diff --git "a/102108/metadata.json" "b/102108/metadata.json" new file mode 100644--- /dev/null +++ "b/102108/metadata.json" @@ -0,0 +1,26147 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "102108", + "quality_score": 0.8185, + "per_segment_quality_scores": [ + { + "start": 68.28, + "end": 71.22, + "probability": 0.9579 + }, + { + "start": 71.76, + "end": 75.44, + "probability": 0.6844 + }, + { + "start": 75.5, + "end": 75.96, + "probability": 0.8943 + }, + { + "start": 79.64, + "end": 82.32, + "probability": 0.8505 + }, + { + "start": 85.12, + "end": 85.5, + "probability": 0.6842 + }, + { + "start": 85.96, + "end": 87.2, + "probability": 0.5202 + }, + { + "start": 87.22, + "end": 90.48, + "probability": 0.941 + }, + { + "start": 91.18, + "end": 92.0, + "probability": 0.8799 + }, + { + "start": 92.74, + "end": 94.68, + "probability": 0.8036 + }, + { + "start": 100.74, + "end": 101.54, + "probability": 0.5033 + }, + { + "start": 101.7, + "end": 103.76, + "probability": 0.9211 + }, + { + "start": 104.94, + "end": 105.26, + "probability": 0.0225 + }, + { + "start": 105.26, + "end": 105.26, + "probability": 0.0183 + }, + { + "start": 105.26, + "end": 105.28, + "probability": 0.0336 + }, + { + "start": 125.52, + "end": 126.8, + "probability": 0.5252 + }, + { + "start": 128.14, + "end": 130.9, + "probability": 0.8879 + }, + { + "start": 131.06, + "end": 134.66, + "probability": 0.584 + }, + { + "start": 135.42, + "end": 135.88, + "probability": 0.4677 + }, + { + "start": 135.94, + "end": 137.5, + "probability": 0.8438 + }, + { + "start": 137.86, + "end": 139.26, + "probability": 0.4854 + }, + { + "start": 142.14, + "end": 144.08, + "probability": 0.1386 + }, + { + "start": 145.1, + "end": 147.02, + "probability": 0.6194 + }, + { + "start": 148.18, + "end": 149.98, + "probability": 0.9354 + }, + { + "start": 150.42, + "end": 152.3, + "probability": 0.9883 + }, + { + "start": 153.08, + "end": 155.32, + "probability": 0.7274 + }, + { + "start": 155.5, + "end": 156.56, + "probability": 0.9838 + }, + { + "start": 156.68, + "end": 158.44, + "probability": 0.9694 + }, + { + "start": 158.54, + "end": 159.64, + "probability": 0.2306 + }, + { + "start": 159.7, + "end": 160.36, + "probability": 0.7872 + }, + { + "start": 161.06, + "end": 163.16, + "probability": 0.9185 + }, + { + "start": 163.24, + "end": 164.92, + "probability": 0.973 + }, + { + "start": 165.44, + "end": 169.16, + "probability": 0.9945 + }, + { + "start": 170.08, + "end": 173.7, + "probability": 0.9453 + }, + { + "start": 174.5, + "end": 175.36, + "probability": 0.7577 + }, + { + "start": 175.42, + "end": 176.21, + "probability": 0.9307 + }, + { + "start": 176.28, + "end": 179.12, + "probability": 0.9941 + }, + { + "start": 179.92, + "end": 183.5, + "probability": 0.9309 + }, + { + "start": 184.22, + "end": 186.14, + "probability": 0.8591 + }, + { + "start": 186.34, + "end": 188.5, + "probability": 0.9692 + }, + { + "start": 188.64, + "end": 190.82, + "probability": 0.8294 + }, + { + "start": 191.04, + "end": 191.78, + "probability": 0.8181 + }, + { + "start": 191.96, + "end": 193.22, + "probability": 0.9732 + }, + { + "start": 193.92, + "end": 195.58, + "probability": 0.8412 + }, + { + "start": 195.76, + "end": 196.86, + "probability": 0.9405 + }, + { + "start": 197.18, + "end": 197.76, + "probability": 0.7981 + }, + { + "start": 197.84, + "end": 198.46, + "probability": 0.9885 + }, + { + "start": 198.54, + "end": 198.92, + "probability": 0.9448 + }, + { + "start": 199.0, + "end": 199.1, + "probability": 0.4348 + }, + { + "start": 199.2, + "end": 200.2, + "probability": 0.7334 + }, + { + "start": 201.02, + "end": 206.64, + "probability": 0.9302 + }, + { + "start": 207.46, + "end": 208.98, + "probability": 0.8769 + }, + { + "start": 209.0, + "end": 209.5, + "probability": 0.6986 + }, + { + "start": 209.56, + "end": 210.36, + "probability": 0.6516 + }, + { + "start": 210.5, + "end": 211.6, + "probability": 0.952 + }, + { + "start": 212.24, + "end": 214.3, + "probability": 0.9949 + }, + { + "start": 218.16, + "end": 219.0, + "probability": 0.8289 + }, + { + "start": 219.92, + "end": 223.0, + "probability": 0.6663 + }, + { + "start": 223.34, + "end": 223.46, + "probability": 0.1463 + }, + { + "start": 223.5, + "end": 226.08, + "probability": 0.9684 + }, + { + "start": 226.52, + "end": 228.0, + "probability": 0.3398 + }, + { + "start": 228.44, + "end": 235.68, + "probability": 0.936 + }, + { + "start": 236.56, + "end": 237.56, + "probability": 0.7964 + }, + { + "start": 237.66, + "end": 238.4, + "probability": 0.6929 + }, + { + "start": 238.42, + "end": 241.4, + "probability": 0.9363 + }, + { + "start": 241.88, + "end": 245.16, + "probability": 0.981 + }, + { + "start": 245.7, + "end": 246.98, + "probability": 0.8061 + }, + { + "start": 247.04, + "end": 248.18, + "probability": 0.9851 + }, + { + "start": 248.34, + "end": 250.78, + "probability": 0.9355 + }, + { + "start": 250.84, + "end": 251.88, + "probability": 0.757 + }, + { + "start": 251.92, + "end": 252.6, + "probability": 0.6453 + }, + { + "start": 253.04, + "end": 257.52, + "probability": 0.9902 + }, + { + "start": 257.82, + "end": 260.33, + "probability": 0.9849 + }, + { + "start": 261.32, + "end": 262.52, + "probability": 0.9583 + }, + { + "start": 262.66, + "end": 264.86, + "probability": 0.9951 + }, + { + "start": 265.56, + "end": 268.16, + "probability": 0.9399 + }, + { + "start": 268.42, + "end": 270.3, + "probability": 0.9542 + }, + { + "start": 270.78, + "end": 271.18, + "probability": 0.86 + }, + { + "start": 271.86, + "end": 274.24, + "probability": 0.6622 + }, + { + "start": 282.86, + "end": 285.98, + "probability": 0.5131 + }, + { + "start": 286.8, + "end": 291.44, + "probability": 0.8984 + }, + { + "start": 291.6, + "end": 293.96, + "probability": 0.955 + }, + { + "start": 294.34, + "end": 299.02, + "probability": 0.9531 + }, + { + "start": 299.2, + "end": 303.38, + "probability": 0.9282 + }, + { + "start": 303.54, + "end": 308.16, + "probability": 0.9541 + }, + { + "start": 309.78, + "end": 312.98, + "probability": 0.9984 + }, + { + "start": 313.6, + "end": 317.6, + "probability": 0.9884 + }, + { + "start": 318.2, + "end": 318.6, + "probability": 0.7755 + }, + { + "start": 318.94, + "end": 322.46, + "probability": 0.9369 + }, + { + "start": 322.72, + "end": 323.86, + "probability": 0.9289 + }, + { + "start": 323.88, + "end": 324.88, + "probability": 0.769 + }, + { + "start": 325.74, + "end": 329.41, + "probability": 0.8889 + }, + { + "start": 329.48, + "end": 331.14, + "probability": 0.9114 + }, + { + "start": 331.24, + "end": 333.38, + "probability": 0.9878 + }, + { + "start": 334.1, + "end": 336.88, + "probability": 0.7458 + }, + { + "start": 336.92, + "end": 340.12, + "probability": 0.6724 + }, + { + "start": 340.22, + "end": 342.61, + "probability": 0.4875 + }, + { + "start": 345.2, + "end": 345.64, + "probability": 0.2934 + }, + { + "start": 345.76, + "end": 349.64, + "probability": 0.7716 + }, + { + "start": 350.08, + "end": 353.56, + "probability": 0.8267 + }, + { + "start": 354.26, + "end": 357.04, + "probability": 0.8332 + }, + { + "start": 358.02, + "end": 361.76, + "probability": 0.7743 + }, + { + "start": 362.32, + "end": 363.06, + "probability": 0.7283 + }, + { + "start": 363.18, + "end": 363.6, + "probability": 0.7234 + }, + { + "start": 363.94, + "end": 364.32, + "probability": 0.0878 + }, + { + "start": 364.56, + "end": 365.08, + "probability": 0.8773 + }, + { + "start": 365.1, + "end": 365.62, + "probability": 0.9455 + }, + { + "start": 365.68, + "end": 368.3, + "probability": 0.8827 + }, + { + "start": 368.42, + "end": 369.72, + "probability": 0.9738 + }, + { + "start": 369.76, + "end": 373.04, + "probability": 0.6464 + }, + { + "start": 373.4, + "end": 373.4, + "probability": 0.7759 + }, + { + "start": 373.66, + "end": 375.29, + "probability": 0.9598 + }, + { + "start": 375.74, + "end": 375.88, + "probability": 0.8997 + }, + { + "start": 375.96, + "end": 376.76, + "probability": 0.9878 + }, + { + "start": 376.82, + "end": 377.7, + "probability": 0.3582 + }, + { + "start": 378.14, + "end": 380.0, + "probability": 0.9982 + }, + { + "start": 380.0, + "end": 382.94, + "probability": 0.9648 + }, + { + "start": 383.64, + "end": 384.26, + "probability": 0.8315 + }, + { + "start": 384.38, + "end": 386.8, + "probability": 0.9429 + }, + { + "start": 386.8, + "end": 386.84, + "probability": 0.4758 + }, + { + "start": 386.92, + "end": 389.02, + "probability": 0.9856 + }, + { + "start": 389.14, + "end": 389.68, + "probability": 0.8247 + }, + { + "start": 389.86, + "end": 390.04, + "probability": 0.4592 + }, + { + "start": 390.2, + "end": 390.8, + "probability": 0.6947 + }, + { + "start": 392.14, + "end": 392.58, + "probability": 0.6216 + }, + { + "start": 392.66, + "end": 395.0, + "probability": 0.9022 + }, + { + "start": 401.38, + "end": 402.56, + "probability": 0.7168 + }, + { + "start": 403.0, + "end": 403.82, + "probability": 0.8462 + }, + { + "start": 404.2, + "end": 406.26, + "probability": 0.9572 + }, + { + "start": 406.45, + "end": 409.22, + "probability": 0.9724 + }, + { + "start": 409.9, + "end": 410.94, + "probability": 0.973 + }, + { + "start": 411.52, + "end": 415.26, + "probability": 0.7964 + }, + { + "start": 416.26, + "end": 419.8, + "probability": 0.8583 + }, + { + "start": 420.22, + "end": 426.25, + "probability": 0.9762 + }, + { + "start": 426.88, + "end": 428.24, + "probability": 0.8013 + }, + { + "start": 428.6, + "end": 431.14, + "probability": 0.9531 + }, + { + "start": 432.44, + "end": 433.5, + "probability": 0.7481 + }, + { + "start": 433.74, + "end": 436.1, + "probability": 0.9423 + }, + { + "start": 436.88, + "end": 438.5, + "probability": 0.8882 + }, + { + "start": 439.2, + "end": 440.86, + "probability": 0.7422 + }, + { + "start": 441.36, + "end": 443.36, + "probability": 0.9452 + }, + { + "start": 444.3, + "end": 447.82, + "probability": 0.9335 + }, + { + "start": 448.46, + "end": 450.86, + "probability": 0.9841 + }, + { + "start": 450.96, + "end": 452.56, + "probability": 0.7812 + }, + { + "start": 452.66, + "end": 455.06, + "probability": 0.8545 + }, + { + "start": 455.2, + "end": 455.59, + "probability": 0.9902 + }, + { + "start": 455.96, + "end": 458.26, + "probability": 0.992 + }, + { + "start": 458.92, + "end": 462.24, + "probability": 0.9468 + }, + { + "start": 462.28, + "end": 463.18, + "probability": 0.6787 + }, + { + "start": 463.18, + "end": 464.82, + "probability": 0.8076 + }, + { + "start": 464.86, + "end": 466.38, + "probability": 0.9358 + }, + { + "start": 466.38, + "end": 467.1, + "probability": 0.7789 + }, + { + "start": 467.3, + "end": 468.75, + "probability": 0.7392 + }, + { + "start": 469.94, + "end": 471.16, + "probability": 0.9985 + }, + { + "start": 471.32, + "end": 471.94, + "probability": 0.9277 + }, + { + "start": 472.56, + "end": 473.04, + "probability": 0.8481 + }, + { + "start": 473.14, + "end": 473.34, + "probability": 0.625 + }, + { + "start": 473.34, + "end": 475.1, + "probability": 0.8318 + }, + { + "start": 475.16, + "end": 475.72, + "probability": 0.9185 + }, + { + "start": 477.75, + "end": 480.68, + "probability": 0.4412 + }, + { + "start": 480.76, + "end": 482.72, + "probability": 0.9934 + }, + { + "start": 484.1, + "end": 486.34, + "probability": 0.9896 + }, + { + "start": 486.74, + "end": 489.56, + "probability": 0.6595 + }, + { + "start": 507.0, + "end": 507.5, + "probability": 0.7928 + }, + { + "start": 508.2, + "end": 509.12, + "probability": 0.5495 + }, + { + "start": 509.42, + "end": 511.0, + "probability": 0.8439 + }, + { + "start": 511.78, + "end": 514.74, + "probability": 0.9976 + }, + { + "start": 514.74, + "end": 517.94, + "probability": 0.8322 + }, + { + "start": 518.86, + "end": 525.28, + "probability": 0.9395 + }, + { + "start": 526.06, + "end": 535.36, + "probability": 0.9835 + }, + { + "start": 536.46, + "end": 538.82, + "probability": 0.8965 + }, + { + "start": 539.4, + "end": 540.74, + "probability": 0.8075 + }, + { + "start": 541.28, + "end": 542.76, + "probability": 0.8822 + }, + { + "start": 543.98, + "end": 546.04, + "probability": 0.9805 + }, + { + "start": 547.1, + "end": 547.44, + "probability": 0.5115 + }, + { + "start": 549.42, + "end": 549.63, + "probability": 0.4651 + }, + { + "start": 551.16, + "end": 552.12, + "probability": 0.6928 + }, + { + "start": 552.4, + "end": 553.54, + "probability": 0.7728 + }, + { + "start": 554.3, + "end": 555.52, + "probability": 0.1728 + }, + { + "start": 555.52, + "end": 557.7, + "probability": 0.8654 + }, + { + "start": 558.44, + "end": 560.44, + "probability": 0.833 + }, + { + "start": 561.4, + "end": 565.36, + "probability": 0.869 + }, + { + "start": 566.0, + "end": 569.78, + "probability": 0.9956 + }, + { + "start": 570.84, + "end": 571.98, + "probability": 0.7988 + }, + { + "start": 572.58, + "end": 573.04, + "probability": 0.4611 + }, + { + "start": 573.6, + "end": 575.6, + "probability": 0.7751 + }, + { + "start": 576.02, + "end": 577.28, + "probability": 0.8887 + }, + { + "start": 577.36, + "end": 581.08, + "probability": 0.9761 + }, + { + "start": 581.82, + "end": 584.98, + "probability": 0.9929 + }, + { + "start": 586.58, + "end": 589.76, + "probability": 0.986 + }, + { + "start": 590.52, + "end": 591.1, + "probability": 0.6087 + }, + { + "start": 592.79, + "end": 595.18, + "probability": 0.9668 + }, + { + "start": 595.28, + "end": 598.52, + "probability": 0.9932 + }, + { + "start": 599.44, + "end": 599.74, + "probability": 0.8992 + }, + { + "start": 599.82, + "end": 603.4, + "probability": 0.9929 + }, + { + "start": 603.88, + "end": 604.77, + "probability": 0.9033 + }, + { + "start": 604.98, + "end": 606.42, + "probability": 0.9974 + }, + { + "start": 606.92, + "end": 608.08, + "probability": 0.97 + }, + { + "start": 610.56, + "end": 616.44, + "probability": 0.9108 + }, + { + "start": 616.44, + "end": 622.36, + "probability": 0.9522 + }, + { + "start": 624.96, + "end": 629.48, + "probability": 0.9925 + }, + { + "start": 629.48, + "end": 635.22, + "probability": 0.9967 + }, + { + "start": 635.22, + "end": 641.02, + "probability": 0.998 + }, + { + "start": 641.02, + "end": 644.4, + "probability": 0.9972 + }, + { + "start": 645.14, + "end": 648.68, + "probability": 0.9473 + }, + { + "start": 649.86, + "end": 656.04, + "probability": 0.9984 + }, + { + "start": 656.04, + "end": 662.1, + "probability": 0.9965 + }, + { + "start": 662.1, + "end": 667.1, + "probability": 0.9988 + }, + { + "start": 667.86, + "end": 668.44, + "probability": 0.7558 + }, + { + "start": 669.1, + "end": 675.5, + "probability": 0.9985 + }, + { + "start": 676.06, + "end": 678.22, + "probability": 0.9938 + }, + { + "start": 678.42, + "end": 679.4, + "probability": 0.7878 + }, + { + "start": 679.96, + "end": 682.94, + "probability": 0.8925 + }, + { + "start": 682.94, + "end": 683.42, + "probability": 0.6258 + }, + { + "start": 683.57, + "end": 689.14, + "probability": 0.9425 + }, + { + "start": 689.2, + "end": 693.92, + "probability": 0.9409 + }, + { + "start": 694.68, + "end": 697.94, + "probability": 0.9542 + }, + { + "start": 698.7, + "end": 701.4, + "probability": 0.985 + }, + { + "start": 701.82, + "end": 702.98, + "probability": 0.9014 + }, + { + "start": 703.28, + "end": 703.94, + "probability": 0.5498 + }, + { + "start": 704.32, + "end": 706.42, + "probability": 0.9688 + }, + { + "start": 707.06, + "end": 710.12, + "probability": 0.939 + }, + { + "start": 710.18, + "end": 711.02, + "probability": 0.9941 + }, + { + "start": 711.18, + "end": 712.14, + "probability": 0.9158 + }, + { + "start": 712.94, + "end": 717.7, + "probability": 0.9933 + }, + { + "start": 718.24, + "end": 721.46, + "probability": 0.9642 + }, + { + "start": 722.28, + "end": 726.6, + "probability": 0.9944 + }, + { + "start": 727.06, + "end": 728.66, + "probability": 0.7737 + }, + { + "start": 729.46, + "end": 731.26, + "probability": 0.998 + }, + { + "start": 732.1, + "end": 733.94, + "probability": 0.955 + }, + { + "start": 734.8, + "end": 739.96, + "probability": 0.9789 + }, + { + "start": 739.96, + "end": 746.56, + "probability": 0.9813 + }, + { + "start": 746.86, + "end": 748.32, + "probability": 0.9355 + }, + { + "start": 749.58, + "end": 754.66, + "probability": 0.8601 + }, + { + "start": 755.76, + "end": 759.13, + "probability": 0.9746 + }, + { + "start": 759.5, + "end": 762.46, + "probability": 0.9881 + }, + { + "start": 763.42, + "end": 769.98, + "probability": 0.8687 + }, + { + "start": 771.1, + "end": 773.22, + "probability": 0.8239 + }, + { + "start": 773.92, + "end": 777.88, + "probability": 0.9841 + }, + { + "start": 777.88, + "end": 781.44, + "probability": 0.9754 + }, + { + "start": 781.8, + "end": 783.46, + "probability": 0.9772 + }, + { + "start": 784.1, + "end": 788.68, + "probability": 0.9974 + }, + { + "start": 788.84, + "end": 792.42, + "probability": 0.9987 + }, + { + "start": 793.4, + "end": 795.68, + "probability": 0.8657 + }, + { + "start": 796.62, + "end": 801.42, + "probability": 0.9615 + }, + { + "start": 802.16, + "end": 806.12, + "probability": 0.9699 + }, + { + "start": 806.78, + "end": 813.32, + "probability": 0.976 + }, + { + "start": 813.32, + "end": 820.3, + "probability": 0.9882 + }, + { + "start": 821.08, + "end": 822.5, + "probability": 0.9895 + }, + { + "start": 822.58, + "end": 824.06, + "probability": 0.828 + }, + { + "start": 825.08, + "end": 828.58, + "probability": 0.9049 + }, + { + "start": 829.28, + "end": 830.12, + "probability": 0.7527 + }, + { + "start": 830.36, + "end": 831.9, + "probability": 0.8962 + }, + { + "start": 832.6, + "end": 834.4, + "probability": 0.9869 + }, + { + "start": 836.3, + "end": 837.64, + "probability": 0.803 + }, + { + "start": 841.32, + "end": 843.74, + "probability": 0.861 + }, + { + "start": 844.54, + "end": 850.75, + "probability": 0.8202 + }, + { + "start": 851.46, + "end": 852.3, + "probability": 0.6895 + }, + { + "start": 853.0, + "end": 855.34, + "probability": 0.848 + }, + { + "start": 855.98, + "end": 856.08, + "probability": 0.8236 + }, + { + "start": 857.32, + "end": 858.5, + "probability": 0.9375 + }, + { + "start": 858.58, + "end": 862.07, + "probability": 0.9735 + }, + { + "start": 862.88, + "end": 865.18, + "probability": 0.6523 + }, + { + "start": 866.42, + "end": 869.1, + "probability": 0.9375 + }, + { + "start": 870.16, + "end": 871.71, + "probability": 0.5919 + }, + { + "start": 872.32, + "end": 873.04, + "probability": 0.4667 + }, + { + "start": 874.14, + "end": 875.1, + "probability": 0.6545 + }, + { + "start": 875.16, + "end": 881.12, + "probability": 0.9333 + }, + { + "start": 881.58, + "end": 885.62, + "probability": 0.699 + }, + { + "start": 886.12, + "end": 886.32, + "probability": 0.1995 + }, + { + "start": 886.34, + "end": 887.2, + "probability": 0.9121 + }, + { + "start": 887.6, + "end": 891.0, + "probability": 0.9783 + }, + { + "start": 892.16, + "end": 894.64, + "probability": 0.9919 + }, + { + "start": 894.7, + "end": 896.1, + "probability": 0.7212 + }, + { + "start": 898.84, + "end": 900.96, + "probability": 0.7122 + }, + { + "start": 901.06, + "end": 901.4, + "probability": 0.7708 + }, + { + "start": 903.39, + "end": 906.26, + "probability": 0.9808 + }, + { + "start": 906.78, + "end": 908.22, + "probability": 0.7778 + }, + { + "start": 908.3, + "end": 911.1, + "probability": 0.9352 + }, + { + "start": 911.38, + "end": 913.48, + "probability": 0.8472 + }, + { + "start": 914.6, + "end": 915.3, + "probability": 0.8913 + }, + { + "start": 915.42, + "end": 918.02, + "probability": 0.776 + }, + { + "start": 918.18, + "end": 919.3, + "probability": 0.9356 + }, + { + "start": 919.6, + "end": 920.8, + "probability": 0.9478 + }, + { + "start": 921.44, + "end": 922.94, + "probability": 0.8716 + }, + { + "start": 925.54, + "end": 927.86, + "probability": 0.6383 + }, + { + "start": 928.86, + "end": 930.86, + "probability": 0.7294 + }, + { + "start": 933.74, + "end": 936.04, + "probability": 0.9927 + }, + { + "start": 936.52, + "end": 937.8, + "probability": 0.7386 + }, + { + "start": 938.22, + "end": 940.5, + "probability": 0.9277 + }, + { + "start": 941.72, + "end": 942.44, + "probability": 0.759 + }, + { + "start": 944.26, + "end": 949.0, + "probability": 0.9904 + }, + { + "start": 950.66, + "end": 951.3, + "probability": 0.3918 + }, + { + "start": 952.16, + "end": 952.92, + "probability": 0.8716 + }, + { + "start": 954.24, + "end": 956.56, + "probability": 0.9553 + }, + { + "start": 956.76, + "end": 958.92, + "probability": 0.8485 + }, + { + "start": 960.04, + "end": 961.38, + "probability": 0.9928 + }, + { + "start": 961.98, + "end": 966.37, + "probability": 0.8023 + }, + { + "start": 966.88, + "end": 971.64, + "probability": 0.951 + }, + { + "start": 972.02, + "end": 973.2, + "probability": 0.9152 + }, + { + "start": 973.7, + "end": 977.34, + "probability": 0.9825 + }, + { + "start": 978.04, + "end": 980.04, + "probability": 0.8445 + }, + { + "start": 980.7, + "end": 986.06, + "probability": 0.9777 + }, + { + "start": 986.68, + "end": 987.78, + "probability": 0.7866 + }, + { + "start": 987.94, + "end": 993.02, + "probability": 0.9207 + }, + { + "start": 993.38, + "end": 994.3, + "probability": 0.9958 + }, + { + "start": 994.9, + "end": 994.9, + "probability": 0.5234 + }, + { + "start": 994.9, + "end": 995.98, + "probability": 0.8466 + }, + { + "start": 996.1, + "end": 997.9, + "probability": 0.7447 + }, + { + "start": 998.26, + "end": 1000.12, + "probability": 0.8293 + }, + { + "start": 1000.14, + "end": 1000.22, + "probability": 0.0254 + }, + { + "start": 1000.22, + "end": 1000.74, + "probability": 0.3956 + }, + { + "start": 1000.94, + "end": 1001.16, + "probability": 0.4211 + }, + { + "start": 1001.82, + "end": 1003.16, + "probability": 0.8682 + }, + { + "start": 1003.68, + "end": 1005.44, + "probability": 0.5422 + }, + { + "start": 1005.6, + "end": 1007.64, + "probability": 0.9839 + }, + { + "start": 1007.82, + "end": 1013.8, + "probability": 0.9793 + }, + { + "start": 1013.8, + "end": 1019.18, + "probability": 0.9915 + }, + { + "start": 1019.18, + "end": 1023.58, + "probability": 0.9948 + }, + { + "start": 1024.16, + "end": 1024.72, + "probability": 0.7319 + }, + { + "start": 1024.98, + "end": 1025.64, + "probability": 0.4774 + }, + { + "start": 1028.87, + "end": 1033.7, + "probability": 0.9595 + }, + { + "start": 1034.74, + "end": 1035.86, + "probability": 0.6598 + }, + { + "start": 1036.6, + "end": 1038.02, + "probability": 0.9817 + }, + { + "start": 1038.64, + "end": 1039.2, + "probability": 0.8778 + }, + { + "start": 1039.64, + "end": 1044.38, + "probability": 0.9907 + }, + { + "start": 1045.0, + "end": 1046.22, + "probability": 0.9859 + }, + { + "start": 1046.9, + "end": 1049.08, + "probability": 0.8417 + }, + { + "start": 1049.16, + "end": 1051.68, + "probability": 0.7506 + }, + { + "start": 1052.46, + "end": 1055.62, + "probability": 0.9557 + }, + { + "start": 1056.02, + "end": 1056.38, + "probability": 0.6613 + }, + { + "start": 1056.44, + "end": 1057.88, + "probability": 0.885 + }, + { + "start": 1058.32, + "end": 1058.64, + "probability": 0.0204 + }, + { + "start": 1059.04, + "end": 1060.18, + "probability": 0.676 + }, + { + "start": 1060.18, + "end": 1061.58, + "probability": 0.8905 + }, + { + "start": 1061.98, + "end": 1062.88, + "probability": 0.7236 + }, + { + "start": 1063.62, + "end": 1064.58, + "probability": 0.969 + }, + { + "start": 1064.76, + "end": 1067.76, + "probability": 0.9849 + }, + { + "start": 1067.76, + "end": 1072.22, + "probability": 0.9553 + }, + { + "start": 1074.34, + "end": 1074.84, + "probability": 0.6503 + }, + { + "start": 1074.84, + "end": 1075.14, + "probability": 0.5047 + }, + { + "start": 1075.24, + "end": 1076.1, + "probability": 0.8578 + }, + { + "start": 1076.26, + "end": 1076.78, + "probability": 0.8385 + }, + { + "start": 1076.92, + "end": 1078.84, + "probability": 0.9257 + }, + { + "start": 1079.68, + "end": 1080.5, + "probability": 0.3499 + }, + { + "start": 1080.68, + "end": 1080.94, + "probability": 0.8314 + }, + { + "start": 1081.02, + "end": 1085.28, + "probability": 0.9755 + }, + { + "start": 1085.28, + "end": 1088.08, + "probability": 0.923 + }, + { + "start": 1088.36, + "end": 1089.0, + "probability": 0.701 + }, + { + "start": 1090.2, + "end": 1090.44, + "probability": 0.5215 + }, + { + "start": 1091.32, + "end": 1092.04, + "probability": 0.7994 + }, + { + "start": 1092.84, + "end": 1094.5, + "probability": 0.9966 + }, + { + "start": 1095.48, + "end": 1098.44, + "probability": 0.8174 + }, + { + "start": 1099.08, + "end": 1102.42, + "probability": 0.9844 + }, + { + "start": 1103.06, + "end": 1106.14, + "probability": 0.9841 + }, + { + "start": 1106.22, + "end": 1109.94, + "probability": 0.9697 + }, + { + "start": 1110.86, + "end": 1114.82, + "probability": 0.986 + }, + { + "start": 1114.82, + "end": 1117.62, + "probability": 0.9981 + }, + { + "start": 1118.78, + "end": 1120.08, + "probability": 0.8647 + }, + { + "start": 1120.6, + "end": 1121.68, + "probability": 0.9503 + }, + { + "start": 1121.72, + "end": 1127.22, + "probability": 0.9516 + }, + { + "start": 1127.86, + "end": 1132.14, + "probability": 0.9857 + }, + { + "start": 1132.98, + "end": 1136.8, + "probability": 0.994 + }, + { + "start": 1136.88, + "end": 1138.4, + "probability": 0.8201 + }, + { + "start": 1138.44, + "end": 1140.42, + "probability": 0.8926 + }, + { + "start": 1140.9, + "end": 1142.16, + "probability": 0.5506 + }, + { + "start": 1142.34, + "end": 1146.22, + "probability": 0.8938 + }, + { + "start": 1146.38, + "end": 1147.3, + "probability": 0.4771 + }, + { + "start": 1147.88, + "end": 1151.68, + "probability": 0.9796 + }, + { + "start": 1151.76, + "end": 1154.16, + "probability": 0.993 + }, + { + "start": 1154.76, + "end": 1155.28, + "probability": 0.6648 + }, + { + "start": 1155.32, + "end": 1158.82, + "probability": 0.9855 + }, + { + "start": 1159.76, + "end": 1162.98, + "probability": 0.86 + }, + { + "start": 1163.2, + "end": 1168.28, + "probability": 0.9848 + }, + { + "start": 1169.34, + "end": 1171.48, + "probability": 0.8942 + }, + { + "start": 1171.72, + "end": 1172.28, + "probability": 0.8994 + }, + { + "start": 1172.5, + "end": 1175.92, + "probability": 0.9674 + }, + { + "start": 1175.92, + "end": 1179.46, + "probability": 0.9728 + }, + { + "start": 1180.72, + "end": 1181.1, + "probability": 0.9553 + }, + { + "start": 1181.2, + "end": 1189.66, + "probability": 0.9391 + }, + { + "start": 1189.94, + "end": 1190.78, + "probability": 0.1145 + }, + { + "start": 1190.78, + "end": 1191.1, + "probability": 0.2982 + }, + { + "start": 1191.44, + "end": 1191.76, + "probability": 0.649 + }, + { + "start": 1191.92, + "end": 1192.58, + "probability": 0.7966 + }, + { + "start": 1193.26, + "end": 1194.8, + "probability": 0.9798 + }, + { + "start": 1195.86, + "end": 1201.06, + "probability": 0.9815 + }, + { + "start": 1202.16, + "end": 1204.06, + "probability": 0.945 + }, + { + "start": 1204.32, + "end": 1206.22, + "probability": 0.7813 + }, + { + "start": 1206.98, + "end": 1211.36, + "probability": 0.9977 + }, + { + "start": 1212.02, + "end": 1212.9, + "probability": 0.753 + }, + { + "start": 1213.82, + "end": 1217.92, + "probability": 0.9965 + }, + { + "start": 1218.54, + "end": 1218.86, + "probability": 0.9092 + }, + { + "start": 1219.92, + "end": 1224.8, + "probability": 0.9644 + }, + { + "start": 1224.94, + "end": 1230.76, + "probability": 0.9981 + }, + { + "start": 1230.96, + "end": 1233.26, + "probability": 0.9943 + }, + { + "start": 1233.66, + "end": 1234.16, + "probability": 0.9434 + }, + { + "start": 1234.34, + "end": 1234.86, + "probability": 0.9199 + }, + { + "start": 1234.98, + "end": 1235.9, + "probability": 0.7018 + }, + { + "start": 1236.04, + "end": 1237.62, + "probability": 0.9568 + }, + { + "start": 1238.16, + "end": 1239.16, + "probability": 0.9778 + }, + { + "start": 1239.72, + "end": 1243.12, + "probability": 0.9937 + }, + { + "start": 1244.08, + "end": 1245.68, + "probability": 0.9979 + }, + { + "start": 1245.86, + "end": 1247.18, + "probability": 0.9643 + }, + { + "start": 1248.74, + "end": 1251.64, + "probability": 0.9468 + }, + { + "start": 1251.8, + "end": 1257.08, + "probability": 0.9775 + }, + { + "start": 1257.3, + "end": 1260.24, + "probability": 0.8817 + }, + { + "start": 1260.78, + "end": 1264.46, + "probability": 0.9865 + }, + { + "start": 1265.86, + "end": 1267.06, + "probability": 0.506 + }, + { + "start": 1267.28, + "end": 1268.28, + "probability": 0.9476 + }, + { + "start": 1268.88, + "end": 1270.88, + "probability": 0.9878 + }, + { + "start": 1272.1, + "end": 1275.48, + "probability": 0.7344 + }, + { + "start": 1275.7, + "end": 1278.44, + "probability": 0.9221 + }, + { + "start": 1279.0, + "end": 1281.08, + "probability": 0.9953 + }, + { + "start": 1281.5, + "end": 1281.8, + "probability": 0.2689 + }, + { + "start": 1281.84, + "end": 1282.04, + "probability": 0.5306 + }, + { + "start": 1282.12, + "end": 1284.64, + "probability": 0.8591 + }, + { + "start": 1296.8, + "end": 1298.8, + "probability": 0.6853 + }, + { + "start": 1300.06, + "end": 1301.7, + "probability": 0.9568 + }, + { + "start": 1302.88, + "end": 1308.3, + "probability": 0.9181 + }, + { + "start": 1309.36, + "end": 1309.86, + "probability": 0.9459 + }, + { + "start": 1310.88, + "end": 1313.0, + "probability": 0.57 + }, + { + "start": 1313.84, + "end": 1314.54, + "probability": 0.8691 + }, + { + "start": 1315.26, + "end": 1317.62, + "probability": 0.9741 + }, + { + "start": 1318.3, + "end": 1319.24, + "probability": 0.6713 + }, + { + "start": 1320.82, + "end": 1322.92, + "probability": 0.9761 + }, + { + "start": 1323.16, + "end": 1327.87, + "probability": 0.9445 + }, + { + "start": 1329.42, + "end": 1331.34, + "probability": 0.8255 + }, + { + "start": 1332.36, + "end": 1336.16, + "probability": 0.9709 + }, + { + "start": 1338.26, + "end": 1342.98, + "probability": 0.9542 + }, + { + "start": 1343.52, + "end": 1348.76, + "probability": 0.9929 + }, + { + "start": 1348.86, + "end": 1351.92, + "probability": 0.998 + }, + { + "start": 1352.9, + "end": 1354.02, + "probability": 0.6494 + }, + { + "start": 1354.04, + "end": 1354.3, + "probability": 0.3959 + }, + { + "start": 1354.3, + "end": 1359.26, + "probability": 0.9563 + }, + { + "start": 1359.92, + "end": 1364.84, + "probability": 0.9473 + }, + { + "start": 1365.42, + "end": 1366.8, + "probability": 0.9961 + }, + { + "start": 1367.8, + "end": 1369.36, + "probability": 0.9827 + }, + { + "start": 1372.94, + "end": 1375.44, + "probability": 0.8965 + }, + { + "start": 1377.02, + "end": 1378.5, + "probability": 0.7557 + }, + { + "start": 1379.08, + "end": 1379.68, + "probability": 0.7775 + }, + { + "start": 1380.68, + "end": 1384.76, + "probability": 0.8442 + }, + { + "start": 1385.94, + "end": 1388.5, + "probability": 0.7324 + }, + { + "start": 1389.7, + "end": 1391.46, + "probability": 0.8807 + }, + { + "start": 1393.34, + "end": 1395.68, + "probability": 0.9953 + }, + { + "start": 1396.44, + "end": 1397.98, + "probability": 0.7746 + }, + { + "start": 1398.94, + "end": 1399.24, + "probability": 0.3837 + }, + { + "start": 1399.6, + "end": 1402.74, + "probability": 0.8688 + }, + { + "start": 1402.86, + "end": 1403.66, + "probability": 0.6616 + }, + { + "start": 1404.24, + "end": 1405.16, + "probability": 0.8763 + }, + { + "start": 1406.56, + "end": 1410.26, + "probability": 0.9636 + }, + { + "start": 1411.16, + "end": 1412.78, + "probability": 0.7761 + }, + { + "start": 1412.9, + "end": 1415.7, + "probability": 0.8655 + }, + { + "start": 1415.94, + "end": 1416.76, + "probability": 0.562 + }, + { + "start": 1416.9, + "end": 1417.3, + "probability": 0.7437 + }, + { + "start": 1417.36, + "end": 1418.62, + "probability": 0.6889 + }, + { + "start": 1419.08, + "end": 1419.86, + "probability": 0.9773 + }, + { + "start": 1420.2, + "end": 1422.38, + "probability": 0.9668 + }, + { + "start": 1423.78, + "end": 1424.24, + "probability": 0.7333 + }, + { + "start": 1425.06, + "end": 1429.0, + "probability": 0.6729 + }, + { + "start": 1429.56, + "end": 1429.56, + "probability": 0.0262 + }, + { + "start": 1429.56, + "end": 1433.88, + "probability": 0.8657 + }, + { + "start": 1434.92, + "end": 1435.56, + "probability": 0.9061 + }, + { + "start": 1436.08, + "end": 1438.9, + "probability": 0.7395 + }, + { + "start": 1439.68, + "end": 1441.86, + "probability": 0.7369 + }, + { + "start": 1442.5, + "end": 1444.22, + "probability": 0.6643 + }, + { + "start": 1445.1, + "end": 1445.65, + "probability": 0.3182 + }, + { + "start": 1446.34, + "end": 1447.76, + "probability": 0.5085 + }, + { + "start": 1447.84, + "end": 1448.44, + "probability": 0.7916 + }, + { + "start": 1448.86, + "end": 1449.72, + "probability": 0.9019 + }, + { + "start": 1450.04, + "end": 1450.3, + "probability": 0.7704 + }, + { + "start": 1451.94, + "end": 1452.36, + "probability": 0.4948 + }, + { + "start": 1452.68, + "end": 1454.62, + "probability": 0.9465 + }, + { + "start": 1454.7, + "end": 1454.8, + "probability": 0.8463 + }, + { + "start": 1454.92, + "end": 1455.74, + "probability": 0.9932 + }, + { + "start": 1455.9, + "end": 1459.21, + "probability": 0.9922 + }, + { + "start": 1460.06, + "end": 1461.64, + "probability": 0.947 + }, + { + "start": 1462.36, + "end": 1466.16, + "probability": 0.9752 + }, + { + "start": 1466.32, + "end": 1468.5, + "probability": 0.9956 + }, + { + "start": 1470.0, + "end": 1471.18, + "probability": 0.679 + }, + { + "start": 1471.34, + "end": 1477.42, + "probability": 0.993 + }, + { + "start": 1477.9, + "end": 1478.88, + "probability": 0.7904 + }, + { + "start": 1479.6, + "end": 1481.82, + "probability": 0.9593 + }, + { + "start": 1482.54, + "end": 1486.96, + "probability": 0.9868 + }, + { + "start": 1487.4, + "end": 1488.72, + "probability": 0.937 + }, + { + "start": 1489.24, + "end": 1492.42, + "probability": 0.9946 + }, + { + "start": 1493.12, + "end": 1495.32, + "probability": 0.9854 + }, + { + "start": 1495.46, + "end": 1496.92, + "probability": 0.9328 + }, + { + "start": 1496.98, + "end": 1499.54, + "probability": 0.835 + }, + { + "start": 1499.96, + "end": 1500.6, + "probability": 0.5203 + }, + { + "start": 1501.06, + "end": 1501.72, + "probability": 0.7296 + }, + { + "start": 1501.82, + "end": 1504.6, + "probability": 0.9328 + }, + { + "start": 1505.0, + "end": 1506.22, + "probability": 0.7438 + }, + { + "start": 1506.72, + "end": 1509.66, + "probability": 0.8354 + }, + { + "start": 1509.72, + "end": 1509.9, + "probability": 0.8086 + }, + { + "start": 1510.42, + "end": 1514.08, + "probability": 0.8328 + }, + { + "start": 1514.6, + "end": 1515.84, + "probability": 0.9293 + }, + { + "start": 1515.98, + "end": 1518.02, + "probability": 0.994 + }, + { + "start": 1518.52, + "end": 1520.34, + "probability": 0.8355 + }, + { + "start": 1520.4, + "end": 1522.58, + "probability": 0.9803 + }, + { + "start": 1523.24, + "end": 1525.62, + "probability": 0.997 + }, + { + "start": 1525.7, + "end": 1530.46, + "probability": 0.9976 + }, + { + "start": 1530.94, + "end": 1533.24, + "probability": 0.757 + }, + { + "start": 1533.32, + "end": 1534.16, + "probability": 0.8906 + }, + { + "start": 1534.44, + "end": 1534.64, + "probability": 0.6416 + }, + { + "start": 1534.82, + "end": 1536.22, + "probability": 0.6026 + }, + { + "start": 1537.38, + "end": 1542.08, + "probability": 0.9768 + }, + { + "start": 1543.06, + "end": 1545.04, + "probability": 0.9359 + }, + { + "start": 1545.14, + "end": 1549.4, + "probability": 0.9648 + }, + { + "start": 1549.72, + "end": 1550.22, + "probability": 0.5154 + }, + { + "start": 1550.28, + "end": 1552.04, + "probability": 0.9653 + }, + { + "start": 1553.12, + "end": 1553.58, + "probability": 0.8713 + }, + { + "start": 1553.66, + "end": 1554.44, + "probability": 0.6178 + }, + { + "start": 1554.66, + "end": 1555.66, + "probability": 0.8272 + }, + { + "start": 1555.7, + "end": 1557.92, + "probability": 0.8919 + }, + { + "start": 1558.44, + "end": 1561.98, + "probability": 0.896 + }, + { + "start": 1562.3, + "end": 1565.18, + "probability": 0.9956 + }, + { + "start": 1565.48, + "end": 1568.08, + "probability": 0.8176 + }, + { + "start": 1569.1, + "end": 1571.72, + "probability": 0.9984 + }, + { + "start": 1571.72, + "end": 1573.6, + "probability": 0.9976 + }, + { + "start": 1574.42, + "end": 1577.0, + "probability": 0.9096 + }, + { + "start": 1577.06, + "end": 1577.82, + "probability": 0.9127 + }, + { + "start": 1578.44, + "end": 1579.03, + "probability": 0.4775 + }, + { + "start": 1580.24, + "end": 1582.88, + "probability": 0.9191 + }, + { + "start": 1583.26, + "end": 1585.38, + "probability": 0.9666 + }, + { + "start": 1585.48, + "end": 1586.94, + "probability": 0.9354 + }, + { + "start": 1587.84, + "end": 1590.26, + "probability": 0.7124 + }, + { + "start": 1590.78, + "end": 1592.56, + "probability": 0.6884 + }, + { + "start": 1592.78, + "end": 1596.14, + "probability": 0.9573 + }, + { + "start": 1596.28, + "end": 1596.9, + "probability": 0.8926 + }, + { + "start": 1597.98, + "end": 1598.9, + "probability": 0.6159 + }, + { + "start": 1599.16, + "end": 1602.42, + "probability": 0.747 + }, + { + "start": 1602.72, + "end": 1605.82, + "probability": 0.9742 + }, + { + "start": 1605.84, + "end": 1606.9, + "probability": 0.9066 + }, + { + "start": 1607.0, + "end": 1609.02, + "probability": 0.6844 + }, + { + "start": 1609.22, + "end": 1611.36, + "probability": 0.8501 + }, + { + "start": 1612.28, + "end": 1614.44, + "probability": 0.9895 + }, + { + "start": 1615.06, + "end": 1615.32, + "probability": 0.1291 + }, + { + "start": 1615.66, + "end": 1618.67, + "probability": 0.528 + }, + { + "start": 1618.88, + "end": 1619.8, + "probability": 0.4648 + }, + { + "start": 1620.3, + "end": 1621.02, + "probability": 0.7705 + }, + { + "start": 1621.06, + "end": 1622.3, + "probability": 0.9362 + }, + { + "start": 1622.46, + "end": 1623.36, + "probability": 0.7182 + }, + { + "start": 1623.92, + "end": 1624.19, + "probability": 0.769 + }, + { + "start": 1624.66, + "end": 1626.53, + "probability": 0.6688 + }, + { + "start": 1627.46, + "end": 1628.96, + "probability": 0.455 + }, + { + "start": 1629.54, + "end": 1631.26, + "probability": 0.6172 + }, + { + "start": 1631.28, + "end": 1632.78, + "probability": 0.9481 + }, + { + "start": 1633.36, + "end": 1635.78, + "probability": 0.9756 + }, + { + "start": 1635.78, + "end": 1638.14, + "probability": 0.8832 + }, + { + "start": 1638.48, + "end": 1639.02, + "probability": 0.647 + }, + { + "start": 1639.3, + "end": 1641.24, + "probability": 0.829 + }, + { + "start": 1641.8, + "end": 1643.46, + "probability": 0.609 + }, + { + "start": 1643.56, + "end": 1645.08, + "probability": 0.9897 + }, + { + "start": 1645.08, + "end": 1648.02, + "probability": 0.9907 + }, + { + "start": 1648.92, + "end": 1653.74, + "probability": 0.9935 + }, + { + "start": 1654.7, + "end": 1657.44, + "probability": 0.9885 + }, + { + "start": 1659.1, + "end": 1662.96, + "probability": 0.884 + }, + { + "start": 1664.32, + "end": 1667.8, + "probability": 0.9435 + }, + { + "start": 1668.82, + "end": 1669.98, + "probability": 0.8892 + }, + { + "start": 1670.02, + "end": 1672.63, + "probability": 0.8564 + }, + { + "start": 1673.3, + "end": 1673.76, + "probability": 0.9701 + }, + { + "start": 1674.46, + "end": 1675.64, + "probability": 0.8492 + }, + { + "start": 1675.8, + "end": 1677.08, + "probability": 0.998 + }, + { + "start": 1677.44, + "end": 1677.78, + "probability": 0.8088 + }, + { + "start": 1678.68, + "end": 1679.44, + "probability": 0.8231 + }, + { + "start": 1680.04, + "end": 1681.68, + "probability": 0.4872 + }, + { + "start": 1681.78, + "end": 1684.32, + "probability": 0.9058 + }, + { + "start": 1684.5, + "end": 1685.4, + "probability": 0.744 + }, + { + "start": 1685.92, + "end": 1688.14, + "probability": 0.9451 + }, + { + "start": 1688.6, + "end": 1691.0, + "probability": 0.8956 + }, + { + "start": 1691.02, + "end": 1694.34, + "probability": 0.6062 + }, + { + "start": 1695.06, + "end": 1697.08, + "probability": 0.2767 + }, + { + "start": 1697.97, + "end": 1703.66, + "probability": 0.6773 + }, + { + "start": 1706.1, + "end": 1707.42, + "probability": 0.034 + }, + { + "start": 1709.82, + "end": 1714.62, + "probability": 0.0317 + }, + { + "start": 1744.34, + "end": 1744.4, + "probability": 0.0975 + }, + { + "start": 1744.4, + "end": 1744.4, + "probability": 0.4997 + }, + { + "start": 1744.4, + "end": 1744.88, + "probability": 0.6271 + }, + { + "start": 1745.44, + "end": 1747.78, + "probability": 0.6625 + }, + { + "start": 1749.04, + "end": 1750.4, + "probability": 0.895 + }, + { + "start": 1751.2, + "end": 1753.96, + "probability": 0.965 + }, + { + "start": 1757.36, + "end": 1758.8, + "probability": 0.9044 + }, + { + "start": 1759.12, + "end": 1760.32, + "probability": 0.9495 + }, + { + "start": 1760.64, + "end": 1764.15, + "probability": 0.9439 + }, + { + "start": 1764.5, + "end": 