diff --git "a/122598/metadata.json" "b/122598/metadata.json" new file mode 100644--- /dev/null +++ "b/122598/metadata.json" @@ -0,0 +1,22607 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "122598", + "quality_score": 0.9421, + "per_segment_quality_scores": [ + { + "start": 105.06, + "end": 110.1, + "probability": 0.5709 + }, + { + "start": 110.62, + "end": 115.26, + "probability": 0.5876 + }, + { + "start": 116.1, + "end": 118.88, + "probability": 0.2323 + }, + { + "start": 123.4, + "end": 124.66, + "probability": 0.0303 + }, + { + "start": 124.66, + "end": 124.82, + "probability": 0.028 + }, + { + "start": 126.88, + "end": 128.48, + "probability": 0.1625 + }, + { + "start": 129.22, + "end": 129.32, + "probability": 0.0262 + }, + { + "start": 129.32, + "end": 132.94, + "probability": 0.4724 + }, + { + "start": 133.58, + "end": 138.34, + "probability": 0.0138 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.0, + "end": 140.0, + "probability": 0.0 + }, + { + "start": 140.16, + "end": 141.76, + "probability": 0.3128 + }, + { + "start": 146.16, + "end": 147.82, + "probability": 0.9193 + }, + { + "start": 147.92, + "end": 148.48, + "probability": 0.7452 + }, + { + "start": 148.6, + "end": 149.22, + "probability": 0.7076 + }, + { + "start": 149.36, + "end": 150.14, + "probability": 0.8705 + }, + { + "start": 150.68, + "end": 154.54, + "probability": 0.7846 + }, + { + "start": 155.03, + "end": 156.18, + "probability": 0.7886 + }, + { + "start": 156.18, + "end": 159.98, + "probability": 0.9501 + }, + { + "start": 159.98, + "end": 161.94, + "probability": 0.7034 + }, + { + "start": 161.94, + "end": 165.52, + "probability": 0.8953 + }, + { + "start": 167.14, + "end": 169.46, + "probability": 0.4216 + }, + { + "start": 170.38, + "end": 171.42, + "probability": 0.7712 + }, + { + "start": 171.52, + "end": 171.92, + "probability": 0.636 + }, + { + "start": 172.1, + "end": 173.24, + "probability": 0.8489 + }, + { + "start": 173.28, + "end": 174.34, + "probability": 0.7628 + }, + { + "start": 174.5, + "end": 178.4, + "probability": 0.9705 + }, + { + "start": 179.02, + "end": 183.92, + "probability": 0.9984 + }, + { + "start": 184.06, + "end": 185.02, + "probability": 0.9939 + }, + { + "start": 185.6, + "end": 187.56, + "probability": 0.9963 + }, + { + "start": 191.76, + "end": 192.88, + "probability": 0.831 + }, + { + "start": 195.44, + "end": 198.04, + "probability": 0.8299 + }, + { + "start": 198.9, + "end": 200.44, + "probability": 0.9334 + }, + { + "start": 200.58, + "end": 201.06, + "probability": 0.9089 + }, + { + "start": 214.44, + "end": 215.68, + "probability": 0.7443 + }, + { + "start": 215.76, + "end": 216.66, + "probability": 0.915 + }, + { + "start": 216.78, + "end": 220.1, + "probability": 0.9751 + }, + { + "start": 220.14, + "end": 225.64, + "probability": 0.794 + }, + { + "start": 225.72, + "end": 226.68, + "probability": 0.8779 + }, + { + "start": 227.52, + "end": 230.04, + "probability": 0.9918 + }, + { + "start": 231.12, + "end": 231.68, + "probability": 0.9998 + }, + { + "start": 232.28, + "end": 233.88, + "probability": 0.965 + }, + { + "start": 233.96, + "end": 234.55, + "probability": 0.4903 + }, + { + "start": 234.64, + "end": 236.02, + "probability": 0.9725 + }, + { + "start": 236.18, + "end": 237.46, + "probability": 0.8022 + }, + { + "start": 238.02, + "end": 240.28, + "probability": 0.5705 + }, + { + "start": 241.08, + "end": 243.16, + "probability": 0.8293 + }, + { + "start": 243.68, + "end": 247.48, + "probability": 0.9858 + }, + { + "start": 247.48, + "end": 251.12, + "probability": 0.9817 + }, + { + "start": 251.18, + "end": 251.34, + "probability": 0.7798 + }, + { + "start": 252.26, + "end": 252.9, + "probability": 0.5579 + }, + { + "start": 252.98, + "end": 255.02, + "probability": 0.6932 + }, + { + "start": 263.52, + "end": 264.38, + "probability": 0.6838 + }, + { + "start": 264.42, + "end": 267.48, + "probability": 0.45 + }, + { + "start": 267.58, + "end": 271.04, + "probability": 0.7544 + }, + { + "start": 271.1, + "end": 271.72, + "probability": 0.9542 + }, + { + "start": 271.78, + "end": 274.1, + "probability": 0.981 + }, + { + "start": 275.34, + "end": 277.62, + "probability": 0.95 + }, + { + "start": 277.66, + "end": 284.04, + "probability": 0.9452 + }, + { + "start": 284.32, + "end": 287.52, + "probability": 0.9737 + }, + { + "start": 287.58, + "end": 288.46, + "probability": 0.8023 + }, + { + "start": 288.88, + "end": 292.38, + "probability": 0.998 + }, + { + "start": 292.38, + "end": 296.06, + "probability": 0.9751 + }, + { + "start": 296.16, + "end": 302.22, + "probability": 0.9897 + }, + { + "start": 302.82, + "end": 306.32, + "probability": 0.9926 + }, + { + "start": 306.32, + "end": 311.32, + "probability": 0.9949 + }, + { + "start": 311.94, + "end": 312.18, + "probability": 0.6724 + }, + { + "start": 313.16, + "end": 313.88, + "probability": 0.4879 + }, + { + "start": 314.46, + "end": 316.92, + "probability": 0.8736 + }, + { + "start": 317.0, + "end": 317.46, + "probability": 0.5358 + }, + { + "start": 317.56, + "end": 319.2, + "probability": 0.7115 + }, + { + "start": 319.3, + "end": 319.74, + "probability": 0.9019 + }, + { + "start": 320.48, + "end": 323.88, + "probability": 0.8108 + }, + { + "start": 324.48, + "end": 328.56, + "probability": 0.9872 + }, + { + "start": 329.12, + "end": 333.44, + "probability": 0.839 + }, + { + "start": 333.92, + "end": 334.98, + "probability": 0.8102 + }, + { + "start": 335.12, + "end": 337.98, + "probability": 0.9985 + }, + { + "start": 338.74, + "end": 342.6, + "probability": 0.9501 + }, + { + "start": 343.36, + "end": 346.64, + "probability": 0.9748 + }, + { + "start": 347.32, + "end": 349.54, + "probability": 0.9015 + }, + { + "start": 349.9, + "end": 350.2, + "probability": 0.4978 + }, + { + "start": 350.32, + "end": 354.94, + "probability": 0.9905 + }, + { + "start": 355.08, + "end": 355.9, + "probability": 0.6423 + }, + { + "start": 356.04, + "end": 358.6, + "probability": 0.9869 + }, + { + "start": 358.8, + "end": 359.06, + "probability": 0.6172 + }, + { + "start": 359.72, + "end": 360.22, + "probability": 0.526 + }, + { + "start": 360.3, + "end": 362.04, + "probability": 0.9222 + }, + { + "start": 362.32, + "end": 363.1, + "probability": 0.4829 + }, + { + "start": 363.64, + "end": 365.52, + "probability": 0.9784 + }, + { + "start": 365.86, + "end": 369.22, + "probability": 0.7479 + }, + { + "start": 370.06, + "end": 371.1, + "probability": 0.7567 + }, + { + "start": 372.82, + "end": 374.88, + "probability": 0.9764 + }, + { + "start": 375.92, + "end": 380.48, + "probability": 0.9897 + }, + { + "start": 381.36, + "end": 384.36, + "probability": 0.9967 + }, + { + "start": 385.38, + "end": 387.94, + "probability": 0.9327 + }, + { + "start": 388.78, + "end": 389.74, + "probability": 0.8271 + }, + { + "start": 391.0, + "end": 392.48, + "probability": 0.8582 + }, + { + "start": 393.58, + "end": 397.14, + "probability": 0.9313 + }, + { + "start": 397.94, + "end": 400.04, + "probability": 0.9474 + }, + { + "start": 400.92, + "end": 401.98, + "probability": 0.8071 + }, + { + "start": 402.52, + "end": 408.02, + "probability": 0.9665 + }, + { + "start": 409.54, + "end": 410.3, + "probability": 0.4562 + }, + { + "start": 410.78, + "end": 414.26, + "probability": 0.9954 + }, + { + "start": 414.8, + "end": 415.44, + "probability": 0.9853 + }, + { + "start": 415.86, + "end": 417.46, + "probability": 0.5946 + }, + { + "start": 417.46, + "end": 422.01, + "probability": 0.9985 + }, + { + "start": 422.82, + "end": 428.56, + "probability": 0.9968 + }, + { + "start": 429.5, + "end": 430.38, + "probability": 0.9819 + }, + { + "start": 430.58, + "end": 431.42, + "probability": 0.7342 + }, + { + "start": 431.52, + "end": 434.04, + "probability": 0.9844 + }, + { + "start": 434.04, + "end": 437.72, + "probability": 0.9873 + }, + { + "start": 438.2, + "end": 438.44, + "probability": 0.642 + }, + { + "start": 438.92, + "end": 439.52, + "probability": 0.532 + }, + { + "start": 439.56, + "end": 440.98, + "probability": 0.9504 + }, + { + "start": 441.1, + "end": 442.64, + "probability": 0.9806 + }, + { + "start": 447.66, + "end": 449.24, + "probability": 0.6573 + }, + { + "start": 450.1, + "end": 455.08, + "probability": 0.9849 + }, + { + "start": 455.48, + "end": 456.98, + "probability": 0.8867 + }, + { + "start": 457.88, + "end": 460.26, + "probability": 0.9834 + }, + { + "start": 460.4, + "end": 462.06, + "probability": 0.929 + }, + { + "start": 462.24, + "end": 462.88, + "probability": 0.8084 + }, + { + "start": 463.74, + "end": 464.18, + "probability": 0.7718 + }, + { + "start": 465.7, + "end": 468.86, + "probability": 0.9068 + }, + { + "start": 469.62, + "end": 471.25, + "probability": 0.9932 + }, + { + "start": 471.4, + "end": 473.18, + "probability": 0.9686 + }, + { + "start": 473.86, + "end": 474.95, + "probability": 0.9452 + }, + { + "start": 475.68, + "end": 476.74, + "probability": 0.9847 + }, + { + "start": 476.8, + "end": 477.36, + "probability": 0.7505 + }, + { + "start": 477.5, + "end": 479.36, + "probability": 0.9775 + }, + { + "start": 479.9, + "end": 481.0, + "probability": 0.8271 + }, + { + "start": 481.08, + "end": 481.46, + "probability": 0.8269 + }, + { + "start": 483.22, + "end": 483.78, + "probability": 0.6078 + }, + { + "start": 483.92, + "end": 485.18, + "probability": 0.9854 + }, + { + "start": 485.24, + "end": 487.08, + "probability": 0.9612 + }, + { + "start": 495.2, + "end": 497.56, + "probability": 0.6914 + }, + { + "start": 498.46, + "end": 502.3, + "probability": 0.9196 + }, + { + "start": 503.1, + "end": 507.58, + "probability": 0.8741 + }, + { + "start": 510.43, + "end": 516.7, + "probability": 0.9613 + }, + { + "start": 517.68, + "end": 521.02, + "probability": 0.998 + }, + { + "start": 521.22, + "end": 523.02, + "probability": 0.9912 + }, + { + "start": 523.66, + "end": 525.48, + "probability": 0.8437 + }, + { + "start": 525.82, + "end": 527.27, + "probability": 0.8654 + }, + { + "start": 528.92, + "end": 539.64, + "probability": 0.9842 + }, + { + "start": 541.6, + "end": 543.12, + "probability": 0.8262 + }, + { + "start": 543.18, + "end": 548.86, + "probability": 0.9915 + }, + { + "start": 549.08, + "end": 551.56, + "probability": 0.9304 + }, + { + "start": 551.76, + "end": 553.76, + "probability": 0.9523 + }, + { + "start": 554.0, + "end": 555.9, + "probability": 0.9917 + }, + { + "start": 556.58, + "end": 557.26, + "probability": 0.691 + }, + { + "start": 557.36, + "end": 558.34, + "probability": 0.9429 + }, + { + "start": 558.9, + "end": 565.08, + "probability": 0.6525 + }, + { + "start": 565.64, + "end": 567.18, + "probability": 0.7661 + }, + { + "start": 567.96, + "end": 572.96, + "probability": 0.8598 + }, + { + "start": 573.78, + "end": 578.11, + "probability": 0.9605 + }, + { + "start": 579.28, + "end": 582.12, + "probability": 0.9715 + }, + { + "start": 582.28, + "end": 586.7, + "probability": 0.8227 + }, + { + "start": 587.36, + "end": 587.62, + "probability": 0.1702 + }, + { + "start": 587.7, + "end": 594.6, + "probability": 0.9464 + }, + { + "start": 595.8, + "end": 596.3, + "probability": 0.5269 + }, + { + "start": 596.46, + "end": 597.9, + "probability": 0.9647 + }, + { + "start": 597.96, + "end": 598.5, + "probability": 0.7714 + }, + { + "start": 598.6, + "end": 600.32, + "probability": 0.976 + }, + { + "start": 606.04, + "end": 606.8, + "probability": 0.5865 + }, + { + "start": 608.06, + "end": 611.72, + "probability": 0.8732 + }, + { + "start": 613.0, + "end": 617.86, + "probability": 0.9862 + }, + { + "start": 619.0, + "end": 623.18, + "probability": 0.9884 + }, + { + "start": 623.94, + "end": 626.18, + "probability": 0.9908 + }, + { + "start": 627.16, + "end": 631.54, + "probability": 0.984 + }, + { + "start": 631.54, + "end": 636.18, + "probability": 0.9912 + }, + { + "start": 637.1, + "end": 640.48, + "probability": 0.9954 + }, + { + "start": 640.66, + "end": 642.68, + "probability": 0.9836 + }, + { + "start": 643.38, + "end": 646.32, + "probability": 0.9635 + }, + { + "start": 646.5, + "end": 649.38, + "probability": 0.9532 + }, + { + "start": 650.02, + "end": 651.12, + "probability": 0.8322 + }, + { + "start": 651.34, + "end": 655.88, + "probability": 0.9927 + }, + { + "start": 655.88, + "end": 660.28, + "probability": 0.9759 + }, + { + "start": 660.86, + "end": 664.1, + "probability": 0.9836 + }, + { + "start": 664.14, + "end": 668.92, + "probability": 0.9907 + }, + { + "start": 669.86, + "end": 673.06, + "probability": 0.9841 + }, + { + "start": 673.06, + "end": 676.72, + "probability": 0.9426 + }, + { + "start": 677.36, + "end": 682.42, + "probability": 0.9741 + }, + { + "start": 682.84, + "end": 683.1, + "probability": 0.688 + }, + { + "start": 683.52, + "end": 683.74, + "probability": 0.3908 + }, + { + "start": 683.86, + "end": 685.34, + "probability": 0.9457 + }, + { + "start": 685.46, + "end": 685.96, + "probability": 0.705 + }, + { + "start": 686.0, + "end": 687.64, + "probability": 0.9708 + }, + { + "start": 688.98, + "end": 689.46, + "probability": 0.8358 + }, + { + "start": 691.3, + "end": 692.18, + "probability": 0.6011 + }, + { + "start": 692.32, + "end": 699.0, + "probability": 0.9988 + }, + { + "start": 699.62, + "end": 702.76, + "probability": 0.9196 + }, + { + "start": 703.2, + "end": 710.1, + "probability": 0.9831 + }, + { + "start": 710.64, + "end": 713.9, + "probability": 0.9634 + }, + { + "start": 714.68, + "end": 717.72, + "probability": 0.8056 + }, + { + "start": 718.32, + "end": 722.14, + "probability": 0.7701 + }, + { + "start": 722.62, + "end": 724.64, + "probability": 0.9539 + }, + { + "start": 725.18, + "end": 727.64, + "probability": 0.9591 + }, + { + "start": 728.28, + "end": 728.66, + "probability": 0.3936 + }, + { + "start": 728.76, + "end": 735.12, + "probability": 0.9817 + }, + { + "start": 735.12, + "end": 738.96, + "probability": 0.8343 + }, + { + "start": 739.86, + "end": 744.38, + "probability": 0.8826 + }, + { + "start": 744.98, + "end": 746.56, + "probability": 0.9359 + }, + { + "start": 747.38, + "end": 751.46, + "probability": 0.7644 + }, + { + "start": 752.02, + "end": 753.6, + "probability": 0.8384 + }, + { + "start": 754.58, + "end": 756.28, + "probability": 0.7116 + }, + { + "start": 757.02, + "end": 762.06, + "probability": 0.9313 + }, + { + "start": 762.94, + "end": 767.44, + "probability": 0.8512 + }, + { + "start": 768.24, + "end": 773.24, + "probability": 0.9941 + }, + { + "start": 773.76, + "end": 776.14, + "probability": 0.8281 + }, + { + "start": 776.92, + "end": 782.66, + "probability": 0.9716 + }, + { + "start": 782.86, + "end": 783.12, + "probability": 0.3892 + }, + { + "start": 783.88, + "end": 785.48, + "probability": 0.7116 + }, + { + "start": 785.66, + "end": 789.16, + "probability": 0.9912 + }, + { + "start": 789.82, + "end": 791.62, + "probability": 0.9797 + }, + { + "start": 798.32, + "end": 801.34, + "probability": 0.7439 + }, + { + "start": 802.68, + "end": 808.96, + "probability": 0.9919 + }, + { + "start": 809.34, + "end": 809.9, + "probability": 0.9556 + }, + { + "start": 810.28, + "end": 811.74, + "probability": 0.9819 + }, + { + "start": 812.46, + "end": 815.26, + "probability": 0.9944 + }, + { + "start": 815.78, + "end": 818.64, + "probability": 0.9998 + }, + { + "start": 819.1, + "end": 819.9, + "probability": 0.9829 + }, + { + "start": 821.46, + "end": 822.52, + "probability": 0.9657 + }, + { + "start": 823.16, + "end": 825.72, + "probability": 0.9891 + }, + { + "start": 826.26, + "end": 828.28, + "probability": 0.9035 + }, + { + "start": 828.84, + "end": 833.52, + "probability": 0.9972 + }, + { + "start": 834.9, + "end": 839.02, + "probability": 0.993 + }, + { + "start": 839.68, + "end": 842.54, + "probability": 0.9973 + }, + { + "start": 843.28, + "end": 847.3, + "probability": 0.9945 + }, + { + "start": 848.56, + "end": 849.12, + "probability": 0.8564 + }, + { + "start": 854.88, + "end": 855.62, + "probability": 0.8214 + }, + { + "start": 856.28, + "end": 859.4, + "probability": 0.9049 + }, + { + "start": 860.18, + "end": 862.74, + "probability": 0.8606 + }, + { + "start": 863.1, + "end": 866.24, + "probability": 0.9909 + }, + { + "start": 866.9, + "end": 867.86, + "probability": 0.9534 + }, + { + "start": 868.38, + "end": 872.2, + "probability": 0.9749 + }, + { + "start": 872.8, + "end": 874.48, + "probability": 0.9988 + }, + { + "start": 874.84, + "end": 876.5, + "probability": 0.9822 + }, + { + "start": 877.14, + "end": 878.6, + "probability": 0.9715 + }, + { + "start": 879.02, + "end": 881.98, + "probability": 0.9719 + }, + { + "start": 882.38, + "end": 884.84, + "probability": 0.9897 + }, + { + "start": 886.0, + "end": 886.88, + "probability": 0.9937 + }, + { + "start": 887.3, + "end": 888.02, + "probability": 0.7845 + }, + { + "start": 888.3, + "end": 891.56, + "probability": 0.9951 + }, + { + "start": 891.56, + "end": 894.3, + "probability": 0.994 + }, + { + "start": 894.96, + "end": 895.16, + "probability": 0.2688 + }, + { + "start": 895.26, + "end": 896.78, + "probability": 0.8488 + }, + { + "start": 896.96, + "end": 897.5, + "probability": 0.6912 + }, + { + "start": 897.56, + "end": 898.9, + "probability": 0.9226 + }, + { + "start": 903.04, + "end": 904.38, + "probability": 0.5461 + }, + { + "start": 904.62, + "end": 906.2, + "probability": 0.5668 + }, + { + "start": 907.04, + "end": 909.04, + "probability": 0.8599 + }, + { + "start": 909.46, + "end": 911.06, + "probability": 0.9894 + }, + { + "start": 911.36, + "end": 914.8, + "probability": 0.9828 + }, + { + "start": 915.4, + "end": 918.96, + "probability": 0.9936 + }, + { + "start": 919.16, + "end": 920.8, + "probability": 0.6422 + }, + { + "start": 921.34, + "end": 921.9, + "probability": 0.783 + }, + { + "start": 922.42, + "end": 925.18, + "probability": 0.9782 + }, + { + "start": 925.62, + "end": 930.16, + "probability": 0.9739 + }, + { + "start": 930.7, + "end": 932.2, + "probability": 0.853 + }, + { + "start": 932.92, + "end": 938.7, + "probability": 0.925 + }, + { + "start": 939.4, + "end": 944.1, + "probability": 0.9923 + }, + { + "start": 945.54, + "end": 947.9, + "probability": 0.9919 + }, + { + "start": 948.08, + "end": 951.74, + "probability": 0.9882 + }, + { + "start": 952.42, + "end": 954.82, + "probability": 0.9806 + }, + { + "start": 955.74, + "end": 959.5, + "probability": 0.9944 + }, + { + "start": 959.5, + "end": 963.02, + "probability": 0.9215 + }, + { + "start": 963.42, + "end": 966.92, + "probability": 0.9975 + }, + { + "start": 967.3, + "end": 969.12, + "probability": 0.9932 + }, + { + "start": 969.66, + "end": 973.34, + "probability": 0.9767 + }, + { + "start": 974.04, + "end": 977.36, + "probability": 0.9388 + }, + { + "start": 977.72, + "end": 982.26, + "probability": 0.8938 + }, + { + "start": 982.48, + "end": 984.78, + "probability": 0.9615 + }, + { + "start": 984.9, + "end": 985.14, + "probability": 0.7496 + }, + { + "start": 985.86, + "end": 986.0, + "probability": 0.424 + }, + { + "start": 986.08, + "end": 987.36, + "probability": 0.7691 + }, + { + "start": 987.46, + "end": 988.0, + "probability": 0.5501 + }, + { + "start": 988.04, + "end": 989.44, + "probability": 0.9738 + }, + { + "start": 989.82, + "end": 991.08, + "probability": 0.6021 + }, + { + "start": 991.16, + "end": 992.1, + "probability": 0.7276 + }, + { + "start": 993.14, + "end": 995.22, + "probability": 0.9241 + }, + { + "start": 995.3, + "end": 996.88, + "probability": 0.979 + }, + { + "start": 997.1, + "end": 998.68, + "probability": 0.9595 + }, + { + "start": 999.56, + "end": 1002.2, + "probability": 0.9977 + }, + { + "start": 1002.9, + "end": 1003.22, + "probability": 0.7034 + }, + { + "start": 1003.88, + "end": 1005.42, + "probability": 0.9828 + }, + { + "start": 1006.22, + "end": 1008.98, + "probability": 0.8092 + }, + { + "start": 1009.96, + "end": 1012.2, + "probability": 0.9105 + }, + { + "start": 1012.42, + "end": 1014.4, + "probability": 0.9917 + }, + { + "start": 1014.98, + "end": 1016.54, + "probability": 0.9459 + }, + { + "start": 1016.66, + "end": 1017.4, + "probability": 0.8466 + }, + { + "start": 1017.46, + "end": 1018.62, + "probability": 0.8184 + }, + { + "start": 1019.02, + "end": 1021.17, + "probability": 0.9719 + }, + { + "start": 1022.64, + "end": 1024.3, + "probability": 0.9956 + }, + { + "start": 1024.44, + "end": 1026.82, + "probability": 0.9972 + }, + { + "start": 1027.16, + "end": 1030.26, + "probability": 0.9765 + }, + { + "start": 1031.02, + "end": 1033.86, + "probability": 0.9281 + }, + { + "start": 1034.34, + "end": 1036.76, + "probability": 0.9152 + }, + { + "start": 1037.6, + "end": 1040.4, + "probability": 0.9779 + }, + { + "start": 1040.88, + "end": 1041.8, + "probability": 0.9425 + }, + { + "start": 1042.18, + "end": 1043.52, + "probability": 0.9201 + }, + { + "start": 1044.28, + "end": 1045.92, + "probability": 0.9823 + }, + { + "start": 1046.52, + "end": 1048.68, + "probability": 0.7692 + }, + { + "start": 1049.32, + "end": 1049.98, + "probability": 0.712 + }, + { + "start": 1050.66, + "end": 1053.58, + "probability": 0.9457 + }, + { + "start": 1053.6, + "end": 1056.05, + "probability": 0.9627 + }, + { + "start": 1056.98, + "end": 1057.36, + "probability": 0.5583 + }, + { + "start": 1057.54, + "end": 1058.08, + "probability": 0.7421 + }, + { + "start": 1058.18, + "end": 1060.02, + "probability": 0.7615 + }, + { + "start": 1060.02, + "end": 1062.16, + "probability": 0.8419 + }, + { + "start": 1063.12, + "end": 1066.28, + "probability": 0.9788 + }, + { + "start": 1066.28, + "end": 1069.7, + "probability": 0.9856 + }, + { + "start": 1070.32, + "end": 1071.42, + "probability": 0.9839 + }, + { + "start": 1071.6, + "end": 1073.26, + "probability": 0.8077 + }, + { + "start": 1073.9, + "end": 1076.22, + "probability": 0.7902 + }, + { + "start": 1076.64, + "end": 1077.14, + "probability": 0.9443 + }, + { + "start": 1078.08, + "end": 1080.48, + "probability": 0.9126 + }, + { + "start": 1081.26, + "end": 1085.08, + "probability": 0.91 + }, + { + "start": 1085.64, + "end": 1086.02, + "probability": 0.8296 + }, + { + "start": 1086.1, + "end": 1086.96, + "probability": 0.8442 + }, + { + "start": 1087.38, + "end": 1087.54, + "probability": 0.8232 + }, + { + "start": 1087.94, + "end": 1088.42, + "probability": 0.7255 + }, + { + "start": 1088.52, + "end": 1089.16, + "probability": 0.9339 + }, + { + "start": 1089.54, + "end": 1090.34, + "probability": 0.9276 + }, + { + "start": 1091.04, + "end": 1093.14, + "probability": 0.9688 + }, + { + "start": 1093.68, + "end": 1094.62, + "probability": 0.9795 + }, + { + "start": 1094.88, + "end": 1098.9, + "probability": 0.9453 + }, + { + "start": 1099.04, + "end": 1099.65, + "probability": 0.4535 + }, + { + "start": 1100.4, + "end": 1100.93, + "probability": 0.9961 + }, + { + "start": 1101.02, + "end": 1101.6, + "probability": 0.9429 + }, + { + "start": 1101.98, + "end": 1104.24, + "probability": 0.9025 + }, + { + "start": 1104.24, + "end": 1107.3, + "probability": 0.9725 + }, + { + "start": 1107.98, + "end": 1108.5, + "probability": 0.6362 + }, + { + "start": 1108.5, + "end": 1108.8, + "probability": 0.7639 + }, + { + "start": 1108.84, + "end": 1111.72, + "probability": 0.9765 + }, + { + "start": 1112.4, + "end": 1113.94, + "probability": 0.6877 + }, + { + "start": 1114.04, + "end": 1116.0, + "probability": 0.9852 + }, + { + "start": 1117.48, + "end": 1117.94, + "probability": 0.9425 + }, + { + "start": 1117.98, + "end": 1118.56, + "probability": 0.6926 + }, + { + "start": 1118.58, + "end": 1118.76, + "probability": 0.1494 + }, + { + "start": 1118.76, + "end": 1119.54, + "probability": 0.7426 + }, + { + "start": 1119.96, + "end": 1122.04, + "probability": 0.9173 + }, + { + "start": 1122.04, + "end": 1126.16, + "probability": 0.8188 + }, + { + "start": 1126.26, + "end": 1128.4, + "probability": 0.7051 + }, + { + "start": 1128.84, + "end": 1129.62, + "probability": 0.4734 + }, + { + "start": 1129.72, + "end": 1132.42, + "probability": 0.8727 + }, + { + "start": 1132.76, + "end": 1135.38, + "probability": 0.9194 + }, + { + "start": 1135.6, + "end": 1136.16, + "probability": 0.9695 + }, + { + "start": 1136.32, + "end": 1136.78, + "probability": 0.7859 + }, + { + "start": 1137.18, + "end": 1137.66, + "probability": 0.6504 + }, + { + "start": 1137.72, + "end": 1139.12, + "probability": 0.881 + }, + { + "start": 1139.26, + "end": 1139.8, + "probability": 0.5023 + }, + { + "start": 1139.84, + "end": 1141.58, + "probability": 0.9514 + }, + { + "start": 1145.1, + "end": 1145.9, + "probability": 0.7184 + }, + { + "start": 1146.0, + "end": 1148.7, + "probability": 0.8581 + }, + { + "start": 1148.8, + "end": 1151.48, + "probability": 0.8538 + }, + { + "start": 1152.56, + "end": 1152.94, + "probability": 0.6259 + }, + { + "start": 1153.0, + "end": 1154.58, + "probability": 0.9881 + }, + { + "start": 1154.74, + "end": 1158.22, + "probability": 0.9797 + }, + { + "start": 1159.1, + "end": 1165.7, + "probability": 0.9882 + }, + { + "start": 1166.44, + "end": 1168.22, + "probability": 0.9813 + }, + { + "start": 1168.34, + "end": 1168.8, + "probability": 0.8112 + }, + { + "start": 1169.28, + "end": 1171.36, + "probability": 0.994 + }, + { + "start": 1172.48, + "end": 1175.26, + "probability": 0.9975 + }, + { + "start": 1176.5, + "end": 1181.9, + "probability": 0.9918 + }, + { + "start": 1182.66, + "end": 1189.02, + "probability": 0.9867 + }, + { + "start": 1189.92, + "end": 1190.96, + "probability": 0.9869 + }, + { + "start": 1191.74, + "end": 1193.56, + "probability": 0.8738 + }, + { + "start": 1194.96, + "end": 1198.92, + "probability": 0.8613 + }, + { + "start": 1199.72, + "end": 1202.58, + "probability": 0.9928 + }, + { + "start": 1203.34, + "end": 1205.16, + "probability": 0.994 + }, + { + "start": 1205.9, + "end": 1206.6, + "probability": 0.8221 + }, + { + "start": 1206.66, + "end": 1207.78, + "probability": 0.9286 + }, + { + "start": 1208.2, + "end": 1210.86, + "probability": 0.9499 + }, + { + "start": 1211.62, + "end": 1211.82, + "probability": 0.6484 + }, + { + "start": 1212.38, + "end": 1212.82, + "probability": 0.557 + }, + { + "start": 1212.94, + "end": 1214.54, + "probability": 0.8777 + }, + { + "start": 1214.66, + "end": 1215.28, + "probability": 0.6463 + }, + { + "start": 1215.3, + "end": 1217.4, + "probability": 0.9442 + }, + { + "start": 1219.52, + "end": 1222.96, + "probability": 0.9199 + }, + { + "start": 1223.76, + "end": 1226.16, + "probability": 0.9693 + }, + { + "start": 1227.18, + "end": 1230.13, + "probability": 0.9492 + }, + { + "start": 1231.5, + "end": 1234.22, + "probability": 0.9889 + }, + { + "start": 1234.26, + "end": 1235.1, + "probability": 0.9937 + }, + { + "start": 1236.4, + "end": 1237.56, + "probability": 0.7259 + }, + { + "start": 1237.94, + "end": 1239.2, + "probability": 0.9547 + }, + { + "start": 1239.36, + "end": 1241.06, + "probability": 0.9898 + }, + { + "start": 1241.18, + "end": 1242.12, + "probability": 0.6509 + }, + { + "start": 1242.96, + "end": 1245.8, + "probability": 0.9974 + }, + { + "start": 1246.9, + "end": 1249.26, + "probability": 0.881 + }, + { + "start": 1249.98, + "end": 1251.42, + "probability": 0.9873 + }, + { + "start": 1252.24, + "end": 1253.7, + "probability": 0.8949 + }, + { + "start": 1254.24, + "end": 1254.84, + "probability": 0.8408 + }, + { + "start": 1255.88, + "end": 1256.84, + "probability": 0.9399 + }, + { + "start": 1257.4, + "end": 1258.72, + "probability": 0.6003 + }, + { + "start": 1261.84, + "end": 1262.66, + "probability": 0.2337 + }, + { + "start": 1262.66, + "end": 1265.9, + "probability": 0.9258 + }, + { + "start": 1266.42, + "end": 1267.85, + "probability": 0.9761 + }, + { + "start": 1269.36, + "end": 1270.04, + "probability": 0.2092 + }, + { + "start": 1270.32, + "end": 1271.9, + "probability": 0.9357 + }, + { + "start": 1272.3, + "end": 1274.86, + "probability": 0.9769 + }, + { + "start": 1275.24, + "end": 1275.9, + "probability": 0.9902 + }, + { + "start": 1276.1, + "end": 1277.0, + "probability": 0.9935 + }, + { + "start": 1277.28, + "end": 1277.84, + "probability": 0.6248 + }, + { + "start": 1278.52, + "end": 1279.84, + "probability": 0.9237 + }, + { + "start": 1280.4, + "end": 1282.48, + "probability": 0.9817 + }, + { + "start": 1283.1, + "end": 1285.26, + "probability": 0.9956 + }, + { + "start": 1285.78, + "end": 1287.88, + "probability": 0.9341 + }, + { + "start": 1289.18, + "end": 1290.66, + "probability": 0.9898 + }, + { + "start": 1291.96, + "end": 1293.24, + "probability": 0.8794 + }, + { + "start": 1294.08, + "end": 1294.84, + "probability": 0.7933 + }, + { + "start": 1295.18, + "end": 1296.64, + "probability": 0.6873 + }, + { + "start": 1296.82, + "end": 1297.42, + "probability": 0.8192 + }, + { + "start": 1297.92, + "end": 1299.42, + "probability": 0.8293 + }, + { + "start": 1300.26, + "end": 1301.72, + "probability": 0.9801 + }, + { + "start": 1302.08, + "end": 1302.72, + "probability": 0.9242 + }, + { + "start": 1303.62, + "end": 1305.62, + "probability": 0.7306 + }, + { + "start": 1305.84, + "end": 1307.52, + "probability": 0.9541 + }, + { + "start": 1307.68, + "end": 1309.24, + "probability": 0.9707 + }, + { + "start": 1309.34, + "end": 1309.98, + "probability": 0.5982 + }, + { + "start": 1310.06, + "end": 1311.04, + "probability": 0.7946 + }, + { + "start": 1311.22, + "end": 1313.7, + "probability": 0.9843 + }, + { + "start": 1313.86, + "end": 1315.47, + "probability": 0.931 + }, + { + "start": 1316.16, + "end": 1318.34, + "probability": 0.9799 + }, + { + "start": 1318.4, + "end": 1321.38, + "probability": 0.9832 + }, + { + "start": 1321.38, + "end": 1322.12, + "probability": 0.9909 + }, + { + "start": 1322.44, + "end": 1323.78, + "probability": 0.5437 + }, + { + "start": 1323.78, + "end": 1325.98, + "probability": 0.9868 + }, + { + "start": 1326.06, + "end": 1328.36, + "probability": 0.9384 + }, + { + "start": 1328.46, + "end": 1329.76, + "probability": 0.9484 + }, + { + "start": 1330.08, + "end": 1330.82, + "probability": 0.5296 + }, + { + "start": 1331.12, + "end": 1331.9, + "probability": 0.8427 + }, + { + "start": 1332.06, + "end": 1333.62, + "probability": 0.9474 + }, + { + "start": 1333.74, + "end": 1334.86, + "probability": 0.9976 + }, + { + "start": 1334.96, + "end": 1336.1, + "probability": 0.8196 + }, + { + "start": 1336.5, + "end": 1340.42, + "probability": 0.9975 + }, + { + "start": 1340.5, + "end": 1340.89, + "probability": 0.9944 + }, + { + "start": 1341.32, + "end": 1342.88, + "probability": 0.9985 + }, + { + "start": 1343.2, + "end": 1345.8, + "probability": 0.9786 + }, + { + "start": 1345.84, + "end": 1348.7, + "probability": 0.8921 + }, + { + "start": 1348.76, + "end": 1349.83, + "probability": 0.9915 + }, + { + "start": 1350.24, + "end": 1352.3, + "probability": 0.8906 + }, + { + "start": 1352.36, + "end": 1352.64, + "probability": 0.8571 + }, + { + "start": 1353.2, + "end": 1353.7, + "probability": 0.668 + }, + { + "start": 1353.74, + "end": 1355.0, + "probability": 0.98 + }, + { + "start": 1355.08, + "end": 1355.44, + "probability": 0.8907 + }, + { + "start": 1355.68, + "end": 1356.88, + "probability": 0.776 + }, + { + "start": 1356.94, + "end": 1357.42, + "probability": 0.885 + }, + { + "start": 1358.88, + "end": 1361.56, + "probability": 0.9824 + }, + { + "start": 1361.66, + "end": 1362.94, + "probability": 0.937 + }, + { + "start": 1363.04, + "end": 1370.7, + "probability": 0.9781 + }, + { + "start": 1371.58, + "end": 1374.68, + "probability": 0.9657 + }, + { + "start": 1375.72, + "end": 1377.68, + "probability": 0.9649 + }, + { + "start": 1378.62, + "end": 1383.48, + "probability": 0.9907 + }, + { + "start": 1383.98, + "end": 1384.64, + "probability": 0.845 + }, + { + "start": 1384.74, + "end": 1392.12, + "probability": 0.8201 + }, + { + "start": 1392.24, + "end": 1393.62, + "probability": 0.8677 + }, + { + "start": 1394.1, + "end": 1395.88, + "probability": 0.8069 + }, + { + "start": 1396.38, + "end": 1398.02, + "probability": 0.9412 + }, + { + "start": 1398.68, + "end": 1403.92, + "probability": 0.982 + }, + { + "start": 1404.36, + "end": 1405.08, + "probability": 0.9514 + }, + { + "start": 1405.62, + "end": 1411.68, + "probability": 0.9762 + }, + { + "start": 1412.4, + "end": 1415.34, + "probability": 0.9521 + }, + { + "start": 1416.84, + "end": 1418.42, + "probability": 0.777 + }, + { + "start": 1419.54, + "end": 1421.44, + "probability": 0.7013 + }, + { + "start": 1422.04, + "end": 1427.62, + "probability": 0.9574 + }, + { + "start": 1428.14, + "end": 1431.02, + "probability": 0.8581 + }, + { + "start": 1431.64, + "end": 1432.68, + "probability": 0.9889 + }, + { + "start": 1433.0, + "end": 1434.0, + "probability": 0.8936 + }, + { + "start": 1434.44, + "end": 1435.56, + "probability": 0.9302 + }, + { + "start": 1435.88, + "end": 1439.34, + "probability": 0.991 + }, + { + "start": 1440.1, + "end": 1440.42, + "probability": 0.5711 + }, + { + "start": 1440.98, + "end": 1441.46, + "probability": 0.5867 + }, + { + "start": 1441.64, + "end": 1442.72, + "probability": 0.8183 + }, + { + "start": 1442.74, + "end": 1447.74, + "probability": 0.997 + }, + { + "start": 1447.78, + "end": 1451.18, + "probability": 0.927 + }, + { + "start": 1452.12, + "end": 1455.11, + "probability": 0.9876 + }, + { + "start": 1455.58, + "end": 1457.82, + "probability": 0.7346 + }, + { + "start": 1457.87, + "end": 1461.6, + "probability": 0.9662 + }, + { + "start": 1462.08, + "end": 1465.0, + "probability": 0.9833 + }, + { + "start": 1465.92, + "end": 1467.66, + "probability": 0.9894 + }, + { + "start": 1468.8, + "end": 1469.72, + "probability": 0.7231 + }, + { + "start": 1471.9, + "end": 1473.36, + "probability": 0.8633 + }, + { + "start": 1474.3, + "end": 1477.98, + "probability": 0.978 + }, + { + "start": 1479.06, + "end": 1483.18, + "probability": 0.9958 + }, + { + "start": 1483.36, + "end": 1485.06, + "probability": 0.873 + }, + { + "start": 1486.3, + "end": 1486.8, + "probability": 0.9962 + }, + { + "start": 1488.1, + "end": 1489.22, + "probability": 0.9971 + }, + { + "start": 1491.1, + "end": 1496.0, + "probability": 0.7755 + }, + { + "start": 1497.36, + "end": 1500.44, + "probability": 0.9744 + }, + { + "start": 1500.48, + "end": 1504.14, + "probability": 0.987 + }, + { + "start": 1505.14, + "end": 1507.66, + "probability": 0.9657 + }, + { + "start": 1508.92, + "end": 1509.3, + "probability": 0.9575 + }, + { + "start": 1509.84, + "end": 1510.32, + "probability": 0.9902 + }, + { + "start": 1511.32, + "end": 1512.3, + "probability": 0.9945 + }, + { + "start": 1514.12, + "end": 1518.68, + "probability": 0.9963 + }, + { + "start": 1519.16, + "end": 1524.54, + "probability": 0.976 + }, + { + "start": 1525.5, + "end": 1527.06, + "probability": 0.8212 + }, + { + "start": 1528.12, + "end": 1529.42, + "probability": 0.989 + }, + { + "start": 1531.02, + "end": 1538.6, + "probability": 0.9976 + }, + { + "start": 1539.62, + "end": 1540.6, + "probability": 0.7847 + }, + { + "start": 1541.6, + "end": 1545.09, + "probability": 0.6644 + }, + { + "start": 1547.54, + "end": 1550.3, + "probability": 0.7467 + }, + { + "start": 1550.82, + "end": 1552.4, + "probability": 0.721 + }, + { + "start": 1553.52, + "end": 1555.48, + "probability": 0.9359 + }, + { + "start": 1556.34, + "end": 1557.58, + "probability": 0.9827 + }, + { + "start": 1558.2, + "end": 1558.76, + "probability": 0.6774 + }, + { + "start": 1559.6, + "end": 1562.84, + "probability": 0.9301 + }, + { + "start": 1563.68, + "end": 1564.74, + "probability": 0.9102 + }, + { + "start": 1566.28, + "end": 1568.88, + "probability": 0.9763 + }, + { + "start": 1569.68, + "end": 1570.6, + "probability": 0.8503 + }, + { + "start": 1571.26, + "end": 1571.94, + "probability": 0.6337 + }, + { + "start": 1572.82, + "end": 1573.62, + "probability": 0.8422 + }, + { + "start": 1575.14, + "end": 1577.6, + "probability": 0.9039 + }, + { + "start": 1578.5, + "end": 1584.38, + "probability": 0.9803 + }, + { + "start": 1585.18, + "end": 1586.18, + "probability": 0.9965 + }, + { + "start": 1587.14, + "end": 1589.12, + "probability": 0.9493 + }, + { + "start": 1590.82, + "end": 1596.5, + "probability": 0.9831 + }, + { + "start": 1597.24, + "end": 1599.1, + "probability": 0.9961 + }, + { + "start": 1599.74, + "end": 1604.44, + "probability": 0.9974 + }, + { + "start": 1606.36, + "end": 1606.68, + "probability": 0.79 + }, + { + "start": 1606.82, + "end": 1611.82, + "probability": 0.9931 + }, + { + "start": 1611.82, + "end": 1615.82, + "probability": 0.9974 + }, + { + "start": 1616.86, + "end": 1621.26, + "probability": 0.9075 + }, + { + "start": 1621.96, + "end": 1624.28, + "probability": 0.9983 + }, + { + "start": 1624.8, + "end": 1625.58, + "probability": 0.6949 + }, + { + "start": 1626.5, + "end": 1627.54, + "probability": 0.9464 + }, + { + "start": 1628.24, + "end": 1629.29, + "probability": 0.9945 + }, + { + "start": 1630.44, + "end": 1632.88, + "probability": 0.9743 + }, + { + "start": 1634.1, + "end": 1636.34, + "probability": 0.8246 + }, + { + "start": 1636.96, + "end": 1638.62, + "probability": 0.9474 + }, + { + "start": 1639.14, + "end": 1645.64, + "probability": 0.991 + }, + { + "start": 1646.12, + "end": 1646.82, + "probability": 0.9167 + }, + { + "start": 1647.64, + "end": 1651.38, + "probability": 0.9578 + }, + { + "start": 1653.04, + "end": 1657.36, + "probability": 0.9713 + }, + { + "start": 1658.06, + "end": 1659.84, + "probability": 0.7472 + }, + { + "start": 1660.52, + "end": 1662.9, + "probability": 0.9912 + }, + { + "start": 1663.76, + "end": 1667.28, + "probability": 0.9854 + }, + { + "start": 1668.42, + "end": 1671.81, + "probability": 0.9983 + }, + { + "start": 1672.3, + "end": 1674.2, + "probability": 0.6624 + }, + { + "start": 1674.94, + "end": 1676.16, + "probability": 0.7361 + }, + { + "start": 1677.68, + "end": 1680.24, + "probability": 0.873 + }, + { + "start": 1681.9, + "end": 1682.92, + "probability": 0.678 + }, + { + "start": 1682.92, + "end": 1682.92, + "probability": 0.5806 + }, + { + "start": 1682.92, + "end": 1682.92, + "probability": 0.8249 + }, + { + "start": 1682.92, + "end": 1685.04, + "probability": 0.646 + }, + { + "start": 1685.66, + "end": 1689.32, + "probability": 0.9457 + }, + { + "start": 1694.66, + "end": 1696.12, + "probability": 0.7792 + }, + { + "start": 1696.92, + "end": 1697.44, + "probability": 0.5354 + }, + { + "start": 1699.74, + "end": 1701.64, + "probability": 0.9902 + }, + { + "start": 1703.08, + "end": 1706.54, + "probability": 0.9968 + }, + { + "start": 1706.54, + "end": 1711.14, + "probability": 0.9966 + }, + { + "start": 1712.12, + "end": 1716.62, + "probability": 0.9938 + }, + { + "start": 1717.5, + "end": 1719.26, + "probability": 0.984 + }, + { + "start": 1720.46, + "end": 1722.36, + "probability": 0.9957 + }, + { + "start": 1722.96, + "end": 1726.15, + "probability": 0.9965 + }, + { + "start": 1727.08, + "end": 1733.68, + "probability": 0.9772 + }, + { + "start": 1737.46, + "end": 1738.8, + "probability": 0.6452 + }, + { + "start": 1739.36, + "end": 1740.0, + "probability": 0.6364 + }, + { + "start": 1741.6, + "end": 1742.68, + "probability": 0.4506 + }, + { + "start": 1743.66, + "end": 1749.9, + "probability": 0.8506 + }, + { + "start": 1750.62, + "end": 1755.22, + "probability": 0.9573 + }, + { + "start": 1756.08, + "end": 1759.24, + "probability": 0.9846 + }, + { + "start": 1760.02, + "end": 1763.3, + "probability": 0.9982 + }, + { + "start": 1764.16, + "end": 1767.08, + "probability": 0.6645 + }, + { + "start": 1767.74, + "end": 1769.52, + "probability": 0.6631 + }, + { + "start": 1770.44, + "end": 1770.98, + "probability": 0.6419 + }, + { + "start": 1771.96, + "end": 1772.68, + "probability": 0.9687 + }, + { + "start": 1774.32, + "end": 1777.4, + "probability": 0.8128 + }, + { + "start": 1778.82, + "end": 1779.68, + "probability": 0.9895 + }, + { + "start": 1780.62, + "end": 1782.3, + "probability": 0.9961 + }, + { + "start": 1783.32, + "end": 1788.78, + "probability": 0.9983 + }, + { + "start": 1789.56, + "end": 1794.26, + "probability": 0.989 + }, + { + "start": 1794.26, + "end": 1800.08, + "probability": 0.9345 + }, + { + "start": 1800.96, + "end": 1801.6, + "probability": 0.8188 + }, + { + "start": 1802.32, + "end": 1803.46, + "probability": 0.9966 + }, + { + "start": 1804.06, + "end": 1807.08, + "probability": 0.9964 + }, + { + "start": 1807.92, + "end": 1813.74, + "probability": 0.9676 + }, + { + "start": 1814.56, + "end": 1814.84, + "probability": 0.9646 + }, + { + "start": 1816.22, + "end": 1820.2, + "probability": 0.9941 + }, + { + "start": 1829.64, + "end": 1830.22, + "probability": 0.1663 + }, + { + "start": 1831.78, + "end": 1831.98, + "probability": 0.1939 + }, + { + "start": 1844.7, + "end": 1847.72, + "probability": 0.978 + }, + { + "start": 1849.14, + "end": 1850.24, + "probability": 0.8302 + }, + { + "start": 1854.92, + "end": 1856.82, + "probability": 0.7723 + }, + { + "start": 1857.82, + "end": 1858.74, + "probability": 0.8957 + }, + { + "start": 1861.48, + "end": 1864.28, + "probability": 0.9104 + }, + { + "start": 1866.04, + "end": 1867.4, + "probability": 0.6959 + }, + { + "start": 1869.8, + "end": 1871.38, + "probability": 0.9683 + }, + { + "start": 1872.34, + "end": 1874.34, + "probability": 0.9974 + }, + { + "start": 1875.9, + "end": 1877.78, + "probability": 0.9721 + }, + { + "start": 1880.66, + "end": 1882.0, + "probability": 0.9858 + }, + { + "start": 1884.18, + "end": 1887.34, + "probability": 0.9417 + }, + { + "start": 1889.78, + "end": 1890.92, + "probability": 0.9971 + }, + { + "start": 1892.18, + "end": 1892.82, + "probability": 0.1706 + }, + { + "start": 1894.58, + "end": 1898.06, + "probability": 0.6637 + }, + { + "start": 1899.3, + "end": 1899.8, + "probability": 0.9214 + }, + { + "start": 1900.66, + "end": 1902.02, + "probability": 0.9988 + }, + { + "start": 1902.92, + "end": 1904.0, + "probability": 0.8546 + }, + { + "start": 1905.52, + "end": 1906.2, + "probability": 0.9487 + }, + { + "start": 1908.46, + "end": 1909.72, + "probability": 0.9457 + }, + { + "start": 1911.6, + "end": 1912.64, + "probability": 0.9974 + }, + { + "start": 1916.76, + "end": 1917.5, + "probability": 0.6926 + }, + { + "start": 1921.78, + "end": 1923.94, + "probability": 0.7474 + }, + { + "start": 1927.2, + "end": 1931.0, + "probability": 0.9283 + }, + { + "start": 1933.64, + "end": 1936.44, + "probability": 0.6718 + }, + { + "start": 1937.02, + "end": 1939.62, + "probability": 0.9121 + }, + { + "start": 1942.32, + "end": 1942.78, + "probability": 0.9829 + }, + { + "start": 1945.32, + "end": 1947.06, + "probability": 0.9899 + }, + { + "start": 1948.98, + "end": 1951.0, + "probability": 0.8369 + }, + { + "start": 1951.24, + "end": 1953.26, + "probability": 0.9953 + }, + { + "start": 1954.52, + "end": 1955.98, + "probability": 0.9521 + }, + { + "start": 1958.46, + "end": 1959.42, + "probability": 0.9827 + }, + { + "start": 1961.08, + "end": 1963.72, + "probability": 0.9946 + }, + { + "start": 1963.78, + "end": 1964.74, + "probability": 0.9499 + }, + { + "start": 1964.8, + "end": 1970.24, + "probability": 0.9417 + }, + { + "start": 1971.42, + "end": 1975.13, + "probability": 0.9688 + }, + { + "start": 1975.46, + "end": 1981.24, + "probability": 0.9977 + }, + { + "start": 1984.42, + "end": 1987.46, + "probability": 0.9846 + }, + { + "start": 1989.26, + "end": 1990.74, + "probability": 0.4446 + }, + { + "start": 1994.04, + "end": 1996.4, + "probability": 0.9656 + }, + { + "start": 1999.08, + "end": 1999.92, + "probability": 0.8547 + }, + { + "start": 2001.52, + "end": 2003.54, + "probability": 0.8705 + }, + { + "start": 2006.16, + "end": 2009.34, + "probability": 0.8013 + }, + { + "start": 2011.44, + "end": 2012.9, + "probability": 0.998 + }, + { + "start": 2016.12, + "end": 2019.26, + "probability": 0.9979 + }, + { + "start": 2022.16, + "end": 2023.86, + "probability": 0.6729 + }, + { + "start": 2026.6, + "end": 2027.53, + "probability": 0.9302 + }, + { + "start": 2029.24, + "end": 2029.96, + "probability": 0.8219 + }, + { + "start": 2031.92, + "end": 2033.14, + "probability": 0.8363 + }, + { + "start": 2039.14, + "end": 2040.6, + "probability": 0.943 + }, + { + "start": 2040.64, + "end": 2042.56, + "probability": 0.899 + }, + { + "start": 2044.96, + "end": 2045.52, + "probability": 0.9642 + }, + { + "start": 2046.82, + "end": 2049.58, + "probability": 0.9927 + }, + { + "start": 2051.68, + "end": 2054.24, + "probability": 0.9983 + }, + { + "start": 2056.84, + "end": 2057.9, + "probability": 0.8972 + }, + { + "start": 2058.88, + "end": 2061.06, + "probability": 0.9558 + }, + { + "start": 2062.78, + "end": 2065.86, + "probability": 0.9352 + }, + { + "start": 2066.9, + "end": 2069.44, + "probability": 0.998 + }, + { + "start": 2071.96, + "end": 2074.64, + "probability": 0.9894 + }, + { + "start": 2076.38, + "end": 2078.9, + "probability": 0.9697 + }, + { + "start": 2078.96, + "end": 2080.34, + "probability": 0.8774 + }, + { + "start": 2082.12, + "end": 2082.94, + "probability": 0.7792 + }, + { + "start": 2084.32, + "end": 2084.78, + "probability": 0.8169 + }, + { + "start": 2088.16, + "end": 2093.12, + "probability": 0.9945 + }, + { + "start": 2093.66, + "end": 2095.04, + "probability": 0.7386 + }, + { + "start": 2095.16, + "end": 2097.36, + "probability": 0.7657 + }, + { + "start": 2100.34, + "end": 2101.7, + "probability": 0.8161 + }, + { + "start": 2102.88, + "end": 2103.14, + "probability": 0.8578 + }, + { + "start": 2104.5, + "end": 2105.14, + "probability": 0.9815 + }, + { + "start": 2107.12, + "end": 2108.46, + "probability": 0.6697 + }, + { + "start": 2108.78, + "end": 2109.93, + "probability": 0.4917 + }, + { + "start": 2111.08, + "end": 2111.64, + "probability": 0.5613 + }, + { + "start": 2115.44, + "end": 2115.86, + "probability": 0.792 + }, + { + "start": 2118.36, + "end": 2119.46, + "probability": 0.9868 + }, + { + "start": 2122.06, + "end": 2122.44, + "probability": 0.8564 + }, + { + "start": 2122.52, + "end": 2123.18, + "probability": 0.7594 + }, + { + "start": 2123.32, + "end": 2124.86, + "probability": 0.612 + }, + { + "start": 2125.3, + "end": 2128.48, + "probability": 0.9962 + }, + { + "start": 2128.76, + "end": 2130.28, + "probability": 0.9975 + }, + { + "start": 2132.12, + "end": 2133.5, + "probability": 0.9989 + }, + { + "start": 2136.0, + "end": 2137.54, + "probability": 0.9954 + }, + { + "start": 2140.2, + "end": 2143.26, + "probability": 0.986 + }, + { + "start": 2145.68, + "end": 2148.24, + "probability": 0.9812 + }, + { + "start": 2149.94, + "end": 2152.38, + "probability": 0.9917 + }, + { + "start": 2152.62, + "end": 2158.74, + "probability": 0.9832 + }, + { + "start": 2161.36, + "end": 2165.04, + "probability": 0.9987 + }, + { + "start": 2166.62, + "end": 2167.96, + "probability": 0.9974 + }, + { + "start": 2170.34, + "end": 2171.86, + "probability": 0.8185 + }, + { + "start": 2172.4, + "end": 2177.18, + "probability": 0.9847 + }, + { + "start": 2179.52, + "end": 2182.69, + "probability": 0.929 + }, + { + "start": 2184.62, + "end": 2185.64, + "probability": 0.9976 + }, + { + "start": 2186.14, + "end": 2187.39, + "probability": 0.9971 + }, + { + "start": 2188.38, + "end": 2190.71, + "probability": 0.6935 + }, + { + "start": 2192.66, + "end": 2194.54, + "probability": 0.8973 + }, + { + "start": 2197.94, + "end": 2199.08, + "probability": 0.7445 + }, + { + "start": 2201.72, + "end": 2206.52, + "probability": 0.8994 + }, + { + "start": 2207.9, + "end": 2210.6, + "probability": 0.998 + }, + { + "start": 2210.8, + "end": 2211.8, + "probability": 0.8333 + }, + { + "start": 2215.4, + "end": 2217.62, + "probability": 0.9995 + }, + { + "start": 2217.7, + "end": 2219.08, + "probability": 0.8904 + }, + { + "start": 2220.76, + "end": 2222.04, + "probability": 0.8727 + }, + { + "start": 2223.08, + "end": 2224.48, + "probability": 0.988 + }, + { + "start": 2225.32, + "end": 2226.84, + "probability": 0.9524 + }, + { + "start": 2228.66, + "end": 2234.32, + "probability": 0.9938 + }, + { + "start": 2237.04, + "end": 2237.74, + "probability": 0.6829 + }, + { + "start": 2239.94, + "end": 2241.36, + "probability": 0.9387 + }, + { + "start": 2244.3, + "end": 2244.96, + "probability": 0.9233 + }, + { + "start": 2247.12, + "end": 2249.48, + "probability": 0.8647 + }, + { + "start": 2250.24, + "end": 2251.98, + "probability": 0.9972 + }, + { + "start": 2253.1, + "end": 2254.6, + "probability": 0.9243 + }, + { + "start": 2254.96, + "end": 2255.98, + "probability": 0.5856 + }, + { + "start": 2256.38, + "end": 2258.04, + "probability": 0.9668 + }, + { + "start": 2259.6, + "end": 2260.96, + "probability": 0.9564 + }, + { + "start": 2261.58, + "end": 2264.3, + "probability": 0.8424 + }, + { + "start": 2264.4, + "end": 2265.8, + "probability": 0.8864 + }, + { + "start": 2266.4, + "end": 2269.88, + "probability": 0.7742 + }, + { + "start": 2272.44, + "end": 2274.9, + "probability": 0.8049 + }, + { + "start": 2279.08, + "end": 2280.92, + "probability": 0.8128 + }, + { + "start": 2282.48, + "end": 2284.48, + "probability": 0.9976 + }, + { + "start": 2284.56, + "end": 2288.42, + "probability": 0.9812 + }, + { + "start": 2288.46, + "end": 2289.3, + "probability": 0.9789 + }, + { + "start": 2290.0, + "end": 2290.74, + "probability": 0.9783 + }, + { + "start": 2291.3, + "end": 2295.1, + "probability": 0.9715 + }, + { + "start": 2295.6, + "end": 2296.88, + "probability": 0.9639 + }, + { + "start": 2298.7, + "end": 2299.74, + "probability": 0.7971 + }, + { + "start": 2301.84, + "end": 2303.24, + "probability": 0.9937 + }, + { + "start": 2304.62, + "end": 2307.52, + "probability": 0.9984 + }, + { + "start": 2310.14, + "end": 2311.46, + "probability": 0.9877 + }, + { + "start": 2314.54, + "end": 2315.34, + "probability": 0.9567 + }, + { + "start": 2315.5, + "end": 2317.06, + "probability": 0.9306 + }, + { + "start": 2317.16, + "end": 2319.72, + "probability": 0.9894 + }, + { + "start": 2320.38, + "end": 2324.62, + "probability": 0.9583 + }, + { + "start": 2324.8, + "end": 2327.58, + "probability": 0.9592 + }, + { + "start": 2330.8, + "end": 2334.86, + "probability": 0.9939 + }, + { + "start": 2336.68, + "end": 2338.02, + "probability": 0.9991 + }, + { + "start": 2338.88, + "end": 2341.62, + "probability": 0.9963 + }, + { + "start": 2342.46, + "end": 2345.1, + "probability": 0.9285 + }, + { + "start": 2346.12, + "end": 2347.62, + "probability": 0.9043 + }, + { + "start": 2348.9, + "end": 2350.24, + "probability": 0.9564 + }, + { + "start": 2352.86, + "end": 2356.06, + "probability": 0.9622 + }, + { + "start": 2357.22, + "end": 2358.2, + "probability": 0.9509 + }, + { + "start": 2359.54, + "end": 2364.0, + "probability": 0.6662 + }, + { + "start": 2367.88, + "end": 2369.9, + "probability": 0.9881 + }, + { + "start": 2373.74, + "end": 2374.54, + "probability": 0.6787 + }, + { + "start": 2376.7, + "end": 2380.52, + "probability": 0.8037 + }, + { + "start": 2380.7, + "end": 2387.7, + "probability": 0.9394 + }, + { + "start": 2390.12, + "end": 2393.54, + "probability": 0.9 + }, + { + "start": 2394.72, + "end": 2395.64, + "probability": 0.6215 + }, + { + "start": 2396.76, + "end": 2397.14, + "probability": 0.493 + }, + { + "start": 2397.76, + "end": 2398.42, + "probability": 0.6035 + }, + { + "start": 2399.06, + "end": 2399.94, + "probability": 0.5362 + }, + { + "start": 2400.22, + "end": 2401.22, + "probability": 0.8281 + }, + { + "start": 2401.88, + "end": 2403.42, + "probability": 0.9172 + }, + { + "start": 2405.26, + "end": 2405.88, + "probability": 0.4088 + }, + { + "start": 2405.88, + "end": 2405.88, + "probability": 0.4784 + }, + { + "start": 2406.32, + "end": 2407.06, + "probability": 0.3715 + }, + { + "start": 2408.16, + "end": 2409.32, + "probability": 0.9858 + }, + { + "start": 2410.72, + "end": 2411.44, + "probability": 0.7601 + }, + { + "start": 2412.54, + "end": 2414.34, + "probability": 0.878 + }, + { + "start": 2416.6, + "end": 2417.84, + "probability": 0.901 + }, + { + "start": 2417.94, + "end": 2419.0, + "probability": 0.9116 + }, + { + "start": 2419.1, + "end": 2420.68, + "probability": 0.52 + }, + { + "start": 2420.74, + "end": 2422.88, + "probability": 0.7154 + }, + { + "start": 2423.78, + "end": 2425.94, + "probability": 0.8685 + }, + { + "start": 2426.04, + "end": 2427.2, + "probability": 0.8982 + }, + { + "start": 2427.84, + "end": 2429.58, + "probability": 0.827 + }, + { + "start": 2430.72, + "end": 2431.96, + "probability": 0.8696 + }, + { + "start": 2433.36, + "end": 2434.06, + "probability": 0.9868 + }, + { + "start": 2436.38, + "end": 2437.0, + "probability": 0.9648 + }, + { + "start": 2437.66, + "end": 2438.16, + "probability": 0.6537 + }, + { + "start": 2439.28, + "end": 2440.38, + "probability": 0.9897 + }, + { + "start": 2442.04, + "end": 2444.56, + "probability": 0.9922 + }, + { + "start": 2446.84, + "end": 2450.7, + "probability": 0.7382 + }, + { + "start": 2452.88, + "end": 2453.2, + "probability": 0.4482 + }, + { + "start": 2455.02, + "end": 2457.72, + "probability": 0.7301 + }, + { + "start": 2458.58, + "end": 2460.08, + "probability": 0.9464 + }, + { + "start": 2461.88, + "end": 2464.58, + "probability": 0.9951 + }, + { + "start": 2465.78, + "end": 2466.44, + "probability": 0.6157 + }, + { + "start": 2467.16, + "end": 2469.82, + "probability": 0.9502 + }, + { + "start": 2472.08, + "end": 2473.55, + "probability": 0.8972 + }, + { + "start": 2474.24, + "end": 2475.82, + "probability": 0.9061 + }, + { + "start": 2476.74, + "end": 2478.95, + "probability": 0.7452 + }, + { + "start": 2479.66, + "end": 2481.7, + "probability": 0.9901 + }, + { + "start": 2482.96, + "end": 2492.4, + "probability": 0.5514 + }, + { + "start": 2493.34, + "end": 2496.88, + "probability": 0.9199 + }, + { + "start": 2497.16, + "end": 2503.4, + "probability": 0.9846 + }, + { + "start": 2504.92, + "end": 2505.62, + "probability": 0.8273 + }, + { + "start": 2505.72, + "end": 2507.18, + "probability": 0.9254 + }, + { + "start": 2507.32, + "end": 2508.26, + "probability": 0.7625 + }, + { + "start": 2509.88, + "end": 2511.5, + "probability": 0.9512 + }, + { + "start": 2515.18, + "end": 2515.96, + "probability": 0.7939 + }, + { + "start": 2516.94, + "end": 2519.22, + "probability": 0.9781 + }, + { + "start": 2522.06, + "end": 2523.78, + "probability": 0.6103 + }, + { + "start": 2524.66, + "end": 2526.84, + "probability": 0.955 + }, + { + "start": 2528.52, + "end": 2531.5, + "probability": 0.9971 + }, + { + "start": 2532.66, + "end": 2535.86, + "probability": 0.9951 + }, + { + "start": 2537.12, + "end": 2537.86, + "probability": 0.8119 + }, + { + "start": 2538.86, + "end": 2544.26, + "probability": 0.9144 + }, + { + "start": 2545.32, + "end": 2547.92, + "probability": 0.8702 + }, + { + "start": 2548.86, + "end": 2552.86, + "probability": 0.9749 + }, + { + "start": 2553.46, + "end": 2558.22, + "probability": 0.9989 + }, + { + "start": 2559.14, + "end": 2564.52, + "probability": 0.9968 + }, + { + "start": 2566.18, + "end": 2569.38, + "probability": 0.8748 + }, + { + "start": 2572.1, + "end": 2575.7, + "probability": 0.8391 + }, + { + "start": 2576.6, + "end": 2582.56, + "probability": 0.901 + }, + { + "start": 2584.18, + "end": 2585.9, + "probability": 0.938 + }, + { + "start": 2587.76, + "end": 2589.44, + "probability": 0.9237 + }, + { + "start": 2590.52, + "end": 2593.66, + "probability": 0.9672 + }, + { + "start": 2594.64, + "end": 2599.04, + "probability": 0.9696 + }, + { + "start": 2600.06, + "end": 2602.94, + "probability": 0.9579 + }, + { + "start": 2603.7, + "end": 2608.0, + "probability": 0.9911 + }, + { + "start": 2608.94, + "end": 2611.46, + "probability": 0.9801 + }, + { + "start": 2612.26, + "end": 2616.92, + "probability": 0.9485 + }, + { + "start": 2617.58, + "end": 2618.52, + "probability": 0.7492 + }, + { + "start": 2619.5, + "end": 2623.28, + "probability": 0.9135 + }, + { + "start": 2624.64, + "end": 2625.1, + "probability": 0.648 + }, + { + "start": 2625.16, + "end": 2630.1, + "probability": 0.9867 + }, + { + "start": 2630.2, + "end": 2630.72, + "probability": 0.5197 + }, + { + "start": 2639.84, + "end": 2641.76, + "probability": 0.6558 + }, + { + "start": 2643.02, + "end": 2643.9, + "probability": 0.7777 + }, + { + "start": 2646.3, + "end": 2650.48, + "probability": 0.9751 + }, + { + "start": 2650.48, + "end": 2653.54, + "probability": 0.9934 + }, + { + "start": 2654.52, + "end": 2656.18, + "probability": 0.9844 + }, + { + "start": 2657.24, + "end": 2659.32, + "probability": 0.9912 + }, + { + "start": 2660.78, + "end": 2663.94, + "probability": 0.971 + }, + { + "start": 2664.92, + "end": 2665.58, + "probability": 0.9006 + }, + { + "start": 2667.78, + "end": 2669.94, + "probability": 0.9736 + }, + { + "start": 2671.12, + "end": 2673.82, + "probability": 0.9778 + }, + { + "start": 2674.8, + "end": 2678.9, + "probability": 0.9727 + }, + { + "start": 2679.18, + "end": 2683.04, + "probability": 0.917 + }, + { + "start": 2684.18, + "end": 2688.86, + "probability": 0.9985 + }, + { + "start": 2691.7, + "end": 2697.06, + "probability": 0.6181 + }, + { + "start": 2698.04, + "end": 2699.36, + "probability": 0.9406 + }, + { + "start": 2701.18, + "end": 2704.34, + "probability": 0.9968 + }, + { + "start": 2705.06, + "end": 2711.54, + "probability": 0.9969 + }, + { + "start": 2712.7, + "end": 2713.76, + "probability": 0.8176 + }, + { + "start": 2714.64, + "end": 2718.44, + "probability": 0.8839 + }, + { + "start": 2720.24, + "end": 2721.92, + "probability": 0.8894 + }, + { + "start": 2722.64, + "end": 2725.94, + "probability": 0.9609 + }, + { + "start": 2727.6, + "end": 2730.86, + "probability": 0.9218 + }, + { + "start": 2732.28, + "end": 2736.16, + "probability": 0.97 + }, + { + "start": 2737.08, + "end": 2738.54, + "probability": 0.9961 + }, + { + "start": 2739.3, + "end": 2742.12, + "probability": 0.9961 + }, + { + "start": 2742.24, + "end": 2743.24, + "probability": 0.9907 + }, + { + "start": 2744.6, + "end": 2746.69, + "probability": 0.8068 + }, + { + "start": 2747.06, + "end": 2748.25, + "probability": 0.9893 + }, + { + "start": 2748.84, + "end": 2750.24, + "probability": 0.9056 + }, + { + "start": 2750.92, + "end": 2754.06, + "probability": 0.9885 + }, + { + "start": 2754.66, + "end": 2759.12, + "probability": 0.9944 + }, + { + "start": 2759.58, + "end": 2763.62, + "probability": 0.9912 + }, + { + "start": 2765.78, + "end": 2767.64, + "probability": 0.9959 + }, + { + "start": 2769.74, + "end": 2770.24, + "probability": 0.9592 + }, + { + "start": 2771.34, + "end": 2774.94, + "probability": 0.9905 + }, + { + "start": 2775.8, + "end": 2777.64, + "probability": 0.9894 + }, + { + "start": 2777.7, + "end": 2779.67, + "probability": 0.9954 + }, + { + "start": 2780.96, + "end": 2782.28, + "probability": 0.9819 + }, + { + "start": 2783.14, + "end": 2788.48, + "probability": 0.9993 + }, + { + "start": 2788.48, + "end": 2791.1, + "probability": 0.9988 + }, + { + "start": 2791.64, + "end": 2792.84, + "probability": 0.4396 + }, + { + "start": 2793.06, + "end": 2795.79, + "probability": 0.9997 + }, + { + "start": 2797.6, + "end": 2799.3, + "probability": 0.7432 + }, + { + "start": 2801.06, + "end": 2803.96, + "probability": 0.9717 + }, + { + "start": 2804.66, + "end": 2806.48, + "probability": 0.9989 + }, + { + "start": 2807.52, + "end": 2812.18, + "probability": 0.9993 + }, + { + "start": 2812.74, + "end": 2814.38, + "probability": 0.9917 + }, + { + "start": 2814.56, + "end": 2817.5, + "probability": 0.9886 + }, + { + "start": 2821.64, + "end": 2824.8, + "probability": 0.9385 + }, + { + "start": 2826.1, + "end": 2828.36, + "probability": 0.9974 + }, + { + "start": 2829.52, + "end": 2831.32, + "probability": 0.9906 + }, + { + "start": 2832.52, + "end": 2835.6, + "probability": 0.9637 + }, + { + "start": 2836.82, + "end": 2839.96, + "probability": 0.98 + }, + { + "start": 2840.46, + "end": 2842.24, + "probability": 0.9683 + }, + { + "start": 2843.96, + "end": 2847.42, + "probability": 0.9902 + }, + { + "start": 2847.76, + "end": 2850.88, + "probability": 0.9946 + }, + { + "start": 2852.38, + "end": 2854.52, + "probability": 0.9292 + }, + { + "start": 2855.64, + "end": 2857.4, + "probability": 0.9677 + }, + { + "start": 2858.14, + "end": 2859.64, + "probability": 0.9895 + }, + { + "start": 2859.72, + "end": 2860.74, + "probability": 0.9961 + }, + { + "start": 2862.18, + "end": 2865.58, + "probability": 0.9905 + }, + { + "start": 2865.74, + "end": 2866.9, + "probability": 0.9663 + }, + { + "start": 2867.84, + "end": 2872.2, + "probability": 0.9805 + }, + { + "start": 2874.08, + "end": 2878.02, + "probability": 0.9988 + }, + { + "start": 2878.02, + "end": 2882.56, + "probability": 0.9993 + }, + { + "start": 2882.88, + "end": 2884.92, + "probability": 0.9969 + }, + { + "start": 2887.52, + "end": 2891.2, + "probability": 0.9706 + }, + { + "start": 2892.98, + "end": 2894.46, + "probability": 0.9241 + }, + { + "start": 2895.84, + "end": 2899.06, + "probability": 0.995 + }, + { + "start": 2900.22, + "end": 2900.92, + "probability": 0.8032 + }, + { + "start": 2902.06, + "end": 2905.94, + "probability": 0.9932 + }, + { + "start": 2906.98, + "end": 2908.72, + "probability": 0.9402 + }, + { + "start": 2911.7, + "end": 2913.2, + "probability": 0.9993 + }, + { + "start": 2916.04, + "end": 2917.66, + "probability": 0.9907 + }, + { + "start": 2918.36, + "end": 2919.04, + "probability": 0.6862 + }, + { + "start": 2919.34, + "end": 2924.44, + "probability": 0.9966 + }, + { + "start": 2924.9, + "end": 2928.88, + "probability": 0.9939 + }, + { + "start": 2930.3, + "end": 2934.88, + "probability": 0.9983 + }, + { + "start": 2937.12, + "end": 2939.28, + "probability": 0.9976 + }, + { + "start": 2939.44, + "end": 2941.26, + "probability": 0.989 + }, + { + "start": 2943.22, + "end": 2947.98, + "probability": 0.9551 + }, + { + "start": 2948.56, + "end": 2949.08, + "probability": 0.8902 + }, + { + "start": 2950.26, + "end": 2952.76, + "probability": 0.9854 + }, + { + "start": 2954.04, + "end": 2958.94, + "probability": 0.9965 + }, + { + "start": 2959.04, + "end": 2960.76, + "probability": 0.8355 + }, + { + "start": 2961.66, + "end": 2962.72, + "probability": 0.783 + }, + { + "start": 2962.76, + "end": 2964.62, + "probability": 0.9948 + }, + { + "start": 2965.68, + "end": 2968.4, + "probability": 0.7955 + }, + { + "start": 2969.66, + "end": 2970.64, + "probability": 0.7116 + }, + { + "start": 2970.88, + "end": 2972.16, + "probability": 0.9937 + }, + { + "start": 2972.86, + "end": 2974.98, + "probability": 0.9106 + }, + { + "start": 2976.36, + "end": 2980.8, + "probability": 0.9958 + }, + { + "start": 2981.54, + "end": 2983.14, + "probability": 0.903 + }, + { + "start": 2984.84, + "end": 2986.32, + "probability": 0.775 + }, + { + "start": 2987.92, + "end": 2991.64, + "probability": 0.9418 + }, + { + "start": 2993.34, + "end": 2994.7, + "probability": 0.8451 + }, + { + "start": 2996.36, + "end": 2997.02, + "probability": 0.5771 + }, + { + "start": 2998.08, + "end": 3000.38, + "probability": 0.9468 + }, + { + "start": 3001.56, + "end": 3002.44, + "probability": 0.9962 + }, + { + "start": 3003.6, + "end": 3004.06, + "probability": 0.8009 + }, + { + "start": 3004.78, + "end": 3006.12, + "probability": 0.8046 + }, + { + "start": 3006.28, + "end": 3008.68, + "probability": 0.9848 + }, + { + "start": 3008.84, + "end": 3010.5, + "probability": 0.9768 + }, + { + "start": 3011.34, + "end": 3014.0, + "probability": 0.9211 + }, + { + "start": 3014.3, + "end": 3014.74, + "probability": 0.0253 + }, + { + "start": 3045.46, + "end": 3046.2, + "probability": 0.846 + }, + { + "start": 3047.76, + "end": 3048.7, + "probability": 0.7871 + }, + { + "start": 3049.42, + "end": 3050.12, + "probability": 0.7428 + }, + { + "start": 3052.44, + "end": 3055.66, + "probability": 0.9976 + }, + { + "start": 3057.12, + "end": 3060.16, + "probability": 0.997 + }, + { + "start": 3060.98, + "end": 3062.38, + "probability": 0.6161 + }, + { + "start": 3063.36, + "end": 3065.84, + "probability": 0.9836 + }, + { + "start": 3066.88, + "end": 3068.9, + "probability": 0.4704 + }, + { + "start": 3069.06, + "end": 3070.63, + "probability": 0.6371 + }, + { + "start": 3070.88, + "end": 3071.96, + "probability": 0.8366 + }, + { + "start": 3072.48, + "end": 3073.3, + "probability": 0.6502 + }, + { + "start": 3074.04, + "end": 3074.76, + "probability": 0.7701 + }, + { + "start": 3075.12, + "end": 3075.92, + "probability": 0.8594 + }, + { + "start": 3077.0, + "end": 3079.2, + "probability": 0.9673 + }, + { + "start": 3079.98, + "end": 3080.3, + "probability": 0.8121 + }, + { + "start": 3081.12, + "end": 3081.52, + "probability": 0.8164 + }, + { + "start": 3082.14, + "end": 3082.54, + "probability": 0.5031 + }, + { + "start": 3083.04, + "end": 3083.64, + "probability": 0.839 + }, + { + "start": 3085.06, + "end": 3089.26, + "probability": 0.9594 + }, + { + "start": 3089.82, + "end": 3091.32, + "probability": 0.9235 + }, + { + "start": 3091.92, + "end": 3093.08, + "probability": 0.9948 + }, + { + "start": 3093.6, + "end": 3095.38, + "probability": 0.8397 + }, + { + "start": 3096.1, + "end": 3096.56, + "probability": 0.9242 + }, + { + "start": 3098.66, + "end": 3102.48, + "probability": 0.7518 + }, + { + "start": 3103.1, + "end": 3105.8, + "probability": 0.9443 + }, + { + "start": 3106.38, + "end": 3106.98, + "probability": 0.798 + }, + { + "start": 3107.74, + "end": 3108.4, + "probability": 0.9152 + }, + { + "start": 3109.78, + "end": 3113.26, + "probability": 0.7434 + }, + { + "start": 3114.54, + "end": 3115.22, + "probability": 0.889 + }, + { + "start": 3116.08, + "end": 3117.54, + "probability": 0.5483 + }, + { + "start": 3118.08, + "end": 3118.98, + "probability": 0.8219 + }, + { + "start": 3120.54, + "end": 3124.28, + "probability": 0.9899 + }, + { + "start": 3125.22, + "end": 3126.92, + "probability": 0.8948 + }, + { + "start": 3127.7, + "end": 3130.46, + "probability": 0.9836 + }, + { + "start": 3132.04, + "end": 3137.76, + "probability": 0.9212 + }, + { + "start": 3139.3, + "end": 3143.1, + "probability": 0.9984 + }, + { + "start": 3143.1, + "end": 3148.14, + "probability": 0.9907 + }, + { + "start": 3149.44, + "end": 3151.34, + "probability": 0.9951 + }, + { + "start": 3152.02, + "end": 3153.16, + "probability": 0.9871 + }, + { + "start": 3154.38, + "end": 3155.74, + "probability": 0.9987 + }, + { + "start": 3156.48, + "end": 3157.48, + "probability": 0.7819 + }, + { + "start": 3158.72, + "end": 3161.6, + "probability": 0.9905 + }, + { + "start": 3162.74, + "end": 3167.42, + "probability": 0.9321 + }, + { + "start": 3168.28, + "end": 3168.96, + "probability": 0.8968 + }, + { + "start": 3170.08, + "end": 3170.78, + "probability": 0.8163 + }, + { + "start": 3171.78, + "end": 3174.44, + "probability": 0.998 + }, + { + "start": 3175.22, + "end": 3176.98, + "probability": 0.9536 + }, + { + "start": 3177.52, + "end": 3178.54, + "probability": 0.9866 + }, + { + "start": 3179.78, + "end": 3181.04, + "probability": 0.9885 + }, + { + "start": 3181.28, + "end": 3181.48, + "probability": 0.6638 + }, + { + "start": 3181.54, + "end": 3185.08, + "probability": 0.9903 + }, + { + "start": 3185.72, + "end": 3188.22, + "probability": 0.9503 + }, + { + "start": 3189.2, + "end": 3191.18, + "probability": 0.999 + }, + { + "start": 3191.26, + "end": 3191.84, + "probability": 0.9801 + }, + { + "start": 3191.96, + "end": 3194.74, + "probability": 0.9648 + }, + { + "start": 3195.72, + "end": 3197.62, + "probability": 0.9983 + }, + { + "start": 3198.52, + "end": 3200.66, + "probability": 0.9963 + }, + { + "start": 3201.64, + "end": 3203.46, + "probability": 0.9602 + }, + { + "start": 3204.08, + "end": 3204.62, + "probability": 0.9346 + }, + { + "start": 3205.34, + "end": 3206.72, + "probability": 0.8876 + }, + { + "start": 3207.42, + "end": 3209.02, + "probability": 0.9872 + }, + { + "start": 3210.04, + "end": 3212.68, + "probability": 0.8405 + }, + { + "start": 3213.76, + "end": 3214.76, + "probability": 0.9751 + }, + { + "start": 3215.68, + "end": 3218.38, + "probability": 0.9674 + }, + { + "start": 3219.1, + "end": 3220.3, + "probability": 0.9871 + }, + { + "start": 3221.76, + "end": 3222.72, + "probability": 0.9823 + }, + { + "start": 3224.38, + "end": 3226.14, + "probability": 0.549 + }, + { + "start": 3227.06, + "end": 3230.48, + "probability": 0.9453 + }, + { + "start": 3230.48, + "end": 3233.44, + "probability": 0.9746 + }, + { + "start": 3234.28, + "end": 3235.38, + "probability": 0.772 + }, + { + "start": 3235.86, + "end": 3238.82, + "probability": 0.9684 + }, + { + "start": 3239.64, + "end": 3241.18, + "probability": 0.9479 + }, + { + "start": 3242.68, + "end": 3244.55, + "probability": 0.7188 + }, + { + "start": 3245.44, + "end": 3246.86, + "probability": 0.757 + }, + { + "start": 3247.52, + "end": 3250.06, + "probability": 0.7475 + }, + { + "start": 3251.18, + "end": 3251.76, + "probability": 0.8018 + }, + { + "start": 3252.74, + "end": 3254.54, + "probability": 0.9932 + }, + { + "start": 3255.22, + "end": 3258.14, + "probability": 0.9592 + }, + { + "start": 3259.12, + "end": 3261.66, + "probability": 0.8591 + }, + { + "start": 3262.46, + "end": 3264.62, + "probability": 0.9987 + }, + { + "start": 3265.1, + "end": 3268.36, + "probability": 0.9941 + }, + { + "start": 3270.0, + "end": 3271.14, + "probability": 0.9105 + }, + { + "start": 3272.62, + "end": 3274.14, + "probability": 0.9102 + }, + { + "start": 3274.9, + "end": 3277.56, + "probability": 0.9633 + }, + { + "start": 3278.34, + "end": 3283.92, + "probability": 0.9471 + }, + { + "start": 3284.72, + "end": 3285.62, + "probability": 0.7826 + }, + { + "start": 3286.34, + "end": 3288.98, + "probability": 0.9971 + }, + { + "start": 3289.8, + "end": 3290.58, + "probability": 0.959 + }, + { + "start": 3290.6, + "end": 3291.4, + "probability": 0.9679 + }, + { + "start": 3292.44, + "end": 3295.32, + "probability": 0.9669 + }, + { + "start": 3296.08, + "end": 3299.18, + "probability": 0.9742 + }, + { + "start": 3300.0, + "end": 3301.02, + "probability": 0.7805 + }, + { + "start": 3301.82, + "end": 3305.7, + "probability": 0.9906 + }, + { + "start": 3306.24, + "end": 3307.65, + "probability": 0.4483 + }, + { + "start": 3308.62, + "end": 3310.68, + "probability": 0.9304 + }, + { + "start": 3312.54, + "end": 3313.98, + "probability": 0.9938 + }, + { + "start": 3314.52, + "end": 3318.62, + "probability": 0.9933 + }, + { + "start": 3319.28, + "end": 3321.78, + "probability": 0.993 + }, + { + "start": 3323.7, + "end": 3324.66, + "probability": 0.9833 + }, + { + "start": 3325.22, + "end": 3331.3, + "probability": 0.998 + }, + { + "start": 3332.4, + "end": 3334.2, + "probability": 0.9851 + }, + { + "start": 3334.76, + "end": 3339.5, + "probability": 0.9966 + }, + { + "start": 3340.2, + "end": 3344.08, + "probability": 0.9949 + }, + { + "start": 3344.64, + "end": 3348.32, + "probability": 0.8521 + }, + { + "start": 3348.88, + "end": 3350.4, + "probability": 0.9443 + }, + { + "start": 3350.82, + "end": 3352.82, + "probability": 0.9836 + }, + { + "start": 3353.48, + "end": 3357.38, + "probability": 0.9864 + }, + { + "start": 3357.38, + "end": 3360.64, + "probability": 0.9484 + }, + { + "start": 3361.86, + "end": 3364.48, + "probability": 0.8902 + }, + { + "start": 3365.18, + "end": 3365.66, + "probability": 0.8638 + }, + { + "start": 3366.28, + "end": 3369.2, + "probability": 0.9887 + }, + { + "start": 3370.68, + "end": 3371.52, + "probability": 0.9719 + }, + { + "start": 3372.58, + "end": 3374.64, + "probability": 0.9844 + }, + { + "start": 3375.94, + "end": 3380.28, + "probability": 0.9878 + }, + { + "start": 3380.28, + "end": 3383.94, + "probability": 0.906 + }, + { + "start": 3384.76, + "end": 3388.12, + "probability": 0.9906 + }, + { + "start": 3388.12, + "end": 3390.9, + "probability": 0.9985 + }, + { + "start": 3391.54, + "end": 3394.0, + "probability": 0.9502 + }, + { + "start": 3394.56, + "end": 3395.76, + "probability": 0.996 + }, + { + "start": 3396.68, + "end": 3398.34, + "probability": 0.7205 + }, + { + "start": 3398.96, + "end": 3402.6, + "probability": 0.9465 + }, + { + "start": 3403.98, + "end": 3410.32, + "probability": 0.6047 + }, + { + "start": 3410.56, + "end": 3412.14, + "probability": 0.93 + }, + { + "start": 3412.82, + "end": 3414.56, + "probability": 0.9435 + }, + { + "start": 3415.36, + "end": 3417.38, + "probability": 0.8841 + }, + { + "start": 3417.88, + "end": 3420.68, + "probability": 0.996 + }, + { + "start": 3421.48, + "end": 3423.94, + "probability": 0.8896 + }, + { + "start": 3424.22, + "end": 3425.96, + "probability": 0.7416 + }, + { + "start": 3426.68, + "end": 3427.72, + "probability": 0.5108 + }, + { + "start": 3429.36, + "end": 3433.46, + "probability": 0.2175 + }, + { + "start": 3433.68, + "end": 3434.32, + "probability": 0.7167 + }, + { + "start": 3434.78, + "end": 3435.36, + "probability": 0.7032 + }, + { + "start": 3435.42, + "end": 3437.26, + "probability": 0.9444 + }, + { + "start": 3448.66, + "end": 3451.32, + "probability": 0.7962 + }, + { + "start": 3452.14, + "end": 3453.27, + "probability": 0.9937 + }, + { + "start": 3453.4, + "end": 3456.02, + "probability": 0.8259 + }, + { + "start": 3457.44, + "end": 3461.48, + "probability": 0.9863 + }, + { + "start": 3464.04, + "end": 3468.1, + "probability": 0.9716 + }, + { + "start": 3468.48, + "end": 3472.6, + "probability": 0.9963 + }, + { + "start": 3474.18, + "end": 3479.02, + "probability": 0.9978 + }, + { + "start": 3479.76, + "end": 3481.46, + "probability": 0.8776 + }, + { + "start": 3482.78, + "end": 3483.66, + "probability": 0.8853 + }, + { + "start": 3484.9, + "end": 3486.84, + "probability": 0.992 + }, + { + "start": 3488.56, + "end": 3489.76, + "probability": 0.92 + }, + { + "start": 3490.58, + "end": 3493.13, + "probability": 0.9619 + }, + { + "start": 3495.32, + "end": 3496.6, + "probability": 0.9745 + }, + { + "start": 3497.98, + "end": 3503.86, + "probability": 0.981 + }, + { + "start": 3505.12, + "end": 3510.5, + "probability": 0.897 + }, + { + "start": 3511.2, + "end": 3512.56, + "probability": 0.8433 + }, + { + "start": 3513.76, + "end": 3515.32, + "probability": 0.8989 + }, + { + "start": 3515.64, + "end": 3519.6, + "probability": 0.9917 + }, + { + "start": 3520.96, + "end": 3525.98, + "probability": 0.9128 + }, + { + "start": 3527.22, + "end": 3528.72, + "probability": 0.9158 + }, + { + "start": 3529.32, + "end": 3530.46, + "probability": 0.9979 + }, + { + "start": 3532.04, + "end": 3535.32, + "probability": 0.9922 + }, + { + "start": 3536.68, + "end": 3539.82, + "probability": 0.9768 + }, + { + "start": 3540.52, + "end": 3541.52, + "probability": 0.9164 + }, + { + "start": 3542.94, + "end": 3543.82, + "probability": 0.9814 + }, + { + "start": 3544.7, + "end": 3545.81, + "probability": 0.9785 + }, + { + "start": 3546.7, + "end": 3549.62, + "probability": 0.9839 + }, + { + "start": 3550.76, + "end": 3552.8, + "probability": 0.6597 + }, + { + "start": 3553.76, + "end": 3557.6, + "probability": 0.9834 + }, + { + "start": 3558.38, + "end": 3560.68, + "probability": 0.7455 + }, + { + "start": 3561.36, + "end": 3561.62, + "probability": 0.7686 + }, + { + "start": 3563.58, + "end": 3563.82, + "probability": 0.6561 + }, + { + "start": 3566.78, + "end": 3569.5, + "probability": 0.7938 + }, + { + "start": 3570.08, + "end": 3570.78, + "probability": 0.9562 + }, + { + "start": 3571.5, + "end": 3572.32, + "probability": 0.6133 + }, + { + "start": 3573.72, + "end": 3574.68, + "probability": 0.909 + }, + { + "start": 3575.74, + "end": 3579.72, + "probability": 0.6833 + }, + { + "start": 3580.76, + "end": 3582.66, + "probability": 0.9019 + }, + { + "start": 3584.04, + "end": 3585.18, + "probability": 0.9126 + }, + { + "start": 3587.12, + "end": 3590.24, + "probability": 0.9763 + }, + { + "start": 3591.98, + "end": 3593.04, + "probability": 0.6907 + }, + { + "start": 3594.08, + "end": 3595.16, + "probability": 0.863 + }, + { + "start": 3595.98, + "end": 3597.86, + "probability": 0.9953 + }, + { + "start": 3599.12, + "end": 3602.28, + "probability": 0.8757 + }, + { + "start": 3604.34, + "end": 3605.48, + "probability": 0.6122 + }, + { + "start": 3607.12, + "end": 3609.98, + "probability": 0.9712 + }, + { + "start": 3610.94, + "end": 3612.32, + "probability": 0.9995 + }, + { + "start": 3613.24, + "end": 3615.92, + "probability": 0.7169 + }, + { + "start": 3618.54, + "end": 3621.18, + "probability": 0.9845 + }, + { + "start": 3621.8, + "end": 3622.82, + "probability": 0.9282 + }, + { + "start": 3625.18, + "end": 3628.82, + "probability": 0.839 + }, + { + "start": 3630.36, + "end": 3631.38, + "probability": 0.8875 + }, + { + "start": 3632.53, + "end": 3634.96, + "probability": 0.9568 + }, + { + "start": 3635.52, + "end": 3638.44, + "probability": 0.8263 + }, + { + "start": 3639.16, + "end": 3642.04, + "probability": 0.9679 + }, + { + "start": 3642.56, + "end": 3646.68, + "probability": 0.988 + }, + { + "start": 3649.12, + "end": 3652.44, + "probability": 0.9473 + }, + { + "start": 3654.24, + "end": 3655.28, + "probability": 