 14477.4, + "probability": 0.255 + }, + { + "start": 14477.96, + "end": 14478.4, + "probability": 0.3626 + }, + { + "start": 14478.82, + "end": 14479.7, + "probability": 0.5234 + }, + { + "start": 14480.12, + "end": 14481.34, + "probability": 0.0131 + }, + { + "start": 14481.34, + "end": 14481.34, + "probability": 0.0286 + }, + { + "start": 14481.34, + "end": 14481.34, + "probability": 0.091 + }, + { + "start": 14481.34, + "end": 14482.3, + "probability": 0.2615 + }, + { + "start": 14482.76, + "end": 14483.62, + "probability": 0.6566 + }, + { + "start": 14484.48, + "end": 14485.04, + "probability": 0.8014 + }, + { + "start": 14490.92, + "end": 14491.86, + "probability": 0.681 + }, + { + "start": 14492.14, + "end": 14493.08, + "probability": 0.8106 + }, + { + "start": 14493.52, + "end": 14494.9, + "probability": 0.9297 + }, + { + "start": 14495.66, + "end": 14496.66, + "probability": 0.8049 + }, + { + "start": 14499.48, + "end": 14501.68, + "probability": 0.9949 + }, + { + "start": 14502.44, + "end": 14506.52, + "probability": 0.7022 + }, + { + "start": 14507.72, + "end": 14508.38, + "probability": 0.8522 + }, + { + "start": 14509.3, + "end": 14513.06, + "probability": 0.9966 + }, + { + "start": 14513.72, + "end": 14518.56, + "probability": 0.9844 + }, + { + "start": 14518.56, + "end": 14522.5, + "probability": 0.8607 + }, + { + "start": 14523.34, + "end": 14525.0, + "probability": 0.9989 + }, + { + "start": 14525.62, + "end": 14527.78, + "probability": 0.7796 + }, + { + "start": 14528.7, + "end": 14533.84, + "probability": 0.9561 + }, + { + "start": 14534.66, + "end": 14537.9, + "probability": 0.9409 + }, + { + "start": 14538.72, + "end": 14541.24, + "probability": 0.8909 + }, + { + "start": 14541.84, + "end": 14542.66, + "probability": 0.4565 + }, + { + "start": 14543.18, + "end": 14544.04, + "probability": 0.7857 + }, + { + "start": 14544.78, + "end": 14545.96, + "probability": 0.8989 + }, + { + "start": 14546.44, + "end": 14548.22, + "probability": 0.7013 + }, + { + "start": 14548.36, + "end": 14550.94, + "probability": 0.3797 + }, + { + "start": 14550.94, + "end": 14551.64, + "probability": 0.9561 + }, + { + "start": 14552.16, + "end": 14552.38, + "probability": 0.4724 + }, + { + "start": 14552.82, + "end": 14553.36, + "probability": 0.9517 + }, + { + "start": 14554.38, + "end": 14554.68, + "probability": 0.5164 + }, + { + "start": 14554.8, + "end": 14555.7, + "probability": 0.864 + }, + { + "start": 14555.78, + "end": 14562.53, + "probability": 0.8818 + }, + { + "start": 14563.18, + "end": 14565.52, + "probability": 0.9197 + }, + { + "start": 14566.3, + "end": 14569.16, + "probability": 0.8969 + }, + { + "start": 14569.18, + "end": 14572.9, + "probability": 0.967 + }, + { + "start": 14573.22, + "end": 14574.82, + "probability": 0.1848 + }, + { + "start": 14575.5, + "end": 14576.86, + "probability": 0.9202 + }, + { + "start": 14577.5, + "end": 14578.62, + "probability": 0.5854 + }, + { + "start": 14579.92, + "end": 14582.64, + "probability": 0.605 + }, + { + "start": 14583.36, + "end": 14583.6, + "probability": 0.8304 + }, + { + "start": 14584.38, + "end": 14585.0, + "probability": 0.891 + }, + { + "start": 14586.4, + "end": 14588.84, + "probability": 0.6472 + }, + { + "start": 14590.27, + "end": 14593.4, + "probability": 0.9552 + }, + { + "start": 14594.46, + "end": 14595.86, + "probability": 0.5123 + }, + { + "start": 14597.06, + "end": 14598.68, + "probability": 0.871 + }, + { + "start": 14599.6, + "end": 14600.86, + "probability": 0.8357 + }, + { + "start": 14601.5, + "end": 14603.54, + "probability": 0.7834 + }, + { + "start": 14604.86, + "end": 14608.63, + "probability": 0.9432 + }, + { + "start": 14609.66, + "end": 14612.1, + "probability": 0.9816 + }, + { + "start": 14613.06, + "end": 14614.1, + "probability": 0.8043 + }, + { + "start": 14615.04, + "end": 14616.16, + "probability": 0.9795 + }, + { + "start": 14617.28, + "end": 14619.5, + "probability": 0.8816 + }, + { + "start": 14620.1, + "end": 14623.24, + "probability": 0.9754 + }, + { + "start": 14623.98, + "end": 14628.52, + "probability": 0.9388 + }, + { + "start": 14629.14, + "end": 14632.8, + "probability": 0.9136 + }, + { + "start": 14632.82, + "end": 14633.92, + "probability": 0.8301 + }, + { + "start": 14635.54, + "end": 14637.58, + "probability": 0.8599 + }, + { + "start": 14639.38, + "end": 14640.0, + "probability": 0.1069 + }, + { + "start": 14640.0, + "end": 14640.0, + "probability": 0.0274 + }, + { + "start": 14640.0, + "end": 14640.2, + "probability": 0.2527 + }, + { + "start": 14640.4, + "end": 14642.45, + "probability": 0.8732 + }, + { + "start": 14643.12, + "end": 14647.72, + "probability": 0.782 + }, + { + "start": 14648.18, + "end": 14652.04, + "probability": 0.9337 + }, + { + "start": 14652.6, + "end": 14654.93, + "probability": 0.8092 + }, + { + "start": 14655.26, + "end": 14656.4, + "probability": 0.7862 + }, + { + "start": 14657.65, + "end": 14660.6, + "probability": 0.9096 + }, + { + "start": 14661.18, + "end": 14661.44, + "probability": 0.1064 + }, + { + "start": 14661.72, + "end": 14664.88, + "probability": 0.7323 + }, + { + "start": 14665.16, + "end": 14667.02, + "probability": 0.8857 + }, + { + "start": 14667.98, + "end": 14671.76, + "probability": 0.9928 + }, + { + "start": 14672.2, + "end": 14673.46, + "probability": 0.8391 + }, + { + "start": 14673.52, + "end": 14674.4, + "probability": 0.9123 + }, + { + "start": 14674.56, + "end": 14675.3, + "probability": 0.9512 + }, + { + "start": 14675.68, + "end": 14676.7, + "probability": 0.9943 + }, + { + "start": 14677.24, + "end": 14679.28, + "probability": 0.8232 + }, + { + "start": 14679.28, + "end": 14681.18, + "probability": 0.6834 + }, + { + "start": 14681.24, + "end": 14682.42, + "probability": 0.9617 + }, + { + "start": 14683.18, + "end": 14688.58, + "probability": 0.9372 + }, + { + "start": 14689.16, + "end": 14691.4, + "probability": 0.4889 + }, + { + "start": 14692.4, + "end": 14693.52, + "probability": 0.9971 + }, + { + "start": 14694.28, + "end": 14696.66, + "probability": 0.9891 + }, + { + "start": 14697.74, + "end": 14698.6, + "probability": 0.9995 + }, + { + "start": 14699.5, + "end": 14702.64, + "probability": 0.8739 + }, + { + "start": 14703.36, + "end": 14706.04, + "probability": 0.8602 + }, + { + "start": 14706.76, + "end": 14709.4, + "probability": 0.9474 + }, + { + "start": 14709.48, + "end": 14710.22, + "probability": 0.9956 + }, + { + "start": 14710.36, + "end": 14711.82, + "probability": 0.8652 + }, + { + "start": 14711.92, + "end": 14712.84, + "probability": 0.6818 + }, + { + "start": 14713.42, + "end": 14714.62, + "probability": 0.9112 + }, + { + "start": 14715.68, + "end": 14716.86, + "probability": 0.9555 + }, + { + "start": 14716.96, + "end": 14717.34, + "probability": 0.7184 + }, + { + "start": 14717.64, + "end": 14718.62, + "probability": 0.9633 + }, + { + "start": 14718.96, + "end": 14722.0, + "probability": 0.9907 + }, + { + "start": 14723.46, + "end": 14723.78, + "probability": 0.7831 + }, + { + "start": 14723.92, + "end": 14727.98, + "probability": 0.9761 + }, + { + "start": 14728.14, + "end": 14731.54, + "probability": 0.9886 + }, + { + "start": 14732.98, + "end": 14734.1, + "probability": 0.7923 + }, + { + "start": 14734.94, + "end": 14740.8, + "probability": 0.9424 + }, + { + "start": 14741.48, + "end": 14745.12, + "probability": 0.9825 + }, + { + "start": 14745.28, + "end": 14746.34, + "probability": 0.5709 + }, + { + "start": 14746.92, + "end": 14752.32, + "probability": 0.984 + }, + { + "start": 14752.96, + "end": 14755.5, + "probability": 0.9021 + }, + { + "start": 14755.5, + "end": 14758.06, + "probability": 0.994 + }, + { + "start": 14758.42, + "end": 14762.64, + "probability": 0.7966 + }, + { + "start": 14763.3, + "end": 14766.86, + "probability": 0.9927 + }, + { + "start": 14766.86, + "end": 14772.35, + "probability": 0.9865 + }, + { + "start": 14773.4, + "end": 14775.1, + "probability": 0.975 + }, + { + "start": 14775.96, + "end": 14779.91, + "probability": 0.9991 + }, + { + "start": 14780.04, + "end": 14784.38, + "probability": 0.9994 + }, + { + "start": 14784.8, + "end": 14788.84, + "probability": 0.9958 + }, + { + "start": 14789.4, + "end": 14792.88, + "probability": 0.9744 + }, + { + "start": 14793.4, + "end": 14796.02, + "probability": 0.9978 + }, + { + "start": 14796.7, + "end": 14796.96, + "probability": 0.7274 + }, + { + "start": 14798.2, + "end": 14800.76, + "probability": 0.733 + }, + { + "start": 14801.56, + "end": 14802.42, + "probability": 0.5415 + }, + { + "start": 14803.22, + "end": 14805.4, + "probability": 0.8171 + }, + { + "start": 14806.14, + "end": 14807.54, + "probability": 0.5045 + }, + { + "start": 14808.68, + "end": 14812.28, + "probability": 0.9644 + }, + { + "start": 14812.92, + "end": 14817.22, + "probability": 0.9579 + }, + { + "start": 14817.6, + "end": 14818.38, + "probability": 0.7598 + }, + { + "start": 14818.52, + "end": 14818.96, + "probability": 0.7036 + }, + { + "start": 14821.68, + "end": 14826.16, + "probability": 0.9892 + }, + { + "start": 14826.36, + "end": 14826.72, + "probability": 0.9857 + }, + { + "start": 14827.52, + "end": 14832.24, + "probability": 0.9755 + }, + { + "start": 14832.9, + "end": 14833.77, + "probability": 0.8855 + }, + { + "start": 14834.62, + "end": 14838.74, + "probability": 0.7732 + }, + { + "start": 14839.66, + "end": 14840.82, + "probability": 0.7198 + }, + { + "start": 14840.96, + "end": 14845.06, + "probability": 0.9336 + }, + { + "start": 14845.62, + "end": 14846.64, + "probability": 0.6949 + }, + { + "start": 14846.82, + "end": 14848.02, + "probability": 0.9402 + }, + { + "start": 14848.5, + "end": 14849.62, + "probability": 0.9298 + }, + { + "start": 14849.78, + "end": 14852.1, + "probability": 0.7028 + }, + { + "start": 14852.74, + "end": 14856.36, + "probability": 0.8258 + }, + { + "start": 14857.16, + "end": 14858.18, + "probability": 0.9752 + }, + { + "start": 14858.52, + "end": 14861.02, + "probability": 0.8884 + }, + { + "start": 14861.52, + "end": 14863.04, + "probability": 0.8701 + }, + { + "start": 14863.64, + "end": 14866.26, + "probability": 0.9943 + }, + { + "start": 14867.2, + "end": 14868.86, + "probability": 0.8201 + }, + { + "start": 14869.7, + "end": 14875.58, + "probability": 0.8603 + }, + { + "start": 14876.76, + "end": 14884.94, + "probability": 0.9319 + }, + { + "start": 14885.94, + "end": 14887.0, + "probability": 0.8231 + }, + { + "start": 14888.12, + "end": 14888.62, + "probability": 0.7691 + }, + { + "start": 14889.12, + "end": 14892.68, + "probability": 0.8822 + }, + { + "start": 14893.32, + "end": 14896.02, + "probability": 0.9893 + }, + { + "start": 14896.02, + "end": 14899.14, + "probability": 0.9978 + }, + { + "start": 14899.76, + "end": 14902.64, + "probability": 0.9767 + }, + { + "start": 14902.86, + "end": 14904.5, + "probability": 0.7665 + }, + { + "start": 14907.0, + "end": 14909.68, + "probability": 0.9956 + }, + { + "start": 14910.34, + "end": 14912.72, + "probability": 0.9933 + }, + { + "start": 14916.07, + "end": 14917.21, + "probability": 0.0888 + }, + { + "start": 14917.8, + "end": 14919.94, + "probability": 0.5613 + }, + { + "start": 14920.48, + "end": 14921.74, + "probability": 0.754 + }, + { + "start": 14922.14, + "end": 14923.78, + "probability": 0.9914 + }, + { + "start": 14924.78, + "end": 14924.88, + "probability": 0.7371 + }, + { + "start": 14926.22, + "end": 14926.4, + "probability": 0.9634 + }, + { + "start": 14927.6, + "end": 14928.08, + "probability": 0.8283 + }, + { + "start": 14929.78, + "end": 14930.72, + "probability": 0.8408 + }, + { + "start": 14931.36, + "end": 14935.5, + "probability": 0.9932 + }, + { + "start": 14936.12, + "end": 14938.54, + "probability": 0.8201 + }, + { + "start": 14939.99, + "end": 14943.24, + "probability": 0.7867 + }, + { + "start": 14945.58, + "end": 14946.52, + "probability": 0.9329 + }, + { + "start": 14946.56, + "end": 14947.46, + "probability": 0.9807 + }, + { + "start": 14948.06, + "end": 14948.76, + "probability": 0.938 + }, + { + "start": 14948.92, + "end": 14950.96, + "probability": 0.9869 + }, + { + "start": 14953.17, + "end": 14955.3, + "probability": 0.7946 + }, + { + "start": 14955.4, + "end": 14956.24, + "probability": 0.8984 + }, + { + "start": 14956.46, + "end": 14957.92, + "probability": 0.9645 + }, + { + "start": 14958.48, + "end": 14959.84, + "probability": 0.9551 + }, + { + "start": 14960.02, + "end": 14963.12, + "probability": 0.6489 + }, + { + "start": 14963.12, + "end": 14966.64, + "probability": 0.9763 + }, + { + "start": 14967.36, + "end": 14968.02, + "probability": 0.6511 + }, + { + "start": 14971.4, + "end": 14973.96, + "probability": 0.95 + }, + { + "start": 14975.04, + "end": 14977.08, + "probability": 0.9919 + }, + { + "start": 14977.92, + "end": 14978.4, + "probability": 0.5676 + }, + { + "start": 14979.22, + "end": 14983.8, + "probability": 0.9927 + }, + { + "start": 14983.84, + "end": 14984.4, + "probability": 0.3339 + }, + { + "start": 14984.68, + "end": 14985.74, + "probability": 0.3363 + }, + { + "start": 14987.72, + "end": 14990.5, + "probability": 0.7804 + }, + { + "start": 14991.3, + "end": 14993.1, + "probability": 0.6567 + }, + { + "start": 15015.06, + "end": 15015.34, + "probability": 0.0478 + }, + { + "start": 15015.34, + "end": 15017.18, + "probability": 0.3873 + }, + { + "start": 15019.02, + "end": 15020.8, + "probability": 0.1372 + }, + { + "start": 15022.6, + "end": 15026.9, + "probability": 0.658 + }, + { + "start": 15027.5, + "end": 15032.3, + "probability": 0.7445 + }, + { + "start": 15032.46, + "end": 15034.52, + "probability": 0.7966 + }, + { + "start": 15035.12, + "end": 15035.46, + "probability": 0.4606 + }, + { + "start": 15035.46, + "end": 15037.36, + "probability": 0.3701 + }, + { + "start": 15037.42, + "end": 15038.0, + "probability": 0.7155 + }, + { + "start": 15054.54, + "end": 15060.46, + "probability": 0.6353 + }, + { + "start": 15061.12, + "end": 15063.68, + "probability": 0.1041 + }, + { + "start": 15064.72, + "end": 15066.1, + "probability": 0.485 + }, + { + "start": 15066.1, + "end": 15071.9, + "probability": 0.6393 + }, + { + "start": 15081.74, + "end": 15085.35, + "probability": 0.0407 + }, + { + "start": 15086.2, + "end": 15088.35, + "probability": 0.0748 + }, + { + "start": 15090.16, + "end": 15093.48, + "probability": 0.221 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15127.0, + "end": 15127.0, + "probability": 0.0 + }, + { + "start": 15137.64, + "end": 15139.8, + "probability": 0.99 + }, + { + "start": 15140.54, + "end": 15143.08, + "probability": 0.9897 + }, + { + "start": 15143.16, + "end": 15145.3, + "probability": 0.9472 + }, + { + "start": 15146.4, + "end": 15149.7, + "probability": 0.992 + }, + { + "start": 15150.86, + "end": 15154.74, + "probability": 0.9982 + }, + { + "start": 15155.54, + "end": 15158.2, + "probability": 0.9976 + }, + { + "start": 15158.21, + "end": 15160.56, + "probability": 0.9323 + }, + { + "start": 15161.5, + "end": 15162.9, + "probability": 0.9771 + }, + { + "start": 15163.12, + "end": 15164.88, + "probability": 0.8081 + }, + { + "start": 15164.98, + "end": 15167.84, + "probability": 0.8736 + }, + { + "start": 15168.44, + "end": 15168.56, + "probability": 0.2385 + }, + { + "start": 15168.7, + "end": 15169.0, + "probability": 0.5209 + }, + { + "start": 15169.06, + "end": 15172.44, + "probability": 0.7933 + }, + { + "start": 15173.42, + "end": 15174.2, + "probability": 0.7921 + }, + { + "start": 15174.36, + "end": 15175.28, + "probability": 0.2394 + }, + { + "start": 15177.0, + "end": 15177.26, + "probability": 0.5137 + }, + { + "start": 15178.42, + "end": 15181.28, + "probability": 0.8008 + }, + { + "start": 15182.0, + "end": 15188.0, + "probability": 0.9835 + }, + { + "start": 15188.12, + "end": 15188.32, + "probability": 0.5877 + }, + { + "start": 15188.44, + "end": 15191.6, + "probability": 0.9714 + }, + { + "start": 15192.6, + "end": 15193.1, + "probability": 0.7684 + }, + { + "start": 15193.18, + "end": 15195.7, + "probability": 0.9943 + }, + { + "start": 15196.46, + "end": 15196.7, + "probability": 0.5371 + }, + { + "start": 15196.8, + "end": 15198.99, + "probability": 0.8394 + }, + { + "start": 15199.12, + "end": 15199.46, + "probability": 0.8868 + }, + { + "start": 15199.58, + "end": 15201.08, + "probability": 0.98 + }, + { + "start": 15201.98, + "end": 15203.04, + "probability": 0.9264 + }, + { + "start": 15204.02, + "end": 15205.82, + "probability": 0.9932 + }, + { + "start": 15205.94, + "end": 15208.06, + "probability": 