1767.62, + "probability": 0.9025 + }, + { + "start": 1768.16, + "end": 1769.24, + "probability": 0.4984 + }, + { + "start": 1770.04, + "end": 1776.28, + "probability": 0.9836 + }, + { + "start": 1776.52, + "end": 1777.1, + "probability": 0.7957 + }, + { + "start": 1777.8, + "end": 1779.28, + "probability": 0.8335 + }, + { + "start": 1780.02, + "end": 1780.86, + "probability": 0.8084 + }, + { + "start": 1781.66, + "end": 1783.46, + "probability": 0.7708 + }, + { + "start": 1783.76, + "end": 1786.32, + "probability": 0.9688 + }, + { + "start": 1786.74, + "end": 1787.8, + "probability": 0.8459 + }, + { + "start": 1788.58, + "end": 1791.42, + "probability": 0.9402 + }, + { + "start": 1792.06, + "end": 1793.7, + "probability": 0.9674 + }, + { + "start": 1794.06, + "end": 1798.48, + "probability": 0.9084 + }, + { + "start": 1798.64, + "end": 1799.46, + "probability": 0.9657 + }, + { + "start": 1800.0, + "end": 1801.48, + "probability": 0.9432 + }, + { + "start": 1803.74, + "end": 1807.04, + "probability": 0.9899 + }, + { + "start": 1807.22, + "end": 1809.36, + "probability": 0.8686 + }, + { + "start": 1810.22, + "end": 1815.92, + "probability": 0.8274 + }, + { + "start": 1816.54, + "end": 1817.97, + "probability": 0.7492 + }, + { + "start": 1818.12, + "end": 1818.66, + "probability": 0.7257 + }, + { + "start": 1818.74, + "end": 1825.12, + "probability": 0.9722 + }, + { + "start": 1825.58, + "end": 1828.18, + "probability": 0.9981 + }, + { + "start": 1829.44, + "end": 1831.36, + "probability": 0.9414 + }, + { + "start": 1832.2, + "end": 1835.0, + "probability": 0.8564 + }, + { + "start": 1835.88, + "end": 1840.74, + "probability": 0.9729 + }, + { + "start": 1840.74, + "end": 1844.48, + "probability": 0.994 + }, + { + "start": 1846.02, + "end": 1846.94, + "probability": 0.5928 + }, + { + "start": 1847.0, + "end": 1851.16, + "probability": 0.9965 + }, + { + "start": 1851.72, + "end": 1852.2, + "probability": 0.7334 + }, + { + "start": 1852.58, + "end": 1854.33, + "probability": 0.9266 + }, + { + "start": 1855.1, + "end": 1855.62, + "probability": 0.8767 + }, + { + "start": 1856.56, + "end": 1858.08, + "probability": 0.9074 + }, + { + "start": 1858.3, + "end": 1860.1, + "probability": 0.9797 + }, + { + "start": 1861.62, + "end": 1864.08, + "probability": 0.9612 + }, + { + "start": 1864.66, + "end": 1865.46, + "probability": 0.9654 + }, + { + "start": 1865.54, + "end": 1867.63, + "probability": 0.9473 + }, + { + "start": 1868.28, + "end": 1870.58, + "probability": 0.9895 + }, + { + "start": 1870.78, + "end": 1871.88, + "probability": 0.9002 + }, + { + "start": 1872.0, + "end": 1874.3, + "probability": 0.788 + }, + { + "start": 1874.66, + "end": 1876.86, + "probability": 0.9028 + }, + { + "start": 1877.56, + "end": 1881.12, + "probability": 0.7893 + }, + { + "start": 1881.9, + "end": 1885.46, + "probability": 0.967 + }, + { + "start": 1886.34, + "end": 1887.4, + "probability": 0.894 + }, + { + "start": 1887.66, + "end": 1891.0, + "probability": 0.9902 + }, + { + "start": 1891.0, + "end": 1896.1, + "probability": 0.6917 + }, + { + "start": 1897.84, + "end": 1901.5, + "probability": 0.9429 + }, + { + "start": 1901.5, + "end": 1904.92, + "probability": 0.9828 + }, + { + "start": 1905.96, + "end": 1908.06, + "probability": 0.7991 + }, + { + "start": 1908.34, + "end": 1910.36, + "probability": 0.8864 + }, + { + "start": 1910.88, + "end": 1911.68, + "probability": 0.8624 + }, + { + "start": 1911.9, + "end": 1912.7, + "probability": 0.5584 + }, + { + "start": 1912.82, + "end": 1916.08, + "probability": 0.7972 + }, + { + "start": 1917.22, + "end": 1920.5, + "probability": 0.7725 + }, + { + "start": 1922.02, + "end": 1922.72, + "probability": 0.8969 + }, + { + "start": 1923.98, + "end": 1931.34, + "probability": 0.9048 + }, + { + "start": 1931.38, + "end": 1935.32, + "probability": 0.9492 + }, + { + "start": 1936.02, + "end": 1937.96, + "probability": 0.5342 + }, + { + "start": 1938.12, + "end": 1940.96, + "probability": 0.7837 + }, + { + "start": 1941.92, + "end": 1946.24, + "probability": 0.7969 + }, + { + "start": 1946.44, + "end": 1947.16, + "probability": 0.5905 + }, + { + "start": 1947.84, + "end": 1948.42, + "probability": 0.9483 + }, + { + "start": 1948.5, + "end": 1950.48, + "probability": 0.7596 + }, + { + "start": 1950.92, + "end": 1955.22, + "probability": 0.934 + }, + { + "start": 1955.22, + "end": 1959.72, + "probability": 0.9858 + }, + { + "start": 1960.14, + "end": 1962.48, + "probability": 0.9126 + }, + { + "start": 1963.4, + "end": 1967.88, + "probability": 0.9961 + }, + { + "start": 1967.88, + "end": 1971.64, + "probability": 0.9971 + }, + { + "start": 1971.64, + "end": 1975.36, + "probability": 0.9785 + }, + { + "start": 1977.12, + "end": 1978.85, + "probability": 0.9293 + }, + { + "start": 1979.22, + "end": 1982.96, + "probability": 0.8303 + }, + { + "start": 1983.18, + "end": 1986.76, + "probability": 0.6772 + }, + { + "start": 1987.46, + "end": 1992.46, + "probability": 0.9954 + }, + { + "start": 1992.46, + "end": 1997.62, + "probability": 0.9773 + }, + { + "start": 1998.42, + "end": 2003.1, + "probability": 0.9951 + }, + { + "start": 2003.28, + "end": 2003.74, + "probability": 0.2536 + }, + { + "start": 2004.1, + "end": 2005.78, + "probability": 0.9744 + }, + { + "start": 2005.96, + "end": 2009.34, + "probability": 0.7673 + }, + { + "start": 2010.08, + "end": 2012.54, + "probability": 0.996 + }, + { + "start": 2012.54, + "end": 2015.0, + "probability": 0.9995 + }, + { + "start": 2015.84, + "end": 2019.88, + "probability": 0.876 + }, + { + "start": 2020.52, + "end": 2021.4, + "probability": 0.8604 + }, + { + "start": 2022.16, + "end": 2025.46, + "probability": 0.7422 + }, + { + "start": 2026.6, + "end": 2027.38, + "probability": 0.7145 + }, + { + "start": 2027.48, + "end": 2033.96, + "probability": 0.9715 + }, + { + "start": 2034.04, + "end": 2035.18, + "probability": 0.9006 + }, + { + "start": 2035.48, + "end": 2036.72, + "probability": 0.9032 + }, + { + "start": 2036.86, + "end": 2038.66, + "probability": 0.9966 + }, + { + "start": 2038.78, + "end": 2039.42, + "probability": 0.5605 + }, + { + "start": 2039.44, + "end": 2040.56, + "probability": 0.9511 + }, + { + "start": 2040.72, + "end": 2041.6, + "probability": 0.887 + }, + { + "start": 2041.9, + "end": 2042.82, + "probability": 0.8673 + }, + { + "start": 2043.0, + "end": 2044.5, + "probability": 0.9072 + }, + { + "start": 2044.52, + "end": 2049.08, + "probability": 0.9668 + }, + { + "start": 2050.38, + "end": 2052.7, + "probability": 0.8862 + }, + { + "start": 2053.16, + "end": 2057.24, + "probability": 0.9926 + }, + { + "start": 2057.24, + "end": 2062.96, + "probability": 0.9862 + }, + { + "start": 2063.98, + "end": 2068.52, + "probability": 0.9963 + }, + { + "start": 2068.56, + "end": 2071.62, + "probability": 0.9984 + }, + { + "start": 2072.76, + "end": 2075.02, + "probability": 0.9404 + }, + { + "start": 2075.54, + "end": 2075.82, + "probability": 0.7318 + }, + { + "start": 2076.0, + "end": 2077.48, + "probability": 0.9937 + }, + { + "start": 2077.62, + "end": 2079.76, + "probability": 0.9286 + }, + { + "start": 2087.96, + "end": 2088.62, + "probability": 0.1661 + }, + { + "start": 2089.78, + "end": 2090.02, + "probability": 0.0453 + }, + { + "start": 2090.02, + "end": 2090.4, + "probability": 0.0844 + }, + { + "start": 2090.4, + "end": 2090.4, + "probability": 0.115 + }, + { + "start": 2090.4, + "end": 2090.58, + "probability": 0.0539 + }, + { + "start": 2090.58, + "end": 2091.2, + "probability": 0.0064 + }, + { + "start": 2092.14, + "end": 2092.16, + "probability": 0.147 + }, + { + "start": 2104.8, + "end": 2106.08, + "probability": 0.0332 + }, + { + "start": 2108.24, + "end": 2108.48, + "probability": 0.1516 + }, + { + "start": 2108.48, + "end": 2108.66, + "probability": 0.0357 + }, + { + "start": 2108.66, + "end": 2108.66, + "probability": 0.0033 + }, + { + "start": 2116.4, + "end": 2117.38, + "probability": 0.3809 + }, + { + "start": 2118.26, + "end": 2120.4, + "probability": 0.0965 + }, + { + "start": 2121.94, + "end": 2122.6, + "probability": 0.0617 + }, + { + "start": 2122.64, + "end": 2125.8, + "probability": 0.227 + }, + { + "start": 2126.62, + "end": 2128.32, + "probability": 0.0329 + }, + { + "start": 2160.68, + "end": 2161.74, + "probability": 0.0694 + }, + { + "start": 2162.5, + "end": 2164.02, + "probability": 0.456 + }, + { + "start": 2166.24, + "end": 2167.82, + "probability": 0.623 + }, + { + "start": 2168.78, + "end": 2171.2, + "probability": 0.9821 + }, + { + "start": 2171.92, + "end": 2172.52, + "probability": 0.9387 + }, + { + "start": 2173.22, + "end": 2174.1, + "probability": 0.9322 + }, + { + "start": 2174.62, + "end": 2176.56, + "probability": 0.9977 + }, + { + "start": 2177.72, + "end": 2179.52, + "probability": 0.9683 + }, + { + "start": 2180.4, + "end": 2180.7, + "probability": 0.5303 + }, + { + "start": 2181.98, + "end": 2185.36, + "probability": 0.9441 + }, + { + "start": 2185.84, + "end": 2190.28, + "probability": 0.9922 + }, + { + "start": 2191.46, + "end": 2193.04, + "probability": 0.9951 + }, + { + "start": 2193.74, + "end": 2194.1, + "probability": 0.707 + }, + { + "start": 2194.9, + "end": 2204.66, + "probability": 0.9841 + }, + { + "start": 2205.74, + "end": 2208.56, + "probability": 0.7562 + }, + { + "start": 2209.48, + "end": 2210.38, + "probability": 0.9458 + }, + { + "start": 2211.84, + "end": 2216.68, + "probability": 0.765 + }, + { + "start": 2217.58, + "end": 2220.48, + "probability": 0.9839 + }, + { + "start": 2221.68, + "end": 2222.8, + "probability": 0.9976 + }, + { + "start": 2223.82, + "end": 2227.9, + "probability": 0.9294 + }, + { + "start": 2228.46, + "end": 2234.18, + "probability": 0.9204 + }, + { + "start": 2235.26, + "end": 2237.84, + "probability": 0.9918 + }, + { + "start": 2238.82, + "end": 2241.02, + "probability": 0.5543 + }, + { + "start": 2241.1, + "end": 2242.42, + "probability": 0.7376 + }, + { + "start": 2242.84, + "end": 2243.66, + "probability": 0.907 + }, + { + "start": 2244.58, + "end": 2246.38, + "probability": 0.6086 + }, + { + "start": 2247.58, + "end": 2249.24, + "probability": 0.729 + }, + { + "start": 2250.24, + "end": 2254.28, + "probability": 0.7845 + }, + { + "start": 2255.9, + "end": 2256.8, + "probability": 0.6736 + }, + { + "start": 2257.34, + "end": 2258.94, + "probability": 0.6477 + }, + { + "start": 2259.52, + "end": 2263.34, + "probability": 0.796 + }, + { + "start": 2264.52, + "end": 2268.58, + "probability": 0.9764 + }, + { + "start": 2269.58, + "end": 2272.06, + "probability": 0.9785 + }, + { + "start": 2272.62, + "end": 2278.26, + "probability": 0.9635 + }, + { + "start": 2279.12, + "end": 2281.06, + "probability": 0.8701 + }, + { + "start": 2281.92, + "end": 2289.8, + "probability": 0.9349 + }, + { + "start": 2290.14, + "end": 2290.7, + "probability": 0.6085 + }, + { + "start": 2290.74, + "end": 2291.06, + "probability": 0.6686 + }, + { + "start": 2291.82, + "end": 2292.98, + "probability": 0.6825 + }, + { + "start": 2293.74, + "end": 2296.22, + "probability": 0.7364 + }, + { + "start": 2296.76, + "end": 2298.44, + "probability": 0.9111 + }, + { + "start": 2299.18, + "end": 2302.52, + "probability": 0.7255 + }, + { + "start": 2303.86, + "end": 2306.26, + "probability": 0.7049 + }, + { + "start": 2307.06, + "end": 2311.6, + "probability": 0.9109 + }, + { + "start": 2312.44, + "end": 2317.28, + "probability": 0.7418 + }, + { + "start": 2318.42, + "end": 2319.92, + "probability": 0.8358 + }, + { + "start": 2320.08, + "end": 2320.92, + "probability": 0.7718 + }, + { + "start": 2320.96, + "end": 2325.82, + "probability": 0.9782 + }, + { + "start": 2325.82, + "end": 2329.1, + "probability": 0.9969 + }, + { + "start": 2329.52, + "end": 2331.66, + "probability": 0.85 + }, + { + "start": 2331.84, + "end": 2333.64, + "probability": 0.8435 + }, + { + "start": 2334.1, + "end": 2336.62, + "probability": 0.8401 + }, + { + "start": 2336.92, + "end": 2337.22, + "probability": 0.4813 + }, + { + "start": 2338.12, + "end": 2341.4, + "probability": 0.8327 + }, + { + "start": 2342.84, + "end": 2344.08, + "probability": 0.4665 + }, + { + "start": 2344.84, + "end": 2345.58, + "probability": 0.7443 + }, + { + "start": 2346.44, + "end": 2346.78, + "probability": 0.7758 + }, + { + "start": 2347.68, + "end": 2348.44, + "probability": 0.9736 + }, + { + "start": 2348.66, + "end": 2351.32, + "probability": 0.7499 + }, + { + "start": 2351.32, + "end": 2352.1, + "probability": 0.9734 + }, + { + "start": 2352.64, + "end": 2355.94, + "probability": 0.948 + }, + { + "start": 2356.54, + "end": 2358.06, + "probability": 0.6998 + }, + { + "start": 2358.18, + "end": 2358.88, + "probability": 0.9966 + }, + { + "start": 2359.32, + "end": 2364.14, + "probability": 0.9788 + }, + { + "start": 2364.3, + "end": 2366.52, + "probability": 0.5588 + }, + { + "start": 2366.9, + "end": 2370.6, + "probability": 0.8914 + }, + { + "start": 2370.74, + "end": 2371.36, + "probability": 0.4008 + }, + { + "start": 2371.36, + "end": 2372.3, + "probability": 0.9047 + }, + { + "start": 2377.5, + "end": 2377.5, + "probability": 0.3619 + }, + { + "start": 2377.5, + "end": 2379.45, + "probability": 0.8352 + }, + { + "start": 2381.96, + "end": 2383.58, + "probability": 0.2873 + }, + { + "start": 2384.74, + "end": 2386.3, + "probability": 0.5756 + }, + { + "start": 2386.42, + "end": 2387.84, + "probability": 0.9055 + }, + { + "start": 2387.94, + "end": 2389.16, + "probability": 0.9132 + }, + { + "start": 2389.68, + "end": 2390.24, + "probability": 0.9318 + }, + { + "start": 2390.58, + "end": 2392.46, + "probability": 0.9509 + }, + { + "start": 2392.92, + "end": 2393.8, + "probability": 0.4792 + }, + { + "start": 2393.92, + "end": 2398.38, + "probability": 0.8308 + }, + { + "start": 2398.52, + "end": 2400.02, + "probability": 0.9851 + }, + { + "start": 2400.06, + "end": 2400.54, + "probability": 0.8499 + }, + { + "start": 2401.16, + "end": 2401.74, + "probability": 0.8056 + }, + { + "start": 2401.9, + "end": 2402.76, + "probability": 0.9425 + }, + { + "start": 2403.98, + "end": 2406.44, + "probability": 0.8331 + }, + { + "start": 2406.48, + "end": 2411.76, + "probability": 0.9956 + }, + { + "start": 2411.86, + "end": 2412.3, + "probability": 0.5026 + }, + { + "start": 2412.42, + "end": 2412.6, + "probability": 0.2901 + }, + { + "start": 2412.66, + "end": 2416.64, + "probability": 0.962 + }, + { + "start": 2416.7, + "end": 2417.2, + "probability": 0.6294 + }, + { + "start": 2417.72, + "end": 2419.46, + "probability": 0.91 + }, + { + "start": 2420.02, + "end": 2420.98, + "probability": 0.7066 + }, + { + "start": 2421.16, + "end": 2424.08, + "probability": 0.8598 + }, + { + "start": 2424.8, + "end": 2426.16, + "probability": 0.9176 + }, + { + "start": 2426.86, + "end": 2428.34, + "probability": 0.9555 + }, + { + "start": 2428.7, + "end": 2429.82, + "probability": 0.9349 + }, + { + "start": 2429.94, + "end": 2430.32, + "probability": 0.8782 + }, + { + "start": 2431.38, + "end": 2432.2, + "probability": 0.6342 + }, + { + "start": 2432.92, + "end": 2436.28, + "probability": 0.7111 + }, + { + "start": 2445.24, + "end": 2445.76, + "probability": 0.1603 + }, + { + "start": 2446.96, + "end": 2447.32, + "probability": 0.2048 + }, + { + "start": 2462.76, + "end": 2463.44, + "probability": 0.8853 + }, + { + "start": 2464.06, + "end": 2465.72, + "probability": 0.9907 + }, + { + "start": 2465.82, + "end": 2470.06, + "probability": 0.9974 + }, + { + "start": 2470.08, + "end": 2472.19, + "probability": 0.813 + }, + { + "start": 2473.38, + "end": 2476.16, + "probability": 0.9914 + }, + { + "start": 2478.88, + "end": 2480.86, + "probability": 0.5765 + }, + { + "start": 2481.08, + "end": 2482.62, + "probability": 0.3911 + }, + { + "start": 2483.6, + "end": 2485.72, + "probability": 0.7017 + }, + { + "start": 2488.26, + "end": 2488.26, + "probability": 0.0529 + }, + { + "start": 2488.26, + "end": 2488.26, + "probability": 0.0606 + }, + { + "start": 2488.26, + "end": 2488.54, + "probability": 0.242 + }, + { + "start": 2488.68, + "end": 2489.96, + "probability": 0.9693 + }, + { + "start": 2490.48, + "end": 2492.52, + "probability": 0.9465 + }, + { + "start": 2495.79, + "end": 2496.4, + "probability": 0.0255 + }, + { + "start": 2496.4, + "end": 2496.56, + "probability": 0.2448 + }, + { + "start": 2496.56, + "end": 2496.58, + "probability": 0.2508 + }, + { + "start": 2496.58, + "end": 2497.06, + "probability": 0.4426 + }, + { + "start": 2497.08, + "end": 2497.42, + "probability": 0.4222 + }, + { + "start": 2497.48, + "end": 2498.33, + "probability": 0.931 + }, + { + "start": 2498.54, + "end": 2503.51, + "probability": 0.9689 + }, + { + "start": 2504.64, + "end": 2508.9, + "probability": 0.9175 + }, + { + "start": 2509.5, + "end": 2512.58, + "probability": 0.9664 + }, + { + "start": 2512.9, + "end": 2516.08, + "probability": 0.9963 + }, + { + "start": 2516.08, + "end": 2519.48, + "probability": 0.9785 + }, + { + "start": 2521.24, + "end": 2522.86, + "probability": 0.7258 + }, + { + "start": 2522.98, + "end": 2523.72, + "probability": 0.9045 + }, + { + "start": 2523.88, + "end": 2525.78, + "probability": 0.9939 + }, + { + "start": 2525.78, + "end": 2530.16, + "probability": 0.9658 + }, + { + "start": 2530.34, + "end": 2531.06, + "probability": 0.7797 + }, + { + "start": 2531.48, + "end": 2532.32, + "probability": 0.8806 + }, + { + "start": 2533.1, + "end": 2539.3, + "probability": 0.98 + }, + { + "start": 2539.88, + "end": 2543.32, + "probability": 0.9938 + }, + { + "start": 2544.08, + "end": 2546.78, + "probability": 0.9954 + }, + { + "start": 2546.78, + "end": 2550.78, + "probability": 0.9902 + }, + { + "start": 2551.36, + "end": 2556.46, + "probability": 0.9967 + }, + { + "start": 2557.54, + "end": 2561.16, + "probability": 0.9922 + }, + { + "start": 2561.82, + "end": 2564.4, + "probability": 0.9868 + }, + { + "start": 2564.88, + "end": 2568.92, + "probability": 0.9907 + }, + { + "start": 2570.08, + "end": 2576.22, + "probability": 0.981 + }, + { + "start": 2576.8, + "end": 2577.86, + "probability": 0.7206 + }, + { + "start": 2577.9, + "end": 2580.28, + "probability": 0.9009 + }, + { + "start": 2581.2, + "end": 2584.34, + "probability": 0.9651 + }, + { + "start": 2585.02, + "end": 2587.62, + "probability": 0.8815 + }, + { + "start": 2588.46, + "end": 2591.94, + "probability": 0.9988 + }, + { + "start": 2591.94, + "end": 2595.96, + "probability": 0.9975 + }, + { + "start": 2596.74, + "end": 2600.98, + "probability": 0.9946 + }, + { + "start": 2601.4, + "end": 2603.7, + "probability": 0.9491 + }, + { + "start": 2604.04, + "end": 2606.88, + "probability": 0.9438 + }, + { + "start": 2607.6, + "end": 2608.98, + "probability": 0.7865 + }, + { + "start": 2609.14, + "end": 2611.68, + "probability": 0.9985 + }, + { + "start": 2612.66, + "end": 2613.04, + "probability": 0.6025 + }, + { + "start": 2613.28, + "end": 2618.54, + "probability": 0.9948 + }, + { + "start": 2619.56, + "end": 2620.94, + "probability": 0.9028 + }, + { + "start": 2621.44, + "end": 2621.68, + "probability": 0.587 + }, + { + "start": 2621.76, + "end": 2623.8, + "probability": 0.9956 + }, + { + "start": 2624.56, + "end": 2627.79, + "probability": 0.871 + }, + { + "start": 2628.98, + "end": 2631.62, + "probability": 0.9233 + }, + { + "start": 2632.58, + "end": 2637.52, + "probability": 0.992 + }, + { + "start": 2637.9, + "end": 2640.5, + "probability": 0.9988 + }, + { + "start": 2640.5, + "end": 2644.6, + "probability": 0.9941 + }, + { + "start": 2645.18, + "end": 2647.86, + "probability": 0.997 + }, + { + "start": 2647.94, + "end": 2648.92, + "probability": 0.5474 + }, + { + "start": 2649.0, + "end": 2654.32, + "probability": 0.9986 + }, + { + "start": 2654.84, + "end": 2657.06, + "probability": 0.9395 + }, + { + "start": 2657.62, + "end": 2658.66, + "probability": 0.9976 + }, + { + "start": 2658.82, + "end": 2659.54, + "probability": 0.7625 + }, + { + "start": 2659.64, + "end": 2666.58, + "probability": 0.991 + }, + { + "start": 2666.58, + "end": 2670.7, + "probability": 0.9993 + }, + { + "start": 2671.22, + "end": 2671.82, + "probability": 0.749 + }, + { + "start": 2671.92, + "end": 2673.98, + "probability": 0.9961 + }, + { + "start": 2674.56, + "end": 2677.4, + "probability": 0.9957 + }, + { + "start": 2677.54, + "end": 2678.58, + "probability": 0.7012 + }, + { + "start": 2679.02, + "end": 2680.64, + "probability": 0.9857 + }, + { + "start": 2681.14, + "end": 2685.4, + "probability": 0.9945 + }, + { + "start": 2685.98, + "end": 2688.02, + "probability": 0.9848 + }, + { + "start": 2688.12, + "end": 2690.58, + "probability": 0.9706 + }, + { + "start": 2691.12, + "end": 2693.74, + "probability": 0.9889 + }, + { + "start": 2694.2, + "end": 2696.52, + "probability": 0.9878 + }, + { + "start": 2696.58, + "end": 2697.77, + "probability": 0.993 + }, + { + "start": 2698.18, + "end": 2703.52, + "probability": 0.9741 + }, + { + "start": 2704.24, + "end": 2705.6, + "probability": 0.9785 + }, + { + "start": 2705.72, + "end": 2707.86, + "probability": 0.1994 + }, + { + "start": 2707.86, + "end": 2708.4, + "probability": 0.3244 + }, + { + "start": 2709.0, + "end": 2710.82, + "probability": 0.9323 + }, + { + "start": 2711.0, + "end": 2712.02, + "probability": 0.9214 + }, + { + "start": 2712.5, + "end": 2718.8, + "probability": 0.9614 + }, + { + "start": 2718.98, + "end": 2720.0, + "probability": 0.4048 + }, + { + "start": 2720.38, + "end": 2722.46, + "probability": 0.988 + }, + { + "start": 2722.8, + "end": 2724.54, + "probability": 0.9126 + }, + { + "start": 2724.88, + "end": 2725.26, + "probability": 0.5426 + }, + { + "start": 2725.44, + "end": 2725.58, + "probability": 0.9516 + }, + { + "start": 2725.74, + "end": 2726.94, + "probability": 0.8895 + }, + { + "start": 2727.0, + "end": 2728.03, + "probability": 0.9777 + }, + { + "start": 2728.66, + "end": 2730.7, + "probability": 0.9832 + }, + { + "start": 2730.7, + "end": 2733.52, + "probability": 0.983 + }, + { + "start": 2733.66, + "end": 2734.9, + "probability": 0.9463 + }, + { + "start": 2735.51, + "end": 2738.4, + "probability": 0.9924 + }, + { + "start": 2740.11, + "end": 2743.3, + "probability": 0.9091 + }, + { + "start": 2743.66, + "end": 2745.38, + "probability": 0.8931 + }, + { + "start": 2745.42, + "end": 2745.62, + "probability": 0.622 + }, + { + "start": 2745.7, + "end": 2749.36, + "probability": 0.9867 + }, + { + "start": 2750.22, + "end": 2753.26, + "probability": 0.991 + }, + { + "start": 2753.28, + "end": 2753.86, + "probability": 0.9036 + }, + { + "start": 2753.98, + "end": 2754.46, + "probability": 0.8896 + }, + { + "start": 2754.62, + "end": 2755.38, + "probability": 0.7689 + }, + { + "start": 2755.8, + "end": 2756.5, + "probability": 0.7337 + }, + { + "start": 2756.68, + "end": 2759.56, + "probability": 0.8892 + }, + { + "start": 2760.18, + "end": 2761.46, + "probability": 0.6209 + }, + { + "start": 2761.6, + "end": 2763.58, + "probability": 0.966 + }, + { + "start": 2763.74, + "end": 2764.86, + "probability": 0.785 + }, + { + "start": 2765.9, + "end": 2767.1, + "probability": 0.7837 + }, + { + "start": 2767.34, + "end": 2769.94, + "probability": 0.993 + }, + { + "start": 2769.94, + "end": 2773.36, + "probability": 0.9956 + }, + { + "start": 2773.5, + "end": 2775.7, + "probability": 0.9937 + }, + { + "start": 2776.24, + "end": 2784.58, + "probability": 0.9084 + }, + { + "start": 2785.08, + "end": 2789.04, + "probability": 0.9696 + }, + { + "start": 2790.9, + "end": 2795.7, + "probability": 0.9561 + }, + { + "start": 2796.46, + "end": 2801.06, + "probability": 0.9946 + }, + { + "start": 2804.3, + "end": 2804.62, + "probability": 0.6386 + }, + { + "start": 2805.14, + "end": 2808.38, + "probability": 0.8833 + }, + { + "start": 2809.04, + "end": 2811.74, + "probability": 0.999 + }, + { + "start": 2812.6, + "end": 2816.08, + "probability": 0.7751 + }, + { + "start": 2816.3, + "end": 2817.28, + "probability": 0.0949 + }, + { + "start": 2817.48, + "end": 2818.98, + "probability": 0.0789 + }, + { + "start": 2819.06, + "end": 2820.46, + "probability": 0.68 + }, + { + "start": 2820.6, + "end": 2822.3, + "probability": 0.9146 + }, + { + "start": 2823.1, + "end": 2823.1, + "probability": 0.074 + }, + { + "start": 2823.1, + "end": 2825.06, + "probability": 0.7388 + }, + { + "start": 2826.98, + "end": 2828.76, + "probability": 0.714 + }, + { + "start": 2828.76, + "end": 2830.58, + "probability": 0.8647 + }, + { + "start": 2832.16, + "end": 2834.78, + "probability": 0.7827 + }, + { + "start": 2834.9, + "end": 2835.9, + "probability": 0.5283 + }, + { + "start": 2836.02, + "end": 2837.12, + "probability": 0.5693 + }, + { + "start": 2837.22, + "end": 2837.94, + "probability": 0.0979 + }, + { + "start": 2838.02, + "end": 2838.38, + "probability": 0.0413 + }, + { + "start": 2838.38, + "end": 2838.5, + "probability": 0.0078 + }, + { + "start": 2838.5, + "end": 2838.5, + "probability": 0.0368 + }, + { + "start": 2838.5, + "end": 2842.96, + "probability": 0.6686 + }, + { + "start": 2843.52, + "end": 2844.62, + "probability": 0.5033 + }, + { + "start": 2845.58, + "end": 2850.22, + "probability": 0.9781 + }, + { + "start": 2850.8, + "end": 2852.84, + "probability": 0.5403 + }, + { + "start": 2853.48, + "end": 2854.68, + "probability": 0.8164 + }, + { + "start": 2854.88, + "end": 2855.86, + "probability": 0.78 + }, + { + "start": 2855.96, + "end": 2858.72, + "probability": 0.7755 + }, + { + "start": 2858.84, + "end": 2860.18, + "probability": 0.9971 + }, + { + "start": 2860.46, + "end": 2862.32, + "probability": 0.9988 + }, + { + "start": 2862.5, + "end": 2867.5, + "probability": 0.9952 + }, + { + "start": 2867.6, + "end": 2870.86, + "probability": 0.9965 + }, + { + "start": 2871.9, + "end": 2872.96, + "probability": 0.726 + }, + { + "start": 2874.14, + "end": 2874.8, + "probability": 0.7471 + }, + { + "start": 2874.94, + "end": 2876.08, + "probability": 0.9893 + }, + { + "start": 2876.26, + "end": 2877.56, + "probability": 0.9369 + }, + { + "start": 2877.56, + "end": 2880.52, + "probability": 0.9876 + }, + { + "start": 2880.98, + "end": 2883.06, + "probability": 0.9956 + }, + { + "start": 2883.06, + "end": 2886.64, + "probability": 0.9829 + }, + { + "start": 2886.74, + "end": 2887.82, + "probability": 0.9058 + }, + { + "start": 2887.88, + "end": 2888.23, + "probability": 0.9043 + }, + { + "start": 2888.42, + "end": 2888.92, + "probability": 0.6375 + }, + { + "start": 2889.6, + "end": 2892.3, + "probability": 0.9976 + }, + { + "start": 2892.36, + "end": 2894.66, + "probability": 0.994 + }, + { + "start": 2895.26, + "end": 2897.72, + "probability": 0.9203 + }, + { + "start": 2898.18, + "end": 2899.96, + "probability": 0.8428 + }, + { + "start": 2900.22, + "end": 2902.34, + "probability": 0.9752 + }, + { + "start": 2902.56, + "end": 2902.8, + "probability": 0.9254 + }, + { + "start": 2902.97, + "end": 2904.66, + "probability": 0.8491 + }, + { + "start": 2904.68, + "end": 2907.24, + "probability": 0.9901 + }, + { + "start": 2907.38, + "end": 2908.1, + "probability": 0.9523 + }, + { + "start": 2908.84, + "end": 2910.6, + "probability": 0.8081 + }, + { + "start": 2912.46, + "end": 2915.06, + "probability": 0.9752 + }, + { + "start": 2915.82, + "end": 2916.42, + "probability": 0.7984 + }, + { + "start": 2917.04, + "end": 2918.8, + "probability": 0.989 + }, + { + "start": 2919.3, + "end": 2923.52, + "probability": 0.9987 + }, + { + "start": 2924.06, + "end": 2924.6, + "probability": 0.6452 + }, + { + "start": 2924.94, + "end": 2930.44, + "probability": 0.9341 + }, + { + "start": 2930.76, + "end": 2931.24, + "probability": 0.7618 + }, + { + "start": 2934.42, + "end": 2934.96, + "probability": 0.7556 + }, + { + "start": 2935.04, + "end": 2938.06, + "probability": 0.9109 + }, + { + "start": 2943.14, + "end": 2950.1, + "probability": 0.4871 + }, + { + "start": 2955.38, + "end": 2955.96, + "probability": 0.7494 + }, + { + "start": 2955.98, + "end": 2956.74, + "probability": 0.8434 + }, + { + "start": 2956.98, + "end": 2957.2, + "probability": 0.4243 + }, + { + "start": 2957.2, + "end": 2957.56, + "probability": 0.8353 + }, + { + "start": 2958.72, + "end": 2961.96, + "probability": 0.8018 + }, + { + "start": 2961.96, + "end": 2965.92, + "probability": 0.9578 + }, + { + "start": 2966.98, + "end": 2972.58, + "probability": 0.8506 + }, + { + "start": 2972.8, + "end": 2973.08, + "probability": 0.1118 + }, + { + "start": 2975.16, + "end": 2976.2, + "probability": 0.6253 + }, + { + "start": 2977.14, + "end": 2980.56, + "probability": 0.1063 + }, + { + "start": 2980.86, + "end": 2981.5, + "probability": 0.6936 + }, + { + "start": 2981.58, + "end": 2982.54, + "probability": 0.3139 + }, + { + "start": 2983.14, + "end": 2985.82, + "probability": 0.9263 + }, + { + "start": 2986.84, + "end": 2987.44, + "probability": 0.738 + }, + { + "start": 2988.46, + "end": 2990.58, + "probability": 0.8049 + }, + { + "start": 2990.82, + "end": 2995.26, + "probability": 0.9207 + }, + { + "start": 2995.68, + "end": 2998.52, + "probability": 0.9005 + }, + { + "start": 2999.26, + "end": 3004.02, + "probability": 0.9238 + }, + { + "start": 3005.48, + "end": 3009.98, + "probability": 0.9434 + }, + { + "start": 3010.88, + "end": 3017.88, + "probability": 0.939 + }, + { + "start": 3018.22, + "end": 3019.14, + "probability": 0.935 + }, + { + "start": 3019.56, + "end": 3020.36, + "probability": 0.884 + }, + { + "start": 3021.06, + "end": 3024.14, + "probability": 0.9724 + }, + { + "start": 3024.76, + "end": 3026.0, + "probability": 0.9746 + }, + { + "start": 3026.12, + "end": 3028.04, + "probability": 0.9946 + }, + { + "start": 3028.2, + "end": 3029.32, + "probability": 0.5803 + }, + { + "start": 3030.2, + "end": 3032.04, + "probability": 0.9965 + }, + { + "start": 3032.74, + "end": 3033.42, + "probability": 0.6388 + }, + { + "start": 3034.06, + "end": 3038.9, + "probability": 0.9893 + }, + { + "start": 3038.9, + "end": 3044.22, + "probability": 0.9715 + }, + { + "start": 3044.7, + "end": 3046.26, + "probability": 0.9854 + }, + { + "start": 3046.52, + "end": 3047.98, + "probability": 0.6931 + }, + { + "start": 3048.42, + "end": 3049.96, + "probability": 0.9634 + }, + { + "start": 3050.66, + "end": 3051.18, + "probability": 0.744 + }, + { + "start": 3051.28, + "end": 3051.86, + "probability": 0.8233 + }, + { + "start": 3051.98, + "end": 3053.04, + "probability": 0.8624 + }, + { + "start": 3053.14, + "end": 3053.58, + "probability": 0.0363 + }, + { + "start": 3053.68, + "end": 3053.78, + "probability": 0.4988 + }, + { + "start": 3053.78, + "end": 3057.74, + "probability": 0.7423 + }, + { + "start": 3058.61, + "end": 3059.78, + "probability": 0.1315 + }, + { + "start": 3059.78, + "end": 3061.36, + "probability": 0.472 + }, + { + "start": 3061.4, + "end": 3061.94, + "probability": 0.131 + }, + { + "start": 3062.26, + "end": 3063.14, + "probability": 0.3481 + }, + { + "start": 3063.58, + "end": 3065.32, + "probability": 0.7359 + }, + { + "start": 3065.52, + "end": 3066.1, + "probability": 0.7166 + }, + { + "start": 3066.48, + "end": 3066.48, + "probability": 0.5445 + }, + { + "start": 3066.48, + "end": 3067.88, + "probability": 0.4003 + }, + { + "start": 3067.98, + "end": 3071.22, + "probability": 0.9078 + }, + { + "start": 3071.5, + "end": 3075.5, + "probability": 0.97 + }, + { + "start": 3075.64, + "end": 3076.8, + "probability": 0.8887 + }, + { + "start": 3077.0, + "end": 3077.66, + "probability": 0.7059 + }, + { + "start": 3078.22, + "end": 3082.32, + "probability": 0.7229 + }, + { + "start": 3082.9, + "end": 3084.84, + "probability": 0.8155 + }, + { + "start": 3085.74, + "end": 3092.86, + "probability": 0.858 + }, + { + "start": 3092.98, + "end": 3096.5, + "probability": 0.9023 + }, + { + "start": 3096.84, + "end": 3103.96, + "probability": 0.9846 + }, + { + "start": 3104.24, + "end": 3104.52, + "probability": 0.5326 + }, + { + "start": 3105.4, + "end": 3105.62, + "probability": 0.5867 + }, + { + "start": 3106.22, + "end": 3110.34, + "probability": 0.9248 + }, + { + "start": 3110.34, + "end": 3117.0, + "probability": 0.9696 + }, + { + "start": 3118.28, + "end": 3122.28, + "probability": 0.9907 + }, + { + "start": 3122.28, + "end": 3126.96, + "probability": 0.9961 + }, + { + "start": 3127.16, + "end": 3129.32, + "probability": 0.9888 + }, + { + "start": 3130.02, + "end": 3135.58, + "probability": 0.9902 + }, + { + "start": 3136.4, + "end": 3137.9, + "probability": 0.9249 + }, + { + "start": 3138.76, + "end": 3140.64, + "probability": 0.9963 + }, + { + "start": 3140.66, + "end": 3141.32, + "probability": 0.9293 + }, + { + "start": 3141.58, + "end": 3147.34, + "probability": 0.9289 + }, + { + "start": 3147.38, + "end": 3147.38, + "probability": 0.9538 + }, + { + "start": 3147.38, + "end": 3148.96, + "probability": 0.7518 + }, + { + "start": 3149.08, + "end": 3149.28, + "probability": 0.7575 + }, + { + "start": 3149.34, + "end": 3150.1, + "probability": 0.3765 + }, + { + "start": 3150.26, + "end": 3151.18, + "probability": 0.9106 + }, + { + "start": 3151.78, + "end": 3152.32, + "probability": 0.5291 + }, + { + "start": 3152.52, + "end": 3156.2, + "probability": 0.9127 + }, + { + "start": 3156.3, + "end": 3156.6, + "probability": 0.8541 + }, + { + "start": 3158.0, + "end": 3161.42, + "probability": 0.9917 + }, + { + "start": 3162.22, + "end": 3164.36, + "probability": 0.7883 + }, + { + "start": 3164.58, + "end": 3165.54, + "probability": 0.4507 + }, + { + "start": 3165.72, + "end": 3166.51, + "probability": 0.6753 + }, + { + "start": 3166.86, + "end": 3168.98, + "probability": 0.4699 + }, + { + "start": 3169.08, + "end": 3170.24, + "probability": 0.5011 + }, + { + "start": 3170.6, + "end": 3170.9, + "probability": 0.1837 + }, + { + "start": 3171.6, + "end": 3173.82, + "probability": 0.094 + }, + { + "start": 3173.82, + "end": 3177.2, + "probability": 0.8653 + }, + { + "start": 3177.98, + "end": 3181.16, + "probability": 0.9039 + }, + { + "start": 3183.26, + "end": 3184.8, + "probability": 0.2406 + }, + { + "start": 3190.9, + "end": 3191.84, + "probability": 0.2367 + }, + { + "start": 3192.86, + "end": 3194.02, + "probability": 0.589 + }, + { + "start": 3195.0, + "end": 3195.6, + "probability": 0.9667 + }, + { + "start": 3196.2, + "end": 3198.98, + "probability": 0.6629 + }, + { + "start": 3199.54, + "end": 3201.0, + "probability": 0.9032 + }, + { + "start": 3202.34, + "end": 3204.3, + "probability": 0.8394 + }, + { + "start": 3206.02, + "end": 3207.68, + "probability": 0.9779 + }, + { + "start": 3208.26, + "end": 3209.26, + "probability": 0.9213 + }, + { + "start": 3210.36, + "end": 3212.4, + "probability": 0.9374 + }, + { + "start": 3214.46, + "end": 3217.46, + "probability": 0.8503 + }, + { + "start": 3223.86, + "end": 3224.92, + "probability": 0.3439 + }, + { + "start": 3224.92, + "end": 3224.92, + "probability": 0.158 + }, + { + "start": 3224.92, + "end": 3225.65, + "probability": 0.6603 + }, + { + "start": 3226.62, + "end": 3228.04, + "probability": 0.8801 + }, + { + "start": 3228.8, + "end": 3230.14, + "probability": 0.9024 + }, + { + "start": 3231.18, + "end": 3231.56, + "probability": 0.9004 + }, + { + "start": 3232.34, + "end": 3233.04, + "probability": 0.7284 + }, + { + "start": 3236.04, + "end": 3239.08, + "probability": 0.5639 + }, + { + "start": 3246.24, + "end": 3248.36, + "probability": 0.3232 + }, + { + "start": 3248.88, + "end": 3253.12, + "probability": 0.8546 + }, + { + "start": 3254.16, + "end": 3254.52, + "probability": 0.7715 + }, + { + "start": 3255.54, + "end": 3256.3, + "probability": 0.9692 + }, + { + "start": 3257.0, + "end": 3258.42, + "probability": 0.9771 + }, + { + "start": 3259.18, + "end": 3260.6, + "probability": 0.9846 + }, + { + "start": 3261.42, + "end": 3262.96, + "probability": 0.9362 + }, + { + "start": 3266.14, + "end": 3267.84, + "probability": 0.5049 + }, + { + "start": 3269.34, + "end": 3270.06, + "probability": 0.8892 + }, + { + "start": 3270.68, + "end": 3272.38, + "probability": 0.5918 + }, + { + "start": 3273.44, + "end": 3274.2, + "probability": 0.9226 + }, + { + "start": 3274.72, + "end": 3275.34, + "probability": 0.9678 + }, + { + "start": 3275.92, + "end": 3277.54, + "probability": 0.951 + }, + { + "start": 3278.46, + "end": 3280.38, + "probability": 0.958 + }, + { + "start": 3281.28, + "end": 3283.92, + "probability": 0.9696 + }, + { + "start": 3284.6, + "end": 3285.62, + "probability": 0.9324 + }, + { + "start": 3286.62, + "end": 3288.02, + "probability": 0.7902 + }, + { + "start": 3288.5, + "end": 3289.86, + "probability": 0.8636 + }, + { + "start": 3290.02, + "end": 3291.68, + "probability": 0.6886 + }, + { + "start": 3292.56, + "end": 3295.62, + "probability": 0.8971 + }, + { + "start": 3296.36, + "end": 3297.92, + "probability": 0.9198 + }, + { + "start": 3298.87, + "end": 3301.24, + "probability": 0.8836 + }, + { + "start": 3301.7, + "end": 3303.66, + "probability": 0.8512 + }, + { + "start": 3303.82, + "end": 3305.58, + "probability": 0.7646 + }, + { + "start": 3308.76, + "end": 3309.42, + "probability": 0.4013 + }, + { + "start": 3312.28, + "end": 3316.24, + "probability": 0.2186 + }, + { + "start": 3316.8, + "end": 3317.5, + "probability": 0.335 + }, + { + "start": 3318.48, + "end": 3318.84, + "probability": 0.5684 + }, + { + "start": 3320.22, + "end": 3321.0, + "probability": 0.7948 + }, + { + "start": 3321.74, + "end": 3323.52, + "probability": 0.6184 + }, + { + "start": 3324.14, + "end": 3326.12, + "probability": 0.872 + }, + { + "start": 3327.1, + "end": 3329.28, + "probability": 0.8043 + }, + { + "start": 3330.3, + "end": 3330.7, + "probability": 0.9497 + }, + { + "start": 3331.9, + "end": 3333.8, + "probability": 0.576 + }, + { + "start": 3334.38, + "end": 3335.38, + "probability": 0.5007 + }, + { + "start": 3336.56, + "end": 3336.9, + "probability": 0.5915 + }, + { + "start": 3338.44, + "end": 3338.64, + "probability": 0.6074 + }, + { + "start": 3339.96, + "end": 3340.28, + "probability": 0.9802 + }, + { + "start": 3341.28, + "end": 3342.3, + "probability": 0.7214 + }, + { + "start": 3343.14, + "end": 3343.54, + "probability": 0.9785 + }, + { + "start": 3344.4, + "end": 3345.08, + "probability": 0.8069 + }, + { + "start": 3345.96, + "end": 3347.72, + "probability": 0.9841 + }, + { + "start": 3350.64, + "end": 3351.38, + "probability": 0.7756 + }, + { + "start": 3352.08, + "end": 3352.96, + "probability": 0.8584 + }, + { + "start": 3353.98, + "end": 3354.82, + "probability": 0.9873 + }, + { + "start": 3355.74, + "end": 3356.63, + "probability": 0.769 + }, + { + "start": 3357.48, + "end": 3359.44, + "probability": 0.9668 + }, + { + "start": 3360.4, + "end": 3360.76, + "probability": 0.5851 + }, + { + "start": 3363.26, + "end": 3363.96, + "probability": 0.6653 + }, + { + "start": 3365.32, + "end": 3366.92, + "probability": 0.8222 + }, + { + "start": 3367.82, + "end": 3369.78, + "probability": 0.9549 + }, + { + "start": 3370.8, + "end": 3371.84, + "probability": 0.9869 + }, + { + "start": 3372.9, + "end": 3373.66, + "probability": 0.9385 + }, + { + "start": 3374.72, + "end": 3375.08, + "probability": 0.9817 + }, + { + "start": 3376.18, + "end": 3376.9, + "probability": 0.9311 + }, + { + "start": 3377.8, + "end": 3378.12, + "probability": 0.9834 + }, + { + "start": 3379.04, + "end": 3379.58, + "probability": 0.9769 + }, + { + "start": 3380.28, + "end": 3383.24, + "probability": 0.9811 + }, + { + "start": 3384.24, + "end": 3384.88, + "probability": 0.9486 + }, + { + "start": 3385.92, + "end": 3386.92, + "probability": 0.8077 + }, + { + "start": 3387.7, + "end": 3392.18, + "probability": 0.6777 + }, + { + "start": 3392.94, + "end": 3395.94, + "probability": 0.9186 + }, + { + "start": 3399.3, + "end": 3399.68, + "probability": 0.8577 + }, + { + "start": 3400.8, + "end": 3401.72, + "probability": 0.9457 + }, + { + "start": 3402.76, + "end": 3404.8, + "probability": 0.9731 + }, + { + "start": 3405.4, + "end": 3406.22, + "probability": 0.9822 + }, + { + "start": 3407.2, + "end": 3407.9, + "probability": 0.9124 + }, + { + "start": 3408.68, + "end": 3410.3, + "probability": 0.7484 + }, + { + "start": 3412.0, + "end": 3412.82, + "probability": 0.9528 + }, + { + "start": 3413.68, + "end": 3415.02, + "probability": 0.8762 + }, + { + "start": 3416.26, + "end": 3416.62, + "probability": 0.9114 + }, + { + "start": 3417.68, + "end": 3418.36, + "probability": 0.8101 + }, + { + "start": 3419.8, + "end": 3420.58, + "probability": 0.9706 + }, + { + "start": 3421.26, + "end": 3422.3, + "probability": 0.8599 + }, + { + "start": 3424.46, + "end": 3425.34, + "probability": 0.9797 + }, + { + "start": 3426.04, + "end": 3428.34, + "probability": 0.7704 + }, + { + "start": 3429.24, + "end": 3431.54, + "probability": 0.5763 + }, + { + "start": 3432.3, + "end": 3433.68, + "probability": 0.8825 + }, + { + "start": 3434.84, + "end": 3436.4, + "probability": 0.9299 + }, + { + "start": 3437.92, + "end": 3440.28, + "probability": 0.9887 + }, + { + "start": 3441.06, + "end": 3441.84, + "probability": 0.4851 + }, + { + "start": 3443.0, + "end": 3446.65, + "probability": 0.9247 + }, + { + "start": 3448.3, + "end": 3449.04, + "probability": 0.7391 + }, + { + "start": 3454.24, + "end": 3454.6, + "probability": 0.6598 + }, + { + "start": 3455.72, + "end": 3456.6, + "probability": 0.6935 + }, + { + "start": 3457.82, + "end": 3459.74, + "probability": 0.719 + }, + { + "start": 3460.44, + "end": 3462.16, + "probability": 0.9124 + }, + { + "start": 3463.32, + "end": 3464.08, + "probability": 0.9885 + }, + { + "start": 3464.76, + "end": 3465.8, + "probability": 0.9476 + }, + { + "start": 3467.42, + "end": 3468.2, + "probability": 0.985 + }, + { + "start": 3469.4, + "end": 3470.2, + "probability": 0.5246 + }, + { + "start": 3471.74, + "end": 3477.42, + "probability": 0.5913 + }, + { + "start": 3478.48, + "end": 3478.82, + "probability": 0.6603 + }, + { + "start": 3480.58, + "end": 3481.5, + "probability": 0.3352 + }, + { + "start": 3483.6, + "end": 3486.48, + "probability": 0.7602 + }, + { + "start": 3487.14, + "end": 3487.8, + "probability": 0.9716 + }, + { + "start": 3488.32, + "end": 3489.2, + "probability": 0.6996 + }, + { + "start": 3490.62, + "end": 3492.64, + "probability": 0.9619 + }, + { + "start": 3494.26, + "end": 3498.12, + "probability": 0.9525 + }, + { + "start": 3499.48, + "end": 3502.06, + "probability": 0.4908 + }, + { + "start": 3502.86, + "end": 3503.68, + "probability": 0.846 + }, + { + "start": 3504.58, + "end": 3505.84, + "probability": 0.9613 + }, + { + "start": 3506.5, + "end": 3506.72, + "probability": 0.5296 + }, + { + "start": 3507.72, + "end": 3509.02, + "probability": 0.679 + }, + { + "start": 3509.6, + "end": 3511.36, + "probability": 0.6923 + }, + { + "start": 3512.48, + "end": 3514.18, + "probability": 0.8965 + }, + { + "start": 3515.35, + "end": 3517.16, + "probability": 0.8569 + }, + { + "start": 3520.88, + "end": 3524.88, + "probability": 0.95 + }, + { + "start": 3526.64, + "end": 3528.82, + "probability": 0.9515 + }, + { + "start": 3530.56, + "end": 3534.74, + "probability": 0.6717 + }, + { + "start": 3535.44, + "end": 3535.76, + "probability": 0.9399 + }, + { + "start": 3537.02, + "end": 3537.78, + "probability": 0.6134 + }, + { + "start": 3538.54, + "end": 3542.62, + "probability": 0.8748 + }, + { + "start": 3544.56, + "end": 3544.92, + "probability": 0.9712 + }, + { + "start": 3546.18, + "end": 3547.14, + "probability": 0.9734 + }, + { + "start": 3548.46, + "end": 3551.38, + "probability": 0.9639 + }, + { + "start": 3552.0, + "end": 3554.4, + "probability": 0.9761 + }, + { + "start": 3555.24, + "end": 3557.24, + "probability": 0.9277 + }, + { + "start": 3564.56, + "end": 3564.84, + "probability": 0.5345 + }, + { + "start": 3566.76, + "end": 3567.8, + "probability": 0.8063 + }, + { + "start": 3569.16, + "end": 3571.46, + "probability": 0.921 + }, + { + "start": 3572.34, + "end": 3574.08, + "probability": 0.7549 + }, + { + "start": 3575.78, + "end": 3576.68, + "probability": 0.9772 + }, + { + "start": 3577.48, + "end": 3577.84, + "probability": 0.8989 + }, + { + "start": 3580.28, + "end": 3581.82, + "probability": 0.8251 + }, + { + "start": 3582.58, + "end": 3584.16, + "probability": 0.7111 + }, + { + "start": 3584.48, + "end": 3585.86, + "probability": 0.7184 + }, + { + "start": 3586.06, + "end": 3587.76, + "probability": 0.7238 + }, + { + "start": 3588.56, + "end": 3590.76, + "probability": 0.9474 + }, + { + "start": 3591.64, + "end": 3594.3, + "probability": 0.938 + }, + { + "start": 3595.16, + "end": 3596.68, + "probability": 0.8888 + }, + { + "start": 3598.1, + "end": 3599.54, + "probability": 0.9276 + }, + { + "start": 3600.3, + "end": 3601.72, + "probability": 0.6295 + }, + { + "start": 3603.04, + "end": 3603.3, + "probability": 0.2477 + }, + { + "start": 3605.23, + "end": 3606.92, + "probability": 0.5138 + }, + { + "start": 3607.36, + "end": 3607.52, + "probability": 0.0152 + }, + { + "start": 3609.96, + "end": 3610.18, + "probability": 0.0069 + }, + { + "start": 3610.88, + "end": 3611.26, + "probability": 0.2358 + }, + { + "start": 3612.32, + "end": 3613.26, + "probability": 0.6593 + }, + { + "start": 3614.12, + "end": 3616.02, + "probability": 0.7749 + }, + { + "start": 3616.18, + "end": 3617.6, + "probability": 0.9704 + }, + { + "start": 3618.1, + "end": 3619.56, + "probability": 0.8617 + }, + { + "start": 3620.42, + "end": 3621.5, + "probability": 0.5315 + }, + { + "start": 3622.48, + "end": 3623.24, + "probability": 0.6857 + }, + { + "start": 3624.06, + "end": 3626.0, + "probability": 0.9685 + }, + { + "start": 3626.52, + "end": 3627.2, + "probability": 0.7599 + }, + { + "start": 3628.32, + "end": 3629.2, + "probability": 0.6228 + }, + { + "start": 3629.76, + "end": 3631.44, + "probability": 0.9728 + }, + { + "start": 3633.04, + "end": 3635.16, + "probability": 0.9887 + }, + { + "start": 3635.92, + "end": 3638.9, + "probability": 0.9724 + }, + { + "start": 3639.54, + "end": 3640.36, + "probability": 0.9815 + }, + { + "start": 3641.34, + "end": 3642.12, + "probability": 0.9976 + }, + { + "start": 3644.94, + "end": 3645.84, + "probability": 0.4325 + }, + { + "start": 3646.3, + "end": 3648.24, + "probability": 0.7874 + }, + { + "start": 3648.54, + "end": 3650.34, + "probability": 0.9085 + }, + { + "start": 3650.42, + "end": 3651.81, + "probability": 0.9812 + }, + { + "start": 3651.86, + "end": 3653.36, + "probability": 0.9745 + }, + { + "start": 3654.32, + "end": 3656.72, + "probability": 0.9775 + }, + { + "start": 3656.74, + "end": 3658.5, + "probability": 0.5961 + }, + { + "start": 3659.28, + "end": 3661.58, + "probability": 0.683 + }, + { + "start": 3662.1, + "end": 3665.36, + "probability": 0.8466 + }, + { + "start": 3666.28, + "end": 3668.48, + "probability": 0.9628 + }, + { + "start": 3669.96, + "end": 3670.88, + "probability": 0.8242 + }, + { + "start": 3671.78, + "end": 3673.72, + "probability": 0.9521 + }, + { + "start": 3673.8, + "end": 3677.26, + "probability": 0.428 + }, + { + "start": 3677.26, + "end": 3677.96, + "probability": 0.4938 + }, + { + "start": 3679.02, + "end": 3679.64, + "probability": 0.6504 + }, + { + "start": 3680.78, + "end": 3683.16, + "probability": 0.8715 + }, + { + "start": 3684.94, + "end": 3685.74, + "probability": 0.9677 + }, + { + "start": 3686.7, + "end": 3687.42, + "probability": 0.7691 + }, + { + "start": 3687.48, + "end": 3689.44, + "probability": 0.9412 + }, + { + "start": 3689.56, + "end": 3690.4, + "probability": 0.9786 + }, + { + "start": 3691.04, + "end": 3693.48, + "probability": 0.6497 + }, + { + "start": 3695.18, + "end": 3696.02, + "probability": 0.3082 + }, + { + "start": 3696.94, + "end": 3698.78, + "probability": 0.8628 + }, + { + "start": 3699.24, + "end": 3701.22, + "probability": 0.8789 + }, + { + "start": 3701.84, + "end": 3702.58, + "probability": 0.9408 + }, + { + "start": 3703.4, + "end": 3704.18, + "probability": 0.9529 + }, + { + "start": 3705.72, + "end": 3708.8, + "probability": 0.5427 + }, + { + "start": 3709.5, + "end": 3711.42, + "probability": 0.9182 + }, + { + "start": 3712.84, + "end": 3714.58, + "probability": 0.6453 + }, + { + "start": 3715.62, + "end": 3716.4, + "probability": 0.9722 + }, + { + "start": 3717.7, + "end": 3718.46, + "probability": 0.7911 + }, + { + "start": 3719.46, + "end": 3723.32, + "probability": 0.4375 + }, + { + "start": 3724.63, + "end": 3728.1, + "probability": 0.8945 + }, + { + "start": 3728.98, + "end": 3729.6, + "probability": 0.9832 + }, + { + "start": 3730.48, + "end": 3733.88, + "probability": 0.7582 + }, + { + "start": 3734.66, + "end": 3735.56, + "probability": 0.7094 + }, + { + "start": 3736.46, + "end": 3738.14, + "probability": 0.8955 + }, + { + "start": 3739.14, + "end": 3742.76, + "probability": 0.9327 + }, + { + "start": 3743.36, + "end": 3745.2, + "probability": 0.8243 + }, + { + "start": 3746.32, + "end": 3747.12, + "probability": 0.9418 + }, + { + "start": 3747.78, + "end": 3749.08, + "probability": 0.8985 + }, + { + "start": 3750.48, + "end": 3751.38, + "probability": 0.8725 + }, + { + "start": 3751.9, + "end": 3752.9, + "probability": 0.5708 + }, + { + "start": 3753.98, + "end": 3756.48, + "probability": 0.9054 + }, + { + "start": 3757.24, + "end": 3759.12, + "probability": 0.6693 + }, + { + "start": 3762.7, + "end": 3763.86, + "probability": 0.4839 + }, + { + "start": 3765.42, + "end": 3766.04, + "probability": 0.5907 + }, + { + "start": 3766.82, + "end": 3768.38, + "probability": 0.8892 + }, + { + "start": 3769.28, + "end": 3771.26, + "probability": 0.8329 + }, + { + "start": 3771.96, + "end": 3772.74, + "probability": 0.9741 + }, + { + "start": 3773.28, + "end": 3775.7, + "probability": 0.9425 + }, + { + "start": 3776.62, + "end": 3777.38, + "probability": 0.9941 + }, + { + "start": 3778.38, + "end": 3779.2, + "probability": 0.9095 + }, + { + "start": 3779.96, + "end": 3782.18, + "probability": 0.9811 + }, + { + "start": 3783.6, + "end": 3784.3, + "probability": 0.7006 + }, + { + "start": 3785.06, + "end": 3785.92, + "probability": 0.2509 + }, + { + "start": 3787.12, + "end": 3787.92, + "probability": 0.9761 + }, + { + "start": 3789.22, + "end": 3791.84, + "probability": 0.7836 + }, + { + "start": 3792.98, + "end": 3793.72, + "probability": 0.9878 + }, + { + "start": 3794.64, + "end": 3795.14, + "probability": 0.9391 + }, + { + "start": 3796.08, + "end": 3797.82, + "probability": 0.5385 + }, + { + "start": 3798.54, + "end": 3799.32, + "probability": 0.9796 + }, + { + "start": 3801.2, + "end": 3804.12, + "probability": 0.867 + }, + { + "start": 3804.72, + "end": 3805.38, + "probability": 0.7912 + }, + { + "start": 3806.5, + "end": 3807.5, + "probability": 0.8072 + }, + { + "start": 3808.32, + "end": 3810.96, + "probability": 0.9032 + }, + { + "start": 3811.74, + "end": 3814.5, + "probability": 0.876 + }, + { + "start": 3815.16, + "end": 3816.84, + "probability": 0.9539 + }, + { + "start": 3816.9, + "end": 3819.12, + "probability": 0.9177 + }, + { + "start": 3822.29, + "end": 3823.8, + "probability": 0.0385 + }, + { + "start": 3823.8, + "end": 3824.22, + "probability": 0.5347 + }, + { + "start": 3825.52, + "end": 3827.8, + "probability": 0.6989 + }, + { + "start": 3827.9, + "end": 3829.82, + "probability": 0.605 + }, + { + "start": 3831.12, + "end": 3832.06, + "probability": 0.8207 + }, + { + "start": 3832.58, + "end": 3833.52, + "probability": 0.918 + }, + { + "start": 3834.12, + "end": 3836.22, + "probability": 0.8317 + }, + { + "start": 3837.46, + "end": 3839.14, + "probability": 0.6931 + }, + { + "start": 3839.7, + "end": 3843.26, + "probability": 0.7661 + }, + { + "start": 3844.24, + "end": 3845.58, + "probability": 0.7932 + }, + { + "start": 3846.36, + "end": 3846.94, + "probability": 0.8781 + }, + { + "start": 3847.88, + "end": 3854.2, + "probability": 0.9707 + }, + { + "start": 3855.2, + "end": 3856.1, + "probability": 0.606 + }, + { + "start": 3856.12, + "end": 3857.08, + "probability": 0.8453 + }, + { + "start": 3858.84, + "end": 3861.42, + "probability": 0.0458 + }, + { + "start": 3861.42, + "end": 3862.68, + "probability": 0.0396 + }, + { + "start": 3865.52, + "end": 3867.12, + "probability": 0.1218 + }, + { + "start": 3900.14, + "end": 3901.34, + "probability": 0.7077 + }, + { + "start": 3901.58, + "end": 3904.2, + "probability": 0.995 + }, + { + "start": 3904.3, + "end": 3908.0, + "probability": 0.9926 + }, + { + "start": 3908.5, + "end": 3909.16, + "probability": 0.5885 + }, + { + "start": 3910.42, + "end": 3912.6, + "probability": 0.8008 + }, + { + "start": 3912.62, + "end": 3913.08, + "probability": 0.9316 + }, + { + "start": 3927.74, + "end": 3930.66, + "probability": 0.7556 + }, + { + "start": 3931.3, + "end": 3933.4, + "probability": 0.9888 + }, + { + "start": 3933.96, + "end": 3936.22, + "probability": 0.9762 + }, + { + "start": 3937.48, + "end": 3940.42, + "probability": 0.9536 + }, + { + "start": 3940.56, + "end": 3943.18, + "probability": 0.9787 + }, + { + "start": 3943.9, + "end": 3944.96, + "probability": 0.4694 + }, + { + "start": 3945.4, + "end": 3946.32, + "probability": 0.1183 + }, + { + "start": 3946.92, + "end": 3949.92, + "probability": 0.8332 + }, + { + "start": 3950.74, + "end": 3952.92, + "probability": 0.8428 + }, + { + "start": 3953.02, + "end": 3955.54, + "probability": 0.9867 + }, + { + "start": 3956.4, + "end": 3957.42, + "probability": 0.4882 + }, + { + "start": 3957.76, + "end": 3958.74, + "probability": 0.1622 + }, + { + "start": 3960.58, + "end": 3963.5, + "probability": 0.7933 + }, + { + "start": 3964.2, + "end": 3965.66, + "probability": 0.6738 + }, + { + "start": 3965.66, + "end": 3968.33, + "probability": 0.8375 + }, + { + "start": 3969.58, + "end": 3970.74, + "probability": 0.5996 + }, + { + "start": 3972.05, + "end": 3976.18, + "probability": 0.8184 + }, + { + "start": 3976.22, + "end": 3977.08, + "probability": 0.902 + }, + { + "start": 3977.78, + "end": 3980.1, + "probability": 0.6818 + }, + { + "start": 3982.44, + "end": 3982.9, + "probability": 0.5667 + }, + { + "start": 3983.4, + "end": 3985.46, + "probability": 0.7171 + }, + { + "start": 3985.46, + "end": 3990.04, + "probability": 0.8696 + }, + { + "start": 3990.46, + "end": 3993.96, + "probability": 0.697 + }, + { + "start": 3995.24, + "end": 3995.74, + "probability": 0.671 + }, + { + "start": 3995.9, + "end": 3997.9, + "probability": 0.8091 + }, + { + "start": 3998.82, + "end": 4000.02, + "probability": 0.7101 + }, + { + "start": 4000.12, + "end": 4001.48, + "probability": 0.3606 + }, + { + "start": 4001.5, + "end": 4003.0, + "probability": 0.8222 + }, + { + "start": 4003.58, + "end": 4005.26, + "probability": 0.7402 + }, + { + "start": 4005.82, + "end": 4009.9, + "probability": 0.9796 + }, + { + "start": 4009.9, + "end": 4014.78, + "probability": 0.9908 + }, + { + "start": 4015.1, + "end": 4016.62, + "probability": 0.3385 + }, + { + "start": 4017.5, + "end": 4018.58, + "probability": 0.9847 + }, + { + "start": 4019.38, + "end": 4020.02, + "probability": 0.9773 + }, + { + "start": 4020.78, + "end": 4021.24, + "probability": 0.0876 + }, + { + "start": 4021.78, + "end": 4021.9, + "probability": 0.0109 + }, + { + "start": 4022.42, + "end": 4027.88, + "probability": 0.5373 + }, + { + "start": 4028.2, + "end": 4028.94, + "probability": 0.7859 + }, + { + "start": 4029.42, + "end": 4031.24, + "probability": 0.993 + }, + { + "start": 4032.21, + "end": 4036.62, + "probability": 0.7674 + }, + { + "start": 4036.8, + "end": 4037.32, + "probability": 0.5506 + }, + { + "start": 4037.48, + "end": 4039.22, + "probability": 0.7567 + }, + { + "start": 4040.04, + "end": 4041.36, + "probability": 0.002 + }, + { + "start": 4042.72, + "end": 4043.0, + "probability": 0.0485 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.1048 + }, + { + "start": 4043.0, + "end": 4043.0, + "probability": 0.249 + }, + { + "start": 4043.0, + "end": 4044.0, + "probability": 0.6163 + }, + { + "start": 4046.86, + "end": 4050.16, + "probability": 0.5597 + }, + { + "start": 4050.98, + "end": 4053.44, + "probability": 0.9602 + }, + { + "start": 4053.6, + "end": 4055.18, + "probability": 0.9438 + }, + { + "start": 4055.66, + "end": 4060.18, + "probability": 0.9917 + }, + { + "start": 4063.08, + "end": 4064.96, + "probability": 0.6966 + }, + { + "start": 4065.0, + "end": 4067.68, + "probability": 0.9915 + }, + { + "start": 4068.98, + "end": 4074.76, + "probability": 0.9968 + }, + { + "start": 4075.42, + "end": 4080.3, + "probability": 0.9568 + }, + { + "start": 4080.9, + "end": 4083.04, + "probability": 0.6601 + }, + { + "start": 4083.22, + "end": 4085.02, + "probability": 0.7107 + }, + { + "start": 4085.18, + "end": 4086.2, + "probability": 0.9752 + }, + { + "start": 4117.26, + "end": 4118.16, + "probability": 0.7164 + }, + { + "start": 4119.36, + "end": 4121.18, + "probability": 0.8125 + }, + { + "start": 4126.54, + "end": 4127.54, + "probability": 0.6934 + }, + { + "start": 4128.68, + "end": 4129.28, + "probability": 0.3238 + }, + { + "start": 4129.98, + "end": 4131.44, + "probability": 0.8203 + }, + { + "start": 4131.48, + "end": 4135.66, + "probability": 0.9546 + }, + { + "start": 4135.66, + "end": 4139.56, + "probability": 0.9978 + }, + { + "start": 4139.94, + "end": 4144.72, + "probability": 0.9971 + }, + { + "start": 4145.42, + "end": 4147.06, + "probability": 0.9597 + }, + { + "start": 4147.74, + "end": 4150.02, + "probability": 0.9654 + }, + { + "start": 4150.9, + "end": 4153.28, + "probability": 0.9788 + }, + { + "start": 4153.28, + "end": 4156.3, + "probability": 0.9928 + }, + { + "start": 4156.92, + "end": 4158.88, + "probability": 0.9508 + }, + { + "start": 4159.52, + "end": 4163.4, + "probability": 0.9894 + }, + { + "start": 4164.26, + "end": 4170.64, + "probability": 0.9923 + }, + { + "start": 4170.76, + "end": 4173.8, + "probability": 0.9844 + }, + { + "start": 4174.82, + "end": 4175.66, + "probability": 0.8963 + }, + { + "start": 4175.76, + "end": 4179.86, + "probability": 0.8258 + }, + { + "start": 4179.94, + "end": 4180.58, + "probability": 0.9075 + }, + { + "start": 4181.26, + "end": 4184.44, + "probability": 0.979 + }, + { + "start": 4185.1, + "end": 4185.94, + "probability": 0.9066 + }, + { + "start": 4186.68, + "end": 4187.62, + "probability": 0.8785 + }, + { + "start": 4189.04, + "end": 4193.06, + "probability": 0.9604 + }, + { + "start": 4193.84, + "end": 4195.68, + "probability": 0.9883 + }, + { + "start": 4196.14, + "end": 4199.5, + "probability": 0.8962 + }, + { + "start": 4200.26, + "end": 4201.62, + "probability": 0.9978 + }, + { + "start": 4202.76, + "end": 4204.2, + "probability": 0.9813 + }, + { + "start": 4204.9, + "end": 4208.6, + "probability": 0.9979 + }, + { + "start": 4209.26, + "end": 4214.78, + "probability": 0.9893 + }, + { + "start": 4214.84, + "end": 4217.86, + "probability": 0.9967 + }, + { + "start": 4218.04, + "end": 4220.12, + "probability": 0.999 + }, + { + "start": 4220.9, + "end": 4224.08, + "probability": 0.9965 + }, + { + "start": 4224.08, + "end": 4229.06, + "probability": 0.9715 + }, + { + "start": 4229.76, + "end": 4231.08, + "probability": 0.9683 + }, + { + "start": 4231.82, + "end": 4233.69, + "probability": 0.7134 + }, + { + "start": 4234.58, + "end": 4238.22, + "probability": 0.9003 + }, + { + "start": 4238.78, + "end": 4240.14, + "probability": 0.9741 + }, + { + "start": 4241.66, + "end": 4244.12, + "probability": 0.9951 + }, + { + "start": 4244.34, + "end": 4245.82, + "probability": 0.8309 + }, + { + "start": 4245.98, + "end": 4246.42, + "probability": 0.6809 + }, + { + "start": 4247.42, + "end": 4252.3, + "probability": 0.9655 + }, + { + "start": 4253.06, + "end": 4257.42, + "probability": 0.9837 + }, + { + "start": 4257.42, + "end": 4261.48, + "probability": 0.9867 + }, + { + "start": 4262.14, + "end": 4263.76, + "probability": 0.9892 + }, + { + "start": 4264.44, + "end": 4265.38, + "probability": 0.6968 + }, + { + "start": 4266.02, + "end": 4270.06, + "probability": 0.9868 + }, + { + "start": 4271.02, + "end": 4273.76, + "probability": 0.6855 + }, + { + "start": 4274.42, + "end": 4276.32, + "probability": 0.9938 + }, + { + "start": 4277.08, + "end": 4280.26, + "probability": 0.9716 + }, + { + "start": 4280.26, + "end": 4282.2, + "probability": 0.9964 + }, + { + "start": 4283.12, + "end": 4288.08, + "probability": 0.9893 + }, + { + "start": 4288.84, + "end": 4290.66, + "probability": 0.993 + }, + { + "start": 4291.4, + "end": 4294.74, + "probability": 0.9933 + }, + { + "start": 4295.32, + "end": 4299.66, + "probability": 0.9812 + }, + { + "start": 4300.3, + "end": 4304.82, + "probability": 0.9827 + }, + { + "start": 4304.9, + "end": 4306.54, + "probability": 0.9854 + }, + { + "start": 4307.52, + "end": 4310.88, + "probability": 0.9863 + }, + { + "start": 4311.64, + "end": 4313.04, + "probability": 0.942 + }, + { + "start": 4313.6, + "end": 4315.98, + "probability": 0.9845 + }, + { + "start": 4316.62, + "end": 4320.66, + "probability": 0.7379 + }, + { + "start": 4320.68, + "end": 4323.1, + "probability": 0.8784 + }, + { + "start": 4323.74, + "end": 4325.71, + "probability": 0.9971 + }, + { + "start": 4326.46, + "end": 4327.56, + "probability": 0.8882 + }, + { + "start": 4329.38, + "end": 4330.1, + "probability": 0.529 + }, + { + "start": 4330.42, + "end": 4335.84, + "probability": 0.9581 + }, + { + "start": 4336.5, + "end": 4338.54, + "probability": 0.9402 + }, + { + "start": 4339.34, + "end": 4341.0, + "probability": 0.8303 + }, + { + "start": 4342.52, + "end": 4344.52, + "probability": 0.9774 + }, + { + "start": 4345.04, + "end": 4346.54, + "probability": 0.8765 + }, + { + "start": 4347.4, + "end": 4352.72, + "probability": 0.9751 + }, + { + "start": 4352.72, + "end": 4356.8, + "probability": 0.9839 + }, + { + "start": 4357.84, + "end": 4358.46, + "probability": 0.81 + }, + { + "start": 4358.46, + "end": 4363.16, + "probability": 0.9955 + }, + { + "start": 4363.88, + "end": 4366.24, + "probability": 0.9851 + }, + { + "start": 4366.86, + "end": 4370.24, + "probability": 0.9973 + }, + { + "start": 4370.66, + "end": 4373.5, + "probability": 0.8641 + }, + { + "start": 4374.38, + "end": 4379.38, + "probability": 0.9963 + }, + { + "start": 4380.02, + "end": 4382.62, + "probability": 0.9928 + }, + { + "start": 4383.3, + "end": 4384.72, + "probability": 0.9961 + }, + { + "start": 4385.56, + "end": 4387.76, + "probability": 0.9936 + }, + { + "start": 4388.74, + "end": 4390.64, + "probability": 0.9856 + }, + { + "start": 4390.78, + "end": 4392.86, + "probability": 0.9409 + }, + { + "start": 4393.54, + "end": 4396.74, + "probability": 0.9623 + }, + { + "start": 4397.46, + "end": 4399.98, + "probability": 0.9811 + }, + { + "start": 4400.64, + "end": 4403.66, + "probability": 0.9712 + }, + { + "start": 4403.66, + "end": 4407.96, + "probability": 0.9906 + }, + { + "start": 4408.5, + "end": 4409.34, + "probability": 0.7763 + }, + { + "start": 4409.44, + "end": 4412.38, + "probability": 0.9982 + }, + { + "start": 4412.46, + "end": 4413.64, + "probability": 0.949 + }, + { + "start": 4414.2, + "end": 4415.4, + "probability": 0.8092 + }, + { + "start": 4416.32, + "end": 4419.38, + "probability": 0.9487 + }, + { + "start": 4420.3, + "end": 4421.74, + "probability": 0.7622 + }, + { + "start": 4422.48, + "end": 4424.64, + "probability": 0.9922 + }, + { + "start": 4425.16, + "end": 4426.78, + "probability": 0.8846 + }, + { + "start": 4427.3, + "end": 4430.28, + "probability": 0.9653 + }, + { + "start": 4430.72, + "end": 4434.98, + "probability": 0.9561 + }, + { + "start": 4435.48, + "end": 4436.16, + "probability": 0.9632 + }, + { + "start": 4436.28, + "end": 4437.92, + "probability": 0.8824 + }, + { + "start": 4438.42, + "end": 4442.52, + "probability": 0.9902 + }, + { + "start": 4443.14, + "end": 4443.84, + "probability": 0.9055 + }, + { + "start": 4444.42, + "end": 4447.66, + "probability": 0.99 + }, + { + "start": 4449.56, + "end": 4451.08, + "probability": 0.9609 + }, + { + "start": 4451.22, + "end": 4454.92, + "probability": 0.7539 + }, + { + "start": 4454.92, + "end": 4460.44, + "probability": 0.8584 + }, + { + "start": 4460.6, + "end": 4464.36, + "probability": 0.7918 + }, + { + "start": 4464.98, + "end": 4465.52, + "probability": 0.7262 + }, + { + "start": 4466.12, + "end": 4467.06, + "probability": 0.9696 + }, + { + "start": 4467.66, + "end": 4472.18, + "probability": 0.9409 + }, + { + "start": 4473.72, + "end": 4476.78, + "probability": 0.9497 + }, + { + "start": 4477.48, + "end": 4479.58, + "probability": 0.9871 + }, + { + "start": 4479.7, + "end": 4483.72, + "probability": 0.9678 + }, + { + "start": 4484.5, + "end": 4489.16, + "probability": 0.9521 + }, + { + "start": 4489.94, + "end": 4491.64, + "probability": 0.8421 + }, + { + "start": 4493.66, + "end": 4496.44, + "probability": 0.9862 + }, + { + "start": 4496.44, + "end": 4500.34, + "probability": 0.9995 + }, + { + "start": 4501.06, + "end": 4502.88, + "probability": 0.9991 + }, + { + "start": 4503.44, + "end": 4505.5, + "probability": 0.9938 + }, + { + "start": 4506.26, + "end": 4508.66, + "probability": 0.9854 + }, + { + "start": 4510.06, + "end": 4518.64, + "probability": 0.9661 + }, + { + "start": 4519.52, + "end": 4523.68, + "probability": 0.7098 + }, + { + "start": 4524.26, + "end": 4525.58, + "probability": 0.8864 + }, + { + "start": 4525.96, + "end": 4529.42, + "probability": 0.995 + }, + { + "start": 4530.08, + "end": 4531.88, + "probability": 0.9901 + }, + { + "start": 4532.46, + "end": 4535.34, + "probability": 0.9371 + }, + { + "start": 4536.1, + "end": 4539.22, + "probability": 0.9458 + }, + { + "start": 4539.88, + "end": 4543.66, + "probability": 0.993 + }, + { + "start": 4544.14, + "end": 4548.26, + "probability": 0.9954 + }, + { + "start": 4548.84, + "end": 4553.46, + "probability": 0.9961 + }, + { + "start": 4554.18, + "end": 4560.56, + "probability": 0.9938 + }, + { + "start": 4561.34, + "end": 4562.6, + "probability": 0.6123 + }, + { + "start": 4562.82, + "end": 4563.18, + "probability": 0.7921 + }, + { + "start": 4564.12, + "end": 4566.48, + "probability": 0.9947 + }, + { + "start": 4566.84, + "end": 4569.94, + "probability": 0.8772 + }, + { + "start": 4570.44, + "end": 4571.48, + "probability": 0.75 + }, + { + "start": 4572.0, + "end": 4573.86, + "probability": 0.9928 + }, + { + "start": 4574.38, + "end": 4577.54, + "probability": 0.9546 + }, + { + "start": 4577.54, + "end": 4580.84, + "probability": 0.908 + }, + { + "start": 4581.24, + "end": 4582.26, + "probability": 0.6748 + }, + { + "start": 4582.78, + "end": 4586.9, + "probability": 0.9888 + }, + { + "start": 4587.54, + "end": 4591.5, + "probability": 0.9973 + }, + { + "start": 4592.0, + "end": 4592.98, + "probability": 0.5318 + }, + { + "start": 4593.68, + "end": 4598.78, + "probability": 0.9115 + }, + { + "start": 4598.78, + "end": 4602.52, + "probability": 0.9406 + }, + { + "start": 4602.62, + "end": 4603.81, + "probability": 0.7723 + }, + { + "start": 4604.6, + "end": 4605.92, + "probability": 0.9483 + }, + { + "start": 4606.48, + "end": 4608.84, + "probability": 0.9146 + }, + { + "start": 4609.6, + "end": 4613.04, + "probability": 0.9716 + }, + { + "start": 4613.1, + "end": 4614.34, + "probability": 0.97 + }, + { + "start": 4614.88, + "end": 4618.02, + "probability": 0.9923 + }, + { + "start": 4618.02, + "end": 4621.26, + "probability": 0.9925 + }, + { + "start": 4621.62, + "end": 4622.46, + "probability": 0.6712 + }, + { + "start": 4623.26, + "end": 4628.22, + "probability": 0.9929 + }, + { + "start": 4628.24, + "end": 4628.68, + "probability": 0.7807 + }, + { + "start": 4629.74, + "end": 4631.88, + "probability": 0.8452 + }, + { + "start": 4633.12, + "end": 4635.26, + "probability": 0.8328 + }, + { + "start": 4635.78, + "end": 4636.96, + "probability": 0.2655 + }, + { + "start": 4640.25, + "end": 4642.4, + "probability": 0.0598 + }, + { + "start": 4642.4, + "end": 4644.7, + "probability": 0.8475 + }, + { + "start": 4645.0, + "end": 4645.96, + "probability": 0.1589 + }, + { + "start": 4648.5, + "end": 4650.08, + "probability": 0.0897 + }, + { + "start": 4650.3, + "end": 4650.71, + "probability": 0.2695 + }, + { + "start": 4651.24, + "end": 4653.46, + "probability": 0.6911 + }, + { + "start": 4655.64, + "end": 4657.42, + "probability": 0.8944 + }, + { + "start": 4658.76, + "end": 4660.82, + "probability": 0.6334 + }, + { + "start": 4662.58, + "end": 4663.06, + "probability": 0.4492 + }, + { + "start": 4664.1, + "end": 4665.16, + "probability": 0.6626 + }, + { + "start": 4666.34, + "end": 4667.3, + "probability": 0.6896 + }, + { + "start": 4667.48, + "end": 4668.3, + "probability": 0.8659 + }, + { + "start": 4668.34, + "end": 4668.88, + "probability": 0.9648 + }, + { + "start": 4669.16, + "end": 4670.26, + "probability": 0.7609 + }, + { + "start": 4670.32, + "end": 4671.52, + "probability": 0.8488 + }, + { + "start": 4671.96, + "end": 4673.24, + "probability": 0.989 + }, + { + "start": 4674.06, + "end": 4677.2, + "probability": 0.0131 + }, + { + "start": 4678.52, + "end": 4678.52, + "probability": 0.0965 + }, + { + "start": 4678.52, + "end": 4681.3, + "probability": 0.2952 + }, + { + "start": 4681.9, + "end": 4683.16, + "probability": 0.6952 + }, + { + "start": 4683.28, + "end": 4685.18, + "probability": 0.9554 + }, + { + "start": 4685.24, + "end": 4686.44, + "probability": 0.9169 + }, + { + "start": 4686.6, + "end": 4687.8, + "probability": 0.9697 + }, + { + "start": 4687.88, + "end": 4689.54, + "probability": 0.9268 + }, + { + "start": 4689.64, + "end": 4691.28, + "probability": 0.5791 + }, + { + "start": 4691.28, + "end": 4692.52, + "probability": 0.9241 + }, + { + "start": 4692.64, + "end": 4693.9, + "probability": 0.9917 + }, + { + "start": 4694.02, + "end": 4694.9, + "probability": 0.998 + }, + { + "start": 4695.52, + "end": 4695.86, + "probability": 0.7705 + }, + { + "start": 4696.24, + "end": 4696.99, + "probability": 0.8718 + }, + { + "start": 4697.86, + "end": 4701.74, + "probability": 0.9863 + }, + { + "start": 4702.56, + "end": 4703.04, + "probability": 0.8229 + }, + { + "start": 4703.24, + "end": 4704.22, + "probability": 0.4986 + }, + { + "start": 4705.0, + "end": 4707.8, + "probability": 0.9187 + }, + { + "start": 4708.3, + "end": 4709.9, + "probability": 0.8912 + }, + { + "start": 4709.9, + "end": 4710.28, + "probability": 0.7651 + }, + { + "start": 4710.36, + "end": 4710.74, + "probability": 0.8751 + }, + { + "start": 4712.87, + "end": 4714.9, + "probability": 0.9302 + }, + { + "start": 4715.14, + "end": 4717.44, + "probability": 0.6843 + }, + { + "start": 4718.24, + "end": 4720.72, + "probability": 0.9976 + }, + { + "start": 4721.44, + "end": 4724.62, + "probability": 0.9924 + }, + { + "start": 4724.94, + "end": 4725.34, + "probability": 0.6488 + }, + { + "start": 4725.34, + "end": 4725.87, + "probability": 0.9734 + }, + { + "start": 4726.78, + "end": 4730.2, + "probability": 0.9879 + }, + { + "start": 4730.4, + "end": 4732.86, + "probability": 0.9922 + }, + { + "start": 4733.38, + "end": 4735.08, + "probability": 0.8663 + }, + { + "start": 4735.82, + "end": 4738.7, + "probability": 0.9961 + }, + { + "start": 4738.98, + "end": 4741.4, + "probability": 0.9623 + }, + { + "start": 4742.4, + "end": 4746.08, + "probability": 0.9863 + }, + { + "start": 4746.62, + "end": 4748.26, + "probability": 0.9848 + }, + { + "start": 4749.14, + "end": 4751.3, + "probability": 0.9742 + }, + { + "start": 4751.46, + "end": 4752.76, + "probability": 0.9788 + }, + { + "start": 4753.12, + "end": 4758.36, + "probability": 0.9992 + }, + { + "start": 4758.4, + "end": 4763.78, + "probability": 0.9969 + }, + { + "start": 4764.58, + "end": 4765.26, + "probability": 0.5404 + }, + { + "start": 4765.62, + "end": 4768.78, + "probability": 0.9843 + }, + { + "start": 4769.58, + "end": 4772.04, + "probability": 0.4265 + }, + { + "start": 4773.6, + "end": 4777.78, + "probability": 0.9374 + }, + { + "start": 4777.78, + "end": 4778.95, + "probability": 0.0322 + }, + { + "start": 4780.22, + "end": 4780.32, + "probability": 0.3852 + }, + { + "start": 4780.32, + "end": 4782.06, + "probability": 0.4042 + }, + { + "start": 4782.26, + "end": 4785.62, + "probability": 0.7271 + }, + { + "start": 4786.22, + "end": 4789.08, + "probability": 0.9007 + }, + { + "start": 4789.34, + "end": 4789.34, + "probability": 0.0652 + }, + { + "start": 4789.34, + "end": 4791.28, + "probability": 0.761 + }, + { + "start": 4791.6, + "end": 4793.23, + "probability": 0.9464 + }, + { + "start": 4793.5, + "end": 4795.26, + "probability": 0.8401 + }, + { + "start": 4795.4, + "end": 4796.4, + "probability": 0.7531 + }, + { + "start": 4796.4, + "end": 4796.67, + "probability": 0.05 + }, + { + "start": 4797.64, + "end": 4801.12, + "probability": 0.3252 + }, + { + "start": 4801.12, + "end": 4803.22, + "probability": 0.4618 + }, + { + "start": 4803.74, + "end": 4804.14, + "probability": 0.2198 + }, + { + "start": 4805.04, + "end": 4808.93, + "probability": 0.8792 + }, + { + "start": 4809.06, + "end": 4809.64, + "probability": 0.4163 + }, + { + "start": 4809.74, + "end": 4812.68, + "probability": 0.8721 + }, + { + "start": 4812.8, + "end": 4814.42, + "probability": 0.9271 + }, + { + "start": 4814.44, + "end": 4816.99, + "probability": 0.7164 + }, + { + "start": 4817.78, + "end": 4818.66, + "probability": 0.4821 + }, + { + "start": 4818.94, + "end": 4820.32, + "probability": 0.9284 + }, + { + "start": 4820.36, + "end": 4821.35, + "probability": 0.7649 + }, + { + "start": 4821.77, + "end": 4825.28, + "probability": 0.5999 + }, + { + "start": 4825.28, + "end": 4826.42, + "probability": 0.4025 + }, + { + "start": 4826.58, + "end": 4828.05, + "probability": 0.5712 + }, + { + "start": 4828.1, + "end": 4830.88, + "probability": 0.4657 + }, + { + "start": 4830.92, + "end": 4834.14, + "probability": 0.7095 + }, + { + "start": 4834.42, + "end": 4837.72, + "probability": 0.4259 + }, + { + "start": 4837.88, + "end": 4840.96, + "probability": 0.4996 + }, + { + "start": 4841.12, + "end": 4841.82, + "probability": 0.9084 + }, + { + "start": 4842.22, + "end": 4843.54, + "probability": 0.5478 + }, + { + "start": 4844.0, + "end": 4846.78, + "probability": 0.6942 + }, + { + "start": 4846.84, + "end": 4847.66, + "probability": 0.3078 + }, + { + "start": 4847.8, + "end": 4848.24, + "probability": 0.2371 + }, + { + "start": 4848.66, + "end": 4848.78, + "probability": 0.2619 + }, + { + "start": 4848.78, + "end": 4850.18, + "probability": 0.4479 + }, + { + "start": 4850.3, + "end": 4850.37, + "probability": 0.2025 + }, + { + "start": 4851.34, + "end": 4854.64, + "probability": 0.4951 + }, + { + "start": 4855.58, + "end": 4860.88, + "probability": 0.9329 + }, + { + "start": 4860.88, + "end": 4863.94, + "probability": 0.9557 + }, + { + "start": 4864.08, + "end": 4867.4, + "probability": 0.7649 + }, + { + "start": 4867.86, + "end": 4869.33, + "probability": 0.9111 + }, + { + "start": 4870.1, + "end": 4870.7, + "probability": 0.9367 + }, + { + "start": 4870.84, + "end": 4873.44, + "probability": 0.7882 + }, + { + "start": 4873.94, + "end": 4877.36, + "probability": 0.9944 + }, + { + "start": 4878.04, + "end": 4879.2, + "probability": 0.7198 + }, + { + "start": 4880.4, + "end": 4883.16, + "probability": 0.7716 + }, + { + "start": 4883.34, + "end": 4885.28, + "probability": 0.8108 + }, + { + "start": 4885.64, + "end": 4886.88, + "probability": 0.6867 + }, + { + "start": 4887.02, + "end": 4889.14, + "probability": 0.837 + }, + { + "start": 4890.16, + "end": 4894.11, + "probability": 0.8371 + }, + { + "start": 4894.16, + "end": 4897.26, + "probability": 0.8758 + }, + { + "start": 4898.12, + "end": 4899.1, + "probability": 0.6783 + }, + { + "start": 4900.4, + "end": 4902.02, + "probability": 0.6766 + }, + { + "start": 4902.24, + "end": 4906.98, + "probability": 0.9671 + }, + { + "start": 4907.28, + "end": 4909.32, + "probability": 0.9932 + }, + { + "start": 4909.82, + "end": 4911.71, + "probability": 0.9434 + }, + { + "start": 4912.4, + "end": 4913.82, + "probability": 0.9861 + }, + { + "start": 4913.94, + "end": 4916.52, + "probability": 0.5665 + }, + { + "start": 4917.22, + "end": 4920.88, + "probability": 0.7573 + }, + { + "start": 4922.01, + "end": 4925.4, + "probability": 0.9946 + }, + { + "start": 4925.48, + "end": 4926.44, + "probability": 0.9827 + }, + { + "start": 4926.96, + "end": 4929.24, + "probability": 0.9596 + }, + { + "start": 4929.78, + "end": 4931.04, + "probability": 0.9993 + }, + { + "start": 4933.3, + "end": 4935.88, + "probability": 0.9199 + }, + { + "start": 4936.34, + "end": 4936.92, + "probability": 0.9185 + }, + { + "start": 4938.5, + "end": 4943.6, + "probability": 0.9492 + }, + { + "start": 4945.1, + "end": 4945.1, + "probability": 0.1592 + }, + { + "start": 4945.1, + "end": 4946.34, + "probability": 0.5669 + }, + { + "start": 4947.42, + "end": 4949.31, + "probability": 0.8594 + }, + { + "start": 4950.2, + "end": 4952.4, + "probability": 0.8897 + }, + { + "start": 4952.48, + "end": 4953.66, + "probability": 0.9827 + }, + { + "start": 4954.36, + "end": 4956.6, + "probability": 0.6484 + }, + { + "start": 4957.46, + "end": 4958.54, + "probability": 0.7524 + }, + { + "start": 4958.96, + "end": 4960.46, + "probability": 0.981 + }, + { + "start": 4961.26, + "end": 4963.17, + "probability": 0.9512 + }, + { + "start": 4964.06, + "end": 4965.5, + "probability": 0.9601 + }, + { + "start": 4966.34, + "end": 4969.23, + "probability": 0.8953 + }, + { + "start": 4970.22, + "end": 4973.64, + "probability": 0.891 + }, + { + "start": 4974.72, + "end": 4976.86, + "probability": 0.5039 + }, + { + "start": 4977.46, + "end": 4981.16, + "probability": 0.9493 + }, + { + "start": 4982.08, + "end": 4984.16, + "probability": 0.936 + }, + { + "start": 4984.72, + "end": 4987.28, + "probability": 0.9944 + }, + { + "start": 4987.92, + "end": 4989.36, + "probability": 0.7696 + }, + { + "start": 4989.44, + "end": 4990.64, + "probability": 0.7409 + }, + { + "start": 4990.78, + "end": 4992.15, + "probability": 0.5965 + }, + { + "start": 4992.76, + "end": 4994.78, + "probability": 0.9987 + }, + { + "start": 4995.28, + "end": 4997.68, + "probability": 0.7479 + }, + { + "start": 4998.98, + "end": 5002.48, + "probability": 0.023 + }, + { + "start": 5002.56, + "end": 5004.4, + "probability": 0.1122 + }, + { + "start": 5004.86, + "end": 5004.86, + "probability": 0.0699 + }, + { + "start": 5004.86, + "end": 5004.86, + "probability": 0.1581 + }, + { + "start": 5004.86, + "end": 5004.86, + "probability": 0.1779 + }, + { + "start": 5004.86, + "end": 5004.86, + "probability": 0.042 + }, + { + "start": 5004.86, + "end": 5005.34, + "probability": 0.2818 + }, + { + "start": 5005.34, + "end": 5007.44, + "probability": 0.7628 + }, + { + "start": 5008.36, + "end": 5013.23, + "probability": 0.7444 + }, + { + "start": 5014.6, + "end": 5019.54, + "probability": 0.9991 + }, + { + "start": 5019.68, + "end": 5022.76, + "probability": 0.8237 + }, + { + "start": 5022.9, + "end": 5024.1, + "probability": 0.9972 + }, + { + "start": 5025.52, + "end": 5026.74, + "probability": 0.9871 + }, + { + "start": 5027.22, + "end": 5031.16, + "probability": 0.9398 + }, + { + "start": 5032.08, + "end": 5034.7, + "probability": 0.6494 + }, + { + "start": 5034.86, + "end": 5036.34, + "probability": 0.9565 + }, + { + "start": 5036.72, + "end": 5037.98, + "probability": 0.992 + }, + { + "start": 5038.1, + "end": 5038.45, + "probability": 0.7271 + }, + { + "start": 5039.2, + "end": 5043.96, + "probability": 0.9743 + }, + { + "start": 5044.04, + "end": 5044.74, + "probability": 0.9849 + }, + { + "start": 5045.64, + "end": 5046.97, + "probability": 0.9091 + }, + { + "start": 5047.88, + "end": 5048.8, + "probability": 0.9703 + }, + { + "start": 5048.92, + "end": 5049.78, + "probability": 0.8696 + }, + { + "start": 5050.06, + "end": 5054.1, + "probability": 0.9783 + }, + { + "start": 5054.62, + "end": 5055.62, + "probability": 0.9542 + }, + { + "start": 5055.66, + "end": 5059.1, + "probability": 0.9939 + }, + { + "start": 5059.22, + "end": 5062.82, + "probability": 0.8457 + }, + { + "start": 5062.82, + "end": 5065.22, + "probability": 0.9966 + }, + { + "start": 5067.26, + "end": 5070.14, + "probability": 0.7372 + }, + { + "start": 5070.14, + "end": 5071.17, + "probability": 0.4958 + }, + { + "start": 5072.2, + "end": 5077.11, + "probability": 0.9921 + }, + { + "start": 5077.54, + "end": 5079.82, + "probability": 0.83 + }, + { + "start": 5080.1, + "end": 5080.34, + "probability": 0.889 + }, + { + "start": 5080.98, + "end": 5082.4, + "probability": 0.8086 + }, + { + "start": 5084.0, + "end": 5086.42, + "probability": 0.6651 + }, + { + "start": 5095.06, + "end": 5095.06, + "probability": 0.5012 + }, + { + "start": 5095.06, + "end": 5095.06, + "probability": 0.1416 + }, + { + "start": 5096.8, + "end": 5097.42, + "probability": 0.0162 + }, + { + "start": 5097.42, + "end": 5097.46, + "probability": 0.0858 + }, + { + "start": 5097.46, + "end": 5097.82, + "probability": 0.0749 + }, + { + "start": 5097.82, + "end": 5097.92, + "probability": 0.1622 + }, + { + "start": 5097.92, + "end": 5098.08, + "probability": 0.0439 + }, + { + "start": 5098.48, + "end": 5098.96, + "probability": 0.085 + }, + { + "start": 5098.96, + "end": 5099.68, + "probability": 0.0341 + }, + { + "start": 5100.31, + "end": 5100.38, + "probability": 0.0273 + }, + { + "start": 5120.56, + "end": 5124.68, + "probability": 0.7638 + }, + { + "start": 5125.88, + "end": 5126.96, + "probability": 0.6249 + }, + { + "start": 5128.54, + "end": 5131.38, + "probability": 0.6332 + }, + { + "start": 5133.54, + "end": 5134.72, + "probability": 0.9937 + }, + { + "start": 5136.46, + "end": 5139.5, + "probability": 0.8206 + }, + { + "start": 5140.58, + "end": 5141.76, + "probability": 0.3151 + }, + { + "start": 5142.32, + "end": 5143.68, + "probability": 0.7126 + }, + { + "start": 5143.82, + "end": 5144.84, + "probability": 0.7786 + }, + { + "start": 5144.92, + "end": 5145.66, + "probability": 