0.7087 + }, + { + "start": 3656.54, + "end": 3658.46, + "probability": 0.9889 + }, + { + "start": 3659.42, + "end": 3660.88, + "probability": 0.9814 + }, + { + "start": 3661.0, + "end": 3662.0, + "probability": 0.9908 + }, + { + "start": 3662.12, + "end": 3663.2, + "probability": 0.9872 + }, + { + "start": 3663.32, + "end": 3664.3, + "probability": 0.9507 + }, + { + "start": 3666.42, + "end": 3668.48, + "probability": 0.9666 + }, + { + "start": 3669.16, + "end": 3672.9, + "probability": 0.9609 + }, + { + "start": 3674.42, + "end": 3677.04, + "probability": 0.9907 + }, + { + "start": 3677.92, + "end": 3681.72, + "probability": 0.9384 + }, + { + "start": 3682.62, + "end": 3685.0, + "probability": 0.998 + }, + { + "start": 3685.86, + "end": 3689.3, + "probability": 0.9977 + }, + { + "start": 3690.64, + "end": 3691.88, + "probability": 0.8469 + }, + { + "start": 3693.38, + "end": 3696.78, + "probability": 0.9408 + }, + { + "start": 3697.66, + "end": 3703.1, + "probability": 0.8604 + }, + { + "start": 3704.4, + "end": 3704.8, + "probability": 0.9901 + }, + { + "start": 3705.78, + "end": 3706.76, + "probability": 0.9915 + }, + { + "start": 3707.4, + "end": 3708.44, + "probability": 0.8354 + }, + { + "start": 3709.72, + "end": 3711.6, + "probability": 0.9912 + }, + { + "start": 3712.56, + "end": 3713.52, + "probability": 0.5188 + }, + { + "start": 3715.02, + "end": 3716.34, + "probability": 0.9578 + }, + { + "start": 3717.3, + "end": 3718.28, + "probability": 0.5317 + }, + { + "start": 3719.4, + "end": 3725.78, + "probability": 0.9618 + }, + { + "start": 3727.82, + "end": 3728.8, + "probability": 0.7061 + }, + { + "start": 3730.12, + "end": 3732.42, + "probability": 0.9928 + }, + { + "start": 3733.18, + "end": 3737.06, + "probability": 0.9815 + }, + { + "start": 3738.08, + "end": 3738.84, + "probability": 0.9783 + }, + { + "start": 3739.9, + "end": 3743.02, + "probability": 0.9715 + }, + { + "start": 3744.56, + "end": 3747.82, + "probability": 0.7812 + }, + { + "start": 3748.38, + "end": 3750.36, + "probability": 0.9205 + }, + { + "start": 3751.26, + "end": 3751.54, + "probability": 0.8624 + }, + { + "start": 3753.26, + "end": 3756.8, + "probability": 0.9897 + }, + { + "start": 3757.74, + "end": 3759.08, + "probability": 0.6632 + }, + { + "start": 3761.04, + "end": 3767.32, + "probability": 0.9551 + }, + { + "start": 3768.18, + "end": 3771.5, + "probability": 0.8658 + }, + { + "start": 3772.2, + "end": 3776.3, + "probability": 0.9961 + }, + { + "start": 3776.84, + "end": 3778.04, + "probability": 0.8289 + }, + { + "start": 3778.7, + "end": 3780.56, + "probability": 0.9413 + }, + { + "start": 3781.34, + "end": 3783.6, + "probability": 0.8203 + }, + { + "start": 3784.88, + "end": 3787.14, + "probability": 0.9976 + }, + { + "start": 3788.0, + "end": 3790.68, + "probability": 0.9985 + }, + { + "start": 3791.74, + "end": 3795.54, + "probability": 0.9893 + }, + { + "start": 3796.72, + "end": 3799.58, + "probability": 0.98 + }, + { + "start": 3800.34, + "end": 3806.34, + "probability": 0.9958 + }, + { + "start": 3808.48, + "end": 3810.0, + "probability": 0.8424 + }, + { + "start": 3811.0, + "end": 3813.94, + "probability": 0.9385 + }, + { + "start": 3814.46, + "end": 3817.04, + "probability": 0.9934 + }, + { + "start": 3818.56, + "end": 3818.92, + "probability": 0.8029 + }, + { + "start": 3818.96, + "end": 3820.12, + "probability": 0.9734 + }, + { + "start": 3820.28, + "end": 3824.08, + "probability": 0.9734 + }, + { + "start": 3825.26, + "end": 3826.98, + "probability": 0.9966 + }, + { + "start": 3827.18, + "end": 3829.5, + "probability": 0.666 + }, + { + "start": 3830.38, + "end": 3832.62, + "probability": 0.9367 + }, + { + "start": 3833.38, + "end": 3836.94, + "probability": 0.9825 + }, + { + "start": 3837.4, + "end": 3841.3, + "probability": 0.9438 + }, + { + "start": 3842.28, + "end": 3845.28, + "probability": 0.6644 + }, + { + "start": 3846.94, + "end": 3849.04, + "probability": 0.9091 + }, + { + "start": 3849.88, + "end": 3851.04, + "probability": 0.8785 + }, + { + "start": 3852.28, + "end": 3853.48, + "probability": 0.7727 + }, + { + "start": 3858.86, + "end": 3862.14, + "probability": 0.7895 + }, + { + "start": 3863.52, + "end": 3866.22, + "probability": 0.9979 + }, + { + "start": 3867.04, + "end": 3868.32, + "probability": 0.8125 + }, + { + "start": 3869.06, + "end": 3871.58, + "probability": 0.9551 + }, + { + "start": 3872.5, + "end": 3873.74, + "probability": 0.6453 + }, + { + "start": 3874.08, + "end": 3874.78, + "probability": 0.7448 + }, + { + "start": 3875.18, + "end": 3875.82, + "probability": 0.5043 + }, + { + "start": 3876.3, + "end": 3877.58, + "probability": 0.9948 + }, + { + "start": 3878.2, + "end": 3878.58, + "probability": 0.648 + }, + { + "start": 3894.96, + "end": 3895.2, + "probability": 0.2738 + }, + { + "start": 3901.38, + "end": 3901.98, + "probability": 0.4218 + }, + { + "start": 3904.28, + "end": 3905.32, + "probability": 0.7632 + }, + { + "start": 3906.38, + "end": 3907.3, + "probability": 0.9467 + }, + { + "start": 3908.84, + "end": 3911.26, + "probability": 0.8572 + }, + { + "start": 3912.46, + "end": 3916.3, + "probability": 0.9973 + }, + { + "start": 3918.86, + "end": 3919.82, + "probability": 0.9479 + }, + { + "start": 3920.62, + "end": 3924.22, + "probability": 0.9516 + }, + { + "start": 3925.82, + "end": 3926.58, + "probability": 0.4949 + }, + { + "start": 3928.5, + "end": 3933.98, + "probability": 0.9696 + }, + { + "start": 3935.32, + "end": 3937.66, + "probability": 0.8344 + }, + { + "start": 3938.94, + "end": 3940.32, + "probability": 0.8885 + }, + { + "start": 3941.56, + "end": 3946.62, + "probability": 0.9899 + }, + { + "start": 3948.94, + "end": 3950.02, + "probability": 0.92 + }, + { + "start": 3951.28, + "end": 3953.8, + "probability": 0.8137 + }, + { + "start": 3954.8, + "end": 3957.5, + "probability": 0.9429 + }, + { + "start": 3959.32, + "end": 3960.3, + "probability": 0.8999 + }, + { + "start": 3961.24, + "end": 3962.82, + "probability": 0.9951 + }, + { + "start": 3964.0, + "end": 3968.12, + "probability": 0.9606 + }, + { + "start": 3970.1, + "end": 3971.3, + "probability": 0.958 + }, + { + "start": 3972.56, + "end": 3976.72, + "probability": 0.9303 + }, + { + "start": 3978.04, + "end": 3978.98, + "probability": 0.7563 + }, + { + "start": 3979.92, + "end": 3983.0, + "probability": 0.9985 + }, + { + "start": 3994.44, + "end": 3996.14, + "probability": 0.828 + }, + { + "start": 3997.04, + "end": 4000.08, + "probability": 0.7914 + }, + { + "start": 4002.06, + "end": 4007.26, + "probability": 0.976 + }, + { + "start": 4009.52, + "end": 4011.5, + "probability": 0.9955 + }, + { + "start": 4012.86, + "end": 4018.66, + "probability": 0.9835 + }, + { + "start": 4020.7, + "end": 4022.0, + "probability": 0.8394 + }, + { + "start": 4023.06, + "end": 4024.24, + "probability": 0.7385 + }, + { + "start": 4025.84, + "end": 4030.56, + "probability": 0.9969 + }, + { + "start": 4031.76, + "end": 4034.98, + "probability": 0.9858 + }, + { + "start": 4035.86, + "end": 4038.26, + "probability": 0.995 + }, + { + "start": 4038.6, + "end": 4044.58, + "probability": 0.9931 + }, + { + "start": 4044.76, + "end": 4045.26, + "probability": 0.4029 + }, + { + "start": 4045.44, + "end": 4045.86, + "probability": 0.8985 + }, + { + "start": 4047.12, + "end": 4049.59, + "probability": 0.9966 + }, + { + "start": 4050.7, + "end": 4052.86, + "probability": 0.9976 + }, + { + "start": 4054.9, + "end": 4058.82, + "probability": 0.9938 + }, + { + "start": 4059.78, + "end": 4062.26, + "probability": 0.999 + }, + { + "start": 4063.34, + "end": 4067.4, + "probability": 0.9819 + }, + { + "start": 4067.4, + "end": 4073.06, + "probability": 0.9971 + }, + { + "start": 4074.82, + "end": 4078.78, + "probability": 0.9972 + }, + { + "start": 4079.82, + "end": 4080.78, + "probability": 0.9567 + }, + { + "start": 4081.7, + "end": 4082.66, + "probability": 0.9879 + }, + { + "start": 4083.52, + "end": 4084.08, + "probability": 0.8657 + }, + { + "start": 4086.04, + "end": 4087.24, + "probability": 0.7487 + }, + { + "start": 4087.3, + "end": 4089.76, + "probability": 0.97 + }, + { + "start": 4091.2, + "end": 4093.2, + "probability": 0.9929 + }, + { + "start": 4094.34, + "end": 4096.84, + "probability": 0.9894 + }, + { + "start": 4098.0, + "end": 4103.62, + "probability": 0.9924 + }, + { + "start": 4105.58, + "end": 4107.18, + "probability": 0.749 + }, + { + "start": 4108.32, + "end": 4110.72, + "probability": 0.8355 + }, + { + "start": 4112.5, + "end": 4116.85, + "probability": 0.8536 + }, + { + "start": 4117.16, + "end": 4121.34, + "probability": 0.9957 + }, + { + "start": 4122.74, + "end": 4126.3, + "probability": 0.8594 + }, + { + "start": 4127.18, + "end": 4129.2, + "probability": 0.9777 + }, + { + "start": 4130.44, + "end": 4132.68, + "probability": 0.8782 + }, + { + "start": 4134.1, + "end": 4137.96, + "probability": 0.9757 + }, + { + "start": 4138.78, + "end": 4141.34, + "probability": 0.9937 + }, + { + "start": 4142.08, + "end": 4143.76, + "probability": 0.9884 + }, + { + "start": 4144.26, + "end": 4147.78, + "probability": 0.9769 + }, + { + "start": 4149.16, + "end": 4149.76, + "probability": 0.9183 + }, + { + "start": 4150.9, + "end": 4153.2, + "probability": 0.981 + }, + { + "start": 4154.3, + "end": 4156.44, + "probability": 0.7571 + }, + { + "start": 4157.44, + "end": 4161.66, + "probability": 0.996 + }, + { + "start": 4162.96, + "end": 4167.32, + "probability": 0.9008 + }, + { + "start": 4167.86, + "end": 4170.46, + "probability": 0.9832 + }, + { + "start": 4171.72, + "end": 4174.34, + "probability": 0.7997 + }, + { + "start": 4175.42, + "end": 4178.46, + "probability": 0.9808 + }, + { + "start": 4179.1, + "end": 4181.58, + "probability": 0.9917 + }, + { + "start": 4182.44, + "end": 4185.1, + "probability": 0.9781 + }, + { + "start": 4185.8, + "end": 4186.96, + "probability": 0.9874 + }, + { + "start": 4189.4, + "end": 4197.0, + "probability": 0.9976 + }, + { + "start": 4198.32, + "end": 4201.78, + "probability": 0.9673 + }, + { + "start": 4203.06, + "end": 4206.62, + "probability": 0.9972 + }, + { + "start": 4207.52, + "end": 4209.92, + "probability": 0.9955 + }, + { + "start": 4212.08, + "end": 4216.66, + "probability": 0.9807 + }, + { + "start": 4217.58, + "end": 4218.5, + "probability": 0.8688 + }, + { + "start": 4219.6, + "end": 4223.56, + "probability": 0.9963 + }, + { + "start": 4224.54, + "end": 4228.12, + "probability": 0.99 + }, + { + "start": 4229.42, + "end": 4232.96, + "probability": 0.966 + }, + { + "start": 4234.04, + "end": 4235.32, + "probability": 0.8374 + }, + { + "start": 4236.06, + "end": 4239.24, + "probability": 0.9864 + }, + { + "start": 4240.3, + "end": 4241.08, + "probability": 0.908 + }, + { + "start": 4242.04, + "end": 4244.98, + "probability": 0.9566 + }, + { + "start": 4246.22, + "end": 4246.94, + "probability": 0.5113 + }, + { + "start": 4247.3, + "end": 4249.32, + "probability": 0.7841 + }, + { + "start": 4269.82, + "end": 4271.76, + "probability": 0.5996 + }, + { + "start": 4271.76, + "end": 4273.24, + "probability": 0.6399 + }, + { + "start": 4273.34, + "end": 4274.68, + "probability": 0.8145 + }, + { + "start": 4275.1, + "end": 4278.2, + "probability": 0.8585 + }, + { + "start": 4278.66, + "end": 4280.9, + "probability": 0.9744 + }, + { + "start": 4281.94, + "end": 4284.28, + "probability": 0.6981 + }, + { + "start": 4285.6, + "end": 4286.1, + "probability": 0.8789 + }, + { + "start": 4288.04, + "end": 4290.74, + "probability": 0.9772 + }, + { + "start": 4292.08, + "end": 4298.58, + "probability": 0.7829 + }, + { + "start": 4299.2, + "end": 4299.84, + "probability": 0.3944 + }, + { + "start": 4300.88, + "end": 4305.0, + "probability": 0.9367 + }, + { + "start": 4308.68, + "end": 4313.86, + "probability": 0.9969 + }, + { + "start": 4315.0, + "end": 4316.62, + "probability": 0.8936 + }, + { + "start": 4318.78, + "end": 4322.02, + "probability": 0.7686 + }, + { + "start": 4323.24, + "end": 4325.78, + "probability": 0.8453 + }, + { + "start": 4326.8, + "end": 4327.5, + "probability": 0.7465 + }, + { + "start": 4328.02, + "end": 4329.38, + "probability": 0.9912 + }, + { + "start": 4330.22, + "end": 4331.14, + "probability": 0.9189 + }, + { + "start": 4332.3, + "end": 4334.32, + "probability": 0.9933 + }, + { + "start": 4336.22, + "end": 4341.58, + "probability": 0.9812 + }, + { + "start": 4342.28, + "end": 4344.43, + "probability": 0.9971 + }, + { + "start": 4345.32, + "end": 4346.5, + "probability": 0.9696 + }, + { + "start": 4347.58, + "end": 4348.7, + "probability": 0.8537 + }, + { + "start": 4349.68, + "end": 4355.56, + "probability": 0.9902 + }, + { + "start": 4357.16, + "end": 4359.24, + "probability": 0.9971 + }, + { + "start": 4360.6, + "end": 4361.4, + "probability": 0.9657 + }, + { + "start": 4363.28, + "end": 4364.76, + "probability": 0.7214 + }, + { + "start": 4365.58, + "end": 4368.28, + "probability": 0.6792 + }, + { + "start": 4369.3, + "end": 4370.1, + "probability": 0.7049 + }, + { + "start": 4371.22, + "end": 4374.58, + "probability": 0.6712 + }, + { + "start": 4375.22, + "end": 4377.32, + "probability": 0.8553 + }, + { + "start": 4378.02, + "end": 4383.68, + "probability": 0.9438 + }, + { + "start": 4384.56, + "end": 4386.88, + "probability": 0.9945 + }, + { + "start": 4386.88, + "end": 4389.98, + "probability": 0.9398 + }, + { + "start": 4391.48, + "end": 4393.91, + "probability": 0.9625 + }, + { + "start": 4395.3, + "end": 4395.68, + "probability": 0.8958 + }, + { + "start": 4396.5, + "end": 4398.82, + "probability": 0.7065 + }, + { + "start": 4399.9, + "end": 4403.45, + "probability": 0.9019 + }, + { + "start": 4404.4, + "end": 4406.6, + "probability": 0.8623 + }, + { + "start": 4407.18, + "end": 4409.86, + "probability": 0.8761 + }, + { + "start": 4410.74, + "end": 4412.06, + "probability": 0.8748 + }, + { + "start": 4412.84, + "end": 4416.64, + "probability": 0.9656 + }, + { + "start": 4418.14, + "end": 4421.58, + "probability": 0.9717 + }, + { + "start": 4423.0, + "end": 4423.86, + "probability": 0.7179 + }, + { + "start": 4424.9, + "end": 4428.98, + "probability": 0.5309 + }, + { + "start": 4429.92, + "end": 4432.92, + "probability": 0.946 + }, + { + "start": 4433.02, + "end": 4434.92, + "probability": 0.9666 + }, + { + "start": 4435.76, + "end": 4440.58, + "probability": 0.9978 + }, + { + "start": 4440.58, + "end": 4444.96, + "probability": 0.9836 + }, + { + "start": 4448.78, + "end": 4452.1, + "probability": 0.9424 + }, + { + "start": 4453.1, + "end": 4454.96, + "probability": 0.7944 + }, + { + "start": 4455.68, + "end": 4456.72, + "probability": 0.7478 + }, + { + "start": 4457.7, + "end": 4460.12, + "probability": 0.9679 + }, + { + "start": 4461.6, + "end": 4468.26, + "probability": 0.9379 + }, + { + "start": 4468.26, + "end": 4474.18, + "probability": 0.9921 + }, + { + "start": 4475.38, + "end": 4478.16, + "probability": 0.9752 + }, + { + "start": 4479.18, + "end": 4480.18, + "probability": 0.8126 + }, + { + "start": 4482.58, + "end": 4483.74, + "probability": 0.96 + }, + { + "start": 4484.52, + "end": 4486.8, + "probability": 0.9849 + }, + { + "start": 4488.36, + "end": 4492.74, + "probability": 0.9036 + }, + { + "start": 4493.55, + "end": 4498.08, + "probability": 0.804 + }, + { + "start": 4499.84, + "end": 4503.48, + "probability": 0.9727 + }, + { + "start": 4504.94, + "end": 4506.92, + "probability": 0.9995 + }, + { + "start": 4508.34, + "end": 4513.1, + "probability": 0.9753 + }, + { + "start": 4514.1, + "end": 4515.12, + "probability": 0.9502 + }, + { + "start": 4516.84, + "end": 4517.02, + "probability": 0.3428 + }, + { + "start": 4517.14, + "end": 4518.02, + "probability": 0.6656 + }, + { + "start": 4518.5, + "end": 4522.22, + "probability": 0.7022 + }, + { + "start": 4522.28, + "end": 4525.1, + "probability": 0.9731 + }, + { + "start": 4525.22, + "end": 4525.86, + "probability": 0.9137 + }, + { + "start": 4525.96, + "end": 4526.7, + "probability": 0.9494 + }, + { + "start": 4527.76, + "end": 4530.28, + "probability": 0.8619 + }, + { + "start": 4531.16, + "end": 4532.5, + "probability": 0.7845 + }, + { + "start": 4533.48, + "end": 4536.86, + "probability": 0.838 + }, + { + "start": 4538.18, + "end": 4539.14, + "probability": 0.7124 + }, + { + "start": 4541.1, + "end": 4544.28, + "probability": 0.9891 + }, + { + "start": 4545.28, + "end": 4546.52, + "probability": 0.9417 + }, + { + "start": 4547.26, + "end": 4550.04, + "probability": 0.9026 + }, + { + "start": 4550.7, + "end": 4551.82, + "probability": 0.9211 + }, + { + "start": 4553.36, + "end": 4561.88, + "probability": 0.9943 + }, + { + "start": 4562.38, + "end": 4564.72, + "probability": 0.6824 + }, + { + "start": 4565.34, + "end": 4569.38, + "probability": 0.465 + }, + { + "start": 4570.08, + "end": 4572.24, + "probability": 0.4065 + }, + { + "start": 4572.78, + "end": 4574.62, + "probability": 0.6759 + }, + { + "start": 4575.2, + "end": 4577.92, + "probability": 0.643 + }, + { + "start": 4579.08, + "end": 4581.74, + "probability": 0.5289 + }, + { + "start": 4582.44, + "end": 4585.74, + "probability": 0.5832 + }, + { + "start": 4586.6, + "end": 4589.08, + "probability": 0.9426 + }, + { + "start": 4589.4, + "end": 4590.48, + "probability": 0.069 + }, + { + "start": 4590.54, + "end": 4591.3, + "probability": 0.9257 + }, + { + "start": 4591.34, + "end": 4592.2, + "probability": 0.5917 + }, + { + "start": 4592.32, + "end": 4593.74, + "probability": 0.8366 + }, + { + "start": 4594.56, + "end": 4597.28, + "probability": 0.9498 + }, + { + "start": 4597.9, + "end": 4598.74, + "probability": 0.7635 + }, + { + "start": 4599.44, + "end": 4601.14, + "probability": 0.9212 + }, + { + "start": 4601.74, + "end": 4603.34, + "probability": 0.9852 + }, + { + "start": 4604.16, + "end": 4606.2, + "probability": 0.9963 + }, + { + "start": 4606.92, + "end": 4610.88, + "probability": 0.995 + }, + { + "start": 4611.12, + "end": 4614.92, + "probability": 0.9746 + }, + { + "start": 4615.76, + "end": 4616.64, + "probability": 0.8517 + }, + { + "start": 4616.72, + "end": 4618.96, + "probability": 0.9343 + }, + { + "start": 4619.98, + "end": 4623.54, + "probability": 0.965 + }, + { + "start": 4624.12, + "end": 4630.3, + "probability": 0.8774 + }, + { + "start": 4630.5, + "end": 4632.56, + "probability": 0.9963 + }, + { + "start": 4632.92, + "end": 4634.68, + "probability": 0.9703 + }, + { + "start": 4635.54, + "end": 4636.36, + "probability": 0.9506 + }, + { + "start": 4636.64, + "end": 4638.56, + "probability": 0.7272 + }, + { + "start": 4671.14, + "end": 4671.3, + "probability": 0.5497 + }, + { + "start": 4674.52, + "end": 4675.44, + "probability": 0.7032 + }, + { + "start": 4676.11, + "end": 4679.82, + "probability": 0.9839 + }, + { + "start": 4680.88, + "end": 4681.84, + "probability": 0.8071 + }, + { + "start": 4683.26, + "end": 4684.18, + "probability": 0.7766 + }, + { + "start": 4685.5, + "end": 4688.6, + "probability": 0.9554 + }, + { + "start": 4689.68, + "end": 4693.38, + "probability": 0.9857 + }, + { + "start": 4694.02, + "end": 4694.34, + "probability": 0.7259 + }, + { + "start": 4695.84, + "end": 4699.4, + "probability": 0.9744 + }, + { + "start": 4699.4, + "end": 4703.58, + "probability": 0.9945 + }, + { + "start": 4704.76, + "end": 4705.24, + "probability": 0.861 + }, + { + "start": 4706.9, + "end": 4711.49, + "probability": 0.9909 + }, + { + "start": 4712.38, + "end": 4714.28, + "probability": 0.8798 + }, + { + "start": 4714.86, + "end": 4719.54, + "probability": 0.978 + }, + { + "start": 4721.0, + "end": 4721.62, + "probability": 0.7878 + }, + { + "start": 4722.62, + "end": 4727.1, + "probability": 0.9678 + }, + { + "start": 4727.2, + "end": 4727.64, + "probability": 0.4673 + }, + { + "start": 4727.84, + "end": 4730.88, + "probability": 0.981 + }, + { + "start": 4731.42, + "end": 4735.18, + "probability": 0.7969 + }, + { + "start": 4735.84, + "end": 4741.28, + "probability": 0.7825 + }, + { + "start": 4742.6, + "end": 4744.88, + "probability": 0.9626 + }, + { + "start": 4745.8, + "end": 4747.62, + "probability": 0.9159 + }, + { + "start": 4748.96, + "end": 4750.56, + "probability": 0.9798 + }, + { + "start": 4751.86, + "end": 4754.54, + "probability": 0.9285 + }, + { + "start": 4755.14, + "end": 4758.12, + "probability": 0.98 + }, + { + "start": 4759.06, + "end": 4759.8, + "probability": 0.9973 + }, + { + "start": 4760.82, + "end": 4761.52, + "probability": 0.9866 + }, + { + "start": 4762.74, + "end": 4764.02, + "probability": 0.7551 + }, + { + "start": 4765.1, + "end": 4767.4, + "probability": 0.5823 + }, + { + "start": 4768.5, + "end": 4769.52, + "probability": 0.6535 + }, + { + "start": 4770.76, + "end": 4772.68, + "probability": 0.8126 + }, + { + "start": 4773.82, + "end": 4779.36, + "probability": 0.9839 + }, + { + "start": 4780.08, + "end": 4780.62, + "probability": 0.6871 + }, + { + "start": 4781.28, + "end": 4783.18, + "probability": 0.9183 + }, + { + "start": 4784.82, + "end": 4788.52, + "probability": 0.84 + }, + { + "start": 4788.74, + "end": 4790.2, + "probability": 0.9692 + }, + { + "start": 4793.9, + "end": 4796.54, + "probability": 0.6787 + }, + { + "start": 4798.27, + "end": 4802.42, + "probability": 0.8075 + }, + { + "start": 4803.98, + "end": 4804.62, + "probability": 0.8629 + }, + { + "start": 4806.88, + "end": 4807.7, + "probability": 0.6869 + }, + { + "start": 4807.94, + "end": 4809.26, + "probability": 0.7529 + }, + { + "start": 4809.56, + "end": 4811.16, + "probability": 0.8456 + }, + { + "start": 4811.98, + "end": 4812.52, + "probability": 0.6016 + }, + { + "start": 4812.64, + "end": 4813.44, + "probability": 0.9165 + }, + { + "start": 4813.58, + "end": 4817.68, + "probability": 0.937 + }, + { + "start": 4819.06, + "end": 4819.9, + "probability": 0.7767 + }, + { + "start": 4821.16, + "end": 4822.64, + "probability": 0.9727 + }, + { + "start": 4823.4, + "end": 4825.7, + "probability": 0.8708 + }, + { + "start": 4827.26, + "end": 4827.88, + "probability": 0.7424 + }, + { + "start": 4829.16, + "end": 4831.74, + "probability": 0.9751 + }, + { + "start": 4833.8, + "end": 4834.26, + "probability": 0.8534 + }, + { + "start": 4835.5, + "end": 4836.18, + "probability": 0.618 + }, + { + "start": 4836.84, + "end": 4836.98, + "probability": 0.6979 + }, + { + "start": 4837.96, + "end": 4842.32, + "probability": 0.9939 + }, + { + "start": 4843.48, + "end": 4847.06, + "probability": 0.9629 + }, + { + "start": 4847.06, + "end": 4850.44, + "probability": 0.996 + }, + { + "start": 4851.7, + "end": 4852.94, + "probability": 0.9989 + }, + { + "start": 4854.1, + "end": 4855.56, + "probability": 0.8345 + }, + { + "start": 4856.16, + "end": 4860.24, + "probability": 0.9878 + }, + { + "start": 4860.64, + "end": 4861.4, + "probability": 0.5591 + }, + { + "start": 4861.5, + "end": 4862.2, + "probability": 0.772 + }, + { + "start": 4862.22, + "end": 4865.22, + "probability": 0.749 + }, + { + "start": 4865.32, + "end": 4865.6, + "probability": 0.7054 + }, + { + "start": 4866.62, + "end": 4867.58, + "probability": 0.5371 + }, + { + "start": 4869.52, + "end": 4871.32, + "probability": 0.9644 + }, + { + "start": 4872.72, + "end": 4873.86, + "probability": 0.9561 + }, + { + "start": 4874.5, + "end": 4876.04, + "probability": 0.9497 + }, + { + "start": 4876.78, + "end": 4879.3, + "probability": 0.6318 + }, + { + "start": 4880.48, + "end": 4882.88, + "probability": 0.9868 + }, + { + "start": 4883.9, + "end": 4886.2, + "probability": 0.9937 + }, + { + "start": 4887.46, + "end": 4889.82, + "probability": 0.9697 + }, + { + "start": 4890.58, + "end": 4892.74, + "probability": 0.9604 + }, + { + "start": 4893.98, + "end": 4894.75, + "probability": 0.0837 + }, + { + "start": 4896.2, + "end": 4899.44, + "probability": 0.8745 + }, + { + "start": 4899.56, + "end": 4900.64, + "probability": 0.619 + }, + { + "start": 4901.6, + "end": 4905.6, + "probability": 0.9458 + }, + { + "start": 4906.62, + "end": 4906.76, + "probability": 0.8455 + }, + { + "start": 4907.76, + "end": 4908.44, + "probability": 0.8301 + }, + { + "start": 4909.48, + "end": 4910.98, + "probability": 0.8263 + }, + { + "start": 4918.52, + "end": 4919.38, + "probability": 0.2582 + }, + { + "start": 4921.24, + "end": 4921.7, + "probability": 0.0432 + }, + { + "start": 4942.64, + "end": 4943.74, + "probability": 0.6513 + }, + { + "start": 4945.12, + "end": 4945.96, + "probability": 0.5736 + }, + { + "start": 4947.46, + "end": 4948.04, + "probability": 0.9545 + }, + { + "start": 4948.7, + "end": 4949.58, + "probability": 0.8938 + }, + { + "start": 4950.5, + "end": 4955.46, + "probability": 0.9187 + }, + { + "start": 4957.34, + "end": 4961.2, + "probability": 0.8494 + }, + { + "start": 4962.52, + "end": 4963.56, + "probability": 0.5423 + }, + { + "start": 4964.16, + "end": 4965.24, + "probability": 0.759 + }, + { + "start": 4966.36, + "end": 4967.74, + "probability": 0.8639 + }, + { + "start": 4968.66, + "end": 4971.42, + "probability": 0.6601 + }, + { + "start": 4973.02, + "end": 4980.54, + "probability": 0.7147 + }, + { + "start": 4982.4, + "end": 4983.78, + "probability": 0.9904 + }, + { + "start": 4984.52, + "end": 4986.78, + "probability": 0.4272 + }, + { + "start": 4988.24, + "end": 4991.18, + "probability": 0.825 + }, + { + "start": 4992.0, + "end": 4993.32, + "probability": 0.7754 + }, + { + "start": 4994.26, + "end": 5000.48, + "probability": 0.9829 + }, + { + "start": 5002.38, + "end": 5003.72, + "probability": 0.9961 + }, + { + "start": 5004.4, + "end": 5006.18, + "probability": 0.9919 + }, + { + "start": 5008.62, + "end": 5010.96, + "probability": 0.9438 + }, + { + "start": 5011.62, + "end": 5012.0, + "probability": 0.4505 + }, + { + "start": 5012.66, + "end": 5014.86, + "probability": 0.9972 + }, + { + "start": 5015.56, + "end": 5017.38, + "probability": 0.9903 + }, + { + "start": 5019.32, + "end": 5024.96, + "probability": 0.9984 + }, + { + "start": 5026.1, + "end": 5028.04, + "probability": 0.9417 + }, + { + "start": 5029.04, + "end": 5030.2, + "probability": 0.8286 + }, + { + "start": 5030.84, + "end": 5032.78, + "probability": 0.9823 + }, + { + "start": 5033.56, + "end": 5035.12, + "probability": 0.8687 + }, + { + "start": 5036.42, + "end": 5039.2, + "probability": 0.9312 + }, + { + "start": 5040.42, + "end": 5044.22, + "probability": 0.9935 + }, + { + "start": 5044.86, + "end": 5045.42, + "probability": 0.9867 + }, + { + "start": 5046.14, + "end": 5046.88, + "probability": 0.9886 + }, + { + "start": 5047.56, + "end": 5048.6, + "probability": 0.9603 + }, + { + "start": 5049.54, + "end": 5051.22, + "probability": 0.9849 + }, + { + "start": 5052.48, + "end": 5052.98, + "probability": 0.864 + }, + { + "start": 5054.42, + "end": 5059.18, + "probability": 0.9421 + }, + { + "start": 5061.58, + "end": 5064.16, + "probability": 0.9749 + }, + { + "start": 5064.72, + "end": 5070.24, + "probability": 0.9842 + }, + { + "start": 5071.86, + "end": 5073.78, + "probability": 0.541 + }, + { + "start": 5074.3, + "end": 5075.94, + "probability": 0.7566 + }, + { + "start": 5076.7, + "end": 5080.9, + "probability": 0.9538 + }, + { + "start": 5081.76, + "end": 5083.76, + "probability": 0.8184 + }, + { + "start": 5084.48, + "end": 5085.16, + "probability": 0.7609 + }, + { + "start": 5086.44, + "end": 5089.98, + "probability": 0.9156 + }, + { + "start": 5090.92, + "end": 5096.02, + "probability": 0.8635 + }, + { + "start": 5097.92, + "end": 5098.56, + "probability": 0.8575 + }, + { + "start": 5099.18, + "end": 5102.46, + "probability": 0.9897 + }, + { + "start": 5103.9, + "end": 5106.54, + "probability": 0.9722 + }, + { + "start": 5107.52, + "end": 5111.22, + "probability": 0.9712 + }, + { + "start": 5111.96, + "end": 5112.52, + "probability": 0.8888 + }, + { + "start": 5113.28, + "end": 5113.48, + "probability": 0.6711 + }, + { + "start": 5114.94, + "end": 5116.92, + "probability": 0.9746 + }, + { + "start": 5117.86, + "end": 5122.42, + "probability": 0.9834 + }, + { + "start": 5124.04, + "end": 5129.12, + "probability": 0.9895 + }, + { + "start": 5130.52, + "end": 5132.2, + "probability": 0.8032 + }, + { + "start": 5135.46, + "end": 5135.46, + "probability": 0.2695 + }, + { + "start": 5135.46, + "end": 5138.14, + "probability": 0.7726 + }, + { + "start": 5139.02, + "end": 5139.82, + "probability": 0.6606 + }, + { + "start": 5140.94, + "end": 5142.02, + "probability": 0.9533 + }, + { + "start": 5144.08, + "end": 5145.66, + "probability": 0.9175 + }, + { + "start": 5146.6, + "end": 5149.9, + "probability": 0.9795 + }, + { + "start": 5150.76, + "end": 5154.38, + "probability": 0.9451 + }, + { + "start": 5155.72, + "end": 5156.18, + "probability": 0.8539 + }, + { + "start": 5156.86, + "end": 5157.92, + "probability": 0.9084 + }, + { + "start": 5158.74, + "end": 5161.3, + "probability": 0.9961 + }, + { + "start": 5161.9, + "end": 5164.78, + "probability": 0.8005 + }, + { + "start": 5166.16, + "end": 5169.32, + "probability": 0.9797 + }, + { + "start": 5170.56, + "end": 5172.06, + "probability": 0.9506 + }, + { + "start": 5172.88, + "end": 5174.72, + "probability": 0.5943 + }, + { + "start": 5175.58, + "end": 5178.2, + "probability": 0.8993 + }, + { + "start": 5178.82, + "end": 5180.34, + "probability": 0.6647 + }, + { + "start": 5182.34, + "end": 5185.68, + "probability": 0.7625 + }, + { + "start": 5186.46, + "end": 5189.46, + "probability": 0.9431 + }, + { + "start": 5190.2, + "end": 5197.36, + "probability": 0.8424 + }, + { + "start": 5197.36, + "end": 5203.86, + "probability": 0.5624 + }, + { + "start": 5204.28, + "end": 5205.58, + "probability": 0.0026 + }, + { + "start": 5206.78, + "end": 5208.0, + "probability": 0.7395 + }, + { + "start": 5208.0, + "end": 5208.0, + "probability": 0.2253 + }, + { + "start": 5208.0, + "end": 5208.38, + "probability": 0.6173 + }, + { + "start": 5209.1, + "end": 5211.16, + "probability": 0.8206 + }, + { + "start": 5233.16, + "end": 5235.86, + "probability": 0.8096 + }, + { + "start": 5237.17, + "end": 5240.8, + "probability": 0.7956 + }, + { + "start": 5241.88, + "end": 5243.96, + "probability": 0.9595 + }, + { + "start": 5244.52, + "end": 5246.68, + "probability": 0.9541 + }, + { + "start": 5247.98, + "end": 5249.0, + "probability": 0.9912 + }, + { + "start": 5250.56, + "end": 5253.4, + "probability": 0.9792 + }, + { + "start": 5254.0, + "end": 5255.86, + "probability": 0.9879 + }, + { + "start": 5257.0, + "end": 5260.3, + "probability": 0.8519 + }, + { + "start": 5260.3, + "end": 5263.26, + "probability": 0.9899 + }, + { + "start": 5264.18, + "end": 5266.56, + "probability": 0.9777 + }, + { + "start": 5267.36, + "end": 5269.78, + "probability": 0.7863 + }, + { + "start": 5269.78, + "end": 5273.12, + "probability": 0.9528 + }, + { + "start": 5273.98, + "end": 5276.5, + "probability": 0.8772 + }, + { + "start": 5276.5, + "end": 5280.84, + "probability": 0.9856 + }, + { + "start": 5281.62, + "end": 5282.62, + "probability": 0.707 + }, + { + "start": 5282.72, + "end": 5284.04, + "probability": 0.3879 + }, + { + "start": 5284.1, + "end": 5288.2, + "probability": 0.9075 + }, + { + "start": 5288.9, + "end": 5292.38, + "probability": 0.9905 + }, + { + "start": 5292.38, + "end": 5296.48, + "probability": 0.9647 + }, + { + "start": 5297.6, + "end": 5298.62, + "probability": 0.7565 + }, + { + "start": 5299.28, + "end": 5300.8, + "probability": 0.9263 + }, + { + "start": 5301.58, + "end": 5303.14, + "probability": 0.9961 + }, + { + "start": 5303.8, + "end": 5310.3, + "probability": 0.9673 + }, + { + "start": 5311.18, + "end": 5313.96, + "probability": 0.8623 + }, + { + "start": 5314.48, + "end": 5317.82, + "probability": 0.9478 + }, + { + "start": 5318.34, + "end": 5321.04, + "probability": 0.9791 + }, + { + "start": 5321.56, + "end": 5323.56, + "probability": 0.8335 + }, + { + "start": 5324.38, + "end": 5328.14, + "probability": 0.9824 + }, + { + "start": 5328.8, + "end": 5333.04, + "probability": 0.9795 + }, + { + "start": 5333.04, + "end": 5337.54, + "probability": 0.9745 + }, + { + "start": 5338.02, + "end": 5339.94, + "probability": 0.9517 + }, + { + "start": 5340.46, + "end": 5341.64, + "probability": 0.933 + }, + { + "start": 5342.32, + "end": 5346.5, + "probability": 0.9725 + }, + { + "start": 5347.3, + "end": 5348.16, + "probability": 0.4814 + }, + { + "start": 5348.3, + "end": 5353.0, + "probability": 0.9475 + }, + { + "start": 5353.56, + "end": 5354.98, + "probability": 0.7091 + }, + { + "start": 5355.02, + "end": 5358.54, + "probability": 0.9388 + }, + { + "start": 5358.62, + "end": 5360.16, + "probability": 0.8304 + }, + { + "start": 5360.64, + "end": 5364.56, + "probability": 0.9416 + }, + { + "start": 5364.72, + "end": 5365.45, + "probability": 0.6133 + }, + { + "start": 5366.0, + "end": 5370.0, + "probability": 0.6634 + }, + { + "start": 5370.14, + "end": 5371.12, + "probability": 0.9245 + }, + { + "start": 5371.64, + "end": 5373.2, + "probability": 0.9459 + }, + { + "start": 5373.28, + "end": 5379.42, + "probability": 0.9785 + }, + { + "start": 5380.0, + "end": 5380.42, + "probability": 0.5318 + }, + { + "start": 5380.42, + "end": 5382.24, + "probability": 0.8749 + }, + { + "start": 5382.72, + "end": 5386.24, + "probability": 0.9329 + }, + { + "start": 5386.9, + "end": 5389.56, + "probability": 0.9843 + }, + { + "start": 5389.56, + "end": 5392.16, + "probability": 0.9947 + }, + { + "start": 5393.02, + "end": 5396.86, + "probability": 0.8703 + }, + { + "start": 5397.38, + "end": 5398.86, + "probability": 0.6285 + }, + { + "start": 5399.48, + "end": 5399.62, + "probability": 0.4461 + }, + { + "start": 5400.3, + "end": 5405.88, + "probability": 0.975 + }, + { + "start": 5406.34, + "end": 5411.74, + "probability": 0.985 + }, + { + "start": 5412.64, + "end": 5416.98, + "probability": 0.9966 + }, + { + "start": 5416.98, + "end": 5420.74, + "probability": 0.9994 + }, + { + "start": 5421.32, + "end": 5425.68, + "probability": 0.9819 + }, + { + "start": 5426.14, + "end": 5427.72, + "probability": 0.7088 + }, + { + "start": 5428.97, + "end": 5430.64, + "probability": 0.9873 + }, + { + "start": 5430.86, + "end": 5433.72, + "probability": 0.7362 + }, + { + "start": 5433.78, + "end": 5436.34, + "probability": 0.9809 + }, + { + "start": 5437.0, + "end": 5441.86, + "probability": 0.9704 + }, + { + "start": 5441.96, + "end": 5442.46, + "probability": 0.9022 + }, + { + "start": 5442.56, + "end": 5443.1, + "probability": 0.9525 + }, + { + "start": 5443.64, + "end": 5444.18, + "probability": 0.9513 + }, + { + "start": 5444.6, + "end": 5445.32, + "probability": 0.9853 + }, + { + "start": 5445.44, + "end": 5445.96, + "probability": 0.9859 + }, + { + "start": 5446.42, + "end": 5446.82, + "probability": 0.9728 + }, + { + "start": 5446.96, + "end": 5448.3, + "probability": 0.9263 + }, + { + "start": 5449.0, + "end": 5450.36, + "probability": 0.8657 + }, + { + "start": 5450.86, + "end": 5453.57, + "probability": 0.9194 + }, + { + "start": 5453.78, + "end": 5456.5, + "probability": 0.9106 + }, + { + "start": 5457.18, + "end": 5459.48, + "probability": 0.9083 + }, + { + "start": 5460.26, + "end": 5463.72, + "probability": 0.9936 + }, + { + "start": 5464.52, + "end": 5467.52, + "probability": 0.9378 + }, + { + "start": 5467.62, + "end": 5469.72, + "probability": 0.7786 + }, + { + "start": 5469.8, + "end": 5474.16, + "probability": 0.9619 + }, + { + "start": 5475.14, + "end": 5479.68, + "probability": 0.9825 + }, + { + "start": 5479.68, + "end": 5484.26, + "probability": 0.9987 + }, + { + "start": 5484.94, + "end": 5488.28, + "probability": 0.9915 + }, + { + "start": 5488.28, + "end": 5492.04, + "probability": 0.9095 + }, + { + "start": 5492.64, + "end": 5496.0, + "probability": 0.9985 + }, + { + "start": 5496.0, + "end": 5498.38, + "probability": 0.9598 + }, + { + "start": 5498.82, + "end": 5499.68, + "probability": 0.5654 + }, + { + "start": 5499.74, + "end": 5500.48, + "probability": 0.5858 + }, + { + "start": 5500.58, + "end": 5501.12, + "probability": 0.8242 + }, + { + "start": 5501.64, + "end": 5504.06, + "probability": 0.9553 + }, + { + "start": 5504.64, + "end": 5507.84, + "probability": 0.997 + }, + { + "start": 5508.86, + "end": 5512.8, + "probability": 0.9817 + }, + { + "start": 5513.32, + "end": 5515.58, + "probability": 0.997 + }, + { + "start": 5516.24, + "end": 5519.5, + "probability": 0.8587 + }, + { + "start": 5520.18, + "end": 5521.94, + "probability": 0.6971 + }, + { + "start": 5522.54, + "end": 5524.86, + "probability": 0.998 + }, + { + "start": 5525.34, + "end": 5530.08, + "probability": 0.9938 + }, + { + "start": 5530.64, + "end": 5535.06, + "probability": 0.998 + }, + { + "start": 5535.72, + "end": 5538.88, + "probability": 0.999 + }, + { + "start": 5539.48, + "end": 5540.8, + "probability": 0.992 + }, + { + "start": 5540.98, + "end": 5546.64, + "probability": 0.9876 + }, + { + "start": 5547.38, + "end": 5547.9, + "probability": 0.5875 + }, + { + "start": 5549.0, + "end": 5551.3, + "probability": 0.7999 + }, + { + "start": 5551.64, + "end": 5552.16, + "probability": 0.7805 + }, + { + "start": 5552.96, + "end": 5554.46, + "probability": 0.9243 + }, + { + "start": 5554.46, + "end": 5557.02, + "probability": 0.9925 + }, + { + "start": 5557.52, + "end": 5558.61, + "probability": 0.9844 + }, + { + "start": 5559.36, + "end": 5560.62, + "probability": 0.7307 + }, + { + "start": 5560.7, + "end": 5562.96, + "probability": 0.9194 + }, + { + "start": 5563.38, + "end": 5565.14, + "probability": 0.9629 + }, + { + "start": 5565.2, + "end": 5566.6, + "probability": 0.9168 + }, + { + "start": 5566.68, + "end": 5567.96, + "probability": 0.9343 + }, + { + "start": 5568.36, + "end": 5570.56, + "probability": 0.9816 + }, + { + "start": 5571.04, + "end": 5571.8, + "probability": 0.6897 + }, + { + "start": 5571.92, + "end": 5573.14, + "probability": 0.8688 + }, + { + "start": 5573.28, + "end": 5573.94, + "probability": 0.4934 + }, + { + "start": 5574.56, + "end": 5578.56, + "probability": 0.957 + }, + { + "start": 5579.14, + "end": 5579.34, + "probability": 0.0528 + }, + { + "start": 5579.34, + "end": 5582.24, + "probability": 0.9309 + }, + { + "start": 5582.9, + "end": 5585.8, + "probability": 0.9654 + }, + { + "start": 5585.92, + "end": 5586.46, + "probability": 0.6454 + }, + { + "start": 5586.5, + "end": 5587.22, + "probability": 0.8444 + }, + { + "start": 5587.72, + "end": 5592.36, + "probability": 0.8725 + }, + { + "start": 5593.02, + "end": 5595.76, + "probability": 0.9567 + }, + { + "start": 5595.76, + "end": 5600.1, + "probability": 0.7488 + }, + { + "start": 