0.8269 + }, + { + "start": 15208.6, + "end": 15211.74, + "probability": 0.9169 + }, + { + "start": 15211.86, + "end": 15215.84, + "probability": 0.9736 + }, + { + "start": 15216.64, + "end": 15216.94, + "probability": 0.6582 + }, + { + "start": 15217.18, + "end": 15220.54, + "probability": 0.7907 + }, + { + "start": 15220.62, + "end": 15221.46, + "probability": 0.6828 + }, + { + "start": 15221.54, + "end": 15222.56, + "probability": 0.8881 + }, + { + "start": 15223.26, + "end": 15225.36, + "probability": 0.9514 + }, + { + "start": 15226.48, + "end": 15228.36, + "probability": 0.9505 + }, + { + "start": 15229.98, + "end": 15234.48, + "probability": 0.9751 + }, + { + "start": 15235.1, + "end": 15237.74, + "probability": 0.9673 + }, + { + "start": 15237.96, + "end": 15239.71, + "probability": 0.7068 + }, + { + "start": 15240.46, + "end": 15245.2, + "probability": 0.9037 + }, + { + "start": 15246.06, + "end": 15249.38, + "probability": 0.9868 + }, + { + "start": 15249.38, + "end": 15253.82, + "probability": 0.9934 + }, + { + "start": 15254.6, + "end": 15256.14, + "probability": 0.7512 + }, + { + "start": 15256.26, + "end": 15258.34, + "probability": 0.9899 + }, + { + "start": 15259.16, + "end": 15262.96, + "probability": 0.9222 + }, + { + "start": 15263.0, + "end": 15263.9, + "probability": 0.7902 + }, + { + "start": 15264.2, + "end": 15266.1, + "probability": 0.9905 + }, + { + "start": 15266.2, + "end": 15268.0, + "probability": 0.8232 + }, + { + "start": 15268.46, + "end": 15269.48, + "probability": 0.6626 + }, + { + "start": 15269.66, + "end": 15271.54, + "probability": 0.6719 + }, + { + "start": 15272.75, + "end": 15275.62, + "probability": 0.983 + }, + { + "start": 15275.72, + "end": 15276.35, + "probability": 0.7742 + }, + { + "start": 15277.14, + "end": 15278.36, + "probability": 0.4431 + }, + { + "start": 15278.48, + "end": 15278.9, + "probability": 0.4269 + }, + { + "start": 15279.36, + "end": 15282.56, + "probability": 0.7095 + }, + { + "start": 15283.38, + "end": 15286.18, + "probability": 0.7047 + }, + { + "start": 15286.2, + "end": 15286.38, + "probability": 0.2692 + }, + { + "start": 15286.5, + "end": 15286.78, + "probability": 0.5862 + }, + { + "start": 15286.84, + "end": 15291.16, + "probability": 0.6537 + }, + { + "start": 15297.42, + "end": 15298.54, + "probability": 0.378 + }, + { + "start": 15299.72, + "end": 15302.54, + "probability": 0.0188 + }, + { + "start": 15316.34, + "end": 15317.28, + "probability": 0.097 + }, + { + "start": 15317.28, + "end": 15320.06, + "probability": 0.3971 + }, + { + "start": 15320.32, + "end": 15324.3, + "probability": 0.501 + }, + { + "start": 15325.26, + "end": 15326.84, + "probability": 0.9775 + }, + { + "start": 15327.08, + "end": 15329.5, + "probability": 0.847 + }, + { + "start": 15329.6, + "end": 15330.3, + "probability": 0.5536 + }, + { + "start": 15331.66, + "end": 15333.6, + "probability": 0.7121 + }, + { + "start": 15348.46, + "end": 15352.02, + "probability": 0.1396 + }, + { + "start": 15352.22, + "end": 15355.1, + "probability": 0.1676 + }, + { + "start": 15355.6, + "end": 15356.12, + "probability": 0.1199 + }, + { + "start": 15356.12, + "end": 15358.44, + "probability": 0.2458 + }, + { + "start": 15360.62, + "end": 15362.26, + "probability": 0.4994 + }, + { + "start": 15362.94, + "end": 15366.28, + "probability": 0.2401 + }, + { + "start": 15367.36, + "end": 15369.72, + "probability": 0.4915 + }, + { + "start": 15372.0, + "end": 15375.68, + "probability": 0.186 + }, + { + "start": 15376.24, + "end": 15379.72, + "probability": 0.164 + }, + { + "start": 15381.14, + "end": 15381.5, + "probability": 0.0179 + }, + { + "start": 15386.54, + "end": 15387.98, + "probability": 0.0671 + }, + { + "start": 15390.44, + "end": 15390.54, + "probability": 0.0408 + }, + { + "start": 15391.22, + "end": 15391.22, + "probability": 0.0683 + }, + { + "start": 15403.0, + "end": 15403.0, + "probability": 0.0 + }, + { + "start": 15403.0, + "end": 15403.0, + "probability": 0.0 + }, + { + "start": 15403.0, + "end": 15403.0, + "probability": 0.0 + }, + { + "start": 15403.0, + "end": 15403.0, + "probability": 0.0 + }, + { + "start": 15403.0, + "end": 15403.0, + "probability": 0.0 + }, + { + "start": 15403.0, + "end": 15403.0, + "probability": 0.0 + }, + { + "start": 15403.72, + "end": 15404.18, + "probability": 0.2274 + }, + { + "start": 15404.18, + "end": 15404.7, + "probability": 0.5554 + }, + { + "start": 15405.22, + "end": 15406.1, + "probability": 0.9228 + }, + { + "start": 15406.1, + "end": 15407.86, + "probability": 0.6896 + }, + { + "start": 15408.3, + "end": 15410.94, + "probability": 0.9845 + }, + { + "start": 15412.1, + "end": 15412.78, + "probability": 0.688 + }, + { + "start": 15413.96, + "end": 15415.92, + "probability": 0.9567 + }, + { + "start": 15416.52, + "end": 15421.58, + "probability": 0.5025 + }, + { + "start": 15422.68, + "end": 15423.28, + "probability": 0.7678 + }, + { + "start": 15426.44, + "end": 15427.32, + "probability": 0.769 + }, + { + "start": 15428.48, + "end": 15429.5, + "probability": 0.968 + }, + { + "start": 15433.4, + "end": 15434.78, + "probability": 0.6562 + }, + { + "start": 15435.4, + "end": 15442.16, + "probability": 0.9637 + }, + { + "start": 15444.94, + "end": 15447.3, + "probability": 0.8526 + }, + { + "start": 15447.96, + "end": 15450.94, + "probability": 0.9891 + }, + { + "start": 15451.7, + "end": 15453.18, + "probability": 0.8712 + }, + { + "start": 15454.3, + "end": 15455.62, + "probability": 0.9993 + }, + { + "start": 15456.54, + "end": 15457.22, + "probability": 0.9613 + }, + { + "start": 15458.74, + "end": 15461.6, + "probability": 0.8122 + }, + { + "start": 15462.76, + "end": 15463.82, + "probability": 0.9969 + }, + { + "start": 15465.28, + "end": 15467.5, + "probability": 0.9722 + }, + { + "start": 15468.82, + "end": 15469.96, + "probability": 0.9705 + }, + { + "start": 15472.88, + "end": 15473.16, + "probability": 0.6008 + }, + { + "start": 15473.24, + "end": 15476.77, + "probability": 0.9912 + }, + { + "start": 15476.96, + "end": 15479.9, + "probability": 0.9935 + }, + { + "start": 15480.56, + "end": 15482.22, + "probability": 0.9947 + }, + { + "start": 15483.08, + "end": 15483.96, + "probability": 0.952 + }, + { + "start": 15484.82, + "end": 15485.62, + "probability": 0.7737 + }, + { + "start": 15486.24, + "end": 15487.18, + "probability": 0.2673 + }, + { + "start": 15488.6, + "end": 15489.7, + "probability": 0.9409 + }, + { + "start": 15489.94, + "end": 15491.04, + "probability": 0.8389 + }, + { + "start": 15491.5, + "end": 15496.38, + "probability": 0.9821 + }, + { + "start": 15496.96, + "end": 15498.94, + "probability": 0.9927 + }, + { + "start": 15499.54, + "end": 15501.58, + "probability": 0.8134 + }, + { + "start": 15505.34, + "end": 15506.32, + "probability": 0.7514 + }, + { + "start": 15506.96, + "end": 15510.28, + "probability": 0.9921 + }, + { + "start": 15511.16, + "end": 15513.66, + "probability": 0.9099 + }, + { + "start": 15513.96, + "end": 15515.26, + "probability": 0.6427 + }, + { + "start": 15515.98, + "end": 15518.52, + "probability": 0.9583 + }, + { + "start": 15519.7, + "end": 15520.78, + "probability": 0.6719 + }, + { + "start": 15520.9, + "end": 15521.26, + "probability": 0.7542 + }, + { + "start": 15521.36, + "end": 15524.68, + "probability": 0.9661 + }, + { + "start": 15525.34, + "end": 15527.42, + "probability": 0.929 + }, + { + "start": 15527.42, + "end": 15530.88, + "probability": 0.9875 + }, + { + "start": 15530.92, + "end": 15533.66, + "probability": 0.9898 + }, + { + "start": 15535.02, + "end": 15535.2, + "probability": 0.5627 + }, + { + "start": 15535.88, + "end": 15538.8, + "probability": 0.9906 + }, + { + "start": 15539.8, + "end": 15543.76, + "probability": 0.9692 + }, + { + "start": 15544.28, + "end": 15547.18, + "probability": 0.9452 + }, + { + "start": 15547.86, + "end": 15551.52, + "probability": 0.9909 + }, + { + "start": 15552.22, + "end": 15555.95, + "probability": 0.6436 + }, + { + "start": 15557.3, + "end": 15557.88, + "probability": 0.6817 + }, + { + "start": 15558.3, + "end": 15561.68, + "probability": 0.9968 + }, + { + "start": 15562.3, + "end": 15565.12, + "probability": 0.9978 + }, + { + "start": 15565.12, + "end": 15569.04, + "probability": 0.9992 + }, + { + "start": 15570.3, + "end": 15573.74, + "probability": 0.9618 + }, + { + "start": 15573.74, + "end": 15575.32, + "probability": 0.7391 + }, + { + "start": 15575.84, + "end": 15578.04, + "probability": 0.9955 + }, + { + "start": 15578.6, + "end": 15580.5, + "probability": 0.9763 + }, + { + "start": 15581.6, + "end": 15584.86, + "probability": 0.9756 + }, + { + "start": 15586.36, + "end": 15589.26, + "probability": 0.8704 + }, + { + "start": 15589.26, + "end": 15591.0, + "probability": 0.8937 + }, + { + "start": 15591.64, + "end": 15592.3, + "probability": 0.9879 + }, + { + "start": 15593.32, + "end": 15595.84, + "probability": 0.9937 + }, + { + "start": 15595.84, + "end": 15598.78, + "probability": 0.9975 + }, + { + "start": 15599.2, + "end": 15600.34, + "probability": 0.9973 + }, + { + "start": 15600.88, + "end": 15601.78, + "probability": 0.9133 + }, + { + "start": 15602.52, + "end": 15604.78, + "probability": 0.9888 + }, + { + "start": 15605.16, + "end": 15609.42, + "probability": 0.9948 + }, + { + "start": 15609.42, + "end": 15611.9, + "probability": 0.9949 + }, + { + "start": 15612.94, + "end": 15614.3, + "probability": 0.7631 + }, + { + "start": 15614.98, + "end": 15616.7, + "probability": 0.8105 + }, + { + "start": 15616.9, + "end": 15619.7, + "probability": 0.7936 + }, + { + "start": 15620.62, + "end": 15623.02, + "probability": 0.9243 + }, + { + "start": 15623.72, + "end": 15625.48, + "probability": 0.9938 + }, + { + "start": 15626.08, + "end": 15630.26, + "probability": 0.9932 + }, + { + "start": 15631.6, + "end": 15632.28, + "probability": 0.6553 + }, + { + "start": 15633.26, + "end": 15636.26, + "probability": 0.9963 + }, + { + "start": 15636.9, + "end": 15639.68, + "probability": 0.9976 + }, + { + "start": 15639.94, + "end": 15643.06, + "probability": 0.9897 + }, + { + "start": 15644.04, + "end": 15645.4, + "probability": 0.9551 + }, + { + "start": 15646.18, + "end": 15648.36, + "probability": 0.9079 + }, + { + "start": 15649.1, + "end": 15650.22, + "probability": 0.8421 + }, + { + "start": 15651.24, + "end": 15652.28, + "probability": 0.9918 + }, + { + "start": 15653.0, + "end": 15655.48, + "probability": 0.9866 + }, + { + "start": 15656.06, + "end": 15657.62, + "probability": 0.9919 + }, + { + "start": 15658.3, + "end": 15661.54, + "probability": 0.6809 + }, + { + "start": 15662.66, + "end": 15665.0, + "probability": 0.832 + }, + { + "start": 15666.14, + "end": 15669.16, + "probability": 0.9963 + }, + { + "start": 15669.68, + "end": 15671.62, + "probability": 0.9937 + }, + { + "start": 15672.68, + "end": 15676.18, + "probability": 0.9987 + }, + { + "start": 15676.7, + "end": 15680.22, + "probability": 0.9108 + }, + { + "start": 15681.46, + "end": 15684.06, + "probability": 0.8904 + }, + { + "start": 15684.8, + "end": 15686.34, + "probability": 0.9821 + }, + { + "start": 15687.12, + "end": 15687.86, + "probability": 0.9173 + }, + { + "start": 15688.4, + "end": 15692.14, + "probability": 0.9779 + }, + { + "start": 15692.6, + "end": 15696.6, + "probability": 0.9974 + }, + { + "start": 15698.0, + "end": 15698.6, + "probability": 0.828 + }, + { + "start": 15698.78, + "end": 15699.5, + "probability": 0.767 + }, + { + "start": 15699.64, + "end": 15702.9, + "probability": 0.9961 + }, + { + "start": 15702.9, + "end": 15707.14, + "probability": 0.9993 + }, + { + "start": 15708.24, + "end": 15712.1, + "probability": 0.97 + }, + { + "start": 15713.26, + "end": 15715.7, + "probability": 0.984 + }, + { + "start": 15715.7, + "end": 15719.44, + "probability": 0.9927 + }, + { + "start": 15719.82, + "end": 15723.06, + "probability": 0.9504 + }, + { + "start": 15723.78, + "end": 15724.76, + "probability": 0.1659 + }, + { + "start": 15724.78, + "end": 15730.18, + "probability": 0.189 + }, + { + "start": 15731.18, + "end": 15732.6, + "probability": 0.041 + }, + { + "start": 15732.6, + "end": 15733.48, + "probability": 0.2848 + }, + { + "start": 15734.38, + "end": 15735.2, + "probability": 0.752 + }, + { + "start": 15735.44, + "end": 15736.14, + "probability": 0.2026 + }, + { + "start": 15736.32, + "end": 15736.92, + "probability": 0.3751 + }, + { + "start": 15737.82, + "end": 15738.98, + "probability": 0.1767 + }, + { + "start": 15739.5, + "end": 15739.78, + "probability": 0.0844 + }, + { + "start": 15739.78, + "end": 15741.0, + "probability": 0.4084 + }, + { + "start": 15743.38, + "end": 15744.96, + "probability": 0.3151 + }, + { + "start": 15745.92, + "end": 15746.3, + "probability": 0.7103 + }, + { + "start": 15746.62, + "end": 15748.32, + "probability": 0.9948 + }, + { + "start": 15749.16, + "end": 15750.4, + "probability": 0.9141 + }, + { + "start": 15752.11, + "end": 15753.43, + "probability": 0.949 + }, + { + "start": 15754.32, + "end": 15756.0, + "probability": 0.6989 + }, + { + "start": 15756.52, + "end": 15757.09, + "probability": 0.9543 + }, + { + "start": 15758.1, + "end": 15760.94, + "probability": 0.9171 + }, + { + "start": 15761.0, + "end": 15761.88, + "probability": 0.9305 + }, + { + "start": 15762.7, + "end": 15765.28, + "probability": 0.9639 + }, + { + "start": 15766.04, + "end": 15770.72, + "probability": 0.9797 + }, + { + "start": 15770.98, + "end": 15772.16, + "probability": 0.8488 + }, + { + "start": 15772.26, + "end": 15772.9, + "probability": 0.8895 + }, + { + "start": 15773.52, + "end": 15775.78, + "probability": 0.9756 + }, + { + "start": 15776.18, + "end": 15778.84, + "probability": 0.7495 + }, + { + "start": 15779.86, + "end": 15780.72, + "probability": 0.5849 + }, + { + "start": 15780.86, + "end": 15783.2, + "probability": 0.8934 + }, + { + "start": 15783.36, + "end": 15784.08, + "probability": 0.8392 + }, + { + "start": 15785.48, + "end": 15786.8, + "probability": 0.9438 + }, + { + "start": 15787.34, + "end": 15790.48, + "probability": 0.9944 + }, + { + "start": 15791.26, + "end": 15792.72, + "probability": 0.8928 + }, + { + "start": 15793.54, + "end": 15795.22, + "probability": 0.9198 + }, + { + "start": 15795.82, + "end": 15797.32, + "probability": 0.9559 + }, + { + "start": 15798.06, + "end": 15798.64, + "probability": 0.8842 + }, + { + "start": 15798.96, + "end": 15800.3, + "probability": 0.9376 + }, + { + "start": 15800.48, + "end": 15801.22, + "probability": 0.9747 + }, + { + "start": 15801.42, + "end": 15803.5, + "probability": 0.9966 + }, + { + "start": 15804.38, + "end": 15806.4, + "probability": 0.8326 + }, + { + "start": 15806.96, + "end": 15808.09, + "probability": 0.976 + }, + { + "start": 15808.44, + "end": 15809.14, + "probability": 0.9863 + }, + { + "start": 15811.34, + "end": 15812.28, + "probability": 0.847 + }, + { + "start": 15822.92, + "end": 15825.2, + "probability": 0.9242 + }, + { + "start": 15825.42, + "end": 15825.92, + "probability": 0.6811 + }, + { + "start": 15826.14, + "end": 15828.82, + "probability": 0.9872 + }, + { + "start": 15828.82, + "end": 15832.24, + "probability": 0.8833 + }, + { + "start": 15832.36, + "end": 15834.54, + "probability": 0.9843 + }, + { + "start": 15835.8, + "end": 15837.88, + "probability": 0.8559 + }, + { + "start": 15837.88, + "end": 15840.58, + "probability": 0.9285 + }, + { + "start": 15840.98, + "end": 15841.28, + "probability": 0.3918 + }, + { + "start": 15841.36, + "end": 15841.82, + "probability": 0.8275 + }, + { + "start": 15842.14, + "end": 15844.52, + "probability": 0.9609 + }, + { + "start": 15844.52, + "end": 15847.82, + "probability": 0.9883 + }, + { + "start": 15848.46, + "end": 15850.4, + "probability": 0.9434 + }, + { + "start": 15850.46, + "end": 15853.98, + "probability": 0.8649 + }, + { + "start": 15855.08, + "end": 15856.5, + "probability": 0.9985 + }, + { + "start": 15857.08, + "end": 15858.24, + "probability": 0.9401 + }, + { + "start": 15858.84, + "end": 15861.56, + "probability": 0.79 + }, + { + "start": 15862.16, + "end": 15864.06, + "probability": 0.9619 + }, + { + "start": 15864.06, + "end": 15866.24, + "probability": 0.9984 + }, + { + "start": 15866.92, + "end": 15870.6, + "probability": 0.981 + }, + { + "start": 15870.92, + "end": 15871.8, + "probability": 0.9354 + }, + { + "start": 15872.38, + "end": 15877.4, + "probability": 0.9766 + }, + { + "start": 15877.8, + "end": 15879.38, + "probability": 0.9892 + }, + { + "start": 15880.16, + "end": 15882.54, + "probability": 0.9831 + }, + { + "start": 15882.58, + "end": 15885.8, + "probability": 0.9957 + }, + { + "start": 15887.4, + "end": 15888.7, + "probability": 0.7699 + }, + { + "start": 15889.54, + "end": 15890.1, + "probability": 0.5995 + }, + { + "start": 15890.1, + "end": 15891.7, + "probability": 0.934 + }, + { + "start": 15892.68, + "end": 15894.7, + "probability": 0.9313 + }, + { + "start": 15895.28, + "end": 15899.72, + "probability": 0.973 + }, + { + "start": 15900.12, + "end": 15900.9, + "probability": 0.8959 + }, + { + "start": 15901.92, + "end": 15904.24, + "probability": 0.9906 + }, + { + "start": 15905.1, + "end": 15905.58, + "probability": 0.7219 + }, + { + "start": 15907.02, + "end": 15910.18, + "probability": 0.6797 + }, + { + "start": 15910.62, + "end": 15911.86, + "probability": 0.5847 + }, + { + "start": 15912.38, + "end": 15912.98, + "probability": 0.8471 + }, + { + "start": 15913.56, + "end": 15914.32, + "probability": 0.8538 + }, + { + "start": 15914.6, + "end": 15914.94, + "probability": 0.9318 + }, + { + "start": 15914.98, + "end": 15916.8, + "probability": 0.1353 + }, + { + "start": 15917.2, + "end": 15919.38, + "probability": 0.9943 + }, + { + "start": 15919.42, + "end": 15921.72, + "probability": 0.9975 + }, + { + "start": 15922.32, + "end": 15925.86, + "probability": 0.9953 + }, + { + "start": 15926.34, + "end": 15928.96, + "probability": 0.9006 + }, + { + "start": 15928.96, + "end": 15931.6, + "probability": 0.9991 + }, + { + "start": 15933.6, + "end": 15934.28, + "probability": 0.6271 + }, + { + "start": 15934.28, + "end": 15935.62, + "probability": 0.8751 + }, + { + "start": 15935.8, + "end": 15936.32, + "probability": 0.4805 + }, + { + "start": 15936.38, + "end": 15939.3, + "probability": 0.9722 + }, + { + "start": 15940.5, + "end": 15942.08, + "probability": 0.7537 + }, + { + "start": 15942.86, + "end": 15943.16, + "probability": 0.8123 + }, + { + "start": 15944.02, + "end": 15945.2, + "probability": 0.9995 + }, + { + "start": 15946.18, + "end": 15947.52, + "probability": 0.7964 + }, + { + "start": 15948.56, + "end": 15951.8, + "probability": 0.9959 + }, + { + "start": 15952.46, + "end": 15953.94, + "probability": 0.841 + }, + { + "start": 15954.02, + "end": 15955.06, + "probability": 0.8559 + }, + { + "start": 15955.38, + "end": 15956.42, + "probability": 0.9362 + }, + { + "start": 15957.8, + "end": 15959.54, + "probability": 0.887 + }, + { + "start": 15960.2, + "end": 15962.12, + "probability": 0.7669 + }, + { + "start": 15962.76, + "end": 15964.51, + "probability": 0.6869 + }, + { + "start": 15965.8, + "end": 15967.5, + "probability": 0.9832 + }, + { + "start": 15967.88, + "end": 15970.7, + "probability": 0.9863 + }, + { + "start": 15971.34, + "end": 15973.18, + "probability": 0.9832 + }, + { + "start": 15973.18, + "end": 15976.84, + "probability": 0.9761 + }, + { + "start": 15977.46, + "end": 15980.38, + "probability": 0.9939 + }, + { + "start": 15981.36, + "end": 15982.36, + "probability": 0.8999 + }, + { + "start": 15983.22, + "end": 15985.62, + "probability": 0.9067 + }, + { + "start": 15987.22, + "end": 15987.46, + "probability": 0.7478 + }, + { + "start": 15987.8, + "end": 15988.44, + "probability": 0.7921 + }, + { + "start": 15989.02, + "end": 15991.62, + "probability": 0.953 + }, + { + "start": 15992.02, + "end": 15992.4, + "probability": 0.8414 + }, + { + "start": 15993.12, + "end": 15993.76, + "probability": 0.8896 + }, + { + "start": 15995.44, + "end": 15998.94, + "probability": 0.9143 + }, + { + "start": 15999.06, + "end": 15999.34, + "probability": 0.9847 + }, + { + "start": 15999.44, + "end": 16002.28, + "probability": 0.9771 + }, + { + "start": 16003.18, + "end": 16004.54, + "probability": 0.9956 + }, + { + "start": 16005.5, + "end": 16006.12, + "probability": 0.7623 + }, + { + "start": 16006.44, + "end": 16006.74, + "probability": 0.8575 + }, + { + "start": 16007.06, + "end": 16010.54, + "probability": 0.9941 + }, + { + "start": 16011.2, + "end": 16016.0, + "probability": 0.9119 + }, + { + "start": 16016.64, + "end": 16020.26, + "probability": 0.7448 + }, + { + "start": 16020.96, + "end": 16021.3, + "probability": 0.4974 + }, + { + "start": 16021.96, + "end": 16024.2, + "probability": 0.3245 + }, + { + "start": 16025.36, + "end": 16028.86, + "probability": 0.7627 + }, + { + "start": 16029.0, + "end": 16030.86, + "probability": 0.6459 + }, + { + "start": 16031.4, + "end": 16032.24, + "probability": 0.5258 + }, + { + "start": 16033.94, + "end": 16038.1, + "probability": 0.9771 + }, + { + "start": 16039.72, + "end": 16042.22, + "probability": 0.4237 + }, + { + "start": 16042.84, + "end": 16044.68, + "probability": 0.5274 + }, + { + "start": 16045.12, + "end": 16045.92, + "probability": 0.665 + }, + { + "start": 16046.58, + "end": 16047.72, + "probability": 0.6205 + }, + { + "start": 16047.78, + "end": 16050.0, + "probability": 0.9478 + }, + { + "start": 16050.14, + "end": 16050.86, + "probability": 0.3866 + }, + { + "start": 16051.0, + "end": 16053.35, + "probability": 0.9958 + }, + { + "start": 16054.78, + "end": 16055.78, + "probability": 0.0752 + }, + { + "start": 16056.32, + "end": 16057.08, + "probability": 0.4282 + }, + { + "start": 16057.41, + "end": 16060.24, + "probability": 0.9705 + }, + { + "start": 16060.36, + "end": 16060.6, + "probability": 0.7554 + }, + { + "start": 16061.7, + "end": 16062.36, + "probability": 0.0767 + }, + { + "start": 16062.7, + "end": 16065.96, + "probability": 0.9558 + }, + { + "start": 16066.12, + "end": 16067.52, + "probability": 0.514 + }, + { + "start": 16067.64, + "end": 16067.76, + "probability": 0.1611 + }, + { + "start": 16068.08, + "end": 16068.12, + "probability": 0.1761 + }, + { + "start": 16068.38, + "end": 16069.66, + "probability": 0.5167 + }, + { + "start": 16069.66, + "end": 16071.62, + "probability": 0.9709 + }, + { + "start": 16071.66, + "end": 16073.54, + "probability": 0.9561 + }, + { + "start": 16073.96, + "end": 16074.02, + "probability": 0.0156 + }, + { + "start": 16074.02, + "end": 16074.02, + "probability": 0.0799 + }, + { + "start": 16074.02, + "end": 16076.6, + "probability": 0.9852 + }, + { + "start": 16076.6, + "end": 16078.26, + "probability": 0.8161 + }, + { + "start": 16078.76, + "end": 16079.38, + "probability": 0.7946 + }, + { + "start": 16079.48, + "end": 16080.1, + "probability": 0.7959 + }, + { + "start": 16080.18, + "end": 16081.7, + "probability": 0.7578 + }, + { + "start": 16082.48, + "end": 16083.72, + "probability": 0.9824 + }, + { + "start": 16083.72, + "end": 16085.26, + "probability": 0.998 + }, + { + "start": 16085.64, + "end": 16088.72, + "probability": 0.9758 + }, + { + "start": 16089.26, + "end": 16091.64, + "probability": 0.9836 + }, + { + "start": 16091.98, + "end": 16092.2, + "probability": 0.2238 + }, + { + "start": 16092.4, + "end": 16094.74, + "probability": 0.9538 + }, + { + "start": 16094.9, + "end": 16096.5, + "probability": 0.9374 + }, + { + "start": 16096.56, + "end": 16098.3, + "probability": 0.7547 + }, + { + "start": 16098.72, + "end": 16099.32, + "probability": 0.499 + }, + { + "start": 16099.38, + "end": 16100.21, + "probability": 0.9452 + }, + { + "start": 16100.82, + "end": 16101.5, + "probability": 0.6489 + }, + { + "start": 16101.52, + "end": 16102.64, + "probability": 0.9255 + }, + { + "start": 16103.04, + "end": 16106.0, + "probability": 0.993 + }, + { + "start": 16106.52, + "end": 16107.24, + "probability": 0.6601 + }, + { + "start": 16107.24, + "end": 16109.58, + "probability": 0.6938 + }, + { + "start": 16110.18, + "end": 16110.62, + "probability": 0.5086 + }, + { + "start": 16110.82, + "end": 16111.26, + "probability": 0.5339 + }, + { + "start": 16111.3, + "end": 16112.46, + "probability": 0.3606 + }, + { + "start": 16113.9, + "end": 16115.76, + "probability": 0.701 + }, + { + "start": 16116.34, + "end": 16117.52, + "probability": 0.9913 + }, + { + "start": 16118.12, + "end": 16119.4, + "probability": 0.9427 + }, + { + "start": 16120.3, + "end": 16123.22, + "probability": 0.9043 + }, + { + "start": 16123.32, + "end": 16124.1, + "probability": 0.9871 + }, + { + "start": 16124.14, + "end": 16126.52, + "probability": 0.8082 + }, + { + "start": 16127.32, + "end": 16129.32, + "probability": 0.7415 + }, + { + "start": 16129.96, + "end": 16131.46, + "probability": 0.2618 + }, + { + "start": 16131.94, + "end": 16133.97, + "probability": 0.5973 + }, + { + "start": 16134.62, + "end": 16135.75, + "probability": 0.7508 + }, + { + "start": 16136.16, + "end": 16137.08, + "probability": 0.5631 + }, + { + "start": 16137.1, + "end": 16140.32, + "probability": 0.8767 + }, + { + "start": 16140.54, + "end": 16141.36, + "probability": 0.9091 + }, + { + "start": 16142.38, + "end": 16143.94, + "probability": 0.6897 + }, + { + "start": 16144.02, + "end": 16145.0, + "probability": 0.9152 + }, + { + "start": 16145.4, + "end": 16146.76, + "probability": 0.8644 + }, + { + "start": 16146.84, + "end": 16148.8, + "probability": 0.6898 + }, + { + "start": 16149.18, + "end": 16149.72, + "probability": 0.9445 + }, + { + "start": 16151.96, + "end": 16152.6, + "probability": 0.4719 + }, + { + "start": 16152.86, + "end": 16152.86, + "probability": 0.4439 + }, + { + "start": 16153.24, + "end": 16154.8, + "probability": 0.9771 + }, + { + "start": 16154.8, + "end": 16155.76, + "probability": 0.2063 + }, + { + "start": 16156.24, + "end": 16158.28, + "probability": 0.3387 + }, + { + "start": 16158.36, + "end": 16160.82, + "probability": 0.9572 + }, + { + "start": 16162.16, + "end": 16164.1, + "probability": 0.0546 + }, + { + "start": 16165.8, + "end": 16165.8, + "probability": 0.2362 + }, + { + "start": 16165.8, + "end": 16165.86, + "probability": 0.1425 + }, + { + "start": 16165.86, + "end": 16165.88, + "probability": 0.2982 + }, + { + "start": 16165.88, + "end": 16166.08, + "probability": 0.1149 + }, + { + "start": 16166.18, + "end": 16166.66, + "probability": 0.4792 + }, + { + "start": 16166.8, + "end": 16167.14, + "probability": 0.7576 + }, + { + "start": 16167.2, + "end": 16167.36, + "probability": 0.3251 + }, + { + "start": 16167.8, + "end": 16168.52, + "probability": 0.9489 + }, + { + "start": 16169.6, + "end": 16174.52, + "probability": 0.976 + }, + { + "start": 16174.52, + "end": 16178.44, + "probability": 0.9841 + }, + { + "start": 16178.44, + "end": 16181.92, + "probability": 0.9765 + }, + { + "start": 16183.22, + "end": 16185.42, + "probability": 0.7221 + }, + { + "start": 16185.98, + "end": 16188.12, + "probability": 0.9956 + }, + { + "start": 16189.0, + "end": 16191.5, + "probability": 0.9475 + }, + { + "start": 16192.72, + "end": 16194.58, + "probability": 0.9409 + }, + { + "start": 16195.22, + "end": 16197.58, + "probability": 0.5856 + }, + { + "start": 16198.44, + "end": 16200.56, + "probability": 0.7118 + }, + { + "start": 16201.42, + "end": 16204.44, + "probability": 0.963 + }, + { + "start": 16204.44, + "end": 16208.92, + "probability": 0.8491 + }, + { + "start": 16209.58, + "end": 16210.84, + "probability": 0.735 + }, + { + "start": 16211.0, + "end": 16212.69, + "probability": 0.9907 + }, + { + "start": 16213.2, + "end": 16213.88, + "probability": 0.7926 + }, + { + "start": 16214.0, + "end": 16218.12, + "probability": 0.8717 + }, + { + "start": 16218.94, + "end": 16220.82, + "probability": 0.9034 + }, + { + "start": 16221.4, + "end": 16221.9, + "probability": 0.695 + }, + { + "start": 16222.66, + "end": 16224.52, + "probability": 0.7522 + }, + { + "start": 16225.54, + "end": 16226.95, + "probability": 0.9238 + }, + { + "start": 16227.1, + "end": 16227.58, + "probability": 0.8686 + }, + { + "start": 16228.08, + "end": 16230.92, + "probability": 0.9872 + }, + { + "start": 16231.1, + "end": 16232.56, + "probability": 0.9543 + }, + { + "start": 16233.02, + "end": 16233.94, + "probability": 0.77 + }, + { + "start": 16235.46, + "end": 16236.5, + "probability": 0.9842 + }, + { + "start": 16237.34, + "end": 16238.8, + "probability": 0.7202 + }, + { + "start": 16239.62, + "end": 16240.36, + "probability": 0.6323 + }, + { + "start": 16240.98, + "end": 16242.3, + "probability": 0.8186 + }, + { + "start": 16242.86, + "end": 16243.24, + "probability": 0.7432 + }, + { + "start": 16244.18, + "end": 16247.3, + "probability": 0.9919 + }, + { + "start": 16247.92, + "end": 16250.08, + "probability": 0.9749 + }, + { + "start": 16250.62, + "end": 16253.04, + "probability": 0.9345 + }, + { + "start": 16253.36, + "end": 16255.78, + "probability": 0.8904 + }, + { + "start": 16256.42, + "end": 16257.4, + "probability": 0.754 + }, + { + "start": 16258.04, + "end": 16258.84, + "probability": 0.2552 + }, + { + "start": 16259.96, + "end": 16261.9, + "probability": 0.2694 + }, + { + "start": 16264.98, + "end": 16267.12, + "probability": 0.4331 + }, + { + "start": 16267.22, + "end": 16267.62, + "probability": 0.7278 + }, + { + "start": 16268.98, + "end": 16271.2, + "probability": 0.4302 + }, + { + "start": 16273.61, + "end": 16276.6, + "probability": 0.9024 + }, + { + "start": 16276.76, + "end": 16279.08, + "probability": 0.8542 + }, + { + "start": 16279.16, + "end": 16280.24, + "probability": 0.8256 + }, + { + "start": 16280.9, + "end": 16282.54, + "probability": 0.9078 + }, + { + "start": 16282.76, + "end": 16283.74, + "probability": 0.6112 + }, + { + "start": 16285.18, + "end": 16286.22, + "probability": 0.7358 + }, + { + "start": 16286.32, + "end": 16288.37, + "probability": 0.9202 + }, + { + "start": 16288.88, + "end": 16291.14, + "probability": 0.7057 + }, + { + "start": 16291.76, + "end": 16294.3, + "probability": 0.9921 + }, + { + "start": 16295.1, + "end": 16295.26, + "probability": 0.1111 + }, + { + "start": 16295.3, + "end": 16298.06, + "probability": 0.953 + }, + { + "start": 16298.18, + "end": 16299.02, + "probability": 0.7403 + }, + { + "start": 16299.02, + "end": 16299.96, + "probability": 0.4962 + }, + { + "start": 16300.02, + "end": 16300.62, + "probability": 0.6626 + }, + { + "start": 16300.64, + "end": 16302.27, + "probability": 0.8918 + }, + { + "start": 16302.74, + "end": 16308.1, + "probability": 0.7369 + }, + { + "start": 16308.62, + "end": 16311.24, + "probability": 0.8896 + }, + { + "start": 16311.82, + "end": 16314.34, + "probability": 0.9949 + }, + { + "start": 16314.44, + "end": 16315.58, + "probability": 0.5588 + }, + { + "start": 16315.68, + "end": 16315.84, + "probability": 0.7159 + }, + { + "start": 16316.76, + "end": 16318.06, + "probability": 0.9387 + }, + { + "start": 16318.28, + "end": 16323.9, + "probability": 0.9818 + }, + { + "start": 16324.02, + "end": 16330.84, + "probability": 0.9795 + }, + { + "start": 16331.2, + "end": 16335.4, + "probability": 0.9665 + }, + { + "start": 16335.72, + "end": 16336.6, + "probability": 0.7863 + }, + { + "start": 16336.9, + "end": 16339.3, + "probability": 0.6489 + }, + { + "start": 16339.78, + "end": 16340.44, + "probability": 0.7774 + }, + { + "start": 16340.56, + "end": 16340.78, + "probability": 0.7482 + }, + { + "start": 16342.62, + "end": 16343.02, + "probability": 0.7095 + }, + { + "start": 16344.09, + "end": 16347.0, + "probability": 0.5437 + }, + { + "start": 16347.1, + "end": 16349.96, + "probability": 0.8865 + }, + { + "start": 16350.08, + "end": 16351.2, + "probability": 0.6357 + }, + { + "start": 16351.34, + "end": 16351.44, + "probability": 0.1066 + }, + { + "start": 16354.32, + "end": 16356.64, + "probability": 0.0338 + }, + { + "start": 16356.92, + "end": 16358.77, + "probability": 0.0243 + }, + { + "start": 16359.08, + "end": 16359.56, + "probability": 0.5364 + }, + { + "start": 16359.72, + "end": 16362.88, + "probability": 0.6719 + }, + { + "start": 16362.88, + "end": 16368.02, + "probability": 0.7146 + }, + { + "start": 16369.28, + "end": 16371.87, + "probability": 0.8583 + }, + { + "start": 16373.46, + "end": 16375.04, + "probability": 0.6741 + }, + { + "start": 16377.1, + "end": 16377.88, + "probability": 0.5014 + }, + { + "start": 16389.88, + "end": 16389.88, + "probability": 0.1872 + }, + { + "start": 16389.88, + "end": 16397.6, + "probability": 0.4938 + }, + { + "start": 16397.7, + "end": 16402.88, + "probability": 0.846 + }, + { + "start": 16403.36, + "end": 16405.52, + "probability": 0.9262 + }, + { + "start": 16405.86, + "end": 16406.46, + "probability": 0.3897 + }, + { + "start": 16406.48, + "end": 16406.88, + "probability": 0.5721 + }, + { + "start": 16407.2, + "end": 16409.48, + "probability": 0.3574 + }, + { + "start": 16411.28, + "end": 16415.12, + "probability": 0.4754 + }, + { + "start": 16416.16, + "end": 16418.74, + "probability": 0.666 + }, + { + "start": 16419.08, + "end": 