0.7939 + }, + { + "start": 5147.49, + "end": 5150.24, + "probability": 0.7146 + }, + { + "start": 5150.34, + "end": 5151.08, + "probability": 0.8883 + }, + { + "start": 5151.82, + "end": 5152.5, + "probability": 0.5097 + }, + { + "start": 5153.24, + "end": 5158.84, + "probability": 0.8743 + }, + { + "start": 5159.0, + "end": 5159.88, + "probability": 0.8096 + }, + { + "start": 5160.94, + "end": 5165.46, + "probability": 0.8145 + }, + { + "start": 5166.16, + "end": 5169.18, + "probability": 0.9341 + }, + { + "start": 5169.92, + "end": 5172.26, + "probability": 0.8986 + }, + { + "start": 5173.24, + "end": 5175.72, + "probability": 0.7454 + }, + { + "start": 5177.48, + "end": 5179.06, + "probability": 0.9614 + }, + { + "start": 5179.28, + "end": 5182.76, + "probability": 0.9548 + }, + { + "start": 5183.94, + "end": 5189.82, + "probability": 0.9937 + }, + { + "start": 5189.96, + "end": 5195.0, + "probability": 0.9961 + }, + { + "start": 5196.4, + "end": 5197.29, + "probability": 0.5435 + }, + { + "start": 5197.68, + "end": 5199.04, + "probability": 0.3018 + }, + { + "start": 5199.04, + "end": 5199.5, + "probability": 0.0452 + }, + { + "start": 5199.9, + "end": 5201.26, + "probability": 0.5076 + }, + { + "start": 5201.56, + "end": 5202.14, + "probability": 0.5424 + }, + { + "start": 5202.24, + "end": 5203.08, + "probability": 0.7747 + }, + { + "start": 5203.1, + "end": 5204.3, + "probability": 0.4052 + }, + { + "start": 5204.4, + "end": 5205.12, + "probability": 0.8691 + }, + { + "start": 5205.24, + "end": 5206.64, + "probability": 0.9243 + }, + { + "start": 5206.88, + "end": 5208.38, + "probability": 0.9122 + }, + { + "start": 5208.53, + "end": 5210.42, + "probability": 0.6932 + }, + { + "start": 5210.56, + "end": 5211.96, + "probability": 0.8491 + }, + { + "start": 5212.36, + "end": 5213.14, + "probability": 0.6881 + }, + { + "start": 5213.18, + "end": 5214.4, + "probability": 0.5064 + }, + { + "start": 5214.44, + "end": 5218.86, + "probability": 0.0316 + }, + { + "start": 5218.86, + "end": 5218.86, + "probability": 0.0903 + }, + { + "start": 5218.86, + "end": 5218.86, + "probability": 0.1298 + }, + { + "start": 5218.86, + "end": 5218.86, + "probability": 0.0919 + }, + { + "start": 5218.86, + "end": 5221.52, + "probability": 0.8428 + }, + { + "start": 5223.5, + "end": 5224.44, + "probability": 0.7821 + }, + { + "start": 5224.54, + "end": 5225.68, + "probability": 0.6522 + }, + { + "start": 5225.88, + "end": 5227.14, + "probability": 0.5072 + }, + { + "start": 5227.34, + "end": 5227.83, + "probability": 0.281 + }, + { + "start": 5228.36, + "end": 5228.91, + "probability": 0.0925 + }, + { + "start": 5235.2, + "end": 5237.54, + "probability": 0.5454 + }, + { + "start": 5237.86, + "end": 5239.28, + "probability": 0.6321 + }, + { + "start": 5239.28, + "end": 5240.3, + "probability": 0.8574 + }, + { + "start": 5240.54, + "end": 5241.47, + "probability": 0.334 + }, + { + "start": 5244.92, + "end": 5245.52, + "probability": 0.1653 + }, + { + "start": 5245.52, + "end": 5245.98, + "probability": 0.5031 + }, + { + "start": 5245.98, + "end": 5247.06, + "probability": 0.569 + }, + { + "start": 5248.68, + "end": 5250.72, + "probability": 0.5483 + }, + { + "start": 5251.28, + "end": 5252.06, + "probability": 0.9941 + }, + { + "start": 5253.6, + "end": 5255.2, + "probability": 0.8166 + }, + { + "start": 5256.6, + "end": 5258.22, + "probability": 0.8427 + }, + { + "start": 5258.86, + "end": 5260.08, + "probability": 0.697 + }, + { + "start": 5260.68, + "end": 5265.12, + "probability": 0.773 + }, + { + "start": 5265.4, + "end": 5266.0, + "probability": 0.1326 + }, + { + "start": 5266.22, + "end": 5266.82, + "probability": 0.2992 + }, + { + "start": 5267.02, + "end": 5268.76, + "probability": 0.3733 + }, + { + "start": 5268.76, + "end": 5270.8, + "probability": 0.4187 + }, + { + "start": 5271.08, + "end": 5273.77, + "probability": 0.8937 + }, + { + "start": 5274.14, + "end": 5274.56, + "probability": 0.3669 + }, + { + "start": 5274.56, + "end": 5275.46, + "probability": 0.9175 + }, + { + "start": 5275.56, + "end": 5276.98, + "probability": 0.5315 + }, + { + "start": 5277.22, + "end": 5278.42, + "probability": 0.5799 + }, + { + "start": 5278.56, + "end": 5278.64, + "probability": 0.2922 + }, + { + "start": 5278.7, + "end": 5279.36, + "probability": 0.588 + }, + { + "start": 5279.84, + "end": 5280.76, + "probability": 0.9132 + }, + { + "start": 5280.82, + "end": 5281.68, + "probability": 0.6781 + }, + { + "start": 5281.68, + "end": 5283.56, + "probability": 0.6365 + }, + { + "start": 5283.94, + "end": 5286.95, + "probability": 0.2974 + }, + { + "start": 5288.86, + "end": 5290.52, + "probability": 0.895 + }, + { + "start": 5291.1, + "end": 5293.91, + "probability": 0.4042 + }, + { + "start": 5294.24, + "end": 5295.91, + "probability": 0.7578 + }, + { + "start": 5296.91, + "end": 5300.66, + "probability": 0.876 + }, + { + "start": 5302.93, + "end": 5305.08, + "probability": 0.747 + }, + { + "start": 5306.7, + "end": 5309.06, + "probability": 0.6567 + }, + { + "start": 5309.43, + "end": 5312.54, + "probability": 0.4836 + }, + { + "start": 5313.06, + "end": 5315.88, + "probability": 0.7392 + }, + { + "start": 5317.53, + "end": 5324.22, + "probability": 0.9529 + }, + { + "start": 5325.3, + "end": 5325.54, + "probability": 0.8136 + }, + { + "start": 5326.12, + "end": 5327.58, + "probability": 0.9961 + }, + { + "start": 5327.58, + "end": 5328.9, + "probability": 0.3965 + }, + { + "start": 5341.24, + "end": 5345.3, + "probability": 0.5029 + }, + { + "start": 5345.3, + "end": 5345.56, + "probability": 0.7361 + }, + { + "start": 5345.84, + "end": 5345.84, + "probability": 0.0048 + }, + { + "start": 5345.84, + "end": 5346.54, + "probability": 0.3062 + }, + { + "start": 5346.54, + "end": 5349.24, + "probability": 0.7152 + }, + { + "start": 5349.34, + "end": 5351.4, + "probability": 0.9742 + }, + { + "start": 5351.84, + "end": 5352.52, + "probability": 0.9355 + }, + { + "start": 5352.76, + "end": 5353.1, + "probability": 0.9007 + }, + { + "start": 5353.72, + "end": 5355.58, + "probability": 0.4936 + }, + { + "start": 5355.66, + "end": 5359.12, + "probability": 0.778 + }, + { + "start": 5359.26, + "end": 5363.84, + "probability": 0.6177 + }, + { + "start": 5363.92, + "end": 5366.3, + "probability": 0.5662 + }, + { + "start": 5366.3, + "end": 5370.64, + "probability": 0.4585 + }, + { + "start": 5370.88, + "end": 5371.62, + "probability": 0.5826 + }, + { + "start": 5371.72, + "end": 5372.94, + "probability": 0.4022 + }, + { + "start": 5373.36, + "end": 5376.54, + "probability": 0.8975 + }, + { + "start": 5376.66, + "end": 5377.82, + "probability": 0.8817 + }, + { + "start": 5398.96, + "end": 5402.18, + "probability": 0.3172 + }, + { + "start": 5402.26, + "end": 5403.42, + "probability": 0.5765 + }, + { + "start": 5403.54, + "end": 5403.64, + "probability": 0.5339 + }, + { + "start": 5404.48, + "end": 5407.61, + "probability": 0.8646 + }, + { + "start": 5410.36, + "end": 5410.46, + "probability": 0.5061 + }, + { + "start": 5412.82, + "end": 5414.68, + "probability": 0.6549 + }, + { + "start": 5415.6, + "end": 5418.08, + "probability": 0.8306 + }, + { + "start": 5418.76, + "end": 5421.16, + "probability": 0.7998 + }, + { + "start": 5421.96, + "end": 5422.5, + "probability": 0.8928 + }, + { + "start": 5424.8, + "end": 5425.16, + "probability": 0.2883 + }, + { + "start": 5425.72, + "end": 5426.36, + "probability": 0.4939 + }, + { + "start": 5426.64, + "end": 5429.74, + "probability": 0.9215 + }, + { + "start": 5431.58, + "end": 5432.18, + "probability": 0.9836 + }, + { + "start": 5432.48, + "end": 5435.72, + "probability": 0.9668 + }, + { + "start": 5436.82, + "end": 5437.24, + "probability": 0.2386 + }, + { + "start": 5437.78, + "end": 5438.44, + "probability": 0.8488 + }, + { + "start": 5438.5, + "end": 5439.98, + "probability": 0.9938 + }, + { + "start": 5440.66, + "end": 5440.76, + "probability": 0.8232 + }, + { + "start": 5441.34, + "end": 5441.52, + "probability": 0.5911 + }, + { + "start": 5441.58, + "end": 5441.86, + "probability": 0.2463 + }, + { + "start": 5441.92, + "end": 5442.18, + "probability": 0.8282 + }, + { + "start": 5442.24, + "end": 5444.1, + "probability": 0.9814 + }, + { + "start": 5445.04, + "end": 5449.78, + "probability": 0.8427 + }, + { + "start": 5450.48, + "end": 5453.66, + "probability": 0.6745 + }, + { + "start": 5457.92, + "end": 5460.66, + "probability": 0.9674 + }, + { + "start": 5461.24, + "end": 5466.16, + "probability": 0.9966 + }, + { + "start": 5467.72, + "end": 5471.86, + "probability": 0.7684 + }, + { + "start": 5471.86, + "end": 5479.52, + "probability": 0.9949 + }, + { + "start": 5479.9, + "end": 5481.96, + "probability": 0.995 + }, + { + "start": 5482.68, + "end": 5484.38, + "probability": 0.7544 + }, + { + "start": 5485.6, + "end": 5490.6, + "probability": 0.8927 + }, + { + "start": 5491.34, + "end": 5494.38, + "probability": 0.9772 + }, + { + "start": 5494.56, + "end": 5495.84, + "probability": 0.9441 + }, + { + "start": 5495.98, + "end": 5499.28, + "probability": 0.9827 + }, + { + "start": 5499.62, + "end": 5502.8, + "probability": 0.7812 + }, + { + "start": 5503.4, + "end": 5510.64, + "probability": 0.9927 + }, + { + "start": 5510.64, + "end": 5517.02, + "probability": 0.9599 + }, + { + "start": 5517.44, + "end": 5518.88, + "probability": 0.9699 + }, + { + "start": 5519.1, + "end": 5520.7, + "probability": 0.9498 + }, + { + "start": 5521.24, + "end": 5523.16, + "probability": 0.8703 + }, + { + "start": 5524.0, + "end": 5526.18, + "probability": 0.9212 + }, + { + "start": 5526.94, + "end": 5530.42, + "probability": 0.9377 + }, + { + "start": 5530.94, + "end": 5531.96, + "probability": 0.8926 + }, + { + "start": 5532.94, + "end": 5534.06, + "probability": 0.6187 + }, + { + "start": 5534.1, + "end": 5536.18, + "probability": 0.7421 + }, + { + "start": 5536.28, + "end": 5543.12, + "probability": 0.8998 + }, + { + "start": 5543.98, + "end": 5547.86, + "probability": 0.9941 + }, + { + "start": 5548.52, + "end": 5557.6, + "probability": 0.9963 + }, + { + "start": 5558.8, + "end": 5560.9, + "probability": 0.9286 + }, + { + "start": 5561.58, + "end": 5563.1, + "probability": 0.9917 + }, + { + "start": 5563.68, + "end": 5568.92, + "probability": 0.8683 + }, + { + "start": 5569.88, + "end": 5575.14, + "probability": 0.9377 + }, + { + "start": 5575.14, + "end": 5579.44, + "probability": 0.9963 + }, + { + "start": 5579.54, + "end": 5580.7, + "probability": 0.7185 + }, + { + "start": 5581.44, + "end": 5583.92, + "probability": 0.9771 + }, + { + "start": 5584.18, + "end": 5587.58, + "probability": 0.9966 + }, + { + "start": 5587.58, + "end": 5593.04, + "probability": 0.9935 + }, + { + "start": 5593.68, + "end": 5597.84, + "probability": 0.9614 + }, + { + "start": 5598.5, + "end": 5600.82, + "probability": 0.9076 + }, + { + "start": 5601.54, + "end": 5606.0, + "probability": 0.9699 + }, + { + "start": 5606.76, + "end": 5607.58, + "probability": 0.4439 + }, + { + "start": 5608.2, + "end": 5611.74, + "probability": 0.9839 + }, + { + "start": 5612.26, + "end": 5615.08, + "probability": 0.8712 + }, + { + "start": 5615.68, + "end": 5617.56, + "probability": 0.6008 + }, + { + "start": 5618.16, + "end": 5620.72, + "probability": 0.9889 + }, + { + "start": 5621.24, + "end": 5623.7, + "probability": 0.7021 + }, + { + "start": 5624.24, + "end": 5626.64, + "probability": 0.9897 + }, + { + "start": 5627.24, + "end": 5629.52, + "probability": 0.9839 + }, + { + "start": 5629.62, + "end": 5632.54, + "probability": 0.9482 + }, + { + "start": 5633.36, + "end": 5634.56, + "probability": 0.9124 + }, + { + "start": 5634.64, + "end": 5635.44, + "probability": 0.8908 + }, + { + "start": 5635.58, + "end": 5639.42, + "probability": 0.9845 + }, + { + "start": 5639.96, + "end": 5640.86, + "probability": 0.5116 + }, + { + "start": 5641.82, + "end": 5644.96, + "probability": 0.9894 + }, + { + "start": 5645.5, + "end": 5652.38, + "probability": 0.9452 + }, + { + "start": 5653.44, + "end": 5657.04, + "probability": 0.7888 + }, + { + "start": 5657.06, + "end": 5660.88, + "probability": 0.9866 + }, + { + "start": 5661.58, + "end": 5662.2, + "probability": 0.3848 + }, + { + "start": 5662.38, + "end": 5668.58, + "probability": 0.99 + }, + { + "start": 5669.14, + "end": 5671.12, + "probability": 0.9877 + }, + { + "start": 5671.46, + "end": 5674.26, + "probability": 0.9355 + }, + { + "start": 5674.72, + "end": 5675.8, + "probability": 0.9867 + }, + { + "start": 5676.32, + "end": 5678.3, + "probability": 0.9982 + }, + { + "start": 5679.14, + "end": 5682.28, + "probability": 0.9871 + }, + { + "start": 5683.32, + "end": 5685.04, + "probability": 0.9952 + }, + { + "start": 5685.6, + "end": 5689.24, + "probability": 0.9885 + }, + { + "start": 5689.7, + "end": 5691.02, + "probability": 0.9611 + }, + { + "start": 5691.78, + "end": 5695.16, + "probability": 0.9912 + }, + { + "start": 5695.66, + "end": 5698.0, + "probability": 0.8677 + }, + { + "start": 5699.12, + "end": 5703.68, + "probability": 0.9952 + }, + { + "start": 5704.22, + "end": 5705.16, + "probability": 0.9582 + }, + { + "start": 5706.4, + "end": 5708.86, + "probability": 0.9257 + }, + { + "start": 5709.84, + "end": 5713.84, + "probability": 0.8141 + }, + { + "start": 5714.38, + "end": 5715.18, + "probability": 0.4963 + }, + { + "start": 5715.3, + "end": 5716.26, + "probability": 0.8707 + }, + { + "start": 5716.76, + "end": 5718.68, + "probability": 0.9743 + }, + { + "start": 5719.28, + "end": 5725.1, + "probability": 0.9932 + }, + { + "start": 5725.8, + "end": 5731.4, + "probability": 0.9944 + }, + { + "start": 5731.54, + "end": 5735.14, + "probability": 0.9964 + }, + { + "start": 5735.74, + "end": 5737.88, + "probability": 0.9988 + }, + { + "start": 5738.68, + "end": 5743.18, + "probability": 0.7935 + }, + { + "start": 5743.18, + "end": 5743.98, + "probability": 0.7 + }, + { + "start": 5744.46, + "end": 5745.1, + "probability": 0.3529 + }, + { + "start": 5746.98, + "end": 5747.42, + "probability": 0.1045 + }, + { + "start": 5748.62, + "end": 5751.24, + "probability": 0.1632 + }, + { + "start": 5752.48, + "end": 5758.76, + "probability": 0.8992 + }, + { + "start": 5758.76, + "end": 5764.92, + "probability": 0.9888 + }, + { + "start": 5765.36, + "end": 5767.7, + "probability": 0.9935 + }, + { + "start": 5768.34, + "end": 5769.84, + "probability": 0.7378 + }, + { + "start": 5770.02, + "end": 5772.66, + "probability": 0.9753 + }, + { + "start": 5772.84, + "end": 5776.8, + "probability": 0.816 + }, + { + "start": 5776.8, + "end": 5778.6, + "probability": 0.8727 + }, + { + "start": 5778.98, + "end": 5782.38, + "probability": 0.8099 + }, + { + "start": 5783.62, + "end": 5786.64, + "probability": 0.9126 + }, + { + "start": 5787.64, + "end": 5790.46, + "probability": 0.4409 + }, + { + "start": 5791.66, + "end": 5795.36, + "probability": 0.7729 + }, + { + "start": 5796.04, + "end": 5800.84, + "probability": 0.9555 + }, + { + "start": 5800.84, + "end": 5805.26, + "probability": 0.9902 + }, + { + "start": 5805.72, + "end": 5809.04, + "probability": 0.9964 + }, + { + "start": 5809.8, + "end": 5811.62, + "probability": 0.9966 + }, + { + "start": 5812.3, + "end": 5815.16, + "probability": 0.8701 + }, + { + "start": 5815.3, + "end": 5816.06, + "probability": 0.4021 + }, + { + "start": 5816.34, + "end": 5823.26, + "probability": 0.9956 + }, + { + "start": 5823.26, + "end": 5829.02, + "probability": 0.9995 + }, + { + "start": 5829.54, + "end": 5832.76, + "probability": 0.9933 + }, + { + "start": 5833.62, + "end": 5834.7, + "probability": 0.8053 + }, + { + "start": 5835.04, + "end": 5836.08, + "probability": 0.9313 + }, + { + "start": 5836.5, + "end": 5838.68, + "probability": 0.8934 + }, + { + "start": 5839.22, + "end": 5842.42, + "probability": 0.999 + }, + { + "start": 5843.1, + "end": 5843.66, + "probability": 0.8336 + }, + { + "start": 5843.82, + "end": 5844.6, + "probability": 0.9806 + }, + { + "start": 5845.08, + "end": 5846.46, + "probability": 0.8928 + }, + { + "start": 5846.64, + "end": 5848.34, + "probability": 0.8341 + }, + { + "start": 5849.0, + "end": 5852.88, + "probability": 0.9847 + }, + { + "start": 5853.04, + "end": 5854.24, + "probability": 0.836 + }, + { + "start": 5854.76, + "end": 5859.26, + "probability": 0.989 + }, + { + "start": 5860.18, + "end": 5865.0, + "probability": 0.9989 + }, + { + "start": 5865.0, + "end": 5870.06, + "probability": 0.9976 + }, + { + "start": 5870.98, + "end": 5872.94, + "probability": 0.891 + }, + { + "start": 5873.52, + "end": 5880.3, + "probability": 0.9866 + }, + { + "start": 5880.92, + "end": 5885.2, + "probability": 0.979 + }, + { + "start": 5885.2, + "end": 5890.84, + "probability": 0.9957 + }, + { + "start": 5891.14, + "end": 5897.1, + "probability": 0.9979 + }, + { + "start": 5897.52, + "end": 5901.74, + "probability": 0.9821 + }, + { + "start": 5902.28, + "end": 5904.2, + "probability": 0.9746 + }, + { + "start": 5904.54, + "end": 5909.62, + "probability": 0.9869 + }, + { + "start": 5909.62, + "end": 5914.64, + "probability": 0.8265 + }, + { + "start": 5914.68, + "end": 5919.26, + "probability": 0.8783 + }, + { + "start": 5919.94, + "end": 5922.16, + "probability": 0.5977 + }, + { + "start": 5923.12, + "end": 5926.98, + "probability": 0.952 + }, + { + "start": 5927.7, + "end": 5930.52, + "probability": 0.9907 + }, + { + "start": 5931.14, + "end": 5935.7, + "probability": 0.8648 + }, + { + "start": 5936.36, + "end": 5937.35, + "probability": 0.9717 + }, + { + "start": 5938.44, + "end": 5941.24, + "probability": 0.9711 + }, + { + "start": 5941.78, + "end": 5942.99, + "probability": 0.9839 + }, + { + "start": 5944.22, + "end": 5949.18, + "probability": 0.9655 + }, + { + "start": 5949.8, + "end": 5951.88, + "probability": 0.9824 + }, + { + "start": 5952.06, + "end": 5956.02, + "probability": 0.9907 + }, + { + "start": 5956.54, + "end": 5957.62, + "probability": 0.9478 + }, + { + "start": 5957.72, + "end": 5958.66, + "probability": 0.5665 + }, + { + "start": 5959.1, + "end": 5963.32, + "probability": 0.8357 + }, + { + "start": 5963.34, + "end": 5968.04, + "probability": 0.9491 + }, + { + "start": 5968.38, + "end": 5972.2, + "probability": 0.9946 + }, + { + "start": 5973.04, + "end": 5973.76, + "probability": 0.8758 + }, + { + "start": 5974.3, + "end": 5976.64, + "probability": 0.5662 + }, + { + "start": 5977.88, + "end": 5979.06, + "probability": 0.937 + }, + { + "start": 5980.06, + "end": 5984.8, + "probability": 0.98 + }, + { + "start": 5984.8, + "end": 5987.64, + "probability": 0.9802 + }, + { + "start": 5988.46, + "end": 5990.74, + "probability": 0.8857 + }, + { + "start": 5991.56, + "end": 5995.62, + "probability": 0.6787 + }, + { + "start": 5995.62, + "end": 5999.9, + "probability": 0.9836 + }, + { + "start": 6000.6, + "end": 6002.02, + "probability": 0.9727 + }, + { + "start": 6002.48, + "end": 6005.5, + "probability": 0.804 + }, + { + "start": 6006.24, + "end": 6006.94, + "probability": 0.8887 + }, + { + "start": 6007.06, + "end": 6007.86, + "probability": 0.6597 + }, + { + "start": 6008.4, + "end": 6013.3, + "probability": 0.9933 + }, + { + "start": 6013.72, + "end": 6015.44, + "probability": 0.9827 + }, + { + "start": 6016.0, + "end": 6021.28, + "probability": 0.635 + }, + { + "start": 6021.76, + "end": 6022.04, + "probability": 0.306 + }, + { + "start": 6022.04, + "end": 6026.76, + "probability": 0.9875 + }, + { + "start": 6026.76, + "end": 6031.48, + "probability": 0.7498 + }, + { + "start": 6031.6, + "end": 6031.98, + "probability": 0.4655 + }, + { + "start": 6032.48, + "end": 6033.2, + "probability": 0.5365 + }, + { + "start": 6033.26, + "end": 6035.6, + "probability": 0.9794 + }, + { + "start": 6036.02, + "end": 6037.72, + "probability": 0.7004 + }, + { + "start": 6038.16, + "end": 6040.72, + "probability": 0.9697 + }, + { + "start": 6040.86, + "end": 6046.62, + "probability": 0.8416 + }, + { + "start": 6047.02, + "end": 6049.16, + "probability": 0.5394 + }, + { + "start": 6049.8, + "end": 6050.42, + "probability": 0.2114 + }, + { + "start": 6050.42, + "end": 6051.38, + "probability": 0.651 + }, + { + "start": 6051.72, + "end": 6051.76, + "probability": 0.1549 + }, + { + "start": 6051.76, + "end": 6051.76, + "probability": 0.02 + }, + { + "start": 6051.76, + "end": 6057.28, + "probability": 0.8288 + }, + { + "start": 6058.22, + "end": 6058.24, + "probability": 0.0712 + }, + { + "start": 6058.24, + "end": 6058.78, + "probability": 0.0662 + }, + { + "start": 6058.78, + "end": 6060.12, + "probability": 0.2028 + }, + { + "start": 6060.16, + "end": 6060.62, + "probability": 0.874 + }, + { + "start": 6061.8, + "end": 6061.9, + "probability": 0.568 + }, + { + "start": 6065.08, + "end": 6066.6, + "probability": 0.8721 + }, + { + "start": 6067.54, + "end": 6068.12, + "probability": 0.0211 + }, + { + "start": 6094.76, + "end": 6095.06, + "probability": 0.073 + }, + { + "start": 6095.06, + "end": 6096.28, + "probability": 0.6642 + }, + { + "start": 6097.02, + "end": 6097.72, + "probability": 0.7849 + }, + { + "start": 6098.3, + "end": 6099.12, + "probability": 0.6766 + }, + { + "start": 6099.9, + "end": 6102.64, + "probability": 0.867 + }, + { + "start": 6103.48, + "end": 6109.5, + "probability": 0.986 + }, + { + "start": 6109.58, + "end": 6110.48, + "probability": 0.5917 + }, + { + "start": 6110.86, + "end": 6111.5, + "probability": 0.0582 + }, + { + "start": 6111.72, + "end": 6111.72, + "probability": 0.206 + }, + { + "start": 6111.79, + "end": 6112.28, + "probability": 0.7664 + }, + { + "start": 6115.08, + "end": 6115.68, + "probability": 0.6757 + }, + { + "start": 6115.68, + "end": 6115.7, + "probability": 0.3354 + }, + { + "start": 6115.7, + "end": 6116.38, + "probability": 0.7281 + }, + { + "start": 6116.64, + "end": 6118.9, + "probability": 0.2348 + }, + { + "start": 6119.32, + "end": 6119.88, + "probability": 0.5227 + }, + { + "start": 6120.3, + "end": 6121.04, + "probability": 0.8775 + }, + { + "start": 6121.34, + "end": 6122.12, + "probability": 0.9671 + }, + { + "start": 6123.9, + "end": 6124.28, + "probability": 0.6772 + }, + { + "start": 6124.38, + "end": 6128.5, + "probability": 0.9942 + }, + { + "start": 6128.62, + "end": 6135.48, + "probability": 0.9906 + }, + { + "start": 6135.58, + "end": 6136.98, + "probability": 0.8208 + }, + { + "start": 6138.08, + "end": 6138.84, + "probability": 0.3474 + }, + { + "start": 6139.0, + "end": 6139.54, + "probability": 0.6875 + }, + { + "start": 6139.58, + "end": 6141.56, + "probability": 0.983 + }, + { + "start": 6141.74, + "end": 6144.36, + "probability": 0.9441 + }, + { + "start": 6144.72, + "end": 6147.96, + "probability": 0.8121 + }, + { + "start": 6148.02, + "end": 6150.1, + "probability": 0.9919 + }, + { + "start": 6150.22, + "end": 6153.78, + "probability": 0.939 + }, + { + "start": 6153.8, + "end": 6155.4, + "probability": 0.6283 + }, + { + "start": 6156.38, + "end": 6158.32, + "probability": 0.612 + }, + { + "start": 6158.42, + "end": 6160.02, + "probability": 0.8757 + }, + { + "start": 6160.18, + "end": 6163.12, + "probability": 0.9412 + }, + { + "start": 6164.2, + "end": 6166.06, + "probability": 0.9927 + }, + { + "start": 6166.52, + "end": 6169.72, + "probability": 0.8799 + }, + { + "start": 6170.24, + "end": 6171.6, + "probability": 0.6765 + }, + { + "start": 6173.08, + "end": 6179.6, + "probability": 0.9846 + }, + { + "start": 6180.0, + "end": 6181.14, + "probability": 0.9089 + }, + { + "start": 6181.7, + "end": 6184.12, + "probability": 0.9964 + }, + { + "start": 6185.26, + "end": 6188.28, + "probability": 0.9979 + }, + { + "start": 6188.64, + "end": 6195.16, + "probability": 0.9959 + }, + { + "start": 6196.2, + "end": 6198.66, + "probability": 0.9866 + }, + { + "start": 6199.34, + "end": 6204.08, + "probability": 0.9976 + }, + { + "start": 6205.78, + "end": 6207.46, + "probability": 0.8142 + }, + { + "start": 6207.7, + "end": 6210.96, + "probability": 0.9854 + }, + { + "start": 6210.96, + "end": 6213.38, + "probability": 0.9353 + }, + { + "start": 6214.0, + "end": 6217.3, + "probability": 0.9685 + }, + { + "start": 6217.3, + "end": 6222.18, + "probability": 0.9956 + }, + { + "start": 6222.68, + "end": 6227.22, + "probability": 0.9839 + }, + { + "start": 6228.88, + "end": 6232.21, + "probability": 0.7098 + }, + { + "start": 6233.16, + "end": 6235.16, + "probability": 0.8826 + }, + { + "start": 6236.32, + "end": 6239.26, + "probability": 0.9844 + }, + { + "start": 6239.26, + "end": 6243.28, + "probability": 0.9976 + }, + { + "start": 6244.34, + "end": 6248.78, + "probability": 0.9983 + }, + { + "start": 6249.68, + "end": 6251.78, + "probability": 0.8324 + }, + { + "start": 6252.38, + "end": 6254.02, + "probability": 0.9624 + }, + { + "start": 6254.52, + "end": 6256.6, + "probability": 0.9974 + }, + { + "start": 6257.36, + "end": 6257.8, + "probability": 0.7968 + }, + { + "start": 6258.38, + "end": 6261.78, + "probability": 0.9898 + }, + { + "start": 6261.78, + "end": 6266.24, + "probability": 0.9963 + }, + { + "start": 6266.9, + "end": 6269.06, + "probability": 0.8125 + }, + { + "start": 6270.92, + "end": 6271.12, + "probability": 0.0313 + }, + { + "start": 6271.12, + "end": 6273.94, + "probability": 0.997 + }, + { + "start": 6273.94, + "end": 6276.84, + "probability": 0.9969 + }, + { + "start": 6277.12, + "end": 6278.06, + "probability": 0.7496 + }, + { + "start": 6278.96, + "end": 6282.3, + "probability": 0.988 + }, + { + "start": 6282.78, + "end": 6286.56, + "probability": 0.9964 + }, + { + "start": 6286.7, + "end": 6287.22, + "probability": 0.8763 + }, + { + "start": 6287.64, + "end": 6290.34, + "probability": 0.9893 + }, + { + "start": 6291.3, + "end": 6291.72, + "probability": 0.9399 + }, + { + "start": 6292.2, + "end": 6296.22, + "probability": 0.9983 + }, + { + "start": 6296.94, + "end": 6297.24, + "probability": 0.7172 + }, + { + "start": 6297.38, + "end": 6300.0, + "probability": 0.9968 + }, + { + "start": 6300.44, + "end": 6303.96, + "probability": 0.9988 + }, + { + "start": 6304.44, + "end": 6305.84, + "probability": 0.9293 + }, + { + "start": 6305.92, + "end": 6306.24, + "probability": 0.9261 + }, + { + "start": 6307.0, + "end": 6307.12, + "probability": 0.2711 + }, + { + "start": 6307.12, + "end": 6309.21, + "probability": 0.7492 + }, + { + "start": 6310.94, + "end": 6311.3, + "probability": 0.1686 + }, + { + "start": 6313.06, + "end": 6313.64, + "probability": 0.3221 + }, + { + "start": 6313.72, + "end": 6314.3, + "probability": 0.4535 + }, + { + "start": 6314.46, + "end": 6315.54, + "probability": 0.5983 + }, + { + "start": 6315.94, + "end": 6320.36, + "probability": 0.8 + }, + { + "start": 6320.42, + "end": 6320.89, + "probability": 0.1877 + }, + { + "start": 6321.46, + "end": 6321.98, + "probability": 0.5123 + }, + { + "start": 6322.48, + "end": 6323.12, + "probability": 0.5117 + }, + { + "start": 6324.26, + "end": 6328.72, + "probability": 0.6186 + }, + { + "start": 6328.72, + "end": 6331.2, + "probability": 0.9869 + }, + { + "start": 6331.2, + "end": 6335.72, + "probability": 0.9875 + }, + { + "start": 6336.36, + "end": 6337.54, + "probability": 0.8403 + }, + { + "start": 6337.6, + "end": 6339.22, + "probability": 0.9953 + }, + { + "start": 6339.3, + "end": 6341.2, + "probability": 0.6781 + }, + { + "start": 6341.66, + "end": 6343.12, + "probability": 0.7516 + }, + { + "start": 6343.66, + "end": 6348.74, + "probability": 0.819 + }, + { + "start": 6349.16, + "end": 6351.48, + "probability": 0.9852 + }, + { + "start": 6351.6, + "end": 6352.32, + "probability": 0.7604 + }, + { + "start": 6352.44, + "end": 6353.06, + "probability": 0.7276 + }, + { + "start": 6353.12, + "end": 6356.68, + "probability": 0.9954 + }, + { + "start": 6356.68, + "end": 6359.38, + "probability": 0.7684 + }, + { + "start": 6359.64, + "end": 6359.74, + "probability": 0.527 + }, + { + "start": 6360.4, + "end": 6363.42, + "probability": 0.9614 + }, + { + "start": 6364.22, + "end": 6366.46, + "probability": 0.9973 + }, + { + "start": 6366.52, + "end": 6370.78, + "probability": 0.989 + }, + { + "start": 6371.36, + "end": 6372.1, + "probability": 0.2767 + }, + { + "start": 6372.2, + "end": 6373.86, + "probability": 0.903 + }, + { + "start": 6374.46, + "end": 6380.0, + "probability": 0.9938 + }, + { + "start": 6380.0, + "end": 6383.0, + "probability": 0.9622 + }, + { + "start": 6383.2, + "end": 6383.78, + "probability": 0.7795 + }, + { + "start": 6383.8, + "end": 6384.14, + "probability": 0.154 + }, + { + "start": 6384.22, + "end": 6385.52, + "probability": 0.9959 + }, + { + "start": 6386.08, + "end": 6390.42, + "probability": 0.9973 + }, + { + "start": 6390.54, + "end": 6390.82, + "probability": 0.3257 + }, + { + "start": 6391.72, + "end": 6392.38, + "probability": 0.8857 + }, + { + "start": 6396.12, + "end": 6399.78, + "probability": 0.9967 + }, + { + "start": 6399.78, + "end": 6403.46, + "probability": 0.9992 + }, + { + "start": 6403.46, + "end": 6407.26, + "probability": 0.994 + }, + { + "start": 6408.48, + "end": 6411.96, + "probability": 0.9678 + }, + { + "start": 6412.18, + "end": 6414.16, + "probability": 0.9451 + }, + { + "start": 6415.2, + "end": 6415.54, + "probability": 0.7776 + }, + { + "start": 6415.66, + "end": 6417.02, + "probability": 0.8854 + }, + { + "start": 6417.14, + "end": 6419.3, + "probability": 0.9944 + }, + { + "start": 6420.16, + "end": 6421.52, + "probability": 0.9497 + }, + { + "start": 6421.92, + "end": 6422.5, + "probability": 0.9125 + }, + { + "start": 6422.5, + "end": 6426.94, + "probability": 0.9986 + }, + { + "start": 6426.94, + "end": 6431.96, + "probability": 0.9996 + }, + { + "start": 6432.54, + "end": 6434.7, + "probability": 0.974 + }, + { + "start": 6435.24, + "end": 6436.57, + "probability": 0.8569 + }, + { + "start": 6436.96, + "end": 6439.72, + "probability": 0.9785 + }, + { + "start": 6439.88, + "end": 6440.98, + "probability": 0.7668 + }, + { + "start": 6441.46, + "end": 6442.21, + "probability": 0.962 + }, + { + "start": 6443.18, + "end": 6445.26, + "probability": 0.9984 + }, + { + "start": 6445.26, + "end": 6448.22, + "probability": 0.9183 + }, + { + "start": 6449.36, + "end": 6449.36, + "probability": 0.1964 + }, + { + "start": 6449.36, + "end": 6449.74, + "probability": 0.5237 + }, + { + "start": 6450.2, + "end": 6451.34, + "probability": 0.2149 + }, + { + "start": 6451.94, + "end": 6452.66, + "probability": 0.0432 + }, + { + "start": 6452.66, + "end": 6454.0, + "probability": 0.1818 + }, + { + "start": 6454.48, + "end": 6454.58, + "probability": 0.3153 + }, + { + "start": 6455.6, + "end": 6456.76, + "probability": 0.77 + }, + { + "start": 6456.84, + "end": 6460.36, + "probability": 0.9767 + }, + { + "start": 6461.02, + "end": 6464.12, + "probability": 0.9848 + }, + { + "start": 6464.18, + "end": 6465.7, + "probability": 0.9707 + }, + { + "start": 6465.92, + "end": 6466.9, + "probability": 0.9861 + }, + { + "start": 6467.4, + "end": 6470.46, + "probability": 0.7524 + }, + { + "start": 6471.93, + "end": 6475.8, + "probability": 0.9315 + }, + { + "start": 6475.9, + "end": 6479.68, + "probability": 0.8631 + }, + { + "start": 6480.24, + "end": 6482.2, + "probability": 0.9901 + }, + { + "start": 6482.34, + "end": 6485.78, + "probability": 0.9946 + }, + { + "start": 6485.9, + "end": 6488.12, + "probability": 0.9832 + }, + { + "start": 6488.24, + "end": 6489.24, + "probability": 0.8648 + }, + { + "start": 6489.34, + "end": 6490.8, + "probability": 0.8769 + }, + { + "start": 6492.2, + "end": 6493.26, + "probability": 0.3929 + }, + { + "start": 6493.4, + "end": 6494.0, + "probability": 0.5918 + }, + { + "start": 6494.26, + "end": 6494.86, + "probability": 0.3257 + }, + { + "start": 6495.0, + "end": 6495.9, + "probability": 0.9537 + }, + { + "start": 6496.32, + "end": 6497.62, + "probability": 0.7996 + }, + { + "start": 6497.76, + "end": 6500.42, + "probability": 0.9895 + }, + { + "start": 6500.42, + "end": 6503.32, + "probability": 0.9858 + }, + { + "start": 6503.96, + "end": 6506.42, + "probability": 0.83 + }, + { + "start": 6506.46, + "end": 6507.32, + "probability": 0.6548 + }, + { + "start": 6507.4, + "end": 6508.96, + "probability": 0.8873 + }, + { + "start": 6509.0, + "end": 6511.14, + "probability": 0.9521 + }, + { + "start": 6511.28, + "end": 6516.14, + "probability": 0.9933 + }, + { + "start": 6516.46, + "end": 6517.54, + "probability": 0.8774 + }, + { + "start": 6518.06, + "end": 6522.73, + "probability": 0.9963 + }, + { + "start": 6523.14, + "end": 6528.84, + "probability": 0.9844 + }, + { + "start": 6529.42, + "end": 6531.54, + "probability": 0.8734 + }, + { + "start": 6532.7, + "end": 6534.38, + "probability": 0.6349 + }, + { + "start": 6544.56, + "end": 6544.96, + "probability": 0.7262 + }, + { + "start": 6550.58, + "end": 6555.36, + "probability": 0.6372 + }, + { + "start": 6556.34, + "end": 6559.46, + "probability": 0.989 + }, + { + "start": 6559.74, + "end": 6560.3, + "probability": 0.6038 + }, + { + "start": 6560.48, + "end": 6566.38, + "probability": 0.9888 + }, + { + "start": 6566.38, + "end": 6572.7, + "probability": 0.9919 + }, + { + "start": 6572.7, + "end": 6578.12, + "probability": 0.9987 + }, + { + "start": 6578.64, + "end": 6581.68, + "probability": 0.7572 + }, + { + "start": 6581.84, + "end": 6582.54, + "probability": 0.8033 + }, + { + "start": 6582.62, + "end": 6584.18, + "probability": 0.9736 + }, + { + "start": 6584.86, + "end": 6585.76, + "probability": 0.8381 + }, + { + "start": 6586.6, + "end": 6587.46, + "probability": 0.3138 + }, + { + "start": 6587.72, + "end": 6589.34, + "probability": 0.9287 + }, + { + "start": 6589.76, + "end": 6591.74, + "probability": 0.994 + }, + { + "start": 6592.08, + "end": 6593.04, + "probability": 0.8564 + }, + { + "start": 6593.4, + "end": 6594.36, + "probability": 0.8467 + }, + { + "start": 6594.54, + "end": 6597.54, + "probability": 0.9873 + }, + { + "start": 6598.56, + "end": 6600.32, + "probability": 0.9929 + }, + { + "start": 6600.7, + "end": 6604.1, + "probability": 0.9092 + }, + { + "start": 6604.18, + "end": 6605.44, + "probability": 0.6406 + }, + { + "start": 6606.8, + "end": 6611.36, + "probability": 0.9307 + }, + { + "start": 6611.42, + "end": 6612.42, + "probability": 0.7041 + }, + { + "start": 6612.82, + "end": 6615.13, + "probability": 0.8895 + }, + { + "start": 6616.1, + "end": 6616.68, + "probability": 0.8568 + }, + { + "start": 6617.46, + "end": 6619.75, + "probability": 0.897 + }, + { + "start": 6620.38, + "end": 6622.74, + "probability": 0.9961 + }, + { + "start": 6623.42, + "end": 6623.96, + "probability": 0.506 + }, + { + "start": 6624.0, + "end": 6624.8, + "probability": 0.5691 + }, + { + "start": 6624.8, + "end": 6625.62, + "probability": 0.7497 + }, + { + "start": 6625.74, + "end": 6629.31, + "probability": 0.9707 + }, + { + "start": 6629.56, + "end": 6631.31, + "probability": 0.8194 + }, + { + "start": 6631.68, + "end": 6636.08, + "probability": 0.9623 + }, + { + "start": 6636.14, + "end": 6637.76, + "probability": 0.7703 + }, + { + "start": 6637.84, + "end": 6638.58, + "probability": 0.9321 + }, + { + "start": 6638.98, + "end": 6641.68, + "probability": 0.9504 + }, + { + "start": 6642.28, + "end": 6644.74, + "probability": 0.9265 + }, + { + "start": 6645.42, + "end": 6648.3, + "probability": 0.7487 + }, + { + "start": 6648.6, + "end": 6649.02, + "probability": 0.9049 + }, + { + "start": 6649.12, + "end": 6649.7, + "probability": 0.7891 + }, + { + "start": 6649.98, + "end": 6650.92, + "probability": 0.8584 + }, + { + "start": 6651.16, + "end": 6652.88, + "probability": 0.947 + }, + { + "start": 6653.18, + "end": 6655.12, + "probability": 0.9346 + }, + { + "start": 6655.24, + "end": 6656.28, + "probability": 0.9784 + }, + { + "start": 6656.38, + "end": 6657.12, + "probability": 0.7819 + }, + { + "start": 6657.26, + "end": 6658.24, + "probability": 0.7426 + }, + { + "start": 6658.36, + "end": 6658.74, + "probability": 0.7882 + }, + { + "start": 6658.78, + "end": 6659.1, + "probability": 0.9167 + }, + { + "start": 6660.08, + "end": 6661.15, + "probability": 0.8779 + }, + { + "start": 6662.36, + "end": 6665.68, + "probability": 0.7774 + }, + { + "start": 6665.94, + "end": 6666.3, + "probability": 0.4593 + }, + { + "start": 6666.58, + "end": 6669.92, + "probability": 0.9548 + }, + { + "start": 6670.16, + "end": 6671.68, + "probability": 0.6592 + }, + { + "start": 6671.8, + "end": 6672.36, + "probability": 0.8685 + }, + { + "start": 6672.84, + "end": 6676.34, + "probability": 0.9292 + }, + { + "start": 6676.86, + "end": 6678.54, + "probability": 0.9263 + }, + { + "start": 6678.6, + "end": 6679.56, + "probability": 0.919 + }, + { + "start": 6679.64, + "end": 6680.91, + "probability": 0.9814 + }, + { + "start": 6681.52, + "end": 6684.1, + "probability": 0.6227 + }, + { + "start": 6684.54, + "end": 6686.37, + "probability": 0.7032 + }, + { + "start": 6687.74, + "end": 6690.08, + "probability": 0.9949 + }, + { + "start": 6690.14, + "end": 6690.62, + "probability": 0.7339 + }, + { + "start": 6691.26, + "end": 6691.86, + "probability": 0.918 + }, + { + "start": 6692.02, + "end": 6692.12, + "probability": 0.1468 + }, + { + "start": 6692.32, + "end": 6693.8, + "probability": 0.9044 + }, + { + "start": 6694.02, + "end": 6695.46, + "probability": 0.9762 + }, + { + "start": 6695.78, + "end": 6696.82, + "probability": 0.8691 + }, + { + "start": 6697.06, + "end": 6700.24, + "probability": 0.9941 + }, + { + "start": 6700.38, + "end": 6700.92, + "probability": 0.6185 + }, + { + "start": 6701.46, + "end": 6701.94, + "probability": 0.4772 + }, + { + "start": 6702.04, + "end": 6703.94, + "probability": 0.9306 + }, + { + "start": 6704.24, + "end": 6705.62, + "probability": 0.9306 + }, + { + "start": 6705.94, + "end": 6707.08, + "probability": 0.9731 + }, + { + "start": 6707.1, + "end": 6707.98, + "probability": 0.7865 + }, + { + "start": 6708.12, + "end": 6708.36, + "probability": 0.4563 + }, + { + "start": 6708.66, + "end": 6709.18, + "probability": 0.0393 + }, + { + "start": 6709.18, + "end": 6710.7, + "probability": 0.4849 + }, + { + "start": 6710.78, + "end": 6711.54, + "probability": 0.8728 + }, + { + "start": 6712.02, + "end": 6716.54, + "probability": 0.9354 + }, + { + "start": 6717.02, + "end": 6719.34, + "probability": 0.8189 + }, + { + "start": 6719.98, + "end": 6723.62, + "probability": 0.8727 + }, + { + "start": 6724.44, + "end": 6724.84, + "probability": 0.8408 + }, + { + "start": 6724.86, + "end": 6727.4, + "probability": 0.8204 + }, + { + "start": 6727.84, + "end": 6729.9, + "probability": 0.9814 + }, + { + "start": 6730.42, + "end": 6731.4, + "probability": 0.8896 + }, + { + "start": 6731.5, + "end": 6732.22, + "probability": 0.7251 + }, + { + "start": 6732.3, + "end": 6733.44, + "probability": 0.9868 + }, + { + "start": 6733.66, + "end": 6734.36, + "probability": 0.703 + }, + { + "start": 6734.36, + "end": 6734.68, + "probability": 0.3155 + }, + { + "start": 6734.74, + "end": 6735.4, + "probability": 0.3243 + }, + { + "start": 6736.4, + "end": 6737.18, + "probability": 0.2649 + }, + { + "start": 6737.18, + "end": 6738.46, + "probability": 0.1765 + }, + { + "start": 6739.14, + "end": 6740.47, + "probability": 0.5456 + }, + { + "start": 6740.56, + "end": 6742.63, + "probability": 0.5538 + }, + { + "start": 6743.28, + "end": 6748.46, + "probability": 0.3608 + }, + { + "start": 6748.72, + "end": 6749.16, + "probability": 0.1274 + }, + { + "start": 6749.76, + "end": 6750.76, + "probability": 0.0897 + }, + { + "start": 6750.76, + "end": 6751.32, + "probability": 0.535 + }, + { + "start": 6751.84, + "end": 6755.06, + "probability": 0.9786 + }, + { + "start": 6755.64, + "end": 6758.94, + "probability": 0.9492 + }, + { + "start": 6758.94, + "end": 6759.42, + "probability": 0.6425 + }, + { + "start": 6760.42, + "end": 6762.2, + "probability": 0.9416 + }, + { + "start": 6763.34, + "end": 6763.34, + "probability": 0.2455 + }, + { + "start": 6763.34, + "end": 6763.34, + "probability": 0.1549 + }, + { + "start": 6763.34, + "end": 6768.2, + "probability": 0.8332 + }, + { + "start": 6768.86, + "end": 6769.04, + "probability": 0.0611 + }, + { + "start": 6769.04, + "end": 6770.37, + "probability": 0.595 + }, + { + "start": 6771.26, + "end": 6773.38, + "probability": 0.7469 + }, + { + "start": 6774.56, + "end": 6775.48, + "probability": 0.0092 + }, + { + "start": 6776.36, + "end": 6777.52, + "probability": 0.4851 + }, + { + "start": 6778.16, + "end": 6781.38, + "probability": 0.7983 + }, + { + "start": 6783.02, + "end": 6785.66, + "probability": 0.8152 + }, + { + "start": 6786.08, + "end": 6787.86, + "probability": 0.9521 + }, + { + "start": 6788.4, + "end": 6790.16, + "probability": 0.869 + }, + { + "start": 6791.18, + "end": 6793.64, + "probability": 0.5914 + }, + { + "start": 6794.24, + "end": 6797.56, + "probability": 0.5781 + }, + { + "start": 6798.18, + "end": 6800.38, + "probability": 0.8906 + }, + { + "start": 6801.34, + "end": 