5600.1, + "end": 5603.8, + "probability": 0.9153 + }, + { + "start": 5604.48, + "end": 5607.58, + "probability": 0.911 + }, + { + "start": 5608.48, + "end": 5611.8, + "probability": 0.9981 + }, + { + "start": 5612.34, + "end": 5613.84, + "probability": 0.6146 + }, + { + "start": 5613.92, + "end": 5616.3, + "probability": 0.9902 + }, + { + "start": 5617.08, + "end": 5617.92, + "probability": 0.9356 + }, + { + "start": 5618.62, + "end": 5622.0, + "probability": 0.7405 + }, + { + "start": 5622.42, + "end": 5623.88, + "probability": 0.9589 + }, + { + "start": 5623.98, + "end": 5627.78, + "probability": 0.9537 + }, + { + "start": 5628.34, + "end": 5629.24, + "probability": 0.5116 + }, + { + "start": 5629.26, + "end": 5630.6, + "probability": 0.8232 + }, + { + "start": 5630.96, + "end": 5635.06, + "probability": 0.4247 + }, + { + "start": 5635.48, + "end": 5640.02, + "probability": 0.9811 + }, + { + "start": 5640.12, + "end": 5642.48, + "probability": 0.8918 + }, + { + "start": 5642.96, + "end": 5644.26, + "probability": 0.9806 + }, + { + "start": 5644.36, + "end": 5646.59, + "probability": 0.92 + }, + { + "start": 5647.08, + "end": 5649.22, + "probability": 0.9638 + }, + { + "start": 5649.5, + "end": 5649.52, + "probability": 0.639 + }, + { + "start": 5649.66, + "end": 5651.74, + "probability": 0.9646 + }, + { + "start": 5673.46, + "end": 5673.9, + "probability": 0.6081 + }, + { + "start": 5675.62, + "end": 5678.66, + "probability": 0.8947 + }, + { + "start": 5679.46, + "end": 5683.04, + "probability": 0.99 + }, + { + "start": 5683.88, + "end": 5688.24, + "probability": 0.9898 + }, + { + "start": 5688.82, + "end": 5690.88, + "probability": 0.934 + }, + { + "start": 5692.14, + "end": 5697.94, + "probability": 0.9933 + }, + { + "start": 5698.5, + "end": 5700.0, + "probability": 0.7793 + }, + { + "start": 5700.66, + "end": 5704.14, + "probability": 0.6103 + }, + { + "start": 5704.86, + "end": 5707.26, + "probability": 0.605 + }, + { + "start": 5707.88, + "end": 5709.32, + "probability": 0.912 + }, + { + "start": 5709.98, + "end": 5712.6, + "probability": 0.6617 + }, + { + "start": 5713.14, + "end": 5716.02, + "probability": 0.6304 + }, + { + "start": 5716.92, + "end": 5722.19, + "probability": 0.9709 + }, + { + "start": 5722.34, + "end": 5730.28, + "probability": 0.9902 + }, + { + "start": 5731.04, + "end": 5735.1, + "probability": 0.9957 + }, + { + "start": 5736.04, + "end": 5740.24, + "probability": 0.9993 + }, + { + "start": 5741.08, + "end": 5746.52, + "probability": 0.9973 + }, + { + "start": 5747.44, + "end": 5750.36, + "probability": 0.6932 + }, + { + "start": 5750.9, + "end": 5756.0, + "probability": 0.9836 + }, + { + "start": 5756.68, + "end": 5760.0, + "probability": 0.9922 + }, + { + "start": 5761.9, + "end": 5768.02, + "probability": 0.9262 + }, + { + "start": 5768.88, + "end": 5776.92, + "probability": 0.9967 + }, + { + "start": 5777.56, + "end": 5782.2, + "probability": 0.9402 + }, + { + "start": 5782.84, + "end": 5785.64, + "probability": 0.9903 + }, + { + "start": 5787.62, + "end": 5791.38, + "probability": 0.967 + }, + { + "start": 5791.84, + "end": 5793.22, + "probability": 0.6808 + }, + { + "start": 5793.52, + "end": 5797.76, + "probability": 0.831 + }, + { + "start": 5798.5, + "end": 5799.96, + "probability": 0.8247 + }, + { + "start": 5800.54, + "end": 5803.94, + "probability": 0.991 + }, + { + "start": 5805.4, + "end": 5812.18, + "probability": 0.9933 + }, + { + "start": 5812.98, + "end": 5814.9, + "probability": 0.9225 + }, + { + "start": 5815.36, + "end": 5816.04, + "probability": 0.9492 + }, + { + "start": 5816.2, + "end": 5816.86, + "probability": 0.9634 + }, + { + "start": 5817.14, + "end": 5820.52, + "probability": 0.9952 + }, + { + "start": 5821.04, + "end": 5822.92, + "probability": 0.9959 + }, + { + "start": 5823.5, + "end": 5826.2, + "probability": 0.9832 + }, + { + "start": 5826.96, + "end": 5830.38, + "probability": 0.9376 + }, + { + "start": 5830.94, + "end": 5832.42, + "probability": 0.8541 + }, + { + "start": 5833.18, + "end": 5836.06, + "probability": 0.8167 + }, + { + "start": 5836.52, + "end": 5841.24, + "probability": 0.9732 + }, + { + "start": 5841.82, + "end": 5843.84, + "probability": 0.9831 + }, + { + "start": 5844.88, + "end": 5847.32, + "probability": 0.9717 + }, + { + "start": 5847.52, + "end": 5849.28, + "probability": 0.9436 + }, + { + "start": 5850.18, + "end": 5853.46, + "probability": 0.9939 + }, + { + "start": 5855.9, + "end": 5859.42, + "probability": 0.9814 + }, + { + "start": 5859.62, + "end": 5860.32, + "probability": 0.8048 + }, + { + "start": 5861.02, + "end": 5865.1, + "probability": 0.882 + }, + { + "start": 5865.6, + "end": 5867.96, + "probability": 0.8561 + }, + { + "start": 5868.34, + "end": 5872.66, + "probability": 0.9806 + }, + { + "start": 5873.06, + "end": 5875.24, + "probability": 0.9845 + }, + { + "start": 5876.88, + "end": 5880.62, + "probability": 0.9424 + }, + { + "start": 5881.14, + "end": 5884.6, + "probability": 0.9892 + }, + { + "start": 5886.1, + "end": 5893.12, + "probability": 0.9922 + }, + { + "start": 5893.74, + "end": 5895.94, + "probability": 0.9717 + }, + { + "start": 5896.68, + "end": 5898.68, + "probability": 0.9901 + }, + { + "start": 5899.98, + "end": 5901.02, + "probability": 0.8382 + }, + { + "start": 5901.64, + "end": 5903.34, + "probability": 0.9338 + }, + { + "start": 5903.84, + "end": 5906.52, + "probability": 0.9554 + }, + { + "start": 5906.62, + "end": 5907.4, + "probability": 0.9198 + }, + { + "start": 5909.88, + "end": 5912.77, + "probability": 0.9871 + }, + { + "start": 5913.44, + "end": 5918.18, + "probability": 0.9966 + }, + { + "start": 5918.8, + "end": 5923.7, + "probability": 0.8485 + }, + { + "start": 5924.12, + "end": 5926.3, + "probability": 0.999 + }, + { + "start": 5926.98, + "end": 5932.94, + "probability": 0.9963 + }, + { + "start": 5934.68, + "end": 5938.78, + "probability": 0.8495 + }, + { + "start": 5938.9, + "end": 5939.67, + "probability": 0.9336 + }, + { + "start": 5940.16, + "end": 5942.22, + "probability": 0.9709 + }, + { + "start": 5942.86, + "end": 5946.03, + "probability": 0.9792 + }, + { + "start": 5946.66, + "end": 5950.44, + "probability": 0.9334 + }, + { + "start": 5951.34, + "end": 5952.4, + "probability": 0.9816 + }, + { + "start": 5952.98, + "end": 5954.88, + "probability": 0.7259 + }, + { + "start": 5955.4, + "end": 5958.36, + "probability": 0.8424 + }, + { + "start": 5958.86, + "end": 5962.8, + "probability": 0.9894 + }, + { + "start": 5964.08, + "end": 5966.0, + "probability": 0.7873 + }, + { + "start": 5966.48, + "end": 5969.82, + "probability": 0.9529 + }, + { + "start": 5970.06, + "end": 5970.86, + "probability": 0.6885 + }, + { + "start": 5971.94, + "end": 5973.32, + "probability": 0.5782 + }, + { + "start": 5974.64, + "end": 5976.8, + "probability": 0.9735 + }, + { + "start": 5977.16, + "end": 5981.14, + "probability": 0.9543 + }, + { + "start": 5981.44, + "end": 5984.76, + "probability": 0.9896 + }, + { + "start": 5987.78, + "end": 5989.18, + "probability": 0.1452 + }, + { + "start": 5989.18, + "end": 5990.35, + "probability": 0.2264 + }, + { + "start": 5990.64, + "end": 5994.78, + "probability": 0.9617 + }, + { + "start": 5995.22, + "end": 6000.06, + "probability": 0.9703 + }, + { + "start": 6000.22, + "end": 6001.38, + "probability": 0.3864 + }, + { + "start": 6001.48, + "end": 6002.14, + "probability": 0.8857 + }, + { + "start": 6002.16, + "end": 6002.66, + "probability": 0.7002 + }, + { + "start": 6005.54, + "end": 6009.68, + "probability": 0.9954 + }, + { + "start": 6010.16, + "end": 6011.18, + "probability": 0.0765 + }, + { + "start": 6012.18, + "end": 6017.82, + "probability": 0.9954 + }, + { + "start": 6018.46, + "end": 6019.7, + "probability": 0.7334 + }, + { + "start": 6021.86, + "end": 6022.58, + "probability": 0.4686 + }, + { + "start": 6024.06, + "end": 6025.82, + "probability": 0.9138 + }, + { + "start": 6045.18, + "end": 6047.65, + "probability": 0.8337 + }, + { + "start": 6048.7, + "end": 6050.06, + "probability": 0.9683 + }, + { + "start": 6052.06, + "end": 6053.72, + "probability": 0.9294 + }, + { + "start": 6055.12, + "end": 6057.26, + "probability": 0.9696 + }, + { + "start": 6057.92, + "end": 6060.82, + "probability": 0.9782 + }, + { + "start": 6061.7, + "end": 6062.52, + "probability": 0.8734 + }, + { + "start": 6063.14, + "end": 6066.32, + "probability": 0.9984 + }, + { + "start": 6067.46, + "end": 6070.92, + "probability": 0.7386 + }, + { + "start": 6071.86, + "end": 6073.82, + "probability": 0.9911 + }, + { + "start": 6074.54, + "end": 6077.38, + "probability": 0.9844 + }, + { + "start": 6078.14, + "end": 6079.8, + "probability": 0.9948 + }, + { + "start": 6081.16, + "end": 6083.84, + "probability": 0.9953 + }, + { + "start": 6084.92, + "end": 6087.14, + "probability": 0.8658 + }, + { + "start": 6089.2, + "end": 6092.46, + "probability": 0.9481 + }, + { + "start": 6092.5, + "end": 6094.98, + "probability": 0.9736 + }, + { + "start": 6095.74, + "end": 6099.16, + "probability": 0.9308 + }, + { + "start": 6100.32, + "end": 6107.9, + "probability": 0.951 + }, + { + "start": 6109.6, + "end": 6113.38, + "probability": 0.964 + }, + { + "start": 6113.94, + "end": 6115.04, + "probability": 0.0241 + }, + { + "start": 6115.98, + "end": 6118.18, + "probability": 0.9883 + }, + { + "start": 6119.48, + "end": 6122.28, + "probability": 0.8914 + }, + { + "start": 6123.02, + "end": 6127.74, + "probability": 0.8955 + }, + { + "start": 6129.22, + "end": 6132.9, + "probability": 0.7725 + }, + { + "start": 6133.98, + "end": 6138.26, + "probability": 0.9095 + }, + { + "start": 6139.3, + "end": 6141.44, + "probability": 0.9758 + }, + { + "start": 6142.36, + "end": 6144.22, + "probability": 0.9162 + }, + { + "start": 6144.98, + "end": 6146.96, + "probability": 0.9745 + }, + { + "start": 6147.58, + "end": 6148.4, + "probability": 0.5626 + }, + { + "start": 6149.48, + "end": 6150.27, + "probability": 0.9727 + }, + { + "start": 6151.54, + "end": 6154.04, + "probability": 0.9858 + }, + { + "start": 6154.64, + "end": 6157.96, + "probability": 0.9491 + }, + { + "start": 6158.68, + "end": 6159.62, + "probability": 0.9763 + }, + { + "start": 6160.74, + "end": 6161.36, + "probability": 0.6606 + }, + { + "start": 6162.32, + "end": 6167.34, + "probability": 0.6774 + }, + { + "start": 6169.4, + "end": 6173.68, + "probability": 0.9399 + }, + { + "start": 6175.34, + "end": 6178.84, + "probability": 0.989 + }, + { + "start": 6180.08, + "end": 6181.48, + "probability": 0.9028 + }, + { + "start": 6182.06, + "end": 6183.84, + "probability": 0.9719 + }, + { + "start": 6184.7, + "end": 6185.48, + "probability": 0.7997 + }, + { + "start": 6186.22, + "end": 6187.97, + "probability": 0.9384 + }, + { + "start": 6188.86, + "end": 6190.06, + "probability": 0.7606 + }, + { + "start": 6191.68, + "end": 6195.24, + "probability": 0.9795 + }, + { + "start": 6196.64, + "end": 6199.4, + "probability": 0.9905 + }, + { + "start": 6200.04, + "end": 6203.06, + "probability": 0.7419 + }, + { + "start": 6204.14, + "end": 6204.7, + "probability": 0.7551 + }, + { + "start": 6205.3, + "end": 6205.78, + "probability": 0.5591 + }, + { + "start": 6206.24, + "end": 6212.0, + "probability": 0.9958 + }, + { + "start": 6212.36, + "end": 6213.16, + "probability": 0.8088 + }, + { + "start": 6214.34, + "end": 6217.16, + "probability": 0.9794 + }, + { + "start": 6217.66, + "end": 6221.06, + "probability": 0.8483 + }, + { + "start": 6222.48, + "end": 6225.66, + "probability": 0.9845 + }, + { + "start": 6226.8, + "end": 6231.52, + "probability": 0.988 + }, + { + "start": 6232.94, + "end": 6237.16, + "probability": 0.98 + }, + { + "start": 6238.3, + "end": 6239.16, + "probability": 0.6466 + }, + { + "start": 6239.24, + "end": 6244.08, + "probability": 0.9774 + }, + { + "start": 6244.54, + "end": 6248.16, + "probability": 0.944 + }, + { + "start": 6250.48, + "end": 6252.36, + "probability": 0.9165 + }, + { + "start": 6253.1, + "end": 6256.52, + "probability": 0.9928 + }, + { + "start": 6257.38, + "end": 6258.46, + "probability": 0.9209 + }, + { + "start": 6259.84, + "end": 6264.42, + "probability": 0.9295 + }, + { + "start": 6264.9, + "end": 6266.24, + "probability": 0.9179 + }, + { + "start": 6266.32, + "end": 6267.34, + "probability": 0.586 + }, + { + "start": 6267.9, + "end": 6268.26, + "probability": 0.3374 + }, + { + "start": 6269.66, + "end": 6271.54, + "probability": 0.9979 + }, + { + "start": 6272.78, + "end": 6277.44, + "probability": 0.9848 + }, + { + "start": 6278.06, + "end": 6283.66, + "probability": 0.9788 + }, + { + "start": 6284.9, + "end": 6290.16, + "probability": 0.9982 + }, + { + "start": 6290.16, + "end": 6294.74, + "probability": 0.9917 + }, + { + "start": 6295.48, + "end": 6298.22, + "probability": 0.9967 + }, + { + "start": 6298.82, + "end": 6300.04, + "probability": 0.7803 + }, + { + "start": 6300.98, + "end": 6304.02, + "probability": 0.9964 + }, + { + "start": 6304.56, + "end": 6305.96, + "probability": 0.9156 + }, + { + "start": 6306.16, + "end": 6311.98, + "probability": 0.9742 + }, + { + "start": 6312.48, + "end": 6314.38, + "probability": 0.9819 + }, + { + "start": 6314.98, + "end": 6316.48, + "probability": 0.6903 + }, + { + "start": 6317.1, + "end": 6318.04, + "probability": 0.7994 + }, + { + "start": 6319.14, + "end": 6323.2, + "probability": 0.9928 + }, + { + "start": 6324.1, + "end": 6325.22, + "probability": 0.9551 + }, + { + "start": 6326.78, + "end": 6330.22, + "probability": 0.9921 + }, + { + "start": 6331.08, + "end": 6336.16, + "probability": 0.9874 + }, + { + "start": 6336.44, + "end": 6336.88, + "probability": 0.3124 + }, + { + "start": 6338.44, + "end": 6340.52, + "probability": 0.8416 + }, + { + "start": 6341.44, + "end": 6345.16, + "probability": 0.9902 + }, + { + "start": 6345.16, + "end": 6349.92, + "probability": 0.9937 + }, + { + "start": 6350.64, + "end": 6356.26, + "probability": 0.9828 + }, + { + "start": 6356.42, + "end": 6357.04, + "probability": 0.2732 + }, + { + "start": 6357.16, + "end": 6357.92, + "probability": 0.8076 + }, + { + "start": 6358.06, + "end": 6358.16, + "probability": 0.3854 + }, + { + "start": 6359.44, + "end": 6364.94, + "probability": 0.9428 + }, + { + "start": 6365.9, + "end": 6368.76, + "probability": 0.9937 + }, + { + "start": 6369.32, + "end": 6371.56, + "probability": 0.9906 + }, + { + "start": 6372.26, + "end": 6375.98, + "probability": 0.9951 + }, + { + "start": 6375.98, + "end": 6379.56, + "probability": 0.9931 + }, + { + "start": 6380.6, + "end": 6380.78, + "probability": 0.4122 + }, + { + "start": 6380.92, + "end": 6384.08, + "probability": 0.9838 + }, + { + "start": 6384.08, + "end": 6387.68, + "probability": 0.9224 + }, + { + "start": 6388.58, + "end": 6394.68, + "probability": 0.9824 + }, + { + "start": 6395.3, + "end": 6396.94, + "probability": 0.7352 + }, + { + "start": 6398.18, + "end": 6403.66, + "probability": 0.7921 + }, + { + "start": 6404.4, + "end": 6409.16, + "probability": 0.9946 + }, + { + "start": 6410.02, + "end": 6410.02, + "probability": 0.6273 + }, + { + "start": 6410.04, + "end": 6410.92, + "probability": 0.6533 + }, + { + "start": 6411.48, + "end": 6413.72, + "probability": 0.8975 + }, + { + "start": 6414.3, + "end": 6414.6, + "probability": 0.7565 + }, + { + "start": 6415.94, + "end": 6416.26, + "probability": 0.9078 + }, + { + "start": 6417.36, + "end": 6419.66, + "probability": 0.9614 + }, + { + "start": 6433.01, + "end": 6434.2, + "probability": 0.6641 + }, + { + "start": 6434.26, + "end": 6438.34, + "probability": 0.8369 + }, + { + "start": 6439.54, + "end": 6440.82, + "probability": 0.9985 + }, + { + "start": 6444.2, + "end": 6449.12, + "probability": 0.9133 + }, + { + "start": 6449.98, + "end": 6454.32, + "probability": 0.9877 + }, + { + "start": 6455.58, + "end": 6461.2, + "probability": 0.9713 + }, + { + "start": 6461.2, + "end": 6466.9, + "probability": 0.9827 + }, + { + "start": 6468.18, + "end": 6471.4, + "probability": 0.9974 + }, + { + "start": 6472.42, + "end": 6474.4, + "probability": 0.9643 + }, + { + "start": 6474.9, + "end": 6475.34, + "probability": 0.5468 + }, + { + "start": 6476.38, + "end": 6479.66, + "probability": 0.9808 + }, + { + "start": 6480.92, + "end": 6488.9, + "probability": 0.9883 + }, + { + "start": 6490.5, + "end": 6496.22, + "probability": 0.9727 + }, + { + "start": 6497.56, + "end": 6502.2, + "probability": 0.9907 + }, + { + "start": 6503.84, + "end": 6507.76, + "probability": 0.9822 + }, + { + "start": 6508.82, + "end": 6511.22, + "probability": 0.935 + }, + { + "start": 6512.06, + "end": 6518.56, + "probability": 0.9722 + }, + { + "start": 6518.82, + "end": 6521.7, + "probability": 0.9944 + }, + { + "start": 6521.82, + "end": 6523.3, + "probability": 0.8762 + }, + { + "start": 6523.72, + "end": 6528.7, + "probability": 0.9478 + }, + { + "start": 6528.7, + "end": 6533.12, + "probability": 0.9962 + }, + { + "start": 6534.04, + "end": 6536.34, + "probability": 0.9831 + }, + { + "start": 6536.52, + "end": 6542.1, + "probability": 0.9213 + }, + { + "start": 6543.12, + "end": 6545.0, + "probability": 0.6428 + }, + { + "start": 6546.26, + "end": 6550.06, + "probability": 0.9395 + }, + { + "start": 6550.38, + "end": 6556.58, + "probability": 0.9819 + }, + { + "start": 6557.38, + "end": 6561.9, + "probability": 0.9672 + }, + { + "start": 6562.4, + "end": 6564.26, + "probability": 0.9462 + }, + { + "start": 6565.08, + "end": 6574.46, + "probability": 0.9819 + }, + { + "start": 6575.02, + "end": 6581.62, + "probability": 0.9696 + }, + { + "start": 6582.56, + "end": 6583.12, + "probability": 0.5636 + }, + { + "start": 6584.08, + "end": 6588.42, + "probability": 0.9797 + }, + { + "start": 6589.1, + "end": 6593.66, + "probability": 0.9683 + }, + { + "start": 6594.54, + "end": 6597.5, + "probability": 0.7781 + }, + { + "start": 6598.56, + "end": 6601.2, + "probability": 0.9917 + }, + { + "start": 6601.96, + "end": 6604.06, + "probability": 0.9516 + }, + { + "start": 6604.84, + "end": 6606.6, + "probability": 0.963 + }, + { + "start": 6606.76, + "end": 6610.02, + "probability": 0.9666 + }, + { + "start": 6610.74, + "end": 6612.64, + "probability": 0.9365 + }, + { + "start": 6614.66, + "end": 6616.98, + "probability": 0.7354 + }, + { + "start": 6617.06, + "end": 6623.8, + "probability": 0.9243 + }, + { + "start": 6624.64, + "end": 6626.16, + "probability": 0.7588 + }, + { + "start": 6627.06, + "end": 6629.63, + "probability": 0.9681 + }, + { + "start": 6629.64, + "end": 6635.54, + "probability": 0.9895 + }, + { + "start": 6636.16, + "end": 6637.48, + "probability": 0.9603 + }, + { + "start": 6638.1, + "end": 6640.7, + "probability": 0.9038 + }, + { + "start": 6641.32, + "end": 6642.02, + "probability": 0.605 + }, + { + "start": 6642.88, + "end": 6648.04, + "probability": 0.9774 + }, + { + "start": 6648.23, + "end": 6652.44, + "probability": 0.994 + }, + { + "start": 6654.48, + "end": 6658.5, + "probability": 0.9709 + }, + { + "start": 6658.66, + "end": 6659.1, + "probability": 0.4931 + }, + { + "start": 6659.12, + "end": 6660.0, + "probability": 0.7723 + }, + { + "start": 6660.18, + "end": 6665.61, + "probability": 0.9604 + }, + { + "start": 6665.8, + "end": 6667.16, + "probability": 0.8285 + }, + { + "start": 6667.64, + "end": 6668.62, + "probability": 0.9719 + }, + { + "start": 6669.48, + "end": 6681.34, + "probability": 0.9861 + }, + { + "start": 6681.34, + "end": 6688.84, + "probability": 0.9961 + }, + { + "start": 6689.38, + "end": 6691.5, + "probability": 0.0413 + }, + { + "start": 6691.6, + "end": 6691.74, + "probability": 0.0378 + }, + { + "start": 6691.74, + "end": 6698.26, + "probability": 0.2027 + }, + { + "start": 6700.52, + "end": 6707.92, + "probability": 0.2475 + }, + { + "start": 6708.18, + "end": 6712.56, + "probability": 0.2366 + }, + { + "start": 6712.84, + "end": 6715.36, + "probability": 0.3526 + }, + { + "start": 6716.24, + "end": 6719.81, + "probability": 0.3969 + }, + { + "start": 6721.0, + "end": 6721.1, + "probability": 0.2072 + }, + { + "start": 6722.06, + "end": 6727.42, + "probability": 0.3116 + }, + { + "start": 6727.7, + "end": 6730.3, + "probability": 0.3242 + }, + { + "start": 6730.58, + "end": 6734.36, + "probability": 0.2063 + }, + { + "start": 6735.08, + "end": 6740.92, + "probability": 0.1691 + }, + { + "start": 6779.0, + "end": 6779.0, + "probability": 0.0 + }, + { + "start": 6779.0, + "end": 6779.0, + "probability": 0.0 + }, + { + "start": 6779.0, + "end": 6779.0, + "probability": 0.0 + }, + { + "start": 6779.0, + "end": 6779.0, + "probability": 0.0 + }, + { + "start": 6779.0, + "end": 6779.0, + "probability": 0.0 + }, + { + "start": 6779.42, + "end": 6780.24, + "probability": 0.1442 + }, + { + "start": 6780.24, + "end": 6780.24, + "probability": 0.1006 + }, + { + "start": 6780.24, + "end": 6780.24, + "probability": 0.6238 + }, + { + "start": 6780.24, + "end": 6781.12, + "probability": 0.1111 + }, + { + "start": 6782.06, + "end": 6784.56, + "probability": 0.463 + }, + { + "start": 6785.34, + "end": 6789.6, + "probability": 0.9861 + }, + { + "start": 6790.58, + "end": 6797.36, + "probability": 0.9793 + }, + { + "start": 6801.38, + "end": 6804.1, + "probability": 0.999 + }, + { + "start": 6804.9, + "end": 6809.8, + "probability": 0.9973 + }, + { + "start": 6810.94, + "end": 6815.86, + "probability": 0.9999 + }, + { + "start": 6816.62, + "end": 6817.86, + "probability": 0.683 + }, + { + "start": 6819.04, + "end": 6822.18, + "probability": 0.9995 + }, + { + "start": 6826.36, + "end": 6828.74, + "probability": 0.9981 + }, + { + "start": 6829.16, + "end": 6832.22, + "probability": 0.9958 + }, + { + "start": 6832.22, + "end": 6837.62, + "probability": 0.9951 + }, + { + "start": 6837.98, + "end": 6838.72, + "probability": 0.6388 + }, + { + "start": 6841.44, + "end": 6842.34, + "probability": 0.6368 + }, + { + "start": 6844.94, + "end": 6848.4, + "probability": 0.9993 + }, + { + "start": 6850.4, + "end": 6850.94, + "probability": 0.4826 + }, + { + "start": 6851.78, + "end": 6852.72, + "probability": 0.7021 + }, + { + "start": 6853.6, + "end": 6855.32, + "probability": 0.9499 + }, + { + "start": 6856.44, + "end": 6860.5, + "probability": 0.9947 + }, + { + "start": 6860.5, + "end": 6866.82, + "probability": 0.9946 + }, + { + "start": 6867.62, + "end": 6869.22, + "probability": 0.9749 + }, + { + "start": 6871.1, + "end": 6875.22, + "probability": 0.9951 + }, + { + "start": 6875.36, + "end": 6879.12, + "probability": 0.9827 + }, + { + "start": 6879.96, + "end": 6884.52, + "probability": 0.9923 + }, + { + "start": 6884.66, + "end": 6885.56, + "probability": 0.9383 + }, + { + "start": 6886.08, + "end": 6888.64, + "probability": 0.9888 + }, + { + "start": 6890.22, + "end": 6896.78, + "probability": 0.9938 + }, + { + "start": 6897.52, + "end": 6898.36, + "probability": 0.8087 + }, + { + "start": 6900.58, + "end": 6901.86, + "probability": 0.9885 + }, + { + "start": 6901.94, + "end": 6903.0, + "probability": 0.9961 + }, + { + "start": 6903.02, + "end": 6904.42, + "probability": 0.9624 + }, + { + "start": 6904.88, + "end": 6906.38, + "probability": 0.9457 + }, + { + "start": 6907.86, + "end": 6913.22, + "probability": 0.9946 + }, + { + "start": 6913.24, + "end": 6918.64, + "probability": 0.9983 + }, + { + "start": 6919.28, + "end": 6921.22, + "probability": 0.6356 + }, + { + "start": 6922.08, + "end": 6924.11, + "probability": 0.9993 + }, + { + "start": 6924.7, + "end": 6932.02, + "probability": 0.9951 + }, + { + "start": 6933.64, + "end": 6934.92, + "probability": 0.7332 + }, + { + "start": 6935.0, + "end": 6938.23, + "probability": 0.783 + }, + { + "start": 6938.92, + "end": 6941.76, + "probability": 0.8032 + }, + { + "start": 6942.5, + "end": 6945.68, + "probability": 0.9823 + }, + { + "start": 6947.7, + "end": 6951.34, + "probability": 0.9743 + }, + { + "start": 6952.16, + "end": 6954.84, + "probability": 0.9585 + }, + { + "start": 6955.62, + "end": 6956.38, + "probability": 0.9293 + }, + { + "start": 6957.62, + "end": 6963.36, + "probability": 0.9705 + }, + { + "start": 6963.5, + "end": 6965.65, + "probability": 0.9946 + }, + { + "start": 6967.1, + "end": 6971.4, + "probability": 0.9927 + }, + { + "start": 6972.4, + "end": 6977.8, + "probability": 0.9506 + }, + { + "start": 6979.08, + "end": 6980.36, + "probability": 0.9648 + }, + { + "start": 6980.86, + "end": 6983.3, + "probability": 0.9803 + }, + { + "start": 6984.04, + "end": 6985.9, + "probability": 0.9963 + }, + { + "start": 6986.64, + "end": 6989.38, + "probability": 0.9922 + }, + { + "start": 6989.38, + "end": 6993.38, + "probability": 0.9997 + }, + { + "start": 6994.62, + "end": 6995.36, + "probability": 0.7125 + }, + { + "start": 6996.02, + "end": 6998.66, + "probability": 0.9946 + }, + { + "start": 7000.1, + "end": 7002.24, + "probability": 0.9891 + }, + { + "start": 7002.88, + "end": 7004.72, + "probability": 0.8901 + }, + { + "start": 7005.9, + "end": 7009.3, + "probability": 0.8834 + }, + { + "start": 7009.92, + "end": 7014.52, + "probability": 0.996 + }, + { + "start": 7015.3, + "end": 7022.14, + "probability": 0.9984 + }, + { + "start": 7022.74, + "end": 7026.68, + "probability": 0.9393 + }, + { + "start": 7027.52, + "end": 7029.74, + "probability": 0.832 + }, + { + "start": 7029.84, + "end": 7031.02, + "probability": 0.7159 + }, + { + "start": 7031.6, + "end": 7037.22, + "probability": 0.9974 + }, + { + "start": 7038.06, + "end": 7039.8, + "probability": 0.7387 + }, + { + "start": 7040.16, + "end": 7044.09, + "probability": 0.9992 + }, + { + "start": 7044.98, + "end": 7048.9, + "probability": 0.9935 + }, + { + "start": 7050.34, + "end": 7051.04, + "probability": 0.762 + }, + { + "start": 7051.72, + "end": 7053.78, + "probability": 0.981 + }, + { + "start": 7054.6, + "end": 7055.92, + "probability": 0.1677 + }, + { + "start": 7057.54, + "end": 7059.92, + "probability": 0.0424 + }, + { + "start": 7077.32, + "end": 7079.48, + "probability": 0.4021 + }, + { + "start": 7080.18, + "end": 7081.24, + "probability": 0.6793 + }, + { + "start": 7082.38, + "end": 7083.64, + "probability": 0.9635 + }, + { + "start": 7084.64, + "end": 7085.58, + "probability": 0.7656 + }, + { + "start": 7087.2, + "end": 7088.24, + "probability": 0.8356 + }, + { + "start": 7089.98, + "end": 7093.82, + "probability": 0.9952 + }, + { + "start": 7094.96, + "end": 7097.02, + "probability": 0.9815 + }, + { + "start": 7097.7, + "end": 7100.0, + "probability": 0.917 + }, + { + "start": 7100.06, + "end": 7102.76, + "probability": 0.9954 + }, + { + "start": 7104.44, + "end": 7110.74, + "probability": 0.9803 + }, + { + "start": 7111.62, + "end": 7113.26, + "probability": 0.9906 + }, + { + "start": 7115.14, + "end": 7116.24, + "probability": 0.6591 + }, + { + "start": 7117.24, + "end": 7123.3, + "probability": 0.9881 + }, + { + "start": 7124.0, + "end": 7127.34, + "probability": 0.9929 + }, + { + "start": 7128.72, + "end": 7130.04, + "probability": 0.7167 + }, + { + "start": 7132.0, + "end": 7133.62, + "probability": 0.9154 + }, + { + "start": 7134.2, + "end": 7139.12, + "probability": 0.8986 + }, + { + "start": 7140.3, + "end": 7141.78, + "probability": 0.8383 + }, + { + "start": 7142.74, + "end": 7147.84, + "probability": 0.9967 + }, + { + "start": 7148.84, + "end": 7152.18, + "probability": 0.8644 + }, + { + "start": 7152.9, + "end": 7153.92, + "probability": 0.9573 + }, + { + "start": 7154.72, + "end": 7156.66, + "probability": 0.9001 + }, + { + "start": 7157.64, + "end": 7159.24, + "probability": 0.9714 + }, + { + "start": 7160.08, + "end": 7162.86, + "probability": 0.9624 + }, + { + "start": 7163.9, + "end": 7167.22, + "probability": 0.9954 + }, + { + "start": 7167.22, + "end": 7170.34, + "probability": 0.993 + }, + { + "start": 7171.66, + "end": 7176.84, + "probability": 0.9974 + }, + { + "start": 7177.9, + "end": 7179.87, + "probability": 0.9474 + }, + { + "start": 7180.46, + "end": 7184.72, + "probability": 0.9944 + }, + { + "start": 7185.66, + "end": 7187.96, + "probability": 0.9971 + }, + { + "start": 7187.96, + "end": 7191.28, + "probability": 0.9383 + }, + { + "start": 7191.3, + "end": 7192.84, + "probability": 0.9278 + }, + { + "start": 7193.4, + "end": 7195.06, + "probability": 0.9963 + }, + { + "start": 7195.22, + "end": 7198.04, + "probability": 0.9443 + }, + { + "start": 7198.76, + "end": 7201.24, + "probability": 0.9624 + }, + { + "start": 7201.4, + "end": 7202.56, + "probability": 0.6465 + }, + { + "start": 7203.48, + "end": 7207.84, + "probability": 0.9736 + }, + { + "start": 7208.46, + "end": 7212.54, + "probability": 0.9517 + }, + { + "start": 7213.22, + "end": 7216.2, + "probability": 0.9418 + }, + { + "start": 7216.72, + "end": 7221.04, + "probability": 0.9879 + }, + { + "start": 7222.52, + "end": 7227.46, + "probability": 0.9919 + }, + { + "start": 7228.14, + "end": 7229.88, + "probability": 0.9719 + }, + { + "start": 7230.56, + "end": 7232.88, + "probability": 0.9949 + }, + { + "start": 7233.36, + "end": 7236.1, + "probability": 0.9979 + }, + { + "start": 7236.96, + "end": 7239.56, + "probability": 0.9278 + }, + { + "start": 7240.22, + "end": 7245.56, + "probability": 0.9954 + }, + { + "start": 7246.32, + "end": 7247.07, + "probability": 0.8206 + }, + { + "start": 7247.48, + "end": 7250.66, + "probability": 0.9951 + }, + { + "start": 7251.42, + "end": 7252.98, + "probability": 0.9939 + }, + { + "start": 7254.48, + "end": 7259.44, + "probability": 0.9705 + }, + { + "start": 7260.0, + "end": 7261.6, + "probability": 0.9958 + }, + { + "start": 7262.44, + "end": 7263.04, + "probability": 0.8719 + }, + { + "start": 7263.26, + "end": 7266.46, + "probability": 0.9976 + }, + { + "start": 7266.46, + "end": 7271.56, + "probability": 0.9947 + }, + { + "start": 7273.3, + "end": 7276.0, + "probability": 0.9892 + }, + { + "start": 7276.62, + "end": 7279.6, + "probability": 0.9989 + }, + { + "start": 7280.14, + "end": 7283.9, + "probability": 0.9487 + }, + { + "start": 7284.58, + "end": 7288.24, + "probability": 0.975 + }, + { + "start": 7289.02, + "end": 7291.2, + "probability": 0.9803 + }, + { + "start": 7291.74, + "end": 7294.86, + "probability": 0.8452 + }, + { + "start": 7295.72, + "end": 7299.8, + "probability": 0.9819 + }, + { + "start": 7300.46, + "end": 7303.78, + "probability": 0.9956 + }, + { + "start": 7304.52, + "end": 7308.06, + "probability": 0.9444 + }, + { + "start": 7308.2, + "end": 7308.9, + "probability": 0.8157 + }, + { + "start": 7310.54, + "end": 7312.58, + "probability": 0.9174 + }, + { + "start": 7313.36, + "end": 7318.12, + "probability": 0.9938 + }, + { + "start": 7318.98, + "end": 7322.48, + "probability": 0.9899 + }, + { + "start": 7323.1, + "end": 7324.44, + "probability": 0.9914 + }, + { + "start": 7325.12, + "end": 7329.76, + "probability": 0.999 + }, + { + "start": 7331.5, + "end": 7335.32, + "probability": 0.9966 + }, + { + "start": 7336.18, + "end": 7337.9, + "probability": 0.978 + }, + { + "start": 7338.7, + "end": 7341.6, + "probability": 0.9906 + }, + { + "start": 7342.26, + "end": 7346.72, + "probability": 0.9975 + }, + { + "start": 7347.26, + "end": 7352.0, + "probability": 0.9928 + }, + { + "start": 7353.8, + "end": 7357.02, + "probability": 0.9868 + }, + { + "start": 7357.64, + "end": 7359.94, + "probability": 0.6923 + }, + { + "start": 7360.72, + "end": 7362.73, + "probability": 0.9878 + }, + { + "start": 7363.5, + "end": 7366.42, + "probability": 0.8727 + }, + { + "start": 7367.04, + "end": 7370.18, + "probability": 0.9718 + }, + { + "start": 7371.1, + "end": 7373.72, + "probability": 0.937 + }, + { + "start": 7374.38, + "end": 7375.08, + "probability": 0.7894 + }, + { + "start": 7376.24, + "end": 7379.22, + "probability": 0.9795 + }, + { + "start": 7380.0, + "end": 7381.54, + "probability": 0.9765 + }, + { + "start": 7381.62, + "end": 7382.32, + "probability": 0.7548 + }, + { + "start": 7382.34, + "end": 7385.24, + "probability": 0.8728 + }, + { + "start": 7385.82, + "end": 7387.56, + "probability": 0.9788 + }, + { + "start": 7389.64, + "end": 7390.3, + "probability": 0.7313 + }, + { + "start": 7391.36, + "end": 7391.46, + "probability": 0.1174 + }, + { + "start": 7391.46, + "end": 7391.46, + "probability": 0.0486 + }, + { + "start": 7391.46, + "end": 7393.68, + "probability": 0.5996 + }, + { + "start": 7394.38, + "end": 7395.06, + "probability": 0.6532 + }, + { + "start": 7396.22, + "end": 7398.44, + "probability": 0.9878 + }, + { + "start": 7399.16, + "end": 7401.52, + "probability": 0.9895 + }, + { + "start": 7402.32, + "end": 7406.52, + "probability": 0.7627 + }, + { + "start": 7406.58, + "end": 7410.74, + "probability": 0.8323 + }, + { + "start": 7411.74, + "end": 7414.58, + "probability": 0.6633 + }, + { + "start": 7415.12, + "end": 7416.3, + "probability": 0.9766 + }, + { + "start": 7416.5, + "end": 7417.92, + "probability": 0.9481 + }, + { + "start": 7418.26, + "end": 7419.0, + "probability": 0.6008 + }, + { + "start": 7429.82, + "end": 7430.64, + "probability": 0.461 + }, + { + "start": 7430.72, + "end": 7432.66, + "probability": 0.5944 + }, + { + "start": 7433.34, + "end": 7435.42, + "probability": 0.84 + }, + { + "start": 7435.42, + "end": 7438.05, + "probability": 0.7969 + }, + { + "start": 7438.38, + "end": 7439.58, + "probability": 0.73 + }, + { + "start": 7439.68, + "end": 7441.86, + "probability": 0.8558 + }, + { + "start": 7442.42, + "end": 7443.44, + "probability": 0.6264 + }, + { + "start": 7443.52, + "end": 7448.52, + "probability": 0.8435 + }, + { + "start": 7448.64, + "end": 7450.64, + "probability": 0.982 + }, + { + "start": 7450.72, + "end": 7451.36, + "probability": 0.7513 + }, + { + "start": 7451.48, + "end": 7452.46, + "probability": 0.389 + }, + { + "start": 7453.36, + "end": 7454.6, + "probability": 0.8507 + }, + { + "start": 7454.64, + "end": 7456.46, + "probability": 0.8871 + }, + { + "start": 7456.58, + "end": 7457.84, + "probability": 0.7805 + }, + { + "start": 7457.9, + "end": 7459.58, + "probability": 0.9841 + }, + { + "start": 7459.58, + "end": 7461.18, + "probability": 0.8507 + }, + { + "start": 7464.14, + "end": 7464.6, + "probability": 0.0005 + }, + { + "start": 7464.6, + "end": 7470.18, + "probability": 0.464 + }, + { + "start": 7470.22, + "end": 7471.46, + "probability": 0.7952 + }, + { + "start": 7471.46, + "end": 7473.86, + "probability": 0.5648 + }, + { + "start": 7473.94, + "end": 7476.68, + "probability": 0.9759 + }, + { + "start": 7476.8, + "end": 7477.02, + "probability": 0.2279 + }, + { + "start": 7477.04, + "end": 7479.76, + "probability": 0.9456 + }, + { + "start": 7480.32, + "end": 7484.04, + "probability": 0.9927 + }, + { + "start": 7484.44, + "end": 7487.76, + "probability": 0.7454 + }, + { + "start": 7488.4, + "end": 7491.78, + "probability": 0.7778 + }, + { + "start": 7491.78, + "end": 7494.36, + "probability": 0.9689 + }, + { + "start": 7494.82, + "end": 7498.22, + "probability": 0.649 + }, + { + "start": 7498.22, + "end": 7501.4, + "probability": 0.7446 + }, + { + "start": 7501.88, + "end": 7503.28, + "probability": 0.8528 + }, + { + "start": 7503.9, + "end": 7507.12, + "probability": 0.9335 + }, + { + "start": 7507.28, + "end": 7508.38, + "probability": 0.6235 + }, + { + "start": 7508.46, + "end": 7510.72, + "probability": 0.9971 + }, + { + "start": 7510.72, + "end": 7513.3, + "probability": 0.5988 + }, + { + "start": 7513.46, + "end": 7513.7, + "probability": 0.4421 + }, + { + "start": 7513.8, + "end": 7514.16, + "probability": 0.886 + }, + { + "start": 7514.64, + "end": 7518.06, + "probability": 0.9731 + }, + { + "start": 7518.64, + "end": 7520.44, + "probability": 0.9985 + }, + { + "start": 7521.14, + "end": 7524.82, + "probability": 0.9246 + }, + { + "start": 7525.32, + "end": 7532.44, + "probability": 0.9956 + }, + { + "start": 7532.56, + "end": 7534.74, + "probability": 0.8137 + }, + { + "start": 7535.16, + "end": 7536.96, + "probability": 0.8929 + }, + { + "start": 7538.6, + "end": 7540.32, + "probability": 0.1561 + }, + { + "start": 7540.32, + "end": 7540.32, + "probability": 0.3141 + }, + { + "start": 7540.32, + "end": 7541.82, + "probability": 0.7551 + }, + { + "start": 7542.94, + "end": 7545.5, + "probability": 0.6998 + }, + { + "start": 7561.44, + "end": 7563.54, + "probability": 0.913 + }, + { + "start": 7564.58, + "end": 7568.2, + "probability": 0.994 + }, + { + "start": 7568.88, + "end": 7569.76, + "probability": 0.9993 + }, + { + "start": 7571.2, + "end": 7573.56, + "probability": 0.9993 + }, + { + "start": 7573.56, + "end": 7575.64, + "probability": 0.9996 + }, + { + "start": 7576.86, + "end": 7578.77, + "probability": 0.9819 + }, + { + "start": 7579.2, + "end": 7580.04, + "probability": 0.9974 + }, + { + "start": 7580.68, + "end": 7581.34, + "probability": 0.6653 + }, + { + "start": 7582.28, + "end": 7584.4, + "probability": 0.7735 + }, + { + "start": 7585.78, + "end": 7588.8, + "probability": 0.9592 + }, + { + "start": 7589.5, + "end": 7593.5, + "probability": 0.8822 + }, + { + "start": 7594.98, + "end": 7598.04, + "probability": 0.8434 + }, + { + "start": 7598.36, + "end": 7598.44, + "probability": 0.4704 + }, + { + "start": 7598.44, + "end": 7599.34, + "probability": 0.7065 + }, + { + "start": 7599.66, + "end": 7600.72, + "probability": 0.9701 + }, + { + "start": 7601.68, + "end": 7606.86, + "probability": 0.9496 + }, + { + "start": 7608.18, + "end": 7608.78, + "probability": 0.9424 + }, + { + "start": 7608.92, + "end": 7613.56, + "probability": 0.9993 + }, + { + "start": 7613.56, + "end": 7617.68, + "probability": 0.9982 + }, + { + "start": 7618.26, + "end": 7618.36, + "probability": 0.5635 + }, + { + "start": 7619.32, + "end": 7620.52, + "probability": 0.9974 + }, + { + "start": 7621.14, + "end": 7622.64, + "probability": 0.9294 + }, + { + "start": 7623.72, + "end": 7625.7, + "probability": 0.8416 + }, + { + "start": 7626.56, + "end": 7631.2, + "probability": 0.9922 + }, + { + "start": 7631.78, + "end": 7633.51, + "probability": 0.9985 + }, + { + "start": 7633.92, + "end": 7634.94, + "probability": 0.9946 + }, + { + "start": 7635.66, + "end": 7640.78, + "probability": 0.9969 + }, + { + "start": 7641.72, + "end": 7644.56, + "probability": 0.8838 + }, + { + "start": 7645.2, + "end": 7646.36, + "probability": 0.843 + }, + { + "start": 7647.06, + "end": 7649.16, + "probability": 0.7461 + }, + { + "start": 7649.32, + "end": 7650.24, + "probability": 0.8014 + }, + { + "start": 7650.6, + "end": 7651.01, + "probability": 0.8994 + }, + { + "start": 7652.06, + "end": 7657.02, + "probability": 0.9575 + }, + { + "start": 