16420.3, + "probability": 0.2995 + }, + { + "start": 16420.88, + "end": 16424.8, + "probability": 0.486 + }, + { + "start": 16425.06, + "end": 16428.04, + "probability": 0.0653 + }, + { + "start": 16429.18, + "end": 16429.72, + "probability": 0.0631 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.0, + "end": 16538.0, + "probability": 0.0 + }, + { + "start": 16538.18, + "end": 16540.54, + "probability": 0.1483 + }, + { + "start": 16544.68, + "end": 16545.08, + "probability": 0.0003 + }, + { + "start": 16552.88, + "end": 16554.28, + "probability": 0.0727 + }, + { + "start": 16557.26, + "end": 16558.18, + "probability": 0.0347 + }, + { + "start": 16558.88, + "end": 16560.74, + "probability": 0.6876 + }, + { + "start": 16561.38, + "end": 16562.3, + "probability": 0.7557 + }, + { + "start": 16563.24, + "end": 16565.08, + "probability": 0.8036 + }, + { + "start": 16565.44, + "end": 16570.03, + "probability": 0.9077 + }, + { + "start": 16571.46, + "end": 16572.84, + "probability": 0.9901 + }, + { + "start": 16574.24, + "end": 16577.4, + "probability": 0.9314 + }, + { + "start": 16578.42, + "end": 16581.68, + "probability": 0.957 + }, + { + "start": 16582.42, + "end": 16584.54, + "probability": 0.819 + }, + { + "start": 16585.87, + "end": 16590.18, + "probability": 0.0364 + }, + { + "start": 16590.18, + "end": 16593.62, + "probability": 0.764 + }, + { + "start": 16594.36, + "end": 16599.0, + "probability": 0.9028 + }, + { + "start": 16599.76, + "end": 16601.1, + "probability": 0.7496 + }, + { + "start": 16601.32, + "end": 16605.16, + "probability": 0.9915 + }, + { + "start": 16605.86, + "end": 16607.5, + "probability": 0.8245 + }, + { + "start": 16608.18, + "end": 16609.74, + "probability": 0.9086 + }, + { + "start": 16609.92, + "end": 16611.09, + "probability": 0.8385 + }, + { + "start": 16611.56, + "end": 16613.4, + "probability": 0.6699 + }, + { + "start": 16613.58, + "end": 16616.62, + "probability": 0.9949 + }, + { + "start": 16617.68, + "end": 16618.04, + "probability": 0.0477 + }, + { + "start": 16618.04, + "end": 16619.12, + "probability": 0.5179 + }, + { + "start": 16619.16, + "end": 16621.14, + "probability": 0.9172 + }, + { + "start": 16621.64, + "end": 16622.5, + "probability": 0.9298 + }, + { + "start": 16622.64, + "end": 16623.1, + "probability": 0.6941 + }, + { + "start": 16623.9, + "end": 16627.72, + "probability": 0.973 + }, + { + "start": 16628.34, + "end": 16631.4, + "probability": 0.7407 + }, + { + "start": 16632.0, + "end": 16635.48, + "probability": 0.9804 + }, + { + "start": 16635.54, + "end": 16637.8, + "probability": 0.8713 + }, + { + "start": 16637.9, + "end": 16639.0, + "probability": 0.8894 + }, + { + "start": 16639.1, + "end": 16640.18, + "probability": 0.8464 + }, + { + "start": 16641.0, + "end": 16642.64, + "probability": 0.971 + }, + { + "start": 16642.74, + "end": 16645.78, + "probability": 0.988 + }, + { + "start": 16646.56, + "end": 16649.58, + "probability": 0.9819 + }, + { + "start": 16649.92, + "end": 16652.28, + "probability": 0.891 + }, + { + "start": 16652.36, + "end": 16652.8, + "probability": 0.411 + }, + { + "start": 16652.88, + "end": 16654.48, + "probability": 0.9556 + }, + { + "start": 16654.66, + "end": 16655.31, + "probability": 0.733 + }, + { + "start": 16655.6, + "end": 16656.34, + "probability": 0.9114 + }, + { + "start": 16656.9, + "end": 16659.7, + "probability": 0.9956 + }, + { + "start": 16659.7, + "end": 16663.98, + "probability": 0.98 + }, + { + "start": 16664.2, + "end": 16666.4, + "probability": 0.9756 + }, + { + "start": 16667.12, + "end": 16668.48, + "probability": 0.7188 + }, + { + "start": 16669.98, + "end": 16673.96, + "probability": 0.7413 + }, + { + "start": 16674.68, + "end": 16677.74, + "probability": 0.9822 + }, + { + "start": 16677.8, + "end": 16679.88, + "probability": 0.9783 + }, + { + "start": 16680.16, + "end": 16680.74, + "probability": 0.6885 + }, + { + "start": 16680.96, + "end": 16682.78, + "probability": 0.7815 + }, + { + "start": 16682.9, + "end": 16683.6, + "probability": 0.2605 + }, + { + "start": 16683.64, + "end": 16684.58, + "probability": 0.9741 + }, + { + "start": 16685.18, + "end": 16686.18, + "probability": 0.9912 + }, + { + "start": 16686.8, + "end": 16687.76, + "probability": 0.9802 + }, + { + "start": 16688.32, + "end": 16690.16, + "probability": 0.9768 + }, + { + "start": 16690.9, + "end": 16696.0, + "probability": 0.9945 + }, + { + "start": 16696.02, + "end": 16698.6, + "probability": 0.9694 + }, + { + "start": 16698.82, + "end": 16699.56, + "probability": 0.7102 + }, + { + "start": 16699.62, + "end": 16700.08, + "probability": 0.8419 + }, + { + "start": 16701.28, + "end": 16704.3, + "probability": 0.7622 + }, + { + "start": 16704.92, + "end": 16706.28, + "probability": 0.8688 + }, + { + "start": 16706.54, + "end": 16709.59, + "probability": 0.9966 + }, + { + "start": 16710.38, + "end": 16712.52, + "probability": 0.9854 + }, + { + "start": 16712.58, + "end": 16713.06, + "probability": 0.6116 + }, + { + "start": 16713.14, + "end": 16713.6, + "probability": 0.8588 + }, + { + "start": 16713.84, + "end": 16715.66, + "probability": 0.9254 + }, + { + "start": 16716.16, + "end": 16720.18, + "probability": 0.9787 + }, + { + "start": 16720.28, + "end": 16721.68, + "probability": 0.9922 + }, + { + "start": 16721.82, + "end": 16723.0, + "probability": 0.9741 + }, + { + "start": 16723.8, + "end": 16724.44, + "probability": 0.7816 + }, + { + "start": 16724.68, + "end": 16726.12, + "probability": 0.7068 + }, + { + "start": 16726.54, + "end": 16727.9, + "probability": 0.8866 + }, + { + "start": 16728.1, + "end": 16732.38, + "probability": 0.9313 + }, + { + "start": 16732.96, + "end": 16733.58, + "probability": 0.7181 + }, + { + "start": 16734.16, + "end": 16735.22, + "probability": 0.5136 + }, + { + "start": 16735.3, + "end": 16737.74, + "probability": 0.7692 + }, + { + "start": 16737.74, + "end": 16740.02, + "probability": 0.7971 + }, + { + "start": 16741.06, + "end": 16744.68, + "probability": 0.791 + }, + { + "start": 16745.08, + "end": 16747.34, + "probability": 0.9668 + }, + { + "start": 16749.23, + "end": 16753.38, + "probability": 0.9258 + }, + { + "start": 16753.38, + "end": 16759.16, + "probability": 0.5786 + }, + { + "start": 16759.52, + "end": 16763.38, + "probability": 0.717 + }, + { + "start": 16763.38, + "end": 16763.98, + "probability": 0.6419 + }, + { + "start": 16764.48, + "end": 16765.14, + "probability": 0.5265 + }, + { + "start": 16765.18, + "end": 16765.88, + "probability": 0.595 + }, + { + "start": 16766.48, + "end": 16768.94, + "probability": 0.9646 + }, + { + "start": 16769.14, + "end": 16770.54, + "probability": 0.9017 + }, + { + "start": 16770.6, + "end": 16771.98, + "probability": 0.9941 + }, + { + "start": 16772.54, + "end": 16772.54, + "probability": 0.3274 + }, + { + "start": 16772.6, + "end": 16774.4, + "probability": 0.9729 + }, + { + "start": 16774.8, + "end": 16776.0, + "probability": 0.5799 + }, + { + "start": 16776.26, + "end": 16777.48, + "probability": 0.7046 + }, + { + "start": 16777.66, + "end": 16778.38, + "probability": 0.844 + }, + { + "start": 16778.44, + "end": 16778.98, + "probability": 0.8184 + }, + { + "start": 16779.1, + "end": 16781.32, + "probability": 0.99 + }, + { + "start": 16781.54, + "end": 16782.46, + "probability": 0.862 + }, + { + "start": 16782.58, + "end": 16783.42, + "probability": 0.912 + }, + { + "start": 16783.48, + "end": 16785.32, + "probability": 0.9915 + }, + { + "start": 16786.12, + "end": 16789.0, + "probability": 0.8862 + }, + { + "start": 16789.52, + "end": 16790.42, + "probability": 0.9592 + }, + { + "start": 16790.6, + "end": 16791.54, + "probability": 0.8956 + }, + { + "start": 16791.86, + "end": 16792.26, + "probability": 0.5101 + }, + { + "start": 16792.48, + "end": 16793.3, + "probability": 0.4783 + }, + { + "start": 16793.46, + "end": 16799.22, + "probability": 0.9822 + }, + { + "start": 16800.34, + "end": 16806.46, + "probability": 0.9479 + }, + { + "start": 16807.52, + "end": 16809.92, + "probability": 0.8969 + }, + { + "start": 16810.38, + "end": 16812.12, + "probability": 0.9773 + }, + { + "start": 16812.82, + "end": 16818.64, + "probability": 0.9795 + }, + { + "start": 16819.12, + "end": 16823.72, + "probability": 0.9663 + }, + { + "start": 16824.08, + "end": 16827.6, + "probability": 0.9986 + }, + { + "start": 16827.66, + "end": 16830.66, + "probability": 0.9977 + }, + { + "start": 16831.0, + "end": 16833.26, + "probability": 0.9976 + }, + { + "start": 16833.26, + "end": 16836.32, + "probability": 0.9887 + }, + { + "start": 16836.76, + "end": 16838.5, + "probability": 0.773 + }, + { + "start": 16838.58, + "end": 16840.02, + "probability": 0.9066 + }, + { + "start": 16840.2, + "end": 16840.82, + "probability": 0.4836 + }, + { + "start": 16841.4, + "end": 16842.38, + "probability": 0.9768 + }, + { + "start": 16843.08, + "end": 16844.62, + "probability": 0.6731 + }, + { + "start": 16845.1, + "end": 16848.6, + "probability": 0.9229 + }, + { + "start": 16848.82, + "end": 16850.3, + "probability": 0.7782 + }, + { + "start": 16850.64, + "end": 16852.9, + "probability": 0.9493 + }, + { + "start": 16853.22, + "end": 16853.74, + "probability": 0.7854 + }, + { + "start": 16855.12, + "end": 16857.5, + "probability": 0.8154 + }, + { + "start": 16858.12, + "end": 16862.04, + "probability": 0.9179 + }, + { + "start": 16862.62, + "end": 16865.58, + "probability": 0.9517 + }, + { + "start": 16866.46, + "end": 16868.92, + "probability": 0.9492 + }, + { + "start": 16869.5, + "end": 16871.94, + "probability": 0.7819 + }, + { + "start": 16872.58, + "end": 16874.78, + "probability": 0.8809 + }, + { + "start": 16875.1, + "end": 16878.62, + "probability": 0.967 + }, + { + "start": 16878.72, + "end": 16879.48, + "probability": 0.9718 + }, + { + "start": 16880.02, + "end": 16880.84, + "probability": 0.9753 + }, + { + "start": 16881.82, + "end": 16883.74, + "probability": 0.9939 + }, + { + "start": 16883.94, + "end": 16884.58, + "probability": 0.6359 + }, + { + "start": 16884.86, + "end": 16887.04, + "probability": 0.9596 + }, + { + "start": 16887.54, + "end": 16890.56, + "probability": 0.9887 + }, + { + "start": 16891.1, + "end": 16893.82, + "probability": 0.7762 + }, + { + "start": 16894.54, + "end": 16900.38, + "probability": 0.993 + }, + { + "start": 16900.96, + "end": 16902.8, + "probability": 0.7155 + }, + { + "start": 16903.86, + "end": 16907.9, + "probability": 0.9502 + }, + { + "start": 16908.28, + "end": 16909.54, + "probability": 0.8129 + }, + { + "start": 16909.7, + "end": 16910.72, + "probability": 0.8716 + }, + { + "start": 16910.8, + "end": 16911.9, + "probability": 0.9481 + }, + { + "start": 16912.02, + "end": 16914.76, + "probability": 0.917 + }, + { + "start": 16916.06, + "end": 16920.32, + "probability": 0.9966 + }, + { + "start": 16920.86, + "end": 16921.82, + "probability": 0.6639 + }, + { + "start": 16921.98, + "end": 16927.38, + "probability": 0.8372 + }, + { + "start": 16927.38, + "end": 16931.42, + "probability": 0.9819 + }, + { + "start": 16933.07, + "end": 16934.76, + "probability": 0.9512 + }, + { + "start": 16935.68, + "end": 16941.68, + "probability": 0.9575 + }, + { + "start": 16941.76, + "end": 16942.5, + "probability": 0.5622 + }, + { + "start": 16943.6, + "end": 16946.88, + "probability": 0.7443 + }, + { + "start": 16947.64, + "end": 16951.78, + "probability": 0.9919 + }, + { + "start": 16951.92, + "end": 16953.06, + "probability": 0.1088 + }, + { + "start": 16953.06, + "end": 16958.1, + "probability": 0.9919 + }, + { + "start": 16958.6, + "end": 16959.72, + "probability": 0.6243 + }, + { + "start": 16959.86, + "end": 16961.42, + "probability": 0.8046 + }, + { + "start": 16961.5, + "end": 16963.94, + "probability": 0.8098 + }, + { + "start": 16964.04, + "end": 16966.6, + "probability": 0.7166 + }, + { + "start": 16966.68, + "end": 16967.07, + "probability": 0.9377 + }, + { + "start": 16967.34, + "end": 16967.96, + "probability": 0.5785 + }, + { + "start": 16968.94, + "end": 16972.56, + "probability": 0.914 + }, + { + "start": 16972.68, + "end": 16973.42, + "probability": 0.9832 + }, + { + "start": 16974.16, + "end": 16977.58, + "probability": 0.9941 + }, + { + "start": 16978.32, + "end": 16978.94, + "probability": 0.9044 + }, + { + "start": 16978.98, + "end": 16980.18, + "probability": 0.9624 + }, + { + "start": 16980.34, + "end": 16983.0, + "probability": 0.7917 + }, + { + "start": 16983.14, + "end": 16984.38, + "probability": 0.9805 + }, + { + "start": 16984.9, + "end": 16986.6, + "probability": 0.9871 + }, + { + "start": 16986.84, + "end": 16987.93, + "probability": 0.9523 + }, + { + "start": 16988.44, + "end": 16989.7, + "probability": 0.9897 + }, + { + "start": 16990.62, + "end": 16991.8, + "probability": 0.9896 + }, + { + "start": 16992.58, + "end": 16994.76, + "probability": 0.762 + }, + { + "start": 16995.08, + "end": 16997.3, + "probability": 0.9937 + }, + { + "start": 16997.3, + "end": 17000.18, + "probability": 0.9899 + }, + { + "start": 17000.58, + "end": 17002.16, + "probability": 0.9943 + }, + { + "start": 17002.66, + "end": 17003.42, + "probability": 0.9724 + }, + { + "start": 17003.54, + "end": 17004.52, + "probability": 0.9287 + }, + { + "start": 17004.78, + "end": 17005.92, + "probability": 0.8892 + }, + { + "start": 17007.6, + "end": 17010.46, + "probability": 0.7738 + }, + { + "start": 17010.88, + "end": 17012.04, + "probability": 0.9613 + }, + { + "start": 17012.44, + "end": 17013.68, + "probability": 0.9138 + }, + { + "start": 17013.96, + "end": 17016.04, + "probability": 0.8591 + }, + { + "start": 17016.36, + "end": 17017.32, + "probability": 0.8818 + }, + { + "start": 17018.06, + "end": 17022.04, + "probability": 0.9771 + }, + { + "start": 17022.36, + "end": 17025.92, + "probability": 0.7679 + }, + { + "start": 17026.66, + "end": 17030.32, + "probability": 0.8622 + }, + { + "start": 17031.2, + "end": 17032.34, + "probability": 0.9683 + }, + { + "start": 17032.82, + "end": 17035.0, + "probability": 0.9912 + }, + { + "start": 17035.38, + "end": 17037.38, + "probability": 0.96 + }, + { + "start": 17038.0, + "end": 17041.94, + "probability": 0.95 + }, + { + "start": 17042.48, + "end": 17047.78, + "probability": 0.9861 + }, + { + "start": 17048.18, + "end": 17051.44, + "probability": 0.9916 + }, + { + "start": 17052.16, + "end": 17055.78, + "probability": 0.913 + }, + { + "start": 17055.78, + "end": 17058.58, + "probability": 0.9297 + }, + { + "start": 17059.18, + "end": 17060.56, + "probability": 0.9966 + }, + { + "start": 17060.62, + "end": 17061.08, + "probability": 0.6571 + }, + { + "start": 17061.52, + "end": 17062.6, + "probability": 0.9173 + }, + { + "start": 17063.16, + "end": 17064.52, + "probability": 0.9668 + }, + { + "start": 17064.6, + "end": 17065.16, + "probability": 0.9927 + }, + { + "start": 17065.74, + "end": 17066.56, + "probability": 0.6748 + }, + { + "start": 17067.38, + "end": 17070.72, + "probability": 0.8868 + }, + { + "start": 17071.12, + "end": 17073.86, + "probability": 0.9894 + }, + { + "start": 17074.12, + "end": 17074.46, + "probability": 0.3337 + }, + { + "start": 17074.46, + "end": 17074.66, + "probability": 0.2971 + }, + { + "start": 17074.86, + "end": 17075.26, + "probability": 0.6212 + }, + { + "start": 17075.34, + "end": 17076.2, + "probability": 0.9879 + }, + { + "start": 17076.86, + "end": 17079.1, + "probability": 0.9944 + }, + { + "start": 17079.5, + "end": 17082.86, + "probability": 0.9443 + }, + { + "start": 17083.24, + "end": 17083.83, + "probability": 0.9273 + }, + { + "start": 17084.38, + "end": 17084.9, + "probability": 0.9756 + }, + { + "start": 17085.58, + "end": 17086.6, + "probability": 0.9832 + }, + { + "start": 17086.74, + "end": 17087.76, + "probability": 0.8667 + }, + { + "start": 17088.32, + "end": 17090.88, + "probability": 0.9832 + }, + { + "start": 17091.96, + "end": 17097.52, + "probability": 0.7493 + }, + { + "start": 17097.66, + "end": 17099.76, + "probability": 0.6846 + }, + { + "start": 17100.12, + "end": 17100.32, + "probability": 0.6185 + }, + { + "start": 17101.02, + "end": 17102.34, + "probability": 0.5555 + }, + { + "start": 17102.42, + "end": 17102.42, + "probability": 0.4334 + }, + { + "start": 17102.42, + "end": 17102.42, + "probability": 0.1455 + }, + { + "start": 17102.5, + "end": 17104.62, + "probability": 0.9941 + }, + { + "start": 17105.64, + "end": 17107.78, + "probability": 0.8583 + }, + { + "start": 17108.52, + "end": 17110.62, + "probability": 0.908 + }, + { + "start": 17110.78, + "end": 17111.3, + "probability": 