diff --git "a/111988/metadata.json" "b/111988/metadata.json" new file mode 100644--- /dev/null +++ "b/111988/metadata.json" @@ -0,0 +1,9992 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "111988", + "quality_score": 0.8561, + "per_segment_quality_scores": [ + { + "start": 63.96, + "end": 66.7, + "probability": 0.9315 + }, + { + "start": 67.38, + "end": 70.6, + "probability": 0.9742 + }, + { + "start": 71.24, + "end": 74.14, + "probability": 0.9873 + }, + { + "start": 74.7, + "end": 75.96, + "probability": 0.695 + }, + { + "start": 76.58, + "end": 80.0, + "probability": 0.9966 + }, + { + "start": 3630.0, + "end": 3630.0, + "probability": 0.0 + }, + { + "start": 3630.0, + "end": 3630.0, + "probability": 0.0 + }, + { + "start": 3630.0, + "end": 3630.0, + "probability": 0.0 + }, + { + "start": 3630.0, + "end": 3630.0, + "probability": 0.0 + }, + { + "start": 3637.48, + "end": 3640.76, + "probability": 0.9713 + }, + { + "start": 3640.9, + "end": 3644.34, + "probability": 0.9214 + }, + { + "start": 3645.08, + "end": 3645.66, + "probability": 0.9299 + }, + { + "start": 3648.68, + "end": 3649.2, + "probability": 0.9526 + }, + { + "start": 3649.78, + "end": 3651.34, + "probability": 0.8406 + }, + { + "start": 3652.06, + "end": 3653.16, + "probability": 0.5923 + }, + { + "start": 3653.22, + "end": 3654.98, + "probability": 0.9476 + }, + { + "start": 3680.86, + "end": 3682.44, + "probability": 0.5707 + }, + { + "start": 3683.4, + "end": 3684.02, + "probability": 0.7521 + }, + { + "start": 3687.1, + "end": 3690.38, + "probability": 0.7028 + }, + { + "start": 3691.06, + "end": 3692.06, + "probability": 0.5431 + }, + { + "start": 3692.46, + "end": 3694.98, + "probability": 0.9928 + }, + { + "start": 3694.98, + "end": 3697.36, + "probability": 0.9909 + }, + { + "start": 3698.22, + "end": 3701.98, + "probability": 0.9731 + }, + { + "start": 3702.52, + "end": 3703.32, + "probability": 0.8119 + }, + { + "start": 3704.6, + "end": 3707.64, + "probability": 0.923 + }, + { + "start": 3708.98, + "end": 3711.18, + "probability": 0.9133 + }, + { + "start": 3711.82, + "end": 3712.92, + "probability": 0.8584 + }, + { + "start": 3713.0, + "end": 3716.2, + "probability": 0.9912 + }, + { + "start": 3716.86, + "end": 3721.14, + "probability": 0.9835 + }, + { + "start": 3721.88, + "end": 3725.68, + "probability": 0.9585 + }, + { + "start": 3725.82, + "end": 3729.46, + "probability": 0.9927 + }, + { + "start": 3730.16, + "end": 3733.82, + "probability": 0.9813 + }, + { + "start": 3735.28, + "end": 3738.0, + "probability": 0.8222 + }, + { + "start": 3738.08, + "end": 3738.5, + "probability": 0.599 + }, + { + "start": 3738.8, + "end": 3743.34, + "probability": 0.9698 + }, + { + "start": 3743.84, + "end": 3745.94, + "probability": 0.9365 + }, + { + "start": 3746.08, + "end": 3747.24, + "probability": 0.8267 + }, + { + "start": 3747.96, + "end": 3752.65, + "probability": 0.9473 + }, + { + "start": 3754.34, + "end": 3756.98, + "probability": 0.9141 + }, + { + "start": 3756.98, + "end": 3759.14, + "probability": 0.9813 + }, + { + "start": 3759.24, + "end": 3761.32, + "probability": 0.922 + }, + { + "start": 3762.62, + "end": 3764.62, + "probability": 0.7285 + }, + { + "start": 3764.78, + "end": 3772.06, + "probability": 0.965 + }, + { + "start": 3772.64, + "end": 3774.54, + "probability": 0.9983 + }, + { + "start": 3775.18, + "end": 3778.6, + "probability": 0.8847 + }, + { + "start": 3779.54, + "end": 3780.34, + "probability": 0.5709 + }, + { + "start": 3780.36, + "end": 3783.01, + "probability": 0.9429 + }, + { + "start": 3783.2, + "end": 3784.18, + "probability": 0.987 + }, + { + "start": 3784.26, + "end": 3784.8, + "probability": 0.7947 + }, + { + "start": 3784.8, + "end": 3789.36, + "probability": 0.9666 + }, + { + "start": 3790.42, + "end": 3791.24, + "probability": 0.9232 + }, + { + "start": 3791.36, + "end": 3792.48, + "probability": 0.8268 + }, + { + "start": 3792.48, + "end": 3794.28, + "probability": 0.9687 + }, + { + "start": 3794.94, + "end": 3797.98, + "probability": 0.9771 + }, + { + "start": 3798.8, + "end": 3801.8, + "probability": 0.4723 + }, + { + "start": 3802.32, + "end": 3804.92, + "probability": 0.5926 + }, + { + "start": 3805.16, + "end": 3806.44, + "probability": 0.8092 + }, + { + "start": 3807.5, + "end": 3808.12, + "probability": 0.9205 + }, + { + "start": 3808.22, + "end": 3809.96, + "probability": 0.8923 + }, + { + "start": 3810.04, + "end": 3810.94, + "probability": 0.7358 + }, + { + "start": 3811.04, + "end": 3811.06, + "probability": 0.7771 + }, + { + "start": 3811.06, + "end": 3811.27, + "probability": 0.2483 + }, + { + "start": 3812.88, + "end": 3815.3, + "probability": 0.7681 + }, + { + "start": 3816.84, + "end": 3820.72, + "probability": 0.9957 + }, + { + "start": 3821.18, + "end": 3821.94, + "probability": 0.7249 + }, + { + "start": 3822.66, + "end": 3824.64, + "probability": 0.9575 + }, + { + "start": 3824.7, + "end": 3825.46, + "probability": 0.692 + }, + { + "start": 3825.6, + "end": 3827.44, + "probability": 0.9076 + }, + { + "start": 3827.5, + "end": 3828.5, + "probability": 0.9881 + }, + { + "start": 3829.08, + "end": 3831.06, + "probability": 0.9696 + }, + { + "start": 3832.56, + "end": 3837.6, + "probability": 0.706 + }, + { + "start": 3838.32, + "end": 3839.24, + "probability": 0.8825 + }, + { + "start": 3840.28, + "end": 3841.14, + "probability": 0.2954 + }, + { + "start": 3843.82, + "end": 3850.64, + "probability": 0.8521 + }, + { + "start": 3850.86, + "end": 3850.88, + "probability": 0.0463 + }, + { + "start": 3850.88, + "end": 3851.82, + "probability": 0.504 + }, + { + "start": 3852.82, + "end": 3855.26, + "probability": 0.9854 + }, + { + "start": 3855.3, + "end": 3855.71, + "probability": 0.9602 + }, + { + "start": 3857.14, + "end": 3859.14, + "probability": 0.8327 + }, + { + "start": 3859.62, + "end": 3862.24, + "probability": 0.9321 + }, + { + "start": 3863.32, + "end": 3865.2, + "probability": 0.367 + }, + { + "start": 3865.5, + "end": 3869.16, + "probability": 0.9778 + }, + { + "start": 3870.84, + "end": 3871.32, + "probability": 0.2871 + }, + { + "start": 3871.6, + "end": 3874.24, + "probability": 0.3723 + }, + { + "start": 3875.54, + "end": 3878.87, + "probability": 0.8958 + }, + { + "start": 3879.98, + "end": 3882.08, + "probability": 0.7234 + }, + { + "start": 3882.14, + "end": 3884.4, + "probability": 0.6625 + }, + { + "start": 3884.58, + "end": 3885.94, + "probability": 0.9388 + }, + { + "start": 3886.54, + "end": 3887.76, + "probability": 0.7195 + }, + { + "start": 3887.94, + "end": 3889.36, + "probability": 0.9448 + }, + { + "start": 3889.5, + "end": 3891.0, + "probability": 0.8745 + }, + { + "start": 3891.58, + "end": 3897.26, + "probability": 0.7558 + }, + { + "start": 3897.32, + "end": 3898.81, + "probability": 0.5415 + }, + { + "start": 3899.48, + "end": 3901.56, + "probability": 0.7925 + }, + { + "start": 3901.56, + "end": 3904.52, + "probability": 0.7391 + }, + { + "start": 3904.9, + "end": 3907.5, + "probability": 0.9795 + }, + { + "start": 3907.6, + "end": 3909.3, + "probability": 0.8322 + }, + { + "start": 3909.72, + "end": 3911.76, + "probability": 0.9402 + }, + { + "start": 3912.64, + "end": 3915.5, + "probability": 0.9565 + }, + { + "start": 3915.66, + "end": 3916.82, + "probability": 0.8617 + }, + { + "start": 3917.3, + "end": 3919.8, + "probability": 0.639 + }, + { + "start": 3919.8, + "end": 3921.16, + "probability": 0.4445 + }, + { + "start": 3923.44, + "end": 3923.68, + "probability": 0.4925 + }, + { + "start": 3924.62, + "end": 3926.52, + "probability": 0.6226 + }, + { + "start": 3928.0, + "end": 3932.44, + "probability": 0.7949 + }, + { + "start": 3932.44, + "end": 3932.94, + "probability": 0.3128 + }, + { + "start": 3933.1, + "end": 3933.84, + "probability": 0.8869 + }, + { + "start": 3934.02, + "end": 3934.82, + "probability": 0.9374 + }, + { + "start": 3934.96, + "end": 3936.34, + "probability": 0.8911 + }, + { + "start": 3937.04, + "end": 3938.47, + "probability": 0.8477 + }, + { + "start": 3939.92, + "end": 3941.08, + "probability": 0.9067 + }, + { + "start": 3941.16, + "end": 3943.16, + "probability": 0.7436 + }, + { + "start": 3943.64, + "end": 3943.96, + "probability": 0.6767 + }, + { + "start": 3944.22, + "end": 3946.32, + "probability": 0.8234 + }, + { + "start": 3946.84, + "end": 3947.7, + "probability": 0.9354 + }, + { + "start": 3947.84, + "end": 3948.42, + "probability": 0.9417 + }, + { + "start": 3948.52, + "end": 3949.66, + "probability": 0.9889 + }, + { + "start": 3949.8, + "end": 3950.5, + "probability": 0.9744 + }, + { + "start": 3951.0, + "end": 3952.24, + "probability": 0.9339 + }, + { + "start": 3952.58, + "end": 3953.14, + "probability": 0.7758 + }, + { + "start": 3953.94, + "end": 3955.72, + "probability": 0.8771 + }, + { + "start": 3956.38, + "end": 3956.64, + "probability": 0.6267 + }, + { + "start": 3957.2, + "end": 3959.96, + "probability": 0.4632 + }, + { + "start": 3960.44, + "end": 3962.92, + "probability": 0.9675 + }, + { + "start": 3965.84, + "end": 3968.1, + "probability": 0.8757 + }, + { + "start": 3968.66, + "end": 3972.1, + "probability": 0.9457 + }, + { + "start": 3972.28, + "end": 3975.3, + "probability": 0.9777 + }, + { + "start": 3975.74, + "end": 3978.66, + "probability": 0.9964 + }, + { + "start": 3978.9, + "end": 3982.56, + "probability": 0.9649 + }, + { + "start": 3982.68, + "end": 3984.0, + "probability": 0.6661 + }, + { + "start": 3984.04, + "end": 3984.72, + "probability": 0.8973 + }, + { + "start": 3984.82, + "end": 3986.18, + "probability": 0.8647 + }, + { + "start": 3986.4, + "end": 3987.04, + "probability": 0.7245 + }, + { + "start": 3987.1, + "end": 3987.72, + "probability": 0.866 + }, + { + "start": 3988.16, + "end": 3989.0, + "probability": 0.9391 + }, + { + "start": 3989.26, + "end": 3991.98, + "probability": 0.8619 + }, + { + "start": 3992.6, + "end": 3995.26, + "probability": 0.7598 + }, + { + "start": 3995.78, + "end": 3996.66, + "probability": 0.9204 + }, + { + "start": 3996.74, + "end": 3998.62, + "probability": 0.9382 + }, + { + "start": 3999.42, + "end": 4000.48, + "probability": 0.9823 + }, + { + "start": 4000.74, + "end": 4003.62, + "probability": 0.6382 + }, + { + "start": 4003.62, + "end": 4003.62, + "probability": 0.1425 + }, + { + "start": 4003.62, + "end": 4003.9, + "probability": 0.5654 + }, + { + "start": 4004.84, + "end": 4007.04, + "probability": 0.756 + }, + { + "start": 4007.58, + "end": 4009.9, + "probability": 0.6266 + }, + { + "start": 4010.5, + "end": 4011.16, + "probability": 0.4663 + }, + { + "start": 4011.22, + "end": 4013.6, + "probability": 0.7526 + }, + { + "start": 4014.98, + "end": 4017.56, + "probability": 0.918 + }, + { + "start": 4017.64, + "end": 4018.88, + "probability": 0.884 + }, + { + "start": 4020.56, + "end": 4022.55, + "probability": 0.5022 + }, + { + "start": 4023.5, + "end": 4025.62, + "probability": 0.9102 + }, + { + "start": 4025.68, + "end": 4027.92, + "probability": 0.8844 + }, + { + "start": 4028.44, + "end": 4029.18, + "probability": 0.7569 + }, + { + "start": 4030.58, + "end": 4033.5, + "probability": 0.9265 + }, + { + "start": 4039.41, + "end": 4042.38, + "probability": 0.7989 + }, + { + "start": 4043.02, + "end": 4043.72, + "probability": 0.6955 + }, + { + "start": 4043.86, + "end": 4045.36, + "probability": 0.8014 + }, + { + "start": 4045.52, + "end": 4046.1, + "probability": 0.6126 + }, + { + "start": 4046.14, + "end": 4046.76, + "probability": 0.8112 + }, + { + "start": 4046.84, + "end": 4047.98, + "probability": 0.8044 + }, + { + "start": 4048.2, + "end": 4048.52, + "probability": 0.6241 + }, + { + "start": 4049.46, + "end": 4050.06, + "probability": 0.9222 + }, + { + "start": 4050.24, + "end": 4051.02, + "probability": 0.8444 + }, + { + "start": 4051.3, + "end": 4052.94, + "probability": 0.88 + }, + { + "start": 4053.74, + "end": 4054.04, + "probability": 0.8939 + }, + { + "start": 4054.34, + "end": 4057.02, + "probability": 0.9488 + }, + { + "start": 4057.52, + "end": 4058.02, + "probability": 0.9749 + }, + { + "start": 4058.62, + "end": 4059.36, + "probability": 0.493 + }, + { + "start": 4059.36, + "end": 4059.9, + "probability": 0.7017 + }, + { + "start": 4060.02, + "end": 4060.66, + "probability": 0.928 + }, + { + "start": 4061.04, + "end": 4062.02, + "probability": 0.6072 + }, + { + "start": 4062.6, + "end": 4065.02, + "probability": 0.973 + }, + { + "start": 4065.54, + "end": 4067.82, + "probability": 0.9332 + }, + { + "start": 4068.42, + "end": 4069.42, + "probability": 0.7301 + }, + { + "start": 4069.5, + "end": 4072.22, + "probability": 0.6355 + }, + { + "start": 4073.34, + "end": 4077.5, + "probability": 0.8783 + }, + { + "start": 4081.04, + "end": 4084.54, + "probability": 0.7727 + }, + { + "start": 4084.58, + "end": 4086.0, + "probability": 0.4596 + }, + { + "start": 4086.06, + "end": 4086.56, + "probability": 0.4313 + }, + { + "start": 4086.58, + "end": 4087.14, + "probability": 0.7268 + }, + { + "start": 4087.24, + "end": 4088.42, + "probability": 0.9459 + }, + { + "start": 4088.52, + "end": 4089.1, + "probability": 0.5253 + }, + { + "start": 4089.24, + "end": 4091.08, + "probability": 0.9197 + }, + { + "start": 4091.16, + "end": 4091.6, + "probability": 0.94 + }, + { + "start": 4091.66, + "end": 4093.1, + "probability": 0.9794 + }, + { + "start": 4093.7, + "end": 4094.58, + "probability": 0.6521 + }, + { + "start": 4094.82, + "end": 4096.8, + "probability": 0.7739 + }, + { + "start": 4097.44, + "end": 4097.88, + "probability": 0.8204 + }, + { + "start": 4098.0, + "end": 4099.08, + "probability": 0.7242 + }, + { + "start": 4099.2, + "end": 4099.9, + "probability": 0.711 + }, + { + "start": 4100.06, + "end": 4100.6, + "probability": 0.7558 + }, + { + "start": 4101.18, + "end": 4101.92, + "probability": 0.9398 + }, + { + "start": 4102.14, + "end": 4103.16, + "probability": 0.898 + }, + { + "start": 4103.38, + "end": 4104.0, + "probability": 0.7027 + }, + { + "start": 4104.12, + "end": 4104.84, + "probability": 0.7787 + }, + { + "start": 4105.66, + "end": 4108.62, + "probability": 0.8896 + }, + { + "start": 4109.2, + "end": 4111.16, + "probability": 0.8417 + }, + { + "start": 4111.74, + "end": 4114.02, + "probability": 0.8638 + }, + { + "start": 4114.18, + "end": 4115.33, + "probability": 0.9788 + }, + { + "start": 4115.42, + "end": 4119.32, + "probability": 0.8906 + }, + { + "start": 4119.88, + "end": 4120.42, + "probability": 0.5502 + }, + { + "start": 4120.62, + "end": 4121.12, + "probability": 0.797 + }, + { + "start": 4121.2, + "end": 4121.84, + "probability": 0.6965 + }, + { + "start": 4122.04, + "end": 4122.46, + "probability": 0.8601 + }, + { + "start": 4122.64, + "end": 4124.26, + "probability": 0.4649 + }, + { + "start": 4124.86, + "end": 4125.38, + "probability": 0.6662 + }, + { + "start": 4125.48, + "end": 4126.02, + "probability": 0.9624 + }, + { + "start": 4126.22, + "end": 4126.97, + "probability": 0.9084 + }, + { + "start": 4127.16, + "end": 4127.74, + "probability": 0.8151 + }, + { + "start": 4127.86, + "end": 4128.42, + "probability": 0.8395 + }, + { + "start": 4128.46, + "end": 4129.04, + "probability": 0.772 + }, + { + "start": 4130.24, + "end": 4134.54, + "probability": 0.9725 + }, + { + "start": 4135.68, + "end": 4139.78, + "probability": 0.7997 + }, + { + "start": 4140.5, + "end": 4141.16, + "probability": 0.6326 + }, + { + "start": 4141.22, + "end": 4142.52, + "probability": 0.7629 + }, + { + "start": 4142.6, + "end": 4143.24, + "probability": 0.6554 + }, + { + "start": 4143.34, + "end": 4144.66, + "probability": 0.8213 + }, + { + "start": 4144.74, + "end": 4145.2, + "probability": 0.6497 + }, + { + "start": 4145.42, + "end": 4146.0, + "probability": 0.9246 + }, + { + "start": 4146.44, + "end": 4147.56, + "probability": 0.9512 + }, + { + "start": 4147.6, + "end": 4149.5, + "probability": 0.8308 + }, + { + "start": 4149.88, + "end": 4150.32, + "probability": 0.8536 + }, + { + "start": 4150.46, + "end": 4151.64, + "probability": 0.9168 + }, + { + "start": 4153.64, + "end": 4155.92, + "probability": 0.562 + }, + { + "start": 4155.92, + "end": 4155.92, + "probability": 0.119 + }, + { + "start": 4155.92, + "end": 4156.26, + "probability": 