7658.02, + "end": 7661.22, + "probability": 0.9881 + }, + { + "start": 7661.74, + "end": 7663.04, + "probability": 0.9218 + }, + { + "start": 7663.46, + "end": 7664.0, + "probability": 0.51 + }, + { + "start": 7664.36, + "end": 7665.06, + "probability": 0.7921 + }, + { + "start": 7665.6, + "end": 7666.64, + "probability": 0.97 + }, + { + "start": 7667.26, + "end": 7668.22, + "probability": 0.9827 + }, + { + "start": 7668.66, + "end": 7670.05, + "probability": 0.9771 + }, + { + "start": 7670.44, + "end": 7672.24, + "probability": 0.9818 + }, + { + "start": 7672.42, + "end": 7674.58, + "probability": 0.8612 + }, + { + "start": 7674.96, + "end": 7677.74, + "probability": 0.9435 + }, + { + "start": 7678.48, + "end": 7680.92, + "probability": 0.8785 + }, + { + "start": 7681.82, + "end": 7683.56, + "probability": 0.8999 + }, + { + "start": 7684.32, + "end": 7686.42, + "probability": 0.6303 + }, + { + "start": 7686.48, + "end": 7688.66, + "probability": 0.7247 + }, + { + "start": 7688.88, + "end": 7689.16, + "probability": 0.3713 + }, + { + "start": 7690.22, + "end": 7695.9, + "probability": 0.995 + }, + { + "start": 7696.28, + "end": 7697.46, + "probability": 0.7379 + }, + { + "start": 7698.06, + "end": 7701.24, + "probability": 0.9964 + }, + { + "start": 7702.34, + "end": 7703.3, + "probability": 0.9434 + }, + { + "start": 7704.26, + "end": 7707.02, + "probability": 0.9679 + }, + { + "start": 7707.7, + "end": 7708.7, + "probability": 0.7751 + }, + { + "start": 7709.38, + "end": 7711.5, + "probability": 0.998 + }, + { + "start": 7712.18, + "end": 7714.68, + "probability": 0.9897 + }, + { + "start": 7715.12, + "end": 7716.48, + "probability": 0.9946 + }, + { + "start": 7717.3, + "end": 7719.86, + "probability": 0.9263 + }, + { + "start": 7720.78, + "end": 7724.0, + "probability": 0.9681 + }, + { + "start": 7724.82, + "end": 7725.44, + "probability": 0.9329 + }, + { + "start": 7726.08, + "end": 7727.02, + "probability": 0.9907 + }, + { + "start": 7728.02, + "end": 7729.34, + "probability": 0.9839 + }, + { + "start": 7730.1, + "end": 7732.36, + "probability": 0.9193 + }, + { + "start": 7733.04, + "end": 7733.81, + "probability": 0.863 + }, + { + "start": 7734.38, + "end": 7737.96, + "probability": 0.9979 + }, + { + "start": 7739.06, + "end": 7741.04, + "probability": 0.806 + }, + { + "start": 7741.84, + "end": 7745.02, + "probability": 0.9635 + }, + { + "start": 7745.16, + "end": 7745.61, + "probability": 0.9443 + }, + { + "start": 7746.66, + "end": 7749.42, + "probability": 0.8048 + }, + { + "start": 7750.02, + "end": 7751.29, + "probability": 0.8755 + }, + { + "start": 7751.66, + "end": 7751.84, + "probability": 0.4869 + }, + { + "start": 7752.2, + "end": 7753.42, + "probability": 0.9762 + }, + { + "start": 7753.88, + "end": 7756.96, + "probability": 0.9753 + }, + { + "start": 7757.5, + "end": 7759.32, + "probability": 0.9171 + }, + { + "start": 7759.86, + "end": 7764.38, + "probability": 0.8965 + }, + { + "start": 7764.38, + "end": 7768.58, + "probability": 0.9936 + }, + { + "start": 7768.82, + "end": 7769.86, + "probability": 0.9836 + }, + { + "start": 7770.42, + "end": 7772.74, + "probability": 0.9939 + }, + { + "start": 7773.3, + "end": 7774.52, + "probability": 0.9246 + }, + { + "start": 7775.16, + "end": 7779.68, + "probability": 0.9904 + }, + { + "start": 7779.68, + "end": 7783.7, + "probability": 0.9915 + }, + { + "start": 7784.64, + "end": 7787.28, + "probability": 0.7418 + }, + { + "start": 7789.5, + "end": 7791.1, + "probability": 0.6618 + }, + { + "start": 7802.08, + "end": 7803.66, + "probability": 0.6679 + }, + { + "start": 7809.12, + "end": 7810.5, + "probability": 0.642 + }, + { + "start": 7810.58, + "end": 7811.48, + "probability": 0.6763 + }, + { + "start": 7812.76, + "end": 7814.94, + "probability": 0.9872 + }, + { + "start": 7815.04, + "end": 7818.62, + "probability": 0.9926 + }, + { + "start": 7818.92, + "end": 7821.14, + "probability": 0.9959 + }, + { + "start": 7822.02, + "end": 7824.32, + "probability": 0.9702 + }, + { + "start": 7825.3, + "end": 7827.78, + "probability": 0.9565 + }, + { + "start": 7828.64, + "end": 7832.5, + "probability": 0.9657 + }, + { + "start": 7833.48, + "end": 7834.72, + "probability": 0.9868 + }, + { + "start": 7835.58, + "end": 7837.9, + "probability": 0.9675 + }, + { + "start": 7838.56, + "end": 7841.54, + "probability": 0.9966 + }, + { + "start": 7843.04, + "end": 7844.29, + "probability": 0.9414 + }, + { + "start": 7844.48, + "end": 7845.76, + "probability": 0.9993 + }, + { + "start": 7845.8, + "end": 7848.28, + "probability": 0.9965 + }, + { + "start": 7848.52, + "end": 7854.2, + "probability": 0.9943 + }, + { + "start": 7854.8, + "end": 7859.46, + "probability": 0.9731 + }, + { + "start": 7860.48, + "end": 7862.52, + "probability": 0.9251 + }, + { + "start": 7863.52, + "end": 7866.32, + "probability": 0.9912 + }, + { + "start": 7866.72, + "end": 7870.14, + "probability": 0.9949 + }, + { + "start": 7870.7, + "end": 7873.0, + "probability": 0.9971 + }, + { + "start": 7874.04, + "end": 7875.02, + "probability": 0.9077 + }, + { + "start": 7875.08, + "end": 7876.0, + "probability": 0.8922 + }, + { + "start": 7876.42, + "end": 7877.32, + "probability": 0.6525 + }, + { + "start": 7878.04, + "end": 7879.52, + "probability": 0.9686 + }, + { + "start": 7880.8, + "end": 7882.18, + "probability": 0.5166 + }, + { + "start": 7882.44, + "end": 7884.14, + "probability": 0.9921 + }, + { + "start": 7885.16, + "end": 7889.38, + "probability": 0.9567 + }, + { + "start": 7889.9, + "end": 7890.56, + "probability": 0.9795 + }, + { + "start": 7891.82, + "end": 7892.56, + "probability": 0.3984 + }, + { + "start": 7893.4, + "end": 7893.72, + "probability": 0.7992 + }, + { + "start": 7895.44, + "end": 7896.14, + "probability": 0.7856 + }, + { + "start": 7897.04, + "end": 7899.2, + "probability": 0.7397 + }, + { + "start": 7899.72, + "end": 7901.38, + "probability": 0.9238 + }, + { + "start": 7902.06, + "end": 7907.44, + "probability": 0.468 + }, + { + "start": 7907.46, + "end": 7908.76, + "probability": 0.7372 + }, + { + "start": 7921.32, + "end": 7921.32, + "probability": 0.5236 + }, + { + "start": 7921.32, + "end": 7922.64, + "probability": 0.4507 + }, + { + "start": 7928.34, + "end": 7929.46, + "probability": 0.6621 + }, + { + "start": 7930.39, + "end": 7937.04, + "probability": 0.9717 + }, + { + "start": 7937.22, + "end": 7941.1, + "probability": 0.9962 + }, + { + "start": 7941.94, + "end": 7945.38, + "probability": 0.9953 + }, + { + "start": 7945.48, + "end": 7947.92, + "probability": 0.9963 + }, + { + "start": 7948.02, + "end": 7950.1, + "probability": 0.7541 + }, + { + "start": 7950.58, + "end": 7950.72, + "probability": 0.2329 + }, + { + "start": 7950.72, + "end": 7954.66, + "probability": 0.8452 + }, + { + "start": 7954.7, + "end": 7955.4, + "probability": 0.9427 + }, + { + "start": 7955.46, + "end": 7956.74, + "probability": 0.8613 + }, + { + "start": 7957.66, + "end": 7961.62, + "probability": 0.9892 + }, + { + "start": 7962.18, + "end": 7967.1, + "probability": 0.9989 + }, + { + "start": 7967.82, + "end": 7969.15, + "probability": 0.9966 + }, + { + "start": 7969.52, + "end": 7970.68, + "probability": 0.9981 + }, + { + "start": 7970.82, + "end": 7972.32, + "probability": 0.7698 + }, + { + "start": 7972.82, + "end": 7974.32, + "probability": 0.9753 + }, + { + "start": 7975.34, + "end": 7978.72, + "probability": 0.9437 + }, + { + "start": 7979.28, + "end": 7983.12, + "probability": 0.998 + }, + { + "start": 7983.12, + "end": 7985.9, + "probability": 0.9994 + }, + { + "start": 7986.68, + "end": 7988.64, + "probability": 0.5169 + }, + { + "start": 7989.0, + "end": 7989.0, + "probability": 0.4572 + }, + { + "start": 7989.0, + "end": 7992.84, + "probability": 0.9939 + }, + { + "start": 7992.84, + "end": 7995.82, + "probability": 0.9897 + }, + { + "start": 7996.42, + "end": 7998.54, + "probability": 0.9937 + }, + { + "start": 7999.32, + "end": 8001.68, + "probability": 0.9849 + }, + { + "start": 8002.22, + "end": 8003.36, + "probability": 0.8511 + }, + { + "start": 8004.44, + "end": 8004.88, + "probability": 0.9324 + }, + { + "start": 8004.96, + "end": 8010.22, + "probability": 0.9641 + }, + { + "start": 8010.9, + "end": 8014.44, + "probability": 0.9285 + }, + { + "start": 8014.5, + "end": 8015.94, + "probability": 0.9825 + }, + { + "start": 8016.14, + "end": 8019.4, + "probability": 0.988 + }, + { + "start": 8019.54, + "end": 8020.36, + "probability": 0.8454 + }, + { + "start": 8020.5, + "end": 8023.96, + "probability": 0.9574 + }, + { + "start": 8024.98, + "end": 8027.37, + "probability": 0.9771 + }, + { + "start": 8027.62, + "end": 8032.22, + "probability": 0.9974 + }, + { + "start": 8033.32, + "end": 8037.12, + "probability": 0.8416 + }, + { + "start": 8037.5, + "end": 8040.06, + "probability": 0.9473 + }, + { + "start": 8041.02, + "end": 8042.92, + "probability": 0.9728 + }, + { + "start": 8043.84, + "end": 8045.14, + "probability": 0.9503 + }, + { + "start": 8045.36, + "end": 8046.04, + "probability": 0.8474 + }, + { + "start": 8046.46, + "end": 8048.46, + "probability": 0.9694 + }, + { + "start": 8048.56, + "end": 8049.3, + "probability": 0.6504 + }, + { + "start": 8049.38, + "end": 8051.46, + "probability": 0.4947 + }, + { + "start": 8052.26, + "end": 8058.36, + "probability": 0.8226 + }, + { + "start": 8058.92, + "end": 8060.34, + "probability": 0.8092 + }, + { + "start": 8061.38, + "end": 8066.54, + "probability": 0.9941 + }, + { + "start": 8067.1, + "end": 8069.62, + "probability": 0.9836 + }, + { + "start": 8070.54, + "end": 8074.62, + "probability": 0.9798 + }, + { + "start": 8075.56, + "end": 8078.64, + "probability": 0.9955 + }, + { + "start": 8079.16, + "end": 8082.2, + "probability": 0.9685 + }, + { + "start": 8082.2, + "end": 8086.54, + "probability": 0.8277 + }, + { + "start": 8086.66, + "end": 8087.08, + "probability": 0.409 + }, + { + "start": 8087.22, + "end": 8087.68, + "probability": 0.5892 + }, + { + "start": 8087.88, + "end": 8091.78, + "probability": 0.8946 + }, + { + "start": 8092.82, + "end": 8096.04, + "probability": 0.9956 + }, + { + "start": 8096.04, + "end": 8100.76, + "probability": 0.9924 + }, + { + "start": 8100.86, + "end": 8101.72, + "probability": 0.9365 + }, + { + "start": 8102.82, + "end": 8105.64, + "probability": 0.9984 + }, + { + "start": 8106.36, + "end": 8109.28, + "probability": 0.77 + }, + { + "start": 8109.64, + "end": 8110.2, + "probability": 0.7985 + }, + { + "start": 8112.96, + "end": 8117.24, + "probability": 0.9334 + }, + { + "start": 8118.06, + "end": 8119.48, + "probability": 0.9919 + }, + { + "start": 8120.0, + "end": 8120.8, + "probability": 0.7515 + }, + { + "start": 8121.62, + "end": 8122.82, + "probability": 0.6779 + }, + { + "start": 8127.82, + "end": 8128.56, + "probability": 0.531 + }, + { + "start": 8134.32, + "end": 8134.32, + "probability": 0.3902 + }, + { + "start": 8134.32, + "end": 8134.32, + "probability": 0.3539 + }, + { + "start": 8134.32, + "end": 8134.32, + "probability": 0.1746 + }, + { + "start": 8134.32, + "end": 8134.48, + "probability": 0.1993 + }, + { + "start": 8149.12, + "end": 8151.7, + "probability": 0.9664 + }, + { + "start": 8152.92, + "end": 8154.92, + "probability": 0.7233 + }, + { + "start": 8155.44, + "end": 8158.9, + "probability": 0.9772 + }, + { + "start": 8159.82, + "end": 8160.96, + "probability": 0.9974 + }, + { + "start": 8161.64, + "end": 8163.0, + "probability": 0.9986 + }, + { + "start": 8164.2, + "end": 8166.08, + "probability": 0.849 + }, + { + "start": 8167.26, + "end": 8171.58, + "probability": 0.986 + }, + { + "start": 8172.58, + "end": 8174.06, + "probability": 0.9358 + }, + { + "start": 8174.74, + "end": 8175.69, + "probability": 0.979 + }, + { + "start": 8176.7, + "end": 8178.66, + "probability": 0.9952 + }, + { + "start": 8180.18, + "end": 8185.78, + "probability": 0.9994 + }, + { + "start": 8187.42, + "end": 8192.82, + "probability": 0.9921 + }, + { + "start": 8193.06, + "end": 8193.6, + "probability": 0.8937 + }, + { + "start": 8193.74, + "end": 8194.3, + "probability": 0.8083 + }, + { + "start": 8196.02, + "end": 8199.93, + "probability": 0.986 + }, + { + "start": 8200.9, + "end": 8202.76, + "probability": 0.9607 + }, + { + "start": 8202.92, + "end": 8204.86, + "probability": 0.9984 + }, + { + "start": 8204.94, + "end": 8206.9, + "probability": 0.8377 + }, + { + "start": 8208.3, + "end": 8214.12, + "probability": 0.9845 + }, + { + "start": 8215.56, + "end": 8217.84, + "probability": 0.9929 + }, + { + "start": 8219.42, + "end": 8221.3, + "probability": 0.9962 + }, + { + "start": 8221.44, + "end": 8222.41, + "probability": 0.5349 + }, + { + "start": 8223.32, + "end": 8223.54, + "probability": 0.6736 + }, + { + "start": 8224.42, + "end": 8228.1, + "probability": 0.9886 + }, + { + "start": 8229.16, + "end": 8233.16, + "probability": 0.9886 + }, + { + "start": 8234.1, + "end": 8238.02, + "probability": 0.9907 + }, + { + "start": 8238.52, + "end": 8239.26, + "probability": 0.7333 + }, + { + "start": 8239.44, + "end": 8240.78, + "probability": 0.9878 + }, + { + "start": 8240.78, + "end": 8242.74, + "probability": 0.7036 + }, + { + "start": 8244.52, + "end": 8248.58, + "probability": 0.9302 + }, + { + "start": 8250.76, + "end": 8251.88, + "probability": 0.7601 + }, + { + "start": 8252.86, + "end": 8256.34, + "probability": 0.9941 + }, + { + "start": 8257.24, + "end": 8260.08, + "probability": 0.9914 + }, + { + "start": 8260.6, + "end": 8262.16, + "probability": 0.983 + }, + { + "start": 8263.42, + "end": 8264.68, + "probability": 0.9807 + }, + { + "start": 8265.66, + "end": 8269.0, + "probability": 0.9863 + }, + { + "start": 8269.16, + "end": 8270.9, + "probability": 0.998 + }, + { + "start": 8271.28, + "end": 8272.24, + "probability": 0.9917 + }, + { + "start": 8275.04, + "end": 8276.27, + "probability": 0.998 + }, + { + "start": 8278.34, + "end": 8282.72, + "probability": 0.9968 + }, + { + "start": 8283.9, + "end": 8290.06, + "probability": 0.9961 + }, + { + "start": 8290.08, + "end": 8290.98, + "probability": 0.7613 + }, + { + "start": 8292.28, + "end": 8294.5, + "probability": 0.9699 + }, + { + "start": 8295.04, + "end": 8297.72, + "probability": 0.9945 + }, + { + "start": 8298.44, + "end": 8299.66, + "probability": 0.9972 + }, + { + "start": 8300.86, + "end": 8301.76, + "probability": 0.8836 + }, + { + "start": 8301.94, + "end": 8302.52, + "probability": 0.7881 + }, + { + "start": 8302.6, + "end": 8308.28, + "probability": 0.9457 + }, + { + "start": 8308.62, + "end": 8309.24, + "probability": 0.7216 + }, + { + "start": 8310.04, + "end": 8313.02, + "probability": 0.9957 + }, + { + "start": 8313.12, + "end": 8313.7, + "probability": 0.8776 + }, + { + "start": 8314.22, + "end": 8314.9, + "probability": 0.7532 + }, + { + "start": 8316.0, + "end": 8317.44, + "probability": 0.8351 + }, + { + "start": 8317.88, + "end": 8320.92, + "probability": 0.9912 + }, + { + "start": 8321.1, + "end": 8321.86, + "probability": 0.9247 + }, + { + "start": 8322.84, + "end": 8323.28, + "probability": 0.6329 + }, + { + "start": 8323.88, + "end": 8325.68, + "probability": 0.7845 + }, + { + "start": 8325.7, + "end": 8331.12, + "probability": 0.9915 + }, + { + "start": 8331.18, + "end": 8331.94, + "probability": 0.6932 + }, + { + "start": 8331.94, + "end": 8332.38, + "probability": 0.6933 + }, + { + "start": 8333.8, + "end": 8334.92, + "probability": 0.8845 + }, + { + "start": 8335.76, + "end": 8336.76, + "probability": 0.6848 + }, + { + "start": 8348.48, + "end": 8348.48, + "probability": 0.271 + }, + { + "start": 8348.48, + "end": 8352.12, + "probability": 0.8354 + }, + { + "start": 8353.94, + "end": 8358.5, + "probability": 0.9906 + }, + { + "start": 8359.3, + "end": 8360.96, + "probability": 0.8919 + }, + { + "start": 8361.7, + "end": 8363.34, + "probability": 0.6277 + }, + { + "start": 8363.44, + "end": 8366.08, + "probability": 0.7934 + }, + { + "start": 8368.4, + "end": 8374.66, + "probability": 0.9849 + }, + { + "start": 8375.36, + "end": 8375.94, + "probability": 0.7728 + }, + { + "start": 8377.28, + "end": 8379.94, + "probability": 0.9576 + }, + { + "start": 8380.68, + "end": 8383.38, + "probability": 0.789 + }, + { + "start": 8384.54, + "end": 8388.46, + "probability": 0.8905 + }, + { + "start": 8391.04, + "end": 8391.54, + "probability": 0.4176 + }, + { + "start": 8392.84, + "end": 8396.54, + "probability": 0.845 + }, + { + "start": 8397.34, + "end": 8401.68, + "probability": 0.9896 + }, + { + "start": 8402.76, + "end": 8408.76, + "probability": 0.9805 + }, + { + "start": 8409.0, + "end": 8412.7, + "probability": 0.9837 + }, + { + "start": 8413.44, + "end": 8414.66, + "probability": 0.7493 + }, + { + "start": 8414.78, + "end": 8415.36, + "probability": 0.8229 + }, + { + "start": 8418.28, + "end": 8422.86, + "probability": 0.9673 + }, + { + "start": 8424.64, + "end": 8427.58, + "probability": 0.9173 + }, + { + "start": 8427.88, + "end": 8431.86, + "probability": 0.9454 + }, + { + "start": 8432.42, + "end": 8437.8, + "probability": 0.8852 + }, + { + "start": 8438.66, + "end": 8440.16, + "probability": 0.7037 + }, + { + "start": 8441.12, + "end": 8443.06, + "probability": 0.9178 + }, + { + "start": 8443.74, + "end": 8447.36, + "probability": 0.9984 + }, + { + "start": 8448.6, + "end": 8452.24, + "probability": 0.9954 + }, + { + "start": 8453.14, + "end": 8458.48, + "probability": 0.802 + }, + { + "start": 8458.64, + "end": 8463.76, + "probability": 0.9917 + }, + { + "start": 8464.22, + "end": 8468.24, + "probability": 0.9888 + }, + { + "start": 8469.44, + "end": 8471.04, + "probability": 0.5743 + }, + { + "start": 8471.74, + "end": 8478.18, + "probability": 0.9954 + }, + { + "start": 8478.18, + "end": 8482.28, + "probability": 0.9365 + }, + { + "start": 8482.44, + "end": 8483.08, + "probability": 0.7112 + }, + { + "start": 8483.62, + "end": 8485.55, + "probability": 0.9325 + }, + { + "start": 8486.64, + "end": 8488.11, + "probability": 0.9084 + }, + { + "start": 8488.78, + "end": 8489.88, + "probability": 0.8903 + }, + { + "start": 8490.32, + "end": 8494.72, + "probability": 0.7483 + }, + { + "start": 8494.84, + "end": 8496.62, + "probability": 0.6254 + }, + { + "start": 8497.04, + "end": 8500.5, + "probability": 0.9272 + }, + { + "start": 8500.84, + "end": 8504.62, + "probability": 0.7185 + }, + { + "start": 8505.08, + "end": 8506.72, + "probability": 0.677 + }, + { + "start": 8506.82, + "end": 8507.5, + "probability": 0.7449 + }, + { + "start": 8507.52, + "end": 8509.6, + "probability": 0.9664 + }, + { + "start": 8509.96, + "end": 8513.0, + "probability": 0.9937 + }, + { + "start": 8513.2, + "end": 8513.7, + "probability": 0.7774 + }, + { + "start": 8513.7, + "end": 8513.82, + "probability": 0.7389 + }, + { + "start": 8514.94, + "end": 8516.24, + "probability": 0.9338 + }, + { + "start": 8516.74, + "end": 8518.8, + "probability": 0.8208 + }, + { + "start": 8518.92, + "end": 8519.62, + "probability": 0.945 + }, + { + "start": 8520.52, + "end": 8524.08, + "probability": 0.9892 + }, + { + "start": 8524.08, + "end": 8528.62, + "probability": 0.7794 + }, + { + "start": 8529.46, + "end": 8535.82, + "probability": 0.7747 + }, + { + "start": 8540.66, + "end": 8541.04, + "probability": 0.6115 + }, + { + "start": 8561.8, + "end": 8566.42, + "probability": 0.5748 + }, + { + "start": 8567.04, + "end": 8569.6, + "probability": 0.9283 + }, + { + "start": 8570.36, + "end": 8575.19, + "probability": 0.8163 + }, + { + "start": 8576.54, + "end": 8579.7, + "probability": 0.4175 + }, + { + "start": 8587.88, + "end": 8589.04, + "probability": 0.0533 + }, + { + "start": 8589.04, + "end": 8589.4, + "probability": 0.1358 + }, + { + "start": 8590.04, + "end": 8590.2, + "probability": 0.8843 + }, + { + "start": 8594.16, + "end": 8597.57, + "probability": 0.096 + }, + { + "start": 8607.22, + "end": 8610.55, + "probability": 0.0367 + }, + { + "start": 8618.72, + "end": 8623.7, + "probability": 0.3976 + }, + { + "start": 8624.3, + "end": 8625.58, + "probability": 0.4953 + }, + { + "start": 8626.86, + "end": 8629.5, + "probability": 0.1305 + }, + { + "start": 8629.5, + "end": 8629.96, + "probability": 0.1281 + }, + { + "start": 8629.96, + "end": 8629.96, + "probability": 0.1314 + }, + { + "start": 8629.96, + "end": 8629.96, + "probability": 0.1617 + }, + { + "start": 8629.96, + "end": 8629.96, + "probability": 0.0924 + }, + { + "start": 8629.96, + "end": 8629.98, + "probability": 0.0584 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.0, + "end": 8630.0, + "probability": 0.0 + }, + { + "start": 8630.26, + "end": 8630.36, + "probability": 0.2831 + }, + { + "start": 8632.18, + "end": 8632.82, + "probability": 0.6153 + }, + { + "start": 8636.54, + "end": 8639.52, + "probability": 0.823 + }, + { + "start": 8644.54, + "end": 8645.76, + "probability": 0.5731 + }, + { + "start": 8646.38, + "end": 8648.37, + "probability": 0.9782 + }, + { + "start": 8649.26, + "end": 8650.14, + "probability": 0.9351 + }, + { + "start": 8651.26, + "end": 8651.76, + "probability": 0.9813 + }, + { + "start": 8651.88, + "end": 8652.44, + "probability": 0.9563 + }, + { + "start": 8652.54, + "end": 8654.34, + "probability": 0.9725 + }, + { + "start": 8654.48, + "end": 8655.36, + "probability": 0.9786 + }, + { + "start": 8656.92, + "end": 8658.69, + "probability": 0.9929 + }, + { + "start": 8659.1, + "end": 8660.12, + "probability": 0.9839 + }, + { + "start": 8661.5, + "end": 8662.86, + "probability": 0.8069 + }, + { + "start": 8664.32, + "end": 8667.6, + "probability": 0.9756 + }, + { + "start": 8667.66, + "end": 8668.34, + "probability": 0.9678 + }, + { + "start": 8669.7, + "end": 8671.1, + "probability": 0.7028 + }, + { + "start": 8672.52, + "end": 8674.46, + "probability": 0.9773 + }, + { + "start": 8675.3, + "end": 8677.44, + "probability": 0.9571 + }, + { + "start": 8678.32, + "end": 8679.2, + "probability": 0.6421 + }, + { + "start": 8679.94, + "end": 8681.36, + "probability": 0.6516 + }, + { + "start": 8681.92, + "end": 8682.42, + "probability": 0.8247 + }, + { + "start": 8683.14, + "end": 8683.82, + "probability": 0.9954 + }, + { + "start": 8684.34, + "end": 8685.76, + "probability": 0.5543 + }, + { + "start": 8685.78, + "end": 8689.3, + "probability": 0.7114 + }, + { + "start": 8689.38, + "end": 8692.06, + "probability": 0.8466 + }, + { + "start": 8693.32, + "end": 8698.12, + "probability": 0.6546 + }, + { + "start": 8698.12, + "end": 8699.52, + "probability": 0.298 + }, + { + "start": 8699.92, + "end": 8700.76, + "probability": 0.8997 + }, + { + "start": 8701.0, + "end": 8703.76, + "probability": 0.812 + }, + { + "start": 8703.82, + "end": 8705.74, + "probability": 0.9539 + }, + { + "start": 8705.84, + "end": 8708.08, + "probability": 0.734 + }, + { + "start": 8708.08, + "end": 8708.22, + "probability": 0.5417 + }, + { + "start": 8708.22, + "end": 8710.74, + "probability": 0.9391 + }, + { + "start": 8710.84, + "end": 8712.62, + "probability": 0.5659 + }, + { + "start": 8712.72, + "end": 8713.46, + "probability": 0.0192 + }, + { + "start": 8713.46, + "end": 8716.26, + "probability": 0.8405 + }, + { + "start": 8716.26, + "end": 8717.11, + "probability": 0.9175 + }, + { + "start": 8717.42, + "end": 8718.93, + "probability": 0.9768 + }, + { + "start": 8719.12, + "end": 8719.52, + "probability": 0.7569 + }, + { + "start": 8719.64, + "end": 8723.78, + "probability": 0.0579 + }, + { + "start": 8724.04, + "end": 8724.04, + "probability": 0.0415 + }, + { + "start": 8724.04, + "end": 8724.04, + "probability": 0.0771 + }, + { + "start": 8724.04, + "end": 8724.36, + "probability": 0.259 + }, + { + "start": 8724.36, + "end": 8724.86, + "probability": 0.6595 + }, + { + "start": 8724.92, + "end": 8730.06, + "probability": 0.9384 + }, + { + "start": 8730.62, + "end": 8731.72, + "probability": 0.4952 + }, + { + "start": 8731.84, + "end": 8734.62, + "probability": 0.2064 + }, + { + "start": 8735.18, + "end": 8735.2, + "probability": 0.1994 + }, + { + "start": 8735.2, + "end": 8735.9, + "probability": 0.5633 + }, + { + "start": 8736.3, + "end": 8738.7, + "probability": 0.7705 + }, + { + "start": 8738.8, + "end": 8740.16, + "probability": 0.8965 + }, + { + "start": 8740.32, + "end": 8741.94, + "probability": 0.7371 + }, + { + "start": 8742.0, + "end": 8742.28, + "probability": 0.3613 + }, + { + "start": 8743.56, + "end": 8745.0, + "probability": 0.6304 + }, + { + "start": 8745.46, + "end": 8746.6, + "probability": 0.6973 + }, + { + "start": 8746.74, + "end": 8747.24, + "probability": 0.3723 + }, + { + "start": 8747.36, + "end": 8748.28, + "probability": 0.6344 + }, + { + "start": 8750.28, + "end": 8751.26, + "probability": 0.4194 + }, + { + "start": 8751.28, + "end": 8751.34, + "probability": 0.4227 + }, + { + "start": 8751.4, + "end": 8752.62, + "probability": 0.4155 + }, + { + "start": 8752.7, + "end": 8754.7, + "probability": 0.9149 + }, + { + "start": 8754.7, + "end": 8755.82, + "probability": 0.3539 + }, + { + "start": 8755.88, + "end": 8758.7, + "probability": 0.9268 + }, + { + "start": 8758.8, + "end": 8761.28, + "probability": 0.6965 + }, + { + "start": 8761.48, + "end": 8761.54, + "probability": 0.0918 + }, + { + "start": 8761.54, + "end": 8762.0, + "probability": 0.3024 + }, + { + "start": 8762.04, + "end": 8762.4, + "probability": 0.7716 + }, + { + "start": 8762.48, + "end": 8766.0, + "probability": 0.7736 + }, + { + "start": 8766.36, + "end": 8767.14, + "probability": 0.7534 + }, + { + "start": 8767.3, + "end": 8767.96, + "probability": 0.8894 + }, + { + "start": 8768.62, + "end": 8772.6, + "probability": 0.9959 + }, + { + "start": 8772.8, + "end": 8772.8, + "probability": 0.2367 + }, + { + "start": 8772.8, + "end": 8772.8, + "probability": 0.0761 + }, + { + "start": 8772.8, + "end": 8772.8, + "probability": 0.0248 + }, + { + "start": 8772.8, + "end": 8773.32, + "probability": 0.499 + }, + { + "start": 8773.4, + "end": 8776.46, + "probability": 0.9751 + }, + { + "start": 8776.46, + "end": 8780.43, + "probability": 0.9796 + }, + { + "start": 8782.06, + "end": 8783.46, + "probability": 0.9597 + }, + { + "start": 8784.26, + "end": 8788.1, + "probability": 0.7916 + }, + { + "start": 8788.98, + "end": 8793.54, + "probability": 0.984 + }, + { + "start": 8793.7, + "end": 8795.72, + "probability": 0.1752 + }, + { + "start": 8796.16, + "end": 8799.48, + "probability": 0.9306 + }, + { + "start": 8799.48, + "end": 8805.32, + "probability": 0.9094 + }, + { + "start": 8806.42, + "end": 8811.76, + "probability": 0.9855 + }, + { + "start": 8811.76, + "end": 8815.6, + "probability": 0.9897 + }, + { + "start": 8816.48, + "end": 8820.3, + "probability": 0.9734 + }, + { + "start": 8820.3, + "end": 8823.68, + "probability": 0.9988 + }, + { + "start": 8824.48, + "end": 8826.62, + "probability": 0.9753 + }, + { + "start": 8826.62, + "end": 8827.88, + "probability": 0.7473 + }, + { + "start": 8828.28, + "end": 8833.32, + "probability": 0.9783 + }, + { + "start": 8833.38, + "end": 8835.1, + "probability": 0.7219 + }, + { + "start": 8835.3, + "end": 8835.9, + "probability": 0.8318 + }, + { + "start": 8838.4, + "end": 8840.52, + "probability": 0.6292 + }, + { + "start": 8840.78, + "end": 8841.38, + "probability": 0.5987 + }, + { + "start": 8841.62, + "end": 8843.28, + "probability": 0.8651 + }, + { + "start": 8843.74, + "end": 8844.96, + "probability": 0.864 + }, + { + "start": 8846.58, + "end": 8848.26, + "probability": 0.4534 + }, + { + "start": 8848.32, + "end": 8849.96, + "probability": 0.9283 + }, + { + "start": 8850.9, + "end": 8853.28, + "probability": 0.6036 + }, + { + "start": 8855.78, + "end": 8857.66, + "probability": 0.804 + }, + { + "start": 8859.4, + "end": 8861.42, + "probability": 0.6923 + }, + { + "start": 8861.66, + "end": 8861.88, + "probability": 0.8107 + }, + { + "start": 8875.68, + "end": 8878.1, + "probability": 0.9878 + }, + { + "start": 8879.12, + "end": 8881.8, + "probability": 0.9901 + }, + { + "start": 8882.5, + "end": 8888.52, + "probability": 0.9788 + }, + { + "start": 8889.1, + "end": 8890.48, + "probability": 0.9922 + }, + { + "start": 8891.12, + "end": 8892.58, + "probability": 0.9951 + }, + { + "start": 8892.68, + "end": 8895.04, + "probability": 0.9992 + }, + { + "start": 8895.5, + "end": 8898.74, + "probability": 0.9888 + }, + { + "start": 8899.38, + "end": 8902.3, + "probability": 0.8567 + }, + { + "start": 8902.84, + "end": 8904.88, + "probability": 0.7886 + }, + { + "start": 8905.52, + "end": 8908.48, + "probability": 0.9684 + }, + { + "start": 8909.72, + "end": 8914.52, + "probability": 0.9858 + }, + { + "start": 8914.72, + "end": 8916.64, + "probability": 0.7981 + }, + { + "start": 8917.48, + "end": 8918.82, + "probability": 0.9395 + }, + { + "start": 8919.54, + "end": 8920.9, + "probability": 0.8538 + }, + { + "start": 8921.04, + "end": 8923.52, + "probability": 0.8597 + }, + { + "start": 8924.64, + "end": 8929.04, + "probability": 0.9996 + }, + { + "start": 8929.96, + "end": 8931.49, + "probability": 0.8984 + }, + { + "start": 8932.42, + "end": 8933.54, + "probability": 0.9907 + }, + { + "start": 8934.3, + "end": 8934.92, + "probability": 0.714 + }, + { + "start": 8935.48, + "end": 8937.25, + "probability": 0.9957 + }, + { + "start": 8937.46, + "end": 8938.97, + "probability": 0.9291 + }, + { + "start": 8940.0, + "end": 8940.62, + "probability": 0.8228 + }, + { + "start": 8941.48, + "end": 8943.22, + "probability": 0.9545 + }, + { + "start": 8943.42, + "end": 8943.82, + "probability": 0.8169 + }, + { + "start": 8943.88, + "end": 8944.56, + "probability": 0.9462 + }, + { + "start": 8944.86, + "end": 8945.65, + "probability": 0.9523 + }, + { + "start": 8946.54, + "end": 8947.8, + "probability": 0.675 + }, + { + "start": 8947.94, + "end": 8949.02, + "probability": 0.7148 + }, + { + "start": 8949.86, + "end": 8954.44, + "probability": 0.9038 + }, + { + "start": 8954.98, + "end": 8958.62, + "probability": 0.8691 + }, + { + "start": 8959.56, + "end": 8960.78, + "probability": 0.9217 + }, + { + "start": 8960.86, + "end": 8964.14, + "probability": 0.9982 + }, + { + "start": 8964.68, + "end": 8965.98, + "probability": 0.9927 + }, + { + "start": 8966.62, + "end": 8967.88, + "probability": 0.9781 + }, + { + "start": 8968.56, + "end": 8971.24, + "probability": 0.9901 + }, + { + "start": 8971.24, + "end": 8975.1, + "probability": 0.9253 + }, + { + "start": 8975.74, + "end": 8977.74, + "probability": 0.9854 + }, + { + "start": 8978.62, + "end": 8979.84, + "probability": 0.9954 + }, + { + "start": 8980.28, + "end": 8981.58, + "probability": 0.986 + }, + { + "start": 8981.94, + "end": 8983.08, + "probability": 0.9951 + }, + { + "start": 8983.76, + "end": 8986.18, + "probability": 0.9653 + }, + { + "start": 8986.58, + "end": 8990.06, + "probability": 0.9962 + }, + { + "start": 8990.24, + "end": 8991.74, + "probability": 0.7177 + }, + { + "start": 8992.52, + "end": 8995.12, + "probability": 0.9919 + }, + { + "start": 8995.98, + "end": 8998.64, + "probability": 0.9946 + }, + { + "start": 8999.28, + "end": 9001.9, + "probability": 0.9937 + }, + { + "start": 9002.48, + "end": 9002.94, + "probability": 0.8439 + }, + { + "start": 9003.68, + "end": 9004.23, + "probability": 0.9746 + }, + { + "start": 9005.16, + "end": 9005.56, + "probability": 0.9283 + }, + { + "start": 9005.78, + "end": 9007.48, + "probability": 0.9966 + }, + { + "start": 9007.7, + "end": 9011.94, + "probability": 0.9841 + }, + { + "start": 9012.58, + "end": 9015.0, + "probability": 0.9893 + }, + { + "start": 9015.92, + "end": 9018.09, + "probability": 0.9935 + }, + { + "start": 9018.68, + "end": 9018.96, + "probability": 0.5494 + }, + { + "start": 9018.98, + "end": 9021.66, + "probability": 0.8247 + }, + { + "start": 9022.36, + "end": 9025.0, + "probability": 0.9832 + }, + { + "start": 9025.1, + "end": 9025.46, + "probability": 0.7281 + }, + { + "start": 9026.14, + "end": 9030.48, + "probability": 0.9917 + }, + { + "start": 9031.08, + "end": 9033.36, + "probability": 0.9971 + }, + { + "start": 9033.46, + "end": 9034.48, + "probability": 0.9603 + }, + { + "start": 9035.08, + "end": 9037.8, + "probability": 0.878 + }, + { + "start": 9037.96, + "end": 9038.56, + "probability": 0.8047 + }, + { + "start": 9038.62, + "end": 9039.26, + "probability": 0.9564 + }, + { + "start": 9040.3, + "end": 9044.08, + "probability": 0.9969 + }, + { + "start": 9044.8, + "end": 9046.45, + "probability": 0.9746 + }, + { + "start": 9046.9, + "end": 9047.67, + "probability": 0.9044 + }, + { + "start": 9048.72, + "end": 9050.02, + "probability": 0.9465 + }, + { + "start": 9050.2, + "end": 9051.68, + "probability": 0.7549 + }, + { + "start": 9052.08, + "end": 9052.42, + "probability": 0.3655 + }, + { + "start": 9052.52, + "end": 9054.24, + "probability": 0.9724 + }, + { + "start": 9054.7, + "end": 9057.12, + "probability": 0.9562 + }, + { + "start": 9057.58, + "end": 9059.0, + "probability": 0.7709 + }, + { + "start": 9059.86, + "end": 9060.94, + "probability": 0.6726 + }, + { + "start": 9060.94, + "end": 9061.46, + "probability": 0.7274 + }, + { + "start": 9062.18, + "end": 9065.62, + "probability": 0.9734 + }, + { + "start": 9066.04, + "end": 9067.82, + "probability": 0.9665 + }, + { + "start": 9068.64, + "end": 9071.0, + "probability": 0.875 + }, + { + "start": 9071.46, + "end": 9072.04, + "probability": 0.438 + }, + { + "start": 9072.06, + "end": 9078.52, + "probability": 0.9641 + }, + { + "start": 9078.66, + "end": 9080.42, + "probability": 0.9803 + }, + { + "start": 9080.66, + "end": 9081.14, + "probability": 0.7797 + }, + { + "start": 9082.14, + "end": 9083.62, + "probability": 0.0887 + }, + { + "start": 9090.04, + "end": 9090.98, + "probability": 0.3448 + }, + { + "start": 9090.98, + "end": 9090.98, + "probability": 0.2455 + }, + { + "start": 9090.98, + "end": 9090.98, + "probability": 0.3571 + }, + { + "start": 9090.98, + "end": 9090.98, + "probability": 0.2483 + }, + { + "start": 9090.98, + "end": 9091.51, + "probability": 0.3939 + }, + { + "start": 9092.3, + "end": 9093.12, + "probability": 0.4043 + }, + { + "start": 9093.88, + "end": 9095.0, + "probability": 0.5899 + }, + { + "start": 9095.64, + "end": 9096.0, + "probability": 0.765 + }, + { + "start": 9110.38, + "end": 9111.6, + "probability": 0.8169 + }, + { + "start": 9113.12, + "end": 9115.14, + "probability": 0.6866 + }, + { + "start": 9116.26, + "end": 9117.18, + "probability": 0.9121 + }, + { + "start": 9118.14, + "end": 9122.36, + "probability": 0.9772 + }, + { + "start": 9122.92, + "end": 9123.4, + "probability": 0.9275 + }, + { + "start": 9124.14, + "end": 9125.19, + "probability": 0.9717 + }, + { + "start": 9125.38, + "end": 9129.06, + "probability": 0.9536 + }, + { + "start": 9130.44, + "end": 9134.84, + "probability": 0.9973 + }, + { + "start": 9135.36, + "end": 9139.38, + "probability": 0.9961 + }, + { + "start": 9140.34, + "end": 9143.34, + "probability": 0.9735 + }, + { + "start": 9143.38, + "end": 9144.82, + "probability": 0.9875 + }, + { + "start": 9145.22, + "end": 9146.34, + "probability": 0.9771 + }, + { + "start": 9147.12, + "end": 9151.54, + "probability": 0.9951 + }, + { + "start": 9151.6, + "end": 9156.22, + "probability": 0.9899 + }, + { + "start": 9157.52, + "end": 9159.74, + "probability": 0.998 + }, + { + "start": 9160.82, + "end": 9162.96, + "probability": 0.9606 + }, + { + "start": 9163.5, + "end": 9165.54, + "probability": 0.9759 + }, + { + "start": 9166.8, + "end": 9168.0, + "probability": 0.4843 + }, + { + "start": 9168.56, + "end": 9170.3, + "probability": 0.6669 + }, + { + "start": 9170.9, + "end": 9174.88, + "probability": 0.9653 + }, + { + "start": 9175.3, + "end": 9177.64, + "probability": 0.9446 + }, + { + "start": 9178.38, + "end": 9181.68, + "probability": 0.995 + }, + { + "start": 9182.36, + "end": 9186.88, + "probability": 0.9714 + }, + { + "start": 9187.94, + "end": 9191.82, + "probability": 0.9852 + }, + { + "start": 9192.44, + "end": 9193.92, + "probability": 0.9526 + }, + { + "start": 9194.96, + "end": 9197.54, + "probability": 0.947 + }, + { + "start": 9198.06, + "end": 9202.04, + "probability": 0.9932 + }, + { + "start": 9202.7, + "end": 9205.58, + "probability": 0.9843 + }, + { + "start": 9206.1, + "end": 9206.36, + "probability": 0.4437 + }, + { + "start": 9206.56, + "end": 9207.76, + "probability": 0.8757 + }, + { + "start": 9207.86, + "end": 9212.94, + "probability": 0.9663 + }, + { + "start": 9213.42, + "end": 9215.78, + "probability": 0.9963 + }, + { + "start": 9216.28, + "end": 9218.8, + "probability": 0.9241 + }, + { + "start": 9219.62, + "end": 9220.8, + "probability": 0.9846 + }, + { + "start": 9222.32, + "end": 9226.94, + "probability": 0.996 + }, + { + "start": 9227.7, + "end": 9230.86, + "probability": 0.9891 + }, + { + "start": 9231.18, + "end": 9235.08, + "probability": 0.9458 + }, + { + "start": 9235.96, + "end": 9239.46, + "probability": 0.9988 + }, + { + "start": 9239.46, + "end": 9245.2, + "probability": 0.9823 + }, + { + "start": 9246.44, + "end": 9248.78, + "probability": 0.8368 + }, + { + "start": 9249.62, + "end": 9252.88, + "probability": 0.9941 + }, + { + "start": 9254.06, + "end": 9255.22, + "probability": 0.8642 + }, + { + "start": 9255.74, + "end": 9257.94, + "probability": 0.9839 + }, + { + "start": 9258.64, + "end": 9260.36, + "probability": 0.8566 + }, + { + "start": 9261.3, + "end": 9264.48, + "probability": 0.9926 + }, + { + "start": 9265.16, + "end": 9266.86, + "probability": 0.9332 + }, + { + "start": 9267.54, + "end": 9269.52, + "probability": 0.9783 + }, + { + "start": 9270.32, + "end": 9272.02, + "probability": 0.9968 + }, + { + "start": 9272.08, + "end": 9274.51, + "probability": 0.9858 + }, + { + "start": 9275.3, + "end": 9279.22, + "probability": 0.9951 + }, + { + "start": 9280.1, + "end": 9285.24, + "probability": 0.9632 + }, + { + "start": 9285.84, + "end": 9288.8, + "probability": 0.998 + }, + { + "start": 9290.12, + "end": 9292.46, + "probability": 0.897 + }, + { + "start": 9292.84, + "end": 9295.02, + "probability": 0.9275 + }, + { + "start": 9295.52, + "end": 9298.18, + "probability": 0.9944 + }, + { + "start": 9298.32, + "end": 9298.74, + "probability": 0.7534 + }, + { + "start": 9299.9, + "end": 9300.54, + "probability": 0.778 + }, + { + "start": 9301.52, + "end": 9302.7, + "probability": 0.9389 + }, + { + "start": 9305.14, + "end": 9306.02, + "probability": 0.6198 + }, + { + "start": 9306.42, + "end": 9307.62, + "probability": 0.8448 + }, + { + "start": 9325.52, + "end": 9326.22, + "probability": 0.4791 + }, + { + "start": 9326.22, + "end": 9327.06, + "probability": 