0.9228 + }, + { + "start": 17111.48, + "end": 17112.06, + "probability": 0.9177 + }, + { + "start": 17112.34, + "end": 17113.22, + "probability": 0.9219 + }, + { + "start": 17113.46, + "end": 17114.82, + "probability": 0.8928 + }, + { + "start": 17115.3, + "end": 17115.82, + "probability": 0.9529 + }, + { + "start": 17115.84, + "end": 17116.74, + "probability": 0.7527 + }, + { + "start": 17117.7, + "end": 17118.14, + "probability": 0.4247 + }, + { + "start": 17118.4, + "end": 17118.97, + "probability": 0.9443 + }, + { + "start": 17119.44, + "end": 17122.44, + "probability": 0.9941 + }, + { + "start": 17122.96, + "end": 17123.92, + "probability": 0.7578 + }, + { + "start": 17124.74, + "end": 17126.12, + "probability": 0.6649 + }, + { + "start": 17126.56, + "end": 17128.66, + "probability": 0.8521 + }, + { + "start": 17129.02, + "end": 17129.7, + "probability": 0.7162 + }, + { + "start": 17130.14, + "end": 17132.6, + "probability": 0.8934 + }, + { + "start": 17132.66, + "end": 17134.34, + "probability": 0.979 + }, + { + "start": 17135.02, + "end": 17138.25, + "probability": 0.9208 + }, + { + "start": 17138.5, + "end": 17141.32, + "probability": 0.9829 + }, + { + "start": 17141.92, + "end": 17144.46, + "probability": 0.8598 + }, + { + "start": 17144.62, + "end": 17146.12, + "probability": 0.9457 + }, + { + "start": 17146.5, + "end": 17149.26, + "probability": 0.992 + }, + { + "start": 17150.64, + "end": 17152.3, + "probability": 0.9126 + }, + { + "start": 17153.62, + "end": 17155.78, + "probability": 0.9983 + }, + { + "start": 17155.98, + "end": 17157.04, + "probability": 0.9978 + }, + { + "start": 17158.2, + "end": 17158.92, + "probability": 0.9408 + }, + { + "start": 17159.32, + "end": 17159.88, + "probability": 0.9428 + }, + { + "start": 17160.18, + "end": 17161.52, + "probability": 0.8557 + }, + { + "start": 17161.84, + "end": 17164.04, + "probability": 0.7244 + }, + { + "start": 17164.92, + "end": 17166.98, + "probability": 0.8434 + }, + { + "start": 17167.5, + "end": 17168.78, + "probability": 0.9319 + }, + { + "start": 17168.92, + "end": 17169.44, + "probability": 0.6631 + }, + { + "start": 17169.54, + "end": 17170.16, + "probability": 0.8755 + }, + { + "start": 17170.32, + "end": 17172.3, + "probability": 0.9791 + }, + { + "start": 17172.48, + "end": 17173.1, + "probability": 0.8772 + }, + { + "start": 17173.18, + "end": 17176.58, + "probability": 0.9156 + }, + { + "start": 17177.1, + "end": 17178.28, + "probability": 0.8586 + }, + { + "start": 17178.64, + "end": 17179.44, + "probability": 0.9564 + }, + { + "start": 17179.94, + "end": 17181.5, + "probability": 0.9456 + }, + { + "start": 17181.82, + "end": 17182.38, + "probability": 0.626 + }, + { + "start": 17182.46, + "end": 17183.16, + "probability": 0.8251 + }, + { + "start": 17183.74, + "end": 17185.46, + "probability": 0.5372 + }, + { + "start": 17186.12, + "end": 17187.18, + "probability": 0.9191 + }, + { + "start": 17187.72, + "end": 17188.5, + "probability": 0.7259 + }, + { + "start": 17188.58, + "end": 17189.82, + "probability": 0.9797 + }, + { + "start": 17189.92, + "end": 17190.88, + "probability": 0.9329 + }, + { + "start": 17190.94, + "end": 17191.4, + "probability": 0.8643 + }, + { + "start": 17191.84, + "end": 17192.08, + "probability": 0.7933 + }, + { + "start": 17192.14, + "end": 17193.24, + "probability": 0.9503 + }, + { + "start": 17193.48, + "end": 17196.76, + "probability": 0.6815 + }, + { + "start": 17196.82, + "end": 17197.36, + "probability": 0.8665 + }, + { + "start": 17198.4, + "end": 17199.64, + "probability": 0.8303 + }, + { + "start": 17200.1, + "end": 17200.78, + "probability": 0.9408 + }, + { + "start": 17200.9, + "end": 17201.68, + "probability": 0.86 + }, + { + "start": 17202.14, + "end": 17203.24, + "probability": 0.9177 + }, + { + "start": 17203.32, + "end": 17204.08, + "probability": 0.9565 + }, + { + "start": 17204.38, + "end": 17205.3, + "probability": 0.7449 + }, + { + "start": 17205.74, + "end": 17208.66, + "probability": 0.6437 + }, + { + "start": 17208.74, + "end": 17209.72, + "probability": 0.8064 + }, + { + "start": 17209.78, + "end": 17210.28, + "probability": 0.9697 + }, + { + "start": 17210.66, + "end": 17211.44, + "probability": 0.9715 + }, + { + "start": 17211.46, + "end": 17212.86, + "probability": 0.946 + }, + { + "start": 17213.26, + "end": 17213.78, + "probability": 0.6728 + }, + { + "start": 17213.84, + "end": 17214.52, + "probability": 0.1916 + }, + { + "start": 17215.64, + "end": 17217.54, + "probability": 0.122 + }, + { + "start": 17217.54, + "end": 17219.04, + "probability": 0.8915 + }, + { + "start": 17219.12, + "end": 17219.9, + "probability": 0.5768 + }, + { + "start": 17220.0, + "end": 17220.42, + "probability": 0.7749 + }, + { + "start": 17220.9, + "end": 17221.52, + "probability": 0.7478 + }, + { + "start": 17221.52, + "end": 17223.66, + "probability": 0.7086 + }, + { + "start": 17223.66, + "end": 17225.42, + "probability": 0.9536 + }, + { + "start": 17226.46, + "end": 17230.28, + "probability": 0.9956 + }, + { + "start": 17230.96, + "end": 17233.02, + "probability": 0.8401 + }, + { + "start": 17233.16, + "end": 17235.14, + "probability": 0.7314 + }, + { + "start": 17235.33, + "end": 17236.86, + "probability": 0.3496 + }, + { + "start": 17237.74, + "end": 17238.86, + "probability": 0.6279 + }, + { + "start": 17238.94, + "end": 17239.86, + "probability": 0.7646 + }, + { + "start": 17240.92, + "end": 17243.2, + "probability": 0.8394 + }, + { + "start": 17243.32, + "end": 17244.24, + "probability": 0.9893 + }, + { + "start": 17244.44, + "end": 17248.68, + "probability": 0.998 + }, + { + "start": 17249.34, + "end": 17251.66, + "probability": 0.9624 + }, + { + "start": 17252.32, + "end": 17256.48, + "probability": 0.9839 + }, + { + "start": 17257.14, + "end": 17258.02, + "probability": 0.983 + }, + { + "start": 17258.62, + "end": 17258.9, + "probability": 0.6676 + }, + { + "start": 17259.16, + "end": 17260.46, + "probability": 0.7522 + }, + { + "start": 17260.52, + "end": 17261.86, + "probability": 0.6703 + }, + { + "start": 17262.5, + "end": 17263.71, + "probability": 0.8732 + }, + { + "start": 17264.59, + "end": 17265.51, + "probability": 0.7157 + }, + { + "start": 17265.93, + "end": 17266.93, + "probability": 0.4543 + }, + { + "start": 17267.93, + "end": 17270.29, + "probability": 0.9883 + }, + { + "start": 17270.35, + "end": 17270.97, + "probability": 0.7444 + }, + { + "start": 17271.05, + "end": 17272.53, + "probability": 0.8405 + }, + { + "start": 17272.91, + "end": 17275.95, + "probability": 0.9911 + }, + { + "start": 17276.07, + "end": 17277.25, + "probability": 0.9097 + }, + { + "start": 17277.75, + "end": 17280.27, + "probability": 0.989 + }, + { + "start": 17280.49, + "end": 17282.13, + "probability": 0.9482 + }, + { + "start": 17282.21, + "end": 17283.01, + "probability": 0.7014 + }, + { + "start": 17283.19, + "end": 17283.83, + "probability": 0.5213 + }, + { + "start": 17283.83, + "end": 17284.35, + "probability": 0.6121 + }, + { + "start": 17284.37, + "end": 17284.65, + "probability": 0.4852 + }, + { + "start": 17284.65, + "end": 17284.81, + "probability": 0.304 + }, + { + "start": 17285.33, + "end": 17286.43, + "probability": 0.9865 + }, + { + "start": 17286.97, + "end": 17287.39, + "probability": 0.7858 + }, + { + "start": 17287.39, + "end": 17287.83, + "probability": 0.8921 + }, + { + "start": 17287.85, + "end": 17289.54, + "probability": 0.3991 + }, + { + "start": 17290.53, + "end": 17291.05, + "probability": 0.6584 + }, + { + "start": 17291.13, + "end": 17291.73, + "probability": 0.6979 + }, + { + "start": 17292.15, + "end": 17292.95, + "probability": 0.7349 + }, + { + "start": 17293.01, + "end": 17293.23, + "probability": 0.8829 + }, + { + "start": 17293.37, + "end": 17294.13, + "probability": 0.6632 + }, + { + "start": 17294.13, + "end": 17294.43, + "probability": 0.8426 + }, + { + "start": 17294.51, + "end": 17295.25, + "probability": 0.8083 + }, + { + "start": 17295.25, + "end": 17295.41, + "probability": 0.5145 + }, + { + "start": 17295.57, + "end": 17296.86, + "probability": 0.7672 + }, + { + "start": 17297.75, + "end": 17298.53, + "probability": 0.2947 + }, + { + "start": 17298.63, + "end": 17300.61, + "probability": 0.6664 + }, + { + "start": 17315.66, + "end": 17321.49, + "probability": 0.1996 + }, + { + "start": 17322.11, + "end": 17323.05, + "probability": 0.3744 + }, + { + "start": 17323.57, + "end": 17323.75, + "probability": 0.3268 + }, + { + "start": 17324.69, + "end": 17327.51, + "probability": 0.0532 + }, + { + "start": 17328.31, + "end": 17333.21, + "probability": 0.6678 + }, + { + "start": 17333.23, + "end": 17334.41, + "probability": 0.0135 + }, + { + "start": 17335.61, + "end": 17338.11, + "probability": 0.1269 + }, + { + "start": 17338.11, + "end": 17338.21, + "probability": 0.0138 + }, + { + "start": 17338.81, + "end": 17339.27, + "probability": 0.0226 + }, + { + "start": 17343.67, + "end": 17350.83, + "probability": 0.2863 + }, + { + "start": 17357.89, + "end": 17358.15, + "probability": 0.2035 + }, + { + "start": 17360.03, + "end": 17365.13, + "probability": 0.0326 + }, + { + "start": 17365.27, + "end": 17365.47, + "probability": 0.2626 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.0, + "end": 17393.0, + "probability": 0.0 + }, + { + "start": 17393.14, + "end": 17393.58, + "probability": 0.2516 + }, + { + "start": 17394.4, + "end": 17398.48, + "probability": 0.7273 + }, + { + "start": 17399.14, + "end": 17400.98, + "probability": 0.757 + }, + { + "start": 17401.7, + "end": 17402.56, + "probability": 0.5723 + }, + { + "start": 17402.68, + "end": 17403.88, + "probability": 0.3586 + }, + { + "start": 17404.56, + "end": 17406.74, + "probability": 0.8896 + }, + { + "start": 17407.77, + "end": 17412.2, + "probability": 0.8617 + }, + { + "start": 17412.84, + "end": 17413.52, + "probability": 0.6668 + }, + { + "start": 17414.42, + "end": 17418.34, + "probability": 0.945 + }, + { + "start": 17419.02, + "end": 17419.44, + "probability": 0.5697 + }, + { + "start": 17421.18, + "end": 17423.42, + "probability": 0.2292 + }, + { + "start": 17423.88, + "end": 17425.84, + "probability": 0.9707 + }, + { + "start": 17426.64, + "end": 17428.5, + "probability": 0.9795 + }, + { + "start": 17430.64, + "end": 17431.64, + "probability": 0.6686 + }, + { + "start": 17432.22, + "end": 17434.94, + "probability": 0.3683 + }, + { + "start": 17435.58, + "end": 17437.38, + "probability": 0.715 + }, + { + "start": 17438.08, + "end": 17440.42, + "probability": 0.7162 + }, + { + "start": 17440.68, + "end": 17441.48, + "probability": 0.4887 + }, + { + "start": 17442.55, + "end": 17442.9, + "probability": 0.625 + }, + { + "start": 17443.54, + "end": 17445.32, + "probability": 0.664 + }, + { + "start": 17446.02, + "end": 17447.16, + "probability": 0.5259 + }, + { + "start": 17451.08, + "end": 17452.34, + "probability": 0.6727 + }, + { + "start": 17453.46, + "end": 17456.9, + "probability": 0.9662 + }, + { + "start": 17457.82, + "end": 17459.66, + "probability": 0.857 + }, + { + "start": 17460.32, + "end": 17460.7, + "probability": 0.4827 + }, + { + "start": 17460.74, + "end": 17466.46, + "probability": 0.8382 + }, + { + "start": 17467.47, + "end": 17473.02, + "probability": 0.9976 + }, + { + "start": 17473.72, + "end": 17474.36, + "probability": 0.7067 + }, + { + "start": 17475.04, + "end": 17478.24, + "probability": 0.7986 + }, + { + "start": 17478.72, + "end": 17485.6, + "probability": 0.9268 + }, + { + "start": 17487.5, + "end": 17488.18, + "probability": 0.5274 + }, + { + "start": 17489.54, + "end": 17489.88, + "probability": 0.2733 + }, + { + "start": 17490.14, + "end": 17490.56, + "probability": 0.2762 + }, + { + "start": 17492.26, + "end": 17493.86, + "probability": 0.6393 + }, + { + "start": 17494.72, + "end": 17500.14, + "probability": 0.813 + }, + { + "start": 17500.5, + "end": 17501.62, + "probability": 0.9616 + }, + { + "start": 17501.88, + "end": 17505.45, + "probability": 0.7808 + }, + { + "start": 17506.26, + "end": 17508.68, + "probability": 0.9636 + }, + { + "start": 17510.41, + "end": 17513.28, + "probability": 0.9092 + }, + { + "start": 17513.36, + "end": 17516.24, + "probability": 0.8742 + }, + { + "start": 17518.56, + "end": 17524.64, + "probability": 0.7273 + }, + { + "start": 17525.5, + "end": 17527.84, + "probability": 0.734 + }, + { + "start": 17528.02, + "end": 17529.5, + "probability": 0.9514 + }, + { + "start": 17529.58, + "end": 17531.02, + "probability": 0.897 + }, + { + "start": 17533.06, + "end": 17534.22, + "probability": 0.605 + }, + { + "start": 17536.4, + "end": 17537.87, + "probability": 0.8987 + }, + { + "start": 17538.58, + "end": 17541.38, + "probability": 0.8994 + }, + { + "start": 17542.74, + "end": 17544.68, + "probability": 0.753 + }, + { + "start": 17545.48, + "end": 17546.38, + "probability": 0.5306 + }, + { + "start": 17547.06, + "end": 17548.06, + "probability": 0.9839 + }, + { + "start": 17549.46, + "end": 17552.12, + "probability": 0.9431 + }, + { + "start": 17553.32, + "end": 17555.1, + "probability": 0.8966 + }, + { + "start": 17557.02, + "end": 17559.34, + "probability": 0.6034 + }, + { + "start": 17559.86, + "end": 17560.56, + "probability": 0.9752 + }, + { + "start": 17561.7, + "end": 17564.11, + "probability": 0.8766 + }, + { + "start": 17564.88, + "end": 17565.12, + "probability": 0.8085 + }, + { + "start": 17565.2, + "end": 17568.24, + "probability": 0.9966 + }, + { + "start": 17568.4, + "end": 17568.98, + "probability": 0.9756 + }, + { + "start": 17569.7, + "end": 17571.7, + "probability": 0.9854 + }, + { + "start": 17573.48, + "end": 17574.88, + "probability": 0.8228 + }, + { + "start": 17575.02, + "end": 17575.6, + "probability": 0.9614 + }, + { + "start": 17576.06, + "end": 17577.8, + "probability": 0.9038 + }, + { + "start": 17579.04, + "end": 17580.3, + "probability": 0.6817 + }, + { + "start": 17580.82, + "end": 17581.43, + "probability": 0.8422 + }, + { + "start": 17583.8, + "end": 17586.58, + "probability": 0.9847 + }, + { + "start": 17587.68, + "end": 17588.07, + "probability": 0.9102 + }, + { + "start": 17588.78, + "end": 17589.48, + "probability": 0.9831 + }, + { + "start": 17590.1, + "end": 17590.69, + "probability": 0.9215 + }, + { + "start": 17591.84, + "end": 17592.68, + "probability": 0.42 + }, + { + "start": 17592.98, + "end": 17593.52, + "probability": 0.5879 + }, + { + "start": 17593.64, + "end": 17593.94, + "probability": 0.9666 + }, + { + "start": 17594.32, + "end": 17594.84, + "probability": 0.5436 + }, + { + "start": 17596.32, + "end": 17598.28, + "probability": 0.707 + }, + { + "start": 17599.48, + "end": 17600.94, + "probability": 0.9462 + }, + { + "start": 17601.56, + "end": 17601.76, + "probability": 0.5831 + }, + { + "start": 17602.0, + "end": 17604.36, + "probability": 0.985 + }, + { + "start": 17604.8, + "end": 17606.44, + "probability": 0.9684 + }, + { + "start": 17606.54, + "end": 17607.72, + "probability": 0.9668 + }, + { + "start": 17608.4, + "end": 17609.32, + "probability": 0.8118 + }, + { + "start": 17610.32, + "end": 17611.62, + "probability": 0.9731 + }, + { + "start": 17612.79, + "end": 17616.44, + "probability": 0.9764 + }, + { + "start": 17617.32, + "end": 17619.2, + "probability": 0.8011 + }, + { + "start": 17619.72, + "end": 17620.68, + "probability": 0.8043 + }, + { + "start": 17621.14, + "end": 17622.24, + "probability": 0.8446 + }, + { + "start": 17622.92, + "end": 17624.19, + "probability": 0.9763 + }, + { + "start": 17625.8, + "end": 17626.18, + "probability": 0.3435 + }, + { + "start": 17628.12, + "end": 17631.11, + "probability": 0.9893 + }, + { + "start": 17631.44, + "end": 17633.2, + "probability": 0.9757 + }, + { + "start": 17633.24, + "end": 17635.24, + "probability": 0.97 + }, + { + "start": 17636.82, + "end": 17639.54, + "probability": 0.5926 + }, + { + "start": 17640.4, + "end": 17640.88, + "probability": 0.9014 + }, + { + "start": 17641.66, + "end": 17642.28, + "probability": 0.91 + }, + { + "start": 17642.28, + "end": 17644.84, + "probability": 0.681 + }, + { + "start": 17645.24, + "end": 17645.6, + "probability": 0.807 + }, + { + "start": 17645.7, + "end": 17647.1, + "probability": 0.5708 + }, + { + "start": 17647.3, + "end": 17647.98, + "probability": 0.9866 + }, + { + "start": 17648.04, + "end": 17650.62, + "probability": 0.9307 + }, + { + "start": 17651.86, + "end": 17653.24, + "probability": 0.9673 + }, + { + "start": 17653.54, + "end": 17656.24, + "probability": 0.9229 + }, + { + "start": 17656.44, + "end": 