6801.98, + "probability": 0.9632 + }, + { + "start": 6802.7, + "end": 6805.24, + "probability": 0.9592 + }, + { + "start": 6806.34, + "end": 6806.76, + "probability": 0.9729 + }, + { + "start": 6807.78, + "end": 6808.88, + "probability": 0.9903 + }, + { + "start": 6809.58, + "end": 6810.34, + "probability": 0.9282 + }, + { + "start": 6810.88, + "end": 6813.18, + "probability": 0.9885 + }, + { + "start": 6813.72, + "end": 6814.58, + "probability": 0.9749 + }, + { + "start": 6815.74, + "end": 6816.5, + "probability": 0.7491 + }, + { + "start": 6817.5, + "end": 6818.32, + "probability": 0.6836 + }, + { + "start": 6819.56, + "end": 6819.92, + "probability": 0.91 + }, + { + "start": 6821.46, + "end": 6822.44, + "probability": 0.9096 + }, + { + "start": 6823.2, + "end": 6823.64, + "probability": 0.8965 + }, + { + "start": 6824.48, + "end": 6825.44, + "probability": 0.8927 + }, + { + "start": 6825.82, + "end": 6827.58, + "probability": 0.9427 + }, + { + "start": 6828.04, + "end": 6829.86, + "probability": 0.9401 + }, + { + "start": 6831.0, + "end": 6831.42, + "probability": 0.9207 + }, + { + "start": 6833.8, + "end": 6834.66, + "probability": 0.9683 + }, + { + "start": 6835.98, + "end": 6836.86, + "probability": 0.9891 + }, + { + "start": 6837.54, + "end": 6840.46, + "probability": 0.87 + }, + { + "start": 6841.34, + "end": 6841.96, + "probability": 0.9915 + }, + { + "start": 6842.52, + "end": 6843.36, + "probability": 0.9069 + }, + { + "start": 6846.48, + "end": 6846.88, + "probability": 0.6083 + }, + { + "start": 6848.22, + "end": 6849.02, + "probability": 0.894 + }, + { + "start": 6849.3, + "end": 6851.12, + "probability": 0.7414 + }, + { + "start": 6851.6, + "end": 6853.02, + "probability": 0.9697 + }, + { + "start": 6853.86, + "end": 6855.26, + "probability": 0.9528 + }, + { + "start": 6855.92, + "end": 6857.46, + "probability": 0.9902 + }, + { + "start": 6858.3, + "end": 6859.04, + "probability": 0.8508 + }, + { + "start": 6859.7, + "end": 6860.42, + "probability": 0.525 + }, + { + "start": 6861.92, + "end": 6862.78, + "probability": 0.837 + }, + { + "start": 6867.52, + "end": 6868.32, + "probability": 0.4536 + }, + { + "start": 6868.64, + "end": 6870.4, + "probability": 0.8283 + }, + { + "start": 6870.5, + "end": 6871.92, + "probability": 0.9458 + }, + { + "start": 6872.5, + "end": 6874.12, + "probability": 0.858 + }, + { + "start": 6874.88, + "end": 6875.58, + "probability": 0.9655 + }, + { + "start": 6876.62, + "end": 6879.0, + "probability": 0.9877 + }, + { + "start": 6879.84, + "end": 6880.58, + "probability": 0.9924 + }, + { + "start": 6881.12, + "end": 6881.92, + "probability": 0.7792 + }, + { + "start": 6883.12, + "end": 6883.8, + "probability": 0.8077 + }, + { + "start": 6884.44, + "end": 6886.16, + "probability": 0.822 + }, + { + "start": 6886.74, + "end": 6889.66, + "probability": 0.8846 + }, + { + "start": 6889.66, + "end": 6890.94, + "probability": 0.9028 + }, + { + "start": 6893.48, + "end": 6894.6, + "probability": 0.4966 + }, + { + "start": 6896.26, + "end": 6896.9, + "probability": 0.5867 + }, + { + "start": 6897.9, + "end": 6898.24, + "probability": 0.9528 + }, + { + "start": 6900.08, + "end": 6900.96, + "probability": 0.8895 + }, + { + "start": 6901.72, + "end": 6903.3, + "probability": 0.8356 + }, + { + "start": 6903.52, + "end": 6905.26, + "probability": 0.9438 + }, + { + "start": 6906.24, + "end": 6907.14, + "probability": 0.9689 + }, + { + "start": 6907.68, + "end": 6909.08, + "probability": 0.9468 + }, + { + "start": 6910.0, + "end": 6910.44, + "probability": 0.9925 + }, + { + "start": 6911.64, + "end": 6912.78, + "probability": 0.9809 + }, + { + "start": 6913.38, + "end": 6914.04, + "probability": 0.995 + }, + { + "start": 6914.72, + "end": 6915.9, + "probability": 0.6648 + }, + { + "start": 6916.6, + "end": 6918.62, + "probability": 0.5091 + }, + { + "start": 6919.7, + "end": 6921.56, + "probability": 0.7379 + }, + { + "start": 6923.24, + "end": 6923.68, + "probability": 0.9753 + }, + { + "start": 6924.88, + "end": 6925.46, + "probability": 0.6897 + }, + { + "start": 6927.26, + "end": 6927.7, + "probability": 0.992 + }, + { + "start": 6928.64, + "end": 6929.38, + "probability": 0.9832 + }, + { + "start": 6930.5, + "end": 6930.9, + "probability": 0.9819 + }, + { + "start": 6931.8, + "end": 6932.58, + "probability": 0.9408 + }, + { + "start": 6933.6, + "end": 6934.1, + "probability": 0.9816 + }, + { + "start": 6935.12, + "end": 6935.85, + "probability": 0.5874 + }, + { + "start": 6936.9, + "end": 6937.68, + "probability": 0.9899 + }, + { + "start": 6938.58, + "end": 6939.76, + "probability": 0.9503 + }, + { + "start": 6940.88, + "end": 6941.6, + "probability": 0.7873 + }, + { + "start": 6942.12, + "end": 6942.76, + "probability": 0.5179 + }, + { + "start": 6943.56, + "end": 6947.2, + "probability": 0.9587 + }, + { + "start": 6955.62, + "end": 6956.6, + "probability": 0.6905 + }, + { + "start": 6957.14, + "end": 6958.06, + "probability": 0.5664 + }, + { + "start": 6959.16, + "end": 6959.4, + "probability": 0.5677 + }, + { + "start": 6960.24, + "end": 6961.6, + "probability": 0.7578 + }, + { + "start": 6963.16, + "end": 6964.68, + "probability": 0.8228 + }, + { + "start": 6966.82, + "end": 6968.16, + "probability": 0.9189 + }, + { + "start": 6969.08, + "end": 6971.38, + "probability": 0.7316 + }, + { + "start": 6972.28, + "end": 6972.98, + "probability": 0.9767 + }, + { + "start": 6974.08, + "end": 6975.1, + "probability": 0.5479 + }, + { + "start": 6976.16, + "end": 6977.7, + "probability": 0.9008 + }, + { + "start": 6978.52, + "end": 6980.68, + "probability": 0.8308 + }, + { + "start": 6980.8, + "end": 6982.3, + "probability": 0.8677 + }, + { + "start": 6982.92, + "end": 6983.68, + "probability": 0.9313 + }, + { + "start": 6984.76, + "end": 6985.72, + "probability": 0.7116 + }, + { + "start": 6986.9, + "end": 6989.98, + "probability": 0.9382 + }, + { + "start": 6990.64, + "end": 6991.42, + "probability": 0.864 + }, + { + "start": 6993.06, + "end": 6993.56, + "probability": 0.8491 + }, + { + "start": 6994.52, + "end": 6996.54, + "probability": 0.9492 + }, + { + "start": 6997.08, + "end": 6999.62, + "probability": 0.552 + }, + { + "start": 7002.24, + "end": 7002.66, + "probability": 0.9505 + }, + { + "start": 7003.84, + "end": 7004.62, + "probability": 0.6883 + }, + { + "start": 7005.44, + "end": 7006.1, + "probability": 0.942 + }, + { + "start": 7006.66, + "end": 7007.44, + "probability": 0.8361 + }, + { + "start": 7008.32, + "end": 7010.1, + "probability": 0.7376 + }, + { + "start": 7010.18, + "end": 7011.84, + "probability": 0.8473 + }, + { + "start": 7012.78, + "end": 7015.28, + "probability": 0.9679 + }, + { + "start": 7015.84, + "end": 7016.22, + "probability": 0.9678 + }, + { + "start": 7017.24, + "end": 7017.96, + "probability": 0.7465 + }, + { + "start": 7018.8, + "end": 7020.62, + "probability": 0.8005 + }, + { + "start": 7021.72, + "end": 7022.08, + "probability": 0.6503 + }, + { + "start": 7023.24, + "end": 7024.52, + "probability": 0.5282 + }, + { + "start": 7025.32, + "end": 7027.44, + "probability": 0.9809 + }, + { + "start": 7028.24, + "end": 7028.68, + "probability": 0.9243 + }, + { + "start": 7029.74, + "end": 7030.66, + "probability": 0.885 + }, + { + "start": 7033.34, + "end": 7033.7, + "probability": 0.9883 + }, + { + "start": 7037.36, + "end": 7039.4, + "probability": 0.7135 + }, + { + "start": 7040.24, + "end": 7040.82, + "probability": 0.691 + }, + { + "start": 7041.44, + "end": 7045.38, + "probability": 0.9419 + }, + { + "start": 7046.68, + "end": 7048.52, + "probability": 0.9824 + }, + { + "start": 7049.58, + "end": 7051.64, + "probability": 0.9608 + }, + { + "start": 7053.1, + "end": 7053.54, + "probability": 0.9844 + }, + { + "start": 7054.54, + "end": 7055.38, + "probability": 0.3249 + }, + { + "start": 7056.26, + "end": 7056.94, + "probability": 0.8088 + }, + { + "start": 7057.58, + "end": 7058.44, + "probability": 0.7074 + }, + { + "start": 7060.68, + "end": 7062.3, + "probability": 0.7983 + }, + { + "start": 7063.42, + "end": 7068.72, + "probability": 0.873 + }, + { + "start": 7069.9, + "end": 7070.28, + "probability": 0.8937 + }, + { + "start": 7071.28, + "end": 7072.02, + "probability": 0.8904 + }, + { + "start": 7073.24, + "end": 7073.72, + "probability": 0.9895 + }, + { + "start": 7074.52, + "end": 7075.32, + "probability": 0.4838 + }, + { + "start": 7076.9, + "end": 7079.06, + "probability": 0.9855 + }, + { + "start": 7079.64, + "end": 7080.42, + "probability": 0.978 + }, + { + "start": 7081.32, + "end": 7082.1, + "probability": 0.8112 + }, + { + "start": 7083.54, + "end": 7084.38, + "probability": 0.8292 + }, + { + "start": 7085.0, + "end": 7085.8, + "probability": 0.6458 + }, + { + "start": 7093.24, + "end": 7095.54, + "probability": 0.5091 + }, + { + "start": 7096.74, + "end": 7097.16, + "probability": 0.8677 + }, + { + "start": 7098.72, + "end": 7099.3, + "probability": 0.76 + }, + { + "start": 7102.34, + "end": 7102.88, + "probability": 0.9782 + }, + { + "start": 7103.78, + "end": 7104.6, + "probability": 0.7529 + }, + { + "start": 7105.4, + "end": 7107.28, + "probability": 0.9482 + }, + { + "start": 7111.0, + "end": 7115.08, + "probability": 0.9419 + }, + { + "start": 7117.72, + "end": 7120.6, + "probability": 0.9424 + }, + { + "start": 7121.8, + "end": 7122.84, + "probability": 0.5885 + }, + { + "start": 7123.42, + "end": 7125.38, + "probability": 0.6783 + }, + { + "start": 7128.56, + "end": 7131.54, + "probability": 0.7721 + }, + { + "start": 7132.6, + "end": 7134.94, + "probability": 0.8708 + }, + { + "start": 7135.6, + "end": 7136.06, + "probability": 0.98 + }, + { + "start": 7137.04, + "end": 7140.63, + "probability": 0.8914 + }, + { + "start": 7146.52, + "end": 7149.44, + "probability": 0.6146 + }, + { + "start": 7150.46, + "end": 7152.96, + "probability": 0.7498 + }, + { + "start": 7153.6, + "end": 7156.72, + "probability": 0.5723 + }, + { + "start": 7157.86, + "end": 7158.78, + "probability": 0.9726 + }, + { + "start": 7159.34, + "end": 7161.02, + "probability": 0.6377 + }, + { + "start": 7166.28, + "end": 7167.12, + "probability": 0.587 + }, + { + "start": 7167.78, + "end": 7169.38, + "probability": 0.5313 + }, + { + "start": 7170.16, + "end": 7171.34, + "probability": 0.8425 + }, + { + "start": 7172.82, + "end": 7174.82, + "probability": 0.7865 + }, + { + "start": 7175.76, + "end": 7180.7, + "probability": 0.9265 + }, + { + "start": 7182.5, + "end": 7183.84, + "probability": 0.8799 + }, + { + "start": 7184.92, + "end": 7186.42, + "probability": 0.3967 + }, + { + "start": 7186.52, + "end": 7188.14, + "probability": 0.5603 + }, + { + "start": 7189.44, + "end": 7189.78, + "probability": 0.8713 + }, + { + "start": 7193.1, + "end": 7195.72, + "probability": 0.9621 + }, + { + "start": 7196.96, + "end": 7197.73, + "probability": 0.5554 + }, + { + "start": 7198.84, + "end": 7200.34, + "probability": 0.5896 + }, + { + "start": 7200.44, + "end": 7201.76, + "probability": 0.859 + }, + { + "start": 7204.5, + "end": 7205.38, + "probability": 0.4641 + }, + { + "start": 7205.38, + "end": 7205.94, + "probability": 0.4871 + }, + { + "start": 7206.14, + "end": 7207.48, + "probability": 0.8377 + }, + { + "start": 7209.58, + "end": 7210.32, + "probability": 0.9059 + }, + { + "start": 7212.0, + "end": 7212.96, + "probability": 0.7317 + }, + { + "start": 7213.38, + "end": 7214.84, + "probability": 0.919 + }, + { + "start": 7214.86, + "end": 7217.16, + "probability": 0.9308 + }, + { + "start": 7219.12, + "end": 7220.28, + "probability": 0.4929 + }, + { + "start": 7220.28, + "end": 7220.81, + "probability": 0.5107 + }, + { + "start": 7220.9, + "end": 7222.14, + "probability": 0.6217 + }, + { + "start": 7222.28, + "end": 7224.22, + "probability": 0.9154 + }, + { + "start": 7225.3, + "end": 7226.04, + "probability": 0.9684 + }, + { + "start": 7226.72, + "end": 7227.48, + "probability": 0.8093 + }, + { + "start": 7227.6, + "end": 7229.96, + "probability": 0.4588 + }, + { + "start": 7230.12, + "end": 7230.86, + "probability": 0.9191 + }, + { + "start": 7231.72, + "end": 7232.48, + "probability": 0.9506 + }, + { + "start": 7232.86, + "end": 7234.38, + "probability": 0.4966 + }, + { + "start": 7234.4, + "end": 7235.66, + "probability": 0.8601 + }, + { + "start": 7235.92, + "end": 7236.52, + "probability": 0.8618 + }, + { + "start": 7237.1, + "end": 7237.78, + "probability": 0.8473 + }, + { + "start": 7238.42, + "end": 7239.22, + "probability": 0.9406 + }, + { + "start": 7240.06, + "end": 7241.0, + "probability": 0.861 + }, + { + "start": 7241.04, + "end": 7242.22, + "probability": 0.8331 + }, + { + "start": 7242.28, + "end": 7243.24, + "probability": 0.6238 + }, + { + "start": 7245.4, + "end": 7247.26, + "probability": 0.6516 + }, + { + "start": 7247.28, + "end": 7247.88, + "probability": 0.4879 + }, + { + "start": 7247.96, + "end": 7248.64, + "probability": 0.7554 + }, + { + "start": 7249.32, + "end": 7250.0, + "probability": 0.9622 + }, + { + "start": 7250.54, + "end": 7251.62, + "probability": 0.6947 + }, + { + "start": 7252.58, + "end": 7253.9, + "probability": 0.8784 + }, + { + "start": 7254.48, + "end": 7255.2, + "probability": 0.7366 + }, + { + "start": 7255.26, + "end": 7256.52, + "probability": 0.7766 + }, + { + "start": 7256.52, + "end": 7257.88, + "probability": 0.6875 + }, + { + "start": 7258.94, + "end": 7260.32, + "probability": 0.1303 + }, + { + "start": 7260.36, + "end": 7262.0, + "probability": 0.7861 + }, + { + "start": 7262.88, + "end": 7264.34, + "probability": 0.7344 + }, + { + "start": 7265.42, + "end": 7269.26, + "probability": 0.7691 + }, + { + "start": 7272.74, + "end": 7274.54, + "probability": 0.7049 + }, + { + "start": 7275.56, + "end": 7276.48, + "probability": 0.318 + }, + { + "start": 7278.02, + "end": 7280.18, + "probability": 0.9134 + }, + { + "start": 7281.36, + "end": 7282.02, + "probability": 0.3995 + }, + { + "start": 7283.36, + "end": 7286.62, + "probability": 0.8601 + }, + { + "start": 7287.52, + "end": 7290.2, + "probability": 0.7333 + }, + { + "start": 7290.84, + "end": 7291.46, + "probability": 0.884 + }, + { + "start": 7293.64, + "end": 7295.22, + "probability": 0.8237 + }, + { + "start": 7296.14, + "end": 7297.38, + "probability": 0.9458 + }, + { + "start": 7298.16, + "end": 7298.16, + "probability": 0.0043 + }, + { + "start": 7298.16, + "end": 7299.26, + "probability": 0.2807 + }, + { + "start": 7299.28, + "end": 7300.84, + "probability": 0.717 + }, + { + "start": 7301.62, + "end": 7302.26, + "probability": 0.9442 + }, + { + "start": 7303.16, + "end": 7305.56, + "probability": 0.7127 + }, + { + "start": 7306.34, + "end": 7307.82, + "probability": 0.8834 + }, + { + "start": 7308.92, + "end": 7309.78, + "probability": 0.5681 + }, + { + "start": 7310.6, + "end": 7311.56, + "probability": 0.6009 + }, + { + "start": 7313.2, + "end": 7316.38, + "probability": 0.955 + }, + { + "start": 7317.34, + "end": 7320.84, + "probability": 0.859 + }, + { + "start": 7321.4, + "end": 7323.06, + "probability": 0.8561 + }, + { + "start": 7323.8, + "end": 7324.5, + "probability": 0.9386 + }, + { + "start": 7325.18, + "end": 7326.06, + "probability": 0.8587 + }, + { + "start": 7326.18, + "end": 7327.48, + "probability": 0.643 + }, + { + "start": 7327.54, + "end": 7328.96, + "probability": 0.8931 + }, + { + "start": 7330.12, + "end": 7332.14, + "probability": 0.7777 + }, + { + "start": 7333.34, + "end": 7334.02, + "probability": 0.1126 + }, + { + "start": 7334.94, + "end": 7337.02, + "probability": 0.6963 + }, + { + "start": 7337.08, + "end": 7340.17, + "probability": 0.6594 + }, + { + "start": 7343.86, + "end": 7344.36, + "probability": 0.984 + }, + { + "start": 7345.82, + "end": 7347.34, + "probability": 0.5518 + }, + { + "start": 7348.34, + "end": 7349.86, + "probability": 0.8554 + }, + { + "start": 7351.22, + "end": 7352.16, + "probability": 0.9752 + }, + { + "start": 7352.84, + "end": 7353.6, + "probability": 0.651 + }, + { + "start": 7354.5, + "end": 7355.42, + "probability": 0.6246 + }, + { + "start": 7356.7, + "end": 7357.64, + "probability": 0.4293 + }, + { + "start": 7358.84, + "end": 7361.95, + "probability": 0.7834 + }, + { + "start": 7363.9, + "end": 7367.7, + "probability": 0.3527 + }, + { + "start": 7368.62, + "end": 7369.5, + "probability": 0.922 + }, + { + "start": 7371.6, + "end": 7372.76, + "probability": 0.6986 + }, + { + "start": 7373.9, + "end": 7374.84, + "probability": 0.7891 + }, + { + "start": 7375.62, + "end": 7376.58, + "probability": 0.757 + }, + { + "start": 7377.44, + "end": 7378.88, + "probability": 0.8952 + }, + { + "start": 7381.12, + "end": 7385.94, + "probability": 0.6328 + }, + { + "start": 7388.18, + "end": 7392.0, + "probability": 0.8746 + }, + { + "start": 7392.86, + "end": 7396.4, + "probability": 0.8655 + }, + { + "start": 7397.82, + "end": 7401.12, + "probability": 0.9315 + }, + { + "start": 7401.72, + "end": 7404.74, + "probability": 0.95 + }, + { + "start": 7405.34, + "end": 7406.24, + "probability": 0.7251 + }, + { + "start": 7407.58, + "end": 7409.52, + "probability": 0.91 + }, + { + "start": 7410.26, + "end": 7411.86, + "probability": 0.4969 + }, + { + "start": 7411.96, + "end": 7413.2, + "probability": 0.679 + }, + { + "start": 7413.24, + "end": 7414.12, + "probability": 0.8 + }, + { + "start": 7415.0, + "end": 7415.82, + "probability": 0.7669 + }, + { + "start": 7417.46, + "end": 7419.78, + "probability": 0.8625 + }, + { + "start": 7420.68, + "end": 7424.0, + "probability": 0.8308 + }, + { + "start": 7424.88, + "end": 7426.4, + "probability": 0.7723 + }, + { + "start": 7427.24, + "end": 7430.02, + "probability": 0.9003 + }, + { + "start": 7431.62, + "end": 7432.96, + "probability": 0.0663 + }, + { + "start": 7432.96, + "end": 7434.4, + "probability": 0.0603 + }, + { + "start": 7438.64, + "end": 7440.44, + "probability": 0.1929 + }, + { + "start": 7442.71, + "end": 7445.16, + "probability": 0.0094 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7573.0, + "end": 7573.0, + "probability": 0.0 + }, + { + "start": 7574.38, + "end": 7574.46, + "probability": 0.0247 + }, + { + "start": 7574.46, + "end": 7576.42, + "probability": 0.8227 + }, + { + "start": 7577.08, + "end": 7578.72, + "probability": 0.3468 + }, + { + "start": 7580.08, + "end": 7580.94, + "probability": 0.9269 + }, + { + "start": 7581.66, + "end": 7582.52, + "probability": 0.8198 + }, + { + "start": 7583.58, + "end": 7584.36, + "probability": 0.7276 + }, + { + "start": 7584.96, + "end": 7588.3, + "probability": 0.9906 + }, + { + "start": 7590.28, + "end": 7594.14, + "probability": 0.0673 + }, + { + "start": 7595.34, + "end": 7595.92, + "probability": 0.2627 + }, + { + "start": 7596.94, + "end": 7597.54, + "probability": 0.009 + }, + { + "start": 7599.14, + "end": 7600.34, + "probability": 0.2088 + }, + { + "start": 7600.98, + "end": 7601.58, + "probability": 0.1557 + }, + { + "start": 7603.56, + "end": 7610.32, + "probability": 0.9199 + }, + { + "start": 7613.91, + "end": 7616.66, + "probability": 0.9787 + }, + { + "start": 7617.5, + "end": 7620.0, + "probability": 0.9366 + }, + { + "start": 7621.94, + "end": 7628.96, + "probability": 0.7804 + }, + { + "start": 7629.22, + "end": 7634.78, + "probability": 0.7404 + }, + { + "start": 7636.46, + "end": 7639.02, + "probability": 0.7078 + }, + { + "start": 7639.78, + "end": 7642.64, + "probability": 0.66 + }, + { + "start": 7644.84, + "end": 7648.2, + "probability": 0.9408 + }, + { + "start": 7649.1, + "end": 7651.74, + "probability": 0.9966 + }, + { + "start": 7653.68, + "end": 7658.28, + "probability": 0.6791 + }, + { + "start": 7658.9, + "end": 7660.56, + "probability": 0.9429 + }, + { + "start": 7661.24, + "end": 7666.08, + "probability": 0.9823 + }, + { + "start": 7668.1, + "end": 7671.52, + "probability": 0.574 + }, + { + "start": 7672.62, + "end": 7674.01, + "probability": 0.0841 + }, + { + "start": 7674.34, + "end": 7677.16, + "probability": 0.293 + }, + { + "start": 7677.86, + "end": 7681.5, + "probability": 0.0863 + }, + { + "start": 7682.1, + "end": 7687.34, + "probability": 0.0361 + }, + { + "start": 7687.34, + "end": 7688.32, + "probability": 0.5104 + }, + { + "start": 7689.14, + "end": 7690.78, + "probability": 0.2236 + }, + { + "start": 7692.14, + "end": 7692.72, + "probability": 0.3091 + }, + { + "start": 7693.28, + "end": 7695.54, + "probability": 0.7893 + }, + { + "start": 7696.14, + "end": 7699.52, + "probability": 0.6673 + }, + { + "start": 7701.14, + "end": 7707.34, + "probability": 0.9638 + }, + { + "start": 7708.26, + "end": 7709.68, + "probability": 0.8931 + }, + { + "start": 7710.74, + "end": 7711.92, + "probability": 0.9278 + }, + { + "start": 7712.54, + "end": 7718.5, + "probability": 0.9594 + }, + { + "start": 7720.0, + "end": 7722.22, + "probability": 0.8438 + }, + { + "start": 7722.86, + "end": 7723.68, + "probability": 0.7117 + }, + { + "start": 7726.2, + "end": 7727.3, + "probability": 0.0371 + }, + { + "start": 7728.24, + "end": 7728.88, + "probability": 0.0506 + }, + { + "start": 7729.74, + "end": 7732.56, + "probability": 0.9789 + }, + { + "start": 7733.62, + "end": 7736.54, + "probability": 0.9956 + }, + { + "start": 7737.32, + "end": 7740.82, + "probability": 0.9678 + }, + { + "start": 7741.88, + "end": 7744.48, + "probability": 0.988 + }, + { + "start": 7745.42, + "end": 7747.48, + "probability": 0.9836 + }, + { + "start": 7748.2, + "end": 7749.2, + "probability": 0.7479 + }, + { + "start": 7749.9, + "end": 7754.08, + "probability": 0.8143 + }, + { + "start": 7755.42, + "end": 7755.76, + "probability": 0.0394 + }, + { + "start": 7756.72, + "end": 7762.06, + "probability": 0.7362 + }, + { + "start": 7763.98, + "end": 7764.8, + "probability": 0.9888 + }, + { + "start": 7765.94, + "end": 7768.22, + "probability": 0.9615 + }, + { + "start": 7769.18, + "end": 7772.58, + "probability": 0.996 + }, + { + "start": 7772.58, + "end": 7776.7, + "probability": 0.9499 + }, + { + "start": 7777.78, + "end": 7778.5, + "probability": 0.3765 + }, + { + "start": 7779.1, + "end": 7783.66, + "probability": 0.7954 + }, + { + "start": 7784.32, + "end": 7788.24, + "probability": 0.8872 + }, + { + "start": 7789.14, + "end": 7792.36, + "probability": 0.9167 + }, + { + "start": 7793.94, + "end": 7797.16, + "probability": 0.9909 + }, + { + "start": 7797.16, + "end": 7801.36, + "probability": 0.9895 + }, + { + "start": 7802.24, + "end": 7806.56, + "probability": 0.9285 + }, + { + "start": 7808.46, + "end": 7811.18, + "probability": 0.9179 + }, + { + "start": 7811.76, + "end": 7814.14, + "probability": 0.9668 + }, + { + "start": 7814.46, + "end": 7820.24, + "probability": 0.9868 + }, + { + "start": 7820.8, + "end": 7827.06, + "probability": 0.9044 + }, + { + "start": 7827.22, + "end": 7828.66, + "probability": 0.9204 + }, + { + "start": 7828.94, + "end": 7830.22, + "probability": 0.9668 + }, + { + "start": 7830.76, + "end": 7837.36, + "probability": 0.9921 + }, + { + "start": 7837.84, + "end": 7841.11, + "probability": 0.9862 + }, + { + "start": 7842.7, + "end": 7846.92, + "probability": 0.9747 + }, + { + "start": 7847.7, + "end": 7851.56, + "probability": 0.9861 + }, + { + "start": 7852.44, + "end": 7853.28, + "probability": 0.732 + }, + { + "start": 7854.44, + "end": 7857.54, + "probability": 0.9764 + }, + { + "start": 7858.14, + "end": 7859.56, + "probability": 0.6723 + }, + { + "start": 7860.74, + "end": 7861.5, + "probability": 0.8412 + }, + { + "start": 7862.08, + "end": 7868.42, + "probability": 0.9272 + }, + { + "start": 7869.34, + "end": 7872.77, + "probability": 0.9801 + }, + { + "start": 7873.98, + "end": 7874.38, + "probability": 0.8775 + }, + { + "start": 7875.14, + "end": 7878.86, + "probability": 0.9985 + }, + { + "start": 7879.5, + "end": 7883.56, + "probability": 0.9731 + }, + { + "start": 7884.3, + "end": 7887.02, + "probability": 0.9984 + }, + { + "start": 7887.96, + "end": 7889.32, + "probability": 0.9734 + }, + { + "start": 7890.06, + "end": 7890.66, + "probability": 0.6237 + }, + { + "start": 7891.92, + "end": 7892.8, + "probability": 0.7473 + }, + { + "start": 7893.06, + "end": 7897.66, + "probability": 0.9319 + }, + { + "start": 7898.18, + "end": 7900.42, + "probability": 0.9695 + }, + { + "start": 7901.24, + "end": 7902.4, + "probability": 0.9636 + }, + { + "start": 7903.6, + "end": 7908.03, + "probability": 0.9908 + }, + { + "start": 7909.0, + "end": 7912.26, + "probability": 0.8753 + }, + { + "start": 7913.36, + "end": 7915.86, + "probability": 0.9795 + }, + { + "start": 7916.4, + "end": 7918.62, + "probability": 0.8003 + }, + { + "start": 7919.5, + "end": 7921.84, + "probability": 0.535 + }, + { + "start": 7922.4, + "end": 7924.0, + "probability": 0.7888 + }, + { + "start": 7925.46, + "end": 7925.96, + "probability": 0.4025 + }, + { + "start": 7927.2, + "end": 7928.84, + "probability": 0.9276 + }, + { + "start": 7928.86, + "end": 7929.42, + "probability": 0.8413 + }, + { + "start": 7929.62, + "end": 7933.5, + "probability": 0.9535 + }, + { + "start": 7934.34, + "end": 7937.36, + "probability": 0.7277 + }, + { + "start": 7937.38, + "end": 7939.62, + "probability": 0.881 + }, + { + "start": 7941.14, + "end": 7942.1, + "probability": 0.6905 + }, + { + "start": 7943.02, + "end": 7947.78, + "probability": 0.9896 + }, + { + "start": 7948.42, + "end": 7952.1, + "probability": 0.9652 + }, + { + "start": 7952.1, + "end": 7957.76, + "probability": 0.9616 + }, + { + "start": 7957.9, + "end": 7960.08, + "probability": 0.3268 + }, + { + "start": 7961.38, + "end": 7963.64, + "probability": 0.9715 + }, + { + "start": 7964.86, + "end": 7966.0, + "probability": 0.4717 + }, + { + "start": 7967.22, + "end": 7970.38, + "probability": 0.946 + }, + { + "start": 7970.92, + "end": 7973.94, + "probability": 0.8722 + }, + { + "start": 7974.52, + "end": 7978.1, + "probability": 0.922 + }, + { + "start": 7978.34, + "end": 7978.7, + "probability": 0.3723 + }, + { + "start": 7979.74, + "end": 7983.32, + "probability": 0.8232 + }, + { + "start": 7983.32, + "end": 7989.26, + "probability": 0.9838 + }, + { + "start": 7990.42, + "end": 7993.6, + "probability": 0.8329 + }, + { + "start": 7994.42, + "end": 7999.6, + "probability": 0.9852 + }, + { + "start": 8000.58, + "end": 8000.92, + "probability": 0.4536 + }, + { + "start": 8001.48, + "end": 8003.36, + "probability": 0.1536 + }, + { + "start": 8004.22, + "end": 8005.02, + "probability": 0.0263 + }, + { + "start": 8008.48, + "end": 8013.08, + "probability": 0.9324 + }, + { + "start": 8013.68, + "end": 8014.62, + "probability": 0.0136 + }, + { + "start": 8015.04, + "end": 8015.44, + "probability": 0.5254 + }, + { + "start": 8016.64, + "end": 8020.18, + "probability": 0.8225 + }, + { + "start": 8021.32, + "end": 8025.22, + "probability": 0.9228 + }, + { + "start": 8026.12, + "end": 8028.52, + "probability": 0.4749 + }, + { + "start": 8029.34, + "end": 8030.24, + "probability": 0.7961 + }, + { + "start": 8031.38, + "end": 8032.44, + "probability": 0.0377 + }, + { + "start": 8032.44, + "end": 8033.13, + "probability": 0.1272 + }, + { + "start": 8033.48, + "end": 8035.48, + "probability": 0.766 + }, + { + "start": 8037.16, + "end": 8041.26, + "probability": 0.7611 + }, + { + "start": 8042.0, + "end": 8045.76, + "probability": 0.785 + }, + { + "start": 8046.96, + "end": 8050.42, + "probability": 0.8589 + }, + { + "start": 8051.22, + "end": 8055.66, + "probability": 0.8091 + }, + { + "start": 8056.34, + "end": 8058.24, + "probability": 0.7452 + }, + { + "start": 8060.56, + "end": 8061.82, + "probability": 0.6815 + }, + { + "start": 8062.4, + "end": 8065.03, + "probability": 0.9884 + }, + { + "start": 8065.88, + "end": 8067.48, + "probability": 0.8455 + }, + { + "start": 8068.2, + "end": 8070.16, + "probability": 0.4737 + }, + { + "start": 8070.42, + "end": 8074.98, + "probability": 0.596 + }, + { + "start": 8075.22, + "end": 8075.98, + "probability": 0.2349 + }, + { + "start": 8076.52, + "end": 8077.44, + "probability": 0.3105 + }, + { + "start": 8077.64, + "end": 8078.54, + "probability": 0.6476 + }, + { + "start": 8078.82, + "end": 8079.88, + "probability": 0.0958 + }, + { + "start": 8080.36, + "end": 8081.44, + "probability": 0.0779 + }, + { + "start": 8081.82, + "end": 8082.26, + "probability": 0.5926 + }, + { + "start": 8082.78, + "end": 8083.55, + "probability": 0.9331 + }, + { + "start": 8083.92, + "end": 8084.42, + "probability": 0.7954 + }, + { + "start": 8084.72, + "end": 8086.66, + "probability": 0.9128 + }, + { + "start": 8086.82, + "end": 8088.7, + "probability": 0.9739 + }, + { + "start": 8090.0, + "end": 8093.12, + "probability": 0.8592 + }, + { + "start": 8094.28, + "end": 8096.48, + "probability": 0.8175 + }, + { + "start": 8096.54, + "end": 8101.1, + "probability": 0.8077 + }, + { + "start": 8101.2, + "end": 8102.32, + "probability": 0.7905 + }, + { + "start": 8103.04, + "end": 8103.16, + "probability": 0.5549 + }, + { + "start": 8103.6, + "end": 8105.64, + "probability": 0.9161 + }, + { + "start": 8106.34, + "end": 8111.38, + "probability": 0.6924 + }, + { + "start": 8112.34, + "end": 8112.8, + "probability": 0.1729 + }, + { + "start": 8113.64, + "end": 8116.94, + "probability": 0.7514 + }, + { + "start": 8117.94, + "end": 8118.18, + "probability": 0.0335 + }, + { + "start": 8120.52, + "end": 8125.44, + "probability": 0.0644 + }, + { + "start": 8126.88, + "end": 8129.78, + "probability": 0.0886 + }, + { + "start": 8132.1, + "end": 8132.88, + "probability": 0.0984 + }, + { + "start": 8134.76, + "end": 8137.1, + "probability": 0.0654 + }, + { + "start": 8140.24, + "end": 8143.0, + "probability": 0.0826 + }, + { + "start": 8143.0, + "end": 8146.46, + "probability": 0.0432 + }, + { + "start": 8146.78, + "end": 8151.16, + "probability": 0.1281 + }, + { + "start": 8151.24, + "end": 8153.7, + "probability": 0.1076 + }, + { + "start": 8153.7, + "end": 8157.52, + "probability": 0.041 + }, + { + "start": 8161.3, + "end": 8162.98, + "probability": 0.1246 + }, + { + "start": 8164.58, + "end": 8168.68, + "probability": 0.0591 + }, + { + "start": 8169.96, + "end": 8171.16, + "probability": 0.1205 + }, + { + "start": 8171.34, + "end": 8175.8, + "probability": 0.0272 + }, + { + "start": 8175.88, + "end": 8176.34, + "probability": 0.0525 + }, + { + "start": 8176.34, + "end": 8176.98, + "probability": 0.1257 + }, + { + "start": 8186.0, + "end": 8186.0, + "probability": 0.0 + }, + { + "start": 8190.82, + "end": 8192.38, + "probability": 0.6098 + }, + { + "start": 8192.98, + "end": 8196.8, + "probability": 0.913 + }, + { + "start": 8197.64, + "end": 8199.2, + "probability": 0.5937 + }, + { + "start": 8200.18, + "end": 8206.24, + "probability": 0.475 + }, + { + "start": 8206.82, + "end": 8209.4, + "probability": 0.878 + }, + { + "start": 8209.96, + "end": 8210.94, + "probability": 0.6154 + }, + { + "start": 8212.14, + "end": 8214.9, + "probability": 0.8611 + }, + { + "start": 8216.65, + "end": 8221.48, + "probability": 0.9923 + }, + { + "start": 8221.7, + "end": 8222.58, + "probability": 0.9653 + }, + { + "start": 8223.78, + "end": 8225.56, + "probability": 0.941 + }, + { + "start": 8226.38, + "end": 8229.08, + "probability": 0.9925 + }, + { + "start": 8232.04, + "end": 8232.58, + "probability": 0.4418 + }, + { + "start": 8233.72, + "end": 8235.38, + "probability": 0.9932 + }, + { + "start": 8238.63, + "end": 8245.3, + "probability": 0.9899 + }, + { + "start": 8245.3, + "end": 8245.52, + "probability": 0.6895 + }, + { + "start": 8245.68, + "end": 8246.52, + "probability": 0.815 + }, + { + "start": 8246.84, + "end": 8247.86, + "probability": 0.9453 + }, + { + "start": 8247.9, + "end": 8248.11, + "probability": 0.8186 + }, + { + "start": 8249.34, + "end": 8253.45, + "probability": 0.9946 + }, + { + "start": 8256.04, + "end": 8259.28, + "probability": 0.0166 + }, + { + "start": 8259.38, + "end": 8260.52, + "probability": 0.0747 + }, + { + "start": 8260.52, + "end": 8261.82, + "probability": 0.4606 + }, + { + "start": 8262.16, + "end": 8263.96, + "probability": 0.0762 + }, + { + "start": 8264.02, + "end": 8264.76, + "probability": 0.5991 + }, + { + "start": 8265.16, + "end": 8267.66, + "probability": 0.8866 + }, + { + "start": 8269.15, + "end": 8271.78, + "probability": 0.6713 + }, + { + "start": 8273.44, + "end": 8276.08, + "probability": 0.9561 + }, + { + "start": 8276.32, + "end": 8276.92, + "probability": 0.5203 + }, + { + "start": 8278.85, + "end": 8280.66, + "probability": 0.7276 + }, + { + "start": 8282.52, + "end": 8286.12, + "probability": 0.9825 + }, + { + "start": 8286.12, + "end": 8288.46, + "probability": 0.9718 + }, + { + "start": 8289.34, + "end": 8290.2, + "probability": 0.8053 + }, + { + "start": 8291.02, + "end": 8296.48, + "probability": 0.9985 + }, + { + "start": 8297.12, + "end": 8299.0, + "probability": 0.9983 + }, + { + "start": 8299.08, + "end": 8301.62, + "probability": 0.9829 + }, + { + "start": 8302.34, + "end": 8302.8, + "probability": 0.4009 + }, + { + "start": 8305.2, + "end": 8306.48, + "probability": 0.7595 + }, + { + "start": 8307.48, + "end": 8311.58, + "probability": 0.9797 + }, + { + "start": 8314.82, + "end": 8317.9, + "probability": 0.6179 + }, + { + "start": 8318.7, + "end": 8320.74, + "probability": 0.9241 + }, + { + "start": 8320.74, + "end": 8324.74, + "probability": 0.9909 + }, + { + "start": 8326.84, + "end": 8327.08, + "probability": 0.0024 + }, + { + "start": 8327.08, + "end": 8329.98, + "probability": 0.9922 + }, + { + "start": 8331.08, + "end": 8332.1, + "probability": 0.9936 + }, + { + "start": 8333.22, + "end": 8337.86, + "probability": 0.9405 + }, + { + "start": 8337.96, + "end": 8338.96, + "probability": 0.8835 + }, + { + "start": 8339.02, + "end": 8339.3, + "probability": 0.5174 + }, + { + "start": 8339.5, + "end": 8340.26, + "probability": 0.8359 + }, + { + "start": 8340.38, + "end": 8342.26, + "probability": 0.8944 + }, + { + "start": 8342.74, + "end": 8344.88, + "probability": 0.8786 + }, + { + "start": 8346.78, + "end": 8350.66, + "probability": 0.7354 + }, + { + "start": 8351.24, + "end": 8355.08, + "probability": 0.8608 + }, + { + "start": 8355.44, + "end": 8356.44, + "probability": 0.8218 + }, + { + "start": 8357.32, + "end": 8357.88, + "probability": 0.2104 + }, + { + "start": 8358.38, + "end": 8360.62, + "probability": 0.5515 + }, + { + "start": 8362.3, + "end": 8370.3, + "probability": 0.7837 + }, + { + "start": 8371.06, + "end": 8372.84, + "probability": 0.6978 + }, + { + "start": 8373.42, + "end": 8373.93, + "probability": 0.8318 + }, + { + "start": 8375.6, + "end": 8380.42, + "probability": 0.9192 + }, + { + "start": 8381.0, + "end": 8381.84, + "probability": 0.8999 + }, + { + "start": 8382.82, + "end": 8385.26, + "probability": 0.9844 + }, + { + "start": 8385.74, + "end": 8387.92, + "probability": 0.699 + }, + { + "start": 8388.3, + "end": 8389.74, + "probability": 0.6109 + }, + { + "start": 8390.54, + "end": 8393.18, + "probability": 0.8696 + }, + { + "start": 8395.16, + "end": 8397.9, + "probability": 0.9709 + }, + { + "start": 8398.04, + "end": 8401.76, + "probability": 0.7992 + }, + { + "start": 8402.32, + "end": 8403.32, + "probability": 0.9919 + }, + { + "start": 8403.86, + "end": 8405.76, + "probability": 0.9588 + }, + { + "start": 8406.66, + "end": 8407.84, + "probability": 0.9884 + }, + { + "start": 8407.94, + "end": 8409.96, + "probability": 0.9526 + }, + { + "start": 8411.82, + "end": 8414.5, + "probability": 0.9874 + }, + { + "start": 8414.5, + "end": 8417.52, + "probability": 0.9936 + }, + { + "start": 8417.8, + "end": 8418.96, + "probability": 0.4644 + }, + { + "start": 8420.72, + "end": 8420.76, + "probability": 0.3557 + }, + { + "start": 8420.76, + "end": 8420.76, + "probability": 0.4269 + }, + { + "start": 8420.76, + "end": 8422.06, + "probability": 0.6479 + }, + { + "start": 8423.24, + "end": 8424.98, + "probability": 0.0748 + }, + { + "start": 8425.24, + "end": 8428.14, + "probability": 0.2569 + }, + { + "start": 8428.4, + "end": 8431.78, + "probability": 0.0925 + }, + { + "start": 8431.84, + "end": 8433.2, + "probability": 0.7668 + }, + { + "start": 8433.2, + "end": 8436.32, + "probability": 0.2515 + }, + { + "start": 8436.48, + "end": 8440.95, + "probability": 0.9377 + }, + { + "start": 8442.6, + "end": 8445.82, + "probability": 0.996 + }, + { + "start": 8446.52, + "end": 8451.0, + "probability": 0.993 + }, + { + "start": 8451.64, + "end": 8452.8, + "probability": 0.7209 + }, + { + "start": 8453.04, + "end": 8454.38, + "probability": 0.9886 + }, + { + "start": 8454.94, + "end": 8455.08, + "probability": 0.678 + }, + { + "start": 8455.24, + "end": 8456.14, + "probability": 0.861 + }, + { + "start": 8456.36, + "end": 8457.48, + "probability": 0.8364 + }, + { + "start": 8457.58, + "end": 8463.24, + "probability": 0.9969 + }, + { + "start": 8464.18, + "end": 8465.76, + "probability": 0.734 + }, + { + "start": 8471.24, + "end": 8477.18, + "probability": 0.2365 + }, + { + "start": 8477.5, + "end": 8479.58, + "probability": 0.7306 + }, + { + "start": 8480.04, + "end": 8480.77, + "probability": 0.7961 + }, + { + "start": 8480.96, + "end": 8484.18, + "probability": 0.7355 + }, + { + "start": 8484.38, + "end": 8485.9, + "probability": 0.8884 + }, + { + "start": 8486.2, + "end": 8489.22, + "probability": 0.948 + }, + { + "start": 8489.28, + "end": 8492.11, + "probability": 0.6484 + }, + { + "start": 8500.98, + "end": 8502.3, + "probability": 0.1146 + }, + { + "start": 8502.74, + "end": 8504.1, + "probability": 0.5723 + }, + { + "start": 8504.26, + "end": 8505.98, + "probability": 0.8005 + }, + { + "start": 8506.64, + "end": 8507.44, + "probability": 0.8224 + }, + { + "start": 8507.82, + "end": 8508.66, + "probability": 0.7377 + }, + { + "start": 8508.94, + "end": 8512.92, + "probability": 0.9919 + }, + { + "start": 8512.92, + "end": 8515.54, + "probability": 0.9794 + }, + { + "start": 8515.6, + "end": 8515.96, + "probability": 0.0454 + }, + { + "start": 8515.96, + "end": 8516.52, + "probability": 0.5222 + }, + { + "start": 8517.02, + "end": 8519.54, + "probability": 0.9865 + }, + { + "start": 8520.0, + "end": 8521.02, + "probability": 0.7463 + }, + { + "start": 8521.02, + "end": 8522.48, + "probability": 0.9697 + }, + { + "start": 8522.94, + "end": 8526.72, + "probability": 0.9871 + }, + { + "start": 8527.8, + "end": 8528.76, + "probability": 0.8474 + }, + { + "start": 8528.92, + "end": 8532.42, + "probability": 0.9956 + }, + { + "start": 8532.5, + "end": 8534.66, + "probability": 0.7356 + }, + { + "start": 8535.14, + "end": 8536.5, + "probability": 0.6995 + }, + { + "start": 8536.54, + "end": 8537.36, + "probability": 0.584 + }, + { + "start": 8537.4, + "end": 8542.38, + "probability": 0.9337 + }, + { + "start": 8542.38, + "end": 8545.8, + "probability": 0.993 + }, + { + "start": 8545.9, + "end": 8548.14, + "probability": 0.764 + }, + { + "start": 8548.48, + "end": 8548.88, + "probability": 0.9653 + }, + { + "start": 8549.06, + "end": 8549.62, + "probability": 0.6362 + }, + { + "start": 8549.66, + "end": 8551.22, + "probability": 0.9269 + }, + { + "start": 8551.7, + "end": 8553.38, + "probability": 0.9209 + }, + { + "start": 8554.3, + "end": 8555.21, + "probability": 0.089 + }, + { + "start": 8556.06, + "end": 8556.78, + "probability": 0.0086 + }, + { + "start": 8556.78, + "end": 8556.88, + "probability": 0.6182 + }, + { + "start": 8557.32, + "end": 8559.62, + "probability": 0.4308 + }, + { + "start": 8560.3, + "end": 8561.6, + "probability": 0.8015 + }, + { + "start": 8562.48, + "end": 8563.9, + "probability": 0.3479 + }, + { + "start": 8564.6, + "end": 8565.72, + "probability": 0.9534 + }, + { + "start": 8566.88, + "end": 8571.38, + "probability": 0.8998 + }, + { + "start": 8571.98, + "end": 8578.16, + "probability": 0.9646 + }, + { + "start": 8578.78, + "end": 8581.84, + "probability": 0.9892 + }, + { + "start": 8582.4, + "end": 8585.9, + "probability": 0.9817 + }, + { + "start": 8586.26, + "end": 8589.14, + "probability": 0.9159 + }, + { + "start": 8589.76, + "end": 8592.94, + "probability": 0.7814 + }, + { + "start": 8593.04, + "end": 8593.84, + "probability": 0.8115 + }, + { + "start": 8594.06, + "end": 8597.38, + "probability": 0.8036 + }, + { + "start": 8597.5, + "end": 8598.4, + "probability": 0.0527 + }, + { + "start": 8598.4, + "end": 8599.16, + "probability": 0.5786 + }, + { + "start": 8599.48, + "end": 8601.46, + "probability": 0.9709 + }, + { + "start": 8601.58, + "end": 8606.86, + "probability": 0.9767 + }, + { + "start": 8607.4, + "end": 8610.9, + "probability": 0.9954 + }, + { + "start": 8611.15, + "end": 8613.54, + "probability": 0.9962 + }, + { + "start": 8613.64, + "end": 8616.56, + "probability": 0.9918 + }, + { + "start": 8616.56, + "end": 8619.24, + "probability": 0.4763 + }, + { + "start": 8619.72, + "end": 8620.12, + "probability": 0.9216 + }, + { + "start": 8620.12, + "end": 8622.32, + "probability": 0.7924 + }, + { + "start": 8622.42, + "end": 8623.74, + "probability": 0.9666 + }, + { + "start": 