0.7028 + }, + { + "start": 9328.36, + "end": 9329.0, + "probability": 0.8034 + }, + { + "start": 9329.92, + "end": 9332.08, + "probability": 0.9928 + }, + { + "start": 9332.74, + "end": 9333.2, + "probability": 0.767 + }, + { + "start": 9333.38, + "end": 9334.38, + "probability": 0.6695 + }, + { + "start": 9335.2, + "end": 9336.3, + "probability": 0.9958 + }, + { + "start": 9337.77, + "end": 9338.68, + "probability": 0.1518 + }, + { + "start": 9338.68, + "end": 9341.84, + "probability": 0.8637 + }, + { + "start": 9342.4, + "end": 9343.38, + "probability": 0.9539 + }, + { + "start": 9344.04, + "end": 9345.66, + "probability": 0.9848 + }, + { + "start": 9347.06, + "end": 9347.6, + "probability": 0.9401 + }, + { + "start": 9347.62, + "end": 9352.68, + "probability": 0.9947 + }, + { + "start": 9353.36, + "end": 9357.22, + "probability": 0.9987 + }, + { + "start": 9358.18, + "end": 9360.03, + "probability": 0.9959 + }, + { + "start": 9360.22, + "end": 9362.41, + "probability": 0.9902 + }, + { + "start": 9363.84, + "end": 9367.12, + "probability": 0.999 + }, + { + "start": 9368.1, + "end": 9369.7, + "probability": 0.9973 + }, + { + "start": 9370.36, + "end": 9372.62, + "probability": 0.9971 + }, + { + "start": 9373.4, + "end": 9379.66, + "probability": 0.9531 + }, + { + "start": 9379.66, + "end": 9383.8, + "probability": 0.9979 + }, + { + "start": 9384.84, + "end": 9385.56, + "probability": 0.7026 + }, + { + "start": 9386.38, + "end": 9387.62, + "probability": 0.9827 + }, + { + "start": 9388.22, + "end": 9389.8, + "probability": 0.9449 + }, + { + "start": 9390.1, + "end": 9391.82, + "probability": 0.9451 + }, + { + "start": 9393.4, + "end": 9397.6, + "probability": 0.9887 + }, + { + "start": 9399.36, + "end": 9402.24, + "probability": 0.9915 + }, + { + "start": 9404.32, + "end": 9407.64, + "probability": 0.9958 + }, + { + "start": 9407.72, + "end": 9408.3, + "probability": 0.9951 + }, + { + "start": 9409.04, + "end": 9409.86, + "probability": 0.9264 + }, + { + "start": 9410.6, + "end": 9412.98, + "probability": 0.9501 + }, + { + "start": 9413.52, + "end": 9417.44, + "probability": 0.9912 + }, + { + "start": 9417.88, + "end": 9420.3, + "probability": 0.6332 + }, + { + "start": 9420.3, + "end": 9423.82, + "probability": 0.8998 + }, + { + "start": 9424.58, + "end": 9426.12, + "probability": 0.958 + }, + { + "start": 9426.12, + "end": 9427.04, + "probability": 0.6414 + }, + { + "start": 9427.68, + "end": 9428.44, + "probability": 0.9961 + }, + { + "start": 9428.98, + "end": 9431.39, + "probability": 0.9728 + }, + { + "start": 9432.26, + "end": 9435.88, + "probability": 0.9941 + }, + { + "start": 9437.26, + "end": 9438.62, + "probability": 0.9839 + }, + { + "start": 9439.24, + "end": 9441.88, + "probability": 0.7911 + }, + { + "start": 9442.66, + "end": 9445.38, + "probability": 0.873 + }, + { + "start": 9446.34, + "end": 9449.22, + "probability": 0.7264 + }, + { + "start": 9449.28, + "end": 9449.82, + "probability": 0.8368 + }, + { + "start": 9449.88, + "end": 9450.7, + "probability": 0.8416 + }, + { + "start": 9450.74, + "end": 9451.04, + "probability": 0.9086 + }, + { + "start": 9451.1, + "end": 9451.8, + "probability": 0.832 + }, + { + "start": 9451.9, + "end": 9453.38, + "probability": 0.9373 + }, + { + "start": 9453.7, + "end": 9457.04, + "probability": 0.9852 + }, + { + "start": 9457.12, + "end": 9459.72, + "probability": 0.9866 + }, + { + "start": 9459.82, + "end": 9460.82, + "probability": 0.9927 + }, + { + "start": 9461.16, + "end": 9462.94, + "probability": 0.8959 + }, + { + "start": 9463.14, + "end": 9463.76, + "probability": 0.2042 + }, + { + "start": 9463.88, + "end": 9466.36, + "probability": 0.5813 + }, + { + "start": 9466.46, + "end": 9468.46, + "probability": 0.7278 + }, + { + "start": 9468.52, + "end": 9470.36, + "probability": 0.8479 + }, + { + "start": 9470.44, + "end": 9471.5, + "probability": 0.8675 + }, + { + "start": 9471.6, + "end": 9471.74, + "probability": 0.2981 + }, + { + "start": 9471.74, + "end": 9472.14, + "probability": 0.2406 + }, + { + "start": 9472.32, + "end": 9474.4, + "probability": 0.4253 + }, + { + "start": 9474.4, + "end": 9478.08, + "probability": 0.6818 + }, + { + "start": 9478.18, + "end": 9479.22, + "probability": 0.1417 + }, + { + "start": 9479.22, + "end": 9479.32, + "probability": 0.0102 + }, + { + "start": 9479.32, + "end": 9479.44, + "probability": 0.1079 + }, + { + "start": 9479.44, + "end": 9479.44, + "probability": 0.0293 + }, + { + "start": 9479.44, + "end": 9479.5, + "probability": 0.0302 + }, + { + "start": 9479.68, + "end": 9479.68, + "probability": 0.0268 + }, + { + "start": 9479.68, + "end": 9479.68, + "probability": 0.1686 + }, + { + "start": 9479.68, + "end": 9480.7, + "probability": 0.7363 + }, + { + "start": 9480.82, + "end": 9485.14, + "probability": 0.7227 + }, + { + "start": 9485.24, + "end": 9487.7, + "probability": 0.9963 + }, + { + "start": 9487.7, + "end": 9489.22, + "probability": 0.9673 + }, + { + "start": 9489.6, + "end": 9490.76, + "probability": 0.9468 + }, + { + "start": 9491.14, + "end": 9493.46, + "probability": 0.9958 + }, + { + "start": 9493.52, + "end": 9495.4, + "probability": 0.9829 + }, + { + "start": 9495.96, + "end": 9498.08, + "probability": 0.9677 + }, + { + "start": 9498.44, + "end": 9499.46, + "probability": 0.7398 + }, + { + "start": 9499.46, + "end": 9499.76, + "probability": 0.2753 + }, + { + "start": 9499.82, + "end": 9501.9, + "probability": 0.3343 + }, + { + "start": 9501.98, + "end": 9502.9, + "probability": 0.6163 + }, + { + "start": 9503.26, + "end": 9505.18, + "probability": 0.5192 + }, + { + "start": 9505.18, + "end": 9505.38, + "probability": 0.1455 + }, + { + "start": 9509.4, + "end": 9513.26, + "probability": 0.17 + }, + { + "start": 9540.66, + "end": 9542.62, + "probability": 0.482 + }, + { + "start": 9543.24, + "end": 9544.94, + "probability": 0.8721 + }, + { + "start": 9545.58, + "end": 9548.32, + "probability": 0.9294 + }, + { + "start": 9548.92, + "end": 9550.02, + "probability": 0.8271 + }, + { + "start": 9550.24, + "end": 9551.16, + "probability": 0.9183 + }, + { + "start": 9551.28, + "end": 9552.0, + "probability": 0.9962 + }, + { + "start": 9552.46, + "end": 9553.08, + "probability": 0.8772 + }, + { + "start": 9553.14, + "end": 9554.12, + "probability": 0.9241 + }, + { + "start": 9554.18, + "end": 9554.98, + "probability": 0.6113 + }, + { + "start": 9555.2, + "end": 9555.86, + "probability": 0.783 + }, + { + "start": 9555.94, + "end": 9556.56, + "probability": 0.9819 + }, + { + "start": 9557.14, + "end": 9557.76, + "probability": 0.9343 + }, + { + "start": 9557.98, + "end": 9558.5, + "probability": 0.9673 + }, + { + "start": 9558.68, + "end": 9559.22, + "probability": 0.5697 + }, + { + "start": 9559.36, + "end": 9560.36, + "probability": 0.8631 + }, + { + "start": 9560.5, + "end": 9560.76, + "probability": 0.7646 + }, + { + "start": 9560.98, + "end": 9561.42, + "probability": 0.9921 + }, + { + "start": 9561.5, + "end": 9562.04, + "probability": 0.9925 + }, + { + "start": 9562.44, + "end": 9562.9, + "probability": 0.967 + }, + { + "start": 9563.16, + "end": 9563.58, + "probability": 0.8517 + }, + { + "start": 9563.96, + "end": 9564.52, + "probability": 0.9758 + }, + { + "start": 9565.02, + "end": 9565.74, + "probability": 0.9471 + }, + { + "start": 9566.44, + "end": 9567.32, + "probability": 0.9921 + }, + { + "start": 9567.38, + "end": 9567.94, + "probability": 0.8551 + }, + { + "start": 9568.0, + "end": 9569.0, + "probability": 0.9916 + }, + { + "start": 9569.0, + "end": 9569.96, + "probability": 0.9598 + }, + { + "start": 9570.06, + "end": 9570.76, + "probability": 0.9261 + }, + { + "start": 9570.8, + "end": 9571.86, + "probability": 0.976 + }, + { + "start": 9572.28, + "end": 9573.4, + "probability": 0.6701 + }, + { + "start": 9574.44, + "end": 9580.36, + "probability": 0.9972 + }, + { + "start": 9580.56, + "end": 9587.68, + "probability": 0.9961 + }, + { + "start": 9588.26, + "end": 9591.2, + "probability": 0.9845 + }, + { + "start": 9591.84, + "end": 9594.4, + "probability": 0.954 + }, + { + "start": 9594.94, + "end": 9598.72, + "probability": 0.9263 + }, + { + "start": 9599.22, + "end": 9601.26, + "probability": 0.9364 + }, + { + "start": 9601.92, + "end": 9604.4, + "probability": 0.9956 + }, + { + "start": 9604.74, + "end": 9606.5, + "probability": 0.8614 + }, + { + "start": 9607.1, + "end": 9612.24, + "probability": 0.9694 + }, + { + "start": 9612.88, + "end": 9618.1, + "probability": 0.9937 + }, + { + "start": 9619.06, + "end": 9622.64, + "probability": 0.9956 + }, + { + "start": 9623.2, + "end": 9625.48, + "probability": 0.9871 + }, + { + "start": 9626.18, + "end": 9627.42, + "probability": 0.8343 + }, + { + "start": 9628.28, + "end": 9629.54, + "probability": 0.8122 + }, + { + "start": 9630.04, + "end": 9630.96, + "probability": 0.9363 + }, + { + "start": 9631.02, + "end": 9632.98, + "probability": 0.9756 + }, + { + "start": 9633.32, + "end": 9634.66, + "probability": 0.9912 + }, + { + "start": 9634.8, + "end": 9635.6, + "probability": 0.5867 + }, + { + "start": 9636.04, + "end": 9637.78, + "probability": 0.9015 + }, + { + "start": 9637.82, + "end": 9640.18, + "probability": 0.9107 + }, + { + "start": 9640.84, + "end": 9643.1, + "probability": 0.9982 + }, + { + "start": 9643.22, + "end": 9647.78, + "probability": 0.9623 + }, + { + "start": 9648.3, + "end": 9650.92, + "probability": 0.9673 + }, + { + "start": 9651.36, + "end": 9656.04, + "probability": 0.9717 + }, + { + "start": 9656.76, + "end": 9658.16, + "probability": 0.9533 + }, + { + "start": 9658.5, + "end": 9660.0, + "probability": 0.8108 + }, + { + "start": 9660.48, + "end": 9663.12, + "probability": 0.9848 + }, + { + "start": 9663.22, + "end": 9664.92, + "probability": 0.9081 + }, + { + "start": 9665.36, + "end": 9668.28, + "probability": 0.9937 + }, + { + "start": 9669.14, + "end": 9671.12, + "probability": 0.9453 + }, + { + "start": 9671.2, + "end": 9675.86, + "probability": 0.9956 + }, + { + "start": 9676.5, + "end": 9677.65, + "probability": 0.5349 + }, + { + "start": 9678.24, + "end": 9680.06, + "probability": 0.7521 + }, + { + "start": 9681.1, + "end": 9682.74, + "probability": 0.9538 + }, + { + "start": 9683.2, + "end": 9684.36, + "probability": 0.9273 + }, + { + "start": 9684.58, + "end": 9688.74, + "probability": 0.9953 + }, + { + "start": 9689.34, + "end": 9694.22, + "probability": 0.9927 + }, + { + "start": 9694.22, + "end": 9699.74, + "probability": 0.9918 + }, + { + "start": 9700.22, + "end": 9702.96, + "probability": 0.9769 + }, + { + "start": 9703.02, + "end": 9704.54, + "probability": 0.9232 + }, + { + "start": 9705.12, + "end": 9706.25, + "probability": 0.9941 + }, + { + "start": 9706.7, + "end": 9709.42, + "probability": 0.9973 + }, + { + "start": 9709.42, + "end": 9713.9, + "probability": 0.9342 + }, + { + "start": 9714.54, + "end": 9716.26, + "probability": 0.8993 + }, + { + "start": 9716.38, + "end": 9719.18, + "probability": 0.9783 + }, + { + "start": 9719.68, + "end": 9722.06, + "probability": 0.9948 + }, + { + "start": 9722.58, + "end": 9723.52, + "probability": 0.8125 + }, + { + "start": 9723.92, + "end": 9724.42, + "probability": 0.6964 + }, + { + "start": 9724.9, + "end": 9726.98, + "probability": 0.8716 + }, + { + "start": 9727.64, + "end": 9731.06, + "probability": 0.8289 + }, + { + "start": 9731.5, + "end": 9736.54, + "probability": 0.9906 + }, + { + "start": 9737.22, + "end": 9742.22, + "probability": 0.9347 + }, + { + "start": 9742.7, + "end": 9745.9, + "probability": 0.9819 + }, + { + "start": 9746.02, + "end": 9748.84, + "probability": 0.9844 + }, + { + "start": 9749.12, + "end": 9749.48, + "probability": 0.7025 + }, + { + "start": 9749.94, + "end": 9751.1, + "probability": 0.6956 + }, + { + "start": 9751.24, + "end": 9751.34, + "probability": 0.5768 + }, + { + "start": 9752.38, + "end": 9755.46, + "probability": 0.9666 + }, + { + "start": 9755.62, + "end": 9756.06, + "probability": 0.8793 + }, + { + "start": 9756.06, + "end": 9757.9, + "probability": 0.9684 + }, + { + "start": 9758.58, + "end": 9759.5, + "probability": 0.9415 + }, + { + "start": 9760.26, + "end": 9761.02, + "probability": 0.9203 + }, + { + "start": 9761.16, + "end": 9765.44, + "probability": 0.9237 + }, + { + "start": 9765.44, + "end": 9769.28, + "probability": 0.9973 + }, + { + "start": 9769.8, + "end": 9771.3, + "probability": 0.8598 + }, + { + "start": 9771.36, + "end": 9772.64, + "probability": 0.8528 + }, + { + "start": 9773.0, + "end": 9774.12, + "probability": 0.9769 + }, + { + "start": 9774.6, + "end": 9777.7, + "probability": 0.9927 + }, + { + "start": 9778.18, + "end": 9779.3, + "probability": 0.9454 + }, + { + "start": 9780.26, + "end": 9780.8, + "probability": 0.7729 + }, + { + "start": 9781.94, + "end": 9783.62, + "probability": 0.9415 + }, + { + "start": 9810.08, + "end": 9811.9, + "probability": 0.6709 + }, + { + "start": 9812.88, + "end": 9814.2, + "probability": 0.8231 + }, + { + "start": 9816.14, + "end": 9818.16, + "probability": 0.9949 + }, + { + "start": 9818.22, + "end": 9819.0, + "probability": 0.689 + }, + { + "start": 9819.1, + "end": 9819.34, + "probability": 0.8486 + }, + { + "start": 9819.4, + "end": 9822.52, + "probability": 0.9862 + }, + { + "start": 9822.58, + "end": 9823.83, + "probability": 0.8336 + }, + { + "start": 9823.92, + "end": 9824.82, + "probability": 0.2784 + }, + { + "start": 9825.42, + "end": 9827.82, + "probability": 0.9728 + }, + { + "start": 9828.56, + "end": 9829.82, + "probability": 0.5457 + }, + { + "start": 9830.42, + "end": 9833.98, + "probability": 0.9554 + }, + { + "start": 9834.28, + "end": 9834.54, + "probability": 0.6113 + }, + { + "start": 9834.6, + "end": 9838.32, + "probability": 0.6019 + }, + { + "start": 9838.5, + "end": 9839.1, + "probability": 0.1971 + }, + { + "start": 9839.1, + "end": 9839.18, + "probability": 0.08 + }, + { + "start": 9839.18, + "end": 9839.18, + "probability": 0.3196 + }, + { + "start": 9839.18, + "end": 9841.48, + "probability": 0.6714 + }, + { + "start": 9841.96, + "end": 9843.44, + "probability": 0.8717 + }, + { + "start": 9843.48, + "end": 9844.52, + "probability": 0.9899 + }, + { + "start": 9845.54, + "end": 9847.16, + "probability": 0.9382 + }, + { + "start": 9847.18, + "end": 9847.58, + "probability": 0.2796 + }, + { + "start": 9847.6, + "end": 9849.36, + "probability": 0.8317 + }, + { + "start": 9849.94, + "end": 9852.12, + "probability": 0.7752 + }, + { + "start": 9852.28, + "end": 9853.16, + "probability": 0.8286 + }, + { + "start": 9853.98, + "end": 9856.0, + "probability": 0.9715 + }, + { + "start": 9856.48, + "end": 9857.62, + "probability": 0.9718 + }, + { + "start": 9857.72, + "end": 9858.12, + "probability": 0.9083 + }, + { + "start": 9858.2, + "end": 9861.1, + "probability": 0.7479 + }, + { + "start": 9861.58, + "end": 9861.9, + "probability": 0.5033 + }, + { + "start": 9862.0, + "end": 9864.04, + "probability": 0.8499 + }, + { + "start": 9864.94, + "end": 9867.32, + "probability": 0.7231 + }, + { + "start": 9867.38, + "end": 9868.8, + "probability": 0.8695 + }, + { + "start": 9868.86, + "end": 9869.74, + "probability": 0.9517 + }, + { + "start": 9869.82, + "end": 9870.04, + "probability": 0.5435 + }, + { + "start": 9870.72, + "end": 9870.82, + "probability": 0.3307 + }, + { + "start": 9871.14, + "end": 9871.42, + "probability": 0.5891 + }, + { + "start": 9871.46, + "end": 9871.92, + "probability": 0.6753 + }, + { + "start": 9872.08, + "end": 9872.54, + "probability": 0.7927 + }, + { + "start": 9872.92, + "end": 9874.02, + "probability": 0.9541 + }, + { + "start": 9874.1, + "end": 9875.16, + "probability": 0.8513 + }, + { + "start": 9876.0, + "end": 9877.74, + "probability": 0.6038 + }, + { + "start": 9877.8, + "end": 9880.16, + "probability": 0.6856 + }, + { + "start": 9880.24, + "end": 9881.2, + "probability": 0.894 + }, + { + "start": 9881.72, + "end": 9882.98, + "probability": 0.71 + }, + { + "start": 9883.1, + "end": 9883.9, + "probability": 0.6083 + }, + { + "start": 9884.0, + "end": 9885.02, + "probability": 0.7591 + }, + { + "start": 9885.1, + "end": 9885.59, + "probability": 0.7048 + }, + { + "start": 9886.32, + "end": 9886.58, + "probability": 0.4824 + }, + { + "start": 9886.7, + "end": 9888.56, + "probability": 0.8444 + }, + { + "start": 9889.16, + "end": 9892.18, + "probability": 0.9183 + }, + { + "start": 9892.58, + "end": 9893.82, + "probability": 0.6108 + }, + { + "start": 9893.82, + "end": 9894.54, + "probability": 0.5166 + }, + { + "start": 9894.56, + "end": 9895.28, + "probability": 0.6201 + }, + { + "start": 9895.32, + "end": 9896.32, + "probability": 0.8711 + }, + { + "start": 9896.82, + "end": 9898.44, + "probability": 0.8394 + }, + { + "start": 9898.6, + "end": 9900.4, + "probability": 0.9712 + }, + { + "start": 9900.86, + "end": 9901.69, + "probability": 0.8587 + }, + { + "start": 9901.94, + "end": 9903.3, + "probability": 0.7359 + }, + { + "start": 9903.6, + "end": 9904.52, + "probability": 0.9758 + }, + { + "start": 9905.42, + "end": 9906.62, + "probability": 0.9954 + }, + { + "start": 9906.98, + "end": 9907.68, + "probability": 0.543 + }, + { + "start": 9907.92, + "end": 9909.72, + "probability": 0.9432 + }, + { + "start": 9910.18, + "end": 9912.24, + "probability": 0.8208 + }, + { + "start": 9912.66, + "end": 9914.82, + "probability": 0.986 + }, + { + "start": 9915.18, + "end": 9915.9, + "probability": 0.8805 + }, + { + "start": 9915.92, + "end": 9916.28, + "probability": 0.9055 + }, + { + "start": 9917.1, + "end": 9918.91, + "probability": 0.9695 + }, + { + "start": 9919.04, + "end": 9921.34, + "probability": 0.9268 + }, + { + "start": 9921.34, + "end": 9924.3, + "probability": 0.9839 + }, + { + "start": 9925.0, + "end": 9926.44, + "probability": 0.5479 + }, + { + "start": 9926.48, + "end": 9927.14, + "probability": 0.9934 + }, + { + "start": 9927.24, + "end": 9928.86, + "probability": 0.8892 + }, + { + "start": 9928.94, + "end": 9929.78, + "probability": 0.8989 + }, + { + "start": 9929.84, + "end": 9931.98, + "probability": 0.9731 + }, + { + "start": 9932.66, + "end": 9933.78, + "probability": 0.9314 + }, + { + "start": 9934.16, + "end": 9934.24, + "probability": 0.3876 + }, + { + "start": 9934.34, + "end": 9935.68, + "probability": 0.5984 + }, + { + "start": 9936.14, + "end": 9936.92, + "probability": 0.8097 + }, + { + "start": 9937.02, + "end": 9939.07, + "probability": 0.988 + }, + { + "start": 9939.44, + "end": 9940.82, + "probability": 0.8606 + }, + { + "start": 9940.9, + "end": 9941.98, + "probability": 0.5283 + }, + { + "start": 9942.32, + "end": 9943.46, + "probability": 0.9734 + }, + { + "start": 9944.66, + "end": 9946.4, + "probability": 0.952 + }, + { + "start": 9946.4, + "end": 9947.24, + "probability": 0.3545 + }, + { + "start": 9948.2, + "end": 9948.64, + "probability": 0.5322 + }, + { + "start": 9948.76, + "end": 9949.48, + "probability": 0.9294 + }, + { + "start": 9949.56, + "end": 9950.88, + "probability": 0.7971 + }, + { + "start": 9951.0, + "end": 9951.34, + "probability": 0.5074 + }, + { + "start": 9951.44, + "end": 9951.54, + "probability": 0.9294 + }, + { + "start": 9952.48, + "end": 9953.61, + "probability": 0.6945 + }, + { + "start": 9953.8, + "end": 9954.72, + "probability": 0.5695 + }, + { + "start": 9954.8, + "end": 9955.62, + "probability": 0.9587 + }, + { + "start": 9956.28, + "end": 9958.52, + "probability": 0.9824 + }, + { + "start": 9959.64, + "end": 9960.62, + "probability": 0.8002 + }, + { + "start": 9960.86, + "end": 9963.0, + "probability": 0.5393 + }, + { + "start": 9963.08, + "end": 9964.18, + "probability": 0.492 + }, + { + "start": 9964.4, + "end": 9966.15, + "probability": 0.9539 + }, + { + "start": 9966.56, + "end": 9966.84, + "probability": 0.866 + }, + { + "start": 9966.84, + "end": 9969.54, + "probability": 0.7391 + }, + { + "start": 9969.86, + "end": 9972.46, + "probability": 0.8524 + }, + { + "start": 9973.32, + "end": 9974.72, + "probability": 0.6718 + }, + { + "start": 9974.76, + "end": 9976.62, + "probability": 0.5496 + }, + { + "start": 9977.28, + "end": 9978.22, + "probability": 0.8409 + }, + { + "start": 9978.22, + "end": 9979.38, + "probability": 0.8841 + }, + { + "start": 9980.4, + "end": 9981.94, + "probability": 0.6946 + }, + { + "start": 9981.94, + "end": 9984.1, + "probability": 0.9497 + }, + { + "start": 9984.78, + "end": 9986.62, + "probability": 0.879 + }, + { + "start": 9987.52, + "end": 9987.52, + "probability": 0.6602 + }, + { + "start": 9987.52, + "end": 9987.86, + "probability": 0.3723 + }, + { + "start": 9991.48, + "end": 9993.2, + "probability": 0.7069 + }, + { + "start": 9993.88, + "end": 9996.0, + "probability": 0.6837 + }, + { + "start": 9996.82, + "end": 9997.48, + "probability": 0.7742 + }, + { + "start": 9997.5, + "end": 9998.39, + "probability": 0.6055 + }, + { + "start": 9998.52, + "end": 9998.92, + "probability": 0.5787 + }, + { + "start": 9998.98, + "end": 10000.22, + "probability": 0.7311 + }, + { + "start": 10000.6, + "end": 10001.34, + "probability": 0.9176 + }, + { + "start": 10001.44, + "end": 10001.79, + "probability": 0.8034 + }, + { + "start": 10002.72, + "end": 10005.16, + "probability": 0.8167 + }, + { + "start": 10006.12, + "end": 10006.62, + "probability": 0.3448 + }, + { + "start": 10006.62, + "end": 10006.92, + "probability": 0.6371 + }, + { + "start": 10006.92, + "end": 10008.78, + "probability": 0.9023 + }, + { + "start": 10009.12, + "end": 10009.72, + "probability": 0.6812 + }, + { + "start": 10010.08, + "end": 10011.4, + "probability": 0.5215 + }, + { + "start": 10011.46, + "end": 10013.62, + "probability": 0.9427 + }, + { + "start": 10014.2, + "end": 10016.18, + "probability": 0.578 + }, + { + "start": 10016.34, + "end": 10018.28, + "probability": 0.6783 + }, + { + "start": 10019.14, + "end": 10019.84, + "probability": 0.7783 + }, + { + "start": 10020.06, + "end": 10021.36, + "probability": 0.6797 + }, + { + "start": 10021.44, + "end": 10022.28, + "probability": 0.9594 + }, + { + "start": 10022.36, + "end": 10022.66, + "probability": 0.7189 + }, + { + "start": 10022.88, + "end": 10023.48, + "probability": 0.7269 + }, + { + "start": 10024.82, + "end": 10026.8, + "probability": 0.502 + }, + { + "start": 10026.92, + "end": 10027.8, + "probability": 0.687 + }, + { + "start": 10027.8, + "end": 10028.22, + "probability": 0.9206 + }, + { + "start": 10034.34, + "end": 10035.16, + "probability": 0.4238 + }, + { + "start": 10040.74, + "end": 10041.68, + "probability": 0.9653 + }, + { + "start": 10041.82, + "end": 10043.1, + "probability": 0.9756 + }, + { + "start": 10043.22, + "end": 10043.64, + "probability": 0.7207 + }, + { + "start": 10043.96, + "end": 10046.34, + "probability": 0.8564 + }, + { + "start": 10046.74, + "end": 10048.44, + "probability": 0.7625 + }, + { + "start": 10048.46, + "end": 10048.86, + "probability": 0.7498 + }, + { + "start": 10048.88, + "end": 10049.97, + "probability": 0.8828 + }, + { + "start": 10050.18, + "end": 10050.66, + "probability": 0.4634 + }, + { + "start": 10050.8, + "end": 10051.52, + "probability": 0.4745 + }, + { + "start": 10051.66, + "end": 10052.44, + "probability": 0.8387 + }, + { + "start": 10052.56, + "end": 10055.52, + "probability": 0.98 + }, + { + "start": 10055.56, + "end": 10056.34, + "probability": 0.515 + }, + { + "start": 10057.69, + "end": 10060.44, + "probability": 0.6598 + }, + { + "start": 10061.86, + "end": 10064.94, + "probability": 0.9812 + }, + { + "start": 10066.02, + "end": 10067.82, + "probability": 0.981 + }, + { + "start": 10071.52, + "end": 10073.14, + "probability": 0.9844 + }, + { + "start": 10075.1, + "end": 10076.2, + "probability": 0.6046 + }, + { + "start": 10077.0, + "end": 10077.54, + "probability": 0.9085 + }, + { + "start": 10078.36, + "end": 10080.5, + "probability": 0.986 + }, + { + "start": 10081.56, + "end": 10083.22, + "probability": 0.9176 + }, + { + "start": 10083.88, + "end": 10085.06, + "probability": 0.9891 + }, + { + "start": 10085.84, + "end": 10087.1, + "probability": 0.9883 + }, + { + "start": 10087.94, + "end": 10089.66, + "probability": 0.9735 + }, + { + "start": 10090.34, + "end": 10094.68, + "probability": 0.9979 + }, + { + "start": 10095.86, + "end": 10097.76, + "probability": 0.9906 + }, + { + "start": 10098.68, + "end": 10100.16, + "probability": 0.9195 + }, + { + "start": 10101.22, + "end": 10104.0, + "probability": 0.9877 + }, + { + "start": 10105.06, + "end": 10105.68, + "probability": 0.9872 + }, + { + "start": 10106.48, + "end": 10108.92, + "probability": 0.994 + }, + { + "start": 10110.78, + "end": 10113.32, + "probability": 0.9995 + }, + { + "start": 10113.98, + "end": 10115.58, + "probability": 0.8283 + }, + { + "start": 10116.74, + "end": 10119.1, + "probability": 0.9567 + }, + { + "start": 10120.08, + "end": 10123.84, + "probability": 0.9774 + }, + { + "start": 10124.48, + "end": 10126.86, + "probability": 0.9246 + }, + { + "start": 10127.64, + "end": 10128.64, + "probability": 0.5315 + }, + { + "start": 10129.26, + "end": 10130.78, + "probability": 0.9961 + }, + { + "start": 10131.84, + "end": 10132.4, + "probability": 0.91 + }, + { + "start": 10133.52, + "end": 10135.04, + "probability": 0.9978 + }, + { + "start": 10135.72, + "end": 10137.48, + "probability": 0.9164 + }, + { + "start": 10137.94, + "end": 10142.56, + "probability": 0.9954 + }, + { + "start": 10144.12, + "end": 10145.88, + "probability": 0.8359 + }, + { + "start": 10147.32, + "end": 10147.52, + "probability": 0.8502 + }, + { + "start": 10149.32, + "end": 10150.04, + "probability": 0.919 + }, + { + "start": 10151.24, + "end": 10152.68, + "probability": 0.9063 + }, + { + "start": 10154.06, + "end": 10154.94, + "probability": 0.7551 + }, + { + "start": 10155.52, + "end": 10156.26, + "probability": 0.997 + }, + { + "start": 10156.86, + "end": 10158.12, + "probability": 0.638 + }, + { + "start": 10161.86, + "end": 10162.34, + "probability": 0.724 + }, + { + "start": 10163.2, + "end": 10164.88, + "probability": 0.1588 + }, + { + "start": 10167.82, + "end": 10168.46, + "probability": 0.2257 + }, + { + "start": 10169.54, + "end": 10171.34, + "probability": 0.0438 + }, + { + "start": 10192.26, + "end": 10194.26, + "probability": 0.3236 + }, + { + "start": 10195.24, + "end": 10199.6, + "probability": 0.9989 + }, + { + "start": 10200.38, + "end": 10200.7, + "probability": 0.8752 + }, + { + "start": 10201.96, + "end": 10203.18, + "probability": 0.9876 + }, + { + "start": 10204.48, + "end": 10207.28, + "probability": 0.9883 + }, + { + "start": 10208.26, + "end": 10211.84, + "probability": 0.9885 + }, + { + "start": 10212.92, + "end": 10214.08, + "probability": 0.9224 + }, + { + "start": 10215.6, + "end": 10221.42, + "probability": 0.9766 + }, + { + "start": 10223.06, + "end": 10224.48, + "probability": 0.943 + }, + { + "start": 10225.84, + "end": 10229.58, + "probability": 0.5855 + }, + { + "start": 10232.06, + "end": 10235.32, + "probability": 0.5641 + }, + { + "start": 10236.74, + "end": 10240.42, + "probability": 0.9058 + }, + { + "start": 10241.56, + "end": 10245.44, + "probability": 0.9772 + }, + { + "start": 10246.48, + "end": 10249.82, + "probability": 0.9119 + }, + { + "start": 10250.88, + "end": 10251.94, + "probability": 0.915 + }, + { + "start": 10254.06, + "end": 10257.47, + "probability": 0.3746 + }, + { + "start": 10258.56, + "end": 10259.84, + "probability": 0.8401 + }, + { + "start": 10260.64, + "end": 10261.45, + "probability": 0.9043 + }, + { + "start": 10263.5, + "end": 10265.0, + "probability": 0.7588 + }, + { + "start": 10266.34, + "end": 10268.64, + "probability": 0.8067 + }, + { + "start": 10269.88, + "end": 10270.92, + "probability": 0.9932 + }, + { + "start": 10272.6, + "end": 10273.86, + "probability": 0.9862 + }, + { + "start": 10274.62, + "end": 10276.2, + "probability": 0.9773 + }, + { + "start": 10276.86, + "end": 10277.64, + "probability": 0.5282 + }, + { + "start": 10278.46, + "end": 10279.16, + "probability": 0.9204 + }, + { + "start": 10281.82, + "end": 10282.72, + "probability": 0.7932 + }, + { + "start": 10283.54, + "end": 10285.2, + "probability": 0.9907 + }, + { + "start": 10286.78, + "end": 10288.44, + "probability": 0.9939 + }, + { + "start": 10289.06, + "end": 10292.86, + "probability": 0.6259 + }, + { + "start": 10296.16, + "end": 10296.6, + "probability": 0.5312 + }, + { + "start": 10299.02, + "end": 10303.14, + "probability": 0.9547 + }, + { + "start": 10304.58, + "end": 10308.14, + "probability": 0.8991 + }, + { + "start": 10309.0, + "end": 10310.86, + "probability": 0.7295 + }, + { + "start": 10312.16, + "end": 10314.32, + "probability": 0.8329 + }, + { + "start": 10315.72, + "end": 10320.44, + "probability": 0.9865 + }, + { + "start": 10322.02, + "end": 10323.62, + "probability": 0.9345 + }, + { + "start": 10324.76, + "end": 10325.96, + "probability": 0.8519 + }, + { + "start": 10327.26, + "end": 10330.34, + "probability": 0.9914 + }, + { + "start": 10331.9, + "end": 10334.68, + "probability": 0.977 + }, + { + "start": 10335.68, + "end": 10339.44, + "probability": 0.9848 + }, + { + "start": 10340.0, + "end": 10341.26, + "probability": 0.6238 + }, + { + "start": 10341.86, + "end": 10345.76, + "probability": 0.9849 + }, + { + "start": 10346.1, + "end": 10346.84, + "probability": 0.8429 + }, + { + "start": 10346.98, + "end": 10349.38, + "probability": 0.9082 + }, + { + "start": 10350.62, + "end": 10352.58, + "probability": 0.916 + }, + { + "start": 10353.28, + "end": 10355.84, + "probability": 0.791 + }, + { + "start": 10357.08, + "end": 10363.56, + "probability": 0.9799 + }, + { + "start": 10364.4, + "end": 10366.52, + "probability": 0.8482 + }, + { + "start": 10367.86, + "end": 10368.8, + "probability": 0.9917 + }, + { + "start": 10369.78, + "end": 10374.92, + "probability": 0.7689 + }, + { + "start": 10375.26, + "end": 10375.26, + "probability": 0.3966 + }, + { + "start": 10375.44, + "end": 10375.44, + "probability": 0.4078 + }, + { + "start": 10375.44, + "end": 10376.28, + "probability": 0.6844 + }, + { + "start": 10376.76, + "end": 10380.52, + "probability": 0.894 + }, + { + "start": 10380.54, + "end": 10381.02, + "probability": 0.5308 + }, + { + "start": 10381.16, + "end": 10382.64, + "probability": 0.9847 + }, + { + "start": 10383.62, + "end": 10390.34, + "probability": 0.7149 + }, + { + "start": 10391.56, + "end": 10398.46, + "probability": 0.5317 + }, + { + "start": 10402.58, + "end": 10404.84, + "probability": 0.2681 + }, + { + "start": 10406.16, + "end": 10408.42, + "probability": 0.0666 + }, + { + "start": 10414.83, + "end": 10416.32, + "probability": 0.0209 + }, + { + "start": 10417.4, + "end": 10419.36, + "probability": 0.09 + }, + { + "start": 10420.18, + "end": 10420.18, + "probability": 0.0845 + }, + { + "start": 10421.44, + "end": 10421.8, + "probability": 0.0482 + }, + { + "start": 10429.14, + "end": 10430.58, + "probability": 0.2924 + }, + { + "start": 10432.48, + "end": 10434.78, + "probability": 0.2245 + }, + { + "start": 10434.78, + "end": 10435.22, + "probability": 0.0204 + }, + { + "start": 10435.6, + "end": 10435.82, + "probability": 0.121 + }, + { + "start": 10435.82, + "end": 10435.98, + "probability": 0.0423 + }, + { + "start": 10437.44, + "end": 10439.04, + "probability": 0.2837 + }, + { + "start": 10439.78, + "end": 10440.62, + "probability": 0.0284 + }, + { + "start": 10440.62, + "end": 10440.62, + "probability": 0.041 + }, + { + "start": 10440.62, + "end": 10440.62, + "probability": 0.1039 + }, + { + "start": 10440.62, + "end": 10440.62, + "probability": 0.0186 + }, + { + "start": 10440.62, + "end": 10440.62, + "probability": 0.2429 + }, + { + "start": 10440.62, + "end": 10443.42, + "probability": 0.2869 + }, + { + "start": 10444.78, + "end": 10447.86, + "probability": 0.9484 + }, + { + "start": 10449.66, + "end": 10453.06, + "probability": 0.8782 + }, + { + "start": 10454.16, + "end": 10459.04, + "probability": 0.9938 + }, + { + "start": 10459.56, + "end": 10462.24, + "probability": 0.9095 + }, + { + "start": 10463.62, + "end": 10469.2, + "probability": 0.9937 + }, + { + "start": 10470.18, + "end": 10473.99, + "probability": 0.9893 + }, + { + "start": 10475.78, + "end": 10479.92, + "probability": 0.9705 + }, + { + "start": 10480.38, + "end": 10483.76, + "probability": 0.8238 + }, + { + "start": 10484.02, + "end": 10485.24, + "probability": 0.8403 + }, + { + "start": 10486.44, + "end": 10492.18, + "probability": 0.979 + }, + { + "start": 10492.3, + "end": 10494.24, + "probability": 0.9491 + }, + { + "start": 10494.78, + "end": 10495.02, + "probability": 0.8124 + }, + { + "start": 10495.02, + "end": 10497.92, + "probability": 0.8706 + }, + { + "start": 10498.16, + "end": 10498.66, + "probability": 0.8677 + }, + { + "start": 10499.14, + "end": 10500.92, + "probability": 0.9866 + }, + { + "start": 10501.82, + "end": 10502.34, + "probability": 0.8336 + }, + { + "start": 10502.54, + "end": 10503.58, + "probability": 0.9737 + }, + { + "start": 10503.7, + "end": 10504.5, + "probability": 0.8339 + }, + { + "start": 10505.02, + "end": 10507.76, + "probability": 0.6338 + }, + { + "start": 10508.28, + "end": 10510.16, + "probability": 0.9639 + }, + { + "start": 10510.78, + "end": 10511.46, + "probability": 0.9529 + }, + { + "start": 10512.82, + "end": 10516.88, + "probability": 0.9872 + }, + { + "start": 10517.02, + "end": 10518.78, + "probability": 0.8598 + }, + { + "start": 10519.42, + "end": 10520.06, + "probability": 0.6963 + }, + { + "start": 10520.52, + "end": 10521.16, + "probability": 0.6504 + }, + { + "start": 10521.2, + "end": 10521.38, + "probability": 0.8351 + }, + { + "start": 10521.38, + "end": 10522.12, + "probability": 0.9821 + }, + { + "start": 10522.3, + "end": 10523.44, + "probability": 0.8326 + }, + { + "start": 10525.12, + "end": 10526.46, + "probability": 0.9951 + }, + { + "start": 10527.5, + "end": 10530.0, + "probability": 0.7804 + }, + { + "start": 10531.16, + "end": 10531.86, + "probability": 0.0843 + }, + { + "start": 10531.86, + "end": 10533.68, + "probability": 0.6424 + }, + { + "start": 10533.94, + "end": 10534.5, + "probability": 0.977 + }, + { + "start": 10535.0, + "end": 10536.32, + "probability": 0.9254 + }, + { + "start": 10536.76, + "end": 10537.46, + "probability": 0.9696 + }, + { + "start": 10537.96, + "end": 10539.3, + "probability": 0.9224 + }, + { + "start": 10539.78, + "end": 10540.66, + "probability": 0.9363 + }, + { + "start": 10541.1, + "end": 10543.5, + "probability": 0.9496 + }, + { + "start": 10543.82, + "end": 10544.97, + "probability": 0.8435 + }, + { + "start": 10545.34, + "end": 10546.54, + "probability": 0.699 + }, + { + "start": 10547.22, + "end": 10548.14, + "probability": 0.9183 + }, + { + "start": 10548.32, + "end": 10550.18, + "probability": 0.9775 + }, + { + "start": 10551.28, + "end": 10551.88, + "probability": 0.911 + }, + { + "start": 10552.36, + "end": 10553.46, + "probability": 0.9512 + }, + { + "start": 10553.84, + "end": 10554.92, + "probability": 0.9176 + }, + { + "start": 10555.24, + "end": 10557.04, + "probability": 0.9896 + }, + { + "start": 10557.48, + "end": 10560.8, + "probability": 0.999 + }, + { + "start": 10562.06, + "end": 10565.52, + "probability": 0.999 + }, + { + "start": 10566.62, + "end": 10568.4, + "probability": 0.9709 + }, + { + "start": 10568.9, + "end": 10571.46, + "probability": 0.9946 + }, + { + "start": 10572.36, + "end": 10574.18, + "probability": 0.9786 + }, + { + "start": 10575.32, + "end": 10577.98, + "probability": 0.8564 + }, + { + "start": 10578.42, + "end": 10581.76, + "probability": 0.9492 + }, + { + "start": 10582.16, + "end": 10583.64, + "probability": 0.998 + }, + { + "start": 10583.92, + "end": 10585.8, + "probability": 0.9927 + }, + { + "start": 10586.4, + "end": 10588.46, + "probability": 0.9902 + }, + { + "start": 10589.18, + "end": 10593.06, + "probability": 0.9995 + }, + { + "start": 10593.96, + "end": 10594.4, + "probability": 0.5579 + }, + { + "start": 10595.04, + "end": 10597.88, + "probability": 0.8494 + }, + { + "start": 10598.48, + "end": 10599.16, + "probability": 0.7601 + }, + { + "start": 10600.22, + "end": 10602.94, + "probability": 0.8765 + }, + { + "start": 10615.46, + "end": 10618.02, + "probability": 0.565 + }, + { + "start": 10626.72, + "end": 10626.88, + "probability": 0.0001 + }, + { + "start": 10649.24, + "end": 10651.1, + "probability": 0.0157 + }, + { + "start": 10651.1, + "end": 10651.26, + "probability": 0.1051 + }, + { + "start": 10651.26, + "end": 10651.98, + "probability": 0.2171 + }, + { + "start": 10653.12, + "end": 10653.72, + "probability": 0.4741 + }, + { + "start": 10653.92, + "end": 10656.6, + "probability": 0.0395 + }, + { + "start": 10657.72, + "end": 10657.78, + "probability": 0.0166 + }, + { + "start": 10657.84, + "end": 10658.08, + "probability": 0.0585 + }, + { + "start": 10658.08, + "end": 10658.38, + "probability": 0.2887 + }, + { + "start": 10658.66, + "end": 10658.76, + "probability": 0.1687 + }, + { + "start": 10658.76, + "end": 10658.76, + "probability": 0.2809 + }, + { + "start": 10658.76, + "end": 10659.08, + "probability": 0.1303 + }, + { + "start": 10659.08, + "end": 10662.92, + "probability": 0.8802 + }, + { + "start": 10663.06, + "end": 10667.3, + "probability": 0.97 + }, + { + "start": 10667.68, + "end": 10670.34, + "probability": 0.9885 + }, + { + "start": 10670.78, + "end": 10670.98, + "probability": 0.694 + }, + { + "start": 10671.04, + "end": 10672.38, + "probability": 0.9364 + }, + { + "start": 10672.84, + "end": 10678.48, + "probability": 0.9819 + }, + { + "start": 10679.14, + "end": 10682.48, + "probability": 0.9937 + }, + { + "start": 10682.66, + "end": 10684.32, + "probability": 0.7903 + }, + { + "start": 10684.72, + "end": 10685.7, + "probability": 0.8426 + }, + { + "start": 10685.8, + "end": 10691.06, + "probability": 0.9886 + }, + { + "start": 10691.34, + "end": 10693.44, + "probability": 0.7848 + }, + { + "start": 10694.06, + "end": 10696.22, + "probability": 0.7736 + }, + { + "start": 10696.22, + "end": 10699.68, + "probability": 0.9944 + }, + { + "start": 10700.0, + "end": 10700.3, + "probability": 0.4616 + }, + { + "start": 10700.4, + "end": 10702.98, + "probability": 0.9747 + }, + { + "start": 10703.18, + "end": 10703.76, + "probability": 0.7422 + }, + { + "start": 10705.58, + "end": 10706.2, + "probability": 0.3522 + }, + { + "start": 10706.2, + "end": 10707.79, + "probability": 0.756 + }, + { + "start": 10708.34, + "end": 10711.12, + "probability": 0.9655 + }, + { + "start": 10711.9, + "end": 10717.06, + "probability": 