0.4874 + }, + { + "start": 4156.38, + "end": 4157.22, + "probability": 0.7015 + }, + { + "start": 4157.32, + "end": 4158.96, + "probability": 0.7085 + }, + { + "start": 4159.58, + "end": 4160.56, + "probability": 0.9455 + }, + { + "start": 4160.64, + "end": 4162.18, + "probability": 0.9627 + }, + { + "start": 4162.64, + "end": 4163.16, + "probability": 0.5002 + }, + { + "start": 4163.32, + "end": 4164.24, + "probability": 0.332 + }, + { + "start": 4164.36, + "end": 4165.16, + "probability": 0.6817 + }, + { + "start": 4165.26, + "end": 4166.52, + "probability": 0.9141 + }, + { + "start": 4167.02, + "end": 4169.7, + "probability": 0.9154 + }, + { + "start": 4173.8, + "end": 4177.88, + "probability": 0.6914 + }, + { + "start": 4178.56, + "end": 4179.24, + "probability": 0.6102 + }, + { + "start": 4179.32, + "end": 4180.68, + "probability": 0.709 + }, + { + "start": 4180.7, + "end": 4181.24, + "probability": 0.6553 + }, + { + "start": 4181.42, + "end": 4182.48, + "probability": 0.8515 + }, + { + "start": 4182.68, + "end": 4183.0, + "probability": 0.7217 + }, + { + "start": 4183.24, + "end": 4183.82, + "probability": 0.8432 + }, + { + "start": 4184.34, + "end": 4185.6, + "probability": 0.9313 + }, + { + "start": 4187.14, + "end": 4188.3, + "probability": 0.6051 + }, + { + "start": 4188.4, + "end": 4188.78, + "probability": 0.6325 + }, + { + "start": 4188.9, + "end": 4190.98, + "probability": 0.8814 + }, + { + "start": 4191.48, + "end": 4192.32, + "probability": 0.8674 + }, + { + "start": 4192.44, + "end": 4192.98, + "probability": 0.752 + }, + { + "start": 4193.08, + "end": 4193.86, + "probability": 0.8958 + }, + { + "start": 4194.12, + "end": 4195.3, + "probability": 0.9219 + }, + { + "start": 4195.78, + "end": 4196.58, + "probability": 0.9631 + }, + { + "start": 4196.7, + "end": 4197.73, + "probability": 0.741 + }, + { + "start": 4198.04, + "end": 4198.65, + "probability": 0.6723 + }, + { + "start": 4198.98, + "end": 4200.28, + "probability": 0.6483 + }, + { + "start": 4200.82, + "end": 4201.4, + "probability": 0.843 + }, + { + "start": 4201.52, + "end": 4202.58, + "probability": 0.8663 + }, + { + "start": 4202.72, + "end": 4203.5, + "probability": 0.8377 + }, + { + "start": 4203.64, + "end": 4204.62, + "probability": 0.9677 + }, + { + "start": 4205.36, + "end": 4206.54, + "probability": 0.4057 + }, + { + "start": 4207.24, + "end": 4209.72, + "probability": 0.7608 + }, + { + "start": 4210.0, + "end": 4212.74, + "probability": 0.9622 + }, + { + "start": 4216.06, + "end": 4216.82, + "probability": 0.6676 + }, + { + "start": 4216.96, + "end": 4220.12, + "probability": 0.7491 + }, + { + "start": 4220.22, + "end": 4221.58, + "probability": 0.634 + }, + { + "start": 4221.96, + "end": 4223.8, + "probability": 0.8953 + }, + { + "start": 4223.86, + "end": 4224.52, + "probability": 0.8164 + }, + { + "start": 4224.6, + "end": 4225.2, + "probability": 0.8597 + }, + { + "start": 4225.22, + "end": 4226.88, + "probability": 0.9341 + }, + { + "start": 4227.0, + "end": 4227.64, + "probability": 0.7844 + }, + { + "start": 4228.04, + "end": 4228.48, + "probability": 0.7487 + }, + { + "start": 4228.68, + "end": 4229.64, + "probability": 0.7531 + }, + { + "start": 4229.74, + "end": 4230.4, + "probability": 0.5501 + }, + { + "start": 4230.52, + "end": 4231.04, + "probability": 0.6715 + }, + { + "start": 4231.5, + "end": 4232.5, + "probability": 0.903 + }, + { + "start": 4232.62, + "end": 4233.58, + "probability": 0.9564 + }, + { + "start": 4233.7, + "end": 4234.52, + "probability": 0.9627 + }, + { + "start": 4234.56, + "end": 4235.62, + "probability": 0.8676 + }, + { + "start": 4236.3, + "end": 4237.14, + "probability": 0.635 + }, + { + "start": 4237.22, + "end": 4238.04, + "probability": 0.7896 + }, + { + "start": 4238.42, + "end": 4239.1, + "probability": 0.717 + }, + { + "start": 4239.24, + "end": 4239.74, + "probability": 0.6688 + }, + { + "start": 4240.16, + "end": 4241.12, + "probability": 0.7344 + }, + { + "start": 4241.16, + "end": 4242.92, + "probability": 0.7627 + }, + { + "start": 4243.48, + "end": 4246.32, + "probability": 0.7791 + }, + { + "start": 4246.9, + "end": 4247.34, + "probability": 0.9021 + }, + { + "start": 4248.26, + "end": 4250.14, + "probability": 0.8195 + }, + { + "start": 4250.8, + "end": 4253.68, + "probability": 0.661 + }, + { + "start": 4254.72, + "end": 4255.32, + "probability": 0.7984 + }, + { + "start": 4255.5, + "end": 4258.26, + "probability": 0.8691 + }, + { + "start": 4258.76, + "end": 4259.36, + "probability": 0.9512 + }, + { + "start": 4259.48, + "end": 4259.66, + "probability": 0.9412 + }, + { + "start": 4261.12, + "end": 4261.7, + "probability": 0.2758 + }, + { + "start": 4261.7, + "end": 4262.2, + "probability": 0.2518 + }, + { + "start": 4262.26, + "end": 4263.41, + "probability": 0.4277 + }, + { + "start": 4264.24, + "end": 4264.54, + "probability": 0.839 + }, + { + "start": 4264.88, + "end": 4265.84, + "probability": 0.9125 + }, + { + "start": 4266.0, + "end": 4266.64, + "probability": 0.6206 + }, + { + "start": 4266.8, + "end": 4267.32, + "probability": 0.8384 + }, + { + "start": 4267.8, + "end": 4268.46, + "probability": 0.8457 + }, + { + "start": 4268.88, + "end": 4270.18, + "probability": 0.9479 + }, + { + "start": 4270.78, + "end": 4273.48, + "probability": 0.6795 + }, + { + "start": 4274.04, + "end": 4276.19, + "probability": 0.9624 + }, + { + "start": 4276.74, + "end": 4277.58, + "probability": 0.836 + }, + { + "start": 4277.72, + "end": 4278.92, + "probability": 0.8941 + }, + { + "start": 4279.3, + "end": 4279.94, + "probability": 0.7411 + }, + { + "start": 4280.06, + "end": 4280.6, + "probability": 0.5626 + }, + { + "start": 4282.94, + "end": 4284.56, + "probability": 0.6823 + }, + { + "start": 4284.58, + "end": 4286.18, + "probability": 0.7973 + }, + { + "start": 4286.4, + "end": 4287.18, + "probability": 0.9616 + }, + { + "start": 4288.02, + "end": 4290.62, + "probability": 0.886 + }, + { + "start": 4295.24, + "end": 4295.82, + "probability": 0.8918 + }, + { + "start": 4295.88, + "end": 4298.6, + "probability": 0.636 + }, + { + "start": 4298.7, + "end": 4301.34, + "probability": 0.8293 + }, + { + "start": 4301.42, + "end": 4302.14, + "probability": 0.7378 + }, + { + "start": 4302.22, + "end": 4302.74, + "probability": 0.8022 + }, + { + "start": 4302.86, + "end": 4303.9, + "probability": 0.8913 + }, + { + "start": 4304.0, + "end": 4305.22, + "probability": 0.9315 + }, + { + "start": 4305.72, + "end": 4306.02, + "probability": 0.8539 + }, + { + "start": 4306.34, + "end": 4307.22, + "probability": 0.9617 + }, + { + "start": 4307.46, + "end": 4308.22, + "probability": 0.7264 + }, + { + "start": 4308.34, + "end": 4309.54, + "probability": 0.7722 + }, + { + "start": 4310.0, + "end": 4310.94, + "probability": 0.9855 + }, + { + "start": 4311.2, + "end": 4312.22, + "probability": 0.9547 + }, + { + "start": 4312.3, + "end": 4313.1, + "probability": 0.9545 + }, + { + "start": 4313.22, + "end": 4314.16, + "probability": 0.9707 + }, + { + "start": 4314.7, + "end": 4317.0, + "probability": 0.9463 + }, + { + "start": 4317.54, + "end": 4318.18, + "probability": 0.6757 + }, + { + "start": 4318.62, + "end": 4319.92, + "probability": 0.6999 + }, + { + "start": 4320.3, + "end": 4321.06, + "probability": 0.8489 + }, + { + "start": 4321.24, + "end": 4322.63, + "probability": 0.8979 + }, + { + "start": 4323.2, + "end": 4324.4, + "probability": 0.66 + }, + { + "start": 4324.86, + "end": 4327.1, + "probability": 0.9614 + }, + { + "start": 4333.58, + "end": 4336.92, + "probability": 0.7293 + }, + { + "start": 4337.04, + "end": 4338.3, + "probability": 0.7226 + }, + { + "start": 4338.38, + "end": 4338.82, + "probability": 0.5085 + }, + { + "start": 4339.1, + "end": 4340.56, + "probability": 0.8575 + }, + { + "start": 4340.7, + "end": 4341.28, + "probability": 0.9287 + }, + { + "start": 4341.36, + "end": 4343.2, + "probability": 0.7196 + }, + { + "start": 4343.72, + "end": 4344.56, + "probability": 0.7134 + }, + { + "start": 4344.9, + "end": 4345.92, + "probability": 0.9564 + }, + { + "start": 4346.02, + "end": 4346.3, + "probability": 0.8478 + }, + { + "start": 4346.54, + "end": 4347.56, + "probability": 0.9824 + }, + { + "start": 4348.02, + "end": 4348.84, + "probability": 0.9904 + }, + { + "start": 4348.98, + "end": 4349.4, + "probability": 0.7446 + }, + { + "start": 4349.5, + "end": 4352.24, + "probability": 0.6962 + }, + { + "start": 4352.24, + "end": 4352.24, + "probability": 0.2168 + }, + { + "start": 4352.24, + "end": 4354.5, + "probability": 0.8964 + }, + { + "start": 4355.52, + "end": 4358.86, + "probability": 0.7441 + }, + { + "start": 4358.91, + "end": 4362.18, + "probability": 0.9785 + }, + { + "start": 4362.66, + "end": 4365.26, + "probability": 0.9328 + }, + { + "start": 4369.3, + "end": 4371.24, + "probability": 0.9551 + }, + { + "start": 4371.24, + "end": 4373.34, + "probability": 0.6772 + }, + { + "start": 4373.56, + "end": 4375.46, + "probability": 0.7225 + }, + { + "start": 4375.66, + "end": 4376.24, + "probability": 0.7383 + }, + { + "start": 4376.42, + "end": 4377.0, + "probability": 0.9645 + }, + { + "start": 4377.06, + "end": 4377.78, + "probability": 0.9575 + }, + { + "start": 4378.16, + "end": 4379.24, + "probability": 0.4569 + }, + { + "start": 4379.38, + "end": 4379.92, + "probability": 0.7665 + }, + { + "start": 4379.96, + "end": 4381.02, + "probability": 0.6118 + }, + { + "start": 4381.92, + "end": 4386.06, + "probability": 0.8729 + }, + { + "start": 4386.68, + "end": 4389.66, + "probability": 0.7364 + }, + { + "start": 4389.66, + "end": 4392.54, + "probability": 0.9877 + }, + { + "start": 4393.02, + "end": 4395.98, + "probability": 0.9763 + }, + { + "start": 4399.72, + "end": 4403.06, + "probability": 0.6935 + }, + { + "start": 4403.1, + "end": 4404.94, + "probability": 0.7587 + }, + { + "start": 4405.04, + "end": 4405.62, + "probability": 0.6134 + }, + { + "start": 4405.72, + "end": 4406.5, + "probability": 0.9458 + }, + { + "start": 4406.9, + "end": 4407.72, + "probability": 0.9787 + }, + { + "start": 4408.63, + "end": 4409.95, + "probability": 0.7266 + }, + { + "start": 4410.54, + "end": 4410.98, + "probability": 0.6789 + }, + { + "start": 4411.12, + "end": 4412.06, + "probability": 0.8894 + }, + { + "start": 4412.16, + "end": 4412.86, + "probability": 0.9865 + }, + { + "start": 4413.08, + "end": 4414.04, + "probability": 0.981 + }, + { + "start": 4414.56, + "end": 4415.48, + "probability": 0.9375 + }, + { + "start": 4415.56, + "end": 4416.84, + "probability": 0.9516 + }, + { + "start": 4417.32, + "end": 4417.64, + "probability": 0.8756 + }, + { + "start": 4417.94, + "end": 4419.2, + "probability": 0.9109 + }, + { + "start": 4419.7, + "end": 4420.5, + "probability": 0.6032 + }, + { + "start": 4420.6, + "end": 4421.68, + "probability": 0.7608 + }, + { + "start": 4422.32, + "end": 4424.86, + "probability": 0.9541 + }, + { + "start": 4425.54, + "end": 4429.0, + "probability": 0.9873 + }, + { + "start": 4436.02, + "end": 4437.94, + "probability": 0.0231 + }, + { + "start": 4440.72, + "end": 4441.48, + "probability": 0.2223 + }, + { + "start": 4441.5, + "end": 4443.57, + "probability": 0.7593 + }, + { + "start": 4444.06, + "end": 4447.7, + "probability": 0.974 + }, + { + "start": 4448.4, + "end": 4451.98, + "probability": 0.8798 + }, + { + "start": 4453.78, + "end": 4457.6, + "probability": 0.6863 + }, + { + "start": 4457.8, + "end": 4458.0, + "probability": 0.7068 + }, + { + "start": 4458.5, + "end": 4461.86, + "probability": 0.9925 + }, + { + "start": 4461.86, + "end": 4465.36, + "probability": 0.996 + }, + { + "start": 4465.86, + "end": 4467.04, + "probability": 0.9902 + }, + { + "start": 4470.22, + "end": 4473.64, + "probability": 0.7487 + }, + { + "start": 4474.54, + "end": 4476.46, + "probability": 0.8525 + }, + { + "start": 4476.54, + "end": 4478.5, + "probability": 0.9831 + }, + { + "start": 4479.28, + "end": 4480.38, + "probability": 0.8171 + }, + { + "start": 4494.26, + "end": 4494.76, + "probability": 0.9217 + }, + { + "start": 4495.32, + "end": 4495.58, + "probability": 0.6668 + }, + { + "start": 4496.18, + "end": 4497.48, + "probability": 0.5896 + }, + { + "start": 4497.62, + "end": 4498.62, + "probability": 0.7074 + }, + { + "start": 4498.88, + "end": 4499.72, + "probability": 0.8774 + }, + { + "start": 4499.84, + "end": 4503.22, + "probability": 0.9504 + }, + { + "start": 4503.78, + "end": 4504.82, + "probability": 0.8755 + }, + { + "start": 4505.12, + "end": 4505.18, + "probability": 0.5099 + }, + { + "start": 4505.34, + "end": 4507.1, + "probability": 0.8011 + }, + { + "start": 4507.4, + "end": 4512.96, + "probability": 0.9807 + }, + { + "start": 4513.44, + "end": 4516.98, + "probability": 0.9178 + }, + { + "start": 4517.14, + "end": 4518.5, + "probability": 0.9961 + }, + { + "start": 4519.06, + "end": 4521.42, + "probability": 0.9837 + }, + { + "start": 4522.12, + "end": 4523.5, + "probability": 0.685 + }, + { + "start": 4524.3, + "end": 4525.46, + "probability": 0.4977 + }, + { + "start": 4525.98, + "end": 4526.4, + "probability": 0.2753 + }, + { + "start": 4526.6, + "end": 4527.41, + "probability": 0.7566 + }, + { + "start": 4528.12, + "end": 4528.26, + "probability": 0.386 + }, + { + "start": 4529.06, + "end": 4529.65, + "probability": 0.854 + }, + { + "start": 4530.6, + "end": 4532.36, + "probability": 0.7042 + }, + { + "start": 4532.76, + "end": 4533.88, + "probability": 0.7243 + }, + { + "start": 4533.96, + "end": 4534.84, + "probability": 0.8577 + }, + { + "start": 4535.32, + "end": 4536.32, + "probability": 0.8606 + }, + { + "start": 4536.4, + "end": 4536.98, + "probability": 0.8036 + }, + { + "start": 4537.82, + "end": 4541.64, + "probability": 0.7171 + }, + { + "start": 4541.72, + "end": 4543.84, + "probability": 0.9253 + }, + { + "start": 4545.1, + "end": 4547.66, + "probability": 0.9364 + }, + { + "start": 4548.26, + "end": 4549.02, + "probability": 0.9796 + }, + { + "start": 4549.54, + "end": 4550.66, + "probability": 0.6184 + }, + { + "start": 4550.9, + "end": 4553.74, + "probability": 0.9258 + }, + { + "start": 4555.16, + "end": 4555.74, + "probability": 0.7618 + }, + { + "start": 4556.38, + "end": 4558.24, + "probability": 0.7449 + }, + { + "start": 4559.34, + "end": 4563.46, + "probability": 0.9941 + }, + { + "start": 4564.32, + "end": 4565.8, + "probability": 0.9912 + }, + { + "start": 4568.3, + "end": 4569.42, + "probability": 0.9936 + }, + { + "start": 4569.98, + "end": 4575.7, + "probability": 0.9973 + }, + { + "start": 4576.28, + "end": 4578.74, + "probability": 0.6168 + }, + { + "start": 4579.24, + "end": 4583.02, + "probability": 0.8898 + }, + { + "start": 4583.64, + "end": 4585.84, + "probability": 0.9724 + }, + { + "start": 4586.64, + "end": 4589.16, + "probability": 0.9517 + }, + { + "start": 4590.26, + "end": 4592.32, + "probability": 0.9522 + }, + { + "start": 4592.84, + "end": 4594.5, + "probability": 0.9206 + }, + { + "start": 4594.98, + "end": 4598.14, + "probability": 0.9336 + }, + { + "start": 4599.52, + "end": 4602.16, + "probability": 0.9366 + }, + { + "start": 4602.8, + "end": 4603.92, + "probability": 0.941 + }, + { + "start": 4604.48, + "end": 4604.98, + "probability": 0.7 + }, + { + "start": 4605.84, + "end": 4606.7, + "probability": 0.7978 + }, + { + "start": 4607.36, + "end": 4608.74, + "probability": 0.9897 + }, + { + "start": 4609.34, + "end": 4613.46, + "probability": 0.9976 + }, + { + "start": 4614.5, + "end": 4619.1, + "probability": 0.9834 + }, + { + "start": 4619.1, + "end": 4622.5, + "probability": 0.999 + }, + { + "start": 4624.12, + "end": 4626.06, + "probability": 0.6836 + }, + { + "start": 4627.02, + "end": 4630.82, + "probability": 0.7994 + }, + { + "start": 4631.46, + "end": 4632.2, + "probability": 0.9954 + }, + { + "start": 4633.36, + "end": 4633.58, + "probability": 0.7194 + }, + { + "start": 4634.24, + "end": 4635.24, + "probability": 0.8517 + }, + { + "start": 4636.18, + "end": 4640.9, + "probability": 0.9973 + }, + { + "start": 4643.75, + "end": 4648.88, + "probability": 0.9839 + }, + { + "start": 4649.42, + "end": 4651.56, + "probability": 0.9768 + }, + { + "start": 4652.44, + "end": 4653.04, + "probability": 0.5927 + }, + { + "start": 4653.7, + "end": 4656.08, + "probability": 0.9675 + }, + { + "start": 4657.82, + "end": 4660.2, + "probability": 0.9655 + }, + { + "start": 4660.6, + "end": 4664.3, + "probability": 0.9708 + }, + { + "start": 4665.3, + "end": 4668.78, + "probability": 0.9967 + }, + { + "start": 4669.34, + "end": 4674.56, + "probability": 0.9611 + }, + { + "start": 4675.3, + "end": 4676.08, + "probability": 0.7784 + }, + { + "start": 4676.2, + "end": 4677.12, + "probability": 0.8313 + }, + { + "start": 4677.18, + "end": 4678.5, + "probability": 0.9739 + }, + { + "start": 4679.52, + "end": 4679.54, + "probability": 0.0341 + }, + { + "start": 4680.38, + "end": 4681.84, + "probability": 0.7747 + }, + { + "start": 4682.8, + "end": 4684.52, + "probability": 0.9991 + }, + { + "start": 4685.16, + "end": 4687.42, + "probability": 0.9685 + }, + { + "start": 4688.58, + "end": 4690.24, + "probability": 0.9725 + }, + { + "start": 4691.14, + "end": 4692.34, + "probability": 0.7305 + }, + { + "start": 4692.42, + "end": 4697.68, + "probability": 0.9718 + }, + { + "start": 4698.2, + "end": 4700.86, + "probability": 0.9893 + }, + { + "start": 4701.98, + "end": 4707.96, + "probability": 0.9946 + }, + { + "start": 4708.5, + "end": 4710.38, + "probability": 0.9711 + }, + { + "start": 4711.32, + "end": 4711.48, + "probability": 0.7112 + }, + { + "start": 4712.28, + "end": 4712.38, + "probability": 0.6624 + }, + { + "start": 4712.94, + "end": 4720.44, + "probability": 0.9925 + }, + { + "start": 4720.96, + "end": 4722.78, + "probability": 0.925 + }, + { + "start": 4723.34, + "end": 4726.7, + "probability": 0.9873 + }, + { + "start": 4727.42, + "end": 4728.02, + "probability": 0.5085 + }, + { + "start": 4728.64, + "end": 4733.56, + "probability": 0.9674 + }, + { + "start": 4734.16, + "end": 4734.58, + "probability": 0.8866 + }, + { + "start": 4735.06, + "end": 4735.5, + "probability": 0.7652 + }, + { + "start": 4735.92, + "end": 4737.46, + "probability": 0.9349 + }, + { + "start": 4737.62, + "end": 4739.2, + "probability": 0.8829 + }, + { + "start": 4739.2, + "end": 4739.5, + "probability": 0.4508 + }, + { + "start": 4739.66, + "end": 4740.36, + "probability": 0.8191 + }, + { + "start": 4741.02, + "end": 4741.8, + "probability": 0.9172 + }, + { + "start": 4742.3, + "end": 4748.74, + "probability": 0.9735 + }, + { + "start": 4748.96, + "end": 4750.34, + "probability": 0.9033 + }, + { + "start": 4751.18, + "end": 4753.62, + "probability": 0.9538 + }, + { + "start": 4754.32, + "end": 4756.62, + "probability": 0.9966 + }, + { + "start": 4757.34, + "end": 4758.54, + "probability": 0.9675 + }, + { + "start": 4759.24, + "end": 4764.16, + "probability": 0.856 + }, + { + "start": 4764.82, + "end": 4767.1, + "probability": 0.6385 + }, + { + "start": 4767.9, + "end": 4769.98, + "probability": 0.9974 + }, + { + "start": 4770.5, + "end": 4774.94, + "probability": 0.9859 + }, + { + "start": 4775.48, + "end": 4777.76, + "probability": 0.9456 + }, + { + "start": 4778.42, + "end": 4779.68, + "probability": 0.8538 + }, + { + "start": 4780.24, + "end": 4783.2, + "probability": 0.9904 + }, + { + "start": 4783.3, + "end": 4783.66, + "probability": 0.8729 + }, + { + "start": 4783.88, + "end": 4784.92, + "probability": 0.7661 + }, + { + "start": 4785.16, + "end": 4787.56, + "probability": 0.9713 + }, + { + "start": 4787.7, + "end": 4789.42, + "probability": 0.9915 + }, + { + "start": 4789.6, + "end": 4791.36, + "probability": 0.9772 + }, + { + "start": 4791.9, + "end": 4794.04, + "probability": 0.8644 + }, + { + "start": 4795.16, + "end": 4796.2, + "probability": 0.7739 + }, + { + "start": 4796.28, + "end": 4797.58, + "probability": 0.8898 + }, + { + "start": 4797.88, + "end": 4799.64, + "probability": 0.9132 + }, + { + "start": 4808.16, + "end": 4811.52, + "probability": 0.7696 + }, + { + "start": 4812.28, + "end": 4814.66, + "probability": 0.9975 + }, + { + "start": 4814.72, + "end": 4817.82, + "probability": 0.9948 + }, + { + "start": 4818.62, + "end": 4822.88, + "probability": 0.988 + }, + { + "start": 4823.32, + "end": 4826.36, + "probability": 0.9267 + }, + { + "start": 4826.78, + "end": 4830.82, + "probability": 0.9863 + }, + { + "start": 4831.6, + "end": 4835.78, + "probability": 0.9556 + }, + { + "start": 4835.78, + "end": 4840.42, + "probability": 0.9171 + }, + { + "start": 4841.34, + "end": 4842.44, + "probability": 0.6888 + }, + { + "start": 4843.22, + "end": 4846.54, + "probability": 0.9902 + }, + { + "start": 4847.22, + "end": 4848.3, + "probability": 0.9866 + }, + { + "start": 4849.0, + "end": 4853.78, + "probability": 0.9846 + }, + { + "start": 4853.78, + "end": 4858.7, + "probability": 0.9937 + }, + { + "start": 4859.46, + "end": 4859.9, + "probability": 0.5919 + }, + { + "start": 4860.08, + "end": 4864.56, + "probability": 0.9634 + }, + { + "start": 4865.16, + "end": 4869.28, + "probability": 0.9163 + }, + { + "start": 4869.82, + "end": 4872.92, + "probability": 0.972 + }, + { + "start": 4873.56, + "end": 4876.7, + "probability": 0.7763 + }, + { + "start": 4877.24, + "end": 4880.76, + "probability": 0.9919 + }, + { + "start": 4880.76, + "end": 4883.9, + "probability": 0.9963 + }, + { + "start": 4884.5, + "end": 4887.08, + "probability": 0.9948 + }, + { + "start": 4887.52, + "end": 4891.34, + "probability": 0.9966 + }, + { + "start": 4892.32, + "end": 4897.82, + "probability": 0.9956 + }, + { + "start": 4898.26, + "end": 4901.38, + "probability": 0.9766 + }, + { + "start": 4901.96, + "end": 4906.04, + "probability": 0.9611 + }, + { + "start": 4906.68, + "end": 4908.12, + "probability": 0.9967 + }, + { + "start": 4908.64, + "end": 4912.72, + "probability": 0.992 + }, + { + "start": 4912.72, + "end": 4916.94, + "probability": 0.9613 + }, + { + "start": 4917.44, + "end": 4917.84, + "probability": 0.7615 + }, + { + "start": 4918.46, + "end": 4919.62, + "probability": 0.9779 + }, + { + "start": 4920.18, + "end": 4922.68, + "probability": 0.9954 + }, + { + "start": 4922.68, + "end": 4926.66, + "probability": 0.9995 + }, + { + "start": 4927.36, + "end": 4930.96, + "probability": 0.9298 + }, + { + "start": 4931.94, + "end": 4932.76, + "probability": 0.6951 + }, + { + "start": 4933.44, + "end": 4936.2, + "probability": 0.9756 + }, + { + "start": 4936.68, + "end": 4938.76, + "probability": 0.9907 + }, + { + "start": 4938.94, + "end": 4940.68, + "probability": 0.78 + }, + { + "start": 4941.06, + "end": 4945.42, + "probability": 0.9329 + }, + { + "start": 4945.96, + "end": 4947.32, + "probability": 0.9678 + }, + { + "start": 4947.86, + "end": 4951.26, + "probability": 0.9326 + }, + { + "start": 4951.98, + "end": 4954.5, + "probability": 0.834 + }, + { + "start": 4954.5, + "end": 4954.82, + "probability": 0.7851 + }, + { + "start": 4955.24, + "end": 4959.5, + "probability": 0.9878 + }, + { + "start": 4959.5, + "end": 4965.18, + "probability": 0.9871 + }, + { + "start": 4965.72, + "end": 4968.18, + "probability": 0.7591 + }, + { + "start": 4969.0, + "end": 4973.26, + "probability": 0.8458 + }, + { + "start": 4973.29, + "end": 4977.96, + "probability": 0.9964 + }, + { + "start": 4978.44, + "end": 4979.44, + "probability": 0.8572 + }, + { + "start": 4979.86, + "end": 4981.34, + "probability": 0.8665 + }, + { + "start": 4982.34, + "end": 4986.0, + "probability": 0.9848 + }, + { + "start": 4986.0, + "end": 4990.1, + "probability": 0.9805 + }, + { + "start": 4990.54, + "end": 4995.32, + "probability": 0.8836 + }, + { + "start": 4995.82, + "end": 4999.66, + "probability": 0.938 + }, + { + "start": 5000.06, + "end": 5003.56, + "probability": 0.7395 + }, + { + "start": 5004.12, + "end": 5005.34, + "probability": 0.1133 + }, + { + "start": 5006.28, + "end": 5006.82, + "probability": 0.4912 + }, + { + "start": 5007.0, + "end": 5008.88, + "probability": 0.8774 + }, + { + "start": 5009.74, + "end": 5010.98, + "probability": 0.4999 + }, + { + "start": 5011.16, + "end": 5012.5, + "probability": 0.8169 + }, + { + "start": 5012.82, + "end": 5016.6, + "probability": 0.8434 + }, + { + "start": 5020.78, + "end": 5024.66, + "probability": 0.0453 + }, + { + "start": 5025.28, + "end": 5025.7, + "probability": 0.1587 + }, + { + "start": 5025.82, + "end": 5029.46, + "probability": 0.5382 + }, + { + "start": 5030.0, + "end": 5032.48, + "probability": 0.8222 + }, + { + "start": 5033.08, + "end": 5033.08, + "probability": 0.0223 + }, + { + "start": 5033.08, + "end": 5035.26, + "probability": 0.7964 + }, + { + "start": 5035.68, + "end": 5036.52, + "probability": 0.1685 + }, + { + "start": 5036.52, + "end": 5036.7, + "probability": 0.0513 + }, + { + "start": 5036.72, + "end": 5042.18, + "probability": 0.065 + }, + { + "start": 5042.36, + "end": 5043.06, + "probability": 0.4501 + }, + { + "start": 5043.06, + "end": 5043.74, + "probability": 0.2154 + }, + { + "start": 5043.74, + "end": 5045.6, + "probability": 0.4368 + }, + { + "start": 5046.44, + "end": 5050.12, + "probability": 0.3778 + }, + { + "start": 5054.62, + "end": 5058.64, + "probability": 0.0589 + }, + { + "start": 5058.86, + "end": 5061.66, + "probability": 0.0401 + }, + { + "start": 5063.1, + "end": 5063.64, + "probability": 0.1698 + }, + { + "start": 5063.96, + "end": 5063.96, + "probability": 0.1176 + }, + { + "start": 5063.96, + "end": 5063.96, + "probability": 0.0521 + }, + { + "start": 5063.96, + "end": 5064.99, + "probability": 0.2676 + }, + { + "start": 5065.64, + "end": 5069.98, + "probability": 0.8127 + }, + { + "start": 5070.64, + "end": 5074.64, + "probability": 0.8838 + }, + { + "start": 5076.19, + "end": 5078.32, + "probability": 0.8423 + }, + { + "start": 5078.38, + "end": 5079.52, + "probability": 0.747 + }, + { + "start": 5079.66, + "end": 5081.36, + "probability": 0.948 + }, + { + "start": 5082.58, + "end": 5084.02, + "probability": 0.9737 + }, + { + "start": 5084.18, + "end": 5085.92, + "probability": 0.8305 + }, + { + "start": 5086.78, + "end": 5091.31, + "probability": 0.9684 + }, + { + "start": 5092.48, + "end": 5093.14, + "probability": 0.9168 + }, + { + "start": 5093.8, + "end": 5094.42, + "probability": 0.998 + }, + { + "start": 5095.88, + "end": 5097.26, + "probability": 0.9081 + }, + { + "start": 5098.08, + "end": 5099.36, + "probability": 0.9995 + }, + { + "start": 5099.94, + "end": 5101.08, + "probability": 0.9433 + }, + { + "start": 5101.8, + "end": 5104.28, + "probability": 0.7506 + }, + { + "start": 5105.5, + "end": 5106.2, + "probability": 0.7516 + }, + { + "start": 5106.78, + "end": 5109.1, + "probability": 0.9924 + }, + { + "start": 5109.18, + "end": 5110.14, + "probability": 0.8792 + }, + { + "start": 5110.7, + "end": 5114.62, + "probability": 0.9941 + }, + { + "start": 5115.64, + "end": 5116.66, + "probability": 0.742 + }, + { + "start": 5117.68, + "end": 5118.36, + "probability": 0.9966 + }, + { + "start": 5118.96, + "end": 5120.2, + "probability": 0.9999 + }, + { + "start": 5120.76, + "end": 5124.4, + "probability": 0.9823 + }, + { + "start": 5124.4, + "end": 5128.7, + "probability": 0.9993 + }, + { + "start": 5129.8, + "end": 5130.51, + "probability": 0.9806 + }, + { + "start": 5130.9, + "end": 5131.66, + "probability": 0.5128 + }, + { + "start": 5132.2, + "end": 5134.94, + "probability": 0.8877 + }, + { + "start": 5135.32, + "end": 5137.22, + "probability": 0.6729 + }, + { + "start": 5139.64, + "end": 5140.26, + "probability": 0.8431 + }, + { + "start": 5142.0, + "end": 5144.3, + "probability": 0.9384 + }, + { + "start": 5148.64, + "end": 5150.74, + "probability": 0.4038 + }, + { + "start": 5151.0, + "end": 5151.84, + "probability": 0.9698 + }, + { + "start": 5151.94, + "end": 5154.06, + "probability": 0.9795 + }, + { + "start": 5154.96, + "end": 5156.16, + "probability": 0.765 + }, + { + "start": 5157.08, + "end": 5161.02, + "probability": 0.9259 + }, + { + "start": 5161.02, + "end": 5164.52, + "probability": 0.988 + }, + { + "start": 5164.98, + "end": 5166.78, + "probability": 0.8477 + }, + { + "start": 5167.44, + "end": 5168.88, + "probability": 0.9496 + }, + { + "start": 5168.98, + "end": 5173.26, + "probability": 0.9672 + }, + { + "start": 5173.34, + "end": 5174.78, + "probability": 0.9946 + }, + { + "start": 5175.34, + "end": 5180.62, + "probability": 0.7492 + }, + { + "start": 5181.22, + "end": 5182.28, + "probability": 0.8715 + }, + { + "start": 5183.02, + "end": 5187.96, + "probability": 0.9896 + }, + { + "start": 5188.74, + "end": 5190.82, + "probability": 0.5539 + }, + { + "start": 5191.1, + "end": 5193.64, + "probability": 0.9738 + }, + { + "start": 5194.24, + "end": 5195.06, + "probability": 0.834 + }, + { + "start": 5195.86, + "end": 5198.24, + "probability": 0.9509 + }, + { + "start": 5199.02, + "end": 5201.68, + "probability": 0.9956 + }, + { + "start": 5202.32, + "end": 5206.6, + "probability": 0.8054 + }, + { + "start": 5206.88, + "end": 5210.64, + "probability": 0.9791 + }, + { + "start": 5211.26, + "end": 5216.08, + "probability": 0.9768 + }, + { + "start": 5216.6, + "end": 5218.36, + "probability": 0.6721 + }, + { + "start": 5218.62, + "end": 5222.6, + "probability": 0.9752 + }, + { + "start": 5222.64, + "end": 5224.63, + "probability": 0.9985 + }, + { + "start": 5224.72, + "end": 5228.2, + "probability": 0.9946 + }, + { + "start": 5228.58, + "end": 5231.32, + "probability": 0.7969 + }, + { + "start": 5231.32, + "end": 5233.56, + "probability": 0.9846 + }, + { + "start": 5233.94, + "end": 5236.18, + "probability": 0.6914 + }, + { + "start": 5236.88, + "end": 5239.14, + "probability": 0.9606 + }, + { + "start": 5239.92, + "end": 5243.16, + "probability": 0.9956 + }, + { + "start": 5243.38, + "end": 5244.88, + "probability": 0.9976 + }, + { + "start": 5246.22, + "end": 5247.0, + "probability": 0.8983 + }, + { + "start": 5247.68, + "end": 5249.05, + "probability": 0.9222 + }, + { + "start": 5249.5, + "end": 5250.62, + "probability": 0.9833 + }, + { + "start": 5251.02, + "end": 5253.6, + "probability": 0.9565 + }, + { + "start": 5253.68, + "end": 5254.52, + "probability": 0.8041 + }, + { + "start": 5255.4, + "end": 5259.06, + "probability": 0.9368 + }, + { + "start": 5259.8, + "end": 5264.1, + "probability": 0.9725 + }, + { + "start": 5264.84, + "end": 5267.02, + "probability": 0.8989 + }, + { + "start": 5267.5, + "end": 5272.66, + "probability": 0.9797 + }, + { + "start": 5272.78, + "end": 5273.3, + "probability": 0.8441 + }, + { + "start": 5273.74, + "end": 5276.78, + "probability": 0.8555 + }, + { + "start": 5276.9, + "end": 5281.26, + "probability": 0.7969 + }, + { + "start": 5281.9, + "end": 5285.94, + "probability": 0.9952 + }, + { + "start": 5286.42, + "end": 5289.36, + "probability": 0.8646 + }, + { + "start": 5289.92, + "end": 5293.44, + "probability": 0.8161 + }, + { + "start": 5293.84, + "end": 5296.04, + "probability": 0.8628 + }, + { + "start": 5296.84, + "end": 5297.44, + "probability": 0.6585 + }, + { + "start": 5299.01, + "end": 5302.96, + "probability": 0.9156 + }, + { + "start": 5304.04, + "end": 5304.94, + "probability": 0.5207 + }, + { + "start": 5305.5, + "end": 5308.52, + "probability": 0.9657 + }, + { + "start": 5309.74, + "end": 5310.76, + "probability": 0.9279 + }, + { + "start": 5311.4, + "end": 5312.66, + "probability": 0.9554 + }, + { + "start": 5313.4, + "end": 5316.06, + "probability": 0.993 + }, + { + "start": 5316.06, + "end": 5317.66, + "probability": 0.9983 + }, + { + "start": 5318.4, + "end": 5319.7, + "probability": 0.9922 + }, + { + "start": 5319.94, + "end": 5322.44, + "probability": 0.7076 + }, + { + "start": 5322.68, + "end": 5325.08, + "probability": 0.9889 + }, + { + "start": 5325.7, + "end": 5327.3, + "probability": 0.9692 + }, + { + "start": 5328.38, + "end": 5333.2, + "probability": 0.9704 + }, + { + "start": 5333.68, + "end": 5336.52, + "probability": 0.9793 + }, + { + "start": 5337.1, + "end": 5337.66, + "probability": 0.602 + }, + { + "start": 5337.8, + "end": 5337.96, + "probability": 0.8346 + }, + { + "start": 5338.04, + "end": 5338.76, + "probability": 0.8315 + }, + { + "start": 5339.18, + "end": 5345.7, + "probability": 0.9906 + }, + { + "start": 5346.12, + "end": 5347.38, + "probability": 0.9917 + }, + { + "start": 5347.68, + "end": 5347.68, + "probability": 0.3177 + }, + { + "start": 5347.92, + "end": 5347.98, + "probability": 0.4655 + }, + { + "start": 5347.98, + "end": 5348.76, + "probability": 0.7361 + }, + { + "start": 5349.28, + "end": 5351.84, + "probability": 0.939 + }, + { + "start": 5352.38, + "end": 5353.28, + "probability": 0.8752 + }, + { + "start": 5353.62, + "end": 5355.92, + "probability": 0.9871 + }, + { + "start": 5356.84, + "end": 5357.64, + "probability": 0.8138 + }, + { + "start": 5357.96, + "end": 5360.96, + "probability": 0.9717 + }, + { + "start": 5361.72, + "end": 5363.02, + "probability": 0.5862 + }, + { + "start": 5377.28, + "end": 5378.65, + "probability": 0.3388 + }, + { + "start": 5383.5, + "end": 5384.6, + "probability": 0.5419 + }, + { + "start": 5385.62, + "end": 5387.26, + "probability": 0.7363 + }, + { + "start": 5388.44, + "end": 5391.3, + "probability": 0.942 + }, + { + "start": 5392.18, + "end": 5392.82, + "probability": 0.4539 + }, + { + "start": 5392.88, + "end": 5396.96, + "probability": 0.68 + }, + { + "start": 5397.66, + "end": 5399.62, + "probability": 0.9906 + }, + { + "start": 5400.56, + "end": 5402.92, + "probability": 0.7878 + }, + { + "start": 5403.0, + "end": 5408.02, + "probability": 0.8415 + }, + { + "start": 5408.88, + "end": 5414.48, + "probability": 0.9719 + }, + { + "start": 5416.28, + "end": 5419.76, + "probability": 0.5664 + }, + { + "start": 5420.32, + "end": 5421.3, + "probability": 0.975 + }, + { + "start": 5422.0, + "end": 5426.06, + "probability": 0.9425 + }, + { + "start": 5426.62, + "end": 5430.0, + "probability": 0.981 + }, + { + "start": 5430.28, + "end": 5430.78, + "probability": 0.8797 + }, + { + "start": 5430.94, + "end": 5433.34, + "probability": 0.9238 + }, + { + "start": 5433.46, + "end": 5433.8, + "probability": 0.7111 + }, + { + "start": 5434.36, + "end": 5438.78, + "probability": 0.8928 + }, + { + "start": 5439.32, + "end": 5443.34, + "probability": 0.986 + }, + { + "start": 5443.34, + "end": 5447.74, + "probability": 0.9791 + }, + { + "start": 5448.36, + "end": 5449.14, + "probability": 0.9328 + }, + { + "start": 5449.34, + "end": 5449.86, + "probability": 0.822 + }, + { + "start": 5449.94, + "end": 5450.8, + "probability": 0.7024 + }, + { + "start": 5450.82, + "end": 5452.62, + "probability": 0.9561 + }, + { + "start": 5453.3, + "end": 5455.32, + "probability": 0.9356 + }, + { + "start": 5456.22, + "end": 5459.24, + "probability": 0.9419 + }, + { + "start": 5459.94, + "end": 5462.74, + "probability": 0.8667 + }, + { + "start": 5462.84, + "end": 5465.74, + "probability": 0.8749 + }, + { + "start": 5466.62, + "end": 5473.27, + "probability": 0.9792 + }, + { + "start": 5474.38, + "end": 5475.3, + "probability": 0.6325 + }, + { + "start": 5475.86, + "end": 5480.86, + "probability": 0.9899 + }, + { + "start": 5481.48, + "end": 5482.84, + "probability": 0.9308 + }, + { + "start": 5482.96, + "end": 5483.32, + "probability": 0.2617 + }, + { + "start": 5483.44, + "end": 5485.48, + "probability": 0.7667 + }, + { + "start": 5486.18, + "end": 5491.1, + "probability": 0.8841 + }, + { + "start": 5491.26, + "end": 5496.18, + "probability": 0.9897 + }, + { + "start": 5496.2, + "end": 5497.95, + "probability": 0.8438 + }, + { + "start": 5499.0, + "end": 5502.6, + "probability": 0.922 + }, + { + "start": 5502.66, + "end": 5503.12, + "probability": 0.5635 + }, + { + "start": 5503.6, + "end": 5504.66, + "probability": 0.9852 + }, + { + "start": 5505.2, + "end": 5510.76, + "probability": 0.7741 + }, + { + "start": 5511.54, + "end": 5515.48, + "probability": 0.8589 + }, + { + "start": 5515.78, + "end": 5516.68, + "probability": 0.972 + }, + { + "start": 5517.06, + "end": 5519.92, + "probability": 0.7677 + }, + { + "start": 5520.54, + "end": 5521.4, + "probability": 0.8995 + }, + { + "start": 5522.71, + "end": 5525.46, + "probability": 0.8333 + }, + { + "start": 5525.46, + "end": 5528.06, + "probability": 0.9727 + }, + { + "start": 5528.82, + "end": 5531.96, + "probability": 0.9695 + }, + { + "start": 5532.52, + "end": 5533.64, + "probability": 0.8179 + }, + { + "start": 5534.36, + "end": 5540.62, + "probability": 0.9685 + }, + { + "start": 5541.34, + "end": 5542.6, + "probability": 0.7284 + }, + { + "start": 5542.8, + "end": 5545.06, + "probability": 0.9458 + }, + { + "start": 5545.56, + "end": 5547.64, + "probability": 0.9507 + }, + { + "start": 5548.82, + "end": 5548.84, + "probability": 0.5327 + }, + { + "start": 5551.0, + "end": 5552.2, + "probability": 0.8216 + }, + { + "start": 5552.8, + "end": 5553.14, + "probability": 0.7208 + }, + { + "start": 5553.2, + "end": 5554.3, + "probability": 0.7218 + }, + { + "start": 5554.34, + "end": 5557.66, + "probability": 0.8105 + }, + { + "start": 5558.14, + "end": 5559.1, + "probability": 0.9922 + }, + { + "start": 5559.96, + "end": 5562.82, + "probability": 0.9009 + }, + { + "start": 5562.92, + "end": 5564.78, + "probability": 0.9463 + }, + { + "start": 5565.18, + "end": 5568.24, + "probability": 0.6653 + }, + { + "start": 5568.76, + "end": 5570.45, + "probability": 0.9681 + }, + { + "start": 5571.38, + "end": 5573.58, + "probability": 0.5663 + }, + { + "start": 5574.16, + "end": 5575.44, + "probability": 0.9417 + }, + { + "start": 5576.06, + "end": 5580.3, + "probability": 0.9741 + }, + { + "start": 5581.04, + "end": 5582.76, + "probability": 0.9912 + }, + { + "start": 5582.8, + "end": 5585.08, + "probability": 0.9615 + }, + { + "start": 5585.26, + "end": 5586.28, + "probability": 0.3586 + }, + { + "start": 5586.38, + "end": 5587.76, + "probability": 0.9768 + }, + { + "start": 5590.56, + "end": 5591.72, + "probability": 0.7155 + }, + { + "start": 5592.1, + "end": 5594.6, + "probability": 0.877 + }, + { + "start": 5595.06, + "end": 5595.06, + "probability": 0.0019 + }, + { + "start": 5595.98, + "end": 5599.86, + "probability": 0.9792 + }, + { + "start": 5599.86, + "end": 5602.24, + "probability": 0.9774 + }, + { + "start": 5602.88, + "end": 5607.24, + "probability": 0.9868 + }, + { + "start": 5607.76, + "end": 5608.9, + "probability": 0.8013 + }, + { + "start": 5609.06, + "end": 5611.08, + "probability": 0.8535 + }, + { + "start": 5612.12, + "end": 5617.24, + "probability": 0.7651 + }, + { + "start": 5617.4, + "end": 5619.14, + "probability": 0.9258 + }, + { + "start": 5619.78, + "end": 5620.98, + "probability": 0.6682 + }, + { + "start": 5621.5, + "end": 5623.02, + "probability": 0.743 + }, + { + "start": 5623.12, + "end": 5623.56, + "probability": 0.7345 + }, + { + "start": 5623.64, + "end": 5623.94, + "probability": 0.9105 + }, + { + "start": 5624.04, + "end": 5626.95, + "probability": 0.9897 + }, + { + "start": 5627.82, + "end": 5628.68, + "probability": 0.6163 + }, + { + "start": 5628.74, + "end": 5631.12, + "probability": 0.793 + }, + { + "start": 5631.7, + "end": 5634.16, + "probability": 0.8652 + }, + { + "start": 5641.52, + "end": 5642.06, + "probability": 0.8907 + }, + { + "start": 5642.68, + "end": 5642.82, + "probability": 0.3858 + }, + { + "start": 5642.94, + "end": 5643.38, + "probability": 0.8543 + }, + { + "start": 5643.52, + "end": 5645.66, + "probability": 0.7308 + }, + { + "start": 5646.32, + "end": 5647.82, + "probability": 0.7871 + }, + { + "start": 5648.36, + "end": 5651.54, + "probability": 0.8887 + }, + { + "start": 5652.24, + "end": 5652.52, + "probability": 0.7523 + }, + { + "start": 5653.32, + "end": 5653.56, + "probability": 0.5868 + }, + { + "start": 5653.56, + "end": 5653.96, + "probability": 0.6854 + }, + { + "start": 5654.5, + "end": 5654.78, + "probability": 0.0115 + }, + { + "start": 5655.36, + "end": 5656.26, + "probability": 0.6878 + }, + { + "start": 5657.5, + "end": 5666.06, + "probability": 0.775 + }, + { + "start": 5668.42, + "end": 5674.82, + "probability": 0.9782 + }, + { + "start": 5678.84, + "end": 5681.68, + "probability": 0.9738 + }, + { + "start": 5684.54, + "end": 5686.88, + "probability": 0.8523 + }, + { + "start": 5687.7, + "end": 5690.48, + "probability": 0.9662 + }, + { + "start": 5692.38, + "end": 5693.82, + "probability": 0.937 + }, + { + "start": 5696.62, + "end": 5699.02, + "probability": 0.9948 + }, + { + "start": 5700.0, + "end": 5701.96, + "probability": 0.9941 + }, + { + "start": 5702.58, + "end": 5703.82, + "probability": 0.6667 + }, + { + "start": 5704.94, + "end": 5709.22, + "probability": 0.9965 + }, + { + "start": 5710.24, + "end": 5710.94, + "probability": 0.7692 + }, + { + "start": 5711.98, + "end": 5714.3, + "probability": 0.9526 + }, + { + "start": 5716.52, + "end": 5718.28, + "probability": 0.9194 + }, + { + "start": 5719.46, + "end": 5722.82, + "probability": 0.9911 + }, + { + "start": 5723.34, + "end": 5724.9, + "probability": 0.9055 + }, + { + "start": 5727.28, + "end": 5729.38, + "probability": 0.9973 + }, + { + "start": 5729.38, + "end": 5732.8, + "probability": 0.9983 + }, + { + "start": 5734.54, + "end": 5736.07, + "probability": 0.7112 + }, + { + "start": 5737.52, + "end": 5739.48, + "probability": 0.6683 + }, + { + "start": 5740.54, + "end": 5742.26, + "probability": 0.8797 + }, + { + "start": 5743.92, + "end": 5744.84, + "probability": 0.4588 + }, + { + "start": 5745.64, + "end": 5746.58, + "probability": 0.879 + }, + { + "start": 5748.38, + "end": 5750.78, + "probability": 0.9943 + }, + { + "start": 5751.56, + "end": 5754.64, + "probability": 0.9434 + }, + { + "start": 5755.54, + "end": 5756.64, + "probability": 0.7054 + }, + { + "start": 5757.42, + "end": 5758.56, + "probability": 0.8938 + }, + { + "start": 5759.92, + "end": 5761.88, + "probability": 0.965 + }, + { + "start": 5762.8, + "end": 5763.94, + "probability": 0.8796 + }, + { + "start": 5764.92, + "end": 5766.32, + "probability": 0.7506 + }, + { + "start": 5767.14, + "end": 5768.92, + "probability": 0.9507 + }, + { + "start": 5771.18, + "end": 5772.22, + "probability": 0.9705 + }, + { + "start": 5772.26, + "end": 5774.3, + "probability": 0.7233 + }, + { + "start": 5775.34, + "end": 5776.6, + "probability": 0.8267 + }, + { + "start": 5777.58, + "end": 5780.3, + "probability": 0.9538 + }, + { + "start": 5781.0, + "end": 5781.8, + "probability": 0.7582 + }, + { + "start": 5782.38, + "end": 5784.16, + "probability": 0.9855 + }, + { + "start": 5785.38, + "end": 5786.98, + "probability": 0.3924 + }, + { + "start": 5787.92, + "end": 5792.54, + "probability": 0.9647 + }, + { + "start": 5793.62, + "end": 5794.54, + "probability": 0.3885 + }, + { + "start": 5795.42, + "end": 5797.08, + "probability": 0.9916 + }, + { + "start": 5798.18, + "end": 5802.7, + "probability": 0.66 + }, + { + "start": 5804.4, + "end": 5805.7, + "probability": 0.9423 + }, + { + "start": 5806.5, + "end": 5807.16, + "probability": 0.9417 + }, + { + "start": 5807.96, + "end": 5812.5, + "probability": 0.874 + }, + { + "start": 5813.28, + "end": 5814.06, + "probability": 0.6581 + }, + { + "start": 5814.7, + "end": 5815.74, + "probability": 0.9896 + }, + { + "start": 5816.44, + "end": 5818.46, + "probability": 0.6568 + }, + { + "start": 5819.1, + "end": 5819.92, + "probability": 0.8971 + }, + { + "start": 5820.72, + "end": 5821.96, + "probability": 0.9893 + }, + { + "start": 5822.74, + "end": 5824.5, + "probability": 0.2226 + }, + { + "start": 5826.46, + "end": 5828.78, + "probability": 0.5447 + }, + { + "start": 5829.56, + "end": 5829.56, + "probability": 0.2678 + }, + { + "start": 5829.6, + "end": 5829.86, + "probability": 0.4743 + }, + { + "start": 5830.84, + "end": 5833.48, + "probability": 0.8464 + }, + { + "start": 5834.52, + "end": 5837.44, + "probability": 0.8859 + }, + { + "start": 5837.9, + "end": 5839.26, + "probability": 0.7749 + }, + { + "start": 5839.8, + "end": 5841.82, + "probability": 0.9834 + }, + { + "start": 5842.24, + "end": 5847.28, + "probability": 0.7205 + }, + { + "start": 5848.24, + "end": 5850.14, + "probability": 0.9178 + }, + { + "start": 5850.22, + "end": 5854.5, + "probability": 0.9672 + }, + { + "start": 5855.02, + "end": 5855.74, + "probability": 0.8454 + }, + { + "start": 5856.76, + "end": 5860.14, + "probability": 0.7359 + }, + { + "start": 5861.3, + "end": 5863.16, + "probability": 0.7073 + }, + { + "start": 5864.96, + "end": 5866.88, + "probability": 0.9919 + }, + { + "start": 5868.5, + "end": 5870.28, + "probability": 0.9762 + }, + { + "start": 5873.89, + "end": 5874.9, + "probability": 0.8943 + }, + { + "start": 5875.04, + "end": 5876.94, + "probability": 0.9671 + }, + { + "start": 5886.62, + "end": 5887.22, + "probability": 0.3968 + }, + { + "start": 5887.22, + "end": 5887.22, + "probability": 0.2022 + }, + { + "start": 5887.22, + "end": 5887.28, + "probability": 0.1996 + }, + { + "start": 5887.28, + "end": 5887.82, + "probability": 0.1154 + }, + { + "start": 5888.1, + "end": 5888.1, + "probability": 0.5405 + }, + { + "start": 5888.1, + "end": 5888.28, + "probability": 0.1237 + }, + { + "start": 5905.82, + "end": 5912.46, + "probability": 0.8428 + }, + { + "start": 5913.34, + "end": 5916.24, + "probability": 0.9404 + }, + { + "start": 5917.2, + "end": 5917.88, + "probability": 0.9909 + }, + { + "start": 5918.4, + "end": 5919.04, + "probability": 0.7448 + }, + { + "start": 5919.6, + "end": 5922.86, + "probability": 0.9014 + }, + { + "start": 5923.12, + "end": 5924.68, + "probability": 0.8486 + }, + { + "start": 5925.42, + "end": 5928.16, + "probability": 0.9674 + }, + { + "start": 5928.6, + "end": 5931.06, + "probability": 0.9938 + }, + { + "start": 5931.58, + "end": 5934.48, + "probability": 0.9816 + }, + { + "start": 5935.0, + "end": 5938.02, + "probability": 0.9878 + }, + { + "start": 5939.02, + "end": 5940.62, + "probability": 0.9481 + }, + { + "start": 5941.08, + "end": 5947.68, + "probability": 0.986 + }, + { + "start": 5948.06, + "end": 5952.32, + "probability": 0.9189 + }, + { + "start": 5953.2, + "end": 5954.62, + "probability": 0.9047 + }, + { + "start": 5955.58, + "end": 5960.98, + "probability": 0.9601 + }, + { + "start": 5961.82, + "end": 5966.82, + "probability": 0.995 + }, + { + "start": 5967.38, + "end": 5968.29, + "probability": 0.9966 + }, + { + "start": 5969.18, + "end": 5971.08, + "probability": 0.6977 + }, + { + "start": 5971.66, + "end": 5974.46, + "probability": 0.9615 + }, + { + "start": 5974.88, + "end": 5978.74, + "probability": 0.986 + }, + { + "start": 5978.88, + "end": 5980.36, + "probability": 0.8439 + }, + { + "start": 5981.36, + "end": 5985.74, + "probability": 0.7318 + }, + { + "start": 5985.96, + "end": 5987.34, + "probability": 0.8243 + }, + { + "start": 5987.92, + "end": 5993.98, + "probability": 0.9798 + }, + { + "start": 5994.98, + "end": 5998.22, + "probability": 0.9978 + }, + { + "start": 5998.22, + "end": 6001.5, + "probability": 0.9976 + }, + { + "start": 6002.4, + "end": 6006.74, + "probability": 0.9826 + }, + { + "start": 6007.26, + "end": 6013.04, + "probability": 0.8922 + }, + { + "start": 6013.48, + "end": 6014.32, + "probability": 0.5967 + }, + { + "start": 6014.6, + "end": 6015.1, + "probability": 0.9377 + }, + { + "start": 6015.2, + "end": 6016.84, + "probability": 0.9534 + }, + { + "start": 6017.04, + "end": 6018.34, + "probability": 0.9971 + }, + { + "start": 6019.14, + "end": 6022.18, + "probability": 0.9199 + }, + { + "start": 6022.38, + "end": 6027.3, + "probability": 0.9796 + }, + { + "start": 6027.4, + "end": 6028.44, + "probability": 0.7297 + }, + { + "start": 6028.68, + "end": 6029.88, + "probability": 0.286 + }, + { + "start": 6029.94, + "end": 6032.0, + "probability": 0.9917 + }, + { + "start": 6032.58, + "end": 6033.52, + "probability": 0.7401 + }, + { + "start": 6034.38, + "end": 6035.46, + "probability": 0.9548 + }, + { + "start": 6037.46, + "end": 6038.15, + "probability": 0.849 + }, + { + "start": 6038.94, + "end": 6040.62, + "probability": 0.8835 + }, + { + "start": 6042.64, + "end": 6043.56, + "probability": 0.9673 + }, + { + "start": 6044.26, + "end": 6046.02, + "probability": 0.979 + }, + { + "start": 6047.2, + "end": 6048.64, + "probability": 0.8101 + }, + { + "start": 6049.06, + "end": 6050.14, + "probability": 0.8109 + }, + { + "start": 6058.76, + "end": 6059.79, + "probability": 0.3385 + }, + { + "start": 6061.42, + "end": 6063.86, + "probability": 0.6919 + }, + { + "start": 6064.98, + "end": 6065.88, + "probability": 0.9729 + }, + { + "start": 6066.6, + "end": 6067.4, + "probability": 0.5912 + }, + { + "start": 6067.54, + "end": 6069.16, + "probability": 