17656.86, + "probability": 0.6317 + }, + { + "start": 17656.98, + "end": 17658.12, + "probability": 0.859 + }, + { + "start": 17658.88, + "end": 17659.34, + "probability": 0.8174 + }, + { + "start": 17660.14, + "end": 17660.96, + "probability": 0.8955 + }, + { + "start": 17661.38, + "end": 17666.14, + "probability": 0.981 + }, + { + "start": 17666.82, + "end": 17667.34, + "probability": 0.9684 + }, + { + "start": 17667.92, + "end": 17669.5, + "probability": 0.9738 + }, + { + "start": 17670.2, + "end": 17673.12, + "probability": 0.8494 + }, + { + "start": 17674.86, + "end": 17676.22, + "probability": 0.5995 + }, + { + "start": 17677.06, + "end": 17677.96, + "probability": 0.8306 + }, + { + "start": 17678.06, + "end": 17679.29, + "probability": 0.9733 + }, + { + "start": 17680.04, + "end": 17682.34, + "probability": 0.9414 + }, + { + "start": 17683.12, + "end": 17685.5, + "probability": 0.9921 + }, + { + "start": 17686.08, + "end": 17686.5, + "probability": 0.7529 + }, + { + "start": 17687.76, + "end": 17688.54, + "probability": 0.9585 + }, + { + "start": 17689.28, + "end": 17690.4, + "probability": 0.9526 + }, + { + "start": 17692.18, + "end": 17696.46, + "probability": 0.8878 + }, + { + "start": 17697.72, + "end": 17699.18, + "probability": 0.976 + }, + { + "start": 17699.58, + "end": 17700.98, + "probability": 0.9749 + }, + { + "start": 17701.44, + "end": 17702.74, + "probability": 0.9761 + }, + { + "start": 17703.46, + "end": 17704.28, + "probability": 0.921 + }, + { + "start": 17705.26, + "end": 17706.06, + "probability": 0.9449 + }, + { + "start": 17706.86, + "end": 17709.67, + "probability": 0.8403 + }, + { + "start": 17710.56, + "end": 17711.5, + "probability": 0.9242 + }, + { + "start": 17713.62, + "end": 17715.04, + "probability": 0.9772 + }, + { + "start": 17716.04, + "end": 17716.84, + "probability": 0.9057 + }, + { + "start": 17717.36, + "end": 17718.53, + "probability": 0.7469 + }, + { + "start": 17720.66, + "end": 17724.48, + "probability": 0.9332 + }, + { + "start": 17725.82, + "end": 17728.02, + "probability": 0.9281 + }, + { + "start": 17729.5, + "end": 17729.5, + "probability": 0.8853 + }, + { + "start": 17730.28, + "end": 17735.66, + "probability": 0.9991 + }, + { + "start": 17736.36, + "end": 17739.68, + "probability": 0.842 + }, + { + "start": 17740.06, + "end": 17740.54, + "probability": 0.2641 + }, + { + "start": 17740.72, + "end": 17743.22, + "probability": 0.9395 + }, + { + "start": 17743.98, + "end": 17745.08, + "probability": 0.5622 + }, + { + "start": 17745.78, + "end": 17747.86, + "probability": 0.9489 + }, + { + "start": 17747.96, + "end": 17748.59, + "probability": 0.9776 + }, + { + "start": 17749.98, + "end": 17756.52, + "probability": 0.9866 + }, + { + "start": 17757.16, + "end": 17759.74, + "probability": 0.9565 + }, + { + "start": 17760.74, + "end": 17761.4, + "probability": 0.8488 + }, + { + "start": 17761.5, + "end": 17762.12, + "probability": 0.9844 + }, + { + "start": 17762.32, + "end": 17764.18, + "probability": 0.9832 + }, + { + "start": 17764.32, + "end": 17765.18, + "probability": 0.9536 + }, + { + "start": 17765.52, + "end": 17766.12, + "probability": 0.9312 + }, + { + "start": 17766.16, + "end": 17768.05, + "probability": 0.9904 + }, + { + "start": 17769.62, + "end": 17773.3, + "probability": 0.9661 + }, + { + "start": 17774.34, + "end": 17775.26, + "probability": 0.7417 + }, + { + "start": 17776.36, + "end": 17778.7, + "probability": 0.841 + }, + { + "start": 17780.0, + "end": 17780.49, + "probability": 0.5292 + }, + { + "start": 17782.04, + "end": 17782.44, + "probability": 0.3535 + }, + { + "start": 17782.68, + "end": 17783.36, + "probability": 0.9603 + }, + { + "start": 17783.58, + "end": 17788.04, + "probability": 0.8602 + }, + { + "start": 17790.06, + "end": 17793.5, + "probability": 0.9811 + }, + { + "start": 17793.56, + "end": 17795.14, + "probability": 0.8586 + }, + { + "start": 17795.25, + "end": 17798.72, + "probability": 0.7877 + }, + { + "start": 17799.4, + "end": 17801.92, + "probability": 0.9055 + }, + { + "start": 17802.52, + "end": 17808.7, + "probability": 0.9316 + }, + { + "start": 17809.18, + "end": 17811.04, + "probability": 0.9993 + }, + { + "start": 17811.78, + "end": 17814.5, + "probability": 0.9991 + }, + { + "start": 17815.06, + "end": 17817.08, + "probability": 0.9917 + }, + { + "start": 17817.78, + "end": 17819.26, + "probability": 0.9092 + }, + { + "start": 17819.48, + "end": 17821.68, + "probability": 0.5607 + }, + { + "start": 17822.2, + "end": 17825.22, + "probability": 0.9704 + }, + { + "start": 17825.22, + "end": 17829.82, + "probability": 0.9968 + }, + { + "start": 17829.94, + "end": 17831.19, + "probability": 0.9817 + }, + { + "start": 17831.72, + "end": 17831.96, + "probability": 0.3197 + }, + { + "start": 17832.04, + "end": 17832.24, + "probability": 0.7664 + }, + { + "start": 17832.28, + "end": 17832.62, + "probability": 0.5682 + }, + { + "start": 17833.48, + "end": 17834.56, + "probability": 0.9695 + }, + { + "start": 17834.96, + "end": 17836.22, + "probability": 0.9808 + }, + { + "start": 17836.48, + "end": 17838.11, + "probability": 0.9199 + }, + { + "start": 17839.16, + "end": 17842.06, + "probability": 0.9574 + }, + { + "start": 17842.58, + "end": 17843.27, + "probability": 0.9795 + }, + { + "start": 17843.76, + "end": 17844.7, + "probability": 0.9623 + }, + { + "start": 17845.32, + "end": 17845.84, + "probability": 0.0968 + }, + { + "start": 17847.54, + "end": 17848.82, + "probability": 0.6455 + }, + { + "start": 17850.52, + "end": 17851.52, + "probability": 0.7222 + }, + { + "start": 17851.64, + "end": 17853.57, + "probability": 0.8391 + }, + { + "start": 17854.5, + "end": 17858.34, + "probability": 0.9671 + }, + { + "start": 17858.9, + "end": 17859.64, + "probability": 0.8059 + }, + { + "start": 17860.46, + "end": 17862.14, + "probability": 0.7482 + }, + { + "start": 17862.36, + "end": 17863.36, + "probability": 0.7141 + }, + { + "start": 17863.42, + "end": 17864.5, + "probability": 0.8869 + }, + { + "start": 17865.24, + "end": 17866.62, + "probability": 0.7255 + }, + { + "start": 17866.76, + "end": 17868.78, + "probability": 0.8805 + }, + { + "start": 17870.36, + "end": 17870.9, + "probability": 0.7308 + }, + { + "start": 17871.74, + "end": 17873.4, + "probability": 0.9793 + }, + { + "start": 17873.74, + "end": 17875.44, + "probability": 0.5806 + }, + { + "start": 17875.8, + "end": 17876.44, + "probability": 0.6636 + }, + { + "start": 17876.53, + "end": 17879.24, + "probability": 0.5715 + }, + { + "start": 17879.72, + "end": 17882.08, + "probability": 0.4283 + }, + { + "start": 17882.82, + "end": 17884.01, + "probability": 0.173 + }, + { + "start": 17884.98, + "end": 17885.64, + "probability": 0.7369 + }, + { + "start": 17886.78, + "end": 17887.82, + "probability": 0.7039 + }, + { + "start": 17888.0, + "end": 17888.82, + "probability": 0.7553 + }, + { + "start": 17889.04, + "end": 17889.56, + "probability": 0.6481 + }, + { + "start": 17889.74, + "end": 17896.6, + "probability": 0.9759 + }, + { + "start": 17897.04, + "end": 17899.92, + "probability": 0.6564 + }, + { + "start": 17900.54, + "end": 17901.8, + "probability": 0.9011 + }, + { + "start": 17902.32, + "end": 17902.9, + "probability": 0.667 + }, + { + "start": 17903.76, + "end": 17904.98, + "probability": 0.9683 + }, + { + "start": 17906.0, + "end": 17909.76, + "probability": 0.9897 + }, + { + "start": 17910.24, + "end": 17914.36, + "probability": 0.9911 + }, + { + "start": 17914.86, + "end": 17915.5, + "probability": 0.976 + }, + { + "start": 17916.16, + "end": 17916.72, + "probability": 0.5931 + }, + { + "start": 17917.3, + "end": 17918.5, + "probability": 0.8472 + }, + { + "start": 17919.38, + "end": 17923.84, + "probability": 0.9185 + }, + { + "start": 17925.0, + "end": 17925.22, + "probability": 0.2495 + }, + { + "start": 17925.22, + "end": 17926.0, + "probability": 0.6105 + }, + { + "start": 17926.66, + "end": 17927.98, + "probability": 0.6308 + }, + { + "start": 17928.0, + "end": 17928.22, + "probability": 0.3564 + }, + { + "start": 17928.24, + "end": 17931.08, + "probability": 0.8217 + }, + { + "start": 17932.86, + "end": 17935.06, + "probability": 0.979 + }, + { + "start": 17935.36, + "end": 17937.17, + "probability": 0.9775 + }, + { + "start": 17938.18, + "end": 17940.0, + "probability": 0.9824 + }, + { + "start": 17941.26, + "end": 17942.68, + "probability": 0.9718 + }, + { + "start": 17943.78, + "end": 17945.18, + "probability": 0.9861 + }, + { + "start": 17946.98, + "end": 17947.62, + "probability": 0.8145 + }, + { + "start": 17947.7, + "end": 17948.12, + "probability": 0.7728 + }, + { + "start": 17948.12, + "end": 17952.44, + "probability": 0.8954 + }, + { + "start": 17954.24, + "end": 17956.46, + "probability": 0.834 + }, + { + "start": 17957.0, + "end": 17960.26, + "probability": 0.9941 + }, + { + "start": 17960.68, + "end": 17961.52, + "probability": 0.9604 + }, + { + "start": 17962.52, + "end": 17963.98, + "probability": 0.9457 + }, + { + "start": 17964.96, + "end": 17968.16, + "probability": 0.942 + }, + { + "start": 17968.78, + "end": 17971.78, + "probability": 0.2465 + }, + { + "start": 17972.52, + "end": 17974.08, + "probability": 0.5842 + }, + { + "start": 17974.22, + "end": 17976.44, + "probability": 0.6974 + }, + { + "start": 17976.9, + "end": 17979.54, + "probability": 0.6345 + }, + { + "start": 17979.64, + "end": 17980.68, + "probability": 0.8764 + }, + { + "start": 17981.7, + "end": 17982.5, + "probability": 0.8096 + }, + { + "start": 17982.88, + "end": 17986.82, + "probability": 0.9955 + }, + { + "start": 17986.88, + "end": 17991.42, + "probability": 0.799 + }, + { + "start": 17992.24, + "end": 17995.34, + "probability": 0.98 + }, + { + "start": 17995.44, + "end": 17995.93, + "probability": 0.6428 + }, + { + "start": 17996.68, + "end": 17997.26, + "probability": 0.9194 + }, + { + "start": 17997.38, + "end": 18001.02, + "probability": 0.9159 + }, + { + "start": 18001.72, + "end": 18003.04, + "probability": 0.8887 + }, + { + "start": 18003.62, + "end": 18007.01, + "probability": 0.8804 + }, + { + "start": 18007.92, + "end": 18010.96, + "probability": 0.8145 + }, + { + "start": 18011.22, + "end": 18012.24, + "probability": 0.6801 + }, + { + "start": 18013.18, + "end": 18015.24, + "probability": 0.8986 + }, + { + "start": 18015.4, + "end": 18016.3, + "probability": 0.716 + }, + { + "start": 18016.52, + "end": 18022.38, + "probability": 0.9099 + }, + { + "start": 18023.4, + "end": 18026.78, + "probability": 0.9624 + }, + { + "start": 18027.96, + "end": 18028.91, + "probability": 0.9956 + }, + { + "start": 18033.62, + "end": 18034.34, + "probability": 0.6665 + }, + { + "start": 18034.86, + "end": 18037.78, + "probability": 0.8361 + }, + { + "start": 18038.72, + "end": 18041.58, + "probability": 0.6639 + }, + { + "start": 18041.9, + "end": 18043.96, + "probability": 0.9862 + }, + { + "start": 18044.24, + "end": 18046.18, + "probability": 0.9981 + }, + { + "start": 18046.66, + "end": 18048.06, + "probability": 0.9859 + }, + { + "start": 18048.6, + "end": 18049.56, + "probability": 0.7285 + }, + { + "start": 18050.26, + "end": 18050.48, + "probability": 0.9325 + }, + { + "start": 18050.8, + "end": 18051.66, + "probability": 0.9717 + }, + { + "start": 18051.78, + "end": 18052.84, + "probability": 0.9785 + }, + { + "start": 18053.34, + "end": 18055.52, + "probability": 0.971 + }, + { + "start": 18055.9, + "end": 18057.85, + "probability": 0.9853 + }, + { + "start": 18058.84, + "end": 18060.9, + "probability": 0.9985 + }, + { + "start": 18061.0, + "end": 18061.7, + "probability": 0.9055 + }, + { + "start": 18061.92, + "end": 18062.84, + "probability": 0.8884 + }, + { + "start": 18063.48, + "end": 18065.06, + "probability": 0.9196 + }, + { + "start": 18065.64, + "end": 18066.26, + "probability": 0.9777 + }, + { + "start": 18066.84, + "end": 18067.44, + "probability": 0.8662 + }, + { + "start": 18068.14, + "end": 18070.9, + "probability": 0.9048 + }, + { + "start": 18071.98, + "end": 18074.24, + "probability": 0.9908 + }, + { + "start": 18074.82, + "end": 18075.52, + "probability": 0.5295 + }, + { + "start": 18076.72, + "end": 18077.38, + "probability": 0.7476 + }, + { + "start": 18077.88, + "end": 18078.26, + "probability": 0.855 + }, + { + "start": 18078.92, + "end": 18080.02, + "probability": 0.6722 + }, + { + "start": 18080.87, + "end": 18081.7, + "probability": 0.4581 + }, + { + "start": 18081.8, + "end": 18084.27, + "probability": 0.7422 + }, + { + "start": 18085.0, + "end": 18085.88, + "probability": 0.7751 + }, + { + "start": 18086.46, + "end": 18089.8, + "probability": 0.5429 + }, + { + "start": 18090.42, + "end": 18092.24, + "probability": 0.9767 + }, + { + "start": 18093.22, + "end": 18096.38, + "probability": 0.9137 + }, + { + "start": 18096.38, + "end": 18098.52, + "probability": 0.9917 + }, + { + "start": 18099.96, + "end": 18100.56, + "probability": 0.4814 + }, + { + "start": 18101.1, + "end": 18104.18, + "probability": 0.9005 + }, + { + "start": 18104.36, + "end": 18105.56, + "probability": 0.6629 + }, + { + "start": 18106.4, + "end": 18108.44, + "probability": 0.9629 + }, + { + "start": 18108.7, + "end": 18111.4, + "probability": 0.522 + }, + { + "start": 18112.38, + "end": 18112.66, + "probability": 0.7345 + }, + { + "start": 18112.8, + "end": 18113.88, + "probability": 0.7385 + }, + { + "start": 18115.6, + "end": 18117.34, + "probability": 0.5657 + }, + { + "start": 18118.04, + "end": 18121.83, + "probability": 0.8631 + }, + { + "start": 18123.18, + "end": 18125.96, + "probability": 0.8425 + }, + { + "start": 18126.14, + "end": 18127.64, + "probability": 0.6227 + }, + { + "start": 18128.52, + "end": 18132.12, + "probability": 0.8716 + }, + { + "start": 18132.12, + "end": 18133.98, + "probability": 0.9696 + }, + { + "start": 18134.78, + "end": 18136.92, + "probability": 0.7579 + }, + { + "start": 18137.28, + "end": 18141.06, + "probability": 0.7165 + }, + { + "start": 18141.98, + "end": 18144.16, + "probability": 0.9355 + }, + { + "start": 18144.72, + "end": 18145.52, + "probability": 0.7065 + }, + { + "start": 18146.04, + "end": 18147.26, + "probability": 0.9126 + }, + { + "start": 18147.9, + "end": 18148.62, + "probability": 0.9057 + }, + { + "start": 18151.23, + "end": 18153.46, + "probability": 0.925 + }, + { + "start": 18154.9, + "end": 18156.54, + "probability": 0.9639 + }, + { + "start": 18157.58, + "end": 18160.34, + "probability": 0.9585 + }, + { + "start": 18160.94, + "end": 18162.92, + "probability": 0.9319 + }, + { + "start": 18163.4, + "end": 18167.66, + "probability": 0.7729 + }, + { + "start": 18167.78, + "end": 18170.34, + "probability": 0.9766 + }, + { + "start": 18170.5, + "end": 18171.4, + "probability": 0.9048 + }, + { + "start": 18172.4, + "end": 18174.76, + "probability": 0.5674 + }, + { + "start": 18175.56, + "end": 18175.88, + "probability": 0.6325 + }, + { + "start": 18176.48, + "end": 18178.34, + "probability": 0.9051 + }, + { + "start": 18178.98, + "end": 18181.46, + "probability": 0.8662 + }, + { + "start": 18183.14, + "end": 18185.26, + "probability": 0.8634 + }, + { + "start": 18185.26, + "end": 18188.24, + "probability": 0.8244 + }, + { + "start": 18188.88, + "end": 18190.42, + "probability": 0.7656 + }, + { + "start": 18190.56, + "end": 18193.2, + "probability": 0.5675 + }, + { + "start": 18193.61, + "end": 18197.36, + "probability": 0.8885 + }, + { + "start": 18197.52, + "end": 18197.74, + "probability": 0.8006 + }, + { + "start": 18197.78, + "end": 18198.5, + "probability": 0.8818 + }, + { + "start": 18199.5, + "end": 18201.58, + "probability": 0.9476 + }, + { + "start": 18202.42, + "end": 18204.98, + "probability": 0.7605 + }, + { + "start": 18205.42, + "end": 18206.52, + "probability": 0.6374 + }, + { + "start": 18206.72, + "end": 18207.74, + "probability": 0.933 + }, + { + "start": 18208.54, + "end": 18210.26, + "probability": 0.5961 + }, + { + "start": 18211.26, + "end": 18214.96, + "probability": 0.9211 + }, + { + "start": 18216.1, + "end": 18219.94, + "probability": 0.9724 + }, + { + "start": 18220.04, + "end": 18222.86, + "probability": 0.9969 + }, + { + "start": 18223.42, + "end": 18224.18, + "probability": 0.746 + }, + { + "start": 18224.7, + "end": 18226.32, + "probability": 0.9047 + }, + { + "start": 18227.3, + "end": 18229.66, + "probability": 0.9778 + }, + { + "start": 18229.74, + "end": 18232.32, + "probability": 0.9017 + }, + { + "start": 18232.8, + "end": 18235.24, + "probability": 0.8827 + }, + { + "start": 18236.2, + "end": 18240.24, + "probability": 