0.7526 + }, + { + "start": 10717.48, + "end": 10718.36, + "probability": 0.4621 + }, + { + "start": 10718.72, + "end": 10721.32, + "probability": 0.9534 + }, + { + "start": 10721.86, + "end": 10725.12, + "probability": 0.9868 + }, + { + "start": 10725.12, + "end": 10725.14, + "probability": 0.3091 + }, + { + "start": 10725.14, + "end": 10726.0, + "probability": 0.1913 + }, + { + "start": 10726.22, + "end": 10729.34, + "probability": 0.7337 + }, + { + "start": 10730.66, + "end": 10731.24, + "probability": 0.923 + }, + { + "start": 10731.44, + "end": 10733.36, + "probability": 0.5013 + }, + { + "start": 10733.42, + "end": 10734.12, + "probability": 0.6388 + }, + { + "start": 10737.05, + "end": 10738.72, + "probability": 0.9299 + }, + { + "start": 10750.64, + "end": 10754.38, + "probability": 0.3704 + }, + { + "start": 10754.68, + "end": 10757.38, + "probability": 0.7567 + }, + { + "start": 10758.44, + "end": 10760.9, + "probability": 0.9946 + }, + { + "start": 10762.26, + "end": 10764.52, + "probability": 0.7554 + }, + { + "start": 10765.72, + "end": 10767.08, + "probability": 0.9987 + }, + { + "start": 10768.14, + "end": 10769.02, + "probability": 0.8168 + }, + { + "start": 10769.34, + "end": 10775.34, + "probability": 0.9827 + }, + { + "start": 10776.56, + "end": 10783.66, + "probability": 0.984 + }, + { + "start": 10784.74, + "end": 10786.44, + "probability": 0.966 + }, + { + "start": 10787.24, + "end": 10788.41, + "probability": 0.9971 + }, + { + "start": 10790.34, + "end": 10791.28, + "probability": 0.1294 + }, + { + "start": 10792.02, + "end": 10792.62, + "probability": 0.6059 + }, + { + "start": 10792.94, + "end": 10793.6, + "probability": 0.9463 + }, + { + "start": 10793.86, + "end": 10796.3, + "probability": 0.1873 + }, + { + "start": 10796.92, + "end": 10800.52, + "probability": 0.9703 + }, + { + "start": 10800.58, + "end": 10802.3, + "probability": 0.5769 + }, + { + "start": 10804.87, + "end": 10811.46, + "probability": 0.9966 + }, + { + "start": 10813.14, + "end": 10814.74, + "probability": 0.6188 + }, + { + "start": 10816.34, + "end": 10817.68, + "probability": 0.9505 + }, + { + "start": 10818.48, + "end": 10820.16, + "probability": 0.8341 + }, + { + "start": 10821.72, + "end": 10822.76, + "probability": 0.4533 + }, + { + "start": 10823.34, + "end": 10824.12, + "probability": 0.7088 + }, + { + "start": 10824.82, + "end": 10825.5, + "probability": 0.5585 + }, + { + "start": 10827.64, + "end": 10828.58, + "probability": 0.9646 + }, + { + "start": 10830.12, + "end": 10835.54, + "probability": 0.9957 + }, + { + "start": 10836.06, + "end": 10836.5, + "probability": 0.8594 + }, + { + "start": 10838.31, + "end": 10839.39, + "probability": 0.9576 + }, + { + "start": 10843.2, + "end": 10846.48, + "probability": 0.7452 + }, + { + "start": 10847.26, + "end": 10850.32, + "probability": 0.9575 + }, + { + "start": 10851.12, + "end": 10853.42, + "probability": 0.9933 + }, + { + "start": 10854.82, + "end": 10856.7, + "probability": 0.7799 + }, + { + "start": 10858.26, + "end": 10860.84, + "probability": 0.9697 + }, + { + "start": 10861.52, + "end": 10864.3, + "probability": 0.9908 + }, + { + "start": 10866.34, + "end": 10867.54, + "probability": 0.1343 + }, + { + "start": 10868.02, + "end": 10868.5, + "probability": 0.9482 + }, + { + "start": 10869.94, + "end": 10873.26, + "probability": 0.8989 + }, + { + "start": 10874.22, + "end": 10876.6, + "probability": 0.9993 + }, + { + "start": 10876.88, + "end": 10880.32, + "probability": 0.8889 + }, + { + "start": 10880.48, + "end": 10881.16, + "probability": 0.504 + }, + { + "start": 10881.84, + "end": 10884.38, + "probability": 0.8815 + }, + { + "start": 10885.42, + "end": 10888.32, + "probability": 0.9639 + }, + { + "start": 10888.84, + "end": 10894.48, + "probability": 0.8848 + }, + { + "start": 10895.74, + "end": 10896.86, + "probability": 0.9294 + }, + { + "start": 10898.2, + "end": 10903.24, + "probability": 0.9346 + }, + { + "start": 10903.72, + "end": 10904.64, + "probability": 0.9932 + }, + { + "start": 10904.7, + "end": 10905.3, + "probability": 0.9395 + }, + { + "start": 10905.36, + "end": 10906.12, + "probability": 0.5947 + }, + { + "start": 10907.3, + "end": 10909.4, + "probability": 0.8838 + }, + { + "start": 10910.18, + "end": 10912.3, + "probability": 0.9915 + }, + { + "start": 10912.68, + "end": 10914.72, + "probability": 0.7446 + }, + { + "start": 10914.76, + "end": 10915.7, + "probability": 0.832 + }, + { + "start": 10916.42, + "end": 10917.64, + "probability": 0.999 + }, + { + "start": 10918.42, + "end": 10923.16, + "probability": 0.8093 + }, + { + "start": 10925.02, + "end": 10926.7, + "probability": 0.1706 + }, + { + "start": 10929.2, + "end": 10930.12, + "probability": 0.1953 + }, + { + "start": 10930.96, + "end": 10931.78, + "probability": 0.0369 + }, + { + "start": 10932.68, + "end": 10933.42, + "probability": 0.0175 + }, + { + "start": 10933.42, + "end": 10933.77, + "probability": 0.4737 + }, + { + "start": 10934.68, + "end": 10936.28, + "probability": 0.5248 + }, + { + "start": 10936.38, + "end": 10938.76, + "probability": 0.0562 + }, + { + "start": 10939.38, + "end": 10943.26, + "probability": 0.7291 + }, + { + "start": 10944.08, + "end": 10951.04, + "probability": 0.9728 + }, + { + "start": 10951.98, + "end": 10953.06, + "probability": 0.823 + }, + { + "start": 10953.2, + "end": 10955.48, + "probability": 0.938 + }, + { + "start": 10955.58, + "end": 10956.14, + "probability": 0.4778 + }, + { + "start": 10956.3, + "end": 10957.02, + "probability": 0.6708 + }, + { + "start": 10957.2, + "end": 10959.94, + "probability": 0.4612 + }, + { + "start": 10960.18, + "end": 10960.18, + "probability": 0.0058 + }, + { + "start": 10960.18, + "end": 10965.49, + "probability": 0.4649 + }, + { + "start": 10966.42, + "end": 10966.96, + "probability": 0.4142 + }, + { + "start": 10967.22, + "end": 10967.92, + "probability": 0.2757 + }, + { + "start": 10967.92, + "end": 10969.7, + "probability": 0.0295 + }, + { + "start": 10971.1, + "end": 10972.9, + "probability": 0.2397 + }, + { + "start": 10983.34, + "end": 10983.92, + "probability": 0.4525 + }, + { + "start": 10983.94, + "end": 10987.44, + "probability": 0.1172 + }, + { + "start": 10988.22, + "end": 10988.83, + "probability": 0.0877 + }, + { + "start": 10990.5, + "end": 10992.0, + "probability": 0.2699 + }, + { + "start": 10992.0, + "end": 10992.44, + "probability": 0.442 + }, + { + "start": 10995.62, + "end": 10996.4, + "probability": 0.3968 + }, + { + "start": 10996.95, + "end": 10998.21, + "probability": 0.0409 + }, + { + "start": 11000.24, + "end": 11000.58, + "probability": 0.0283 + }, + { + "start": 11001.08, + "end": 11001.62, + "probability": 0.0228 + }, + { + "start": 11001.79, + "end": 11002.84, + "probability": 0.0765 + }, + { + "start": 11002.84, + "end": 11002.84, + "probability": 0.1156 + }, + { + "start": 11002.84, + "end": 11003.17, + "probability": 0.2522 + }, + { + "start": 11009.88, + "end": 11013.02, + "probability": 0.7328 + }, + { + "start": 11017.14, + "end": 11020.86, + "probability": 0.7577 + }, + { + "start": 11023.1, + "end": 11026.0, + "probability": 0.9344 + }, + { + "start": 11026.24, + "end": 11026.36, + "probability": 0.5012 + }, + { + "start": 11027.36, + "end": 11028.02, + "probability": 0.6952 + }, + { + "start": 11029.12, + "end": 11029.68, + "probability": 0.9236 + }, + { + "start": 11034.38, + "end": 11036.32, + "probability": 0.6606 + }, + { + "start": 11037.72, + "end": 11043.36, + "probability": 0.97 + }, + { + "start": 11044.72, + "end": 11047.0, + "probability": 0.6983 + }, + { + "start": 11047.52, + "end": 11048.14, + "probability": 0.9892 + }, + { + "start": 11048.8, + "end": 11051.18, + "probability": 0.7813 + }, + { + "start": 11051.82, + "end": 11053.48, + "probability": 0.8958 + }, + { + "start": 11054.22, + "end": 11056.52, + "probability": 0.9053 + }, + { + "start": 11057.62, + "end": 11061.5, + "probability": 0.6733 + }, + { + "start": 11063.68, + "end": 11070.82, + "probability": 0.9401 + }, + { + "start": 11072.3, + "end": 11076.5, + "probability": 0.8487 + }, + { + "start": 11077.7, + "end": 11079.76, + "probability": 0.7024 + }, + { + "start": 11081.05, + "end": 11083.36, + "probability": 0.7089 + }, + { + "start": 11084.42, + "end": 11085.86, + "probability": 0.9835 + }, + { + "start": 11087.08, + "end": 11088.42, + "probability": 0.891 + }, + { + "start": 11089.76, + "end": 11091.46, + "probability": 0.9505 + }, + { + "start": 11092.66, + "end": 11096.1, + "probability": 0.9637 + }, + { + "start": 11097.6, + "end": 11103.2, + "probability": 0.9921 + }, + { + "start": 11104.2, + "end": 11106.42, + "probability": 0.994 + }, + { + "start": 11107.62, + "end": 11109.48, + "probability": 0.9972 + }, + { + "start": 11111.42, + "end": 11115.26, + "probability": 0.9985 + }, + { + "start": 11115.88, + "end": 11120.2, + "probability": 0.9975 + }, + { + "start": 11120.58, + "end": 11125.16, + "probability": 0.959 + }, + { + "start": 11126.76, + "end": 11127.34, + "probability": 0.8538 + }, + { + "start": 11128.22, + "end": 11128.84, + "probability": 0.9397 + }, + { + "start": 11129.68, + "end": 11131.02, + "probability": 0.5863 + }, + { + "start": 11131.46, + "end": 11136.48, + "probability": 0.8763 + }, + { + "start": 11137.98, + "end": 11139.8, + "probability": 0.8603 + }, + { + "start": 11140.94, + "end": 11143.34, + "probability": 0.6806 + }, + { + "start": 11144.8, + "end": 11147.8, + "probability": 0.8696 + }, + { + "start": 11148.56, + "end": 11149.92, + "probability": 0.8005 + }, + { + "start": 11150.18, + "end": 11150.88, + "probability": 0.9031 + }, + { + "start": 11151.24, + "end": 11153.92, + "probability": 0.7829 + }, + { + "start": 11154.74, + "end": 11155.54, + "probability": 0.889 + }, + { + "start": 11156.4, + "end": 11159.3, + "probability": 0.9468 + }, + { + "start": 11159.94, + "end": 11162.28, + "probability": 0.9622 + }, + { + "start": 11163.82, + "end": 11166.18, + "probability": 0.8939 + }, + { + "start": 11167.72, + "end": 11169.52, + "probability": 0.9917 + }, + { + "start": 11170.22, + "end": 11172.26, + "probability": 0.9594 + }, + { + "start": 11173.58, + "end": 11177.34, + "probability": 0.9618 + }, + { + "start": 11177.34, + "end": 11181.32, + "probability": 0.9146 + }, + { + "start": 11181.7, + "end": 11183.3, + "probability": 0.9857 + }, + { + "start": 11183.6, + "end": 11190.5, + "probability": 0.9773 + }, + { + "start": 11192.08, + "end": 11195.48, + "probability": 0.9878 + }, + { + "start": 11196.42, + "end": 11199.9, + "probability": 0.9945 + }, + { + "start": 11200.52, + "end": 11205.74, + "probability": 0.9884 + }, + { + "start": 11207.04, + "end": 11210.88, + "probability": 0.8963 + }, + { + "start": 11211.42, + "end": 11212.14, + "probability": 0.8496 + }, + { + "start": 11213.13, + "end": 11220.58, + "probability": 0.9347 + }, + { + "start": 11220.58, + "end": 11221.08, + "probability": 0.7427 + }, + { + "start": 11221.92, + "end": 11222.7, + "probability": 0.7501 + }, + { + "start": 11223.06, + "end": 11225.18, + "probability": 0.9963 + }, + { + "start": 11225.18, + "end": 11227.66, + "probability": 0.9576 + }, + { + "start": 11228.38, + "end": 11229.76, + "probability": 0.9973 + }, + { + "start": 11230.62, + "end": 11232.0, + "probability": 0.7486 + }, + { + "start": 11232.58, + "end": 11235.78, + "probability": 0.8727 + }, + { + "start": 11236.6, + "end": 11240.06, + "probability": 0.9893 + }, + { + "start": 11240.06, + "end": 11243.74, + "probability": 0.9525 + }, + { + "start": 11244.18, + "end": 11246.8, + "probability": 0.9523 + }, + { + "start": 11246.88, + "end": 11247.3, + "probability": 0.8008 + }, + { + "start": 11247.56, + "end": 11247.82, + "probability": 0.808 + }, + { + "start": 11248.16, + "end": 11250.14, + "probability": 0.8855 + }, + { + "start": 11250.88, + "end": 11254.8, + "probability": 0.9435 + }, + { + "start": 11258.0, + "end": 11261.24, + "probability": 0.3527 + }, + { + "start": 11262.04, + "end": 11262.96, + "probability": 0.6614 + }, + { + "start": 11262.96, + "end": 11262.96, + "probability": 0.6736 + }, + { + "start": 11262.96, + "end": 11263.37, + "probability": 0.8548 + }, + { + "start": 11263.98, + "end": 11264.7, + "probability": 0.6086 + }, + { + "start": 11265.48, + "end": 11267.66, + "probability": 0.8772 + }, + { + "start": 11268.8, + "end": 11269.64, + "probability": 0.4839 + }, + { + "start": 11270.34, + "end": 11271.74, + "probability": 0.9623 + }, + { + "start": 11285.04, + "end": 11285.48, + "probability": 0.7464 + }, + { + "start": 11291.8, + "end": 11293.44, + "probability": 0.5749 + }, + { + "start": 11294.48, + "end": 11296.1, + "probability": 0.7784 + }, + { + "start": 11297.58, + "end": 11300.88, + "probability": 0.9956 + }, + { + "start": 11301.84, + "end": 11305.3, + "probability": 0.9858 + }, + { + "start": 11307.04, + "end": 11308.92, + "probability": 0.9696 + }, + { + "start": 11309.32, + "end": 11309.44, + "probability": 0.2344 + }, + { + "start": 11309.44, + "end": 11309.84, + "probability": 0.4316 + }, + { + "start": 11309.96, + "end": 11312.1, + "probability": 0.857 + }, + { + "start": 11313.6, + "end": 11318.88, + "probability": 0.873 + }, + { + "start": 11319.62, + "end": 11320.48, + "probability": 0.9901 + }, + { + "start": 11322.26, + "end": 11323.44, + "probability": 0.8622 + }, + { + "start": 11324.4, + "end": 11325.96, + "probability": 0.9176 + }, + { + "start": 11326.96, + "end": 11332.58, + "probability": 0.8721 + }, + { + "start": 11333.7, + "end": 11335.4, + "probability": 0.9633 + }, + { + "start": 11336.54, + "end": 11342.54, + "probability": 0.9673 + }, + { + "start": 11342.78, + "end": 11343.78, + "probability": 0.7673 + }, + { + "start": 11344.78, + "end": 11351.14, + "probability": 0.9526 + }, + { + "start": 11352.14, + "end": 11355.6, + "probability": 0.8658 + }, + { + "start": 11356.68, + "end": 11358.33, + "probability": 0.9478 + }, + { + "start": 11359.36, + "end": 11364.24, + "probability": 0.9983 + }, + { + "start": 11364.9, + "end": 11367.8, + "probability": 0.7061 + }, + { + "start": 11367.88, + "end": 11368.34, + "probability": 0.5895 + }, + { + "start": 11370.52, + "end": 11373.52, + "probability": 0.9169 + }, + { + "start": 11374.5, + "end": 11377.69, + "probability": 0.9744 + }, + { + "start": 11378.52, + "end": 11380.0, + "probability": 0.9919 + }, + { + "start": 11380.72, + "end": 11382.47, + "probability": 0.7721 + }, + { + "start": 11383.18, + "end": 11385.4, + "probability": 0.9453 + }, + { + "start": 11385.98, + "end": 11388.52, + "probability": 0.9596 + }, + { + "start": 11389.62, + "end": 11392.52, + "probability": 0.9953 + }, + { + "start": 11393.36, + "end": 11395.32, + "probability": 0.9922 + }, + { + "start": 11395.84, + "end": 11398.76, + "probability": 0.9841 + }, + { + "start": 11399.4, + "end": 11402.04, + "probability": 0.9929 + }, + { + "start": 11403.02, + "end": 11404.22, + "probability": 0.68 + }, + { + "start": 11404.9, + "end": 11406.28, + "probability": 0.9546 + }, + { + "start": 11407.14, + "end": 11411.92, + "probability": 0.999 + }, + { + "start": 11412.6, + "end": 11414.28, + "probability": 0.9274 + }, + { + "start": 11415.22, + "end": 11415.94, + "probability": 0.9713 + }, + { + "start": 11416.7, + "end": 11425.76, + "probability": 0.9879 + }, + { + "start": 11426.68, + "end": 11428.42, + "probability": 0.6985 + }, + { + "start": 11430.32, + "end": 11431.74, + "probability": 0.7163 + }, + { + "start": 11433.06, + "end": 11436.94, + "probability": 0.9956 + }, + { + "start": 11437.54, + "end": 11441.58, + "probability": 0.8863 + }, + { + "start": 11442.4, + "end": 11444.06, + "probability": 0.9984 + }, + { + "start": 11444.58, + "end": 11445.36, + "probability": 0.7447 + }, + { + "start": 11446.06, + "end": 11446.72, + "probability": 0.398 + }, + { + "start": 11446.9, + "end": 11447.68, + "probability": 0.7369 + }, + { + "start": 11447.76, + "end": 11450.16, + "probability": 0.8911 + }, + { + "start": 11451.2, + "end": 11452.64, + "probability": 0.9385 + }, + { + "start": 11453.46, + "end": 11455.26, + "probability": 0.9807 + }, + { + "start": 11455.92, + "end": 11462.2, + "probability": 0.667 + }, + { + "start": 11463.7, + "end": 11466.02, + "probability": 0.9961 + }, + { + "start": 11466.86, + "end": 11468.44, + "probability": 0.9868 + }, + { + "start": 11468.46, + "end": 11468.74, + "probability": 0.7376 + }, + { + "start": 11469.6, + "end": 11470.94, + "probability": 0.8185 + }, + { + "start": 11471.58, + "end": 11474.12, + "probability": 0.9935 + }, + { + "start": 11474.82, + "end": 11477.46, + "probability": 0.7422 + }, + { + "start": 11478.0, + "end": 11481.84, + "probability": 0.9733 + }, + { + "start": 11482.56, + "end": 11485.9, + "probability": 0.9846 + }, + { + "start": 11486.74, + "end": 11488.58, + "probability": 0.7826 + }, + { + "start": 11489.32, + "end": 11491.24, + "probability": 0.9875 + }, + { + "start": 11491.34, + "end": 11491.8, + "probability": 0.826 + }, + { + "start": 11492.4, + "end": 11493.24, + "probability": 0.8426 + }, + { + "start": 11494.02, + "end": 11494.74, + "probability": 0.7258 + }, + { + "start": 11495.0, + "end": 11496.88, + "probability": 0.5352 + }, + { + "start": 11497.3, + "end": 11499.06, + "probability": 0.8854 + }, + { + "start": 11499.44, + "end": 11500.2, + "probability": 0.7104 + }, + { + "start": 11500.56, + "end": 11501.92, + "probability": 0.7894 + }, + { + "start": 11517.32, + "end": 11517.78, + "probability": 0.7315 + }, + { + "start": 11518.18, + "end": 11519.13, + "probability": 0.6677 + }, + { + "start": 11519.42, + "end": 11520.5, + "probability": 0.7367 + }, + { + "start": 11521.44, + "end": 11525.14, + "probability": 0.925 + }, + { + "start": 11525.36, + "end": 11527.12, + "probability": 0.7372 + }, + { + "start": 11527.18, + "end": 11531.52, + "probability": 0.9763 + }, + { + "start": 11531.74, + "end": 11535.08, + "probability": 0.9765 + }, + { + "start": 11535.32, + "end": 11536.45, + "probability": 0.9297 + }, + { + "start": 11536.58, + "end": 11537.7, + "probability": 0.9989 + }, + { + "start": 11538.56, + "end": 11542.68, + "probability": 0.99 + }, + { + "start": 11542.82, + "end": 11547.78, + "probability": 0.8101 + }, + { + "start": 11547.96, + "end": 11550.82, + "probability": 0.9888 + }, + { + "start": 11552.94, + "end": 11555.5, + "probability": 0.9883 + }, + { + "start": 11556.36, + "end": 11556.84, + "probability": 0.7445 + }, + { + "start": 11557.79, + "end": 11561.86, + "probability": 0.9884 + }, + { + "start": 11562.04, + "end": 11563.88, + "probability": 0.9818 + }, + { + "start": 11564.08, + "end": 11564.84, + "probability": 0.933 + }, + { + "start": 11564.98, + "end": 11567.16, + "probability": 0.8614 + }, + { + "start": 11568.38, + "end": 11568.74, + "probability": 0.0982 + }, + { + "start": 11568.74, + "end": 11568.76, + "probability": 0.6365 + }, + { + "start": 11568.86, + "end": 11571.02, + "probability": 0.9805 + }, + { + "start": 11572.74, + "end": 11573.47, + "probability": 0.9951 + }, + { + "start": 11574.12, + "end": 11575.92, + "probability": 0.9943 + }, + { + "start": 11576.6, + "end": 11577.5, + "probability": 0.9883 + }, + { + "start": 11577.58, + "end": 11579.32, + "probability": 0.9528 + }, + { + "start": 11580.29, + "end": 11582.96, + "probability": 0.9916 + }, + { + "start": 11583.8, + "end": 11584.7, + "probability": 0.9286 + }, + { + "start": 11584.86, + "end": 11586.49, + "probability": 0.9482 + }, + { + "start": 11587.5, + "end": 11588.42, + "probability": 0.2298 + }, + { + "start": 11588.58, + "end": 11590.02, + "probability": 0.4497 + }, + { + "start": 11590.16, + "end": 11592.94, + "probability": 0.8588 + }, + { + "start": 11594.3, + "end": 11595.78, + "probability": 0.9722 + }, + { + "start": 11596.32, + "end": 11597.9, + "probability": 0.9961 + }, + { + "start": 11598.1, + "end": 11598.9, + "probability": 0.9917 + }, + { + "start": 11599.24, + "end": 11601.08, + "probability": 0.8706 + }, + { + "start": 11601.2, + "end": 11604.62, + "probability": 0.9927 + }, + { + "start": 11604.84, + "end": 11606.8, + "probability": 0.9915 + }, + { + "start": 11607.3, + "end": 11608.75, + "probability": 0.9956 + }, + { + "start": 11610.16, + "end": 11614.36, + "probability": 0.6665 + }, + { + "start": 11614.76, + "end": 11620.28, + "probability": 0.9987 + }, + { + "start": 11620.78, + "end": 11624.04, + "probability": 0.8684 + }, + { + "start": 11625.02, + "end": 11625.66, + "probability": 0.8281 + }, + { + "start": 11625.66, + "end": 11626.28, + "probability": 0.5061 + }, + { + "start": 11626.42, + "end": 11628.94, + "probability": 0.9456 + }, + { + "start": 11629.62, + "end": 11632.46, + "probability": 0.9771 + }, + { + "start": 11633.48, + "end": 11633.62, + "probability": 0.8785 + }, + { + "start": 11635.6, + "end": 11638.52, + "probability": 0.9165 + }, + { + "start": 11639.2, + "end": 11641.94, + "probability": 0.9938 + }, + { + "start": 11642.08, + "end": 11642.58, + "probability": 0.8526 + }, + { + "start": 11642.72, + "end": 11643.44, + "probability": 0.6073 + }, + { + "start": 11643.9, + "end": 11645.44, + "probability": 0.98 + }, + { + "start": 11645.44, + "end": 11647.66, + "probability": 0.988 + }, + { + "start": 11648.54, + "end": 11652.62, + "probability": 0.9491 + }, + { + "start": 11652.62, + "end": 11655.72, + "probability": 0.9874 + }, + { + "start": 11655.74, + "end": 11658.66, + "probability": 0.9937 + }, + { + "start": 11658.84, + "end": 11659.24, + "probability": 0.7077 + }, + { + "start": 11659.74, + "end": 11663.52, + "probability": 0.8813 + }, + { + "start": 11663.52, + "end": 11667.44, + "probability": 0.9974 + }, + { + "start": 11667.76, + "end": 11671.34, + "probability": 0.9837 + }, + { + "start": 11671.76, + "end": 11673.46, + "probability": 0.9838 + }, + { + "start": 11673.9, + "end": 11675.36, + "probability": 0.9146 + }, + { + "start": 11675.78, + "end": 11677.86, + "probability": 0.9343 + }, + { + "start": 11678.02, + "end": 11680.18, + "probability": 0.867 + }, + { + "start": 11680.52, + "end": 11682.33, + "probability": 0.7995 + }, + { + "start": 11682.78, + "end": 11684.35, + "probability": 0.9235 + }, + { + "start": 11684.66, + "end": 11685.94, + "probability": 0.9441 + }, + { + "start": 11686.44, + "end": 11686.98, + "probability": 0.9794 + }, + { + "start": 11687.14, + "end": 11687.5, + "probability": 0.44 + }, + { + "start": 11687.6, + "end": 11689.26, + "probability": 0.9648 + }, + { + "start": 11690.12, + "end": 11691.58, + "probability": 0.6836 + }, + { + "start": 11691.64, + "end": 11694.2, + "probability": 0.9916 + }, + { + "start": 11694.7, + "end": 11695.16, + "probability": 0.4182 + }, + { + "start": 11695.98, + "end": 11699.62, + "probability": 0.9619 + }, + { + "start": 11699.98, + "end": 11699.98, + "probability": 0.5616 + }, + { + "start": 11700.02, + "end": 11700.68, + "probability": 0.6125 + }, + { + "start": 11701.32, + "end": 11703.98, + "probability": 0.946 + }, + { + "start": 11704.24, + "end": 11704.4, + "probability": 0.7641 + }, + { + "start": 11704.46, + "end": 11705.68, + "probability": 0.929 + }, + { + "start": 11705.8, + "end": 11706.56, + "probability": 0.9791 + }, + { + "start": 11707.81, + "end": 11710.98, + "probability": 0.5782 + }, + { + "start": 11710.98, + "end": 11713.2, + "probability": 0.711 + }, + { + "start": 11713.42, + "end": 11714.3, + "probability": 0.703 + }, + { + "start": 11714.56, + "end": 11714.56, + "probability": 0.6223 + }, + { + "start": 11714.56, + "end": 11716.86, + "probability": 0.9977 + }, + { + "start": 11716.86, + "end": 11719.72, + "probability": 0.7973 + }, + { + "start": 11719.72, + "end": 11720.22, + "probability": 0.7371 + }, + { + "start": 11720.42, + "end": 11723.82, + "probability": 0.9973 + }, + { + "start": 11724.38, + "end": 11726.28, + "probability": 0.1138 + }, + { + "start": 11727.22, + "end": 11728.38, + "probability": 0.1784 + }, + { + "start": 11728.48, + "end": 11728.72, + "probability": 0.2433 + }, + { + "start": 11730.07, + "end": 11732.04, + "probability": 0.5278 + }, + { + "start": 11732.48, + "end": 11733.14, + "probability": 0.68 + }, + { + "start": 11745.46, + "end": 11747.74, + "probability": 0.0628 + }, + { + "start": 11750.98, + "end": 11750.98, + "probability": 0.2946 + }, + { + "start": 11750.98, + "end": 11753.18, + "probability": 0.499 + }, + { + "start": 11755.04, + "end": 11758.24, + "probability": 0.9976 + }, + { + "start": 11759.12, + "end": 11762.32, + "probability": 0.8512 + }, + { + "start": 11763.18, + "end": 11766.94, + "probability": 0.9276 + }, + { + "start": 11767.8, + "end": 11768.34, + "probability": 0.8376 + }, + { + "start": 11768.46, + "end": 11768.98, + "probability": 0.9861 + }, + { + "start": 11769.06, + "end": 11772.12, + "probability": 0.9897 + }, + { + "start": 11772.62, + "end": 11773.58, + "probability": 0.8823 + }, + { + "start": 11774.04, + "end": 11776.76, + "probability": 0.9905 + }, + { + "start": 11777.58, + "end": 11780.94, + "probability": 0.9967 + }, + { + "start": 11780.94, + "end": 11785.3, + "probability": 0.9973 + }, + { + "start": 11786.36, + "end": 11789.56, + "probability": 0.9876 + }, + { + "start": 11790.34, + "end": 11795.1, + "probability": 0.994 + }, + { + "start": 11795.98, + "end": 11800.84, + "probability": 0.9922 + }, + { + "start": 11801.54, + "end": 11803.06, + "probability": 0.9627 + }, + { + "start": 11803.2, + "end": 11804.12, + "probability": 0.9373 + }, + { + "start": 11804.5, + "end": 11810.5, + "probability": 0.9958 + }, + { + "start": 11812.2, + "end": 11814.94, + "probability": 0.9985 + }, + { + "start": 11815.0, + "end": 11817.46, + "probability": 0.8416 + }, + { + "start": 11817.52, + "end": 11818.1, + "probability": 0.7279 + }, + { + "start": 11819.18, + "end": 11820.14, + "probability": 0.7754 + }, + { + "start": 11820.24, + "end": 11822.6, + "probability": 0.9919 + }, + { + "start": 11822.74, + "end": 11823.44, + "probability": 0.7852 + }, + { + "start": 11823.96, + "end": 11826.16, + "probability": 0.9844 + }, + { + "start": 11827.38, + "end": 11828.31, + "probability": 0.851 + }, + { + "start": 11829.0, + "end": 11832.19, + "probability": 0.9111 + }, + { + "start": 11832.84, + "end": 11838.54, + "probability": 0.9951 + }, + { + "start": 11839.3, + "end": 11840.74, + "probability": 0.9338 + }, + { + "start": 11841.38, + "end": 11844.42, + "probability": 0.3983 + }, + { + "start": 11845.1, + "end": 11846.87, + "probability": 0.9769 + }, + { + "start": 11847.4, + "end": 11848.9, + "probability": 0.9976 + }, + { + "start": 11849.4, + "end": 11851.08, + "probability": 0.9836 + }, + { + "start": 11851.16, + "end": 11853.78, + "probability": 0.9901 + }, + { + "start": 11854.42, + "end": 11856.76, + "probability": 0.9573 + }, + { + "start": 11857.3, + "end": 11861.8, + "probability": 0.9752 + }, + { + "start": 11862.9, + "end": 11867.12, + "probability": 0.9084 + }, + { + "start": 11867.12, + "end": 11870.5, + "probability": 0.9966 + }, + { + "start": 11871.52, + "end": 11875.16, + "probability": 0.957 + }, + { + "start": 11875.16, + "end": 11878.86, + "probability": 0.9943 + }, + { + "start": 11879.64, + "end": 11881.74, + "probability": 0.9919 + }, + { + "start": 11882.4, + "end": 11886.9, + "probability": 0.9703 + }, + { + "start": 11888.02, + "end": 11891.62, + "probability": 0.8979 + }, + { + "start": 11891.72, + "end": 11892.8, + "probability": 0.7425 + }, + { + "start": 11893.3, + "end": 11893.7, + "probability": 0.8761 + }, + { + "start": 11894.08, + "end": 11894.92, + "probability": 0.9901 + }, + { + "start": 11895.0, + "end": 11895.54, + "probability": 0.8394 + }, + { + "start": 11896.06, + "end": 11896.52, + "probability": 0.466 + }, + { + "start": 11897.18, + "end": 11899.3, + "probability": 0.9749 + }, + { + "start": 11900.88, + "end": 11901.44, + "probability": 0.8409 + }, + { + "start": 11902.32, + "end": 11903.08, + "probability": 0.7979 + }, + { + "start": 11906.18, + "end": 11908.22, + "probability": 0.8651 + }, + { + "start": 11909.1, + "end": 11909.9, + "probability": 0.5134 + }, + { + "start": 11910.06, + "end": 11910.88, + "probability": 0.8486 + }, + { + "start": 11911.6, + "end": 11913.32, + "probability": 0.7159 + }, + { + "start": 11927.28, + "end": 11928.14, + "probability": 0.7483 + }, + { + "start": 11928.22, + "end": 11928.76, + "probability": 0.7496 + }, + { + "start": 11928.88, + "end": 11930.08, + "probability": 0.7965 + }, + { + "start": 11930.36, + "end": 11931.5, + "probability": 0.6039 + }, + { + "start": 11931.56, + "end": 11932.68, + "probability": 0.5187 + }, + { + "start": 11932.98, + "end": 11933.84, + "probability": 0.9801 + }, + { + "start": 11934.76, + "end": 11936.07, + "probability": 0.9886 + }, + { + "start": 11937.1, + "end": 11940.8, + "probability": 0.9609 + }, + { + "start": 11941.44, + "end": 11943.02, + "probability": 0.896 + }, + { + "start": 11943.6, + "end": 11944.72, + "probability": 0.7107 + }, + { + "start": 11944.76, + "end": 11945.34, + "probability": 0.5756 + }, + { + "start": 11946.24, + "end": 11947.58, + "probability": 0.6924 + }, + { + "start": 11948.44, + "end": 11948.62, + "probability": 0.9713 + }, + { + "start": 11948.66, + "end": 11949.88, + "probability": 0.798 + }, + { + "start": 11949.94, + "end": 11952.5, + "probability": 0.9463 + }, + { + "start": 11953.56, + "end": 11955.84, + "probability": 0.8444 + }, + { + "start": 11956.58, + "end": 11957.7, + "probability": 0.9893 + }, + { + "start": 11958.84, + "end": 11962.94, + "probability": 0.9792 + }, + { + "start": 11963.4, + "end": 11964.46, + "probability": 0.9388 + }, + { + "start": 11964.52, + "end": 11965.28, + "probability": 0.8079 + }, + { + "start": 11965.96, + "end": 11968.14, + "probability": 0.5208 + }, + { + "start": 11970.5, + "end": 11971.48, + "probability": 0.6928 + }, + { + "start": 11971.76, + "end": 11973.42, + "probability": 0.9946 + }, + { + "start": 11973.48, + "end": 11976.36, + "probability": 0.8624 + }, + { + "start": 11977.0, + "end": 11979.6, + "probability": 0.9885 + }, + { + "start": 11980.64, + "end": 11983.44, + "probability": 0.9982 + }, + { + "start": 11984.94, + "end": 11985.52, + "probability": 0.926 + }, + { + "start": 11985.92, + "end": 11987.91, + "probability": 0.9497 + }, + { + "start": 11988.92, + "end": 11991.3, + "probability": 0.9853 + }, + { + "start": 11993.0, + "end": 11993.74, + "probability": 0.9888 + }, + { + "start": 11993.82, + "end": 11995.72, + "probability": 0.998 + }, + { + "start": 11997.26, + "end": 11998.06, + "probability": 0.7512 + }, + { + "start": 11998.18, + "end": 11999.5, + "probability": 0.9606 + }, + { + "start": 12000.32, + "end": 12001.68, + "probability": 0.9507 + }, + { + "start": 12001.78, + "end": 12004.14, + "probability": 0.9644 + }, + { + "start": 12004.78, + "end": 12005.02, + "probability": 0.4437 + }, + { + "start": 12005.12, + "end": 12009.04, + "probability": 0.932 + }, + { + "start": 12010.22, + "end": 12013.28, + "probability": 0.9575 + }, + { + "start": 12013.9, + "end": 12013.98, + "probability": 0.4355 + }, + { + "start": 12014.02, + "end": 12016.8, + "probability": 0.9915 + }, + { + "start": 12017.96, + "end": 12018.04, + "probability": 0.8682 + }, + { + "start": 12018.12, + "end": 12024.07, + "probability": 0.9589 + }, + { + "start": 12025.22, + "end": 12025.22, + "probability": 0.0491 + }, + { + "start": 12025.22, + "end": 12025.36, + "probability": 0.2817 + }, + { + "start": 12025.42, + "end": 12026.62, + "probability": 0.8058 + }, + { + "start": 12026.66, + "end": 12027.83, + "probability": 0.9956 + }, + { + "start": 12029.1, + "end": 12031.52, + "probability": 0.9338 + }, + { + "start": 12031.52, + "end": 12034.0, + "probability": 0.6658 + }, + { + "start": 12034.98, + "end": 12036.66, + "probability": 0.9946 + }, + { + "start": 12037.32, + "end": 12040.28, + "probability": 0.9589 + }, + { + "start": 12040.8, + "end": 12043.46, + "probability": 0.9989 + }, + { + "start": 12043.46, + "end": 12045.6, + "probability": 0.9963 + }, + { + "start": 12046.5, + "end": 12048.58, + "probability": 0.9253 + }, + { + "start": 12049.34, + "end": 12051.28, + "probability": 0.7073 + }, + { + "start": 12052.26, + "end": 12054.06, + "probability": 0.6009 + }, + { + "start": 12054.1, + "end": 12054.71, + "probability": 0.8787 + }, + { + "start": 12054.82, + "end": 12055.1, + "probability": 0.6995 + }, + { + "start": 12055.14, + "end": 12055.5, + "probability": 0.7858 + }, + { + "start": 12055.56, + "end": 12055.92, + "probability": 0.9851 + }, + { + "start": 12056.0, + "end": 12056.74, + "probability": 0.7513 + }, + { + "start": 12057.54, + "end": 12060.76, + "probability": 0.9942 + }, + { + "start": 12060.9, + "end": 12061.66, + "probability": 0.5693 + }, + { + "start": 12061.8, + "end": 12063.04, + "probability": 0.8237 + }, + { + "start": 12063.74, + "end": 12065.26, + "probability": 0.8415 + }, + { + "start": 12065.88, + "end": 12068.14, + "probability": 0.9795 + }, + { + "start": 12068.16, + "end": 12068.88, + "probability": 0.6028 + }, + { + "start": 12069.3, + "end": 12072.3, + "probability": 0.9714 + }, + { + "start": 12072.68, + "end": 12075.62, + "probability": 0.9844 + }, + { + "start": 12075.76, + "end": 12076.0, + "probability": 0.201 + }, + { + "start": 12076.02, + "end": 12076.86, + "probability": 0.7903 + }, + { + "start": 12077.8, + "end": 12079.76, + "probability": 0.9902 + }, + { + "start": 12080.62, + "end": 12082.9, + "probability": 0.9567 + }, + { + "start": 12083.94, + "end": 12085.76, + "probability": 0.5859 + }, + { + "start": 12086.38, + "end": 12088.24, + "probability": 0.9951 + }, + { + "start": 12089.4, + "end": 12093.72, + "probability": 0.963 + }, + { + "start": 12095.4, + "end": 12096.94, + "probability": 0.9576 + }, + { + "start": 12098.04, + "end": 12099.09, + "probability": 0.9961 + }, + { + "start": 12100.0, + "end": 12101.86, + "probability": 0.8368 + }, + { + "start": 12102.62, + "end": 12105.82, + "probability": 0.9543 + }, + { + "start": 12106.2, + "end": 12107.1, + "probability": 0.8637 + }, + { + "start": 12107.18, + "end": 12108.79, + "probability": 0.8669 + }, + { + "start": 12109.64, + "end": 12111.1, + "probability": 0.666 + }, + { + "start": 12111.26, + "end": 12112.0, + "probability": 0.6185 + }, + { + "start": 12115.1, + "end": 12115.12, + "probability": 0.0598 + }, + { + "start": 12115.12, + "end": 12118.38, + "probability": 0.9557 + }, + { + "start": 12118.38, + "end": 12122.4, + "probability": 0.7453 + }, + { + "start": 12122.78, + "end": 12123.62, + "probability": 0.5279 + }, + { + "start": 12123.74, + "end": 12124.88, + "probability": 0.9867 + }, + { + "start": 12125.08, + "end": 12130.3, + "probability": 0.9854 + }, + { + "start": 12130.5, + "end": 12130.7, + "probability": 0.6809 + }, + { + "start": 12130.94, + "end": 12131.44, + "probability": 0.7273 + }, + { + "start": 12134.7, + "end": 12136.94, + "probability": 0.7059 + }, + { + "start": 12150.62, + "end": 12152.1, + "probability": 0.6403 + }, + { + "start": 12152.74, + "end": 12153.7, + "probability": 0.8298 + }, + { + "start": 12154.22, + "end": 12155.16, + "probability": 0.9021 + }, + { + "start": 12155.24, + "end": 12156.74, + "probability": 0.8886 + }, + { + "start": 12156.8, + "end": 12157.48, + "probability": 0.5327 + }, + { + "start": 12157.68, + "end": 12158.74, + "probability": 0.9432 + }, + { + "start": 12158.94, + "end": 12159.94, + "probability": 0.9736 + }, + { + "start": 12160.62, + "end": 12168.38, + "probability": 0.984 + }, + { + "start": 12168.62, + "end": 12173.76, + "probability": 0.9758 + }, + { + "start": 12175.06, + "end": 12176.98, + "probability": 0.8687 + }, + { + "start": 12178.44, + "end": 12178.98, + "probability": 0.5455 + }, + { + "start": 12179.02, + "end": 12180.5, + "probability": 0.7135 + }, + { + "start": 12181.42, + "end": 12183.38, + "probability": 0.929 + }, + { + "start": 12188.6, + "end": 12190.72, + "probability": 0.9934 + }, + { + "start": 12191.2, + "end": 12192.48, + "probability": 0.4302 + }, + { + "start": 12193.28, + "end": 12195.86, + "probability": 0.7194 + }, + { + "start": 12195.94, + "end": 12198.62, + "probability": 0.9845 + }, + { + "start": 12199.5, + "end": 12202.14, + "probability": 0.9819 + }, + { + "start": 12202.14, + "end": 12205.06, + "probability": 0.5118 + }, + { + "start": 12205.32, + "end": 12207.72, + "probability": 0.1969 + }, + { + "start": 12207.9, + "end": 12208.8, + "probability": 0.8351 + }, + { + "start": 12209.02, + "end": 12211.04, + "probability": 0.8376 + }, + { + "start": 12216.44, + "end": 12216.54, + "probability": 0.5626 + }, + { + "start": 12219.22, + "end": 12222.06, + "probability": 0.1093 + }, + { + "start": 12222.06, + "end": 12222.06, + "probability": 0.0495 + }, + { + "start": 12232.96, + "end": 12233.2, + "probability": 0.0306 + }, + { + "start": 12233.2, + "end": 12233.2, + "probability": 0.0652 + }, + { + "start": 12233.2, + "end": 12233.2, + "probability": 0.2296 + }, + { + "start": 12233.2, + "end": 12233.92, + "probability": 0.2241 + }, + { + "start": 12235.34, + "end": 12237.2, + "probability": 0.67 + }, + { + "start": 12240.58, + "end": 12243.04, + "probability": 0.8599 + }, + { + "start": 12243.84, + "end": 12246.08, + "probability": 0.7851 + }, + { + "start": 12246.08, + "end": 12248.84, + "probability": 0.4108 + }, + { + "start": 12248.98, + "end": 12250.6, + "probability": 0.2278 + }, + { + "start": 12250.76, + "end": 12253.76, + "probability": 0.9169 + }, + { + "start": 12253.76, + "end": 12257.78, + "probability": 0.9935 + }, + { + "start": 12262.84, + "end": 12265.27, + "probability": 0.6546 + }, + { + "start": 12266.24, + "end": 12268.86, + "probability": 0.5084 + }, + { + "start": 12269.21, + "end": 12272.98, + "probability": 0.1907 + }, + { + "start": 12273.22, + "end": 12275.24, + "probability": 0.361 + }, + { + "start": 12275.84, + "end": 12276.9, + "probability": 0.8285 + }, + { + "start": 12280.78, + "end": 12284.64, + "probability": 0.9794 + }, + { + "start": 12292.06, + "end": 12294.28, + "probability": 0.7401 + }, + { + "start": 12295.38, + "end": 12297.58, + "probability": 0.9593 + }, + { + "start": 12297.58, + "end": 12299.96, + "probability": 0.9875 + }, + { + "start": 12299.96, + "end": 12303.46, + "probability": 0.7285 + }, + { + "start": 12303.52, + "end": 12307.36, + "probability": 0.976 + }, + { + "start": 12308.42, + "end": 12310.26, + "probability": 0.9576 + }, + { + "start": 12310.42, + "end": 12311.5, + "probability": 0.9924 + }, + { + "start": 12312.06, + "end": 12313.62, + "probability": 0.9943 + }, + { + "start": 12314.68, + "end": 12317.92, + "probability": 0.9054 + }, + { + "start": 12317.92, + "end": 12320.36, + "probability": 0.9913 + }, + { + "start": 12321.02, + "end": 12323.4, + "probability": 0.9579 + }, + { + "start": 12323.48, + "end": 12324.8, + "probability": 0.9786 + }, + { + "start": 12325.46, + "end": 12327.96, + "probability": 0.8253 + }, + { + "start": 12327.96, + "end": 12330.22, + "probability": 0.9685 + }, + { + "start": 12330.39, + "end": 12333.5, + "probability": 0.8412 + }, + { + "start": 12333.68, + "end": 12335.16, + "probability": 0.9643 + }, + { + "start": 12335.16, + "end": 12335.34, + "probability": 0.7254 + }, + { + "start": 12336.9, + "end": 12337.58, + "probability": 0.7437 + }, + { + "start": 12338.28, + "end": 12339.98, + "probability": 0.6243 + }, + { + "start": 12340.2, + "end": 12343.02, + "probability": 0.9775 + }, + { + "start": 12344.16, + "end": 12345.98, + "probability": 0.9893 + }, + { + "start": 12346.94, + "end": 12347.74, + "probability": 0.7438 + }, + { + "start": 12348.68, + "end": 12350.9, + "probability": 0.7649 + }, + { + "start": 12364.56, + "end": 12369.01, + "probability": 0.9886 + }, + { + "start": 12369.6, + "end": 12370.16, + "probability": 0.9777 + }, + { + "start": 12370.58, + "end": 12374.84, + "probability": 0.9141 + }, + { + "start": 12375.24, + "end": 12377.44, + "probability": 0.6958 + }, + { + "start": 12377.44, + "end": 12381.54, + "probability": 0.9418 + }, + { + "start": 12382.5, + "end": 12384.28, + "probability": 0.9133 + }, + { + "start": 12384.64, + "end": 12387.36, + "probability": 0.9854 + }, + { + "start": 12388.04, + "end": 12389.12, + "probability": 0.8446 + }, + { + "start": 12389.56, + "end": 12390.78, + "probability": 0.9778 + }, + { + "start": 12391.16, + "end": 12392.22, + "probability": 0.9668 + }, + { + "start": 12393.2, + "end": 12396.28, + "probability": 0.9875 + }, + { + "start": 12396.84, + "end": 12397.68, + "probability": 0.9672 + }, + { + "start": 12397.7, + "end": 12398.26, + "probability": 0.8491 + }, + { + "start": 12398.34, + "end": 12400.66, + "probability": 0.9899 + }, + { + "start": 12401.1, + "end": 12404.12, + "probability": 0.9264 + }, + { + "start": 12404.88, + "end": 12405.63, + "probability": 0.9526 + }, + { + "start": 12405.96, + "end": 12406.78, + "probability": 0.97 + }, + { + "start": 12407.2, + "end": 12409.42, + "probability": 0.9337 + }, + { + "start": 12409.74, + "end": 12411.54, + "probability": 0.9198 + }, + { + "start": 12412.12, + "end": 12413.78, + "probability": 0.7447 + }, + { + "start": 12414.34, + "end": 12416.5, + "probability": 0.9921 + }, + { + "start": 12417.89, + "end": 12419.24, + "probability": 0.9712 + }, + { + "start": 12419.5, + "end": 12423.08, + "probability": 0.9808 + }, + { + "start": 12423.62, + "end": 12424.18, + "probability": 0.9136 + }, + { + "start": 12424.82, + "end": 12426.66, + "probability": 0.9917 + }, + { + "start": 12426.66, + "end": 12429.24, + "probability": 0.9644 + }, + { + "start": 12429.88, + "end": 12431.92, + "probability": 0.9653 + }, + { + "start": 12432.86, + "end": 12433.84, + "probability": 0.9094 + }, + { + "start": 12434.72, + "end": 12438.72, + "probability": 0.986 + }, + { + "start": 12439.42, + "end": 12440.68, + "probability": 0.936 + }, + { + "start": 12441.08, + "end": 12443.64, + "probability": 0.9048 + }, + { + "start": 12444.08, + "end": 12448.0, + "probability": 0.9818 + }, + { + "start": 12448.32, + "end": 12450.26, + "probability": 0.9961 + }, + { + "start": 12450.68, + "end": 12451.14, + "probability": 0.856 + }, + { + "start": 12451.62, + "end": 12453.08, + "probability": 0.9927 + }, + { + "start": 12453.38, + "end": 12454.66, + "probability": 0.9398 + }, + { + "start": 12455.08, + "end": 12458.92, + "probability": 0.9889 + }, + { + "start": 12459.72, + "end": 12462.96, + "probability": 0.9502 + }, + { + "start": 12463.42, + "end": 12467.14, + "probability": 0.8445 + }, + { + "start": 12467.82, + "end": 12468.86, + "probability": 0.7329 + }, + { + "start": 12469.7, + "end": 12471.2, + "probability": 0.7508 + }, + { + "start": 12471.2, + "end": 12472.16, + "probability": 0.7708 + }, + { + "start": 12472.54, + "end": 12476.26, + "probability": 0.9752 + }, + { + "start": 12476.72, + "end": 12479.8, + "probability": 0.9827 + }, + { + "start": 12480.42, + "end": 12481.05, + "probability": 0.8198 + }, + { + "start": 12481.99, + "end": 12484.06, + "probability": 0.9753 + }, + { + "start": 12484.6, + "end": 12485.3, + "probability": 0.9072 + }, + { + "start": 12485.8, + "end": 12489.92, + "probability": 0.9897 + }, + { + "start": 12490.78, + "end": 12495.66, + "probability": 0.9492 + }, + { + "start": 12496.1, + "end": 12496.36, + "probability": 0.765 + }, + { + "start": 12496.44, + "end": 12497.38, + "probability": 0.3167 + }, + { + "start": 12497.84, + "end": 12502.42, + "probability": 0.9478 + }, + { + "start": 12502.72, + "end": 12502.82, + "probability": 0.1117 + }, + { + "start": 12502.82, + "end": 12503.16, + "probability": 0.6472 + }, + { + "start": 12503.94, + "end": 12506.1, + "probability": 0.995 + }, + { + "start": 12507.16, + "end": 12512.92, + "probability": 0.9521 + }, + { + "start": 12514.11, + "end": 12518.62, + "probability": 0.9977 + }, + { + "start": 12518.96, + "end": 12521.08, + "probability": 0.7983 + }, + { + "start": 12521.74, + "end": 12527.12, + "probability": 0.9783 + }, + { + "start": 12527.62, + "end": 12529.1, + "probability": 0.9966 + }, + { + "start": 12529.16, + "end": 12532.26, + "probability": 0.806 + }, + { + "start": 12532.58, + "end": 12536.24, + "probability": 0.9978 + }, + { + "start": 12536.7, + "end": 12537.67, + "probability": 0.8661 + }, + { + "start": 12538.38, + "end": 12541.5, + "probability": 0.9971 + }, + { + "start": 12541.78, + "end": 12544.48, + "probability": 0.8894 + }, + { + "start": 12544.76, + "end": 12545.72, + "probability": 0.604 + }, + { + "start": 12546.08, + "end": 12549.56, + "probability": 0.8623 + }, + { + "start": 12549.56, + "end": 12553.54, + "probability": 0.9871 + }, + { + "start": 12554.08, + "end": 12556.3, + "probability": 0.9832 + }, + { + "start": 12556.62, + "end": 12558.1, + "probability": 0.9939 + }, + { + "start": 12558.44, + "end": 12558.9, + "probability": 0.7624 + }, + { + "start": 12560.18, + "end": 12562.96, + "probability": 0.6871 + }, + { + "start": 12563.88, + "end": 12564.6, + "probability": 0.7716 + }, + { + "start": 12564.9, + "end": 12566.26, + "probability": 0.9731 + }, + { + "start": 12566.4, + "end": 12567.08, + "probability": 0.844 + }, + { + "start": 12567.46, + "end": 12569.46, + "probability": 0.8102 + }, + { + "start": 12569.64, + "end": 12570.34, + "probability": 0.3785 + }, + { + "start": 12571.12, + "end": 12573.54, + "probability": 0.6985 + }, + { + "start": 12574.52, + "end": 12576.8, + "probability": 0.9779 + }, + { + "start": 12577.56, + "end": 12578.82, + "probability": 0.8645 + }, + { + "start": 12578.82, + "end": 12579.44, + "probability": 0.9749 + }, + { + "start": 12579.7, + "end": 12581.32, + "probability": 0.9442 + }, + { + "start": 12581.72, + "end": 12582.4, + "probability": 0.7239 + }, + { + "start": 12583.7, + "end": 12586.22, + "probability": 0.7603 + }, + { + "start": 12588.34, + "end": 12607.02, + "probability": 0.7474 + }, + { + "start": 12607.94, + "end": 12608.72, + "probability": 0.626 + }, + { + "start": 12608.8, + "end": 12609.62, + "probability": 0.8905 + }, + { + "start": 12609.68, + "end": 12612.72, + "probability": 0.978 + }, + { + "start": 12613.74, + "end": 12615.66, + "probability": 0.8407 + }, + { + "start": 12615.8, + "end": 12618.62, + "probability": 0.9612 + }, + { + "start": 12619.24, + "end": 12624.34, + "probability": 0.9956 + }, + { + "start": 12624.88, + "end": 12630.74, + "probability": 0.994 + }, + { + "start": 12631.26, + "end": 12633.64, + "probability": 0.9993 + }, + { + "start": 12634.2, + "end": 12638.04, + "probability": 0.8626 + }, + { + "start": 12638.2, + "end": 12641.66, + "probability": 0.8716 + }, + { + "start": 12642.5, + "end": 12645.46, + "probability": 0.9382 + }, + { + "start": 12645.96, + "end": 12648.24, + "probability": 0.9624 + }, + { + "start": 12648.98, + "end": 12652.48, + "probability": 0.8114 + }, + { + "start": 12652.96, + "end": 12654.6, + "probability": 0.974 + }, + { + "start": 12655.36, + "end": 12658.48, + "probability": 0.9902 + }, + { + "start": 12658.9, + "end": 12662.34, + "probability": 0.9976 + }, + { + "start": 12663.22, + "end": 12664.92, + "probability": 0.7552 + }, + { + "start": 12665.38, + "end": 12667.58, + "probability": 0.9855 + }, + { + "start": 12668.36, + "end": 12668.96, + "probability": 0.4374 + }, + { + "start": 12669.1, + "end": 12669.64, + "probability": 0.9922 + }, + { + "start": 12669.78, + "end": 12672.48, + "probability": 0.9839 + }, + { + "start": 12673.12, + "end": 12678.2, + "probability": 0.9375 + }, + { + "start": 12678.4, + "end": 12682.1, + "probability": 0.9951 + }, + { + "start": 12682.84, + "end": 12687.82, + "probability": 0.9915 + }, + { + "start": 12688.52, + "end": 12691.0, + "probability": 0.9963 + }, + { + "start": 12691.14, + "end": 12691.8, + "probability": 0.9008 + }, + { + "start": 12691.9, + "end": 12692.52, + "probability": 0.7611 + }, + { + "start": 12692.62, + "end": 12693.88, + "probability": 0.8875 + }, + { + "start": 12694.28, + "end": 12698.18, + "probability": 0.8238 + }, + { + "start": 12698.32, + "end": 12702.24, + "probability": 0.9692 + }, + { + "start": 12702.66, + "end": 12705.84, + "probability": 0.9803 + }, + { + "start": 12706.5, + "end": 12708.58, + "probability": 0.9692 + }, + { + "start": 12709.26, + "end": 12714.14, + "probability": 0.9812 + }, + { + "start": 12714.74, + "end": 12719.8, + "probability": 0.9929 + }, + { + "start": 12720.78, + "end": 12726.24, + "probability": 0.995 + }, + { + "start": 12726.24, + "end": 12733.34, + "probability": 0.9987 + }, + { + "start": 12733.92, + "end": 12734.42, + "probability": 0.4617 + }, + { + "start": 12734.98, + "end": 12738.4, + "probability": 0.996 + }, + { + "start": 12738.4, + "end": 12742.04, + "probability": 0.9988 + }, + { + "start": 12742.6, + "end": 12746.32, + "probability": 0.9981 + }, + { + "start": 12746.84, + "end": 12748.72, + "probability": 0.9899 + }, + { + "start": 12749.26, + "end": 12752.36, + "probability": 0.9927 + }, + { + "start": 12753.16, + "end": 12758.09, + "probability": 0.9915 + }, + { + "start": 12758.24, + "end": 12761.38, + "probability": 0.9807 + }, + { + "start": 12761.86, + "end": 12765.26, + "probability": 0.8638 + }, + { + "start": 12765.98, + "end": 12768.32, + "probability": 0.9763 + }, + { + "start": 12768.6, + "end": 12771.78, + "probability": 0.9954 + }, + { + "start": 12771.84, + "end": 12775.54, + "probability": 0.9924 + }, + { + "start": 12777.1, + "end": 12782.78, + "probability": 0.9287 + }, + { + "start": 12783.34, + "end": 12786.22, + "probability": 0.9979 + }, + { + "start": 12786.36, + "end": 12789.16, + "probability": 0.9941 + }, + { + "start": 12789.8, + "end": 12791.54, + "probability": 0.9675 + }, + { + "start": 12792.14, + "end": 12795.02, + "probability": 0.986 + }, + { + "start": 12795.94, + "end": 12796.72, + "probability": 0.7564 + }, + { + "start": 12796.8, + "end": 12799.7, + "probability": 0.962 + }, + { + "start": 12800.16, + "end": 12800.96, + "probability": 0.7009 + }, + { + "start": 12801.46, + "end": 12801.98, + "probability": 0.8064 + }, + { + "start": 12803.72, + "end": 12803.96, + "probability": 0.5109 + }, + { + "start": 12804.02, + "end": 12804.46, + "probability": 0.9606 + }, + { + "start": 12805.44, + "end": 12807.36, + "probability": 0.9021 + }, + { + "start": 12807.62, + "end": 12808.48, + "probability": 0.7023 + }, + { + "start": 12808.96, + "end": 12812.04, + "probability": 0.9631 + }, + { + "start": 12812.32, + "end": 12812.88, + "probability": 0.9532 + }, + { + "start": 12812.98, + "end": 12814.62, + "probability": 0.9828 + }, + { + "start": 12815.22, + "end": 12816.08, + "probability": 0.9616 + }, + { + "start": 12816.88, + "end": 12820.24, + "probability": 0.8201 + }, + { + "start": 12821.06, + "end": 12823.76, + "probability": 0.9729 + }, + { + "start": 12824.18, + "end": 12826.08, + "probability": 0.9879 + }, + { + "start": 12836.54, + "end": 12838.76, + "probability": 0.6548 + }, + { + "start": 12839.04, + "end": 12840.96, + "probability": 0.8178 + }, + { + "start": 12841.7, + "end": 12848.06, + "probability": 0.9927 + }, + { + "start": 12848.6, + "end": 12850.62, + "probability": 0.9876 + }, + { + "start": 12851.06, + "end": 12853.8, + "probability": 0.9943 + }, + { + "start": 12854.38, + "end": 12855.9, + "probability": 0.9756 + }, + { + "start": 12856.36, + "end": 12858.24, + "probability": 0.9994 + }, + { + "start": 12858.76, + "end": 12859.86, + "probability": 0.837 + }, + { + "start": 12860.02, + "end": 12862.12, + "probability": 0.8071 + }, + { + "start": 12862.76, + "end": 12870.38, + "probability": 0.7349 + }, + { + "start": 12871.0, + "end": 12871.99, + "probability": 0.5548 + }, + { + "start": 12873.38, + "end": 12877.48, + "probability": 0.831 + }, + { + "start": 12878.2, + "end": 12881.72, + "probability": 0.9141 + }, + { + "start": 12881.78, + "end": 12882.72, + "probability": 0.9827 + }, + { + "start": 12883.66, + "end": 12886.7, + "probability": 0.9874 + }, + { + "start": 12887.52, + "end": 12891.04, + "probability": 0.9797 + }, + { + "start": 12891.28, + "end": 12893.5, + "probability": 0.7397 + }, + { + "start": 12894.12, + "end": 12897.08, + "probability": 0.9517 + }, + { + "start": 12897.32, + "end": 12899.26, + "probability": 0.9467 + }, + { + "start": 12899.84, + "end": 12903.38, + "probability": 0.9524 + }, + { + "start": 12903.94, + "end": 12905.34, + "probability": 0.9107 + }, + { + "start": 12905.44, + "end": 12907.14, + "probability": 0.7698 + }, + { + "start": 12907.6, + "end": 12912.02, + "probability": 0.9484 + }, + { + "start": 12912.42, + "end": 12913.02, + "probability": 0.8497 + }, + { + "start": 12913.1, + "end": 12915.52, + "probability": 0.9832 + }, + { + "start": 12916.86, + "end": 12920.32, + "probability": 0.9921 + }, + { + "start": 12920.38, + "end": 12923.58, + "probability": 0.9988 + }, + { + "start": 12924.18, + "end": 12925.64, + "probability": 0.9799 + }, + { + "start": 12926.24, + "end": 12931.2, + "probability": 0.9751 + }, + { + "start": 12931.58, + "end": 12932.16, + "probability": 0.4908 + }, + { + "start": 12932.56, + "end": 12936.72, + "probability": 0.7933 + }, + { + "start": 12936.8, + "end": 12940.44, + "probability": 0.9966 + }, + { + "start": 12940.48, + "end": 12942.32, + "probability": 0.9699 + }, + { + "start": 12942.74, + "end": 12946.7, + "probability": 0.958 + }, + { + "start": 12947.14, + "end": 12952.58, + "probability": 0.9798 + }, + { + "start": 12953.14, + "end": 12957.2, + "probability": 0.8253 + }, + { + "start": 12957.6, + "end": 12959.16, + "probability": 0.7188 + }, + { + "start": 12959.4, + "end": 12961.34, + "probability": 0.8901 + }, + { + "start": 12962.28, + "end": 12966.2, + "probability": 0.9606 + }, + { + "start": 12966.56, + "end": 12967.7, + "probability": 0.5731 + }, + { + "start": 12968.12, + "end": 12970.24, + "probability": 0.9402 + }, + { + "start": 12970.36, + "end": 12974.12, + "probability": 0.9668 + }, + { + "start": 12974.68, + "end": 12979.42, + "probability": 0.9291 + }, + { + "start": 12979.42, + "end": 12982.7, + "probability": 0.9937 + }, + { + "start": 12983.38, + "end": 12984.66, + "probability": 0.9993 + }, + { + "start": 12984.66, + "end": 12987.24, + "probability": 0.843 + }, + { + "start": 12988.4, + "end": 12989.12, + "probability": 0.4775 + }, + { + "start": 12989.92, + "end": 12993.02, + "probability": 0.972 + }, + { + "start": 12993.86, + "end": 12996.4, + "probability": 0.843 + }, + { + "start": 12996.94, + "end": 12997.88, + "probability": 0.8176 + }, + { + "start": 12997.9, + "end": 12998.32, + "probability": 0.938 + }, + { + "start": 12998.44, + "end": 12998.6, + "probability": 0.6958 + }, + { + "start": 12998.64, + "end": 12999.34, + "probability": 0.896 + }, + { + "start": 12999.72, + "end": 13001.64, + "probability": 0.895 + }, + { + "start": 13001.74, + "end": 13001.96, + "probability": 0.379 + }, + { + "start": 13001.96, + "end": 13003.38, + "probability": 0.5257 + }, + { + "start": 13003.5, + "end": 13005.3, + "probability": 0.7336 + }, + { + "start": 13006.0, + "end": 13006.44, + "probability": 0.8143 + }, + { + "start": 13006.78, + "end": 13009.58, + "probability": 0.9669 + }, + { + "start": 13010.06, + "end": 13010.9, + "probability": 0.7599 + }, + { + "start": 13011.04, + "end": 13012.38, + "probability": 0.8368 + }, + { + "start": 13012.92, + "end": 13014.12, + "probability": 0.956 + }, + { + "start": 13014.2, + "end": 13014.62, + "probability": 0.9448 + }, + { + "start": 13015.1, + "end": 13019.78, + "probability": 0.9821 + }, + { + "start": 13021.48, + "end": 13027.33, + "probability": 0.7588 + }, + { + "start": 13028.28, + "end": 13030.52, + "probability": 0.8185 + }, + { + "start": 13031.2, + "end": 13032.38, + "probability": 0.8962 + }, + { + "start": 13032.38, + "end": 13033.03, + "probability": 0.5442 + }, + { + "start": 13033.72, + "end": 13035.08, + "probability": 0.8711 + }, + { + "start": 13035.7, + "end": 13037.54, + "probability": 0.7239 + }, + { + "start": 13038.16, + "end": 13039.14, + "probability": 0.5061 + }, + { + "start": 13039.32, + "end": 13040.44, + "probability": 0.6547 + }, + { + "start": 13040.46, + "end": 13041.2, + "probability": 0.8714 + }, + { + "start": 13041.28, + "end": 13041.82, + "probability": 0.8474 + }, + { + "start": 13041.84, + "end": 13042.52, + "probability": 0.6769 + }, + { + "start": 13043.22, + "end": 13043.92, + "probability": 0.8412 + }, + { + "start": 13044.14, + "end": 13049.36, + "probability": 0.8867 + }, + { + "start": 13049.82, + "end": 13050.56, + "probability": 0.912 + }, + { + "start": 13050.66, + "end": 13051.2, + "probability": 0.9194 + }, + { + "start": 13051.76, + "end": 13054.24, + "probability": 0.7941 + }, + { + "start": 13056.72, + "end": 13057.02, + "probability": 0.5268 + }, + { + "start": 13057.06, + "end": 13060.24, + "probability": 0.9987 + }, + { + "start": 13060.5, + "end": 13060.62, + "probability": 0.5791 + }, + { + "start": 13060.74, + "end": 13064.94, + "probability": 0.9939 + }, + { + "start": 13065.02, + "end": 13068.28, + "probability": 0.99 + }, + { + "start": 13069.36, + "end": 13071.08, + "probability": 0.5303 + }, + { + "start": 13071.6, + "end": 13076.88, + "probability": 0.9917 + }, + { + "start": 13077.02, + "end": 13077.24, + "probability": 0.6212 + }, + { + "start": 13077.72, + "end": 13078.6, + "probability": 0.8551 + }, + { + "start": 13079.64, + "end": 13080.12, + "probability": 0.9216 + }, + { + "start": 13080.88, + "end": 13082.52, + "probability": 0.651 + }, + { + "start": 13082.78, + "end": 13083.42, + "probability": 0.7749 + }, + { + "start": 13083.52, + "end": 13084.62, + "probability": 0.9628 + }, + { + "start": 13084.76, + "end": 13085.4, + "probability": 0.9397 + }, + { + "start": 13086.04, + "end": 13088.42, + "probability": 0.9896 + }, + { + "start": 13089.18, + "end": 13091.4, + "probability": 0.9863 + }, + { + "start": 13092.02, + "end": 13093.6, + "probability": 0.8624 + }, + { + "start": 13094.08, + "end": 13094.68, + "probability": 0.9599 + }, + { + "start": 13094.78, + "end": 13096.34, + "probability": 0.9748 + }, + { + "start": 13096.6, + "end": 13097.14, + "probability": 0.9819 + }, + { + "start": 13097.26, + "end": 13098.56, + "probability": 0.97 + }, + { + "start": 13098.64, + "end": 13099.22, + "probability": 0.9873 + }, + { + "start": 13099.3, + "end": 13100.52, + "probability": 0.9617 + }, + { + "start": 13104.06, + "end": 13104.7, + "probability": 0.9491 + }, + { + "start": 13105.28, + "end": 13107.0, + "probability": 0.4738 + }, + { + "start": 13107.12, + "end": 13107.78, + "probability": 0.4955 + }, + { + "start": 13107.9, + "end": 13108.82, + "probability": 0.6267 + }, + { + "start": 13109.0, + "end": 13109.56, + "probability": 0.8515 + }, + { + "start": 13110.54, + "end": 13111.32, + "probability": 0.7919 + }, + { + "start": 13111.32, + "end": 13111.32, + "probability": 0.5806 + }, + { + "start": 13111.32, + "end": 13111.68, + "probability": 0.5745 + }, + { + "start": 13112.04, + "end": 13112.82, + "probability": 0.6953 + }, + { + "start": 13112.9, + "end": 13113.82, + "probability": 0.8286 + }, + { + "start": 13114.94, + "end": 13116.54, + "probability": 0.8195 + }, + { + "start": 13116.7, + "end": 13117.04, + "probability": 0.4207 + }, + { + "start": 13117.7, + "end": 13118.2, + "probability": 0.6082 + }, + { + "start": 13118.32, + "end": 13119.4, + "probability": 0.8397 + }, + { + "start": 13119.88, + "end": 13120.52, + "probability": 0.7962 + }, + { + "start": 13121.68, + "end": 13124.06, + "probability": 0.6746 + }, + { + "start": 13124.76, + "end": 13126.4, + "probability": 0.9297 + }, + { + "start": 13126.46, + "end": 13127.02, + "probability": 0.7258 + }, + { + "start": 13127.34, + "end": 13129.92, + "probability": 0.7288 + }, + { + "start": 13130.04, + "end": 13130.78, + "probability": 0.437 + }, + { + "start": 13133.08, + "end": 13134.37, + "probability": 0.9178 + }, + { + "start": 13134.98, + "end": 13136.2, + "probability": 0.9341 + }, + { + "start": 13136.62, + "end": 13138.86, + "probability": 0.6602 + }, + { + "start": 13140.14, + "end": 13142.24, + "probability": 0.4124 + }, + { + "start": 13142.24, + "end": 13145.96, + "probability": 0.492 + }, + { + "start": 13146.32, + "end": 13152.42, + "probability": 0.6052 + }, + { + "start": 13156.54, + "end": 13157.02, + "probability": 0.6292 + }, + { + "start": 13158.64, + "end": 13160.4, + "probability": 0.0879 + }, + { + "start": 13160.4, + "end": 13160.5, + "probability": 0.0687 + }, + { + "start": 13174.04, + "end": 13174.04, + "probability": 0.0869 + }, + { + "start": 13174.04, + "end": 13175.32, + "probability": 0.6816 + }, + { + "start": 13179.02, + "end": 13180.36, + "probability": 0.4424 + }, + { + "start": 13180.54, + "end": 13184.66, + "probability": 0.7769 + }, + { + "start": 13185.34, + "end": 13186.86, + "probability": 0.1463 + }, + { + "start": 13186.88, + "end": 13188.32, + "probability": 0.1419 + }, + { + "start": 13188.52, + "end": 13191.68, + "probability": 0.9339 + }, + { + "start": 13191.68, + "end": 13196.26, + "probability": 0.9969 + }, + { + "start": 13197.04, + "end": 13197.58, + "probability": 0.676 + }, + { + "start": 13198.26, + "end": 13199.36, + "probability": 0.8071 + }, + { + "start": 13199.6, + "end": 13203.1, + "probability": 0.9877 + }, + { + "start": 13203.1, + "end": 13206.16, + "probability": 0.9195 + }, + { + "start": 13206.28, + "end": 13206.98, + "probability": 0.5791 + }, + { + "start": 13207.26, + "end": 13208.98, + "probability": 0.3406 + }, + { + "start": 13209.1, + "end": 13210.28, + "probability": 0.8698 + }, + { + "start": 13211.18, + "end": 13212.12, + "probability": 0.9709 + }, + { + "start": 13212.9, + "end": 13213.8, + "probability": 0.711 + }, + { + "start": 13214.8, + "end": 13216.78, + "probability": 0.7451 + }, + { + "start": 13217.22, + "end": 13218.92, + "probability": 0.9892 + }, + { + "start": 13234.72, + "end": 13235.54, + "probability": 0.7217 + }, + { + "start": 13235.78, + "end": 13237.0, + "probability": 0.794 + }, + { + "start": 13237.86, + "end": 13239.84, + "probability": 0.7299 + }, + { + "start": 13242.0, + "end": 13243.04, + "probability": 0.7831 + }, + { + "start": 13243.98, + "end": 13245.62, + "probability": 0.7356 + }, + { + "start": 13245.66, + "end": 13246.16, + "probability": 0.8018 + }, + { + "start": 13246.34, + "end": 13247.88, + "probability": 0.7309 + }, + { + "start": 13247.94, + "end": 13249.65, + "probability": 0.3853 + }, + { + "start": 13251.16, + "end": 13253.1, + "probability": 0.5327 + }, + { + "start": 13253.66, + "end": 13254.92, + "probability": 0.611 + }, + { + "start": 13255.58, + "end": 13257.92, + "probability": 0.9547 + }, + { + "start": 13257.92, + "end": 13261.58, + "probability": 0.9275 + }, + { + "start": 13262.66, + "end": 13266.08, + "probability": 0.9305 + }, + { + "start": 13266.16, + "end": 13266.72, + "probability": 0.3489 + }, + { + "start": 13266.72, + "end": 13267.66, + "probability": 0.7213 + }, + { + "start": 13267.76, + "end": 13268.76, + "probability": 0.8755 + }, + { + "start": 13269.76, + "end": 13272.42, + "probability": 0.8543 + }, + { + "start": 13272.58, + "end": 13274.3, + "probability": 0.9226 + }, + { + "start": 13274.92, + "end": 13277.42, + "probability": 0.9844 + }, + { + "start": 13277.46, + "end": 13279.3, + "probability": 0.9743 + }, + { + "start": 13279.4, + "end": 13281.1, + "probability": 0.8022 + }, + { + "start": 13281.14, + "end": 13284.14, + "probability": 0.9573 + }, + { + "start": 13284.96, + "end": 13285.74, + "probability": 0.8442 + }, + { + "start": 13285.8, + "end": 13286.54, + "probability": 0.9618 + }, + { + "start": 13286.62, + "end": 13291.16, + "probability": 0.8765 + }, + { + "start": 13291.76, + "end": 13295.5, + "probability": 0.9115 + }, + { + "start": 13297.14, + "end": 13299.16, + "probability": 0.4157 + }, + { + "start": 13299.18, + "end": 13299.7, + "probability": 0.6319 + }, + { + "start": 13299.8, + "end": 13302.9, + "probability": 0.9487 + }, + { + "start": 13302.94, + "end": 13304.84, + "probability": 0.9819 + }, + { + "start": 13306.8, + "end": 13308.06, + "probability": 0.9413 + }, + { + "start": 13308.18, + "end": 13310.14, + "probability": 0.6363 + }, + { + "start": 13310.26, + "end": 13311.38, + "probability": 0.3346 + }, + { + "start": 13311.38, + "end": 13314.06, + "probability": 0.9073 + }, + { + "start": 13314.64, + "end": 13315.38, + "probability": 0.5643 + }, + { + "start": 13315.78, + "end": 13319.04, + "probability": 0.9849 + }, + { + "start": 13319.14, + "end": 13319.6, + "probability": 0.4715 + }, + { + "start": 13320.46, + "end": 13321.72, + "probability": 0.5883 + }, + { + "start": 13321.74, + "end": 13324.3, + "probability": 0.8752 + }, + { + "start": 13324.94, + "end": 13326.0, + "probability": 0.665 + }, + { + "start": 13326.18, + "end": 13328.3, + "probability": 0.8616 + }, + { + "start": 13328.8, + "end": 13329.66, + "probability": 0.9843 + }, + { + "start": 13329.74, + "end": 13331.46, + "probability": 0.7783 + }, + { + "start": 13331.8, + "end": 13332.6, + "probability": 0.2039 + }, + { + "start": 13333.08, + "end": 13337.94, + "probability": 0.9768 + }, + { + "start": 13338.66, + "end": 13341.58, + "probability": 0.8675 + }, + { + "start": 13342.24, + "end": 13345.3, + "probability": 0.9332 + }, + { + "start": 13345.74, + "end": 13346.22, + "probability": 0.6395 + }, + { + "start": 13347.7, + "end": 13350.54, + "probability": 0.9636 + }, + { + "start": 13350.54, + "end": 13353.94, + "probability": 0.9217 + }, + { + "start": 13354.6, + "end": 13356.98, + "probability": 0.998 + }, + { + "start": 13356.98, + "end": 13359.1, + "probability": 0.9929 + }, + { + "start": 13359.4, + "end": 13361.24, + "probability": 0.8774 + }, + { + "start": 13361.36, + "end": 13364.2, + "probability": 0.8379 + }, + { + "start": 13364.32, + "end": 13364.76, + "probability": 0.818 + }, + { + "start": 13364.9, + "end": 13368.92, + "probability": 0.7274 + }, + { + "start": 13368.92, + "end": 13373.68, + "probability": 0.7695 + }, + { + "start": 13374.58, + "end": 13376.96, + "probability": 0.9326 + }, + { + "start": 13376.96, + "end": 13380.42, + "probability": 0.9771 + }, + { + "start": 13380.54, + "end": 13380.94, + "probability": 0.1039 + }, + { + "start": 13381.52, + "end": 13383.96, + "probability": 0.6324 + }, + { + "start": 13385.8, + "end": 13386.68, + "probability": 0.5096 + }, + { + "start": 13386.88, + "end": 13387.02, + "probability": 0.1998 + }, + { + "start": 13387.58, + "end": 13391.34, + "probability": 0.2253 + }, + { + "start": 13393.26, + "end": 13393.96, + "probability": 0.1165 + }, + { + "start": 13394.1, + "end": 13394.86, + "probability": 0.7429 + }, + { + "start": 13394.96, + "end": 13396.1, + "probability": 0.2857 + }, + { + "start": 13396.1, + "end": 13396.82, + "probability": 0.3961 + }, + { + "start": 13396.82, + "end": 13398.18, + "probability": 0.5263 + }, + { + "start": 13398.24, + "end": 13398.28, + "probability": 0.2315 + }, + { + "start": 13398.28, + "end": 13398.56, + "probability": 0.1989 + }, + { + "start": 13398.56, + "end": 13399.16, + "probability": 0.6963 + }, + { + "start": 13400.06, + "end": 13401.24, + "probability": 0.6077 + }, + { + "start": 13401.94, + "end": 13402.98, + "probability": 0.7341 + }, + { + "start": 13403.12, + "end": 13404.82, + "probability": 0.7654 + }, + { + "start": 13404.9, + "end": 13406.42, + "probability": 0.9674 + }, + { + "start": 13406.52, + "end": 13406.92, + "probability": 0.9085 + }, + { + "start": 13407.04, + "end": 13409.66, + "probability": 0.9657 + }, + { + "start": 13409.74, + "end": 13412.92, + "probability": 0.9101 + }, + { + "start": 13412.92, + "end": 13416.6, + "probability": 0.9307 + }, + { + "start": 13416.92, + "end": 13417.14, + "probability": 0.6904 + }, + { + "start": 13417.58, + "end": 13419.88, + "probability": 0.8766 + }, + { + "start": 13419.88, + "end": 13422.6, + "probability": 0.7125 + }, + { + "start": 13423.04, + "end": 13424.96, + "probability": 0.9596 + }, + { + "start": 13425.48, + "end": 13426.54, + "probability": 0.6915 + }, + { + "start": 13426.6, + "end": 13428.38, + "probability": 0.6091 + }, + { + "start": 13428.46, + "end": 13429.7, + "probability": 0.7637 + }, + { + "start": 13429.7, + "end": 13430.22, + "probability": 0.7826 + }, + { + "start": 13430.72, + "end": 13434.02, + "probability": 0.9856 + }, + { + "start": 13434.56, + "end": 13436.36, + "probability": 0.7769 + }, + { + "start": 13436.76, + "end": 13437.18, + "probability": 0.7648 + }, + { + "start": 13437.42, + "end": 13438.54, + "probability": 0.8153 + }, + { + "start": 13438.56, + "end": 13440.8, + "probability": 0.8583 + }, + { + "start": 13440.94, + "end": 13446.16, + "probability": 0.887 + }, + { + "start": 13446.3, + "end": 13447.4, + "probability": 0.5901 + }, + { + "start": 13447.84, + "end": 13452.26, + "probability": 0.9907 + }, + { + "start": 13452.3, + "end": 13453.26, + "probability": 0.695 + }, + { + "start": 13453.42, + "end": 13456.76, + "probability": 0.936 + }, + { + "start": 13457.16, + "end": 13459.78, + "probability": 0.8722 + }, + { + "start": 13459.86, + "end": 13463.04, + "probability": 0.9874 + }, + { + "start": 13463.04, + "end": 13467.44, + "probability": 0.9424 + }, + { + "start": 13467.7, + "end": 13469.98, + "probability": 0.9032 + }, + { + "start": 13469.98, + "end": 13473.26, + "probability": 0.9641 + }, + { + "start": 13473.66, + "end": 13476.78, + "probability": 0.9785 + }, + { + "start": 13478.34, + "end": 13479.94, + "probability": 0.9103 + }, + { + "start": 13480.62, + "end": 13482.06, + "probability": 0.9969 + }, + { + "start": 13482.06, + "end": 13485.59, + "probability": 0.9193 + }, + { + "start": 13485.86, + "end": 13487.62, + "probability": 0.8756 + }, + { + "start": 13488.3, + "end": 13489.96, + "probability": 0.9697 + }, + { + "start": 13490.0, + "end": 13493.08, + "probability": 0.7137 + }, + { + "start": 13493.08, + "end": 13495.34, + "probability": 0.941 + }, + { + "start": 13495.34, + "end": 13498.92, + "probability": 0.8663 + }, + { + "start": 13499.64, + "end": 13503.06, + "probability": 0.9795 + }, + { + "start": 13503.06, + "end": 13507.24, + "probability": 0.9596 + }, + { + "start": 13507.24, + "end": 13511.56, + "probability": 0.9983 + }, + { + "start": 13511.68, + "end": 13511.82, + "probability": 0.4883 + }, + { + "start": 13511.9, + "end": 13514.52, + "probability": 0.6298 + }, + { + "start": 13514.52, + "end": 13516.28, + "probability": 0.9471 + }, + { + "start": 13516.44, + "end": 13520.46, + "probability": 0.9943 + }, + { + "start": 13521.1, + "end": 13524.34, + "probability": 0.8929 + }, + { + "start": 13524.42, + "end": 13526.8, + "probability": 0.6851 + }, + { + "start": 13527.46, + "end": 13531.38, + "probability": 0.9417 + }, + { + "start": 13531.48, + "end": 13535.72, + "probability": 0.811 + }, + { + "start": 13535.84, + "end": 13537.48, + "probability": 0.8864 + }, + { + "start": 13537.5, + "end": 13538.5, + "probability": 0.6763 + }, + { + "start": 13538.82, + "end": 13541.4, + "probability": 0.6838 + }, + { + "start": 13541.46, + "end": 13544.76, + "probability": 0.7827 + }, + { + "start": 13545.08, + "end": 13545.46, + "probability": 0.669 + }, + { + "start": 13545.68, + "end": 13548.84, + "probability": 0.9864 + }, + { + "start": 13548.84, + "end": 13552.72, + "probability": 0.9921 + }, + { + "start": 13552.82, + "end": 13554.24, + "probability": 0.5902 + }, + { + "start": 13556.78, + "end": 13556.92, + "probability": 0.0194 + }, + { + "start": 13556.92, + "end": 13558.16, + "probability": 0.053 + }, + { + "start": 13558.16, + "end": 13561.18, + "probability": 0.9204 + }, + { + "start": 13561.26, + "end": 13563.74, + "probability": 0.9077 + }, + { + "start": 13563.82, + "end": 13567.26, + "probability": 0.877 + }, + { + "start": 13567.36, + "end": 13569.54, + "probability": 0.8353 + }, + { + "start": 13569.54, + "end": 13569.88, + "probability": 0.5293 + }, + { + "start": 13569.92, + "end": 13573.92, + "probability": 0.7957 + }, + { + "start": 13575.36, + "end": 13576.8, + "probability": 0.8609 + }, + { + "start": 13576.9, + "end": 13580.44, + "probability": 0.952 + }, + { + "start": 13580.48, + "end": 13581.74, + "probability": 0.8226 + }, + { + "start": 13582.04, + "end": 13582.98, + "probability": 0.8391 + }, + { + "start": 13583.76, + "end": 13588.18, + "probability": 0.9587 + }, + { + "start": 13588.38, + "end": 13591.26, + "probability": 0.6808 + }, + { + "start": 13591.62, + "end": 13595.18, + "probability": 0.8823 + }, + { + "start": 13596.38, + "end": 13600.74, + "probability": 0.2932 + }, + { + "start": 13601.38, + "end": 13603.02, + "probability": 0.6845 + }, + { + "start": 13603.56, + "end": 13605.24, + "probability": 0.4804 + }, + { + "start": 13605.7, + "end": 13607.72, + "probability": 0.9571 + }, + { + "start": 13607.8, + "end": 13609.66, + "probability": 0.9819 + }, + { + "start": 13609.7, + "end": 13611.29, + "probability": 0.8951 + }, + { + "start": 13611.58, + "end": 13611.88, + "probability": 0.4046 + }, + { + "start": 13611.98, + "end": 13612.7, + "probability": 0.6454 + }, + { + "start": 13612.7, + "end": 13614.9, + "probability": 0.9813 + }, + { + "start": 13614.98, + "end": 13616.6, + "probability": 0.9533 + }, + { + "start": 13617.06, + "end": 13617.66, + "probability": 0.7383 + }, + { + "start": 13617.68, + "end": 13619.92, + "probability": 0.9776 + }, + { + "start": 13620.1, + "end": 13620.4, + "probability": 0.5133 + }, + { + "start": 13621.32, + "end": 13621.46, + "probability": 0.7034 + }, + { + "start": 13622.88, + "end": 13623.86, + "probability": 0.7057 + }, + { + "start": 13625.62, + "end": 13627.5, + "probability": 0.9067 + }, + { + "start": 13628.38, + "end": 13631.14, + "probability": 0.8448 + }, + { + "start": 13631.98, + "end": 13635.28, + "probability": 0.5697 + }, + { + "start": 13636.14, + "end": 13636.76, + "probability": 0.7809 + }, + { + "start": 13638.18, + "end": 13639.7, + "probability": 0.8782 + }, + { + "start": 13640.34, + "end": 13645.52, + "probability": 0.8056 + }, + { + "start": 13645.52, + "end": 13648.64, + "probability": 0.8828 + }, + { + "start": 13648.64, + "end": 13649.42, + "probability": 0.6844 + }, + { + "start": 13649.62, + "end": 13651.2, + "probability": 0.1859 + }, + { + "start": 13651.36, + "end": 13652.82, + "probability": 0.705 + }, + { + "start": 13653.68, + "end": 13655.86, + "probability": 0.8721 + }, + { + "start": 13665.28, + "end": 13666.34, + "probability": 0.0061 + }, + { + "start": 13670.68, + "end": 13672.72, + "probability": 0.0161 + }, + { + "start": 13675.76, + "end": 13678.86, + "probability": 0.7575 + }, + { + "start": 13680.76, + "end": 13683.44, + "probability": 0.8307 + }, + { + "start": 13683.56, + "end": 13684.14, + "probability": 0.8781 + }, + { + "start": 13684.22, + "end": 13687.14, + "probability": 0.9185 + }, + { + "start": 13687.28, + "end": 13690.42, + "probability": 0.9824 + }, + { + "start": 13691.38, + "end": 13693.26, + "probability": 0.5742 + }, + { + "start": 13693.4, + "end": 13693.94, + "probability": 0.6515 + }, + { + "start": 13694.18, + "end": 13699.14, + "probability": 0.5927 + }, + { + "start": 13719.68, + "end": 13722.84, + "probability": 0.9651 + }, + { + "start": 13722.9, + "end": 13726.18, + "probability": 0.8515 + }, + { + "start": 13726.28, + "end": 13726.92, + "probability": 0.7209 + }, + { + "start": 13727.0, + "end": 13728.82, + "probability": 0.1632 + }, + { + "start": 13729.48, + "end": 13729.86, + "probability": 0.2045 + }, + { + "start": 13730.34, + "end": 13734.34, + "probability": 0.0353 + }, + { + "start": 13736.44, + "end": 13736.44, + "probability": 0.153 + }, + { + "start": 13737.2, + "end": 13739.16, + "probability": 0.0246 + }, + { + "start": 13740.56, + "end": 13743.2, + "probability": 0.0318 + }, + { + "start": 13743.94, + "end": 13747.44, + "probability": 0.2329 + }, + { + "start": 13750.08, + "end": 13750.4, + "probability": 0.4431 + }, + { + "start": 13751.02, + "end": 13753.66, + "probability": 0.0497 + }, + { + "start": 13754.96, + "end": 13756.46, + "probability": 0.1408 + }, + { + "start": 13757.84, + "end": 13758.98, + "probability": 0.0381 + }, + { + "start": 13758.98, + "end": 13758.98, + "probability": 0.1121 + }, + { + "start": 13758.98, + "end": 13758.98, + "probability": 0.0071 + }, + { + "start": 13758.98, + "end": 13759.38, + "probability": 0.1413 + }, + { + "start": 13759.4, + "end": 13759.66, + "probability": 0.8002 + }, + { + "start": 13759.82, + "end": 13760.66, + "probability": 0.677 + }, + { + "start": 13760.92, + "end": 13762.24, + "probability": 0.7559 + }, + { + "start": 13762.72, + "end": 13762.8, + "probability": 0.0112 + }, + { + "start": 13765.12, + "end": 13767.55, + "probability": 0.3173 + }, + { + "start": 13768.16, + "end": 13769.9, + "probability": 0.6228 + }, + { + "start": 13770.82, + "end": 13775.05, + "probability": 0.8687 + } + ], + "segments_count": 4518, + "words_count": 22393, + "avg_words_per_segment": 4.9564, + "avg_segment_duration": 2.1205, + "avg_words_per_minute": 97.1437, + "plenum_id": "122598", + "duration": 13830.85, + "title": null, + "plenum_date": "2023-12-25" +} \ No newline at end of file