8625.63, + "end": 8627.08, + "probability": 0.3412 + }, + { + "start": 8627.34, + "end": 8628.48, + "probability": 0.1672 + }, + { + "start": 8628.5, + "end": 8629.0, + "probability": 0.533 + }, + { + "start": 8629.7, + "end": 8631.18, + "probability": 0.5142 + }, + { + "start": 8632.21, + "end": 8633.92, + "probability": 0.4006 + }, + { + "start": 8634.36, + "end": 8635.62, + "probability": 0.653 + }, + { + "start": 8635.82, + "end": 8637.98, + "probability": 0.5707 + }, + { + "start": 8638.16, + "end": 8639.0, + "probability": 0.3247 + }, + { + "start": 8639.56, + "end": 8641.12, + "probability": 0.6439 + }, + { + "start": 8641.24, + "end": 8641.46, + "probability": 0.483 + }, + { + "start": 8642.12, + "end": 8644.12, + "probability": 0.6309 + }, + { + "start": 8644.12, + "end": 8644.74, + "probability": 0.5294 + }, + { + "start": 8646.14, + "end": 8646.14, + "probability": 0.0118 + }, + { + "start": 8646.94, + "end": 8647.46, + "probability": 0.1124 + }, + { + "start": 8648.02, + "end": 8654.6, + "probability": 0.0137 + }, + { + "start": 8655.4, + "end": 8659.4, + "probability": 0.0995 + }, + { + "start": 8659.4, + "end": 8664.74, + "probability": 0.0508 + }, + { + "start": 8666.6, + "end": 8666.88, + "probability": 0.043 + }, + { + "start": 8667.38, + "end": 8669.04, + "probability": 0.4286 + }, + { + "start": 8670.94, + "end": 8671.52, + "probability": 0.4644 + }, + { + "start": 8680.3, + "end": 8680.37, + "probability": 0.019 + }, + { + "start": 8680.86, + "end": 8681.38, + "probability": 0.0341 + }, + { + "start": 8681.72, + "end": 8681.92, + "probability": 0.182 + }, + { + "start": 8681.92, + "end": 8685.86, + "probability": 0.063 + }, + { + "start": 8686.56, + "end": 8687.2, + "probability": 0.202 + }, + { + "start": 8687.2, + "end": 8689.28, + "probability": 0.1076 + }, + { + "start": 8690.5, + "end": 8690.5, + "probability": 0.0876 + }, + { + "start": 8690.5, + "end": 8690.5, + "probability": 0.0168 + }, + { + "start": 8690.5, + "end": 8690.5, + "probability": 0.0843 + }, + { + "start": 8690.5, + "end": 8690.98, + "probability": 0.082 + }, + { + "start": 8691.0, + "end": 8691.0, + "probability": 0.0 + }, + { + "start": 8691.0, + "end": 8691.0, + "probability": 0.0 + }, + { + "start": 8691.14, + "end": 8691.14, + "probability": 0.0178 + }, + { + "start": 8691.14, + "end": 8691.14, + "probability": 0.0563 + }, + { + "start": 8691.14, + "end": 8691.14, + "probability": 0.0349 + }, + { + "start": 8691.14, + "end": 8694.98, + "probability": 0.6313 + }, + { + "start": 8696.04, + "end": 8697.64, + "probability": 0.4941 + }, + { + "start": 8698.18, + "end": 8698.44, + "probability": 0.053 + }, + { + "start": 8698.44, + "end": 8699.16, + "probability": 0.586 + }, + { + "start": 8699.66, + "end": 8702.62, + "probability": 0.8807 + }, + { + "start": 8703.7, + "end": 8705.1, + "probability": 0.9395 + }, + { + "start": 8705.72, + "end": 8707.78, + "probability": 0.9414 + }, + { + "start": 8709.26, + "end": 8715.22, + "probability": 0.5322 + }, + { + "start": 8715.22, + "end": 8716.28, + "probability": 0.0733 + }, + { + "start": 8716.28, + "end": 8716.38, + "probability": 0.0284 + }, + { + "start": 8716.38, + "end": 8721.06, + "probability": 0.8569 + }, + { + "start": 8721.12, + "end": 8722.88, + "probability": 0.7408 + }, + { + "start": 8723.88, + "end": 8725.58, + "probability": 0.9093 + }, + { + "start": 8728.44, + "end": 8728.76, + "probability": 0.0294 + }, + { + "start": 8729.36, + "end": 8733.82, + "probability": 0.0314 + }, + { + "start": 8734.96, + "end": 8736.14, + "probability": 0.1315 + }, + { + "start": 8737.24, + "end": 8739.0, + "probability": 0.2445 + }, + { + "start": 8739.46, + "end": 8745.96, + "probability": 0.3075 + }, + { + "start": 8748.18, + "end": 8750.06, + "probability": 0.8653 + }, + { + "start": 8751.02, + "end": 8753.74, + "probability": 0.8521 + }, + { + "start": 8753.98, + "end": 8755.68, + "probability": 0.63 + }, + { + "start": 8755.76, + "end": 8758.06, + "probability": 0.5995 + }, + { + "start": 8762.6, + "end": 8764.08, + "probability": 0.9224 + }, + { + "start": 8765.48, + "end": 8767.6, + "probability": 0.2459 + }, + { + "start": 8769.64, + "end": 8770.32, + "probability": 0.9585 + }, + { + "start": 8771.3, + "end": 8772.28, + "probability": 0.8082 + }, + { + "start": 8773.44, + "end": 8774.12, + "probability": 0.9926 + }, + { + "start": 8774.74, + "end": 8776.62, + "probability": 0.8624 + }, + { + "start": 8777.58, + "end": 8778.3, + "probability": 0.8558 + }, + { + "start": 8778.9, + "end": 8780.62, + "probability": 0.4673 + }, + { + "start": 8781.86, + "end": 8782.54, + "probability": 0.9517 + }, + { + "start": 8783.18, + "end": 8783.94, + "probability": 0.6934 + }, + { + "start": 8785.9, + "end": 8786.18, + "probability": 0.6078 + }, + { + "start": 8787.1, + "end": 8787.86, + "probability": 0.741 + }, + { + "start": 8788.52, + "end": 8791.24, + "probability": 0.894 + }, + { + "start": 8791.99, + "end": 8794.46, + "probability": 0.7377 + }, + { + "start": 8795.28, + "end": 8795.98, + "probability": 0.9799 + }, + { + "start": 8796.6, + "end": 8797.2, + "probability": 0.4799 + }, + { + "start": 8797.6, + "end": 8798.96, + "probability": 0.8776 + }, + { + "start": 8799.04, + "end": 8800.22, + "probability": 0.7918 + }, + { + "start": 8801.22, + "end": 8801.6, + "probability": 0.9399 + }, + { + "start": 8802.54, + "end": 8803.18, + "probability": 0.7442 + }, + { + "start": 8810.04, + "end": 8810.3, + "probability": 0.529 + }, + { + "start": 8811.86, + "end": 8812.5, + "probability": 0.3687 + }, + { + "start": 8813.1, + "end": 8816.18, + "probability": 0.7413 + }, + { + "start": 8817.2, + "end": 8817.54, + "probability": 0.9787 + }, + { + "start": 8818.58, + "end": 8819.22, + "probability": 0.9328 + }, + { + "start": 8819.28, + "end": 8820.48, + "probability": 0.9495 + }, + { + "start": 8820.62, + "end": 8821.82, + "probability": 0.9652 + }, + { + "start": 8821.9, + "end": 8822.28, + "probability": 0.9263 + }, + { + "start": 8824.38, + "end": 8825.65, + "probability": 0.5319 + }, + { + "start": 8826.76, + "end": 8827.26, + "probability": 0.6461 + }, + { + "start": 8827.38, + "end": 8828.64, + "probability": 0.5554 + }, + { + "start": 8828.78, + "end": 8829.82, + "probability": 0.8524 + }, + { + "start": 8829.86, + "end": 8830.9, + "probability": 0.8231 + }, + { + "start": 8831.58, + "end": 8832.78, + "probability": 0.9221 + }, + { + "start": 8834.04, + "end": 8836.24, + "probability": 0.899 + }, + { + "start": 8836.96, + "end": 8837.94, + "probability": 0.6264 + }, + { + "start": 8838.14, + "end": 8839.06, + "probability": 0.7623 + }, + { + "start": 8839.44, + "end": 8840.44, + "probability": 0.661 + }, + { + "start": 8840.52, + "end": 8841.64, + "probability": 0.7072 + }, + { + "start": 8842.28, + "end": 8843.06, + "probability": 0.9783 + }, + { + "start": 8843.62, + "end": 8845.3, + "probability": 0.9206 + }, + { + "start": 8846.36, + "end": 8848.34, + "probability": 0.9477 + }, + { + "start": 8848.38, + "end": 8849.88, + "probability": 0.9618 + }, + { + "start": 8849.94, + "end": 8851.14, + "probability": 0.524 + }, + { + "start": 8851.14, + "end": 8852.14, + "probability": 0.7167 + }, + { + "start": 8852.96, + "end": 8856.26, + "probability": 0.7276 + }, + { + "start": 8857.5, + "end": 8858.14, + "probability": 0.9617 + }, + { + "start": 8858.74, + "end": 8862.2, + "probability": 0.6541 + }, + { + "start": 8864.46, + "end": 8865.36, + "probability": 0.3758 + }, + { + "start": 8866.26, + "end": 8868.68, + "probability": 0.792 + }, + { + "start": 8868.72, + "end": 8870.66, + "probability": 0.7424 + }, + { + "start": 8871.52, + "end": 8872.96, + "probability": 0.9644 + }, + { + "start": 8873.78, + "end": 8878.78, + "probability": 0.6684 + }, + { + "start": 8881.62, + "end": 8884.3, + "probability": 0.5999 + }, + { + "start": 8885.26, + "end": 8885.6, + "probability": 0.9704 + }, + { + "start": 8886.58, + "end": 8887.28, + "probability": 0.8678 + }, + { + "start": 8888.12, + "end": 8888.44, + "probability": 0.6074 + }, + { + "start": 8889.72, + "end": 8890.38, + "probability": 0.7385 + }, + { + "start": 8891.72, + "end": 8894.52, + "probability": 0.2754 + }, + { + "start": 8894.54, + "end": 8896.32, + "probability": 0.7704 + }, + { + "start": 8896.32, + "end": 8897.5, + "probability": 0.9114 + }, + { + "start": 8897.5, + "end": 8898.28, + "probability": 0.7668 + }, + { + "start": 8899.36, + "end": 8902.44, + "probability": 0.9476 + }, + { + "start": 8904.76, + "end": 8908.1, + "probability": 0.5063 + }, + { + "start": 8909.28, + "end": 8911.2, + "probability": 0.7209 + }, + { + "start": 8911.8, + "end": 8912.42, + "probability": 0.7665 + }, + { + "start": 8913.28, + "end": 8913.56, + "probability": 0.948 + }, + { + "start": 8914.32, + "end": 8914.84, + "probability": 0.8006 + }, + { + "start": 8915.8, + "end": 8916.56, + "probability": 0.7508 + }, + { + "start": 8917.08, + "end": 8918.84, + "probability": 0.7496 + }, + { + "start": 8919.72, + "end": 8921.24, + "probability": 0.9787 + }, + { + "start": 8922.1, + "end": 8922.78, + "probability": 0.9622 + }, + { + "start": 8924.02, + "end": 8926.96, + "probability": 0.86 + }, + { + "start": 8928.3, + "end": 8929.08, + "probability": 0.9957 + }, + { + "start": 8929.66, + "end": 8931.45, + "probability": 0.9673 + }, + { + "start": 8932.12, + "end": 8936.46, + "probability": 0.6749 + }, + { + "start": 8937.22, + "end": 8940.28, + "probability": 0.8882 + }, + { + "start": 8941.68, + "end": 8943.5, + "probability": 0.9699 + }, + { + "start": 8943.52, + "end": 8944.84, + "probability": 0.8979 + }, + { + "start": 8944.96, + "end": 8948.08, + "probability": 0.0208 + }, + { + "start": 8948.08, + "end": 8948.68, + "probability": 0.4997 + }, + { + "start": 8950.4, + "end": 8952.04, + "probability": 0.6795 + }, + { + "start": 8952.12, + "end": 8953.36, + "probability": 0.641 + }, + { + "start": 8953.36, + "end": 8954.74, + "probability": 0.7136 + }, + { + "start": 8954.82, + "end": 8955.42, + "probability": 0.6962 + }, + { + "start": 8956.06, + "end": 8957.34, + "probability": 0.7967 + }, + { + "start": 8958.44, + "end": 8960.06, + "probability": 0.5151 + }, + { + "start": 8960.16, + "end": 8961.28, + "probability": 0.6278 + }, + { + "start": 8961.76, + "end": 8963.46, + "probability": 0.7157 + }, + { + "start": 8964.6, + "end": 8965.2, + "probability": 0.3494 + }, + { + "start": 8966.08, + "end": 8966.82, + "probability": 0.9722 + }, + { + "start": 8967.42, + "end": 8968.22, + "probability": 0.9416 + }, + { + "start": 8969.62, + "end": 8971.02, + "probability": 0.7657 + }, + { + "start": 8972.68, + "end": 8973.1, + "probability": 0.9775 + }, + { + "start": 8973.92, + "end": 8977.32, + "probability": 0.7658 + }, + { + "start": 8981.02, + "end": 8982.84, + "probability": 0.7563 + }, + { + "start": 8983.8, + "end": 8984.56, + "probability": 0.6124 + }, + { + "start": 8985.26, + "end": 8986.78, + "probability": 0.929 + }, + { + "start": 8987.34, + "end": 8988.6, + "probability": 0.8689 + }, + { + "start": 8989.58, + "end": 8991.48, + "probability": 0.8271 + }, + { + "start": 8993.32, + "end": 8995.12, + "probability": 0.7043 + }, + { + "start": 8996.24, + "end": 8996.9, + "probability": 0.8715 + }, + { + "start": 8997.48, + "end": 8998.7, + "probability": 0.8393 + }, + { + "start": 8999.32, + "end": 9000.96, + "probability": 0.5278 + }, + { + "start": 9004.28, + "end": 9006.54, + "probability": 0.5414 + }, + { + "start": 9007.14, + "end": 9011.18, + "probability": 0.8339 + }, + { + "start": 9011.96, + "end": 9012.64, + "probability": 0.383 + }, + { + "start": 9013.48, + "end": 9014.26, + "probability": 0.8774 + }, + { + "start": 9015.4, + "end": 9016.04, + "probability": 0.9492 + }, + { + "start": 9017.12, + "end": 9017.5, + "probability": 0.9749 + }, + { + "start": 9018.14, + "end": 9019.2, + "probability": 0.8698 + }, + { + "start": 9019.88, + "end": 9021.9, + "probability": 0.8773 + }, + { + "start": 9022.76, + "end": 9024.92, + "probability": 0.948 + }, + { + "start": 9027.02, + "end": 9028.16, + "probability": 0.98 + }, + { + "start": 9028.74, + "end": 9029.0, + "probability": 0.6111 + }, + { + "start": 9031.58, + "end": 9033.54, + "probability": 0.8123 + }, + { + "start": 9034.64, + "end": 9035.28, + "probability": 0.8593 + }, + { + "start": 9035.82, + "end": 9036.46, + "probability": 0.8197 + }, + { + "start": 9037.44, + "end": 9038.36, + "probability": 0.5307 + }, + { + "start": 9039.74, + "end": 9040.4, + "probability": 0.8261 + }, + { + "start": 9041.36, + "end": 9041.72, + "probability": 0.9858 + }, + { + "start": 9043.1, + "end": 9043.92, + "probability": 0.8966 + }, + { + "start": 9044.96, + "end": 9047.52, + "probability": 0.7727 + }, + { + "start": 9048.66, + "end": 9051.56, + "probability": 0.7524 + }, + { + "start": 9056.1, + "end": 9058.16, + "probability": 0.9631 + }, + { + "start": 9058.68, + "end": 9060.02, + "probability": 0.2567 + }, + { + "start": 9060.02, + "end": 9065.72, + "probability": 0.7328 + }, + { + "start": 9065.86, + "end": 9068.58, + "probability": 0.8183 + }, + { + "start": 9069.04, + "end": 9072.3, + "probability": 0.9468 + }, + { + "start": 9073.62, + "end": 9074.62, + "probability": 0.9571 + }, + { + "start": 9076.04, + "end": 9077.56, + "probability": 0.7997 + }, + { + "start": 9078.48, + "end": 9079.4, + "probability": 0.9689 + }, + { + "start": 9080.16, + "end": 9081.0, + "probability": 0.7125 + }, + { + "start": 9081.78, + "end": 9083.52, + "probability": 0.8986 + }, + { + "start": 9083.78, + "end": 9085.54, + "probability": 0.9555 + }, + { + "start": 9085.88, + "end": 9087.86, + "probability": 0.5241 + }, + { + "start": 9089.3, + "end": 9092.78, + "probability": 0.9272 + }, + { + "start": 9093.44, + "end": 9094.12, + "probability": 0.5754 + }, + { + "start": 9094.14, + "end": 9095.5, + "probability": 0.8649 + }, + { + "start": 9095.5, + "end": 9097.69, + "probability": 0.5998 + }, + { + "start": 9112.76, + "end": 9114.14, + "probability": 0.6294 + }, + { + "start": 9114.2, + "end": 9115.12, + "probability": 0.4792 + }, + { + "start": 9115.42, + "end": 9117.66, + "probability": 0.8139 + }, + { + "start": 9118.5, + "end": 9118.72, + "probability": 0.6218 + }, + { + "start": 9126.08, + "end": 9129.12, + "probability": 0.9123 + }, + { + "start": 9130.2, + "end": 9130.3, + "probability": 0.0138 + }, + { + "start": 9131.3, + "end": 9133.58, + "probability": 0.1516 + }, + { + "start": 9134.94, + "end": 9135.2, + "probability": 0.8843 + }, + { + "start": 9142.6, + "end": 9143.62, + "probability": 0.2977 + }, + { + "start": 9145.32, + "end": 9148.38, + "probability": 0.8322 + }, + { + "start": 9149.48, + "end": 9150.66, + "probability": 0.9735 + }, + { + "start": 9151.3, + "end": 9152.16, + "probability": 0.7243 + }, + { + "start": 9152.58, + "end": 9153.88, + "probability": 0.9165 + }, + { + "start": 9154.36, + "end": 9155.7, + "probability": 0.846 + }, + { + "start": 9157.76, + "end": 9158.18, + "probability": 0.6483 + }, + { + "start": 9159.36, + "end": 9160.1, + "probability": 0.5816 + }, + { + "start": 9162.28, + "end": 9164.12, + "probability": 0.9574 + }, + { + "start": 9164.73, + "end": 9167.94, + "probability": 0.6619 + }, + { + "start": 9169.02, + "end": 9170.9, + "probability": 0.8374 + }, + { + "start": 9171.0, + "end": 9172.42, + "probability": 0.9327 + }, + { + "start": 9173.28, + "end": 9175.06, + "probability": 0.7634 + }, + { + "start": 9175.74, + "end": 9177.22, + "probability": 0.8606 + }, + { + "start": 9177.74, + "end": 9178.44, + "probability": 0.9505 + }, + { + "start": 9179.22, + "end": 9179.8, + "probability": 0.584 + }, + { + "start": 9179.82, + "end": 9180.96, + "probability": 0.7737 + }, + { + "start": 9181.13, + "end": 9183.6, + "probability": 0.9515 + }, + { + "start": 9184.12, + "end": 9184.66, + "probability": 0.9423 + }, + { + "start": 9185.34, + "end": 9186.1, + "probability": 0.8997 + }, + { + "start": 9187.59, + "end": 9189.9, + "probability": 0.9131 + }, + { + "start": 9189.92, + "end": 9191.44, + "probability": 0.5765 + }, + { + "start": 9191.5, + "end": 9192.54, + "probability": 0.717 + }, + { + "start": 9193.36, + "end": 9194.58, + "probability": 0.655 + }, + { + "start": 9194.62, + "end": 9195.86, + "probability": 0.6701 + }, + { + "start": 9195.9, + "end": 9197.46, + "probability": 0.774 + }, + { + "start": 9197.52, + "end": 9198.1, + "probability": 0.9051 + }, + { + "start": 9198.74, + "end": 9199.54, + "probability": 0.7185 + }, + { + "start": 9199.62, + "end": 9200.56, + "probability": 0.2447 + }, + { + "start": 9200.62, + "end": 9201.66, + "probability": 0.5488 + }, + { + "start": 9201.74, + "end": 9202.94, + "probability": 0.6802 + }, + { + "start": 9202.98, + "end": 9203.56, + "probability": 0.9137 + }, + { + "start": 9204.12, + "end": 9205.78, + "probability": 0.915 + }, + { + "start": 9207.38, + "end": 9209.3, + "probability": 0.9023 + }, + { + "start": 9210.14, + "end": 9210.76, + "probability": 0.992 + }, + { + "start": 9211.42, + "end": 9212.06, + "probability": 0.9468 + }, + { + "start": 9212.1, + "end": 9213.4, + "probability": 0.083 + }, + { + "start": 9213.4, + "end": 9214.36, + "probability": 0.7582 + }, + { + "start": 9215.26, + "end": 9218.84, + "probability": 0.7881 + }, + { + "start": 9219.48, + "end": 9221.08, + "probability": 0.9005 + }, + { + "start": 9221.62, + "end": 9226.02, + "probability": 0.9486 + }, + { + "start": 9228.0, + "end": 9229.02, + "probability": 0.5836 + }, + { + "start": 9229.7, + "end": 9231.9, + "probability": 0.6973 + }, + { + "start": 9233.06, + "end": 9233.44, + "probability": 0.9217 + }, + { + "start": 9237.12, + "end": 9237.72, + "probability": 0.5381 + }, + { + "start": 9238.9, + "end": 9239.94, + "probability": 0.4772 + }, + { + "start": 9241.32, + "end": 9242.22, + "probability": 0.2632 + }, + { + "start": 9242.88, + "end": 9244.98, + "probability": 0.6655 + }, + { + "start": 9245.02, + "end": 9246.14, + "probability": 0.9006 + }, + { + "start": 9246.4, + "end": 9247.2, + "probability": 0.8888 + }, + { + "start": 9248.0, + "end": 9250.14, + "probability": 0.9147 + }, + { + "start": 9250.78, + "end": 9251.76, + "probability": 0.9818 + }, + { + "start": 9255.4, + "end": 9258.62, + "probability": 0.7722 + }, + { + "start": 9259.6, + "end": 9261.06, + "probability": 0.6044 + }, + { + "start": 9261.64, + "end": 9264.98, + "probability": 0.8997 + }, + { + "start": 9266.02, + "end": 9269.24, + "probability": 0.6715 + }, + { + "start": 9270.44, + "end": 9271.78, + "probability": 0.9036 + }, + { + "start": 9273.06, + "end": 9274.58, + "probability": 0.8717 + }, + { + "start": 9280.52, + "end": 9290.6, + "probability": 0.6734 + }, + { + "start": 9291.22, + "end": 9293.58, + "probability": 0.7472 + }, + { + "start": 9294.34, + "end": 9295.28, + "probability": 0.832 + }, + { + "start": 9295.86, + "end": 9297.3, + "probability": 0.7852 + }, + { + "start": 9299.3, + "end": 9304.58, + "probability": 0.8733 + }, + { + "start": 9305.4, + "end": 9307.76, + "probability": 0.8516 + }, + { + "start": 9308.3, + "end": 9310.8, + "probability": 0.817 + }, + { + "start": 9311.44, + "end": 9312.14, + "probability": 0.6599 + }, + { + "start": 9312.84, + "end": 9313.62, + "probability": 0.949 + }, + { + "start": 9332.26, + "end": 9334.34, + "probability": 0.1779 + }, + { + "start": 9337.86, + "end": 9338.87, + "probability": 0.5037 + }, + { + "start": 9339.42, + "end": 9340.84, + "probability": 0.6065 + }, + { + "start": 9342.26, + "end": 9345.42, + "probability": 0.8109 + }, + { + "start": 9346.14, + "end": 9350.38, + "probability": 0.7192 + }, + { + "start": 9353.96, + "end": 9354.72, + "probability": 0.3933 + }, + { + "start": 9355.4, + "end": 9355.98, + "probability": 0.8044 + }, + { + "start": 9356.52, + "end": 9358.8, + "probability": 0.6633 + }, + { + "start": 9361.7, + "end": 9362.33, + "probability": 0.3425 + }, + { + "start": 9363.6, + "end": 9364.4, + "probability": 0.8589 + }, + { + "start": 9368.4, + "end": 9369.8, + "probability": 0.6035 + }, + { + "start": 9370.5, + "end": 9372.52, + "probability": 0.762 + }, + { + "start": 9373.5, + "end": 9377.54, + "probability": 0.8345 + }, + { + "start": 9378.34, + "end": 9380.34, + "probability": 0.9475 + }, + { + "start": 9381.02, + "end": 9382.56, + "probability": 0.8472 + }, + { + "start": 9382.66, + "end": 9384.06, + "probability": 0.7228 + }, + { + "start": 9384.14, + "end": 9385.44, + "probability": 0.3039 + }, + { + "start": 9385.58, + "end": 9386.38, + "probability": 0.8218 + }, + { + "start": 9387.54, + "end": 9389.14, + "probability": 0.754 + }, + { + "start": 9389.24, + "end": 9390.32, + "probability": 0.5723 + }, + { + "start": 9391.06, + "end": 9394.12, + "probability": 0.7305 + }, + { + "start": 9395.22, + "end": 9396.0, + "probability": 0.8003 + }, + { + "start": 9396.98, + "end": 9399.26, + "probability": 0.6965 + }, + { + "start": 9399.88, + "end": 9402.78, + "probability": 0.7122 + }, + { + "start": 9403.44, + "end": 9407.34, + "probability": 0.8182 + }, + { + "start": 9408.87, + "end": 9409.22, + "probability": 0.0246 + }, + { + "start": 9410.06, + "end": 9411.3, + "probability": 0.6647 + }, + { + "start": 9411.94, + "end": 9413.24, + "probability": 0.8219 + }, + { + "start": 9413.38, + "end": 9415.3, + "probability": 0.5175 + }, + { + "start": 9415.44, + "end": 9416.54, + "probability": 0.5905 + }, + { + "start": 9429.2, + "end": 9432.2, + "probability": 0.7316 + }, + { + "start": 9437.51, + "end": 9439.88, + "probability": 0.7542 + }, + { + "start": 9439.88, + "end": 9441.36, + "probability": 0.4699 + }, + { + "start": 9441.4, + "end": 9443.44, + "probability": 0.8248 + }, + { + "start": 9444.1, + "end": 9447.88, + "probability": 0.8876 + }, + { + "start": 9448.48, + "end": 9450.52, + "probability": 0.9746 + }, + { + "start": 9451.12, + "end": 9453.14, + "probability": 0.7314 + }, + { + "start": 9453.62, + "end": 9457.32, + "probability": 0.9798 + }, + { + "start": 9457.8, + "end": 9461.18, + "probability": 0.6571 + }, + { + "start": 9462.0, + "end": 9466.18, + "probability": 0.958 + }, + { + "start": 9466.52, + "end": 9468.24, + "probability": 0.8863 + }, + { + "start": 9468.7, + "end": 9471.76, + "probability": 0.0621 + }, + { + "start": 9473.96, + "end": 9477.62, + "probability": 0.8563 + }, + { + "start": 9477.66, + "end": 9478.6, + "probability": 0.9348 + }, + { + "start": 9479.5, + "end": 9481.38, + "probability": 0.0424 + }, + { + "start": 9482.6, + "end": 9483.18, + "probability": 0.0099 + }, + { + "start": 9485.7, + "end": 9489.54, + "probability": 0.7878 + }, + { + "start": 9490.84, + "end": 9494.5, + "probability": 0.7493 + }, + { + "start": 9494.5, + "end": 9499.24, + "probability": 0.6466 + }, + { + "start": 9499.24, + "end": 9500.16, + "probability": 0.6191 + }, + { + "start": 9500.4, + "end": 9501.02, + "probability": 0.4915 + }, + { + "start": 9503.27, + "end": 9505.56, + "probability": 0.5988 + }, + { + "start": 9505.64, + "end": 9506.56, + "probability": 0.6915 + }, + { + "start": 9507.72, + "end": 9509.74, + "probability": 0.7125 + }, + { + "start": 9511.03, + "end": 9512.08, + "probability": 0.0557 + }, + { + "start": 9512.4, + "end": 9513.5, + "probability": 0.2415 + }, + { + "start": 9513.62, + "end": 9515.32, + "probability": 0.1952 + }, + { + "start": 9515.32, + "end": 9517.58, + "probability": 0.1487 + }, + { + "start": 9517.58, + "end": 9518.4, + "probability": 0.4426 + }, + { + "start": 9519.54, + "end": 9522.76, + "probability": 0.0186 + }, + { + "start": 9522.78, + "end": 9524.0, + "probability": 0.0482 + }, + { + "start": 9526.64, + "end": 9528.52, + "probability": 0.2548 + }, + { + "start": 9557.28, + "end": 9559.24, + "probability": 0.9642 + }, + { + "start": 9559.88, + "end": 9560.72, + "probability": 0.6538 + }, + { + "start": 9561.4, + "end": 9565.1, + "probability": 0.8865 + }, + { + "start": 9566.36, + "end": 9568.46, + "probability": 0.8538 + }, + { + "start": 9569.52, + "end": 9570.02, + "probability": 0.9502 + }, + { + "start": 9570.12, + "end": 9570.8, + "probability": 0.9456 + }, + { + "start": 9570.94, + "end": 9572.0, + "probability": 0.8239 + }, + { + "start": 9572.4, + "end": 9576.32, + "probability": 0.9715 + }, + { + "start": 9577.18, + "end": 9580.08, + "probability": 0.9961 + }, + { + "start": 9580.08, + "end": 9583.22, + "probability": 0.9965 + }, + { + "start": 9583.88, + "end": 9589.08, + "probability": 0.9754 + }, + { + "start": 9589.58, + "end": 9591.98, + "probability": 0.9701 + }, + { + "start": 9592.44, + "end": 9593.78, + "probability": 0.8704 + }, + { + "start": 9594.38, + "end": 9596.82, + "probability": 0.9698 + }, + { + "start": 9597.26, + "end": 9597.26, + "probability": 0.0118 + }, + { + "start": 9597.26, + "end": 9597.26, + "probability": 0.0314 + }, + { + "start": 9597.26, + "end": 9600.66, + "probability": 0.1037 + }, + { + "start": 9600.98, + "end": 9602.2, + "probability": 0.1098 + }, + { + "start": 9602.9, + "end": 9603.68, + "probability": 0.0285 + }, + { + "start": 9604.3, + "end": 9605.5, + "probability": 0.1518 + }, + { + "start": 9605.78, + "end": 9609.28, + "probability": 0.6553 + }, + { + "start": 9609.28, + "end": 9609.62, + "probability": 0.1936 + }, + { + "start": 9609.98, + "end": 9610.76, + "probability": 0.4011 + }, + { + "start": 9610.96, + "end": 9613.62, + "probability": 0.8823 + }, + { + "start": 9614.48, + "end": 9617.6, + "probability": 0.9019 + }, + { + "start": 9617.72, + "end": 9618.46, + "probability": 0.055 + }, + { + "start": 9618.46, + "end": 9618.88, + "probability": 0.383 + }, + { + "start": 9618.88, + "end": 9619.38, + "probability": 0.1642 + }, + { + "start": 9619.38, + "end": 9619.54, + "probability": 0.6338 + }, + { + "start": 9619.62, + "end": 9621.06, + "probability": 0.3384 + }, + { + "start": 9621.12, + "end": 9622.26, + "probability": 0.6624 + }, + { + "start": 9622.3, + "end": 9624.54, + "probability": 0.0332 + }, + { + "start": 9625.36, + "end": 9626.44, + "probability": 0.8841 + }, + { + "start": 9626.78, + "end": 9626.92, + "probability": 0.0301 + }, + { + "start": 9626.92, + "end": 9626.92, + "probability": 0.094 + }, + { + "start": 9626.92, + "end": 9626.99, + "probability": 0.6505 + }, + { + "start": 9628.3, + "end": 9628.3, + "probability": 0.0524 + }, + { + "start": 9628.3, + "end": 9629.69, + "probability": 0.7644 + }, + { + "start": 9630.32, + "end": 9631.18, + "probability": 0.2235 + }, + { + "start": 9631.5, + "end": 9634.2, + "probability": 0.3798 + }, + { + "start": 9634.2, + "end": 9635.62, + "probability": 0.121 + }, + { + "start": 9635.62, + "end": 9636.06, + "probability": 0.4129 + }, + { + "start": 9636.06, + "end": 9637.0, + "probability": 0.0649 + }, + { + "start": 9637.38, + "end": 9638.44, + "probability": 0.6741 + }, + { + "start": 9638.52, + "end": 9639.64, + "probability": 0.5086 + }, + { + "start": 9640.3, + "end": 9641.08, + "probability": 0.8823 + }, + { + "start": 9641.84, + "end": 9642.06, + "probability": 0.2245 + }, + { + "start": 9642.95, + "end": 9644.98, + "probability": 0.0267 + }, + { + "start": 9644.98, + "end": 9645.54, + "probability": 0.1829 + }, + { + "start": 9646.36, + "end": 9646.94, + "probability": 0.7135 + }, + { + "start": 9648.26, + "end": 9651.56, + "probability": 0.2448 + }, + { + "start": 9651.56, + "end": 9651.98, + "probability": 0.0114 + }, + { + "start": 9655.06, + "end": 9656.98, + "probability": 0.0927 + }, + { + "start": 9658.78, + "end": 9660.18, + "probability": 0.6978 + }, + { + "start": 9661.34, + "end": 9663.66, + "probability": 0.9937 + }, + { + "start": 9664.5, + "end": 9665.0, + "probability": 0.2317 + }, + { + "start": 9665.0, + "end": 9665.46, + "probability": 0.8328 + }, + { + "start": 9666.68, + "end": 9668.34, + "probability": 0.9858 + }, + { + "start": 9668.76, + "end": 9671.62, + "probability": 0.9743 + }, + { + "start": 9672.26, + "end": 9673.82, + "probability": 0.9979 + }, + { + "start": 9674.82, + "end": 9676.02, + "probability": 0.3594 + }, + { + "start": 9676.02, + "end": 9678.3, + "probability": 0.5967 + }, + { + "start": 9678.44, + "end": 9679.9, + "probability": 0.9744 + }, + { + "start": 9680.18, + "end": 9681.44, + "probability": 0.9979 + }, + { + "start": 9681.88, + "end": 9682.4, + "probability": 0.8509 + }, + { + "start": 9683.96, + "end": 9684.9, + "probability": 0.9401 + }, + { + "start": 9685.02, + "end": 9686.5, + "probability": 0.9854 + }, + { + "start": 9686.7, + "end": 9688.02, + "probability": 0.9668 + }, + { + "start": 9688.08, + "end": 9688.64, + "probability": 0.9369 + }, + { + "start": 9689.1, + "end": 9690.48, + "probability": 0.7641 + }, + { + "start": 9691.3, + "end": 9692.5, + "probability": 0.9841 + }, + { + "start": 9692.82, + "end": 9693.78, + "probability": 0.9216 + }, + { + "start": 9693.88, + "end": 9694.8, + "probability": 0.8691 + }, + { + "start": 9694.86, + "end": 9697.28, + "probability": 0.9797 + }, + { + "start": 9697.9, + "end": 9699.06, + "probability": 0.8355 + }, + { + "start": 9699.32, + "end": 9700.08, + "probability": 0.9585 + }, + { + "start": 9700.18, + "end": 9701.78, + "probability": 0.9755 + }, + { + "start": 9702.14, + "end": 9703.7, + "probability": 0.8933 + }, + { + "start": 9703.8, + "end": 9704.96, + "probability": 0.9349 + }, + { + "start": 9705.42, + "end": 9705.72, + "probability": 0.6308 + }, + { + "start": 9705.76, + "end": 9707.6, + "probability": 0.9904 + }, + { + "start": 9708.58, + "end": 9711.76, + "probability": 0.9705 + }, + { + "start": 9712.36, + "end": 9713.84, + "probability": 0.9637 + }, + { + "start": 9714.38, + "end": 9715.96, + "probability": 0.4957 + }, + { + "start": 9716.56, + "end": 9722.56, + "probability": 0.9889 + }, + { + "start": 9722.82, + "end": 9726.08, + "probability": 0.9918 + }, + { + "start": 9726.64, + "end": 9726.64, + "probability": 0.1404 + }, + { + "start": 9726.64, + "end": 9728.76, + "probability": 0.9989 + }, + { + "start": 9728.84, + "end": 9730.72, + "probability": 0.9018 + }, + { + "start": 9731.52, + "end": 9732.64, + "probability": 0.9264 + }, + { + "start": 9733.06, + "end": 9733.98, + "probability": 0.992 + }, + { + "start": 9734.1, + "end": 9735.0, + "probability": 0.9836 + }, + { + "start": 9735.26, + "end": 9736.32, + "probability": 0.9779 + }, + { + "start": 9736.44, + "end": 9739.62, + "probability": 0.9935 + }, + { + "start": 9740.44, + "end": 9744.84, + "probability": 0.4687 + }, + { + "start": 9744.94, + "end": 9746.18, + "probability": 0.2939 + }, + { + "start": 9746.18, + "end": 9746.24, + "probability": 0.6156 + }, + { + "start": 9746.24, + "end": 9747.2, + "probability": 0.5055 + }, + { + "start": 9747.2, + "end": 9747.54, + "probability": 0.2925 + }, + { + "start": 9748.2, + "end": 9748.8, + "probability": 0.5353 + }, + { + "start": 9748.84, + "end": 9749.72, + "probability": 0.8997 + }, + { + "start": 9749.84, + "end": 9753.82, + "probability": 0.9524 + }, + { + "start": 9754.42, + "end": 9756.94, + "probability": 0.9768 + }, + { + "start": 9757.04, + "end": 9760.0, + "probability": 0.999 + }, + { + "start": 9760.4, + "end": 9761.74, + "probability": 0.8898 + }, + { + "start": 9761.78, + "end": 9763.0, + "probability": 0.9727 + }, + { + "start": 9763.18, + "end": 9763.83, + "probability": 0.9773 + }, + { + "start": 9764.0, + "end": 9766.86, + "probability": 0.9937 + }, + { + "start": 9767.74, + "end": 9770.7, + "probability": 0.9955 + }, + { + "start": 9770.7, + "end": 9775.16, + "probability": 0.9959 + }, + { + "start": 9776.35, + "end": 9780.86, + "probability": 0.8836 + }, + { + "start": 9781.82, + "end": 9782.06, + "probability": 0.3761 + }, + { + "start": 9782.16, + "end": 9784.74, + "probability": 0.9811 + }, + { + "start": 9785.04, + "end": 9787.32, + "probability": 0.9988 + }, + { + "start": 9787.9, + "end": 9790.98, + "probability": 0.9928 + }, + { + "start": 9791.4, + "end": 9793.94, + "probability": 0.9792 + }, + { + "start": 9794.84, + "end": 9797.44, + "probability": 0.9979 + }, + { + "start": 9797.44, + "end": 9800.74, + "probability": 0.9989 + }, + { + "start": 9801.5, + "end": 9805.54, + "probability": 0.9916 + }, + { + "start": 9805.62, + "end": 9808.88, + "probability": 0.9988 + }, + { + "start": 9809.4, + "end": 9811.68, + "probability": 0.9331 + }, + { + "start": 9811.84, + "end": 9814.5, + "probability": 0.9739 + }, + { + "start": 9815.98, + "end": 9820.7, + "probability": 0.9946 + }, + { + "start": 9821.06, + "end": 9823.26, + "probability": 0.9763 + }, + { + "start": 9824.04, + "end": 9827.34, + "probability": 0.9175 + }, + { + "start": 9827.88, + "end": 9829.94, + "probability": 0.9775 + }, + { + "start": 9830.14, + "end": 9831.58, + "probability": 0.9443 + }, + { + "start": 9832.58, + "end": 9834.56, + "probability": 0.9927 + }, + { + "start": 9834.98, + "end": 9839.0, + "probability": 0.9926 + }, + { + "start": 9839.0, + "end": 9843.08, + "probability": 0.9966 + }, + { + "start": 9843.76, + "end": 9844.48, + "probability": 0.9011 + }, + { + "start": 9845.06, + "end": 9846.94, + "probability": 0.9954 + }, + { + "start": 9847.54, + "end": 9849.4, + "probability": 0.9834 + }, + { + "start": 9849.94, + "end": 9853.18, + "probability": 0.9713 + }, + { + "start": 9853.52, + "end": 9855.66, + "probability": 0.9805 + }, + { + "start": 9856.5, + "end": 9860.34, + "probability": 0.9978 + }, + { + "start": 9860.42, + "end": 9861.22, + "probability": 0.5524 + }, + { + "start": 9861.32, + "end": 9863.14, + "probability": 0.7495 + }, + { + "start": 9863.62, + "end": 9867.1, + "probability": 0.9944 + }, + { + "start": 9867.32, + "end": 9870.14, + "probability": 0.9874 + }, + { + "start": 9870.76, + "end": 9873.28, + "probability": 0.9861 + }, + { + "start": 9873.34, + "end": 9875.94, + "probability": 0.9937 + }, + { + "start": 9876.68, + "end": 9878.46, + "probability": 0.8209 + }, + { + "start": 9879.04, + "end": 9879.34, + "probability": 0.0195 + }, + { + "start": 9879.34, + "end": 9883.08, + "probability": 0.977 + }, + { + "start": 9883.78, + "end": 9886.16, + "probability": 0.9967 + }, + { + "start": 9886.96, + "end": 9887.24, + "probability": 0.8341 + }, + { + "start": 9888.24, + "end": 9888.72, + "probability": 0.846 + }, + { + "start": 9888.84, + "end": 9893.4, + "probability": 0.9967 + }, + { + "start": 9894.08, + "end": 9895.4, + "probability": 0.9672 + }, + { + "start": 9895.48, + "end": 9898.04, + "probability": 0.9663 + }, + { + "start": 9898.44, + "end": 9899.46, + "probability": 0.9159 + }, + { + "start": 9900.6, + "end": 9901.58, + "probability": 0.9006 + }, + { + "start": 9901.62, + "end": 9904.3, + "probability": 0.821 + }, + { + "start": 9905.06, + "end": 9905.4, + "probability": 0.5269 + }, + { + "start": 9905.42, + "end": 9905.42, + "probability": 0.3851 + }, + { + "start": 9905.48, + "end": 9907.44, + "probability": 0.9886 + }, + { + "start": 9907.86, + "end": 9908.12, + "probability": 0.9196 + }, + { + "start": 9908.68, + "end": 9908.82, + "probability": 0.4351 + }, + { + "start": 9908.9, + "end": 9911.24, + "probability": 0.6882 + }, + { + "start": 9911.42, + "end": 9913.94, + "probability": 0.824 + }, + { + "start": 9917.06, + "end": 9919.35, + "probability": 0.7828 + }, + { + "start": 9920.36, + "end": 9921.78, + "probability": 0.5024 + }, + { + "start": 9929.52, + "end": 9931.76, + "probability": 0.7227 + }, + { + "start": 9931.94, + "end": 9932.83, + "probability": 0.8237 + }, + { + "start": 9933.42, + "end": 9934.36, + "probability": 0.8163 + }, + { + "start": 9934.74, + "end": 9935.1, + "probability": 0.749 + }, + { + "start": 9936.14, + "end": 9940.82, + "probability": 0.9766 + }, + { + "start": 9941.18, + "end": 9941.92, + "probability": 0.0362 + }, + { + "start": 9942.02, + "end": 9944.74, + "probability": 0.989 + }, + { + "start": 9945.22, + "end": 9949.5, + "probability": 0.9947 + }, + { + "start": 9950.06, + "end": 9951.96, + "probability": 0.9764 + }, + { + "start": 9952.94, + "end": 9953.88, + "probability": 0.8688 + }, + { + "start": 9954.78, + "end": 9955.92, + "probability": 0.9429 + }, + { + "start": 9956.08, + "end": 9956.52, + "probability": 0.8257 + }, + { + "start": 9956.78, + "end": 9960.06, + "probability": 0.9312 + }, + { + "start": 9960.28, + "end": 9961.8, + "probability": 0.8361 + }, + { + "start": 9962.42, + "end": 9964.42, + "probability": 0.9948 + }, + { + "start": 9965.86, + "end": 9968.48, + "probability": 0.9808 + }, + { + "start": 9968.7, + "end": 9971.6, + "probability": 0.1464 + }, + { + "start": 9971.6, + "end": 9973.46, + "probability": 0.7438 + }, + { + "start": 9973.6, + "end": 9973.66, + "probability": 0.015 + }, + { + "start": 9973.66, + "end": 9973.66, + "probability": 0.0147 + }, + { + "start": 9973.66, + "end": 9975.81, + "probability": 0.8818 + }, + { + "start": 9976.46, + "end": 9977.56, + "probability": 0.9503 + }, + { + "start": 9978.06, + "end": 9980.44, + "probability": 0.9947 + }, + { + "start": 9981.02, + "end": 9984.42, + "probability": 0.997 + }, + { + "start": 9985.68, + "end": 9988.2, + "probability": 0.8293 + }, + { + "start": 9988.76, + "end": 9989.4, + "probability": 0.6782 + }, + { + "start": 9990.12, + "end": 9992.48, + "probability": 0.9453 + }, + { + "start": 9992.6, + "end": 9993.9, + "probability": 0.9494 + }, + { + "start": 9995.04, + "end": 9996.42, + "probability": 0.9928 + }, + { + "start": 9996.66, + "end": 9997.32, + "probability": 0.582 + }, + { + "start": 9997.58, + "end": 9998.72, + "probability": 0.8469 + }, + { + "start": 9999.26, + "end": 10000.79, + "probability": 0.8926 + }, + { + "start": 10001.0, + "end": 10001.58, + "probability": 0.8548 + }, + { + "start": 10001.88, + "end": 10002.5, + "probability": 0.8999 + }, + { + "start": 10003.46, + "end": 10004.56, + "probability": 0.9945 + }, + { + "start": 10005.08, + "end": 10007.78, + "probability": 0.9946 + }, + { + "start": 10008.28, + "end": 10008.78, + "probability": 0.6572 + }, + { + "start": 10008.96, + "end": 10011.88, + "probability": 0.9967 + }, + { + "start": 10012.22, + "end": 10014.42, + "probability": 0.9919 + }, + { + "start": 10014.6, + "end": 10018.92, + "probability": 0.964 + }, + { + "start": 10018.98, + "end": 10020.7, + "probability": 0.9842 + }, + { + "start": 10021.24, + "end": 10023.66, + "probability": 0.8047 + }, + { + "start": 10024.18, + "end": 10026.2, + "probability": 0.7341 + }, + { + "start": 10026.58, + "end": 10027.08, + "probability": 0.6955 + }, + { + "start": 10027.22, + "end": 10027.58, + "probability": 0.6249 + }, + { + "start": 10027.74, + "end": 10028.06, + "probability": 0.9761 + }, + { + "start": 10029.24, + "end": 10033.4, + "probability": 0.9787 + }, + { + "start": 10033.6, + "end": 10034.02, + "probability": 0.8969 + }, + { + "start": 10034.72, + "end": 10036.84, + "probability": 0.9358 + }, + { + "start": 10038.04, + "end": 10040.4, + "probability": 0.909 + }, + { + "start": 10040.4, + "end": 10043.24, + "probability": 0.9889 + }, + { + "start": 10043.78, + "end": 10044.42, + "probability": 0.787 + }, + { + "start": 10044.48, + "end": 10047.48, + "probability": 0.9959 + }, + { + "start": 10047.98, + "end": 10049.46, + "probability": 0.88 + }, + { + "start": 10050.28, + "end": 10051.28, + "probability": 0.493 + }, + { + "start": 10051.34, + "end": 10052.98, + "probability": 0.7734 + }, + { + "start": 10054.12, + "end": 10056.98, + "probability": 0.9395 + }, + { + "start": 10057.06, + "end": 10058.71, + "probability": 0.7133 + }, + { + "start": 10059.24, + "end": 10059.7, + "probability": 0.7066 + }, + { + "start": 10059.92, + "end": 10061.7, + "probability": 0.9809 + }, + { + "start": 10062.42, + "end": 10064.78, + "probability": 0.6876 + }, + { + "start": 10064.88, + "end": 10066.4, + "probability": 0.9674 + }, + { + "start": 10066.82, + "end": 10068.9, + "probability": 0.9971 + }, + { + "start": 10069.66, + "end": 10072.58, + "probability": 0.8987 + }, + { + "start": 10073.38, + "end": 10074.26, + "probability": 0.8732 + }, + { + "start": 10075.02, + "end": 10077.64, + "probability": 0.8982 + }, + { + "start": 10078.22, + "end": 10082.26, + "probability": 0.8549 + }, + { + "start": 10083.66, + "end": 10086.84, + "probability": 0.992 + }, + { + "start": 10086.9, + "end": 10088.62, + "probability": 0.9608 + }, + { + "start": 10088.94, + "end": 10092.12, + "probability": 0.9738 + }, + { + "start": 10092.66, + "end": 10095.86, + "probability": 0.6512 + }, + { + "start": 10096.64, + "end": 10097.88, + "probability": 0.4608 + }, + { + "start": 10098.7, + "end": 10100.12, + "probability": 0.9933 + }, + { + "start": 10100.9, + "end": 10102.9, + "probability": 0.98 + }, + { + "start": 10103.4, + "end": 10104.1, + "probability": 0.665 + }, + { + "start": 10104.12, + "end": 10104.92, + "probability": 0.8331 + }, + { + "start": 10105.26, + "end": 10106.66, + "probability": 0.9951 + }, + { + "start": 10106.96, + "end": 10107.54, + "probability": 0.8301 + }, + { + "start": 10107.86, + "end": 10110.76, + "probability": 0.9644 + }, + { + "start": 10110.88, + "end": 10111.08, + "probability": 0.8395 + }, + { + "start": 