0.9855 + }, + { + "start": 6069.54, + "end": 6070.08, + "probability": 0.9291 + }, + { + "start": 6070.64, + "end": 6074.44, + "probability": 0.9702 + }, + { + "start": 6074.58, + "end": 6075.52, + "probability": 0.974 + }, + { + "start": 6076.24, + "end": 6076.64, + "probability": 0.6179 + }, + { + "start": 6077.46, + "end": 6078.32, + "probability": 0.9378 + }, + { + "start": 6078.84, + "end": 6079.72, + "probability": 0.6916 + }, + { + "start": 6082.32, + "end": 6086.64, + "probability": 0.98 + }, + { + "start": 6087.64, + "end": 6089.34, + "probability": 0.9917 + }, + { + "start": 6090.94, + "end": 6092.1, + "probability": 0.6421 + }, + { + "start": 6093.5, + "end": 6094.22, + "probability": 0.3612 + }, + { + "start": 6095.16, + "end": 6098.94, + "probability": 0.9407 + }, + { + "start": 6100.64, + "end": 6101.62, + "probability": 0.9843 + }, + { + "start": 6102.9, + "end": 6104.38, + "probability": 0.9638 + }, + { + "start": 6105.3, + "end": 6106.32, + "probability": 0.7967 + }, + { + "start": 6108.12, + "end": 6112.28, + "probability": 0.9868 + }, + { + "start": 6113.2, + "end": 6116.63, + "probability": 0.9963 + }, + { + "start": 6117.48, + "end": 6118.18, + "probability": 0.9196 + }, + { + "start": 6119.76, + "end": 6120.3, + "probability": 0.9138 + }, + { + "start": 6121.28, + "end": 6126.96, + "probability": 0.9688 + }, + { + "start": 6128.02, + "end": 6129.3, + "probability": 0.9927 + }, + { + "start": 6131.34, + "end": 6133.22, + "probability": 0.9881 + }, + { + "start": 6133.8, + "end": 6134.56, + "probability": 0.8298 + }, + { + "start": 6135.44, + "end": 6136.1, + "probability": 0.8807 + }, + { + "start": 6136.62, + "end": 6139.96, + "probability": 0.9548 + }, + { + "start": 6141.0, + "end": 6142.88, + "probability": 0.9895 + }, + { + "start": 6144.82, + "end": 6148.12, + "probability": 0.9695 + }, + { + "start": 6148.94, + "end": 6152.24, + "probability": 0.9811 + }, + { + "start": 6153.1, + "end": 6156.52, + "probability": 0.9614 + }, + { + "start": 6157.7, + "end": 6161.16, + "probability": 0.9712 + }, + { + "start": 6161.96, + "end": 6162.4, + "probability": 0.1712 + }, + { + "start": 6162.82, + "end": 6164.64, + "probability": 0.7865 + }, + { + "start": 6164.88, + "end": 6165.94, + "probability": 0.9158 + }, + { + "start": 6166.38, + "end": 6166.84, + "probability": 0.7262 + }, + { + "start": 6167.14, + "end": 6168.16, + "probability": 0.7739 + }, + { + "start": 6168.86, + "end": 6169.44, + "probability": 0.875 + }, + { + "start": 6170.46, + "end": 6172.66, + "probability": 0.9276 + }, + { + "start": 6174.06, + "end": 6175.58, + "probability": 0.9946 + }, + { + "start": 6176.26, + "end": 6178.74, + "probability": 0.998 + }, + { + "start": 6179.98, + "end": 6180.84, + "probability": 0.7548 + }, + { + "start": 6181.52, + "end": 6185.72, + "probability": 0.9948 + }, + { + "start": 6186.56, + "end": 6187.56, + "probability": 0.8647 + }, + { + "start": 6188.64, + "end": 6189.7, + "probability": 0.7779 + }, + { + "start": 6189.86, + "end": 6190.66, + "probability": 0.6242 + }, + { + "start": 6190.94, + "end": 6192.1, + "probability": 0.8797 + }, + { + "start": 6192.46, + "end": 6193.9, + "probability": 0.6757 + }, + { + "start": 6195.32, + "end": 6197.6, + "probability": 0.8263 + }, + { + "start": 6198.58, + "end": 6202.82, + "probability": 0.9512 + }, + { + "start": 6204.16, + "end": 6208.44, + "probability": 0.907 + }, + { + "start": 6209.16, + "end": 6212.24, + "probability": 0.9907 + }, + { + "start": 6213.28, + "end": 6214.56, + "probability": 0.9419 + }, + { + "start": 6215.56, + "end": 6220.48, + "probability": 0.9601 + }, + { + "start": 6220.68, + "end": 6222.2, + "probability": 0.9786 + }, + { + "start": 6223.08, + "end": 6224.49, + "probability": 0.9658 + }, + { + "start": 6225.9, + "end": 6230.72, + "probability": 0.9863 + }, + { + "start": 6231.74, + "end": 6234.92, + "probability": 0.922 + }, + { + "start": 6236.12, + "end": 6236.72, + "probability": 0.6101 + }, + { + "start": 6236.86, + "end": 6240.82, + "probability": 0.8845 + }, + { + "start": 6241.74, + "end": 6243.04, + "probability": 0.7799 + }, + { + "start": 6243.12, + "end": 6250.5, + "probability": 0.9956 + }, + { + "start": 6250.98, + "end": 6253.54, + "probability": 0.9974 + }, + { + "start": 6254.26, + "end": 6258.92, + "probability": 0.9935 + }, + { + "start": 6259.62, + "end": 6259.78, + "probability": 0.0943 + }, + { + "start": 6259.8, + "end": 6263.72, + "probability": 0.99 + }, + { + "start": 6263.8, + "end": 6268.82, + "probability": 0.9797 + }, + { + "start": 6269.18, + "end": 6269.98, + "probability": 0.884 + }, + { + "start": 6270.14, + "end": 6273.94, + "probability": 0.9845 + }, + { + "start": 6274.1, + "end": 6274.46, + "probability": 0.666 + }, + { + "start": 6274.48, + "end": 6276.88, + "probability": 0.9845 + }, + { + "start": 6276.98, + "end": 6279.36, + "probability": 0.8699 + }, + { + "start": 6280.0, + "end": 6282.38, + "probability": 0.9007 + }, + { + "start": 6289.62, + "end": 6292.14, + "probability": 0.6316 + }, + { + "start": 6294.66, + "end": 6296.18, + "probability": 0.9202 + }, + { + "start": 6297.64, + "end": 6298.76, + "probability": 0.8598 + }, + { + "start": 6299.82, + "end": 6302.2, + "probability": 0.9617 + }, + { + "start": 6304.28, + "end": 6306.34, + "probability": 0.9941 + }, + { + "start": 6307.36, + "end": 6308.82, + "probability": 0.9072 + }, + { + "start": 6309.64, + "end": 6311.54, + "probability": 0.9548 + }, + { + "start": 6312.6, + "end": 6313.04, + "probability": 0.9758 + }, + { + "start": 6314.2, + "end": 6319.08, + "probability": 0.9738 + }, + { + "start": 6319.92, + "end": 6321.84, + "probability": 0.9797 + }, + { + "start": 6323.54, + "end": 6323.78, + "probability": 0.7537 + }, + { + "start": 6324.6, + "end": 6325.42, + "probability": 0.8984 + }, + { + "start": 6326.36, + "end": 6330.38, + "probability": 0.9985 + }, + { + "start": 6331.34, + "end": 6333.9, + "probability": 0.8577 + }, + { + "start": 6334.56, + "end": 6336.86, + "probability": 0.9089 + }, + { + "start": 6337.98, + "end": 6338.66, + "probability": 0.6784 + }, + { + "start": 6340.08, + "end": 6342.1, + "probability": 0.9231 + }, + { + "start": 6343.3, + "end": 6344.13, + "probability": 0.6226 + }, + { + "start": 6344.3, + "end": 6345.22, + "probability": 0.9634 + }, + { + "start": 6346.36, + "end": 6348.58, + "probability": 0.9965 + }, + { + "start": 6349.38, + "end": 6353.72, + "probability": 0.9728 + }, + { + "start": 6354.94, + "end": 6356.84, + "probability": 0.9919 + }, + { + "start": 6357.76, + "end": 6362.3, + "probability": 0.6531 + }, + { + "start": 6362.78, + "end": 6363.42, + "probability": 0.742 + }, + { + "start": 6364.82, + "end": 6368.3, + "probability": 0.9802 + }, + { + "start": 6369.5, + "end": 6370.54, + "probability": 0.9836 + }, + { + "start": 6372.44, + "end": 6374.48, + "probability": 0.9424 + }, + { + "start": 6375.14, + "end": 6376.86, + "probability": 0.9468 + }, + { + "start": 6378.0, + "end": 6384.36, + "probability": 0.88 + }, + { + "start": 6384.8, + "end": 6385.3, + "probability": 0.8347 + }, + { + "start": 6385.66, + "end": 6389.92, + "probability": 0.9851 + }, + { + "start": 6390.62, + "end": 6391.1, + "probability": 0.9075 + }, + { + "start": 6392.78, + "end": 6397.4, + "probability": 0.9858 + }, + { + "start": 6398.12, + "end": 6400.12, + "probability": 0.9956 + }, + { + "start": 6400.8, + "end": 6401.14, + "probability": 0.2462 + }, + { + "start": 6401.74, + "end": 6402.66, + "probability": 0.838 + }, + { + "start": 6403.64, + "end": 6406.54, + "probability": 0.9119 + }, + { + "start": 6407.32, + "end": 6409.8, + "probability": 0.9931 + }, + { + "start": 6410.26, + "end": 6412.04, + "probability": 0.9976 + }, + { + "start": 6413.4, + "end": 6417.62, + "probability": 0.9518 + }, + { + "start": 6418.72, + "end": 6423.06, + "probability": 0.991 + }, + { + "start": 6423.62, + "end": 6424.6, + "probability": 0.8525 + }, + { + "start": 6425.16, + "end": 6426.22, + "probability": 0.985 + }, + { + "start": 6426.74, + "end": 6427.46, + "probability": 0.9884 + }, + { + "start": 6428.38, + "end": 6431.76, + "probability": 0.9899 + }, + { + "start": 6432.04, + "end": 6435.04, + "probability": 0.992 + }, + { + "start": 6435.6, + "end": 6436.42, + "probability": 0.6999 + }, + { + "start": 6437.02, + "end": 6437.78, + "probability": 0.9619 + }, + { + "start": 6438.26, + "end": 6443.62, + "probability": 0.9933 + }, + { + "start": 6444.5, + "end": 6445.24, + "probability": 0.9185 + }, + { + "start": 6445.92, + "end": 6446.5, + "probability": 0.9375 + }, + { + "start": 6447.34, + "end": 6448.72, + "probability": 0.9541 + }, + { + "start": 6449.28, + "end": 6450.94, + "probability": 0.9729 + }, + { + "start": 6451.6, + "end": 6451.78, + "probability": 0.7159 + }, + { + "start": 6453.72, + "end": 6455.52, + "probability": 0.7095 + }, + { + "start": 6456.2, + "end": 6459.66, + "probability": 0.9642 + }, + { + "start": 6460.42, + "end": 6462.94, + "probability": 0.9692 + }, + { + "start": 6465.17, + "end": 6471.56, + "probability": 0.098 + }, + { + "start": 6483.89, + "end": 6486.28, + "probability": 0.5413 + }, + { + "start": 6486.3, + "end": 6489.11, + "probability": 0.9375 + }, + { + "start": 6489.6, + "end": 6490.52, + "probability": 0.9354 + }, + { + "start": 6490.68, + "end": 6490.9, + "probability": 0.8212 + }, + { + "start": 6491.12, + "end": 6491.68, + "probability": 0.7854 + }, + { + "start": 6492.34, + "end": 6494.9, + "probability": 0.9727 + }, + { + "start": 6495.36, + "end": 6496.98, + "probability": 0.9964 + }, + { + "start": 6498.2, + "end": 6499.68, + "probability": 0.7025 + }, + { + "start": 6500.46, + "end": 6502.76, + "probability": 0.9911 + }, + { + "start": 6503.72, + "end": 6504.08, + "probability": 0.8914 + }, + { + "start": 6504.62, + "end": 6506.02, + "probability": 0.9844 + }, + { + "start": 6506.86, + "end": 6509.7, + "probability": 0.9785 + }, + { + "start": 6510.88, + "end": 6514.24, + "probability": 0.983 + }, + { + "start": 6514.82, + "end": 6515.7, + "probability": 0.8559 + }, + { + "start": 6516.36, + "end": 6517.82, + "probability": 0.8781 + }, + { + "start": 6518.74, + "end": 6523.24, + "probability": 0.9911 + }, + { + "start": 6523.78, + "end": 6525.98, + "probability": 0.9893 + }, + { + "start": 6526.7, + "end": 6529.54, + "probability": 0.9987 + }, + { + "start": 6531.8, + "end": 6534.26, + "probability": 0.9277 + }, + { + "start": 6534.8, + "end": 6536.94, + "probability": 0.9985 + }, + { + "start": 6538.16, + "end": 6539.2, + "probability": 0.874 + }, + { + "start": 6540.28, + "end": 6541.02, + "probability": 0.873 + }, + { + "start": 6542.0, + "end": 6544.32, + "probability": 0.7919 + }, + { + "start": 6545.34, + "end": 6550.44, + "probability": 0.9929 + }, + { + "start": 6551.22, + "end": 6553.2, + "probability": 0.998 + }, + { + "start": 6555.36, + "end": 6557.96, + "probability": 0.9822 + }, + { + "start": 6558.62, + "end": 6560.24, + "probability": 0.9944 + }, + { + "start": 6561.66, + "end": 6564.12, + "probability": 0.9804 + }, + { + "start": 6564.88, + "end": 6567.66, + "probability": 0.9666 + }, + { + "start": 6568.26, + "end": 6569.64, + "probability": 0.9917 + }, + { + "start": 6570.4, + "end": 6570.74, + "probability": 0.7711 + }, + { + "start": 6571.34, + "end": 6573.6, + "probability": 0.9878 + }, + { + "start": 6574.7, + "end": 6581.64, + "probability": 0.9099 + }, + { + "start": 6582.56, + "end": 6583.32, + "probability": 0.6197 + }, + { + "start": 6583.84, + "end": 6585.0, + "probability": 0.9962 + }, + { + "start": 6586.3, + "end": 6587.58, + "probability": 0.5452 + }, + { + "start": 6588.86, + "end": 6590.22, + "probability": 0.8874 + }, + { + "start": 6591.08, + "end": 6592.08, + "probability": 0.9211 + }, + { + "start": 6592.62, + "end": 6593.6, + "probability": 0.975 + }, + { + "start": 6594.68, + "end": 6597.5, + "probability": 0.992 + }, + { + "start": 6597.5, + "end": 6600.42, + "probability": 0.9947 + }, + { + "start": 6601.1, + "end": 6602.32, + "probability": 0.9215 + }, + { + "start": 6603.82, + "end": 6607.0, + "probability": 0.9913 + }, + { + "start": 6607.64, + "end": 6608.52, + "probability": 0.9973 + }, + { + "start": 6609.1, + "end": 6610.2, + "probability": 0.9849 + }, + { + "start": 6611.12, + "end": 6616.12, + "probability": 0.9976 + }, + { + "start": 6616.94, + "end": 6621.04, + "probability": 0.9466 + }, + { + "start": 6622.08, + "end": 6622.22, + "probability": 0.8129 + }, + { + "start": 6622.9, + "end": 6623.78, + "probability": 0.8347 + }, + { + "start": 6624.44, + "end": 6627.78, + "probability": 0.8908 + }, + { + "start": 6628.78, + "end": 6630.56, + "probability": 0.9454 + }, + { + "start": 6631.24, + "end": 6635.46, + "probability": 0.9984 + }, + { + "start": 6636.24, + "end": 6638.62, + "probability": 0.9882 + }, + { + "start": 6639.5, + "end": 6639.94, + "probability": 0.7813 + }, + { + "start": 6640.2, + "end": 6643.98, + "probability": 0.9258 + }, + { + "start": 6644.6, + "end": 6646.08, + "probability": 0.9608 + }, + { + "start": 6647.2, + "end": 6647.7, + "probability": 0.9052 + }, + { + "start": 6648.0, + "end": 6652.82, + "probability": 0.9922 + }, + { + "start": 6653.32, + "end": 6654.94, + "probability": 0.9602 + }, + { + "start": 6655.46, + "end": 6656.82, + "probability": 0.9973 + }, + { + "start": 6657.56, + "end": 6658.04, + "probability": 0.9846 + }, + { + "start": 6659.04, + "end": 6663.02, + "probability": 0.9521 + }, + { + "start": 6663.64, + "end": 6667.24, + "probability": 0.9681 + }, + { + "start": 6667.9, + "end": 6671.3, + "probability": 0.9867 + }, + { + "start": 6672.06, + "end": 6673.52, + "probability": 0.7164 + }, + { + "start": 6674.16, + "end": 6675.96, + "probability": 0.9716 + }, + { + "start": 6676.26, + "end": 6679.1, + "probability": 0.9976 + }, + { + "start": 6680.24, + "end": 6684.2, + "probability": 0.9831 + }, + { + "start": 6684.62, + "end": 6687.19, + "probability": 0.9321 + }, + { + "start": 6687.36, + "end": 6687.58, + "probability": 0.7487 + }, + { + "start": 6687.84, + "end": 6689.54, + "probability": 0.7799 + }, + { + "start": 6689.62, + "end": 6691.76, + "probability": 0.9403 + }, + { + "start": 6691.8, + "end": 6692.54, + "probability": 0.5271 + }, + { + "start": 6692.56, + "end": 6694.06, + "probability": 0.9878 + }, + { + "start": 6695.6, + "end": 6697.06, + "probability": 0.086 + }, + { + "start": 6716.52, + "end": 6716.88, + "probability": 0.6949 + }, + { + "start": 6716.98, + "end": 6718.62, + "probability": 0.6308 + }, + { + "start": 6718.8, + "end": 6720.4, + "probability": 0.7177 + }, + { + "start": 6720.58, + "end": 6720.82, + "probability": 0.7189 + }, + { + "start": 6721.06, + "end": 6721.8, + "probability": 0.7591 + }, + { + "start": 6721.9, + "end": 6722.18, + "probability": 0.8448 + }, + { + "start": 6723.33, + "end": 6724.82, + "probability": 0.9834 + }, + { + "start": 6724.86, + "end": 6727.82, + "probability": 0.9596 + }, + { + "start": 6728.34, + "end": 6731.0, + "probability": 0.823 + }, + { + "start": 6732.03, + "end": 6736.12, + "probability": 0.8951 + }, + { + "start": 6737.56, + "end": 6741.58, + "probability": 0.8374 + }, + { + "start": 6742.28, + "end": 6744.44, + "probability": 0.9935 + }, + { + "start": 6745.38, + "end": 6748.1, + "probability": 0.9115 + }, + { + "start": 6748.1, + "end": 6751.26, + "probability": 0.9689 + }, + { + "start": 6751.96, + "end": 6753.47, + "probability": 0.783 + }, + { + "start": 6754.48, + "end": 6759.76, + "probability": 0.9814 + }, + { + "start": 6760.96, + "end": 6761.5, + "probability": 0.6956 + }, + { + "start": 6761.72, + "end": 6765.54, + "probability": 0.9978 + }, + { + "start": 6765.74, + "end": 6769.16, + "probability": 0.9748 + }, + { + "start": 6769.6, + "end": 6772.04, + "probability": 0.9935 + }, + { + "start": 6773.04, + "end": 6773.99, + "probability": 0.911 + }, + { + "start": 6774.74, + "end": 6776.48, + "probability": 0.8514 + }, + { + "start": 6777.06, + "end": 6779.62, + "probability": 0.9866 + }, + { + "start": 6779.62, + "end": 6784.36, + "probability": 0.8949 + }, + { + "start": 6785.14, + "end": 6789.3, + "probability": 0.9758 + }, + { + "start": 6789.92, + "end": 6793.08, + "probability": 0.9834 + }, + { + "start": 6794.7, + "end": 6795.3, + "probability": 0.8853 + }, + { + "start": 6795.66, + "end": 6798.74, + "probability": 0.9937 + }, + { + "start": 6798.74, + "end": 6802.48, + "probability": 0.9976 + }, + { + "start": 6803.16, + "end": 6806.5, + "probability": 0.9668 + }, + { + "start": 6806.68, + "end": 6808.1, + "probability": 0.9626 + }, + { + "start": 6808.72, + "end": 6812.38, + "probability": 0.9934 + }, + { + "start": 6813.12, + "end": 6813.9, + "probability": 0.8889 + }, + { + "start": 6814.32, + "end": 6814.8, + "probability": 0.8768 + }, + { + "start": 6815.22, + "end": 6817.48, + "probability": 0.7604 + }, + { + "start": 6818.42, + "end": 6824.38, + "probability": 0.9231 + }, + { + "start": 6824.88, + "end": 6827.6, + "probability": 0.9902 + }, + { + "start": 6828.14, + "end": 6829.52, + "probability": 0.9676 + }, + { + "start": 6830.26, + "end": 6832.02, + "probability": 0.9816 + }, + { + "start": 6832.68, + "end": 6834.4, + "probability": 0.9858 + }, + { + "start": 6835.04, + "end": 6836.92, + "probability": 0.9622 + }, + { + "start": 6837.38, + "end": 6839.56, + "probability": 0.9442 + }, + { + "start": 6841.0, + "end": 6843.32, + "probability": 0.8459 + }, + { + "start": 6843.94, + "end": 6847.18, + "probability": 0.9606 + }, + { + "start": 6847.74, + "end": 6850.34, + "probability": 0.9926 + }, + { + "start": 6851.22, + "end": 6853.4, + "probability": 0.9377 + }, + { + "start": 6854.22, + "end": 6858.14, + "probability": 0.9841 + }, + { + "start": 6859.02, + "end": 6863.0, + "probability": 0.9491 + }, + { + "start": 6863.52, + "end": 6867.6, + "probability": 0.6474 + }, + { + "start": 6868.48, + "end": 6870.92, + "probability": 0.9431 + }, + { + "start": 6871.64, + "end": 6878.74, + "probability": 0.99 + }, + { + "start": 6879.16, + "end": 6881.56, + "probability": 0.9932 + }, + { + "start": 6882.08, + "end": 6883.18, + "probability": 0.9985 + }, + { + "start": 6884.16, + "end": 6890.62, + "probability": 0.8364 + }, + { + "start": 6890.62, + "end": 6896.06, + "probability": 0.9906 + }, + { + "start": 6896.64, + "end": 6900.54, + "probability": 0.7981 + }, + { + "start": 6901.1, + "end": 6903.8, + "probability": 0.1251 + }, + { + "start": 6904.28, + "end": 6904.58, + "probability": 0.1414 + }, + { + "start": 6904.58, + "end": 6904.6, + "probability": 0.2574 + }, + { + "start": 6904.6, + "end": 6904.62, + "probability": 0.4713 + }, + { + "start": 6904.62, + "end": 6906.22, + "probability": 0.6545 + }, + { + "start": 6907.68, + "end": 6908.18, + "probability": 0.8621 + }, + { + "start": 6908.28, + "end": 6911.78, + "probability": 0.9933 + }, + { + "start": 6911.94, + "end": 6912.28, + "probability": 0.3176 + }, + { + "start": 6912.34, + "end": 6912.8, + "probability": 0.7294 + }, + { + "start": 6913.46, + "end": 6917.3, + "probability": 0.9326 + }, + { + "start": 6917.98, + "end": 6922.46, + "probability": 0.9313 + }, + { + "start": 6922.56, + "end": 6922.94, + "probability": 0.7084 + }, + { + "start": 6923.42, + "end": 6925.0, + "probability": 0.3905 + }, + { + "start": 6925.42, + "end": 6927.4, + "probability": 0.8815 + }, + { + "start": 6928.04, + "end": 6932.42, + "probability": 0.6773 + }, + { + "start": 6932.54, + "end": 6932.64, + "probability": 0.3159 + }, + { + "start": 6932.78, + "end": 6935.44, + "probability": 0.8074 + }, + { + "start": 6935.46, + "end": 6937.14, + "probability": 0.8592 + }, + { + "start": 6937.98, + "end": 6940.66, + "probability": 0.8577 + }, + { + "start": 6940.98, + "end": 6941.16, + "probability": 0.7158 + }, + { + "start": 6941.52, + "end": 6942.72, + "probability": 0.7559 + }, + { + "start": 6942.92, + "end": 6945.02, + "probability": 0.9625 + }, + { + "start": 6945.1, + "end": 6945.56, + "probability": 0.5279 + }, + { + "start": 6945.86, + "end": 6947.22, + "probability": 0.9795 + }, + { + "start": 6965.94, + "end": 6966.72, + "probability": 0.9453 + }, + { + "start": 6966.78, + "end": 6967.78, + "probability": 0.3987 + }, + { + "start": 6968.68, + "end": 6971.06, + "probability": 0.6021 + }, + { + "start": 6972.36, + "end": 6973.14, + "probability": 0.1621 + }, + { + "start": 6973.84, + "end": 6973.91, + "probability": 0.2629 + }, + { + "start": 6974.86, + "end": 6975.99, + "probability": 0.1106 + }, + { + "start": 6978.68, + "end": 6981.56, + "probability": 0.5909 + }, + { + "start": 6982.98, + "end": 6983.94, + "probability": 0.0805 + }, + { + "start": 6985.9, + "end": 6986.74, + "probability": 0.081 + }, + { + "start": 6986.74, + "end": 6987.54, + "probability": 0.1573 + }, + { + "start": 6987.54, + "end": 6987.58, + "probability": 0.0829 + }, + { + "start": 6987.58, + "end": 6989.5, + "probability": 0.3168 + }, + { + "start": 6989.6, + "end": 6991.42, + "probability": 0.9102 + }, + { + "start": 6991.7, + "end": 6993.46, + "probability": 0.7998 + }, + { + "start": 6994.4, + "end": 6995.64, + "probability": 0.4982 + }, + { + "start": 6996.02, + "end": 6997.02, + "probability": 0.701 + }, + { + "start": 6997.12, + "end": 6999.56, + "probability": 0.928 + }, + { + "start": 6999.61, + "end": 7001.66, + "probability": 0.9688 + }, + { + "start": 7001.86, + "end": 7002.77, + "probability": 0.8571 + }, + { + "start": 7003.36, + "end": 7004.96, + "probability": 0.3487 + }, + { + "start": 7005.08, + "end": 7008.94, + "probability": 0.9417 + }, + { + "start": 7009.2, + "end": 7009.64, + "probability": 0.7409 + }, + { + "start": 7009.74, + "end": 7010.28, + "probability": 0.7853 + }, + { + "start": 7010.36, + "end": 7010.64, + "probability": 0.4486 + }, + { + "start": 7011.38, + "end": 7012.88, + "probability": 0.3901 + }, + { + "start": 7013.08, + "end": 7018.52, + "probability": 0.876 + }, + { + "start": 7019.2, + "end": 7023.44, + "probability": 0.6595 + }, + { + "start": 7023.52, + "end": 7023.52, + "probability": 0.4476 + }, + { + "start": 7023.52, + "end": 7026.6, + "probability": 0.7794 + }, + { + "start": 7026.6, + "end": 7027.5, + "probability": 0.8901 + }, + { + "start": 7027.66, + "end": 7028.48, + "probability": 0.7548 + }, + { + "start": 7028.62, + "end": 7031.34, + "probability": 0.7349 + }, + { + "start": 7031.7, + "end": 7031.7, + "probability": 0.1691 + }, + { + "start": 7031.7, + "end": 7036.0, + "probability": 0.3171 + }, + { + "start": 7036.0, + "end": 7036.76, + "probability": 0.6543 + }, + { + "start": 7036.76, + "end": 7037.14, + "probability": 0.5819 + }, + { + "start": 7037.14, + "end": 7037.44, + "probability": 0.5459 + }, + { + "start": 7037.68, + "end": 7041.56, + "probability": 0.6299 + }, + { + "start": 7041.62, + "end": 7043.08, + "probability": 0.1637 + }, + { + "start": 7044.32, + "end": 7044.92, + "probability": 0.0132 + }, + { + "start": 7045.56, + "end": 7045.96, + "probability": 0.0473 + }, + { + "start": 7045.96, + "end": 7046.82, + "probability": 0.0962 + }, + { + "start": 7046.82, + "end": 7047.74, + "probability": 0.0777 + }, + { + "start": 7048.52, + "end": 7050.72, + "probability": 0.3606 + }, + { + "start": 7050.92, + "end": 7051.16, + "probability": 0.015 + }, + { + "start": 7051.16, + "end": 7051.78, + "probability": 0.273 + }, + { + "start": 7052.68, + "end": 7054.9, + "probability": 0.6137 + }, + { + "start": 7055.11, + "end": 7055.99, + "probability": 0.0994 + }, + { + "start": 7056.54, + "end": 7058.16, + "probability": 0.9567 + }, + { + "start": 7058.3, + "end": 7058.8, + "probability": 0.4248 + }, + { + "start": 7059.8, + "end": 7062.98, + "probability": 0.6904 + }, + { + "start": 7063.78, + "end": 7064.55, + "probability": 0.2481 + }, + { + "start": 7066.68, + "end": 7067.88, + "probability": 0.0606 + }, + { + "start": 7067.88, + "end": 7068.06, + "probability": 0.0538 + }, + { + "start": 7068.06, + "end": 7068.06, + "probability": 0.2265 + }, + { + "start": 7068.06, + "end": 7071.1, + "probability": 0.6517 + }, + { + "start": 7071.46, + "end": 7072.4, + "probability": 0.7476 + }, + { + "start": 7072.46, + "end": 7072.96, + "probability": 0.9206 + }, + { + "start": 7073.26, + "end": 7074.28, + "probability": 0.4345 + }, + { + "start": 7075.22, + "end": 7080.08, + "probability": 0.9911 + }, + { + "start": 7080.94, + "end": 7084.16, + "probability": 0.9956 + }, + { + "start": 7085.34, + "end": 7088.26, + "probability": 0.8786 + }, + { + "start": 7088.9, + "end": 7089.58, + "probability": 0.9163 + }, + { + "start": 7090.64, + "end": 7091.26, + "probability": 0.519 + }, + { + "start": 7091.74, + "end": 7095.68, + "probability": 0.9593 + }, + { + "start": 7096.74, + "end": 7098.7, + "probability": 0.5154 + }, + { + "start": 7098.7, + "end": 7099.78, + "probability": 0.0389 + }, + { + "start": 7099.94, + "end": 7102.38, + "probability": 0.8134 + }, + { + "start": 7103.16, + "end": 7104.58, + "probability": 0.7468 + }, + { + "start": 7105.82, + "end": 7107.72, + "probability": 0.9624 + }, + { + "start": 7108.84, + "end": 7110.02, + "probability": 0.835 + }, + { + "start": 7110.94, + "end": 7112.68, + "probability": 0.6877 + }, + { + "start": 7113.42, + "end": 7115.64, + "probability": 0.8078 + }, + { + "start": 7116.42, + "end": 7117.78, + "probability": 0.9413 + }, + { + "start": 7118.46, + "end": 7120.54, + "probability": 0.8882 + }, + { + "start": 7121.22, + "end": 7123.74, + "probability": 0.9414 + }, + { + "start": 7124.34, + "end": 7126.26, + "probability": 0.9963 + }, + { + "start": 7126.7, + "end": 7132.1, + "probability": 0.5542 + }, + { + "start": 7132.62, + "end": 7134.92, + "probability": 0.9574 + }, + { + "start": 7135.68, + "end": 7140.84, + "probability": 0.8481 + }, + { + "start": 7141.48, + "end": 7144.0, + "probability": 0.9849 + }, + { + "start": 7144.52, + "end": 7144.96, + "probability": 0.9002 + }, + { + "start": 7145.32, + "end": 7150.0, + "probability": 0.97 + }, + { + "start": 7150.62, + "end": 7153.0, + "probability": 0.8857 + }, + { + "start": 7153.52, + "end": 7155.06, + "probability": 0.9868 + }, + { + "start": 7155.7, + "end": 7163.18, + "probability": 0.8542 + }, + { + "start": 7163.86, + "end": 7163.86, + "probability": 0.0175 + }, + { + "start": 7163.86, + "end": 7163.86, + "probability": 0.1424 + }, + { + "start": 7163.86, + "end": 7163.86, + "probability": 0.0567 + }, + { + "start": 7163.86, + "end": 7167.26, + "probability": 0.8801 + }, + { + "start": 7167.58, + "end": 7172.22, + "probability": 0.746 + }, + { + "start": 7172.4, + "end": 7175.02, + "probability": 0.8286 + }, + { + "start": 7175.56, + "end": 7176.18, + "probability": 0.8166 + }, + { + "start": 7176.3, + "end": 7176.88, + "probability": 0.7031 + }, + { + "start": 7176.9, + "end": 7177.38, + "probability": 0.522 + }, + { + "start": 7177.4, + "end": 7177.56, + "probability": 0.1816 + }, + { + "start": 7177.58, + "end": 7178.3, + "probability": 0.7947 + }, + { + "start": 7178.6, + "end": 7181.62, + "probability": 0.9976 + }, + { + "start": 7182.1, + "end": 7184.9, + "probability": 0.4792 + }, + { + "start": 7184.98, + "end": 7187.4, + "probability": 0.1966 + }, + { + "start": 7188.34, + "end": 7188.46, + "probability": 0.5065 + }, + { + "start": 7188.46, + "end": 7189.12, + "probability": 0.6489 + }, + { + "start": 7189.12, + "end": 7190.01, + "probability": 0.4546 + }, + { + "start": 7190.16, + "end": 7190.67, + "probability": 0.6841 + }, + { + "start": 7190.82, + "end": 7194.28, + "probability": 0.1986 + }, + { + "start": 7195.0, + "end": 7196.36, + "probability": 0.6101 + }, + { + "start": 7196.42, + "end": 7198.14, + "probability": 0.0232 + }, + { + "start": 7198.14, + "end": 7198.66, + "probability": 0.1237 + }, + { + "start": 7198.66, + "end": 7198.66, + "probability": 0.1159 + }, + { + "start": 7198.66, + "end": 7199.2, + "probability": 0.0158 + }, + { + "start": 7199.2, + "end": 7199.2, + "probability": 0.0942 + }, + { + "start": 7199.2, + "end": 7199.9, + "probability": 0.0936 + }, + { + "start": 7200.48, + "end": 7200.92, + "probability": 0.2733 + }, + { + "start": 7201.84, + "end": 7205.12, + "probability": 0.1245 + }, + { + "start": 7205.64, + "end": 7205.64, + "probability": 0.0804 + }, + { + "start": 7206.32, + "end": 7212.6, + "probability": 0.2464 + }, + { + "start": 7214.2, + "end": 7215.46, + "probability": 0.1262 + }, + { + "start": 7215.82, + "end": 7218.48, + "probability": 0.0481 + }, + { + "start": 7220.62, + "end": 7221.92, + "probability": 0.0907 + }, + { + "start": 7221.92, + "end": 7222.5, + "probability": 0.2604 + }, + { + "start": 7222.52, + "end": 7225.21, + "probability": 0.0984 + }, + { + "start": 7225.76, + "end": 7225.9, + "probability": 0.1838 + }, + { + "start": 7226.32, + "end": 7226.96, + "probability": 0.0335 + }, + { + "start": 7227.24, + "end": 7228.62, + "probability": 0.2255 + }, + { + "start": 7228.76, + "end": 7229.15, + "probability": 0.0097 + }, + { + "start": 7229.74, + "end": 7230.0, + "probability": 0.0297 + }, + { + "start": 7232.6, + "end": 7235.24, + "probability": 0.0041 + }, + { + "start": 7235.24, + "end": 7238.75, + "probability": 0.124 + }, + { + "start": 7239.84, + "end": 7241.44, + "probability": 0.2533 + }, + { + "start": 7241.44, + "end": 7243.81, + "probability": 0.0616 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.0, + "end": 7266.0, + "probability": 0.0 + }, + { + "start": 7266.4, + "end": 7266.4, + "probability": 0.0226 + }, + { + "start": 7266.4, + "end": 7268.3, + "probability": 0.0548 + }, + { + "start": 7268.3, + "end": 7268.3, + "probability": 0.0974 + }, + { + "start": 7268.3, + "end": 7268.5, + "probability": 0.2694 + }, + { + "start": 7268.84, + "end": 7269.24, + "probability": 0.1137 + }, + { + "start": 7271.96, + "end": 7273.26, + "probability": 0.0415 + }, + { + "start": 7274.82, + "end": 7275.87, + "probability": 0.3536 + }, + { + "start": 7276.42, + "end": 7277.26, + "probability": 0.2435 + }, + { + "start": 7279.17, + "end": 7281.01, + "probability": 0.278 + }, + { + "start": 7281.66, + "end": 7281.66, + "probability": 0.2822 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.0, + "end": 7397.0, + "probability": 0.0 + }, + { + "start": 7397.86, + "end": 7399.72, + "probability": 0.1458 + }, + { + "start": 7400.0, + "end": 7400.98, + "probability": 0.1905 + }, + { + "start": 7402.74, + "end": 7405.99, + "probability": 0.0591 + }, + { + "start": 7407.38, + "end": 7412.1, + "probability": 0.043 + }, + { + "start": 7412.64, + "end": 7414.78, + "probability": 0.0504 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.0, + "end": 7524.0, + "probability": 0.0 + }, + { + "start": 7524.08, + "end": 7524.14, + "probability": 0.0877 + }, + { + "start": 7524.14, + "end": 7524.88, + "probability": 0.4531 + }, + { + "start": 7524.9, + "end": 7525.48, + "probability": 0.3806 + }, + { + "start": 7525.58, + "end": 7527.42, + "probability": 0.7865 + }, + { + "start": 7545.92, + "end": 7547.24, + "probability": 0.8047 + }, + { + "start": 7547.94, + "end": 7549.3, + "probability": 0.732 + }, + { + "start": 7550.64, + "end": 7554.52, + "probability": 0.9773 + }, + { + "start": 7554.52, + "end": 7557.92, + "probability": 0.9981 + }, + { + "start": 7558.96, + "end": 7565.84, + "probability": 0.9956 + }, + { + "start": 7566.5, + "end": 7574.34, + "probability": 0.9253 + }, + { + "start": 7575.38, + "end": 7578.18, + "probability": 0.8491 + }, + { + "start": 7578.42, + "end": 7578.94, + "probability": 0.8008 + }, + { + "start": 7579.2, + "end": 7580.24, + "probability": 0.9354 + }, + { + "start": 7580.44, + "end": 7581.44, + "probability": 0.7925 + }, + { + "start": 7581.64, + "end": 7583.26, + "probability": 0.8931 + }, + { + "start": 7584.32, + "end": 7586.52, + "probability": 0.8301 + }, + { + "start": 7586.76, + "end": 7590.2, + "probability": 0.9374 + }, + { + "start": 7590.82, + "end": 7596.02, + "probability": 0.9562 + }, + { + "start": 7596.02, + "end": 7602.0, + "probability": 0.8874 + }, + { + "start": 7603.36, + "end": 7604.48, + "probability": 0.767 + }, + { + "start": 7604.68, + "end": 7608.88, + "probability": 0.9715 + }, + { + "start": 7608.92, + "end": 7609.76, + "probability": 0.9339 + }, + { + "start": 7610.48, + "end": 7612.66, + "probability": 0.9946 + }, + { + "start": 7612.78, + "end": 7613.52, + "probability": 0.9276 + }, + { + "start": 7613.62, + "end": 7615.52, + "probability": 0.7576 + }, + { + "start": 7615.72, + "end": 7616.34, + "probability": 