0.9087 + }, + { + "start": 18240.7, + "end": 18242.58, + "probability": 0.819 + }, + { + "start": 18242.8, + "end": 18245.1, + "probability": 0.936 + }, + { + "start": 18245.6, + "end": 18247.42, + "probability": 0.9625 + }, + { + "start": 18247.48, + "end": 18248.54, + "probability": 0.9341 + }, + { + "start": 18248.7, + "end": 18249.36, + "probability": 0.9686 + }, + { + "start": 18250.38, + "end": 18252.98, + "probability": 0.8669 + }, + { + "start": 18253.86, + "end": 18255.92, + "probability": 0.9963 + }, + { + "start": 18256.78, + "end": 18258.38, + "probability": 0.9626 + }, + { + "start": 18259.55, + "end": 18263.74, + "probability": 0.7491 + }, + { + "start": 18264.18, + "end": 18267.12, + "probability": 0.9727 + }, + { + "start": 18267.96, + "end": 18268.32, + "probability": 0.7459 + }, + { + "start": 18268.88, + "end": 18271.5, + "probability": 0.8439 + }, + { + "start": 18271.58, + "end": 18273.84, + "probability": 0.9893 + }, + { + "start": 18273.84, + "end": 18275.76, + "probability": 0.9508 + }, + { + "start": 18276.82, + "end": 18277.3, + "probability": 0.6331 + }, + { + "start": 18277.3, + "end": 18282.26, + "probability": 0.9391 + }, + { + "start": 18282.98, + "end": 18283.18, + "probability": 0.387 + }, + { + "start": 18283.24, + "end": 18283.78, + "probability": 0.9304 + }, + { + "start": 18284.1, + "end": 18285.68, + "probability": 0.9834 + }, + { + "start": 18285.96, + "end": 18287.81, + "probability": 0.9683 + }, + { + "start": 18288.42, + "end": 18290.1, + "probability": 0.9612 + }, + { + "start": 18290.36, + "end": 18291.74, + "probability": 0.5454 + }, + { + "start": 18291.8, + "end": 18294.2, + "probability": 0.9702 + }, + { + "start": 18294.36, + "end": 18296.4, + "probability": 0.916 + }, + { + "start": 18296.44, + "end": 18296.92, + "probability": 0.5967 + }, + { + "start": 18298.14, + "end": 18298.8, + "probability": 0.8264 + }, + { + "start": 18298.84, + "end": 18302.81, + "probability": 0.9628 + }, + { + "start": 18305.41, + "end": 18307.8, + "probability": 0.9951 + }, + { + "start": 18307.88, + "end": 18308.7, + "probability": 0.7251 + }, + { + "start": 18308.82, + "end": 18308.94, + "probability": 0.5637 + }, + { + "start": 18309.0, + "end": 18309.66, + "probability": 0.7074 + }, + { + "start": 18309.74, + "end": 18312.28, + "probability": 0.9517 + }, + { + "start": 18313.02, + "end": 18314.06, + "probability": 0.9715 + }, + { + "start": 18314.9, + "end": 18316.92, + "probability": 0.9726 + }, + { + "start": 18316.94, + "end": 18319.94, + "probability": 0.8825 + }, + { + "start": 18321.36, + "end": 18322.53, + "probability": 0.7406 + }, + { + "start": 18323.5, + "end": 18326.24, + "probability": 0.9242 + }, + { + "start": 18327.24, + "end": 18328.02, + "probability": 0.9084 + }, + { + "start": 18329.28, + "end": 18330.0, + "probability": 0.5169 + }, + { + "start": 18330.08, + "end": 18331.26, + "probability": 0.8712 + }, + { + "start": 18331.54, + "end": 18332.41, + "probability": 0.9938 + }, + { + "start": 18333.12, + "end": 18335.06, + "probability": 0.9917 + }, + { + "start": 18336.58, + "end": 18337.04, + "probability": 0.8721 + }, + { + "start": 18337.3, + "end": 18337.79, + "probability": 0.5744 + }, + { + "start": 18337.88, + "end": 18339.66, + "probability": 0.9528 + }, + { + "start": 18339.84, + "end": 18341.04, + "probability": 0.995 + }, + { + "start": 18341.16, + "end": 18345.18, + "probability": 0.9664 + }, + { + "start": 18345.84, + "end": 18348.84, + "probability": 0.983 + }, + { + "start": 18348.9, + "end": 18349.62, + "probability": 0.8252 + }, + { + "start": 18350.38, + "end": 18354.36, + "probability": 0.969 + }, + { + "start": 18354.8, + "end": 18356.94, + "probability": 0.9366 + }, + { + "start": 18357.98, + "end": 18361.98, + "probability": 0.8586 + }, + { + "start": 18364.12, + "end": 18366.7, + "probability": 0.7031 + }, + { + "start": 18367.36, + "end": 18368.48, + "probability": 0.749 + }, + { + "start": 18369.58, + "end": 18371.34, + "probability": 0.7671 + }, + { + "start": 18371.4, + "end": 18372.8, + "probability": 0.8921 + }, + { + "start": 18373.16, + "end": 18373.96, + "probability": 0.9465 + }, + { + "start": 18374.06, + "end": 18378.2, + "probability": 0.9775 + }, + { + "start": 18378.2, + "end": 18383.34, + "probability": 0.7165 + }, + { + "start": 18383.92, + "end": 18384.18, + "probability": 0.4533 + }, + { + "start": 18384.26, + "end": 18385.9, + "probability": 0.9336 + }, + { + "start": 18386.06, + "end": 18386.82, + "probability": 0.9546 + }, + { + "start": 18387.26, + "end": 18388.14, + "probability": 0.9075 + }, + { + "start": 18388.38, + "end": 18390.42, + "probability": 0.9782 + }, + { + "start": 18393.28, + "end": 18397.88, + "probability": 0.9878 + }, + { + "start": 18398.62, + "end": 18399.36, + "probability": 0.8409 + }, + { + "start": 18399.44, + "end": 18400.04, + "probability": 0.5616 + }, + { + "start": 18400.74, + "end": 18403.96, + "probability": 0.8842 + }, + { + "start": 18404.8, + "end": 18408.27, + "probability": 0.9062 + }, + { + "start": 18409.36, + "end": 18410.92, + "probability": 0.8363 + }, + { + "start": 18412.54, + "end": 18413.34, + "probability": 0.5077 + }, + { + "start": 18413.44, + "end": 18415.42, + "probability": 0.6359 + }, + { + "start": 18415.86, + "end": 18416.57, + "probability": 0.8568 + }, + { + "start": 18417.04, + "end": 18419.64, + "probability": 0.9958 + }, + { + "start": 18420.62, + "end": 18423.16, + "probability": 0.9478 + }, + { + "start": 18424.48, + "end": 18427.76, + "probability": 0.9717 + }, + { + "start": 18429.54, + "end": 18430.82, + "probability": 0.9895 + }, + { + "start": 18431.44, + "end": 18432.44, + "probability": 0.6008 + }, + { + "start": 18432.84, + "end": 18435.9, + "probability": 0.8974 + }, + { + "start": 18436.62, + "end": 18437.96, + "probability": 0.8965 + }, + { + "start": 18438.38, + "end": 18441.36, + "probability": 0.5756 + }, + { + "start": 18441.5, + "end": 18442.44, + "probability": 0.6671 + }, + { + "start": 18443.76, + "end": 18445.57, + "probability": 0.9668 + }, + { + "start": 18446.94, + "end": 18447.54, + "probability": 0.6306 + }, + { + "start": 18447.7, + "end": 18449.22, + "probability": 0.5561 + }, + { + "start": 18449.54, + "end": 18451.48, + "probability": 0.9465 + }, + { + "start": 18452.92, + "end": 18455.88, + "probability": 0.9856 + }, + { + "start": 18456.28, + "end": 18459.94, + "probability": 0.9795 + }, + { + "start": 18459.94, + "end": 18464.18, + "probability": 0.996 + }, + { + "start": 18465.06, + "end": 18465.82, + "probability": 0.7085 + }, + { + "start": 18466.48, + "end": 18470.34, + "probability": 0.9341 + }, + { + "start": 18470.82, + "end": 18473.98, + "probability": 0.9989 + }, + { + "start": 18474.5, + "end": 18478.16, + "probability": 0.9965 + }, + { + "start": 18478.72, + "end": 18481.72, + "probability": 0.9669 + }, + { + "start": 18482.12, + "end": 18483.26, + "probability": 0.6098 + }, + { + "start": 18484.86, + "end": 18485.78, + "probability": 0.4047 + }, + { + "start": 18485.92, + "end": 18489.4, + "probability": 0.7495 + }, + { + "start": 18490.22, + "end": 18492.18, + "probability": 0.9971 + }, + { + "start": 18492.18, + "end": 18494.02, + "probability": 0.9727 + }, + { + "start": 18494.6, + "end": 18496.84, + "probability": 0.9909 + }, + { + "start": 18496.84, + "end": 18499.14, + "probability": 0.9971 + }, + { + "start": 18499.56, + "end": 18501.88, + "probability": 0.987 + }, + { + "start": 18503.72, + "end": 18506.88, + "probability": 0.5815 + }, + { + "start": 18508.28, + "end": 18510.54, + "probability": 0.9456 + }, + { + "start": 18510.72, + "end": 18512.32, + "probability": 0.9979 + }, + { + "start": 18512.32, + "end": 18514.26, + "probability": 0.9969 + }, + { + "start": 18516.2, + "end": 18518.76, + "probability": 0.9601 + }, + { + "start": 18518.82, + "end": 18519.48, + "probability": 0.7443 + }, + { + "start": 18519.56, + "end": 18522.52, + "probability": 0.9509 + }, + { + "start": 18523.6, + "end": 18526.64, + "probability": 0.9932 + }, + { + "start": 18526.64, + "end": 18530.96, + "probability": 0.9966 + }, + { + "start": 18532.58, + "end": 18533.64, + "probability": 0.5316 + }, + { + "start": 18533.76, + "end": 18533.88, + "probability": 0.0136 + }, + { + "start": 18534.28, + "end": 18536.46, + "probability": 0.9185 + }, + { + "start": 18536.6, + "end": 18541.14, + "probability": 0.9926 + }, + { + "start": 18541.52, + "end": 18543.59, + "probability": 0.9384 + }, + { + "start": 18544.52, + "end": 18545.18, + "probability": 0.7816 + }, + { + "start": 18545.78, + "end": 18547.34, + "probability": 0.9849 + }, + { + "start": 18547.52, + "end": 18551.07, + "probability": 0.9058 + }, + { + "start": 18552.66, + "end": 18553.28, + "probability": 0.9003 + }, + { + "start": 18553.36, + "end": 18555.9, + "probability": 0.9586 + }, + { + "start": 18556.36, + "end": 18558.3, + "probability": 0.8066 + }, + { + "start": 18558.98, + "end": 18562.36, + "probability": 0.9824 + }, + { + "start": 18562.9, + "end": 18565.34, + "probability": 0.923 + }, + { + "start": 18565.34, + "end": 18567.4, + "probability": 0.9779 + }, + { + "start": 18567.94, + "end": 18571.64, + "probability": 0.9884 + }, + { + "start": 18572.32, + "end": 18574.64, + "probability": 0.7245 + }, + { + "start": 18575.0, + "end": 18575.7, + "probability": 0.8713 + }, + { + "start": 18576.56, + "end": 18577.1, + "probability": 0.9008 + }, + { + "start": 18578.36, + "end": 18580.1, + "probability": 0.9764 + }, + { + "start": 18580.74, + "end": 18582.28, + "probability": 0.8809 + }, + { + "start": 18583.1, + "end": 18584.82, + "probability": 0.77 + }, + { + "start": 18587.56, + "end": 18591.46, + "probability": 0.9917 + }, + { + "start": 18592.16, + "end": 18593.4, + "probability": 0.7999 + }, + { + "start": 18593.54, + "end": 18594.7, + "probability": 0.4832 + }, + { + "start": 18594.86, + "end": 18596.04, + "probability": 0.6634 + }, + { + "start": 18596.46, + "end": 18598.31, + "probability": 0.9128 + }, + { + "start": 18599.02, + "end": 18601.44, + "probability": 0.9951 + }, + { + "start": 18602.08, + "end": 18603.0, + "probability": 0.9024 + }, + { + "start": 18605.12, + "end": 18608.84, + "probability": 0.9644 + }, + { + "start": 18608.92, + "end": 18610.66, + "probability": 0.87 + }, + { + "start": 18611.34, + "end": 18613.88, + "probability": 0.98 + }, + { + "start": 18615.48, + "end": 18617.06, + "probability": 0.7461 + }, + { + "start": 18617.12, + "end": 18618.18, + "probability": 0.9785 + }, + { + "start": 18618.62, + "end": 18621.5, + "probability": 0.9489 + }, + { + "start": 18622.3, + "end": 18624.34, + "probability": 0.9978 + }, + { + "start": 18625.38, + "end": 18626.36, + "probability": 0.6392 + }, + { + "start": 18627.64, + "end": 18631.56, + "probability": 0.9644 + }, + { + "start": 18632.04, + "end": 18634.92, + "probability": 0.9711 + }, + { + "start": 18635.54, + "end": 18636.84, + "probability": 0.9629 + }, + { + "start": 18637.64, + "end": 18641.2, + "probability": 0.9543 + }, + { + "start": 18641.78, + "end": 18642.84, + "probability": 0.6988 + }, + { + "start": 18645.14, + "end": 18645.84, + "probability": 0.5099 + }, + { + "start": 18646.04, + "end": 18646.6, + "probability": 0.734 + }, + { + "start": 18646.78, + "end": 18647.12, + "probability": 0.4258 + }, + { + "start": 18647.18, + "end": 18648.06, + "probability": 0.9104 + }, + { + "start": 18648.86, + "end": 18651.62, + "probability": 0.9868 + }, + { + "start": 18652.7, + "end": 18653.18, + "probability": 0.6052 + }, + { + "start": 18653.33, + "end": 18655.14, + "probability": 0.8233 + }, + { + "start": 18656.8, + "end": 18659.76, + "probability": 0.2632 + }, + { + "start": 18660.98, + "end": 18663.0, + "probability": 0.9303 + }, + { + "start": 18663.12, + "end": 18664.2, + "probability": 0.8137 + }, + { + "start": 18665.34, + "end": 18665.88, + "probability": 0.6492 + }, + { + "start": 18665.98, + "end": 18670.1, + "probability": 0.9656 + }, + { + "start": 18671.14, + "end": 18672.5, + "probability": 0.4091 + }, + { + "start": 18673.46, + "end": 18674.04, + "probability": 0.663 + }, + { + "start": 18674.56, + "end": 18678.12, + "probability": 0.9728 + }, + { + "start": 18678.28, + "end": 18680.32, + "probability": 0.9827 + }, + { + "start": 18680.82, + "end": 18683.5, + "probability": 0.7639 + }, + { + "start": 18684.04, + "end": 18684.14, + "probability": 0.7982 + }, + { + "start": 18684.84, + "end": 18685.44, + "probability": 0.9464 + }, + { + "start": 18685.98, + "end": 18689.6, + "probability": 0.8384 + }, + { + "start": 18692.06, + "end": 18692.74, + "probability": 0.3409 + }, + { + "start": 18692.78, + "end": 18695.18, + "probability": 0.6999 + }, + { + "start": 18695.26, + "end": 18697.12, + "probability": 0.8612 + }, + { + "start": 18697.54, + "end": 18699.46, + "probability": 0.6531 + }, + { + "start": 18700.64, + "end": 18702.09, + "probability": 0.9902 + }, + { + "start": 18702.62, + "end": 18702.88, + "probability": 0.0141 + }, + { + "start": 18703.84, + "end": 18706.46, + "probability": 0.9408 + }, + { + "start": 18707.1, + "end": 18710.18, + "probability": 0.9101 + }, + { + "start": 18710.76, + "end": 18711.94, + "probability": 0.7903 + }, + { + "start": 18712.12, + "end": 18713.16, + "probability": 0.6886 + }, + { + "start": 18713.48, + "end": 18716.3, + "probability": 0.822 + }, + { + "start": 18717.36, + "end": 18720.46, + "probability": 0.9636 + }, + { + "start": 18720.6, + "end": 18722.62, + "probability": 0.5465 + }, + { + "start": 18723.36, + "end": 18730.4, + "probability": 0.9779 + }, + { + "start": 18732.7, + "end": 18734.28, + "probability": 0.5153 + }, + { + "start": 18735.91, + "end": 18737.12, + "probability": 0.9598 + }, + { + "start": 18737.18, + "end": 18737.73, + "probability": 0.5021 + }, + { + "start": 18738.31, + "end": 18740.34, + "probability": 0.9508 + }, + { + "start": 18740.54, + "end": 18741.22, + "probability": 0.9844 + }, + { + "start": 18742.48, + "end": 18744.92, + "probability": 0.112 + }, + { + "start": 18744.92, + "end": 18745.66, + "probability": 0.6861 + }, + { + "start": 18746.9, + "end": 18747.64, + "probability": 0.7658 + }, + { + "start": 18747.84, + "end": 18748.86, + "probability": 0.8559 + }, + { + "start": 18749.18, + "end": 18749.6, + "probability": 0.6184 + }, + { + "start": 18749.68, + "end": 18751.1, + "probability": 0.9815 + }, + { + "start": 18752.12, + "end": 18754.01, + "probability": 0.9448 + }, + { + "start": 18755.08, + "end": 18757.24, + "probability": 0.8567 + }, + { + "start": 18758.1, + "end": 18758.57, + "probability": 0.6742 + }, + { + "start": 18759.18, + "end": 18759.96, + "probability": 0.7792 + }, + { + "start": 18760.04, + "end": 18760.64, + "probability": 0.9279 + }, + { + "start": 18760.68, + "end": 18762.6, + "probability": 0.9736 + }, + { + "start": 18762.6, + "end": 18764.61, + "probability": 0.9642 + }, + { + "start": 18765.3, + "end": 18767.34, + "probability": 0.9762 + }, + { + "start": 18767.34, + "end": 18770.04, + "probability": 0.8626 + }, + { + "start": 18770.4, + "end": 18772.86, + "probability": 0.9927 + }, + { + "start": 18773.76, + "end": 18774.78, + "probability": 0.7618 + }, + { + "start": 18775.48, + "end": 18777.3, + "probability": 0.8971 + }, + { + "start": 18777.3, + "end": 18779.76, + "probability": 0.9829 + }, + { + "start": 18780.1, + "end": 18786.08, + "probability": 0.9547 + }, + { + "start": 18788.46, + "end": 18791.02, + "probability": 0.6579 + }, + { + "start": 18791.08, + "end": 18792.06, + "probability": 0.8312 + }, + { + "start": 18792.98, + "end": 18793.1, + "probability": 0.8157 + }, + { + "start": 18793.76, + "end": 18794.32, + "probability": 0.9151 + }, + { + "start": 18794.48, + "end": 18795.0, + "probability": 0.9121 + }, + { + "start": 18795.1, + "end": 18795.28, + "probability": 0.7551 + }, + { + "start": 18795.44, + "end": 18796.42, + "probability": 0.9153 + }, + { + "start": 18796.74, + "end": 18799.04, + "probability": 0.953 + }, + { + "start": 18799.86, + "end": 18802.58, + "probability": 0.8394 + }, + { + "start": 18803.66, + "end": 18805.4, + "probability": 0.851 + }, + { + "start": 18807.77, + "end": 18808.66, + "probability": 0.9341 + }, + { + "start": 18809.48, + "end": 18810.49, + "probability": 0.9927 + }, + { + "start": 18810.78, + "end": 18811.42, + "probability": 0.5713 + }, + { + "start": 18811.46, + "end": 18812.66, + "probability": 0.991 + }, + { + "start": 18812.9, + "end": 18813.2, + "probability": 0.3035 + }, + { + "start": 18813.2, + "end": 18816.28, + "probability": 0.9821 + }, + { + "start": 