10111.76, + "end": 10114.46, + "probability": 0.9803 + }, + { + "start": 10115.12, + "end": 10118.6, + "probability": 0.8632 + }, + { + "start": 10118.68, + "end": 10120.78, + "probability": 0.979 + }, + { + "start": 10121.66, + "end": 10124.02, + "probability": 0.7969 + }, + { + "start": 10124.32, + "end": 10126.34, + "probability": 0.9344 + }, + { + "start": 10126.64, + "end": 10128.86, + "probability": 0.6548 + }, + { + "start": 10128.86, + "end": 10130.65, + "probability": 0.9184 + }, + { + "start": 10131.74, + "end": 10135.4, + "probability": 0.8374 + }, + { + "start": 10135.78, + "end": 10136.98, + "probability": 0.9192 + }, + { + "start": 10138.52, + "end": 10142.44, + "probability": 0.9852 + }, + { + "start": 10142.44, + "end": 10145.6, + "probability": 0.9987 + }, + { + "start": 10146.32, + "end": 10147.9, + "probability": 0.8711 + }, + { + "start": 10148.0, + "end": 10148.5, + "probability": 0.9492 + }, + { + "start": 10148.58, + "end": 10149.04, + "probability": 0.8745 + }, + { + "start": 10149.1, + "end": 10153.26, + "probability": 0.9645 + }, + { + "start": 10154.06, + "end": 10154.82, + "probability": 0.66 + }, + { + "start": 10155.36, + "end": 10156.66, + "probability": 0.5199 + }, + { + "start": 10157.28, + "end": 10158.72, + "probability": 0.7615 + }, + { + "start": 10159.52, + "end": 10163.06, + "probability": 0.9558 + }, + { + "start": 10163.16, + "end": 10167.26, + "probability": 0.9763 + }, + { + "start": 10167.42, + "end": 10168.62, + "probability": 0.854 + }, + { + "start": 10170.26, + "end": 10171.86, + "probability": 0.6607 + }, + { + "start": 10172.72, + "end": 10173.96, + "probability": 0.769 + }, + { + "start": 10174.28, + "end": 10175.3, + "probability": 0.7301 + }, + { + "start": 10175.36, + "end": 10175.9, + "probability": 0.8854 + }, + { + "start": 10176.32, + "end": 10178.5, + "probability": 0.9856 + }, + { + "start": 10178.5, + "end": 10182.1, + "probability": 0.8738 + }, + { + "start": 10182.94, + "end": 10184.46, + "probability": 0.8334 + }, + { + "start": 10185.0, + "end": 10189.64, + "probability": 0.8493 + }, + { + "start": 10190.22, + "end": 10191.42, + "probability": 0.8306 + }, + { + "start": 10191.96, + "end": 10193.52, + "probability": 0.9472 + }, + { + "start": 10193.9, + "end": 10194.12, + "probability": 0.8777 + }, + { + "start": 10194.98, + "end": 10195.48, + "probability": 0.9867 + }, + { + "start": 10195.98, + "end": 10196.7, + "probability": 0.2307 + }, + { + "start": 10196.92, + "end": 10197.24, + "probability": 0.3978 + }, + { + "start": 10198.16, + "end": 10199.96, + "probability": 0.9349 + }, + { + "start": 10202.81, + "end": 10205.84, + "probability": 0.7534 + }, + { + "start": 10206.38, + "end": 10208.38, + "probability": 0.9382 + }, + { + "start": 10210.84, + "end": 10211.94, + "probability": 0.0498 + }, + { + "start": 10235.76, + "end": 10236.08, + "probability": 0.3618 + }, + { + "start": 10236.08, + "end": 10236.76, + "probability": 0.625 + }, + { + "start": 10237.28, + "end": 10240.84, + "probability": 0.6549 + }, + { + "start": 10241.95, + "end": 10246.52, + "probability": 0.7852 + }, + { + "start": 10248.18, + "end": 10250.74, + "probability": 0.9953 + }, + { + "start": 10251.76, + "end": 10255.64, + "probability": 0.9953 + }, + { + "start": 10256.9, + "end": 10260.76, + "probability": 0.8055 + }, + { + "start": 10261.0, + "end": 10262.69, + "probability": 0.9634 + }, + { + "start": 10263.64, + "end": 10264.46, + "probability": 0.6922 + }, + { + "start": 10265.02, + "end": 10268.07, + "probability": 0.8931 + }, + { + "start": 10268.18, + "end": 10269.76, + "probability": 0.786 + }, + { + "start": 10269.84, + "end": 10270.26, + "probability": 0.6581 + }, + { + "start": 10272.66, + "end": 10276.3, + "probability": 0.9946 + }, + { + "start": 10276.86, + "end": 10278.24, + "probability": 0.9552 + }, + { + "start": 10278.84, + "end": 10281.54, + "probability": 0.9916 + }, + { + "start": 10281.6, + "end": 10287.74, + "probability": 0.9965 + }, + { + "start": 10288.48, + "end": 10291.58, + "probability": 0.8536 + }, + { + "start": 10293.21, + "end": 10296.1, + "probability": 0.9971 + }, + { + "start": 10297.2, + "end": 10299.26, + "probability": 0.9748 + }, + { + "start": 10300.42, + "end": 10303.04, + "probability": 0.9456 + }, + { + "start": 10303.76, + "end": 10305.8, + "probability": 0.7301 + }, + { + "start": 10308.8, + "end": 10310.72, + "probability": 0.8117 + }, + { + "start": 10310.8, + "end": 10311.16, + "probability": 0.4845 + }, + { + "start": 10311.24, + "end": 10311.52, + "probability": 0.7473 + }, + { + "start": 10311.82, + "end": 10313.66, + "probability": 0.8214 + }, + { + "start": 10314.86, + "end": 10317.74, + "probability": 0.9887 + }, + { + "start": 10318.62, + "end": 10320.74, + "probability": 0.9954 + }, + { + "start": 10321.52, + "end": 10322.98, + "probability": 0.9672 + }, + { + "start": 10323.5, + "end": 10326.08, + "probability": 0.8574 + }, + { + "start": 10327.28, + "end": 10328.6, + "probability": 0.9803 + }, + { + "start": 10329.04, + "end": 10330.02, + "probability": 0.9863 + }, + { + "start": 10330.94, + "end": 10333.54, + "probability": 0.7799 + }, + { + "start": 10335.59, + "end": 10338.98, + "probability": 0.9506 + }, + { + "start": 10339.46, + "end": 10342.64, + "probability": 0.9572 + }, + { + "start": 10343.86, + "end": 10346.16, + "probability": 0.9397 + }, + { + "start": 10346.76, + "end": 10351.32, + "probability": 0.9043 + }, + { + "start": 10351.82, + "end": 10352.5, + "probability": 0.8844 + }, + { + "start": 10352.66, + "end": 10356.04, + "probability": 0.9849 + }, + { + "start": 10356.68, + "end": 10356.68, + "probability": 0.9639 + }, + { + "start": 10359.28, + "end": 10360.0, + "probability": 0.1963 + }, + { + "start": 10360.54, + "end": 10363.6, + "probability": 0.8343 + }, + { + "start": 10363.76, + "end": 10365.66, + "probability": 0.9909 + }, + { + "start": 10366.74, + "end": 10371.6, + "probability": 0.9503 + }, + { + "start": 10372.18, + "end": 10372.94, + "probability": 0.7396 + }, + { + "start": 10373.84, + "end": 10378.24, + "probability": 0.9618 + }, + { + "start": 10378.7, + "end": 10382.9, + "probability": 0.9979 + }, + { + "start": 10383.5, + "end": 10387.54, + "probability": 0.9904 + }, + { + "start": 10387.54, + "end": 10391.4, + "probability": 0.5281 + }, + { + "start": 10391.78, + "end": 10395.32, + "probability": 0.9946 + }, + { + "start": 10395.8, + "end": 10397.16, + "probability": 0.951 + }, + { + "start": 10397.3, + "end": 10397.94, + "probability": 0.983 + }, + { + "start": 10399.24, + "end": 10400.4, + "probability": 0.8401 + }, + { + "start": 10401.04, + "end": 10401.48, + "probability": 0.9959 + }, + { + "start": 10402.04, + "end": 10404.08, + "probability": 0.9387 + }, + { + "start": 10404.92, + "end": 10409.18, + "probability": 0.8581 + }, + { + "start": 10409.3, + "end": 10409.9, + "probability": 0.7665 + }, + { + "start": 10411.45, + "end": 10416.9, + "probability": 0.9453 + }, + { + "start": 10417.56, + "end": 10418.43, + "probability": 0.7418 + }, + { + "start": 10419.02, + "end": 10422.56, + "probability": 0.6699 + }, + { + "start": 10422.68, + "end": 10425.36, + "probability": 0.989 + }, + { + "start": 10425.76, + "end": 10428.1, + "probability": 0.9779 + }, + { + "start": 10428.76, + "end": 10430.36, + "probability": 0.993 + }, + { + "start": 10430.44, + "end": 10433.94, + "probability": 0.8478 + }, + { + "start": 10434.58, + "end": 10436.16, + "probability": 0.8826 + }, + { + "start": 10436.66, + "end": 10437.4, + "probability": 0.7233 + }, + { + "start": 10437.86, + "end": 10441.84, + "probability": 0.9798 + }, + { + "start": 10442.36, + "end": 10447.57, + "probability": 0.998 + }, + { + "start": 10448.28, + "end": 10450.96, + "probability": 0.8706 + }, + { + "start": 10451.58, + "end": 10454.88, + "probability": 0.8794 + }, + { + "start": 10455.36, + "end": 10455.92, + "probability": 0.9053 + }, + { + "start": 10456.52, + "end": 10458.12, + "probability": 0.969 + }, + { + "start": 10458.2, + "end": 10458.54, + "probability": 0.7905 + }, + { + "start": 10458.93, + "end": 10461.16, + "probability": 0.5038 + }, + { + "start": 10461.2, + "end": 10462.6, + "probability": 0.7306 + }, + { + "start": 10463.34, + "end": 10466.06, + "probability": 0.8927 + }, + { + "start": 10466.88, + "end": 10468.64, + "probability": 0.2609 + }, + { + "start": 10468.8, + "end": 10470.6, + "probability": 0.0767 + }, + { + "start": 10472.46, + "end": 10475.56, + "probability": 0.7886 + }, + { + "start": 10475.78, + "end": 10476.76, + "probability": 0.8906 + }, + { + "start": 10477.88, + "end": 10478.22, + "probability": 0.5358 + }, + { + "start": 10479.72, + "end": 10482.78, + "probability": 0.81 + }, + { + "start": 10483.3, + "end": 10483.84, + "probability": 0.6692 + }, + { + "start": 10484.02, + "end": 10484.83, + "probability": 0.0679 + }, + { + "start": 10486.14, + "end": 10488.2, + "probability": 0.2695 + }, + { + "start": 10489.1, + "end": 10489.94, + "probability": 0.0103 + }, + { + "start": 10492.26, + "end": 10494.34, + "probability": 0.5885 + }, + { + "start": 10495.0, + "end": 10496.62, + "probability": 0.7139 + }, + { + "start": 10496.72, + "end": 10498.04, + "probability": 0.7605 + }, + { + "start": 10498.78, + "end": 10500.12, + "probability": 0.9317 + }, + { + "start": 10501.04, + "end": 10501.94, + "probability": 0.4982 + }, + { + "start": 10502.62, + "end": 10505.78, + "probability": 0.5681 + }, + { + "start": 10506.82, + "end": 10507.42, + "probability": 0.9251 + }, + { + "start": 10508.16, + "end": 10508.76, + "probability": 0.4721 + }, + { + "start": 10508.86, + "end": 10509.98, + "probability": 0.7544 + }, + { + "start": 10510.02, + "end": 10511.2, + "probability": 0.9105 + }, + { + "start": 10511.8, + "end": 10513.18, + "probability": 0.6631 + }, + { + "start": 10514.02, + "end": 10516.32, + "probability": 0.6952 + }, + { + "start": 10516.42, + "end": 10517.7, + "probability": 0.7732 + }, + { + "start": 10517.74, + "end": 10518.96, + "probability": 0.864 + }, + { + "start": 10519.7, + "end": 10520.8, + "probability": 0.5259 + }, + { + "start": 10521.32, + "end": 10522.92, + "probability": 0.9541 + }, + { + "start": 10523.56, + "end": 10525.88, + "probability": 0.8225 + }, + { + "start": 10528.26, + "end": 10529.8, + "probability": 0.375 + }, + { + "start": 10529.8, + "end": 10530.02, + "probability": 0.0842 + }, + { + "start": 10530.02, + "end": 10531.08, + "probability": 0.4254 + }, + { + "start": 10531.12, + "end": 10531.87, + "probability": 0.5813 + }, + { + "start": 10531.98, + "end": 10532.86, + "probability": 0.5555 + }, + { + "start": 10533.4, + "end": 10534.56, + "probability": 0.6109 + }, + { + "start": 10535.32, + "end": 10536.5, + "probability": 0.6981 + }, + { + "start": 10537.78, + "end": 10538.02, + "probability": 0.0049 + }, + { + "start": 10538.02, + "end": 10538.32, + "probability": 0.1034 + }, + { + "start": 10538.32, + "end": 10538.46, + "probability": 0.3307 + }, + { + "start": 10538.74, + "end": 10539.9, + "probability": 0.5309 + }, + { + "start": 10540.0, + "end": 10540.6, + "probability": 0.7348 + }, + { + "start": 10541.32, + "end": 10542.64, + "probability": 0.6184 + }, + { + "start": 10543.9, + "end": 10544.86, + "probability": 0.5098 + }, + { + "start": 10545.96, + "end": 10546.78, + "probability": 0.2473 + }, + { + "start": 10548.05, + "end": 10549.94, + "probability": 0.1442 + }, + { + "start": 10550.56, + "end": 10551.14, + "probability": 0.1197 + }, + { + "start": 10551.28, + "end": 10551.28, + "probability": 0.1681 + }, + { + "start": 10551.28, + "end": 10551.28, + "probability": 0.4672 + }, + { + "start": 10551.28, + "end": 10551.9, + "probability": 0.6906 + }, + { + "start": 10552.04, + "end": 10552.66, + "probability": 0.8734 + }, + { + "start": 10553.2, + "end": 10553.88, + "probability": 0.2077 + }, + { + "start": 10554.58, + "end": 10555.94, + "probability": 0.682 + }, + { + "start": 10557.64, + "end": 10558.1, + "probability": 0.0811 + }, + { + "start": 10558.1, + "end": 10558.5, + "probability": 0.1281 + }, + { + "start": 10558.5, + "end": 10558.9, + "probability": 0.5629 + }, + { + "start": 10559.52, + "end": 10560.1, + "probability": 0.5951 + }, + { + "start": 10560.9, + "end": 10563.7, + "probability": 0.5671 + }, + { + "start": 10564.24, + "end": 10567.56, + "probability": 0.607 + }, + { + "start": 10568.28, + "end": 10568.48, + "probability": 0.0113 + }, + { + "start": 10568.48, + "end": 10568.96, + "probability": 0.0213 + }, + { + "start": 10568.96, + "end": 10568.96, + "probability": 0.1176 + }, + { + "start": 10568.96, + "end": 10569.46, + "probability": 0.4105 + }, + { + "start": 10571.16, + "end": 10574.14, + "probability": 0.3701 + }, + { + "start": 10575.44, + "end": 10576.34, + "probability": 0.7603 + }, + { + "start": 10577.24, + "end": 10579.6, + "probability": 0.3796 + }, + { + "start": 10635.0, + "end": 10635.0, + "probability": 0.0 + }, + { + "start": 10635.0, + "end": 10635.0, + "probability": 0.0 + }, + { + "start": 10635.0, + "end": 10635.0, + "probability": 0.0 + }, + { + "start": 10635.0, + "end": 10635.0, + "probability": 0.0 + }, + { + "start": 10635.0, + "end": 10635.0, + "probability": 0.0 + }, + { + "start": 10635.0, + "end": 10635.0, + "probability": 0.0 + }, + { + "start": 10635.0, + "end": 10635.0, + "probability": 0.0 + }, + { + "start": 10635.12, + "end": 10636.51, + "probability": 0.0276 + }, + { + "start": 10637.88, + "end": 10638.7, + "probability": 0.0459 + }, + { + "start": 10638.7, + "end": 10639.05, + "probability": 0.1646 + }, + { + "start": 10640.47, + "end": 10640.98, + "probability": 0.0454 + }, + { + "start": 10640.98, + "end": 10641.84, + "probability": 0.2853 + }, + { + "start": 10642.23, + "end": 10643.86, + "probability": 0.3211 + }, + { + "start": 10644.64, + "end": 10646.06, + "probability": 0.3245 + }, + { + "start": 10646.86, + "end": 10648.2, + "probability": 0.1761 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.0, + "end": 10810.0, + "probability": 0.0 + }, + { + "start": 10810.1, + "end": 10811.08, + "probability": 0.0762 + }, + { + "start": 10811.08, + "end": 10814.44, + "probability": 0.0707 + }, + { + "start": 10814.6, + "end": 10816.82, + "probability": 0.2799 + }, + { + "start": 10826.6, + "end": 10828.46, + "probability": 0.1324 + }, + { + "start": 10832.2, + "end": 10834.06, + "probability": 0.4362 + }, + { + "start": 10834.6, + "end": 10834.76, + "probability": 0.0252 + }, + { + "start": 10836.36, + "end": 10837.72, + "probability": 0.1044 + }, + { + "start": 10837.72, + "end": 10838.68, + "probability": 0.1527 + }, + { + "start": 10841.2, + "end": 10841.66, + "probability": 0.1169 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.0, + "end": 10941.0, + "probability": 0.0 + }, + { + "start": 10941.2, + "end": 10946.22, + "probability": 0.5138 + }, + { + "start": 10946.3, + "end": 10947.16, + "probability": 0.1548 + }, + { + "start": 10947.18, + "end": 10948.02, + "probability": 0.3675 + }, + { + "start": 10948.62, + "end": 10949.36, + "probability": 0.776 + }, + { + "start": 10950.04, + "end": 10950.56, + "probability": 0.4452 + }, + { + "start": 10950.88, + "end": 10951.7, + "probability": 0.6078 + }, + { + "start": 10952.02, + "end": 10953.94, + "probability": 0.4362 + }, + { + "start": 10954.08, + "end": 10958.28, + "probability": 0.6513 + }, + { + "start": 10958.98, + "end": 10959.24, + "probability": 0.5477 + }, + { + "start": 10961.26, + "end": 10965.8, + "probability": 0.9775 + }, + { + "start": 10966.92, + "end": 10967.14, + "probability": 0.3832 + }, + { + "start": 10967.16, + "end": 10968.1, + "probability": 0.6281 + }, + { + "start": 10968.18, + "end": 10968.64, + "probability": 0.705 + }, + { + "start": 10969.48, + "end": 10969.48, + "probability": 0.1678 + }, + { + "start": 11002.88, + "end": 11007.44, + "probability": 0.4222 + }, + { + "start": 11007.64, + "end": 11010.66, + "probability": 0.9123 + }, + { + "start": 11013.02, + "end": 11016.84, + "probability": 0.7333 + }, + { + "start": 11018.58, + "end": 11026.12, + "probability": 0.9219 + }, + { + "start": 11026.76, + "end": 11030.38, + "probability": 0.9014 + }, + { + "start": 11031.98, + "end": 11034.26, + "probability": 0.7791 + }, + { + "start": 11035.68, + "end": 11036.46, + "probability": 0.8591 + }, + { + "start": 11037.46, + "end": 11041.08, + "probability": 0.9689 + }, + { + "start": 11042.08, + "end": 11045.96, + "probability": 0.9248 + }, + { + "start": 11054.28, + "end": 11055.56, + "probability": 0.1177 + }, + { + "start": 11068.34, + "end": 11069.0, + "probability": 0.5785 + }, + { + "start": 11070.88, + "end": 11074.16, + "probability": 0.6937 + }, + { + "start": 11075.98, + "end": 11078.2, + "probability": 0.9689 + }, + { + "start": 11079.6, + "end": 11084.48, + "probability": 0.8261 + }, + { + "start": 11084.52, + "end": 11086.84, + "probability": 0.9716 + }, + { + "start": 11088.56, + "end": 11089.32, + "probability": 0.9865 + }, + { + "start": 11090.4, + "end": 11090.5, + "probability": 0.2346 + }, + { + "start": 11090.72, + "end": 11094.84, + "probability": 0.6974 + }, + { + "start": 11096.9, + "end": 11100.88, + "probability": 0.9394 + }, + { + "start": 11102.02, + "end": 11103.48, + "probability": 0.9959 + }, + { + "start": 11104.34, + "end": 11108.42, + "probability": 0.8477 + }, + { + "start": 11108.94, + "end": 11114.64, + "probability": 0.9472 + }, + { + "start": 11114.64, + "end": 11120.46, + "probability": 0.8592 + }, + { + "start": 11121.48, + "end": 11123.92, + "probability": 0.5637 + }, + { + "start": 11125.36, + "end": 11127.46, + "probability": 0.5134 + }, + { + "start": 11128.46, + "end": 11131.7, + "probability": 0.6559 + }, + { + "start": 11133.08, + "end": 11135.78, + "probability": 0.6553 + }, + { + "start": 11137.08, + "end": 11138.5, + "probability": 0.9014 + }, + { + "start": 11138.6, + "end": 11140.86, + "probability": 0.8405 + }, + { + "start": 11141.1, + "end": 11143.88, + "probability": 0.642 + }, + { + "start": 11146.4, + "end": 11151.64, + "probability": 0.6945 + }, + { + "start": 11153.0, + "end": 11154.42, + "probability": 0.7389 + }, + { + "start": 11157.76, + "end": 11158.98, + "probability": 0.8301 + }, + { + "start": 11160.36, + "end": 11165.24, + "probability": 0.9966 + }, + { + "start": 11166.02, + "end": 11170.17, + "probability": 0.9893 + }, + { + "start": 11171.4, + "end": 11173.66, + "probability": 0.5104 + }, + { + "start": 11176.68, + "end": 11180.38, + "probability": 0.6688 + }, + { + "start": 11181.06, + "end": 11183.74, + "probability": 0.8468 + }, + { + "start": 11184.2, + "end": 11184.98, + "probability": 0.5857 + }, + { + "start": 11185.22, + "end": 11186.06, + "probability": 0.8216 + }, + { + "start": 11186.82, + "end": 11190.22, + "probability": 0.7895 + }, + { + "start": 11191.32, + "end": 11193.02, + "probability": 0.4532 + }, + { + "start": 11193.8, + "end": 11197.72, + "probability": 0.7021 + }, + { + "start": 11197.78, + "end": 11201.94, + "probability": 0.516 + }, + { + "start": 11203.72, + "end": 11205.82, + "probability": 0.7827 + }, + { + "start": 11205.9, + "end": 11208.22, + "probability": 0.6769 + }, + { + "start": 11210.18, + "end": 11210.82, + "probability": 0.5816 + }, + { + "start": 11211.5, + "end": 11215.4, + "probability": 0.7876 + }, + { + "start": 11216.84, + "end": 11217.98, + "probability": 0.8877 + }, + { + "start": 11219.22, + "end": 11220.88, + "probability": 0.8015 + }, + { + "start": 11222.22, + "end": 11227.06, + "probability": 0.9935 + }, + { + "start": 11227.06, + "end": 11231.22, + "probability": 0.6966 + }, + { + "start": 11231.94, + "end": 11233.6, + "probability": 0.9893 + }, + { + "start": 11233.84, + "end": 11237.97, + "probability": 0.8215 + }, + { + "start": 11239.0, + "end": 11245.56, + "probability": 0.7991 + }, + { + "start": 11255.46, + "end": 11258.3, + "probability": 0.715 + }, + { + "start": 11258.88, + "end": 11260.32, + "probability": 0.9912 + }, + { + "start": 11261.12, + "end": 11263.0, + "probability": 0.7339 + }, + { + "start": 11263.0, + "end": 11266.1, + "probability": 0.5063 + }, + { + "start": 11271.2, + "end": 11273.9, + "probability": 0.9645 + }, + { + "start": 11274.54, + "end": 11275.06, + "probability": 0.9426 + }, + { + "start": 11276.61, + "end": 11280.34, + "probability": 0.6076 + }, + { + "start": 11281.72, + "end": 11286.8, + "probability": 0.8963 + }, + { + "start": 11287.72, + "end": 11293.44, + "probability": 0.5649 + }, + { + "start": 11294.32, + "end": 11295.48, + "probability": 0.9761 + }, + { + "start": 11296.78, + "end": 11304.06, + "probability": 0.8607 + }, + { + "start": 11305.48, + "end": 11309.72, + "probability": 0.9838 + }, + { + "start": 11311.02, + "end": 11312.5, + "probability": 0.3348 + }, + { + "start": 11315.1, + "end": 11318.22, + "probability": 0.6104 + }, + { + "start": 11319.28, + "end": 11327.44, + "probability": 0.9362 + }, + { + "start": 11329.16, + "end": 11333.0, + "probability": 0.4771 + }, + { + "start": 11334.34, + "end": 11336.58, + "probability": 0.7638 + }, + { + "start": 11337.68, + "end": 11341.72, + "probability": 0.7165 + }, + { + "start": 11342.86, + "end": 11343.5, + "probability": 0.9342 + }, + { + "start": 11344.02, + "end": 11345.3, + "probability": 0.9966 + }, + { + "start": 11347.16, + "end": 11350.32, + "probability": 0.3772 + }, + { + "start": 11351.18, + "end": 11355.18, + "probability": 0.9568 + }, + { + "start": 11355.3, + "end": 11355.64, + "probability": 0.5311 + }, + { + "start": 11355.64, + "end": 11357.94, + "probability": 0.8162 + }, + { + "start": 11358.74, + "end": 11360.4, + "probability": 0.9046 + }, + { + "start": 11361.38, + "end": 11363.78, + "probability": 0.6844 + }, + { + "start": 11364.36, + "end": 11366.0, + "probability": 0.7542 + }, + { + "start": 11367.38, + "end": 11367.96, + "probability": 0.4404 + }, + { + "start": 11370.39, + "end": 11373.99, + "probability": 0.6664 + }, + { + "start": 11375.66, + "end": 11380.18, + "probability": 0.9695 + }, + { + "start": 11392.44, + "end": 11393.08, + "probability": 0.6363 + }, + { + "start": 11393.26, + "end": 11393.9, + "probability": 0.6237 + }, + { + "start": 11394.26, + "end": 11396.68, + "probability": 0.714 + }, + { + "start": 11397.54, + "end": 11402.14, + "probability": 0.9553 + }, + { + "start": 11403.1, + "end": 11403.4, + "probability": 0.0062 + }, + { + "start": 11403.92, + "end": 11406.8, + "probability": 0.9247 + }, + { + "start": 11407.06, + "end": 11409.48, + "probability": 0.9631 + }, + { + "start": 11410.24, + "end": 11411.46, + "probability": 0.8392 + }, + { + "start": 11412.34, + "end": 11412.92, + "probability": 0.5247 + }, + { + "start": 11413.06, + "end": 11417.0, + "probability": 0.9947 + }, + { + "start": 11417.1, + "end": 11418.6, + "probability": 0.9797 + }, + { + "start": 11419.04, + "end": 11421.48, + "probability": 0.9512 + }, + { + "start": 11422.0, + "end": 11423.44, + "probability": 0.985 + }, + { + "start": 11424.0, + "end": 11427.04, + "probability": 0.677 + }, + { + "start": 11427.18, + "end": 11430.52, + "probability": 0.9961 + }, + { + "start": 11431.12, + "end": 11432.02, + "probability": 0.8092 + }, + { + "start": 11432.78, + "end": 11433.48, + "probability": 0.7636 + }, + { + "start": 11433.54, + "end": 11436.46, + "probability": 0.5997 + }, + { + "start": 11437.02, + "end": 11438.56, + "probability": 0.662 + }, + { + "start": 11439.9, + "end": 11443.2, + "probability": 0.9916 + }, + { + "start": 11443.92, + "end": 11447.26, + "probability": 0.978 + }, + { + "start": 11448.08, + "end": 11448.88, + "probability": 0.4161 + }, + { + "start": 11449.5, + "end": 11450.46, + "probability": 0.922 + }, + { + "start": 11451.0, + "end": 11453.22, + "probability": 0.9312 + }, + { + "start": 11454.24, + "end": 11457.58, + "probability": 0.9875 + }, + { + "start": 11458.58, + "end": 11465.28, + "probability": 0.9032 + }, + { + "start": 11466.12, + "end": 11469.02, + "probability": 0.9454 + }, + { + "start": 11470.58, + "end": 11473.92, + "probability": 0.7796 + }, + { + "start": 11474.0, + "end": 11474.28, + "probability": 0.8183 + }, + { + "start": 11474.5, + "end": 11477.42, + "probability": 0.9448 + }, + { + "start": 11477.66, + "end": 11479.58, + "probability": 0.9264 + }, + { + "start": 11480.0, + "end": 11482.72, + "probability": 0.9854 + }, + { + "start": 11482.84, + "end": 11487.92, + "probability": 0.9978 + }, + { + "start": 11488.08, + "end": 11489.58, + "probability": 0.9012 + }, + { + "start": 11490.5, + "end": 11491.66, + "probability": 0.9679 + }, + { + "start": 11492.4, + "end": 11496.02, + "probability": 0.9882 + }, + { + "start": 11496.92, + "end": 11497.54, + "probability": 0.7803 + }, + { + "start": 11498.36, + "end": 11500.46, + "probability": 0.69 + }, + { + "start": 11501.74, + "end": 11504.24, + "probability": 0.9865 + }, + { + "start": 11504.38, + "end": 11507.24, + "probability": 0.9902 + }, + { + "start": 11507.8, + "end": 11512.64, + "probability": 0.9982 + }, + { + "start": 11513.16, + "end": 11521.04, + "probability": 0.9937 + }, + { + "start": 11521.9, + "end": 11522.04, + "probability": 0.2771 + }, + { + "start": 11522.14, + "end": 11527.36, + "probability": 0.9975 + }, + { + "start": 11527.48, + "end": 11528.18, + "probability": 0.9237 + }, + { + "start": 11528.78, + "end": 11529.32, + "probability": 0.8456 + }, + { + "start": 11529.44, + "end": 11534.08, + "probability": 0.7237 + }, + { + "start": 11534.28, + "end": 11535.5, + "probability": 0.895 + }, + { + "start": 11535.92, + "end": 11537.94, + "probability": 0.9429 + }, + { + "start": 11538.56, + "end": 11541.8, + "probability": 0.9331 + }, + { + "start": 11542.52, + "end": 11543.6, + "probability": 0.9187 + }, + { + "start": 11544.18, + "end": 11546.26, + "probability": 0.9228 + }, + { + "start": 11546.84, + "end": 11548.46, + "probability": 0.9743 + }, + { + "start": 11548.96, + "end": 11552.44, + "probability": 0.9902 + }, + { + "start": 11552.64, + "end": 11556.48, + "probability": 0.8105 + }, + { + "start": 11556.52, + "end": 11557.44, + "probability": 0.9084 + }, + { + "start": 11558.14, + "end": 11562.16, + "probability": 0.9403 + }, + { + "start": 11562.8, + "end": 11562.9, + "probability": 0.8293 + }, + { + "start": 11563.72, + "end": 11564.22, + "probability": 0.6636 + }, + { + "start": 11564.42, + "end": 11566.94, + "probability": 0.9758 + }, + { + "start": 11567.5, + "end": 11568.2, + "probability": 0.9185 + }, + { + "start": 11569.04, + "end": 11574.32, + "probability": 0.8397 + }, + { + "start": 11574.32, + "end": 11574.64, + "probability": 0.9265 + }, + { + "start": 11575.2, + "end": 11575.84, + "probability": 0.9756 + }, + { + "start": 11577.12, + "end": 11579.56, + "probability": 0.6434 + }, + { + "start": 11580.1, + "end": 11581.62, + "probability": 0.9326 + }, + { + "start": 11581.84, + "end": 11582.75, + "probability": 0.9439 + }, + { + "start": 11582.82, + "end": 11588.1, + "probability": 0.5605 + }, + { + "start": 11588.86, + "end": 11589.98, + "probability": 0.6782 + }, + { + "start": 11590.98, + "end": 11594.44, + "probability": 0.9004 + }, + { + "start": 11594.52, + "end": 11596.92, + "probability": 0.9734 + }, + { + "start": 11596.92, + "end": 11599.28, + "probability": 0.9726 + }, + { + "start": 11600.16, + "end": 11603.2, + "probability": 0.7801 + }, + { + "start": 11603.48, + "end": 11604.74, + "probability": 0.8781 + }, + { + "start": 11604.88, + "end": 11604.98, + "probability": 0.5745 + }, + { + "start": 11605.2, + "end": 11605.74, + "probability": 0.6505 + }, + { + "start": 11606.02, + "end": 11607.1, + "probability": 0.986 + }, + { + "start": 11607.92, + "end": 11609.48, + "probability": 0.6771 + }, + { + "start": 11610.22, + "end": 11611.34, + "probability": 0.8985 + }, + { + "start": 11611.78, + "end": 11613.06, + "probability": 0.9785 + }, + { + "start": 11613.12, + "end": 11614.48, + "probability": 0.8365 + }, + { + "start": 11615.28, + "end": 11616.44, + "probability": 0.9922 + }, + { + "start": 11617.64, + "end": 11620.32, + "probability": 0.9839 + }, + { + "start": 11620.94, + "end": 11623.88, + "probability": 0.9393 + }, + { + "start": 11624.34, + "end": 11626.74, + "probability": 0.9368 + }, + { + "start": 11627.34, + "end": 11630.76, + "probability": 0.9897 + }, + { + "start": 11631.94, + "end": 11633.52, + "probability": 0.9922 + }, + { + "start": 11633.6, + "end": 11635.45, + "probability": 0.7284 + }, + { + "start": 11636.44, + "end": 11639.84, + "probability": 0.9985 + }, + { + "start": 11639.84, + "end": 11642.38, + "probability": 0.9988 + }, + { + "start": 11643.56, + "end": 11644.2, + "probability": 0.6104 + }, + { + "start": 11644.72, + "end": 11645.98, + "probability": 0.8929 + }, + { + "start": 11646.76, + "end": 11650.82, + "probability": 0.8936 + }, + { + "start": 11651.28, + "end": 11654.68, + "probability": 0.9794 + }, + { + "start": 11655.66, + "end": 11656.14, + "probability": 0.8452 + }, + { + "start": 11656.82, + "end": 11657.98, + "probability": 0.823 + }, + { + "start": 11658.66, + "end": 11660.22, + "probability": 0.704 + }, + { + "start": 11660.76, + "end": 11664.74, + "probability": 0.9951 + }, + { + "start": 11665.52, + "end": 11666.46, + "probability": 0.9927 + }, + { + "start": 11667.18, + "end": 11668.76, + "probability": 0.9804 + }, + { + "start": 11669.02, + "end": 11672.62, + "probability": 0.9971 + }, + { + "start": 11672.62, + "end": 11678.32, + "probability": 0.7496 + }, + { + "start": 11679.42, + "end": 11683.7, + "probability": 0.9517 + }, + { + "start": 11683.7, + "end": 11685.96, + "probability": 0.9968 + }, + { + "start": 11686.04, + "end": 11686.7, + "probability": 0.6848 + }, + { + "start": 11687.26, + "end": 11691.94, + "probability": 0.998 + }, + { + "start": 11692.04, + "end": 11692.54, + "probability": 0.595 + }, + { + "start": 11693.28, + "end": 11696.0, + "probability": 0.9478 + }, + { + "start": 11696.2, + "end": 11697.8, + "probability": 0.8238 + }, + { + "start": 11697.9, + "end": 11698.38, + "probability": 0.8598 + }, + { + "start": 11698.54, + "end": 11701.74, + "probability": 0.939 + }, + { + "start": 11701.86, + "end": 11702.52, + "probability": 0.673 + }, + { + "start": 11703.12, + "end": 11704.3, + "probability": 0.9622 + }, + { + "start": 11705.46, + "end": 11706.52, + "probability": 0.9734 + }, + { + "start": 11707.12, + "end": 11709.52, + "probability": 0.9968 + }, + { + "start": 11710.2, + "end": 11711.3, + "probability": 0.9825 + }, + { + "start": 11711.82, + "end": 11712.98, + "probability": 0.8615 + }, + { + "start": 11713.28, + "end": 11714.34, + "probability": 0.9956 + }, + { + "start": 11715.58, + "end": 11720.78, + "probability": 0.9954 + }, + { + "start": 11721.22, + "end": 11723.96, + "probability": 0.9784 + }, + { + "start": 11724.98, + "end": 11726.5, + "probability": 0.7903 + }, + { + "start": 11727.36, + "end": 11730.58, + "probability": 0.9767 + }, + { + "start": 11732.32, + "end": 11733.68, + "probability": 0.8096 + }, + { + "start": 11734.96, + "end": 11735.98, + "probability": 0.9925 + }, + { + "start": 11736.5, + "end": 11739.54, + "probability": 0.9382 + }, + { + "start": 11739.92, + "end": 11742.28, + "probability": 0.8142 + }, + { + "start": 11742.32, + "end": 11744.66, + "probability": 0.9419 + }, + { + "start": 11744.76, + "end": 11746.59, + "probability": 0.8937 + }, + { + "start": 11746.79, + "end": 11750.42, + "probability": 0.9819 + }, + { + "start": 11755.12, + "end": 11756.82, + "probability": 0.8984 + }, + { + "start": 11775.58, + "end": 11777.24, + "probability": 0.6448 + }, + { + "start": 11777.4, + "end": 11778.66, + "probability": 0.8196 + }, + { + "start": 11780.18, + "end": 11781.26, + "probability": 0.5726 + }, + { + "start": 11781.26, + "end": 11787.96, + "probability": 0.9482 + }, + { + "start": 11788.06, + "end": 11790.18, + "probability": 0.9818 + }, + { + "start": 11791.4, + "end": 11797.12, + "probability": 0.8516 + }, + { + "start": 11797.76, + "end": 11801.72, + "probability": 0.9992 + }, + { + "start": 11801.72, + "end": 11806.76, + "probability": 0.9954 + }, + { + "start": 11807.86, + "end": 11809.82, + "probability": 0.8339 + }, + { + "start": 11809.94, + "end": 11813.14, + "probability": 0.8184 + }, + { + "start": 11814.0, + "end": 11819.54, + "probability": 0.7594 + }, + { + "start": 11819.54, + "end": 11822.7, + "probability": 0.9958 + }, + { + "start": 11824.24, + "end": 11826.9, + "probability": 0.9805 + }, + { + "start": 11829.6, + "end": 11830.62, + "probability": 0.6817 + }, + { + "start": 11830.84, + "end": 11835.32, + "probability": 0.7998 + }, + { + "start": 11837.12, + "end": 11840.82, + "probability": 0.991 + }, + { + "start": 11841.34, + "end": 11845.64, + "probability": 0.9813 + }, + { + "start": 11846.1, + "end": 11849.0, + "probability": 0.4021 + }, + { + "start": 11849.6, + "end": 11850.7, + "probability": 0.7463 + }, + { + "start": 11850.72, + "end": 11857.24, + "probability": 0.9846 + }, + { + "start": 11857.29, + "end": 11861.24, + "probability": 0.9323 + }, + { + "start": 11861.24, + "end": 11864.26, + "probability": 0.9813 + }, + { + "start": 11864.5, + "end": 11866.22, + "probability": 0.684 + }, + { + "start": 11867.14, + "end": 11871.04, + "probability": 0.5197 + }, + { + "start": 11871.32, + "end": 11875.6, + "probability": 0.9226 + }, + { + "start": 11875.76, + "end": 11880.46, + "probability": 0.6979 + }, + { + "start": 11880.96, + "end": 11882.81, + "probability": 0.0887 + }, + { + "start": 11883.66, + "end": 11885.62, + "probability": 0.4406 + }, + { + "start": 11885.72, + "end": 11888.18, + "probability": 0.4233 + }, + { + "start": 11888.34, + "end": 11888.7, + "probability": 0.1165 + }, + { + "start": 11888.7, + "end": 11892.08, + "probability": 0.5098 + }, + { + "start": 11892.2, + "end": 11893.66, + "probability": 0.8879 + }, + { + "start": 11894.26, + "end": 11898.14, + "probability": 0.9048 + }, + { + "start": 11898.7, + "end": 11904.5, + "probability": 0.9973 + }, + { + "start": 11905.46, + "end": 11911.98, + "probability": 0.9919 + }, + { + "start": 11912.62, + "end": 11916.86, + "probability": 0.9928 + }, + { + "start": 11917.1, + "end": 11919.42, + "probability": 0.6657 + }, + { + "start": 11919.98, + "end": 11921.46, + "probability": 0.9233 + }, + { + "start": 11921.6, + "end": 11924.9, + "probability": 0.5903 + }, + { + "start": 11925.3, + "end": 11929.58, + "probability": 0.9843 + }, + { + "start": 11930.1, + "end": 11934.5, + "probability": 0.9951 + }, + { + "start": 11935.36, + "end": 11935.72, + "probability": 0.4477 + }, + { + "start": 11936.44, + "end": 11940.88, + "probability": 0.8048 + }, + { + "start": 11941.42, + "end": 11944.12, + "probability": 0.9702 + }, + { + "start": 11944.62, + "end": 11947.72, + "probability": 0.9533 + }, + { + "start": 11947.72, + "end": 11952.4, + "probability": 0.9935 + }, + { + "start": 11953.47, + "end": 11955.84, + "probability": 0.9054 + }, + { + "start": 11956.32, + "end": 11958.0, + "probability": 0.6671 + }, + { + "start": 11958.54, + "end": 11965.16, + "probability": 0.9406 + }, + { + "start": 11965.16, + "end": 11967.0, + "probability": 0.8888 + }, + { + "start": 11967.5, + "end": 11974.04, + "probability": 0.9918 + }, + { + "start": 11974.14, + "end": 11979.0, + "probability": 0.9438 + }, + { + "start": 11979.5, + "end": 11987.34, + "probability": 0.9857 + }, + { + "start": 11987.86, + "end": 11991.96, + "probability": 0.9965 + }, + { + "start": 11991.96, + "end": 11995.32, + "probability": 0.9939 + }, + { + "start": 11995.86, + "end": 12001.38, + "probability": 0.9536 + }, + { + "start": 12001.46, + "end": 12007.08, + "probability": 0.9868 + }, + { + "start": 12007.94, + "end": 12016.92, + "probability": 0.9629 + }, + { + "start": 12018.22, + "end": 12020.56, + "probability": 0.9264 + }, + { + "start": 12021.28, + "end": 12027.32, + "probability": 0.9978 + }, + { + "start": 12027.7, + "end": 12029.03, + "probability": 0.7861 + }, + { + "start": 12029.2, + "end": 12032.96, + "probability": 0.9505 + }, + { + "start": 12033.18, + "end": 12035.58, + "probability": 0.9886 + }, + { + "start": 12036.36, + "end": 12040.74, + "probability": 0.9898 + }, + { + "start": 12041.02, + "end": 12041.28, + "probability": 0.5336 + }, + { + "start": 12047.28, + "end": 12054.36, + "probability": 0.732 + }, + { + "start": 12059.8, + "end": 12062.62, + "probability": 0.1853 + }, + { + "start": 12062.72, + "end": 12063.77, + "probability": 0.1489 + }, + { + "start": 12065.73, + "end": 12068.56, + "probability": 0.0243 + }, + { + "start": 12090.06, + "end": 12090.86, + "probability": 0.1733 + }, + { + "start": 12096.76, + "end": 12104.22, + "probability": 0.8433 + }, + { + "start": 12104.86, + "end": 12108.12, + "probability": 0.9866 + }, + { + "start": 12108.86, + "end": 12111.48, + "probability": 0.9976 + }, + { + "start": 12112.08, + "end": 12113.98, + "probability": 0.9855 + }, + { + "start": 12114.88, + "end": 12119.22, + "probability": 0.9944 + }, + { + "start": 12119.9, + "end": 12123.38, + "probability": 0.9978 + }, + { + "start": 12123.38, + "end": 12127.46, + "probability": 0.9978 + }, + { + "start": 12128.5, + "end": 12131.76, + "probability": 0.7611 + }, + { + "start": 12132.32, + "end": 12133.72, + "probability": 0.9935 + }, + { + "start": 12134.34, + "end": 12138.48, + "probability": 0.901 + }, + { + "start": 12139.02, + "end": 12140.58, + "probability": 0.9328 + }, + { + "start": 12140.68, + "end": 12143.6, + "probability": 0.988 + }, + { + "start": 12145.12, + "end": 12145.52, + "probability": 0.4868 + }, + { + "start": 12145.62, + "end": 12151.4, + "probability": 0.9943 + }, + { + "start": 12152.42, + "end": 12154.58, + "probability": 0.9985 + }, + { + "start": 12154.58, + "end": 12158.76, + "probability": 0.9285 + }, + { + "start": 12160.24, + "end": 12161.5, + "probability": 0.8395 + }, + { + "start": 12162.62, + "end": 12167.64, + "probability": 0.9951 + }, + { + "start": 12168.42, + "end": 12170.46, + "probability": 0.8141 + }, + { + "start": 12171.78, + "end": 12176.46, + "probability": 0.996 + }, + { + "start": 12176.46, + "end": 12178.96, + "probability": 0.981 + }, + { + "start": 12179.88, + "end": 12182.16, + "probability": 0.9718 + }, + { + "start": 12182.92, + "end": 12186.38, + "probability": 0.8816 + }, + { + "start": 12187.16, + "end": 12188.36, + "probability": 0.9672 + }, + { + "start": 12189.08, + "end": 12192.42, + "probability": 0.9553 + }, + { + "start": 12193.08, + "end": 12197.1, + "probability": 0.9929 + }, + { + "start": 12198.04, + "end": 12201.4, + "probability": 0.9878 + }, + { + "start": 12201.58, + "end": 12203.17, + "probability": 0.9702 + }, + { + "start": 12203.84, + "end": 12205.8, + "probability": 0.999 + }, + { + "start": 12206.82, + "end": 12210.94, + "probability": 0.9783 + }, + { + "start": 12211.62, + "end": 12215.0, + "probability": 0.9563 + }, + { + "start": 12215.58, + "end": 12222.02, + "probability": 0.85 + }, + { + "start": 12222.32, + "end": 12222.7, + "probability": 0.845 + }, + { + "start": 12223.28, + "end": 12224.78, + "probability": 0.6238 + }, + { + "start": 12230.18, + "end": 12232.9, + "probability": 0.6602 + }, + { + "start": 12233.64, + "end": 12234.32, + "probability": 0.9014 + }, + { + "start": 12241.82, + "end": 12243.0, + "probability": 0.6133 + }, + { + "start": 12243.96, + "end": 12246.42, + "probability": 0.6596 + }, + { + "start": 12247.66, + "end": 12250.32, + "probability": 0.9841 + }, + { + "start": 12251.44, + "end": 12254.28, + "probability": 0.9551 + }, + { + "start": 12255.8, + "end": 12259.8, + "probability": 0.9801 + }, + { + "start": 12260.16, + "end": 12261.92, + "probability": 0.9231 + }, + { + "start": 12262.02, + "end": 12266.64, + "probability": 0.995 + }, + { + "start": 12266.86, + "end": 12269.42, + "probability": 0.9915 + }, + { + "start": 12269.58, + "end": 12270.64, + "probability": 0.5961 + }, + { + "start": 12270.86, + "end": 12271.1, + "probability": 0.418 + }, + { + "start": 12271.14, + "end": 12271.78, + "probability": 0.8028 + }, + { + "start": 12272.3, + "end": 12273.48, + "probability": 0.7686 + }, + { + "start": 12273.82, + "end": 12274.88, + "probability": 0.8838 + }, + { + "start": 12277.2, + "end": 12279.32, + "probability": 0.9883 + }, + { + "start": 12279.42, + "end": 12282.62, + "probability": 0.9451 + }, + { + "start": 12282.62, + "end": 12286.58, + "probability": 0.9861 + }, + { + "start": 12286.58, + "end": 12290.14, + "probability": 0.5516 + }, + { + "start": 12290.58, + "end": 12291.32, + "probability": 0.8439 + }, + { + "start": 12292.88, + "end": 12295.16, + "probability": 0.9348 + }, + { + "start": 12295.3, + "end": 12297.24, + "probability": 0.9257 + }, + { + "start": 12297.3, + "end": 12300.1, + "probability": 0.676 + }, + { + "start": 12300.2, + "end": 12300.84, + "probability": 0.8528 + }, + { + "start": 12301.6, + "end": 12302.14, + "probability": 0.5513 + }, + { + "start": 12303.48, + "end": 12307.16, + "probability": 0.8276 + }, + { + "start": 12307.92, + "end": 12309.08, + "probability": 0.9357 + }, + { + "start": 12310.1, + "end": 12310.78, + "probability": 0.9758 + }, + { + "start": 12312.54, + "end": 12313.96, + "probability": 0.7645 + }, + { + "start": 12314.82, + "end": 12317.12, + "probability": 0.7108 + }, + { + "start": 12318.28, + "end": 12319.78, + "probability": 0.9636 + }, + { + "start": 12322.49, + "end": 12322.56, + "probability": 0.0012 + }, + { + "start": 12322.68, + "end": 12325.2, + "probability": 0.9292 + }, + { + "start": 12326.0, + "end": 12326.0, + "probability": 0.0219 + }, + { + "start": 12326.0, + "end": 12331.64, + "probability": 0.4931 + }, + { + "start": 12332.54, + "end": 12336.28, + "probability": 0.7932 + }, + { + "start": 12336.48, + "end": 12337.6, + "probability": 0.9803 + }, + { + "start": 12337.72, + "end": 12338.36, + "probability": 0.7416 + }, + { + "start": 12338.88, + "end": 12341.24, + "probability": 0.9908 + }, + { + "start": 12341.32, + "end": 12341.32, + "probability": 0.0017 + }, + { + "start": 12341.32, + "end": 12343.66, + "probability": 0.6134 + }, + { + "start": 12344.26, + "end": 12346.98, + "probability": 0.9421 + }, + { + "start": 12347.24, + "end": 12348.96, + "probability": 0.6291 + }, + { + "start": 12349.02, + "end": 12349.46, + "probability": 0.5027 + }, + { + "start": 12349.56, + "end": 12350.46, + "probability": 0.9517 + }, + { + "start": 12350.58, + "end": 12352.46, + "probability": 0.8927 + }, + { + "start": 12352.72, + "end": 12355.66, + "probability": 0.9963 + }, + { + "start": 12355.74, + "end": 12357.74, + "probability": 0.877 + }, + { + "start": 12357.86, + "end": 12358.74, + "probability": 0.998 + }, + { + "start": 12359.42, + "end": 12359.86, + "probability": 0.9756 + }, + { + "start": 12359.96, + "end": 12360.44, + "probability": 0.8781 + }, + { + "start": 12360.74, + "end": 12366.46, + "probability": 0.9124 + }, + { + "start": 12366.98, + "end": 12368.6, + "probability": 0.9497 + }, + { + "start": 12368.98, + "end": 12369.0, + "probability": 0.0783 + }, + { + "start": 12369.0, + "end": 12369.0, + "probability": 0.1732 + }, + { + "start": 12369.0, + "end": 12371.02, + "probability": 0.822 + }, + { + "start": 12371.06, + "end": 12375.04, + "probability": 0.6433 + }, + { + "start": 12375.4, + "end": 12380.14, + "probability": 0.7437 + }, + { + "start": 12380.98, + "end": 12381.3, + "probability": 0.0814 + }, + { + "start": 12382.1, + "end": 12385.21, + "probability": 0.0144 + }, + { + "start": 12386.9, + "end": 12387.72, + "probability": 0.1624 + }, + { + "start": 12387.72, + "end": 12388.5, + "probability": 0.1364 + }, + { + "start": 12392.82, + "end": 12392.82, + "probability": 0.0403 + }, + { + "start": 12392.82, + "end": 12393.03, + "probability": 0.0199 + }, + { + "start": 12404.19, + "end": 12405.64, + "probability": 0.0177 + }, + { + "start": 12405.64, + "end": 12411.03, + "probability": 0.2232 + }, + { + "start": 12411.7, + "end": 12412.76, + "probability": 0.104 + }, + { + "start": 12412.76, + "end": 12412.84, + "probability": 0.0797 + }, + { + "start": 12412.84, + "end": 12413.06, + "probability": 0.059 + }, + { + "start": 12413.46, + "end": 12417.08, + "probability": 0.1476 + }, + { + "start": 12429.44, + "end": 12431.22, + "probability": 0.0204 + }, + { + "start": 12431.74, + "end": 12435.4, + "probability": 0.0684 + }, + { + "start": 12435.4, + "end": 12437.18, + "probability": 0.1072 + }, + { + "start": 12437.88, + "end": 12441.05, + "probability": 0.1138 + }, + { + "start": 12443.39, + "end": 12444.6, + "probability": 0.0218 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.0, + "end": 12470.0, + "probability": 0.0 + }, + { + "start": 12470.64, + "end": 12470.96, + "probability": 0.0201 + }, + { + "start": 12470.96, + "end": 12474.02, + "probability": 0.2073 + }, + { + "start": 12477.52, + "end": 12481.56, + "probability": 0.1137 + }, + { + "start": 12481.56, + "end": 12482.32, + "probability": 0.5179 + }, + { + "start": 12482.74, + "end": 12484.24, + "probability": 0.6879 + }, + { + "start": 12484.34, + "end": 12484.6, + "probability": 0.6874 + }, + { + "start": 12485.52, + "end": 12487.02, + "probability": 0.4557 + }, + { + "start": 12487.28, + "end": 12488.44, + "probability": 0.206 + }, + { + "start": 12489.0, + "end": 12489.32, + "probability": 0.6887 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.0, + "end": 12601.0, + "probability": 0.0 + }, + { + "start": 12601.28, + "end": 12601.68, + "probability": 0.117 + }, + { + "start": 12602.24, + "end": 12603.14, + "probability": 0.2218 + }, + { + "start": 12604.04, + "end": 12605.78, + "probability": 0.8269 + }, + { + "start": 12606.96, + "end": 12609.24, + "probability": 0.9155 + }, + { + "start": 12609.84, + "end": 12611.22, + "probability": 0.8833 + }, + { + "start": 12611.84, + "end": 12612.62, + "probability": 0.833 + }, + { + "start": 12613.52, + "end": 12613.9, + "probability": 0.9451 + }, + { + "start": 12615.68, + "end": 12618.62, + "probability": 0.6311 + }, + { + "start": 12619.64, + "end": 12620.94, + "probability": 0.8316 + }, + { + "start": 12621.06, + "end": 12622.16, + "probability": 0.9131 + }, + { + "start": 12622.26, + "end": 12622.76, + "probability": 0.9154 + }, + { + "start": 12623.56, + "end": 12625.56, + "probability": 0.9276 + }, + { + "start": 12626.12, + "end": 12626.42, + "probability": 0.9395 + }, + { + "start": 12627.12, + "end": 12628.88, + "probability": 0.993 + }, + { + "start": 12629.06, + "end": 12630.48, + "probability": 0.8381 + }, + { + "start": 12630.54, + "end": 12632.22, + "probability": 0.805 + }, + { + "start": 12633.2, + "end": 12633.62, + "probability": 0.6244 + }, + { + "start": 12635.16, + "end": 12636.84, + "probability": 0.9637 + }, + { + "start": 12637.36, + "end": 12637.98, + "probability": 0.8015 + }, + { + "start": 12638.06, + "end": 12639.22, + "probability": 0.9053 + }, + { + "start": 12639.32, + "end": 12640.7, + "probability": 0.8776 + }, + { + "start": 12641.22, + "end": 12641.72, + "probability": 0.7629 + }, + { + "start": 12642.94, + "end": 12643.52, + "probability": 0.98 + }, + { + "start": 12644.36, + "end": 12644.8, + "probability": 0.5409 + }, + { + "start": 12645.76, + "end": 12646.52, + "probability": 0.6588 + }, + { + "start": 12649.51, + "end": 12651.52, + "probability": 0.7472 + }, + { + "start": 12651.7, + "end": 12653.16, + "probability": 0.9338 + }, + { + "start": 12653.5, + "end": 12655.52, + "probability": 0.9205 + }, + { + "start": 12655.64, + "end": 12657.18, + "probability": 0.75 + }, + { + "start": 12657.26, + "end": 12658.48, + "probability": 0.8128 + }, + { + "start": 12659.78, + "end": 12660.3, + "probability": 0.7105 + }, + { + "start": 12662.88, + "end": 12665.06, + "probability": 0.5011 + }, + { + "start": 12665.72, + "end": 12666.52, + "probability": 0.7878 + }, + { + "start": 12666.64, + "end": 12668.02, + "probability": 0.8676 + }, + { + "start": 12668.12, + "end": 12669.42, + "probability": 0.6993 + }, + { + "start": 12669.52, + "end": 12670.76, + "probability": 0.6302 + }, + { + "start": 12670.78, + "end": 12672.7, + "probability": 0.7348 + }, + { + "start": 12673.94, + "end": 12674.81, + "probability": 0.5879 + }, + { + "start": 12675.92, + "end": 12678.54, + "probability": 0.858 + }, + { + "start": 12679.48, + "end": 12681.3, + "probability": 0.778 + }, + { + "start": 12681.36, + "end": 12683.14, + "probability": 0.9152 + }, + { + "start": 12684.12, + "end": 12685.54, + "probability": 0.7361 + }, + { + "start": 12686.88, + "end": 12687.82, + "probability": 0.9461 + }, + { + "start": 12688.88, + "end": 12690.14, + "probability": 0.8052 + }, + { + "start": 12690.8, + "end": 12691.42, + "probability": 0.2168 + }, + { + "start": 12691.5, + "end": 12693.04, + "probability": 0.7855 + }, + { + "start": 12693.44, + "end": 12695.12, + "probability": 0.7134 + }, + { + "start": 12696.38, + "end": 12696.78, + "probability": 0.7839 + }, + { + "start": 12698.68, + "end": 12700.74, + "probability": 0.9349 + }, + { + "start": 12701.62, + "end": 12702.62, + "probability": 0.5892 + }, + { + "start": 12703.4, + "end": 12703.84, + "probability": 0.5797 + }, + { + "start": 12705.36, + "end": 12706.02, + "probability": 0.4411 + }, + { + "start": 12706.96, + "end": 12707.32, + "probability": 0.9714 + }, + { + "start": 12708.0, + "end": 12709.0, + "probability": 0.7882 + }, + { + "start": 12711.95, + "end": 12714.14, + "probability": 0.7515 + }, + { + "start": 12716.44, + "end": 12718.46, + "probability": 0.7695 + }, + { + "start": 12719.64, + "end": 12720.12, + "probability": 0.9751 + }, + { + "start": 12720.88, + "end": 12721.72, + "probability": 0.8335 + }, + { + "start": 12722.68, + "end": 12723.88, + "probability": 0.9729 + }, + { + "start": 12724.6, + "end": 12725.66, + "probability": 0.7552 + }, + { + "start": 12725.66, + "end": 12727.04, + "probability": 0.8364 + }, + { + "start": 12727.12, + "end": 12728.16, + "probability": 0.6811 + }, + { + "start": 12728.22, + "end": 12728.76, + "probability": 0.8291 + }, + { + "start": 12729.9, + "end": 12732.44, + "probability": 0.8525 + }, + { + "start": 12732.98, + "end": 12734.44, + "probability": 0.8853 + }, + { + "start": 12735.5, + "end": 12736.92, + "probability": 0.7812 + }, + { + "start": 12738.1, + "end": 12739.62, + "probability": 0.1602 + }, + { + "start": 12740.74, + "end": 12741.96, + "probability": 0.8038 + }, + { + "start": 12742.72, + "end": 12743.26, + "probability": 0.875 + }, + { + "start": 12743.78, + "end": 12746.08, + "probability": 0.3369 + }, + { + "start": 12746.08, + "end": 12747.36, + "probability": 0.4862 + }, + { + "start": 12747.84, + "end": 12748.76, + "probability": 0.9094 + }, + { + "start": 12749.94, + "end": 12750.5, + "probability": 0.7618 + }, + { + "start": 12750.58, + "end": 12752.04, + "probability": 0.896 + }, + { + "start": 12752.1, + "end": 12753.38, + "probability": 0.7431 + }, + { + "start": 12756.14, + "end": 12756.46, + "probability": 0.669 + }, + { + "start": 12757.18, + "end": 12759.82, + "probability": 0.4674 + }, + { + "start": 12759.94, + "end": 12762.0, + "probability": 0.8647 + }, + { + "start": 12762.1, + "end": 12764.08, + "probability": 0.744 + }, + { + "start": 12764.66, + "end": 12765.02, + "probability": 0.725 + }, + { + "start": 12766.44, + "end": 12767.66, + "probability": 0.958 + }, + { + "start": 12768.18, + "end": 12769.06, + "probability": 0.9617 + }, + { + "start": 12769.2, + "end": 12770.76, + "probability": 0.8704 + }, + { + "start": 12770.82, + "end": 12771.52, + "probability": 0.9432 + }, + { + "start": 12772.34, + "end": 12773.04, + "probability": 0.8284 + }, + { + "start": 12773.16, + "end": 12774.56, + "probability": 0.5693 + }, + { + "start": 12774.6, + "end": 12775.76, + "probability": 0.7026 + }, + { + "start": 12775.88, + "end": 12777.0, + "probability": 0.7959 + }, + { + "start": 12777.1, + "end": 12777.7, + "probability": 0.9426 + }, + { + "start": 12778.42, + "end": 12779.64, + "probability": 0.8906 + }, + { + "start": 12779.88, + "end": 12781.4, + "probability": 0.6554 + }, + { + "start": 12781.46, + "end": 12782.74, + "probability": 0.8404 + }, + { + "start": 12783.82, + "end": 12785.7, + "probability": 0.6176 + }, + { + "start": 12786.64, + "end": 12789.56, + "probability": 0.9615 + }, + { + "start": 12790.54, + "end": 12793.62, + "probability": 0.9687 + }, + { + "start": 12794.26, + "end": 12795.6, + "probability": 0.9031 + }, + { + "start": 12796.28, + "end": 12796.66, + "probability": 0.5721 + }, + { + "start": 12798.56, + "end": 12800.36, + "probability": 0.5633 + }, + { + "start": 12801.92, + "end": 12802.6, + "probability": 0.3276 + }, + { + "start": 12808.96, + "end": 12809.86, + "probability": 0.4918 + }, + { + "start": 12810.62, + "end": 12811.1, + "probability": 0.6003 + }, + { + "start": 12811.88, + "end": 12812.78, + "probability": 0.4631 + }, + { + "start": 12814.28, + "end": 12816.1, + "probability": 0.5832 + }, + { + "start": 12818.52, + "end": 12822.0, + "probability": 0.5433 + }, + { + "start": 12823.26, + "end": 12823.6, + "probability": 0.8313 + }, + { + "start": 12824.54, + "end": 12825.16, + "probability": 0.8532 + }, + { + "start": 12826.26, + "end": 12828.06, + "probability": 0.845 + }, + { + "start": 12829.3, + "end": 12832.06, + "probability": 0.6047 + }, + { + "start": 12834.36, + "end": 12835.02, + "probability": 0.9166 + }, + { + "start": 12835.06, + "end": 12836.52, + "probability": 0.7628 + }, + { + "start": 12836.56, + "end": 12838.28, + "probability": 0.8126 + }, + { + "start": 12839.78, + "end": 12841.58, + "probability": 0.9338 + }, + { + "start": 12842.14, + "end": 12843.54, + "probability": 0.7499 + }, + { + "start": 12844.96, + "end": 12846.62, + "probability": 0.8244 + }, + { + "start": 12847.32, + "end": 12848.74, + "probability": 0.9564 + }, + { + "start": 12851.82, + "end": 12853.66, + "probability": 0.9333 + }, + { + "start": 12854.62, + "end": 12855.16, + "probability": 0.8838 + }, + { + "start": 12856.66, + "end": 12857.64, + "probability": 0.7112 + }, + { + "start": 12857.76, + "end": 12858.84, + "probability": 0.8368 + }, + { + "start": 12858.96, + "end": 12860.38, + "probability": 0.6624 + }, + { + "start": 12862.06, + "end": 12865.26, + "probability": 0.8513 + }, + { + "start": 12866.46, + "end": 12869.5, + "probability": 0.974 + }, + { + "start": 12871.46, + "end": 12871.96, + "probability": 0.8735 + }, + { + "start": 12874.32, + "end": 12877.5, + "probability": 0.696 + }, + { + "start": 12878.22, + "end": 12878.74, + "probability": 0.7932 + }, + { + "start": 12879.34, + "end": 12880.34, + "probability": 0.9036 + }, + { + "start": 12880.38, + "end": 12881.72, + "probability": 0.8839 + }, + { + "start": 12881.82, + "end": 12884.88, + "probability": 0.5905 + }, + { + "start": 12885.6, + "end": 12886.78, + "probability": 0.8342 + }, + { + "start": 12886.84, + "end": 12888.22, + "probability": 0.8634 + }, + { + "start": 12888.64, + "end": 12890.4, + "probability": 0.3547 + }, + { + "start": 12892.48, + "end": 12894.48, + "probability": 0.9175 + }, + { + "start": 12895.48, + "end": 12897.16, + "probability": 0.9597 + }, + { + "start": 12897.4, + "end": 12898.58, + "probability": 0.7987 + }, + { + "start": 12898.64, + "end": 12899.18, + "probability": 0.8806 + }, + { + "start": 12899.9, + "end": 12902.27, + "probability": 0.7517 + }, + { + "start": 12903.38, + "end": 12903.82, + "probability": 0.9526 + }, + { + "start": 12910.02, + "end": 12912.38, + "probability": 0.7134 + }, + { + "start": 12912.44, + "end": 12912.8, + "probability": 0.8278 + }, + { + "start": 12913.88, + "end": 12914.2, + "probability": 0.2938 + }, + { + "start": 12914.34, + "end": 12915.97, + "probability": 0.3954 + }, + { + "start": 12916.1, + "end": 12917.97, + "probability": 0.7974 + }, + { + "start": 12920.14, + "end": 12920.9, + "probability": 0.123 + }, + { + "start": 12921.94, + "end": 12924.92, + "probability": 0.2551 + }, + { + "start": 12925.46, + "end": 12927.06, + "probability": 0.388 + }, + { + "start": 12928.02, + "end": 12929.8, + "probability": 0.0581 + }, + { + "start": 12930.48, + "end": 12934.04, + "probability": 0.2829 + }, + { + "start": 12936.62, + "end": 12938.24, + "probability": 0.0505 + }, + { + "start": 12938.34, + "end": 12939.42, + "probability": 0.4722 + }, + { + "start": 12939.72, + "end": 12942.08, + "probability": 0.677 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.0, + "end": 13048.0, + "probability": 0.0 + }, + { + "start": 13048.42, + "end": 13054.08, + "probability": 0.5541 + }, + { + "start": 13055.1, + "end": 13056.02, + "probability": 0.518 + }, + { + "start": 13058.14, + "end": 13061.0, + "probability": 0.6829 + }, + { + "start": 13061.76, + "end": 13064.44, + "probability": 0.7048 + }, + { + "start": 13065.16, + "end": 13066.02, + "probability": 0.6658 + }, + { + "start": 13066.08, + "end": 13067.48, + "probability": 0.7415 + }, + { + "start": 13067.48, + "end": 13069.1, + "probability": 0.4525 + }, + { + "start": 13069.1, + "end": 13069.98, + "probability": 0.2906 + }, + { + "start": 13069.98, + "end": 13070.96, + "probability": 0.4342 + }, + { + "start": 13070.96, + "end": 13072.3, + "probability": 0.3418 + }, + { + "start": 13072.34, + "end": 13075.04, + "probability": 0.5297 + }, + { + "start": 13075.06, + "end": 13076.38, + "probability": 0.5804 + }, + { + "start": 13076.44, + "end": 13078.04, + "probability": 0.834 + }, + { + "start": 13078.22, + "end": 13079.52, + "probability": 0.4237 + }, + { + "start": 13080.2, + "end": 13082.38, + "probability": 0.6699 + }, + { + "start": 13084.92, + "end": 13087.7, + "probability": 0.8004 + }, + { + "start": 13089.12, + "end": 13090.12, + "probability": 0.514 + }, + { + "start": 13090.3, + "end": 13090.6, + "probability": 0.4767 + }, + { + "start": 13110.18, + "end": 13110.18, + "probability": 0.0556 + }, + { + "start": 13110.18, + "end": 13110.46, + "probability": 0.043 + }, + { + "start": 13128.3, + "end": 13130.57, + "probability": 0.8317 + }, + { + "start": 13132.32, + "end": 13133.78, + "probability": 0.9106 + }, + { + "start": 13134.7, + "end": 13138.68, + "probability": 0.9304 + }, + { + "start": 13140.5, + "end": 13143.57, + "probability": 0.8422 + }, + { + "start": 13144.36, + "end": 13145.58, + "probability": 0.8575 + }, + { + "start": 13146.08, + "end": 13148.74, + "probability": 0.5345 + }, + { + "start": 13148.82, + "end": 13150.84, + "probability": 0.6217 + }, + { + "start": 13153.28, + "end": 13154.14, + "probability": 0.219 + }, + { + "start": 13154.74, + "end": 13157.28, + "probability": 0.7459 + }, + { + "start": 13158.94, + "end": 13158.94, + "probability": 0.0454 + }, + { + "start": 13158.94, + "end": 13159.29, + "probability": 0.4161 + }, + { + "start": 13159.58, + "end": 13161.12, + "probability": 0.6359 + }, + { + "start": 13162.14, + "end": 13162.36, + "probability": 0.6724 + }, + { + "start": 13163.72, + "end": 13165.92, + "probability": 0.6178 + }, + { + "start": 13166.58, + "end": 13166.9, + "probability": 0.1704 + }, + { + "start": 13167.02, + "end": 13167.76, + "probability": 0.2844 + }, + { + "start": 13167.94, + "end": 13169.14, + "probability": 0.7921 + }, + { + "start": 13169.18, + "end": 13169.7, + "probability": 0.7982 + }, + { + "start": 13170.36, + "end": 13171.08, + "probability": 0.8647 + }, + { + "start": 13171.28, + "end": 13172.88, + "probability": 0.2807 + }, + { + "start": 13172.94, + "end": 13173.62, + "probability": 0.6246 + }, + { + "start": 13173.72, + "end": 13174.82, + "probability": 0.7316 + }, + { + "start": 13177.68, + "end": 13178.5, + "probability": 0.768 + }, + { + "start": 13179.22, + "end": 13180.0, + "probability": 0.5305 + }, + { + "start": 13180.22, + "end": 13181.48, + "probability": 0.7327 + }, + { + "start": 13181.56, + "end": 13182.66, + "probability": 0.9063 + }, + { + "start": 13182.76, + "end": 13184.06, + "probability": 0.861 + }, + { + "start": 13186.14, + "end": 13187.48, + "probability": 0.9213 + }, + { + "start": 13188.7, + "end": 13192.4, + "probability": 0.9287 + }, + { + "start": 13193.36, + "end": 13193.36, + "probability": 0.0677 + }, + { + "start": 13193.36, + "end": 13194.04, + "probability": 0.4734 + }, + { + "start": 13194.14, + "end": 13196.34, + "probability": 0.5738 + }, + { + "start": 13196.36, + "end": 13197.92, + "probability": 0.6309 + }, + { + "start": 13198.02, + "end": 13199.2, + "probability": 0.7225 + }, + { + "start": 13199.26, + "end": 13200.48, + "probability": 0.5865 + }, + { + "start": 13201.04, + "end": 13201.66, + "probability": 0.697 + }, + { + "start": 13201.66, + "end": 13203.06, + "probability": 0.8505 + }, + { + "start": 13203.55, + "end": 13205.54, + "probability": 0.3618 + }, + { + "start": 13205.54, + "end": 13205.54, + "probability": 0.5729 + }, + { + "start": 13206.66, + "end": 13209.04, + "probability": 0.5349 + }, + { + "start": 13209.9, + "end": 13213.34, + "probability": 0.6677 + }, + { + "start": 13215.36, + "end": 13215.76, + "probability": 0.1974 + }, + { + "start": 13215.8, + "end": 13216.56, + "probability": 0.3378 + }, + { + "start": 13216.56, + "end": 13216.56, + "probability": 0.1433 + }, + { + "start": 13216.56, + "end": 13216.9, + "probability": 0.3268 + }, + { + "start": 13216.9, + "end": 13219.2, + "probability": 0.5513 + }, + { + "start": 13219.26, + "end": 13220.5, + "probability": 0.743 + }, + { + "start": 13221.06, + "end": 13221.88, + "probability": 0.9355 + }, + { + "start": 13223.64, + "end": 13224.6, + "probability": 0.8521 + }, + { + "start": 13225.34, + "end": 13226.1, + "probability": 0.9538 + }, + { + "start": 13226.72, + "end": 13227.26, + "probability": 0.5276 + }, + { + "start": 13227.32, + "end": 13228.38, + "probability": 0.2456 + }, + { + "start": 13228.44, + "end": 13229.74, + "probability": 0.7984 + }, + { + "start": 13229.82, + "end": 13231.22, + "probability": 0.8528 + }, + { + "start": 13240.74, + "end": 13240.76, + "probability": 0.0135 + }, + { + "start": 13249.5, + "end": 13251.92, + "probability": 0.5397 + }, + { + "start": 13256.44, + "end": 13256.78, + "probability": 0.5623 + }, + { + "start": 13258.76, + "end": 13259.48, + "probability": 0.2949 + }, + { + "start": 13261.76, + "end": 13265.54, + "probability": 0.8205 + }, + { + "start": 13266.94, + "end": 13267.3, + "probability": 0.95 + }, + { + "start": 13268.08, + "end": 13268.84, + "probability": 0.6759 + }, + { + "start": 13271.22, + "end": 13273.02, + "probability": 0.894 + }, + { + "start": 13275.16, + "end": 13275.62, + "probability": 0.9568 + }, + { + "start": 13277.48, + "end": 13278.12, + "probability": 0.913 + }, + { + "start": 13279.78, + "end": 13280.72, + "probability": 0.9406 + }, + { + "start": 13281.5, + "end": 13282.16, + "probability": 0.3532 + }, + { + "start": 13282.16, + "end": 13283.5, + "probability": 0.9609 + }, + { + "start": 13283.64, + "end": 13284.54, + "probability": 0.5241 + }, + { + "start": 13284.66, + "end": 13285.82, + "probability": 0.7373 + }, + { + "start": 13285.82, + "end": 13287.3, + "probability": 0.8206 + }, + { + "start": 13287.38, + "end": 13289.12, + "probability": 0.9224 + }, + { + "start": 13290.36, + "end": 13290.8, + "probability": 0.5331 + }, + { + "start": 13291.32, + "end": 13291.86, + "probability": 0.7553 + }, + { + "start": 13295.2, + "end": 13296.68, + "probability": 0.7306 + }, + { + "start": 13297.62, + "end": 13299.99, + "probability": 0.8619 + }, + { + "start": 13301.9, + "end": 13301.9, + "probability": 0.006 + }, + { + "start": 13301.9, + "end": 13302.63, + "probability": 0.3254 + }, + { + "start": 13302.76, + "end": 13303.7, + "probability": 0.7255 + }, + { + "start": 13303.82, + "end": 13305.12, + "probability": 0.8687 + }, + { + "start": 13305.14, + "end": 13306.34, + "probability": 0.6462 + }, + { + "start": 13307.62, + "end": 13308.14, + "probability": 0.9766 + }, + { + "start": 13309.46, + "end": 13311.48, + "probability": 0.8619 + }, + { + "start": 13313.12, + "end": 13313.72, + "probability": 0.5108 + }, + { + "start": 13317.26, + "end": 13319.6, + "probability": 0.7588 + }, + { + "start": 13320.42, + "end": 13321.24, + "probability": 0.6965 + }, + { + "start": 13321.34, + "end": 13322.44, + "probability": 0.609 + }, + { + "start": 13322.54, + "end": 13323.56, + "probability": 0.6798 + }, + { + "start": 13323.62, + "end": 13324.98, + "probability": 0.6146 + }, + { + "start": 13325.04, + "end": 13326.16, + "probability": 0.7422 + }, + { + "start": 13326.2, + "end": 13326.78, + "probability": 0.6281 + }, + { + "start": 13327.58, + "end": 13328.46, + "probability": 0.8607 + }, + { + "start": 13328.54, + "end": 13330.14, + "probability": 0.913 + }, + { + "start": 13330.22, + "end": 13331.9, + "probability": 0.9069 + }, + { + "start": 13331.94, + "end": 13333.26, + "probability": 0.8401 + }, + { + "start": 13334.42, + "end": 13335.28, + "probability": 0.9691 + }, + { + "start": 13336.28, + "end": 13338.88, + "probability": 0.757 + }, + { + "start": 13339.52, + "end": 13340.64, + "probability": 0.8315 + }, + { + "start": 13341.28, + "end": 13341.98, + "probability": 0.8586 + }, + { + "start": 13342.04, + "end": 13344.5, + "probability": 0.592 + }, + { + "start": 13347.36, + "end": 13347.66, + "probability": 0.6422 + }, + { + "start": 13349.26, + "end": 13352.16, + "probability": 0.6174 + }, + { + "start": 13354.88, + "end": 13355.3, + "probability": 0.9188 + }, + { + "start": 13356.92, + "end": 13357.78, + "probability": 0.6706 + }, + { + "start": 13362.74, + "end": 13363.46, + "probability": 0.8701 + }, + { + "start": 13364.56, + "end": 13365.52, + "probability": 0.4561 + }, + { + "start": 13366.24, + "end": 13367.92, + "probability": 0.6102 + }, + { + "start": 13369.62, + "end": 13370.0, + "probability": 0.9906 + }, + { + "start": 13371.78, + "end": 13372.76, + "probability": 0.7183 + }, + { + "start": 13373.68, + "end": 13374.16, + "probability": 0.9243 + }, + { + "start": 13375.34, + "end": 13376.14, + "probability": 0.8585 + }, + { + "start": 13376.9, + "end": 13379.48, + "probability": 0.8083 + }, + { + "start": 13380.26, + "end": 13382.58, + "probability": 0.4804 + }, + { + "start": 13383.16, + "end": 13383.54, + "probability": 0.456 + }, + { + "start": 13383.7, + "end": 13386.3, + "probability": 0.9022 + }, + { + "start": 13386.38, + "end": 13387.52, + "probability": 0.8815 + }, + { + "start": 13387.64, + "end": 13388.22, + "probability": 0.8096 + }, + { + "start": 13388.78, + "end": 13392.92, + "probability": 0.9568 + }, + { + "start": 13393.76, + "end": 13396.5, + "probability": 0.7595 + }, + { + "start": 13397.76, + "end": 13398.74, + "probability": 0.9622 + }, + { + "start": 13399.64, + "end": 13400.38, + "probability": 0.8703 + }, + { + "start": 13402.2, + "end": 13404.1, + "probability": 0.8584 + }, + { + "start": 13405.6, + "end": 13407.94, + "probability": 0.873 + }, + { + "start": 13411.52, + "end": 13414.68, + "probability": 0.7315 + }, + { + "start": 13425.48, + "end": 13429.46, + "probability": 0.4738 + }, + { + "start": 13430.14, + "end": 13433.22, + "probability": 0.8403 + }, + { + "start": 13434.02, + "end": 13434.48, + "probability": 0.7947 + }, + { + "start": 13435.58, + "end": 13439.86, + "probability": 0.8916 + }, + { + "start": 13441.38, + "end": 13441.86, + "probability": 0.9255 + }, + { + "start": 13443.28, + "end": 13444.66, + "probability": 0.8965 + }, + { + "start": 13445.2, + "end": 13445.96, + "probability": 0.5037 + }, + { + "start": 13446.12, + "end": 13447.7, + "probability": 0.7953 + }, + { + "start": 13447.84, + "end": 13449.12, + "probability": 0.5424 + }, + { + "start": 13449.18, + "end": 13449.84, + "probability": 0.7998 + }, + { + "start": 13450.64, + "end": 13453.44, + "probability": 0.8239 + }, + { + "start": 13454.12, + "end": 13454.92, + "probability": 0.9618 + }, + { + "start": 13455.0, + "end": 13456.22, + "probability": 0.6215 + }, + { + "start": 13456.34, + "end": 13457.3, + "probability": 0.7234 + }, + { + "start": 13457.42, + "end": 13457.88, + "probability": 0.7929 + }, + { + "start": 13458.48, + "end": 13460.94, + "probability": 0.617 + }, + { + "start": 13461.64, + "end": 13462.0, + "probability": 0.8196 + }, + { + "start": 13466.68, + "end": 13469.14, + "probability": 0.781 + }, + { + "start": 13470.84, + "end": 13472.86, + "probability": 0.2333 + }, + { + "start": 13472.94, + "end": 13473.58, + "probability": 0.4691 + }, + { + "start": 13473.58, + "end": 13474.1, + "probability": 0.4694 + }, + { + "start": 13474.22, + "end": 13475.86, + "probability": 0.7509 + }, + { + "start": 13476.0, + "end": 13476.7, + "probability": 0.5821 + }, + { + "start": 13477.66, + "end": 13478.54, + "probability": 0.5338 + }, + { + "start": 13478.7, + "end": 13479.8, + "probability": 0.6051 + }, + { + "start": 13479.9, + "end": 13480.84, + "probability": 0.5439 + }, + { + "start": 13480.9, + "end": 13481.94, + "probability": 0.6456 + }, + { + "start": 13482.04, + "end": 13482.56, + "probability": 0.9439 + }, + { + "start": 13483.52, + "end": 13484.04, + "probability": 0.8995 + }, + { + "start": 13484.16, + "end": 13485.56, + "probability": 0.9453 + }, + { + "start": 13487.23, + "end": 13488.34, + "probability": 0.1185 + }, + { + "start": 13488.34, + "end": 13488.48, + "probability": 0.1708 + }, + { + "start": 13488.5, + "end": 13490.24, + "probability": 0.7211 + }, + { + "start": 13490.78, + "end": 13491.66, + "probability": 0.697 + }, + { + "start": 13492.44, + "end": 13493.16, + "probability": 0.8189 + }, + { + "start": 13493.26, + "end": 13494.62, + "probability": 0.7854 + }, + { + "start": 13494.64, + "end": 13495.72, + "probability": 0.873 + }, + { + "start": 13498.32, + "end": 13499.22, + "probability": 0.8821 + }, + { + "start": 13500.38, + "end": 13500.84, + "probability": 0.4262 + }, + { + "start": 13501.42, + "end": 13503.7, + "probability": 0.7569 + }, + { + "start": 13504.56, + "end": 13506.06, + "probability": 0.9298 + }, + { + "start": 13506.18, + "end": 13507.6, + "probability": 0.9918 + }, + { + "start": 13507.66, + "end": 13508.22, + "probability": 0.8575 + }, + { + "start": 13508.74, + "end": 13509.32, + "probability": 0.9636 + }, + { + "start": 13509.32, + "end": 13510.78, + "probability": 0.6025 + }, + { + "start": 13510.92, + "end": 13511.5, + "probability": 0.791 + }, + { + "start": 13512.14, + "end": 13512.62, + "probability": 0.6449 + }, + { + "start": 13512.78, + "end": 13513.92, + "probability": 0.7386 + }, + { + "start": 13513.92, + "end": 13514.94, + "probability": 0.8457 + }, + { + "start": 13515.06, + "end": 13515.58, + "probability": 0.8589 + }, + { + "start": 13516.24, + "end": 13517.62, + "probability": 0.8298 + }, + { + "start": 13519.64, + "end": 13522.18, + "probability": 0.9271 + }, + { + "start": 13524.4, + "end": 13524.8, + "probability": 0.1529 + }, + { + "start": 13524.8, + "end": 13525.62, + "probability": 0.5723 + }, + { + "start": 13525.74, + "end": 13526.38, + "probability": 0.879 + }, + { + "start": 13527.18, + "end": 13530.08, + "probability": 0.7981 + }, + { + "start": 13530.7, + "end": 13531.42, + "probability": 0.7575 + }, + { + "start": 13531.5, + "end": 13532.58, + "probability": 0.9043 + }, + { + "start": 13532.66, + "end": 13535.4, + "probability": 0.0762 + }, + { + "start": 13536.12, + "end": 13538.14, + "probability": 0.5671 + }, + { + "start": 13539.44, + "end": 13541.36, + "probability": 0.6812 + }, + { + "start": 13541.42, + "end": 13542.5, + "probability": 0.448 + }, + { + "start": 13542.52, + "end": 13543.94, + "probability": 0.5618 + }, + { + "start": 13543.98, + "end": 13545.86, + "probability": 0.7859 + }, + { + "start": 13546.04, + "end": 13547.34, + "probability": 0.501 + }, + { + "start": 13548.92, + "end": 13549.82, + "probability": 0.9838 + }, + { + "start": 13550.4, + "end": 13551.16, + "probability": 0.7803 + }, + { + "start": 13552.38, + "end": 13553.34, + "probability": 0.97 + }, + { + "start": 13554.26, + "end": 13554.9, + "probability": 0.3106 + }, + { + "start": 13554.96, + "end": 13556.28, + "probability": 0.8572 + }, + { + "start": 13556.38, + "end": 13557.4, + "probability": 0.8486 + }, + { + "start": 13558.42, + "end": 13561.14, + "probability": 0.9091 + }, + { + "start": 13562.98, + "end": 13563.56, + "probability": 0.0479 + }, + { + "start": 13564.8, + "end": 13565.68, + "probability": 0.8406 + }, + { + "start": 13566.24, + "end": 13566.64, + "probability": 0.5817 + }, + { + "start": 13566.78, + "end": 13567.92, + "probability": 0.7843 + }, + { + "start": 13567.94, + "end": 13568.96, + "probability": 0.8438 + }, + { + "start": 13569.02, + "end": 13569.58, + "probability": 0.682 + }, + { + "start": 13571.54, + "end": 13573.9, + "probability": 0.8202 + }, + { + "start": 13575.38, + "end": 13575.7, + "probability": 0.0117 + }, + { + "start": 13575.7, + "end": 13575.77, + "probability": 0.4845 + }, + { + "start": 13576.82, + "end": 13577.84, + "probability": 0.8952 + }, + { + "start": 13578.64, + "end": 13580.7, + "probability": 0.5 + }, + { + "start": 13581.78, + "end": 13584.06, + "probability": 0.9287 + }, + { + "start": 13584.06, + "end": 13585.9, + "probability": 0.936 + }, + { + "start": 13586.4, + "end": 13588.46, + "probability": 0.7649 + }, + { + "start": 13588.48, + "end": 13589.68, + "probability": 0.5654 + }, + { + "start": 13589.74, + "end": 13591.02, + "probability": 0.8024 + }, + { + "start": 13593.12, + "end": 13594.9, + "probability": 0.8314 + }, + { + "start": 13594.98, + "end": 13596.44, + "probability": 0.9537 + }, + { + "start": 13596.48, + "end": 13597.14, + "probability": 0.8399 + }, + { + "start": 13598.82, + "end": 13600.94, + "probability": 0.9495 + }, + { + "start": 13602.14, + "end": 13604.88, + "probability": 0.8256 + }, + { + "start": 13605.76, + "end": 13607.9, + "probability": 0.6453 + }, + { + "start": 13607.92, + "end": 13609.88, + "probability": 0.9551 + }, + { + "start": 13609.96, + "end": 13611.46, + "probability": 0.8092 + }, + { + "start": 13613.84, + "end": 13614.16, + "probability": 0.5449 + }, + { + "start": 13616.52, + "end": 13617.26, + "probability": 0.5275 + }, + { + "start": 13617.36, + "end": 13619.74, + "probability": 0.7524 + }, + { + "start": 13619.82, + "end": 13621.1, + "probability": 0.9124 + }, + { + "start": 13621.98, + "end": 13622.44, + "probability": 0.8218 + }, + { + "start": 13625.4, + "end": 13629.93, + "probability": 0.4293 + }, + { + "start": 13631.0, + "end": 13631.38, + "probability": 0.366 + }, + { + "start": 13631.5, + "end": 13632.8, + "probability": 0.6121 + }, + { + "start": 13632.82, + "end": 13634.78, + "probability": 0.5317 + }, + { + "start": 13635.8, + "end": 13639.34, + "probability": 0.8833 + }, + { + "start": 13640.06, + "end": 13641.48, + "probability": 0.6686 + }, + { + "start": 13642.36, + "end": 13643.76, + "probability": 0.731 + }, + { + "start": 13645.0, + "end": 13645.68, + "probability": 0.8837 + }, + { + "start": 13647.16, + "end": 13648.72, + "probability": 0.9603 + }, + { + "start": 13650.16, + "end": 13651.88, + "probability": 0.5275 + }, + { + "start": 13652.86, + "end": 13653.9, + "probability": 0.8545 + }, + { + "start": 13654.06, + "end": 13656.04, + "probability": 0.8667 + }, + { + "start": 13656.14, + "end": 13658.84, + "probability": 0.8251 + }, + { + "start": 13660.58, + "end": 13661.3, + "probability": 0.9154 + }, + { + "start": 13661.42, + "end": 13663.24, + "probability": 0.4821 + }, + { + "start": 13663.34, + "end": 13664.6, + "probability": 0.6758 + }, + { + "start": 13664.7, + "end": 13665.64, + "probability": 0.5537 + }, + { + "start": 13665.66, + "end": 13666.14, + "probability": 0.6452 + }, + { + "start": 13666.68, + "end": 13667.2, + "probability": 0.3555 + }, + { + "start": 13667.26, + "end": 13668.55, + "probability": 0.3314 + }, + { + "start": 13669.16, + "end": 13669.84, + "probability": 0.7628 + }, + { + "start": 13671.82, + "end": 13671.92, + "probability": 0.0738 + }, + { + "start": 13671.92, + "end": 13671.92, + "probability": 0.1104 + }, + { + "start": 13671.92, + "end": 13672.2, + "probability": 0.4751 + }, + { + "start": 13672.24, + "end": 13673.56, + "probability": 0.4877 + }, + { + "start": 13673.6, + "end": 13674.6, + "probability": 0.4193 + }, + { + "start": 13674.64, + "end": 13676.14, + "probability": 0.5374 + }, + { + "start": 13676.18, + "end": 13676.86, + "probability": 0.6819 + }, + { + "start": 13677.48, + "end": 13680.44, + "probability": 0.8384 + }, + { + "start": 13682.8, + "end": 13683.58, + "probability": 0.536 + }, + { + "start": 13683.7, + "end": 13684.2, + "probability": 0.6819 + }, + { + "start": 13693.52, + "end": 13694.52, + "probability": 0.1082 + }, + { + "start": 13694.7, + "end": 13695.08, + "probability": 0.0479 + }, + { + "start": 13695.08, + "end": 13695.23, + "probability": 0.0312 + }, + { + "start": 13695.48, + "end": 13697.5, + "probability": 0.0963 + }, + { + "start": 13697.66, + "end": 13697.78, + "probability": 0.118 + }, + { + "start": 13697.78, + "end": 13697.78, + "probability": 0.0116 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13990.92, + "end": 13991.96, + "probability": 0.036 + }, + { + "start": 13992.04, + "end": 13995.32, + "probability": 0.0962 + }, + { + "start": 13995.64, + "end": 13995.84, + "probability": 0.2544 + }, + { + "start": 13996.67, + "end": 13998.42, + "probability": 0.1281 + }, + { + "start": 14004.42, + "end": 14004.98, + "probability": 0.5138 + }, + { + "start": 14018.48, + "end": 14020.02, + "probability": 0.3079 + }, + { + "start": 14020.16, + "end": 14024.06, + "probability": 0.4476 + }, + { + "start": 14024.06, + "end": 14025.12, + "probability": 0.4768 + }, + { + "start": 14025.12, + "end": 14025.96, + "probability": 0.3022 + }, + { + "start": 14026.44, + "end": 14026.88, + "probability": 0.5561 + }, + { + "start": 14027.48, + "end": 14028.54, + "probability": 0.024 + }, + { + "start": 14029.2, + "end": 14030.72, + "probability": 0.094 + }, + { + "start": 14031.52, + "end": 14033.06, + "probability": 0.1328 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.0, + "end": 14210.0, + "probability": 0.0 + }, + { + "start": 14210.32, + "end": 14210.36, + "probability": 0.0812 + }, + { + "start": 14210.36, + "end": 14210.44, + "probability": 0.4452 + }, + { + "start": 14210.44, + "end": 14212.24, + "probability": 0.0439 + }, + { + "start": 14215.32, + "end": 14216.32, + "probability": 0.811 + }, + { + "start": 14223.84, + "end": 14224.88, + "probability": 0.0899 + }, + { + "start": 14224.88, + "end": 14224.88, + "probability": 0.1594 + }, + { + "start": 14237.86, + "end": 14238.82, + "probability": 0.1785 + }, + { + "start": 14240.1, + "end": 14241.7, + "probability": 0.1887 + }, + { + "start": 14243.32, + "end": 14244.02, + "probability": 0.2738 + }, + { + "start": 14244.04, + "end": 14246.38, + "probability": 0.7483 + }, + { + "start": 14247.12, + "end": 14248.5, + "probability": 0.9353 + }, + { + "start": 14248.74, + "end": 14252.2, + "probability": 0.3738 + }, + { + "start": 14252.54, + "end": 14253.44, + "probability": 0.0416 + }, + { + "start": 14253.44, + "end": 14253.68, + "probability": 0.4938 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.0, + "end": 14332.0, + "probability": 0.0 + }, + { + "start": 14332.26, + "end": 14335.08, + "probability": 0.1246 + }, + { + "start": 14335.12, + "end": 14339.44, + "probability": 0.1318 + }, + { + "start": 14339.44, + "end": 14342.04, + "probability": 0.5079 + }, + { + "start": 14350.58, + "end": 14353.86, + "probability": 0.61 + }, + { + "start": 14354.46, + "end": 14356.86, + "probability": 0.7264 + }, + { + "start": 14357.36, + "end": 14359.68, + "probability": 0.8298 + }, + { + "start": 14360.12, + "end": 14363.66, + "probability": 0.9271 + }, + { + "start": 14363.74, + "end": 14367.88, + "probability": 0.9805 + }, + { + "start": 14368.28, + "end": 14369.95, + "probability": 0.9707 + }, + { + "start": 14370.4, + "end": 14371.92, + "probability": 0.87 + }, + { + "start": 14372.24, + "end": 14373.42, + "probability": 0.838 + }, + { + "start": 14373.82, + "end": 14374.8, + "probability": 0.8971 + }, + { + "start": 14375.16, + "end": 14376.86, + "probability": 0.8379 + }, + { + "start": 14377.1, + "end": 14377.9, + "probability": 0.7709 + }, + { + "start": 14377.96, + "end": 14379.46, + "probability": 0.9932 + }, + { + "start": 14380.2, + "end": 14381.66, + "probability": 0.9786 + }, + { + "start": 14381.8, + "end": 14383.68, + "probability": 0.9636 + }, + { + "start": 14384.0, + "end": 14384.6, + "probability": 0.7112 + }, + { + "start": 14385.86, + "end": 14387.42, + "probability": 0.9751 + }, + { + "start": 14388.12, + "end": 14390.92, + "probability": 0.9785 + }, + { + "start": 14391.26, + "end": 14394.16, + "probability": 0.9942 + }, + { + "start": 14394.48, + "end": 14398.16, + "probability": 0.9978 + }, + { + "start": 14398.54, + "end": 14399.62, + "probability": 0.8652 + }, + { + "start": 14399.96, + "end": 14407.48, + "probability": 0.9606 + }, + { + "start": 14407.88, + "end": 14408.8, + "probability": 0.9301 + }, + { + "start": 14409.5, + "end": 14412.6, + "probability": 0.9028 + }, + { + "start": 14412.78, + "end": 14413.06, + "probability": 0.7358 + }, + { + "start": 14413.14, + "end": 14413.66, + "probability": 0.9015 + }, + { + "start": 14414.08, + "end": 14418.34, + "probability": 0.8455 + }, + { + "start": 14419.0, + "end": 14420.1, + "probability": 0.4978 + }, + { + "start": 14420.2, + "end": 14422.16, + "probability": 0.9836 + }, + { + "start": 14422.86, + "end": 14422.98, + "probability": 0.5576 + }, + { + "start": 14426.28, + "end": 14430.44, + "probability": 0.7004 + }, + { + "start": 14431.26, + "end": 14434.44, + "probability": 0.6162 + }, + { + "start": 14437.54, + "end": 14437.82, + "probability": 0.0982 + } + ], + "segments_count": 5226, + "words_count": 24223, + "avg_words_per_segment": 4.6351, + "avg_segment_duration": 1.7509, + "avg_words_per_minute": 99.9099, + "plenum_id": "102108", + "duration": 14546.91, + "title": null, + "plenum_date": "2021-12-01" +} \ No newline at end of file