0.7011 + }, + { + "start": 7616.72, + "end": 7620.08, + "probability": 0.8134 + }, + { + "start": 7620.6, + "end": 7622.5, + "probability": 0.9965 + }, + { + "start": 7623.24, + "end": 7627.62, + "probability": 0.8625 + }, + { + "start": 7627.82, + "end": 7633.78, + "probability": 0.878 + }, + { + "start": 7634.32, + "end": 7637.38, + "probability": 0.9297 + }, + { + "start": 7637.62, + "end": 7639.08, + "probability": 0.4047 + }, + { + "start": 7639.56, + "end": 7642.5, + "probability": 0.9967 + }, + { + "start": 7643.64, + "end": 7644.84, + "probability": 0.7128 + }, + { + "start": 7645.04, + "end": 7645.86, + "probability": 0.9124 + }, + { + "start": 7645.94, + "end": 7648.02, + "probability": 0.7541 + }, + { + "start": 7648.84, + "end": 7650.96, + "probability": 0.7859 + }, + { + "start": 7651.98, + "end": 7657.66, + "probability": 0.9754 + }, + { + "start": 7658.22, + "end": 7659.66, + "probability": 0.6717 + }, + { + "start": 7660.16, + "end": 7667.84, + "probability": 0.9246 + }, + { + "start": 7668.38, + "end": 7669.82, + "probability": 0.9072 + }, + { + "start": 7670.06, + "end": 7671.18, + "probability": 0.7609 + }, + { + "start": 7671.68, + "end": 7672.68, + "probability": 0.9312 + }, + { + "start": 7672.88, + "end": 7677.46, + "probability": 0.8399 + }, + { + "start": 7678.08, + "end": 7681.02, + "probability": 0.938 + }, + { + "start": 7681.62, + "end": 7688.26, + "probability": 0.9971 + }, + { + "start": 7688.48, + "end": 7689.34, + "probability": 0.9119 + }, + { + "start": 7689.5, + "end": 7690.68, + "probability": 0.996 + }, + { + "start": 7690.78, + "end": 7691.6, + "probability": 0.7686 + }, + { + "start": 7691.98, + "end": 7692.22, + "probability": 0.5498 + }, + { + "start": 7692.7, + "end": 7693.92, + "probability": 0.9242 + }, + { + "start": 7694.28, + "end": 7695.12, + "probability": 0.9524 + }, + { + "start": 7695.22, + "end": 7696.81, + "probability": 0.9526 + }, + { + "start": 7697.46, + "end": 7701.88, + "probability": 0.9903 + }, + { + "start": 7701.88, + "end": 7706.88, + "probability": 0.9883 + }, + { + "start": 7707.42, + "end": 7711.58, + "probability": 0.9815 + }, + { + "start": 7711.78, + "end": 7713.46, + "probability": 0.9609 + }, + { + "start": 7714.4, + "end": 7718.68, + "probability": 0.9767 + }, + { + "start": 7718.82, + "end": 7719.82, + "probability": 0.8824 + }, + { + "start": 7719.98, + "end": 7723.82, + "probability": 0.9943 + }, + { + "start": 7723.94, + "end": 7725.04, + "probability": 0.9836 + }, + { + "start": 7725.28, + "end": 7728.84, + "probability": 0.9703 + }, + { + "start": 7728.88, + "end": 7729.94, + "probability": 0.7556 + }, + { + "start": 7730.52, + "end": 7733.66, + "probability": 0.8685 + }, + { + "start": 7734.32, + "end": 7739.38, + "probability": 0.9552 + }, + { + "start": 7740.04, + "end": 7746.64, + "probability": 0.9587 + }, + { + "start": 7746.66, + "end": 7748.76, + "probability": 0.703 + }, + { + "start": 7748.92, + "end": 7750.12, + "probability": 0.7924 + }, + { + "start": 7751.04, + "end": 7754.12, + "probability": 0.8245 + }, + { + "start": 7771.12, + "end": 7772.16, + "probability": 0.95 + }, + { + "start": 7773.14, + "end": 7776.6, + "probability": 0.6565 + }, + { + "start": 7779.26, + "end": 7783.1, + "probability": 0.9165 + }, + { + "start": 7784.97, + "end": 7785.04, + "probability": 0.3323 + }, + { + "start": 7785.04, + "end": 7785.52, + "probability": 0.7329 + }, + { + "start": 7786.72, + "end": 7791.0, + "probability": 0.5929 + }, + { + "start": 7791.86, + "end": 7792.76, + "probability": 0.024 + }, + { + "start": 7792.76, + "end": 7792.76, + "probability": 0.0116 + }, + { + "start": 7792.76, + "end": 7796.66, + "probability": 0.3584 + }, + { + "start": 7796.82, + "end": 7798.12, + "probability": 0.2167 + }, + { + "start": 7798.62, + "end": 7801.92, + "probability": 0.7299 + }, + { + "start": 7802.36, + "end": 7802.38, + "probability": 0.042 + }, + { + "start": 7802.38, + "end": 7804.7, + "probability": 0.828 + }, + { + "start": 7804.78, + "end": 7808.82, + "probability": 0.975 + }, + { + "start": 7809.08, + "end": 7812.06, + "probability": 0.914 + }, + { + "start": 7812.66, + "end": 7817.32, + "probability": 0.964 + }, + { + "start": 7818.12, + "end": 7820.26, + "probability": 0.9851 + }, + { + "start": 7821.04, + "end": 7825.16, + "probability": 0.9474 + }, + { + "start": 7826.75, + "end": 7832.08, + "probability": 0.9743 + }, + { + "start": 7832.52, + "end": 7843.74, + "probability": 0.9917 + }, + { + "start": 7845.36, + "end": 7851.22, + "probability": 0.8788 + }, + { + "start": 7851.28, + "end": 7851.98, + "probability": 0.7311 + }, + { + "start": 7852.34, + "end": 7856.3, + "probability": 0.8901 + }, + { + "start": 7856.88, + "end": 7860.5, + "probability": 0.9085 + }, + { + "start": 7860.58, + "end": 7868.12, + "probability": 0.9976 + }, + { + "start": 7868.84, + "end": 7871.52, + "probability": 0.9779 + }, + { + "start": 7871.58, + "end": 7872.6, + "probability": 0.9956 + }, + { + "start": 7873.52, + "end": 7874.76, + "probability": 0.9963 + }, + { + "start": 7875.18, + "end": 7882.16, + "probability": 0.6697 + }, + { + "start": 7882.5, + "end": 7886.36, + "probability": 0.7977 + }, + { + "start": 7888.0, + "end": 7891.82, + "probability": 0.4474 + }, + { + "start": 7895.46, + "end": 7902.18, + "probability": 0.8713 + }, + { + "start": 7902.28, + "end": 7905.1, + "probability": 0.7843 + }, + { + "start": 7906.04, + "end": 7908.06, + "probability": 0.9766 + }, + { + "start": 7910.0, + "end": 7911.28, + "probability": 0.9113 + }, + { + "start": 7911.7, + "end": 7915.08, + "probability": 0.8653 + }, + { + "start": 7916.26, + "end": 7916.88, + "probability": 0.9267 + }, + { + "start": 7917.64, + "end": 7922.8, + "probability": 0.9744 + }, + { + "start": 7923.82, + "end": 7927.0, + "probability": 0.9946 + }, + { + "start": 7927.68, + "end": 7932.03, + "probability": 0.8941 + }, + { + "start": 7932.22, + "end": 7932.99, + "probability": 0.2867 + }, + { + "start": 7934.14, + "end": 7937.83, + "probability": 0.8202 + }, + { + "start": 7938.1, + "end": 7940.78, + "probability": 0.5571 + }, + { + "start": 7941.54, + "end": 7942.54, + "probability": 0.7118 + }, + { + "start": 7942.94, + "end": 7943.22, + "probability": 0.73 + }, + { + "start": 7946.52, + "end": 7948.96, + "probability": 0.8079 + }, + { + "start": 7949.8, + "end": 7951.62, + "probability": 0.6449 + }, + { + "start": 7951.82, + "end": 7952.2, + "probability": 0.3942 + }, + { + "start": 7953.58, + "end": 7954.54, + "probability": 0.2557 + }, + { + "start": 7970.58, + "end": 7970.8, + "probability": 0.144 + }, + { + "start": 7970.88, + "end": 7973.78, + "probability": 0.527 + }, + { + "start": 7974.94, + "end": 7976.78, + "probability": 0.9771 + }, + { + "start": 7978.1, + "end": 7978.4, + "probability": 0.5213 + }, + { + "start": 7979.8, + "end": 7980.68, + "probability": 0.8866 + }, + { + "start": 7981.66, + "end": 7982.54, + "probability": 0.8748 + }, + { + "start": 7983.5, + "end": 7986.38, + "probability": 0.9866 + }, + { + "start": 7987.3, + "end": 7988.5, + "probability": 0.8694 + }, + { + "start": 7989.18, + "end": 7991.62, + "probability": 0.8887 + }, + { + "start": 7992.62, + "end": 7994.13, + "probability": 0.9275 + }, + { + "start": 7996.84, + "end": 7996.84, + "probability": 0.0973 + }, + { + "start": 7996.84, + "end": 7996.84, + "probability": 0.2399 + }, + { + "start": 7996.84, + "end": 7998.18, + "probability": 0.9232 + }, + { + "start": 7999.28, + "end": 7999.58, + "probability": 0.4598 + }, + { + "start": 7999.58, + "end": 8001.54, + "probability": 0.5731 + }, + { + "start": 8001.54, + "end": 8002.54, + "probability": 0.6664 + }, + { + "start": 8002.92, + "end": 8007.4, + "probability": 0.6019 + }, + { + "start": 8007.6, + "end": 8008.11, + "probability": 0.7786 + }, + { + "start": 8008.9, + "end": 8018.38, + "probability": 0.7106 + }, + { + "start": 8018.76, + "end": 8021.2, + "probability": 0.8655 + }, + { + "start": 8021.62, + "end": 8023.2, + "probability": 0.6642 + }, + { + "start": 8024.08, + "end": 8025.54, + "probability": 0.7886 + }, + { + "start": 8025.94, + "end": 8028.58, + "probability": 0.9414 + }, + { + "start": 8029.2, + "end": 8030.74, + "probability": 0.3656 + }, + { + "start": 8030.74, + "end": 8032.96, + "probability": 0.41 + }, + { + "start": 8033.12, + "end": 8034.95, + "probability": 0.5784 + }, + { + "start": 8035.22, + "end": 8039.22, + "probability": 0.1813 + }, + { + "start": 8041.38, + "end": 8046.58, + "probability": 0.2073 + }, + { + "start": 8046.92, + "end": 8047.34, + "probability": 0.0615 + }, + { + "start": 8049.58, + "end": 8053.26, + "probability": 0.3462 + }, + { + "start": 8054.14, + "end": 8056.07, + "probability": 0.047 + }, + { + "start": 8058.02, + "end": 8058.3, + "probability": 0.2227 + }, + { + "start": 8058.38, + "end": 8061.48, + "probability": 0.287 + }, + { + "start": 8061.48, + "end": 8062.62, + "probability": 0.1245 + }, + { + "start": 8066.54, + "end": 8069.36, + "probability": 0.4038 + }, + { + "start": 8069.5, + "end": 8072.06, + "probability": 0.1911 + }, + { + "start": 8072.45, + "end": 8072.54, + "probability": 0.0118 + }, + { + "start": 8072.54, + "end": 8073.58, + "probability": 0.1333 + }, + { + "start": 8074.28, + "end": 8074.92, + "probability": 0.3892 + }, + { + "start": 8076.39, + "end": 8080.66, + "probability": 0.2171 + }, + { + "start": 8093.32, + "end": 8097.54, + "probability": 0.2037 + }, + { + "start": 8097.94, + "end": 8099.22, + "probability": 0.1691 + }, + { + "start": 8099.22, + "end": 8099.58, + "probability": 0.0131 + }, + { + "start": 8099.62, + "end": 8099.82, + "probability": 0.1254 + }, + { + "start": 8099.82, + "end": 8100.78, + "probability": 0.5468 + }, + { + "start": 8100.84, + "end": 8101.22, + "probability": 0.0908 + }, + { + "start": 8101.22, + "end": 8101.38, + "probability": 0.1311 + }, + { + "start": 8101.4, + "end": 8101.98, + "probability": 0.1093 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.0, + "end": 8102.0, + "probability": 0.0 + }, + { + "start": 8102.26, + "end": 8102.54, + "probability": 0.0614 + }, + { + "start": 8102.54, + "end": 8103.14, + "probability": 0.1378 + }, + { + "start": 8103.8, + "end": 8104.34, + "probability": 0.3026 + }, + { + "start": 8104.34, + "end": 8113.36, + "probability": 0.9908 + }, + { + "start": 8114.3, + "end": 8116.46, + "probability": 0.8768 + }, + { + "start": 8117.56, + "end": 8123.24, + "probability": 0.9539 + }, + { + "start": 8123.3, + "end": 8123.3, + "probability": 0.0829 + }, + { + "start": 8123.3, + "end": 8123.3, + "probability": 0.2729 + }, + { + "start": 8123.3, + "end": 8123.34, + "probability": 0.1099 + }, + { + "start": 8123.34, + "end": 8123.44, + "probability": 0.1745 + }, + { + "start": 8123.44, + "end": 8123.86, + "probability": 0.4622 + }, + { + "start": 8124.12, + "end": 8126.72, + "probability": 0.7721 + }, + { + "start": 8126.86, + "end": 8128.9, + "probability": 0.1608 + }, + { + "start": 8128.9, + "end": 8128.96, + "probability": 0.1002 + }, + { + "start": 8128.96, + "end": 8128.96, + "probability": 0.1824 + }, + { + "start": 8128.96, + "end": 8128.96, + "probability": 0.2987 + }, + { + "start": 8128.96, + "end": 8128.96, + "probability": 0.0333 + }, + { + "start": 8128.96, + "end": 8132.92, + "probability": 0.916 + }, + { + "start": 8133.1, + "end": 8138.2, + "probability": 0.8306 + }, + { + "start": 8139.04, + "end": 8139.7, + "probability": 0.2827 + }, + { + "start": 8139.98, + "end": 8140.02, + "probability": 0.2766 + }, + { + "start": 8140.02, + "end": 8144.04, + "probability": 0.7401 + }, + { + "start": 8144.4, + "end": 8144.52, + "probability": 0.2982 + }, + { + "start": 8144.52, + "end": 8144.68, + "probability": 0.5682 + }, + { + "start": 8144.96, + "end": 8148.02, + "probability": 0.5661 + }, + { + "start": 8148.06, + "end": 8151.84, + "probability": 0.6169 + }, + { + "start": 8151.92, + "end": 8152.06, + "probability": 0.3782 + }, + { + "start": 8152.06, + "end": 8152.23, + "probability": 0.2997 + }, + { + "start": 8153.24, + "end": 8156.0, + "probability": 0.2383 + }, + { + "start": 8156.46, + "end": 8159.44, + "probability": 0.5032 + }, + { + "start": 8160.46, + "end": 8160.98, + "probability": 0.2881 + }, + { + "start": 8161.04, + "end": 8163.72, + "probability": 0.7291 + }, + { + "start": 8163.88, + "end": 8164.58, + "probability": 0.3784 + }, + { + "start": 8164.7, + "end": 8164.8, + "probability": 0.6607 + }, + { + "start": 8164.8, + "end": 8166.3, + "probability": 0.8486 + }, + { + "start": 8166.52, + "end": 8167.28, + "probability": 0.154 + }, + { + "start": 8167.28, + "end": 8168.1, + "probability": 0.716 + }, + { + "start": 8168.24, + "end": 8170.02, + "probability": 0.4634 + }, + { + "start": 8170.02, + "end": 8172.72, + "probability": 0.6276 + }, + { + "start": 8173.4, + "end": 8174.52, + "probability": 0.7648 + }, + { + "start": 8174.72, + "end": 8177.62, + "probability": 0.8219 + }, + { + "start": 8178.9, + "end": 8179.3, + "probability": 0.0704 + }, + { + "start": 8179.3, + "end": 8180.9, + "probability": 0.4825 + }, + { + "start": 8180.9, + "end": 8181.76, + "probability": 0.8696 + }, + { + "start": 8181.78, + "end": 8184.26, + "probability": 0.1673 + }, + { + "start": 8185.24, + "end": 8186.56, + "probability": 0.3836 + }, + { + "start": 8187.54, + "end": 8188.94, + "probability": 0.5142 + }, + { + "start": 8189.08, + "end": 8189.32, + "probability": 0.2912 + }, + { + "start": 8189.32, + "end": 8190.2, + "probability": 0.4548 + }, + { + "start": 8190.34, + "end": 8191.62, + "probability": 0.4011 + }, + { + "start": 8192.1, + "end": 8192.72, + "probability": 0.7538 + }, + { + "start": 8192.74, + "end": 8193.36, + "probability": 0.2861 + }, + { + "start": 8193.76, + "end": 8194.18, + "probability": 0.3869 + }, + { + "start": 8194.3, + "end": 8195.02, + "probability": 0.5456 + }, + { + "start": 8196.62, + "end": 8197.96, + "probability": 0.2082 + }, + { + "start": 8197.96, + "end": 8198.02, + "probability": 0.0093 + }, + { + "start": 8199.32, + "end": 8199.48, + "probability": 0.0855 + }, + { + "start": 8203.48, + "end": 8206.06, + "probability": 0.0304 + }, + { + "start": 8206.06, + "end": 8208.85, + "probability": 0.0846 + }, + { + "start": 8213.98, + "end": 8215.14, + "probability": 0.0671 + }, + { + "start": 8215.98, + "end": 8217.08, + "probability": 0.1683 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.0, + "end": 8299.0, + "probability": 0.0 + }, + { + "start": 8299.79, + "end": 8300.74, + "probability": 0.4599 + }, + { + "start": 8310.74, + "end": 8316.78, + "probability": 0.7397 + }, + { + "start": 8317.98, + "end": 8322.58, + "probability": 0.9946 + }, + { + "start": 8322.72, + "end": 8327.98, + "probability": 0.9863 + }, + { + "start": 8328.14, + "end": 8329.02, + "probability": 0.7848 + }, + { + "start": 8332.32, + "end": 8336.74, + "probability": 0.9908 + }, + { + "start": 8338.32, + "end": 8340.54, + "probability": 0.6781 + }, + { + "start": 8341.86, + "end": 8344.04, + "probability": 0.8137 + }, + { + "start": 8345.1, + "end": 8348.18, + "probability": 0.9535 + }, + { + "start": 8349.24, + "end": 8350.8, + "probability": 0.7403 + }, + { + "start": 8352.24, + "end": 8357.08, + "probability": 0.9289 + }, + { + "start": 8357.2, + "end": 8360.58, + "probability": 0.8606 + }, + { + "start": 8362.46, + "end": 8364.14, + "probability": 0.6226 + }, + { + "start": 8365.1, + "end": 8366.78, + "probability": 0.5601 + }, + { + "start": 8366.8, + "end": 8368.18, + "probability": 0.99 + }, + { + "start": 8368.98, + "end": 8369.66, + "probability": 0.3575 + }, + { + "start": 8369.66, + "end": 8370.98, + "probability": 0.8594 + }, + { + "start": 8372.1, + "end": 8376.62, + "probability": 0.807 + }, + { + "start": 8376.86, + "end": 8377.66, + "probability": 0.6359 + }, + { + "start": 8379.98, + "end": 8382.04, + "probability": 0.962 + }, + { + "start": 8383.14, + "end": 8385.52, + "probability": 0.9932 + }, + { + "start": 8386.9, + "end": 8391.06, + "probability": 0.9877 + }, + { + "start": 8391.74, + "end": 8392.88, + "probability": 0.998 + }, + { + "start": 8393.88, + "end": 8395.36, + "probability": 0.9396 + }, + { + "start": 8396.16, + "end": 8397.78, + "probability": 0.6678 + }, + { + "start": 8399.8, + "end": 8400.56, + "probability": 0.638 + }, + { + "start": 8401.24, + "end": 8405.49, + "probability": 0.9354 + }, + { + "start": 8406.68, + "end": 8407.34, + "probability": 0.8499 + }, + { + "start": 8408.42, + "end": 8411.64, + "probability": 0.9586 + }, + { + "start": 8413.0, + "end": 8416.78, + "probability": 0.994 + }, + { + "start": 8418.18, + "end": 8421.8, + "probability": 0.9875 + }, + { + "start": 8422.02, + "end": 8422.74, + "probability": 0.849 + }, + { + "start": 8423.54, + "end": 8429.08, + "probability": 0.7922 + }, + { + "start": 8430.62, + "end": 8432.04, + "probability": 0.7163 + }, + { + "start": 8432.68, + "end": 8433.92, + "probability": 0.2509 + }, + { + "start": 8434.02, + "end": 8439.56, + "probability": 0.9951 + }, + { + "start": 8440.34, + "end": 8442.48, + "probability": 0.9238 + }, + { + "start": 8442.62, + "end": 8443.58, + "probability": 0.9932 + }, + { + "start": 8456.5, + "end": 8460.95, + "probability": 0.9954 + }, + { + "start": 8461.54, + "end": 8466.08, + "probability": 0.9002 + }, + { + "start": 8466.9, + "end": 8469.08, + "probability": 0.9548 + }, + { + "start": 8469.98, + "end": 8473.0, + "probability": 0.9626 + }, + { + "start": 8473.8, + "end": 8475.18, + "probability": 0.9939 + }, + { + "start": 8476.28, + "end": 8482.02, + "probability": 0.9668 + }, + { + "start": 8482.84, + "end": 8485.96, + "probability": 0.9872 + }, + { + "start": 8486.0, + "end": 8491.28, + "probability": 0.9583 + }, + { + "start": 8491.36, + "end": 8493.88, + "probability": 0.9864 + }, + { + "start": 8494.86, + "end": 8496.3, + "probability": 0.598 + }, + { + "start": 8496.36, + "end": 8501.0, + "probability": 0.9692 + }, + { + "start": 8501.52, + "end": 8504.52, + "probability": 0.9858 + }, + { + "start": 8505.86, + "end": 8508.1, + "probability": 0.999 + }, + { + "start": 8510.78, + "end": 8512.32, + "probability": 0.8636 + }, + { + "start": 8512.42, + "end": 8513.9, + "probability": 0.9973 + }, + { + "start": 8514.18, + "end": 8515.58, + "probability": 0.7745 + }, + { + "start": 8516.18, + "end": 8517.9, + "probability": 0.9433 + }, + { + "start": 8517.98, + "end": 8520.52, + "probability": 0.9885 + }, + { + "start": 8520.78, + "end": 8520.96, + "probability": 0.7183 + }, + { + "start": 8531.06, + "end": 8533.22, + "probability": 0.6751 + }, + { + "start": 8534.74, + "end": 8539.84, + "probability": 0.9031 + }, + { + "start": 8544.38, + "end": 8545.24, + "probability": 0.8238 + }, + { + "start": 8557.64, + "end": 8558.62, + "probability": 0.5492 + }, + { + "start": 8559.34, + "end": 8560.42, + "probability": 0.6588 + }, + { + "start": 8563.16, + "end": 8564.8, + "probability": 0.9971 + }, + { + "start": 8565.72, + "end": 8568.68, + "probability": 0.9578 + }, + { + "start": 8570.98, + "end": 8575.98, + "probability": 0.9927 + }, + { + "start": 8576.9, + "end": 8581.2, + "probability": 0.998 + }, + { + "start": 8581.34, + "end": 8582.72, + "probability": 0.8044 + }, + { + "start": 8583.36, + "end": 8585.34, + "probability": 0.8147 + }, + { + "start": 8586.1, + "end": 8590.4, + "probability": 0.9985 + }, + { + "start": 8590.92, + "end": 8592.01, + "probability": 0.9961 + }, + { + "start": 8592.9, + "end": 8596.2, + "probability": 0.9751 + }, + { + "start": 8597.2, + "end": 8598.94, + "probability": 0.8763 + }, + { + "start": 8600.7, + "end": 8604.04, + "probability": 0.9922 + }, + { + "start": 8604.64, + "end": 8605.19, + "probability": 0.7389 + }, + { + "start": 8606.0, + "end": 8606.9, + "probability": 0.9653 + }, + { + "start": 8607.68, + "end": 8609.32, + "probability": 0.9946 + }, + { + "start": 8610.28, + "end": 8612.1, + "probability": 0.9514 + }, + { + "start": 8612.8, + "end": 8613.36, + "probability": 0.7727 + }, + { + "start": 8614.2, + "end": 8615.1, + "probability": 0.6996 + }, + { + "start": 8616.02, + "end": 8617.44, + "probability": 0.6573 + }, + { + "start": 8618.04, + "end": 8622.86, + "probability": 0.9837 + }, + { + "start": 8623.04, + "end": 8624.42, + "probability": 0.9833 + }, + { + "start": 8624.98, + "end": 8626.98, + "probability": 0.7774 + }, + { + "start": 8627.62, + "end": 8628.2, + "probability": 0.6265 + }, + { + "start": 8628.96, + "end": 8633.26, + "probability": 0.9966 + }, + { + "start": 8633.78, + "end": 8635.36, + "probability": 0.9021 + }, + { + "start": 8635.86, + "end": 8636.46, + "probability": 0.5111 + }, + { + "start": 8636.84, + "end": 8640.64, + "probability": 0.9575 + }, + { + "start": 8641.16, + "end": 8641.92, + "probability": 0.8648 + }, + { + "start": 8642.48, + "end": 8643.62, + "probability": 0.9924 + }, + { + "start": 8646.77, + "end": 8650.46, + "probability": 0.9165 + }, + { + "start": 8651.28, + "end": 8652.6, + "probability": 0.9613 + }, + { + "start": 8653.42, + "end": 8657.1, + "probability": 0.8957 + }, + { + "start": 8657.16, + "end": 8658.14, + "probability": 0.4141 + }, + { + "start": 8658.7, + "end": 8661.8, + "probability": 0.9265 + }, + { + "start": 8662.3, + "end": 8664.34, + "probability": 0.8927 + }, + { + "start": 8664.42, + "end": 8664.92, + "probability": 0.8333 + }, + { + "start": 8665.58, + "end": 8666.5, + "probability": 0.7209 + }, + { + "start": 8666.64, + "end": 8669.76, + "probability": 0.996 + }, + { + "start": 8670.34, + "end": 8674.71, + "probability": 0.9954 + }, + { + "start": 8676.06, + "end": 8680.0, + "probability": 0.9666 + }, + { + "start": 8680.78, + "end": 8684.4, + "probability": 0.9772 + }, + { + "start": 8685.2, + "end": 8690.64, + "probability": 0.8197 + }, + { + "start": 8691.32, + "end": 8693.54, + "probability": 0.6626 + }, + { + "start": 8694.3, + "end": 8697.94, + "probability": 0.936 + }, + { + "start": 8698.72, + "end": 8700.38, + "probability": 0.8222 + }, + { + "start": 8701.22, + "end": 8706.64, + "probability": 0.9424 + }, + { + "start": 8707.5, + "end": 8708.86, + "probability": 0.5985 + }, + { + "start": 8709.47, + "end": 8713.62, + "probability": 0.9966 + }, + { + "start": 8714.2, + "end": 8715.66, + "probability": 0.9222 + }, + { + "start": 8716.22, + "end": 8717.34, + "probability": 0.8841 + }, + { + "start": 8718.18, + "end": 8719.64, + "probability": 0.6104 + }, + { + "start": 8720.56, + "end": 8726.76, + "probability": 0.9979 + }, + { + "start": 8727.16, + "end": 8728.02, + "probability": 0.5954 + }, + { + "start": 8728.44, + "end": 8730.74, + "probability": 0.0309 + }, + { + "start": 8731.72, + "end": 8734.12, + "probability": 0.9976 + }, + { + "start": 8734.12, + "end": 8735.28, + "probability": 0.9546 + }, + { + "start": 8737.64, + "end": 8741.62, + "probability": 0.9917 + }, + { + "start": 8746.8, + "end": 8748.34, + "probability": 0.6742 + }, + { + "start": 8749.38, + "end": 8752.18, + "probability": 0.5522 + }, + { + "start": 8752.18, + "end": 8753.79, + "probability": 0.8699 + }, + { + "start": 8757.12, + "end": 8761.84, + "probability": 0.9987 + }, + { + "start": 8762.16, + "end": 8762.32, + "probability": 0.1335 + }, + { + "start": 8763.54, + "end": 8765.68, + "probability": 0.1744 + }, + { + "start": 8777.34, + "end": 8779.08, + "probability": 0.6696 + }, + { + "start": 8780.04, + "end": 8780.16, + "probability": 0.0051 + }, + { + "start": 8793.24, + "end": 8793.58, + "probability": 0.3725 + }, + { + "start": 8793.58, + "end": 8797.8, + "probability": 0.6397 + }, + { + "start": 8798.4, + "end": 8802.95, + "probability": 0.9915 + }, + { + "start": 8805.45, + "end": 8810.08, + "probability": 0.7234 + }, + { + "start": 8813.46, + "end": 8814.26, + "probability": 0.845 + }, + { + "start": 8814.32, + "end": 8814.94, + "probability": 0.8364 + }, + { + "start": 8815.14, + "end": 8815.66, + "probability": 0.8845 + }, + { + "start": 8816.02, + "end": 8816.48, + "probability": 0.8882 + }, + { + "start": 8817.2, + "end": 8818.32, + "probability": 0.9041 + }, + { + "start": 8819.14, + "end": 8819.96, + "probability": 0.8115 + }, + { + "start": 8820.12, + "end": 8821.84, + "probability": 0.9917 + }, + { + "start": 8821.9, + "end": 8825.7, + "probability": 0.9857 + }, + { + "start": 8826.38, + "end": 8831.2, + "probability": 0.9941 + }, + { + "start": 8831.72, + "end": 8833.0, + "probability": 0.8665 + }, + { + "start": 8833.52, + "end": 8834.48, + "probability": 0.6916 + }, + { + "start": 8847.82, + "end": 8847.86, + "probability": 0.0645 + }, + { + "start": 8869.02, + "end": 8869.36, + "probability": 0.5044 + }, + { + "start": 8869.48, + "end": 8871.42, + "probability": 0.4948 + }, + { + "start": 8871.7, + "end": 8873.96, + "probability": 0.9722 + }, + { + "start": 8874.08, + "end": 8875.46, + "probability": 0.8725 + }, + { + "start": 8876.08, + "end": 8876.58, + "probability": 0.7633 + }, + { + "start": 8877.02, + "end": 8877.86, + "probability": 0.6679 + }, + { + "start": 8878.4, + "end": 8880.74, + "probability": 0.9272 + }, + { + "start": 8881.2, + "end": 8883.36, + "probability": 0.7443 + }, + { + "start": 8883.46, + "end": 8885.06, + "probability": 0.7492 + }, + { + "start": 8885.78, + "end": 8886.84, + "probability": 0.5455 + }, + { + "start": 8886.92, + "end": 8892.06, + "probability": 0.9652 + }, + { + "start": 8892.06, + "end": 8897.32, + "probability": 0.9858 + }, + { + "start": 8897.7, + "end": 8898.82, + "probability": 0.9563 + }, + { + "start": 8906.9, + "end": 8908.9, + "probability": 0.9858 + }, + { + "start": 8908.98, + "end": 8910.34, + "probability": 0.8031 + }, + { + "start": 8910.74, + "end": 8913.74, + "probability": 0.9865 + }, + { + "start": 8914.26, + "end": 8919.68, + "probability": 0.9927 + }, + { + "start": 8919.8, + "end": 8921.06, + "probability": 0.829 + }, + { + "start": 8921.44, + "end": 8923.94, + "probability": 0.9863 + }, + { + "start": 8924.54, + "end": 8925.96, + "probability": 0.933 + }, + { + "start": 8927.12, + "end": 8929.38, + "probability": 0.9401 + }, + { + "start": 8929.58, + "end": 8934.88, + "probability": 0.862 + }, + { + "start": 8936.48, + "end": 8941.06, + "probability": 0.9015 + }, + { + "start": 8941.66, + "end": 8943.48, + "probability": 0.9962 + }, + { + "start": 8943.6, + "end": 8944.58, + "probability": 0.9688 + }, + { + "start": 8944.72, + "end": 8947.26, + "probability": 0.9377 + }, + { + "start": 8947.68, + "end": 8949.34, + "probability": 0.9729 + }, + { + "start": 8950.22, + "end": 8951.7, + "probability": 0.7585 + }, + { + "start": 8955.94, + "end": 8962.46, + "probability": 0.9878 + }, + { + "start": 8963.04, + "end": 8965.18, + "probability": 0.4628 + }, + { + "start": 8965.76, + "end": 8965.88, + "probability": 0.2391 + }, + { + "start": 8965.88, + "end": 8967.0, + "probability": 0.6111 + }, + { + "start": 8967.06, + "end": 8967.16, + "probability": 0.1513 + }, + { + "start": 8968.38, + "end": 8972.48, + "probability": 0.6824 + }, + { + "start": 8972.56, + "end": 8973.08, + "probability": 0.6021 + }, + { + "start": 8973.28, + "end": 8976.08, + "probability": 0.6587 + }, + { + "start": 8976.58, + "end": 8976.58, + "probability": 0.1566 + }, + { + "start": 8976.58, + "end": 8978.24, + "probability": 0.7645 + }, + { + "start": 8978.34, + "end": 8979.7, + "probability": 0.9443 + }, + { + "start": 8980.28, + "end": 8982.02, + "probability": 0.9532 + }, + { + "start": 8982.04, + "end": 8983.52, + "probability": 0.9136 + }, + { + "start": 8983.92, + "end": 8986.92, + "probability": 0.8107 + }, + { + "start": 8987.12, + "end": 8988.8, + "probability": 0.838 + }, + { + "start": 8989.34, + "end": 8992.96, + "probability": 0.9643 + }, + { + "start": 8993.08, + "end": 8993.3, + "probability": 0.813 + }, + { + "start": 8995.28, + "end": 8996.78, + "probability": 0.9651 + }, + { + "start": 8996.8, + "end": 8997.66, + "probability": 0.8655 + }, + { + "start": 8998.1, + "end": 9001.36, + "probability": 0.9453 + }, + { + "start": 9001.54, + "end": 9005.42, + "probability": 0.9175 + }, + { + "start": 9006.1, + "end": 9007.64, + "probability": 0.8893 + }, + { + "start": 9008.78, + "end": 9010.78, + "probability": 0.8953 + }, + { + "start": 9020.6, + "end": 9023.28, + "probability": 0.7271 + }, + { + "start": 9042.68, + "end": 9045.3, + "probability": 0.5938 + }, + { + "start": 9046.04, + "end": 9046.28, + "probability": 0.803 + }, + { + "start": 9046.82, + "end": 9048.34, + "probability": 0.8325 + }, + { + "start": 9049.32, + "end": 9051.36, + "probability": 0.8232 + }, + { + "start": 9052.12, + "end": 9053.72, + "probability": 0.9531 + }, + { + "start": 9053.76, + "end": 9054.08, + "probability": 0.6575 + }, + { + "start": 9054.54, + "end": 9057.58, + "probability": 0.9976 + }, + { + "start": 9058.0, + "end": 9059.16, + "probability": 0.9115 + }, + { + "start": 9059.42, + "end": 9060.02, + "probability": 0.9692 + }, + { + "start": 9060.46, + "end": 9063.48, + "probability": 0.9857 + }, + { + "start": 9064.02, + "end": 9064.28, + "probability": 0.8276 + }, + { + "start": 9078.14, + "end": 9079.34, + "probability": 0.654 + }, + { + "start": 9079.96, + "end": 9083.2, + "probability": 0.8778 + }, + { + "start": 9095.5, + "end": 9095.86, + "probability": 0.2699 + }, + { + "start": 9096.64, + "end": 9099.22, + "probability": 0.299 + }, + { + "start": 9102.52, + "end": 9103.46, + "probability": 0.0292 + }, + { + "start": 9105.3, + "end": 9105.72, + "probability": 0.0201 + }, + { + "start": 9105.8, + "end": 9107.36, + "probability": 0.1194 + }, + { + "start": 9107.92, + "end": 9109.18, + "probability": 0.0117 + }, + { + "start": 9110.26, + "end": 9113.1, + "probability": 0.0332 + }, + { + "start": 9132.44, + "end": 9132.86, + "probability": 0.1642 + }, + { + "start": 9144.0, + "end": 9145.19, + "probability": 0.677 + }, + { + "start": 9145.58, + "end": 9149.26, + "probability": 0.9427 + }, + { + "start": 9150.58, + "end": 9152.9, + "probability": 0.1997 + }, + { + "start": 9153.26, + "end": 9153.7, + "probability": 0.0801 + }, + { + "start": 9176.72, + "end": 9177.22, + "probability": 0.4621 + }, + { + "start": 9178.02, + "end": 9179.76, + "probability": 0.875 + }, + { + "start": 9180.32, + "end": 9182.08, + "probability": 0.9306 + }, + { + "start": 9182.86, + "end": 9185.96, + "probability": 0.999 + }, + { + "start": 9186.62, + "end": 9192.1, + "probability": 0.9801 + }, + { + "start": 9202.2, + "end": 9203.84, + "probability": 0.7144 + }, + { + "start": 9204.04, + "end": 9206.84, + "probability": 0.791 + }, + { + "start": 9208.6, + "end": 9208.9, + "probability": 0.4308 + }, + { + "start": 9232.4, + "end": 9233.48, + "probability": 0.4672 + }, + { + "start": 9233.82, + "end": 9234.86, + "probability": 0.0761 + }, + { + "start": 9234.86, + "end": 9235.86, + "probability": 0.7895 + }, + { + "start": 9236.12, + "end": 9236.96, + "probability": 0.5025 + }, + { + "start": 9237.02, + "end": 9237.88, + "probability": 0.8631 + }, + { + "start": 9237.98, + "end": 9238.68, + "probability": 0.6396 + }, + { + "start": 9238.76, + "end": 9240.68, + "probability": 0.7491 + }, + { + "start": 9241.52, + "end": 9244.34, + "probability": 0.9986 + }, + { + "start": 9244.4, + "end": 9249.42, + "probability": 0.9918 + }, + { + "start": 9262.66, + "end": 9264.0, + "probability": 0.6765 + }, + { + "start": 9264.2, + "end": 9266.64, + "probability": 0.8588 + }, + { + "start": 9267.1, + "end": 9267.24, + "probability": 0.0079 + }, + { + "start": 9303.13, + "end": 9306.88, + "probability": 0.833 + }, + { + "start": 9307.74, + "end": 9311.97, + "probability": 0.9977 + }, + { + "start": 9312.26, + "end": 9312.74, + "probability": 0.6693 + }, + { + "start": 9312.8, + "end": 9316.96, + "probability": 0.9807 + }, + { + "start": 9322.82, + "end": 9322.98, + "probability": 0.5766 + }, + { + "start": 9338.0, + "end": 9339.3, + "probability": 0.7197 + }, + { + "start": 9339.74, + "end": 9341.96, + "probability": 0.756 + }, + { + "start": 9342.16, + "end": 9346.8, + "probability": 0.9642 + }, + { + "start": 9347.6, + "end": 9349.94, + "probability": 0.8171 + }, + { + "start": 9350.8, + "end": 9355.22, + "probability": 0.874 + }, + { + "start": 9356.2, + "end": 9357.35, + "probability": 0.1648 + } + ], + "segments_count": 1995, + "words_count": 9436, + "avg_words_per_segment": 4.7298, + "avg_segment_duration": 1.859, + "avg_words_per_minute": 60.2005, + "plenum_id": "111988", + "duration": 9404.58, + "title": null, + "plenum_date": "2023-01-04" +} \ No newline at end of file