18818.7, + "end": 18819.38, + "probability": 0.9011 + }, + { + "start": 18820.08, + "end": 18821.19, + "probability": 0.9822 + }, + { + "start": 18822.8, + "end": 18823.39, + "probability": 0.5526 + }, + { + "start": 18823.6, + "end": 18826.06, + "probability": 0.9971 + }, + { + "start": 18827.1, + "end": 18829.76, + "probability": 0.8302 + }, + { + "start": 18830.72, + "end": 18832.92, + "probability": 0.9922 + }, + { + "start": 18833.18, + "end": 18833.4, + "probability": 0.5063 + }, + { + "start": 18833.56, + "end": 18834.2, + "probability": 0.8319 + }, + { + "start": 18834.36, + "end": 18835.5, + "probability": 0.9927 + }, + { + "start": 18836.18, + "end": 18838.4, + "probability": 0.7124 + }, + { + "start": 18838.5, + "end": 18839.02, + "probability": 0.7255 + }, + { + "start": 18839.3, + "end": 18839.6, + "probability": 0.5277 + }, + { + "start": 18839.6, + "end": 18840.64, + "probability": 0.9722 + }, + { + "start": 18841.04, + "end": 18841.42, + "probability": 0.891 + }, + { + "start": 18841.56, + "end": 18841.98, + "probability": 0.7071 + }, + { + "start": 18841.98, + "end": 18847.1, + "probability": 0.7936 + }, + { + "start": 18847.66, + "end": 18851.04, + "probability": 0.9845 + }, + { + "start": 18851.32, + "end": 18851.66, + "probability": 0.4835 + }, + { + "start": 18851.66, + "end": 18853.28, + "probability": 0.9897 + }, + { + "start": 18853.62, + "end": 18854.07, + "probability": 0.8915 + }, + { + "start": 18854.56, + "end": 18858.76, + "probability": 0.9891 + }, + { + "start": 18859.76, + "end": 18861.54, + "probability": 0.9924 + }, + { + "start": 18861.72, + "end": 18864.78, + "probability": 0.9535 + }, + { + "start": 18864.8, + "end": 18865.7, + "probability": 0.7097 + }, + { + "start": 18866.2, + "end": 18866.76, + "probability": 0.4684 + }, + { + "start": 18867.32, + "end": 18868.1, + "probability": 0.7138 + }, + { + "start": 18869.32, + "end": 18871.08, + "probability": 0.67 + }, + { + "start": 18871.1, + "end": 18871.2, + "probability": 0.7342 + }, + { + "start": 18871.36, + "end": 18871.94, + "probability": 0.787 + }, + { + "start": 18872.24, + "end": 18872.86, + "probability": 0.9473 + }, + { + "start": 18872.9, + "end": 18874.38, + "probability": 0.7594 + }, + { + "start": 18874.44, + "end": 18875.22, + "probability": 0.6852 + }, + { + "start": 18875.4, + "end": 18876.62, + "probability": 0.9507 + }, + { + "start": 18876.74, + "end": 18877.45, + "probability": 0.96 + }, + { + "start": 18877.68, + "end": 18878.38, + "probability": 0.7522 + }, + { + "start": 18878.5, + "end": 18880.48, + "probability": 0.8578 + }, + { + "start": 18880.96, + "end": 18882.96, + "probability": 0.8689 + }, + { + "start": 18884.08, + "end": 18886.88, + "probability": 0.8132 + }, + { + "start": 18887.04, + "end": 18887.76, + "probability": 0.9135 + }, + { + "start": 18887.84, + "end": 18888.36, + "probability": 0.9424 + }, + { + "start": 18888.42, + "end": 18888.98, + "probability": 0.9056 + }, + { + "start": 18889.24, + "end": 18890.62, + "probability": 0.8293 + }, + { + "start": 18891.22, + "end": 18891.75, + "probability": 0.7773 + }, + { + "start": 18891.84, + "end": 18893.12, + "probability": 0.7541 + }, + { + "start": 18894.16, + "end": 18895.5, + "probability": 0.8496 + }, + { + "start": 18895.6, + "end": 18897.38, + "probability": 0.9353 + }, + { + "start": 18897.78, + "end": 18899.7, + "probability": 0.936 + }, + { + "start": 18900.58, + "end": 18901.56, + "probability": 0.9912 + }, + { + "start": 18902.3, + "end": 18905.34, + "probability": 0.9188 + }, + { + "start": 18905.64, + "end": 18908.36, + "probability": 0.9973 + }, + { + "start": 18908.96, + "end": 18910.06, + "probability": 0.9902 + }, + { + "start": 18910.54, + "end": 18911.62, + "probability": 0.9531 + }, + { + "start": 18912.42, + "end": 18913.98, + "probability": 0.8429 + }, + { + "start": 18914.52, + "end": 18917.0, + "probability": 0.8617 + }, + { + "start": 18917.74, + "end": 18921.48, + "probability": 0.8022 + }, + { + "start": 18921.67, + "end": 18925.14, + "probability": 0.8874 + }, + { + "start": 18926.0, + "end": 18927.66, + "probability": 0.7494 + }, + { + "start": 18928.5, + "end": 18929.9, + "probability": 0.9946 + }, + { + "start": 18930.8, + "end": 18933.0, + "probability": 0.9707 + }, + { + "start": 18933.78, + "end": 18936.6, + "probability": 0.9774 + }, + { + "start": 18936.76, + "end": 18938.08, + "probability": 0.9988 + }, + { + "start": 18938.82, + "end": 18943.12, + "probability": 0.7759 + }, + { + "start": 18943.86, + "end": 18944.82, + "probability": 0.9927 + }, + { + "start": 18945.42, + "end": 18947.5, + "probability": 0.7286 + }, + { + "start": 18948.12, + "end": 18952.02, + "probability": 0.591 + }, + { + "start": 18953.0, + "end": 18953.76, + "probability": 0.9124 + }, + { + "start": 18953.88, + "end": 18955.08, + "probability": 0.7386 + }, + { + "start": 18955.36, + "end": 18956.3, + "probability": 0.6167 + }, + { + "start": 18956.88, + "end": 18959.12, + "probability": 0.7451 + }, + { + "start": 18959.32, + "end": 18959.58, + "probability": 0.8689 + }, + { + "start": 18960.0, + "end": 18960.73, + "probability": 0.5461 + }, + { + "start": 18960.84, + "end": 18962.78, + "probability": 0.7975 + }, + { + "start": 18962.86, + "end": 18967.76, + "probability": 0.8294 + }, + { + "start": 18968.1, + "end": 18969.04, + "probability": 0.9873 + }, + { + "start": 18969.16, + "end": 18970.3, + "probability": 0.9692 + }, + { + "start": 18970.56, + "end": 18971.52, + "probability": 0.9689 + }, + { + "start": 18972.02, + "end": 18973.22, + "probability": 0.9373 + }, + { + "start": 18973.54, + "end": 18974.5, + "probability": 0.9765 + }, + { + "start": 18974.62, + "end": 18975.3, + "probability": 0.7955 + }, + { + "start": 18975.94, + "end": 18977.5, + "probability": 0.9954 + }, + { + "start": 18977.6, + "end": 18979.22, + "probability": 0.9977 + }, + { + "start": 18979.34, + "end": 18982.28, + "probability": 0.7034 + }, + { + "start": 18982.94, + "end": 18985.18, + "probability": 0.9848 + }, + { + "start": 18986.6, + "end": 18987.36, + "probability": 0.7384 + }, + { + "start": 18988.5, + "end": 18993.0, + "probability": 0.9681 + }, + { + "start": 18993.34, + "end": 18993.86, + "probability": 0.4606 + }, + { + "start": 18994.0, + "end": 18997.16, + "probability": 0.9897 + }, + { + "start": 18997.26, + "end": 19000.8, + "probability": 0.6755 + }, + { + "start": 19001.24, + "end": 19001.9, + "probability": 0.2124 + }, + { + "start": 19001.94, + "end": 19003.5, + "probability": 0.9929 + }, + { + "start": 19003.58, + "end": 19004.24, + "probability": 0.8726 + }, + { + "start": 19004.86, + "end": 19007.14, + "probability": 0.9631 + }, + { + "start": 19008.3, + "end": 19009.16, + "probability": 0.9722 + }, + { + "start": 19009.34, + "end": 19009.74, + "probability": 0.9104 + }, + { + "start": 19009.84, + "end": 19010.68, + "probability": 0.9956 + }, + { + "start": 19011.82, + "end": 19013.44, + "probability": 0.971 + }, + { + "start": 19014.0, + "end": 19014.12, + "probability": 0.4078 + }, + { + "start": 19014.66, + "end": 19015.24, + "probability": 0.7996 + }, + { + "start": 19015.3, + "end": 19016.38, + "probability": 0.8203 + }, + { + "start": 19016.76, + "end": 19017.32, + "probability": 0.7911 + }, + { + "start": 19017.52, + "end": 19021.58, + "probability": 0.671 + }, + { + "start": 19021.58, + "end": 19024.22, + "probability": 0.6627 + }, + { + "start": 19024.64, + "end": 19025.66, + "probability": 0.8026 + }, + { + "start": 19026.48, + "end": 19028.76, + "probability": 0.8651 + }, + { + "start": 19029.34, + "end": 19032.6, + "probability": 0.9943 + }, + { + "start": 19033.6, + "end": 19033.9, + "probability": 0.8115 + }, + { + "start": 19034.76, + "end": 19039.06, + "probability": 0.6103 + }, + { + "start": 19039.06, + "end": 19040.71, + "probability": 0.4549 + }, + { + "start": 19040.82, + "end": 19043.82, + "probability": 0.7553 + }, + { + "start": 19044.42, + "end": 19046.56, + "probability": 0.9852 + }, + { + "start": 19046.76, + "end": 19050.05, + "probability": 0.8694 + }, + { + "start": 19050.5, + "end": 19051.64, + "probability": 0.6153 + }, + { + "start": 19051.92, + "end": 19052.62, + "probability": 0.7141 + }, + { + "start": 19053.66, + "end": 19056.28, + "probability": 0.7634 + }, + { + "start": 19057.2, + "end": 19058.06, + "probability": 0.6535 + }, + { + "start": 19058.26, + "end": 19059.72, + "probability": 0.8165 + }, + { + "start": 19060.5, + "end": 19061.68, + "probability": 0.8005 + }, + { + "start": 19061.78, + "end": 19062.77, + "probability": 0.9185 + }, + { + "start": 19063.26, + "end": 19063.86, + "probability": 0.8246 + }, + { + "start": 19063.94, + "end": 19064.76, + "probability": 0.679 + }, + { + "start": 19064.78, + "end": 19065.32, + "probability": 0.6698 + }, + { + "start": 19065.5, + "end": 19067.6, + "probability": 0.9748 + }, + { + "start": 19068.18, + "end": 19069.12, + "probability": 0.7804 + }, + { + "start": 19069.76, + "end": 19071.24, + "probability": 0.9501 + }, + { + "start": 19071.34, + "end": 19073.66, + "probability": 0.7979 + }, + { + "start": 19075.68, + "end": 19081.08, + "probability": 0.7964 + }, + { + "start": 19081.28, + "end": 19081.86, + "probability": 0.6731 + }, + { + "start": 19081.92, + "end": 19084.8, + "probability": 0.9449 + }, + { + "start": 19084.8, + "end": 19089.81, + "probability": 0.648 + }, + { + "start": 19090.18, + "end": 19090.46, + "probability": 0.5764 + }, + { + "start": 19091.04, + "end": 19092.44, + "probability": 0.6948 + }, + { + "start": 19095.08, + "end": 19097.42, + "probability": 0.8777 + }, + { + "start": 19098.52, + "end": 19100.15, + "probability": 0.6714 + }, + { + "start": 19100.34, + "end": 19102.98, + "probability": 0.7157 + }, + { + "start": 19103.12, + "end": 19104.29, + "probability": 0.9492 + }, + { + "start": 19105.58, + "end": 19108.28, + "probability": 0.9795 + }, + { + "start": 19109.82, + "end": 19111.76, + "probability": 0.9958 + }, + { + "start": 19111.86, + "end": 19114.37, + "probability": 0.9935 + }, + { + "start": 19115.38, + "end": 19116.82, + "probability": 0.8849 + }, + { + "start": 19116.94, + "end": 19119.86, + "probability": 0.7467 + }, + { + "start": 19119.92, + "end": 19119.92, + "probability": 0.5293 + }, + { + "start": 19121.32, + "end": 19121.96, + "probability": 0.589 + }, + { + "start": 19122.76, + "end": 19124.32, + "probability": 0.6095 + }, + { + "start": 19124.32, + "end": 19125.36, + "probability": 0.3602 + }, + { + "start": 19125.66, + "end": 19127.76, + "probability": 0.8451 + }, + { + "start": 19128.4, + "end": 19128.96, + "probability": 0.7933 + }, + { + "start": 19129.58, + "end": 19133.66, + "probability": 0.9056 + }, + { + "start": 19133.86, + "end": 19135.75, + "probability": 0.686 + }, + { + "start": 19137.58, + "end": 19139.7, + "probability": 0.8675 + }, + { + "start": 19139.7, + "end": 19145.6, + "probability": 0.8745 + }, + { + "start": 19145.72, + "end": 19146.22, + "probability": 0.4084 + }, + { + "start": 19146.4, + "end": 19147.04, + "probability": 0.7053 + }, + { + "start": 19147.38, + "end": 19149.34, + "probability": 0.9295 + }, + { + "start": 19150.14, + "end": 19153.56, + "probability": 0.8694 + }, + { + "start": 19154.12, + "end": 19157.72, + "probability": 0.9921 + }, + { + "start": 19159.06, + "end": 19161.06, + "probability": 0.9177 + }, + { + "start": 19161.06, + "end": 19163.04, + "probability": 0.9583 + }, + { + "start": 19163.22, + "end": 19167.04, + "probability": 0.7991 + }, + { + "start": 19167.48, + "end": 19169.0, + "probability": 0.7604 + }, + { + "start": 19169.1, + "end": 19171.02, + "probability": 0.8787 + }, + { + "start": 19171.08, + "end": 19172.16, + "probability": 0.9735 + }, + { + "start": 19172.62, + "end": 19173.18, + "probability": 0.921 + }, + { + "start": 19173.34, + "end": 19173.8, + "probability": 0.9512 + }, + { + "start": 19173.92, + "end": 19174.7, + "probability": 0.8504 + }, + { + "start": 19174.72, + "end": 19175.42, + "probability": 0.8621 + }, + { + "start": 19175.6, + "end": 19175.9, + "probability": 0.8656 + }, + { + "start": 19176.52, + "end": 19176.82, + "probability": 0.8113 + }, + { + "start": 19178.86, + "end": 19179.38, + "probability": 0.6649 + }, + { + "start": 19180.12, + "end": 19182.14, + "probability": 0.939 + }, + { + "start": 19182.72, + "end": 19184.76, + "probability": 0.9918 + }, + { + "start": 19184.76, + "end": 19187.64, + "probability": 0.9012 + }, + { + "start": 19188.28, + "end": 19189.58, + "probability": 0.9573 + }, + { + "start": 19190.36, + "end": 19190.86, + "probability": 0.7497 + }, + { + "start": 19190.88, + "end": 19191.14, + "probability": 0.476 + }, + { + "start": 19191.44, + "end": 19192.02, + "probability": 0.6619 + }, + { + "start": 19192.48, + "end": 19193.58, + "probability": 0.8259 + }, + { + "start": 19193.7, + "end": 19195.56, + "probability": 0.7485 + }, + { + "start": 19195.74, + "end": 19196.4, + "probability": 0.505 + }, + { + "start": 19196.62, + "end": 19198.76, + "probability": 0.8583 + }, + { + "start": 19199.42, + "end": 19200.68, + "probability": 0.7723 + }, + { + "start": 19201.68, + "end": 19203.3, + "probability": 0.9846 + }, + { + "start": 19203.58, + "end": 19206.74, + "probability": 0.6042 + }, + { + "start": 19206.86, + "end": 19207.3, + "probability": 0.5023 + }, + { + "start": 19207.54, + "end": 19208.4, + "probability": 0.7844 + }, + { + "start": 19209.34, + "end": 19210.1, + "probability": 0.998 + }, + { + "start": 19210.98, + "end": 19214.86, + "probability": 0.9865 + }, + { + "start": 19214.88, + "end": 19215.89, + "probability": 0.5538 + }, + { + "start": 19216.8, + "end": 19217.7, + "probability": 0.7926 + }, + { + "start": 19218.3, + "end": 19221.44, + "probability": 0.9761 + }, + { + "start": 19222.46, + "end": 19226.52, + "probability": 0.9434 + }, + { + "start": 19226.94, + "end": 19227.1, + "probability": 0.5442 + }, + { + "start": 19227.24, + "end": 19232.72, + "probability": 0.973 + }, + { + "start": 19233.14, + "end": 19234.08, + "probability": 0.757 + }, + { + "start": 19234.8, + "end": 19235.76, + "probability": 0.8932 + }, + { + "start": 19236.4, + "end": 19237.46, + "probability": 0.7653 + }, + { + "start": 19238.02, + "end": 19240.96, + "probability": 0.983 + }, + { + "start": 19241.7, + "end": 19243.08, + "probability": 0.6287 + }, + { + "start": 19243.6, + "end": 19244.86, + "probability": 0.9023 + }, + { + "start": 19245.02, + "end": 19248.2, + "probability": 0.9746 + }, + { + "start": 19248.36, + "end": 19249.58, + "probability": 0.8983 + }, + { + "start": 19250.16, + "end": 19251.42, + "probability": 0.9822 + }, + { + "start": 19251.46, + "end": 19252.38, + "probability": 0.812 + }, + { + "start": 19253.68, + "end": 19253.96, + "probability": 0.8345 + }, + { + "start": 19255.28, + "end": 19257.68, + "probability": 0.9373 + }, + { + "start": 19258.04, + "end": 19258.32, + "probability": 0.5693 + }, + { + "start": 19258.38, + "end": 19259.76, + "probability": 0.9592 + }, + { + "start": 19260.68, + "end": 19264.8, + "probability": 0.887 + }, + { + "start": 19265.84, + "end": 19267.36, + "probability": 0.7567 + }, + { + "start": 19267.38, + "end": 19267.6, + "probability": 0.7234 + }, + { + "start": 19267.6, + "end": 19271.32, + "probability": 0.9617 + }, + { + "start": 19271.92, + "end": 19273.7, + "probability": 0.9768 + }, + { + "start": 19273.9, + "end": 19274.0, + "probability": 0.3031 + }, + { + "start": 19274.7, + "end": 19275.92, + "probability": 0.728 + }, + { + "start": 19276.02, + "end": 19277.75, + "probability": 0.7542 + }, + { + "start": 19278.84, + "end": 19280.54, + "probability": 0.5654 + }, + { + "start": 19281.52, + "end": 19282.5, + "probability": 0.6802 + }, + { + "start": 19283.5, + "end": 19284.12, + "probability": 0.7275 + }, + { + "start": 19284.3, + "end": 19284.86, + "probability": 0.8719 + }, + { + "start": 19285.68, + "end": 19289.24, + "probability": 0.6727 + }, + { + "start": 19289.96, + "end": 19292.44, + "probability": 0.9134 + }, + { + "start": 19293.04, + "end": 19294.78, + "probability": 0.478 + }, + { + "start": 19295.34, + "end": 19298.0, + "probability": 0.5934 + }, + { + "start": 19298.6, + "end": 19302.68, + "probability": 0.7041 + }, + { + "start": 19303.58, + "end": 19303.92, + "probability": 0.0267 + } + ], + "segments_count": 7071, + "words_count": 35238, + "avg_words_per_segment": 4.9835, + "avg_segment_duration": 1.908, + "avg_words_per_minute": 108.84, + "plenum_id": "20043", + "duration": 19425.58, + "title": null, + "plenum_date": "2012-03-12" +} \ No newline at end of file